Files
vllm/tests/quantization/test_quark.py
2025-10-16 17:26:35 -04:00

347 lines
11 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Test model set-up and weight loading for quark-quantized models.
Run `pytest tests/quantization/test_quark.py`.
See also `tests/kernels/moe/test_ocp_mx_moe.py`.
"""
import importlib.metadata
import os
from dataclasses import dataclass
from importlib.util import find_spec
import huggingface_hub
import lm_eval
import pytest
import torch
from packaging import version
from vllm.model_executor.layers.quantization.quark.quark import ( # noqa: E501
QuarkLinearMethod,
QuarkW8A8Fp8,
QuarkW8A8Int8,
)
from vllm.platforms import current_platform
from .reference_mxfp4 import dq_mxfp4_torch, qdq_mxfp4_torch
QUARK_MXFP4_AVAILABLE = find_spec("quark") is not None and version.parse(
importlib.metadata.version("amd-quark")
) >= version.parse("0.8.99")
if QUARK_MXFP4_AVAILABLE:
from quark.torch.export.nn.modules.realquantizer import StaticScaledRealQuantizer
from quark.torch.kernel import mx as mx_kernel
from quark.torch.quantization.config.config import FP4PerGroupSpec
try:
huggingface_hub.list_repo_refs(
"amd/Llama-3.3-70B-Instruct-WMXFP4-AMXFP4-KVFP8-Scale-UINT8-SQ"
)
HF_HUB_AMD_ORG_ACCESS = True
except huggingface_hub.errors.RepositoryNotFoundError:
HF_HUB_AMD_ORG_ACCESS = False
@pytest.fixture(scope="function", autouse=True)
def enable_pickle(monkeypatch):
"""`LLM.apply_model` requires pickling a function."""
monkeypatch.setenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "1")
@pytest.mark.parametrize("kv_cache_dtype", ["auto", "fp8"])
@pytest.mark.parametrize("tp", [1])
def test_quark_fp8_w_per_tensor_a_per_tensor(vllm_runner, kv_cache_dtype, tp):
model_path = "amd/Llama-3.1-8B-Instruct-FP8-KV-Quark-test"
with vllm_runner(
model_path,
enforce_eager=True,
kv_cache_dtype=kv_cache_dtype,
tensor_parallel_size=tp,
) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method, QuarkLinearMethod)
assert isinstance(qkv_proj.scheme, QuarkW8A8Fp8)
if isinstance(qkv_proj.scheme, QuarkW8A8Fp8):
assert len(qkv_proj.input_scale.shape) == 0
assert qkv_proj.weight.dtype is current_platform.fp8_dtype()
assert len(qkv_proj.weight_scale.shape) == 0
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=4)
assert output
@pytest.mark.parametrize("tp", [1])
def test_quark_fp8_w_per_channel_a_per_token(vllm_runner, tp):
model_path = "amd/Qwen2.5-1.5B-Instruct-ptpc-Quark-ts"
with vllm_runner(model_path, enforce_eager=True, tensor_parallel_size=tp) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method, QuarkLinearMethod)
assert isinstance(qkv_proj.scheme, QuarkW8A8Fp8)
if isinstance(qkv_proj.scheme, QuarkW8A8Fp8):
assert qkv_proj.weight.dtype is current_platform.fp8_dtype()
assert qkv_proj.weight_scale.shape[0] == qkv_proj.weight.shape[1]
assert qkv_proj.weight_scale.shape[1] == 1
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=4)
assert output
@pytest.mark.parametrize("tp", [1])
def test_quark_int8_w_per_tensor_a_per_tensor(vllm_runner, tp):
model_path = "amd/Llama-3.1-8B-Instruct-w-int8-a-int8-sym-test"
with vllm_runner(model_path, enforce_eager=True, tensor_parallel_size=tp) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method, QuarkLinearMethod)
assert isinstance(qkv_proj.scheme, QuarkW8A8Int8)
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=4)
assert output
def test_quark_fp8_parity(vllm_runner):
quark_model_id = "amd-quark/llama-tiny-fp8-quark-quant-method"
fp8_model_id = "amd-quark/llama-tiny-fp8-quant-method"
llm_kwargs = {
"tensor_parallel_size": 1,
"enforce_eager": True,
"gpu_memory_utilization": 0.1,
}
with (
vllm_runner(quark_model_id, **llm_kwargs) as quark_handle,
vllm_runner(fp8_model_id, **llm_kwargs) as fp8_handle,
):
def get_state_dict(model):
return {k: v.cpu() for k, v in model.state_dict().items()}
(quark_state_dict,) = quark_handle.apply_model(get_state_dict)
(fp8_state_dict,) = fp8_handle.apply_model(get_state_dict)
assert fp8_state_dict.keys() == quark_state_dict.keys()
for key in fp8_state_dict:
assert torch.equal(fp8_state_dict[key], quark_state_dict[key])
@dataclass
class AccuracyTestConfig:
model_name: str
excepted_value: float
def get_model_args(
self,
tp_size: int,
model_max_len: int | None = None,
kwargs: dict | None = None,
) -> dict:
if kwargs is None:
kwargs = {}
model_args = {
"pretrained": self.model_name,
"dtype": "auto",
"add_bos_token": True,
"tensor_parallel_size": tp_size,
"gpu_memory_utilization": 0.7,
**kwargs,
}
if model_max_len is not None:
model_args["max_model_len"] = model_max_len
return model_args
GSM8K_ACCURACY_CONFIGS = [
# Private model.
AccuracyTestConfig(
model_name="amd/DeepSeek-R1-WMXFP4-AMXFP4-Scale-UINT8-MoE-Quant",
excepted_value=0.96,
),
]
WIKITEXT_ACCURACY_CONFIGS = [
AccuracyTestConfig(
model_name="fxmarty/qwen1.5_moe_a2.7b_chat_w_fp4_a_fp6_e2m3",
excepted_value=11.3,
),
AccuracyTestConfig(
model_name="fxmarty/qwen1.5_moe_a2.7b_chat_w_fp6_e3m2_a_fp6_e3m2",
excepted_value=10.6,
),
AccuracyTestConfig(
model_name="fxmarty/qwen_1.5-moe-a2.7b-mxfp4", excepted_value=12.4
),
]
@pytest.mark.skipif(not QUARK_MXFP4_AVAILABLE, reason="amd-quark>=0.9 is not available")
@pytest.mark.parametrize("config", WIKITEXT_ACCURACY_CONFIGS)
@pytest.mark.parametrize("tp_size", [1, 2])
def test_ocp_mx_wikitext_correctness(config: AccuracyTestConfig, tp_size: int):
if torch.cuda.device_count() < tp_size:
pytest.skip(
f"This test requires >={tp_size} gpus, got only {torch.cuda.device_count()}"
)
task = "wikitext"
rtol = 0.1
# Smaller cuda_graph_sizes to speed up the test.
results = lm_eval.simple_evaluate(
model="vllm",
model_args=config.get_model_args(
tp_size=tp_size, kwargs={"cuda_graph_sizes": [16]}
),
tasks=task,
batch_size=64,
)
EXPECTED_VALUE = config.excepted_value
measured_value = results["results"][task]["word_perplexity,none"]
assert (
measured_value < EXPECTED_VALUE + rtol
and measured_value > EXPECTED_VALUE - rtol
), f"Expected: {EXPECTED_VALUE} | Measured: {measured_value}"
@pytest.mark.parametrize("config", GSM8K_ACCURACY_CONFIGS)
@pytest.mark.skipif(not QUARK_MXFP4_AVAILABLE, reason="amd-quark>=0.9 is not available")
@pytest.mark.skipif(
not HF_HUB_AMD_ORG_ACCESS,
reason="Read access to huggingface.co/amd is required for this test.",
)
def test_mxfp4_gsm8k_correctness(config: AccuracyTestConfig):
if torch.cuda.device_count() < 8:
pytest.skip(
f"This test requires >=8 gpus, got only {torch.cuda.device_count()}"
)
task = "gsm8k"
rtol = 0.03
os.environ["VLLM_USE_TRITON_FLASH_ATTN"] = "0"
results = lm_eval.simple_evaluate(
model="vllm",
model_args=config.get_model_args(tp_size=8, model_max_len=38768),
tasks=task,
batch_size=64,
num_fewshot=8,
)
EXPECTED_VALUE = config.excepted_value
measured_value = results["results"][task]["exact_match,strict-match"]
assert (
measured_value - rtol < EXPECTED_VALUE
and measured_value + rtol > EXPECTED_VALUE
), f"Expected: {EXPECTED_VALUE} | Measured: {measured_value}"
del os.environ["VLLM_USE_TRITON_FLASH_ATTN"]
@pytest.mark.skipif(not QUARK_MXFP4_AVAILABLE, reason="amd-quark>=0.9 is not available")
@pytest.mark.parametrize("float_dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("scalings", [[2.3, 0.03, 7.3, 0.1, 0.004, 17.3, 1e4, 1e-4]])
def test_mxfp4_fused_qdq_match_quark(float_dtype: torch.dtype, scalings: list[int]):
torch.manual_seed(0)
hidden_size = 64 * 32
inp = (torch.rand(1, hidden_size, dtype=float_dtype, device="cuda") - 0.5) * 2
for i in range(hidden_size // 32):
inp[:, i * 32 : (i + 1) * 32] = (
inp[:, i * 32 : (i + 1) * 32] * scalings[i % len(scalings)]
)
inp_kernel = inp.clone()
inp_kernel_clone = inp_kernel.clone()
res_hip = mx_kernel.qdq_mxfp4_hip(inp_kernel_clone, "even")
res_torch = qdq_mxfp4_torch(inp_kernel, "even")
for i in range(hidden_size // 32):
assert torch.all(torch.isfinite(res_hip[:, i * 32 : (i + 1) * 32]))
assert torch.all(torch.isfinite(res_torch[:, i * 32 : (i + 1) * 32]))
torch.testing.assert_close(
res_hip[:, i * 32 : (i + 1) * 32], res_torch[:, i * 32 : (i + 1) * 32]
)
@pytest.mark.skipif(not QUARK_MXFP4_AVAILABLE, reason="amd-quark>=0.9 is not available")
@pytest.mark.parametrize("float_dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("scalings", [[2.3, 0.03, 7.3, 0.1, 0.004, 17.3, 1e4, 1e-4]])
def test_mxfp4_dequant_kernel_match_quark(
float_dtype: torch.dtype, scalings: list[int]
):
qspec = FP4PerGroupSpec(
ch_axis=-1,
group_size=32,
scale_format="e8m0",
scale_calculation_mode="even",
is_dynamic=False,
).to_quantization_spec()
weight_quantizer = StaticScaledRealQuantizer(
qspec=qspec,
quantizer=None,
reorder=False,
real_quantized=True,
float_dtype=float_dtype,
device="cuda",
)
observer = qspec.observer_cls(qspec, device="cuda")
hidden_size = 512
shape = (11008, hidden_size)
w = (torch.rand(shape, device="cuda", dtype=float_dtype) - 0.5) * 2
# Make it so that different groups have different scales.
for i in range(hidden_size // 32):
w[:, i * 32 : (i + 1) * 32] = (
w[:, i * 32 : (i + 1) * 32] * scalings[i % len(scalings)]
)
observer(w)
scale, _ = observer._calculate_qparams()
weight_quantizer.scale = scale
w_mxfp4 = weight_quantizer.to_real_quantize_params(w).to("cuda")
weight_quantizer.maybe_convert_and_transpose_scale()
scale = weight_quantizer.scale
out_hip = mx_kernel.dq_mxfp4_hip(w_mxfp4, scale, float_dtype)
out_torch = dq_mxfp4_torch(w_mxfp4, scale, float_dtype)
assert torch.equal(out_hip, out_torch)