Files
vllm/tests/quantization/reference_mxfp4.py
2025-10-05 07:06:22 -07:00

293 lines
8.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
BFLOAT16_EXP_BIAS = 127
BFLOAT16_MANTISSA_BITS = 7
BFLOAT16_EXP_BITS = 8
FLOAT16_EXP_BIAS = 15
FLOAT16_MANTISSA_BITS = 10
FLOAT16_EXP_BITS = 5
FLOAT8_E8M0_MAX_EXP = 127
FLOAT4_EXP_BIAS = 1
FLOAT4_MANTISSA_BITS = 1
FLOAT16_VAL_TO_ADD = 1 << (FLOAT16_MANTISSA_BITS - FLOAT4_MANTISSA_BITS - 1)
FLOAT16_SIGN_EXPONENT_MASK = (
(1 << (FLOAT16_EXP_BITS + 1)) - 1
) << FLOAT16_MANTISSA_BITS
BFLOAT16_VAL_TO_ADD = 1 << (BFLOAT16_MANTISSA_BITS - FLOAT4_MANTISSA_BITS - 1)
BFLOAT16_SIGN_EXPONENT_MASK = (
(1 << (BFLOAT16_EXP_BITS + 1)) - 1
) << BFLOAT16_MANTISSA_BITS
def e8m0_to_half(scale, half_dtype: torch.dtype):
assert scale.dtype == torch.uint8
scale_exp = scale.to(torch.int16) - 127
# This can be implemented with bitwise operations in a proper kernel.
scale_half = 2.0 ** (scale_exp.to(torch.float))
return scale_half.to(half_dtype)
def upcast_fp4_to_fp16_or_bf16(
val, float_dtype: torch.dtype, half_exp_bias: int, half_mantissa_bits: int
):
assert val.dtype == torch.uint8
unpacked = torch.zeros(
*val.shape[:-1], val.shape[-1] * 2, dtype=torch.uint8, device=val.device
)
unpacked[..., 1::2] = (val >> 4) & 0x0F # Extract high 4 bits.
unpacked[..., ::2] = val & 0x0F # Extract low 4 bits.
# Takes one float4 values represented as b0000xxxx,
# and converts it to the corresponding float16 value.
sign = unpacked >> 3
exp = (unpacked >> 1) & 3
new_mantissa = unpacked & 1
# if exp == 0 and new_mantissa == 0:
# new_exp = 0
# else:
# new_exp = exp - FLOAT4_EXP_BIAS + FLOAT16_EXP_BIAS
# int8_t works with float16, but may overflow with bfloat16.
new_exp = exp - FLOAT4_EXP_BIAS + half_exp_bias
# Cast b0000 to 0. in fp16/bf16.
new_exp = new_exp * torch.logical_or(exp > 0, new_mantissa > 0)
# Cast b0001 to 0.5 in fp16/bf16.
new_mantissa = torch.logical_and(new_mantissa, exp > 0)
new_mantissa = new_mantissa.to(torch.int32)
new_exp = new_exp.to(torch.int32)
sign = sign.to(torch.int32)
qdq_val = (
(sign << 15)
+ (new_exp << half_mantissa_bits)
+ (new_mantissa << (half_mantissa_bits - 1))
)
assert qdq_val.max() <= 65535
assert qdq_val.min() >= 0
qdq_val = qdq_val.to(torch.uint16)
result = qdq_val.view(float_dtype)
return result
def dq_mxfp4_torch(
x: torch.Tensor, scale: torch.Tensor, float_dtype: torch.dtype
) -> torch.Tensor:
assert x.dtype == torch.uint8
assert scale.dtype == torch.uint8
if float_dtype == torch.float16:
half_exp_bias = FLOAT16_EXP_BIAS
half_mantissa_bits = FLOAT16_MANTISSA_BITS
elif float_dtype == torch.bfloat16:
half_exp_bias = BFLOAT16_EXP_BIAS
half_mantissa_bits = BFLOAT16_MANTISSA_BITS
scale_half = e8m0_to_half(scale, half_dtype=float_dtype)
x_half = upcast_fp4_to_fp16_or_bf16(
x,
float_dtype=float_dtype,
half_exp_bias=half_exp_bias,
half_mantissa_bits=half_mantissa_bits,
)
x_half = x_half.reshape(*x_half.shape[:-1], -1, 32)
x_half = x_half * scale_half[..., None]
x_half = x_half.reshape(*x_half.shape[:-2], -1)
return x_half
def fp16_to_fp4_simulate(
val, half_mantissa_bits: int, half_exp_bits: int, half_exp_bias: int
):
# Casts an fp16/bf16 input to the restricted values of float4_e2m1,
# that is to say [0., 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, -0.0,
# -0.5, -1.0, -1.5, -2.0, -3.0, -4.0, -6.0].
float_type = val.dtype
# "rshift_cuda" not implemented for 'UInt16'
val_view = val.view(torch.int16) # .to(torch.int32)
exp = val_view >> half_mantissa_bits
exp = exp & ((1 << half_exp_bits) - 1)
exp = exp.view(torch.uint16).to(torch.int32)
sign = (val_view >> (half_mantissa_bits + half_exp_bits)) & 1
mantissa_last = (val_view >> (half_mantissa_bits - 1)) & 1
exp_unbias = exp - half_exp_bias
new_exp = exp_unbias + FLOAT4_EXP_BIAS
exp_shift = (new_exp <= 0) * (1 - new_exp)
# Typically 9.
# Take the min to prevent overflow on `uint16_t half`. This is the case for
# very small values, correctly mapped to `round_close`.
tail_bits = half_mantissa_bits - FLOAT4_MANTISSA_BITS + exp_shift
tail_bits[tail_bits >= 16] = 16
mantissa_plus_one = val_view & ((1 << (half_mantissa_bits + 1)) - 1)
half = 1 << (tail_bits - 1)
tail = mantissa_plus_one & ((1 << tail_bits) - 1)
round_close = tail < half # round towards 0
round_away = tail > half # round away from 0
tie = tail == half
new_mantissa_close = torch.zeros(val.shape, device=val.device, dtype=torch.bool)
new_exp_close = torch.zeros(val.shape, device=val.device, dtype=torch.uint16)
new_mantissa_away = torch.zeros(val.shape, device=val.device, dtype=torch.bool)
new_exp_away = torch.zeros(val.shape, device=val.device, dtype=torch.uint16)
new_exp_tie = torch.zeros(val.shape, device=val.device, dtype=torch.uint16)
# 1. round down
# if new_exp == 0: # case [0.5, 0.749999]
# new_mantissa = 0
# elif new_exp < 0: # case [0, 0.24999]
# new_mantissa = 0
# else:
# new_mantissa = mantissa_last
new_mantissa_close = (new_exp > 0) * mantissa_last
new_exp_close = exp
# # 2. round up
# if new_exp <= 0: # case [0.250001, 0.499999] and [0.75001, 0.99999]
# new_mantissa = 0
# new_exp += 1
# elif mantissa_last == 0:
# new_mantissa = 1
# else:
# new_mantissa = 0
# new_exp += 1
new_mantissa_away = torch.logical_and(new_exp > 0, mantissa_last == 0)
new_exp_away = exp + torch.logical_or(new_exp <= 0, mantissa_last == 1)
# # 3. tie
# 0.25 -> 0. (handled by `exp > (half_exp_bias - 2)`)
# 0.75 -> 1.
# 1.25 -> 1.
# 1.75 -> 2.
# 2.5 -> 2.
# 3.5 -> 4.
# 5. -> 4.
new_exp_tie = (exp > (half_exp_bias - 2)) * (exp + (mantissa_last == 1))
# Gather round up, round down and tie.
new_exp = (
round_away * new_exp_away + round_close * new_exp_close + tie * new_exp_tie
)
new_mantissa = round_away * new_mantissa_away + round_close * new_mantissa_close
# if new_exp > 3:
# new_mantissa = 1
new_mantissa = new_mantissa + (new_exp > (2 + half_exp_bias)) * (new_mantissa == 0)
# Clamp the exponent to acceptable values.
new_exp = (new_exp >= (half_exp_bias - 2)) * torch.clamp(
new_exp, half_exp_bias - 2, half_exp_bias + 2
)
sign = sign.to(torch.int32)
new_mantissa = new_mantissa.to(torch.int32)
qdq_val = (
(sign << 15)
+ (new_exp << half_mantissa_bits)
+ (new_mantissa << (half_mantissa_bits - 1))
)
assert qdq_val.max() <= 65535
assert qdq_val.min() >= 0
assert qdq_val.dtype == torch.int32
qdq_val = qdq_val.to(torch.uint16)
result = qdq_val.view(float_type)
return result
def qdq_mxfp4_torch(
x: torch.Tensor, scale_calculation_mode: str = "even"
) -> torch.Tensor:
half_dtype = x.dtype
if half_dtype == torch.float16:
half_mantissa_bits = FLOAT16_MANTISSA_BITS
half_exp_bits = FLOAT16_EXP_BITS
half_exp_bias = FLOAT16_EXP_BIAS
val_to_add = FLOAT16_VAL_TO_ADD
sign_exponent_mask = FLOAT16_SIGN_EXPONENT_MASK
elif half_dtype == torch.bfloat16:
half_mantissa_bits = BFLOAT16_MANTISSA_BITS
half_exp_bits = BFLOAT16_EXP_BITS
half_exp_bias = BFLOAT16_EXP_BIAS
val_to_add = BFLOAT16_VAL_TO_ADD
sign_exponent_mask = BFLOAT16_SIGN_EXPONENT_MASK
else:
raise ValueError("not implemented")
x = x.reshape(*x.shape[:-1], -1, 32)
block_max = torch.max(torch.abs(x), dim=-1).values
block_max = block_max.view(torch.uint16).to(torch.int32)
block_max_uint = torch.bitwise_and(block_max + val_to_add, sign_exponent_mask)
assert block_max_uint.max() <= 65535
assert block_max_uint.min() >= 0
assert block_max_uint.dtype == torch.int32
block_max_uint = block_max_uint.to(torch.uint16)
block_max = block_max_uint.view(half_dtype)
scale_exp = (
FLOAT8_E8M0_MAX_EXP + torch.floor(torch.log2(block_max)).to(torch.int32) - 2
)
scale_exp = torch.clamp(scale_exp, 0, 2 * FLOAT8_E8M0_MAX_EXP)
scale = 2.0 ** (scale_exp - FLOAT8_E8M0_MAX_EXP)
scale = scale.to(half_dtype)
x = x / scale[..., None]
x_fp4 = fp16_to_fp4_simulate(
x,
half_exp_bits=half_exp_bits,
half_mantissa_bits=half_mantissa_bits,
half_exp_bias=half_exp_bias,
)
x_fp4 = x_fp4 * scale[..., None]
return x_fp4.reshape(*x_fp4.shape[:-2], -1)