# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import importlib import logging import sys from argparse import SUPPRESS, HelpFormatter from pathlib import Path from typing import Literal from unittest.mock import MagicMock, patch from pydantic_core import core_schema logger = logging.getLogger("mkdocs") ROOT_DIR = Path(__file__).parent.parent.parent.parent ARGPARSE_DOC_DIR = ROOT_DIR / "docs/argparse" sys.path.insert(0, str(ROOT_DIR)) sys.modules["vllm._C"] = MagicMock() class PydanticMagicMock(MagicMock): """`MagicMock` that's able to generate pydantic-core schemas.""" def __get_pydantic_core_schema__(self, source_type, handler): return core_schema.any_schema() def auto_mock(module, attr, max_mocks=50): """Function that automatically mocks missing modules during imports.""" logger.info("Importing %s from %s", attr, module) for _ in range(max_mocks): try: # First treat attr as an attr, then as a submodule return getattr(importlib.import_module(module), attr, importlib.import_module(f"{module}.{attr}")) except importlib.metadata.PackageNotFoundError as e: raise e except ModuleNotFoundError as e: logger.info("Mocking %s for argparse doc generation", e.name) sys.modules[e.name] = PydanticMagicMock() raise ImportError( f"Failed to import {module}.{attr} after mocking {max_mocks} imports") latency = auto_mock("vllm.benchmarks", "latency") serve = auto_mock("vllm.benchmarks", "serve") throughput = auto_mock("vllm.benchmarks", "throughput") AsyncEngineArgs = auto_mock("vllm.engine.arg_utils", "AsyncEngineArgs") EngineArgs = auto_mock("vllm.engine.arg_utils", "EngineArgs") ChatCommand = auto_mock("vllm.entrypoints.cli.openai", "ChatCommand") CompleteCommand = auto_mock("vllm.entrypoints.cli.openai", "CompleteCommand") cli_args = auto_mock("vllm.entrypoints.openai", "cli_args") run_batch = auto_mock("vllm.entrypoints.openai", "run_batch") FlexibleArgumentParser = auto_mock("vllm.utils", "FlexibleArgumentParser") class MarkdownFormatter(HelpFormatter): """Custom formatter that generates markdown for argument groups.""" def __init__(self, prog, starting_heading_level=3): super().__init__(prog, max_help_position=float('inf'), width=float('inf')) self._section_heading_prefix = "#" * starting_heading_level self._argument_heading_prefix = "#" * (starting_heading_level + 1) self._markdown_output = [] def start_section(self, heading): if heading not in {"positional arguments", "options"}: heading_md = f"\n{self._section_heading_prefix} {heading}\n\n" self._markdown_output.append(heading_md) def end_section(self): pass def add_text(self, text): if text: self._markdown_output.append(f"{text.strip()}\n\n") def add_usage(self, usage, actions, groups, prefix=None): pass def add_arguments(self, actions): for action in actions: if (len(action.option_strings) == 0 or "--help" in action.option_strings): continue option_strings = f'`{"`, `".join(action.option_strings)}`' heading_md = f"{self._argument_heading_prefix} {option_strings}\n\n" self._markdown_output.append(heading_md) if choices := action.choices: choices = f'`{"`, `".join(str(c) for c in choices)}`' self._markdown_output.append( f"Possible choices: {choices}\n\n") elif ((metavar := action.metavar) and isinstance(metavar, (list, tuple))): metavar = f'`{"`, `".join(str(m) for m in metavar)}`' self._markdown_output.append( f"Possible choices: {metavar}\n\n") if action.help: self._markdown_output.append(f"{action.help}\n\n") if (default := action.default) != SUPPRESS: self._markdown_output.append(f"Default: `{default}`\n\n") def format_help(self): """Return the formatted help as markdown.""" return "".join(self._markdown_output) def create_parser(add_cli_args, **kwargs) -> FlexibleArgumentParser: """Create a parser for the given class with markdown formatting. Args: cls: The class to create a parser for **kwargs: Additional keyword arguments to pass to `cls.add_cli_args`. Returns: FlexibleArgumentParser: A parser with markdown formatting for the class. """ parser = FlexibleArgumentParser(add_json_tip=False) parser.formatter_class = MarkdownFormatter with patch("vllm.config.DeviceConfig.__post_init__"): _parser = add_cli_args(parser, **kwargs) # add_cli_args might be in-place so return parser if _parser is None return _parser or parser def on_startup(command: Literal["build", "gh-deploy", "serve"], dirty: bool): logger.info("Generating argparse documentation") logger.debug("Root directory: %s", ROOT_DIR.resolve()) logger.debug("Output directory: %s", ARGPARSE_DOC_DIR.resolve()) # Create the ARGPARSE_DOC_DIR if it doesn't exist if not ARGPARSE_DOC_DIR.exists(): ARGPARSE_DOC_DIR.mkdir(parents=True) # Create parsers to document parsers = { "engine_args": create_parser(EngineArgs.add_cli_args), "async_engine_args": create_parser(AsyncEngineArgs.add_cli_args, async_args_only=True), "serve": create_parser(cli_args.make_arg_parser), "chat": create_parser(ChatCommand.add_cli_args), "complete": create_parser(CompleteCommand.add_cli_args), "bench_latency": create_parser(latency.add_cli_args), "bench_throughput": create_parser(throughput.add_cli_args), "bench_serve": create_parser(serve.add_cli_args), "run-batch": create_parser(run_batch.make_arg_parser), } # Generate documentation for each parser for stem, parser in parsers.items(): doc_path = ARGPARSE_DOC_DIR / f"{stem}.md" # Specify encoding for building on Windows with open(doc_path, "w", encoding="utf-8") as f: f.write(parser.format_help()) logger.info("Argparse generated: %s", doc_path.relative_to(ROOT_DIR))