Files
vllm/tests/models/test_vision.py
2025-10-19 03:06:32 -07:00

490 lines
15 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import math
import pytest
import torch
import torch.multiprocessing as mp
from tests.utils import multi_gpu_test
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import (
init_distributed_environment,
initialize_model_parallel,
)
from vllm.model_executor.models.vision import (
get_load_balance_assignment,
resolve_visual_encoder_outputs,
run_dp_sharded_mrope_vision_model,
run_dp_sharded_vision_model,
)
from vllm.platforms import current_platform
from vllm.utils import update_environment_variables
from vllm.utils.network_utils import get_open_port
pytestmark = pytest.mark.cpu_test
@pytest.mark.parametrize(
("select_layers", "num_layers_loaded", "max_possible_layers", "expected_features"),
[
# All layers loaded
([1, 10], 10, 10, [1, 10]),
([-10, -1], 10, 10, [1, 10]),
# Some layers not loaded
([1, 10], 10, 20, [1, 10]),
([-20, -11], 10, 20, [1, 10]),
],
)
def test_resolve_visual_encoder_outputs(
select_layers, num_layers_loaded, max_possible_layers, expected_features
):
"""
Test that offsets are correctly handled for vision feature layers.
"""
encoder_outputs = [torch.tensor([idx]) for idx in range(num_layers_loaded + 1)]
output_tensor = resolve_visual_encoder_outputs(
encoder_outputs=encoder_outputs,
post_layer_norm=None,
select_layers=select_layers,
max_possible_layers=max_possible_layers,
)
assert torch.equal(torch.tensor(expected_features), output_tensor)
class SimpleLinearModel(torch.nn.Module):
"""A simple linear vision model for testing."""
def __init__(self, input_dim: int = 3 * 224 * 224, output_dim: int = 32):
super().__init__()
self.flatten = torch.nn.Flatten()
self.linear = torch.nn.Linear(input_dim, output_dim)
def forward(self, x: torch.Tensor):
# Flatten the input and apply linear transformation
x = self.flatten(x)
return self.linear(x)
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize(
"batch_size",
[
1, # Single image
4, # Small batch
5, # Odd batch size (for testing padding)
],
)
def test_run_dp_sharded_vision_model(batch_size: int):
world_size = 2
# Launch processes
mp.spawn(
run_dp_sharded_vision_model_vs_direct,
args=(
world_size,
batch_size,
get_open_port(),
),
nprocs=world_size,
)
def run_dp_sharded_vision_model_vs_direct(
local_rank: int, world_size: int, batch_size: int, master_port: int
):
"""
Test that run_dp_sharded_vision_model produces the same results as
calling the model directly.
"""
# Set random seed for reproducibility
current_platform.seed_everything(0)
device = f"{current_platform.device_name}:{local_rank}"
current_platform.set_device(device)
torch.set_default_device(device)
update_environment_variables(
{
"RANK": str(local_rank),
"LOCAL_RANK": str(local_rank),
"WORLD_SIZE": str(world_size),
"MASTER_ADDR": "localhost",
"MASTER_PORT": str(master_port),
}
)
# initialize distributed
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# Create a test input tensor
image_input = torch.randn(batch_size, 3, 224, 224)
# Create a simple linear model
vision_model = SimpleLinearModel()
# Run the model directly on the full input
with torch.inference_mode():
direct_output = vision_model(image_input)
# Run the model through the sharded function
with torch.inference_mode():
sharded_output = run_dp_sharded_vision_model(image_input, vision_model)
# Check that the world size is set up correctly
assert get_tensor_model_parallel_world_size() == world_size
# Check that the outputs have the same shape
assert direct_output.shape == sharded_output.shape
# Check that the outputs are close (they should be identical)
assert torch.allclose(direct_output, sharded_output, rtol=1e-5, atol=1e-5)
@pytest.mark.parametrize(
"sizes,num_gpus,expected_shuffle_indices,expected_gpu_sample_counts,"
"expected_grouped_sizes_per_gpu,test_description",
[
# Empty input
([], 2, [], [0, 0], [0, 0], "empty input"),
# Fewer samples than GPUs
(
[100, 200],
4,
[1, 0],
[1, 1, 0, 0],
[200, 100, 0, 0],
"fewer samples than GPUs",
),
# Single GPU
([100, 200, 300], 1, [2, 1, 0], [3], [600], "single GPU"),
# Balanced assignment
(
[100, 100, 100, 100],
2,
[0, 2, 1, 3],
[2, 2],
[200, 200],
"balanced assignment",
),
# Unbalanced sizes - this one is trickier since the algorithm is greedy
(
[1000, 100, 200, 50],
2,
[0, 2, 1, 3],
[1, 3],
[1000, 350],
"unbalanced sizes",
),
],
)
def test_get_load_balance_assignment_cases(
sizes,
num_gpus,
expected_shuffle_indices,
expected_gpu_sample_counts,
expected_grouped_sizes_per_gpu,
test_description,
):
"""Test get_load_balance_assignment with various input cases."""
result = get_load_balance_assignment(sizes, num_gpus=num_gpus)
(shuffle_indices, gpu_sample_counts, grouped_sizes_per_gpu) = result
# Common assertions for all cases
assert len(shuffle_indices) == len(sizes)
assert len(gpu_sample_counts) == num_gpus
assert len(grouped_sizes_per_gpu) == num_gpus
assert sum(gpu_sample_counts) == len(sizes)
assert shuffle_indices == expected_shuffle_indices
assert gpu_sample_counts == expected_gpu_sample_counts
assert grouped_sizes_per_gpu == expected_grouped_sizes_per_gpu
class SimpleMRopeVisionModel(torch.nn.Module):
"""A simple vision model for testing mrope functionality."""
def __init__(self, spatial_merge_size: int = 2, out_hidden_size: int = 64):
super().__init__()
self.spatial_merge_size = spatial_merge_size
self.out_hidden_size = out_hidden_size
self.linear = torch.nn.Linear(768, out_hidden_size)
def forward(self, pixel_values: torch.Tensor, grid_thw_list: list[list[int]]):
"""Simple forward pass that simulates spatial merging."""
# Apply linear transformation
embeddings = self.linear(pixel_values)
# Simulate spatial merging by reducing the number of patches
merge_factor = self.spatial_merge_size * self.spatial_merge_size
# Group patches and merge spatially
merged_embeddings = []
start_idx = 0
for grid_thw in grid_thw_list:
num_patches = math.prod(grid_thw)
end_idx = start_idx + num_patches
# Get patches for this image
image_patches = embeddings[start_idx:end_idx]
# Simulate spatial merging by averaging groups of patches
merged_patches = num_patches // merge_factor
if merged_patches > 0:
# Reshape and average to simulate merging
reshaped = image_patches[: merged_patches * merge_factor].view(
merged_patches, merge_factor, -1
)
merged = reshaped.mean(dim=1)
merged_embeddings.append(merged)
start_idx = end_idx
if merged_embeddings:
return torch.cat(merged_embeddings, dim=0)
else:
return torch.empty(
(0, self.out_hidden_size),
device=pixel_values.device,
dtype=pixel_values.dtype,
)
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize(
"batch_size",
[
1, # Single image
3, # Small batch
5, # Odd batch size (for testing padding)
],
)
def test_run_dp_sharded_mrope_vision_model(batch_size: int):
world_size = 2
# Launch processes
mp.spawn(
run_dp_sharded_mrope_vision_model_vs_direct,
args=(
world_size,
batch_size,
get_open_port(),
),
nprocs=world_size,
)
def run_dp_sharded_mrope_vision_model_vs_direct(
local_rank: int, world_size: int, batch_size: int, master_port: int
):
"""
Test that run_dp_sharded_mrope_vision_model produces the same results as
calling the model directly.
"""
# Set random seed for reproducibility
current_platform.seed_everything(0)
device = f"{current_platform.device_name}:{local_rank}"
current_platform.set_device(device)
torch.set_default_device(device)
update_environment_variables(
{
"RANK": str(local_rank),
"LOCAL_RANK": str(local_rank),
"WORLD_SIZE": str(world_size),
"MASTER_ADDR": "localhost",
"MASTER_PORT": str(master_port),
}
)
# initialize distributed
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# Create test data
grid_thw_list = []
pixel_values_list = []
for i in range(batch_size):
# Varying image sizes for better testing
t, h, w = 1, 4 + i, 4 + i
grid_thw_list.append([t, h, w])
num_patches = t * h * w
# Create random pixel values for this image
image_pixels = torch.randn(num_patches, 768)
pixel_values_list.append(image_pixels)
# Concatenate all pixel values
pixel_values = torch.cat(pixel_values_list, dim=0)
# Create a simple mrope vision model
vision_model = SimpleMRopeVisionModel()
# Run the model directly on the full input (only on rank 0)
if local_rank == 0:
with torch.inference_mode():
direct_output = vision_model(pixel_values, grid_thw_list)
# Run the model through the sharded function
with torch.inference_mode():
sharded_output = run_dp_sharded_mrope_vision_model(
vision_model, pixel_values, grid_thw_list, rope_type="rope_3d"
)
sharded_output = torch.cat(sharded_output, dim=0)
# Check that the world size is set up correctly
assert get_tensor_model_parallel_world_size() == world_size
# Compare outputs (only on rank 0)
if local_rank == 0:
# Check that the outputs have the same shape
assert direct_output.shape == sharded_output.shape
# Check that the outputs are close (they should be identical)
assert torch.allclose(direct_output, sharded_output, rtol=1e-5, atol=1e-5)
@multi_gpu_test(num_gpus=2)
def test_run_dp_sharded_mrope_vision_model_empty_input():
world_size = 2
mp.spawn(
run_dp_sharded_mrope_vision_model_empty_input_worker,
args=(world_size, get_open_port()),
nprocs=world_size,
)
def run_dp_sharded_mrope_vision_model_empty_input_worker(
local_rank: int, world_size: int, master_port: int
):
"""Test run_dp_sharded_mrope_vision_model with empty input."""
# Set up distributed environment
device = f"{current_platform.device_name}:{local_rank}"
current_platform.set_device(device)
torch.set_default_device(device)
update_environment_variables(
{
"RANK": str(local_rank),
"LOCAL_RANK": str(local_rank),
"WORLD_SIZE": str(world_size),
"MASTER_ADDR": "localhost",
"MASTER_PORT": str(master_port),
}
)
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# Create empty inputs
pixel_values = torch.empty((0, 768))
grid_thw_list: list[list[int]] = []
vision_model = SimpleMRopeVisionModel()
# Should handle empty input gracefully
with torch.inference_mode():
output = run_dp_sharded_mrope_vision_model(
vision_model, pixel_values, grid_thw_list, rope_type="rope_3d"
)
assert len(output) == 0
@multi_gpu_test(num_gpus=4)
def test_run_dp_sharded_mrope_vision_model_uneven_load():
world_size = 4
mp.spawn(
run_dp_sharded_mrope_vision_model_uneven_load_worker,
args=(world_size, get_open_port()),
nprocs=world_size,
)
def run_dp_sharded_mrope_vision_model_uneven_load_worker(
local_rank: int, world_size: int, master_port: int
):
"""Test run_dp_sharded_mrope_vision_model with uneven load distribution."""
# Set up distributed environment
current_platform.seed_everything(123)
device = f"{current_platform.device_name}:{local_rank}"
current_platform.set_device(device)
torch.set_default_device(device)
update_environment_variables(
{
"RANK": str(local_rank),
"LOCAL_RANK": str(local_rank),
"WORLD_SIZE": str(world_size),
"MASTER_ADDR": "localhost",
"MASTER_PORT": str(master_port),
}
)
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# Create images with very different sizes
grid_thw_list = [
[1, 2, 2], # Small: 4 patches
[1, 8, 8], # Large: 64 patches
[1, 3, 3], # Medium: 9 patches
]
pixel_values_list = []
for grid_thw in grid_thw_list:
num_patches = math.prod(grid_thw)
image_pixels = torch.randn(num_patches, 768)
pixel_values_list.append(image_pixels)
pixel_values = torch.cat(pixel_values_list, dim=0)
vision_model = SimpleMRopeVisionModel()
# Should handle uneven distribution without errors
with torch.inference_mode():
output_tuple = run_dp_sharded_mrope_vision_model(
vision_model, pixel_values, grid_thw_list, rope_type="rope_3d"
)
# Verify output shape is reasonable
merge_factor = vision_model.spatial_merge_size**2
expected_output_patches = list(
math.prod(grid_thw) // merge_factor for grid_thw in grid_thw_list
)
for i, output in enumerate(output_tuple):
assert output.shape[0] == expected_output_patches[i]
assert output.shape[1] == vision_model.out_hidden_size
@pytest.mark.parametrize("spatial_merge_size", [2, 4])
def test_simple_mrope_vision_model_spatial_merge(spatial_merge_size: int):
"""Test SimpleMRopeVisionModel with different spatial merge sizes."""
device = current_platform.device_type
grid_thw_list = [[1, 4, 4], [1, 6, 6]] # Two images
pixel_values_list = []
for grid_thw in grid_thw_list:
num_patches = math.prod(grid_thw)
image_pixels = torch.randn(num_patches, 768, device=device)
pixel_values_list.append(image_pixels)
pixel_values = torch.cat(pixel_values_list, dim=0)
vision_model = SimpleMRopeVisionModel(spatial_merge_size=spatial_merge_size).to(
device
)
with torch.inference_mode():
output = vision_model(pixel_values, grid_thw_list)
# Verify output dimensions based on spatial merging
total_patches = sum(math.prod(grid_thw) for grid_thw in grid_thw_list)
merge_factor = spatial_merge_size**2
expected_output_patches = total_patches // merge_factor
assert output.shape[0] == expected_output_patches
assert output.shape[1] == vision_model.out_hidden_size