Compare commits

...

318 Commits

Author SHA1 Message Date
ed6e9075d3 [Bugfix] Fix deepseekv3 grouped topk error (#13474)
Signed-off-by: Chen-XiaoBing <chenxb002@whu.edu.cn>
2025-02-20 06:47:01 -08:00
992e5c3d34 Merge similar examples in offline_inference into single basic example (#12737) 2025-02-20 04:53:51 -08:00
b69692a2d8 [Kernel] LoRA - Refactor sgmv kernels (#13110) 2025-02-20 07:28:06 -05:00
a64a84433d [2/n][ci] S3: Use full model path (#13564)
Signed-off-by: <>
2025-02-20 01:20:15 -08:00
aa1e62d0db [ci] Fix spec decode test (#13600) 2025-02-20 16:56:00 +08:00
497bc83124 [CI/Build] Use uv in the Dockerfile (#13566) 2025-02-19 23:05:44 -08:00
3738e6fa80 [API Server] Add port number range validation (#13506)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-20 15:05:13 +08:00
0023cd2b9d [ROCm] MI300A compile targets deprecation (#13560) 2025-02-19 23:05:00 -08:00
041e294716 [Misc] add mm_processor_kwargs to extra_body for Qwen2.5-VL (#13533) 2025-02-19 23:04:30 -08:00
9621667874 [Misc] Warn if the vLLM version can't be retrieved (#13501)
Signed-off-by: Alex-Brooks <Alex.brooks@ibm.com>
2025-02-20 06:24:48 +00:00
8c755c3b6d [bugfix] spec decode worker get tp group only when initialized (#13578) 2025-02-20 04:46:28 +00:00
ba81163997 [core] add sleep and wake up endpoint and v1 support (#12987)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Signed-off-by: cennn <2523403608@qq.com>
Co-authored-by: cennn <2523403608@qq.com>
2025-02-20 12:41:17 +08:00
0d243f2a54 [ROCm][MoE] mi300 mixtral8x7B perf for specific BS (#13577)
Signed-off-by: Divakar Verma <divakar.verma@amd.com>
2025-02-20 04:01:02 +00:00
88f6ba3281 [ci] Add AWS creds for AMD (#13572) 2025-02-20 03:56:06 +00:00
512368e34a [Misc] Qwen2.5 VL support LoRA (#13261) 2025-02-19 18:37:55 -08:00
473f51cfd9 [3/n][CI] Load Quantization test models with S3 (#13570)
Signed-off-by: <>
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-20-117.us-west-2.compute.internal>
2025-02-20 10:12:30 +08:00
a4c402a756 [BugFix] Avoid error traceback in logs when V1 LLM terminates (#13565)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-02-20 00:49:01 +00:00
550d97eb58 [Misc] Avoid calling unnecessary hf_list_repo_files for local model path (#13348)
Signed-off-by: isotr0py <2037008807@qq.com>
2025-02-19 18:57:48 +00:00
fbbe1fbac6 [MISC] Logging the message about Ray teardown (#13502)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
Co-authored-by: Rui Qiao <161574667+ruisearch42@users.noreply.github.com>
2025-02-19 09:40:50 -08:00
01c184b8f3 Fix copyright year to auto get current year (#13561) 2025-02-19 16:55:34 +00:00
ad5a35c21b [doc] clarify multi-node serving doc (#13558)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-19 22:32:17 +08:00
5ae9f26a5a [Bugfix] Fix device ordinal for multi-node spec decode (#13269)
Signed-off-by: Shangming Cai <caishangming@linux.alibaba.com>
2025-02-19 22:13:15 +08:00
377d10bd14 [VLM][Bugfix] Pass processor kwargs properly on init (#13516)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-02-19 13:13:50 +00:00
52ce14d31f [doc] clarify profiling is only for developers (#13554)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-19 20:55:58 +08:00
81dabf24a8 [CI/Build] force writing version file (#13544)
Signed-off-by: Daniele Trifirò <dtrifiro@redhat.com>
2025-02-19 18:48:03 +08:00
423330263b [Feature] Pluggable platform-specific scheduler (#13161)
Signed-off-by: Yannick Schnider <yannick.schnider1@ibm.com>
Signed-off-by: Yannick Schnider <Yannick.Schnider1@ibm.com>
2025-02-19 17:16:38 +08:00
caf7ff4456 [V1][Core] Generic mechanism for handling engine utility (#13060)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-02-19 17:09:22 +08:00
f525c0be8b [Model][Speculative Decoding] DeepSeek MTP spec decode (#12755)
Signed-off-by: Lu Fang <fanglu@fb.com>
Co-authored-by: LiuXiaoxuanPKU <lilyliupku@gmail.com>
2025-02-19 17:06:23 +08:00
983a40a8bb [Bugfix] Fix Positive Feature Layers in Llava Models (#13514)
Signed-off-by: Alex-Brooks <Alex.brooks@ibm.com>
2025-02-19 08:50:07 +00:00
fdc5df6f54 use device param in load_model method (#13037) 2025-02-19 16:05:02 +08:00
3b05cd4555 [perf-benchmark] Fix ECR path for premerge benchmark (#13512)
Signed-off-by: <>
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-20-117.us-west-2.compute.internal>
2025-02-19 07:56:11 +00:00
d5d214ac7f [1/n][CI] Load models in CI from S3 instead of HF (#13205)
Signed-off-by: <>
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-20-117.us-west-2.compute.internal>
2025-02-19 07:34:59 +00:00
fd84857f64 [Doc] Add clarification note regarding paligemma (#13511) 2025-02-18 22:24:03 -08:00
8aada19dfc [ROCm][MoE configs] mi325 mixtral & mi300 qwen_moe (#13503) 2025-02-18 22:23:24 -08:00
9aa95b0e6a [perf-benchmark] Allow premerge ECR (#13509)
Signed-off-by: <>
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-20-117.us-west-2.compute.internal>
2025-02-19 05:13:41 +00:00
d0a7a2769d [Hardware][Gaudi][Feature] Support Contiguous Cache Fetch (#12139)
Signed-off-by: yuzhou <yuzhou@habana.ai>
Signed-off-by: zhouyu5 <yu.zhou@intel.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2025-02-18 19:40:19 -08:00
00b69c2d27 [Misc] Remove dangling references to --use-v2-block-manager (#13492)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-02-19 03:37:26 +00:00
4c82229898 [V1][Spec Decode] Optimize N-gram matching with Numba (#13365)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-18 13:19:58 -08:00
c8d70e2437 Pin Ray version to 2.40.0 (#13490)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-18 12:50:31 -08:00
30172b4947 [V1] Optimize handling of sampling metadata and req_ids list (#13244)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-02-18 12:15:33 -08:00
a4d577b379 [V1][Tests] Adding additional testing for multimodal models to V1 (#13308)
Signed-off-by: andoorve <37849411+andoorve@users.noreply.github.com>
2025-02-18 09:53:14 -08:00
7b203b7694 [misc] fix debugging code (#13487)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-18 09:37:11 -08:00
4fb8142a0e [V1][PP] Enable true PP with Ray executor (#13472)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-18 09:15:32 -08:00
a02c86b4dd [CI/Build] migrate static project metadata from setup.py to pyproject.toml (#8772) 2025-02-18 08:02:49 -08:00
3809458456 [Bugfix] Fix invalid rotary embedding unit test (#13431)
Signed-off-by: Liangfu Chen <liangfc@amazon.com>
2025-02-18 11:52:03 +00:00
d3231cb436 [Bugfix] Handle content type with optional parameters (#13383)
Signed-off-by: Zifei Tong <zifeitong@gmail.com>
2025-02-18 11:29:13 +00:00
435b502a6e [ROCm] Make amdsmi import optional for other platforms (#13460) 2025-02-18 03:15:56 -08:00
29fc5772c4 [Bugfix] Remove noisy error logging during local model loading (#13458) 2025-02-18 03:15:48 -08:00
2358ca527b [Doc]: Improve feature tables (#13224)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-02-18 18:52:39 +08:00
8cf97f8661 [Bugfix] Fix failing transformers dynamic module resolving with spawn multiproc method (#13403)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-02-18 10:25:53 +00:00
e2603fefb8 [Bugfix] Ensure LoRA path from the request can be included in err msg (#13450)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-18 16:19:15 +08:00
b53d79983c Add outlines fallback when JSON schema has enum (#13449)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-02-18 06:49:41 +00:00
9915912f7f [V1][PP] Fix & Pin Ray version in requirements-cuda.txt (#13436)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-17 21:58:06 -08:00
d1b649f1ef [Quant] Aria SupportsQuant (#13416) 2025-02-17 21:51:09 -08:00
ac19b519ed [core] fix sleep mode in pytorch 2.6 (#13456)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-18 13:48:10 +08:00
a1074b3efe [Bugfix] Only print out chat template when supplied (#13444) 2025-02-17 21:43:31 -08:00
00294e1bc6 [Quant] Arctic SupportsQuant (#13366) 2025-02-17 21:35:09 -08:00
88787bce1d [Quant] Molmo SupportsQuant (#13336) 2025-02-17 21:34:47 -08:00
932b51cedd [v1] fix parallel config rank (#13445)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-18 12:33:45 +08:00
7c7adf81fc [ROCm] fix get_device_name for rocm (#13438)
Signed-off-by: Divakar Verma <divakar.verma@amd.com>
2025-02-18 04:07:12 +00:00
67ef8f666a [Model] Enable quantization support for transformers backend (#12960) 2025-02-17 19:52:47 -08:00
efbe854448 [Misc] Remove dangling references to SamplingType.BEAM (#13402) 2025-02-17 19:52:35 -08:00
b3942e157e [Bugfix][CI][V1] Work around V1 + CUDA Graph + torch._scaled_mm fallback issue (#13425)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-02-18 00:32:48 +00:00
cd4a72a28d [V1][Spec decode] Move drafter to model runner (#13363)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-17 15:40:12 -08:00
6ac485a953 [V1][PP] Fix intermediate tensor values (#13417)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
2025-02-17 13:37:45 -08:00
4c21ce9eba [V1] Get input tokens from scheduler (#13339)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-17 11:01:07 -08:00
ce77eb9410 [Bugfix] Fix VLLM_USE_MODELSCOPE issue (#13384) 2025-02-17 14:22:01 +00:00
30513d1cb6 [Bugfix] fix xpu communicator (#13368)
Signed-off-by: yan ma <yan.ma@intel.com>
2025-02-17 20:59:18 +08:00
1f69c4a892 [Model] Support Mamba2 (Codestral Mamba) (#9292)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
2025-02-17 20:17:50 +08:00
7b623fca0b [VLM] Check required fields before initializing field config in DictEmbeddingItems (#13380) 2025-02-17 01:36:07 -08:00
238dfc8ac3 [MISC] tiny fixes (#13378) 2025-02-17 00:57:13 -08:00
45186834a0 Run v1 benchmark and integrate with PyTorch OSS benchmark database (#13068)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-02-17 08:16:32 +00:00
f857311d13 Fix spelling error in index.md (#13369) 2025-02-17 06:53:20 +00:00
46cdd59577 [Feature][Spec Decode] Simplify the use of Eagle Spec Decode (#12304)
Signed-off-by: Shangming Cai <caishangming@linux.alibaba.com>
2025-02-16 19:32:26 -08:00
2010f04c17 [V1][Misc] Avoid unnecessary log output (#13289) 2025-02-16 19:26:24 -08:00
69e1d23e1e [V1][BugFix] Clean up rejection sampler & Fix warning msg (#13362)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-16 12:25:29 -08:00
d67cc21b78 [Bugfix][Platform][CPU] Fix cuda platform detection on CPU backend edge case (#13358)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-02-16 18:55:27 +00:00
e18227b04a [V1][PP] Cache Intermediate Tensors (#13353)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-16 10:02:27 -08:00
7b89386553 [V1][BugFix] Add __init__.py to v1/spec_decode/ (#13359)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-16 09:39:08 -08:00
da833b0aee [Docs] Change myenv to vllm. Update python_env_setup.inc.md (#13325) 2025-02-16 16:04:21 +00:00
5d2965b7d7 [Bugfix] Fix 2 Node and Spec Decode tests (#13341)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-02-16 22:20:22 +08:00
a0231b7c25 [platform] add base class for communicators (#13208)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-16 22:14:22 +08:00
124776ebd5 [ci] skip failed tests for flashinfer (#13352)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-16 22:09:15 +08:00
b7d309860e [V1] Update doc and examples for H2O-VL (#13349)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-02-16 10:35:54 +00:00
dc0f7ccf8b [BugFix] Enhance test_pos_encoding to support execution on multi-devices (#13187)
Signed-off-by: wchen61 <wchen61@foxmail.com>
2025-02-16 08:59:49 +00:00
d3d547e057 [Bugfix] Pin xgrammar to 0.1.11 (#13338) 2025-02-15 19:42:25 -08:00
12913d17ba [Quant] Add SupportsQuant to phi3 and clip (#13104) 2025-02-15 19:28:33 -08:00
80f63a3966 [V1][Spec Decode] Ngram Spec Decode (#12193)
Signed-off-by: LiuXiaoxuanPKU <lilyliupku@gmail.com>
2025-02-15 18:05:11 -08:00
367cb8ce8c [Doc] [2/N] Add Fuyu E2E example for multimodal processor (#13331) 2025-02-15 07:06:23 -08:00
54ed913f34 [ci/build] update flashinfer (#13323) 2025-02-15 05:33:13 -08:00
9206b3d7ec [V1][PP] Run engine busy loop with batch queue (#13064) 2025-02-15 03:59:01 -08:00
ed0de3e4b8 [AMD] [Model] DeepSeek tunings (#13199) 2025-02-15 03:58:09 -08:00
2ad1bc7afe [V1][Metrics] Add iteration_tokens_total histogram from V0 (#13288) 2025-02-15 03:56:19 -08:00
7fdaaf48ef [Bugfix] Fix qwen2.5-vl image processor (#13286) 2025-02-15 03:00:11 -08:00
067fa2255b [Bugfix]Fix search start_index of stop_checker (#13280) 2025-02-14 21:39:42 -08:00
9076325677 [BugFix] Don't scan entire cache dir when loading model (#13302) 2025-02-14 21:33:31 -08:00
97a3d6d995 [Bugfix] Massage MLA's usage of flash attn for RoCM (#13310) 2025-02-14 21:33:25 -08:00
579d7a63b2 [Bugfix][Docs] Fix offline Whisper (#13274) 2025-02-14 21:32:37 -08:00
c9f9d5b397 [Bugfix][AMD] Update torch_bindings so that scaled_fp4_quant isn't build on ROCm (#13235) 2025-02-14 20:30:42 -08:00
0c73026844 [V1][PP] Fix memory profiling in PP (#13315)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-14 20:17:25 -08:00
6a854c7a2b [V1][Sampler] Don't apply temp for greedy-only (#13311)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-02-14 18:10:53 -08:00
e7eea5a520 [V1][CI] Fix failed v1-test because of min_p (#13316)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-14 17:29:51 -08:00
a12934d3ec [V1][Core] min_p sampling support (#13191)
Signed-off-by: Aoyu <aoyuzhan@amazon.com>
Co-authored-by: Aoyu <aoyuzhan@amazon.com>
2025-02-14 15:50:05 -08:00
3bcb8c75da [Core] Reduce TTFT with concurrent partial prefills (#10235)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
Signed-off-by: Prashant Gupta <prashantgupta@us.ibm.com>
Co-authored-by: Prashant Gupta <prashantgupta@us.ibm.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2025-02-14 15:36:07 -08:00
5e5c8e091e [Quant][Perf] Use moe_wna16 kernel by default for MoEs with many experts (#13236)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-02-14 12:53:42 -08:00
c9e2d644e7 [Hardware][Gaudi][Bugfix] Fix error for guided decoding (#12317) 2025-02-14 04:36:49 -08:00
7734e9a291 [Core] choice-based structured output with xgrammar (#12632) 2025-02-14 04:36:05 -08:00
6224a9f620 Support logit_bias in v1 Sampler (#13079) 2025-02-14 04:34:59 -08:00
085b7b2d6c [V1] Simplify GPUModelRunner._update_states check (#13265) 2025-02-14 04:33:43 -08:00
4da1f667e9 [VLM] Keep track of whether prompt replacements have been applied (#13215) 2025-02-14 04:20:46 -08:00
556ef7f714 [Misc] Log time consumption of sleep and wake-up (#13115)
Signed-off-by: Jun Duan <jun.duan.phd@outlook.com>
2025-02-14 20:10:21 +08:00
83481ceb49 [Bugfix] Fix missing parentheses (#13263) 2025-02-14 01:07:10 -08:00
185cc19f92 [Frontend] Optionally remove memory buffer used for uploading to URLs in run_batch (#12927)
Signed-off-by: Pooya Davoodi <pooya.davoodi@parasail.io>
2025-02-14 08:22:42 +00:00
45f90bcbba [WIP] TPU V1 Support Refactored (#13049) 2025-02-14 00:21:53 -08:00
b0ccfc565a [Bugfix][V1] GPUModelRunner._update_states should return True when there is a finished request in batch (#13126) 2025-02-13 22:39:20 -08:00
ba59b78a9c [ROCm][V1] Add intial ROCm support to V1 (#12790) 2025-02-13 22:21:50 -08:00
cbc40128eb [V1] LoRA - Enable Serving Usecase (#12883)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-02-14 14:21:12 +08:00
f0b2da72a8 Expand MLA to support most types of quantization (#13181) 2025-02-13 22:19:22 -08:00
f2b20fe491 Consolidate Llama model usage in tests (#13094) 2025-02-13 22:18:03 -08:00
40932d7a05 [Misc] Remove redundant statements in scheduler.py (#13229) 2025-02-13 22:07:25 -08:00
84683fa271 [Bugfix] Offline example of disaggregated prefill (#13214) 2025-02-13 20:20:47 -08:00
067678262a [Bugfix][CI] Inherit codespell settings from pyproject.toml in the pre-commit-config (#13237) 2025-02-13 20:19:43 -08:00
09545c0a94 [Bugfix/CI] Turn test_compressed_tensors_2of4_sparse back on (#13250) 2025-02-13 20:19:25 -08:00
dd5ede4440 [V1] Consolidate MM cache size to vllm.envs (#13239) 2025-02-13 20:19:03 -08:00
8c32b08a86 [Kernel] Fix awq error when n is not divisable by 128 (#13227) 2025-02-13 20:07:05 -08:00
410886950a [ROCm] Avoid using the default stream on ROCm (#13238)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-02-14 09:29:26 +08:00
e38be640e6 Revert "Add label if pre-commit passes" (#13242) 2025-02-13 16:12:32 -08:00
c1e37bf71b [Kernel][Bugfix] Refactor and Fix CUTLASS 2:4 Sparse Kernels (#13198)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-02-14 00:01:14 +00:00
2344192a55 Optimize moe_align_block_size for deepseek_v3 (#12850)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-02-13 18:43:37 -05:00
bffddd9a05 Add label if pre-commit passes (#12527)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-02-13 20:51:30 +00:00
d84cef76eb [Frontend] Add /v1/audio/transcriptions OpenAI API endpoint (#12909) 2025-02-13 07:23:45 -08:00
37dfa60037 [Bugfix] Missing Content Type returns 500 Internal Server Error (#13193) 2025-02-13 06:52:22 -08:00
1bc3b5e71b [VLM] Separate text-only and vision variants of the same model architecture (#13157) 2025-02-13 06:19:15 -08:00
02ed8a1fbe [Misc] Qwen2.5-VL Optimization (#13155) 2025-02-13 06:17:57 -08:00
2092a6fa7d [V1][Core] Add worker_base for v1 worker (#12816)
Signed-off-by: Aoyu <aoyuzhan@amazon.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Aoyu <aoyuzhan@amazon.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-02-13 20:35:18 +08:00
c9d3ecf016 [VLM] Merged multi-modal processor for Molmo (#12966) 2025-02-13 04:34:00 -08:00
fdcf64d3c6 [V1] Clarify input processing and multimodal feature caching logic (#13211) 2025-02-13 03:43:24 -08:00
578087e56c [Frontend] Pass pre-created socket to uvicorn (#13113) 2025-02-13 00:51:46 -08:00
fa253f1a70 [VLM] Remove input processor from clip and siglip (#13165) 2025-02-13 00:31:37 -08:00
9605c1256e [V1][core] Implement pipeline parallel on Ray (#12996) 2025-02-13 08:02:46 +00:00
0ccd8769fb [CI/Build] Allow ruff to auto-fix some issues (#13180)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-13 07:45:38 +00:00
cb944d5818 Allow Unsloth Dynamic 4bit BnB quants to work (#12974) 2025-02-12 23:13:08 -08:00
d46d490c27 [Frontend] Move CLI code into vllm.cmd package (#12971) 2025-02-12 23:12:21 -08:00
04f50ad9d1 [Bugfix] deepseek_r1_reasoning_parser put reason content in wrong field in certain edge case (#13097) 2025-02-12 23:11:26 -08:00
60c68df6d1 [Build] Automatically use the wheel of the base commit with Python-only build (#13178) 2025-02-12 23:10:28 -08:00
009439caeb Simplify logic of locating CUDART so file path (#13203)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-02-13 13:52:41 +08:00
bc55d13070 [VLM] Implement merged multimodal processor for Mllama (#11427) 2025-02-12 20:26:21 -08:00
d88c8666a1 [Bugfix][Example] Fix GCed profiling server for TPU (#12792)
Signed-off-by: mgoin <michael@neuralmagic.com>
2025-02-13 11:52:11 +08:00
4fc5c23bb6 [NVIDIA] Support nvfp4 quantization (#12784) 2025-02-12 19:51:51 -08:00
9f9704dca6 [perf-benchmark] cleanup unused Docker images and volumes in H100 benchmark instance (#12706) 2025-02-12 19:51:33 -08:00
8eafe5eaea [CI/Build] Ignore ruff warning up007 (#13182)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-13 11:48:31 +08:00
4c0d93f4b2 [V1][Bugfix] Copy encoder input ids to fix set iteration issue during VLM abort (#13173)
Signed-off-by: andoorve <37849411+andoorve@users.noreply.github.com>
2025-02-12 12:58:11 -08:00
14b7899d10 [CI] Fix failing FP8 cpu offload test (#13170)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-02-12 19:16:06 +00:00
09972e716c [Bugfix] Allow fallback to AWQ from AWQMarlin at per-layer granularity (#13119) 2025-02-12 09:19:53 -08:00
36a08630e8 [CORE] [QUANT] Support for GPTQModel's dynamic quantization per module override/control (#7086) 2025-02-12 09:19:43 -08:00
2c2b560f48 [CI/Build] Use mypy matcher for pre-commit CI job (#13162)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-12 17:12:22 +00:00
042c3419fa Introduce VLLM_CUDART_SO_PATH to allow users specify the .so path (#12998)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-02-12 09:06:13 -08:00
82cabf53a3 [Misc] Delete unused LoRA modules (#13151) 2025-02-12 08:58:24 -08:00
314cfade02 [Frontend] Generate valid tool call IDs when using tokenizer-mode=mistral (#12332) 2025-02-12 08:29:56 -08:00
985b4a2b19 [Bugfix] Fix num video tokens calculation for Qwen2-VL (#13148)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-02-12 11:55:23 +00:00
f4d97e4fc2 [Bug] [V1] Try fetching stop_reason from EngineOutput before checking the request (#13108) 2025-02-12 02:39:16 -08:00
f1042e86f0 [Misc] AMD Build Improvements (#12923) 2025-02-12 02:36:10 -08:00
7c4033acd4 Further reduce the HTTP calls to huggingface.co (#13107) 2025-02-12 02:34:09 -08:00
d59def4730 Bump actions/setup-python from 5.3.0 to 5.4.0 (#12672) 2025-02-12 16:41:22 +08:00
0c7d9effce Bump helm/chart-testing-action from 2.6.1 to 2.7.0 (#12463) 2025-02-12 16:41:06 +08:00
dd3b4a01f8 Bump actions/stale from 9.0.0 to 9.1.0 (#12462) 2025-02-12 00:40:25 -08:00
a0597c6b75 Bump helm/kind-action from 1.10.0 to 1.12.0 (#11612) 2025-02-12 00:40:19 -08:00
e92694b6fe [Neuron][Kernel] Support Longer Sequences in NKI-based Flash PagedAttention and Improve Efficiency (#12921)
Signed-off-by: Lingfan Yu <lingfany@amazon.com>
2025-02-11 21:12:37 -08:00
842b0fd402 [ci] Add more source file dependencies for some tests (#13123)
Signed-off-by: <>
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-20-117.us-west-2.compute.internal>
2025-02-11 20:38:10 -08:00
974dfd4971 [Model] IBM/NASA Prithvi Geospatial model (#12830) 2025-02-11 20:34:30 -08:00
3ee696a63d [RFC][vllm-API] Support tokenizer registry for customized tokenizer in vLLM (#12518)
Signed-off-by: Keyun Tong <tongkeyun@gmail.com>
2025-02-12 12:25:58 +08:00
72c2b68dc9 [Misc] Move pre-commit suggestion back to the end (#13114)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-11 22:34:16 +00:00
14ecab5be2 [Bugfix] Guided decoding falls back to outlines when fails to import xgrammar (#12976)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-11 18:17:44 +00:00
deb6c1c6b4 [Doc] Improve OpenVINO installation doc (#13102)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-02-11 18:02:46 +00:00
565c1efa65 [CI/Build][Bugfix] Fix CPU backend default threads num (#13077) 2025-02-11 16:55:56 +00:00
2b25b7d2e1 Fix initializing GGUF weights for ColumnParallelLinear when using tensor parallel > 1 (#13023) 2025-02-11 08:38:48 -08:00
6c4dbe23eb [BugFix] Pop instead of del CUDA_VISIBLE_DEVICES (#12962)
Signed-off-by: Hollow Man <hollowman@opensuse.org>
2025-02-12 00:21:50 +08:00
21f5d50fa5 [Bugfix] Do not use resource module on Windows (#12858) (#13029) 2025-02-11 08:21:18 -08:00
bf3e05215c [Misc] Fix typo at comments at metrics.py (#13024) 2025-02-11 08:20:37 -08:00
ad9776353e Set torch_dtype in TransformersModel (#13088)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-02-11 23:51:19 +08:00
75e6e14516 [V1][Metrics] Add several request timing histograms (#12644)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-02-11 10:14:00 -05:00
110f59a33e [Bugfix] fix flaky test (#13089)
Signed-off-by: மனோஜ்குமார் பழனிச்சாமி <smartmanoj42857@gmail.com>
2025-02-11 14:41:20 +00:00
2e3b969ec0 [Platform] add pre_register_and_update function (#12432)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-02-11 22:06:46 +08:00
da317197dd [Build] Fix cuda link target of cumem_allocator in CPU env (#12863)
Signed-off-by: YuhongGuo <yuhong.gyh@antgroup.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-02-11 21:55:57 +08:00
7539bbc6a6 [ROCm] Using a more precise memory profiling (#12624)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-02-11 21:47:10 +08:00
9cf4759493 [executor] init local_rank as device index (#13027)
Signed-off-by: Mengqing Cao <cmq0113@163.com>
2025-02-11 21:20:53 +08:00
41c5dd45b9 [V1][Metrics] Add GPU prefix cache hit rate % gauge (#12592) 2025-02-11 08:27:25 +00:00
fc6485d277 [Bugfix]: Reasoning output bug according to the chat template change (#13025)
Signed-off-by: Ce Gao <cegao@tensorchord.ai>
2025-02-11 15:49:03 +08:00
78a141d768 [Misc] LoRA - Refactor Punica ops tests (#12970)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-02-11 07:26:03 +00:00
c320ca8edd [Core] Don't do platform detection at import time (#12933)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-11 07:25:25 +00:00
58047c6f04 [Benchmark] Add BurstGPT to benchmark_serving (#13063)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2025-02-10 21:25:30 -08:00
cb080f32e3 [Bugfix] Support missing tool parameters in mistral tokenizer (#12884)
Signed-off-by: Florian Greinacher <florian.greinacher@siemens.com>
2025-02-11 03:33:33 +00:00
2c0f58203c [Docs] Annouce Meta Meetup (#13065)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-02-10 18:24:29 -08:00
2ff4857678 [V1][Minor] Move scheduler outputs to a separate file (#13062)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-11 02:10:06 +00:00
91e876750e [misc] Fix setup.py condition to avoid AMD from being mistaken with CPU (#13022)
Signed-off-by: kevin <kevin@anyscale.com>
2025-02-10 18:06:16 -08:00
08b2d845d6 [Model] Ultravox Model: Support v0.5 Release (#12912)
Signed-off-by: Farzad Abdolhosseini <farzad@fixie.ai>
2025-02-10 22:02:48 +00:00
2ae889052c Fix seed parameter behavior in vLLM (#13007)
Signed-off-by: மனோஜ்குமார் பழனிச்சாமி <smartmanoj42857@gmail.com>
2025-02-10 23:26:50 +08:00
51f0b5f7f6 [Bugfix] Clean up and fix multi-modal processors (#13012)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-02-10 10:45:21 +00:00
fde71262e0 [misc] Add retries with exponential backoff for HF file existence check (#13008) 2025-02-10 01:15:02 -08:00
243137143c [Doc] Add link to tool_choice tracking issue in tool_calling.md (#13003)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-10 06:09:33 +00:00
b2496bb07f [core] fix sleep mode and pytorch checkpoint compatibility (#13001)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-10 13:03:43 +08:00
44607e07d3 Check if selected backend is None in get_attn_backend_cls() (#12975)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-10 11:45:07 +08:00
67c4637ccf [V1] Use msgpack for core request serialization (#12918)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-02-10 11:35:56 +08:00
aa0ca5ebb7 [core][rlhf] add colocate example for RLHF (#12984)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-10 10:28:59 +08:00
59fff4a01a [core] improve error handling when wake up from sleep mode (#12981)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-10 09:38:57 +08:00
29f1d47e73 [MISC] Always import version library first in the vllm package (#12979)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-02-09 18:56:40 +08:00
cf797aa856 [core] port pynvml into vllm codebase (#12963)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-09 15:00:00 +08:00
24700c346b [V1] Cache uses_mrope in GPUModelRunner (#12969) 2025-02-08 15:32:32 -08:00
d366ccc4e3 [RFC] [Mistral] FP8 format (#10130)
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-02-08 14:12:53 -07:00
870c37481e [V1][Minor] Remove outdated comment (#12968)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-08 12:48:30 -08:00
86222a3dab [VLM] Merged multi-modal processor for GLM4V (#12449)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-02-08 20:32:16 +00:00
fe743b798d [bugfix] fix early import of flash attention (#12959)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-09 00:06:56 +08:00
913df14da3 [Bugfix] Remove unused seq_group_metadata_list from ModelInputForGPU (#12935)
Signed-off-by: Shangming Cai <caishangming@linux.alibaba.com>
2025-02-08 14:46:19 +00:00
8a69e0e20e [CI/Build] Auto-fix Markdown files (#12941) 2025-02-08 04:25:15 -08:00
4c8dd12ef3 [Misc] Add qwen2.5-vl BNB support (#12944) 2025-02-08 04:24:47 -08:00
256a2d29dc [Doc] Correct HF repository for TeleChat2 models (#12949) 2025-02-08 01:42:15 -08:00
c45d398e6f [CI] Resolve transformers-neuronx version conflict (#12925) 2025-02-08 01:41:35 -08:00
011e612d92 [Misc] Log time consumption on weight downloading (#12926) 2025-02-08 09:16:42 +00:00
7e1837676a [misc] Add LoRA to benchmark_serving (#12898)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-02-08 17:15:44 +08:00
2880e21e3d [Hardware][Intel-Gaudi] Enable long-contexts + LoRA support for Intel Gaudi (#12812)
Signed-off-by: Sanju C Sudhakaran <scsudhakaran@habana.ai>
2025-02-08 17:15:30 +08:00
407b5537db [Build] Make pypi install work on CPU platform (#12874) 2025-02-08 01:15:15 -08:00
4ea48fb35c [V1][Minor] Move cascade attn logic outside _prepare_inputs (#12943)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-08 00:39:09 -08:00
e31498bdcb [Misc] Add offline test for disaggregated prefill (#12418) 2025-02-08 08:38:20 +00:00
91dd8f7aa6 [bugfix] respect distributed_executor_backend in world_size=1 (#12934)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-08 16:17:08 +08:00
d01f66b039 [Bugfix] Fix multi-round chat error when mistral tokenizer is used (#12859)
Signed-off-by: Zifei Tong <zifeitong@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-02-08 07:04:34 +00:00
cc01223f3b [Misc] Fix typo in the example file (#12896)
Signed-off-by: Zhao Ke <yingxiongraomingzk@gmail.com>
2025-02-08 06:56:43 +00:00
306923da82 [Bugfix] Fix Qwen2_5_VLForConditionalGeneration packed_modules_mapping (#12905) 2025-02-07 21:02:53 -08:00
3243158336 [V1] Move KV block hashes from Request to KVCacheManager (#12922)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-07 19:14:10 -08:00
b21f0f9d17 [V1][Minor] Remove outdated comment (#12928)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-07 19:07:37 -08:00
45cbc4991d [Bugfix] Fix disagg hang caused by the prefill and decode communication issues (#12723)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-02-07 16:39:50 -08:00
932c6b7461 [V1] LM Eval With Streaming Integration Tests (#11590) 2025-02-07 15:07:03 -08:00
eaa92d4437 [ROCm] [Feature] [Doc] [Dockerfile] [BugFix] Support Per-Token-Activation Per-Channel-Weight FP8 Quantization Inferencing (#12501) 2025-02-07 08:13:43 -08:00
0630d4537a [V1] Logprobs and prompt logprobs support (#9880)
This PR is adding support for sample logprobs & prompt logprobs to vLLM v1.

New behavior:

- During model execution, model runner computes sample logprobs (if user-provided logprobs setting is not None) and prompt logprobs (if user-provided prompt_logprobs setting is not None). For both sample and prompt logprobs, the engine core returns 3 vectors: token ids, token logprob values, token ranks. Ranks reflect tokens' 1-indexed positions in the vocabulary vector after sorting the vocabulary by log probability in descending order.
- In scheduler.update_from_output(), sample and prompt logprobs are incorporated into the EngineCoreOutput data structure which is transferred to the engine client. If multiprocessing is enabled, then sample and prompt logprobs will be (de)serialized when the EngineCoreOutput data structure is (de)serialized.
- During output processing, the LogprobsProcessor transforms the triplet of token ids, token logprobs values, and token ranks into the OpenAI-compatible List[Dict[token id,Logprob]] format (for sample and prompt logprobs respectively.)
- Each Logprob instance (whether sample- or prompt-) consists of a token's log-probability, rank, and detokenized string representation. Note that logprob detokenization is handled by the LogprobsProcessor not the detokenizer.

Signed-off-by: Andrew Feldman <afeldman@neuralmagic.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>


Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-02-07 07:26:20 -08:00
538fab93cd PR #12718 (#12718) 2025-02-07 06:22:37 -08:00
ce26b16268 [Misc] Remove unnecessary detokenization in multimodal processing (#12868) 2025-02-07 06:21:17 -08:00
1918aa1b80 [MISC][EASY] Break check file names into entry and args in the pre-commit hooks (#12880)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-02-07 13:04:39 +00:00
6e1fc61f0f Prevent unecessary requests to huggingface hub (#12837) 2025-02-06 21:37:41 -08:00
aa375dca9f [Bugfix] Missing quant_config in deepseek embedding layer (#12836) 2025-02-06 21:35:09 -08:00
433c4a4923 Make vllm compatible with verl (#12824)
Co-authored-by: zhangshulai <zhangshulai@bytedance.com>
2025-02-07 11:54:20 +08:00
ef533d25fb [Bugfix] FA2 illegal memory access (#12848) 2025-02-06 19:54:07 -08:00
b260782357 [misc] Revert # 12833 (#12857)
Signed-off-by: <>
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-20-117.us-west-2.compute.internal>
2025-02-06 16:29:12 -08:00
741429a4cd [MISC] Check space in the file names in the pre commit checks (#12804)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-02-06 15:36:21 -08:00
aff404571b Add Bamba Model (#10909)
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-02-06 15:22:42 -08:00
467a96a541 [V1] LoRA Support (#10957)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-02-06 09:32:51 -08:00
8108ac841d [Bugfix] Fix unsupported FA version check for Turing GPU (#12828) 2025-02-06 09:18:22 -08:00
afe74f7a96 [Doc] double quote cmake package in build.inc.md (#12840) 2025-02-06 09:17:55 -08:00
09b95e36ab [torch.compile] PyTorch 2.6 and nightly compatibility (#12393)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-07 01:09:07 +08:00
85ac82d228 [Kernel] Make rotary_embedding ops more flexible with input shape (#12777) 2025-02-06 08:46:13 -08:00
1e57b1ee63 [Misc] Remove unnecessary decode call (#12833) 2025-02-06 08:45:44 -08:00
e152f29502 [misc] Reduce number of config file requests to HuggingFace (#12797)
Signed-off-by: EC2 Default User <ec2-user@ip-172-31-20-117.us-west-2.compute.internal>
Signed-off-by: <>
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-20-117.us-west-2.compute.internal>
2025-02-06 14:59:18 +00:00
c786e757fa [Attention] Use FA3 for MLA on Hopper (#12807)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-02-06 11:43:12 +00:00
cefd56ee35 [Docs] Add Google Cloud Slides (#12814) 2025-02-06 01:02:38 -08:00
7ca9934fe7 [Misc] Update w2 scale loading for GPTQMarlinMoE (#12757) 2025-02-06 01:02:14 -08:00
0408efc6d0 [Misc] Improve error message for incorrect pynvml (#12809)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-06 15:23:50 +08:00
449d1bce02 [Misc] Remove duplicated DeepSeek V2/V3 model definition (#12793) 2025-02-05 23:16:20 -08:00
1a6fcad4c9 Improve TransformersModel UX (#12785) 2025-02-05 22:24:57 -08:00
56534cd577 [Bugfix] Fix the test_ultravox.py's license (#12806)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-02-06 13:25:54 +08:00
d88506dda4 [Model] LoRA Support for Ultravox model (#11253) 2025-02-05 19:54:13 -08:00
9cdea30b4f [Misc][Easy] Remove the space from the file name 2025-02-05 19:23:35 -08:00
76abd0c881 [Bugfix] Better FP8 supported defaults 2025-02-05 19:22:19 -08:00
5b19b93082 [ROCm][Kernel] Using the correct warp_size value 2025-02-05 19:15:08 -08:00
75404d041b [VLM] Update compatibility with transformers 4.49 2025-02-05 19:09:45 -08:00
bf3b79efb8 [VLM] Qwen2.5-VL 2025-02-05 13:31:38 -08:00
9a5b1554b4 [Docs] Drop duplicate [source] links 2025-02-05 13:30:50 -08:00
a4ce74c14a [VLM] Use shared field to pass token ids to model 2025-02-05 13:30:46 -08:00
3b2005e1db Add: Support for Sparse24Bitmask Compressed Models 2025-02-05 13:30:43 -08:00
af8486de49 [Hardware][Intel-Gaudi] Enable FusedSDPA support for Intel Gaudi (HPU) 2025-02-05 13:29:45 -08:00
4c3aac51e1 Merging PR #12536
Merged via CLI script
2025-02-05 13:24:26 -08:00
bc1bdecebf [core][distributed] exact ray placement control (#12732)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-06 02:03:19 +08:00
022bcc701a [Bugfix] Fix 'ModuleNotFoundError: No module named 'intel_extension_for_pytorch'' for --tensor-parallel-size more than 1 (#12546) 2025-02-04 23:11:02 -08:00
c53dc466b1 [Doc] Remove performance warning for auto_awq.md (#12743) 2025-02-04 22:43:11 -08:00
3d09e592a8 [V1][Misc] Shorten FinishReason enum and use constant strings (#12760) 2025-02-04 22:43:02 -08:00
fcf2e3d7fc [Bugfix] Fix OpenVINO model runner (#12750) 2025-02-04 22:42:46 -08:00
58b218d7ae [Doc] Update PR Reminder with link to Developer Slack (#12748) 2025-02-04 22:42:09 -08:00
7ff7a638b6 [Model][Quant] Fix GLM, Fix fused module mappings for quantization (#12634)
Signed-off-by: mgoin <michael@neuralmagic.com>
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
2025-02-05 05:32:06 +00:00
686006a220 [Misc] Bump the compressed-tensors version (#12736) 2025-02-04 20:44:48 -08:00
98fd089fc9 [VLM] Add MLA with pure RoPE support for deepseek-vl2 models (#12729) 2025-02-04 20:44:26 -08:00
249824c3bf Refactor Linear handling in TransformersModel (#12727)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-02-05 04:31:12 +00:00
64862d106e [ROCM][AMD][TRITON] Halving warps number for fw_prefill to reduce spilling (#12713)
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
2025-02-05 03:58:22 +00:00
b3a0d01e45 [Core] add and implement VLLM_LOGITS_PROCESSOR_THREADS (#12368)
Signed-off-by: Aviv Keshet <akeshet@scaledcognition.com>
2025-02-04 18:46:26 -08:00
75e94309e8 [Perf] Mem align KV caches for CUDA devices (MLA perf improvement) (#12676)
Signed-off-by: simon-mo <xmo@berkeley.edu>
Signed-off-by: Lucas Wilkinson <lcwilkins@redhat.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Co-authored-by: simon-mo <xmo@berkeley.edu>
2025-02-04 18:22:24 -08:00
233df6f5c4 [V1][Metrics] Add request_success_total counter, labelled with finish reason (#12579)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-02-04 19:46:54 -05:00
18016a5e62 [Bugfix] Fix CI failures for InternVL and Mantis models (#12728)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-02-04 23:54:23 +08:00
649550f27e [Build] update requirements of no-device for plugin usage (#12630)
Signed-off-by: Sophie du Couédic <sop@zurich.ibm.com>
2025-02-04 21:19:12 +08:00
62467a834a Avoid unnecessary multi-modal input data copy when len(batch) == 1 (#12722)
Signed-off-by: imkero <kerorek@outlook.com>
2025-02-04 21:03:19 +08:00
6469038b14 [Bugfix] Fix loading of fine-tuned models based on Phi-3-Small (#12689)
Signed-off-by: Michael Greenbaum <mgreenbaum@microsoft.com>
Co-authored-by: Michael Greenbaum <mgreenbaum@microsoft.com>
2025-02-04 20:58:48 +08:00
815079de8e [VLM] merged multimodal processor and V1 support for idefics3 (#12660)
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-02-04 20:00:51 +08:00
18a88fcccc [V1] Remove scheduling constraint on partial requests (#12674)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-04 02:43:58 -08:00
d1ca7df84d [VLM] Merged multi-modal processor for InternVL-based models (#12553)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-02-04 16:44:52 +08:00
96b23621c1 [Misc] Add BNB quantization for Whisper (#12381)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-02-04 16:27:36 +08:00
c36ac98d01 [AMD][ROCm] Enable DeepSeek model on ROCm (#12662)
Signed-off-by: Hongxia Yang <hongxia.yang@amd.com>
Co-authored-by: Matthew Wong <Matthew.Wong2@amd.com>
2025-02-04 08:24:11 +00:00
4896d0c2dd [Quant] Fix use_mla TypeError and support loading pure-sparsity Compressed Tensors configs (#12711) 2025-02-03 23:27:11 -08:00
bb392af434 [Doc] Replace ibm-fms with ibm-ai-platform (#12709)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-02-04 07:05:04 +00:00
5d98d56089 Support Pixtral-Large HF by using llava multimodal_projector_bias config (#12710)
Signed-off-by: mgoin <michael@neuralmagic.com>
2025-02-04 11:55:46 +08:00
73b35cca7f [Core] Improve hash collision avoidance in prefix caching (#12621)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-03 16:28:20 -08:00
5095e96606 [V1] Revert uncache_blocks and support recaching full blocks (#12415)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
2025-02-03 15:04:53 -08:00
cf58b9c4ca [MISC] Remove model input dumping when exception (#12582)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
2025-02-03 13:34:16 -08:00
4797dad3ec [Model] Add Deepseek V3 fp8_w8a8 configs for B200 (#12707) 2025-02-03 13:30:39 -08:00
6dd5e52823 Squelch MLA warning for Compressed-Tensors Models (#12704)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-02-03 13:29:56 -08:00
c11de33dad [Bugfix][Kernel] Fix per-token/per-channel quantization for Hopper scaled mm (#12696)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-02-03 13:04:59 -08:00
33e0602e59 [Misc] Fix improper placement of SPDX header in scripts (#12694)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-03 11:16:59 -08:00
a1a2aaadb9 [Model]: Add transformers backend support (#11330)
# Adds support for `transformers` as a backend

Following https://github.com/huggingface/transformers/pull/35235, a
bunch of models should already be supported, we are ramping up support
for more models.

Thanks @Isotr0py for the TP support, and @hmellor for his help as well!
This includes: 
- `trust_remote_code=True` support: any model on the hub, if it
implements attention the correct way can be natively supported!!
- tensor parallel support

---------

Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <41363108+Isotr0py@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-02-03 21:30:38 +08:00
1298a400e8 [ci/build] fix gh200 test (#12681)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-03 15:59:49 +08:00
ad4a9dc817 [cuda] manually import the correct pynvml module (#12679)
fixes problems like https://github.com/vllm-project/vllm/pull/12635 and
https://github.com/vllm-project/vllm/pull/12636 and
https://github.com/vllm-project/vllm/pull/12565

---------

Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-03 15:58:21 +08:00
b9986454fe Fix for attention layers to remain unquantized during moe_wn16 quant (#12570)
Fix to AWQ quant loading of the new R1 model

The new optimized MoE kernels for a large number of experts `moe_wn16`
uses AWQ quant which requires the attention layers to be in 16bit

The current merge has broken this, and the `get_quant_method` must
return None for it to work correctly again

---------

Signed-off-by: Srikanth Srinivas <srikanth@astrum.ai>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Beim <beim2015@outlook.com>
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Signed-off-by: mgoin <michael@neuralmagic.com>
Signed-off-by: npanpaliya <nishidha.panpaliya@partner.ibm.com>
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Signed-off-by: simon-mo <xmo@berkeley.edu>
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Signed-off-by: Ryan N <ryan.nguyen@centml.ai>
Signed-off-by: Brian Dellabetta <bdellabe@redhat.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
Signed-off-by: Vicente Herrera <vicenteherrera@vicenteherrera.com>
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Shawn Du <shawnd200@outlook.com>
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Beim <805908499@qq.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
Co-authored-by: simon-mo <xmo@berkeley.edu>
Co-authored-by: Nishidha <nishidha.panpaliya@partner.ibm.com>
Co-authored-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: Aleksandr Malyshev <164964928+maleksan85@users.noreply.github.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: simon-mo <simon.mo@hey.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
Co-authored-by: Tyler Michael Smith <tysmith@redhat.com>
Co-authored-by: Alexander Matveev <59768536+alexm-neuralmagic@users.noreply.github.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: Kevin H. Luu <kevin@anyscale.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Ryan Nguyen <96593302+xpbowler@users.noreply.github.com>
Co-authored-by: Brian Dellabetta <brian-dellabetta@users.noreply.github.com>
Co-authored-by: fade_away <1028552010@qq.com>
Co-authored-by: weilong.yu <weilong.yu@shopee.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Eldar Kurtic <eldarkurtic314@gmail.com>
Co-authored-by: Rahul Tuli <rahul@neuralmagic.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Vicente Herrera <vicenteherrera@vicenteherrera.com>
Co-authored-by: Jinzhen Lin <linjinzhen@hotmail.com>
Co-authored-by: Shawn Du <shawnd200@outlook.com>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-02-03 13:46:19 +08:00
c5932e5dac Properly check if all fused layers are in the list of targets (#12666)
Thanks @kylesayrs for catching this!
2025-02-03 13:42:18 +08:00
20579c0fae make sure mistral_common not imported for non-mistral models (#12669)
When people use deepseek models, they find that they need to solve cv2
version conflict, see https://zhuanlan.zhihu.com/p/21064432691 .

I added the check, and make all imports of `cv2` lazy.

---------

Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-03 13:40:25 +08:00
95460fc513 [Kernel] port sgl moe_align_block_size kernels (#12574)
sgl_moe_align_block_size is based on:


ded9fcd09a

moe_align_block_size is based on:


ba5112ff69

Signed-off-by: Yang Chen <yangche@fb.com>
2025-02-03 13:09:50 +08:00
326fcc8b9f [Doc] Deprecate Discord (#12668) 2025-02-02 19:19:56 -08:00
e64330910b [doc][misc] clarify VLLM_HOST_IP for multi-node inference (#12667)
As more and more people are trying deepseek models with multi-node
inference, https://github.com/vllm-project/vllm/issues/7815 becomes more
frequent. Let's give clear message to users.

Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-02-03 09:32:18 +08:00
e489ad7a21 [Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00
f256ebe4df [Hardware][Intel GPU] add XPU bf16 support (#12392)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-02-02 10:17:26 +00:00
f8ece6e17f [Core][v1] Unify allocating slots in prefill and decode in KV cache manager (#12608)
As mentioned in RFC https://github.com/vllm-project/vllm/issues/12254,
this PR achieves the task: combine allocate_slots and append_slots.

There should be no functionality change, except that in decode, also
raise exception when num_tokens is zero (like prefill), and change the
unit test case accordingly.

@comaniac @rickyyx @WoosukKwon @youkaichao @heheda12345 @simon-mo

---------

Signed-off-by: Shawn Du <shawnd200@outlook.com>
2025-02-02 16:40:58 +08:00
abfcdcdf27 [V1][Minor] Avoid frequently creating ConstantList (#12653)
A small optimization to avoid creating a new `ConstantList` every time `request.kv_block_hashes` is used.

Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-01 23:43:20 -08:00
e497f33491 [Core] Silence unnecessary deprecation warnings (#12620)
I noticed during testing that I was getting a lot of these deprecation
warnings about `local_lora_path`:

```
DeprecationWarning: The 'lora_local_path' attribute is deprecated
     and will be removed in a future version.
     Please use 'lora_path' instead.
```

The check used for emitting this warning was always True, even when the
parameter was not actually specified. It will always be in
`__struct_fields__`. We should be checking for a non-None value,
instead.

Signed-off-by: Russell Bryant <rbryant@redhat.com>

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 15:35:50 +08:00
baaa2b24da [Bugfix] fix moe_wna16 get_quant_method (#12648)
Fix https://github.com/vllm-project/vllm/issues/12647
The `get_quant_method` of `moe_wna16` always return moe method,
GPTQ-based linear method or AWQ-based linear method, even when the
target module is attention layer.


baeded2569/vllm/attention/layer.py (L86-L92)

Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
2025-02-02 15:29:56 +08:00
b4e5c03306 doc: fixing minor typo in readme.md (#12643)
Word "evolved" was mistyped

Signed-off-by: Vicente Herrera <vicenteherrera@vicenteherrera.com>

---------

Signed-off-by: Vicente Herrera <vicenteherrera@vicenteherrera.com>
2025-02-01 17:17:29 +00:00
3194039c0e Apply torch.compile to fused_moe/grouped_topk (#12637) 2025-02-01 16:16:19 +00:00
1310 changed files with 53907 additions and 12788 deletions

View File

@ -1,12 +1,14 @@
# SPDX-License-Identifier: Apache-2.0
import os
import sys
import zipfile
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 300 MiB
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 400 MiB
# Note that we have 400 MiB quota, please use it wisely.
# See https://github.com/pypi/support/issues/3792 .
# Please also sync the value with the one in Dockerfile.
VLLM_MAX_SIZE_MB = int(os.environ.get('VLLM_MAX_SIZE_MB', 300))
VLLM_MAX_SIZE_MB = int(os.environ.get('VLLM_MAX_SIZE_MB', 400))
def print_top_10_largest_files(zip_file):

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
import os

View File

@ -0,0 +1,11 @@
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM -b "auto" -t 2
model_name: "nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.6353
- name: "exact_match,flexible-extract"
value: 0.637
limit: null
num_fewshot: null

View File

@ -1,3 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
"""
LM eval harness on model to compare vs HF baseline computed offline.
Configs are found in configs/$MODEL.yaml

View File

@ -1,16 +1,14 @@
# vLLM benchmark suite
## Introduction
This directory contains two sets of benchmark for vllm.
- Performance benchmark: benchmark vllm's performance under various workload, for **developers** to gain clarity on whether their PR improves/degrades vllm's performance
- Nightly benchmark: compare vllm's performance against alternatives (tgi, trt-llm and lmdeploy), for **the public** to know when to choose vllm.
See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
## Performance benchmark quick overview
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!), with different models.
@ -19,7 +17,6 @@ See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performan
**For benchmarking developers**: please try your best to constraint the duration of benchmarking to about 1 hr so that it won't take forever to run.
## Nightly benchmark quick overview
**Benchmarking Coverage**: Fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) on Llama-3 8B, 70B and Mixtral 8x7B.
@ -28,8 +25,6 @@ See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performan
**Benchmarking Duration**: about 3.5hrs.
## Trigger the benchmark
Performance benchmark will be triggered when:
@ -39,16 +34,11 @@ Performance benchmark will be triggered when:
Nightly benchmark will be triggered when:
- Every commit for those PRs with `perf-benchmarks` label and `nightly-benchmarks` label.
## Performance benchmark details
See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
#### Latency test
### Latency test
Here is an example of one test inside `latency-tests.json`:
@ -68,6 +58,7 @@ Here is an example of one test inside `latency-tests.json`:
```
In this example:
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
@ -75,16 +66,17 @@ Note that the performance numbers are highly sensitive to the value of the param
WARNING: The benchmarking script will save json results by itself, so please do not configure `--output-json` parameter in the json file.
### Throughput test
#### Throughput test
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `benchmark_throughput.py`.
The number of this test is also stable -- a slight change on the value of this number might vary the performance numbers by a lot.
#### Serving test
### Serving test
We test the throughput by using `benchmark_serving.py` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:
```
```json
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
@ -109,6 +101,7 @@ We test the throughput by using `benchmark_serving.py` with request rate = inf t
```
Inside this example:
- The `test_name` attribute is also a unique identifier for the test. It must start with `serving_`.
- The `server-parameters` includes the command line arguments for vLLM server.
- The `client-parameters` includes the command line arguments for `benchmark_serving.py`.
@ -118,36 +111,33 @@ The number of this test is less stable compared to the delay and latency benchma
WARNING: The benchmarking script will save json results by itself, so please do not configure `--save-results` or other results-saving-related parameters in `serving-tests.json`.
#### Visualizing the results
### Visualizing the results
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](tests/descriptions.md) with real benchmarking results.
You can find the result presented as a table inside the `buildkite/performance-benchmark` job page.
If you do not see the table, please wait till the benchmark finish running.
The json version of the table (together with the json version of the benchmark) will be also attached to the markdown file.
The raw benchmarking results (in the format of json files) are in the `Artifacts` tab of the benchmarking.
## Nightly test details
See [nightly-descriptions.md](nightly-descriptions.md) for the detailed description on test workload, models and docker containers of benchmarking other llm engines.
#### Workflow
### Workflow
- The [nightly-pipeline.yaml](nightly-pipeline.yaml) specifies the docker containers for different LLM serving engines.
- Inside each container, we run [run-nightly-suite.sh](run-nightly-suite.sh), which will probe the serving engine of the current container.
- The `run-nightly-suite.sh` will redirect the request to `tests/run-[llm serving engine name]-nightly.sh`, which parses the workload described in [nightly-tests.json](tests/nightly-tests.json) and performs the benchmark.
- At last, we run [scripts/plot-nightly-results.py](scripts/plot-nightly-results.py) to collect and plot the final benchmarking results, and update the results to buildkite.
#### Nightly tests
### Nightly tests
In [nightly-tests.json](tests/nightly-tests.json), we include the command line arguments for benchmarking commands, together with the benchmarking test cases. The format is highly similar to performance benchmark.
#### Docker containers
### Docker containers
The docker containers for benchmarking are specified in `nightly-pipeline.yaml`.
WARNING: the docker versions are HARD-CODED and SHOULD BE ALIGNED WITH `nightly-descriptions.md`. The docker versions need to be hard-coded as there are several version-specific bug fixes inside `tests/run-[llm serving engine name]-nightly.sh`.
WARNING: populating `trt-llm` to latest version is not easy, as it requires updating several protobuf files in [tensorrt-demo](https://github.com/neuralmagic/tensorrt-demo.git).

View File

@ -10,12 +10,18 @@ steps:
- image: badouralix/curl-jq
command:
- sh .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
- label: "Cleanup H100"
agents:
queue: H100
depends_on: ~
command: docker system prune -a --volumes --force
- label: "A100"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: A100
depends_on: wait-for-container-image
if: build.branch == "main"
plugins:
- kubernetes:
podSpec:
@ -50,6 +56,7 @@ steps:
agents:
queue: H200
depends_on: wait-for-container-image
if: build.branch == "main"
plugins:
- docker#v5.12.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
@ -75,6 +82,7 @@ steps:
agents:
queue: H100
depends_on: wait-for-container-image
if: build.branch == "main"
plugins:
- docker#v5.12.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
@ -90,3 +98,87 @@ steps:
environment:
- VLLM_USAGE_SOURCE
- HF_TOKEN
# Premerge benchmark
- label: "A100"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: A100
depends_on: wait-for-container-image
if: build.branch != "main"
plugins:
- kubernetes:
podSpec:
priorityClassName: perf-benchmark
containers:
- image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
nodeSelector:
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
volumes:
- name: devshm
emptyDir:
medium: Memory
- label: "H200"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: H200
depends_on: wait-for-container-image
if: build.branch != "main"
plugins:
- docker#v5.12.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
mount-buildkite-agent: true
propagate-environment: true
ipc: host
gpus: 4,5,6,7
volumes:
- /data/benchmark-hf-cache:/root/.cache/huggingface
environment:
- VLLM_USAGE_SOURCE
- HF_TOKEN
#- block: "Run H100 Benchmark"
#key: block-h100
#depends_on: ~
- label: "H100"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: H100
depends_on: wait-for-container-image
if: build.branch != "main"
plugins:
- docker#v5.12.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
mount-buildkite-agent: true
propagate-environment: true
ipc: host
gpus: all # see CUDA_VISIBLE_DEVICES for actual GPUs used
volumes:
- /data/benchmark-hf-cache:/root/.cache/huggingface
environment:
- VLLM_USAGE_SOURCE
- HF_TOKEN

View File

@ -9,14 +9,14 @@ This file contains the downloading link for benchmarking results.
Please download the visualization scripts in the post
## Results reproduction
- Find the docker we use in `benchmarking pipeline`
- Deploy the docker, and inside the docker:
- Download `nightly-benchmarks.zip`.
- In the same folder, run the following code
```
- In the same folder, run the following code:
```console
export HF_TOKEN=<your HF token>
apt update
apt install -y git
@ -25,4 +25,3 @@ VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-b
```
And the results will be inside `./benchmarks/results`.

View File

@ -2,6 +2,7 @@
# Nightly benchmark
This benchmark aims to:
- Provide performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and SGLang) leads in performance in what workload.
- Be reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions.
@ -9,7 +10,6 @@ Latest results: [results link](https://blog.vllm.ai/2024/09/05/perf-update.html)
Latest reproduction guilde: [github issue link](https://github.com/vllm-project/vllm/issues/8176)
## Setup
- Docker images:
@ -33,7 +33,7 @@ Latest reproduction guilde: [github issue link](https://github.com/vllm-project/
- Queries are randomly sampled, and arrival patterns are determined via Poisson process, but all with fixed random seed.
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
# Known issues
## Known issues
- TRT-LLM crashes with Llama 3.1 8B [issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105).
- TGI does not support `ignore-eos` flag.

View File

@ -7,10 +7,8 @@
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- Evaluation metrics: end-to-end latency (mean, median, p99).
{latency_tests_markdown_table}
## Throughput tests
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
@ -19,10 +17,8 @@
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- Evaluation metrics: throughput.
{throughput_tests_markdown_table}
## Serving tests
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
@ -33,10 +29,8 @@
- We also added a speculative decoding test for llama-3 70B, under QPS 2
- Evaluation metrics: throughput, TTFT (time to the first token, with mean, median and p99), ITL (inter-token latency, with mean, median and p99).
{serving_tests_markdown_table}
## json version of the benchmarking tables
This section contains the data of the markdown tables above in JSON format.
@ -54,9 +48,9 @@ serving_results = pd.DataFrame.from_dict(benchmarking_results["serving"])
```
The json string for all benchmarking tables:
```json
{benchmarking_results_in_json_string}
```
You can also check the raw experiment data in the Artifact tab of the Buildkite page.

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import json
import os
from pathlib import Path

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
from transformers import AutoTokenizer

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
from pathlib import Path

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
from lmdeploy.serve.openai.api_client import APIClient
api_client = APIClient("http://localhost:8000")

View File

@ -345,6 +345,11 @@ main() {
check_gpus
check_hf_token
# Set to v1 to run v1 benchmark
if [[ "${ENGINE_VERSION:-v0}" == "v1" ]]; then
export VLLM_USE_V1=1
fi
# dependencies
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import datetime
import json
import os

View File

@ -1,6 +1,10 @@
#!/bin/sh
TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-postmerge-repo:pull" | jq -r .token)
if [[ "$BUILDKITE_BRANCH" == "main" ]]; then
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-postmerge-repo/manifests/$BUILDKITE_COMMIT"
else
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-test-repo/manifests/$BUILDKITE_COMMIT"
fi
TIMEOUT_SECONDS=10

View File

@ -66,8 +66,7 @@
"swap_space": 16,
"speculative_model": "turboderp/Qwama-0.5B-Instruct",
"num_speculative_tokens": 4,
"speculative_draft_tensor_parallel_size": 1,
"use_v2_block_manager": ""
"speculative_draft_tensor_parallel_size": 1
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",

View File

@ -121,6 +121,8 @@ if [[ $commands == *"--shard-id="* ]]; then
--rm \
-e HIP_VISIBLE_DEVICES="${GPU}" \
-e HF_TOKEN \
-e AWS_ACCESS_KEY_ID \
-e AWS_SECRET_ACCESS_KEY \
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
--name "${container_name}_${GPU}" \
@ -148,6 +150,8 @@ else
--rm \
-e HIP_VISIBLE_DEVICES=0 \
-e HF_TOKEN \
-e AWS_ACCESS_KEY_ID \
-e AWS_SECRET_ACCESS_KEY \
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
--name "${container_name}" \

View File

@ -30,7 +30,7 @@ function cpu_tests() {
# offline inference
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" bash -c "
set -e
python3 examples/offline_inference/basic.py"
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
# Run basic model test
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "

View File

@ -23,6 +23,6 @@ trap remove_docker_container EXIT
remove_docker_container
# Run the image and test offline inference
docker run --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c '
python3 examples/offline_inference/basic.py
docker run -e HF_TOKEN -v /root/.cache/huggingface:/root/.cache/huggingface --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c '
python3 examples/offline_inference/basic/generate.py --model meta-llama/Llama-3.2-1B
'

View File

@ -20,5 +20,5 @@ trap remove_docker_container_and_exit EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic.py
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
EXITCODE=$?

View File

@ -29,9 +29,6 @@ if [ -f /tmp/neuron-docker-build-timestamp ]; then
docker image prune -f
# Remove unused volumes / force the system prune for old images as well.
docker volume prune -f && docker system prune -f
# Remove huggingface model artifacts and compiler cache
rm -rf "${HF_MOUNT:?}/*"
rm -rf "${NEURON_COMPILE_CACHE_MOUNT:?}/*"
echo "$current_time" > /tmp/neuron-docker-build-timestamp
fi
else

View File

@ -13,4 +13,4 @@ trap remove_docker_container EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/examples/offline_inference/basic.py
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/examples/offline_inference/basic/generate.py --model facebook/opt-125m

View File

@ -14,6 +14,6 @@ remove_docker_container
# Run the image and test offline inference/tensor parallel
docker run --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path --entrypoint="" xpu-test sh -c '
python3 examples/offline_inference/basic.py
python3 examples/offline_inference/cli.py -tp 2
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m -tp 2
'

View File

@ -50,9 +50,9 @@ steps:
- tests/multimodal
- tests/test_utils
- tests/worker
- tests/standalone_tests/lazy_torch_compile.py
- tests/standalone_tests/lazy_imports.py
commands:
- python3 standalone_tests/lazy_torch_compile.py
- python3 standalone_tests/lazy_imports.py
- pytest -v -s mq_llm_engine # MQLLMEngine
- pytest -v -s async_engine # AsyncLLMEngine
- NUM_SCHEDULER_STEPS=4 pytest -v -s async_engine/test_async_llm_engine.py
@ -107,13 +107,17 @@ steps:
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/entrypoints/llm
- tests/entrypoints/openai
- tests/entrypoints/test_chat_utils
- tests/entrypoints/offline_mode
commands:
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_guided_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/correctness/
- pytest -v -s entrypoints/test_chat_utils.py
- pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
@ -124,10 +128,12 @@ steps:
source_file_dependencies:
- vllm/distributed/
- vllm/core/
- tests/distributed
- tests/distributed/test_utils
- tests/distributed/test_pynccl
- tests/spec_decode/e2e/test_integration_dist_tp4
- tests/compile
- tests/compile/test_basic_correctness
- examples/offline_inference/rlhf.py
- examples/offline_inference/rlhf_colocate.py
commands:
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
@ -136,6 +142,7 @@ steps:
# TODO: create a dedicated test section for multi-GPU example tests
# when we have multiple distributed example tests
- python3 ../examples/offline_inference/rlhf.py
- RAY_DEDUP_LOGS=0 python3 ../examples/offline_inference/rlhf_colocate.py
- label: Metrics, Tracing Test # 10min
num_gpus: 2
@ -172,6 +179,9 @@ steps:
- vllm/
- tests/engine
- tests/tokenization
- tests/test_sequence
- tests/test_config
- tests/test_logger
commands:
- pytest -v -s engine test_sequence.py test_config.py test_logger.py
# OOM in the CI unless we run this separately
@ -193,6 +203,9 @@ steps:
# TODO: accuracy does not match, whether setting
# VLLM_USE_FLASHINFER_SAMPLER or not on H100.
- VLLM_USE_V1=1 pytest -v -s v1/e2e
# Integration test for streaming correctness (requires special branch).
- pip install -U git+https://github.com/robertgshaw2-neuralmagic/lm-evaluation-harness.git@streaming-api
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
- label: Examples Test # 25min
working_dir: "/vllm-workspace/examples"
@ -202,18 +215,18 @@ steps:
- examples/
commands:
- pip install tensorizer # for tensorizer test
- python3 offline_inference/basic.py
- python3 offline_inference/cpu_offload.py
- python3 offline_inference/chat.py
- python3 offline_inference/basic/generate.py --model facebook/opt-125m
- python3 offline_inference/basic/generate.py --model meta-llama/Llama-2-13b-chat-hf --cpu-offload-gb 10
- python3 offline_inference/basic/chat.py
- python3 offline_inference/prefix_caching.py
- python3 offline_inference/llm_engine_example.py
- python3 offline_inference/vision_language.py
- python3 offline_inference/vision_language_multi_image.py
- python3 other/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 other/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference/encoder_decoder.py
- python3 offline_inference/classification.py
- python3 offline_inference/embedding.py
- python3 offline_inference/scoring.py
- python3 offline_inference/basic/classify.py
- python3 offline_inference/basic/embed.py
- python3 offline_inference/basic/score.py
- python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
- label: Prefix Caching Test # 9min
@ -252,7 +265,7 @@ steps:
- vllm/model_executor/models/eagle.py
commands:
- pytest -v -s spec_decode/e2e/test_multistep_correctness.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py --ignore=spec_decode/e2e/test_mtp_correctness.py
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
- label: LoRA Test %N # 15min each
@ -326,6 +339,14 @@ steps:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-small.txt -t 1
- label: OpenAI API correctness
source_file_dependencies:
- csrc/
- vllm/entrypoints/openai/
- vllm/model_executor/models/whisper.py
commands: # LMEval+Transcription WER check
- pytest -s entrypoints/openai/correctness/
- label: Encoder Decoder tests # 5min
source_file_dependencies:
- vllm/
@ -349,6 +370,7 @@ steps:
- vllm/
- tests/models
commands:
- pytest -v -s models/test_transformers.py
- pytest -v -s models/test_registry.py
- pytest -v -s models/test_initialization.py
@ -485,6 +507,7 @@ steps:
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
# Avoid importing model tests that cause CUDA reinitialization error
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/encoder_decoder/language/test_bart.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/decoder_only/vision_language/test_models.py -v -s -m 'distributed(num_gpus=2)'
@ -508,6 +531,7 @@ steps:
- pip uninstall vllm_add_dummy_platform -y
# end platform plugin tests
# other tests continue here:
- pytest -v -s plugins_tests/test_scheduler_plugins.py
- pip install -e ./plugins/vllm_add_dummy_model
- pytest -v -s distributed/test_distributed_oot.py
- pytest -v -s entrypoints/openai/test_oot_registration.py # it needs a clean process

View File

@ -30,15 +30,6 @@ body:
</details>
validations:
required: true
- type: textarea
attributes:
label: Model Input Dumps
description: |
If you are facing crashing due to illegal memory access or other issues with model execution, vLLM may dump the problematic input of the model. In this case, you will see the message `Error in model execution (input dumped to /tmp/err_xxx.pkl)`. If you see this message, please zip the file (because GitHub doesn't support .pkl file format) and upload it here. This will help us to reproduce the issue and facilitate the debugging process.
placeholder: |
Upload the dumped input file.
validations:
required: false
- type: textarea
attributes:
label: 🐛 Describe the bug

View File

@ -2,4 +2,5 @@ FILL IN THE PR DESCRIPTION HERE
FIX #xxxx (*link existing issues this PR will resolve*)
**BEFORE SUBMITTING, PLEASE READ https://docs.vllm.ai/en/latest/contributing/overview.html **
<!--- pyml disable-next-line no-emphasis-as-heading -->
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing/overview.html>**

View File

@ -16,7 +16,7 @@ jobs:
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Set up Python
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
with:
python-version: '3.12'

View File

@ -17,12 +17,12 @@ jobs:
version: v3.14.4
#Python is required because ct lint runs Yamale and yamllint which require Python.
- uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
- uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
with:
python-version: '3.13'
- name: Set up chart-testing
uses: helm/chart-testing-action@e6669bcd63d7cb57cb4380c33043eebe5d111992 # v2.6.1
uses: helm/chart-testing-action@0d28d3144d3a25ea2cc349d6e59901c4ff469b3b # v2.7.0
with:
version: v3.10.1
@ -47,7 +47,7 @@ jobs:
aws --endpoint-url http://127.0.0.1:9000/ s3 cp opt-125m/ s3://testbucket/opt-125m --recursive
- name: Create kind cluster
uses: helm/kind-action@0025e74a8c7512023d06dc019c617aa3cf561fde # v1.10.0
uses: helm/kind-action@a1b0e391336a6ee6713a0583f8c6240d70863de3 # v1.12.0
- name: Build the Docker image vllm cpu
run: docker buildx build -f Dockerfile.cpu -t vllm-cpu-env .

View File

@ -10,10 +10,11 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
- uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
with:
python-version: "3.12"
- run: echo "::add-matcher::.github/workflows/matchers/actionlint.json"
- run: echo "::add-matcher::.github/workflows/matchers/mypy.json"
- uses: pre-commit/action@2c7b3805fd2a0fd8c1884dcaebf91fc102a13ecd # v3.0.1
with:
extra_args: --all-files --hook-stage manual

View File

@ -2,7 +2,6 @@ name: PR Reminder Comment Bot
on:
pull_request_target:
types: [opened]
jobs:
pr_reminder:
runs-on: ubuntu-latest
@ -15,7 +14,12 @@ jobs:
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: '👋 Hi! Thank you for contributing to the vLLM project.\n Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which starts running only a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of those by going to your `fastcheck` build on Buildkite UI (linked in the PR checks section) and unblock them. If you do not have permission to unblock, ping `simon-mo` or `khluu` to add you in our Buildkite org. \n\nOnce the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.\n\n To run CI, PR reviewers can do one of these:\n- Add `ready` label to the PR\n- Enable auto-merge.\n\n🚀'
body: '👋 Hi! Thank you for contributing to the vLLM project.\n\n' +
'💬 Join our developer Slack at https://slack.vllm.ai to discuss your PR in #pr-reviews, coordinate on features in #feat- channels, or join special interest groups in #sig- channels.\n\n' +
'Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which starts running only a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of those by going to your `fastcheck` build on Buildkite UI (linked in the PR checks section) and unblock them. If you do not have permission to unblock, ping `simon-mo` or `khluu` to add you in our Buildkite org.\n\n' +
'Once the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.\n\n' +
'To run CI, PR reviewers can either: Add `ready` label to the PR or enable auto-merge.\n\n' +
'🚀'
})
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@ -13,7 +13,7 @@ jobs:
actions: write
runs-on: ubuntu-latest
steps:
- uses: actions/stale@28ca1036281a5e5922ead5184a1bbf96e5fc984e # v9.0.0
- uses: actions/stale@5bef64f19d7facfb25b37b414482c7164d639639 # v9.1.0
with:
# Increasing this value ensures that changes to this workflow
# propagate to all issues and PRs in days rather than months

View File

@ -8,36 +8,42 @@ repos:
- id: yapf
args: [--in-place, --verbose]
additional_dependencies: [toml] # TODO: Remove when yapf is upgraded
exclude: 'vllm/third_party/.*'
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.9.3
hooks:
- id: ruff
args: [--output-format, github]
args: [--output-format, github, --fix]
exclude: 'vllm/third_party/.*'
- repo: https://github.com/codespell-project/codespell
rev: v2.4.0
hooks:
- id: codespell
exclude: 'benchmarks/sonnet.txt|(build|tests/(lora/data|models/fixtures|prompts))/.*'
additional_dependencies: ['tomli']
args: ['--toml', 'pyproject.toml']
- repo: https://github.com/PyCQA/isort
rev: 5.13.2
hooks:
- id: isort
exclude: 'vllm/third_party/.*'
- repo: https://github.com/pre-commit/mirrors-clang-format
rev: v19.1.7
hooks:
- id: clang-format
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))'
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))|vllm/third_party/.*'
types_or: [c++, cuda]
args: [--style=file, --verbose]
- repo: https://github.com/jackdewinter/pymarkdown
rev: v0.9.27
hooks:
- id: pymarkdown
files: docs/.*
args: [fix]
exclude: 'vllm/third_party/.*'
- repo: https://github.com/rhysd/actionlint
rev: v1.7.7
hooks:
- id: actionlint
exclude: 'vllm/third_party/.*'
- repo: local
hooks:
- id: mypy-local
@ -47,6 +53,7 @@ repos:
types: [python]
additional_dependencies: &mypy_deps [mypy==1.11.1, types-setuptools, types-PyYAML, types-requests]
stages: [pre-commit] # Don't run in CI
exclude: 'vllm/third_party/.*'
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.9
entry: tools/mypy.sh 1 "3.9"
@ -54,6 +61,7 @@ repos:
types: [python]
additional_dependencies: *mypy_deps
stages: [manual] # Only run in CI
exclude: 'vllm/third_party/.*'
- id: mypy-3.10 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.10
entry: tools/mypy.sh 1 "3.10"
@ -61,6 +69,7 @@ repos:
types: [python]
additional_dependencies: *mypy_deps
stages: [manual] # Only run in CI
exclude: 'vllm/third_party/.*'
- id: mypy-3.11 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.11
entry: tools/mypy.sh 1 "3.11"
@ -68,6 +77,7 @@ repos:
types: [python]
additional_dependencies: *mypy_deps
stages: [manual] # Only run in CI
exclude: 'vllm/third_party/.*'
- id: mypy-3.12 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.12
entry: tools/mypy.sh 1 "3.12"
@ -75,16 +85,19 @@ repos:
types: [python]
additional_dependencies: *mypy_deps
stages: [manual] # Only run in CI
exclude: 'vllm/third_party/.*'
- id: shellcheck
name: Lint shell scripts
entry: tools/shellcheck.sh
language: script
types: [shell]
exclude: 'vllm/third_party/.*'
- id: png-lint
name: Lint PNG exports from excalidraw
entry: tools/png-lint.sh
language: script
types: [png]
exclude: 'vllm/third_party/.*'
- id: signoff-commit
name: Sign-off Commit
entry: bash
@ -97,10 +110,29 @@ repos:
language: system
verbose: true
stages: [commit-msg]
exclude: 'vllm/third_party/.*'
- id: check-spdx-header
name: Check SPDX headers
entry: python tools/check_spdx_header.py
language: python
types: [python]
exclude: 'vllm/third_party/.*'
- id: check-filenames
name: Check for spaces in all filenames
entry: bash
args:
- -c
- 'git ls-files | grep " " && echo "Filenames should not contain spaces!" && exit 1 || exit 0'
language: system
always_run: true
pass_filenames: false
exclude: 'vllm/third_party/.*'
# Keep `suggestion` last
- id: suggestion
name: Suggestion
entry: bash -c 'echo "To bypass pre-commit hooks, add --no-verify to git commit."'
language: system
verbose: true
pass_filenames: false
exclude: 'vllm/third_party/.*'
# Insert new entries above the `suggestion` entry

View File

@ -34,7 +34,7 @@ set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12")
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101")
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101")
#
# Supported/expected torch versions for CUDA/ROCm.
@ -192,7 +192,7 @@ set_gencode_flags_for_srcs(
if(VLLM_GPU_LANG STREQUAL "CUDA")
message(STATUS "Enabling cumem allocator extension.")
# link against cuda driver library
list(APPEND CUMEM_LIBS cuda)
list(APPEND CUMEM_LIBS CUDA::cuda_driver)
define_gpu_extension_target(
cumem_allocator
DESTINATION vllm
@ -228,7 +228,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
# Set CUTLASS_REVISION manually -- its revision detection doesn't work in this case.
set(CUTLASS_REVISION "v3.6.0" CACHE STRING "CUTLASS revision to use")
# Please keep this in sync with FetchContent_Declare line below.
set(CUTLASS_REVISION "v3.7.0" CACHE STRING "CUTLASS revision to use")
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
@ -245,6 +246,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
FetchContent_Declare(
cutlass
GIT_REPOSITORY https://github.com/nvidia/cutlass.git
# Please keep this in sync with CUTLASS_REVISION line above.
GIT_TAG v3.7.0
GIT_PROGRESS TRUE
@ -264,8 +266,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"csrc/custom_all_reduce.cu"
"csrc/permute_cols.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
"csrc/sparse/cutlass/sparse_compressor_entry.cu"
"csrc/cutlass_extensions/common.cpp")
set_gencode_flags_for_srcs(
@ -358,8 +360,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The 2:4 sparse kernels cutlass_scaled_sparse_mm and cutlass_compressor
# require CUDA 12.2 or later (and only work on Hopper, 9.0a for now).
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_3X_ARCHS)
set(SRCS "csrc/sparse/cutlass/sparse_compressor_c3x.cu"
"csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu")
set(SRCS "csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_3X_ARCHS}")
@ -377,6 +378,23 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
# FP4 Archs and flags
cuda_archs_loose_intersection(FP4_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
)
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${FP4_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_NVFP4=1")
message(STATUS "Building NVFP4 for archs: ${FP4_ARCHS}")
else()
message(STATUS "Not building NVFP4 as no compatible archs were found.")
# clear FP4_ARCHS
set(FP4_ARCHS)
endif()
#
# Machete kernels
@ -458,7 +476,7 @@ define_gpu_extension_target(
SOURCES ${VLLM_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR};${CUTLASS_TOOLS_UTIL_INCLUDE_DIR}
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR}
USE_SABI 3
WITH_SOABI)
@ -581,7 +599,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG d4e09037abf588af1ec47d0e966b237ee376876c
GIT_TAG 720c94869cf2e0ff5a706e9c7f1dce0939686ade
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -61,7 +61,7 @@ representative at an online or offline/IRL event.
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement in the #code-of-conduct
channel in the [vLLM Discord](https://discord.com/invite/jz7wjKhh6g).
channel in the [vLLM Slack](https://slack.vllm.ai).
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
@ -125,4 +125,3 @@ Community Impact Guidelines were inspired by
For answers to common questions about this code of conduct, see the
[Contributor Covenant FAQ](https://www.contributor-covenant.org/faq). Translations are available at
[Contributor Covenant translations](https://www.contributor-covenant.org/translations).

View File

@ -27,6 +27,9 @@ RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
&& python3 --version && python3 -m pip --version
# Install uv for faster pip installs
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install uv
# Upgrade to GCC 10 to avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92519
# as it was causing spam when compiling the CUTLASS kernels
@ -52,13 +55,13 @@ WORKDIR /workspace
# after this step
RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
python3 -m pip install --index-url https://download.pytorch.org/whl/nightly/cu126 "torch==2.7.0.dev20250121+cu126" "torchvision==0.22.0.dev20250121"; \
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu126 "torch==2.7.0.dev20250121+cu126" "torchvision==0.22.0.dev20250121"; \
fi
COPY requirements-common.txt requirements-common.txt
COPY requirements-cuda.txt requirements-cuda.txt
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-cuda.txt
uv pip install --system -r requirements-cuda.txt
# cuda arch list used by torch
# can be useful for both `dev` and `test`
@ -79,7 +82,7 @@ ARG TARGETPLATFORM
COPY requirements-build.txt requirements-build.txt
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-build.txt
uv pip install --system -r requirements-build.txt
COPY . .
ARG GIT_REPO_CHECK=0
@ -127,7 +130,7 @@ RUN --mount=type=cache,target=/root/.cache/ccache \
# Check the size of the wheel if RUN_WHEEL_CHECK is true
COPY .buildkite/check-wheel-size.py check-wheel-size.py
# sync the default value with .buildkite/check-wheel-size.py
ARG VLLM_MAX_SIZE_MB=300
ARG VLLM_MAX_SIZE_MB=400
ENV VLLM_MAX_SIZE_MB=$VLLM_MAX_SIZE_MB
ARG RUN_WHEEL_CHECK=true
RUN if [ "$RUN_WHEEL_CHECK" = "true" ]; then \
@ -144,7 +147,7 @@ COPY requirements-lint.txt requirements-lint.txt
COPY requirements-test.txt requirements-test.txt
COPY requirements-dev.txt requirements-dev.txt
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-dev.txt
uv pip install --system -r requirements-dev.txt
#################### DEV IMAGE ####################
#################### vLLM installation IMAGE ####################
@ -174,6 +177,9 @@ RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
&& python3 --version && python3 -m pip --version
# Install uv for faster pip installs
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install uv
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
@ -187,27 +193,30 @@ RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
# after this step
RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
python3 -m pip install --index-url https://download.pytorch.org/whl/nightly/cu124 "torch==2.6.0.dev20241210+cu124" "torchvision==0.22.0.dev20241215"; \
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu124 "torch==2.6.0.dev20241210+cu124" "torchvision==0.22.0.dev20241215"; \
fi
# Install vllm wheel first, so that torch etc will be installed.
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
--mount=type=cache,target=/root/.cache/pip \
python3 -m pip install dist/*.whl --verbose
uv pip install --system dist/*.whl --verbose
# How to build this FlashInfer wheel:
# If we need to build FlashInfer wheel before its release:
# $ export FLASHINFER_ENABLE_AOT=1
# $ # Note we remove 7.0 from the arch list compared to the list below, since FlashInfer only supports sm75+
# $ export TORCH_CUDA_ARCH_LIST='7.5 8.0 8.6 8.9 9.0+PTX'
# $ git clone https://github.com/flashinfer-ai/flashinfer.git --recursive
# $ cd flashinfer
# $ git checkout 524304395bd1d8cd7d07db083859523fcaa246a4
# $ rm -rf build
# $ python3 setup.py bdist_wheel --dist-dir=dist --verbose
# $ ls dist
# $ # upload the wheel to a public location, e.g. https://wheels.vllm.ai/flashinfer/524304395bd1d8cd7d07db083859523fcaa246a4/flashinfer_python-0.2.1.post1+cu124torch2.5-cp38-abi3-linux_x86_64.whl
RUN --mount=type=cache,target=/root/.cache/pip \
. /etc/environment && \
if [ "$TARGETPLATFORM" != "linux/arm64" ]; then \
python3 -m pip install https://wheels.vllm.ai/flashinfer/524304395bd1d8cd7d07db083859523fcaa246a4/flashinfer_python-0.2.0.post1-cp${PYTHON_VERSION_STR}-cp${PYTHON_VERSION_STR}-linux_x86_64.whl; \
uv pip install --system https://github.com/flashinfer-ai/flashinfer/releases/download/v0.2.1.post1/flashinfer_python-0.2.1.post1+cu124torch2.5-cp38-abi3-linux_x86_64.whl ; \
fi
COPY examples examples
@ -217,7 +226,7 @@ COPY examples examples
# TODO: Remove this once FlashInfer AOT wheel is fixed
COPY requirements-build.txt requirements-build.txt
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-build.txt
uv pip install --system -r requirements-build.txt
#################### vLLM installation IMAGE ####################
@ -230,15 +239,15 @@ ADD . /vllm-workspace/
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-dev.txt
uv pip install --system -r requirements-dev.txt
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -e tests/vllm_test_utils
uv pip install --system -e tests/vllm_test_utils
# enable fast downloads from hf (for testing)
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install hf_transfer
uv pip install --system hf_transfer
ENV HF_HUB_ENABLE_HF_TRANSFER 1
# Copy in the v1 package for testing (it isn't distributed yet)
@ -259,9 +268,9 @@ FROM vllm-base AS vllm-openai-base
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.42.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.42.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
else \
pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.45.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.45.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
fi
ENV VLLM_USAGE_SOURCE production-docker-image

View File

@ -23,10 +23,12 @@ WORKDIR ${APP_MOUNT}/vllm
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas
RUN python3 -m pip install sentencepiece transformers==4.45.2 -U
RUN python3 -m pip install transformers-neuronx --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
RUN python3 -m pip install neuronx-cc==2.16.345.0 --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
RUN python3 -m pip install pytest
# uninstall transformers-neuronx package explicitly to avoid version conflict
RUN python3 -m pip uninstall -y transformers-neuronx
COPY . .
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
@ -43,6 +45,10 @@ RUN --mount=type=bind,source=.git,target=.git \
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
# install transformers-neuronx package as an optional dependencies (for V0)
# FIXME: `--no-deps` argument is temporarily added to resolve transformers package version conflict
RUN python3 -m pip install transformers-neuronx==0.13.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U --no-deps
# overwrite entrypoint to run bash script
RUN echo "import subprocess; import sys; subprocess.check_call(sys.argv[1:])" > /usr/local/bin/dockerd-entrypoint.py

View File

@ -6,7 +6,7 @@ ARG RCCL_BRANCH="648a58d"
ARG RCCL_REPO="https://github.com/ROCm/rccl"
ARG TRITON_BRANCH="e5be006"
ARG TRITON_REPO="https://github.com/triton-lang/triton.git"
ARG PYTORCH_BRANCH="8d4926e"
ARG PYTORCH_BRANCH="3a585126"
ARG PYTORCH_VISION_BRANCH="v0.19.1"
ARG PYTORCH_REPO="https://github.com/pytorch/pytorch.git"
ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git"

View File

@ -10,14 +10,19 @@ Easy, fast, and cheap LLM serving for everyone
</h3>
<p align="center">
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
</p>
---
We are excited to invite you to our Menlo Park meetup with Meta, evening of Thursday, February 27! Meta engineers will discuss the improvements on top of vLLM, and vLLM contributors will share updates from the v0.7.x series of releases. [Register Now](https://lu.ma/h7g3kuj9)
---
*Latest News* 🔥
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
- [2025/01] We hosted [the eighth vLLM meetup](https://lu.ma/zep56hui) with Google Cloud! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1epVkt4Zu8Jz_S5OhEHPc798emsYh2BwYfRuDDVEF7u4/edit?usp=sharing).
- [2025/01] We hosted [the eighth vLLM meetup](https://lu.ma/zep56hui) with Google Cloud! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1epVkt4Zu8Jz_S5OhEHPc798emsYh2BwYfRuDDVEF7u4/edit?usp=sharing), and Google Cloud team [here](https://drive.google.com/file/d/1h24pHewANyRL11xy5dXUbvRC9F9Kkjix/view?usp=sharing).
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing), and Snowflake team [here](https://docs.google.com/presentation/d/1qF3RkDAbOULwz9WK5TOltt2fE9t6uIc_hVNLFAaQX6A/edit?usp=sharing).
- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there!
@ -33,10 +38,12 @@ Easy, fast, and cheap LLM serving for everyone
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
---
## About
vLLM is a fast and easy-to-use library for LLM inference and serving.
Originally developed in the [Sky Computing Lab](https://sky.cs.berkeley.edu) at UC Berkeley, vLLM has evloved into a community-driven project with contributions from both academia and industry.
Originally developed in the [Sky Computing Lab](https://sky.cs.berkeley.edu) at UC Berkeley, vLLM has evolved into a community-driven project with contributions from both academia and industry.
vLLM is fast with:
@ -127,6 +134,7 @@ We also have an official fundraising venue through [OpenCollective](https://open
## Citation
If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs/2309.06180):
```bibtex
@inproceedings{kwon2023efficient,
title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
@ -138,12 +146,11 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
## Contact Us
* For technical questions and feature requests, please use Github issues or discussions.
* For discussing with fellow users, please use Discord.
* For coordinating contributions and development, please use Slack.
* For security disclosures, please use Github's security advisory feature.
* For collaborations and partnerships, please contact us at vllm-questions AT lists.berkeley.edu.
- For technical questions and feature requests, please use Github issues or discussions.
- For discussing with fellow users and coordinating contributions and development, please use Slack.
- For security disclosures, please use Github's security advisory feature.
- For collaborations and partnerships, please contact us at vllm-questions AT lists.berkeley.edu.
## Media Kit
* If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit).
- If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit).

View File

@ -3,6 +3,7 @@
## Downloading the ShareGPT dataset
You can download the dataset by running:
```bash
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
```
@ -11,9 +12,18 @@ wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/r
The json file refers to several image datasets (coco, llava, etc.). The benchmark scripts
will ignore a datapoint if the referred image is missing.
```bash
wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/resolve/main/sharegpt4v_instruct_gpt4-vision_cap100k.json
mkdir coco -p
wget http://images.cocodataset.org/zips/train2017.zip -O coco/train2017.zip
unzip coco/train2017.zip -d coco/
```
# Downloading the BurstGPT dataset
You can download the BurstGPT v1.1 dataset by running:
```bash
wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv
```

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import json
import os
import sys

View File

@ -1,3 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
"""Benchmark guided decoding throughput."""
import argparse
import dataclasses

View File

@ -1,13 +1,17 @@
# SPDX-License-Identifier: Apache-2.0
"""Benchmark the latency of processing a single batch of requests."""
import argparse
import dataclasses
import json
import os
import time
from pathlib import Path
from typing import List, Optional
from typing import Any, Dict, List, Optional
import numpy as np
import torch
from benchmark_utils import convert_to_pytorch_benchmark_format
from tqdm import tqdm
from vllm import LLM, SamplingParams
@ -17,6 +21,19 @@ from vllm.sampling_params import BeamSearchParams
from vllm.utils import FlexibleArgumentParser
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
results: Dict[str, Any]) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={"latency": results["latencies"]},
extra_info={k: results[k]
for k in ["avg_latency", "percentiles"]})
if pt_records:
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
with open(pt_file, "w") as f:
json.dump(pt_records, f)
def main(args: argparse.Namespace):
print(args)
@ -53,7 +70,8 @@ def main(args: argparse.Namespace):
beam_width=args.n,
max_tokens=args.output_len,
ignore_eos=True,
))
),
)
def run_to_completion(profile_dir: Optional[str] = None):
if profile_dir:
@ -63,7 +81,8 @@ def main(args: argparse.Namespace):
torch.profiler.ProfilerActivity.CUDA,
],
on_trace_ready=torch.profiler.tensorboard_trace_handler(
str(profile_dir))) as p:
str(profile_dir)),
) as p:
llm_generate()
print(p.key_averages().table(sort_by="self_cuda_time_total"))
else:
@ -80,9 +99,8 @@ def main(args: argparse.Namespace):
if args.profile:
profile_dir = args.profile_result_dir
if not profile_dir:
profile_dir = Path(
"."
) / "vllm_benchmark_result" / f"latency_result_{time.time()}"
profile_dir = (Path(".") / "vllm_benchmark_result" /
f"latency_result_{time.time()}")
print(f"Profiling (results will be saved to '{profile_dir}')...")
run_to_completion(profile_dir=profile_dir)
return
@ -94,9 +112,9 @@ def main(args: argparse.Namespace):
latencies = np.array(latencies)
percentages = [10, 25, 50, 75, 90, 99]
percentiles = np.percentile(latencies, percentages)
print(f'Avg latency: {np.mean(latencies)} seconds')
print(f"Avg latency: {np.mean(latencies)} seconds")
for percentage, percentile in zip(percentages, percentiles):
print(f'{percentage}% percentile latency: {percentile} seconds')
print(f"{percentage}% percentile latency: {percentile} seconds")
# Output JSON results if specified
if args.output_json:
@ -107,43 +125,51 @@ def main(args: argparse.Namespace):
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
save_to_pytorch_benchmark_format(args, results)
if __name__ == '__main__':
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Benchmark the latency of processing a single batch of '
'requests till completion.')
parser.add_argument('--input-len', type=int, default=32)
parser.add_argument('--output-len', type=int, default=128)
parser.add_argument('--batch-size', type=int, default=8)
parser.add_argument('--n',
description="Benchmark the latency of processing a single batch of "
"requests till completion.")
parser.add_argument("--input-len", type=int, default=32)
parser.add_argument("--output-len", type=int, default=128)
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument(
"--n",
type=int,
default=1,
help='Number of generated sequences per prompt.')
parser.add_argument('--use-beam-search', action='store_true')
parser.add_argument('--num-iters-warmup',
help="Number of generated sequences per prompt.",
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument(
"--num-iters-warmup",
type=int,
default=10,
help='Number of iterations to run for warmup.')
parser.add_argument('--num-iters',
help="Number of iterations to run for warmup.",
)
parser.add_argument("--num-iters",
type=int,
default=30,
help='Number of iterations to run.')
help="Number of iterations to run.")
parser.add_argument(
'--profile',
action='store_true',
help='profile the generation process of a single batch')
"--profile",
action="store_true",
help="profile the generation process of a single batch",
)
parser.add_argument(
'--profile-result-dir',
"--profile-result-dir",
type=str,
default=None,
help=('path to save the pytorch profiler output. Can be visualized '
'with ui.perfetto.dev or Tensorboard.'))
help=("path to save the pytorch profiler output. Can be visualized "
"with ui.perfetto.dev or Tensorboard."),
)
parser.add_argument(
'--output-json',
"--output-json",
type=str,
default=None,
help='Path to save the latency results in JSON format.')
help="Path to save the latency results in JSON format.",
)
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()

View File

@ -1,3 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
"""
Offline benchmark to test the long document QA throughput.

View File

@ -1,3 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
"""
Benchmark the efficiency of prefix caching.

View File

@ -1,3 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
"""Benchmark offline prioritization."""
import argparse
import dataclasses

View File

@ -1,3 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
r"""Benchmark online serving throughput.
On the server side, run one of the following commands:
@ -37,6 +38,7 @@ from datetime import datetime
from typing import Any, AsyncGenerator, Collection, Dict, List, Optional, Tuple
import numpy as np
import pandas as pd
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
RequestFuncOutput)
from datasets import load_dataset
@ -54,6 +56,8 @@ try:
except ImportError:
from argparse import ArgumentParser as FlexibleArgumentParser
from benchmark_utils import convert_to_pytorch_benchmark_format
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
@ -130,6 +134,35 @@ def sample_sharegpt_requests(
return filtered_dataset
def sample_burstgpt_requests(
dataset_path: str,
num_requests: int,
random_seed: int,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, int, int, None]]:
df = pd.read_csv(dataset_path)
gpt4_df = df[df["Model"] == "GPT-4"]
# Remove the failed requests (i.e., response length is 0)
gpt4_df = gpt4_df[gpt4_df["Response tokens"] > 0]
# Randomly sample num_requests from the dataset
if num_requests <= len(gpt4_df):
gpt4_df = gpt4_df.sample(n=num_requests, random_state=random_seed)
else:
gpt4_df = gpt4_df.sample(n=num_requests,
random_state=random_seed,
replace=True)
# Convert the dataframe to a list of tuples
dataset = gpt4_df.values.tolist()
input_requests = []
for i in range(num_requests):
input_len = int(dataset[i][2])
output_len = int(dataset[i][3])
prompt = tokenizer.decode([(i + j) % tokenizer.vocab_size
for j in range(input_len)])
input_requests.append((prompt, input_len, output_len, None))
return input_requests
def sample_sonnet_requests(
dataset_path: str,
num_requests: int,
@ -536,6 +569,7 @@ async def benchmark(
ignore_eos: bool,
goodput_config_dict: Dict[str, float],
max_concurrency: Optional[int],
lora_modules: Optional[List[str]],
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS[backend]
@ -561,6 +595,7 @@ async def benchmark(
multi_modal_content=test_mm_content,
ignore_eos=ignore_eos,
)
test_output = await request_func(request_func_input=test_input)
if not test_output.success:
raise ValueError(
@ -569,6 +604,11 @@ async def benchmark(
else:
print("Initial test run completed. Starting main benchmark run...")
if lora_modules:
# For each input request, choose a LoRA module at random.
lora_modules = iter(
[random.choice(lora_modules) for _ in range(len(input_requests))])
if profile:
print("Starting profiler...")
profile_input = RequestFuncInput(model=model_id,
@ -615,8 +655,13 @@ async def benchmark(
tasks: List[asyncio.Task] = []
async for request in get_request(input_requests, request_rate, burstiness):
prompt, prompt_len, output_len, mm_content = request
request_func_input = RequestFuncInput(model=model_id,
model_name=model_name,
req_model_id, req_model_name = model_id, model_name
if lora_modules:
req_lora_module = next(lora_modules)
req_model_id, req_model_name = req_lora_module, req_lora_module
request_func_input = RequestFuncInput(model=req_model_id,
model_name=req_model_name,
prompt=prompt,
api_url=api_url,
prompt_len=prompt_len,
@ -774,6 +819,32 @@ def parse_goodput(slo_pairs):
return goodput_config_dict
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
results: Dict[str, Any],
file_name: str) -> None:
metrics = [
"median_ttft_ms", "mean_ttft_ms", "std_ttft_ms", "p99_ttft_ms",
"mean_tpot_ms", "median_tpot_ms", "std_tpot_ms", "p99_tpot_ms",
"median_itl_ms", "mean_itl_ms", "std_itl_ms", "p99_itl_ms"
]
# These raw data might be useful, but they are rather big. They can be added
# later if needed
ignored_metrics = ["ttfts", "itls", "generated_texts", "errors"]
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={k: [results[k]]
for k in metrics},
extra_info={
k: results[k]
for k in results if k not in metrics and k not in ignored_metrics
})
if pt_records:
# Don't use json suffix here as we don't want CI to pick it up
pt_file = f"{os.path.splitext(file_name)[0]}.pytorch.json"
with open(pt_file, "w") as f:
json.dump(pt_records, f)
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
@ -817,6 +888,14 @@ def main(args: argparse.Namespace):
fixed_output_len=args.sharegpt_output_len,
)
elif args.dataset_name == "burstgpt":
input_requests = sample_burstgpt_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
random_seed=args.seed,
tokenizer=tokenizer,
)
elif args.dataset_name == "sonnet":
# Do not format the prompt, pass to message directly
if args.backend == "openai-chat":
@ -899,6 +978,7 @@ def main(args: argparse.Namespace):
ignore_eos=args.ignore_eos,
goodput_config_dict=goodput_config_dict,
max_concurrency=args.max_concurrency,
lora_modules=args.lora_modules,
))
# Save config and results to json
@ -945,6 +1025,7 @@ def main(args: argparse.Namespace):
file_name = os.path.join(args.result_dir, file_name)
with open(file_name, "w", encoding='utf-8') as outfile:
json.dump(result_json, outfile)
save_to_pytorch_benchmark_format(args, result_json, file_name)
if __name__ == "__main__":
@ -962,7 +1043,8 @@ if __name__ == "__main__":
default=None,
help="Server or API base url if not using http host and port.",
)
parser.add_argument("--host", type=str, default="localhost")
# Use 127.0.0.1 here instead of localhost to force the use of ipv4
parser.add_argument("--host", type=str, default="127.0.0.1")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument(
"--endpoint",
@ -981,7 +1063,7 @@ if __name__ == "__main__":
"--dataset-name",
type=str,
default="sharegpt",
choices=["sharegpt", "sonnet", "random", "hf"],
choices=["sharegpt", "burstgpt", "sonnet", "random", "hf"],
help="Name of the dataset to benchmark on.",
)
parser.add_argument("--dataset-path",
@ -1223,11 +1305,12 @@ if __name__ == "__main__":
'--tokenizer-mode',
type=str,
default="auto",
choices=['auto', 'slow', 'mistral'],
choices=['auto', 'slow', 'mistral', 'custom'],
help='The tokenizer mode.\n\n* "auto" will use the '
'fast tokenizer if available.\n* "slow" will '
'always use the slow tokenizer. \n* '
'"mistral" will always use the `mistral_common` tokenizer.')
'"mistral" will always use the `mistral_common` tokenizer. \n*'
'"custom" will use --tokenizer to select the preregistered tokenizer.')
parser.add_argument("--served-model-name",
type=str,
@ -1236,5 +1319,12 @@ if __name__ == "__main__":
"If not specified, the model name will be the "
"same as the ``--model`` argument. ")
parser.add_argument("--lora-modules",
nargs='+',
default=None,
help="A subset of LoRA module names passed in when "
"launching the server. For each request, the "
"script chooses a LoRA module at random.")
args = parser.parse_args()
main(args)

View File

@ -1,3 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
r"""Benchmark online serving throughput with guided decoding.
On the server side, run one of the following commands:
@ -730,7 +731,8 @@ if __name__ == "__main__":
default=None,
help="Server or API base url if not using http host and port.",
)
parser.add_argument("--host", type=str, default="localhost")
# Use 127.0.0.1 here instead of localhost to force the use of ipv4
parser.add_argument("--host", type=str, default="127.0.0.1")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument(
"--endpoint",

View File

@ -1,14 +1,17 @@
# SPDX-License-Identifier: Apache-2.0
"""Benchmark offline inference throughput."""
import argparse
import dataclasses
import json
import os
import random
import time
from functools import cache
from typing import Dict, List, Optional, Tuple
from typing import Any, Dict, List, Optional, Tuple
import torch
import uvloop
from benchmark_utils import convert_to_pytorch_benchmark_format
from PIL import Image
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
@ -337,6 +340,25 @@ def run_mii(
return end - start
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
results: Dict[str, Any]) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={
"requests_per_second": [results["requests_per_second"]],
"tokens_per_second": [results["tokens_per_second"]],
},
extra_info={
k: results[k]
for k in ["elapsed_time", "num_requests", "total_num_tokens"]
})
if pt_records:
# Don't use json suffix here as we don't want CI to pick it up
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
with open(pt_file, "w") as f:
json.dump(pt_records, f)
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
@ -434,6 +456,7 @@ def main(args: argparse.Namespace):
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
save_to_pytorch_benchmark_format(args, results)
if __name__ == "__main__":

View File

@ -0,0 +1,39 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
import os
from typing import Any, Dict, List
def convert_to_pytorch_benchmark_format(args: argparse.Namespace,
metrics: Dict[str, List],
extra_info: Dict[str, Any]) -> List:
"""
Save the benchmark results in the format used by PyTorch OSS benchmark with
on metric per record
https://github.com/pytorch/pytorch/wiki/How-to-integrate-with-PyTorch-OSS-benchmark-database
"""
records = []
if not os.environ.get("SAVE_TO_PYTORCH_BENCHMARK_FORMAT", False):
return records
for name, benchmark_values in metrics.items():
record = {
"benchmark": {
"name": "vLLM benchmark",
"extra_info": {
"args": vars(args),
},
},
"model": {
"name": args.model,
},
"metric": {
"name": name,
"benchmark_values": benchmark_values,
"extra_info": extra_info,
},
}
records.append(record)
return records

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
import copy
import itertools

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
# Cutlass bench utils
from typing import Iterable, Tuple

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
import copy
import itertools

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
# Weight Shapes are in the format
# ([K, N], TP_SPLIT_DIM)
# Example:

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import os
import aiohttp

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import asyncio
import itertools

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import json
import matplotlib.pyplot as plt

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import pickle as pkl
import time
from dataclasses import dataclass

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import os
import sys
from typing import Optional

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import time
import torch

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
import copy
import json

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
import copy
import itertools

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
from typing import List
import torch

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
import time
from datetime import datetime

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import random
import time
from typing import List, Optional

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import time
import torch

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import itertools
from typing import Optional, Tuple, Union

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
from itertools import accumulate
from typing import List, Optional

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
WEIGHT_SHAPES = {
"ideal": [[4 * 256 * 32, 256 * 32]],
"mistralai/Mistral-7B-v0.1/TP1": [

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import math
import pickle
import re

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import dataclasses
from typing import Any, Callable, Iterable, Optional

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
# Weight Shapes are in the format
# ([K, N], TP_SPLIT_DIM)
# Example:

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import cProfile
import pstats

View File

@ -1,4 +1,5 @@
#!/usr/bin/env python3
# SPDX-License-Identifier: Apache-2.0
#
# A command line tool for running pytorch's hipify preprocessor on CUDA

View File

@ -257,9 +257,9 @@ endmacro()
# where `<=` is the version comparison operator.
# In other words, for each version in `TGT_CUDA_ARCHS` find the highest version
# in `SRC_CUDA_ARCHS` that is less or equal to the version in `TGT_CUDA_ARCHS`.
# We have special handling for 9.0a, if 9.0a is in `SRC_CUDA_ARCHS` and 9.0 is
# in `TGT_CUDA_ARCHS` then we should remove 9.0a from `SRC_CUDA_ARCHS` and add
# 9.0a to the result (and remove 9.0 from TGT_CUDA_ARCHS).
# We have special handling for x.0a, if x.0a is in `SRC_CUDA_ARCHS` and x.0 is
# in `TGT_CUDA_ARCHS` then we should remove x.0a from `SRC_CUDA_ARCHS` and add
# x.0a to the result (and remove x.0 from TGT_CUDA_ARCHS).
# The result is stored in `OUT_CUDA_ARCHS`.
#
# Example:
@ -272,8 +272,8 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
list(REMOVE_DUPLICATES SRC_CUDA_ARCHS)
set(TGT_CUDA_ARCHS_ ${TGT_CUDA_ARCHS})
# if 9.0a is in SRC_CUDA_ARCHS and 9.0 is in CUDA_ARCHS then we should
# remove 9.0a from SRC_CUDA_ARCHS and add 9.0a to _CUDA_ARCHS
# if x.0a is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
# remove x.0a from SRC_CUDA_ARCHS and add x.0a to _CUDA_ARCHS
set(_CUDA_ARCHS)
if ("9.0a" IN_LIST SRC_CUDA_ARCHS)
list(REMOVE_ITEM SRC_CUDA_ARCHS "9.0a")
@ -283,6 +283,14 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
endif()
endif()
if ("10.0a" IN_LIST SRC_CUDA_ARCHS)
list(REMOVE_ITEM SRC_CUDA_ARCHS "10.0a")
if ("10.0" IN_LIST TGT_CUDA_ARCHS)
list(REMOVE_ITEM TGT_CUDA_ARCHS_ "10.0")
set(_CUDA_ARCHS "10.0a")
endif()
endif()
list(SORT SRC_CUDA_ARCHS COMPARE NATURAL ORDER ASCENDING)
# for each ARCH in TGT_CUDA_ARCHS find the highest arch in SRC_CUDA_ARCHS that

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
# ruff: noqa
# code borrowed from https://github.com/pytorch/pytorch/blob/main/torch/utils/collect_env.py

View File

@ -15,6 +15,9 @@ void copy_blocks(std::vector<torch::Tensor> const& key_caches,
std::vector<torch::Tensor> const& value_caches,
const torch::Tensor& block_mapping);
void copy_blocks_mla(std::vector<torch::Tensor> const& kv_caches,
const torch::Tensor& block_mapping);
void reshape_and_cache(torch::Tensor& key, torch::Tensor& value,
torch::Tensor& key_cache, torch::Tensor& value_cache,
torch::Tensor& slot_mapping,

View File

@ -46,7 +46,10 @@ void swap_blocks(torch::Tensor& src, torch::Tensor& dst,
char* src_ptr = static_cast<char*>(src.data_ptr());
char* dst_ptr = static_cast<char*>(dst.data_ptr());
const int64_t block_size_in_bytes = src.element_size() * src[0].numel();
// We use the stride instead of numel in case the cache is padded for memory
// alignment reasons, we assume the blocks data (inclusive of any padding)
// is contiguous in memory
const int64_t block_size_in_bytes = src.element_size() * src.stride(0);
const at::cuda::OptionalCUDAGuard device_guard(
src_device.is_cuda() ? src_device : dst_device);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
@ -93,6 +96,24 @@ __global__ void copy_blocks_kernel(int64_t* key_cache_ptrs,
}
}
// Kernel for MLA, which works on a single joint kv_cache
// Grid: (num_layers, num_pairs)
template <typename scalar_t>
__global__ void copy_blocks_mla_kernel(
int64_t* cache_ptrs, const int64_t* __restrict__ block_mapping,
const int mem_footprint_per_block) {
const int layer_idx = blockIdx.x;
const int pair_idx = blockIdx.y;
scalar_t* cache = reinterpret_cast<scalar_t*>(cache_ptrs[layer_idx]);
int64_t src_block = block_mapping[2 * pair_idx];
int64_t dst_block = block_mapping[2 * pair_idx + 1];
int64_t src_offset = src_block * mem_footprint_per_block;
int64_t dst_offset = dst_block * mem_footprint_per_block;
for (int i = threadIdx.x; i < mem_footprint_per_block; i += blockDim.x) {
cache[dst_offset + i] = cache[src_offset + i];
}
}
} // namespace vllm
// Note: the key_caches and value_caches vectors are constant but
@ -147,6 +168,42 @@ void copy_blocks(std::vector<torch::Tensor> const& key_caches,
}));
}
// copy blocks kernel for MLA (assumes a joint KV-cache)
void copy_blocks_mla(std::vector<torch::Tensor> const& kv_caches,
const torch::Tensor& block_mapping) {
int num_layers = kv_caches.size();
if (num_layers == 0) {
return;
}
torch::Device cache_device = kv_caches[0].device();
TORCH_CHECK(cache_device.is_cuda(), "kv_cache must be on CUDA");
std::vector<int64_t> cache_ptrs(num_layers);
for (int layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
cache_ptrs[layer_idx] =
reinterpret_cast<int64_t>(kv_caches[layer_idx].data_ptr());
}
torch::Tensor cache_ptrs_tensor =
torch::from_blob(cache_ptrs.data(), {num_layers}, torch::kInt64)
.to(cache_device);
int num_pairs = block_mapping.size(0);
// We use the stride instead of numel in case the cache is padded for memory
// alignment reasons, we assume the blocks data (inclusive of any padding)
// is contiguous in memory
int mem_footprint_per_block = kv_caches[0].stride(0);
dim3 grid(num_layers, num_pairs);
dim3 block(std::min(1024, mem_footprint_per_block));
const at::cuda::OptionalCUDAGuard device_guard(cache_device);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(
kv_caches[0].scalar_type(), "copy_blocks_mla_kernel", ([&] {
vllm::copy_blocks_mla_kernel<scalar_t><<<grid, block, 0, stream>>>(
cache_ptrs_tensor.data_ptr<int64_t>(),
block_mapping.data_ptr<int64_t>(), mem_footprint_per_block);
}));
}
namespace vllm {
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
@ -254,6 +311,7 @@ __global__ void concat_and_cache_mla_kernel(
// + pe_dim)]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int block_stride, //
const int entry_stride, //
const int kv_c_stride, //
const int k_pe_stride, //
const int kv_lora_rank, //
@ -274,9 +332,8 @@ __global__ void concat_and_cache_mla_kernel(
int src_stride, int dst_stride, int size, int offset) {
for (int i = threadIdx.x; i < size; i += blockDim.x) {
const int64_t src_idx = token_idx * src_stride + i;
const int64_t dst_idx = block_idx * block_stride +
block_offset * (kv_lora_rank + pe_dim) + i +
offset;
const int64_t dst_idx =
block_idx * block_stride + block_offset * entry_stride + i + offset;
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
dst[dst_idx] = src[src_idx];
} else {
@ -397,8 +454,8 @@ void reshape_and_cache_flash(
reinterpret_cast<KV_T*>(kv_c.data_ptr()), \
reinterpret_cast<KV_T*>(k_pe.data_ptr()), \
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), block_stride, kv_c_stride, \
k_pe_stride, kv_lora_rank, pe_dim, block_size, \
slot_mapping.data_ptr<int64_t>(), block_stride, entry_stride, \
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
reinterpret_cast<const float*>(scale.data_ptr()));
void concat_and_cache_mla(
@ -428,6 +485,7 @@ void concat_and_cache_mla(
int kv_c_stride = kv_c.stride(0);
int k_pe_stride = k_pe.stride(0);
int block_stride = kv_cache.stride(0);
int entry_stride = kv_cache.stride(1);
dim3 grid(num_tokens);
dim3 block(std::min(kv_lora_rank, 512));

View File

@ -1,5 +1,7 @@
#pragma once
#include <stdio.h>
#if defined(__CUDACC__) || defined(_NVHPC_CUDA)
#define HOST_DEVICE_INLINE __forceinline__ __host__ __device__
#define DEVICE_INLINE __forceinline__ __device__
@ -10,6 +12,16 @@
#define HOST_INLINE inline
#endif
#define CUDA_CHECK(cmd) \
do { \
cudaError_t e = cmd; \
if (e != cudaSuccess) { \
printf("Failed: Cuda error %s:%d '%s'\n", __FILE__, __LINE__, \
cudaGetErrorString(e)); \
exit(EXIT_FAILURE); \
} \
} while (0)
int64_t get_device_attribute(int64_t attribute, int64_t device_id);
int64_t get_max_shared_memory_per_block_device_attribute(int64_t device_id);

View File

@ -1,16 +1,22 @@
#include "cuda_utils.h"
#ifdef USE_ROCM
#include <hip/hip_runtime.h>
#include <hip/hip_runtime_api.h>
#endif
int64_t get_device_attribute(int64_t attribute, int64_t device_id) {
int device, value;
if (device_id < 0) {
cudaGetDevice(&device);
} else {
device = device_id;
// Return the cached value on subsequent calls
static int value = [=]() {
int device = static_cast<int>(device_id);
if (device < 0) {
CUDA_CHECK(cudaGetDevice(&device));
}
cudaDeviceGetAttribute(&value, static_cast<cudaDeviceAttr>(attribute),
device);
int value;
CUDA_CHECK(cudaDeviceGetAttribute(
&value, static_cast<cudaDeviceAttr>(attribute), device));
return static_cast<int>(value);
}();
return value;
}

View File

@ -12,14 +12,20 @@ extern "C" {
#include <cuda_runtime_api.h>
#include <cuda.h>
char error_msg[10240]; // 10KB buffer to store error messages
CUresult no_error = CUresult(0);
CUresult error_code = no_error; // store error code
#define CUDA_CHECK(condition) \
do { \
CUresult error = condition; \
if (error != 0) { \
error_code = error; \
char* error_string; \
cuGetErrorString(error, (const char**)&error_string); \
std::cerr << "CUDA Error: " << error_string << " at " << __FILE__ << ":" \
<< __LINE__ << std::endl; \
snprintf(error_msg, sizeof(error_msg), "CUDA Error: %s at %s:%d", \
error_string, __FILE__, __LINE__); \
std::cerr << error_msg << std::endl; \
} \
} while (0)
@ -54,14 +60,22 @@ void create_and_map(unsigned long long device, ssize_t size, CUdeviceptr d_mem,
// Allocate memory using cuMemCreate
CUDA_CHECK(cuMemCreate(p_memHandle, size, &prop, 0));
if (error_code != 0) {
return;
}
CUDA_CHECK(cuMemMap(d_mem, size, 0, *p_memHandle, 0));
if (error_code != 0) {
return;
}
CUmemAccessDesc accessDesc = {};
accessDesc.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
accessDesc.location.id = device;
accessDesc.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
CUDA_CHECK(cuMemSetAccess(d_mem, size, &accessDesc, 1));
if (error_code != 0) {
return;
}
// std::cout << "create_and_map: device=" << device << ", size=" << size << ",
// d_mem=" << d_mem << ", p_memHandle=" << p_memHandle << std::endl;
}
@ -73,7 +87,13 @@ void unmap_and_release(unsigned long long device, ssize_t size,
// ", d_mem=" << d_mem << ", p_memHandle=" << p_memHandle << std::endl;
ensure_context(device);
CUDA_CHECK(cuMemUnmap(d_mem, size));
if (error_code != 0) {
return;
}
CUDA_CHECK(cuMemRelease(*p_memHandle));
if (error_code != 0) {
return;
}
}
PyObject* create_tuple_from_c_integers(unsigned long long a,
@ -121,12 +141,16 @@ void* my_malloc(ssize_t size, int device, CUstream stream) {
size_t granularity;
CUDA_CHECK(cuMemGetAllocationGranularity(&granularity, &prop,
CU_MEM_ALLOC_GRANULARITY_MINIMUM));
if (error_code != 0) {
return nullptr;
}
size_t alignedSize = ((size + granularity - 1) / granularity) * granularity;
CUdeviceptr d_mem;
CUDA_CHECK(cuMemAddressReserve(&d_mem, alignedSize, 0, 0, 0));
if (error_code != 0) {
return nullptr;
}
// allocate the CUmemGenericAllocationHandle
CUmemGenericAllocationHandle* p_memHandle =
(CUmemGenericAllocationHandle*)malloc(
@ -208,6 +232,9 @@ void my_free(void* ptr, ssize_t size, int device, CUstream stream) {
// free address and the handle
CUDA_CHECK(cuMemAddressFree(d_mem, size));
if (error_code != 0) {
return;
}
free(p_memHandle);
}
@ -258,6 +285,12 @@ static PyObject* python_unmap_and_release(PyObject* self, PyObject* args) {
unmap_and_release(recv_device, recv_size, d_mem_ptr, p_memHandle);
if (error_code != 0) {
error_code = no_error;
PyErr_SetString(PyExc_RuntimeError, error_msg);
return nullptr;
}
Py_RETURN_NONE;
}
@ -282,6 +315,12 @@ static PyObject* python_create_and_map(PyObject* self, PyObject* args) {
create_and_map(recv_device, recv_size, d_mem_ptr, p_memHandle);
if (error_code != 0) {
error_code = no_error;
PyErr_SetString(PyExc_RuntimeError, error_msg);
return nullptr;
}
Py_RETURN_NONE;
}

View File

@ -16,6 +16,30 @@ namespace vllm::c3x {
using namespace cute;
template <typename T>
struct identity {
CUTLASS_HOST_DEVICE
T operator()(T lhs) const { return lhs; }
};
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
struct TrivialEpilogue {
private:
using Accum = cutlass::epilogue::fusion::Sm90AccFetch;
using Compute = cutlass::epilogue::fusion::Sm90Compute<
cutlass::epilogue::thread::Identity, ElementD, ElementAcc,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute = cutlass::epilogue::fusion::Sm90EVT<Compute, Accum>;
using ArgumentType = typename EVTCompute::Arguments;
template <typename... Args>
static ArgumentType prepare_args(Args... args) {
return {};
}
};
/*
* This class provides the common load descriptors for the
* ScaledEpilogue[...] classes
@ -174,6 +198,49 @@ struct ScaledEpilogueBias
}
};
/*
* This epilogue performs the same operation as ScaledEpilogueBias, but the
* bias is a column vector instead of a row vector. Useful e.g. if we are
* computing a GEMM via C^T += B^T A^T. This happens in the 2:4 sparse kernels.
*/
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
struct ScaledEpilogueColumnBias
: private ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor> {
private:
using SUPER = ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template ColLoad<ElementD>;
using Compute0 = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTCompute0 =
cutlass::epilogue::fusion::Sm90EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::fusion::Sm90EVT<Compute1, ScaleA, EVTCompute0, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
typename EVTCompute0::Arguments evt0_args{b_args};
return ArgumentType{a_args, evt0_args, bias_args};
}
};
/*
* This epilogue directly supports per-tensor azp in int32 form.
* As opposed to the per-token epilogue below, this epilogue only has an azp_adj

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import enum
from typing import Dict, Union

View File

@ -3,7 +3,7 @@
#include <c10/cuda/CUDAGuard.h>
#include <ATen/ATen.h>
#include <THC/THCAtomics.cuh>
#include <ATen/cuda/Atomic.cuh>
#include "../cuda_compat.h"
#include "../dispatch_utils.h"
@ -197,6 +197,83 @@ __global__ void moe_align_block_size_global_mem_kernel(
}
}
// taken from
// https://github.com/sgl-project/sglang/commit/cdae77b03dfc6fec3863630550b45bbfc789f957
template <typename scalar_t>
__global__ void sgl_moe_align_block_size_kernel(
scalar_t* __restrict__ topk_ids, int32_t* sorted_token_ids,
int32_t* expert_ids, int32_t* total_tokens_post_pad, int32_t num_experts,
int32_t block_size, size_t numel, int32_t* cumsum) {
__shared__ int32_t shared_counts[32][8];
const int warp_id = threadIdx.x / 32;
const int experts_per_warp = 8;
const int my_expert_start = warp_id * experts_per_warp;
// Initialize shared_counts for this warp's experts
for (int i = 0; i < experts_per_warp; ++i) {
if (my_expert_start + i < num_experts) {
shared_counts[warp_id][i] = 0;
}
}
__syncthreads();
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread;
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int expert_id = topk_ids[i];
int warp_idx = expert_id / experts_per_warp;
int expert_offset = expert_id % experts_per_warp;
atomicAdd(&shared_counts[warp_idx][expert_offset], 1);
}
__syncthreads();
// Single thread computes cumulative sum and total tokens
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
int expert_count = 0;
int warp_idx = (i - 1) / experts_per_warp;
int expert_offset = (i - 1) % experts_per_warp;
expert_count = shared_counts[warp_idx][expert_offset];
cumsum[i] =
cumsum[i - 1] + CEILDIV(expert_count, block_size) * block_size;
}
*total_tokens_post_pad = cumsum[num_experts];
}
__syncthreads();
// Assign expert IDs to blocks
if (threadIdx.x < num_experts) {
for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1];
i += block_size) {
expert_ids[i / block_size] = threadIdx.x;
}
}
}
// taken from
// https://github.com/sgl-project/sglang/commit/cdae77b03dfc6fec3863630550b45bbfc789f957
template <typename scalar_t>
__global__ void sgl_moe_token_sort_kernel(scalar_t* __restrict__ topk_ids,
int32_t* sorted_token_ids,
int32_t* cumsum_buffer,
size_t numel) {
const size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
const size_t stride = blockDim.x * gridDim.x;
for (size_t i = tid; i < numel; i += stride) {
int32_t expert_id = topk_ids[i];
int32_t rank_post_pad = atomicAdd(&cumsum_buffer[expert_id], 1);
sorted_token_ids[rank_post_pad] = i;
}
}
template <typename scalar_t, int TOPK>
__global__ void moe_sum_kernel(
scalar_t* __restrict__ out, // [..., d]
@ -305,6 +382,43 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
}
}
void sgl_moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
int64_t block_size,
torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad) {
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
TORCH_CHECK(num_experts == 256,
"sgl_moe_align_block_size kernel only supports deepseek v3.");
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "sgl_moe_align_block_size_kernel", [&] {
// calc needed amount of shared mem for `cumsum` tensors
auto options_int =
torch::TensorOptions().dtype(torch::kInt).device(topk_ids.device());
torch::Tensor cumsum_buffer =
torch::zeros({num_experts + 1}, options_int);
auto align_kernel =
vllm::moe::sgl_moe_align_block_size_kernel<scalar_t>;
align_kernel<<<1, 1024, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(), sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
topk_ids.numel(), cumsum_buffer.data_ptr<int32_t>());
const int block_threads = 256;
const int num_blocks =
(topk_ids.numel() + block_threads - 1) / block_threads;
const int max_blocks = 65535;
const int actual_blocks = std::min(num_blocks, max_blocks);
auto sort_kernel = vllm::moe::sgl_moe_token_sort_kernel<scalar_t>;
sort_kernel<<<actual_blocks, block_threads, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(), sorted_token_ids.data_ptr<int32_t>(),
cumsum_buffer.data_ptr<int32_t>(), topk_ids.numel());
});
}
void moe_sum(torch::Tensor& input, // [num_tokens, topk, hidden_size]
torch::Tensor& output) // [num_tokens, hidden_size]
{

View File

@ -12,3 +12,9 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
int64_t block_size, torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad);
void sgl_moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
int64_t block_size,
torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad);

View File

@ -22,6 +22,15 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
" Tensor! num_tokens_post_pad) -> ()");
m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);
// temporarily adapted from
// https://github.com/sgl-project/sglang/commit/ded9fcd09a43d5e7d5bb31a2bc3e9fc21bf65d2a
m.def(
"sgl_moe_align_block_size(Tensor topk_ids, int num_experts,"
" int block_size, Tensor! sorted_token_ids,"
" Tensor! experts_ids,"
" Tensor! num_tokens_post_pad) -> ()");
m.impl("sgl_moe_align_block_size", torch::kCUDA, &sgl_moe_align_block_size);
#ifndef USE_ROCM
m.def(
"marlin_gemm_moe(Tensor! a, Tensor! b_q_weights, Tensor! sorted_ids, "

View File

@ -176,8 +176,11 @@ void cutlass_scaled_sparse_mm(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b_scales,
std::optional<torch::Tensor> const& bias);
bool cutlass_sparse_compress_entry(torch::Tensor& a_compressed,
torch::Tensor& e, torch::Tensor const& a);
std::vector<torch::Tensor> cutlass_sparse_compress(torch::Tensor const& a);
void scaled_fp4_quant(torch::Tensor& output, torch::Tensor const& input,
torch::Tensor& output_scale,
torch::Tensor const& input_scale);
#endif
void static_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input,

View File

@ -124,18 +124,54 @@ __global__ void batched_rotary_embedding_kernel(
void rotary_embedding(
torch::Tensor& positions, // [batch_size, seq_len] or [num_tokens]
torch::Tensor& query, // [batch_size, seq_len, num_heads * head_size] or
// [num_tokens, num_heads * head_size]
// [num_tokens, num_heads * head_size] or
// [batch_size, seq_len, num_heads, head_size] or
// [num_tokens, num_heads, head_size]
torch::Tensor& key, // [batch_size, seq_len, num_kv_heads * head_size] or
// [num_tokens, num_kv_heads * head_size]
// [num_tokens, num_kv_heads * head_size] or
// [batch_size, seq_len, num_heads, head_size] or
// [num_tokens, num_heads, head_size]
int64_t head_size,
torch::Tensor& cos_sin_cache, // [max_position, rot_dim]
bool is_neox) {
int64_t num_tokens = query.numel() / query.size(-1);
// num_tokens = batch_size * seq_len
int64_t num_tokens = positions.numel();
int positions_ndim = positions.dim();
// Make sure num_tokens dim is consistent across positions, query, and key.
TORCH_CHECK(
positions_ndim == 1 || positions_ndim == 2,
"positions must have shape [num_tokens] or [batch_size, seq_len]");
if (positions_ndim == 1) {
TORCH_CHECK(
query.size(0) == positions.size(0) && key.size(0) == positions.size(0),
"query, key and positions must have the same number of tokens");
}
if (positions_ndim == 2) {
TORCH_CHECK(
query.size(0) == positions.size(0) &&
key.size(0) == positions.size(0) &&
query.size(1) == positions.size(1) &&
key.size(1) == positions.size(1),
"query, key and positions must have the same batch_size and seq_len");
}
// Make sure head_size is valid for query and key
// hidden_size = num_heads * head_size
int query_hidden_size = query.numel() / num_tokens;
int key_hidden_size = key.numel() / num_tokens;
TORCH_CHECK(query_hidden_size % head_size == 0);
TORCH_CHECK(key_hidden_size % head_size == 0);
// Make sure query and key have consistent number of heads
int num_heads = query_hidden_size / head_size;
int num_kv_heads = key_hidden_size / head_size;
TORCH_CHECK(num_heads % num_kv_heads == 0);
int rot_dim = cos_sin_cache.size(1);
int num_heads = query.size(-1) / head_size;
int num_kv_heads = key.size(-1) / head_size;
int64_t query_stride = query.stride(-2);
int64_t key_stride = key.stride(-2);
int seq_dim_idx = positions_ndim - 1;
int64_t query_stride = query.stride(seq_dim_idx);
int64_t key_stride = key.stride(seq_dim_idx);
dim3 grid(num_tokens);
dim3 block(std::min<int64_t>(num_heads * rot_dim / 2, 512));
@ -165,19 +201,58 @@ and process in batched manner.
void batched_rotary_embedding(
torch::Tensor& positions, // [batch_size, seq_len] or [num_tokens]
torch::Tensor& query, // [batch_size, seq_len, num_heads * head_size] or
// [num_tokens, num_heads * head_size]
// [num_tokens, num_heads * head_size] or
// [batch_size, seq_len, num_heads, head_size] or
// [num_tokens, num_heads, head_size]
torch::Tensor& key, // [batch_size, seq_len, num_kv_heads * head_size] or
// [num_tokens, num_kv_heads * head_size]
// [num_tokens, num_kv_heads * head_size] or
// [batch_size, seq_len, num_heads, head_size] or
// [num_tokens, num_heads, head_size]
int64_t head_size,
torch::Tensor& cos_sin_cache, // [max_position, rot_dim]
bool is_neox, int64_t rot_dim,
torch::Tensor& cos_sin_cache_offsets // [num_tokens]
torch::Tensor& cos_sin_cache_offsets // [num_tokens] or [batch_size]
) {
// num_tokens = batch_size * seq_len
int64_t num_tokens = cos_sin_cache_offsets.size(0);
int num_heads = query.size(-1) / head_size;
int num_kv_heads = key.size(-1) / head_size;
int64_t query_stride = query.stride(-2);
int64_t key_stride = key.stride(-2);
TORCH_CHECK(
positions.size(0) == num_tokens || positions.numel() == num_tokens,
"positions must have the same num_tokens or batch_size as "
"cos_sin_cache_offsets");
int positions_ndim = positions.dim();
// Make sure num_tokens dim is consistent across positions, query, and key.
TORCH_CHECK(
positions_ndim == 1 || positions_ndim == 2,
"positions must have shape [num_tokens] or [batch_size, seq_len]");
if (positions_ndim == 1) {
TORCH_CHECK(
query.size(0) == positions.size(0) && key.size(0) == positions.size(0),
"query, key and positions must have the same number of tokens");
}
if (positions_ndim == 2) {
TORCH_CHECK(
query.size(0) == positions.size(0) &&
key.size(0) == positions.size(0) &&
query.size(1) == positions.size(1) &&
key.size(1) == positions.size(1),
"query, key and positions must have the same batch_size and seq_len");
}
// Make sure head_size is valid for query and key
int query_hidden_size = query.numel() / num_tokens;
int key_hidden_size = key.numel() / num_tokens;
TORCH_CHECK(query_hidden_size % head_size == 0);
TORCH_CHECK(key_hidden_size % head_size == 0);
// Make sure query and key have concistent number of heads
int num_heads = query_hidden_size / head_size;
int num_kv_heads = key_hidden_size / head_size;
TORCH_CHECK(num_heads % num_kv_heads == 0);
int seq_dim_idx = positions_ndim - 1;
int64_t query_stride = query.stride(seq_dim_idx);
int64_t key_stride = key.stride(seq_dim_idx);
dim3 grid(num_tokens);
dim3 block(std::min<int64_t>(num_heads * rot_dim / 2, 512));

View File

@ -334,7 +334,7 @@ __global__ void __launch_bounds__(64)
}
// TODO: Shang: Hoist loop invariance.
for (int ax1_0_1 = 0; ax1_0_1 < 4; ++ax1_0_1) {
for (int ax1_0_1 = 0; ax1_0_1 < (N / 32); ++ax1_0_1) {
for (int local_id = 0; local_id < 8; ++local_id) {
int row_offset = (((int)blockIdx_y) / j_factors1) * 16 +
((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;

View File

@ -1,6 +1,7 @@
# CUTLASS Epilogues
## Introduction
This document describes the various CUTLASS epilogues implemented for fusing de-quantization operations onto GEMMs.
Currently, we only support symmetric quantization for weights,
@ -8,10 +9,11 @@ and symmetric and asymmetric quantization for activations.
Both can be quantized per-tensor or per-channel (weights) / per-token (activations).
There are 4 epilogues:
1. ScaledEpilogue: symmetric quantization for activations, no bias.
1. ScaledEpilogueBias: symmetric quantization for activations, supports bias.
1. ScaledEpilogueAzp: asymmetric per-tensor quantization for activations, supports bias.
1. ScaledEpilogueAzpPerToken: asymmetric per-token quantization for activations, supports bias.
1. `ScaledEpilogue`: symmetric quantization for activations, no bias.
1. `ScaledEpilogueBias`: symmetric quantization for activations, supports bias.
1. `ScaledEpilogueAzp`: asymmetric per-tensor quantization for activations, supports bias.
1. `ScaledEpilogueAzpPerToken`: asymmetric per-token quantization for activations, supports bias.
We do not have epilogues for asymmetric quantization of activations without bias in order to reduce final binary size.
Instead, if no bias is passed, the epilogue will use 0 as the bias.
@ -26,12 +28,15 @@ If $` \widehat X `$ is the quantized $` X `$, our matrices become the following
```math
A = s_a (\widehat A - J_a z_a)
```
```math
B = s_b \widehat B
```
```math
D = A B + C
```
```math
D = s_a s_b \widehat D + C
```
@ -48,9 +53,11 @@ Expanding further, we can calculate $` \widehat D `$ as follows:
```math
A B = s_a ( \widehat A - J_a z_a ) s_b \widehat B
```
```math
A B = s_a s_b \left( \widehat A \widehat B - J_a z_a \widehat B \right)
```
```math
\widehat D = \widehat A \widehat B - z_a J_a \widehat B
```
@ -61,16 +68,19 @@ Each row of it is equal to $` \mathbf 1 \widehat B `$, which is a row-vector of
## Epilogues
### ScaledEpilogue
### `ScaledEpilogue`
This epilogue computes the symmetric quantization for activations without bias, meaning $` C = 0 `$ and $` z_a = 0 `$.
The output of the GEMM is:
```math
\widehat D = \widehat A \widehat B
```
```math
D = s_a s_b \widehat D
```
```math
D = s_a s_b \widehat A \widehat B
```
@ -79,36 +89,42 @@ Epilogue parameters:
- `scale_a` is the scale for activations, can be per-tensor (scalar) or per-token (column-vector).
- `scale_b` is the scale for weights, can be per-tensor (scalar) or per-channel (row-vector).
### ScaledEpilogueBias
### `ScaledEpilogueBias`
This epilogue computes the symmetric quantization for activations with bias, meaning $` z_a = 0 `$.
The output of the GEMM is:
```math
\widehat D = \widehat A \widehat B
```
```math
D = s_a s_b \widehat D + C
```
```math
D = s_a s_b \widehat A \widehat B + C
```
Epilogue parameters:
- `scale_a` is the scale for activations, can be per-tensor (scalar) or per-token (column-vector).
- `scale_b` is the scale for weights, can be per-tensor (scalar) or per-channel (row-vector).
- `bias` is the bias, is always per-channel (row-vector).
### ScaledEpilogueAzp
### `ScaledEpilogueAzp`
This epilogue computes the asymmetric per-tensor quantization for activations with bias.
The output of the GEMM is:
```math
\widehat D = \widehat A \widehat B - z_a J_a \widehat B
```
```math
D = s_a s_b \widehat D + C
```
```math
D = s_a s_b \left( \widehat A \widehat B - z_a J_a \widehat B \right) + C
```
@ -117,6 +133,7 @@ Because $` z_a `$ is a scalar, the zero-point term $` z_a J_a \widehat B `$ has
That is precomputed and stored in `azp_with_adj` as a row-vector.
Epilogue parameters:
- `scale_a` is the scale for activations, can be per-tensor (scalar) or per-token (column-vector).
- Generally this will be per-tensor as the zero-points are per-tensor.
- `scale_b` is the scale for weights, can be per-tensor (scalar) or per-channel (row-vector).
@ -125,13 +142,15 @@ Epilogue parameters:
To use these kernels efficiently, users must precompute the `azp_with_adj` term offline and pass it to the kernel.
### ScaledEpilogueAzpPerToken
### `ScaledEpilogueAzpPerToken`
This epilogue computes the asymmetric per-token quantization for activations with bias.
The output of the GEMM is the same as above, but the $` z_a `$ is a column-vector.
That means the zero-point term $` z_a J_a \widehat B `$ becomes an outer product of $` z_a `$ and $` \mathbf 1 \widehat B `$.
Epilogue parameters:
- `scale_a` is the scale for activations, can be per-tensor (scalar) or per-token (column-vector).
- Generally this will be per-token as the zero-points are per-token.
- `scale_b` is the scale for weights, can be per-tensor (scalar) or per-channel (row-vector).
@ -142,6 +161,7 @@ Epilogue parameters:
To use these kernels efficiently, users must precompute the `azp_adj` term offline and pass it to the kernel.
The epilogue performs the following computation (where `Dq` is the raw quantized output of the GEMM):
```
```math
out = scale_a * scale_b * (Dq - azp_adj * azp) + bias
```

View File

@ -53,12 +53,17 @@ struct cutlass_3x_gemm {
using EVTCompute = typename Epilogue::EVTCompute;
// These are the minimum alignments needed for the kernels to compile
static constexpr int AlignmentAB =
128 / cutlass::sizeof_bits<ElementAB>::value;
static constexpr int AlignmentCD = 4;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, TileShape,
ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
ElementAcc, float, ElementC, StrideC, 4, ElementD, StrideD, 4,
EpilogueSchedule, EVTCompute>::CollectiveOp;
ElementAcc, float, ElementC, StrideC, AlignmentCD, ElementD, StrideD,
AlignmentCD, EpilogueSchedule, EVTCompute>::CollectiveOp;
static constexpr size_t CEStorageSize =
sizeof(typename CollectiveEpilogue::SharedStorage);
@ -69,8 +74,8 @@ struct cutlass_3x_gemm {
using CollectiveMainloop =
typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
ElementAB, cutlass::layout::RowMajor, 16,
ElementAB, cutlass::layout::ColumnMajor, 16,
ElementAB, cutlass::layout::RowMajor, AlignmentAB,
ElementAB, cutlass::layout::ColumnMajor, AlignmentAB,
ElementAcc, TileShape, ClusterShape,
Stages,
KernelSchedule>::CollectiveOp;

View File

@ -103,14 +103,19 @@ struct cutlass_2x_gemm {
using EVTD = cutlass::epilogue::threadblock::Sm80EVT<D, EVTCompute>;
// These are the minimum alignments needed for the kernels to compile
static constexpr int AlignmentAB =
128 / cutlass::sizeof_bits<ElementAB>::value;
static constexpr int AlignmentCD = 4;
// clang-format off
using RowMajor = typename cutlass::layout::RowMajor;
using ColumnMajor = typename cutlass::layout::ColumnMajor;
using KernelType =
ArchGuard<typename cutlass::gemm::kernel::DefaultGemmWithVisitor<
ElementAB, RowMajor, cutlass::ComplexTransform::kNone, 16,
ElementAB, ColumnMajor, cutlass::ComplexTransform::kNone, 16,
float, cutlass::layout::RowMajor, 4,
ElementAB, RowMajor, cutlass::ComplexTransform::kNone, AlignmentAB,
ElementAB, ColumnMajor, cutlass::ComplexTransform::kNone, AlignmentAB,
float, cutlass::layout::RowMajor, AlignmentCD,
ElementAcc, float, cutlass::arch::OpClassTensorOp,
Arch,
TileShape, WarpShape, InstructionShape,

View File

@ -16,29 +16,11 @@ void cutlass_scaled_mm_sm90(torch::Tensor& c, torch::Tensor const& a,
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
using GroupShape = std::array<int64_t, 2>;
int M = a.size(0), N = b.size(1), K = a.size(1);
GroupShape a_scale_group_shape = [&, &s = a_scales]() -> GroupShape {
if (s.numel() == 1) return {M, K}; // tensor-wise
if (s.dim() == 2)
return {ceil_div(a.size(0), s.size(0)), ceil_div(a.size(1), s.size(1))};
TORCH_CHECK(false, "Unsupported scale shape for scale_a");
}();
GroupShape b_scale_group_shape = [&, &s = b_scales]() -> GroupShape {
if (s.numel() == 1) return {K, N}; // tensor-wise
if (s.dim() == 2)
return {ceil_div(b.size(0), s.size(0)), ceil_div(b.size(1), s.size(1))};
TORCH_CHECK(false, "Unsupported scale shape for scale_b");
}();
if ((a_scale_group_shape == GroupShape{M, K} ||
a_scale_group_shape == GroupShape{1, K}) &&
(b_scale_group_shape == GroupShape{K, N} ||
b_scale_group_shape == GroupShape{K, 1})) {
// "standard per-tensor/per-token/per-channel" scaling
if ((a_scales.numel() == 1 || a_scales.numel() == a.size(0)) &&
(b_scales.numel() == 1 || b_scales.numel() == b.size(1))) {
// Standard per-tensor/per-token/per-channel scaling
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
if (a.dtype() == torch::kFloat8_e4m3fn) {
vllm::cutlass_scaled_mm_sm90_fp8(c, a, b, a_scales, b_scales, bias);
@ -46,25 +28,32 @@ void cutlass_scaled_mm_sm90(torch::Tensor& c, torch::Tensor const& a,
TORCH_CHECK(a.dtype() == torch::kInt8);
vllm::cutlass_scaled_mm_sm90_int8(c, a, b, a_scales, b_scales, bias);
}
} else if (a_scale_group_shape == GroupShape{1, 128} &&
b_scale_group_shape == GroupShape{128, 128}) {
} else {
using GroupShape = std::array<int64_t, 2>;
auto make_group_shape = [](torch::Tensor const& x,
torch::Tensor const& s) -> GroupShape {
TORCH_CHECK(s.dim() == 2, "cutlass_scaled_mm group scales must be 2D");
return {ceil_div(x.size(0), s.size(0)), ceil_div(x.size(1), s.size(1))};
};
GroupShape a_scale_group_shape = make_group_shape(a, a_scales);
GroupShape b_scale_group_shape = make_group_shape(b, b_scales);
// 1x128 per-token group scales for activations
// 128x128 blockwise scales for weights
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn &&
b.dtype() == torch::kFloat8_e4m3fn,
"Currently only FP8 is supported for A group shape 1x128 and "
"B group shape 128x128");
TORCH_CHECK((a_scale_group_shape == GroupShape{1, 128} &&
b_scale_group_shape == GroupShape{128, 128} &&
a.dtype() == torch::kFloat8_e4m3fn &&
b.dtype() == torch::kFloat8_e4m3fn),
"cutlass_scaled_mm only supports datatype float8_e4m3fn.\n"
"a_scale_group_shape must be [1, 128]. Got: [",
a_scale_group_shape[0], ", ", a_scale_group_shape[1],
"]\n"
"b_scale_group_shape must be [128, 128]. Got: [",
b_scale_group_shape[0], ", ", b_scale_group_shape[1], "]");
TORCH_CHECK(!bias, "Bias not yet supported blockwise scaled_mm");
vllm::cutlass_scaled_mm_blockwise_sm90_fp8(c, a, b, a_scales, b_scales);
} else {
TORCH_CHECK(false,
"Unsupported scale group shapes for CUTLASS 3.x GEMM.\n "
"a_scale_group_shape must be [1, 128], got: [",
a_scale_group_shape[0], ", ", a_scale_group_shape[1],
"]\n"
"b_scale_group_shape must be [128, 128], got: [",
b_scale_group_shape[0], ", ", b_scale_group_shape[1], "]");
}
}

View File

@ -0,0 +1,32 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#if defined ENABLE_NVFP4 && ENABLE_NVFP4
void scaled_fp4_quant_sm100a(torch::Tensor const& output,
torch::Tensor const& input,
torch::Tensor const& output_sf,
torch::Tensor const& input_sf);
#endif
void scaled_fp4_quant(torch::Tensor& output, torch::Tensor const& input,
torch::Tensor& output_sf, torch::Tensor const& input_sf) {
#if defined ENABLE_NVFP4 && ENABLE_NVFP4
return scaled_fp4_quant_sm100a(output, input, output_sf, input_sf);
#endif
TORCH_CHECK_NOT_IMPLEMENTED(false, "No compiled nvfp4 quantization");
}

View File

@ -0,0 +1,379 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <cuda_runtime_api.h>
#include <cuda_runtime.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda_fp8.h>
#include "cuda_utils.h"
// Get type2 from type or vice versa (applied to half and bfloat16)
template <typename T>
struct TypeConverter {
using Type = half2;
}; // keep for generality
template <>
struct TypeConverter<half2> {
using Type = half;
};
template <>
struct TypeConverter<half> {
using Type = half2;
};
template <>
struct TypeConverter<__nv_bfloat162> {
using Type = __nv_bfloat16;
};
template <>
struct TypeConverter<__nv_bfloat16> {
using Type = __nv_bfloat162;
};
#define ELTS_PER_THREAD 8
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
return val;
#else
return 0;
#endif
}
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
return val;
#else
return 0;
#endif
}
// Fast reciprocal.
inline __device__ float reciprocal_approximate_ftz(float a) {
float b;
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
return b;
}
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
int numCols,
SFType* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
CVT_FP4_NUM_THREADS_PER_SF == 2);
// One pair of threads write one SF to global memory.
// TODO: stage through smem for packed STG.32
// is it better than STG.8 from 4 threads ?
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
// SF vector index (16 elements share one SF in the K dimension).
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
int32_t mIdx = rowIdx;
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
int32_t mTileIdx = mIdx / (32 * 4);
// SF vector size 16.
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numKTiles = (numCols + factor - 1) / factor;
int64_t mTileStride = numKTiles * 32 * 4 * 4;
int32_t kTileIdx = (kIdx / 4);
int64_t kTileStride = 32 * 4 * 4;
// M tile layout [32, 4] is column-major.
int32_t outerMIdx = (mIdx % 32);
int64_t outerMStride = 4 * 4;
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
int64_t innerMStride = 4;
int32_t innerKIdx = (kIdx % 4);
int64_t innerKStride = 1;
// Compute the global offset.
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
outerMIdx * outerMStride + innerMIdx * innerMStride +
innerKIdx * innerKStride;
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
}
#endif
return nullptr;
}
// Define a 16 bytes packed data type.
template <class Type>
struct PackedVec {
typename TypeConverter<Type>::Type elts[4];
};
template <>
struct PackedVec<__nv_fp8_e4m3> {
__nv_fp8x2_e4m3 elts[8];
};
// Quantizes the provided PackedVec into the uint32_t output
template <class Type, bool UE8M0_SF = false>
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal,
uint8_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
// Get absolute maximum values among the local 8 values.
auto localMax = __habs2(vec.elts[0]);
// Local maximum value.
#pragma unroll
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
localMax = __hmax2(localMax, __habs2(vec.elts[i]));
}
// Get the absolute maximum among all 16 values (two threads).
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
// Get the final absolute maximum values.
float vecMax = float(__hmax(localMax.x, localMax.y));
// Get the SF (max value of the vector / max value of e2m1).
// maximum value of e2m1 = 6.0.
// TODO: use half as compute data type.
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
// 8 bits representation of the SF.
uint8_t fp8SFVal;
// Write the SF to global memory (STG.8).
if constexpr (UE8M0_SF) {
// Extract the 8 exponent bits from float32.
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
fp8SFVal = tmp & 0xff;
// Convert back to fp32.
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
} else {
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
// Convert back to fp32.
SFValue = float(tmp);
}
// Get the output scale.
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
// reciprocal(SFScaleVal))
float outputScale =
SFValue != 0 ? reciprocal_approximate_ftz(
SFValue * reciprocal_approximate_ftz(SFScaleVal))
: 0.0f;
if (SFout) {
// Write the SF to global memory (STG.8).
*SFout = fp8SFVal;
}
// Convert the input to float.
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
if constexpr (std::is_same_v<Type, half>) {
fp2Vals[i] = __half22float2(vec.elts[i]);
} else {
fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
}
fp2Vals[i].x *= outputScale;
fp2Vals[i].y *= outputScale;
}
// Convert to e2m1 values.
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
// Write the e2m1 values to global memory.
return e2m1Vec;
#else
return 0;
#endif
}
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(512, 4) cvt_fp16_to_fp4(
#else
cvt_fp16_to_fp4(
#endif
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
uint32_t* out, uint32_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
static_assert(sizeof(PackedVec) == sizeof(Type) * CVT_FP4_ELTS_PER_THREAD,
"Vec size is not matched.");
// Get the global scaling factor, which will be applied to the SF.
// Note SFScale is the same as next GEMM's alpha, which is
// (448.f / (Alpha_A / 6.f)).
float const SFScaleVal = SFScale == nullptr ? 1.0f : SFScale[0];
// Input tensor row/col loops.
for (int rowIdx = blockIdx.x; rowIdx < numRows; rowIdx += gridDim.x) {
for (int colIdx = threadIdx.x; colIdx < numCols / CVT_FP4_ELTS_PER_THREAD;
colIdx += blockDim.x) {
int64_t inOffset = rowIdx * (numCols / CVT_FP4_ELTS_PER_THREAD) + colIdx;
PackedVec in_vec = reinterpret_cast<PackedVec const*>(in)[inOffset];
// Get the output tensor offset.
// Same as inOffset because 8 elements are packed into one uint32_t.
int64_t outOffset = inOffset;
auto& out_pos = out[outOffset];
auto sf_out =
cvt_quant_to_fp4_get_sf_out_offset<uint32_t,
CVT_FP4_NUM_THREADS_PER_SF>(
rowIdx, colIdx, numCols, SFout);
out_pos =
cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
}
}
#endif
}
template <typename T>
void invokeFP4Quantization(int m, int n, T const* input, float const* SFScale,
int64_t* output, int32_t* SFOuput, bool useUE8M0,
int multiProcessorCount, cudaStream_t stream) {
// Grid, Block size.
// Each thread converts 8 values.
dim3 block(std::min(int(n / ELTS_PER_THREAD), 512));
// Get number of blocks per SM (assume we can fully utilize the SM).
int const numBlocksPerSM = 2048 / block.x;
dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM));
// Launch the cvt kernel.
if (useUE8M0) {
cvt_fp16_to_fp4<T, true><<<grid, block, 0, stream>>>(
m, n, input, SFScale, reinterpret_cast<uint32_t*>(output),
reinterpret_cast<uint32_t*>(SFOuput));
} else {
cvt_fp16_to_fp4<T, false><<<grid, block, 0, stream>>>(
m, n, input, SFScale, reinterpret_cast<uint32_t*>(output),
reinterpret_cast<uint32_t*>(SFOuput));
}
}
// Instantiate the function.
template void invokeFP4Quantization(int m, int n, half const* input,
float const* SFScale, int64_t* output,
int32_t* SFOuput, bool useUE8M0,
int multiProcessorCount,
cudaStream_t stream);
template void invokeFP4Quantization(int m, int n, __nv_bfloat16 const* input,
float const* SFScale, int64_t* output,
int32_t* SFOuput, bool useUE8M0,
int multiProcessorCount,
cudaStream_t stream);
void scaled_fp4_quant_sm100a(torch::Tensor const& output,
torch::Tensor const& input,
torch::Tensor const& output_sf,
torch::Tensor const& input_sf) {
int32_t m = input.size(0);
int32_t n = input.size(1);
TORCH_CHECK(n % 16 == 0, "The N dimension must be multiple of 16.");
int multiProcessorCount =
get_device_attribute(cudaDevAttrMultiProcessorCount, -1);
auto input_sf_ptr = static_cast<float const*>(input_sf.data_ptr());
auto sf_out = static_cast<int32_t*>(output_sf.data_ptr());
auto output_ptr = static_cast<int64_t*>(output.data_ptr());
at::cuda::CUDAGuard device_guard{(char)input.get_device()};
auto stream = at::cuda::getStreamFromPool(false, input.get_device());
if (stream == nullptr) {
std::cerr << "Warning: Null CUDA stream" << std::endl;
}
// We don't support e8m0 scales at this moment.
bool useUE8M0 = false;
switch (input.scalar_type()) {
case torch::kHalf: {
auto input_ptr = reinterpret_cast<half const*>(input.data_ptr());
invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr, sf_out,
useUE8M0, multiProcessorCount, stream);
break;
}
case torch::kBFloat16: {
auto input_ptr = reinterpret_cast<__nv_bfloat16 const*>(input.data_ptr());
invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr, sf_out,
useUE8M0, multiProcessorCount, stream);
break;
}
default: {
std::cerr << "Observing: " << input.scalar_type()
<< " for the input datatype which is invalid";
throw std::runtime_error(
"Unsupported input data type for quantize_to_fp4.");
}
}
}

View File

@ -1,7 +1,6 @@
#pragma once
#if defined(__HIPCC__) && \
(defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
#if defined(__HIPCC__) && defined(__gfx942__)
#define __HIP__MI300__
#endif

View File

@ -6,7 +6,7 @@ Machete is a spiritual successor to the Marlin kernel but optimized for Hopper a
Machete effectively performs
```
```python
scale_type = w_s.dtype
compute_type = a.dtype
out = (w_q.to(scale_type) * w_s - w_z.to(scale_type)) @ a
@ -24,7 +24,7 @@ applied.
The main optimization within Machete is prepacking the weight matrix to more closely match the tensor core layouts, allowing for wider shared memory loads when loading the weight matrix. This means that the weight matrix must be prepacked before calling `machete_gemm`. The flow looks something like:
```
```python
from vllm import _custom_ops as ops
...

View File

@ -1,3 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import itertools
import math
import os

View File

@ -24,8 +24,7 @@
#include "../attention/dtype_fp8.cuh"
#include "../quantization/fp8/amd/quant_utils.cuh"
#if defined(__HIPCC__) && (defined(__gfx90a__) || defined(__gfx940__) || \
defined(__gfx941__) || defined(__gfx942__))
#if defined(__HIPCC__) && (defined(__gfx90a__) || defined(__gfx942__))
#define __HIP__MI300_MI250__
#endif

View File

@ -1,165 +0,0 @@
// clang-format will break include orders
// clang-format off
#include <cudaTypedefs.h>
#if defined CUDA_VERSION && CUDA_VERSION >= 12020
#include "sparse_scaled_mm_c3x.cuh"
#include "cutlass/numeric_conversion.h"
#include "cutlass/transform/device/transform_universal_adapter.hpp"
#include "cutlass/transform/kernel/sparse_gemm_compressor.hpp"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/packed_stride.hpp"
// clang-format on
using namespace cute;
using namespace vllm;
/// Make A structured sparse by replacing elements with 0 and compress it
template <typename ElementA_, typename ElementAcc_>
bool cutlass_sparse_compress(torch::Tensor& a_nzs, torch::Tensor& a_meta,
torch::Tensor const& a) {
// Checks for conformality
TORCH_CHECK(a.dtype() == torch::kInt8 || a.dtype() == torch::kFloat8_e4m3fn ||
a.dtype() == torch::kFloat16 || a.dtype() == torch::kBFloat16);
TORCH_CHECK(a.dim() == 2)
// Check for strides and alignment
TORCH_CHECK(a.stride(0) % 4 == 0) // Required for semi-structured sparsity
TORCH_CHECK(a.stride(1) == 1)
int m = a.size(0);
int k = a.size(1);
// Sparse kernel setup; this kernel is not used for matmul,
// but just for setting up the compressor utility
// A matrix configuration
using ElementA = ElementA_;
using LayoutTagA = cutlass::layout::RowMajor;
constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
// B matrix configuration
using ElementB = ElementA;
using LayoutTagB = cutlass::layout::ColumnMajor;
constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
// C/D matrix configuration
using ElementC = float;
using LayoutTagC = cutlass::layout::ColumnMajor;
constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;
// Core kernel configurations
using ElementAccumulator = ElementAcc_;
using TileShape = Shape<_128, _128, _128>;
using TileShapeRef = Shape<_128, _128, _64>;
using ClusterShape = Shape<_1, _2, _1>;
using KernelSchedule = typename std::conditional<
std::is_same_v<ElementA, cutlass::float_e4m3_t>,
cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum,
cutlass::gemm::KernelTmaWarpSpecialized>::type;
using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized;
using ProblemShape = Shape<int, int, int, int>;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, TileShape,
ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
ElementAccumulator, ElementAccumulator, ElementC, LayoutTagC,
AlignmentC, ElementC, LayoutTagC, AlignmentC,
EpilogueSchedule>::CollectiveOp;
using CollectiveMainloop =
typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassSparseTensorOp, ElementA,
LayoutTagA, AlignmentA, ElementB, LayoutTagB, AlignmentB,
ElementAccumulator, TileShape, ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
sizeof(typename CollectiveEpilogue::SharedStorage))>,
KernelSchedule>::CollectiveOp;
using GemmKernel =
cutlass::gemm::kernel::GemmUniversal<ProblemShape, CollectiveMainloop,
CollectiveEpilogue>;
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
using StrideA = cutlass::gemm::TagToStrideA_t<LayoutTagA>;
using StrideE = StrideA;
using StrideA = Stride<int64_t, Int<1>, int64_t>;
// The n (=1) dimension does not matter for the compressor
typename GemmKernel::ProblemShape prob_shape{m, 1, k, 1};
using LayoutA = typename GemmKernel::CollectiveMainloop::LayoutA;
using LayoutE = typename GemmKernel::CollectiveMainloop::LayoutE;
using ElementE = typename GemmKernel::CollectiveMainloop::ElementE;
using SparseConfig = typename GemmKernel::CollectiveMainloop::SparseConfig;
// Offline compressor kernel
using CompressorUtility =
cutlass::transform::kernel::StructuredSparseCompressorUtility<
ProblemShape, ElementA, LayoutTagA, SparseConfig>;
using CompressorKernel =
cutlass::transform::kernel::StructuredSparseCompressor<
ProblemShape, ElementA, LayoutTagA, SparseConfig,
cutlass::arch::Sm90>;
using Compressor =
cutlass::transform::device::TransformUniversalAdapter<CompressorKernel>;
auto [M, N, K, L] = prob_shape;
StrideA stride_A;
stride_A =
cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, L));
CompressorUtility compressor_utility(prob_shape, stride_A);
int ME = compressor_utility.get_metadata_m_physical();
int KE = compressor_utility.get_metadata_k_physical();
int KC = compressor_utility.get_tensorA_k_physical();
auto a_ptr = static_cast<ElementA*>(a.data_ptr());
auto a_nzs_ptr = static_cast<ElementA*>(a_nzs.data_ptr());
auto a_meta_ptr = static_cast<typename Gemm::CollectiveMainloop::ElementE*>(
a_meta.data_ptr());
cutlass::KernelHardwareInfo hw_info;
hw_info.device_id = 0;
hw_info.sm_count =
cutlass::KernelHardwareInfo::query_device_multiprocessor_count(
hw_info.device_id);
typename Compressor::Arguments arguments{
prob_shape, {a_ptr, stride_A, a_nzs_ptr, a_meta_ptr}, {hw_info}};
Compressor compressor_op;
size_t workspace_size = Compressor::get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
CUTLASS_CHECK(compressor_op.can_implement(arguments));
CUTLASS_CHECK(compressor_op.initialize(arguments, workspace.get()));
CUTLASS_CHECK(compressor_op.run());
CUDA_CHECK(cudaDeviceSynchronize());
return true;
}
bool cutlass_sparse_compress_sm90(torch::Tensor& a_nzs, torch::Tensor& a_meta,
torch::Tensor const& a) {
if (a.dtype() == torch::kBFloat16) {
return cutlass_sparse_compress<cutlass::bfloat16_t, float>(a_nzs, a_meta,
a);
} else if (a.dtype() == torch::kFloat16) {
return cutlass_sparse_compress<cutlass::half_t, float>(a_nzs, a_meta, a);
} else if (a.dtype() == torch::kFloat8_e4m3fn) {
return cutlass_sparse_compress<cutlass::float_e4m3_t, float>(a_nzs, a_meta,
a);
} else if (a.dtype() == torch::kInt8) {
return cutlass_sparse_compress<int8_t, int32_t>(a_nzs, a_meta, a);
}
return false;
}
#endif

Some files were not shown because too many files have changed in this diff Show More