mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
Compare commits
905 Commits
v0.8.0
...
v0.8.5.pos
Author | SHA1 | Date | |
---|---|---|---|
3015d5634e | |||
edb5286ea5 | |||
ba41cc90e8 | |||
dcbac4cb4b | |||
ed2462030f | |||
cc5befbced | |||
2c89cd96a8 | |||
a0304dc504 | |||
c7941cca18 | |||
b6dd32aa07 | |||
f94886946e | |||
72dfe4c74f | |||
8b464d9660 | |||
889ebb2638 | |||
3ad986c28b | |||
344e193b7d | |||
fb1c933ade | |||
72c5b97231 | |||
fa93cd9f60 | |||
aec9674dbe | |||
7fcc4223dc | |||
8262a3e23b | |||
f211331c48 | |||
9053d0b134 | |||
cb3f2d8d10 | |||
c12df53b60 | |||
d1aeea7553 | |||
d8bccde686 | |||
20e489eaa1 | |||
4213475ec7 | |||
d92879baf6 | |||
690fe019f0 | |||
ed7a29d9f8 | |||
756848e79e | |||
18445edd0f | |||
30215ca61f | |||
838cedade7 | |||
4283a28c2f | |||
93a126fbc7 | |||
8e4b351a0c | |||
9869453c42 | |||
3642c59aa8 | |||
43eea2953b | |||
de7eb10ce4 | |||
fd11a325b8 | |||
4d17e20310 | |||
10fd1d7380 | |||
52b4f4a8d7 | |||
e782e0a170 | |||
dc2ceca5c5 | |||
f8acd01ff7 | |||
c48334d405 | |||
909fdaf152 | |||
8c1c926d00 | |||
df6f3ce883 | |||
513f074766 | |||
b07bf83c7d | |||
53e8cf53a4 | |||
54271bb766 | |||
9e96f56efb | |||
b278911229 | |||
7bd0c7745c | |||
1cf0719ebd | |||
537d5ee025 | |||
c8e5be35f7 | |||
a6e72e1e4f | |||
5e83a7277f | |||
68af5f6c5c | |||
8de2901fea | |||
c53e0730cb | |||
a0e619e62a | |||
70116459c3 | |||
65e262b93b | |||
43faa0461a | |||
48cb2109b6 | |||
a5450f11c9 | |||
9d98ab5ec6 | |||
df5c879527 | |||
423e9f1cbe | |||
0bd7f8fca5 | |||
d5615af9ae | |||
19dcc02a72 | |||
7feae92c1f | |||
f851b84266 | |||
fc966e9cc6 | |||
ef19e67d2c | |||
a41351f363 | |||
6aae216b4e | |||
b22980a1dc | |||
881f735827 | |||
2f54045508 | |||
5aa6efb9a5 | |||
6ca0234478 | |||
649818995f | |||
7a0a9da72b | |||
69bff9bc89 | |||
41ca7eb491 | |||
eef364723c | |||
0d6e187e88 | |||
9420a1fc30 | |||
583e900996 | |||
05e1fbfc52 | |||
fe92176321 | |||
6d0df0ebeb | |||
0fa939e2d1 | |||
0422ce109f | |||
47bdee409c | |||
49f189439d | |||
5adf6f6b7f | |||
4115f19958 | |||
340d7b1b21 | |||
1bcbcbf574 | |||
82e43b2d7e | |||
67309a1cb5 | |||
b724afe343 | |||
21f4f1c9a4 | |||
b0c1f6202d | |||
c0dfd97519 | |||
a9138e85b1 | |||
0a05ed57e6 | |||
14288d1332 | |||
b411418ff0 | |||
2bc0f72ae5 | |||
9c1244de57 | |||
db2f8d915c | |||
6167c0e5d2 | |||
ed2e464653 | |||
2c8ed8ee48 | |||
ed50f46641 | |||
46e678bcff | |||
6b2427f995 | |||
b07d741661 | |||
41fb013d29 | |||
32d4b669d0 | |||
3cde34a4a4 | |||
bdb3660312 | |||
f3a21e9c68 | |||
8e630d680e | |||
af869f6dff | |||
53c0fa1e25 | |||
f7912cba3d | |||
6317a5174a | |||
aa72d9a4ea | |||
ce17db8085 | |||
8c87a9ad46 | |||
ec69124eb4 | |||
d0da99fb70 | |||
b2f195c429 | |||
047797ef90 | |||
eb8ef4224d | |||
56a735261c | |||
e1cf90e099 | |||
6bc1e30ef9 | |||
7e081ba7ca | |||
1e013fa388 | |||
bc7c4d206b | |||
f67e9e9f22 | |||
36fe78769f | |||
83d933718c | |||
5175b884f7 | |||
5536b30a4c | |||
7f58fb9718 | |||
30bc3e0f66 | |||
f34410715f | |||
68d4c33202 | |||
f961d7f6ef | |||
d059110498 | |||
571e8dd65e | |||
4b91c927f6 | |||
0e237f0035 | |||
8f7bace7c3 | |||
e4d6144232 | |||
8d32dc603d | |||
c4ab9f3e71 | |||
2689d5c027 | |||
acba33a0f1 | |||
a114bf20a3 | |||
3097ce3a32 | |||
d6da9322c8 | |||
71ce44047f | |||
188b7f9b8c | |||
b9b4746950 | |||
7b8a2ab76f | |||
c9acbf1141 | |||
5b794cae8d | |||
0e4254492f | |||
1311913f55 | |||
29f395c97c | |||
fa3bba2a53 | |||
986537f1c3 | |||
210207525e | |||
71eda0bb76 | |||
471fe65630 | |||
3a0fba5cf4 | |||
299ebb62b2 | |||
f728ab8e35 | |||
63e26fff78 | |||
fe3462c774 | |||
3b34fd5273 | |||
55d6d3fdb8 | |||
7272bfae77 | |||
d9ac9e3dc5 | |||
d41faaf9df | |||
b34f33438a | |||
26c0406555 | |||
4c41278b77 | |||
bb3605db85 | |||
fe742aef5a | |||
4b07d36891 | |||
87aaadef73 | |||
682e0b6d2f | |||
d6195a748b | |||
205d84aaa9 | |||
5124f5bf51 | |||
83f3c3bd91 | |||
d9737ca1c6 | |||
9d4ca19d50 | |||
2ef0dc53b8 | |||
1d4680fad2 | |||
2c1bd848a6 | |||
5c9121203c | |||
490b1698a5 | |||
5a5e29de88 | |||
3d3ab3689f | |||
686623c5e7 | |||
aadb656562 | |||
87e067de41 | |||
26507f8973 | |||
9c1d5b456d | |||
e31045f95c | |||
aaec845f8e | |||
7bdfd29a35 | |||
e78587a64c | |||
7eb4255628 | |||
6a0f547561 | |||
30ed81b7ca | |||
7a4a5de729 | |||
c16fb5dae8 | |||
e37073efd7 | |||
183dad7a85 | |||
3408e47159 | |||
0377b8310b | |||
e4755f7fac | |||
92edf35826 | |||
eb5819b2d9 | |||
5989f4684d | |||
5125d72f02 | |||
a018e555fd | |||
6211b92273 | |||
05fcd1b430 | |||
7c02d6a137 | |||
11c3b98491 | |||
dbe7f07001 | |||
c69bf4ee06 | |||
d27ea94034 | |||
99ed526101 | |||
207da28186 | |||
5b1aca2ae3 | |||
d8e557b5e5 | |||
61a44a0b22 | |||
a6481525b8 | |||
8cac35ba43 | |||
9dbf7a2dc1 | |||
607029e515 | |||
cb072ce93b | |||
95aca283b4 | |||
2b05b8ce69 | |||
3c776dcefb | |||
2cbd4d2999 | |||
3092375e27 | |||
3cd91dc955 | |||
8a7368e069 | |||
93e561ec4d | |||
e1b004839a | |||
ee378f3d49 | |||
e82ee40de3 | |||
facbe2a114 | |||
7168920491 | |||
21378a2323 | |||
976711d9db | |||
44fa4d556c | |||
3ac98edcb1 | |||
966c742ed2 | |||
0d7d05f4b6 | |||
96bb8aa68b | |||
3badb0213b | |||
fdcb850f14 | |||
54a66e5fee | |||
280d62b8a2 | |||
1666e66443 | |||
1575c1701a | |||
6ae996a873 | |||
b590adfdc1 | |||
b4fe16c75b | |||
bc5dd4f669 | |||
dbb036cf61 | |||
70e7ed841d | |||
d06ba4ed3f | |||
6b40996ae8 | |||
d2020acac7 | |||
1eb3c2ed48 | |||
c64ee87267 | |||
b1308b84a3 | |||
7b5ecf79bd | |||
9883a18859 | |||
b3f2fddd17 | |||
aa29841ede | |||
6bf27affb6 | |||
1dd23386ec | |||
7cbfc10943 | |||
ce4ddd2d1a | |||
e51929ebca | |||
dc1b4a6f13 | |||
63d2705edb | |||
d085a44082 | |||
f49e5aff11 | |||
6c11ecf8d3 | |||
93e5f3c5fb | |||
70363bccfa | |||
3cdc57669f | |||
68bb122eb4 | |||
d9fc8cd9da | |||
f069f3ea74 | |||
c5bc0e7fcc | |||
4a3a518722 | |||
fbf722c6e6 | |||
e92d7085bf | |||
bd6028d6b0 | |||
802329dee9 | |||
41cc883c29 | |||
57504a4bcf | |||
ed4792c990 | |||
87b836ba77 | |||
56c76c2e0e | |||
c09632a66c | |||
a3bf8d4a2b | |||
16eda8c43a | |||
cd77382ac1 | |||
71b9cde010 | |||
5285589f37 | |||
f41647ee6b | |||
4d022cbc75 | |||
70de35a881 | |||
34b2cf3b33 | |||
9e90c9f73f | |||
e9528f6dc6 | |||
51baa9c333 | |||
35e076b3a8 | |||
a26f59ccbc | |||
aa3b3d76e0 | |||
f7030df3be | |||
905e91e9ac | |||
f8f9c0ba62 | |||
dda811021a | |||
93195146ea | |||
ed37599544 | |||
99ef59cf7f | |||
d544d141ec | |||
3e397a9484 | |||
268c325078 | |||
3cc9af88ff | |||
7cd0bd7212 | |||
56d4aefa33 | |||
dd143ef541 | |||
daefed052c | |||
5fbab20e02 | |||
e8224f3dca | |||
9665313c39 | |||
0c54fc7273 | |||
c1b57855ec | |||
83b824c8b4 | |||
7678fcd5b6 | |||
8661c0241d | |||
ce8d6b75fc | |||
61de3ef74b | |||
ec1f9c8c91 | |||
65e09094c4 | |||
c70cf0fe06 | |||
a5d11a54dc | |||
3d4c87758e | |||
a9bd832fc5 | |||
417bcefbae | |||
baada0e737 | |||
82eb61dd4c | |||
0d4d06fe2f | |||
4aed0ca6a2 | |||
1621b25288 | |||
a564797151 | |||
1da6a09274 | |||
1e44ffc3ff | |||
a454748544 | |||
1bff42c4b7 | |||
cb391d85dc | |||
fee5b8d37f | |||
b2ce859bd2 | |||
566f10a929 | |||
c3b5189137 | |||
a25866ac8d | |||
098900d7c2 | |||
98d01d3ce2 | |||
d55244df31 | |||
04149cce27 | |||
24834f4894 | |||
ec7da6fcf3 | |||
819d548e8a | |||
477d2a8aa2 | |||
e484e02857 | |||
24f6b9a713 | |||
9cdde47289 | |||
b1eb4ca152 | |||
87b4ac56c2 | |||
cb84e45ac7 | |||
4716377fbc | |||
4e9cf8c1dd | |||
2976dc27e9 | |||
102bf967f0 | |||
1f4b09b525 | |||
86c3369eb8 | |||
2755c34a8f | |||
db10422184 | |||
e1a2c699dd | |||
0115ccd5c0 | |||
40b4284fe3 | |||
4ebc0b9640 | |||
dc96fd54c6 | |||
1f5d13ab9f | |||
90cb44eb02 | |||
e11880deea | |||
9351f91be9 | |||
5a1e1c8353 | |||
69ecaa7c79 | |||
7f00899ff7 | |||
995e3d1f41 | |||
b4ac449a83 | |||
8e5314a468 | |||
87918e40c4 | |||
f6b32efb7f | |||
b99733d092 | |||
05a015d6a5 | |||
ad971af8c7 | |||
f2ebb6f541 | |||
1d01211264 | |||
f94ab12f79 | |||
a865bc1ca6 | |||
21802c4b6d | |||
652907b354 | |||
24f1c01e0f | |||
fad6e2538e | |||
7f6d47c1a2 | |||
3147586ebd | |||
ed636d99ca | |||
090c856d76 | |||
ad434d4cfe | |||
66d433b94f | |||
027b204ff1 | |||
55dcce91df | |||
8017c8db7f | |||
dc3529dbf6 | |||
7699258ef0 | |||
e9ba99f296 | |||
7c80368710 | |||
95d63f38c0 | |||
bb8dab821e | |||
fc0f87768a | |||
0a57386721 | |||
3749e28774 | |||
86fc2321ff | |||
2549c0dfef | |||
b10e519895 | |||
9bde5ba127 | |||
72c8f1ad04 | |||
da224daaa9 | |||
3a100b9278 | |||
242a637aea | |||
c2a9671510 | |||
d5ae4f7f42 | |||
b6c502a150 | |||
9ca710e525 | |||
eb07c8cb5b | |||
ba10801961 | |||
620fc2d09e | |||
29283eaa7e | |||
2fa66ef713 | |||
13affc432d | |||
d8f094a92a | |||
97ae6d777f | |||
6baeee70d1 | |||
d2517a4939 | |||
6342adc438 | |||
0adba91547 | |||
4285e423a6 | |||
63375f0cdb | |||
70ad3f9e98 | |||
d6fc629f4d | |||
af51d80fa1 | |||
f5722a5052 | |||
651cf0fec1 | |||
4dc52e1c53 | |||
4708f13a9c | |||
a6d042df0a | |||
40a36ccfeb | |||
ef608c37a7 | |||
2386803f2a | |||
95862f7b4d | |||
230b131b54 | |||
0812d8dd41 | |||
bf7e3c51ae | |||
a35a8a8392 | |||
4ef0bb1fcf | |||
fadc59c0e6 | |||
86cbd2eee9 | |||
092475f738 | |||
dcc56d62da | |||
f15e70d906 | |||
b6be6f8d1e | |||
03a70eacaf | |||
45b1ff7a25 | |||
15ba07ef25 | |||
d2b58ca203 | |||
82e7e19a6e | |||
421c462948 | |||
84884cd9ac | |||
a43aa183dc | |||
463bbb1835 | |||
5e125e74d1 | |||
06f21ce7a5 | |||
57a810db9c | |||
8b664706aa | |||
37bfee92bf | |||
e73ff24e31 | |||
bd7599d34a | |||
01b6113659 | |||
1b84eff03a | |||
55acf86bf8 | |||
f021b97993 | |||
1cab43c2d2 | |||
8bd651b318 | |||
58e234a754 | |||
e86c414d6a | |||
550b2801ad | |||
cefb9e5a28 | |||
98d7367b61 | |||
594a8b9030 | |||
44f990515b | |||
252937806c | |||
51826d51fa | |||
14e53ed11f | |||
ddb94c2605 | |||
90969fb39a | |||
101f1481f9 | |||
2edc87b161 | |||
4203926f10 | |||
cdb57015a7 | |||
aa557e6422 | |||
0e00d40e4f | |||
c920e01242 | |||
274d8e8818 | |||
2039c6305b | |||
6efb195a6e | |||
24b7fb455a | |||
58f5a59769 | |||
db9dfcfa6a | |||
9ef98d527e | |||
93491aefc7 | |||
7acd539cd7 | |||
e75a6301bd | |||
a79cc68b3a | |||
7e3f7a4ee7 | |||
9ec8257914 | |||
38327cf454 | |||
dfa82e2a3d | |||
e59ca942f5 | |||
a57a3044aa | |||
4e5a0f6ae2 | |||
b63bd14999 | |||
2041c0e360 | |||
085cbc4f9f | |||
2b93162fb0 | |||
2e45bd29fe | |||
51d7c6a2b2 | |||
f3aca1ee30 | |||
8dd41d6bcc | |||
0a298ea418 | |||
d330558bab | |||
656fd72976 | |||
79455cf421 | |||
30d6a015e0 | |||
8af5a5c4e5 | |||
3a5f0afcd2 | |||
c7e63aa4d8 | |||
4a9ce1784c | |||
7e4e709b43 | |||
63d8eabed0 | |||
e830b01383 | |||
ff6473980d | |||
a164aea35d | |||
a76f547e11 | |||
b7b7676d67 | |||
e6e3c55ef2 | |||
f98a4920f9 | |||
d4bfc23ef0 | |||
9a2160fa55 | |||
2de4118243 | |||
239b7befdd | |||
09e974d483 | |||
e5ef4fa99a | |||
037bcd942c | |||
c2e7507ad4 | |||
3aa2b6a637 | |||
555aa21905 | |||
e7ae3bf3d6 | |||
b932c048ac | |||
e85829450d | |||
effc5d24fa | |||
18ed3132d2 | |||
9b459eca88 | |||
70fedd0f79 | |||
bb103b29bf | |||
248e76c4df | |||
803d5c35f3 | |||
7fd8c0f85c | |||
44c3a5abc3 | |||
6909a76201 | |||
045533716b | |||
3c0ff914ac | |||
2bc4be4e32 | |||
c67abd614f | |||
6fa7cd3dbc | |||
94744ba41a | |||
4965ec42d2 | |||
73aa7041bf | |||
7c1f760024 | |||
da461f3cbf | |||
5b800f0932 | |||
8427f70493 | |||
7a7992085b | |||
1286211f57 | |||
6d531ad7b8 | |||
762b424a52 | |||
de1cb38769 | |||
c802f5430d | |||
cff8991a50 | |||
f3f8d8fff4 | |||
26df46ee59 | |||
c3f687ac22 | |||
04437e313d | |||
038bededba | |||
d03308be0c | |||
c6bc0034d0 | |||
70e132244a | |||
47e9038d23 | |||
432cf22a6a | |||
2914006fe0 | |||
7329ff5468 | |||
541d1df486 | |||
3b00ff9138 | |||
91276c5721 | |||
0b4167526d | |||
fd5fd26902 | |||
3bbaacbe15 | |||
a10314c6b3 | |||
70f2c2a709 | |||
280d074103 | |||
32b14baf8a | |||
2d9045fce8 | |||
355f66348c | |||
8693e47e6a | |||
cec8c7d7f8 | |||
4d0ec37267 | |||
e7f720ea56 | |||
4ae17bf1e2 | |||
8a49eea74b | |||
b4245a48df | |||
4e0f6076be | |||
726efc6a32 | |||
bd45912b99 | |||
15dac210f0 | |||
112b3e5b3b | |||
32d669275b | |||
4098b72210 | |||
46450b8d33 | |||
13ac9cab21 | |||
66aa4c0bf4 | |||
247181536f | |||
07bf813fb5 | |||
8958217ad5 | |||
ac5bc615b0 | |||
8063dfc61a | |||
6278bc829e | |||
3f532cb6a6 | |||
e6c9053f9e | |||
43ed4143c4 | |||
f4c98b4d4c | |||
e1e0fd7543 | |||
df8d3d1287 | |||
619d3de8bd | |||
ecff8309a3 | |||
dcf2a590f5 | |||
54aa619459 | |||
fb22be5817 | |||
7f301dd8ef | |||
8095341a01 | |||
69db16a46a | |||
ce78f9af4e | |||
9239bf718e | |||
7a6d45bc8a | |||
e74ff409e0 | |||
7a888271f5 | |||
9d119a86ae | |||
b2e85e26f4 | |||
dd8a29da99 | |||
27df5199d9 | |||
35fad35a48 | |||
733e7c9e95 | |||
0af4d764d6 | |||
e64afa455c | |||
1711b929b6 | |||
c091c0a588 | |||
1aa162e030 | |||
cf5c8f1686 | |||
4ec2cee000 | |||
99f536f830 | |||
5ebf66748b | |||
781d056280 | |||
5aefd6ac31 | |||
6c663dfd5e | |||
33437bc6e7 | |||
23114d3364 | |||
997c8811d6 | |||
e42389f9d7 | |||
ff38f0a32c | |||
a5cfbab3c8 | |||
ac3cd6e83c | |||
082ab86f5f | |||
6aa196c8dc | |||
a0dd7dcd49 | |||
e977c11111 | |||
5f063a80bd | |||
5d8e1c9279 | |||
0a049c7d86 | |||
d0cfec7ab9 | |||
a608160027 | |||
3f04a7fbf2 | |||
5994430b84 | |||
a9e879b316 | |||
3e2f37a69a | |||
4f044b1d67 | |||
4157f563b4 | |||
051da7efe3 | |||
25f560a62c | |||
a09ad90a72 | |||
10b34e36b9 | |||
b5269db959 | |||
6db94571d7 | |||
97cfa65df7 | |||
911c8eb000 | |||
ebcebeeb6b | |||
f533b5837f | |||
8279201ce6 | |||
23fdab00a8 | |||
623e2ed29f | |||
9d72daf4ce | |||
6dd55af6c9 | |||
3eb08ed9b1 | |||
5eeadc2642 | |||
3aee6573dc | |||
9cc645141d | |||
0893567db9 | |||
8abe69b499 | |||
761702fd19 | |||
9606d572ed | |||
cbcdf2c609 | |||
038de04d7b | |||
6b3cc75be0 | |||
7ffcccfa5c | |||
cc8accfd53 | |||
948ab03e7e | |||
5797fb97e9 | |||
3892e58ad7 | |||
d20e261199 | |||
f622dbcf39 | |||
dccf535f8e | |||
9c5c81b0da | |||
d6cd59f122 | |||
bc8ed3c4ba | |||
b9bd76ca14 | |||
6ebaf9ac71 | |||
f90d34b498 | |||
f68cce8e64 | |||
09b6a95551 | |||
50c9636d87 | |||
0661cfef7a | |||
a827aa815d | |||
b877031d80 | |||
dd861b992f | |||
eb63ea1e18 | |||
2f4bd358f1 | |||
8a8b30eac1 | |||
2fa0e1396b | |||
1c2bec0f82 | |||
ec870fba9a | |||
df1430265c | |||
4c69e228b3 | |||
790b79750b | |||
cfbb8c930f | |||
baec0d4de9 | |||
c21b99b912 | |||
93a00d7dde | |||
61e8c18350 | |||
8afcd0f633 | |||
91ca929dc7 | |||
84e00adc8a | |||
47c7126213 | |||
a989ca2bf6 | |||
0fa3970deb | |||
da6ea29f7a | |||
7297941b38 | |||
f8a08cb90d | |||
b15fd2be2a | |||
e588ac237c | |||
5df2da5b97 | |||
11b986b3fb | |||
296f927f24 | |||
0032903a5b | |||
47195057e9 | |||
6edbfa924d | |||
1e508343e1 | |||
2e0b4cfde0 | |||
10f55fe6c5 | |||
d3ccbd6350 | |||
0cfe7d386d | |||
0c6f5023c3 | |||
06dd08256f | |||
2b22290ce0 | |||
d8e82bc06d | |||
086b56824c | |||
5a0905ba2a | |||
a8f12a63fd | |||
69ae2380c6 | |||
27261e40a6 | |||
e3f813c33b | |||
c607a2652b | |||
3d45e3d749 | |||
742369d35a | |||
bfe2fe0af4 | |||
a8652f4f0f | |||
2f726b241e | |||
a597a57595 | |||
ae65f3e237 | |||
34868b106a | |||
1f16b7fe74 | |||
b88be22165 | |||
d8c6d7d6b5 | |||
40828ce5fe | |||
ffa443afed | |||
70e500cad9 | |||
4cb1c05c9e | |||
c47aafa37c | |||
cfbca8a2f2 | |||
0fe5609874 | |||
22d33baca2 | |||
b0e96aaebb | |||
8310e0b59b | |||
26dd972adb | |||
61c7a1b856 | |||
374ee287d8 | |||
a4d83661d7 | |||
8363cd093d | |||
6c5a3195db | |||
073d1ed354 | |||
3d446433ec | |||
1fe0fd12d3 | |||
dafb4e504a | |||
68cf1601d3 | |||
61f412187d | |||
05ccd0aa35 | |||
f690372b68 | |||
8b3e94a357 | |||
437f9162d0 | |||
4f065f12f5 | |||
228b768db6 | |||
027827cc1d | |||
72a8639b68 | |||
99abb8b650 | |||
3a1e648158 | |||
46c759c165 | |||
179a619c21 | |||
452e8fd968 | |||
8b793f7ec6 | |||
af35d3a3cc | |||
3b457143d2 | |||
ab656f2c2f | |||
64fc2193dc | |||
dd732028f5 | |||
414919138b | |||
db7c8ca910 | |||
f863ffc965 | |||
400d483e87 | |||
d1695758b2 | |||
53a0cf8b95 | |||
5eeabc2a44 | |||
18551e820c | |||
e41e160263 | |||
b89fb2a4a1 | |||
5340b0e221 |
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m deepseek-ai/DeepSeek-V2-Lite-Chat -b "auto" -l 1000 -f 5 -t 2
|
||||
model_name: "deepseek-ai/DeepSeek-V2-Lite-Chat"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For hf script, without -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5
|
||||
model_name: "nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For hf script, without -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-70B-Instruct -b 32 -l 250 -f 5
|
||||
model_name: "meta-llama/Meta-Llama-3-70B-Instruct"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test -b 32 -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Meta-Llama-3-8B-Instruct-FP8 -b 32 -l 250 -f 5 -t 1
|
||||
model_name: "neuralmagic/Meta-Llama-3-8B-Instruct-FP8"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test"
|
||||
tasks:
|
||||
|
@ -1,4 +1,5 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-8B-Instruct -b 32 -l 250 -f 5 -t 1
|
||||
# For hf script, without -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-8B-Instruct -b 32 -l 250 -f 5
|
||||
model_name: "meta-llama/Meta-Llama-3-8B-Instruct"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m HandH1998/QQQ-Llama-3-8b-g128 -b 32 -l 1000 -f 5 -t 1
|
||||
model_name: "HandH1998/QQQ-Llama-3-8b-g128"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
|
||||
model_name: "neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m mgoin/Minitron-4B-Base-FP8 -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "mgoin/Minitron-4B-Base-FP8"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic -b "auto" -l 250 -f 5 -t 8
|
||||
model_name: "neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8 -b "auto" -l 250 -f 5 -t 4
|
||||
model_name: "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8"
|
||||
tasks:
|
||||
|
@ -1,4 +1,5 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1 -b 32 -l 250 -f 5 -t 4
|
||||
# For hf script, without -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1 -b 32 -l 250 -f 5
|
||||
model_name: "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
|
@ -0,0 +1,12 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen1.5-MoE-A2.7B-Chat-quantized.w4a16 -b auto -l 1319 -f 5 -t 1
|
||||
model_name: "nm-testing/Qwen1.5-MoE-A2.7B-Chat-quantized.w4a16"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.30
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.465
|
||||
limit: 1319
|
||||
num_fewshot: 5
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-FP8W8 -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Qwen2-1.5B-Instruct-FP8W8"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
|
||||
model_name: "neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise -b "auto" -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m Qwen/Qwen2-57B-A14B-Instruct -b "auto" -l 250 -f 5 -t 4
|
||||
model_name: "Qwen/Qwen2-57B-A14B-Instruct"
|
||||
tasks:
|
||||
|
@ -1,3 +1,4 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM -b "auto" -t 2
|
||||
model_name: "nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM"
|
||||
tasks:
|
||||
|
@ -4,7 +4,7 @@ Meta-Llama-3.2-1B-Instruct-INT8-compressed-tensors.yaml
|
||||
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors-asym.yaml
|
||||
Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml
|
||||
Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml
|
||||
Minitron-4B-Base-FP8.yaml
|
||||
Qwen1.5-MoE-W4A16-compressed-tensors.yaml
|
||||
Qwen2-1.5B-Instruct-INT8-compressed-tensors.yaml
|
||||
Qwen2-1.5B-Instruct-FP8W8.yaml
|
||||
Meta-Llama-3-8B-QQQ.yaml
|
||||
|
@ -16,7 +16,7 @@ import numpy
|
||||
import pytest
|
||||
import yaml
|
||||
|
||||
RTOL = 0.05
|
||||
RTOL = 0.08
|
||||
TEST_DATA_FILE = os.environ.get(
|
||||
"LM_EVAL_TEST_DATA_FILE",
|
||||
".buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml")
|
||||
|
@ -10,15 +10,24 @@ set -x
|
||||
set -o pipefail
|
||||
|
||||
check_gpus() {
|
||||
# check the number of GPUs and GPU type.
|
||||
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
|
||||
if command -v nvidia-smi; then
|
||||
# check the number of GPUs and GPU type.
|
||||
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
|
||||
elif command -v amd-smi; then
|
||||
declare -g gpu_count=$(amd-smi list | grep 'GPU' | wc -l)
|
||||
fi
|
||||
|
||||
if [[ $gpu_count -gt 0 ]]; then
|
||||
echo "GPU found."
|
||||
else
|
||||
echo "Need at least 1 GPU to run benchmarking."
|
||||
exit 1
|
||||
fi
|
||||
declare -g gpu_type=$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')
|
||||
if command -v nvidia-smi; then
|
||||
declare -g gpu_type=$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')
|
||||
elif command -v amd-smi; then
|
||||
declare -g gpu_type=$(amd-smi static -g 0 -a | grep 'MARKET_NAME' | awk '{print $2}')
|
||||
fi
|
||||
echo "GPU type is $gpu_type"
|
||||
}
|
||||
|
||||
@ -90,9 +99,15 @@ kill_gpu_processes() {
|
||||
|
||||
|
||||
# wait until GPU memory usage smaller than 1GB
|
||||
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
|
||||
sleep 1
|
||||
done
|
||||
if command -v nvidia-smi; then
|
||||
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
|
||||
sleep 1
|
||||
done
|
||||
elif command -v amd-smi; then
|
||||
while [ "$(amd-smi metric -g 0 | grep 'USED_VRAM' | awk '{print $2}')" -ge 1000 ]; do
|
||||
sleep 1
|
||||
done
|
||||
fi
|
||||
|
||||
# remove vllm config file
|
||||
rm -rf ~/.config/vllm
|
||||
@ -361,7 +376,7 @@ main() {
|
||||
# get the current IP address, required by benchmark_serving.py
|
||||
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
|
||||
# turn of the reporting of the status of each request, to clean up the terminal output
|
||||
export VLLM_LOG_LEVEL="WARNING"
|
||||
export VLLM_LOGGING_LEVEL="WARNING"
|
||||
|
||||
# prepare for benchmarking
|
||||
cd benchmarks || exit 1
|
||||
|
@ -63,10 +63,12 @@
|
||||
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
||||
"disable_log_requests": "",
|
||||
"tensor_parallel_size": 4,
|
||||
"swap_space": 16,
|
||||
"speculative_model": "turboderp/Qwama-0.5B-Instruct",
|
||||
"num_speculative_tokens": 4,
|
||||
"speculative_draft_tensor_parallel_size": 1
|
||||
"swap_space": 16,
|
||||
"speculative_config": {
|
||||
"model": "turboderp/Qwama-0.5B-Instruct",
|
||||
"num_speculative_tokens": 4,
|
||||
"draft_tensor_parallel_size": 1
|
||||
}
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
||||
|
@ -3,10 +3,10 @@ steps:
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag vllm-ci:build-image --target build --progress plain ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/upload-wheels.sh"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
@ -14,10 +14,10 @@ steps:
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/upload-wheels.sh"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
@ -31,10 +31,10 @@ steps:
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/upload-wheels.sh"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
@ -48,7 +48,7 @@ steps:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
|
||||
- label: "Build and publish TPU release image"
|
||||
@ -57,7 +57,7 @@ steps:
|
||||
agents:
|
||||
queue: tpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm/vllm-tpu:nightly --tag vllm/vllm-tpu:$BUILDKITE_COMMIT --progress plain -f Dockerfile.tpu ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm/vllm-tpu:nightly --tag vllm/vllm-tpu:$BUILDKITE_COMMIT --progress plain -f docker/Dockerfile.tpu ."
|
||||
- "docker push vllm/vllm-tpu:nightly"
|
||||
- "docker push vllm/vllm-tpu:$BUILDKITE_COMMIT"
|
||||
plugins:
|
||||
@ -82,7 +82,22 @@ steps:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --progress plain -f Dockerfile.cpu ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- block: "Build Neuron release image"
|
||||
key: block-neuron-release-image-build
|
||||
depends_on: ~
|
||||
|
||||
- label: "Build and publish Neuron release image"
|
||||
depends_on: block-neuron-release-image-build
|
||||
agents:
|
||||
queue: neuron-postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest --progress plain -f docker/Dockerfile.neuron ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version)"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
@ -1,16 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script build the OpenVINO docker image and run the offline inference inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t openvino-test -f Dockerfile.openvino .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() { docker rm -f openvino-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image and launch offline inference
|
||||
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/examples/offline_inference/basic/generate.py --model facebook/opt-125m
|
@ -1,25 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
# Build the docker image.
|
||||
docker build -f Dockerfile.tpu -t vllm-tpu .
|
||||
|
||||
# Set up cleanup.
|
||||
remove_docker_container() { docker rm -f tpu-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
|
||||
# For HF_TOKEN.
|
||||
source /etc/environment
|
||||
# Run a simple end-to-end example.
|
||||
docker run --privileged --net host --shm-size=16G -it \
|
||||
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
|
||||
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install pytest \
|
||||
&& python3 -m pip install lm_eval[api]==0.4.4 \
|
||||
&& pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
|
||||
&& python3 /workspace/vllm/tests/tpu/test_compilation.py \
|
||||
&& python3 /workspace/vllm/tests/tpu/test_quantization_accuracy.py \
|
||||
&& python3 /workspace/vllm/examples/offline_inference/tpu.py"
|
@ -1,27 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
# Build the docker image.
|
||||
docker build -f Dockerfile.tpu -t vllm-tpu .
|
||||
|
||||
# Set up cleanup.
|
||||
remove_docker_container() { docker rm -f tpu-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
|
||||
# For HF_TOKEN.
|
||||
source /etc/environment
|
||||
# Run a simple end-to-end example.
|
||||
docker run --privileged --net host --shm-size=16G -it \
|
||||
-e "HF_TOKEN=$HF_TOKEN" -e "VLLM_USE_V1=1" --name tpu-test \
|
||||
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install pytest \
|
||||
&& python3 -m pip install lm_eval[api]==0.4.4 \
|
||||
&& pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
|
||||
&& pytest -v -s /workspace/vllm/tests/v1/tpu/test_basic.py \
|
||||
&& pytest -v -s /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine \
|
||||
&& python3 /workspace/vllm/tests/tpu/test_compilation.py \
|
||||
&& python3 /workspace/vllm/tests/tpu/test_quantization_accuracy.py \
|
||||
&& python3 /workspace/vllm/examples/offline_inference/tpu.py"
|
@ -98,6 +98,13 @@ if [[ $commands == *" kernels "* ]]; then
|
||||
--ignore=kernels/test_machete_mm.py \
|
||||
--ignore=kernels/test_mha_attn.py \
|
||||
--ignore=kernels/test_block_fp8.py \
|
||||
--ignore=kernels/test_cutlass_moe.py \
|
||||
--ignore=kernels/test_mamba_ssm_ssd.py \
|
||||
--ignore=kernels/test_attention.py \
|
||||
--ignore=kernels/test_block_int8.py \
|
||||
--ignore=kernels/test_fused_quant_layernorm.py \
|
||||
--ignore=kernels/test_int8_kernel.py \
|
||||
--ignore=kernels/test_triton_moe_ptpc_fp8.py \
|
||||
--ignore=kernels/test_permute_cols.py"
|
||||
fi
|
||||
|
||||
@ -105,19 +112,33 @@ fi
|
||||
if [[ $commands == *" entrypoints/openai "* ]]; then
|
||||
commands=${commands//" entrypoints/openai "/" entrypoints/openai \
|
||||
--ignore=entrypoints/openai/test_audio.py \
|
||||
--ignore=entrypoints/openai/test_chat.py \
|
||||
--ignore=entrypoints/openai/test_shutdown.py \
|
||||
--ignore=entrypoints/openai/test_completion.py \
|
||||
--ignore=entrypoints/openai/test_sleep.py \
|
||||
--ignore=entrypoints/openai/test_models.py \
|
||||
--ignore=entrypoints/openai/test_lora_adapters.py \
|
||||
--ignore=entrypoints/openai/test_return_tokens_as_ids.py \
|
||||
--ignore=entrypoints/openai/test_root_path.py \
|
||||
--ignore=entrypoints/openai/test_tokenization.py \
|
||||
--ignore=entrypoints/openai/test_prompt_validation.py "}
|
||||
fi
|
||||
|
||||
#ignore certain Entrypoints/llm tests
|
||||
if [[ $commands == *" && pytest -v -s entrypoints/llm/test_guided_generate.py"* ]]; then
|
||||
commands=${commands//" && pytest -v -s entrypoints/llm/test_guided_generate.py"/" "}
|
||||
if [[ $commands == *" entrypoints/llm "* ]]; then
|
||||
commands=${commands//" entrypoints/llm "/" entrypoints/llm \
|
||||
--ignore=entrypoints/llm/test_chat.py \
|
||||
--ignore=entrypoints/llm/test_accuracy.py \
|
||||
--ignore=entrypoints/llm/test_init.py \
|
||||
--ignore=entrypoints/llm/test_generate_multiple_loras.py \
|
||||
--ignore=entrypoints/llm/test_prompt_validation.py "}
|
||||
fi
|
||||
|
||||
#Obsolete currently
|
||||
##ignore certain Entrypoints/llm tests
|
||||
#if [[ $commands == *" && pytest -v -s entrypoints/llm/test_guided_generate.py"* ]]; then
|
||||
# commands=${commands//" && pytest -v -s entrypoints/llm/test_guided_generate.py"/" "}
|
||||
#fi
|
||||
|
||||
# --ignore=entrypoints/openai/test_encoder_decoder.py \
|
||||
# --ignore=entrypoints/openai/test_embedding.py \
|
||||
# --ignore=entrypoints/openai/test_oot_registration.py
|
||||
@ -134,9 +155,10 @@ if [[ $commands == *"--shard-id="* ]]; then
|
||||
# assign shard-id for each shard
|
||||
commands_gpu=${commands//"--shard-id= "/"--shard-id=${GPU} "}
|
||||
echo "Shard ${GPU} commands:$commands_gpu"
|
||||
echo "Render devices: $BUILDKITE_AGENT_META_DATA_RENDER_DEVICES"
|
||||
docker run \
|
||||
--device /dev/kfd --device /dev/dri \
|
||||
--network host \
|
||||
--device /dev/kfd $BUILDKITE_AGENT_META_DATA_RENDER_DEVICES \
|
||||
--network=host \
|
||||
--shm-size=16gb \
|
||||
--rm \
|
||||
-e HIP_VISIBLE_DEVICES="${GPU}" \
|
||||
@ -163,9 +185,10 @@ if [[ $commands == *"--shard-id="* ]]; then
|
||||
fi
|
||||
done
|
||||
else
|
||||
echo "Render devices: $BUILDKITE_AGENT_META_DATA_RENDER_DEVICES"
|
||||
docker run \
|
||||
--device /dev/kfd --device /dev/dri \
|
||||
--network host \
|
||||
--device /dev/kfd $BUILDKITE_AGENT_META_DATA_RENDER_DEVICES \
|
||||
--network=host \
|
||||
--shm-size=16gb \
|
||||
--rm \
|
||||
-e HIP_VISIBLE_DEVICES=0 \
|
45
.buildkite/scripts/hardware_ci/run-cpu-test-ppc64le.sh
Executable file
45
.buildkite/scripts/hardware_ci/run-cpu-test-ppc64le.sh
Executable file
@ -0,0 +1,45 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script build the CPU docker image and run the offline inference inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
if [[ -n "$container_id" ]]; then
|
||||
podman rm -f "$container_id" || true
|
||||
fi
|
||||
podman system prune -f
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Try building the docker image
|
||||
podman build -t cpu-test-ubi9-ppc -f docker/Dockerfile.ppc64le .
|
||||
|
||||
# Run the image
|
||||
container_id=$(podman run -itd --entrypoint /bin/bash -v /tmp/:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN cpu-test-ubi9-ppc)
|
||||
|
||||
function cpu_tests() {
|
||||
|
||||
# offline inference
|
||||
podman exec -it "$container_id" bash -c "
|
||||
set -e
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
|
||||
|
||||
# Run basic model test
|
||||
podman exec -it "$container_id" bash -c "
|
||||
set -e
|
||||
pip install pytest pytest-asyncio einops peft Pillow soundfile transformers_stream_generator matplotlib
|
||||
pip install sentence-transformers datamodel_code_generator
|
||||
pytest -v -s tests/models/embedding/language/test_cls_models.py::test_classification_models[float-jason9693/Qwen2.5-1.5B-apeach]
|
||||
pytest -v -s tests/models/embedding/language/test_embedding.py::test_models[half-BAAI/bge-base-en-v1.5]
|
||||
pytest -v -s tests/models/encoder_decoder/language -m cpu_model"
|
||||
}
|
||||
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
|
||||
export container_id
|
||||
export -f cpu_tests
|
||||
timeout 40m bash -c cpu_tests
|
||||
|
@ -10,5 +10,4 @@ trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t cpu-test -f Dockerfile.ppc64le .
|
||||
|
||||
docker build -t cpu-test -f docker/Dockerfile.s390x .
|
@ -8,15 +8,19 @@ set -ex
|
||||
CORE_RANGE=${CORE_RANGE:-48-95}
|
||||
NUMA_NODE=${NUMA_NODE:-1}
|
||||
|
||||
# Try building the docker image
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build -t cpu-test-"$BUILDKITE_BUILD_NUMBER" -f Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 -f Dockerfile.cpu .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() { set -e; docker rm -f cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" || true; }
|
||||
remove_docker_container() {
|
||||
set -e;
|
||||
docker rm -f cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" || true;
|
||||
docker image rm cpu-test-"$BUILDKITE_BUILD_NUMBER" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 || true;
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Try building the docker image
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$BUILDKITE_BUILD_NUMBER" --target vllm-test -f docker/Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
|
||||
|
||||
# Run the image, setting --shm-size=4g for tensor parallel.
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"
|
||||
@ -36,8 +40,8 @@ function cpu_tests() {
|
||||
# Run basic model test
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pip install -r vllm/requirements/test.txt
|
||||
pip install -r vllm/requirements/cpu.txt
|
||||
pytest -v -s tests/kernels/test_cache.py -m cpu_model
|
||||
pytest -v -s tests/kernels/test_mla_decode_cpu.py -m cpu_model
|
||||
pytest -v -s tests/models/decoder_only/language -m cpu_model
|
||||
pytest -v -s tests/models/embedding/language -m cpu_model
|
||||
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
|
@ -9,11 +9,13 @@ python3 use_existing_torch.py
|
||||
|
||||
# Try building the docker image
|
||||
DOCKER_BUILDKIT=1 docker build . \
|
||||
--file docker/Dockerfile \
|
||||
--target vllm-openai \
|
||||
--platform "linux/arm64" \
|
||||
-t gh200-test \
|
||||
--build-arg max_jobs=66 \
|
||||
--build-arg nvcc_threads=2 \
|
||||
--build-arg RUN_WHEEL_CHECK=false \
|
||||
--build-arg torch_cuda_arch_list="9.0+PTX" \
|
||||
--build-arg vllm_fa_cmake_gpu_arches="90-real"
|
||||
|
||||
@ -23,6 +25,6 @@ trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image and test offline inference
|
||||
docker run -e HF_TOKEN -v /root/.cache/huggingface:/root/.cache/huggingface --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c '
|
||||
docker run -e HF_TOKEN -e VLLM_WORKER_MULTIPROC_METHOD=spawn -v /root/.cache/huggingface:/root/.cache/huggingface --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c '
|
||||
python3 examples/offline_inference/basic/generate.py --model meta-llama/Llama-3.2-1B
|
||||
'
|
@ -5,7 +5,7 @@
|
||||
set -ex
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t hpu-test-env -f Dockerfile.hpu .
|
||||
docker build -t hpu-test-env -f docker/Dockerfile.hpu .
|
||||
|
||||
# Setup cleanup
|
||||
# certain versions of HPU software stack have a bug that can
|
@ -35,7 +35,7 @@ else
|
||||
date "+%s" > /tmp/neuron-docker-build-timestamp
|
||||
fi
|
||||
|
||||
docker build -t "${image_name}" -f Dockerfile.neuron .
|
||||
docker build -t "${image_name}" -f docker/Dockerfile.neuron .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
54
.buildkite/scripts/hardware_ci/run-tpu-v1-test.sh
Executable file
54
.buildkite/scripts/hardware_ci/run-tpu-v1-test.sh
Executable file
@ -0,0 +1,54 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -xue
|
||||
|
||||
# Build the docker image.
|
||||
docker build -f docker/Dockerfile.tpu -t vllm-tpu .
|
||||
|
||||
# Set up cleanup.
|
||||
remove_docker_container() { docker rm -f tpu-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
|
||||
# For HF_TOKEN.
|
||||
source /etc/environment
|
||||
# Run a simple end-to-end example.
|
||||
docker run --privileged --net host --shm-size=16G -it \
|
||||
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
|
||||
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install lm_eval[api]==0.4.4 \
|
||||
&& export VLLM_XLA_CACHE_PATH= \
|
||||
&& export VLLM_USE_V1=1 \
|
||||
&& export VLLM_XLA_CHECK_RECOMPILATION=1 \
|
||||
&& echo HARDWARE \
|
||||
&& tpu-info \
|
||||
&& echo TEST_0 \
|
||||
&& pytest -v -s /workspace/vllm/tests/v1/tpu/test_perf.py \
|
||||
&& echo TEST_1 \
|
||||
&& pytest -v -s /workspace/vllm/tests/tpu/test_compilation.py \
|
||||
&& echo TEST_2 \
|
||||
&& pytest -v -s /workspace/vllm/tests/v1/tpu/test_basic.py \
|
||||
&& echo TEST_3 \
|
||||
&& pytest -v -s /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine \
|
||||
&& echo TEST_4 \
|
||||
&& pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py \
|
||||
&& echo TEST_5 \
|
||||
&& python3 /workspace/vllm/examples/offline_inference/tpu.py \
|
||||
&& echo TEST_6 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/worker/test_tpu_model_runner.py \
|
||||
&& echo TEST_7 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py \
|
||||
&& echo TEST_8 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py \
|
||||
&& echo TEST_9 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py \
|
||||
&& echo TEST_10 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py \
|
||||
&& echo TEST_11 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py" \
|
||||
|
||||
|
||||
# TODO: This test fails because it uses RANDOM_SEED sampling
|
||||
# && VLLM_USE_V1=1 pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
|
@ -8,14 +8,15 @@ image_name="xpu/vllm-ci:${BUILDKITE_COMMIT}"
|
||||
container_name="xpu_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t ${image_name} -f Dockerfile.xpu .
|
||||
docker build -t ${image_name} -f docker/Dockerfile.xpu .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
docker rm -f "${container_name}" || docker image rm -f "${image_name}" || true;
|
||||
docker rm -f "${container_name}" || true;
|
||||
docker image rm -f "${image_name}" || true;
|
||||
docker system prune -f || true;
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image and test offline inference/tensor parallel
|
||||
docker run \
|
||||
@ -25,6 +26,6 @@ docker run \
|
||||
--name "${container_name}" \
|
||||
"${image_name}" \
|
||||
sh -c '
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m -tp 2
|
||||
VLLM_USE_V1=0 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
|
||||
VLLM_USE_V1=0 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m -tp 2
|
||||
'
|
@ -5,8 +5,8 @@
|
||||
set -ex
|
||||
set -o pipefail
|
||||
|
||||
# cd into parent directory of this file
|
||||
cd "$(dirname "${BASH_SOURCE[0]}")/.."
|
||||
# cd 2 levels into the working directory
|
||||
cd "$(dirname "${BASH_SOURCE[0]}")/../.."
|
||||
|
||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||
|
@ -3,7 +3,7 @@
|
||||
set -euox pipefail
|
||||
|
||||
if [[ $# -lt 4 ]]; then
|
||||
echo "Usage: .buildkite/run-multi-node-test.sh WORKING_DIR NUM_NODES NUM_GPUS DOCKER_IMAGE COMMAND1 COMMAND2 ... COMMANDN"
|
||||
echo "Usage: .buildkite/scripts/run-multi-node-test.sh WORKING_DIR NUM_NODES NUM_GPUS DOCKER_IMAGE COMMAND1 COMMAND2 ... COMMANDN"
|
||||
exit 1
|
||||
fi
|
||||
|
@ -8,6 +8,7 @@
|
||||
# Documentation
|
||||
# label(str): the name of the test. emoji allowed.
|
||||
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
|
||||
# torch_nightly(bool): whether to run this on vllm against torch nightly pipeline.
|
||||
# fast_check_only(bool): run this test on fastcheck pipeline only
|
||||
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's scheduled nightly run.
|
||||
# command(str): the single command to run for tests. incompatible with commands.
|
||||
@ -70,6 +71,7 @@ steps:
|
||||
- label: Basic Correctness Test # 30min
|
||||
#mirror_hardwares: [amd]
|
||||
fast_check: true
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/basic_correctness/test_basic_correctness
|
||||
@ -104,7 +106,8 @@ steps:
|
||||
- label: Entrypoints Test # 40min
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
fast_check: true
|
||||
mirror_hardwares: [amd]
|
||||
torch_nightly: true
|
||||
#mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/entrypoints/llm
|
||||
@ -118,7 +121,7 @@ steps:
|
||||
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
|
||||
- VLLM_USE_V1=0 pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/correctness/
|
||||
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/correctness/ --ignore=entrypoints/openai/test_openai_schema.py
|
||||
- pytest -v -s entrypoints/test_chat_utils.py
|
||||
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
|
||||
|
||||
@ -135,8 +138,14 @@ steps:
|
||||
- examples/offline_inference/rlhf.py
|
||||
- examples/offline_inference/rlhf_colocate.py
|
||||
- tests/examples/offline_inference/data_parallel.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
commands:
|
||||
# test with tp=2 and external_dp=2
|
||||
- VLLM_USE_V1=0 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
# test with internal dp
|
||||
- python3 ../examples/offline_inference/data_parallel.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- pytest -v -s distributed/test_utils.py
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
- pytest -v -s distributed/test_pynccl.py
|
||||
@ -149,6 +158,7 @@ steps:
|
||||
- popd
|
||||
|
||||
- label: Metrics, Tracing Test # 10min
|
||||
mirror_hardwares: [amd]
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -156,18 +166,13 @@ steps:
|
||||
- tests/tracing
|
||||
commands:
|
||||
- pytest -v -s metrics
|
||||
- "pip install \
|
||||
'opentelemetry-sdk>=1.26.0,<1.27.0' \
|
||||
'opentelemetry-api>=1.26.0,<1.27.0' \
|
||||
'opentelemetry-exporter-otlp>=1.26.0,<1.27.0' \
|
||||
'opentelemetry-semantic-conventions-ai>=0.4.1,<0.5.0'"
|
||||
- pytest -v -s tracing
|
||||
|
||||
##### fast check tests #####
|
||||
##### 1 GPU test #####
|
||||
|
||||
- label: Regression Test # 5min
|
||||
mirror_hardwares: [amd]
|
||||
#mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/test_regression
|
||||
@ -198,12 +203,13 @@ steps:
|
||||
commands:
|
||||
# split the test to avoid interference
|
||||
- pytest -v -s v1/core
|
||||
- pytest -v -s v1/entrypoints
|
||||
- pytest -v -s v1/engine
|
||||
- pytest -v -s v1/entrypoints
|
||||
- pytest -v -s v1/sample
|
||||
- pytest -v -s v1/worker
|
||||
- pytest -v -s v1/structured_output
|
||||
- pytest -v -s v1/spec_decode
|
||||
- pytest -v -s v1/test_serial_utils.py
|
||||
- pytest -v -s v1/test_stats.py
|
||||
- pytest -v -s v1/test_utils.py
|
||||
- pytest -v -s v1/test_oracle.py
|
||||
@ -279,13 +285,22 @@ steps:
|
||||
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
|
||||
|
||||
- label: LoRA Test %N # 15min each
|
||||
mirror_hardwares: [amd]
|
||||
#mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/lora
|
||||
- tests/lora
|
||||
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py --ignore=lora/test_minicpmv_tp.py --ignore=lora/test_transfomers_model.py
|
||||
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py
|
||||
parallelism: 4
|
||||
|
||||
- label: PyTorch Compilation Unit Tests
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/compile
|
||||
commands:
|
||||
- pytest -v -s compile/test_pass_manager.py
|
||||
- pytest -v -s compile/test_fusion.py
|
||||
- pytest -v -s compile/test_sequence_parallelism.py
|
||||
|
||||
- label: PyTorch Fullgraph Smoke Test # 9min
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -303,18 +318,49 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s compile/test_full_graph.py
|
||||
|
||||
- label: Kernels Test %N # 1h each
|
||||
mirror_hardwares: [amd]
|
||||
- label: Kernels Core Operation Test
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- vllm/attention
|
||||
- tests/kernels
|
||||
- tests/kernels/core
|
||||
commands:
|
||||
- pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 4
|
||||
- pytest -v -s kernels/core
|
||||
|
||||
- label: Kernels Attention Test %N
|
||||
source_file_dependencies:
|
||||
- csrc/attention/
|
||||
- vllm/attention
|
||||
- vllm/v1/attention
|
||||
- tests/kernels/attention
|
||||
commands:
|
||||
- pytest -v -s kernels/attention --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 2
|
||||
|
||||
- label: Kernels Quantization Test %N
|
||||
source_file_dependencies:
|
||||
- csrc/quantization/
|
||||
- vllm/model_executor/layers/quantization
|
||||
- tests/kernels/quantization
|
||||
commands:
|
||||
- pytest -v -s kernels/quantization --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 2
|
||||
|
||||
- label: Kernels MoE Test
|
||||
source_file_dependencies:
|
||||
- csrc/moe/
|
||||
- tests/kernels/moe
|
||||
- vllm/model_executor/layers/fused_moe/
|
||||
commands:
|
||||
- pytest -v -s kernels/moe
|
||||
|
||||
- label: Kernels Mamba Test
|
||||
source_file_dependencies:
|
||||
- csrc/mamba/
|
||||
- tests/kernels/mamba
|
||||
commands:
|
||||
- pytest -v -s kernels/mamba
|
||||
|
||||
- label: Tensorizer Test # 11min
|
||||
mirror_hardwares: [amd]
|
||||
# mirror_hardwares: [amd]
|
||||
soft_fail: true
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/model_loader
|
||||
@ -330,7 +376,14 @@ steps:
|
||||
source_file_dependencies:
|
||||
- benchmarks/
|
||||
commands:
|
||||
- bash run-benchmarks.sh
|
||||
- bash scripts/run-benchmarks.sh
|
||||
|
||||
- label: Benchmarks CLI Test # 10min
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/benchmarks/
|
||||
commands:
|
||||
- pytest -v -s benchmarks/
|
||||
|
||||
- label: Quantization Test # 33min
|
||||
source_file_dependencies:
|
||||
@ -365,12 +418,14 @@ steps:
|
||||
|
||||
- label: OpenAI-Compatible Tool Use # 20 min
|
||||
fast_check: false
|
||||
mirror_hardwares: [ amd ]
|
||||
#mirror_hardwares: [ amd ]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/tool_use
|
||||
- tests/mistral_tool_use
|
||||
commands:
|
||||
- pytest -v -s tool_use
|
||||
- pytest -v -s mistral_tool_use
|
||||
|
||||
##### models test #####
|
||||
|
||||
@ -382,7 +437,9 @@ steps:
|
||||
- pytest -v -s models/test_transformers.py
|
||||
- pytest -v -s models/test_registry.py
|
||||
# V1 Test: https://github.com/vllm-project/vllm/issues/14531
|
||||
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py
|
||||
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'
|
||||
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'llama4'
|
||||
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'plamo2'
|
||||
|
||||
- label: Language Models Test (Standard) # 32min
|
||||
#mirror_hardwares: [amd]
|
||||
@ -392,6 +449,8 @@ steps:
|
||||
- tests/models/embedding/language
|
||||
- tests/models/encoder_decoder/language
|
||||
commands:
|
||||
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
|
||||
- pip install causal-conv1d
|
||||
- pytest -v -s models/decoder_only/language -m 'core_model or quant_model'
|
||||
- pytest -v -s models/embedding/language -m core_model
|
||||
|
||||
@ -403,6 +462,8 @@ steps:
|
||||
- tests/models/embedding/language
|
||||
- tests/models/encoder_decoder/language
|
||||
commands:
|
||||
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
|
||||
- pip install causal-conv1d
|
||||
- pytest -v -s models/decoder_only/language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s models/embedding/language -m 'not core_model'
|
||||
|
||||
@ -419,11 +480,12 @@ steps:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s models/multimodal
|
||||
- pytest -v -s models/decoder_only/audio_language -m 'core_model or quant_model'
|
||||
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'core_model or quant_model'
|
||||
- pytest -v -s models/decoder_only/vision_language -m 'core_model or quant_model'
|
||||
- pytest -v -s models/embedding/vision_language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/audio_language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/vision_language -m core_model
|
||||
- pytest -v -s models/decoder_only/vision_language/test_interleaved.py
|
||||
|
||||
- label: Multi-Modal Models Test (Extended) 1 # 48m
|
||||
optional: true
|
||||
@ -437,10 +499,7 @@ steps:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s models/decoder_only/audio_language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=0) and not core_model and not quant_model'
|
||||
# HACK - run phi3v tests separately to sidestep this transformers bug
|
||||
# https://github.com/huggingface/transformers/issues/34307
|
||||
- pytest -v -s models/decoder_only/vision_language/test_phi3v.py
|
||||
- pytest -v -s --ignore models/decoder_only/vision_language/test_models.py --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s --ignore models/decoder_only/vision_language/test_models.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s models/embedding/vision_language -m 'not core_model'
|
||||
- pytest -v -s models/encoder_decoder/language -m 'not core_model'
|
||||
- pytest -v -s models/encoder_decoder/vision_language -m 'not core_model'
|
||||
@ -456,6 +515,7 @@ steps:
|
||||
|
||||
# This test is used only in PR development phase to test individual models and should never run on main
|
||||
- label: Custom Models Test
|
||||
mirror_hardwares: [amd]
|
||||
optional: true
|
||||
commands:
|
||||
- echo 'Testing custom models...'
|
||||
@ -467,6 +527,7 @@ steps:
|
||||
##### multi gpus test #####
|
||||
|
||||
- label: Distributed Comm Ops Test # 7min
|
||||
mirror_hardwares: [amd]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
@ -509,10 +570,11 @@ steps:
|
||||
- vllm/worker/worker.py
|
||||
- vllm/worker/model_runner.py
|
||||
- entrypoints/llm/test_collective_rpc.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- vllm/v1/engine/
|
||||
commands:
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- pytest -v -s entrypoints/llm/test_collective_rpc.py
|
||||
- VLLM_USE_V1=1 torchrun --nproc-per-node=2 distributed/test_torchrun_example.py
|
||||
- torchrun --nproc-per-node=2 distributed/test_torchrun_example.py
|
||||
- pytest -v -s ./compile/test_basic_correctness.py
|
||||
- pytest -v -s ./compile/test_wrapper.py
|
||||
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
|
||||
@ -522,11 +584,14 @@ steps:
|
||||
- pytest models/encoder_decoder/language/test_bart.py -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/decoder_only/vision_language/test_models.py -v -s -m 'distributed(num_gpus=2)'
|
||||
# test sequence parallel
|
||||
- pytest -v -s distributed/test_sequence_parallel.py
|
||||
# this test fails consistently.
|
||||
# TODO: investigate and fix
|
||||
# - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
|
||||
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
|
||||
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/test_disagg.py
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
|
||||
|
||||
- label: Plugin Tests (2 GPUs) # 40min
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
@ -589,14 +654,10 @@ steps:
|
||||
# FIXIT: find out which code initialize cuda before running the test
|
||||
# before the fix, we need to use spawn to test it
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
# This test runs llama 13B, so it is required to run on 4 GPUs.
|
||||
- pytest -v -s -x lora/test_long_context.py
|
||||
# There is some Tensor Parallelism related processing logic in LoRA that
|
||||
# requires multi-GPU testing for validation.
|
||||
- pytest -v -s -x lora/test_chatglm3_tp.py
|
||||
- pytest -v -s -x lora/test_llama_tp.py
|
||||
- pytest -v -s -x lora/test_minicpmv_tp.py
|
||||
- pytest -v -s -x lora/test_transfomers_model.py
|
||||
|
||||
|
||||
- label: Weight Loading Multiple GPU Test # 33min
|
||||
|
1
.github/CODEOWNERS
vendored
1
.github/CODEOWNERS
vendored
@ -12,6 +12,7 @@
|
||||
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth
|
||||
/vllm/model_executor/guided_decoding @mgoin @russellb
|
||||
/vllm/multimodal @DarkLight1337 @ywang96
|
||||
/vllm/vllm_flash_attn @LucasWilkinson
|
||||
CMakeLists.txt @tlrmchlsmth
|
||||
|
||||
# vLLM V1
|
||||
|
2
.github/ISSUE_TEMPLATE/200-installation.yml
vendored
2
.github/ISSUE_TEMPLATE/200-installation.yml
vendored
@ -14,7 +14,7 @@ body:
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
|
2
.github/ISSUE_TEMPLATE/300-usage.yml
vendored
2
.github/ISSUE_TEMPLATE/300-usage.yml
vendored
@ -14,7 +14,7 @@ body:
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
|
2
.github/ISSUE_TEMPLATE/400-bug-report.yml
vendored
2
.github/ISSUE_TEMPLATE/400-bug-report.yml
vendored
@ -14,7 +14,7 @@ body:
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
|
2
.github/ISSUE_TEMPLATE/600-new-model.yml
vendored
2
.github/ISSUE_TEMPLATE/600-new-model.yml
vendored
@ -9,7 +9,7 @@ body:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
|
||||
#### We also highly recommend you read https://docs.vllm.ai/en/latest/contributing/model/adding_model.html first to understand how to add a new model.
|
||||
#### We also highly recommend you read https://docs.vllm.ai/en/latest/contributing/model/index.html first to understand how to add a new model.
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: The model to consider.
|
||||
|
@ -35,7 +35,7 @@ body:
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
|
28
.github/ISSUE_TEMPLATE/800-misc-discussion.yml
vendored
28
.github/ISSUE_TEMPLATE/800-misc-discussion.yml
vendored
@ -1,28 +0,0 @@
|
||||
name: 🎲 Misc/random discussions that do not fit into the above categories.
|
||||
description: Submit a discussion as you like. Note that developers are heavily overloaded and we mainly rely on community users to answer these issues.
|
||||
title: "[Misc]: "
|
||||
labels: ["misc"]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Anything you want to discuss about vllm.
|
||||
description: >
|
||||
Anything you want to discuss about vllm.
|
||||
validations:
|
||||
required: true
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for contributing 🎉!
|
||||
- type: checkboxes
|
||||
id: askllm
|
||||
attributes:
|
||||
label: Before submitting a new issue...
|
||||
options:
|
||||
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
|
||||
required: true
|
4
.github/ISSUE_TEMPLATE/config.yml
vendored
4
.github/ISSUE_TEMPLATE/config.yml
vendored
@ -1 +1,5 @@
|
||||
blank_issues_enabled: false
|
||||
contact_links:
|
||||
- name: Questions
|
||||
url: https://discuss.vllm.ai
|
||||
about: Ask questions and discuss with other vLLM community members
|
||||
|
2
.github/PULL_REQUEST_TEMPLATE.md
vendored
2
.github/PULL_REQUEST_TEMPLATE.md
vendored
@ -3,4 +3,4 @@ FILL IN THE PR DESCRIPTION HERE
|
||||
FIX #xxxx (*link existing issues this PR will resolve*)
|
||||
|
||||
<!--- pyml disable-next-line no-emphasis-as-heading -->
|
||||
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing/overview.html>**
|
||||
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing/overview.html>** (anything written below this line will be removed by GitHub Actions)
|
||||
|
66
.github/mergify.yml
vendored
66
.github/mergify.yml
vendored
@ -19,7 +19,7 @@ pull_request_rules:
|
||||
- files~=\.buildkite/
|
||||
- files~=^cmake/
|
||||
- files=CMakeLists.txt
|
||||
- files~=^Dockerfile
|
||||
- files~=^docker/Dockerfile
|
||||
- files~=^requirements.*\.txt
|
||||
- files=setup.py
|
||||
actions:
|
||||
@ -55,11 +55,19 @@ pull_request_rules:
|
||||
description: Automatically apply structured-output label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^benchmarks/structured_schemas/
|
||||
- files=benchmarks/benchmark_serving_structured_output.py
|
||||
- files=benchmarks/run_structured_output_benchmark.sh
|
||||
- files=docs/source/features/structured_outputs.md
|
||||
- files=examples/offline_inference/structured_outputs.py
|
||||
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
|
||||
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
|
||||
- files~=^vllm/model_executor/guided_decoding/
|
||||
- files=tests/model_executor/test_guided_processors.py
|
||||
- files=tests/entrypoints/llm/test_guided_generate.py
|
||||
- files=benchmarks/benchmark_serving_guided.py
|
||||
- files=benchmarks/benchmark_guided.py
|
||||
- files~=^tests/v1/structured_output/
|
||||
- files=tests/v1/entrypoints/llm/test_guided_generate.py
|
||||
- files~=^vllm/v1/structured_output/
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
@ -88,6 +96,58 @@ pull_request_rules:
|
||||
add:
|
||||
- v1
|
||||
|
||||
- name: label-tpu
|
||||
description: Automatically apply tpu label
|
||||
# Keep this list in sync with `label-tpu-remove` conditions
|
||||
conditions:
|
||||
- or:
|
||||
- files~=tpu.py
|
||||
- files~=_tpu
|
||||
- files~=tpu_
|
||||
- files~=/tpu/
|
||||
- files~=pallas
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- tpu
|
||||
|
||||
- name: label-tpu-remove
|
||||
description: Automatically remove tpu label
|
||||
# Keep this list in sync with `label-tpu` conditions
|
||||
conditions:
|
||||
- and:
|
||||
- -files~=tpu.py
|
||||
- -files~=_tpu
|
||||
- -files~=tpu_
|
||||
- -files~=/tpu/
|
||||
- -files~=pallas
|
||||
actions:
|
||||
label:
|
||||
remove:
|
||||
- tpu
|
||||
|
||||
- name: label-tool-calling
|
||||
description: Automatically add tool-calling label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^tests/tool_use/
|
||||
- files~=^tests/mistral_tool_use/
|
||||
- files~=^tests/entrypoints/openai/tool_parsers/
|
||||
- files=tests/entrypoints/openai/test_chat_with_tool_reasoning.py
|
||||
- files~=^vllm/entrypoints/openai/tool_parsers/
|
||||
- files=docs/source/features/tool_calling.md
|
||||
- files=docs/source/getting_started/examples/openai_chat_completion_client_with_tools.md
|
||||
- files=docs/source/getting_started/examples/chat_with_tools.md
|
||||
- files~=^examples/tool_chat_*
|
||||
- files=examples/offline_inference/chat_with_tools.py
|
||||
- files=examples/online_serving/openai_chat_completion_client_with_tools_required.py
|
||||
- files=examples/online_serving/openai_chat_completion_tool_calls_with_reasoning.py
|
||||
- files=examples/online_serving/openai_chat_completion_client_with_tools.py
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- tool-calling
|
||||
|
||||
- name: ping author on conflicts and add 'needs-rebase' label
|
||||
conditions:
|
||||
- conflict
|
||||
|
2
.github/workflows/lint-and-deploy.yaml
vendored
2
.github/workflows/lint-and-deploy.yaml
vendored
@ -50,7 +50,7 @@ jobs:
|
||||
uses: helm/kind-action@a1b0e391336a6ee6713a0583f8c6240d70863de3 # v1.12.0
|
||||
|
||||
- name: Build the Docker image vllm cpu
|
||||
run: docker buildx build -f Dockerfile.cpu -t vllm-cpu-env .
|
||||
run: docker buildx build -f docker/Dockerfile.cpu -t vllm-cpu-env .
|
||||
|
||||
- name: Configuration of docker images, network and namespace for the kind cluster
|
||||
run: |
|
||||
|
5
.gitignore
vendored
5
.gitignore
vendored
@ -2,7 +2,7 @@
|
||||
/vllm/_version.py
|
||||
|
||||
# vllm-flash-attn built from source
|
||||
vllm/vllm_flash_attn/
|
||||
vllm/vllm_flash_attn/*
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
@ -202,3 +202,6 @@ benchmarks/**/*.json
|
||||
# Linting
|
||||
actionlint
|
||||
shellcheck*/
|
||||
|
||||
# Ingore moe/marlin_moe gen code
|
||||
csrc/moe/marlin_moe_wna16/kernel_*
|
||||
|
@ -1,3 +1,6 @@
|
||||
default_install_hook_types:
|
||||
- pre-commit
|
||||
- commit-msg
|
||||
default_stages:
|
||||
- pre-commit # Run locally
|
||||
- manual # Run in CI
|
||||
@ -8,7 +11,6 @@ repos:
|
||||
hooks:
|
||||
- id: yapf
|
||||
args: [--in-place, --verbose]
|
||||
additional_dependencies: [toml] # TODO: Remove when yapf is upgraded
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.9.3
|
||||
hooks:
|
||||
@ -119,6 +121,12 @@ repos:
|
||||
language: system
|
||||
always_run: true
|
||||
pass_filenames: false
|
||||
- id: update-dockerfile-graph
|
||||
name: Update Dockerfile dependency graph
|
||||
entry: tools/update-dockerfile-graph.sh
|
||||
language: script
|
||||
files: ^docker/Dockerfile$
|
||||
pass_filenames: false
|
||||
# Keep `suggestion` last
|
||||
- id: suggestion
|
||||
name: Suggestion
|
||||
|
114
CMakeLists.txt
114
CMakeLists.txt
@ -34,7 +34,7 @@ set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12")
|
||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
|
||||
|
||||
# Supported AMD GPU architectures.
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101")
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
|
||||
|
||||
#
|
||||
# Supported/expected torch versions for CUDA/ROCm.
|
||||
@ -44,7 +44,7 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101")
|
||||
#
|
||||
# Note: the CUDA torch version is derived from pyproject.toml and various
|
||||
# requirements.txt files and should be kept consistent. The ROCm torch
|
||||
# versions are derived from Dockerfile.rocm
|
||||
# versions are derived from docker/Dockerfile.rocm
|
||||
#
|
||||
set(TORCH_SUPPORTED_VERSION_CUDA "2.6.0")
|
||||
set(TORCH_SUPPORTED_VERSION_ROCM "2.6.0")
|
||||
@ -230,10 +230,12 @@ set(VLLM_EXT_SRC
|
||||
"csrc/cache_kernels.cu"
|
||||
"csrc/attention/paged_attention_v1.cu"
|
||||
"csrc/attention/paged_attention_v2.cu"
|
||||
"csrc/attention/merge_attn_states.cu"
|
||||
"csrc/pos_encoding_kernels.cu"
|
||||
"csrc/activation_kernels.cu"
|
||||
"csrc/layernorm_kernels.cu"
|
||||
"csrc/layernorm_quant_kernels.cu"
|
||||
"csrc/cuda_view.cu"
|
||||
"csrc/quantization/gptq/q_gemm.cu"
|
||||
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
|
||||
"csrc/quantization/fp8/common.cu"
|
||||
@ -241,6 +243,7 @@ set(VLLM_EXT_SRC
|
||||
"csrc/quantization/gguf/gguf_kernel.cu"
|
||||
"csrc/cuda_utils_kernels.cu"
|
||||
"csrc/prepare_inputs/advance_step.cu"
|
||||
"csrc/custom_all_reduce.cu"
|
||||
"csrc/torch_bindings.cpp")
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
@ -248,7 +251,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
|
||||
# Set CUTLASS_REVISION manually -- its revision detection doesn't work in this case.
|
||||
# Please keep this in sync with FetchContent_Declare line below.
|
||||
set(CUTLASS_REVISION "v3.8.0" CACHE STRING "CUTLASS revision to use")
|
||||
set(CUTLASS_REVISION "v3.9.0" CACHE STRING "CUTLASS revision to use")
|
||||
|
||||
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
|
||||
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
|
||||
@ -266,7 +269,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
cutlass
|
||||
GIT_REPOSITORY https://github.com/nvidia/cutlass.git
|
||||
# Please keep this in sync with CUTLASS_REVISION line above.
|
||||
GIT_TAG v3.8.0
|
||||
GIT_TAG v3.9.0
|
||||
GIT_PROGRESS TRUE
|
||||
|
||||
# Speed up CUTLASS download by retrieving only the specified GIT_TAG instead of the history.
|
||||
@ -282,13 +285,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
|
||||
"csrc/quantization/aqlm/gemm_kernels.cu"
|
||||
"csrc/quantization/awq/gemm_kernels.cu"
|
||||
"csrc/custom_all_reduce.cu"
|
||||
"csrc/permute_cols.cu"
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
|
||||
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
|
||||
"csrc/cutlass_extensions/common.cpp")
|
||||
"csrc/cutlass_extensions/common.cpp"
|
||||
"csrc/attention/mla/cutlass_mla_entry.cu")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${VLLM_EXT_SRC}"
|
||||
@ -461,6 +464,52 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
set(FP4_ARCHS)
|
||||
endif()
|
||||
|
||||
# CUTLASS MLA Archs and flags
|
||||
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND MLA_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/attention/mla/cutlass_mla_kernels.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${MLA_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MLA=1")
|
||||
# Add MLA-specific include directories only to MLA source files
|
||||
set_source_files_properties(${SRCS}
|
||||
PROPERTIES INCLUDE_DIRECTORIES "${CUTLASS_DIR}/examples/77_blackwell_fmha;${CUTLASS_DIR}/examples/common")
|
||||
message(STATUS "Building CUTLASS MLA for archs: ${MLA_ARCHS}")
|
||||
else()
|
||||
message(STATUS "Not building CUTLASS MLA as no compatible archs were found.")
|
||||
# clear MLA_ARCHS
|
||||
set(MLA_ARCHS)
|
||||
endif()
|
||||
|
||||
# CUTLASS MoE kernels
|
||||
|
||||
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and only works
|
||||
# on Hopper). get_cutlass_moe_mm_data should only be compiled if it's possible
|
||||
# to compile MoE kernels that use its output.
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu"
|
||||
"csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MOE_SM90=1")
|
||||
message(STATUS "Building grouped_mm_c3x for archs: ${SCALED_MM_ARCHS}")
|
||||
else()
|
||||
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
|
||||
message(STATUS "Not building grouped_mm_c3x kernels as CUDA Compiler version is "
|
||||
"not >= 12.3, we recommend upgrading to CUDA 12.3 or later "
|
||||
"if you intend on running FP8 quantized MoE models on Hopper.")
|
||||
else()
|
||||
message(STATUS "Not building grouped_mm_c3x as no compatible archs found "
|
||||
"in CUDA target architectures")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
#
|
||||
# Machete kernels
|
||||
|
||||
@ -580,21 +629,51 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
list(APPEND VLLM_MOE_EXT_SRC "${VLLM_MOE_WNA16_SRC}")
|
||||
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
|
||||
if (MARLIN_MOE_ARCHS)
|
||||
set(MARLIN_MOE_SRC
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel.h"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.h"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.cu"
|
||||
"csrc/moe/marlin_moe_ops.cu")
|
||||
|
||||
#
|
||||
# For the Marlin MOE kernels we automatically generate sources for various
|
||||
# preselected input type pairs and schedules.
|
||||
# Generate sources:
|
||||
set(MOE_MARLIN_GEN_SCRIPT
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/csrc/moe/marlin_moe_wna16/generate_kernels.py)
|
||||
file(MD5 ${MOE_MARLIN_GEN_SCRIPT} MOE_MARLIN_GEN_SCRIPT_HASH)
|
||||
|
||||
message(STATUS "Marlin MOE generation script hash: ${MOE_MARLIN_GEN_SCRIPT_HASH}")
|
||||
message(STATUS "Last run Marlin MOE generate script hash: $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH}")
|
||||
|
||||
if (NOT DEFINED CACHE{MOE_MARLIN_GEN_SCRIPT_HASH}
|
||||
OR NOT $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH} STREQUAL ${MOE_MARLIN_GEN_SCRIPT_HASH})
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_COMMAND} -E env
|
||||
PYTHONPATH=${CMAKE_CURRENT_SOURCE_DIR}/csrc/cutlass_extensions/:${CUTLASS_DIR}/python/:${VLLM_PYTHON_PATH}:$PYTHONPATH
|
||||
${Python_EXECUTABLE} ${MOE_MARLIN_GEN_SCRIPT}
|
||||
RESULT_VARIABLE moe_marlin_generation_result
|
||||
OUTPUT_VARIABLE moe_marlin_generation_output
|
||||
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log
|
||||
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log
|
||||
)
|
||||
|
||||
if (NOT moe_marlin_generation_result EQUAL 0)
|
||||
message(FATAL_ERROR "Marlin MOE generation failed."
|
||||
" Result: \"${moe_marlin_generation_result}\""
|
||||
"\nCheck the log for details: "
|
||||
"${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log")
|
||||
else()
|
||||
set(MOE_MARLIN_GEN_SCRIPT_HASH ${MOE_MARLIN_GEN_SCRIPT_HASH}
|
||||
CACHE STRING "Last run Marlin MOE generate script hash" FORCE)
|
||||
message(STATUS "Marlin MOE generation completed successfully.")
|
||||
endif()
|
||||
else()
|
||||
message(STATUS "Marlin MOE generation script has not changed, skipping generation.")
|
||||
endif()
|
||||
|
||||
file(GLOB MOE_WNAA16_MARLIN_SRC "csrc/moe/marlin_moe_wna16/*.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${MARLIN_MOE_SRC}"
|
||||
SRCS "${MOE_WNAA16_MARLIN_SRC}"
|
||||
CUDA_ARCHS "${MARLIN_MOE_ARCHS}")
|
||||
|
||||
list(APPEND VLLM_MOE_EXT_SRC "${MARLIN_MOE_SRC}")
|
||||
list(APPEND VLLM_MOE_EXT_SRC ${MOE_WNAA16_MARLIN_SRC})
|
||||
|
||||
message(STATUS "Building Marlin MOE kernels for archs: ${MARLIN_MOE_ARCHS}")
|
||||
else()
|
||||
message(STATUS "Not building Marlin MOE kernels as no compatible archs found"
|
||||
@ -619,6 +698,7 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
|
||||
#
|
||||
set(VLLM_ROCM_EXT_SRC
|
||||
"csrc/rocm/torch_bindings.cpp"
|
||||
"csrc/rocm/skinny_gemms.cu"
|
||||
"csrc/rocm/attention.cu")
|
||||
|
||||
define_gpu_extension_target(
|
||||
|
@ -1,69 +0,0 @@
|
||||
# This vLLM Dockerfile is used to construct image that can build and run vLLM on x86 CPU platform.
|
||||
|
||||
FROM ubuntu:22.04 AS cpu-test-1
|
||||
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
|
||||
ENV CMAKE_CXX_COMPILER_LAUNCHER=ccache
|
||||
|
||||
RUN --mount=type=cache,target=/var/cache/apt \
|
||||
apt-get update -y \
|
||||
&& apt-get install -y curl ccache git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 libnuma-dev \
|
||||
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
|
||||
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
|
||||
|
||||
# https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/tuning_guide.html
|
||||
# intel-openmp provides additional performance improvement vs. openmp
|
||||
# tcmalloc provides better memory allocation efficiency, e.g, holding memory in caches to speed up access of commonly-used objects.
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install intel-openmp==2025.0.1
|
||||
|
||||
ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/usr/local/lib/libiomp5.so"
|
||||
|
||||
RUN echo 'ulimit -c 0' >> ~/.bashrc
|
||||
|
||||
RUN pip install intel_extension_for_pytorch==2.6.0
|
||||
|
||||
WORKDIR /workspace
|
||||
|
||||
ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
|
||||
ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,src=requirements/build.txt,target=requirements/build.txt \
|
||||
pip install --upgrade pip && \
|
||||
pip install -r requirements/build.txt
|
||||
|
||||
FROM cpu-test-1 AS build
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,src=requirements/common.txt,target=requirements/common.txt \
|
||||
--mount=type=bind,src=requirements/cpu.txt,target=requirements/cpu.txt \
|
||||
pip install -v -r requirements/cpu.txt
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
|
||||
|
||||
# Support for building with non-AVX512 vLLM: docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" ...
|
||||
ARG VLLM_CPU_DISABLE_AVX512
|
||||
ENV VLLM_CPU_DISABLE_AVX512=${VLLM_CPU_DISABLE_AVX512}
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel && \
|
||||
pip install dist/*.whl && \
|
||||
rm -rf dist
|
||||
|
||||
WORKDIR /workspace/
|
||||
|
||||
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install -e tests/vllm_test_utils
|
||||
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
@ -1,29 +0,0 @@
|
||||
# The vLLM Dockerfile is used to construct vLLM image that can be directly used
|
||||
# to run the OpenAI compatible server.
|
||||
|
||||
FROM ubuntu:22.04 AS dev
|
||||
|
||||
RUN apt-get update -y && \
|
||||
apt-get install -y \
|
||||
git python3-pip \
|
||||
ffmpeg libsm6 libxext6 libgl1
|
||||
WORKDIR /workspace
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
|
||||
|
||||
RUN python3 -m pip install -U pip
|
||||
# install build requirements
|
||||
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" python3 -m pip install -r /workspace/requirements/build.txt
|
||||
# build vLLM with OpenVINO backend
|
||||
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" VLLM_TARGET_DEVICE="openvino" python3 -m pip install /workspace
|
||||
|
||||
COPY examples/ /workspace/examples
|
||||
COPY benchmarks/ /workspace/benchmarks
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
|
||||
CMD ["/bin/bash"]
|
@ -1,37 +0,0 @@
|
||||
FROM mambaorg/micromamba
|
||||
ARG MAMBA_DOCKERFILE_ACTIVATE=1
|
||||
USER root
|
||||
|
||||
ENV PATH="/usr/local/cargo/bin:$PATH:/opt/conda/bin/"
|
||||
|
||||
RUN apt-get update -y && apt-get install -y git wget kmod curl vim libnuma-dev libsndfile-dev libprotobuf-dev build-essential ffmpeg libsm6 libxext6 libgl1 libssl-dev
|
||||
|
||||
# Some packages in requirements/cpu are installed here
|
||||
# IBM provides optimized packages for ppc64le processors in the open-ce project for mamba
|
||||
# Currently these may not be available for venv or pip directly
|
||||
RUN micromamba install -y -n base -c https://ftp.osuosl.org/pub/open-ce/1.11.0-p10/ -c defaults python=3.10 rust && micromamba clean --all --yes
|
||||
|
||||
COPY ./ /workspace/vllm
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
RUSTFLAGS='-L /opt/conda/lib' pip install -v --prefer-binary --extra-index-url https://repo.fury.io/mgiessing \
|
||||
'cmake>=3.26' ninja packaging 'setuptools-scm>=8' wheel jinja2 \
|
||||
-r requirements/cpu.txt \
|
||||
xformers uvloop==0.20.0
|
||||
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py install
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
|
||||
WORKDIR /workspace/
|
||||
|
||||
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
|
||||
|
||||
ENTRYPOINT ["/opt/conda/bin/python3", "-m", "vllm.entrypoints.openai.api_server"]
|
28
README.md
28
README.md
@ -10,17 +10,24 @@ Easy, fast, and cheap LLM serving for everyone
|
||||
</h3>
|
||||
|
||||
<p align="center">
|
||||
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
|
||||
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://blog.vllm.ai/"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://discuss.vllm.ai"><b>User Forum</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
|
||||
</p>
|
||||
|
||||
*Latest News* 🔥
|
||||
---
|
||||
|
||||
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit#slide=id.g33fb1ff286e_0_29).
|
||||
*Latest News* 🔥
|
||||
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
|
||||
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).
|
||||
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).
|
||||
- [2025/03] We hosted [the East Coast vLLM Meetup](https://lu.ma/7mu4k4xx)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1NHiv8EUFF1NLd3fEYODm56nDmL26lEeXCaDgyDlTsRs/edit#slide=id.g31441846c39_0_0).
|
||||
- [2025/02] We hosted [the ninth vLLM meetup](https://lu.ma/h7g3kuj9) with Meta! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1jzC_PZVXrVNSFVCW-V4cFXb6pn7zZ2CyP_Flwo05aqg/edit?usp=sharing) and AMD [here](https://drive.google.com/file/d/1Zk5qEJIkTmlQ2eQcXQZlljAx3m9s7nwn/view?usp=sharing). The slides from Meta will not be posted.
|
||||
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
|
||||
- [2025/01] We hosted [the eighth vLLM meetup](https://lu.ma/zep56hui) with Google Cloud! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1epVkt4Zu8Jz_S5OhEHPc798emsYh2BwYfRuDDVEF7u4/edit?usp=sharing), and Google Cloud team [here](https://drive.google.com/file/d/1h24pHewANyRL11xy5dXUbvRC9F9Kkjix/view?usp=sharing).
|
||||
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
|
||||
|
||||
<details>
|
||||
<summary>Previous News</summary>
|
||||
|
||||
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing), and Snowflake team [here](https://docs.google.com/presentation/d/1qF3RkDAbOULwz9WK5TOltt2fE9t6uIc_hVNLFAaQX6A/edit?usp=sharing).
|
||||
- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there!
|
||||
- [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://www.youtube.com/playlist?list=PLzTswPQNepXl6AQwifuwUImLPFRVpksjR) from other vLLM contributors and users!
|
||||
@ -34,8 +41,9 @@ Easy, fast, and cheap LLM serving for everyone
|
||||
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
|
||||
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
|
||||
|
||||
---
|
||||
</details>
|
||||
|
||||
---
|
||||
## About
|
||||
|
||||
vLLM is a fast and easy-to-use library for LLM inference and serving.
|
||||
@ -90,7 +98,7 @@ Visit our [documentation](https://docs.vllm.ai/en/latest/) to learn more.
|
||||
## Contributing
|
||||
|
||||
We welcome and value any contributions and collaborations.
|
||||
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.
|
||||
Please check out [Contributing to vLLM](https://docs.vllm.ai/en/stable/contributing/overview.html) for how to get involved.
|
||||
|
||||
## Sponsors
|
||||
|
||||
@ -113,6 +121,7 @@ Compute Resources:
|
||||
- Databricks
|
||||
- DeepInfra
|
||||
- Google Cloud
|
||||
- Intel
|
||||
- Lambda Lab
|
||||
- Nebius
|
||||
- Novita AI
|
||||
@ -143,10 +152,11 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
|
||||
|
||||
## Contact Us
|
||||
|
||||
- For technical questions and feature requests, please use GitHub issues or discussions.
|
||||
- For discussing with fellow users and coordinating contributions and development, please use Slack.
|
||||
- For security disclosures, please use GitHub's security advisory feature.
|
||||
- For collaborations and partnerships, please contact us at vllm-questions AT lists.berkeley.edu.
|
||||
- For technical questions and feature requests, please use GitHub [Issues](https://github.com/vllm-project/vllm/issues) or [Discussions](https://github.com/vllm-project/vllm/discussions)
|
||||
- For discussing with fellow users, please use the [vLLM Forum](https://discuss.vllm.ai)
|
||||
- coordinating contributions and development, please use [Slack](https://slack.vllm.ai)
|
||||
- For security disclosures, please use GitHub's [Security Advisories](https://github.com/vllm-project/vllm/security/advisories) feature
|
||||
- For collaborations and partnerships, please contact us at [vllm-questions@lists.berkeley.edu](mailto:vllm-questions@lists.berkeley.edu)
|
||||
|
||||
## Media Kit
|
||||
|
||||
|
@ -41,29 +41,39 @@ become available.
|
||||
<td><code>synthetic</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace</strong></td>
|
||||
<td><strong>HuggingFace-VisionArena</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">🟡</td>
|
||||
<td>Specify your dataset path on HuggingFace</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>lmarena-ai/VisionArena-Chat</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>VisionArena</strong></td>
|
||||
<td><strong>HuggingFace-InstructCoder</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>lmarena-ai/vision-arena-bench-v0.1</code> (a HuggingFace dataset)</td>
|
||||
<td><code>likaixin/InstructCoder</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace-AIMO</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>AI-MO/aimo-validation-aime</code> , <code>AI-MO/NuminaMath-1.5</code>, <code>AI-MO/NuminaMath-CoT</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace-Other</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>lmms-lab/LLaVA-OneVision-Data</code>, <code>Aeala/ShareGPT_Vicuna_unfiltered</code></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
✅: supported
|
||||
|
||||
🟡: Partial support
|
||||
|
||||
🚧: to be supported
|
||||
|
||||
🟡: Partial support. Currently, HuggingFaceDataset only supports dataset formats
|
||||
similar to `lmms-lab/LLaVA-OneVision-Data`. If you need support for other dataset
|
||||
formats, please consider contributing.
|
||||
|
||||
**Note**: VisionArena’s `dataset-name` should be set to `hf`
|
||||
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`
|
||||
|
||||
---
|
||||
## Example - Online Benchmark
|
||||
@ -71,8 +81,7 @@ formats, please consider contributing.
|
||||
First start serving your model
|
||||
|
||||
```bash
|
||||
MODEL_NAME="NousResearch/Hermes-3-Llama-3.1-8B"
|
||||
vllm serve ${MODEL_NAME} --disable-log-requests
|
||||
vllm serve NousResearch/Hermes-3-Llama-3.1-8B --disable-log-requests
|
||||
```
|
||||
|
||||
Then run the benchmarking script
|
||||
@ -80,12 +89,13 @@ Then run the benchmarking script
|
||||
```bash
|
||||
# download dataset
|
||||
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
MODEL_NAME="NousResearch/Hermes-3-Llama-3.1-8B"
|
||||
NUM_PROMPTS=10
|
||||
BACKEND="vllm"
|
||||
DATASET_NAME="sharegpt"
|
||||
DATASET_PATH="<your data path>/ShareGPT_V3_unfiltered_cleaned_split.json"
|
||||
python3 vllm/benchmarks/benchmark_serving.py --backend ${BACKEND} --model ${MODEL_NAME} --endpoint /v1/completions --dataset-name ${DATASET_NAME} --dataset-path ${DATASET_PATH} --num-prompts ${NUM_PROMPTS}
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--endpoint /v1/completions \
|
||||
--dataset-name sharegpt \
|
||||
--dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
If successful, you will see the following output
|
||||
@ -122,37 +132,105 @@ vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
|
||||
```
|
||||
|
||||
```bash
|
||||
MODEL_NAME="Qwen/Qwen2-VL-7B-Instruct"
|
||||
NUM_PROMPTS=10
|
||||
BACKEND="openai-chat"
|
||||
DATASET_NAME="hf"
|
||||
DATASET_PATH="lmarena-ai/vision-arena-bench-v0.1"
|
||||
DATASET_SPLIT='train'
|
||||
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--backend "${BACKEND}" \
|
||||
--model "${MODEL_NAME}" \
|
||||
--endpoint "/v1/chat/completions" \
|
||||
--dataset-name "${DATASET_NAME}" \
|
||||
--dataset-path "${DATASET_PATH}" \
|
||||
--hf-split "${DATASET_SPLIT}" \
|
||||
--num-prompts "${NUM_PROMPTS}"
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
--dataset-name hf \
|
||||
--dataset-path lmarena-ai/VisionArena-Chat \
|
||||
--hf-split train \
|
||||
--num-prompts 1000
|
||||
```
|
||||
|
||||
### InstructCoder Benchmark with Speculative Decoding
|
||||
|
||||
``` bash
|
||||
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--speculative-model "[ngram]" \
|
||||
--ngram_prompt_lookup_min 2 \
|
||||
--ngram-prompt-lookup-max 5 \
|
||||
--num_speculative_tokens 5
|
||||
```
|
||||
|
||||
``` bash
|
||||
python3 benchmarks/benchmark_serving.py \
|
||||
--model meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--dataset-name hf \
|
||||
--dataset-path likaixin/InstructCoder \
|
||||
--num-prompts 2048
|
||||
```
|
||||
|
||||
### Other HuggingFaceDataset Examples
|
||||
|
||||
```bash
|
||||
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
|
||||
```
|
||||
|
||||
**`lmms-lab/LLaVA-OneVision-Data`**
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
--dataset-name hf \
|
||||
--dataset-path lmms-lab/LLaVA-OneVision-Data \
|
||||
--hf-split train \
|
||||
--hf-subset "chart2text(cauldron)" \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
**`Aeala/ShareGPT_Vicuna_unfiltered`**
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
--dataset-name hf \
|
||||
--dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
|
||||
--hf-split train \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
**`AI-MO/aimo-validation-aime`**
|
||||
|
||||
``` bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--model Qwen/QwQ-32B \
|
||||
--dataset-name hf \
|
||||
--dataset-path AI-MO/aimo-validation-aime \
|
||||
--num-prompts 10 \
|
||||
--seed 42
|
||||
```
|
||||
|
||||
### Running With Sampling Parameters
|
||||
|
||||
When using OpenAI-compatible backends such as `vllm`, optional sampling
|
||||
parameters can be specified. Example client command:
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--endpoint /v1/completions \
|
||||
--dataset-name sharegpt \
|
||||
--dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
--top-k 10 \
|
||||
--top-p 0.9 \
|
||||
--temperature 0.5 \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
---
|
||||
## Example - Offline Throughput Benchmark
|
||||
|
||||
```bash
|
||||
MODEL_NAME="NousResearch/Hermes-3-Llama-3.1-8B"
|
||||
NUM_PROMPTS=10
|
||||
DATASET_NAME="sonnet"
|
||||
DATASET_PATH="vllm/benchmarks/sonnet.txt"
|
||||
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--model "${MODEL_NAME}" \
|
||||
--dataset-name "${DATASET_NAME}" \
|
||||
--dataset-path "${DATASET_PATH}" \
|
||||
--num-prompts "${NUM_PROMPTS}"
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--dataset-name sonnet \
|
||||
--dataset-path vllm/benchmarks/sonnet.txt \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
If successful, you will see the following output
|
||||
@ -166,19 +244,13 @@ Total num output tokens: 1500
|
||||
### VisionArena Benchmark for Vision Language Models
|
||||
|
||||
``` bash
|
||||
MODEL_NAME="Qwen/Qwen2-VL-7B-Instruct"
|
||||
NUM_PROMPTS=10
|
||||
DATASET_NAME="hf"
|
||||
DATASET_PATH="lmarena-ai/vision-arena-bench-v0.1"
|
||||
DATASET_SPLIT="train"
|
||||
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--model "${MODEL_NAME}" \
|
||||
--backend "vllm-chat" \
|
||||
--dataset-name "${DATASET_NAME}" \
|
||||
--dataset-path "${DATASET_PATH}" \
|
||||
--num-prompts "${NUM_PROMPTS}" \
|
||||
--hf-split "${DATASET_SPLIT}"
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--backend vllm-chat \
|
||||
--dataset-name hf \
|
||||
--dataset-path lmarena-ai/VisionArena-Chat \
|
||||
--num-prompts 1000 \
|
||||
--hf-split train
|
||||
```
|
||||
|
||||
The `num prompt tokens` now includes image token counts
|
||||
@ -189,29 +261,83 @@ Total num prompt tokens: 14527
|
||||
Total num output tokens: 1280
|
||||
```
|
||||
|
||||
### InstructCoder Benchmark with Speculative Decoding
|
||||
|
||||
``` bash
|
||||
VLLM_WORKER_MULTIPROC_METHOD=spawn \
|
||||
VLLM_USE_V1=1 \
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--dataset-name=hf \
|
||||
--dataset-path=likaixin/InstructCoder \
|
||||
--model=meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--input-len=1000 \
|
||||
--output-len=100 \
|
||||
--num-prompts=2048 \
|
||||
--async-engine \
|
||||
--speculative-model="[ngram]" \
|
||||
--ngram_prompt_lookup_min=2 \
|
||||
--ngram-prompt-lookup-max=5 \
|
||||
--num_speculative_tokens=5
|
||||
```
|
||||
|
||||
```
|
||||
Throughput: 104.77 requests/s, 23836.22 total tokens/s, 10477.10 output tokens/s
|
||||
Total num prompt tokens: 261136
|
||||
Total num output tokens: 204800
|
||||
```
|
||||
|
||||
### Other HuggingFaceDataset Examples
|
||||
|
||||
**`lmms-lab/LLaVA-OneVision-Data`**
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--backend vllm-chat \
|
||||
--dataset-name hf \
|
||||
--dataset-path lmms-lab/LLaVA-OneVision-Data \
|
||||
--hf-split train \
|
||||
--hf-subset "chart2text(cauldron)" \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
**`Aeala/ShareGPT_Vicuna_unfiltered`**
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--backend vllm-chat \
|
||||
--dataset-name hf \
|
||||
--dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
|
||||
--hf-split train \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
**`AI-MO/aimo-validation-aime`**
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_throughput.py \
|
||||
--model Qwen/QwQ-32B \
|
||||
--backend vllm \
|
||||
--dataset-name hf \
|
||||
--dataset-path AI-MO/aimo-validation-aime \
|
||||
--hf-split train \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
### Benchmark with LoRA Adapters
|
||||
|
||||
``` bash
|
||||
# download dataset
|
||||
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
MODEL_NAME="meta-llama/Llama-2-7b-hf"
|
||||
BACKEND="vllm"
|
||||
DATASET_NAME="sharegpt"
|
||||
DATASET_PATH="<your data path>/ShareGPT_V3_unfiltered_cleaned_split.json"
|
||||
NUM_PROMPTS=10
|
||||
MAX_LORAS=2
|
||||
MAX_LORA_RANK=8
|
||||
ENABLE_LORA="--enable-lora"
|
||||
LORA_PATH="yard1/llama-2-7b-sql-lora-test"
|
||||
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--model "${MODEL_NAME}" \
|
||||
--backend "${BACKEND}" \
|
||||
--dataset_path "${DATASET_PATH}" \
|
||||
--dataset_name "${DATASET_NAME}" \
|
||||
--num-prompts "${NUM_PROMPTS}" \
|
||||
--max-loras "${MAX_LORAS}" \
|
||||
--max-lora-rank "${MAX_LORA_RANK}" \
|
||||
${ENABLE_LORA} \
|
||||
--lora-path "${LORA_PATH}"
|
||||
--model meta-llama/Llama-2-7b-hf \
|
||||
--backend vllm \
|
||||
--dataset_path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
--dataset_name sharegpt \
|
||||
--num-prompts 10 \
|
||||
--max-loras 2 \
|
||||
--max-lora-rank 8 \
|
||||
--enable-lora \
|
||||
--lora-path yard1/llama-2-7b-sql-lora-test
|
||||
```
|
||||
|
@ -1,5 +1,6 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
@ -32,6 +33,7 @@ class RequestFuncInput:
|
||||
extra_body: Optional[dict] = None
|
||||
multi_modal_content: Optional[dict] = None
|
||||
ignore_eos: bool = False
|
||||
language: Optional[str] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -63,7 +65,7 @@ async def async_request_tgi(
|
||||
"temperature": 0.01, # TGI does not accept 0.0 temperature.
|
||||
"top_p": 0.99, # TGI does not accept 1.0 top_p.
|
||||
"truncate": request_func_input.prompt_len,
|
||||
# TGI does not accept ignore_eos flag.
|
||||
"ignore_eos_token": request_func_input.ignore_eos,
|
||||
}
|
||||
payload = {
|
||||
"inputs": request_func_input.prompt,
|
||||
@ -71,6 +73,10 @@ async def async_request_tgi(
|
||||
}
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
if request_func_input.ignore_eos:
|
||||
output.output_tokens = request_func_input.output_len
|
||||
else:
|
||||
output.output_tokens = None
|
||||
|
||||
ttft = 0.0
|
||||
st = time.perf_counter()
|
||||
@ -215,7 +221,15 @@ async def async_request_deepspeed_mii(
|
||||
if response.status == 200:
|
||||
parsed_resp = await response.json()
|
||||
output.latency = time.perf_counter() - st
|
||||
output.generated_text = parsed_resp["text"][0]
|
||||
if "choices" in parsed_resp:
|
||||
output.generated_text = parsed_resp["choices"][0][
|
||||
"text"]
|
||||
elif "text" in parsed_resp:
|
||||
output.generated_text = parsed_resp["text"][0]
|
||||
else:
|
||||
output.error = ("Unexpected response format: "
|
||||
"neither 'choices' nor 'text' found")
|
||||
output.success = False
|
||||
output.success = True
|
||||
else:
|
||||
output.error = response.reason or ""
|
||||
@ -424,6 +438,110 @@ async def async_request_openai_chat_completions(
|
||||
return output
|
||||
|
||||
|
||||
async def async_request_openai_audio(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
# Lazy import without PlaceholderModule to avoid vllm dep.
|
||||
import soundfile
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(
|
||||
("transcriptions", "translations"
|
||||
)), "OpenAI Chat Completions API URL must end with 'transcriptions' "
|
||||
"or `translations`."
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
content = [{"type": "text", "text": request_func_input.prompt}]
|
||||
payload = {
|
||||
"model": request_func_input.model_name \
|
||||
if request_func_input.model_name else request_func_input.model,
|
||||
"temperature": 0.0,
|
||||
"max_completion_tokens": request_func_input.output_len,
|
||||
"stream": True,
|
||||
"language": "en",
|
||||
# Flattened due to multipart/form-data
|
||||
"stream_include_usage": True,
|
||||
"stream_continuous_usage_stats": True
|
||||
}
|
||||
if request_func_input.extra_body:
|
||||
payload.update(request_func_input.extra_body)
|
||||
headers = {
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
||||
}
|
||||
|
||||
# Send audio file
|
||||
def to_bytes(y, sr):
|
||||
buffer = io.BytesIO()
|
||||
soundfile.write(buffer, y, sr, format="WAV")
|
||||
buffer.seek(0)
|
||||
return buffer
|
||||
|
||||
with to_bytes(*request_func_input.multi_modal_content['audio']) as f:
|
||||
form = aiohttp.FormData()
|
||||
form.add_field('file', f, content_type='audio/wav')
|
||||
for key, value in payload.items():
|
||||
form.add_field(key, str(value))
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
|
||||
generated_text = ""
|
||||
ttft = 0.0
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url,
|
||||
data=form,
|
||||
headers=headers) as response:
|
||||
if response.status == 200:
|
||||
async for chunk_bytes in response.content:
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
||||
"data: ")
|
||||
if chunk != "[DONE]":
|
||||
timestamp = time.perf_counter()
|
||||
data = json.loads(chunk)
|
||||
|
||||
if choices := data.get("choices"):
|
||||
content = choices[0]["delta"].get(
|
||||
"content")
|
||||
# First token
|
||||
if ttft == 0.0:
|
||||
ttft = timestamp - st
|
||||
output.ttft = ttft
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(
|
||||
timestamp - most_recent_timestamp)
|
||||
|
||||
generated_text += content or ""
|
||||
elif usage := data.get("usage"):
|
||||
output.output_tokens = usage.get(
|
||||
"completion_tokens")
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
output.generated_text = generated_text
|
||||
output.success = True
|
||||
output.latency = most_recent_timestamp - st
|
||||
else:
|
||||
output.error = response.reason or ""
|
||||
output.success = False
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
return output
|
||||
|
||||
|
||||
def get_model(pretrained_model_name_or_path: str) -> str:
|
||||
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
|
||||
from modelscope import snapshot_download
|
||||
@ -481,7 +599,14 @@ ASYNC_REQUEST_FUNCS = {
|
||||
"deepspeed-mii": async_request_deepspeed_mii,
|
||||
"openai": async_request_openai_completions,
|
||||
"openai-chat": async_request_openai_chat_completions,
|
||||
"openai-audio": async_request_openai_audio,
|
||||
"tensorrt-llm": async_request_trt_llm,
|
||||
"scalellm": async_request_openai_completions,
|
||||
"sglang": async_request_openai_completions,
|
||||
}
|
||||
|
||||
OPENAI_COMPATIBLE_BACKENDS = [
|
||||
k for k, v in ASYNC_REQUEST_FUNCS.items()
|
||||
if v in (async_request_openai_completions,
|
||||
async_request_openai_chat_completions)
|
||||
]
|
||||
|
@ -17,12 +17,14 @@ SampleRequest instances, similar to the approach used in ShareGPT.
|
||||
import base64
|
||||
import io
|
||||
import json
|
||||
import logging
|
||||
import random
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Mapping
|
||||
from dataclasses import dataclass
|
||||
from functools import cache
|
||||
from typing import Any, Optional, Union
|
||||
from io import BytesIO
|
||||
from typing import Any, Callable, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@ -35,6 +37,8 @@ from vllm.lora.utils import get_adapter_absolute_path
|
||||
from vllm.multimodal import MultiModalDataDict
|
||||
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Data Classes
|
||||
# -----------------------------------------------------------------------------
|
||||
@ -60,9 +64,7 @@ class SampleRequest:
|
||||
|
||||
class BenchmarkDataset(ABC):
|
||||
DEFAULT_SEED = 0
|
||||
|
||||
# num_requests has default 1000 in both the benchmark_serving.py and
|
||||
# benchmark_throughput.py
|
||||
IS_MULTIMODAL = False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -90,8 +92,8 @@ class BenchmarkDataset(ABC):
|
||||
mm_content: Optional[MultiModalDataDict] = None) -> list[dict]:
|
||||
"""
|
||||
Transform a prompt and optional multimodal content into a chat format.
|
||||
This method is used for chat models that expect a specific
|
||||
conversation format.
|
||||
This method is used for chat models that expect a specific conversation
|
||||
format.
|
||||
"""
|
||||
content = [{"text": prompt, "type": "text"}]
|
||||
if mm_content is not None:
|
||||
@ -101,10 +103,10 @@ class BenchmarkDataset(ABC):
|
||||
def load_data(self) -> None:
|
||||
"""
|
||||
Load data from the dataset path into self.data.
|
||||
|
||||
|
||||
This method must be overridden by subclasses since the method to load
|
||||
data will vary depending on the dataset format and source.
|
||||
|
||||
|
||||
Raises:
|
||||
NotImplementedError: If a subclass does not implement this method.
|
||||
"""
|
||||
@ -121,18 +123,18 @@ class BenchmarkDataset(ABC):
|
||||
"""
|
||||
Optionally select a random LoRA request and return its associated
|
||||
tokenizer.
|
||||
|
||||
|
||||
This method is used when LoRA parameters are provided. It randomly
|
||||
selects a LoRA based on max_loras and retrieves a cached tokenizer for
|
||||
that LoRA if available. Otherwise, it returns the base tokenizer.
|
||||
|
||||
|
||||
Args:
|
||||
tokenizer (PreTrainedTokenizerBase): The base tokenizer to use if no
|
||||
LoRA is selected. max_loras (Optional[int]): The maximum number of
|
||||
LoRAs available. If None, LoRA is not used. lora_path
|
||||
(Optional[str]): Path to the LoRA parameters on disk. If None, LoRA
|
||||
is not used.
|
||||
|
||||
|
||||
Returns:
|
||||
tuple[Optional[LoRARequest], AnyTokenizer]: A tuple where the first
|
||||
element is a LoRARequest (or None if not applicable) and the second
|
||||
@ -160,21 +162,39 @@ class BenchmarkDataset(ABC):
|
||||
num_requests: int) -> list[SampleRequest]:
|
||||
"""
|
||||
Abstract method to generate sample requests from the dataset.
|
||||
|
||||
|
||||
Subclasses must override this method to implement dataset-specific logic
|
||||
for generating a list of SampleRequest objects.
|
||||
|
||||
|
||||
Args:
|
||||
tokenizer (PreTrainedTokenizerBase): The tokenizer to be used
|
||||
for processing the dataset's text.
|
||||
num_requests (int): The number of sample requests to generate.
|
||||
|
||||
|
||||
Returns:
|
||||
list[SampleRequest]: A list of sample requests generated from the
|
||||
dataset.
|
||||
"""
|
||||
raise NotImplementedError("sample must be implemented in subclasses.")
|
||||
|
||||
def maybe_oversample_requests(self, requests: list[SampleRequest],
|
||||
num_requests: int) -> None:
|
||||
"""
|
||||
Oversamples the list of requests if its size is less than the desired
|
||||
number.
|
||||
|
||||
Args:
|
||||
requests (List[SampleRequest]): The current list of sampled
|
||||
requests. num_requests (int): The target number of requests.
|
||||
"""
|
||||
if len(requests) < num_requests:
|
||||
random.seed(self.random_seed)
|
||||
additional = random.choices(requests,
|
||||
k=num_requests - len(requests))
|
||||
requests.extend(additional)
|
||||
logger.info("Oversampled requests to reach %d total samples.",
|
||||
num_requests)
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Utility Functions and Global Caches
|
||||
@ -221,21 +241,24 @@ def process_image(image: Any) -> Mapping[str, Any]:
|
||||
"""
|
||||
Process a single image input and return a multimedia content dictionary.
|
||||
|
||||
For a PIL.Image.Image input:
|
||||
- Converts the image to RGB.
|
||||
- Saves the image as a JPEG in-memory.
|
||||
- Encodes the JPEG data as a base64 string.
|
||||
- Returns a dictionary with the image as a base64 data URL.
|
||||
Supports three input types:
|
||||
|
||||
For a string input:
|
||||
- Treats the string as a URL or file path.
|
||||
- Prepends "file://" if the string doesn't start with "http://" or
|
||||
"file://".
|
||||
- Returns a dictionary with the image URL.
|
||||
1. Dictionary with raw image bytes: - Expects a dict with a 'bytes' key
|
||||
containing raw image data. - Loads the bytes as a PIL.Image.Image.
|
||||
|
||||
2. PIL.Image.Image input: - Converts the image to RGB. - Saves the image as
|
||||
a JPEG in memory. - Encodes the JPEG data as a base64 string. - Returns
|
||||
a dictionary with the image as a base64 data URL.
|
||||
|
||||
3. String input: - Treats the string as a URL or local file path. -
|
||||
Prepends "file://" if the string doesn't start with "http://" or
|
||||
"file://". - Returns a dictionary with the image URL.
|
||||
|
||||
Raises:
|
||||
ValueError: If the input is neither a PIL.Image.Image nor a string.
|
||||
ValueError: If the input is not a supported type.
|
||||
"""
|
||||
if isinstance(image, dict) and 'bytes' in image:
|
||||
image = Image.open(BytesIO(image['bytes']))
|
||||
if isinstance(image, Image.Image):
|
||||
image = image.convert("RGB")
|
||||
with io.BytesIO() as image_data:
|
||||
@ -254,8 +277,8 @@ def process_image(image: Any) -> Mapping[str, Any]:
|
||||
("http://", "file://")) else f"file://{image}")
|
||||
return {"type": "image_url", "image_url": {"url": image_url}}
|
||||
|
||||
raise ValueError(
|
||||
f"Invalid image input {image}. Must be a PIL.Image.Image or str.")
|
||||
raise ValueError(f"Invalid image input {image}. Must be a PIL.Image.Image"
|
||||
" or str or dictionary with raw image bytes.")
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
@ -266,7 +289,7 @@ def process_image(image: Any) -> Mapping[str, Any]:
|
||||
class RandomDataset(BenchmarkDataset):
|
||||
# Default values copied from benchmark_serving.py for the random dataset.
|
||||
DEFAULT_PREFIX_LEN = 0
|
||||
DEFAULT_RANGE_RATIO = 1.0
|
||||
DEFAULT_RANGE_RATIO = 0.0
|
||||
DEFAULT_INPUT_LEN = 1024
|
||||
DEFAULT_OUTPUT_LEN = 128
|
||||
|
||||
@ -276,28 +299,42 @@ class RandomDataset(BenchmarkDataset):
|
||||
) -> None:
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
prefix_len: int = DEFAULT_PREFIX_LEN,
|
||||
range_ratio: float = DEFAULT_RANGE_RATIO,
|
||||
input_len: int = DEFAULT_INPUT_LEN,
|
||||
output_len: int = DEFAULT_OUTPUT_LEN,
|
||||
**kwargs) -> list[SampleRequest]:
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
prefix_len: int = DEFAULT_PREFIX_LEN,
|
||||
range_ratio: float = DEFAULT_RANGE_RATIO,
|
||||
input_len: int = DEFAULT_INPUT_LEN,
|
||||
output_len: int = DEFAULT_OUTPUT_LEN,
|
||||
**kwargs,
|
||||
) -> list[SampleRequest]:
|
||||
# Enforce range_ratio < 1
|
||||
assert range_ratio < 1.0, (
|
||||
"random_range_ratio must be < 1.0 to ensure a valid sampling range"
|
||||
)
|
||||
|
||||
vocab_size = tokenizer.vocab_size
|
||||
|
||||
prefix_token_ids = (np.random.randint(
|
||||
0, vocab_size, size=prefix_len).tolist() if prefix_len > 0 else [])
|
||||
|
||||
input_low = int(input_len * range_ratio)
|
||||
output_low = int(output_len * range_ratio)
|
||||
# New sampling logic: [X * (1 - b), X * (1 + b)]
|
||||
input_low = int(input_len * (1 - range_ratio))
|
||||
input_high = int(input_len * (1 + range_ratio))
|
||||
output_low = int(output_len * (1 - range_ratio))
|
||||
output_high = int(output_len * (1 + range_ratio))
|
||||
|
||||
# Add logging for debugging
|
||||
logger.info("Sampling input_len from [%s, %s]", input_low, input_high)
|
||||
logger.info("Sampling output_len from [%s, %s]", output_low,
|
||||
output_high)
|
||||
|
||||
input_lens = np.random.randint(input_low,
|
||||
input_len + 1,
|
||||
input_high + 1,
|
||||
size=num_requests)
|
||||
output_lens = np.random.randint(output_low,
|
||||
output_len + 1,
|
||||
output_high + 1,
|
||||
size=num_requests)
|
||||
offsets = np.random.randint(0, vocab_size, size=num_requests)
|
||||
|
||||
@ -346,20 +383,24 @@ class ShareGPTDataset(BenchmarkDataset):
|
||||
random.seed(self.random_seed)
|
||||
random.shuffle(self.data)
|
||||
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
lora_path: Optional[str] = None,
|
||||
max_loras: Optional[int] = None,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs) -> list:
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
lora_path: Optional[str] = None,
|
||||
max_loras: Optional[int] = None,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
samples: list = []
|
||||
for entry in self.data:
|
||||
if len(samples) >= num_requests:
|
||||
break
|
||||
prompt, completion = entry["conversations"][0]["value"],\
|
||||
entry["conversations"][1]["value"]
|
||||
prompt, completion = (
|
||||
entry["conversations"][0]["value"],
|
||||
entry["conversations"][1]["value"],
|
||||
)
|
||||
|
||||
lora_request, tokenizer = self.get_random_lora_request(
|
||||
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
|
||||
@ -383,6 +424,7 @@ class ShareGPTDataset(BenchmarkDataset):
|
||||
expected_output_len=new_output_len,
|
||||
lora_request=lora_request,
|
||||
))
|
||||
self.maybe_oversample_requests(samples, num_requests)
|
||||
return samples
|
||||
|
||||
|
||||
@ -415,19 +457,20 @@ class SonnetDataset(BenchmarkDataset):
|
||||
with open(self.dataset_path, encoding="utf-8") as f:
|
||||
self.data = f.readlines()
|
||||
|
||||
def sample(self,
|
||||
tokenizer,
|
||||
num_requests: int,
|
||||
prefix_len: int = DEFAULT_PREFIX_LEN,
|
||||
input_len: int = DEFAULT_INPUT_LEN,
|
||||
output_len: int = DEFAULT_OUTPUT_LEN,
|
||||
return_prompt_formatted: bool = False,
|
||||
**kwargs) -> list:
|
||||
def sample(
|
||||
self,
|
||||
tokenizer,
|
||||
num_requests: int,
|
||||
prefix_len: int = DEFAULT_PREFIX_LEN,
|
||||
input_len: int = DEFAULT_INPUT_LEN,
|
||||
output_len: int = DEFAULT_OUTPUT_LEN,
|
||||
return_prompt_formatted: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
# Calculate average token length for a poem line.
|
||||
tokenized_lines = [tokenizer(line).input_ids for line in self.data]
|
||||
avg_len = sum(len(tokens)
|
||||
for tokens in \
|
||||
tokenized_lines) / len(tokenized_lines)
|
||||
for tokens in tokenized_lines) / len(tokenized_lines)
|
||||
|
||||
# Build the base prompt.
|
||||
base_prompt = "Pick as many lines as you can from these poem lines:\n"
|
||||
@ -443,11 +486,11 @@ class SonnetDataset(BenchmarkDataset):
|
||||
|
||||
# Determine how many poem lines to use.
|
||||
num_input_lines = round((input_len - base_offset) / avg_len)
|
||||
num_prefix_lines = round((prefix_len - base_offset) / avg_len)
|
||||
num_prefix_lines = max(round((prefix_len - base_offset) / avg_len), 0)
|
||||
prefix_lines = self.data[:num_prefix_lines]
|
||||
|
||||
samples = []
|
||||
for _ in range(num_requests):
|
||||
while len(samples) < num_requests:
|
||||
extra_lines = random.choices(self.data,
|
||||
k=num_input_lines - num_prefix_lines)
|
||||
prompt = f"{base_prompt}{''.join(prefix_lines + extra_lines)}"
|
||||
@ -455,13 +498,14 @@ class SonnetDataset(BenchmarkDataset):
|
||||
prompt_formatted = tokenizer.apply_chat_template(
|
||||
msg, add_generation_prompt=True, tokenize=False)
|
||||
prompt_len = len(tokenizer(prompt_formatted).input_ids)
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
prompt=prompt_formatted
|
||||
if return_prompt_formatted else prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
))
|
||||
if prompt_len <= input_len:
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
prompt=prompt_formatted
|
||||
if return_prompt_formatted else prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
))
|
||||
return samples
|
||||
|
||||
|
||||
@ -506,12 +550,14 @@ class BurstGPTDataset(BenchmarkDataset):
|
||||
# Convert the dataframe to a list of lists.
|
||||
return data.values.tolist()
|
||||
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
max_loras: Optional[int] = None,
|
||||
lora_path: Optional[str] = None,
|
||||
**kwargs) -> list[SampleRequest]:
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
max_loras: Optional[int] = None,
|
||||
lora_path: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> list[SampleRequest]:
|
||||
samples = []
|
||||
data = self._sample_loaded_data(num_requests=num_requests)
|
||||
for i in range(num_requests):
|
||||
@ -535,49 +581,48 @@ class BurstGPTDataset(BenchmarkDataset):
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# HuggingFace Dataset Implementation
|
||||
# HuggingFace Dataset Base Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class HuggingFaceDataset(BenchmarkDataset):
|
||||
"""
|
||||
Dataset class for processing a HuggingFace dataset with conversation data
|
||||
and optional images.
|
||||
"""
|
||||
DEFAULT_NUM_REQUESTS = 1000
|
||||
"""Base class for datasets hosted on HuggingFace."""
|
||||
|
||||
SUPPORTED_DATASET_PATHS: Union[set[str], dict[str, Callable]] = set()
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset_path: str,
|
||||
dataset_split: str,
|
||||
dataset_subset: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
super().__init__(**kwargs)
|
||||
super().__init__(dataset_path=dataset_path, **kwargs)
|
||||
|
||||
self.dataset_split = dataset_split
|
||||
self.dataset_subset = dataset_subset
|
||||
|
||||
self.load_data()
|
||||
|
||||
def load_data(self) -> None:
|
||||
if not self.dataset_path:
|
||||
raise ValueError("dataset_path must be provided for loading data.")
|
||||
|
||||
"""Load data from HuggingFace datasets."""
|
||||
self.data = load_dataset(
|
||||
self.dataset_path,
|
||||
name=self.dataset_subset,
|
||||
split=self.dataset_split,
|
||||
streaming=True,
|
||||
)
|
||||
if self.data.features is None or "conversations" \
|
||||
not in self.data.features:
|
||||
raise ValueError(
|
||||
"HuggingFaceDataset currently only supports datasets with "
|
||||
"a 'conversations' column like lmms-lab/LLaVA-OneVision-Data. "
|
||||
"Please consider contributing if you would like to add "
|
||||
"support for additional dataset formats.")
|
||||
# Shuffle and filter examples with at least 2 conversations.
|
||||
self.data = self.data.shuffle(seed=self.random_seed).filter(
|
||||
lambda x: len(x["conversations"]) >= 2)
|
||||
self.data = self.data.shuffle(seed=self.random_seed)
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Conversation Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class ConversationDataset(HuggingFaceDataset):
|
||||
"""Dataset for conversation data with multimodal support."""
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
'lmms-lab/LLaVA-OneVision-Data', 'Aeala/ShareGPT_Vicuna_unfiltered'
|
||||
}
|
||||
IS_MULTIMODAL = True
|
||||
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
@ -585,10 +630,13 @@ class HuggingFaceDataset(BenchmarkDataset):
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs) -> list:
|
||||
# Filter examples with at least 2 conversations
|
||||
filtered_data = self.data.filter(
|
||||
lambda x: len(x["conversations"]) >= 2)
|
||||
sampled_requests = []
|
||||
dynamic_output = output_len is None
|
||||
|
||||
for item in self.data:
|
||||
for item in filtered_data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
conv = item["conversations"]
|
||||
@ -618,6 +666,7 @@ class HuggingFaceDataset(BenchmarkDataset):
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
))
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
@ -632,44 +681,33 @@ class VisionArenaDataset(HuggingFaceDataset):
|
||||
"""
|
||||
|
||||
DEFAULT_OUTPUT_LEN = 128
|
||||
DEFAULT_NUM_REQUESTS = 1000
|
||||
VISION_ARENA_DATASET_PATH = "lmarena-ai/vision-arena-bench-v0.1"
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"lmarena-ai/VisionArena-Chat":
|
||||
lambda x: x["conversation"][0][0]["content"],
|
||||
"lmarena-ai/vision-arena-bench-v0.1":
|
||||
lambda x: x["turns"][0][0]["content"]
|
||||
}
|
||||
IS_MULTIMODAL = True
|
||||
|
||||
def __init__(
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
super().__init__(**kwargs)
|
||||
if self.dataset_path != self.VISION_ARENA_DATASET_PATH:
|
||||
raise ValueError(f"Only support Vision Arena dataset.\
|
||||
This data path {self.dataset_path} is not valid.")
|
||||
if self.dataset_subset is None and self.dataset_split != "train":
|
||||
raise ValueError("Dataset split must be 'train'.")
|
||||
|
||||
self.load_data()
|
||||
|
||||
def load_data(self) -> None:
|
||||
dataset = load_dataset(
|
||||
self.dataset_path,
|
||||
name=self.dataset_subset,
|
||||
split=self.dataset_split,
|
||||
streaming=True,
|
||||
)
|
||||
self.data = dataset.shuffle(seed=self.random_seed)
|
||||
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs) -> list:
|
||||
) -> list:
|
||||
output_len = (output_len
|
||||
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
||||
sampled_requests = []
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt = item["turns"][0][0]["content"]
|
||||
parser_fn = self.SUPPORTED_DATASET_PATHS.get(self.dataset_path)
|
||||
if parser_fn is None:
|
||||
raise ValueError(
|
||||
f"Unsupported dataset path: {self.dataset_path}")
|
||||
prompt = parser_fn(item)
|
||||
mm_content = process_image(item["images"][0])
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
if enable_multimodal_chat:
|
||||
@ -685,4 +723,175 @@ class VisionArenaDataset(HuggingFaceDataset):
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
))
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Instruct Coder Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class InstructCoderDataset(HuggingFaceDataset):
|
||||
"""
|
||||
InstructCoder Dataset.
|
||||
https://huggingface.co/datasets/likaixin/InstructCoder
|
||||
|
||||
InstructCoder is the dataset designed for general code editing. It consists
|
||||
of 114,239 instruction-input-output triplets, and covers multiple distinct
|
||||
code editing scenario.
|
||||
"""
|
||||
|
||||
DEFAULT_OUTPUT_LEN = 200 # this is the average default output length
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"likaixin/InstructCoder",
|
||||
}
|
||||
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs) -> list:
|
||||
output_len = (output_len
|
||||
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
||||
sampled_requests = []
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt = f"{item['instruction']}:\n{item['input']}"
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
))
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# AIMO Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class AIMODataset(HuggingFaceDataset):
|
||||
"""
|
||||
Dataset class for processing a AIMO dataset with reasoning questions.
|
||||
"""
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"AI-MO/aimo-validation-aime", "AI-MO/NuminaMath-1.5",
|
||||
"AI-MO/NuminaMath-CoT"
|
||||
}
|
||||
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
**kwargs) -> list:
|
||||
sampled_requests = []
|
||||
dynamic_output = output_len is None
|
||||
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt, completion = item['problem'], item["solution"]
|
||||
|
||||
prompt_ids = tokenizer(prompt).input_ids
|
||||
completion_ids = tokenizer(completion).input_ids
|
||||
prompt_len = len(prompt_ids)
|
||||
completion_len = len(completion_ids)
|
||||
output_len = completion_len if dynamic_output else output_len
|
||||
assert isinstance(output_len, int) and output_len > 0
|
||||
if dynamic_output and not is_valid_sequence(prompt_len,
|
||||
completion_len,
|
||||
max_prompt_len=2048,
|
||||
max_total_len=32000):
|
||||
continue
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=None,
|
||||
))
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# ASR Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class ASRDataset(HuggingFaceDataset):
|
||||
"""
|
||||
Dataset class for processing a ASR dataset for transcription.
|
||||
Tested on the following set:
|
||||
|
||||
+----------------+----------------------------------------+--------------------------+-----------------------------+
|
||||
| Dataset | Domain | Speaking Style | hf-subset |
|
||||
+----------------+----------------------------------------+--------------------------+-----------------------------+
|
||||
| TED-LIUM | TED talks | Oratory | release1, release2, release3|
|
||||
| | | | release3-speaker-adaptation |
|
||||
| VoxPopuli | European Parliament | Oratory | en, de, it, fr, ... |
|
||||
| LibriSpeech | Audiobook | Narrated | "LIUM/tedlium" |
|
||||
| GigaSpeech | Audiobook, podcast, YouTube | Narrated, spontaneous | xs, s, m, l, xl, dev, test |
|
||||
| SPGISpeech | Financial meetings | Oratory, spontaneous | S, M, L, dev, test |
|
||||
| AMI | Meetings | Spontaneous | ihm, sdm |
|
||||
+----------------+----------------------------------------+--------------------------+-----------------------------+
|
||||
|
||||
""" # noqa: E501
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"openslr/librispeech_asr", "facebook/voxpopuli", "LIUM/tedlium",
|
||||
"edinburghcstr/ami", "speechcolab/gigaspeech", "kensho/spgispeech"
|
||||
}
|
||||
|
||||
DEFAULT_OUTPUT_LEN = 128
|
||||
IS_MULTIMODAL = True
|
||||
|
||||
# TODO Whisper-specific. Abstract interface when more models are supported.
|
||||
TRANSCRIPTION_PREAMBLE = "<|startoftranscript|><|en|><|transcribe|>"\
|
||||
"<|notimestamps|>"
|
||||
skip_long_audios: bool = True
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
import librosa
|
||||
output_len = (output_len
|
||||
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
||||
prompt = ASRDataset.TRANSCRIPTION_PREAMBLE
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests = []
|
||||
skipped = 0
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
audio = item["audio"]
|
||||
y, sr = audio["array"], audio["sampling_rate"]
|
||||
duration_s = librosa.get_duration(y=y, sr=sr)
|
||||
# Whisper max supported duration
|
||||
if self.skip_long_audios and duration_s > 30:
|
||||
skipped += 1
|
||||
continue
|
||||
|
||||
mm_content = {"audio": (y, sr)}
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
))
|
||||
if skipped:
|
||||
logger.warning("%d samples discarded from dataset due to" \
|
||||
" their length being greater than" \
|
||||
" what Whisper supports.", skipped)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
@ -63,14 +63,16 @@ class Request:
|
||||
output_len: int
|
||||
|
||||
|
||||
def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> str:
|
||||
def sample_tokens(tokenizer: PreTrainedTokenizerBase,
|
||||
length: int) -> list[int]:
|
||||
vocab = tokenizer.get_vocab()
|
||||
all_special_ids = set(tokenizer.all_special_ids)
|
||||
|
||||
# Remove the special tokens.
|
||||
vocab = {
|
||||
k: v
|
||||
for k, v in vocab.items() if k not in tokenizer.all_special_ids
|
||||
}
|
||||
return random.choices(list(vocab.values()), k=length)
|
||||
return random.choices(
|
||||
[v for k, v in vocab.items() if k not in all_special_ids],
|
||||
k=length,
|
||||
)
|
||||
|
||||
|
||||
def sample_requests_from_dataset(
|
||||
|
@ -7,9 +7,6 @@ On the server side, run one of the following commands:
|
||||
--swap-space 16 \
|
||||
--disable-log-requests
|
||||
|
||||
(TGI backend)
|
||||
./launch_tgi_server.sh <your_model> <max_batch_total_tokens>
|
||||
|
||||
On the client side, run:
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend <backend> \
|
||||
@ -37,7 +34,8 @@ from datetime import datetime
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
|
||||
from backend_request_func import (ASYNC_REQUEST_FUNCS,
|
||||
OPENAI_COMPATIBLE_BACKENDS, RequestFuncInput,
|
||||
RequestFuncOutput)
|
||||
from tqdm.asyncio import tqdm
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
@ -52,9 +50,11 @@ try:
|
||||
except ImportError:
|
||||
from argparse import ArgumentParser as FlexibleArgumentParser
|
||||
|
||||
from benchmark_dataset import (BurstGPTDataset, HuggingFaceDataset,
|
||||
RandomDataset, SampleRequest, ShareGPTDataset,
|
||||
SonnetDataset, VisionArenaDataset)
|
||||
from benchmark_dataset import (AIMODataset, ASRDataset, BurstGPTDataset,
|
||||
ConversationDataset, HuggingFaceDataset,
|
||||
InstructCoderDataset, RandomDataset,
|
||||
SampleRequest, ShareGPTDataset, SonnetDataset,
|
||||
VisionArenaDataset)
|
||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
|
||||
@ -156,7 +156,7 @@ def calculate_metrics(
|
||||
if outputs[i].success:
|
||||
output_len = outputs[i].output_tokens
|
||||
|
||||
if output_len is None:
|
||||
if not output_len:
|
||||
# We use the tokenizer to count the number of output tokens
|
||||
# for some serving backends instead of looking at
|
||||
# len(outputs[i].itl) since multiple output tokens may be
|
||||
@ -261,6 +261,7 @@ async def benchmark(
|
||||
goodput_config_dict: dict[str, float],
|
||||
max_concurrency: Optional[int],
|
||||
lora_modules: Optional[Iterable[str]],
|
||||
extra_body: Optional[dict],
|
||||
):
|
||||
if backend in ASYNC_REQUEST_FUNCS:
|
||||
request_func = ASYNC_REQUEST_FUNCS[backend]
|
||||
@ -273,10 +274,6 @@ async def benchmark(
|
||||
input_requests[0].expected_output_len, \
|
||||
input_requests[0].multi_modal_data
|
||||
|
||||
if backend != "openai-chat" and test_mm_content is not None:
|
||||
# multi-modal benchmark is only available on OpenAI Chat backend.
|
||||
raise ValueError(
|
||||
"Multi-modal content is only supported on 'openai-chat' backend.")
|
||||
assert test_mm_content is None or isinstance(test_mm_content, dict)
|
||||
test_input = RequestFuncInput(
|
||||
model=model_id,
|
||||
@ -288,6 +285,7 @@ async def benchmark(
|
||||
logprobs=logprobs,
|
||||
multi_modal_content=test_mm_content,
|
||||
ignore_eos=ignore_eos,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
|
||||
test_output = await request_func(request_func_input=test_input)
|
||||
@ -314,7 +312,8 @@ async def benchmark(
|
||||
output_len=test_output_len,
|
||||
logprobs=logprobs,
|
||||
multi_modal_content=test_mm_content,
|
||||
ignore_eos=ignore_eos)
|
||||
ignore_eos=ignore_eos,
|
||||
extra_body=extra_body)
|
||||
profile_output = await request_func(request_func_input=profile_input)
|
||||
if profile_output.success:
|
||||
print("Profiler started")
|
||||
@ -364,7 +363,8 @@ async def benchmark(
|
||||
output_len=output_len,
|
||||
logprobs=logprobs,
|
||||
multi_modal_content=mm_content,
|
||||
ignore_eos=ignore_eos)
|
||||
ignore_eos=ignore_eos,
|
||||
extra_body=extra_body)
|
||||
tasks.append(
|
||||
asyncio.create_task(
|
||||
limited_request_func(request_func_input=request_func_input,
|
||||
@ -586,19 +586,49 @@ def main(args: argparse.Namespace):
|
||||
return_prompt_formatted=True)
|
||||
|
||||
elif args.dataset_name == "hf":
|
||||
# Choose between VisionArenaDataset
|
||||
# and HuggingFaceDataset based on provided parameters.
|
||||
dataset_class = (VisionArenaDataset if args.dataset_path
|
||||
== VisionArenaDataset.VISION_ARENA_DATASET_PATH
|
||||
and args.hf_subset is None else HuggingFaceDataset)
|
||||
# all following datasets are implemented from the
|
||||
# HuggingFaceDataset base class
|
||||
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_class = VisionArenaDataset
|
||||
args.hf_split = "train"
|
||||
args.hf_subset = None
|
||||
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_class = InstructCoderDataset
|
||||
args.hf_split = "train"
|
||||
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_class = ConversationDataset
|
||||
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_class = AIMODataset
|
||||
args.hf_split = "train"
|
||||
elif args.dataset_path in ASRDataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_class = ASRDataset
|
||||
args.hf_split = "train"
|
||||
else:
|
||||
supported_datasets = set([
|
||||
dataset_name for cls in HuggingFaceDataset.__subclasses__()
|
||||
for dataset_name in cls.SUPPORTED_DATASET_PATHS
|
||||
])
|
||||
raise ValueError(
|
||||
f"Unsupported dataset path: {args.dataset_path}. "
|
||||
"Huggingface dataset only supports dataset_path"
|
||||
f" from one of following: {supported_datasets}. "
|
||||
"Please consider contributing if you would "
|
||||
"like to add support for additional dataset formats.")
|
||||
|
||||
if (dataset_class.IS_MULTIMODAL and backend not in \
|
||||
["openai-chat", "openai-audio"]):
|
||||
# multi-modal benchmark is only available on OpenAI Chat backend.
|
||||
raise ValueError(
|
||||
"Multi-modal content is only supported on 'openai-chat' and " \
|
||||
"'openai-audio' backend.")
|
||||
input_requests = dataset_class(
|
||||
dataset_path=args.dataset_path,
|
||||
dataset_subset=args.hf_subset,
|
||||
dataset_split=args.hf_split,
|
||||
random_seed=args.seed,
|
||||
).sample(
|
||||
num_requests=args.num_prompts,
|
||||
tokenizer=tokenizer,
|
||||
random_seed=args.seed,
|
||||
output_len=args.hf_output_len,
|
||||
)
|
||||
|
||||
@ -633,6 +663,26 @@ def main(args: argparse.Namespace):
|
||||
raise ValueError(f"Unknown dataset: {args.dataset_name}") from err
|
||||
goodput_config_dict = check_goodput_args(args)
|
||||
|
||||
# Collect the sampling parameters.
|
||||
sampling_params = {
|
||||
k: v
|
||||
for k, v in {
|
||||
"top_p": args.top_p,
|
||||
"top_k": args.top_k,
|
||||
"min_p": args.min_p,
|
||||
"temperature": args.temperature
|
||||
}.items() if v is not None
|
||||
}
|
||||
|
||||
# Sampling parameters are only supported by openai-compatible backend.
|
||||
if sampling_params and args.backend not in OPENAI_COMPATIBLE_BACKENDS:
|
||||
raise ValueError(
|
||||
"Sampling parameters are only supported by openai-compatible "
|
||||
"backends.")
|
||||
|
||||
if "temperature" not in sampling_params:
|
||||
sampling_params["temperature"] = 0.0 # Default to greedy decoding.
|
||||
|
||||
# Avoid GC processing "static" data - reduce pause times.
|
||||
gc.collect()
|
||||
gc.freeze()
|
||||
@ -659,10 +709,11 @@ def main(args: argparse.Namespace):
|
||||
goodput_config_dict=goodput_config_dict,
|
||||
max_concurrency=args.max_concurrency,
|
||||
lora_modules=args.lora_modules,
|
||||
extra_body=sampling_params,
|
||||
))
|
||||
|
||||
# Save config and results to json
|
||||
if args.save_result:
|
||||
if args.save_result or args.append_result:
|
||||
result_json: dict[str, Any] = {}
|
||||
|
||||
# Setup
|
||||
@ -683,6 +734,14 @@ def main(args: argparse.Namespace):
|
||||
raise ValueError(
|
||||
"Invalid metadata format. Please use KEY=VALUE format."
|
||||
)
|
||||
# Traffic
|
||||
result_json["request_rate"] = (args.request_rate if args.request_rate
|
||||
< float("inf") else "inf")
|
||||
result_json["burstiness"] = args.burstiness
|
||||
result_json["max_concurrency"] = args.max_concurrency
|
||||
|
||||
# Merge with benchmark result
|
||||
result_json = {**result_json, **benchmark_result}
|
||||
|
||||
if not args.save_detailed:
|
||||
# Remove fields with too many data points
|
||||
@ -693,15 +752,6 @@ def main(args: argparse.Namespace):
|
||||
if field in result_json:
|
||||
del result_json[field]
|
||||
|
||||
# Traffic
|
||||
result_json["request_rate"] = (args.request_rate if args.request_rate
|
||||
< float("inf") else "inf")
|
||||
result_json["burstiness"] = args.burstiness
|
||||
result_json["max_concurrency"] = args.max_concurrency
|
||||
|
||||
# Merge with benchmark result
|
||||
result_json = {**result_json, **benchmark_result}
|
||||
|
||||
# Save to file
|
||||
base_model_id = model_id.split("/")[-1]
|
||||
max_concurrency_str = (f"-concurrency{args.max_concurrency}"
|
||||
@ -711,7 +761,12 @@ def main(args: argparse.Namespace):
|
||||
file_name = args.result_filename
|
||||
if args.result_dir:
|
||||
file_name = os.path.join(args.result_dir, file_name)
|
||||
with open(file_name, "w", encoding='utf-8') as outfile:
|
||||
with open(file_name,
|
||||
mode="a+" if args.append_result else "w",
|
||||
encoding='utf-8') as outfile:
|
||||
# Append a newline.
|
||||
if args.append_result and outfile.tell() != 0:
|
||||
outfile.write("\n")
|
||||
json.dump(result_json, outfile)
|
||||
save_to_pytorch_benchmark_format(args, result_json, file_name)
|
||||
|
||||
@ -843,6 +898,11 @@ if __name__ == "__main__":
|
||||
help="When saving the results, whether to include per request "
|
||||
"information such as response, error, ttfs, tpots, etc.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--append-result",
|
||||
action="store_true",
|
||||
help="Append the benchmark result to the existing json file.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--metadata",
|
||||
metavar="KEY=VALUE",
|
||||
@ -876,7 +936,7 @@ if __name__ == "__main__":
|
||||
"--percentile-metrics",
|
||||
type=str,
|
||||
default="ttft,tpot,itl",
|
||||
help="Comma-seperated list of selected metrics to report percentils. "
|
||||
help="Comma-separated list of selected metrics to report percentils. "
|
||||
"This argument specifies the metrics to report percentiles. "
|
||||
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
|
||||
"Default value is \"ttft,tpot,itl\".")
|
||||
@ -884,7 +944,7 @@ if __name__ == "__main__":
|
||||
"--metric-percentiles",
|
||||
type=str,
|
||||
default="99",
|
||||
help="Comma-seperated list of percentiles for selected metrics. "
|
||||
help="Comma-separated list of percentiles for selected metrics. "
|
||||
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
|
||||
"Default value is \"99\". "
|
||||
"Use \"--percentile-metrics\" to select metrics.",
|
||||
@ -951,18 +1011,23 @@ if __name__ == "__main__":
|
||||
random_group.add_argument(
|
||||
"--random-range-ratio",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Range of sampled ratio of input/output length, "
|
||||
"used only for random sampling.",
|
||||
default=0.0,
|
||||
help="Range ratio for sampling input/output length, "
|
||||
"used only for random sampling. Must be in the range [0, 1) to define "
|
||||
"a symmetric sampling range"
|
||||
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
|
||||
)
|
||||
random_group.add_argument(
|
||||
"--random-prefix-len",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Number of fixed prefix tokens before random "
|
||||
" context. The length range of context in a random "
|
||||
" request is [random-prefix-len, "
|
||||
" random-prefix-len + random-prefix-len * random-range-ratio).")
|
||||
help=("Number of fixed prefix tokens before the random context "
|
||||
"in a request. "
|
||||
"The total input length is the sum of `random-prefix-len` and "
|
||||
"a random "
|
||||
"context length sampled from [input_len * (1 - range_ratio), "
|
||||
"input_len * (1 + range_ratio)]."),
|
||||
)
|
||||
|
||||
hf_group = parser.add_argument_group("hf dataset options")
|
||||
hf_group.add_argument("--hf-subset",
|
||||
@ -981,6 +1046,33 @@ if __name__ == "__main__":
|
||||
"from the sampled HF dataset.",
|
||||
)
|
||||
|
||||
sampling_group = parser.add_argument_group("sampling parameters")
|
||||
sampling_group.add_argument(
|
||||
"--top-p",
|
||||
type=float,
|
||||
default=None,
|
||||
help="Top-p sampling parameter. Only has effect on openai-compatible "
|
||||
"backends.")
|
||||
sampling_group.add_argument(
|
||||
"--top-k",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Top-k sampling parameter. Only has effect on openai-compatible "
|
||||
"backends.")
|
||||
sampling_group.add_argument(
|
||||
"--min-p",
|
||||
type=float,
|
||||
default=None,
|
||||
help="Min-p sampling parameter. Only has effect on openai-compatible "
|
||||
"backends.")
|
||||
sampling_group.add_argument(
|
||||
"--temperature",
|
||||
type=float,
|
||||
default=None,
|
||||
help="Temperature sampling parameter. Only has effect on "
|
||||
"openai-compatible backends. If not specified, default to greedy "
|
||||
"decoding (i.e. temperature==0.0).")
|
||||
|
||||
parser.add_argument(
|
||||
'--tokenizer-mode',
|
||||
type=str,
|
||||
|
@ -5,16 +5,13 @@ On the server side, run one of the following commands:
|
||||
(vLLM OpenAI API server)
|
||||
vllm serve <your_model> --disable-log-requests
|
||||
|
||||
(TGI backend)
|
||||
./launch_tgi_server.sh <your_model> <max_batch_total_tokens>
|
||||
|
||||
On the client side, run:
|
||||
python benchmarks/benchmark_serving_structured_output.py \
|
||||
--backend <backend> \
|
||||
--model <your_model> \
|
||||
--dataset json \
|
||||
--structured-output-ratio 1.0 \
|
||||
--structured-output-backend xgrammar \
|
||||
--structured-output-backend auto \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
|
||||
@ -54,7 +51,7 @@ try:
|
||||
except ImportError:
|
||||
from argparse import ArgumentParser as FlexibleArgumentParser
|
||||
|
||||
from vllm.v1.structured_output.utils import (
|
||||
from vllm.v1.structured_output.backend_xgrammar import (
|
||||
has_xgrammar_unsupported_json_features)
|
||||
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
|
||||
@ -133,10 +130,11 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
"description":
|
||||
"An unique optional field to avoid cached schemas"
|
||||
}
|
||||
else:
|
||||
json_schemas = [schema] * args.num_prompts
|
||||
|
||||
def gen_prompt(index: int):
|
||||
schema = json_schemas[index % len(json_schemas)]
|
||||
return f"Generate an example of a user profile given the following schema: {json.dumps(schema)}" # noqa: E501
|
||||
return f"Generate an example of a user profile given the following schema: {json.dumps(get_schema(index))}" # noqa: E501
|
||||
|
||||
def get_schema(index: int):
|
||||
return json_schemas[index % len(json_schemas)]
|
||||
@ -152,17 +150,17 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
|
||||
elif args.dataset == "grammar":
|
||||
schema = """
|
||||
?start: select_statement
|
||||
root ::= select_statement
|
||||
|
||||
?select_statement: "SELECT " column_list " FROM " table_name
|
||||
select_statement ::= "SELECT " column " from " table " where " condition
|
||||
|
||||
?column_list: column_name ("," column_name)*
|
||||
column ::= "col_1 " | "col_2 "
|
||||
|
||||
?table_name: identifier
|
||||
table ::= "table_1 " | "table_2 "
|
||||
|
||||
?column_name: identifier
|
||||
condition ::= column "= " number
|
||||
|
||||
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
|
||||
number ::= "1 " | "2 "
|
||||
"""
|
||||
prompt = "Generate an SQL query to show the 'username' \
|
||||
and 'email' from the 'users' table."
|
||||
@ -732,8 +730,11 @@ def main(args: argparse.Namespace):
|
||||
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
|
||||
base_url = f"http://{args.host}:{args.port}"
|
||||
|
||||
tokenizer = get_tokenizer(tokenizer_id,
|
||||
trust_remote_code=args.trust_remote_code)
|
||||
tokenizer = get_tokenizer(
|
||||
tokenizer_id,
|
||||
trust_remote_code=args.trust_remote_code,
|
||||
tokenizer_mode=args.tokenizer_mode,
|
||||
)
|
||||
|
||||
if args.dataset == 'grammar':
|
||||
args.structure_type = 'guided_grammar'
|
||||
@ -876,6 +877,13 @@ if __name__ == "__main__":
|
||||
help=
|
||||
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer-mode",
|
||||
type=str,
|
||||
default="auto",
|
||||
help=
|
||||
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-prompts",
|
||||
type=int,
|
||||
@ -956,7 +964,7 @@ if __name__ == "__main__":
|
||||
"--percentile-metrics",
|
||||
type=str,
|
||||
default="ttft,tpot,itl",
|
||||
help="Comma-seperated list of selected metrics to report percentils. "
|
||||
help="Comma-separated list of selected metrics to report percentils. "
|
||||
"This argument specifies the metrics to report percentiles. "
|
||||
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
|
||||
"Default value is \"ttft,tpot,itl\".")
|
||||
@ -964,7 +972,7 @@ if __name__ == "__main__":
|
||||
"--metric-percentiles",
|
||||
type=str,
|
||||
default="99",
|
||||
help="Comma-seperated list of percentiles for selected metrics. "
|
||||
help="Comma-separated list of percentiles for selected metrics. "
|
||||
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
|
||||
"Default value is \"99\". "
|
||||
"Use \"--percentile-metrics\" to select metrics.",
|
||||
@ -991,8 +999,11 @@ if __name__ == "__main__":
|
||||
help="Ratio of Structured Outputs requests")
|
||||
parser.add_argument("--structured-output-backend",
|
||||
type=str,
|
||||
choices=["outlines", "lm-format-enforcer", "xgrammar"],
|
||||
default="xgrammar",
|
||||
choices=[
|
||||
"outlines", "lm-format-enforcer", "xgrammar",
|
||||
"guidance", "auto"
|
||||
],
|
||||
default="auto",
|
||||
help="Backend to use for structured outputs")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
@ -11,7 +11,8 @@ from typing import Any, Optional, Union
|
||||
|
||||
import torch
|
||||
import uvloop
|
||||
from benchmark_dataset import (BurstGPTDataset, HuggingFaceDataset,
|
||||
from benchmark_dataset import (AIMODataset, BurstGPTDataset,
|
||||
ConversationDataset, InstructCoderDataset,
|
||||
RandomDataset, SampleRequest, ShareGPTDataset,
|
||||
SonnetDataset, VisionArenaDataset)
|
||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||
@ -212,14 +213,17 @@ def run_hf(
|
||||
max_prompt_len = 0
|
||||
max_output_len = 0
|
||||
for i in range(len(requests)):
|
||||
prompt, prompt_len, output_len = requests[i]
|
||||
prompt = requests[i].prompt
|
||||
prompt_len = requests[i].prompt_len
|
||||
output_len = requests[i].expected_output_len
|
||||
# Add the prompt to the batch.
|
||||
batch.append(prompt)
|
||||
max_prompt_len = max(max_prompt_len, prompt_len)
|
||||
max_output_len = max(max_output_len, output_len)
|
||||
if len(batch) < max_batch_size and i != len(requests) - 1:
|
||||
# Check if we can add more requests to the batch.
|
||||
_, next_prompt_len, next_output_len = requests[i + 1]
|
||||
next_prompt_len = requests[i + 1].prompt_len
|
||||
next_output_len = requests[i + 1].expected_output_len
|
||||
if (max(max_prompt_len, next_prompt_len) +
|
||||
max(max_output_len, next_output_len)) <= 2048:
|
||||
# We can add more requests to the batch.
|
||||
@ -300,6 +304,7 @@ def get_requests(args, tokenizer):
|
||||
"input_len": args.input_len,
|
||||
"output_len": args.output_len,
|
||||
}
|
||||
|
||||
if args.dataset_path is None or args.dataset_name == "random":
|
||||
sample_kwargs["range_ratio"] = args.random_range_ratio
|
||||
sample_kwargs["prefix_len"] = args.prefix_len
|
||||
@ -317,18 +322,23 @@ def get_requests(args, tokenizer):
|
||||
elif args.dataset_name == "burstgpt":
|
||||
dataset_cls = BurstGPTDataset
|
||||
elif args.dataset_name == "hf":
|
||||
if args.backend != "vllm-chat":
|
||||
raise ValueError(
|
||||
"hf datasets only are supported by vllm-chat backend")
|
||||
# Choose between VisionArenaDataset and HuggingFaceDataset based on
|
||||
# provided parameters.
|
||||
dataset_cls = (VisionArenaDataset if args.dataset_path
|
||||
== VisionArenaDataset.VISION_ARENA_DATASET_PATH
|
||||
and args.hf_subset is None else HuggingFaceDataset)
|
||||
common_kwargs['dataset_subset'] = args.hf_subset
|
||||
common_kwargs['dataset_split'] = args.hf_split
|
||||
sample_kwargs["enable_multimodal_chat"] = True
|
||||
|
||||
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_cls = VisionArenaDataset
|
||||
common_kwargs['dataset_subset'] = None
|
||||
common_kwargs['dataset_split'] = "train"
|
||||
sample_kwargs["enable_multimodal_chat"] = True
|
||||
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_cls = InstructCoderDataset
|
||||
common_kwargs['dataset_split'] = "train"
|
||||
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_cls = ConversationDataset
|
||||
common_kwargs['dataset_subset'] = args.hf_subset
|
||||
common_kwargs['dataset_split'] = args.hf_split
|
||||
sample_kwargs["enable_multimodal_chat"] = True
|
||||
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_cls = AIMODataset
|
||||
common_kwargs['dataset_subset'] = None
|
||||
common_kwargs['dataset_split'] = "train"
|
||||
else:
|
||||
raise ValueError(f"Unknown dataset name: {args.dataset_name}")
|
||||
# Remove None values
|
||||
@ -462,9 +472,17 @@ def validate_args(args):
|
||||
warnings.warn("--hf-subset and --hf-split will be ignored \
|
||||
since --dataset-name is not 'hf'.",
|
||||
stacklevel=2)
|
||||
elif args.dataset_name == "hf" and args.backend != "vllm-chat":
|
||||
raise ValueError(
|
||||
"When --dataset-name is 'hf', backend must be 'vllm-chat'")
|
||||
elif args.dataset_name == "hf":
|
||||
if args.dataset_path in (
|
||||
VisionArenaDataset.SUPPORTED_DATASET_PATHS.keys()
|
||||
| ConversationDataset.SUPPORTED_DATASET_PATHS):
|
||||
assert args.backend == "vllm-chat", f"{args.dataset_path} needs to use vllm-chat as the backend." #noqa: E501
|
||||
elif args.dataset_path in (InstructCoderDataset.SUPPORTED_DATASET_PATHS
|
||||
| AIMODataset.SUPPORTED_DATASET_PATHS):
|
||||
assert args.backend == "vllm", f"{args.dataset_path} needs to use vllm as the backend." #noqa: E501
|
||||
else:
|
||||
raise ValueError(
|
||||
f"{args.dataset_path} is not supported by hf dataset.")
|
||||
|
||||
# --random-range-ratio: only used when dataset_name is 'random'
|
||||
if args.dataset_name != 'random' and args.random_range_ratio is not None:
|
||||
@ -505,6 +523,13 @@ def validate_args(args):
|
||||
raise ValueError(
|
||||
"Tokenizer must be the same as the model for MII backend.")
|
||||
|
||||
# --data-parallel is not supported currently.
|
||||
# https://github.com/vllm-project/vllm/issues/16222
|
||||
if args.data_parallel_size > 1:
|
||||
raise ValueError(
|
||||
"Data parallel is not supported in offline benchmark, \
|
||||
please use benchmark serving instead")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
|
||||
@ -576,18 +601,30 @@ if __name__ == "__main__":
|
||||
default=None,
|
||||
help="Path to the lora adapters to use. This can be an absolute path, "
|
||||
"a relative path, or a Hugging Face model identifier.")
|
||||
parser.add_argument("--prefix-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Number of prefix tokens per request."
|
||||
"This is for the RandomDataset and SonnetDataset")
|
||||
parser.add_argument(
|
||||
"--prefix-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help=f"Number of prefix tokens to be used in RandomDataset "
|
||||
"and SonnetDataset. For RandomDataset, the total input "
|
||||
"length is the sum of prefix-len (default: "
|
||||
f"{RandomDataset.DEFAULT_PREFIX_LEN}) and a random context length "
|
||||
"sampled from [input_len * (1 - range_ratio), "
|
||||
"input_len * (1 + range_ratio)]. For SonnetDataset, "
|
||||
f"prefix_len (default: {SonnetDataset.DEFAULT_PREFIX_LEN}) "
|
||||
"controls how much of the input is fixed lines versus "
|
||||
"random lines, but the total input length remains approximately "
|
||||
"input_len tokens.")
|
||||
# random dataset
|
||||
parser.add_argument(
|
||||
"--random-range-ratio",
|
||||
type=float,
|
||||
default=None,
|
||||
help="Range of sampled ratio of input/output length, "
|
||||
"used only for RandomDataSet.",
|
||||
help=f"Range ratio (default : {RandomDataset.DEFAULT_RANGE_RATIO}) "
|
||||
"for sampling input/output length, "
|
||||
"used only for RandomDataset. Must be in the range [0, 1) to "
|
||||
"define a symmetric sampling range "
|
||||
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
|
||||
)
|
||||
|
||||
# hf dtaset
|
||||
|
236
benchmarks/kernels/benchmark_bitblas.py
Normal file
236
benchmarks/kernels/benchmark_bitblas.py
Normal file
@ -0,0 +1,236 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT License.
|
||||
|
||||
from vllm.model_executor.layers.quantization.utils.bitblas_utils import (
|
||||
MINIMUM_BITBLAS_VERSION)
|
||||
|
||||
try:
|
||||
import bitblas
|
||||
if bitblas.__version__ < MINIMUM_BITBLAS_VERSION:
|
||||
raise ImportError("bitblas version is wrong. Please "
|
||||
f"install bitblas>={MINIMUM_BITBLAS_VERSION}")
|
||||
except ImportError as e:
|
||||
bitblas_import_exception = e
|
||||
raise ValueError("Trying to use the bitblas backend, but could not import"
|
||||
f"with the following error: {bitblas_import_exception}. "
|
||||
"Please install bitblas through the following command: "
|
||||
f"`pip install bitblas>={MINIMUM_BITBLAS_VERSION}`"
|
||||
) from bitblas_import_exception
|
||||
|
||||
from bitblas import Matmul, MatmulConfig, auto_detect_nvidia_target
|
||||
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark BitBLAS int4 on a specific target.")
|
||||
|
||||
# Add arguments to the parser
|
||||
parser.add_argument(
|
||||
"--target",
|
||||
type=str,
|
||||
default=auto_detect_nvidia_target(),
|
||||
help="Specify the target device for benchmarking.",
|
||||
)
|
||||
parser.add_argument("--group_size",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Group size for grouped quantization.")
|
||||
parser.add_argument(
|
||||
"--A_dtype",
|
||||
type=str,
|
||||
default="float16",
|
||||
choices=["float16", "float32", "float64", "int32", "int8"],
|
||||
help="Data type of activation A.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--W_dtype",
|
||||
type=str,
|
||||
default="int4",
|
||||
choices=[
|
||||
"float16",
|
||||
"float32",
|
||||
"float64",
|
||||
"int32",
|
||||
"int8",
|
||||
"int4",
|
||||
"int2",
|
||||
"int1",
|
||||
"nf4",
|
||||
"fp4_e2m1",
|
||||
],
|
||||
help="Data type of weight W.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--accum_dtype",
|
||||
type=str,
|
||||
default="float16",
|
||||
choices=["float16", "int32"],
|
||||
help="Data type for accumulation.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--out_dtype",
|
||||
type=str,
|
||||
default="float16",
|
||||
choices=["float16", "float32", "int32", "int8"],
|
||||
help="Data type for output.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--layout",
|
||||
type=str,
|
||||
default="nt",
|
||||
choices=["nt", "nn"],
|
||||
help="Matrix layout, 'nt' for non-transpose A and transpose W.",
|
||||
)
|
||||
parser.add_argument("--with_bias",
|
||||
action="store_true",
|
||||
help="Include bias in the benchmark.")
|
||||
parser.add_argument(
|
||||
"--with_scaling",
|
||||
action="store_true",
|
||||
help="Include scaling factor in the quantization.",
|
||||
)
|
||||
parser.add_argument("--with_zeros",
|
||||
action="store_true",
|
||||
help="Include zeros in the quantization.")
|
||||
parser.add_argument(
|
||||
"--zeros_mode",
|
||||
type=str,
|
||||
default=None,
|
||||
choices=["original", "rescale", "quantized"],
|
||||
help="Specify the mode for calculating zeros.",
|
||||
)
|
||||
|
||||
# Parse the arguments
|
||||
args = parser.parse_args()
|
||||
|
||||
# Assign arguments to variables
|
||||
target = args.target
|
||||
A_dtype = args.A_dtype
|
||||
W_dtype = args.W_dtype
|
||||
accum_dtype = args.accum_dtype
|
||||
out_dtype = args.out_dtype
|
||||
layout = args.layout
|
||||
with_bias = args.with_bias
|
||||
group_size = args.group_size
|
||||
with_scaling = args.with_scaling
|
||||
with_zeros = args.with_zeros
|
||||
zeros_mode = args.zeros_mode
|
||||
|
||||
# Define a list of shared arguments that repeat in every config
|
||||
shared_args = [
|
||||
A_dtype,
|
||||
W_dtype,
|
||||
out_dtype,
|
||||
accum_dtype,
|
||||
layout,
|
||||
with_bias,
|
||||
group_size,
|
||||
with_scaling,
|
||||
with_zeros,
|
||||
zeros_mode,
|
||||
]
|
||||
|
||||
# Define just the (M, K, N) shapes in a more compact list
|
||||
shapes = [
|
||||
# square test
|
||||
(1, 16384, 16384),
|
||||
# BLOOM-176B
|
||||
(1, 43008, 14336),
|
||||
(1, 14336, 14336),
|
||||
(1, 57344, 14336),
|
||||
(1, 14336, 57344),
|
||||
# OPT-65B
|
||||
(1, 9216, 9216),
|
||||
(1, 36864, 9216),
|
||||
(1, 9216, 36864),
|
||||
(1, 22016, 8192),
|
||||
# LLAMA-70B/65B
|
||||
(1, 8192, 22016),
|
||||
(1, 8192, 8192),
|
||||
(1, 28672, 8192),
|
||||
(1, 8192, 28672),
|
||||
# square test
|
||||
(16384, 16384, 16384),
|
||||
# BLOOM-176B
|
||||
(8192, 43008, 14336),
|
||||
(8192, 14336, 14336),
|
||||
(8192, 57344, 14336),
|
||||
(8192, 14336, 57344),
|
||||
# OPT-65B
|
||||
(8192, 9216, 9216),
|
||||
(8192, 36864, 9216),
|
||||
(8192, 9216, 36864),
|
||||
(8192, 22016, 8192),
|
||||
# LLAMA-70B/65B
|
||||
(8192, 8192, 22016),
|
||||
(8192, 8192, 8192),
|
||||
(8192, 28672, 8192),
|
||||
(8192, 8192, 28672),
|
||||
]
|
||||
|
||||
# Build test shapes with all the shared arguments
|
||||
test_shapes = [(MatmulConfig, Matmul, (*shape, *shared_args))
|
||||
for shape in shapes]
|
||||
|
||||
benchmark_sets = []
|
||||
benchmark_sets.extend(test_shapes)
|
||||
|
||||
benchmark_results = {}
|
||||
for config_class, operator, input_args in benchmark_sets:
|
||||
config = config_class(*input_args)
|
||||
matmul = operator(config, target=target, enable_tuning=True)
|
||||
kernel_latency = matmul.profile_latency()
|
||||
|
||||
print("Time cost is: {:.3f} ms".format(kernel_latency))
|
||||
|
||||
profile_config = {
|
||||
f"{operator.__name__}-{'-'.join([str(i) for i in input_args])}": {
|
||||
"BitBLAS_top20_latency": kernel_latency,
|
||||
}
|
||||
}
|
||||
|
||||
benchmark_results.update(profile_config)
|
||||
|
||||
# Define headers for the table
|
||||
headers = [
|
||||
"PrimFunc",
|
||||
"Input Arguments",
|
||||
"BitBLAS Top20 Latency",
|
||||
]
|
||||
|
||||
# Calculate column widths for pretty printing
|
||||
col_widths = [0, 0, 0]
|
||||
for config_key, values in benchmark_results.items():
|
||||
args_split = config_key.split("-")
|
||||
func_name = args_split[0]
|
||||
input_args_str = "-".join(args_split[1:])
|
||||
col_widths[0] = max(col_widths[0], len(func_name) + 2, len(headers[0]) + 2)
|
||||
col_widths[1] = max(col_widths[1],
|
||||
len(input_args_str) + 2,
|
||||
len(headers[1]) + 2)
|
||||
col_widths[2] = max(col_widths[2],
|
||||
len(f"{values['BitBLAS_top20_latency']:.3f} ms") + 2,
|
||||
len(headers[2]) + 2)
|
||||
# break only if you want to measure widths from a single example;
|
||||
# otherwise, let it loop over all items.
|
||||
|
||||
# Print header
|
||||
for i, header in enumerate(headers):
|
||||
headers[i] = header.ljust(col_widths[i])
|
||||
print("".join(headers))
|
||||
print("-" * sum(col_widths))
|
||||
|
||||
# Print rows
|
||||
for config_key, values in benchmark_results.items():
|
||||
args_split = config_key.split("-")
|
||||
func_name = args_split[0]
|
||||
input_args_str = "-".join(args_split[1:])
|
||||
row = [
|
||||
func_name,
|
||||
input_args_str,
|
||||
f"{values['BitBLAS_top20_latency']:.3f} ms",
|
||||
]
|
||||
row_str = "".join(
|
||||
[str(cell).ljust(col_widths[idx]) for idx, cell in enumerate(row)])
|
||||
print(row_str)
|
340
benchmarks/kernels/benchmark_grouped_gemm_cutlass.py
Normal file
340
benchmarks/kernels/benchmark_grouped_gemm_cutlass.py
Normal file
@ -0,0 +1,340 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as benchmark
|
||||
from benchmark_shapes import WEIGHT_SHAPES_MOE
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import (cutlass_moe_fp8,
|
||||
fused_experts,
|
||||
fused_topk)
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
DEFAULT_MODELS = [
|
||||
"nm-testing/Mixtral-8x7B-Instruct-v0.1", "nm-testing/deepseekv2-lite",
|
||||
"ibm-granite/granite-3.0-1b-a400m", "ibm-granite/granite-3.0-3b-a800m"
|
||||
]
|
||||
DEFAULT_BATCH_SIZES = [1, 4, 8, 16, 32, 64, 128, 256, 512]
|
||||
DEFAULT_TP_SIZES = [1]
|
||||
|
||||
PER_ACT_TOKEN_OPTS = [False]
|
||||
PER_OUT_CH_OPTS = [False]
|
||||
|
||||
|
||||
def to_fp8(tensor: torch.Tensor):
|
||||
finfo = torch.finfo(torch.float8_e4m3fn)
|
||||
return torch.round(tensor.clamp(
|
||||
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
|
||||
|
||||
|
||||
def bench_run(results: list[benchmark.Measurement], model: str,
|
||||
num_experts: int, topk: int, per_act_token: bool,
|
||||
per_out_ch: bool, mkn: tuple[int, int, int]):
|
||||
label = "Quant Matmul"
|
||||
|
||||
sub_label = (
|
||||
"{}, num_experts={}, topk={}, per_act_token={} per_out_ch={}, "
|
||||
"MKN=({})".format(model, num_experts, topk, per_act_token, per_out_ch,
|
||||
mkn))
|
||||
|
||||
print(f"Testing: {sub_label}")
|
||||
|
||||
(m, k, n) = mkn
|
||||
|
||||
dtype = torch.half
|
||||
|
||||
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
|
||||
w1 = torch.randn((num_experts, 2 * n, k), device="cuda", dtype=dtype) / 10
|
||||
w2 = torch.randn((num_experts, k, n), device="cuda", dtype=dtype) / 10
|
||||
|
||||
_, a_scale = ops.scaled_fp8_quant(a)
|
||||
|
||||
w1_q = torch.empty((num_experts, 2 * n, k),
|
||||
device="cuda",
|
||||
dtype=torch.float8_e4m3fn)
|
||||
w2_q = torch.empty((num_experts, k, n),
|
||||
device="cuda",
|
||||
dtype=torch.float8_e4m3fn)
|
||||
w1_scale = torch.empty((num_experts, 1, 1),
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
w2_scale = torch.empty((num_experts, 1, 1),
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
|
||||
ab_strides1 = torch.full((num_experts, ),
|
||||
k,
|
||||
device="cuda",
|
||||
dtype=torch.int64)
|
||||
c_strides1 = torch.full((num_experts, ),
|
||||
2 * n,
|
||||
device="cuda",
|
||||
dtype=torch.int64)
|
||||
ab_strides2 = torch.full((num_experts, ),
|
||||
n,
|
||||
device="cuda",
|
||||
dtype=torch.int64)
|
||||
c_strides2 = torch.full((num_experts, ),
|
||||
k,
|
||||
device="cuda",
|
||||
dtype=torch.int64)
|
||||
|
||||
for expert in range(num_experts):
|
||||
w1_q[expert], w1_scale[expert] = ops.scaled_fp8_quant(w1[expert])
|
||||
w2_q[expert], w2_scale[expert] = ops.scaled_fp8_quant(w2[expert])
|
||||
w1_q_notransp = w1_q.clone()
|
||||
w2_q_notransp = w2_q.clone()
|
||||
w1_q = w1_q.transpose(1, 2)
|
||||
w2_q = w2_q.transpose(1, 2)
|
||||
|
||||
score = torch.randn((m, num_experts), device="cuda", dtype=dtype)
|
||||
|
||||
topk_weights, topk_ids = fused_topk(a, score, topk, renormalize=False)
|
||||
|
||||
def run_triton_moe(a: torch.Tensor, w1: torch.Tensor, w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
|
||||
w1_scale: torch.Tensor, w2_scale: torch.Tensor,
|
||||
a_scale: torch.Tensor, num_repeats: int):
|
||||
for _ in range(num_repeats):
|
||||
fused_experts(a,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
use_fp8_w8a8=True,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_scale)
|
||||
|
||||
def run_cutlass_moe(a: torch.Tensor, a_scale: torch.Tensor,
|
||||
w1: torch.Tensor, w2: torch.Tensor,
|
||||
w1_scale: torch.Tensor, w2_scale: torch.Tensor,
|
||||
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
|
||||
ab_strides1: torch.Tensor, c_strides1: torch.Tensor,
|
||||
ab_strides2: torch.Tensor, c_strides2: torch.Tensor,
|
||||
num_repeats: int):
|
||||
for _ in range(num_repeats):
|
||||
cutlass_moe_fp8(a,
|
||||
w1,
|
||||
w2,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
ab_strides1,
|
||||
c_strides1,
|
||||
ab_strides2,
|
||||
c_strides2,
|
||||
a1_scale=a_scale)
|
||||
|
||||
def run_cutlass_from_graph(
|
||||
a: torch.Tensor, a_scale: torch.Tensor, w1_q: torch.Tensor,
|
||||
w2_q: torch.Tensor, w1_scale: torch.Tensor, w2_scale: torch.Tensor,
|
||||
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
|
||||
ab_strides1: torch.Tensor, c_strides1: torch.Tensor,
|
||||
ab_strides2: torch.Tensor, c_strides2: torch.Tensor):
|
||||
with set_current_vllm_config(
|
||||
VllmConfig(parallel_config=ParallelConfig(
|
||||
pipeline_parallel_size=1))):
|
||||
return cutlass_moe_fp8(a,
|
||||
w1_q,
|
||||
w2_q,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
ab_strides1,
|
||||
c_strides1,
|
||||
ab_strides2,
|
||||
c_strides2,
|
||||
a1_scale=a_scale)
|
||||
|
||||
def run_triton_from_graph(a: torch.Tensor, w1: torch.Tensor,
|
||||
w2: torch.Tensor, topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor, w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor, a_scale: torch.Tensor):
|
||||
with set_current_vllm_config(
|
||||
VllmConfig(parallel_config=ParallelConfig(
|
||||
pipeline_parallel_size=1))):
|
||||
return fused_experts(a,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
use_fp8_w8a8=True,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_scale)
|
||||
|
||||
def replay_graph(graph, num_repeats):
|
||||
for _ in range(num_repeats):
|
||||
graph.replay()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
cutlass_stream = torch.cuda.Stream()
|
||||
cutlass_graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(cutlass_graph, stream=cutlass_stream):
|
||||
run_cutlass_from_graph(a, a_scale, w1_q, w2_q, w1_scale, w2_scale,
|
||||
topk_weights, topk_ids, ab_strides1, c_strides1,
|
||||
ab_strides2, c_strides2)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
triton_stream = torch.cuda.Stream()
|
||||
triton_graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(triton_graph, stream=triton_stream):
|
||||
run_triton_from_graph(a, w1_q_notransp, w2_q_notransp, topk_weights,
|
||||
topk_ids, w1_scale, w2_scale, a_scale)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
min_run_time = 5
|
||||
num_warmup = 5
|
||||
num_runs = 25
|
||||
|
||||
globals = {
|
||||
# Baseline params
|
||||
"w1": w1,
|
||||
"w2": w2,
|
||||
"score": score,
|
||||
"topk": topk,
|
||||
"w1_q_notransp": w1_q_notransp,
|
||||
"w2_q_notransp": w2_q_notransp,
|
||||
# Cutlass params
|
||||
"a_scale": a_scale,
|
||||
"w1_q": w1_q,
|
||||
"w2_q": w2_q,
|
||||
"w1_scale": w1_scale,
|
||||
"w2_scale": w2_scale,
|
||||
"ab_strides1": ab_strides1,
|
||||
"c_strides1": c_strides1,
|
||||
"ab_strides2": ab_strides2,
|
||||
"c_strides2": c_strides2,
|
||||
# cuda graph params
|
||||
"cutlass_graph": cutlass_graph,
|
||||
"triton_graph": triton_graph,
|
||||
# Gen params
|
||||
"a": a,
|
||||
"topk_weights": topk_weights,
|
||||
"topk_ids": topk_ids,
|
||||
"num_runs": num_runs,
|
||||
# Kernels
|
||||
"run_triton_moe": run_triton_moe,
|
||||
"run_cutlass_moe": run_cutlass_moe,
|
||||
"replay_graph": replay_graph,
|
||||
}
|
||||
|
||||
# Warmup
|
||||
run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids,
|
||||
w1_scale, w2_scale, a_scale, num_warmup)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt=
|
||||
"run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="triton_moe",
|
||||
).blocked_autorange(min_run_time=min_run_time))
|
||||
|
||||
# Warmup
|
||||
replay_graph(triton_graph, num_warmup)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="replay_graph(triton_graph, num_runs)",
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="triton_moe_cuda_graphs",
|
||||
).blocked_autorange(min_run_time=min_run_time))
|
||||
|
||||
# Warmup
|
||||
run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights,
|
||||
topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2,
|
||||
num_warmup)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt=
|
||||
"run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2, num_runs)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="grouped_gemm_moe",
|
||||
).blocked_autorange(min_run_time=min_run_time))
|
||||
|
||||
# Warmup
|
||||
replay_graph(cutlass_graph, num_warmup)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="replay_graph(cutlass_graph, num_runs)",
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="grouped_gemm_moe_cuda_graphs",
|
||||
).blocked_autorange(min_run_time=min_run_time))
|
||||
|
||||
|
||||
def main(args):
|
||||
print("Benchmarking models:")
|
||||
for i, model in enumerate(args.models):
|
||||
print(f"[{i}] {model}")
|
||||
|
||||
results: list[benchmark.Measurement] = []
|
||||
|
||||
for model in args.models:
|
||||
for tp in args.tp_sizes:
|
||||
for layer in WEIGHT_SHAPES_MOE[model]:
|
||||
num_experts = layer[0]
|
||||
topk = layer[1]
|
||||
size_k = layer[2]
|
||||
size_n = layer[3] // tp
|
||||
|
||||
if len(args.limit_k) > 0 and size_k not in args.limit_k:
|
||||
continue
|
||||
|
||||
if len(args.limit_n) > 0 and size_n not in args.limit_n:
|
||||
continue
|
||||
|
||||
for per_act_token in PER_ACT_TOKEN_OPTS:
|
||||
for per_out_ch in PER_OUT_CH_OPTS:
|
||||
for size_m in DEFAULT_BATCH_SIZES:
|
||||
mkn = (size_m, size_k, size_n)
|
||||
bench_run(results, model, num_experts, topk,
|
||||
per_act_token, per_out_ch, mkn)
|
||||
|
||||
compare = benchmark.Compare(results)
|
||||
compare.print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark Marlin across specified models/shapes/batches")
|
||||
parser.add_argument(
|
||||
"--models",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=DEFAULT_MODELS,
|
||||
choices=WEIGHT_SHAPES_MOE.keys(),
|
||||
)
|
||||
parser.add_argument("--tp-sizes",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=DEFAULT_TP_SIZES)
|
||||
parser.add_argument("--batch-sizes",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=DEFAULT_BATCH_SIZES)
|
||||
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
|
||||
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
|
||||
parser.add_argument("--limit-num-groups", nargs="+", type=int, default=[])
|
||||
parser.add_argument("--limit-per-act-token",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=[])
|
||||
parser.add_argument("--limit-per-out-ch", nargs="+", type=int, default=[])
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
@ -17,13 +17,14 @@ from torch.utils.benchmark import Measurement as TMeasurement
|
||||
from utils import ArgPool, Bench, CudaGraphBenchParams
|
||||
from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm.lora.ops.triton_ops.bgmv_expand import bgmv_expand
|
||||
from vllm.lora.ops.triton_ops.bgmv_expand_slice import bgmv_expand_slice
|
||||
from vllm.lora.ops.triton_ops.bgmv_shrink import bgmv_shrink
|
||||
from vllm.lora.ops.triton_ops.sgmv_expand import sgmv_expand
|
||||
from vllm.lora.ops.triton_ops.sgmv_shrink import sgmv_shrink
|
||||
from vllm.lora.ops.triton_ops.utils import _LORA_A_PTR_DICT, _LORA_B_PTR_DICT
|
||||
from vllm.lora.ops.triton_ops.v1 import V1KernelMeta, v1_expand, v1_shrink
|
||||
from vllm.triton_utils import HAS_TRITON
|
||||
|
||||
if HAS_TRITON:
|
||||
from vllm.lora.ops.triton_ops import (LoRAKernelMeta, lora_expand,
|
||||
lora_shrink)
|
||||
from vllm.lora.ops.triton_ops.utils import (_LORA_A_PTR_DICT,
|
||||
_LORA_B_PTR_DICT)
|
||||
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
|
||||
@ -167,69 +168,25 @@ class OpType(Enum):
|
||||
"""
|
||||
LoRA Ops to benchmark and its properties.
|
||||
"""
|
||||
SGMV_SHRINK = auto()
|
||||
BGMV_SHRINK = auto()
|
||||
SGMV_EXPAND = auto()
|
||||
BGMV_EXPAND = auto()
|
||||
BGMV_EXPAND_SLICE = auto()
|
||||
V1_SHRINK = auto()
|
||||
V1_EXPAND = auto()
|
||||
LORA_SHRINK = auto()
|
||||
LORA_EXPAND = auto()
|
||||
|
||||
@staticmethod
|
||||
def from_str(s: str) -> "OpType":
|
||||
if s.lower() == 'sgmv_shrink':
|
||||
return OpType.SGMV_SHRINK
|
||||
if s.lower() == 'sgmv_expand':
|
||||
return OpType.SGMV_EXPAND
|
||||
if s.lower() == 'bgmv_shrink':
|
||||
return OpType.BGMV_SHRINK
|
||||
if s.lower() == 'bgmv_expand':
|
||||
return OpType.BGMV_EXPAND
|
||||
if s.lower() == "bgmv_expand_slice":
|
||||
return OpType.BGMV_EXPAND_SLICE
|
||||
if s.lower() == "v1_shrink":
|
||||
return OpType.V1_SHRINK
|
||||
if s.lower() == "v1_expand":
|
||||
return OpType.V1_EXPAND
|
||||
if s.lower() == "lora_shrink":
|
||||
return OpType.LORA_SHRINK
|
||||
if s.lower() == "lora_expand":
|
||||
return OpType.LORA_EXPAND
|
||||
raise ValueError(f"Unrecognized str {s} to convert to OpType")
|
||||
|
||||
def is_shrink_fn(self) -> bool:
|
||||
return self in [
|
||||
OpType.SGMV_SHRINK, OpType.BGMV_SHRINK, OpType.V1_SHRINK
|
||||
]
|
||||
return self in [OpType.LORA_SHRINK]
|
||||
|
||||
def is_expand_fn(self) -> bool:
|
||||
return self in [
|
||||
OpType.SGMV_EXPAND, OpType.BGMV_EXPAND, OpType.V1_EXPAND
|
||||
]
|
||||
|
||||
def is_prefill_op(self) -> bool:
|
||||
return self in [
|
||||
OpType.SGMV_SHRINK, OpType.SGMV_EXPAND, OpType.V1_SHRINK,
|
||||
OpType.V1_EXPAND
|
||||
]
|
||||
|
||||
def is_decode_op(self) -> bool:
|
||||
return self in [
|
||||
OpType.BGMV_SHRINK, OpType.BGMV_EXPAND, OpType.BGMV_EXPAND_SLICE,
|
||||
OpType.V1_SHRINK, OpType.V1_EXPAND
|
||||
]
|
||||
|
||||
def is_expand_slice_fn(self) -> bool:
|
||||
return self in [OpType.BGMV_EXPAND_SLICE]
|
||||
return self in [OpType.LORA_EXPAND]
|
||||
|
||||
def num_slices(self) -> list[int]:
|
||||
if self in [
|
||||
OpType.SGMV_EXPAND, OpType.SGMV_SHRINK, OpType.V1_SHRINK,
|
||||
OpType.V1_EXPAND
|
||||
]:
|
||||
# SGMV kernels and v1 kernels supports slices
|
||||
return [1, 2, 3]
|
||||
if self in [OpType.BGMV_SHRINK, OpType.BGMV_EXPAND]:
|
||||
return [1]
|
||||
if self in [OpType.BGMV_EXPAND_SLICE]:
|
||||
return [2, 3]
|
||||
raise ValueError(f"Unrecognized OpType {self}")
|
||||
return [1, 2, 3]
|
||||
|
||||
def mkn(self, batch_size: int, seq_length: int, hidden_size: int,
|
||||
lora_rank: int) -> tuple[int, int, int]:
|
||||
@ -239,7 +196,7 @@ class OpType(Enum):
|
||||
k = hidden_size
|
||||
n = lora_rank
|
||||
else:
|
||||
assert self.is_expand_fn() or self.is_expand_slice_fn()
|
||||
assert self.is_expand_fn()
|
||||
m = num_tokens
|
||||
k = lora_rank
|
||||
n = hidden_size
|
||||
@ -254,7 +211,7 @@ class OpType(Enum):
|
||||
if self.is_shrink_fn():
|
||||
return op_dtype, op_dtype, torch.float32
|
||||
else:
|
||||
assert self.is_expand_fn() or self.is_expand_slice_fn()
|
||||
assert self.is_expand_fn()
|
||||
return torch.float32, op_dtype, op_dtype
|
||||
|
||||
def matmul_shapes(
|
||||
@ -268,43 +225,19 @@ class OpType(Enum):
|
||||
m, k, n = self.mkn(batch_size, seq_length, hidden_size, lora_rank)
|
||||
|
||||
b_shape = (num_loras, n, k) # col-major
|
||||
if self in [OpType.SGMV_SHRINK, OpType.V1_SHRINK]:
|
||||
# SGMV shrink and V1 shrink kernels support num_slices inherently
|
||||
# in the kernel.
|
||||
if self in [OpType.LORA_SHRINK]:
|
||||
# LoRA shrink kernels support num_slices inherently in the kernel.
|
||||
return ((m, k), b_shape, (num_slices, m, n))
|
||||
if self in [OpType.SGMV_EXPAND, OpType.V1_EXPAND]:
|
||||
# SGMV expand and V1 expand kernels support num_slices inherently
|
||||
# in the kernel
|
||||
if self in [OpType.LORA_EXPAND]:
|
||||
# LoRA expand kernels support num_slices inherently in the kernel
|
||||
return ((num_slices, m, k), b_shape, (m, n * num_slices))
|
||||
if self == OpType.BGMV_SHRINK:
|
||||
return ((m, k), b_shape, (m, n))
|
||||
if self == OpType.BGMV_EXPAND:
|
||||
return ((m, k), b_shape, (m, n))
|
||||
if self == OpType.BGMV_EXPAND_SLICE:
|
||||
return ((num_slices, m, k), b_shape, (m, n * num_slices))
|
||||
|
||||
raise ValueError(f"Unrecognized op_type {self}")
|
||||
|
||||
def bench_fn(self) -> Callable:
|
||||
|
||||
def emulate_bgmv_expand_slice(kwargs_list: list[dict[str, Any]]):
|
||||
for x in kwargs_list:
|
||||
bgmv_expand_slice(**x)
|
||||
|
||||
if self == OpType.SGMV_SHRINK:
|
||||
return sgmv_shrink
|
||||
if self == OpType.SGMV_EXPAND:
|
||||
return sgmv_expand
|
||||
if self == OpType.BGMV_SHRINK:
|
||||
return bgmv_shrink
|
||||
if self == OpType.BGMV_EXPAND:
|
||||
return bgmv_expand
|
||||
if self == OpType.BGMV_EXPAND_SLICE:
|
||||
return emulate_bgmv_expand_slice
|
||||
if self == OpType.V1_SHRINK:
|
||||
return v1_shrink
|
||||
if self == OpType.V1_EXPAND:
|
||||
return v1_expand
|
||||
if self == OpType.LORA_SHRINK:
|
||||
return lora_shrink
|
||||
if self == OpType.LORA_EXPAND:
|
||||
return lora_expand
|
||||
|
||||
raise ValueError(f"Unrecognized optype {self}")
|
||||
|
||||
@ -318,34 +251,13 @@ class OpType(Enum):
|
||||
"""
|
||||
w_dtype = lora_weights[0].dtype
|
||||
num_slices = len(lora_weights)
|
||||
if self in [OpType.SGMV_SHRINK, OpType.V1_SHRINK]:
|
||||
if self in [OpType.LORA_SHRINK]:
|
||||
for slice_idx in range(num_slices):
|
||||
ref_group_gemm(ref_out=output[slice_idx, :],
|
||||
input=input,
|
||||
lora_weights=lora_weights[slice_idx],
|
||||
**kwargs)
|
||||
elif self in [OpType.SGMV_EXPAND, OpType.V1_EXPAND]:
|
||||
hidden_size = lora_weights[0].shape[1]
|
||||
for slice_idx in range(num_slices):
|
||||
slice_offset = slice_idx * hidden_size
|
||||
ref_group_gemm(
|
||||
ref_out=output[:, slice_offset:slice_offset + hidden_size],
|
||||
input=input[slice_idx].clone().to(dtype=w_dtype),
|
||||
lora_weights=lora_weights[slice_idx],
|
||||
**kwargs)
|
||||
elif self == OpType.BGMV_SHRINK:
|
||||
assert num_slices == 1
|
||||
ref_group_gemm(ref_out=output,
|
||||
input=input,
|
||||
lora_weights=lora_weights[0],
|
||||
**kwargs)
|
||||
elif self == OpType.BGMV_EXPAND:
|
||||
assert num_slices == 1
|
||||
ref_group_gemm(ref_out=output,
|
||||
input=input.clone().to(dtype=w_dtype),
|
||||
lora_weights=lora_weights[0],
|
||||
**kwargs)
|
||||
elif self == OpType.BGMV_EXPAND_SLICE:
|
||||
elif self in [OpType.LORA_EXPAND]:
|
||||
hidden_size = lora_weights[0].shape[1]
|
||||
for slice_idx in range(num_slices):
|
||||
slice_offset = slice_idx * hidden_size
|
||||
@ -411,13 +323,11 @@ class BenchmarkTensors:
|
||||
input: torch.Tensor
|
||||
lora_weights_lst: list[torch.Tensor]
|
||||
output: torch.Tensor
|
||||
# metadata tensors
|
||||
# LoRA kernel metadata
|
||||
lora_kernel_meta: LoRAKernelMeta
|
||||
# Metadata tensors used in testing correctness
|
||||
seq_lens: torch.Tensor
|
||||
seq_start_loc: torch.Tensor
|
||||
prompt_lora_mapping: torch.Tensor
|
||||
token_lora_mapping: torch.Tensor
|
||||
# v1 kernel metadata
|
||||
v1_kernel_meta: Optional[V1KernelMeta] = None
|
||||
|
||||
def io_types(self) -> str:
|
||||
return (f"{dtype_to_str(self.input.dtype)}x"
|
||||
@ -444,35 +354,29 @@ class BenchmarkTensors:
|
||||
assert ctx.num_active_loras <= ctx.num_loras
|
||||
total_tokens = ctx.batch_size * ctx.seq_length
|
||||
|
||||
# Make metadata tensors involved in correctness testing.
|
||||
# Prepare seq lens tensor
|
||||
seq_len_tensor = torch.randint(ctx.seq_length, ctx.seq_length + 1,
|
||||
(ctx.batch_size, ))
|
||||
# Prepare seq_start_loc tensor
|
||||
seq_start_loc_tensor = torch.cumsum(torch.tensor(
|
||||
[0] + seq_len_tensor[:-1].tolist(), dtype=torch.long),
|
||||
dim=0)
|
||||
assert total_tokens == seq_len_tensor.sum()
|
||||
# Prepare prompt lora indices tensor
|
||||
prompt_lora_indices_tensor = make_prompt_lora_mapping(
|
||||
ctx.batch_size, ctx.num_active_loras, ctx.sort_by_lora_id, "cpu")
|
||||
# Prepare token lora indices tensor
|
||||
|
||||
# Make LoRAKernelMeta
|
||||
token_lora_indices_tensor = make_token_lora_mapping(
|
||||
total_tokens, ctx.batch_size, prompt_lora_indices_tensor,
|
||||
seq_len_tensor, "cpu")
|
||||
|
||||
v1_kernel_meta = None
|
||||
if op_type in [OpType.V1_SHRINK, OpType.V1_EXPAND]:
|
||||
v1_kernel_meta = V1KernelMeta.make(
|
||||
max_loras=ctx.num_loras,
|
||||
max_num_tokens=token_lora_indices_tensor.size(0),
|
||||
device="cpu")
|
||||
v1_kernel_meta.prepare_tensors(
|
||||
token_lora_mapping=token_lora_indices_tensor)
|
||||
lora_kernel_meta = LoRAKernelMeta.make(
|
||||
max_loras=ctx.num_loras,
|
||||
max_num_tokens=token_lora_indices_tensor.size(0),
|
||||
device="cpu")
|
||||
lora_kernel_meta.prepare_tensors(
|
||||
token_lora_mapping=token_lora_indices_tensor)
|
||||
|
||||
return BenchmarkTensors(input_tensor, lora_weights, output_tensor,
|
||||
seq_len_tensor, seq_start_loc_tensor,
|
||||
prompt_lora_indices_tensor,
|
||||
token_lora_indices_tensor, v1_kernel_meta)
|
||||
lora_kernel_meta, seq_len_tensor,
|
||||
prompt_lora_indices_tensor)
|
||||
|
||||
def sanity_check(self) -> None:
|
||||
"""
|
||||
@ -482,9 +386,9 @@ class BenchmarkTensors:
|
||||
# check metadata tensors
|
||||
assert torch.sum(self.seq_lens) == num_tokens
|
||||
num_seqs = self.seq_lens.shape[0]
|
||||
assert self.seq_start_loc.shape[0] == num_seqs
|
||||
#assert self.seq_start_loc.shape[0] == num_seqs
|
||||
assert self.prompt_lora_mapping.shape[0] == num_seqs
|
||||
assert self.token_lora_mapping.shape[0] == num_tokens
|
||||
assert self.lora_kernel_meta.token_lora_mapping.shape[0] == num_tokens
|
||||
|
||||
def to_device(self, device: str):
|
||||
"""
|
||||
@ -499,220 +403,27 @@ class BenchmarkTensors:
|
||||
self.input = to_device(self.input)
|
||||
self.output = to_device(self.output)
|
||||
self.seq_lens = to_device(self.seq_lens)
|
||||
self.seq_start_loc = to_device(self.seq_start_loc)
|
||||
self.prompt_lora_mapping = to_device(self.prompt_lora_mapping)
|
||||
self.token_lora_mapping = to_device(self.token_lora_mapping)
|
||||
for i in range(len(self.lora_weights_lst)):
|
||||
self.lora_weights_lst[i] = to_device(self.lora_weights_lst[i])
|
||||
|
||||
# v1 meta
|
||||
if self.v1_kernel_meta:
|
||||
for field_name in V1KernelMeta.__dataclass_fields__:
|
||||
field = getattr(self.v1_kernel_meta, field_name)
|
||||
assert isinstance(field, torch.Tensor)
|
||||
setattr(self.v1_kernel_meta, field_name, to_device(field))
|
||||
# LoRA meta
|
||||
for field_name in LoRAKernelMeta.__dataclass_fields__:
|
||||
field = getattr(self.lora_kernel_meta, field_name)
|
||||
assert isinstance(field, torch.Tensor)
|
||||
setattr(self.lora_kernel_meta, field_name, to_device(field))
|
||||
|
||||
def metadata(self) -> tuple[int, int, int]:
|
||||
"""
|
||||
Return num_seqs, num_tokens and max_seq_len
|
||||
"""
|
||||
num_seqs = self.seq_lens.shape[0]
|
||||
num_tokens = self.token_lora_mapping.shape[0]
|
||||
num_tokens = self.lora_kernel_meta.token_lora_mapping.shape[0]
|
||||
max_seq_len = torch.max(self.seq_lens).item()
|
||||
num_slices = len(self.lora_weights_lst)
|
||||
return num_seqs, num_tokens, max_seq_len, num_slices
|
||||
|
||||
def convert_to_sgmv_benchmark_tensors(self):
|
||||
"""
|
||||
For sgmv punica kernels, when consecutive sequences have the
|
||||
same LoRA ID, we just merge them together.
|
||||
This happens in punica.py::compute_metadata
|
||||
"""
|
||||
|
||||
# Collapse seq_lens and seq_start_loc
|
||||
_, seq_lens = torch.unique_consecutive(self.token_lora_mapping,
|
||||
return_counts=True)
|
||||
cum_result = torch.cumsum(seq_lens, dim=0)
|
||||
seq_start_loc = torch.zeros_like(seq_lens)
|
||||
seq_start_loc[1:].copy_(cum_result[:-1])
|
||||
|
||||
# Collapse prompt mapping
|
||||
prompt_lora_mapping = torch.unique_consecutive(
|
||||
self.prompt_lora_mapping)
|
||||
|
||||
assert torch.sum(seq_lens) == torch.sum(self.seq_lens), \
|
||||
f"dont match - new {torch.sum(seq_lens)} vs {torch.sum(self.seq_lens)}"
|
||||
|
||||
self.prompt_lora_mapping = prompt_lora_mapping.to(
|
||||
dtype=self.prompt_lora_mapping.dtype)
|
||||
self.seq_lens = seq_lens.to(dtype=self.seq_lens.dtype)
|
||||
self.seq_start_loc = seq_start_loc.to(dtype=self.seq_start_loc.dtype)
|
||||
|
||||
def as_sgmv_shrink_kwargs(self) -> dict[str, Any]:
|
||||
self.convert_to_sgmv_benchmark_tensors()
|
||||
self.sanity_check()
|
||||
self.to_device(self.input.device)
|
||||
|
||||
num_seqs, num_tokens, max_seq_len, num_slices = self.metadata()
|
||||
|
||||
# Sanity check matrix shapes.
|
||||
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
|
||||
0].shape, self.output.shape
|
||||
# Expected input shape [num_tokens, hidden_size]
|
||||
assert len(i_shape) == 2
|
||||
assert i_shape[0] == num_tokens
|
||||
hidden_size = i_shape[1]
|
||||
# Expected lora weight shape [num_loras, lora_rank, hidden_size]
|
||||
assert len(lw_shape) == 3
|
||||
assert lw_shape[2] == hidden_size
|
||||
lora_rank = lw_shape[1]
|
||||
# Expected output shape [num_slices, num_tokens, lora_rank]
|
||||
assert len(o_shape) == 3
|
||||
assert o_shape == (num_slices, num_tokens, lora_rank)
|
||||
|
||||
return {
|
||||
'inputs': self.input,
|
||||
'lora_a_weights': self.lora_weights_lst,
|
||||
'output_tensor': self.output,
|
||||
'b_seq_start_loc': self.seq_start_loc,
|
||||
'seq_len_tensor': self.seq_lens,
|
||||
'lora_indices_tensor': self.prompt_lora_mapping,
|
||||
'batches': num_seqs,
|
||||
'max_seq_length': max_seq_len,
|
||||
'token_nums': num_tokens,
|
||||
'scaling': 1.0,
|
||||
}
|
||||
|
||||
def as_sgmv_expand_kwargs(self, add_inputs: bool) -> dict[str, Any]:
|
||||
|
||||
self.convert_to_sgmv_benchmark_tensors()
|
||||
self.sanity_check()
|
||||
self.to_device(self.input.device)
|
||||
|
||||
num_seqs, num_tokens, max_seq_len, num_slices = self.metadata()
|
||||
|
||||
# Sanity check matrix shapes.
|
||||
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
|
||||
0].shape, self.output.shape
|
||||
# Expected input shape : [num_slices, num_tokens, lora_rank]
|
||||
assert len(i_shape) == 3
|
||||
assert i_shape[0] == num_slices
|
||||
assert i_shape[1] == num_tokens
|
||||
lora_rank = i_shape[2]
|
||||
# Expected lora weight shape : [num_lora, hidden_size, lora_rank]
|
||||
assert len(lw_shape) == 3
|
||||
assert lw_shape[2] == lora_rank
|
||||
hidden_size = lw_shape[1]
|
||||
# Expected output shape : [num_tokens, hidden_size * num_slices]
|
||||
assert len(o_shape) == 2
|
||||
assert o_shape == (num_tokens, hidden_size * num_slices)
|
||||
|
||||
return {
|
||||
'inputs': self.input,
|
||||
'lora_b_weights': self.lora_weights_lst,
|
||||
'output_tensor': self.output,
|
||||
'b_seq_start_loc': self.seq_start_loc,
|
||||
'seq_len_tensor': self.seq_lens,
|
||||
'lora_indices_tensor': self.prompt_lora_mapping,
|
||||
'batches': num_seqs,
|
||||
'max_seq_length': max_seq_len,
|
||||
'token_nums': num_tokens,
|
||||
'offset_start': 0,
|
||||
'add_inputs': add_inputs,
|
||||
}
|
||||
|
||||
def as_bgmv_shrink_kwargs(self) -> dict[str, Any]:
|
||||
assert len(self.lora_weights_lst) == 1
|
||||
self.to_device(self.input.device)
|
||||
|
||||
_, num_tokens, _, _ = self.metadata()
|
||||
# Sanity check shapes
|
||||
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
|
||||
0].shape, self.output.shape
|
||||
# Expected input shape [num_tokens, hidden_size]
|
||||
assert len(i_shape) == 2
|
||||
assert i_shape[0] == num_tokens
|
||||
hidden_size = i_shape[1]
|
||||
# Expected lora weight shape [num_loras, lora_rank, hidden_size]
|
||||
assert len(lw_shape) == 3
|
||||
assert lw_shape[2] == hidden_size
|
||||
lora_rank = lw_shape[1]
|
||||
# Expected output shape [num_tokens, lora_rank]
|
||||
assert len(o_shape) == 2
|
||||
assert o_shape == (num_tokens, lora_rank)
|
||||
|
||||
return {
|
||||
'inputs': self.input,
|
||||
'lora_a_weights': self.lora_weights_lst[0],
|
||||
'output_tensor': self.output,
|
||||
'lora_indices_tensor': self.token_lora_mapping,
|
||||
'scaling': 1.0
|
||||
}
|
||||
|
||||
def as_bgmv_expand_kwargs(self, add_inputs: bool):
|
||||
assert len(self.lora_weights_lst) == 1
|
||||
self.to_device(self.input.device)
|
||||
|
||||
_, num_tokens, _, _ = self.metadata()
|
||||
# Sanity check shapes
|
||||
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
|
||||
0].shape, self.output.shape
|
||||
# Expected input shape [num_tokens, lora_rank]
|
||||
assert len(i_shape) == 2
|
||||
assert i_shape[0] == num_tokens
|
||||
lora_rank = i_shape[1]
|
||||
# Expected lora weight shape [num_loras, hidden_size, lora_rank]
|
||||
assert len(lw_shape) == 3
|
||||
assert lw_shape[2] == lora_rank
|
||||
hidden_size = lw_shape[1]
|
||||
# Expected output shape [num_tokens, hidden_size]
|
||||
assert len(o_shape) == 2
|
||||
assert o_shape == (num_tokens, hidden_size)
|
||||
|
||||
return {
|
||||
'inputs': self.input,
|
||||
'lora_b_weights': self.lora_weights_lst[0],
|
||||
'output_tensor': self.output,
|
||||
'lora_indices_tensor': self.token_lora_mapping,
|
||||
'add_inputs': add_inputs
|
||||
}
|
||||
|
||||
def as_bgmv_expand_slice_kwargs(self, add_inputs: bool) -> dict[str, Any]:
|
||||
|
||||
_, num_tokens, _, num_slices = self.metadata()
|
||||
# Sanity check shapes
|
||||
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
|
||||
0].shape, self.output.shape
|
||||
# Expected input shape [num_slices, num_tokens, lora_rank]
|
||||
assert len(i_shape) == 3
|
||||
assert i_shape[0] == num_slices
|
||||
assert i_shape[1] == num_tokens
|
||||
lora_rank = i_shape[2]
|
||||
# Expected lora weight shape [num_loras, hidden_size, lora_rank]
|
||||
assert len(lw_shape) == 3
|
||||
assert lw_shape[2] == lora_rank
|
||||
hidden_size = lw_shape[1]
|
||||
# Expected output shape [num_tokens, hidden_size * num_slices]
|
||||
assert len(o_shape) == 2
|
||||
assert o_shape == (num_tokens, hidden_size * num_slices)
|
||||
|
||||
self.to_device(self.input.device)
|
||||
|
||||
kwargs_list = []
|
||||
for i in range(num_slices):
|
||||
kwargs_list.append({
|
||||
'inputs': self.input[i],
|
||||
'lora_b_weights': self.lora_weights_lst[i],
|
||||
'output_tensor': self.output,
|
||||
'lora_indices_tensor': self.token_lora_mapping,
|
||||
'slice_offset': i * hidden_size,
|
||||
'slice_size': hidden_size,
|
||||
'add_inputs': add_inputs,
|
||||
})
|
||||
return {'kwargs_list': kwargs_list}
|
||||
|
||||
def as_v1_shrink_kwargs(self) -> dict[str, Any]:
|
||||
assert self.v1_kernel_meta is not None
|
||||
def as_lora_shrink_kwargs(self) -> dict[str, Any]:
|
||||
self.sanity_check()
|
||||
self.to_device(self.input.device)
|
||||
|
||||
@ -737,17 +448,16 @@ class BenchmarkTensors:
|
||||
'inputs': self.input,
|
||||
'lora_a_weights': self.lora_weights_lst,
|
||||
'output_tensor': self.output,
|
||||
'token_lora_mapping': self.v1_kernel_meta.token_lora_mapping,
|
||||
'token_lora_mapping': self.lora_kernel_meta.token_lora_mapping,
|
||||
'token_indices_sorted_by_lora_ids':
|
||||
self.v1_kernel_meta.token_indices_sorted_by_lora_ids,
|
||||
'num_tokens_per_lora': self.v1_kernel_meta.num_tokens_per_lora,
|
||||
'lora_token_start_loc': self.v1_kernel_meta.lora_token_start_loc,
|
||||
'lora_ids': self.v1_kernel_meta.active_lora_ids,
|
||||
self.lora_kernel_meta.token_indices_sorted_by_lora_ids,
|
||||
'num_tokens_per_lora': self.lora_kernel_meta.num_tokens_per_lora,
|
||||
'lora_token_start_loc': self.lora_kernel_meta.lora_token_start_loc,
|
||||
'lora_ids': self.lora_kernel_meta.active_lora_ids,
|
||||
'scaling': 1.0,
|
||||
}
|
||||
|
||||
def as_v1_expand_kwargs(self, add_inputs: bool) -> dict[str, Any]:
|
||||
assert self.v1_kernel_meta is not None
|
||||
def as_lora_expand_kwargs(self, add_inputs: bool) -> dict[str, Any]:
|
||||
self.sanity_check()
|
||||
self.to_device(self.input.device)
|
||||
|
||||
@ -773,12 +483,12 @@ class BenchmarkTensors:
|
||||
'inputs': self.input,
|
||||
'lora_b_weights': self.lora_weights_lst,
|
||||
'output_tensor': self.output,
|
||||
'token_lora_mapping': self.v1_kernel_meta.token_lora_mapping,
|
||||
'token_lora_mapping': self.lora_kernel_meta.token_lora_mapping,
|
||||
'token_indices_sorted_by_lora_ids':
|
||||
self.v1_kernel_meta.token_indices_sorted_by_lora_ids,
|
||||
'num_tokens_per_lora': self.v1_kernel_meta.num_tokens_per_lora,
|
||||
'lora_token_start_loc': self.v1_kernel_meta.lora_token_start_loc,
|
||||
'lora_ids': self.v1_kernel_meta.active_lora_ids,
|
||||
self.lora_kernel_meta.token_indices_sorted_by_lora_ids,
|
||||
'num_tokens_per_lora': self.lora_kernel_meta.num_tokens_per_lora,
|
||||
'lora_token_start_loc': self.lora_kernel_meta.lora_token_start_loc,
|
||||
'lora_ids': self.lora_kernel_meta.active_lora_ids,
|
||||
'offset_start': 0,
|
||||
'add_inputs': add_inputs,
|
||||
}
|
||||
@ -791,20 +501,10 @@ class BenchmarkTensors:
|
||||
else:
|
||||
assert add_inputs is not None
|
||||
|
||||
if op_type == OpType.SGMV_SHRINK:
|
||||
return self.as_sgmv_shrink_kwargs()
|
||||
if op_type == OpType.SGMV_EXPAND:
|
||||
return self.as_sgmv_expand_kwargs(add_inputs)
|
||||
if op_type == OpType.BGMV_SHRINK:
|
||||
return self.as_bgmv_shrink_kwargs()
|
||||
if op_type == OpType.BGMV_EXPAND:
|
||||
return self.as_bgmv_expand_kwargs(add_inputs)
|
||||
if op_type == OpType.BGMV_EXPAND_SLICE:
|
||||
return self.as_bgmv_expand_slice_kwargs(add_inputs)
|
||||
if op_type == OpType.V1_SHRINK:
|
||||
return self.as_v1_shrink_kwargs()
|
||||
if op_type == OpType.V1_EXPAND:
|
||||
return self.as_v1_expand_kwargs(add_inputs)
|
||||
if op_type == OpType.LORA_SHRINK:
|
||||
return self.as_lora_shrink_kwargs()
|
||||
if op_type == OpType.LORA_EXPAND:
|
||||
return self.as_lora_expand_kwargs(add_inputs)
|
||||
raise ValueError(f"Unrecognized optype {self}")
|
||||
|
||||
def test_correctness(self, op_type: OpType,
|
||||
@ -993,10 +693,6 @@ def run(args: argparse.Namespace, bench_ctxs: list[BenchmarkContext]):
|
||||
for bench_ctx in bench_ctxs:
|
||||
for seq_len in args.seq_lengths:
|
||||
bench_ops: list[OpType] = args.op_types
|
||||
if seq_len > 1:
|
||||
# bench only prefill ops
|
||||
bench_ops = [op for op in args.op_types if op.is_prefill_op()]
|
||||
|
||||
seq_len_timers = []
|
||||
for bench_op in bench_ops:
|
||||
for num_slices in bench_op.num_slices():
|
||||
@ -1206,13 +902,13 @@ Benchmark LoRA kernels:
|
||||
{use_cuda_graph_recommendation()}
|
||||
|
||||
list_bench example:
|
||||
python3 benchmarks/kernels/benchmark_lora.py list_bench --arg-pool-size 32 --batch-sizes 1 16 32 --dtype torch.float16 --hidden-sizes 2048 --lora-ranks 16 --num-loras 1 4 --op-types bgmv_shrink bgmv_expand sgmv_shrink sgmv_expand bgmv_expand_slice --seq-lengths 1 16 --sort-by-lora-id 1 --cuda-graph-nops 32
|
||||
python3 benchmarks/kernels/benchmark_lora.py list_bench --arg-pool-size 32 --batch-sizes 1 16 32 --dtype torch.float16 --hidden-sizes 2048 --lora-ranks 16 --num-loras 1 4 --op-types lora_shrink lora_expand --seq-lengths 1 16 --sort-by-lora-id 1 --cuda-graph-nops 32
|
||||
|
||||
model_bench example:
|
||||
python3 benchmarks/kernels/benchmark_lora.py model_bench --models meta-llama/Llama-3-8b --arg-pool-size 32 --batch-sizes 1 16 32 --dtype torch.float16 --lora-ranks 16 --num-loras 1 4 --op-types bgmv_shrink bgmv_expand sgmv_shrink sgmv_expand bgmv_expand_slice --seq-lengths 1 16 --sort-by-lora-id 1 --cuda-graph-nops 32
|
||||
python3 benchmarks/kernels/benchmark_lora.py model_bench --models meta-llama/Llama-3-8b --arg-pool-size 32 --batch-sizes 1 16 32 --dtype torch.float16 --lora-ranks 16 --num-loras 1 4 --op-types lora_shrink lora_expand --seq-lengths 1 16 --sort-by-lora-id 1 --cuda-graph-nops 32
|
||||
|
||||
range_bench example:
|
||||
python3 benchmarks/kernels/benchmark_lora.py range_bench --arg-pool-size 32 --batch-sizes 1 16 32 --dtype torch.float16 --num-loras 1 4 --op-types bgmv_shrink bgmv_expand sgmv_shrink sgmv_expand bgmv_expand_slice --seq-lengths 1 16 --sort-by-lora-id 1 --cuda-graph-nops 32 --hidden-sizes-start 1024 --hidden-sizes-end 4096 --hidden-sizes-increment 1024 --lora-ranks-start 8 --lora-ranks-end 24 --lora-ranks-increment 8
|
||||
python3 benchmarks/kernels/benchmark_lora.py range_bench --arg-pool-size 32 --batch-sizes 1 16 32 --dtype torch.float16 --num-loras 1 4 --op-types lora_shrink lora_expand --seq-lengths 1 16 --sort-by-lora-id 1 --cuda-graph-nops 32 --hidden-sizes-start 1024 --hidden-sizes-end 4096 --hidden-sizes-increment 1024 --lora-ranks-start 8 --lora-ranks-end 24 --lora-ranks-increment 8
|
||||
""", # noqa: E501
|
||||
formatter_class=argparse.RawTextHelpFormatter)
|
||||
|
||||
|
@ -30,19 +30,18 @@ class BenchmarkConfig(TypedDict):
|
||||
num_stages: int
|
||||
|
||||
|
||||
def benchmark_config(
|
||||
config: BenchmarkConfig,
|
||||
num_tokens: int,
|
||||
num_experts: int,
|
||||
shard_intermediate_size: int,
|
||||
hidden_size: int,
|
||||
topk: int,
|
||||
dtype: torch.dtype,
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
num_iters: int = 100,
|
||||
block_quant_shape: List[int] = None,
|
||||
) -> float:
|
||||
def benchmark_config(config: BenchmarkConfig,
|
||||
num_tokens: int,
|
||||
num_experts: int,
|
||||
shard_intermediate_size: int,
|
||||
hidden_size: int,
|
||||
topk: int,
|
||||
dtype: torch.dtype,
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
num_iters: int = 100,
|
||||
block_quant_shape: List[int] = None,
|
||||
use_deep_gemm: bool = False) -> float:
|
||||
init_dtype = torch.float16 if use_fp8_w8a8 else dtype
|
||||
x = torch.randn(num_tokens, hidden_size, dtype=dtype)
|
||||
if use_int8_w8a16:
|
||||
@ -115,22 +114,41 @@ def benchmark_config(
|
||||
def run():
|
||||
from vllm.model_executor.layers.fused_moe import override_config
|
||||
with override_config(config):
|
||||
fused_moe(
|
||||
x,
|
||||
w1,
|
||||
w2,
|
||||
input_gating,
|
||||
topk,
|
||||
renormalize=True,
|
||||
inplace=True,
|
||||
use_fp8_w8a8=use_fp8_w8a8,
|
||||
use_int8_w8a16=use_int8_w8a16,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a1_scale,
|
||||
a2_scale=a2_scale,
|
||||
block_shape=block_quant_shape,
|
||||
)
|
||||
if use_deep_gemm:
|
||||
topk_weights, topk_ids = fused_topk(x, input_gating, topk,
|
||||
False)
|
||||
return fused_experts(
|
||||
x,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
inplace=True,
|
||||
use_fp8_w8a8=use_fp8_w8a8,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a1_scale,
|
||||
a2_scale=a2_scale,
|
||||
block_shape=block_quant_shape,
|
||||
allow_deep_gemm=True,
|
||||
)
|
||||
else:
|
||||
fused_moe(
|
||||
x,
|
||||
w1,
|
||||
w2,
|
||||
input_gating,
|
||||
topk,
|
||||
renormalize=True,
|
||||
inplace=True,
|
||||
use_fp8_w8a8=use_fp8_w8a8,
|
||||
use_int8_w8a16=use_int8_w8a16,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a1_scale,
|
||||
a2_scale=a2_scale,
|
||||
block_shape=block_quant_shape,
|
||||
)
|
||||
|
||||
# JIT compilation & warmup
|
||||
run()
|
||||
@ -366,6 +384,7 @@ class BenchmarkWorker:
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
block_quant_shape: List[int] = None,
|
||||
use_deep_gemm: bool = False,
|
||||
) -> tuple[dict[str, int], float]:
|
||||
current_platform.seed_everything(self.seed)
|
||||
dtype_str = get_config_dtype_str(dtype,
|
||||
@ -396,7 +415,8 @@ class BenchmarkWorker:
|
||||
use_fp8_w8a8,
|
||||
use_int8_w8a16,
|
||||
num_iters=100,
|
||||
block_quant_shape=block_quant_shape)
|
||||
block_quant_shape=block_quant_shape,
|
||||
use_deep_gemm=use_deep_gemm)
|
||||
return config, kernel_time
|
||||
|
||||
def tune(
|
||||
@ -411,6 +431,7 @@ class BenchmarkWorker:
|
||||
use_int8_w8a16: bool,
|
||||
search_space: list[dict[str, int]],
|
||||
block_quant_shape: list[int],
|
||||
use_deep_gemm: bool,
|
||||
) -> dict[str, int]:
|
||||
best_config = None
|
||||
best_time = float("inf")
|
||||
@ -436,7 +457,8 @@ class BenchmarkWorker:
|
||||
use_fp8_w8a8,
|
||||
use_int8_w8a16,
|
||||
num_iters=20,
|
||||
block_quant_shape=block_quant_shape)
|
||||
block_quant_shape=block_quant_shape,
|
||||
use_deep_gemm=use_deep_gemm)
|
||||
except triton.runtime.autotuner.OutOfResources:
|
||||
# Some configurations may be invalid and fail to compile.
|
||||
continue
|
||||
@ -505,7 +527,7 @@ def get_weight_block_size_safety(config, default_value=None):
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
print(args)
|
||||
block_quant_shape = None
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
args.model, trust_remote_code=args.trust_remote_code)
|
||||
if config.architectures[0] == "DbrxForCausalLM":
|
||||
@ -524,13 +546,16 @@ def main(args: argparse.Namespace):
|
||||
topk = config.num_experts_per_tok
|
||||
intermediate_size = config.moe_intermediate_size
|
||||
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
||||
block_quant_shape = get_weight_block_size_safety(config)
|
||||
elif config.architectures[0] == "Qwen2MoeForCausalLM":
|
||||
elif config.architectures[0] in [
|
||||
"Qwen2MoeForCausalLM", "Qwen3MoeForCausalLM"
|
||||
]:
|
||||
E = config.num_experts
|
||||
topk = config.num_experts_per_tok
|
||||
intermediate_size = config.moe_intermediate_size
|
||||
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
||||
else:
|
||||
# Support for llama4
|
||||
config = config.get_text_config()
|
||||
# Default: Mixtral.
|
||||
E = config.num_local_experts
|
||||
topk = config.num_experts_per_tok
|
||||
@ -541,6 +566,7 @@ def main(args: argparse.Namespace):
|
||||
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
|
||||
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
|
||||
use_int8_w8a16 = args.dtype == "int8_w8a16"
|
||||
block_quant_shape = get_weight_block_size_safety(config)
|
||||
|
||||
if args.batch_size is None:
|
||||
batch_sizes = [
|
||||
@ -550,6 +576,8 @@ def main(args: argparse.Namespace):
|
||||
else:
|
||||
batch_sizes = [args.batch_size]
|
||||
|
||||
use_deep_gemm = bool(args.use_deep_gemm)
|
||||
|
||||
ray.init()
|
||||
num_gpus = int(ray.available_resources()["GPU"])
|
||||
workers = [BenchmarkWorker.remote(args.seed) for _ in range(num_gpus)]
|
||||
@ -572,10 +600,10 @@ def main(args: argparse.Namespace):
|
||||
|
||||
start = time.time()
|
||||
configs = _distribute(
|
||||
"tune",
|
||||
[(batch_size, E, shard_intermediate_size, hidden_size, topk, dtype,
|
||||
use_fp8_w8a8, use_int8_w8a16, search_space, block_quant_shape)
|
||||
for batch_size in batch_sizes])
|
||||
"tune", [(batch_size, E, shard_intermediate_size, hidden_size,
|
||||
topk, dtype, use_fp8_w8a8, use_int8_w8a16, search_space,
|
||||
block_quant_shape, use_deep_gemm)
|
||||
for batch_size in batch_sizes])
|
||||
best_configs = {
|
||||
M: sort_config(config)
|
||||
for M, config in zip(batch_sizes, configs)
|
||||
@ -589,7 +617,7 @@ def main(args: argparse.Namespace):
|
||||
outputs = _distribute(
|
||||
"benchmark",
|
||||
[(batch_size, E, shard_intermediate_size, hidden_size, topk, dtype,
|
||||
use_fp8_w8a8, use_int8_w8a16, block_quant_shape)
|
||||
use_fp8_w8a8, use_int8_w8a16, block_quant_shape, use_deep_gemm)
|
||||
for batch_size in batch_sizes])
|
||||
|
||||
for batch_size, (config, kernel_time) in zip(batch_sizes, outputs):
|
||||
@ -611,6 +639,7 @@ if __name__ == "__main__":
|
||||
type=str,
|
||||
choices=["auto", "fp8_w8a8", "int8_w8a16"],
|
||||
default="auto")
|
||||
parser.add_argument("--use-deep-gemm", action="store_true")
|
||||
parser.add_argument("--seed", type=int, default=0)
|
||||
parser.add_argument("--batch-size", type=int, required=False)
|
||||
parser.add_argument("--tune", action="store_true")
|
||||
|
@ -7,10 +7,13 @@ from typing import Optional
|
||||
import torch
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.logger import init_logger
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
|
||||
create_kv_caches_with_random)
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
NUM_BLOCKS = 128 * 1024
|
||||
PARTITION_SIZE = 512
|
||||
PARTITION_SIZE_ROCM = 256
|
||||
@ -193,6 +196,9 @@ def main(
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
logger.warning("This script benchmarks the paged attention kernel. "
|
||||
"By default this is no longer used in vLLM inference.")
|
||||
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the paged attention kernel.")
|
||||
parser.add_argument("--version",
|
||||
|
@ -75,3 +75,19 @@ WEIGHT_SHAPES = {
|
||||
[7168, 8192],
|
||||
],
|
||||
}
|
||||
|
||||
WEIGHT_SHAPES_MOE = {
|
||||
"nm-testing/Mixtral-8x7B-Instruct-v0.1": [
|
||||
[8, 2, 4096, 28672],
|
||||
[8, 2, 14336, 4096],
|
||||
],
|
||||
"nm-testing/deepseekv2-lite": [
|
||||
[64, 6, 2048, 1408],
|
||||
],
|
||||
"ibm-granite/granite-3.0-1b-a400m": [
|
||||
[32, 8, 1024, 1024],
|
||||
],
|
||||
"ibm-granite/granite-3.0-3b-a800m": [
|
||||
[40, 8, 1024, 1536],
|
||||
],
|
||||
}
|
||||
|
420
benchmarks/kernels/benchmark_w8a8_block_fp8.py
Normal file
420
benchmarks/kernels/benchmark_w8a8_block_fp8.py
Normal file
@ -0,0 +1,420 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# Adapted from sglang quantization/tuning_block_wise_kernel.py
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import time
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import tqdm
|
||||
import triton
|
||||
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
_w8a8_block_fp8_matmul)
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
mp.set_start_method("spawn", force=True)
|
||||
|
||||
assert current_platform.is_cuda(
|
||||
), "Only support tune w8a8 block fp8 kernel on CUDA device."
|
||||
|
||||
DTYPE_MAP = {
|
||||
"float32": torch.float32,
|
||||
"float16": torch.float16,
|
||||
"half": torch.half,
|
||||
"bfloat16": torch.bfloat16,
|
||||
}
|
||||
|
||||
|
||||
def w8a8_block_matmul(
|
||||
A: torch.Tensor,
|
||||
B: torch.Tensor,
|
||||
As: torch.Tensor,
|
||||
Bs: torch.Tensor,
|
||||
block_size: list[int],
|
||||
config: dict[str, Any],
|
||||
output_dtype: torch.dtype = torch.float16,
|
||||
) -> torch.Tensor:
|
||||
"""This function performs matrix multiplication with
|
||||
block-wise quantization.
|
||||
|
||||
It takes two input tensors `A` and `B` with scales `As` and `Bs`.
|
||||
The output is returned in the specified `output_dtype`.
|
||||
|
||||
Args:
|
||||
A: The input tensor, e.g., activation.
|
||||
B: The input tensor, e.g., weight.
|
||||
As: The per-token-group quantization scale for `A`.
|
||||
Bs: The per-block quantization scale for `B`.
|
||||
block_size: The block size for per-block quantization.
|
||||
It should be 2-dim, e.g., [128, 128].
|
||||
output_dytpe: The dtype of the returned tensor.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The result of matmul.
|
||||
"""
|
||||
assert len(block_size) == 2
|
||||
block_n, block_k = block_size[0], block_size[1]
|
||||
|
||||
assert A.shape[-1] == B.shape[-1]
|
||||
assert A.shape[:-1] == As.shape[:-1] and A.is_contiguous()
|
||||
assert triton.cdiv(A.shape[-1], block_k) == As.shape[-1]
|
||||
M = A.numel() // A.shape[-1]
|
||||
|
||||
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
|
||||
N, K = B.shape
|
||||
assert triton.cdiv(N, block_n) == Bs.shape[0]
|
||||
assert triton.cdiv(K, block_k) == Bs.shape[1]
|
||||
|
||||
C_shape = A.shape[:-1] + (N, )
|
||||
C = A.new_empty(C_shape, dtype=output_dtype)
|
||||
|
||||
def grid(META):
|
||||
return (triton.cdiv(M, META["BLOCK_SIZE_M"]) *
|
||||
triton.cdiv(N, META["BLOCK_SIZE_N"]), )
|
||||
|
||||
if A.dtype == torch.float8_e4m3fn:
|
||||
kernel = _w8a8_block_fp8_matmul
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"Currently, only support tune w8a8 block fp8 kernel.")
|
||||
|
||||
kernel[grid](
|
||||
A,
|
||||
B,
|
||||
C,
|
||||
As,
|
||||
Bs,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
block_n,
|
||||
block_k,
|
||||
A.stride(-2),
|
||||
A.stride(-1),
|
||||
B.stride(1),
|
||||
B.stride(0),
|
||||
C.stride(-2),
|
||||
C.stride(-1),
|
||||
As.stride(-2),
|
||||
As.stride(-1),
|
||||
Bs.stride(1),
|
||||
Bs.stride(0),
|
||||
**config,
|
||||
)
|
||||
|
||||
return C
|
||||
|
||||
|
||||
def get_configs_compute_bound():
|
||||
configs = []
|
||||
for num_stages in [2, 3, 4, 5]:
|
||||
for block_m in [16, 32, 64, 128, 256]:
|
||||
for block_k in [64, 128]:
|
||||
for block_n in [32, 64, 128, 256]:
|
||||
for num_warps in [4, 8]:
|
||||
for group_size in [1, 16, 32, 64]:
|
||||
configs.append({
|
||||
"BLOCK_SIZE_M": block_m,
|
||||
"BLOCK_SIZE_N": block_n,
|
||||
"BLOCK_SIZE_K": block_k,
|
||||
"GROUP_SIZE_M": group_size,
|
||||
"num_warps": num_warps,
|
||||
"num_stages": num_stages,
|
||||
})
|
||||
return configs
|
||||
|
||||
|
||||
def get_weight_shapes(tp_size):
|
||||
# NOTE(HandH1998): The weight shapes only works for DeepSeek-V3.
|
||||
# Modify them, if you tune for another different model.
|
||||
# cannot TP
|
||||
total = [
|
||||
(512 + 64, 7168),
|
||||
((128 + 64) * 128, 7168),
|
||||
(128 * (128 + 128), 512),
|
||||
(7168, 16384),
|
||||
(7168, 18432),
|
||||
]
|
||||
# N can TP
|
||||
n_tp = [
|
||||
(18432 * 2, 7168),
|
||||
((128 + 64) * 128, 7168),
|
||||
(128 * (128 + 128), 512),
|
||||
(24576, 1536),
|
||||
(12288, 7168),
|
||||
(4096, 7168),
|
||||
]
|
||||
# K can TP
|
||||
k_tp = [(7168, 18432), (7168, 16384), (7168, 2048)]
|
||||
|
||||
weight_shapes = []
|
||||
for t in total:
|
||||
weight_shapes.append(t)
|
||||
for n_t in n_tp:
|
||||
new_t = (n_t[0] // tp_size, n_t[1])
|
||||
weight_shapes.append(new_t)
|
||||
for k_t in k_tp:
|
||||
new_t = (k_t[0], k_t[1] // tp_size)
|
||||
weight_shapes.append(new_t)
|
||||
return weight_shapes
|
||||
|
||||
|
||||
def benchmark_config(A,
|
||||
B,
|
||||
As,
|
||||
Bs,
|
||||
block_size,
|
||||
config,
|
||||
out_dtype=torch.float16,
|
||||
num_iters=10):
|
||||
|
||||
def run():
|
||||
w8a8_block_matmul(A, B, As, Bs, block_size, config, out_dtype)
|
||||
|
||||
torch.cuda.synchronize()
|
||||
# JIT complication & warmup
|
||||
for _ in range(5):
|
||||
run()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
start_event = torch.cuda.Event(enable_timing=True)
|
||||
end_event = torch.cuda.Event(enable_timing=True)
|
||||
|
||||
latencies: list[float] = []
|
||||
for i in range(num_iters):
|
||||
torch.cuda.synchronize()
|
||||
start_event.record()
|
||||
run()
|
||||
end_event.record()
|
||||
end_event.synchronize()
|
||||
latencies.append(start_event.elapsed_time(end_event))
|
||||
avg = sum(latencies) / (num_iters * 10) * 1000 # us
|
||||
return avg
|
||||
|
||||
|
||||
def tune(M, N, K, block_size, out_dtype, search_space, input_type):
|
||||
factor_for_scale = 1e-2
|
||||
|
||||
if input_type == "fp8":
|
||||
fp8_info = torch.finfo(torch.float8_e4m3fn)
|
||||
fp8_max, fp8_min = fp8_info.max, fp8_info.min
|
||||
|
||||
A_fp32 = (
|
||||
(torch.rand(M, K, dtype=torch.float32, device="cuda") - 0.5) * 2 *
|
||||
fp8_max)
|
||||
A = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
||||
|
||||
B_fp32 = (
|
||||
(torch.rand(N, K, dtype=torch.float32, device="cuda") - 0.5) * 2 *
|
||||
fp8_max)
|
||||
B = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"Currently, only support tune w8a8 block fp8 kernel.")
|
||||
|
||||
block_n, block_k = block_size[0], block_size[1]
|
||||
n_tiles = (N + block_n - 1) // block_n
|
||||
k_tiles = (K + block_k - 1) // block_k
|
||||
|
||||
As = torch.rand(M, k_tiles, dtype=torch.float32,
|
||||
device="cuda") * factor_for_scale
|
||||
Bs = (torch.rand(n_tiles, k_tiles, dtype=torch.float32, device="cuda") *
|
||||
factor_for_scale)
|
||||
|
||||
best_config = None
|
||||
best_time = float("inf")
|
||||
for config in tqdm(search_space):
|
||||
try:
|
||||
kernel_time = benchmark_config(
|
||||
A,
|
||||
B,
|
||||
As,
|
||||
Bs,
|
||||
block_size,
|
||||
config,
|
||||
out_dtype,
|
||||
num_iters=10,
|
||||
)
|
||||
except triton.runtime.autotuner.OutOfResources:
|
||||
# Some configurations may be invalid and fail to compile.
|
||||
continue
|
||||
|
||||
if kernel_time < best_time:
|
||||
best_time = kernel_time
|
||||
best_config = config
|
||||
now = datetime.now()
|
||||
print(f"{now.ctime()}] Completed tuning for batch_size={M}")
|
||||
assert best_config is not None
|
||||
return best_config
|
||||
|
||||
|
||||
def save_configs(
|
||||
N,
|
||||
K,
|
||||
block_n,
|
||||
block_k,
|
||||
configs,
|
||||
save_path,
|
||||
input_type="fp8",
|
||||
) -> None:
|
||||
os.makedirs(save_path, exist_ok=True)
|
||||
device_name = current_platform.get_device_name().replace(" ", "_")
|
||||
json_file_name = (
|
||||
f"N={N},K={K},device_name={device_name},dtype={input_type}_w8a8,"
|
||||
f"block_shape=[{block_n},{block_k}].json")
|
||||
|
||||
config_file_path = os.path.join(save_path, json_file_name)
|
||||
print(f"Writing best config to {config_file_path}...")
|
||||
|
||||
with open(config_file_path, "w") as f:
|
||||
json.dump(configs, f, indent=4)
|
||||
f.write("\n")
|
||||
|
||||
|
||||
def tune_on_gpu(args_dict):
|
||||
"""Run tuning on a specific GPU."""
|
||||
gpu_id = args_dict["gpu_id"]
|
||||
batch_sizes = args_dict["batch_sizes"]
|
||||
weight_shapes = args_dict["weight_shapes"]
|
||||
args = args_dict["args"]
|
||||
|
||||
torch.cuda.set_device(gpu_id)
|
||||
print(f"Starting tuning on GPU {gpu_id} with batch sizes {batch_sizes}")
|
||||
|
||||
block_n = args.block_n
|
||||
block_k = args.block_k
|
||||
out_dtype = DTYPE_MAP[args.out_dtype]
|
||||
save_path = args.save_path
|
||||
input_type = args.input_type
|
||||
|
||||
search_space = get_configs_compute_bound()
|
||||
search_space = [
|
||||
config for config in search_space
|
||||
if block_k % config["BLOCK_SIZE_K"] == 0
|
||||
]
|
||||
|
||||
start = time.time()
|
||||
for shape in tqdm(weight_shapes, desc=f"GPU {gpu_id} - Shapes"):
|
||||
N, K = shape[0], shape[1]
|
||||
print(f"[GPU {gpu_id}] Tune for weight shape of `N: {N}, K: {K}`")
|
||||
benchmark_results = [
|
||||
tune(
|
||||
batch_size,
|
||||
N,
|
||||
K,
|
||||
[block_n, block_k],
|
||||
out_dtype,
|
||||
search_space,
|
||||
input_type,
|
||||
) for batch_size in tqdm(batch_sizes,
|
||||
desc=f"GPU {gpu_id} - Batch sizes")
|
||||
]
|
||||
best_configs = {
|
||||
M: config
|
||||
for M, config in zip(batch_sizes, benchmark_results)
|
||||
}
|
||||
save_configs(N, K, block_n, block_k, best_configs, save_path,
|
||||
input_type)
|
||||
|
||||
end = time.time()
|
||||
print(f"Tuning on GPU {gpu_id} took {end - start:.2f} seconds")
|
||||
|
||||
|
||||
def distribute_batch_sizes(batch_sizes, num_gpus):
|
||||
"""Distribute batch sizes across available GPUs."""
|
||||
batches_per_gpu = []
|
||||
for i in range(num_gpus):
|
||||
start_idx = i * len(batch_sizes) // num_gpus
|
||||
end_idx = (i + 1) * len(batch_sizes) // num_gpus
|
||||
batches_per_gpu.append(batch_sizes[start_idx:end_idx])
|
||||
return batches_per_gpu
|
||||
|
||||
|
||||
def main(args):
|
||||
print(args)
|
||||
num_gpus = torch.cuda.device_count()
|
||||
if num_gpus == 0:
|
||||
raise RuntimeError("No GPU available for tuning")
|
||||
print(f"Found {num_gpus} GPUs for parallel tuning")
|
||||
|
||||
torch.cuda.init()
|
||||
|
||||
if args.batch_size is None:
|
||||
batch_sizes = [
|
||||
1,
|
||||
2,
|
||||
4,
|
||||
8,
|
||||
16,
|
||||
24,
|
||||
32,
|
||||
48,
|
||||
64,
|
||||
96,
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
1024,
|
||||
1536,
|
||||
2048,
|
||||
3072,
|
||||
4096,
|
||||
]
|
||||
else:
|
||||
batch_sizes = [args.batch_size]
|
||||
num_gpus = 1 # If only one batch size, use only one GPU
|
||||
|
||||
weight_shapes = get_weight_shapes(args.tp_size)
|
||||
|
||||
batches_per_gpu = distribute_batch_sizes(batch_sizes, num_gpus)
|
||||
|
||||
process_args = []
|
||||
for gpu_id in range(num_gpus):
|
||||
process_args.append({
|
||||
"gpu_id": gpu_id,
|
||||
"batch_sizes": batches_per_gpu[gpu_id],
|
||||
"weight_shapes":
|
||||
weight_shapes, # Each GPU processes all weight shapes
|
||||
"args": args,
|
||||
})
|
||||
|
||||
ctx = mp.get_context("spawn")
|
||||
with ctx.Pool(num_gpus) as pool:
|
||||
pool.map(tune_on_gpu, process_args)
|
||||
|
||||
print("Multi-GPU tuning completed")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description="""
|
||||
Tune triton w8a8 block fp8 for DeepSeek-V3/DeepSeek-R1:
|
||||
python3 benchmark_w8a8_block_fp8.py --tp-size 8 --input-type fp8
|
||||
Then copy to model_executor/layers/quantization/utils/configs
|
||||
""",
|
||||
formatter_class=argparse.RawTextHelpFormatter)
|
||||
|
||||
parser.add_argument("--tp-size", "-tp", type=int, default=8)
|
||||
parser.add_argument("--input-type",
|
||||
type=str,
|
||||
choices=["fp8"],
|
||||
default="fp8")
|
||||
parser.add_argument(
|
||||
"--out-dtype",
|
||||
type=str,
|
||||
choices=["float32", "float16", "bfloat16", "half"],
|
||||
default="float16",
|
||||
)
|
||||
parser.add_argument("--block-n", type=int, default=128)
|
||||
parser.add_argument("--block-k", type=int, default=128)
|
||||
parser.add_argument("--batch-size", type=int, required=False)
|
||||
parser.add_argument("--save-path", type=str, default="./")
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
@ -1,16 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
PORT=8000
|
||||
MODEL=$1
|
||||
TOKENS=$2
|
||||
|
||||
docker run -e "HF_TOKEN=$HF_TOKEN" --gpus all --shm-size 1g -p $PORT:80 \
|
||||
-v "$PWD/data:/data" \
|
||||
ghcr.io/huggingface/text-generation-inference:2.2.0 \
|
||||
--model-id "$MODEL" \
|
||||
--sharded false \
|
||||
--max-input-length 1024 \
|
||||
--max-total-tokens 2048 \
|
||||
--max-best-of 5 \
|
||||
--max-concurrent-requests 5000 \
|
||||
--max-batch-total-tokens "$TOKENS"
|
@ -54,6 +54,7 @@ for qps in "${QPS_VALUES[@]}"; do
|
||||
python "$SCRIPT_DIR/benchmark_serving_structured_output.py" $COMMON_PARAMS \
|
||||
--request-rate $qps \
|
||||
--result-filename "$FILENAME" \
|
||||
--tokenizer-mode ${TOKENIZER_MODE:-"auto"} \
|
||||
--port ${PORT:-8000}
|
||||
|
||||
echo "Completed benchmark with QPS: $qps"
|
||||
|
@ -33,8 +33,6 @@ endif()
|
||||
|
||||
if(MACOSX_FOUND)
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-Xpreprocessor"
|
||||
"-fopenmp"
|
||||
"-DVLLM_CPU_EXTENSION")
|
||||
else()
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
@ -190,12 +188,14 @@ set(VLLM_EXT_SRC
|
||||
"csrc/cpu/cache.cpp"
|
||||
"csrc/cpu/utils.cpp"
|
||||
"csrc/cpu/layernorm.cpp"
|
||||
"csrc/cpu/mla_decode.cpp"
|
||||
"csrc/cpu/pos_encoding.cpp"
|
||||
"csrc/cpu/torch_bindings.cpp")
|
||||
|
||||
if (AVX512_FOUND AND NOT AVX512_DISABLED)
|
||||
set(VLLM_EXT_SRC
|
||||
"csrc/cpu/quant.cpp"
|
||||
"csrc/cpu/shm.cpp"
|
||||
${VLLM_EXT_SRC})
|
||||
endif()
|
||||
|
||||
|
@ -38,7 +38,7 @@ else()
|
||||
FetchContent_Declare(
|
||||
vllm-flash-attn
|
||||
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
||||
GIT_TAG 9bfa9869829d8c593527eb34c5271d0090f7ccc9
|
||||
GIT_TAG 8798f27777fb57f447070301bf33a9f9c607f491
|
||||
GIT_PROGRESS TRUE
|
||||
# Don't share the vllm-flash-attn build between build types
|
||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||
|
178
csrc/attention/merge_attn_states.cu
Normal file
178
csrc/attention/merge_attn_states.cu
Normal file
@ -0,0 +1,178 @@
|
||||
#include <optional>
|
||||
#include <torch/all.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <algorithm>
|
||||
|
||||
#include "attention_dtypes.h"
|
||||
#include "attention_utils.cuh"
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// Implements section 2.2 of https://www.arxiv.org/pdf/2501.01005
|
||||
// can be used to combine partial attention results (in the split-KV case)
|
||||
template <typename scalar_t, const uint NUM_THREADS>
|
||||
__global__ void merge_attn_states_kernel(
|
||||
scalar_t* output, float* output_lse, const scalar_t* prefix_output,
|
||||
const float* prefix_lse, const scalar_t* suffix_output,
|
||||
const float* suffix_lse, const uint num_tokens, const uint num_heads,
|
||||
const uint head_size) {
|
||||
using pack_128b_t = uint4;
|
||||
const uint pack_size = 16 / sizeof(scalar_t);
|
||||
const uint threads_per_head = head_size / pack_size;
|
||||
|
||||
const uint global_idx = blockIdx.x * NUM_THREADS + threadIdx.x;
|
||||
const uint token_head_threads = num_tokens * num_heads * threads_per_head;
|
||||
|
||||
if (global_idx >= token_head_threads) return;
|
||||
|
||||
// global_idx -> token_idx + head_idx + pack_idx
|
||||
const uint token_head_idx = global_idx / threads_per_head;
|
||||
const uint pack_idx = global_idx % threads_per_head;
|
||||
|
||||
const uint token_idx = token_head_idx / num_heads;
|
||||
const uint head_idx = token_head_idx % num_heads;
|
||||
|
||||
const uint pack_offset = pack_idx * pack_size; // (0~15)*8, etc.
|
||||
const uint head_offset =
|
||||
token_idx * num_heads * head_size + head_idx * head_size;
|
||||
const scalar_t* prefix_head_ptr = prefix_output + head_offset;
|
||||
const scalar_t* suffix_head_ptr = suffix_output + head_offset;
|
||||
scalar_t* output_head_ptr = output + head_offset;
|
||||
|
||||
float p_lse = prefix_lse[head_idx * num_tokens + token_idx];
|
||||
float s_lse = suffix_lse[head_idx * num_tokens + token_idx];
|
||||
p_lse = std::isinf(p_lse) ? -std::numeric_limits<float>::infinity() : p_lse;
|
||||
s_lse = std::isinf(s_lse) ? -std::numeric_limits<float>::infinity() : s_lse;
|
||||
|
||||
const float max_lse = fmaxf(p_lse, s_lse);
|
||||
p_lse = p_lse - max_lse;
|
||||
s_lse = s_lse - max_lse;
|
||||
const float p_se = expf(p_lse);
|
||||
const float s_se = expf(s_lse);
|
||||
const float out_se = p_se + s_se;
|
||||
const float p_scale = p_se / out_se;
|
||||
const float s_scale = s_se / out_se;
|
||||
|
||||
if (pack_offset < head_size) {
|
||||
// Pack 128b load
|
||||
pack_128b_t p_out_pack = reinterpret_cast<const pack_128b_t*>(
|
||||
prefix_head_ptr)[pack_offset / pack_size];
|
||||
pack_128b_t s_out_pack = reinterpret_cast<const pack_128b_t*>(
|
||||
suffix_head_ptr)[pack_offset / pack_size];
|
||||
pack_128b_t o_out_pack;
|
||||
|
||||
#pragma unroll
|
||||
for (uint i = 0; i < pack_size; ++i) {
|
||||
// Always use float for FMA to keep high precision.
|
||||
// half(uint16_t), bfloat16, float -> float.
|
||||
const float p_out_f =
|
||||
vllm::to_float(reinterpret_cast<const scalar_t*>(&p_out_pack)[i]);
|
||||
const float s_out_f =
|
||||
vllm::to_float(reinterpret_cast<const scalar_t*>(&s_out_pack)[i]);
|
||||
// fma: a * b + c = p_out_f * p_scale + (s_out_f * s_scale)
|
||||
const float o_out_f = p_out_f * p_scale + (s_out_f * s_scale);
|
||||
// float -> half(uint16_t), bfloat16, float.
|
||||
vllm::from_float(reinterpret_cast<scalar_t*>(&o_out_pack)[i], o_out_f);
|
||||
}
|
||||
|
||||
// Pack 128b storage
|
||||
reinterpret_cast<pack_128b_t*>(output_head_ptr)[pack_offset / pack_size] =
|
||||
o_out_pack;
|
||||
}
|
||||
// We only need to write to output_lse once per head.
|
||||
if (output_lse != nullptr && pack_idx == 0) {
|
||||
float out_lse = logf(out_se) + max_lse;
|
||||
output_lse[head_idx * num_tokens + token_idx] = out_lse;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
// The following macro is used to dispatch the conversion function based on
|
||||
// the output data type. The FN is a macro that calls a function with
|
||||
// template<typename scalar_t>.
|
||||
#define DISPATCH_BY_SCALAR_DTYPE(scalar_dtype, fn) \
|
||||
{ \
|
||||
if (scalar_dtype == at::ScalarType::Float) { \
|
||||
fn(float); \
|
||||
} else if (scalar_dtype == at::ScalarType::Half) { \
|
||||
fn(uint16_t); \
|
||||
} else if (scalar_dtype == at::ScalarType::BFloat16) { \
|
||||
fn(__nv_bfloat16); \
|
||||
} else { \
|
||||
TORCH_CHECK(false, "Unsupported data type of O: ", scalar_dtype); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define LAUNCH_MERGE_ATTN_STATES(scalar_t, NUM_THREADS) \
|
||||
{ \
|
||||
vllm::merge_attn_states_kernel<scalar_t, NUM_THREADS> \
|
||||
<<<grid, block, 0, stream>>>( \
|
||||
reinterpret_cast<scalar_t*>(output.data_ptr()), output_lse_ptr, \
|
||||
reinterpret_cast<scalar_t*>(prefix_output.data_ptr()), \
|
||||
reinterpret_cast<float*>(prefix_lse.data_ptr()), \
|
||||
reinterpret_cast<scalar_t*>(suffix_output.data_ptr()), \
|
||||
reinterpret_cast<float*>(suffix_lse.data_ptr()), num_tokens, \
|
||||
num_heads, head_size); \
|
||||
}
|
||||
|
||||
/*@brief Merges the attention states from prefix and suffix
|
||||
* into the output tensor. NUM_TOKENS: n, NUM_HEADS: h, HEAD_SIZE: d
|
||||
*
|
||||
* @param output [n,h,d] The output tensor to store the merged attention states.
|
||||
* @param output_lse [h,d] Optional tensor to store the log-sum-exp values.
|
||||
* @param prefix_output [n,h,d] The prefix attention states.
|
||||
* @param prefix_lse [h,n] The log-sum-exp values for the prefix attention
|
||||
* states.
|
||||
* @param suffix_output [n,h,d] The suffix attention states.
|
||||
* @param suffix_lse [h,n] The log-sum-exp values for the suffix attention
|
||||
* states.
|
||||
*/
|
||||
template <typename scalar_t>
|
||||
void merge_attn_states_launcher(torch::Tensor& output,
|
||||
std::optional<torch::Tensor> output_lse,
|
||||
const torch::Tensor& prefix_output,
|
||||
const torch::Tensor& prefix_lse,
|
||||
const torch::Tensor& suffix_output,
|
||||
const torch::Tensor& suffix_lse) {
|
||||
constexpr uint NUM_THREADS = 128;
|
||||
const uint num_tokens = output.size(0);
|
||||
const uint num_heads = output.size(1);
|
||||
const uint head_size = output.size(2);
|
||||
const uint pack_size = 16 / sizeof(scalar_t);
|
||||
TORCH_CHECK(head_size % pack_size == 0,
|
||||
"headsize must be multiple of pack_size:", pack_size);
|
||||
float* output_lse_ptr = nullptr;
|
||||
if (output_lse.has_value()) {
|
||||
output_lse_ptr = output_lse.value().data_ptr<float>();
|
||||
}
|
||||
// Process one pack elements per thread. for float, the
|
||||
// pack_size is 4 for half/bf16, the pack_size is 8.
|
||||
const uint threads_per_head = head_size / pack_size;
|
||||
const uint total_threads = num_tokens * num_heads * threads_per_head;
|
||||
|
||||
dim3 block(NUM_THREADS);
|
||||
dim3 grid((total_threads + NUM_THREADS - 1) / NUM_THREADS);
|
||||
|
||||
const c10::cuda::OptionalCUDAGuard device_guard(prefix_output.device());
|
||||
auto stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
LAUNCH_MERGE_ATTN_STATES(scalar_t, NUM_THREADS);
|
||||
}
|
||||
|
||||
#define CALL_MERGE_ATTN_STATES_LAUNCHER(scalar_t) \
|
||||
{ \
|
||||
merge_attn_states_launcher<scalar_t>(output, output_lse, prefix_output, \
|
||||
prefix_lse, suffix_output, \
|
||||
suffix_lse); \
|
||||
}
|
||||
|
||||
void merge_attn_states(torch::Tensor& output,
|
||||
std::optional<torch::Tensor> output_lse,
|
||||
const torch::Tensor& prefix_output,
|
||||
const torch::Tensor& prefix_lse,
|
||||
const torch::Tensor& suffix_output,
|
||||
const torch::Tensor& suffix_lse) {
|
||||
DISPATCH_BY_SCALAR_DTYPE(output.dtype(), CALL_MERGE_ATTN_STATES_LAUNCHER);
|
||||
}
|
38
csrc/attention/mla/cutlass_mla_entry.cu
Normal file
38
csrc/attention/mla/cutlass_mla_entry.cu
Normal file
@ -0,0 +1,38 @@
|
||||
/*
|
||||
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <torch/all.h>
|
||||
|
||||
#if defined ENABLE_CUTLASS_MLA && ENABLE_CUTLASS_MLA
|
||||
void cutlass_mla_decode_sm100a(torch::Tensor const& out,
|
||||
torch::Tensor const& q_nope,
|
||||
torch::Tensor const& q_pe,
|
||||
torch::Tensor const& kv_c_and_k_pe_cache,
|
||||
torch::Tensor const& seq_lens,
|
||||
torch::Tensor const& page_table, double scale);
|
||||
#endif
|
||||
|
||||
void cutlass_mla_decode(torch::Tensor const& out, torch::Tensor const& q_nope,
|
||||
torch::Tensor const& q_pe,
|
||||
torch::Tensor const& kv_c_and_k_pe_cache,
|
||||
torch::Tensor const& seq_lens,
|
||||
torch::Tensor const& page_table, double scale) {
|
||||
#if defined ENABLE_CUTLASS_MLA && ENABLE_CUTLASS_MLA
|
||||
return cutlass_mla_decode_sm100a(out, q_nope, q_pe, kv_c_and_k_pe_cache,
|
||||
seq_lens, page_table, scale);
|
||||
#endif
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "No compiled cutlass MLA");
|
||||
}
|
225
csrc/attention/mla/cutlass_mla_kernels.cu
Normal file
225
csrc/attention/mla/cutlass_mla_kernels.cu
Normal file
@ -0,0 +1,225 @@
|
||||
/*
|
||||
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <torch/all.h>
|
||||
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
#include "cute/tensor.hpp"
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/kernel_hardware_info.h"
|
||||
|
||||
#include "cutlass_extensions/common.hpp"
|
||||
|
||||
#include "device/sm100_mla.hpp"
|
||||
#include "kernel/sm100_mla_tile_scheduler.hpp"
|
||||
|
||||
using namespace cute;
|
||||
using namespace cutlass::fmha::kernel;
|
||||
|
||||
template <typename T, bool PersistenceOption = true>
|
||||
struct MlaSm100 {
|
||||
using Element = T;
|
||||
using ElementAcc = float;
|
||||
using ElementOut = T;
|
||||
|
||||
using TileShape = Shape<_128, _128, Shape<_512, _64>>;
|
||||
using TileShapeH = cute::tuple_element_t<0, TileShape>;
|
||||
using TileShapeD = cute::tuple_element_t<2, TileShape>;
|
||||
|
||||
// H K (D_latent D_rope) B
|
||||
using ProblemShape = cute::tuple<TileShapeH, int, TileShapeD, int>;
|
||||
|
||||
using StrideQ = cute::tuple<int64_t, _1, int64_t>; // H D B
|
||||
using StrideK = cute::tuple<int64_t, _1, int64_t>; // K D B
|
||||
using StrideO = StrideK; // H D B
|
||||
using StrideLSE = cute::tuple<_1, int>; // H B
|
||||
|
||||
using TileScheduler =
|
||||
std::conditional_t<PersistenceOption, Sm100MlaPersistentTileScheduler,
|
||||
Sm100MlaIndividualTileScheduler>;
|
||||
|
||||
using FmhaKernel =
|
||||
cutlass::fmha::kernel::Sm100FmhaMlaKernelTmaWarpspecialized<
|
||||
TileShape, Element, ElementAcc, ElementOut, ElementAcc, TileScheduler,
|
||||
/*kIsCpAsync=*/true>;
|
||||
using Fmha = cutlass::fmha::device::MLA<FmhaKernel>;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
typename T::Fmha::Arguments args_from_options(
|
||||
at::Tensor const& out, at::Tensor const& q_nope, at::Tensor const& q_pe,
|
||||
at::Tensor const& kv_c_and_k_pe_cache, at::Tensor const& seq_lens,
|
||||
at::Tensor const& page_table, double scale) {
|
||||
cutlass::KernelHardwareInfo hw_info;
|
||||
hw_info.device_id = q_nope.device().index();
|
||||
hw_info.sm_count =
|
||||
cutlass::KernelHardwareInfo::query_device_multiprocessor_count(
|
||||
hw_info.device_id);
|
||||
|
||||
int batches = q_nope.sizes()[0];
|
||||
int page_count_per_seq = page_table.sizes()[1];
|
||||
int page_count_total = kv_c_and_k_pe_cache.sizes()[0];
|
||||
int page_size = kv_c_and_k_pe_cache.sizes()[1];
|
||||
int max_seq_len = page_size * page_count_per_seq;
|
||||
using TileShapeH = typename T::TileShapeH;
|
||||
using TileShapeD = typename T::TileShapeD;
|
||||
auto problem_shape =
|
||||
cute::make_tuple(TileShapeH{}, max_seq_len, TileShapeD{}, batches);
|
||||
|
||||
auto [H, K, D, B] = problem_shape;
|
||||
auto [D_latent, D_rope] = D;
|
||||
|
||||
using StrideQ = typename T::StrideQ;
|
||||
using StrideK = typename T::StrideK;
|
||||
using StrideO = typename T::StrideO;
|
||||
using StrideLSE = typename T::StrideLSE;
|
||||
|
||||
StrideQ stride_Q_latent = cute::make_tuple(
|
||||
static_cast<int64_t>(D_latent), _1{}, static_cast<int64_t>(H * D_latent));
|
||||
StrideQ stride_Q_rope = cute::make_tuple(static_cast<int64_t>(D_rope), _1{},
|
||||
static_cast<int64_t>(H * D_rope));
|
||||
StrideK stride_C =
|
||||
cute::make_tuple(static_cast<int64_t>(D_latent + D_rope), _1{},
|
||||
static_cast<int64_t>(page_size * (D_latent + D_rope)));
|
||||
StrideLSE stride_PT = cute::make_stride(_1{}, page_count_per_seq);
|
||||
StrideLSE stride_LSE = cute::make_tuple(_1{}, static_cast<int>(H));
|
||||
StrideO stride_O = cute::make_tuple(static_cast<int64_t>(D_latent), _1{},
|
||||
static_cast<int64_t>(H * D_latent));
|
||||
|
||||
using Element = typename T::Element;
|
||||
using ElementOut = typename T::ElementOut;
|
||||
using ElementAcc = typename T::ElementAcc;
|
||||
auto Q_latent_ptr = static_cast<Element*>(q_nope.data_ptr());
|
||||
auto Q_rope_ptr = static_cast<Element*>(q_pe.data_ptr());
|
||||
auto C_ptr = static_cast<Element*>(kv_c_and_k_pe_cache.data_ptr());
|
||||
auto scale_f = static_cast<float>(scale);
|
||||
typename T::Fmha::Arguments arguments{
|
||||
problem_shape,
|
||||
{scale_f, Q_latent_ptr, stride_Q_latent, Q_rope_ptr, stride_Q_rope, C_ptr,
|
||||
stride_C, C_ptr + D_latent, stride_C,
|
||||
static_cast<int*>(seq_lens.data_ptr()),
|
||||
static_cast<int*>(page_table.data_ptr()), stride_PT, page_count_total,
|
||||
page_size},
|
||||
{static_cast<ElementOut*>(out.data_ptr()), stride_O,
|
||||
static_cast<ElementAcc*>(nullptr), stride_LSE},
|
||||
hw_info,
|
||||
-1, // split_kv
|
||||
nullptr, // is_var_split_kv
|
||||
};
|
||||
// TODO(kaixih@nvidia): When split_kv=-1 and is_var_split_kv=false, we compute
|
||||
// split_kv automatically based on batch size and sequence length to balance
|
||||
// workload across available SMs. Consider using var_split_kv for manual
|
||||
// control if needed.
|
||||
T::Fmha::set_split_kv(arguments);
|
||||
return arguments;
|
||||
}
|
||||
|
||||
template <typename Element>
|
||||
void runMla(at::Tensor const& out, at::Tensor const& q_nope,
|
||||
at::Tensor const& q_pe, at::Tensor const& kv_c_and_k_pe_cache,
|
||||
at::Tensor const& seq_lens, at::Tensor const& page_table,
|
||||
float scale, cudaStream_t stream) {
|
||||
using MlaSm100Type = MlaSm100<Element>;
|
||||
typename MlaSm100Type::Fmha fmha;
|
||||
auto arguments = args_from_options<MlaSm100Type>(
|
||||
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, scale);
|
||||
size_t workspace_size = MlaSm100Type::Fmha::get_workspace_size(arguments);
|
||||
auto const workspace_options =
|
||||
torch::TensorOptions().dtype(torch::kUInt8).device(q_nope.device());
|
||||
auto workspace = torch::empty(workspace_size, workspace_options);
|
||||
|
||||
CUTLASS_CHECK(fmha.can_implement(arguments));
|
||||
|
||||
CUTLASS_CHECK(fmha.initialize(arguments, workspace.data_ptr(), stream));
|
||||
|
||||
CUTLASS_CHECK(fmha.run(arguments, workspace.data_ptr(), stream));
|
||||
}
|
||||
|
||||
void cutlass_mla_decode_sm100a(torch::Tensor const& out,
|
||||
torch::Tensor const& q_nope,
|
||||
torch::Tensor const& q_pe,
|
||||
torch::Tensor const& kv_c_and_k_pe_cache,
|
||||
torch::Tensor const& seq_lens,
|
||||
torch::Tensor const& page_table, double scale) {
|
||||
TORCH_CHECK(q_nope.device().is_cuda(), "q_nope must be on CUDA");
|
||||
TORCH_CHECK(q_nope.dim() == 3, "q_nope must be a 3D tensor");
|
||||
TORCH_CHECK(q_pe.dim() == 3, "q_pe must be a 3D tensor");
|
||||
TORCH_CHECK(kv_c_and_k_pe_cache.dim() == 3,
|
||||
"kv_c_and_k_pe_cache must be a 3D tensor");
|
||||
TORCH_CHECK(seq_lens.dim() == 1, "seq_lens must be a 1D tensor");
|
||||
TORCH_CHECK(page_table.dim() == 2, "page_table must be a 2D tensor");
|
||||
TORCH_CHECK(out.dim() == 3, "out must be a 3D tensor");
|
||||
|
||||
auto B_q_nope = q_nope.size(0);
|
||||
auto H_q_nope = q_nope.size(1);
|
||||
auto D_q_nope = q_nope.size(2);
|
||||
auto B_q_pe = q_pe.size(0);
|
||||
auto H_q_pe = q_pe.size(1);
|
||||
auto D_q_pe = q_pe.size(2);
|
||||
auto B_pt = page_table.size(0);
|
||||
auto PAGE_NUM = page_table.size(1);
|
||||
auto PAGE_SIZE = kv_c_and_k_pe_cache.size(1);
|
||||
auto D_ckv = kv_c_and_k_pe_cache.size(2);
|
||||
auto B_o = out.size(0);
|
||||
auto H_o = out.size(1);
|
||||
auto D_o = out.size(2);
|
||||
|
||||
TORCH_CHECK(D_q_nope == 512, "D_q_nope must be equal to 512");
|
||||
TORCH_CHECK(D_q_pe == 64, "D_q_pe must be equal to 64");
|
||||
TORCH_CHECK(D_ckv == 576, "D_ckv must be equal to 576");
|
||||
TORCH_CHECK(H_q_nope == H_q_pe && H_q_nope == H_o && H_o == 128,
|
||||
"H_q_nope, H_q_pe, and H_o must be equal to 128");
|
||||
TORCH_CHECK(PAGE_SIZE > 0 && (PAGE_SIZE & (PAGE_SIZE - 1)) == 0,
|
||||
"PAGE_SIZE must be a power of 2");
|
||||
TORCH_CHECK(
|
||||
B_q_nope == B_q_pe && B_q_nope == B_pt && B_q_nope == B_o,
|
||||
"Batch dims must be same for page_table, q_nope and q_pe, and out");
|
||||
TORCH_CHECK(PAGE_NUM % (128 / PAGE_SIZE) == 0,
|
||||
"PAGE_NUM must be divisible by 128 / PAGE_SIZE");
|
||||
TORCH_CHECK(D_o == 512, "D_o must be equal to 512");
|
||||
|
||||
TORCH_CHECK(q_nope.dtype() == at::ScalarType::Half ||
|
||||
q_nope.dtype() == at::ScalarType::BFloat16 ||
|
||||
q_nope.dtype() == at::ScalarType::Float8_e4m3fn,
|
||||
"q_nope must be a half, bfloat16, or float8_e4m3fn tensor");
|
||||
TORCH_CHECK(kv_c_and_k_pe_cache.dtype() == q_nope.dtype() &&
|
||||
q_nope.dtype() == q_pe.dtype(),
|
||||
"kv_c_and_k_pe_cache, q_nope, and q_pe must be the same type");
|
||||
TORCH_CHECK(seq_lens.dtype() == torch::kInt32,
|
||||
"seq_lens must be a 32-bit integer tensor");
|
||||
TORCH_CHECK(page_table.dtype() == torch::kInt32,
|
||||
"page_table must be a 32-bit integer tensor");
|
||||
|
||||
auto in_dtype = q_nope.dtype();
|
||||
at::cuda::CUDAGuard device_guard{(char)q_nope.get_device()};
|
||||
const cudaStream_t stream =
|
||||
at::cuda::getCurrentCUDAStream(q_nope.get_device());
|
||||
if (in_dtype == at::ScalarType::Half) {
|
||||
runMla<cutlass::half_t>(out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens,
|
||||
page_table, scale, stream);
|
||||
} else if (in_dtype == at::ScalarType::BFloat16) {
|
||||
runMla<cutlass::bfloat16_t>(out, q_nope, q_pe, kv_c_and_k_pe_cache,
|
||||
seq_lens, page_table, scale, stream);
|
||||
} else if (in_dtype == at::ScalarType::Float8_e4m3fn) {
|
||||
runMla<cutlass::float_e4m3_t>(out, q_nope, q_pe, kv_c_and_k_pe_cache,
|
||||
seq_lens, page_table, scale, stream);
|
||||
} else {
|
||||
TORCH_CHECK(false, "Unsupported input data type of MLA");
|
||||
}
|
||||
}
|
@ -270,9 +270,10 @@ __global__ void reshape_and_cache_flash_kernel(
|
||||
cache_t* __restrict__ value_cache, // [num_blocks, block_size, num_heads,
|
||||
// head_size]
|
||||
const int64_t* __restrict__ slot_mapping, // [num_tokens]
|
||||
const int block_stride, const int key_stride, const int value_stride,
|
||||
const int num_heads, const int head_size, const int block_size,
|
||||
const float* k_scale, const float* v_scale) {
|
||||
const int64_t block_stride, const int64_t page_stride,
|
||||
const int64_t head_stride, const int64_t key_stride,
|
||||
const int64_t value_stride, const int num_heads, const int head_size,
|
||||
const int block_size, const float* k_scale, const float* v_scale) {
|
||||
const int64_t token_idx = blockIdx.x;
|
||||
const int64_t slot_idx = slot_mapping[token_idx];
|
||||
// NOTE: slot_idx can be -1 if the token is padded
|
||||
@ -288,8 +289,8 @@ __global__ void reshape_and_cache_flash_kernel(
|
||||
const int head_idx = i / head_size;
|
||||
const int head_offset = i % head_size;
|
||||
const int64_t tgt_key_value_idx = block_idx * block_stride +
|
||||
block_offset * num_heads * head_size +
|
||||
head_idx * head_size + head_offset;
|
||||
block_offset * page_stride +
|
||||
head_idx * head_stride + head_offset;
|
||||
scalar_t tgt_key = key[src_key_idx];
|
||||
scalar_t tgt_value = value[src_value_idx];
|
||||
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
|
||||
@ -350,8 +351,8 @@ __global__ void concat_and_cache_mla_kernel(
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
// KV_T is the stored data type of kv-cache.
|
||||
// CACHE_T is the data type of key and value tensors.
|
||||
// KV_T is the data type of key and value tensors.
|
||||
// CACHE_T is the stored data type of kv-cache.
|
||||
// KV_DTYPE is the real data type of kv-cache.
|
||||
#define CALL_RESHAPE_AND_CACHE(KV_T, CACHE_T, KV_DTYPE) \
|
||||
vllm::reshape_and_cache_kernel<KV_T, CACHE_T, KV_DTYPE> \
|
||||
@ -393,19 +394,19 @@ void reshape_and_cache(
|
||||
CALL_RESHAPE_AND_CACHE)
|
||||
}
|
||||
|
||||
// KV_T is the stored data type of kv-cache.
|
||||
// CACHE_T is the data type of key and value tensors.
|
||||
// KV_T is the data type of key and value tensors.
|
||||
// CACHE_T is the stored data type of kv-cache.
|
||||
// KV_DTYPE is the real data type of kv-cache.
|
||||
#define CALL_RESHAPE_AND_CACHE_FLASH(KV_T, CACHE_T, KV_DTYPE) \
|
||||
vllm::reshape_and_cache_flash_kernel<KV_T, CACHE_T, KV_DTYPE> \
|
||||
<<<grid, block, 0, stream>>>( \
|
||||
reinterpret_cast<KV_T*>(key.data_ptr()), \
|
||||
reinterpret_cast<KV_T*>(value.data_ptr()), \
|
||||
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
|
||||
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
|
||||
slot_mapping.data_ptr<int64_t>(), block_stride, key_stride, \
|
||||
value_stride, num_heads, head_size, block_size, \
|
||||
reinterpret_cast<const float*>(k_scale.data_ptr()), \
|
||||
#define CALL_RESHAPE_AND_CACHE_FLASH(KV_T, CACHE_T, KV_DTYPE) \
|
||||
vllm::reshape_and_cache_flash_kernel<KV_T, CACHE_T, KV_DTYPE> \
|
||||
<<<grid, block, 0, stream>>>( \
|
||||
reinterpret_cast<KV_T*>(key.data_ptr()), \
|
||||
reinterpret_cast<KV_T*>(value.data_ptr()), \
|
||||
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
|
||||
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
|
||||
slot_mapping.data_ptr<int64_t>(), block_stride, page_stride, \
|
||||
head_stride, key_stride, value_stride, num_heads, head_size, \
|
||||
block_size, reinterpret_cast<const float*>(k_scale.data_ptr()), \
|
||||
reinterpret_cast<const float*>(v_scale.data_ptr()));
|
||||
|
||||
void reshape_and_cache_flash(
|
||||
@ -432,9 +433,11 @@ void reshape_and_cache_flash(
|
||||
int head_size = key.size(2);
|
||||
int block_size = key_cache.size(1);
|
||||
|
||||
int key_stride = key.stride(0);
|
||||
int value_stride = value.stride(0);
|
||||
int block_stride = key_cache.stride(0);
|
||||
int64_t key_stride = key.stride(0);
|
||||
int64_t value_stride = value.stride(0);
|
||||
int64_t block_stride = key_cache.stride(0);
|
||||
int64_t page_stride = key_cache.stride(1);
|
||||
int64_t head_stride = key_cache.stride(2);
|
||||
TORCH_CHECK(key_cache.stride(0) == value_cache.stride(0));
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
@ -446,8 +449,8 @@ void reshape_and_cache_flash(
|
||||
CALL_RESHAPE_AND_CACHE_FLASH);
|
||||
}
|
||||
|
||||
// KV_T is the stored data type of kv-cache.
|
||||
// CACHE_T is the data type of key and value tensors.
|
||||
// KV_T is the data type of key and value tensors.
|
||||
// CACHE_T is the stored data type of kv-cache.
|
||||
// KV_DTYPE is the real data type of kv-cache.
|
||||
#define CALL_CONCAT_AND_CACHE_MLA(KV_T, CACHE_T, KV_DTYPE) \
|
||||
vllm::concat_and_cache_mla_kernel<KV_T, CACHE_T, KV_DTYPE> \
|
||||
|
@ -88,6 +88,48 @@ void reshape_and_cache_cpu_impl(
|
||||
}
|
||||
}; // namespace
|
||||
|
||||
template <typename scalar_t>
|
||||
void concat_and_cache_mla_cpu_impl(
|
||||
const scalar_t* __restrict__ kv_c, // [num_tokens, kv_lora_rank]
|
||||
const scalar_t* __restrict__ k_pe, // [num_tokens, pe_dim]
|
||||
scalar_t* __restrict__ kv_cache, // [num_blocks, block_size, (kv_lora_rank
|
||||
// + pe_dim)]
|
||||
const int64_t* __restrict__ slot_mapping, // [num_tokens]
|
||||
const int num_tokens, //
|
||||
const int block_stride, //
|
||||
const int entry_stride, //
|
||||
const int kv_c_stride, //
|
||||
const int k_pe_stride, //
|
||||
const int kv_lora_rank, //
|
||||
const int pe_dim, //
|
||||
const int block_size //
|
||||
) {
|
||||
#pragma omp parallel for
|
||||
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
|
||||
const int64_t slot_idx = slot_mapping[token_idx];
|
||||
// NOTE: slot_idx can be -1 if the token is padded
|
||||
if (slot_idx < 0) {
|
||||
continue;
|
||||
}
|
||||
const int64_t block_idx = slot_idx / block_size;
|
||||
const int64_t block_offset = slot_idx % block_size;
|
||||
|
||||
auto copy = [&](const scalar_t* __restrict__ src,
|
||||
scalar_t* __restrict__ dst, int src_stride, int dst_stride,
|
||||
int size, int offset) {
|
||||
for (int i = 0; i < size; i++) {
|
||||
const int64_t src_idx = token_idx * src_stride + i;
|
||||
const int64_t dst_idx =
|
||||
block_idx * block_stride + block_offset * entry_stride + i + offset;
|
||||
dst[dst_idx] = src[src_idx];
|
||||
}
|
||||
};
|
||||
|
||||
copy(kv_c, kv_cache, kv_c_stride, block_stride, kv_lora_rank, 0);
|
||||
copy(k_pe, kv_cache, k_pe_stride, block_stride, pe_dim, kv_lora_rank);
|
||||
}
|
||||
}
|
||||
|
||||
// Note: the key_caches and value_caches vectors are constant but
|
||||
// not the Tensors they contain. The vectors need to be const refs
|
||||
// in order to satisfy pytorch's C++ operator registration code.
|
||||
@ -134,6 +176,38 @@ void reshape_and_cache(torch::Tensor& key, torch::Tensor& value,
|
||||
});
|
||||
}
|
||||
|
||||
void concat_and_cache_mla(
|
||||
torch::Tensor& kv_c, // [num_tokens, kv_lora_rank]
|
||||
torch::Tensor& k_pe, // [num_tokens, pe_dim]
|
||||
torch::Tensor& kv_cache, // [num_blocks, block_size, (kv_lora_rank +
|
||||
// pe_dim)]
|
||||
torch::Tensor& slot_mapping, // [num_tokens] or [num_actual_tokens]
|
||||
const std::string& kv_cache_dtype, torch::Tensor& scale) {
|
||||
int num_tokens = slot_mapping.size(0);
|
||||
int kv_lora_rank = kv_c.size(1);
|
||||
int pe_dim = k_pe.size(1);
|
||||
int block_size = kv_cache.size(1);
|
||||
|
||||
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
|
||||
TORCH_CHECK(kv_cache_dtype != "fp8");
|
||||
|
||||
int kv_c_stride = kv_c.stride(0);
|
||||
int k_pe_stride = k_pe.stride(0);
|
||||
int block_stride = kv_cache.stride(0);
|
||||
int entry_stride = kv_cache.stride(1);
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
kv_c.scalar_type(), "concat_and_cache_mla_cpu_impl", [&] {
|
||||
CPU_KERNEL_GUARD_IN(concat_and_cache_mla_cpu_impl)
|
||||
concat_and_cache_mla_cpu_impl<scalar_t>(
|
||||
kv_c.data_ptr<scalar_t>(), k_pe.data_ptr<scalar_t>(),
|
||||
kv_cache.data_ptr<scalar_t>(), slot_mapping.data_ptr<int64_t>(),
|
||||
num_tokens, block_stride, entry_stride, kv_c_stride, k_pe_stride,
|
||||
kv_lora_rank, pe_dim, block_size);
|
||||
CPU_KERNEL_GUARD_OUT(concat_and_cache_mla_cpu_impl)
|
||||
});
|
||||
}
|
||||
|
||||
void swap_blocks(torch::Tensor& src, torch::Tensor& dst,
|
||||
const torch::Tensor& block_mapping) {
|
||||
TORCH_CHECK(false, "swap_blocks is unsupported on CPU.")
|
||||
|
@ -78,9 +78,14 @@ struct FP16Vec16 : public Vec<FP16Vec16> {
|
||||
|
||||
__m256i reg;
|
||||
|
||||
// normal load
|
||||
explicit FP16Vec16(const void* ptr)
|
||||
: reg((__m256i)_mm256_loadu_si256((__m256i*)ptr)) {}
|
||||
|
||||
// non-temproal load
|
||||
explicit FP16Vec16(bool, void* ptr)
|
||||
: reg(_mm256_stream_load_si256((__m256i*)ptr)) {}
|
||||
|
||||
explicit FP16Vec16(const FP32Vec16&);
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<__m256i*>(ptr) = reg; }
|
||||
@ -110,9 +115,14 @@ struct BF16Vec16 : public Vec<BF16Vec16> {
|
||||
|
||||
__m256i reg;
|
||||
|
||||
// normal load
|
||||
explicit BF16Vec16(const void* ptr)
|
||||
: reg((__m256i)_mm256_loadu_si256((__m256i*)ptr)) {}
|
||||
|
||||
// non-temproal load
|
||||
explicit BF16Vec16(bool, void* ptr)
|
||||
: reg(_mm256_stream_load_si256((__m256i*)ptr)) {}
|
||||
|
||||
explicit BF16Vec16(const FP32Vec16&);
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<__m256i*>(ptr) = reg; }
|
||||
@ -130,6 +140,8 @@ struct BF16Vec32 : public Vec<BF16Vec32> {
|
||||
|
||||
__m512i reg;
|
||||
|
||||
explicit BF16Vec32() : reg(_mm512_setzero_si512()) {}
|
||||
|
||||
explicit BF16Vec32(const void* ptr) : reg((__m512i)_mm512_loadu_si512(ptr)) {}
|
||||
|
||||
explicit BF16Vec32(__m512i data) : reg(data) {}
|
||||
@ -311,8 +323,13 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
|
||||
explicit FP32Vec16() : reg(_mm512_set1_ps(0.0)) {}
|
||||
|
||||
// normal load
|
||||
explicit FP32Vec16(const float* ptr) : reg(_mm512_loadu_ps(ptr)) {}
|
||||
|
||||
// non-temproal load
|
||||
explicit FP32Vec16(bool, void* ptr)
|
||||
: reg((__m512)_mm512_stream_load_si512(ptr)) {}
|
||||
|
||||
explicit FP32Vec16(__m512 data) : reg(data) {}
|
||||
|
||||
explicit FP32Vec16(const FP32Vec4& data)
|
||||
@ -545,6 +562,33 @@ struct INT8Vec16 : public Vec<INT8Vec16> {
|
||||
_mm_mask_storeu_epi8(ptr, mask, reg);
|
||||
}
|
||||
};
|
||||
|
||||
struct INT8Vec64 : public Vec<INT8Vec64> {
|
||||
constexpr static int VEC_ELEM_NUM = 64;
|
||||
union AliasReg {
|
||||
__m512i reg;
|
||||
int8_t values[VEC_ELEM_NUM];
|
||||
};
|
||||
|
||||
__m512i reg;
|
||||
|
||||
// normal load
|
||||
explicit INT8Vec64(void* ptr) : reg(_mm512_loadu_epi8(ptr)) {}
|
||||
|
||||
// non-temproal load
|
||||
explicit INT8Vec64(bool, void* ptr) : reg(_mm512_stream_load_si512(ptr)) {}
|
||||
|
||||
void save(void* ptr) const { _mm512_storeu_epi8(ptr, reg); }
|
||||
|
||||
void save(int8_t* ptr, const int elem_num) const {
|
||||
constexpr uint64_t M = 0xFFFFFFFFFFFFFFFF;
|
||||
__mmask64 mask = _cvtu64_mask64(M >> (64 - elem_num));
|
||||
_mm512_mask_storeu_epi8(ptr, mask, reg);
|
||||
}
|
||||
|
||||
// non-temproal save
|
||||
void nt_save(int8_t* ptr) { _mm512_stream_si512((__m512i*)ptr, reg); }
|
||||
};
|
||||
#endif
|
||||
|
||||
template <typename T>
|
||||
@ -655,6 +699,22 @@ inline BF16Vec16::BF16Vec16(const FP32Vec16& v) {
|
||||
|
||||
inline void prefetch(const void* addr) { _mm_prefetch(addr, _MM_HINT_T1); }
|
||||
|
||||
#ifdef __AVX512F__
|
||||
inline void non_temporal_save(FP16Vec16& vec, void* ptr) {
|
||||
_mm256_stream_si256((__m256i*)ptr, vec.reg);
|
||||
}
|
||||
inline void non_temporal_save(BF16Vec32& vec, void* ptr) {
|
||||
_mm512_stream_si512((__m512i*)ptr, vec.reg);
|
||||
}
|
||||
inline void non_temporal_save(BF16Vec16& vec, void* ptr) {
|
||||
_mm256_stream_si256((__m256i*)ptr, vec.reg);
|
||||
}
|
||||
inline void non_temporal_save(FP32Vec16& vec, void* ptr) {
|
||||
_mm512_stream_ps((float*)ptr, vec.reg);
|
||||
}
|
||||
#endif
|
||||
|
||||
inline void mem_barrier() { _mm_mfence(); }
|
||||
}; // namespace vec_op
|
||||
|
||||
#endif
|
||||
|
393
csrc/cpu/mla_decode.cpp
Normal file
393
csrc/cpu/mla_decode.cpp
Normal file
@ -0,0 +1,393 @@
|
||||
#include "cpu_types.hpp"
|
||||
#include <float.h>
|
||||
|
||||
namespace {
|
||||
template <typename scalar_t>
|
||||
struct KernelVecType {
|
||||
using qk_load_vec_type = void;
|
||||
using qk_vec_type = void;
|
||||
using v_load_vec_type = void;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct KernelVecType<float> {
|
||||
using qk_load_vec_type = vec_op::FP32Vec16;
|
||||
using qk_vec_type = vec_op::FP32Vec16;
|
||||
using v_load_vec_type = vec_op::FP32Vec16;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct KernelVecType<c10::Half> {
|
||||
#if defined(__powerpc64__) || defined(__s390x__)
|
||||
// Power and s390x architecture-specific vector types
|
||||
using qk_load_vec_type = vec_op::FP32Vec16;
|
||||
using qk_vec_type = vec_op::FP32Vec16;
|
||||
using v_load_vec_type = vec_op::FP32Vec16;
|
||||
#else
|
||||
// Fallback for other architectures, including x86
|
||||
using qk_load_vec_type = vec_op::FP16Vec16;
|
||||
using qk_vec_type = vec_op::FP32Vec16;
|
||||
using v_load_vec_type = vec_op::FP16Vec16;
|
||||
#endif
|
||||
};
|
||||
|
||||
#ifdef __AVX512BF16__
|
||||
template <>
|
||||
struct KernelVecType<c10::BFloat16> {
|
||||
using qk_load_vec_type = vec_op::BF16Vec32;
|
||||
using qk_vec_type = vec_op::BF16Vec32;
|
||||
using v_load_vec_type = vec_op::BF16Vec16;
|
||||
};
|
||||
#elif defined(__aarch64__) && !defined(ARM_BF16_SUPPORT)
|
||||
// pass
|
||||
#else
|
||||
template <>
|
||||
struct KernelVecType<c10::BFloat16> {
|
||||
using qk_load_vec_type = vec_op::BF16Vec16;
|
||||
using qk_vec_type = vec_op::FP32Vec16;
|
||||
using v_load_vec_type = vec_op::BF16Vec16;
|
||||
};
|
||||
#endif
|
||||
|
||||
template <int HEAD_DIM, int V_HEAD_DIM, int BLOCK_SIZE, int HEAD_UNROLL,
|
||||
typename qk_vec_type>
|
||||
void mla_decode_block_head(
|
||||
const qk_vec_type* __restrict__ q_vecs, // [HEAD_UNROLL, head_dim]
|
||||
const qk_vec_type* __restrict__ k_vecs, // [block_size, head_dim]
|
||||
const vec_op::FP32Vec16* __restrict v_vecs_f32, // [block_size, v_head_dim]
|
||||
float* __restrict__ acc_out, // [HEAD_UNROLL, v_head_dim]
|
||||
float* __restrict__ acc_lse, // [HEAD_UNROLL]
|
||||
const float scale, const int num_tokens) {
|
||||
using f32_vec_type = vec_op::FP32Vec16;
|
||||
constexpr int QK_NUM_ELEM = qk_vec_type::VEC_ELEM_NUM;
|
||||
constexpr int V_NUM_ELEM = f32_vec_type::VEC_ELEM_NUM;
|
||||
|
||||
float logits[BLOCK_SIZE][HEAD_UNROLL] = {}; // initialize to zeros
|
||||
float max_val[HEAD_UNROLL];
|
||||
std::fill(max_val, max_val + HEAD_UNROLL, -FLT_MAX);
|
||||
|
||||
f32_vec_type acc_vec[BLOCK_SIZE][HEAD_UNROLL];
|
||||
for (int i = 0; i < HEAD_DIM; i += QK_NUM_ELEM) {
|
||||
// load to registers
|
||||
qk_vec_type q_vec[HEAD_UNROLL];
|
||||
|
||||
#pragma unroll
|
||||
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll)
|
||||
q_vec[unroll] =
|
||||
qk_vec_type{q_vecs[(i + unroll * HEAD_DIM) / QK_NUM_ELEM]};
|
||||
|
||||
for (int block_offset = 0; block_offset < num_tokens; ++block_offset) {
|
||||
qk_vec_type k_vec(k_vecs[(block_offset * HEAD_DIM + i) / QK_NUM_ELEM]);
|
||||
|
||||
#pragma unroll
|
||||
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll)
|
||||
vec_op::fma(acc_vec[block_offset][unroll], q_vec[unroll], k_vec);
|
||||
}
|
||||
}
|
||||
|
||||
for (int block_offset = 0; block_offset < num_tokens; ++block_offset) {
|
||||
#pragma unroll
|
||||
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll) {
|
||||
const float acc = acc_vec[block_offset][unroll].reduce_sum() * scale;
|
||||
logits[block_offset][unroll] = acc;
|
||||
max_val[unroll] = std::max(max_val[unroll], acc);
|
||||
}
|
||||
}
|
||||
|
||||
float sum_exp[HEAD_UNROLL] = {};
|
||||
for (int block_offset = 0; block_offset < num_tokens; ++block_offset) {
|
||||
#pragma unroll
|
||||
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll) {
|
||||
const float val =
|
||||
std::exp(logits[block_offset][unroll] - max_val[unroll]);
|
||||
logits[block_offset][unroll] = val;
|
||||
sum_exp[unroll] += val;
|
||||
}
|
||||
}
|
||||
|
||||
f32_vec_type this_out[V_HEAD_DIM / V_NUM_ELEM][HEAD_UNROLL];
|
||||
|
||||
for (int block_offset = 0; block_offset < num_tokens; ++block_offset) {
|
||||
// load to registers
|
||||
f32_vec_type scale_[HEAD_UNROLL];
|
||||
|
||||
#pragma unroll
|
||||
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll)
|
||||
scale_[unroll] =
|
||||
f32_vec_type{logits[block_offset][unroll] / sum_exp[unroll]};
|
||||
|
||||
for (int i = 0; i < V_HEAD_DIM; i += V_NUM_ELEM) {
|
||||
f32_vec_type v_vec(
|
||||
v_vecs_f32[(block_offset * HEAD_DIM + i) / V_NUM_ELEM]);
|
||||
|
||||
#pragma unroll
|
||||
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll)
|
||||
vec_op::fma(this_out[i / V_NUM_ELEM][unroll], v_vec, scale_[unroll]);
|
||||
}
|
||||
}
|
||||
|
||||
// merge attention state
|
||||
// section 2.2 in https://arxiv.org/pdf/2501.01005
|
||||
f32_vec_type prev_scale[HEAD_UNROLL];
|
||||
f32_vec_type curr_scale[HEAD_UNROLL];
|
||||
|
||||
#pragma unroll
|
||||
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll) {
|
||||
const float prev_lse = acc_lse[unroll];
|
||||
const float curr_lse = std::log(sum_exp[unroll]) +
|
||||
max_val[unroll]; // add back max_val to get true lse
|
||||
// softmax trick
|
||||
const float max_lse = std::max(prev_lse, curr_lse);
|
||||
const float prev_sum_exp = std::exp(prev_lse - max_lse);
|
||||
const float curr_sum_exp = std::exp(curr_lse - max_lse);
|
||||
|
||||
const float new_sum_exp = prev_sum_exp + curr_sum_exp;
|
||||
acc_lse[unroll] = std::log(new_sum_exp) + max_lse;
|
||||
|
||||
prev_scale[unroll] = f32_vec_type{prev_sum_exp / new_sum_exp};
|
||||
curr_scale[unroll] = f32_vec_type{curr_sum_exp / new_sum_exp};
|
||||
}
|
||||
|
||||
for (int i = 0; i < V_HEAD_DIM; i += V_NUM_ELEM) {
|
||||
#pragma unroll
|
||||
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll) {
|
||||
f32_vec_type o_vec(acc_out + i + V_HEAD_DIM * unroll);
|
||||
o_vec = o_vec * prev_scale[unroll] +
|
||||
this_out[i / V_NUM_ELEM][unroll] * curr_scale[unroll];
|
||||
o_vec.save(acc_out + i + V_HEAD_DIM * unroll);
|
||||
}
|
||||
}
|
||||
|
||||
q_vecs += HEAD_DIM / QK_NUM_ELEM * HEAD_UNROLL;
|
||||
acc_out += V_HEAD_DIM * HEAD_UNROLL;
|
||||
}
|
||||
|
||||
template <typename scalar_t, int HEAD_DIM, int V_HEAD_DIM, int BLOCK_SIZE,
|
||||
typename qk_vec_type>
|
||||
void mla_decode_block(
|
||||
const qk_vec_type* __restrict__ q_vecs, // [num_heads, head_dim]
|
||||
const scalar_t* __restrict__ kv_cache, // [block_size, head_dim]
|
||||
float* __restrict__ acc_out, // [num_heads, v_head_dim]
|
||||
float* __restrict__ acc_lse, // [num_heads]
|
||||
const int num_heads, const float scale, const int num_tokens) {
|
||||
using qk_load_vec_type = typename KernelVecType<scalar_t>::qk_load_vec_type;
|
||||
static_assert(
|
||||
std::is_same<qk_vec_type,
|
||||
typename KernelVecType<scalar_t>::qk_vec_type>::value);
|
||||
using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
|
||||
using f32_vec_type = vec_op::FP32Vec16;
|
||||
static_assert(qk_load_vec_type::VEC_ELEM_NUM == qk_vec_type::VEC_ELEM_NUM);
|
||||
static_assert(v_load_vec_type::VEC_ELEM_NUM == f32_vec_type::VEC_ELEM_NUM);
|
||||
constexpr int QK_NUM_ELEM = qk_vec_type::VEC_ELEM_NUM;
|
||||
constexpr int V_NUM_ELEM = v_load_vec_type::VEC_ELEM_NUM;
|
||||
|
||||
const qk_vec_type* k_vecs;
|
||||
const f32_vec_type* v_vecs_f32;
|
||||
float* kv_cache_f32 = nullptr;
|
||||
|
||||
if constexpr (!std::is_same<scalar_t, float>::value) {
|
||||
// convert KV cache block to FP32 to reuse it across query heads and
|
||||
// attn @ V computation, since FP16/BF16->FP32 is expensive.
|
||||
// TODO: move malloc outside of this fn to reuse across iterations.
|
||||
const int nbytes = BLOCK_SIZE * HEAD_DIM * sizeof(float);
|
||||
kv_cache_f32 = static_cast<float*>(std::aligned_alloc(64, nbytes));
|
||||
|
||||
for (int block_offset = 0; block_offset < num_tokens; ++block_offset)
|
||||
for (int i = 0; i < HEAD_DIM; i += V_NUM_ELEM) {
|
||||
v_load_vec_type kv_load_vec(kv_cache + block_offset * HEAD_DIM + i);
|
||||
f32_vec_type kv_vec_f32(kv_load_vec);
|
||||
kv_vec_f32.save(kv_cache_f32 + block_offset * HEAD_DIM + i);
|
||||
}
|
||||
|
||||
if constexpr (std::is_same<qk_load_vec_type, qk_vec_type>::value) {
|
||||
// for AVX512_BF16, Q @ K.T uses BF16 for K (no conversion)
|
||||
// NOTE: in this case, we only need to convert the V section to FP32.
|
||||
// But for simplicity, we will convert the whole KV block to FP32.
|
||||
k_vecs = reinterpret_cast<const qk_vec_type*>(kv_cache);
|
||||
} else {
|
||||
k_vecs = reinterpret_cast<const qk_vec_type*>(kv_cache_f32);
|
||||
}
|
||||
|
||||
// attn @ V always use FP32 for V, since attn is FP32.
|
||||
v_vecs_f32 = reinterpret_cast<const f32_vec_type*>(kv_cache_f32);
|
||||
|
||||
} else {
|
||||
// KV cache is FP32. don't need to do anything.
|
||||
k_vecs = reinterpret_cast<const qk_vec_type*>(kv_cache);
|
||||
v_vecs_f32 = reinterpret_cast<const f32_vec_type*>(kv_cache);
|
||||
}
|
||||
|
||||
// compute 2 heads at the same time to improve ILP and
|
||||
// take advantage of register cache for K and V.
|
||||
constexpr int HEAD_UNROLL = 2;
|
||||
for (int iter = 0; iter < num_heads / HEAD_UNROLL; ++iter) {
|
||||
mla_decode_block_head<HEAD_DIM, V_HEAD_DIM, BLOCK_SIZE, HEAD_UNROLL>(
|
||||
q_vecs, k_vecs, v_vecs_f32, acc_out, acc_lse, scale, num_tokens);
|
||||
|
||||
q_vecs += HEAD_UNROLL * HEAD_DIM / QK_NUM_ELEM;
|
||||
acc_out += HEAD_UNROLL * V_HEAD_DIM;
|
||||
acc_lse += HEAD_UNROLL;
|
||||
}
|
||||
|
||||
// take care of the remaining heads
|
||||
for (int iter = 0; iter < num_heads % HEAD_UNROLL; ++iter) {
|
||||
mla_decode_block_head<HEAD_DIM, V_HEAD_DIM, BLOCK_SIZE, 1>(
|
||||
q_vecs, k_vecs, v_vecs_f32, acc_out, acc_lse, scale, num_tokens);
|
||||
|
||||
q_vecs += HEAD_DIM / QK_NUM_ELEM;
|
||||
acc_out += V_HEAD_DIM;
|
||||
acc_lse += 1;
|
||||
}
|
||||
|
||||
if (kv_cache_f32 != nullptr) {
|
||||
std::free(kv_cache_f32);
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
template <typename scalar_t, int HEAD_DIM, int V_HEAD_DIM, int BLOCK_SIZE>
|
||||
void mla_decode_kvcache_cpu_impl(
|
||||
scalar_t* __restrict__ out, // [num_seqs, num_heads, v_head_dim]
|
||||
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_dim]
|
||||
const scalar_t* __restrict__ kv_cache, // [num_blocks, block_size,
|
||||
// head_dim]
|
||||
const int num_heads, const float scale,
|
||||
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
|
||||
const int* __restrict__ seq_lens, // [num_seqs]
|
||||
const int max_num_blocks_per_seq, const int o_stride, const int q_stride,
|
||||
const int kv_stride, const int num_seqs) {
|
||||
using qk_load_vec_type = typename KernelVecType<scalar_t>::qk_load_vec_type;
|
||||
using qk_vec_type = typename KernelVecType<scalar_t>::qk_vec_type;
|
||||
constexpr int QK_NUM_ELEM = qk_vec_type::VEC_ELEM_NUM;
|
||||
|
||||
// shared across threads
|
||||
const int max_threads = omp_get_max_threads();
|
||||
const int acc_out_nbytes =
|
||||
max_threads * num_heads * V_HEAD_DIM * sizeof(float);
|
||||
float* acc_out = static_cast<float*>(std::aligned_alloc(64, acc_out_nbytes));
|
||||
std::vector<float> acc_lse(max_threads * num_heads);
|
||||
|
||||
// allocate memory to pre-convert query to FP32 later
|
||||
float* q_f32;
|
||||
constexpr bool PRE_CONVERT_QUERY =
|
||||
!std::is_same<scalar_t, float>::value &&
|
||||
std::is_same<qk_vec_type, vec_op::FP32Vec16>::value;
|
||||
if constexpr (PRE_CONVERT_QUERY) {
|
||||
const int q_f32_nbytes = num_heads * HEAD_DIM * sizeof(float);
|
||||
q_f32 = static_cast<float*>(std::aligned_alloc(64, q_f32_nbytes));
|
||||
}
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
const int num_threads = omp_get_num_threads();
|
||||
const int thread_id = omp_get_thread_num();
|
||||
float* __restrict__ acc_out_thread =
|
||||
acc_out + thread_id * num_heads * V_HEAD_DIM;
|
||||
float* __restrict__ acc_lse_thread = acc_lse.data() + thread_id * num_heads;
|
||||
|
||||
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
|
||||
// reset accumulator
|
||||
std::fill(acc_out_thread, acc_out_thread + num_heads * V_HEAD_DIM, 0.0f);
|
||||
std::fill(acc_lse_thread, acc_lse_thread + num_heads, -FLT_MAX);
|
||||
|
||||
const int seq_len = seq_lens[seq_idx];
|
||||
const int block_num = (seq_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
const int last_block_size = seq_len - (block_num - 1) * BLOCK_SIZE;
|
||||
|
||||
const qk_vec_type* q_vecs;
|
||||
if constexpr (PRE_CONVERT_QUERY) {
|
||||
// pre-convert query to FP32 since FP16/BF16->FP32 is slow.
|
||||
#pragma omp for
|
||||
for (int i = 0; i < num_heads * HEAD_DIM; i += QK_NUM_ELEM) {
|
||||
qk_load_vec_type q_load_vec(q + seq_idx * q_stride + i);
|
||||
qk_vec_type q_vec(q_load_vec);
|
||||
q_vec.save(q_f32 + i);
|
||||
}
|
||||
q_vecs = reinterpret_cast<const qk_vec_type*>(q_f32);
|
||||
} else {
|
||||
q_vecs = reinterpret_cast<const qk_vec_type*>(q + seq_idx * q_stride);
|
||||
}
|
||||
|
||||
#pragma omp for
|
||||
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
|
||||
const int physical_block_idx =
|
||||
block_tables[seq_idx * max_num_blocks_per_seq + block_idx];
|
||||
const int num_tokens =
|
||||
block_idx < block_num - 1 ? BLOCK_SIZE : last_block_size;
|
||||
|
||||
mla_decode_block<scalar_t, HEAD_DIM, V_HEAD_DIM, BLOCK_SIZE>(
|
||||
q_vecs, kv_cache + physical_block_idx * kv_stride, acc_out_thread,
|
||||
acc_lse_thread, num_heads, scale, num_tokens);
|
||||
}
|
||||
|
||||
// merge attention states across threads
|
||||
// section 2.2 in https://arxiv.org/pdf/2501.01005
|
||||
// each thread is responsible for 1 head
|
||||
#pragma omp for
|
||||
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
|
||||
float* acc_lse_head = acc_lse.data() + head_idx;
|
||||
float* acc_out_head = acc_out + head_idx * V_HEAD_DIM;
|
||||
|
||||
float max_val = -FLT_MAX;
|
||||
for (int thread_id_ = 0; thread_id_ < num_threads; ++thread_id_) {
|
||||
max_val = std::max(max_val, acc_lse_head[thread_id_ * num_heads]);
|
||||
}
|
||||
|
||||
float sum_exp = 0.0f;
|
||||
for (int thread_id_ = 0; thread_id_ < num_threads; ++thread_id_) {
|
||||
float val = std::exp(acc_lse_head[thread_id_ * num_heads] - max_val);
|
||||
acc_lse_head[thread_id_ * num_heads] = val;
|
||||
sum_exp += val;
|
||||
}
|
||||
|
||||
float inv_sum = 1.0f / sum_exp;
|
||||
float out_head[V_HEAD_DIM] = {};
|
||||
for (int thread_id_ = 0; thread_id_ < num_threads; ++thread_id_) {
|
||||
float scale_ = acc_lse_head[thread_id_ * num_heads] * inv_sum;
|
||||
for (int i = 0; i < V_HEAD_DIM; ++i) {
|
||||
out_head[i] +=
|
||||
acc_out_head[thread_id_ * num_heads * V_HEAD_DIM + i] * scale_;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < V_HEAD_DIM; ++i) {
|
||||
vec_op::storeFP32(out_head[i], out + seq_idx * o_stride +
|
||||
head_idx * V_HEAD_DIM + i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (PRE_CONVERT_QUERY) {
|
||||
std::free(q_f32);
|
||||
}
|
||||
std::free(acc_out);
|
||||
}
|
||||
|
||||
void mla_decode_kvcache(torch::Tensor& out, torch::Tensor& query,
|
||||
torch::Tensor& kv_cache, double scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens) {
|
||||
const int num_seqs = query.size(0);
|
||||
const int num_heads = query.size(1);
|
||||
const int head_dim = query.size(2);
|
||||
const int block_size = kv_cache.size(1);
|
||||
const int v_head_dim = out.size(2);
|
||||
|
||||
const int max_num_blocks_per_seq = block_tables.size(1);
|
||||
const int o_stride = out.stride(0);
|
||||
const int q_stride = query.stride(0);
|
||||
const int kv_stride = kv_cache.stride(0);
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
query.scalar_type(), "mla_decode_kvcache_cpu_impl", [&] {
|
||||
CPU_KERNEL_GUARD_IN(mla_decode_kvcache_cpu_impl)
|
||||
if (head_dim == 576 && v_head_dim == 512 && block_size == 16)
|
||||
mla_decode_kvcache_cpu_impl<scalar_t, 576, 512, 16>(
|
||||
out.data_ptr<scalar_t>(), query.data_ptr<scalar_t>(),
|
||||
kv_cache.data_ptr<scalar_t>(), num_heads, scale,
|
||||
block_tables.data_ptr<int>(), seq_lens.data_ptr<int>(),
|
||||
max_num_blocks_per_seq, o_stride, q_stride, kv_stride, num_seqs);
|
||||
else
|
||||
TORCH_CHECK(false, "Unsupported block size: ", block_size);
|
||||
CPU_KERNEL_GUARD_OUT(mla_decode_kvcache_cpu_impl)
|
||||
});
|
||||
}
|
781
csrc/cpu/shm.cpp
Normal file
781
csrc/cpu/shm.cpp
Normal file
@ -0,0 +1,781 @@
|
||||
#include "cpu/cpu_types.hpp"
|
||||
|
||||
#include <fcntl.h>
|
||||
#include <sys/mman.h>
|
||||
#include <sys/stat.h>
|
||||
#include <unistd.h>
|
||||
|
||||
namespace {
|
||||
#define MAX_SHM_RANK_NUM 8
|
||||
#define MAX_THREAD_NUM 12
|
||||
#define PER_THREAD_SHM_BUFFER_BYTES (4 * 1024 * 1024)
|
||||
#define MIN_THREAD_PROCESS_SIZE (8 * 1024)
|
||||
#define MAX_P2P_SEND_TENSOR_NUM 8
|
||||
|
||||
template <typename scalar_t>
|
||||
struct KernelVecType {
|
||||
using scalar_vec_t = void;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct KernelVecType<float> {
|
||||
using scalar_vec_t = vec_op::FP32Vec16;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct KernelVecType<c10::BFloat16> {
|
||||
using scalar_vec_t = vec_op::BF16Vec16;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct KernelVecType<c10::Half> {
|
||||
using scalar_vec_t = vec_op::FP16Vec16;
|
||||
};
|
||||
|
||||
enum class ThreadSHMStat : char { THREAD_READY = 0, SHM_DATA_READY, DONE };
|
||||
|
||||
struct ThreadSHMContext {
|
||||
volatile ThreadSHMStat thread_stats[MAX_SHM_RANK_NUM];
|
||||
int thread_id;
|
||||
int thread_num;
|
||||
int rank;
|
||||
int group_size;
|
||||
size_t _spinning_count;
|
||||
int swizzled_ranks[MAX_SHM_RANK_NUM];
|
||||
void* thread_shm_ptrs[MAX_SHM_RANK_NUM];
|
||||
ThreadSHMContext* shm_contexts[MAX_SHM_RANK_NUM];
|
||||
|
||||
ThreadSHMContext(const int thread_id, const int thread_num, const int rank,
|
||||
const int group_size, void* thread_shm_ptr)
|
||||
: thread_id(thread_id),
|
||||
thread_num(thread_num),
|
||||
rank(rank),
|
||||
group_size(group_size),
|
||||
_spinning_count(0) {
|
||||
static_assert(sizeof(ThreadSHMContext) % 64 == 0);
|
||||
TORCH_CHECK(group_size <= MAX_SHM_RANK_NUM);
|
||||
TORCH_CHECK((size_t)this % 64 == 0);
|
||||
TORCH_CHECK((size_t)thread_shm_ptr % 64 == 0);
|
||||
for (int i = 0; i < MAX_SHM_RANK_NUM; ++i) {
|
||||
shm_contexts[i] = nullptr;
|
||||
thread_shm_ptrs[i] = nullptr;
|
||||
swizzled_ranks[i] = (i + rank) % group_size;
|
||||
thread_stats[i] = ThreadSHMStat::DONE;
|
||||
}
|
||||
set_context(rank, this, thread_shm_ptr);
|
||||
}
|
||||
|
||||
void set_context(int rank, ThreadSHMContext* ptr, void* thread_shm_ptr) {
|
||||
TORCH_CHECK(rank < MAX_SHM_RANK_NUM);
|
||||
TORCH_CHECK(ptr);
|
||||
TORCH_CHECK(thread_shm_ptr);
|
||||
TORCH_CHECK_EQ(ptr->thread_num, thread_num);
|
||||
TORCH_CHECK_EQ(ptr->thread_id, thread_id);
|
||||
shm_contexts[rank] = ptr;
|
||||
thread_shm_ptrs[rank] = thread_shm_ptr;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T* get_thread_shm_ptr(int rank) {
|
||||
return reinterpret_cast<T*>(thread_shm_ptrs[rank]);
|
||||
}
|
||||
|
||||
int get_swizzled_rank(int idx) { return swizzled_ranks[idx]; }
|
||||
|
||||
void wait_for_all(ThreadSHMStat prev_stat) {
|
||||
for (int idx = 0; idx < group_size; ++idx) {
|
||||
int rank = get_swizzled_rank(idx);
|
||||
while (thread_stats[rank] == prev_stat) {
|
||||
++_spinning_count;
|
||||
_mm_pause();
|
||||
}
|
||||
}
|
||||
vec_op::mem_barrier();
|
||||
}
|
||||
|
||||
void wait_for_one(int rank, ThreadSHMStat prev_stat) {
|
||||
while (thread_stats[rank] == prev_stat) {
|
||||
++_spinning_count;
|
||||
_mm_pause();
|
||||
}
|
||||
vec_op::mem_barrier();
|
||||
}
|
||||
|
||||
void set_thread_stat(ThreadSHMStat stat) {
|
||||
for (int idx = 0; idx < group_size; ++idx) {
|
||||
int rank = get_swizzled_rank(idx);
|
||||
shm_contexts[rank]->thread_stats[this->rank] = stat;
|
||||
}
|
||||
}
|
||||
|
||||
void set_thread_stat(int target_rank, ThreadSHMStat stat) {
|
||||
for (int idx = 0; idx < group_size; ++idx) {
|
||||
int rank = get_swizzled_rank(idx);
|
||||
shm_contexts[rank]->thread_stats[target_rank] = stat;
|
||||
}
|
||||
}
|
||||
|
||||
// barrier for all ranks in the group, used for all2all ops
|
||||
// DONE -> THREAD_READY -> SHM_DATA_READY -> DONE -> ...
|
||||
void barrier(ThreadSHMStat next_stat) {
|
||||
if (next_stat == ThreadSHMStat::THREAD_READY) {
|
||||
set_thread_stat(ThreadSHMStat::THREAD_READY);
|
||||
wait_for_all(ThreadSHMStat::DONE);
|
||||
} else if (next_stat == ThreadSHMStat::SHM_DATA_READY) {
|
||||
set_thread_stat(ThreadSHMStat::SHM_DATA_READY);
|
||||
wait_for_all(ThreadSHMStat::THREAD_READY);
|
||||
} else if (next_stat == ThreadSHMStat::DONE) {
|
||||
set_thread_stat(ThreadSHMStat::DONE);
|
||||
wait_for_all(ThreadSHMStat::SHM_DATA_READY);
|
||||
} else {
|
||||
TORCH_CHECK(false, "Invalid next_stat to barrier.");
|
||||
}
|
||||
}
|
||||
|
||||
std::string to_string() const {
|
||||
std::stringstream ss;
|
||||
ss << "SHMContext:";
|
||||
ss << "\nrank: " << rank;
|
||||
ss << "\ngroup_size: " << group_size;
|
||||
ss << "\nthread_num: " << thread_num;
|
||||
ss << "\nthread_id: " << thread_id;
|
||||
|
||||
ss << "\nshm_ctx_stat_loop_seq: [";
|
||||
for (int i = 0; i < group_size; ++i) {
|
||||
ss << swizzled_ranks[i] << ", ";
|
||||
}
|
||||
ss << "]";
|
||||
|
||||
ss << "\nshm_contexts: [";
|
||||
for (int i = 0; i < group_size; ++i) {
|
||||
if (shm_contexts[i]) {
|
||||
ss << shm_contexts[i]->rank << ", ";
|
||||
}
|
||||
}
|
||||
ss << "]";
|
||||
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
|
||||
class SHMManager {
|
||||
public:
|
||||
explicit SHMManager(const std::string& name, const int rank,
|
||||
const int group_size)
|
||||
: _rank(rank),
|
||||
_group_size(group_size),
|
||||
_thread_num(std::min(torch::get_num_threads(), MAX_THREAD_NUM)),
|
||||
_shm_names({""}),
|
||||
_shared_mem_ptrs({nullptr}),
|
||||
_shm_ctx(nullptr) {
|
||||
_shm_names[rank] = get_shm_name(name, rank);
|
||||
_shared_mem_ptrs[rank] = init_shm(rank);
|
||||
_shm_ctx = reinterpret_cast<ThreadSHMContext*>(_shared_mem_ptrs[rank]);
|
||||
|
||||
for (int i = 0; i < _thread_num; ++i) {
|
||||
ThreadSHMContext* ctx = new (_shm_ctx + i)
|
||||
ThreadSHMContext(i, _thread_num, _rank, _group_size,
|
||||
compute_thread_shm_ptr(_shm_ctx, i));
|
||||
}
|
||||
}
|
||||
|
||||
void join(const std::string& name) {
|
||||
for (int rank_idx = 0; rank_idx < _group_size; ++rank_idx) {
|
||||
if (rank_idx != _rank) {
|
||||
TORCH_CHECK(_shm_names[rank_idx].empty());
|
||||
TORCH_CHECK(_shared_mem_ptrs[rank_idx] == nullptr);
|
||||
_shm_names[rank_idx] = get_shm_name(name, rank_idx);
|
||||
_shared_mem_ptrs[rank_idx] = init_shm(rank_idx);
|
||||
ThreadSHMContext* target_ctx =
|
||||
reinterpret_cast<ThreadSHMContext*>(_shared_mem_ptrs[rank_idx]);
|
||||
for (int thread_idx = 0; thread_idx < _thread_num; ++thread_idx) {
|
||||
_shm_ctx[thread_idx].set_context(
|
||||
rank_idx, target_ctx + thread_idx,
|
||||
compute_thread_shm_ptr(target_ctx, thread_idx));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
~SHMManager() { destroy_shm(); }
|
||||
|
||||
ThreadSHMContext* get_shm_ctx() const { return _shm_ctx; }
|
||||
|
||||
static std::string get_shm_name(const std::string& name, int rank) {
|
||||
return name + "_" + std::to_string(rank);
|
||||
}
|
||||
|
||||
static int64_t create_singleton_instance(const std::string& name,
|
||||
const int group_size,
|
||||
const int rank) {
|
||||
std::lock_guard<std::mutex> guard(SingletonInstancesLock);
|
||||
SingletonInstances.emplace_back(
|
||||
std::make_unique<SHMManager>(name, rank, group_size));
|
||||
return static_cast<int64_t>(SingletonInstances.size() - 1);
|
||||
}
|
||||
|
||||
static SHMManager* get_singleton_instance(int64_t handle) {
|
||||
return SingletonInstances[handle].get();
|
||||
}
|
||||
|
||||
protected:
|
||||
static std::vector<std::unique_ptr<SHMManager>> SingletonInstances;
|
||||
static std::mutex SingletonInstancesLock;
|
||||
|
||||
private:
|
||||
static size_t round_to_alignment(size_t num) {
|
||||
return ((num + 63) / 64) * 64;
|
||||
}
|
||||
|
||||
int8_t* compute_thread_shm_ptr(ThreadSHMContext* ctx, int thread_id) {
|
||||
int8_t* thread_shm_ptr =
|
||||
reinterpret_cast<int8_t*>(ctx) +
|
||||
round_to_alignment(_thread_num * sizeof(ThreadSHMContext));
|
||||
return thread_shm_ptr +
|
||||
thread_id * round_to_alignment(PER_THREAD_SHM_BUFFER_BYTES);
|
||||
}
|
||||
|
||||
size_t compute_shm_size() {
|
||||
const size_t rounded_rank_buffer_size =
|
||||
round_to_alignment(PER_THREAD_SHM_BUFFER_BYTES) * _thread_num;
|
||||
const size_t rounded_thread_shm_ctx_size =
|
||||
round_to_alignment(_thread_num * sizeof(ThreadSHMContext));
|
||||
const size_t shm_size =
|
||||
rounded_thread_shm_ctx_size + rounded_rank_buffer_size;
|
||||
return shm_size;
|
||||
}
|
||||
|
||||
void* init_shm(int target_rank) {
|
||||
const std::string& shm_name = _shm_names[target_rank];
|
||||
const int local_rank = _rank;
|
||||
const size_t shm_size = compute_shm_size();
|
||||
|
||||
int fd = -1;
|
||||
if (local_rank == target_rank) {
|
||||
fd = shm_open(shm_name.c_str(), O_CREAT | O_EXCL | O_RDWR,
|
||||
S_IRUSR | S_IWUSR);
|
||||
|
||||
if (fd == -1)
|
||||
TORCH_CHECK(false, "create shm in SHMManager failed. errno: " +
|
||||
std::to_string(errno));
|
||||
|
||||
if (ftruncate(fd, shm_size) == -1)
|
||||
TORCH_CHECK(false, "ftruncate in SHMManager failed. errno: " +
|
||||
std::to_string(errno));
|
||||
} else {
|
||||
fd = shm_open(shm_name.c_str(), O_RDWR, S_IRUSR | S_IWUSR);
|
||||
|
||||
if (fd == -1)
|
||||
TORCH_CHECK(false, "open shm in SHMManager failed. errno: " +
|
||||
std::to_string(errno));
|
||||
}
|
||||
|
||||
void* shm_ptr = mmap(nullptr, shm_size, PROT_READ | PROT_WRITE,
|
||||
MAP_SHARED | MAP_POPULATE, fd, 0);
|
||||
|
||||
if (shm_ptr == MAP_FAILED) {
|
||||
TORCH_CHECK(false,
|
||||
"mmap in SHMManager failed. errno: " + std::to_string(errno));
|
||||
}
|
||||
|
||||
if (close(fd) != 0) {
|
||||
TORCH_CHECK(
|
||||
false, "close in SHMManager failed. errno: " + std::to_string(errno));
|
||||
}
|
||||
|
||||
TORCH_CHECK((size_t)shm_ptr % 64 == 0);
|
||||
|
||||
return shm_ptr;
|
||||
}
|
||||
|
||||
void destroy_shm() {
|
||||
std::stringstream ss;
|
||||
ss << "local rank " << _rank << ": [";
|
||||
for (int thread_id = 0; thread_id < _thread_num; ++thread_id) {
|
||||
ss << _shm_ctx[thread_id]._spinning_count << ", ";
|
||||
}
|
||||
ss << "]\n";
|
||||
|
||||
for (int i = 0; i < MAX_SHM_RANK_NUM; ++i) {
|
||||
if (_shared_mem_ptrs[i] != nullptr) {
|
||||
munmap(_shared_mem_ptrs[i], compute_shm_size());
|
||||
}
|
||||
|
||||
if (!_shm_names[i].empty()) {
|
||||
shm_unlink(_shm_names[i].c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int _rank;
|
||||
int _group_size;
|
||||
int _thread_num;
|
||||
std::array<std::string, MAX_SHM_RANK_NUM> _shm_names;
|
||||
std::array<void*, MAX_SHM_RANK_NUM> _shared_mem_ptrs;
|
||||
ThreadSHMContext* _shm_ctx;
|
||||
};
|
||||
|
||||
namespace shm_cc_ops {
|
||||
template <typename scalar_t, typename F>
|
||||
void shm_cc_loop(ThreadSHMContext* ctx, int64_t elem_num, F&& inner_func) {
|
||||
int thread_num = ctx->thread_num;
|
||||
int64_t total_bytes = elem_num * sizeof(scalar_t);
|
||||
int64_t total_units_num =
|
||||
(total_bytes + MIN_THREAD_PROCESS_SIZE - 1) / MIN_THREAD_PROCESS_SIZE;
|
||||
int64_t per_thread_units_num =
|
||||
(total_units_num + thread_num - 1) / thread_num;
|
||||
int64_t per_unit_elem_num = MIN_THREAD_PROCESS_SIZE / sizeof(scalar_t);
|
||||
int64_t max_per_thread_iteration_elem_num =
|
||||
PER_THREAD_SHM_BUFFER_BYTES / sizeof(scalar_t);
|
||||
int64_t per_thread_elem_num = per_unit_elem_num * per_thread_units_num;
|
||||
|
||||
#pragma omp parallel for schedule(static, 1)
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
int64_t offset = i * per_thread_elem_num;
|
||||
int64_t end = std::min(elem_num, offset + per_thread_elem_num);
|
||||
int64_t curr_elem_num =
|
||||
std::min(max_per_thread_iteration_elem_num, end - offset);
|
||||
ThreadSHMContext* thread_ctx = ctx + i;
|
||||
|
||||
while (curr_elem_num > 0) {
|
||||
inner_func(thread_ctx, offset, curr_elem_num);
|
||||
|
||||
offset += max_per_thread_iteration_elem_num;
|
||||
curr_elem_num = std::min(max_per_thread_iteration_elem_num, end - offset);
|
||||
}
|
||||
}
|
||||
}
|
||||
}; // namespace shm_cc_ops
|
||||
|
||||
namespace shm_cc_ops {
|
||||
|
||||
void memcpy_from_shm(void* dst, void* src, const int64_t bytes) {
|
||||
const int64_t aligned_bytes = ((bytes >> 6) << 6); // 64 bytes aligned
|
||||
int64_t i = 0;
|
||||
#pragma GCC unroll 4
|
||||
for (; i < aligned_bytes; i += 64) {
|
||||
vec_op::INT8Vec64 data(
|
||||
true, (int8_t*)src + i); // stream loading shm to avoid caching
|
||||
data.save((int8_t*)dst + i);
|
||||
}
|
||||
if (aligned_bytes < bytes) {
|
||||
vec_op::INT8Vec64 data(true, (int8_t*)src + aligned_bytes);
|
||||
data.save((int8_t*)dst + aligned_bytes, bytes - aligned_bytes);
|
||||
}
|
||||
}
|
||||
|
||||
void memcpy_to_shm(void* dst, void* src, const int64_t bytes) {
|
||||
#pragma GCC unroll 4
|
||||
for (int64_t i = 0; i < bytes; i += 64) {
|
||||
vec_op::INT8Vec64 data((int8_t*)src + i);
|
||||
data.nt_save((int8_t*)dst + i);
|
||||
}
|
||||
}
|
||||
|
||||
void memcpy(void* dst, void* src, const int64_t bytes) {
|
||||
const int64_t aligned_bytes = ((bytes >> 6) << 6); // 64 bytes aligned
|
||||
int64_t i = 0;
|
||||
#pragma GCC unroll 4
|
||||
for (; i < aligned_bytes; i += 64) {
|
||||
vec_op::INT8Vec64 data((int8_t*)src + i);
|
||||
data.save((int8_t*)dst + i);
|
||||
}
|
||||
if (aligned_bytes < bytes) {
|
||||
vec_op::INT8Vec64 data((int8_t*)src + aligned_bytes);
|
||||
data.save((int8_t*)dst + aligned_bytes, bytes - aligned_bytes);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t, int RANKS>
|
||||
void all_reduce_sum_impl(ThreadSHMContext* ctx, scalar_t* data,
|
||||
size_t elem_num) {
|
||||
CPU_KERNEL_GUARD_IN(all_reduce_sum_impl)
|
||||
using vec_t = typename KernelVecType<scalar_t>::scalar_vec_t;
|
||||
constexpr int64_t vec_elem_num = vec_t::get_elem_num();
|
||||
const int worldsize = ctx->group_size;
|
||||
|
||||
shm_cc_ops::shm_cc_loop<scalar_t>(
|
||||
ctx, elem_num,
|
||||
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
|
||||
int64_t data_elem_num) {
|
||||
int rank = thread_ctx->rank;
|
||||
scalar_t* thread_shm_ptr =
|
||||
thread_ctx->get_thread_shm_ptr<scalar_t>(rank);
|
||||
scalar_t* thread_data_ptr = data + data_offset;
|
||||
int64_t thread_data_elem_num = data_elem_num * sizeof(scalar_t);
|
||||
|
||||
scalar_t* remote_data_ptrs[RANKS - 1];
|
||||
vec_op::unroll_loop<int, RANKS - 1>([&](int idx) {
|
||||
remote_data_ptrs[idx] = thread_ctx->get_thread_shm_ptr<scalar_t>(
|
||||
thread_ctx->get_swizzled_rank(idx + 1));
|
||||
});
|
||||
|
||||
thread_ctx->barrier(ThreadSHMStat::THREAD_READY);
|
||||
|
||||
shm_cc_ops::memcpy_to_shm(thread_shm_ptr, thread_data_ptr,
|
||||
thread_data_elem_num);
|
||||
|
||||
thread_ctx->barrier(ThreadSHMStat::SHM_DATA_READY);
|
||||
|
||||
int64_t aligned_data_elem_num =
|
||||
(data_elem_num / vec_elem_num) * vec_elem_num;
|
||||
int64_t i = 0;
|
||||
#pragma GCC unroll 4
|
||||
for (; i < aligned_data_elem_num; i += vec_elem_num) {
|
||||
vec_t local_data(thread_data_ptr + i); // load from cache
|
||||
vec_op::FP32Vec16 local_data_fp32(local_data);
|
||||
vec_op::unroll_loop<int, RANKS - 1>([&](int idx) {
|
||||
vec_t remote_data(
|
||||
true, remote_data_ptrs[idx] + i); // stream load from shm
|
||||
vec_op::FP32Vec16 remote_data_fp32(remote_data);
|
||||
local_data_fp32 = local_data_fp32 + remote_data_fp32; // sum reduce
|
||||
});
|
||||
vec_t reduced_data(local_data_fp32);
|
||||
reduced_data.save(thread_data_ptr + i);
|
||||
}
|
||||
|
||||
if (i < data_elem_num) {
|
||||
vec_t local_data(thread_data_ptr + i); // load from cache
|
||||
vec_op::FP32Vec16 local_data_fp32(local_data);
|
||||
vec_op::unroll_loop<int, RANKS - 1>([&](int idx) {
|
||||
vec_t remote_data(
|
||||
true, remote_data_ptrs[idx] + i); // stream load from shm
|
||||
vec_op::FP32Vec16 remote_data_fp32(remote_data);
|
||||
local_data_fp32 = local_data_fp32 + remote_data_fp32; // sum reduce
|
||||
});
|
||||
vec_t reduced_data(local_data_fp32);
|
||||
reduced_data.save(thread_data_ptr + i,
|
||||
data_elem_num - aligned_data_elem_num);
|
||||
}
|
||||
|
||||
thread_ctx->barrier(ThreadSHMStat::DONE);
|
||||
});
|
||||
|
||||
return;
|
||||
}
|
||||
}; // namespace shm_cc_ops
|
||||
|
||||
std::vector<std::unique_ptr<SHMManager>> SHMManager::SingletonInstances = {};
|
||||
std::mutex SHMManager::SingletonInstancesLock = {};
|
||||
|
||||
template <typename scalar_t>
|
||||
void shm_allreduce_sum(ThreadSHMContext* ctx, scalar_t* data, size_t elem_num) {
|
||||
switch (ctx->group_size) {
|
||||
case 2:
|
||||
shm_cc_ops::all_reduce_sum_impl<scalar_t, 2>(ctx, data, elem_num);
|
||||
break;
|
||||
case 3:
|
||||
shm_cc_ops::all_reduce_sum_impl<scalar_t, 3>(ctx, data, elem_num);
|
||||
break;
|
||||
case 4:
|
||||
shm_cc_ops::all_reduce_sum_impl<scalar_t, 4>(ctx, data, elem_num);
|
||||
break;
|
||||
case 8:
|
||||
shm_cc_ops::all_reduce_sum_impl<scalar_t, 8>(ctx, data, elem_num);
|
||||
break;
|
||||
default:
|
||||
TORCH_CHECK(false,
|
||||
"Invalid world size: " + std::to_string(ctx->group_size));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void shm_gather_impl(ThreadSHMContext* ctx, scalar_t* data, size_t elem_num,
|
||||
scalar_t** outputs, const int dst) {
|
||||
CPU_KERNEL_GUARD_IN(shm_gather_impl)
|
||||
const int worldsize = ctx->group_size;
|
||||
TORCH_CHECK_LT(dst, worldsize);
|
||||
shm_cc_ops::shm_cc_loop<scalar_t>(
|
||||
ctx, elem_num,
|
||||
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
|
||||
int64_t data_elem_num) {
|
||||
int rank = thread_ctx->rank;
|
||||
scalar_t* thread_shm_ptr =
|
||||
thread_ctx->get_thread_shm_ptr<scalar_t>(rank);
|
||||
|
||||
thread_ctx->barrier(ThreadSHMStat::THREAD_READY);
|
||||
|
||||
shm_cc_ops::memcpy_to_shm(thread_shm_ptr, data + data_offset,
|
||||
data_elem_num * sizeof(scalar_t));
|
||||
|
||||
thread_ctx->barrier(ThreadSHMStat::SHM_DATA_READY);
|
||||
|
||||
if (rank == dst) {
|
||||
shm_cc_ops::memcpy(outputs[rank] + data_offset, data + data_offset,
|
||||
data_elem_num * sizeof(scalar_t));
|
||||
for (int i = 1; i < worldsize; ++i) {
|
||||
int src_rank = thread_ctx->get_swizzled_rank(i);
|
||||
scalar_t* src_ptr =
|
||||
thread_ctx->get_thread_shm_ptr<scalar_t>(src_rank); // shm
|
||||
scalar_t* dst_ptr = outputs[src_rank] + data_offset;
|
||||
shm_cc_ops::memcpy_from_shm(dst_ptr, src_ptr,
|
||||
data_elem_num * sizeof(scalar_t));
|
||||
}
|
||||
}
|
||||
|
||||
thread_ctx->barrier(ThreadSHMStat::DONE);
|
||||
});
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
struct MemPiece {
|
||||
void* ptr;
|
||||
int64_t size;
|
||||
|
||||
template <typename T>
|
||||
T* data_ptr() {
|
||||
return reinterpret_cast<T*>(ptr);
|
||||
}
|
||||
};
|
||||
|
||||
struct TensorListMeta {
|
||||
int64_t tensor_bytes[MAX_P2P_SEND_TENSOR_NUM];
|
||||
torch::ScalarType tensor_types[MAX_P2P_SEND_TENSOR_NUM];
|
||||
int64_t tensor_num;
|
||||
int64_t total_bytes;
|
||||
|
||||
TensorListMeta() : tensor_num(0), total_bytes(0) {
|
||||
static_assert(sizeof(TensorListMeta) % 64 == 0);
|
||||
static_assert(sizeof(TensorListMeta) <
|
||||
MIN_THREAD_PROCESS_SIZE); // To ensure the metadata always
|
||||
// hold by the thread 0
|
||||
for (int i = 0; i < MAX_P2P_SEND_TENSOR_NUM; ++i) {
|
||||
tensor_bytes[i] = 0;
|
||||
tensor_ptrs[i] = nullptr;
|
||||
tensor_types[i] = torch::ScalarType::Undefined;
|
||||
}
|
||||
}
|
||||
|
||||
// For send and recv
|
||||
void bind_tensor_list(std::vector<torch::Tensor>& tensor_list) {
|
||||
TORCH_CHECK(tensor_types[0] == torch::ScalarType::Undefined,
|
||||
"Re-bind TensorListMeta is not allowed.")
|
||||
TORCH_CHECK_LE(tensor_list.size(), MAX_P2P_SEND_TENSOR_NUM);
|
||||
tensor_num = tensor_list.size();
|
||||
int64_t bytes_sum = 0;
|
||||
for (int i = 0; i < tensor_list.size(); ++i) {
|
||||
torch::Tensor& t = tensor_list[i];
|
||||
TORCH_CHECK(t.is_contiguous());
|
||||
tensor_bytes[i] = t.nbytes();
|
||||
tensor_types[i] = t.scalar_type();
|
||||
tensor_ptrs[i] = t.data_ptr();
|
||||
bytes_sum += t.nbytes();
|
||||
}
|
||||
total_bytes = bytes_sum;
|
||||
}
|
||||
|
||||
// For recv
|
||||
std::vector<torch::Tensor> generate_tensor_list() {
|
||||
std::vector<torch::Tensor> tensor_list;
|
||||
tensor_list.reserve(tensor_num);
|
||||
|
||||
for (int i = 0; i < tensor_num; ++i) {
|
||||
int64_t bytes = tensor_bytes[i];
|
||||
auto type = tensor_types[i];
|
||||
int64_t elem_bytes = torch::elementSize(type);
|
||||
|
||||
TORCH_CHECK_EQ(bytes % elem_bytes, 0);
|
||||
int64_t elem_num = bytes / elem_bytes;
|
||||
auto options = torch::TensorOptions().dtype(type).device(torch::kCPU);
|
||||
tensor_list.emplace_back(torch::empty({elem_num}, options));
|
||||
}
|
||||
return tensor_list;
|
||||
}
|
||||
|
||||
MemPiece get_data(int64_t offset) {
|
||||
for (int i = 0; i < tensor_num; ++i) {
|
||||
if (offset < tensor_bytes[i]) {
|
||||
return {reinterpret_cast<int8_t*>(tensor_ptrs[i]) + offset,
|
||||
tensor_bytes[i] - offset};
|
||||
}
|
||||
offset -= tensor_bytes[i];
|
||||
}
|
||||
return {nullptr, 0};
|
||||
}
|
||||
|
||||
private:
|
||||
void* tensor_ptrs[MAX_P2P_SEND_TENSOR_NUM];
|
||||
int8_t _padding[40];
|
||||
};
|
||||
|
||||
void shm_send_tensor_list_impl(ThreadSHMContext* ctx,
|
||||
const std::vector<torch::Tensor>& tensor_list) {
|
||||
CPU_KERNEL_GUARD_IN(shm_send_tensor_list_impl)
|
||||
std::vector<torch::Tensor> tensor_list_with_metadata;
|
||||
tensor_list_with_metadata.reserve(1 + tensor_list.size());
|
||||
|
||||
auto options = torch::TensorOptions().dtype(torch::kInt8).device(torch::kCPU);
|
||||
tensor_list_with_metadata.emplace_back(
|
||||
torch::empty({sizeof(TensorListMeta)}, options));
|
||||
tensor_list_with_metadata.insert(tensor_list_with_metadata.end(),
|
||||
tensor_list.begin(), tensor_list.end());
|
||||
|
||||
torch::Tensor& metadata_tensor = tensor_list_with_metadata[0];
|
||||
TORCH_CHECK_EQ(metadata_tensor.nbytes(), sizeof(TensorListMeta));
|
||||
|
||||
TensorListMeta* metadata = new (metadata_tensor.data_ptr()) TensorListMeta();
|
||||
metadata->bind_tensor_list(tensor_list_with_metadata);
|
||||
|
||||
shm_cc_ops::shm_cc_loop<int8_t>(
|
||||
ctx, metadata->total_bytes,
|
||||
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
|
||||
int64_t data_elem_num) {
|
||||
int rank = thread_ctx->rank;
|
||||
// Wait until the receiver set the stat to DONE
|
||||
thread_ctx->wait_for_one(rank, ThreadSHMStat::SHM_DATA_READY);
|
||||
|
||||
int64_t curr_shm_offset = 0;
|
||||
while (curr_shm_offset < data_elem_num) {
|
||||
MemPiece frag = metadata->get_data(data_offset + curr_shm_offset);
|
||||
frag.size = std::min(frag.size, data_elem_num - curr_shm_offset);
|
||||
shm_cc_ops::memcpy(
|
||||
thread_ctx->get_thread_shm_ptr<int8_t>(rank) + curr_shm_offset,
|
||||
frag.ptr, frag.size);
|
||||
curr_shm_offset += frag.size;
|
||||
}
|
||||
|
||||
thread_ctx->set_thread_stat(rank, ThreadSHMStat::SHM_DATA_READY);
|
||||
});
|
||||
}
|
||||
|
||||
std::vector<torch::Tensor> shm_recv_tensor_list_impl(ThreadSHMContext* ctx,
|
||||
int64_t src) {
|
||||
CPU_KERNEL_GUARD_IN(shm_recv_tensor_list_impl)
|
||||
auto options = torch::TensorOptions().dtype(torch::kInt8).device(torch::kCPU);
|
||||
torch::Tensor metadata_tensor =
|
||||
torch::empty({sizeof(TensorListMeta)}, options);
|
||||
|
||||
// Wait until the sender set the stat of the thread 0 to SHM_DATA_READY
|
||||
ctx->wait_for_one(src, ThreadSHMStat::DONE);
|
||||
shm_cc_ops::memcpy(metadata_tensor.data_ptr(),
|
||||
ctx->get_thread_shm_ptr<void>(src),
|
||||
sizeof(TensorListMeta));
|
||||
TensorListMeta* src_metadata =
|
||||
reinterpret_cast<TensorListMeta*>(metadata_tensor.data_ptr());
|
||||
std::vector<torch::Tensor> tensor_list_with_metadata =
|
||||
src_metadata->generate_tensor_list();
|
||||
|
||||
TensorListMeta metadata;
|
||||
metadata.bind_tensor_list(tensor_list_with_metadata);
|
||||
TORCH_CHECK_EQ(metadata.tensor_num, src_metadata->tensor_num);
|
||||
TORCH_CHECK_EQ(metadata.total_bytes, src_metadata->total_bytes);
|
||||
|
||||
shm_cc_ops::shm_cc_loop<int8_t>(
|
||||
ctx, metadata.total_bytes,
|
||||
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
|
||||
int64_t data_elem_num) {
|
||||
// Wait until the sender set the stat to SHM_DATA_READY
|
||||
thread_ctx->wait_for_one(src, ThreadSHMStat::DONE);
|
||||
int64_t curr_shm_offset = 0;
|
||||
while (curr_shm_offset < data_elem_num) {
|
||||
MemPiece frag = metadata.get_data(data_offset + curr_shm_offset);
|
||||
frag.size = std::min(frag.size, data_elem_num - curr_shm_offset);
|
||||
shm_cc_ops::memcpy(
|
||||
frag.ptr,
|
||||
thread_ctx->get_thread_shm_ptr<int8_t>(src) + curr_shm_offset,
|
||||
frag.size);
|
||||
curr_shm_offset += frag.size;
|
||||
}
|
||||
|
||||
thread_ctx->set_thread_stat(src, ThreadSHMStat::DONE);
|
||||
});
|
||||
|
||||
std::vector<torch::Tensor> tensor_list;
|
||||
tensor_list.reserve(metadata.tensor_num - 1);
|
||||
tensor_list.insert(tensor_list.begin(), tensor_list_with_metadata.begin() + 1,
|
||||
tensor_list_with_metadata.end());
|
||||
|
||||
return tensor_list;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
void shm_gather(int64_t handle, torch::Tensor& data,
|
||||
const std::optional<std::vector<torch::Tensor>>& outputs,
|
||||
int64_t dst) {
|
||||
TORCH_CHECK(data.is_contiguous())
|
||||
VLLM_DISPATCH_FLOATING_TYPES(data.scalar_type(), "shm_gather_impl", [&] {
|
||||
CPU_KERNEL_GUARD_IN(shm_gather_impl)
|
||||
|
||||
if (outputs.has_value()) {
|
||||
TORCH_CHECK_LE(outputs->size(), MAX_SHM_RANK_NUM);
|
||||
scalar_t* output_ptrs[MAX_SHM_RANK_NUM] = {nullptr};
|
||||
for (int i = 0; i < outputs->size(); ++i) {
|
||||
output_ptrs[i] = outputs->at(i).data_ptr<scalar_t>();
|
||||
}
|
||||
shm_gather_impl(SHMManager::get_singleton_instance(handle)->get_shm_ctx(),
|
||||
data.data_ptr<scalar_t>(), data.numel(), output_ptrs,
|
||||
dst);
|
||||
} else {
|
||||
shm_gather_impl(SHMManager::get_singleton_instance(handle)->get_shm_ctx(),
|
||||
data.data_ptr<scalar_t>(), data.numel(), (scalar_t**)(0),
|
||||
dst);
|
||||
}
|
||||
|
||||
CPU_KERNEL_GUARD_OUT(shm_gather_impl)
|
||||
});
|
||||
}
|
||||
|
||||
void shm_all_gather(int64_t handle, const torch::Tensor& data,
|
||||
torch::Tensor& output) {
|
||||
TORCH_CHECK(data.is_contiguous())
|
||||
TORCH_CHECK(output.is_contiguous())
|
||||
|
||||
const int64_t input_elem_num = data.numel();
|
||||
const int64_t output_elem_num = output.numel();
|
||||
TORCH_CHECK_EQ(output_elem_num % input_elem_num, 0);
|
||||
const int world_size = output_elem_num / input_elem_num;
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(data.scalar_type(), "shm_all_gather_impl", [&] {
|
||||
CPU_KERNEL_GUARD_IN(shm_all_gather_impl)
|
||||
auto ctx = SHMManager::get_singleton_instance(handle)->get_shm_ctx();
|
||||
TORCH_CHECK_EQ(ctx->group_size, world_size);
|
||||
|
||||
scalar_t* output_ptrs[MAX_SHM_RANK_NUM] = {nullptr};
|
||||
for (int i = 0; i < world_size; ++i) {
|
||||
output_ptrs[i] = output.data_ptr<scalar_t>() + i * input_elem_num;
|
||||
}
|
||||
shm_gather_impl(ctx, data.data_ptr<scalar_t>(), data.numel(), output_ptrs,
|
||||
ctx->rank);
|
||||
CPU_KERNEL_GUARD_OUT(shm_all_gather_impl)
|
||||
});
|
||||
}
|
||||
|
||||
void shm_allreduce(int64_t handle, torch::Tensor& data) {
|
||||
TORCH_CHECK(data.is_contiguous())
|
||||
VLLM_DISPATCH_FLOATING_TYPES(data.scalar_type(), "shm_allreduce_sum", [&] {
|
||||
CPU_KERNEL_GUARD_IN(shm_allreduce_sum)
|
||||
shm_allreduce_sum(SHMManager::get_singleton_instance(handle)->get_shm_ctx(),
|
||||
data.data_ptr<scalar_t>(), data.numel());
|
||||
CPU_KERNEL_GUARD_OUT(shm_allreduce_sum)
|
||||
});
|
||||
}
|
||||
|
||||
void shm_send_tensor_list(int64_t handle,
|
||||
const std::vector<torch::Tensor>& tensor_list,
|
||||
int64_t dst) {
|
||||
CPU_KERNEL_GUARD_IN(shm_send_tensor_list)
|
||||
shm_send_tensor_list_impl(
|
||||
SHMManager::get_singleton_instance(handle)->get_shm_ctx(), tensor_list);
|
||||
CPU_KERNEL_GUARD_OUT(shm_send_tensor_list)
|
||||
}
|
||||
|
||||
std::vector<torch::Tensor> shm_recv_tensor_list(int64_t handle, int64_t src) {
|
||||
CPU_KERNEL_GUARD_IN(shm_recv_tensor_list)
|
||||
auto tensor_list = shm_recv_tensor_list_impl(
|
||||
SHMManager::get_singleton_instance(handle)->get_shm_ctx(), src);
|
||||
CPU_KERNEL_GUARD_OUT(shm_recv_tensor_list)
|
||||
return tensor_list;
|
||||
}
|
||||
|
||||
int64_t init_shm_manager(const std::string& name, const int64_t group_size,
|
||||
const int64_t rank) {
|
||||
return SHMManager::create_singleton_instance(name, group_size, rank);
|
||||
}
|
||||
|
||||
std::string join_shm_manager(int64_t handle, const std::string& name) {
|
||||
auto shm_manager = SHMManager::get_singleton_instance(handle);
|
||||
TORCH_CHECK(shm_manager);
|
||||
shm_manager->join(name);
|
||||
return shm_manager->get_shm_ctx()->to_string();
|
||||
}
|
@ -18,6 +18,30 @@ void int8_scaled_mm_azp(torch::Tensor& c, const torch::Tensor& a,
|
||||
const std::optional<torch::Tensor>& azp,
|
||||
const std::optional<torch::Tensor>& bias);
|
||||
|
||||
void mla_decode_kvcache(torch::Tensor& out, torch::Tensor& query,
|
||||
torch::Tensor& kv_cache, double scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens);
|
||||
|
||||
int64_t init_shm_manager(const std::string& name, const int64_t group_size,
|
||||
const int64_t rank);
|
||||
|
||||
std::string join_shm_manager(int64_t handle, const std::string& name);
|
||||
|
||||
void shm_allreduce(int64_t handle, torch::Tensor& data);
|
||||
|
||||
void shm_gather(int64_t handle, torch::Tensor& data,
|
||||
const std::optional<std::vector<torch::Tensor>>& outputs,
|
||||
int64_t dst);
|
||||
|
||||
void shm_all_gather(int64_t handle, const torch::Tensor& data,
|
||||
torch::Tensor& output);
|
||||
|
||||
void shm_send_tensor_list(int64_t handle,
|
||||
const std::vector<torch::Tensor>& tensor_list,
|
||||
int64_t dst);
|
||||
|
||||
std::vector<torch::Tensor> shm_recv_tensor_list(int64_t handle, int64_t src);
|
||||
|
||||
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
// vLLM custom ops
|
||||
|
||||
@ -127,6 +151,29 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
" Tensor? azp, Tensor? bias) -> ()");
|
||||
ops.impl("cutlass_scaled_mm_azp", torch::kCPU, &int8_scaled_mm_azp);
|
||||
#endif
|
||||
|
||||
// SHM CCL
|
||||
#ifdef __AVX512F__
|
||||
ops.def("init_shm_manager(str name, int group_size, int rank) -> int",
|
||||
&init_shm_manager);
|
||||
ops.def("join_shm_manager(int handle, str name) -> str", &join_shm_manager);
|
||||
ops.def("shm_allreduce(int handle, Tensor! data) -> ()");
|
||||
ops.impl("shm_allreduce", torch::kCPU, &shm_allreduce);
|
||||
ops.def(
|
||||
"shm_gather(int handle, Tensor data, Tensor[](a!)? outputs, int dst) -> "
|
||||
"()");
|
||||
ops.impl("shm_gather", torch::kCPU, &shm_gather);
|
||||
ops.def(
|
||||
"shm_all_gather(int handle, Tensor data, Tensor! output) -> "
|
||||
"()");
|
||||
ops.impl("shm_all_gather", torch::kCPU, &shm_all_gather);
|
||||
ops.def(
|
||||
"shm_send_tensor_list(int handle, Tensor[](a) tensor_list, int dst) -> "
|
||||
"()");
|
||||
ops.impl("shm_send_tensor_list", torch::kCPU, &shm_send_tensor_list);
|
||||
ops.def("shm_recv_tensor_list(int handle, int src) -> Tensor[](a)",
|
||||
&shm_recv_tensor_list);
|
||||
#endif
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
|
||||
@ -150,6 +197,14 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
|
||||
" str kv_cache_dtype,"
|
||||
" Tensor k_scale, Tensor v_scale) -> ()");
|
||||
cache_ops.impl("reshape_and_cache", torch::kCPU, &reshape_and_cache);
|
||||
|
||||
cache_ops.def(
|
||||
"concat_and_cache_mla(Tensor kv_c, Tensor k_pe,"
|
||||
" Tensor! kv_cache,"
|
||||
" Tensor slot_mapping,"
|
||||
" str kv_cache_dtype,"
|
||||
" Tensor scale) -> ()");
|
||||
cache_ops.impl("concat_and_cache_mla", torch::kCPU, &concat_and_cache_mla);
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _utils), utils) {
|
||||
@ -157,4 +212,12 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _utils), utils) {
|
||||
utils.def("init_cpu_threads_env(str cpu_ids) -> str", &init_cpu_threads_env);
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cpu), cpu_ops) {
|
||||
cpu_ops.def(
|
||||
"mla_decode_kvcache("
|
||||
" Tensor! out, Tensor query, Tensor kv_cache,"
|
||||
" float scale, Tensor block_tables, Tensor seq_lens) -> ()");
|
||||
cpu_ops.impl("mla_decode_kvcache", torch::kCPU, &mla_decode_kvcache);
|
||||
}
|
||||
|
||||
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)
|
||||
|
@ -4,6 +4,11 @@
|
||||
#include <string>
|
||||
#include <sched.h>
|
||||
#endif
|
||||
#if __GLIBC__ == 2 && __GLIBC_MINOR__ < 30
|
||||
#include <unistd.h>
|
||||
#include <sys/syscall.h>
|
||||
#define gettid() syscall(SYS_gettid)
|
||||
#endif
|
||||
|
||||
#include "cpu_types.hpp"
|
||||
|
||||
@ -18,7 +23,7 @@ std::string init_cpu_threads_env(const std::string& cpu_ids) {
|
||||
|
||||
#ifndef VLLM_NUMA_DISABLED
|
||||
std::string init_cpu_threads_env(const std::string& cpu_ids) {
|
||||
bitmask* omp_cpu_mask = numa_parse_cpustring(cpu_ids.c_str());
|
||||
bitmask* omp_cpu_mask = numa_parse_cpustring_all(cpu_ids.c_str());
|
||||
TORCH_CHECK(omp_cpu_mask->size > 0);
|
||||
std::vector<int> omp_cpu_ids;
|
||||
omp_cpu_ids.reserve(omp_cpu_mask->size);
|
||||
|
39
csrc/cuda_view.cu
Normal file
39
csrc/cuda_view.cu
Normal file
@ -0,0 +1,39 @@
|
||||
#include <torch/all.h>
|
||||
#include <torch/cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
// This function assumes that `cpu_tensor` is a CPU tensor allocated with pinned
|
||||
// memory, and that UVA (Unified Virtual Addressing) is enabled.
|
||||
torch::Tensor get_cuda_view_from_cpu_tensor(torch::Tensor& cpu_tensor) {
|
||||
TORCH_CHECK(cpu_tensor.device().is_cpu(), "Input tensor must be on CPU");
|
||||
|
||||
// Get raw host pointer from CPU tensor
|
||||
void* host_ptr = cpu_tensor.data_ptr();
|
||||
|
||||
// Get a device pointer corresponding to the pinned host memory
|
||||
void* device_ptr = nullptr;
|
||||
cudaError_t err = cudaHostGetDevicePointer(&device_ptr, host_ptr, 0);
|
||||
TORCH_CHECK(err == cudaSuccess,
|
||||
"cudaHostGetDevicePointer failed: ", cudaGetErrorString(err));
|
||||
|
||||
// We'll use the same sizes, strides, and dtype as the CPU tensor.
|
||||
// TODO: check if layout is respected.
|
||||
auto sizes = cpu_tensor.sizes();
|
||||
auto strides = cpu_tensor.strides();
|
||||
auto options = cpu_tensor.options().device(torch::kCUDA);
|
||||
|
||||
// from_blob signature: from_blob(void *data, IntArrayRef sizes, ..., Deleter,
|
||||
// const TensorOptions &) Provide a no-op deleter. The CPU tensor holds the
|
||||
// memory, so we don't free it here.
|
||||
auto deleter = [](void*) {
|
||||
// no-op, since the memory is owned by the original CPU tensor
|
||||
};
|
||||
|
||||
torch::Tensor cuda_tensor =
|
||||
torch::from_blob(device_ptr, sizes, strides, deleter, options);
|
||||
|
||||
TORCH_CHECK(cuda_tensor.device().is_cuda(),
|
||||
"Resulting tensor is not on CUDA device");
|
||||
|
||||
return cuda_tensor;
|
||||
}
|
@ -12,7 +12,7 @@ static_assert(sizeof(void*) == sizeof(fptr_t));
|
||||
|
||||
fptr_t init_custom_ar(const std::vector<fptr_t>& fake_ipc_ptrs,
|
||||
torch::Tensor& rank_data, int64_t rank,
|
||||
bool full_nvlink) {
|
||||
bool fully_connected) {
|
||||
int world_size = fake_ipc_ptrs.size();
|
||||
if (world_size > 8)
|
||||
throw std::invalid_argument("world size > 8 is not supported");
|
||||
@ -27,7 +27,7 @@ fptr_t init_custom_ar(const std::vector<fptr_t>& fake_ipc_ptrs,
|
||||
}
|
||||
return (fptr_t) new vllm::CustomAllreduce(ipc_ptrs, rank_data.data_ptr(),
|
||||
rank_data.numel(), rank, world_size,
|
||||
full_nvlink);
|
||||
fully_connected);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -142,3 +142,48 @@ void register_graph_buffers(fptr_t _fa,
|
||||
bytes.reserve(handles.size());
|
||||
fa->register_graph_buffers(bytes, offsets);
|
||||
}
|
||||
|
||||
std::tuple<fptr_t, torch::Tensor> allocate_shared_buffer_and_handle(
|
||||
int64_t size) {
|
||||
auto device_index = c10::cuda::current_device();
|
||||
at::DeviceGuard device_guard(at::Device(at::DeviceType::CUDA, device_index));
|
||||
void* buffer;
|
||||
cudaStreamCaptureMode mode = cudaStreamCaptureModeRelaxed;
|
||||
auto stream = c10::cuda::getCurrentCUDAStream().stream();
|
||||
AT_CUDA_CHECK(cudaThreadExchangeStreamCaptureMode(&mode));
|
||||
|
||||
// Allocate buffer
|
||||
#if defined(USE_ROCM)
|
||||
// data buffers need to be "uncached" for signal on MI200
|
||||
AT_CUDA_CHECK(
|
||||
hipExtMallocWithFlags((void**)&buffer, size, hipDeviceMallocUncached));
|
||||
#else
|
||||
AT_CUDA_CHECK(cudaMalloc((void**)&buffer, size));
|
||||
#endif
|
||||
AT_CUDA_CHECK(cudaMemsetAsync(buffer, 0, size, stream));
|
||||
AT_CUDA_CHECK(cudaStreamSynchronize(stream));
|
||||
AT_CUDA_CHECK(cudaThreadExchangeStreamCaptureMode(&mode));
|
||||
|
||||
// Create IPC memhandle for the allocated buffer.
|
||||
// Will use it in open_mem_handle.
|
||||
auto options =
|
||||
torch::TensorOptions().dtype(torch::kUInt8).device(torch::kCPU);
|
||||
auto handle =
|
||||
torch::empty({static_cast<int64_t>(sizeof(cudaIpcMemHandle_t))}, options);
|
||||
AT_CUDA_CHECK(
|
||||
cudaIpcGetMemHandle((cudaIpcMemHandle_t*)handle.data_ptr(), buffer));
|
||||
|
||||
return std::make_tuple(reinterpret_cast<fptr_t>(buffer), handle);
|
||||
}
|
||||
|
||||
fptr_t open_mem_handle(torch::Tensor& mem_handle) {
|
||||
void* ipc_ptr;
|
||||
AT_CUDA_CHECK(cudaIpcOpenMemHandle(
|
||||
(void**)&ipc_ptr, *((const cudaIpcMemHandle_t*)mem_handle.data_ptr()),
|
||||
cudaIpcMemLazyEnablePeerAccess));
|
||||
return reinterpret_cast<fptr_t>(ipc_ptr);
|
||||
}
|
||||
|
||||
void free_shared_buffer(fptr_t buffer) {
|
||||
AT_CUDA_CHECK(cudaFree(reinterpret_cast<void*>(buffer)));
|
||||
}
|
||||
|
@ -5,6 +5,10 @@
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#if defined(USE_ROCM)
|
||||
typedef __hip_bfloat16 nv_bfloat16;
|
||||
#endif
|
||||
|
||||
#include <iostream>
|
||||
#include <array>
|
||||
#include <limits>
|
||||
@ -12,6 +16,7 @@
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
namespace vllm {
|
||||
#define CUDACHECK(cmd) \
|
||||
do { \
|
||||
cudaError_t e = cmd; \
|
||||
@ -22,24 +27,37 @@
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// Maximal number of blocks in allreduce kernel.
|
||||
constexpr int kMaxBlocks = 36;
|
||||
|
||||
// Default number of blocks in allreduce kernel.
|
||||
#ifndef USE_ROCM
|
||||
const int defaultBlockLimit = 36;
|
||||
CUpointer_attribute rangeStartAddrAttr = CU_POINTER_ATTRIBUTE_RANGE_START_ADDR;
|
||||
#else
|
||||
const int defaultBlockLimit = 16;
|
||||
hipPointer_attribute rangeStartAddrAttr =
|
||||
HIP_POINTER_ATTRIBUTE_RANGE_START_ADDR;
|
||||
#endif
|
||||
|
||||
// Counter may overflow, but it's fine since unsigned int overflow is
|
||||
// well-defined behavior.
|
||||
using FlagType = uint32_t;
|
||||
|
||||
// Two sets of peer counters are needed for two syncs: starting and ending an
|
||||
// operation. The reason is that it's possible for peer GPU block to arrive at
|
||||
// the second sync point while the current GPU block haven't passed the first
|
||||
// sync point. Thus, peer GPU may write counter+1 while current GPU is busy
|
||||
// waiting for counter. We use alternating counter array to avoid this
|
||||
// possibility.
|
||||
struct Signal {
|
||||
alignas(128) FlagType self_counter[kMaxBlocks][8];
|
||||
// Two sets of peer counters are needed for two syncs. The reason is that
|
||||
// it's possible for peer GPU block to arrive at the second sync point while
|
||||
// the current GPU block haven't passed the first sync point. Thus, peer GPU
|
||||
// may write counter+1 while current GPU is busy waiting for counter. We use
|
||||
// alternating counter array to avoid this possibility.
|
||||
alignas(128) FlagType peer_counter[2][kMaxBlocks][8];
|
||||
alignas(128) FlagType start[kMaxBlocks][8];
|
||||
alignas(128) FlagType end[kMaxBlocks][8];
|
||||
alignas(128) FlagType _flag[kMaxBlocks]; // incremental flags for each rank
|
||||
};
|
||||
|
||||
struct __align__(16) RankData {
|
||||
const void* __restrict__ ptrs[8];
|
||||
const void* ptrs[8];
|
||||
};
|
||||
|
||||
struct __align__(16) RankSignals {
|
||||
@ -134,27 +152,29 @@ DINLINE O downcast(array_t<float, O::size> val) {
|
||||
}
|
||||
}
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
|
||||
static DINLINE void st_flag_release(FlagType* flag_addr, FlagType flag) {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
|
||||
asm volatile("st.release.sys.global.u32 [%1], %0;" ::"r"(flag),
|
||||
"l"(flag_addr));
|
||||
#else
|
||||
#else
|
||||
asm volatile("membar.sys; st.volatile.global.u32 [%1], %0;" ::"r"(flag),
|
||||
"l"(flag_addr));
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
static DINLINE FlagType ld_flag_acquire(FlagType* flag_addr) {
|
||||
FlagType flag;
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
|
||||
asm volatile("ld.acquire.sys.global.u32 %0, [%1];"
|
||||
: "=r"(flag)
|
||||
: "l"(flag_addr));
|
||||
#else
|
||||
#else
|
||||
asm volatile("ld.volatile.global.u32 %0, [%1]; membar.gl;"
|
||||
: "=r"(flag)
|
||||
: "l"(flag_addr));
|
||||
#endif
|
||||
#endif
|
||||
return flag;
|
||||
}
|
||||
|
||||
@ -170,37 +190,99 @@ static DINLINE FlagType ld_flag_volatile(FlagType* flag_addr) {
|
||||
return flag;
|
||||
}
|
||||
|
||||
// is_start: whether this is the very first synchronization barrier.
|
||||
// need_fence: whether a memory fence is needed. If true, a release-acquire
|
||||
// semantic is used to enforce memory access order before and after this
|
||||
// barrier.
|
||||
template <int ngpus, bool is_start, bool need_fence = false>
|
||||
DINLINE void multi_gpu_barrier(const RankSignals& sg, Signal* self_sg,
|
||||
int rank) {
|
||||
if constexpr (!is_start) __syncthreads();
|
||||
static_assert(
|
||||
!(is_start && need_fence)); // Start barrier shouldn't need fence.
|
||||
// This function is meant to be used as the first synchronization in the all
|
||||
// reduce kernel. Thus, it doesn't need to make any visibility guarantees for
|
||||
// prior memory accesses. Note: volatile writes will not be reordered against
|
||||
// other volatile writes.
|
||||
template <int ngpus>
|
||||
DINLINE void barrier_at_start(const RankSignals& sg, Signal* self_sg,
|
||||
int rank) {
|
||||
uint32_t flag = self_sg->_flag[blockIdx.x] + 1;
|
||||
if (threadIdx.x < ngpus) {
|
||||
// Increment the counter. Technically we only need one counter, but we use
|
||||
// multiple per block to eliminate the need to share the counter via smem.
|
||||
auto val = self_sg->self_counter[blockIdx.x][threadIdx.x] += 1;
|
||||
auto peer_counter_ptr = &sg.signals[threadIdx.x]->start[blockIdx.x][rank];
|
||||
auto self_counter_ptr = &self_sg->start[blockIdx.x][threadIdx.x];
|
||||
// Write the expected counter value to peer and wait for correct value
|
||||
// from peer.
|
||||
st_flag_volatile(peer_counter_ptr, flag);
|
||||
while (ld_flag_volatile(self_counter_ptr) != flag);
|
||||
}
|
||||
__syncthreads();
|
||||
// use one thread to update flag
|
||||
if (threadIdx.x == 0) self_sg->_flag[blockIdx.x] = flag;
|
||||
}
|
||||
|
||||
// This function is meant to be used as the second or the final
|
||||
// synchronization barrier in the all reduce kernel. If it's the final
|
||||
// synchronization barrier, we don't need to make any visibility guarantees
|
||||
// for prior memory accesses.
|
||||
template <int ngpus, bool final_sync = false>
|
||||
DINLINE void barrier_at_end(const RankSignals& sg, Signal* self_sg, int rank) {
|
||||
__syncthreads();
|
||||
uint32_t flag = self_sg->_flag[blockIdx.x] + 1;
|
||||
if (threadIdx.x < ngpus) {
|
||||
auto peer_counter_ptr = &sg.signals[threadIdx.x]->end[blockIdx.x][rank];
|
||||
auto self_counter_ptr = &self_sg->end[blockIdx.x][threadIdx.x];
|
||||
// Write the expected counter value to peer and wait for correct value from
|
||||
// peer.
|
||||
auto peer_counter_ptr =
|
||||
&sg.signals[threadIdx.x]->peer_counter[val % 2][blockIdx.x][rank];
|
||||
auto self_counter_ptr =
|
||||
&self_sg->peer_counter[val % 2][blockIdx.x][threadIdx.x];
|
||||
if constexpr (need_fence) {
|
||||
st_flag_release(peer_counter_ptr, val);
|
||||
while (ld_flag_acquire(self_counter_ptr) != val);
|
||||
if constexpr (!final_sync) {
|
||||
st_flag_release(peer_counter_ptr, flag);
|
||||
while (ld_flag_acquire(self_counter_ptr) != flag);
|
||||
} else {
|
||||
st_flag_volatile(peer_counter_ptr, val);
|
||||
while (ld_flag_volatile(self_counter_ptr) != val);
|
||||
st_flag_volatile(peer_counter_ptr, flag);
|
||||
while (ld_flag_volatile(self_counter_ptr) != flag);
|
||||
}
|
||||
}
|
||||
if constexpr (is_start || need_fence) __syncthreads();
|
||||
if constexpr (!final_sync) __syncthreads();
|
||||
|
||||
// use one thread to update flag
|
||||
if (threadIdx.x == 0) self_sg->_flag[blockIdx.x] = flag;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
template <int ngpus>
|
||||
DINLINE void barrier_at_start(const RankSignals& sg, Signal* self_sg,
|
||||
int rank) {
|
||||
uint32_t flag = self_sg->_flag[blockIdx.x] + 1;
|
||||
if (threadIdx.x < ngpus) {
|
||||
// simultaneously write to the corresponding flag of all ranks.
|
||||
// Latency = 1 p2p write
|
||||
__scoped_atomic_store_n(&sg.signals[threadIdx.x]->start[blockIdx.x][rank],
|
||||
flag, __ATOMIC_RELAXED, __MEMORY_SCOPE_SYSTEM);
|
||||
// wait until we got true from all ranks
|
||||
while (__scoped_atomic_load_n(&self_sg->start[blockIdx.x][threadIdx.x],
|
||||
__ATOMIC_RELAXED,
|
||||
__MEMORY_SCOPE_DEVICE) < flag);
|
||||
}
|
||||
__syncthreads();
|
||||
// use one thread to update flag
|
||||
if (threadIdx.x == 0) self_sg->_flag[blockIdx.x] = flag;
|
||||
}
|
||||
|
||||
template <int ngpus, bool final_sync = false>
|
||||
DINLINE void barrier_at_end(const RankSignals& sg, Signal* self_sg, int rank) {
|
||||
__syncthreads();
|
||||
uint32_t flag = self_sg->_flag[blockIdx.x] + 1;
|
||||
if (threadIdx.x < ngpus) {
|
||||
// simultaneously write to the corresponding flag of all ranks.
|
||||
// Latency = 1 p2p write
|
||||
__scoped_atomic_store_n(&sg.signals[threadIdx.x]->end[blockIdx.x][rank],
|
||||
flag,
|
||||
final_sync ? __ATOMIC_RELAXED : __ATOMIC_RELEASE,
|
||||
__MEMORY_SCOPE_SYSTEM);
|
||||
// wait until we got true from all ranks
|
||||
while (
|
||||
__scoped_atomic_load_n(&self_sg->end[blockIdx.x][threadIdx.x],
|
||||
final_sync ? __ATOMIC_RELAXED : __ATOMIC_ACQUIRE,
|
||||
__MEMORY_SCOPE_DEVICE) < flag);
|
||||
}
|
||||
if constexpr (!final_sync) __syncthreads();
|
||||
// use one thread to update flag
|
||||
if (threadIdx.x == 0) self_sg->_flag[blockIdx.x] = flag;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
template <typename P, int ngpus, typename A>
|
||||
DINLINE P packed_reduce(const P* ptrs[], int idx) {
|
||||
A tmp = upcast(ptrs[0][idx]);
|
||||
@ -220,13 +302,13 @@ __global__ void __launch_bounds__(512, 1)
|
||||
// note: we don't reorder the address so the accumulation order is the same
|
||||
// for all ranks, ensuring bitwise identical results
|
||||
auto dp = *_dp;
|
||||
multi_gpu_barrier<ngpus, true>(sg, self_sg, rank);
|
||||
barrier_at_start<ngpus>(sg, self_sg, rank);
|
||||
// do the actual reduction
|
||||
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
|
||||
idx += gridDim.x * blockDim.x) {
|
||||
((P*)result)[idx] = packed_reduce<P, ngpus, A>((const P**)&dp.ptrs[0], idx);
|
||||
}
|
||||
multi_gpu_barrier<ngpus, false>(sg, self_sg, rank);
|
||||
barrier_at_end<ngpus, true>(sg, self_sg, rank);
|
||||
}
|
||||
|
||||
template <typename P>
|
||||
@ -255,18 +337,20 @@ __global__ void __launch_bounds__(512, 1)
|
||||
tmps[i] = get_tmp_buf<P>(sg.signals[target]);
|
||||
}
|
||||
auto tmp_out = tmps[0];
|
||||
multi_gpu_barrier<ngpus, true>(sg, self_sg, rank);
|
||||
barrier_at_start<ngpus>(sg, self_sg, rank);
|
||||
|
||||
// stage 1: reduce scatter
|
||||
for (int idx = start + tid; idx < end; idx += stride) {
|
||||
tmp_out[idx - start] = packed_reduce<P, ngpus, A>(ptrs, idx);
|
||||
}
|
||||
multi_gpu_barrier<ngpus, false, true>(sg, self_sg, rank);
|
||||
barrier_at_end<ngpus>(sg, self_sg, rank);
|
||||
|
||||
// stage 2: allgather. Note: it's important to match the tid between
|
||||
// the two stages, because visibility across devices is only guaranteed
|
||||
// between threads that have the same tid. If thread i computes the sum of
|
||||
// start + i in the first stage, then thread i also gathers start + i from all
|
||||
// ranks.
|
||||
// start + i in the first stage, then thread i also gathers start + i from
|
||||
// all ranks.
|
||||
|
||||
for (int idx = tid; idx < largest_part; idx += stride) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < ngpus; i++) {
|
||||
@ -287,21 +371,22 @@ class CustomAllreduce {
|
||||
public:
|
||||
int rank_;
|
||||
int world_size_;
|
||||
bool full_nvlink_;
|
||||
// Full NVLink or xGMI connection between GPUs.
|
||||
bool fully_connected_;
|
||||
|
||||
RankSignals sg_;
|
||||
// Stores an map from a pointer to its peer pointters from all ranks.
|
||||
// Stores a map from a pointer to its peer pointers from all ranks.
|
||||
std::unordered_map<void*, RankData*> buffers_;
|
||||
Signal* self_sg_;
|
||||
|
||||
// Stores rank data from all ranks. This is mainly for cuda graph purposes.
|
||||
// For cuda graph to work, all kernel arguments must be fixed during graph
|
||||
// capture time. However, the peer pointers are not known during graph capture
|
||||
// time. Therefore, during capture, we increment the rank data pointer and use
|
||||
// that as the argument to the kernel. The kernel arguments are stored in
|
||||
// graph_unreg_buffers_. The actual peer pointers will be filled in at the
|
||||
// memory pointed to by the pointers in graph_unreg_buffers_ when
|
||||
// the IPC handles are exchanged between ranks.
|
||||
// capture time. However, the peer pointers are not known during graph
|
||||
// capture time. Therefore, during capture, we increment the rank data
|
||||
// pointer and use that as the argument to the kernel. The kernel arguments
|
||||
// are stored in graph_unreg_buffers_. The actual peer pointers will be
|
||||
// filled in at the memory pointed to by the pointers in
|
||||
// graph_unreg_buffers_ when the IPC handles are exchanged between ranks.
|
||||
//
|
||||
// The overall process looks like this:
|
||||
// 1. Graph capture.
|
||||
@ -319,17 +404,18 @@ class CustomAllreduce {
|
||||
* Signals are an array of ipc-enabled buffers from all ranks.
|
||||
* For each of the buffer, the layout is as follows:
|
||||
* | -- sizeof(Signal) -- | ------ a few MB ----- |
|
||||
* The first section is for allreduce synchronization, and the second section
|
||||
* is for storing the intermediate results required by some allreduce algos.
|
||||
* The first section is for allreduce synchronization, and the second
|
||||
* section is for storing the intermediate results required by some
|
||||
* allreduce algos.
|
||||
*
|
||||
* Note: this class does not own any device memory. Any required buffers
|
||||
* are passed in from the constructor.
|
||||
*/
|
||||
CustomAllreduce(Signal** signals, void* rank_data, size_t rank_data_sz,
|
||||
int rank, int world_size, bool full_nvlink = true)
|
||||
int rank, int world_size, bool fully_connected = true)
|
||||
: rank_(rank),
|
||||
world_size_(world_size),
|
||||
full_nvlink_(full_nvlink),
|
||||
fully_connected_(fully_connected),
|
||||
self_sg_(signals[rank]),
|
||||
d_rank_data_base_(reinterpret_cast<RankData*>(rank_data)),
|
||||
d_rank_data_end_(d_rank_data_base_ + rank_data_sz / sizeof(RankData)) {
|
||||
@ -361,8 +447,7 @@ class CustomAllreduce {
|
||||
void* base_ptr;
|
||||
// note: must share the base address of each allocation, or we get wrong
|
||||
// address
|
||||
if (cuPointerGetAttribute(&base_ptr,
|
||||
CU_POINTER_ATTRIBUTE_RANGE_START_ADDR,
|
||||
if (cuPointerGetAttribute(&base_ptr, rangeStartAddrAttr,
|
||||
(CUdeviceptr)ptr) != CUDA_SUCCESS)
|
||||
throw std::runtime_error("failed to get pointer attr");
|
||||
CUDACHECK(cudaIpcGetMemHandle(
|
||||
@ -396,11 +481,11 @@ class CustomAllreduce {
|
||||
|
||||
// Note: when registering graph buffers, we intentionally choose to not
|
||||
// deduplicate the addresses. That means if the allocator reuses some
|
||||
// addresses, they will be registered again. This is to account for the remote
|
||||
// possibility of different allocation patterns between ranks. For example,
|
||||
// rank 1 may get the same input address for the second allreduce, but rank 2
|
||||
// got a different address. IPC handles have internal reference counting
|
||||
// mechanism so overhead should be small.
|
||||
// addresses, they will be registered again. This is to account for the
|
||||
// remote possibility of different allocation patterns between ranks. For
|
||||
// example, rank 1 may get the same input address for the second allreduce,
|
||||
// but rank 2 got a different address. IPC handles have internal reference
|
||||
// counting mechanism so overhead should be small.
|
||||
void register_graph_buffers(
|
||||
const std::vector<std::string>& handles,
|
||||
const std::vector<std::vector<int64_t>>& offsets) {
|
||||
@ -431,15 +516,15 @@ class CustomAllreduce {
|
||||
/**
|
||||
* Performs allreduce, assuming input has already been registered.
|
||||
*
|
||||
* Block and grid default configs are results after careful grid search. Using
|
||||
* 36 blocks give the best or close to the best runtime on the devices I
|
||||
* tried: A100, A10, A30, T4, V100. You'll notice that NCCL kernels also only
|
||||
* take a small amount of SMs. Not quite sure the underlying reason, but my
|
||||
* guess is that too many SMs will cause contention on NVLink bus.
|
||||
* Block and grid default configs are results after careful grid search.
|
||||
* Using 36 blocks give the best or close to the best runtime on the devices
|
||||
* I tried: A100, A10, A30, T4, V100. You'll notice that NCCL kernels also
|
||||
* only take a small amount of SMs. Not quite sure the underlying reason,
|
||||
* but my guess is that too many SMs will cause contention on NVLink bus.
|
||||
*/
|
||||
template <typename T>
|
||||
void allreduce(cudaStream_t stream, T* input, T* output, int size,
|
||||
int threads = 512, int block_limit = 36) {
|
||||
int threads = 512, int block_limit = defaultBlockLimit) {
|
||||
auto d = packed_t<T>::P::size;
|
||||
if (size % d != 0)
|
||||
throw std::runtime_error(
|
||||
@ -473,13 +558,11 @@ class CustomAllreduce {
|
||||
#define KL(ngpus, name) \
|
||||
name<T, ngpus><<<blocks, threads, 0, stream>>>(ptrs, sg_, self_sg_, output, \
|
||||
rank_, size);
|
||||
// TODO(hanzhi713): Threshold is different for A100 and H100.
|
||||
// Add per device threshold.
|
||||
#define REDUCE_CASE(ngpus) \
|
||||
case ngpus: { \
|
||||
if (world_size_ == 2) { \
|
||||
KL(ngpus, cross_device_reduce_1stage); \
|
||||
} else if (full_nvlink_) { \
|
||||
} else if (fully_connected_) { \
|
||||
if ((world_size_ <= 4 && bytes < 512 * 1024) || \
|
||||
(world_size_ <= 8 && bytes < 256 * 1024)) { \
|
||||
KL(ngpus, cross_device_reduce_1stage); \
|
||||
@ -497,7 +580,8 @@ class CustomAllreduce {
|
||||
REDUCE_CASE(8)
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"custom allreduce only supports num gpus in (2,4,6,8). Actual num "
|
||||
"custom allreduce only supports num gpus in (2,4,6,8). Actual "
|
||||
"num "
|
||||
"gpus = " +
|
||||
std::to_string(world_size_));
|
||||
}
|
||||
@ -511,10 +595,11 @@ class CustomAllreduce {
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* To inspect PTX/SASS, copy paste this header file to compiler explorer and add
|
||||
a template instantiation:
|
||||
* To inspect PTX/SASS, copy paste this header file to compiler explorer and
|
||||
add a template instantiation:
|
||||
* template void vllm::CustomAllreduce::allreduce<half>(cudaStream_t, half *,
|
||||
half *, int, int, int);
|
||||
*/
|
||||
} // namespace vllm
|
||||
} // namespace vllm
|
@ -1,9 +1,9 @@
|
||||
/**
|
||||
* This is a standalone test for custom allreduce.
|
||||
* To compile, make sure you have MPI and NCCL installed in your system.
|
||||
* export MPI_HOME=xxx
|
||||
* export MPI_HOME=XXX
|
||||
* nvcc -O2 -arch=native -std=c++17 custom_all_reduce_test.cu -o
|
||||
* custom_all_reduce_test -lnccl -I${MPI_HOME} -lmpi
|
||||
* custom_all_reduce_test -lnccl -I${MPI_HOME}/include -lmpi
|
||||
*
|
||||
* Warning: this C++ test is not designed to be very readable and was used
|
||||
* during the rapid prototyping process.
|
||||
@ -22,7 +22,15 @@
|
||||
#include "cuda_profiler_api.h"
|
||||
#include "custom_all_reduce.cuh"
|
||||
#include "mpi.h"
|
||||
#include "nccl.h"
|
||||
#ifdef USE_ROCM
|
||||
#include <hip/hip_bf16.h>
|
||||
typedef __hip_bfloat16 nv_bfloat16;
|
||||
#include "rccl/rccl.h"
|
||||
#include "custom_all_reduce_hip.cuh"
|
||||
#else
|
||||
#include "nccl.h"
|
||||
#include "custom_all_reduce.cuh"
|
||||
#endif
|
||||
|
||||
#define MPICHECK(cmd) \
|
||||
do { \
|
||||
@ -43,16 +51,29 @@
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#ifdef USE_ROCM
|
||||
__global__ void dummy_kernel() {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
|
||||
for (int i = 0; i < 100; i++) {
|
||||
uint64_t start = wall_clock64();
|
||||
uint64_t cycles_elapsed;
|
||||
do {
|
||||
cycles_elapsed = wall_clock64() - start;
|
||||
} while (cycles_elapsed < 100);
|
||||
}
|
||||
for (int i = 0; i < 100; i++) __nanosleep(1000000); // 100ms
|
||||
}
|
||||
#else
|
||||
__global__ void dummy_kernel() {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
|
||||
for (int i = 0; i < 100; i++) __nanosleep(1000000); // 100ms
|
||||
#else
|
||||
for (int i = 0; i < 100; i++) {
|
||||
long long int start = clock64();
|
||||
while (clock64() - start < 150000000); // approximately 98.4ms on P40
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
template <typename T>
|
||||
__global__ void set_data(T* data, int size, int myRank) {
|
||||
@ -121,8 +142,14 @@ void run(int myRank, int nRanks, ncclComm_t& comm, int threads, int block_limit,
|
||||
* registration, they are allocated and registered together in the test for
|
||||
* convenience.
|
||||
*/
|
||||
#ifdef USE_ROCM
|
||||
CUDACHECK(hipExtMallocWithFlags(
|
||||
(void**)&buffer, 2 * data_size * sizeof(T) + sizeof(vllm::Signal),
|
||||
hipDeviceMallocUncached));
|
||||
#else
|
||||
CUDACHECK(
|
||||
cudaMalloc(&buffer, 2 * data_size * sizeof(T) + sizeof(vllm::Signal)));
|
||||
#endif
|
||||
CUDACHECK(
|
||||
cudaMemset(buffer, 0, 2 * data_size * sizeof(T) + sizeof(vllm::Signal)));
|
||||
CUDACHECK(cudaMalloc(&self_data_copy, data_size * sizeof(T)));
|
||||
@ -311,13 +338,18 @@ int main(int argc, char** argv) {
|
||||
|
||||
bool performance_test = true;
|
||||
cudaProfilerStart();
|
||||
// Uncomment to scan through different block size configs.
|
||||
// for (int threads : {256, 512, 1024}) {
|
||||
// for (int block_limit = 16; block_limit < 112; block_limit += 4) {
|
||||
// run<half>(myRank, nRanks, comm, threads, block_limit, 1024 * 1024,
|
||||
// performance_test);
|
||||
// }
|
||||
// }
|
||||
// Uncomment to scan through different block size configs.
|
||||
// for (int threads : {256, 512, 1024}) {
|
||||
// for (int block_limit = 16; block_limit < 112; block_limit += 4) {
|
||||
// run<half>(myRank, nRanks, comm, threads, block_limit, 1024 * 1024,
|
||||
// performance_test);
|
||||
// }
|
||||
// }
|
||||
#ifdef USE_ROCM
|
||||
const int block_limit = 16;
|
||||
#else
|
||||
const int block_limit = 36;
|
||||
#endif
|
||||
// Scan through different sizes to test performance.
|
||||
for (int sz = 512; sz <= (8 << 20); sz *= 2) {
|
||||
run<half>(myRank, nRanks, comm, 512, 36, sz + 8 * 47, performance_test);
|
||||
@ -326,4 +358,4 @@ int main(int argc, char** argv) {
|
||||
cudaProfilerStop();
|
||||
MPICHECK(MPI_Finalize());
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
}
|
@ -48,4 +48,14 @@ struct enable_sm90_or_later : Kernel {
|
||||
Kernel::operator()(std::forward<Args>(args)...);
|
||||
#endif
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
template <typename Kernel>
|
||||
struct enable_sm90_only : Kernel {
|
||||
template <typename... Args>
|
||||
CUTLASS_DEVICE void operator()(Args&&... args) {
|
||||
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ == 900
|
||||
Kernel::operator()(std::forward<Args>(args)...);
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
@ -0,0 +1,457 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights
|
||||
*reserved. SPDX-License-Identifier: BSD-3-Clause
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice,
|
||||
*this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* 3. Neither the name of the copyright holder nor the names of its
|
||||
* contributors may be used to endorse or promote products derived from
|
||||
* this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
*POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
//
|
||||
// This file is a modified excerpt of
|
||||
// include/cutlass/epilogue/fusion/sm90_visitor_load_tma_warpspecialized.hpp
|
||||
// from https://github.com/NVIDIA/cutlass v3.5.0
|
||||
// It has been modified to support either row/column or scalar broadcasting
|
||||
// where the tensor being loaded from is always passed in via a device pointer.
|
||||
// This lets one compiled kernel handle all cases of per-tensor or
|
||||
// per-channel/per-token quantization.
|
||||
//
|
||||
// This interface also allows the scales to be passed in as tensors that
|
||||
// consistently reside on the device, which avoids an issue with a previous
|
||||
// implementation where scalars needed to be on the CPU since they
|
||||
// were passed in via float values. This created a potential performance hazard
|
||||
// if scales were initially on the device, and caused torch.compile graphs
|
||||
// breaks when moving scales to the CPU.
|
||||
//
|
||||
#pragma once
|
||||
|
||||
// Turn off clang-format for the entire file to keep it close to upstream
|
||||
// clang-format off
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/arch/barrier.h"
|
||||
|
||||
#include "cute/tensor.hpp"
|
||||
#include "cutlass/epilogue/fusion/sm90_visitor_tma_warpspecialized.hpp"
|
||||
|
||||
namespace cutlass::epilogue::fusion {
|
||||
|
||||
using namespace cute;
|
||||
using namespace detail;
|
||||
|
||||
// Row vector broadcast
|
||||
template<
|
||||
int Stages,
|
||||
class CtaTileShapeMNK,
|
||||
class Element,
|
||||
class StrideMNL = Stride<_0,_1,_0>,
|
||||
int Alignment = 128 / sizeof_bits_v<Element>
|
||||
>
|
||||
struct Sm90RowOrScalarBroadcastArray {
|
||||
static_assert(Stages == 0, "Row broadcast doesn't support smem usage");
|
||||
static_assert(is_static_v<decltype(take<0,2>(StrideMNL{}))>); // batch stride can be dynamic or static
|
||||
static_assert(take<0,2>(StrideMNL{}) == Stride<_0,_1>{});
|
||||
|
||||
struct SharedStorage {
|
||||
array_aligned<Element, size<1>(CtaTileShapeMNK{})> smem;
|
||||
};
|
||||
|
||||
// This struct has been modified to have a bool indicating that ptr_row is a
|
||||
// scalar that must be broadcast, instead of containing a scalar that is
|
||||
// valid if ptr_row is null.
|
||||
struct Arguments {
|
||||
const Element* const* ptr_row_array = nullptr;
|
||||
bool row_broadcast = true;
|
||||
StrideMNL dRow = {};
|
||||
};
|
||||
|
||||
using Params = Arguments;
|
||||
|
||||
template <class ProblemShape>
|
||||
static constexpr Params
|
||||
to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) {
|
||||
return args;
|
||||
}
|
||||
|
||||
template <class ProblemShape>
|
||||
static bool
|
||||
can_implement(ProblemShape const& problem_shape, Arguments const& args) {
|
||||
return true;
|
||||
}
|
||||
|
||||
template <class ProblemShape>
|
||||
static size_t
|
||||
get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <class ProblemShape>
|
||||
static cutlass::Status
|
||||
initialize_workspace(ProblemShape const& problem_shape, Arguments const& args, void* workspace, cudaStream_t stream,
|
||||
CudaHostAdapter* cuda_adapter = nullptr) {
|
||||
return cutlass::Status::kSuccess;
|
||||
}
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
Sm90RowOrScalarBroadcastArray() { }
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
Sm90RowOrScalarBroadcastArray(Params const& params, SharedStorage const& shared_storage)
|
||||
: params(params)
|
||||
, smem(const_cast<Element*>(shared_storage.smem.data())) { }
|
||||
|
||||
Params params;
|
||||
Element *smem = nullptr;
|
||||
|
||||
CUTLASS_DEVICE bool
|
||||
is_producer_load_needed() const {
|
||||
return false;
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE bool
|
||||
is_C_load_needed() const {
|
||||
return false;
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE bool
|
||||
is_zero() const {
|
||||
return (!params.row_broadcast && *(params.ptr_row_array[group]) == Element(0));
|
||||
}
|
||||
|
||||
template <class... Args>
|
||||
CUTLASS_DEVICE auto
|
||||
get_producer_load_callbacks(ProducerLoadArgs<Args...> const& args) {
|
||||
return EmptyProducerLoadCallbacks{};
|
||||
}
|
||||
|
||||
template <class GS_GTensor, class GS_STensor, class GS_CTensor, class Tiled_G2S, class SR_STensor, class SR_RTensor, class CTensor, class ThrResidue, class ThrNum>
|
||||
struct ConsumerStoreCallbacks : EmptyConsumerStoreCallbacks {
|
||||
CUTLASS_DEVICE
|
||||
ConsumerStoreCallbacks(
|
||||
GS_GTensor tGS_gRow_, GS_STensor tGS_sRow_,
|
||||
GS_CTensor tGS_cRow_, Tiled_G2S tiled_g2s_,
|
||||
SR_STensor tSR_sRow_, SR_RTensor tSR_rRow_,
|
||||
CTensor tCcRow_, ThrResidue residue_tCcRow_, ThrNum thr_num_,
|
||||
int group, Params const& params_)
|
||||
: tGS_gRow(tGS_gRow_)
|
||||
, tGS_sRow(tGS_sRow_)
|
||||
, tGS_cRow(tGS_cRow_)
|
||||
, tiled_G2S(tiled_g2s_)
|
||||
, tSR_sRow(tSR_sRow_)
|
||||
, tSR_rRow(tSR_rRow_)
|
||||
, tCcRow(tCcRow_)
|
||||
, residue_tCcRow(residue_tCcRow_)
|
||||
, group(group)
|
||||
, params(params_) {}
|
||||
|
||||
GS_GTensor tGS_gRow; // (CPY,CPY_M,CPY_N)
|
||||
GS_STensor tGS_sRow; // (CPY,CPY_M,CPY_N)
|
||||
GS_CTensor tGS_cRow; // (CPY,CPY_M,CPY_N)
|
||||
Tiled_G2S tiled_G2S;
|
||||
|
||||
SR_STensor tSR_sRow; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
|
||||
SR_RTensor tSR_rRow; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
|
||||
|
||||
CTensor tCcRow; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
|
||||
ThrResidue residue_tCcRow; // (m, n)
|
||||
ThrNum thr_num;
|
||||
int group;
|
||||
Params const& params;
|
||||
|
||||
CUTLASS_DEVICE void
|
||||
begin() {
|
||||
if (!params.row_broadcast) {
|
||||
fill(tSR_rRow, *(params.ptr_row_array[group]));
|
||||
return;
|
||||
}
|
||||
|
||||
auto synchronize = [&] () { cutlass::arch::NamedBarrier::sync(thr_num, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier); };
|
||||
Tensor tGS_gRow_flt = filter_zeros(tGS_gRow);
|
||||
Tensor tGS_sRow_flt = filter_zeros(tGS_sRow);
|
||||
Tensor tGS_cRow_flt = make_tensor(tGS_cRow.data(), make_layout(tGS_gRow_flt.shape(), tGS_cRow.stride()));
|
||||
|
||||
for (int i = 0; i < size(tGS_gRow_flt); ++i) {
|
||||
if (get<1>(tGS_cRow_flt(i)) >= size<1>(CtaTileShapeMNK{})) {
|
||||
continue; // OOB of SMEM,
|
||||
}
|
||||
if (elem_less(tGS_cRow_flt(i), make_coord(get<0>(residue_tCcRow), get<1>(residue_tCcRow)))) {
|
||||
tGS_sRow_flt(i) = tGS_gRow_flt(i);
|
||||
}
|
||||
else {
|
||||
tGS_sRow_flt(i) = Element(0); // Set to Zero when OOB so LDS could be issue without any preds.
|
||||
}
|
||||
}
|
||||
synchronize();
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE void
|
||||
begin_loop(int epi_m, int epi_n) {
|
||||
if (epi_m == 0) { // Assumes M-major subtile loop
|
||||
if (!params.row_broadcast) return; // Do not issue LDS when row is scalar
|
||||
Tensor tSR_sRow_flt = filter_zeros(tSR_sRow(_,_,_,epi_m,epi_n));
|
||||
Tensor tSR_rRow_flt = filter_zeros(tSR_rRow);
|
||||
copy(tSR_sRow_flt, tSR_rRow_flt);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename ElementAccumulator, int FragmentSize>
|
||||
CUTLASS_DEVICE Array<Element, FragmentSize>
|
||||
visit(Array<ElementAccumulator, FragmentSize> const& frg_acc, int epi_v, int epi_m, int epi_n) {
|
||||
Array<Element, FragmentSize> frg_row;
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int i = 0; i < FragmentSize; ++i) {
|
||||
frg_row[i] = tSR_rRow(epi_v * FragmentSize + i);
|
||||
}
|
||||
|
||||
return frg_row;
|
||||
}
|
||||
};
|
||||
|
||||
template <
|
||||
bool ReferenceSrc, // do register tensors reference the src or dst layout of the tiled copy
|
||||
class... Args
|
||||
>
|
||||
CUTLASS_DEVICE auto
|
||||
get_consumer_store_callbacks(ConsumerStoreArgs<Args...> const& args) {
|
||||
auto [M, N, K, L] = args.problem_shape_mnkl;
|
||||
auto [m, n, k, l] = args.tile_coord_mnkl;
|
||||
using ThreadCount = decltype(size(args.tiled_copy));
|
||||
|
||||
Tensor mRow = make_tensor(make_gmem_ptr(params.ptr_row_array[l]), make_shape(M,N,1), params.dRow);
|
||||
Tensor gRow = local_tile(mRow(_,_,l), take<0,2>(args.tile_shape_mnk), make_coord(m, n)); // (CTA_M, CTA_N)
|
||||
Tensor sRow = make_tensor(make_smem_ptr(smem),
|
||||
make_shape(size<0>(CtaTileShapeMNK{}), size<1>(CtaTileShapeMNK{})), make_shape(_0{}, _1{})); // (CTA_M, CTA_N)
|
||||
//// G2S: Gmem to Smem
|
||||
auto tiled_g2s = make_tiled_copy(Copy_Atom<DefaultCopy, Element>{},
|
||||
Layout< Shape<_1, ThreadCount>,
|
||||
Stride<_0, _1>>{},
|
||||
Layout<_1>{});
|
||||
auto thr_g2s = tiled_g2s.get_slice(args.thread_idx);
|
||||
Tensor tGS_gRow = thr_g2s.partition_S(gRow);
|
||||
Tensor tGS_sRow = thr_g2s.partition_D(sRow);
|
||||
|
||||
//// G2S: Coord
|
||||
auto cRow = make_identity_tensor(make_shape(size<0>(CtaTileShapeMNK{}), size<1>(CtaTileShapeMNK{})));
|
||||
Tensor tGS_cRow = thr_g2s.partition_S(cRow);
|
||||
|
||||
//// S2R: Smem to Reg
|
||||
Tensor tSR_sRow = sm90_partition_for_epilogue<ReferenceSrc>(sRow, args.epi_tile, args.tiled_copy, args.thread_idx);
|
||||
Tensor tSR_rRow = make_tensor_like(take<0,3>(tSR_sRow)); // (CPY,CPY_M,CPY_N)
|
||||
|
||||
return ConsumerStoreCallbacks<decltype(tGS_gRow), decltype(tGS_sRow), decltype(tGS_cRow), decltype(tiled_g2s), decltype(tSR_sRow), decltype(tSR_rRow), decltype(args.tCcD), decltype(args.residue_cD), ThreadCount>(
|
||||
tGS_gRow,
|
||||
tGS_sRow,
|
||||
tGS_cRow, tiled_g2s,
|
||||
tSR_sRow,
|
||||
tSR_rRow,
|
||||
args.tCcD,
|
||||
args.residue_cD,
|
||||
ThreadCount{},
|
||||
l,
|
||||
params);
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Column vector broadcast
|
||||
template<
|
||||
int Stages,
|
||||
class CtaTileShapeMNK,
|
||||
class Element,
|
||||
class StrideMNL = Stride<_1,_0,_0>,
|
||||
int Alignment = 128 / sizeof_bits_v<Element>
|
||||
>
|
||||
struct Sm90ColOrScalarBroadcastArray {
|
||||
static_assert(Stages == 0, "Column broadcast doesn't support smem usage yet");
|
||||
static_assert(Alignment * sizeof_bits_v<Element> % 128 == 0, "sub-16B alignment not supported yet");
|
||||
static_assert(
|
||||
(cute::is_same_v<StrideMNL, Stride<_1,_0, _0>>) || // col vector broadcast, e.g. per-row alpha/bias
|
||||
(cute::is_same_v<StrideMNL, Stride<_1,_0,int>>)); // batched col vector broadcast, e.g. batched per-row bias
|
||||
|
||||
// Accumulator distributes col elements evenly amongst threads so we can just directly load from gmem
|
||||
struct SharedStorage { };
|
||||
|
||||
// This struct has been modified to have a bool indicating that ptr_col is a
|
||||
// scalar that must be broadcast, instead of containing a scalar that is
|
||||
// valid if ptr_col is null.
|
||||
struct Arguments {
|
||||
const Element* const* ptr_col_array = nullptr;
|
||||
bool col_broadcast = true;
|
||||
StrideMNL dCol = {};
|
||||
};
|
||||
|
||||
using Params = Arguments;
|
||||
|
||||
template <class ProblemShape>
|
||||
static constexpr Params
|
||||
to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) {
|
||||
return args;
|
||||
}
|
||||
|
||||
template <class ProblemShape>
|
||||
static bool
|
||||
can_implement(ProblemShape const& problem_shape, Arguments const& args) {
|
||||
return true;
|
||||
}
|
||||
|
||||
template <class ProblemShape>
|
||||
static size_t
|
||||
get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <class ProblemShape>
|
||||
static cutlass::Status
|
||||
initialize_workspace(ProblemShape const& problem_shape, Arguments const& args, void* workspace, cudaStream_t stream,
|
||||
CudaHostAdapter* cuda_adapter = nullptr) {
|
||||
return cutlass::Status::kSuccess;
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE bool
|
||||
is_producer_load_needed() const {
|
||||
return false;
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE bool
|
||||
is_C_load_needed() const {
|
||||
return false;
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE bool
|
||||
is_zero() const {
|
||||
return (!params.col_broadcast && *(params.ptr_col_array[group]) == Element(0));
|
||||
}
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
Sm90ColOrScalarBroadcastArray() { }
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
Sm90ColOrScalarBroadcastArray(Params const& params, SharedStorage const& shared_storage)
|
||||
: params(params) { }
|
||||
|
||||
Params params;
|
||||
|
||||
template <class... Args>
|
||||
CUTLASS_DEVICE auto
|
||||
get_producer_load_callbacks(ProducerLoadArgs<Args...> const& args) {
|
||||
return EmptyProducerLoadCallbacks{};
|
||||
}
|
||||
|
||||
template<class GTensor, class RTensor, class CTensor, class ProblemShape>
|
||||
struct ConsumerStoreCallbacks : EmptyConsumerStoreCallbacks {
|
||||
CUTLASS_DEVICE
|
||||
ConsumerStoreCallbacks(
|
||||
GTensor&& tCgCol,
|
||||
RTensor&& tCrCol,
|
||||
CTensor&& tCcCol,
|
||||
ProblemShape problem_shape,
|
||||
int group,
|
||||
Params const& params
|
||||
):
|
||||
tCgCol(cute::forward<GTensor>(tCgCol)),
|
||||
tCrCol(cute::forward<RTensor>(tCrCol)),
|
||||
tCcCol(cute::forward<CTensor>(tCcCol)),
|
||||
m(get<0>(problem_shape)),
|
||||
group(group),
|
||||
params(params) {}
|
||||
|
||||
GTensor tCgCol; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
|
||||
RTensor tCrCol;
|
||||
CTensor tCcCol; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
|
||||
Params const& params;
|
||||
int m;
|
||||
int group;
|
||||
|
||||
CUTLASS_DEVICE void
|
||||
begin() {
|
||||
Tensor pred = make_tensor<bool>(shape(tCgCol));
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int i = 0; i < size(pred); ++i) {
|
||||
pred(i) = get<0>(tCcCol(i)) < m;
|
||||
}
|
||||
|
||||
if (!params.col_broadcast) {
|
||||
fill(tCrCol, *(params.ptr_col_array[group]));
|
||||
return;
|
||||
}
|
||||
|
||||
// Filter so we don't issue redundant copies over stride-0 modes
|
||||
// (only works if 0-strides are in same location, which is by construction)
|
||||
copy_if(pred, filter(tCgCol), filter(tCrCol));
|
||||
}
|
||||
|
||||
template <typename ElementAccumulator, int FragmentSize>
|
||||
CUTLASS_DEVICE Array<Element, FragmentSize>
|
||||
visit(Array<ElementAccumulator, FragmentSize> const& frg_acc, int epi_v, int epi_m, int epi_n) {
|
||||
Array<Element, FragmentSize> frg_col;
|
||||
Tensor tCrCol_mn = tCrCol(_,_,_,epi_m,epi_n);
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int i = 0; i < FragmentSize; ++i) {
|
||||
frg_col[i] = tCrCol_mn(epi_v * FragmentSize + i);
|
||||
}
|
||||
|
||||
return frg_col;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template <
|
||||
bool ReferenceSrc, // do register tensors reference the src or dst layout of the tiled copy
|
||||
class... Args
|
||||
>
|
||||
CUTLASS_DEVICE auto
|
||||
get_consumer_store_callbacks(ConsumerStoreArgs<Args...> const& args) {
|
||||
|
||||
auto [M, N, K, L] = args.problem_shape_mnkl;
|
||||
auto [m, n, k, l] = args.tile_coord_mnkl;
|
||||
|
||||
Tensor mCol = make_tensor(make_gmem_ptr(params.ptr_col_array[l]), make_shape(M,N,1), params.dCol);
|
||||
Tensor tCgCol = sm90_partition_for_epilogue<ReferenceSrc>( // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
|
||||
mCol, args.tile_shape_mnk, args.tile_coord_mnkl, args.epi_tile, args.tiled_copy, args.thread_idx);
|
||||
Tensor tCrCol = make_tensor_like(tCgCol); // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
|
||||
|
||||
// Generate an identity tensor matching the shape of the global tensor and
|
||||
// partition the same way, this will be used to generate the predicate
|
||||
// tensor for loading
|
||||
Tensor cCol = make_identity_tensor(mCol.shape());
|
||||
Tensor tCcCol = sm90_partition_for_epilogue<ReferenceSrc>( // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
|
||||
cCol, args.tile_shape_mnk, args.tile_coord_mnkl, args.epi_tile, args.tiled_copy, args.thread_idx);
|
||||
|
||||
return ConsumerStoreCallbacks(
|
||||
cute::move(tCgCol),
|
||||
cute::move(tCrCol),
|
||||
cute::move(tCcCol),
|
||||
args.problem_shape_mnkl,
|
||||
l,
|
||||
params
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
}
|
@ -1,6 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "cutlass_extensions/epilogue/broadcast_load_epilogue_c3x.hpp"
|
||||
#include "cutlass_extensions/epilogue/broadcast_load_epilogue_array_c3x.hpp"
|
||||
|
||||
/*
|
||||
This file defines custom epilogues for fusing channel scales, token scales,
|
||||
@ -69,6 +70,16 @@ struct ScaledEpilogueBase {
|
||||
0 /*Stages*/, TileShape, T, T, Stride<Int<0>, Int<1>, Int<0>>,
|
||||
128 / sizeof_bits_v<T>, EnableNullPtr>;
|
||||
|
||||
template <typename T>
|
||||
using ColOrScalarLoadArray =
|
||||
cutlass::epilogue::fusion::Sm90ColOrScalarBroadcastArray<
|
||||
0 /*Stages*/, TileShape, T, Stride<Int<1>, Int<0>, Int<0>>>;
|
||||
|
||||
template <typename T>
|
||||
using RowOrScalarLoadArray =
|
||||
cutlass::epilogue::fusion::Sm90RowOrScalarBroadcastArray<
|
||||
0 /*Stages*/, TileShape, T, Stride<Int<0>, Int<1>, Int<0>>>;
|
||||
|
||||
// This utility function constructs the arguments for the load descriptors
|
||||
// from a tensor. It can handle both row and column, as well as row/column or
|
||||
// scalar cases.
|
||||
@ -96,6 +107,14 @@ struct ScaledEpilogueBase {
|
||||
std::is_same_v<Descriptor, RowLoad<T, true>>);
|
||||
return Arguments{data_ptr};
|
||||
}
|
||||
|
||||
template <typename Descriptor, typename T>
|
||||
static auto args_from_tensor(const T* const* data_ptr, bool do_broadcast) {
|
||||
using Arguments = typename Descriptor::Arguments;
|
||||
static_assert(std::is_same_v<Descriptor, ColOrScalarLoadArray<T>> ||
|
||||
std::is_same_v<Descriptor, RowOrScalarLoadArray<T>>);
|
||||
return Arguments{data_ptr, do_broadcast};
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
@ -381,4 +400,51 @@ struct ScaledEpilogueBiasAzpToken
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
This epilogue works like ScaledEpilogue, but ScaleA and ScaleB are pointers
|
||||
to arrays containing different scales used in group gemm. The number of
|
||||
pointers in ScaleA and the number of pointers in ScaleB are equal to the
|
||||
group size.
|
||||
*/
|
||||
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
|
||||
struct ScaledEpilogueArray
|
||||
: private ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor> {
|
||||
private:
|
||||
using SUPER = ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor>;
|
||||
using Accum = typename SUPER::Accum;
|
||||
using ScaleA = typename SUPER::template ColOrScalarLoadArray<float>;
|
||||
using ScaleB = typename SUPER::template RowOrScalarLoadArray<float>;
|
||||
|
||||
using Compute0 = cutlass::epilogue::fusion::Sm90Compute<
|
||||
cutlass::multiplies, float, float,
|
||||
cutlass::FloatRoundStyle::round_to_nearest>;
|
||||
|
||||
using EVTCompute0 =
|
||||
cutlass::epilogue::fusion::Sm90EVT<Compute0, ScaleB, Accum>;
|
||||
|
||||
using Compute1 = cutlass::epilogue::fusion::Sm90Compute<
|
||||
cutlass::multiplies, ElementD, float,
|
||||
cutlass::FloatRoundStyle::round_to_nearest>;
|
||||
|
||||
public:
|
||||
using EVTCompute =
|
||||
cutlass::epilogue::fusion::Sm90EVT<Compute1, ScaleA, EVTCompute0>;
|
||||
using ArgumentType = typename EVTCompute::Arguments;
|
||||
|
||||
using ScaleAArray = typename SUPER::template ColOrScalarLoadArray<float>;
|
||||
using ScaleBArray = typename SUPER::template RowOrScalarLoadArray<float>;
|
||||
|
||||
static ArgumentType prepare_args(float const* const* a_scales_ptr,
|
||||
float const* const* b_scales_ptr,
|
||||
bool a_col_broadcast, bool b_row_broadcast) {
|
||||
auto a_args = SUPER::template args_from_tensor<ScaleAArray, float>(
|
||||
a_scales_ptr, a_col_broadcast);
|
||||
auto b_args = SUPER::template args_from_tensor<ScaleBArray, float>(
|
||||
b_scales_ptr, b_row_broadcast);
|
||||
|
||||
typename EVTCompute0::Arguments evt0_args{b_args, {}, {}};
|
||||
return ArgumentType{a_args, evt0_args, {}};
|
||||
}
|
||||
};
|
||||
|
||||
}; // namespace vllm::c3x
|
||||
|
@ -422,7 +422,7 @@ void causal_conv1d_fwd_kernel(ConvParamsBase params) {
|
||||
int final_state_position = ((seqlen - (kWidth - 1)) - (n_chunks - 1) * kChunkSize);
|
||||
// in case the final state is separated between the last "smem_exchange" and
|
||||
// and the one before it (chunk = n_chunks - 1 and chunk = n_chunks - 2),
|
||||
// (which occurs when `final_state_position` is a non-positivie index)
|
||||
// (which occurs when `final_state_position` is a non-positive index)
|
||||
// we load the correct data from smem_exchange from both chunks, the last chunk iteration and the one before it
|
||||
if (conv_states != nullptr && final_state_position < 0 && seqlen > kWidth){
|
||||
input_t vals_load[kNElts] = {0};
|
||||
|
103
csrc/moe/marlin_moe_wna16/generate_kernels.py
Normal file
103
csrc/moe/marlin_moe_wna16/generate_kernels.py
Normal file
@ -0,0 +1,103 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
import glob
|
||||
import itertools
|
||||
import os
|
||||
import subprocess
|
||||
|
||||
import jinja2
|
||||
|
||||
FILE_HEAD = """
|
||||
// auto generated by generate.py
|
||||
// clang-format off
|
||||
|
||||
#include "kernel.h"
|
||||
#include "marlin_template.h"
|
||||
|
||||
namespace MARLIN_NAMESPACE_NAME {
|
||||
""".strip()
|
||||
|
||||
TEMPLATE = ("template __global__ void Marlin<"
|
||||
"{{scalar_t}}, "
|
||||
"{{w_type_id}}, "
|
||||
"{{threads}}, "
|
||||
"{{thread_m_blocks}}, "
|
||||
"{{thread_n_blocks}}, "
|
||||
"{{thread_k_blocks}}, "
|
||||
"{{'true' if m_block_size_8 else 'false'}}, "
|
||||
"{{stages}}, "
|
||||
"{{'true' if has_act_order else 'false'}}, "
|
||||
"{{'true' if has_zp else 'false'}}, "
|
||||
"{{group_blocks}}, "
|
||||
"{{'true' if is_zp_float else 'false'}}>"
|
||||
"( MARLIN_KERNEL_PARAMS );")
|
||||
|
||||
# int8 with zero point case (vllm::kU8) is also supported,
|
||||
# we don't add it to reduce wheel size.
|
||||
SCALAR_TYPES = ["vllm::kU4", "vllm::kU4B8", "vllm::kU8B128"]
|
||||
THREAD_CONFIGS = [(128, 128, 256), (64, 256, 256), (64, 128, 128)]
|
||||
|
||||
THREAD_M_BLOCKS = [0.5, 1, 2, 3, 4]
|
||||
# group_blocks:
|
||||
# = 0 : act order case
|
||||
# = -1 : channelwise quantization
|
||||
# > 0 : group_size=16*group_blocks
|
||||
GROUP_BLOCKS = [0, -1, 2, 4, 8]
|
||||
DTYPES = ["fp16", "bf16"]
|
||||
|
||||
|
||||
def remove_old_kernels():
|
||||
for filename in glob.glob(os.path.dirname(__file__) + "/kernel_*.cu"):
|
||||
subprocess.call(["rm", "-f", filename])
|
||||
|
||||
|
||||
def generate_new_kernels():
|
||||
for scalar_type, dtype in itertools.product(SCALAR_TYPES, DTYPES):
|
||||
has_zp = "B" not in scalar_type
|
||||
all_template_str_list = []
|
||||
|
||||
for group_blocks, m_blocks, thread_configs in itertools.product(
|
||||
GROUP_BLOCKS, THREAD_M_BLOCKS, THREAD_CONFIGS):
|
||||
|
||||
has_act_order = group_blocks == 0
|
||||
if has_zp and has_act_order:
|
||||
continue
|
||||
if thread_configs[2] == 256:
|
||||
if m_blocks <= 1 and thread_configs[0] != 128:
|
||||
continue
|
||||
if m_blocks > 1 and thread_configs[0] != 64:
|
||||
continue
|
||||
|
||||
k_blocks = thread_configs[0] // 16
|
||||
n_blocks = thread_configs[1] // 16
|
||||
threads = thread_configs[2]
|
||||
|
||||
c_dtype = "half" if dtype == "fp16" else "nv_bfloat16"
|
||||
|
||||
template_str = jinja2.Template(TEMPLATE).render(
|
||||
scalar_t=c_dtype,
|
||||
w_type_id=scalar_type + ".id()",
|
||||
threads=threads,
|
||||
thread_m_blocks=max(m_blocks, 1),
|
||||
thread_n_blocks=n_blocks,
|
||||
thread_k_blocks=k_blocks,
|
||||
m_block_size_8=m_blocks == 0.5,
|
||||
stages="pipe_stages",
|
||||
has_act_order=has_act_order,
|
||||
has_zp=has_zp,
|
||||
group_blocks=group_blocks,
|
||||
is_zp_float=False,
|
||||
)
|
||||
|
||||
all_template_str_list.append(template_str)
|
||||
|
||||
file_content = FILE_HEAD + "\n\n"
|
||||
file_content += "\n\n".join(all_template_str_list) + "\n\n}\n"
|
||||
filename = f"kernel_{dtype}_{scalar_type[6:].lower()}.cu"
|
||||
|
||||
with open(os.path.join(os.path.dirname(__file__), filename), "w") as f:
|
||||
f.write(file_content)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
remove_old_kernels()
|
||||
generate_new_kernels()
|
44
csrc/moe/marlin_moe_wna16/kernel.h
Normal file
44
csrc/moe/marlin_moe_wna16/kernel.h
Normal file
@ -0,0 +1,44 @@
|
||||
|
||||
#ifndef MARLIN_NAMESPACE_NAME
|
||||
#define MARLIN_NAMESPACE_NAME marlin_moe_wna16
|
||||
#endif
|
||||
|
||||
#include "quantization/gptq_marlin/marlin.cuh"
|
||||
#include "quantization/gptq_marlin/marlin_dtypes.cuh"
|
||||
#include "core/scalar_type.hpp"
|
||||
|
||||
#define MARLIN_KERNEL_PARAMS \
|
||||
const int4 *__restrict__ A, const int4 *__restrict__ B, \
|
||||
int4 *__restrict__ C, int4 *__restrict__ C_tmp, \
|
||||
const int4 *__restrict__ scales_ptr, const int4 *__restrict__ zp_ptr, \
|
||||
const int *__restrict__ g_idx, \
|
||||
const int32_t *__restrict__ sorted_token_ids_ptr, \
|
||||
const int32_t *__restrict__ expert_ids_ptr, \
|
||||
const int32_t *__restrict__ num_tokens_past_padded_ptr, \
|
||||
const float *__restrict__ topk_weights_ptr, int top_k, \
|
||||
bool mul_topk_weights, bool is_ep, int num_groups, int prob_m, \
|
||||
int prob_n, int prob_k, int *locks, bool use_atomic_add, \
|
||||
bool use_fp32_reduce
|
||||
|
||||
namespace MARLIN_NAMESPACE_NAME {
|
||||
template <typename scalar_t, // compute dtype, half or nv_float16
|
||||
const vllm::ScalarTypeId w_type_id, // weight ScalarType id
|
||||
const int threads, // number of threads in a threadblock
|
||||
const int thread_m_blocks, // number of 16x16 blocks in the m
|
||||
// dimension (batchsize) of the
|
||||
// threadblock
|
||||
const int thread_n_blocks, // same for n dimension (output)
|
||||
const int thread_k_blocks, // same for k dimension (reduction)
|
||||
const bool m_block_size_8, // whether m_block_size == 8
|
||||
// only works when thread_m_blocks == 1
|
||||
const int stages, // number of stages for the async global->shared
|
||||
// fetch pipeline
|
||||
const bool has_act_order, // whether act_order is enabled
|
||||
const bool has_zp, // whether zero-points are enabled
|
||||
const int group_blocks, // number of consecutive 16x16 blocks
|
||||
// with a separate quantization scale
|
||||
const bool is_zp_float // is zero point of float16 type?
|
||||
>
|
||||
__global__ void Marlin(MARLIN_KERNEL_PARAMS);
|
||||
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user