Compare commits

..

1 Commits

Author SHA1 Message Date
161010c384 Initial stubs for P/D scheduling changes
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-04-18 16:42:49 -04:00
1523 changed files with 44914 additions and 98669 deletions

View File

@ -8,12 +8,12 @@ import zipfile
# Note that we have 400 MiB quota, please use it wisely.
# See https://github.com/pypi/support/issues/3792 .
# Please also sync the value with the one in Dockerfile.
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 400))
VLLM_MAX_SIZE_MB = int(os.environ.get('VLLM_MAX_SIZE_MB', 400))
def print_top_10_largest_files(zip_file):
"""Print the top 10 largest files in the given zip file."""
with zipfile.ZipFile(zip_file, "r") as z:
with zipfile.ZipFile(zip_file, 'r') as z:
file_sizes = [(f, z.getinfo(f).file_size) for f in z.namelist()]
file_sizes.sort(key=lambda x: x[1], reverse=True)
for f, size in file_sizes[:10]:
@ -28,18 +28,14 @@ def check_wheel_size(directory):
wheel_path = os.path.join(root, file_name)
wheel_size_mb = os.path.getsize(wheel_path) / (1024 * 1024)
if wheel_size_mb > VLLM_MAX_SIZE_MB:
print(
f"Not allowed: Wheel {wheel_path} is larger "
f"({wheel_size_mb:.2f} MB) than the limit "
f"({VLLM_MAX_SIZE_MB} MB)."
)
print(f"Not allowed: Wheel {wheel_path} is larger "
f"({wheel_size_mb:.2f} MB) than the limit "
f"({VLLM_MAX_SIZE_MB} MB).")
print_top_10_largest_files(wheel_path)
return 1
else:
print(
f"Wheel {wheel_path} is within the allowed size "
f"({wheel_size_mb:.2f} MB)."
)
print(f"Wheel {wheel_path} is within the allowed size "
f"({wheel_size_mb:.2f} MB).")
return 0
@ -49,4 +45,4 @@ if __name__ == "__main__":
sys.exit(1)
directory = sys.argv[1]
sys.exit(check_wheel_size(directory))
sys.exit(check_wheel_size(directory))

View File

@ -22,5 +22,5 @@ with open("index.html", "w") as f:
print(f"Generated index.html for {args.wheel}")
# cloudfront requires escaping the '+' character
f.write(
template.format(wheel=filename, wheel_html_escaped=filename.replace("+", "%2B"))
)
template.format(wheel=filename,
wheel_html_escaped=filename.replace("+", "%2B")))

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m deepseek-ai/DeepSeek-V2-Lite-Chat -b "auto" -l 1000 -f 5 -t 2
model_name: "deepseek-ai/DeepSeek-V2-Lite-Chat"
tasks:

View File

@ -1,4 +1,3 @@
# For hf script, without -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5
model_name: "nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform"
tasks:

View File

@ -1,4 +1,3 @@
# For hf script, without -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-70B-Instruct -b 32 -l 250 -f 5
model_name: "meta-llama/Meta-Llama-3-70B-Instruct"
tasks:

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors"
tasks:

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform"
tasks:

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test -b 32 -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test"
tasks:

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Meta-Llama-3-8B-Instruct-FP8 -b 32 -l 250 -f 5 -t 1
model_name: "neuralmagic/Meta-Llama-3-8B-Instruct-FP8"
tasks:

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test"
tasks:

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test"
tasks:

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test"
tasks:

View File

@ -1,5 +1,4 @@
# For hf script, without -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-8B-Instruct -b 32 -l 250 -f 5
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-8B-Instruct -b 32 -l 250 -f 5 -t 1
model_name: "meta-llama/Meta-Llama-3-8B-Instruct"
tasks:
- name: "gsm8k"

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m HandH1998/QQQ-Llama-3-8b-g128 -b 32 -l 1000 -f 5 -t 1
model_name: "HandH1998/QQQ-Llama-3-8b-g128"
tasks:

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Llama-3.2-1B-Instruct-FP8 -b "auto" -l 1319 -f 5 -t 1
model_name: "RedHatAI/Llama-3.2-1B-Instruct-FP8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.335
- name: "exact_match,flexible-extract"
value: 0.323
limit: 1319
num_fewshot: 5

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
model_name: "neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8"
tasks:

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m mgoin/Minitron-4B-Base-FP8 -b auto -l 1000 -f 5 -t 1
model_name: "mgoin/Minitron-4B-Base-FP8"
tasks:

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic -b "auto" -l 250 -f 5 -t 8
model_name: "neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic"
tasks:

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8 -b "auto" -l 250 -f 5 -t 4
model_name: "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8"
tasks:

View File

@ -1,5 +1,4 @@
# For hf script, without -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1 -b 32 -l 250 -f 5
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1 -b 32 -l 250 -f 5 -t 4
model_name: "mistralai/Mixtral-8x7B-Instruct-v0.1"
tasks:
- name: "gsm8k"

View File

@ -1,12 +1,11 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen1.5-MoE-A2.7B-Chat-quantized.w4a16 -b auto -l 1319 -f 5 -t 1
model_name: "nm-testing/Qwen1.5-MoE-A2.7B-Chat-quantized.w4a16"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.30
value: 0.31
- name: "exact_match,flexible-extract"
value: 0.465
value: 0.47
limit: 1319
num_fewshot: 5

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-FP8W8 -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Qwen2-1.5B-Instruct-FP8W8"
tasks:

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
model_name: "neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8"
tasks:

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise -b "auto" -l 1000 -f 5 -t 1
model_name: "nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise"
tasks:

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m Qwen/Qwen2-57B-A14B-Instruct -b "auto" -l 250 -f 5 -t 4
model_name: "Qwen/Qwen2-57B-A14B-Instruct"
tasks:

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m Qwen/Qwen2.5-1.5B-Instruct -b auto -l 1319 -f 5 -t 1
model_name: "Qwen/Qwen2.5-1.5B-Instruct"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.54
- name: "exact_match,flexible-extract"
value: 0.59
limit: 1319
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic -b auto -l 1319 -f 5 -t 1
model_name: "RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.47
- name: "exact_match,flexible-extract"
value: 0.64
limit: 1319
num_fewshot: 5

View File

@ -1,4 +1,3 @@
# For vllm script, with -t option (tensor parallel size).
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM -b "auto" -t 2
model_name: "nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM"
tasks:

View File

@ -3,4 +3,3 @@ Meta-Llama-3-70B-Instruct.yaml
Mixtral-8x7B-Instruct-v0.1.yaml
Qwen2-57B-A14-Instruct.yaml
DeepSeek-V2-Lite-Chat.yaml
Meta-Llama-3-8B-QQQ.yaml

View File

@ -1,6 +1,10 @@
Qwen2.5-1.5B-Instruct.yaml
Meta-Llama-3-8B-Instruct.yaml
Meta-Llama-3-8B-Instruct-FP8-compressed-tensors.yaml
Meta-Llama-3.2-1B-Instruct-INT8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors-asym.yaml
Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml
Qwen2.5-VL-3B-Instruct-FP8-dynamic.yaml
Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml
Qwen1.5-MoE-W4A16-compressed-tensors.yaml
Qwen2-1.5B-Instruct-INT8-compressed-tensors.yaml
Qwen2-1.5B-Instruct-FP8W8.yaml
Meta-Llama-3-8B-QQQ.yaml

View File

@ -1,43 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
from pathlib import Path
import pytest
def pytest_addoption(parser):
parser.addoption(
"--config-list-file",
action="store",
help="Path to the file listing model config YAMLs (one per line)",
)
parser.addoption(
"--tp-size",
action="store",
default="1",
help="Tensor parallel size to use for evaluation",
)
@pytest.fixture(scope="session")
def config_list_file(pytestconfig, config_dir):
rel_path = pytestconfig.getoption("--config-list-file")
return config_dir / rel_path
@pytest.fixture(scope="session")
def tp_size(pytestconfig):
return pytestconfig.getoption("--tp-size")
def pytest_generate_tests(metafunc):
if "config_filename" in metafunc.fixturenames:
rel_path = metafunc.config.getoption("--config-list-file")
config_list_file = Path(rel_path).resolve()
config_dir = config_list_file.parent
with open(config_list_file, encoding="utf-8") as f:
configs = [
config_dir / line.strip()
for line in f
if line.strip() and not line.startswith("#")
]
metafunc.parametrize("config_filename", configs)

View File

@ -0,0 +1,59 @@
#!/bin/bash
usage() {
echo``
echo "Runs lm eval harness on GSM8k using vllm and compares to "
echo "precomputed baseline (measured by HF transformers.)"
echo
echo "usage: ${0} <options>"
echo
echo " -c - path to the test data config (e.g. configs/small-models.txt)"
echo " -t - tensor parallel size"
echo
}
SUCCESS=0
while getopts "c:t:" OPT; do
case ${OPT} in
c )
CONFIG="$OPTARG"
;;
t )
TP_SIZE="$OPTARG"
;;
\? )
usage
exit 1
;;
esac
done
# Parse list of configs.
IFS=$'\n' read -d '' -r -a MODEL_CONFIGS < "$CONFIG"
for MODEL_CONFIG in "${MODEL_CONFIGS[@]}"
do
LOCAL_SUCCESS=0
echo "=== RUNNING MODEL: $MODEL_CONFIG WITH TP SIZE: $TP_SIZE==="
export LM_EVAL_TEST_DATA_FILE=$PWD/configs/${MODEL_CONFIG}
export LM_EVAL_TP_SIZE=$TP_SIZE
pytest -s test_lm_eval_correctness.py || LOCAL_SUCCESS=$?
if [[ $LOCAL_SUCCESS == 0 ]]; then
echo "=== PASSED MODEL: ${MODEL_CONFIG} ==="
else
echo "=== FAILED MODEL: ${MODEL_CONFIG} ==="
fi
SUCCESS=$((SUCCESS + LOCAL_SUCCESS))
done
if [ "${SUCCESS}" -eq "0" ]; then
exit 0
else
exit 1
fi

View File

@ -3,52 +3,67 @@
LM eval harness on model to compare vs HF baseline computed offline.
Configs are found in configs/$MODEL.yaml
pytest -s -v test_lm_eval_correctness.py \
--config-list-file=configs/models-small.txt \
--tp-size=1
* export LM_EVAL_TEST_DATA_FILE=configs/Meta-Llama-3-70B-Instruct.yaml
* export LM_EVAL_TP_SIZE=4
* pytest -s test_lm_eval_correctness.py
"""
import os
from pathlib import Path
import lm_eval
import numpy as np
import numpy
import pytest
import yaml
RTOL = 0.08
RTOL = 0.05
TEST_DATA_FILE = os.environ.get(
"LM_EVAL_TEST_DATA_FILE",
".buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml")
TP_SIZE = os.environ.get("LM_EVAL_TP_SIZE", 1)
def launch_lm_eval(eval_config, tp_size):
trust_remote_code = eval_config.get("trust_remote_code", False)
model_args = (
f"pretrained={eval_config['model_name']},"
f"tensor_parallel_size={tp_size},"
f"enforce_eager=true,"
f"add_bos_token=true,"
f"trust_remote_code={trust_remote_code}"
)
def launch_lm_eval(eval_config):
trust_remote_code = eval_config.get('trust_remote_code', False)
model_args = f"pretrained={eval_config['model_name']}," \
f"tensor_parallel_size={TP_SIZE}," \
f"add_bos_token=true," \
f"trust_remote_code={trust_remote_code}"
results = lm_eval.simple_evaluate(
model="vllm",
model_args=model_args,
tasks=[task["name"] for task in eval_config["tasks"]],
num_fewshot=eval_config["num_fewshot"],
limit=eval_config["limit"],
batch_size="auto",
)
batch_size="auto")
return results
def test_lm_eval_correctness_param(config_filename, tp_size):
eval_config = yaml.safe_load(config_filename.read_text(encoding="utf-8"))
def test_lm_eval_correctness():
eval_config = yaml.safe_load(
Path(TEST_DATA_FILE).read_text(encoding="utf-8"))
results = launch_lm_eval(eval_config, tp_size)
if eval_config[
"model_name"] == "nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform": #noqa: E501
pytest.skip("FBGEMM is currently failing on main.")
# Launch eval requests.
results = launch_lm_eval(eval_config)
# Confirm scores match ground truth.
success = True
for task in eval_config["tasks"]:
for metric in task["metrics"]:
ground_truth = metric["value"]
measured_value = results["results"][task["name"]][metric["name"]]
print(
f"{task['name']} | {metric['name']}: "
f"ground_truth={ground_truth} | measured={measured_value}"
)
success = success and np.isclose(ground_truth, measured_value, rtol=RTOL)
print(f'{task["name"]} | {metric["name"]}: '
f'ground_truth={ground_truth} | measured={measured_value}')
success = success and numpy.isclose(
ground_truth, measured_value, rtol=RTOL)
# Assert at the end, print all scores even on failure for debugging.
assert success

View File

@ -65,18 +65,18 @@ def read_markdown(file):
def results_to_json(latency, throughput, serving):
return json.dumps(
{
"latency": latency.to_dict(),
"throughput": throughput.to_dict(),
"serving": serving.to_dict(),
}
)
return json.dumps({
'latency': latency.to_dict(),
'throughput': throughput.to_dict(),
'serving': serving.to_dict()
})
if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
with open(test_file) as f:
raw_result = json.loads(f.read())
@ -120,8 +120,7 @@ if __name__ == "__main__":
for perc in [10, 25, 50, 75, 90, 99]:
# Multiply 1000 to convert the time unit from s to ms
raw_result.update(
{f"P{perc}": 1000 * raw_result["percentiles"][str(perc)]}
)
{f"P{perc}": 1000 * raw_result["percentiles"][str(perc)]})
raw_result["avg_latency"] = raw_result["avg_latency"] * 1000
# add the result to raw_result
@ -154,27 +153,26 @@ if __name__ == "__main__":
serving_results = pd.DataFrame.from_dict(serving_results)
throughput_results = pd.DataFrame.from_dict(throughput_results)
raw_results_json = results_to_json(
latency_results, throughput_results, serving_results
)
raw_results_json = results_to_json(latency_results, throughput_results,
serving_results)
# remapping the key, for visualization purpose
if not latency_results.empty:
latency_results = latency_results[list(latency_column_mapping.keys())].rename(
columns=latency_column_mapping
)
latency_results = latency_results[list(
latency_column_mapping.keys())].rename(
columns=latency_column_mapping)
if not serving_results.empty:
serving_results = serving_results[list(serving_column_mapping.keys())].rename(
columns=serving_column_mapping
)
serving_results = serving_results[list(
serving_column_mapping.keys())].rename(
columns=serving_column_mapping)
if not throughput_results.empty:
throughput_results = throughput_results[
list(throughput_results_column_mapping.keys())
].rename(columns=throughput_results_column_mapping)
throughput_results = throughput_results[list(
throughput_results_column_mapping.keys())].rename(
columns=throughput_results_column_mapping)
processed_results_json = results_to_json(
latency_results, throughput_results, serving_results
)
processed_results_json = results_to_json(latency_results,
throughput_results,
serving_results)
for df in [latency_results, serving_results, throughput_results]:
if df.empty:
@ -186,39 +184,38 @@ if __name__ == "__main__":
# The GPUs sometimes come in format of "GPUTYPE\nGPUTYPE\n...",
# we want to turn it into "8xGPUTYPE"
df["GPU"] = df["GPU"].apply(
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}"
)
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}")
# get markdown tables
latency_md_table = tabulate(
latency_results, headers="keys", tablefmt="pipe", showindex=False
)
serving_md_table = tabulate(
serving_results, headers="keys", tablefmt="pipe", showindex=False
)
throughput_md_table = tabulate(
throughput_results, headers="keys", tablefmt="pipe", showindex=False
)
latency_md_table = tabulate(latency_results,
headers='keys',
tablefmt='pipe',
showindex=False)
serving_md_table = tabulate(serving_results,
headers='keys',
tablefmt='pipe',
showindex=False)
throughput_md_table = tabulate(throughput_results,
headers='keys',
tablefmt='pipe',
showindex=False)
# document the result
with open(results_folder / "benchmark_results.md", "w") as f:
results = read_markdown(
"../.buildkite/nightly-benchmarks/"
+ "performance-benchmarks-descriptions.md"
)
results = read_markdown("../.buildkite/nightly-benchmarks/" +
"performance-benchmarks-descriptions.md")
results = results.format(
latency_tests_markdown_table=latency_md_table,
throughput_tests_markdown_table=throughput_md_table,
serving_tests_markdown_table=serving_md_table,
benchmarking_results_in_json_string=processed_results_json,
)
benchmarking_results_in_json_string=processed_results_json)
f.write(results)
# document benchmarking results in json
with open(results_folder / "benchmark_results.json", "w") as f:
results = (
latency_results.to_dict(orient="records")
+ throughput_results.to_dict(orient="records")
+ serving_results.to_dict(orient="records")
)
results = latency_results.to_dict(
orient='records') + throughput_results.to_dict(
orient='records') + serving_results.to_dict(orient='records')
f.write(json.dumps(results))

View File

@ -14,12 +14,15 @@ def main(model, cachedir):
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Download and save Hugging Face tokenizer"
)
parser.add_argument("--model", type=str, required=True, help="Name of the model")
parser.add_argument(
"--cachedir", type=str, required=True, help="Directory to save the tokenizer"
)
description="Download and save Hugging Face tokenizer")
parser.add_argument("--model",
type=str,
required=True,
help="Name of the model")
parser.add_argument("--cachedir",
type=str,
required=True,
help="Directory to save the tokenizer")
args = parser.parse_args()
main(args.model, args.cachedir)

View File

@ -11,33 +11,33 @@ from tabulate import tabulate
def parse_arguments():
parser = argparse.ArgumentParser(
description="Parse command line arguments for summary-nightly-results script."
)
parser.add_argument(
"--results-folder",
type=str,
required=True,
help="The folder where the results are stored.",
)
parser.add_argument(
"--description", type=str, required=True, help="Description of the results."
)
description=
'Parse command line arguments for summary-nightly-results script.')
parser.add_argument('--results-folder',
type=str,
required=True,
help='The folder where the results are stored.')
parser.add_argument('--description',
type=str,
required=True,
help='Description of the results.')
args = parser.parse_args()
return args
def get_perf(df, method, model, metric):
means = []
for qps in [2, 4, 8, 16, "inf"]:
target = df["Test name"].str.contains(model)
target = target & df["Engine"].str.contains(method)
target = target & df["Test name"].str.contains("qps_" + str(qps))
target = df['Test name'].str.contains(model)
target = target & df['Engine'].str.contains(method)
target = target & df['Test name'].str.contains("qps_" + str(qps))
filtered_df = df[target]
if filtered_df.empty:
means.append(0.0)
means.append(0.)
else:
means.append(filtered_df[metric].values[0])
@ -45,6 +45,7 @@ def get_perf(df, method, model, metric):
def get_perf_w_std(df, method, model, metric):
if metric in ["TTFT", "ITL"]:
mean = get_perf(df, method, model, "Mean " + metric + " (ms)")
mean = mean.tolist()
@ -59,8 +60,7 @@ def get_perf_w_std(df, method, model, metric):
else:
assert metric == "Tput"
mean = get_perf(df, method, model, "Input Tput (tok/s)") + get_perf(
df, method, model, "Output Tput (tok/s)"
)
df, method, model, "Output Tput (tok/s)")
mean = mean.tolist()
std = None
@ -80,17 +80,18 @@ def main(args):
# generate markdown table
df = pd.DataFrame.from_dict(results)
md_table = tabulate(df, headers="keys", tablefmt="pipe", showindex=False)
md_table = tabulate(df, headers='keys', tablefmt='pipe', showindex=False)
with open(args.description) as f:
description = f.read()
description = description.format(nightly_results_benchmarking_table=md_table)
description = description.format(
nightly_results_benchmarking_table=md_table)
with open("nightly_results.md", "w") as f:
f.write(description)
if __name__ == "__main__":
if __name__ == '__main__':
args = parse_arguments()
main(args)

View File

@ -34,8 +34,10 @@ serving_column_mapping = {
}
if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
with open(test_file) as f:
raw_result = json.loads(f.read())
@ -54,16 +56,17 @@ if __name__ == "__main__":
serving_results = pd.DataFrame.from_dict(serving_results)
if not serving_results.empty:
serving_results = serving_results[list(serving_column_mapping.keys())].rename(
columns=serving_column_mapping
)
serving_results = serving_results[list(
serving_column_mapping.keys())].rename(
columns=serving_column_mapping)
serving_md_table_with_headers = tabulate(
serving_results, headers="keys", tablefmt="pipe", showindex=False
)
serving_md_table_with_headers = tabulate(serving_results,
headers='keys',
tablefmt='pipe',
showindex=False)
# remove the first line of header
serving_md_table_lines = serving_md_table_with_headers.split("\n")
serving_md_table_without_header = "\n".join(serving_md_table_lines[2:])
serving_md_table_lines = serving_md_table_with_headers.split('\n')
serving_md_table_without_header = '\n'.join(serving_md_table_lines[2:])
prefix = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
prefix = prefix + "_" + os.environ.get("CURRENT_LLM_SERVING_ENGINE")
@ -73,9 +76,10 @@ if __name__ == "__main__":
# document results with header.
# for those who wants to reproduce our benchmark.
f.write(serving_md_table_with_headers)
f.write("\n")
f.write('\n')
# document benchmarking results in json
with open(results_folder / f"{prefix}_nightly_results.json", "w") as f:
results = serving_results.to_dict(orient="records")
results = serving_results.to_dict(orient='records')
f.write(json.dumps(results))

View File

@ -1,46 +0,0 @@
# This local pyproject file is part of the migration from yapf to ruff format.
# It uses the same core rules as the main pyproject.toml file, but with the
# following differences:
# - ruff line length is overridden to 88
# - deprecated typing ignores (UP006, UP035) have been removed
[tool.ruff]
line-length = 88
[tool.ruff.lint.per-file-ignores]
"vllm/third_party/**" = ["ALL"]
"vllm/version.py" = ["F401"]
"vllm/_version.py" = ["ALL"]
[tool.ruff.lint]
select = [
# pycodestyle
"E",
# Pyflakes
"F",
# pyupgrade
"UP",
# flake8-bugbear
"B",
# flake8-simplify
"SIM",
# isort
"I",
# flake8-logging-format
"G",
]
ignore = [
# star imports
"F405", "F403",
# lambda expression assignment
"E731",
# Loop control variable not used within loop body
"B007",
# f-string format
"UP032",
# Can remove once 3.10+ is the minimum Python version
"UP007",
]
[tool.ruff.format]
docstring-code-format = true

View File

@ -1,20 +1,20 @@
steps:
- label: "Build wheel - CUDA 12.8"
- label: "Build wheel - CUDA 12.4"
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
- label: "Build wheel - CUDA 12.6"
- label: "Build wheel - CUDA 12.1"
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.6.3 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
@ -31,7 +31,7 @@ steps:
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
@ -48,7 +48,7 @@ steps:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- label: "Build and publish TPU release image"
@ -57,14 +57,12 @@ steps:
agents:
queue: tpu_queue_postmerge
commands:
- "yes | docker system prune -a"
- "git fetch --all"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm/vllm-tpu:nightly --tag vllm/vllm-tpu:$BUILDKITE_COMMIT --progress plain -f docker/Dockerfile.tpu ."
- "docker push vllm/vllm-tpu:nightly"
- "docker push vllm/vllm-tpu:$BUILDKITE_COMMIT"
plugins:
- docker-login#v3.0.0:
username: vllmbot
username: vllm
password-env: DOCKERHUB_TOKEN
env:
DOCKER_BUILDKIT: "1"
@ -88,18 +86,3 @@ steps:
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
env:
DOCKER_BUILDKIT: "1"
- block: "Build Neuron release image"
key: block-neuron-release-image-build
depends_on: ~
- label: "Build and publish Neuron release image"
depends_on: block-neuron-release-image-build
agents:
queue: neuron-postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest --progress plain -f docker/Dockerfile.neuron ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version)"
env:
DOCKER_BUILDKIT: "1"

View File

@ -3,9 +3,6 @@
# This script runs test inside the corresponding ROCm docker container.
set -o pipefail
# Export Python path
export PYTHONPATH=".."
# Print ROCm version
echo "--- Confirming Clean Initial State"
while true; do
@ -77,69 +74,31 @@ HF_MOUNT="/root/.cache/huggingface"
commands=$@
echo "Commands:$commands"
if [[ $commands == *"pytest -v -s basic_correctness/test_basic_correctness.py"* ]]; then
commands=${commands//"pytest -v -s basic_correctness/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s basic_correctness/test_basic_correctness.py"}
fi
if [[ $commands == *"pytest -v -s models/test_registry.py"* ]]; then
commands=${commands//"pytest -v -s models/test_registry.py"/"pytest -v -s models/test_registry.py -k 'not BambaForCausalLM and not GritLM and not Mamba2ForCausalLM and not Zamba2ForCausalLM'"}
fi
if [[ $commands == *"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"* ]]; then
commands=${commands//"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"/"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2 and not BambaForCausalLM and not Gemma2ForCausalLM and not Grok1ModelForCausalLM and not Zamba2ForCausalLM and not Gemma2Model and not GritLM'"}
fi
if [[ $commands == *"pytest -v -s compile/test_basic_correctness.py"* ]]; then
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s compile/test_basic_correctness.py"}
fi
#ignore certain kernels tests
if [[ $commands == *" kernels/core"* ]]; then
if [[ $commands == *" kernels "* ]]; then
commands="${commands} \
--ignore=kernels/core/test_fused_quant_layernorm.py \
--ignore=kernels/core/test_permute_cols.py"
fi
if [[ $commands == *" kernels/attention"* ]]; then
commands="${commands} \
--ignore=kernels/attention/stest_attention_selector.py \
--ignore=kernels/attention/test_blocksparse_attention.py \
--ignore=kernels/attention/test_encoder_decoder_attn.py \
--ignore=kernels/attention/test_attention_selector.py \
--ignore=kernels/attention/test_flash_attn.py \
--ignore=kernels/attention/test_flashinfer.py \
--ignore=kernels/attention/test_prefix_prefill.py \
--ignore=kernels/attention/test_cascade_flash_attn.py \
--ignore=kernels/attention/test_mha_attn.py \
--ignore=kernels/attention/test_lightning_attn.py \
--ignore=kernels/attention/test_attention.py"
fi
if [[ $commands == *" kernels/quantization"* ]]; then
commands="${commands} \
--ignore=kernels/quantization/test_int8_quant.py \
--ignore=kernels/quantization/test_aqlm.py \
--ignore=kernels/quantization/test_machete_mm.py \
--ignore=kernels/quantization/test_block_fp8.py \
--ignore=kernels/quantization/test_block_int8.py \
--ignore=kernels/quantization/test_marlin_gemm.py \
--ignore=kernels/quantization/test_cutlass_scaled_mm.py \
--ignore=kernels/quantization/test_int8_kernel.py"
fi
if [[ $commands == *" kernels/mamba"* ]]; then
commands="${commands} \
--ignore=kernels/mamba/test_mamba_mixer2.py \
--ignore=kernels/mamba/test_causal_conv1d.py \
--ignore=kernels/mamba/test_mamba_ssm_ssd.py"
fi
if [[ $commands == *" kernels/moe"* ]]; then
commands="${commands} \
--ignore=kernels/moe/test_moe.py \
--ignore=kernels/moe/test_cutlass_moe.py \
--ignore=kernels/moe/test_triton_moe_ptpc_fp8.py"
--ignore=kernels/test_attention_selector.py \
--ignore=kernels/test_blocksparse_attention.py \
--ignore=kernels/test_causal_conv1d.py \
--ignore=kernels/test_cutlass.py \
--ignore=kernels/test_encoder_decoder_attn.py \
--ignore=kernels/test_flash_attn.py \
--ignore=kernels/test_flashinfer.py \
--ignore=kernels/test_int8_quant.py \
--ignore=kernels/test_machete_gemm.py \
--ignore=kernels/test_mamba_ssm.py \
--ignore=kernels/test_marlin_gemm.py \
--ignore=kernels/test_moe.py \
--ignore=kernels/test_prefix_prefill.py \
--ignore=kernels/test_rand.py \
--ignore=kernels/test_sampler.py \
--ignore=kernels/test_cascade_flash_attn.py \
--ignore=kernels/test_mamba_mixer2.py \
--ignore=kernels/test_aqlm.py \
--ignore=kernels/test_machete_mm.py \
--ignore=kernels/test_mha_attn.py \
--ignore=kernels/test_block_fp8.py \
--ignore=kernels/test_permute_cols.py"
fi
#ignore certain Entrypoints/openai tests
@ -181,8 +140,6 @@ fi
PARALLEL_JOB_COUNT=8
MYPYTHONPATH=".."
# check if the command contains shard flag, we will run all shards in parallel because the host have 8 GPUs.
if [[ $commands == *"--shard-id="* ]]; then
# assign job count as the number of shards used
@ -203,7 +160,6 @@ if [[ $commands == *"--shard-id="* ]]; then
-e AWS_SECRET_ACCESS_KEY \
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
-e "PYTHONPATH=${MYPYTHONPATH}" \
--name "${container_name}_${GPU}" \
"${image_name}" \
/bin/bash -c "${commands_gpu}" \
@ -234,7 +190,6 @@ else
-e AWS_SECRET_ACCESS_KEY \
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
-e "PYTHONPATH=${MYPYTHONPATH}" \
--name "${container_name}" \
"${image_name}" \
/bin/bash -c "${commands}"

View File

@ -5,12 +5,7 @@
set -ex
# Setup cleanup
remove_docker_container() {
if [[ -n "$container_id" ]]; then
podman rm -f "$container_id" || true
fi
podman system prune -f
}
remove_docker_container() { podman rm -f cpu-test-ubi9-ppc || true; podman system prune -f; }
trap remove_docker_container EXIT
remove_docker_container
@ -18,31 +13,26 @@ remove_docker_container
podman build -t cpu-test-ubi9-ppc -f docker/Dockerfile.ppc64le .
# Run the image
container_id=$(podman run -itd --entrypoint /bin/bash -v /tmp/:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN cpu-test-ubi9-ppc)
podman run -itd --entrypoint /bin/bash -v /tmp/:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN --name cpu-test-ubi9-ppc cpu-test-ubi9-ppc
function cpu_tests() {
# offline inference
podman exec -it "$container_id" bash -c "
podman exec cpu-test-ubi9-ppc bash -c "
set -e
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
# Run basic model test
podman exec -it "$container_id" bash -c "
podman exec cpu-test-ubi9-ppc bash -c "
set -e
pip install pytest pytest-asyncio einops peft Pillow soundfile transformers_stream_generator matplotlib
pip install sentence-transformers datamodel_code_generator
pytest -v -s tests/models/language/generation/test_bart.py -m cpu_model
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-openai-community/gpt2]
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
pytest -v -s tests/models/language/pooling/test_embedding.py::test_models[half-BAAI/bge-base-en-v1.5]"
pytest -v -s tests/models/embedding/language/test_cls_models.py::test_classification_models[float-jason9693/Qwen2.5-1.5B-apeach]
pytest -v -s tests/models/embedding/language/test_embedding.py::test_models[half-BAAI/bge-base-en-v1.5]
pytest -v -s tests/models/encoder_decoder/language -m cpu_model"
}
# All of CPU tests are expected to be finished less than 40 mins.
export container_id
export -f cpu_tests
timeout 40m bash -c cpu_tests

View File

@ -10,17 +10,15 @@ docker build -t hpu-test-env -f docker/Dockerfile.hpu .
# Setup cleanup
# certain versions of HPU software stack have a bug that can
# override the exit code of the script, so we need to use
# separate remove_docker_containers and remove_docker_containers_and_exit
# separate remove_docker_container and remove_docker_container_and_exit
# functions, while other platforms only need one remove_docker_container
# function.
EXITCODE=1
remove_docker_containers() { docker rm -f hpu-test || true; docker rm -f hpu-test-tp2 || true; }
remove_docker_containers_and_exit() { remove_docker_containers; exit $EXITCODE; }
trap remove_docker_containers_and_exit EXIT
remove_docker_containers
remove_docker_container() { docker rm -f hpu-test || true; }
remove_docker_container_and_exit() { remove_docker_container; exit $EXITCODE; }
trap remove_docker_container_and_exit EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
docker run --runtime=habana --name=hpu-test-tp2 --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --tensor-parallel-size 2
EXITCODE=$?

View File

@ -11,14 +11,13 @@ container_name="neuron_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
HF_CACHE="$(realpath ~)/huggingface"
mkdir -p "${HF_CACHE}"
HF_MOUNT="/root/.cache/huggingface"
HF_TOKEN=$(aws secretsmanager get-secret-value --secret-id "ci/vllm-neuron/hf-token" --region us-west-2 --query 'SecretString' --output text | jq -r .VLLM_NEURON_CI_HF_TOKEN)
NEURON_COMPILE_CACHE_URL="$(realpath ~)/neuron_compile_cache"
mkdir -p "${NEURON_COMPILE_CACHE_URL}"
NEURON_COMPILE_CACHE_MOUNT="/root/.cache/neuron_compile_cache"
# Try building the docker image
aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws
aws ecr get-login-password --region us-west-2 | docker login --username AWS --password-stdin 763104351884.dkr.ecr.us-west-2.amazonaws.com
# prune old image and containers to save disk space, and only once a day
# by using a timestamp file in tmp.
@ -48,16 +47,8 @@ trap remove_docker_container EXIT
docker run --rm -it --device=/dev/neuron0 --network bridge \
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
-e "HF_TOKEN=${HF_TOKEN}" \
-v "${NEURON_COMPILE_CACHE_URL}:${NEURON_COMPILE_CACHE_MOUNT}" \
-e "NEURON_COMPILE_CACHE_URL=${NEURON_COMPILE_CACHE_MOUNT}" \
--name "${container_name}" \
${image_name} \
/bin/bash -c "
python3 /workspace/vllm/examples/offline_inference/neuron.py;
python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys;
for f in /workspace/vllm/tests/neuron/2_core/*.py; do
echo 'Running test file: '$f;
python3 -m pytest \$f -v --capture=tee-sys;
done
"
/bin/bash -c "python3 /workspace/vllm/examples/offline_inference/neuron.py && python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys && python3 -m pytest /workspace/vllm/tests/neuron/2_core/ -v --capture=tee-sys"

View File

@ -1,6 +1,6 @@
#!/bin/bash
set -xu
set -xue
# Build the docker image.
docker build -f docker/Dockerfile.tpu -t vllm-tpu .
@ -17,87 +17,33 @@ source /etc/environment
docker run --privileged --net host --shm-size=16G -it \
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
&& python3 -m pip install pytest pytest-asyncio tpu-info \
&& python3 -m pip install pytest tpu-info \
&& python3 -m pip install lm_eval[api]==0.4.4 \
&& export VLLM_XLA_CACHE_PATH= \
&& export VLLM_USE_V1=1 \
&& export VLLM_XLA_CHECK_RECOMPILATION=1 \
&& echo HARDWARE \
&& tpu-info \
&& { \
echo TEST_0: Running test_perf.py; \
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_perf.py; \
echo TEST_0_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_1: Running test_compilation.py; \
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_compilation.py; \
echo TEST_1_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_2: Running test_basic.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_basic.py; \
echo TEST_2_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_3: Running test_accuracy.py::test_lm_eval_accuracy_v1_engine; \
python3 -m pytest -s -v /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine; \
echo TEST_3_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_4: Running test_quantization_accuracy.py; \
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py; \
echo TEST_4_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_5: Running examples/offline_inference/tpu.py; \
python3 /workspace/vllm/examples/offline_inference/tpu.py; \
echo TEST_5_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_6: Running test_tpu_model_runner.py; \
python3 -m pytest -s -v /workspace/vllm/tests/tpu/worker/test_tpu_model_runner.py; \
echo TEST_6_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_7: Running test_sampler.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py; \
echo TEST_7_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_8: Running test_topk_topp_sampler.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py; \
echo TEST_8_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_9: Running test_multimodal.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py; \
echo TEST_9_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_10: Running test_pallas.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py; \
echo TEST_10_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_11: Running test_struct_output_generate.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py; \
echo TEST_11_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_12: Running test_moe_pallas.py; \
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py; \
echo TEST_12_EXIT_CODE: \$?; \
} & \
# Disable the TPU LoRA tests until the feature is activated
# & { \
# echo TEST_13: Running test_moe_pallas.py; \
# python3 -m pytest -s -v /workspace/vllm/tests/tpu/lora/; \
# echo TEST_13_EXIT_CODE: \$?; \
# } & \
wait \
&& echo 'All tests have attempted to run. Check logs for individual test statuses and exit codes.' \
"
&& echo TEST_0 \
&& pytest -v -s /workspace/vllm/tests/v1/tpu/test_perf.py \
&& echo TEST_1 \
&& pytest -v -s /workspace/vllm/tests/tpu/test_compilation.py \
&& echo TEST_2 \
&& pytest -v -s /workspace/vllm/tests/v1/tpu/test_basic.py \
&& echo TEST_3 \
&& pytest -v -s /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine \
&& echo TEST_4 \
&& pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py \
&& echo TEST_5 \
&& python3 /workspace/vllm/examples/offline_inference/tpu.py \
&& echo TEST_6 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/worker/test_tpu_model_runner.py \
&& echo TEST_7 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py \
&& echo TEST_8 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py \
&& echo TEST_9 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py" \
# TODO: This test fails because it uses RANDOM_SEED sampling
# && VLLM_USE_V1=1 pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \

View File

@ -50,11 +50,11 @@ aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
elif [[ $normal_wheel == *"cu121"* ]]; then
# if $normal_wheel matches cu121, do not upload the index.html
echo "Skipping index files for cu121 wheels"
else
# only upload index.html for cu128 wheels (default wheels)
# only upload index.html for cu124 wheels (default wheels)
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
fi
@ -66,13 +66,12 @@ aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
elif [[ $normal_wheel == *"cu121"* ]]; then
# if $normal_wheel matches cu121, do not upload the index.html
echo "Skipping index files for cu121 wheels"
else
# only upload index.html for cu128 wheels (default wheels)
# only upload index.html for cu124 wheels (default wheels)
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
fi
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"
aws s3 cp index.html "s3://vllm-wheels/$version/vllm/index.html"
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"

View File

@ -8,7 +8,6 @@
# Documentation
# label(str): the name of the test. emoji allowed.
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
# torch_nightly(bool): whether to run this on vllm against torch nightly pipeline.
# fast_check_only(bool): run this test on fastcheck pipeline only
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's scheduled nightly run.
# command(str): the single command to run for tests. incompatible with commands.
@ -32,17 +31,16 @@ steps:
##### fast check tests #####
- label: Documentation Build # 2min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/test_docs"
working_dir: "/vllm-workspace/test_docs/docs"
fast_check: true
no_gpu: True
commands:
- pip install -r ../requirements/docs.txt
# TODO: add `--strict` once warnings in docstrings are fixed
- mkdocs build
- pip install -r ../../requirements/docs.txt
- SPHINXOPTS=\"-W\" make html
# Check API reference (if it fails, you may have missing mock imports)
- grep \"sig sig-object py\" build/html/api/inference_params.html
- label: Async Engine, Inputs, Utils, Worker Test # 24min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/mq_llm_engine
@ -58,13 +56,11 @@ steps:
- pytest -v -s async_engine # AsyncLLMEngine
- NUM_SCHEDULER_STEPS=4 pytest -v -s async_engine/test_async_llm_engine.py
- pytest -v -s test_inputs.py
- pytest -v -s test_outputs.py
- pytest -v -s multimodal
- pytest -v -s test_utils.py # Utils
- pytest -v -s worker # Worker
- label: Python-only Installation Test
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- tests/standalone_tests/python_only_compile.sh
- setup.py
@ -72,9 +68,8 @@ steps:
- bash standalone_tests/python_only_compile.sh
- label: Basic Correctness Test # 30min
mirror_hardwares: [amdexperimental, amdproduction]
#mirror_hardwares: [amd]
fast_check: true
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/basic_correctness/test_basic_correctness
@ -89,7 +84,6 @@ steps:
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Chunked Prefill Test
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/basic_correctness/test_chunked_prefill
@ -98,7 +92,7 @@ steps:
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
- label: Core Test # 10min
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amd]
fast_check: true
source_file_dependencies:
- vllm/core
@ -108,10 +102,9 @@ steps:
- pytest -v -s core
- label: Entrypoints Test # 40min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
fast_check: true
torch_nightly: true
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/entrypoints/llm
@ -125,12 +118,11 @@ steps:
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
- VLLM_USE_V1=0 pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_tensorizer_entrypoint.py --ignore=entrypoints/openai/correctness/
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/correctness/ --ignore=entrypoints/openai/test_openai_schema.py
- pytest -v -s entrypoints/test_chat_utils.py
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Distributed Tests (4 GPUs) # 10min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
@ -138,7 +130,6 @@ steps:
- vllm/core/
- tests/distributed/test_utils
- tests/distributed/test_pynccl
- tests/distributed/test_events
- tests/spec_decode/e2e/test_integration_dist_tp4
- tests/compile/test_basic_correctness
- examples/offline_inference/rlhf.py
@ -149,25 +140,22 @@ steps:
# test with tp=2 and external_dp=2
- VLLM_USE_V1=0 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with tp=2 and pp=2
- PP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with internal dp
- python3 ../examples/offline_inference/data_parallel.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
- pytest -v -s distributed/test_pynccl.py
- pytest -v -s distributed/test_events.py
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
# TODO: create a dedicated test section for multi-GPU example tests
# when we have multiple distributed example tests
- pushd ../examples/offline_inference
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 python3 rlhf.py
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
- python3 rlhf.py
- RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
- popd
- label: Metrics, Tracing Test # 10min
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amd]
num_gpus: 2
source_file_dependencies:
- vllm/
@ -181,7 +169,7 @@ steps:
##### 1 GPU test #####
- label: Regression Test # 5min
mirror_hardwares: [amdexperimental, amdproduction]
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/test_regression
@ -191,7 +179,7 @@ steps:
working_dir: "/vllm-workspace/tests" # optional
- label: Engine Test # 10min
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/engine
@ -205,7 +193,7 @@ steps:
- pytest -v -s tokenization
- label: V1 Test
mirror_hardwares: [amdexperimental]
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/v1
@ -217,12 +205,9 @@ steps:
- pytest -v -s v1/sample
- pytest -v -s v1/worker
- pytest -v -s v1/structured_output
- pytest -v -s v1/spec_decode
- pytest -v -s v1/kv_connector/unit
- pytest -v -s v1/test_serial_utils.py
- pytest -v -s v1/test_stats.py
- pytest -v -s v1/test_utils.py
- pytest -v -s v1/test_oracle.py
- pytest -v -s v1/test_metrics_reader.py
# TODO: accuracy does not match, whether setting
# VLLM_USE_FLASHINFER_SAMPLER or not on H100.
- pytest -v -s v1/e2e
@ -231,8 +216,8 @@ steps:
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
- label: Examples Test # 25min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/examples"
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/entrypoints
- examples/
@ -247,7 +232,7 @@ steps:
- python3 offline_inference/vision_language.py --seed 0
- python3 offline_inference/vision_language_embedding.py --seed 0
- python3 offline_inference/vision_language_multi_image.py --seed 0
- VLLM_USE_V1=0 python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- VLLM_USE_V1=0 python3 other/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 other/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference/encoder_decoder.py
- python3 offline_inference/encoder_decoder_multimodal.py --model-type whisper --seed 0
- python3 offline_inference/basic/classify.py
@ -256,7 +241,7 @@ steps:
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
- label: Prefix Caching Test # 9min
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/prefix_caching
@ -264,7 +249,6 @@ steps:
- pytest -v -s prefix_caching
- label: Samplers Test # 36min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor/layers
- vllm/sampling_metadata.py
@ -275,7 +259,7 @@ steps:
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
- label: LogitsProcessor Test # 5min
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/model_executor/layers
- vllm/model_executor/guided_decoding
@ -286,7 +270,6 @@ steps:
- pytest -v -s model_executor/test_guided_processors.py
- label: Speculative decoding tests # 40min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/spec_decode
- tests/spec_decode
@ -297,7 +280,7 @@ steps:
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
- label: LoRA Test %N # 15min each
mirror_hardwares: [amdexperimental]
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/lora
- tests/lora
@ -305,21 +288,14 @@ steps:
parallelism: 4
- label: PyTorch Compilation Unit Tests
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_pass_manager.py
- pytest -v -s compile/test_fusion.py
- pytest -v -s compile/test_silu_mul_quant_fusion.py
- pytest -v -s compile/test_sequence_parallelism.py
- pytest -v -s compile/test_async_tp.py
- label: PyTorch Fullgraph Smoke Test # 9min
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/compile
@ -330,110 +306,65 @@ steps:
- pytest -v -s compile/piecewise/test_toy_llama.py
- label: PyTorch Fullgraph Test # 18min
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_full_graph.py
- label: Kernels Core Operation Test
mirror_hardwares: [amdexperimental, amdproduction]
- label: Kernels Test %N # 1h each
# mirror_hardwares: [amd]
source_file_dependencies:
- csrc/
- tests/kernels/core
commands:
- pytest -v -s kernels/core
- label: Kernels Attention Test %N
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- csrc/attention/
- vllm/attention
- vllm/v1/attention
- tests/kernels/attention
- tests/kernels
commands:
- pytest -v -s kernels/attention --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels Quantization Test %N
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- csrc/quantization/
- vllm/model_executor/layers/quantization
- tests/kernels/quantization
commands:
- pytest -v -s kernels/quantization --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels MoE Test
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/moe/
- tests/kernels/moe
- vllm/model_executor/layers/fused_moe/
commands:
- pytest -v -s kernels/moe
- label: Kernels Mamba Test
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/mamba/
- tests/kernels/mamba
commands:
- pytest -v -s kernels/mamba
- pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 4
- label: Tensorizer Test # 11min
mirror_hardwares: [amdexperimental, amdproduction]
# mirror_hardwares: [amd]
soft_fail: true
source_file_dependencies:
- vllm/model_executor/model_loader
- tests/tensorizer_loader
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
commands:
- apt-get update && apt-get install -y curl libsodium23
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s tensorizer_loader
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
- label: Benchmarks # 9min
mirror_hardwares: [amdexperimental, amdproduction]
working_dir: "/vllm-workspace/.buildkite"
mirror_hardwares: [amd]
source_file_dependencies:
- benchmarks/
commands:
- bash scripts/run-benchmarks.sh
- label: Benchmarks CLI Test # 10min
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/benchmarks/
commands:
- pytest -v -s benchmarks/
- label: Quantization Test
mirror_hardwares: [amdexperimental]
- label: Quantization Test # 33min
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
- tests/quantization
commands:
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
command: VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
- label: LM Eval Small Models # 53min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
- bash ./run-tests.sh -c configs/models-small.txt -t 1
- label: OpenAI API correctness
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/
- vllm/entrypoints/openai/
@ -442,7 +373,6 @@ steps:
- pytest -s entrypoints/openai/correctness/
- label: Encoder Decoder tests # 5min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/encoder_decoder
@ -450,8 +380,8 @@ steps:
- pytest -v -s encoder_decoder
- label: OpenAI-Compatible Tool Use # 20 min
mirror_hardwares: [amdexperimental]
fast_check: false
#mirror_hardwares: [ amd ]
source_file_dependencies:
- vllm/
- tests/tool_use
@ -463,104 +393,92 @@ steps:
##### models test #####
- label: Basic Models Test # 24min
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/models
commands:
- pytest -v -s models/test_transformers.py
- pytest -v -s models/test_registry.py
- pytest -v -s models/test_utils.py
- pytest -v -s models/test_vision.py
- pytest -v -s models/test_initialization.py
# V1 Test: https://github.com/vllm-project/vllm/issues/14531
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'llama4'
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'plamo2'
- label: Language Models Test (Standard)
mirror_hardwares: [amdexperimental]
torch_nightly: true
- label: Language Models Test (Standard) # 32min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/models/language
- tests/models/decoder_only/language
- tests/models/embedding/language
- tests/models/encoder_decoder/language
commands:
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
- pip freeze | grep -E 'torch'
- pytest -v -s models/language -m core_model
- pip install causal-conv1d
- pytest -v -s models/decoder_only/language -m 'core_model or quant_model'
- pytest -v -s models/embedding/language -m core_model
- label: Language Models Test (Extended Generation) # 1hr20min
mirror_hardwares: [amdexperimental]
- label: Language Models Test (Extended) # 1h10min
optional: true
source_file_dependencies:
- vllm/
- tests/models/language/generation
- tests/models/decoder_only/language
- tests/models/embedding/language
- tests/models/encoder_decoder/language
commands:
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
- pytest -v -s models/language/generation -m 'not core_model'
- pip install causal-conv1d
- pytest -v -s models/decoder_only/language -m 'not core_model and not quant_model'
- pytest -v -s models/embedding/language -m 'not core_model'
- label: Language Models Test (Extended Pooling) # 36min
mirror_hardwares: [amdexperimental]
- label: Multi-Modal Models Test (Standard) # 40min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/models/decoder_only/audio_language
- tests/models/decoder_only/vision_language
- tests/models/embedding/vision_language
- tests/models/encoder_decoder/audio_language
- tests/models/encoder_decoder/vision_language
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal
- pytest -v -s models/decoder_only/audio_language -m 'core_model or quant_model'
- pytest -v -s models/decoder_only/vision_language -m 'core_model or quant_model'
- pytest -v -s models/embedding/vision_language -m core_model
- pytest -v -s models/encoder_decoder/audio_language -m core_model
- pytest -v -s models/encoder_decoder/language -m core_model
- pytest -v -s models/encoder_decoder/vision_language -m core_model
- pytest -v -s models/decoder_only/vision_language/test_interleaved.py
- label: Multi-Modal Models Test (Extended) 1 # 48m
optional: true
source_file_dependencies:
- vllm/
- tests/models/language/pooling
commands:
- pytest -v -s models/language/pooling -m 'not core_model'
- label: Multi-Modal Models Test (Standard)
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/models/multimodal
- tests/models/decoder_only/audio_language
- tests/models/decoder_only/vision_language
- tests/models/embedding/vision_language
- tests/models/encoder_decoder/vision_language
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pip freeze | grep -E 'torch'
- pytest -v -s models/multimodal/processing
- pytest -v -s --ignore models/multimodal/generation/test_whisper.py models/multimodal -m core_model
- cd .. && pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
- pytest -v -s models/decoder_only/audio_language -m 'not core_model and not quant_model'
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=0) and not core_model and not quant_model'
- pytest -v -s --ignore models/decoder_only/vision_language/test_models.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
- pytest -v -s models/embedding/vision_language -m 'not core_model'
- pytest -v -s models/encoder_decoder/language -m 'not core_model'
- pytest -v -s models/encoder_decoder/vision_language -m 'not core_model'
- label: Multi-Modal Models Test (Extended) 1
mirror_hardwares: [amdexperimental]
- label: Multi-Modal Models Test (Extended) 2 # 38m
optional: true
source_file_dependencies:
- vllm/
- tests/models/multimodal
- tests/models/decoder_only/vision_language
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s --ignore models/multimodal/generation/test_common.py --ignore models/multimodal/processing models/multimodal -m 'not core_model'
- label: Multi-Modal Models Test (Extended) 2
mirror_hardwares: [amdexperimental]
optional: true
source_file_dependencies:
- vllm/
- tests/models/multimodal
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=0) and not core_model'
- label: Multi-Modal Models Test (Extended) 3
mirror_hardwares: [amdexperimental, amdproduction]
optional: true
source_file_dependencies:
- vllm/
- tests/models/multimodal
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=1) and not core_model'
- label: Quantized Models Test
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/model_executor/layers/quantization
- tests/models/quantization
commands:
- pytest -v -s models/quantization
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=1) and not core_model and not quant_model'
# This test is used only in PR development phase to test individual models and should never run on main
- label: Custom Models Test
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amd]
optional: true
commands:
- echo 'Testing custom models...'
@ -572,7 +490,7 @@ steps:
##### multi gpus test #####
- label: Distributed Comm Ops Test # 7min
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amd]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
@ -583,7 +501,6 @@ steps:
- pytest -v -s distributed/test_shm_broadcast.py
- label: 2 Node Tests (4 GPUs in total) # 16min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
num_nodes: 2
@ -602,7 +519,7 @@ steps:
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep 'Same node test passed'
- label: Distributed Tests (2 GPUs) # 40min
mirror_hardwares: [amdexperimental]
#mirror_hardwares: [amd]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
@ -627,10 +544,9 @@ steps:
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
# Avoid importing model tests that cause CUDA reinitialization error
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/language -v -s -m 'distributed(num_gpus=2)'
- pytest models/multimodal -v -s -m 'distributed(num_gpus=2)'
# test sequence parallel
- pytest -v -s distributed/test_sequence_parallel.py
- pytest models/encoder_decoder/language/test_bart.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/decoder_only/vision_language/test_models.py -v -s -m 'distributed(num_gpus=2)'
# this test fails consistently.
# TODO: investigate and fix
# - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
@ -639,14 +555,13 @@ steps:
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- label: Plugin Tests (2 GPUs) # 40min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/plugins/
- tests/plugins/
commands:
# begin platform plugin and general plugin tests, all the code in-between runs on dummy platform
# begin platform plugin tests, all the code in-between runs on dummy platform
- pip install -e ./plugins/vllm_add_dummy_platform
- pytest -v -s plugins_tests/test_platform_plugins.py
- pip uninstall vllm_add_dummy_platform -y
@ -657,10 +572,8 @@ steps:
- pytest -v -s distributed/test_distributed_oot.py
- pytest -v -s entrypoints/openai/test_oot_registration.py # it needs a clean process
- pytest -v -s models/test_oot_registration.py # it needs a clean process
- pytest -v -s plugins/lora_resolvers # unit tests for in-tree lora resolver plugins
- label: Multi-step Tests (4 GPUs) # 36min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
@ -681,7 +594,6 @@ steps:
- pytest -v -s multi_step/test_correctness_llm.py
- label: Pipeline Parallelism Test # 45min
mirror_hardwares: [amdexperimental, amdproduction]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
@ -695,7 +607,6 @@ steps:
- pytest -v -s distributed/test_pipeline_parallel.py
- label: LoRA TP Test (Distributed)
mirror_hardwares: [amdexperimental, amdproduction]
num_gpus: 4
source_file_dependencies:
- vllm/lora
@ -711,7 +622,6 @@ steps:
- label: Weight Loading Multiple GPU Test # 33min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
@ -721,7 +631,6 @@ steps:
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models.txt
- label: Weight Loading Multiple GPU Test - Large Models # optional
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
gpu: a100
@ -760,4 +669,4 @@ steps:
- vllm/model_executor/layers/quantization
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
- bash ./run-tests.sh -c configs/models-large.txt -t 4

7
.github/CODEOWNERS vendored
View File

@ -12,8 +12,6 @@
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth
/vllm/model_executor/guided_decoding @mgoin @russellb
/vllm/multimodal @DarkLight1337 @ywang96
/vllm/vllm_flash_attn @LucasWilkinson
/vllm/lora @jeejeelee
CMakeLists.txt @tlrmchlsmth
# vLLM V1
@ -41,8 +39,3 @@ CMakeLists.txt @tlrmchlsmth
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb
/tests/v1/structured_output @mgoin @russellb
/tests/weight_loading @mgoin @youkaichao
/tests/lora @jeejeelee
# Docs
/docs @hmellor
mkdocs.yaml @hmellor

View File

@ -21,12 +21,12 @@ body:
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
<details>
<summary>The output of <code>python collect_env.py</code></summary>
<summary>The output of `python collect_env.py`</summary>
```text
Your output of `python collect_env.py` here
```
</details>
validations:
required: true
@ -75,20 +75,20 @@ body:
```
```
The error message you got, with the full traceback and the error logs with [dump_input.py:##] if present.
The error message you got, with the full traceback.
```
validations:
required: true
- type: markdown
attributes:
value: |
⚠️ Please separate bugs of `transformers` implementation or usage from bugs of `vllm`. If you think anything is wrong with the model's output:
value: >
⚠️ Please separate bugs of `transformers` implementation or usage from bugs of `vllm`. If you think anything is wrong with the models' output:
- Try the counterpart of `transformers` first. If the error appears, please go to [their issues](https://github.com/huggingface/transformers/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc).
- If the error only appears in vllm, please provide the detailed script of how you run `transformers` and `vllm`, also highlight the difference and what you expect.
Thanks for reporting 🙏!
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:

View File

@ -1,69 +0,0 @@
name: 🧪 CI failure report
description: Report a failing test.
title: "[CI Failure]: "
labels: ["ci-failure"]
body:
- type: markdown
attributes:
value: >
#### Include the name of the failing Buildkite step and test file in the title.
- type: input
attributes:
label: Name of failing test
description: |
Paste in the fully-qualified name of the failing test from the logs.
placeholder: |
`path/to/test_file.py::test_name[params]`
validations:
required: true
- type: checkboxes
attributes:
label: Basic information
description: Select all items that apply to the failing test.
options:
- label: Flaky test
- label: Can reproduce locally
- label: Caused by external libraries (e.g. bug in `transformers`)
- type: textarea
attributes:
label: 🧪 Describe the failing test
description: |
Please provide a clear and concise description of the failing test.
placeholder: |
A clear and concise description of the failing test.
```
The error message you got, with the full traceback and the error logs with [dump_input.py:##] if present.
```
validations:
required: true
- type: textarea
attributes:
label: 📝 History of failing test
description: |
Since when did the test start to fail?
You can look up its history via [Buildkite Test Suites](https://buildkite.com/organizations/vllm/analytics/suites/ci-1/tests?branch=main).
If you have time, identify the PR that caused the test to fail on main. You can do so via the following methods:
- Use Buildkite Test Suites to find the PR where the test failure first occurred, and reproduce the failure locally.
- Run [`git bisect`](https://git-scm.com/docs/git-bisect) locally.
- Manually unblock Buildkite steps for suspected PRs on main and check the results. (authorized users only)
placeholder: |
Approximate timeline and/or problematic PRs
A link to the Buildkite analytics of the failing test (if available)
validations:
required: true
- type: textarea
attributes:
label: CC List.
description: >
The list of people you want to CC. Usually, this includes those who worked on the PR that failed the test.
- type: markdown
attributes:
value: >
Thanks for reporting 🙏!

View File

@ -3,4 +3,4 @@ FILL IN THE PR DESCRIPTION HERE
FIX #xxxx (*link existing issues this PR will resolve*)
<!--- pyml disable-next-line no-emphasis-as-heading -->
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing>** (anything written below this line will be removed by GitHub Actions)
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing/overview.html>** (anything written below this line will be removed by GitHub Actions)

43
.github/mergify.yml vendored
View File

@ -55,19 +55,11 @@ pull_request_rules:
description: Automatically apply structured-output label
conditions:
- or:
- files~=^benchmarks/structured_schemas/
- files=benchmarks/benchmark_serving_structured_output.py
- files=benchmarks/run_structured_output_benchmark.sh
- files=docs/features/structured_outputs.md
- files=examples/offline_inference/structured_outputs.py
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
- files~=^vllm/model_executor/guided_decoding/
- files=tests/model_executor/test_guided_processors.py
- files=tests/entrypoints/llm/test_guided_generate.py
- files~=^tests/v1/structured_output/
- files=tests/v1/entrypoints/llm/test_guided_generate.py
- files~=^vllm/v1/structured_output/
- files=benchmarks/benchmark_serving_guided.py
- files=benchmarks/benchmark_guided.py
actions:
label:
add:
@ -126,26 +118,6 @@ pull_request_rules:
remove:
- tpu
- name: label-tool-calling
description: Automatically add tool-calling label
conditions:
- or:
- files~=^tests/tool_use/
- files~=^tests/mistral_tool_use/
- files~=^tests/entrypoints/openai/tool_parsers/
- files=tests/entrypoints/openai/test_chat_with_tool_reasoning.py
- files~=^vllm/entrypoints/openai/tool_parsers/
- files=docs/features/tool_calling.md
- files~=^examples/tool_chat_*
- files=examples/offline_inference/chat_with_tools.py
- files=examples/online_serving/openai_chat_completion_client_with_tools_required.py
- files=examples/online_serving/openai_chat_completion_tool_calls_with_reasoning.py
- files=examples/online_serving/openai_chat_completion_client_with_tools.py
actions:
label:
add:
- tool-calling
- name: ping author on conflicts and add 'needs-rebase' label
conditions:
- conflict
@ -161,17 +133,6 @@ pull_request_rules:
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork
- name: assign reviewer for tensorizer changes
conditions:
- files~=^vllm/model_executor/model_loader/tensorizer.py
- files~=^vllm/model_executor/model_loader/tensorizer_loader.py
- files~=^tests/entrypoints/openai/test_tensorizer_entrypoint.py
- files~=^tests/tensorizer_loader/
actions:
assign:
users:
- "sangstar"
- name: remove 'needs-rebase' label when conflict is resolved
conditions:
- -conflict

View File

@ -26,7 +26,7 @@ sed -i '/\*\*BEFORE SUBMITTING, PLEASE READ.*\*\*/,$d' "${NEW}"
# Remove HTML <details> section that includes <summary> text of "PR Checklist (Click to Expand)"
python3 - <<EOF
import regex as re
import re
with open("${NEW}", "r") as file:
content = file.read()

View File

@ -1,6 +1,4 @@
name: Add label on auto-merge enabled
permissions:
pull-requests: write
on:
pull_request_target:
types:

View File

@ -20,12 +20,7 @@ jobs:
with:
python-version: '3.12'
- name: Install Python dependencies
run: |
python3 -m pip install --upgrade pip
python3 -m pip install regex
- name: Update PR description
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: bash .github/scripts/cleanup_pr_body.sh "${{ github.event.number }}"
run: .github/scripts/cleanup_pr_body.sh "${{ github.event.number }}"

View File

@ -2,9 +2,6 @@ name: Lint and Deploy Charts
on: pull_request
permissions:
contents: read
jobs:
lint-and-deploy:
runs-on: ubuntu-latest
@ -69,7 +66,7 @@ jobs:
export AWS_SECRET_ACCESS_KEY=minioadmin
sleep 30 && kubectl -n ns-vllm logs -f "$(kubectl -n ns-vllm get pods | awk '/deployment/ {print $1;exit}')" &
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
- name: curl test
run: |
kubectl -n ns-vllm port-forward service/test-vllm-service 8001:80 &
@ -82,4 +79,4 @@ jobs:
"max_tokens": 7,
"temperature": 0
}'):$CODE"
echo "$CODE"
echo "$CODE"

View File

@ -5,9 +5,6 @@ on:
push:
branches: [main]
permissions:
contents: read
jobs:
pre-commit:
runs-on: ubuntu-latest

View File

@ -1,6 +1,4 @@
name: PR Reminder Comment Bot
permissions:
pull-requests: write
on:
pull_request_target:
types: [opened]

6
.gitignore vendored
View File

@ -3,6 +3,7 @@
# vllm-flash-attn built from source
vllm/vllm_flash_attn/*
!vllm/vllm_flash_attn/fa_utils.py
# Byte-compiled / optimized / DLL files
__pycache__/
@ -77,6 +78,10 @@ instance/
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
docs/source/getting_started/examples/
# PyBuilder
.pybuilder/
target/
@ -146,7 +151,6 @@ venv.bak/
# mkdocs documentation
/site
docs/examples
# mypy
.mypy_cache/

View File

@ -12,44 +12,41 @@ repos:
- id: yapf
args: [--in-place, --verbose]
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.11.7
rev: v0.9.3
hooks:
- id: ruff
args: [--output-format, github, --fix]
- id: ruff-format
files: ^(.buildkite|benchmarks|examples)/.*
- repo: https://github.com/codespell-project/codespell
rev: v2.4.1
rev: v2.4.0
hooks:
- id: codespell
additional_dependencies: ['tomli']
args: ['--toml', 'pyproject.toml']
- repo: https://github.com/PyCQA/isort
rev: 6.0.1
rev: 0a0b7a830386ba6a31c2ec8316849ae4d1b8240d # 6.0.0
hooks:
- id: isort
- repo: https://github.com/pre-commit/mirrors-clang-format
rev: v20.1.3
rev: v19.1.7
hooks:
- id: clang-format
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))|vllm/third_party/.*'
types_or: [c++, cuda]
args: [--style=file, --verbose]
- repo: https://github.com/jackdewinter/pymarkdown
rev: v0.9.29
rev: v0.9.27
hooks:
- id: pymarkdown
exclude: '.*\.inc\.md'
args: [fix]
- repo: https://github.com/rhysd/actionlint
rev: v1.7.7
hooks:
- id: actionlint
- repo: https://github.com/astral-sh/uv-pre-commit
rev: 0.6.17
rev: 0.6.2
hooks:
- id: pip-compile
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128]
args: [requirements/test.in, -o, requirements/test.txt]
files: ^requirements/test\.(in|txt)$
- repo: local
hooks:
@ -104,8 +101,8 @@ repos:
args:
- -c
- |
if ! grep -q "^Signed-off-by: $(git config user.name) <$(git config user.email)>" "$(git rev-parse --git-path COMMIT_EDITMSG)"; then
printf "\nSigned-off-by: $(git config user.name) <$(git config user.email)>\n" >> "$(git rev-parse --git-path COMMIT_EDITMSG)"
if ! grep -q "^Signed-off-by: $(git config user.name) <$(git config user.email)>" .git/COMMIT_EDITMSG; then
printf "\nSigned-off-by: $(git config user.name) <$(git config user.email)>\n" >> .git/COMMIT_EDITMSG
fi
language: system
verbose: true
@ -128,21 +125,8 @@ repos:
name: Update Dockerfile dependency graph
entry: tools/update-dockerfile-graph.sh
language: script
- id: enforce-import-regex-instead-of-re
name: Enforce import regex as re
entry: python tools/enforce_regex_import.py
language: python
types: [python]
files: ^docker/Dockerfile$
pass_filenames: false
additional_dependencies: [regex]
# forbid directly import triton
- id: forbid-direct-triton-import
name: "Forbid direct 'import triton'"
entry: python tools/check_triton_import.py
language: python
types: [python]
pass_filenames: false
additional_dependencies: [regex]
# Keep `suggestion` last
- id: suggestion
name: Suggestion

View File

@ -8,8 +8,12 @@ build:
tools:
python: "3.12"
mkdocs:
configuration: mkdocs.yaml
sphinx:
configuration: docs/source/conf.py
fail_on_warning: true
# If using Sphinx, optionally build your docs in additional formats such as PDF
formats: []
# Optionally declare the Python requirements required to build your docs
python:

View File

@ -15,6 +15,7 @@ project(vllm_extensions LANGUAGES CXX)
# CUDA by default, can be overridden by using -DVLLM_TARGET_DEVICE=... (used by setup.py)
set(VLLM_TARGET_DEVICE "cuda" CACHE STRING "Target device backend for vLLM")
message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")
message(STATUS "Target device: ${VLLM_TARGET_DEVICE}")
@ -29,6 +30,9 @@ set(ignoreMe "${VLLM_PYTHON_PATH}")
#
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12")
# Supported NVIDIA architectures.
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
@ -42,8 +46,8 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from docker/Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.7.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.7.0")
set(TORCH_SUPPORTED_VERSION_CUDA "2.6.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.6.0")
#
# Try to find python package with an executable that exactly matches
@ -76,15 +80,6 @@ endif()
#
find_package(Torch REQUIRED)
# Supported NVIDIA architectures.
# This check must happen after find_package(Torch) because that's when CMAKE_CUDA_COMPILER_VERSION gets defined
if(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8)
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
else()
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0")
endif()
#
# Forward the non-CUDA device extensions to external CMake scripts.
#
@ -232,13 +227,10 @@ endif()
#
set(VLLM_EXT_SRC
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
"csrc/cache_kernels.cu"
"csrc/attention/paged_attention_v1.cu"
"csrc/attention/paged_attention_v2.cu"
"csrc/attention/merge_attn_states.cu"
"csrc/attention/vertical_slash_index.cu"
"csrc/pos_encoding_kernels.cu"
"csrc/activation_kernels.cu"
"csrc/layernorm_kernels.cu"
@ -249,7 +241,6 @@ set(VLLM_EXT_SRC
"csrc/quantization/fp8/common.cu"
"csrc/quantization/fused_kernels/fused_layernorm_dynamic_per_token_quant.cu"
"csrc/quantization/gguf/gguf_kernel.cu"
"csrc/quantization/activation_kernels.cu"
"csrc/cuda_utils_kernels.cu"
"csrc/prepare_inputs/advance_step.cu"
"csrc/custom_all_reduce.cu"
@ -258,8 +249,9 @@ set(VLLM_EXT_SRC
if(VLLM_GPU_LANG STREQUAL "CUDA")
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
set(CUTLASS_REVISION "v3.9.2" CACHE STRING "CUTLASS revision to use")
# Set CUTLASS_REVISION manually -- its revision detection doesn't work in this case.
# Please keep this in sync with FetchContent_Declare line below.
set(CUTLASS_REVISION "v3.8.0" CACHE STRING "CUTLASS revision to use")
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
@ -277,7 +269,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
cutlass
GIT_REPOSITORY https://github.com/nvidia/cutlass.git
# Please keep this in sync with CUTLASS_REVISION line above.
GIT_TAG ${CUTLASS_REVISION}
GIT_TAG v3.8.0
GIT_PROGRESS TRUE
# Speed up CUTLASS download by retrieving only the specified GIT_TAG instead of the history.
@ -289,16 +281,16 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
FetchContent_MakeAvailable(cutlass)
list(APPEND VLLM_EXT_SRC
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
"csrc/quantization/aqlm/gemm_kernels.cu"
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/permute_cols.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu"
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
"csrc/cutlass_extensions/common.cpp"
"csrc/attention/mla/cutlass_mla_entry.cu")
"csrc/cutlass_extensions/common.cpp")
set_gencode_flags_for_srcs(
SRCS "${VLLM_EXT_SRC}"
@ -307,55 +299,10 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# Only build Marlin kernels if we are building for at least some compatible archs.
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
# are not supported by Machete yet.
# 9.0 for latest bf16 atomicAdd PTX
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
if (MARLIN_ARCHS)
#
# For the Marlin kernels we automatically generate sources for various
# preselected input type pairs and schedules.
# Generate sources:
set(MARLIN_GEN_SCRIPT
${CMAKE_CURRENT_SOURCE_DIR}/csrc/quantization/gptq_marlin/generate_kernels.py)
file(MD5 ${MARLIN_GEN_SCRIPT} MARLIN_GEN_SCRIPT_HASH)
message(STATUS "Marlin generation script hash: ${MARLIN_GEN_SCRIPT_HASH}")
message(STATUS "Last run Marlin generate script hash: $CACHE{MARLIN_GEN_SCRIPT_HASH}")
if (NOT DEFINED CACHE{MARLIN_GEN_SCRIPT_HASH}
OR NOT $CACHE{MARLIN_GEN_SCRIPT_HASH} STREQUAL ${MARLIN_GEN_SCRIPT_HASH})
execute_process(
COMMAND ${CMAKE_COMMAND} -E env
PYTHONPATH=$PYTHONPATH
${Python_EXECUTABLE} ${MARLIN_GEN_SCRIPT}
RESULT_VARIABLE marlin_generation_result
OUTPUT_VARIABLE marlin_generation_result
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/marlin_generation.log
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/marlin_generation.log
)
if (NOT marlin_generation_result EQUAL 0)
message(FATAL_ERROR "Marlin generation failed."
" Result: \"${marlin_generation_result}\""
"\nCheck the log for details: "
"${CMAKE_CURRENT_BINARY_DIR}/marlin_generation.log")
else()
set(MARLIN_GEN_SCRIPT_HASH ${MARLIN_GEN_SCRIPT_HASH}
CACHE STRING "Last run Marlin generate script hash" FORCE)
message(STATUS "Marlin generation completed successfully.")
endif()
else()
message(STATUS "Marlin generation script has not changed, skipping generation.")
endif()
file(GLOB MARLIN_TEMPLATE_KERNEL_SRC "csrc/quantization/gptq_marlin/kernel_*.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_TEMPLATE_KERNEL_SRC}"
CUDA_ARCHS "${MARLIN_ARCHS}")
list(APPEND VLLM_EXT_SRC ${MARLIN_TEMPLATE_KERNEL_SRC})
set(MARLIN_SRCS
"csrc/quantization/fp8/fp8_marlin.cu"
"csrc/quantization/marlin/dense/marlin_cuda_kernel.cu"
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
"csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu"
@ -427,7 +374,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm100_fp8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm100_fp8.cu"
)
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
@ -452,9 +398,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
#
# For the cutlass_scaled_mm kernels we want to build the c2x (CUTLASS 2.x)
# kernels for the remaining archs that are not already built for 3x.
# (Build 8.9 for FP8)
cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS
"7.5;8.0;8.9+PTX" "${CUDA_ARCHS}")
"7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
# subtract out the archs that are already built for 3x
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
if (SCALED_MM_2X_ARCHS)
@ -505,9 +450,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
"csrc/quantization/fp4/nvfp4_experts_quant.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_kernels.cu"
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu")
"csrc/quantization/fp4/nvfp4_scaled_mm_kernels.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${FP4_ARCHS}")
@ -520,32 +463,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set(FP4_ARCHS)
endif()
# CUTLASS MLA Archs and flags
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND MLA_ARCHS)
set(SRCS
"csrc/attention/mla/cutlass_mla_kernels.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${MLA_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MLA=1")
# Add MLA-specific include directories only to MLA source files
set_source_files_properties(${SRCS}
PROPERTIES INCLUDE_DIRECTORIES "${CUTLASS_DIR}/examples/77_blackwell_fmha;${CUTLASS_DIR}/examples/common")
message(STATUS "Building CUTLASS MLA for archs: ${MLA_ARCHS}")
else()
message(STATUS "Not building CUTLASS MLA as no compatible archs were found.")
# clear MLA_ARCHS
set(MLA_ARCHS)
endif()
#
# CUTLASS MoE kernels
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and only works
# on Hopper). get_cutlass_moe_mm_data should only be compiled if it's possible
# to compile MoE kernels that use its output.
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu"
"csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
@ -683,8 +607,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
CUDA_ARCHS "${CUDA_ARCHS}")
list(APPEND VLLM_MOE_EXT_SRC "${VLLM_MOE_WNA16_SRC}")
# 9.0 for latest bf16 atomicAdd PTX
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
if (MARLIN_MOE_ARCHS)
#
@ -702,7 +625,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
OR NOT $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH} STREQUAL ${MOE_MARLIN_GEN_SCRIPT_HASH})
execute_process(
COMMAND ${CMAKE_COMMAND} -E env
PYTHONPATH=$PYTHONPATH
PYTHONPATH=${CMAKE_CURRENT_SOURCE_DIR}/csrc/cutlass_extensions/:${CUTLASS_DIR}/python/:${VLLM_PYTHON_PATH}:$PYTHONPATH
${Python_EXECUTABLE} ${MOE_MARLIN_GEN_SCRIPT}
RESULT_VARIABLE moe_marlin_generation_result
OUTPUT_VARIABLE moe_marlin_generation_output
@ -738,17 +661,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
if(VLLM_GPU_LANG STREQUAL "CUDA")
set(MOE_PERMUTE_SRC
"csrc/moe/permute_unpermute_kernels/moe_permute_unpermute_kernel.cu"
"csrc/moe/moe_permute_unpermute_op.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_PERMUTE_SRC}"
CUDA_ARCHS "${MOE_PERMUTE_ARCHS}")
list(APPEND VLLM_MOE_EXT_SRC "${MOE_PERMUTE_SRC}")
endif()
message(STATUS "Enabling moe extension.")
define_gpu_extension_target(
_moe_C
@ -757,8 +669,6 @@ define_gpu_extension_target(
SOURCES ${VLLM_MOE_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR}
INCLUDE_DIRECTORIES ${CUTLASS_TOOLS_UTIL_INCLUDE_DIR}
USE_SABI 3
WITH_SOABI)
@ -768,7 +678,6 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
#
set(VLLM_ROCM_EXT_SRC
"csrc/rocm/torch_bindings.cpp"
"csrc/rocm/skinny_gemms.cu"
"csrc/rocm/attention.cu")
define_gpu_extension_target(

View File

@ -1,3 +1,3 @@
# Contributing to vLLM
You may find information about contributing to vLLM on [docs.vllm.ai](https://docs.vllm.ai/en/latest/contributing).
You may find information about contributing to vLLM on [docs.vllm.ai](https://docs.vllm.ai/en/latest/contributing/overview.html).

View File

@ -1,7 +1,7 @@
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/assets/logos/vllm-logo-text-dark.png">
<img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/assets/logos/vllm-logo-text-light.png" width=55%>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png">
<img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
</picture>
</p>
@ -16,20 +16,18 @@ Easy, fast, and cheap LLM serving for everyone
---
*Latest News* 🔥
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
- [2025/05] vLLM is now a hosted project under PyTorch Foundation! Please find the announcement [here](https://pytorch.org/blog/pytorch-foundation-welcomes-vllm/).
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
<details>
<summary>Previous News</summary>
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).
- [2025/03] We hosted [the East Coast vLLM Meetup](https://lu.ma/7mu4k4xx)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1NHiv8EUFF1NLd3fEYODm56nDmL26lEeXCaDgyDlTsRs/edit#slide=id.g31441846c39_0_0).
- [2025/02] We hosted [the ninth vLLM meetup](https://lu.ma/h7g3kuj9) with Meta! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1jzC_PZVXrVNSFVCW-V4cFXb6pn7zZ2CyP_Flwo05aqg/edit?usp=sharing) and AMD [here](https://drive.google.com/file/d/1Zk5qEJIkTmlQ2eQcXQZlljAx3m9s7nwn/view?usp=sharing). The slides from Meta will not be posted.
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
- [2025/01] We hosted [the eighth vLLM meetup](https://lu.ma/zep56hui) with Google Cloud! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1epVkt4Zu8Jz_S5OhEHPc798emsYh2BwYfRuDDVEF7u4/edit?usp=sharing), and Google Cloud team [here](https://drive.google.com/file/d/1h24pHewANyRL11xy5dXUbvRC9F9Kkjix/view?usp=sharing).
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
<details>
<summary>Previous News</summary>
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing), and Snowflake team [here](https://docs.google.com/presentation/d/1qF3RkDAbOULwz9WK5TOltt2fE9t6uIc_hVNLFAaQX6A/edit?usp=sharing).
- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there!
- [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://www.youtube.com/playlist?list=PLzTswPQNepXl6AQwifuwUImLPFRVpksjR) from other vLLM contributors and users!
@ -58,7 +56,7 @@ vLLM is fast with:
- Efficient management of attention key and value memory with [**PagedAttention**](https://blog.vllm.ai/2023/06/20/vllm.html)
- Continuous batching of incoming requests
- Fast model execution with CUDA/HIP graph
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [AutoRound](https://arxiv.org/abs/2309.05516),INT4, INT8, and FP8.
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), INT4, INT8, and FP8.
- Optimized CUDA kernels, including integration with FlashAttention and FlashInfer.
- Speculative decoding
- Chunked prefill
@ -74,7 +72,7 @@ vLLM is flexible and easy to use with:
- OpenAI-compatible API server
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron.
- Prefix caching support
- Multi-LoRA support
- Multi-lora support
vLLM seamlessly supports most popular open-source models on HuggingFace, including:
- Transformer-like LLMs (e.g., Llama)
@ -100,14 +98,14 @@ Visit our [documentation](https://docs.vllm.ai/en/latest/) to learn more.
## Contributing
We welcome and value any contributions and collaborations.
Please check out [Contributing to vLLM](https://docs.vllm.ai/en/latest/contributing/index.html) for how to get involved.
Please check out [Contributing to vLLM](https://docs.vllm.ai/en/stable/contributing/overview.html) for how to get involved.
## Sponsors
vLLM is a community project. Our compute resources for development and testing are supported by the following organizations. Thank you for your support!
<!-- Note: Please sort them in alphabetical order. -->
<!-- Note: Please keep these consistent with docs/community/sponsors.md -->
<!-- Note: Please keep these consistent with docs/source/community/sponsors.md -->
Cash Donations:
- a16z
- Dropbox

View File

@ -146,9 +146,10 @@ python3 vllm/benchmarks/benchmark_serving.py \
``` bash
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
--speculative-model "[ngram]" \
--ngram_prompt_lookup_min 2 \
--ngram-prompt-lookup-max 5 \
--speculative_config '{"model": "[ngram]", "num_speculative_tokens": 5}
--num_speculative_tokens 5
```
``` bash
@ -273,9 +274,10 @@ python3 vllm/benchmarks/benchmark_throughput.py \
--output-len=100 \
--num-prompts=2048 \
--async-engine \
--speculative-model="[ngram]" \
--ngram_prompt_lookup_min=2 \
--ngram-prompt-lookup-max=5 \
--speculative_config '{"model": "[ngram]", "num_speculative_tokens": 5}
--num_speculative_tokens=5
```
```

View File

@ -1,212 +0,0 @@
#!/bin/bash
# This script aims to tune the best server parameter combinations to maximize throughput for given requirement.
# The current server parameter combination is max_num_seqs and max_num_batched_tokens
# It also supports additional requirement: e2e latency and prefix cache.
# Pre-requisite:
# 1. Checkout to your branch, install/ update the correct running env. For TPU, activate conda env and install the corresponding torch, xla version.
# 2. If the model is customized, replace the MODEL's config with the customized config.
# 3. Set variables (ALL REQUIRED)
# BASE: your directory for vllm repo
# MODEL: the model served by vllm
# DOWNLOAD_DIR: directory to download and load model weights.
# INPUT_LEN: request input len
# OUTPUT_LEN: request output len
# MIN_CACHE_HIT_PCT: prefix cache rate
# MAX_LATENCY_ALLOWED_MS: (e2e) latency requirement. If there's no latency requirement, set it to a large number like 1000000000
# 4. Run the script, it might take a long time, you can use tmux to avoid the script stop if disconnection happens.
# 5. The final result will be saved in RESULT file.
# Example use cases
# 1. Given input_len=1800, output_len=20, what's the best max_num_seqs and max_num_batched_tokens to get highest throughput?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=100000000000
# 2. If we have latency requirement to be lower than 500ms, what's the best server parameter?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=500
# 3. If we want to reach 60% prefix cache, what's the best server parameter?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=60, MAX_LATENCY_ALLOWED_MS=500
TAG=$(date +"%Y_%m_%d_%H_%M")
BASE=""
MODEL="meta-llama/Llama-3.1-8B-Instruct"
DOWNLOAD_DIR=""
INPUT_LEN=4000
OUTPUT_LEN=16
MIN_CACHE_HIT_PCT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
RESULT="$LOG_FOLDER/result.txt"
echo "result file$ $RESULT"
echo "model: $MODEL"
echo
rm -rf $LOG_FOLDER
mkdir -p $LOG_FOLDER
cd "$BASE/vllm"
# create sonnet-4x.txt so that we can sample 2048 tokens for input
echo "" > benchmarks/sonnet_4x.txt
for _ in {1..4}
do
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
done
pip install datasets
current_hash=$(git rev-parse HEAD)
echo "hash:$current_hash" >> "$RESULT"
echo "current_hash: $current_hash"
best_throughput=0
best_max_num_seqs=0
best_num_batched_tokens=0
best_goodput=0
run_benchmark() {
local max_num_seqs=$1
local max_num_batched_tokens=$2
echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
echo "vllm_log: $vllm_log"
echo
rm -f $vllm_log
# start the server
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
--disable-log-requests \
--port 8004 \
--gpu-memory-utilization 0.98 \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--tensor-parallel-size 1 \
--enable-prefix-caching \
--load-format dummy \
--download-dir $DOWNLOAD_DIR \
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
echo "wait for 10 minutes.."
echo
# wait for 10 minutes...
server_started=0
for i in {1..60}; do
if grep -Fq "Application startup complete" "$vllm_log"; then
echo "Application started"
server_started=1
break
else
# echo "wait for 10 seconds..."
sleep 10
fi
done
if (( ! server_started )); then
echo "server did not start within 10 minutes, terminate the benchmarking. Please check server log at $vllm_log"
echo "pkill -f vllm"
echo
pkill vllm
sleep 10
return 1
fi
echo "run benchmark test..."
echo
meet_latency_requirement=0
# get a basic qps by using request-rate inf
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
prefix_len=$(( INPUT_LEN * MIN_CACHE_HIT_PCT / 100 ))
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name sonnet \
--dataset-path benchmarks/sonnet_4x.txt \
--sonnet-input-len $INPUT_LEN \
--sonnet-output-len $OUTPUT_LEN \
--ignore-eos \
--disable-tqdm \
--request-rate inf \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 100 \
--sonnet-prefix-len $prefix_len \
--port 8004 > "$bm_log"
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
meet_latency_requirement=1
fi
if (( ! meet_latency_requirement )); then
# start from request-rate as int(through_put) + 1
request_rate=$((${through_put%.*} + 1))
while ((request_rate > 0)); do
# clear prefix cache
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
sleep 5
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_${request_rate}.txt"
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name sonnet \
--dataset-path benchmarks/sonnet_4x.txt \
--sonnet-input-len $INPUT_LEN \
--sonnet-output-len $OUTPUT_LEN \
--ignore_eos \
--disable-tqdm \
--request-rate $request_rate \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 100 \
--sonnet-prefix-len $prefix_len \
--port 8004 > "$bm_log"
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
meet_latency_requirement=1
break
fi
request_rate=$((request_rate-1))
done
fi
# write the results and update the best result.
if ((meet_latency_requirement)); then
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput" >> "$RESULT"
if (( $(echo "$through_put > $best_throughput" | bc -l) )); then
best_throughput=$through_put
best_max_num_seqs=$max_num_seqs
best_num_batched_tokens=$max_num_batched_tokens
best_goodput=$goodput
fi
else
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}" >> "$RESULT"
fi
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
echo "pkill -f vllm"
echo
pkill vllm
sleep 10
rm -f $vllm_log
printf '=%.0s' $(seq 1 20)
return 0
}
num_seqs_list="128 256"
num_batched_tokens_list="512 1024 2048 4096"
for num_seqs in $num_seqs_list; do
for num_batched_tokens in $num_batched_tokens_list; do
run_benchmark $num_seqs $num_batched_tokens
exit 0
done
done
echo "finish permutations"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput" >> "$RESULT"

View File

@ -1,6 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import io
import json
import os
import sys
@ -12,7 +11,8 @@ from typing import Optional, Union
import aiohttp
import huggingface_hub.constants
from tqdm.asyncio import tqdm
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
from transformers import (AutoTokenizer, PreTrainedTokenizer,
PreTrainedTokenizerFast)
# NOTE(simon): do not import vLLM here so the benchmark script
# can run without vLLM installed.
@ -32,7 +32,6 @@ class RequestFuncInput:
extra_body: Optional[dict] = None
multi_modal_content: Optional[dict] = None
ignore_eos: bool = False
language: Optional[str] = None
@dataclass
@ -42,7 +41,8 @@ class RequestFuncOutput:
latency: float = 0.0
output_tokens: int = 0
ttft: float = 0.0 # Time to first token
itl: list[float] = field(default_factory=list) # list of inter-token latencies
itl: list[float] = field(
default_factory=list) # list of inter-token latencies
tpot: float = 0.0 # avg next-token latencies
prompt_len: int = 0
error: str = ""
@ -55,9 +55,8 @@ async def async_request_tgi(
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
params = {
"max_new_tokens": request_func_input.output_len,
"do_sample": True,
@ -104,7 +103,8 @@ async def async_request_tgi(
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
output.itl.append(timestamp -
most_recent_timestamp)
most_recent_timestamp = timestamp
@ -131,9 +131,8 @@ async def async_request_trt_llm(
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"accumulate_tokens": True,
"text_input": request_func_input.prompt,
@ -158,7 +157,8 @@ async def async_request_trt_llm(
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix("data:")
chunk = chunk_bytes.decode("utf-8").removeprefix(
"data:")
data = json.loads(chunk)
output.generated_text += data["text_output"]
@ -170,7 +170,8 @@ async def async_request_trt_llm(
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
output.itl.append(timestamp -
most_recent_timestamp)
most_recent_timestamp = timestamp
@ -194,23 +195,15 @@ async def async_request_deepspeed_mii(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(("completions", "profile")), (
"OpenAI Completions API URL must end with 'completions' or 'profile'."
)
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
payload = {
"model": request_func_input.model,
"prompt": request_func_input.prompt,
"max_tokens": request_func_input.output_len,
"temperature": 0.01, # deepspeed-mii does not accept 0.0 temp.
"top_p": 1.0,
}
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
@ -221,21 +214,19 @@ async def async_request_deepspeed_mii(
st = time.perf_counter()
try:
async with session.post(
url=api_url, json=payload, headers=headers
) as response:
async with session.post(url=request_func_input.api_url,
json=payload) as response:
if response.status == 200:
parsed_resp = await response.json()
output.latency = time.perf_counter() - st
if "choices" in parsed_resp:
output.generated_text = parsed_resp["choices"][0]["text"]
output.generated_text = parsed_resp["choices"][0][
"text"]
elif "text" in parsed_resp:
output.generated_text = parsed_resp["text"][0]
else:
output.error = (
"Unexpected response format: "
"neither 'choices' nor 'text' found"
)
output.error = ("Unexpected response format: "
"neither 'choices' nor 'text' found")
output.success = False
output.success = True
else:
@ -256,20 +247,17 @@ async def async_request_openai_completions(
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(("completions", "profile")), (
"OpenAI Completions API URL must end with 'completions' or 'profile'."
)
assert api_url.endswith(
("completions", "profile")
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
"model": request_func_input.model_name \
if request_func_input.model_name else request_func_input.model,
"prompt": request_func_input.prompt,
"temperature": 0.0,
"repetition_penalty": 1.0,
"max_tokens": request_func_input.output_len,
"logprobs": request_func_input.logprobs,
"stream": True,
@ -281,7 +269,9 @@ async def async_request_openai_completions(
payload["ignore_eos"] = request_func_input.ignore_eos
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
@ -290,9 +280,8 @@ async def async_request_openai_completions(
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(
url=api_url, json=payload, headers=headers
) as response:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
if response.status == 200:
first_chunk_received = False
async for chunk_bytes in response.content:
@ -300,7 +289,8 @@ async def async_request_openai_completions(
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
chunk = chunk_bytes.decode("utf-8").removeprefix(
"data: ")
if chunk != "[DONE]":
data = json.loads(chunk)
@ -320,20 +310,21 @@ async def async_request_openai_completions(
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
output.itl.append(timestamp -
most_recent_timestamp)
most_recent_timestamp = timestamp
generated_text += text or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get("completion_tokens")
output.output_tokens = usage.get(
"completion_tokens")
if first_chunk_received:
output.success = True
else:
output.success = False
output.error = (
"Never received a valid chunk to calculate TTFT."
"This response will be marked as failed!"
)
"This response will be marked as failed!")
output.generated_text = generated_text
output.latency = most_recent_timestamp - st
else:
@ -354,22 +345,23 @@ async def async_request_openai_chat_completions(
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(("chat/completions", "profile")), (
"OpenAI Chat Completions API URL must end with 'chat/completions'."
)
assert api_url.endswith(
("chat/completions", "profile")
), "OpenAI Chat Completions API URL must end with 'chat/completions'."
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
content = [{"type": "text", "text": request_func_input.prompt}]
if request_func_input.multi_modal_content:
content.append(request_func_input.multi_modal_content)
payload = {
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
"model": request_func_input.model_name \
if request_func_input.model_name else request_func_input.model,
"messages": [
{"role": "user", "content": content},
{
"role": "user",
"content": content
},
],
"temperature": 0.0,
"max_completion_tokens": request_func_input.output_len,
@ -395,16 +387,16 @@ async def async_request_openai_chat_completions(
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(
url=api_url, json=payload, headers=headers
) as response:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
chunk = chunk_bytes.decode("utf-8").removeprefix(
"data: ")
if chunk != "[DONE]":
timestamp = time.perf_counter()
data = json.loads(chunk)
@ -418,11 +410,13 @@ async def async_request_openai_chat_completions(
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
output.itl.append(timestamp -
most_recent_timestamp)
generated_text += content or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get("completion_tokens")
output.output_tokens = usage.get(
"completion_tokens")
most_recent_timestamp = timestamp
@ -442,115 +436,8 @@ async def async_request_openai_chat_completions(
return output
async def async_request_openai_audio(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
# Lazy import without PlaceholderModule to avoid vllm dep.
import soundfile
api_url = request_func_input.api_url
assert api_url.endswith(("transcriptions", "translations")), (
"OpenAI Chat Completions API URL must end with 'transcriptions' "
)
"or `translations`."
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
content = [{"type": "text", "text": request_func_input.prompt}]
payload = {
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
"temperature": 0.0,
"max_completion_tokens": request_func_input.output_len,
"stream": True,
"language": "en",
# Flattened due to multipart/form-data
"stream_include_usage": True,
"stream_continuous_usage_stats": True,
}
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
# Send audio file
def to_bytes(y, sr):
buffer = io.BytesIO()
soundfile.write(buffer, y, sr, format="WAV")
buffer.seek(0)
return buffer
with to_bytes(*request_func_input.multi_modal_content["audio"]) as f:
form = aiohttp.FormData()
form.add_field("file", f, content_type="audio/wav")
for key, value in payload.items():
form.add_field(key, str(value))
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(
url=api_url, data=form, headers=headers
) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
timestamp = time.perf_counter()
data = json.loads(chunk)
if choices := data.get("choices"):
content = choices[0]["delta"].get("content")
# First token
if ttft == 0.0:
ttft = timestamp - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(
timestamp - most_recent_timestamp
)
generated_text += content or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get(
"completion_tokens"
)
most_recent_timestamp = timestamp
output.generated_text = generated_text
output.success = True
output.latency = most_recent_timestamp - st
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
def get_model(pretrained_model_name_or_path: str) -> str:
if os.getenv("VLLM_USE_MODELSCOPE", "False").lower() == "true":
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
from modelscope import snapshot_download
from vllm.model_executor.model_loader.weight_utils import get_lock
@ -561,8 +448,7 @@ def get_model(pretrained_model_name_or_path: str) -> str:
model_path = snapshot_download(
model_id=pretrained_model_name_or_path,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"],
)
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
return model_path
return pretrained_model_name_or_path
@ -575,23 +461,23 @@ def get_tokenizer(
**kwargs,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
if pretrained_model_name_or_path is not None and not os.path.exists(
pretrained_model_name_or_path
):
pretrained_model_name_or_path = get_model(pretrained_model_name_or_path)
pretrained_model_name_or_path):
pretrained_model_name_or_path = get_model(
pretrained_model_name_or_path)
if tokenizer_mode == "slow":
if kwargs.get("use_fast", False):
raise ValueError("Cannot use the fast tokenizer in slow tokenizer mode.")
raise ValueError(
"Cannot use the fast tokenizer in slow tokenizer mode.")
kwargs["use_fast"] = False
if tokenizer_mode == "mistral":
try:
from vllm.transformers_utils.tokenizer import MistralTokenizer
except ImportError as e:
raise ImportError(
"MistralTokenizer requires vllm package.\n"
"Please install it with `pip install vllm` "
"to use mistral tokenizer mode."
) from e
return MistralTokenizer.from_pretrained(str(pretrained_model_name_or_path))
raise ImportError("MistralTokenizer requires vllm package.\n"
"Please install it with `pip install vllm` "
"to use mistral tokenizer mode.") from e
return MistralTokenizer.from_pretrained(
str(pretrained_model_name_or_path))
else:
return AutoTokenizer.from_pretrained(
pretrained_model_name_or_path,
@ -607,14 +493,13 @@ ASYNC_REQUEST_FUNCS = {
"deepspeed-mii": async_request_deepspeed_mii,
"openai": async_request_openai_completions,
"openai-chat": async_request_openai_chat_completions,
"openai-audio": async_request_openai_audio,
"tensorrt-llm": async_request_trt_llm,
"scalellm": async_request_openai_completions,
"sglang": async_request_openai_completions,
}
OPENAI_COMPATIBLE_BACKENDS = [
k
for k, v in ASYNC_REQUEST_FUNCS.items()
if v in (async_request_openai_completions, async_request_openai_chat_completions)
k for k, v in ASYNC_REQUEST_FUNCS.items()
if v in (async_request_openai_completions,
async_request_openai_chat_completions)
]

View File

@ -35,7 +35,6 @@ from transformers import PreTrainedTokenizerBase
from vllm.lora.request import LoRARequest
from vllm.lora.utils import get_adapter_absolute_path
from vllm.multimodal import MultiModalDataDict
from vllm.multimodal.image import convert_image_mode
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
logger = logging.getLogger(__name__)
@ -65,7 +64,6 @@ class SampleRequest:
class BenchmarkDataset(ABC):
DEFAULT_SEED = 0
IS_MULTIMODAL = False
def __init__(
self,
@ -83,12 +81,14 @@ class BenchmarkDataset(ABC):
self.dataset_path = dataset_path
# Set the random seed, ensuring that a None value is replaced with the
# default seed.
self.random_seed = random_seed if random_seed is not None else self.DEFAULT_SEED
self.random_seed = (random_seed
if random_seed is not None else self.DEFAULT_SEED)
self.data = None
def apply_multimodal_chat_transformation(
self, prompt: str, mm_content: Optional[MultiModalDataDict] = None
) -> list[dict]:
self,
prompt: str,
mm_content: Optional[MultiModalDataDict] = None) -> list[dict]:
"""
Transform a prompt and optional multimodal content into a chat format.
This method is used for chat models that expect a specific conversation
@ -110,7 +110,8 @@ class BenchmarkDataset(ABC):
NotImplementedError: If a subclass does not implement this method.
"""
# TODO (jenniferzhao): add support for downloading data
raise NotImplementedError("load_data must be implemented in subclasses.")
raise NotImplementedError(
"load_data must be implemented in subclasses.")
def get_random_lora_request(
self,
@ -156,9 +157,8 @@ class BenchmarkDataset(ABC):
return lora_request, lora_tokenizer_cache[lora_id] or tokenizer
@abstractmethod
def sample(
self, tokenizer: PreTrainedTokenizerBase, num_requests: int
) -> list[SampleRequest]:
def sample(self, tokenizer: PreTrainedTokenizerBase,
num_requests: int) -> list[SampleRequest]:
"""
Abstract method to generate sample requests from the dataset.
@ -176,9 +176,8 @@ class BenchmarkDataset(ABC):
"""
raise NotImplementedError("sample must be implemented in subclasses.")
def maybe_oversample_requests(
self, requests: list[SampleRequest], num_requests: int
) -> None:
def maybe_oversample_requests(self, requests: list[SampleRequest],
num_requests: int) -> None:
"""
Oversamples the list of requests if its size is less than the desired
number.
@ -189,9 +188,11 @@ class BenchmarkDataset(ABC):
"""
if len(requests) < num_requests:
random.seed(self.random_seed)
additional = random.choices(requests, k=num_requests - len(requests))
additional = random.choices(requests,
k=num_requests - len(requests))
requests.extend(additional)
logger.info("Oversampled requests to reach %d total samples.", num_requests)
logger.info("Oversampled requests to reach %d total samples.",
num_requests)
# -----------------------------------------------------------------------------
@ -216,14 +217,14 @@ def is_valid_sequence(
"""
# Check for invalid conditions
prompt_too_short = prompt_len < min_len
output_too_short = (not skip_min_output_len_check) and (output_len < min_len)
output_too_short = (not skip_min_output_len_check) and (output_len
< min_len)
prompt_too_long = prompt_len > max_prompt_len
combined_too_long = (prompt_len + output_len) > max_total_len
# Return True if none of the invalid conditions are met
return not (
prompt_too_short or output_too_short or prompt_too_long or combined_too_long
)
return not (prompt_too_short or output_too_short or prompt_too_long
or combined_too_long)
@cache
@ -255,28 +256,28 @@ def process_image(image: Any) -> Mapping[str, Any]:
Raises:
ValueError: If the input is not a supported type.
"""
if isinstance(image, dict) and "bytes" in image:
image = Image.open(BytesIO(image["bytes"]))
if isinstance(image, dict) and 'bytes' in image:
image = Image.open(BytesIO(image['bytes']))
if isinstance(image, Image.Image):
image = convert_image_mode(image, "RGB")
image = image.convert("RGB")
with io.BytesIO() as image_data:
image.save(image_data, format="JPEG")
image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8")
image_base64 = base64.b64encode(
image_data.getvalue()).decode("utf-8")
return {
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_base64}"},
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
},
}
if isinstance(image, str):
image_url = (
image if image.startswith(("http://", "file://")) else f"file://{image}"
)
image_url = (image if image.startswith(
("http://", "file://")) else f"file://{image}")
return {"type": "image_url", "image_url": {"url": image_url}}
raise ValueError(
f"Invalid image input {image}. Must be a PIL.Image.Image"
" or str or dictionary with raw image bytes."
)
raise ValueError(f"Invalid image input {image}. Must be a PIL.Image.Image"
" or str or dictionary with raw image bytes.")
# -----------------------------------------------------------------------------
@ -313,56 +314,42 @@ class RandomDataset(BenchmarkDataset):
)
vocab_size = tokenizer.vocab_size
num_special_tokens = tokenizer.num_special_tokens_to_add()
real_input_len = input_len - num_special_tokens
prefix_token_ids = (
np.random.randint(0, vocab_size, size=prefix_len).tolist()
if prefix_len > 0
else []
)
prefix_token_ids = (np.random.randint(
0, vocab_size, size=prefix_len).tolist() if prefix_len > 0 else [])
# New sampling logic: [X * (1 - b), X * (1 + b)]
input_low = int(real_input_len * (1 - range_ratio))
input_high = int(real_input_len * (1 + range_ratio))
input_low = int(input_len * (1 - range_ratio))
input_high = int(input_len * (1 + range_ratio))
output_low = int(output_len * (1 - range_ratio))
output_high = int(output_len * (1 + range_ratio))
# Add logging for debugging
logger.info("Sampling input_len from [%s, %s]", input_low, input_high)
logger.info("Sampling output_len from [%s, %s]", output_low, output_high)
logger.info("Sampling output_len from [%s, %s]", output_low,
output_high)
input_lens = np.random.randint(input_low, input_high + 1, size=num_requests)
output_lens = np.random.randint(output_low, output_high + 1, size=num_requests)
input_lens = np.random.randint(input_low,
input_high + 1,
size=num_requests)
output_lens = np.random.randint(output_low,
output_high + 1,
size=num_requests)
offsets = np.random.randint(0, vocab_size, size=num_requests)
requests = []
for i in range(num_requests):
inner_seq = (
(offsets[i] + i + np.arange(input_lens[i])) % vocab_size
).tolist()
inner_seq = ((offsets[i] + i + np.arange(input_lens[i])) %
vocab_size).tolist()
token_sequence = prefix_token_ids + inner_seq
prompt = tokenizer.decode(token_sequence)
# After decoding the prompt we have to encode and decode it again.
# This is done because in some cases N consecutive tokens
# give a string tokenized into != N number of tokens.
# For example for GPT2Tokenizer:
# [6880, 6881] -> ['Ġcalls', 'here'] ->
# [1650, 939, 486] -> ['Ġcall', 'sh', 'ere']
# To avoid uncontrolled change of the prompt length,
# the encoded sequence is truncated before being decode again.
re_encoded_sequence = tokenizer.encode(prompt, add_special_tokens=False)[
: input_lens[i]
]
prompt = tokenizer.decode(re_encoded_sequence)
total_input_len = prefix_len + int(input_lens[i])
requests.append(
SampleRequest(
prompt=prompt,
prompt_len=total_input_len,
expected_output_len=int(output_lens[i]),
)
)
))
return requests
@ -389,8 +376,7 @@ class ShareGPTDataset(BenchmarkDataset):
self.data = json.load(f)
# Filter entries with at least two conversation turns.
self.data = [
entry
for entry in self.data
entry for entry in self.data
if "conversations" in entry and len(entry["conversations"]) >= 2
]
random.seed(self.random_seed)
@ -416,28 +402,27 @@ class ShareGPTDataset(BenchmarkDataset):
)
lora_request, tokenizer = self.get_random_lora_request(
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path
)
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
prompt_ids = tokenizer(prompt).input_ids
completion_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_ids)
new_output_len = len(completion_ids) if output_len is None else output_len
if not is_valid_sequence(
prompt_len,
new_output_len,
skip_min_output_len_check=output_len is not None,
):
new_output_len = (len(completion_ids)
if output_len is None else output_len)
if not is_valid_sequence(prompt_len,
new_output_len,
skip_min_output_len_check=output_len
is not None):
continue
if enable_multimodal_chat:
prompt = self.apply_multimodal_chat_transformation(prompt, None)
prompt = self.apply_multimodal_chat_transformation(
prompt, None)
samples.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=new_output_len,
lora_request=lora_request,
)
)
))
self.maybe_oversample_requests(samples, num_requests)
return samples
@ -483,20 +468,20 @@ class SonnetDataset(BenchmarkDataset):
) -> list:
# Calculate average token length for a poem line.
tokenized_lines = [tokenizer(line).input_ids for line in self.data]
avg_len = sum(len(tokens) for tokens in tokenized_lines) / len(tokenized_lines)
avg_len = sum(len(tokens)
for tokens in tokenized_lines) / len(tokenized_lines)
# Build the base prompt.
base_prompt = "Pick as many lines as you can from these poem lines:\n"
base_msg = [{"role": "user", "content": base_prompt}]
base_fmt = tokenizer.apply_chat_template(
base_msg, add_generation_prompt=True, tokenize=False
)
base_fmt = tokenizer.apply_chat_template(base_msg,
add_generation_prompt=True,
tokenize=False)
base_offset = len(tokenizer(base_fmt).input_ids)
if input_len <= base_offset:
raise ValueError(
f"'input_len' must be higher than the base prompt length "
f"({base_offset})."
)
f"({base_offset}).")
# Determine how many poem lines to use.
num_input_lines = round((input_len - base_offset) / avg_len)
@ -505,23 +490,21 @@ class SonnetDataset(BenchmarkDataset):
samples = []
while len(samples) < num_requests:
extra_lines = random.choices(
self.data, k=num_input_lines - num_prefix_lines
)
extra_lines = random.choices(self.data,
k=num_input_lines - num_prefix_lines)
prompt = f"{base_prompt}{''.join(prefix_lines + extra_lines)}"
msg = [{"role": "user", "content": prompt}]
prompt_formatted = tokenizer.apply_chat_template(
msg, add_generation_prompt=True, tokenize=False
)
msg, add_generation_prompt=True, tokenize=False)
prompt_len = len(tokenizer(prompt_formatted).input_ids)
if prompt_len <= input_len:
samples.append(
SampleRequest(
prompt=prompt_formatted if return_prompt_formatted else prompt,
prompt=prompt_formatted
if return_prompt_formatted else prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
)
)
))
return samples
@ -541,9 +524,7 @@ class BurstGPTDataset(BenchmarkDataset):
super().__init__(**kwargs)
self.load_data()
def load_data(
self,
):
def load_data(self, ):
if self.dataset_path is None:
raise ValueError("dataset_path must be provided for loading data.")
@ -557,7 +538,8 @@ class BurstGPTDataset(BenchmarkDataset):
def _sample_loaded_data(self, num_requests: int) -> list:
if num_requests <= len(self.data):
data = self.data.sample(n=num_requests, random_state=self.random_seed)
data = self.data.sample(n=num_requests,
random_state=self.random_seed)
else:
data = self.data.sample(
n=num_requests,
@ -581,8 +563,7 @@ class BurstGPTDataset(BenchmarkDataset):
input_len = int(data[i][2])
output_len = int(data[i][3])
lora_req, tokenizer = self.get_random_lora_request(
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path
)
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
vocab_size = tokenizer.vocab_size
# Generate a synthetic prompt: a list of token IDs computed as (i +
# j) modulo vocab_size.
@ -594,8 +575,7 @@ class BurstGPTDataset(BenchmarkDataset):
prompt_len=input_len,
expected_output_len=output_len,
lora_request=lora_req,
)
)
))
return samples
@ -638,23 +618,19 @@ class HuggingFaceDataset(BenchmarkDataset):
class ConversationDataset(HuggingFaceDataset):
"""Dataset for conversation data with multimodal support."""
SUPPORTED_DATASET_PATHS = {
"lmms-lab/LLaVA-OneVision-Data",
"Aeala/ShareGPT_Vicuna_unfiltered",
'lmms-lab/LLaVA-OneVision-Data', 'Aeala/ShareGPT_Vicuna_unfiltered'
}
IS_MULTIMODAL = True
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs) -> list:
# Filter examples with at least 2 conversations
filtered_data = self.data.filter(lambda x: len(x["conversations"]) >= 2)
filtered_data = self.data.filter(
lambda x: len(x["conversations"]) >= 2)
sampled_requests = []
dynamic_output = output_len is None
@ -670,22 +646,24 @@ class ConversationDataset(HuggingFaceDataset):
completion_len = len(completion_ids)
output_len = completion_len if dynamic_output else output_len
assert isinstance(output_len, int) and output_len > 0
if dynamic_output and not is_valid_sequence(prompt_len, completion_len):
if dynamic_output and not is_valid_sequence(
prompt_len, completion_len):
continue
mm_content = process_image(item["image"]) if "image" in item else None
mm_content = process_image(
item["image"]) if "image" in item else None
if enable_multimodal_chat:
# Note: when chat is enabled the request prompt_len is no longer
# accurate and we will be using request output to count the
# actual prompt len and output len
prompt = self.apply_multimodal_chat_transformation(prompt, mm_content)
prompt = self.apply_multimodal_chat_transformation(
prompt, mm_content)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
)
)
))
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
@ -702,10 +680,11 @@ class VisionArenaDataset(HuggingFaceDataset):
DEFAULT_OUTPUT_LEN = 128
SUPPORTED_DATASET_PATHS = {
"lmarena-ai/VisionArena-Chat": lambda x: x["conversation"][0][0]["content"],
"lmarena-ai/vision-arena-bench-v0.1": lambda x: x["turns"][0][0]["content"],
"lmarena-ai/VisionArena-Chat":
lambda x: x["conversation"][0][0]["content"],
"lmarena-ai/vision-arena-bench-v0.1":
lambda x: x["turns"][0][0]["content"]
}
IS_MULTIMODAL = True
def sample(
self,
@ -715,14 +694,16 @@ class VisionArenaDataset(HuggingFaceDataset):
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
sampled_requests = []
for item in self.data:
if len(sampled_requests) >= num_requests:
break
parser_fn = self.SUPPORTED_DATASET_PATHS.get(self.dataset_path)
if parser_fn is None:
raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
raise ValueError(
f"Unsupported dataset path: {self.dataset_path}")
prompt = parser_fn(item)
mm_content = process_image(item["images"][0])
prompt_len = len(tokenizer(prompt).input_ids)
@ -730,15 +711,15 @@ class VisionArenaDataset(HuggingFaceDataset):
# Note: when chat is enabled the request prompt_len is no longer
# accurate and we will be using request output to count the
# actual prompt len
prompt = self.apply_multimodal_chat_transformation(prompt, mm_content)
prompt = self.apply_multimodal_chat_transformation(
prompt, mm_content)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
)
)
))
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
@ -763,15 +744,14 @@ class InstructCoderDataset(HuggingFaceDataset):
"likaixin/InstructCoder",
}
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs) -> list:
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
sampled_requests = []
for item in self.data:
if len(sampled_requests) >= num_requests:
@ -783,63 +763,7 @@ class InstructCoderDataset(HuggingFaceDataset):
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
)
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# MT-Bench Dataset Implementation
# -----------------------------------------------------------------------------
class MTBenchDataset(HuggingFaceDataset):
"""
MT-Bench Dataset.
https://huggingface.co/datasets/philschmid/mt-bench
We create a single turn dataset for MT-Bench.
This is similar to Spec decoding benchmark setup in vLLM
https://github.com/vllm-project/vllm/blob/9d98ab5ec/examples/offline_inference/eagle.py#L14-L18
""" # noqa: E501
DEFAULT_OUTPUT_LEN = 256 # avg len used in SD bench in vLLM
SUPPORTED_DATASET_PATHS = {
"philschmid/mt-bench",
}
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
sampled_requests = []
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt = item["turns"][0]
# apply template
prompt = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
tokenize=False,
)
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
)
)
))
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
@ -853,27 +777,23 @@ class AIMODataset(HuggingFaceDataset):
"""
Dataset class for processing a AIMO dataset with reasoning questions.
"""
SUPPORTED_DATASET_PATHS = {
"AI-MO/aimo-validation-aime",
"AI-MO/NuminaMath-1.5",
"AI-MO/NuminaMath-CoT",
"AI-MO/aimo-validation-aime", "AI-MO/NuminaMath-1.5",
"AI-MO/NuminaMath-CoT"
}
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
**kwargs,
) -> list:
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
**kwargs) -> list:
sampled_requests = []
dynamic_output = output_len is None
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt, completion = item["problem"], item["solution"]
prompt, completion = item['problem'], item["solution"]
prompt_ids = tokenizer(prompt).input_ids
completion_ids = tokenizer(completion).input_ids
@ -881,9 +801,10 @@ class AIMODataset(HuggingFaceDataset):
completion_len = len(completion_ids)
output_len = completion_len if dynamic_output else output_len
assert isinstance(output_len, int) and output_len > 0
if dynamic_output and not is_valid_sequence(
prompt_len, completion_len, max_prompt_len=2048, max_total_len=32000
):
if dynamic_output and not is_valid_sequence(prompt_len,
completion_len,
max_prompt_len=2048,
max_total_len=32000):
continue
sampled_requests.append(
SampleRequest(
@ -891,180 +812,6 @@ class AIMODataset(HuggingFaceDataset):
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=None,
)
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# Next Edit Prediction Dataset Implementation
# -----------------------------------------------------------------------------
zeta_prompt = """### Instruction:
You are a code completion assistant and your task is to analyze user edits and then rewrite an excerpt that the user provides, suggesting the appropriate edits within the excerpt, taking into account the cursor location.
### User Edits:
{}
### User Excerpt:
{}
### Response:
""" # noqa: E501
def _format_zeta_prompt(
sample: dict, original_start_marker: str = "<|editable_region_start|>"
) -> dict:
"""Format the zeta prompt for the Next Edit Prediction (NEP) dataset.
This function formats examples from the NEP dataset
into prompts and expected outputs. It could be
further extended to support more NEP datasets.
Args:
sample: The dataset sample containing events,
inputs, and outputs.
original_start_marker: The marker indicating the
start of the editable region. Defaults to
"<|editable_region_start|>".
Returns:
A dictionary with the formatted prompts and expected outputs.
"""
events = sample["events"]
input = sample["input"]
output = sample["output"]
prompt = zeta_prompt.format(events, input)
# following the original implementation, extract the focused region
# from the raw output
output_start_index = output.find(original_start_marker)
output_focused_region = output[output_start_index:]
expected_output = output_focused_region
return {"prompt": prompt, "expected_output": expected_output}
class NextEditPredictionDataset(HuggingFaceDataset):
"""
Dataset class for processing a Next Edit Prediction dataset.
"""
SUPPORTED_DATASET_PATHS = {
"zed-industries/zeta",
}
MAPPING_PROMPT_FUNCS = {
"zed-industries/zeta": _format_zeta_prompt,
}
def sample(self, tokenizer: PreTrainedTokenizerBase, num_requests: int, **kwargs):
formatting_prompt_func = self.MAPPING_PROMPT_FUNCS.get(self.dataset_path)
if formatting_prompt_func is None:
raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
samples = []
for sample in self.data:
sample = formatting_prompt_func(sample)
samples.append(
SampleRequest(
prompt=sample["prompt"],
prompt_len=len(tokenizer(sample["prompt"]).input_ids),
expected_output_len=len(
tokenizer(sample["expected_output"]).input_ids
),
)
)
if len(samples) >= num_requests:
break
self.maybe_oversample_requests(samples, num_requests)
return samples
# -----------------------------------------------------------------------------
# ASR Dataset Implementation
# -----------------------------------------------------------------------------
class ASRDataset(HuggingFaceDataset):
"""
Dataset class for processing a ASR dataset for transcription.
Tested on the following set:
+----------------+----------------------------------------+--------------------------+-----------------------------+
| Dataset | Domain | Speaking Style | hf-subset |
+----------------+----------------------------------------+--------------------------+-----------------------------+
| TED-LIUM | TED talks | Oratory | release1, release2, release3|
| | | | release3-speaker-adaptation |
| VoxPopuli | European Parliament | Oratory | en, de, it, fr, ... |
| LibriSpeech | Audiobook | Narrated | "LIUM/tedlium" |
| GigaSpeech | Audiobook, podcast, YouTube | Narrated, spontaneous | xs, s, m, l, xl, dev, test |
| SPGISpeech | Financial meetings | Oratory, spontaneous | S, M, L, dev, test |
| AMI | Meetings | Spontaneous | ihm, sdm |
+----------------+----------------------------------------+--------------------------+-----------------------------+
""" # noqa: E501
SUPPORTED_DATASET_PATHS = {
"openslr/librispeech_asr",
"facebook/voxpopuli",
"LIUM/tedlium",
"edinburghcstr/ami",
"speechcolab/gigaspeech",
"kensho/spgispeech",
}
DEFAULT_OUTPUT_LEN = 128
IS_MULTIMODAL = True
# TODO Whisper-specific. Abstract interface when more models are supported.
TRANSCRIPTION_PREAMBLE = "<|startoftranscript|><|en|><|transcribe|><|notimestamps|>"
skip_long_audios: bool = True
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
**kwargs,
) -> list:
import librosa
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
prompt = ASRDataset.TRANSCRIPTION_PREAMBLE
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests = []
skipped = 0
for item in self.data:
if len(sampled_requests) >= num_requests:
break
audio = item["audio"]
y, sr = audio["array"], audio["sampling_rate"]
duration_s = librosa.get_duration(y=y, sr=sr)
# Whisper max supported duration
if self.skip_long_audios and duration_s > 30:
skipped += 1
continue
mm_content = {"audio": (y, sr)}
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
)
)
if skipped:
logger.warning(
"%d samples discarded from dataset due to"
" their length being greater than"
" what Whisper supports.",
skipped,
)
))
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests

View File

@ -11,9 +11,9 @@ from typing import Any, Optional
import numpy as np
import torch
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from tqdm import tqdm
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.inputs import PromptType
@ -21,14 +21,13 @@ from vllm.sampling_params import BeamSearchParams
from vllm.utils import FlexibleArgumentParser
def save_to_pytorch_benchmark_format(
args: argparse.Namespace, results: dict[str, Any]
) -> None:
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
results: dict[str, Any]) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={"latency": results["latencies"]},
extra_info={k: results[k] for k in ["avg_latency", "percentiles"]},
)
extra_info={k: results[k]
for k in ["avg_latency", "percentiles"]})
if pt_records:
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
write_to_json(pt_file, pt_records)
@ -43,11 +42,9 @@ def main(args: argparse.Namespace):
# the engine will automatically process the request in multiple batches.
llm = LLM(**dataclasses.asdict(engine_args))
assert llm.llm_engine.model_config.max_model_len >= (
args.input_len + args.output_len
), (
"Please ensure that max_model_len is greater than"
" the sum of input_len and output_len."
)
args.input_len +
args.output_len), ("Please ensure that max_model_len is greater than"
" the sum of input_len and output_len.")
sampling_params = SamplingParams(
n=args.n,
@ -58,16 +55,18 @@ def main(args: argparse.Namespace):
detokenize=not args.disable_detokenize,
)
print(sampling_params)
dummy_prompt_token_ids = np.random.randint(
10000, size=(args.batch_size, args.input_len)
)
dummy_prompts: list[PromptType] = [
{"prompt_token_ids": batch} for batch in dummy_prompt_token_ids.tolist()
]
dummy_prompt_token_ids = np.random.randint(10000,
size=(args.batch_size,
args.input_len))
dummy_prompts: list[PromptType] = [{
"prompt_token_ids": batch
} for batch in dummy_prompt_token_ids.tolist()]
def llm_generate():
if not args.use_beam_search:
llm.generate(dummy_prompts, sampling_params=sampling_params, use_tqdm=False)
llm.generate(dummy_prompts,
sampling_params=sampling_params,
use_tqdm=False)
else:
llm.beam_search(
dummy_prompts,
@ -81,13 +80,12 @@ def main(args: argparse.Namespace):
def run_to_completion(profile_dir: Optional[str] = None):
if profile_dir:
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
on_trace_ready=torch.profiler.tensorboard_trace_handler(
str(profile_dir)
),
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
on_trace_ready=torch.profiler.tensorboard_trace_handler(
str(profile_dir)),
) as p:
llm_generate()
print(p.key_averages().table(sort_by="self_cuda_time_total"))
@ -105,9 +103,8 @@ def main(args: argparse.Namespace):
if args.profile:
profile_dir = args.profile_result_dir
if not profile_dir:
profile_dir = (
Path(".") / "vllm_benchmark_result" / f"latency_result_{time.time()}"
)
profile_dir = (Path(".") / "vllm_benchmark_result" /
f"latency_result_{time.time()}")
print(f"Profiling (results will be saved to '{profile_dir}')...")
run_to_completion(profile_dir=profile_dir)
return
@ -138,8 +135,7 @@ def main(args: argparse.Namespace):
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the latency of processing a single batch of "
"requests till completion."
)
"requests till completion.")
parser.add_argument("--input-len", type=int, default=32)
parser.add_argument("--output-len", type=int, default=128)
parser.add_argument("--batch-size", type=int, default=8)
@ -156,9 +152,10 @@ if __name__ == "__main__":
default=10,
help="Number of iterations to run for warmup.",
)
parser.add_argument(
"--num-iters", type=int, default=30, help="Number of iterations to run."
)
parser.add_argument("--num-iters",
type=int,
default=30,
help="Number of iterations to run.")
parser.add_argument(
"--profile",
action="store_true",
@ -168,10 +165,8 @@ if __name__ == "__main__":
"--profile-result-dir",
type=str,
default=None,
help=(
"path to save the pytorch profiler output. Can be visualized "
"with ui.perfetto.dev or Tensorboard."
),
help=("path to save the pytorch profiler output. Can be visualized "
"with ui.perfetto.dev or Tensorboard."),
)
parser.add_argument(
"--output-json",
@ -182,15 +177,10 @@ if __name__ == "__main__":
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=(
"Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"
),
help=("Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"),
)
parser = EngineArgs.add_cli_args(parser)
# V1 enables prefix caching by default which skews the latency
# numbers. We need to disable prefix caching by default.
parser.set_defaults(enable_prefix_caching=False)
args = parser.parse_args()
main(args)

View File

@ -76,7 +76,7 @@ def repeat_prompts(prompts, repeat_count, mode: str):
- 'random': Shuffle the prompts randomly after repetition.
- 'tile': Repeat the entire prompt list in sequence.
Example: [1, 2, 3] -> [1, 2, 3, 1, 2, 3].
- 'interleave': Repeat each prompt consecutively before moving to
- 'interleave': Repeat each prompt consecutively before moving to
the next. Example: [1, 2, 3] -> [1, 1, 2, 2, 3, 3].
Returns:
@ -86,21 +86,20 @@ def repeat_prompts(prompts, repeat_count, mode: str):
ValueError: If an invalid mode is provided.
"""
print("Repeat mode: ", mode)
if mode == "random":
if mode == 'random':
repeated_prompts = prompts * repeat_count
random.shuffle(repeated_prompts)
return repeated_prompts
elif mode == "tile":
elif mode == 'tile':
return prompts * repeat_count
elif mode == "interleave":
elif mode == 'interleave':
repeated_prompts = []
for prompt in prompts:
repeated_prompts.extend([prompt] * repeat_count)
return repeated_prompts
else:
raise ValueError(
f"Invalid mode: {mode}, only support 'random', 'tile', 'interleave'"
)
raise ValueError(f"Invalid mode: {mode}, only support "
"'random', 'tile', 'interleave'")
def main(args):
@ -110,16 +109,16 @@ def main(args):
# we append the document id at the beginning to avoid any of the document
# being the prefix of other documents
prompts = [
str(i) + " ".join(["hi"] * args.document_length)
str(i) + ' '.join(['hi'] * args.document_length)
for i in range(args.num_documents)
]
prompts = repeat_prompts(prompts, args.repeat_count, mode=args.repeat_mode)
warmup_prompts = [
"This is warm up request " + str(i) + " ".join(["hi"] * args.document_length)
for i in range(args.num_documents)
]
"This is warm up request " + str(i) + \
' '.join(['hi'] * args.document_length)
for i in range(args.num_documents)]
# Create the LLM engine
engine_args = EngineArgs.from_cli_args(args)
@ -143,52 +142,42 @@ def main(args):
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the performance with or "
"without automatic prefix caching."
)
description=
'Benchmark the performance with or without automatic prefix caching.')
parser.add_argument(
"--document-length",
'--document-length',
type=int,
# Roughly the number of tokens for a system paper,
# excluding images
default=20000,
help="Range of input lengths for sampling prompts, "
'specified as "min:max" (e.g., "128:256").',
)
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')
parser.add_argument(
"--num-documents",
type=int,
default=8,
help="Range of input lengths for sampling prompts, "
'specified as "min:max" (e.g., "128:256").',
)
parser.add_argument('--num-documents',
type=int,
default=8,
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')
parser.add_argument("--output-len", type=int, default=10)
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument(
"--repeat-count",
type=int,
default=2,
help="Number of times to repeat each prompt",
)
parser.add_argument('--repeat-count',
type=int,
default=2,
help='Number of times to repeat each prompt')
parser.add_argument(
"--repeat-mode",
type=str,
default="random",
help="The mode to repeat prompts. The supported "
'modes are "random", "tile", and "interleave". '
"See repeat_prompts() in the source code for details.",
)
parser.add_argument("--repeat-mode",
type=str,
default='random',
help='The mode to repeat prompts. The supported '
'modes are "random", "tile", and "interleave". '
'See repeat_prompts() in the source code for details.')
parser.add_argument(
"--shuffle-seed",
type=int,
default=0,
help='Random seed when the repeat mode is "random"',
)
parser.add_argument("--shuffle-seed",
type=int,
default=0,
help='Random seed when the repeat mode is "random"')
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()

View File

@ -63,15 +63,14 @@ class Request:
output_len: int
def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> list[int]:
def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> str:
vocab = tokenizer.get_vocab()
all_special_ids = set(tokenizer.all_special_ids)
# Remove the special tokens.
return random.choices(
[v for k, v in vocab.items() if k not in all_special_ids],
k=length,
)
vocab = {
k: v
for k, v in vocab.items() if k not in tokenizer.all_special_ids
}
return random.choices(list(vocab.values()), k=length)
def sample_requests_from_dataset(
@ -90,10 +89,8 @@ def sample_requests_from_dataset(
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [
(data["conversations"][0]["value"], data["conversations"][1]["value"])
for data in dataset
]
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Shuffle the dataset.
random.shuffle(dataset)
@ -114,9 +111,8 @@ def sample_requests_from_dataset(
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = (
len(completion_token_ids) if fixed_output_len is None else fixed_output_len
)
output_len = (len(completion_token_ids)
if fixed_output_len is None else fixed_output_len)
if min_len <= prompt_len <= max_len:
filtered_requests.append(Request(prompt, prompt_len, output_len))
@ -130,27 +126,27 @@ def sample_requests_from_random(
fixed_output_len: Optional[int],
prefix_len: int,
) -> list[Request]:
requests = []
prefix_token_ids = sample_tokens(tokenizer, prefix_len)
min_len, max_len = input_length_range
for i in range(num_requests):
unique_part_token_ids = sample_tokens(
tokenizer, random.randint(min_len - prefix_len, max_len - prefix_len)
)
tokenizer,
random.randint(min_len - prefix_len, max_len - prefix_len))
prompt_token_ids = prefix_token_ids + unique_part_token_ids
prompt = tokenizer.decode(prompt_token_ids)
prompt_len = len(prompt_token_ids)
assert min_len <= prompt_len <= max_len, (
f"prompt_len {prompt_len} out of range {min_len}:{max_len}"
)
assert (min_len <= prompt_len <= max_len
), f"prompt_len {prompt_len} out of range {min_len}:{max_len}"
requests.append(Request(prompt, prompt_len, fixed_output_len))
return requests
def repeat_and_sort_requests(
requests: list[Request], repeat_count: int, sort: bool = False
) -> list[str]:
def repeat_and_sort_requests(requests: list[Request],
repeat_count: int,
sort: bool = False) -> list[str]:
repeated_requests = requests * repeat_count
if sort:
repeated_requests.sort(key=lambda x: x[1])
@ -161,14 +157,14 @@ def repeat_and_sort_requests(
def main(args):
tokenizer = get_tokenizer(args.model, trust_remote_code=True)
input_length_range = tuple(map(int, args.input_length_range.split(":")))
input_length_range = tuple(map(int, args.input_length_range.split(':')))
random.seed(args.seed)
if args.dataset_path is not None:
if args.prefix_len > 0:
raise ValueError(
"prefix-len is not supported when dataset-path is provided."
)
print(f"Start to sample {args.num_prompts} prompts from {args.dataset_path}")
raise ValueError("prefix-len is not supported when "
"dataset-path is provided.")
print(f"Start to sample {args.num_prompts} prompts "
f"from {args.dataset_path}")
filtered_requests = sample_requests_from_dataset(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
@ -198,16 +194,14 @@ def main(args):
llm = LLM(**dataclasses.asdict(engine_args))
sampling_params = SamplingParams(
temperature=0,
max_tokens=args.output_len,
detokenize=not args.disable_detokenize,
)
sampling_params = SamplingParams(temperature=0,
max_tokens=args.output_len,
detokenize=not args.disable_detokenize)
print("Testing filtered requests")
prompts = repeat_and_sort_requests(
filtered_requests, repeat_count=args.repeat_count, sort=args.sort
)
prompts = repeat_and_sort_requests(filtered_requests,
repeat_count=args.repeat_count,
sort=args.sort)
print("------start generating------")
test_prefix(
@ -219,35 +213,29 @@ def main(args):
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the performance with or without "
"automatic prefix caching."
)
parser.add_argument(
"--dataset-path", type=str, default=None, help="Path to the dataset."
)
parser.add_argument("--output-len", type=int, default=10)
parser.add_argument(
"--num-prompts",
type=int,
required=True,
help="Number of the prompts sampled from dataset",
)
parser.add_argument(
"--repeat-count",
type=int,
default=1,
help="Number of times to repeat each prompt",
)
parser.add_argument(
"--sort", action="store_true", help="Sort prompts by input length"
)
parser.add_argument(
"--input-length-range",
type=str,
required=True,
help="Range of input lengths for sampling prompts,"
'specified as "min:max" (e.g., "128:256").',
)
description=
'Benchmark the performance with or without automatic prefix caching.')
parser.add_argument("--dataset-path",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument('--num-prompts',
type=int,
required=True,
help="Number of the prompts sampled from dataset")
parser.add_argument('--repeat-count',
type=int,
default=1,
help='Number of times to repeat each prompt')
parser.add_argument('--sort',
action='store_true',
help='Sort prompts by input length')
parser.add_argument('--input-length-range',
type=str,
required=True,
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')
parser.add_argument(
"--prefix-len",
type=int,
@ -258,12 +246,10 @@ if __name__ == "__main__":
"when dataset-path is not provided.",
)
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=(
"Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"
),
'--disable-detokenize',
action='store_true',
help=("Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"),
)
parser = EngineArgs.add_cli_args(parser)

View File

@ -1,6 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
"""Benchmark offline prioritization."""
import argparse
import dataclasses
import json
@ -14,7 +13,7 @@ from vllm.engine.arg_utils import EngineArgs
from vllm.utils import FlexibleArgumentParser
# Select a equi-probable random priority
#Select a equi-probable random priority
def get_random_flag():
return 0 if random.random() < 0.5 else 1
@ -34,10 +33,8 @@ def sample_requests(
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [
(data["conversations"][0]["value"], data["conversations"][1]["value"])
for data in dataset
]
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Shuffle the dataset.
random.shuffle(dataset)
@ -54,9 +51,8 @@ def sample_requests(
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = (
len(completion_token_ids) if fixed_output_len is None else fixed_output_len
)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
@ -78,16 +74,13 @@ def run_vllm(
disable_detokenize: bool = False,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len >= (request[1] + request[2])
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of"
" input_len and output_len for all requests."
)
for request in requests), (
"Please ensure that max_model_len is greater than the sum of"
" input_len and output_len for all requests.")
# Add the requests to the engine.
prompts = []
@ -104,8 +97,7 @@ def run_vllm(
ignore_eos=True,
max_tokens=output_len,
detokenize=not disable_detokenize,
)
)
))
start = time.perf_counter()
llm.generate(prompts, sampling_params, priority=priority, use_tqdm=True)
@ -119,33 +111,26 @@ def main(args: argparse.Namespace):
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code
)
args.tokenizer, trust_remote_code=args.trust_remote_code)
if args.dataset is None:
# Synthesize a prompt with the given input length.
prompt = "hi" * (args.input_len - 1)
requests = [
(prompt, args.input_len, args.output_len, get_random_flag())
for _ in range(args.num_prompts)
]
requests = [(prompt, args.input_len, args.output_len,
get_random_flag()) for _ in range(args.num_prompts)]
else:
requests = sample_requests(
args.dataset, args.num_prompts, tokenizer, args.output_len
)
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
args.output_len)
if args.backend == "vllm":
elapsed_time = run_vllm(
requests, args.n, EngineArgs.from_cli_args(args), args.disable_detokenize
)
elapsed_time = run_vllm(requests, args.n,
EngineArgs.from_cli_args(args),
args.disable_detokenize)
else:
raise ValueError(f"Unknown backend: {args.backend}")
total_num_tokens = sum(
prompt_len + output_len for _, prompt_len, output_len, priority in requests
)
print(
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} tokens/s"
)
total_num_tokens = sum(prompt_len + output_len
for _, prompt_len, output_len, priority in requests)
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} tokens/s")
# Output JSON results if specified
if args.output_json:
@ -162,44 +147,41 @@ def main(args: argparse.Namespace):
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf", "mii"],
default="vllm")
parser.add_argument("--dataset",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument("--input-len",
type=int,
default=None,
help="Input prompt length for each request")
parser.add_argument("--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--num-prompts",
type=int,
default=200,
help="Number of prompts to process.")
parser.add_argument(
"--backend", type=str, choices=["vllm", "hf", "mii"], default="vllm"
)
parser.add_argument(
"--dataset", type=str, default=None, help="Path to the dataset."
)
parser.add_argument(
"--input-len",
type=int,
default=None,
help="Input prompt length for each request",
)
parser.add_argument(
"--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.",
)
parser.add_argument(
"--n", type=int, default=1, help="Number of generated sequences per prompt."
)
parser.add_argument(
"--num-prompts", type=int, default=200, help="Number of prompts to process."
)
parser.add_argument(
"--output-json",
'--output-json',
type=str,
default=None,
help="Path to save the throughput results in JSON format.",
)
help='Path to save the throughput results in JSON format.')
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=(
"Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"
),
'--disable-detokenize',
action='store_true',
help=("Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"),
)
parser = EngineArgs.add_cli_args(parser)

File diff suppressed because it is too large Load Diff

View File

@ -19,7 +19,6 @@ On the client side, run:
--endpoint /generate_stream
to the end of the command above.
"""
import argparse
import asyncio
import copy
@ -37,15 +36,11 @@ from typing import Optional
import datasets
import numpy as np
import pandas as pd
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
RequestFuncOutput)
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from backend_request_func import (
ASYNC_REQUEST_FUNCS,
RequestFuncInput,
RequestFuncOutput,
)
try:
from vllm.transformers_utils.tokenizer import get_tokenizer
except ImportError:
@ -56,9 +51,8 @@ try:
except ImportError:
from argparse import ArgumentParser as FlexibleArgumentParser
from vllm.v1.structured_output.backend_xgrammar import (
has_xgrammar_unsupported_json_features,
)
from vllm.v1.structured_output.utils import (
has_xgrammar_unsupported_json_features)
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
@ -104,7 +98,6 @@ class SampleRequest:
prompt_len: The length of the prompt in tokens.
expected_output_len: The expected length of the output in tokens.
"""
prompt: str
prompt_len: int
expected_output_len: int
@ -113,61 +106,61 @@ class SampleRequest:
completion: str = None
def sample_requests(
tokenizer: PreTrainedTokenizerBase, args: argparse.Namespace
) -> list[SampleRequest]:
if args.dataset == "json" or args.dataset == "json-unique":
def sample_requests(tokenizer: PreTrainedTokenizerBase,
args: argparse.Namespace) -> list[SampleRequest]:
if args.dataset == 'json' or args.dataset == 'json-unique':
if args.json_schema_path is None:
dir_path = os.path.dirname(os.path.realpath(__file__))
args.json_schema_path = os.path.join(
dir_path, "structured_schemas", "structured_schema_1.json"
)
args.json_schema_path = os.path.join(dir_path,
"structured_schemas",
"structured_schema_1.json")
json_schemas = []
with open(args.json_schema_path) as f:
schema = json.load(f)
if args.dataset == "json-unique":
json_schemas = [copy.deepcopy(schema) for _ in range(args.num_prompts)]
if args.dataset == 'json-unique':
json_schemas = [
copy.deepcopy(schema) for _ in range(args.num_prompts)
]
for i in range(len(json_schemas)):
if "properties" not in json_schemas[i]:
json_schemas[i]["properties"] = {}
json_schemas[i]["properties"][f"__optional_field_{uuid.uuid4()}"] = {
"type": "string",
"description": "An unique optional field to avoid cached schemas",
}
json_schemas[i]["properties"][
f"__optional_field_{uuid.uuid4()}"] = {
"type":
"string",
"description":
"An unique optional field to avoid cached schemas"
}
else:
json_schemas = [schema] * args.num_prompts
def gen_prompt(index: int):
return f"Generate an example of a brief user profile given the following schema: {json.dumps(get_schema(index))}" # noqa: E501
return f"Generate an example of a user profile given the following schema: {json.dumps(get_schema(index))}" # noqa: E501
def get_schema(index: int):
return json_schemas[index % len(json_schemas)]
requests = [
SampleRequest(
prompt=gen_prompt(i),
prompt_len=len(tokenizer(gen_prompt(i)).input_ids),
expected_output_len=args.output_len,
schema=get_schema(i),
structure_type=args.structure_type,
)
SampleRequest(prompt=gen_prompt(i),
prompt_len=len(tokenizer(gen_prompt(i)).input_ids),
expected_output_len=args.output_len,
schema=get_schema(i),
structure_type=args.structure_type)
for i in range(args.num_prompts)
]
elif args.dataset == "grammar":
schema = """
root ::= select_statement
?start: select_statement
select_statement ::= "SELECT " column " from " table " where " condition
?select_statement: "SELECT " column_list " FROM " table_name
column ::= "col_1 " | "col_2 "
?column_list: column_name ("," column_name)*
table ::= "table_1 " | "table_2 "
?table_name: identifier
condition ::= column "= " number
?column_name: identifier
number ::= "1 " | "2 "
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
"""
prompt = "Generate an SQL query to show the 'username' \
and 'email' from the 'users' table."
@ -175,13 +168,11 @@ def sample_requests(
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(
prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type,
)
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
@ -195,13 +186,11 @@ def sample_requests(
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(
prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=regex,
structure_type=args.structure_type,
)
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=regex,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
@ -212,55 +201,47 @@ def sample_requests(
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(
prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=choice,
structure_type=args.structure_type,
)
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=choice,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "xgrammar_bench":
requests: list[SampleRequest] = []
dataset = datasets.load_dataset("NousResearch/json-mode-eval", split="train")
dataset = datasets.load_dataset("NousResearch/json-mode-eval",
split="train")
full_dataset_len = len(dataset)
def _filter_func(item):
import json
schema = json.loads(item["schema"])
return not has_xgrammar_unsupported_json_features(schema)
dataset = dataset.filter(_filter_func)
num_filtered_out = full_dataset_len - len(dataset)
print(
f"dataset has {len(dataset)} entries after filtering "
f"out {num_filtered_out} entries with unsupported features"
)
print(f"dataset has {len(dataset)} entries after filtering "
f"out {num_filtered_out} entries with unsupported features")
len_dataset = len(dataset)
for data_point_idx in range(args.num_prompts):
idx = data_point_idx
while idx >= len_dataset:
idx -= len_dataset
schema = dataset["schema"][idx]
prompt = tokenizer.apply_chat_template(
dataset["prompt"][idx], tokenize=False, add_generation_prompt=True
)
prompt = tokenizer.apply_chat_template(dataset["prompt"][idx],
tokenize=False)
input_len = len(tokenizer(prompt).input_ids)
completion = dataset["completion"][idx]
requests.append(
SampleRequest(
prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type,
completion=completion,
)
)
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type,
completion=completion))
return requests
@ -292,8 +273,7 @@ async def get_request(
# Calculate scale parameter theta to maintain the desired request_rate.
assert burstiness > 0, (
f"A positive burstiness factor is expected, but given {burstiness}."
)
f"A positive burstiness factor is expected, but given {burstiness}.")
theta = 1.0 / (request_rate * burstiness)
for i, request in enumerate(input_requests):
@ -335,8 +315,8 @@ def calculate_metrics(
# multiple output tokens may be bundled together
# Note : this may inflate the output token count slightly
output_len = len(
tokenizer(outputs[i].generated_text, add_special_tokens=False).input_ids
)
tokenizer(outputs[i].generated_text,
add_special_tokens=False).input_ids)
actual_output_lens.append(output_len)
total_input += input_requests[i].prompt_len
tpot = 0
@ -360,19 +340,16 @@ def calculate_metrics(
if "ttft" in goodput_config_dict:
valid_metrics.append(ttfts)
slo_values.append(
goodput_config_dict["ttft"] / MILLISECONDS_TO_SECONDS_CONVERSION
)
slo_values.append(goodput_config_dict["ttft"] /
MILLISECONDS_TO_SECONDS_CONVERSION)
if "tpot" in goodput_config_dict:
valid_metrics.append(all_tpots)
slo_values.append(
goodput_config_dict["tpot"] / MILLISECONDS_TO_SECONDS_CONVERSION
)
slo_values.append(goodput_config_dict["tpot"] /
MILLISECONDS_TO_SECONDS_CONVERSION)
if "e2el" in goodput_config_dict:
valid_metrics.append(e2els)
slo_values.append(
goodput_config_dict["e2el"] / MILLISECONDS_TO_SECONDS_CONVERSION
)
slo_values.append(goodput_config_dict["e2el"] /
MILLISECONDS_TO_SECONDS_CONVERSION)
for req_metric in zip(*valid_metrics):
is_good_req = all([s >= r for s, r in zip(slo_values, req_metric)])
@ -383,8 +360,7 @@ def calculate_metrics(
warnings.warn(
"All requests failed. This is likely due to a misconfiguration "
"on the benchmark arguments.",
stacklevel=2,
)
stacklevel=2)
metrics = BenchmarkMetrics(
completed=completed,
total_input=total_input,
@ -393,31 +369,27 @@ def calculate_metrics(
request_goodput=good_completed / dur_s,
output_throughput=sum(actual_output_lens) / dur_s,
total_token_throughput=(total_input + sum(actual_output_lens)) / dur_s,
mean_ttft_ms=np.mean(ttfts or 0)
* 1000, # ttfts is empty if streaming is not supported by backend
mean_ttft_ms=np.mean(ttfts or 0) *
1000, # ttfts is empty if streaming is not supported by backend
std_ttft_ms=np.std(ttfts or 0) * 1000,
median_ttft_ms=np.median(ttfts or 0) * 1000,
percentiles_ttft_ms=[
(p, np.percentile(ttfts or 0, p) * 1000) for p in selected_percentiles
],
percentiles_ttft_ms=[(p, np.percentile(ttfts or 0, p) * 1000)
for p in selected_percentiles],
mean_tpot_ms=np.mean(tpots or 0) * 1000,
std_tpot_ms=np.std(tpots or 0) * 1000,
median_tpot_ms=np.median(tpots or 0) * 1000,
percentiles_tpot_ms=[
(p, np.percentile(tpots or 0, p) * 1000) for p in selected_percentiles
],
percentiles_tpot_ms=[(p, np.percentile(tpots or 0, p) * 1000)
for p in selected_percentiles],
mean_itl_ms=np.mean(itls or 0) * 1000,
std_itl_ms=np.std(itls or 0) * 1000,
median_itl_ms=np.median(itls or 0) * 1000,
percentiles_itl_ms=[
(p, np.percentile(itls or 0, p) * 1000) for p in selected_percentiles
],
percentiles_itl_ms=[(p, np.percentile(itls or 0, p) * 1000)
for p in selected_percentiles],
mean_e2el_ms=np.mean(e2els or 0) * 1000,
std_e2el_ms=np.std(e2els or 0) * 1000,
median_e2el_ms=np.median(e2els or 0) * 1000,
percentiles_e2el_ms=[
(p, np.percentile(e2els or 0, p) * 1000) for p in selected_percentiles
],
percentiles_e2el_ms=[(p, np.percentile(e2els or 0, p) * 1000)
for p in selected_percentiles],
)
return metrics, actual_output_lens
@ -439,6 +411,7 @@ async def benchmark(
ignore_eos: bool,
max_concurrency: Optional[int],
structured_output_ratio: float,
structured_output_backend: str,
goodput_config_dict: Optional[dict[str, float]] = None,
):
if backend in ASYNC_REQUEST_FUNCS:
@ -450,17 +423,18 @@ async def benchmark(
extra_body = {}
# Add the schema to the extra_body
extra_body[request.structure_type] = request.schema
# Add the specific structured_output_backend
extra_body["guided_decoding_backend"] = structured_output_backend
return extra_body
print("Starting initial single prompt test run...")
structured_output_req_idx = random.sample(
range(len(input_requests)), int(len(input_requests) * structured_output_ratio)
)
range(len(input_requests)),
int(len(input_requests) * structured_output_ratio))
test_request = input_requests[0]
test_req_extra_body = (
prepare_extra_body(test_request) if 0 in structured_output_req_idx else None
)
test_req_extra_body = (prepare_extra_body(test_request)
if 0 in structured_output_req_idx else None)
test_input = RequestFuncInput(
model=model_id,
prompt=test_request.prompt,
@ -474,8 +448,7 @@ async def benchmark(
if not test_output.success:
raise ValueError(
"Initial test run failed - Please make sure benchmark arguments "
f"are correctly specified. Error: {test_output.error}"
)
f"are correctly specified. Error: {test_output.error}")
else:
print("Initial test run completed. Starting main benchmark run...")
@ -494,7 +467,10 @@ async def benchmark(
if profile_output.success:
print("Profiler started")
distribution = "Poisson process" if burstiness == 1.0 else "Gamma distribution"
if burstiness == 1.0:
distribution = "Poisson process"
else:
distribution = "Gamma distribution"
print(f"Traffic request rate: {request_rate}")
print(f"Burstiness factor: {burstiness} ({distribution})")
@ -506,21 +482,24 @@ async def benchmark(
# and it will simplify the code in limited_request_func.
# semaphore = (asyncio.Semaphore(max_concurrency)
# if max_concurrency else contextlib.nullcontext())
semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None
semaphore = (asyncio.Semaphore(max_concurrency)
if max_concurrency else None)
async def limited_request_func(request_func_input, pbar):
if semaphore is None:
return await request_func(request_func_input=request_func_input, pbar=pbar)
return await request_func(request_func_input=request_func_input,
pbar=pbar)
async with semaphore:
return await request_func(request_func_input=request_func_input, pbar=pbar)
return await request_func(request_func_input=request_func_input,
pbar=pbar)
benchmark_start_time = time.perf_counter()
tasks: list[asyncio.Task] = []
expected: list[str] = []
async for i, request in get_request(input_requests, request_rate, burstiness):
extra_body = (
prepare_extra_body(request) if i in structured_output_req_idx else None
)
async for i, request in get_request(input_requests, request_rate,
burstiness):
extra_body = prepare_extra_body(
request) if i in structured_output_req_idx else None
request_func_input = RequestFuncInput(
model=model_id,
prompt=request.prompt,
@ -533,9 +512,8 @@ async def benchmark(
expected.append(request.completion)
tasks.append(
asyncio.create_task(
limited_request_func(request_func_input=request_func_input, pbar=pbar)
)
)
limited_request_func(request_func_input=request_func_input,
pbar=pbar)))
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
if profile:
@ -567,58 +545,54 @@ async def benchmark(
goodput_config_dict=goodput_config_dict,
)
print("{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):",
benchmark_duration))
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
print(
"{:<40} {:<10.2f}".format(
"Request throughput (req/s):", metrics.request_throughput
)
)
print("{:<40} {:<10}".format("Total generated tokens:",
metrics.total_output))
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
metrics.request_throughput))
if goodput_config_dict:
print(
"{:<40} {:<10.2f}".format(
"Request goodput (req/s):", metrics.request_goodput
)
)
print(
"{:<40} {:<10.2f}".format(
"Output token throughput (tok/s):", metrics.output_throughput
)
)
print(
"{:<40} {:<10.2f}".format(
"Total Token throughput (tok/s):", metrics.total_token_throughput
)
)
print("{:<40} {:<10.2f}".format("Request goodput (req/s):",
metrics.request_goodput))
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
metrics.output_throughput))
print("{:<40} {:<10.2f}".format("Total Token throughput (tok/s):",
metrics.total_token_throughput))
result = {
"duration": benchmark_duration,
"completed": metrics.completed,
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"request_throughput": metrics.request_throughput,
"output_throughput": metrics.output_throughput,
"total_token_throughput": metrics.total_token_throughput,
"ttft_description": pd.Series([output.ttft for output in outputs])
.describe()
.to_dict(),
"tpot_description": pd.Series([output.tpot for output in outputs])
.describe()
.to_dict(),
"duration":
benchmark_duration,
"completed":
metrics.completed,
"total_input_tokens":
metrics.total_input,
"total_output_tokens":
metrics.total_output,
"request_throughput":
metrics.request_throughput,
"output_throughput":
metrics.output_throughput,
"total_token_throughput":
metrics.total_token_throughput,
"ttft_description":
pd.Series([output.ttft for output in outputs]).describe().to_dict(),
"tpot_description":
pd.Series([output.tpot for output in outputs]).describe().to_dict(),
"input_lens": [output.prompt_len for output in outputs],
"output_lens": actual_output_lens,
"output_lens":
actual_output_lens,
"ttfts": [output.ttft for output in outputs],
"itls": [output.itl for output in outputs],
"errors": [output.error for output in outputs],
}
ret = [
{"generated": output.generated_text, "expected": gt}
for output, gt in zip(outputs, expected)
]
ret = [{
'generated': output.generated_text,
'expected': gt
} for output, gt in zip(outputs, expected)]
def process_one_metric(
# E.g., "ttft"
@ -632,35 +606,29 @@ async def benchmark(
# metric.
if metric_attribute_name not in selected_percentile_metrics:
return
print("{s:{c}^{n}}".format(s=metric_header, n=50, c="-"))
print(
"{:<40} {:<10.2f}".format(
f"Mean {metric_name} (ms):",
getattr(metrics, f"mean_{metric_attribute_name}_ms"),
)
)
print(
"{:<40} {:<10.2f}".format(
f"Median {metric_name} (ms):",
getattr(metrics, f"median_{metric_attribute_name}_ms"),
)
)
print("{s:{c}^{n}}".format(s=metric_header, n=50, c='-'))
print("{:<40} {:<10.2f}".format(
f"Mean {metric_name} (ms):",
getattr(metrics, f"mean_{metric_attribute_name}_ms")))
print("{:<40} {:<10.2f}".format(
f"Median {metric_name} (ms):",
getattr(metrics, f"median_{metric_attribute_name}_ms")))
result[f"mean_{metric_attribute_name}_ms"] = getattr(
metrics, f"mean_{metric_attribute_name}_ms"
)
metrics, f"mean_{metric_attribute_name}_ms")
result[f"median_{metric_attribute_name}_ms"] = getattr(
metrics, f"median_{metric_attribute_name}_ms"
)
metrics, f"median_{metric_attribute_name}_ms")
result[f"std_{metric_attribute_name}_ms"] = getattr(
metrics, f"std_{metric_attribute_name}_ms"
)
for p, value in getattr(metrics, f"percentiles_{metric_attribute_name}_ms"):
metrics, f"std_{metric_attribute_name}_ms")
for p, value in getattr(metrics,
f"percentiles_{metric_attribute_name}_ms"):
p_word = str(int(p)) if int(p) == p else str(p)
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):", value))
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):",
value))
result[f"p{p_word}_{metric_attribute_name}_ms"] = value
process_one_metric("ttft", "TTFT", "Time to First Token")
process_one_metric("tpot", "TPOT", "Time per Output Token (excl. 1st token)")
process_one_metric("tpot", "TPOT",
"Time per Output Token (excl. 1st token)")
process_one_metric("itl", "ITL", "Inter-token Latency")
process_one_metric("e2el", "E2EL", "End-to-end Latency")
@ -670,13 +638,13 @@ async def benchmark(
def evaluate(ret, args):
def _eval_correctness_json(expected, actual):
# extract json string from string using regex
import regex as re
actual = actual.replace("\n", "").replace(" ", "").strip()
import re
actual = actual.replace('\n', '').replace(' ', '').strip()
try:
actual = re.search(r"\{.*\}", actual).group()
actual = re.search(r'\{.*\}', actual).group()
actual = json.loads(actual)
except Exception:
return False
@ -687,33 +655,29 @@ def evaluate(ret, args):
return actual in args.choice
def _eval_correctness_regex(expected, actual):
import regex as re
import re
return re.match(args.regex, actual) is not None
def _eval_correctness(expected, actual):
if args.structure_type == "guided_json":
if args.structure_type == 'guided_json':
return _eval_correctness_json(expected, actual)
elif args.structure_type == "guided_regex":
elif args.structure_type == 'guided_regex':
return _eval_correctness_regex(expected, actual)
elif args.structure_type == "guided_choice":
elif args.structure_type == 'guided_choice':
return _eval_correctness_choice(expected, actual)
else:
return None
scores = []
for res in ret:
score = _eval_correctness(res["expected"], res["generated"])
res["correctness"] = score
score = _eval_correctness(res['expected'], res['generated'])
res['correctness'] = score
scores.append(score)
not_none_scores = [score for score in scores if score is not None]
return (
(sum(not_none_scores) / len(not_none_scores) * 100)
if len(not_none_scores) > 0
else None
)
return (sum(not_none_scores) / len(not_none_scores) *
100) if len(not_none_scores) > 0 else None
def parse_goodput(slo_pairs):
@ -725,10 +689,9 @@ def parse_goodput(slo_pairs):
except ValueError as err:
raise argparse.ArgumentTypeError(
"Invalid format found for service level objectives. "
'Specify service level objectives for goodput as "KEY:VALUE" '
"Specify service level objectives for goodput as \"KEY:VALUE\" "
"pairs, where the key is a metric name, and the value is a "
"number in milliseconds."
) from err
"number in milliseconds.") from err
return goodput_config_dict
@ -742,14 +705,12 @@ def check_goodput_args(args):
raise ValueError(
f"Invalid metric name found, {slo_name}: {slo_val}. "
"The service level objective name should be one of "
f"{str(VALID_NAMES)}. "
)
f"{str(VALID_NAMES)}. ")
if slo_val < 0:
raise ValueError(
f"Invalid value found, {slo_name}: {slo_val}. "
"The service level objective value should be "
"non-negative."
)
"non-negative.")
return goodput_config_dict
@ -775,19 +736,19 @@ def main(args: argparse.Namespace):
tokenizer_mode=args.tokenizer_mode,
)
if args.dataset == "grammar":
args.structure_type = "guided_grammar"
elif args.dataset == "regex":
args.structure_type = "guided_regex"
elif args.dataset == "choice":
args.structure_type = "guided_choice"
if args.dataset == 'grammar':
args.structure_type = 'guided_grammar'
elif args.dataset == 'regex':
args.structure_type = 'guided_regex'
elif args.dataset == 'choice':
args.structure_type = 'guided_choice'
else:
args.structure_type = "guided_json"
args.structure_type = 'guided_json'
if args.no_structured_output:
args.structured_output_ratio = 0
if args.save_results:
result_file_name = f"{args.structured_output_ratio}guided"
result_file_name = f'{args.structured_output_ratio}guided'
result_file_name += f"_{backend}"
result_file_name += f"_{args.request_rate}qps"
result_file_name += f"_{args.model.split('/')[-1]}"
@ -815,29 +776,37 @@ def main(args: argparse.Namespace):
disable_tqdm=args.disable_tqdm,
profile=args.profile,
selected_percentile_metrics=args.percentile_metrics.split(","),
selected_percentiles=[float(p) for p in args.metric_percentiles.split(",")],
selected_percentiles=[
float(p) for p in args.metric_percentiles.split(",")
],
ignore_eos=args.ignore_eos,
max_concurrency=args.max_concurrency,
structured_output_ratio=args.structured_output_ratio,
structured_output_backend=args.structured_output_backend,
goodput_config_dict=goodput_config_dict,
)
)
))
# Save config and results to json
score = evaluate(ret, args)
print("correct_rate(%)", score, "\n")
print("correct_rate(%)", score, '\n')
if args.save_results:
results = {
"backend": backend,
"model_id": model_id,
"tokenizer_id": tokenizer_id,
"num_prompts": args.num_prompts,
"request_rate": args.request_rate
if args.request_rate < float("inf")
else "inf",
"burstiness": args.burstiness,
"max_concurrency": args.max_concurrency,
"correct_rate(%)": score,
"backend":
backend,
"model_id":
model_id,
"tokenizer_id":
tokenizer_id,
"num_prompts":
args.num_prompts,
"request_rate":
args.request_rate if args.request_rate < float("inf") else "inf",
"burstiness":
args.burstiness,
"max_concurrency":
args.max_concurrency,
"correct_rate(%)":
score
}
results = {"outputs": ret, **results, **benchmark_result}
@ -846,14 +815,13 @@ def main(args: argparse.Namespace):
result_file_name = args.result_filename
if args.result_dir:
result_file_name = os.path.join(args.result_dir, result_file_name)
with open(result_file_name, "w", encoding="utf-8") as outfile:
with open(result_file_name, "w", encoding='utf-8') as outfile:
json.dump(results, outfile, indent=4)
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the online serving throughput."
)
description="Benchmark the online serving throughput.")
parser.add_argument(
"--backend",
type=str,
@ -875,14 +843,16 @@ if __name__ == "__main__":
default="/v1/completions",
help="API endpoint.",
)
parser.add_argument(
"--dataset",
default="json",
choices=["json", "json-unique", "grammar", "regex", "choice", "xgrammar_bench"],
)
parser.add_argument(
"--json-schema-path", type=str, default=None, help="Path to json schema."
)
parser.add_argument("--dataset",
default='json',
choices=[
'json', 'json-unique', 'grammar', 'regex',
'choice', 'xgrammar_bench'
])
parser.add_argument("--json_schema_path",
type=str,
default=None,
help="Path to json schema.")
parser.add_argument(
"--max-concurrency",
type=int,
@ -894,8 +864,7 @@ if __name__ == "__main__":
"initiated, this argument will control how many are actually allowed "
"to execute at a time. This means that when used in combination, the "
"actual request rate may be lower than specified with --request-rate, "
"if the server is not processing requests fast enough to keep up.",
)
"if the server is not processing requests fast enough to keep up.")
parser.add_argument(
"--model",
type=str,
@ -905,13 +874,15 @@ if __name__ == "__main__":
parser.add_argument(
"--tokenizer",
type=str,
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
help=
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
)
parser.add_argument(
"--tokenizer-mode",
type=str,
default="auto",
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
help=
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
)
parser.add_argument(
"--num-prompts",
@ -988,51 +959,52 @@ if __name__ == "__main__":
"--ignore-eos",
action="store_true",
help="Set ignore_eos flag when sending the benchmark request."
"Warning: ignore_eos is not supported in deepspeed_mii and tgi.",
)
"Warning: ignore_eos is not supported in deepspeed_mii and tgi.")
parser.add_argument(
"--percentile-metrics",
type=str,
default="ttft,tpot,itl",
help="Comma-separated list of selected metrics to report percentils. "
"This argument specifies the metrics to report percentiles. "
'Allowed metric names are "ttft", "tpot", "itl", "e2el". '
'Default value is "ttft,tpot,itl".',
)
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
"Default value is \"ttft,tpot,itl\".")
parser.add_argument(
"--metric-percentiles",
type=str,
default="99",
help="Comma-separated list of percentiles for selected metrics. "
'To report 25-th, 50-th, and 75-th percentiles, use "25,50,75". '
'Default value is "99". '
'Use "--percentile-metrics" to select metrics.',
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
"Default value is \"99\". "
"Use \"--percentile-metrics\" to select metrics.",
)
parser.add_argument(
"--goodput",
nargs="+",
required=False,
help='Specify service level objectives for goodput as "KEY:VALUE" '
help="Specify service level objectives for goodput as \"KEY:VALUE\" "
"pairs, where the key is a metric name, and the value is in "
'milliseconds. Multiple "KEY:VALUE" pairs can be provided, '
"milliseconds. Multiple \"KEY:VALUE\" pairs can be provided, "
"separated by spaces. Allowed request level metric names are "
'"ttft", "tpot", "e2el". For more context on the definition of '
"\"ttft\", \"tpot\", \"e2el\". For more context on the definition of "
"goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 "
"and the blog: https://hao-ai-lab.github.io/blogs/distserve",
)
"and the blog: https://hao-ai-lab.github.io/blogs/distserve")
parser.add_argument(
"--no-structured-output",
action="store_true",
default=False,
help="Whether to disable JSON decoding or not.",
)
parser.add_argument(
"--structured-output-ratio",
type=float,
default=1.0,
help="Ratio of Structured Outputs requests",
)
parser.add_argument("--no-structured-output",
action='store_true',
default=False,
help="Whether to disable JSON decoding or not.")
parser.add_argument("--structured-output-ratio",
type=float,
default=1.0,
help="Ratio of Structured Outputs requests")
parser.add_argument("--structured-output-backend",
type=str,
choices=[
"outlines", "lm-format-enforcer", "xgrammar",
"guidance", "auto"
],
default="auto",
help="Backend to use for structured outputs")
args = parser.parse_args()
main(args)

View File

@ -1,6 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
"""Benchmark offline inference throughput."""
import argparse
import dataclasses
import json
@ -12,25 +11,18 @@ from typing import Any, Optional, Union
import torch
import uvloop
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerBase
from benchmark_dataset import (
AIMODataset,
BurstGPTDataset,
ConversationDataset,
InstructCoderDataset,
RandomDataset,
SampleRequest,
ShareGPTDataset,
SonnetDataset,
VisionArenaDataset,
)
from benchmark_dataset import (AIMODataset, BurstGPTDataset,
ConversationDataset, InstructCoderDataset,
RandomDataset, SampleRequest, ShareGPTDataset,
SonnetDataset, VisionArenaDataset)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizerBase)
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
build_async_engine_client_from_engine_args,
)
build_async_engine_client_from_engine_args)
from vllm.inputs import TextPrompt, TokensPrompt
from vllm.lora.request import LoRARequest
from vllm.outputs import RequestOutput
@ -45,30 +37,23 @@ def run_vllm(
disable_detokenize: bool = False,
) -> tuple[float, Optional[list[RequestOutput]]]:
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len
>= (request.prompt_len + request.expected_output_len)
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests."
)
llm.llm_engine.model_config.max_model_len >= (
request.prompt_len + request.expected_output_len)
for request in requests), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests.")
# Add the requests to the engine.
prompts: list[Union[TextPrompt, TokensPrompt]] = []
sampling_params: list[SamplingParams] = []
for request in requests:
prompts.append(
TokensPrompt(
prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data,
)
if "prompt_token_ids" in request.prompt
else TextPrompt(
prompt=request.prompt, multi_modal_data=request.multi_modal_data
)
)
TokensPrompt(prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data)
if "prompt_token_ids" in request.prompt else \
TextPrompt(prompt=request.prompt,
multi_modal_data=request.multi_modal_data))
sampling_params.append(
SamplingParams(
n=n,
@ -77,8 +62,7 @@ def run_vllm(
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
)
)
))
lora_requests: Optional[list[LoRARequest]] = None
if engine_args.enable_lora:
lora_requests = [request.lora_request for request in requests]
@ -88,9 +72,10 @@ def run_vllm(
outputs = None
if not use_beam_search:
start = time.perf_counter()
outputs = llm.generate(
prompts, sampling_params, lora_request=lora_requests, use_tqdm=True
)
outputs = llm.generate(prompts,
sampling_params,
lora_request=lora_requests,
use_tqdm=True)
end = time.perf_counter()
else:
assert lora_requests is None, "BeamSearch API does not support LoRA"
@ -106,35 +91,30 @@ def run_vllm(
beam_width=n,
max_tokens=output_len,
ignore_eos=True,
),
)
))
end = time.perf_counter()
return end - start, outputs
def run_vllm_chat(
requests: list[SampleRequest],
n: int,
engine_args: EngineArgs,
disable_detokenize: bool = False,
) -> tuple[float, list[RequestOutput]]:
requests: list[SampleRequest],
n: int,
engine_args: EngineArgs,
disable_detokenize: bool = False) -> tuple[float, list[RequestOutput]]:
"""
Run vLLM chat benchmark. This function is recommended ONLY for benchmarking
multimodal models as it properly handles multimodal inputs and chat
formatting. For non-multimodal models, use run_vllm() instead.
"""
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len
>= (request.prompt_len + request.expected_output_len)
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of "
"prompt_len and expected_output_len for all requests."
)
llm.llm_engine.model_config.max_model_len >= (
request.prompt_len + request.expected_output_len)
for request in requests), (
"Please ensure that max_model_len is greater than the sum of "
"prompt_len and expected_output_len for all requests.")
prompts = []
sampling_params: list[SamplingParams] = []
@ -148,8 +128,7 @@ def run_vllm_chat(
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
)
)
))
start = time.perf_counter()
outputs = llm.chat(prompts, sampling_params, use_tqdm=True)
end = time.perf_counter()
@ -166,17 +145,13 @@ async def run_vllm_async(
from vllm import SamplingParams
async with build_async_engine_client_from_engine_args(
engine_args, disable_frontend_multiprocessing
) as llm:
model_config = await llm.get_model_config()
engine_args, disable_frontend_multiprocessing) as llm:
assert all(
model_config.max_model_len
>= (request.prompt_len + request.expected_output_len)
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests."
)
llm.model_config.max_model_len >= (request.prompt_len +
request.expected_output_len)
for request in requests), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests.")
# Add the requests to the engine.
prompts: list[Union[TextPrompt, TokensPrompt]] = []
@ -184,15 +159,11 @@ async def run_vllm_async(
lora_requests: list[Optional[LoRARequest]] = []
for request in requests:
prompts.append(
TokensPrompt(
prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data,
)
if "prompt_token_ids" in request.prompt
else TextPrompt(
prompt=request.prompt, multi_modal_data=request.multi_modal_data
)
)
TokensPrompt(prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data)
if "prompt_token_ids" in request.prompt else \
TextPrompt(prompt=request.prompt,
multi_modal_data=request.multi_modal_data))
sampling_params.append(
SamplingParams(
n=n,
@ -201,16 +172,17 @@ async def run_vllm_async(
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
)
)
))
lora_requests.append(request.lora_request)
generators = []
start = time.perf_counter()
for i, (prompt, sp, lr) in enumerate(
zip(prompts, sampling_params, lora_requests)
):
generator = llm.generate(prompt, sp, lora_request=lr, request_id=f"test{i}")
for i, (prompt, sp,
lr) in enumerate(zip(prompts, sampling_params, lora_requests)):
generator = llm.generate(prompt,
sp,
lora_request=lr,
request_id=f"test{i}")
generators.append(generator)
all_gens = merge_async_iterators(*generators)
async for i, res in all_gens:
@ -229,8 +201,7 @@ def run_hf(
disable_detokenize: bool = False,
) -> float:
llm = AutoModelForCausalLM.from_pretrained(
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code
)
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
if llm.config.model_type == "llama":
# To enable padding in the HF backend.
tokenizer.pad_token = tokenizer.eos_token
@ -253,15 +224,14 @@ def run_hf(
# Check if we can add more requests to the batch.
next_prompt_len = requests[i + 1].prompt_len
next_output_len = requests[i + 1].expected_output_len
if (
max(max_prompt_len, next_prompt_len)
+ max(max_output_len, next_output_len)
) <= 2048:
if (max(max_prompt_len, next_prompt_len) +
max(max_output_len, next_output_len)) <= 2048:
# We can add more requests to the batch.
continue
# Generate the sequences.
input_ids = tokenizer(batch, return_tensors="pt", padding=True).input_ids
input_ids = tokenizer(batch, return_tensors="pt",
padding=True).input_ids
llm_outputs = llm.generate(
input_ids=input_ids.cuda(),
do_sample=True,
@ -291,7 +261,6 @@ def run_mii(
output_len: int,
) -> float:
from mii import client, serve
llm = serve(model, tensor_parallel=tensor_parallel_size)
prompts = [request.prompt for request in requests]
@ -303,9 +272,8 @@ def run_mii(
return end - start
def save_to_pytorch_benchmark_format(
args: argparse.Namespace, results: dict[str, Any]
) -> None:
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
results: dict[str, Any]) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={
@ -313,9 +281,9 @@ def save_to_pytorch_benchmark_format(
"tokens_per_second": [results["tokens_per_second"]],
},
extra_info={
k: results[k] for k in ["elapsed_time", "num_requests", "total_num_tokens"]
},
)
k: results[k]
for k in ["elapsed_time", "num_requests", "total_num_tokens"]
})
if pt_records:
# Don't use json suffix here as we don't want CI to pick it up
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
@ -347,8 +315,7 @@ def get_requests(args, tokenizer):
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_name == "sonnet":
assert tokenizer.chat_template or tokenizer.default_chat_template, (
"Tokenizer/model must have chat template for sonnet dataset."
)
"Tokenizer/model must have chat template for sonnet dataset.")
dataset_cls = SonnetDataset
sample_kwargs["prefix_len"] = args.prefix_len
sample_kwargs["return_prompt_formatted"] = True
@ -357,21 +324,21 @@ def get_requests(args, tokenizer):
elif args.dataset_name == "hf":
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = VisionArenaDataset
common_kwargs["dataset_subset"] = None
common_kwargs["dataset_split"] = "train"
common_kwargs['dataset_subset'] = None
common_kwargs['dataset_split'] = "train"
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = InstructCoderDataset
common_kwargs["dataset_split"] = "train"
common_kwargs['dataset_split'] = "train"
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = ConversationDataset
common_kwargs["dataset_subset"] = args.hf_subset
common_kwargs["dataset_split"] = args.hf_split
common_kwargs['dataset_subset'] = args.hf_subset
common_kwargs['dataset_split'] = args.hf_split
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
dataset_cls = AIMODataset
common_kwargs["dataset_subset"] = None
common_kwargs["dataset_split"] = "train"
common_kwargs['dataset_subset'] = None
common_kwargs['dataset_split'] = "train"
else:
raise ValueError(f"Unknown dataset name: {args.dataset_name}")
# Remove None values
@ -386,10 +353,10 @@ def main(args: argparse.Namespace):
random.seed(args.seed)
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code
)
args.tokenizer, trust_remote_code=args.trust_remote_code)
requests = get_requests(args, tokenizer)
is_multi_modal = any(request.multi_modal_data is not None for request in requests)
is_multi_modal = any(request.multi_modal_data is not None
for request in requests)
request_outputs: Optional[list[RequestOutput]] = None
if args.backend == "vllm":
if args.async_engine:
@ -400,34 +367,23 @@ def main(args: argparse.Namespace):
AsyncEngineArgs.from_cli_args(args),
args.disable_frontend_multiprocessing,
args.disable_detokenize,
)
)
))
else:
elapsed_time, request_outputs = run_vllm(
requests,
args.n,
EngineArgs.from_cli_args(args),
args.disable_detokenize,
)
requests, args.n, EngineArgs.from_cli_args(args),
args.disable_detokenize)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(
requests,
args.model,
tokenizer,
args.n,
args.hf_max_batch_size,
args.trust_remote_code,
args.disable_detokenize,
)
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
args.hf_max_batch_size, args.trust_remote_code,
args.disable_detokenize)
elif args.backend == "mii":
elapsed_time = run_mii(
requests, args.model, args.tensor_parallel_size, args.output_len
)
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
args.output_len)
elif args.backend == "vllm-chat":
elapsed_time, request_outputs = run_vllm_chat(
requests, args.n, EngineArgs.from_cli_args(args), args.disable_detokenize
)
requests, args.n, EngineArgs.from_cli_args(args),
args.disable_detokenize)
else:
raise ValueError(f"Unknown backend: {args.backend}")
@ -439,31 +395,28 @@ def main(args: argparse.Namespace):
for ro in request_outputs:
if not isinstance(ro, RequestOutput):
continue
total_prompt_tokens += (
len(ro.prompt_token_ids) if ro.prompt_token_ids else 0
)
total_output_tokens += sum(len(o.token_ids) for o in ro.outputs if o)
total_prompt_tokens += len(
ro.prompt_token_ids) if ro.prompt_token_ids else 0
total_output_tokens += sum(
len(o.token_ids) for o in ro.outputs if o)
total_num_tokens = total_prompt_tokens + total_output_tokens
else:
total_num_tokens = sum(r.prompt_len + r.expected_output_len for r in requests)
total_num_tokens = sum(r.prompt_len + r.expected_output_len
for r in requests)
total_output_tokens = sum(r.expected_output_len for r in requests)
total_prompt_tokens = total_num_tokens - total_output_tokens
if is_multi_modal and args.backend != "vllm-chat":
print(
"\033[91mWARNING\033[0m: Multi-modal request with "
f"{args.backend} backend detected. The "
"following metrics are not accurate because image tokens are not"
" counted. See vllm-project/vllm/issues/9778 for details."
)
print("\033[91mWARNING\033[0m: Multi-modal request with "
f"{args.backend} backend detected. The "
"following metrics are not accurate because image tokens are not"
" counted. See vllm-project/vllm/issues/9778 for details.")
# TODO(vllm-project/vllm/issues/9778): Count multi-modal token length.
# vllm-chat backend counts the image tokens now
print(
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
f"{total_output_tokens / elapsed_time:.2f} output tokens/s"
)
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
f"{total_output_tokens / elapsed_time:.2f} output tokens/s")
print(f"Total num prompt tokens: {total_prompt_tokens}")
print(f"Total num output tokens: {total_output_tokens}")
@ -491,8 +444,7 @@ def validate_args(args):
warnings.warn(
"The '--dataset' argument will be deprecated in the next release. "
"Please use '--dataset-name' and '--dataset-path' instead.",
stacklevel=2,
)
stacklevel=2)
args.dataset_path = args.dataset
if not getattr(args, "tokenizer", None):
@ -505,8 +457,9 @@ def validate_args(args):
# === Dataset Configuration ===
if not args.dataset and not args.dataset_path:
print("When dataset path is not set, it will default to random dataset")
args.dataset_name = "random"
print(
"When dataset path is not set, it will default to random dataset")
args.dataset_name = 'random'
if args.input_len is None:
raise ValueError("input_len must be provided for a random dataset")
@ -514,55 +467,41 @@ def validate_args(args):
# --hf-subset and --hf-split: only used
# when dataset_name is 'hf'
if args.dataset_name != "hf" and (
getattr(args, "hf_subset", None) is not None
or getattr(args, "hf_split", None) is not None
):
warnings.warn(
"--hf-subset and --hf-split will be ignored \
getattr(args, "hf_subset", None) is not None
or getattr(args, "hf_split", None) is not None):
warnings.warn("--hf-subset and --hf-split will be ignored \
since --dataset-name is not 'hf'.",
stacklevel=2,
)
stacklevel=2)
elif args.dataset_name == "hf":
if args.dataset_path in (
VisionArenaDataset.SUPPORTED_DATASET_PATHS.keys()
| ConversationDataset.SUPPORTED_DATASET_PATHS
):
assert args.backend == "vllm-chat", (
f"{args.dataset_path} needs to use vllm-chat as the backend."
) # noqa: E501
elif args.dataset_path in (
InstructCoderDataset.SUPPORTED_DATASET_PATHS
| AIMODataset.SUPPORTED_DATASET_PATHS
):
assert args.backend == "vllm", (
f"{args.dataset_path} needs to use vllm as the backend."
) # noqa: E501
VisionArenaDataset.SUPPORTED_DATASET_PATHS.keys()
| ConversationDataset.SUPPORTED_DATASET_PATHS):
assert args.backend == "vllm-chat", f"{args.dataset_path} needs to use vllm-chat as the backend." #noqa: E501
elif args.dataset_path in (InstructCoderDataset.SUPPORTED_DATASET_PATHS
| AIMODataset.SUPPORTED_DATASET_PATHS):
assert args.backend == "vllm", f"{args.dataset_path} needs to use vllm as the backend." #noqa: E501
else:
raise ValueError(f"{args.dataset_path} is not supported by hf dataset.")
raise ValueError(
f"{args.dataset_path} is not supported by hf dataset.")
# --random-range-ratio: only used when dataset_name is 'random'
if args.dataset_name != "random" and args.random_range_ratio is not None:
warnings.warn(
"--random-range-ratio will be ignored since \
if args.dataset_name != 'random' and args.random_range_ratio is not None:
warnings.warn("--random-range-ratio will be ignored since \
--dataset-name is not 'random'.",
stacklevel=2,
)
stacklevel=2)
# --prefix-len: only used when dataset_name is 'random', 'sonnet', or not
# set.
if (
args.dataset_name not in {"random", "sonnet", None}
and args.prefix_len is not None
):
warnings.warn(
"--prefix-len will be ignored since --dataset-name\
if args.dataset_name not in {"random", "sonnet", None
} and args.prefix_len is not None:
warnings.warn("--prefix-len will be ignored since --dataset-name\
is not 'random', 'sonnet', or not set.",
stacklevel=2,
)
stacklevel=2)
# === LoRA Settings ===
if getattr(args, "enable_lora", False) and args.backend != "vllm":
raise ValueError("LoRA benchmarking is only supported for vLLM backend")
raise ValueError(
"LoRA benchmarking is only supported for vLLM backend")
if getattr(args, "enable_lora", False) and args.lora_path is None:
raise ValueError("LoRA path must be provided when enable_lora is True")
@ -572,10 +511,8 @@ def validate_args(args):
if args.backend != "hf" and args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
if (
args.backend in {"hf", "mii"}
and getattr(args, "quantization", None) is not None
):
if args.backend in {"hf", "mii"} and getattr(args, "quantization",
None) is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.backend == "mii" and args.dtype != "auto":
@ -583,32 +520,22 @@ def validate_args(args):
if args.backend == "mii" and args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.backend == "mii" and args.tokenizer != args.model:
raise ValueError("Tokenizer must be the same as the model for MII backend.")
# --data-parallel is not supported currently.
# https://github.com/vllm-project/vllm/issues/16222
if args.data_parallel_size > 1:
raise ValueError(
"Data parallel is not supported in offline benchmark, \
please use benchmark serving instead"
)
"Tokenizer must be the same as the model for MII backend.")
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument(
"--backend",
type=str,
choices=["vllm", "hf", "mii", "vllm-chat"],
default="vllm",
)
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf", "mii", "vllm-chat"],
default="vllm")
parser.add_argument(
"--dataset-name",
type=str,
choices=["sharegpt", "random", "sonnet", "burstgpt", "hf"],
help="Name of the dataset to benchmark on.",
default="sharegpt",
)
default="sharegpt")
parser.add_argument(
"--dataset",
type=str,
@ -616,70 +543,57 @@ if __name__ == "__main__":
help="Path to the ShareGPT dataset, will be deprecated in\
the next release. The dataset is expected to "
"be a json in form of list[dict[..., conversations: "
"list[dict[..., value: <prompt_or_response>]]]]",
)
"list[dict[..., value: <prompt_or_response>]]]]")
parser.add_argument("--dataset-path",
type=str,
default=None,
help="Path to the dataset")
parser.add_argument("--input-len",
type=int,
default=None,
help="Input prompt length for each request")
parser.add_argument("--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.")
parser.add_argument("--hf-max-batch-size",
type=int,
default=None,
help="Maximum batch size for HF backend.")
parser.add_argument(
"--dataset-path", type=str, default=None, help="Path to the dataset"
)
parser.add_argument(
"--input-len",
type=int,
default=None,
help="Input prompt length for each request",
)
parser.add_argument(
"--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.",
)
parser.add_argument(
"--n", type=int, default=1, help="Number of generated sequences per prompt."
)
parser.add_argument(
"--num-prompts", type=int, default=1000, help="Number of prompts to process."
)
parser.add_argument(
"--hf-max-batch-size",
type=int,
default=None,
help="Maximum batch size for HF backend.",
)
parser.add_argument(
"--output-json",
'--output-json',
type=str,
default=None,
help="Path to save the throughput results in JSON format.",
)
parser.add_argument(
"--async-engine",
action="store_true",
default=False,
help="Use vLLM async engine rather than LLM class.",
)
parser.add_argument(
"--disable-frontend-multiprocessing",
action="store_true",
default=False,
help="Disable decoupled async engine frontend.",
)
help='Path to save the throughput results in JSON format.')
parser.add_argument("--async-engine",
action='store_true',
default=False,
help="Use vLLM async engine rather than LLM class.")
parser.add_argument("--disable-frontend-multiprocessing",
action='store_true',
default=False,
help="Disable decoupled async engine frontend.")
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=(
"Do not detokenize the response (i.e. do not include "
"detokenization time in the measurement)"
),
)
help=("Do not detokenize the response (i.e. do not include "
"detokenization time in the measurement)"))
# LoRA
parser.add_argument(
"--lora-path",
type=str,
default=None,
help="Path to the LoRA adapters to use. This can be an absolute path, "
"a relative path, or a Hugging Face model identifier.",
)
help="Path to the lora adapters to use. This can be an absolute path, "
"a relative path, or a Hugging Face model identifier.")
parser.add_argument(
"--prefix-len",
type=int,
@ -693,8 +607,7 @@ if __name__ == "__main__":
f"prefix_len (default: {SonnetDataset.DEFAULT_PREFIX_LEN}) "
"controls how much of the input is fixed lines versus "
"random lines, but the total input length remains approximately "
"input_len tokens.",
)
"input_len tokens.")
# random dataset
parser.add_argument(
"--random-range-ratio",
@ -708,12 +621,14 @@ if __name__ == "__main__":
)
# hf dtaset
parser.add_argument(
"--hf-subset", type=str, default=None, help="Subset of the HF dataset."
)
parser.add_argument(
"--hf-split", type=str, default=None, help="Split of the HF dataset."
)
parser.add_argument("--hf-subset",
type=str,
default=None,
help="Subset of the HF dataset.")
parser.add_argument("--hf-split",
type=str,
default=None,
help="Split of the HF dataset.")
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()

View File

@ -7,9 +7,9 @@ import os
from typing import Any
def convert_to_pytorch_benchmark_format(
args: argparse.Namespace, metrics: dict[str, list], extra_info: dict[str, Any]
) -> list:
def convert_to_pytorch_benchmark_format(args: argparse.Namespace,
metrics: dict[str, list],
extra_info: dict[str, Any]) -> list:
"""
Save the benchmark results in the format used by PyTorch OSS benchmark with
on metric per record
@ -37,12 +37,12 @@ def convert_to_pytorch_benchmark_format(
},
}
tp = record["benchmark"]["extra_info"]["args"].get("tensor_parallel_size")
tp = record["benchmark"]["extra_info"]["args"].get(
"tensor_parallel_size")
# Save tensor_parallel_size parameter if it's part of the metadata
if not tp and "tensor_parallel_size" in extra_info:
record["benchmark"]["extra_info"]["args"]["tensor_parallel_size"] = (
extra_info["tensor_parallel_size"]
)
record["benchmark"]["extra_info"]["args"][
"tensor_parallel_size"] = extra_info["tensor_parallel_size"]
records.append(record)
@ -50,6 +50,7 @@ def convert_to_pytorch_benchmark_format(
class InfEncoder(json.JSONEncoder):
def clear_inf(self, o: Any):
if isinstance(o, dict):
return {k: self.clear_inf(v) for k, v in o.items()}

View File

@ -23,9 +23,8 @@ DEFAULT_TP_SIZES = [1]
# bench
def bench_fn(
label: str, sub_label: str, description: str, fn: Callable, *args, **kwargs
) -> TMeasurement:
def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
**kwargs) -> TMeasurement:
min_run_time = 1
globals = {
@ -42,18 +41,16 @@ def bench_fn(
).blocked_autorange(min_run_time=min_run_time)
def bench_int8(
dtype: torch.dtype, m: int, k: int, n: int, label: str, sub_label: str
) -> Iterable[TMeasurement]:
def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
sub_label: str) -> Iterable[TMeasurement]:
assert dtype == torch.int8
b_compressed, e, a, b = make_rand_sparse_tensors(torch.int8, m, n, k)
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
out = ops.cutlass_scaled_sparse_mm(
a, b_compressed, e, scale_a, scale_b, torch.bfloat16
)
out = ops.cutlass_scaled_sparse_mm(a, b_compressed, e, scale_a, scale_b,
torch.bfloat16)
out_ref = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16)
if not torch.allclose(out, out_ref):
@ -66,107 +63,54 @@ def bench_int8(
timers = []
# pytorch impl - bfloat16
timers.append(
bench_fn(
label,
sub_label,
"pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm,
a.to(dtype=torch.bfloat16),
b.to(dtype=torch.bfloat16),
)
)
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm, a.to(dtype=torch.bfloat16),
b.to(dtype=torch.bfloat16)))
# pytorch impl - float16
timers.append(
bench_fn(
label,
sub_label,
"pytorch_fp16_fp16_fp16_matmul-no-scales",
torch.mm,
a.to(dtype=torch.float16),
b.to(dtype=torch.float16),
)
)
bench_fn(label, sub_label,
"pytorch_fp16_fp16_fp16_matmul-no-scales", torch.mm,
a.to(dtype=torch.float16), b.to(dtype=torch.float16)))
# cutlass impl
timers.append(
bench_fn(
label,
sub_label,
"cutlass_i8_i8_bf16_scaled_mm",
ops.cutlass_scaled_mm,
a,
b,
scale_a,
scale_b,
torch.bfloat16,
)
)
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
torch.bfloat16))
# cutlass with bias
timers.append(
bench_fn(
label,
sub_label,
"cutlass_i8_i8_bf16_scaled_mm_bias",
ops.cutlass_scaled_mm,
a,
b,
scale_a,
scale_b,
torch.bfloat16,
bias,
)
)
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_bias",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16,
bias))
# cutlass sparse impl
timers.append(
bench_fn(
label,
sub_label,
"cutlass_i8_i8_bf16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.bfloat16,
)
)
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.bfloat16))
# cutlass sparse with bias
timers.append(
bench_fn(
label,
sub_label,
"cutlass_i8_i8_bf16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.bfloat16,
bias,
)
)
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.bfloat16, bias))
return timers
def bench_fp8(
dtype: torch.dtype, m: int, k: int, n: int, label: str, sub_label: str
) -> Iterable[TMeasurement]:
def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
sub_label: str) -> Iterable[TMeasurement]:
assert dtype == torch.float8_e4m3fn
b_compressed, e, a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, m, n, k)
b_compressed, e, a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, m, n,
k)
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
out = ops.cutlass_scaled_sparse_mm(
a, b_compressed, e, scale_a, scale_b, torch.bfloat16
)
out = ops.cutlass_scaled_sparse_mm(a, b_compressed, e, scale_a, scale_b,
torch.bfloat16)
out_ref = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16)
if not torch.allclose(out, out_ref):
@ -180,165 +124,97 @@ def bench_fp8(
# pytorch impl w. bf16
timers.append(
bench_fn(
label,
sub_label,
"pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm,
a.to(dtype=torch.bfloat16, device="cuda"),
b.to(dtype=torch.bfloat16, device="cuda"),
)
)
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm, a.to(dtype=torch.bfloat16, device="cuda"),
b.to(dtype=torch.bfloat16, device="cuda")))
# pytorch impl: bf16 output, without fp8 fast accum
timers.append(
bench_fn(
label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16,
)
)
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16))
# pytorch impl: bf16 output, with fp8 fast accum
timers.append(
bench_fn(
label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16,
use_fast_accum=True,
)
)
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16,
use_fast_accum=True))
# pytorch impl: fp16 output, without fp8 fast accum
timers.append(
bench_fn(
label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16,
)
)
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16))
# pytorch impl: fp16 output, with fp8 fast accum
timers.append(
bench_fn(
label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16,
use_fast_accum=True,
)
)
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16,
use_fast_accum=True))
# cutlass impl: bf16 output
timers.append(
bench_fn(
label,
sub_label,
"cutlass_fp8_fp8_bf16_scaled_mm",
ops.cutlass_scaled_mm,
a,
b,
scale_a,
scale_b,
torch.bfloat16,
)
)
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
torch.bfloat16))
# cutlass impl: bf16 output
timers.append(
bench_fn(
label,
sub_label,
"cutlass_fp8_fp8_bf16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.bfloat16,
)
)
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.bfloat16))
# cutlass impl: fp16 output
timers.append(
bench_fn(
label,
sub_label,
"cutlass_fp8_fp8_fp16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.float16,
)
)
bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.float16))
# cutlass impl: bf16 output, with bias
timers.append(
bench_fn(
label,
sub_label,
"cutlass_fp8_fp8_bf16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.bfloat16,
bias,
)
)
bench_fn(label, sub_label,
"cutlass_fp8_fp8_bf16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.bfloat16, bias))
# cutlass impl: fp16 output, with bias
timers.append(
bench_fn(
label,
sub_label,
"cutlass_fp8_fp8_fp16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.float16,
bias.to(dtype=torch.float16),
)
)
bench_fn(label, sub_label,
"cutlass_fp8_fp8_fp16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.float16, bias.to(dtype=torch.float16)))
return timers
def bench(
dtype: torch.dtype, m: int, k: int, n: int, label: str, sub_label: str
) -> Iterable[TMeasurement]:
def bench(dtype: torch.dtype, m: int, k: int, n: int, label: str,
sub_label: str) -> Iterable[TMeasurement]:
if dtype == torch.int8:
return bench_int8(dtype, m, k, n, label, sub_label)
if dtype == torch.float8_e4m3fn:
@ -352,12 +228,12 @@ def print_timers(timers: Iterable[TMeasurement]):
compare.print()
def run(
dtype: torch.dtype, MKNs: Iterable[tuple[int, int, int]]
) -> Iterable[TMeasurement]:
def run(dtype: torch.dtype,
MKNs: Iterable[tuple[int, int, int]]) -> Iterable[TMeasurement]:
results = []
for m, k, n in MKNs:
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm", f"MKN=({m}x{k}x{n})")
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm",
f"MKN=({m}x{k}x{n})")
print_timers(timers)
results.extend(timers)
@ -365,12 +241,10 @@ def run(
# output makers
def make_output(
data: Iterable[TMeasurement],
MKNs: Iterable[tuple[int, int, int]],
base_description: str,
timestamp=None,
):
def make_output(data: Iterable[TMeasurement],
MKNs: Iterable[tuple[int, int, int]],
base_description: str,
timestamp=None):
print(f"== All Results {base_description} ====")
print_timers(data)
@ -384,7 +258,8 @@ def make_output(
def run_square_bench(args):
dim_sizes = list(range(args.dim_start, args.dim_end + 1, args.dim_increment))
dim_sizes = list(
range(args.dim_start, args.dim_end + 1, args.dim_increment))
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
data = run(args.dtype, MKNs)
@ -444,7 +319,7 @@ def run_model_bench(args):
pkl.dump(all_data, f)
if __name__ == "__main__":
if __name__ == '__main__':
def to_torch_dtype(dt):
if dt == "int8":
@ -469,15 +344,12 @@ Benchmark Cutlass GEMM.
Output:
- a .pkl file, that is a list of raw torch.benchmark.utils.Measurements for the pytorch and cutlass implementations for the various GEMMs.
""", # noqa: E501
formatter_class=argparse.RawTextHelpFormatter,
)
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
"--dtype",
type=to_torch_dtype,
required=True,
help="Available options are ['int8', 'fp8']",
)
parser.add_argument("--dtype",
type=to_torch_dtype,
required=True,
help="Available options are ['int8', 'fp8']")
subparsers = parser.add_subparsers(dest="cmd")
square_parser = subparsers.add_parser("square_bench")
@ -496,19 +368,19 @@ Benchmark Cutlass GEMM.
range_parser.set_defaults(func=run_range_bench)
model_parser = subparsers.add_parser("model_bench")
model_parser.add_argument(
"--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys(),
)
model_parser.add_argument(
"--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES
)
model_parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
model_parser.add_argument("--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys())
model_parser.add_argument("--tp-sizes",
nargs="+",
type=int,
default=DEFAULT_TP_SIZES)
model_parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
model_parser.set_defaults(func=run_model_bench)
args = parser.parse_args()

View File

@ -10,9 +10,8 @@ import vllm._custom_ops as ops
def to_fp8(tensor: torch.Tensor) -> torch.Tensor:
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(min=finfo.min, max=finfo.max)).to(
dtype=torch.float8_e4m3fn
)
return torch.round(tensor.clamp(
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
def to_int8(tensor: torch.Tensor) -> torch.Tensor:
@ -27,11 +26,10 @@ def to_fp16(tensor: torch.Tensor) -> torch.Tensor:
return tensor.to(dtype=torch.float16)
def make_rand_tensors(
dtype: torch.dtype, m: int, n: int, k: int
) -> tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device="cuda") * 5
b = torch.randn((n, k), device="cuda").t() * 5
def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
k: int) -> tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device='cuda') * 5
b = torch.randn((n, k), device='cuda').t() * 5
if dtype == torch.int8:
return to_int8(a), to_int8(b)
@ -51,7 +49,9 @@ def prune_to_2_4(tensor):
# Create binary mask
mask = torch.zeros_like(reshaped)
mask.scatter_(dim=1, index=indices, src=torch.ones_like(indices, dtype=mask.dtype))
mask.scatter_(dim=1,
index=indices,
src=torch.ones_like(indices, dtype=mask.dtype))
# Apply mask and reshape back
pruned = reshaped * mask
@ -62,11 +62,10 @@ def prune_to_2_4(tensor):
return pruned.reshape(original_shape)
def make_rand_sparse_tensors(
dtype: torch.dtype, m: int, n: int, k: int
) -> tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device="cuda") * 5
b = torch.randn((n, k), device="cuda").t() * 5
def make_rand_sparse_tensors(dtype: torch.dtype, m: int, n: int,
k: int) -> tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device='cuda') * 5
b = torch.randn((n, k), device='cuda').t() * 5
b = prune_to_2_4(b.t()).t()
@ -87,9 +86,9 @@ def make_rand_sparse_tensors(
return b_compressed, e, a, b
def make_n_rand_sparse_tensors(
num_tensors: int, dtype: torch.dtype, m: int, n: int, k: int
) -> tuple[Iterable[torch.Tensor], Iterable[torch.Tensor]]:
def make_n_rand_sparse_tensors(num_tensors: int, dtype: torch.dtype,
m: int, n: int, k: int) -> \
tuple[Iterable[torch.Tensor], Iterable[torch.Tensor]]:
ABs = []
for _ in range(num_tensors):
b_comp, e, a, b = make_rand_sparse_tensors(dtype, m, n, k)

View File

@ -16,8 +16,7 @@ from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
w8a8_block_fp8_matmul,
)
w8a8_block_fp8_matmul)
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
@ -26,9 +25,8 @@ DEFAULT_TP_SIZES = [1]
# bench
def bench_fn(
label: str, sub_label: str, description: str, fn: Callable, *args, **kwargs
) -> TMeasurement:
def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
**kwargs) -> TMeasurement:
min_run_time = 1
globals = {
@ -46,48 +44,45 @@ def bench_fn(
def bench_int8(
dtype: torch.dtype,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[list[str]] = None,
) -> Iterable[TMeasurement]:
dtype: torch.dtype,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
"""Benchmark INT8-based kernels."""
assert dtype == torch.int8
a, b = make_rand_tensors(torch.int8, m, n, k)
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
azp = torch.zeros((m,), device="cuda", dtype=torch.int32)
azp_adj = torch.zeros((n,), device="cuda", dtype=torch.int32)
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
azp = torch.zeros((m, ), device="cuda", dtype=torch.int32)
azp_adj = torch.zeros((n, ), device="cuda", dtype=torch.int32)
bench_fns = {
"pytorch_bf16_bf16_bf16_matmul-no-scales": lambda: torch.mm(
a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
),
"pytorch_fp16_fp16_fp16_matmul-no-scales": lambda: torch.mm(
a.to(dtype=torch.float16), b.to(dtype=torch.float16)
),
"cutlass_i8_i8_bf16_scaled_mm": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.bfloat16
),
"cutlass_i8_i8_bf16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.bfloat16, bias
),
"cutlass_i8_i8_bf16_scaled_mm_azp": lambda: ops.cutlass_scaled_mm_azp(
a, b, scale_a, scale_b, torch.bfloat16, azp_adj
),
"cutlass_i8_i8_bf16_scaled_mm_azp_bias": lambda: ops.cutlass_scaled_mm_azp(
a, b, scale_a, scale_b, torch.bfloat16, azp_adj, None, bias
),
"cutlass_i8_i8_bf16_scaled_mm_azp_pt": lambda: ops.cutlass_scaled_mm_azp(
a, b, scale_a, scale_b, torch.bfloat16, azp_adj, azp
),
"cutlass_i8_i8_bf16_scaled_mm_azp_pt_bias": lambda: ops.cutlass_scaled_mm_azp(
a, b, scale_a, scale_b, torch.bfloat16, azp_adj, azp, bias
),
"pytorch_bf16_bf16_bf16_matmul-no-scales":
lambda: torch.mm(a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
),
"pytorch_fp16_fp16_fp16_matmul-no-scales":
lambda: torch.mm(a.to(dtype=torch.float16), b.to(dtype=torch.float16)),
"cutlass_i8_i8_bf16_scaled_mm":
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16),
"cutlass_i8_i8_bf16_scaled_mm_bias":
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16,
bias),
"cutlass_i8_i8_bf16_scaled_mm_azp":
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
bfloat16, azp_adj),
"cutlass_i8_i8_bf16_scaled_mm_azp_bias":
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
bfloat16, azp_adj, None, bias),
"cutlass_i8_i8_bf16_scaled_mm_azp_pt":
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
bfloat16, azp_adj, azp),
"cutlass_i8_i8_bf16_scaled_mm_azp_pt_bias":
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
bfloat16, azp_adj, azp, bias),
}
timers = []
@ -101,73 +96,73 @@ def bench_int8(
def bench_fp8(
dtype: torch.dtype,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[list[str]] = None,
) -> Iterable[TMeasurement]:
dtype: torch.dtype,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
"""Benchmark FP8-based kernels."""
assert dtype == torch.float8_e4m3fn
a, b = make_rand_tensors(torch.float8_e4m3fn, m, n, k)
a_cont = a.contiguous()
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
def ceil_div(x: int, y: int) -> int:
return (x + y - 1) // y
block_scale_a = torch.rand(
(m, ceil_div(k, 128)), device="cuda", dtype=torch.float32
)
block_scale_b = torch.rand(
ceil_div(k, 128), ceil_div(n, 128), device="cuda", dtype=torch.float32
)
block_scale_a = torch.rand((m, k // 128),
device="cuda",
dtype=torch.float32)
block_scale_b = torch.rand((k // 128, n // 128),
device="cuda",
dtype=torch.float32)
block_scale_a_M_major = block_scale_a.t().contiguous().t()
block_scale_b_K_major = block_scale_b.t().contiguous().t()
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
print(m, k, n)
bench_fns = {
"pytorch_bf16_bf16_bf16_matmul-no-scales": lambda: torch.mm(
a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
),
"pytorch_fp16_fp16_fp16_matmul-no-scales": lambda: torch.mm(
a.to(dtype=torch.float16), b.to(dtype=torch.float16)
),
"pytorch_fp8_fp8_fp16_scaled_mm": lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.float16
),
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum": lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.float16, use_fast_accum=True
),
"pytorch_fp8_fp8_bf16_scaled_mm": lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.bfloat16
),
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum": lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.bfloat16, use_fast_accum=True
),
"cutlass_fp8_fp8_bf16_scaled_mm": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.bfloat16
),
"cutlass_fp8_fp8_fp16_scaled_mm": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.float16
),
"cutlass_fp8_fp8_bf16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.bfloat16, bias
),
"cutlass_fp8_fp8_fp16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.float16, bias.to(dtype=torch.float16)
),
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_block_fp8_matmul(
a_cont, b.t(), block_scale_a, block_scale_b.t(), (128, 128)
),
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise": lambda: ops.cutlass_scaled_mm(
a, b, block_scale_a_M_major, block_scale_b_K_major, torch.float16
),
"pytorch_bf16_bf16_bf16_matmul-no-scales":
lambda: torch.mm(a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
),
"pytorch_fp16_fp16_fp16_matmul-no-scales":
lambda: torch.mm(a.to(dtype=torch.float16), b.to(dtype=torch.float16)),
"pytorch_fp8_fp8_fp16_scaled_mm":
lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.float16),
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum":
lambda: torch._scaled_mm(a,
b,
scale_a,
scale_b,
out_dtype=torch.float16,
use_fast_accum=True),
"pytorch_fp8_fp8_bf16_scaled_mm":
lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.bfloat16),
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum":
lambda: torch._scaled_mm(a,
b,
scale_a,
scale_b,
out_dtype=torch.bfloat16,
use_fast_accum=True),
"cutlass_fp8_fp8_bf16_scaled_mm":
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16),
"cutlass_fp8_fp8_fp16_scaled_mm":
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.float16),
"cutlass_fp8_fp8_bf16_scaled_mm_bias":
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16,
bias),
"cutlass_fp8_fp8_fp16_scaled_mm_bias":
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.float16,
bias.to(dtype=torch.float16)),
"triton_fp8_fp8_fp16_scaled_mm_blockwise":
lambda: w8a8_block_fp8_matmul(a_cont, b.t(), block_scale_a,
block_scale_b.t(), (128, 128)),
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise":
lambda: ops.cutlass_scaled_mm(a, b, block_scale_a_M_major,
block_scale_b_K_major, torch.float16),
}
timers = []
@ -180,15 +175,13 @@ def bench_fp8(
return timers
def bench(
dtype: torch.dtype,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[list[str]] = None,
) -> Iterable[TMeasurement]:
def bench(dtype: torch.dtype,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
if dtype == torch.int8:
return bench_int8(dtype, m, k, n, label, sub_label, bench_kernels)
if dtype == torch.float8_e4m3fn:
@ -202,33 +195,27 @@ def print_timers(timers: Iterable[TMeasurement]):
compare.print()
def run(
dtype: torch.dtype,
MKNs: Iterable[tuple[int, int, int]],
bench_kernels: Optional[list[str]] = None,
) -> Iterable[TMeasurement]:
def run(dtype: torch.dtype,
MKNs: Iterable[tuple[int, int, int]],
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
results = []
for m, k, n in MKNs:
timers = bench(
dtype,
m,
k,
n,
f"scaled-{dtype}-gemm",
f"MKN=({m}x{k}x{n})",
bench_kernels=bench_kernels,
)
timers = bench(dtype,
m,
k,
n,
f"scaled-{dtype}-gemm",
f"MKN=({m}x{k}x{n})",
bench_kernels=bench_kernels)
print_timers(timers)
results.extend(timers)
return results
def make_output(
data: Iterable[TMeasurement],
MKNs: Iterable[tuple[int, int, int]],
base_description: str,
timestamp=None,
):
def make_output(data: Iterable[TMeasurement],
MKNs: Iterable[tuple[int, int, int]],
base_description: str,
timestamp=None):
print(f"== All Results {base_description} ====")
print_timers(data)
@ -239,7 +226,8 @@ def make_output(
def run_square_bench(args):
dim_sizes = list(range(args.dim_start, args.dim_end + 1, args.dim_increment))
dim_sizes = list(
range(args.dim_start, args.dim_end + 1, args.dim_increment))
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
data = run(args.dtype, MKNs, bench_kernels=args.kernels)
make_output(data, MKNs, f"square_bench-{args.dtype}")
@ -297,7 +285,7 @@ def run_model_bench(args):
pkl.dump(all_data, f)
if __name__ == "__main__":
if __name__ == '__main__':
def to_torch_dtype(dt):
if dt == "int8":
@ -322,21 +310,19 @@ Benchmark Cutlass GEMM.
Output:
- a .pkl file, that is a list of raw torch.benchmark.utils.Measurements for the pytorch and cutlass implementations for the various GEMMs.
""", # noqa: E501
formatter_class=argparse.RawTextHelpFormatter,
)
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
"--dtype",
type=to_torch_dtype,
required=True,
help="Available options are ['int8', 'fp8']",
)
parser.add_argument("--dtype",
type=to_torch_dtype,
required=True,
help="Available options are ['int8', 'fp8']")
parser.add_argument(
"--kernels",
nargs="+",
type=str,
default=None,
help="Exact names of the kernels to benchmark. If not set, runs all kernels.",
help=
"Exact names of the kernels to benchmark. If not set, runs all kernels."
)
subparsers = parser.add_subparsers(dest="cmd")
@ -357,19 +343,19 @@ Benchmark Cutlass GEMM.
range_parser.set_defaults(func=run_range_bench)
model_parser = subparsers.add_parser("model_bench")
model_parser.add_argument(
"--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys(),
)
model_parser.add_argument(
"--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES
)
model_parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
model_parser.add_argument("--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys())
model_parser.add_argument("--tp-sizes",
nargs="+",
type=int,
default=DEFAULT_TP_SIZES)
model_parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
model_parser.set_defaults(func=run_model_bench)
args = parser.parse_args()

View File

@ -42,4 +42,4 @@ WEIGHT_SHAPES = {
([8192, 57344], 1),
([28672, 8192], 0),
],
}
}

View File

@ -12,37 +12,39 @@ app = Quart(__name__)
async def forward_request(url, data):
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
async with session.post(url=url, json=data, headers=headers) as response:
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
}
async with session.post(url=url, json=data,
headers=headers) as response:
if response.status == 200:
# if response.headers.get('Transfer-Encoding') == 'chunked':
if True:
async for chunk_bytes in response.content.iter_chunked(1024):
async for chunk_bytes in response.content.iter_chunked(
1024):
yield chunk_bytes
else:
content = await response.read()
yield content
@app.route("/v1/completions", methods=["POST"])
@app.route('/v1/completions', methods=['POST'])
async def handle_request():
try:
original_request_data = await request.get_json()
prefill_request = original_request_data.copy()
# change max_tokens = 1 to let it only do prefill
prefill_request["max_tokens"] = 1
prefill_request['max_tokens'] = 1
# finish prefill
async for _ in forward_request(
"http://localhost:8100/v1/completions", prefill_request
):
async for _ in forward_request('http://localhost:8100/v1/completions',
prefill_request):
continue
# return decode
generator = forward_request(
"http://localhost:8200/v1/completions", original_request_data
)
generator = forward_request('http://localhost:8200/v1/completions',
original_request_data)
response = await make_response(generator)
response.timeout = None
@ -51,12 +53,11 @@ async def handle_request():
except Exception as e:
import sys
import traceback
exc_info = sys.exc_info()
print("Error occurred in disagg prefill proxy server")
print(e)
print("".join(traceback.format_exception(*exc_info)))
if __name__ == "__main__":
if __name__ == '__main__':
app.run(port=8000)

View File

@ -8,6 +8,7 @@ from aiohttp import web
class RoundRobinProxy:
def __init__(self, target_ports):
self.target_ports = target_ports
self.port_cycle = itertools.cycle(self.target_ports)
@ -20,15 +21,14 @@ class RoundRobinProxy:
try:
# Forward the request
async with session.request(
method=request.method,
url=target_url,
headers=request.headers,
data=request.content,
method=request.method,
url=target_url,
headers=request.headers,
data=request.content,
) as response:
# Start sending the response
resp = web.StreamResponse(
status=response.status, headers=response.headers
)
resp = web.StreamResponse(status=response.status,
headers=response.headers)
await resp.prepare(request)
# Stream the response content
@ -45,11 +45,11 @@ class RoundRobinProxy:
async def main():
proxy = RoundRobinProxy([8100, 8200])
app = web.Application()
app.router.add_route("*", "/{path:.*}", proxy.handle_request)
app.router.add_route('*', '/{path:.*}', proxy.handle_request)
runner = web.AppRunner(app)
await runner.setup()
site = web.TCPSite(runner, "localhost", 8000)
site = web.TCPSite(runner, 'localhost', 8000)
await site.start()
print("Proxy server started on http://localhost:8000")
@ -58,5 +58,5 @@ async def main():
await asyncio.Event().wait()
if __name__ == "__main__":
if __name__ == '__main__':
asyncio.run(main())

View File

@ -6,41 +6,43 @@ import matplotlib.pyplot as plt
import pandas as pd
if __name__ == "__main__":
data = []
for name in ["disagg_prefill", "chunked_prefill"]:
for name in ['disagg_prefill', 'chunked_prefill']:
for qps in [2, 4, 6, 8]:
with open(f"results/{name}-qps-{qps}.json") as f:
x = json.load(f)
x["name"] = name
x["qps"] = qps
x['name'] = name
x['qps'] = qps
data.append(x)
df = pd.DataFrame.from_dict(data)
dis_df = df[df["name"] == "disagg_prefill"]
chu_df = df[df["name"] == "chunked_prefill"]
dis_df = df[df['name'] == 'disagg_prefill']
chu_df = df[df['name'] == 'chunked_prefill']
plt.style.use("bmh")
plt.rcParams["font.size"] = 20
plt.style.use('bmh')
plt.rcParams['font.size'] = 20
for key in [
"mean_ttft_ms",
"median_ttft_ms",
"p99_ttft_ms",
"mean_itl_ms",
"median_itl_ms",
"p99_itl_ms",
'mean_ttft_ms', 'median_ttft_ms', 'p99_ttft_ms', 'mean_itl_ms',
'median_itl_ms', 'p99_itl_ms'
]:
fig, ax = plt.subplots(figsize=(11, 7))
plt.plot(
dis_df["qps"], dis_df[key], label="disagg_prefill", marker="o", linewidth=4
)
plt.plot(
chu_df["qps"], chu_df[key], label="chunked_prefill", marker="o", linewidth=4
)
plt.plot(dis_df['qps'],
dis_df[key],
label='disagg_prefill',
marker='o',
linewidth=4)
plt.plot(chu_df['qps'],
chu_df[key],
label='chunked_prefill',
marker='o',
linewidth=4)
ax.legend()
ax.set_xlabel("QPS")
ax.set_xlabel('QPS')
ax.set_ylabel(key)
ax.set_ylim(bottom=0)
fig.savefig(f"results/{key}.png")
fig.savefig(f'results/{key}.png')
plt.close(fig)

View File

@ -24,12 +24,10 @@ class bench_params_t:
dtype: torch.dtype
def description(self):
return (
f"N {self.num_tokens} "
f"x D {self.hidden_size} "
f"x R {self.add_residual} "
f"x DT {self.dtype}"
)
return (f'N {self.num_tokens} '
f'x D {self.hidden_size} '
f'x R {self.add_residual} '
f'x DT {self.dtype}')
def get_bench_params() -> list[bench_params_t]:
@ -40,19 +38,15 @@ def get_bench_params() -> list[bench_params_t]:
DTYPES = [torch.bfloat16, torch.float]
combinations = product(NUM_TOKENS, HIDDEN_SIZES, ADD_RESIDUAL, DTYPES)
bench_params = list(
map(lambda x: bench_params_t(x[0], x[1], x[2], x[3]), combinations)
)
bench_params = list(map(lambda x: \
bench_params_t(x[0], x[1], x[2], x[3]), combinations))
return bench_params
# Reference impls
def unfused_int8_impl(
rms_norm_layer: RMSNorm,
x: torch.Tensor,
residual: Optional[torch.Tensor],
quant_dtype: torch.dtype,
):
def unfused_int8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor,
residual: Optional[torch.Tensor],
quant_dtype: torch.dtype):
# Norm
torch_out = None
if residual is None:
@ -64,12 +58,9 @@ def unfused_int8_impl(
torch_out, _, _ = ops.scaled_int8_quant(torch_out)
def unfused_fp8_impl(
rms_norm_layer: RMSNorm,
x: torch.Tensor,
residual: Optional[torch.Tensor],
quant_dtype: torch.dtype,
):
def unfused_fp8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor,
residual: Optional[torch.Tensor],
quant_dtype: torch.dtype):
# Norm
torch_out = None
if residual is None:
@ -82,27 +73,22 @@ def unfused_fp8_impl(
def fused_impl(
rms_norm_layer: RMSNorm, # this stores the weights
x: torch.Tensor,
residual: Optional[torch.Tensor],
quant_dtype: torch.dtype,
):
out, _ = ops.rms_norm_dynamic_per_token_quant(
x, rms_norm_layer.weight, 1e-6, quant_dtype, residual=residual
)
rms_norm_layer: RMSNorm, # this stores the weights
x: torch.Tensor,
residual: Optional[torch.Tensor],
quant_dtype: torch.dtype):
out, _ = ops.rms_norm_dynamic_per_token_quant(x,
rms_norm_layer.weight,
1e-6,
quant_dtype,
residual=residual)
# Bench functions
def bench_fn(
rms_norm_layer: RMSNorm,
x: torch.Tensor,
residual: torch.Tensor,
quant_dtype: torch.dtype,
label: str,
sub_label: str,
fn: Callable,
description: str,
) -> TMeasurement:
def bench_fn(rms_norm_layer: RMSNorm, x: torch.Tensor, residual: torch.Tensor,
quant_dtype: torch.dtype, label: str, sub_label: str,
fn: Callable, description: str) -> TMeasurement:
min_run_time = 1
globals = {
@ -120,81 +106,43 @@ def bench_fn(
description=description,
).blocked_autorange(min_run_time=min_run_time)
def bench(params: bench_params_t, label: str, sub_label: str) \
-> Iterable[TMeasurement]:
def bench(params: bench_params_t, label: str, sub_label: str) -> Iterable[TMeasurement]:
# Make inputs
layer = RMSNorm(params.hidden_size, 1e-6).to(dtype=params.dtype)
# Make weights
layer.weight.data.normal_(mean=1.0, std=0.1)
# Make inputs
scale = 1 / params.hidden_size
x = (
torch.randn(
params.num_tokens, params.hidden_size, dtype=params.dtype, device="cuda"
)
* scale
)
residual = (
(torch.randn_like(x) * scale).to(device="cuda") if params.add_residual else None
)
x = torch.randn(params.num_tokens,
params.hidden_size,
dtype=params.dtype,
device='cuda') * scale
residual = (torch.randn_like(x) * scale).to(device='cuda') \
if params.add_residual else None
timers = []
# unfused int8 impl.
timers.append(
bench_fn(
layer,
x,
residual,
torch.int8,
label,
sub_label,
unfused_int8_impl,
"unfused_int8_impl",
)
)
bench_fn(layer, x, residual, torch.int8, label, sub_label,
unfused_int8_impl, "unfused_int8_impl"))
# unfused fp8 impl.
timers.append(
bench_fn(
layer,
x,
residual,
torch.float8_e4m3fn,
label,
sub_label,
unfused_fp8_impl,
"unfused_fp8_impl",
)
)
bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label,
unfused_fp8_impl, "unfused_fp8_impl"))
# fused int8 impl.
timers.append(
bench_fn(
layer,
x,
residual,
torch.int8,
label,
sub_label,
fused_impl,
"fused_int8_impl",
)
)
bench_fn(layer, x, residual, torch.int8, label, sub_label, fused_impl,
"fused_int8_impl"))
# fused fp8 impl.
timers.append(
bench_fn(
layer,
x,
residual,
torch.float8_e4m3fn,
label,
sub_label,
fused_impl,
"fused_fp8_impl",
)
)
bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label,
fused_impl, "fused_fp8_impl"))
print_timers(timers)
@ -209,12 +157,13 @@ def print_timers(timers: Iterable[TMeasurement]):
def main():
torch.set_default_device("cuda")
torch.set_default_device('cuda')
bench_params = get_bench_params()
timers = []
for bp in tqdm(bench_params):
timers.extend(bench(bp, "rms-norm-dynamic-per-token-quant", bp.description()))
timers.extend(
bench(bp, "rms-norm-dynamic-per-token-quant", bp.description()))
print_timers(timers)
# pickle all the results
@ -223,5 +172,5 @@ def main():
pkl.dump(timers, f)
if __name__ == "__main__":
if __name__ == '__main__':
main()

View File

@ -9,39 +9,32 @@ import torch.nn.functional as F
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.aqlm import (
dequantize_weight,
generic_dequantize_gemm,
get_int_dtype,
optimized_dequantize_gemm,
)
dequantize_weight, generic_dequantize_gemm, get_int_dtype,
optimized_dequantize_gemm)
from vllm.utils import FlexibleArgumentParser
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def torch_mult(
# [..., in_features]
input: torch.Tensor,
weights: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
input: torch.Tensor, # [..., in_features]
weights: torch.Tensor,
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
) -> torch.Tensor:
output = F.linear(input, weights)
return output
def dequant_out_scale(
# [..., in_features]
input: torch.Tensor,
# [num_out_groups, num_in_groups, num_codebooks]
codes: torch.IntTensor,
# [num_codebooks, codebook_size, out_group_size, in_group_size]
codebooks: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
input: torch.Tensor, # [..., in_features]
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
codebooks: torch.
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
if bias is None:
@ -53,42 +46,40 @@ def dequant_out_scale(
flattened_output *= b_scales
return flattened_output.view(orig_shape)
else:
b_scales = scales.view(scales.shape[:-3] + (-1,)).expand(-1, weights.shape[1])
b_scales = scales.view(scales.shape[:-3] + (-1, )).expand(
-1, weights.shape[1])
weights *= b_scales
return F.linear(input, weights, bias)
def dequant_weight_scale(
# [..., in_features]
input: torch.Tensor,
# [num_out_groups, num_in_groups, num_codebooks]
codes: torch.IntTensor,
# [num_codebooks, codebook_size, out_group_size, in_group_size]
codebooks: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
input: torch.Tensor, # [..., in_features]
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
codebooks: torch.
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
b_scales = scales.view(scales.shape[:-3] + (-1,)).expand(-1, weights.shape[1])
b_scales = scales.view(scales.shape[:-3] + (-1, )).expand(
-1, weights.shape[1])
weights *= b_scales
return F.linear(input, weights, bias)
def dequant_no_scale(
# [..., in_features]
input: torch.Tensor,
# [num_out_groups, num_in_groups, num_codebooks]
codes: torch.IntTensor,
# [num_codebooks, codebook_size, out_group_size, in_group_size]
codebooks: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
input: torch.Tensor, # [..., in_features]
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
codebooks: torch.
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
return F.linear(input, weights, bias)
@ -98,26 +89,23 @@ def dequant_no_scale(
# the generic pytorch version.
# Just visual comparison.
def dequant_test(k: int, parts: torch.Tensor, nbooks: int, bits: int) -> None:
n = int(parts.sum().item())
device = torch.device("cuda:0")
device = torch.device('cuda:0')
code_range = (1 << bits) // 2
ingroups = 8
codes = torch.randint(
-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device,
)
codes = torch.randint(-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device)
codebooks = torch.randn(
size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device,
)
codebooks = torch.randn(size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device)
count = 0
for index in range(16):
@ -150,25 +138,24 @@ def dequant_test(k: int, parts: torch.Tensor, nbooks: int, bits: int) -> None:
def main():
parser = FlexibleArgumentParser(description="Benchmark aqlm performance.")
# Add arguments
parser.add_argument(
"--nbooks", type=int, default=1, help="Number of codebooks (default: 1)"
)
parser.add_argument(
"--bits",
type=int,
default=16,
help="Number of bits per code element (default: 16)",
)
parser.add_argument("--nbooks",
type=int,
default=1,
help="Number of codebooks (default: 1)")
parser.add_argument("--bits",
type=int,
default=16,
help="Number of bits per code element (default: 16)")
parser.add_argument(
"--test",
type=bool,
default=False,
help="Run the decompression/dequant tester rather than benchmarking "
"(default: False)",
)
"(default: False)")
# Parse the arguments
args = parser.parse_args()
@ -178,7 +165,7 @@ def main():
bits = args.bits
if args.test:
dequant_test(4096, torch.tensor((4096,)), nbooks, bits)
dequant_test(4096, torch.tensor((4096, )), nbooks, bits)
return
# Otherwise, benchmark.
@ -197,54 +184,31 @@ def main():
with open(filename, "w") as f:
sys.stdout = f
print("m | k | n | n parts", end="")
print('m | k | n | n parts', end='')
for method in methods:
print(f" | {method.__name__.replace('_', ' ')} (µs)", end="")
print("")
print(f" | {method.__name__.replace('_', ' ')} (µs)", end='')
print('')
# These are reasonable prefill sizes.
ksandpartions = (
(4096, (4096, 4096, 4096)),
(4096, (4096,)),
(4096, (11008, 11008)),
(11008, (4096,)),
)
ksandpartions = ((4096, (4096, 4096, 4096)), (4096, (4096, )),
(4096, (11008, 11008)), (11008, (4096, )))
# reasonable ranges for m.
for m in [
1,
2,
4,
8,
10,
12,
14,
16,
24,
32,
48,
52,
56,
64,
96,
112,
128,
256,
512,
1024,
1536,
2048,
3072,
4096,
1, 2, 4, 8, 10, 12, 14, 16, 24, 32, 48, 52, 56, 64, 96, 112,
128, 256, 512, 1024, 1536, 2048, 3072, 4096
]:
print(f"{m}", file=sys.__stdout__)
print(f'{m}', file=sys.__stdout__)
for ksp in ksandpartions:
run_grid(m, ksp[0], torch.tensor(ksp[1]), nbooks, bits, methods)
run_grid(m, ksp[0], torch.tensor(ksp[1]), nbooks, bits,
methods)
sys.stdout = sys.__stdout__
def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, methods):
def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int,
methods):
# I didn't see visible improvements from increasing these, but feel free :)
num_warmup_trials = 1
num_trials = 1
@ -265,7 +229,7 @@ def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, method
)
n = parts.sum().item()
print(f"{m} | {k} | {n} | {parts.tolist()}", end="")
print(f'{m} | {k} | {n} | {parts.tolist()}', end='')
for method in methods:
best_time_us = 1e20
@ -285,36 +249,32 @@ def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, method
if kernel_dur_us < best_time_us:
best_time_us = kernel_dur_us
print(f" | {kernel_dur_us:.0f}", end="")
print(f' | {kernel_dur_us:.0f}', end='')
print("")
print('')
def run_timing(
num_calls: int, m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, method
) -> float:
def run_timing(num_calls: int, m: int, k: int, parts: torch.Tensor,
nbooks: int, bits: int, method) -> float:
n = int(parts.sum().item())
device = torch.device("cuda:0")
device = torch.device('cuda:0')
input = torch.randn((1, m, k), dtype=torch.float16, device=device)
code_range = (1 << bits) // 2
ingroups = 8
codes = torch.randint(
-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device,
)
codes = torch.randint(-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device)
codebooks = torch.randn(
size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device,
)
codebooks = torch.randn(size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device)
scales = torch.randn(size=(n, 1, 1, 1), dtype=torch.float16, device=device)

View File

@ -1,241 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from vllm.model_executor.layers.quantization.utils.bitblas_utils import (
MINIMUM_BITBLAS_VERSION,
)
try:
import bitblas
if bitblas.__version__ < MINIMUM_BITBLAS_VERSION:
raise ImportError(
"bitblas version is wrong. Please "
f"install bitblas>={MINIMUM_BITBLAS_VERSION}"
)
except ImportError as e:
bitblas_import_exception = e
raise ValueError(
"Trying to use the bitblas backend, but could not import"
f"with the following error: {bitblas_import_exception}. "
"Please install bitblas through the following command: "
f"`pip install bitblas>={MINIMUM_BITBLAS_VERSION}`"
) from bitblas_import_exception
from bitblas import Matmul, MatmulConfig, auto_detect_nvidia_target
from vllm.utils import FlexibleArgumentParser
parser = FlexibleArgumentParser(
description="Benchmark BitBLAS int4 on a specific target."
)
# Add arguments to the parser
parser.add_argument(
"--target",
type=str,
default=auto_detect_nvidia_target(),
help="Specify the target device for benchmarking.",
)
parser.add_argument(
"--group_size", type=int, default=None, help="Group size for grouped quantization."
)
parser.add_argument(
"--A_dtype",
type=str,
default="float16",
choices=["float16", "float32", "float64", "int32", "int8"],
help="Data type of activation A.",
)
parser.add_argument(
"--W_dtype",
type=str,
default="int4",
choices=[
"float16",
"float32",
"float64",
"int32",
"int8",
"int4",
"int2",
"int1",
"nf4",
"fp4_e2m1",
],
help="Data type of weight W.",
)
parser.add_argument(
"--accum_dtype",
type=str,
default="float16",
choices=["float16", "int32"],
help="Data type for accumulation.",
)
parser.add_argument(
"--out_dtype",
type=str,
default="float16",
choices=["float16", "float32", "int32", "int8"],
help="Data type for output.",
)
parser.add_argument(
"--layout",
type=str,
default="nt",
choices=["nt", "nn"],
help="Matrix layout, 'nt' for non-transpose A and transpose W.",
)
parser.add_argument(
"--with_bias", action="store_true", help="Include bias in the benchmark."
)
parser.add_argument(
"--with_scaling",
action="store_true",
help="Include scaling factor in the quantization.",
)
parser.add_argument(
"--with_zeros", action="store_true", help="Include zeros in the quantization."
)
parser.add_argument(
"--zeros_mode",
type=str,
default=None,
choices=["original", "rescale", "quantized"],
help="Specify the mode for calculating zeros.",
)
# Parse the arguments
args = parser.parse_args()
# Assign arguments to variables
target = args.target
A_dtype = args.A_dtype
W_dtype = args.W_dtype
accum_dtype = args.accum_dtype
out_dtype = args.out_dtype
layout = args.layout
with_bias = args.with_bias
group_size = args.group_size
with_scaling = args.with_scaling
with_zeros = args.with_zeros
zeros_mode = args.zeros_mode
# Define a list of shared arguments that repeat in every config
shared_args = [
A_dtype,
W_dtype,
out_dtype,
accum_dtype,
layout,
with_bias,
group_size,
with_scaling,
with_zeros,
zeros_mode,
]
# Define just the (M, K, N) shapes in a more compact list
shapes = [
# square test
(1, 16384, 16384),
# BLOOM-176B
(1, 43008, 14336),
(1, 14336, 14336),
(1, 57344, 14336),
(1, 14336, 57344),
# OPT-65B
(1, 9216, 9216),
(1, 36864, 9216),
(1, 9216, 36864),
(1, 22016, 8192),
# LLAMA-70B/65B
(1, 8192, 22016),
(1, 8192, 8192),
(1, 28672, 8192),
(1, 8192, 28672),
# square test
(16384, 16384, 16384),
# BLOOM-176B
(8192, 43008, 14336),
(8192, 14336, 14336),
(8192, 57344, 14336),
(8192, 14336, 57344),
# OPT-65B
(8192, 9216, 9216),
(8192, 36864, 9216),
(8192, 9216, 36864),
(8192, 22016, 8192),
# LLAMA-70B/65B
(8192, 8192, 22016),
(8192, 8192, 8192),
(8192, 28672, 8192),
(8192, 8192, 28672),
]
# Build test shapes with all the shared arguments
test_shapes = [(MatmulConfig, Matmul, (*shape, *shared_args)) for shape in shapes]
benchmark_sets = []
benchmark_sets.extend(test_shapes)
benchmark_results = {}
for config_class, operator, input_args in benchmark_sets:
config = config_class(*input_args)
matmul = operator(config, target=target, enable_tuning=True)
kernel_latency = matmul.profile_latency()
print("Time cost is: {:.3f} ms".format(kernel_latency))
profile_config = {
f"{operator.__name__}-{'-'.join([str(i) for i in input_args])}": {
"BitBLAS_top20_latency": kernel_latency,
}
}
benchmark_results.update(profile_config)
# Define headers for the table
headers = [
"PrimFunc",
"Input Arguments",
"BitBLAS Top20 Latency",
]
# Calculate column widths for pretty printing
col_widths = [0, 0, 0]
for config_key, values in benchmark_results.items():
args_split = config_key.split("-")
func_name = args_split[0]
input_args_str = "-".join(args_split[1:])
col_widths[0] = max(col_widths[0], len(func_name) + 2, len(headers[0]) + 2)
col_widths[1] = max(col_widths[1], len(input_args_str) + 2, len(headers[1]) + 2)
col_widths[2] = max(
col_widths[2],
len(f"{values['BitBLAS_top20_latency']:.3f} ms") + 2,
len(headers[2]) + 2,
)
# break only if you want to measure widths from a single example;
# otherwise, let it loop over all items.
# Print header
for i, header in enumerate(headers):
headers[i] = header.ljust(col_widths[i])
print("".join(headers))
print("-" * sum(col_widths))
# Print rows
for config_key, values in benchmark_results.items():
args_split = config_key.split("-")
func_name = args_split[0]
input_args_str = "-".join(args_split[1:])
row = [
func_name,
input_args_str,
f"{values['BitBLAS_top20_latency']:.3f} ms",
]
row_str = "".join(
[str(cell).ljust(col_widths[idx]) for idx, cell in enumerate(row)]
)
print(row_str)

View File

@ -1,489 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
"""
Benchmark the performance of the cutlass_moe_fp4 kernel vs the triton_moe
kernel. The cutlass_moe_fp4 kernel takes in fp4 quantized weights and 16-bit
activations. The triton_moe kernel takes in fp8 weights(tensor scaled to fp8)
and 16-bit activations.
"""
import nvtx
import torch
import torch.utils.benchmark as benchmark
from vllm import _custom_ops as ops
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp4
from vllm.model_executor.layers.fused_moe.fused_moe import fused_experts, fused_topk
from vllm.scalar_type import scalar_types
from vllm.utils import FlexibleArgumentParser
WEIGHT_SHAPES_MOE = {
"nvidia/DeepSeek-R1-FP4": [
[256, 8, 2048, 7168],
],
}
DEFAULT_MODELS = [
"nvidia/DeepSeek-R1-FP4",
]
DEFAULT_BATCH_SIZES = [4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
DEFAULT_TP_SIZES = [1]
PER_ACT_TOKEN_OPTS = [False]
PER_OUT_CH_OPTS = [False]
FLOAT4_E2M1_MAX = scalar_types.float4_e2m1f.max()
FLOAT8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max
def to_fp8(tensor: torch.Tensor):
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(min=finfo.min, max=finfo.max)).to(
dtype=torch.float8_e4m3fn
)
def bench_run(
results: list[benchmark.Measurement],
model: str,
num_experts: int,
topk: int,
per_act_token: bool,
per_out_ch: bool,
mkn: tuple[int, int, int],
):
label = "NVFP4 Blockscaled CUTLASS MOE vs FP8 Tensor Scaled Triton"
sub_label = (
"{}, num_experts={}, topk={}, per_act_token={} per_out_ch={}, MKN=({})".format(
model, num_experts, topk, per_act_token, per_out_ch, mkn
)
)
print(f"Testing: {sub_label}")
(m, k, n) = mkn
dtype = torch.half
device = "cuda"
a = torch.randn((m, k), device=device, dtype=dtype) / 10
w1 = torch.randn((num_experts, 2 * n, k), device=device, dtype=dtype) / 10
w2 = torch.randn((num_experts, k, n), device=device, dtype=dtype) / 10
_, a_fp8_scale = ops.scaled_fp8_quant(a)
w1_fp8q = torch.empty(
(num_experts, 2 * n, k), device=device, dtype=torch.float8_e4m3fn
)
w2_fp8q = torch.empty((num_experts, k, n), device=device, dtype=torch.float8_e4m3fn)
w1_fp8scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
w2_fp8scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
for expert in range(num_experts):
w1_fp8q[expert], w1_fp8scale[expert] = ops.scaled_fp8_quant(w1[expert])
w2_fp8q[expert], w2_fp8scale[expert] = ops.scaled_fp8_quant(w2[expert])
w1_fp8q_notransp = w1_fp8q.clone()
w2_fp8q_notransp = w2_fp8q.clone()
w1_fp8q = w1_fp8q.transpose(1, 2)
w2_fp8q = w2_fp8q.transpose(1, 2)
score = torch.randn((m, num_experts), device=device, dtype=dtype)
topk_weights, topk_ids = fused_topk(a, score, topk, renormalize=False)
quant_blocksize = 16
w1_blockscale = torch.empty(
(num_experts, 2 * n, k // quant_blocksize),
device=device,
dtype=torch.float8_e4m3fn,
)
w2_blockscale = torch.empty(
(num_experts, k, n // quant_blocksize), device=device, dtype=torch.float8_e4m3fn
)
# n_b_scales = 2 * n if per_out_ch else 1
# k_b_scales = k if per_out_ch else 1
w1_fp4 = torch.empty((num_experts, 2 * n, k // 2), device=device, dtype=torch.uint8)
w2_fp4 = torch.empty((num_experts, k, n // 2), device=device, dtype=torch.uint8)
w1_gs = torch.empty((num_experts,), device=device, dtype=torch.float32)
w2_gs = torch.empty((num_experts,), device=device, dtype=torch.float32)
a1_gs = torch.ones((num_experts,), device=device, dtype=torch.float32)
a2_gs = torch.ones((num_experts,), device=device, dtype=torch.float32)
for expert in range(num_experts):
w1_e = w1[expert]
w2_e = w2[expert]
w1_amax = torch.abs(w1_e).max().to(torch.float32)
w2_amax = torch.abs(w2_e).max().to(torch.float32)
w1_gs[expert] = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w1_amax
w2_gs[expert] = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w2_amax
w1_fp4[expert], w1_blockscale[expert] = ops.scaled_fp4_quant(
w1_e, w1_gs[expert]
)
w2_fp4[expert], w2_blockscale[expert] = ops.scaled_fp4_quant(
w2_e, w2_gs[expert]
)
def run_triton_moe(
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
a_fp8_scale: torch.Tensor,
num_repeats: int,
):
for _ in range(num_repeats):
fused_experts(
a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_fp8_scale,
)
def run_cutlass_moe_fp4(
a: torch.Tensor,
w1_fp4: torch.Tensor,
w2_fp4: torch.Tensor,
w1_blockscale: torch.Tensor,
w2_blockscale: torch.Tensor,
w1_gs: torch.Tensor,
w2_gs: torch.Tensor,
a1_gs: torch.Tensor,
a2_gs: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
m: int,
n: int,
k: int,
e: int,
device: torch.device,
num_repeats: int,
):
for _ in range(num_repeats):
with nvtx.annotate("cutlass_moe_fp4", color="green"):
cutlass_moe_fp4(
a=a,
a1_gscale=a1_gs,
a2_gscale=a2_gs,
w1_fp4=w1_fp4,
w1_blockscale=w1_blockscale,
w1_alphas=w1_gs,
w2_fp4=w2_fp4,
w2_blockscale=w2_blockscale,
w2_alphas=w2_gs,
topk_weights=topk_weights,
topk_ids=topk_ids,
m=m,
n=n,
k=k,
e=num_experts,
device=device,
)
def run_cutlass_from_graph(
a: torch.Tensor,
a1_gscale: torch.Tensor,
w1_fp4: torch.Tensor,
w1_blockscale: torch.Tensor,
w1_alphas: torch.Tensor,
a2_gscale: torch.Tensor,
w2_fp4: torch.Tensor,
w2_blockscale: torch.Tensor,
w2_alphas: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
m: int,
n: int,
k: int,
e: int,
device: torch.device,
):
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
):
return cutlass_moe_fp4(
a=a,
a1_gscale=a1_gs,
w1_fp4=w1_fp4,
w1_blockscale=w1_blockscale,
w1_alphas=w1_alphas,
a2_gscale=a2_gs,
w2_fp4=w2_fp4,
w2_blockscale=w2_blockscale,
w2_alphas=w2_alphas,
topk_weights=topk_weights,
topk_ids=topk_ids,
m=m,
n=n,
k=k,
e=num_experts,
device=device,
)
def run_triton_from_graph(
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
a_fp8_scale: torch.Tensor,
):
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
):
return fused_experts(
a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_fp8_scale,
)
def replay_graph(graph, num_repeats):
for _ in range(num_repeats):
graph.replay()
torch.cuda.synchronize()
cutlass_stream = torch.cuda.Stream()
cutlass_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(cutlass_graph, stream=cutlass_stream):
run_cutlass_from_graph(
a=a,
a1_gscale=a1_gs,
w1_fp4=w1_fp4,
w1_blockscale=w1_blockscale,
w1_alphas=w1_gs,
a2_gscale=a2_gs,
w2_fp4=w2_fp4,
w2_blockscale=w2_blockscale,
w2_alphas=w2_gs,
topk_weights=topk_weights,
topk_ids=topk_ids,
m=m,
n=n,
k=k,
e=num_experts,
device=device,
)
torch.cuda.synchronize()
triton_stream = torch.cuda.Stream()
triton_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(triton_graph, stream=triton_stream):
run_triton_from_graph(
a,
w1_fp8q_notransp,
w2_fp8q_notransp,
topk_weights,
topk_ids,
w1_fp8scale,
w2_fp8scale,
a_fp8_scale,
)
torch.cuda.synchronize()
min_run_time = 5
num_warmup = 5
num_runs = 25
globals = {
# Baseline params
"w1": w1,
"w2": w2,
"score": score,
"topk": topk,
"w1_fp8q_notransp": w1_fp8q_notransp,
"w2_fp8q_notransp": w2_fp8q_notransp,
"w1_fp8scale": w1_fp8scale,
"w2_fp8scale": w2_fp8scale,
"a_fp8_scale": a_fp8_scale,
# Cutlass params
"a": a,
"a1_gscale": a1_gs,
"w1_fp4": w1_fp4,
"w1_blockscale": w1_blockscale,
"w1_alphas": w1_gs,
"a2_gscale": a2_gs,
"w2_fp4": w2_fp4,
"w2_blockscale": w2_blockscale,
"w2_alphas": w2_gs,
"topk_weights": topk_weights,
"topk_ids": topk_ids,
"m": m,
"n": n,
"k": k,
"e": num_experts,
"device": device,
# cuda graph params
"cutlass_graph": cutlass_graph,
"triton_graph": triton_graph,
# Gen params
"num_runs": num_runs,
# Kernels
"run_triton_moe": run_triton_moe,
"run_cutlass_moe_fp4": run_cutlass_moe_fp4,
"replay_graph": replay_graph,
}
# Warmup
run_triton_moe(
a,
w1_fp8q_notransp,
w2_fp8q_notransp,
topk_weights,
topk_ids,
w1_fp8scale,
w2_fp8scale,
a_fp8_scale,
num_warmup,
)
results.append(
benchmark.Timer(
stmt="run_triton_moe(a, w1_fp8q_notransp, w2_fp8q_notransp, topk_weights, topk_ids, w1_fp8scale, w2_fp8scale, a_fp8_scale, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="triton_moe",
).blocked_autorange(min_run_time=min_run_time)
)
# Warmup
replay_graph(triton_graph, num_warmup)
results.append(
benchmark.Timer(
stmt="replay_graph(triton_graph, num_runs)",
globals=globals,
label=label,
sub_label=sub_label,
description="triton_moe_cuda_graphs",
).blocked_autorange(min_run_time=min_run_time)
)
# Warmup
run_cutlass_moe_fp4(
a,
w1_fp4,
w2_fp4,
w1_blockscale,
w2_blockscale,
w1_gs,
w2_gs,
a1_gs,
a2_gs,
topk_weights,
topk_ids,
m,
n,
k,
num_experts,
device,
num_warmup,
)
results.append(
benchmark.Timer(
stmt="run_cutlass_moe_fp4(a, w1_fp4, w2_fp4, w1_blockscale, w2_blockscale, w1_alphas, w2_alphas, a1_gscale, a2_gscale, topk_weights, topk_ids, m, n, k, e, device, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="cutlass_moe_fp4",
).blocked_autorange(min_run_time=min_run_time)
)
# Warmup
replay_graph(cutlass_graph, num_warmup)
results.append(
benchmark.Timer(
stmt="replay_graph(cutlass_graph, num_runs)",
globals=globals,
label=label,
sub_label=sub_label,
description="cutlass_moe_fp4_cuda_graphs",
).blocked_autorange(min_run_time=min_run_time)
)
def main(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
results: list[benchmark.Measurement] = []
for model in args.models:
for tp in args.tp_sizes:
for layer in WEIGHT_SHAPES_MOE[model]:
num_experts = layer[0]
topk = layer[1]
size_k = layer[2]
size_n = layer[3] // tp
if len(args.limit_k) > 0 and size_k not in args.limit_k:
continue
if len(args.limit_n) > 0 and size_n not in args.limit_n:
continue
for per_act_token in PER_ACT_TOKEN_OPTS:
for per_out_ch in PER_OUT_CH_OPTS:
for size_m in args.batch_sizes:
mkn = (size_m, size_k, size_n)
bench_run(
results,
model,
num_experts,
topk,
per_act_token,
per_out_ch,
mkn,
)
compare = benchmark.Compare(results)
compare.print()
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark NVFP4 CUTLASS MOE across specified models/shapes/batches"
)
parser.add_argument(
"--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES_MOE.keys(),
)
parser.add_argument("--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES)
parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
parser.add_argument("--limit-num-groups", nargs="+", type=int, default=[])
parser.add_argument("--limit-per-act-token", nargs="+", type=int, default=[])
parser.add_argument("--limit-per-out-ch", nargs="+", type=int, default=[])
args = parser.parse_args()
main(args)

View File

@ -6,18 +6,14 @@ from benchmark_shapes import WEIGHT_SHAPES_MOE
from vllm import _custom_ops as ops
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.fused_moe import (
cutlass_moe_fp8,
fused_experts,
fused_topk,
)
from vllm.model_executor.layers.fused_moe.fused_moe import (cutlass_moe_fp8,
fused_experts,
fused_topk)
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = [
"nm-testing/Mixtral-8x7B-Instruct-v0.1",
"nm-testing/deepseekv2-lite",
"ibm-granite/granite-3.0-1b-a400m",
"ibm-granite/granite-3.0-3b-a800m",
"nm-testing/Mixtral-8x7B-Instruct-v0.1", "nm-testing/deepseekv2-lite",
"ibm-granite/granite-3.0-1b-a400m", "ibm-granite/granite-3.0-3b-a800m"
]
DEFAULT_BATCH_SIZES = [1, 4, 8, 16, 32, 64, 128, 256, 512]
DEFAULT_TP_SIZES = [1]
@ -28,27 +24,19 @@ PER_OUT_CH_OPTS = [False]
def to_fp8(tensor: torch.Tensor):
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(min=finfo.min, max=finfo.max)).to(
dtype=torch.float8_e4m3fn
)
return torch.round(tensor.clamp(
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
def bench_run(
results: list[benchmark.Measurement],
model: str,
num_experts: int,
topk: int,
per_act_token: bool,
per_out_ch: bool,
mkn: tuple[int, int, int],
):
def bench_run(results: list[benchmark.Measurement], model: str,
num_experts: int, topk: int, per_act_token: bool,
per_out_ch: bool, mkn: tuple[int, int, int]):
label = "Quant Matmul"
sub_label = (
"{}, num_experts={}, topk={}, per_act_token={} per_out_ch={}, MKN=({})".format(
model, num_experts, topk, per_act_token, per_out_ch, mkn
)
)
"{}, num_experts={}, topk={}, per_act_token={} per_out_ch={}, "
"MKN=({})".format(model, num_experts, topk, per_act_token, per_out_ch,
mkn))
print(f"Testing: {sub_label}")
@ -62,17 +50,35 @@ def bench_run(
_, a_scale = ops.scaled_fp8_quant(a)
w1_q = torch.empty(
(num_experts, 2 * n, k), device="cuda", dtype=torch.float8_e4m3fn
)
w2_q = torch.empty((num_experts, k, n), device="cuda", dtype=torch.float8_e4m3fn)
w1_scale = torch.empty((num_experts, 1, 1), device="cuda", dtype=torch.float32)
w2_scale = torch.empty((num_experts, 1, 1), device="cuda", dtype=torch.float32)
w1_q = torch.empty((num_experts, 2 * n, k),
device="cuda",
dtype=torch.float8_e4m3fn)
w2_q = torch.empty((num_experts, k, n),
device="cuda",
dtype=torch.float8_e4m3fn)
w1_scale = torch.empty((num_experts, 1, 1),
device="cuda",
dtype=torch.float32)
w2_scale = torch.empty((num_experts, 1, 1),
device="cuda",
dtype=torch.float32)
ab_strides1 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
c_strides1 = torch.full((num_experts,), 2 * n, device="cuda", dtype=torch.int64)
ab_strides2 = torch.full((num_experts,), n, device="cuda", dtype=torch.int64)
c_strides2 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
ab_strides1 = torch.full((num_experts, ),
k,
device="cuda",
dtype=torch.int64)
c_strides1 = torch.full((num_experts, ),
2 * n,
device="cuda",
dtype=torch.int64)
ab_strides2 = torch.full((num_experts, ),
n,
device="cuda",
dtype=torch.int64)
c_strides2 = torch.full((num_experts, ),
k,
device="cuda",
dtype=torch.int64)
for expert in range(num_experts):
w1_q[expert], w1_scale[expert] = ops.scaled_fp8_quant(w1[expert])
@ -84,121 +90,82 @@ def bench_run(
score = torch.randn((m, num_experts), device="cuda", dtype=dtype)
topk_weights, topk_ids, token_expert_indices = fused_topk(
a, score, topk, renormalize=False
)
topk_weights, topk_ids = fused_topk(a, score, topk, renormalize=False)
def run_triton_moe(
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
a_scale: torch.Tensor,
num_repeats: int,
):
def run_triton_moe(a: torch.Tensor, w1: torch.Tensor, w2: torch.Tensor,
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
w1_scale: torch.Tensor, w2_scale: torch.Tensor,
a_scale: torch.Tensor, num_repeats: int):
for _ in range(num_repeats):
fused_experts(
a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_scale,
)
fused_experts(a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_scale)
def run_cutlass_moe(
a: torch.Tensor,
a_scale: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
ab_strides1: torch.Tensor,
c_strides1: torch.Tensor,
ab_strides2: torch.Tensor,
c_strides2: torch.Tensor,
num_repeats: int,
):
def run_cutlass_moe(a: torch.Tensor, a_scale: torch.Tensor,
w1: torch.Tensor, w2: torch.Tensor,
w1_scale: torch.Tensor, w2_scale: torch.Tensor,
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
ab_strides1: torch.Tensor, c_strides1: torch.Tensor,
ab_strides2: torch.Tensor, c_strides2: torch.Tensor,
num_repeats: int):
for _ in range(num_repeats):
cutlass_moe_fp8(
a,
w1,
w2,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
a1_scale=a_scale,
)
cutlass_moe_fp8(a,
w1,
w2,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
a1_scale=a_scale)
def run_cutlass_from_graph(
a: torch.Tensor,
a_scale: torch.Tensor,
w1_q: torch.Tensor,
w2_q: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
ab_strides1: torch.Tensor,
c_strides1: torch.Tensor,
ab_strides2: torch.Tensor,
c_strides2: torch.Tensor,
):
a: torch.Tensor, a_scale: torch.Tensor, w1_q: torch.Tensor,
w2_q: torch.Tensor, w1_scale: torch.Tensor, w2_scale: torch.Tensor,
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
ab_strides1: torch.Tensor, c_strides1: torch.Tensor,
ab_strides2: torch.Tensor, c_strides2: torch.Tensor):
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
):
return cutlass_moe_fp8(
a,
w1_q,
w2_q,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
a1_scale=a_scale,
)
VllmConfig(parallel_config=ParallelConfig(
pipeline_parallel_size=1))):
return cutlass_moe_fp8(a,
w1_q,
w2_q,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
a1_scale=a_scale)
def run_triton_from_graph(
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
a_scale: torch.Tensor,
):
def run_triton_from_graph(a: torch.Tensor, w1: torch.Tensor,
w2: torch.Tensor, topk_weights: torch.Tensor,
topk_ids: torch.Tensor, w1_scale: torch.Tensor,
w2_scale: torch.Tensor, a_scale: torch.Tensor):
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
):
return fused_experts(
a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_scale,
)
VllmConfig(parallel_config=ParallelConfig(
pipeline_parallel_size=1))):
return fused_experts(a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_scale)
def replay_graph(graph, num_repeats):
for _ in range(num_repeats):
@ -208,35 +175,16 @@ def bench_run(
cutlass_stream = torch.cuda.Stream()
cutlass_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(cutlass_graph, stream=cutlass_stream):
run_cutlass_from_graph(
a,
a_scale,
w1_q,
w2_q,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
)
run_cutlass_from_graph(a, a_scale, w1_q, w2_q, w1_scale, w2_scale,
topk_weights, topk_ids, ab_strides1, c_strides1,
ab_strides2, c_strides2)
torch.cuda.synchronize()
triton_stream = torch.cuda.Stream()
triton_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(triton_graph, stream=triton_stream):
run_triton_from_graph(
a,
w1_q_notransp,
w2_q_notransp,
topk_weights,
topk_ids,
w1_scale,
w2_scale,
a_scale,
)
run_triton_from_graph(a, w1_q_notransp, w2_q_notransp, topk_weights,
topk_ids, w1_scale, w2_scale, a_scale)
torch.cuda.synchronize()
min_run_time = 5
@ -276,27 +224,18 @@ def bench_run(
}
# Warmup
run_triton_moe(
a,
w1_q_notransp,
w2_q_notransp,
topk_weights,
topk_ids,
w1_scale,
w2_scale,
a_scale,
num_warmup,
)
run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids,
w1_scale, w2_scale, a_scale, num_warmup)
results.append(
benchmark.Timer(
stmt="run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
stmt=
"run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="triton_moe",
).blocked_autorange(min_run_time=min_run_time)
)
).blocked_autorange(min_run_time=min_run_time))
# Warmup
replay_graph(triton_graph, num_warmup)
@ -308,35 +247,22 @@ def bench_run(
label=label,
sub_label=sub_label,
description="triton_moe_cuda_graphs",
).blocked_autorange(min_run_time=min_run_time)
)
).blocked_autorange(min_run_time=min_run_time))
# Warmup
run_cutlass_moe(
a,
a_scale,
w1_q,
w2_q,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
num_warmup,
)
run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights,
topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2,
num_warmup)
results.append(
benchmark.Timer(
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2, num_runs)", # noqa: E501
stmt=
"run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="grouped_gemm_moe",
).blocked_autorange(min_run_time=min_run_time)
)
).blocked_autorange(min_run_time=min_run_time))
# Warmup
replay_graph(cutlass_graph, num_warmup)
@ -348,8 +274,7 @@ def bench_run(
label=label,
sub_label=sub_label,
description="grouped_gemm_moe_cuda_graphs",
).blocked_autorange(min_run_time=min_run_time)
)
).blocked_autorange(min_run_time=min_run_time))
def main(args):
@ -377,15 +302,8 @@ def main(args):
for per_out_ch in PER_OUT_CH_OPTS:
for size_m in DEFAULT_BATCH_SIZES:
mkn = (size_m, size_k, size_n)
bench_run(
results,
model,
num_experts,
topk,
per_act_token,
per_out_ch,
mkn,
)
bench_run(results, model, num_experts, topk,
per_act_token, per_out_ch, mkn)
compare = benchmark.Compare(results)
compare.print()
@ -393,8 +311,7 @@ def main(args):
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark Marlin across specified models/shapes/batches"
)
description="Benchmark Marlin across specified models/shapes/batches")
parser.add_argument(
"--models",
nargs="+",
@ -402,14 +319,21 @@ if __name__ == "__main__":
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES_MOE.keys(),
)
parser.add_argument("--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES)
parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
parser.add_argument("--tp-sizes",
nargs="+",
type=int,
default=DEFAULT_TP_SIZES)
parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
parser.add_argument("--limit-num-groups", nargs="+", type=int, default=[])
parser.add_argument("--limit-per-act-token", nargs="+", type=int, default=[])
parser.add_argument("--limit-per-act-token",
nargs="+",
type=int,
default=[])
parser.add_argument("--limit-per-out-ch", nargs="+", type=int, default=[])
args = parser.parse_args()

View File

@ -10,16 +10,14 @@ from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
@torch.inference_mode()
def main(
num_tokens: int,
hidden_size: int,
add_residual: bool,
dtype: torch.dtype,
seed: int = 0,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100,
) -> None:
def main(num_tokens: int,
hidden_size: int,
add_residual: bool,
dtype: torch.dtype,
seed: int = 0,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100) -> None:
current_platform.seed_everything(seed)
torch.set_default_device("cuda")
@ -58,35 +56,33 @@ def main(
print(f"Kernel running time: {latency * 1000000:.3f} us")
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the layernorm kernel.")
if __name__ == '__main__':
parser = FlexibleArgumentParser(
description="Benchmark the layernorm kernel.")
parser.add_argument("--num-tokens", type=int, default=4096)
parser.add_argument("--hidden-size", type=int, default=8192)
parser.add_argument("--add-residual", action="store_true")
parser.add_argument(
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="half"
)
parser.add_argument("--dtype",
type=str,
choices=["half", "bfloat16", "float"],
default="half")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--profile", action="store_true")
parser.add_argument("--num-warmup-iters", type=int, default=5)
parser.add_argument(
"--num-iters",
type=int,
default=100,
help="Number of benchmark iterations. "
"If --profile is set, this number is ignored",
)
parser.add_argument("--num-iters",
type=int,
default=100,
help="Number of benchmark iterations. "
"If --profile is set, this number is ignored")
args = parser.parse_args()
print(args)
main(
num_tokens=args.num_tokens,
hidden_size=args.hidden_size,
add_residual=args.add_residual,
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
seed=args.seed,
do_profile=args.profile,
num_warmup_iters=args.num_warmup_iters,
num_iters=args.num_iters,
)
main(num_tokens=args.num_tokens,
hidden_size=args.hidden_size,
add_residual=args.add_residual,
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
seed=args.seed,
do_profile=args.profile,
num_warmup_iters=args.num_warmup_iters,
num_iters=args.num_iters)

File diff suppressed because it is too large Load Diff

View File

@ -20,18 +20,12 @@ from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
GPTQ_MARLIN_MAX_PARALLEL,
GPTQ_MARLIN_MIN_THREAD_N,
marlin_permute_scales,
marlin_zero_points,
)
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N, marlin_permute_scales,
marlin_zero_points)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
MarlinWorkspace,
)
MarlinWorkspace)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
pack_rows,
quantize_weights,
)
pack_rows, quantize_weights)
from vllm.scalar_type import ScalarType, scalar_types
from vllm.utils import FlexibleArgumentParser
@ -88,14 +82,12 @@ def rand_data(shape, dtype=torch.float16, scale=1):
return torch.randint(-15, 15, shape, dtype=dtype, device="cuda")
def quantize_and_pack(
atype: torch.dtype,
w: torch.Tensor,
wtype: ScalarType,
stype: Optional[torch.dtype],
group_size: Optional[int],
zero_points: bool = False,
):
def quantize_and_pack(atype: torch.dtype,
w: torch.Tensor,
wtype: ScalarType,
stype: Optional[torch.dtype],
group_size: Optional[int],
zero_points: bool = False):
assert wtype.is_integer(), "TODO: support floating point weights"
w_ref, w_q, w_s, w_zp = quantize_weights(
@ -104,24 +96,21 @@ def quantize_and_pack(
group_size=group_size,
zero_points=zero_points,
# to match how the kernel applies zps
ref_zero_points_after_scales=True,
)
ref_zero_points_after_scales=True)
w_q = pack_rows(w_q, wtype.size_bits, *w_q.shape)
return w_ref, w_q, w_s, w_zp
def create_bench_tensors(
shape: tuple[int, int, int], types: TypeConfig, group_size: Optional[int]
) -> list[BenchmarkTensors]:
def create_bench_tensors(shape: tuple[int, int, int], types: TypeConfig,
group_size: Optional[int]) -> list[BenchmarkTensors]:
m, n, k = shape
# we want to make sure that weights don't fit into L2 cache between runs so
# we construct enough weights to exceed L2 cache, which is 50mb on a H100
# so we target total weight size > 2*50mb
num_weights = math.ceil(
2 * 50 * 1024**2 * 8 / (k * n * types.weight_type.size_bits)
)
num_weights = math.ceil(2 * 50 * 1024**2 * 8 /
(k * n * types.weight_type.size_bits))
a = rand_data((m, k), types.act_type, scale=5)
@ -135,13 +124,8 @@ def create_bench_tensors(
w = w.to(torch.float16)
w_ref, w_q_packed, w_s, w_zp = quantize_and_pack(
a.dtype,
w,
types.weight_type,
types.group_scale_type,
group_size,
types.group_zero_type is not None,
)
a.dtype, w, types.weight_type, types.group_scale_type, group_size,
types.group_zero_type is not None)
if not a.dtype.is_floating_point:
aiinfo = torch.iinfo(a.dtype)
@ -149,30 +133,21 @@ def create_bench_tensors(
w_ref = w_ref.to(torch.float32)
w_ch_s = (
None
if types.channel_scale_type is None
else rand_data((n,), types.channel_scale_type)
)
w_tok_s = (
None
if types.token_scale_type is None
else rand_data((m,), types.token_scale_type)
)
w_ch_s = None if types.channel_scale_type is None else\
rand_data((n,), types.channel_scale_type)
w_tok_s = None if types.token_scale_type is None else\
rand_data((m,), types.token_scale_type)
benchmark_tensors.append(
BenchmarkTensors(
w_ref=w_ref,
a=a,
w_q=w_q_packed,
wtype=types.weight_type,
w_g_s=w_s,
w_g_zp=w_zp,
group_size=group_size,
w_ch_s=w_ch_s,
w_tok_s=w_tok_s,
)
)
BenchmarkTensors(w_ref=w_ref,
a=a,
w_q=w_q_packed,
wtype=types.weight_type,
w_g_s=w_s,
w_g_zp=w_zp,
group_size=group_size,
w_ch_s=w_ch_s,
w_tok_s=w_tok_s))
return benchmark_tensors
@ -195,57 +170,50 @@ def cutlass_scaled_mm_create_bench_fn(bt: BenchmarkTensors) -> Callable:
scale_b = torch.tensor(1.0, dtype=torch.float32, device=bt.a.device)
w_col_major = bt.w_ref.to(bt.a.dtype).t().contiguous().t()
return lambda: ops.cutlass_scaled_mm(
bt.a, w_col_major, scale_a, scale_b, out_dtype=torch.float16
)
bt.a, w_col_major, scale_a, scale_b, out_dtype=torch.float16)
def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
device = bt.a.device
workspace = MarlinWorkspace(
bt.w_ref.shape[1], GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL
)
workspace = MarlinWorkspace(bt.w_ref.shape[1], GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_MAX_PARALLEL)
if bt.w_g_zp is None:
w_zp = torch.empty(0, dtype=torch.int, device=device)
else:
w_zp = marlin_zero_points(
bt.w_g_zp, bt.w_ref.shape[0], bt.w_ref.shape[1], bt.wtype.size_bits
)
w_zp = marlin_zero_points(bt.w_g_zp, bt.w_ref.shape[0],
bt.w_ref.shape[1], bt.wtype.size_bits)
if bt.group_size is None:
w_s = torch.tensor([], device="cuda", dtype=torch.half)
else:
w_s = marlin_permute_scales(
bt.w_g_s, bt.w_ref.shape[0], bt.w_ref.shape[1], bt.group_size
)
w_s = marlin_permute_scales(bt.w_g_s, bt.w_ref.shape[0],
bt.w_ref.shape[1], bt.group_size)
sort_indices = torch.empty(0, dtype=torch.int, device=device)
g_idx = torch.empty(0, dtype=torch.int, device=device)
w_q = ops.gptq_marlin_repack(
bt.w_q, sort_indices, bt.w_ref.shape[0], bt.w_ref.shape[1], bt.wtype.size_bits
)
w_q = ops.gptq_marlin_repack(bt.w_q, sort_indices, bt.w_ref.shape[0],
bt.w_ref.shape[1], bt.wtype.size_bits)
if bt.a.dtype.is_floating_point:
assert bt.w_ch_s is None
assert bt.w_tok_s is None
assert bt.group_size is not None
fn = lambda: ops.gptq_marlin_gemm(
a=bt.a,
b_q_weight=w_q,
b_scales=w_s,
b_zeros=w_zp,
g_idx=g_idx,
perm=sort_indices,
workspace=workspace.scratch,
b_q_type=bt.wtype,
size_m=bt.a.shape[0],
size_n=bt.w_ref.shape[1],
size_k=bt.w_ref.shape[0],
is_k_full=True,
is_zp_float=False,
)
fn = lambda: ops.gptq_marlin_gemm(a=bt.a,
b_q_weight=w_q,
b_scales=w_s,
b_zeros=w_zp,
g_idx=g_idx,
perm=sort_indices,
workspace=workspace.scratch,
b_q_type=bt.wtype,
size_m=bt.a.shape[0],
size_n=bt.w_ref.shape[1],
size_k=bt.w_ref.shape[0],
is_k_full=True,
is_zp_float=False)
else:
assert bt.a.dtype == torch.int8
assert bt.wtype == scalar_types.uint4b8
@ -253,35 +221,36 @@ def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
if bt.w_ch_s is not None:
s_ch = bt.w_ch_s.to(torch.float32)
else:
s_ch = torch.ones(bt.w_ref.shape[1], dtype=torch.float32, device=device)
s_ch = torch.ones(bt.w_ref.shape[1],
dtype=torch.float32,
device=device)
if bt.w_tok_s is not None:
s_tok = bt.w_tok_s.to(torch.float32)
else:
s_tok = torch.ones(bt.a.shape[0], dtype=torch.float32, device=device)
s_tok = torch.ones(bt.a.shape[0],
dtype=torch.float32,
device=device)
fn = lambda: ops.marlin_qqq_gemm(
a=bt.a,
b_q_weight=w_q,
s_group=w_s,
s_tok=s_tok,
s_ch=s_ch,
workspace=workspace.scratch,
size_m=bt.a.shape[0],
size_n=bt.w_ref.shape[1],
size_k=bt.w_ref.shape[0],
)
fn = lambda: ops.marlin_qqq_gemm(a=bt.a,
b_q_weight=w_q,
s_group=w_s,
s_tok=s_tok,
s_ch=s_ch,
workspace=workspace.scratch,
size_m=bt.a.shape[0],
size_n=bt.w_ref.shape[1],
size_k=bt.w_ref.shape[0])
return fn
def machete_create_bench_fn(
bt: BenchmarkTensors, out_type=torch.dtype, schedule=None
) -> Callable:
def machete_create_bench_fn(bt: BenchmarkTensors,
out_type=torch.dtype,
schedule=None) -> Callable:
w_q = bt.w_q.t().contiguous().t() # make col major
w_q = ops.machete_prepack_B(
w_q, bt.a.dtype, bt.wtype, None if bt.w_g_s is None else bt.w_g_s.dtype
)
w_q = ops.machete_prepack_B(w_q, bt.a.dtype, bt.wtype,
None if bt.w_g_s is None else bt.w_g_s.dtype)
w_g_zp = bt.w_g_zp
if w_g_zp is not None:
@ -306,24 +275,26 @@ def machete_create_bench_fn(
# bench
def bench_fns(label: str, sub_label: str, description: str, fns: list[Callable]):
def bench_fns(label: str, sub_label: str, description: str,
fns: list[Callable]):
min_run_time = 1 if not NVTX_PROFILE else 0.1
res = TBenchmark.Timer(
stmt="""
for fn in fns:
fn()
""",
globals={"fns": fns},
globals={
"fns": fns
},
label=label,
sub_label=sub_label,
description=description,
).blocked_autorange(min_run_time=min_run_time)
if NVTX_PROFILE:
with (
nvtx.annotate("mm-bench"),
nvtx.annotate(f"{label}|{sub_label}|{description}"),
):
with nvtx.annotate("mm-bench"), nvtx.annotate(
f"{label}|{sub_label}|{description}"):
fns[0]()
return res
@ -333,20 +304,19 @@ _SWEEP_SCHEDULES_RESULTS: Optional[pd.DataFrame] = None
_SWEEP_SCHEDULES_RESULTS_CSV: Optional[str] = None
def bench(
types: TypeConfig,
group_size: int,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
sweep_schedules: bool = True,
) -> list[TMeasurement]:
def bench(types: TypeConfig,
group_size: int,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
sweep_schedules: bool = True) -> list[TMeasurement]:
benchmark_tensors = create_bench_tensors((m, n, k), types, group_size)
sub_label += f", L={len(benchmark_tensors)}"
name_type_string = f"W{types.weight_type}" + f"-A{terse_type_name(types.act_type)}"
name_type_string = f"W{types.weight_type}"+\
f"-A{terse_type_name(types.act_type)}"
if types.group_scale_type is not None:
name_type_string += f"-GS{terse_type_name(types.group_scale_type)}"
if types.group_zero_type is not None:
@ -362,45 +332,31 @@ def bench(
# pytorch impl
timers.append(
bench_fns(
label,
sub_label,
"torch.matmul (fp16)",
[torch_matmul_f16_create_bench_fn(bt) for bt in benchmark_tensors],
)
)
label, sub_label, "torch.matmul (fp16)",
[torch_matmul_f16_create_bench_fn(bt)
for bt in benchmark_tensors]))
if types.act_type == torch.int8 or types.act_type == torch.float8_e4m3fn:
timers.append(
bench_fns(
label,
sub_label,
f"cutlass_scaled_mm ({terse_type_name(types.act_type)})",
[cutlass_scaled_mm_create_bench_fn(bt) for bt in benchmark_tensors],
)
)
label, sub_label,
f"cutlass_scaled_mm ({terse_type_name(types.act_type)})", [
cutlass_scaled_mm_create_bench_fn(bt)
for bt in benchmark_tensors
]))
if types.act_type != torch.float8_e4m3fn:
timers.append(
bench_fns(
label,
sub_label,
f"marlin ({name_type_string})",
[marlin_create_bench_fn(bt) for bt in benchmark_tensors],
)
)
bench_fns(label, sub_label, f"marlin ({name_type_string})",
[marlin_create_bench_fn(bt)
for bt in benchmark_tensors]))
# machete
timers.append(
bench_fns(
label,
sub_label,
f"machete ({name_type_string})",
[
machete_create_bench_fn(bt, out_type=types.output_type)
for bt in benchmark_tensors
],
)
)
bench_fns(label, sub_label, f"machete ({name_type_string})", [
machete_create_bench_fn(bt, out_type=types.output_type)
for bt in benchmark_tensors
]))
if sweep_schedules:
global _SWEEP_SCHEDULES_RESULTS
@ -415,8 +371,7 @@ def bench(
group_zeros_type=types.group_zero_type,
token_scales_type=types.token_scale_type,
channel_scales_type=types.channel_scale_type,
out_type=types.output_type,
)
out_type=types.output_type)
if schedules is None or len(schedules) == 0:
raise ValueError("No schedules found to sweep")
@ -428,17 +383,11 @@ def bench(
if schedule_M >= 2 * max(m, 16) or schedule_M < m // 4:
continue
res = bench_fns(
label,
sub_label,
"machete_best",
[
machete_create_bench_fn(
bt, out_type=types.output_type, schedule=schedule
)
for bt in benchmark_tensors
],
)
res = bench_fns(label, sub_label, "machete_best", [
machete_create_bench_fn(
bt, out_type=types.output_type, schedule=schedule)
for bt in benchmark_tensors
])
results_row = {
"M": m,
@ -449,8 +398,10 @@ def bench(
"median": res.median,
}
if _SWEEP_SCHEDULES_RESULTS is None:
_SWEEP_SCHEDULES_RESULTS = pd.DataFrame(columns=results_row.keys())
_SWEEP_SCHEDULES_RESULTS.loc[len(_SWEEP_SCHEDULES_RESULTS)] = results_row
_SWEEP_SCHEDULES_RESULTS = pd.DataFrame(
columns=results_row.keys())
_SWEEP_SCHEDULES_RESULTS.\
loc[len(_SWEEP_SCHEDULES_RESULTS)] = results_row
print(f" {res.median:5.5} ", schedule)
if not best or res.median < best.median:
@ -471,9 +422,8 @@ def print_timers(timers: list[TMeasurement]):
def run(args, MKNs: Iterable[tuple[int, int, int]]) -> Iterable[TMeasurement]:
types = TypeConfig(
act_type=args.act_type,
weight_type=scalar_types.uint4b8
if args.group_zero_type is None
else scalar_types.uint4,
weight_type=scalar_types.uint4b8 if args.group_zero_type is None \
else scalar_types.uint4,
output_type=args.out_type,
group_scale_type=args.group_scale_type,
group_zero_type=args.group_zero_type,
@ -483,16 +433,14 @@ def run(args, MKNs: Iterable[tuple[int, int, int]]) -> Iterable[TMeasurement]:
results: list[TMeasurement] = []
for m, k, n in MKNs:
timers = bench(
types,
args.group_size,
m,
k,
n,
f"{args.act_type}-gemm",
f"MKN=({m}x{k}x{n})",
sweep_schedules=args.sweep_schedules,
)
timers = bench(types,
args.group_size,
m,
k,
n,
f"{args.act_type}-gemm",
f"MKN=({m}x{k}x{n})",
sweep_schedules=args.sweep_schedules)
print_timers(timers)
results.extend(timers)
@ -506,6 +454,7 @@ def make_output(
base_description: str,
timestamp=None,
):
print(f"== All Results {base_description} ====")
print_timers(data)
@ -519,7 +468,8 @@ def make_output(
def run_square_bench(args):
dim_sizes = list(range(args.dim_start, args.dim_end + 1, args.dim_increment))
dim_sizes = list(
range(args.dim_start, args.dim_end + 1, args.dim_increment))
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
data = run(args.dtype, args.sweep_schedules, MKNs)
@ -529,9 +479,8 @@ def run_square_bench(args):
def run_range_bench(args):
m_start, k_start, n_start = (int(x) for x in args.dim_start.split(","))
m_end, k_end, n_end = (int(x) for x in args.dim_end.split(","))
m_increment, k_increment, n_increment = (
int(x) for x in args.dim_increment.split(",")
)
m_increment, k_increment, n_increment = \
(int(x) for x in args.dim_increment.split(","))
Ms = list(range(m_start, m_end + 1, m_increment))
Ks = list(range(k_start, k_end + 1, k_increment))
Ns = list(range(n_start, n_end + 1, n_increment))
@ -543,6 +492,7 @@ def run_range_bench(args):
def run_model_bench(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
@ -585,13 +535,10 @@ def run_model_bench(args):
with open(f"model_bench-{type_string}-{timestr}.pkl", "wb") as f:
args_dict = vars(args)
args_dict.pop("func")
pkl.dump(
{
"args": args_dict,
"results": all_results,
},
f,
)
pkl.dump({
"args": args_dict,
"results": all_results,
}, f)
if __name__ == "__main__":
@ -607,6 +554,7 @@ if __name__ == "__main__":
}[dt]
class ToTorchDtype(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, to_torch_dtype(values))
@ -632,32 +580,32 @@ Benchmark Machete GEMM.
"--act-type",
action=ToTorchDtype,
required=True,
choices=["bfloat16", "float16", "int8", "float8_e4m3fn"],
choices=['bfloat16', 'float16', 'int8', 'float8_e4m3fn'],
)
parser.add_argument(
"--group-scale-type",
action=ToTorchDtype,
choices=["bfloat16", "float16"],
choices=['bfloat16', 'float16'],
)
parser.add_argument(
"--group-zero-type",
type=to_torch_dtype,
choices=["bfloat16", "float16"],
choices=['bfloat16', 'float16'],
)
parser.add_argument(
"--channel-scale-type",
action=ToTorchDtype,
choices=["float"],
choices=['float'],
)
parser.add_argument(
"--token-scale-type",
action=ToTorchDtype,
choices=["float"],
choices=['float'],
)
parser.add_argument(
"--out-type",
action=ToTorchDtype,
choices=["bfloat16", "float16"],
choices=['bfloat16', 'float16'],
)
parser.add_argument(
"--group-size",
@ -670,11 +618,9 @@ Benchmark Machete GEMM.
action="store_true",
help="Run a sweep over all supported schedules",
)
parser.add_argument(
"--sweep-csv-out",
help="CSV to store sweep results",
default="sch_sweep_results.csv",
)
parser.add_argument("--sweep-csv-out",
help="CSV to store sweep results",
default="sch_sweep_results.csv")
subparsers = parser.add_subparsers(dest="cmd", required=True)
square_parser = subparsers.add_parser("square_bench")
@ -688,20 +634,17 @@ Benchmark Machete GEMM.
"--dim-start",
type=str,
required=True,
help="Start value for M,K,N as common separated list",
)
help="Start value for M,K,N as common separated list")
range_parser.add_argument(
"--dim-end",
type=str,
required=True,
help="End value (inclusive) for M,K,N as common separated list",
)
help="End value (inclusive) for M,K,N as common separated list")
range_parser.add_argument(
"--dim-increment",
type=str,
required=True,
help="Increment value for M,K,N as common separated list",
)
help="Increment value for M,K,N as common separated list")
range_parser.set_defaults(func=run_range_bench)
model_parser = subparsers.add_parser("model_bench")
@ -712,12 +655,14 @@ Benchmark Machete GEMM.
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys(),
)
model_parser.add_argument(
"--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES
)
model_parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
model_parser.add_argument("--tp-sizes",
nargs="+",
type=int,
default=DEFAULT_TP_SIZES)
model_parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
model_parser.set_defaults(func=run_model_bench)
args = parser.parse_args()

View File

@ -6,34 +6,19 @@ from benchmark_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.gptq_marlin_24 import (
GPTQ_MARLIN_24_MAX_PARALLEL,
GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES,
GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES,
)
GPTQ_MARLIN_24_MAX_PARALLEL, GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES)
from vllm.model_executor.layers.quantization.utils.allspark_utils import (
ALLSPARK_AMPERE_M_CUBLAS_THRESHOLD,
ALLSPARK_SUPPORTED_QUANT_TYPES,
)
ALLSPARK_AMPERE_M_CUBLAS_THRESHOLD, ALLSPARK_SUPPORTED_QUANT_TYPES)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
GPTQ_MARLIN_MAX_PARALLEL,
GPTQ_MARLIN_MIN_THREAD_N,
MARLIN_SUPPORTED_GROUP_SIZES,
query_marlin_supported_quant_types,
)
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N,
MARLIN_SUPPORTED_GROUP_SIZES, query_marlin_supported_quant_types)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
MarlinWorkspace,
marlin_quantize,
)
MarlinWorkspace, marlin_quantize)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test_24 import (
marlin_24_quantize,
)
marlin_24_quantize)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
gptq_pack,
gptq_quantize_weights,
quantize_weights,
sort_weights,
)
gptq_pack, gptq_quantize_weights, quantize_weights, sort_weights)
from vllm.scalar_type import ScalarType
from vllm.utils import FlexibleArgumentParser
@ -44,29 +29,22 @@ ACT_ORDER_OPTS = [False, True]
K_FULL_OPTS = [False, True]
def bench_run(
results: list[benchmark.Measurement],
model: str,
act_order: bool,
is_k_full: bool,
quant_type: ScalarType,
group_size: int,
size_m: int,
size_k: int,
size_n: int,
):
def bench_run(results: list[benchmark.Measurement], model: str,
act_order: bool, is_k_full: bool, quant_type: ScalarType,
group_size: int, size_m: int, size_k: int, size_n: int):
label = "Quant Matmul"
sub_label = "{}, act={} k_full={}, q={}, g={}, MKN=({}x{}x{})".format(
model, act_order, is_k_full, str(quant_type), group_size, size_m, size_k, size_n
)
sub_label = ("{}, act={} k_full={}, q={}, g={}, "
"MKN=({}x{}x{})".format(model, act_order, is_k_full,
str(quant_type), group_size, size_m,
size_k, size_n))
print(f"Testing: {sub_label}")
a = torch.randn(size_m, size_k).to(torch.half).cuda()
b = torch.rand(size_k, size_n).to(torch.half).cuda()
a_tmp = torch.zeros(size_m, size_k).to(torch.half).cuda()
a_tmp = (torch.zeros(size_m, size_k).to(torch.half).cuda())
# Marlin quant
(
@ -79,16 +57,14 @@ def bench_run(
) = marlin_quantize(b, quant_type, group_size, act_order)
# Marlin_24 quant
(marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s) = (
marlin_24_quantize(b, quant_type, group_size)
)
(marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta,
marlin_24_s) = marlin_24_quantize(b, quant_type, group_size)
marlin_zp = torch.empty(0, dtype=torch.int, device=b.device)
# GPTQ quant
(w_ref, q_w, s, g_idx, rand_perm) = gptq_quantize_weights(
b, quant_type, group_size, act_order
)
(w_ref, q_w, s, g_idx,
rand_perm) = gptq_quantize_weights(b, quant_type, group_size, act_order)
q_w_gptq = gptq_pack(q_w, quant_type.size_bits, size_k, size_n)
# For act_order, sort the "weights" and "g_idx"
@ -98,37 +74,32 @@ def bench_run(
(q_w, g_idx, repack_sort_indices) = sort_weights(q_w, g_idx)
# Prepare
marlin_workspace = MarlinWorkspace(
size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL
)
marlin_workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_MAX_PARALLEL)
marlin_24_workspace = MarlinWorkspace(
size_n, GPTQ_MARLIN_24_MIN_THREAD_N, GPTQ_MARLIN_24_MAX_PARALLEL
)
marlin_24_workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_MAX_PARALLEL)
marlin_zp = torch.zeros_like(marlin_s, dtype=torch.int)
# AllSpark W8A16 quant
as_supported_case = (
quant_type in ALLSPARK_SUPPORTED_QUANT_TYPES
and group_size == -1
and not act_order
and is_k_full
)
as_supported_case = (quant_type in ALLSPARK_SUPPORTED_QUANT_TYPES
and group_size == -1 and not act_order and is_k_full)
if as_supported_case:
properties = torch.cuda.get_device_properties(b.device.index)
sm_count = properties.multi_processor_count
sm_version = properties.major * 10 + properties.minor
supported_arch = sm_version >= 80 and sm_version < 90
supported_arch = (sm_version >= 80 and sm_version < 90)
as_supported_case = as_supported_case and supported_arch
if supported_arch:
has_zp = False
w_ref, qw, s, zp = quantize_weights(b, quant_type, group_size, has_zp)
w_ref, qw, s, zp = quantize_weights(b, quant_type, group_size,
has_zp)
qw = qw.to(torch.uint8)
qw_reorder, s_reorder, zp_reorder = ops.allspark_repack_weight(
qw, s, zp, has_zp
)
qw_reorder, s_reorder, zp_reorder = \
ops.allspark_repack_weight(
qw, s, zp, has_zp)
CUBLAS_M_THRESHOLD = ALLSPARK_AMPERE_M_CUBLAS_THRESHOLD
globals = {
@ -165,7 +136,8 @@ def bench_run(
"zp_reorder": zp_reorder if as_supported_case else None,
"sm_count": sm_count if as_supported_case else None,
"sm_version": sm_version if as_supported_case else None,
"CUBLAS_M_THRESHOLD": CUBLAS_M_THRESHOLD if as_supported_case else None,
"CUBLAS_M_THRESHOLD":
CUBLAS_M_THRESHOLD if as_supported_case else None,
# Kernels
"gptq_marlin_gemm": ops.gptq_marlin_gemm,
"gptq_marlin_24_gemm": ops.gptq_marlin_24_gemm,
@ -186,63 +158,60 @@ def bench_run(
label=label,
sub_label=sub_label,
description="pytorch_gemm",
).blocked_autorange(min_run_time=min_run_time)
)
).blocked_autorange(min_run_time=min_run_time))
results.append(
benchmark.Timer(
stmt="output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False, False)", # noqa: E501
stmt=
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False, False)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_gemm_fp16",
).blocked_autorange(min_run_time=min_run_time)
)
).blocked_autorange(min_run_time=min_run_time))
results.append(
benchmark.Timer(
stmt="output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True, False)", # noqa: E501
stmt=
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True, False)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_gemm_fp32",
).blocked_autorange(min_run_time=min_run_time)
)
).blocked_autorange(min_run_time=min_run_time))
if (
quant_type in GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES
and group_size in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES
):
if (quant_type in GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES
and group_size in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES):
results.append(
benchmark.Timer(
stmt="output = gptq_marlin_24_gemm(a, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, marlin_24_workspace.scratch, quant_type, size_m, size_n, size_k)", # noqa: E501
stmt=
"output = gptq_marlin_24_gemm(a, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, marlin_24_workspace.scratch, quant_type, size_m, size_n, size_k)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_24_gemm",
).blocked_autorange(min_run_time=min_run_time)
)
).blocked_autorange(min_run_time=min_run_time))
results.append(
benchmark.Timer(
stmt="q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, quant_type.size_bits)", # noqa: E501
stmt=
"q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, quant_type.size_bits)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_repack",
).blocked_autorange(min_run_time=min_run_time)
)
).blocked_autorange(min_run_time=min_run_time))
if as_supported_case:
results.append(
benchmark.Timer(
stmt="output = allspark_w8a16_gemm(a, qw_reorder, s_reorder, zp_reorder, size_n, group_size, sm_count, sm_version, CUBLAS_M_THRESHOLD, False, True)", # noqa: E501
stmt=
"output = allspark_w8a16_gemm(a, qw_reorder, s_reorder, zp_reorder, size_n, group_size, sm_count, sm_version, CUBLAS_M_THRESHOLD, False, True)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="allspark_w8a16_gemm_fp32",
).blocked_autorange(min_run_time=min_run_time)
)
).blocked_autorange(min_run_time=min_run_time))
def main(args):
@ -264,50 +233,37 @@ def main(args):
continue
for act_order in ACT_ORDER_OPTS:
if (
len(args.limit_act_order) > 0
and act_order not in args.limit_act_order
):
if len(args.limit_act_order
) > 0 and act_order not in args.limit_act_order:
continue
for is_k_full in K_FULL_OPTS:
if (
len(args.limit_k_full) > 0
and is_k_full not in args.limit_k_full
):
if len(args.limit_k_full
) > 0 and is_k_full not in args.limit_k_full:
continue
for quant_type in query_marlin_supported_quant_types(False):
if (
len(args.limit_num_bits) > 0
and quant_type.size_bits not in args.limit_num_bits
):
for quant_type in query_marlin_supported_quant_types(
False):
if len(args.limit_num_bits) > 0 and \
quant_type.size_bits not in args.limit_num_bits:
continue
for group_size in MARLIN_SUPPORTED_GROUP_SIZES:
if (
len(args.limit_group_size) > 0
and group_size not in args.limit_group_size
):
if len(
args.limit_group_size
) > 0 and group_size not in args.limit_group_size:
continue
# For act_order, the group_size must be less than
# size_k
if act_order and (group_size == size_k or group_size == -1):
if act_order and (group_size == size_k
or group_size == -1):
continue
for size_m in args.batch_sizes:
bench_run(
results,
model,
act_order,
is_k_full,
quant_type,
group_size,
size_m,
size_k,
size_n,
)
bench_run(results, model, act_order, is_k_full,
quant_type, group_size, size_m,
size_k, size_n)
compare = benchmark.Compare(results)
compare.print()
@ -318,8 +274,7 @@ def main(args):
#
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark Marlin across specified models/shapes/batches"
)
description="Benchmark Marlin across specified models/shapes/batches")
parser.add_argument(
"--models",
nargs="+",
@ -327,9 +282,10 @@ if __name__ == "__main__":
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys(),
)
parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
parser.add_argument("--limit-group-size", nargs="+", type=int, default=[])

View File

@ -6,17 +6,16 @@ import time
from contextlib import nullcontext
from datetime import datetime
from itertools import product
from types import SimpleNamespace
from typing import Any, TypedDict
import ray
import torch
import triton
from ray.experimental.tqdm_ray import tqdm
from transformers import AutoConfig
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.platforms import current_platform
from vllm.transformers_utils.config import get_config
from vllm.triton_utils import triton
from vllm.utils import FlexibleArgumentParser
FP8_DTYPE = current_platform.fp8_dtype()
@ -31,60 +30,56 @@ class BenchmarkConfig(TypedDict):
num_stages: int
def benchmark_config(
config: BenchmarkConfig,
num_tokens: int,
num_experts: int,
shard_intermediate_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
num_iters: int = 100,
block_quant_shape: List[int] = None,
use_deep_gemm: bool = False,
) -> float:
def benchmark_config(config: BenchmarkConfig,
num_tokens: int,
num_experts: int,
shard_intermediate_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
num_iters: int = 100,
block_quant_shape: List[int] = None,
use_deep_gemm: bool = False) -> float:
init_dtype = torch.float16 if use_fp8_w8a8 else dtype
x = torch.randn(num_tokens, hidden_size, dtype=dtype)
if use_int8_w8a16:
w1 = torch.randint(
-127,
127,
(
num_experts,
shard_intermediate_size,
hidden_size,
),
dtype=torch.int8,
)
w2 = torch.randint(
-127,
127,
(
num_experts,
hidden_size,
shard_intermediate_size // 2,
),
dtype=torch.int8,
)
w1 = torch.randint(-127,
127, (
num_experts,
shard_intermediate_size,
hidden_size,
),
dtype=torch.int8)
w2 = torch.randint(-127,
127, (
num_experts,
hidden_size,
shard_intermediate_size // 2,
),
dtype=torch.int8)
else:
w1 = torch.randn(
num_experts, shard_intermediate_size, hidden_size, dtype=init_dtype
)
w2 = torch.randn(
num_experts, hidden_size, shard_intermediate_size // 2, dtype=init_dtype
)
gating_output = torch.randn(num_iters, num_tokens, num_experts, dtype=torch.float32)
w1 = torch.randn(num_experts,
shard_intermediate_size,
hidden_size,
dtype=init_dtype)
w2 = torch.randn(num_experts,
hidden_size,
shard_intermediate_size // 2,
dtype=init_dtype)
gating_output = torch.randn(num_iters,
num_tokens,
num_experts,
dtype=torch.float32)
w1_scale = None
w2_scale = None
a1_scale = None
a2_scale = None
if use_int8_w8a16:
w1_scale = torch.randn(
(num_experts, 2 * shard_intermediate_size), dtype=torch.float32
)
w1_scale = torch.randn((num_experts, 2 * shard_intermediate_size),
dtype=torch.float32)
w2_scale = torch.randn((hidden_size, num_experts), dtype=torch.float32)
if use_fp8_w8a8:
if block_quant_shape:
@ -97,14 +92,10 @@ def benchmark_config(
n_tiles_w2 = (K + block_n - 1) // block_n
k_tiles_w1 = (K + block_k - 1) // block_k
k_tiles_w2 = (N + block_k - 1) // block_k
w1_scale = (
torch.rand((E, n_tiles_w1, k_tiles_w1), dtype=torch.float32)
* factor_for_scale
)
w2_scale = (
torch.rand((E, n_tiles_w2, k_tiles_w2), dtype=torch.float32)
* factor_for_scale
)
w1_scale = torch.rand((E, n_tiles_w1, k_tiles_w1),
dtype=torch.float32) * factor_for_scale
w2_scale = torch.rand((E, n_tiles_w2, k_tiles_w2),
dtype=torch.float32) * factor_for_scale
else:
w1_scale = torch.randn(num_experts, dtype=torch.float32)
w2_scale = torch.randn(num_experts, dtype=torch.float32)
@ -122,12 +113,10 @@ def benchmark_config(
def run():
from vllm.model_executor.layers.fused_moe import override_config
with override_config(config):
if use_deep_gemm:
topk_weights, topk_ids, token_expert_indices = fused_topk(
x, input_gating, topk, False
)
topk_weights, topk_ids = fused_topk(x, input_gating, topk,
False)
return fused_experts(
x,
w1,
@ -223,7 +212,8 @@ def get_rocm_tuning_space(use_fp16):
return param_ranges
def get_configs_compute_bound(use_fp16, block_quant_shape) -> list[dict[str, int]]:
def get_configs_compute_bound(use_fp16,
block_quant_shape) -> list[dict[str, int]]:
configs: list[BenchmarkConfig] = []
if current_platform.is_rocm():
@ -259,25 +249,20 @@ def get_configs_compute_bound(use_fp16, block_quant_shape) -> list[dict[str, int
if block_quant_shape is not None and not use_fp16:
block_n, block_k = block_quant_shape[0], block_quant_shape[1]
for config in configs[:]:
if (
config["BLOCK_SIZE_K"] % block_k != 0
or config["BLOCK_SIZE_N"] % block_n != 0
):
if config["BLOCK_SIZE_K"] % block_k != 0 or config[
"BLOCK_SIZE_N"] % block_n != 0:
configs.remove(config)
return configs
def prune_rocm_search_space(
num_tokens, shard_intermediate_size, hidden_size, search_space, is_fp16, topk
):
def prune_rocm_search_space(num_tokens, shard_intermediate_size, hidden_size,
search_space, is_fp16, topk):
N1, K1 = shard_intermediate_size, hidden_size
N2, K2 = hidden_size, shard_intermediate_size // 2
pruned_space_1 = prune_rocm_configs(
num_tokens * topk, N1, K1, search_space, is_fp16
)
pruned_space_2 = prune_rocm_configs(
num_tokens * topk, N2, K2, search_space, is_fp16
)
pruned_space_1 = prune_rocm_configs(num_tokens * topk, N1, K1,
search_space, is_fp16)
pruned_space_2 = prune_rocm_configs(num_tokens * topk, N2, K2,
search_space, is_fp16)
search_space = merge_unique_dicts(pruned_space_1, pruned_space_2)
return search_space
@ -315,14 +300,14 @@ def prune_rocm_configs(M, N, K, configs, is_fp16=True):
SPLIT_K = config.get("SPLIT_K", 1)
GROUP_M = config.get("GROUP_SIZE_M")
if is_fp16:
if (
matrix_instr_nonkdim > BLOCK_SIZE_M
or matrix_instr_nonkdim > BLOCK_SIZE_N
):
if (matrix_instr_nonkdim > BLOCK_SIZE_M
or matrix_instr_nonkdim > BLOCK_SIZE_N):
continue
if matrix_instr_nonkdim >= M and matrix_instr_nonkdim != BLOCK_SIZE_M:
if (matrix_instr_nonkdim >= M
and matrix_instr_nonkdim != BLOCK_SIZE_M):
continue
if matrix_instr_nonkdim >= N and matrix_instr_nonkdim != BLOCK_SIZE_N:
if (matrix_instr_nonkdim >= N
and matrix_instr_nonkdim != BLOCK_SIZE_N):
continue
# Skip BLOCK_SIZE that is too large compare to M/N
# unless BLOCK_SIZE is already small enough
@ -343,10 +328,8 @@ def prune_rocm_configs(M, N, K, configs, is_fp16=True):
continue
# out of shared memory resource
# TODO (zhanglx): This does not consider the LDS usage in the epilogue
LDS = (
BLOCK_SIZE_K * BLOCK_SIZE_M * elemBytes_a
+ BLOCK_SIZE_K * BLOCK_SIZE_N * elemBytes_b
)
LDS = (BLOCK_SIZE_K * BLOCK_SIZE_M * elemBytes_a +
BLOCK_SIZE_K * BLOCK_SIZE_N * elemBytes_b)
if LDS > 65536:
continue
# Skip small block sizes and num_warps for large gemm
@ -380,6 +363,7 @@ def merge_unique_dicts(list1, list2):
@ray.remote(num_gpus=1)
class BenchmarkWorker:
def __init__(self, seed: int) -> None:
torch.set_default_device("cuda")
current_platform.seed_everything(seed)
@ -403,40 +387,36 @@ class BenchmarkWorker:
use_deep_gemm: bool = False,
) -> tuple[dict[str, int], float]:
current_platform.seed_everything(self.seed)
dtype_str = get_config_dtype_str(
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
)
dtype_str = get_config_dtype_str(dtype,
use_int8_w8a16=use_int8_w8a16,
use_fp8_w8a8=use_fp8_w8a8)
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# is the intermediate size after silu_and_mul.
op_config = get_moe_configs(
num_experts, shard_intermediate_size // 2, dtype_str
)
op_config = get_moe_configs(num_experts, shard_intermediate_size // 2,
dtype_str)
if op_config is None:
config = get_default_config(
num_tokens,
num_experts,
shard_intermediate_size,
hidden_size,
topk,
dtype_str,
is_marlin=False,
)
config = get_default_config(num_tokens,
num_experts,
shard_intermediate_size,
hidden_size,
topk,
dtype_str,
is_marlin=False)
else:
config = op_config[min(op_config.keys(), key=lambda x: abs(x - num_tokens))]
kernel_time = benchmark_config(
config,
num_tokens,
num_experts,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
num_iters=100,
block_quant_shape=block_quant_shape,
use_deep_gemm=use_deep_gemm,
)
config = op_config[min(op_config.keys(),
key=lambda x: abs(x - num_tokens))]
kernel_time = benchmark_config(config,
num_tokens,
num_experts,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
num_iters=100,
block_quant_shape=block_quant_shape,
use_deep_gemm=use_deep_gemm)
return config, kernel_time
def tune(
@ -457,22 +437,13 @@ class BenchmarkWorker:
best_time = float("inf")
if current_platform.is_rocm():
is_fp16 = not (use_fp8_w8a8 or use_int8_w8a16)
search_space = prune_rocm_search_space(
num_tokens,
shard_intermediate_size,
hidden_size,
search_space,
is_fp16,
topk,
)
search_space = prune_rocm_search_space(num_tokens,
shard_intermediate_size,
hidden_size, search_space,
is_fp16, topk)
need_device_guard = False
if current_platform.is_rocm():
visible_device = os.environ.get("ROCR_VISIBLE_DEVICES", None)
if visible_device != f"{self.device_id}":
need_device_guard = True
with torch.cuda.device(self.device_id) if need_device_guard else nullcontext():
with torch.cuda.device(self.device_id) if current_platform.is_rocm(
) else nullcontext():
for config in tqdm(search_space):
try:
kernel_time = benchmark_config(
@ -487,8 +458,7 @@ class BenchmarkWorker:
use_int8_w8a16,
num_iters=20,
block_quant_shape=block_quant_shape,
use_deep_gemm=use_deep_gemm,
)
use_deep_gemm=use_deep_gemm)
except triton.runtime.autotuner.OutOfResources:
# Some configurations may be invalid and fail to compile.
continue
@ -504,44 +474,42 @@ class BenchmarkWorker:
def sort_config(config: BenchmarkConfig) -> BenchmarkConfig:
return {
"BLOCK_SIZE_M": config["BLOCK_SIZE_M"],
"BLOCK_SIZE_N": config["BLOCK_SIZE_N"],
"BLOCK_SIZE_K": config["BLOCK_SIZE_K"],
"GROUP_SIZE_M": config["GROUP_SIZE_M"],
"num_warps": config["num_warps"],
"num_stages": config["num_stages"],
**(
{"waves_per_eu": config["waves_per_eu"]} if "waves_per_eu" in config else {}
),
**(
{"matrix_instr_nonkdim": config["matrix_instr_nonkdim"]}
if "matrix_instr_nonkdim" in config
else {}
),
**({"kpack": config["kpack"]} if "kpack" in config else {}),
"BLOCK_SIZE_M":
config["BLOCK_SIZE_M"],
"BLOCK_SIZE_N":
config["BLOCK_SIZE_N"],
"BLOCK_SIZE_K":
config["BLOCK_SIZE_K"],
"GROUP_SIZE_M":
config["GROUP_SIZE_M"],
"num_warps":
config["num_warps"],
"num_stages":
config["num_stages"],
**({
"waves_per_eu": config["waves_per_eu"]
} if "waves_per_eu" in config else {}),
**({
"matrix_instr_nonkdim": config["matrix_instr_nonkdim"]
} if "matrix_instr_nonkdim" in config else {}),
**({
"kpack": config["kpack"]
} if "kpack" in config else {}),
}
def save_configs(
configs: dict[int, BenchmarkConfig],
num_experts: int,
shard_intermediate_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
block_quant_shape: List[int],
) -> None:
dtype_str = get_config_dtype_str(
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
)
def save_configs(configs: dict[int, BenchmarkConfig], num_experts: int,
shard_intermediate_size: int, hidden_size: int, topk: int,
dtype: torch.dtype, use_fp8_w8a8: bool, use_int8_w8a16: bool,
block_quant_shape: List[int]) -> None:
dtype_str = get_config_dtype_str(dtype,
use_int8_w8a16=use_int8_w8a16,
use_fp8_w8a8=use_fp8_w8a8)
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# is the intermediate size after silu_and_mul.
filename = get_config_file_name(
num_experts, shard_intermediate_size // 2, dtype_str, block_quant_shape
)
filename = get_config_file_name(num_experts, shard_intermediate_size // 2,
dtype_str, block_quant_shape)
print(f"Writing best config to {filename}...")
with open(filename, "w") as f:
@ -550,20 +518,18 @@ def save_configs(
def get_weight_block_size_safety(config, default_value=None):
quantization_config = getattr(config, "quantization_config", {})
quantization_config = getattr(config, 'quantization_config', {})
if isinstance(quantization_config, dict):
return quantization_config.get("weight_block_size", default_value)
return quantization_config.get('weight_block_size', default_value)
return default_value
def main(args: argparse.Namespace):
print(args)
config = get_config(model=args.model, trust_remote_code=args.trust_remote_code)
if args.model_prefix:
config = getattr(config, args.model_prefix)
config = SimpleNamespace(**config)
block_quant_shape = None
config = AutoConfig.from_pretrained(
args.model, trust_remote_code=args.trust_remote_code)
if config.architectures[0] == "DbrxForCausalLM":
E = config.ffn_config.moe_num_experts
topk = config.ffn_config.moe_top_k
@ -574,19 +540,22 @@ def main(args: argparse.Namespace):
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] in ("DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"):
elif (config.architectures[0] == "DeepseekV3ForCausalLM"
or config.architectures[0] == "DeepseekV2ForCausalLM"):
E = config.n_routed_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] in ("Qwen2MoeForCausalLM", "Qwen3MoeForCausalLM"):
block_quant_shape = get_weight_block_size_safety(config)
elif config.architectures[0] == "Qwen2MoeForCausalLM":
E = config.num_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
else:
# Support for llama4
config = config.get_text_config()
if not hasattr(config, "hidden_size"):
# Support for llama4
config = config.text_config
# Default: Mixtral.
E = config.num_local_experts
topk = config.num_experts_per_tok
@ -594,51 +563,20 @@ def main(args: argparse.Namespace):
shard_intermediate_size = 2 * intermediate_size // args.tp_size
hidden_size = config.hidden_size
dtype = (
torch.float16
if current_platform.is_rocm()
else getattr(torch, config.torch_dtype)
)
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
use_int8_w8a16 = args.dtype == "int8_w8a16"
block_quant_shape = get_weight_block_size_safety(config)
if args.batch_size is None:
batch_sizes = [
1,
2,
4,
8,
16,
24,
32,
48,
64,
96,
128,
256,
512,
1024,
1536,
2048,
3072,
4096,
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
2048, 3072, 4096
]
else:
batch_sizes = [args.batch_size]
use_deep_gemm = bool(args.use_deep_gemm)
if current_platform.is_rocm() and "HIP_VISIBLE_DEVICES" in os.environ:
# Ray will set ROCR_VISIBLE_DEVICES for device visibility
logger.warning(
"Ray uses ROCR_VISIBLE_DEVICES to control device accessibility."
"Replacing HIP_VISIBLE_DEVICES with ROCR_VISIBLE_DEVICES."
)
val = os.environ["HIP_VISIBLE_DEVICES"]
os.environ["ROCR_VISIBLE_DEVICES"] = val
del os.environ["HIP_VISIBLE_DEVICES"]
ray.init()
num_gpus = int(ray.available_resources()["GPU"])
workers = [BenchmarkWorker.remote(args.seed) for _ in range(num_gpus)]
@ -661,59 +599,25 @@ def main(args: argparse.Namespace):
start = time.time()
configs = _distribute(
"tune",
[
(
batch_size,
E,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
search_space,
block_quant_shape,
use_deep_gemm,
)
for batch_size in batch_sizes
],
)
"tune", [(batch_size, E, shard_intermediate_size, hidden_size,
topk, dtype, use_fp8_w8a8, use_int8_w8a16, search_space,
block_quant_shape, use_deep_gemm)
for batch_size in batch_sizes])
best_configs = {
M: sort_config(config) for M, config in zip(batch_sizes, configs)
M: sort_config(config)
for M, config in zip(batch_sizes, configs)
}
save_configs(
best_configs,
E,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
block_quant_shape,
)
save_configs(best_configs, E, shard_intermediate_size, hidden_size,
topk, dtype, use_fp8_w8a8, use_int8_w8a16,
block_quant_shape)
end = time.time()
print(f"Tuning took {end - start:.2f} seconds")
else:
outputs = _distribute(
"benchmark",
[
(
batch_size,
E,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
block_quant_shape,
use_deep_gemm,
)
for batch_size in batch_sizes
],
)
[(batch_size, E, shard_intermediate_size, hidden_size, topk, dtype,
use_fp8_w8a8, use_int8_w8a16, block_quant_shape, use_deep_gemm)
for batch_size in batch_sizes])
for batch_size, (config, kernel_time) in zip(batch_sizes, outputs):
print(f"Batch size: {batch_size}, config: {config}")
@ -722,21 +626,23 @@ def main(args: argparse.Namespace):
if __name__ == "__main__":
parser = FlexibleArgumentParser()
parser.add_argument(
"--model", type=str, default="mistralai/Mixtral-8x7B-Instruct-v0.1"
)
parser.add_argument(
"--tp-size", "-tp", "--tensor-parallel-size", type=int, default=2
)
parser.add_argument(
"--dtype", type=str, choices=["auto", "fp8_w8a8", "int8_w8a16"], default="auto"
)
parser.add_argument("--model",
type=str,
default="mistralai/Mixtral-8x7B-Instruct-v0.1")
parser.add_argument("--tp-size",
"-tp",
"--tensor-parallel-size",
type=int,
default=2)
parser.add_argument("--dtype",
type=str,
choices=["auto", "fp8_w8a8", "int8_w8a16"],
default="auto")
parser.add_argument("--use-deep-gemm", action="store_true")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--batch-size", type=int, required=False)
parser.add_argument("--tune", action="store_true")
parser.add_argument("--trust-remote-code", action="store_true")
parser.add_argument("--model-prefix", type=str, required=False)
args = parser.parse_args()
main(args)

View File

@ -1,416 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
from typing import Any, TypedDict
import ray
import torch
from transformers import AutoConfig
from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
_moe_permute,
_moe_unpermute_and_reduce,
)
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.model_executor.layers.fused_moe.moe_permute_unpermute import *
from vllm.model_executor.layers.fused_moe.utils import _fp8_quantize
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
FP8_DTYPE = current_platform.fp8_dtype()
class BenchmarkConfig(TypedDict):
BLOCK_SIZE_M: int
BLOCK_SIZE_N: int
BLOCK_SIZE_K: int
GROUP_SIZE_M: int
num_warps: int
num_stages: int
def benchmark_permute(
num_tokens: int,
num_experts: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
num_iters: int = 100,
use_customized_permute: bool = False,
) -> float:
# init_dtype = torch.float16 if use_fp8_w8a8 else dtype
hidden_states = torch.randn(num_tokens, hidden_size, dtype=dtype)
# output_hidden_states = torch.empty_like(hidden_states)
if use_fp8_w8a8:
align_block_size = 128 # deepgemm needs 128 m aligned block
qhidden_states, scale = _fp8_quantize(hidden_states, None, None)
else:
align_block_size = None
qhidden_states = hidden_states
gating_output = torch.randn(num_iters, num_tokens, num_experts, dtype=torch.float32)
input_gating = torch.randn(num_tokens, num_experts, dtype=torch.float32)
topk_weights, topk_ids, token_expert_indices = fused_topk(
qhidden_states, input_gating, topk, False
)
def prepare(i: int):
input_gating.copy_(gating_output[i])
def run():
if use_customized_permute:
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = (
moe_permute(
qhidden_states,
topk_weights=topk_weights,
topk_ids=topk_ids,
token_expert_indices=token_expert_indices,
topk=topk,
n_expert=num_experts,
n_local_expert=num_experts,
expert_map=None,
align_block_size=align_block_size,
)
)
else:
(
permuted_hidden_states,
a1q_scale,
sorted_token_ids,
expert_ids,
inv_perm,
) = _moe_permute(
qhidden_states, None, topk_ids, num_experts, None, align_block_size
)
# JIT compilation & warmup
run()
torch.cuda.synchronize()
# Capture 10 invocations with CUDA graph
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph):
for _ in range(10):
run()
torch.cuda.synchronize()
# Warmup
for _ in range(5):
graph.replay()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
latencies: list[float] = []
for i in range(num_iters):
prepare(i)
torch.cuda.synchronize()
start_event.record()
graph.replay()
end_event.record()
end_event.synchronize()
latencies.append(start_event.elapsed_time(end_event))
avg = sum(latencies) / (num_iters * 10) * 1000 # us
graph.reset()
return avg
def benchmark_unpermute(
num_tokens: int,
num_experts: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
num_iters: int = 100,
use_customized_permute: bool = False,
) -> float:
# init_dtype = torch.float16 if use_fp8_w8a8 else dtype
hidden_states = torch.randn(num_tokens, hidden_size, dtype=dtype)
output_hidden_states = torch.empty_like(hidden_states)
if use_fp8_w8a8:
align_block_size = 128 # deepgemm needs 128 m aligned block
qhidden_states, scale = _fp8_quantize(hidden_states, None, None)
else:
align_block_size = None
qhidden_states = hidden_states
input_gating = torch.randn(num_tokens, num_experts, dtype=torch.float32)
topk_weights, topk_ids, token_expert_indices = fused_topk(
qhidden_states, input_gating, topk, False
)
def prepare():
if use_customized_permute:
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = (
moe_permute(
qhidden_states,
topk_weights=topk_weights,
topk_ids=topk_ids,
token_expert_indices=token_expert_indices,
topk=topk,
n_expert=num_experts,
n_local_expert=num_experts,
expert_map=None,
align_block_size=align_block_size,
)
)
# convert to fp16/bf16 as gemm output
return (
permuted_hidden_states.to(dtype),
first_token_off,
inv_perm_idx,
m_indices,
)
else:
(
permuted_qhidden_states,
a1q_scale,
sorted_token_ids,
expert_ids,
inv_perm,
) = _moe_permute(
qhidden_states, None, topk_ids, num_experts, None, align_block_size
)
# convert to fp16/bf16 as gemm output
return (
permuted_qhidden_states.to(dtype),
a1q_scale,
sorted_token_ids,
expert_ids,
inv_perm,
)
def run(input: tuple):
if use_customized_permute:
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = input
moe_unpermute(
permuted_hidden_states,
topk_weights,
topk_ids,
inv_perm_idx,
first_token_off,
topk,
num_experts,
num_experts,
)
else:
(
permuted_hidden_states,
a1q_scale,
sorted_token_ids,
expert_ids,
inv_perm,
) = input
_moe_unpermute_and_reduce(
output_hidden_states, permuted_hidden_states, inv_perm, topk_weights
)
# JIT compilation & warmup
input = prepare()
run(input)
torch.cuda.synchronize()
# Capture 10 invocations with CUDA graph
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph):
for _ in range(10):
run(input)
torch.cuda.synchronize()
# Warmup
for _ in range(5):
graph.replay()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
latencies: list[float] = []
for i in range(num_iters):
torch.cuda.synchronize()
start_event.record()
graph.replay()
end_event.record()
end_event.synchronize()
latencies.append(start_event.elapsed_time(end_event))
avg = sum(latencies) / (num_iters * 10) * 1000 # us
graph.reset()
return avg
@ray.remote(num_gpus=1)
class BenchmarkWorker:
def __init__(self, seed: int) -> None:
torch.set_default_device("cuda")
current_platform.seed_everything(seed)
self.seed = seed
# Get the device ID to allocate tensors and kernels
# on the respective GPU. This is required for Ray to work
# correctly with multi-GPU tuning on the ROCm platform.
self.device_id = int(ray.get_gpu_ids()[0])
def benchmark(
self,
num_tokens: int,
num_experts: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
use_customized_permute: bool = False,
) -> tuple[dict[str, int], float]:
current_platform.seed_everything(self.seed)
permute_time = benchmark_permute(
num_tokens,
num_experts,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
num_iters=100,
use_customized_permute=use_customized_permute,
)
unpermute_time = benchmark_unpermute(
num_tokens,
num_experts,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
num_iters=100,
use_customized_permute=use_customized_permute,
)
return permute_time, unpermute_time
def get_weight_block_size_safety(config, default_value=None):
quantization_config = getattr(config, "quantization_config", {})
if isinstance(quantization_config, dict):
return quantization_config.get("weight_block_size", default_value)
return default_value
def main(args: argparse.Namespace):
print(args)
config = AutoConfig.from_pretrained(
args.model, trust_remote_code=args.trust_remote_code
)
if config.architectures[0] == "DbrxForCausalLM":
E = config.ffn_config.moe_num_experts
topk = config.ffn_config.moe_top_k
elif config.architectures[0] == "JambaForCausalLM":
E = config.num_experts
topk = config.num_experts_per_tok
elif (
config.architectures[0] == "DeepseekV3ForCausalLM"
or config.architectures[0] == "DeepseekV2ForCausalLM"
):
E = config.n_routed_experts
topk = config.num_experts_per_tok
elif config.architectures[0] in ["Qwen2MoeForCausalLM", "Qwen3MoeForCausalLM"]:
E = config.num_experts
topk = config.num_experts_per_tok
else:
# Support for llama4
config = config.get_text_config()
# Default: Mixtral.
E = config.num_local_experts
topk = config.num_experts_per_tok
hidden_size = config.hidden_size
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
use_int8_w8a16 = args.dtype == "int8_w8a16"
use_customized_permute = args.use_customized_permute
if args.batch_size is None:
batch_sizes = [
1,
2,
4,
8,
16,
24,
32,
48,
64,
96,
128,
256,
512,
1024,
1536,
2048,
3072,
4096,
]
else:
batch_sizes = [args.batch_size]
ray.init()
num_gpus = int(ray.available_resources()["GPU"])
workers = [BenchmarkWorker.remote(args.seed) for _ in range(num_gpus)]
def _distribute(method: str, inputs: list[Any]) -> list[Any]:
outputs = []
worker_idx = 0
for input_args in inputs:
worker = workers[worker_idx]
worker_method = getattr(worker, method)
output = worker_method.remote(*input_args)
outputs.append(output)
worker_idx = (worker_idx + 1) % num_gpus
return ray.get(outputs)
outputs = _distribute(
"benchmark",
[
(
batch_size,
E,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
use_customized_permute,
)
for batch_size in batch_sizes
],
)
for batch_size, (permute, unpermute) in zip(batch_sizes, outputs):
print(f"Batch size: {batch_size}")
print(f"Permute time: {permute:.2f} us")
print(f"Unpermute time: {unpermute:.2f} us")
if __name__ == "__main__":
parser = FlexibleArgumentParser()
parser.add_argument(
"--model", type=str, default="mistralai/Mixtral-8x7B-Instruct-v0.1"
)
parser.add_argument(
"--dtype", type=str, choices=["auto", "fp8_w8a8", "int8_w8a16"], default="auto"
)
parser.add_argument("--use-customized-permute", action="store_true")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--batch-size", type=int, required=False)
parser.add_argument("--trust-remote-code", action="store_true")
args = parser.parse_args()
main(args)

View File

@ -9,11 +9,8 @@ import torch
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import (
STR_DTYPE_TO_TORCH_DTYPE,
FlexibleArgumentParser,
create_kv_caches_with_random,
)
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
create_kv_caches_with_random)
logger = init_logger(__name__)
@ -41,15 +38,19 @@ def main(
current_platform.seed_everything(seed)
scale = float(1.0 / (head_size**0.5))
query = torch.empty(
num_seqs, num_query_heads, head_size, dtype=dtype, device=device
)
query = torch.empty(num_seqs,
num_query_heads,
head_size,
dtype=dtype,
device=device)
query.uniform_(-scale, scale)
assert num_query_heads % num_kv_heads == 0
alibi_slopes = None
if use_alibi:
alibi_slopes = torch.randn(num_query_heads, dtype=torch.float, device=device)
alibi_slopes = torch.randn(num_query_heads,
dtype=torch.float,
device=device)
seq_lens = [seq_len for _ in range(num_seqs)]
max_seq_len = max(seq_lens)
@ -60,23 +61,24 @@ def main(
block_tables_lst: list[list[int]] = []
for _ in range(num_seqs):
block_table = [
random.randint(0, NUM_BLOCKS - 1) for _ in range(max_num_blocks_per_seq)
random.randint(0, NUM_BLOCKS - 1)
for _ in range(max_num_blocks_per_seq)
]
block_tables_lst.append(block_table)
block_tables = torch.tensor(block_tables_lst, dtype=torch.int, device=device)
block_tables = torch.tensor(block_tables_lst,
dtype=torch.int,
device=device)
# Create the KV cache.
key_caches, value_caches = create_kv_caches_with_random(
NUM_BLOCKS,
block_size,
1,
num_kv_heads,
head_size,
kv_cache_dtype,
dtype,
device=device,
)
key_caches, value_caches = create_kv_caches_with_random(NUM_BLOCKS,
block_size,
1,
num_kv_heads,
head_size,
kv_cache_dtype,
dtype,
device=device)
key_cache, value_cache = key_caches[0], value_caches[0]
# Prepare for the paged attention kernel.
@ -84,11 +86,11 @@ def main(
if version == "v2":
if current_platform.is_rocm():
global PARTITION_SIZE
if not args.custom_paged_attn and not current_platform.is_navi():
if not args.custom_paged_attn:
PARTITION_SIZE = 1024
else:
PARTITION_SIZE = PARTITION_SIZE_ROCM
num_partitions = (max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE
num_partitions = ((max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE)
tmp_output = torch.empty(
size=(num_seqs, num_query_heads, num_partitions, head_size),
dtype=output.dtype,
@ -108,7 +110,9 @@ def main(
start_time = time.perf_counter()
# Using default kv_scale
k_scale = v_scale = torch.tensor(1.0, dtype=torch.float32, device=device)
k_scale = v_scale = torch.tensor(1.0,
dtype=torch.float32,
device=device)
for _ in range(num_iters):
if version == "v1":
@ -162,7 +166,6 @@ def main(
scale,
block_tables,
seq_lens,
None,
block_size,
max_seq_len,
alibi_slopes,
@ -192,29 +195,30 @@ def main(
print(f"Kernel running time: {latency * 1000000:.3f} us")
if __name__ == "__main__":
logger.warning(
"This script benchmarks the paged attention kernel. "
"By default this is no longer used in vLLM inference."
)
if __name__ == '__main__':
logger.warning("This script benchmarks the paged attention kernel. "
"By default this is no longer used in vLLM inference.")
parser = FlexibleArgumentParser(description="Benchmark the paged attention kernel.")
parser.add_argument("--version", type=str, choices=["v1", "v2"], default="v2")
parser = FlexibleArgumentParser(
description="Benchmark the paged attention kernel.")
parser.add_argument("--version",
type=str,
choices=["v1", "v2"],
default="v2")
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument("--seq-len", type=int, default=4096)
parser.add_argument("--num-query-heads", type=int, default=64)
parser.add_argument("--num-kv-heads", type=int, default=8)
parser.add_argument(
"--head-size",
type=int,
choices=[64, 80, 96, 112, 120, 128, 192, 256],
default=128,
)
parser.add_argument("--head-size",
type=int,
choices=[64, 80, 96, 112, 120, 128, 192, 256],
default=128)
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
parser.add_argument("--use-alibi", action="store_true")
parser.add_argument(
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="half"
)
parser.add_argument("--dtype",
type=str,
choices=["half", "bfloat16", "float"],
default="half")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--profile", action="store_true")
parser.add_argument(
@ -224,11 +228,10 @@ if __name__ == "__main__":
default="auto",
help="Data type for kv cache storage. If 'auto', will use model "
"data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. "
"ROCm (AMD GPU) supports fp8 (=fp8_e4m3)",
)
parser.add_argument(
"--custom-paged-attn", action="store_true", help="Use custom paged attention"
)
"ROCm (AMD GPU) supports fp8 (=fp8_e4m3)")
parser.add_argument("--custom-paged-attn",
action="store_true",
help="Use custom paged attention")
args = parser.parse_args()
print(args)

View File

@ -10,17 +10,15 @@ from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
@torch.inference_mode()
def main(
num_tokens: int,
hidden_size: int,
static_scale: bool,
quant_dtype: torch.dtype,
dtype: torch.dtype,
seed: int = 0,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100,
) -> None:
def main(num_tokens: int,
hidden_size: int,
static_scale: bool,
quant_dtype: torch.dtype,
dtype: torch.dtype,
seed: int = 0,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100) -> None:
current_platform.seed_everything(seed)
torch.set_default_device("cuda")
@ -58,7 +56,7 @@ def main(
print(f"Kernel running time: {latency * 1000000:.3f} us")
if __name__ == "__main__":
if __name__ == '__main__':
def to_torch_dtype(dt):
if dt == "int8":
@ -68,40 +66,37 @@ if __name__ == "__main__":
raise ValueError(f"Unsupported dtype: {dt}")
parser = FlexibleArgumentParser(
description="Benchmark the quantization (fp8 or int8) kernel."
)
description="Benchmark the quantization (fp8 or int8) kernel.")
parser.add_argument("--num-tokens", type=int, default=4096)
parser.add_argument("--hidden-size", type=int, default=8192)
parser.add_argument("--static-scale", action="store_true")
parser.add_argument(
"--quant-dtype", type=str, choices=["fp8", "int8"], default="int8"
)
parser.add_argument(
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="half"
)
parser.add_argument("--quant-dtype",
type=str,
choices=["fp8", "int8"],
default="int8")
parser.add_argument("--dtype",
type=str,
choices=["half", "bfloat16", "float"],
default="half")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--profile", action="store_true")
parser.add_argument("--num-warmup-iters", type=int, default=5)
parser.add_argument(
"--num-iters",
type=int,
default=100,
help="Number of benchmark iterations. "
"If --profile is set, this number is ignored",
)
parser.add_argument("--num-iters",
type=int,
default=100,
help="Number of benchmark iterations. "
"If --profile is set, this number is ignored")
args = parser.parse_args()
print(args)
main(
num_tokens=args.num_tokens,
hidden_size=args.hidden_size,
static_scale=args.static_scale,
quant_dtype=to_torch_dtype(args.quant_dtype),
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
seed=args.seed,
do_profile=args.profile,
num_warmup_iters=args.num_warmup_iters,
num_iters=args.num_iters,
)
main(num_tokens=args.num_tokens,
hidden_size=args.hidden_size,
static_scale=args.static_scale,
quant_dtype=to_torch_dtype(args.quant_dtype),
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
seed=args.seed,
do_profile=args.profile,
num_warmup_iters=args.num_warmup_iters,
num_iters=args.num_iters)

View File

@ -4,14 +4,15 @@ import itertools
from typing import Optional, Union
import torch
import triton
from flashinfer.norm import fused_add_rmsnorm, rmsnorm
from torch import nn
from vllm import _custom_ops as vllm_ops
from vllm.triton_utils import triton
class HuggingFaceRMSNorm(nn.Module):
def __init__(self, hidden_size: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
@ -113,19 +114,23 @@ def rmsnorm_vllm(
def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True):
dtype = torch.bfloat16
x = torch.randn(batch_size, seq_len, hidden_size, dtype=dtype, device="cuda")
x = torch.randn(batch_size,
seq_len,
hidden_size,
dtype=dtype,
device="cuda")
weight = torch.ones(hidden_size, dtype=dtype, device="cuda")
residual = torch.randn_like(x) if use_residual else None
output_naive = rmsnorm_naive(
x.clone(), weight, residual.clone() if residual is not None else None
)
x.clone(), weight,
residual.clone() if residual is not None else None)
output_flashinfer = rmsnorm_flashinfer(
x.clone(), weight, residual.clone() if residual is not None else None
)
x.clone(), weight,
residual.clone() if residual is not None else None)
output_vllm = rmsnorm_vllm(
x.clone(), weight, residual.clone() if residual is not None else None
)
x.clone(), weight,
residual.clone() if residual is not None else None)
if use_residual:
output_naive = output_naive[0]
@ -136,9 +141,9 @@ def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True):
print(f"FlashInfer output={output_flashinfer}")
print(f"vLLM output={output_vllm}")
if torch.allclose(
output_naive, output_flashinfer, atol=1e-2, rtol=1e-2
) and torch.allclose(output_naive, output_vllm, atol=1e-2, rtol=1e-2):
if torch.allclose(output_naive, output_flashinfer, atol=1e-2,
rtol=1e-2) and torch.allclose(
output_naive, output_vllm, atol=1e-2, rtol=1e-2):
print("✅ All implementations match")
else:
print("❌ Implementations differ")
@ -147,10 +152,12 @@ def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True):
batch_size_range = [2**i for i in range(0, 7, 2)]
seq_length_range = [2**i for i in range(6, 11, 1)]
head_num_range = [32, 48]
configs = list(itertools.product(head_num_range, batch_size_range, seq_length_range))
configs = list(
itertools.product(head_num_range, batch_size_range, seq_length_range))
def get_benchmark(use_residual):
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["head_num", "batch_size", "seq_len"],
@ -160,15 +167,19 @@ def get_benchmark(use_residual):
line_names=["HuggingFace", "FlashInfer", "vLLM"],
styles=[("blue", "-"), ("green", "-"), ("red", "-")],
ylabel="us",
plot_name=f"rmsnorm-perf-{'with' if use_residual else 'without'}-residual",
plot_name=
f"rmsnorm-perf-{'with' if use_residual else 'without'}-residual",
args={},
)
)
))
def benchmark(head_num, batch_size, seq_len, provider):
dtype = torch.bfloat16
hidden_size = head_num * 128 # assuming head_dim = 128
x = torch.randn(batch_size, seq_len, hidden_size, dtype=dtype, device="cuda")
x = torch.randn(batch_size,
seq_len,
hidden_size,
dtype=dtype,
device="cuda")
weight = torch.ones(hidden_size, dtype=dtype, device="cuda")
residual = torch.randn_like(x) if use_residual else None
@ -229,9 +240,9 @@ if __name__ == "__main__":
default=4096,
help="Hidden size (2nd dimension) of the sequence",
)
parser.add_argument(
"--use-residual", action="store_true", help="Whether to use residual connection"
)
parser.add_argument("--use-residual",
action="store_true",
help="Whether to use residual connection")
parser.add_argument(
"--save-path",
type=str,
@ -242,12 +253,10 @@ if __name__ == "__main__":
args = parser.parse_args()
# Run correctness test
calculate_diff(
batch_size=args.batch_size,
seq_len=args.seq_len,
hidden_size=args.hidden_size,
use_residual=args.use_residual,
)
calculate_diff(batch_size=args.batch_size,
seq_len=args.seq_len,
hidden_size=args.hidden_size,
use_residual=args.use_residual)
# Get the benchmark function with proper use_residual setting
benchmark = get_benchmark(args.use_residual)

View File

@ -6,7 +6,8 @@ from typing import Optional
import nvtx
import torch
from vllm.model_executor.layers.rotary_embedding import RotaryEmbedding, get_rope
from vllm.model_executor.layers.rotary_embedding import (RotaryEmbedding,
get_rope)
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
@ -31,49 +32,40 @@ def benchmark_rope_kernels_multi_lora(
# silulating serving 4 LoRAs
scaling_factors = [1, 2, 4, 8]
# batched RoPE can take multiple scaling factors
batched_rope = get_rope(
head_size,
rotary_dim,
max_position,
base,
is_neox_style,
{"rope_type": "linear", "factor": tuple(scaling_factors)},
)
batched_rope = get_rope(head_size, rotary_dim, max_position, base,
is_neox_style, {
"rope_type": "linear",
"factor": tuple(scaling_factors)
})
# non-batched RoPE takes only one scaling factor, we create multiple
# instances to simulate the same behavior
non_batched_ropes: list[RotaryEmbedding] = []
for scaling_factor in scaling_factors:
non_batched_ropes.append(
get_rope(
head_size,
rotary_dim,
max_position,
base,
is_neox_style,
{"rope_type": "linear", "factor": (scaling_factor,)},
)
)
get_rope(head_size, rotary_dim, max_position, base, is_neox_style,
{
"rope_type": "linear",
"factor": (scaling_factor, )
}))
positions = torch.randint(0, max_position, (batch_size, seq_len))
query = torch.randn(batch_size, seq_len, num_heads * head_size, dtype=dtype)
query = torch.randn(batch_size,
seq_len,
num_heads * head_size,
dtype=dtype)
key = torch.randn_like(query)
# create query offsets for batched RoPE, we concat multiple kv cache
# together and each query needs to find the right kv cache of its type
offset_map = torch.tensor(
list(
accumulate(
[0]
+ [
max_position * scaling_factor * 2
for scaling_factor in scaling_factors[:-1]
]
)
)
)
query_types = torch.randint(
0, len(scaling_factors), (batch_size, seq_len), device=device
)
accumulate([0] + [
max_position * scaling_factor * 2
for scaling_factor in scaling_factors[:-1]
])))
query_types = torch.randint(0,
len(scaling_factors), (batch_size, seq_len),
device=device)
# map query types to offsets
query_offsets = offset_map[query_types]
# the kernel takes flattened offsets
@ -94,28 +86,27 @@ def benchmark_rope_kernels_multi_lora(
torch.cuda.synchronize()
if __name__ == "__main__":
if __name__ == '__main__':
parser = FlexibleArgumentParser(
description="Benchmark the rotary embedding kernels."
)
description="Benchmark the rotary embedding kernels.")
parser.add_argument("--is-neox-style", type=bool, default=True)
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--seq-len", type=int, default=512)
parser.add_argument("--num-heads", type=int, default=8)
parser.add_argument(
"--head-size",
type=int,
choices=[64, 80, 96, 112, 120, 128, 192, 256],
default=128,
)
parser.add_argument("--head-size",
type=int,
choices=[64, 80, 96, 112, 120, 128, 192, 256],
default=128)
parser.add_argument("--rotary-dim", type=int, choices=[16, 32], default=32)
parser.add_argument(
"--dtype", type=str, choices=["bfloat16", "float"], default="float"
)
parser.add_argument("--dtype",
type=str,
choices=["bfloat16", "float"],
default="float")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument(
"--device", type=str, choices=["cuda:0", "cuda:1"], default="cuda:0"
)
parser.add_argument("--device",
type=str,
choices=["cuda:0", "cuda:1"],
default="cuda:0")
args = parser.parse_args()
print(args)

View File

@ -14,16 +14,14 @@ import tqdm
import triton
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
_w8a8_block_fp8_matmul,
)
_w8a8_block_fp8_matmul)
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
mp.set_start_method("spawn", force=True)
assert current_platform.is_cuda(), (
"Only support tune w8a8 block fp8 kernel on CUDA device."
)
assert current_platform.is_cuda(
), "Only support tune w8a8 block fp8 kernel on CUDA device."
DTYPE_MAP = {
"float32": torch.float32,
@ -42,7 +40,7 @@ def w8a8_block_matmul(
config: dict[str, Any],
output_dtype: torch.dtype = torch.float16,
) -> torch.Tensor:
"""This function performs matrix multiplication with
"""This function performs matrix multiplication with
block-wise quantization.
It takes two input tensors `A` and `B` with scales `As` and `Bs`.
@ -53,7 +51,7 @@ def w8a8_block_matmul(
B: The input tensor, e.g., weight.
As: The per-token-group quantization scale for `A`.
Bs: The per-block quantization scale for `B`.
block_size: The block size for per-block quantization.
block_size: The block size for per-block quantization.
It should be 2-dim, e.g., [128, 128].
output_dytpe: The dtype of the returned tensor.
@ -73,18 +71,18 @@ def w8a8_block_matmul(
assert triton.cdiv(N, block_n) == Bs.shape[0]
assert triton.cdiv(K, block_k) == Bs.shape[1]
C_shape = A.shape[:-1] + (N,)
C_shape = A.shape[:-1] + (N, )
C = A.new_empty(C_shape, dtype=output_dtype)
def grid(META):
return (
triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]),
)
return (triton.cdiv(M, META["BLOCK_SIZE_M"]) *
triton.cdiv(N, META["BLOCK_SIZE_N"]), )
if A.dtype == torch.float8_e4m3fn:
kernel = _w8a8_block_fp8_matmul
else:
raise RuntimeError("Currently, only support tune w8a8 block fp8 kernel.")
raise RuntimeError(
"Currently, only support tune w8a8 block fp8 kernel.")
kernel[grid](
A,
@ -121,16 +119,14 @@ def get_configs_compute_bound():
for block_n in [32, 64, 128, 256]:
for num_warps in [4, 8]:
for group_size in [1, 16, 32, 64]:
configs.append(
{
"BLOCK_SIZE_M": block_m,
"BLOCK_SIZE_N": block_n,
"BLOCK_SIZE_K": block_k,
"GROUP_SIZE_M": group_size,
"num_warps": num_warps,
"num_stages": num_stages,
}
)
configs.append({
"BLOCK_SIZE_M": block_m,
"BLOCK_SIZE_N": block_n,
"BLOCK_SIZE_K": block_k,
"GROUP_SIZE_M": group_size,
"num_warps": num_warps,
"num_stages": num_stages,
})
return configs
@ -169,9 +165,15 @@ def get_weight_shapes(tp_size):
return weight_shapes
def benchmark_config(
A, B, As, Bs, block_size, config, out_dtype=torch.float16, num_iters=10
):
def benchmark_config(A,
B,
As,
Bs,
block_size,
config,
out_dtype=torch.float16,
num_iters=10):
def run():
w8a8_block_matmul(A, B, As, Bs, block_size, config, out_dtype)
@ -204,26 +206,26 @@ def tune(M, N, K, block_size, out_dtype, search_space, input_type):
fp8_max, fp8_min = fp8_info.max, fp8_info.min
A_fp32 = (
(torch.rand(M, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * fp8_max
)
(torch.rand(M, K, dtype=torch.float32, device="cuda") - 0.5) * 2 *
fp8_max)
A = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
B_fp32 = (
(torch.rand(N, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * fp8_max
)
(torch.rand(N, K, dtype=torch.float32, device="cuda") - 0.5) * 2 *
fp8_max)
B = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
else:
raise RuntimeError("Currently, only support tune w8a8 block fp8 kernel.")
raise RuntimeError(
"Currently, only support tune w8a8 block fp8 kernel.")
block_n, block_k = block_size[0], block_size[1]
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
As = torch.rand(M, k_tiles, dtype=torch.float32, device="cuda") * factor_for_scale
Bs = (
torch.rand(n_tiles, k_tiles, dtype=torch.float32, device="cuda")
* factor_for_scale
)
As = torch.rand(M, k_tiles, dtype=torch.float32,
device="cuda") * factor_for_scale
Bs = (torch.rand(n_tiles, k_tiles, dtype=torch.float32, device="cuda") *
factor_for_scale)
best_config = None
best_time = float("inf")
@ -265,8 +267,7 @@ def save_configs(
device_name = current_platform.get_device_name().replace(" ", "_")
json_file_name = (
f"N={N},K={K},device_name={device_name},dtype={input_type}_w8a8,"
f"block_shape=[{block_n},{block_k}].json"
)
f"block_shape=[{block_n},{block_k}].json")
config_file_path = os.path.join(save_path, json_file_name)
print(f"Writing best config to {config_file_path}...")
@ -294,7 +295,8 @@ def tune_on_gpu(args_dict):
search_space = get_configs_compute_bound()
search_space = [
config for config in search_space if block_k % config["BLOCK_SIZE_K"] == 0
config for config in search_space
if block_k % config["BLOCK_SIZE_K"] == 0
]
start = time.time()
@ -310,11 +312,15 @@ def tune_on_gpu(args_dict):
out_dtype,
search_space,
input_type,
)
for batch_size in tqdm(batch_sizes, desc=f"GPU {gpu_id} - Batch sizes")
) for batch_size in tqdm(batch_sizes,
desc=f"GPU {gpu_id} - Batch sizes")
]
best_configs = {M: config for M, config in zip(batch_sizes, benchmark_results)}
save_configs(N, K, block_n, block_k, best_configs, save_path, input_type)
best_configs = {
M: config
for M, config in zip(batch_sizes, benchmark_results)
}
save_configs(N, K, block_n, block_k, best_configs, save_path,
input_type)
end = time.time()
print(f"Tuning on GPU {gpu_id} took {end - start:.2f} seconds")
@ -370,14 +376,13 @@ def main(args):
process_args = []
for gpu_id in range(num_gpus):
process_args.append(
{
"gpu_id": gpu_id,
"batch_sizes": batches_per_gpu[gpu_id],
"weight_shapes": weight_shapes, # Each GPU processes all weight shapes
"args": args,
}
)
process_args.append({
"gpu_id": gpu_id,
"batch_sizes": batches_per_gpu[gpu_id],
"weight_shapes":
weight_shapes, # Each GPU processes all weight shapes
"args": args,
})
ctx = mp.get_context("spawn")
with ctx.Pool(num_gpus) as pool:
@ -393,11 +398,13 @@ Tune triton w8a8 block fp8 for DeepSeek-V3/DeepSeek-R1:
python3 benchmark_w8a8_block_fp8.py --tp-size 8 --input-type fp8
Then copy to model_executor/layers/quantization/utils/configs
""",
formatter_class=argparse.RawTextHelpFormatter,
)
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--tp-size", "-tp", type=int, default=8)
parser.add_argument("--input-type", type=str, choices=["fp8"], default="fp8")
parser.add_argument("--input-type",
type=str,
choices=["fp8"],
default="fp8")
parser.add_argument(
"--out-dtype",
type=str,

View File

@ -6,15 +6,13 @@ import time
# Import DeepGEMM functions
import deep_gemm
import torch
import triton
from deep_gemm import calc_diff, ceil_div, get_col_major_tma_aligned_tensor
# Import vLLM functions
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
per_token_group_quant_fp8,
w8a8_block_fp8_matmul,
)
from vllm.triton_utils import triton
per_token_group_quant_fp8, w8a8_block_fp8_matmul)
# Copied from

View File

@ -2,11 +2,11 @@
import math
import pickle
import re
from collections import defaultdict
import matplotlib.pyplot as plt
import pandas as pd
import regex as re
import seaborn as sns
from torch.utils.benchmark import Measurement as TMeasurement
@ -14,14 +14,13 @@ from vllm.utils import FlexibleArgumentParser
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the latency of processing a single batch of "
"requests till completion."
)
parser.add_argument("filename", type=str)
description='Benchmark the latency of processing a single batch of '
'requests till completion.')
parser.add_argument('filename', type=str)
args = parser.parse_args()
with open(args.filename, "rb") as f:
with open(args.filename, 'rb') as f:
data = pickle.load(f)
raw_results: list[TMeasurement] = data["results"]
@ -39,7 +38,11 @@ if __name__ == "__main__":
raise Exception("MKN not found")
kernel = v.task_spec.description
results[KN].append({"kernel": kernel, "batch_size": M, "median": v.median})
results[KN].append({
"kernel": kernel,
"batch_size": M,
"median": v.median
})
rows = int(math.ceil(len(results) / 2))
fig, axs = plt.subplots(rows, 2, figsize=(12, 5 * rows))
@ -47,16 +50,14 @@ if __name__ == "__main__":
for axs_idx, (shape, data) in enumerate(results.items()):
plt.sca(axs[axs_idx])
df = pd.DataFrame(data)
sns.lineplot(
data=df,
x="batch_size",
y="median",
hue="kernel",
style="kernel",
markers=True,
dashes=False,
palette="Dark2",
)
sns.lineplot(data=df,
x="batch_size",
y="median",
hue="kernel",
style="kernel",
markers=True,
dashes=False,
palette="Dark2")
plt.title(f"Shape: {shape}")
plt.ylabel("time (median, s)")
plt.tight_layout()

Some files were not shown because too many files have changed in this diff Show More