Compare commits

...

1 Commits

Author SHA1 Message Date
0405645a6c initial
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-01-31 00:55:49 +00:00
3 changed files with 783 additions and 0 deletions

View File

@ -530,6 +530,39 @@ def run_qwen2_vl(question: str, modality: str):
return llm, prompt, stop_token_ids
# Qwen2-VL
def run_qwen2_5_vl(question: str, modality: str):
model_name = "Qwen/Qwen2.5-VL-3B-Instruct"
llm = LLM(
model=model_name,
max_model_len=4096,
max_num_seqs=5,
mm_processor_kwargs={
"min_pixels": 28 * 28,
"max_pixels": 256 * 28 * 28,
},
disable_mm_preprocessor_cache=args.disable_mm_preprocessor_cache,
limit_mm_per_prompt={
"image": 1,
"video": 0
},
)
if modality == "image":
placeholder = "<|image_pad|>"
elif modality == "video":
placeholder = "<|video_pad|>"
prompt = ("<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
f"<|im_start|>user\n<|vision_start|>{placeholder}<|vision_end|>"
f"{question}<|im_end|>\n"
"<|im_start|>assistant\n")
stop_token_ids = None
return llm, prompt, stop_token_ids
model_example_map = {
"aria": run_aria,
"blip-2": run_blip2,
@ -556,6 +589,7 @@ model_example_map = {
"pixtral_hf": run_pixtral_hf,
"qwen_vl": run_qwen_vl,
"qwen2_vl": run_qwen2_vl,
"qwen2_5_vl": run_qwen2_5_vl,
}

View File

@ -0,0 +1,748 @@
# Adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py
# Copyright 2025 The vLLM team.
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen2-VL model compatible with HuggingFace weights."""
from functools import cached_property, partial
from typing import (Any, Callable, Iterable, List, Literal, Mapping, Optional,
Set, Tuple, Type, TypedDict, Union)
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers import BatchFeature
from transformers.models.qwen2_5_vl import (Qwen2_5_VLImageProcessor,
Qwen2_5_VLProcessor)
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import (
Qwen2_5_VLConfig, Qwen2_5_VLVisionConfig)
from transformers.models.qwen2_5_vl.image_processing_qwen2_5_vl import (
smart_resize)
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
Qwen2_5_VisionTransformerPretrainedModel)
from vllm.attention import AttentionMetadata
from vllm.config import VllmConfig
from vllm.distributed import parallel_state, tensor_model_parallel_all_gather
from vllm.distributed import utils as dist_utils
from vllm.logger import init_logger
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.layers.activation import QuickGELU
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.quantization.gptq import GPTQConfig
from vllm.model_executor.layers.quantization.gptq_marlin import (
GPTQMarlinConfig)
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (ImageItem, ModalityData,
MultiModalFieldConfig, MultiModalKwargs,
VideoItem)
from vllm.multimodal.parse import (ImageSize, ModalityDataItems,
MultiModalDataItems, MultiModalDataParser)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.platforms import _Backend
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.config import uses_mrope
from .interfaces import SupportsLoRA, SupportsMultiModal, SupportsPP
from .utils import (AutoWeightsLoader, WeightsMapper,
init_vllm_registered_model, maybe_prefix,
merge_multimodal_embeddings)
from .vision import get_vit_attn_backend
logger = init_logger(__name__)
# For profile run
_MAX_FRAMES_PER_VIDEO = 16
# === Vision Inputs === #
class Qwen2_5_VLImagePixelInputs(TypedDict):
type: Literal["pixel_values"]
pixel_values: torch.Tensor
"""Shape:
`(num_patches, num_channels * patch_size * patch_size)`
"""
image_grid_thw: torch.Tensor
"""Shape: `(num_images, 3)`
This should be in `(grid_t, grid_h, grid_w)` format.
"""
class Qwen2_5_VLVideoPixelInputs(TypedDict):
type: Literal["pixel_values_videos"]
pixel_values_videos: torch.Tensor
"""Shape:
`(num_patches,
num_channels * temporal_patch_size * patch_size * patch_size)`
"""
video_grid_thw: torch.Tensor
"""Shape: `(num_videos, 3)`
This should be in `(grid_t, grid_h, grid_w)` format.
"""
class Qwen2_5_VLProcessingInfo(BaseProcessingInfo):
def get_hf_config(self):
return self.ctx.get_hf_config(Qwen2_5_VLConfig)
def get_hf_processor(
self,
*,
min_pixels: Optional[int] = None,
max_pixels: Optional[int] = None,
) -> Qwen2_5_VLProcessor:
hf_processor = self.ctx.get_hf_processor(Qwen2_5_VLProcessor)
image_processor = hf_processor.image_processor # type: ignore
assert isinstance(image_processor, Qwen2_5_VLImageProcessor)
if min_pixels:
image_processor.min_pixels = min_pixels
if max_pixels:
image_processor.max_pixels = max_pixels
if max_pixels or min_pixels:
image_processor.size = {
"min_pixels": image_processor.min_pixels,
"max_pixels": image_processor.max_pixels,
}
return hf_processor
def get_image_processor(
self,
*,
min_pixels: Optional[int] = None,
max_pixels: Optional[int] = None,
):
hf_processor = self.get_hf_processor(min_pixels=min_pixels,
max_pixels=max_pixels)
image_processor = hf_processor.image_processor # type: ignore
assert isinstance(image_processor, Qwen2_5_VLImageProcessor)
return image_processor
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
return {"image": None, "video": None}
def get_mm_max_tokens_per_item(self, seq_len: int) -> Mapping[str, int]:
return {
"image": self.get_max_image_tokens(),
"video": self.get_max_video_tokens(seq_len),
}
def _get_vision_info(
self,
*,
image_width: int,
image_height: int,
num_frames: int = 1,
do_resize: bool = True,
image_processor: Optional[Qwen2_5_VLImageProcessor],
) -> tuple[ImageSize, int]:
if image_processor is None:
image_processor = self.get_image_processor()
hf_config = self.get_hf_config()
vision_config = hf_config.vision_config
patch_size = vision_config.patch_size
merge_size = vision_config.spatial_merge_size
temporal_patch_size = vision_config.temporal_patch_size
if do_resize:
resized_height, resized_width = smart_resize(
height=image_height,
width=image_width,
factor=patch_size * merge_size,
min_pixels=image_processor.min_pixels,
max_pixels=image_processor.max_pixels,
)
preprocessed_size = ImageSize(width=resized_width,
height=resized_height)
else:
preprocessed_size = ImageSize(width=image_width,
height=image_height)
grid_t = max(num_frames // temporal_patch_size, 1)
grid_h = preprocessed_size.height // patch_size
grid_w = preprocessed_size.width // patch_size
num_patches = grid_t * grid_h * grid_w
num_vision_tokens = num_patches // (merge_size**2)
return preprocessed_size, num_vision_tokens
def get_num_image_tokens(
self,
*,
image_width: int,
image_height: int,
image_processor: Optional[Qwen2_5_VLImageProcessor],
) -> int:
_, num_image_tokens = self._get_vision_info(
image_width=image_width,
image_height=image_height,
image_processor=image_processor,
)
return num_image_tokens
def get_num_video_tokens(
self,
*,
image_width: int,
image_height: int,
num_frames: int,
image_processor: Optional[Qwen2_5_VLImageProcessor],
) -> int:
_, num_video_tokens = self._get_vision_info(
image_width=image_width,
image_height=image_height,
num_frames=num_frames,
image_processor=image_processor,
)
return num_video_tokens
def get_image_size_with_most_features(self) -> ImageSize:
max_image_size, _ = self._get_vision_info(
image_width=9999999,
image_height=9999999,
image_processor=None,
)
return max_image_size
def get_max_image_tokens(self) -> int:
target_width, target_height = self.get_image_size_with_most_features()
return self.get_num_image_tokens(
image_width=target_width,
image_height=target_height,
image_processor=None,
)
def _get_max_video_frames(self, max_tokens: int) -> int:
target_width, target_height = self.get_image_size_with_most_features()
num_frames = 0
while True:
next_num_frames = num_frames + 1
next_max_tokens = self.get_num_video_tokens(
image_width=target_width,
image_height=target_height,
num_frames=next_num_frames,
image_processor=None,
)
if next_max_tokens > max_tokens:
break
num_frames = next_num_frames
return num_frames
def get_num_frames_with_most_features(self, seq_len: int) -> int:
mm_config = self.ctx.get_mm_config()
max_images = mm_config.limit_per_prompt.get("image", 1)
max_videos = mm_config.limit_per_prompt.get("video", 1)
max_image_tokens = self.get_max_image_tokens() * max_images
max_total_frames = self._get_max_video_frames(seq_len -
max_image_tokens)
num_frames = min(max(max_total_frames // max(max_videos, 1), 1),
_MAX_FRAMES_PER_VIDEO)
# Temporary workaround for https://github.com/huggingface/transformers/issues/35412
if num_frames > 1 and num_frames % 2 == 1:
num_frames += 1
return num_frames
def get_max_video_tokens(self, seq_len: int) -> int:
target_width, target_height = self.get_image_size_with_most_features()
return self.get_num_video_tokens(
image_width=target_width,
image_height=target_height,
num_frames=self.get_num_frames_with_most_features(seq_len),
image_processor=None,
)
class Qwen2_5_VLDummyInputsBuilder(
BaseDummyInputsBuilder[Qwen2_5_VLProcessingInfo]):
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
num_images = mm_counts.get("image", 0)
num_videos = mm_counts.get("video", 0)
hf_processor = self.info.get_hf_processor()
image_token: str = hf_processor.image_token
video_token: str = hf_processor.video_token
target_width, target_height = \
self.info.get_image_size_with_most_features()
target_num_frames = \
self.info.get_num_frames_with_most_features(seq_len)
mm_data = {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images),
"video":
self._get_dummy_videos(
width=target_width,
height=target_height,
num_frames=target_num_frames,
num_videos=num_videos,
)
}
return ProcessorInputs(
prompt_text=image_token * num_images + video_token * num_videos,
mm_data=mm_data,
)
class Qwen2_5_VLMultiModalProcessor(
BaseMultiModalProcessor[Qwen2_5_VLProcessingInfo]):
def _get_prompt_replacements(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, Any],
out_mm_kwargs: MultiModalKwargs,
) -> list[PromptReplacement]:
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
image_processor = self.info.get_image_processor(
**hf_processor_mm_kwargs)
tokenizer = self.info.get_tokenizer()
vocab = tokenizer.get_vocab()
# NOTE: Only Qwen2_5_VLProcessor in transformers 4.47.0 has
# image_token and video_token registered
placeholder = {
"image": vocab[hf_processor.image_token],
"video": vocab[hf_processor.video_token],
}
merge_length = image_processor.merge_size**2
def get_replacement_Qwen2_5_VL(item_idx: int, modality: str):
grid_thw = out_mm_kwargs[f"{modality}_grid_thw"][item_idx]
assert isinstance(grid_thw, torch.Tensor)
num_tokens = int(grid_thw.prod()) // merge_length
return [placeholder[modality]] * num_tokens
return [
PromptReplacement(
modality=modality,
target=[placeholder[modality]],
replacement=partial(get_replacement_Qwen2_5_VL,
modality=modality),
) for modality in ("image", "video")
]
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
image_grid_thw = hf_inputs.get("image_grid_thw", torch.empty((0, 3)))
image_slice_idxs = [0] + image_grid_thw.prod(-1).cumsum_(0).tolist()
image_slices = [
slice(image_slice_idxs[i], image_slice_idxs[i + 1])
for i in range(len(image_grid_thw))
]
video_grid_thw = hf_inputs.get("video_grid_thw", torch.empty((0, 3)))
video_slice_idxs = [0] + video_grid_thw.prod(-1).cumsum_(0).tolist()
video_slices = [
slice(video_slice_idxs[i], video_slice_idxs[i + 1])
for i in range(len(video_grid_thw))
]
return dict(
pixel_values=MultiModalFieldConfig.flat("image", image_slices),
image_grid_thw=MultiModalFieldConfig.batched("image"),
pixel_values_videos=MultiModalFieldConfig.flat(
"video", video_slices),
video_grid_thw=MultiModalFieldConfig.batched("video"),
)
@MULTIMODAL_REGISTRY.register_processor(
Qwen2_5_VLMultiModalProcessor,
info=Qwen2_5_VLProcessingInfo,
dummy_inputs=Qwen2_5_VLDummyInputsBuilder)
class Qwen2_5_VLForConditionalGeneration(nn.Module, SupportsMultiModal,
SupportsLoRA, SupportsPP):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
# LoRA specific attributes
supported_lora_modules = [
"qkv_proj",
"o_proj",
"gate_up_proj",
"down_proj",
# vision tower
"qkv",
"attn.proj", # Distinguish patch_embed.proj
"fc1",
"fc2",
# projector
"mlp.0",
"mlp.2"
]
embedding_modules = {}
embedding_padding_modules = []
# To ensure correct weight loading and mapping.
hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={
"lm_head.": "language_model.lm_head.",
"model.": "language_model.model.",
})
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: Qwen2_5_VLConfig = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
self.visual = Qwen2_5_VisionTransformerPretrainedModel._from_config(
config.vision_config)
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "language_model"),
architectures=["Qwen2ForCausalLM"],
)
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors)
@cached_property
def sampler(self):
if hasattr(self.language_model, "sampler"):
return self.language_model.sampler
return get_sampler()
def _maybe_ignore_quant_config(self, quant_config: QuantizationConfig):
# GPTQ configs do not have a list of ignored modules, however AutoGPTQ
# seems to avoid vision encoder sections for some models.
# See: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4
if isinstance(quant_config, (GPTQConfig, GPTQMarlinConfig)):
return None
return quant_config
def _validate_and_reshape_mm_tensor(self, mm_input: object,
name: str) -> torch.Tensor:
if not isinstance(mm_input, (torch.Tensor, list)):
raise ValueError(f"Incorrect type of {name}. "
f"Got type: {type(mm_input)}")
if isinstance(mm_input, torch.Tensor):
if mm_input.ndim == 2:
return mm_input
if mm_input.ndim != 3:
raise ValueError(f"{name} should be 2D or batched 3D tensor. "
f"Got ndim: {mm_input.ndim} "
f"(shape={mm_input.shape})")
return torch.concat(list(mm_input))
else:
return torch.concat(mm_input)
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[Qwen2_5_VLImagePixelInputs]:
pixel_values = kwargs.pop("pixel_values", None)
image_grid_thw = kwargs.pop("image_grid_thw", None)
if pixel_values is None:
return None
if pixel_values is not None:
pixel_values = self._validate_and_reshape_mm_tensor(
pixel_values, "image pixel values")
image_grid_thw = self._validate_and_reshape_mm_tensor(
image_grid_thw, "image grid_thw")
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError("Incorrect type of image pixel values. "
f"Got type: {type(pixel_values)}")
return Qwen2_5_VLImagePixelInputs(type="pixel_values",
pixel_values=pixel_values,
image_grid_thw=image_grid_thw)
raise
def _parse_and_validate_video_input(
self, **kwargs: object) -> Optional[Qwen2_5_VLVideoPixelInputs]:
pixel_values_videos = kwargs.pop("pixel_values_videos", None)
video_grid_thw = kwargs.pop("video_grid_thw", None)
if pixel_values_videos is None:
return None
if pixel_values_videos is not None:
pixel_values_videos = self._validate_and_reshape_mm_tensor(
pixel_values_videos, "video pixel values")
video_grid_thw = self._validate_and_reshape_mm_tensor(
video_grid_thw, "video grid_thw")
return Qwen2_5_VLVideoPixelInputs(
type="pixel_values_videos",
pixel_values_videos=pixel_values_videos,
video_grid_thw=video_grid_thw,
)
raise
def _process_image_input(
self, image_input: Qwen2_5_VLImagePixelInputs
) -> tuple[torch.Tensor, ...]:
grid_thw = image_input["image_grid_thw"]
assert grid_thw.ndim == 2
pixel_values = image_input["pixel_values"].type(self.visual.dtype)
image_embeds = self.visual(pixel_values, grid_thw=grid_thw)
# Split concatenated embeddings for each image item.
merge_size = self.visual.spatial_merge_size
sizes = grid_thw.prod(-1) // merge_size // merge_size
return image_embeds.split(sizes.tolist())
def _process_video_input(
self, video_input: Qwen2_5_VLVideoPixelInputs
) -> tuple[torch.Tensor, ...]:
grid_thw = video_input["video_grid_thw"]
assert grid_thw.ndim == 2
pixel_values_videos = video_input["pixel_values_videos"].type(
self.visual.dtype)
video_embeds = self.visual(pixel_values_videos, grid_thw=grid_thw)
# Split concatenated embeddings for each video item.
merge_size = self.visual.spatial_merge_size
sizes = grid_thw.prod(-1) // merge_size // merge_size
return video_embeds.split(sizes.tolist())
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
modalities = {}
# Preserve the order of modalities if there are multiple of them
# from the order of kwargs.
for input_key in kwargs:
if input_key in ("pixel_values",
"image_embeds") and "images" not in modalities:
modalities["images"] = self._parse_and_validate_image_input(
**kwargs)
if input_key in ("pixel_values_videos",
"video_embeds") and "videos" not in modalities:
modalities["videos"] = self._parse_and_validate_video_input(
**kwargs)
return modalities
def get_multimodal_embeddings(
self, **kwargs) -> Optional[tuple[torch.Tensor, ...]]:
modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
if not modalities:
return None
# The result multimodal_embeddings is tuple of tensors, with each
# tensor correspoending to a multimodal data item (image or video).
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
# NOTE: It is important to iterate over the keys in this dictionary
# to preserve the order of the modalities.
for modality in modalities:
if modality == "images":
image_input = modalities["images"]
vision_embeddings = self._process_image_input(image_input)
multimodal_embeddings += vision_embeddings
if modality == "videos":
video_input = modalities["videos"]
video_embeddings = self._process_video_input(video_input)
multimodal_embeddings += video_embeddings
return multimodal_embeddings
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[tuple[torch.Tensor, ...]] = None,
) -> torch.Tensor:
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None:
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, multimodal_embeddings,
[self.config.image_token_id, self.config.video_token_id])
return inputs_embeds
def get_input_embeddings_v0(
self,
input_ids: torch.Tensor,
image_input: Optional[tuple[torch.Tensor, ...]] = None,
video_input: Optional[tuple[torch.Tensor, ...]] = None,
) -> torch.Tensor:
inputs_embeds = self.get_input_embeddings(input_ids)
if image_input is not None:
image_embeds = self._process_image_input(image_input)
inputs_embeds = merge_multimodal_embeddings(
input_ids,
inputs_embeds,
image_embeds,
placeholder_token_id=self.config.image_token_id,
)
if video_input is not None:
video_embeds = self._process_video_input(video_input)
inputs_embeds = merge_multimodal_embeddings(
input_ids,
inputs_embeds,
video_embeds,
placeholder_token_id=self.config.video_token_id,
)
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
"""Run forward pass for Qwen2.5-VL.
Args:
input_ids: Flattened (concatenated) input_ids corresponding to a
batch.
positions: Flattened (concatenated) position ids corresponding to a
batch.
**NOTE**: If mrope is enabled (default setting for Qwen2-VL
opensource models), the shape will be `(3, seq_len)`,
otherwise it will be `(seq_len,).
pixel_values: Pixel values to be fed to a model.
`None` if no images are passed.
image_grid_thw: Tensor `(n_images, 3)` of image 3D grid in LLM.
`None` if no images are passed.
pixel_values_videos: Pixel values of videos to be fed to a model.
`None` if no videos are passed.
video_grid_thw: Tensor `(n_videos, 3)` of video 3D grid in LLM.
`None` if no videos are passed.
"""
if intermediate_tensors is not None:
inputs_embeds = None
# NOTE: In v1, inputs_embeds is always generated at model runner from
# `get_multimodal_embeddings` and `get_input_embeddings`, this
# condition is only for v0 compatibility.
elif inputs_embeds is None:
image_input = self._parse_and_validate_image_input(**kwargs)
video_input = self._parse_and_validate_video_input(**kwargs)
if image_input is None and video_input is None:
inputs_embeds = None
else:
if uses_mrope(self.config):
assert positions.ndim == 2 and positions.size(0) == 3, (
"multimodal section rotary embedding requires "
f"(3, seq_len) positions, but got {positions.size()}")
inputs_embeds = self.get_input_embeddings_v0(
input_ids,
image_input=image_input,
video_input=video_input)
input_ids = None
hidden_states = self.language_model.model(
input_ids=input_ids,
positions=positions,
kv_caches=kv_caches,
attn_metadata=attn_metadata,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
return self.language_model.compute_logits(hidden_states,
sampling_metadata)
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
return self.language_model.sample(logits, sampling_metadata)
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
def get_mm_mapping(self) -> MultiModelKeys:
"""
Get the module prefix in multimodal models
"""
return MultiModelKeys.from_string_field(
language_model="language_model",
connector="visual.",
tower_model="visual.merger.")

View File

@ -171,6 +171,7 @@ _MULTIMODAL_MODELS = {
"PixtralForConditionalGeneration": ("pixtral", "PixtralForConditionalGeneration"), # noqa: E501
"QWenLMHeadModel": ("qwen", "QWenLMHeadModel"),
"Qwen2VLForConditionalGeneration": ("qwen2_vl", "Qwen2VLForConditionalGeneration"), # noqa: E501
"Qwen2_5_VLForConditionalGeneration": ("qwen2_5_vl", "Qwen2_5_VLForConditionalGeneration"), # noqa: E501
"Qwen2AudioForConditionalGeneration": ("qwen2_audio", "Qwen2AudioForConditionalGeneration"), # noqa: E501
"UltravoxModel": ("ultravox", "UltravoxModel"),
# [Encoder-decoder]