mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
Signed-off-by: jiahanc <173873397+jiahanc@users.noreply.github.com> Co-authored-by: Michael Goin <mgoin64@gmail.com>
499 lines
21 KiB
Docker
499 lines
21 KiB
Docker
# The vLLM Dockerfile is used to construct vLLM image that can be directly used
|
|
# to run the OpenAI compatible server.
|
|
|
|
# Please update any changes made here to
|
|
# docs/contributing/dockerfile/dockerfile.md and
|
|
# docs/assets/contributing/dockerfile-stages-dependency.png
|
|
|
|
ARG CUDA_VERSION=12.8.1
|
|
ARG PYTHON_VERSION=3.12
|
|
|
|
# By parameterizing the base images, we allow third-party to use their own
|
|
# base images. One use case is hermetic builds with base images stored in
|
|
# private registries that use a different repository naming conventions.
|
|
#
|
|
# Example:
|
|
# docker build --build-arg BUILD_BASE_IMAGE=registry.acme.org/mirror/nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04
|
|
|
|
# Important: We build with an old version of Ubuntu to maintain broad
|
|
# compatibility with other Linux OSes. The main reason for this is that the
|
|
# glibc version is baked into the distro, and binaries built with one glibc
|
|
# version are not backwards compatible with OSes that use an earlier version.
|
|
ARG BUILD_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04
|
|
# TODO: Restore to base image after FlashInfer AOT wheel fixed
|
|
ARG FINAL_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04
|
|
|
|
# By parameterizing the Deadsnakes repository URL, we allow third-party to use
|
|
# their own mirror. When doing so, we don't benefit from the transparent
|
|
# installation of the GPG key of the PPA, as done by add-apt-repository, so we
|
|
# also need a URL for the GPG key.
|
|
ARG DEADSNAKES_MIRROR_URL
|
|
ARG DEADSNAKES_GPGKEY_URL
|
|
|
|
# The PyPA get-pip.py script is a self contained script+zip file, that provides
|
|
# both the installer script and the pip base85-encoded zip archive. This allows
|
|
# bootstrapping pip in environment where a dsitribution package does not exist.
|
|
#
|
|
# By parameterizing the URL for get-pip.py installation script, we allow
|
|
# third-party to use their own copy of the script stored in a private mirror.
|
|
# We set the default value to the PyPA owned get-pip.py script.
|
|
#
|
|
# Reference: https://pip.pypa.io/en/stable/installation/#get-pip-py
|
|
ARG GET_PIP_URL="https://bootstrap.pypa.io/get-pip.py"
|
|
|
|
# PIP supports fetching the packages from custom indexes, allowing third-party
|
|
# to host the packages in private mirrors. The PIP_INDEX_URL and
|
|
# PIP_EXTRA_INDEX_URL are standard PIP environment variables to override the
|
|
# default indexes. By letting them empty by default, PIP will use its default
|
|
# indexes if the build process doesn't override the indexes.
|
|
#
|
|
# Uv uses different variables. We set them by default to the same values as
|
|
# PIP, but they can be overridden.
|
|
ARG PIP_INDEX_URL
|
|
ARG PIP_EXTRA_INDEX_URL
|
|
ARG UV_INDEX_URL=${PIP_INDEX_URL}
|
|
ARG UV_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
|
|
|
|
# PyTorch provides its own indexes for standard and nightly builds
|
|
ARG PYTORCH_CUDA_INDEX_BASE_URL=https://download.pytorch.org/whl
|
|
ARG PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL=https://download.pytorch.org/whl/nightly
|
|
|
|
# PIP supports multiple authentication schemes, including keyring
|
|
# By parameterizing the PIP_KEYRING_PROVIDER variable and setting it to
|
|
# disabled by default, we allow third-party to use keyring authentication for
|
|
# their private Python indexes, while not changing the default behavior which
|
|
# is no authentication.
|
|
#
|
|
# Reference: https://pip.pypa.io/en/stable/topics/authentication/#keyring-support
|
|
ARG PIP_KEYRING_PROVIDER=disabled
|
|
ARG UV_KEYRING_PROVIDER=${PIP_KEYRING_PROVIDER}
|
|
|
|
# Flag enables built-in KV-connector dependency libs into docker images
|
|
ARG INSTALL_KV_CONNECTORS=false
|
|
|
|
#################### BASE BUILD IMAGE ####################
|
|
# prepare basic build environment
|
|
FROM ${BUILD_BASE_IMAGE} AS base
|
|
ARG CUDA_VERSION
|
|
ARG PYTHON_VERSION
|
|
ARG TARGETPLATFORM
|
|
ARG INSTALL_KV_CONNECTORS=false
|
|
ENV DEBIAN_FRONTEND=noninteractive
|
|
|
|
ARG GET_PIP_URL
|
|
|
|
# Install system dependencies and uv, then create Python virtual environment
|
|
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
|
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
|
|
&& apt-get update -y \
|
|
&& apt-get install -y ccache software-properties-common git curl sudo python3-pip \
|
|
&& curl -LsSf https://astral.sh/uv/install.sh | sh \
|
|
&& $HOME/.local/bin/uv venv /opt/venv --python ${PYTHON_VERSION} \
|
|
&& rm -f /usr/bin/python3 /usr/bin/python3-config /usr/bin/pip \
|
|
&& ln -s /opt/venv/bin/python3 /usr/bin/python3 \
|
|
&& ln -s /opt/venv/bin/python3-config /usr/bin/python3-config \
|
|
&& ln -s /opt/venv/bin/pip /usr/bin/pip \
|
|
&& python3 --version && python3 -m pip --version
|
|
|
|
ARG PIP_INDEX_URL UV_INDEX_URL
|
|
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
|
|
ARG PYTORCH_CUDA_INDEX_BASE_URL
|
|
ARG PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL
|
|
ARG PIP_KEYRING_PROVIDER UV_KEYRING_PROVIDER
|
|
|
|
# Activate virtual environment and add uv to PATH
|
|
ENV PATH="/opt/venv/bin:/root/.local/bin:$PATH"
|
|
ENV VIRTUAL_ENV="/opt/venv"
|
|
|
|
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
|
# Reference: https://github.com/astral-sh/uv/pull/1694
|
|
ENV UV_HTTP_TIMEOUT=500
|
|
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
|
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
|
ENV UV_LINK_MODE=copy
|
|
|
|
# Upgrade to GCC 10 to avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92519
|
|
# as it was causing spam when compiling the CUTLASS kernels
|
|
RUN apt-get install -y gcc-10 g++-10
|
|
RUN update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 110 --slave /usr/bin/g++ g++ /usr/bin/g++-10
|
|
RUN <<EOF
|
|
gcc --version
|
|
EOF
|
|
|
|
# Workaround for https://github.com/openai/triton/issues/2507 and
|
|
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
|
|
# this won't be needed for future versions of this docker image
|
|
# or future versions of triton.
|
|
RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
|
|
|
|
WORKDIR /workspace
|
|
|
|
# install build and runtime dependencies
|
|
COPY requirements/common.txt requirements/common.txt
|
|
COPY requirements/cuda.txt requirements/cuda.txt
|
|
RUN --mount=type=cache,target=/root/.cache/uv \
|
|
uv pip install --python /opt/venv/bin/python3 -r requirements/cuda.txt \
|
|
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
|
|
|
# cuda arch list used by torch
|
|
# can be useful for both `dev` and `test`
|
|
# explicitly set the list to avoid issues with torch 2.2
|
|
# see https://github.com/pytorch/pytorch/pull/123243
|
|
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0 10.0 12.0'
|
|
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
|
#################### BASE BUILD IMAGE ####################
|
|
|
|
#################### WHEEL BUILD IMAGE ####################
|
|
FROM base AS build
|
|
ARG TARGETPLATFORM
|
|
|
|
ARG PIP_INDEX_URL UV_INDEX_URL
|
|
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
|
|
ARG PYTORCH_CUDA_INDEX_BASE_URL
|
|
|
|
# install build dependencies
|
|
COPY requirements/build.txt requirements/build.txt
|
|
|
|
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
|
# Reference: https://github.com/astral-sh/uv/pull/1694
|
|
ENV UV_HTTP_TIMEOUT=500
|
|
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
|
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
|
ENV UV_LINK_MODE=copy
|
|
|
|
RUN --mount=type=cache,target=/root/.cache/uv \
|
|
uv pip install --python /opt/venv/bin/python3 -r requirements/build.txt \
|
|
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
|
|
|
COPY . .
|
|
ARG GIT_REPO_CHECK=0
|
|
RUN --mount=type=bind,source=.git,target=.git \
|
|
if [ "$GIT_REPO_CHECK" != "0" ]; then bash tools/check_repo.sh ; fi
|
|
|
|
# max jobs used by Ninja to build extensions
|
|
ARG max_jobs=2
|
|
ENV MAX_JOBS=${max_jobs}
|
|
# number of threads used by nvcc
|
|
ARG nvcc_threads=8
|
|
ENV NVCC_THREADS=$nvcc_threads
|
|
|
|
ARG USE_SCCACHE
|
|
ARG SCCACHE_DOWNLOAD_URL=https://github.com/mozilla/sccache/releases/download/v0.8.1/sccache-v0.8.1-x86_64-unknown-linux-musl.tar.gz
|
|
ARG SCCACHE_ENDPOINT
|
|
ARG SCCACHE_BUCKET_NAME=vllm-build-sccache
|
|
ARG SCCACHE_REGION_NAME=us-west-2
|
|
ARG SCCACHE_S3_NO_CREDENTIALS=0
|
|
|
|
# Flag to control whether to use pre-built vLLM wheels
|
|
ARG VLLM_USE_PRECOMPILED=""
|
|
ARG VLLM_MAIN_CUDA_VERSION=""
|
|
|
|
# if USE_SCCACHE is set, use sccache to speed up compilation
|
|
RUN --mount=type=cache,target=/root/.cache/uv \
|
|
--mount=type=bind,source=.git,target=.git \
|
|
if [ "$USE_SCCACHE" = "1" ]; then \
|
|
echo "Installing sccache..." \
|
|
&& curl -L -o sccache.tar.gz ${SCCACHE_DOWNLOAD_URL} \
|
|
&& tar -xzf sccache.tar.gz \
|
|
&& sudo mv sccache-v0.8.1-x86_64-unknown-linux-musl/sccache /usr/bin/sccache \
|
|
&& rm -rf sccache.tar.gz sccache-v0.8.1-x86_64-unknown-linux-musl \
|
|
&& if [ ! -z ${SCCACHE_ENDPOINT} ] ; then export SCCACHE_ENDPOINT=${SCCACHE_ENDPOINT} ; fi \
|
|
&& export SCCACHE_BUCKET=${SCCACHE_BUCKET_NAME} \
|
|
&& export SCCACHE_REGION=${SCCACHE_REGION_NAME} \
|
|
&& export SCCACHE_S3_NO_CREDENTIALS=${SCCACHE_S3_NO_CREDENTIALS} \
|
|
&& export SCCACHE_IDLE_TIMEOUT=0 \
|
|
&& export CMAKE_BUILD_TYPE=Release \
|
|
&& export VLLM_USE_PRECOMPILED="${VLLM_USE_PRECOMPILED}" \
|
|
&& export VLLM_MAIN_CUDA_VERSION="${VLLM_MAIN_CUDA_VERSION}" \
|
|
&& export VLLM_DOCKER_BUILD_CONTEXT=1 \
|
|
&& sccache --show-stats \
|
|
&& python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38 \
|
|
&& sccache --show-stats; \
|
|
fi
|
|
|
|
ARG vllm_target_device="cuda"
|
|
ENV VLLM_TARGET_DEVICE=${vllm_target_device}
|
|
ENV CCACHE_DIR=/root/.cache/ccache
|
|
RUN --mount=type=cache,target=/root/.cache/ccache \
|
|
--mount=type=cache,target=/root/.cache/uv \
|
|
--mount=type=bind,source=.git,target=.git \
|
|
if [ "$USE_SCCACHE" != "1" ]; then \
|
|
# Clean any existing CMake artifacts
|
|
rm -rf .deps && \
|
|
mkdir -p .deps && \
|
|
export VLLM_USE_PRECOMPILED="${VLLM_USE_PRECOMPILED}" && \
|
|
export VLLM_DOCKER_BUILD_CONTEXT=1 && \
|
|
python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38; \
|
|
fi
|
|
|
|
# Check the size of the wheel if RUN_WHEEL_CHECK is true
|
|
COPY .buildkite/check-wheel-size.py check-wheel-size.py
|
|
# sync the default value with .buildkite/check-wheel-size.py
|
|
ARG VLLM_MAX_SIZE_MB=500
|
|
ENV VLLM_MAX_SIZE_MB=$VLLM_MAX_SIZE_MB
|
|
ARG RUN_WHEEL_CHECK=true
|
|
RUN if [ "$RUN_WHEEL_CHECK" = "true" ]; then \
|
|
python3 check-wheel-size.py dist; \
|
|
else \
|
|
echo "Skipping wheel size check."; \
|
|
fi
|
|
#################### EXTENSION Build IMAGE ####################
|
|
|
|
#################### DEV IMAGE ####################
|
|
FROM base AS dev
|
|
|
|
ARG PIP_INDEX_URL UV_INDEX_URL
|
|
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
|
|
ARG PYTORCH_CUDA_INDEX_BASE_URL
|
|
|
|
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
|
# Reference: https://github.com/astral-sh/uv/pull/1694
|
|
ENV UV_HTTP_TIMEOUT=500
|
|
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
|
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
|
ENV UV_LINK_MODE=copy
|
|
|
|
# Install libnuma-dev, required by fastsafetensors (fixes #20384)
|
|
RUN apt-get update && apt-get install -y libnuma-dev && rm -rf /var/lib/apt/lists/*
|
|
COPY requirements/lint.txt requirements/lint.txt
|
|
COPY requirements/test.txt requirements/test.txt
|
|
COPY requirements/dev.txt requirements/dev.txt
|
|
RUN --mount=type=cache,target=/root/.cache/uv \
|
|
uv pip install --python /opt/venv/bin/python3 -r requirements/dev.txt \
|
|
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
|
#################### DEV IMAGE ####################
|
|
|
|
#################### vLLM installation IMAGE ####################
|
|
# image with vLLM installed
|
|
FROM ${FINAL_BASE_IMAGE} AS vllm-base
|
|
ARG CUDA_VERSION
|
|
ARG PYTHON_VERSION
|
|
ARG INSTALL_KV_CONNECTORS=false
|
|
WORKDIR /vllm-workspace
|
|
ENV DEBIAN_FRONTEND=noninteractive
|
|
ARG TARGETPLATFORM
|
|
|
|
ARG GDRCOPY_CUDA_VERSION=12.8
|
|
# Keep in line with FINAL_BASE_IMAGE
|
|
ARG GDRCOPY_OS_VERSION=Ubuntu22_04
|
|
|
|
SHELL ["/bin/bash", "-c"]
|
|
|
|
ARG DEADSNAKES_MIRROR_URL
|
|
ARG DEADSNAKES_GPGKEY_URL
|
|
ARG GET_PIP_URL
|
|
|
|
RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \
|
|
echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment
|
|
|
|
# Install Python and other dependencies
|
|
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
|
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
|
|
&& apt-get update -y \
|
|
&& apt-get install -y ccache software-properties-common git curl wget sudo vim python3-pip \
|
|
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
|
|
&& if [ ! -z ${DEADSNAKES_MIRROR_URL} ] ; then \
|
|
if [ ! -z "${DEADSNAKES_GPGKEY_URL}" ] ; then \
|
|
mkdir -p -m 0755 /etc/apt/keyrings ; \
|
|
curl -L ${DEADSNAKES_GPGKEY_URL} | gpg --dearmor > /etc/apt/keyrings/deadsnakes.gpg ; \
|
|
sudo chmod 644 /etc/apt/keyrings/deadsnakes.gpg ; \
|
|
echo "deb [signed-by=/etc/apt/keyrings/deadsnakes.gpg] ${DEADSNAKES_MIRROR_URL} $(lsb_release -cs) main" > /etc/apt/sources.list.d/deadsnakes.list ; \
|
|
fi ; \
|
|
else \
|
|
for i in 1 2 3; do \
|
|
add-apt-repository -y ppa:deadsnakes/ppa && break || \
|
|
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
|
|
done ; \
|
|
fi \
|
|
&& apt-get update -y \
|
|
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv libibverbs-dev \
|
|
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
|
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
|
|
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
|
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION} \
|
|
&& python3 --version && python3 -m pip --version
|
|
|
|
ARG PIP_INDEX_URL UV_INDEX_URL
|
|
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
|
|
ARG PYTORCH_CUDA_INDEX_BASE_URL
|
|
ARG PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL
|
|
ARG PIP_KEYRING_PROVIDER UV_KEYRING_PROVIDER
|
|
|
|
# Install uv for faster pip installs
|
|
RUN --mount=type=cache,target=/root/.cache/uv \
|
|
python3 -m pip install uv
|
|
|
|
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
|
# Reference: https://github.com/astral-sh/uv/pull/1694
|
|
ENV UV_HTTP_TIMEOUT=500
|
|
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
|
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
|
ENV UV_LINK_MODE=copy
|
|
|
|
# Workaround for https://github.com/openai/triton/issues/2507 and
|
|
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
|
|
# this won't be needed for future versions of this docker image
|
|
# or future versions of triton.
|
|
RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
|
|
|
|
# arm64 (GH200) build follows the practice of "use existing pytorch" build,
|
|
# we need to install torch and torchvision from the nightly builds first,
|
|
# pytorch will not appear as a vLLM dependency in all of the following steps
|
|
# after this step
|
|
RUN --mount=type=cache,target=/root/.cache/uv \
|
|
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
|
|
uv pip install --system \
|
|
--index-url ${PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.') \
|
|
"torch==2.8.0.dev20250318+cu128" "torchvision==0.22.0.dev20250319" ; \
|
|
uv pip install --system \
|
|
--index-url ${PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.') \
|
|
--pre pytorch_triton==3.3.0+gitab727c40 ; \
|
|
fi
|
|
|
|
# Install vllm wheel first, so that torch etc will be installed.
|
|
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
|
|
--mount=type=cache,target=/root/.cache/uv \
|
|
uv pip install --system dist/*.whl --verbose \
|
|
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
|
|
|
# Install FlashInfer pre-compiled kernel cache and binaries
|
|
# https://docs.flashinfer.ai/installation.html
|
|
RUN --mount=type=cache,target=/root/.cache/uv \
|
|
uv pip install --system flashinfer-cubin==0.4.1 \
|
|
&& uv pip install --system flashinfer-jit-cache==0.4.1 \
|
|
--extra-index-url https://flashinfer.ai/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.') \
|
|
&& flashinfer show-config
|
|
|
|
COPY examples examples
|
|
COPY benchmarks benchmarks
|
|
COPY ./vllm/collect_env.py .
|
|
|
|
RUN --mount=type=cache,target=/root/.cache/uv \
|
|
. /etc/environment && \
|
|
uv pip list
|
|
|
|
# Even when we build Flashinfer with AOT mode, there's still
|
|
# some issues w.r.t. JIT compilation. Therefore we need to
|
|
# install build dependencies for JIT compilation.
|
|
# TODO: Remove this once FlashInfer AOT wheel is fixed
|
|
COPY requirements/build.txt requirements/build.txt
|
|
RUN --mount=type=cache,target=/root/.cache/uv \
|
|
uv pip install --system -r requirements/build.txt \
|
|
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
|
|
|
# Install DeepGEMM from source
|
|
ARG DEEPGEMM_GIT_REF
|
|
COPY tools/install_deepgemm.sh /tmp/install_deepgemm.sh
|
|
RUN --mount=type=cache,target=/root/.cache/uv \
|
|
VLLM_DOCKER_BUILD_CONTEXT=1 TORCH_CUDA_ARCH_LIST="9.0a 10.0a" /tmp/install_deepgemm.sh --cuda-version "${CUDA_VERSION}" ${DEEPGEMM_GIT_REF:+--ref "$DEEPGEMM_GIT_REF"}
|
|
|
|
COPY tools/install_gdrcopy.sh install_gdrcopy.sh
|
|
RUN set -eux; \
|
|
case "${TARGETPLATFORM}" in \
|
|
linux/arm64) UUARCH="aarch64" ;; \
|
|
linux/amd64) UUARCH="x64" ;; \
|
|
*) echo "Unsupported TARGETPLATFORM: ${TARGETPLATFORM}" >&2; exit 1 ;; \
|
|
esac; \
|
|
./install_gdrcopy.sh "${GDRCOPY_OS_VERSION}" "${GDRCOPY_CUDA_VERSION}" "${UUARCH}"; \
|
|
rm ./install_gdrcopy.sh
|
|
|
|
# Install EP kernels(pplx-kernels and DeepEP)
|
|
COPY tools/ep_kernels/install_python_libraries.sh install_python_libraries.sh
|
|
ENV CUDA_HOME=/usr/local/cuda
|
|
RUN export TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST:-9.0a 10.0a+PTX}" \
|
|
&& bash install_python_libraries.sh
|
|
|
|
# CUDA image changed from /usr/local/nvidia to /usr/local/cuda in 12.8 but will
|
|
# return to /usr/local/nvidia in 13.0 to allow container providers to mount drivers
|
|
# consistently from the host (see https://github.com/vllm-project/vllm/issues/18859).
|
|
# Until then, add /usr/local/nvidia/lib64 before the image cuda path to allow override.
|
|
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib64:${LD_LIBRARY_PATH}
|
|
|
|
#################### vLLM installation IMAGE ####################
|
|
|
|
#################### TEST IMAGE ####################
|
|
# image to run unit testing suite
|
|
# note that this uses vllm installed by `pip`
|
|
FROM vllm-base AS test
|
|
|
|
ADD . /vllm-workspace/
|
|
|
|
ARG PYTHON_VERSION
|
|
|
|
ARG PIP_INDEX_URL UV_INDEX_URL
|
|
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
|
|
|
|
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
|
# Reference: https://github.com/astral-sh/uv/pull/1694
|
|
ENV UV_HTTP_TIMEOUT=500
|
|
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
|
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
|
ENV UV_LINK_MODE=copy
|
|
|
|
# install development dependencies (for testing)
|
|
RUN --mount=type=cache,target=/root/.cache/uv \
|
|
CUDA_MAJOR="${CUDA_VERSION%%.*}"; \
|
|
if [ "$CUDA_MAJOR" -ge 12 ]; then \
|
|
uv pip install --system -r requirements/dev.txt; \
|
|
fi
|
|
|
|
# install development dependencies (for testing)
|
|
RUN --mount=type=cache,target=/root/.cache/uv \
|
|
uv pip install --system -e tests/vllm_test_utils
|
|
|
|
# enable fast downloads from hf (for testing)
|
|
RUN --mount=type=cache,target=/root/.cache/uv \
|
|
uv pip install --system hf_transfer
|
|
ENV HF_HUB_ENABLE_HF_TRANSFER 1
|
|
|
|
# Copy in the v1 package for testing (it isn't distributed yet)
|
|
COPY vllm/v1 /usr/local/lib/python${PYTHON_VERSION}/dist-packages/vllm/v1
|
|
|
|
# Source code is used in the `python_only_compile.sh` test
|
|
# We hide it inside `src/` so that this source code
|
|
# will not be imported by other tests
|
|
RUN mkdir src
|
|
RUN mv vllm src/vllm
|
|
#################### TEST IMAGE ####################
|
|
|
|
#################### OPENAI API SERVER ####################
|
|
# base openai image with additional requirements, for any subsequent openai-style images
|
|
FROM vllm-base AS vllm-openai-base
|
|
ARG TARGETPLATFORM
|
|
ARG INSTALL_KV_CONNECTORS=false
|
|
|
|
ARG PIP_INDEX_URL UV_INDEX_URL
|
|
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
|
|
|
|
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
|
# Reference: https://github.com/astral-sh/uv/pull/1694
|
|
ENV UV_HTTP_TIMEOUT=500
|
|
|
|
COPY requirements/kv_connectors.txt requirements/kv_connectors.txt
|
|
|
|
# install additional dependencies for openai api server
|
|
RUN --mount=type=cache,target=/root/.cache/uv \
|
|
if [ "$INSTALL_KV_CONNECTORS" = "true" ]; then \
|
|
uv pip install --system -r requirements/kv_connectors.txt; \
|
|
fi; \
|
|
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
|
|
BITSANDBYTES_VERSION="0.42.0"; \
|
|
else \
|
|
BITSANDBYTES_VERSION="0.46.1"; \
|
|
fi; \
|
|
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' 'runai-model-streamer[s3,gcs]>=0.14.0'
|
|
|
|
ENV VLLM_USAGE_SOURCE production-docker-image
|
|
|
|
# define sagemaker first, so it is not default from `docker build`
|
|
FROM vllm-openai-base AS vllm-sagemaker
|
|
|
|
COPY examples/online_serving/sagemaker-entrypoint.sh .
|
|
RUN chmod +x sagemaker-entrypoint.sh
|
|
ENTRYPOINT ["./sagemaker-entrypoint.sh"]
|
|
|
|
FROM vllm-openai-base AS vllm-openai
|
|
|
|
ENTRYPOINT ["vllm", "serve"]
|
|
#################### OPENAI API SERVER ####################
|