mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
Compare commits
274 Commits
Author | SHA1 | Date | |
---|---|---|---|
b6553be1bc | |||
64a9af5afa | |||
e4248849ec | |||
467bef18a3 | |||
5f1ac1e1d1 | |||
9368cc90b2 | |||
32b3946bb4 | |||
6b1391ca7e | |||
a3f66e75d1 | |||
319cb1e351 | |||
1efef71645 | |||
646d62f636 | |||
6cd4ae8acd | |||
c016047ed7 | |||
9af6d22e4c | |||
4589b94032 | |||
cc867be19c | |||
3a7cd627a8 | |||
8058c91108 | |||
7d44c469fe | |||
31f58be96a | |||
ebb2f383b8 | |||
c1c7dbbeeb | |||
5cf2daea9a | |||
b8089195b4 | |||
770e5dcdb8 | |||
c57c9415b1 | |||
01810f9236 | |||
59abbd84f9 | |||
95a6568b5c | |||
0eca5eacd0 | |||
12e5829221 | |||
3a4d417707 | |||
8335667c22 | |||
e1c4380d4c | |||
e31ae3de36 | |||
2ffb9b6e07 | |||
cda10fa3e2 | |||
c123bc33f9 | |||
b9a1791e2c | |||
989dcee981 | |||
3d64d366e0 | |||
eaa2e51088 | |||
d77f7fb871 | |||
2d8476e465 | |||
88be823d57 | |||
4e4f63ad45 | |||
d2f0e7e615 | |||
122cdca5f6 | |||
cf02f9b283 | |||
c4296b1a27 | |||
66c508b137 | |||
84166fee97 | |||
6e0cd10f72 | |||
e010688f50 | |||
441b65d8c7 | |||
46ecc57973 | |||
b6a3a9f76d | |||
ca27f0f9c1 | |||
aad30bd306 | |||
94ecee6282 | |||
8267f9916f | |||
7353492a47 | |||
7661e92ef8 | |||
f168b85725 | |||
da511d54d8 | |||
65c69444b1 | |||
94870359cd | |||
0d49483ea9 | |||
90b78ec5f9 | |||
91a2ef98ea | |||
3da2313d78 | |||
b61dc5f972 | |||
f8a1a2d108 | |||
3465b87ef8 | |||
c8134bea15 | |||
cb6d572e85 | |||
87360308b7 | |||
aa49f14832 | |||
9ef9173cfa | |||
85e2b7bb13 | |||
61059bee40 | |||
ec89524f50 | |||
f20f9f063b | |||
9bc8bb07cf | |||
1aeb925f34 | |||
188a4590d8 | |||
18093084be | |||
da40380214 | |||
8fc57501d3 | |||
af7fc84fd2 | |||
0678b52251 | |||
25b918eee6 | |||
a408820f2f | |||
c56ed8bb0e | |||
78dcf56cb3 | |||
b2fac67130 | |||
23027e2daf | |||
c3fd4d669a | |||
ef3f98b59f | |||
7ee2590478 | |||
53a5a0ce30 | |||
d459fae0a2 | |||
c8dcc15921 | |||
8f4ffbd373 | |||
5f2cd251d2 | |||
02658c2dfe | |||
01dc9a76db | |||
35cf32df30 | |||
8711bc5e68 | |||
2669a0d7b5 | |||
8e972d9c44 | |||
3336c8cfbe | |||
b124e1085b | |||
41aa578428 | |||
8d646c2e53 | |||
5d6d1adf15 | |||
1409ef9134 | |||
4555143ea7 | |||
52dceb172d | |||
abd7df2fca | |||
b712be98c7 | |||
a8da78eac9 | |||
5d96533e22 | |||
4de790fcad | |||
b5fd9506c1 | |||
135cf55cd1 | |||
6cac54f4d1 | |||
6865fe0074 | |||
e31446b6c8 | |||
bdf13965ab | |||
fa98d77773 | |||
01eee40536 | |||
19bdaf32b1 | |||
02f0c7b220 | |||
d054da1992 | |||
4b7817c119 | |||
d00dd65cd4 | |||
d81edded69 | |||
476844d44c | |||
4e68ae5e59 | |||
4e88723f32 | |||
118ff92111 | |||
ec2dcd80bc | |||
42243fbda0 | |||
6d18ed2a2e | |||
f32fcd9444 | |||
d32aa2e670 | |||
cc977286e7 | |||
17430e3653 | |||
1282bd812e | |||
bdce64f236 | |||
9e6f61e8c3 | |||
8655f47f37 | |||
4ce42f9204 | |||
8a57872b2a | |||
5bc1ad6cee | |||
9112b443a0 | |||
c57d577e8d | |||
ca2f6b9c30 | |||
20133cfee2 | |||
ebb1ec9318 | |||
5b168b6d7a | |||
9760fd8f6a | |||
b9f61e1387 | |||
d6fd3a33b8 | |||
432ec9926e | |||
2b102d51ad | |||
aa54a7bf7b | |||
2ad6194a02 | |||
c594cbf565 | |||
a35ca765a5 | |||
6aa8f9a4e7 | |||
1bc86a3da1 | |||
bbfa0c61d1 | |||
20079c6e36 | |||
9a1b9b99d7 | |||
8bf507d766 | |||
306d60401d | |||
f2c3f66d59 | |||
0f5e0d567e | |||
c55d804672 | |||
749f5bdd38 | |||
2a50ef5760 | |||
b8b904795d | |||
ba5111f237 | |||
1e123529d7 | |||
dff80b0e42 | |||
7782464a17 | |||
0f71e24034 | |||
1dab4d5718 | |||
7f21e8052b | |||
5a8641638a | |||
f49239cb45 | |||
2dbe8c0774 | |||
84ec470fca | |||
b29ca5c4d5 | |||
ec6833c5e9 | |||
e1fadf1197 | |||
43ff405b90 | |||
fba02e3bd1 | |||
4577fc9abb | |||
5f1d0c8118 | |||
c3bb9f2331 | |||
8f8900cee9 | |||
6acb7a6285 | |||
4f4a6b844a | |||
4d0a1541be | |||
77b6e74fe2 | |||
5acf828d99 | |||
3987e2ae96 | |||
77164dad5e | |||
3de3eadf5b | |||
3132290a14 | |||
1aa2f81b43 | |||
d54af615d5 | |||
a1cc9f33a3 | |||
a521ef06e5 | |||
64eaf5fe05 | |||
d1d61f3351 | |||
32ce3cf7c9 | |||
d58f9c7f7a | |||
c29034037d | |||
1b7cfd5a36 | |||
da4b69d0b4 | |||
c9479b2920 | |||
6f2909405e | |||
b169d5f7b6 | |||
f8977c233f | |||
f274581f44 | |||
0b1447f890 | |||
24d0ef8970 | |||
7fcfd954ff | |||
e740d07f07 | |||
a652e71dd0 | |||
34d6c447c4 | |||
972eddf7c9 | |||
fd7bb88d72 | |||
3c49dbdd03 | |||
1661a9c28f | |||
8e882ffdc0 | |||
26b4fa45be | |||
515b413ebf | |||
269d901734 | |||
7951d78738 | |||
6dbe5b5c93 | |||
643622ba46 | |||
a09c7ca9f2 | |||
0e98964e94 | |||
c68b5c63eb | |||
fced756923 | |||
321331b8ae | |||
6e4cea1cc5 | |||
435fa95444 | |||
4c2b38ce9e | |||
d781930f90 | |||
ce75efeecb | |||
aa42561e40 | |||
de65fc8e1e | |||
0c492b7824 | |||
0f0926b43f | |||
7f2c1a87e9 | |||
b78f844a67 | |||
5e13c07d00 | |||
774c5fde30 | |||
9a21e331ff | |||
3e9ce609bd | |||
794ae1f551 | |||
d73a9457a5 | |||
a3896c7f02 | |||
51e98e4ffd | |||
e56f44d9ec | |||
e0cbad4e30 | |||
b48d5cca16 |
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import os
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
LM eval harness on model to compare vs HF baseline computed offline.
|
||||
Configs are found in configs/$MODEL.yaml
|
||||
|
@ -113,7 +113,7 @@ WARNING: The benchmarking script will save json results by itself, so please do
|
||||
|
||||
### Visualizing the results
|
||||
|
||||
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](tests/descriptions.md) with real benchmarking results.
|
||||
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](performance-benchmarks-descriptions.md) with real benchmarking results.
|
||||
You can find the result presented as a table inside the `buildkite/performance-benchmark` job page.
|
||||
If you do not see the table, please wait till the benchmark finish running.
|
||||
The json version of the table (together with the json version of the benchmark) will be also attached to the markdown file.
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import json
|
||||
import os
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import json
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from lmdeploy.serve.openai.api_client import APIClient
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import datetime
|
||||
import json
|
||||
|
@ -1,5 +1,6 @@
|
||||
steps:
|
||||
- label: "Build wheel - CUDA 12.8"
|
||||
id: build-wheel-cuda-12-8
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
@ -11,6 +12,7 @@ steps:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- label: "Build wheel - CUDA 12.6"
|
||||
id: build-wheel-cuda-12-6
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
@ -28,6 +30,7 @@ steps:
|
||||
|
||||
- label: "Build wheel - CUDA 11.8"
|
||||
# depends_on: block-build-cu118-wheel
|
||||
id: build-wheel-cuda-11-8
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
@ -44,6 +47,7 @@ steps:
|
||||
|
||||
- label: "Build release image"
|
||||
depends_on: block-release-image-build
|
||||
id: build-release-image
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
@ -51,6 +55,18 @@ steps:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
|
||||
- label: "Annotate release workflow"
|
||||
depends_on:
|
||||
- build-release-image
|
||||
- build-wheel-cuda-12-8
|
||||
- build-wheel-cuda-12-6
|
||||
- build-wheel-cuda-11-8
|
||||
id: annotate-release-workflow
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "bash .buildkite/scripts/annotate-release.sh"
|
||||
|
||||
- label: "Build and publish TPU release image"
|
||||
depends_on: ~
|
||||
if: build.env("NIGHTLY") == "1"
|
||||
@ -70,9 +86,10 @@ steps:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- input: "Provide Release version here"
|
||||
id: input-release-version
|
||||
fields:
|
||||
- text: "What is the release version?"
|
||||
key: "release-version"
|
||||
key: release-version
|
||||
|
||||
- block: "Build CPU release image"
|
||||
key: block-cpu-release-image-build
|
||||
|
31
.buildkite/scripts/annotate-release.sh
Executable file
31
.buildkite/scripts/annotate-release.sh
Executable file
@ -0,0 +1,31 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
# Get release version and strip leading 'v' if present
|
||||
RELEASE_VERSION=$(buildkite-agent meta-data get release-version | sed 's/^v//')
|
||||
|
||||
if [ -z "$RELEASE_VERSION" ]; then
|
||||
echo "Error: RELEASE_VERSION is empty. 'release-version' metadata might not be set or is invalid."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
buildkite-agent annotate --style 'info' --context 'release-workflow' << EOF
|
||||
To download the wheel:
|
||||
\`\`\`
|
||||
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux1_x86_64.whl .
|
||||
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu126/vllm-${RELEASE_VERSION}+cu126-cp38-abi3-manylinux1_x86_64.whl .
|
||||
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu118/vllm-${RELEASE_VERSION}+cu118-cp38-abi3-manylinux1_x86_64.whl .
|
||||
\`\`\`
|
||||
|
||||
To download and upload the image:
|
||||
|
||||
\`\`\`
|
||||
docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}
|
||||
docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT} vllm/vllm-openai
|
||||
docker tag vllm/vllm-openai vllm/vllm-openai:latest
|
||||
docker tag vllm/vllm-openai vllm/vllm-openai:v${RELEASE_VERSION}
|
||||
docker push vllm/vllm-openai:latest
|
||||
docker push vllm/vllm-openai:v${RELEASE_VERSION}
|
||||
\`\`\`
|
||||
EOF
|
17
.buildkite/scripts/ci-clean-log.sh
Normal file
17
.buildkite/scripts/ci-clean-log.sh
Normal file
@ -0,0 +1,17 @@
|
||||
#!/bin/bash
|
||||
# Usage: ./ci_clean_log.sh ci.log
|
||||
# This script strips timestamps and color codes from CI log files.
|
||||
|
||||
# Check if argument is given
|
||||
if [ $# -lt 1 ]; then
|
||||
echo "Usage: $0 ci.log"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
INPUT_FILE="$1"
|
||||
|
||||
# Strip timestamps
|
||||
sed -i 's/^\[[0-9]\{4\}-[0-9]\{2\}-[0-9]\{2\}T[0-9]\{2\}:[0-9]\{2\}:[0-9]\{2\}Z\] //' "$INPUT_FILE"
|
||||
|
||||
# Strip colorization
|
||||
sed -i -r 's/\x1B\[[0-9;]*[mK]//g' "$INPUT_FILE"
|
@ -94,6 +94,10 @@ if [[ $commands == *"pytest -v -s compile/test_basic_correctness.py"* ]]; then
|
||||
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s compile/test_basic_correctness.py"}
|
||||
fi
|
||||
|
||||
if [[ $commands == *"pytest -v -s lora"* ]]; then
|
||||
commands=${commands//"pytest -v -s lora"/"VLLM_ROCM_CUSTOM_PAGED_ATTN=0 pytest -v -s lora"}
|
||||
fi
|
||||
|
||||
#ignore certain kernels tests
|
||||
if [[ $commands == *" kernels/core"* ]]; then
|
||||
commands="${commands} \
|
||||
|
@ -7,6 +7,7 @@ set -ex
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
if [[ -n "$container_id" ]]; then
|
||||
podman stop --all -t0
|
||||
podman rm -f "$container_id" || true
|
||||
fi
|
||||
podman system prune -f
|
||||
@ -37,7 +38,7 @@ function cpu_tests() {
|
||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
|
||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
|
||||
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
|
||||
pytest -v -s tests/models/language/pooling/test_embedding.py::test_models[half-BAAI/bge-base-en-v1.5]"
|
||||
pytest -v -s tests/models/language/pooling/test_embedding.py -m cpu_model"
|
||||
}
|
||||
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
|
@ -6,72 +6,70 @@ set -ex
|
||||
|
||||
# allow to bind to different cores
|
||||
CORE_RANGE=${CORE_RANGE:-48-95}
|
||||
OMP_CORE_RANGE=${OMP_CORE_RANGE:-48-95}
|
||||
NUMA_NODE=${NUMA_NODE:-1}
|
||||
|
||||
export CMAKE_BUILD_PARALLEL_LEVEL=32
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
set -e;
|
||||
docker rm -f cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" || true;
|
||||
docker image rm cpu-test-"$BUILDKITE_BUILD_NUMBER" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 || true;
|
||||
docker rm -f cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"-avx2 || true;
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Try building the docker image
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$BUILDKITE_BUILD_NUMBER" --target vllm-test -f docker/Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$NUMA_NODE" --target vllm-test -f docker/Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$NUMA_NODE"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
|
||||
|
||||
# Run the image, setting --shm-size=4g for tensor parallel.
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2
|
||||
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_OMP_THREADS_BIND="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
|
||||
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_OMP_THREADS_BIND="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE"-avx2 cpu-test-"$NUMA_NODE"-avx2
|
||||
|
||||
function cpu_tests() {
|
||||
set -e
|
||||
export NUMA_NODE=$2
|
||||
export BUILDKITE_BUILD_NUMBER=$3
|
||||
|
||||
# offline inference
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$NUMA_NODE"-avx2 bash -c "
|
||||
set -e
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
|
||||
|
||||
# Run basic model test
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -v -s tests/kernels/test_cache.py -m cpu_model
|
||||
pytest -v -s tests/kernels/test_mla_decode_cpu.py -m cpu_model
|
||||
pytest -v -s tests/models/decoder_only/language -m cpu_model
|
||||
pytest -v -s tests/models/embedding/language -m cpu_model
|
||||
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
|
||||
pytest -v -s tests/models/decoder_only/audio_language -m cpu_model
|
||||
pytest -v -s tests/models/decoder_only/vision_language -m cpu_model"
|
||||
pytest -v -s tests/kernels/attention/test_cache.py -m cpu_model
|
||||
pytest -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
|
||||
pytest -v -s tests/models/language/generation -m cpu_model
|
||||
pytest -v -s tests/models/language/pooling -m cpu_model
|
||||
pytest -v -s tests/models/multimodal/generation \
|
||||
--ignore=tests/models/multimodal/generation/test_mllama.py \
|
||||
--ignore=tests/models/multimodal/generation/test_pixtral.py \
|
||||
-m cpu_model"
|
||||
|
||||
# Run compressed-tensor test
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynamic_per_token"
|
||||
|
||||
# Run AWQ test
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
VLLM_USE_V1=0 pytest -s -v \
|
||||
tests/quantization/test_ipex_quant.py"
|
||||
|
||||
# Run chunked-prefill and prefix-cache test
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v -k cpu_model \
|
||||
tests/basic_correctness/test_chunked_prefill.py"
|
||||
|
||||
# online serving
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
export VLLM_CPU_KVCACHE_SPACE=10
|
||||
export VLLM_CPU_OMP_THREADS_BIND=$1
|
||||
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m --dtype half &
|
||||
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
|
||||
python3 benchmarks/benchmark_serving.py \
|
||||
@ -83,7 +81,7 @@ function cpu_tests() {
|
||||
--tokenizer facebook/opt-125m"
|
||||
|
||||
# Run multi-lora tests
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/lora/test_qwen2vl.py"
|
||||
@ -91,4 +89,4 @@ function cpu_tests() {
|
||||
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
export -f cpu_tests
|
||||
timeout 40m bash -c "cpu_tests $CORE_RANGE $NUMA_NODE $BUILDKITE_BUILD_NUMBER"
|
||||
timeout 1h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
|
||||
|
@ -2,102 +2,184 @@
|
||||
|
||||
set -xu
|
||||
|
||||
|
||||
remove_docker_container() {
|
||||
docker rm -f tpu-test || true;
|
||||
docker rm -f vllm-tpu || true;
|
||||
}
|
||||
|
||||
trap remove_docker_container EXIT
|
||||
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
|
||||
# Build the docker image.
|
||||
docker build -f docker/Dockerfile.tpu -t vllm-tpu .
|
||||
|
||||
# Set up cleanup.
|
||||
remove_docker_container() { docker rm -f tpu-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
cleanup_docker() {
|
||||
# Get Docker's root directory
|
||||
docker_root=$(docker info -f '{{.DockerRootDir}}')
|
||||
if [ -z "$docker_root" ]; then
|
||||
echo "Failed to determine Docker root directory."
|
||||
exit 1
|
||||
fi
|
||||
echo "Docker root directory: $docker_root"
|
||||
# Check disk usage of the filesystem where Docker's root directory is located
|
||||
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
|
||||
# Define the threshold
|
||||
threshold=70
|
||||
if [ "$disk_usage" -gt "$threshold" ]; then
|
||||
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
|
||||
# Remove dangling images (those that are not tagged and not used by any container)
|
||||
docker image prune -f
|
||||
# Remove unused volumes / force the system prune for old images as well.
|
||||
docker volume prune -f && docker system prune --force --filter "until=72h" --all
|
||||
echo "Docker images and volumes cleanup completed."
|
||||
else
|
||||
echo "Disk usage is below $threshold%. No cleanup needed."
|
||||
fi
|
||||
}
|
||||
cleanup_docker
|
||||
|
||||
# For HF_TOKEN.
|
||||
source /etc/environment
|
||||
# Run a simple end-to-end example.
|
||||
|
||||
docker run --privileged --net host --shm-size=16G -it \
|
||||
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
|
||||
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install lm_eval[api]==0.4.4 \
|
||||
&& export VLLM_XLA_CACHE_PATH= \
|
||||
&& export VLLM_USE_V1=1 \
|
||||
&& export VLLM_XLA_CHECK_RECOMPILATION=1 \
|
||||
&& echo HARDWARE \
|
||||
&& tpu-info \
|
||||
&& { \
|
||||
echo TEST_0: Running test_perf.py; \
|
||||
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_perf.py; \
|
||||
echo TEST_0_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_1: Running test_compilation.py; \
|
||||
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_compilation.py; \
|
||||
echo TEST_1_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_2: Running test_basic.py; \
|
||||
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_basic.py; \
|
||||
echo TEST_2_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_3: Running test_accuracy.py::test_lm_eval_accuracy_v1_engine; \
|
||||
python3 -m pytest -s -v /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine; \
|
||||
echo TEST_3_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_4: Running test_quantization_accuracy.py; \
|
||||
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py; \
|
||||
echo TEST_4_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_5: Running examples/offline_inference/tpu.py; \
|
||||
python3 /workspace/vllm/examples/offline_inference/tpu.py; \
|
||||
echo TEST_5_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_6: Running test_tpu_model_runner.py; \
|
||||
python3 -m pytest -s -v /workspace/vllm/tests/tpu/worker/test_tpu_model_runner.py; \
|
||||
echo TEST_6_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_7: Running test_sampler.py; \
|
||||
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py; \
|
||||
echo TEST_7_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_8: Running test_topk_topp_sampler.py; \
|
||||
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py; \
|
||||
echo TEST_8_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_9: Running test_multimodal.py; \
|
||||
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py; \
|
||||
echo TEST_9_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_10: Running test_pallas.py; \
|
||||
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py; \
|
||||
echo TEST_10_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_11: Running test_struct_output_generate.py; \
|
||||
python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py; \
|
||||
echo TEST_11_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_12: Running test_moe_pallas.py; \
|
||||
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py; \
|
||||
echo TEST_12_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
# Disable the TPU LoRA tests until the feature is activated
|
||||
# & { \
|
||||
# echo TEST_13: Running test_moe_pallas.py; \
|
||||
# python3 -m pytest -s -v /workspace/vllm/tests/tpu/lora/; \
|
||||
# echo TEST_13_EXIT_CODE: \$?; \
|
||||
# } & \
|
||||
wait \
|
||||
&& echo 'All tests have attempted to run. Check logs for individual test statuses and exit codes.' \
|
||||
"
|
||||
vllm-tpu /bin/bash -c '
|
||||
set -e # Exit immediately if a command exits with a non-zero status.
|
||||
set -u # Treat unset variables as an error.
|
||||
|
||||
echo "--- Starting script inside Docker container ---"
|
||||
|
||||
# Create results directory
|
||||
RESULTS_DIR=$(mktemp -d)
|
||||
# If mktemp fails, set -e will cause the script to exit.
|
||||
echo "Results will be stored in: $RESULTS_DIR"
|
||||
|
||||
# Install dependencies
|
||||
echo "--- Installing Python dependencies ---"
|
||||
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4
|
||||
echo "--- Python dependencies installed ---"
|
||||
export VLLM_USE_V1=1
|
||||
export VLLM_XLA_CHECK_RECOMPILATION=1
|
||||
export VLLM_XLA_CACHE_PATH=
|
||||
echo "Using VLLM V1"
|
||||
|
||||
echo "--- Hardware Information ---"
|
||||
tpu-info
|
||||
echo "--- Starting Tests ---"
|
||||
set +e
|
||||
overall_script_exit_code=0
|
||||
|
||||
# --- Test Definitions ---
|
||||
# If a test fails, this function will print logs and will not cause the main script to exit.
|
||||
run_test() {
|
||||
local test_num=$1
|
||||
local test_name=$2
|
||||
local test_command=$3
|
||||
local log_file="$RESULTS_DIR/test_${test_num}.log"
|
||||
local actual_exit_code
|
||||
|
||||
echo "--- TEST_$test_num: Running $test_name ---"
|
||||
|
||||
# Execute the test command.
|
||||
eval "$test_command" > >(tee -a "$log_file") 2> >(tee -a "$log_file" >&2)
|
||||
actual_exit_code=$?
|
||||
|
||||
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" # This goes to main log
|
||||
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" >> "$log_file" # Also to per-test log
|
||||
|
||||
if [ "$actual_exit_code" -ne 0 ]; then
|
||||
echo "TEST_$test_num ($test_name) FAILED with exit code $actual_exit_code." >&2
|
||||
echo "--- Log for failed TEST_$test_num ($test_name) ---" >&2
|
||||
if [ -f "$log_file" ]; then
|
||||
cat "$log_file" >&2
|
||||
else
|
||||
echo "Log file $log_file not found for TEST_$test_num ($test_name)." >&2
|
||||
fi
|
||||
echo "--- End of log for TEST_$test_num ($test_name) ---" >&2
|
||||
return "$actual_exit_code" # Return the failure code
|
||||
else
|
||||
echo "TEST_$test_num ($test_name) PASSED."
|
||||
return 0 # Return success
|
||||
fi
|
||||
}
|
||||
|
||||
# Helper function to call run_test and update the overall script exit code
|
||||
run_and_track_test() {
|
||||
local test_num_arg="$1"
|
||||
local test_name_arg="$2"
|
||||
local test_command_arg="$3"
|
||||
|
||||
# Run the test
|
||||
run_test "$test_num_arg" "$test_name_arg" "$test_command_arg"
|
||||
local test_specific_exit_code=$?
|
||||
|
||||
# If the test failed, set the overall script exit code to 1
|
||||
if [ "$test_specific_exit_code" -ne 0 ]; then
|
||||
# No need for extra echo here, run_test already logged the failure.
|
||||
overall_script_exit_code=1
|
||||
fi
|
||||
}
|
||||
|
||||
# --- Actual Test Execution ---
|
||||
run_and_track_test 0 "test_perf.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_perf.py"
|
||||
run_and_track_test 1 "test_compilation.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_compilation.py"
|
||||
run_and_track_test 2 "test_basic.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_basic.py"
|
||||
run_and_track_test 3 "test_accuracy.py::test_lm_eval_accuracy_v1_engine" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine"
|
||||
run_and_track_test 4 "test_quantization_accuracy.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py"
|
||||
run_and_track_test 5 "examples/offline_inference/tpu.py" \
|
||||
"python3 /workspace/vllm/examples/offline_inference/tpu.py"
|
||||
run_and_track_test 6 "test_tpu_model_runner.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/worker/test_tpu_model_runner.py"
|
||||
run_and_track_test 7 "test_sampler.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py"
|
||||
run_and_track_test 8 "test_topk_topp_sampler.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py"
|
||||
run_and_track_test 9 "test_multimodal.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py"
|
||||
run_and_track_test 10 "test_pallas.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py"
|
||||
run_and_track_test 11 "test_struct_output_generate.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py -k \"not test_structured_output_with_reasoning_matrices\""
|
||||
run_and_track_test 12 "test_moe_pallas.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py"
|
||||
run_and_track_test 13 "test_lora.py" \
|
||||
"VLLM_XLA_CHECK_RECOMPILATION=0 python3 -m pytest -s -v /workspace/vllm/tests/tpu/lora/test_lora.py"
|
||||
run_and_track_test 14 "test_tpu_qkv_linear.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_tpu_qkv_linear.py"
|
||||
run_and_track_test 15 "test_spmd_model_weight_loading.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_spmd_model_weight_loading.py"
|
||||
|
||||
# After all tests have been attempted, exit with the overall status.
|
||||
if [ "$overall_script_exit_code" -ne 0 ]; then
|
||||
echo "--- One or more tests FAILED. Overall script exiting with failure code 1. ---"
|
||||
else
|
||||
echo "--- All tests have completed and PASSED. Overall script exiting with success code 0. ---"
|
||||
fi
|
||||
exit "$overall_script_exit_code"
|
||||
' # IMPORTANT: This is the closing single quote for the bash -c "..." command. Ensure it is present and correct.
|
||||
|
||||
# Capture the exit code of the docker run command
|
||||
DOCKER_RUN_EXIT_CODE=$?
|
||||
|
||||
# The trap will run for cleanup.
|
||||
# Exit the main script with the Docker run command's exit code.
|
||||
if [ "$DOCKER_RUN_EXIT_CODE" -ne 0 ]; then
|
||||
echo "Docker run command failed with exit code $DOCKER_RUN_EXIT_CODE."
|
||||
exit "$DOCKER_RUN_EXIT_CODE"
|
||||
else
|
||||
echo "Docker run command completed successfully."
|
||||
exit 0
|
||||
fi
|
||||
# TODO: This test fails because it uses RANDOM_SEED sampling
|
||||
# && VLLM_USE_V1=1 pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
|
||||
# pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
|
||||
|
18
.buildkite/scripts/rerun-test.sh
Normal file
18
.buildkite/scripts/rerun-test.sh
Normal file
@ -0,0 +1,18 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Usage: ./rerun_test.sh path/to/test.py::test_name
|
||||
|
||||
# Check if argument is given
|
||||
if [ $# -lt 1 ]; then
|
||||
echo "Usage: $0 path/to/test.py::test_name"
|
||||
echo "Example: $0 tests/v1/engine/test_engine_core_client.py::test_kv_cache_events[True-tcp]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
TEST=$1
|
||||
COUNT=1
|
||||
|
||||
while pytest -sv "$TEST"; do
|
||||
COUNT=$((COUNT + 1))
|
||||
echo "RUN NUMBER ${COUNT}"
|
||||
done
|
24
.buildkite/scripts/tpu/cleanup_docker.sh
Executable file
24
.buildkite/scripts/tpu/cleanup_docker.sh
Executable file
@ -0,0 +1,24 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
docker_root=$(docker info -f '{{.DockerRootDir}}')
|
||||
if [ -z "$docker_root" ]; then
|
||||
echo "Failed to determine Docker root directory."
|
||||
exit 1
|
||||
fi
|
||||
echo "Docker root directory: $docker_root"
|
||||
# Check disk usage of the filesystem where Docker's root directory is located
|
||||
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
|
||||
# Define the threshold
|
||||
threshold=70
|
||||
if [ "$disk_usage" -gt "$threshold" ]; then
|
||||
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
|
||||
# Remove dangling images (those that are not tagged and not used by any container)
|
||||
docker image prune -f
|
||||
# Remove unused volumes / force the system prune for old images as well.
|
||||
docker volume prune -f && docker system prune --force --filter "until=72h" --all
|
||||
echo "Docker images and volumes cleanup completed."
|
||||
else
|
||||
echo "Disk usage is below $threshold%. No cleanup needed."
|
||||
fi
|
14
.buildkite/scripts/tpu/config_v6e_1.env
Normal file
14
.buildkite/scripts/tpu/config_v6e_1.env
Normal file
@ -0,0 +1,14 @@
|
||||
# Environment config
|
||||
TEST_NAME=llama8b
|
||||
CONTAINER_NAME=vllm-tpu
|
||||
|
||||
# vllm config
|
||||
MODEL=meta-llama/Llama-3.1-8B-Instruct
|
||||
MAX_NUM_SEQS=512
|
||||
MAX_NUM_BATCHED_TOKENS=512
|
||||
TENSOR_PARALLEL_SIZE=1
|
||||
MAX_MODEL_LEN=2048
|
||||
DOWNLOAD_DIR=/mnt/disks/persist
|
||||
EXPECTED_THROUGHPUT=8.0
|
||||
INPUT_LEN=1800
|
||||
OUTPUT_LEN=128
|
102
.buildkite/scripts/tpu/docker_run_bm.sh
Executable file
102
.buildkite/scripts/tpu/docker_run_bm.sh
Executable file
@ -0,0 +1,102 @@
|
||||
#!/bin/bash
|
||||
|
||||
if [ ! -f "$1" ]; then
|
||||
echo "Error: The env file '$1' does not exist."
|
||||
exit 1 # Exit the script with a non-zero status to indicate an error
|
||||
fi
|
||||
|
||||
ENV_FILE=$1
|
||||
|
||||
# For testing on local vm, use `set -a` to export all variables
|
||||
source /etc/environment
|
||||
source $ENV_FILE
|
||||
|
||||
remove_docker_container() {
|
||||
docker rm -f tpu-test || true;
|
||||
docker rm -f vllm-tpu || true;
|
||||
docker rm -f $CONTAINER_NAME || true;
|
||||
}
|
||||
|
||||
trap remove_docker_container EXIT
|
||||
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
|
||||
# Build docker image.
|
||||
# TODO: build the image outside the script and share the image with other
|
||||
# tpu test if building time is too long.
|
||||
DOCKER_BUILDKIT=1 docker build \
|
||||
--build-arg max_jobs=16 \
|
||||
--build-arg USE_SCCACHE=1 \
|
||||
--build-arg GIT_REPO_CHECK=0 \
|
||||
--tag vllm/vllm-tpu-bm \
|
||||
--progress plain -f docker/Dockerfile.tpu .
|
||||
|
||||
LOG_ROOT=$(mktemp -d)
|
||||
# If mktemp fails, set -e will cause the script to exit.
|
||||
echo "Results will be stored in: $LOG_ROOT"
|
||||
|
||||
if [ -z "$HF_TOKEN" ]; then
|
||||
echo "Error: HF_TOKEN is not set or is empty."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Make sure mounted disk or dir exists
|
||||
if [ ! -d "$DOWNLOAD_DIR" ]; then
|
||||
echo "Error: Folder $DOWNLOAD_DIR does not exist. This is useually a mounted drive. If no mounted drive, just create a folder."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Run model $MODEL"
|
||||
echo
|
||||
|
||||
echo "starting docker...$CONTAINER_NAME"
|
||||
echo
|
||||
docker run \
|
||||
-v $DOWNLOAD_DIR:$DOWNLOAD_DIR \
|
||||
--env-file $ENV_FILE \
|
||||
-e HF_TOKEN="$HF_TOKEN" \
|
||||
-e TARGET_COMMIT=$BUILDKITE_COMMIT \
|
||||
-e MODEL=$MODEL \
|
||||
-e WORKSPACE=/workspace \
|
||||
--name $CONTAINER_NAME \
|
||||
-d \
|
||||
--privileged \
|
||||
--network host \
|
||||
-v /dev/shm:/dev/shm \
|
||||
vllm/vllm-tpu-bm tail -f /dev/null
|
||||
|
||||
echo "run script..."
|
||||
echo
|
||||
docker exec "$CONTAINER_NAME" /bin/bash -c ".buildkite/scripts/hardware_ci/run_bm.sh"
|
||||
|
||||
echo "copy result back..."
|
||||
VLLM_LOG="$LOG_ROOT/$TEST_NAME"_vllm_log.txt
|
||||
BM_LOG="$LOG_ROOT/$TEST_NAME"_bm_log.txt
|
||||
docker cp "$CONTAINER_NAME:/workspace/vllm_log.txt" "$VLLM_LOG"
|
||||
docker cp "$CONTAINER_NAME:/workspace/bm_log.txt" "$BM_LOG"
|
||||
|
||||
throughput=$(grep "Request throughput (req/s):" "$BM_LOG" | sed 's/[^0-9.]//g')
|
||||
echo "throughput for $TEST_NAME at $BUILDKITE_COMMIT: $throughput"
|
||||
|
||||
if [ "$BUILDKITE" = "true" ]; then
|
||||
echo "Running inside Buildkite"
|
||||
buildkite-agent artifact upload "$VLLM_LOG"
|
||||
buildkite-agent artifact upload "$BM_LOG"
|
||||
else
|
||||
echo "Not running inside Buildkite"
|
||||
fi
|
||||
|
||||
#
|
||||
# compare the throughput with EXPECTED_THROUGHPUT
|
||||
# and assert meeting the expectation
|
||||
#
|
||||
if [[ -z "$throughput" || ! "$throughput" =~ ^[0-9]+([.][0-9]+)?$ ]]; then
|
||||
echo "Failed to get the throughput"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if (( $(echo "$throughput < $EXPECTED_THROUGHPUT" | bc -l) )); then
|
||||
echo "Error: throughput($throughput) is less than expected($EXPECTED_THROUGHPUT)"
|
||||
exit 1
|
||||
fi
|
94
.buildkite/scripts/tpu/run_bm.sh
Executable file
94
.buildkite/scripts/tpu/run_bm.sh
Executable file
@ -0,0 +1,94 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
VLLM_LOG="$WORKSPACE/vllm_log.txt"
|
||||
BM_LOG="$WORKSPACE/bm_log.txt"
|
||||
|
||||
if [ -n "$TARGET_COMMIT" ]; then
|
||||
head_hash=$(git rev-parse HEAD)
|
||||
if [ "$TARGET_COMMIT" != "$head_hash" ]; then
|
||||
echo "Error: target commit $TARGET_COMMIT does not match HEAD: $head_hash"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
echo "model: $MODEL"
|
||||
echo
|
||||
|
||||
#
|
||||
# create a log folder
|
||||
#
|
||||
mkdir "$WORKSPACE/log"
|
||||
|
||||
# TODO: Move to image building.
|
||||
pip install pandas
|
||||
pip install datasets
|
||||
|
||||
#
|
||||
# create sonnet_4x
|
||||
#
|
||||
echo "Create sonnet_4x.txt"
|
||||
echo "" > benchmarks/sonnet_4x.txt
|
||||
for _ in {1..4}
|
||||
do
|
||||
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
|
||||
done
|
||||
|
||||
#
|
||||
# start vllm service in backend
|
||||
#
|
||||
echo "lanching vllm..."
|
||||
echo "logging to $VLLM_LOG"
|
||||
echo
|
||||
|
||||
VLLM_USE_V1=1 vllm serve $MODEL \
|
||||
--seed 42 \
|
||||
--disable-log-requests \
|
||||
--max-num-seqs $MAX_NUM_SEQS \
|
||||
--max-num-batched-tokens $MAX_NUM_BATCHED_TOKENS \
|
||||
--tensor-parallel-size $TENSOR_PARALLEL_SIZE \
|
||||
--no-enable-prefix-caching \
|
||||
--download_dir $DOWNLOAD_DIR \
|
||||
--max-model-len $MAX_MODEL_LEN > "$VLLM_LOG" 2>&1 &
|
||||
|
||||
|
||||
echo "wait for 20 minutes.."
|
||||
echo
|
||||
# sleep 1200
|
||||
# wait for 10 minutes...
|
||||
for i in {1..120}; do
|
||||
# TODO: detect other type of errors.
|
||||
if grep -Fq "raise RuntimeError" "$VLLM_LOG"; then
|
||||
echo "Detected RuntimeError, exiting."
|
||||
exit 1
|
||||
elif grep -Fq "Application startup complete" "$VLLM_LOG"; then
|
||||
echo "Application started"
|
||||
break
|
||||
else
|
||||
echo "wait for 10 seconds..."
|
||||
sleep 10
|
||||
fi
|
||||
done
|
||||
|
||||
#
|
||||
# run test
|
||||
#
|
||||
echo "run benchmark test..."
|
||||
echo "logging to $BM_LOG"
|
||||
echo
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $MODEL \
|
||||
--dataset-name sonnet \
|
||||
--dataset-path benchmarks/sonnet_4x.txt \
|
||||
--sonnet-input-len $INPUT_LEN \
|
||||
--sonnet-output-len $OUTPUT_LEN \
|
||||
--ignore-eos > "$BM_LOG"
|
||||
|
||||
echo "completed..."
|
||||
echo
|
||||
|
||||
throughput=$(grep "Request throughput (req/s):" "$BM_LOG" | sed 's/[^0-9.]//g')
|
||||
echo "throughput: $throughput"
|
||||
echo
|
@ -145,6 +145,7 @@ steps:
|
||||
- examples/offline_inference/rlhf_colocate.py
|
||||
- tests/examples/offline_inference/data_parallel.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/engine/test_engine_core_client.py
|
||||
commands:
|
||||
# test with tp=2 and external_dp=2
|
||||
- VLLM_USE_V1=0 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
@ -154,6 +155,7 @@ steps:
|
||||
# test with internal dp
|
||||
- python3 ../examples/offline_inference/data_parallel.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
|
||||
- pytest -v -s distributed/test_utils.py
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
- pytest -v -s distributed/test_pynccl.py
|
||||
@ -199,8 +201,9 @@ steps:
|
||||
- tests/test_sequence
|
||||
- tests/test_config
|
||||
- tests/test_logger
|
||||
- tests/test_vllm_port
|
||||
commands:
|
||||
- pytest -v -s engine test_sequence.py test_config.py test_logger.py
|
||||
- pytest -v -s engine test_sequence.py test_config.py test_logger.py test_vllm_port.py
|
||||
# OOM in the CI unless we run this separately
|
||||
- pytest -v -s tokenization
|
||||
|
||||
@ -274,17 +277,6 @@ steps:
|
||||
- pytest -v -s samplers
|
||||
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
|
||||
|
||||
- label: LogitsProcessor Test # 5min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/layers
|
||||
- vllm/model_executor/guided_decoding
|
||||
- tests/test_logits_processor
|
||||
- tests/model_executor/test_guided_processors
|
||||
commands:
|
||||
- pytest -v -s test_logits_processor.py
|
||||
- pytest -v -s model_executor/test_guided_processors.py
|
||||
|
||||
- label: Speculative decoding tests # 40min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
@ -297,7 +289,7 @@ steps:
|
||||
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
|
||||
|
||||
- label: LoRA Test %N # 15min each
|
||||
mirror_hardwares: [amdexperimental]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- vllm/lora
|
||||
- tests/lora
|
||||
@ -328,6 +320,7 @@ steps:
|
||||
# these tests need to be separated, cannot combine
|
||||
- pytest -v -s compile/piecewise/test_simple.py
|
||||
- pytest -v -s compile/piecewise/test_toy_llama.py
|
||||
- pytest -v -s compile/piecewise/test_full_cudagraph.py
|
||||
|
||||
- label: PyTorch Fullgraph Test # 18min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
@ -397,6 +390,17 @@ steps:
|
||||
- pytest -v -s tensorizer_loader
|
||||
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
|
||||
- label: Model Executor Test
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
soft_fail: true
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor
|
||||
- tests/model_executor
|
||||
commands:
|
||||
- apt-get update && apt-get install -y curl libsodium23
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s model_executor
|
||||
|
||||
- label: Benchmarks # 9min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
working_dir: "/vllm-workspace/.buildkite"
|
||||
@ -420,6 +424,9 @@ steps:
|
||||
- vllm/model_executor/layers/quantization
|
||||
- tests/quantization
|
||||
commands:
|
||||
# temporary install here since we need nightly, will move to requirements/test.in
|
||||
# after torchao 0.12 release
|
||||
- pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
|
||||
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
|
||||
|
||||
- label: LM Eval Small Models # 53min
|
||||
@ -617,9 +624,11 @@ steps:
|
||||
- vllm/worker/model_runner.py
|
||||
- entrypoints/llm/test_collective_rpc.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- vllm/v1/engine/
|
||||
commands:
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- pytest -v -s entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s ./compile/test_basic_correctness.py
|
||||
- pytest -v -s ./compile/test_wrapper.py
|
||||
|
16
.github/CODEOWNERS
vendored
16
.github/CODEOWNERS
vendored
@ -10,15 +10,17 @@
|
||||
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth
|
||||
/vllm/model_executor/guided_decoding @mgoin @russellb
|
||||
/vllm/model_executor/guided_decoding @mgoin @russellb @aarnphm
|
||||
/vllm/multimodal @DarkLight1337 @ywang96
|
||||
/vllm/vllm_flash_attn @LucasWilkinson
|
||||
/vllm/lora @jeejeelee
|
||||
/vllm/reasoning @aarnphm
|
||||
/vllm/entrypoints @aarnphm
|
||||
CMakeLists.txt @tlrmchlsmth
|
||||
|
||||
# vLLM V1
|
||||
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
|
||||
/vllm/v1/structured_output @mgoin @russellb
|
||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm
|
||||
|
||||
# Test ownership
|
||||
/.buildkite/lm-eval-harness @mgoin @simon-mo
|
||||
@ -27,8 +29,8 @@ CMakeLists.txt @tlrmchlsmth
|
||||
/tests/distributed/test_multi_node_assignment.py @youkaichao
|
||||
/tests/distributed/test_pipeline_parallel.py @youkaichao
|
||||
/tests/distributed/test_same_node.py @youkaichao
|
||||
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo
|
||||
/tests/entrypoints/llm/test_guided_generate.py @mgoin @russellb
|
||||
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo @aarnphm
|
||||
/tests/entrypoints/llm/test_guided_generate.py @mgoin @russellb @aarnphm
|
||||
/tests/kernels @tlrmchlsmth @WoosukKwon
|
||||
/tests/model_executor/test_guided_processors.py @mgoin @russellb
|
||||
/tests/models @DarkLight1337 @ywang96
|
||||
@ -38,11 +40,11 @@ CMakeLists.txt @tlrmchlsmth
|
||||
/tests/quantization @mgoin @robertgshaw2-redhat
|
||||
/tests/spec_decode @njhill @LiuXiaoxuanPKU
|
||||
/tests/test_inputs.py @DarkLight1337 @ywang96
|
||||
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb
|
||||
/tests/v1/structured_output @mgoin @russellb
|
||||
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
|
||||
/tests/v1/structured_output @mgoin @russellb @aarnphm
|
||||
/tests/weight_loading @mgoin @youkaichao
|
||||
/tests/lora @jeejeelee
|
||||
|
||||
# Docs
|
||||
/docs @hmellor
|
||||
mkdocs.yaml @hmellor
|
||||
mkdocs.yaml @hmellor
|
||||
|
10
.github/ISSUE_TEMPLATE/400-bug-report.yml
vendored
10
.github/ISSUE_TEMPLATE/400-bug-report.yml
vendored
@ -8,6 +8,16 @@ body:
|
||||
attributes:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
⚠️ **SECURITY WARNING:** Please review any text you paste to ensure it does not contain sensitive information such as:
|
||||
- API tokens or keys (e.g., Hugging Face tokens, OpenAI API keys)
|
||||
- Passwords or authentication credentials
|
||||
- Private URLs or endpoints
|
||||
- Personal or confidential data
|
||||
|
||||
Consider redacting or replacing sensitive values with placeholders like `<YOUR_TOKEN_HERE>` when sharing configuration or code examples.
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Your current environment
|
||||
|
16
.github/PULL_REQUEST_TEMPLATE.md
vendored
16
.github/PULL_REQUEST_TEMPLATE.md
vendored
@ -1,6 +1,18 @@
|
||||
FILL IN THE PR DESCRIPTION HERE
|
||||
## Essential Elements of an Effective PR Description Checklist
|
||||
- [ ] The purpose of the PR, such as "Fix some issue (link existing issues this PR will resolve)".
|
||||
- [ ] The test plan, such as providing test command.
|
||||
- [ ] The test results, such as pasting the results comparison before and after, or e2e results
|
||||
- [ ] (Optional) The necessary documentation update, such as updating `supported_models.md` and `examples` for a new model.
|
||||
|
||||
FIX #xxxx (*link existing issues this PR will resolve*)
|
||||
PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS ABOVE HAVE BEEN CONSIDERED.
|
||||
|
||||
## Purpose
|
||||
|
||||
## Test Plan
|
||||
|
||||
## Test Result
|
||||
|
||||
## (Optional) Documentation Update
|
||||
|
||||
<!--- pyml disable-next-line no-emphasis-as-heading -->
|
||||
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing>** (anything written below this line will be removed by GitHub Actions)
|
||||
|
14
.github/mergify.yml
vendored
14
.github/mergify.yml
vendored
@ -36,6 +36,20 @@ pull_request_rules:
|
||||
add:
|
||||
- frontend
|
||||
|
||||
- name: label-llama
|
||||
description: Automatically apply llama label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^examples/.*llama.*\.py
|
||||
- files~=^tests/.*llama.*\.py
|
||||
- files~=^vllm/entrypoints/openai/tool_parsers/llama.*\.py
|
||||
- files~=^vllm/model_executor/models/.*llama.*\.py
|
||||
- files~=^vllm/transformers_utils/configs/.*llama.*\.py
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- llama
|
||||
|
||||
- name: label-multi-modality
|
||||
description: Automatically apply multi-modality label
|
||||
conditions:
|
||||
|
@ -11,6 +11,8 @@ repos:
|
||||
hooks:
|
||||
- id: yapf
|
||||
args: [--in-place, --verbose]
|
||||
# Keep the same list from yapfignore here to avoid yapf failing without any inputs
|
||||
exclude: '(.buildkite|benchmarks|build|examples)/.*'
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.11.7
|
||||
hooks:
|
||||
@ -58,7 +60,7 @@ repos:
|
||||
entry: tools/mypy.sh 0 "local"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests]
|
||||
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests, pydantic]
|
||||
stages: [pre-commit] # Don't run in CI
|
||||
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.9
|
||||
|
@ -23,6 +23,9 @@ include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake)
|
||||
# Suppress potential warnings about unused manually-specified variables
|
||||
set(ignoreMe "${VLLM_PYTHON_PATH}")
|
||||
|
||||
# Prevent installation of dependencies (cutlass) by default.
|
||||
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
|
||||
|
||||
#
|
||||
# Supported python versions. These versions will be searched in order, the
|
||||
# first match will be selected. These should be kept in sync with setup.py.
|
||||
@ -179,9 +182,6 @@ include(FetchContent)
|
||||
file(MAKE_DIRECTORY ${FETCHCONTENT_BASE_DIR}) # Ensure the directory exists
|
||||
message(STATUS "FetchContent base directory: ${FETCHCONTENT_BASE_DIR}")
|
||||
|
||||
#
|
||||
# Set rocm version dev int.
|
||||
#
|
||||
if(VLLM_GPU_LANG STREQUAL "HIP")
|
||||
#
|
||||
# Overriding the default -O set up by cmake, adding ggdb3 for the most verbose devug info
|
||||
@ -189,7 +189,6 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
|
||||
set(CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG "${CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG} -O0 -ggdb3")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O0 -ggdb3")
|
||||
|
||||
|
||||
#
|
||||
# Certain HIP functions are marked as [[nodiscard]], yet vllm ignores the result which generates
|
||||
# a lot of warnings that always mask real issues. Suppressing until this is properly addressed.
|
||||
@ -243,6 +242,7 @@ set(VLLM_EXT_SRC
|
||||
"csrc/activation_kernels.cu"
|
||||
"csrc/layernorm_kernels.cu"
|
||||
"csrc/layernorm_quant_kernels.cu"
|
||||
"csrc/sampler.cu"
|
||||
"csrc/cuda_view.cu"
|
||||
"csrc/quantization/gptq/q_gemm.cu"
|
||||
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
|
||||
@ -308,7 +308,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
|
||||
# are not supported by Machete yet.
|
||||
# 9.0 for latest bf16 atomicAdd PTX
|
||||
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
|
||||
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.7;9.0+PTX" "${CUDA_ARCHS}")
|
||||
if (MARLIN_ARCHS)
|
||||
|
||||
#
|
||||
@ -454,7 +454,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# kernels for the remaining archs that are not already built for 3x.
|
||||
# (Build 8.9 for FP8)
|
||||
cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS
|
||||
"7.5;8.0;8.9+PTX" "${CUDA_ARCHS}")
|
||||
"7.5;8.0;8.7;8.9+PTX" "${CUDA_ARCHS}")
|
||||
# subtract out the archs that are already built for 3x
|
||||
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
|
||||
if (SCALED_MM_2X_ARCHS)
|
||||
@ -543,8 +543,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# CUTLASS MoE kernels
|
||||
|
||||
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and only works
|
||||
# on Hopper). get_cutlass_moe_mm_data should only be compiled if it's possible
|
||||
# to compile MoE kernels that use its output.
|
||||
# on Hopper). get_cutlass_(pplx_)moe_mm_data should only be compiled
|
||||
# if it's possible to compile MoE kernels that use its output.
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu"
|
||||
@ -684,7 +684,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
|
||||
list(APPEND VLLM_MOE_EXT_SRC "${VLLM_MOE_WNA16_SRC}")
|
||||
# 9.0 for latest bf16 atomicAdd PTX
|
||||
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
|
||||
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.7;9.0+PTX" "${CUDA_ARCHS}")
|
||||
if (MARLIN_MOE_ARCHS)
|
||||
|
||||
#
|
||||
@ -785,5 +785,7 @@ endif()
|
||||
# For CUDA we also build and ship some external projects.
|
||||
if (VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
include(cmake/external_projects/flashmla.cmake)
|
||||
|
||||
# vllm-flash-attn should be last as it overwrites some CMake functions
|
||||
include(cmake/external_projects/vllm_flash_attn.cmake)
|
||||
endif ()
|
||||
|
10
README.md
10
README.md
@ -58,8 +58,8 @@ vLLM is fast with:
|
||||
- Efficient management of attention key and value memory with [**PagedAttention**](https://blog.vllm.ai/2023/06/20/vllm.html)
|
||||
- Continuous batching of incoming requests
|
||||
- Fast model execution with CUDA/HIP graph
|
||||
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [AutoRound](https://arxiv.org/abs/2309.05516),INT4, INT8, and FP8.
|
||||
- Optimized CUDA kernels, including integration with FlashAttention and FlashInfer.
|
||||
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [AutoRound](https://arxiv.org/abs/2309.05516), INT4, INT8, and FP8
|
||||
- Optimized CUDA kernels, including integration with FlashAttention and FlashInfer
|
||||
- Speculative decoding
|
||||
- Chunked prefill
|
||||
|
||||
@ -72,14 +72,14 @@ vLLM is flexible and easy to use with:
|
||||
- Tensor parallelism and pipeline parallelism support for distributed inference
|
||||
- Streaming outputs
|
||||
- OpenAI-compatible API server
|
||||
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron.
|
||||
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron
|
||||
- Prefix caching support
|
||||
- Multi-LoRA support
|
||||
|
||||
vLLM seamlessly supports most popular open-source models on HuggingFace, including:
|
||||
- Transformer-like LLMs (e.g., Llama)
|
||||
- Mixture-of-Expert LLMs (e.g., Mixtral, Deepseek-V2 and V3)
|
||||
- Embedding Models (e.g. E5-Mistral)
|
||||
- Embedding Models (e.g., E5-Mistral)
|
||||
- Multi-modal LLMs (e.g., LLaVA)
|
||||
|
||||
Find the full list of supported models [here](https://docs.vllm.ai/en/latest/models/supported_models.html).
|
||||
@ -162,4 +162,4 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
|
||||
|
||||
## Media Kit
|
||||
|
||||
- If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit).
|
||||
- If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit)
|
||||
|
@ -8,4 +8,6 @@ Please report security issues privately using [the vulnerability submission form
|
||||
|
||||
---
|
||||
|
||||
Please see the [Security Guide in the vLLM documentation](https://docs.vllm.ai/en/latest/usage/security.html) for more information on vLLM's security assumptions and recommendations.
|
||||
|
||||
Please see [PyTorch's Security Policy](https://github.com/pytorch/pytorch/blob/main/SECURITY.md) for more information and recommendations on how to securely interact with models.
|
||||
|
@ -64,6 +64,12 @@ become available.
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>lmms-lab/LLaVA-OneVision-Data</code>, <code>Aeala/ShareGPT_Vicuna_unfiltered</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>Custom</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td>Local file: <code>data.jsonl</code></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
@ -124,6 +130,38 @@ P99 ITL (ms): 8.39
|
||||
==================================================
|
||||
```
|
||||
|
||||
### Custom Dataset
|
||||
If the dataset you want to benchmark is not supported yet in vLLM, even then you can benchmark on it using `CustomDataset`. Your data needs to be in `.jsonl` format and needs to have "prompt" field per entry, e.g., data.jsonl
|
||||
|
||||
```
|
||||
{"prompt": "What is the capital of India?"}
|
||||
{"prompt": "What is the capital of Iran?"}
|
||||
{"prompt": "What is the capital of China?"}
|
||||
```
|
||||
|
||||
```bash
|
||||
# start server
|
||||
VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.1-8B-Instruct --disable-log-requests
|
||||
```
|
||||
|
||||
```bash
|
||||
# run benchmarking script
|
||||
python3 benchmarks/benchmark_serving.py --port 9001 --save-result --save-detailed \
|
||||
--backend vllm \
|
||||
--model meta-llama/Llama-3.1-8B-Instruct \
|
||||
--endpoint /v1/completions \
|
||||
--dataset-name custom \
|
||||
--dataset-path <path-to-your-data-jsonl> \
|
||||
--custom-skip-chat-template \
|
||||
--num-prompts 80 \
|
||||
--max-concurrency 1 \
|
||||
--temperature=0.3 \
|
||||
--top-p=0.75 \
|
||||
--result-dir "./log/"
|
||||
```
|
||||
|
||||
You can skip applying chat template if your data already has it by using `--custom-skip-chat-template`.
|
||||
|
||||
### VisionArena Benchmark for Vision Language Models
|
||||
|
||||
```bash
|
||||
@ -146,9 +184,9 @@ python3 vllm/benchmarks/benchmark_serving.py \
|
||||
|
||||
``` bash
|
||||
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--ngram_prompt_lookup_min 2 \
|
||||
--ngram-prompt-lookup-max 5 \
|
||||
--speculative_config '{"model": "[ngram]", "num_speculative_tokens": 5}
|
||||
--speculative-config $'{"method": "ngram",
|
||||
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
|
||||
"prompt_lookup_min": 2}'
|
||||
```
|
||||
|
||||
``` bash
|
||||
@ -203,6 +241,16 @@ python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--seed 42
|
||||
```
|
||||
|
||||
**`philschmid/mt-bench`**
|
||||
|
||||
``` bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--model Qwen/QwQ-32B \
|
||||
--dataset-name hf \
|
||||
--dataset-path philschmid/mt-bench \
|
||||
--num-prompts 80
|
||||
```
|
||||
|
||||
### Running With Sampling Parameters
|
||||
|
||||
When using OpenAI-compatible backends such as `vllm`, optional sampling
|
||||
@ -273,9 +321,9 @@ python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--output-len=100 \
|
||||
--num-prompts=2048 \
|
||||
--async-engine \
|
||||
--ngram_prompt_lookup_min=2 \
|
||||
--ngram-prompt-lookup-max=5 \
|
||||
--speculative_config '{"model": "[ngram]", "num_speculative_tokens": 5}
|
||||
--speculative-config $'{"method": "ngram",
|
||||
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
|
||||
"prompt_lookup_min": 2}'
|
||||
```
|
||||
|
||||
```
|
||||
|
@ -10,11 +10,15 @@
|
||||
# 3. Set variables (ALL REQUIRED)
|
||||
# BASE: your directory for vllm repo
|
||||
# MODEL: the model served by vllm
|
||||
# TP: ways of tensor parallelism
|
||||
# DOWNLOAD_DIR: directory to download and load model weights.
|
||||
# INPUT_LEN: request input len
|
||||
# OUTPUT_LEN: request output len
|
||||
# MIN_CACHE_HIT_PCT: prefix cache rate
|
||||
# MAX_LATENCY_ALLOWED_MS: (e2e) latency requirement. If there's no latency requirement, set it to a large number like 1000000000
|
||||
# NUM_SEQS_LIST: a list of `max-num-seqs` you want to loop with.
|
||||
# NUM_BATCHED_TOKENS_LIST: a list of `max-num-batched-tokens` you want to loop with.
|
||||
# Note that the default NUM_SEQS_LIST and NUM_BATCHED_TOKENS_LIST are set for medium size input/output len, for extra short context (such as 20:20), you might need to include larger numbers in NUM_SEQS_LIST.
|
||||
# 4. Run the script, it might take a long time, you can use tmux to avoid the script stop if disconnection happens.
|
||||
# 5. The final result will be saved in RESULT file.
|
||||
|
||||
@ -30,31 +34,27 @@
|
||||
TAG=$(date +"%Y_%m_%d_%H_%M")
|
||||
BASE=""
|
||||
MODEL="meta-llama/Llama-3.1-8B-Instruct"
|
||||
TP=1
|
||||
DOWNLOAD_DIR=""
|
||||
INPUT_LEN=4000
|
||||
OUTPUT_LEN=16
|
||||
MIN_CACHE_HIT_PCT_PCT=0
|
||||
MIN_CACHE_HIT_PCT=0
|
||||
MAX_LATENCY_ALLOWED_MS=100000000000
|
||||
NUM_SEQS_LIST="128 256"
|
||||
NUM_BATCHED_TOKENS_LIST="512 1024 2048 4096"
|
||||
|
||||
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
|
||||
RESULT="$LOG_FOLDER/result.txt"
|
||||
|
||||
echo "result file$ $RESULT"
|
||||
echo "result file: $RESULT"
|
||||
echo "model: $MODEL"
|
||||
echo
|
||||
|
||||
rm -rf $LOG_FOLDER
|
||||
mkdir -p $LOG_FOLDER
|
||||
|
||||
cd "$BASE/vllm"
|
||||
# create sonnet-4x.txt so that we can sample 2048 tokens for input
|
||||
echo "" > benchmarks/sonnet_4x.txt
|
||||
for _ in {1..4}
|
||||
do
|
||||
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
|
||||
done
|
||||
|
||||
pip install datasets
|
||||
pip install -q datasets
|
||||
|
||||
current_hash=$(git rev-parse HEAD)
|
||||
echo "hash:$current_hash" >> "$RESULT"
|
||||
@ -64,53 +64,69 @@ best_throughput=0
|
||||
best_max_num_seqs=0
|
||||
best_num_batched_tokens=0
|
||||
best_goodput=0
|
||||
|
||||
start_server() {
|
||||
local gpu_memory_utilization=$1
|
||||
local max_num_seqs=$2
|
||||
local max_num_batched_tokens=$3
|
||||
local vllm_log=$4
|
||||
|
||||
pkill -f vllm
|
||||
|
||||
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
|
||||
--disable-log-requests \
|
||||
--port 8004 \
|
||||
--gpu-memory-utilization $gpu_memory_utilization \
|
||||
--max-num-seqs $max_num_seqs \
|
||||
--max-num-batched-tokens $max_num_batched_tokens \
|
||||
--tensor-parallel-size $TP \
|
||||
--enable-prefix-caching \
|
||||
--load-format dummy \
|
||||
--download-dir "$DOWNLOAD_DIR" \
|
||||
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
|
||||
|
||||
# wait for 10 minutes...
|
||||
server_started=0
|
||||
for i in {1..60}; do
|
||||
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
|
||||
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
|
||||
if [[ "$STATUS_CODE" -eq 200 ]]; then
|
||||
server_started=1
|
||||
break
|
||||
else
|
||||
sleep 10
|
||||
fi
|
||||
done
|
||||
if (( ! server_started )); then
|
||||
echo "server did not start within 10 minutes. Please check server log at $vllm_log".
|
||||
return 1
|
||||
else
|
||||
return 0
|
||||
fi
|
||||
}
|
||||
|
||||
run_benchmark() {
|
||||
local max_num_seqs=$1
|
||||
local max_num_batched_tokens=$2
|
||||
local gpu_memory_utilization=$3
|
||||
echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
|
||||
local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
|
||||
echo "vllm_log: $vllm_log"
|
||||
echo
|
||||
rm -f $vllm_log
|
||||
pkill -f vllm
|
||||
|
||||
# start the server
|
||||
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
|
||||
--disable-log-requests \
|
||||
--port 8004 \
|
||||
--gpu-memory-utilization 0.98 \
|
||||
--max-num-seqs $max_num_seqs \
|
||||
--max-num-batched-tokens $max_num_batched_tokens \
|
||||
--tensor-parallel-size 1 \
|
||||
--enable-prefix-caching \
|
||||
--load-format dummy \
|
||||
--download-dir $DOWNLOAD_DIR \
|
||||
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
|
||||
echo "wait for 10 minutes.."
|
||||
echo
|
||||
# wait for 10 minutes...
|
||||
server_started=0
|
||||
for i in {1..60}; do
|
||||
if grep -Fq "Application startup complete" "$vllm_log"; then
|
||||
echo "Application started"
|
||||
server_started=1
|
||||
break
|
||||
else
|
||||
# echo "wait for 10 seconds..."
|
||||
sleep 10
|
||||
fi
|
||||
done
|
||||
|
||||
if (( ! server_started )); then
|
||||
echo "server did not start within 10 minutes, terminate the benchmarking. Please check server log at $vllm_log"
|
||||
echo "pkill -f vllm"
|
||||
echo
|
||||
pkill vllm
|
||||
sleep 10
|
||||
return 1
|
||||
echo "starting server..."
|
||||
start_server $gpu_memory_utilization $max_num_seqs $max_num_batched_tokens $vllm_log
|
||||
result=$?
|
||||
if [[ "$result" -eq 1 ]]; then
|
||||
echo "server failed to start. gpu_memory_utilization:$gpu_memory_utilization, max_num_seqs:$max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
|
||||
else
|
||||
echo "server started."
|
||||
fi
|
||||
echo
|
||||
|
||||
echo "run benchmark test..."
|
||||
echo
|
||||
meet_latency_requirement=0
|
||||
# get a basic qps by using request-rate inf
|
||||
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
|
||||
@ -118,29 +134,29 @@ run_benchmark() {
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $MODEL \
|
||||
--dataset-name sonnet \
|
||||
--dataset-path benchmarks/sonnet_4x.txt \
|
||||
--sonnet-input-len $INPUT_LEN \
|
||||
--sonnet-output-len $OUTPUT_LEN \
|
||||
--dataset-name random \
|
||||
--random-input-len $INPUT_LEN \
|
||||
--random-output-len $OUTPUT_LEN \
|
||||
--ignore-eos \
|
||||
--disable-tqdm \
|
||||
--request-rate inf \
|
||||
--percentile-metrics ttft,tpot,itl,e2el \
|
||||
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
|
||||
--num-prompts 100 \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--port 8004 > "$bm_log"
|
||||
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
--num-prompts 1000 \
|
||||
--random-prefix-len $prefix_len \
|
||||
--port 8004 &> "$bm_log"
|
||||
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
|
||||
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
|
||||
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
|
||||
meet_latency_requirement=1
|
||||
request_rate=inf
|
||||
fi
|
||||
|
||||
if (( ! meet_latency_requirement )); then
|
||||
# start from request-rate as int(through_put) + 1
|
||||
request_rate=$((${through_put%.*} + 1))
|
||||
# start from request-rate as int(throughput) + 1
|
||||
request_rate=$((${throughput%.*} + 1))
|
||||
while ((request_rate > 0)); do
|
||||
# clear prefix cache
|
||||
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
|
||||
@ -149,19 +165,18 @@ run_benchmark() {
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $MODEL \
|
||||
--dataset-name sonnet \
|
||||
--dataset-path benchmarks/sonnet_4x.txt \
|
||||
--sonnet-input-len $INPUT_LEN \
|
||||
--sonnet-output-len $OUTPUT_LEN \
|
||||
--ignore_eos \
|
||||
--dataset-name random \
|
||||
--random-input-len $INPUT_LEN \
|
||||
--random-output-len $OUTPUT_LEN \
|
||||
--ignore-eos \
|
||||
--disable-tqdm \
|
||||
--request-rate $request_rate \
|
||||
--percentile-metrics ttft,tpot,itl,e2el \
|
||||
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
|
||||
--num-prompts 100 \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--port 8004 > "$bm_log"
|
||||
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
--random-prefix-len $prefix_len \
|
||||
--port 8004 &> "$bm_log"
|
||||
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
|
||||
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
|
||||
@ -173,10 +188,10 @@ run_benchmark() {
|
||||
fi
|
||||
# write the results and update the best result.
|
||||
if ((meet_latency_requirement)); then
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput"
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput" >> "$RESULT"
|
||||
if (( $(echo "$through_put > $best_throughput" | bc -l) )); then
|
||||
best_throughput=$through_put
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput"
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput" >> "$RESULT"
|
||||
if (( $(echo "$throughput > $best_throughput" | bc -l) )); then
|
||||
best_throughput=$throughput
|
||||
best_max_num_seqs=$max_num_seqs
|
||||
best_num_batched_tokens=$max_num_batched_tokens
|
||||
best_goodput=$goodput
|
||||
@ -188,22 +203,39 @@ run_benchmark() {
|
||||
|
||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
|
||||
|
||||
echo "pkill -f vllm"
|
||||
echo
|
||||
pkill vllm
|
||||
sleep 10
|
||||
rm -f $vllm_log
|
||||
printf '=%.0s' $(seq 1 20)
|
||||
return 0
|
||||
}
|
||||
|
||||
read -r -a num_seqs_list <<< "$NUM_SEQS_LIST"
|
||||
read -r -a num_batched_tokens_list <<< "$NUM_BATCHED_TOKENS_LIST"
|
||||
|
||||
num_seqs_list="128 256"
|
||||
num_batched_tokens_list="512 1024 2048 4096"
|
||||
for num_seqs in $num_seqs_list; do
|
||||
for num_batched_tokens in $num_batched_tokens_list; do
|
||||
run_benchmark $num_seqs $num_batched_tokens
|
||||
exit 0
|
||||
# first find out the max gpu-memory-utilization without HBM OOM.
|
||||
gpu_memory_utilization=0.98
|
||||
find_gpu_memory_utilization=0
|
||||
while (( $(echo "$gpu_memory_utilization >= 0.9" | bc -l) )); do
|
||||
start_server $gpu_memory_utilization "${num_seqs_list[-1]}" "${num_batched_tokens_list[-1]}" "$LOG_FOLDER/vllm_log_gpu_memory_utilization_$gpu_memory_utilization.log"
|
||||
result=$?
|
||||
if [[ "$result" -eq 0 ]]; then
|
||||
find_gpu_memory_utilization=1
|
||||
break
|
||||
else
|
||||
gpu_memory_utilization=$(echo "$gpu_memory_utilization - 0.01" | bc)
|
||||
fi
|
||||
done
|
||||
|
||||
if [[ "$find_gpu_memory_utilization" -eq 1 ]]; then
|
||||
echo "Using gpu_memory_utilization=$gpu_memory_utilization to serve model."
|
||||
else
|
||||
echo "Cannot find a proper gpu_memory_utilization over 0.9 to serve the model, please check logs in $LOG_FOLDER."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
for num_seqs in "${num_seqs_list[@]}"; do
|
||||
for num_batched_tokens in "${num_batched_tokens_list[@]}"; do
|
||||
run_benchmark $num_seqs $num_batched_tokens $gpu_memory_utilization
|
||||
done
|
||||
done
|
||||
echo "finish permutations"
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import io
|
||||
import json
|
||||
@ -324,7 +325,7 @@ async def async_request_openai_completions(
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
generated_text += text or ""
|
||||
elif usage := data.get("usage"):
|
||||
if usage := data.get("usage"):
|
||||
output.output_tokens = usage.get("completion_tokens")
|
||||
if first_chunk_received:
|
||||
output.success = True
|
||||
@ -611,6 +612,7 @@ ASYNC_REQUEST_FUNCS = {
|
||||
"tensorrt-llm": async_request_trt_llm,
|
||||
"scalellm": async_request_openai_completions,
|
||||
"sglang": async_request_openai_completions,
|
||||
"llama.cpp": async_request_openai_completions,
|
||||
}
|
||||
|
||||
OPENAI_COMPATIBLE_BACKENDS = [
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
This module defines a framework for sampling benchmark requests from various
|
||||
datasets. Each dataset subclass of BenchmarkDataset must implement sample
|
||||
@ -9,9 +10,6 @@ generation. Supported dataset types include:
|
||||
- BurstGPT
|
||||
- HuggingFace
|
||||
- VisionArena
|
||||
|
||||
TODO: Implement CustomDataset to parse a JSON file and convert its contents into
|
||||
SampleRequest instances, similar to the approach used in ShareGPT.
|
||||
"""
|
||||
|
||||
import base64
|
||||
@ -442,6 +440,97 @@ class ShareGPTDataset(BenchmarkDataset):
|
||||
return samples
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Custom Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class CustomDataset(BenchmarkDataset):
|
||||
"""
|
||||
Implements the Custom dataset. Loads data from a JSONL file and generates
|
||||
sample requests based on conversation turns. E.g.,
|
||||
```
|
||||
{"prompt": "What is the capital of India?"}
|
||||
{"prompt": "What is the capital of Iran?"}
|
||||
{"prompt": "What is the capital of China?"}
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.load_data()
|
||||
|
||||
def load_data(self) -> None:
|
||||
if self.dataset_path is None:
|
||||
raise ValueError("dataset_path must be provided for loading data.")
|
||||
|
||||
# self.data will be a list of dictionaries
|
||||
# e.g., [{"prompt": "What is the capital of India?"}, ...]
|
||||
# This will be the standardized format which load_data()
|
||||
# has to convert into depending on the filetype of dataset_path.
|
||||
# sample() will assume this standardized format of self.data
|
||||
self.data = []
|
||||
|
||||
# Load the JSONL file
|
||||
if self.dataset_path.endswith(".jsonl"):
|
||||
jsonl_data = pd.read_json(path_or_buf=self.dataset_path, lines=True)
|
||||
|
||||
# check if the JSONL file has a 'prompt' column
|
||||
if "prompt" not in jsonl_data.columns:
|
||||
raise ValueError("JSONL file must contain a 'prompt' column.")
|
||||
|
||||
# Convert each row to a dictionary and append to self.data
|
||||
# This will convert the DataFrame to a list of dictionaries
|
||||
# where each dictionary corresponds to a row in the DataFrame.
|
||||
# This is the standardized format we want for self.data
|
||||
for _, row in jsonl_data.iterrows():
|
||||
self.data.append(row.to_dict())
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Only JSONL format is supported for CustomDataset."
|
||||
)
|
||||
|
||||
random.seed(self.random_seed)
|
||||
random.shuffle(self.data)
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
lora_path: Optional[str] = None,
|
||||
max_loras: Optional[int] = None,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
skip_chat_template: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
sampled_requests = []
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt = item["prompt"]
|
||||
|
||||
# apply template
|
||||
if not skip_chat_template:
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
[{"role": "user", "content": prompt}],
|
||||
add_generation_prompt=True,
|
||||
tokenize=False,
|
||||
)
|
||||
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
|
||||
return sampled_requests
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Sonnet Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
@ -776,7 +865,15 @@ class InstructCoderDataset(HuggingFaceDataset):
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt = f"{item['instruction']}:\n{item['input']}"
|
||||
prompt = f"{item['input']}\n\n{item['instruction']} Just output \
|
||||
the code, do not include any explanation."
|
||||
|
||||
# apply template
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
[{"role": "user", "content": prompt}],
|
||||
add_generation_prompt=True,
|
||||
tokenize=False,
|
||||
)
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""Benchmark the latency of processing a single batch of requests."""
|
||||
|
||||
import argparse
|
||||
@ -6,13 +7,12 @@ import dataclasses
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
import vllm.envs as envs
|
||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.engine.arg_utils import EngineArgs
|
||||
@ -80,17 +80,9 @@ def main(args: argparse.Namespace):
|
||||
|
||||
def run_to_completion(profile_dir: Optional[str] = None):
|
||||
if profile_dir:
|
||||
with torch.profiler.profile(
|
||||
activities=[
|
||||
torch.profiler.ProfilerActivity.CPU,
|
||||
torch.profiler.ProfilerActivity.CUDA,
|
||||
],
|
||||
on_trace_ready=torch.profiler.tensorboard_trace_handler(
|
||||
str(profile_dir)
|
||||
),
|
||||
) as p:
|
||||
llm_generate()
|
||||
print(p.key_averages().table(sort_by="self_cuda_time_total"))
|
||||
llm.start_profile()
|
||||
llm_generate()
|
||||
llm.stop_profile()
|
||||
else:
|
||||
start_time = time.perf_counter()
|
||||
llm_generate()
|
||||
@ -103,11 +95,7 @@ def main(args: argparse.Namespace):
|
||||
run_to_completion(profile_dir=None)
|
||||
|
||||
if args.profile:
|
||||
profile_dir = args.profile_result_dir
|
||||
if not profile_dir:
|
||||
profile_dir = (
|
||||
Path(".") / "vllm_benchmark_result" / f"latency_result_{time.time()}"
|
||||
)
|
||||
profile_dir = envs.VLLM_TORCH_PROFILER_DIR
|
||||
print(f"Profiling (results will be saved to '{profile_dir}')...")
|
||||
run_to_completion(profile_dir=profile_dir)
|
||||
return
|
||||
@ -164,15 +152,6 @@ if __name__ == "__main__":
|
||||
action="store_true",
|
||||
help="profile the generation process of a single batch",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--profile-result-dir",
|
||||
type=str,
|
||||
default=None,
|
||||
help=(
|
||||
"path to save the pytorch profiler output. Can be visualized "
|
||||
"with ui.perfetto.dev or Tensorboard."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-json",
|
||||
type=str,
|
||||
@ -193,4 +172,9 @@ if __name__ == "__main__":
|
||||
# numbers. We need to disable prefix caching by default.
|
||||
parser.set_defaults(enable_prefix_caching=False)
|
||||
args = parser.parse_args()
|
||||
if args.profile and not envs.VLLM_TORCH_PROFILER_DIR:
|
||||
raise OSError(
|
||||
"The environment variable 'VLLM_TORCH_PROFILER_DIR' is not set. "
|
||||
"Please set it to a valid path to use torch profiler."
|
||||
)
|
||||
main(args)
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
Offline benchmark to test the long document QA throughput.
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
Benchmark the efficiency of prefix caching.
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""Benchmark offline prioritization."""
|
||||
|
||||
import argparse
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
r"""Benchmark online serving throughput.
|
||||
|
||||
On the server side, run one of the following commands:
|
||||
@ -60,6 +61,7 @@ from benchmark_dataset import (
|
||||
ASRDataset,
|
||||
BurstGPTDataset,
|
||||
ConversationDataset,
|
||||
CustomDataset,
|
||||
HuggingFaceDataset,
|
||||
InstructCoderDataset,
|
||||
MTBenchDataset,
|
||||
@ -627,7 +629,16 @@ def main(args: argparse.Namespace):
|
||||
"'--dataset-path' if required."
|
||||
)
|
||||
|
||||
if args.dataset_name == "sonnet":
|
||||
if args.dataset_name == "custom":
|
||||
dataset = CustomDataset(dataset_path=args.dataset_path)
|
||||
input_requests = dataset.sample(
|
||||
num_requests=args.num_prompts,
|
||||
tokenizer=tokenizer,
|
||||
output_len=args.custom_output_len,
|
||||
skip_chat_template=args.custom_skip_chat_template,
|
||||
)
|
||||
|
||||
elif args.dataset_name == "sonnet":
|
||||
dataset = SonnetDataset(dataset_path=args.dataset_path)
|
||||
# For the "sonnet" dataset, formatting depends on the backend.
|
||||
if args.backend == "openai-chat":
|
||||
@ -762,6 +773,10 @@ def main(args: argparse.Namespace):
|
||||
if "temperature" not in sampling_params:
|
||||
sampling_params["temperature"] = 0.0 # Default to greedy decoding.
|
||||
|
||||
if args.backend == "llama.cpp":
|
||||
# Disable prompt caching in llama.cpp backend
|
||||
sampling_params["cache_prompt"] = False
|
||||
|
||||
# Avoid GC processing "static" data - reduce pause times.
|
||||
gc.collect()
|
||||
gc.freeze()
|
||||
@ -834,6 +849,8 @@ def main(args: argparse.Namespace):
|
||||
]:
|
||||
if field in result_json:
|
||||
del result_json[field]
|
||||
if field in benchmark_result:
|
||||
del benchmark_result[field]
|
||||
|
||||
# Save to file
|
||||
base_model_id = model_id.split("/")[-1]
|
||||
@ -846,6 +863,7 @@ def main(args: argparse.Namespace):
|
||||
if args.result_filename:
|
||||
file_name = args.result_filename
|
||||
if args.result_dir:
|
||||
os.makedirs(args.result_dir, exist_ok=True)
|
||||
file_name = os.path.join(args.result_dir, file_name)
|
||||
with open(
|
||||
file_name, mode="a+" if args.append_result else "w", encoding="utf-8"
|
||||
@ -886,7 +904,7 @@ if __name__ == "__main__":
|
||||
"--dataset-name",
|
||||
type=str,
|
||||
default="sharegpt",
|
||||
choices=["sharegpt", "burstgpt", "sonnet", "random", "hf"],
|
||||
choices=["sharegpt", "burstgpt", "sonnet", "random", "hf", "custom"],
|
||||
help="Name of the dataset to benchmark on.",
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -1056,6 +1074,19 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# group for dataset specific arguments
|
||||
custom_group = parser.add_argument_group("custom dataset options")
|
||||
custom_group.add_argument(
|
||||
"--custom-output-len",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Number of output tokens per request, used only for custom dataset.",
|
||||
)
|
||||
custom_group.add_argument(
|
||||
"--custom-skip-chat-template",
|
||||
action="store_true",
|
||||
help="Skip applying chat template to prompt, used only for custom dataset.",
|
||||
)
|
||||
|
||||
sonnet_group = parser.add_argument_group("sonnet dataset options")
|
||||
sonnet_group.add_argument(
|
||||
"--sonnet-input-len",
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
r"""Benchmark online serving throughput with structured outputs.
|
||||
|
||||
On the server side, run one of the following commands:
|
||||
@ -11,7 +12,6 @@ On the client side, run:
|
||||
--model <your_model> \
|
||||
--dataset json \
|
||||
--structured-output-ratio 1.0 \
|
||||
--structured-output-backend auto \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""Benchmark offline inference throughput."""
|
||||
|
||||
import argparse
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import json
|
||||
@ -65,4 +66,9 @@ class InfEncoder(json.JSONEncoder):
|
||||
|
||||
def write_to_json(filename: str, records: list) -> None:
|
||||
with open(filename, "w") as f:
|
||||
json.dump(records, f, cls=InfEncoder)
|
||||
json.dump(
|
||||
records,
|
||||
f,
|
||||
cls=InfEncoder,
|
||||
default=lambda o: f"<{type(o).__name__} object is not JSON serializable>",
|
||||
)
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
# Cutlass bench utils
|
||||
from collections.abc import Iterable
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
# Weight Shapes are in the format
|
||||
# ([K, N], TP_SPLIT_DIM)
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import os
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import asyncio
|
||||
import itertools
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import json
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import pickle as pkl
|
||||
import time
|
||||
|
223
benchmarks/kernels/bench_fp8_gemm.py
Normal file
223
benchmarks/kernels/bench_fp8_gemm.py
Normal file
@ -0,0 +1,223 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import argparse
|
||||
import copy
|
||||
import itertools
|
||||
|
||||
import torch
|
||||
from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm
|
||||
from vllm._custom_ops import scaled_fp8_quant as vllm_scaled_fp8_quant
|
||||
from vllm.triton_utils import triton
|
||||
|
||||
|
||||
@triton.testing.perf_report(
|
||||
triton.testing.Benchmark(
|
||||
x_names=["batch_size"],
|
||||
x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
|
||||
x_log=False,
|
||||
line_arg="provider",
|
||||
line_vals=[
|
||||
"torch-bf16",
|
||||
# "fp8-tensor-w-token-a",
|
||||
"fp8-tensor-w-tensor-a",
|
||||
"fp8-channel-w-token-a",
|
||||
# "fp8-channel-w-tensor-a",
|
||||
# "fp8-tensor-w-token-a-noquant",
|
||||
"fp8-tensor-w-tensor-a-noquant",
|
||||
"fp8-channel-w-token-a-noquant",
|
||||
# "fp8-channel-w-tensor-a-noquant",
|
||||
],
|
||||
line_names=[
|
||||
"torch-bf16",
|
||||
# "fp8-tensor-w-token-a",
|
||||
"fp8-tensor-w-tensor-a",
|
||||
"fp8-channel-w-token-a",
|
||||
# "fp8-channel-w-tensor-a",
|
||||
# "fp8-tensor-w-token-a-noquant",
|
||||
"fp8-tensor-w-tensor-a-noquant",
|
||||
"fp8-channel-w-token-a-noquant",
|
||||
# "fp8-channel-w-tensor-a-noquant",
|
||||
],
|
||||
ylabel="TFLOP/s (larger is better)",
|
||||
plot_name="BF16 vs FP8 GEMMs",
|
||||
args={},
|
||||
)
|
||||
)
|
||||
def benchmark(batch_size, provider, N, K):
|
||||
M = batch_size
|
||||
device = "cuda"
|
||||
dtype = torch.bfloat16
|
||||
|
||||
# Create input tensors
|
||||
a = torch.randn((M, K), device=device, dtype=dtype)
|
||||
b = torch.randn((N, K), device=device, dtype=dtype)
|
||||
|
||||
quantiles = [0.5, 0.2, 0.8]
|
||||
|
||||
if "torch-bf16" in provider:
|
||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
||||
lambda: torch.nn.functional.linear(a, b), quantiles=quantiles
|
||||
)
|
||||
|
||||
elif "fp8" in provider:
|
||||
# Weights are always quantized ahead of time
|
||||
if "noquant" in provider:
|
||||
# For no quantization, we just measure the GEMM
|
||||
if "tensor-w-token-a" in provider:
|
||||
# Dynamic per-token quant for A, per-tensor quant for B
|
||||
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b)
|
||||
assert scale_b_fp8.numel() == 1
|
||||
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(
|
||||
a, use_per_token_if_dynamic=True
|
||||
)
|
||||
|
||||
def run_quant():
|
||||
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
|
||||
|
||||
elif "tensor-w-tensor-a" in provider:
|
||||
# Static per-tensor quantization with fixed scales
|
||||
# for both A and B
|
||||
scale_a = torch.tensor([1.0], device=device, dtype=torch.float32)
|
||||
scale_b = torch.tensor([1.0], device=device, dtype=torch.float32)
|
||||
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
|
||||
assert scale_b_fp8.numel() == 1
|
||||
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a)
|
||||
|
||||
def run_quant():
|
||||
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
|
||||
|
||||
elif "channel-w-token-a" in provider:
|
||||
# Static per-channel quantization for weights, per-token
|
||||
# quant for A
|
||||
scale_b = torch.tensor((N,), device=device, dtype=torch.float32)
|
||||
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
|
||||
scale_b_fp8 = scale_b_fp8.expand(N).contiguous()
|
||||
assert scale_b_fp8.numel() == N
|
||||
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(
|
||||
a, use_per_token_if_dynamic=True
|
||||
)
|
||||
|
||||
def run_quant():
|
||||
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
|
||||
|
||||
elif "channel-w-tensor-a" in provider:
|
||||
# Static per-channel quantization for weights, per-tensor
|
||||
# quant for A
|
||||
scale_a = torch.tensor([1.0], device=device, dtype=torch.float32)
|
||||
scale_b = torch.tensor((N,), device=device, dtype=torch.float32)
|
||||
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
|
||||
scale_b_fp8 = scale_b_fp8.expand(N).contiguous()
|
||||
assert scale_b_fp8.numel() == N
|
||||
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a)
|
||||
|
||||
def run_quant():
|
||||
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
|
||||
|
||||
else:
|
||||
# In these cases, we quantize the activations during the GEMM call
|
||||
if "tensor-w-token-a" in provider:
|
||||
# Dynamic per-token quant for A, per-tensor quant for B
|
||||
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b)
|
||||
assert scale_b_fp8.numel() == 1
|
||||
|
||||
def run_quant():
|
||||
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(
|
||||
a, use_per_token_if_dynamic=True
|
||||
)
|
||||
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
|
||||
|
||||
elif "tensor-w-tensor-a" in provider:
|
||||
# Static per-tensor quantization with fixed scales
|
||||
# for both A and B
|
||||
scale_a = torch.tensor([1.0], device=device, dtype=torch.float32)
|
||||
scale_b = torch.tensor([1.0], device=device, dtype=torch.float32)
|
||||
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
|
||||
assert scale_b_fp8.numel() == 1
|
||||
|
||||
def run_quant():
|
||||
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a)
|
||||
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
|
||||
|
||||
elif "channel-w-token-a" in provider:
|
||||
# Static per-channel quantization for weights, per-token
|
||||
# quant for A
|
||||
scale_b = torch.tensor((N,), device=device, dtype=torch.float32)
|
||||
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
|
||||
scale_b_fp8 = scale_b_fp8.expand(N).contiguous()
|
||||
assert scale_b_fp8.numel() == N
|
||||
|
||||
def run_quant():
|
||||
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(
|
||||
a, use_per_token_if_dynamic=True
|
||||
)
|
||||
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
|
||||
|
||||
elif "channel-w-tensor-a" in provider:
|
||||
# Static per-channel quantization for weights, per-tensor
|
||||
# quant for A
|
||||
scale_a = torch.tensor([1.0], device=device, dtype=torch.float32)
|
||||
scale_b = torch.tensor((N,), device=device, dtype=torch.float32)
|
||||
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
|
||||
scale_b_fp8 = scale_b_fp8.expand(N).contiguous()
|
||||
assert scale_b_fp8.numel() == N
|
||||
|
||||
def run_quant():
|
||||
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a)
|
||||
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
|
||||
|
||||
b_fp8 = b_fp8.t()
|
||||
|
||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
||||
lambda: run_quant(), quantiles=quantiles
|
||||
)
|
||||
|
||||
# Calculate TFLOP/s, two flops per multiply-add
|
||||
tflops = lambda ms: (2 * M * N * K) * 1e-12 / (ms * 1e-3)
|
||||
return tflops(ms), tflops(max_ms), tflops(min_ms)
|
||||
|
||||
|
||||
def prepare_shapes(args):
|
||||
KN_model_names = []
|
||||
models_tps = list(itertools.product(args.models, args.tp_sizes))
|
||||
for model, tp_size in models_tps:
|
||||
assert model in WEIGHT_SHAPES
|
||||
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
|
||||
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
|
||||
KN.append(model)
|
||||
KN_model_names.append(KN)
|
||||
return KN_model_names
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--models",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=["meta-llama/Llama-3.1-8B-Instruct"],
|
||||
choices=[*WEIGHT_SHAPES.keys()],
|
||||
help="List of models to benchmark",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tp-sizes",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=[1],
|
||||
help="List of tensor parallel sizes",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
KN_model_names = prepare_shapes(args)
|
||||
for K, N, model_name in KN_model_names:
|
||||
print(f"{model_name}, N={N} K={K}, BF16 vs FP8 GEMMs TFLOP/s:")
|
||||
benchmark.run(
|
||||
print_data=True,
|
||||
show_plots=True,
|
||||
save_path=f"bench_fp8_res_n{N}_k{K}",
|
||||
N=N,
|
||||
K=K,
|
||||
)
|
||||
|
||||
print("Benchmark finished!")
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT License.
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
Benchmark the performance of the cutlass_moe_fp4 kernel vs the triton_moe
|
||||
kernel. The cutlass_moe_fp4 kernel takes in fp4 quantized weights and 16-bit
|
||||
@ -90,7 +91,7 @@ def bench_run(
|
||||
|
||||
score = torch.randn((m, num_experts), device=device, dtype=dtype)
|
||||
|
||||
topk_weights, topk_ids = fused_topk(a, score, topk, renormalize=False)
|
||||
topk_weights, topk_ids, _ = fused_topk(a, score, topk, renormalize=False)
|
||||
|
||||
quant_blocksize = 16
|
||||
w1_blockscale = torch.empty(
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as benchmark
|
||||
@ -6,8 +7,8 @@ from benchmark_shapes import WEIGHT_SHAPES_MOE
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp8
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import (
|
||||
cutlass_moe_fp8,
|
||||
fused_experts,
|
||||
fused_topk,
|
||||
)
|
||||
@ -69,18 +70,9 @@ def bench_run(
|
||||
w1_scale = torch.empty((num_experts, 1, 1), device="cuda", dtype=torch.float32)
|
||||
w2_scale = torch.empty((num_experts, 1, 1), device="cuda", dtype=torch.float32)
|
||||
|
||||
ab_strides1 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
|
||||
c_strides1 = torch.full((num_experts,), 2 * n, device="cuda", dtype=torch.int64)
|
||||
ab_strides2 = torch.full((num_experts,), n, device="cuda", dtype=torch.int64)
|
||||
c_strides2 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
|
||||
|
||||
for expert in range(num_experts):
|
||||
w1_q[expert], w1_scale[expert] = ops.scaled_fp8_quant(w1[expert])
|
||||
w2_q[expert], w2_scale[expert] = ops.scaled_fp8_quant(w2[expert])
|
||||
w1_q_notransp = w1_q.clone()
|
||||
w2_q_notransp = w2_q.clone()
|
||||
w1_q = w1_q.transpose(1, 2)
|
||||
w2_q = w2_q.transpose(1, 2)
|
||||
|
||||
score = torch.randn((m, num_experts), device="cuda", dtype=dtype)
|
||||
|
||||
@ -121,10 +113,6 @@ def bench_run(
|
||||
w2_scale: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
ab_strides1: torch.Tensor,
|
||||
c_strides1: torch.Tensor,
|
||||
ab_strides2: torch.Tensor,
|
||||
c_strides2: torch.Tensor,
|
||||
num_repeats: int,
|
||||
):
|
||||
for _ in range(num_repeats):
|
||||
@ -132,14 +120,10 @@ def bench_run(
|
||||
a,
|
||||
w1,
|
||||
w2,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
ab_strides1,
|
||||
c_strides1,
|
||||
ab_strides2,
|
||||
c_strides2,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
a1_scale=a_scale,
|
||||
)
|
||||
|
||||
@ -152,10 +136,6 @@ def bench_run(
|
||||
w2_scale: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
ab_strides1: torch.Tensor,
|
||||
c_strides1: torch.Tensor,
|
||||
ab_strides2: torch.Tensor,
|
||||
c_strides2: torch.Tensor,
|
||||
):
|
||||
with set_current_vllm_config(
|
||||
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
|
||||
@ -164,14 +144,10 @@ def bench_run(
|
||||
a,
|
||||
w1_q,
|
||||
w2_q,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
ab_strides1,
|
||||
c_strides1,
|
||||
ab_strides2,
|
||||
c_strides2,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
a1_scale=a_scale,
|
||||
)
|
||||
|
||||
@ -217,10 +193,6 @@ def bench_run(
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
ab_strides1,
|
||||
c_strides1,
|
||||
ab_strides2,
|
||||
c_strides2,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
@ -229,8 +201,8 @@ def bench_run(
|
||||
with torch.cuda.graph(triton_graph, stream=triton_stream):
|
||||
run_triton_from_graph(
|
||||
a,
|
||||
w1_q_notransp,
|
||||
w2_q_notransp,
|
||||
w1_q,
|
||||
w2_q,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
w1_scale,
|
||||
@ -249,18 +221,12 @@ def bench_run(
|
||||
"w2": w2,
|
||||
"score": score,
|
||||
"topk": topk,
|
||||
"w1_q_notransp": w1_q_notransp,
|
||||
"w2_q_notransp": w2_q_notransp,
|
||||
# Cutlass params
|
||||
"a_scale": a_scale,
|
||||
"w1_q": w1_q,
|
||||
"w2_q": w2_q,
|
||||
"w1_scale": w1_scale,
|
||||
"w2_scale": w2_scale,
|
||||
"ab_strides1": ab_strides1,
|
||||
"c_strides1": c_strides1,
|
||||
"ab_strides2": ab_strides2,
|
||||
"c_strides2": c_strides2,
|
||||
# cuda graph params
|
||||
"cutlass_graph": cutlass_graph,
|
||||
"triton_graph": triton_graph,
|
||||
@ -278,8 +244,8 @@ def bench_run(
|
||||
# Warmup
|
||||
run_triton_moe(
|
||||
a,
|
||||
w1_q_notransp,
|
||||
w2_q_notransp,
|
||||
w1_q,
|
||||
w2_q,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
w1_scale,
|
||||
@ -290,7 +256,7 @@ def bench_run(
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
|
||||
stmt="run_triton_moe(a, w1_q, w2_q, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
@ -321,16 +287,12 @@ def bench_run(
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
ab_strides1,
|
||||
c_strides1,
|
||||
ab_strides2,
|
||||
c_strides2,
|
||||
num_warmup,
|
||||
)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2, num_runs)", # noqa: E501
|
||||
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, num_runs)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import time
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as benchmark
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import json
|
||||
@ -6,7 +7,6 @@ import time
|
||||
from contextlib import nullcontext
|
||||
from datetime import datetime
|
||||
from itertools import product
|
||||
from types import SimpleNamespace
|
||||
from typing import Any, TypedDict
|
||||
|
||||
import ray
|
||||
@ -42,7 +42,7 @@ def benchmark_config(
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
num_iters: int = 100,
|
||||
block_quant_shape: List[int] = None,
|
||||
block_quant_shape: list[int] = None,
|
||||
use_deep_gemm: bool = False,
|
||||
) -> float:
|
||||
init_dtype = torch.float16 if use_fp8_w8a8 else dtype
|
||||
@ -399,7 +399,7 @@ class BenchmarkWorker:
|
||||
dtype: torch.dtype,
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
block_quant_shape: List[int] = None,
|
||||
block_quant_shape: list[int] = None,
|
||||
use_deep_gemm: bool = False,
|
||||
) -> tuple[dict[str, int], float]:
|
||||
current_platform.seed_everything(self.seed)
|
||||
@ -531,7 +531,7 @@ def save_configs(
|
||||
dtype: torch.dtype,
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
block_quant_shape: List[int],
|
||||
block_quant_shape: list[int],
|
||||
) -> None:
|
||||
dtype_str = get_config_dtype_str(
|
||||
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
|
||||
@ -562,7 +562,6 @@ def main(args: argparse.Namespace):
|
||||
config = get_config(model=args.model, trust_remote_code=args.trust_remote_code)
|
||||
if args.model_prefix:
|
||||
config = getattr(config, args.model_prefix)
|
||||
config = SimpleNamespace(**config)
|
||||
|
||||
if config.architectures[0] == "DbrxForCausalLM":
|
||||
E = config.ffn_config.moe_num_experts
|
||||
@ -594,11 +593,7 @@ def main(args: argparse.Namespace):
|
||||
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
||||
|
||||
hidden_size = config.hidden_size
|
||||
dtype = (
|
||||
torch.float16
|
||||
if current_platform.is_rocm()
|
||||
else getattr(torch, config.torch_dtype)
|
||||
)
|
||||
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
|
||||
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
|
||||
use_int8_w8a16 = args.dtype == "int8_w8a16"
|
||||
block_quant_shape = get_weight_block_size_safety(config)
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
from typing import Any, TypedDict
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import random
|
||||
import time
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import time
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import itertools
|
||||
from typing import Optional, Union
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from itertools import accumulate
|
||||
from typing import Optional
|
||||
@ -22,7 +23,7 @@ def benchmark_rope_kernels_multi_lora(
|
||||
seed: int,
|
||||
device: str,
|
||||
max_position: int = 8192,
|
||||
base: int = 10000,
|
||||
base: float = 10000,
|
||||
) -> None:
|
||||
current_platform.seed_everything(seed)
|
||||
torch.set_default_device(device)
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
WEIGHT_SHAPES = {
|
||||
"ideal": [[4 * 256 * 32, 256 * 32]],
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
# Adapted from sglang quantization/tuning_block_wise_kernel.py
|
||||
|
||||
import argparse
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
# fmt: off
|
||||
# ruff: noqa: E501
|
||||
import time
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import math
|
||||
import pickle
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import dataclasses
|
||||
from collections.abc import Iterable
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
# Weight Shapes are in the format
|
||||
# ([K, N], TP_SPLIT_DIM)
|
||||
@ -48,4 +49,50 @@ WEIGHT_SHAPES = {
|
||||
([16384, 106496], 1),
|
||||
([53248, 16384], 0),
|
||||
],
|
||||
"meta-llama/Llama-3.1-8B-Instruct": [
|
||||
([4096, 6144], 1),
|
||||
([4096, 4096], 0),
|
||||
([4096, 28672], 1),
|
||||
([14336, 4096], 0),
|
||||
],
|
||||
"meta-llama/Llama-3.3-70B-Instruct": [
|
||||
([8192, 10240], 1),
|
||||
([8192, 8192], 0),
|
||||
([8192, 57344], 1),
|
||||
([28672, 8192], 0),
|
||||
],
|
||||
"mistralai/Mistral-Large-Instruct-2407": [
|
||||
([12288, 14336], 1),
|
||||
([12288, 12288], 0),
|
||||
([12288, 57344], 1),
|
||||
([28672, 12288], 0),
|
||||
],
|
||||
"Qwen/Qwen2.5-7B-Instruct": [
|
||||
([3584, 4608], 1),
|
||||
([3584, 3584], 0),
|
||||
([3584, 37888], 1),
|
||||
([18944, 3584], 0),
|
||||
],
|
||||
"Qwen/Qwen2.5-32B-Instruct": [
|
||||
([5120, 7168], 1),
|
||||
([5120, 5120], 0),
|
||||
([5120, 55296], 1),
|
||||
([27648, 5120], 0),
|
||||
],
|
||||
"Qwen/Qwen2.5-72B-Instruct": [
|
||||
([8192, 10240], 1),
|
||||
([8192, 8192], 0),
|
||||
([8192, 59136], 1),
|
||||
([29568, 8192], 0),
|
||||
],
|
||||
"deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": [
|
||||
([2048, 3072], 1),
|
||||
([2048, 4096], 1),
|
||||
([2048, 2048], 0),
|
||||
([2048, 576], 0),
|
||||
([2048, 21888], 1),
|
||||
([10944, 2048], 0),
|
||||
([2048, 2816], 1),
|
||||
([1408, 2048], 0),
|
||||
],
|
||||
}
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import cProfile
|
||||
import pstats
|
||||
|
@ -75,6 +75,7 @@ if (MACOSX_FOUND AND CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64")
|
||||
else()
|
||||
find_isa(${CPUINFO} "avx2" AVX2_FOUND)
|
||||
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
|
||||
find_isa(${CPUINFO} "Power11" POWER11_FOUND)
|
||||
find_isa(${CPUINFO} "POWER10" POWER10_FOUND)
|
||||
find_isa(${CPUINFO} "POWER9" POWER9_FOUND)
|
||||
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
|
||||
@ -106,13 +107,19 @@ elseif (AVX2_FOUND)
|
||||
list(APPEND CXX_COMPILE_FLAGS "-mavx2")
|
||||
message(WARNING "vLLM CPU backend using AVX2 ISA")
|
||||
|
||||
elseif (POWER9_FOUND OR POWER10_FOUND)
|
||||
elseif (POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
|
||||
message(STATUS "PowerPC detected")
|
||||
# Check for PowerPC VSX support
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-mvsx"
|
||||
"-mcpu=native"
|
||||
"-mtune=native")
|
||||
if (POWER9_FOUND)
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-mvsx"
|
||||
"-mcpu=power9"
|
||||
"-mtune=power9")
|
||||
elseif (POWER10_FOUND OR POWER11_FOUND)
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-mvsx"
|
||||
"-mcpu=power10"
|
||||
"-mtune=power10")
|
||||
endif()
|
||||
|
||||
elseif (ASIMD_FOUND)
|
||||
message(STATUS "ARMv8 or later architecture detected")
|
||||
|
@ -46,22 +46,38 @@ else()
|
||||
endif()
|
||||
|
||||
|
||||
# Ensure the vllm/vllm_flash_attn directory exists before installation
|
||||
install(CODE "file(MAKE_DIRECTORY \"\${CMAKE_INSTALL_PREFIX}/vllm/vllm_flash_attn\")" ALL_COMPONENTS)
|
||||
|
||||
# Make sure vllm-flash-attn install rules are nested under vllm/
|
||||
# This is here to support installing all components under the same prefix with cmake --install.
|
||||
# setup.py installs every component separately but uses the same prefix for all.
|
||||
# ALL_COMPONENTS is used to avoid duplication for FA2 and FA3,
|
||||
# and these statements don't hurt when installing neither component.
|
||||
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY FALSE)" ALL_COMPONENTS)
|
||||
install(CODE "set(OLD_CMAKE_INSTALL_PREFIX \"\${CMAKE_INSTALL_PREFIX}\")" ALL_COMPONENTS)
|
||||
install(CODE "set(CMAKE_INSTALL_PREFIX \"\${CMAKE_INSTALL_PREFIX}/vllm/\")" ALL_COMPONENTS)
|
||||
|
||||
# Fetch the vllm-flash-attn library
|
||||
FetchContent_MakeAvailable(vllm-flash-attn)
|
||||
message(STATUS "vllm-flash-attn is available at ${vllm-flash-attn_SOURCE_DIR}")
|
||||
|
||||
# Restore the install prefix
|
||||
install(CODE "set(CMAKE_INSTALL_PREFIX \"\${OLD_CMAKE_INSTALL_PREFIX}\")" ALL_COMPONENTS)
|
||||
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
|
||||
|
||||
# Copy over the vllm-flash-attn python files (duplicated for fa2 and fa3, in
|
||||
# case only one is built, in the case both are built redundant work is done)
|
||||
install(
|
||||
DIRECTORY ${vllm-flash-attn_SOURCE_DIR}/vllm_flash_attn/
|
||||
DESTINATION vllm_flash_attn
|
||||
DESTINATION vllm/vllm_flash_attn
|
||||
COMPONENT _vllm_fa2_C
|
||||
FILES_MATCHING PATTERN "*.py"
|
||||
)
|
||||
|
||||
install(
|
||||
DIRECTORY ${vllm-flash-attn_SOURCE_DIR}/vllm_flash_attn/
|
||||
DESTINATION vllm_flash_attn
|
||||
DESTINATION vllm/vllm_flash_attn
|
||||
COMPONENT _vllm_fa3_C
|
||||
FILES_MATCHING PATTERN "*.py"
|
||||
)
|
||||
|
@ -1,5 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
#
|
||||
# A command line tool for running pytorch's hipify preprocessor on CUDA
|
||||
|
@ -76,7 +76,7 @@ function (hipify_sources_target OUT_SRCS NAME ORIG_SRCS)
|
||||
set(CSRC_BUILD_DIR ${CMAKE_CURRENT_BINARY_DIR}/csrc)
|
||||
add_custom_target(
|
||||
hipify${NAME}
|
||||
COMMAND ${CMAKE_SOURCE_DIR}/cmake/hipify.py -p ${CMAKE_SOURCE_DIR}/csrc -o ${CSRC_BUILD_DIR} ${SRCS}
|
||||
COMMAND ${Python_EXECUTABLE} ${CMAKE_SOURCE_DIR}/cmake/hipify.py -p ${CMAKE_SOURCE_DIR}/csrc -o ${CSRC_BUILD_DIR} ${SRCS}
|
||||
DEPENDS ${CMAKE_SOURCE_DIR}/cmake/hipify.py ${SRCS}
|
||||
BYPRODUCTS ${HIP_SRCS}
|
||||
COMMENT "Running hipify on ${NAME} extension source files.")
|
||||
|
@ -143,6 +143,14 @@ void merge_attn_states_launcher(torch::Tensor& output,
|
||||
const uint pack_size = 16 / sizeof(scalar_t);
|
||||
TORCH_CHECK(head_size % pack_size == 0,
|
||||
"headsize must be multiple of pack_size:", pack_size);
|
||||
TORCH_CHECK(output.stride(-2) == head_size && output.stride(-1) == 1,
|
||||
"output heads must be contiguous in memory");
|
||||
TORCH_CHECK(
|
||||
prefix_output.stride(-2) == head_size && prefix_output.stride(-1) == 1,
|
||||
"prefix_output heads must be contiguous in memory");
|
||||
TORCH_CHECK(
|
||||
suffix_output.stride(-2) == head_size && suffix_output.stride(-1) == 1,
|
||||
"suffix_output heads must be contiguous in memory");
|
||||
float* output_lse_ptr = nullptr;
|
||||
if (output_lse.has_value()) {
|
||||
output_lse_ptr = output_lse.value().data_ptr<float>();
|
||||
|
@ -119,7 +119,7 @@ typename T::Fmha::Arguments args_from_options(
|
||||
{static_cast<ElementOut*>(out.data_ptr()), stride_O,
|
||||
static_cast<ElementAcc*>(nullptr), stride_LSE},
|
||||
hw_info,
|
||||
-1, // split_kv
|
||||
1, // split_kv
|
||||
nullptr, // is_var_split_kv
|
||||
};
|
||||
// TODO(kaixih@nvidia): When split_kv=-1 and is_var_split_kv=false, we compute
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import enum
|
||||
from typing import Union
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import glob
|
||||
import itertools
|
||||
import os
|
||||
|
@ -30,4 +30,8 @@ torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
|
||||
int64_t BLOCK_SIZE_K, int64_t bit);
|
||||
#endif
|
||||
|
||||
bool moe_permute_unpermute_supported();
|
||||
bool moe_permute_unpermute_supported();
|
||||
|
||||
void shuffle_rows(const torch::Tensor& input_tensor,
|
||||
const torch::Tensor& dst2src_map,
|
||||
torch::Tensor& output_tensor);
|
@ -130,6 +130,62 @@ void moe_unpermute(
|
||||
});
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void shuffleInputRowsKernel(const T* input,
|
||||
const int32_t* dst2src_map, T* output,
|
||||
int64_t num_src_rows,
|
||||
int64_t num_dst_rows, int64_t num_cols) {
|
||||
int64_t dest_row_idx = blockIdx.x;
|
||||
int64_t const source_row_idx = dst2src_map[dest_row_idx];
|
||||
|
||||
if (blockIdx.x < num_dst_rows) {
|
||||
// Load 128-bits per thread
|
||||
constexpr int64_t ELEM_PER_THREAD = 128 / sizeof(T) / 8;
|
||||
using DataElem = cutlass::Array<T, ELEM_PER_THREAD>;
|
||||
|
||||
// Duplicate and permute rows
|
||||
auto const* source_row_ptr =
|
||||
reinterpret_cast<DataElem const*>(input + source_row_idx * num_cols);
|
||||
auto* dest_row_ptr =
|
||||
reinterpret_cast<DataElem*>(output + dest_row_idx * num_cols);
|
||||
|
||||
int64_t const start_offset = threadIdx.x;
|
||||
int64_t const stride = blockDim.x;
|
||||
int64_t const num_elems_in_col = num_cols / ELEM_PER_THREAD;
|
||||
|
||||
for (int elem_index = start_offset; elem_index < num_elems_in_col;
|
||||
elem_index += stride) {
|
||||
dest_row_ptr[elem_index] = source_row_ptr[elem_index];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void shuffle_rows(const torch::Tensor& input_tensor,
|
||||
const torch::Tensor& dst2src_map,
|
||||
torch::Tensor& output_tensor) {
|
||||
TORCH_CHECK(input_tensor.scalar_type() == output_tensor.scalar_type(),
|
||||
"Input and output tensors must have the same data type");
|
||||
|
||||
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
||||
int64_t const blocks = output_tensor.size(0);
|
||||
int64_t const threads = 256;
|
||||
int64_t const num_dest_rows = output_tensor.size(0);
|
||||
int64_t const num_src_rows = input_tensor.size(0);
|
||||
int64_t const num_cols = input_tensor.size(1);
|
||||
|
||||
TORCH_CHECK(!(num_cols % (128 / sizeof(input_tensor.scalar_type()) / 8)),
|
||||
"num_cols must be divisible by 128 / "
|
||||
"sizeof(input_tensor.scalar_type()) / 8");
|
||||
|
||||
MOE_DISPATCH(input_tensor.scalar_type(), [&] {
|
||||
shuffleInputRowsKernel<scalar_t><<<blocks, threads, 0, stream>>>(
|
||||
reinterpret_cast<scalar_t*>(input_tensor.data_ptr()),
|
||||
dst2src_map.data_ptr<int32_t>(),
|
||||
reinterpret_cast<scalar_t*>(output_tensor.data_ptr()), num_src_rows,
|
||||
num_dest_rows, num_cols);
|
||||
});
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void moe_permute(const torch::Tensor& input, const torch::Tensor& topk_weights,
|
||||
|
@ -14,12 +14,13 @@
|
||||
__VA_ARGS__(); \
|
||||
break; \
|
||||
}
|
||||
#define MOE_DISPATCH_FLOAT_CASE(...) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Float8_e5m2, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__)
|
||||
#define MOE_DISPATCH_FLOAT_CASE(...) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Float8_e5m2, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__)
|
||||
|
||||
#define MOE_DISPATCH(TYPE, ...) \
|
||||
MOE_SWITCH(TYPE, MOE_DISPATCH_FLOAT_CASE(__VA_ARGS__))
|
||||
@ -39,6 +40,11 @@ template <>
|
||||
struct ScalarType2CudaType<at::ScalarType::BFloat16> {
|
||||
using type = __nv_bfloat16;
|
||||
};
|
||||
// uint8 for packed fp4
|
||||
template <>
|
||||
struct ScalarType2CudaType<at::ScalarType::Byte> {
|
||||
using type = uint8_t;
|
||||
};
|
||||
|
||||
// #if __CUDA_ARCH__ >= 890
|
||||
// fp8
|
||||
|
@ -516,9 +516,8 @@ void topk_softmax(
|
||||
topk,
|
||||
stream);
|
||||
}
|
||||
else
|
||||
else if (topk_indices.scalar_type() == at::ScalarType::UInt32)
|
||||
{
|
||||
assert(topk_indices.scalar_type() == at::ScalarType::UInt32);
|
||||
vllm::moe::topkGatingSoftmaxKernelLauncher(
|
||||
gating_output.data_ptr<float>(),
|
||||
topk_weights.data_ptr<float>(),
|
||||
@ -530,4 +529,17 @@ void topk_softmax(
|
||||
topk,
|
||||
stream);
|
||||
}
|
||||
else {
|
||||
assert(topk_indices.scalar_type() == at::ScalarType::Int64);
|
||||
vllm::moe::topkGatingSoftmaxKernelLauncher(
|
||||
gating_output.data_ptr<float>(),
|
||||
topk_weights.data_ptr<float>(),
|
||||
topk_indices.data_ptr<int64_t>(),
|
||||
token_expert_indices.data_ptr<int>(),
|
||||
softmax_workspace.data_ptr<float>(),
|
||||
num_tokens,
|
||||
num_experts,
|
||||
topk,
|
||||
stream);
|
||||
}
|
||||
}
|
||||
|
@ -81,6 +81,12 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("moe_permute_unpermute_supported() -> bool");
|
||||
m.impl("moe_permute_unpermute_supported", &moe_permute_unpermute_supported);
|
||||
|
||||
// Row shuffle for MoE
|
||||
m.def(
|
||||
"shuffle_rows(Tensor input_tensor, Tensor dst2src_map, Tensor! "
|
||||
"output_tensor) -> ()");
|
||||
m.impl("shuffle_rows", torch::kCUDA, &shuffle_rows);
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
|
19
csrc/ops.h
19
csrc/ops.h
@ -92,6 +92,11 @@ void rms_norm(torch::Tensor& out, torch::Tensor& input, torch::Tensor& weight,
|
||||
void fused_add_rms_norm(torch::Tensor& input, torch::Tensor& residual,
|
||||
torch::Tensor& weight, double epsilon);
|
||||
|
||||
void apply_repetition_penalties_(torch::Tensor& logits,
|
||||
const torch::Tensor& prompt_mask,
|
||||
const torch::Tensor& output_mask,
|
||||
const torch::Tensor& repetition_penalties);
|
||||
|
||||
void rms_norm_static_fp8_quant(torch::Tensor& out, torch::Tensor& input,
|
||||
torch::Tensor& weight, torch::Tensor& scale,
|
||||
double epsilon);
|
||||
@ -231,7 +236,8 @@ void cutlass_moe_mm(
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides);
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch);
|
||||
|
||||
void cutlass_fp4_group_mm(
|
||||
torch::Tensor& output, const torch::Tensor& a, const torch::Tensor& b,
|
||||
@ -243,7 +249,16 @@ void get_cutlass_moe_mm_data(
|
||||
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
|
||||
torch::Tensor& input_permutation, torch::Tensor& output_permutation,
|
||||
const int64_t num_experts, const int64_t n, const int64_t k);
|
||||
const int64_t num_experts, const int64_t n, const int64_t k,
|
||||
const std::optional<torch::Tensor>& blockscale_offsets);
|
||||
|
||||
void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2,
|
||||
const torch::Tensor& expert_num_tokens,
|
||||
const int64_t num_local_experts,
|
||||
const int64_t padded_m, const int64_t n,
|
||||
const int64_t k);
|
||||
|
||||
void cutlass_scaled_mm_azp(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
|
@ -9,10 +9,6 @@ void cutlass_scaled_mm_blockwise_sm100_fp8(torch::Tensor& out,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales) {
|
||||
TORCH_CHECK(
|
||||
a.size(0) % 4 == 0,
|
||||
"Input tensor must have a number of rows that is a multiple of 4. ",
|
||||
"but got: ", a.size(0), " rows.");
|
||||
if (out.dtype() == torch::kBFloat16) {
|
||||
cutlass_gemm_blockwise_sm100_fp8_dispatch<cutlass::bfloat16_t>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
|
@ -1,5 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include "cuda_utils.h"
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/numeric_types.h"
|
||||
|
||||
@ -22,49 +23,49 @@ namespace vllm {
|
||||
|
||||
using namespace cute;
|
||||
|
||||
template <typename OutType, typename MmaTileShape, typename ScalesPerTile,
|
||||
class ClusterShape, typename EpilogueScheduler,
|
||||
typename MainloopScheduler>
|
||||
// clang-format off
|
||||
template <class OutType, int ScaleGranularityM,
|
||||
int ScaleGranularityN, int ScaleGranularityK,
|
||||
class MmaTileShape, class ClusterShape,
|
||||
class EpilogueScheduler, class MainloopScheduler,
|
||||
bool swap_ab_ = false>
|
||||
struct cutlass_3x_gemm_fp8_blockwise {
|
||||
static constexpr bool swap_ab = swap_ab_;
|
||||
using ElementAB = cutlass::float_e4m3_t;
|
||||
|
||||
using ElementA = ElementAB;
|
||||
using LayoutA = cutlass::layout::RowMajor;
|
||||
using LayoutA_Transpose = typename cutlass::layout::LayoutTranspose<LayoutA>::type;
|
||||
static constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
|
||||
|
||||
using ElementB = ElementAB;
|
||||
using LayoutB = cutlass::layout::ColumnMajor;
|
||||
using LayoutB_Transpose = typename cutlass::layout::LayoutTranspose<LayoutB>::type;
|
||||
static constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
|
||||
|
||||
using ElementC = void;
|
||||
using ElementD = OutType;
|
||||
using LayoutD = cutlass::layout::RowMajor;
|
||||
using LayoutD_Transpose = typename cutlass::layout::LayoutTranspose<LayoutD>::type;
|
||||
static constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
|
||||
|
||||
using ElementC = void; // TODO: support bias
|
||||
using LayoutC = LayoutD;
|
||||
using LayoutC_Transpose = LayoutD_Transpose;
|
||||
static constexpr int AlignmentC = AlignmentD;
|
||||
|
||||
using ElementAccumulator = float;
|
||||
using ElementCompute = float;
|
||||
using ElementBlockScale = float;
|
||||
|
||||
// MMA and Cluster Tile Shapes
|
||||
// Shape of the tile computed by tcgen05 MMA, could be across 2 SMs if Cluster
|
||||
// Shape %2 == 0 using MmaTileShape_MNK = Shape<_128,_128,_128>;
|
||||
static constexpr int ScaleMsPerTile = size<0>(ScalesPerTile{});
|
||||
static constexpr int ScaleGranularityM =
|
||||
size<0>(MmaTileShape{}) / ScaleMsPerTile;
|
||||
static constexpr int ScaleGranularityN =
|
||||
size<1>(MmaTileShape{}) / size<1>(ScalesPerTile{});
|
||||
static constexpr int ScaleGranularityK =
|
||||
size<2>(MmaTileShape{}) / size<2>(ScalesPerTile{});
|
||||
using ScaleConfig = conditional_t<swap_ab,
|
||||
cutlass::detail::Sm100BlockwiseScaleConfig<
|
||||
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
|
||||
cute::UMMA::Major::K, cute::UMMA::Major::MN>,
|
||||
cutlass::detail::Sm100BlockwiseScaleConfig<
|
||||
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
|
||||
cute::UMMA::Major::MN, cute::UMMA::Major::K>>;
|
||||
|
||||
// Shape of the threadblocks in a cluster
|
||||
using ClusterShape_MNK = ClusterShape;
|
||||
|
||||
using ScaleConfig = cutlass::detail::Sm100BlockwiseScaleConfig<
|
||||
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
|
||||
cute::UMMA::Major::MN, cute::UMMA::Major::K>;
|
||||
// layout_SFA and layout_SFB cannot be swapped since they are deduced.
|
||||
using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
|
||||
using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
|
||||
|
||||
@ -73,7 +74,6 @@ struct cutlass_3x_gemm_fp8_blockwise {
|
||||
|
||||
static constexpr auto RoundStyle = cutlass::FloatRoundStyle::round_to_nearest;
|
||||
using ElementScalar = float;
|
||||
// clang-format off
|
||||
using DefaultOperation = cutlass::epilogue::fusion::LinearCombination<ElementD, ElementCompute, ElementC, ElementScalar, RoundStyle>;
|
||||
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
|
||||
ArchTag,
|
||||
@ -84,33 +84,47 @@ struct cutlass_3x_gemm_fp8_blockwise {
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
ElementC,
|
||||
LayoutC,
|
||||
conditional_t<swap_ab, LayoutC_Transpose, LayoutC>,
|
||||
AlignmentC,
|
||||
ElementD,
|
||||
LayoutD,
|
||||
conditional_t<swap_ab, LayoutD_Transpose, LayoutD>,
|
||||
AlignmentD,
|
||||
EpilogueScheduler,
|
||||
DefaultOperation
|
||||
>::CollectiveOp;
|
||||
|
||||
using StageCountType = cutlass::gemm::collective::StageCountAuto;
|
||||
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
|
||||
ArchTag,
|
||||
OperatorClass,
|
||||
ElementA,
|
||||
cute::tuple<LayoutA, LayoutSFA>,
|
||||
AlignmentA,
|
||||
ElementB,
|
||||
cute::tuple<LayoutB, LayoutSFB>,
|
||||
AlignmentB,
|
||||
ElementAccumulator,
|
||||
MmaTileShape,
|
||||
ClusterShape,
|
||||
|
||||
using CollectiveMainloop = conditional_t<swap_ab,
|
||||
typename cutlass::gemm::collective::CollectiveBuilder<
|
||||
ArchTag,
|
||||
OperatorClass,
|
||||
ElementB,
|
||||
cute::tuple<LayoutB_Transpose, LayoutSFA>,
|
||||
AlignmentB,
|
||||
ElementA,
|
||||
cute::tuple<LayoutA_Transpose, LayoutSFB>,
|
||||
AlignmentA,
|
||||
ElementAccumulator,
|
||||
MmaTileShape,
|
||||
ClusterShape,
|
||||
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
|
||||
MainloopScheduler
|
||||
>::CollectiveOp;
|
||||
// clang-format on
|
||||
MainloopScheduler
|
||||
>::CollectiveOp,
|
||||
typename cutlass::gemm::collective::CollectiveBuilder<
|
||||
ArchTag,
|
||||
OperatorClass,
|
||||
ElementA,
|
||||
cute::tuple<LayoutA, LayoutSFA>,
|
||||
AlignmentA,
|
||||
ElementB,
|
||||
cute::tuple<LayoutB, LayoutSFB>,
|
||||
AlignmentB,
|
||||
ElementAccumulator,
|
||||
MmaTileShape,
|
||||
ClusterShape,
|
||||
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
|
||||
MainloopScheduler
|
||||
>::CollectiveOp>;
|
||||
|
||||
using KernelType = enable_sm100_only<cutlass::gemm::kernel::GemmUniversal<
|
||||
Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue>>;
|
||||
@ -123,6 +137,7 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales) {
|
||||
static constexpr bool swap_ab = Gemm::swap_ab;
|
||||
using GemmKernel = typename Gemm::GemmKernel;
|
||||
using StrideA = typename Gemm::GemmKernel::StrideA;
|
||||
using StrideB = typename Gemm::GemmKernel::StrideB;
|
||||
@ -136,7 +151,6 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
|
||||
using ElementD = typename Gemm::ElementD;
|
||||
|
||||
int32_t m = a.size(0), n = b.size(1), k = a.size(1);
|
||||
auto prob_shape = cute::make_shape(m, n, k, 1);
|
||||
|
||||
StrideA a_stride;
|
||||
StrideB b_stride;
|
||||
@ -146,11 +160,13 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
|
||||
b_stride =
|
||||
cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(n, k, 1));
|
||||
c_stride =
|
||||
cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(m, n, 1));
|
||||
cutlass::make_cute_packed_stride(StrideC{}, swap_ab ? cute::make_shape(n, m, 1) : cute::make_shape(m, n, 1));
|
||||
|
||||
LayoutSFA layout_SFA =
|
||||
LayoutSFA layout_SFA = swap_ab ?
|
||||
ScaleConfig::tile_atom_to_shape_SFA(make_shape(n, m, k, 1)) :
|
||||
ScaleConfig::tile_atom_to_shape_SFA(make_shape(m, n, k, 1));
|
||||
LayoutSFB layout_SFB =
|
||||
LayoutSFB layout_SFB = swap_ab ?
|
||||
ScaleConfig::tile_atom_to_shape_SFB(make_shape(n, m, k, 1)) :
|
||||
ScaleConfig::tile_atom_to_shape_SFB(make_shape(m, n, k, 1));
|
||||
|
||||
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
|
||||
@ -158,9 +174,22 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
|
||||
auto a_scales_ptr = static_cast<float*>(a_scales.data_ptr());
|
||||
auto b_scales_ptr = static_cast<float*>(b_scales.data_ptr());
|
||||
|
||||
typename GemmKernel::MainloopArguments mainloop_args{
|
||||
a_ptr, a_stride, b_ptr, b_stride,
|
||||
a_scales_ptr, layout_SFA, b_scales_ptr, layout_SFB};
|
||||
auto mainloop_args = [&](){
|
||||
// layout_SFA and layout_SFB cannot be swapped since they are deduced.
|
||||
if (swap_ab) {
|
||||
return typename GemmKernel::MainloopArguments{
|
||||
b_ptr, b_stride, a_ptr, a_stride,
|
||||
b_scales_ptr, layout_SFA, a_scales_ptr, layout_SFB
|
||||
};
|
||||
}
|
||||
else {
|
||||
return typename GemmKernel::MainloopArguments{
|
||||
a_ptr, a_stride, b_ptr, b_stride,
|
||||
a_scales_ptr, layout_SFA, b_scales_ptr, layout_SFB
|
||||
};
|
||||
}
|
||||
}();
|
||||
auto prob_shape = swap_ab ? cute::make_shape(n, m, k, 1) : cute::make_shape(m, n, k, 1);
|
||||
|
||||
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
|
||||
typename GemmKernel::EpilogueArguments epilogue_args{
|
||||
@ -175,29 +204,74 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales) {
|
||||
auto m = a.size(0);
|
||||
auto k = a.size(1);
|
||||
auto n = b.size(1);
|
||||
int sms;
|
||||
int32_t m = a.size(0), n = b.size(1), k = a.size(1), sms;
|
||||
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, a.get_device());
|
||||
|
||||
auto should_use_2sm = [&sms](int m, int n, int tile1SM = 128) {
|
||||
return std::ceil(static_cast<float>(m) / tile1SM) *
|
||||
std::ceil(static_cast<float>(n) / tile1SM) >=
|
||||
sms;
|
||||
};
|
||||
bool use_2sm = should_use_2sm(m, n);
|
||||
if (use_2sm) {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, Shape<_256, _128, _128>, Shape<_256, _1, _1>,
|
||||
Shape<_2, _2, _1>, cutlass::epilogue::TmaWarpSpecialized2Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
constexpr int TILE_K = 128;
|
||||
// TODO: better heuristics
|
||||
bool swap_ab = (m < 16) || (m % 4 != 0);
|
||||
bool use_tma_epilogue = (m * n) % 4 == 0;
|
||||
if (!swap_ab) {
|
||||
constexpr int TILE_N = 128;
|
||||
int tile_m = 256;
|
||||
if (cuda_utils::ceil_div(n, TILE_N) * cuda_utils::ceil_div(m, 64) <= sms) {
|
||||
tile_m = 64;
|
||||
}
|
||||
else if (cuda_utils::ceil_div(n, TILE_N) * cuda_utils::ceil_div(m, 128) <= sms) {
|
||||
tile_m = 128;
|
||||
}
|
||||
if (tile_m == 64) {
|
||||
if (use_tma_epilogue) {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
} else {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
} else if (tile_m == 128) {
|
||||
if (use_tma_epilogue) {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
} else {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
} else { // tile_m == 256
|
||||
if (use_tma_epilogue) {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_2, _1, _1>, cutlass::epilogue::TmaWarpSpecialized2Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
} else {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_2, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized2Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// TODO: Test more tile N configs
|
||||
constexpr int TILE_M = 128;
|
||||
constexpr int TILE_N = 16;
|
||||
// TMA epilogue isn't compatible with Swap A/B
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, Shape<_128, _128, _128>, Shape<_128, _1, _1>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
|
||||
OutType, TILE_M, 1, TILE_K, Shape<Int<TILE_M>, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100, true>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
}
|
||||
|
@ -15,6 +15,7 @@ using c3x::cutlass_gemm_caller;
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue>
|
||||
struct sm100_fp8_config_default {
|
||||
// M in (128, inf)
|
||||
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
||||
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
|
||||
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
|
||||
@ -25,6 +26,34 @@ struct sm100_fp8_config_default {
|
||||
KernelSchedule, EpilogueSchedule>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue>
|
||||
struct sm100_fp8_config_M128 {
|
||||
// M in (64, 128]
|
||||
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
||||
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
|
||||
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
|
||||
using TileShape = Shape<_128, _128, _64>;
|
||||
using ClusterShape = Shape<_2, _2, _1>;
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
|
||||
KernelSchedule, EpilogueSchedule>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue>
|
||||
struct sm100_fp8_config_M64 {
|
||||
// M in [1, 64]
|
||||
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
||||
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
|
||||
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
|
||||
using TileShape = Shape<_64, _64, _256>;
|
||||
using ClusterShape = Shape<_1, _8, _1>;
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
|
||||
KernelSchedule, EpilogueSchedule>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue,
|
||||
typename... EpilogueArgs>
|
||||
@ -39,8 +68,28 @@ inline void cutlass_gemm_sm100_fp8_dispatch(torch::Tensor& out,
|
||||
using Cutlass3xGemmDefault =
|
||||
typename sm100_fp8_config_default<InType, OutType,
|
||||
Epilogue>::Cutlass3xGemm;
|
||||
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
|
||||
out, a, b, std::forward<EpilogueArgs>(args)...);
|
||||
using Cutlass3xGemmM64 =
|
||||
typename sm100_fp8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
|
||||
using Cutlass3xGemmM128 =
|
||||
typename sm100_fp8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
|
||||
|
||||
uint32_t const m = a.size(0);
|
||||
uint32_t const mp2 =
|
||||
std::max(static_cast<uint32_t>(64), next_pow_2(m)); // next power of 2
|
||||
|
||||
if (mp2 <= 64) {
|
||||
// m in [1, 64]
|
||||
return cutlass_gemm_caller<Cutlass3xGemmM64>(
|
||||
out, a, b, std::forward<EpilogueArgs>(args)...);
|
||||
} else if (mp2 <= 128) {
|
||||
// m in (64, 128]
|
||||
return cutlass_gemm_caller<Cutlass3xGemmM128>(
|
||||
out, a, b, std::forward<EpilogueArgs>(args)...);
|
||||
} else {
|
||||
// m in (128, inf)
|
||||
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
|
||||
out, a, b, std::forward<EpilogueArgs>(args)...);
|
||||
}
|
||||
}
|
||||
|
||||
template <template <typename, typename, typename> typename Epilogue,
|
||||
|
@ -84,7 +84,8 @@ void run_cutlass_moe_mm_sm90(
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
TORCH_CHECK(a_tensors.size(0) > 0, "No input A tensors provided.");
|
||||
TORCH_CHECK(b_tensors.size(0) > 0, "No input B tensors provided.");
|
||||
TORCH_CHECK(out_tensors.size(0) > 0, "No output tensors provided.");
|
||||
@ -113,19 +114,23 @@ void run_cutlass_moe_mm_sm90(
|
||||
if (n >= 8192) {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmN8192>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides);
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
} else if (k >= 8192) {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmK8192>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides);
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
} else if (m <= 16) {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmM16>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides);
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
} else {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmDefault>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides);
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
}
|
||||
}
|
||||
|
||||
@ -134,15 +139,18 @@ void dispatch_moe_mm_sm90(
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
if (out_tensors.dtype() == torch::kBFloat16) {
|
||||
run_cutlass_moe_mm_sm90<cutlass::float_e4m3_t, cutlass::bfloat16_t>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides);
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
} else {
|
||||
run_cutlass_moe_mm_sm90<cutlass::float_e4m3_t, cutlass::half_t>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides);
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
}
|
||||
}
|
||||
|
||||
@ -153,8 +161,9 @@ void cutlass_moe_mm_sm90(
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
dispatch_moe_mm_sm90(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
|
||||
expert_offsets, problem_sizes, a_strides, b_strides,
|
||||
c_strides);
|
||||
c_strides, per_act_token, per_out_ch);
|
||||
}
|
||||
|
@ -76,7 +76,8 @@ void cutlass_group_gemm_caller(
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
using ElementAB = typename Gemm::ElementAB;
|
||||
using ElementD = typename Gemm::ElementD;
|
||||
|
||||
@ -84,9 +85,6 @@ void cutlass_group_gemm_caller(
|
||||
int k_size = a_tensors.size(1);
|
||||
int n_size = out_tensors.size(1);
|
||||
|
||||
bool per_act_token = a_scales.numel() != 1;
|
||||
bool per_out_ch = b_scales.numel() != num_experts;
|
||||
|
||||
auto stream = at::cuda::getCurrentCUDAStream(a_tensors.device().index());
|
||||
|
||||
auto options_int =
|
||||
|
@ -7,7 +7,7 @@
|
||||
|
||||
constexpr uint64_t THREADS_PER_EXPERT = 512;
|
||||
|
||||
__global__ void compute_problem_sizes(const int* __restrict__ topk_ids,
|
||||
__global__ void compute_problem_sizes(const uint32_t* __restrict__ topk_ids,
|
||||
int32_t* problem_sizes1,
|
||||
int32_t* problem_sizes2,
|
||||
int32_t* atomic_buffer,
|
||||
@ -45,7 +45,24 @@ __global__ void compute_expert_offsets(
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void compute_arg_sorts(const int* __restrict__ topk_ids,
|
||||
__global__ void compute_expert_blockscale_offsets(
|
||||
const int32_t* __restrict__ problem_sizes1, int32_t* expert_offsets,
|
||||
int32_t* blockscale_offsets, int32_t* atomic_buffer,
|
||||
const int num_experts) {
|
||||
int32_t tot_offset = 0;
|
||||
int32_t tot_offset_round = 0;
|
||||
expert_offsets[0] = 0;
|
||||
blockscale_offsets[0] = 0;
|
||||
for (int i = 0; i < num_experts; ++i) {
|
||||
atomic_buffer[i] = tot_offset;
|
||||
tot_offset += problem_sizes1[i * 3];
|
||||
expert_offsets[i + 1] = tot_offset;
|
||||
tot_offset_round += (problem_sizes1[i * 3] + (128 - 1)) / 128 * 128;
|
||||
blockscale_offsets[i + 1] = tot_offset_round;
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void compute_arg_sorts(const uint32_t* __restrict__ topk_ids,
|
||||
const int32_t* __restrict__ expert_offsets,
|
||||
int32_t* input_permutation,
|
||||
int32_t* output_permutation,
|
||||
@ -77,7 +94,8 @@ void get_cutlass_moe_mm_data_caller(
|
||||
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
|
||||
torch::Tensor& input_permutation, torch::Tensor& output_permutation,
|
||||
const int64_t num_experts, const int64_t n, const int64_t k) {
|
||||
const int64_t num_experts, const int64_t n, const int64_t k,
|
||||
const std::optional<torch::Tensor>& blockscale_offsets) {
|
||||
auto stream = at::cuda::getCurrentCUDAStream(topk_ids.device().index());
|
||||
auto options_int32 =
|
||||
torch::TensorOptions().dtype(torch::kInt32).device(topk_ids.device());
|
||||
@ -85,19 +103,61 @@ void get_cutlass_moe_mm_data_caller(
|
||||
|
||||
int num_threads = min(THREADS_PER_EXPERT, topk_ids.numel());
|
||||
compute_problem_sizes<<<num_experts, num_threads, 0, stream>>>(
|
||||
static_cast<const int32_t*>(topk_ids.data_ptr()),
|
||||
static_cast<const uint32_t*>(topk_ids.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes2.data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(), n, k);
|
||||
compute_expert_offsets<<<1, 1, 0, stream>>>(
|
||||
static_cast<const int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
|
||||
if (blockscale_offsets.has_value()) {
|
||||
compute_expert_blockscale_offsets<<<1, 1, 0, stream>>>(
|
||||
static_cast<const int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(blockscale_offsets.value().data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
|
||||
} else {
|
||||
compute_expert_offsets<<<1, 1, 0, stream>>>(
|
||||
static_cast<const int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
|
||||
}
|
||||
compute_arg_sorts<<<num_experts, num_threads, 0, stream>>>(
|
||||
static_cast<const int32_t*>(topk_ids.data_ptr()),
|
||||
static_cast<const uint32_t*>(topk_ids.data_ptr()),
|
||||
static_cast<const int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(input_permutation.data_ptr()),
|
||||
static_cast<int32_t*>(output_permutation.data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(),
|
||||
topk_ids.size(1));
|
||||
}
|
||||
|
||||
__global__ void compute_pplx_data(int32_t* expert_offsets,
|
||||
int32_t* problem_sizes1,
|
||||
int32_t* problem_sizes2,
|
||||
const int32_t* __restrict__ expert_num_tokens,
|
||||
const int padded_m, const int n,
|
||||
const int k) {
|
||||
int expert_idx = threadIdx.x;
|
||||
|
||||
expert_offsets[expert_idx] = expert_idx * padded_m;
|
||||
problem_sizes1[expert_idx * 3] = expert_num_tokens[expert_idx];
|
||||
problem_sizes1[expert_idx * 3 + 1] = 2 * n;
|
||||
problem_sizes1[expert_idx * 3 + 2] = k;
|
||||
problem_sizes2[expert_idx * 3] = expert_num_tokens[expert_idx];
|
||||
problem_sizes2[expert_idx * 3 + 1] = k;
|
||||
problem_sizes2[expert_idx * 3 + 2] = n;
|
||||
}
|
||||
|
||||
void get_cutlass_pplx_moe_mm_data_caller(torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2,
|
||||
const torch::Tensor& expert_num_tokens,
|
||||
const int64_t num_local_experts,
|
||||
const int64_t padded_m,
|
||||
const int64_t n, const int64_t k) {
|
||||
auto stream = at::cuda::getCurrentCUDAStream(expert_offsets.device().index());
|
||||
|
||||
compute_pplx_data<<<1, num_local_experts, 0, stream>>>(
|
||||
static_cast<int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes2.data_ptr()),
|
||||
static_cast<const int32_t*>(expert_num_tokens.data_ptr()), padded_m, n,
|
||||
k);
|
||||
}
|
||||
|
@ -36,7 +36,8 @@ void cutlass_moe_mm_sm90(
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides);
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch);
|
||||
|
||||
#endif
|
||||
|
||||
@ -54,7 +55,16 @@ void get_cutlass_moe_mm_data_caller(
|
||||
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
|
||||
torch::Tensor& input_permutation, torch::Tensor& output_permutation,
|
||||
const int64_t num_experts, const int64_t n, const int64_t k);
|
||||
const int64_t num_experts, const int64_t n, const int64_t k,
|
||||
const std::optional<torch::Tensor>& blockscale_offsets);
|
||||
|
||||
void get_cutlass_pplx_moe_mm_data_caller(torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2,
|
||||
const torch::Tensor& expert_num_tokens,
|
||||
const int64_t num_local_experts,
|
||||
const int64_t padded_m,
|
||||
const int64_t n, const int64_t k);
|
||||
#endif
|
||||
|
||||
void cutlass_scaled_mm_azp_sm75(torch::Tensor& c, torch::Tensor const& a,
|
||||
@ -206,12 +216,13 @@ void cutlass_moe_mm(
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
int32_t version_num = get_sm_version_num();
|
||||
#if defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90
|
||||
cutlass_moe_mm_sm90(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
|
||||
expert_offsets, problem_sizes, a_strides, b_strides,
|
||||
c_strides);
|
||||
c_strides, per_act_token, per_out_ch);
|
||||
return;
|
||||
#endif
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
@ -224,7 +235,8 @@ void get_cutlass_moe_mm_data(
|
||||
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
|
||||
torch::Tensor& input_permutation, torch::Tensor& output_permutation,
|
||||
const int64_t num_experts, const int64_t n, const int64_t k) {
|
||||
const int64_t num_experts, const int64_t n, const int64_t k,
|
||||
const std::optional<torch::Tensor>& blockscale_offsets) {
|
||||
// This function currently gets compiled only if we have a valid cutlass moe
|
||||
// mm to run it for.
|
||||
int32_t version_num = get_sm_version_num();
|
||||
@ -232,7 +244,8 @@ void get_cutlass_moe_mm_data(
|
||||
(defined ENABLE_SCALED_MM_SM100 && ENABLE_SCALED_MM_SM90)
|
||||
get_cutlass_moe_mm_data_caller(topk_ids, expert_offsets, problem_sizes1,
|
||||
problem_sizes2, input_permutation,
|
||||
output_permutation, num_experts, n, k);
|
||||
output_permutation, num_experts, n, k,
|
||||
blockscale_offsets);
|
||||
return;
|
||||
#endif
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
@ -242,6 +255,29 @@ void get_cutlass_moe_mm_data(
|
||||
version_num, ". Required capability: 90");
|
||||
}
|
||||
|
||||
void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2,
|
||||
const torch::Tensor& expert_num_tokens,
|
||||
const int64_t num_local_experts,
|
||||
const int64_t padded_m, const int64_t n,
|
||||
const int64_t k) {
|
||||
// This function currently gets compiled only if we have a valid cutlass moe
|
||||
// mm to run it for.
|
||||
int32_t version_num = get_sm_version_num();
|
||||
#if defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90
|
||||
get_cutlass_pplx_moe_mm_data_caller(expert_offsets, problem_sizes1,
|
||||
problem_sizes2, expert_num_tokens,
|
||||
num_local_experts, padded_m, n, k);
|
||||
return;
|
||||
#endif
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
false,
|
||||
"No compiled get_cutlass_pplx_moe_mm_data: no cutlass_scaled_mm kernel "
|
||||
"for CUDA device capability: ",
|
||||
version_num, ". Required capability: 90");
|
||||
}
|
||||
|
||||
void cutlass_scaled_mm_azp(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
|
@ -39,8 +39,8 @@ __global__ void dynamic_per_token_scaled_fp8_quant_kernel(
|
||||
fp8_type* __restrict__ token_output = &out[offset];
|
||||
|
||||
// For vectorization, token_input and token_output pointers need to be
|
||||
// aligned at 8-byte and 4-byte addresses respectively.
|
||||
bool const can_vectorize = hidden_size % 4 == 0;
|
||||
// aligned at 32-byte and 16-byte addresses respectively.
|
||||
bool const can_vectorize = hidden_size % 16 == 0;
|
||||
|
||||
float absmax_val = 0.0f;
|
||||
if (can_vectorize) {
|
||||
@ -48,24 +48,24 @@ __global__ void dynamic_per_token_scaled_fp8_quant_kernel(
|
||||
} else {
|
||||
for (int i = tid; i < hidden_size; i += blockDim.x) {
|
||||
float const x = static_cast<float>(token_input[i]);
|
||||
absmax_val = max(absmax_val, fabs(x));
|
||||
absmax_val = fmaxf(absmax_val, fabsf(x));
|
||||
}
|
||||
}
|
||||
|
||||
using BlockReduce = cub::BlockReduce<float, 1024>;
|
||||
using BlockReduce = cub::BlockReduce<float, 256>;
|
||||
__shared__ typename BlockReduce::TempStorage reduceStorage;
|
||||
float const block_absmax_val_maybe =
|
||||
BlockReduce(reduceStorage).Reduce(absmax_val, cub::Max{}, blockDim.x);
|
||||
__shared__ float token_scale;
|
||||
if (tid == 0) {
|
||||
if (scale_ub) {
|
||||
token_scale = min(block_absmax_val_maybe, *scale_ub);
|
||||
token_scale = fminf(block_absmax_val_maybe, *scale_ub);
|
||||
} else {
|
||||
token_scale = block_absmax_val_maybe;
|
||||
}
|
||||
// token scale computation
|
||||
token_scale = max(token_scale / quant_type_max_v<fp8_type>,
|
||||
min_scaling_factor<fp8_type>::val());
|
||||
token_scale = fmaxf(token_scale / quant_type_max_v<fp8_type>,
|
||||
min_scaling_factor<fp8_type>::val());
|
||||
scale[token_idx] = token_scale;
|
||||
}
|
||||
__syncthreads();
|
||||
@ -88,10 +88,11 @@ void static_scaled_fp8_quant(torch::Tensor& out, // [..., d]
|
||||
torch::Tensor const& input, // [..., d]
|
||||
torch::Tensor const& scale) // [1]
|
||||
{
|
||||
int64_t num_tokens = input.numel() / input.size(-1);
|
||||
int64_t num_elems = input.numel();
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(1024);
|
||||
int const block_size = 256;
|
||||
int const num_tokens = input.numel() / input.size(-1);
|
||||
int const num_elems = input.numel();
|
||||
dim3 const grid(num_tokens);
|
||||
dim3 const block(block_size);
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
@ -110,10 +111,11 @@ void dynamic_scaled_fp8_quant(torch::Tensor& out, // [..., d]
|
||||
torch::Tensor const& input, // [..., d]
|
||||
torch::Tensor& scale) // [1]
|
||||
{
|
||||
int64_t num_tokens = input.numel() / input.size(-1);
|
||||
int64_t num_elems = input.numel();
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(1024);
|
||||
int const block_size = 256;
|
||||
int const num_tokens = input.numel() / input.size(-1);
|
||||
int const num_elems = input.numel();
|
||||
dim3 const grid(num_tokens);
|
||||
dim3 const block(block_size);
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
@ -141,8 +143,9 @@ void dynamic_per_token_scaled_fp8_quant(
|
||||
|
||||
int const hidden_size = input.size(-1);
|
||||
int const num_tokens = input.numel() / hidden_size;
|
||||
int const block_size = 256;
|
||||
dim3 const grid(num_tokens);
|
||||
dim3 const block(std::min(hidden_size, 1024));
|
||||
dim3 const block(std::min(hidden_size, block_size));
|
||||
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
@ -46,7 +46,7 @@ __device__ __forceinline__ fp8_type scaled_fp8_conversion(float const val,
|
||||
}
|
||||
|
||||
float r =
|
||||
fmax(-quant_type_max_v<fp8_type>, fmin(x, quant_type_max_v<fp8_type>));
|
||||
fmaxf(-quant_type_max_v<fp8_type>, fminf(x, quant_type_max_v<fp8_type>));
|
||||
#ifndef USE_ROCM
|
||||
return static_cast<fp8_type>(r);
|
||||
#else
|
||||
@ -65,7 +65,7 @@ template <typename scalar_t, typename fp8_type>
|
||||
__global__ void segmented_max_reduction(float* __restrict__ scale,
|
||||
const scalar_t* __restrict__ input,
|
||||
int64_t num_elems) {
|
||||
__shared__ float cache[1024];
|
||||
__shared__ float cache[256];
|
||||
int64_t i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
// First store maximum for all values processes by
|
||||
@ -73,7 +73,7 @@ __global__ void segmented_max_reduction(float* __restrict__ scale,
|
||||
scalar_t tmp = 0.0;
|
||||
while (i < num_elems) {
|
||||
float x = static_cast<float>(input[i]);
|
||||
tmp = max(tmp, fabs(x));
|
||||
tmp = fmaxf(tmp, fabsf(x));
|
||||
i += blockDim.x * gridDim.x;
|
||||
}
|
||||
cache[threadIdx.x] = tmp;
|
||||
@ -100,25 +100,27 @@ template <typename scalar_t>
|
||||
__device__ float thread_max_vec(scalar_t const* __restrict__ input,
|
||||
int64_t const num_elems, int const tid,
|
||||
int const step) {
|
||||
constexpr size_t VEC_SIZE = 16;
|
||||
using scalarxN_t = vec_n_t<scalar_t, VEC_SIZE>;
|
||||
// Vectorized input/output to better utilize memory bandwidth.
|
||||
vec4_t<scalar_t> const* vectorized_in =
|
||||
reinterpret_cast<vec4_t<scalar_t> const*>(input);
|
||||
auto const* vectorized_in = reinterpret_cast<scalarxN_t const*>(input);
|
||||
|
||||
int64_t const num_vec_elems = num_elems >> 2;
|
||||
// num_elems / VEC_SIZE (which is 16)
|
||||
int64_t const num_vec_elems = num_elems >> 4;
|
||||
float absmax_val = 0.0f;
|
||||
|
||||
#pragma unroll 4
|
||||
#pragma unroll
|
||||
for (int64_t i = tid; i < num_vec_elems; i += step) {
|
||||
vec4_t<scalar_t> in_vec = vectorized_in[i];
|
||||
absmax_val = max(absmax_val, fabs(in_vec.x));
|
||||
absmax_val = max(absmax_val, fabs(in_vec.y));
|
||||
absmax_val = max(absmax_val, fabs(in_vec.z));
|
||||
absmax_val = max(absmax_val, fabs(in_vec.w));
|
||||
scalarxN_t in_vec = vectorized_in[i];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < VEC_SIZE; ++j) {
|
||||
absmax_val = fmaxf(absmax_val, fabsf(in_vec.val[j]));
|
||||
}
|
||||
}
|
||||
|
||||
// Handle the remaining elements if num_elems is not divisible by 4
|
||||
for (int64_t i = num_vec_elems * 4 + tid; i < num_elems; i += step) {
|
||||
absmax_val = max(absmax_val, fabs(input[i]));
|
||||
// Handle the remaining elements if num_elems is not divisible by VEC_SIZE
|
||||
for (int64_t i = num_vec_elems * VEC_SIZE + tid; i < num_elems; i += step) {
|
||||
absmax_val = fmaxf(absmax_val, fabsf(input[i]));
|
||||
}
|
||||
|
||||
return absmax_val;
|
||||
@ -130,31 +132,31 @@ __device__ void scaled_fp8_conversion_vec(fp8_type* __restrict__ out,
|
||||
float const scale,
|
||||
int64_t const num_elems,
|
||||
int const tid, int const step) {
|
||||
using float8x4_t = q8x4_t<fp8_type>;
|
||||
constexpr size_t VEC_SIZE = 16;
|
||||
using scalarxN_t = vec_n_t<scalar_t, VEC_SIZE>;
|
||||
using float8xN_t = q8_n_t<fp8_type, VEC_SIZE>;
|
||||
// Vectorized input/output to better utilize memory bandwidth.
|
||||
auto const* vectorized_in = reinterpret_cast<vec4_t<scalar_t> const*>(input);
|
||||
auto* vectorized_out = reinterpret_cast<float8x4_t*>(out);
|
||||
auto const* vectorized_in = reinterpret_cast<scalarxN_t const*>(input);
|
||||
auto* vectorized_out = reinterpret_cast<float8xN_t*>(out);
|
||||
|
||||
int64_t const num_vec_elems = num_elems >> 2;
|
||||
// num_elems / VEC_SIZE (which is 16)
|
||||
int64_t const num_vec_elems = num_elems >> 4;
|
||||
|
||||
#pragma unroll 4
|
||||
#pragma unroll
|
||||
for (int64_t i = tid; i < num_vec_elems; i += step) {
|
||||
vec4_t<scalar_t> in_vec = vectorized_in[i];
|
||||
float8x4_t out_vec;
|
||||
scalarxN_t in_vec = vectorized_in[i];
|
||||
float8xN_t out_vec;
|
||||
|
||||
out_vec.x = scaled_fp8_conversion<is_scale_inverted, fp8_type>(
|
||||
static_cast<float>(in_vec.x), scale);
|
||||
out_vec.y = scaled_fp8_conversion<is_scale_inverted, fp8_type>(
|
||||
static_cast<float>(in_vec.y), scale);
|
||||
out_vec.z = scaled_fp8_conversion<is_scale_inverted, fp8_type>(
|
||||
static_cast<float>(in_vec.z), scale);
|
||||
out_vec.w = scaled_fp8_conversion<is_scale_inverted, fp8_type>(
|
||||
static_cast<float>(in_vec.w), scale);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < VEC_SIZE; ++j) {
|
||||
out_vec.val[j] = scaled_fp8_conversion<is_scale_inverted, fp8_type>(
|
||||
static_cast<float>(in_vec.val[j]), scale);
|
||||
}
|
||||
vectorized_out[i] = out_vec;
|
||||
}
|
||||
|
||||
// Handle the remaining elements if num_elems is not divisible by 4
|
||||
for (int64_t i = num_vec_elems * 4 + tid; i < num_elems; i += step) {
|
||||
// Handle the remaining elements if num_elems is not divisible by VEC_SIZE
|
||||
for (int64_t i = num_vec_elems * VEC_SIZE + tid; i < num_elems; i += step) {
|
||||
out[i] = scaled_fp8_conversion<is_scale_inverted, fp8_type>(
|
||||
static_cast<float>(input[i]), scale);
|
||||
}
|
||||
|
@ -140,6 +140,7 @@ __device__ void compute_rms(float* rms, scalar_t const* __restrict__ input,
|
||||
// sum of squares
|
||||
float ss = 0.0f;
|
||||
|
||||
const int VEC_SIZE = 4;
|
||||
int32_t const num_vec_elems = hidden_size >> 2;
|
||||
|
||||
#pragma unroll 4
|
||||
@ -147,22 +148,23 @@ __device__ void compute_rms(float* rms, scalar_t const* __restrict__ input,
|
||||
vec4_t<scalar_t> in = vec_input[i];
|
||||
|
||||
vec4_t<float> x;
|
||||
x.x = static_cast<float>(in.x);
|
||||
x.y = static_cast<float>(in.y);
|
||||
x.z = static_cast<float>(in.z);
|
||||
x.w = static_cast<float>(in.w);
|
||||
if constexpr (has_residual) {
|
||||
vec4_t<scalar_t> r = vec_residual[i];
|
||||
x.x += static_cast<float>(r.x);
|
||||
x.y += static_cast<float>(r.y);
|
||||
x.z += static_cast<float>(r.z);
|
||||
x.w += static_cast<float>(r.w);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < VEC_SIZE; ++j) {
|
||||
x.val[j] = static_cast<float>(in.val[j]);
|
||||
}
|
||||
|
||||
ss += x.x * x.x;
|
||||
ss += x.y * x.y;
|
||||
ss += x.z * x.z;
|
||||
ss += x.w * x.w;
|
||||
if constexpr (has_residual) {
|
||||
vec4_t<scalar_t> r = vec_residual[i];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < VEC_SIZE; ++j) {
|
||||
x.val[j] += static_cast<float>(r.val[j]);
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < VEC_SIZE; ++j) {
|
||||
ss += x.val[j] * x.val[j];
|
||||
}
|
||||
}
|
||||
|
||||
using BlockReduce = cub::BlockReduce<float, 1024>;
|
||||
@ -203,6 +205,7 @@ __device__ void compute_dynamic_per_token_scales(
|
||||
|
||||
constexpr scalar_out_t qmax{quant_type_max_v<scalar_out_t>};
|
||||
|
||||
const int VEC_SIZE = 4;
|
||||
int32_t const num_vec_elems = hidden_size >> 2;
|
||||
float block_absmax_val_maybe = 0.0f;
|
||||
|
||||
@ -212,26 +215,25 @@ __device__ void compute_dynamic_per_token_scales(
|
||||
vec4_t<scalar_t> const w = vec_weight[i];
|
||||
|
||||
vec4_t<float> x;
|
||||
x.x = static_cast<float>(in.x);
|
||||
x.y = static_cast<float>(in.y);
|
||||
x.z = static_cast<float>(in.z);
|
||||
x.w = static_cast<float>(in.w);
|
||||
if constexpr (has_residual) {
|
||||
vec4_t<scalar_t> r = vec_residual[i];
|
||||
x.x += static_cast<float>(r.x);
|
||||
x.y += static_cast<float>(r.y);
|
||||
x.z += static_cast<float>(r.z);
|
||||
x.w += static_cast<float>(r.w);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < VEC_SIZE; ++j) {
|
||||
x.val[j] = static_cast<float>(in.val[j]);
|
||||
}
|
||||
|
||||
block_absmax_val_maybe = fmaxf(
|
||||
block_absmax_val_maybe, fabs(static_cast<scalar_t>(x.x * rms) * w.x));
|
||||
block_absmax_val_maybe = fmaxf(
|
||||
block_absmax_val_maybe, fabs(static_cast<scalar_t>(x.y * rms) * w.y));
|
||||
block_absmax_val_maybe = fmaxf(
|
||||
block_absmax_val_maybe, fabs(static_cast<scalar_t>(x.z * rms) * w.z));
|
||||
block_absmax_val_maybe = fmaxf(
|
||||
block_absmax_val_maybe, fabs(static_cast<scalar_t>(x.w * rms) * w.w));
|
||||
if constexpr (has_residual) {
|
||||
vec4_t<scalar_t> r = vec_residual[i];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < VEC_SIZE; ++j) {
|
||||
x.val[j] += static_cast<float>(r.val[j]);
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < VEC_SIZE; ++j) {
|
||||
block_absmax_val_maybe =
|
||||
fmaxf(block_absmax_val_maybe,
|
||||
fabs(static_cast<scalar_t>(x.val[j] * rms) * w.val[j]));
|
||||
}
|
||||
}
|
||||
|
||||
using BlockReduce = cub::BlockReduce<float, 1024>;
|
||||
@ -282,6 +284,7 @@ __device__ void norm_and_quant(scalar_out_t* __restrict__ output,
|
||||
vec_residual = reinterpret_cast<vec4_t<scalar_t>*>(&residual[token_offset]);
|
||||
}
|
||||
|
||||
const int VEC_SIZE = 4;
|
||||
int32_t const num_vec_elems = hidden_size >> 2;
|
||||
|
||||
// TODO(luka/varun) extract into type-agnostic vectorized quant function to
|
||||
@ -292,33 +295,31 @@ __device__ void norm_and_quant(scalar_out_t* __restrict__ output,
|
||||
vec4_t<scalar_t> const w = vec_weight[i];
|
||||
|
||||
vec4_t<float> x;
|
||||
x.x = static_cast<float>(in.x);
|
||||
x.y = static_cast<float>(in.y);
|
||||
x.z = static_cast<float>(in.z);
|
||||
x.w = static_cast<float>(in.w);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < VEC_SIZE; ++j) {
|
||||
x.val[j] = static_cast<float>(in.val[j]);
|
||||
}
|
||||
|
||||
if constexpr (has_residual) {
|
||||
vec4_t<scalar_t> r = vec_residual[i];
|
||||
x.x += static_cast<float>(r.x);
|
||||
x.y += static_cast<float>(r.y);
|
||||
x.z += static_cast<float>(r.z);
|
||||
x.w += static_cast<float>(r.w);
|
||||
// Update residual
|
||||
r.x = static_cast<scalar_t>(x.x);
|
||||
r.y = static_cast<scalar_t>(x.y);
|
||||
r.z = static_cast<scalar_t>(x.z);
|
||||
r.w = static_cast<scalar_t>(x.w);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < VEC_SIZE; ++j) {
|
||||
x.val[j] += static_cast<float>(r.val[j]);
|
||||
}
|
||||
// Update residual
|
||||
#pragma unroll
|
||||
for (int j = 0; j < VEC_SIZE; ++j) {
|
||||
r.val[j] = static_cast<scalar_t>(x.val[j]);
|
||||
}
|
||||
vec_residual[i] = r;
|
||||
}
|
||||
|
||||
q8x4_t<scalar_out_t> out;
|
||||
out.x = ScaledQuant<scalar_out_t, is_scale_inverted>::quant_fn(
|
||||
static_cast<scalar_t>(x.x * rms) * w.x, scale);
|
||||
out.y = ScaledQuant<scalar_out_t, is_scale_inverted>::quant_fn(
|
||||
static_cast<scalar_t>(x.y * rms) * w.y, scale);
|
||||
out.z = ScaledQuant<scalar_out_t, is_scale_inverted>::quant_fn(
|
||||
static_cast<scalar_t>(x.z * rms) * w.z, scale);
|
||||
out.w = ScaledQuant<scalar_out_t, is_scale_inverted>::quant_fn(
|
||||
static_cast<scalar_t>(x.w * rms) * w.w, scale);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < VEC_SIZE; ++j) {
|
||||
out.val[j] = ScaledQuant<scalar_out_t, is_scale_inverted>::quant_fn(
|
||||
static_cast<scalar_t>(x.val[j] * rms) * w.val[j], scale);
|
||||
}
|
||||
vec_output[i] = out;
|
||||
}
|
||||
}
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import glob
|
||||
import itertools
|
||||
import os
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import itertools
|
||||
import math
|
||||
|
@ -10,23 +10,22 @@
|
||||
namespace vllm {
|
||||
|
||||
// Vectorization containers
|
||||
template <typename scalar_t>
|
||||
struct __align__(8) vec4_t {
|
||||
scalar_t x;
|
||||
scalar_t y;
|
||||
scalar_t z;
|
||||
scalar_t w;
|
||||
template <typename scalar_t, size_t vec_size>
|
||||
struct __align__(vec_size * sizeof(scalar_t)) vec_n_t {
|
||||
scalar_t val[vec_size];
|
||||
};
|
||||
|
||||
template <typename quant_type_t>
|
||||
struct __align__(4) q8x4_t {
|
||||
template <typename quant_type_t, size_t vec_size>
|
||||
struct __align__(vec_size * sizeof(quant_type_t)) q8_n_t {
|
||||
static_assert(std::is_same_v<quant_type_t, int8_t> ||
|
||||
std::is_same_v<quant_type_t, c10::Float8_e4m3fn> ||
|
||||
std::is_same_v<quant_type_t, c10::Float8_e4m3fnuz>);
|
||||
quant_type_t x;
|
||||
quant_type_t y;
|
||||
quant_type_t z;
|
||||
quant_type_t w;
|
||||
quant_type_t val[vec_size];
|
||||
};
|
||||
|
||||
template <typename scalar_t>
|
||||
using vec4_t = vec_n_t<scalar_t, 4>;
|
||||
template <typename quant_type_t>
|
||||
using q8x4_t = q8_n_t<quant_type_t, 4>;
|
||||
|
||||
} // namespace vllm
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user