Compare commits

...

1421 Commits

Author SHA1 Message Date
3015d5634e [BugFix][Attention] Fix sliding window attention in V1 giving incorrect results (#17574)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-02 11:02:48 -07:00
edb5286ea5 [BugFix] Fix Memory Leak (#17567)
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
2025-05-02 11:02:27 -07:00
ba41cc90e8 [Model] Add tuned triton fused_moe configs for Qwen3Moe (#17328)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-28 15:22:46 -07:00
dcbac4cb4b [Model] Qwen3 Dense FP8 Compat Fixes (#17318)
Signed-off-by: simon-mo <xmo@berkeley.edu>
2025-04-28 14:12:01 -07:00
ed2462030f [Bugfix] Fix moe weight losing all extra attrs after process_weights_after_loading. (#16854)
Signed-off-by: charlifu <charlifu@amd.com>
2025-04-28 21:05:07 +00:00
cc5befbced [BugFix] Fix cascade attention - RuntimeError: scheduler_metadata must have shape (metadata_size) (#17283)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-04-28 13:55:50 -07:00
2c89cd96a8 [Chore] cleanup license indicators in light of SPDX (#17259)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-04-28 19:43:52 +00:00
a0304dc504 [Security] Don't bind tcp zmq socket to all interfaces (#17197)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-28 10:08:20 -07:00
c7941cca18 Explicitly explain quant method override ordering and ensure all overrides are ordered (#17256)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-28 16:55:31 +00:00
b6dd32aa07 Make name of compressed-tensors quant method consistent across vLLM (#17255)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-28 16:28:13 +00:00
f94886946e Improve conversion from dataclass configs to argparse arguments (#17303)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-28 16:22:12 +00:00
72dfe4c74f [Docs] Add a security guide (#17230)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-28 15:12:17 +00:00
8b464d9660 [Misc] Clean up Qwen2.5-Omni code (#17301)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-28 06:20:45 -07:00
889ebb2638 [Misc] Minor typo/grammar in platforms/interface.py (#17307)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-28 05:45:42 -07:00
3ad986c28b [doc] update wrong model id (#17287)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-28 04:20:51 -07:00
344e193b7d [Bugfix] Add missing get_language_model to new MLLMs (#17300)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-28 04:09:57 -07:00
fb1c933ade Add missing class docstring for PromptAdapterConfig (#17302)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-28 04:06:59 -07:00
72c5b97231 Update tpu_worker.py 's typo (#17288) 2025-04-28 04:01:15 -07:00
fa93cd9f60 [Model] Add Granite Speech Support (#16246)
Signed-off-by: Alex-Brooks <Alex.brooks@ibm.com>
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-04-28 10:05:00 +00:00
aec9674dbe [Core] Remove legacy input mapper/processor from V0 (#15686)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-28 15:38:48 +08:00
7fcc4223dc [Minor][Models] Pass partial_rotary_factor parameter to rope (#17266)
Signed-off-by: evian <eviantai@u.nus.edu>
Co-authored-by: evian <eviantai@u.nus.edu>
2025-04-28 04:28:59 +00:00
8262a3e23b [Misc] Validate stop_token_ids contents (#17268)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-28 03:54:05 +00:00
f211331c48 [Doc] small fix (#17277)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-28 03:53:35 +00:00
9053d0b134 [Doc] Fix wrong github link in LMCache examples (#17274)
Signed-off-by: KuntaiDu <kuntai@uchicago.edu>
2025-04-28 03:09:11 +00:00
cb3f2d8d10 [Bugfix] Fix Mistral3 spatial merge error (#17270)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-27 19:40:05 -07:00
c12df53b60 [Bugfix] Fix cutlass dispatch for fp8/int8 to properly invoke M<=16 c… (#16751)
Signed-off-by: Ther-LF <2639852836@qq.com>
2025-04-27 19:38:42 -07:00
d1aeea7553 [Bugfix] Fix missing ARG in Dockerfile for arm64 platforms (#17261)
Signed-off-by: lkm-schulz <44176356+lkm-schulz@users.noreply.github.com>
2025-04-27 19:38:14 -07:00
d8bccde686 [BugFix] Fix vllm_flash_attn install issues (#17267)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
2025-04-27 17:27:56 -07:00
20e489eaa1 [V1][Spec Decode] Make eagle compatible with prefix caching. (#17137)
Signed-off-by: LiuXiaoxuanPKU <lilyliupku@gmail.com>
2025-04-27 09:29:43 -07:00
4213475ec7 [Metrics] Fix minor inconsistencies in bucket progression (#17262)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-27 16:19:39 +00:00
d92879baf6 [doc] Add feature status legend (#17257)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-27 08:17:02 -07:00
690fe019f0 [Feature] support sequence parallelism using compilation pass (#16155)
Signed-off-by: cascade812 <cascade812@outlook.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-04-27 06:29:35 -07:00
ed7a29d9f8 [NVIDIA] Support Cutlass MLA for Blackwell GPUs (#16032)
Signed-off-by: kaixih <kaixih@nvidia.com>
2025-04-27 06:29:21 -07:00
756848e79e [Bugfix] Fix Lora Name Parsing (#17196)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-27 20:33:09 +08:00
18445edd0f [Misc] Change buckets of histogram_iteration_tokens to [1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8096] to represent number of tokens (#17033)
Signed-off-by: sfc-gh-zhwang <flex.wang@snowflake.com>
2025-04-27 12:30:53 +00:00
30215ca61f [MISC] Use string annotation types for class definitions (#17244)
Signed-off-by: Jade Zheng <zheng.shoujian@outlook.com>
2025-04-27 08:39:57 +00:00
838cedade7 [Bugfix] Get a specific type of layer from forward context (#17222)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-04-27 00:58:05 -07:00
4283a28c2f [Bugfix] Fix QWen2 VL multimodal mapping (#17240)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-27 05:53:23 +00:00
93a126fbc7 [Misc] Make cached tokenizer pickle-compatible (#17048)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-27 13:05:00 +08:00
8e4b351a0c [Kernel][Triton][FP8] Adding fp8 and variable length sequence support to Triton FAv2 kernel (#12591)
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
2025-04-27 00:35:08 +00:00
9869453c42 Update test_flash_attn.py (#17102)
Signed-off-by: ShuaibinLi <lishuaibin@live.cn>
2025-04-26 22:17:35 +00:00
3642c59aa8 [CI/Build] remove -t for run-lm-eval-gsm-hf-baseline.sh (#16271)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-26 18:25:05 +00:00
43eea2953b [Minor] Fix lint error in main branch (#17233)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-26 11:10:14 -07:00
de7eb10ce4 [Bugfix] Fix Qwen2.5-Omni M-RoPE position ids generation (#16878)
Signed-off-by: imkero <kerorek@outlook.com>
2025-04-26 10:41:35 -07:00
fd11a325b8 [MISC] rename interval to max_recent_requests (#14285) 2025-04-26 16:59:18 +00:00
4d17e20310 Disable the torch.compile cache checks when VLLM_DISABLE_COMPILE_CACHE=1 (#16573)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-04-26 09:17:58 -07:00
10fd1d7380 [Bugfix] fix error due to an uninitialized tokenizer when using skip_tokenizer_init with num_scheduler_steps (#9276)
Signed-off-by: changjun.lee <pord7457@gmail.com>
2025-04-26 11:51:17 -04:00
52b4f4a8d7 [Docs] Update structured output doc for V1 (#17135)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-26 15:12:18 +00:00
e782e0a170 [Chore] added stubs for vllm_flash_attn during development mode (#17228)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-04-26 07:45:26 -07:00
dc2ceca5c5 [BUGFIX] use random for NONE_HASH only when PYTHONHASHSEED not set (#17088)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-04-26 14:34:24 +00:00
f8acd01ff7 [V1] Add structural_tag support using xgrammar (#17085) 2025-04-26 14:06:37 +00:00
c48334d405 [Hardware][Intel-Gaudi] Update hpu-extension and update bucketing system for HPU device (#17186)
Signed-off-by: Agata Dobrzyniewicz <adobrzyniewicz@habana.ai>
2025-04-26 05:55:14 -07:00
909fdaf152 [Bugfix] Fix standard models tests (#17217)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-26 02:26:41 -07:00
8c1c926d00 [Bugfix] Fix missing int type for -n in multi-image example (#17223) 2025-04-26 08:49:52 +00:00
df6f3ce883 [Core] Remove prompt string from engine core data structures (#17214)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-25 23:41:05 -07:00
513f074766 [CI/test] Fix Eagle Correctness Test (#17209)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-25 23:40:36 -07:00
b07bf83c7d [BugFix] Avoid race conditions in zero-copy tensor transmission (#17203)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-26 06:00:07 +00:00
53e8cf53a4 [V1][Metrics] Allow V1 AsyncLLM to use custom logger (#14661)
Signed-off-by: Zijing Liu <liuzijing2014@gmail.com>
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Mark McLoughlin <markmc@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-25 22:05:40 -07:00
54271bb766 [ROCm][Misc] Follow-ups for Skinny Gemms on ROCm. (#17011)
Signed-off-by: charlifu <charlifu@amd.com>
2025-04-25 22:05:10 -07:00
9e96f56efb Allocate kv_cache with stride order (#16605)
Signed-off-by: shuw <shuw@nvidia.com>
2025-04-25 22:03:31 -07:00
b278911229 [Minor][Models] Fix Return Types of Llama & Eagle (#17220)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-25 21:54:47 -07:00
7bd0c7745c [Doc] Minor fix for the vLLM TPU setup page (#17206)
Signed-off-by: Yarong Mu <ymu@google.com>
2025-04-26 04:39:56 +00:00
1cf0719ebd [Minor][Spec Decode] Add use_eagle to SpeculativeConfig (#17213)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-25 21:08:15 -07:00
537d5ee025 [doc] add Anything LLM integration (#17216)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-25 21:03:23 -07:00
c8e5be35f7 [MISC][AMD] Add unused annotation to rocm kernel file (#17097)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-04-25 20:33:35 -07:00
a6e72e1e4f [Bugfix] [pytorch] Patch AOTAutogradCache._get_shape_env (#17142)
Signed-off-by: James Wu <jjwu@meta.com>
2025-04-26 11:28:20 +08:00
5e83a7277f [v1] [P/D] Adding LMCache KV connector for v1 (#16625) 2025-04-26 03:03:38 +00:00
68af5f6c5c [AMD][FP8][BugFix] Remove V1 check in arg_utils.py for FP8 since it is not necessary (#17215)
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
2025-04-25 19:55:05 -07:00
8de2901fea [Bugfix] gemma[2,3] interleaved attention when sliding window is disabled (#17180)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-04-25 19:53:51 -07:00
c53e0730cb [Misc] Refine ray_serve_deepseek example (#17204)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-04-25 16:06:59 -07:00
a0e619e62a [V1][Spec Decode] EAGLE-3 Support (#16937)
Signed-off-by: Bryan Lu <yuzhelu@amazon.com>
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
Co-authored-by: Bryan Lu <yuzhelu@amazon.com>
2025-04-25 15:43:07 -07:00
70116459c3 [BugFix][Frontend] Fix LLM.chat() tokenization (#16081)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-25 22:20:05 +00:00
65e262b93b Fix Python packaging edge cases (#17159)
Signed-off-by: Christian Heimes <christian@python.org>
2025-04-26 06:15:07 +08:00
43faa0461a [Bugfix] Fix hybrid model tests (#17182)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-25 15:14:37 -07:00
48cb2109b6 [V1] Move usage stats to worker and start logging TPU hardware (#16211) 2025-04-25 14:06:01 -06:00
a5450f11c9 [Security] Use safe serialization and fix zmq setup for mooncake pipe (#17192)
Signed-off-by: Shangming Cai <caishangming@linux.alibaba.com>
Co-authored-by: Shangming Cai <caishangming@linux.alibaba.com>
2025-04-25 16:53:23 +00:00
9d98ab5ec6 [Misc] Inline Molmo requirements (#17190)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-25 16:41:44 +00:00
df5c879527 [doc] update wrong hf model links (#17184)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-25 16:40:54 +00:00
423e9f1cbe Use Transformers helper get_text_config() instead of checking for text_config (#17105)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-25 08:47:35 -07:00
0bd7f8fca5 Bump Transformers to 4.51.3 (#17116)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-25 08:34:34 -07:00
d5615af9ae [Bugfix] Fix Mistral ChatCompletionRequest Body Exception (#16769)
Signed-off-by: Jasmond Loh <Jasmond.Loh@hotmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-25 07:26:30 -07:00
19dcc02a72 [Bugfix] Fix mistral model tests (#17181)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-25 06:03:34 -07:00
7feae92c1f [Doc] Move todo out of beam search docstring (#17183)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-04-25 04:44:58 -07:00
f851b84266 [Doc] Add two links to disagg_prefill.md (#17168)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-04-25 10:23:57 +00:00
fc966e9cc6 Only turn on FastIncrementalDetokenizer when tokenizers >= 0.21.1 (#17158) 2025-04-25 17:10:32 +08:00
ef19e67d2c [Doc] Add headings to improve gptqmodel.md (#17164)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-04-25 01:13:13 -07:00
a41351f363 [Quantization][FP8] Add support for FP8 models with input_scale for output projection and QK quantization (#15734)
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Co-authored-by: Luka Govedič <lgovedic@redhat.com>
2025-04-25 00:45:02 -07:00
6aae216b4e [Bugfix] remove fallback in guided_json (int range, patterns) (#16725)
Signed-off-by: csy1204 <josang1204@gmail.com>
Co-authored-by: 조상연[플레이스 AI] <sang-yeon.cho@navercorp.com>
2025-04-25 06:54:43 +00:00
b22980a1dc [Perf]Optimize rotary_emb implementation to use Triton operator for improved inference performance (#16457)
Signed-off-by: cynthieye <yexin93@qq.com>
Co-authored-by: MagnetoWang <magnetowang@outlook.com>
2025-04-25 14:52:28 +08:00
881f735827 [Misc] Benchmark Serving Script Support Appending Results (#17028)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-04-24 22:53:55 -07:00
2f54045508 [Bugfix][Misc] Use TritonPlaceholderModule to defensively import triton (#15099)
Signed-off-by: Mengqing Cao <cmq0113@163.com>
2025-04-24 22:51:02 -07:00
5aa6efb9a5 [Misc] Clean up redundant code in uniproc_executor.py (#16762)
Signed-off-by: Lifu Huang <lifu.hlf@gmail.com>
2025-04-24 22:49:30 -07:00
6ca0234478 Move missed SchedulerConfig args into scheduler config group in EngineArgs (#17131)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-24 22:48:53 -07:00
649818995f [Docs] Fix True->true in supported_models.md (#17141) 2025-04-25 04:20:04 +00:00
7a0a9da72b [Doc] V1 : Update LoRA status (#17133)
Signed-off-by: varun sundar rabindranath <vsundarr@redhat.com>
Co-authored-by: varun sundar rabindranath <vsundarr@redhat.com>
2025-04-24 20:17:22 -07:00
69bff9bc89 fix float16 support for kimi-vl (#17156)
Co-authored-by: zhouzaida <zhouzaida@msh.team>
2025-04-24 20:16:32 -07:00
41ca7eb491 [Attention] FA3 decode perf improvement - single mma warp group support for head dim 128 (#16864)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-04-24 20:12:21 -07:00
eef364723c [FEAT] [ROCm]: AITER Fused MOE V1 Support (#16752)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-04-25 11:06:50 +08:00
0d6e187e88 Use custom address for listening socket (#15988)
Signed-off-by: Jens Glaser <glaserj@ornl.gov>
2025-04-25 01:57:16 +00:00
9420a1fc30 Better error message for missing mistral params.json (#17132)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-24 23:43:08 +00:00
583e900996 [Misc] Add example to run DeepSeek with Ray Serve LLM (#17134)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-04-24 22:25:21 +00:00
05e1fbfc52 Add chat template for Llama 4 models (#16428)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2025-04-24 20:19:36 +00:00
fe92176321 Add collective_rpc to llm engine (#16999)
Signed-off-by: Yinghai Lu <yinghai@thinkingmachines.ai>
2025-04-24 20:16:52 +00:00
6d0df0ebeb [Docs] Generate correct github links for decorated functions (#17125)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-24 10:39:43 -07:00
0fa939e2d1 Improve configs - LoRAConfig + PromptAdapterConfig (#16980)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-24 10:29:34 -07:00
0422ce109f Add :markdownhelp: to EngineArgs docs so markdown docstrings render properly (#17124)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-24 10:28:45 -07:00
47bdee409c Molmo Requirements (#17026)
Signed-off-by: Eyshika Agarwal <eyshikaengineer@gmail.com>
Signed-off-by: eyshika <eyshikaengineer@gmail.com>
2025-04-24 10:08:37 -07:00
49f189439d existing torch installation pip command fix for docs (#17059) 2025-04-24 10:07:21 -07:00
5adf6f6b7f Updating builkite job for IBM Power (#17111)
Signed-off-by: Aaruni Aggarwal <aaruniagg@gmail.com>
2025-04-24 10:06:17 -07:00
4115f19958 [CI] Add automation for the tool-calling github label (#17118)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-24 09:22:00 -07:00
340d7b1b21 [V1][Spec Decoding] Add num_drafts and num_accepted_tokens_per_position metrics (#16665)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-04-24 08:57:40 -07:00
1bcbcbf574 [Misc] refactor example series - structured outputs (#17040)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-24 07:49:48 -07:00
82e43b2d7e Add missing rocm_skinny_gemms kernel test to CI (#17060)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-24 07:49:37 -07:00
67309a1cb5 [Frontend] Using matryoshka_dimensions control the allowed output dimensions. (#16970) 2025-04-24 07:06:28 -07:00
b724afe343 [V1][Structured Output] Clear xgrammar compiler object when engine core shut down to avoid nanobind leaked warning (#16954)
Signed-off-by: shen-shanshan <467638484@qq.com>
2025-04-24 06:15:03 -07:00
21f4f1c9a4 Improve static type checking in LoRAModelRunnerMixin (#17104)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-24 06:14:47 -07:00
b0c1f6202d [Misc] Remove OLMo2 config copy (#17066)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-24 06:14:32 -07:00
c0dfd97519 [V1][PP] Optimization: continue scheduling prefill chunks (#17080)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-04-24 05:27:08 -07:00
a9138e85b1 Fix OOT registration test (#17099)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-24 04:44:12 -07:00
0a05ed57e6 Simplify TokenizerGroup (#16790)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-24 04:43:56 -07:00
14288d1332 Disable enforce_eager for V1 TPU sampler and structured output tests (#17016)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-24 02:50:09 -07:00
b411418ff0 [Chore] Remove Sampler from Model Code (#17084)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-24 02:49:33 -07:00
2bc0f72ae5 Add docs for runai_streamer_sharded (#17093)
Signed-off-by: Omer Dayan (SW-GPU) <omer@run.ai>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-24 01:03:21 -07:00
9c1244de57 [doc] update to hyperlink (#17096)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-24 00:58:08 -07:00
db2f8d915c [V1] Update structured output (#16812)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-23 23:57:17 -07:00
6167c0e5d2 [Bugfix][Core] add seq_id_to_seq_group clearing to avoid memory leak when s… (#16472)
Signed-off-by: 开哲 <kaizhe.zy@alibaba-inc.com>
Co-authored-by: 开哲 <kaizhe.zy@alibaba-inc.com>
2025-04-24 11:25:37 +08:00
ed2e464653 Addendum Fix to support FIPS enabled machines with MD5 hashing (#17043)
Signed-off-by: sydarb <areebsyed237@gmail.com>
2025-04-23 19:55:00 -07:00
2c8ed8ee48 More informative error when using Transformers backend (#16988)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-23 19:54:03 -07:00
ed50f46641 [Bugfix] Enable V1 usage stats (#16986)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-23 19:54:00 -07:00
46e678bcff [Minor] Use larger batch sizes for A100/B100/B200/MI300x (#17073)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-23 19:18:59 -07:00
6b2427f995 [Quantization]add prefix for commandA quantized model (#17017) 2025-04-23 17:32:40 -07:00
b07d741661 [CI/Build] workaround for CI build failure (#17070)
Signed-off-by: csy1204 <josang1204@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-04-23 16:14:18 -07:00
41fb013d29 [V1][Spec Decode] Always use argmax for sampling draft tokens (#16899)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-23 14:57:43 -07:00
32d4b669d0 [BugFix][V1] Fix int32 token index overflow when preparing input ids (#16806) 2025-04-23 12:12:35 -07:00
3cde34a4a4 [Frontend] Support guidance:no-additional-properties for compatibility with xgrammar (#15949)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2025-04-23 18:34:41 +00:00
bdb3660312 Use @property and private field for data_parallel_rank_local (#17053)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-23 08:50:08 -07:00
f3a21e9c68 CacheConfig.block_size should always be int when used (#17052)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-23 08:50:05 -07:00
8e630d680e Improve Transformers backend model loading QoL (#17039)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-23 07:33:51 -07:00
af869f6dff [CI] Update structured-output label automation (#17055)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-23 07:33:14 -07:00
53c0fa1e25 Ensure that pid passed to kill_process_tree is int for mypy (#17051)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-23 07:32:26 -07:00
f7912cba3d [Doc] Add top anchor and a note to quantization/bitblas.md (#17042)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-04-23 07:32:16 -07:00
6317a5174a Categorize tests/kernels/ based on kernel type (#16799)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-23 09:21:07 -04:00
aa72d9a4ea Mistral-format support for compressed-tensors (#16803)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-23 08:46:23 -04:00
ce17db8085 [CI] Run v1/test_serial_utils.py in CI (#16996)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-23 01:13:34 -07:00
8c87a9ad46 [Bugfix] Fix AssertionError: skip_special_tokens=False is not supported for Mistral tokenizers (#16964)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-23 07:24:09 +00:00
ec69124eb4 [Misc] Improve readability of get_open_port function. (#17024)
Signed-off-by: gitover22 <qidizou88@gmail.com>
2025-04-23 06:16:53 +00:00
d0da99fb70 [BugFix] llama4 fa3 fix - RuntimeError: scheduler_metadata must have shape (metadata_size) (#16998)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-04-22 21:49:24 -07:00
b2f195c429 [V1] Avoid socket errors during shutdown when requests are in in-flight (#16807)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-23 12:36:29 +08:00
047797ef90 [Bugfix] Triton FA function takes no keyword arguments (#16902)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-04-22 21:35:24 -07:00
eb8ef4224d [doc] add download path tips (#17013)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-23 04:06:30 +00:00
56a735261c [INTEL-HPU][v0] Port delayed sampling to upstream (#16949)
Signed-off-by: Michal Adamczyk <michal.adamczyk@intel.com>
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
Co-authored-by: Michal Adamczyk <madamczyk@habana.ai>
2025-04-22 20:14:11 -07:00
e1cf90e099 [misc] tune some env vars for GB200 (#16992)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-04-23 10:59:48 +08:00
6bc1e30ef9 Revert "[Misc] Add S3 environment variables for better support of MinIO." (#17021) 2025-04-22 19:22:29 -07:00
7e081ba7ca [BugFix] Revert ROCm Custom Paged Attention Env Flag Check (#17022)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-04-22 19:17:48 -07:00
1e013fa388 [V1][DP] More robust DP/EP dummy request coordination (#16277)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-22 19:12:15 -07:00
bc7c4d206b [Kernel][ROCM] Upstream prefix prefill speed up for vLLM V1 (#13305)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: root <root@banff-cyxtera-s73-5.ctr.dcgpu>
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Signed-off-by: root <root@banff-cyxtera-s65-4.amd.com>
Signed-off-by: maleksan85 <maleksan@amd.com>
Signed-off-by: <>
Co-authored-by: Sage Moore <sage@neuralmagic.com>
Co-authored-by: root <root@banff-cyxtera-s73-5.ctr.dcgpu>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: qli88 <qiang.li2@amd.com>
Co-authored-by: root <root@banff-cyxtera-s65-4.amd.com>
2025-04-22 19:11:56 -07:00
f67e9e9f22 add Dockerfile build vllm against torch nightly (#16936)
Signed-off-by: Yang Wang <elainewy@meta.com>
2025-04-22 19:08:27 -07:00
36fe78769f [Bugfix] validate urls object for multimodal content parts (#16990)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-04-23 09:43:06 +08:00
83d933718c [Core][V1][TPU] Enable structured decoding on TPU V1 (#16499)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-04-22 18:05:23 -06:00
5175b884f7 [BugFix] Remove default multiproc executor collective_rpc timeout (#17000)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-22 23:27:14 +00:00
5536b30a4c Fencing Kernels Tests for enabling on AMD (#16929)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-04-22 09:32:40 -07:00
7f58fb9718 Add assertion for no objects while hashing hf_config (#16930)
Signed-off-by: rzou <zou3519@gmail.com>
2025-04-22 09:32:22 -07:00
30bc3e0f66 [FEAT][ROCm]: Support AITER MLA (#15893)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Co-authored-by: qli88 <qiang.li2@amd.com>
2025-04-22 09:31:13 -07:00
f34410715f [frontend] enhance tool_calls type check (#16882)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-22 15:40:24 +00:00
68d4c33202 [Misc] Add S3 environment variables for better support of MinIO. (#16977)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-22 14:27:36 +00:00
f961d7f6ef [BugFix] Pass in correct VLLM config in FlashInfer backend (#13207) (#16973)
Signed-off-by: 苏政渊 <suzhengyuan@moonshot.cn>
Co-authored-by: 苏政渊 <suzhengyuan@moonshot.cn>
2025-04-22 06:44:10 -07:00
d059110498 Improve configs - SpeculativeConfig (#16971)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-22 12:55:36 +00:00
571e8dd65e [Bugfix] Fix distributed bug again in Qwen2.5-VL & Qwen2.5-Omni (#16974)
Signed-off-by: fyabc <suyang.fy@alibaba-inc.com>
2025-04-22 12:23:17 +00:00
4b91c927f6 [Misc] refactor example series (#16972)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-22 11:44:21 +00:00
0e237f0035 [FEAT][ROCm] Integrate Paged Attention Kernel from AITER (#15001)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-04-22 02:46:28 -07:00
8f7bace7c3 [Doc] Improve documentation for multimodal CLI args (#16960)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-22 08:35:35 +00:00
e4d6144232 [BugFix] Fix incremental detokenization perf issue (#16963)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-22 08:16:19 +00:00
8d32dc603d [Kernel] Support Microsoft Runtime Kernel Lib for our Low Precision Computation - BitBLAS (#6036)
Signed-off-by: xinyuxiao <xinyuxiao2024@gmail.com>
Co-authored-by: xinyuxiao <xinyuxiao2024@gmail.com>
2025-04-22 09:01:36 +01:00
c4ab9f3e71 [V1] Remove pre-allocation for KV cache (#16941)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-22 00:52:18 -07:00
2689d5c027 [Model] Use autoweightloader for mamba (#16950)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-04-22 07:48:15 +00:00
acba33a0f1 [Bugfix] Fix the issue where llm.generate cannot be called repeatedly after setting GuidedDecodingParams (#16767)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-04-22 06:02:20 +00:00
a114bf20a3 [Perf] Optimize _update_states for GPU model runner (#16910)
Signed-off-by: snowcharm <snowcharmqq@gmail.com>
2025-04-22 14:01:54 +08:00
3097ce3a32 [Doc] Update ai_accelerator/hpu-gaudi.inc.md (#16956)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-04-22 05:33:27 +00:00
d6da9322c8 [Bugfix] Fix f-string for Python 3.9-3.11 (#16962)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-21 21:45:55 -07:00
71ce44047f Support S3 Sharded loading with RunAI Model Streamer (#16317)
Signed-off-by: Omer Dayan (SW-GPU) <omer@run.ai>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-21 21:21:49 -07:00
188b7f9b8c [Performance][ROCm] Add skinny gemms for unquantized linear on ROCm (#15830)
Signed-off-by: charlifu <charlifu@amd.com>
Co-authored-by: Tyler Michael Smith <tysmith@redhat.com>
2025-04-21 20:46:22 -07:00
b9b4746950 [V1] Remove additional_config check (#16710)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-04-21 20:45:27 -07:00
7b8a2ab76f [Kernel] Add expert_map support to Cutlass FP8 MOE (#16861)
Signed-off-by: varun sundar rabindranath <vsundarr@redhat.com>
Co-authored-by: varun sundar rabindranath <vsundarr@redhat.com>
2025-04-21 20:44:32 -07:00
c9acbf1141 [Misc] Remove the chunked prefill warning for LoRA (#16925)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-21 20:44:24 -07:00
5b794cae8d [ROCm] Add aiter tkw1 kernel for Llama4 fp8 (#16727)
Signed-off-by: kliuae <kuanfu.liu@embeddedllm.com>
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-04-21 20:42:34 -07:00
0e4254492f [Bugfix]: fix issue with n>1 sampling on v1 requests overriding each other (#16863)
Signed-off-by: Jeffrey Li <jeffrey.dot.li@gmail.com>
2025-04-22 11:40:19 +08:00
1311913f55 [BugFix][Spec Decode] No in-place update to draft probs (#16952)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-21 19:54:19 -07:00
29f395c97c [Doc] Remove unnecessary V1 flag (#16924)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-21 21:04:38 -04:00
fa3bba2a53 [TPU][V1] Enable Top-P (#16843)
Signed-off-by: NickLucche <nlucches@redhat.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-04-22 00:46:07 +00:00
986537f1c3 [V1] V1 FlashInfer Attention (#16684)
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Aurick Qiao <qiao@aurick.net>
2025-04-22 00:38:41 +00:00
210207525e [TPU][V1] Capture multimodal encoder during model compilation (#15051)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Siyuan Liu <lsiyuan@google.com>
2025-04-21 18:36:59 -06:00
71eda0bb76 Update Qwen1.5-MoE-W4A16-compressed-tensors.yaml (#16946) 2025-04-21 18:35:32 -06:00
471fe65630 [TPU][V1] Implicitly adjust page size when there's SMEM OOM (#16871)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-04-21 15:43:13 -06:00
3a0fba5cf4 [V1][Spec Decode] Handle draft tokens beyond max_model_len (#16087)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-21 12:38:50 -07:00
299ebb62b2 [Core] Speed up decode by remove synchronizing operation in sampler (#16436)
Signed-off-by: Chanh Nguyen <cnguyen@linkedin.com>
Co-authored-by: Chanh Nguyen <cnguyen@linkedin.com>
2025-04-21 18:18:22 +00:00
f728ab8e35 [Doc] mention how to install in CPU editable mode (#16923)
Signed-off-by: David Xia <david@davidxia.com>
2025-04-21 17:45:51 +00:00
63e26fff78 [doc] install required python3-dev apt package (#16888)
Signed-off-by: David Xia <david@davidxia.com>
2025-04-21 16:15:18 +00:00
fe3462c774 [XPU][Bugfix] minor fix for XPU (#15591)
Signed-off-by: yan ma <yan.ma@intel.com>
2025-04-22 00:02:57 +08:00
3b34fd5273 Raise error for data-parallel with benchmark_throughput (#16737)
Signed-off-by: Kartik Ramesh <kartikx2000@gmail.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-04-21 23:51:43 +08:00
55d6d3fdb8 [Bugfix] Fix GLM rotary_dim issue and support v1 (#16912)
Signed-off-by: isotr0py <2037008807@qq.com>
2025-04-21 14:26:34 +00:00
7272bfae77 [Misc] Refactor platform to get device specific stream and event (#14411)
Signed-off-by: shen-shanshan <467638484@qq.com>
2025-04-21 21:25:49 +08:00
d9ac9e3dc5 [Misc] fix collect_env version parse (#15267)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-04-21 20:29:40 +08:00
d41faaf9df Restore buffers when wake up from level 2 sleep (#16564) (#16889)
Signed-off-by: Han <zh950713@gmail.com>
2025-04-21 20:18:28 +08:00
b34f33438a [Doc] Split dummy_processor_inputs() in Multimodal Docs (#16915)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-04-21 11:10:01 +00:00
26c0406555 [Bugfix] Fix distributed bug in Qwen2.5-VL & Qwen2.5-Omni (#16907) 2025-04-21 10:25:21 +00:00
4c41278b77 [CI/CD][V1] Add spec decode tests to CI (#16900)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-20 22:37:16 -07:00
bb3605db85 [Bugfix] Fix v1/spec_decode/test_ngram.py (#16895)
Signed-off-by: qizixi <qizixi@meta.com>
2025-04-20 20:54:29 -07:00
fe742aef5a [easy] Pass compile_fx only the config patches (#16845)
Signed-off-by: rzou <zou3519@gmail.com>
2025-04-20 12:25:19 +08:00
4b07d36891 Improve configs - CacheConfig (#16835)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-20 12:25:04 +08:00
87aaadef73 Serialize tensors using int8 views (#16866)
Signed-off-by: Staszek Pasko <staszek@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-19 10:28:34 -07:00
682e0b6d2f Log how much time loading a compiled artifact takes (#16848)
Signed-off-by: rzou <zou3519@gmail.com>
2025-04-19 16:50:46 +00:00
d6195a748b [doc] update hyperlink (#16877)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-19 16:40:38 +00:00
205d84aaa9 [VLM] Clean up models (#16873)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-19 12:13:06 +00:00
5124f5bf51 [Model] Qwen2.5-Omni Cleanup (#16872) 2025-04-19 09:37:02 +00:00
83f3c3bd91 [Model] Refactor Phi-4-multimodal to use merged processor and support V1 (#15477)
Signed-off-by: Isotr0py <2037008807@qq.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-19 02:26:11 -07:00
d9737ca1c6 [V1][Misc] stop update prefix cache stats when logs_stats is disabled (#16460)
Signed-off-by: vie-serendipity <2733147505@qq.com>
2025-04-19 02:25:19 -07:00
9d4ca19d50 [Misc] Benchmarks for audio models (#16505)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-19 02:24:14 -07:00
2ef0dc53b8 [Frontend] Add sampling params to v1/audio/transcriptions endpoint (#16591)
Signed-off-by: Jannis Schönleber <joennlae@gmail.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Jannis Schönleber <joennlae@gmail.com>
2025-04-19 07:03:54 +00:00
1d4680fad2 [rocm][MI300] llama4 maverick fp8 moe config tp8 (#16847)
Signed-off-by: Divakar Verma <divakar.verma@amd.com>
2025-04-19 06:21:43 +00:00
2c1bd848a6 [Model][VLM] Add Qwen2.5-Omni model support (thinker only) (#15130)
Signed-off-by: fyabc <suyang.fy@alibaba-inc.com>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Xiong Wang <wangxiongts@163.com>
2025-04-18 23:14:36 -07:00
5c9121203c [release] Publish neuron docker image (#16733)
Signed-off-by: omrishiv <327609+omrishiv@users.noreply.github.com>
2025-04-18 17:11:25 -07:00
490b1698a5 [Doc] Updated Llama section in tool calling docs to have llama 3.2 config info (#16857)
Signed-off-by: jmho <jaylenho734@gmail.com>
2025-04-18 23:28:53 +00:00
5a5e29de88 [Misc] refactor examples series - Chat Completion Client With Tools (#16829)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-18 23:24:42 +00:00
3d3ab3689f [New Model]: Snowflake Arctic Embed (Family) (#16649) 2025-04-18 08:11:57 -07:00
686623c5e7 Fix nullable_kvs fallback (#16837)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-18 05:58:39 -07:00
aadb656562 [Misc] Clean up Kimi-VL (#16833)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-18 05:15:09 -07:00
87e067de41 [Model] use AutoWeightsLoader for BigCode, GPT-J (#16823)
Signed-off-by: Jonghyun Choe <andy.choe729@gmail.com>
2025-04-18 10:42:41 +00:00
26507f8973 [Docs] Fix a link and grammar issue in production-stack.md (#16809)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-04-18 06:42:58 +00:00
9c1d5b456d [Doc] add podman setup instructions for official image (#16796)
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
2025-04-18 06:10:49 +00:00
e31045f95c [Bugfix] fix pp for llama4 (#16746)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-04-18 13:51:30 +08:00
aaec845f8e [ROCm] [Attention] Cleanup ROCm output passing (#16431)
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
2025-04-18 05:46:45 +00:00
7bdfd29a35 [Misc] add collect_env to cli and docker image (#16759)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-17 22:13:35 -07:00
e78587a64c Improve-mm-and-pooler-and-decoding-configs (#16789)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-17 22:13:32 -07:00
7eb4255628 [BugFix] Accuracy fix for llama4 int4 - improperly casted scales (#16801)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-04-17 22:13:29 -07:00
6a0f547561 Add hardware print to TPU V1 test (#16792) 2025-04-17 22:13:26 -07:00
30ed81b7ca [V1][Structured Output] Minor modification to _validate_structured_output() (#16748)
Signed-off-by: shen-shanshan <467638484@qq.com>
2025-04-18 13:12:54 +08:00
7a4a5de729 [Misc] Update outdated note: LMCache now supports chunked prefill (#16697)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-18 05:12:42 +00:00
c16fb5dae8 [Doc] Improve help examples for --compilation-config (#16729)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-17 21:22:34 -07:00
e37073efd7 Add property-based testing for vLLM endpoints using an API defined by an OpenAPI 3.1 schema (#16721)
Signed-off-by: Tarun Kumar <takumar@redhat.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-17 21:08:27 -07:00
183dad7a85 [Attention] Update to lastest FA3 code (#13111)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-04-17 15:14:07 -07:00
3408e47159 [P/D][V1] KV Connector API V1 (#15960)
Signed-off-by: ApostaC <yihua98@uchicago.edu>
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
Signed-off-by: remi <remi@mistral.ai>
Co-authored-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Rémi Delacourt <54138269+Flechman@users.noreply.github.com>
Co-authored-by: Tyler Michael Smith <tysmith@redhat.com>
2025-04-17 13:22:40 -07:00
0377b8310b [MLA] Simplification to batch P/D reordering (#16673)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-17 16:12:09 -04:00
e4755f7fac [V1][Metrics] Fix http metrics middleware (#15894) 2025-04-17 19:52:18 +00:00
92edf35826 [ROCM] enable aiter fused moe kernel for llama4 bf16 checkpoints (#16674) 2025-04-17 11:44:34 -07:00
eb5819b2d9 [V1][TPU] Enable Top K (#15489)
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Hyesoo Yang <hyeygit@gmail.com>
Co-authored-by: Hyesoo Yang <hyeygit@gmail.com>
2025-04-17 18:18:11 +00:00
5989f4684d [TPU][V1] Fix padding recompilation when max-num-batched-tokens is not even (#16726)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-17 18:09:57 +00:00
5125d72f02 [Model] use AutoWeightsLoader for olmoe,opt,orion,persimmon,phi3_small (#16548)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-17 17:48:31 +00:00
a018e555fd [Kernel] Add fp8_w8a8 fused MoE kernel tuning configs for DeepSeek V3/R1 on NVIDIA H20 (#16753)
Signed-off-by: ximing.wxm <ximing.wxm@antgroup.com>
Co-authored-by: ximing.wxm <ximing.wxm@antgroup.com>
2025-04-18 00:01:30 +08:00
6211b92273 [Bugfix]Fix index out of range error in api server log (#16787)
Signed-off-by: WangErXiao <863579016@qq.com>
2025-04-17 09:01:07 -07:00
05fcd1b430 [V1][Perf] Faster incremental detokenization (#15137)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-17 07:45:24 -07:00
7c02d6a137 [Doc] Changed explanation of generation_tokens_total and prompt_tokens_total counter type metrics to avoid confusion (#16784)
Signed-off-by: insukim1994 <insu.kim@moreh.io>
2025-04-17 14:10:08 +00:00
11c3b98491 [Doc] Document Matryoshka Representation Learning support (#16770) 2025-04-17 13:37:37 +00:00
dbe7f07001 [Doc] Make sure to update vLLM when installing latest code (#16781)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-17 06:53:31 -06:00
c69bf4ee06 fix: hyperlink (#16778)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-17 11:34:20 +00:00
d27ea94034 Improve configs - TokenizerPoolConfig + DeviceConfig (#16603)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-17 11:19:42 +00:00
99ed526101 [Misc] refactor examples series - lmcache (#16758)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-17 11:02:35 +00:00
207da28186 [Doc] Fix a 404 link in installation/cpu.md (#16773)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-04-17 10:46:21 +00:00
5b1aca2ae3 [Bugfix] Fix GLM4 model (#16618)
Signed-off-by: intervitens <intervitens@tutanota.com>
2025-04-17 03:35:07 -07:00
d8e557b5e5 [doc] add open-webui example (#16747)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-17 18:27:32 +08:00
61a44a0b22 [Doc] Add more tips to avoid OOM (#16765)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-17 09:54:34 +00:00
a6481525b8 [misc] ignore marlin_moe_wna16 local gen codes (#16760)
Signed-off-by: DefTruth <qiustudent_r@163.com>
2025-04-17 17:15:14 +08:00
8cac35ba43 [Ray] Improve documentation on batch inference (#16609)
Signed-off-by: Richard Liaw <rliaw@berkeley.edu>
2025-04-16 22:19:26 -07:00
9dbf7a2dc1 [V1] Remove log noise when idle (#16735)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-16 21:34:08 -07:00
607029e515 [Bugfix] Revert max_prompt_len validation for decoder-only models. (#16741)
Signed-off-by: David Heineman <david@davidheineman.com>
2025-04-16 21:33:15 -07:00
cb072ce93b [Bugfix] Update Florence-2 tokenizer to make grounding tasks work (#16734)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-17 04:17:39 +00:00
95aca283b4 [rocm][V0] fix selection logic for custom PA in V0 (#16426)
Signed-off-by: Divakar Verma <divakar.verma@amd.com>
2025-04-16 19:52:11 -07:00
2b05b8ce69 [V1][Frontend] Improve Shutdown And Logs (#11737)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Signed-off-by: Andrew Feldman <afeldman@neuralmagic.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Andrew Feldman <afeldman@neuralmagic.com>
Co-authored-by: afeldman-nm <156691304+afeldman-nm@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-16 19:48:34 -07:00
3c776dcefb Adding vllm buildkite job for IBM Power (#16679)
Signed-off-by: Aaruni Aggarwal <aaruniagg@gmail.com>
2025-04-17 10:47:47 +08:00
2cbd4d2999 [V1][Spec Dec Bug Fix] Respect Spec Dec Method Specification (#16636)
Signed-off-by: Bryan Lu <yuzhelu@amazon.com>
2025-04-16 19:47:26 -07:00
3092375e27 [V1][Performance] Implement custom serializaton for MultiModalKwargs [Rebased] (#16432)
Signed-off-by: Staszek Pasko <staszek@gmail.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-16 19:28:32 -07:00
3cd91dc955 Help user create custom model for Transformers backend remote code models (#16719)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-17 01:05:59 +00:00
8a7368e069 [Misc] Remove redundant comment (#16703)
Signed-off-by: Jade Zheng <zheng.shoujian@outlook.com>
2025-04-17 00:44:52 +00:00
93e561ec4d Improve error for structured output backend selection (#16717)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-17 00:35:35 +00:00
e1b004839a [Hardware] Add processor inputs to platform validation (#16680)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2025-04-16 09:28:42 -07:00
ee378f3d49 [Model] support modernbert (#16648)
Signed-off-by: 唯勤 <xsank.mz@alibaba-inc.com>
Co-authored-by: 唯勤 <xsank.mz@alibaba-inc.com>
2025-04-16 05:30:15 -07:00
e82ee40de3 [Bugfix][Kernel] fix potential cuda graph broken for merge_attn_states kernel (#16693)
Signed-off-by: DefTruth <qiustudent_r@163.com>
2025-04-16 03:31:39 -07:00
facbe2a114 [Doc] Improve OOM troubleshooting (#16704)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-16 18:29:48 +08:00
7168920491 [Misc] refactor examples series (#16708)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-16 10:16:36 +00:00
21378a2323 [CI] Cleanup additional_dependencies: [toml] for pre-commit yapf hook (#16405)
Signed-off-by: Kay Yan <kay.yan@daocloud.io>
2025-04-16 10:05:31 +00:00
976711d9db [V1][Structured Output] Move xgrammar related utils to backend_xgrammar.py (#16578)
Signed-off-by: shen-shanshan <467638484@qq.com>
2025-04-16 17:01:36 +08:00
44fa4d556c [ROCM] Bind triton version to 3.2 in requirements-built.txt (#16664)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-04-16 14:05:28 +08:00
3ac98edcb1 [Feature] add model aware kv ops helper (#16020)
Signed-off-by: billishyahao <bill.he@amd.com>
2025-04-15 23:00:43 -07:00
966c742ed2 Disable remote caching when calling compile_fx (#16611)
Signed-off-by: rzou <zou3519@gmail.com>
2025-04-15 22:18:28 -07:00
0d7d05f4b6 [Misc] Modify LRUCache touch (#16689)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-16 04:51:38 +00:00
96bb8aa68b [Bugfix] fix gpu docker image mis benchmarks dir (#16628)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-15 21:21:14 -07:00
3badb0213b [Model] Add PLaMo2 (#14323)
Signed-off-by: Shinichi Hemmi <50256998+Alnusjaponica@users.noreply.github.com>
Signed-off-by: shemmi <shemmi@preferred.jp>
Co-authored-by: Kento Nozawa <nzw0301@preferred.jp>
Co-authored-by: Hiroaki Mikami <mhiroaki@preferred.jp>
Co-authored-by: Calvin Metzger <metzger@preferred.jp>
2025-04-15 19:31:30 -07:00
fdcb850f14 [Misc] Enable vLLM to Dynamically Load LoRA from a Remote Server (#10546)
Signed-off-by: Angky William <angkywilliam@Angkys-MacBook-Pro.local>
Co-authored-by: Angky William <angkywilliam@Angkys-MacBook-Pro.local>
2025-04-15 22:31:38 +00:00
54a66e5fee [Misc] Update compressed-tensors WNA16 to support zero-points (#14211) 2025-04-15 07:33:51 -06:00
280d62b8a2 [Kernel] Remove redundant Exp calculations (#16123)
Signed-off-by: DefTruth <qiustudent_r@163.com>
2025-04-15 12:58:37 +00:00
1666e66443 Add "/server_info" endpoint in api_server to retrieve the vllm_config.  (#16572)
Signed-off-by: Xihui Cang <xihuicang@gmail.com>
2025-04-15 11:50:38 +00:00
1575c1701a [CI/Build] Fix LoRA OOM (#16624)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-15 16:38:19 +08:00
6ae996a873 [Misc] refactor argument parsing in examples (#16635)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-15 08:05:30 +00:00
b590adfdc1 Fix vLLM x torch.compile config caching (#16491)
Signed-off-by: rzou <zou3519@gmail.com>
2025-04-14 23:11:11 -07:00
b4fe16c75b Add vllm bench [latency, throughput] CLI commands (#16508)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-14 23:10:35 -07:00
bc5dd4f669 [Bugfix] Fix broken GritLM model and tests (missing pooling_metadata) (#16631)
Signed-off-by: Pooya Davoodi <pooya.davoodi@parasail.io>
2025-04-14 23:09:58 -07:00
dbb036cf61 [Bugfix] Fix tests/kernels/test_mamba_ssm_ssd.py (#16623)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-04-15 05:35:38 +00:00
70e7ed841d [BugFix]: Update minimum pyzmq version (#16549)
Signed-off-by: Taneem Ibrahim <taneem.ibrahim@gmail.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
2025-04-14 20:06:03 -07:00
d06ba4ed3f [Kernel] moe wna16 marlin kernel (#14447)
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-04-14 20:05:22 -07:00
6b40996ae8 [Core][Bugfix] Fix Offline MM Beam Search (#16390)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-15 10:33:02 +08:00
d2020acac7 config check sleep mode support oot platforms (#16562) 2025-04-14 16:31:50 -07:00
1eb3c2ed48 [DOC][TPU] Add core idea about avoiding recompilation after warmup (#16614)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-04-14 21:56:06 +00:00
c64ee87267 [Hardware][TPU] Add torchvision to tpu dependency file (#16616)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
2025-04-14 17:50:46 -04:00
b1308b84a3 [Model][VLM] Add Kimi-VL model support (#16387)
Signed-off-by: courage17340 <courage17340@163.com>
2025-04-14 21:41:48 +00:00
7b5ecf79bd s390x: Fix PyArrow build and add CPU test script for Buildkite CI (#16036)
Signed-off-by: Nishan Acharya <Nishan.Acharya@ibm.com>
2025-04-14 10:55:32 -07:00
9883a18859 Fix triton install condition on CPU (#16600)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-14 17:06:01 +00:00
b3f2fddd17 [TPU][V1] Fix exponential padding when max-num-batched-tokens is not a power of 2 (#16596)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-14 17:01:05 +00:00
aa29841ede [Bugfix] Multi-modal caches not acting like LRU caches (#16593)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-14 09:24:16 -07:00
6bf27affb6 [fix]: Dockerfile.ppc64le fixes for opencv-python and hf-xet (#16048)
Signed-off-by: Md. Shafi Hussain <Md.Shafi.Hussain@ibm.com>
2025-04-14 17:08:39 +01:00
1dd23386ec [Misc] Update usage with mooncake lib for kv transfer (#16523)
Signed-off-by: Shangming Cai <caishangming@linux.alibaba.com>
2025-04-14 11:31:37 +00:00
7cbfc10943 [Misc] refactor examples (#16563)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-14 09:59:15 +00:00
ce4ddd2d1a [Misc] remove warning if triton>=3.2.0 (#16553)
Signed-off-by: DefTruth <qiustudent_r@163.com>
2025-04-14 02:39:47 -07:00
e51929ebca Improve configs - SchedulerConfig (#16533)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-14 17:24:16 +08:00
dc1b4a6f13 [Core][V0] Enable regex support with xgrammar (#13228)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-14 10:13:38 +08:00
63d2705edb [Benchmark][Bugfix] Fix SonnetDataset default values in benchmark_throughput.py (#16556) 2025-04-13 17:20:26 -07:00
d085a44082 Enable PTPC FP8 for CompressedTensorsW8A8Fp8MoEMethod (triton fused_moe) (#16537)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-13 14:55:18 +00:00
f49e5aff11 [V1][Spec Decode] KV cache slots for eagle heads (#16370)
Signed-off-by: LiuXiaoxuanPKU <lilyliupku@gmail.com>
2025-04-12 19:42:51 -07:00
6c11ecf8d3 [Bugfix] Validate logit biases to prevent out of vocab ids crashing engine (#16529)
Signed-off-by: Ryan McConville <ryan@ryanmcconville.com>
2025-04-12 20:19:19 +00:00
93e5f3c5fb [Perf] Optimize Preparing Inputs for GPU Model Runner (#16484)
Signed-off-by: snowcharm <snowcharmqq@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-12 22:54:37 +08:00
70363bccfa Fix syntaxWarning: invalid escape sequence '\s' (#16532)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-04-12 14:39:42 +00:00
3cdc57669f [Misc] Delete redundant code (#16530)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-04-12 11:21:37 +00:00
68bb122eb4 [MISC] Make GroupCoordinator compatible with out-of-tree devices (#16464)
Signed-off-by: hzji210@gmail.com <hzji210@gmail.com>
2025-04-12 09:20:25 +00:00
d9fc8cd9da [V1] Enable multi-input by default (#15799)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-12 08:52:39 +00:00
f069f3ea74 [Misc] Openai transcription client example use same Whisper model (#16487)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-12 07:27:03 +00:00
c5bc0e7fcc [Misc] Update chat utils tests (#16520)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-12 06:48:43 +00:00
4a3a518722 fix: spelling (#16466)
Signed-off-by: Tianer Zhou <ezhoureal@gmail.com>
2025-04-11 23:24:22 -07:00
fbf722c6e6 [Frontend] support matryoshka representation / support embedding API dimensions (#16331) 2025-04-11 23:23:10 -07:00
e92d7085bf [Feature][V1] Add xgrammar to support minLength, maxLength with test (#16516)
Signed-off-by: Leon Seidel <leon.seidel@fau.de>
2025-04-11 23:22:07 -07:00
bd6028d6b0 Optimized topk for topk=1 (Llama-4) (#16512)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-12 14:21:08 +08:00
802329dee9 [Doc] Update Llama4 Model Names in Supported Models (#16509)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-04-12 02:53:10 +00:00
41cc883c29 [BugFix] Handle non-contiguous tensors properly when serializing (#16492)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-11 17:54:06 -07:00
57504a4bcf [CI][Bugfix] Add mistral_tool_use to Ci (#16517)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-11 17:52:38 -07:00
ed4792c990 [Doc] Fix link to vLLM blog (#16519)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-04-11 17:39:23 -07:00
87b836ba77 Bugfix for PixtralHF models without spatial_merge_size (#16513)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-11 23:32:22 +00:00
56c76c2e0e [Bugfix] clean up duplicated code (#16485)
Signed-off-by: Gogs <gogs@fake.local>
Co-authored-by: Gogs <gogs@fake.local>
2025-04-11 23:19:40 +00:00
c09632a66c Update openai_compatible_server.md (#16507)
Signed-off-by: Christian Sears <csears@redhat.com>
2025-04-11 22:54:58 +00:00
a3bf8d4a2b [Kernel] Add tuned FusedMoE kernel config for Llama4 Scout, TP=8 on H100 (#16488) 2025-04-12 06:26:55 +08:00
16eda8c43a [Frontend] Added chat templates for LLaMa4 pythonic tool calling (#16463)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
Co-authored-by: Kai Wu <kaiwu@meta.com>
2025-04-12 06:26:17 +08:00
cd77382ac1 Improve configs - LoadConfig (#16422)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-11 20:27:27 +00:00
71b9cde010 [Bugfix] handle alignment of encoder_seq_lens in mllama.py (#14784)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2025-04-11 19:59:50 +00:00
5285589f37 [Doc] Document InternVL3 support (#16495)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-11 19:41:09 +00:00
f41647ee6b [Kernel] Support W8A8 channel-wise weights and per-token activations in triton fused_moe_kernel (#16366)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-11 17:54:08 +00:00
4d022cbc75 [TPU][V1] Make --disable_chunked_mm_input mandatory for serving MM models (#16483)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-11 17:06:14 +00:00
70de35a881 Fix erroneous "model doesn't support compile" warning (#16486)
Signed-off-by: rzou <zou3519@gmail.com>
2025-04-11 16:24:36 +00:00
34b2cf3b33 [Hardware][Intel-Gaudi] Multi-step scheduling implementation for HPU (#12779)
Signed-off-by: Tomasz Zielinski <tomasz.zielinski@intel.com>
2025-04-11 07:38:36 -07:00
9e90c9f73f [Bugfix] Fix bugs of running Quark quantized models (#16236)
Signed-off-by: chaow <chaow@amd.com>
2025-04-11 10:18:32 -04:00
e9528f6dc6 [Kernel] support merge_attn_states CUDA kernel, 3x speedup (#16173)
Signed-off-by: DefTruth <qiustudent_r@163.com>
2025-04-11 06:50:50 -06:00
51baa9c333 Don't install triton on ppc64le platform (#16470)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-11 10:11:00 +00:00
35e076b3a8 [Misc] update api_client example (#16459)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-11 10:05:40 +00:00
a26f59ccbc [Misc] Raise error for V1 not supporting Long LoRA. (#16415)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-11 01:51:20 -07:00
aa3b3d76e0 Enforce valid max_num_batched_tokens when disable_chunked_mm_input=True (#16447)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-11 08:09:52 +00:00
f7030df3be [Core][LoRA][1/N] Add LoRA for EncoderDecoderModelRunner (#15990)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-11 15:32:37 +08:00
905e91e9ac Revert "[Model] use AutoWeightsLoader for deepseek_v2, internlm2" (#16453) 2025-04-11 06:44:22 +00:00
f8f9c0ba62 [Bugfix] Don't set an upper bound on repetition penalty (#16403)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-11 14:19:40 +08:00
dda811021a [CPU][Bugfix] Fix CPU docker issues (#16454)
Signed-off-by: jiang.li <jiang1.li@intel.com>
2025-04-11 14:19:07 +08:00
93195146ea [Bugfix][VLM] Fix failing Phi-4-MM multi-images tests and add vision-speech test (#16424)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-11 04:57:16 +00:00
ed37599544 Update supported_hardware.md for TPU INT8 (#16437) 2025-04-11 12:28:07 +08:00
99ef59cf7f [Llama4] Enable attention temperature tuning by default for long context (>32k) (#16439)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-04-10 21:26:07 -07:00
d544d141ec update benchmark_serving_structured_output to include auto backend (#16438)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-04-11 12:25:52 +08:00
3e397a9484 check input length of sonnet samples (#16423)
Signed-off-by: alexey-belyakov <alexey.belyakov@intel.com>
2025-04-11 10:15:06 +08:00
WWW
268c325078 Fix range_ratio Bug in RandomDataset (#16126)
Signed-off-by: jadewang21 <jadewangcn@outlook.com>
2025-04-10 15:31:17 -07:00
3cc9af88ff [TPU][V1] Disable per-request seed/Generator (#16172)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-10 17:05:44 -04:00
7cd0bd7212 [Bugfix] Fix output token length check logic (#16419)
Signed-off-by: look <eeslook@163.com>
2025-04-10 20:16:48 +00:00
56d4aefa33 [VLM] Avoid unnecessary dummy multimodal data during processing (#16416)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-10 19:32:14 +00:00
dd143ef541 [V1] Zero-copy tensor/ndarray serialization/transmission (#13790)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-10 19:23:14 +00:00
daefed052c [Model] Reduce redundant computations in mamba2 blocks for Bamba-9B (#15423)
Signed-off-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
Co-authored-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
2025-04-10 19:07:07 +00:00
5fbab20e02 [Bugfix] Fix bug when dataset is json (#15899)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-04-10 18:35:41 +00:00
e8224f3dca [V1][Spec Decode] Eagle Model loading (#16035)
Signed-off-by: LiuXiaoxuanPKU <lilyliupku@gmail.com>
2025-04-10 11:21:48 -07:00
9665313c39 [V1] Set structured output backend to auto by default (#15724)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-10 17:53:26 +00:00
0c54fc7273 Improve configs - ParallelConfig (#16332)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-10 17:34:37 +00:00
c1b57855ec [TPU][V1] Use language_model interface for getting text backbone in MM (#16410)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-10 17:32:04 +00:00
83b824c8b4 [VLM] Remove BaseProcessingInfo.get_mm_max_tokens_per_item (#16408)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-10 09:06:58 -07:00
7678fcd5b6 Fix the torch version parsing logic (#15857) 2025-04-10 07:37:47 -07:00
8661c0241d [CI] Add auto update workflow for Dockerfile graph (#11879)
Signed-off-by: wineandchord <guoqizhou19@gmail.com>
2025-04-10 13:43:05 +00:00
ce8d6b75fc [doc] update the wrong link (#16401)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-10 21:02:37 +08:00
61de3ef74b [Model] Remove image mm limit for LLaMa4 (#16365)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-04-10 09:36:27 +00:00
ec1f9c8c91 Update Numba to 0.61.2 (#16376)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-10 07:59:37 +00:00
65e09094c4 [doc] add download model tips (#16389)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-10 07:45:26 +00:00
c70cf0fe06 [Kernel] Use moe_wna16 kernel for compressed tensors wna16 moe models (#16038)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-10 15:08:47 +08:00
a5d11a54dc [Bugfix] Fix validation error for text-only Mllama 3.2 (#16377)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-10 14:19:42 +08:00
3d4c87758e [Misc] Update transformers version limits of multi-modal tests (#16381)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-09 23:03:33 -07:00
a9bd832fc5 [Model] use AutoWeightsLoader for deepseek_v2, internlm2 (#16383)
Signed-off-by: Aaron Ang <aaron.angyd@gmail.com>
2025-04-09 23:01:00 -07:00
417bcefbae fix sonnet dataset sample when prefix len is very small (#16379)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-04-10 05:35:07 +00:00
baada0e737 [Bugfix][TPU] Fix TPU validate_request (#16369)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-04-10 12:55:12 +08:00
82eb61dd4c [misc] use tqdm.auto where appropriate (#16290)
Signed-off-by: Benjamin Kitor <bkitor@gigaio.com>
2025-04-09 21:54:54 -07:00
0d4d06fe2f [CI][Bugfix] Pin triton version for CPU (#16384)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-04-10 04:35:00 +00:00
4aed0ca6a2 [bugfix] Avoid the time consumption caused by creating dummy videos. (#16371) 2025-04-10 04:30:05 +00:00
1621b25288 [TPU] Fix dummy loading OOM (#16372)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-04-10 04:06:16 +00:00
a564797151 [Model] use AutoWeightsLoader for granite, granitemoe, granitemoeshared, grok1, mixtral (#16325)
Signed-off-by: Aaron Ang <aaron.angyd@gmail.com>
2025-04-09 20:07:40 -07:00
1da6a09274 [Bugfix]: do not shutdown server if skip_special_use=False for MistralTokenizer (#14094)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-04-09 19:43:09 -07:00
1e44ffc3ff Add GLM-4-0414 support (#16338)
Signed-off-by: lvfei.lv <lvfei.lv@alibaba-inc.com>
Signed-off-by: zRzRzRzRzRzRzR <2448370773@qq.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
Signed-off-by: Lu Fang <fanglu@fb.com>
Signed-off-by: Ajay Vohra <ajayvohr@amazon.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
Co-authored-by: Accelerator1996 <lvfei.lv@alibaba-inc.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
Co-authored-by: yihong <zouzou0208@gmail.com>
Co-authored-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
Co-authored-by: ajayvohra2005 <ajayvohr@amazon.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-04-10 09:19:42 +08:00
a454748544 [TPU][V1] Refine tpu_model_runner to mitigate future recompilation issues (#16275)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-04-09 18:51:51 -06:00
1bff42c4b7 [Misc] refactor Structured Outputs example (#16322)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-09 23:32:42 +00:00
cb391d85dc [Hardware] add platform-specific request validation api (#16291)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2025-04-09 12:50:01 -07:00
fee5b8d37f [Build/CI] Add tracing deps to vllm container image (#15224)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-09 19:14:06 +00:00
b2ce859bd2 Fix benchmark_throughput.py --backend=hf (#16352)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-09 19:09:28 +00:00
566f10a929 [CI]Fix hpu docker and numpy version for CI (#16355)
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
2025-04-09 17:52:26 +00:00
c3b5189137 [Bugfix] catch AssertionError in MistralTokenizer as ValueError (#16344)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-04-09 17:33:24 +00:00
a25866ac8d [Bugfix] Fix profiling.py (#16202)
Signed-off-by: zh Wang <rekind133@outlook.com>
2025-04-09 17:03:34 +00:00
098900d7c2 Revert "Update label-tpu mergify and remove removal bot" (#16350) 2025-04-09 07:59:36 -07:00
98d01d3ce2 [Bugfix][Frontend] respect provided default guided decoding backend (#15476)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-04-09 05:11:10 -07:00
d55244df31 [Model] Add SupportsMultiModal.get_language_model interface (#16007)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-09 04:12:54 -07:00
04149cce27 [BugFix] fix some typos found by typos. (#16314)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-09 03:43:59 -07:00
24834f4894 update neuron config (#16289)
Signed-off-by: Ajay Vohra <ajayvohr@amazon.com>
2025-04-09 03:43:22 -07:00
ec7da6fcf3 [BugFix] llama4 qknorm should be not shared across head (#16311)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-04-09 00:59:14 -07:00
819d548e8a [BugFix] logger is not callable (#16312)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-09 00:59:02 -07:00
477d2a8aa2 Update label-tpu mergify and remove removal bot (#16298) 2025-04-09 07:56:25 +00:00
e484e02857 [Bugfix] Avoid transferring cached multi-modal items from P0 to P1 (#16273)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-09 00:51:27 -07:00
24f6b9a713 [Misc] Fix test_sharded_state_loader.py(#16004) (#16005)
Signed-off-by: lvfei.lv <lvfei.lv@alibaba-inc.com>
2025-04-09 14:47:30 +08:00
9cdde47289 [BugFix] Fix fusion test and add them to CI (#16287)
Signed-off-by: luka <luka@neuralmagic.com>
2025-04-08 23:46:45 -07:00
b1eb4ca152 [TPU] Update PyTorch/XLA (#16288)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-04-09 14:46:32 +08:00
87b4ac56c2 [CI][Bugfix] Fix bad tolerance for test_batch_base64_embedding (#16221)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-09 04:14:46 +00:00
cb84e45ac7 [Core] Upgrade to xgrammar 0.1.18, add cache size limit (#16283)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-08 19:13:22 -07:00
4716377fbc [Feature] Estimate max-model-len use available KV cache memory (#16168)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-08 19:12:51 -07:00
4e9cf8c1dd [Bugfix] fix gettid method is not define (#16084)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-08 19:12:44 -07:00
2976dc27e9 [Bug] [ROCm] Fix Llama 4 Enablement Bug on ROCm: V0 ROCmFlashAttentionImpl and Triton Fused MoE bugs (#16198)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Signed-off-by: kliuae <kuanfu.liu@embeddedllm.com>
Co-authored-by: Hongxia Yang <hongxia.yang@amd.com>
Co-authored-by: kliuae <kuanfu.liu@embeddedllm.com>
2025-04-08 19:12:34 -07:00
102bf967f0 [Model] Add smolvlm support (#16017)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-08 19:12:17 -07:00
1f4b09b525 Add support to modelopt quantization of Mixtral model (#15961)
Signed-off-by: Yue <yueshen@nvidia.com>
2025-04-09 01:53:31 +00:00
86c3369eb8 [CI/Build] Fix CI LoRA failure (#16270)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-09 09:13:56 +08:00
2755c34a8f [V1] Update structured output offline inference example (#15721)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-08 22:34:09 +00:00
db10422184 [Bugfix] fix deepseek fp16 scale bug (#14809)
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-04-08 16:56:09 -04:00
e1a2c699dd [BugFix] Fix Llama4 - Index Error When Single Request Near Max Context (#16209)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-04-08 18:56:51 +00:00
0115ccd5c0 Add warning that content below line in template will be removed (#16276)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-08 18:18:40 +00:00
40b4284fe3 [Bugfix] Handle process_weights_after_loading for QKVCrossParallelLinear (#15328)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-08 10:02:23 -07:00
4ebc0b9640 [Bugfix] Proper input validation for multi-modal encoder-decoder models (#16156)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-08 09:45:21 -07:00
dc96fd54c6 [Misc] Avoid stripping meaningful whitespace from nvidia-smi topo -m output in collect_env.py (#16272)
Signed-off-by: imkero <kerorek@outlook.com>
2025-04-08 16:08:09 +00:00
1f5d13ab9f [New Model]: jinaai/jina-embeddings-v3 (#16120) 2025-04-08 08:39:12 -07:00
90cb44eb02 Update to transformers==4.51.1 (#16257)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-08 06:53:39 -07:00
e11880deea [Bugfix] Remove triton do_bench fast_flush arg (#16256)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-04-08 13:51:06 +00:00
9351f91be9 [BugFix][ROCm] Fix GGUF MoE Dispatch Block_Dim for ROCm (#16247)
Signed-off-by: Tianyuan Wu <Tianyuan.Wu@amd.com>
2025-04-08 05:10:26 -07:00
5a1e1c8353 [Model] use AutoWeightsLoader for phimoe,qwen2_moe,qwen3_moe (#16203)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-08 04:05:47 -07:00
69ecaa7c79 [Misc] Add warning for multimodal data in LLM.beam_search (#16241)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-04-08 04:05:27 -07:00
7f00899ff7 [Misc] format and refactor some examples (#16252)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-08 10:42:32 +00:00
995e3d1f41 [Docs] Add Slides from Singapore Meetup (#16213)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-04-08 07:20:22 +00:00
b4ac449a83 [Misc] Merge the logs of pp layers partitions (#16225)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-04-08 00:18:15 -07:00
8e5314a468 [V1] Add disable_chunked_mm_input arg to disable partial mm input prefill (#15837)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-07 23:24:07 -07:00
87918e40c4 [torch.compile][TPU] Make @support_torch_compile work for XLA backend (#15782)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-04-08 14:23:53 +08:00
f6b32efb7f [Bugfix] Fix and reorganize broken GGUF tests and bump gguf version (#16194)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-08 13:38:13 +08:00
b99733d092 [Bugfix] Do not skip "empty" parts of chats that are parsable (#16219)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-08 05:14:15 +00:00
05a015d6a5 Add warning for Attention backends that do not support irope yet (#16212) 2025-04-08 03:59:26 +00:00
ad971af8c7 [Bugfix] fix use-ep bug to enable ep by dp/tp size > 1 (#16161) 2025-04-07 20:48:47 -07:00
f2ebb6f541 [V1] Scatter and gather placeholders in the model runner (#16076)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Jennifer Zhao <ai.jenniferzhao@gmail.com>
2025-04-08 10:43:41 +08:00
1d01211264 Update BASE_IMAGE to 2.22 release of Neuron (#16218) 2025-04-07 19:11:18 -07:00
f94ab12f79 [Misc] Update compressed-tensors to version 0.9.3 (#16196)
Signed-off-by: Miles Williams <42222518+mlsw@users.noreply.github.com>
2025-04-07 19:09:06 -07:00
a865bc1ca6 [core] do not send error across process (#16174)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-04-07 19:09:03 -07:00
21802c4b6d [ROCm][Bugfix][FP8] Make fp8 quant respect fused modules mapping (#16031)
Signed-off-by: mgoin <michael@neuralmagic.com>
2025-04-07 21:28:14 -04:00
652907b354 Torchao (#14231)
Signed-off-by: drisspg <drisspguessous@gmail.com>
2025-04-07 19:39:28 -04:00
24f1c01e0f [Bugfix][V0] XGrammar structured output supports Enum (#15878)
Signed-off-by: Leon Seidel <leon.seidel@fau.de>
2025-04-07 22:38:25 +00:00
fad6e2538e [Misc] add description attribute in CLI (#15921)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-07 22:30:35 +00:00
7f6d47c1a2 [V1][BugFix] Exit properly if engine core fails during startup (#16137)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-07 15:30:15 -07:00
3147586ebd [Bugfix] Fix guidance backend for Qwen models (#16210)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
2025-04-07 22:15:43 +00:00
ed636d99ca [Misc] Move Llama 4 projector call into encoder execution (#16201) 2025-04-07 14:02:05 -07:00
090c856d76 [Misc] Human-readable max-model-len cli arg (#16181)
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-04-07 14:40:58 -04:00
ad434d4cfe Print the warning only once (#16193)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-04-07 18:30:06 +00:00
66d433b94f [V1] Revert the default max_num_seqs to V0 values for most hardware (#16158)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-07 13:54:36 -04:00
027b204ff1 [Bugfix] Re-enable support for ChatGLMForConditionalGeneration (#16187)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-07 23:15:58 +08:00
55dcce91df Upstream Llama4 Support to Main (#16113)
Signed-off-by: Aston Zhang <22279212+astonzhang@users.noreply.github.com>
Signed-off-by: Chris Thi <chris.c.thi@gmail.com>
Signed-off-by: drisspg <drisspguessous@gmail.com>
Signed-off-by: Jon Swenson <jmswen@gmail.com>
Signed-off-by: Keyun Tong <tongkeyun@gmail.com>
Signed-off-by: Lu Fang <fanglu@meta.com>
Signed-off-by: Xiaodong Wang <xdwang@meta.com>
Signed-off-by: Yang Chen <yangche@fb.com>
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
Signed-off-by: Zijing Liu <liuzijing2014@gmail.com>
Signed-off-by: Lu Fang <lufang@fb.com>
Signed-off-by: Lu Fang <fanglu@fb.com>
Signed-off-by: Lucia Fang <fanglu@fb.com>
Signed-off-by: Roger Wang <ywang@roblox.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Lu Fang <fanglu@fb.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-07 08:06:27 -07:00
8017c8db7f [Doc]Update image to latest version (#16186)
Signed-off-by: WangErXiao <863579016@qq.com>
2025-04-07 14:17:39 +00:00
dc3529dbf6 [Misc] improve example mlpspeculator and llm_engine_example (#16175)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-07 11:53:52 +00:00
7699258ef0 [Model] Add Qwen3 and Qwen3MoE (#15289)
Signed-off-by: YamPengLi <yampayne.lyp@alibaba-inc.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-07 04:06:41 -07:00
e9ba99f296 [V1][Structured Output] Add supports_structured_output() method to Platform (#16148)
Signed-off-by: shen-shanshan <467638484@qq.com>
2025-04-07 11:06:24 +00:00
7c80368710 [VLM] Florence-2 supports online serving (#16164)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-07 04:04:02 -07:00
95d63f38c0 doc: fix some typos in doc (#16154)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-07 05:32:06 +00:00
bb8dab821e [CI] Set max transformers version for Ultravox model test (#16149)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-04-07 04:37:58 +00:00
fc0f87768a [Bugfix] Make dummy encoder prompt padding alternative and add missing warnings (#16129)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-07 04:07:15 +00:00
0a57386721 [Misc] Update Mistral-3.1 example (#16147)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-07 03:57:37 +00:00
3749e28774 [V1][Minor] Minor simplification for get_computed_blocks (#16139)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-06 20:38:12 -07:00
86fc2321ff [Metrics] Add bucket for request_latency, time_to_first_token and time_per_output_token (#15202)
Signed-off-by: Kay Yan <kay.yan@daocloud.io>
2025-04-06 20:34:51 -07:00
2549c0dfef Fix requires-python (#16132) 2025-04-06 19:22:25 -07:00
b10e519895 [V1][Minor] Optimize get_cached_block (#16135) 2025-04-06 20:48:14 +00:00
9bde5ba127 [TPU] Update PyTorch/XLA (#16130)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-04-06 18:25:55 +00:00
72c8f1ad04 [Misc] update requires-python in pyproject.toml (#16116)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-06 14:56:34 +00:00
da224daaa9 [Bugfix] add hf_token to EngineArgs (#16093)
Signed-off-by: paolovic <paul-philipp.luley@uzh.ch>
Co-authored-by: paolovic <paul-philipp.luley@uzh.ch>
2025-04-06 14:47:33 +00:00
3a100b9278 [Bugfix] LoRA : Fix the order in which the kernels process LoRAs (#16040)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-04-06 14:04:50 +00:00
242a637aea [Model] use AutoWeightsLoader for stablelm,starcoder2,zamba2 (#16103)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-06 05:52:01 -07:00
c2a9671510 [Misc] Improve model redirect to accept json dictionary (#16119)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-06 05:51:45 -07:00
d5ae4f7f42 [Doc][Bugfix] Add missing EOF in k8s deploy doc (#16025) 2025-04-06 12:10:57 +00:00
b6c502a150 [Misc] refactor example eagle (#16100)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-06 09:42:48 +00:00
9ca710e525 [CI][V1] Fix passing tokenizer as kwarg to validate_guidance_grammar (#16117)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-04-06 16:18:00 +08:00
eb07c8cb5b [Frontend] Fix typo in tool chat templates for llama3.2 and toolace (#14501)
Signed-off-by: Ben Jackson <ben@ben.com>
2025-04-06 07:44:36 +00:00
ba10801961 [Benchmark] Add sampling parameters to benchmark_serving. (#16022)
Signed-off-by: Hyesoo Yang <hyeygit@gmail.com>
2025-04-06 12:30:35 +08:00
620fc2d09e [Model] fix model testing for TeleChat2ForCausalLM and V0 llama4 (#16112)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-04-05 21:23:40 -07:00
29283eaa7e [Model] use AutoWeightsLoader for phi, gemma, deepseek (#16088)
Signed-off-by: Jonghyun Choe <andy.choe729@gmail.com>
2025-04-05 20:34:38 -07:00
2fa66ef713 [Bugfix] fix use_atomic_add support of marlin kernel when using v1 engine (#15946)
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
2025-04-05 20:04:22 -07:00
13affc432d [Misc] Remove redundant code (#16098)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-05 20:03:50 -07:00
d8f094a92a [Misc] format output for encoder_decoder.py (#16095)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-05 19:57:18 -07:00
97ae6d777f Fix some capitalisations in generated examples doc titles (#16094)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-05 13:44:03 +00:00
6baeee70d1 Revert "doc: add info for macos clang errors (#16049)" (#16091)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-05 11:51:51 +00:00
d2517a4939 [doc] fix 404 (#16082)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-05 11:39:18 +00:00
6342adc438 fix: support clang17 for macos and fix the real libomp (#16086)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-05 11:00:12 +00:00
0adba91547 [CI] Fix benchmark script level (#16089) 2025-04-05 03:36:01 -07:00
4285e423a6 [Misc] Auto detect bitsandbytes pre-quantized models (#16027)
Signed-off-by: Tristan Leclercq <tristanleclercq@gmail.com>
2025-04-04 23:30:45 -07:00
63375f0cdb [V1][Spec Decode] Update N-gram Proposer Interface (#15750)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-04 16:32:54 -07:00
70ad3f9e98 [Bugfix][TPU] Fix V1 TPU worker for sliding window (#16059)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-04-04 23:31:19 +00:00
d6fc629f4d [Kernel][Minor] Re-fuse triton moe weight application (#16071)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-04-04 23:27:34 +00:00
af51d80fa1 Revert "[V1] Scatter and gather placeholders in the model runner" (#16075) 2025-04-04 14:50:57 -07:00
f5722a5052 [V1] Scatter and gather placeholders in the model runner (#15712)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-04-04 21:26:44 +00:00
651cf0fec1 [V1] DP scale-out (1/N): Use zmq ROUTER/DEALER sockets for input queue (#15906)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-04 12:56:43 -07:00
4dc52e1c53 [CI] Reorganize .buildkite directory (#16001)
Signed-off-by: kevin <kevin@anyscale.com>
2025-04-04 12:16:20 -07:00
4708f13a9c [Bugfix] Fix default behavior/fallback for pp in v1 (#16057)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-04 17:58:08 +00:00
a6d042df0a [ROCm][Bugfix] Bring back fallback to eager mode removed in #14917, but for ROCm only (#15413)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-04-04 09:40:37 -07:00
40a36ccfeb [ROCm][Bugfix] Use platform specific FP8 dtype (#15717)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-04-04 09:40:20 -07:00
ef608c37a7 [Distributed] [ROCM] Fix custom allreduce enable checks (#16010)
Signed-off-by: ilmarkov <imarkov@redhat.com>
Co-authored-by: ilmarkov <imarkov@redhat.com>
2025-04-04 09:39:08 -07:00
2386803f2a [CPU] Change default block_size for CPU backend (#16002)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-04-04 09:39:05 -07:00
95862f7b4d [Benchmark][Doc] Update throughput benchmark and README (#15998)
Signed-off-by: StevenShi-23 <shi.ziji.sm@gmail.com>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-04-04 09:39:02 -07:00
230b131b54 [Bugfix][kernels] Fix half2float conversion in gguf kernels (#15995)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-04 09:38:58 -07:00
0812d8dd41 [Hardware][Gaudi][BugFix] fix arguments of hpu fused moe (#15945)
Signed-off-by: zhenwei <zhenweiliu@habana.ai>
2025-04-04 09:38:55 -07:00
bf7e3c51ae [Model] use AutoWeightsLoader for baichuan, gpt-neox, mpt (#15939)
Signed-off-by: Jonghyun Choe <andy.choe729@gmail.com>
2025-04-04 09:38:52 -07:00
a35a8a8392 [V1][Spec Decode] Avoid logging useless nan metrics (#16023)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-04-04 08:52:41 -07:00
4ef0bb1fcf doc: add info for macos clang errors (#16049)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-04 14:58:16 +00:00
fadc59c0e6 [TPU][V1] Remove ragged attention kernel parameter hard coding (#16041)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-04-04 07:48:50 -04:00
86cbd2eee9 [Misc] improve gguf check (#15974)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-04 01:33:36 +00:00
092475f738 [ROCm] Tweak the benchmark script to run on ROCm (#14252) 2025-04-03 17:12:48 -07:00
dcc56d62da [Bugfix] Fix function names in test_block_fp8.py (#16033)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-04-03 23:01:34 +00:00
f15e70d906 [TPU] Switch Test to Non-Sliding Window (#15981)
Signed-off-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
2025-04-03 14:28:45 -07:00
b6be6f8d1e [TPU] Support sliding window and logit soft capping in the paged attention kernel for TPU. (#15732)
Signed-off-by: Xiongfei Wei <isaacwxf23@gmail.com>
2025-04-03 14:23:28 -07:00
03a70eacaf Re-enable the AMD Testing for the passing tests. (#15586)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-04-03 11:05:17 -07:00
45b1ff7a25 [Misc][Performance] Advance tpu.txt to the most recent nightly torch … (#16024) 2025-04-03 17:32:54 +00:00
15ba07ef25 [Minor] Fused experts refactor (#15914)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-04-03 10:19:38 -07:00
d2b58ca203 [Neuron][kernel] Fuse kv cache into a single tensor (#15911)
Signed-off-by: Liangfu Chen <liangfc@amazon.com>
2025-04-03 09:51:32 -07:00
82e7e19a6e [SupportsQuant] Chameleon, Chatglm, Commandr (#15952)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-04-03 08:25:22 -07:00
421c462948 [SupportsQuant] Bert, Blip, Blip2, Bloom (#15573)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-04-03 08:23:19 -07:00
84884cd9ac fix: tiny fix make format.sh excutable (#16015)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-03 15:18:05 +00:00
a43aa183dc [doc] update contribution link (#15922)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-03 10:47:31 +00:00
463bbb1835 [Bugfix][V1] Fix bug from putting llm_engine.model_executor in a background process (#15367)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-04-03 07:32:10 +00:00
5e125e74d1 [misc] improve error message for "Failed to infer device type" (#15994)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-04-03 14:45:03 +08:00
06f21ce7a5 [Benchmark] Add AIMO Dataset to Benchmark (#15955)
Signed-off-by: Ziji Shi <shi.ziji.sm@gmail.com>
Signed-off-by: StevenShi-23 <shi.ziji.sm@gmail.com>
2025-04-03 06:09:18 +00:00
57a810db9c [ROCM][V0] PA kennel selection when no sliding window provided (#15982)
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
2025-04-03 05:28:44 +00:00
8b664706aa [bugfix] add seed in torchrun_example.py (#15980)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-04-03 12:25:01 +08:00
37bfee92bf fix: better error message for get_config close #13889 (#15943)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-03 03:53:19 +00:00
e73ff24e31 [ROCM][KERNEL] Paged attention for V1 (#15720)
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Signed-off-by: root <root@banff-cyxtera-s65-4.amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: root <root@banff-cyxtera-s65-4.amd.com>
2025-04-02 19:48:00 -07:00
bd7599d34a [V1][TPU] Do not compile sampling more than needed (#15883)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-03 01:36:01 +00:00
01b6113659 [TPU] optimize the all-reduce performance (#15903)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-04-03 00:25:14 +00:00
1b84eff03a [V1][TPU] TPU-optimized top-p implementation (avoids scattering). (#15736)
Signed-off-by: Hyesoo Yang <hyeygit@gmail.com>
Co-authored-by: root <root@t1v-n-822696b7-w-0.us-central2-b.c.tpu-prod-env-large-adhoc.internal>
2025-04-02 17:18:08 -07:00
55acf86bf8 Fix huggingface-cli[hf-xet] -> huggingface-cli[hf_xet] (#15969)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-02 23:37:30 +00:00
f021b97993 [V1] Support Mistral3 in V1 (#15950)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-02 15:36:24 -07:00
1cab43c2d2 [misc] instruct pytorch to use nvml-based cuda check (#15951)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-04-03 01:02:58 +08:00
8bd651b318 Restricted cmake to be less than version 4 as 4.x breaks the build of… (#15859)
Signed-off-by: Nishidha Panpaliya <nishidha.panpaliya@partner.ibm.com>
2025-04-02 16:19:39 +00:00
58e234a754 [Misc] V1 LoRA support CPU offload (#15843)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-02 23:04:43 +08:00
e86c414d6a [Model] use AutoWeightsLoader in model load_weights (#15770)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-02 07:47:31 -07:00
550b2801ad [CPU][Bugfix] Using custom allreduce for CPU backend (#15934)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-04-02 07:46:47 -07:00
cefb9e5a28 [Frontend] Implement Tool Calling with tool_choice='required' (#13483)
Signed-off-by: Liangfu Chen <liangfc@amazon.com>
Signed-off-by: Matt, Matthias <matthias.matt@tuwien.ac.at>
Co-authored-by: Liangfu Chen <liangfc@amazon.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
2025-04-02 07:45:45 -07:00
98d7367b61 [Metrics] Hide deprecated metrics (#15458)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-04-02 07:37:19 -07:00
594a8b9030 [Bugfix] Fix the issue where the model name is empty string, causing no response with the model name. (#15938)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-02 06:33:52 -07:00
44f990515b [CI] Remove duplicate entrypoints-test (#15940)
Signed-off-by: Kay Yan <kay.yan@daocloud.io>
2025-04-02 02:44:01 -07:00
252937806c [Bugfix][Benchmarks] Ensure async_request_deepspeed_mii uses the OpenAI choices key (#15926)
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
2025-04-02 02:19:35 -07:00
51826d51fa Add minimum version for huggingface_hub to enable Xet downloads (#15873)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-02 02:03:36 -07:00
14e53ed11f [V1] Fix json_object support with xgrammar (#15488)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-02 02:00:08 -07:00
ddb94c2605 [core] Add tags parameter to wake_up() (#15500)
Signed-off-by: Eric <erictang000@gmail.com>
2025-04-02 01:59:27 -07:00
90969fb39a [Kernel] Add more dtype support for GGUF dequantization (#15879)
Signed-off-by: lukas.bluebaum <lukas.bluebaum@aleph-alpha.com>
2025-04-02 01:58:48 -07:00
101f1481f9 [Build/CI] Update lm-eval to 0.4.8 (#15912)
Signed-off-by: Chris Thi <chris.c.thi@gmail.com>
2025-04-02 01:47:57 -07:00
2edc87b161 [Bugfix] Fix cache block size calculation for CPU MLA (#15848)
Signed-off-by: Thien Tran <gau.nernst@yahoo.com.sg>
2025-04-02 01:45:02 -07:00
4203926f10 [CI/Build] Further clean up LoRA tests (#15920)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-02 01:39:09 -07:00
cdb57015a7 [Misc] Replace print with logger (#15923)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-02 01:37:38 -07:00
aa557e6422 [Benchmark]Fix error message (#15866)
Signed-off-by: wangli <wangli858794774@gmail.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2025-04-02 01:32:24 -07:00
0e00d40e4f [V1][Bugfix] Fix typo in MoE TPU checking (#15927)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-04-01 23:46:42 -07:00
c920e01242 [Doc] Update rocm.inc.md (#15917)
Signed-off-by: chun37 <chun.jb.37@gmail.com>
2025-04-01 23:38:26 -07:00
274d8e8818 [V1][Minor] Enhance SpecDecoding Metrics Log in V1 (#15902)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-01 23:38:02 -07:00
2039c6305b [Bugfix] Fix imports for MoE on CPU (#15841)
Signed-off-by: Thien Tran <gau.nernst@yahoo.com.sg>
2025-04-02 03:33:55 +00:00
6efb195a6e [V1] Fix: make sure k_index is int64 for apply_top_k_only (#15907)
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
2025-04-01 19:06:44 -07:00
24b7fb455a [Spec Decode] Fix input triton kernel for eagle (#15909) 2025-04-01 18:15:14 -07:00
58f5a59769 [Docs] Add Intel as Sponsor (#15913)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-04-01 17:16:55 -07:00
db9dfcfa6a [Docs] Add Ollama meetup slides (#15905)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-04-01 13:58:59 -07:00
9ef98d527e [Model][MiniMaxText01] Support MiniMaxText01 model inference (#13454)
Signed-off-by: qscqesze <475517977@qq.com>
Co-authored-by: qingjun <qingjun@minimaxi.com>
Co-authored-by: qscqesze <475517977@qq.com>
2025-04-01 16:23:55 -04:00
93491aefc7 [BugFix] make sure socket close (#15875)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-01 13:10:24 -07:00
7acd539cd7 [Docs] update usage stats language (#15898)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-04-01 12:54:13 -07:00
e75a6301bd [V1][Spec Decode] Implement Eagle Proposer [1/N] (#15729)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-01 12:33:16 -07:00
a79cc68b3a [V1][Metrics] Initial speculative decoding metrics (#15151)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-04-01 10:45:04 -07:00
7e3f7a4ee7 [CI] Disable flaky structure decoding test temporarily. (#15892)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-04-01 17:42:34 +00:00
9ec8257914 [Model] Add module name prefixes to gemma3 (#15889)
Signed-off-by: Bartholomew Sabat <bartek@recursal.ai>
Co-authored-by: Bartholomew Sabat <bartek@recursal.ai>
2025-04-01 10:13:40 -07:00
38327cf454 [Model] Aya Vision (#15441)
Signed-off-by: Jennifer Zhao <ai.jenniferzhao@gmail.com>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-04-01 16:30:43 +00:00
dfa82e2a3d [CI/Build] Clean up LoRA tests (#15867)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-01 16:28:50 +00:00
e59ca942f5 Add option to use DeepGemm contiguous grouped gemm kernel for fused MoE operations. (#13932)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-04-01 12:07:43 -04:00
a57a3044aa [ROCm][Build][Bugfix] Bring the base dockerfile in sync with the ROCm fork (#15820)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-04-01 08:56:39 -07:00
4e5a0f6ae2 [Misc] Allow using OpenCV as video IO fallback (#15055)
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-01 15:55:13 +00:00
b63bd14999 Reinstate format.sh and make pre-commit installation simpler (#15890)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-01 15:41:30 +00:00
2041c0e360 [Doc] Quark quantization documentation (#15861)
Signed-off-by: chaow <chaow@amd.com>
2025-04-01 08:32:45 -07:00
085cbc4f9f [New Model]: jinaai/jina-reranker-v2-base-multilingual (#15876)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-01 08:32:26 -07:00
2b93162fb0 Remove format.sh as it's been unsupported >70 days (#15884)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-01 22:27:46 +08:00
2e45bd29fe [Misc] remove unused script (#15746)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-01 13:58:05 +00:00
51d7c6a2b2 [Model] Support Mistral3 in the HF Transformers format (#15505)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-01 06:10:05 -07:00
f3aca1ee30 setup correct nvcc version with CUDA_HOME (#15725)
Signed-off-by: Yang Chen <yangche@fb.com>
2025-04-01 06:09:40 -07:00
8dd41d6bcc [Misc] Use envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE (#15831)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-01 06:07:53 -07:00
0a298ea418 [Bugfix] Fix no video/image profiling edge case for MultiModalDataParser (#15828)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-01 18:17:11 +08:00
d330558bab [Docs] Fix small error in link text (#15868)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-01 10:05:14 +00:00
656fd72976 [Misc] Fix speculative config repr string (#15860)
Signed-off-by: Shangming Cai <caishangming@linux.alibaba.com>
2025-04-01 02:26:22 -07:00
79455cf421 [Misc] Enable V1 LoRA by default (#15320)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-04-01 16:53:56 +08:00
30d6a015e0 [Feature] specify model in config.yaml (#15798)
Signed-off-by: weizeng <weizeng@roblox.com>
2025-04-01 01:20:06 -07:00
8af5a5c4e5 fix: can not use uv run collect_env close #13888 (#15792)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-01 07:45:49 +00:00
3a5f0afcd2 [V1] Implement sliding window attention in kv_cache_manager (#14097)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-04-01 00:33:17 -07:00
c7e63aa4d8 [ROCm] Use device name in the warning (#15838)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-04-01 00:10:48 -07:00
4a9ce1784c [sleep mode] clear pytorch cache after sleep (#15248)
Signed-off-by: <villard@us.ibm.com>
2025-03-31 22:58:58 -07:00
7e4e709b43 [V1] TPU - Fix fused MOE (#15834)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
2025-03-31 22:58:07 -07:00
63d8eabed0 [Bugfix]: Fix is_embedding_layer condition in VocabParallelEmbedding (#15824)
Signed-off-by: alexwl <alexey.a.kiryushin@gmail.com>
2025-03-31 22:57:59 -07:00
e830b01383 [Bugfix] Fix extra comma (#15851)
Signed-off-by: haochengxia <xhc_1007@163.com>
2025-03-31 22:57:28 -07:00
ff6473980d [Bugfix][Model] fix mllama multi-image (#14883)
Signed-off-by: yan ma <yan.ma@intel.com>
2025-03-31 22:53:37 -07:00
a164aea35d [Frontend] Add Phi-4-mini function calling support (#14886)
Signed-off-by: Kinfey <kinfeylo@microsoft.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-03-31 22:50:05 -07:00
a76f547e11 Rename fallback model and refactor supported models section (#15829)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-31 22:49:41 -07:00
b7b7676d67 [Distributed] Add custom allreduce support for ROCM (#14125)
Signed-off-by: ilmarkov <imarkov@redhat.com>
Co-authored-by: ilmarkov <imarkov@redhat.com>
2025-03-31 22:49:12 -07:00
e6e3c55ef2 Move dockerfiles into their own directory (#14549)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-31 13:47:32 -07:00
f98a4920f9 [V1][Core] Remove unused speculative config from scheduler (#15818)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-03-31 19:15:21 +00:00
d4bfc23ef0 Fix Transformers backend compatibility check (#15290)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-31 10:27:07 -07:00
9a2160fa55 [V1] TPU CI - Add basic perf regression test (#15414)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
2025-03-31 13:25:20 -04:00
2de4118243 fix: change GB to GiB in logging close #14979 (#15807)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-03-31 10:00:50 -07:00
239b7befdd [V1][Spec Decode] Remove deprecated spec decode config params (#15466)
Signed-off-by: Shangming Cai <caishangming@linux.alibaba.com>
2025-03-31 09:19:35 -07:00
09e974d483 [Bugfix] Check dimensions of multimodal embeddings in V1 (#15816)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-31 09:01:35 -07:00
e5ef4fa99a Upgrade transformers to v4.50.3 (#13905)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-31 08:59:37 -07:00
Mrm
037bcd942c [Bugfix] Fix missing return value in load_weights method of adapters.py (#15542)
Signed-off-by: noc-turne <2270929247@qq.com>
2025-03-31 06:56:42 -07:00
c2e7507ad4 [Bugfix] Fix Crashing When Loading Modules With Batchnorm Stats (#15813)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-03-31 13:23:53 +00:00
3aa2b6a637 [Model] Update support for NemotronNAS models (#15008)
Signed-off-by: Nave Assaf <nassaf@nvidia.com>
2025-03-31 20:35:14 +08:00
555aa21905 [V1] Fully Transparent Implementation of CPU Offloading (#15354)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-31 20:22:34 +08:00
e7ae3bf3d6 fix: better install requirement for install in setup.py (#15796)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-03-31 05:13:32 -07:00
b932c048ac Recommend developing with Python 3.12 in developer guide (#15811)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-03-31 11:54:49 +00:00
e85829450d [Feature][ROCm]Enable fusion pass for torch.compile on ROCm (#15050)
Signed-off-by: charlifu <charlifu@amd.com>
2025-03-31 04:42:18 -07:00
effc5d24fa [Benchmark] Update Vision Arena Dataset and HuggingFaceDataset Setup (#15748)
Signed-off-by: Jennifer Zhao <ai.jenniferzhao@gmail.com>
2025-03-31 15:38:58 +08:00
18ed3132d2 [Misc] update the comments (#15780)
Signed-off-by: chengyang liu <lcy4869@gmail.com>
Co-authored-by: chengyang liu <lcy4869@gmail.com>
2025-03-30 19:39:56 -07:00
9b459eca88 [V1][Scheduler] Avoid calling _try_schedule_encoder_inputs for every request (#15778)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-30 14:10:42 -07:00
70fedd0f79 fix: Comments to English for better dev experience (#15768)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-03-30 10:47:57 -07:00
bb103b29bf [Bugfix] Added embed_is_patch mask for fuyu model (#15731)
Signed-off-by: Kyle Huang <kylhuang@nvidia.com>
2025-03-30 03:45:08 -07:00
248e76c4df fix: lint fix a ruff checkout syntax error (#15767)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-03-30 03:36:02 -07:00
803d5c35f3 [V1] Override mm_counts for dummy data creation (#15703)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-30 03:20:42 -07:00
7fd8c0f85c fix test_phi3v (#15321)
Signed-off-by: pansicheng <sicheng.pan.chn@gmail.com>
2025-03-30 02:01:34 -07:00
44c3a5abc3 [doc] update conda to usage link in installation (#15761)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-03-30 08:12:13 +00:00
6909a76201 [Bugfix] Fix Mistral guided generation using xgrammar (#15704)
Signed-off-by: Julien Denize <julien.denize@mistral.ai>
2025-03-29 20:20:19 -07:00
045533716b [CI] xgrammar structured output supports Enum. (#15757)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-03-29 20:20:02 -07:00
3c0ff914ac [Bugfix] Fix Mllama interleaved images input support (#15564)
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
2025-03-29 18:11:15 +00:00
2bc4be4e32 [V1][Minor] Simplify rejection sampler's parse_output (#15741)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-29 09:25:17 -07:00
c67abd614f [V1] Support interleaved modality items (#15605)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-03-29 06:30:09 -07:00
6fa7cd3dbc [Feature][Disaggregated] Support XpYd disaggregated prefill with MooncakeStore (#12957)
Signed-off-by: Shangming Cai <caishangming@linux.alibaba.com>
2025-03-29 04:01:46 -07:00
94744ba41a [V1] [Feature] Collective RPC (#15444)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-03-29 03:39:14 -07:00
4965ec42d2 [FEAT] [ROCm] Add AITER int8 scaled gemm kernel (#15433)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-03-29 03:33:56 -07:00
73aa7041bf [doc] update doc (#15740)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-03-29 04:27:22 +00:00
7c1f760024 [Kernel][TPU][ragged-paged-attn] vLLM code change for PR#8896 (#15659)
Signed-off-by: Yarong Mu <ymu@google.com>
2025-03-28 21:13:15 -07:00
da461f3cbf [TPU][V1][Bugfix] Fix w8a8 recompiilation with GSM8K (#15714)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-03-28 21:13:06 -07:00
5b800f0932 [Bugfix] set VLLM_WORKER_MULTIPROC_METHOD=spawn for vllm.entrypoionts.openai.api_server (#15700)
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
2025-03-28 21:12:26 -07:00
8427f70493 Use numba 0.61 for python 3.10+ to support numpy>=2 (#15692)
Signed-off-by: cyy <cyyever@outlook.com>
2025-03-29 12:11:51 +08:00
7a7992085b [CI] Speed up V1 structured output tests (#15718)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-28 21:10:45 -07:00
1286211f57 [Bugfix] LoRA V1: add and fix entrypoints tests (#15715)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-03-28 21:10:41 -07:00
6d531ad7b8 [Misc][V1] Misc code streamlining (#15723)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-28 20:59:47 -07:00
762b424a52 [Docs] Document v0 engine support in reasoning outputs (#15739)
Signed-off-by: Ce Gao <cegao@tensorchord.ai>
2025-03-29 03:46:57 +00:00
de1cb38769 [Model] Support Skywork-R1V (#15397)
Signed-off-by: jiacai.liu <932997367@qq.com>
Co-authored-by: jiacai.liu <932997367@qq.com>
2025-03-28 20:39:21 -07:00
c802f5430d [ROCm][AMD][Build] Update AMD supported arch list (#15632)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-03-28 20:39:18 -07:00
cff8991a50 [Docs][V1] Optimize diagrams in prefix caching design (#15716) 2025-03-29 03:33:58 +00:00
f3f8d8fff4 implement prometheus fast-api-instrumentor for http service metrics (#15657) 2025-03-29 00:12:02 +00:00
26df46ee59 [Misc] cli auto show default value (#15582)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-03-28 22:23:00 +00:00
c3f687ac22 [V1] TPU - Fix the chunked prompt bug (#15713)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
2025-03-28 20:19:04 +00:00
04437e313d [Bugfix] [torch.compile] Add Dynamo metrics context during compilation (#15639)
Signed-off-by: luka <luka@neuralmagic.com>
2025-03-28 14:01:09 -06:00
038bededba [TPU] [Perf] Improve Memory Usage Estimation (#15671)
Signed-off-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
2025-03-28 17:37:52 +00:00
d03308be0c [Misc] Remove stale func in KVTransferConfig (#14746)
Signed-off-by: Shangming Cai <caishangming@linux.alibaba.com>
2025-03-28 17:33:32 +00:00
c6bc0034d0 [Misc] Remove unused utils and clean up imports (#15708)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-28 09:41:16 -07:00
70e132244a [Minor] Remove TGI launching script (#15646)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-28 09:30:08 -07:00
47e9038d23 Fix cpu offload testing for gptq/awq/ct (#15648)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-03-29 00:29:32 +08:00
432cf22a6a [Bugfix] Fix regex compile display format (#15368)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-03-28 08:58:44 -07:00
2914006fe0 [doc] add missing imports (#15699)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-03-28 15:56:48 +00:00
7329ff5468 [V1] Support disable_any_whtespace for guidance backend (#15584)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-28 23:46:45 +08:00
541d1df486 [Bugfix] embed_is_patch for Idefics3 (#15696)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-28 08:27:52 -07:00
3b00ff9138 [Bugfix][v1] xgrammar structured output supports Enum. (#15594)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-03-28 06:14:53 -07:00
91276c5721 [Model] Adding torch compile annotations to chatglm (#15624)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-28 21:14:09 +08:00
0b4167526d [Docs] Add "Generation quality changed" section to troubleshooting (#15701)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-28 13:03:21 +00:00
fd5fd26902 [Frontend] update priority for --api-key and VLLM_API_KEY (#15588)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-03-28 19:40:12 +08:00
3bbaacbe15 [Bugfix][Frontend] Eliminate regex based check in reasoning full generator (#14821)
Signed-off-by: Ce Gao <cegao@tensorchord.ai>
2025-03-28 11:20:35 +00:00
a10314c6b3 [Misc] Fix test_sleep to use query parameters (#14373)
Signed-off-by: Lize Cai <lize.cai@sap.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-03-28 18:00:14 +08:00
70f2c2a709 [Bugfix] Fix 'InductorAdaptor object has no attribute 'cache_dir' (#15674)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-28 17:10:40 +08:00
280d074103 [CPU][CI] Improve CPU Dockerfile (#15690)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-03-28 01:36:31 -07:00
32b14baf8a [Refactor][Frontend] Keep all logic about reasoning into one class (#14428)
Signed-off-by: Ce Gao <cegao@tensorchord.ai>
2025-03-28 00:23:30 -07:00
2d9045fce8 [TPU][CI] Fix TPUModelRunner Test (#15667)
Signed-off-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
2025-03-28 00:01:26 -07:00
355f66348c [V1] Remove legacy input registry (#15673)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-27 23:34:34 -07:00
8693e47e6a [Bugfix] Fix mm_hashes forgetting to be passed (#15668)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-28 05:51:05 +00:00
cec8c7d7f8 Refactor error handling for multiple exceptions in preprocessing (#15650)
Signed-off-by: JasonZhu1313 <jasonchu13@outlook.com>
2025-03-28 03:27:20 +00:00
4d0ec37267 [Quantization][FP8] Adding support for fp8 gemm layer input in fp8 (#14578)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-03-28 02:58:16 +00:00
e7f720ea56 [Misc]add coding benchmark for speculative decoding (#15303)
Signed-off-by: CXIAAAAA <cxia0209@gmail.com>
2025-03-28 10:47:05 +08:00
Wes
4ae17bf1e2 Revert "Use Cache Hinting for fused_moe kernel (#15511)" (#15645)
Signed-off-by: Wes Medford <wryanmedford@gmail.com>
2025-03-27 19:45:55 -07:00
8a49eea74b [CI][TPU] Temporarily Disable Quant Test on TPU (#15649)
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
2025-03-27 19:45:05 -07:00
b4245a48df [Doc] Fix dead links in Job Board (#15637)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-03-28 02:43:40 +00:00
4e0f6076be [Bugfix] Fix failure to launch in Tensor Parallel TP mode on macOS. (#14948)
Signed-off-by: Kebe <mail@kebe7jun.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-03-28 10:13:41 +08:00
726efc6a32 [Quantization][V1] BitsAndBytes support V1 (#15611)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-28 10:12:47 +08:00
bd45912b99 [TPU] Lazy Import (#15656)
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
2025-03-28 09:57:01 +08:00
15dac210f0 [V1] AsyncLLM data parallel (#13923)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-27 16:14:41 -07:00
112b3e5b3b [CI] Update rules for applying tpu label. (#15634)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-27 22:15:26 +00:00
32d669275b Correct PowerPC to modern IBM Power (#15635)
Signed-off-by: Christy Norman <christy@linux.vnet.ibm.com>
2025-03-27 15:04:32 -07:00
4098b72210 [Bugfix][TPU][V1] Fix recompilation (#15553)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-03-27 19:15:06 +00:00
46450b8d33 Use absolute placement for Ask AI button (#15628)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-27 18:52:18 +00:00
13ac9cab21 [Misc] Avoid direct access of global mm_registry in compute_encoder_budget (#15621)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-27 17:52:00 +00:00
66aa4c0bf4 [Feature] Add middleware to log API Server responses (#15593)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-03-27 17:49:38 +00:00
247181536f [Misc] Replace is_encoder_decoder_inputs with split_enc_dec_inputs (#15620)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-27 17:36:32 +00:00
07bf813fb5 [Doc] Link to onboarding tasks (#15629)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-27 16:30:53 +00:00
8958217ad5 [Bugfix] Fix use_cascade_attention handling for Alibi-based models on vllm/v1 (#15211)
Signed-off-by: h-sugi <h.sugi@ieee.org>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-27 22:29:29 +08:00
ac5bc615b0 [Model] MiniCPM-V/O supports V1 (#15487)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-27 06:07:29 -07:00
8063dfc61a [Doc] update --system for transformers installation in docker doc (#15616)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-03-27 20:38:46 +08:00
6278bc829e Fix incorrect filenames in vllm_compile_cache.py (#15494)
Signed-off-by: <zou3519@gmail.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-03-27 18:33:41 +08:00
3f532cb6a6 [Misc] Use model_redirect to redirect the model name to a local folder. (#14116) 2025-03-27 02:21:23 -07:00
e6c9053f9e [Misc] Clean up scatter_patch_features (#15559)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-27 07:45:00 +00:00
43ed4143c4 [Quantization] Fp8 Channelwise Dynamic Per Token GroupedGEMM (#15587)
Signed-off-by: ElizaWszola <eliza@neuralmagic.com>
Signed-off-by: ElizaWszola <ewszola@redhat.com>
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
Co-authored-by: ElizaWszola <eliza@neuralmagic.com>
Co-authored-by: Lucas Wilkinson <wilkinson.lucas@gmail.com>
Co-authored-by: ElizaWszola <ewszola@redhat.com>
2025-03-27 06:47:25 +00:00
f4c98b4d4c [Misc] Consolidate LRUCache implementations (#15481)
Signed-off-by: Bella kira <2374035698@qq.com>
2025-03-27 06:43:43 +00:00
e1e0fd7543 [TPU] Avoid Triton Import (#15589)
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
2025-03-27 06:43:02 +00:00
df8d3d1287 [Misc] Restrict ray version dependency and update PP feature warning in V1 (#15556) 2025-03-27 06:21:07 +00:00
619d3de8bd [TPU] [V1] fix cases when max_num_reqs is set smaller than MIN_NUM_SEQS (#15583)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-03-26 22:46:26 -07:00
ecff8309a3 [ROCm] Env variable to trigger custom PA (#15557)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-03-26 22:46:12 -07:00
dcf2a590f5 Allow torchao quantization in SiglipMLP (#15575) 2025-03-26 22:45:51 -07:00
54aa619459 [V1] Refactor num_computed_tokens logic (#15307)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-27 04:54:36 +00:00
fb22be5817 [moe][quant] add weight name case for offset (#15515)
Signed-off-by: Mengqing Cao <cmq0113@163.com>
2025-03-27 04:50:29 +00:00
7f301dd8ef [Doc] Update V1 user guide for fp8 kv cache support (#15585)
Signed-off-by: weizeng <weizeng@roblox.com>
2025-03-26 19:39:03 -07:00
8095341a01 [misc] LoRA: Remove unused long context test data (#15558)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-03-27 10:04:51 +08:00
69db16a46a add platform check back (#15578)
Signed-off-by: Chenyaaang <llccyy1212@gmail.com>
2025-03-27 01:50:27 +00:00
ce78f9af4e Add automatic tpu label to mergify.yml (#15560) 2025-03-26 21:39:58 -04:00
9239bf718e [Kernel] CUTLASS grouped gemm fp8 MoE kernel (#13972)
Signed-off-by: ElizaWszola <eliza@neuralmagic.com>
Signed-off-by: ElizaWszola <ewszola@redhat.com>
Co-authored-by: Lucas Wilkinson <wilkinson.lucas@gmail.com>
2025-03-27 00:54:44 +00:00
7a6d45bc8a Support FIPS enabled machines with MD5 hashing (#15299)
Signed-off-by: Matthew Vine <32849887+MattTheCuber@users.noreply.github.com>
2025-03-26 20:19:46 -04:00
e74ff409e0 [TPU] support disabling xla compilation cache (#15567)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-03-27 00:09:28 +00:00
Wes
7a888271f5 Use Cache Hinting for fused_moe kernel (#15511) 2025-03-26 23:21:34 +00:00
9d119a86ae [V1] TPU CI - Fix test_compilation.py (#15570)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
2025-03-26 21:51:54 +00:00
b2e85e26f4 [V1] TPU - Revert to exponential padding by default (#15565)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
2025-03-26 21:35:05 +00:00
dd8a29da99 Applying some fixes for K8s agents in CI (#15493)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-03-26 20:35:11 +00:00
27df5199d9 Support SHA256 as hash function in prefix caching (#15297)
Signed-off-by: Marko Rosenmueller <5467316+dr75@users.noreply.github.com>
2025-03-26 11:11:28 -07:00
35fad35a48 [V1][Sampler] Faster top-k only implementation (#15478)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-26 10:56:47 -07:00
733e7c9e95 [Refactor] Remove unnecessary backend parameter in structured output interface (#15317)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-03-26 17:51:56 +00:00
0af4d764d6 Fix weight loading for some models in Transformers backend (#15544)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-26 10:17:53 -07:00
e64afa455c multi-node offline DP+EP example (#15484)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-26 23:54:24 +08:00
1711b929b6 [Model] Add Reasoning Parser for Granite Models (#14202)
Signed-off-by: Alex-Brooks <Alex.brooks@ibm.com>
Co-authored-by: Joe Runde <joe@joerun.de>
2025-03-26 14:28:07 +00:00
c091c0a588 Improve validation of TP in Transformers backend (#15540)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-26 07:26:48 -07:00
1aa162e030 Apply torchfix (#15532)
Signed-off-by: cyy <cyyever@outlook.com>
2025-03-26 12:09:06 +00:00
cf5c8f1686 Separate base model from TransformersModel (#15467)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-03-26 18:13:38 +08:00
4ec2cee000 [Misc] improve example script output (#15528)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-03-26 10:12:47 +00:00
99f536f830 [Misc] Enhance warning information to user-defined chat template (#15408)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-03-26 02:21:15 -07:00
5ebf66748b [FEAT][ROCm] Integrate Fused MoE Kernels from AITER (#14967)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-03-26 16:30:30 +08:00
781d056280 [Feature] Enhance EAGLE Architecture with Proper RMS Norms (#14990)
Signed-off-by: Bryan Lu <yuzhelu@amazon.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-03-26 08:24:07 +00:00
5aefd6ac31 Fix raw_request extraction in load_aware_call decorator (#15382)
Signed-off-by: Daniel Salib <danielsalib@meta.com>
2025-03-25 22:29:54 -07:00
6c663dfd5e [misc] LoRA - Skip LoRA kernels when not required (#15152)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-03-26 11:33:45 +08:00
33437bc6e7 [BugFix] Fix nightly MLA failure (FA2 + MLA chunked prefill, i.e. V1, producing bad results) (#15492)
Signed-off-by: LucasWilkinson <lwilkinson@neuralmagic.com>
2025-03-25 20:33:22 -07:00
23114d3364 [Misc] Warn about v0 in benchmark_paged_attn.py (#15495)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-03-25 20:31:04 -07:00
997c8811d6 [Model] Support multi-image for Molmo (#15438)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-26 11:26:33 +08:00
e42389f9d7 Transformers backend already supports V1 (#15463)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-25 20:26:16 -07:00
ff38f0a32c [CI/Build] LoRA: Delete long context tests (#15503)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-03-25 17:18:34 -07:00
a5cfbab3c8 [Core] LoRA: V1 Scheduler optimization (#15422)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-03-25 22:50:09 +00:00
ac3cd6e83c [core] add bucket padding to tpu_model_runner (#14995)
Signed-off-by: Chenyaaang <llccyy1212@gmail.com>
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
Co-authored-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
2025-03-25 17:27:22 -04:00
082ab86f5f [V1] Support long_prefill_token_threshold in v1 scheduler (#15419)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-03-25 14:22:26 -07:00
6aa196c8dc [V1][Minor] Use SchedulerInterface type for engine scheduler field (#15499)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-25 14:21:36 -07:00
a0dd7dcd49 [TPU][V1] Fix Sampler recompilation (#15309)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-03-25 16:43:54 -04:00
e977c11111 Add workaround for shared field_names in pydantic model class (#13925)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2025-03-25 20:31:08 +00:00
5f063a80bd [bugfix] add supports_v1 platform interface (#15417)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2025-03-25 15:00:32 -04:00
5d8e1c9279 [Bugfix] Support triton==3.3.0+git95326d9f for RTX 5090 (Unsloth + vLLM compatibility) (#15471)
Co-authored-by: ServerAI <ai@exc-mad-ai.com>
2025-03-25 17:59:25 +00:00
0a049c7d86 [CI/Build] Add tests for the V1 tpu_model_runner. (#14843)
Signed-off-by: Yarong Mu <ymu@google.com>
2025-03-25 12:27:16 -04:00
d0cfec7ab9 [bugfix] fix inductor cache on max_position_embeddings (#15436)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-25 07:05:39 -07:00
a608160027 [Kernel] Fix conflicting macro names for gguf kernels (#15456)
Signed-off-by: SzymonOzog <szymon.ozog@gmail.com>
2025-03-25 13:50:49 +00:00
3f04a7fbf2 [Doc] Update V1 user guide for multi-modality (#15460)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-25 11:01:58 +00:00
5994430b84 [Misc] Remove redundant num_embeds (#15443)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-25 18:27:57 +08:00
a9e879b316 [Misc] Clean up MiniCPM-V/O code (#15337)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-25 10:22:52 +00:00
3e2f37a69a Dockerfile.ppc64le changes to move to UBI (#15402)
Signed-off-by: Md. Shafi Hussain <Md.Shafi.Hussain@ibm.com>
2025-03-25 10:15:14 +00:00
4f044b1d67 [Kernel][CPU] CPU MLA (#14744)
Signed-off-by: Thien Tran <gau.nernst@yahoo.com.sg>
2025-03-25 09:34:59 +00:00
4157f563b4 [Hardware][TPU][Bugfix] Fix v1 mp profiler (#15409)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
2025-03-25 01:43:00 -07:00
051da7efe3 Fix CUDA kernel index data type in vllm/csrc/quantization/gptq_marlin/awq_marlin_repack.cu +10 (#15160)
Signed-off-by: Lu Fang <lufang@fb.com>
Co-authored-by: Richard Barnes <rbarnes@meta.com>
2025-03-25 15:36:45 +08:00
25f560a62c [V1][Spec Decode] Update target_logits in place for rejection sampling (#15427)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-24 21:04:41 -07:00
a09ad90a72 [V1] guidance backend for structured output + auto fallback mode (#14779)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Loc Huynh <jc1da.3011@gmail.com>
Co-authored-by: Michal Moskal <michal@moskal.me>
2025-03-24 21:02:33 -07:00
10b34e36b9 [Bugfix] Fixed the issue of not being able to input video and image simultaneously (#15387)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-03-25 03:48:08 +00:00
b5269db959 Revert "Fix non-contiguous input passed to Marlin kernel (#15319)" (#15398) 2025-03-24 20:43:51 -07:00
6db94571d7 [Misc] Remove LoRA log (#15388)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-24 20:43:48 -07:00
97cfa65df7 Add pipeline parallel support to TransformersModel (#12832)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-03-25 10:41:45 +08:00
911c8eb000 [Minor][Spec Decode] Remove compiled_softmax (#15416)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-24 19:09:04 -07:00
ebcebeeb6b [V1][Spec Decode] Enable spec decode for top-p & top-k sampling (#15063)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-24 17:16:46 -07:00
f533b5837f [ROCm][Kernel] MoE weights padding (#14454)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Signed-off-by: charlifu <charlifu@amd.com>
Co-authored-by: charlifu <charlifu@amd.com>
2025-03-24 23:45:30 +00:00
8279201ce6 [Build] Cython compilation support fix (#14296)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-03-24 23:37:54 +00:00
23fdab00a8 [Hardware][TPU] Skip failed compilation test (#15421)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
2025-03-24 23:28:57 +00:00
623e2ed29f [BugFix][V1] Quick fix for min_tokens with multiple EOS (#15407)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-24 15:58:59 -07:00
9d72daf4ce [V1][Perf] Simpler request output queues (#15156)
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
Co-authored-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
2025-03-24 22:44:08 +00:00
6dd55af6c9 [Doc] Update docs on handling OOM (#15357)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-03-24 14:29:34 -07:00
3eb08ed9b1 [DOC] Add Kubernetes deployment guide with CPUs (#14865) 2025-03-24 10:48:43 -07:00
5eeadc2642 [Hardware][Gaudi][Feature] Enable Dynamic MoE for Mixtral (#12303)
Signed-off-by: zhenwei <zhenweiliu@habana.ai>
2025-03-24 09:48:40 -07:00
3aee6573dc [V1] Aggregate chunked prompt logprobs in model runner (#14875)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-24 12:27:57 -04:00
9cc645141d [MISC] Refine no available block debug msg (#15076)
Signed-off-by: Yi Liu <yiliu4@habana.ai>
Signed-off-by: yiliu30 <yi4.liu@intel.com>
Co-authored-by: Yi Liu <yiliu4@habana.ai>
2025-03-25 00:01:10 +08:00
0893567db9 [V1][Minor] fix comments (#15392)
Signed-off-by: chenjincong <chenjincong@baidu.com>
Signed-off-by: Chen-0210 <chenjincong11@gmail.com>
Co-authored-by: chenjincong <chenjincong@baidu.com>
2025-03-24 08:45:32 -07:00
8abe69b499 [Core] Don't force uppercase for VLLM_LOGGING_LEVEL (#15306)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-24 08:27:30 -07:00
761702fd19 [Core] Integrate fastsafetensors loader for loading model weights (#10647)
Signed-off-by: Manish Sethi <Manish.sethi1@ibm.com>
2025-03-24 08:08:02 -07:00
9606d572ed [distributed] fix dp group (#15355)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-24 14:54:27 +00:00
cbcdf2c609 [Bugfix] Fix chat template loading (#15143)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: chaunceyjiang <chaunceyjiang@gmail.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-03-24 13:50:09 +00:00
038de04d7b Fix zmq IPv6 URL format error (#15341)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-24 09:30:41 -04:00
6b3cc75be0 [Kernel] allow non-contiguous input for marlin kernel (#14658)
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
2025-03-24 09:21:33 -04:00
7ffcccfa5c Revert "[CI/Build] Use uv python for docker rather than ppa:deadsnakess/ppa (#13569)" (#15377)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-03-24 05:53:10 -07:00
cc8accfd53 [Misc] Update guided decoding logs to debug (#15310)
Signed-off-by: Benjamin Merkel <benjamin.merkel@tngtech.com>
Co-authored-by: Benjamin Merkel <benjamin.merkel@tngtech.com>
2025-03-24 04:25:20 -07:00
948ab03e7e [Bugfix][V1] Avoid importing PreTrainedModel (#15366)
Signed-off-by: Hollow Man <hollowman@opensuse.org>
2025-03-24 10:33:12 +00:00
5797fb97e9 [Misc] Remove ignore_reinit_error for ray.init() (#15373) 2025-03-24 07:41:53 +00:00
3892e58ad7 [Misc] Upgrade BNB version (#15183) 2025-03-24 05:51:42 +00:00
d20e261199 Fix non-contiguous input passed to Marlin kernel (#15319) 2025-03-24 03:09:44 +00:00
f622dbcf39 [Fix] [torch.compile] Improve UUID system for custom passes (#15249)
Signed-off-by: luka <luka@neuralmagic.com>
2025-03-24 01:54:07 +00:00
dccf535f8e [V1] Enable V1 Fp8 cache for FA3 in the oracle (#15191)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-03-23 15:07:04 -07:00
9c5c81b0da [Misc][Doc] Add note regarding loading generation_config by default (#15281)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-03-23 14:00:55 -07:00
d6cd59f122 [Frontend] Support tool calling and reasoning parser (#14511)
Signed-off-by: WangErXiao <863579016@qq.com>
2025-03-23 14:00:07 -07:00
bc8ed3c4ba [V1][Spec Decode] Use better defaults for N-gram (#15358)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-23 10:52:30 -07:00
b9bd76ca14 [V1][Spec Decode] Respect prompt_lookup_max (#15348)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-23 10:41:44 -07:00
6ebaf9ac71 [Bugfix] consider related env vars for torch.compiled cache hash (#14953)
Signed-off-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2025-03-23 15:53:09 +00:00
f90d34b498 [Misc] Add tuned R1 w8a8 and MoE configs for NVIDIA L20 (#15322)
Signed-off-by: DefTruth <qiustudent_r@163.com>
2025-03-23 01:10:10 -07:00
f68cce8e64 [ci/build] fix broken tests in LLM.collective_rpc (#15350)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-23 14:49:48 +08:00
09b6a95551 [ci/build] update torch nightly version for GH200 (#15135)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-23 14:04:13 +08:00
50c9636d87 [V1][Usage] Refactor speculative decoding configuration and tests (#14434)
Signed-off-by: Shangming Cai <caishangming@linux.alibaba.com>
2025-03-22 19:28:10 -10:00
0661cfef7a Fix v1 supported oracle for worker-cls and worker-extension-cls (#15324)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-03-23 10:23:35 +08:00
a827aa815d [doc] Add back previous news (#15331)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-03-22 17:38:33 -07:00
b877031d80 Remove openvino support in favor of external plugin (#15339)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-22 14:06:39 -07:00
dd861b992f [BugFix][Typing] Fix Imprecise Type Annotations (#15208)
Signed-off-by: Wang Ran (汪然) <wrran@outlook.com>
2025-03-22 09:05:03 -07:00
eb63ea1e18 [V1] Add disable-any-whitespace option support for xgrammar (#15316)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-22 15:56:17 +00:00
2f4bd358f1 [Model] Support Tele-FLM Model (#15023)
Signed-off-by: Naitong Yu <ntyu@baai.ac.cn>
Signed-off-by: jiangxin <horizon94@outlook.com>
Co-authored-by: Jason Fang <jasonfang3900@gmail.com>
Co-authored-by: jiangxin <horizon94@outlook.com>
2025-03-22 02:04:44 -07:00
8a8b30eac1 [Bugfix] LoRA V0 - Fix case where max_num_seqs is between cudagraph capture sizes (#15308)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-03-22 02:03:32 -07:00
2fa0e1396b [Bugfix] Fix torch.compile raise FileNotFoundError (#15278)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-22 13:49:34 +08:00
1c2bec0f82 [Doc] add load_format items in docs (#14804)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-03-21 22:36:43 -07:00
ec870fba9a [FEAT] [ROCm]: Add AITER RMS Norm (Layer Norm) Feature (#14959)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-03-21 22:36:14 -07:00
df1430265c [Bugfix][V0] Multi-sequence logprobs streaming edge case (#15259)
Signed-off-by: Andy Lo <andy@mistral.ai>
2025-03-21 22:35:37 -07:00
4c69e228b3 [Misc] Increase RayDistributedExecutor RAY_CGRAPH_get_timeout (#15301)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-03-21 22:25:43 -07:00
790b79750b [Build/CI] Fix env var typo (#15305)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-21 22:28:46 +00:00
cfbb8c930f [TPU][V1] MHA Pallas backend (#15288)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-03-21 08:50:39 -07:00
baec0d4de9 Revert "[Feature] specify model in config.yaml (#14855)" (#15293)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-21 08:30:23 -07:00
c21b99b912 [Bugfix][VLM] fix llava processor (#15285)
Signed-off-by: Mengqing Cao <cmq0113@163.com>
2025-03-21 05:14:36 -07:00
93a00d7dde [v1] Refactor KVCacheConfig (#14079)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-03-21 04:56:27 -07:00
61e8c18350 [Misc] Add cProfile helpers (#15074)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-21 04:56:09 -07:00
8afcd0f633 [Bugfix] Fix broken kernel test due to missing rename for v1 Triton backend (#15282)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-21 11:42:06 +00:00
91ca929dc7 [V1] Fix wrong import path of get_flash_attn_version (#15280)
Signed-off-by: Lehua Ding <lehuading@tencent.com>
2025-03-21 03:54:11 -07:00
84e00adc8a [Bugfix] Fix incorrect resolving order for transformers fallback (#15279)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-21 03:54:08 -07:00
47c7126213 [Misc] Add attention mask pre-computation optimization back to Qwen2.5-VL (#15273)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-21 10:32:33 +00:00
a989ca2bf6 [Bugfix] Add int8 torch dtype for KVCache (#15260)
Signed-off-by: shen-shanshan <467638484@qq.com>
2025-03-21 08:58:28 +00:00
0fa3970deb [Feature] specify model in config.yaml (#14855)
Signed-off-by: weizeng <weizeng@roblox.com>
2025-03-21 00:26:03 -07:00
da6ea29f7a [V1] Avoid redundant input processing in n>1 case (#14985)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-20 22:24:10 -07:00
7297941b38 [Doc] Update LWS docs (#15163)
Signed-off-by: Edwinhr716 <Edandres249@gmail.com>
2025-03-20 21:18:47 -07:00
f8a08cb90d [V1] Enable Triton(ROCm) Attention backend for Nvidia GPUs (#14071)
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-21 03:14:19 +00:00
b15fd2be2a [Hardware][TPU] Add check for no additional graph compilation during runtime (#14710)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
2025-03-21 03:05:28 +00:00
e588ac237c Add an example for reproducibility (#15262)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-20 19:55:47 -07:00
5df2da5b97 [Misc] Better RayExecutor and multiprocessing compatibility (#14705)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
2025-03-20 19:27:46 -07:00
11b986b3fb [Docs] Trim the latest news in README (#15261)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-20 19:24:21 -07:00
296f927f24 [Model] RE: Mamba2 Prefill Performance Tweaks: Fixing Flurry of Unnecessary Memory Copies (#14857)
Signed-off-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
2025-03-20 19:21:08 -07:00
0032903a5b [Bugfix] detect alibi and revert to FA2 (#15231)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2025-03-20 19:20:16 -07:00
47195057e9 [V1][TPU] Speed up top-k on TPU by using torch.topk (#15242)
Signed-off-by: Hyesoo Yang <hyeygit@gmail.com>
2025-03-20 19:19:40 -07:00
6edbfa924d Mention extra_body as a way top pass vLLM only parameters using the OpenAI client (#15240)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-20 19:18:36 -07:00
1e508343e1 [Bugfix] Fix incorrect qwen2.5-vl attention mask pre-computation (#15200)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-20 19:18:04 -07:00
2e0b4cfde0 [ROCM] Upgrade torch to 2.6 (#15244)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-03-20 19:17:33 -07:00
10f55fe6c5 [Misc] Clean up the BitsAndBytes arguments (#15140)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-20 19:17:12 -07:00
d3ccbd6350 Fix CUDA kernel index data type in vllm/csrc/quantization/fused_kernels/layernorm_utils.cuh +10 (#15159)
Signed-off-by: Lu Fang <lufang@fb.com>
Co-authored-by: Richard Barnes <rbarnes@meta.com>
2025-03-21 10:01:11 +08:00
0cfe7d386d [CI/Build] LoRA : make add_lora_test safer (#15181)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-03-21 09:28:53 +08:00
0c6f5023c3 [V1] Scheduler Refactoring [1/N] - Add Scheduler Interface (#15250)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-03-20 17:50:43 -07:00
06dd08256f Enforce that TP > 1 is not supported for Mamba2 if Quantization is Enabled. (#14617)
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
2025-03-21 00:44:37 +00:00
2b22290ce0 [V1] Add flag to disable cascade attention (#15243)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-20 15:24:16 -07:00
d8e82bc06d [Bugfix] fix V1 Engine crash while handling requests with duplicate request id (#15043)
Signed-off-by: Jiahui Sun <jhsun2020@gmail.com>
2025-03-20 10:01:02 -07:00
086b56824c [ci] feat: make the test_torchrun_example run with tp=2, external_dp=2 (#15172)
Signed-off-by: Chi Zhang <zhangchi.usc1992@bytedance.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-03-21 00:30:04 +08:00
5a0905ba2a Replace misc issues with link to forum (#15226)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-20 23:18:20 +08:00
a8f12a63fd Fix env vars for running Ray distributed backend on GKE (#15166)
Signed-off-by: Richard Liu <ricliu@google.com>
2025-03-20 14:59:33 +00:00
69ae2380c6 Add user forum to README (#15220)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-20 22:39:51 +08:00
27261e40a6 [Bugfix] Multi-video inference on LLaVA-Onevision (#15082)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-03-20 14:10:45 +00:00
e3f813c33b [macOS] Ugrade pytorch to 2.6.0 (#15129) 2025-03-20 01:22:40 -07:00
c607a2652b Fixing Imprecise Type Annotations (#15192) 2025-03-20 01:19:55 -07:00
3d45e3d749 [release] Tag vllm-cpu with latest upon new version released (#15193) 2025-03-20 01:19:10 -07:00
742369d35a [Frontend][Bugfix] support prefill decode disaggregation on deepseek (#14824)
Signed-off-by: billishyahao <bill.he@amd.com>
Co-authored-by: Zhai Feiyue <80079571+ZhaiFeiyue@users.noreply.github.com>
2025-03-20 00:00:33 -07:00
bfe2fe0af4 typo: Update config.py (#15189) 2025-03-19 23:31:21 -07:00
a8652f4f0f Enable CUDA graph support for llama 3.2 vision (#14917)
Signed-off-by: Matt Ritter <100659061+mritterfigma@users.noreply.github.com>
2025-03-19 23:29:16 -07:00
2f726b241e [Doc] Update README.md (#15187)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-20 13:25:58 +08:00
a597a57595 [Attention] Flash Attention 3 - fp8 (#14570)
Signed-off-by: Mickael Seznec <mickael@mistral.ai>
2025-03-20 01:14:20 -04:00
ae65f3e237 [Misc]fixed disable these http request logs (#14754)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-03-19 21:53:40 -07:00
34868b106a [Doc] Update Mistral Small 3.1/Pixtral example (#15184)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-03-20 04:46:06 +00:00
1f16b7fe74 [Core][V0] Add guidance backend for structured output (#14589)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Loc Huynh <lohuynh@microsoft.com>
Co-authored-by: Michal Moskal <michal@moskal.me>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
2025-03-19 21:33:51 -07:00
b88be22165 [Benchmark] Allow oversample request in benchmark dataset (#15170)
Signed-off-by: Jennifer Zhao <ai.jenniferzhao@gmail.com>
2025-03-20 12:32:58 +08:00
d8c6d7d6b5 [V1][TPU] Support V1 Sampler for ragged attention (#14227)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-03-19 21:00:39 -07:00
40828ce5fe fix "Total generated tokens:" is 0 if using --backend tgi and --endpo… (#14673)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-03-19 20:56:16 -07:00
ffa443afed [Bugfix] Fix embedding assignment for InternVL-based models (#15086)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-20 03:40:13 +00:00
70e500cad9 Fix broken tests (#14713)
Signed-off-by: JovanSardinha <jovan.sardinha@gmail.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-03-20 02:06:49 +00:00
4cb1c05c9e [Doc] Clarify run vllm only on one node in distributed inference (#15148)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-03-20 09:55:59 +08:00
c47aafa37c [BugFix] Lazily import XgrammarBackend to avoid early cuda init (#15171)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-20 01:30:43 +00:00
cfbca8a2f2 [V1] TPU - Tensor parallel MP support (#15059) 2025-03-20 00:55:18 +00:00
0fe5609874 [Docs] Annouce Ollama and Singapore Meetups (#15161)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-03-19 16:18:04 -07:00
22d33baca2 [FrontEnd][Perf] merge_async_iterators fast-path for single-prompt requests (#15150)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-19 21:04:41 +00:00
b0e96aaebb [V1][TPU] Change kv cache shape. (#15145)
Signed-off-by: Xiongfei Wei <isaacwxf23@gmail.com>
2025-03-19 12:16:42 -07:00
8310e0b59b simple bugfix: Update stats.py (#15139) 2025-03-19 18:26:27 +00:00
26dd972adb [FEAT]Support reset prefix cache by specified device (#15003) 2025-03-19 10:54:41 -07:00
61c7a1b856 [V1] Minor V1 async engine test refactor (#15075)
Signed-off-by: andoorve <murali.andoorveedu@mail.utoronto.ca>
Co-authored-by: andoorve <murali.andoorveedu@mail.utoronto.ca>
2025-03-19 10:37:17 -07:00
374ee287d8 [Frontend] Remove custom_cache_manager (#13791)
Signed-off-by: fulvius31 <asangior@redhat.com>
2025-03-20 00:13:50 +08:00
a4d83661d7 [Misc] Update the "the first vLLM China Meetup" slides link to point to the first page (#15134)
Signed-off-by: imkero <kerorek@outlook.com>
2025-03-19 15:07:39 +00:00
8363cd093d [Bugfix] Adjust mllama to regional compilation (#15112)
Signed-off-by: Jan Kaniecki <jkaniecki@habana.ai>
2025-03-19 07:57:25 -07:00
6c5a3195db [Misc][Benchmark] Add support for different tokenizer_mode (#15040)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-03-19 14:56:50 +00:00
073d1ed354 [Doc] Update tip info on using latest transformers when creating a custom Dockerfile (#15070) 2025-03-19 13:33:40 +00:00
3d446433ec [Bugfix] Fix size calculation of processing cache (#15114)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-19 05:53:19 -07:00
1fe0fd12d3 [Misc] Avoid unnecessary HF do_rescale warning when passing dummy data (#15107)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-19 03:42:31 -07:00
dafb4e504a [V1][Bugfix] Fix oracle for device checking (#15104)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-03-19 18:35:32 +08:00
68cf1601d3 [CI][Intel GPU] update XPU dockerfile and CI script (#15109)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-03-19 01:29:25 -07:00
61f412187d [Bugfix] Re-enable Gemma3 for V1 (#14980)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-18 23:58:22 -07:00
05ccd0aa35 [V1] Ensure using int64 for sampled token ids (#15065)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-18 23:52:19 -07:00
f690372b68 [Core] Update dtype detection and defaults (#14858)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-19 13:49:33 +08:00
8b3e94a357 [Model] Remove duplicated message check in Mistral chat completion request (#15069)
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
2025-03-19 05:09:32 +00:00
437f9162d0 [Model] Pixtral: Remove layer instantiation duplication (#15053)
Signed-off-by: Julien Denize <julien.denize@mistral.ai>
2025-03-19 10:34:03 +08:00
4f065f12f5 [Misc][V1] Skip device checking if not available (#15061)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
2025-03-18 19:33:43 -07:00
228b768db6 [Doc] Minor v1_user_guide update (#15064)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2025-03-18 16:10:45 -07:00
027827cc1d fix long dtype in topk sampling (#15049) 2025-03-18 15:57:31 -07:00
72a8639b68 [V1] TPU - CI/CD use smaller model (#15054)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
2025-03-18 21:39:21 +00:00
99abb8b650 [V1][Spec Decode] Optimize Rejection Sampler with Triton Kernels (#14930)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-18 14:31:54 -07:00
3a1e648158 [V1] Refactor Structured Output for multiple backends (#14694)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-18 19:49:15 +00:00
46c759c165 [Bugfix] Fix LoRA extra vocab size (#15047)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-18 09:40:29 -07:00
179a619c21 [Bugfix] Fix broken CPU quantization due to triton import (#15038)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-18 08:57:39 -07:00
452e8fd968 [MODEL] Add support for Zamba2 models (#13185)
Signed-off-by: Yury Tokpanov <yury@zyphra.com>
Signed-off-by: Quentin Anthony <qganthony@yahoo.com>
Co-authored-by: Quentin Anthony <qganthony@yahoo.com>
Co-authored-by: Tyler Michael Smith <tysmith@redhat.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-03-18 08:56:21 -07:00
8b793f7ec6 MI325 configs, fused_moe_kernel bugfix (#14987)
Signed-off-by: Eugene Kuznetsov <eugene.kuznetsov@amd.com>
2025-03-18 08:05:18 -07:00
af35d3a3cc [TPU][V1][Bugfix] Fix chunked prefill with padding (#15037)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-03-18 07:34:45 -07:00
3b457143d2 [Bugfix] Register serializers for V0 MQ Engine (#15009)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-03-18 09:14:47 -04:00
ab656f2c2f [Bugfix] Loosen type check to avoid errors in V1 (#15021)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-18 12:54:40 +00:00
64fc2193dc [Misc][Docs] fix the comments of KV_T and CACHE_T in CALL_RESHAPE_AND_CACHE_XX macros (#14347) 2025-03-18 05:50:19 -07:00
dd732028f5 [Bugfix][Frontend] Fix validation of logprobs in ChatCompletionRequest (#14352)
Signed-off-by: Sebastian Schönnenbeck <sebastian.schoennenbeck@comma-soft.com>
2025-03-18 05:50:05 -07:00
414919138b [Bugfix] torchrun compatibility (#14899)
Signed-off-by: hiyouga <hiyouga@buaa.edu.cn>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-03-18 05:49:27 -07:00
db7c8ca910 [Misc] Embedding model support LoRA (#14935)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-18 12:07:00 +00:00
f863ffc965 [Mistral-Small 3.1] Update docs and tests (#14977)
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-03-18 03:29:42 -07:00
400d483e87 [Kernels] LoRA - Retire SGMV and BGMV Kernels (#14685)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-03-18 09:47:53 +00:00
d1695758b2 [Doc][V1] Fix V1 APC doc (#14920) 2025-03-18 08:15:46 +00:00
53a0cf8b95 [Neuron] trim attention kernel tests to fit trn1.2x instance (#14988)
Signed-off-by: Liangfu Chen <liangfc@amazon.com>
2025-03-18 15:05:52 +08:00
5eeabc2a44 [Bugfix] Fix bnb quantization for models with both HF-format and Mistral-format weights (#14950) 2025-03-17 23:27:26 +00:00
18551e820c [V1] TPU - Fix CI/CD runner (#14974) 2025-03-17 21:07:07 +00:00
e41e160263 [V1] Guard Against Main Thread Usage (#14972)
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
2025-03-17 13:23:02 -07:00
b89fb2a4a1 [CI/Build] Use AutoModelForImageTextToText to load VLMs in tests (#14945)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-17 18:35:17 +00:00
5340b0e221 [Bugfix] Fix interface for Olmo2 on V1 (#14976)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-03-17 11:26:38 -07:00
37e3806132 [Bugfix] Make Gemma3 MM V0 only for now (#14971)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-03-17 10:04:21 -07:00
c0efdd655b [Fix][Structured Output] using vocab_size to construct matcher (#14868)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
2025-03-17 11:42:45 -04:00
aaaec52ad9 [Bugfix][Model] Mixtral: use unused head_dim config argument (#14961)
Signed-off-by: Quentin Torroba <quentin.torroba@mistral.ai>
2025-03-17 07:44:18 -07:00
e1eb45d397 [Bugfix] Fix precommit - line too long in pixtral.py (#14960)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-17 07:18:50 -07:00
89fca671fb [V1] Default MLA to V1 (#14921)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-03-17 06:54:40 -07:00
d20b0c139c Add patch merger (#14957) 2025-03-17 06:47:50 -07:00
166a168b0f [Doc] Fix misleading log during multi-modal profiling (#14955)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-17 06:14:32 -07:00
2bb0e1a799 [Bugfix][ROCm] running new process using spawn method for rocm in tests. (#14810)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: TJian <tunjian.tan@embeddedllm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-03-17 11:33:35 +00:00
6eaf1e5c52 [Misc] Add --seed option to offline multi-modal examples (#14934)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-17 03:00:17 -07:00
868a8c5b2c [Bugfix] Fix Ultravox on V1 (#14929)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-17 17:15:20 +08:00
b4ad56c1bd [V1][TPU] Apply the ragged paged attention kernel fix and remove the padding. (#14846)
Signed-off-by: Xiongfei Wei <isaacwxf23@gmail.com>
2025-03-17 01:48:28 -07:00
69698f257e fix minor miscalled method (#14327) 2025-03-17 01:47:58 -07:00
cd0cd85102 [MISC] More AMD unused var clean up (#14926)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-03-17 16:40:41 +08:00
0a74bfce9c setup.py: drop assumption about local main branch (#14692)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-17 01:37:42 -07:00
dd3b865854 [Doc] Add vLLM Beijing meetup slide (#14938)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-03-17 16:29:36 +08:00
9b87a579aa [Misc][XPU] Use None as device capacity for XPU (#14932)
Signed-off-by: yan ma <yan.ma@intel.com>
2025-03-17 01:22:14 -07:00
b539222d4e [V1] Remove input cache client (#14864)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-03-16 23:42:06 -07:00
8d6cf89526 [V1] [Spec Decode] Support random sampling for spec decode (#13933)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-16 22:00:20 -07:00
583a9778e0 [Benchmark] Do not save detailed info to json by default (#14879)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-03-16 21:48:11 -07:00
a73e183e36 [Misc] Replace os environ to monkeypatch in test suite (#14516)
Signed-off-by: sibi <85477603+t-sibiraj@users.noreply.github.com>
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
2025-03-16 20:35:57 -07:00
1e799b7ec1 [BugFix] Fix MLA + V1 + TP==1 causing reinitialization of cuda context (#14910) 2025-03-17 03:35:37 +00:00
7f6c5ee06c [V1][Minor] Add __repr__ to ConstantList (#14907)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-16 20:20:15 -07:00
faa0275730 [V1] Optimize the overhead of rewinding (#14905)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-16 20:19:30 -07:00
8a5a9b70d7 [CI/Build] Update defaults for test reproducibility (#14893)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-17 10:38:15 +08:00
bb3aeddfaf [CI] Nightly Tests (#14898)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
2025-03-17 02:06:43 +00:00
aecc780dba [V1] Enable Entrypoints Tests (#14903) 2025-03-16 17:56:16 -07:00
90df7f23aa [Doc] Add guidance for using ccache with pip install -e . in doc (#14901) 2025-03-16 23:10:04 +00:00
b9b5bdfc7d [Misc] Catching Ray Compiled Graph PP test failures for V1 (#14847) 2025-03-16 15:46:42 -07:00
31060b2757 [V1][BugFix] Detect interleaved sliding window attention (#14896)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-16 14:53:53 -07:00
fc1f67715d [BugFix][V1] Fix overhead related to bad_words sampling when not in use (#14894)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-16 14:53:34 -07:00
f6137adbcb Revert "[Bugfix] Limit profiling run sequence length by max_model_len (#14785) (#14892)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-16 09:13:46 -07:00
e53b1350f2 [Bugfix] Explicitly disable Phi-4-multimodal in V1 (#14889)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-16 09:05:40 -07:00
d30aa7e9e6 [Bugfix] Limit profiling run sequence length by max_model_len (#14785)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-03-16 07:44:19 -07:00
d1ad2a57af [V1] [Spec Decode] Fix ngram tests (#14878) 2025-03-16 00:29:22 -07:00
b82662d952 [BugFix] Fix torch distributed stateless PG backend init (#14870)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-15 20:26:19 -07:00
71c1e07107 [Kernel] Add more tuned configs (#14877)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-03-15 20:25:03 -07:00
b30c75dda4 [V1] Remove V0 fallback for mistral-tokenizer (#14873)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-03-15 20:21:11 -07:00
def232e122 [VLM] Clean up Phi-4-MM ViT implementation (#14812)
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-03-15 18:53:52 -07:00
3453b964a3 [Misc][Doc] Minor benchmark README update (#14874)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-03-16 09:46:17 +08:00
61c6a5a796 [VLM] Merged multi-modal processor for Pixtral (#12211)
Signed-off-by: remi <remi@mistral.ai>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-15 06:28:27 -07:00
74bc397b0a [Core] Expose API endpoint /is_sleeping (#14312)
Signed-off-by: Jun Duan <jun.duan.phd@outlook.com>
2025-03-15 06:28:14 -07:00
f58aea002c [CI][Intel GPU] refine intel GPU ci docker build (#14860)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-03-15 11:58:53 +00:00
3556a41434 [VLM] Limit multimodal input cache by memory (#14805)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-15 02:52:05 -07:00
9ed6ee92d6 [Bugfix] EAGLE output norm bug (#14464)
Signed-off-by: Bryan Lu <yuzhelu@amazon.com>
2025-03-15 06:50:33 +00:00
ee3778d5fc [Build/CI] Upgrade jinja2 to get 3 moderate CVE fixes (#14839)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-15 05:38:19 +00:00
aaacf17324 [Doc] V1 user guide (#13991)
Signed-off-by: Jennifer Zhao <7443418+JenZhao@users.noreply.github.com>
Signed-off-by: Roger Wang <ywang@roblox.com>
Signed-off-by: Jennifer Zhao <ai.jenniferzhao@gmail.com>
Co-authored-by: Jennifer Zhao <7443418+JenZhao@users.noreply.github.com>
Co-authored-by: Jennifer Zhao <JenZhao@users.noreply.github.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-03-14 22:17:59 -07:00
4c7629cae9 [V1][Structured Output] calculate vocab_size eagerly (#14851)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-03-14 22:09:51 -07:00
e0fdfa1608 [CI/Build] Delete LoRA bias test (#14849)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-14 22:09:25 -07:00
5952d8ab61 [Attention] Get rid of mla cache alignment (#14842)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-03-15 05:08:25 +00:00
a2ae496589 [CPU] Support FP8 KV cache (#14741)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-03-14 22:07:36 -07:00
877e352262 [Docs] Add new East Coast vLLM Meetup slides to README and meetups.md (#14852) 2025-03-14 22:06:38 -07:00
d4d93db2c5 [V1] V1 Enablement Oracle (#13726)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2025-03-14 22:02:20 -07:00
8c0d15d5c5 [Misc][Easy] Annotate unused vars in the csrc files (#14798)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-03-15 12:40:09 +08:00
97ac781c62 [Misc] Remove misleading message in gemma2 and gemma3 (#14850)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-14 21:35:12 -07:00
776dcec8fe Disable outlines cache by default (#14837) 2025-03-15 03:57:55 +00:00
ccf02fcbae Revert "[Model] Mamba2 Prefill Performance Tweaks: Fixing Flurry of U… (#14848) 2025-03-14 20:45:42 -07:00
acaea3bb07 [Bugfix][V1] Fix flashinfer sampling (#14815) 2025-03-14 20:42:38 -07:00
9f37422779 [Neuron][CI] update docker run command (#14829)
Signed-off-by: Liangfu Chen <liangfc@amazon.com>
2025-03-14 18:51:35 -07:00
dd344e0342 [Bugfix] Fix torch_xla in V0 which can't handle None seed introduced … (#14844)
Signed-off-by: Yarong Mu <ymu@google.com>
2025-03-15 00:41:15 +00:00
54a8804455 [Doc] More neutral K8s deployment guide (#14084)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-03-14 16:12:36 -07:00
bbd94a19fc [Build/CI] Upgrade aiohttp to incldue CVE fix (#14840)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-14 23:11:28 +00:00
233ffce1eb [Build/CI] Move ninja to common deps (#14835)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-14 21:25:28 +00:00
40677783aa [CI] Add TPU v1 test (#14834)
Signed-off-by: Richard Liu <ricliu@google.com>
2025-03-14 17:13:30 -04:00
14f301b541 Update to torch==2.6.0 (#12721)
Signed-off-by: mgoin <michael@neuralmagic.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: luka <luka@neuralmagic.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-14 16:58:30 -04:00
46f98893dd [V1] Fix model parameterization for structured output tests (#14833)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-14 20:55:18 +00:00
fe66b34728 [Model] Mamba2 Prefill Performance Tweaks: Fixing Flurry of Unnecessary Memory Copies (#14778)
Signed-off-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
2025-03-14 16:36:18 -04:00
270a5da495 Re-enable the AMD Entrypoints Test (#14711)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-03-14 12:18:13 -07:00
7097b4cc1c [release] Remove log cleanup commands from TPU job (#14838) 2025-03-14 11:59:52 -07:00
977a16772c [Bugfix][Kernel]: Fix AllSpark kernel compilation errors and enable for CUDA < 12.0 (#14430)
Signed-off-by: wyj371990 <wyj371990@alibaba-inc.com>
2025-03-14 09:55:14 -07:00
73deea2fdb [Frontend] track server_load (#13950) 2025-03-14 09:53:17 -07:00
9d2b4a70f4 [V1][Metrics] Updated list of deprecated metrics in v0.8 (#14695)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-03-15 00:45:25 +08:00
0b0d6421b2 [Frontend] Fix log message to use http vs https (#14774)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-14 09:21:09 -07:00
1140991a7b [V1] Fix vocab size calculation for structured output (#14826)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-14 09:18:38 -07:00
613c5bb945 [Bugfix] Fix Aria test loading (#14823)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-14 09:11:23 -07:00
fd8e055ffb [BugFix]: properly catch templating error when preprocess input (#13976)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-03-14 05:58:34 -07:00
ab93f1360f [VLM] Various cleanup and fixes (#14806)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-14 05:58:19 -07:00
40253bab44 [Bugfix][W8A8] fixed cutlass block fp8 binding (#14796) 2025-03-14 03:32:42 -07:00
c77620d22d [V1][Minor] Minor code cleanup for scheduling metrics (#14800)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-14 08:21:28 +00:00
989ecd2007 [Misc] Gemma3ForConditionalGeneration supports LoRA (#14797)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-14 01:07:30 -07:00
54cc46f3eb [Bugfix] Fix small typo in the example of Streaming delimiter (#14793) 2025-03-14 08:05:17 +00:00
601bd3268e [Misc] Clean up type annotation for SupportsMultiModal (#14794)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-14 00:59:56 -07:00
09269b3127 [BugFix]Fix performance serving benchmark when enable profiling (#14737)
Signed-off-by: wangli <wangli858794774@gmail.com>
2025-03-14 07:02:05 +00:00
27b50f1fe6 [Bugfix][Kernel][CPU] Fix num_tokens in CPU rotary embedding kernel (#14667)
Signed-off-by: Thien Tran <gau.nernst@yahoo.com.sg>
2025-03-13 23:47:49 -07:00
9532c49836 [Attention] MLA get rid of materialization (#14770)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-03-13 23:39:02 -07:00
0c2af17c76 [CI] Fix missing example model id in processor test (#14787)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-03-14 13:52:15 +08:00
a6e0d096dd [Feature] Add visionarena offline support for benchmark_throughput (#14654)
Signed-off-by: Jennifer Zhao <7443418+JenZhao@users.noreply.github.com>
Signed-off-by: Jennifer Zhao <ai.jenniferzhao@gmail.com>
Co-authored-by: Jennifer Zhao <7443418+JenZhao@users.noreply.github.com>
Co-authored-by: Jennifer Zhao <JenZhao@users.noreply.github.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2025-03-14 04:07:54 +00:00
d3d4956261 [Neuron] flatten test parameterization for neuron attention kernels (#14712) 2025-03-13 20:46:56 -07:00
4059adc31b [Misc][Minor] Simplify SamplingParams.__post_init__() (#14772)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-14 11:44:20 +08:00
f1f632d9ec [ci] Reduce number of tests in fastcheck (#14782) 2025-03-13 20:43:45 -07:00
95d680b862 [Bugfix][IPEX] Add VLLM_CPU_MOE_PREPACK to allow disabling MoE prepack when CPU does not support it (#14681)
Signed-off-by: Thien Tran <gau.nernst@yahoo.com.sg>
2025-03-13 20:43:18 -07:00
fb4c7f8ef0 [Kernel] [V1] Further optimizations to ROCm (Triton) Backend to better handle GQA. (#14431)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Jan van Lunteren <jvl@zurich.ibm.com>
Co-authored-by: Burkhard Ringlein <ngl@zurich.ibm.com>
Co-authored-by: Chih-Chieh Yang <chih.chieh.yang@ibm.com>
2025-03-13 20:42:27 -07:00
0b1cfa6180 [Kernel] LoRA - Enable CUDAGraphs for V1 (#14626)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-03-13 20:42:04 -07:00
32ef4983cd [V1] Temporarily disable FlashInfer Rejection Sampler (#14788)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-13 20:40:35 -07:00
ad19c8a003 [V1] Move OOM check into sampler run (#14728)
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-03-13 20:40:23 -07:00
2a602b055a forward fix PR 14245, restore build on ROCm 6.2 (#14709)
Signed-off-by: Jeff Daily <jeff.daily@amd.com>
2025-03-13 20:40:15 -07:00
7888e1d0a3 [V1] TPU - Enable prefix caching by default (#14773) 2025-03-13 20:40:05 -07:00
60c872d4b6 [Doc] Fix small typo in Transformers fallback (#14791)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-03-13 20:33:12 -07:00
3fb17d26c8 [Doc] Fix typo in documentation (#14783)
Signed-off-by: yasu52 <tsuguro4649@gmail.com>
2025-03-13 20:33:09 -07:00
d47807ba08 [Attention] Remove slow setattr in MLA (#14769)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-03-13 21:31:14 +00:00
02fcaa3d0a [V1] Detokenizer: Respect Stop Tokens + not include_stop_str_in_output (#14624)
Signed-off-by: Andrew Feldman <afeldman@neuralmagic.com>
2025-03-13 19:07:34 +00:00
8a4a2efc6f [V1][Core] using cached vocab_size for Structured Outputs (#14630)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-03-13 11:39:28 -07:00
8e9ffd37d6 [Misc] Clean up processor tests (#14771)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-13 18:25:37 +00:00
01b3fd0af7 [V1][Minor] Minor enhancements on scheduler (#14732)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-13 08:53:22 -07:00
f53a0586b9 [Bugfix] Fix prompt format of GLM4V (#14539)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-13 11:37:17 +00:00
b1cc4dfef5 [VLM] Support loading InternVideo2.5 models as original InternVLChatModel (#14738)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-13 03:10:02 -07:00
382403921f [VLM] Support pan-and-scan for Gemma3 multi-modal processor (#14672)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-03-13 02:23:12 -07:00
a73122de96 [Bugfix] fix benchmark moe (#14653)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-13 16:12:42 +08:00
bd44b812cb [CI/Build] Delete ultravox LoRA test (#14730)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-13 07:57:39 +00:00
55211b01e8 [Bugfix] Fix chunked prefill for GGUF (#14666)
Signed-off-by: SzymonOzog <szymon.ozog@aleph-alpha.com>
2025-03-13 07:19:03 +00:00
5d043c1685 [Quant] Bamba SupportsQuant (#14698)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-03-13 04:57:05 +00:00
36d1ccb286 [Quant] BartModel SupportsQuant (#14699)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-03-13 04:55:59 +00:00
1bc3b739c4 [V1][TPU] Add assertion on multi-step-scheduler (#14707)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
2025-03-12 21:37:58 -07:00
1bd32bc8dd [Config][Disaggregated] Add timeout configuration for the torch.store and add KVTransferConfig.kv_connector_extra_config (#14367)
Signed-off-by: Mathis Felardos <mathis@mistral.ai>
2025-03-12 20:15:20 -07:00
128bf75283 [BugFix][TritonMLA] Process weights after model loading for GGUF (#14555)
Signed-off-by: TianyuanWu <Tianyuan.Wu@amd.com>
2025-03-12 20:14:36 -07:00
a94a699c3f [ROCm][FP8] Fix for adjustments needed only for fnuz (#14689)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-03-12 20:14:04 -07:00
ab426ec9c0 Add ray[data] as tpu dependency (#14691)
Signed-off-by: <ricliu@google.com>
Signed-off-by: Richard Liu <ricliu@google.com>
2025-03-12 20:13:48 -07:00
165290d357 [bugfix] fixup warning message for plugged schedulers for v1 (#14700)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2025-03-12 20:12:13 -07:00
ce20124671 [release] Add force remove for TPU logs (#14697) 2025-03-12 22:35:18 +00:00
53be4a8634 [V1] Allow sliding window + prefix caching (#13069)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-12 11:21:19 -07:00
f5d3acd474 [BugFix][V1] Fix parallel sampling finishing/aborts (#14512)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-12 10:29:48 -07:00
916836bbfb [FEAT] [ROCm] [Embedding] Add encoder-only model support into ROCm Flash Attention to enable embedding models. (#14664)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-03-12 09:31:19 -07:00
d9f83d6206 [ROCm] Enable chunked prefill/paged attention in MLA on ROCm (#14316)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-03-12 15:51:20 +00:00
4a754fcf15 [Bugfix] Missing thumbnail from NVLM-D processor (#14633)
Signed-off-by: ameyanjarlekar <aanjarlekar@nvidia.com>
2025-03-12 08:50:49 -07:00
c0c25e25fa [Model] Add support for Gemma 3 (#14660)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Roger Wang <ywang@roblox.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Roger Wang <ywang@roblox.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-12 08:36:33 -07:00
45f3f3f59e [ROCm][Bugfix] Ensure that the moe_wna16_gemm kernel is not built on ROCm platforms. (#14629)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-03-12 08:00:28 -04:00
ff47aab056 [CPU] Upgrade CPU backend to torch-2.6 (#13381)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-03-12 10:41:13 +00:00
debd6bbf09 [Kernel] Add ModelOpt FP4 Checkpoint Support (#12520)
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
2025-03-12 05:13:11 +00:00
5c538c37b2 [V1][Bugfix][Spec Decode] Fix incorrect outputs in V1 speculative decoding due to batch indexing (#14645)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
2025-03-11 22:12:41 -07:00
e22ee1e7a2 [Kernel] GGUF MoE kernel (#14613)
Signed-off-by: SzymonOzog <szymon.ozog@aleph-alpha.com>
2025-03-12 03:33:27 +00:00
e392d85831 [Core] Refactor QKVCrossParallelLinear implementation to support BNB 4-bit quantization (#14545)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-11 20:12:52 -07:00
77a318bd01 [V1][Core] Support MistralTokenizer for Structured Output (#14625)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-03-12 10:40:09 +08:00
80e78d02ac [Model] Extend Ultravox to accept audio longer than 30s (#13631)
Signed-off-by: Farzad Abdolhosseini <farzad@fixie.ai>
2025-03-12 10:27:10 +08:00
4a42b9f5d6 [Doc] Update benchmarks README (#14646)
Signed-off-by: Jennifer Zhao <7443418+JenZhao@users.noreply.github.com>
Co-authored-by: Jennifer Zhao <7443418+JenZhao@users.noreply.github.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2025-03-11 19:23:04 -07:00
47532cd9f4 [core][V1] pluggable scheduler (#14466)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2025-03-12 01:15:15 +00:00
36e0c8f7da [Feature] Add vllm bench CLI (#13993)
Signed-off-by: Randy Chen <acad.randyjhc@gmail.com>
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2025-03-12 00:31:48 +00:00
9f583e360c [release] Add commands to clean up logs on TPU release node (#14642) 2025-03-12 00:14:50 +00:00
b706d898af [Bugfix][V1][PP] Only warmup sampler at last PP rank (#14643)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
2025-03-11 23:40:07 +00:00
863d315c86 [V1][TPU] Pad the block_table.shape[1] so the ragged paged attention can handle correctly (#14597) 2025-03-11 19:12:26 -04:00
d374f04a33 Fix run_tpu_test (#14641)
Signed-off-by: <ricliu@google.com>
Signed-off-by: Richard Liu <ricliu@google.com>
2025-03-11 21:14:33 +00:00
61a01b27a7 [V1] Delay all xgrammar usage until needed (#14616)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-11 20:21:33 +00:00
53056731fd fix some typos : supported_head_sizes (#14627) 2025-03-11 10:38:24 -07:00
4cbf286794 [V1] Remove cache from StructuredOutputManager (#14622)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-11 10:36:07 -07:00
c6e14a61ab [Hardware][Intel GPU] upgrade IPEX dependency to 2.6.10. (#14564)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-03-11 17:11:47 +00:00
07b4b7a37f [BugFix/Build] Fix sparse kernels not getting built on hopper (#14572)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-03-11 17:09:03 +00:00
07964e2f30 docs: Add documentation for s390x cpu implementation (#14198)
Signed-off-by: Dilip Gowda Bhagavan <dilip.bhagavan@ibm.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-11 17:02:17 +00:00
4bf82d4b90 [V1] Add regex structured output support with xgrammar (#14590)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-11 23:03:44 +08:00
9ab326713f Uninstall dependencies before installing requirements/tpu.txt (#14586)
Signed-off-by: <ricliu@google.com>
Signed-off-by: Richard Liu <ricliu@google.com>
2025-03-11 08:01:35 -07:00
af295e9b01 [Bugfix] Update --hf-overrides for Alibaba-NLP/gte-Qwen2 (#14609)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-11 07:59:43 -07:00
a1c8f3796c dynamic distpatch of fp8 kernels (#14245)
Signed-off-by: Jeff Daily <jeff.daily@amd.com>
2025-03-11 10:54:56 -04:00
08a1a1121d benchmarks: simplify test jsonschema (#14567)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-11 13:39:30 +00:00
1477ffc381 [VLM] Cleanup siglip legacy code and fix broken paligemma multimodal processor (#14602)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-11 11:27:36 +00:00
70b808fe1a [Perf]:Optimize qwen2-vl to reduce cudaMemcpyAsync (#14377)
Signed-off-by: cynthieye <987073381@qq.com>
2025-03-11 07:39:56 +00:00
63d635d179 [Misc] Correct deepseek-vl2 chat template (#14558)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-11 04:37:11 +00:00
1fc973c0b5 [V1][Core] Fix memory issue with logits & sampling (#14508)
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Varun Sundar Rabindranath <3337719+varun-sundar-rabindranath@users.noreply.github.com>
2025-03-11 04:03:41 +00:00
c982ac5722 [Bugfix] Fix FP16 overflow for DeepSeek V2 (#13232)
Signed-off-by: Yida Wu <yida.wu@amd.com>
2025-03-10 20:46:59 -07:00
4290b704ff [V1][PP] Do not block engine core when no requests to schedule (#14585)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
2025-03-10 19:48:24 -07:00
c91b64f749 [neuron] add reshape_and_cache (#14391) 2025-03-10 18:37:29 -07:00
d6123170d5 [Neuron] Add Neuron device communicator for vLLM v1 (#14085) 2025-03-10 18:37:04 -07:00
485afdd3cb [MISC][V1] Handle exception of current_platform.get_device_name() in arg_utils (#14379)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
2025-03-10 20:42:11 -04:00
90e88ab756 [Kernel] moe wna16 cuda kernel (#13321)
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-03-10 20:12:40 -04:00
04421dff8a [V1] Prevent xgrammar from breaking TPU support (#14575)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-10 23:06:19 +00:00
432d6dad15 Fix typo in benchmark_serving_structured_output.py (#14566)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-10 14:58:58 -07:00
5ff0d32580 [V1] LoRA - Add triton kernels for V1 (#13096)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-03-10 17:27:53 -04:00
0967110e42 [Minor] Update the tqdm bar for parallel sampling (#14571)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-10 14:23:48 -07:00
fb0acb6c72 [Perf] Improve MLA on V1 (#14540)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-03-10 12:06:58 -07:00
92b0ce2ac7 [Bugfix][v1] fixed llava-hf/llava-1.5-7b-hf is broken on V1 (#14554)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-10 18:24:51 +00:00
bc2d4473bf [Docs] Make installation URLs nicer (#14556)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-10 10:43:08 -07:00
3b352a2f92 Correct capitalisation: VLLM -> vLLM (#14562)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-10 16:36:21 +00:00
dea985aef0 [V1][Bugfix] Fix handing of second_per_grid_ts for Qwen2-VL & Qwen2.5-VL (#14548)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-03-10 16:03:11 +00:00
39be30351f Correct capitalisation: Github -> GitHub (#14561)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-10 15:53:33 +00:00
001a9c7b0d [Doc] Update PaliGemma note to a warning (#14565)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-10 15:02:28 +00:00
89cdaa83e7 [Kernel] Add more dtype support for GGUF kernels (#14043)
Signed-off-by: SzymonOzog <szymon.ozog@aleph-alpha.com>
Signed-off-by: SzymonOzog <szymon.ozog@gmail.com>
2025-03-10 07:30:04 -07:00
b0746fae3d [Frontend] support image embeds (#13955)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-03-10 12:36:03 +00:00
60a98b2de5 [Docs] Mention model_impl arg when explaining Transformers fallback (#14552)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-10 12:13:10 +00:00
460f553a6d [Misc] Add log information for handle_process_request. (#14130)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-03-10 08:40:50 +00:00
1253b15774 [Feature] Consolidate performance benchmark datasets (#14036)
Signed-off-by: Jennifer Zhao <7443418+JenZhao@users.noreply.github.com>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Jennifer Zhao <7443418+JenZhao@users.noreply.github.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-03-10 07:23:11 +00:00
dc74613fa2 [Bugfix] Wrong requirements path - rocm (#14527)
Signed-off-by: Martin Hoyer <mhoyer@redhat.com>
2025-03-10 02:49:46 +00:00
a21076ed3a [Misc] Ensure out-of-tree quantization method recognize by cli args (#14328)
Signed-off-by: liuyanyi <wolfsonliu@163.com>
2025-03-09 12:13:31 +00:00
212007b168 [Hardware][TPU] Fix the recompiling issue in logits processor after warmup (#14510)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-03-09 05:44:39 -04:00
fb16eea48b [Bugfix] Revert QKVCrossParallelLinear usage in Mllama to keep BNB quantization work (#14498)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-09 04:47:45 +00:00
73ae0b44e9 [Bugfix] Fix tqdm progress bar when SamplingParams.n > 1 (#12428)
Signed-off-by: Yuchen Yan <740987012@qq.com>
2025-03-08 20:14:53 -08:00
6d7f037748 [Feat] Support chunked prefill for LMCache connector (#14505)
Signed-off-by: YaoJiayi <120040070@link.cuhk.edu.cn>
2025-03-08 19:30:06 -08:00
10f7552789 [V1][TPU] Remove unnecessary padding for running on TPU. (#14467) 2025-03-08 21:56:04 -05:00
b0d541947a [Attention] Default to FlashMLA backend for MLA (#14451)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-03-08 18:18:39 -08:00
5f0b53c6ea Revert "[V1][Core] Fix memory issue with logits & sampling" (#14504)
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-03-08 17:43:37 -08:00
eb8b5eb183 [V1] Support bad_words in sampler (#13376)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-03-08 14:50:26 -08:00
9513290032 [Misc] Upgrade to Python 3.9 typing for additional directories (#14492)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-08 17:35:50 +00:00
0d5e73d30e Update CODEOWNERS for structured output (#14496)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-08 17:19:51 +00:00
609ef61fea [Bugfix] Fix profiling OOM and decouple encoder multimodal profiling (#14361)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-08 16:52:34 +00:00
db84f5eb3b [Bugfix] DeepSeek Accuracy (#14476)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-03-08 16:47:03 +00:00
206e2577fa Move requirements into their own directory (#12547)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-08 16:44:35 +00:00
e02883c400 [Misc] Don't run ruff at all on 3rd party libs (#14493)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-08 07:16:40 -08:00
9085aabd62 [benchmarks] Add option to use unique jsonschema for each request (#14457)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-08 06:36:39 -08:00
8d5aa466fb [V1][Core] Fix memory issue with logits & sampling (#13776)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-03-08 06:11:04 -08:00
0b7f06b447 [Misc] add use_tqdm_on_load to reduce logs (#14407)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-03-08 05:57:46 -08:00
03fe18ae0f [VLM] Add TP support for Phi-4-MM (#14453)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-08 05:57:14 -08:00
cb8bdfade2 [V1] TPU - Add tensor parallel support via Ray (#13618)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
2025-03-08 08:19:38 -05:00
33f227e16b [CI/Build] Use a fixed seed to avoid flaky tests (#14480)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-08 11:30:09 +00:00
cfd0ae8234 Add RLHF document (#14482)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-08 09:51:39 +00:00
7caff01a7b [Build/BugFix] Fix hopper 12.8 build (#14354)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-03-08 08:11:56 +00:00
be0b399d74 Add training doc signposting to TRL (#14439)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-08 07:35:07 +00:00
b8b0ccbd2d [Bugfix] Make the deviceprofiler include LoRA memory. (#14469)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-08 07:12:22 +00:00
c908a07f57 [Doc] Added QwQ-32B to the supported models list in the reasoning out… (#14479)
Signed-off-by: WangErXiao <863579016@qq.com>
2025-03-08 07:07:32 +00:00
7b6fd6e486 [Doc]add doc for Qwen models tool calling (#14478)
Signed-off-by: WangErXiao <863579016@qq.com>
2025-03-08 06:58:46 +00:00
47512b3200 Default to generation_config from model (#12622)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-08 14:46:15 +08:00
3b9c6c6947 [CI/Build] refactor: set timezone of container to UTC (#12888)
Signed-off-by: Roger Meier <r.meier@siemens.com>
2025-03-07 22:42:01 -08:00
4aae667668 [core] add extra_args to SamplingParams (#13300)
Signed-off-by: Aviv Keshet <akeshet@scaledcognition.com>
2025-03-08 14:41:18 +08:00
9f3bc0f58c [MISC][V1] Register process killing handler only in the main thread (#14380)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
2025-03-07 22:40:06 -08:00
980385f8c1 [Bugfix][Disaggregated] Add a check in send_kv_caches_and_hidden_states and fix the reshape of the KVCache (#14369)
Signed-off-by: Mathis Felardos <mathis@mistral.ai>
2025-03-07 22:39:31 -08:00
ca7a2d5f28 Revert "[Perf] Reduce MLA CPU overheads in V1 (#14384)" (#14471) 2025-03-07 22:18:53 -08:00
333681408f [Bugfix][V1] Handle MLA in kv_cache_interface (#14462)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-03-07 22:18:25 -08:00
ef64044079 [V1] Prompt logprobs + APC compatibility; prompt logprobs reqs cannot fill APC (#13949) 2025-03-08 01:48:12 +00:00
66e16a038e [Bugfix] Fix torch_xla which can't handle None seed introduced in #14274 (#14459)
Signed-off-by: Yarong Mu <ymu@google.com>
2025-03-07 23:17:04 +00:00
e1f0835ae0 [V1][Metrics] Fix traceback with preemptions+LoRA (#14220)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-03-07 15:36:16 -05:00
8ed5421aaa [V1] Eagerly remove finished requests from the batch (#14388)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-07 10:56:00 -08:00
c6359e8ca6 [v1] torch.compile integration explanation (#14437)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-08 01:55:50 +08:00
952a074980 [Misc] Add Phi4-MM example (#14343)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-07 17:28:52 +00:00
d0feea31c7 [Kernel] optimize performance of gptq marlin kernel when n is small (#14138)
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
2025-03-07 11:53:38 -05:00
58abe35455 [Benchmarks] Make detokenization optional in benchmark scripts (#11697)
Signed-off-by: Jeremy Arnold <Jeremy.Arnold@amd.com>
2025-03-07 08:09:00 -08:00
f7ebad2307 [Doc] Update prefix_caching.md to match the example image (#14420) 2025-03-07 15:29:00 +00:00
80e9afb5bc [V1][Core] Support for Structured Outputs (#12388)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-03-07 07:19:11 -08:00
1e3598edeb Use the optimized block sizes after tuning the kernel. (#14329) 2025-03-07 13:25:13 +00:00
f7a6bd0fa1 Fix missing kv_caches and attn_metadata in OpenVINOCausalLM (#14271)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-07 12:30:42 +00:00
0ca3b8e01c [BUGFIX] Skip tokenization support for throughput benchmark (#12712)
Signed-off-by: root <root@banff-cyxtera-s73-5.ctr.dcgpu>
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: root <root@banff-cyxtera-s73-5.ctr.dcgpu>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
2025-03-07 02:51:47 -08:00
cc10281498 [Misc] Set default value of seed to None (#14274)
Signed-off-by: மனோஜ்குமார் பழனிச்சாமி <smartmanoj42857@gmail.com>
2025-03-07 10:40:01 +00:00
05fb6718f0 [Bugfix] Clean up multi-modal processors (#14417)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-07 10:33:38 +00:00
12c29a881f [Bugfix] Further clean up LoRA test (#14422)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-07 10:30:55 +00:00
70da0c0748 correct wrong markdown syntax (#14414)
Signed-off-by: vincent-pli <justdoit.pli@gmail.com>
2025-03-07 08:01:18 +00:00
c1588a2c94 [GH] Auto-apply multi-modality label to relevant PRs (#14402)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-07 15:26:32 +08:00
8ca7a71df7 OpenVINO: added CPU-like conditions (#14338)
Signed-off-by: Ilya Lavrenov <ilya.lavrenov@intel.com>
2025-03-06 22:24:49 -08:00
63137cd922 [Build] Add nightly wheel fallback when latest commit wheel unavailable (#14358)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-06 22:10:57 -08:00
ddd1ef66ec [Bugfix] Fix JambaForCausalLM LoRA (#14370)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-06 22:05:47 -08:00
e5e03c2c1b [BugFix] Illegal Memory Access in the blockwise cutlass fp8 GEMMs (#14396) 2025-03-06 21:56:06 -08:00
e1744502c2 [FP8] Refactor apply_fp8_linear and apply_fp8_linear_generic into an object (#14390)
Signed-off-by: luka <luka@neuralmagic.com>
2025-03-07 05:20:16 +00:00
dae6896977 [Perf] Reduce MLA CPU overheads in V1 (#14384)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-03-06 19:59:14 -08:00
c34eeec58d [Bugfix] Correctly call cudaProfilerStop in benchmarks script (#14183)
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
2025-03-07 00:42:49 +00:00
ad60bbb2b2 [Doc] Fix a typo (#14385) 2025-03-06 16:31:52 -08:00
0578e5a462 [Hardware][TPU]Enable ragged paged attention kernel and resolve recompilation issue (#14310)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-03-06 23:31:05 +00:00
04222984f8 [Docs] Add nsight guide to profiling docs (#14298)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-03-06 14:19:58 -08:00
6832707e90 [V1][Bugfix] Standardize quantized kv cache rejection for attention backends (#14221)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-03-06 14:18:29 -08:00
6b2ef5cd17 [Bug] Fix Attention when ignored in by quant_method (#14313)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-03-06 14:18:06 -08:00
958adce478 [Bugfix] Fix use_direct_call condition in FusedMoE layer for (#14382)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-03-06 14:17:21 -08:00
99b0915d3b [Kernel] Add needs_fixed_stride_order tag to most GEMMs (#14306)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-03-06 14:17:09 -08:00
8ca2b21c98 [CI] Disable spawn when running V1 Test (#14345)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-03-06 21:52:46 +00:00
d9292786e1 [CI/Build] Use uv python for docker rather than ppa:deadsnakes/ppa (#13569)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-03-06 16:08:36 -05:00
cc2f9b32c8 [Distributed] Add enable_expert_parallel arg (#14305)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-03-06 18:54:45 +00:00
cd579352bf [V1] Do not detokenize if sampling param detokenize is False (#14224)
Signed-off-by: Himanshu Jaju <hj@mistral.ai>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-03-06 10:40:24 -08:00
9f1710f1ac Fix mla prefill context performance (#13897)
Signed-off-by: ZhongYingMatrix <zhongyingmatrix@gmail.com>
2025-03-06 09:35:49 -08:00
e642ec962c Add authors to license header. (#14371)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Burkhard Ringlein <ngl@zurich.ibm.com>
Co-authored-by: Jan van Lunteren <jvl@zurich.ibm.com>
2025-03-06 08:43:09 -08:00
ada19210a3 Adding cpu inference with VXE ISA for s390x architecture (#12613)
Signed-off-by: Dilip Gowda Bhagavan <dilip.bhagavan@ibm.com>
Signed-off-by: Rishika Kedia <rishika.kedia@in.ibm.com>
Co-authored-by: Rishika Kedia <rishika.kedia@in.ibm.com>
2025-03-06 08:40:53 -08:00
bf0560bda9 Reinstate best_of for V0 (#14356)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-06 08:34:22 -08:00
151b08e0fe [RLHF] use worker_extension_cls for compatibility with V0 and V1 (#14185)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-07 00:32:46 +08:00
81b2f4a45f [Doc] Fix date typo in README.md (#14366)
Signed-off-by: Jitse Klomp <jitse.klomp@conclusionxforce.nl>
2025-03-06 08:29:57 -08:00
82551ad616 [Core] Don't use cache during multi-modal profiling (#14336) 2025-03-06 08:03:31 -08:00
caac5c2e59 [Bugfix][Core] fix abort_seq_group and memory leak when n>1 (#14326)
Signed-off-by: courage17340 <courage17340@163.com>
2025-03-06 23:59:32 +08:00
6bd1dd9d26 [Kernel] [V1] Improved performance for V1 Triton (ROCm) backend (#14152) 2025-03-06 07:39:16 -08:00
4f27044aab [Doc] Correct beam_search using in generative_models.md (#14363) 2025-03-06 15:37:10 +00:00
0ddc991f5c [Doc] Update reasoning with stream example to use OpenAI library (#14077)
Signed-off-by: liuyanyi <wolfsonliu@163.com>
2025-03-06 13:20:37 +00:00
fa82b93853 [Frontend][Docs] Transcription API streaming (#13301)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-03-06 10:39:35 +00:00
69ff99fdcd [Core] Optimizing cross-attention QKVParallelLinear computation (#12325)
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: NickLucche <nick@nlucches-4xa100.c.openshift-330514.internal>
Co-authored-by: NickLucche <nick@nlucches-4xa100.c.openshift-330514.internal>
2025-03-06 09:37:26 +00:00
5d802522a7 [V1][VLM][Pixtral-HF] Support Pixtral-HF on V1 (#14275)
Signed-off-by: Linkun Chen <github@lkchen.net>
2025-03-06 08:58:41 +00:00
1769928079 [Model] Update Paligemma multimodal processing with PromptUpdate (#14015)
Signed-off-by: Kyle Huang <kylhuang@nvidia.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-03-06 08:31:38 +00:00
ed6ea06577 [Hardware] Update the flash attn tag to support Blackwell (#14244) 2025-03-05 22:01:37 -08:00
5ee10e990d [Bugfix][CI] ALiBi test case in xformers multi_query_kv_attention (#11301) 2025-03-05 20:00:53 -08:00
3dbd2d813a [V1] LoRA - Enable more V1 tests (#14315)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-03-06 11:55:42 +08:00
f5f7f00cd9 [Bugfix][Structured Output] Support outlines engine with reasoning outputs for DeepSeek R1 (#14114) 2025-03-06 03:49:20 +00:00
abcc61e0af [misc] Mention ray list nodes command to troubleshoot ray issues (#14318)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-03-06 02:00:36 +00:00
f6bb18fd9a [BugFix] MLA + V1, illegal memory access and accuracy issues (#14253)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-03-05 17:10:13 -08:00
71eaf8969b [Build] Add UV_HTTP_TIMEOUT to avoid timeout during installation (#13850)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-03-05 17:09:29 -08:00
ca100c90fe Add benchmark for DeepGEMM and vLLM Block FP8 Dense GEMM (#13917)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-03-05 17:08:51 -08:00
ffad94397d [CI/Build] Use spawn multiprocessing mode for V1 test pipeline (#14243)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-05 17:08:02 -08:00
4dacaa4a83 [BugFix] Fix prefix caching V0 MLA (#14255)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Co-authored-by: Ying Zhong <zhongyingmatrix@gmail.com>
2025-03-05 17:07:42 -08:00
a7ea35aa67 [Bugfix] Remove num_tokens_across_dp (#14302)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-03-05 23:55:55 +00:00
1e3e76b6cc [Bugfix] Fix DeepSeek MTP crash when using TP1ModelRunner with CUDA graph due to shape mismatch (#14237)
Signed-off-by: pyc96 <pychen96@gmail.com>
2025-03-05 22:22:40 +00:00
53ea6ad830 [V1][Easy] Add empty allowed_token_ids in the v1 sampler test (#14308)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-03-05 21:41:18 +00:00
1b7624bf5c [misc] Add FlashMLA as a new option of VLLM_ATTENTION_BACKEND env (#14267) 2025-03-05 21:28:50 +00:00
ac60dc7fe1 [V1][BugFix] Fix for mixed top_k batch (#14301)
Signed-off-by: Nick Hill <nhill@redhat.com>


Co-authored-by: Ye Cao <caoye.cao@alibaba-inc.com>
2025-03-05 20:43:04 +00:00
a4f1ee35d6 Deprecate best_of Sampling Parameter in anticipation for vLLM V1 (#13997)
Signed-off-by: vincent-4 <vincentzhongy+githubvincent4@gmail.com>
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Brayden Zhong <b8zhong@uwaterloo.ca>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-05 20:22:43 +00:00
a32c8669ca [V1][Minor] Remove obsolete FIXME comment (#14304)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-05 11:59:23 -08:00
ca2ca8de57 [Docs] Add Meta Slides (#14297)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-03-05 08:30:23 -08:00
f71b00a19e [Bugfix] Fix broken vision language example (#14292)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-05 15:57:10 +00:00
8f808cf86e prefix_caching.md: Fixed typo (#14293)
Signed-off-by: Daivid Savernin-Frenk <daivid.frank@TurboNext.ai>
2025-03-05 15:43:13 +00:00
7bab4bb048 [Misc] Add Qwen2MoeForCausalLM moe tuning support (#14276)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-05 23:11:29 +08:00
e17e4488bd [LoRA] Remove linear hack outside transformers backend (#14177)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-03-05 15:06:28 +00:00
257e200a25 [V1][Frontend] Add Testing For V1 Runtime Parameters (#14159)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
2025-03-05 14:18:55 +00:00
47d4a7e004 Small update for external_launcher backend docs (#14288) 2025-03-05 21:30:00 +08:00
7f89a594dd [Doc] [3/N] Refer code examples for common cases in dev multimodal processor (#14278)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-05 12:29:50 +00:00
961644e6a8 [Doc] Update nginx guide: remove privileged from vllm container run and add target GPU ID (#14217)
Signed-off-by: Iacopo Poli <iacopo@lighton.ai>
2025-03-05 11:44:10 +00:00
8d6cd32b7b [Bugfix][V1] Fix allowed_token_ids for v1 Sampler (#14169)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-03-05 08:49:44 +00:00
ec79b67c77 [Misc][V1] Avoid using envs.VLLM_USE_V1 in mm processing (#14256)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-03-05 07:37:16 +00:00
32985bed7c [Frontend] Allow return_tokens_as_token_ids to be passed as a request param (#14066)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
2025-03-05 06:30:40 +00:00
dae9ec464c Temporarily disable test_awq_gemm_opcheck (#14251)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-03-05 06:10:35 +00:00
6eaf93020d [platforms] improve rocm debugging info (#14257) 2025-03-04 21:32:18 -08:00
72c62eae5f [V1] EP/TP MoE + DP Attention (#13931) 2025-03-04 21:27:26 -08:00
0a995d5434 [Model] New model support for Phi-4-multimodal-instruct (#14119) 2025-03-04 20:57:01 -08:00
ade3f7d988 [V1][Bugfix] Do not reset prefix caching metrics (#14235) 2025-03-05 04:39:13 +00:00
0df25101d6 [Bugfix] Fix gptq_marlin for deepseek-v3 (#13750)
Signed-off-by: dangshunya <dangshunya@baichuan-inc.com>
Co-authored-by: dangshunya <dangshunya@baichuan-inc.com>
2025-03-05 12:25:53 +08:00
e123aafdf0 Disable GPTQ AllSpark kernels for CUDA Compiler < 12.0 (#14157)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-03-05 12:25:24 +08:00
5b143d33be Moved numba from common requirements to cuda/rocm specific requirements (#14199)
Signed-off-by: Nishidha Panpaliya <nishidha.panpaliya@partner.ibm.com>
2025-03-05 12:25:00 +08:00
eb59b5a6cb [misc] announce china meetup (#14248)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-05 10:33:50 +08:00
fbfc3ee37e [V1][TPU] TPU multimodal model support for ragged attention (#14158)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-03-04 19:58:48 -05:00
3e1d223626 [ROCm] Disable a few more kernel tests that are broken on ROCm (#14145)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-03-04 23:37:55 +00:00
4f5b059f14 Clean up unused padding_idx variables across many model definitions (#13240)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-03-04 21:27:00 +00:00
288ca110f6 [Security] Serialize using safetensors instead of pickle in Mooncake Pipe (#14228)
Signed-off-by: KuntaiDu <kuntai@uchicago.edu>
2025-03-04 21:10:32 +00:00
c2bd2196fc [v1][Metrics] Add design doc (#12745)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2025-03-04 20:36:55 +00:00
550c7ba3dc [Docs] Update Dockerfile dependency image (#14215)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-03-04 20:22:11 +00:00
e5b2f1601a [Frontend] Do prompt_logprobs clamping for chat as well as completions (#14225)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-04 20:13:06 +00:00
9badee53de Fix performance when --generation-config is not None (#14223)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-04 20:59:22 +01:00
beebf4742a [TPU][Profiler] Support start_profile/stop_profile in TPU worker (#13988)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-03-04 14:40:06 -05:00
f89978ad7c add cutlass support for blackwell fp8 gemm (#13798) 2025-03-04 07:55:07 -08:00
b3cf368d79 [V1][Molmo] Fix get_multimodal_embeddings() in molmo.py (#14161) 2025-03-04 15:43:59 +00:00
c8525f06fc [V0][Metrics] Deprecate some questionable request time metrics (#14135)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-03-04 15:11:33 +00:00
5db6b2c961 [V1][BugFix] Fix remaining sync engine client shutdown errors/hangs (#13869)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-04 15:06:47 +00:00
6247bae6c6 [Bugfix] Restrict MacOS CPU detection (#14210)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-03-04 22:25:27 +08:00
3610fb4930 [doc] add "Failed to infer device type" to faq (#14200)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-04 20:47:06 +08:00
71c4b40562 [sleep mode] error out with expandable_segments (#14189)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-04 18:54:19 +08:00
ac65bc92df [platform] add debug logging during inferring the device type (#14195)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-04 18:39:16 +08:00
f78c0be80a Fix benchmark_moe.py tuning for CUDA devices (#14164) 2025-03-03 21:11:03 -08:00
66233af7b6 Use math.prod instead of np.prod for trivial ops (#14142) 2025-03-03 21:09:22 -08:00
bf13d40972 [core] Pass all driver env vars to ray workers unless excluded (#14099)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-03-04 11:44:17 +08:00
989f4f430c [Misc] Remove lru_cache in NvmlCudaPlatform (#14156)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
2025-03-04 11:09:34 +08:00
bb5b640359 [core] moe fp8 block quant tuning support (#14068)
Signed-off-by: Divakar Verma <divakar.verma@amd.com>
2025-03-04 01:30:23 +00:00
c060b71408 [Model] Add support for GraniteMoeShared models (#13313)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-03-04 08:04:52 +08:00
79e4937c65 [v1] Add comments to the new ragged paged attention Pallas kernel (#14155)
Signed-off-by: Xiongfei Wei <isaacwxf23@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-03-03 23:00:55 +00:00
cd1d3c3df8 [Docs] Add GPTQModel (#14056)
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-03-03 21:59:09 +00:00
19d98e0c7d [Kernel] Optimize moe intermediate_cache usage (#13625)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-03-03 16:29:53 -05:00
2b04c209ee [Bugfix] Allow shared_experts skip quantization for DeepSeekV2/V3 (#14100)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-03-03 14:20:24 -07:00
ae122b1cbd [WIP][[V1][Metrics] Implement max_num_generation_tokens, request_params_n, and request_params_max_tokens metrics (#14055)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-03-03 19:04:45 +00:00
872db2be0e [V1] Simplify stats logging (#14082)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-03 10:34:14 -08:00
2dfdfed8a0 [V0][Metrics] Deprecate some KV/prefix cache metrics (#14136)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-03-03 18:25:46 +00:00
c41d27156b [V0][Metrics] Remove unimplemented vllm:tokens_total (#14134)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-03-03 17:50:22 +00:00
91373a0d15 Fix head_dim not existing in all model configs (Transformers backend) (#14141)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-03 17:48:11 +00:00
848a6438ae [ROCm] Faster Custom Paged Attention kernels (#12348) 2025-03-03 09:24:45 -08:00
98175b2816 Improve the docs for TransformersModel (#14147)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-03 17:03:05 +00:00
4167252eaf [V1] Refactor parallel sampling support (#13774)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-03-03 08:15:27 -08:00
f35f8e2242 [Build] Make sure local main branch is synced when VLLM_USE_PRECOMPILED=1 (#13921)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
2025-03-03 16:43:14 +08:00
b87c21fc89 [Misc][Platform] Move use allgather to platform (#14010)
Signed-off-by: Mengqing Cao <cmq0113@163.com>
2025-03-03 15:40:04 +08:00
e584b85afd [Misc] duplicate code in deepseek_v2 (#14106) 2025-03-03 14:10:11 +08:00
09e56f9262 [Bugfix] Explicitly include "omp.h" for MacOS to avoid installation failure (#14051) 2025-03-02 17:35:01 -08:00
cf069aa8aa Update deprecated Python 3.8 typing (#13971) 2025-03-02 17:34:51 -08:00
bf33700ecd [v0][structured output] Support reasoning output (#12955)
Signed-off-by: Ce Gao <cegao@tensorchord.ai>
2025-03-02 14:49:42 -05:00
bc6ccb9878 [Doc] Source building add clone step (#14086)
Signed-off-by: qux-bbb <1147635419@qq.com>
2025-03-02 10:59:50 +00:00
82fbeae92b [Misc] Accurately capture the time of loading weights (#14063)
Signed-off-by: Jun Duan <jun.duan.phd@outlook.com>
2025-03-01 17:20:30 -08:00
cc5e8f6db8 [Model] Add LoRA support for TransformersModel (#13770)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-02 09:17:34 +08:00
d54990da47 [v1] Add __repr__ to KVCacheBlock to avoid recursive print (#14081) 2025-03-01 20:46:02 +00:00
b9f1d4294e [v1][Bugfix] Only cache blocks that are not in the prefix cache (#14073) 2025-03-01 08:25:54 +00:00
b28246f6ff [ROCm][V1][Bugfix] Add get_builder_cls method to the ROCmAttentionBackend class (#14065)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-03-01 07:18:32 +00:00
3b5567a209 [V1][Minor] Do not print attn backend twice (#13985)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-01 07:09:14 +00:00
fdcc405346 [Doc] Consolidate whisper and florence2 examples (#14050) 2025-02-28 22:49:15 -08:00
8994dabc22 [Documentation] Add more deployment guide for Kubernetes deployment (#13841)
Signed-off-by: KuntaiDu <kuntai@uchicago.edu>
Signed-off-by: Kuntai Du <kuntai@uchicago.edu>
2025-03-01 06:44:24 +00:00
02296f420d [Bugfix][V1][Minor] Fix shutting_down flag checking in V1 MultiprocExecutor (#14053) 2025-02-28 22:31:01 -08:00
6a92ff93e1 [Misc][Kernel]: Add GPTQAllSpark Quantization (#12931) 2025-02-28 22:30:59 -08:00
6a84164add [Bugfix] Add file lock for ModelScope download (#14060)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-01 06:10:28 +00:00
f64ffa8c25 [Docs] Add pipeline_parallel_size to optimization docs (#14059)
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
2025-03-01 05:43:54 +00:00
bd56c983d6 [torch.compile] Fix RMSNorm + quant fusion in the non-cutlass-fp8 case, rename RedundantReshapesPass to NoopEliminationPass (#10902)
Signed-off-by: luka <luka@neuralmagic.com>
2025-02-28 16:20:11 -07:00
084bbac8cc [core] Bump ray to 2.43 (#13994)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-02-28 21:47:44 +00:00
28943d36ce [v1] Move block pool operations to a separate class (#13973)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2025-02-28 20:53:31 +00:00
b526ca6726 Add RELEASE.md (#13926)
Signed-off-by: atalman <atalman@fb.com>
2025-02-28 12:25:50 -08:00
e7bd944e08 [v1] Cleanup the BlockTable in InputBatch (#13977)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-02-28 19:03:16 +00:00
c3b6559a10 [V1][TPU] Integrate the new ragged paged attention kernel with vLLM v1 on TPU (#13379)
Signed-off-by: Xiongfei Wei <isaacwxf23@gmail.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-02-28 11:01:36 -07:00
4be4b26cb7 Fix entrypoint tests for embedding models (#14052) 2025-02-28 08:56:44 -08:00
2aed2c9fa7 [Doc] Fix ROCm documentation (#14041)
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
2025-02-28 16:42:07 +00:00
9b61dd41e7 [Bugfix] Initialize attention bias on the same device as Query/Key/Value for QwenVL Series (#14031) 2025-02-28 07:36:08 -08:00
f7bee5c815 [VLM][Bugfix] Enable specifying prompt target via index (#14038) 2025-02-28 07:35:55 -08:00
e0734387fb [Bugfix] Fix MoeWNA16Method activation (#14024) 2025-02-28 15:22:42 +00:00
f58f8b5c96 Update AutoAWQ docs (#14042)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-02-28 15:20:29 +00:00
b3f7aaccd0 [V1][Minor] Restore V1 compatibility with LLMEngine class (#13090) 2025-02-28 00:52:25 -08:00
b91660ddb8 [Hardware][Intel-Gaudi] Regional compilation support (#13213) 2025-02-28 00:51:49 -08:00
76c89fcadd Use smaller embedding model when not testing model specifically (#13891) 2025-02-28 00:50:43 -08:00
b9e41734c5 [Bugfix][Disaggregated] patch the inflight batching on the decode node in SimpleConnector to avoid hangs in SimpleBuffer (nccl based) (#13987)
Signed-off-by: Mathis Felardos <mathis@mistral.ai>
2025-02-28 07:53:45 +00:00
1088f06242 [Doc] Move multimodal Embedding API example to Online Serving page (#14017)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-02-28 07:12:04 +00:00
73e0225ee9 [Bugfix] Check that number of images matches number of <|image|> tokens with mllama (#13911)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2025-02-28 04:00:45 +00:00
6c85da3a18 [V1]SupportsV0Only protocol for model definitions (#13959)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-02-27 20:02:15 -05:00
67fc426845 [Misc] Print FusedMoE detail info (#13974) 2025-02-27 18:53:13 -05:00
9804145cac [Model][Speculative Decoding] Expand DeepSeek MTP code to support k > n_predict (#13626)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
2025-02-27 15:28:08 -08:00
2e94b9cfbb [Attention] Flash MLA for V1 (#13867)
Signed-off-by: Yang Chen <yangche@fb.com>
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Yang Chen <yangche@fb.com>
2025-02-27 23:03:41 +00:00
8294773e48 [core] Perf improvement for DSv3 on AMD GPUs (#13718)
Signed-off-by: qli88 <qiang.li2@amd.com>
2025-02-27 22:14:30 +00:00
cd813c6d4d [V1][Minor] Minor cleanup for GPU Model Runner (#13983)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-27 13:11:40 -08:00
38acae6e97 [ROCm] Fix the Kernels, Core, and Prefix Caching AMD CI groups (#13970)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-02-27 20:31:47 +00:00
a2dd48c386 [VLM] Deprecate legacy input mapper for OOT multimodal models (#13979)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-02-27 19:14:55 +00:00
126f6beeb4 Bump azure/setup-helm from 4.2.0 to 4.3.0 (#13742)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-02-27 19:04:10 +00:00
58d1b2aa77 [Attention] MLA support for V1 (#13789)
Signed-off-by: Yang Chen <yangche@fb.com>
2025-02-27 13:14:17 -05:00
f1579b229d [VLM] Generalized prompt updates for multi-modal processor (#13964)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-02-27 17:44:25 +00:00
7864875879 [Bugfix] Fix qwen2.5-vl overflow issue (#13968)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-02-27 17:30:39 +00:00
1dd422b64a Update LMFE version to v0.10.11 to support new versions of transforme… (#13930) 2025-02-27 17:16:12 +00:00
06c8f8d885 [bugfix] Fix profiling for RayDistributedExecutor (#13945)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-02-28 01:01:21 +08:00
5677c9bb3e Deduplicate .pre-commit-config.yaml's exclude (#13967)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-02-27 16:27:47 +00:00
512d77d582 Update quickstart.md (#13958) 2025-02-27 16:05:11 +00:00
7f0be2aa24 [Model] Deepseek GGUF support (#13167) 2025-02-27 02:08:35 -08:00
edf309ebbe [VLM] Support multimodal inputs for Florence-2 models (#13320) 2025-02-27 02:06:41 -08:00
788f284b53 Fix test_block_fp8.py test for MoE (#13915)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-02-27 18:00:00 +08:00
4b1d141f49 [PP] Correct cache size check (#13873)
Signed-off-by: Yang Zheng <zhengy.gator@gmail.com>
2025-02-27 17:47:29 +08:00
10c3b8c1cf [Misc] fixed 'required' is an invalid argument for positionals (#13948)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-02-27 09:06:49 +00:00
a7f37314b7 [CI/Build] Add examples/ directory to be labelled by mergify (#13944)
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
2025-02-27 08:24:11 +00:00
cd711c48b2 [V1][Metrics] Handle preemptions (#13169) 2025-02-26 20:04:59 -08:00
378b3ef6f8 [ROCm][V1] Update reshape_and_cache to properly work with CUDA graph padding (#13922) 2025-02-26 20:04:12 -08:00
c9944acbf9 [misc] Rename Ray ADAG to Compiled Graph (#13928) 2025-02-26 20:03:28 -08:00
ca377cf1b9 Use CUDA 12.4 as default for release and nightly wheels (#12098) 2025-02-26 19:06:37 -08:00
a31614e386 [ROCm][Quantization][Kernel] Use FP8 FNUZ when OCP flag is 0 or undefined (#13851)
Signed-off-by: Hollow Man <hollowman@opensuse.org>
2025-02-27 10:39:10 +08:00
f95903909f [Kernel] FlashMLA integration (#13747)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-02-27 10:35:08 +08:00
b382a7f28f [BugFix] Make FP8 Linear compatible with torch.compile (#13918)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-26 13:48:55 -08:00
4cb6fa0a9c [Bugfix] Backend option to disable xgrammar any_whitespace (#12744)
Signed-off-by: Wallas Santos <wallashss@ibm.com>
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
Co-authored-by: Joe Runde <Joseph.Runde@ibm.com>
2025-02-26 10:52:34 -08:00
d08b285adf [Misc] fixed qwen_vl_utils parameter error (#13906) 2025-02-26 08:31:53 -08:00
b27122acc2 [TPU] use torch2.6 with whl package (#13860)
Signed-off-by: Chenyaaang <llccyy1212@gmail.com>
2025-02-26 08:18:54 -05:00
934bb99c71 [Bugfix] Update expected token counts for Ultravox tests (#13895) 2025-02-26 04:56:50 -08:00
3f808cc044 [Bugfix] Do not crash V0 engine on input errors (#13101)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2025-02-26 19:07:29 +08:00
ec8a5e5386 [Misc]: Add support for goodput on guided benchmarking + TPOT calculation refactor (#13736)
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
2025-02-26 19:06:47 +08:00
215bf150a6 [Bugfix] Handle None parameters in Mistral function calls. (#13786) 2025-02-26 03:06:21 -08:00
0ecdd98031 Add comments on accessing kv_cache and attn_metadata (#13887)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-02-26 18:41:02 +08:00
7b700ec8c8 [Bugfix] Add test example for Ultravox v0.5 (#13890) 2025-02-26 02:31:43 -08:00
7ca1da020f [Misc] Fix input processing for Ultravox (#13871) 2025-02-25 23:56:34 -08:00
5157338ed9 [Misc] Improve LoRA spelling (#13831) 2025-02-25 23:43:01 -08:00
e206b54331 [v0][Core] Use xgrammar shared context to avoid copy overhead for offline engine (#13837)
Signed-off-by: Seth Kimmel <seth.kimmel3@gmail.com>
2025-02-26 14:58:24 +08:00
1d35662e6d [ROCm] Disable chunked prefill/prefix caching when running MLA on non-cuda platforms (#13844)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-02-26 14:56:58 +08:00
e656f638de [Doc] fix the incorrect module path of tensorize_vllm_model (#13863) 2025-02-25 22:56:19 -08:00
145944cb94 Improve pipeline partitioning (#13839) 2025-02-25 18:53:56 -08:00
094b7d9496 [Kernel][Build/CI] Bump CUTLASS to 3.8 and add initializers for cutlass epilogues (#13797) 2025-02-25 18:52:03 -08:00
e1fe7591f2 [Misc]Code Cleanup (#13859)
Signed-off-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2025-02-26 10:44:30 +08:00
5629f26df7 [V1][Spec Decode] Change Spec Decode Rejection Sampling API (#13729) 2025-02-25 18:14:48 -08:00
9ba28043b5 [misc] Show driver IP info when Ray fails to allocate driver worker (#13858)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-02-26 09:53:43 +08:00
24679788ed DeepSeek V2/V3/R1 only place lm_head on last pp rank (#13833)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-02-26 01:24:57 +00:00
07c4353057 [Model] Support Grok1 (#13795)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-02-26 01:07:12 +00:00
34e3494e70 Fix failing MyGemma2Embedding test (#13820)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-02-25 12:33:03 -08:00
f75aa72732 [Neuron] Add custom_ops for neuron backend (#13246)
Signed-off-by: Liangfu Chen <liangfc@amazon.com>
Co-authored-by: George Novack <gnovack@amazon.com>
Co-authored-by: Aoyu Zhang <aoyuzhan@amazon.com>
2025-02-25 11:47:49 -08:00
340e39e387 Fix string parsing error (#13825) 2025-02-25 08:20:29 -08:00
f4133ce4e5 [Bugfix] Revert inspection code in #13743 (#13832)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-02-26 00:18:50 +08:00
6522d55b6f Fix /v1/audio/transcriptions Bad Request Error (#13811) 2025-02-25 06:03:33 -08:00
6ff518626c [Bugfix] Fix deepseek-vl2 inference with more than 2 images (#13818) 2025-02-25 06:03:02 -08:00
fa82074167 [Bugfix] Flush TunableOp results before worker processes are destroyed. (#13623)
Signed-off-by: Nichols A. Romero <nick.romero@amd.com>
2025-02-25 11:08:20 +00:00
75e9d49796 [Bugfix] Initialize attention bias on the same device as Query/Key/Value (#13468) 2025-02-25 02:13:09 -08:00
32c3b6bfd1 [Misc]Clarify Error Handling for Non-existent Model Paths and HF Repo IDs (#13724)
Signed-off-by: Chen-0210 <chenjincong11@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-02-25 10:12:19 +00:00
37b6cb4985 [CI/Build] Fix V1 LoRA failure (#13767) 2025-02-25 02:01:15 -08:00
aabeb2688f [ROCm][Quantization][Kernel] Using HIP FP8 header (#12593) 2025-02-25 00:39:59 -08:00
2f42a4888c [Feature] Support KV cache offloading and disagg prefill with LMCache connector. (#12953) 2025-02-25 00:38:42 -08:00
3173c3b34e [misc] Clean up ray compiled graph type hints (#13731) 2025-02-25 00:37:08 -08:00
2d87d7d1ac [Bugfix] Modify modelscope api usage in transformer_utils (#13807) 2025-02-25 00:36:07 -08:00
aab392774b [Core] xgrammar: Expand list of unsupported jsonschema keywords (#13783)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-25 08:21:25 +00:00
6724e79164 [Misc] Check that the model can be inspected upon registration (#13743) 2025-02-25 00:18:19 -08:00
03f48b3db6 [Core] LoRA V1 - Add add/pin/list/remove_lora functions (#13705) 2025-02-25 00:18:02 -08:00
4d251ad00e Fix CompressedTensorsWNA16MoE with grouped scales (#13769) 2025-02-25 00:17:14 -08:00
18e505930d [Bugfix] Support MLA for CompressedTensorsWNA16 (#13725)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-02-25 06:10:31 +00:00
4a8cfc7551 [Bugfix] Fix deepseek-v2 error: "missing 1 required positional argument: 'residual'" (#13802) 2025-02-24 20:33:59 -08:00
bc32bc73aa [V1][Metrics] Implement vllm:lora_requests_info metric (#13504) 2025-02-24 20:01:33 -08:00
ab1091d5f2 [Misc][Attention][Quantization] init property earlier (#13733)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-02-25 03:19:30 +00:00
1e15aaef56 [Bugfix][Quantization] Fix FP8 + EP (#13784)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-02-25 10:54:17 +08:00
51010a1807 [Misc] set single whitespace between log sentences (#13771)
Signed-off-by: cjackal <44624812+cjackal@users.noreply.github.com>
2025-02-25 10:26:12 +08:00
7196a3b1db [Doc] arg_utils.py: fixed a typo (#13785) 2025-02-24 18:23:04 -08:00
cdc1fa12eb Remove unused kwargs from model definitions (#13555) 2025-02-24 17:13:52 -08:00
f61528d46d [Misc][Chore] Clean Up AsyncOutputProcessing Logs (#13780) 2025-02-24 16:39:07 -08:00
1f0ae3ed0a [Misc] Clean Up EngineArgs.create_engine_config (#13734)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
2025-02-24 13:52:21 -05:00
db986c19ea Fix precommit fail in fused_moe intermediate_cache2 chunking (#13772)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-02-24 09:25:47 -08:00
227578480d Revert "[V1][Core] Fix memory issue with logits & sampling" (#13775) 2025-02-24 09:16:05 -08:00
befc402d34 [V1] V1 engine implements parallel sampling (AsyncLLM and LLMEngine) (#10980)
Signed-off-by: Andrew Feldman <afeldman@neuralmagic.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-02-24 08:29:41 -08:00
444b0f0f62 [Misc][Docs] Raise error when flashinfer is not installed and VLLM_ATTENTION_BACKEND is set (#12513)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-02-24 10:43:21 -05:00
ccc00515fd [BugFix] Illegal memory access for MoE On H20 (#13693) 2025-02-24 07:37:32 -08:00
781096e385 Expert Parallelism (EP) Support for DeepSeek V2 (#12583) 2025-02-24 07:33:20 -08:00
7940d8a6a7 [CI/Build] add python-json-logger to requirements-common (#12842) 2025-02-24 06:10:33 -08:00
c0e3ecd6d2 [Bugfix] fix(logging): add missing opening square bracket (#13011) 2025-02-24 06:10:25 -08:00
23eca9cf68 [model][refactor] remove cuda hard code in models and layers (#13658) 2025-02-24 06:10:14 -08:00
437b76ff59 [V1][Core] Fix memory issue with logits & sampling (#13721) 2025-02-24 06:10:06 -08:00
f90a375593 [ci] Add logic to change model to S3 path only when S3 CI env var is on (#13727)
Signed-off-by: <>
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-63-253.us-west-2.compute.internal>
2025-02-24 06:32:11 +00:00
e7ef74e26e Fix some issues with benchmark data output (#13641)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-02-24 10:23:18 +08:00
cbae7af552 [V1][BugFix] Fix engine core client shutdown hangs (#13298)
Even though ZMQ context.destroy() is meant to close open sockets before terminating the context, it appears to be necessary to do this explicitly or else it can hang in the context.term() method.

Close zmq sockets explicitly before terminating context, make shutdown of client resource more robust, shut down engine core process prior to terminating zmq context.

Signed-off-by: Nick Hill <nhill@redhat.com>
2025-02-23 13:07:43 -08:00
eb24dc4a45 [v1] torchrun compatibility (#13642)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-23 22:47:24 +08:00
9bebc9512f [Misc] Deprecate --dataset from benchmark_serving.py (#13708)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-02-23 13:32:20 +00:00
5a2ba16f5c [Core][Distributed] Use IPC (domain socket) ZMQ socket for local comms (#13688) 2025-02-23 02:54:29 -08:00
ba5106e519 [LMM] Implement merged multimodal processor for whisper (#13278) 2025-02-23 01:46:03 -08:00
d5ca2110f1 [Quant] BaiChuan SupportsQuant (#13710) 2025-02-22 19:21:15 -08:00
2c5e637b57 [ci] Use env var to control whether to use S3 bucket in CI (#13634) 2025-02-22 19:19:45 -08:00
322d2a27d6 [BugFix] Minor: logger import in attention backend (#13706)
Signed-off-by: Andy Lo <andy@mistral.ai>
2025-02-22 16:51:13 -08:00
82e0d601fc [CI/Build] Fix pre-commit errors from #13571 (#13709)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-02-22 16:50:38 -08:00
78ac0f591d [CI/Build] fix uv caching in Dockerfile (#13611) 2025-02-22 08:25:20 -08:00
b56155e7f3 [XPU]fix setuptools version for xpu (#13548) 2025-02-22 08:05:35 -08:00
382f66fb08 [Bugfix] Fix boolean conversion for OpenVINO env variable (#13615) 2025-02-22 08:04:12 -08:00
8354f6640c [Doc] Dockerfile instructions for optional dependencies and dev transformers (#13699) 2025-02-22 06:04:31 -08:00
c904fdddf6 [ROCm] Apply FP8 weights padding to values not divisible by 512 bytes on ROCm (#13231) 2025-02-22 05:54:38 -08:00
558db8083c [V1][Kernel] Refactor the prefix_prefill kernel so that the caller no longer has to pass in the context lengths (#13095) 2025-02-22 05:25:41 -08:00
e109e598c7 [NVIDIA] Support nvfp4 cutlass gemm (#13571) 2025-02-22 05:24:05 -08:00
8db1b9d0a1 Support SSL Key Rotation in HTTP Server (#13495) 2025-02-22 05:17:44 -08:00
2382ad29d1 [ci] fix linter (#13701)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-22 20:28:59 +08:00
3e472d882a [core] set up data parallel communication (#13591)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-22 19:28:59 +08:00
7f6bae561c [CI/Build] Fix pre-commit errors (#13696) 2025-02-22 00:31:26 -08:00
105b8ce4c0 [Misc] Reduce LoRA-related static variable (#13166) 2025-02-22 00:21:30 -08:00
2cb8c1540e [Metrics] Add --show-hidden-metrics-for-version CLI arg (#13295) 2025-02-22 00:20:45 -08:00
1cd981da4f [V1][Metrics] Support vllm:cache_config_info (#13299) 2025-02-22 00:20:00 -08:00
fca20841c2 Correction to TP logic for Mamba Mixer 2 when Num Groups not divisible by TP Size (#13660) 2025-02-22 00:19:10 -08:00
da31b5333e [Bugfix] V1 Memory Profiling: V0 Sampler Integration without Rejection Sampler (#13594)
Signed-off-by: Jennifer Zhao <7443418+JenZhao@users.noreply.github.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-02-22 00:08:29 -08:00
bb78fb318e [v1] Support allowed_token_ids in v1 Sampler (#13210)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-02-22 14:13:05 +08:00
8aca27fa11 [Bugfix] Fix benchmark script bug: inaccurate stats for vllm backend when max_model_len < input_len + output_len (#13691)
Signed-off-by: WangErXiao <863579016@qq.com>
2025-02-22 14:10:38 +08:00
95c617e04b [Misc] Bump compressed-tensors (#13619) 2025-02-21 22:09:04 -08:00
9a1f1da5d1 [Bugfix][Model] OLMo 2: split qkv correctly for GQA and MQA (#13687) 2025-02-21 22:07:45 -08:00
68d630a0c7 [ROCM] fix native attention function call (#13650) 2025-02-21 22:07:04 -08:00
68d535ef44 [Misc] Capture and log the time of loading weights (#13666) 2025-02-21 22:06:34 -08:00
c6ed93860f [Bugfix][API Server] Fix invalid usage of 'ge' and 'le' in port valid… (#13672) 2025-02-21 22:05:28 -08:00
0ffdf8ce0c [HTTP Server] Make model param optional in request (#13568) 2025-02-21 21:55:50 -08:00
8c0dd3d4df docs: Add a note on full CI run in contributing guide (#13646) 2025-02-21 21:53:59 -08:00
ada7c780d5 [Misc] Fix yapf linting tools etc not running on pre-commit (#13695)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-02-22 13:10:43 +08:00
288cc6c234 [Attention] MLA with chunked prefill (#12639)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Patrick Horn <patrick.horn@gmail.com>
Co-authored-by: simon-mo <xmo@berkeley.edu>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-02-21 15:30:12 -08:00
900edbfa48 fix typo of grafana dashboard, with correct datasource (#13668)
Signed-off-by: John Zheng <john.zheng@hp.com>
2025-02-21 18:21:05 +00:00
b2c3fc5d65 [Bugfix][CPU] Fix cpu all-reduce using native pytorch implementation (#13586) 2025-02-20 22:24:17 -08:00
839b27c6cc [Kernel]Add streamK for block-quantized CUTLASS kernels (#12978) 2025-02-20 22:14:24 -08:00
34ad27fe83 [ci] Fix metrics test model path (#13635) 2025-02-20 22:12:10 -08:00
1c3c975766 [FEATURE] Enables /score endpoint for embedding models (#12846) 2025-02-20 22:09:47 -08:00
1cdc88614a Missing comment explaining VDR variable in GGUF kernels (#13290) 2025-02-20 22:06:54 -08:00
31aa045c11 [V1][Sampler] Avoid an operation during temperature application (#13587) 2025-02-20 22:05:56 -08:00
a30c093502 [Bugfix] Add mm_processor_kwargs to chat-related protocols (#13644) 2025-02-20 22:04:33 -08:00
c7b07a95a6 Use pre-commit to update requirements-test.txt (#13617) 2025-02-20 22:03:27 -08:00
27a09dc52c [NVIDIA] Fix an issue to use current stream for the nvfp4 quant (#13632) 2025-02-20 22:01:48 -08:00
981f3c831e [Misc] Adding script to setup ray for multi-node vllm deployments (#12913) 2025-02-20 21:16:40 -08:00
44c33f01f3 Add llmaz as another integration (#13643)
Signed-off-by: kerthcet <kerthcet@gmail.com>
2025-02-21 03:52:40 +00:00
33170081f1 [Neuron][Kernel] Vectorize KV cache load in FlashPagedAttention to maximize DMA bandwidth (#13245)
Signed-off-by: Lingfan Yu <lingfany@amazon.com>
2025-02-20 17:45:45 -08:00
71face8540 [Bugfix] Fix max_num_batched_tokens for MLA (#13620)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-02-20 17:45:20 -08:00
bfbc0b32c6 [Frontend] Add backend-specific options for guided decoding (#13505)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2025-02-20 15:07:58 -05:00
6a417b8600 fix neuron performance issue (#13589) 2025-02-20 10:59:36 -08:00
d3ea50113c [V1][Minor] Print KV cache size in token counts (#13596)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-20 09:24:31 -08:00
34aad515c8 Update pre-commit's isort version to remove warnings (#13614) 2025-02-20 08:00:14 -08:00
1625 changed files with 157223 additions and 43705 deletions

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m deepseek-ai/DeepSeek-V2-Lite-Chat -b "auto" -l 1000 -f 5 -t 2
model_name: "deepseek-ai/DeepSeek-V2-Lite-Chat"
tasks:

View File

@ -1,3 +1,4 @@
# For hf script, without -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5
model_name: "nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform"
tasks:

View File

@ -1,3 +1,4 @@
# For hf script, without -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-70B-Instruct -b 32 -l 250 -f 5
model_name: "meta-llama/Meta-Llama-3-70B-Instruct"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test -b 32 -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Meta-Llama-3-8B-Instruct-FP8 -b 32 -l 250 -f 5 -t 1
model_name: "neuralmagic/Meta-Llama-3-8B-Instruct-FP8"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test"
tasks:

View File

@ -1,4 +1,5 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-8B-Instruct -b 32 -l 250 -f 5 -t 1
# For hf script, without -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-8B-Instruct -b 32 -l 250 -f 5
model_name: "meta-llama/Meta-Llama-3-8B-Instruct"
tasks:
- name: "gsm8k"

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m HandH1998/QQQ-Llama-3-8b-g128 -b 32 -l 1000 -f 5 -t 1
model_name: "HandH1998/QQQ-Llama-3-8b-g128"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
model_name: "neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8"
tasks:

View File

@ -1,11 +1,12 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m mgoin/Minitron-4B-Base-FP8 -b auto -l 1000 -f 5 -t 1
model_name: "mgoin/Minitron-4B-Base-FP8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.233
value: 0.231
- name: "exact_match,flexible-extract"
value: 0.236
value: 0.22
limit: 1000
num_fewshot: 5

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic -b "auto" -l 250 -f 5 -t 8
model_name: "neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8 -b "auto" -l 250 -f 5 -t 4
model_name: "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8"
tasks:

View File

@ -1,4 +1,5 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1 -b 32 -l 250 -f 5 -t 4
# For hf script, without -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1 -b 32 -l 250 -f 5
model_name: "mistralai/Mixtral-8x7B-Instruct-v0.1"
tasks:
- name: "gsm8k"

View File

@ -0,0 +1,12 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen1.5-MoE-A2.7B-Chat-quantized.w4a16 -b auto -l 1319 -f 5 -t 1
model_name: "nm-testing/Qwen1.5-MoE-A2.7B-Chat-quantized.w4a16"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.30
- name: "exact_match,flexible-extract"
value: 0.465
limit: 1319
num_fewshot: 5

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-FP8W8 -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Qwen2-1.5B-Instruct-FP8W8"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
model_name: "neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise -b "auto" -l 1000 -f 5 -t 1
model_name: "nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m Qwen/Qwen2-57B-A14B-Instruct -b "auto" -l 250 -f 5 -t 4
model_name: "Qwen/Qwen2-57B-A14B-Instruct"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM -b "auto" -t 2
model_name: "nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM"
tasks:

View File

@ -4,7 +4,7 @@ Meta-Llama-3.2-1B-Instruct-INT8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors-asym.yaml
Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml
Minitron-4B-Base-FP8.yaml
Qwen1.5-MoE-W4A16-compressed-tensors.yaml
Qwen2-1.5B-Instruct-INT8-compressed-tensors.yaml
Qwen2-1.5B-Instruct-FP8W8.yaml
Meta-Llama-3-8B-QQQ.yaml

View File

@ -13,9 +13,10 @@ from pathlib import Path
import lm_eval
import numpy
import pytest
import yaml
RTOL = 0.05
RTOL = 0.08
TEST_DATA_FILE = os.environ.get(
"LM_EVAL_TEST_DATA_FILE",
".buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml")
@ -46,6 +47,10 @@ def test_lm_eval_correctness():
eval_config = yaml.safe_load(
Path(TEST_DATA_FILE).read_text(encoding="utf-8"))
if eval_config[
"model_name"] == "nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform": #noqa: E501
pytest.skip("FBGEMM is currently failing on main.")
# Launch eval requests.
results = launch_lm_eval(eval_config)

View File

@ -84,8 +84,13 @@ if __name__ == "__main__":
# this result is generated via `benchmark_serving.py`
# attach the benchmarking command to raw_result
try:
with open(test_file.with_suffix(".commands")) as f:
command = json.loads(f.read())
except OSError as e:
print(e)
continue
raw_result.update(command)
# update the test name of this result
@ -99,8 +104,13 @@ if __name__ == "__main__":
# this result is generated via `benchmark_latency.py`
# attach the benchmarking command to raw_result
try:
with open(test_file.with_suffix(".commands")) as f:
command = json.loads(f.read())
except OSError as e:
print(e)
continue
raw_result.update(command)
# update the test name of this result
@ -121,8 +131,13 @@ if __name__ == "__main__":
# this result is generated via `benchmark_throughput.py`
# attach the benchmarking command to raw_result
try:
with open(test_file.with_suffix(".commands")) as f:
command = json.loads(f.read())
except OSError as e:
print(e)
continue
raw_result.update(command)
# update the test name of this result

View File

@ -426,7 +426,7 @@ main() {
pip install -U transformers
pip install -r requirements-dev.txt
pip install -r requirements/dev.txt
which genai-perf
# check storage

View File

@ -10,15 +10,24 @@ set -x
set -o pipefail
check_gpus() {
if command -v nvidia-smi; then
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
elif command -v amd-smi; then
declare -g gpu_count=$(amd-smi list | grep 'GPU' | wc -l)
fi
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
if command -v nvidia-smi; then
declare -g gpu_type=$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')
elif command -v amd-smi; then
declare -g gpu_type=$(amd-smi static -g 0 -a | grep 'MARKET_NAME' | awk '{print $2}')
fi
echo "GPU type is $gpu_type"
}
@ -90,9 +99,15 @@ kill_gpu_processes() {
# wait until GPU memory usage smaller than 1GB
if command -v nvidia-smi; then
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
sleep 1
done
elif command -v amd-smi; then
while [ "$(amd-smi metric -g 0 | grep 'USED_VRAM' | awk '{print $2}')" -ge 1000 ]; do
sleep 1
done
fi
# remove vllm config file
rm -rf ~/.config/vllm
@ -309,11 +324,14 @@ run_serving_tests() {
new_test_name=$test_name"_qps_"$qps
# pass the tensor parallel size to the client so that it can be displayed
# on the benchmark dashboard
client_command="python3 benchmark_serving.py \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--metadata "tensor_parallel_size=$tp" \
$client_args"
echo "Running test case $test_name with qps $qps"
@ -358,7 +376,7 @@ main() {
# get the current IP address, required by benchmark_serving.py
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
# turn of the reporting of the status of each request, to clean up the terminal output
export VLLM_LOG_LEVEL="WARNING"
export VLLM_LOGGING_LEVEL="WARNING"
# prepare for benchmarking
cd benchmarks || exit 1

View File

@ -64,9 +64,11 @@
"disable_log_requests": "",
"tensor_parallel_size": 4,
"swap_space": 16,
"speculative_model": "turboderp/Qwama-0.5B-Instruct",
"speculative_config": {
"model": "turboderp/Qwama-0.5B-Instruct",
"num_speculative_tokens": 4,
"speculative_draft_tensor_parallel_size": 1
"draft_tensor_parallel_size": 1
}
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",

View File

@ -1,12 +1,23 @@
steps:
- label: "Build wheel - CUDA 12.4"
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
- label: "Build wheel - CUDA 12.1"
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/upload-wheels.sh"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
@ -20,10 +31,10 @@ steps:
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/upload-wheels.sh"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
@ -37,7 +48,7 @@ steps:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- label: "Build and publish TPU release image"
@ -46,7 +57,7 @@ steps:
agents:
queue: tpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm/vllm-tpu:nightly --tag vllm/vllm-tpu:$BUILDKITE_COMMIT --progress plain -f Dockerfile.tpu ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm/vllm-tpu:nightly --tag vllm/vllm-tpu:$BUILDKITE_COMMIT --progress plain -f docker/Dockerfile.tpu ."
- "docker push vllm/vllm-tpu:nightly"
- "docker push vllm/vllm-tpu:$BUILDKITE_COMMIT"
plugins:
@ -71,7 +82,22 @@ steps:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --progress plain -f Dockerfile.cpu ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
env:
DOCKER_BUILDKIT: "1"
- block: "Build Neuron release image"
key: block-neuron-release-image-build
depends_on: ~
- label: "Build and publish Neuron release image"
depends_on: block-neuron-release-image-build
agents:
queue: neuron-postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest --progress plain -f docker/Dockerfile.neuron ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version)"
env:
DOCKER_BUILDKIT: "1"

View File

@ -1,16 +0,0 @@
#!/bin/bash
# This script build the OpenVINO docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Try building the docker image
docker build -t openvino-test -f Dockerfile.openvino .
# Setup cleanup
remove_docker_container() { docker rm -f openvino-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/examples/offline_inference/basic/generate.py --model facebook/opt-125m

View File

@ -1,26 +0,0 @@
#!/bin/bash
set -e
# Build the docker image.
docker build -f Dockerfile.tpu -t vllm-tpu .
# Set up cleanup.
remove_docker_container() { docker rm -f tpu-test || true; }
trap remove_docker_container EXIT
# Remove the container that might not be cleaned up in the previous run.
remove_docker_container
# For HF_TOKEN.
source /etc/environment
# Run a simple end-to-end example.
docker run --privileged --net host --shm-size=16G -it \
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
&& python3 -m pip install pytest \
&& python3 -m pip install lm_eval[api]==0.4.4 \
&& pytest -v -s /workspace/vllm/tests/entrypoints/openai/test_accuracy.py \
&& pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
&& python3 /workspace/vllm/tests/tpu/test_compilation.py \
&& python3 /workspace/vllm/tests/tpu/test_quantization_accuracy.py \
&& python3 /workspace/vllm/examples/offline_inference/tpu.py"

View File

@ -1,19 +0,0 @@
#!/bin/bash
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Try building the docker image
docker build -t xpu-test -f Dockerfile.xpu .
# Setup cleanup
remove_docker_container() { docker rm -f xpu-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image and test offline inference/tensor parallel
docker run --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path --entrypoint="" xpu-test sh -c '
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m -tp 2
'

View File

@ -77,7 +77,6 @@ echo "Commands:$commands"
#ignore certain kernels tests
if [[ $commands == *" kernels "* ]]; then
commands="${commands} \
--ignore=kernels/test_attention.py \
--ignore=kernels/test_attention_selector.py \
--ignore=kernels/test_blocksparse_attention.py \
--ignore=kernels/test_causal_conv1d.py \
@ -92,19 +91,61 @@ if [[ $commands == *" kernels "* ]]; then
--ignore=kernels/test_moe.py \
--ignore=kernels/test_prefix_prefill.py \
--ignore=kernels/test_rand.py \
--ignore=kernels/test_sampler.py"
--ignore=kernels/test_sampler.py \
--ignore=kernels/test_cascade_flash_attn.py \
--ignore=kernels/test_mamba_mixer2.py \
--ignore=kernels/test_aqlm.py \
--ignore=kernels/test_machete_mm.py \
--ignore=kernels/test_mha_attn.py \
--ignore=kernels/test_block_fp8.py \
--ignore=kernels/test_cutlass_moe.py \
--ignore=kernels/test_mamba_ssm_ssd.py \
--ignore=kernels/test_attention.py \
--ignore=kernels/test_block_int8.py \
--ignore=kernels/test_fused_quant_layernorm.py \
--ignore=kernels/test_int8_kernel.py \
--ignore=kernels/test_triton_moe_ptpc_fp8.py \
--ignore=kernels/test_permute_cols.py"
fi
#ignore certain Entrypoints tests
#ignore certain Entrypoints/openai tests
if [[ $commands == *" entrypoints/openai "* ]]; then
commands=${commands//" entrypoints/openai "/" entrypoints/openai \
--ignore=entrypoints/openai/test_accuracy.py \
--ignore=entrypoints/openai/test_audio.py \
--ignore=entrypoints/openai/test_encoder_decoder.py \
--ignore=entrypoints/openai/test_embedding.py \
--ignore=entrypoints/openai/test_oot_registration.py "}
--ignore=entrypoints/openai/test_shutdown.py \
--ignore=entrypoints/openai/test_completion.py \
--ignore=entrypoints/openai/test_sleep.py \
--ignore=entrypoints/openai/test_models.py \
--ignore=entrypoints/openai/test_lora_adapters.py \
--ignore=entrypoints/openai/test_return_tokens_as_ids.py \
--ignore=entrypoints/openai/test_root_path.py \
--ignore=entrypoints/openai/test_tokenization.py \
--ignore=entrypoints/openai/test_prompt_validation.py "}
fi
#ignore certain Entrypoints/llm tests
if [[ $commands == *" entrypoints/llm "* ]]; then
commands=${commands//" entrypoints/llm "/" entrypoints/llm \
--ignore=entrypoints/llm/test_chat.py \
--ignore=entrypoints/llm/test_accuracy.py \
--ignore=entrypoints/llm/test_init.py \
--ignore=entrypoints/llm/test_generate_multiple_loras.py \
--ignore=entrypoints/llm/test_prompt_validation.py "}
fi
#Obsolete currently
##ignore certain Entrypoints/llm tests
#if [[ $commands == *" && pytest -v -s entrypoints/llm/test_guided_generate.py"* ]]; then
# commands=${commands//" && pytest -v -s entrypoints/llm/test_guided_generate.py"/" "}
#fi
# --ignore=entrypoints/openai/test_encoder_decoder.py \
# --ignore=entrypoints/openai/test_embedding.py \
# --ignore=entrypoints/openai/test_oot_registration.py
# --ignore=entrypoints/openai/test_accuracy.py \
# --ignore=entrypoints/openai/test_models.py <= Fails on MI250 but passes on MI300 as of 2025-03-13
PARALLEL_JOB_COUNT=8
# check if the command contains shard flag, we will run all shards in parallel because the host have 8 GPUs.
if [[ $commands == *"--shard-id="* ]]; then
@ -114,9 +155,10 @@ if [[ $commands == *"--shard-id="* ]]; then
# assign shard-id for each shard
commands_gpu=${commands//"--shard-id= "/"--shard-id=${GPU} "}
echo "Shard ${GPU} commands:$commands_gpu"
echo "Render devices: $BUILDKITE_AGENT_META_DATA_RENDER_DEVICES"
docker run \
--device /dev/kfd --device /dev/dri \
--network host \
--device /dev/kfd $BUILDKITE_AGENT_META_DATA_RENDER_DEVICES \
--network=host \
--shm-size=16gb \
--rm \
-e HIP_VISIBLE_DEVICES="${GPU}" \
@ -143,9 +185,10 @@ if [[ $commands == *"--shard-id="* ]]; then
fi
done
else
echo "Render devices: $BUILDKITE_AGENT_META_DATA_RENDER_DEVICES"
docker run \
--device /dev/kfd --device /dev/dri \
--network host \
--device /dev/kfd $BUILDKITE_AGENT_META_DATA_RENDER_DEVICES \
--network=host \
--shm-size=16gb \
--rm \
-e HIP_VISIBLE_DEVICES=0 \

View File

@ -0,0 +1,45 @@
#!/bin/bash
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Setup cleanup
remove_docker_container() {
if [[ -n "$container_id" ]]; then
podman rm -f "$container_id" || true
fi
podman system prune -f
}
trap remove_docker_container EXIT
remove_docker_container
# Try building the docker image
podman build -t cpu-test-ubi9-ppc -f docker/Dockerfile.ppc64le .
# Run the image
container_id=$(podman run -itd --entrypoint /bin/bash -v /tmp/:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN cpu-test-ubi9-ppc)
function cpu_tests() {
# offline inference
podman exec -it "$container_id" bash -c "
set -e
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
# Run basic model test
podman exec -it "$container_id" bash -c "
set -e
pip install pytest pytest-asyncio einops peft Pillow soundfile transformers_stream_generator matplotlib
pip install sentence-transformers datamodel_code_generator
pytest -v -s tests/models/embedding/language/test_cls_models.py::test_classification_models[float-jason9693/Qwen2.5-1.5B-apeach]
pytest -v -s tests/models/embedding/language/test_embedding.py::test_models[half-BAAI/bge-base-en-v1.5]
pytest -v -s tests/models/encoder_decoder/language -m cpu_model"
}
# All of CPU tests are expected to be finished less than 40 mins.
export container_id
export -f cpu_tests
timeout 40m bash -c cpu_tests

View File

@ -10,5 +10,4 @@ trap remove_docker_container EXIT
remove_docker_container
# Try building the docker image
docker build -t cpu-test -f Dockerfile.ppc64le .
docker build -t cpu-test -f docker/Dockerfile.s390x .

View File

@ -8,24 +8,29 @@ set -ex
CORE_RANGE=${CORE_RANGE:-48-95}
NUMA_NODE=${NUMA_NODE:-1}
# Try building the docker image
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build -t cpu-test-"$BUILDKITE_BUILD_NUMBER" -f Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 -f Dockerfile.cpu .
# Setup cleanup
remove_docker_container() { set -e; docker rm -f cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" || true; }
remove_docker_container() {
set -e;
docker rm -f cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" || true;
docker image rm cpu-test-"$BUILDKITE_BUILD_NUMBER" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 || true;
}
trap remove_docker_container EXIT
remove_docker_container
# Try building the docker image
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$BUILDKITE_BUILD_NUMBER" --target vllm-test -f docker/Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
# Run the image, setting --shm-size=4g for tensor parallel.
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"
--cpuset-mems="$NUMA_NODE" --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2
--cpuset-mems="$NUMA_NODE" --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2
function cpu_tests() {
set -e
export NUMA_NODE=$2
export BUILDKITE_BUILD_NUMBER=$3
# offline inference
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" bash -c "
@ -35,7 +40,8 @@ function cpu_tests() {
# Run basic model test
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
pip install -r vllm/requirements-test.txt
pytest -v -s tests/kernels/test_cache.py -m cpu_model
pytest -v -s tests/kernels/test_mla_decode_cpu.py -m cpu_model
pytest -v -s tests/models/decoder_only/language -m cpu_model
pytest -v -s tests/models/embedding/language -m cpu_model
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
@ -85,4 +91,4 @@ function cpu_tests() {
# All of CPU tests are expected to be finished less than 40 mins.
export -f cpu_tests
timeout 40m bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
timeout 40m bash -c "cpu_tests $CORE_RANGE $NUMA_NODE $BUILDKITE_BUILD_NUMBER"

View File

@ -9,11 +9,13 @@ python3 use_existing_torch.py
# Try building the docker image
DOCKER_BUILDKIT=1 docker build . \
--file docker/Dockerfile \
--target vllm-openai \
--platform "linux/arm64" \
-t gh200-test \
--build-arg max_jobs=66 \
--build-arg nvcc_threads=2 \
--build-arg RUN_WHEEL_CHECK=false \
--build-arg torch_cuda_arch_list="9.0+PTX" \
--build-arg vllm_fa_cmake_gpu_arches="90-real"
@ -23,6 +25,6 @@ trap remove_docker_container EXIT
remove_docker_container
# Run the image and test offline inference
docker run -e HF_TOKEN -v /root/.cache/huggingface:/root/.cache/huggingface --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c '
docker run -e HF_TOKEN -e VLLM_WORKER_MULTIPROC_METHOD=spawn -v /root/.cache/huggingface:/root/.cache/huggingface --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c '
python3 examples/offline_inference/basic/generate.py --model meta-llama/Llama-3.2-1B
'

View File

@ -5,7 +5,7 @@
set -ex
# Try building the docker image
docker build -t hpu-test-env -f Dockerfile.hpu .
docker build -t hpu-test-env -f docker/Dockerfile.hpu .
# Setup cleanup
# certain versions of HPU software stack have a bug that can

View File

@ -35,7 +35,7 @@ else
date "+%s" > /tmp/neuron-docker-build-timestamp
fi
docker build -t "${image_name}" -f Dockerfile.neuron .
docker build -t "${image_name}" -f docker/Dockerfile.neuron .
# Setup cleanup
remove_docker_container() {
@ -44,11 +44,11 @@ remove_docker_container() {
trap remove_docker_container EXIT
# Run the image
docker run --rm -it --device=/dev/neuron0 --device=/dev/neuron1 --network host \
docker run --rm -it --device=/dev/neuron0 --network bridge \
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
-v "${NEURON_COMPILE_CACHE_URL}:${NEURON_COMPILE_CACHE_MOUNT}" \
-e "NEURON_COMPILE_CACHE_URL=${NEURON_COMPILE_CACHE_MOUNT}" \
--name "${container_name}" \
${image_name} \
/bin/bash -c "python3 /workspace/vllm/examples/offline_inference/neuron.py && python3 -m pytest /workspace/vllm/tests/neuron/ -v --capture=tee-sys"
/bin/bash -c "python3 /workspace/vllm/examples/offline_inference/neuron.py && python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys && python3 -m pytest /workspace/vllm/tests/neuron/2_core/ -v --capture=tee-sys"

View File

@ -0,0 +1,54 @@
#!/bin/bash
set -xue
# Build the docker image.
docker build -f docker/Dockerfile.tpu -t vllm-tpu .
# Set up cleanup.
remove_docker_container() { docker rm -f tpu-test || true; }
trap remove_docker_container EXIT
# Remove the container that might not be cleaned up in the previous run.
remove_docker_container
# For HF_TOKEN.
source /etc/environment
# Run a simple end-to-end example.
docker run --privileged --net host --shm-size=16G -it \
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
&& python3 -m pip install pytest pytest-asyncio tpu-info \
&& python3 -m pip install lm_eval[api]==0.4.4 \
&& export VLLM_XLA_CACHE_PATH= \
&& export VLLM_USE_V1=1 \
&& export VLLM_XLA_CHECK_RECOMPILATION=1 \
&& echo HARDWARE \
&& tpu-info \
&& echo TEST_0 \
&& pytest -v -s /workspace/vllm/tests/v1/tpu/test_perf.py \
&& echo TEST_1 \
&& pytest -v -s /workspace/vllm/tests/tpu/test_compilation.py \
&& echo TEST_2 \
&& pytest -v -s /workspace/vllm/tests/v1/tpu/test_basic.py \
&& echo TEST_3 \
&& pytest -v -s /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine \
&& echo TEST_4 \
&& pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py \
&& echo TEST_5 \
&& python3 /workspace/vllm/examples/offline_inference/tpu.py \
&& echo TEST_6 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/worker/test_tpu_model_runner.py \
&& echo TEST_7 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py \
&& echo TEST_8 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py \
&& echo TEST_9 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py \
&& echo TEST_10 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py \
&& echo TEST_11 \
&& pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py" \
# TODO: This test fails because it uses RANDOM_SEED sampling
# && VLLM_USE_V1=1 pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \

View File

@ -0,0 +1,31 @@
#!/bin/bash
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
image_name="xpu/vllm-ci:${BUILDKITE_COMMIT}"
container_name="xpu_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
# Try building the docker image
docker build -t ${image_name} -f docker/Dockerfile.xpu .
# Setup cleanup
remove_docker_container() {
docker rm -f "${container_name}" || true;
docker image rm -f "${image_name}" || true;
docker system prune -f || true;
}
trap remove_docker_container EXIT
# Run the image and test offline inference/tensor parallel
docker run \
--device /dev/dri \
-v /dev/dri/by-path:/dev/dri/by-path \
--entrypoint="" \
--name "${container_name}" \
"${image_name}" \
sh -c '
VLLM_USE_V1=0 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
VLLM_USE_V1=0 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m -tp 2
'

View File

@ -5,8 +5,8 @@
set -ex
set -o pipefail
# cd into parent directory of this file
cd "$(dirname "${BASH_SOURCE[0]}")/.."
# cd 2 levels into the working directory
cd "$(dirname "${BASH_SOURCE[0]}")/../.."
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)

View File

@ -3,7 +3,7 @@
set -euox pipefail
if [[ $# -lt 4 ]]; then
echo "Usage: .buildkite/run-multi-node-test.sh WORKING_DIR NUM_NODES NUM_GPUS DOCKER_IMAGE COMMAND1 COMMAND2 ... COMMANDN"
echo "Usage: .buildkite/scripts/run-multi-node-test.sh WORKING_DIR NUM_NODES NUM_GPUS DOCKER_IMAGE COMMAND1 COMMAND2 ... COMMANDN"
exit 1
fi

View File

@ -50,8 +50,11 @@ aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu121"* ]]; then
# if $normal_wheel matches cu121, do not upload the index.html
echo "Skipping index files for cu121 wheels"
else
# only upload index.html for cu12 wheels (default wheels)
# only upload index.html for cu124 wheels (default wheels)
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
fi
@ -63,8 +66,11 @@ aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu121"* ]]; then
# if $normal_wheel matches cu121, do not upload the index.html
echo "Skipping index files for cu121 wheels"
else
# only upload index.html for cu12 wheels (default wheels)
# only upload index.html for cu124 wheels (default wheels)
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
fi

View File

@ -8,6 +8,7 @@
# Documentation
# label(str): the name of the test. emoji allowed.
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
# torch_nightly(bool): whether to run this on vllm against torch nightly pipeline.
# fast_check_only(bool): run this test on fastcheck pipeline only
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's scheduled nightly run.
# command(str): the single command to run for tests. incompatible with commands.
@ -35,13 +36,12 @@ steps:
fast_check: true
no_gpu: True
commands:
- pip install -r requirements-docs.txt
- pip install -r ../../requirements/docs.txt
- SPHINXOPTS=\"-W\" make html
# Check API reference (if it fails, you may have missing mock imports)
- grep \"sig sig-object py\" build/html/api/inference_params.html
- label: Async Engine, Inputs, Utils, Worker Test # 24min
fast_check: true
source_file_dependencies:
- vllm/
- tests/mq_llm_engine
@ -71,6 +71,7 @@ steps:
- label: Basic Correctness Test # 30min
#mirror_hardwares: [amd]
fast_check: true
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/basic_correctness/test_basic_correctness
@ -78,6 +79,7 @@ steps:
- tests/basic_correctness/test_preemption
- tests/basic_correctness/test_cumem.py
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s basic_correctness/test_cumem.py
- pytest -v -s basic_correctness/test_basic_correctness.py
- pytest -v -s basic_correctness/test_cpu_offload.py
@ -104,7 +106,8 @@ steps:
- label: Entrypoints Test # 40min
working_dir: "/vllm-workspace/tests"
fast_check: true
mirror_hardwares: [amd]
torch_nightly: true
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/entrypoints/llm
@ -112,19 +115,19 @@ steps:
- tests/entrypoints/test_chat_utils
- tests/entrypoints/offline_mode
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_guided_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/correctness/
- VLLM_USE_V1=0 pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/correctness/ --ignore=entrypoints/openai/test_openai_schema.py
- pytest -v -s entrypoints/test_chat_utils.py
- pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Distributed Tests (4 GPUs) # 10min
working_dir: "/vllm-workspace/tests"
num_gpus: 4
fast_check: true
source_file_dependencies:
- vllm/distributed/
- vllm/core/
@ -134,37 +137,42 @@ steps:
- tests/compile/test_basic_correctness
- examples/offline_inference/rlhf.py
- examples/offline_inference/rlhf_colocate.py
- tests/examples/offline_inference/data_parallel.py
- tests/v1/test_async_llm_dp.py
commands:
# test with tp=2 and external_dp=2
- VLLM_USE_V1=0 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with internal dp
- python3 ../examples/offline_inference/data_parallel.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
- pytest -v -s distributed/test_pynccl.py
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
# TODO: create a dedicated test section for multi-GPU example tests
# when we have multiple distributed example tests
- python3 ../examples/offline_inference/rlhf.py
- RAY_DEDUP_LOGS=0 python3 ../examples/offline_inference/rlhf_colocate.py
- pushd ../examples/offline_inference
- python3 rlhf.py
- RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
- popd
- label: Metrics, Tracing Test # 10min
mirror_hardwares: [amd]
num_gpus: 2
fast_check: true
source_file_dependencies:
- vllm/
- tests/metrics
- tests/tracing
commands:
- pytest -v -s metrics
- "pip install \
'opentelemetry-sdk>=1.26.0,<1.27.0' \
'opentelemetry-api>=1.26.0,<1.27.0' \
'opentelemetry-exporter-otlp>=1.26.0,<1.27.0' \
'opentelemetry-semantic-conventions-ai>=0.4.1,<0.5.0'"
- pytest -v -s tracing
##### fast check tests #####
##### 1 GPU test #####
- label: Regression Test # 5min
mirror_hardwares: [amd]
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/test_regression
@ -194,15 +202,20 @@ steps:
- tests/v1
commands:
# split the test to avoid interference
- VLLM_USE_V1=1 pytest -v -s v1/core
- VLLM_USE_V1=1 pytest -v -s v1/engine
- VLLM_USE_V1=1 pytest -v -s v1/sample
- VLLM_USE_V1=1 pytest -v -s v1/worker
- VLLM_USE_V1=1 pytest -v -s v1/test_stats.py
- VLLM_USE_V1=1 pytest -v -s v1/test_utils.py
- pytest -v -s v1/core
- pytest -v -s v1/engine
- pytest -v -s v1/entrypoints
- pytest -v -s v1/sample
- pytest -v -s v1/worker
- pytest -v -s v1/structured_output
- pytest -v -s v1/spec_decode
- pytest -v -s v1/test_serial_utils.py
- pytest -v -s v1/test_stats.py
- pytest -v -s v1/test_utils.py
- pytest -v -s v1/test_oracle.py
# TODO: accuracy does not match, whether setting
# VLLM_USE_FLASHINFER_SAMPLER or not on H100.
- VLLM_USE_V1=1 pytest -v -s v1/e2e
- pytest -v -s v1/e2e
# Integration test for streaming correctness (requires special branch).
- pip install -U git+https://github.com/robertgshaw2-neuralmagic/lm-evaluation-harness.git@streaming-api
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
@ -220,14 +233,17 @@ steps:
- python3 offline_inference/basic/chat.py
- python3 offline_inference/prefix_caching.py
- python3 offline_inference/llm_engine_example.py
- python3 offline_inference/vision_language.py
- python3 offline_inference/vision_language_multi_image.py
- python3 other/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 other/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference/audio_language.py --seed 0
- python3 offline_inference/vision_language.py --seed 0
- python3 offline_inference/vision_language_embedding.py --seed 0
- python3 offline_inference/vision_language_multi_image.py --seed 0
- VLLM_USE_V1=0 python3 other/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 other/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference/encoder_decoder.py
- python3 offline_inference/encoder_decoder_multimodal.py --model-type whisper --seed 0
- python3 offline_inference/basic/classify.py
- python3 offline_inference/basic/embed.py
- python3 offline_inference/basic/score.py
- python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
- label: Prefix Caching Test # 9min
mirror_hardwares: [amd]
@ -269,15 +285,23 @@ steps:
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
- label: LoRA Test %N # 15min each
mirror_hardwares: [amd]
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/lora
- tests/lora
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py --ignore=lora/test_minicpmv_tp.py
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py
parallelism: 4
- label: "PyTorch Fullgraph Smoke Test" # 9min
fast_check: true
- label: PyTorch Compilation Unit Tests
source_file_dependencies:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_pass_manager.py
- pytest -v -s compile/test_fusion.py
- pytest -v -s compile/test_sequence_parallelism.py
- label: PyTorch Fullgraph Smoke Test # 9min
source_file_dependencies:
- vllm/
- tests/compile
@ -287,25 +311,56 @@ steps:
- pytest -v -s compile/piecewise/test_simple.py
- pytest -v -s compile/piecewise/test_toy_llama.py
- label: "PyTorch Fullgraph Test" # 18min
- label: PyTorch Fullgraph Test # 18min
source_file_dependencies:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_full_graph.py
- label: Kernels Test %N # 1h each
mirror_hardwares: [amd]
- label: Kernels Core Operation Test
source_file_dependencies:
- csrc/
- vllm/attention
- tests/kernels
- tests/kernels/core
commands:
- pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 4
- pytest -v -s kernels/core
- label: Kernels Attention Test %N
source_file_dependencies:
- csrc/attention/
- vllm/attention
- vllm/v1/attention
- tests/kernels/attention
commands:
- pytest -v -s kernels/attention --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels Quantization Test %N
source_file_dependencies:
- csrc/quantization/
- vllm/model_executor/layers/quantization
- tests/kernels/quantization
commands:
- pytest -v -s kernels/quantization --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels MoE Test
source_file_dependencies:
- csrc/moe/
- tests/kernels/moe
- vllm/model_executor/layers/fused_moe/
commands:
- pytest -v -s kernels/moe
- label: Kernels Mamba Test
source_file_dependencies:
- csrc/mamba/
- tests/kernels/mamba
commands:
- pytest -v -s kernels/mamba
- label: Tensorizer Test # 11min
mirror_hardwares: [amd]
# mirror_hardwares: [amd]
soft_fail: true
source_file_dependencies:
- vllm/model_executor/model_loader
@ -321,7 +376,14 @@ steps:
source_file_dependencies:
- benchmarks/
commands:
- bash run-benchmarks.sh
- bash scripts/run-benchmarks.sh
- label: Benchmarks CLI Test # 10min
source_file_dependencies:
- vllm/
- tests/benchmarks/
commands:
- pytest -v -s benchmarks/
- label: Quantization Test # 33min
source_file_dependencies:
@ -356,12 +418,14 @@ steps:
- label: OpenAI-Compatible Tool Use # 20 min
fast_check: false
mirror_hardwares: [ amd ]
#mirror_hardwares: [ amd ]
source_file_dependencies:
- vllm/
- tests/tool_use
- tests/mistral_tool_use
commands:
- pytest -v -s tool_use
- pytest -v -s mistral_tool_use
##### models test #####
@ -372,7 +436,10 @@ steps:
commands:
- pytest -v -s models/test_transformers.py
- pytest -v -s models/test_registry.py
- pytest -v -s models/test_initialization.py
# V1 Test: https://github.com/vllm-project/vllm/issues/14531
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'llama4'
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'plamo2'
- label: Language Models Test (Standard) # 32min
#mirror_hardwares: [amd]
@ -382,6 +449,8 @@ steps:
- tests/models/embedding/language
- tests/models/encoder_decoder/language
commands:
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install causal-conv1d
- pytest -v -s models/decoder_only/language -m 'core_model or quant_model'
- pytest -v -s models/embedding/language -m core_model
@ -393,6 +462,8 @@ steps:
- tests/models/embedding/language
- tests/models/encoder_decoder/language
commands:
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install causal-conv1d
- pytest -v -s models/decoder_only/language -m 'not core_model and not quant_model'
- pytest -v -s models/embedding/language -m 'not core_model'
@ -409,11 +480,12 @@ steps:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal
- pytest -v -s models/decoder_only/audio_language -m 'core_model or quant_model'
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'core_model or quant_model'
- pytest -v -s models/decoder_only/vision_language -m 'core_model or quant_model'
- pytest -v -s models/embedding/vision_language -m core_model
- pytest -v -s models/encoder_decoder/audio_language -m core_model
- pytest -v -s models/encoder_decoder/language -m core_model
- pytest -v -s models/encoder_decoder/vision_language -m core_model
- pytest -v -s models/decoder_only/vision_language/test_interleaved.py
- label: Multi-Modal Models Test (Extended) 1 # 48m
optional: true
@ -427,10 +499,7 @@ steps:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/decoder_only/audio_language -m 'not core_model and not quant_model'
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=0) and not core_model and not quant_model'
# HACK - run phi3v tests separately to sidestep this transformers bug
# https://github.com/huggingface/transformers/issues/34307
- pytest -v -s models/decoder_only/vision_language/test_phi3v.py
- pytest -v -s --ignore models/decoder_only/vision_language/test_models.py --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
- pytest -v -s --ignore models/decoder_only/vision_language/test_models.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
- pytest -v -s models/embedding/vision_language -m 'not core_model'
- pytest -v -s models/encoder_decoder/language -m 'not core_model'
- pytest -v -s models/encoder_decoder/vision_language -m 'not core_model'
@ -446,6 +515,7 @@ steps:
# This test is used only in PR development phase to test individual models and should never run on main
- label: Custom Models Test
mirror_hardwares: [amd]
optional: true
commands:
- echo 'Testing custom models...'
@ -457,6 +527,7 @@ steps:
##### multi gpus test #####
- label: Distributed Comm Ops Test # 7min
mirror_hardwares: [amd]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
@ -499,9 +570,11 @@ steps:
- vllm/worker/worker.py
- vllm/worker/model_runner.py
- entrypoints/llm/test_collective_rpc.py
- tests/v1/test_async_llm_dp.py
- vllm/v1/engine/
commands:
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- pytest -v -s entrypoints/llm/test_collective_rpc.py
- torchrun --nproc-per-node=2 distributed/test_torchrun_example.py
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
@ -511,16 +584,18 @@ steps:
- pytest models/encoder_decoder/language/test_bart.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/decoder_only/vision_language/test_models.py -v -s -m 'distributed(num_gpus=2)'
# test sequence parallel
- pytest -v -s distributed/test_sequence_parallel.py
# this test fails consistently.
# TODO: investigate and fix
# - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/disagg_test.py
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/test_disagg.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- label: Plugin Tests (2 GPUs) # 40min
working_dir: "/vllm-workspace/tests"
num_gpus: 2
fast_check: true
source_file_dependencies:
- vllm/plugins/
- tests/plugins/
@ -579,13 +654,10 @@ steps:
# FIXIT: find out which code initialize cuda before running the test
# before the fix, we need to use spawn to test it
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
# This test runs llama 13B, so it is required to run on 4 GPUs.
- pytest -v -s -x lora/test_long_context.py
# There is some Tensor Parallelism related processing logic in LoRA that
# requires multi-GPU testing for validation.
- pytest -v -s -x lora/test_chatglm3_tp.py
- pytest -v -s -x lora/test_llama_tp.py
- pytest -v -s -x lora/test_minicpmv_tp.py
- label: Weight Loading Multiple GPU Test # 33min

28
.github/CODEOWNERS vendored
View File

@ -10,27 +10,33 @@
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth
/vllm/model_executor/guided_decoding @mgoin
/vllm/model_executor/guided_decoding @mgoin @russellb
/vllm/multimodal @DarkLight1337 @ywang96
/vllm/vllm_flash_attn @LucasWilkinson
CMakeLists.txt @tlrmchlsmth
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
/vllm/v1/structured_output @mgoin @russellb
# Test ownership
/tests/async_engine @njhill @robertgshaw2-redhat @simon-mo
/tests/test_inputs.py @DarkLight1337 @ywang96
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo
/tests/models @DarkLight1337 @ywang96
/tests/multimodal @DarkLight1337 @ywang96
/tests/prefix_caching @comaniac @KuntaiDu
/tests/spec_decode @njhill @LiuXiaoxuanPKU
/tests/kernels @tlrmchlsmth @WoosukKwon
/tests/quantization @mgoin @robertgshaw2-redhat
/.buildkite/lm-eval-harness @mgoin @simon-mo
/tests/async_engine @njhill @robertgshaw2-redhat @simon-mo
/tests/basic_correctness/test_chunked_prefill @rkooo567 @comaniac
/tests/distributed/test_multi_node_assignment.py @youkaichao
/tests/distributed/test_pipeline_parallel.py @youkaichao
/tests/distributed/test_same_node.py @youkaichao
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo
/tests/entrypoints/llm/test_guided_generate.py @mgoin @russellb
/tests/kernels @tlrmchlsmth @WoosukKwon
/tests/model_executor/test_guided_processors.py @mgoin @russellb
/tests/models @DarkLight1337 @ywang96
/tests/multi_step @alexm-redhat @comaniac
/tests/multimodal @DarkLight1337 @ywang96
/tests/prefix_caching @comaniac @KuntaiDu
/tests/quantization @mgoin @robertgshaw2-redhat
/tests/spec_decode @njhill @LiuXiaoxuanPKU
/tests/test_inputs.py @DarkLight1337 @ywang96
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb
/tests/v1/structured_output @mgoin @russellb
/tests/weight_loading @mgoin @youkaichao
/tests/basic_correctness/test_chunked_prefill @rkooo567 @comaniac

View File

@ -14,7 +14,7 @@ body:
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```

View File

@ -14,7 +14,7 @@ body:
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```

View File

@ -14,7 +14,7 @@ body:
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```

View File

@ -9,7 +9,7 @@ body:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
#### We also highly recommend you read https://docs.vllm.ai/en/latest/contributing/model/adding_model.html first to understand how to add a new model.
#### We also highly recommend you read https://docs.vllm.ai/en/latest/contributing/model/index.html first to understand how to add a new model.
- type: textarea
attributes:
label: The model to consider.

View File

@ -35,7 +35,7 @@ body:
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```

View File

@ -1,28 +0,0 @@
name: 🎲 Misc/random discussions that do not fit into the above categories.
description: Submit a discussion as you like. Note that developers are heavily overloaded and we mainly rely on community users to answer these issues.
title: "[Misc]: "
labels: ["misc"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Anything you want to discuss about vllm.
description: >
Anything you want to discuss about vllm.
validations:
required: true
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -1 +1,5 @@
blank_issues_enabled: false
contact_links:
- name: Questions
url: https://discuss.vllm.ai
about: Ask questions and discuss with other vLLM community members

View File

@ -3,4 +3,4 @@ FILL IN THE PR DESCRIPTION HERE
FIX #xxxx (*link existing issues this PR will resolve*)
<!--- pyml disable-next-line no-emphasis-as-heading -->
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing/overview.html>**
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing/overview.html>** (anything written below this line will be removed by GitHub Actions)

View File

@ -23,7 +23,7 @@ updates:
- dependency-name: "lm-format-enforcer"
- dependency-name: "gguf"
- dependency-name: "compressed-tensors"
- dependency-name: "ray[adag]"
- dependency-name: "ray[cgraph]" # Ray Compiled Graph
- dependency-name: "lm-eval"
groups:
minor-update:

82
.github/mergify.yml vendored
View File

@ -5,6 +5,7 @@ pull_request_rules:
- or:
- files~=^[^/]+\.md$
- files~=^docs/
- files~=^examples/
actions:
label:
add:
@ -18,7 +19,7 @@ pull_request_rules:
- files~=\.buildkite/
- files~=^cmake/
- files=CMakeLists.txt
- files~=^Dockerfile
- files~=^docker/Dockerfile
- files~=^requirements.*\.txt
- files=setup.py
actions:
@ -35,15 +36,38 @@ pull_request_rules:
add:
- frontend
- name: label-multi-modality
description: Automatically apply multi-modality label
conditions:
- or:
- files~=^vllm/multimodal/
- files~=^tests/multimodal/
- files~=^tests/models/multimodal/
- files~=^tests/models/*/audio_language/
- files~=^tests/models/*/vision_language/
- files=tests/models/test_vision.py
actions:
label:
add:
- multi-modality
- name: label-structured-output
description: Automatically apply structured-output label
conditions:
- or:
- files~=^benchmarks/structured_schemas/
- files=benchmarks/benchmark_serving_structured_output.py
- files=benchmarks/run_structured_output_benchmark.sh
- files=docs/source/features/structured_outputs.md
- files=examples/offline_inference/structured_outputs.py
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
- files~=^vllm/model_executor/guided_decoding/
- files=tests/model_executor/test_guided_processors.py
- files=tests/entrypoints/llm/test_guided_generate.py
- files=benchmarks/benchmark_serving_guided.py
- files=benchmarks/benchmark_guided.py
- files~=^tests/v1/structured_output/
- files=tests/v1/entrypoints/llm/test_guided_generate.py
- files~=^vllm/v1/structured_output/
actions:
label:
add:
@ -72,6 +96,58 @@ pull_request_rules:
add:
- v1
- name: label-tpu
description: Automatically apply tpu label
# Keep this list in sync with `label-tpu-remove` conditions
conditions:
- or:
- files~=tpu.py
- files~=_tpu
- files~=tpu_
- files~=/tpu/
- files~=pallas
actions:
label:
add:
- tpu
- name: label-tpu-remove
description: Automatically remove tpu label
# Keep this list in sync with `label-tpu` conditions
conditions:
- and:
- -files~=tpu.py
- -files~=_tpu
- -files~=tpu_
- -files~=/tpu/
- -files~=pallas
actions:
label:
remove:
- tpu
- name: label-tool-calling
description: Automatically add tool-calling label
conditions:
- or:
- files~=^tests/tool_use/
- files~=^tests/mistral_tool_use/
- files~=^tests/entrypoints/openai/tool_parsers/
- files=tests/entrypoints/openai/test_chat_with_tool_reasoning.py
- files~=^vllm/entrypoints/openai/tool_parsers/
- files=docs/source/features/tool_calling.md
- files=docs/source/getting_started/examples/openai_chat_completion_client_with_tools.md
- files=docs/source/getting_started/examples/chat_with_tools.md
- files~=^examples/tool_chat_*
- files=examples/offline_inference/chat_with_tools.py
- files=examples/online_serving/openai_chat_completion_client_with_tools_required.py
- files=examples/online_serving/openai_chat_completion_tool_calls_with_reasoning.py
- files=examples/online_serving/openai_chat_completion_client_with_tools.py
actions:
label:
add:
- tool-calling
- name: ping author on conflicts and add 'needs-rebase' label
conditions:
- conflict

View File

@ -12,7 +12,7 @@ jobs:
fetch-depth: 0
- name: Set up Helm
uses: azure/setup-helm@fe7b79cd5ee1e45176fcad797de68ecaf3ca4814 # v4.2.0
uses: azure/setup-helm@b9e51907a09c216f16ebe8536097933489208112 # v4.3.0
with:
version: v3.14.4
@ -50,7 +50,7 @@ jobs:
uses: helm/kind-action@a1b0e391336a6ee6713a0583f8c6240d70863de3 # v1.12.0
- name: Build the Docker image vllm cpu
run: docker buildx build -f Dockerfile.cpu -t vllm-cpu-env .
run: docker buildx build -f docker/Dockerfile.cpu -t vllm-cpu-env .
- name: Configuration of docker images, network and namespace for the kind cluster
run: |

View File

@ -39,7 +39,7 @@ jobs:
const script = require('.github/workflows/scripts/create_release.js')
await script(github, context, core)
# NOTE(simon): No longer build wheel using Github Actions. See buildkite's release workflow.
# NOTE(simon): No longer build wheel using GitHub Actions. See buildkite's release workflow.
# wheel:
# name: Build Wheel
# runs-on: ${{ matrix.os }}
@ -50,7 +50,7 @@ jobs:
# matrix:
# os: ['ubuntu-20.04']
# python-version: ['3.9', '3.10', '3.11', '3.12']
# pytorch-version: ['2.4.0'] # Must be the most recent version that meets requirements-cuda.txt.
# pytorch-version: ['2.4.0'] # Must be the most recent version that meets requirements/cuda.txt.
# cuda-version: ['11.8', '12.1']
# steps:

View File

@ -9,7 +9,7 @@ PATH=${cuda_home}/bin:$PATH
LD_LIBRARY_PATH=${cuda_home}/lib64:$LD_LIBRARY_PATH
# Install requirements
$python_executable -m pip install -r requirements-build.txt -r requirements-cuda.txt
$python_executable -m pip install -r requirements/build.txt -r requirements/cuda.txt
# Limit the number of parallel jobs to avoid OOM
export MAX_JOBS=1

View File

@ -1,4 +1,4 @@
// Uses Github's API to create the release and wait for result.
// Uses GitHub's API to create the release and wait for result.
// We use a JS script since github CLI doesn't provide a way to wait for the release's creation and returns immediately.
module.exports = async (github, context, core) => {

7
.gitignore vendored
View File

@ -2,7 +2,7 @@
/vllm/_version.py
# vllm-flash-attn built from source
vllm/vllm_flash_attn/
vllm/vllm_flash_attn/*
# Byte-compiled / optimized / DLL files
__pycache__/
@ -197,8 +197,11 @@ _build/
hip_compat.h
# Benchmark dataset
benchmarks/*.json
benchmarks/**/*.json
# Linting
actionlint
shellcheck*/
# Ingore moe/marlin_moe gen code
csrc/moe/marlin_moe_wna16/kernel_*

View File

@ -1,20 +1,21 @@
default_install_hook_types:
- pre-commit
- commit-msg
default_stages:
- pre-commit # Run locally
- manual # Run in CI
exclude: 'vllm/third_party/.*'
repos:
- repo: https://github.com/google/yapf
rev: v0.43.0
hooks:
- id: yapf
args: [--in-place, --verbose]
additional_dependencies: [toml] # TODO: Remove when yapf is upgraded
exclude: 'vllm/third_party/.*'
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.9.3
hooks:
- id: ruff
args: [--output-format, github, --fix]
exclude: 'vllm/third_party/.*'
- repo: https://github.com/codespell-project/codespell
rev: v2.4.0
hooks:
@ -22,10 +23,9 @@ repos:
additional_dependencies: ['tomli']
args: ['--toml', 'pyproject.toml']
- repo: https://github.com/PyCQA/isort
rev: 5.13.2
rev: 0a0b7a830386ba6a31c2ec8316849ae4d1b8240d # 6.0.0
hooks:
- id: isort
exclude: 'vllm/third_party/.*'
- repo: https://github.com/pre-commit/mirrors-clang-format
rev: v19.1.7
hooks:
@ -38,12 +38,16 @@ repos:
hooks:
- id: pymarkdown
args: [fix]
exclude: 'vllm/third_party/.*'
- repo: https://github.com/rhysd/actionlint
rev: v1.7.7
hooks:
- id: actionlint
exclude: 'vllm/third_party/.*'
- repo: https://github.com/astral-sh/uv-pre-commit
rev: 0.6.2
hooks:
- id: pip-compile
args: [requirements/test.in, -o, requirements/test.txt]
files: ^requirements/test\.(in|txt)$
- repo: local
hooks:
- id: mypy-local
@ -51,9 +55,8 @@ repos:
entry: tools/mypy.sh 0 "local"
language: python
types: [python]
additional_dependencies: &mypy_deps [mypy==1.11.1, types-setuptools, types-PyYAML, types-requests]
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests]
stages: [pre-commit] # Don't run in CI
exclude: 'vllm/third_party/.*'
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.9
entry: tools/mypy.sh 1 "3.9"
@ -61,7 +64,6 @@ repos:
types: [python]
additional_dependencies: *mypy_deps
stages: [manual] # Only run in CI
exclude: 'vllm/third_party/.*'
- id: mypy-3.10 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.10
entry: tools/mypy.sh 1 "3.10"
@ -69,7 +71,6 @@ repos:
types: [python]
additional_dependencies: *mypy_deps
stages: [manual] # Only run in CI
exclude: 'vllm/third_party/.*'
- id: mypy-3.11 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.11
entry: tools/mypy.sh 1 "3.11"
@ -77,7 +78,6 @@ repos:
types: [python]
additional_dependencies: *mypy_deps
stages: [manual] # Only run in CI
exclude: 'vllm/third_party/.*'
- id: mypy-3.12 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.12
entry: tools/mypy.sh 1 "3.12"
@ -85,19 +85,16 @@ repos:
types: [python]
additional_dependencies: *mypy_deps
stages: [manual] # Only run in CI
exclude: 'vllm/third_party/.*'
- id: shellcheck
name: Lint shell scripts
entry: tools/shellcheck.sh
language: script
types: [shell]
exclude: 'vllm/third_party/.*'
- id: png-lint
name: Lint PNG exports from excalidraw
entry: tools/png-lint.sh
language: script
types: [png]
exclude: 'vllm/third_party/.*'
- id: signoff-commit
name: Sign-off Commit
entry: bash
@ -110,13 +107,11 @@ repos:
language: system
verbose: true
stages: [commit-msg]
exclude: 'vllm/third_party/.*'
- id: check-spdx-header
name: Check SPDX headers
entry: python tools/check_spdx_header.py
language: python
types: [python]
exclude: 'vllm/third_party/.*'
- id: check-filenames
name: Check for spaces in all filenames
entry: bash
@ -126,7 +121,12 @@ repos:
language: system
always_run: true
pass_filenames: false
exclude: 'vllm/third_party/.*'
- id: update-dockerfile-graph
name: Update Dockerfile dependency graph
entry: tools/update-dockerfile-graph.sh
language: script
files: ^docker/Dockerfile$
pass_filenames: false
# Keep `suggestion` last
- id: suggestion
name: Suggestion
@ -134,5 +134,4 @@ repos:
language: system
verbose: true
pass_filenames: false
exclude: 'vllm/third_party/.*'
# Insert new entries above the `suggestion` entry

View File

@ -18,4 +18,4 @@ formats: []
# Optionally declare the Python requirements required to build your docs
python:
install:
- requirements: docs/requirements-docs.txt
- requirements: requirements/docs.txt

319
CMakeLists.txt Executable file → Normal file
View File

@ -31,10 +31,10 @@ set(ignoreMe "${VLLM_PYTHON_PATH}")
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12")
# Supported NVIDIA architectures.
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0")
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101")
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
#
# Supported/expected torch versions for CUDA/ROCm.
@ -44,10 +44,10 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101")
#
# Note: the CUDA torch version is derived from pyproject.toml and various
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from Dockerfile.rocm
# versions are derived from docker/Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.5.1")
set(TORCH_SUPPORTED_VERSION_ROCM "2.5.1")
set(TORCH_SUPPORTED_VERSION_CUDA "2.6.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.6.0")
#
# Try to find python package with an executable that exactly matches
@ -174,6 +174,25 @@ include(FetchContent)
file(MAKE_DIRECTORY ${FETCHCONTENT_BASE_DIR}) # Ensure the directory exists
message(STATUS "FetchContent base directory: ${FETCHCONTENT_BASE_DIR}")
#
# Set rocm version dev int.
#
if(VLLM_GPU_LANG STREQUAL "HIP")
#
# Overriding the default -O set up by cmake, adding ggdb3 for the most verbose devug info
#
set(CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG "${CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG} -O0 -ggdb3")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O0 -ggdb3")
#
# Certain HIP functions are marked as [[nodiscard]], yet vllm ignores the result which generates
# a lot of warnings that always mask real issues. Suppressing until this is properly addressed.
#
set(CMAKE_${VLLM_GPU_LANG}_FLAGS "${CMAKE_${VLLM_GPU_LANG}_FLAGS} -Wno-unused-result")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-unused-result")
endif()
#
# Define other extension targets
#
@ -211,10 +230,12 @@ set(VLLM_EXT_SRC
"csrc/cache_kernels.cu"
"csrc/attention/paged_attention_v1.cu"
"csrc/attention/paged_attention_v2.cu"
"csrc/attention/merge_attn_states.cu"
"csrc/pos_encoding_kernels.cu"
"csrc/activation_kernels.cu"
"csrc/layernorm_kernels.cu"
"csrc/layernorm_quant_kernels.cu"
"csrc/cuda_view.cu"
"csrc/quantization/gptq/q_gemm.cu"
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
"csrc/quantization/fp8/common.cu"
@ -222,6 +243,7 @@ set(VLLM_EXT_SRC
"csrc/quantization/gguf/gguf_kernel.cu"
"csrc/cuda_utils_kernels.cu"
"csrc/prepare_inputs/advance_step.cu"
"csrc/custom_all_reduce.cu"
"csrc/torch_bindings.cpp")
if(VLLM_GPU_LANG STREQUAL "CUDA")
@ -229,7 +251,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# Set CUTLASS_REVISION manually -- its revision detection doesn't work in this case.
# Please keep this in sync with FetchContent_Declare line below.
set(CUTLASS_REVISION "v3.7.0" CACHE STRING "CUTLASS revision to use")
set(CUTLASS_REVISION "v3.9.0" CACHE STRING "CUTLASS revision to use")
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
@ -247,7 +269,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
cutlass
GIT_REPOSITORY https://github.com/nvidia/cutlass.git
# Please keep this in sync with CUTLASS_REVISION line above.
GIT_TAG v3.7.0
GIT_TAG v3.9.0
GIT_PROGRESS TRUE
# Speed up CUTLASS download by retrieving only the specified GIT_TAG instead of the history.
@ -263,12 +285,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
"csrc/quantization/aqlm/gemm_kernels.cu"
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/custom_all_reduce.cu"
"csrc/permute_cols.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
"csrc/cutlass_extensions/common.cpp")
"csrc/cutlass_extensions/common.cpp"
"csrc/attention/mla/cutlass_mla_entry.cu")
set_gencode_flags_for_srcs(
SRCS "${VLLM_EXT_SRC}"
@ -277,7 +300,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# Only build Marlin kernels if we are building for at least some compatible archs.
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
# are not supported by Machete yet.
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.7;8.9;9.0" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
if (MARLIN_ARCHS)
set(MARLIN_SRCS
"csrc/quantization/fp8/fp8_marlin.cu"
@ -297,43 +320,87 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
" in CUDA target architectures")
endif()
# Only build AllSpark kernels if we are building for at least some compatible archs.
cuda_archs_loose_intersection(ALLSPARK_ARCHS "8.0;8.6;8.7;8.9" "${CUDA_ARCHS}")
if (ALLSPARK_ARCHS)
set(ALLSPARK_SRCS
"csrc/quantization/gptq_allspark/allspark_repack.cu"
"csrc/quantization/gptq_allspark/allspark_qgemm_w8a16.cu")
set_gencode_flags_for_srcs(
SRCS "${ALLSPARK_SRCS}"
CUDA_ARCHS "${ALLSPARK_ARCHS}")
list(APPEND VLLM_EXT_SRC "${ALLSPARK_SRCS}")
message(STATUS "Building AllSpark kernels for archs: ${ALLSPARK_ARCHS}")
else()
message(STATUS "Not building AllSpark kernels as no compatible archs found"
" in CUDA target architectures")
endif()
set(SCALED_MM_3X_ARCHS)
# The cutlass_scaled_mm kernels for Hopper (c3x, i.e. CUTLASS 3.x) require
# CUDA 12.0 or later (and only work on Hopper, 9.0a for now).
cuda_archs_loose_intersection(SCALED_MM_3X_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_3X_ARCHS)
# CUDA 12.0 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm90.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_fp8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_int8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_azp_sm90_int8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm90_fp8.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_3X_ARCHS}")
CUDA_ARCHS "${SCALED_MM_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SCALED_MM_C3X=1")
message(STATUS "Building scaled_mm_c3x for archs: ${SCALED_MM_3X_ARCHS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SCALED_MM_SM90=1")
# Let scaled_mm_c2x know it doesn't need to build these arches
list(APPEND SCALED_MM_3X_ARCHS "${SCALED_MM_ARCHS}")
message(STATUS "Building scaled_mm_c3x_sm90 for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_3X_ARCHS)
message(STATUS "Not building scaled_mm_c3x as CUDA Compiler version is "
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_ARCHS)
message(STATUS "Not building scaled_mm_c3x_sm90 as CUDA Compiler version is "
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "
"later if you intend on running FP8 quantized models on "
"Hopper.")
else()
message(STATUS "Not building scaled_mm_c3x as no compatible archs found "
message(STATUS "Not building scaled_mm_c3x_sm90 as no compatible archs found "
"in CUDA target architectures")
endif()
endif()
# clear SCALED_MM_3X_ARCHS so the scaled_mm_c2x kernels know we didn't
# build any 3x kernels
set(SCALED_MM_3X_ARCHS)
# The cutlass_scaled_mm kernels for Blackwell (c3x, i.e. CUTLASS 3.x) require
# CUDA 12.8 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;12.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm100_fp8.cu"
)
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SCALED_MM_SM100=1")
# Let scaled_mm_c2x know it doesn't need to build these arches
list(APPEND SCALED_MM_3X_ARCHS "${SCALED_MM_ARCHS}")
message(STATUS "Building scaled_mm_c3x_sm100 for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND SCALED_MM_ARCHS)
message(STATUS "Not building scaled_mm_c3x_sm100 as CUDA Compiler version is "
"not >= 12.8, we recommend upgrading to CUDA 12.8 or "
"later if you intend on running FP8 quantized models on "
"Blackwell.")
else()
message(STATUS "Not building scaled_mm_c3x_100 as no compatible archs found "
"in CUDA target architectures")
endif()
endif()
#
# For the cutlass_scaled_mm kernels we want to build the c2x (CUTLASS 2.x)
# kernels for the remaining archs that are not already built for 3x.
cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS
"7.5;8.0;8.6;8.7;8.9;9.0" "${CUDA_ARCHS}")
"7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
# subtract out the archs that are already built for 3x
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
if (SCALED_MM_2X_ARCHS)
@ -358,17 +425,18 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# 2:4 Sparse Kernels
# The 2:4 sparse kernels cutlass_scaled_sparse_mm and cutlass_compressor
# require CUDA 12.2 or later (and only work on Hopper, 9.0a for now).
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_3X_ARCHS)
# require CUDA 12.2 or later (and only work on Hopper).
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_ARCHS)
set(SRCS "csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_3X_ARCHS}")
CUDA_ARCHS "${SCALED_MM_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SPARSE_SCALED_MM_C3X=1")
message(STATUS "Building sparse_scaled_mm_c3x for archs: ${SCALED_MM_3X_ARCHS}")
message(STATUS "Building sparse_scaled_mm_c3x for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_3X_ARCHS)
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_ARCHS)
message(STATUS "Not building sparse_scaled_mm_c3x kernels as CUDA Compiler version is "
"not >= 12.2, we recommend upgrading to CUDA 12.2 or later "
"if you intend on running FP8 sparse quantized models on Hopper.")
@ -383,7 +451,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
)
"csrc/quantization/fp4/nvfp4_scaled_mm_kernels.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${FP4_ARCHS}")
@ -396,6 +464,52 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set(FP4_ARCHS)
endif()
# CUTLASS MLA Archs and flags
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND MLA_ARCHS)
set(SRCS
"csrc/attention/mla/cutlass_mla_kernels.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${MLA_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MLA=1")
# Add MLA-specific include directories only to MLA source files
set_source_files_properties(${SRCS}
PROPERTIES INCLUDE_DIRECTORIES "${CUTLASS_DIR}/examples/77_blackwell_fmha;${CUTLASS_DIR}/examples/common")
message(STATUS "Building CUTLASS MLA for archs: ${MLA_ARCHS}")
else()
message(STATUS "Not building CUTLASS MLA as no compatible archs were found.")
# clear MLA_ARCHS
set(MLA_ARCHS)
endif()
# CUTLASS MoE kernels
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and only works
# on Hopper). get_cutlass_moe_mm_data should only be compiled if it's possible
# to compile MoE kernels that use its output.
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu"
"csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MOE_SM90=1")
message(STATUS "Building grouped_mm_c3x for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
message(STATUS "Not building grouped_mm_c3x kernels as CUDA Compiler version is "
"not >= 12.3, we recommend upgrading to CUDA 12.3 or later "
"if you intend on running FP8 quantized MoE models on Hopper.")
else()
message(STATUS "Not building grouped_mm_c3x as no compatible archs found "
"in CUDA target architectures")
endif()
endif()
#
# Machete kernels
@ -477,6 +591,7 @@ define_gpu_extension_target(
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR}
INCLUDE_DIRECTORIES ${CUTLASS_TOOLS_UTIL_INCLUDE_DIR}
USE_SABI 3
WITH_SOABI)
@ -495,28 +610,70 @@ set(VLLM_MOE_EXT_SRC
"csrc/moe/moe_align_sum_kernels.cu"
"csrc/moe/topk_softmax_kernels.cu")
if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_MOE_EXT_SRC "csrc/moe/moe_wna16.cu")
endif()
set_gencode_flags_for_srcs(
SRCS "${VLLM_MOE_EXT_SRC}"
CUDA_ARCHS "${CUDA_ARCHS}")
if(VLLM_GPU_LANG STREQUAL "CUDA")
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.7;8.9;9.0" "${CUDA_ARCHS}")
if (MARLIN_MOE_ARCHS)
set(MARLIN_MOE_SRC
"csrc/moe/marlin_kernels/marlin_moe_kernel.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.cu"
"csrc/moe/marlin_moe_ops.cu")
set(VLLM_MOE_WNA16_SRC
"csrc/moe/moe_wna16.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_MOE_SRC}"
SRCS "${VLLM_MOE_WNA16_SRC}"
CUDA_ARCHS "${CUDA_ARCHS}")
list(APPEND VLLM_MOE_EXT_SRC "${VLLM_MOE_WNA16_SRC}")
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
if (MARLIN_MOE_ARCHS)
#
# For the Marlin MOE kernels we automatically generate sources for various
# preselected input type pairs and schedules.
# Generate sources:
set(MOE_MARLIN_GEN_SCRIPT
${CMAKE_CURRENT_SOURCE_DIR}/csrc/moe/marlin_moe_wna16/generate_kernels.py)
file(MD5 ${MOE_MARLIN_GEN_SCRIPT} MOE_MARLIN_GEN_SCRIPT_HASH)
message(STATUS "Marlin MOE generation script hash: ${MOE_MARLIN_GEN_SCRIPT_HASH}")
message(STATUS "Last run Marlin MOE generate script hash: $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH}")
if (NOT DEFINED CACHE{MOE_MARLIN_GEN_SCRIPT_HASH}
OR NOT $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH} STREQUAL ${MOE_MARLIN_GEN_SCRIPT_HASH})
execute_process(
COMMAND ${CMAKE_COMMAND} -E env
PYTHONPATH=${CMAKE_CURRENT_SOURCE_DIR}/csrc/cutlass_extensions/:${CUTLASS_DIR}/python/:${VLLM_PYTHON_PATH}:$PYTHONPATH
${Python_EXECUTABLE} ${MOE_MARLIN_GEN_SCRIPT}
RESULT_VARIABLE moe_marlin_generation_result
OUTPUT_VARIABLE moe_marlin_generation_output
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log
)
if (NOT moe_marlin_generation_result EQUAL 0)
message(FATAL_ERROR "Marlin MOE generation failed."
" Result: \"${moe_marlin_generation_result}\""
"\nCheck the log for details: "
"${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log")
else()
set(MOE_MARLIN_GEN_SCRIPT_HASH ${MOE_MARLIN_GEN_SCRIPT_HASH}
CACHE STRING "Last run Marlin MOE generate script hash" FORCE)
message(STATUS "Marlin MOE generation completed successfully.")
endif()
else()
message(STATUS "Marlin MOE generation script has not changed, skipping generation.")
endif()
file(GLOB MOE_WNAA16_MARLIN_SRC "csrc/moe/marlin_moe_wna16/*.cu")
set_gencode_flags_for_srcs(
SRCS "${MOE_WNAA16_MARLIN_SRC}"
CUDA_ARCHS "${MARLIN_MOE_ARCHS}")
list(APPEND VLLM_MOE_EXT_SRC "${MARLIN_MOE_SRC}")
list(APPEND VLLM_MOE_EXT_SRC ${MOE_WNAA16_MARLIN_SRC})
message(STATUS "Building Marlin MOE kernels for archs: ${MARLIN_MOE_ARCHS}")
else()
message(STATUS "Not building Marlin MOE kernels as no compatible archs found"
@ -541,6 +698,7 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
#
set(VLLM_ROCM_EXT_SRC
"csrc/rocm/torch_bindings.cpp"
"csrc/rocm/skinny_gemms.cu"
"csrc/rocm/attention.cu")
define_gpu_extension_target(
@ -554,77 +712,8 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
WITH_SOABI)
endif()
# vllm-flash-attn currently only supported on CUDA
if (NOT VLLM_GPU_LANG STREQUAL "CUDA")
return()
endif ()
# vLLM flash attention requires VLLM_GPU_ARCHES to contain the set of target
# arches in the CMake syntax (75-real, 89-virtual, etc), since we clear the
# arches in the CUDA case (and instead set the gencodes on a per file basis)
# we need to manually set VLLM_GPU_ARCHES here.
# For CUDA we also build and ship some external projects.
if (VLLM_GPU_LANG STREQUAL "CUDA")
foreach(_ARCH ${CUDA_ARCHS})
string(REPLACE "." "" _ARCH "${_ARCH}")
list(APPEND VLLM_GPU_ARCHES "${_ARCH}-real")
endforeach()
include(cmake/external_projects/flashmla.cmake)
include(cmake/external_projects/vllm_flash_attn.cmake)
endif ()
#
# Build vLLM flash attention from source
#
# IMPORTANT: This has to be the last thing we do, because vllm-flash-attn uses the same macros/functions as vLLM.
# Because functions all belong to the global scope, vllm-flash-attn's functions overwrite vLLMs.
# They should be identical but if they aren't, this is a massive footgun.
#
# The vllm-flash-attn install rules are nested under vllm to make sure the library gets installed in the correct place.
# To only install vllm-flash-attn, use --component _vllm_fa2_C (for FA2) or --component _vllm_fa3_C (for FA3).
# If no component is specified, vllm-flash-attn is still installed.
# If VLLM_FLASH_ATTN_SRC_DIR is set, vllm-flash-attn is installed from that directory instead of downloading.
# This is to enable local development of vllm-flash-attn within vLLM.
# It can be set as an environment variable or passed as a cmake argument.
# The environment variable takes precedence.
if (DEFINED ENV{VLLM_FLASH_ATTN_SRC_DIR})
set(VLLM_FLASH_ATTN_SRC_DIR $ENV{VLLM_FLASH_ATTN_SRC_DIR})
endif()
if(VLLM_FLASH_ATTN_SRC_DIR)
FetchContent_Declare(
vllm-flash-attn SOURCE_DIR
${VLLM_FLASH_ATTN_SRC_DIR}
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
)
else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 720c94869cf2e0ff5a706e9c7f1dce0939686ade
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
)
endif()
# Fetch the vllm-flash-attn library
FetchContent_MakeAvailable(vllm-flash-attn)
message(STATUS "vllm-flash-attn is available at ${vllm-flash-attn_SOURCE_DIR}")
# Copy over the vllm-flash-attn python files (duplicated for fa2 and fa3, in
# case only one is built, in the case both are built redundant work is done)
install(
DIRECTORY ${vllm-flash-attn_SOURCE_DIR}/vllm_flash_attn/
DESTINATION vllm_flash_attn
COMPONENT _vllm_fa2_C
FILES_MATCHING PATTERN "*.py"
)
install(
DIRECTORY ${vllm-flash-attn_SOURCE_DIR}/vllm_flash_attn/
DESTINATION vllm_flash_attn
COMPONENT _vllm_fa3_C
FILES_MATCHING PATTERN "*.py"
)
# Nothing after vllm-flash-attn, see comment about macros above

View File

@ -1,69 +0,0 @@
# This vLLM Dockerfile is used to construct image that can build and run vLLM on x86 CPU platform.
FROM ubuntu:22.04 AS cpu-test-1
ENV CCACHE_DIR=/root/.cache/ccache
ENV CMAKE_CXX_COMPILER_LAUNCHER=ccache
RUN --mount=type=cache,target=/var/cache/apt \
apt-get update -y \
&& apt-get install -y curl ccache git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 libnuma-dev \
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
# https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/tuning_guide.html
# intel-openmp provides additional performance improvement vs. openmp
# tcmalloc provides better memory allocation efficiency, e.g, holding memory in caches to speed up access of commonly-used objects.
RUN --mount=type=cache,target=/root/.cache/pip \
pip install intel-openmp==2025.0.1
ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/usr/local/lib/libiomp5.so"
RUN echo 'ulimit -c 0' >> ~/.bashrc
RUN pip install intel_extension_for_pytorch==2.5.0
WORKDIR /workspace
ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,src=requirements-build.txt,target=requirements-build.txt \
pip install --upgrade pip && \
pip install -r requirements-build.txt
FROM cpu-test-1 AS build
WORKDIR /workspace/vllm
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,src=requirements-common.txt,target=requirements-common.txt \
--mount=type=bind,src=requirements-cpu.txt,target=requirements-cpu.txt \
pip install -v -r requirements-cpu.txt
COPY . .
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
# Support for building with non-AVX512 vLLM: docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" ...
ARG VLLM_CPU_DISABLE_AVX512
ENV VLLM_CPU_DISABLE_AVX512=${VLLM_CPU_DISABLE_AVX512}
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/ccache \
--mount=type=bind,source=.git,target=.git \
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel && \
pip install dist/*.whl && \
rm -rf dist
WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -e tests/vllm_test_utils
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -1,29 +0,0 @@
# The vLLM Dockerfile is used to construct vLLM image that can be directly used
# to run the OpenAI compatible server.
FROM ubuntu:22.04 AS dev
RUN apt-get update -y && \
apt-get install -y \
git python3-pip \
ffmpeg libsm6 libxext6 libgl1
WORKDIR /workspace
COPY . .
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
RUN python3 -m pip install -U pip
# install build requirements
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" python3 -m pip install -r /workspace/requirements-build.txt
# build vLLM with OpenVINO backend
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" VLLM_TARGET_DEVICE="openvino" python3 -m pip install /workspace
COPY examples/ /workspace/examples
COPY benchmarks/ /workspace/benchmarks
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
CMD ["/bin/bash"]

View File

@ -1,37 +0,0 @@
FROM mambaorg/micromamba
ARG MAMBA_DOCKERFILE_ACTIVATE=1
USER root
ENV PATH="/usr/local/cargo/bin:$PATH:/opt/conda/bin/"
RUN apt-get update -y && apt-get install -y git wget kmod curl vim libnuma-dev libsndfile-dev libprotobuf-dev build-essential ffmpeg libsm6 libxext6 libgl1 libssl-dev
# Some packages in requirements-cpu are installed here
# IBM provides optimized packages for ppc64le processors in the open-ce project for mamba
# Currently these may not be available for venv or pip directly
RUN micromamba install -y -n base -c https://ftp.osuosl.org/pub/open-ce/1.11.0-p10/ -c defaults python=3.10 rust && micromamba clean --all --yes
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi
RUN --mount=type=cache,target=/root/.cache/pip \
RUSTFLAGS='-L /opt/conda/lib' pip install -v --prefer-binary --extra-index-url https://repo.fury.io/mgiessing \
'cmake>=3.26' ninja packaging 'setuptools-scm>=8' wheel jinja2 \
-r requirements-cpu.txt \
xformers uvloop==0.20.0
RUN --mount=type=bind,source=.git,target=.git \
VLLM_TARGET_DEVICE=cpu python3 setup.py install
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
ENTRYPOINT ["/opt/conda/bin/python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -1,69 +0,0 @@
FROM intel/oneapi-basekit:2024.2.1-0-devel-ubuntu22.04 AS vllm-base
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \
echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \
chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \
wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \
echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
chmod 644 /usr/share/keyrings/intel-graphics.gpg
RUN apt-get update -y && \
apt-get install -y --no-install-recommends --fix-missing \
curl \
ffmpeg \
git \
libsndfile1 \
libsm6 \
libxext6 \
libgl1 \
lsb-release \
numactl \
python3 \
python3-dev \
python3-pip \
# vim \
wget
WORKDIR /workspace/vllm
COPY requirements-xpu.txt /workspace/vllm/requirements-xpu.txt
COPY requirements-common.txt /workspace/vllm/requirements-common.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install --no-cache-dir \
-r requirements-xpu.txt
RUN git clone https://github.com/intel/pti-gpu && \
cd pti-gpu/sdk && \
git checkout 6c491f07a777ed872c2654ca9942f1d0dde0a082 && \
mkdir build && \
cd build && \
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=../cmake/toolchains/icpx_toolchain.cmake -DBUILD_TESTING=OFF .. && \
make -j && \
cmake --install . --config Release --prefix "/usr/local"
ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/lib/"
COPY . .
ARG GIT_REPO_CHECK
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi
ENV VLLM_TARGET_DEVICE=xpu
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,source=.git,target=.git \
python3 setup.py install
CMD ["/bin/bash"]
FROM vllm-base AS vllm-openai
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer 'modelscope!=1.15.0'
ENV VLLM_USAGE_SOURCE production-docker-image \
TRITON_XPU_PROFILE 1
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -1,9 +1,9 @@
include LICENSE
include requirements-common.txt
include requirements-cuda.txt
include requirements-rocm.txt
include requirements-neuron.txt
include requirements-cpu.txt
include requirements/common.txt
include requirements/cuda.txt
include requirements/rocm.txt
include requirements/neuron.txt
include requirements/cpu.txt
include CMakeLists.txt
recursive-include cmake *

View File

@ -10,20 +10,24 @@ Easy, fast, and cheap LLM serving for everyone
</h3>
<p align="center">
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://blog.vllm.ai/"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://discuss.vllm.ai"><b>User Forum</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
</p>
---
We are excited to invite you to our Menlo Park meetup with Meta, evening of Thursday, February 27! Meta engineers will discuss the improvements on top of vLLM, and vLLM contributors will share updates from the v0.7.x series of releases. [Register Now](https://lu.ma/h7g3kuj9)
---
*Latest News* 🔥
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).
- [2025/03] We hosted [the East Coast vLLM Meetup](https://lu.ma/7mu4k4xx)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1NHiv8EUFF1NLd3fEYODm56nDmL26lEeXCaDgyDlTsRs/edit#slide=id.g31441846c39_0_0).
- [2025/02] We hosted [the ninth vLLM meetup](https://lu.ma/h7g3kuj9) with Meta! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1jzC_PZVXrVNSFVCW-V4cFXb6pn7zZ2CyP_Flwo05aqg/edit?usp=sharing) and AMD [here](https://drive.google.com/file/d/1Zk5qEJIkTmlQ2eQcXQZlljAx3m9s7nwn/view?usp=sharing). The slides from Meta will not be posted.
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
- [2025/01] We hosted [the eighth vLLM meetup](https://lu.ma/zep56hui) with Google Cloud! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1epVkt4Zu8Jz_S5OhEHPc798emsYh2BwYfRuDDVEF7u4/edit?usp=sharing), and Google Cloud team [here](https://drive.google.com/file/d/1h24pHewANyRL11xy5dXUbvRC9F9Kkjix/view?usp=sharing).
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
<details>
<summary>Previous News</summary>
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing), and Snowflake team [here](https://docs.google.com/presentation/d/1qF3RkDAbOULwz9WK5TOltt2fE9t6uIc_hVNLFAaQX6A/edit?usp=sharing).
- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there!
- [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://www.youtube.com/playlist?list=PLzTswPQNepXl6AQwifuwUImLPFRVpksjR) from other vLLM contributors and users!
@ -37,8 +41,9 @@ We are excited to invite you to our Menlo Park meetup with Meta, evening of Thur
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
---
</details>
---
## About
vLLM is a fast and easy-to-use library for LLM inference and serving.
@ -86,14 +91,14 @@ pip install vllm
```
Visit our [documentation](https://docs.vllm.ai/en/latest/) to learn more.
- [Installation](https://docs.vllm.ai/en/latest/getting_started/installation/index.html)
- [Installation](https://docs.vllm.ai/en/latest/getting_started/installation.html)
- [Quickstart](https://docs.vllm.ai/en/latest/getting_started/quickstart.html)
- [List of Supported Models](https://docs.vllm.ai/en/latest/models/supported_models.html)
## Contributing
We welcome and value any contributions and collaborations.
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.
Please check out [Contributing to vLLM](https://docs.vllm.ai/en/stable/contributing/overview.html) for how to get involved.
## Sponsors
@ -116,6 +121,7 @@ Compute Resources:
- Databricks
- DeepInfra
- Google Cloud
- Intel
- Lambda Lab
- Nebius
- Novita AI
@ -146,10 +152,11 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
## Contact Us
- For technical questions and feature requests, please use Github issues or discussions.
- For discussing with fellow users and coordinating contributions and development, please use Slack.
- For security disclosures, please use Github's security advisory feature.
- For collaborations and partnerships, please contact us at vllm-questions AT lists.berkeley.edu.
- For technical questions and feature requests, please use GitHub [Issues](https://github.com/vllm-project/vllm/issues) or [Discussions](https://github.com/vllm-project/vllm/discussions)
- For discussing with fellow users, please use the [vLLM Forum](https://discuss.vllm.ai)
- coordinating contributions and development, please use [Slack](https://slack.vllm.ai)
- For security disclosures, please use GitHub's [Security Advisories](https://github.com/vllm-project/vllm/security/advisories) feature
- For collaborations and partnerships, please contact us at [vllm-questions@lists.berkeley.edu](mailto:vllm-questions@lists.berkeley.edu)
## Media Kit

54
RELEASE.md Normal file
View File

@ -0,0 +1,54 @@
# Releasing vLLM
vLLM releases offer a reliable version of the code base, packaged into a binary format that can be conveniently accessed via PyPI. These releases also serve as key milestones for the development team to communicate with the community about newly available features, improvements, and upcoming changes that could affect users, including potential breaking changes.
## Release Versioning
vLLM uses a “right-shifted” versioning scheme where a new patch release is out every 2 weeks. And patch releases contain features and bug fixes (as opposed to semver where patch release contains only backwards-compatible bug fixes). When critical fixes need to be made, special release post1 is released.
* _major_ major architectural milestone and when incompatible API changes are made, similar to PyTorch 2.0.
* _minor_ major features
* _patch_ features and backwards-compatible bug fixes
* _post1_ or _patch-1_ backwards-compatible bug fixes, either explicit or implicit post release
## Release Cadence
Patch release is released on bi-weekly basis. Post release 1-3 days after patch release and uses same branch as patch release.
Following is the release cadence for year 2025. All future release dates below are tentative. Please note: Post releases are optional.
| Release Date | Patch release versions | Post Release versions |
| --- | --- | --- |
| Jan 2025 | 0.7.0 | --- |
| Feb 2025 | 0.7.1, 0.7.2, 0.7.3 | --- |
| Mar 2025 | 0.7.4, 0.7.5 | --- |
| Apr 2025 | 0.7.6, 0.7.7 | --- |
| May 2025 | 0.7.8, 0.7.9 | --- |
| Jun 2025 | 0.7.10, 0.7.11 | --- |
| Jul 2025 | 0.7.12, 0.7.13 | --- |
| Aug 2025 | 0.7.14, 0.7.15 | --- |
| Sep 2025 | 0.7.16, 0.7.17 | --- |
| Oct 2025 | 0.7.18, 0.7.19 | --- |
| Nov 2025 | 0.7.20, 0.7.21 | --- |
| Dec 2025 | 0.7.22, 0.7.23 | --- |
## Release branch
Each release is built from a dedicated release branch.
* For _major_, _minor_, _patch_ releases, the release branch cut is performed 1-2 days before release is live.
* For post releases, previously cut release branch is reused
* Release builds are triggered via push to RC tag like vX.Y.Z-rc1 . This enables us to build and test multiple RCs for each release.
* Final tag : vX.Y.Z does not trigger the build but used for Release notes and assets.
* After branch cut is created we monitor the main branch for any reverts and apply these reverts to a release branch.
## Release Cherry-Pick Criteria
After branch cut, we approach finalizing the release branch with clear criteria on what cherry picks are allowed in. Note: a cherry pick is a process to land a PR in the release branch after branch cut. These are typically limited to ensure that the team has sufficient time to complete a thorough round of testing on a stable code base.
* Regression fixes - that address functional/performance regression against the most recent release (e.g. 0.7.0 for 0.7.1 release)
* Critical fixes - critical fixes for severe issue such as silent incorrectness, backwards compatibility, crashes, deadlocks, (large) memory leaks
* Fixes to new features introduced in the most recent release (e.g. 0.7.0 for 0.7.1 release)
* Documentation improvements
* Release branch specific changes (e.g. change version identifiers or CI fixes)
Please note: **No feature work allowed for cherry picks**. All PRs that are considered for cherry-picks need to be merged on trunk, the only exception are Release branch specific changes.

View File

@ -1,29 +1,343 @@
# Benchmarking vLLM
## Downloading the ShareGPT dataset
This README guides you through running benchmark tests with the extensive
datasets supported on vLLM. Its a living document, updated as new features and datasets
become available.
You can download the dataset by running:
## Dataset Overview
<table style="width:100%; border-collapse: collapse;">
<thead>
<tr>
<th style="width:15%; text-align: left;">Dataset</th>
<th style="width:10%; text-align: center;">Online</th>
<th style="width:10%; text-align: center;">Offline</th>
<th style="width:65%; text-align: left;">Data Path</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ShareGPT</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json</code></td>
</tr>
<tr>
<td><strong>BurstGPT</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv</code></td>
</tr>
<tr>
<td><strong>Sonnet</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td>Local file: <code>benchmarks/sonnet.txt</code></td>
</tr>
<tr>
<td><strong>Random</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>synthetic</code></td>
</tr>
<tr>
<td><strong>HuggingFace-VisionArena</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>lmarena-ai/VisionArena-Chat</code></td>
</tr>
<tr>
<td><strong>HuggingFace-InstructCoder</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>likaixin/InstructCoder</code></td>
</tr>
<tr>
<td><strong>HuggingFace-AIMO</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>AI-MO/aimo-validation-aime</code> , <code>AI-MO/NuminaMath-1.5</code>, <code>AI-MO/NuminaMath-CoT</code></td>
</tr>
<tr>
<td><strong>HuggingFace-Other</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>lmms-lab/LLaVA-OneVision-Data</code>, <code>Aeala/ShareGPT_Vicuna_unfiltered</code></td>
</tr>
</tbody>
</table>
✅: supported
🟡: Partial support
🚧: to be supported
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`
---
## Example - Online Benchmark
First start serving your model
```bash
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
vllm serve NousResearch/Hermes-3-Llama-3.1-8B --disable-log-requests
```
## Downloading the ShareGPT4V dataset
The json file refers to several image datasets (coco, llava, etc.). The benchmark scripts
will ignore a datapoint if the referred image is missing.
Then run the benchmarking script
```bash
wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/resolve/main/sharegpt4v_instruct_gpt4-vision_cap100k.json
mkdir coco -p
wget http://images.cocodataset.org/zips/train2017.zip -O coco/train2017.zip
unzip coco/train2017.zip -d coco/
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python3 vllm/benchmarks/benchmark_serving.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--endpoint /v1/completions \
--dataset-name sharegpt \
--dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
--num-prompts 10
```
# Downloading the BurstGPT dataset
If successful, you will see the following output
You can download the BurstGPT v1.1 dataset by running:
```
============ Serving Benchmark Result ============
Successful requests: 10
Benchmark duration (s): 5.78
Total input tokens: 1369
Total generated tokens: 2212
Request throughput (req/s): 1.73
Output token throughput (tok/s): 382.89
Total Token throughput (tok/s): 619.85
---------------Time to First Token----------------
Mean TTFT (ms): 71.54
Median TTFT (ms): 73.88
P99 TTFT (ms): 79.49
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms): 7.91
Median TPOT (ms): 7.96
P99 TPOT (ms): 8.03
---------------Inter-token Latency----------------
Mean ITL (ms): 7.74
Median ITL (ms): 7.70
P99 ITL (ms): 8.39
==================================================
```
### VisionArena Benchmark for Vision Language Models
```bash
wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv
# need a model with vision capability here
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
```
```bash
python3 vllm/benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
--dataset-name hf \
--dataset-path lmarena-ai/VisionArena-Chat \
--hf-split train \
--num-prompts 1000
```
### InstructCoder Benchmark with Speculative Decoding
``` bash
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
--speculative-model "[ngram]" \
--ngram_prompt_lookup_min 2 \
--ngram-prompt-lookup-max 5 \
--num_speculative_tokens 5
```
``` bash
python3 benchmarks/benchmark_serving.py \
--model meta-llama/Meta-Llama-3-8B-Instruct \
--dataset-name hf \
--dataset-path likaixin/InstructCoder \
--num-prompts 2048
```
### Other HuggingFaceDataset Examples
```bash
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
```
**`lmms-lab/LLaVA-OneVision-Data`**
```bash
python3 vllm/benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
--dataset-name hf \
--dataset-path lmms-lab/LLaVA-OneVision-Data \
--hf-split train \
--hf-subset "chart2text(cauldron)" \
--num-prompts 10
```
**`Aeala/ShareGPT_Vicuna_unfiltered`**
```bash
python3 vllm/benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
--dataset-name hf \
--dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
--hf-split train \
--num-prompts 10
```
**`AI-MO/aimo-validation-aime`**
``` bash
python3 vllm/benchmarks/benchmark_serving.py \
--model Qwen/QwQ-32B \
--dataset-name hf \
--dataset-path AI-MO/aimo-validation-aime \
--num-prompts 10 \
--seed 42
```
### Running With Sampling Parameters
When using OpenAI-compatible backends such as `vllm`, optional sampling
parameters can be specified. Example client command:
```bash
python3 vllm/benchmarks/benchmark_serving.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--endpoint /v1/completions \
--dataset-name sharegpt \
--dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
--top-k 10 \
--top-p 0.9 \
--temperature 0.5 \
--num-prompts 10
```
---
## Example - Offline Throughput Benchmark
```bash
python3 vllm/benchmarks/benchmark_throughput.py \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset-name sonnet \
--dataset-path vllm/benchmarks/sonnet.txt \
--num-prompts 10
```
If successful, you will see the following output
```
Throughput: 7.15 requests/s, 4656.00 total tokens/s, 1072.15 output tokens/s
Total num prompt tokens: 5014
Total num output tokens: 1500
```
### VisionArena Benchmark for Vision Language Models
``` bash
python3 vllm/benchmarks/benchmark_throughput.py \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
--dataset-path lmarena-ai/VisionArena-Chat \
--num-prompts 1000 \
--hf-split train
```
The `num prompt tokens` now includes image token counts
```
Throughput: 2.55 requests/s, 4036.92 total tokens/s, 326.90 output tokens/s
Total num prompt tokens: 14527
Total num output tokens: 1280
```
### InstructCoder Benchmark with Speculative Decoding
``` bash
VLLM_WORKER_MULTIPROC_METHOD=spawn \
VLLM_USE_V1=1 \
python3 vllm/benchmarks/benchmark_throughput.py \
--dataset-name=hf \
--dataset-path=likaixin/InstructCoder \
--model=meta-llama/Meta-Llama-3-8B-Instruct \
--input-len=1000 \
--output-len=100 \
--num-prompts=2048 \
--async-engine \
--speculative-model="[ngram]" \
--ngram_prompt_lookup_min=2 \
--ngram-prompt-lookup-max=5 \
--num_speculative_tokens=5
```
```
Throughput: 104.77 requests/s, 23836.22 total tokens/s, 10477.10 output tokens/s
Total num prompt tokens: 261136
Total num output tokens: 204800
```
### Other HuggingFaceDataset Examples
**`lmms-lab/LLaVA-OneVision-Data`**
```bash
python3 vllm/benchmarks/benchmark_throughput.py \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
--dataset-path lmms-lab/LLaVA-OneVision-Data \
--hf-split train \
--hf-subset "chart2text(cauldron)" \
--num-prompts 10
```
**`Aeala/ShareGPT_Vicuna_unfiltered`**
```bash
python3 vllm/benchmarks/benchmark_throughput.py \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
--dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
--hf-split train \
--num-prompts 10
```
**`AI-MO/aimo-validation-aime`**
```bash
python3 benchmarks/benchmark_throughput.py \
--model Qwen/QwQ-32B \
--backend vllm \
--dataset-name hf \
--dataset-path AI-MO/aimo-validation-aime \
--hf-split train \
--num-prompts 10
```
### Benchmark with LoRA Adapters
``` bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python3 vllm/benchmarks/benchmark_throughput.py \
--model meta-llama/Llama-2-7b-hf \
--backend vllm \
--dataset_path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
--dataset_name sharegpt \
--num-prompts 10 \
--max-loras 2 \
--max-lora-rank 8 \
--enable-lora \
--lora-path yard1/llama-2-7b-sql-lora-test
```

View File

@ -1,12 +1,13 @@
# SPDX-License-Identifier: Apache-2.0
import io
import json
import os
import sys
import time
import traceback
from dataclasses import dataclass, field
from typing import List, Optional, Union
from typing import Optional, Union
import aiohttp
import huggingface_hub.constants
@ -14,6 +15,9 @@ from tqdm.asyncio import tqdm
from transformers import (AutoTokenizer, PreTrainedTokenizer,
PreTrainedTokenizerFast)
# NOTE(simon): do not import vLLM here so the benchmark script
# can run without vLLM installed.
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
@ -25,11 +29,11 @@ class RequestFuncInput:
output_len: int
model: str
model_name: Optional[str] = None
best_of: int = 1
logprobs: Optional[int] = None
extra_body: Optional[dict] = None
multi_modal_content: Optional[dict] = None
ignore_eos: bool = False
language: Optional[str] = None
@dataclass
@ -39,8 +43,8 @@ class RequestFuncOutput:
latency: float = 0.0
output_tokens: int = 0
ttft: float = 0.0 # Time to first token
itl: List[float] = field(
default_factory=list) # List of inter-token latencies
itl: list[float] = field(
default_factory=list) # list of inter-token latencies
tpot: float = 0.0 # avg next-token latencies
prompt_len: int = 0
error: str = ""
@ -56,13 +60,12 @@ async def async_request_tgi(
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
params = {
"best_of": request_func_input.best_of,
"max_new_tokens": request_func_input.output_len,
"do_sample": True,
"temperature": 0.01, # TGI does not accept 0.0 temperature.
"top_p": 0.99, # TGI does not accept 1.0 top_p.
"truncate": request_func_input.prompt_len,
# TGI does not accept ignore_eos flag.
"ignore_eos_token": request_func_input.ignore_eos,
}
payload = {
"inputs": request_func_input.prompt,
@ -70,6 +73,10 @@ async def async_request_tgi(
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
if request_func_input.ignore_eos:
output.output_tokens = request_func_input.output_len
else:
output.output_tokens = None
ttft = 0.0
st = time.perf_counter()
@ -128,7 +135,6 @@ async def async_request_trt_llm(
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
assert request_func_input.best_of == 1
payload = {
"accumulate_tokens": True,
"text_input": request_func_input.prompt,
@ -193,7 +199,6 @@ async def async_request_deepspeed_mii(
) -> RequestFuncOutput:
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
assert request_func_input.best_of == 1
payload = {
"prompt": request_func_input.prompt,
@ -216,7 +221,15 @@ async def async_request_deepspeed_mii(
if response.status == 200:
parsed_resp = await response.json()
output.latency = time.perf_counter() - st
if "choices" in parsed_resp:
output.generated_text = parsed_resp["choices"][0][
"text"]
elif "text" in parsed_resp:
output.generated_text = parsed_resp["text"][0]
else:
output.error = ("Unexpected response format: "
"neither 'choices' nor 'text' found")
output.success = False
output.success = True
else:
output.error = response.reason or ""
@ -247,7 +260,6 @@ async def async_request_openai_completions(
if request_func_input.model_name else request_func_input.model,
"prompt": request_func_input.prompt,
"temperature": 0.0,
"best_of": request_func_input.best_of,
"max_tokens": request_func_input.output_len,
"logprobs": request_func_input.logprobs,
"stream": True,
@ -336,7 +348,7 @@ async def async_request_openai_chat_completions(
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(
"chat/completions"
("chat/completions", "profile")
), "OpenAI Chat Completions API URL must end with 'chat/completions'."
async with aiohttp.ClientSession(trust_env=True,
@ -426,10 +438,119 @@ async def async_request_openai_chat_completions(
return output
async def async_request_openai_audio(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
# Lazy import without PlaceholderModule to avoid vllm dep.
import soundfile
api_url = request_func_input.api_url
assert api_url.endswith(
("transcriptions", "translations"
)), "OpenAI Chat Completions API URL must end with 'transcriptions' "
"or `translations`."
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
content = [{"type": "text", "text": request_func_input.prompt}]
payload = {
"model": request_func_input.model_name \
if request_func_input.model_name else request_func_input.model,
"temperature": 0.0,
"max_completion_tokens": request_func_input.output_len,
"stream": True,
"language": "en",
# Flattened due to multipart/form-data
"stream_include_usage": True,
"stream_continuous_usage_stats": True
}
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
# Send audio file
def to_bytes(y, sr):
buffer = io.BytesIO()
soundfile.write(buffer, y, sr, format="WAV")
buffer.seek(0)
return buffer
with to_bytes(*request_func_input.multi_modal_content['audio']) as f:
form = aiohttp.FormData()
form.add_field('file', f, content_type='audio/wav')
for key, value in payload.items():
form.add_field(key, str(value))
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url,
data=form,
headers=headers) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix(
"data: ")
if chunk != "[DONE]":
timestamp = time.perf_counter()
data = json.loads(chunk)
if choices := data.get("choices"):
content = choices[0]["delta"].get(
"content")
# First token
if ttft == 0.0:
ttft = timestamp - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(
timestamp - most_recent_timestamp)
generated_text += content or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get(
"completion_tokens")
most_recent_timestamp = timestamp
output.generated_text = generated_text
output.success = True
output.latency = most_recent_timestamp - st
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
def get_model(pretrained_model_name_or_path: str) -> str:
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
from modelscope import snapshot_download
from vllm.model_executor.model_loader.weight_utils import get_lock
# Use file lock to prevent multiple processes from
# downloading the same model weights at the same time.
with get_lock(pretrained_model_name_or_path):
model_path = snapshot_download(
model_id=pretrained_model_name_or_path,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
@ -478,7 +599,14 @@ ASYNC_REQUEST_FUNCS = {
"deepspeed-mii": async_request_deepspeed_mii,
"openai": async_request_openai_completions,
"openai-chat": async_request_openai_chat_completions,
"openai-audio": async_request_openai_audio,
"tensorrt-llm": async_request_trt_llm,
"scalellm": async_request_openai_completions,
"sglang": async_request_openai_completions,
}
OPENAI_COMPATIBLE_BACKENDS = [
k for k, v in ASYNC_REQUEST_FUNCS.items()
if v in (async_request_openai_completions,
async_request_openai_chat_completions)
]

View File

@ -0,0 +1,897 @@
# SPDX-License-Identifier: Apache-2.0
"""
This module defines a framework for sampling benchmark requests from various
datasets. Each dataset subclass of BenchmarkDataset must implement sample
generation. Supported dataset types include:
- ShareGPT
- Random (synthetic)
- Sonnet
- BurstGPT
- HuggingFace
- VisionArena
TODO: Implement CustomDataset to parse a JSON file and convert its contents into
SampleRequest instances, similar to the approach used in ShareGPT.
"""
import base64
import io
import json
import logging
import random
from abc import ABC, abstractmethod
from collections.abc import Mapping
from dataclasses import dataclass
from functools import cache
from io import BytesIO
from typing import Any, Callable, Optional, Union
import numpy as np
import pandas as pd
from datasets import load_dataset
from PIL import Image
from transformers import PreTrainedTokenizerBase
from vllm.lora.request import LoRARequest
from vllm.lora.utils import get_adapter_absolute_path
from vllm.multimodal import MultiModalDataDict
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
logger = logging.getLogger(__name__)
# -----------------------------------------------------------------------------
# Data Classes
# -----------------------------------------------------------------------------
@dataclass
class SampleRequest:
"""
Represents a single inference request for benchmarking.
"""
prompt: Union[str, Any]
prompt_len: int
expected_output_len: int
multi_modal_data: Optional[Union[MultiModalDataDict, dict]] = None
lora_request: Optional[LoRARequest] = None
# -----------------------------------------------------------------------------
# Benchmark Dataset Base Class
# -----------------------------------------------------------------------------
class BenchmarkDataset(ABC):
DEFAULT_SEED = 0
IS_MULTIMODAL = False
def __init__(
self,
dataset_path: Optional[str] = None,
random_seed: int = DEFAULT_SEED,
) -> None:
"""
Initialize the BenchmarkDataset with an optional dataset path and random
seed. Args:
dataset_path (Optional[str]): Path to the dataset. If None, it
indicates that a default or random dataset might be used.
random_seed (int): Seed value for reproducible shuffling or
sampling. Defaults to DEFAULT_SEED.
"""
self.dataset_path = dataset_path
# Set the random seed, ensuring that a None value is replaced with the
# default seed.
self.random_seed = (random_seed
if random_seed is not None else self.DEFAULT_SEED)
self.data = None
def apply_multimodal_chat_transformation(
self,
prompt: str,
mm_content: Optional[MultiModalDataDict] = None) -> list[dict]:
"""
Transform a prompt and optional multimodal content into a chat format.
This method is used for chat models that expect a specific conversation
format.
"""
content = [{"text": prompt, "type": "text"}]
if mm_content is not None:
content.append(mm_content)
return [{"role": "user", "content": content}]
def load_data(self) -> None:
"""
Load data from the dataset path into self.data.
This method must be overridden by subclasses since the method to load
data will vary depending on the dataset format and source.
Raises:
NotImplementedError: If a subclass does not implement this method.
"""
# TODO (jenniferzhao): add support for downloading data
raise NotImplementedError(
"load_data must be implemented in subclasses.")
def get_random_lora_request(
self,
tokenizer: PreTrainedTokenizerBase,
max_loras: Optional[int] = None,
lora_path: Optional[str] = None,
) -> tuple[Optional[LoRARequest], AnyTokenizer]:
"""
Optionally select a random LoRA request and return its associated
tokenizer.
This method is used when LoRA parameters are provided. It randomly
selects a LoRA based on max_loras and retrieves a cached tokenizer for
that LoRA if available. Otherwise, it returns the base tokenizer.
Args:
tokenizer (PreTrainedTokenizerBase): The base tokenizer to use if no
LoRA is selected. max_loras (Optional[int]): The maximum number of
LoRAs available. If None, LoRA is not used. lora_path
(Optional[str]): Path to the LoRA parameters on disk. If None, LoRA
is not used.
Returns:
tuple[Optional[LoRARequest], AnyTokenizer]: A tuple where the first
element is a LoRARequest (or None if not applicable) and the second
element is the tokenizer associated with the LoRA request (or the
base tokenizer).
"""
if max_loras is None or lora_path is None:
return None, tokenizer
# Generate a random LoRA ID in the range [1, max_loras].
lora_id = random.randint(1, max_loras)
lora_request = LoRARequest(
lora_name=str(lora_id),
lora_int_id=lora_id,
lora_path=lora_path_on_disk(lora_path),
)
if lora_id not in lora_tokenizer_cache:
lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request)
# Return lora_request and the cached tokenizer if available; otherwise,
# return the base tokenizer
return lora_request, lora_tokenizer_cache[lora_id] or tokenizer
@abstractmethod
def sample(self, tokenizer: PreTrainedTokenizerBase,
num_requests: int) -> list[SampleRequest]:
"""
Abstract method to generate sample requests from the dataset.
Subclasses must override this method to implement dataset-specific logic
for generating a list of SampleRequest objects.
Args:
tokenizer (PreTrainedTokenizerBase): The tokenizer to be used
for processing the dataset's text.
num_requests (int): The number of sample requests to generate.
Returns:
list[SampleRequest]: A list of sample requests generated from the
dataset.
"""
raise NotImplementedError("sample must be implemented in subclasses.")
def maybe_oversample_requests(self, requests: list[SampleRequest],
num_requests: int) -> None:
"""
Oversamples the list of requests if its size is less than the desired
number.
Args:
requests (List[SampleRequest]): The current list of sampled
requests. num_requests (int): The target number of requests.
"""
if len(requests) < num_requests:
random.seed(self.random_seed)
additional = random.choices(requests,
k=num_requests - len(requests))
requests.extend(additional)
logger.info("Oversampled requests to reach %d total samples.",
num_requests)
# -----------------------------------------------------------------------------
# Utility Functions and Global Caches
# -----------------------------------------------------------------------------
def is_valid_sequence(
prompt_len: int,
output_len: int,
min_len: int = 4,
max_prompt_len: int = 1024,
max_total_len: int = 2048,
skip_min_output_len_check: bool = False,
) -> bool:
"""
Validate a sequence based on prompt and output lengths.
Default pruning criteria are copied from the original `sample_hf_requests`
and `sample_sharegpt_requests` functions in benchmark_serving.py, as well as
from `sample_requests` in benchmark_throughput.py.
"""
# Check for invalid conditions
prompt_too_short = prompt_len < min_len
output_too_short = (not skip_min_output_len_check) and (output_len
< min_len)
prompt_too_long = prompt_len > max_prompt_len
combined_too_long = (prompt_len + output_len) > max_total_len
# Return True if none of the invalid conditions are met
return not (prompt_too_short or output_too_short or prompt_too_long
or combined_too_long)
@cache
def lora_path_on_disk(lora_path: str) -> str:
return get_adapter_absolute_path(lora_path)
# Global cache for LoRA tokenizers.
lora_tokenizer_cache: dict[int, AnyTokenizer] = {}
def process_image(image: Any) -> Mapping[str, Any]:
"""
Process a single image input and return a multimedia content dictionary.
Supports three input types:
1. Dictionary with raw image bytes: - Expects a dict with a 'bytes' key
containing raw image data. - Loads the bytes as a PIL.Image.Image.
2. PIL.Image.Image input: - Converts the image to RGB. - Saves the image as
a JPEG in memory. - Encodes the JPEG data as a base64 string. - Returns
a dictionary with the image as a base64 data URL.
3. String input: - Treats the string as a URL or local file path. -
Prepends "file://" if the string doesn't start with "http://" or
"file://". - Returns a dictionary with the image URL.
Raises:
ValueError: If the input is not a supported type.
"""
if isinstance(image, dict) and 'bytes' in image:
image = Image.open(BytesIO(image['bytes']))
if isinstance(image, Image.Image):
image = image.convert("RGB")
with io.BytesIO() as image_data:
image.save(image_data, format="JPEG")
image_base64 = base64.b64encode(
image_data.getvalue()).decode("utf-8")
return {
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
},
}
if isinstance(image, str):
image_url = (image if image.startswith(
("http://", "file://")) else f"file://{image}")
return {"type": "image_url", "image_url": {"url": image_url}}
raise ValueError(f"Invalid image input {image}. Must be a PIL.Image.Image"
" or str or dictionary with raw image bytes.")
# -----------------------------------------------------------------------------
# Random Dataset Implementation (Synthetic Data)
# -----------------------------------------------------------------------------
class RandomDataset(BenchmarkDataset):
# Default values copied from benchmark_serving.py for the random dataset.
DEFAULT_PREFIX_LEN = 0
DEFAULT_RANGE_RATIO = 0.0
DEFAULT_INPUT_LEN = 1024
DEFAULT_OUTPUT_LEN = 128
def __init__(
self,
**kwargs,
) -> None:
super().__init__(**kwargs)
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
range_ratio: float = DEFAULT_RANGE_RATIO,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
**kwargs,
) -> list[SampleRequest]:
# Enforce range_ratio < 1
assert range_ratio < 1.0, (
"random_range_ratio must be < 1.0 to ensure a valid sampling range"
)
vocab_size = tokenizer.vocab_size
prefix_token_ids = (np.random.randint(
0, vocab_size, size=prefix_len).tolist() if prefix_len > 0 else [])
# New sampling logic: [X * (1 - b), X * (1 + b)]
input_low = int(input_len * (1 - range_ratio))
input_high = int(input_len * (1 + range_ratio))
output_low = int(output_len * (1 - range_ratio))
output_high = int(output_len * (1 + range_ratio))
# Add logging for debugging
logger.info("Sampling input_len from [%s, %s]", input_low, input_high)
logger.info("Sampling output_len from [%s, %s]", output_low,
output_high)
input_lens = np.random.randint(input_low,
input_high + 1,
size=num_requests)
output_lens = np.random.randint(output_low,
output_high + 1,
size=num_requests)
offsets = np.random.randint(0, vocab_size, size=num_requests)
requests = []
for i in range(num_requests):
inner_seq = ((offsets[i] + i + np.arange(input_lens[i])) %
vocab_size).tolist()
token_sequence = prefix_token_ids + inner_seq
prompt = tokenizer.decode(token_sequence)
total_input_len = prefix_len + int(input_lens[i])
requests.append(
SampleRequest(
prompt=prompt,
prompt_len=total_input_len,
expected_output_len=int(output_lens[i]),
))
return requests
# -----------------------------------------------------------------------------
# ShareGPT Dataset Implementation
# -----------------------------------------------------------------------------
class ShareGPTDataset(BenchmarkDataset):
"""
Implements the ShareGPT dataset. Loads data from a JSON file and generates
sample requests based on conversation turns.
"""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
self.load_data()
def load_data(self) -> None:
if self.dataset_path is None:
raise ValueError("dataset_path must be provided for loading data.")
with open(self.dataset_path, encoding="utf-8") as f:
self.data = json.load(f)
# Filter entries with at least two conversation turns.
self.data = [
entry for entry in self.data
if "conversations" in entry and len(entry["conversations"]) >= 2
]
random.seed(self.random_seed)
random.shuffle(self.data)
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
lora_path: Optional[str] = None,
max_loras: Optional[int] = None,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
samples: list = []
for entry in self.data:
if len(samples) >= num_requests:
break
prompt, completion = (
entry["conversations"][0]["value"],
entry["conversations"][1]["value"],
)
lora_request, tokenizer = self.get_random_lora_request(
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
prompt_ids = tokenizer(prompt).input_ids
completion_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_ids)
new_output_len = (len(completion_ids)
if output_len is None else output_len)
if not is_valid_sequence(prompt_len,
new_output_len,
skip_min_output_len_check=output_len
is not None):
continue
if enable_multimodal_chat:
prompt = self.apply_multimodal_chat_transformation(
prompt, None)
samples.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=new_output_len,
lora_request=lora_request,
))
self.maybe_oversample_requests(samples, num_requests)
return samples
# -----------------------------------------------------------------------------
# Sonnet Dataset Implementation
# -----------------------------------------------------------------------------
class SonnetDataset(BenchmarkDataset):
"""
Simplified implementation of the Sonnet dataset. Loads poem lines from a
text file and generates sample requests. Default values here copied from
`benchmark_serving.py` for the sonnet dataset.
"""
DEFAULT_PREFIX_LEN = 200
DEFAULT_INPUT_LEN = 550
DEFAULT_OUTPUT_LEN = 150
def __init__(
self,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.load_data()
def load_data(self) -> None:
if not self.dataset_path:
raise ValueError("dataset_path must be provided.")
with open(self.dataset_path, encoding="utf-8") as f:
self.data = f.readlines()
def sample(
self,
tokenizer,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
return_prompt_formatted: bool = False,
**kwargs,
) -> list:
# Calculate average token length for a poem line.
tokenized_lines = [tokenizer(line).input_ids for line in self.data]
avg_len = sum(len(tokens)
for tokens in tokenized_lines) / len(tokenized_lines)
# Build the base prompt.
base_prompt = "Pick as many lines as you can from these poem lines:\n"
base_msg = [{"role": "user", "content": base_prompt}]
base_fmt = tokenizer.apply_chat_template(base_msg,
add_generation_prompt=True,
tokenize=False)
base_offset = len(tokenizer(base_fmt).input_ids)
if input_len <= base_offset:
raise ValueError(
f"'input_len' must be higher than the base prompt length "
f"({base_offset}).")
# Determine how many poem lines to use.
num_input_lines = round((input_len - base_offset) / avg_len)
num_prefix_lines = max(round((prefix_len - base_offset) / avg_len), 0)
prefix_lines = self.data[:num_prefix_lines]
samples = []
while len(samples) < num_requests:
extra_lines = random.choices(self.data,
k=num_input_lines - num_prefix_lines)
prompt = f"{base_prompt}{''.join(prefix_lines + extra_lines)}"
msg = [{"role": "user", "content": prompt}]
prompt_formatted = tokenizer.apply_chat_template(
msg, add_generation_prompt=True, tokenize=False)
prompt_len = len(tokenizer(prompt_formatted).input_ids)
if prompt_len <= input_len:
samples.append(
SampleRequest(
prompt=prompt_formatted
if return_prompt_formatted else prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
))
return samples
# -----------------------------------------------------------------------------
# BurstGPT Dataset Implementation
# -----------------------------------------------------------------------------
class BurstGPTDataset(BenchmarkDataset):
"""
Implements the BurstGPT dataset. Loads data from a CSV file and generates
sample requests based on synthetic prompt generation. Only rows with Model
"GPT-4" and positive response tokens are used.
"""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
self.load_data()
def load_data(self, ):
if self.dataset_path is None:
raise ValueError("dataset_path must be provided for loading data.")
df = pd.read_csv(self.dataset_path)
# Filter to keep only GPT-4 rows.
gpt4_df = df[df["Model"] == "GPT-4"]
# Remove failed requests (where Response tokens is 0 or less).
gpt4_df = gpt4_df[gpt4_df["Response tokens"] > 0]
# Sample the desired number of rows.
self.data = gpt4_df
def _sample_loaded_data(self, num_requests: int) -> list:
if num_requests <= len(self.data):
data = self.data.sample(n=num_requests,
random_state=self.random_seed)
else:
data = self.data.sample(
n=num_requests,
random_state=self.random_seed,
replace=True,
)
# Convert the dataframe to a list of lists.
return data.values.tolist()
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
max_loras: Optional[int] = None,
lora_path: Optional[str] = None,
**kwargs,
) -> list[SampleRequest]:
samples = []
data = self._sample_loaded_data(num_requests=num_requests)
for i in range(num_requests):
input_len = int(data[i][2])
output_len = int(data[i][3])
lora_req, tokenizer = self.get_random_lora_request(
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
vocab_size = tokenizer.vocab_size
# Generate a synthetic prompt: a list of token IDs computed as (i +
# j) modulo vocab_size.
token_ids = [(i + j) % vocab_size for j in range(input_len)]
prompt = tokenizer.decode(token_ids)
samples.append(
SampleRequest(
prompt=prompt,
prompt_len=input_len,
expected_output_len=output_len,
lora_request=lora_req,
))
return samples
# -----------------------------------------------------------------------------
# HuggingFace Dataset Base Implementation
# -----------------------------------------------------------------------------
class HuggingFaceDataset(BenchmarkDataset):
"""Base class for datasets hosted on HuggingFace."""
SUPPORTED_DATASET_PATHS: Union[set[str], dict[str, Callable]] = set()
def __init__(
self,
dataset_path: str,
dataset_split: str,
dataset_subset: Optional[str] = None,
**kwargs,
) -> None:
super().__init__(dataset_path=dataset_path, **kwargs)
self.dataset_split = dataset_split
self.dataset_subset = dataset_subset
self.load_data()
def load_data(self) -> None:
"""Load data from HuggingFace datasets."""
self.data = load_dataset(
self.dataset_path,
name=self.dataset_subset,
split=self.dataset_split,
streaming=True,
)
self.data = self.data.shuffle(seed=self.random_seed)
# -----------------------------------------------------------------------------
# Conversation Dataset Implementation
# -----------------------------------------------------------------------------
class ConversationDataset(HuggingFaceDataset):
"""Dataset for conversation data with multimodal support."""
SUPPORTED_DATASET_PATHS = {
'lmms-lab/LLaVA-OneVision-Data', 'Aeala/ShareGPT_Vicuna_unfiltered'
}
IS_MULTIMODAL = True
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs) -> list:
# Filter examples with at least 2 conversations
filtered_data = self.data.filter(
lambda x: len(x["conversations"]) >= 2)
sampled_requests = []
dynamic_output = output_len is None
for item in filtered_data:
if len(sampled_requests) >= num_requests:
break
conv = item["conversations"]
prompt, completion = conv[0]["value"], conv[1]["value"]
prompt_ids = tokenizer(prompt).input_ids
completion_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_ids)
completion_len = len(completion_ids)
output_len = completion_len if dynamic_output else output_len
assert isinstance(output_len, int) and output_len > 0
if dynamic_output and not is_valid_sequence(
prompt_len, completion_len):
continue
mm_content = process_image(
item["image"]) if "image" in item else None
if enable_multimodal_chat:
# Note: when chat is enabled the request prompt_len is no longer
# accurate and we will be using request output to count the
# actual prompt len and output len
prompt = self.apply_multimodal_chat_transformation(
prompt, mm_content)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
))
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# Vision Arena Dataset Implementation
# -----------------------------------------------------------------------------
class VisionArenaDataset(HuggingFaceDataset):
"""
Vision Arena Dataset.
"""
DEFAULT_OUTPUT_LEN = 128
SUPPORTED_DATASET_PATHS = {
"lmarena-ai/VisionArena-Chat":
lambda x: x["conversation"][0][0]["content"],
"lmarena-ai/vision-arena-bench-v0.1":
lambda x: x["turns"][0][0]["content"]
}
IS_MULTIMODAL = True
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
sampled_requests = []
for item in self.data:
if len(sampled_requests) >= num_requests:
break
parser_fn = self.SUPPORTED_DATASET_PATHS.get(self.dataset_path)
if parser_fn is None:
raise ValueError(
f"Unsupported dataset path: {self.dataset_path}")
prompt = parser_fn(item)
mm_content = process_image(item["images"][0])
prompt_len = len(tokenizer(prompt).input_ids)
if enable_multimodal_chat:
# Note: when chat is enabled the request prompt_len is no longer
# accurate and we will be using request output to count the
# actual prompt len
prompt = self.apply_multimodal_chat_transformation(
prompt, mm_content)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
))
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# Instruct Coder Dataset Implementation
# -----------------------------------------------------------------------------
class InstructCoderDataset(HuggingFaceDataset):
"""
InstructCoder Dataset.
https://huggingface.co/datasets/likaixin/InstructCoder
InstructCoder is the dataset designed for general code editing. It consists
of 114,239 instruction-input-output triplets, and covers multiple distinct
code editing scenario.
"""
DEFAULT_OUTPUT_LEN = 200 # this is the average default output length
SUPPORTED_DATASET_PATHS = {
"likaixin/InstructCoder",
}
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs) -> list:
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
sampled_requests = []
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt = f"{item['instruction']}:\n{item['input']}"
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
))
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# AIMO Dataset Implementation
# -----------------------------------------------------------------------------
class AIMODataset(HuggingFaceDataset):
"""
Dataset class for processing a AIMO dataset with reasoning questions.
"""
SUPPORTED_DATASET_PATHS = {
"AI-MO/aimo-validation-aime", "AI-MO/NuminaMath-1.5",
"AI-MO/NuminaMath-CoT"
}
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
**kwargs) -> list:
sampled_requests = []
dynamic_output = output_len is None
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt, completion = item['problem'], item["solution"]
prompt_ids = tokenizer(prompt).input_ids
completion_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_ids)
completion_len = len(completion_ids)
output_len = completion_len if dynamic_output else output_len
assert isinstance(output_len, int) and output_len > 0
if dynamic_output and not is_valid_sequence(prompt_len,
completion_len,
max_prompt_len=2048,
max_total_len=32000):
continue
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=None,
))
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# ASR Dataset Implementation
# -----------------------------------------------------------------------------
class ASRDataset(HuggingFaceDataset):
"""
Dataset class for processing a ASR dataset for transcription.
Tested on the following set:
+----------------+----------------------------------------+--------------------------+-----------------------------+
| Dataset | Domain | Speaking Style | hf-subset |
+----------------+----------------------------------------+--------------------------+-----------------------------+
| TED-LIUM | TED talks | Oratory | release1, release2, release3|
| | | | release3-speaker-adaptation |
| VoxPopuli | European Parliament | Oratory | en, de, it, fr, ... |
| LibriSpeech | Audiobook | Narrated | "LIUM/tedlium" |
| GigaSpeech | Audiobook, podcast, YouTube | Narrated, spontaneous | xs, s, m, l, xl, dev, test |
| SPGISpeech | Financial meetings | Oratory, spontaneous | S, M, L, dev, test |
| AMI | Meetings | Spontaneous | ihm, sdm |
+----------------+----------------------------------------+--------------------------+-----------------------------+
""" # noqa: E501
SUPPORTED_DATASET_PATHS = {
"openslr/librispeech_asr", "facebook/voxpopuli", "LIUM/tedlium",
"edinburghcstr/ami", "speechcolab/gigaspeech", "kensho/spgispeech"
}
DEFAULT_OUTPUT_LEN = 128
IS_MULTIMODAL = True
# TODO Whisper-specific. Abstract interface when more models are supported.
TRANSCRIPTION_PREAMBLE = "<|startoftranscript|><|en|><|transcribe|>"\
"<|notimestamps|>"
skip_long_audios: bool = True
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
**kwargs,
) -> list:
import librosa
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
prompt = ASRDataset.TRANSCRIPTION_PREAMBLE
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests = []
skipped = 0
for item in self.data:
if len(sampled_requests) >= num_requests:
break
audio = item["audio"]
y, sr = audio["array"], audio["sampling_rate"]
duration_s = librosa.get_duration(y=y, sr=sr)
# Whisper max supported duration
if self.skip_long_audios and duration_s > 30:
skipped += 1
continue
mm_content = {"audio": (y, sr)}
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
))
if skipped:
logger.warning("%d samples discarded from dataset due to" \
" their length being greater than" \
" what Whisper supports.", skipped)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests

View File

@ -1,495 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
"""Benchmark guided decoding throughput."""
import argparse
import dataclasses
import json
import os
import random
import time
from typing import List
import datasets
import pandas as pd
import uvloop
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
build_async_engine_client_from_engine_args)
from vllm.sampling_params import GuidedDecodingParams
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
@dataclasses.dataclass
class SampleRequest:
"""A class representing a single inference request for benchmarking.
Attributes:
prompt: The input text prompt for the model.
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
images).
prompt_len: The length of the prompt in tokens.
expected_output_len: The expected length of the output in tokens.
"""
prompt: str
prompt_len: int
expected_output_len: int
schema: dict
structure_type: str = 'json'
completion: str = None
def run_vllm(requests: List[SampleRequest],
engine_args: EngineArgs,
n: int,
guided_decoding_rate: float = 1.0,
warmup: bool = False) -> float:
from vllm import LLM, SamplingParams
llm = LLM(**vars(engine_args))
# Add the requests to the engine.
prompts: List[str] = []
sampling_params: List[SamplingParams] = []
# create a list containing random selected true or false
guided_decoding_req_idx = random.sample(
range(len(requests)), int(len(requests) * guided_decoding_rate))
if warmup:
print(">>>>> Running warmup prompt, for the first 5")
# We setup the first 5 requests to warmup FSM
# if using xgrammar dataset, we will skip warmup
warmup_requests = requests[:5]
for i, request in enumerate(warmup_requests):
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
guided_decoding=GuidedDecodingParams(json=request.schema)
if guided_decoding_rate > 0 else None,
))
llm.generate(prompts, sampling_params, use_tqdm=False)
print(">>>>> Benchmark started...")
prompts = []
sampling_params = []
for i, request in enumerate(requests):
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
guided_decoding=GuidedDecodingParams(
**{request.structure_type: request.schema})
if i in guided_decoding_req_idx else None,
))
start = time.perf_counter()
outputs = llm.generate(prompts, sampling_params, use_tqdm=False)
ret = []
for output, request in zip(outputs, requests):
generated_text = output.outputs[0].text
ret.append({
"generated": generated_text,
"expected": request.completion
})
end = time.perf_counter()
return end - start, ret
async def run_vllm_async(
requests: List[SampleRequest],
engine_args: AsyncEngineArgs,
n: int,
guided_decoding_rate: float = 1.0,
warmup: bool = False,
disable_frontend_multiprocessing: bool = False) -> float:
from vllm import SamplingParams
async with build_async_engine_client_from_engine_args(
engine_args, disable_frontend_multiprocessing) as llm:
# Add the requests to the engine.
prompts: List[str] = []
sampling_params: List[SamplingParams] = []
guided_decoding_req_idx = random.sample(
range(len(requests)), int(len(requests) * guided_decoding_rate))
if warmup:
print(">>>>>> Running warmup prompt, for the first 5")
# We setup the first 5 requests to warmup FSM
# if using xgrammar dataset, we will skip warmup
warmup_requests = requests[:5]
for i, request in enumerate(warmup_requests):
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
guided_decoding=GuidedDecodingParams(
json=request.schema)
if guided_decoding_rate > 0 else None,
))
generators = []
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
generator = llm.generate(prompt, sp, request_id=f"test{i}")
generators.append(generator)
all_gens = merge_async_iterators(*generators)
async for i, res in all_gens:
pass
print(">>>>> Benchmark started...")
prompts = []
sampling_params = []
for i, request in enumerate(requests):
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
guided_decoding=GuidedDecodingParams(json=request.schema)
if i in guided_decoding_req_idx else None,
))
generators = []
start_time = []
latencies = []
start = time.perf_counter()
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
generator = llm.generate(prompt, sp, request_id=f"test{i}")
generators.append(generator)
start_time.append(time.perf_counter())
latencies.append([])
all_gens = merge_async_iterators(*generators)
generated_texts = [''] * len(requests)
async for i, res in all_gens:
generated_texts[i] = res.outputs[0].text
lat = time.perf_counter() - start_time[i]
latencies[i].append(lat)
ret = [{
'generated': gt,
'expected': req.completion
} for gt, req in zip(generated_texts, requests)]
end = time.perf_counter()
first_latency = pd.Series([lat[0] * 1000 for lat in latencies])
next_latency = pd.Series([(lat[-1] - lat[0]) / len(lat[1:]) * 1000
for lat in latencies])
return end - start, ret, (first_latency, next_latency)
def sample_requests(tokenizer: PreTrainedTokenizerBase,
args: argparse.Namespace) -> List[SampleRequest]:
if args.dataset == 'json':
if args.json_schema_path is None:
dir_path = os.path.dirname(os.path.realpath(__file__))
args.json_schema_path = os.path.join(dir_path,
"structured_schemas",
"structured_schema_1.json")
with open(args.json_schema_path) as f:
schema = json.load(f)
prompt = f"Generate an example of a user profile given the following schema: {json.dumps(schema)}" # noqa: E501
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "grammar":
schema = """
?start: select_statement
?select_statement: "SELECT " column_list " FROM " table_name
?column_list: column_name ("," column_name)*
?table_name: identifier
?column_name: identifier
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
"""
prompt = "Generate an SQL query to show the 'username' \
and 'email' from the 'users' table."
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "regex":
regex = r"\w+@\w+\.com\n"
args.regex = regex
prompt = "Generate an email address for Alan Turing, \
who works in Enigma. End in .com and new line. \
Example result: alan.turing@enigma.com\n"
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=regex,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "choice":
choice = ["Positive", "Negative"]
args.choice = choice
prompt = "Classify this sentiment: vLLM is wonderful!"
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=choice,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "xgrammar_bench":
args.warmup = False
requests: List[SampleRequest] = []
dataset = datasets.load_dataset("NousResearch/json-mode-eval",
split="train")
print(f"dataset has {len(dataset)} entries")
len_dataset = len(dataset)
for data_point_idx in range(args.num_prompts):
idx = data_point_idx
while idx >= len_dataset:
idx -= len_dataset
schema = dataset["schema"][idx]
prompt = tokenizer.apply_chat_template(dataset["prompt"][idx],
tokenize=False)
input_len = len(tokenizer(prompt).input_ids)
completion = dataset["completion"][idx]
requests.append(
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
completion=completion))
return requests
def evaluate(ret, args):
def _eval_correctness_json(expected, actual):
# extract json string from string using regex
import re
actual = actual.replace('\n', '').replace(' ', '').strip()
try:
actual = re.search(r'\{.*\}', actual).group()
actual = json.loads(actual)
except Exception:
return False
return True
def _eval_correctness_choice(expected, actual):
return actual in args.choice
def _eval_correctness_regex(expected, actual):
import re
return re.match(args.regex, actual) is not None
def _eval_correctness(expected, actual):
if args.structure_type == 'json':
return _eval_correctness_json(expected, actual)
elif args.structure_type == 'regex':
return _eval_correctness_regex(expected, actual)
elif args.structure_type == 'choice':
return _eval_correctness_choice(expected, actual)
else:
return None
scores = []
for res in ret:
score = _eval_correctness(res['expected'], res['generated'])
res['correctness'] = score
scores.append(score)
not_none_scores = [score for score in scores if score is not None]
return (sum(not_none_scores) / len(not_none_scores) *
100) if len(not_none_scores) > 0 else None
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
# async engine is working for 'regex', 'choice' and 'grammar'
if args.dataset == 'grammar':
args.structure_type = 'grammar'
args.async_engine = False
elif args.dataset == 'regex':
args.structure_type = 'regex'
args.async_engine = False
elif args.dataset == 'choice':
args.structure_type = 'choice'
args.async_engine = False
else:
args.structure_type = 'json'
if args.no_guided_decoding:
args.guided_decoding_ratio = 0
if args.save_results:
result_file_name = f'{args.guided_decoding_ratio}guided'
result_file_name += f"_{args.model.split('/')[-1]}"
result_file_name += f"_{args.dataset}"
result_file_name += f"_{args.num_prompts}"
result_file_name += f"_out{args.output_len}"
result_file_name += f"_async{args.async_engine}"
result_file_name += f"_warmup{args.warmup}"
result_file_name += f"_chunkedprefill{args.enable_chunked_prefill}"
result_file_name += ".txt"
else:
result_file_name = None
# Synthesize a prompt with the given input length.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
requests = sample_requests(tokenizer, args)
if args.async_engine:
engine_args = AsyncEngineArgs.from_cli_args(args)
elapsed_time, ret, (first_latency, next_latency) = uvloop.run(
run_vllm_async(requests, engine_args, args.n,
args.guided_decoding_ratio, args.warmup,
args.disable_frontend_multiprocessing))
else:
engine_args = EngineArgs.from_cli_args(args)
elapsed_time, ret = run_vllm(requests, engine_args, args.n,
args.guided_decoding_ratio, args.warmup)
first_latency, next_latency = None, None
score = evaluate(ret, args)
total_num_tokens = sum(request.prompt_len + request.expected_output_len
for request in requests)
total_output_tokens = sum(request.expected_output_len
for request in requests)
if first_latency is not None:
latency_breakdown = "\nFirst token latency(msecs):\n"
latency_breakdown += f"{first_latency.describe()}"
latency_breakdown += "\nNext token latency(msecs):\n"
latency_breakdown += f"{next_latency.describe()}"
print(
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
f"{total_output_tokens / elapsed_time:.2f} output tokens/s",
f"Correct rate is {score} %",
f"{latency_breakdown if first_latency is not None else ''}")
# Output JSON results if specified
if args.output_json or result_file_name:
results = {
"elapsed_time": elapsed_time,
"num_requests": len(requests),
"total_num_tokens": total_num_tokens,
"total_output_tokens": total_output_tokens,
"requests_per_second": len(requests) / elapsed_time,
"tokens_per_second": f"{total_num_tokens / elapsed_time:.2f}",
"output_tokens_per_second":
f"{total_output_tokens / elapsed_time:.2f}",
"correct_rate(%)": score
}
results = {"outputs": ret, **results}
if first_latency is not None:
results["first_token_latency(msecs)"] = first_latency.describe(
).to_dict()
results["next_token_latency(msecs)"] = next_latency.describe(
).to_dict()
if args.output_json:
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
elif result_file_name:
with open(result_file_name, "w") as f:
json.dump(results, f, indent=4)
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark guided decoding.")
parser = AsyncEngineArgs.add_cli_args(parser)
parser.add_argument("--output-len",
type=int,
default=512,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument(
"--dataset",
default='json',
choices=['json', 'grammar', 'regex', 'choice', 'xgrammar_bench'])
parser.add_argument("--json_schema_path",
type=str,
default=None,
help="Path to json schema.")
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--num-prompts",
type=int,
default=10,
help="Number of prompts to process.")
parser.add_argument(
'--output-json',
type=str,
default=None,
help='Path to save the throughput results in JSON format.')
parser.add_argument("--async-engine",
action='store_true',
default=False,
help="Use vLLM async engine rather than LLM class.")
parser.add_argument("--no-guided-decoding",
action='store_true',
default=False,
help="Whether to disable JSON decoding or not.")
parser.add_argument("--guided-decoding-ratio",
type=float,
default=1.0,
help="Ratio of Guided Decoding requests")
parser.add_argument("--disable-frontend-multiprocessing",
action='store_true',
default=False,
help="Disable decoupled async engine frontend.")
parser.add_argument("--warmup",
action="store_true",
default=False,
help="Run warmup prompts before benchmark.")
parser.add_argument("--save-results",
action="store_true",
default=False,
help="save output results.")
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
main(args)

View File

@ -7,11 +7,11 @@ import json
import os
import time
from pathlib import Path
from typing import Any, Dict, List, Optional
from typing import Any, Optional
import numpy as np
import torch
from benchmark_utils import convert_to_pytorch_benchmark_format
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from tqdm import tqdm
from vllm import LLM, SamplingParams
@ -22,7 +22,7 @@ from vllm.utils import FlexibleArgumentParser
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
results: Dict[str, Any]) -> None:
results: dict[str, Any]) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={"latency": results["latencies"]},
@ -30,8 +30,7 @@ def save_to_pytorch_benchmark_format(args: argparse.Namespace,
for k in ["avg_latency", "percentiles"]})
if pt_records:
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
with open(pt_file, "w") as f:
json.dump(pt_records, f)
write_to_json(pt_file, pt_records)
def main(args: argparse.Namespace):
@ -42,6 +41,10 @@ def main(args: argparse.Namespace):
# NOTE(woosuk): If the request cannot be processed in a single batch,
# the engine will automatically process the request in multiple batches.
llm = LLM(**dataclasses.asdict(engine_args))
assert llm.llm_engine.model_config.max_model_len >= (
args.input_len +
args.output_len), ("Please ensure that max_model_len is greater than"
" the sum of input_len and output_len.")
sampling_params = SamplingParams(
n=args.n,
@ -49,12 +52,13 @@ def main(args: argparse.Namespace):
top_p=1.0,
ignore_eos=True,
max_tokens=args.output_len,
detokenize=not args.disable_detokenize,
)
print(sampling_params)
dummy_prompt_token_ids = np.random.randint(10000,
size=(args.batch_size,
args.input_len))
dummy_prompts: List[PromptType] = [{
dummy_prompts: list[PromptType] = [{
"prompt_token_ids": batch
} for batch in dummy_prompt_token_ids.tolist()]
@ -170,6 +174,12 @@ if __name__ == "__main__":
default=None,
help="Path to save the latency results in JSON format.",
)
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=("Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"),
)
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()

View File

@ -31,7 +31,7 @@ import dataclasses
import json
import random
import time
from typing import List, Optional, Tuple
from typing import Optional
from transformers import PreTrainedTokenizerBase
@ -63,23 +63,25 @@ class Request:
output_len: int
def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> str:
def sample_tokens(tokenizer: PreTrainedTokenizerBase,
length: int) -> list[int]:
vocab = tokenizer.get_vocab()
all_special_ids = set(tokenizer.all_special_ids)
# Remove the special tokens.
vocab = {
k: v
for k, v in vocab.items() if k not in tokenizer.all_special_ids
}
return random.choices(list(vocab.values()), k=length)
return random.choices(
[v for k, v in vocab.items() if k not in all_special_ids],
k=length,
)
def sample_requests_from_dataset(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
input_length_range: Tuple[int, int],
input_length_range: tuple[int, int],
fixed_output_len: Optional[int],
) -> List[Request]:
) -> list[Request]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
@ -99,7 +101,7 @@ def sample_requests_from_dataset(
assert min_len >= 0 and max_len >= min_len, "input_length_range too small"
# Filter out sequences that are too long or too short
filtered_requests: List[Request] = []
filtered_requests: list[Request] = []
for i in range(len(dataset)):
if len(filtered_requests) == num_requests:
@ -122,10 +124,10 @@ def sample_requests_from_dataset(
def sample_requests_from_random(
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
input_length_range: Tuple[int, int],
input_length_range: tuple[int, int],
fixed_output_len: Optional[int],
prefix_len: int,
) -> List[Request]:
) -> list[Request]:
requests = []
prefix_token_ids = sample_tokens(tokenizer, prefix_len)
@ -144,9 +146,9 @@ def sample_requests_from_random(
return requests
def repeat_and_sort_requests(requests: List[Request],
def repeat_and_sort_requests(requests: list[Request],
repeat_count: int,
sort: bool = False) -> List[str]:
sort: bool = False) -> list[str]:
repeated_requests = requests * repeat_count
if sort:
repeated_requests.sort(key=lambda x: x[1])
@ -194,7 +196,9 @@ def main(args):
llm = LLM(**dataclasses.asdict(engine_args))
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
sampling_params = SamplingParams(temperature=0,
max_tokens=args.output_len,
detokenize=not args.disable_detokenize)
print("Testing filtered requests")
prompts = repeat_and_sort_requests(filtered_requests,
@ -243,6 +247,12 @@ if __name__ == "__main__":
"subtract this length when filtering prompts. Only used "
"when dataset-path is not provided.",
)
parser.add_argument(
'--disable-detokenize',
action='store_true',
help=("Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"),
)
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()

View File

@ -5,7 +5,7 @@ import dataclasses
import json
import random
import time
from typing import List, Optional, Tuple
from typing import Optional
from transformers import AutoTokenizer, PreTrainedTokenizerBase
@ -13,12 +13,17 @@ from vllm.engine.arg_utils import EngineArgs
from vllm.utils import FlexibleArgumentParser
#Select a equi-probable random priority
def get_random_flag():
return 0 if random.random() < 0.5 else 1
def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
) -> list[tuple[str, int, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
@ -35,7 +40,7 @@ def sample_requests(
random.shuffle(dataset)
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
filtered_dataset: list[tuple[str, int, int]] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
@ -55,8 +60,7 @@ def sample_requests(
# Prune too long sequences.
continue
#Select a equi-probable random priority
priority = 0 if random.random() < 0.5 else 1
priority = get_random_flag()
filtered_dataset.append((prompt, prompt_len, output_len, priority))
@ -64,13 +68,20 @@ def sample_requests(
def run_vllm(
requests: List[Tuple[str, int, int]],
requests: list[tuple[str, int, int]],
n: int,
engine_args: EngineArgs,
disable_detokenize: bool = False,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len >= (request[1] + request[2])
for request in requests), (
"Please ensure that max_model_len is greater than the sum of"
" input_len and output_len for all requests.")
# Add the requests to the engine.
prompts = []
sampling_params = []
@ -85,6 +96,7 @@ def run_vllm(
top_p=1.0,
ignore_eos=True,
max_tokens=output_len,
detokenize=not disable_detokenize,
))
start = time.perf_counter()
@ -103,15 +115,16 @@ def main(args: argparse.Namespace):
if args.dataset is None:
# Synthesize a prompt with the given input length.
prompt = "hi" * (args.input_len - 1)
requests = [(prompt, args.input_len, args.output_len)
for _ in range(args.num_prompts)]
requests = [(prompt, args.input_len, args.output_len,
get_random_flag()) for _ in range(args.num_prompts)]
else:
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
args.output_len)
if args.backend == "vllm":
elapsed_time = run_vllm(requests, args.n,
EngineArgs.from_cli_args(args))
EngineArgs.from_cli_args(args),
args.disable_detokenize)
else:
raise ValueError(f"Unknown backend: {args.backend}")
total_num_tokens = sum(prompt_len + output_len
@ -164,6 +177,12 @@ if __name__ == "__main__":
type=str,
default=None,
help='Path to save the throughput results in JSON format.')
parser.add_argument(
'--disable-detokenize',
action='store_true',
help=("Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"),
)
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()

View File

@ -7,9 +7,6 @@ On the server side, run one of the following commands:
--swap-space 16 \
--disable-log-requests
(TGI backend)
./launch_tgi_server.sh <your_model> <max_batch_total_tokens>
On the client side, run:
python benchmarks/benchmark_serving.py \
--backend <backend> \
@ -25,24 +22,21 @@ On the client side, run:
"""
import argparse
import asyncio
import base64
import gc
import io
import json
import os
import random
import time
import warnings
from collections.abc import AsyncGenerator, Iterable
from dataclasses import dataclass
from datetime import datetime
from typing import Any, AsyncGenerator, Collection, Dict, List, Optional, Tuple
from typing import Any, Optional
import numpy as np
import pandas as pd
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
from backend_request_func import (ASYNC_REQUEST_FUNCS,
OPENAI_COMPATIBLE_BACKENDS, RequestFuncInput,
RequestFuncOutput)
from datasets import load_dataset
from PIL.Image import Image
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
@ -56,7 +50,12 @@ try:
except ImportError:
from argparse import ArgumentParser as FlexibleArgumentParser
from benchmark_utils import convert_to_pytorch_benchmark_format
from benchmark_dataset import (AIMODataset, ASRDataset, BurstGPTDataset,
ConversationDataset, HuggingFaceDataset,
InstructCoderDataset, RandomDataset,
SampleRequest, ShareGPTDataset, SonnetDataset,
VisionArenaDataset)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
@ -73,343 +72,36 @@ class BenchmarkMetrics:
mean_ttft_ms: float
median_ttft_ms: float
std_ttft_ms: float
percentiles_ttft_ms: List[Tuple[float, float]]
percentiles_ttft_ms: list[tuple[float, float]]
mean_tpot_ms: float
median_tpot_ms: float
std_tpot_ms: float
percentiles_tpot_ms: List[Tuple[float, float]]
percentiles_tpot_ms: list[tuple[float, float]]
mean_itl_ms: float
median_itl_ms: float
std_itl_ms: float
percentiles_itl_ms: List[Tuple[float, float]]
percentiles_itl_ms: list[tuple[float, float]]
# E2EL stands for end-to-end latency per request.
# It is the time taken on the client side from sending
# a request to receiving a complete response.
mean_e2el_ms: float
median_e2el_ms: float
std_e2el_ms: float
percentiles_e2el_ms: List[Tuple[float, float]]
def sample_sharegpt_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int] = None,
) -> List[Tuple[str, int, int, None]]:
# Load the dataset.
with open(dataset_path, encoding='utf-8') as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or (fixed_output_len is None and output_len < 4):
# Prune too short sequences.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
filtered_dataset.append((prompt, prompt_len, output_len, None))
return filtered_dataset
def sample_burstgpt_requests(
dataset_path: str,
num_requests: int,
random_seed: int,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, int, int, None]]:
df = pd.read_csv(dataset_path)
gpt4_df = df[df["Model"] == "GPT-4"]
# Remove the failed requests (i.e., response length is 0)
gpt4_df = gpt4_df[gpt4_df["Response tokens"] > 0]
# Randomly sample num_requests from the dataset
if num_requests <= len(gpt4_df):
gpt4_df = gpt4_df.sample(n=num_requests, random_state=random_seed)
else:
gpt4_df = gpt4_df.sample(n=num_requests,
random_state=random_seed,
replace=True)
# Convert the dataframe to a list of tuples
dataset = gpt4_df.values.tolist()
input_requests = []
for i in range(num_requests):
input_len = int(dataset[i][2])
output_len = int(dataset[i][3])
prompt = tokenizer.decode([(i + j) % tokenizer.vocab_size
for j in range(input_len)])
input_requests.append((prompt, input_len, output_len, None))
return input_requests
def sample_sonnet_requests(
dataset_path: str,
num_requests: int,
input_len: int,
output_len: int,
prefix_len: int,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, str, int, int, None]]:
assert (
input_len > prefix_len
), "'args.sonnet-input-len' must be greater than 'args.prefix-input-len'."
# Load the dataset.
with open(dataset_path, encoding='utf-8') as f:
poem_lines = f.readlines()
# Tokenize the poem lines.
poem_token_ids = tokenizer(poem_lines).input_ids
average_poem_len = sum(
len(token_ids) for token_ids in poem_token_ids) / len(poem_token_ids)
# Base prefix for all requests.
base_prompt = "Pick as many lines as you can from these poem lines:\n"
base_message = [{
"role": "user",
"content": base_prompt,
}]
base_prompt_formatted = tokenizer.apply_chat_template(
base_message, add_generation_prompt=True, tokenize=False)
base_prompt_offset = len(tokenizer(base_prompt_formatted).input_ids)
assert (
input_len > base_prompt_offset
), f"Please set 'args.sonnet-input-len' higher than {base_prompt_offset}."
num_input_lines = round(
(input_len - base_prompt_offset) / average_poem_len)
# First approximately `prefix_len` number of tokens in the
# prompt are fixed poem lines.
assert (
prefix_len > base_prompt_offset
), f"Please set 'args.sonnet-prefix-len' higher than {base_prompt_offset}."
num_prefix_lines = round(
(prefix_len - base_prompt_offset) / average_poem_len)
prefix_lines = poem_lines[:num_prefix_lines]
# Sample the rest of lines per request.
sampled_requests: List[Tuple[str, int, int]] = []
for _ in range(num_requests):
num_lines_needed = num_input_lines - num_prefix_lines
sampled_lines = "".join(prefix_lines +
random.choices(poem_lines, k=num_lines_needed))
prompt = f"{base_prompt}{sampled_lines}"
message = [
{
"role": "user",
"content": prompt,
},
]
prompt_formatted = tokenizer.apply_chat_template(
message, add_generation_prompt=True, tokenize=False)
prompt_len = len(tokenizer(prompt_formatted).input_ids)
sampled_requests.append(
(prompt, prompt_formatted, prompt_len, output_len, None))
return sampled_requests
def sample_vision_arena_requests(
dataset,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int] = None,
) -> List[Tuple[str, str, int, Optional[Dict[str, Collection[str]]]]]:
sampled_requests: List[Tuple[str, int, int, Dict[str,
Collection[str]]]] = []
for data in dataset:
if len(sampled_requests) == num_requests:
break
prompt = data["turns"][0][0]['content']
prompt_token_ids = tokenizer(prompt).input_ids
if fixed_output_len is None:
# Default max output len is set to 128
print("--hf-output-len is not provided. Using default value 128.")
fixed_output_len = 128
prompt_len = len(prompt_token_ids)
output_len = fixed_output_len
assert isinstance(
data["images"][0],
Image), ("Input image format must be `PIL.Image.Image`, "
f"given {type(data['image'])}.")
image: Image = data["images"][0]
image = image.convert("RGB")
image_data = io.BytesIO()
image.save(image_data, format='JPEG')
image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8")
mm_content = {
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
},
}
sampled_requests.append((prompt, prompt_len, output_len, mm_content))
return sampled_requests
def sample_hf_requests(
dataset_path: str,
dataset_subset: Optional[str],
dataset_split: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
random_seed: int,
fixed_output_len: Optional[int] = None,
) -> List[Tuple[str, str, int, Optional[Dict[str, Collection[str]]]]]:
# Special case for vision_arena dataset
if dataset_path == 'lmarena-ai/vision-arena-bench-v0.1' \
and dataset_subset is None:
assert dataset_split == "train"
dataset = load_dataset(dataset_path,
name=dataset_subset,
split=dataset_split,
streaming=True)
dataset = dataset.shuffle(seed=random_seed)
return sample_vision_arena_requests(dataset, num_requests, tokenizer,
fixed_output_len)
dataset = load_dataset(dataset_path,
name=dataset_subset,
split=dataset_split,
streaming=True)
assert "conversations" in dataset.features, (
"HF Dataset must have 'conversations' column.")
filter_func = lambda x: len(x["conversations"]) >= 2
filtered_dataset = dataset.shuffle(seed=random_seed).filter(filter_func)
sampled_requests: List[Tuple[str, int, int, Dict[str,
Collection[str]]]] = []
for data in filtered_dataset:
if len(sampled_requests) == num_requests:
break
# Tokenize the prompts and completions.
prompt = data["conversations"][0]["value"]
prompt_token_ids = tokenizer(prompt).input_ids
completion = data["conversations"][1]["value"]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if fixed_output_len is None and (prompt_len < 4 or output_len < 4):
# Prune too short sequences.
continue
if fixed_output_len is None and \
(prompt_len > 1024 or prompt_len + output_len > 2048):
# Prune too long sequences.
continue
if "image" in data and isinstance(data["image"], Image):
image: Image = data["image"]
image = image.convert("RGB")
image_data = io.BytesIO()
image.save(image_data, format='JPEG')
image_base64 = base64.b64encode(
image_data.getvalue()).decode("utf-8")
mm_content = {
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
},
}
elif "image" in data and isinstance(data["image"], str):
if (data["image"].startswith("http://") or \
data["image"].startswith("file://")):
image_url = data["image"]
else:
image_url = f"file://{data['image']}"
mm_content = {
"type": "image_url",
"image_url": {
"url": image_url
},
}
else:
mm_content = None
sampled_requests.append((prompt, prompt_len, output_len, mm_content))
return sampled_requests
def sample_random_requests(
prefix_len: int,
input_len: int,
output_len: int,
num_prompts: int,
range_ratio: float,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, int, int]]:
prefix_token_ids = np.random.randint(0,
tokenizer.vocab_size,
size=prefix_len).tolist()
input_lens = np.random.randint(
int(input_len * range_ratio),
input_len + 1,
size=num_prompts,
)
output_lens = np.random.randint(
int(output_len * range_ratio),
output_len + 1,
size=num_prompts,
)
offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
input_requests = []
for i in range(num_prompts):
prompt = tokenizer.decode(prefix_token_ids +
[(offsets[i] + i + j) % tokenizer.vocab_size
for j in range(input_lens[i])])
input_requests.append((prompt, int(prefix_len + input_lens[i]),
int(output_lens[i]), None))
return input_requests
percentiles_e2el_ms: list[tuple[float, float]]
async def get_request(
input_requests: List[Tuple[str, int, int]],
input_requests: list[SampleRequest],
request_rate: float,
burstiness: float = 1.0,
) -> AsyncGenerator[Tuple[str, int, int], None]:
) -> AsyncGenerator[SampleRequest, None]:
"""
Asynchronously generates requests at a specified rate
with OPTIONAL burstiness.
Args:
input_requests:
A list of input requests, each represented as a tuple.
A list of input requests, each represented as a SampleRequest.
request_rate:
The rate at which requests are generated (requests/s).
burstiness (optional):
@ -421,7 +113,7 @@ async def get_request(
in more bursty requests, while a higher burstiness value
(burstiness > 1) results in a more uniform arrival of requests.
"""
input_requests = iter(input_requests)
input_requests: Iterable[SampleRequest] = iter(input_requests)
# Calculate scale parameter theta to maintain the desired request_rate.
assert burstiness > 0, (
@ -443,28 +135,28 @@ async def get_request(
def calculate_metrics(
input_requests: List[Tuple[str, int, int]],
outputs: List[RequestFuncOutput],
input_requests: list[SampleRequest],
outputs: list[RequestFuncOutput],
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
selected_percentile_metrics: List[str],
selected_percentiles: List[float],
goodput_config_dict: Dict[str, float],
) -> Tuple[BenchmarkMetrics, List[int]]:
actual_output_lens: List[int] = []
selected_percentile_metrics: list[str],
selected_percentiles: list[float],
goodput_config_dict: dict[str, float],
) -> tuple[BenchmarkMetrics, list[int]]:
actual_output_lens: list[int] = []
total_input = 0
completed = 0
good_completed = 0
itls: List[float] = []
tpots: List[float] = []
all_tpots: List[float] = []
ttfts: List[float] = []
e2els: List[float] = []
itls: list[float] = []
tpots: list[float] = []
all_tpots: list[float] = []
ttfts: list[float] = []
e2els: list[float] = []
for i in range(len(outputs)):
if outputs[i].success:
output_len = outputs[i].output_tokens
if output_len is None:
if not output_len:
# We use the tokenizer to count the number of output tokens
# for some serving backends instead of looking at
# len(outputs[i].itl) since multiple output tokens may be
@ -474,7 +166,7 @@ def calculate_metrics(
tokenizer(outputs[i].generated_text,
add_special_tokens=False).input_ids)
actual_output_lens.append(output_len)
total_input += input_requests[i][1]
total_input += input_requests[i].prompt_len
tpot = 0
if output_len > 1:
latency_minus_ttft = outputs[i].latency - outputs[i].ttft
@ -557,19 +249,19 @@ async def benchmark(
model_id: str,
model_name: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: List[Tuple[str, int, int]],
input_requests: list[SampleRequest],
logprobs: Optional[int],
best_of: int,
request_rate: float,
burstiness: float,
disable_tqdm: bool,
profile: bool,
selected_percentile_metrics: List[str],
selected_percentiles: List[str],
selected_percentile_metrics: list[str],
selected_percentiles: list[float],
ignore_eos: bool,
goodput_config_dict: Dict[str, float],
goodput_config_dict: dict[str, float],
max_concurrency: Optional[int],
lora_modules: Optional[List[str]],
lora_modules: Optional[Iterable[str]],
extra_body: Optional[dict],
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS[backend]
@ -577,12 +269,12 @@ async def benchmark(
raise ValueError(f"Unknown backend: {backend}")
print("Starting initial single prompt test run...")
test_prompt, test_prompt_len, test_output_len, test_mm_content = (
input_requests[0])
if backend != "openai-chat" and test_mm_content is not None:
# multi-modal benchmark is only available on OpenAI Chat backend.
raise ValueError(
"Multi-modal content is only supported on 'openai-chat' backend.")
test_prompt, test_prompt_len, test_output_len, test_mm_content = \
input_requests[0].prompt, input_requests[0].prompt_len, \
input_requests[0].expected_output_len, \
input_requests[0].multi_modal_data
assert test_mm_content is None or isinstance(test_mm_content, dict)
test_input = RequestFuncInput(
model=model_id,
model_name=model_name,
@ -591,9 +283,9 @@ async def benchmark(
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
best_of=best_of,
multi_modal_content=test_mm_content,
ignore_eos=ignore_eos,
extra_body=extra_body,
)
test_output = await request_func(request_func_input=test_input)
@ -607,7 +299,8 @@ async def benchmark(
if lora_modules:
# For each input request, choose a LoRA module at random.
lora_modules = iter(
[random.choice(lora_modules) for _ in range(len(input_requests))])
[random.choice(lora_modules) \
for _ in range(len(input_requests))])
if profile:
print("Starting profiler...")
@ -618,9 +311,9 @@ async def benchmark(
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
best_of=best_of,
multi_modal_content=test_mm_content,
ignore_eos=ignore_eos)
ignore_eos=ignore_eos,
extra_body=extra_body)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler started")
@ -652,9 +345,11 @@ async def benchmark(
pbar=pbar)
benchmark_start_time = time.perf_counter()
tasks: List[asyncio.Task] = []
tasks: list[asyncio.Task] = []
async for request in get_request(input_requests, request_rate, burstiness):
prompt, prompt_len, output_len, mm_content = request
prompt, prompt_len, output_len, mm_content = request.prompt, \
request.prompt_len, request.expected_output_len, \
request.multi_modal_data
req_model_id, req_model_name = model_id, model_name
if lora_modules:
req_lora_module = next(lora_modules)
@ -667,14 +362,14 @@ async def benchmark(
prompt_len=prompt_len,
output_len=output_len,
logprobs=logprobs,
best_of=best_of,
multi_modal_content=mm_content,
ignore_eos=ignore_eos)
ignore_eos=ignore_eos,
extra_body=extra_body)
tasks.append(
asyncio.create_task(
limited_request_func(request_func_input=request_func_input,
pbar=pbar)))
outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
if profile:
print("Stopping profiler...")
@ -685,7 +380,6 @@ async def benchmark(
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
best_of=best_of,
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
@ -820,7 +514,7 @@ def parse_goodput(slo_pairs):
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
results: Dict[str, Any],
results: dict[str, Any],
file_name: str) -> None:
metrics = [
"median_ttft_ms", "mean_ttft_ms", "std_ttft_ms", "p99_ttft_ms",
@ -841,8 +535,7 @@ def save_to_pytorch_benchmark_format(args: argparse.Namespace,
if pt_records:
# Don't use json suffix here as we don't want CI to pick it up
pt_file = f"{os.path.splitext(file_name)[0]}.pytorch.json"
with open(pt_file, "w") as f:
json.dump(pt_records, f)
write_to_json(pt_file, pt_records)
def main(args: argparse.Namespace):
@ -867,91 +560,129 @@ def main(args: argparse.Namespace):
tokenizer_mode=tokenizer_mode,
trust_remote_code=args.trust_remote_code)
if args.dataset is not None:
warnings.warn(
"The '--dataset' argument will be deprecated in the next "
"release. Please use '--dataset-name' and "
"'--dataset-path' in the future runs.",
stacklevel=2)
input_requests = sample_sharegpt_requests(
dataset_path=args.dataset,
num_requests=args.num_prompts,
tokenizer=tokenizer,
fixed_output_len=args.sharegpt_output_len,
)
if args.dataset_name is None:
raise ValueError(
"Please specify '--dataset-name' and the corresponding "
"'--dataset-path' if required.")
elif args.dataset_name == "sharegpt":
input_requests = sample_sharegpt_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
fixed_output_len=args.sharegpt_output_len,
)
elif args.dataset_name == "burstgpt":
input_requests = sample_burstgpt_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
random_seed=args.seed,
tokenizer=tokenizer,
)
elif args.dataset_name == "sonnet":
# Do not format the prompt, pass to message directly
if args.dataset_name == "sonnet":
dataset = SonnetDataset(dataset_path=args.dataset_path)
# For the "sonnet" dataset, formatting depends on the backend.
if args.backend == "openai-chat":
input_requests = sample_sonnet_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
input_requests = dataset.sample(num_requests=args.num_prompts,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
)
input_requests = [(prompt, prompt_len, output_len, None)
for prompt, prompt_formatted, prompt_len,
output_len, _ in input_requests]
return_prompt_formatted=False)
else:
assert (
tokenizer.chat_template or tokenizer.default_chat_template
), "Tokenizer/model must have chat template for sonnet dataset."
input_requests = sample_sonnet_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
assert tokenizer.chat_template or tokenizer.default_chat_template, (
"Tokenizer/model must have chat template for sonnet dataset.")
input_requests = dataset.sample(num_requests=args.num_prompts,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
)
input_requests = [(prompt_formatted, prompt_len, output_len, None)
for prompt, prompt_formatted, prompt_len,
output_len, _ in input_requests]
return_prompt_formatted=True)
elif args.dataset_name == "hf":
input_requests = sample_hf_requests(
# all following datasets are implemented from the
# HuggingFaceDataset base class
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
dataset_class = VisionArenaDataset
args.hf_split = "train"
args.hf_subset = None
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
dataset_class = InstructCoderDataset
args.hf_split = "train"
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
dataset_class = ConversationDataset
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
dataset_class = AIMODataset
args.hf_split = "train"
elif args.dataset_path in ASRDataset.SUPPORTED_DATASET_PATHS:
dataset_class = ASRDataset
args.hf_split = "train"
else:
supported_datasets = set([
dataset_name for cls in HuggingFaceDataset.__subclasses__()
for dataset_name in cls.SUPPORTED_DATASET_PATHS
])
raise ValueError(
f"Unsupported dataset path: {args.dataset_path}. "
"Huggingface dataset only supports dataset_path"
f" from one of following: {supported_datasets}. "
"Please consider contributing if you would "
"like to add support for additional dataset formats.")
if (dataset_class.IS_MULTIMODAL and backend not in \
["openai-chat", "openai-audio"]):
# multi-modal benchmark is only available on OpenAI Chat backend.
raise ValueError(
"Multi-modal content is only supported on 'openai-chat' and " \
"'openai-audio' backend.")
input_requests = dataset_class(
dataset_path=args.dataset_path,
dataset_subset=args.hf_subset,
dataset_split=args.hf_split,
random_seed=args.seed,
).sample(
num_requests=args.num_prompts,
tokenizer=tokenizer,
random_seed=args.seed,
fixed_output_len=args.hf_output_len,
)
elif args.dataset_name == "random":
input_requests = sample_random_requests(
prefix_len=args.random_prefix_len,
input_len=args.random_input_len,
output_len=args.random_output_len,
num_prompts=args.num_prompts,
range_ratio=args.random_range_ratio,
tokenizer=tokenizer,
output_len=args.hf_output_len,
)
else:
raise ValueError(f"Unknown dataset: {args.dataset_name}")
# For datasets that follow a similar structure, use a mapping.
dataset_mapping = {
"sharegpt":
lambda: ShareGPTDataset(random_seed=args.seed,
dataset_path=args.dataset_path).sample(
tokenizer=tokenizer,
num_requests=args.num_prompts,
output_len=args.sharegpt_output_len,
),
"burstgpt":
lambda: BurstGPTDataset(random_seed=args.seed,
dataset_path=args.dataset_path).
sample(tokenizer=tokenizer, num_requests=args.num_prompts),
"random":
lambda: RandomDataset(dataset_path=args.dataset_path).sample(
tokenizer=tokenizer,
num_requests=args.num_prompts,
prefix_len=args.random_prefix_len,
input_len=args.random_input_len,
output_len=args.random_output_len,
range_ratio=args.random_range_ratio,
)
}
try:
input_requests = dataset_mapping[args.dataset_name]()
except KeyError as err:
raise ValueError(f"Unknown dataset: {args.dataset_name}") from err
goodput_config_dict = check_goodput_args(args)
# Collect the sampling parameters.
sampling_params = {
k: v
for k, v in {
"top_p": args.top_p,
"top_k": args.top_k,
"min_p": args.min_p,
"temperature": args.temperature
}.items() if v is not None
}
# Sampling parameters are only supported by openai-compatible backend.
if sampling_params and args.backend not in OPENAI_COMPATIBLE_BACKENDS:
raise ValueError(
"Sampling parameters are only supported by openai-compatible "
"backends.")
if "temperature" not in sampling_params:
sampling_params["temperature"] = 0.0 # Default to greedy decoding.
# Avoid GC processing "static" data - reduce pause times.
gc.collect()
gc.freeze()
@ -966,7 +697,6 @@ def main(args: argparse.Namespace):
tokenizer=tokenizer,
input_requests=input_requests,
logprobs=args.logprobs,
best_of=args.best_of,
request_rate=args.request_rate,
burstiness=args.burstiness,
disable_tqdm=args.disable_tqdm,
@ -979,11 +709,12 @@ def main(args: argparse.Namespace):
goodput_config_dict=goodput_config_dict,
max_concurrency=args.max_concurrency,
lora_modules=args.lora_modules,
extra_body=sampling_params,
))
# Save config and results to json
if args.save_result:
result_json: Dict[str, Any] = {}
if args.save_result or args.append_result:
result_json: dict[str, Any] = {}
# Setup
current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
@ -991,7 +722,6 @@ def main(args: argparse.Namespace):
result_json["backend"] = backend
result_json["model_id"] = model_id
result_json["tokenizer_id"] = tokenizer_id
result_json["best_of"] = args.best_of
result_json["num_prompts"] = args.num_prompts
# Metadata
@ -1004,7 +734,6 @@ def main(args: argparse.Namespace):
raise ValueError(
"Invalid metadata format. Please use KEY=VALUE format."
)
# Traffic
result_json["request_rate"] = (args.request_rate if args.request_rate
< float("inf") else "inf")
@ -1014,6 +743,15 @@ def main(args: argparse.Namespace):
# Merge with benchmark result
result_json = {**result_json, **benchmark_result}
if not args.save_detailed:
# Remove fields with too many data points
for field in [
"input_lens", "output_lens", "ttfts", "itls",
"generated_texts", "errors"
]:
if field in result_json:
del result_json[field]
# Save to file
base_model_id = model_id.split("/")[-1]
max_concurrency_str = (f"-concurrency{args.max_concurrency}"
@ -1023,7 +761,12 @@ def main(args: argparse.Namespace):
file_name = args.result_filename
if args.result_dir:
file_name = os.path.join(args.result_dir, file_name)
with open(file_name, "w", encoding='utf-8') as outfile:
with open(file_name,
mode="a+" if args.append_result else "w",
encoding='utf-8') as outfile:
# Append a newline.
if args.append_result and outfile.tell() != 0:
outfile.write("\n")
json.dump(result_json, outfile)
save_to_pytorch_benchmark_format(args, result_json, file_name)
@ -1052,13 +795,6 @@ if __name__ == "__main__":
default="/v1/completions",
help="API endpoint.",
)
parser.add_argument(
"--dataset",
type=str,
default=None,
help="Path to the ShareGPT dataset, will be deprecated in the "
"next release.",
)
parser.add_argument(
"--dataset-name",
type=str,
@ -1096,13 +832,6 @@ if __name__ == "__main__":
help=
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
)
parser.add_argument(
"--best-of",
type=int,
default=1,
help="Generates `best_of` sequences per prompt and "
"returns the best one.",
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument(
"--num-prompts",
@ -1163,6 +892,17 @@ if __name__ == "__main__":
action="store_true",
help="Specify to save benchmark results to a json file",
)
parser.add_argument(
"--save-detailed",
action="store_true",
help="When saving the results, whether to include per request "
"information such as response, error, ttfs, tpots, etc.",
)
parser.add_argument(
"--append-result",
action="store_true",
help="Append the benchmark result to the existing json file.",
)
parser.add_argument(
"--metadata",
metavar="KEY=VALUE",
@ -1196,7 +936,7 @@ if __name__ == "__main__":
"--percentile-metrics",
type=str,
default="ttft,tpot,itl",
help="Comma-seperated list of selected metrics to report percentils. "
help="Comma-separated list of selected metrics to report percentils. "
"This argument specifies the metrics to report percentiles. "
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
"Default value is \"ttft,tpot,itl\".")
@ -1204,7 +944,7 @@ if __name__ == "__main__":
"--metric-percentiles",
type=str,
default="99",
help="Comma-seperated list of percentiles for selected metrics. "
help="Comma-separated list of percentiles for selected metrics. "
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
"Default value is \"99\". "
"Use \"--percentile-metrics\" to select metrics.",
@ -1271,18 +1011,23 @@ if __name__ == "__main__":
random_group.add_argument(
"--random-range-ratio",
type=float,
default=1.0,
help="Range of sampled ratio of input/output length, "
"used only for random sampling.",
default=0.0,
help="Range ratio for sampling input/output length, "
"used only for random sampling. Must be in the range [0, 1) to define "
"a symmetric sampling range"
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
)
random_group.add_argument(
"--random-prefix-len",
type=int,
default=0,
help="Number of fixed prefix tokens before random "
" context. The length range of context in a random "
" request is [random-prefix-len, "
" random-prefix-len + random-prefix-len * random-range-ratio).")
help=("Number of fixed prefix tokens before the random context "
"in a request. "
"The total input length is the sum of `random-prefix-len` and "
"a random "
"context length sampled from [input_len * (1 - range_ratio), "
"input_len * (1 + range_ratio)]."),
)
hf_group = parser.add_argument_group("hf dataset options")
hf_group.add_argument("--hf-subset",
@ -1301,6 +1046,33 @@ if __name__ == "__main__":
"from the sampled HF dataset.",
)
sampling_group = parser.add_argument_group("sampling parameters")
sampling_group.add_argument(
"--top-p",
type=float,
default=None,
help="Top-p sampling parameter. Only has effect on openai-compatible "
"backends.")
sampling_group.add_argument(
"--top-k",
type=int,
default=None,
help="Top-k sampling parameter. Only has effect on openai-compatible "
"backends.")
sampling_group.add_argument(
"--min-p",
type=float,
default=None,
help="Min-p sampling parameter. Only has effect on openai-compatible "
"backends.")
sampling_group.add_argument(
"--temperature",
type=float,
default=None,
help="Temperature sampling parameter. Only has effect on "
"openai-compatible backends. If not specified, default to greedy "
"decoding (i.e. temperature==0.0).")
parser.add_argument(
'--tokenizer-mode',
type=str,
@ -1327,4 +1099,5 @@ if __name__ == "__main__":
"script chooses a LoRA module at random.")
args = parser.parse_args()
main(args)

View File

@ -1,20 +1,17 @@
# SPDX-License-Identifier: Apache-2.0
r"""Benchmark online serving throughput with guided decoding.
r"""Benchmark online serving throughput with structured outputs.
On the server side, run one of the following commands:
(vLLM OpenAI API server)
vllm serve <your_model> --disable-log-requests
(TGI backend)
./launch_tgi_server.sh <your_model> <max_batch_total_tokens>
On the client side, run:
python benchmarks/benchmark_serving.py \
python benchmarks/benchmark_serving_structured_output.py \
--backend <backend> \
--model <your_model> \
--dataset json \
--guided-decoding-ratio 1.0 \
--guided-decoding-backend xgrammar \
--structured-output-ratio 1.0 \
--structured-output-backend auto \
--request-rate 10 \
--num-prompts 1000
@ -24,14 +21,17 @@ On the client side, run:
"""
import argparse
import asyncio
import copy
import dataclasses
import json
import os
import random
import time
import uuid
import warnings
from collections.abc import AsyncGenerator
from dataclasses import dataclass
from typing import AsyncGenerator, List, Optional, Tuple
from typing import Optional
import datasets
import numpy as np
@ -51,6 +51,9 @@ try:
except ImportError:
from argparse import ArgumentParser as FlexibleArgumentParser
from vllm.v1.structured_output.backend_xgrammar import (
has_xgrammar_unsupported_json_features)
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
@ -66,22 +69,22 @@ class BenchmarkMetrics:
mean_ttft_ms: float
median_ttft_ms: float
std_ttft_ms: float
percentiles_ttft_ms: List[Tuple[float, float]]
percentiles_ttft_ms: list[tuple[float, float]]
mean_tpot_ms: float
median_tpot_ms: float
std_tpot_ms: float
percentiles_tpot_ms: List[Tuple[float, float]]
percentiles_tpot_ms: list[tuple[float, float]]
mean_itl_ms: float
median_itl_ms: float
std_itl_ms: float
percentiles_itl_ms: List[Tuple[float, float]]
percentiles_itl_ms: list[tuple[float, float]]
# E2EL stands for end-to-end latency per request.
# It is the time taken on the client side from sending
# a request to receiving a complete response.
mean_e2el_ms: float
median_e2el_ms: float
std_e2el_ms: float
percentiles_e2el_ms: List[Tuple[float, float]]
percentiles_e2el_ms: list[tuple[float, float]]
@dataclasses.dataclass
@ -104,40 +107,60 @@ class SampleRequest:
def sample_requests(tokenizer: PreTrainedTokenizerBase,
args: argparse.Namespace) -> List[SampleRequest]:
if args.dataset == 'json':
args: argparse.Namespace) -> list[SampleRequest]:
if args.dataset == 'json' or args.dataset == 'json-unique':
if args.json_schema_path is None:
dir_path = os.path.dirname(os.path.realpath(__file__))
args.json_schema_path = os.path.join(dir_path,
"structured_schemas",
"structured_schema_1.json")
json_schemas = []
with open(args.json_schema_path) as f:
schema = json.load(f)
prompt = f"Generate an example of a user profile given the following schema: {json.dumps(schema)}" # noqa: E501
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
if args.dataset == 'json-unique':
json_schemas = [
copy.deepcopy(schema) for _ in range(args.num_prompts)
]
for i in range(len(json_schemas)):
json_schemas[i]["properties"][
f"__optional_field_{uuid.uuid4()}"] = {
"type":
"string",
"description":
"An unique optional field to avoid cached schemas"
}
else:
json_schemas = [schema] * args.num_prompts
def gen_prompt(index: int):
return f"Generate an example of a user profile given the following schema: {json.dumps(get_schema(index))}" # noqa: E501
def get_schema(index: int):
return json_schemas[index % len(json_schemas)]
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
SampleRequest(prompt=gen_prompt(i),
prompt_len=len(tokenizer(gen_prompt(i)).input_ids),
expected_output_len=args.output_len,
schema=schema,
schema=get_schema(i),
structure_type=args.structure_type)
for _ in range(args.num_prompts)
for i in range(args.num_prompts)
]
elif args.dataset == "grammar":
schema = """
?start: select_statement
root ::= select_statement
?select_statement: "SELECT " column_list " FROM " table_name
select_statement ::= "SELECT " column " from " table " where " condition
?column_list: column_name ("," column_name)*
column ::= "col_1 " | "col_2 "
?table_name: identifier
table ::= "table_1 " | "table_2 "
?column_name: identifier
condition ::= column "= " number
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
number ::= "1 " | "2 "
"""
prompt = "Generate an SQL query to show the 'username' \
and 'email' from the 'users' table."
@ -187,10 +210,20 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
]
elif args.dataset == "xgrammar_bench":
requests: List[SampleRequest] = []
requests: list[SampleRequest] = []
dataset = datasets.load_dataset("NousResearch/json-mode-eval",
split="train")
print(f"dataset has {len(dataset)} entries")
full_dataset_len = len(dataset)
def _filter_func(item):
import json
schema = json.loads(item["schema"])
return not has_xgrammar_unsupported_json_features(schema)
dataset = dataset.filter(_filter_func)
num_filtered_out = full_dataset_len - len(dataset)
print(f"dataset has {len(dataset)} entries after filtering "
f"out {num_filtered_out} entries with unsupported features")
len_dataset = len(dataset)
for data_point_idx in range(args.num_prompts):
idx = data_point_idx
@ -214,10 +247,10 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
async def get_request(
input_requests: List[SampleRequest],
input_requests: list[SampleRequest],
request_rate: float,
burstiness: float = 1.0,
) -> AsyncGenerator[Tuple[int, SampleRequest], None]:
) -> AsyncGenerator[tuple[int, SampleRequest], None]:
"""
Asynchronously generates requests at a specified rate
with OPTIONAL burstiness.
@ -258,22 +291,23 @@ async def get_request(
def calculate_metrics(
input_requests: List[Tuple[str, int, int]],
outputs: List[RequestFuncOutput],
input_requests: list[tuple[str, int, int]],
outputs: list[RequestFuncOutput],
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
selected_percentile_metrics: List[str],
selected_percentiles: List[float],
) -> Tuple[BenchmarkMetrics, List[int]]:
actual_output_lens: List[int] = []
selected_percentile_metrics: list[str],
selected_percentiles: list[float],
goodput_config_dict: Optional[dict[str, float]] = None,
) -> tuple[BenchmarkMetrics, list[int]]:
actual_output_lens: list[int] = []
total_input = 0
completed = 0
good_completed = 0
itls: List[float] = []
tpots: List[float] = []
all_tpots: List[float] = []
ttfts: List[float] = []
e2els: List[float] = []
itls: list[float] = []
tpots: list[float] = []
all_tpots: list[float] = []
ttfts: list[float] = []
e2els: list[float] = []
for i in range(len(outputs)):
if outputs[i].success:
# We use the tokenizer to count the number of output tokens for all
@ -287,10 +321,10 @@ def calculate_metrics(
total_input += input_requests[i].prompt_len
tpot = 0
if output_len > 1:
tpot = (outputs[i].latency - outputs[i].ttft) / (output_len -
1)
latency_minus_ttft = outputs[i].latency - outputs[i].ttft
tpot = latency_minus_ttft / (output_len - 1)
tpots.append(tpot)
outputs[i].tpot = sum(tpots) / len(tpots) if len(tpots) else 0
outputs[i].tpot = tpot
# Note: if output_len <= 1, we regard tpot as 0 for goodput
all_tpots.append(tpot)
itls += outputs[i].itl
@ -300,6 +334,28 @@ def calculate_metrics(
else:
actual_output_lens.append(0)
if goodput_config_dict:
valid_metrics = []
slo_values = []
if "ttft" in goodput_config_dict:
valid_metrics.append(ttfts)
slo_values.append(goodput_config_dict["ttft"] /
MILLISECONDS_TO_SECONDS_CONVERSION)
if "tpot" in goodput_config_dict:
valid_metrics.append(all_tpots)
slo_values.append(goodput_config_dict["tpot"] /
MILLISECONDS_TO_SECONDS_CONVERSION)
if "e2el" in goodput_config_dict:
valid_metrics.append(e2els)
slo_values.append(goodput_config_dict["e2el"] /
MILLISECONDS_TO_SECONDS_CONVERSION)
for req_metric in zip(*valid_metrics):
is_good_req = all([s >= r for s, r in zip(slo_values, req_metric)])
if is_good_req:
good_completed += 1
if completed == 0:
warnings.warn(
"All requests failed. This is likely due to a misconfiguration "
@ -345,17 +401,18 @@ async def benchmark(
base_url: str,
model_id: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: List[SampleRequest],
input_requests: list[SampleRequest],
request_rate: float,
burstiness: float,
disable_tqdm: bool,
profile: bool,
selected_percentile_metrics: List[str],
selected_percentiles: List[str],
selected_percentile_metrics: list[str],
selected_percentiles: list[str],
ignore_eos: bool,
max_concurrency: Optional[int],
guided_decoding_ratio: float,
guided_decoding_backend: str,
structured_output_ratio: float,
structured_output_backend: str,
goodput_config_dict: Optional[dict[str, float]] = None,
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS[backend]
@ -366,16 +423,18 @@ async def benchmark(
extra_body = {}
# Add the schema to the extra_body
extra_body[request.structure_type] = request.schema
# Add the specific guided_decoding_backend
extra_body["guided_decoding_backend"] = guided_decoding_backend
# Add the specific structured_output_backend
extra_body["guided_decoding_backend"] = structured_output_backend
return extra_body
print("Starting initial single prompt test run...")
guided_decoding_req_idx = random.sample(
structured_output_req_idx = random.sample(
range(len(input_requests)),
int(len(input_requests) * guided_decoding_ratio))
int(len(input_requests) * structured_output_ratio))
test_request = input_requests[0]
test_req_extra_body = (prepare_extra_body(test_request)
if 0 in structured_output_req_idx else None)
test_input = RequestFuncInput(
model=model_id,
prompt=test_request.prompt,
@ -383,7 +442,7 @@ async def benchmark(
prompt_len=test_request.prompt_len,
output_len=test_request.expected_output_len,
ignore_eos=ignore_eos,
extra_body=prepare_extra_body(test_request),
extra_body=test_req_extra_body,
)
test_output = await request_func(request_func_input=test_input)
if not test_output.success:
@ -402,7 +461,7 @@ async def benchmark(
prompt_len=test_request.prompt_len,
output_len=test_request.expected_output_len,
ignore_eos=ignore_eos,
extra_body=prepare_extra_body(test_request),
extra_body=test_req_extra_body,
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
@ -435,12 +494,12 @@ async def benchmark(
pbar=pbar)
benchmark_start_time = time.perf_counter()
tasks: List[asyncio.Task] = []
expected: List[str] = []
tasks: list[asyncio.Task] = []
expected: list[str] = []
async for i, request in get_request(input_requests, request_rate,
burstiness):
extra_body = prepare_extra_body(
request) if i in guided_decoding_req_idx else None
request) if i in structured_output_req_idx else None
request_func_input = RequestFuncInput(
model=model_id,
prompt=request.prompt,
@ -455,7 +514,7 @@ async def benchmark(
asyncio.create_task(
limited_request_func(request_func_input=request_func_input,
pbar=pbar)))
outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
if profile:
print("Stopping profiler...")
@ -483,6 +542,7 @@ async def benchmark(
tokenizer=tokenizer,
selected_percentile_metrics=selected_percentile_metrics,
selected_percentiles=selected_percentiles,
goodput_config_dict=goodput_config_dict,
)
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
@ -494,6 +554,9 @@ async def benchmark(
metrics.total_output))
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
metrics.request_throughput))
if goodput_config_dict:
print("{:<40} {:<10.2f}".format("Request goodput (req/s):",
metrics.request_goodput))
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
metrics.output_throughput))
print("{:<40} {:<10.2f}".format("Total Token throughput (tok/s):",
@ -617,6 +680,40 @@ def evaluate(ret, args):
100) if len(not_none_scores) > 0 else None
def parse_goodput(slo_pairs):
goodput_config_dict = {}
try:
for slo_pair in slo_pairs:
slo_name, slo_val = slo_pair.split(":")
goodput_config_dict[slo_name] = float(slo_val)
except ValueError as err:
raise argparse.ArgumentTypeError(
"Invalid format found for service level objectives. "
"Specify service level objectives for goodput as \"KEY:VALUE\" "
"pairs, where the key is a metric name, and the value is a "
"number in milliseconds.") from err
return goodput_config_dict
def check_goodput_args(args):
goodput_config_dict = {}
VALID_NAMES = ["ttft", "tpot", "e2el"]
if args.goodput:
goodput_config_dict = parse_goodput(args.goodput)
for slo_name, slo_val in goodput_config_dict.items():
if slo_name not in VALID_NAMES:
raise ValueError(
f"Invalid metric name found, {slo_name}: {slo_val}. "
"The service level objective name should be one of "
f"{str(VALID_NAMES)}. ")
if slo_val < 0:
raise ValueError(
f"Invalid value found, {slo_name}: {slo_val}. "
"The service level objective value should be "
"non-negative.")
return goodput_config_dict
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
@ -633,8 +730,11 @@ def main(args: argparse.Namespace):
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
base_url = f"http://{args.host}:{args.port}"
tokenizer = get_tokenizer(tokenizer_id,
trust_remote_code=args.trust_remote_code)
tokenizer = get_tokenizer(
tokenizer_id,
trust_remote_code=args.trust_remote_code,
tokenizer_mode=args.tokenizer_mode,
)
if args.dataset == 'grammar':
args.structure_type = 'guided_grammar'
@ -645,10 +745,10 @@ def main(args: argparse.Namespace):
else:
args.structure_type = 'guided_json'
if args.no_guided_decoding:
args.guided_decoding_ratio = 0
if args.no_structured_output:
args.structured_output_ratio = 0
if args.save_results:
result_file_name = f'{args.guided_decoding_ratio}guided'
result_file_name = f'{args.structured_output_ratio}guided'
result_file_name += f"_{backend}"
result_file_name += f"_{args.request_rate}qps"
result_file_name += f"_{args.model.split('/')[-1]}"
@ -661,6 +761,8 @@ def main(args: argparse.Namespace):
input_requests = sample_requests(tokenizer, args)
goodput_config_dict = check_goodput_args(args)
benchmark_result, ret = asyncio.run(
benchmark(
backend=backend,
@ -679,8 +781,9 @@ def main(args: argparse.Namespace):
],
ignore_eos=args.ignore_eos,
max_concurrency=args.max_concurrency,
guided_decoding_ratio=args.guided_decoding_ratio,
guided_decoding_backend=args.guided_decoding_backend,
structured_output_ratio=args.structured_output_ratio,
structured_output_backend=args.structured_output_backend,
goodput_config_dict=goodput_config_dict,
))
# Save config and results to json
@ -740,10 +843,12 @@ if __name__ == "__main__":
default="/v1/completions",
help="API endpoint.",
)
parser.add_argument(
"--dataset",
parser.add_argument("--dataset",
default='json',
choices=['json', 'grammar', 'regex', 'choice', 'xgrammar_bench'])
choices=[
'json', 'json-unique', 'grammar', 'regex',
'choice', 'xgrammar_bench'
])
parser.add_argument("--json_schema_path",
type=str,
default=None,
@ -772,6 +877,13 @@ if __name__ == "__main__":
help=
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
)
parser.add_argument(
"--tokenizer-mode",
type=str,
default="auto",
help=
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
)
parser.add_argument(
"--num-prompts",
type=int,
@ -852,7 +964,7 @@ if __name__ == "__main__":
"--percentile-metrics",
type=str,
default="ttft,tpot,itl",
help="Comma-seperated list of selected metrics to report percentils. "
help="Comma-separated list of selected metrics to report percentils. "
"This argument specifies the metrics to report percentiles. "
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
"Default value is \"ttft,tpot,itl\".")
@ -860,24 +972,39 @@ if __name__ == "__main__":
"--metric-percentiles",
type=str,
default="99",
help="Comma-seperated list of percentiles for selected metrics. "
help="Comma-separated list of percentiles for selected metrics. "
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
"Default value is \"99\". "
"Use \"--percentile-metrics\" to select metrics.",
)
parser.add_argument("--no-guided-decoding",
parser.add_argument(
"--goodput",
nargs="+",
required=False,
help="Specify service level objectives for goodput as \"KEY:VALUE\" "
"pairs, where the key is a metric name, and the value is in "
"milliseconds. Multiple \"KEY:VALUE\" pairs can be provided, "
"separated by spaces. Allowed request level metric names are "
"\"ttft\", \"tpot\", \"e2el\". For more context on the definition of "
"goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 "
"and the blog: https://hao-ai-lab.github.io/blogs/distserve")
parser.add_argument("--no-structured-output",
action='store_true',
default=False,
help="Whether to disable JSON decoding or not.")
parser.add_argument("--guided-decoding-ratio",
parser.add_argument("--structured-output-ratio",
type=float,
default=1.0,
help="Ratio of Guided Decoding requests")
parser.add_argument("--guided-decoding-backend",
help="Ratio of Structured Outputs requests")
parser.add_argument("--structured-output-backend",
type=str,
choices=["outlines", "lm-format-enforcer", "xgrammar"],
default="xgrammar",
help="Backend to use for guided decoding")
choices=[
"outlines", "lm-format-enforcer", "xgrammar",
"guidance", "auto"
],
default="auto",
help="Backend to use for structured outputs")
args = parser.parse_args()
main(args)

View File

@ -6,13 +6,16 @@ import json
import os
import random
import time
from functools import cache
from typing import Any, Dict, List, Optional, Tuple
import warnings
from typing import Any, Optional, Union
import torch
import uvloop
from benchmark_utils import convert_to_pytorch_benchmark_format
from PIL import Image
from benchmark_dataset import (AIMODataset, BurstGPTDataset,
ConversationDataset, InstructCoderDataset,
RandomDataset, SampleRequest, ShareGPTDataset,
SonnetDataset, VisionArenaDataset)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizerBase)
@ -20,163 +23,35 @@ from transformers import (AutoModelForCausalLM, AutoTokenizer,
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
build_async_engine_client_from_engine_args)
from vllm.inputs import TextPrompt
from vllm.inputs import TextPrompt, TokensPrompt
from vllm.lora.request import LoRARequest
from vllm.lora.utils import get_adapter_absolute_path
from vllm.multimodal import MultiModalDataDict
from vllm.outputs import RequestOutput
from vllm.sampling_params import BeamSearchParams
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
@dataclasses.dataclass
class SampleRequest:
"""A class representing a single inference request for benchmarking.
Attributes:
prompt: The input text prompt for the model.
prompt_len: The length of the prompt in tokens.
expected_output_len: The expected length of the output in tokens.
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
images).
lora_request: Optional LoRARequest specifying the LoRA to use.
"""
prompt: str
prompt_len: int
expected_output_len: int
multi_modal_data: Optional[MultiModalDataDict] = None
lora_request: Optional[LoRARequest] = None
def _get_prompt_for_image_model(question: str, *, model: str) -> str:
"""Prepend and append special tokens around the question to form a prompt.
Args:
question: The input question text to wrap with special tokens
model: The name of the model being used, to determine which special
tokens to add
Returns:
The formatted prompt string with appropriate special tokens for the
model
Raises:
ValueError: If an unsupported model name is provided
"""
model = model.lower()
if "pixtral" in model:
return f"<s>[INST]{question}\n[IMG][/INST]"
raise ValueError(f"Unsupported model {model}")
@cache
def lora_path_on_disk(lora_path: str) -> str:
return get_adapter_absolute_path(lora_path)
lora_tokenizer_cache: Dict[int, AnyTokenizer] = {}
def get_random_lora_request(
args: argparse.Namespace
) -> Tuple[LoRARequest, Optional[AnyTokenizer]]:
global lora_tokenizer_cache
lora_id = random.randint(1, args.max_loras)
lora_request = LoRARequest(lora_name=str(lora_id),
lora_int_id=lora_id,
lora_path=lora_path_on_disk(args.lora_path))
if lora_id not in lora_tokenizer_cache:
lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request)
return lora_request, lora_tokenizer_cache[lora_id]
def sample_requests(tokenizer: PreTrainedTokenizerBase,
args: argparse.Namespace) -> List[SampleRequest]:
dataset_path: str = args.dataset
num_requests: int = args.num_prompts
fixed_output_len: Optional[int] = args.output_len
model: str = args.model
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
filtered_dataset: List[SampleRequest] = []
for data in tqdm(dataset,
total=len(filtered_dataset),
desc="sampling requests"):
if len(filtered_dataset) == num_requests:
break
# Only keep the first two turns of each conversation.
prompt = data["conversations"][0]["value"]
completion = data["conversations"][1]["value"]
multi_modal_data: Optional[MultiModalDataDict] = None
if "image" in data:
multi_modal_data = multi_modal_data or {}
image_path = data["image"]
# TODO(vllm-project/vllm/issues/9778): Support multiple images.
assert isinstance(image_path,
str), "Only support single image input"
try:
multi_modal_data["image"] = Image.open(image_path).convert(
"RGB")
except FileNotFoundError:
# Ignore datapoint where asset is missing
continue
prompt = _get_prompt_for_image_model(question=prompt, model=model)
request_tokenizer = tokenizer
lora_request: Optional[LoRARequest] = None
if args.enable_lora:
lora_request, lora_tokenizer = get_random_lora_request(args)
if lora_tokenizer:
request_tokenizer = lora_tokenizer
# Tokenize the prompts and completions.
prompt_token_ids = request_tokenizer(prompt).input_ids
completion_token_ids = request_tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
filtered_dataset.append(
SampleRequest(prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=multi_modal_data,
lora_request=lora_request))
return filtered_dataset
def run_vllm(
requests: List[SampleRequest],
requests: list[SampleRequest],
n: int,
engine_args: EngineArgs,
) -> float:
disable_detokenize: bool = False,
) -> tuple[float, Optional[list[RequestOutput]]]:
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len >= (
request.prompt_len + request.expected_output_len)
for request in requests), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests.")
# Add the requests to the engine.
prompts: List[TextPrompt] = []
sampling_params: List[SamplingParams] = []
prompts: list[Union[TextPrompt, TokensPrompt]] = []
sampling_params: list[SamplingParams] = []
for request in requests:
prompts.append(
TokensPrompt(prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data)
if "prompt_token_ids" in request.prompt else \
TextPrompt(prompt=request.prompt,
multi_modal_data=request.multi_modal_data))
sampling_params.append(
@ -186,16 +61,18 @@ def run_vllm(
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
))
lora_requests: Optional[List[LoRARequest]] = None
lora_requests: Optional[list[LoRARequest]] = None
if engine_args.enable_lora:
lora_requests = [request.lora_request for request in requests]
use_beam_search = False
outputs = None
if not use_beam_search:
start = time.perf_counter()
llm.generate(prompts,
outputs = llm.generate(prompts,
sampling_params,
lora_request=lora_requests,
use_tqdm=True)
@ -216,26 +93,75 @@ def run_vllm(
ignore_eos=True,
))
end = time.perf_counter()
return end - start
return end - start, outputs
def run_vllm_chat(
requests: list[SampleRequest],
n: int,
engine_args: EngineArgs,
disable_detokenize: bool = False) -> tuple[float, list[RequestOutput]]:
"""
Run vLLM chat benchmark. This function is recommended ONLY for benchmarking
multimodal models as it properly handles multimodal inputs and chat
formatting. For non-multimodal models, use run_vllm() instead.
"""
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len >= (
request.prompt_len + request.expected_output_len)
for request in requests), (
"Please ensure that max_model_len is greater than the sum of "
"prompt_len and expected_output_len for all requests.")
prompts = []
sampling_params: list[SamplingParams] = []
for request in requests:
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
))
start = time.perf_counter()
outputs = llm.chat(prompts, sampling_params, use_tqdm=True)
end = time.perf_counter()
return end - start, outputs
async def run_vllm_async(
requests: List[SampleRequest],
requests: list[SampleRequest],
n: int,
engine_args: AsyncEngineArgs,
disable_frontend_multiprocessing: bool = False,
disable_detokenize: bool = False,
) -> float:
from vllm import SamplingParams
async with build_async_engine_client_from_engine_args(
engine_args, disable_frontend_multiprocessing) as llm:
assert all(
llm.model_config.max_model_len >= (request.prompt_len +
request.expected_output_len)
for request in requests), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests.")
# Add the requests to the engine.
prompts: List[TextPrompt] = []
sampling_params: List[SamplingParams] = []
lora_requests: List[Optional[LoRARequest]] = []
prompts: list[Union[TextPrompt, TokensPrompt]] = []
sampling_params: list[SamplingParams] = []
lora_requests: list[Optional[LoRARequest]] = []
for request in requests:
prompts.append(
TokensPrompt(prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data)
if "prompt_token_ids" in request.prompt else \
TextPrompt(prompt=request.prompt,
multi_modal_data=request.multi_modal_data))
sampling_params.append(
@ -245,6 +171,7 @@ async def run_vllm_async(
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
))
lora_requests.append(request.lora_request)
@ -265,12 +192,13 @@ async def run_vllm_async(
def run_hf(
requests: List[SampleRequest],
requests: list[SampleRequest],
model: str,
tokenizer: PreTrainedTokenizerBase,
n: int,
max_batch_size: int,
trust_remote_code: bool,
disable_detokenize: bool = False,
) -> float:
llm = AutoModelForCausalLM.from_pretrained(
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
@ -281,18 +209,21 @@ def run_hf(
pbar = tqdm(total=len(requests))
start = time.perf_counter()
batch: List[str] = []
batch: list[str] = []
max_prompt_len = 0
max_output_len = 0
for i in range(len(requests)):
prompt, prompt_len, output_len = requests[i]
prompt = requests[i].prompt
prompt_len = requests[i].prompt_len
output_len = requests[i].expected_output_len
# Add the prompt to the batch.
batch.append(prompt)
max_prompt_len = max(max_prompt_len, prompt_len)
max_output_len = max(max_output_len, output_len)
if len(batch) < max_batch_size and i != len(requests) - 1:
# Check if we can add more requests to the batch.
_, next_prompt_len, next_output_len = requests[i + 1]
next_prompt_len = requests[i + 1].prompt_len
next_output_len = requests[i + 1].expected_output_len
if (max(max_prompt_len, next_prompt_len) +
max(max_output_len, next_output_len)) <= 2048:
# We can add more requests to the batch.
@ -310,6 +241,7 @@ def run_hf(
use_cache=True,
max_new_tokens=max_output_len,
)
if not disable_detokenize:
# Include the decoding time.
tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
pbar.update(len(batch))
@ -323,7 +255,7 @@ def run_hf(
def run_mii(
requests: List[SampleRequest],
requests: list[SampleRequest],
model: str,
tensor_parallel_size: int,
output_len: int,
@ -341,7 +273,7 @@ def run_mii(
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
results: Dict[str, Any]) -> None:
results: dict[str, Any]) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={
@ -355,62 +287,77 @@ def save_to_pytorch_benchmark_format(args: argparse.Namespace,
if pt_records:
# Don't use json suffix here as we don't want CI to pick it up
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
with open(pt_file, "w") as f:
json.dump(pt_records, f)
write_to_json(pt_file, pt_records)
def get_requests(args, tokenizer):
# Common parameters for all dataset types.
common_kwargs = {
"dataset_path": args.dataset_path,
"random_seed": args.seed,
}
sample_kwargs = {
"tokenizer": tokenizer,
"lora_path": args.lora_path,
"max_loras": args.max_loras,
"num_requests": args.num_prompts,
"input_len": args.input_len,
"output_len": args.output_len,
}
if args.dataset_path is None or args.dataset_name == "random":
sample_kwargs["range_ratio"] = args.random_range_ratio
sample_kwargs["prefix_len"] = args.prefix_len
dataset_cls = RandomDataset
elif args.dataset_name == "sharegpt":
dataset_cls = ShareGPTDataset
if args.backend == "vllm-chat":
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_name == "sonnet":
assert tokenizer.chat_template or tokenizer.default_chat_template, (
"Tokenizer/model must have chat template for sonnet dataset.")
dataset_cls = SonnetDataset
sample_kwargs["prefix_len"] = args.prefix_len
sample_kwargs["return_prompt_formatted"] = True
elif args.dataset_name == "burstgpt":
dataset_cls = BurstGPTDataset
elif args.dataset_name == "hf":
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = VisionArenaDataset
common_kwargs['dataset_subset'] = None
common_kwargs['dataset_split'] = "train"
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = InstructCoderDataset
common_kwargs['dataset_split'] = "train"
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = ConversationDataset
common_kwargs['dataset_subset'] = args.hf_subset
common_kwargs['dataset_split'] = args.hf_split
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
dataset_cls = AIMODataset
common_kwargs['dataset_subset'] = None
common_kwargs['dataset_split'] = "train"
else:
raise ValueError(f"Unknown dataset name: {args.dataset_name}")
# Remove None values
sample_kwargs = {k: v for k, v in sample_kwargs.items() if v is not None}
return dataset_cls(**common_kwargs).sample(**sample_kwargs)
def main(args: argparse.Namespace):
if args.seed is None:
args.seed = 0
print(args)
random.seed(args.seed)
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
if args.dataset is None:
vocab_size = tokenizer.vocab_size
requests = []
for _ in range(args.num_prompts):
request_tokenizer = tokenizer
lora_request: Optional[LoRARequest] = None
if args.enable_lora:
lora_request, lora_tokenizer = get_random_lora_request(args)
if lora_tokenizer:
request_tokenizer = lora_tokenizer
# Synthesize a prompt with the given input length.
candidate_ids = [
random.randint(0, vocab_size - 1)
for _ in range(args.input_len)
]
# As tokenizer may add additional tokens like BOS, we need to try
# different lengths to get the desired input length.
for _ in range(5): # Max attempts to correct
candidate_prompt = request_tokenizer.decode(candidate_ids)
tokenized_len = len(request_tokenizer.encode(candidate_prompt))
if tokenized_len == args.input_len:
break
# Adjust length based on difference
diff = args.input_len - tokenized_len
if diff > 0:
candidate_ids.extend([
random.randint(100, vocab_size - 100)
for _ in range(diff)
])
else:
candidate_ids = candidate_ids[:diff]
requests.append(
SampleRequest(prompt=candidate_prompt,
prompt_len=args.input_len,
expected_output_len=args.output_len,
lora_request=lora_request))
else:
requests = sample_requests(tokenizer, args)
requests = get_requests(args, tokenizer)
is_multi_modal = any(request.multi_modal_data is not None
for request in requests)
request_outputs: Optional[list[RequestOutput]] = None
if args.backend == "vllm":
if args.async_engine:
elapsed_time = uvloop.run(
@ -419,31 +366,59 @@ def main(args: argparse.Namespace):
args.n,
AsyncEngineArgs.from_cli_args(args),
args.disable_frontend_multiprocessing,
args.disable_detokenize,
))
else:
elapsed_time = run_vllm(requests, args.n,
EngineArgs.from_cli_args(args))
elapsed_time, request_outputs = run_vllm(
requests, args.n, EngineArgs.from_cli_args(args),
args.disable_detokenize)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
args.hf_max_batch_size, args.trust_remote_code)
args.hf_max_batch_size, args.trust_remote_code,
args.disable_detokenize)
elif args.backend == "mii":
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
args.output_len)
elif args.backend == "vllm-chat":
elapsed_time, request_outputs = run_vllm_chat(
requests, args.n, EngineArgs.from_cli_args(args),
args.disable_detokenize)
else:
raise ValueError(f"Unknown backend: {args.backend}")
total_num_tokens = sum(request.prompt_len + request.expected_output_len
for request in requests)
total_output_tokens = sum(request.expected_output_len
for request in requests)
if is_multi_modal:
print("\033[91mWARNING\033[0m: Multi-modal request detected. The "
if request_outputs:
# Note: with the vllm and vllm-chat backends,
# we have request_outputs, which we use to count tokens.
total_prompt_tokens = 0
total_output_tokens = 0
for ro in request_outputs:
if not isinstance(ro, RequestOutput):
continue
total_prompt_tokens += len(
ro.prompt_token_ids) if ro.prompt_token_ids else 0
total_output_tokens += sum(
len(o.token_ids) for o in ro.outputs if o)
total_num_tokens = total_prompt_tokens + total_output_tokens
else:
total_num_tokens = sum(r.prompt_len + r.expected_output_len
for r in requests)
total_output_tokens = sum(r.expected_output_len for r in requests)
total_prompt_tokens = total_num_tokens - total_output_tokens
if is_multi_modal and args.backend != "vllm-chat":
print("\033[91mWARNING\033[0m: Multi-modal request with "
f"{args.backend} backend detected. The "
"following metrics are not accurate because image tokens are not"
" counted. See vllm-project/vllm/issues/9778 for details.")
# TODO(vllm-project/vllm/issues/9778): Count molti-modal token length.
# TODO(vllm-project/vllm/issues/9778): Count multi-modal token length.
# vllm-chat backend counts the image tokens now
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
f"{total_output_tokens / elapsed_time:.2f} output tokens/s")
print(f"Total num prompt tokens: {total_prompt_tokens}")
print(f"Total num output tokens: {total_output_tokens}")
# Output JSON results if specified
if args.output_json:
@ -459,18 +434,127 @@ def main(args: argparse.Namespace):
save_to_pytorch_benchmark_format(args, results)
def validate_args(args):
"""
Validate command-line arguments.
"""
# === Deprecation and Defaulting ===
if args.dataset is not None:
warnings.warn(
"The '--dataset' argument will be deprecated in the next release. "
"Please use '--dataset-name' and '--dataset-path' instead.",
stacklevel=2)
args.dataset_path = args.dataset
if not getattr(args, "tokenizer", None):
args.tokenizer = args.model
# === Backend Validation ===
valid_backends = {"vllm", "hf", "mii", "vllm-chat"}
if args.backend not in valid_backends:
raise ValueError(f"Unsupported backend: {args.backend}")
# === Dataset Configuration ===
if not args.dataset and not args.dataset_path:
print(
"When dataset path is not set, it will default to random dataset")
args.dataset_name = 'random'
if args.input_len is None:
raise ValueError("input_len must be provided for a random dataset")
# === Dataset Name Specific Checks ===
# --hf-subset and --hf-split: only used
# when dataset_name is 'hf'
if args.dataset_name != "hf" and (
getattr(args, "hf_subset", None) is not None
or getattr(args, "hf_split", None) is not None):
warnings.warn("--hf-subset and --hf-split will be ignored \
since --dataset-name is not 'hf'.",
stacklevel=2)
elif args.dataset_name == "hf":
if args.dataset_path in (
VisionArenaDataset.SUPPORTED_DATASET_PATHS.keys()
| ConversationDataset.SUPPORTED_DATASET_PATHS):
assert args.backend == "vllm-chat", f"{args.dataset_path} needs to use vllm-chat as the backend." #noqa: E501
elif args.dataset_path in (InstructCoderDataset.SUPPORTED_DATASET_PATHS
| AIMODataset.SUPPORTED_DATASET_PATHS):
assert args.backend == "vllm", f"{args.dataset_path} needs to use vllm as the backend." #noqa: E501
else:
raise ValueError(
f"{args.dataset_path} is not supported by hf dataset.")
# --random-range-ratio: only used when dataset_name is 'random'
if args.dataset_name != 'random' and args.random_range_ratio is not None:
warnings.warn("--random-range-ratio will be ignored since \
--dataset-name is not 'random'.",
stacklevel=2)
# --prefix-len: only used when dataset_name is 'random', 'sonnet', or not
# set.
if args.dataset_name not in {"random", "sonnet", None
} and args.prefix_len is not None:
warnings.warn("--prefix-len will be ignored since --dataset-name\
is not 'random', 'sonnet', or not set.",
stacklevel=2)
# === LoRA Settings ===
if getattr(args, "enable_lora", False) and args.backend != "vllm":
raise ValueError(
"LoRA benchmarking is only supported for vLLM backend")
if getattr(args, "enable_lora", False) and args.lora_path is None:
raise ValueError("LoRA path must be provided when enable_lora is True")
# === Backend-specific Validations ===
if args.backend == "hf" and args.hf_max_batch_size is None:
raise ValueError("HF max batch size is required for HF backend")
if args.backend != "hf" and args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
if args.backend in {"hf", "mii"} and getattr(args, "quantization",
None) is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.backend == "mii" and args.dtype != "auto":
raise ValueError("dtype must be auto for MII backend.")
if args.backend == "mii" and args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.backend == "mii" and args.tokenizer != args.model:
raise ValueError(
"Tokenizer must be the same as the model for MII backend.")
# --data-parallel is not supported currently.
# https://github.com/vllm-project/vllm/issues/16222
if args.data_parallel_size > 1:
raise ValueError(
"Data parallel is not supported in offline benchmark, \
please use benchmark serving instead")
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf", "mii"],
choices=["vllm", "hf", "mii", "vllm-chat"],
default="vllm")
parser.add_argument("--dataset",
parser.add_argument(
"--dataset-name",
type=str,
choices=["sharegpt", "random", "sonnet", "burstgpt", "hf"],
help="Name of the dataset to benchmark on.",
default="sharegpt")
parser.add_argument(
"--dataset",
type=str,
default=None,
help="Path to the dataset. The dataset is expected to "
"be a json in form of List[Dict[..., conversations: "
"List[Dict[..., value: <prompt_or_response>]]]]")
help="Path to the ShareGPT dataset, will be deprecated in\
the next release. The dataset is expected to "
"be a json in form of list[dict[..., conversations: "
"list[dict[..., value: <prompt_or_response>]]]]")
parser.add_argument("--dataset-path",
type=str,
default=None,
help="Path to the dataset")
parser.add_argument("--input-len",
type=int,
default=None,
@ -505,6 +589,11 @@ if __name__ == "__main__":
action='store_true',
default=False,
help="Disable decoupled async engine frontend.")
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=("Do not detokenize the response (i.e. do not include "
"detokenization time in the measurement)"))
# LoRA
parser.add_argument(
"--lora-path",
@ -512,43 +601,45 @@ if __name__ == "__main__":
default=None,
help="Path to the lora adapters to use. This can be an absolute path, "
"a relative path, or a Hugging Face model identifier.")
parser.add_argument(
"--prefix-len",
type=int,
default=None,
help=f"Number of prefix tokens to be used in RandomDataset "
"and SonnetDataset. For RandomDataset, the total input "
"length is the sum of prefix-len (default: "
f"{RandomDataset.DEFAULT_PREFIX_LEN}) and a random context length "
"sampled from [input_len * (1 - range_ratio), "
"input_len * (1 + range_ratio)]. For SonnetDataset, "
f"prefix_len (default: {SonnetDataset.DEFAULT_PREFIX_LEN}) "
"controls how much of the input is fixed lines versus "
"random lines, but the total input length remains approximately "
"input_len tokens.")
# random dataset
parser.add_argument(
"--random-range-ratio",
type=float,
default=None,
help=f"Range ratio (default : {RandomDataset.DEFAULT_RANGE_RATIO}) "
"for sampling input/output length, "
"used only for RandomDataset. Must be in the range [0, 1) to "
"define a symmetric sampling range "
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
)
# hf dtaset
parser.add_argument("--hf-subset",
type=str,
default=None,
help="Subset of the HF dataset.")
parser.add_argument("--hf-split",
type=str,
default=None,
help="Split of the HF dataset.")
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
if args.dataset is None:
assert args.input_len is not None
assert args.output_len is not None
else:
assert args.input_len is None
if args.enable_lora:
assert args.lora_path is not None
if args.backend == "vllm":
if args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
elif args.backend == "hf":
if args.hf_max_batch_size is None:
raise ValueError("HF max batch size is required for HF backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.enable_lora is not None:
raise ValueError("LoRA benchmarking is only supported for vLLM"
" backend")
elif args.backend == "mii":
if args.dtype != "auto":
raise ValueError("dtype must be auto for MII backend.")
if args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
if args.tokenizer != args.model:
raise ValueError("Tokenizer must be the same as the model for MII "
"backend.")
if args.enable_lora is not None:
raise ValueError("LoRA benchmarking is only supported for vLLM"
" backend")
validate_args(args)
main(args)

View File

@ -1,13 +1,15 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
import math
import os
from typing import Any, Dict, List
from typing import Any
def convert_to_pytorch_benchmark_format(args: argparse.Namespace,
metrics: Dict[str, List],
extra_info: Dict[str, Any]) -> List:
metrics: dict[str, list],
extra_info: dict[str, Any]) -> list:
"""
Save the benchmark results in the format used by PyTorch OSS benchmark with
on metric per record
@ -34,6 +36,34 @@ def convert_to_pytorch_benchmark_format(args: argparse.Namespace,
"extra_info": extra_info,
},
}
tp = record["benchmark"]["extra_info"]["args"].get(
"tensor_parallel_size")
# Save tensor_parallel_size parameter if it's part of the metadata
if not tp and "tensor_parallel_size" in extra_info:
record["benchmark"]["extra_info"]["args"][
"tensor_parallel_size"] = extra_info["tensor_parallel_size"]
records.append(record)
return records
class InfEncoder(json.JSONEncoder):
def clear_inf(self, o: Any):
if isinstance(o, dict):
return {k: self.clear_inf(v) for k, v in o.items()}
elif isinstance(o, list):
return [self.clear_inf(v) for v in o]
elif isinstance(o, float) and math.isinf(o):
return "inf"
return o
def iterencode(self, o: Any, *args, **kwargs) -> Any:
return super().iterencode(self.clear_inf(o), *args, **kwargs)
def write_to_json(filename: str, records: list) -> None:
with open(filename, "w") as f:
json.dump(records, f, cls=InfEncoder)

View File

@ -5,7 +5,8 @@ import copy
import itertools
import pickle as pkl
import time
from typing import Callable, Iterable, List, Tuple
from collections.abc import Iterable
from typing import Callable
import torch
import torch.utils.benchmark as TBenchmark
@ -228,7 +229,7 @@ def print_timers(timers: Iterable[TMeasurement]):
def run(dtype: torch.dtype,
MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]:
MKNs: Iterable[tuple[int, int, int]]) -> Iterable[TMeasurement]:
results = []
for m, k, n in MKNs:
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm",
@ -241,7 +242,7 @@ def run(dtype: torch.dtype,
# output makers
def make_output(data: Iterable[TMeasurement],
MKNs: Iterable[Tuple[int, int, int]],
MKNs: Iterable[tuple[int, int, int]],
base_description: str,
timestamp=None):
print(f"== All Results {base_description} ====")
@ -282,7 +283,7 @@ def run_model_bench(args):
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
def model_shapes(model_name: str, tp_size: int) -> List[Tuple[int, int]]:
def model_shapes(model_name: str, tp_size: int) -> list[tuple[int, int]]:
KNs = []
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model_name]):
KN[tp_split_dim] = KN[tp_split_dim] // tp_size

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# Cutlass bench utils
from typing import Iterable, Tuple
from collections.abc import Iterable
import torch
@ -27,7 +27,7 @@ def to_fp16(tensor: torch.Tensor) -> torch.Tensor:
def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
k: int) -> Tuple[torch.Tensor, torch.Tensor]:
k: int) -> tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device='cuda') * 5
b = torch.randn((n, k), device='cuda').t() * 5
@ -63,7 +63,7 @@ def prune_to_2_4(tensor):
def make_rand_sparse_tensors(dtype: torch.dtype, m: int, n: int,
k: int) -> Tuple[torch.Tensor, torch.Tensor]:
k: int) -> tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device='cuda') * 5
b = torch.randn((n, k), device='cuda').t() * 5
@ -88,7 +88,7 @@ def make_rand_sparse_tensors(dtype: torch.dtype, m: int, n: int,
def make_n_rand_sparse_tensors(num_tensors: int, dtype: torch.dtype,
m: int, n: int, k: int) -> \
Tuple[Iterable[torch.Tensor], Iterable[torch.Tensor]]:
tuple[Iterable[torch.Tensor], Iterable[torch.Tensor]]:
ABs = []
for _ in range(num_tensors):
b_comp, e, a, b = make_rand_sparse_tensors(dtype, m, n, k)

View File

@ -5,7 +5,8 @@ import copy
import itertools
import pickle as pkl
import time
from typing import Callable, Iterable, List, Optional, Tuple
from collections.abc import Iterable
from typing import Callable, Optional
import torch
import torch.utils.benchmark as TBenchmark
@ -49,7 +50,7 @@ def bench_int8(
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[List[str]] = None) -> Iterable[TMeasurement]:
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
"""Benchmark INT8-based kernels."""
assert dtype == torch.int8
a, b = make_rand_tensors(torch.int8, m, n, k)
@ -101,7 +102,7 @@ def bench_fp8(
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[List[str]] = None) -> Iterable[TMeasurement]:
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
"""Benchmark FP8-based kernels."""
assert dtype == torch.float8_e4m3fn
a, b = make_rand_tensors(torch.float8_e4m3fn, m, n, k)
@ -180,7 +181,7 @@ def bench(dtype: torch.dtype,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[List[str]] = None) -> Iterable[TMeasurement]:
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
if dtype == torch.int8:
return bench_int8(dtype, m, k, n, label, sub_label, bench_kernels)
if dtype == torch.float8_e4m3fn:
@ -195,8 +196,8 @@ def print_timers(timers: Iterable[TMeasurement]):
def run(dtype: torch.dtype,
MKNs: Iterable[Tuple[int, int, int]],
bench_kernels: Optional[List[str]] = None) -> Iterable[TMeasurement]:
MKNs: Iterable[tuple[int, int, int]],
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
results = []
for m, k, n in MKNs:
timers = bench(dtype,
@ -212,7 +213,7 @@ def run(dtype: torch.dtype,
def make_output(data: Iterable[TMeasurement],
MKNs: Iterable[Tuple[int, int, int]],
MKNs: Iterable[tuple[int, int, int]],
base_description: str,
timestamp=None):
print(f"== All Results {base_description} ====")
@ -248,7 +249,7 @@ def run_model_bench(args):
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
def model_shapes(model_name: str, tp_size: int) -> List[Tuple[int, int]]:
def model_shapes(model_name: str, tp_size: int) -> list[tuple[int, int]]:
KNs = []
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model_name]):
KN[tp_split_dim] = KN[tp_split_dim] // tp_size

View File

@ -2,9 +2,10 @@
import pickle as pkl
import time
from collections.abc import Iterable
from dataclasses import dataclass
from itertools import product
from typing import Callable, Iterable, List, Optional
from typing import Callable, Optional
import torch
import torch.utils.benchmark as TBenchmark
@ -29,7 +30,7 @@ class bench_params_t:
f'x DT {self.dtype}')
def get_bench_params() -> List[bench_params_t]:
def get_bench_params() -> list[bench_params_t]:
## Test Fixtures
NUM_TOKENS = [2**x for x in range(11)]
HIDDEN_SIZES = list(range(1024, 8129, 1024))

View File

@ -0,0 +1,236 @@
# SPDX-License-Identifier: Apache-2.0
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from vllm.model_executor.layers.quantization.utils.bitblas_utils import (
MINIMUM_BITBLAS_VERSION)
try:
import bitblas
if bitblas.__version__ < MINIMUM_BITBLAS_VERSION:
raise ImportError("bitblas version is wrong. Please "
f"install bitblas>={MINIMUM_BITBLAS_VERSION}")
except ImportError as e:
bitblas_import_exception = e
raise ValueError("Trying to use the bitblas backend, but could not import"
f"with the following error: {bitblas_import_exception}. "
"Please install bitblas through the following command: "
f"`pip install bitblas>={MINIMUM_BITBLAS_VERSION}`"
) from bitblas_import_exception
from bitblas import Matmul, MatmulConfig, auto_detect_nvidia_target
from vllm.utils import FlexibleArgumentParser
parser = FlexibleArgumentParser(
description="Benchmark BitBLAS int4 on a specific target.")
# Add arguments to the parser
parser.add_argument(
"--target",
type=str,
default=auto_detect_nvidia_target(),
help="Specify the target device for benchmarking.",
)
parser.add_argument("--group_size",
type=int,
default=None,
help="Group size for grouped quantization.")
parser.add_argument(
"--A_dtype",
type=str,
default="float16",
choices=["float16", "float32", "float64", "int32", "int8"],
help="Data type of activation A.",
)
parser.add_argument(
"--W_dtype",
type=str,
default="int4",
choices=[
"float16",
"float32",
"float64",
"int32",
"int8",
"int4",
"int2",
"int1",
"nf4",
"fp4_e2m1",
],
help="Data type of weight W.",
)
parser.add_argument(
"--accum_dtype",
type=str,
default="float16",
choices=["float16", "int32"],
help="Data type for accumulation.",
)
parser.add_argument(
"--out_dtype",
type=str,
default="float16",
choices=["float16", "float32", "int32", "int8"],
help="Data type for output.",
)
parser.add_argument(
"--layout",
type=str,
default="nt",
choices=["nt", "nn"],
help="Matrix layout, 'nt' for non-transpose A and transpose W.",
)
parser.add_argument("--with_bias",
action="store_true",
help="Include bias in the benchmark.")
parser.add_argument(
"--with_scaling",
action="store_true",
help="Include scaling factor in the quantization.",
)
parser.add_argument("--with_zeros",
action="store_true",
help="Include zeros in the quantization.")
parser.add_argument(
"--zeros_mode",
type=str,
default=None,
choices=["original", "rescale", "quantized"],
help="Specify the mode for calculating zeros.",
)
# Parse the arguments
args = parser.parse_args()
# Assign arguments to variables
target = args.target
A_dtype = args.A_dtype
W_dtype = args.W_dtype
accum_dtype = args.accum_dtype
out_dtype = args.out_dtype
layout = args.layout
with_bias = args.with_bias
group_size = args.group_size
with_scaling = args.with_scaling
with_zeros = args.with_zeros
zeros_mode = args.zeros_mode
# Define a list of shared arguments that repeat in every config
shared_args = [
A_dtype,
W_dtype,
out_dtype,
accum_dtype,
layout,
with_bias,
group_size,
with_scaling,
with_zeros,
zeros_mode,
]
# Define just the (M, K, N) shapes in a more compact list
shapes = [
# square test
(1, 16384, 16384),
# BLOOM-176B
(1, 43008, 14336),
(1, 14336, 14336),
(1, 57344, 14336),
(1, 14336, 57344),
# OPT-65B
(1, 9216, 9216),
(1, 36864, 9216),
(1, 9216, 36864),
(1, 22016, 8192),
# LLAMA-70B/65B
(1, 8192, 22016),
(1, 8192, 8192),
(1, 28672, 8192),
(1, 8192, 28672),
# square test
(16384, 16384, 16384),
# BLOOM-176B
(8192, 43008, 14336),
(8192, 14336, 14336),
(8192, 57344, 14336),
(8192, 14336, 57344),
# OPT-65B
(8192, 9216, 9216),
(8192, 36864, 9216),
(8192, 9216, 36864),
(8192, 22016, 8192),
# LLAMA-70B/65B
(8192, 8192, 22016),
(8192, 8192, 8192),
(8192, 28672, 8192),
(8192, 8192, 28672),
]
# Build test shapes with all the shared arguments
test_shapes = [(MatmulConfig, Matmul, (*shape, *shared_args))
for shape in shapes]
benchmark_sets = []
benchmark_sets.extend(test_shapes)
benchmark_results = {}
for config_class, operator, input_args in benchmark_sets:
config = config_class(*input_args)
matmul = operator(config, target=target, enable_tuning=True)
kernel_latency = matmul.profile_latency()
print("Time cost is: {:.3f} ms".format(kernel_latency))
profile_config = {
f"{operator.__name__}-{'-'.join([str(i) for i in input_args])}": {
"BitBLAS_top20_latency": kernel_latency,
}
}
benchmark_results.update(profile_config)
# Define headers for the table
headers = [
"PrimFunc",
"Input Arguments",
"BitBLAS Top20 Latency",
]
# Calculate column widths for pretty printing
col_widths = [0, 0, 0]
for config_key, values in benchmark_results.items():
args_split = config_key.split("-")
func_name = args_split[0]
input_args_str = "-".join(args_split[1:])
col_widths[0] = max(col_widths[0], len(func_name) + 2, len(headers[0]) + 2)
col_widths[1] = max(col_widths[1],
len(input_args_str) + 2,
len(headers[1]) + 2)
col_widths[2] = max(col_widths[2],
len(f"{values['BitBLAS_top20_latency']:.3f} ms") + 2,
len(headers[2]) + 2)
# break only if you want to measure widths from a single example;
# otherwise, let it loop over all items.
# Print header
for i, header in enumerate(headers):
headers[i] = header.ljust(col_widths[i])
print("".join(headers))
print("-" * sum(col_widths))
# Print rows
for config_key, values in benchmark_results.items():
args_split = config_key.split("-")
func_name = args_split[0]
input_args_str = "-".join(args_split[1:])
row = [
func_name,
input_args_str,
f"{values['BitBLAS_top20_latency']:.3f} ms",
]
row_str = "".join(
[str(cell).ljust(col_widths[idx]) for idx, cell in enumerate(row)])
print(row_str)

View File

@ -0,0 +1,340 @@
# SPDX-License-Identifier: Apache-2.0
import torch
import torch.utils.benchmark as benchmark
from benchmark_shapes import WEIGHT_SHAPES_MOE
from vllm import _custom_ops as ops
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.fused_moe import (cutlass_moe_fp8,
fused_experts,
fused_topk)
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = [
"nm-testing/Mixtral-8x7B-Instruct-v0.1", "nm-testing/deepseekv2-lite",
"ibm-granite/granite-3.0-1b-a400m", "ibm-granite/granite-3.0-3b-a800m"
]
DEFAULT_BATCH_SIZES = [1, 4, 8, 16, 32, 64, 128, 256, 512]
DEFAULT_TP_SIZES = [1]
PER_ACT_TOKEN_OPTS = [False]
PER_OUT_CH_OPTS = [False]
def to_fp8(tensor: torch.Tensor):
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
def bench_run(results: list[benchmark.Measurement], model: str,
num_experts: int, topk: int, per_act_token: bool,
per_out_ch: bool, mkn: tuple[int, int, int]):
label = "Quant Matmul"
sub_label = (
"{}, num_experts={}, topk={}, per_act_token={} per_out_ch={}, "
"MKN=({})".format(model, num_experts, topk, per_act_token, per_out_ch,
mkn))
print(f"Testing: {sub_label}")
(m, k, n) = mkn
dtype = torch.half
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
w1 = torch.randn((num_experts, 2 * n, k), device="cuda", dtype=dtype) / 10
w2 = torch.randn((num_experts, k, n), device="cuda", dtype=dtype) / 10
_, a_scale = ops.scaled_fp8_quant(a)
w1_q = torch.empty((num_experts, 2 * n, k),
device="cuda",
dtype=torch.float8_e4m3fn)
w2_q = torch.empty((num_experts, k, n),
device="cuda",
dtype=torch.float8_e4m3fn)
w1_scale = torch.empty((num_experts, 1, 1),
device="cuda",
dtype=torch.float32)
w2_scale = torch.empty((num_experts, 1, 1),
device="cuda",
dtype=torch.float32)
ab_strides1 = torch.full((num_experts, ),
k,
device="cuda",
dtype=torch.int64)
c_strides1 = torch.full((num_experts, ),
2 * n,
device="cuda",
dtype=torch.int64)
ab_strides2 = torch.full((num_experts, ),
n,
device="cuda",
dtype=torch.int64)
c_strides2 = torch.full((num_experts, ),
k,
device="cuda",
dtype=torch.int64)
for expert in range(num_experts):
w1_q[expert], w1_scale[expert] = ops.scaled_fp8_quant(w1[expert])
w2_q[expert], w2_scale[expert] = ops.scaled_fp8_quant(w2[expert])
w1_q_notransp = w1_q.clone()
w2_q_notransp = w2_q.clone()
w1_q = w1_q.transpose(1, 2)
w2_q = w2_q.transpose(1, 2)
score = torch.randn((m, num_experts), device="cuda", dtype=dtype)
topk_weights, topk_ids = fused_topk(a, score, topk, renormalize=False)
def run_triton_moe(a: torch.Tensor, w1: torch.Tensor, w2: torch.Tensor,
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
w1_scale: torch.Tensor, w2_scale: torch.Tensor,
a_scale: torch.Tensor, num_repeats: int):
for _ in range(num_repeats):
fused_experts(a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_scale)
def run_cutlass_moe(a: torch.Tensor, a_scale: torch.Tensor,
w1: torch.Tensor, w2: torch.Tensor,
w1_scale: torch.Tensor, w2_scale: torch.Tensor,
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
ab_strides1: torch.Tensor, c_strides1: torch.Tensor,
ab_strides2: torch.Tensor, c_strides2: torch.Tensor,
num_repeats: int):
for _ in range(num_repeats):
cutlass_moe_fp8(a,
w1,
w2,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
a1_scale=a_scale)
def run_cutlass_from_graph(
a: torch.Tensor, a_scale: torch.Tensor, w1_q: torch.Tensor,
w2_q: torch.Tensor, w1_scale: torch.Tensor, w2_scale: torch.Tensor,
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
ab_strides1: torch.Tensor, c_strides1: torch.Tensor,
ab_strides2: torch.Tensor, c_strides2: torch.Tensor):
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(
pipeline_parallel_size=1))):
return cutlass_moe_fp8(a,
w1_q,
w2_q,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
a1_scale=a_scale)
def run_triton_from_graph(a: torch.Tensor, w1: torch.Tensor,
w2: torch.Tensor, topk_weights: torch.Tensor,
topk_ids: torch.Tensor, w1_scale: torch.Tensor,
w2_scale: torch.Tensor, a_scale: torch.Tensor):
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(
pipeline_parallel_size=1))):
return fused_experts(a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_scale)
def replay_graph(graph, num_repeats):
for _ in range(num_repeats):
graph.replay()
torch.cuda.synchronize()
cutlass_stream = torch.cuda.Stream()
cutlass_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(cutlass_graph, stream=cutlass_stream):
run_cutlass_from_graph(a, a_scale, w1_q, w2_q, w1_scale, w2_scale,
topk_weights, topk_ids, ab_strides1, c_strides1,
ab_strides2, c_strides2)
torch.cuda.synchronize()
triton_stream = torch.cuda.Stream()
triton_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(triton_graph, stream=triton_stream):
run_triton_from_graph(a, w1_q_notransp, w2_q_notransp, topk_weights,
topk_ids, w1_scale, w2_scale, a_scale)
torch.cuda.synchronize()
min_run_time = 5
num_warmup = 5
num_runs = 25
globals = {
# Baseline params
"w1": w1,
"w2": w2,
"score": score,
"topk": topk,
"w1_q_notransp": w1_q_notransp,
"w2_q_notransp": w2_q_notransp,
# Cutlass params
"a_scale": a_scale,
"w1_q": w1_q,
"w2_q": w2_q,
"w1_scale": w1_scale,
"w2_scale": w2_scale,
"ab_strides1": ab_strides1,
"c_strides1": c_strides1,
"ab_strides2": ab_strides2,
"c_strides2": c_strides2,
# cuda graph params
"cutlass_graph": cutlass_graph,
"triton_graph": triton_graph,
# Gen params
"a": a,
"topk_weights": topk_weights,
"topk_ids": topk_ids,
"num_runs": num_runs,
# Kernels
"run_triton_moe": run_triton_moe,
"run_cutlass_moe": run_cutlass_moe,
"replay_graph": replay_graph,
}
# Warmup
run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids,
w1_scale, w2_scale, a_scale, num_warmup)
results.append(
benchmark.Timer(
stmt=
"run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="triton_moe",
).blocked_autorange(min_run_time=min_run_time))
# Warmup
replay_graph(triton_graph, num_warmup)
results.append(
benchmark.Timer(
stmt="replay_graph(triton_graph, num_runs)",
globals=globals,
label=label,
sub_label=sub_label,
description="triton_moe_cuda_graphs",
).blocked_autorange(min_run_time=min_run_time))
# Warmup
run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights,
topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2,
num_warmup)
results.append(
benchmark.Timer(
stmt=
"run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="grouped_gemm_moe",
).blocked_autorange(min_run_time=min_run_time))
# Warmup
replay_graph(cutlass_graph, num_warmup)
results.append(
benchmark.Timer(
stmt="replay_graph(cutlass_graph, num_runs)",
globals=globals,
label=label,
sub_label=sub_label,
description="grouped_gemm_moe_cuda_graphs",
).blocked_autorange(min_run_time=min_run_time))
def main(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
results: list[benchmark.Measurement] = []
for model in args.models:
for tp in args.tp_sizes:
for layer in WEIGHT_SHAPES_MOE[model]:
num_experts = layer[0]
topk = layer[1]
size_k = layer[2]
size_n = layer[3] // tp
if len(args.limit_k) > 0 and size_k not in args.limit_k:
continue
if len(args.limit_n) > 0 and size_n not in args.limit_n:
continue
for per_act_token in PER_ACT_TOKEN_OPTS:
for per_out_ch in PER_OUT_CH_OPTS:
for size_m in DEFAULT_BATCH_SIZES:
mkn = (size_m, size_k, size_n)
bench_run(results, model, num_experts, topk,
per_act_token, per_out_ch, mkn)
compare = benchmark.Compare(results)
compare.print()
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark Marlin across specified models/shapes/batches")
parser.add_argument(
"--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES_MOE.keys(),
)
parser.add_argument("--tp-sizes",
nargs="+",
type=int,
default=DEFAULT_TP_SIZES)
parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
parser.add_argument("--limit-num-groups", nargs="+", type=int, default=[])
parser.add_argument("--limit-per-act-token",
nargs="+",
type=int,
default=[])
parser.add_argument("--limit-per-out-ch", nargs="+", type=int, default=[])
args = parser.parse_args()
main(args)

View File

@ -40,7 +40,7 @@ def main(num_tokens: int,
end_time = time.perf_counter()
if profile:
torch.cuda.cudart().cudaProfilerStart()
torch.cuda.cudart().cudaProfilerStop()
return (end_time - start_time) / num_iters
# Warmup.

View File

@ -9,7 +9,7 @@ from dataclasses import dataclass
from enum import Enum, auto
from itertools import product
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple
from typing import Any, Callable, Optional
import torch
import torch.utils.benchmark as TBenchmark
@ -17,12 +17,14 @@ from torch.utils.benchmark import Measurement as TMeasurement
from utils import ArgPool, Bench, CudaGraphBenchParams
from weight_shapes import WEIGHT_SHAPES
from vllm.lora.ops.triton_ops.bgmv_expand import bgmv_expand
from vllm.lora.ops.triton_ops.bgmv_expand_slice import bgmv_expand_slice
from vllm.lora.ops.triton_ops.bgmv_shrink import bgmv_shrink
from vllm.lora.ops.triton_ops.sgmv_expand import sgmv_expand
from vllm.lora.ops.triton_ops.sgmv_shrink import sgmv_shrink
from vllm.lora.ops.triton_ops.utils import _LORA_A_PTR_DICT, _LORA_B_PTR_DICT
from vllm.triton_utils import HAS_TRITON
if HAS_TRITON:
from vllm.lora.ops.triton_ops import (LoRAKernelMeta, lora_expand,
lora_shrink)
from vllm.lora.ops.triton_ops.utils import (_LORA_A_PTR_DICT,
_LORA_B_PTR_DICT)
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
@ -61,15 +63,15 @@ def make_rand_lora_weight_tensor(k: int,
def make_rand_tensors(
a_shape: Tuple[int],
b_shape: Tuple[int],
c_shape: Tuple[int],
a_shape: tuple[int],
b_shape: tuple[int],
c_shape: tuple[int],
a_dtype: torch.dtype,
b_dtype: torch.dtype,
c_dtype: torch.dtype,
num_slices: int,
device: str = "cuda",
) -> Tuple[torch.Tensor, List[torch.Tensor], torch.Tensor]:
) -> tuple[torch.Tensor, list[torch.Tensor], torch.Tensor]:
"""
Make LoRA input/output matrices.
"""
@ -89,7 +91,7 @@ def make_prompt_lora_mapping(num_prompts: int, num_active_loras: int,
sort_by_lora_id: bool,
device: str) -> torch.Tensor:
"""
All prompts are mapped to a Lora ID in range [0, num_active_loras).
All prompts are mapped to a LoRA ID in range [0, num_active_loras).
where 0 refers to first lora, 1 refers to second lora and so on.
"""
assert num_active_loras > 0
@ -135,7 +137,7 @@ def make_token_lora_mapping(num_tokens: int, num_prompts: int,
def ref_group_gemm(ref_out: torch.Tensor, input: torch.Tensor,
lora_weights: List[torch.Tensor],
lora_weights: list[torch.Tensor],
seq_lens_cpu: torch.Tensor,
prompt_lora_mapping_cpu: torch.Tensor, scaling: float,
add_inputs: Optional[bool]):
@ -153,7 +155,6 @@ def ref_group_gemm(ref_out: torch.Tensor, input: torch.Tensor,
result = torch.nn.functional.linear(x, w)
result *= scaling
out_list.append(result)
torch.cat(out_list, dim=0)
cat_result = torch.cat(out_list, dim=0)
@ -167,62 +168,35 @@ class OpType(Enum):
"""
LoRA Ops to benchmark and its properties.
"""
SGMV_SHRINK = auto()
BGMV_SHRINK = auto()
SGMV_EXPAND = auto()
BGMV_EXPAND = auto()
BGMV_EXPAND_SLICE = auto()
LORA_SHRINK = auto()
LORA_EXPAND = auto()
@staticmethod
def from_str(s: str) -> "OpType":
if s.lower() == 'sgmv_shrink':
return OpType.SGMV_SHRINK
if s.lower() == 'sgmv_expand':
return OpType.SGMV_EXPAND
if s.lower() == 'bgmv_shrink':
return OpType.BGMV_SHRINK
if s.lower() == 'bgmv_expand':
return OpType.BGMV_EXPAND
if s.lower() == "bgmv_expand_slice":
return OpType.BGMV_EXPAND_SLICE
if s.lower() == "lora_shrink":
return OpType.LORA_SHRINK
if s.lower() == "lora_expand":
return OpType.LORA_EXPAND
raise ValueError(f"Unrecognized str {s} to convert to OpType")
def is_shrink_fn(self) -> bool:
return self in [OpType.SGMV_SHRINK, OpType.BGMV_SHRINK]
return self in [OpType.LORA_SHRINK]
def is_expand_fn(self) -> bool:
return self in [OpType.SGMV_EXPAND, OpType.BGMV_EXPAND]
return self in [OpType.LORA_EXPAND]
def is_prefill_op(self) -> bool:
return self in [OpType.SGMV_SHRINK, OpType.SGMV_EXPAND]
def is_decode_op(self) -> bool:
return self in [
OpType.BGMV_SHRINK, OpType.BGMV_EXPAND, OpType.BGMV_EXPAND_SLICE
]
def is_expand_slice_fn(self) -> bool:
return self in [OpType.BGMV_EXPAND_SLICE]
def num_slices(self) -> List[int]:
if self in [OpType.SGMV_EXPAND, OpType.SGMV_SHRINK]:
# SGMV kernels supports slices
def num_slices(self) -> list[int]:
return [1, 2, 3]
if self in [OpType.BGMV_SHRINK, OpType.BGMV_EXPAND]:
return [1]
if self in [OpType.BGMV_EXPAND_SLICE]:
return [2, 3]
raise ValueError(f"Unrecognized OpType {self}")
def mkn(self, batch_size: int, seq_length: int, hidden_size: int,
lora_rank: int) -> Tuple[int, int, int]:
lora_rank: int) -> tuple[int, int, int]:
num_tokens = batch_size * seq_length
if self.is_shrink_fn():
m = num_tokens
k = hidden_size
n = lora_rank
else:
assert self.is_expand_fn() or self.is_expand_slice_fn()
assert self.is_expand_fn()
m = num_tokens
k = lora_rank
n = hidden_size
@ -230,20 +204,20 @@ class OpType(Enum):
def matmul_dtypes(
self, op_dtype: torch.dtype
) -> Tuple[torch.dtype, torch.dtype, torch.dtype]:
) -> tuple[torch.dtype, torch.dtype, torch.dtype]:
"""
return a type, b type and c type for A x B = C
"""
if self.is_shrink_fn():
return op_dtype, op_dtype, torch.float32
else:
assert self.is_expand_fn() or self.is_expand_slice_fn()
assert self.is_expand_fn()
return torch.float32, op_dtype, op_dtype
def matmul_shapes(
self, batch_size: int, seq_length: int, hidden_size: int,
lora_rank: int, num_loras: int,
num_slices: int) -> Tuple[Tuple[int], Tuple[int], Tuple[int]]:
num_slices: int) -> tuple[tuple[int], tuple[int], tuple[int]]:
"""
Given num_slices, return the shapes of the A, B, and C matrices
in A x B = C, for the op_type
@ -251,77 +225,39 @@ class OpType(Enum):
m, k, n = self.mkn(batch_size, seq_length, hidden_size, lora_rank)
b_shape = (num_loras, n, k) # col-major
if self == OpType.SGMV_SHRINK:
# SGMV shrink supports num_slices inherently in the kernel
if self in [OpType.LORA_SHRINK]:
# LoRA shrink kernels support num_slices inherently in the kernel.
return ((m, k), b_shape, (num_slices, m, n))
if self == OpType.SGMV_EXPAND:
# SGMV expand supports num_slices inherently in the kernel
if self in [OpType.LORA_EXPAND]:
# LoRA expand kernels support num_slices inherently in the kernel
return ((num_slices, m, k), b_shape, (m, n * num_slices))
if self == OpType.BGMV_SHRINK:
return ((m, k), b_shape, (m, n))
if self == OpType.BGMV_EXPAND:
return ((m, k), b_shape, (m, n))
if self == OpType.BGMV_EXPAND_SLICE:
return ((num_slices, m, k), b_shape, (m, n * num_slices))
raise ValueError(f"Unrecognized op_type {self}")
def bench_fn(self) -> Callable:
if self == OpType.LORA_SHRINK:
return lora_shrink
if self == OpType.LORA_EXPAND:
return lora_expand
def emulate_bgmv_expand_slice(kwargs_list: List[Dict[str, Any]]):
for x in kwargs_list:
bgmv_expand_slice(**x)
if self == OpType.SGMV_SHRINK:
return sgmv_shrink
if self == OpType.SGMV_EXPAND:
return sgmv_expand
if self == OpType.BGMV_SHRINK:
return bgmv_shrink
if self == OpType.BGMV_EXPAND:
return bgmv_expand
if self == OpType.BGMV_EXPAND_SLICE:
return emulate_bgmv_expand_slice
raise ValueError(f"Unrecognized optype {self}")
def run_ref_group_gemm(self, output: torch.Tensor, input: torch.Tensor,
lora_weights: List[torch.Tensor],
lora_weights: list[torch.Tensor],
**kwargs) -> Callable:
"""Each benchmark operation expected the input, lora_weights and outputs
"""Each benchmark operation expects the input, lora_weights and outputs
in a slightly different format. Refer to self.matmul_shapes().
run_ref_group_gemm accounts for those differences in executing a
reference group gemm for correctness testing.
"""
w_dtype = lora_weights[0].dtype
num_slices = len(lora_weights)
if self == OpType.SGMV_SHRINK:
if self in [OpType.LORA_SHRINK]:
for slice_idx in range(num_slices):
ref_group_gemm(ref_out=output[slice_idx, :],
input=input,
lora_weights=lora_weights[slice_idx],
**kwargs)
if self == OpType.SGMV_EXPAND:
hidden_size = lora_weights[0].shape[1]
for slice_idx in range(num_slices):
slice_offset = slice_idx * hidden_size
ref_group_gemm(
ref_out=output[:, slice_offset:slice_offset + hidden_size],
input=input[slice_idx].clone().to(dtype=w_dtype),
lora_weights=lora_weights[slice_idx],
**kwargs)
if self == OpType.BGMV_SHRINK:
assert num_slices == 1
ref_group_gemm(ref_out=output,
input=input,
lora_weights=lora_weights[0],
**kwargs)
if self == OpType.BGMV_EXPAND:
assert num_slices == 1
ref_group_gemm(ref_out=output,
input=input.clone().to(dtype=w_dtype),
lora_weights=lora_weights[0],
**kwargs)
if self == OpType.BGMV_EXPAND_SLICE:
elif self in [OpType.LORA_EXPAND]:
hidden_size = lora_weights[0].shape[1]
for slice_idx in range(num_slices):
slice_offset = slice_idx * hidden_size
@ -330,6 +266,7 @@ class OpType(Enum):
input=input[slice_idx].clone().to(dtype=w_dtype),
lora_weights=lora_weights[slice_idx],
**kwargs)
else:
raise ValueError(f"Unrecognized optype {self}")
@ -384,13 +321,13 @@ class BenchmarkTensors:
"""
# matmul tensors
input: torch.Tensor
lora_weights_lst: List[torch.Tensor]
lora_weights_lst: list[torch.Tensor]
output: torch.Tensor
# metadata tensors
# LoRA kernel metadata
lora_kernel_meta: LoRAKernelMeta
# Metadata tensors used in testing correctness
seq_lens: torch.Tensor
seq_start_loc: torch.Tensor
prompt_lora_mapping: torch.Tensor
token_lora_mapping: torch.Tensor
def io_types(self) -> str:
return (f"{dtype_to_str(self.input.dtype)}x"
@ -417,26 +354,29 @@ class BenchmarkTensors:
assert ctx.num_active_loras <= ctx.num_loras
total_tokens = ctx.batch_size * ctx.seq_length
# Make metadata tensors involved in correctness testing.
# Prepare seq lens tensor
seq_len_tensor = torch.randint(ctx.seq_length, ctx.seq_length + 1,
(ctx.batch_size, ))
# Prepare seq_start_loc tensor
seq_start_loc_tensor = torch.cumsum(torch.tensor(
[0] + seq_len_tensor[:-1].tolist(), dtype=torch.long),
dim=0)
assert total_tokens == seq_len_tensor.sum()
# Prepare prompt lora indices tensor
prompt_lora_indices_tensor = make_prompt_lora_mapping(
ctx.batch_size, ctx.num_active_loras, ctx.sort_by_lora_id, "cpu")
# Prepare token lora indices tensor
# Make LoRAKernelMeta
token_lora_indices_tensor = make_token_lora_mapping(
total_tokens, ctx.batch_size, prompt_lora_indices_tensor,
seq_len_tensor, "cpu")
lora_kernel_meta = LoRAKernelMeta.make(
max_loras=ctx.num_loras,
max_num_tokens=token_lora_indices_tensor.size(0),
device="cpu")
lora_kernel_meta.prepare_tensors(
token_lora_mapping=token_lora_indices_tensor)
return BenchmarkTensors(input_tensor, lora_weights, output_tensor,
seq_len_tensor, seq_start_loc_tensor,
prompt_lora_indices_tensor,
token_lora_indices_tensor)
lora_kernel_meta, seq_len_tensor,
prompt_lora_indices_tensor)
def sanity_check(self) -> None:
"""
@ -446,9 +386,9 @@ class BenchmarkTensors:
# check metadata tensors
assert torch.sum(self.seq_lens) == num_tokens
num_seqs = self.seq_lens.shape[0]
assert self.seq_start_loc.shape[0] == num_seqs
#assert self.seq_start_loc.shape[0] == num_seqs
assert self.prompt_lora_mapping.shape[0] == num_seqs
assert self.token_lora_mapping.shape[0] == num_tokens
assert self.lora_kernel_meta.token_lora_mapping.shape[0] == num_tokens
def to_device(self, device: str):
"""
@ -463,54 +403,31 @@ class BenchmarkTensors:
self.input = to_device(self.input)
self.output = to_device(self.output)
self.seq_lens = to_device(self.seq_lens)
self.seq_start_loc = to_device(self.seq_start_loc)
self.prompt_lora_mapping = to_device(self.prompt_lora_mapping)
self.token_lora_mapping = to_device(self.token_lora_mapping)
for i in range(len(self.lora_weights_lst)):
self.lora_weights_lst[i] = to_device(self.lora_weights_lst[i])
def metadata(self) -> Tuple[int, int, int]:
# LoRA meta
for field_name in LoRAKernelMeta.__dataclass_fields__:
field = getattr(self.lora_kernel_meta, field_name)
assert isinstance(field, torch.Tensor)
setattr(self.lora_kernel_meta, field_name, to_device(field))
def metadata(self) -> tuple[int, int, int]:
"""
Return num_seqs, num_tokens and max_seq_len
"""
num_seqs = self.seq_lens.shape[0]
num_tokens = self.token_lora_mapping.shape[0]
num_tokens = self.lora_kernel_meta.token_lora_mapping.shape[0]
max_seq_len = torch.max(self.seq_lens).item()
num_slices = len(self.lora_weights_lst)
return num_seqs, num_tokens, max_seq_len, num_slices
def convert_to_sgmv_benchmark_tensors(self):
"""
For sgmv punica kernels, when consecutive sequences have the
same LoRA ID, we just merge them together.
This happens in punica.py::compute_metadata
"""
# Collapse seq_lens and seq_start_loc
_, seq_lens = torch.unique_consecutive(self.token_lora_mapping,
return_counts=True)
cum_result = torch.cumsum(seq_lens, dim=0)
seq_start_loc = torch.zeros_like(seq_lens)
seq_start_loc[1:].copy_(cum_result[:-1])
# Collapse prompt mapping
prompt_lora_mapping = torch.unique_consecutive(
self.prompt_lora_mapping)
assert torch.sum(seq_lens) == torch.sum(self.seq_lens), \
f"dont match - new {torch.sum(seq_lens)} vs {torch.sum(self.seq_lens)}"
self.prompt_lora_mapping = prompt_lora_mapping.to(
dtype=self.prompt_lora_mapping.dtype)
self.seq_lens = seq_lens.to(dtype=self.seq_lens.dtype)
self.seq_start_loc = seq_start_loc.to(dtype=self.seq_start_loc.dtype)
def as_sgmv_shrink_kwargs(self) -> Dict[str, Any]:
self.convert_to_sgmv_benchmark_tensors()
def as_lora_shrink_kwargs(self) -> dict[str, Any]:
self.sanity_check()
self.to_device(self.input.device)
num_seqs, num_tokens, max_seq_len, num_slices = self.metadata()
_, num_tokens, _, num_slices = self.metadata()
# Sanity check matrix shapes.
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
@ -531,22 +448,20 @@ class BenchmarkTensors:
'inputs': self.input,
'lora_a_weights': self.lora_weights_lst,
'output_tensor': self.output,
'b_seq_start_loc': self.seq_start_loc,
'seq_len_tensor': self.seq_lens,
'lora_indices_tensor': self.prompt_lora_mapping,
'batches': num_seqs,
'max_seq_length': max_seq_len,
'token_nums': num_tokens,
'token_lora_mapping': self.lora_kernel_meta.token_lora_mapping,
'token_indices_sorted_by_lora_ids':
self.lora_kernel_meta.token_indices_sorted_by_lora_ids,
'num_tokens_per_lora': self.lora_kernel_meta.num_tokens_per_lora,
'lora_token_start_loc': self.lora_kernel_meta.lora_token_start_loc,
'lora_ids': self.lora_kernel_meta.active_lora_ids,
'scaling': 1.0,
}
def as_sgmv_expand_kwargs(self, add_inputs: bool) -> Dict[str, Any]:
self.convert_to_sgmv_benchmark_tensors()
def as_lora_expand_kwargs(self, add_inputs: bool) -> dict[str, Any]:
self.sanity_check()
self.to_device(self.input.device)
num_seqs, num_tokens, max_seq_len, num_slices = self.metadata()
_, num_tokens, _, num_slices = self.metadata()
# Sanity check matrix shapes.
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
@ -568,124 +483,28 @@ class BenchmarkTensors:
'inputs': self.input,
'lora_b_weights': self.lora_weights_lst,
'output_tensor': self.output,
'b_seq_start_loc': self.seq_start_loc,
'seq_len_tensor': self.seq_lens,
'lora_indices_tensor': self.prompt_lora_mapping,
'batches': num_seqs,
'max_seq_length': max_seq_len,
'token_nums': num_tokens,
'token_lora_mapping': self.lora_kernel_meta.token_lora_mapping,
'token_indices_sorted_by_lora_ids':
self.lora_kernel_meta.token_indices_sorted_by_lora_ids,
'num_tokens_per_lora': self.lora_kernel_meta.num_tokens_per_lora,
'lora_token_start_loc': self.lora_kernel_meta.lora_token_start_loc,
'lora_ids': self.lora_kernel_meta.active_lora_ids,
'offset_start': 0,
'add_inputs': add_inputs,
}
def as_bgmv_shrink_kwargs(self) -> Dict[str, Any]:
assert len(self.lora_weights_lst) == 1
self.to_device(self.input.device)
_, num_tokens, _, _ = self.metadata()
# Sanity check shapes
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
0].shape, self.output.shape
# Expected input shape [num_tokens, hidden_size]
assert len(i_shape) == 2
assert i_shape[0] == num_tokens
hidden_size = i_shape[1]
# Expected lora weight shape [num_loras, lora_rank, hidden_size]
assert len(lw_shape) == 3
assert lw_shape[2] == hidden_size
lora_rank = lw_shape[1]
# Expected output shape [num_tokens, lora_rank]
assert len(o_shape) == 2
assert o_shape == (num_tokens, lora_rank)
return {
'inputs': self.input,
'lora_a_weights': self.lora_weights_lst[0],
'output_tensor': self.output,
'lora_indices_tensor': self.token_lora_mapping,
'scaling': 1.0
}
def as_bgmv_expand_kwargs(self, add_inputs: bool):
assert len(self.lora_weights_lst) == 1
self.to_device(self.input.device)
_, num_tokens, _, _ = self.metadata()
# Sanity check shapes
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
0].shape, self.output.shape
# Expected input shape [num_tokens, lora_rank]
assert len(i_shape) == 2
assert i_shape[0] == num_tokens
lora_rank = i_shape[1]
# Expected lora weight shape [num_loras, hidden_size, lora_rank]
assert len(lw_shape) == 3
assert lw_shape[2] == lora_rank
hidden_size = lw_shape[1]
# Expected output shape [num_tokens, hidden_size]
assert len(o_shape) == 2
assert o_shape == (num_tokens, hidden_size)
return {
'inputs': self.input,
'lora_b_weights': self.lora_weights_lst[0],
'output_tensor': self.output,
'lora_indices_tensor': self.token_lora_mapping,
'add_inputs': add_inputs
}
def as_bgmv_expand_slice_kwargs(self, add_inputs: bool) -> Dict[str, Any]:
_, num_tokens, _, num_slices = self.metadata()
# Sanity check shapes
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
0].shape, self.output.shape
# Expected input shape [num_slices, num_tokens, lora_rank]
assert len(i_shape) == 3
assert i_shape[0] == num_slices
assert i_shape[1] == num_tokens
lora_rank = i_shape[2]
# Expected lora weight shape [num_loras, hidden_size, lora_rank]
assert len(lw_shape) == 3
assert lw_shape[2] == lora_rank
hidden_size = lw_shape[1]
# Expected output shape [num_tokens, hidden_size * num_slices]
assert len(o_shape) == 2
assert o_shape == (num_tokens, hidden_size * num_slices)
self.to_device(self.input.device)
kwargs_list = []
for i in range(num_slices):
kwargs_list.append({
'inputs': self.input[i],
'lora_b_weights': self.lora_weights_lst[i],
'output_tensor': self.output,
'lora_indices_tensor': self.token_lora_mapping,
'slice_offset': i * hidden_size,
'slice_size': hidden_size,
'add_inputs': add_inputs,
})
return {'kwargs_list': kwargs_list}
def bench_fn_kwargs(self,
op_type: OpType,
add_inputs: Optional[bool] = None) -> Dict[str, Any]:
add_inputs: Optional[bool] = None) -> dict[str, Any]:
if op_type.is_shrink_fn():
assert add_inputs is None
else:
assert add_inputs is not None
if op_type == OpType.SGMV_SHRINK:
return self.as_sgmv_shrink_kwargs()
if op_type == OpType.SGMV_EXPAND:
return self.as_sgmv_expand_kwargs(add_inputs)
if op_type == OpType.BGMV_SHRINK:
return self.as_bgmv_shrink_kwargs()
if op_type == OpType.BGMV_EXPAND:
return self.as_bgmv_expand_kwargs(add_inputs)
if op_type == OpType.BGMV_EXPAND_SLICE:
return self.as_bgmv_expand_slice_kwargs(add_inputs)
if op_type == OpType.LORA_SHRINK:
return self.as_lora_shrink_kwargs()
if op_type == OpType.LORA_EXPAND:
return self.as_lora_expand_kwargs(add_inputs)
raise ValueError(f"Unrecognized optype {self}")
def test_correctness(self, op_type: OpType,
@ -734,7 +553,7 @@ def bench_optype(ctx: BenchmarkContext,
assert expand_fn_add_inputs is not None
# BenchmarkContext -> BenchmarkTensors
bench_tensors : List[BenchmarkTensors] = \
bench_tensors : list[BenchmarkTensors] = \
[BenchmarkTensors.make(ctx, op_type) for _ in range(arg_pool_size)]
for bt in bench_tensors:
bt.sanity_check()
@ -746,7 +565,7 @@ def bench_optype(ctx: BenchmarkContext,
for bt in bench_tensors
])
# BenchmarkTensors -> Dict (kwargs)
# BenchmarkTensors -> dict (kwargs)
kwargs_list = [
bt.bench_fn_kwargs(op_type, add_inputs=expand_fn_add_inputs)
for bt in bench_tensors
@ -841,7 +660,7 @@ def use_cuda_graph_recommendation() -> str:
"""
def print_timers(timers: List[TMeasurement],
def print_timers(timers: list[TMeasurement],
args: Optional[argparse.Namespace] = None):
compare = TBenchmark.Compare(timers)
compare.print()
@ -861,7 +680,7 @@ def print_timers(timers: List[TMeasurement],
"small num_loras the goal should be to match the torch.mm numbers.")
def run(args: argparse.Namespace, bench_ctxs: List[BenchmarkContext]):
def run(args: argparse.Namespace, bench_ctxs: list[BenchmarkContext]):
if args.cuda_graph_nops is not None:
assert args.cuda_graph_nops > 0
@ -873,14 +692,7 @@ def run(args: argparse.Namespace, bench_ctxs: List[BenchmarkContext]):
timers = []
for bench_ctx in bench_ctxs:
for seq_len in args.seq_lengths:
bench_ops: List[OpType] = []
if seq_len == 1:
# bench all decode ops
bench_ops = [op for op in args.op_types if op.is_decode_op()]
else:
# bench all prefill ops
bench_ops = [op for op in args.op_types if op.is_prefill_op()]
bench_ops: list[OpType] = args.op_types
seq_len_timers = []
for bench_op in bench_ops:
for num_slices in bench_op.num_slices():
@ -921,10 +733,10 @@ def run(args: argparse.Namespace, bench_ctxs: List[BenchmarkContext]):
pickle.dump(timers, f)
def as_benchmark_contexts(hidden_sizes: List[int], lora_ranks: List[int],
args: argparse.Namespace) -> List[BenchmarkContext]:
def as_benchmark_contexts(hidden_sizes: list[int], lora_ranks: list[int],
args: argparse.Namespace) -> list[BenchmarkContext]:
ctxs: List[BenchmarkContext] = []
ctxs: list[BenchmarkContext] = []
for batch_size, hidden_size, lora_rank, num_loras, sort_by_lora_id in product( # noqa
args.batch_sizes, list(hidden_sizes), lora_ranks, args.num_loras,
args.sort_by_lora_id):
@ -954,7 +766,7 @@ def run_list_bench(args: argparse.Namespace):
f" LoRA Ranks {args.lora_ranks}")
# Get all benchmarking contexts
bench_contexts: List[BenchmarkContext] = as_benchmark_contexts(
bench_contexts: list[BenchmarkContext] = as_benchmark_contexts(
hidden_sizes=args.hidden_sizes, lora_ranks=args.lora_ranks, args=args)
run(args, bench_contexts)
@ -975,7 +787,7 @@ def run_range_bench(args: argparse.Namespace):
f" LoRA Ranks {lora_ranks}")
# Get all benchmarking contexts
bench_contexts: List[BenchmarkContext] = as_benchmark_contexts(
bench_contexts: list[BenchmarkContext] = as_benchmark_contexts(
hidden_sizes=hidden_sizes, lora_ranks=lora_ranks, args=args)
run(args, bench_contexts)
@ -1002,7 +814,7 @@ def run_model_bench(args: argparse.Namespace):
f" LoRA Ranks {args.lora_ranks}")
# Get all benchmarking contexts
bench_contexts: List[BenchmarkContext] = as_benchmark_contexts(
bench_contexts: list[BenchmarkContext] = as_benchmark_contexts(
hidden_sizes=hidden_sizes, lora_ranks=args.lora_ranks, args=args)
run(args, bench_contexts)
@ -1090,13 +902,13 @@ Benchmark LoRA kernels:
{use_cuda_graph_recommendation()}
list_bench example:
python3 benchmarks/kernels/benchmark_lora.py list_bench --arg-pool-size 32 --batch-sizes 1 16 32 --dtype torch.float16 --hidden-sizes 2048 --lora-ranks 16 --num-loras 1 4 --op-types bgmv_shrink bgmv_expand sgmv_shrink sgmv_expand bgmv_expand_slice --seq-lengths 1 16 --sort-by-lora-id 1 --cuda-graph-nops 32
python3 benchmarks/kernels/benchmark_lora.py list_bench --arg-pool-size 32 --batch-sizes 1 16 32 --dtype torch.float16 --hidden-sizes 2048 --lora-ranks 16 --num-loras 1 4 --op-types lora_shrink lora_expand --seq-lengths 1 16 --sort-by-lora-id 1 --cuda-graph-nops 32
model_bench example:
python3 benchmarks/kernels/benchmark_lora.py model_bench --models meta-llama/Llama-3-8b --arg-pool-size 32 --batch-sizes 1 16 32 --dtype torch.float16 --lora-ranks 16 --num-loras 1 4 --op-types bgmv_shrink bgmv_expand sgmv_shrink sgmv_expand bgmv_expand_slice --seq-lengths 1 16 --sort-by-lora-id 1 --cuda-graph-nops 32
python3 benchmarks/kernels/benchmark_lora.py model_bench --models meta-llama/Llama-3-8b --arg-pool-size 32 --batch-sizes 1 16 32 --dtype torch.float16 --lora-ranks 16 --num-loras 1 4 --op-types lora_shrink lora_expand --seq-lengths 1 16 --sort-by-lora-id 1 --cuda-graph-nops 32
range_bench example:
python3 benchmarks/kernels/benchmark_lora.py range_bench --arg-pool-size 32 --batch-sizes 1 16 32 --dtype torch.float16 --num-loras 1 4 --op-types bgmv_shrink bgmv_expand sgmv_shrink sgmv_expand bgmv_expand_slice --seq-lengths 1 16 --sort-by-lora-id 1 --cuda-graph-nops 32 --hidden-sizes-start 1024 --hidden-sizes-end 4096 --hidden-sizes-increment 1024 --lora-ranks-start 8 --lora-ranks-end 24 --lora-ranks-increment 8
python3 benchmarks/kernels/benchmark_lora.py range_bench --arg-pool-size 32 --batch-sizes 1 16 32 --dtype torch.float16 --num-loras 1 4 --op-types lora_shrink lora_expand --seq-lengths 1 16 --sort-by-lora-id 1 --cuda-graph-nops 32 --hidden-sizes-start 1024 --hidden-sizes-end 4096 --hidden-sizes-increment 1024 --lora-ranks-start 8 --lora-ranks-end 24 --lora-ranks-increment 8
""", # noqa: E501
formatter_class=argparse.RawTextHelpFormatter)

View File

@ -7,9 +7,10 @@ import math
import os
import pickle as pkl
import time
from collections.abc import Iterable
from dataclasses import dataclass
from itertools import product
from typing import Callable, Iterable, List, Optional, Tuple
from typing import Callable, Optional
import pandas as pd
import torch
@ -44,7 +45,6 @@ def terse_type_name(dt):
torch.float16: "fp16",
torch.int8: "int8",
torch.float8_e4m3fn: "fp8",
torch.bfloat16: "bf16",
torch.float: "float",
torch.int: "int",
}[dt]
@ -102,8 +102,8 @@ def quantize_and_pack(atype: torch.dtype,
return w_ref, w_q, w_s, w_zp
def create_bench_tensors(shape: Tuple[int, int, int], types: TypeConfig,
group_size: Optional[int]) -> List[BenchmarkTensors]:
def create_bench_tensors(shape: tuple[int, int, int], types: TypeConfig,
group_size: Optional[int]) -> list[BenchmarkTensors]:
m, n, k = shape
# we want to make sure that weights don't fit into L2 cache between runs so
@ -114,7 +114,7 @@ def create_bench_tensors(shape: Tuple[int, int, int], types: TypeConfig,
a = rand_data((m, k), types.act_type, scale=5)
benchmark_tensors: List[BenchmarkTensors] = []
benchmark_tensors: list[BenchmarkTensors] = []
for _ in range(num_weights):
w = rand_data((k, n), types.act_type, scale=5)
@ -258,7 +258,7 @@ def machete_create_bench_fn(bt: BenchmarkTensors,
return lambda: ops.machete_mm(
a=bt.a,
b_q=bt.w_q,
b_q=w_q,
b_type=bt.wtype,
b_group_scales=bt.w_g_s,
b_group_zeros=w_g_zp,
@ -276,7 +276,7 @@ def machete_create_bench_fn(bt: BenchmarkTensors,
def bench_fns(label: str, sub_label: str, description: str,
fns: List[Callable]):
fns: list[Callable]):
min_run_time = 1 if not NVTX_PROFILE else 0.1
res = TBenchmark.Timer(
@ -311,7 +311,7 @@ def bench(types: TypeConfig,
n: int,
label: str,
sub_label: str,
sweep_schedules: bool = True) -> List[TMeasurement]:
sweep_schedules: bool = True) -> list[TMeasurement]:
benchmark_tensors = create_bench_tensors((m, n, k), types, group_size)
sub_label += f", L={len(benchmark_tensors)}"
@ -414,12 +414,12 @@ def bench(types: TypeConfig,
# runner
def print_timers(timers: List[TMeasurement]):
def print_timers(timers: list[TMeasurement]):
compare = TBenchmark.Compare(timers)
compare.print()
def run(args, MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]:
def run(args, MKNs: Iterable[tuple[int, int, int]]) -> Iterable[TMeasurement]:
types = TypeConfig(
act_type=args.act_type,
weight_type=scalar_types.uint4b8 if args.group_zero_type is None \
@ -431,7 +431,7 @@ def run(args, MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]:
token_scale_type=args.token_scale_type,
)
results: List[TMeasurement] = []
results: list[TMeasurement] = []
for m, k, n in MKNs:
timers = bench(types,
args.group_size,
@ -449,8 +449,8 @@ def run(args, MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]:
# output makers
def make_output(
data: List[TMeasurement],
MKNs: Iterable[Tuple[int, int, int]],
data: list[TMeasurement],
MKNs: Iterable[tuple[int, int, int]],
base_description: str,
timestamp=None,
):
@ -497,7 +497,7 @@ def run_model_bench(args):
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
def model_shapes(model_name: str, tp_size: int) -> List[Tuple[int, int]]:
def model_shapes(model_name: str, tp_size: int) -> list[tuple[int, int]]:
KNs = []
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model_name]):
KN[tp_split_dim] = KN[tp_split_dim] // tp_size

View File

@ -1,7 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
from typing import List
import torch
import torch.utils.benchmark as benchmark
from benchmark_shapes import WEIGHT_SHAPES
@ -10,6 +8,8 @@ from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.gptq_marlin_24 import (
GPTQ_MARLIN_24_MAX_PARALLEL, GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES)
from vllm.model_executor.layers.quantization.utils.allspark_utils import (
ALLSPARK_AMPERE_M_CUBLAS_THRESHOLD, ALLSPARK_SUPPORTED_QUANT_TYPES)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N,
MARLIN_SUPPORTED_GROUP_SIZES, query_marlin_supported_quant_types)
@ -18,18 +18,18 @@ from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
from vllm.model_executor.layers.quantization.utils.marlin_utils_test_24 import (
marlin_24_quantize)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
gptq_pack, gptq_quantize_weights, sort_weights)
gptq_pack, gptq_quantize_weights, quantize_weights, sort_weights)
from vllm.scalar_type import ScalarType
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = ["meta-llama/Llama-2-7b-hf/TP1"]
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]
ACT_ORDER_OPTS = [False, True]
K_FULL_OPTS = [False, True]
def bench_run(results: List[benchmark.Measurement], model: str,
def bench_run(results: list[benchmark.Measurement], model: str,
act_order: bool, is_k_full: bool, quant_type: ScalarType,
group_size: int, size_m: int, size_k: int, size_n: int):
label = "Quant Matmul"
@ -81,6 +81,27 @@ def bench_run(results: List[benchmark.Measurement], model: str,
GPTQ_MARLIN_24_MAX_PARALLEL)
marlin_zp = torch.zeros_like(marlin_s, dtype=torch.int)
# AllSpark W8A16 quant
as_supported_case = (quant_type in ALLSPARK_SUPPORTED_QUANT_TYPES
and group_size == -1 and not act_order and is_k_full)
if as_supported_case:
properties = torch.cuda.get_device_properties(b.device.index)
sm_count = properties.multi_processor_count
sm_version = properties.major * 10 + properties.minor
supported_arch = (sm_version >= 80 and sm_version < 90)
as_supported_case = as_supported_case and supported_arch
if supported_arch:
has_zp = False
w_ref, qw, s, zp = quantize_weights(b, quant_type, group_size,
has_zp)
qw = qw.to(torch.uint8)
qw_reorder, s_reorder, zp_reorder = \
ops.allspark_repack_weight(
qw, s, zp, has_zp)
CUBLAS_M_THRESHOLD = ALLSPARK_AMPERE_M_CUBLAS_THRESHOLD
globals = {
# Gen params
"quant_type": quant_type,
@ -109,10 +130,19 @@ def bench_run(results: List[benchmark.Measurement], model: str,
# GPTQ params
"q_w_gptq": q_w_gptq,
"repack_sort_indices": repack_sort_indices,
# AllSpark W8A16 params
"qw_reorder": qw_reorder if as_supported_case else None,
"s_reorder": s_reorder if as_supported_case else None,
"zp_reorder": zp_reorder if as_supported_case else None,
"sm_count": sm_count if as_supported_case else None,
"sm_version": sm_version if as_supported_case else None,
"CUBLAS_M_THRESHOLD":
CUBLAS_M_THRESHOLD if as_supported_case else None,
# Kernels
"gptq_marlin_gemm": ops.gptq_marlin_gemm,
"gptq_marlin_24_gemm": ops.gptq_marlin_24_gemm,
"gptq_marlin_repack": ops.gptq_marlin_repack,
"allspark_w8a16_gemm": ops.allspark_w8a16_gemm,
}
min_run_time = 1
@ -172,13 +202,24 @@ def bench_run(results: List[benchmark.Measurement], model: str,
description="gptq_marlin_repack",
).blocked_autorange(min_run_time=min_run_time))
if as_supported_case:
results.append(
benchmark.Timer(
stmt=
"output = allspark_w8a16_gemm(a, qw_reorder, s_reorder, zp_reorder, size_n, group_size, sm_count, sm_version, CUBLAS_M_THRESHOLD, False, True)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="allspark_w8a16_gemm_fp32",
).blocked_autorange(min_run_time=min_run_time))
def main(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
results: List[benchmark.Measurement] = []
results: list[benchmark.Measurement] = []
for model in args.models:
for layer in WEIGHT_SHAPES[model]:

View File

@ -1,10 +1,12 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
import time
from contextlib import nullcontext
from datetime import datetime
from itertools import product
from typing import Any, Dict, List, Tuple, TypedDict
from typing import Any, TypedDict
import ray
import torch
@ -16,8 +18,7 @@ from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
FP8_DTYPE = torch.float8_e4m3fnuz if current_platform.is_rocm(
) else torch.float8_e4m3fn
FP8_DTYPE = current_platform.fp8_dtype()
class BenchmarkConfig(TypedDict):
@ -29,8 +30,7 @@ class BenchmarkConfig(TypedDict):
num_stages: int
def benchmark_config(
config: BenchmarkConfig,
def benchmark_config(config: BenchmarkConfig,
num_tokens: int,
num_experts: int,
shard_intermediate_size: int,
@ -40,7 +40,8 @@ def benchmark_config(
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
num_iters: int = 100,
) -> float:
block_quant_shape: List[int] = None,
use_deep_gemm: bool = False) -> float:
init_dtype = torch.float16 if use_fp8_w8a8 else dtype
x = torch.randn(num_tokens, hidden_size, dtype=dtype)
if use_int8_w8a16:
@ -81,8 +82,24 @@ def benchmark_config(
dtype=torch.float32)
w2_scale = torch.randn((hidden_size, num_experts), dtype=torch.float32)
if use_fp8_w8a8:
if block_quant_shape:
block_n, block_k = block_quant_shape[0], block_quant_shape[1]
E = num_experts
N = shard_intermediate_size // 2
K = hidden_size
factor_for_scale = 1e-2
n_tiles_w1 = (2 * N + block_n - 1) // block_n
n_tiles_w2 = (K + block_n - 1) // block_n
k_tiles_w1 = (K + block_k - 1) // block_k
k_tiles_w2 = (N + block_k - 1) // block_k
w1_scale = torch.rand((E, n_tiles_w1, k_tiles_w1),
dtype=torch.float32) * factor_for_scale
w2_scale = torch.rand((E, n_tiles_w2, k_tiles_w2),
dtype=torch.float32) * factor_for_scale
else:
w1_scale = torch.randn(num_experts, dtype=torch.float32)
w2_scale = torch.randn(num_experts, dtype=torch.float32)
a1_scale = torch.randn(1, dtype=torch.float32)
a2_scale = torch.randn(1, dtype=torch.float32)
@ -97,6 +114,25 @@ def benchmark_config(
def run():
from vllm.model_executor.layers.fused_moe import override_config
with override_config(config):
if use_deep_gemm:
topk_weights, topk_ids = fused_topk(x, input_gating, topk,
False)
return fused_experts(
x,
w1,
w2,
topk_weights,
topk_ids,
inplace=True,
use_fp8_w8a8=use_fp8_w8a8,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
block_shape=block_quant_shape,
allow_deep_gemm=True,
)
else:
fused_moe(
x,
w1,
@ -111,6 +147,7 @@ def benchmark_config(
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
block_shape=block_quant_shape,
)
# JIT compilation & warmup
@ -132,7 +169,7 @@ def benchmark_config(
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
latencies: List[float] = []
latencies: list[float] = []
for i in range(num_iters):
prepare(i)
torch.cuda.synchronize()
@ -175,8 +212,9 @@ def get_rocm_tuning_space(use_fp16):
return param_ranges
def get_configs_compute_bound(use_fp16) -> List[Dict[str, int]]:
configs: List[BenchmarkConfig] = []
def get_configs_compute_bound(use_fp16,
block_quant_shape) -> list[dict[str, int]]:
configs: list[BenchmarkConfig] = []
if current_platform.is_rocm():
param_ranges = get_rocm_tuning_space(use_fp16)
@ -204,17 +242,27 @@ def get_configs_compute_bound(use_fp16) -> List[Dict[str, int]]:
for config_values in product(*values):
config = dict(zip(keys, config_values))
configs.append(config)
# Remove configs that are not compatible with fp8 block quantization
# BLOCK_SIZE_K must be a multiple of block_k
# BLOCK_SIZE_N must be a multiple of block_n
if block_quant_shape is not None and not use_fp16:
block_n, block_k = block_quant_shape[0], block_quant_shape[1]
for config in configs[:]:
if config["BLOCK_SIZE_K"] % block_k != 0 or config[
"BLOCK_SIZE_N"] % block_n != 0:
configs.remove(config)
return configs
def prune_rocm_search_space(num_tokens, shard_intermediate_size, hidden_size,
search_space, is_fp16):
search_space, is_fp16, topk):
N1, K1 = shard_intermediate_size, hidden_size
N2, K2 = hidden_size, shard_intermediate_size // 2
pruned_space_1 = prune_rocm_configs(num_tokens * 2, N1, K1, search_space,
is_fp16)
pruned_space_2 = prune_rocm_configs(num_tokens * 2, N2, K2, search_space,
is_fp16)
pruned_space_1 = prune_rocm_configs(num_tokens * topk, N1, K1,
search_space, is_fp16)
pruned_space_2 = prune_rocm_configs(num_tokens * topk, N2, K2,
search_space, is_fp16)
search_space = merge_unique_dicts(pruned_space_1, pruned_space_2)
return search_space
@ -335,7 +383,9 @@ class BenchmarkWorker:
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
) -> Tuple[Dict[str, int], float]:
block_quant_shape: List[int] = None,
use_deep_gemm: bool = False,
) -> tuple[dict[str, int], float]:
current_platform.seed_everything(self.seed)
dtype_str = get_config_dtype_str(dtype,
use_int8_w8a16=use_int8_w8a16,
@ -355,10 +405,18 @@ class BenchmarkWorker:
else:
config = op_config[min(op_config.keys(),
key=lambda x: abs(x - num_tokens))]
kernel_time = benchmark_config(config, num_tokens, num_experts,
shard_intermediate_size, hidden_size,
topk, dtype, use_fp8_w8a8,
use_int8_w8a16)
kernel_time = benchmark_config(config,
num_tokens,
num_experts,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
num_iters=100,
block_quant_shape=block_quant_shape,
use_deep_gemm=use_deep_gemm)
return config, kernel_time
def tune(
@ -371,8 +429,10 @@ class BenchmarkWorker:
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
search_space: List[Dict[str, int]],
) -> Dict[str, int]:
search_space: list[dict[str, int]],
block_quant_shape: list[int],
use_deep_gemm: bool,
) -> dict[str, int]:
best_config = None
best_time = float("inf")
if current_platform.is_rocm():
@ -380,12 +440,14 @@ class BenchmarkWorker:
search_space = prune_rocm_search_space(num_tokens,
shard_intermediate_size,
hidden_size, search_space,
is_fp16)
is_fp16, topk)
with torch.cuda.device(self.device_id):
with torch.cuda.device(self.device_id) if current_platform.is_rocm(
) else nullcontext():
for config in tqdm(search_space):
try:
kernel_time = benchmark_config(config,
kernel_time = benchmark_config(
config,
num_tokens,
num_experts,
shard_intermediate_size,
@ -394,7 +456,9 @@ class BenchmarkWorker:
dtype,
use_fp8_w8a8,
use_int8_w8a16,
num_iters=20)
num_iters=20,
block_quant_shape=block_quant_shape,
use_deep_gemm=use_deep_gemm)
except triton.runtime.autotuner.OutOfResources:
# Some configurations may be invalid and fail to compile.
continue
@ -434,10 +498,10 @@ def sort_config(config: BenchmarkConfig) -> BenchmarkConfig:
}
def save_configs(configs: Dict[int, BenchmarkConfig], num_experts: int,
def save_configs(configs: dict[int, BenchmarkConfig], num_experts: int,
shard_intermediate_size: int, hidden_size: int, topk: int,
dtype: torch.dtype, use_fp8_w8a8: bool,
use_int8_w8a16: bool) -> None:
dtype: torch.dtype, use_fp8_w8a8: bool, use_int8_w8a16: bool,
block_quant_shape: List[int]) -> None:
dtype_str = get_config_dtype_str(dtype,
use_int8_w8a16=use_int8_w8a16,
use_fp8_w8a8=use_fp8_w8a8)
@ -445,7 +509,7 @@ def save_configs(configs: Dict[int, BenchmarkConfig], num_experts: int,
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# is the intermediate size after silu_and_mul.
filename = get_config_file_name(num_experts, shard_intermediate_size // 2,
dtype_str)
dtype_str, block_quant_shape)
print(f"Writing best config to {filename}...")
with open(filename, "w") as f:
@ -453,6 +517,14 @@ def save_configs(configs: Dict[int, BenchmarkConfig], num_experts: int,
f.write("\n")
def get_weight_block_size_safety(config, default_value=None):
quantization_config = getattr(config, 'quantization_config', {})
if isinstance(quantization_config, dict):
return quantization_config.get('weight_block_size', default_value)
return default_value
def main(args: argparse.Namespace):
print(args)
@ -468,12 +540,22 @@ def main(args: argparse.Namespace):
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] == "DeepseekV3ForCausalLM":
elif (config.architectures[0] == "DeepseekV3ForCausalLM"
or config.architectures[0] == "DeepseekV2ForCausalLM"):
E = config.n_routed_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] in [
"Qwen2MoeForCausalLM", "Qwen3MoeForCausalLM"
]:
E = config.num_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
else:
# Support for llama4
config = config.get_text_config()
# Default: Mixtral.
E = config.num_local_experts
topk = config.num_experts_per_tok
@ -484,6 +566,7 @@ def main(args: argparse.Namespace):
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
use_int8_w8a16 = args.dtype == "int8_w8a16"
block_quant_shape = get_weight_block_size_safety(config)
if args.batch_size is None:
batch_sizes = [
@ -493,11 +576,13 @@ def main(args: argparse.Namespace):
else:
batch_sizes = [args.batch_size]
use_deep_gemm = bool(args.use_deep_gemm)
ray.init()
num_gpus = int(ray.available_resources()["GPU"])
workers = [BenchmarkWorker.remote(args.seed) for _ in range(num_gpus)]
def _distribute(method: str, inputs: List[Any]) -> List[Any]:
def _distribute(method: str, inputs: list[Any]) -> list[Any]:
outputs = []
worker_idx = 0
for input_args in inputs:
@ -510,26 +595,29 @@ def main(args: argparse.Namespace):
if args.tune:
is_fp16 = not (use_fp8_w8a8 or use_int8_w8a16)
search_space = get_configs_compute_bound(is_fp16)
search_space = get_configs_compute_bound(is_fp16, block_quant_shape)
print(f"Start tuning over {len(search_space)} configurations...")
start = time.time()
configs = _distribute(
"tune", [(batch_size, E, shard_intermediate_size, hidden_size,
topk, dtype, use_fp8_w8a8, use_int8_w8a16, search_space)
topk, dtype, use_fp8_w8a8, use_int8_w8a16, search_space,
block_quant_shape, use_deep_gemm)
for batch_size in batch_sizes])
best_configs = {
M: sort_config(config)
for M, config in zip(batch_sizes, configs)
}
save_configs(best_configs, E, shard_intermediate_size, hidden_size,
topk, dtype, use_fp8_w8a8, use_int8_w8a16)
topk, dtype, use_fp8_w8a8, use_int8_w8a16,
block_quant_shape)
end = time.time()
print(f"Tuning took {end - start:.2f} seconds")
else:
outputs = _distribute(
"benchmark", [(batch_size, E, shard_intermediate_size, hidden_size,
topk, dtype, use_fp8_w8a8, use_int8_w8a16)
"benchmark",
[(batch_size, E, shard_intermediate_size, hidden_size, topk, dtype,
use_fp8_w8a8, use_int8_w8a16, block_quant_shape, use_deep_gemm)
for batch_size in batch_sizes])
for batch_size, (config, kernel_time) in zip(batch_sizes, outputs):
@ -551,6 +639,7 @@ if __name__ == "__main__":
type=str,
choices=["auto", "fp8_w8a8", "int8_w8a16"],
default="auto")
parser.add_argument("--use-deep-gemm", action="store_true")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--batch-size", type=int, required=False)
parser.add_argument("--tune", action="store_true")

View File

@ -2,17 +2,21 @@
import random
import time
from typing import List, Optional
from typing import Optional
import torch
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
create_kv_caches_with_random)
NUM_BLOCKS = 1024
logger = init_logger(__name__)
NUM_BLOCKS = 128 * 1024
PARTITION_SIZE = 512
PARTITION_SIZE_ROCM = 256
@torch.inference_mode()
@ -54,7 +58,7 @@ def main(
# Create the block tables.
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
block_tables_lst: List[List[int]] = []
block_tables_lst: list[list[int]] = []
for _ in range(num_seqs):
block_table = [
random.randint(0, NUM_BLOCKS - 1)
@ -80,6 +84,12 @@ def main(
# Prepare for the paged attention kernel.
output = torch.empty_like(query)
if version == "v2":
if current_platform.is_rocm():
global PARTITION_SIZE
if not args.custom_paged_attn:
PARTITION_SIZE = 1024
else:
PARTITION_SIZE = PARTITION_SIZE_ROCM
num_partitions = ((max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE)
tmp_output = torch.empty(
size=(num_seqs, num_query_heads, num_partitions, head_size),
@ -123,6 +133,7 @@ def main(
v_scale,
)
elif version == "v2":
if not args.custom_paged_attn:
ops.paged_attention_v2(
output,
exp_sums,
@ -142,13 +153,33 @@ def main(
k_scale,
v_scale,
)
else:
ops.paged_attention_rocm(
output,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
seq_lens,
block_size,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
k_scale,
v_scale,
)
else:
raise ValueError(f"Invalid version: {version}")
torch.cuda.synchronize()
end_time = time.perf_counter()
if profile:
torch.cuda.cudart().cudaProfilerStart()
torch.cuda.cudart().cudaProfilerStop()
return (end_time - start_time) / num_iters
# Warmup.
@ -165,6 +196,9 @@ def main(
if __name__ == '__main__':
logger.warning("This script benchmarks the paged attention kernel. "
"By default this is no longer used in vLLM inference.")
parser = FlexibleArgumentParser(
description="Benchmark the paged attention kernel.")
parser.add_argument("--version",
@ -195,6 +229,9 @@ if __name__ == '__main__':
help="Data type for kv cache storage. If 'auto', will use model "
"data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. "
"ROCm (AMD GPU) supports fp8 (=fp8_e4m3)")
parser.add_argument("--custom-paged-attn",
action="store_true",
help="Use custom paged attention")
args = parser.parse_args()
print(args)

View File

@ -40,7 +40,7 @@ def main(num_tokens: int,
end_time = time.perf_counter()
if profile:
torch.cuda.cudart().cudaProfilerStart()
torch.cuda.cudart().cudaProfilerStop()
return (end_time - start_time) / num_iters
# Warmup.

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
import itertools
from typing import Optional, Tuple, Union
from typing import Optional, Union
import torch
import triton
@ -22,7 +22,7 @@ class HuggingFaceRMSNorm(nn.Module):
self,
x: torch.Tensor,
residual: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
orig_dtype = x.dtype
x = x.to(torch.float32)
if residual is not None:
@ -139,7 +139,7 @@ def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True):
print(f"Naive output={output_naive}")
print(f"FlashInfer output={output_flashinfer}")
print(f"VLLM output={output_vllm}")
print(f"vLLM output={output_vllm}")
if torch.allclose(output_naive, output_flashinfer, atol=1e-2,
rtol=1e-2) and torch.allclose(

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
from itertools import accumulate
from typing import List, Optional
from typing import Optional
import nvtx
import torch
@ -39,7 +39,7 @@ def benchmark_rope_kernels_multi_lora(
})
# non-batched RoPE takes only one scaling factor, we create multiple
# instances to simulate the same behavior
non_batched_ropes: List[RotaryEmbedding] = []
non_batched_ropes: list[RotaryEmbedding] = []
for scaling_factor in scaling_factors:
non_batched_ropes.append(
get_rope(head_size, rotary_dim, max_position, base, is_neox_style,

View File

@ -75,3 +75,19 @@ WEIGHT_SHAPES = {
[7168, 8192],
],
}
WEIGHT_SHAPES_MOE = {
"nm-testing/Mixtral-8x7B-Instruct-v0.1": [
[8, 2, 4096, 28672],
[8, 2, 14336, 4096],
],
"nm-testing/deepseekv2-lite": [
[64, 6, 2048, 1408],
],
"ibm-granite/granite-3.0-1b-a400m": [
[32, 8, 1024, 1024],
],
"ibm-granite/granite-3.0-3b-a800m": [
[40, 8, 1024, 1536],
],
}

View File

@ -0,0 +1,420 @@
# SPDX-License-Identifier: Apache-2.0
# Adapted from sglang quantization/tuning_block_wise_kernel.py
import argparse
import json
import multiprocessing as mp
import os
import time
from datetime import datetime
from typing import Any
import torch
import tqdm
import triton
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
_w8a8_block_fp8_matmul)
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
mp.set_start_method("spawn", force=True)
assert current_platform.is_cuda(
), "Only support tune w8a8 block fp8 kernel on CUDA device."
DTYPE_MAP = {
"float32": torch.float32,
"float16": torch.float16,
"half": torch.half,
"bfloat16": torch.bfloat16,
}
def w8a8_block_matmul(
A: torch.Tensor,
B: torch.Tensor,
As: torch.Tensor,
Bs: torch.Tensor,
block_size: list[int],
config: dict[str, Any],
output_dtype: torch.dtype = torch.float16,
) -> torch.Tensor:
"""This function performs matrix multiplication with
block-wise quantization.
It takes two input tensors `A` and `B` with scales `As` and `Bs`.
The output is returned in the specified `output_dtype`.
Args:
A: The input tensor, e.g., activation.
B: The input tensor, e.g., weight.
As: The per-token-group quantization scale for `A`.
Bs: The per-block quantization scale for `B`.
block_size: The block size for per-block quantization.
It should be 2-dim, e.g., [128, 128].
output_dytpe: The dtype of the returned tensor.
Returns:
torch.Tensor: The result of matmul.
"""
assert len(block_size) == 2
block_n, block_k = block_size[0], block_size[1]
assert A.shape[-1] == B.shape[-1]
assert A.shape[:-1] == As.shape[:-1] and A.is_contiguous()
assert triton.cdiv(A.shape[-1], block_k) == As.shape[-1]
M = A.numel() // A.shape[-1]
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
N, K = B.shape
assert triton.cdiv(N, block_n) == Bs.shape[0]
assert triton.cdiv(K, block_k) == Bs.shape[1]
C_shape = A.shape[:-1] + (N, )
C = A.new_empty(C_shape, dtype=output_dtype)
def grid(META):
return (triton.cdiv(M, META["BLOCK_SIZE_M"]) *
triton.cdiv(N, META["BLOCK_SIZE_N"]), )
if A.dtype == torch.float8_e4m3fn:
kernel = _w8a8_block_fp8_matmul
else:
raise RuntimeError(
"Currently, only support tune w8a8 block fp8 kernel.")
kernel[grid](
A,
B,
C,
As,
Bs,
M,
N,
K,
block_n,
block_k,
A.stride(-2),
A.stride(-1),
B.stride(1),
B.stride(0),
C.stride(-2),
C.stride(-1),
As.stride(-2),
As.stride(-1),
Bs.stride(1),
Bs.stride(0),
**config,
)
return C
def get_configs_compute_bound():
configs = []
for num_stages in [2, 3, 4, 5]:
for block_m in [16, 32, 64, 128, 256]:
for block_k in [64, 128]:
for block_n in [32, 64, 128, 256]:
for num_warps in [4, 8]:
for group_size in [1, 16, 32, 64]:
configs.append({
"BLOCK_SIZE_M": block_m,
"BLOCK_SIZE_N": block_n,
"BLOCK_SIZE_K": block_k,
"GROUP_SIZE_M": group_size,
"num_warps": num_warps,
"num_stages": num_stages,
})
return configs
def get_weight_shapes(tp_size):
# NOTE(HandH1998): The weight shapes only works for DeepSeek-V3.
# Modify them, if you tune for another different model.
# cannot TP
total = [
(512 + 64, 7168),
((128 + 64) * 128, 7168),
(128 * (128 + 128), 512),
(7168, 16384),
(7168, 18432),
]
# N can TP
n_tp = [
(18432 * 2, 7168),
((128 + 64) * 128, 7168),
(128 * (128 + 128), 512),
(24576, 1536),
(12288, 7168),
(4096, 7168),
]
# K can TP
k_tp = [(7168, 18432), (7168, 16384), (7168, 2048)]
weight_shapes = []
for t in total:
weight_shapes.append(t)
for n_t in n_tp:
new_t = (n_t[0] // tp_size, n_t[1])
weight_shapes.append(new_t)
for k_t in k_tp:
new_t = (k_t[0], k_t[1] // tp_size)
weight_shapes.append(new_t)
return weight_shapes
def benchmark_config(A,
B,
As,
Bs,
block_size,
config,
out_dtype=torch.float16,
num_iters=10):
def run():
w8a8_block_matmul(A, B, As, Bs, block_size, config, out_dtype)
torch.cuda.synchronize()
# JIT complication & warmup
for _ in range(5):
run()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
latencies: list[float] = []
for i in range(num_iters):
torch.cuda.synchronize()
start_event.record()
run()
end_event.record()
end_event.synchronize()
latencies.append(start_event.elapsed_time(end_event))
avg = sum(latencies) / (num_iters * 10) * 1000 # us
return avg
def tune(M, N, K, block_size, out_dtype, search_space, input_type):
factor_for_scale = 1e-2
if input_type == "fp8":
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
A_fp32 = (
(torch.rand(M, K, dtype=torch.float32, device="cuda") - 0.5) * 2 *
fp8_max)
A = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
B_fp32 = (
(torch.rand(N, K, dtype=torch.float32, device="cuda") - 0.5) * 2 *
fp8_max)
B = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
else:
raise RuntimeError(
"Currently, only support tune w8a8 block fp8 kernel.")
block_n, block_k = block_size[0], block_size[1]
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
As = torch.rand(M, k_tiles, dtype=torch.float32,
device="cuda") * factor_for_scale
Bs = (torch.rand(n_tiles, k_tiles, dtype=torch.float32, device="cuda") *
factor_for_scale)
best_config = None
best_time = float("inf")
for config in tqdm(search_space):
try:
kernel_time = benchmark_config(
A,
B,
As,
Bs,
block_size,
config,
out_dtype,
num_iters=10,
)
except triton.runtime.autotuner.OutOfResources:
# Some configurations may be invalid and fail to compile.
continue
if kernel_time < best_time:
best_time = kernel_time
best_config = config
now = datetime.now()
print(f"{now.ctime()}] Completed tuning for batch_size={M}")
assert best_config is not None
return best_config
def save_configs(
N,
K,
block_n,
block_k,
configs,
save_path,
input_type="fp8",
) -> None:
os.makedirs(save_path, exist_ok=True)
device_name = current_platform.get_device_name().replace(" ", "_")
json_file_name = (
f"N={N},K={K},device_name={device_name},dtype={input_type}_w8a8,"
f"block_shape=[{block_n},{block_k}].json")
config_file_path = os.path.join(save_path, json_file_name)
print(f"Writing best config to {config_file_path}...")
with open(config_file_path, "w") as f:
json.dump(configs, f, indent=4)
f.write("\n")
def tune_on_gpu(args_dict):
"""Run tuning on a specific GPU."""
gpu_id = args_dict["gpu_id"]
batch_sizes = args_dict["batch_sizes"]
weight_shapes = args_dict["weight_shapes"]
args = args_dict["args"]
torch.cuda.set_device(gpu_id)
print(f"Starting tuning on GPU {gpu_id} with batch sizes {batch_sizes}")
block_n = args.block_n
block_k = args.block_k
out_dtype = DTYPE_MAP[args.out_dtype]
save_path = args.save_path
input_type = args.input_type
search_space = get_configs_compute_bound()
search_space = [
config for config in search_space
if block_k % config["BLOCK_SIZE_K"] == 0
]
start = time.time()
for shape in tqdm(weight_shapes, desc=f"GPU {gpu_id} - Shapes"):
N, K = shape[0], shape[1]
print(f"[GPU {gpu_id}] Tune for weight shape of `N: {N}, K: {K}`")
benchmark_results = [
tune(
batch_size,
N,
K,
[block_n, block_k],
out_dtype,
search_space,
input_type,
) for batch_size in tqdm(batch_sizes,
desc=f"GPU {gpu_id} - Batch sizes")
]
best_configs = {
M: config
for M, config in zip(batch_sizes, benchmark_results)
}
save_configs(N, K, block_n, block_k, best_configs, save_path,
input_type)
end = time.time()
print(f"Tuning on GPU {gpu_id} took {end - start:.2f} seconds")
def distribute_batch_sizes(batch_sizes, num_gpus):
"""Distribute batch sizes across available GPUs."""
batches_per_gpu = []
for i in range(num_gpus):
start_idx = i * len(batch_sizes) // num_gpus
end_idx = (i + 1) * len(batch_sizes) // num_gpus
batches_per_gpu.append(batch_sizes[start_idx:end_idx])
return batches_per_gpu
def main(args):
print(args)
num_gpus = torch.cuda.device_count()
if num_gpus == 0:
raise RuntimeError("No GPU available for tuning")
print(f"Found {num_gpus} GPUs for parallel tuning")
torch.cuda.init()
if args.batch_size is None:
batch_sizes = [
1,
2,
4,
8,
16,
24,
32,
48,
64,
96,
128,
256,
512,
1024,
1536,
2048,
3072,
4096,
]
else:
batch_sizes = [args.batch_size]
num_gpus = 1 # If only one batch size, use only one GPU
weight_shapes = get_weight_shapes(args.tp_size)
batches_per_gpu = distribute_batch_sizes(batch_sizes, num_gpus)
process_args = []
for gpu_id in range(num_gpus):
process_args.append({
"gpu_id": gpu_id,
"batch_sizes": batches_per_gpu[gpu_id],
"weight_shapes":
weight_shapes, # Each GPU processes all weight shapes
"args": args,
})
ctx = mp.get_context("spawn")
with ctx.Pool(num_gpus) as pool:
pool.map(tune_on_gpu, process_args)
print("Multi-GPU tuning completed")
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="""
Tune triton w8a8 block fp8 for DeepSeek-V3/DeepSeek-R1:
python3 benchmark_w8a8_block_fp8.py --tp-size 8 --input-type fp8
Then copy to model_executor/layers/quantization/utils/configs
""",
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--tp-size", "-tp", type=int, default=8)
parser.add_argument("--input-type",
type=str,
choices=["fp8"],
default="fp8")
parser.add_argument(
"--out-dtype",
type=str,
choices=["float32", "float16", "bfloat16", "half"],
default="float16",
)
parser.add_argument("--block-n", type=int, default=128)
parser.add_argument("--block-k", type=int, default=128)
parser.add_argument("--batch-size", type=int, required=False)
parser.add_argument("--save-path", type=str, default="./")
args = parser.parse_args()
main(args)

Some files were not shown because too many files have changed in this diff Show More