Compare commits

...

86 Commits

Author SHA1 Message Date
b761df963c [Doc]: improve CPU(x86) build-wheel-from-source section (#25617)
Signed-off-by: Kosseila (CloudThrill) <klouddude@gmail.com>
2025-09-26 10:26:33 -07:00
33f6aaf972 Eagle3 that supports the Minicpm3 model (#24243)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: liudan <adan@minicpm.com>
Co-authored-by: liudan <liudan@qq.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
2025-09-26 10:04:57 -07:00
56aafa8c0b [Misc] fix unique_filepath (#25732)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-26 16:56:15 +00:00
8d52f2b3a7 [ray][metrics] Replace ':' with '_' for OpenTelemetry compatibility in Ray (#25439)
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
Signed-off-by: Seiji Eicher <58963096+eicherseiji@users.noreply.github.com>
Co-authored-by: Rui Qiao <161574667+ruisearch42@users.noreply.github.com>
2025-09-26 09:43:30 -07:00
984d18498a [BugFix] Fix using dbo_decode_token_threshold always (and ignoring dbo_prefill_token_threshold) (#25622)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-26 16:22:49 +00:00
d4d9899860 [Quantization] Add field to skip unquantized modules for GPTQ config (#25455)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-26 15:47:41 +00:00
db1e42f627 [CI/Build] Fix some V1 tests not being run (#25569)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-26 20:52:36 +08:00
bc9d7b5595 [CI/Build] Split up Distributed Tests (#25572)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-26 14:49:33 +02:00
fe6b19c314 [Bugfix] Properly abort pooling request. (#25734)
Signed-off-by: wang.yuqi <noooop@126.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-26 05:47:34 -07:00
2827b3f4a3 [CI] Fix test_shared_storage_connector_hashes (#25748)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-26 20:46:17 +08:00
2b6b1d7809 [Model] Mamba2 varlen refactor (#21467)
Signed-off-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
Co-authored-by: RishiAstra <40644327+RishiAstra@users.noreply.github.com>
2025-09-26 11:31:14 +00:00
633f943e30 [Doc] Update Batch-level DP docs (#25757)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-26 02:37:40 -07:00
b03b1b97f6 Support LongCat-Flash-Chat tool call (#24083)
Signed-off-by: 许文卿 <xwq391974@alibaba-inc.com>
2025-09-26 09:25:39 +00:00
dfb9af2014 [Bugfix] Fix Shared Expert/Zero expert code in FusedMoE.process_chunk (#25698)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
2025-09-26 01:25:28 -07:00
19f76ee68e [misc] refactor speculative config (#25657)
Signed-off-by: zxw <1020938856@qq.com>
2025-09-26 01:22:06 -07:00
dd70437a4f Remove cuda hard-code in compute_causal_conv1d_metadata (#25555)
Signed-off-by: Icey <1790571317@qq.com>
2025-09-26 01:19:20 -07:00
99b3a504c5 [Qwen3-Next][GDN] fixes cuda graph capturing bug in GDN metadata and a stride bug in causal_conv_1d. (#25743)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
2025-09-26 01:18:58 -07:00
6e30010d2f fix: print outputt offline_inference/base/chat.py example (#25744)
Signed-off-by: Iceber Gu <caiwei95@hotmail.com>
2025-09-26 01:18:24 -07:00
52621c8f5c [Harware][AMD][Model] Triton MoE tuning configs for GLM-4.5 for MI300X (#25703)
Signed-off-by: xaguilar <Xavier.AguilarFruto@amd.com>
2025-09-26 01:18:20 -07:00
d48f4d6daf perf: Avoid copying inputs_embeds tensors to GPU unless prompt_embeds is enabled (#25739)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-26 01:18:09 -07:00
e84e0735c7 fix: revert cast to cpu in MsgpackEncoder._encode_tensor to avoid hidden performance regressions (#25738)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-26 01:18:05 -07:00
3edf87d25f [CI/Build] fix doc build warning: Failed to get 'name: description' pair (#25733)
Signed-off-by: yiting.jiang <yiting.jiang@daocloud.io>
2025-09-26 01:18:02 -07:00
392edee34a EVS Support (Video tokens pruning) (#22980)
Signed-off-by: Eugene Khvedchenia <ekhvedchenia@nvidia.com>
Signed-off-by: Eugene Khvedchenya <ekhvedchenya@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-26 11:54:54 +08:00
983056e456 [Misc] Remove unnecessary memoryviews in shm_broadcast.py (#25721)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-26 03:11:44 +00:00
13dd93c667 [Core] Force PIECEWISE CUDAGraph mode for encoder-decoder (#25701)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-25 18:21:56 -07:00
53a30845be Llamas 3.1 405B fp4 changes upstreaming from 355_wip (#25135)
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Doug Lehr <douglehr@amd.com>
2025-09-25 19:16:53 -06:00
8b77328ffe [Misc] Don't log shm dequeue delay warning on worker side (#25720)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-26 01:08:30 +00:00
9fe4c2bdb9 [Refactor] Remove DeepGEMM OP Register (#25710)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-25 20:13:41 -04:00
081b5594a2 Fix routing_bias dtype (#25711)
Signed-off-by: Shu Wang. <shuw@nvidia.com>
2025-09-25 23:35:14 +00:00
57329a8c01 [Model] rename NemotronH_Nano_VL -> NemotronH_Nano_VL_V2 (#25708)
Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com>
2025-09-25 16:10:29 -07:00
8c435c9bce [Core] Enable command line logging for LLMEngine (#25610)
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-09-25 15:31:17 -07:00
e71b8e210d [Spec Decode] Add Batch Parallel Ngram. Upto 8x lower overhead. (#24986)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-09-25 15:22:03 -07:00
89fa54e6f7 [Optimization] Use a cheaper cache key in get_model_architecture (#25682)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 17:54:20 -04:00
3d54bdcb73 [Optimization] Streamline InputPreprocessor (#25702)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 21:06:49 +00:00
6b0fcbbf43 [Misc] Simplify test_argsort_mm_positions (#25690)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 18:23:01 +00:00
0fa673af4c [V0 deprecation] Clean up LoRA (#25686)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-25 18:12:33 +00:00
3468f17ebe [V0 deprecation] Remove _VLLM_V1 suffixes from attention backend names (#25489)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
2025-09-25 17:37:50 +00:00
71b25b0d48 [V0 deprecation] Clean up V0 fallback in compilation config (#25675)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-25 17:29:51 +00:00
0ea80c87d9 [Model] Define merge_by_field_config MM interface (#25676)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 17:13:07 +00:00
b8d9e4a326 [Model] Add optional parameter to reasoning parser constructor (#25554)
Signed-off-by: taohui <taohui3@gmail.com>
Signed-off-by: Tao Hui <taohui3@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-26 01:12:50 +08:00
13cc7f5370 [BugFix] Fix DBO hang (#25625)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-25 17:04:48 +00:00
916bd9204d Revert "[Bug] Dynamo Unsupported due to BasevLLMParameter.torch_function calling disabled super()" (#25681)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-25 09:45:06 -07:00
e04a1b6b21 [BUGFIX] Fix crash in Eagle Speculative Decoding models when exceedin… (#24662)
Signed-off-by: AlonKejzman <alonkeizman@gmail.com>
2025-09-25 15:40:14 +00:00
2e5df88c92 [Logging] Remove TORCH_NCCL_AVOID_RECORD_STREAMS to squash a warning (#25532)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-09-25 15:16:06 +00:00
0754ac4c49 [Misc] Remove cruft file in repo (#25678)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-25 08:05:12 -07:00
03858e6d1c [Bugfix] Fix InternS1 video processing after Transformers v4.56 (#25644)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-25 14:46:04 +00:00
532a6cfccb [ux] Switch a warning to debug about a pytorch fallback (#23750)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-25 14:38:16 +00:00
eb32335e35 [CPU] update torch 2.8 and fix missing fields in TorchSDPAMetadata (#25652)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-25 13:29:11 +00:00
69a8c8e99a [torch.compile] Make Query Quantization Fusable (#24914)
Signed-off-by: Jonas Kuebler <kuebj@amazon.com>
2025-09-25 09:25:12 -04:00
6c340da4df [misc] log info messages by default for hanging / busy / idle (#25627)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-25 21:14:57 +08:00
2f17117606 [mypy] Fix wrong type annotations related to tuple (#25660)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 13:00:45 +00:00
1e9a77e037 [Hardware][RISC-V] Add riscv64 support for vLLM with scalar (#22112)
Signed-off-by: chenlang <chen.lang5@zte.com.cn>
Co-authored-by: chenlang <10346245@zte.com.cn>
2025-09-25 20:46:11 +08:00
d2af67441d [XPU][Triton]add xpu config in triton_reshape_and_cache_flash (#25643)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-25 12:38:11 +00:00
0bcc3a160d [CI/Build] Fix flaky entrypoints test (#25663)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 12:19:40 +00:00
70fbdb26e9 Add backward compatibility for guided_... API (#25615)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-09-25 19:45:25 +08:00
7f570f1caa [V0 deprecation] Remove unreachable model_config.supported_tasks (#25642)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-25 11:26:31 +00:00
eaeca3cd7f [Bugfix] Parse SpeculativeConfig Error (#25142)
Signed-off-by: zxw <1020938856@qq.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-25 11:09:39 +00:00
12c1287d64 [mypy] Further improve MM type annotations (#25654)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 10:57:36 +00:00
17b4c6685c [Bugfix] Fix Qwen3-VL max_num_video_tokens calculation for video profiling (#25648)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-25 18:36:01 +08:00
3c2b2ccece [Bugfix] Add triton.language.tensor placeholder (#25649)
Signed-off-by: Agata Dobrzyniewicz <adobrzyniewicz@habana.ai>
2025-09-25 10:31:14 +00:00
7be9ffcd9f [Misc] Fix Qwen3-VL video_grid_thw typing (#25646)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-25 10:16:45 +00:00
393de22d2e [fix] Update torch version in cpu-build.txt for AArch64/ppc64le and Darwin (#25579)
Signed-off-by: Fadi Arafeh <fadi.arafeh@arm.com>
2025-09-25 09:39:18 +00:00
1260180c67 Revert "[Performance] Move apply_w8a8_block_fp8_linear to an op class… (#25607)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-25 08:05:21 +00:00
af4ee63e0e typo: remove duplicate is (#25641)
Signed-off-by: nicole-lihui <nicole.li@daocloud.io>
2025-09-25 00:46:22 -07:00
bc092ea873 Map CwmForCausalLM to llama and LlamaForCausalLM (#25611)
Signed-off-by: Jacob Kahn <jacobkahn1@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-25 07:37:03 +00:00
755ed7b05b [Misc] Simplify PoolerOutput and move to v1/outputs (#25629)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 06:47:03 +00:00
a676e668ee [Bugfix] fix apply_temperature to avoid nan in probs (#24734)
Signed-off-by: courage17340 <courage17340@163.com>
2025-09-25 05:32:21 +00:00
c85be1f6dd optimize: eliminate duplicate split_enc_dec_inputs calls (#25573)
Signed-off-by: nicole-lihui <nicole.li@daocloud.io>
2025-09-25 05:03:25 +00:00
845adb3ec6 [Model] Add LongCat-Flash (#23991)
Signed-off-by: yangxurui <yangxurui@meituan.com>
Co-authored-by: yangxurui <yangxurui@meituan.com>
2025-09-24 21:53:40 -07:00
90b139cfff Enable Fbgemm NVFP4 on Dense models (#25609)
Signed-off-by: Saman Keon <samanamp@outlook.com>
2025-09-24 21:12:53 -07:00
4492e3a554 [Bug] Dynamo Unsupported due to BasevLLMParameter.torch_function calling disabled super() (#25613)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-24 18:52:52 -07:00
05c19485a5 [Kernel] Support DCP for Triton backend (#25132)
Signed-off-by: Wei Wei <wwei6@meta.com>
2025-09-24 18:09:34 -07:00
52d0cb8458 [Model] Improve DotsOCRForCausalLM (#25466)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-25 07:58:08 +08:00
5c1e496a75 [MISC] replace c10::optional with std::optional (#25602)
Signed-off-by: Shiyan Deng <dsy842974287@meta.com>
2025-09-24 16:56:21 -07:00
e7f27ea648 Improve --help for enhanced user experience (#24903)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-24 23:08:18 +00:00
1f29141258 [Refactor] Use DeepGEMM Col Major TMA Aligned Tensor (#25517)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-24 18:52:36 -04:00
6160ba4151 feat: BF16 FlashInfer Fused Cutlass MOE for Hopper and Blackwell Expert Parallel (#25503)
Signed-off-by: Duncan Moss <djm.moss@gmail.com>
2025-09-24 18:50:04 -04:00
fea8006062 [Logging] Improve log for when DeepEP HT disables CUDA Graphs (#25531)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-09-24 22:43:06 +00:00
e6750d0b18 [V0 Deprecation] Remove unused classes in attention (#25541)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-09-24 13:24:40 -07:00
8c853050e7 [Docs] Enable fail_on_warning for the docs build in CI (#25580)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-24 19:30:33 +00:00
f84a472a03 Suppress benign cuBLAS warning when capturing cudagraphs with DBO (#25596)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-09-24 19:02:08 +00:00
54e42b72db Support mnnvl all2allv from Flashinfer (#21003)
Signed-off-by: Shu Wang <shuw@nvidia.com>
Signed-off-by: Shu Wang. <shuw@nvidia.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-24 14:38:16 -04:00
2dda3e35d0 [Bugfix] add cache model when from object storage get model (#24764)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-09-24 18:11:16 +00:00
d83f3f7cb3 Fixes and updates to bench_per_token_quant_fp8 (#25591)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-09-24 08:30:15 -07:00
302eb941f3 [ROCm][Build][Bugfix] Fix ROCm base docker whls installation order (#25415)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-24 11:25:10 -04:00
487745ff49 [ROCm][Bugfix] Only enable +rms_norm based on aiter if not explicitly disabled (#25275)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-24 11:24:39 -04:00
259 changed files with 7217 additions and 4177 deletions

View File

@ -58,11 +58,8 @@ function cpu_tests() {
# pytest -x -v -s tests/kernels/attention/test_cache.py -m cpu_model
# pytest -x -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
# Note: disable Bart until supports V1
pytest -x -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
pytest -x -v -s tests/models/language/generation -m cpu_model
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model
pytest -x -v -s tests/models/language/pooling -m cpu_model
pytest -x -v -s tests/models/multimodal/generation \

View File

@ -35,7 +35,7 @@ docker run \
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
VLLM_ATTENTION_BACKEND=TRITON_ATTN_VLLM_V1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
VLLM_ATTENTION_BACKEND=TRITON_ATTN python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
cd tests
pytest -v -s v1/core
pytest -v -s v1/engine

View File

@ -300,10 +300,12 @@ steps:
- pytest -v -s v1/spec_decode
- pytest -v -s v1/kv_connector/unit
- pytest -v -s v1/metrics
- pytest -v -s v1/test_kv_sharing.py
- pytest -v -s v1/test_metrics_reader.py
- pytest -v -s v1/test_oracle.py
- pytest -v -s v1/test_request.py
- pytest -v -s v1/test_serial_utils.py
- pytest -v -s v1/test_utils.py
- pytest -v -s v1/test_oracle.py
- pytest -v -s v1/test_metrics_reader.py
# Integration test for streaming correctness (requires special branch).
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
@ -770,8 +772,9 @@ steps:
- pytest -v -s tests/models/multimodal/processing/
- pytest -v -s tests/models/multimodal/test_mapping.py
- python3 examples/offline_inference/basic/chat.py
- python3 examples/offline_inference/audio_language.py --model-type whisper
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
# Whisper needs spawn method to avoid deadlock
- VLLM_WORKER_MULTIPROC_METHOD=spawn python3 examples/offline_inference/audio_language.py --model-type whisper
- label: Blackwell Test # 38 min
timeout_in_minutes: 60
@ -869,25 +872,27 @@ steps:
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
- label: Distributed Tests (2 GPUs) # 110min
timeout_in_minutes: 150
- label: Distributed Tests (2 GPUs) # 68min
timeout_in_minutes: 90
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/compilation/
- vllm/distributed/
- vllm/engine/
- vllm/executor/
- vllm/model_executor/models/
- tests/distributed/
- vllm/compilation
- vllm/worker/worker_base.py
- entrypoints/llm/test_collective_rpc.py
- vllm/v1/engine/
- vllm/v1/worker/
- tests/compile/test_basic_correctness.py
- tests/compile/test_wrapper.py
- tests/distributed/
- tests/entrypoints/llm/test_collective_rpc.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/entrypoints/openai/test_multi_api_servers.py
- vllm/v1/engine/
- vllm/v1/worker/
- tests/v1/shutdown
- tests/v1/worker/test_worker_memory_snapshot.py
commands:
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
@ -897,20 +902,29 @@ steps:
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- pytest -v -s distributed/test_sequence_parallel.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
- label: Distributed Model Tests (2 GPUs) # 37min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/model_executor/model_loader/sharded_state_loader.py
- vllm/model_executor/models/
- tests/basic_correctness/
- tests/model_executor/model_loader/test_sharded_state_loader.py
- tests/models/
commands:
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s model_executor/model_loader/test_sharded_state_loader.py
# Avoid importing model tests that cause CUDA reinitialization error
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/language -v -s -m 'distributed(num_gpus=2)'
- pytest models/multimodal -v -s -m 'distributed(num_gpus=2)' --ignore models/multimodal/generation/test_whisper.py
- VLLM_WORKER_MULTIPROC_METHOD=spawn pytest models/multimodal/generation/test_whisper.py -v -s -m 'distributed(num_gpus=2)'
# test sequence parallel
- pytest -v -s distributed/test_sequence_parallel.py
# this test fails consistently.
# TODO: investigate and fix
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s models/multimodal/generation/test_maverick.py
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
- label: Plugin Tests (2 GPUs) # 40min
timeout_in_minutes: 60

View File

@ -13,6 +13,7 @@ build:
mkdocs:
configuration: mkdocs.yaml
fail_on_warning: true
# Optionally declare the Python requirements required to build your docs
python:

View File

@ -1,17 +1,31 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import gc
import time
from unittest import mock
import numpy as np
from tabulate import tabulate
from benchmark_utils import TimeCollector
from vllm.config import ModelConfig, SpeculativeConfig, VllmConfig
from vllm.config import (
CacheConfig,
DeviceConfig,
LoadConfig,
ModelConfig,
ParallelConfig,
SchedulerConfig,
SpeculativeConfig,
VllmConfig,
)
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
from vllm.v1.spec_decode.ngram_proposer import NgramProposer
from vllm.v1.worker.gpu_input_batch import InputBatch
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
def main(args):
def benchmark_propose(args):
rows = []
for max_ngram in args.max_ngram:
collector = TimeCollector(TimeCollector.US)
@ -69,10 +83,88 @@ def main(args):
)
def benchmark_batched_propose(args):
NUM_SPECULATIVE_TOKENS_NGRAM = 10
PROMPT_LOOKUP_MIN = 5
PROMPT_LOOKUP_MAX = 15
MAX_MODEL_LEN = int(1e7)
DEVICE = current_platform.device_type
model_config = ModelConfig(model="facebook/opt-125m", runner="generate")
speculative_config = SpeculativeConfig(
target_model_config=model_config,
target_parallel_config=ParallelConfig(),
method="ngram",
num_speculative_tokens=NUM_SPECULATIVE_TOKENS_NGRAM,
prompt_lookup_max=PROMPT_LOOKUP_MAX,
prompt_lookup_min=PROMPT_LOOKUP_MIN,
)
vllm_config = VllmConfig(
model_config=model_config,
cache_config=CacheConfig(),
speculative_config=speculative_config,
device_config=DeviceConfig(device=current_platform.device_type),
parallel_config=ParallelConfig(),
load_config=LoadConfig(),
scheduler_config=SchedulerConfig(),
)
# monkey patch vllm.v1.worker.gpu_model_runner.get_pp_group
mock_pp_group = mock.MagicMock()
mock_pp_group.world_size = 1
with mock.patch(
"vllm.v1.worker.gpu_model_runner.get_pp_group", return_value=mock_pp_group
):
runner = GPUModelRunner(vllm_config, DEVICE)
# hack max model len
runner.max_model_len = MAX_MODEL_LEN
runner.drafter.max_model_len = MAX_MODEL_LEN
dummy_input_batch = InputBatch(
max_num_reqs=args.num_req,
max_model_len=MAX_MODEL_LEN,
max_num_batched_tokens=args.num_req * args.num_token,
device=DEVICE,
pin_memory=False,
vocab_size=256000,
block_sizes=[16],
)
dummy_input_batch._req_ids = list(str(id) for id in range(args.num_req))
dummy_input_batch.spec_decode_unsupported_reqs = ()
dummy_input_batch.num_tokens_no_spec = [args.num_token] * args.num_req
dummy_input_batch.token_ids_cpu = np.random.randint(
0, 20, (args.num_req, args.num_token)
)
runner.input_batch = dummy_input_batch
sampled_token_ids = [[0]] * args.num_req
print("Starting benchmark")
# first run is warmup so ignore it
for _ in range(args.num_iteration):
start = time.time()
runner.drafter.propose(
sampled_token_ids,
dummy_input_batch.req_ids,
dummy_input_batch.num_tokens_no_spec,
dummy_input_batch.token_ids_cpu,
dummy_input_batch.spec_decode_unsupported_reqs,
)
end = time.time()
print(f"Iteration time (s): {end - start}")
def invoke_main() -> None:
parser = FlexibleArgumentParser(
description="Benchmark the performance of N-gram speculative decode drafting"
)
parser.add_argument(
"--batched", action="store_true", help="consider time to prepare batch"
) # noqa: E501
parser.add_argument(
"--num-iteration",
type=int,
@ -105,8 +197,17 @@ def invoke_main() -> None:
help="Number of speculative tokens to generate",
)
args = parser.parse_args()
main(args)
if not args.batched:
benchmark_propose(args)
else:
benchmark_batched_propose(args)
"""
# Example command lines:
# time python3 benchmarks/benchmark_ngram_proposer.py
# time python3 benchmarks/benchmark_ngram_proposer.py --batched --num-iteration 4 --num-token 1000000 --num-req 128
""" # noqa: E501
if __name__ == "__main__":
invoke_main() # pragma: no cover

View File

@ -17,7 +17,7 @@ from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
w8a8_triton_block_scaled_mm,
w8a8_block_fp8_matmul,
)
from vllm.utils import FlexibleArgumentParser, cdiv
@ -158,7 +158,7 @@ def bench_fp8(
"cutlass_fp8_fp8_fp16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.float16, bias.to(dtype=torch.float16)
),
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_triton_block_scaled_mm(
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_block_fp8_matmul(
a_cont, b.t(), block_scale_a, block_scale_b.t(), (128, 128)
),
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise": lambda: ops.cutlass_scaled_mm(

View File

@ -3,6 +3,7 @@
import argparse
import copy
import itertools
import os
import torch
from weight_shapes import WEIGHT_SHAPES
@ -23,21 +24,45 @@ PROVIDER_CFGS = {
"torch-bf16": dict(enabled=True),
"nvfp4": dict(no_a_quant=False, enabled=True),
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
"fbgemm-nvfp4": dict(fbgemm=True, no_a_quant=False, enabled=True),
"fbgemm-nvfp4-noquant": dict(fbgemm=True, no_a_quant=True, enabled=True),
}
_needs_fbgemm = any(
v.get("fbgemm", False) for v in PROVIDER_CFGS.values() if v.get("enabled", False)
)
if _needs_fbgemm:
try:
from fbgemm_gpu.experimental.gemm.triton_gemm.fp4_quantize import (
triton_scale_nvfp4_quant,
)
except ImportError:
print(
"WARNING: FBGEMM providers are enabled but fbgemm_gpu is not installed. "
"These providers will be skipped. Please install fbgemm_gpu with: "
"'pip install fbgemm-gpu-genai' to run them."
)
# Disable FBGEMM providers so the benchmark can run.
for cfg in PROVIDER_CFGS.values():
if cfg.get("fbgemm"):
cfg["enabled"] = False
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
def _quant_weight_nvfp4(b: torch.Tensor, device: str):
def _quant_weight_nvfp4(b: torch.Tensor, device: str, cfg):
# Compute global scale for weight
b_amax = torch.abs(b).max().to(torch.float32)
b_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
if "fbgemm" in cfg and cfg["fbgemm"]:
b_fp4, scale_b_fp4 = triton_scale_nvfp4_quant(b, b_global_scale)
else:
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
return b_fp4, scale_b_fp4, b_global_scale
def build_nvfp4_runner(cfg, a, b, dtype, device):
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device)
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device, cfg)
# Compute global scale for activation
# NOTE: This is generally provided ahead-of-time by the model checkpoint.
@ -46,6 +71,35 @@ def build_nvfp4_runner(cfg, a, b, dtype, device):
# Alpha for the GEMM operation
alpha = 1.0 / (a_global_scale * b_global_scale)
if "fbgemm" in cfg and cfg["fbgemm"]:
if cfg["no_a_quant"]:
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
def run():
return torch.ops.fbgemm.f4f4bf16(
a_fp4,
b_fp4,
scale_a_fp4,
scale_b_fp4,
global_scale=alpha,
use_mx=False,
)
return run
else:
def run():
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
return torch.ops.fbgemm.f4f4bf16(
a_fp4,
b_fp4,
scale_a_fp4,
scale_b_fp4,
global_scale=alpha,
use_mx=False,
)
return run
if cfg["no_a_quant"]:
# Pre-quantize activation
@ -130,10 +184,13 @@ if __name__ == "__main__":
for K, N, model in prepare_shapes(args):
print(f"{model}, N={N} K={K}, BF16 vs NVFP4 GEMMs TFLOP/s:")
save_dir = f"bench_nvfp4_res_n{N}_k{K}"
os.makedirs(save_dir, exist_ok=True)
benchmark.run(
print_data=True,
show_plots=True,
save_path=f"bench_nvfp4_res_n{N}_k{K}",
save_path=save_dir,
N=N,
K=K,
)

View File

@ -51,7 +51,7 @@ def calculate_diff(
):
"""Calculate the difference between Inductor and CUDA implementations."""
device = torch.device("cuda")
x = torch.rand((batch_size * hidden_size, 4096), dtype=dtype, device=device)
x = torch.randn((batch_size, hidden_size), dtype=dtype, device=device)
quant_fp8 = QuantFP8(False, group_shape, column_major_scales=False)
@ -59,23 +59,25 @@ def calculate_diff(
torch_eager_out, torch_eager_scale = quant_fp8.forward_native(x)
cuda_out, cuda_scale = quant_fp8.forward_cuda(x)
out_allclose = lambda o1, o2: torch.allclose(
o1.to(torch.float32),
o2.to(torch.float32),
rtol=1e-3,
atol=1e-5,
)
scale_allclose = lambda s1, s2: torch.allclose(s1, s2, rtol=1e-3, atol=1e-5)
if (
out_allclose(cuda_out, torch_out)
and scale_allclose(cuda_scale, torch_scale)
and out_allclose(cuda_out, torch_eager_out)
and scale_allclose(cuda_scale, torch_eager_scale)
):
try:
torch.testing.assert_close(
cuda_out.to(torch.float32),
torch_out.to(torch.float32),
rtol=1e-3,
atol=1e-5,
)
torch.testing.assert_close(cuda_scale, torch_scale, rtol=1e-3, atol=1e-5)
torch.testing.assert_close(
cuda_out.to(torch.float32),
torch_eager_out.to(torch.float32),
rtol=1e-3,
atol=1e-5,
)
torch.testing.assert_close(cuda_scale, torch_eager_scale, rtol=1e-3, atol=1e-5)
print("✅ All implementations match")
else:
except AssertionError as e:
print("❌ Implementations differ")
print(e)
configs = []
@ -91,7 +93,7 @@ def benchmark_quantization(
):
device = torch.device("cuda")
x = torch.randn(batch_size * hidden_size, 4096, device=device, dtype=dtype)
x = torch.randn(batch_size, hidden_size, device=device, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
quant_fp8 = QuantFP8(False, group_shape, column_major_scales=col_major)
@ -157,21 +159,21 @@ if __name__ == "__main__":
)
parser.add_argument("-c", "--check", action="store_true")
parser.add_argument(
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="half"
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="bfloat16"
)
parser.add_argument(
"--hidden-sizes",
type=int,
nargs="+",
default=None,
help="Hidden sizes to benchmark (default: 1,16,64,128,256,512,1024,2048,4096)",
default=[896, 1024, 2048, 4096, 7168],
help="Hidden sizes to benchmark",
)
parser.add_argument(
"--batch-sizes",
type=int,
nargs="+",
default=None,
help="Batch sizes to benchmark (default: 1,16,32,64,128)",
default=[1, 16, 128, 512, 1024],
help="Batch sizes to benchmark",
)
parser.add_argument(
"--group-sizes",
@ -192,8 +194,8 @@ if __name__ == "__main__":
dtype = STR_DTYPE_TO_TORCH_DTYPE[args.dtype]
hidden_sizes = args.hidden_sizes or [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
batch_sizes = args.batch_sizes or [1, 16, 32, 64, 128]
hidden_sizes = args.hidden_sizes
batch_sizes = args.batch_sizes
if args.group_sizes is not None:
group_shapes = []

View File

@ -79,9 +79,9 @@ def make_rand_lora_weight_tensor(
def make_rand_tensors(
a_shape: tuple[int],
b_shape: tuple[int],
c_shape: tuple[int],
a_shape: tuple[int, ...],
b_shape: tuple[int, ...],
c_shape: tuple[int, ...],
a_dtype: torch.dtype,
b_dtype: torch.dtype,
c_dtype: torch.dtype,
@ -243,7 +243,7 @@ class OpType(Enum):
lora_rank: int,
num_loras: int,
num_slices: int,
) -> tuple[tuple[int], tuple[int], tuple[int]]:
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
"""
Given num_slices, return the shapes of the A, B, and C matrices
in A x B = C, for the op_type

View File

@ -8,12 +8,16 @@ import torch
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
get_col_major_tma_aligned_tensor,
per_token_group_quant_fp8,
w8a8_triton_block_scaled_mm,
w8a8_block_fp8_matmul,
)
from vllm.triton_utils import triton
from vllm.utils.deep_gemm import calc_diff, fp8_gemm_nt, per_block_cast_to_fp8
from vllm.utils.deep_gemm import (
calc_diff,
fp8_gemm_nt,
get_col_major_tma_aligned_tensor,
per_block_cast_to_fp8,
)
def benchmark_shape(m: int,
@ -59,7 +63,7 @@ def benchmark_shape(m: int,
# === vLLM Triton Implementation ===
def vllm_triton_gemm():
return w8a8_triton_block_scaled_mm(A_vllm,
return w8a8_block_fp8_matmul(A_vllm,
B_vllm,
A_scale_vllm,
B_scale_vllm,

View File

@ -101,6 +101,7 @@ else()
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
find_isa(${CPUINFO} "bf16" ARM_BF16_FOUND) # Check for ARM BF16 support
find_isa(${CPUINFO} "S390" S390_FOUND)
find_isa(${CPUINFO} "v" RVV_FOUND) # Check for RISC-V RVV support
endif()
if (AVX512_FOUND AND NOT AVX512_DISABLED)
@ -177,8 +178,14 @@ elseif (S390_FOUND)
"-mzvector"
"-march=native"
"-mtune=native")
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "riscv64")
if(RVV_FOUND)
message(FAIL_ERROR "Can't support rvv now.")
else()
list(APPEND CXX_COMPILE_FLAGS "-march=rv64gc")
endif()
else()
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA or ARMv8 support.")
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA, ARMv8 or RISC-V support.")
endif()
#

View File

@ -14,7 +14,8 @@
// arm implementation
#include "cpu_types_arm.hpp"
#else
#warning "unsupported vLLM cpu implementation"
#warning "unsupported vLLM cpu implementation, vLLM will compile with scalar"
#include "cpu_types_scalar.hpp"
#endif
#ifdef _OPENMP

View File

@ -0,0 +1,513 @@
#include <cmath>
#include <cstdint>
#include <cstring>
#include <torch/all.h>
#include "float_convert.hpp"
namespace vec_op {
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__)
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
#ifndef CPU_OP_GUARD
#define CPU_KERNEL_GUARD_IN(NAME)
#define CPU_KERNEL_GUARD_OUT(NAME)
#else
#define CPU_KERNEL_GUARD_IN(NAME) \
std::cout << #NAME << " invoked." << std::endl;
#define CPU_KERNEL_GUARD_OUT(NAME) \
std::cout << #NAME << " exit." << std::endl;
#endif
#define FORCE_INLINE __attribute__((always_inline)) inline
#define __max(a, b) ((a) > (b) ? (a) : (b))
#define __min(a, b) ((a) < (b) ? (a) : (b))
#define __abs(a) ((a) < (0) ? (0 - a) : (a))
typedef struct f16x8_t {
uint16_t val[8];
} f16x8_t;
typedef struct f16x16_t {
uint16_t val[16];
} f16x16_t;
typedef struct f16x32_t {
uint16_t val[32];
} f16x32_t;
typedef struct f32x4_t {
float val[4];
} f32x4_t;
typedef struct f32x8_t {
float val[8];
} f32x8_t;
typedef struct f32x16_t {
float val[16];
} f32x16_t;
namespace {
template <typename T, T... indexes, typename F>
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F&& f) {
(f(std::integral_constant<T, indexes>{}), ...);
};
}; // namespace
template <typename T, T count, typename F,
typename = std::enable_if_t<std::is_invocable_v<F, T> > >
constexpr void unroll_loop(F&& f) {
unroll_loop_item(std::make_integer_sequence<T, count>{}, std::forward<F>(f));
}
template <typename T>
struct Vec {
constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; }
};
struct FP32Vec8;
struct FP32Vec16;
struct FP16Vec8 : public Vec<FP16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
f16x8_t reg;
explicit FP16Vec8(const void* ptr)
: reg(*reinterpret_cast<const f16x8_t*>(ptr)) {};
explicit FP16Vec8(const FP32Vec8&);
void save(void* ptr) const { *reinterpret_cast<f16x8_t*>(ptr) = reg; }
};
struct FP16Vec16 : public Vec<FP16Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
f16x16_t reg;
explicit FP16Vec16(const void* ptr)
: reg(*reinterpret_cast<const f16x16_t*>(ptr)) {};
explicit FP16Vec16(const FP32Vec16&);
void save(void* ptr) const { *reinterpret_cast<f16x16_t*>(ptr) = reg; }
void save(void* ptr, const int elem_num) const {
int num = __min(elem_num, VEC_ELEM_NUM);
std::memcpy(ptr, &(reg.val[0]), num * sizeof(uint16_t));
}
};
struct BF16Vec8 : public Vec<BF16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
f16x8_t reg;
explicit BF16Vec8(const void* ptr)
: reg(*reinterpret_cast<const f16x8_t*>(ptr)) {};
explicit BF16Vec8(const FP32Vec8&);
void save(void* ptr) const { *reinterpret_cast<f16x8_t*>(ptr) = reg; }
};
struct BF16Vec16 : public Vec<BF16Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
f16x16_t reg;
explicit BF16Vec16(const void* ptr)
: reg(*reinterpret_cast<const f16x16_t*>(ptr)) {};
explicit BF16Vec16(const FP32Vec16&);
void save(void* ptr) const { *reinterpret_cast<f16x16_t*>(ptr) = reg; }
void save(void* ptr, const int elem_num) const {
int num = __min(elem_num, VEC_ELEM_NUM);
std::memcpy(ptr, &(reg.val[0]), num * sizeof(uint16_t));
}
};
struct BF16Vec32 : public Vec<BF16Vec32> {
constexpr static int VEC_ELEM_NUM = 32;
f16x32_t reg;
explicit BF16Vec32(const void* ptr)
: reg(*reinterpret_cast<const f16x32_t*>(ptr)) {};
explicit BF16Vec32(f16x32_t data) : reg(data) {};
explicit BF16Vec32(BF16Vec8& vec8_data) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = vec8_data.reg.val[i % BF16Vec8::VEC_ELEM_NUM];
}
}
void save(void* ptr) const { *reinterpret_cast<f16x32_t*>(ptr) = reg; }
};
struct FP32Vec4 : public Vec<FP32Vec4> {
constexpr static int VEC_ELEM_NUM = 4;
f32x4_t reg;
explicit FP32Vec4(float v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = v;
}
}
explicit FP32Vec4() {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = 0.0f;
}
}
explicit FP32Vec4(const float* ptr)
: reg(*reinterpret_cast<const f32x4_t*>(ptr)) {};
explicit FP32Vec4(f32x4_t data) : reg(data) {};
explicit FP32Vec4(const FP32Vec4& data) : reg(data.reg) {};
};
struct FP32Vec8 : public Vec<FP32Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
f32x8_t reg;
explicit FP32Vec8(float v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = v;
}
}
explicit FP32Vec8() {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = 0.0f;
}
}
explicit FP32Vec8(const float* ptr)
: reg(*reinterpret_cast<const f32x8_t*>(ptr)) {};
explicit FP32Vec8(f32x8_t data) : reg(data) {};
explicit FP32Vec8(const FP32Vec8& data) : reg(data.reg) {};
explicit FP32Vec8(const FP16Vec8& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = fp16_to_float(v.reg.val[i]);
}
}
FP32Vec8(const BF16Vec8& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = bf16_to_float(v.reg.val[i]);
}
}
float reduce_sum() const {
float result = 0;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result += reg.val[i];
}
return result;
}
FP32Vec8 exp() const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = expf(reg.val[i]);
}
return FP32Vec8(ret);
}
FP32Vec8 tanh() const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = tanhf(reg.val[i]);
}
return FP32Vec8(ret);
}
FP32Vec8 er() const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = erf(reg.val[i]);
}
return FP32Vec8(ret);
}
FP32Vec8 operator*(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] * b.reg.val[i];
}
return FP32Vec8(ret);
}
FP32Vec8 operator+(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] + b.reg.val[i];
}
return FP32Vec8(ret);
}
FP32Vec8 operator-(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] - b.reg.val[i];
}
return FP32Vec8(ret);
}
FP32Vec8 operator/(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] / b.reg.val[i];
}
return FP32Vec8(ret);
}
void save(void* ptr) const { *reinterpret_cast<f32x8_t*>(ptr) = reg; }
};
struct FP32Vec16 : public Vec<FP32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
f32x16_t reg;
explicit FP32Vec16(float v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = v;
}
}
explicit FP32Vec16() {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = 0.0f;
}
}
explicit FP32Vec16(const float* ptr)
: reg(*reinterpret_cast<const f32x16_t*>(ptr)) {};
explicit FP32Vec16(f32x16_t data) : reg(data) {};
FP32Vec16(const FP32Vec4& data) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = data.reg.val[i % FP32Vec4::VEC_ELEM_NUM];
}
}
FP32Vec16(const FP32Vec8& data) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = data.reg.val[i % FP32Vec8::VEC_ELEM_NUM];
}
}
FP32Vec16(const FP32Vec16& data) : reg(data.reg) {};
explicit FP32Vec16(const FP16Vec16& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = fp16_to_float(v.reg.val[i]);
}
}
explicit FP32Vec16(const BF16Vec16& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = bf16_to_float(v.reg.val[i]);
}
}
explicit FP32Vec16(const FP16Vec8& v) : FP32Vec16(FP32Vec8(v)) {};
FP32Vec16(const BF16Vec8& v) : FP32Vec16(FP32Vec8(v)) {};
FP32Vec16 operator*(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] * b.reg.val[i];
}
return result;
}
FP32Vec16 operator+(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] + b.reg.val[i];
}
return result;
}
FP32Vec16 operator-(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] - b.reg.val[i];
}
return result;
}
FP32Vec16 operator/(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] / b.reg.val[i];
}
return result;
}
FP32Vec16 max(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = __max(reg.val[i], b.reg.val[i]);
}
return result;
}
FP32Vec16 min(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = __min(reg.val[i], b.reg.val[i]);
}
return result;
}
FP32Vec16 abs() const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = __abs(reg.val[i]);
}
return result;
}
float reduce_sum() const {
float result = 0.0f;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result += reg.val[i];
}
return result;
}
float reduce_max() const {
float result = reg.val[0];
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result = __max(reg.val[i], result);
}
return result;
}
float reduce_min() const {
float result = reg.val[0];
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result = __min(reg.val[i], result);
}
return result;
}
template <int group_size>
float reduce_sub_sum(int idx) {
static_assert(VEC_ELEM_NUM % group_size == 0);
float sum = 0.0;
int start = idx * group_size;
int end = (idx + 1) * group_size;
for (; (start < VEC_ELEM_NUM) && (start < end); ++start) {
sum += reg.val[start];
}
return sum;
}
void save(void* ptr) const { *reinterpret_cast<f32x16_t*>(ptr) = reg; }
};
template <typename T>
struct VecType {
using vec_type = void;
};
template <typename T>
using vec_t = typename VecType<T>::vec_type;
template <>
struct VecType<float> {
using vec_type = FP32Vec8;
};
template <>
struct VecType<c10::Half> {
using vec_type = FP16Vec8;
};
template <>
struct VecType<c10::BFloat16> {
using vec_type = BF16Vec8;
};
template <typename T>
void storeFP32(float v, T* ptr) {
*ptr = v;
}
/*
template <> inline void storeFP32<c10::Half>(float v, c10::Half *ptr) {
c10::Half __attribute__((__may_alias__)) *v_ptr =
reinterpret_cast<c10::Half *>(&v);
*ptr = *(v_ptr + 1);
}
*/
template <>
inline void storeFP32<c10::Half>(float v, c10::Half* ptr) {
uint16_t fp16 = float_to_fp16(v);
*reinterpret_cast<uint16_t*>(ptr) = fp16;
}
template <>
inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16* ptr) {
c10::BFloat16 __attribute__((__may_alias__))* v_ptr =
reinterpret_cast<c10::BFloat16*>(&v);
*ptr = *(v_ptr + 1);
}
inline FP16Vec16::FP16Vec16(const FP32Vec16& v) {
int i = 0;
for (i = 0; i < FP16Vec16::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_fp16(v.reg.val[i]);
}
}
inline FP16Vec8 ::FP16Vec8(const FP32Vec8& v) {
int i = 0;
for (i = 0; i < FP16Vec8::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_fp16(v.reg.val[i]);
}
}
inline void fma(FP32Vec16& acc, FP32Vec16& a, FP32Vec16& b) {
acc = acc + a * b;
}
inline BF16Vec8::BF16Vec8(const FP32Vec8& v) {
int i = 0;
for (i = 0; i < BF16Vec8::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_bf16(v.reg.val[i]);
}
}
inline BF16Vec16::BF16Vec16(const FP32Vec16& v) {
int i = 0;
for (i = 0; i < BF16Vec16::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_bf16(v.reg.val[i]);
}
}
inline void prefetch(const void* addr) { __builtin_prefetch(addr, 0, 3); }
}; // namespace vec_op

106
csrc/cpu/float_convert.hpp Normal file
View File

@ -0,0 +1,106 @@
static float bf16_to_float(uint16_t bf16) {
uint32_t bits = static_cast<uint32_t>(bf16) << 16;
float fp32;
std::memcpy(&fp32, &bits, sizeof(fp32));
return fp32;
}
static uint16_t float_to_bf16(float fp32) {
uint32_t bits;
std::memcpy(&bits, &fp32, sizeof(fp32));
return static_cast<uint16_t>(bits >> 16);
}
/************************************************
* Copyright (c) 2015 Princeton Vision Group
* Licensed under the MIT license.
* Codes below copied from
* https://github.com/PrincetonVision/marvin/tree/master/tools/tensorIO_matlab
*************************************************/
static uint16_t float_to_fp16(float fp32) {
uint16_t fp16;
unsigned x;
unsigned u, remainder, shift, lsb, lsb_s1, lsb_m1;
unsigned sign, exponent, mantissa;
std::memcpy(&x, &fp32, sizeof(fp32));
u = (x & 0x7fffffff);
// Get rid of +NaN/-NaN case first.
if (u > 0x7f800000) {
fp16 = 0x7fffU;
return fp16;
}
sign = ((x >> 16) & 0x8000);
// Get rid of +Inf/-Inf, +0/-0.
if (u > 0x477fefff) {
fp16 = sign | 0x7c00U;
return fp16;
}
if (u < 0x33000001) {
fp16 = (sign | 0x0000);
return fp16;
}
exponent = ((u >> 23) & 0xff);
mantissa = (u & 0x7fffff);
if (exponent > 0x70) {
shift = 13;
exponent -= 0x70;
} else {
shift = 0x7e - exponent;
exponent = 0;
mantissa |= 0x800000;
}
lsb = (1 << shift);
lsb_s1 = (lsb >> 1);
lsb_m1 = (lsb - 1);
// Round to nearest even.
remainder = (mantissa & lsb_m1);
mantissa >>= shift;
if (remainder > lsb_s1 || (remainder == lsb_s1 && (mantissa & 0x1))) {
++mantissa;
if (!(mantissa & 0x3ff)) {
++exponent;
mantissa = 0;
}
}
fp16 = (sign | (exponent << 10) | mantissa);
return fp16;
}
static float fp16_to_float(uint16_t fp16) {
unsigned sign = ((fp16 >> 15) & 1);
unsigned exponent = ((fp16 >> 10) & 0x1f);
unsigned mantissa = ((fp16 & 0x3ff) << 13);
int temp;
float fp32;
if (exponent == 0x1f) { /* NaN or Inf */
mantissa = (mantissa ? (sign = 0, 0x7fffff) : 0);
exponent = 0xff;
} else if (!exponent) { /* Denorm or Zero */
if (mantissa) {
unsigned int msb;
exponent = 0x71;
do {
msb = (mantissa & 0x400000);
mantissa <<= 1; /* normalize */
--exponent;
} while (!msb);
mantissa &= 0x7fffff; /* 1.mantissa is implicit */
}
} else {
exponent += 0x70;
}
temp = ((sign << 31) | (exponent << 23) | mantissa);
std::memcpy(&fp32, &temp, sizeof(temp));
return fp32;
}

View File

@ -44,6 +44,9 @@ __global__ void moe_align_block_size_kernel(
for (size_t i = tid; i < numel; i += stride) {
int expert_id = topk_ids[i];
if (expert_id >= num_experts) {
continue;
}
int warp_idx = expert_id / experts_per_warp;
int expert_offset = expert_id % experts_per_warp;
atomicAdd(&shared_counts[warp_idx * experts_per_warp + expert_offset], 1);
@ -95,12 +98,15 @@ template <typename scalar_t>
__global__ void count_and_sort_expert_tokens_kernel(
const scalar_t* __restrict__ topk_ids,
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ cumsum_buffer,
size_t numel) {
size_t numel, int32_t num_experts) {
const size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
const size_t stride = blockDim.x * gridDim.x;
for (size_t i = tid; i < numel; i += stride) {
int32_t expert_id = topk_ids[i];
if (expert_id >= num_experts) {
continue;
}
int32_t rank_post_pad = atomicAdd(&cumsum_buffer[expert_id], 1);
sorted_token_ids[rank_post_pad] = i;
}
@ -269,7 +275,7 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
sort_kernel<<<actual_blocks, block_threads, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
cumsum_buffer.data_ptr<int32_t>(), topk_ids.numel());
cumsum_buffer.data_ptr<int32_t>(), topk_ids.numel(), num_experts);
}
});
}

View File

@ -6,11 +6,11 @@ torch::Tensor LLMM1(at::Tensor& in_a, at::Tensor& in_b,
const int64_t rows_per_block);
torch::Tensor wvSplitK(const at::Tensor& in_a, const at::Tensor& in_b,
const c10::optional<at::Tensor>& in_bias,
const std::optional<at::Tensor>& in_bias,
const int64_t CuCount);
void wvSplitKQ(const at::Tensor& in_a, const at::Tensor& in_b,
const c10::optional<at::Tensor>& in_bias, at::Tensor& out_c,
const std::optional<at::Tensor>& in_bias, at::Tensor& out_c,
const at::Tensor& scale_a, const at::Tensor& scale_b,
const int64_t CuCount);

View File

@ -1271,7 +1271,7 @@ int mindiv(int N, int div1, int div2) {
}
torch::Tensor wvSplitK(const at::Tensor& in_a, const at::Tensor& in_b,
const c10::optional<at::Tensor>& in_bias,
const std::optional<at::Tensor>& in_bias,
const int64_t CuCount) {
auto M_in = in_a.size(0);
auto K_in = in_a.size(1);
@ -1729,7 +1729,7 @@ __global__ void wvSplitKQ_hf_(const int K, const int Kp, const int M,
#endif // defined(__HIP__MI3XX__) TODO: Add NAVI support
void wvSplitKQ(const at::Tensor& in_a, const at::Tensor& in_b,
const c10::optional<at::Tensor>& in_bias, at::Tensor& out_c,
const std::optional<at::Tensor>& in_bias, at::Tensor& out_c,
const at::Tensor& scale_a, const at::Tensor& scale_b,
const int64_t CuCount) {
static c10::ScalarType kFp8Type = is_fp8_ocp()

View File

@ -114,9 +114,6 @@ WORKDIR /workspace/vllm
RUN --mount=type=bind,src=requirements/test.in,target=requirements/test.in \
cp requirements/test.in requirements/cpu-test.in && \
sed -i '/mamba_ssm/d' requirements/cpu-test.in && \
sed -i 's/^torch==.*/torch==2.6.0/g' requirements/cpu-test.in && \
sed -i 's/torchaudio.*/torchaudio/g' requirements/cpu-test.in && \
sed -i 's/torchvision.*/torchvision/g' requirements/cpu-test.in && \
uv pip compile requirements/cpu-test.in -o requirements/cpu-test.txt --index-strategy unsafe-best-match --torch-backend cpu
RUN --mount=type=cache,target=/root/.cache/uv \

View File

@ -65,8 +65,6 @@ ARG PYTORCH_BRANCH
ARG PYTORCH_VISION_BRANCH
ARG PYTORCH_REPO
ARG PYTORCH_VISION_REPO
ARG FA_BRANCH
ARG FA_REPO
RUN git clone ${PYTORCH_REPO} pytorch
RUN cd pytorch && git checkout ${PYTORCH_BRANCH} && \
pip install -r requirements.txt && git submodule update --init --recursive \
@ -77,14 +75,20 @@ RUN git clone ${PYTORCH_VISION_REPO} vision
RUN cd vision && git checkout ${PYTORCH_VISION_BRANCH} \
&& python3 setup.py bdist_wheel --dist-dir=dist \
&& pip install dist/*.whl
RUN mkdir -p /app/install && cp /app/pytorch/dist/*.whl /app/install \
&& cp /app/vision/dist/*.whl /app/install
FROM base AS build_fa
ARG FA_BRANCH
ARG FA_REPO
RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \
pip install /install/*.whl
RUN git clone ${FA_REPO}
RUN cd flash-attention \
&& git checkout ${FA_BRANCH} \
&& git submodule update --init \
&& GPU_ARCHS=$(echo ${PYTORCH_ROCM_ARCH} | sed -e 's/;gfx1[0-9]\{3\}//g') python3 setup.py bdist_wheel --dist-dir=dist
RUN mkdir -p /app/install && cp /app/pytorch/dist/*.whl /app/install \
&& cp /app/vision/dist/*.whl /app/install \
&& cp /app/flash-attention/dist/*.whl /app/install
RUN mkdir -p /app/install && cp /app/flash-attention/dist/*.whl /app/install
FROM base AS build_aiter
ARG AITER_BRANCH
@ -103,6 +107,8 @@ FROM base AS debs
RUN mkdir /app/debs
RUN --mount=type=bind,from=build_triton,src=/app/install/,target=/install \
cp /install/*.whl /app/debs
RUN --mount=type=bind,from=build_fa,src=/app/install/,target=/install \
cp /install/*.whl /app/debs
RUN --mount=type=bind,from=build_amdsmi,src=/app/install/,target=/install \
cp /install/*.whl /app/debs
RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \
@ -111,13 +117,7 @@ RUN --mount=type=bind,from=build_aiter,src=/app/install/,target=/install \
cp /install/*.whl /app/debs
FROM base AS final
RUN --mount=type=bind,from=build_triton,src=/app/install/,target=/install \
pip install /install/*.whl
RUN --mount=type=bind,from=build_amdsmi,src=/app/install/,target=/install \
pip install /install/*.whl
RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \
pip install /install/*.whl
RUN --mount=type=bind,from=build_aiter,src=/app/install/,target=/install \
RUN --mount=type=bind,from=debs,src=/app/debs,target=/install \
pip install /install/*.whl
ARG BASE_IMAGE

View File

@ -139,9 +139,9 @@ there is relatively little gain from TP. On the other hand, TP incurs significan
overhead because of all-reduce being performed after every layer.
Given this, it may be advantageous to instead shard the batched input data using TP, essentially
performing batch-level DP. This has been shown to improve the throughput by around 10% for
performing batch-level DP. This has been shown to improve the throughput and TTFT by around 10% for
`tensor_parallel_size=8`. For vision encoders that use hardware-unoptimized Conv3D operations,
batch-level DP can provide another 40% increase to throughput compared to regular TP.
batch-level DP can provide another 40% improvement compared to regular TP.
Nevertheless, since the weights of the multi-modal encoder are replicated across each TP rank,
there will be a minor increase in memory consumption and may cause OOM if you can barely fit the model already.
@ -172,14 +172,15 @@ Batch-level DP needs to be implemented on a per-model basis,
and enabled by setting `supports_encoder_tp_data = True` in the model class.
Regardless, you need to set `mm_encoder_tp_mode="data"` in engine arguments to use this feature.
Known supported models:
Known supported models (with corresponding benchmarks):
- GLM-4.5V GLM-4.1V (<gh-pr:23168>)
- dots_ocr (<gh-pr:25466>)
- GLM-4.1V or above (<gh-pr:23168>)
- InternVL (<gh-pr:23909>)
- Kimi-VL (<gh-pr:23817>)
- Llama4 (<gh-pr:18368>)
- MiniCPM-V-2.5 or above (<gh-pr:23327>, <gh-pr:23948>)
- Qwen2.5-VL (<gh-pr:22742>)
- Qwen2-VL or above (<gh-pr:22742>, <gh-pr:24955>, <gh-pr:25445>)
- Step3 (<gh-pr:22697>)
## Input Processing

View File

@ -9,7 +9,7 @@ NixlConnector is a high-performance KV cache transfer connector for vLLM's disag
Install the NIXL library: `uv pip install nixl`, as a quick start.
- Refer to [NIXL official repository](https://github.com/ai-dynamo/nixl) for more installation instructions
- The specified required NIXL version can be found in [requirements/kv_connectors.txt](../../requirements/kv_connectors.txt) and other relevant config files
- The specified required NIXL version can be found in [requirements/kv_connectors.txt](gh-file:requirements/kv_connectors.txt) and other relevant config files
### Transport Configuration
@ -154,6 +154,6 @@ python tests/v1/kv_connector/nixl_integration/toy_proxy_server.py \
Refer to these example scripts in the vLLM repository:
- [run_accuracy_test.sh](../../tests/v1/kv_connector/nixl_integration/run_accuracy_test.sh)
- [toy_proxy_server.py](../../tests/v1/kv_connector/nixl_integration/toy_proxy_server.py)
- [test_accuracy.py](../../tests/v1/kv_connector/nixl_integration/test_accuracy.py)
- [run_accuracy_test.sh](gh-file:tests/v1/kv_connector/nixl_integration/run_accuracy_test.sh)
- [toy_proxy_server.py](gh-file:tests/v1/kv_connector/nixl_integration/toy_proxy_server.py)
- [test_accuracy.py](gh-file:tests/v1/kv_connector/nixl_integration/test_accuracy.py)

View File

@ -6,6 +6,17 @@ vLLM supports the generation of structured outputs using
This document shows you some examples of the different options that are
available to generate structured outputs.
!!! warning
If you are still using the following deprecated API fields, please update your code to use `structured_outputs` as demonstrated in the rest of this document:
- `guided_json` -> `{"structured_outputs": {"json": ...}}` or `StructuredOutputsParams(json=...)`
- `guided_regex` -> `{"structured_outputs": {"regex": ...}}` or `StructuredOutputsParams(regex=...)`
- `guided_choice` -> `{"structured_outputs": {"choice": ...}}` or `StructuredOutputsParams(choice=...)`
- `guided_grammar` -> `{"structured_outputs": {"grammar": ...}}` or `StructuredOutputsParams(grammar=...)`
- `guided_whitespace_pattern` -> `{"structured_outputs": {"whitespace_pattern": ...}}` or `StructuredOutputsParams(whitespace_pattern=...)`
- `structural_tag` -> `{"structured_outputs": {"structural_tag": ...}}` or `StructuredOutputsParams(structural_tag=...)`
- `guided_decoding_backend` -> Remove this field from your request
## Online Serving (OpenAI API)
You can generate structured outputs using the OpenAI's [Completions](https://platform.openai.com/docs/api-reference/completions) and [Chat](https://platform.openai.com/docs/api-reference/chat) API.

View File

@ -310,6 +310,15 @@ Flags:
* For non-reasoning: `--tool-call-parser hunyuan_a13b`
* For reasoning: `--tool-call-parser hunyuan_a13b --reasoning-parser hunyuan_a13b --enable_reasoning`
### LongCat-Flash-Chat Models (`longcat`)
Supported models:
* `meituan-longcat/LongCat-Flash-Chat`
* `meituan-longcat/LongCat-Flash-Chat-FP8`
Flags: `--tool-call-parser longcat`
### GLM-4.5 Models (`glm45`)
Supported models:

View File

@ -20,7 +20,80 @@ vLLM supports basic model inferencing and serving on x86 CPU platform, with data
# --8<-- [end:pre-built-wheels]
# --8<-- [start:build-wheel-from-source]
--8<-- "docs/getting_started/installation/cpu/build.inc.md"
Install recommended compiler. We recommend to use `gcc/g++ >= 12.3.0` as the default compiler to avoid potential problems. For example, on Ubuntu 22.4, you can run:
```bash
sudo apt-get update -y
sudo apt-get install -y gcc-12 g++-12 libnuma-dev python3-dev
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
```
Clone the vLLM project:
```bash
git clone https://github.com/vllm-project/vllm.git vllm_source
cd vllm_source
```
Install the required dependencies:
```bash
uv pip install -r requirements/cpu-build.txt --torch-backend cpu
uv pip install -r requirements/cpu.txt --torch-backend cpu
```
??? console "pip"
```bash
pip install --upgrade pip
pip install -v -r requirements/cpu-build.txt --extra-index-url https://download.pytorch.org/whl/cpu
pip install -v -r requirements/cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu
```
Build and install vLLM:
```bash
VLLM_TARGET_DEVICE=cpu uv pip install . --no-build-isolation
```
If you want to develop vLLM, install it in editable mode instead.
```bash
VLLM_TARGET_DEVICE=cpu uv pip install -e . --no-build-isolation
```
Optionally, build a portable wheel which you can then install elsewhere:
```bash
VLLM_TARGET_DEVICE=cpu uv build --wheel
```
```bash
uv pip install dist/*.whl
```
??? console "pip"
```bash
VLLM_TARGET_DEVICE=cpu python -m build --wheel --no-isolation
```
```bash
pip install dist/*.whl
```
!!! example "Troubleshooting"
- **NumPy ≥2.0 error**: Downgrade using `pip install "numpy<2.0"`.
- **CMake picks up CUDA**: Add `CMAKE_DISABLE_FIND_PACKAGE_CUDA=ON` to prevent CUDA detection during CPU builds, even if CUDA is installed.
- `AMD` requies at least 4th gen processors (Zen 4/Genoa) or higher to support [AVX512](https://www.phoronix.com/review/amd-zen4-avx512) to run vLLM on CPU.
- If you receive an error such as: `Could not find a version that satisfies the requirement torch==X.Y.Z+cpu+cpu`, consider updating [pyproject.toml](https://github.com/vllm-project/vllm/blob/main/pyproject.toml) to help pip resolve the dependency.
```toml title="pyproject.toml"
[build-system]
requires = [
"cmake>=3.26.1",
...
"torch==X.Y.Z+cpu" # <-------
]
```
- If you are building vLLM from source and not using the pre-built images, remember to set `LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:$LD_PRELOAD"` on x86 machines before running vLLM.
# --8<-- [end:build-wheel-from-source]
# --8<-- [start:pre-built-images]
@ -57,4 +130,4 @@ docker run --rm \
# --8<-- [end:build-image-from-source]
# --8<-- [start:extra-information]
# --8<-- [end:extra-information]
# --8<-- [end:extra-information]

View File

@ -32,8 +32,9 @@ def auto_mock(module, attr, max_mocks=50):
for _ in range(max_mocks):
try:
# First treat attr as an attr, then as a submodule
return getattr(importlib.import_module(module), attr,
importlib.import_module(f"{module}.{attr}"))
with patch("importlib.metadata.version", return_value="0.0.0"):
return getattr(importlib.import_module(module), attr,
importlib.import_module(f"{module}.{attr}"))
except importlib.metadata.PackageNotFoundError as e:
raise e
except ModuleNotFoundError as e:
@ -167,5 +168,5 @@ def on_startup(command: Literal["build", "gh-deploy", "serve"], dirty: bool):
doc_path = ARGPARSE_DOC_DIR / f"{stem}.md"
# Specify encoding for building on Windows
with open(doc_path, "w", encoding="utf-8") as f:
f.write(parser.format_help())
f.write(super(type(parser), parser).format_help())
logger.info("Argparse generated: %s", doc_path.relative_to(ROOT_DIR))

View File

@ -4,7 +4,7 @@ vLLM provides first-class support for generative models, which covers most of LL
In vLLM, generative models implement the[VllmModelForTextGeneration][vllm.model_executor.models.VllmModelForTextGeneration] interface.
Based on the final hidden states of the input, these models output log probabilities of the tokens to generate,
which are then passed through [Sampler][vllm.model_executor.layers.sampler.Sampler] to obtain the final text.
which are then passed through [Sampler][vllm.v1.sample.sampler.Sampler] to obtain the final text.
## Configuration

View File

@ -29,7 +29,7 @@ _*Vision-language models currently accept only image inputs. Support for video i
If the Transformers model implementation follows all the steps in [writing a custom model](#writing-custom-models) then, when used with the Transformers backend, it will be compatible with the following features of vLLM:
- All the features listed in the [compatibility matrix](../features/compatibility_matrix.md#feature-x-feature)
- All the features listed in the [compatibility matrix](../features/README.md#feature-x-feature)
- Any combination of the following vLLM parallelisation schemes:
- Pipeline parallel
- Tensor parallel
@ -428,6 +428,7 @@ th {
| `MiniMaxM1ForCausalLM` | MiniMax-Text | `MiniMaxAI/MiniMax-M1-40k`, `MiniMaxAI/MiniMax-M1-80k`, etc. | | | ✅︎ |
| `MiniMaxText01ForCausalLM` | MiniMax-Text | `MiniMaxAI/MiniMax-Text-01`, etc. | | | ✅︎ |
| `Zamba2ForCausalLM` | Zamba2 | `Zyphra/Zamba2-7B-instruct`, `Zyphra/Zamba2-2.7B-instruct`, `Zyphra/Zamba2-1.2B-instruct`, etc. | | | ✅︎ |
| `LongcatFlashForCausalLM` | LongCat-Flash | `meituan-longcat/LongCat-Flash-Chat`, `meituan-longcat/LongCat-Flash-Chat-FP8` | ✅︎ |✅︎ | ✅︎ |
Some models are supported only via the [Transformers backend](#transformers). The purpose of the table below is to acknowledge models which we officially support in this way. The logs will say that the Transformers backend is being used, and you will see no warning that this is fallback behaviour. This means that, if you have issues with any of the models listed below, please [make an issue](https://github.com/vllm-project/vllm/issues/new/choose) and we'll do our best to fix it!

View File

@ -1,6 +1,6 @@
# Using vLLM
First, vLLM must be [installed](../getting_started/installation) for your chosen device in either a Python or Docker environment.
First, vLLM must be [installed](../getting_started/installation/) for your chosen device in either a Python or Docker environment.
Then, vLLM supports the following usage patterns:

View File

@ -87,6 +87,7 @@ def main(args: dict):
use_tqdm=False,
chat_template=chat_template,
)
print_outputs(outputs)
if __name__ == "__main__":

View File

@ -11,9 +11,9 @@ vLLM performance and metrics.
## Dashboard Descriptions
- **[performance_statistics.json](./performance_statistics.json)**: Tracks performance metrics including latency and
- **performance_statistics.json**: Tracks performance metrics including latency and
throughput for your vLLM service.
- **[query_statistics.json](./query_statistics.json)**: Tracks query performance, request volume, and key
- **query_statistics.json**: Tracks query performance, request volume, and key
performance indicators for your vLLM service.
## Deployment Options

View File

@ -21,9 +21,9 @@ deployment methods:
## Dashboard Descriptions
- **[performance_statistics.yaml](./performance_statistics.yaml)**: Performance metrics with aggregated latency
- **performance_statistics.yaml**: Performance metrics with aggregated latency
statistics
- **[query_statistics.yaml](./query_statistics.yaml)**: Query performance and deployment metrics
- **query_statistics.yaml**: Query performance and deployment metrics
## Deployment Options

View File

@ -1,12 +1,11 @@
# Temporarily used for x86 CPU backend to avoid performance regression of torch>2.6.0+cpu,
# see https://github.com/pytorch/pytorch/pull/151218
cmake>=3.26.1
ninja
packaging>=24.2
setuptools>=77.0.3,<80.0.0
setuptools-scm>=8
--extra-index-url https://download.pytorch.org/whl/cpu
torch==2.6.0+cpu
torch==2.8.0+cpu; platform_machine == "x86_64"
torch==2.8.0; platform_machine == "ppc64le" or platform_machine == "aarch64" or platform_system == "Darwin"
wheel
jinja2>=3.1.6
regex

View File

@ -8,7 +8,7 @@ numba == 0.61.2; python_version > '3.9' and platform_machine != "s390x"
packaging>=24.2
setuptools>=77.0.3,<80.0.0
--extra-index-url https://download.pytorch.org/whl/cpu
torch==2.6.0+cpu; platform_machine == "x86_64" # torch>2.6.0+cpu has performance regression on x86 platform, see https://github.com/pytorch/pytorch/pull/151218
torch==2.8.0+cpu; platform_machine == "x86_64"
torch==2.8.0; platform_system == "Darwin"
torch==2.8.0; platform_machine == "ppc64le" or platform_machine == "aarch64"
@ -23,7 +23,7 @@ datasets # for benchmark scripts
# Intel Extension for PyTorch, only for x86_64 CPUs
intel-openmp==2024.2.1; platform_machine == "x86_64"
intel_extension_for_pytorch==2.6.0; platform_machine == "x86_64" # torch>2.6.0+cpu has performance regression on x86 platform, see https://github.com/pytorch/pytorch/pull/151218
intel_extension_for_pytorch==2.8.0; platform_machine == "x86_64"
triton==3.2.0; platform_machine == "x86_64" # Triton is required for torch 2.6+cpu, as it is imported in torch.compile.
# Use this to gather CPU info and optimize based on ARM Neoverse cores

View File

@ -103,7 +103,7 @@ backend_configs = {
# Triton Attention
"TritonAttn":
BackendConfig(name="TritonAttn",
env_vars={"VLLM_ATTENTION_BACKEND": "TRITON_ATTN_VLLM_V1"},
env_vars={"VLLM_ATTENTION_BACKEND": "TRITON_ATTN"},
comp_config={
"cudagraph_mode": "FULL",
}),

View File

@ -338,7 +338,7 @@ else:
@pytest.mark.parametrize("model_name, model_class", MODELS)
@pytest.mark.parametrize("backend",
[_Backend.FLASHINFER] if current_platform.is_cuda()
else [_Backend.TRITON_ATTN_VLLM_V1])
else [_Backend.TRITON_ATTN])
@pytest.mark.parametrize(
"split_attention",
[False, True] if current_platform.is_rocm() else [False])

View File

@ -50,8 +50,11 @@ def test_is_type(type_hint, type, expected):
@pytest.mark.parametrize(("type_hints", "type", "expected"), [
({float, int}, int, True),
({int, tuple}, int, True),
({int, tuple[int]}, int, True),
({int, tuple[int, ...]}, int, True),
({int, tuple[int]}, float, False),
({int, tuple[int, ...]}, float, False),
({str, Literal["x", "y"]}, Literal, True),
])
def test_contains_type(type_hints, type, expected):

View File

@ -15,7 +15,7 @@ from transformers import AutoConfig
from ...utils import RemoteOpenAIServer
# any model with a chat template should work here
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
MODEL_NAME = "facebook/opt-125m"
CONFIG = AutoConfig.from_pretrained(MODEL_NAME)
@ -27,7 +27,7 @@ def default_server_args() -> list[str]:
"--dtype",
"bfloat16",
"--max-model-len",
"8192",
"2048",
"--max-num-seqs",
"128",
"--enforce-eager",
@ -36,6 +36,27 @@ def default_server_args() -> list[str]:
]
EXAMPLE_PROMPTS = [
"Hello, my name is",
"What is an LLM?",
]
def _encode_embeds(embeds: torch.Tensor):
buffer = io.BytesIO()
torch.save(embeds, buffer)
return base64.b64encode(buffer.getvalue()).decode('utf-8')
@pytest.fixture(scope="module")
def example_prompt_embeds(hf_runner):
"""Create example embeddings and return them as base64 encoded string."""
with hf_runner(MODEL_NAME) as hf_model:
example_embeddings = hf_model.get_prompt_embeddings(EXAMPLE_PROMPTS)
return [_encode_embeds(item) for item in example_embeddings]
@pytest.fixture(scope="module",
params=["", "--disable-frontend-multiprocessing"])
def server_with_prompt_embeds(default_server_args, request):
@ -52,21 +73,16 @@ async def client_with_prompt_embeds(server_with_prompt_embeds):
yield async_client
def create_dummy_embeds(num_tokens: int = 5) -> str:
"""Create dummy embeddings and return them as base64 encoded string."""
dummy_embeds = torch.randn(num_tokens, CONFIG.hidden_size)
buffer = io.BytesIO()
torch.save(dummy_embeds, buffer)
return base64.b64encode(buffer.getvalue()).decode('utf-8')
@pytest.mark.skip("This test is skipped because it is flaky.")
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_completions_with_prompt_embeds(
client_with_prompt_embeds: openai.AsyncOpenAI, model_name: str):
example_prompt_embeds,
client_with_prompt_embeds: openai.AsyncOpenAI,
model_name: str,
):
encoded_embeds, encoded_embeds2 = example_prompt_embeds
# Test case: Single prompt embeds input
encoded_embeds = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
@ -77,7 +93,6 @@ async def test_completions_with_prompt_embeds(
assert completion.choices[0].prompt_logprobs is None
# Test case: batch completion with prompt_embeds
encoded_embeds2 = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
@ -89,7 +104,6 @@ async def test_completions_with_prompt_embeds(
assert len(completion.choices[1].text) >= 1
# Test case: streaming with prompt_embeds
encoded_embeds = create_dummy_embeds()
single_completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
@ -117,7 +131,6 @@ async def test_completions_with_prompt_embeds(
assert "".join(chunks) == single_output
# Test case: batch streaming with prompt_embeds
encoded_embeds2 = create_dummy_embeds()
stream = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
@ -139,7 +152,6 @@ async def test_completions_with_prompt_embeds(
assert len(chunks_stream_embeds[1]) > 0
# Test case: mixed text and prompt_embeds
encoded_embeds = create_dummy_embeds()
completion_mixed = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="This is a prompt",
@ -184,10 +196,14 @@ async def test_completions_errors_with_prompt_embeds(
@pytest.mark.parametrize("logprobs_arg", [1, 0])
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_completions_with_logprobs_and_prompt_embeds(
client_with_prompt_embeds: openai.AsyncOpenAI, logprobs_arg: int,
model_name: str):
example_prompt_embeds,
client_with_prompt_embeds: openai.AsyncOpenAI,
logprobs_arg: int,
model_name: str,
):
encoded_embeds, encoded_embeds2 = example_prompt_embeds
# Test case: Logprobs using prompt_embeds
encoded_embeds = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
@ -207,7 +223,6 @@ async def test_completions_with_logprobs_and_prompt_embeds(
assert len(logprobs.tokens) == 5
# Test case: Log probs with batch completion and prompt_embeds
encoded_embeds2 = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
@ -232,9 +247,12 @@ async def test_completions_with_logprobs_and_prompt_embeds(
@pytest.mark.asyncio
async def test_prompt_logprobs_raises_error(
client_with_prompt_embeds: openai.AsyncOpenAI):
example_prompt_embeds,
client_with_prompt_embeds: openai.AsyncOpenAI,
):
encoded_embeds, _ = example_prompt_embeds
with pytest.raises(BadRequestError, match="not compatible"):
encoded_embeds = create_dummy_embeds()
await client_with_prompt_embeds.completions.create(
model=MODEL_NAME,
prompt="",

View File

@ -68,7 +68,7 @@ def default_server_args(with_tool_parser: bool):
def gptoss_server(monkeypatch_module: pytest.MonkeyPatch,
default_server_args: list[str]):
with monkeypatch_module.context() as m:
m.setenv("VLLM_ATTENTION_BACKEND", "TRITON_ATTN_VLLM_V1")
m.setenv("VLLM_ATTENTION_BACKEND", "TRITON_ATTN")
with RemoteOpenAIServer(GPT_OSS_MODEL_NAME,
default_server_args) as remote_server:
yield remote_server

View File

@ -31,7 +31,7 @@ DEVICE_MLA_BACKENDS = {
}
DEVICE_REGULAR_ATTN_BACKENDS = {
"cuda": ["XFORMERS", "FLASHINFER"],
"cuda": ["XFORMERS", "FLASHINFER", "FLASH_ATTN"],
"hip": ["ROCM_FLASH"],
"cpu": ["TORCH_SDPA"],
}
@ -86,7 +86,7 @@ def test_env(
with patch("vllm.attention.selector.current_platform",
CpuPlatform()):
backend = get_attn_backend(16, torch.float16, None, block_size)
assert backend.get_name() == "TORCH_SDPA_VLLM_V1"
assert backend.get_name() == "TORCH_SDPA"
elif device == "hip":
with patch("vllm.attention.selector.current_platform",
@ -125,7 +125,7 @@ def test_env(
None,
block_size,
use_mla=use_mla)
expected = f"{name}_VLLM_V1"
expected = name
assert backend.get_name() == expected
else:
backend = get_attn_backend(16,
@ -133,7 +133,7 @@ def test_env(
None,
block_size,
use_mla=use_mla)
expected = "TRITON_ATTN_VLLM_V1"
expected = "TRITON_ATTN"
assert backend.get_name() == expected
elif device == "cuda":
@ -160,7 +160,7 @@ def test_env(
None,
block_size,
use_mla=use_mla)
expected = "CUTLASS_MLA_VLLM_V1"
expected = "CUTLASS_MLA"
assert backend.get_name() == expected
elif name == "FLASHINFER_MLA":
if block_size not in [32, 64]:
@ -193,7 +193,7 @@ def test_env(
None,
block_size,
use_mla=use_mla)
expected = f"{name}_VLLM_V1"
expected = name
assert backend.get_name() == expected
elif name == "FLASH_ATTN_MLA":
backend = get_attn_backend(16,
@ -210,7 +210,7 @@ def test_env(
None,
block_size,
use_mla=use_mla)
expected = "TRITON_MLA_VLLM_V1"
expected = "TRITON_MLA"
assert backend.get_name() == expected
elif name == "FLASHINFER":
backend = get_attn_backend(16,
@ -218,25 +218,24 @@ def test_env(
None,
block_size,
use_mla=use_mla)
expected = "FLASHINFER_VLLM_V1"
expected = "FLASHINFER"
assert backend.get_name() == expected
else:
elif name == "XFORMERS":
backend = get_attn_backend(32,
torch.float16,
None,
block_size,
use_mla=use_mla)
expected = "FLASH_ATTN_VLLM_V1"
expected = "XFORMERS"
assert backend.get_name() == expected
backend = get_attn_backend(16,
elif name == "FLASH_ATTN":
backend = get_attn_backend(32,
torch.float16,
None,
block_size,
use_mla=use_mla)
assert backend.get_name() == "FLEX_ATTENTION", (
"Should fallback to FlexAttention if head size is "
"not supported by FlashAttention")
expected = "FLASH_ATTN"
assert backend.get_name() == expected
@pytest.mark.parametrize("device", ["cpu", "cuda"])
@ -252,7 +251,7 @@ def test_fp32_fallback(
with patch("vllm.attention.selector.current_platform",
CpuPlatform()):
backend = get_attn_backend(16, torch.float32, None, 16)
assert backend.get_name() == "TORCH_SDPA_VLLM_V1"
assert backend.get_name() == "TORCH_SDPA"
elif device == "cuda":
with patch("vllm.attention.selector.current_platform",
@ -266,6 +265,9 @@ def test_flash_attn(monkeypatch: pytest.MonkeyPatch):
# TODO: When testing for v1, pipe in `use_v1` as an argument to
# get_attn_backend
pytest.skip("Skipping as current backend selector does not " \
"handle fallbacks when a backend is set via env var.")
with monkeypatch.context() as m:
m.setenv(STR_BACKEND_ENV_VAR, STR_FLASH_ATTN_VAL)

View File

@ -28,7 +28,7 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
# Test standard ROCm attention
backend = get_attn_backend(16, torch.float16, torch.float16, 16, False)
assert (backend.get_name() == "ROCM_FLASH"
or backend.get_name() == "TRITON_ATTN_VLLM_V1")
or backend.get_name() == "TRITON_ATTN")
# MLA test for deepseek related
@ -40,8 +40,7 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
16,
False,
use_mla=True)
assert (backend.get_name() == "TRITON_MLA"
or backend.get_name() == "TRITON_MLA_VLLM_V1")
assert backend.get_name() == "TRITON_MLA"
# If attention backend is None
# If use_mla is true
@ -53,8 +52,7 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
16,
False,
use_mla=True)
assert (backend.get_name() == "TRITON_MLA"
or backend.get_name() == "TRITON_MLA_VLLM_V1")
assert backend.get_name() == "TRITON_MLA"
# change the attention backend to AITER MLA
m.setenv(STR_BACKEND_ENV_VAR, "ROCM_AITER_MLA")
@ -64,8 +62,7 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
1,
False,
use_mla=True)
assert (backend.get_name() == "ROCM_AITER_MLA"
or backend.get_name() == "ROCM_AITER_MLA_VLLM_V1")
assert backend.get_name() == "ROCM_AITER_MLA"
# If attention backend is None
# If use_mla is true
@ -79,5 +76,4 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
1,
False,
use_mla=True)
assert (backend.get_name() == "ROCM_AITER_MLA"
or backend.get_name() == "ROCM_AITER_MLA_VLLM_V1")
assert backend.get_name() == "ROCM_AITER_MLA"

View File

@ -46,6 +46,8 @@ def test_decode_attention(B, L, H_Q, H_KV, D_QK, D_V, CACHE_SIZE, PAGE_SIZE):
# o will have the same shape as q
o = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda")
lse = torch.zeros(B, H_Q, dtype=dtype, device="cuda")
b_seq_len = torch.full((B, ), seq_len, device="cuda")
attn_logits = torch.empty(
@ -60,6 +62,7 @@ def test_decode_attention(B, L, H_Q, H_KV, D_QK, D_V, CACHE_SIZE, PAGE_SIZE):
k_buffer,
v_buffer,
o,
lse,
req_to_token,
b_seq_len,
attn_logits,
@ -72,12 +75,14 @@ def test_decode_attention(B, L, H_Q, H_KV, D_QK, D_V, CACHE_SIZE, PAGE_SIZE):
v_buffer = v_buffer.view(CACHE_SIZE // PAGE_SIZE, PAGE_SIZE, H_KV, D_V)
o1 = torch.zeros_like(o)
lse1 = torch.zeros_like(lse)
decode_attention_fwd(
q,
k_buffer,
v_buffer,
o1,
lse1,
req_to_page,
b_seq_len,
attn_logits,

View File

@ -60,7 +60,7 @@ TENSORS_SHAPES_FN = [
@torch.inference_mode()
def test_rotary_embedding(
is_neox_style: bool,
tensor_shape_fn: Callable[[int, int, int, int], tuple[int]],
tensor_shape_fn: Callable[[int, int, int, int], tuple[int, ...]],
batch_size: int,
seq_len: int,
num_heads: int,

View File

@ -7,7 +7,7 @@ import torch.nn.functional as F
from einops import rearrange, repeat
from vllm.model_executor.layers.mamba.ops.ssd_combined import (
mamba_chunk_scan_combined)
mamba_chunk_scan_combined_varlen)
from vllm.platforms import current_platform
from vllm.v1.attention.backends.mamba2_attn import (
_query_start_loc_to_chunk_indices_offsets)
@ -185,9 +185,14 @@ def generate_continuous_batched_examples(example_lens_by_batch,
IND_S = [x % full_length for x in IND_E]
IND_E = [end_boundary(x + y) for x, y in zip(IND_S, spec)]
# varlen has implicit batch=1
dt2 = dt2.squeeze(0)
X2 = X2.squeeze(0)
B2 = B2.squeeze(0)
C2 = C2.squeeze(0)
yield ([Y_min[s, IND_S[s]:IND_E[s]]
for s in range(num_examples)] if return_naive_ref else None,
cu_seqlens, seq_idx.unsqueeze(0), (A, dt2, X2, B2, C2))
cu_seqlens, seq_idx, (A, dt2, X2, B2, C2))
@pytest.mark.parametrize("itype",
@ -198,7 +203,7 @@ def generate_continuous_batched_examples(example_lens_by_batch,
def test_mamba_chunk_scan_single_example(d_head, n_heads, seq_len_chunk_size,
itype):
# this tests the kernels on a single example (no batching)
# this tests the kernels on a single example (bs=1)
# TODO: the bfloat16 case requires higher thresholds. To be investigated
@ -219,23 +224,40 @@ def test_mamba_chunk_scan_single_example(d_head, n_heads, seq_len_chunk_size,
Y_min, final_state_min = ssd_minimal_discrete(X * dt.unsqueeze(-1), A * dt,
B, C, chunk_size)
cu_seqlens = torch.tensor((0, seqlen), device='cuda').cumsum(dim=0)
seq_idx = torch.zeros(seqlen, dtype=torch.int32, device=cu_seqlens.device)
chunk_indices, chunk_offsets = \
_query_start_loc_to_chunk_indices_offsets(
cu_seqlens, chunk_size, cu_seqlens[-1])
# varlen has implicit batch=1
X = X.squeeze(0)
dt = dt.squeeze(0)
A = A.squeeze(0)
B = B.squeeze(0)
C = C.squeeze(0)
Y = torch.empty_like(X)
final_state = mamba_chunk_scan_combined(X,
dt,
A,
B,
C,
chunk_size,
D=None,
return_final_states=True,
out=Y)
final_state = mamba_chunk_scan_combined_varlen(X,
dt,
A,
B,
C,
chunk_size,
D=None,
cu_seqlens=cu_seqlens,
seq_idx=seq_idx,
chunk_indices=chunk_indices,
chunk_offsets=chunk_offsets,
out=Y)
# just test the last in sequence
torch.testing.assert_close(Y[:, -1], Y_min[:, -1], atol=atol, rtol=rtol)
torch.testing.assert_close(Y[-1], Y_min[0, -1], atol=atol, rtol=rtol)
# just test the last head
# NOTE, in the kernel we always cast states to fp32
torch.testing.assert_close(final_state[:, -1],
torch.testing.assert_close(final_state[:, -1].to(torch.float32),
final_state_min[:, -1].to(torch.float32),
atol=atol,
rtol=rtol)
@ -300,7 +322,7 @@ def test_mamba_chunk_scan_cont_batch(d_head, n_heads, seq_len_chunk_size_cases,
cu_seqlens, chunk_size, cu_seqlens[-1])
Y = torch.empty_like(X)
new_states = mamba_chunk_scan_combined(
new_states = mamba_chunk_scan_combined_varlen(
X,
dt,
A,
@ -312,7 +334,6 @@ def test_mamba_chunk_scan_cont_batch(d_head, n_heads, seq_len_chunk_size_cases,
seq_idx=seq_idx,
chunk_indices=chunk_indices,
chunk_offsets=chunk_offsets,
return_varlen_states=True,
initial_states=states,
out=Y,
)
@ -321,7 +342,7 @@ def test_mamba_chunk_scan_cont_batch(d_head, n_heads, seq_len_chunk_size_cases,
for i in range(num_examples):
# just test one dim and dstate
Y_eg = Y[0, cu_seqlens[i]:cu_seqlens[i + 1], 0, 0]
Y_eg = Y[cu_seqlens[i]:cu_seqlens[i + 1], 0, 0]
Y_min_eg = Y_min[i][:, 0, 0]
torch.testing.assert_close(Y_eg, Y_min_eg, atol=atol, rtol=rtol)
@ -386,7 +407,7 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
_query_start_loc_to_chunk_indices_offsets(
cu_seqlens, chunk_size, cu_seqlens[-1])
Y_ref = torch.empty_like(X)
state_ref = mamba_chunk_scan_combined(
state_ref = mamba_chunk_scan_combined_varlen(
X,
dt,
A,
@ -398,7 +419,6 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
seq_idx=seq_idx,
chunk_indices=chunk_indices,
chunk_offsets=chunk_offsets,
return_varlen_states=True,
initial_states=None,
out=Y_ref,
)
@ -414,27 +434,27 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
chunked_seq_idx = torch.repeat_interleave(
torch.arange(len(chunked_seqlens), device=device),
chunked_seqlens,
output_size=chunked_cu_seqlens[-1]).unsqueeze(0).to(torch.int32)
output_size=chunked_cu_seqlens[-1]).to(torch.int32)
chunked_input_seq_len = chunked_cu_seqlens[-1]
X_chunked = torch.zeros_like(X)[:, :chunked_input_seq_len, ...]
dt_chunked = torch.zeros_like(dt)[:, :chunked_input_seq_len, ...]
B_chunked = torch.zeros_like(B)[:, :chunked_input_seq_len, ...]
C_chunked = torch.zeros_like(C)[:, :chunked_input_seq_len, ...]
X_chunked = torch.zeros_like(X)[:chunked_input_seq_len, ...]
dt_chunked = torch.zeros_like(dt)[:chunked_input_seq_len, ...]
B_chunked = torch.zeros_like(B)[:chunked_input_seq_len, ...]
C_chunked = torch.zeros_like(C)[:chunked_input_seq_len, ...]
for i in range(num_sequences):
# fmt: off
chunk_f = lambda x, i: x[:, cu_seqlens[i]:cu_seqlens[i] + chunked_seqlens[i], ...] # noqa: E501
chunk_f = lambda x, i: x[cu_seqlens[i]:cu_seqlens[i] + chunked_seqlens[i], ...] # noqa: E501
X_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(X, i) # noqa: E501
dt_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(dt, i) # noqa: E501
B_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(B, i) # noqa: E501
C_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(C, i) # noqa: E501
X_chunked[chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(X, i) # noqa: E501
dt_chunked[chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(dt, i) # noqa: E501
B_chunked[chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(B, i) # noqa: E501
C_chunked[chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(C, i) # noqa: E501
# fmt: on
chunk_indices, chunk_offsets = \
_query_start_loc_to_chunk_indices_offsets(
chunked_cu_seqlens, chunk_size, chunked_cu_seqlens[-1])
Y_partial = torch.empty_like(X_chunked)
partial_state = mamba_chunk_scan_combined(
partial_state = mamba_chunk_scan_combined_varlen(
X_chunked,
dt_chunked,
A,
@ -446,7 +466,6 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
seq_idx=chunked_seq_idx,
chunk_indices=chunk_indices,
chunk_offsets=chunk_offsets,
return_varlen_states=True,
initial_states=None,
out=Y_partial,
)
@ -461,29 +480,28 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
remaining_chunked_seq_idx = torch.repeat_interleave(
torch.arange(len(remaining_chunked_seqlens), device=device),
remaining_chunked_seqlens,
output_size=remaining_chunked_cu_seqlens[-1]).unsqueeze(0).to(
torch.int32)
output_size=remaining_chunked_cu_seqlens[-1]).to(torch.int32)
remaining_chunked_input_seq_len = remaining_chunked_cu_seqlens[-1]
# fmt: off
remaining_X_chunked = torch.zeros_like(X)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_dt_chunked = torch.zeros_like(dt)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_B_chunked = torch.zeros_like(B)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_C_chunked = torch.zeros_like(C)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_X_chunked = torch.zeros_like(X)[:remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_dt_chunked = torch.zeros_like(dt)[:remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_B_chunked = torch.zeros_like(B)[:remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_C_chunked = torch.zeros_like(C)[:remaining_chunked_input_seq_len, ...] # noqa: E501
for i in range(num_sequences):
remaining_chunk_f = lambda x, i: x[:, cu_seqlens[i] + chunked_seqlens[i]:cu_seqlens[i+1], ...] # noqa: E501
remaining_chunk_f = lambda x, i: x[cu_seqlens[i] + chunked_seqlens[i]:cu_seqlens[i+1], ...] # noqa: E501
remaining_X_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(X, i) # noqa: E501
remaining_dt_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(dt, i) # noqa: E501
remaining_B_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(B, i) # noqa: E501
remaining_C_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(C, i) # noqa: E501
remaining_X_chunked[remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(X, i) # noqa: E501
remaining_dt_chunked[remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(dt, i) # noqa: E501
remaining_B_chunked[remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(B, i) # noqa: E501
remaining_C_chunked[remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(C, i) # noqa: E501
# assert input chunking is correct
concat_chunk_f = lambda pt1, pt2, i: torch.cat([
pt1[:,chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1],...],
pt2[:,remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1],...],
pt1[chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1],...],
pt2[remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1],...],
],
dim=1)
concat_batch_f = lambda pt1, pt2: torch.cat([concat_chunk_f(pt1, pt2, i) for i in range(num_sequences)], dim=1) # noqa: E501
dim=0)
concat_batch_f = lambda pt1, pt2: torch.cat([concat_chunk_f(pt1, pt2, i) for i in range(num_sequences)], dim=0) # noqa: E501
# fmt: on
assert concat_batch_f(X_chunked, remaining_X_chunked).equal(X)
@ -498,7 +516,7 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
remaining_chunked_cu_seqlens[-1])
Y_chunked = torch.empty_like(remaining_X_chunked)
state_chunked = mamba_chunk_scan_combined(
state_chunked = mamba_chunk_scan_combined_varlen(
remaining_X_chunked,
remaining_dt_chunked,
A,
@ -510,7 +528,6 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
seq_idx=remaining_chunked_seq_idx,
chunk_indices=chunk_indices,
chunk_offsets=chunk_offsets,
return_varlen_states=True,
initial_states=partial_state,
out=Y_chunked,
)
@ -518,17 +535,17 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
# kernel chunked is same as kernel overall
for i in range(num_sequences):
Y_seq = Y[:, cu_seqlens[i]:cu_seqlens[i + 1], ...]
Y_ref_seq = Y_ref[:, cu_seqlens[i]:cu_seqlens[i + 1], ...]
Y_seq = Y[cu_seqlens[i]:cu_seqlens[i + 1], ...]
Y_ref_seq = Y_ref[cu_seqlens[i]:cu_seqlens[i + 1], ...]
torch.testing.assert_close(
Y_seq[:, :chunked_seqlens[i], ...],
Y_ref_seq[:, :chunked_seqlens[i], ...],
Y_seq[:chunked_seqlens[i], ...],
Y_ref_seq[:chunked_seqlens[i], ...],
atol=atol,
rtol=rtol,
msg=lambda x: f"seq{i} output part1 " + x) # noqa: B023
torch.testing.assert_close(
Y_seq[:, chunked_seqlens[i]:, ...],
Y_ref_seq[:, chunked_seqlens[i]:, ...],
Y_seq[chunked_seqlens[i]:, ...],
Y_ref_seq[chunked_seqlens[i]:, ...],
atol=atol,
rtol=rtol,
msg=lambda x: f"seq{i} output part2 " + x) # noqa: B023

View File

@ -222,7 +222,8 @@ if (has_flashinfer_cutlass_fused_moe()
from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import ( # noqa: E501
FlashInferExperts)
from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_prepare_finalize import ( # noqa: E501
FlashInferCutlassMoEPrepareAndFinalize)
FlashInferCutlassMoEPrepareAndFinalize,
create_flashinfer_prepare_finalize)
register_prepare_and_finalize(
FlashInferCutlassMoEPrepareAndFinalize,
@ -373,7 +374,7 @@ def make_prepare_finalize(
assert prepare_finalize is not None
return prepare_finalize
elif prepare_finalize_type == FlashInferCutlassMoEPrepareAndFinalize:
return FlashInferCutlassMoEPrepareAndFinalize(
return create_flashinfer_prepare_finalize(
use_dp=moe.moe_parallel_config.dp_size > 1)
else:
return MoEPrepareAndFinalizeNoEP()

View File

@ -138,7 +138,7 @@ def test_flashinfer_per_tensor_moe_fp8_no_graph(
td = TestData.make_moe_tensors_8bit(m, k, n, e, reorder=True)
score = torch.randn((m, e), device="cuda", dtype=torch.bfloat16)
topk_weights, topk_ids = FusedMoE.select_experts(
topk_weights, topk_ids, _ = FusedMoE.select_experts(
hidden_states=td.hidden_states,
router_logits=score,
use_grouped_topk=False,
@ -206,7 +206,7 @@ def test_flashinfer_cutlass_moe_fp8_no_graph(
td = TestData.make_moe_tensors_8bit(m, k, n, e, reorder=False)
score = torch.randn((m, e), device="cuda", dtype=torch.bfloat16)
topk_weights, topk_ids = FusedMoE.select_experts(
topk_weights, topk_ids, _ = FusedMoE.select_experts(
hidden_states=td.hidden_states,
router_logits=score,
use_grouped_topk=False,

View File

@ -11,11 +11,12 @@ from tests.kernels.quant_utils import (native_per_token_group_quant_fp8,
native_w8a8_block_matmul)
from vllm.config import VllmConfig
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
cutlass_scaled_mm, get_col_major_tma_aligned_tensor,
per_token_group_quant_fp8, w8a8_triton_block_scaled_mm)
cutlass_scaled_mm, per_token_group_quant_fp8, w8a8_block_fp8_matmul)
from vllm.platforms import current_platform
from vllm.utils import has_deep_gemm
from vllm.utils.deep_gemm import fp8_gemm_nt, per_block_cast_to_fp8
from vllm.utils.deep_gemm import (fp8_gemm_nt,
get_col_major_tma_aligned_tensor,
per_block_cast_to_fp8)
if current_platform.get_device_capability() < (9, 0):
pytest.skip("FP8 Triton requires CUDA 9.0 or higher",
@ -90,8 +91,7 @@ def test_w8a8_block_fp8_matmul(M, N, K, block_size, out_dtype, seed):
ref_out = native_w8a8_block_matmul(A_fp8, B_fp8, As, Bs, block_size,
out_dtype)
out = w8a8_triton_block_scaled_mm(A_fp8, B_fp8, As, Bs, block_size,
out_dtype)
out = w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype)
rel_diff = (torch.mean(
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) /

View File

@ -20,11 +20,9 @@ from vllm.platforms import current_platform
(8, 513, 64), # Non-divisible (native only)
])
@pytest.mark.parametrize("seed", [42])
@pytest.mark.parametrize("use_ue8m0", [True, False])
@torch.inference_mode()
def test_quantfp8_group_functionality(batch_size: int, hidden_dim: int,
group_size: int, seed: int,
use_ue8m0: bool) -> None:
group_size: int, seed: int) -> None:
"""Test QuantFP8 group quantization with various configurations.
Tests both CUDA and native implementations, column-major scales,
@ -40,8 +38,7 @@ def test_quantfp8_group_functionality(batch_size: int, hidden_dim: int,
group_shape = GroupShape(1, group_size)
quant_op = QuantFP8(static=False,
group_shape=group_shape,
column_major_scales=False,
use_ue8m0=use_ue8m0)
column_major_scales=False)
# 1. Test native implementation (always available)
x_quant_native, scales_native = quant_op.forward_native(x.clone())
@ -51,15 +48,9 @@ def test_quantfp8_group_functionality(batch_size: int, hidden_dim: int,
# 2. Test column-major scales configuration
quant_op_col = QuantFP8(static=False,
group_shape=group_shape,
column_major_scales=True,
use_ue8m0=use_ue8m0)
column_major_scales=True)
_, scales_col = quant_op_col.forward_native(x.clone())
assert scales_col.shape == (batch_size, expected_num_groups)
assert scales_col.stride(0) == 1
assert scales_col.stride(1) == batch_size
# Test column-major scales consistency
assert torch.allclose(scales_col, scales_native, rtol=1e-9, atol=1e-8)
assert scales_col.shape == (expected_num_groups, batch_size)
# 3. Test CUDA implementation (only for divisible dimensions)
if is_divisible:
@ -77,9 +68,8 @@ def test_quantfp8_group_functionality(batch_size: int, hidden_dim: int,
@pytest.mark.parametrize("seed", [42])
@pytest.mark.parametrize("use_ue8m0", [True, False])
@torch.inference_mode()
def test_quantfp8_group_multidimensional(seed: int, use_ue8m0: bool) -> None:
def test_quantfp8_group_multidimensional(seed: int) -> None:
current_platform.seed_everything(seed)
group_size = 64
@ -92,8 +82,7 @@ def test_quantfp8_group_multidimensional(seed: int, use_ue8m0: bool) -> None:
group_shape = GroupShape(1, group_size)
quant_op = QuantFP8(static=False,
group_shape=group_shape,
column_major_scales=False,
use_ue8m0=use_ue8m0)
column_major_scales=False)
x_quant, scales = quant_op.forward_native(x_3d.clone())
assert x_quant.shape == x_3d.shape
@ -102,8 +91,7 @@ def test_quantfp8_group_multidimensional(seed: int, use_ue8m0: bool) -> None:
# Test column_major_scales with multi-dim
quant_op_col = QuantFP8(static=False,
group_shape=group_shape,
column_major_scales=True,
use_ue8m0=use_ue8m0)
column_major_scales=True)
_, scales_col = quant_op_col.forward_native(x_3d.clone())
assert scales_col.shape == (batch1, hidden_dim // group_size, batch2)

View File

@ -165,7 +165,7 @@ def onednn_gemm_test_helper(primitive_cache_size: int,
def test_onednn_int8_scaled_gemm(
n: int,
k: int,
m_list: tuple[int],
m_list: tuple[int, ...],
per_tensor_a_scale: bool,
per_tensor_b_scale: bool,
use_bias: bool,
@ -196,7 +196,7 @@ def test_onednn_int8_scaled_gemm(
def test_onednn_gemm(
n: int,
k: int,
m_list: tuple[int],
m_list: tuple[int, ...],
use_bias: bool,
use_stride: bool,
dtype: torch.dtype,

View File

@ -524,14 +524,14 @@ def make_backend(backend_name: str) -> AttentionBackend:
* Backend instance
'''
if backend_name in (STR_XFORMERS_ATTN_VAL, "XFORMERS_VLLM_V1"):
if backend_name == STR_XFORMERS_ATTN_VAL:
from vllm.v1.attention.backends.xformers import (
XFormersAttentionBackend)
return XFormersAttentionBackend()
if backend_name in (STR_FLASH_ATTN_VAL, "FLASH_ATTN_VLLM_V1"):
if backend_name == STR_FLASH_ATTN_VAL:
from vllm.v1.attention.backends.flash_attn import FlashAttentionBackend
return FlashAttentionBackend()
if backend_name == "TRITON_ATTN_VLLM_V1":
if backend_name == "TRITON_ATTN":
from vllm.v1.attention.backends.triton_attn import (
TritonAttentionBackend)
return TritonAttentionBackend()
@ -539,7 +539,7 @@ def make_backend(backend_name: str) -> AttentionBackend:
from vllm.v1.attention.backends.flex_attention import (
FlexAttentionBackend)
return FlexAttentionBackend()
if backend_name in ("TORCH_SDPA", "TORCH_SDPA_VLLM_V1"):
if backend_name == "TORCH_SDPA":
from vllm.v1.attention.backends.cpu_attn import TorchSDPABackend
return TorchSDPABackend()
if backend_name == "FLASHINFER":

View File

@ -91,8 +91,7 @@ def _run_generate(input_dir, queue: mp.Queue, **kwargs):
@pytest.mark.parametrize("enable_lora", [False, True])
@pytest.mark.parametrize("tp_size", [1, 2])
def test_sharded_state_loader(enable_lora, tp_size, num_gpus_available,
llama_3p2_1b_files,
monkeypatch: pytest.MonkeyPatch):
llama_3p2_1b_files):
if num_gpus_available < tp_size:
pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}")

View File

@ -17,6 +17,8 @@ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
from vllm.model_executor.layers.layernorm import (RMSNorm,
dispatch_rocm_rmsnorm_func,
fused_add_rms_norm, rms_norm)
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
cutlass_scaled_mm, dispatch_w8a8_blockscale_func, w8a8_block_fp8_matmul)
from vllm.platforms import current_platform
RMS_NORM_SUPPORTED_DTYPES = [torch.float16, torch.bfloat16]
@ -109,6 +111,34 @@ def test_enabled_ops_invalid(env: str):
RMSNorm(1024).enabled()
@pytest.mark.skipif(
not current_platform.is_rocm() or not current_platform.is_fp8_fnuz(),
reason="AITER is a feature exclusive for ROCm and FP8_FNUZ")
@pytest.mark.parametrize("use_cutlass", [True, False])
@pytest.mark.parametrize("use_rocm_aiter", ["0", "1"])
@pytest.mark.parametrize("use_rocm_aiter_gemm_w8a8_blockscale", ["0", "1"])
def test_w8a8_blockscale_dispatch(use_cutlass: bool, use_rocm_aiter: str,
use_rocm_aiter_gemm_w8a8_blockscale: str,
monkeypatch):
monkeypatch.setenv("VLLM_ROCM_USE_AITER", use_rocm_aiter)
monkeypatch.setenv("VLLM_ROCM_USE_AITER_LINEAR",
use_rocm_aiter_gemm_w8a8_blockscale)
use_aiter_and_is_supported = (bool(int(use_rocm_aiter)) and bool(
int(use_rocm_aiter_gemm_w8a8_blockscale)))
block_scale_func = dispatch_w8a8_blockscale_func(
use_cutlass, use_aiter_and_is_supported=use_aiter_and_is_supported)
if use_cutlass:
assert block_scale_func == cutlass_scaled_mm
elif current_platform.is_rocm() and int(use_rocm_aiter) and int(
use_rocm_aiter_gemm_w8a8_blockscale):
assert block_scale_func == (
torch.ops.vllm.rocm_aiter_gemm_w8a8_blockscale)
else:
assert block_scale_func == w8a8_block_fp8_matmul
@pytest.mark.parametrize("use_rocm_aiter", ["0", "1"])
def test_topk_dispatch(use_rocm_aiter: str, monkeypatch):
monkeypatch.setenv("VLLM_ROCM_USE_AITER", use_rocm_aiter)

View File

@ -0,0 +1,132 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from vllm.multimodal.video import sample_frames_from_video
from ....conftest import VIDEO_ASSETS
models = ["Qwen/Qwen2.5-VL-3B-Instruct"]
target_dtype = "bfloat16"
VIDEO_PLACEHOLDER = "<|vision_start|><|video_pad|><|vision_end|>"
def qwen2_5_vl_chat_template(*query):
return f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{''.join(query)}<|im_end|><|im_start|>assistant\n" # noqa: E501
VIDEO_PROMPTS = VIDEO_ASSETS.prompts({
"baby_reading":
qwen2_5_vl_chat_template(
VIDEO_PLACEHOLDER,
"Describe this video with a short sentence ",
"(no more than 20 words)",
),
})
@pytest.mark.core_model
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("video_pruning_rate", [0.0, 0.75])
@pytest.mark.parametrize("num_frames", [16])
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [128])
def test_qwen2_5_vl_evs_functionality(vllm_runner, video_assets, model,
video_pruning_rate: float,
num_frames: int, dtype: str,
max_tokens: int) -> None:
"""Test EVS (Efficient Video Sampling) functionality with different
pruning rates.
"""
# Sample frames from video assets
sampled_vids = [
sample_frames_from_video(asset.np_ndarrays, num_frames)
for asset in video_assets
]
prompts = [VIDEO_PROMPTS[0]]
videos = [sampled_vids[0]]
# Initialize model with EVS configuration
with vllm_runner(model,
runner="generate",
max_model_len=4000,
max_num_seqs=1,
dtype=dtype,
limit_mm_per_prompt={"video": 1},
tensor_parallel_size=1,
video_pruning_rate=video_pruning_rate) as vllm_model:
# Generate output - this should not crash
outputs = vllm_model.generate_greedy(prompts,
max_tokens,
videos=videos)
# Basic validation that we got a response
assert len(outputs) == 1
output_ids, output_text = outputs[0]
# Ensure we got some output
assert len(output_ids) > 0
assert len(output_text) > 0
# Ensure the output is a string
assert isinstance(output_text, str)
@pytest.mark.core_model
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("video_pruning_rate", [0.0, 0.75])
@pytest.mark.parametrize("num_frames", [16])
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [128])
def test_qwen2_5_vl_evs_batched_videos(vllm_runner, video_assets, model,
video_pruning_rate: float,
num_frames: int, dtype: str,
max_tokens: int) -> None:
"""Test EVS functionality with batched videos.
This test validates that:
1. The model handles batched video inputs correctly with EVS
2. Both pruning configurations work with multiple videos
3. The model doesn't crash when processing multiple videos simultaneously
"""
# Sample frames from video assets
sampled_vids = [
sample_frames_from_video(asset.np_ndarrays, num_frames)
for asset in video_assets
]
# Test batched videos
prompts = [VIDEO_PROMPTS[0], VIDEO_PROMPTS[0]]
videos = [sampled_vids[0],
sampled_vids[0]] # Use same video twice for testing
# Initialize model with EVS configuration
with vllm_runner(model,
runner="generate",
max_model_len=4000,
max_num_seqs=2,
dtype=dtype,
limit_mm_per_prompt={"video": 2},
tensor_parallel_size=1,
video_pruning_rate=video_pruning_rate) as vllm_model:
# Generate output - this should not crash
outputs = vllm_model.generate_greedy(prompts,
max_tokens,
videos=videos)
# Basic validation that we got responses for both videos
assert len(outputs) == 2
for output_ids, output_text in outputs:
# Ensure we got some output for each video
assert len(output_ids) > 0
assert len(output_text) > 0
# Ensure the output is a string
assert isinstance(output_text, str)

View File

@ -101,7 +101,7 @@ class VLMTestInfo(NamedTuple):
# Function for converting ImageAssets to image embeddings;
# We need to define this explicitly for embedding tests
convert_assets_to_embeddings: Optional[Callable[[ImageTestAssets],
torch.Tensor]] = None
list[torch.Tensor]]] = None
# Exposed options for vLLM runner; we change these in a several tests,
# but the defaults are derived from VllmRunner & the engine defaults
@ -137,12 +137,12 @@ class VLMTestInfo(NamedTuple):
# Default expandable params per test; these defaults can be overridden in
# instances of this object; the complete set of test cases for the model
# is all combinations of .models + all fields below
max_tokens: Union[int, tuple[int]] = 128
num_logprobs: Union[int, tuple[int]] = 5
dtype: Union[str, Union[list[str], tuple[str, ...]]] = "auto"
distributed_executor_backend: Optional[Union[str, Iterable[str]]] = None
max_tokens: int = 128
num_logprobs: int = 5
dtype: str = "auto"
distributed_executor_backend: Optional[str] = None
# Only expanded in video tests
num_video_frames: Union[int, tuple[int]] = 16
num_video_frames: int = 16
# Fixed image sizes / image size factors; most tests use image_size_factors
# The values provided for these two fields will be stacked and expanded

View File

@ -213,6 +213,7 @@ _IGNORE_MM_KEYS = {
MM_DATA_PATCHES = {
# GLM4.1V and Qwen3-VL requires video metadata to be included in the input
"glm4v": glm4_1v_patch_mm_data,
"glm4v_moe": glm4_1v_patch_mm_data,
"qwen3_vl": qwen3_vl_patch_mm_data,
"qwen3_vl_moe": qwen3_vl_patch_mm_data,
}

View File

@ -19,6 +19,8 @@ from vllm.distributed import (cleanup_dist_env_and_memory,
init_distributed_environment,
initialize_model_parallel)
from vllm.model_executor.model_loader.utils import set_default_torch_dtype
from vllm.model_executor.models.interfaces import (SupportsMultiModal,
supports_multimodal)
from vllm.multimodal import MULTIMODAL_REGISTRY, BatchedTensorInputs
from vllm.multimodal.processing import (BaseMultiModalProcessor,
InputProcessingContext)
@ -88,6 +90,7 @@ def resize_mm_data(
def create_batched_mm_kwargs(
model_cls: type[SupportsMultiModal],
model_config: ModelConfig,
processor: BaseMultiModalProcessor,
size_factors: tuple[float, ...] = (1.0, 0.5, 0.25),
@ -127,16 +130,22 @@ def create_batched_mm_kwargs(
mm_data=resized_mm_data,
hf_processor_mm_kwargs=processor_inputs.hf_processor_mm_kwargs,
tokenization_kwargs=processor_inputs.tokenization_kwargs,
)["mm_kwargs"]
)["mm_kwargs"].require_data()
items = [
item for modality in supported_mm_limits
for item in mm_kwargs[modality]
]
return group_mm_kwargs_by_modality(items)
return group_mm_kwargs_by_modality(
items,
merge_by_field_config=model_cls.merge_by_field_config,
)
@contextmanager
def initialize_dummy_model(model_cls: nn.Module, model_config: ModelConfig):
def initialize_dummy_model(
model_cls: type[nn.Module],
model_config: ModelConfig,
):
temp_file = tempfile.mkstemp()[1]
init_distributed_environment(
world_size=1,
@ -198,8 +207,12 @@ def test_model_tensor_schema(model_arch: str, model_id: str):
hf_overrides=hf_overrides_fn,
skip_tokenizer_init=model_info.skip_tokenizer_init,
enforce_eager=model_info.enforce_eager,
dtype=model_info.dtype)
dtype=model_info.dtype,
)
model_cls = MULTIMODAL_REGISTRY._get_model_cls(model_config)
assert supports_multimodal(model_cls)
factories = MULTIMODAL_REGISTRY._processor_factories[model_cls]
inputs_parse_methods = []
@ -228,7 +241,7 @@ def test_model_tensor_schema(model_arch: str, model_id: str):
with initialize_dummy_model(model_cls, model_config) as model:
for modality, _, mm_kwargs in create_batched_mm_kwargs(
model_config, processor):
model_cls, model_config, processor):
for method_name in inputs_parse_methods:
print(f"Testing `{method_name}` with modality={modality} "
f"and mm_kwargs{list(mm_kwargs.keys())}")

View File

@ -196,6 +196,9 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
trust_remote_code=True),
"Cohere2ForCausalLM": _HfExamplesInfo("CohereForAI/c4ai-command-r7b-12-2024", # noqa: E501
trust_remote_code=True),
"CwmForCausalLM": _HfExamplesInfo("facebook/cwm", # noqa: E501
trust_remote_code=True,
is_available_online=False),
"DbrxForCausalLM": _HfExamplesInfo("databricks/dbrx-instruct"),
"DeciLMForCausalLM": _HfExamplesInfo("nvidia/Llama-3_3-Nemotron-Super-49B-v1", # noqa: E501
trust_remote_code=True),
@ -273,6 +276,8 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
is_available_online=False),
"Llama4ForCausalLM": _HfExamplesInfo("meta-llama/Llama-4-Scout-17B-16E-Instruct", # noqa: E501
is_available_online=False),
"LongcatFlashForCausalLM": _HfExamplesInfo
("meituan-longcat/LongCat-Flash-Chat", trust_remote_code=True),
"MambaForCausalLM": _HfExamplesInfo("state-spaces/mamba-130m-hf"),
"Mamba2ForCausalLM": _HfExamplesInfo("mistralai/Mamba-Codestral-7B-v0.1",
min_transformers_version="4.55.3",
@ -526,7 +531,7 @@ _MULTIMODAL_EXAMPLE_MODELS = {
trust_remote_code=True),
"Llama_Nemotron_Nano_VL" : _HfExamplesInfo("nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1", # noqa: E501
trust_remote_code=True),
"NemotronH_Nano_VL": _HfExamplesInfo("nano_vl_dummy",
"NemotronH_Nano_VL_V2": _HfExamplesInfo("nano_vl_dummy",
is_available_online=False,
trust_remote_code=True),
"Ovis": _HfExamplesInfo("AIDC-AI/Ovis2-1B", trust_remote_code=True,
@ -639,6 +644,10 @@ _SPECULATIVE_DECODING_EXAMPLE_MODELS = {
speculative_model="zai-org/GLM-4.5",
min_transformers_version="4.54",
is_available_online=False),
"LongCatFlashMTPModel": _HfExamplesInfo(
"meituan-longcat/LongCat-Flash-Chat",
trust_remote_code=True,
speculative_model="meituan-longcat/LongCat-Flash-Chat"),
"MiMoMTPModel": _HfExamplesInfo("XiaomiMiMo/MiMo-7B-RL",
trust_remote_code=True,
speculative_model="XiaomiMiMo/MiMo-7B-RL"),

View File

@ -84,7 +84,7 @@ def can_initialize(model_arch: str, monkeypatch: pytest.MonkeyPatch,
# FIXME: A hack to bypass FA3 assertion because our CI's L4 GPU
# has cc==8.9 which hasn't supported FA3 yet. Remove this hack when
# L4 supports FA3.
m.setenv("VLLM_ATTENTION_BACKEND", "TRITON_ATTN_VLLM_V1")
m.setenv("VLLM_ATTENTION_BACKEND", "TRITON_ATTN")
if model_arch == "WhisperForConditionalGeneration":
m.setenv("VLLM_WORKER_MULTIPROC_METHOD", "spawn")
LLM(

View File

@ -428,9 +428,8 @@ def dummy_hf_overrides(
num_hidden_layers = (3 if model_arch
== "Gemma3nForConditionalGeneration" else 1)
text_config.update({
update_dict = {
"num_layers": num_layers,
"num_hidden_layers": num_hidden_layers,
"num_experts": num_experts,
"num_experts_per_tok": 2,
"num_local_experts": num_experts,
@ -440,7 +439,14 @@ def dummy_hf_overrides(
"n_routed_experts": num_experts,
# For Gemma-3n
"num_kv_shared_layers": 1,
})
}
# Update num_hidden_layers for non-Longcat architectures
if model_arch != "LongcatFlashForCausalLM" \
and model_arch != "LongCatFlashMTPModel":
update_dict["num_hidden_layers"] = num_hidden_layers
text_config.update(update_dict)
if hasattr(hf_config, "vision_config"):
hf_config.vision_config.update({

View File

@ -5,7 +5,6 @@ import base64
import mimetypes
import os
from tempfile import NamedTemporaryFile, TemporaryDirectory
from typing import TYPE_CHECKING, NamedTuple
import numpy as np
import pytest
@ -15,9 +14,6 @@ from vllm.multimodal.image import convert_image_mode
from vllm.multimodal.inputs import PlaceholderRange
from vllm.multimodal.utils import MediaConnector, argsort_mm_positions
if TYPE_CHECKING:
from vllm.multimodal.inputs import MultiModalPlaceholderDict
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
TEST_IMAGE_ASSETS = [
"2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg", # "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
@ -218,18 +214,13 @@ async def test_fetch_video_http_with_dynamic_loader(
assert metadata_sync["video_backend"] == "opencv_dynamic"
# Used for `test_argsort_mm_positions`.
class TestCase(NamedTuple):
mm_positions: "MultiModalPlaceholderDict"
expected_modality_idxs: list[tuple[str, int]]
def test_argsort_mm_positions():
test_cases = [
# yapf: disable
@pytest.mark.parametrize(
"case",
[
# Single modality
## Internally sorted
TestCase(
dict(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=2),
@ -242,7 +233,7 @@ def test_argsort_mm_positions():
],
),
## Internally unsorted
TestCase(
dict(
mm_positions={
"image": [
PlaceholderRange(offset=3, length=2),
@ -257,7 +248,7 @@ def test_argsort_mm_positions():
# Two modalities
## Internally sorted
TestCase(
dict(
mm_positions={
"image": [
PlaceholderRange(offset=7, length=4),
@ -276,7 +267,7 @@ def test_argsort_mm_positions():
],
),
## Interleaved, internally sorted
TestCase(
dict(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=4),
@ -295,7 +286,7 @@ def test_argsort_mm_positions():
],
),
## Interleaved, internally unsorted
TestCase(
dict(
mm_positions={
"image": [
PlaceholderRange(offset=8, length=2),
@ -316,7 +307,7 @@ def test_argsort_mm_positions():
# Three modalities
## Internally sorted
TestCase(
dict(
mm_positions={
"image": [
PlaceholderRange(offset=15, length=7),
@ -341,7 +332,7 @@ def test_argsort_mm_positions():
],
),
## Interleaved, internally sorted
TestCase(
dict(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=2),
@ -363,8 +354,8 @@ def test_argsort_mm_positions():
("image", 2),
],
),
## Interleaved, internally sunorted
TestCase(
## Interleaved, internally unsorted
dict(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=2),
@ -386,9 +377,13 @@ def test_argsort_mm_positions():
("image", 1),
],
),
]
],
)
# yapf: enable
def test_argsort_mm_positions(case):
mm_positions = case["mm_positions"]
expected_modality_idxs = case["expected_modality_idxs"]
for mm_positions, expected_modality_idxs in test_cases:
modality_idxs = argsort_mm_positions(mm_positions)
modality_idxs = argsort_mm_positions(mm_positions)
assert modality_idxs == expected_modality_idxs
assert modality_idxs == expected_modality_idxs

View File

@ -18,9 +18,6 @@ from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tenso
CompressedTensorsW4A16Fp4, CompressedTensorsW4A16Sparse24,
CompressedTensorsW8A8Fp8, CompressedTensorsW8A8Int8,
CompressedTensorsW8A16Fp8, CompressedTensorsWNA16)
from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
W8A8BlockFp8LinearOp)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
cutlass_fp4_supported)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
@ -745,35 +742,3 @@ def test_compressed_tensors_transforms_perplexity(vllm_runner, model, prompt,
perplexity = llm.generate_prompt_perplexity([prompt])[0]
print(perplexity)
assert perplexity <= exp_perplexity
def test_compressed_tensors_fp8_block_enabled(vllm_runner):
model_path = "RedHatAI/Qwen3-0.6B-FP8-BLOCK"
with vllm_runner(model_path) as llm:
fp8_dtype = current_platform.fp8_dtype()
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensorsW8A8Fp8)
assert isinstance(qkv_proj.scheme.w8a8_block_fp8_linear,
W8A8BlockFp8LinearOp)
assert qkv_proj.weight.dtype is fp8_dtype
assert qkv_proj.weight_scale.dtype is torch.float32
assert len(qkv_proj.weight.shape) == 2
assert len(qkv_proj.weight_scale.shape) == 2
input_quant_op = \
qkv_proj.scheme.w8a8_block_fp8_linear.input_quant_op
assert isinstance(input_quant_op, QuantFP8)
assert input_quant_op._forward_method == input_quant_op.forward_cuda
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
assert output

View File

@ -97,7 +97,6 @@ def test_auto_task(model_id, expected_runner_type, expected_convert_type,
assert config.runner_type == expected_runner_type
assert config.convert_type == expected_convert_type
assert expected_task in config.supported_tasks
# Can remove once --task option is fully deprecated
@ -120,7 +119,6 @@ def test_score_task(model_id, expected_runner_type, expected_convert_type,
assert config.runner_type == expected_runner_type
assert config.convert_type == expected_convert_type
assert expected_task in config.supported_tasks
# Can remove once --task option is fully deprecated
@ -137,7 +135,6 @@ def test_transcription_task(model_id, expected_runner_type,
assert config.runner_type == expected_runner_type
assert config.convert_type == expected_convert_type
assert expected_task in config.supported_tasks
@pytest.mark.parametrize(

View File

@ -96,7 +96,7 @@ def test_routing_strategy_integration(monkeypatch, device):
envs.environment_variables[env_name] = lambda s=strategy: s
# Test the select_experts method
topk_weights, topk_ids = FusedMoE.select_experts(
topk_weights, topk_ids, _ = FusedMoE.select_experts(
hidden_states=hidden_states,
router_logits=router_logits,
top_k=top_k,

View File

@ -1,61 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from vllm import LLM, envs
from vllm.sampling_params import SamplingParams
if not envs.VLLM_USE_V1:
pytest.skip(
"Skipping V1 tests. Rerun with `VLLM_USE_V1=1` to test.",
allow_module_level=True,
)
@pytest.mark.parametrize("model_name", ["Qwen/Qwen2.5-1.5B-Instruct"])
# TODO TPU will appear busy if we fan-out test params here
@pytest.mark.parametrize("n_prompts", [1])
def test_logprobs(model_name: str, n_prompts: int):
"""
Request top logprobs with different sampling settings and check
that results contains the requested number, ordered ascendingly.
"""
def check_num_logprobs(logprobs, expected_num: int):
for step in logprobs:
prev_logp = 1.0
# order by rank
sorted_step = dict(
sorted(step.items(), key=lambda item: item[1].rank))
if len(step) != expected_num:
print("watch out", sorted_step)
# check results are ordered by prob value
# assert len(step) == expected_num
for rankno, (tid, logp) in enumerate(sorted_step.items()):
assert logp.logprob <= prev_logp
prev_logp = logp.logprob
assert logp.rank == rankno + 1
llm = LLM(model_name,
enforce_eager=False,
max_num_seqs=1,
max_model_len=128,
max_num_batched_tokens=128)
prompts = [
"Write a short story about a robot that dreams for the first time."
] * n_prompts
greedy_sampling_params = SamplingParams(temperature=0.0, max_tokens=64,\
logprobs=4)
regular_sampling_params = SamplingParams(temperature=0.4, max_tokens=64,\
logprobs=4)
topkp_sampling_params = SamplingParams(temperature=0.4, max_tokens=64,\
logprobs=4, top_k=12, top_p=0.5)
for sp in [greedy_sampling_params, regular_sampling_params, \
topkp_sampling_params]:
output = llm.generate(prompts, sp)
for o in output:
check_num_logprobs(o.outputs[0].logprobs, 4)

View File

@ -69,6 +69,8 @@ def test_triton_placeholder_language():
assert lang.constexpr is None
assert lang.dtype is None
assert lang.int64 is None
assert lang.int32 is None
assert lang.tensor is None
def test_triton_placeholder_language_from_parent():

View File

@ -1131,14 +1131,14 @@ def has_module_attribute(module_name, attribute_name):
def get_attn_backend_list_based_on_platform() -> list[str]:
if current_platform.is_cuda():
return ["FLASH_ATTN_VLLM_V1", "TRITON_ATTN_VLLM_V1", "TREE_ATTN"]
return ["FLASH_ATTN", "TRITON_ATTN", "TREE_ATTN"]
elif current_platform.is_rocm():
attn_backend_list = ["TRITON_ATTN_VLLM_V1"]
attn_backend_list = ["TRITON_ATTN"]
try:
import aiter # noqa: F401
attn_backend_list.append("FLASH_ATTN_VLLM_V1")
attn_backend_list.append("FLASH_ATTN")
except Exception:
print("Skip FLASH_ATTN_VLLM_V1 on ROCm as aiter is not installed")
print("Skip FLASH_ATTN on ROCm as aiter is not installed")
return attn_backend_list
else:

View File

@ -23,15 +23,16 @@ from vllm_test_utils.monitor import monitor
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.transformers_utils.detokenizer_utils import (
convert_ids_list_to_tokens)
from vllm.utils import (CacheInfo, FlexibleArgumentParser, LRUCache,
MemorySnapshot, PlaceholderModule, StoreBoolean,
bind_kv_cache, common_broadcastable_dtype,
current_stream, deprecate_kwargs, get_open_port,
get_tcp_uri, is_lossless_cast, join_host_port,
make_zmq_path, make_zmq_socket, memory_profiling,
merge_async_iterators, sha256, split_host_port,
split_zmq_path, supports_kw, swap_dict_values)
# isort: off
from vllm.utils import (
CacheInfo, FlexibleArgumentParser, LRUCache, MemorySnapshot,
PlaceholderModule, bind_kv_cache, common_broadcastable_dtype,
current_stream, deprecate_kwargs, get_open_port, get_tcp_uri,
is_lossless_cast, join_host_port, make_zmq_path, make_zmq_socket,
memory_profiling, merge_async_iterators, sha256, split_host_port,
split_zmq_path, supports_kw, swap_dict_values, unique_filepath)
# isort: on
from ..utils import create_new_process_for_each_test, error_on_warning
@ -1032,3 +1033,15 @@ def test_load_config_file(tmp_path):
# Assert that the processed arguments match the expected output
assert processed_args == expected_args
os.remove(str(config_file_path))
def test_unique_filepath():
temp_dir = tempfile.mkdtemp()
path_fn = lambda i: Path(temp_dir) / f"file_{i}.txt"
paths = set()
for i in range(10):
path = unique_filepath(path_fn)
path.write_text("test")
paths.add(path)
assert len(paths) == 10
assert len(list(Path(temp_dir).glob("*.txt"))) == 10

View File

@ -21,16 +21,15 @@ from vllm.v1.attention.backends.utils import (CommonAttentionMetadata,
from vllm.v1.kv_cache_interface import FullAttentionSpec
BACKENDS_TO_TEST = [
_Backend.FLASH_ATTN_VLLM_V1, _Backend.FLASHINFER_VLLM_V1,
_Backend.FLEX_ATTENTION, _Backend.TRITON_ATTN_VLLM_V1, _Backend.TREE_ATTN,
"FLEX_ATTENTION_SLOW"
_Backend.FLASH_ATTN, _Backend.FLASHINFER, _Backend.FLEX_ATTENTION,
_Backend.TRITON_ATTN, _Backend.TREE_ATTN, "FLEX_ATTENTION_SLOW"
]
# Remove flashinfer from the list if it's not available
try:
import flashinfer # noqa: F401
except ImportError:
BACKENDS_TO_TEST.remove(_Backend.FLASHINFER_VLLM_V1)
BACKENDS_TO_TEST.remove(_Backend.FLASHINFER)
def _convert_dtype_to_torch(dtype):
@ -214,7 +213,7 @@ def run_attention_backend(
builder_cls, impl_cls = get_attention_backend(actual_backend)
# Mock flashinfer's get_per_layer_parameters if needed
if actual_backend == _Backend.FLASHINFER_VLLM_V1:
if actual_backend == _Backend.FLASHINFER:
import unittest.mock
from vllm.v1.attention.backends.utils import PerLayerParameters
@ -434,7 +433,7 @@ def _test_backend_correctness(
# [num_blocks, 2, block_size, num_kv_heads, head_size]
# Select the appropriate KV cache format for each backend
kv_cache_for_backend = kv_cache
if backend_name == _Backend.FLASHINFER_VLLM_V1:
if backend_name == _Backend.FLASHINFER:
kv_cache_for_backend = kv_cache.transpose(0, 1)
# For FlashInfer default to HND layout and
@ -518,8 +517,8 @@ def test_causal_backend_correctness(batch_spec_name: str, model: str):
SLIDING_WINDOW_BACKENDS_TO_TEST = [
_Backend.FLASH_ATTN_VLLM_V1, _Backend.FLEX_ATTENTION,
_Backend.TRITON_ATTN_VLLM_V1, "FLEX_ATTENTION_SLOW"
_Backend.FLASH_ATTN, _Backend.FLEX_ATTENTION, _Backend.TRITON_ATTN,
"FLEX_ATTENTION_SLOW"
]

View File

@ -15,8 +15,8 @@ from vllm.v1.attention.backends.utils import CommonAttentionMetadata
from vllm.v1.kv_cache_interface import FullAttentionSpec
BACKENDS_TO_TEST = [
_Backend.CUTLASS_MLA, _Backend.FLASHMLA_VLLM_V1, _Backend.FLASH_ATTN_MLA,
_Backend.TRITON_MLA_VLLM_V1
_Backend.CUTLASS_MLA, _Backend.FLASHMLA, _Backend.FLASH_ATTN_MLA,
_Backend.TRITON_MLA
]
# Remove CUTLASS_MLA from the list if not using sm100

View File

@ -120,30 +120,30 @@ def get_attention_backend(backend_name: _Backend):
Tuple of (backend_builder_class, backend_impl_class)
"""
backend_map = {
_Backend.FLASH_ATTN_VLLM_V1:
_Backend.FLASH_ATTN:
("vllm.v1.attention.backends.flash_attn.FlashAttentionBackend"
if current_platform.is_cuda() else
"vllm.v1.attention.backends.rocm_aiter_fa.AiterFlashAttentionBackend"
),
_Backend.FLASHINFER_VLLM_V1:
_Backend.FLASHINFER:
"vllm.v1.attention.backends.flashinfer.FlashInferBackend",
_Backend.FLEX_ATTENTION:
"vllm.v1.attention.backends.flex_attention.FlexAttentionBackend",
_Backend.TRITON_ATTN_VLLM_V1:
_Backend.TRITON_ATTN:
"vllm.v1.attention.backends.triton_attn.TritonAttentionBackend",
_Backend.TREE_ATTN:
"vllm.v1.attention.backends.tree_attn.TreeAttentionBackend",
_Backend.XFORMERS_VLLM_V1:
_Backend.XFORMERS:
"vllm.v1.attention.backends.xformers.XFormersAttentionBackend",
_Backend.CUTLASS_MLA:
"vllm.v1.attention.backends.mla.cutlass_mla.CutlassMLABackend",
_Backend.FLASHMLA_VLLM_V1:
_Backend.FLASHMLA:
"vllm.v1.attention.backends.mla.flashmla.FlashMLABackend",
_Backend.FLASH_ATTN_MLA:
"vllm.v1.attention.backends.mla.flashattn_mla.FlashAttnMLABackend",
_Backend.FLASHINFER_MLA:
"vllm.v1.attention.backends.mla.flashinfer_mla.FlashInferMLABackend",
_Backend.TRITON_MLA_VLLM_V1:
_Backend.TRITON_MLA:
"vllm.v1.attention.backends.mla.triton_mla.TritonMLABackend",
}

View File

@ -89,7 +89,7 @@ backend_configs = {
# Triton Attention
"TritonAttn":
BackendConfig(name="TritonAttn",
env_vars={"VLLM_ATTENTION_BACKEND": "TRITON_ATTN_VLLM_V1"},
env_vars={"VLLM_ATTENTION_BACKEND": "TRITON_ATTN"},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
}),

View File

@ -9,11 +9,14 @@ from ...utils import create_new_process_for_each_test
@create_new_process_for_each_test()
@pytest.mark.parametrize("attn_backend",
["FLASH_ATTN_VLLM_V1", "FLASHINFER_VLLM_V1"])
@pytest.mark.parametrize("attn_backend", ["FLASH_ATTN", "FLASHINFER"])
def test_cascade_attention(example_system_message, monkeypatch, attn_backend):
prompt = "\n<User>: Implement fibonacci sequence in Python.\n<Claude>:"
if attn_backend == "FLASHINFER":
pytest.skip("This test is failing with FlashInfer backend and "
"needs investigation. See issue #25679.")
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
m.setenv("VLLM_ATTENTION_BACKEND", attn_backend)

View File

@ -176,12 +176,11 @@ def test_eagle_correctness(
m.setenv("VLLM_MLA_DISABLE", "1")
m.setenv("VLLM_ATTENTION_BACKEND", attn_backend)
if (attn_backend == "TRITON_ATTN_VLLM_V1"
and not current_platform.is_rocm()):
pytest.skip("TRITON_ATTN_VLLM_V1 does not support "
if (attn_backend == "TRITON_ATTN" and not current_platform.is_rocm()):
pytest.skip("TRITON_ATTN does not support "
"multi-token eagle spec decode on current platform")
if attn_backend == "FLASH_ATTN_VLLM_V1" and current_platform.is_rocm():
if attn_backend == "FLASH_ATTN" and current_platform.is_rocm():
m.setenv("VLLM_ROCM_USE_AITER", "1")
method, model_name, spec_model_name, tp_size = model_setup

View File

@ -12,6 +12,7 @@ from tests.v1.engine.utils import (NUM_PROMPT_LOGPROBS_UNDER_TEST,
STOP_STRINGS,
DummyOutputProcessorTestVectors,
MockEngineCore)
from vllm import PoolingParams
from vllm.logprobs import PromptLogprobs, SampleLogprobs
from vllm.outputs import CompletionOutput, RequestOutput
from vllm.sampling_params import RequestOutputKind, SamplingParams
@ -998,3 +999,35 @@ async def test_cumulative_output_collector_n():
third = [k for k in result.outputs if k.index == 2]
assert len(third) == 1
assert third[0].text == "c"
@pytest.mark.parametrize("runner", ["generate", "pooling"])
def test_abort_requests(runner: str, dummy_test_vectors):
output_processor = OutputProcessor(dummy_test_vectors.tokenizer,
log_stats=True)
requests = [
EngineCoreRequest(
request_id=f"request-{idx}",
prompt_token_ids=prompt_tokens,
mm_features=None,
eos_token_id=None,
arrival_time=0,
lora_request=None,
cache_salt=None,
data_parallel_rank=None,
sampling_params=SamplingParams() if runner == "generate" else None,
pooling_params=PoolingParams(
task="embed") if runner == "pooling" else None,
) for idx, prompt_tokens in enumerate(dummy_test_vectors.prompt_tokens)
]
for request in requests:
if runner == "generate":
output_kind = request.sampling_params.output_kind
else:
output_kind = request.pooling_params.output_kind
queue = RequestOutputCollector(output_kind=output_kind)
output_processor.add_request(request, None, queue=queue)
for request in requests:
output_processor.abort_requests([request.request_id])

View File

@ -26,6 +26,8 @@ from vllm.distributed.kv_transfer.kv_connector.v1.multi_connector import (
from vllm.distributed.kv_transfer.kv_connector.v1.nixl_connector import (
KVConnectorRole, NixlAgentMetadata, NixlConnector, NixlConnectorMetadata,
NixlConnectorWorker, NixlKVConnectorStats)
from vllm.distributed.kv_transfer.kv_transfer_state import (
ensure_kv_transfer_shutdown, has_kv_transfer_group)
from vllm.forward_context import ForwardContext
from vllm.platforms.interface import Platform
from vllm.sampling_params import SamplingParams
@ -35,6 +37,26 @@ from vllm.v1.outputs import KVConnectorOutput, ModelRunnerOutput
from .utils import create_request, create_scheduler, create_vllm_config
@pytest.fixture(scope="module", autouse=True)
def clear_kv_transfer():
"""
The test cases in this file use `VLLM_ENABLE_V1_MULTIPROCESSING=0`,
causing the global variable `_KV_CONNECTOR_AGENT`
to be assigned but never deleted.
Since the current pytest process does not terminate and instead
continues running tests from other files,
this global variable remains in memory and interferes
with test cases in other modules.
So we use this fixture to ensure that the global variable
`_KV_CONNECTOR_AGENT` is properly cleaned up after each test.
"""
yield
if has_kv_transfer_group():
ensure_kv_transfer_shutdown()
class FakeNixlWrapper:
"""Mock implementation of NixlWrapper for testing.

View File

@ -8,7 +8,8 @@ import ray
from vllm.config import ModelDType
from vllm.sampling_params import SamplingParams
from vllm.v1.engine.async_llm import AsyncEngineArgs, AsyncLLM
from vllm.v1.metrics.ray_wrappers import RayPrometheusStatLogger
from vllm.v1.metrics.ray_wrappers import (RayPrometheusMetric,
RayPrometheusStatLogger)
@pytest.fixture(scope="function", autouse=True)
@ -65,3 +66,39 @@ def test_engine_log_metrics_ray(
# Create the actor and call the async method
actor = EngineTestActor.remote() # type: ignore[attr-defined]
ray.get(actor.run.remote())
def test_sanitized_opentelemetry_name():
"""Test the metric name sanitization logic for Ray."""
# Only a-z, A-Z, 0-9, _, test valid characters are preserved
valid_name = "valid_metric_123_abcDEF"
assert RayPrometheusMetric._get_sanitized_opentelemetry_name(
valid_name) == valid_name
# Test dash, dot, are replaced
name_with_dash_dot = "metric-name.test"
expected = "metric_name_test"
assert RayPrometheusMetric._get_sanitized_opentelemetry_name(
name_with_dash_dot) == expected
# Test colon is replaced with underscore
name_with_colon = "metric:name"
expected = "metric_name"
assert RayPrometheusMetric._get_sanitized_opentelemetry_name(
name_with_colon) == expected
# Test multiple invalid characters are replaced
name_with_invalid = "metric:name@with#special%chars"
expected = "metric_name_with_special_chars"
assert RayPrometheusMetric._get_sanitized_opentelemetry_name(
name_with_invalid) == expected
# Test mixed valid and invalid characters
complex_name = "vllm:engine_stats/time.latency_ms-99p"
expected = "vllm_engine_stats_time_latency_ms_99p"
assert RayPrometheusMetric._get_sanitized_opentelemetry_name(
complex_name) == expected
# Test empty string
assert RayPrometheusMetric._get_sanitized_opentelemetry_name("") == ""

View File

@ -72,8 +72,10 @@ def _create_allowed_token_ids(
def _create_bad_words_token_ids(
batch_size: int, vocab_size: int,
bad_words_lengths: list[tuple[int]]) -> dict[int, list[list[int]]]:
batch_size: int,
vocab_size: int,
bad_words_lengths: tuple[int, ...],
) -> dict[int, list[list[int]]]:
bad_words_token_ids = {}
for batch_idx in range(batch_size):
token_ids_single_batch = []
@ -402,7 +404,7 @@ def test_sampler_allowed_token_ids(device: str, batch_size: int,
@pytest.mark.parametrize("batch_size", [1, 2, 32])
@pytest.mark.parametrize("bad_words_lengths", [(1, ), (1, 3), (2, 2)])
def test_sampler_bad_words(device: str, batch_size: int,
bad_words_lengths: list[tuple[int]]):
bad_words_lengths: tuple[int, ...]):
"""
Test to verify that when the bad words restriction is present, tokens
are penalized based on their match with the bad words.

View File

@ -30,7 +30,7 @@ eagle3_dir = "yuhuili/EAGLE3-LLaMA3.1-Instruct-8B"
def _create_proposer(
method: str,
num_speculative_tokens: int,
speculative_token_tree: Optional[list[tuple[int]]] = None,
speculative_token_tree: Optional[list[tuple[int, ...]]] = None,
) -> EagleProposer:
model_config = ModelConfig(model=model_dir,
runner="generate",
@ -314,12 +314,11 @@ def test_load_model(mock_get_model, mock_get_layers, mock_get_pp_group, method,
monkeypatch.setenv("VLLM_ATTENTION_BACKEND", attn_backend)
if (attn_backend == "TRITON_ATTN_VLLM_V1"
and not current_platform.is_rocm()):
pytest.skip("TRITON_ATTN_VLLM_V1 does not support "
if (attn_backend == "TRITON_ATTN" and not current_platform.is_rocm()):
pytest.skip("TRITON_ATTN does not support "
"multi-token eagle spec decode on current platform")
if attn_backend == "FLASH_ATTN_VLLM_V1" and current_platform.is_rocm():
if attn_backend == "FLASH_ATTN" and current_platform.is_rocm():
monkeypatch.setenv("VLLM_ROCM_USE_AITER", "1")
# Setup draft model mock
@ -400,16 +399,15 @@ def test_propose(method, attn_backend, num_speculative_tokens, monkeypatch):
monkeypatch.setenv("VLLM_ATTENTION_BACKEND", attn_backend)
if (attn_backend == "TRITON_ATTN_VLLM_V1"
and not current_platform.is_rocm()):
pytest.skip("TRITON_ATTN_VLLM_V1 does not support "
if (attn_backend == "TRITON_ATTN" and not current_platform.is_rocm()):
pytest.skip("TRITON_ATTN does not support "
"multi-token eagle spec decode on current platform")
if (attn_backend == "TREE_ATTN"):
pytest.skip("TREE_ATTN is tested separately in test_propose_tree"
"because it requires special input mocking.")
if attn_backend == "FLASH_ATTN_VLLM_V1" and current_platform.is_rocm():
if attn_backend == "FLASH_ATTN" and current_platform.is_rocm():
monkeypatch.setenv("VLLM_ROCM_USE_AITER", "1")
# Use GPU device
@ -510,12 +508,12 @@ def test_propose(method, attn_backend, num_speculative_tokens, monkeypatch):
device=device)
sampling_metadata = mock.MagicMock()
if attn_backend == "FLASH_ATTN_VLLM_V1":
if attn_backend == "FLASH_ATTN":
attn_metadata_builder_cls, _ = get_attention_backend(
_Backend.FLASH_ATTN_VLLM_V1)
elif attn_backend == "TRITON_ATTN_VLLM_V1":
_Backend.FLASH_ATTN)
elif attn_backend == "TRITON_ATTN":
attn_metadata_builder_cls, _ = get_attention_backend(
_Backend.TRITON_ATTN_VLLM_V1)
_Backend.TRITON_ATTN)
elif attn_backend == "TREE_ATTN":
attn_metadata_builder_cls, _ = get_attention_backend(
_Backend.TREE_ATTN)

View File

@ -41,12 +41,11 @@ def test_eagle_max_len(monkeypatch: pytest.MonkeyPatch,
m.setenv("VLLM_USE_V1", "1")
m.setenv("VLLM_ATTENTION_BACKEND", attn_backend)
if (attn_backend == "TRITON_ATTN_VLLM_V1"
and not current_platform.is_rocm()):
pytest.skip("TRITON_ATTN_VLLM_V1 does not support "
if (attn_backend == "TRITON_ATTN" and not current_platform.is_rocm()):
pytest.skip("TRITON_ATTN does not support "
"multi-token eagle spec decode on current platform")
if attn_backend == "FLASH_ATTN_VLLM_V1" and current_platform.is_rocm():
if attn_backend == "FLASH_ATTN" and current_platform.is_rocm():
m.setenv("VLLM_ROCM_USE_AITER", "1")
llm = LLM(

View File

@ -9,11 +9,13 @@ from vllm.v1.spec_decode.ngram_proposer import (
def test_find_longest_matched_ngram_and_propose_tokens():
tokens = np.array([1, 2, 3, 4, 1, 2, 3, 5, 6])
assert _find_longest_matched_ngram_and_propose_tokens(origin_tokens=tokens,
min_ngram=2,
max_ngram=2,
max_model_len=1024,
k=2) is None
result = _find_longest_matched_ngram_and_propose_tokens(
origin_tokens=tokens,
min_ngram=2,
max_ngram=2,
max_model_len=1024,
k=2)
assert len(result) == 0
tokens = np.array([1, 2, 3, 4, 1, 2, 3])
np.testing.assert_array_equal(
@ -62,7 +64,7 @@ def test_find_longest_matched_ngram_and_propose_tokens():
def test_ngram_proposer():
def ngram_proposer(min_n: int, max_n: int, k: int) -> NgramProposer:
def get_ngram_proposer(min_n: int, max_n: int, k: int) -> NgramProposer:
# Dummy model config. Just to set max_model_len.
model_config = ModelConfig(model="facebook/opt-125m")
return NgramProposer(
@ -75,36 +77,120 @@ def test_ngram_proposer():
)))
# No match.
result = ngram_proposer(
min_n=2, max_n=2,
k=2).propose(context_token_ids=np.array([1, 2, 3, 4, 5]))
assert result is None
token_ids_cpu = np.array([[1, 2, 3, 4, 5]])
result = get_ngram_proposer(min_n=2, max_n=2, k=2).propose(
sampled_token_ids=[[0]],
req_ids=["0"],
num_tokens_no_spec=np.array([len(c) for c in token_ids_cpu]),
token_ids_cpu=token_ids_cpu,
spec_decode_unsupported_reqs=(),
)
assert len(result[0]) == 0
# No match for 4-gram.
result = ngram_proposer(
min_n=4, max_n=4,
k=2).propose(context_token_ids=np.array([1, 2, 3, 4, 1, 2, 3]))
assert result is None
token_ids_cpu = np.array([[1, 2, 3, 4, 1, 2, 3]])
result = get_ngram_proposer(min_n=4, max_n=4, k=2).propose(
sampled_token_ids=[[0]],
req_ids=["0"],
num_tokens_no_spec=np.array([len(c) for c in token_ids_cpu]),
token_ids_cpu=token_ids_cpu,
spec_decode_unsupported_reqs=(),
)
assert len(result[0]) == 0
# No match for 4-gram but match for 3-gram.
result = ngram_proposer(
min_n=3, max_n=4,
k=2).propose(context_token_ids=np.array([1, 2, 3, 4, 1, 2, 3]))
assert np.array_equal(result, np.array([4, 1]))
token_ids_cpu = np.array([[1, 2, 3, 4, 1, 2, 3]])
result = get_ngram_proposer(min_n=3, max_n=4, k=2).propose(
sampled_token_ids=[[0]],
req_ids=["0"],
num_tokens_no_spec=np.array([len(c) for c in token_ids_cpu]),
token_ids_cpu=token_ids_cpu,
spec_decode_unsupported_reqs=(),
)
assert np.array_equal(result, np.array([[4, 1]]))
# Match for both 4-gram and 3-gram.
# In this case, the proposer should return the 4-gram match.
result = ngram_proposer(min_n=3, max_n=4, k=2).propose(
context_token_ids=np.array([2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 3, 4]))
assert np.array_equal(result, np.array([1, 2])) # Not [5, 1]
token_ids_cpu = np.array([[2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 3, 4]])
result = get_ngram_proposer(min_n=3, max_n=4, k=2).propose(
sampled_token_ids=[[0]],
req_ids=["0"],
num_tokens_no_spec=np.array([len(c) for c in token_ids_cpu]),
token_ids_cpu=token_ids_cpu,
spec_decode_unsupported_reqs=(),
)
assert np.array_equal(result, np.array([[1, 2]])) # Not [5, 1]]
# Match for 2-gram and 3-gram, but not 4-gram.
result = ngram_proposer(min_n=2, max_n=4, k=2).propose(
context_token_ids=np.array([3, 4, 5, 2, 3, 4, 1, 2, 3, 4]))
assert np.array_equal(result, np.array([1, 2])) # Not [5, 2]
token_ids_cpu = np.array([[3, 4, 5, 2, 3, 4, 1, 2, 3, 4]])
result = get_ngram_proposer(min_n=2, max_n=4, k=2).propose(
sampled_token_ids=[[0]],
req_ids=["0"],
num_tokens_no_spec=np.array([len(c) for c in token_ids_cpu]),
token_ids_cpu=token_ids_cpu,
spec_decode_unsupported_reqs=(),
)
assert np.array_equal(result, np.array([[1, 2]])) # Not [5, 2]]
# Multiple 3-gram matched, but always pick the first one.
result = ngram_proposer(
min_n=3, max_n=3, k=2).propose(context_token_ids=np.array(
[1, 2, 3, 100, 1, 2, 3, 200, 1, 2, 3, 300, 1, 2, 3]))
assert np.array_equal(result, np.array([100, 1]))
token_ids_cpu = np.array(
[[1, 2, 3, 100, 1, 2, 3, 200, 1, 2, 3, 300, 1, 2, 3]])
result = get_ngram_proposer(min_n=3, max_n=3, k=2).propose(
sampled_token_ids=[[0]],
req_ids=["0"],
num_tokens_no_spec=np.array([len(c) for c in token_ids_cpu]),
token_ids_cpu=token_ids_cpu,
spec_decode_unsupported_reqs=(),
)
assert np.array_equal(result, np.array([[100, 1]]))
# check empty input
token_ids_cpu = np.array([[]])
result = get_ngram_proposer(min_n=2, max_n=2, k=2).propose(
sampled_token_ids=[[0]],
req_ids=["0"],
num_tokens_no_spec=np.array([len(c) for c in token_ids_cpu]),
token_ids_cpu=token_ids_cpu,
spec_decode_unsupported_reqs=(),
)
assert len(result[0]) == 0
# check multibatch input
# first request has 5 tokens and a match
# second request has 3 tokens and no match. Padded with -1 for max len 5
token_ids_cpu = np.array([[1, 2, 3, 1, 2], [4, 5, 6, -1, -1]])
result = get_ngram_proposer(min_n=2, max_n=2, k=2).propose(
sampled_token_ids=[[0], [1]],
req_ids=["0", "1"],
num_tokens_no_spec=np.array([5, 3]),
token_ids_cpu=token_ids_cpu,
spec_decode_unsupported_reqs=(),
)
assert len(result[0]) == 2
assert np.array_equal(result[0], np.array([3, 1]))
assert np.array_equal(result[1], np.array([]))
# test if 0 threads available: can happen if TP size > CPU count
ngram_proposer = get_ngram_proposer(min_n=2, max_n=2, k=2)
ngram_proposer.num_numba_thread_available = 0
# set max_model_len to 2 * threshold to ensure multithread is used
num_tokens_threshold = ngram_proposer.num_tokens_threshold
ngram_proposer.max_model_len = 2 * num_tokens_threshold
# using multibatch test
middle_integer = num_tokens_threshold // 2
input_1 = [_ for _ in range(num_tokens_threshold)]
input_1 += [middle_integer, middle_integer + 1]
input_2 = [-1] * len(input_1)
input_2[:3] = [4, 5, 6]
token_ids_cpu = np.array([input_1, input_2])
result = ngram_proposer.propose(
sampled_token_ids=[[0], [1]],
req_ids=["0", "1"],
num_tokens_no_spec=np.array([len(input_1), 3]),
token_ids_cpu=token_ids_cpu,
spec_decode_unsupported_reqs=(),
)
assert len(result[0]) == 2
assert np.array_equal(result[0],
np.array([middle_integer + 2, middle_integer + 3]))
assert np.array_equal(result[1], np.array([]))

View File

@ -278,7 +278,7 @@ def test_tree_attn_correctness() -> None:
block_table=block_table,
slot_mapping=branch_slot_mapping,
seqlen_k=sequence_position + q_len,
backend=_Backend.FLASH_ATTN_VLLM_V1,
backend=_Backend.FLASH_ATTN,
).view(batch_size, -1, num_heads, dim_per_head)
# Compare the outputs.

View File

@ -1,17 +1,10 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from unittest.mock import Mock
import torch
from vllm.v1.attention.backends.flash_attn import (
FlashAttentionBackend, FlashAttentionMetadataBuilder)
from vllm.v1.attention.backends.flex_attention import (
FlexAttentionBackend, FlexAttentionMetadataBuilder)
from vllm.v1.kv_cache_interface import FullAttentionSpec, KVCacheGroupSpec
from vllm.v1.worker.utils import (AttentionGroup,
initialize_kv_cache_for_kv_sharing)
from vllm.v1.worker.utils import add_kv_sharing_layers_to_kv_cache_groups
def new_kv_cache_spec():
@ -37,56 +30,17 @@ def test_initialize_kv_cache_for_kv_sharing_different_attn_groups():
new_kv_cache_spec()),
]
attn_groups = [
# KV cache group 0 has two attention groups
[
AttentionGroup(
backend=FlashAttentionBackend,
metadata_builder=Mock(spec=FlashAttentionMetadataBuilder),
layer_names=["model.layers.0"],
),
AttentionGroup(
backend=FlexAttentionBackend,
metadata_builder=Mock(spec=FlexAttentionMetadataBuilder),
layer_names=["model.layers.1"],
),
],
]
# Only layers 0 and 1 will have KV caches allocated
kv_caches = {
"model.layers.0": torch.zeros(1, 2, 3),
"model.layers.1": torch.ones(1, 2, 3),
}
initialize_kv_cache_for_kv_sharing(
add_kv_sharing_layers_to_kv_cache_groups(
shared_kv_cache_layers=shared_kv_cache_layers,
kv_cache_groups=kv_cache_groups,
kv_caches=kv_caches,
attn_groups=attn_groups,
)
# Check that the KV caches were shared correctly
assert kv_caches["model.layers.2"].data_ptr(
) == kv_caches["model.layers.0"].data_ptr()
assert kv_caches["model.layers.3"].data_ptr(
) == kv_caches["model.layers.1"].data_ptr()
# Check that the layers were added to the correct KV cache group
assert len(kv_cache_groups) == 1
assert kv_cache_groups[0].layer_names == [
"model.layers.0", "model.layers.1", "model.layers.2", "model.layers.3"
]
# Check that the layers were added to the attention groups
assert len(attn_groups) == 1 and len(attn_groups[0]) == 2
assert attn_groups[0][0].layer_names == [
"model.layers.0", "model.layers.2"
]
assert attn_groups[0][1].layer_names == [
"model.layers.1", "model.layers.3"
]
def test_initialize_kv_cache_for_kv_sharing_same_attn_groups():
"""
@ -103,48 +57,17 @@ def test_initialize_kv_cache_for_kv_sharing_same_attn_groups():
new_kv_cache_spec()),
]
attn_groups = [
# KV cache group 0 has a single attention group
# as all layers have the same flash attention backend
[
AttentionGroup(
backend=FlashAttentionBackend,
metadata_builder=Mock(spec=FlashAttentionMetadataBuilder),
layer_names=["model.layers.0", "model.layers.1"],
),
],
]
kv_caches = {
"model.layers.0": torch.zeros(1, 2, 3),
"model.layers.1": torch.ones(1, 2, 3),
}
initialize_kv_cache_for_kv_sharing(
add_kv_sharing_layers_to_kv_cache_groups(
shared_kv_cache_layers=shared_kv_cache_layers,
kv_cache_groups=kv_cache_groups,
kv_caches=kv_caches,
attn_groups=attn_groups,
)
# Check that the KV caches were shared correctly
assert kv_caches["model.layers.2"].data_ptr(
) == kv_caches["model.layers.0"].data_ptr()
assert kv_caches["model.layers.3"].data_ptr(
) == kv_caches["model.layers.1"].data_ptr()
# Check that the layers were added to the correct KV cache group
assert len(kv_cache_groups) == 1
assert kv_cache_groups[0].layer_names == [
"model.layers.0", "model.layers.1", "model.layers.2", "model.layers.3"
]
# Check that the layers were added to the attention groups
assert len(attn_groups) == 1 and len(attn_groups[0]) == 1
assert attn_groups[0][0].layer_names == [
"model.layers.0", "model.layers.1", "model.layers.2", "model.layers.3"
]
def test_initialize_kv_cache_for_kv_sharing_no_attn_groups():
"""
@ -162,23 +85,11 @@ def test_initialize_kv_cache_for_kv_sharing_no_attn_groups():
KVCacheGroupSpec(["model.layers.1"], new_kv_cache_spec()),
]
kv_caches = {
"model.layers.0": torch.zeros(1, 2, 3),
"model.layers.1": torch.ones(1, 2, 3),
}
initialize_kv_cache_for_kv_sharing(
add_kv_sharing_layers_to_kv_cache_groups(
shared_kv_cache_layers=shared_kv_cache_layers,
kv_cache_groups=kv_cache_groups,
kv_caches=kv_caches,
)
# Check that the KV caches were shared correctly
assert kv_caches["model.layers.2"].data_ptr(
) == kv_caches["model.layers.0"].data_ptr()
assert kv_caches["model.layers.3"].data_ptr(
) == kv_caches["model.layers.1"].data_ptr()
# Check that the layers were added to the correct KV cache group
assert len(kv_cache_groups) == 2
assert kv_cache_groups[0].layer_names == [

View File

@ -54,26 +54,3 @@ def test_v1_llm_by_default(monkeypatch):
print(llm.generate("Hello my name is"))
assert hasattr(llm.llm_engine, "engine_core")
m.delenv("VLLM_USE_V1")
def test_v1_attn_backend(monkeypatch):
with monkeypatch.context() as m:
if os.getenv("VLLM_USE_V1", None):
m.delenv("VLLM_USE_V1")
m.setenv("VLLM_ATTENTION_BACKEND", "XFORMERS")
# Fall back to V0.
_ = AsyncEngineArgs(model=MODEL).create_engine_config()
assert not envs.VLLM_USE_V1
m.delenv("VLLM_USE_V1")
# Reject if V1.
m.setenv("VLLM_USE_V1", "1")
with pytest.raises(NotImplementedError):
AsyncEngineArgs(model=MODEL).create_engine_config()
m.delenv("VLLM_USE_V1")
m.setenv("VLLM_ATTENTION_BACKEND", "FLASHMLA")
_ = AsyncEngineArgs(model=MODEL).create_engine_config()
assert envs.VLLM_USE_V1
m.delenv("VLLM_USE_V1")

View File

@ -2,9 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm.attention.backends.abstract import (AttentionBackend,
AttentionMetadata,
AttentionMetadataBuilder,
AttentionState, AttentionType)
AttentionMetadata, AttentionType)
from vllm.attention.layer import Attention
from vllm.attention.selector import get_attn_backend
@ -13,7 +11,5 @@ __all__ = [
"AttentionBackend",
"AttentionMetadata",
"AttentionType",
"AttentionMetadataBuilder",
"AttentionState",
"get_attn_backend",
]

View File

@ -2,10 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from abc import ABC, abstractmethod
from contextlib import contextmanager
from dataclasses import dataclass, fields
from typing import (Any, Dict, Generic, List, Optional, Protocol, Set, Tuple,
Type, TypeVar)
from typing import Generic, List, Optional, Protocol, Tuple, Type, TypeVar
import torch
@ -34,6 +31,14 @@ class AttentionBackend(ABC):
# makes sure the output tensor is allocated inside the cudagraph.
accept_output_buffer: bool = False
# Whether this backend supports receiving pre-quantized query input.
# If True, the attention layer will handle query quantization instead
# of the backend, allowing torch.compile to fuse quantization with
# previous operations.
# Needs to be worked through for all backends
# https://github.com/vllm-project/vllm/issues/25584
supports_quant_query_input: bool = False
@staticmethod
@abstractmethod
def get_name() -> str:
@ -49,18 +54,13 @@ class AttentionBackend(ABC):
def get_metadata_cls() -> Type["AttentionMetadata"]:
raise NotImplementedError
@staticmethod
@abstractmethod
def get_state_cls() -> Type["AttentionState"]:
raise NotImplementedError
@classmethod
def make_metadata(cls, *args, **kwargs) -> "AttentionMetadata":
return cls.get_metadata_cls()(*args, **kwargs)
@staticmethod
@abstractmethod
def get_builder_cls() -> Type["AttentionMetadataBuilder"]:
def get_builder_cls(): # -> Type["AttentionMetadataBuilder"]:
raise NotImplementedError
@staticmethod
@ -77,149 +77,18 @@ class AttentionBackend(ABC):
def get_kv_cache_stride_order() -> Tuple[int, ...]:
raise NotImplementedError
@staticmethod
@abstractmethod
def swap_blocks(
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: torch.Tensor,
) -> None:
raise NotImplementedError
@staticmethod
@abstractmethod
def copy_blocks(
kv_caches: List[torch.Tensor],
src_to_dists: torch.Tensor,
) -> None:
raise NotImplementedError
@classmethod
def full_cls_name(cls) -> tuple[str, str]:
return (cls.__module__, cls.__qualname__)
@dataclass
class AttentionMetadata:
"""Attention metadata for prefill and decode batched together."""
# Total number of prefill requests.
num_prefills: int
# Number of prefill tokens.
num_prefill_tokens: int
# Number of decode tokens. Note that it is equivalent to the number of
# decode requests.
num_decode_tokens: int
# (num_tokens,). The indices of the token slots that input tokens will be
# stored into. E.g., if `slot_mapping` is [35, 2, 17] and the block size
# is 16, the three tokens are stored in the 3rd slot in block 2, 2nd slot
# in block 0, and 1st slot in block 1, respectively.
slot_mapping: torch.Tensor
# Enable/disable KV scales calculation. This is so that we can disable the
# calculation until after prefill and cuda graph capture.
enable_kv_scales_calculation: bool
@property
@abstractmethod
def prefill_metadata(self) -> Optional["AttentionMetadata"]:
"""Return the attention metadata that's required to run prefill
attention."""
pass
@property
@abstractmethod
def decode_metadata(self) -> Optional["AttentionMetadata"]:
"""Return the attention metadata that's required to run decode
attention."""
pass
def asdict_zerocopy(self,
skip_fields: Optional[Set[str]] = None
) -> Dict[str, Any]:
"""Similar to dataclasses.asdict, but avoids deepcopying."""
if skip_fields is None:
skip_fields = set()
# Note that if we add dataclasses as fields, they will need
# similar handling.
return {
field.name: getattr(self, field.name)
for field in fields(self) if field.name not in skip_fields
}
pass
T = TypeVar("T", bound=AttentionMetadata)
class AttentionState(ABC, Generic[T]):
"""Holds attention backend-specific objects reused during the
lifetime of the model runner."""
@abstractmethod
def __init__(self, runner: Any):
...
@abstractmethod
@contextmanager
def graph_capture(self, max_batch_size: int):
"""Context manager used when capturing CUDA graphs."""
yield
@abstractmethod
def graph_clone(self, batch_size: int) -> "AttentionState[T]":
"""Clone attention state to save in CUDA graph metadata."""
...
@abstractmethod
def graph_capture_get_metadata_for_batch(
self,
batch_size: int,
is_encoder_decoder_model: bool = False) -> T:
"""Get attention metadata for CUDA graph capture of batch_size."""
...
@abstractmethod
def get_graph_input_buffers(
self,
attn_metadata: T,
is_encoder_decoder_model: bool = False) -> Dict[str, Any]:
"""Get attention-specific input buffers for CUDA graph capture."""
...
@abstractmethod
def prepare_graph_input_buffers(
self,
input_buffers: Dict[str, Any],
attn_metadata: T,
is_encoder_decoder_model: bool = False) -> None:
"""In-place modify input buffers dict for CUDA graph replay."""
...
@abstractmethod
def begin_forward(self, model_input) -> None:
"""Prepare state for forward pass."""
...
class AttentionMetadataBuilder(ABC, Generic[T]):
"""Abstract class for attention metadata builders."""
@abstractmethod
def __init__(self, input_builder) -> None:
"""Create the builder, remember some configuration and parameters."""
raise NotImplementedError
@abstractmethod
def prepare(self) -> None:
"""Prepare for one batch."""
raise NotImplementedError
@abstractmethod
def build(self, seq_lens: List[int], query_lens: List[int],
cuda_graph_pad_size: int, batch_size: int) -> T:
"""Build attention metadata with on-device tensors."""
raise NotImplementedError
class AttentionLayer(Protocol):
_q_scale: torch.Tensor

View File

@ -1,559 +1,16 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Attention backend utils"""
from contextlib import contextmanager
from dataclasses import dataclass
from itertools import accumulate
from typing import Any, Dict, List, Optional, Tuple, Type, TypeVar, Union
from typing import Optional
import numpy as np
import torch
from vllm.attention import (AttentionMetadata, AttentionMetadataBuilder,
AttentionState)
from vllm.attention.backends.abstract import AttentionType
from vllm.config import ModelConfig
from vllm.logger import init_logger
from vllm.utils import async_tensor_h2d, make_tensor_with_pad
logger = init_logger(__name__)
PAD_SLOT_ID = -1
# Switch to numpy implementation of compute_slot_mapping
# if we have at least this many elements. Could be tuned further.
_COMPUTE_SLOT_MAPPING_NUMPY_NUMEL = 256
def is_block_tables_empty(block_tables: Union[None, Dict]):
"""
Check if block_tables is None or a dictionary with all None values.
"""
if block_tables is None:
return True
return (isinstance(block_tables, dict)
and all(value is None for value in block_tables.values()))
def compute_slot_mapping_start_idx(is_prompt: bool, query_len: int,
context_len: int, sliding_window: int):
"""
Compute the start index of slot mapping.
"""
start_idx = 0
if is_prompt and sliding_window is not None:
start_idx = max(0, query_len - sliding_window)
return start_idx
def _compute_slot_mapping_python(slot_mapping: List[int],
block_table: List[int], range_start: int,
range_end: int, block_size: int):
for i in range(range_start, range_end):
block_number = block_table[i // block_size]
block_offset = i % block_size
slot = block_number * block_size + block_offset
slot_mapping.append(slot)
def _compute_slot_mapping_numpy(slot_mapping: List[int],
block_table: List[int], range_start: int,
range_end: int, block_size: int):
block_table_array = np.array(block_table)
idx = np.arange(range_start, range_end)
block_offset = idx % block_size
idx //= block_size
seq_slot_mapping_array = block_table_array[idx]
seq_slot_mapping_array *= block_size
seq_slot_mapping_array += block_offset
slot_mapping.extend(seq_slot_mapping_array)
def compute_slot_mapping(is_profile_run: bool, slot_mapping: List[int],
seq_id: int, seq_len: int, context_len: int,
start_idx: int, block_size: int,
block_tables: Dict[int, List[int]]):
"""
Compute slot mapping.
"""
if is_profile_run:
# During memory profiling, the block tables are not
# initialized yet. In this case, we just use a dummy
# slot mapping.
# In embeddings, the block tables are {seq_id: None}.
slot_mapping.extend([PAD_SLOT_ID] * seq_len)
return
# Mask the [0, start_idx) tokens of the prompt with
# PAD_SLOT_ID, where start_idx is max(0, seq_len -
# sliding_window). For example, if the prompt len is 10,
# sliding window is 8, and block size is 4, the first two
# tokens are masked and the slot mapping will be
# [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
padding_mask_len = max(0, start_idx - context_len)
slot_mapping.extend([PAD_SLOT_ID] * padding_mask_len)
range_start = max(start_idx, context_len)
range_end = seq_len
numel = range_end - range_start
block_table = block_tables[seq_id]
# numpy implementation will be faster than python if we have
# many elements, otherwise it will be slower.
if numel < _COMPUTE_SLOT_MAPPING_NUMPY_NUMEL:
_compute_slot_mapping_python(slot_mapping, block_table, range_start,
range_end, block_size)
else:
_compute_slot_mapping_numpy(slot_mapping, block_table, range_start,
range_end, block_size)
TAttentionMetadata = TypeVar("TAttentionMetadata", bound='AttentionMetadata')
class CommonMetadataBuilder(AttentionMetadataBuilder[TAttentionMetadata]):
_metadata_cls: Type[TAttentionMetadata]
def __init__(self, input_builder):
self.input_builder = input_builder
self.runner = input_builder.runner
self.sliding_window = input_builder.sliding_window
self.block_size = input_builder.block_size
def prepare(self):
self.slot_mapping: List[int] = []
self.prefill_seq_lens: List[int] = []
self.context_lens: List[int] = []
self.block_tables: List[List[int]] = []
self.curr_seq_lens: List[int] = []
self.num_prefills = 0
self.num_prefill_tokens = 0
self.num_decode_tokens = 0
def _add_seq_group(self, inter_data, chunked_prefill_enabled: bool):
is_prompt = inter_data.is_prompt
block_tables = inter_data.block_tables
for (seq_id, token_len, seq_len, curr_seq_len, query_len, context_len,
curr_sliding_window_block) in zip(
inter_data.seq_ids, [len(t) for t in inter_data.input_tokens],
inter_data.orig_seq_lens, inter_data.seq_lens,
inter_data.query_lens, inter_data.context_lens,
inter_data.curr_sliding_window_blocks):
self.context_lens.append(context_len)
if is_prompt:
self.num_prefills += 1
self.num_prefill_tokens += token_len
self.prefill_seq_lens.append(seq_len)
else:
assert query_len == 1, (
"seq_len: {}, context_len: {}, query_len: {}".format(
seq_len, context_len, query_len))
self.num_decode_tokens += query_len
self.curr_seq_lens.append(curr_seq_len)
# Compute block table.
# TODO(sang): Combine chunked prefill and prefix caching by
# only allowing multiple of block_size chunk size.
# NOTE: This only works for oooooooxxx style attention.
block_table = []
if inter_data.prefix_cache_hit:
block_table = block_tables[seq_id]
elif ((chunked_prefill_enabled or not is_prompt)
and block_tables is not None):
if curr_sliding_window_block == 0:
block_table = block_tables[seq_id]
else:
block_table = block_tables[seq_id][
-curr_sliding_window_block:]
self.block_tables.append(block_table)
# Compute slot mapping.
is_profile_run = is_block_tables_empty(block_tables)
start_idx = compute_slot_mapping_start_idx(is_prompt, query_len,
context_len,
self.sliding_window)
compute_slot_mapping(is_profile_run, self.slot_mapping, seq_id,
seq_len, context_len, start_idx,
self.block_size, inter_data.block_tables)
def build(self, seq_lens: List[int], query_lens: List[int],
cuda_graph_pad_size: int, batch_size: int):
"""Build attention metadata with on-device tensors.
Args:
seq_lens: The maybe padded sequence lengths of the input sequences.
query_lens: The query lengths of the input sequences.
cuda_graph_pad_size: The padding size for cuda graph.
-1 if cuda graph is not used.
batch_size: The maybe padded batch size.
"""
for inter_data in self.input_builder.inter_data_list:
self._add_seq_group(inter_data,
self.input_builder.chunked_prefill_enabled)
device = self.runner.device
use_captured_graph = cuda_graph_pad_size != -1
max_query_len = max(query_lens)
max_prefill_seq_len = max(self.prefill_seq_lens, default=0)
max_decode_seq_len = max(self.curr_seq_lens, default=0)
num_decode_tokens = self.num_decode_tokens
query_start_loc = list(accumulate(query_lens, initial=0))
seq_start_loc = list(accumulate(seq_lens, initial=0))
if use_captured_graph:
self.slot_mapping.extend([PAD_SLOT_ID] * cuda_graph_pad_size)
self.block_tables.extend([] * cuda_graph_pad_size)
num_decode_tokens = batch_size
# The shape of graph_block_tables is
# [max batch size, max context len // block size].
input_block_tables = self.runner.graph_block_tables[:batch_size]
for i, block_table in enumerate(self.block_tables):
if block_table:
input_block_tables[i, :len(block_table)] = block_table
block_tables = torch.from_numpy(input_block_tables).to(
device, non_blocking=True)
else:
block_tables = make_tensor_with_pad(
self.block_tables,
pad=0,
dtype=torch.int,
device=device,
)
assert max_query_len > 0, "query_lens: {}".format(query_lens)
assert device is not None
context_lens_tensor = async_tensor_h2d(self.context_lens, torch.int,
device, self.runner.pin_memory)
seq_lens_tensor = async_tensor_h2d(seq_lens, torch.int, device,
self.runner.pin_memory)
slot_mapping_tensor = async_tensor_h2d(self.slot_mapping, torch.long,
device, self.runner.pin_memory)
query_start_loc_tensor = async_tensor_h2d(query_start_loc, torch.int32,
device,
self.runner.pin_memory)
seq_start_loc_tensor = async_tensor_h2d(seq_start_loc, torch.int32,
device, self.runner.pin_memory)
return self._metadata_cls( # type: ignore
num_prefills=self.num_prefills,
slot_mapping=slot_mapping_tensor,
enable_kv_scales_calculation=True,
num_prefill_tokens=self.num_prefill_tokens,
num_decode_tokens=num_decode_tokens,
seq_lens=seq_lens,
seq_lens_tensor=seq_lens_tensor,
max_query_len=max_query_len,
max_prefill_seq_len=max_prefill_seq_len,
max_decode_seq_len=max_decode_seq_len,
query_start_loc=query_start_loc_tensor,
seq_start_loc=seq_start_loc_tensor,
context_lens_tensor=context_lens_tensor,
block_tables=block_tables,
use_cuda_graph=use_captured_graph,
)
class CommonAttentionState(AttentionState):
def __init__(self, runner):
self.runner = runner
self._is_graph_capturing = False
@contextmanager
def graph_capture(self, max_batch_size: int):
self._is_graph_capturing = True
self._graph_slot_mapping = torch.full((max_batch_size, ),
PAD_SLOT_ID,
dtype=torch.long,
device=self.runner.device)
self._graph_seq_lens = torch.ones(max_batch_size,
dtype=torch.int32,
device=self.runner.device)
self._graph_block_tables = torch.from_numpy(
self.runner.graph_block_tables).to(device=self.runner.device)
yield
self._is_graph_capturing = False
del self._graph_slot_mapping
del self._graph_seq_lens
del self._graph_block_tables
def graph_clone(self, batch_size: int) -> "CommonAttentionState":
assert self._is_graph_capturing
return self.__class__(self.runner)
def graph_capture_get_metadata_for_batch(
self, batch_size: int, is_encoder_decoder_model: bool = False):
assert self._is_graph_capturing
attn_metadata = self.runner.attn_backend.make_metadata(
num_prefills=0,
num_prefill_tokens=0,
num_decode_tokens=batch_size,
slot_mapping=self._graph_slot_mapping[:batch_size],
enable_kv_scales_calculation=True,
seq_lens=None,
seq_lens_tensor=self._graph_seq_lens[:batch_size],
max_query_len=1,
max_decode_query_len=1,
max_prefill_seq_len=0,
max_decode_seq_len=self.runner.max_model_len,
query_start_loc=None,
seq_start_loc=None,
context_lens_tensor=None,
block_tables=self._graph_block_tables[:batch_size],
use_cuda_graph=True,
)
if is_encoder_decoder_model:
# The encoder decoder model works only with XFormers and
# Flash Attention backend. Assert the same.
assert self.runner.attn_backend.get_name() in \
["XFORMERS", "FLASH_ATTN"], \
f"Expected attn_backend name to be either 'XFORMERS' or " \
f"'FLASH_ATTN', but got '{self.runner.attn_backend.get_name()}'"
self._update_captured_metadata_for_enc_dec_model(
batch_size=batch_size, attn_metadata=attn_metadata)
return attn_metadata
def get_graph_input_buffers(
self,
attn_metadata,
is_encoder_decoder_model: bool = False) -> Dict[str, Any]:
input_buffers = {
"slot_mapping": attn_metadata.slot_mapping,
"seq_lens_tensor": attn_metadata.decode_metadata.seq_lens_tensor,
"block_tables": attn_metadata.decode_metadata.block_tables,
}
if is_encoder_decoder_model:
# The encoder decoder model works only with XFormers and
# Flash Attention backend. Assert the same.
assert self.runner.attn_backend.get_name() in \
["XFORMERS", "FLASH_ATTN"], \
f"Expected attn_backend name to be either 'XFORMERS' or " \
f"'FLASH_ATTN', but got '{self.runner.attn_backend.get_name()}'"
self._add_additional_input_buffers_for_enc_dec_model(
attn_metadata=attn_metadata, input_buffers=input_buffers)
return input_buffers
def prepare_graph_input_buffers(
self,
input_buffers,
attn_metadata,
is_encoder_decoder_model: bool = False) -> None:
input_buffers["seq_lens_tensor"].copy_(
attn_metadata.decode_metadata.seq_lens_tensor, non_blocking=True)
input_buffers["block_tables"].copy_(
attn_metadata.decode_metadata.block_tables, non_blocking=True)
if is_encoder_decoder_model:
# The encoder decoder model works only with XFormers and
# Flash Attention backend. Assert the same.
assert self.runner.attn_backend.get_name() in\
["XFORMERS", "FLASH_ATTN"], \
f"Expected attn_backend name to be either 'XFORMERS' or "\
f"'FLASH_ATTN', but "\
f"got '{self.runner.attn_backend.get_name()}'"
self._prepare_input_buffers_for_enc_dec_model(
attn_metadata, input_buffers)
def begin_forward(self, model_input) -> None:
return
def _update_captured_metadata_for_enc_dec_model(self, batch_size: int,
attn_metadata):
"""
Updates the attention metadata parameters for CUDA graph capture in an
encoder-decoder model.
This method modifies attention-related tensors and metadata required
for CUDA graph capture in encoder-decoder models. Specifically, it
updates the cross-attention and encoder sequence tensors in the
AttentionMetadata object.
"""
# During decode phase the cross_slot_mapping will be empty. Hence set
# an empty tensor for CUDA Graph capture.
attn_metadata.cross_slot_mapping = torch.tensor(
[], dtype=torch.int).cuda()
attn_metadata.cross_block_tables = torch.full(
(batch_size, self.runner.get_max_block_per_batch()),
1,
dtype=torch.int).cuda()
attn_metadata.encoder_seq_lens = torch.full((batch_size, ),
1,
dtype=torch.int).cuda()
attn_metadata.encoder_seq_lens_tensor = torch.full(
(batch_size, ), 1, dtype=torch.int).cuda()
attn_metadata.max_encoder_seq_len = self.runner.max_model_len
attn_metadata.num_encoder_tokens = 0
def _add_additional_input_buffers_for_enc_dec_model(
self, attn_metadata, input_buffers: Dict[str, Any]):
"""
Saves additional input buffers specific to the encoder-decoder model
from the attention metadata.
This method extracts and stores encoder-decoder related input buffers
from the `attn_metadata` into the `input_buffers` dictionary. The
buffers include encoder sequence lengths, cross-slot mappings, and
cross-block tables, which are essential for the encoder-decoder model
during CUDA graph replay.
"""
input_buffers["encoder_seq_lens_tensor"] = (
attn_metadata.decode_metadata.encoder_seq_lens_tensor)
input_buffers["cross_slot_mapping"] = (
attn_metadata.decode_metadata.cross_slot_mapping)
input_buffers["cross_block_tables"] = (
attn_metadata.decode_metadata.cross_block_tables)
def _prepare_input_buffers_for_enc_dec_model(self, attn_metadata,
input_buffers: Dict[str,
Any]):
"""
Populates input buffers with data from the encoder-decoder model's
attention metadata.
This method fills the input buffers with encoder-decoder specific
tensors. It copies data from the `attn_metadata` and keyword arguments
(`kwargs`) into corresponding buffers in the `input_buffers` dictionary.
The copied data includes attention-related metadata as well as input
IDs and positional information for the encoder.
"""
input_buffers["encoder_seq_lens_tensor"].copy_(
attn_metadata.decode_metadata.encoder_seq_lens_tensor,
non_blocking=True)
input_buffers["cross_slot_mapping"].copy_(
attn_metadata.decode_metadata.cross_slot_mapping,
non_blocking=True)
input_buffers["cross_block_tables"].copy_(
attn_metadata.decode_metadata.cross_block_tables,
non_blocking=True)
def is_all_encoder_attn_metadata_set(attn_metadata):
'''
All attention metadata required for encoder attention is set.
'''
return ((attn_metadata.encoder_seq_lens is not None)
and (attn_metadata.encoder_seq_lens_tensor is not None)
and (attn_metadata.max_encoder_seq_len is not None))
def is_all_cross_attn_metadata_set(attn_metadata):
'''
All attention metadata required for enc/dec cross-attention is set.
Superset of encoder attention required metadata.
'''
return (attn_metadata.is_all_encoder_attn_metadata_set
and (attn_metadata.cross_slot_mapping is not None)
and (attn_metadata.cross_block_tables is not None))
def get_seq_len_block_table_args(
attn_metadata,
is_prompt: bool,
attn_type: str,
) -> tuple:
'''
The particular choice of sequence-length- and block-table-related
attributes which should be extracted from attn_metadata is dependent
on the type of attention operation.
Decoder attn -> select entirely decoder self-attention-related fields
Encoder/decoder cross-attn -> select encoder sequence lengths &
cross-attn block-tables fields
Encoder attn -> select encoder sequence lengths fields & no block tables
Arguments:
* attn_metadata: Attention metadata structure associated with attention op
* is_prompt: True if prefill, False otherwise
* attn_type: encoder attention, decoder self-attention,
encoder/decoder cross-attention
Returns:
* Appropriate sequence-lengths tensor
* Appropriate max sequence-length scalar
* Appropriate block tables (or None)
'''
if attn_type == AttentionType.DECODER:
# Decoder self-attention
# Choose max_seq_len based on whether we are in prompt_run
if is_prompt:
max_seq_len = attn_metadata.max_prefill_seq_len
else:
max_seq_len = attn_metadata.max_decode_seq_len
return (attn_metadata.seq_lens_tensor, max_seq_len,
attn_metadata.block_tables)
elif attn_type == AttentionType.ENCODER_DECODER:
# Enc/dec cross-attention KVs match encoder sequence length;
# cross-attention utilizes special "cross" block tables
return (attn_metadata.encoder_seq_lens_tensor,
attn_metadata.max_encoder_seq_len,
attn_metadata.cross_block_tables)
elif attn_type == AttentionType.ENCODER:
# No block tables associated with encoder attention
return (attn_metadata.encoder_seq_lens_tensor,
attn_metadata.max_encoder_seq_len, None)
else:
raise AttributeError(f"Invalid attention type {str(attn_type)}")
def get_num_prefill_decode_query_kv_tokens(
attn_metadata,
attn_type: str,
) -> Tuple[int, int, int]:
"""
Calculate the number of prefill and decode tokens for query, key/value
based on the attention metadata and the specified attention type.
Args:
attn_metadata (AttentionMetadata): Attention Metadata object.
attn_type (AttentionType): The type of attention being used.
Returns:
Tuple[int, int, int]: A tuple containing three integers:
- The number of prefill query tokens.
- The number of prefill key/value tokens.
- The number of decode query tokens.
Raises:
AssertionError: If the number of encoder tokens in `attn_metadata`
is `None` when required for the calculations.
"""
num_prefill_query_tokens = 0
num_decode_query_tokens = 0
num_prefill_kv_tokens = 0
if attn_type == AttentionType.ENCODER:
# Encoder attention is only invoked during prefill phase.
# The same input servers a both query and key.
assert attn_metadata.num_encoder_tokens is not None
num_prefill_query_tokens = attn_metadata.num_encoder_tokens
num_prefill_kv_tokens = attn_metadata.num_encoder_tokens
num_decode_query_tokens = 0
elif attn_type == AttentionType.ENCODER_DECODER:
assert attn_metadata.num_encoder_tokens is not None
num_prefill_query_tokens = attn_metadata.num_prefill_tokens
# The key is the encoder/cross-attention.
num_prefill_kv_tokens = attn_metadata.num_encoder_tokens
num_decode_query_tokens = attn_metadata.num_decode_tokens
else: # attn_type == AttentionType.DECODER or
# attn_type == AttentionType.ENCODER_ONLY
num_prefill_query_tokens = attn_metadata.num_prefill_tokens
num_prefill_kv_tokens = attn_metadata.num_prefill_tokens
num_decode_query_tokens = attn_metadata.num_decode_tokens
return (num_prefill_query_tokens, num_prefill_kv_tokens,
num_decode_query_tokens)
@dataclass
class MLADims:

View File

@ -22,7 +22,10 @@ from vllm.model_executor.layers.attention_layer_base import AttentionLayerBase
from vllm.model_executor.layers.linear import UnquantizedLinearMethod
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
from vllm.model_executor.layers.quantization.utils.quant_utils import (
GroupShape)
from vllm.model_executor.models.vision import get_vit_attn_backend
from vllm.platforms import _Backend, current_platform
from vllm.utils import GiB_bytes, direct_register_custom_op
@ -247,6 +250,13 @@ class Attention(nn.Module, AttentionLayerBase):
"This may be caused by insufficient memory to allocate "
"kv cache.") from e
# for attn backends supporting query quantization
self.query_quant = None
if self.kv_cache_dtype.startswith(
"fp8") and self.attn_backend.supports_quant_query_input:
self.query_quant = QuantFP8(static=True,
group_shape=GroupShape.PER_TENSOR)
def forward(
self,
query: torch.Tensor,
@ -270,11 +280,22 @@ class Attention(nn.Module, AttentionLayerBase):
attn_metadata = get_forward_context().attn_metadata
if attn_metadata.enable_kv_scales_calculation:
self.calc_kv_scales(query, key, value)
output_dtype = query.dtype
if self.query_quant is not None:
# quantizing with a simple torch operation enables
# torch.compile to fuse this into previous ops
# which reduces overheads during decoding.
# Otherwise queries are quantized using custom ops
# which causes decoding overheads
assert self.kv_cache_dtype in {"fp8", "fp8_e4m3"}
query, _ = self.query_quant(query, self._q_scale)
if self.use_output:
output_shape = (output_shape
if output_shape is not None else query.shape)
output = torch.zeros(output_shape,
dtype=query.dtype,
dtype=output_dtype,
device=query.device)
hidden_size = output_shape[-1]
# We skip reshaping query, key and value tensors for the MLA
@ -343,7 +364,7 @@ class Attention(nn.Module, AttentionLayerBase):
self.impl.process_weights_after_loading(act_dtype)
# FlashInfer requires attention sinks to be float32
if (self.backend == _Backend.FLASHINFER_VLLM_V1
if (self.backend == _Backend.FLASHINFER
and hasattr(self.impl, 'sinks')):
from vllm.v1.attention.backends.flashinfer import FlashInferImpl
assert isinstance(self.impl, FlashInferImpl)
@ -399,21 +420,17 @@ class MultiHeadAttention(nn.Module):
self.attn_backend = backend if backend in {
_Backend.TORCH_SDPA,
_Backend.TORCH_SDPA_VLLM_V1,
_Backend.XFORMERS,
_Backend.PALLAS_VLLM_V1,
_Backend.PALLAS,
_Backend.ROCM_AITER_FA,
_Backend.FLASH_ATTN,
_Backend.FLASH_ATTN_VLLM_V1,
} else _Backend.TORCH_SDPA
if (self.attn_backend == _Backend.XFORMERS
and not check_xformers_availability()):
self.attn_backend = _Backend.TORCH_SDPA
if self.attn_backend in {
_Backend.FLASH_ATTN, _Backend.FLASH_ATTN_VLLM_V1
}:
if self.attn_backend == _Backend.FLASH_ATTN:
if use_upstream_fa:
from flash_attn import flash_attn_varlen_func
self._flash_attn_varlen_func = flash_attn_varlen_func
@ -447,11 +464,7 @@ class MultiHeadAttention(nn.Module):
key = torch.repeat_interleave(key, num_repeat, dim=2)
value = torch.repeat_interleave(value, num_repeat, dim=2)
if self.attn_backend in {
_Backend.FLASH_ATTN,
_Backend.FLASH_ATTN_VLLM_V1,
}:
if self.attn_backend == _Backend.FLASH_ATTN:
cu_seqlens_q = torch.arange(0, (bsz + 1) * q_len,
step=q_len,
dtype=torch.int32,
@ -478,8 +491,7 @@ class MultiHeadAttention(nn.Module):
key,
value,
scale=self.scale)
elif (self.attn_backend == _Backend.TORCH_SDPA
or self.attn_backend == _Backend.TORCH_SDPA_VLLM_V1):
elif self.attn_backend == _Backend.TORCH_SDPA:
query, key, value = (x.transpose(1, 2)
for x in (query, key, value))
out = F.scaled_dot_product_attention(query,
@ -487,7 +499,7 @@ class MultiHeadAttention(nn.Module):
value,
scale=self.scale)
out = out.transpose(1, 2)
elif self.attn_backend == _Backend.PALLAS_VLLM_V1:
elif self.attn_backend == _Backend.PALLAS:
query, key, value = (x.transpose(1, 2)
for x in (query, key, value))
from torch_xla.experimental.custom_kernel import flash_attention

View File

@ -18,12 +18,14 @@ def _correct_attn_cp_out_kernel(outputs_ptr, new_output_ptr, lses_ptr,
final attention output.
Args:
output: [ B, H, D ]
lses : [ N, B, H ]
cp, batch, q_heads, v_head_dim
Return:
output: [ B, H, D ]
lse : [ B, H ]
outputs_ptr (triton.PointerType):
Pointer to input tensor of shape [ B, H, D ]
lses_ptr (triton.PointerType):
Pointer to input tensor of shape [ N, B, H ]
new_output_ptr (triton.PointerType):
Pointer to output tensor of shape [ B, H, D ]
vlse_ptr (triton.PointerType):
Pointer to output tensor of shape [ B, H ]
"""
batch_idx = tl.program_id(axis=0).to(tl.int64)
head_idx = tl.program_id(axis=1).to(tl.int64)
@ -81,19 +83,19 @@ class CPTritonContext:
self.inner_kernel[grid](*regular_args)
def correct_attn_out(out: torch.Tensor, lses: torch.Tensor, cp_rank: int,
ctx: CPTritonContext):
"""
Apply the all-gathered lses to correct each local rank's attention
output. we still need perform a cross-rank reduction to obtain the
final attention output.
def correct_attn_out(
out: torch.Tensor, lses: torch.Tensor, cp_rank: int,
ctx: CPTritonContext) -> tuple[torch.Tensor, torch.Tensor]:
"""Correct the attention output using the all-gathered lses.
Args:
output: [ B, H, D ]
lses : [ N, B, H ]
Return:
output: [ B, H, D ]
lse : [ B, H ]
out: Tensor of shape [ B, H, D ]
lses: Tensor of shape [ N, B, H ]
cp_rank: Current rank in the context-parallel group
ctx: Triton context to avoid recompilation
Returns:
Tuple of (out, lse) with corrected attention and final log-sum-exp.
"""
if ctx is None:
ctx = CPTritonContext()

View File

@ -474,12 +474,14 @@ def _decode_grouped_att_m_fwd(
def _fwd_kernel_stage2(
Mid_O,
o,
lse,
B_Seqlen,
stride_mid_ob,
stride_mid_oh,
stride_mid_os,
stride_obs,
stride_oh,
stride_lse_bs,
NUM_KV_SPLITS: tl.constexpr,
BLOCK_DV: tl.constexpr,
Lv: tl.constexpr,
@ -525,12 +527,18 @@ def _fwd_kernel_stage2(
acc / e_sum,
mask=mask_d,
)
lse_val = e_max + tl.log(e_sum)
tl.store(
lse + cur_batch * stride_lse_bs + cur_head,
lse_val,
)
def _decode_softmax_reducev_fwd(
logits,
q,
o,
lse,
v_buffer,
b_seq_len,
num_kv_splits,
@ -555,12 +563,14 @@ def _decode_softmax_reducev_fwd(
_fwd_kernel_stage2[grid](
logits,
o,
lse,
b_seq_len,
logits.stride(0),
logits.stride(1),
logits.stride(2),
o.stride(0),
o.stride(1),
lse.stride(0),
NUM_KV_SPLITS=NUM_KV_SPLITS,
BLOCK_DV=BLOCK_DV,
Lv=Lv,
@ -575,6 +585,7 @@ def decode_attention_fwd_normal(
k_buffer,
v_buffer,
o,
lse,
req_to_token,
b_seq_len,
attn_logits,
@ -595,7 +606,7 @@ def decode_attention_fwd_normal(
page_size,
logit_cap,
)
_decode_softmax_reducev_fwd(attn_logits, q, o, v_buffer, b_seq_len,
_decode_softmax_reducev_fwd(attn_logits, q, o, lse, v_buffer, b_seq_len,
num_kv_splits)
@ -604,6 +615,7 @@ def decode_attention_fwd_grouped(
k_buffer,
v_buffer,
o,
lse,
req_to_token,
b_seq_len,
attn_logits,
@ -624,7 +636,7 @@ def decode_attention_fwd_grouped(
page_size,
logit_cap,
)
_decode_softmax_reducev_fwd(attn_logits, q, o, v_buffer, b_seq_len,
_decode_softmax_reducev_fwd(attn_logits, q, o, lse, v_buffer, b_seq_len,
num_kv_splits)
@ -633,6 +645,7 @@ def decode_attention_fwd(
k_buffer,
v_buffer,
o,
lse,
req_to_token,
b_seq_len,
attn_logits,
@ -651,6 +664,7 @@ def decode_attention_fwd(
k_buffer,
v_buffer,
o,
lse,
req_to_token,
b_seq_len,
attn_logits,
@ -666,6 +680,7 @@ def decode_attention_fwd(
k_buffer,
v_buffer,
o,
lse,
req_to_token,
b_seq_len,
attn_logits,

View File

@ -137,7 +137,7 @@ def triton_reshape_and_cache_flash(
# heuristics instead of autotuning
TILE_SIZE = min(2048, triton.next_power_of_2(n))
if torch.version.hip:
if torch.version.hip or torch.version.xpu:
num_stages = 4
num_warps = 8
else: # cuda

View File

@ -186,6 +186,14 @@ def _cached_get_attn_backend(
# Check the environment variable and override if specified
backend_by_env_var: Optional[str] = envs.VLLM_ATTENTION_BACKEND
if backend_by_env_var is not None:
if backend_by_env_var.endswith("_VLLM_V1"):
logger.warning(
"The suffix '_VLLM_V1' in the environment variable "
"%s is no longer necessary as V0 backends have been "
"deprecated. Please remove this suffix from your "
"environment variable setting.", STR_BACKEND_ENV_VAR)
backend_by_env_var = backend_by_env_var.removesuffix(
"_VLLM_V1")
selected_backend = backend_name_to_enum(backend_by_env_var)
if selected_backend is None:
raise ValueError(

View File

@ -270,6 +270,7 @@ class VllmConfig:
f"{model_config.dtype} is not supported for quantization "
f"method {model_config.quantization}. Supported dtypes: "
f"{supported_dtypes}")
quant_config.maybe_update_config(model_config.model)
return quant_config
return None
@ -364,9 +365,11 @@ class VllmConfig:
self.compilation_config.cudagraph_mode = \
CUDAGraphMode.FULL_AND_PIECEWISE
# pooling model does not support full cudagraphs
# pooling models and encoder-decoder models
# do not support full cudagraphs
if self.model_config is not None and \
self.model_config.pooler_config is not None:
(self.model_config.pooler_config is not None
or self.model_config.is_encoder_decoder):
self.compilation_config.cudagraph_mode = \
CUDAGraphMode.PIECEWISE
else:
@ -384,19 +387,7 @@ class VllmConfig:
else:
self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE
if self.cache_config.cpu_offload_gb > 0 and \
self.compilation_config.level != CompilationLevel.NO_COMPILATION \
and not envs.VLLM_USE_V1:
logger.warning(
"CPU offload is not supported with `torch.compile` in v0 yet."
" Disabling `torch.compile`.")
self.compilation_config.level = CompilationLevel.NO_COMPILATION
if self.cache_config.kv_sharing_fast_prefill:
if not envs.VLLM_USE_V1:
raise NotImplementedError(
"Fast prefill optimization for KV sharing is not supported "
"in V0 currently.")
if self.speculative_config is not None and \
self.speculative_config.use_eagle():
@ -410,14 +401,6 @@ class VllmConfig:
"--kv-sharing-fast-prefill requires changes on model side for "
"correctness and to realize prefill savings. ")
if ((not envs.VLLM_USE_V1) and self.lora_config is not None
and self.compilation_config.level
!= CompilationLevel.NO_COMPILATION):
logger.warning(
"LoRA for V0 is not supported with `torch.compile` yet. "
"Disabling `torch.compile`.")
self.compilation_config.level = CompilationLevel.NO_COMPILATION
disable_chunked_prefill_reasons: list[str] = []
if self.model_config:
@ -545,23 +528,6 @@ class VllmConfig:
# local attention.
self.scheduler_config.disable_hybrid_kv_cache_manager = True
def has_blocked_weights():
if self.quant_config is not None:
if hasattr(self.quant_config, "weight_block_size"):
return self.quant_config.weight_block_size is not None
elif hasattr(self.quant_config, "has_blocked_weights"):
return self.quant_config.has_blocked_weights()
return False
# Enable quant_fp8 CUDA ops (TODO disable in follow up)
# On H100 the CUDA kernel is faster than
# native implementation
# https://github.com/vllm-project/vllm/issues/25094
if has_blocked_weights():
custom_ops = self.compilation_config.custom_ops
if "none" not in custom_ops and "-quant_fp8" not in custom_ops:
custom_ops.append("+quant_fp8")
def update_sizes_for_sequence_parallelism(self,
possible_sizes: list) -> list:
# remove the sizes that not multiple of tp_size when
@ -621,57 +587,27 @@ class VllmConfig:
"""
# calculate the default `batch_size_capture_list`
if not envs.VLLM_USE_V1:
batch_size_capture_list = []
if self.scheduler_config is not None and \
self.model_config is not None and \
not self.model_config.enforce_eager:
possible_sizes = [1, 2, 4] + [8 * i for i in range(1, 1025)]
if self.parallel_config.tensor_parallel_size > 1 and \
self.compilation_config.pass_config.enable_sequence_parallelism:
possible_sizes = self.update_sizes_for_sequence_parallelism(
possible_sizes)
# find the minimum size that is larger than max_num_seqs,
# which then becomes the max_batchsize_to_capture
larger_sizes = [
x for x in possible_sizes
if x >= self.scheduler_config.max_num_seqs
]
if larger_sizes:
max_batchsize_to_capture = larger_sizes[0]
else:
max_batchsize_to_capture = possible_sizes[-1]
# filter out the sizes that are
# larger than max_batchsize_to_capture
batch_size_capture_list = [
size for size in possible_sizes
if size <= max_batchsize_to_capture
]
else:
batch_size_capture_list = []
if self.model_config is not None and \
not self.model_config.enforce_eager:
cuda_graph_sizes = self.scheduler_config.cuda_graph_sizes
if len(cuda_graph_sizes) == 1:
batch_size_capture_list = [1, 2, 4] + [
i for i in range(8, cuda_graph_sizes[0] + 1, 8)
]
elif len(cuda_graph_sizes) > 1:
batch_size_capture_list = sorted(cuda_graph_sizes)
else:
raise TypeError(f"Invalid value for {cuda_graph_sizes=}.")
if self.parallel_config.tensor_parallel_size > 1 and \
self.compilation_config.pass_config.enable_sequence_parallelism:
batch_size_capture_list = \
self.update_sizes_for_sequence_parallelism(batch_size_capture_list)
max_num_tokens = self.scheduler_config.max_num_batched_tokens
batch_size_capture_list = [
size for size in batch_size_capture_list
if size <= max_num_tokens
batch_size_capture_list = []
if self.model_config is not None and \
not self.model_config.enforce_eager:
cuda_graph_sizes = self.scheduler_config.cuda_graph_sizes
if len(cuda_graph_sizes) == 1:
batch_size_capture_list = [1, 2, 4] + [
i for i in range(8, cuda_graph_sizes[0] + 1, 8)
]
elif len(cuda_graph_sizes) > 1:
batch_size_capture_list = sorted(cuda_graph_sizes)
else:
raise TypeError(f"Invalid value for {cuda_graph_sizes=}.")
if self.parallel_config.tensor_parallel_size > 1 and \
self.compilation_config.pass_config.enable_sequence_parallelism:
batch_size_capture_list = \
self.update_sizes_for_sequence_parallelism(batch_size_capture_list)
max_num_tokens = self.scheduler_config.max_num_batched_tokens
batch_size_capture_list = [
size for size in batch_size_capture_list
if size <= max_num_tokens
]
self.compilation_config.init_with_cudagraph_sizes(
batch_size_capture_list)

View File

@ -10,7 +10,6 @@ from typing import TYPE_CHECKING, Any, Callable, ClassVar, Optional, Union
from pydantic import TypeAdapter, field_validator
from pydantic.dataclasses import dataclass
import vllm.envs as envs
from vllm.compilation.inductor_pass import CallableInductorPass, InductorPass
from vllm.config.utils import config
from vllm.logger import init_logger
@ -75,11 +74,11 @@ class PassConfig:
don't all have access to full configuration - that would create a cycle as
the `PassManager` is set as a property of config."""
enable_fusion: bool = field(default_factory=lambda: not envs.VLLM_USE_V1)
enable_fusion: bool = False
"""Whether to enable the custom fusion (RMSNorm/SiluMul+quant) pass."""
enable_attn_fusion: bool = False
"""Whether to enable the custom attention+quant fusion pass."""
enable_noop: bool = field(default_factory=lambda: not envs.VLLM_USE_V1)
enable_noop: bool = False
"""Whether to enable the custom no-op elimination pass."""
enable_sequence_parallelism: bool = False
"""Whether to enable sequence parallelism."""

View File

@ -14,7 +14,6 @@ from pydantic import (ConfigDict, SkipValidation, field_validator,
model_validator)
from pydantic.dataclasses import dataclass
from safetensors.torch import _TYPES as _SAFETENSORS_TO_TORCH_DTYPE
from typing_extensions import assert_never
import vllm.envs as envs
from vllm.config.multimodal import (MMCacheType, MMEncoderTPMode,
@ -64,13 +63,12 @@ ConvertType = Literal["none", "embed", "classify", "reward"]
ConvertOption = Literal["auto", ConvertType]
TaskOption = Literal["auto", "generate", "embedding", "embed", "classify",
"score", "reward", "transcription", "draft"]
_ResolvedTask = Literal["generate", "transcription", "encode", "embed",
"classify", "reward", "draft"]
TokenizerMode = Literal["auto", "slow", "mistral", "custom"]
ModelDType = Literal["auto", "half", "float16", "bfloat16", "float", "float32"]
LogprobsMode = Literal["raw_logits", "raw_logprobs", "processed_logits",
"processed_logprobs"]
HfOverrides = Union[dict[str, Any], Callable[[type], type]]
HfOverrides = Union[dict[str, Any], Callable[[PretrainedConfig],
PretrainedConfig]]
ModelImpl = Literal["auto", "vllm", "transformers", "terratorch"]
_RUNNER_TASKS: dict[RunnerType, list[TaskOption]] = {
@ -285,6 +283,7 @@ class ModelConfig:
mm_encoder_tp_mode: InitVar[Optional[MMEncoderTPMode]] = None
interleave_mm_strings: InitVar[Optional[bool]] = None
skip_mm_profiling: InitVar[Optional[bool]] = None
video_pruning_rate: InitVar[Optional[float]] = None
def compute_hash(self) -> str:
"""
@ -313,6 +312,7 @@ class ModelConfig:
factors.append(self.override_generation_config)
factors.append(self.rope_scaling)
factors.append(self.rope_theta)
factors.append(self.video_pruning_rate)
# hf_config can control how the model looks!
try:
@ -340,17 +340,19 @@ class ModelConfig:
return hashlib.sha256(str(factors).encode()).hexdigest()
def __post_init__(
self,
# Multimodal config init vars
limit_mm_per_prompt: Optional[dict[str, int]],
media_io_kwargs: Optional[dict[str, dict[str, Any]]],
mm_processor_kwargs: Optional[dict[str, Any]],
mm_processor_cache_gb: Optional[float],
mm_processor_cache_type: Optional[MMCacheType],
mm_shm_cache_max_object_size_mb: Optional[int],
mm_encoder_tp_mode: Optional[MMEncoderTPMode],
interleave_mm_strings: Optional[bool],
skip_mm_profiling: Optional[bool]) -> None:
self,
# Multimodal config init vars
limit_mm_per_prompt: Optional[dict[str, int]],
media_io_kwargs: Optional[dict[str, dict[str, Any]]],
mm_processor_kwargs: Optional[dict[str, Any]],
mm_processor_cache_gb: Optional[float],
mm_processor_cache_type: Optional[MMCacheType],
mm_shm_cache_max_object_size_mb: Optional[int],
mm_encoder_tp_mode: Optional[MMEncoderTPMode],
interleave_mm_strings: Optional[bool],
skip_mm_profiling: Optional[bool],
video_pruning_rate: Optional[float],
) -> None:
# Set the default seed to 0 in V1.
# NOTE(woosuk): In V0, we set the default seed to None because the
# driver worker shares the same process as the user process, and thus
@ -534,9 +536,6 @@ class ModelConfig:
f"You can pass `--convert {convert_option} to adapt "
"it into a pooling model.")
self.supported_tasks = self._get_supported_tasks(
architectures, self.runner_type, self.convert_type)
# Note: Initialize these attributes early because transformers fallback
# may fail to load dynamic modules in child processes
model_info, arch = registry.inspect_model_cls(architectures, self)
@ -617,6 +616,7 @@ class ModelConfig:
mm_encoder_tp_mode=mm_encoder_tp_mode,
interleave_mm_strings=interleave_mm_strings,
skip_mm_profiling=skip_mm_profiling,
video_pruning_rate=video_pruning_rate,
)
mm_config_kwargs = {
@ -834,27 +834,6 @@ class ModelConfig:
return convert_type
def _get_supported_generation_tasks(
self,
architectures: list[str],
convert_type: ConvertType,
) -> list[_ResolvedTask]:
registry = self.registry
if registry.is_transcription_only_model(architectures, self):
return ["transcription"]
# TODO: Use get_supported_generation_tasks once V0 is removed
supported_tasks = list[_ResolvedTask]()
if (registry.is_text_generation_model(architectures, self)
or convert_type in _RUNNER_CONVERTS["generate"]):
supported_tasks.append("generate")
if registry.is_transcription_model(architectures, self):
supported_tasks.append("transcription")
return supported_tasks
def _get_default_pooling_task(
self,
architectures: list[str],
@ -872,42 +851,6 @@ class ModelConfig:
return "embed"
def _get_supported_pooling_tasks(
self,
architectures: list[str],
convert_type: ConvertType,
) -> list[_ResolvedTask]:
registry = self.registry
# TODO: Use get_supported_pooling_tasks once V0 is removed
supported_tasks = list[_ResolvedTask]()
if (registry.is_pooling_model(architectures, self)
or convert_type in _RUNNER_CONVERTS["pooling"]):
supported_tasks.append("encode")
extra_task = (self._get_default_pooling_task(architectures)
if convert_type == "none" else convert_type)
supported_tasks.append(extra_task)
return supported_tasks
def _get_supported_tasks(
self,
architectures: list[str],
runner_type: RunnerType,
convert_type: ConvertType,
) -> list[_ResolvedTask]:
if runner_type == "generate":
return self._get_supported_generation_tasks(
architectures, convert_type)
if runner_type == "pooling":
return self._get_supported_pooling_tasks(architectures,
convert_type)
if runner_type == "draft":
return ["draft"]
assert_never(runner_type)
def _parse_quant_hf_config(self, hf_config: PretrainedConfig):
quant_cfg = getattr(hf_config, "quantization_config", None)
if quant_cfg is None:
@ -1131,7 +1074,8 @@ class ModelConfig:
if not hasattr(self.hf_text_config, "model_type"):
return False
elif self.hf_text_config.model_type in \
('deepseek_v2', 'deepseek_v3', 'deepseek_mtp', 'kimi_k2'):
('deepseek_v2', 'deepseek_v3', 'deepseek_mtp',
'kimi_k2', 'longcat_flash'):
return self.hf_text_config.kv_lora_rank is not None
elif self.hf_text_config.model_type == 'eagle':
# if the model is an EAGLE module, check for the
@ -1257,6 +1201,9 @@ class ModelConfig:
or self.hf_config.model_type == "qwen3_next_mtp"):
total_num_hidden_layers = getattr(self.hf_text_config,
"num_nextn_predict_layers", 0)
elif (self.hf_config.model_type == "longcat_flash_mtp"):
total_num_hidden_layers = getattr(self.hf_text_config,
"num_nextn_predict_layers", 1)
else:
total_num_hidden_layers = getattr(self.hf_text_config,
"num_hidden_layers", 0)

View File

@ -78,6 +78,11 @@ class MultiModalConfig:
This reduces engine startup time but shifts the responsibility to users for
estimating the peak memory usage of the activation of multimodal encoder and
embedding cache."""
video_pruning_rate: Optional[float] = None
"""Sets pruning rate for video pruning via Efficient Video Sampling.
Value sits in range [0;1) and determines fraction of media tokens
from each video to be pruned.
"""
def compute_hash(self) -> str:
"""
@ -118,3 +123,7 @@ class MultiModalConfig:
"""
kwargs = self.mm_processor_kwargs or {}
return kwargs | dict(inference_kwargs)
def is_multimodal_pruning_enabled(self):
return (self.video_pruning_rate is not None
and self.video_pruning_rate > 0)

View File

@ -31,7 +31,8 @@ logger = init_logger(__name__)
SpeculativeMethod = Literal["ngram", "eagle", "eagle3", "medusa",
"mlp_speculator", "draft_model", "deepseek_mtp",
"ernie_mtp", "qwen3_next_mtp", "mimo_mtp"]
"ernie_mtp", "qwen3_next_mtp", "mimo_mtp",
"longcat_flash_mtp"]
@config
@ -186,6 +187,13 @@ class SpeculativeConfig:
"n_predict": n_predict,
"architectures": ["Qwen3NextMTP"]
})
if hf_config.model_type == "longcat_flash":
hf_config.model_type = "longcat_flash_mtp"
n_predict = getattr(hf_config, "num_nextn_predict_layers", 1)
hf_config.update({
"n_predict": n_predict,
"architectures": ["LongCatFlashMTPModel"]
})
return hf_config
@ -201,12 +209,9 @@ class SpeculativeConfig:
if self.model is None and self.num_speculative_tokens is not None:
# TODO(Shangming): Refactor mtp configuration logic when supporting
# mtp acceleration for more models besides deepseek_v3
if self.target_model_config and \
(self.target_model_config.hf_text_config.model_type \
== "deepseek_v3" or
self.target_model_config.hf_text_config.model_type in
("mimo","ernie4_5_moe", "qwen3_next")):
if (self.target_model_config
and self.target_model_config.hf_text_config.model_type
in ("deepseek_v3", "mimo", "ernie4_5_moe", "qwen3_next")):
# use the draft model from the same model:
self.model = self.target_model_config.model
# Align the quantization of draft model for cases such as
@ -216,8 +221,9 @@ class SpeculativeConfig:
elif self.method in ("ngram", "[ngram]"):
self.model = "ngram"
else:
raise ValueError("num_speculative_tokens was provided without "
"speculative model.")
raise ValueError(
"num_speculative_tokens was provided but without "
"speculative model.")
# Automatically configure the method for ngram when "model" is used
# instead of "method"
@ -332,6 +338,15 @@ class SpeculativeConfig:
"one layer. Might need some code changes " \
"to support multiple layers."
)
elif (self.draft_model_config.hf_config.model_type
in ("longcat_flash_mtp")):
self.method = "longcat_flash_mtp"
if self.num_speculative_tokens > 1:
logger.warning(
"LongCat MTP models only have " \
"one layer. Might need some code changes " \
"to support multiple layers."
)
else:
self.method = "draft_model"
raise NotImplementedError(
@ -525,7 +540,7 @@ class SpeculativeConfig:
"speculative decoding is > 1, but got "
f"{self.disable_by_batch_size=}")
eagle3_target_supported = ["llama", "qwen", "gpt_oss"]
eagle3_target_supported = ["llama", "qwen", "minicpm", "gpt_oss"]
if self.method == "eagle3" and self.target_model_config and not any(
supported_model in
self.target_model_config.hf_text_config.model_type
@ -548,7 +563,7 @@ class SpeculativeConfig:
def use_eagle(self) -> bool:
return self.method in ("eagle", "eagle3", "deepseek_mtp", "ernie_mtp",
"qwen3_next_mtp")
"qwen3_next_mtp", "longcat_flash_mtp")
def __repr__(self) -> str:
method = self.method

View File

@ -10,9 +10,15 @@ from vllm.distributed import get_dp_group
from vllm.forward_context import get_forward_context
from vllm.logger import init_logger
from vllm.utils import has_deep_ep, has_pplx
from vllm.utils.flashinfer import has_flashinfer_all2all
from .base_device_communicator import All2AllManagerBase, Cache
if has_flashinfer_all2all():
from flashinfer.comm import Mapping
from flashinfer.comm.mnnvl import MnnvlConfig
from flashinfer.comm.trtllm_alltoall import MnnvlMoe
logger = init_logger(__name__)
@ -47,24 +53,22 @@ class NaiveAll2AllManager(All2AllManagerBase):
def dispatch(self, hidden_states: torch.Tensor,
router_logits: torch.Tensor):
cu_tokens_across_dp_cpu = get_forward_context(
).dp_metadata.cu_tokens_across_dp_cpu
sizes = get_forward_context(
).dp_metadata.get_chunk_sizes_across_dp_rank()
hidden_states, router_logits = get_dp_group().all_gatherv(
[hidden_states, router_logits],
dim=0,
sizes=sizes,
)
hidden_states = self.naive_multicast(hidden_states,
cu_tokens_across_dp_cpu)
router_logits = self.naive_multicast(router_logits,
cu_tokens_across_dp_cpu)
return hidden_states, router_logits
def combine(self, hidden_states: torch.Tensor) -> torch.Tensor:
cu_tokens_across_dp_cpu = get_forward_context(
).dp_metadata.cu_tokens_across_dp_cpu
start = 0 if self.dp_rank == 0 else cu_tokens_across_dp_cpu[
self.dp_rank - 1]
end = cu_tokens_across_dp_cpu[self.dp_rank]
all_hidden_states = self.dp_group.all_reduce(hidden_states)
hidden_states = all_hidden_states[start:end, :]
sizes = get_forward_context(
).dp_metadata.get_chunk_sizes_across_dp_rank()
hidden_states = get_dp_group().reduce_scatterv(hidden_states,
dim=0,
sizes=sizes)
return hidden_states
def destroy(self):
@ -300,4 +304,95 @@ class DeepEPLLAll2AllManager(DeepEPAll2AllManagerBase):
# DeepEP LL uses RDMA so no SMs are used for communication
def max_sms_used(self) -> Optional[int]:
return 0
return 0
class FlashInferAllToAllManager(All2AllManagerBase):
"""
All2All communication based on flashinfer kernels.
"""
def __init__(self, cpu_group):
assert has_flashinfer_all2all(
), "flashinfer all2all module not found. Please install/check flashinfer" # noqa
super().__init__(cpu_group)
logger.debug(
"Initialize for flashinfer All2All "
"rank=%d, world size=%d", self.rank, self.world_size)
self.initialized = False
self.alltoall_info = None
def initialize(
self,
world_size: int,
rank: int,
gpus_per_node: int,
):
"""Initialize workspace"""
if self.initialized:
return
self.cleanup()
logger.debug("making map: "
"rank=%d, world size=%d", rank, world_size)
self.mapping = Mapping(
world_size,
rank,
gpus_per_node,
tp_size=world_size,
)
from vllm.distributed.device_communicators.mnnvl_compat import (
CustomCommunicator)
dp_config = MnnvlConfig(
comm_backend=CustomCommunicator(get_dp_group().cpu_group),
fabric_page_size=1 << 29, # 512MB
allocation_granularity=0 # Auto-detect
)
self.workspace_tensor = MnnvlMoe.get_moe_workspaces(
self.mapping, dp_config)
self.prepare_workspace_tensor = MnnvlMoe.get_moe_prepare_workspace(
self.mapping, dp_config)
self.world_size = world_size
self.rank = rank
self.gpus_per_node = gpus_per_node
self.initialized = True
logger.info("FlashInfer All2All initialized for rank %s, size %s",
rank, world_size)
def ensure_alltoall_workspace_initialized(self):
"""Ensure workspace is initialized"""
if not has_flashinfer_all2all():
return False
if self.world_size <= 1:
return False
if not self.initialized:
self.initialize(
world_size=self.world_size,
rank=self.rank,
gpus_per_node=torch.cuda.device_count,
)
return self.initialized
def get_handle(self, kwargs):
return self
def cleanup(self):
"""Clean up workspace"""
if self.initialized and self.workspace_tensor is not None \
and self.prepare_workspace_tensor is not None:
try:
del self.workspace_tensor
del self.prepare_workspace_tensor
except Exception as e:
logger.warning("Failed to cleanup FlashInfer workspace: %s", e)
finally:
self.workspace_tensor = None
self.prepare_workspace_tensor = None
self.mapping = None
self.initialized = False

View File

@ -114,6 +114,11 @@ class CudaCommunicator(DeviceCommunicatorBase):
from .all2all import DeepEPLLAll2AllManager
self.all2all_manager = DeepEPLLAll2AllManager(self.cpu_group)
logger.info("Using DeepEP Low-Latency all2all manager.")
elif all2all_backend == "flashinfer_all2allv":
from .all2all import FlashInferAllToAllManager
self.all2all_manager = FlashInferAllToAllManager(
self.cpu_group)
logger.info("Using Flashinfer all2allv manager.")
else:
raise ValueError(f"Unknown all2all backend: {all2all_backend}")

View File

@ -0,0 +1,28 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch.distributed as dist
from flashinfer.comm.mnnvl import CommBackend as CommBackend
from vllm.utils.flashinfer import has_flashinfer_all2all
assert has_flashinfer_all2all(), "Flashinfer alltoallv module cannot be found"
class CustomCommunicator(CommBackend):
def __init__(self, group):
self._group = group
def Get_rank(self) -> int:
return self._group.rank()
def Get_size(self) -> int:
return self._group.size()
def allgather(self, data: int):
gathered = [None] * self.Get_size()
dist.all_gather_object(gathered, data, group=self._group)
return gathered
def Split(self, color: int, key: int) -> 'CustomCommunicator':
return self

View File

@ -178,7 +178,7 @@ class RayPPCommunicator(Communicator):
def recv(
self,
shape: tuple[int],
shape: tuple[int, ...],
dtype: "torch.dtype",
peer_rank: int,
allocator: TorchTensorAllocator,

View File

@ -136,8 +136,8 @@ class ShmRingBuffer:
self.shared_memory = shared_memory.SharedMemory(
create=True, size=self.total_bytes_of_buffer)
# initialize the metadata section to 0
with memoryview(self.shared_memory.buf[self.metadata_offset:]
) as metadata_buffer:
with self.shared_memory.buf[self.
metadata_offset:] as metadata_buffer:
torch.frombuffer(metadata_buffer, dtype=torch.uint8).fill_(0)
else:
# we are opening an existing buffer
@ -182,14 +182,14 @@ class ShmRingBuffer:
def get_data(self, current_idx: int):
start = self.data_offset + current_idx * self.max_chunk_bytes
end = start + self.max_chunk_bytes
with memoryview(self.shared_memory.buf[start:end]) as buf:
with self.shared_memory.buf[start:end] as buf:
yield buf
@contextmanager
def get_metadata(self, current_idx: int):
start = self.metadata_offset + current_idx * self.metadata_size
end = start + self.metadata_size
with memoryview(self.shared_memory.buf[start:end]) as buf:
with self.shared_memory.buf[start:end] as buf:
yield buf
@ -387,22 +387,21 @@ class MessageQueue:
# Release the processor to other threads
sched_yield()
# if we wait for a long time, log a message
if (time.monotonic() - start_time
> VLLM_RINGBUFFER_WARNING_INTERVAL * n_warning):
logger.debug(
("No available shared memory broadcast block found"
" in %s seconds. This typically happens when some"
" processes are hanging."),
VLLM_RINGBUFFER_WARNING_INTERVAL,
)
n_warning += 1
# if we time out, raise an exception
if (timeout is not None
and time.monotonic() - start_time > timeout):
elapsed = time.monotonic() - start_time
if timeout is not None and elapsed > timeout:
raise TimeoutError
# if we wait for a long time, log a message
if elapsed > VLLM_RINGBUFFER_WARNING_INTERVAL * n_warning:
logger.info(
"No available shared memory broadcast block found"
" in %s seconds. This typically happens when some"
" processes are hanging or doing some"
" time-consuming work (e.g. compilation)",
VLLM_RINGBUFFER_WARNING_INTERVAL)
n_warning += 1
continue
# found a block that is either
# (1) not written
@ -431,7 +430,8 @@ class MessageQueue:
@contextmanager
def acquire_read(self,
timeout: Optional[float] = None,
cancel: Optional[Event] = None):
cancel: Optional[Event] = None,
indefinite: bool = False):
assert self._is_local_reader, "Only readers can acquire read"
start_time = time.monotonic()
n_warning = 1
@ -451,25 +451,26 @@ class MessageQueue:
# Release the processor to other threads
self._read_spin_timer.spin()
# if we wait for a long time, log a message
if (time.monotonic() - start_time
> VLLM_RINGBUFFER_WARNING_INTERVAL * n_warning):
logger.debug(
("No available shared memory broadcast block found"
" in %s seconds. This typically happens when some"
" processes are hanging."),
VLLM_RINGBUFFER_WARNING_INTERVAL,
)
n_warning += 1
if cancel is not None and cancel.is_set():
raise RuntimeError("cancelled")
# if we time out, raise an exception
if (timeout is not None
and time.monotonic() - start_time > timeout):
elapsed = time.monotonic() - start_time
if timeout is not None and elapsed > timeout:
raise TimeoutError
# if we wait for a long time, log a message
if not indefinite and (elapsed
> VLLM_RINGBUFFER_WARNING_INTERVAL *
n_warning):
logger.info(
"No available shared memory broadcast block found"
" in %s seconds. This typically happens when some"
" processes are hanging or doing some"
" time-consuming work (e.g. compilation).",
VLLM_RINGBUFFER_WARNING_INTERVAL)
n_warning += 1
continue
# found a block that is not read by this reader
# let caller read from the buffer
@ -503,10 +504,11 @@ class MessageQueue:
def dequeue(self,
timeout: Optional[float] = None,
cancel: Optional[Event] = None):
cancel: Optional[Event] = None,
indefinite: bool = False):
""" Read from message queue with optional timeout (in seconds) """
if self._is_local_reader:
with self.acquire_read(timeout, cancel) as buf:
with self.acquire_read(timeout, cancel, indefinite) as buf:
overflow = buf[0] == 1
if not overflow:
# no need to know the size of serialized object

Some files were not shown because too many files have changed in this diff Show More