mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
Compare commits
3 Commits
Author | SHA1 | Date | |
---|---|---|---|
7d092fc32c | |||
1a6c27f271 | |||
3c6fd286b4 |
362
benchmarks/benchmark_one_concurrent.py
Normal file
362
benchmarks/benchmark_one_concurrent.py
Normal file
@ -0,0 +1,362 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
import argparse
|
||||
import asyncio
|
||||
import logging
|
||||
import random
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
|
||||
import aiohttp # Import aiohttp
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from backend_request_func import RequestFuncInput, RequestFuncOutput
|
||||
from benchmark_dataset import RandomDataset, SampleRequest
|
||||
|
||||
try:
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
except ImportError:
|
||||
from backend_request_func import get_tokenizer
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class BenchmarkMetrics:
|
||||
completed: int
|
||||
total_input: int
|
||||
total_output: int
|
||||
mean_ttft_ms: float
|
||||
median_ttft_ms: float
|
||||
std_ttft_ms: float
|
||||
percentiles_ttft_ms: list[tuple[float, float]]
|
||||
mean_itl_ms: float
|
||||
median_itl_ms: float
|
||||
std_itl_ms: float
|
||||
percentiles_itl_ms: list[tuple[float, float]]
|
||||
mean_e2el_ms: float
|
||||
median_e2el_ms: float
|
||||
std_e2el_ms: float
|
||||
percentiles_e2el_ms: list[tuple[float, float]]
|
||||
|
||||
|
||||
async def reset_cache(reset_url: str):
|
||||
"""Sends a POST request to reset the prefix cache."""
|
||||
logger.debug("Resetting prefix cache at %s", reset_url)
|
||||
try:
|
||||
async with (
|
||||
aiohttp.ClientSession() as session,
|
||||
session.post(reset_url) as response,
|
||||
):
|
||||
response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
|
||||
logger.debug("Prefix cache reset successful: %s", response.status)
|
||||
except aiohttp.ClientConnectorError as e:
|
||||
logger.error("Failed to connect to cache reset endpoint %s: %s}", reset_url, e)
|
||||
except aiohttp.ClientResponseError as e:
|
||||
logger.error(
|
||||
"Cache reset request failed with status %s: %s", e.status, e.message
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error("An unexpected error occurred during cache reset: %s", e)
|
||||
|
||||
|
||||
async def sequential_benchmark(
|
||||
backend: str,
|
||||
api_url: str,
|
||||
model_id: str,
|
||||
tokenizer,
|
||||
input_requests: list[SampleRequest],
|
||||
request_func,
|
||||
selected_percentiles: list[float],
|
||||
cache_reset_url: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Benchmark that processes requests sequentially, waiting for each to complete
|
||||
before starting the next one. Resets prefix cache between requests.
|
||||
"""
|
||||
outputs = []
|
||||
|
||||
pbar = tqdm(total=len(input_requests))
|
||||
|
||||
benchmark_start_time = time.perf_counter()
|
||||
|
||||
# Process requests sequentially
|
||||
for request in input_requests:
|
||||
prompt, prompt_len, output_len = (
|
||||
request.prompt,
|
||||
request.prompt_len,
|
||||
request.expected_output_len,
|
||||
)
|
||||
|
||||
logger.info("Sending request with len %s", request.prompt_len)
|
||||
logger.debug('Request str: "%s"', request.prompt[:50])
|
||||
request_start_time = time.perf_counter()
|
||||
|
||||
request_func_input = RequestFuncInput(
|
||||
model=model_id,
|
||||
prompt=prompt,
|
||||
api_url=api_url,
|
||||
prompt_len=prompt_len,
|
||||
output_len=output_len,
|
||||
)
|
||||
|
||||
output = await request_func(request_func_input=request_func_input)
|
||||
|
||||
request_end_time = time.perf_counter()
|
||||
# Add timing information
|
||||
if output.success and not hasattr(output, "latency"):
|
||||
output.latency = request_end_time - request_start_time
|
||||
logger.info("Finished request with latency %.4f s", output.latency)
|
||||
|
||||
outputs.append(output)
|
||||
pbar.update(1)
|
||||
|
||||
pbar.close()
|
||||
|
||||
benchmark_duration = time.perf_counter() - benchmark_start_time
|
||||
|
||||
# Calculate metrics
|
||||
metrics = calculate_metrics(
|
||||
input_requests=input_requests,
|
||||
outputs=outputs,
|
||||
dur_s=benchmark_duration,
|
||||
tokenizer=tokenizer,
|
||||
selected_percentiles=selected_percentiles,
|
||||
)
|
||||
|
||||
print_results(metrics, benchmark_duration)
|
||||
|
||||
result = {
|
||||
"duration": benchmark_duration,
|
||||
"completed": metrics.completed,
|
||||
"total_input_tokens": metrics.total_input,
|
||||
"total_output_tokens": metrics.total_output,
|
||||
"input_lens": [request.prompt_len for request in input_requests],
|
||||
"output_lens": [
|
||||
output.output_tokens if output.success else 0 for output in outputs
|
||||
],
|
||||
"ttfts": [output.ttft for output in outputs if output.success],
|
||||
"itls": [output.itl for output in outputs if output.success],
|
||||
"generated_texts": [
|
||||
output.generated_text for output in outputs if output.success
|
||||
],
|
||||
"errors": [output.error for output in outputs if not output.success],
|
||||
}
|
||||
|
||||
# Add summary statistics
|
||||
for stat_name in ["ttft", "itl", "e2el"]:
|
||||
for metric_name in ["mean", "median", "std"]:
|
||||
result[f"{metric_name}_{stat_name}_ms"] = getattr(
|
||||
metrics, f"{metric_name}_{stat_name}_ms"
|
||||
)
|
||||
|
||||
for p, value in getattr(metrics, f"percentiles_{stat_name}_ms"):
|
||||
p_word = str(int(p)) if int(p) == p else str(p)
|
||||
result[f"p{p_word}_{stat_name}_ms"] = value
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def calculate_metrics(
|
||||
input_requests: list[SampleRequest],
|
||||
outputs: list[RequestFuncOutput],
|
||||
dur_s: float,
|
||||
tokenizer,
|
||||
selected_percentiles: list[float],
|
||||
) -> BenchmarkMetrics:
|
||||
"""Calculate benchmark metrics from results."""
|
||||
total_input = 0
|
||||
completed = 0
|
||||
total_output = 0
|
||||
ttfts = []
|
||||
itls = []
|
||||
e2els = []
|
||||
|
||||
for i, output in enumerate(outputs):
|
||||
if output.success:
|
||||
output_len = output.output_tokens
|
||||
|
||||
if not output_len:
|
||||
# Use tokenizer to count output tokens if not provided
|
||||
output_len = len(
|
||||
tokenizer(output.generated_text, add_special_tokens=False).input_ids
|
||||
)
|
||||
|
||||
total_output += output_len
|
||||
total_input += input_requests[i].prompt_len
|
||||
|
||||
if hasattr(output, "ttft") and output.ttft is not None:
|
||||
ttfts.append(output.ttft)
|
||||
|
||||
if hasattr(output, "itl") and output.itl:
|
||||
# Ensure itl is a list of floats
|
||||
if isinstance(output.itl, list):
|
||||
itls.extend(output.itl)
|
||||
else:
|
||||
logger.warning(
|
||||
"Expected list for ITL but got %s. Appending as is.",
|
||||
type(output.itl),
|
||||
)
|
||||
itls.append(output.itl)
|
||||
|
||||
if hasattr(output, "latency") and output.latency is not None:
|
||||
e2els.append(output.latency)
|
||||
|
||||
completed += 1
|
||||
|
||||
return BenchmarkMetrics(
|
||||
completed=completed,
|
||||
total_input=total_input,
|
||||
total_output=total_output,
|
||||
mean_ttft_ms=np.mean(ttfts or [0]) * 1000,
|
||||
median_ttft_ms=np.median(ttfts or [0]) * 1000,
|
||||
std_ttft_ms=np.std(ttfts or [0]) * 1000,
|
||||
percentiles_ttft_ms=[
|
||||
(p, np.percentile(ttfts or [0], p) * 1000) for p in selected_percentiles
|
||||
],
|
||||
mean_itl_ms=np.mean(itls or [0]) * 1000,
|
||||
median_itl_ms=np.median(itls or [0]) * 1000,
|
||||
std_itl_ms=np.std(itls or [0]) * 1000,
|
||||
percentiles_itl_ms=[
|
||||
(p, np.percentile(itls or [0], p) * 1000) for p in selected_percentiles
|
||||
],
|
||||
mean_e2el_ms=np.mean(e2els or [0]) * 1000,
|
||||
median_e2el_ms=np.median(e2els or [0]) * 1000,
|
||||
std_e2el_ms=np.std(e2els or [0]) * 1000,
|
||||
percentiles_e2el_ms=[
|
||||
(p, np.percentile(e2els or [0], p) * 1000) for p in selected_percentiles
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
def print_results(metrics: BenchmarkMetrics, benchmark_duration: float):
|
||||
"""Print benchmark results in a formatted way."""
|
||||
print("{s:{c}^{n}}".format(s=" Sequential Benchmark Result ", n=60, c="="))
|
||||
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
|
||||
print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
|
||||
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
|
||||
print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
|
||||
|
||||
def print_metric_stats(metric_name, header):
|
||||
print("{s:{c}^{n}}".format(s=header, n=60, c="-"))
|
||||
print(
|
||||
"{:<40} {:<10.2f}".format(
|
||||
f"Mean {metric_name} (ms):",
|
||||
getattr(metrics, f"mean_{metric_name.lower()}_ms"),
|
||||
)
|
||||
)
|
||||
print(
|
||||
"{:<40} {:<10.2f}".format(
|
||||
f"Median {metric_name} (ms):",
|
||||
getattr(metrics, f"median_{metric_name.lower()}_ms"),
|
||||
)
|
||||
)
|
||||
|
||||
for p, value in getattr(metrics, f"percentiles_{metric_name.lower()}_ms"):
|
||||
p_word = str(int(p)) if int(p) == p else str(p)
|
||||
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):", value))
|
||||
|
||||
print_metric_stats("TTFT", "Time to First Token")
|
||||
print_metric_stats("ITL", "Inter-token Latency")
|
||||
print_metric_stats("E2EL", "End-to-end Latency")
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
async def main_async(args):
|
||||
# Import needed functions based on your setup
|
||||
from backend_request_func import ASYNC_REQUEST_FUNCS
|
||||
|
||||
backend = args.backend
|
||||
model_id = args.model
|
||||
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
|
||||
|
||||
# Set up API URL
|
||||
if args.base_url is not None:
|
||||
api_url = f"{args.base_url}{args.endpoint}"
|
||||
else:
|
||||
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
|
||||
|
||||
# Set up Cache Reset URL
|
||||
cache_reset_url = f"http://{args.host}:{args.port}/reset_prefix_cache"
|
||||
logger.info("Prefix cache reset configured at: %s", cache_reset_url)
|
||||
|
||||
# Get tokenizer
|
||||
tokenizer = get_tokenizer(tokenizer_id, trust_remote_code=args.trust_remote_code)
|
||||
|
||||
# Get request function
|
||||
if backend in ASYNC_REQUEST_FUNCS:
|
||||
request_func = ASYNC_REQUEST_FUNCS[backend]
|
||||
else:
|
||||
raise ValueError(f"Unknown backend: {backend}")
|
||||
|
||||
input_requests = RandomDataset().sample(
|
||||
tokenizer=tokenizer,
|
||||
num_requests=args.num_requests,
|
||||
prefix_len=0,
|
||||
input_len=args.input_len,
|
||||
output_len=args.output_len,
|
||||
range_ratio=0.0,
|
||||
)
|
||||
|
||||
# Run benchmark
|
||||
result = await sequential_benchmark(
|
||||
backend=backend,
|
||||
api_url=api_url,
|
||||
model_id=model_id,
|
||||
tokenizer=tokenizer,
|
||||
input_requests=input_requests,
|
||||
request_func=request_func,
|
||||
selected_percentiles=[50, 90, 95, 99],
|
||||
cache_reset_url=cache_reset_url,
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def main(args):
|
||||
print(args)
|
||||
random.seed(args.seed)
|
||||
np.random.seed(args.seed)
|
||||
|
||||
asyncio.run(main_async(args))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Sequential benchmark for LLM serving")
|
||||
parser.add_argument(
|
||||
"--backend", type=str, default="vllm", help="Backend to use for requests"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--base-url",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Server base URL (overrides --host and --port)",
|
||||
)
|
||||
parser.add_argument("--host", type=str, default="127.0.0.1")
|
||||
parser.add_argument("--port", type=int, default=8000)
|
||||
parser.add_argument(
|
||||
"--endpoint", type=str, default="/v1/completions", help="API endpoint"
|
||||
)
|
||||
parser.add_argument("--model", type=str, required=True, help="Name of the model")
|
||||
parser.add_argument(
|
||||
"--tokenizer", type=str, help="Name of the tokenizer (defaults to model name)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-requests", type=int, default=100, help="Number of requests to process"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-len", type=int, default=128, help="Input len for generated prompts"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-len", type=int, default=None, help="Override output len for requests"
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=42)
|
||||
parser.add_argument(
|
||||
"--trust-remote-code",
|
||||
action="store_true",
|
||||
help="Trust remote code from HuggingFace",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
88
tools/pd_disagg/Justfile
Normal file
88
tools/pd_disagg/Justfile
Normal file
@ -0,0 +1,88 @@
|
||||
# Needed for the proxy server
|
||||
vllm-directory := "/home/rshaw/vllm/"
|
||||
|
||||
PREFILL_GPU := "0,1,2,3"
|
||||
DECODE_GPU := "4,5,6,7"
|
||||
|
||||
PREFILL_TP := env("PREFILL_TP", "1")
|
||||
DECODE_TP := env("DECODE_TP", "1")
|
||||
|
||||
BLOCK_SIZE := env("BLOCK_SIZE", "128")
|
||||
|
||||
MODEL := "meta-llama/Llama-3.1-8B-Instruct"
|
||||
PROXY_PORT := "8192"
|
||||
PREFILL_PORT := "8100"
|
||||
DECODE_PORT := "8200"
|
||||
PREFILL_NIXL_SIDE_CHANNEL_PORT := "5557"
|
||||
DECODE_NIXL_SIDE_CHANNEL_PORT := "5568"
|
||||
|
||||
prefill:
|
||||
VLLM_NIXL_SIDE_CHANNEL_PORT={{PREFILL_NIXL_SIDE_CHANNEL_PORT}} \
|
||||
CUDA_VISIBLE_DEVICES={{PREFILL_GPU}} \
|
||||
vllm serve {{MODEL}} \
|
||||
--port {{PREFILL_PORT}} \
|
||||
--tensor-parallel-size {{PREFILL_TP}} \
|
||||
--enforce-eager \
|
||||
--disable-log-requests \
|
||||
--block-size {{BLOCK_SIZE}} \
|
||||
--kv-transfer-config '{"kv_connector":"NixlConnector","kv_role":"kv_both"}'
|
||||
|
||||
decode:
|
||||
VLLM_NIXL_SIDE_CHANNEL_PORT={{DECODE_NIXL_SIDE_CHANNEL_PORT}} \
|
||||
CUDA_VISIBLE_DEVICES={{DECODE_GPU}} \
|
||||
vllm serve {{MODEL}} \
|
||||
--port {{DECODE_PORT}} \
|
||||
--tensor-parallel-size {{DECODE_TP}} \
|
||||
--enforce-eager \
|
||||
--disable-log-requests \
|
||||
--block-size {{BLOCK_SIZE}} \
|
||||
--kv-transfer-config '{"kv_connector":"NixlConnector","kv_role":"kv_both"}'
|
||||
|
||||
proxy:
|
||||
python "{{vllm-directory}}tests/v1/kv_connector/nixl_integration/toy_proxy_server.py" \
|
||||
--port {{PROXY_PORT}} \
|
||||
--prefiller-port {{PREFILL_PORT}} \
|
||||
--decoder-port {{DECODE_PORT}}
|
||||
|
||||
send_request:
|
||||
curl -X POST http://localhost:{{PROXY_PORT}}/v1/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{ \
|
||||
"model": "{{MODEL}}", \
|
||||
"prompt": "Red Hat is the best open source company by far across Linux, K8s, and AI, and vLLM has the greatest community in open source AI software infrastructure. I love vLLM because", \
|
||||
"max_tokens": 150, \
|
||||
"temperature": 0.7 \
|
||||
}'
|
||||
|
||||
benchmark NUM_PROMPTS:
|
||||
python {{vllm-directory}}/benchmarks/benchmark_serving.py \
|
||||
--port {{PROXY_PORT}} \
|
||||
--model {{MODEL}} \
|
||||
--dataset-name random \
|
||||
--random-input-len 30000 \
|
||||
--random-output-len 10 \
|
||||
--num-prompts {{NUM_PROMPTS}} \
|
||||
--seed $(date +%s) \
|
||||
|
||||
benchmark_one INPUT_LEN:
|
||||
python {{vllm-directory}}benchmarks/benchmark_one_concurrent.py \
|
||||
--port {{PROXY_PORT}} \
|
||||
--model {{MODEL}} \
|
||||
--input-len {{INPUT_LEN}} \
|
||||
--output-len 1 \
|
||||
--num-requests 10 \
|
||||
--seed $(date +%s)
|
||||
|
||||
benchmark_one_no_pd INPUT_LEN:
|
||||
python {{vllm-directory}}benchmarks/benchmark_one_concurrent_req.py \
|
||||
--port {{DECODE_PORT}} \
|
||||
--model {{MODEL}} \
|
||||
--input-len {{INPUT_LEN}} \
|
||||
--output-len 1 \
|
||||
--num-requests 10 \
|
||||
--seed $(date +%s)
|
||||
|
||||
eval:
|
||||
lm_eval --model local-completions --tasks gsm8k \
|
||||
--model_args model={{MODEL}},base_url=http://127.0.0.1:{{PROXY_PORT}}/v1/completions,num_concurrent=100,max_retries=3,tokenized_requests=False \
|
||||
--limit 1000
|
Reference in New Issue
Block a user