Files
vllm/tests/lora/test_utils.py
2025-10-12 09:51:31 -07:00

199 lines
6.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections import OrderedDict
from typing import NamedTuple
from unittest.mock import patch
import pytest
from huggingface_hub.utils import HfHubHTTPError
from torch import nn
from vllm.lora.utils import (
get_adapter_absolute_path,
parse_fine_tuned_lora_name,
replace_submodule,
)
from vllm.model_executor.models.utils import WeightsMapper
class LoRANameParserTestConfig(NamedTuple):
name: str
module_name: str
is_lora_a: bool
weights_mapper: WeightsMapper | None = None
def test_parse_fine_tuned_lora_name_valid():
fixture = [
LoRANameParserTestConfig(
"base_model.model.lm_head.lora_A.weight", "lm_head", True, False
),
LoRANameParserTestConfig(
"base_model.model.lm_head.lora_B.weight", "lm_head", False, False
),
LoRANameParserTestConfig(
"base_model.model.model.embed_tokens.lora_embedding_A",
"model.embed_tokens",
True,
),
LoRANameParserTestConfig(
"base_model.model.model.embed_tokens.lora_embedding_B",
"model.embed_tokens",
False,
),
LoRANameParserTestConfig(
"base_model.model.model.layers.9.mlp.down_proj.lora_A.weight",
"model.layers.9.mlp.down_proj",
True,
),
LoRANameParserTestConfig(
"base_model.model.model.layers.9.mlp.down_proj.lora_B.weight",
"model.layers.9.mlp.down_proj",
False,
),
LoRANameParserTestConfig(
"language_model.layers.9.mlp.down_proj.lora_A.weight",
"language_model.layers.9.mlp.down_proj",
True,
),
LoRANameParserTestConfig(
"language_model.layers.9.mlp.down_proj.lora_B.weight",
"language_model.layers.9.mlp.down_proj",
False,
),
# Test with WeightsMapper
LoRANameParserTestConfig(
"base_model.model.model.layers.9.mlp.down_proj.lora_A.weight",
"language_model.model.layers.9.mlp.down_proj",
True,
weights_mapper=WeightsMapper(
orig_to_new_prefix={"model.": "language_model.model."}
),
),
LoRANameParserTestConfig(
"base_model.model.model.layers.9.mlp.down_proj.lora_B.weight",
"language_model.model.layers.9.mlp.down_proj",
False,
weights_mapper=WeightsMapper(
orig_to_new_prefix={"model.": "language_model.model."}
),
),
LoRANameParserTestConfig(
"model.layers.9.mlp.down_proj.lora_A.weight",
"language_model.model.layers.9.mlp.down_proj",
True,
weights_mapper=WeightsMapper(
orig_to_new_prefix={"model.": "language_model.model."}
),
),
LoRANameParserTestConfig(
"model.layers.9.mlp.down_proj.lora_B.weight",
"language_model.model.layers.9.mlp.down_proj",
False,
weights_mapper=WeightsMapper(
orig_to_new_prefix={"model.": "language_model.model."}
),
),
]
for name, module_name, is_lora_a, weights_mapper in fixture:
assert (module_name, is_lora_a) == parse_fine_tuned_lora_name(
name, weights_mapper
)
def test_parse_fine_tuned_lora_name_invalid():
fixture = {
"base_model.weight",
"base_model.model.weight",
}
for name in fixture:
with pytest.raises(ValueError, match="unsupported LoRA weight"):
parse_fine_tuned_lora_name(name)
def test_replace_submodule():
model = nn.Sequential(
OrderedDict(
[
("dense1", nn.Linear(764, 100)),
("act1", nn.ReLU()),
("dense2", nn.Linear(100, 50)),
(
"seq1",
nn.Sequential(
OrderedDict(
[
("dense1", nn.Linear(100, 10)),
("dense2", nn.Linear(10, 50)),
]
)
),
),
("act2", nn.ReLU()),
("output", nn.Linear(50, 10)),
("outact", nn.Sigmoid()),
]
)
)
sigmoid = nn.Sigmoid()
replace_submodule(model, "act1", sigmoid)
assert dict(model.named_modules())["act1"] == sigmoid
dense2 = nn.Linear(1, 5)
replace_submodule(model, "seq1.dense2", dense2)
assert dict(model.named_modules())["seq1.dense2"] == dense2
# Unit tests for get_adapter_absolute_path
@patch("os.path.isabs")
def test_get_adapter_absolute_path_absolute(mock_isabs):
path = "/absolute/path/to/lora"
mock_isabs.return_value = True
assert get_adapter_absolute_path(path) == path
@patch("os.path.expanduser")
def test_get_adapter_absolute_path_expanduser(mock_expanduser):
# Path with ~ that needs to be expanded
path = "~/relative/path/to/lora"
absolute_path = "/home/user/relative/path/to/lora"
mock_expanduser.return_value = absolute_path
assert get_adapter_absolute_path(path) == absolute_path
@patch("os.path.exists")
@patch("os.path.abspath")
def test_get_adapter_absolute_path_local_existing(mock_abspath, mock_exist):
# Relative path that exists locally
path = "relative/path/to/lora"
absolute_path = "/absolute/path/to/lora"
mock_exist.return_value = True
mock_abspath.return_value = absolute_path
assert get_adapter_absolute_path(path) == absolute_path
@patch("huggingface_hub.snapshot_download")
@patch("os.path.exists")
def test_get_adapter_absolute_path_huggingface(mock_exist, mock_snapshot_download):
# Hugging Face model identifier
path = "org/repo"
absolute_path = "/mock/snapshot/path"
mock_exist.return_value = False
mock_snapshot_download.return_value = absolute_path
assert get_adapter_absolute_path(path) == absolute_path
@patch("huggingface_hub.snapshot_download")
@patch("os.path.exists")
def test_get_adapter_absolute_path_huggingface_error(
mock_exist, mock_snapshot_download
):
# Hugging Face model identifier with download error
path = "org/repo"
mock_exist.return_value = False
mock_snapshot_download.side_effect = HfHubHTTPError("failed to query model info")
assert get_adapter_absolute_path(path) == path