Compare commits

...

605 Commits

Author SHA1 Message Date
c1d1875ba3 Updates docs with correction about default cuda version
Correct 12.1 --> 12.4
2025-01-07 17:29:07 -05:00
973f5dc581 [Doc]Add documentation for using EAGLE in vLLM (#11417)
Signed-off-by: Sourashis Roy <sroy@roblox.com>
2025-01-07 19:19:12 +00:00
c994223d56 [Bugfix] update the prefix for qwen2 (#11795)
Co-authored-by: jiadi.jjd <jiadi.jjd@antgroup.com>
2025-01-07 18:36:34 +00:00
869579a702 [optimization] remove python function call for custom op (#11750)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-01-07 17:04:28 +00:00
c0efe92d8b [Doc] Add note to gte-Qwen2 models (#11808)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-01-07 21:50:58 +08:00
d9fa1c05ad [doc] update how pip can install nightly wheels (#11806)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-01-07 21:42:58 +08:00
2de197bdd4 [V1] Support audio language models on V1 (#11733)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-01-07 19:47:36 +08:00
869e829b85 [doc] add doc to explain how to use uv (#11773)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-01-07 18:41:17 +08:00
8f37be38eb [Bugfix] Comprehensively test and fix LLaVA-NeXT feature size calculation (#11800)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-01-07 18:25:02 +08:00
8082ad7950 [V1][Doc] Update V1 support for LLaVa-NeXT-Video (#11798)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-01-07 09:55:39 +00:00
1e4ce295ae [CI][CPU] adding build number to docker image name (#11788)
Signed-off-by: Yuan Zhou <yuan.zhou@intel.com>
2025-01-07 07:28:01 +00:00
ce1917fcf2 [Doc] Create a vulnerability management team (#9925)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-01-06 22:57:32 -08:00
e512f76a89 fix init error for MessageQueue when n_local_reader is zero (#11768) 2025-01-07 06:12:48 +00:00
898cdf033e [CI] Fix neuron CI and run offline tests (#11779)
Signed-off-by: Liangfu Chen <liangfc@amazon.com>
2025-01-06 21:36:10 -08:00
0f3f3c86ec [Bugfix] Update attention interface in Whisper (#11784)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-01-07 04:36:24 +00:00
b278557935 [Kernel][LoRA]Punica prefill kernels fusion (#11234)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: Abatom <abzhonghua@gmail.com>
Co-authored-by: Zhonghua Deng <abatom@163.com>
2025-01-07 04:01:39 +00:00
8ceffbf315 [Doc][3/N] Reorganize Serving section (#11766)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-01-07 11:20:01 +08:00
d93d2d74fd [XPU] Make pp group initilized for pipeline-parallelism (#11648)
Signed-off-by: yisheng <yi.sheng@intel.com>
2025-01-07 11:09:58 +08:00
d0169e1b0f [Model] Future-proof Qwen2-Audio multi-modal processor (#11776)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-01-07 11:05:17 +08:00
08fb75c72e [Bugfix] Fix LLaVA-NeXT feature size precision error (for real) (#11772)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-01-07 01:10:54 +00:00
91b361ae89 [V1] Extend beyond image modality and support mixed-modality inference with Llava-OneVision (#11685)
Signed-off-by: Roger Wang <ywang@roblox.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-01-06 19:58:16 +00:00
e20c92bb61 [Kernel] Move attn_type to Attention.__init__() (#11690)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-01-07 00:11:28 +08:00
32c9eff2ff [Bugfix][V1] Fix molmo text-only inputs (#11676)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-01-06 15:22:25 +00:00
4ca5d40adc [doc] explain how to add interleaving sliding window support (#11771)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-01-06 21:57:44 +08:00
9279b9f83d [Bugfix] Fix max image size for LLaVA-Onevision (#11769)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-01-06 13:48:53 +00:00
ee77fdb5de [Doc][2/N] Reorganize Models and Usage sections (#11755)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-01-06 21:40:31 +08:00
996357e480 [VLM] Separate out profiling-related logic (#11746)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-01-06 16:02:21 +08:00
2a622d704a k8s-config: Update the secret to use stringData (#11679)
Signed-off-by: Suraj Deshmukh <surajd.service@gmail.com>
2025-01-06 08:01:22 +00:00
9c749713f6 [mypy] Forward pass function type hints in lora (#11740)
Signed-off-by: lucast2021 <lucast2021@headroyce.org>
Co-authored-by: lucast2021 <lucast2021@headroyce.org>
2025-01-06 07:59:36 +00:00
022c5c6944 [V1] Refactor get_executor_cls (#11754) 2025-01-06 07:59:16 +00:00
f8fcca100b [Misc] Fix typo for valid_tool_parses (#11753)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-01-06 07:12:38 +00:00
06bfb51963 [V1] Add BlockTable class (#11693)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-01-06 14:24:42 +09:00
408e560015 [Bugfix] Remove block size constraint (#11723) 2025-01-06 12:49:55 +08:00
402d378360 [Doc] [1/N] Reorganize Getting Started section (#11645)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-01-06 02:18:33 +00:00
9e764e7b10 [distributed] remove pynccl's redundant change_state (#11749) 2025-01-06 09:05:48 +08:00
33fc1e2e86 [Frontend] Improve StreamingResponse Exception Handling (#11752) 2025-01-05 16:35:01 -05:00
eba17173d3 fix: [doc] fix typo (#11751)
Co-authored-by: Lancer <maruixiang6688@gmail.com>
2025-01-06 00:48:16 +08:00
635b897246 [distributed] remove pynccl's redundant stream (#11744) 2025-01-05 23:09:11 +08:00
4068f4b5b5 [MISC] Replace c10::optional with std::optional (#11730)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-01-05 10:20:34 +09:00
47831430cc [Bugfix][V1] Fix test_kv_cache_utils.py (#11738)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-01-04 16:07:59 +00:00
65c08928c2 [Model] Remove unnecessary weight initialization logic (#11736)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-01-04 23:46:21 +08:00
ba214dffbe [Bugfix] Fix precision error in LLaVA-NeXT (#11735)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-01-04 23:45:57 +08:00
eed11ebee9 [VLM] Merged multi-modal processors for LLaVA-NeXT-Video and LLaVA-OneVision (#11717)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-01-04 11:40:53 +00:00
300acb8347 [Core][Bugfix] Use correct device to initialize GPU data during CUDA-graph-capture (#11233)
Signed-off-by: Yan Burman <yanburman@users.noreply.github.com>
Signed-off-by: Ido Asraff <idoa@atero.ai>
2025-01-04 14:50:16 +08:00
d91457d529 [V1] Add kv cache utils tests. (#11513)
Signed-off-by: xcnick <xcnick0412@gmail.com>
2025-01-04 14:49:46 +08:00
fbf2564554 [V1] Add RayExecutor support for AsyncLLM (api server) (#11712) 2025-01-04 06:41:31 +00:00
d1d49397e7 Update bnb.md with example for OpenAI (#11718) 2025-01-04 06:29:02 +00:00
9c93636d84 Update tool_calling.md (#11701) 2025-01-04 06:16:30 +00:00
e5d7ed0c53 [V1] log GPU blocks num for MultiprocExecutor (#11656) 2025-01-04 00:13:12 +00:00
ad0d567e1c [V1] Chore: cruft removal (#11724) 2025-01-03 23:25:02 +00:00
bf0d97d786 Update requirements-tpu.txt to support python 3.9 and 3.11 (#11695)
Signed-off-by: mgoin <michael@neuralmagic.com>
2025-01-03 22:36:46 +00:00
a655eb3025 [Misc]Add BNB quantization for Qwen2VL (#11719)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-01-03 15:19:02 -07:00
1543914c04 [V1] Improve TP>1 Error Handling + Stack Trace (#11721)
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-01-03 21:29:11 +00:00
61fed92c7e [Bugfix] Fix ColumnParallelLinearWithLoRA slice (#11708)
Signed-off-by: ZincCat <zincchloride@outlook.com>
2025-01-03 21:02:34 +00:00
80c751e7f6 [V1] Simplify Shutdown (#11659) 2025-01-03 17:25:38 +00:00
e1a5c2f0a1 [Model] Whisper model implementation (#11280)
Co-authored-by: Aurick Qiao <aurick.qiao@snowflake.com>
2025-01-03 16:39:19 +08:00
fd3a62a122 [perf-benchmark] Fix dependency for steps in benchmark pipeline (#11710) 2025-01-02 22:38:37 -08:00
07064cb1d4 [Bugfix] Check chain_speculative_sampling before calling it (#11673)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-01-02 16:58:56 -08:00
2f1e8e8f54 Update default max_num_batch_tokens for chunked prefill (#11694) 2025-01-03 00:25:53 +00:00
68d37809b9 [Misc] Minimum requirements for SageMaker compatibility (#11576) 2025-01-02 15:59:25 -08:00
5dba257506 Resolve race conditions in Marlin kernel (#11493)
Signed-off-by: wchen61 <wchen61@foxmail.com>
2025-01-02 22:58:56 +00:00
187e32997c [Bugfix] Change kv scaling factor by param json on nvidia gpu (#11688)
Signed-off-by: bjmsong <bjmsong@126.com>
Co-authored-by: bjmsong <bjmsong@126.com>
2025-01-02 21:11:39 +00:00
b55ed6ef8a [V1][Minor] Optimize token_ids_cpu copy (#11692)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-01-02 12:04:58 -07:00
2f385183f3 [Bugfix] Free cross attention block table for preempted-for-recompute sequence group. (#10013)
Signed-off-by: Kathy Yu <feiyangyu@google.com>
2025-01-02 10:28:09 -08:00
84c35c374a According to vllm.EngineArgs, the name should be distributed_executor_backend (#11689) 2025-01-02 18:14:16 +00:00
8c38ee7007 [VLM] Merged multi-modal processor for LLaVA-NeXT (#11682)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-01-02 16:39:27 +00:00
b6087a6bee [mypy] Pass type checking in vllm/inputs (#11680)
Signed-off-by: Tobias Pitters <tobias.pitters@gmail.com>
2025-01-02 16:18:15 +00:00
23c1b10a4c [VLM][Bugfix] Multi-modal processor compatible with V1 multi-input (#11674)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-01-02 17:00:00 +08:00
a115ac46b5 [VLM] Move supported limits and max tokens to merged multi-modal processor (#11669)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-01-01 15:44:42 +00:00
73001445fb [V1] Implement Cascade Attention (#11635)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-01-01 21:56:46 +09:00
6d70198b17 [Doc] Fix typo (#11666)
Signed-off-by: Kazuhiro Serizawa <nserihiro@gmail.com>
2025-01-01 08:10:10 +00:00
f962f426bc [Misc] Replace space with - in the file names (#11667)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-01-01 07:39:30 +00:00
11d8a091c6 [Misc] Optimize Qwen2-VL LoRA test (#11663)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-01-01 14:42:23 +08:00
365801fedd [VLM] Add max-count checking in data parser for single image models (#11661)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-12-31 22:15:21 -08:00
4db72e57f6 [Bugfix][Refactor] Unify model management in frontend (#11660)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2025-01-01 02:21:51 +00:00
0c6f998554 [Benchmark] Add benchmark script for CPU offloading (#11533)
Signed-off-by: ApostaC <yihua98@uchicago.edu>
Co-authored-by: KuntaiDu <kuntai@uchicago.edu>
2025-01-01 00:10:55 +00:00
e7c7c5e822 [V1][VLM] V1 support for selected single-image models. (#11632)
Signed-off-by: Roger Wang <ywang@roblox.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Isotr0py <2037008807@qq.com>
2024-12-31 21:17:22 +00:00
8c3230d8c1 [V1] Simpify vision block hash for prefix caching by removing offset from hash (#11646) 2024-12-31 08:56:01 +00:00
2c5718809b [Bugfix] Move the _touch(computed_blocks) call in the allocate_slots method to after the check for allocating new blocks. (#11565) 2024-12-31 06:29:04 +00:00
82c49d3260 [Misc][LoRA] Support Rank Stabilized LoRA (RSLoRA) (#6909)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-30 22:15:58 -08:00
74fa1d123c [Bugfix] Fix OpenAI parallel sampling when using xgrammar (#11637)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-12-31 03:43:54 +00:00
a2a40bcd0d [Model][LoRA]LoRA support added for MolmoForCausalLM (#11439)
Signed-off-by: Matthias Vogler <matthias.vogler@joesecurity.org>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Matthias Vogler <matthias.vogler@joesecurity.org>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-30 17:33:06 -08:00
ccb1aabcca [benchmark] Remove dependency for H100 benchmark step (#11572) 2024-12-30 12:27:07 -08:00
36e7670045 [Bugfix] Validate and concatenate image embeddings in MiniCPMVBaseModel (#11631) 2024-12-30 18:51:04 +00:00
5886aa496e [V1] [6/N] API Server: Better Shutdown (#11586) 2024-12-30 15:51:02 +00:00
8d9b6721e7 [VLM] Abstract out multi-modal data parsing in merged processor (#11620)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-30 15:01:35 +00:00
b12e87f942 [platforms] enable platform plugins (#11602)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-30 20:24:45 +08:00
5dbf854553 [CI/Build][CPU] Fix CPU CI by lazy importing triton FP8 kernels (#11618)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2024-12-30 10:17:04 +00:00
970d6d0776 [Build][Kernel] Update CUTLASS to v3.6.0 (#11607)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-12-30 17:22:13 +08:00
628ec6c17b [Docker] bump up neuron sdk v2.21 (#11593)
Signed-off-by: Liangfu Chen <liangfc@amazon.com>
2024-12-30 13:46:14 +08:00
3682e33f9f [v1] fix compilation cache (#11598)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-30 04:24:12 +00:00
0aa38d16f5 Remove print statement in DeepseekScalingRotaryEmbedding (#11604) 2024-12-29 20:16:46 +00:00
faef77c0d6 [Misc] KV cache transfer connector registry (#11481)
Signed-off-by: KuntaiDu <kuntai@uchicago.edu>
2024-12-29 16:08:09 +00:00
dba4d9dec6 [v1][bugfix] fix cudagraph with inplace buffer assignment (#11596)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-29 09:03:49 +00:00
32b4c63f02 [Doc] Convert list tables to MyST (#11594)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-29 15:56:22 +08:00
4fb8e329fd [V1] [5/N] API Server: unify Detokenizer and EngineCore input (#11545)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
2024-12-28 20:51:57 +00:00
328841d002 [bugfix] interleaving sliding window for cohere2 model (#11583)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-28 16:55:42 +00:00
d427e5cfda [Doc] Minor documentation fixes (#11580)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-28 21:53:59 +08:00
42bb201fd6 [V1][Minor] Set pin_memory=False for token_ids_cpu tensor (#11581)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-12-28 13:33:12 +00:00
59d6bb4c86 [Hardware][AMD]: Replace HIPCC version with more precise ROCm version (#11515)
Signed-off-by: hjwei <hjwei_xd@163.com>
2024-12-28 11:17:35 +00:00
b7dcc003dc [Model] Remove hardcoded image tokens ids from Pixtral (#11582)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-12-28 10:54:23 +00:00
d34be24bb1 [Model] Support InternLM2 Reward models (#11571)
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-12-28 06:14:10 +00:00
b5cbe8eeb3 [Bugfix] Last token measurement fix (#11376)
Signed-off-by: rajveerb <46040700+rajveerb@users.noreply.github.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-12-28 11:34:46 +08:00
df04dffade [V1] [4/N] API Server: ZMQ/MP Utilities (#11541) 2024-12-28 01:45:08 +00:00
a60731247f [Doc] Update mllama example based on official doc (#11567)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2024-12-28 00:31:10 +00:00
ac79799403 [Bugfix] Fix for ROCM compressed tensor support (#11561) 2024-12-27 20:12:11 +00:00
dde1fa18c9 [Misc] Improve BNB loader to handle mixture of sharded and merged weights with same suffix (#11566)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-12-27 19:45:13 +00:00
0240402c46 [Misc]Add BNB quantization for MolmoForCausalLM (#11551)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-27 18:48:24 +00:00
55509c2114 [MODEL] LoRA support for Jamba model (#11209)
Signed-off-by: Erez Schwartz <erezs@ai21.com>
2024-12-27 17:58:21 +00:00
101418096f [VLM] Support caching in merged multi-modal processor (#11396)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-27 17:22:48 +00:00
5ce4627a7e [Doc] Add xgrammar in doc (#11549)
Signed-off-by: ccjincong <chenjincong11@gmail.com>
2024-12-27 13:05:10 +00:00
7af553ea30 [Misc] Abstract the logic for reading and writing media content (#11527)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-27 19:21:23 +08:00
2c9b8ea2b0 [Bugfix] Fix TeleChat2ForCausalLM weights mapper (#11546)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-27 10:39:15 +00:00
d003f3ea39 Update deploying_with_k8s.md with AMD ROCm GPU example (#11465)
Signed-off-by: Alex He <alehe@amd.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-12-27 10:00:04 +00:00
6c6f7fe8a8 [Platform] Move model arch check to platform (#11503)
Signed-off-by: Mengqing Cao <cmq0113@163.com>
2024-12-27 08:45:25 +00:00
2339d59f92 [BugFix] Fix quantization for all other methods (#11547) 2024-12-26 22:23:29 -08:00
1b875a0ef3 [V1][3/N] API Server: Reduce Task Switching + Handle Abort Properly (#11534) 2024-12-26 21:19:21 -08:00
eb881ed006 [misc] fix typing (#11540)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-27 11:05:08 +08:00
46d4359450 [CI] Fix broken CI (#11543) 2024-12-26 18:49:16 -08:00
81b979f2a8 [V1] Fix yapf (#11538)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-12-27 09:47:10 +09:00
371d04d39b [V1] Use FlashInfer Sampling Kernel for Top-P & Top-K Sampling (#11394)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-12-27 09:32:38 +09:00
0c0c2015c5 Update openai_compatible_server.md (#11536)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-12-26 16:26:18 -08:00
82d24f7aac [Docs] Document Deepseek V3 support (#11535)
Signed-off-by: simon-mo <simon.mo@hey.com>
2024-12-26 16:21:56 -08:00
f49777ba62 Deepseek v3 (#11502)
Signed-off-by: mgoin <michael@neuralmagic.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
Co-authored-by: robertgshaw2-neuralmagic <rshaw@neuralmagic.com>
2024-12-26 16:09:44 -08:00
55fb97f7bd [2/N] API Server: Avoid ulimit footgun (#11530) 2024-12-26 23:43:05 +00:00
2072924d14 [Model] [Quantization] Support deepseek_v3 w8a8 fp8 block-wise quantization (#11523)
Signed-off-by: mgoin <michael@neuralmagic.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
Signed-off-by: simon-mo <xmo@berkeley.edu>
Co-authored-by: simon-mo <simon.mo@hey.com>
Co-authored-by: simon-mo <xmo@berkeley.edu>
Co-authored-by: HandH1998 <1335248067@qq.com>
2024-12-26 15:33:30 -08:00
720b10fdc6 [1/N] API Server (Remove Proxy) (#11529) 2024-12-26 23:03:43 +00:00
b85a977822 [Doc] Add video example to openai client for multimodal (#11521)
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-12-26 17:31:29 +00:00
eec906d811 [Misc] Add placeholder module (#11501)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-26 13:12:51 +00:00
f57ee5650d [Model] Modify MolmoForCausalLM MLP (#11510)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-26 13:12:05 +00:00
dcb1a944d4 [V1] Adding min tokens/repetition/presence/frequence penalties to V1 sampler (#10681)
Signed-off-by: Sourashis Roy <sroy@roblox.com>
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-12-26 19:02:58 +09:00
7492a36207 [Doc] Add QVQ and QwQ to the list of supported models (#11509)
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2024-12-26 09:44:32 +00:00
aa25985bd1 [Misc][LoRA] Fix LoRA weight mapper (#11495)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-26 15:52:48 +08:00
dbeac95dbb Mypy checking for vllm/compilation (#11496)
Signed-off-by: lucast2021 <lucast2021@headroyce.org>
Co-authored-by: lucast2021 <lucast2021@headroyce.org>
2024-12-26 05:04:07 +00:00
51a624bf02 [Misc] Move some multimodal utils to modality-specific modules (#11494)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-26 04:23:20 +00:00
6ad909fdda [Doc] Improve GitHub links (#11491)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-25 14:49:26 -08:00
b689ada91e [Frontend] Enable decord to load video from base64 (#11492)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-25 16:33:55 +00:00
fc601665eb [Misc] Update disaggregation benchmark scripts and test logs (#11456)
Signed-off-by: Jiaxin Shan <seedjeffwan@gmail.com>
2024-12-25 06:58:48 +00:00
9832e5572a [V1] Unify VLLM_ENABLE_V1_MULTIPROCESSING handling in RayExecutor (#11472) 2024-12-24 19:49:46 -08:00
3f3e92e1f2 [Model] Automatic conversion of classification and reward models (#11469)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-24 18:22:22 +00:00
409475a827 [Bugfix] Fix issues in CPU build Dockerfile. Fixes #9182 (#11435)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2024-12-24 16:53:28 +00:00
196c34b0ac [Misc] Move weights mapper (#11443)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-24 13:05:25 +00:00
5c7963249d [attn][tiny fix] fix attn backend in MultiHeadAttention (#11463)
Signed-off-by: Mengqing Cao <cmq0113@163.com>
2024-12-24 12:39:36 +00:00
461cde2080 [OpenVINO] Fixed installation conflicts (#11458)
Signed-off-by: Ilya Lavrenov <ilya.lavrenov@intel.com>
2024-12-24 11:38:21 +00:00
7a5286cc04 [Bugfix][Hardware][CPU] Fix CPU input_positions creation for text-only inputs with mrope (#11434)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-12-24 17:59:51 +08:00
b1b1038fbd [Bugfix] Fix Qwen2-VL LoRA weight loading (#11430)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-24 09:56:10 +00:00
9edca6bf8f [Frontend] Online Pooling API (#11457)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-24 17:54:30 +08:00
4f074fbf53 [Misc]Suppress irrelevant exception stack trace information when CUDA… (#11438)
Co-authored-by: shiquan <shiquan>
2024-12-24 08:43:39 +00:00
a491d6f535 [V1] TP Ray executor (#11107)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2024-12-23 23:00:12 +00:00
32aa2059ad [Docs] Convert rST to MyST (Markdown) (#11145)
Signed-off-by: Rafael Vasquez <rafvasq21@gmail.com>
2024-12-23 22:35:38 +00:00
94d545a1a1 [Doc] Fix typo in the help message of '--guided-decoding-backend' (#11440) 2024-12-23 20:20:44 +00:00
60fb4f3bcf [Bugfix] Add kv cache scales to gemma2.py (#11269) 2024-12-23 19:30:45 +00:00
63afbe9215 [CI] Expand OpenAI test_chat.py guided decoding tests (#11048)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-12-23 18:35:38 +00:00
8cef6e02dc [Misc] add w8a8 asym models (#11075) 2024-12-23 13:33:20 -05:00
b866cdbd05 [Misc] Add assertion and helpful message for marlin24 compressed models (#11388) 2024-12-24 02:23:38 +08:00
2e726680b3 [Bugfix] torch nightly version in ROCm installation guide (#11423)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2024-12-23 17:20:22 +00:00
5bfb30a529 [Bugfix] Fix CFGGuide and use outlines for grammars that can't convert to GBNF (#11389)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-12-23 23:06:20 +08:00
e51719ae72 mypy type checking for vllm/worker (#11418)
Signed-off-by: lucast2021 <lucast2021@headroyce.org>
Co-authored-by: lucast2021 <lucast2021@headroyce.org>
2024-12-23 13:55:49 +00:00
f30581c518 [misc][perf] remove old code (#11425)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-23 08:01:08 +00:00
048fc57a0f [CI] Unboock H100 Benchmark (#11419)
Signed-off-by: simon-mo <simon.mo@hey.com>
2024-12-22 14:17:43 -08:00
f1d1bf6288 [Bugfix] Fix fully sharded LoRAs with Mixtral (#11390)
Signed-off-by: Jason Greene <jason.greene@redhat.com>
2024-12-22 23:25:10 +08:00
72d9c316d3 [cd][release] fix race conditions (#11407)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-22 00:39:11 -08:00
4a9139780a [cd][release] add pypi index for every commit and nightly build (#11404)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-12-21 23:53:44 -08:00
29c748930e [CI] Fix flaky entrypoint tests (#11403)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-12-21 21:08:44 -08:00
c2d1b075ba [Bugfix] Fix issues for Pixtral-Large-Instruct-2411 (#11393)
Signed-off-by: ywang96 <ywang@example.com>
Co-authored-by: ywang96 <ywang@example.com>
2024-12-21 10:15:03 +00:00
584f0ae40d [V1] Make AsyncLLMEngine v1-v0 opaque (#11383)
Signed-off-by: Ricky Xu <xuchen727@hotmail.com>
2024-12-21 15:14:08 +08:00
51ff216d85 [Bugfix] update should_ignore_layer (#11354)
Signed-off-by: George Ohashi <george@neuralmagic.com>
2024-12-21 06:36:23 +00:00
dd2b5633dd [V1][Bugfix] Skip hashing empty or None mm_data (#11386)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-12-21 14:22:21 +09:00
47a0b615b4 Add ray[default] to wget to run distributed inference out of box (#11265)
Signed-off-by: Jiaxin Shan <seedjeffwan@gmail.com>
2024-12-20 13:54:55 -08:00
5d2248d81a [doc] explain nccl requirements for rlhf (#11381)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-20 13:00:56 -08:00
d573aeadcc [Bugfix] Don't log OpenAI field aliases as ignored (#11378)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-12-20 19:03:50 +00:00
995f56236b [Core] Loading model from S3 using RunAI Model Streamer as optional loader (#10192)
Signed-off-by: OmerD <omer@run.ai>
2024-12-20 16:46:24 +00:00
7c7aa37c69 [CI/Build] fix pre-compiled wheel install for exact tag (#11373)
Signed-off-by: Daniele Trifirò <dtrifiro@redhat.com>
2024-12-21 00:14:40 +08:00
04139ade59 [V1] Fix profiling for models with merged input processor (#11370)
Signed-off-by: ywang96 <ywang@roblox.com>
2024-12-20 12:04:21 +00:00
1ecc645b8f [doc] backward compatibility for 0.6.4 (#11359)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-19 21:33:53 -08:00
c954f21ac0 [misc] add early error message for custom ops (#11355)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-19 21:18:25 -08:00
86c2d8fd1c [Bugfix] Fix spec decoding when seed is none in a batch (#10863)
Signed-off-by: Wallas Santos <wallashss@ibm.com>
2024-12-20 05:15:31 +00:00
b880ffb87e [Misc] Add tqdm progress bar during graph capture (#11349)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-12-20 04:35:18 +00:00
7801f56ed7 [ci][gh200] dockerfile clean up (#11351)
Signed-off-by: drikster80 <ed.sealing@gmail.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: drikster80 <ed.sealing@gmail.com>
Co-authored-by: cenzhiyao <2523403608@qq.com>
2024-12-19 18:13:06 -08:00
48edab8041 [Bugfix][Hardware][POWERPC] Fix auto dtype failure in case of POWER10 (#11331)
Signed-off-by: Akash Kaothalkar <0052v2@linux.vnet.ibm.com>
2024-12-20 01:32:07 +00:00
a985f7af9f [CI] Adding CPU docker pipeline (#11261)
Signed-off-by: Yuan Zhou <yuan.zhou@intel.com>
Co-authored-by: Kevin H. Luu <kevin@anyscale.com>
2024-12-19 11:46:55 -08:00
e461c262f0 [Misc] Remove unused vllm/block.py (#11336) 2024-12-19 17:54:24 +00:00
276738ce0f [Bugfix] Fix broken CPU compressed-tensors test (#11338)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-12-19 17:37:31 +00:00
cdf22afdda [Misc] Clean up and consolidate LRUCache (#11339)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-20 00:59:32 +08:00
e24113a8fe [Model] Refactor Qwen2-VL to use merged multimodal processor (#11258)
Signed-off-by: Isotr0py <2037008807@qq.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-19 16:28:00 +00:00
7379b3d4b2 [V1] Fix multimodal profiling for Molmo (#11325)
Signed-off-by: ywang96 <ywang@example.com>
Co-authored-by: ywang96 <ywang@example.com>
2024-12-19 16:27:22 +00:00
6c7f881541 [Model] Add JambaForSequenceClassification model (#10860)
Signed-off-by: Yehoshua Cohen <yehoshuaco@ai21.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Yehoshua Cohen <yehoshuaco@ai21.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-19 22:48:06 +08:00
a0f7d53beb [Bugfix] Cleanup Pixtral HF code (#11333)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-19 13:22:00 +00:00
5aef49806d [Feature] Add load generation config from model (#11164)
Signed-off-by: liuyanyi <wolfsonliu@163.com>
Signed-off-by: Yanyi Liu <wolfsonliu@163.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2024-12-19 10:50:38 +00:00
98356735ac [misc] benchmark_throughput : Add LoRA (#11267)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-12-19 15:43:16 +08:00
f26c4aeecb [Misc] Optimize ray worker initialization time (#11275)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-12-18 23:38:02 -08:00
8936316d58 [Kernel] Refactor Cutlass c3x (#10049)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-12-19 07:00:18 +00:00
6142ef0ada [VLM] Merged multimodal processor for Qwen2-Audio (#11303)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-19 06:14:17 +00:00
c6b0a7d3ba [V1] Simplify prefix caching logic by removing num_evictable_computed_blocks (#11310) 2024-12-19 04:17:12 +00:00
a30482f054 [CI] Expand test_guided_generate to test all backends (#11313)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-12-19 04:00:38 +00:00
17ca964273 [Model] IBM Granite 3.1 (#11307)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-12-19 11:27:24 +08:00
5a9da2e6e9 [Bugfix][Build/CI] Fix sparse CUTLASS compilation on CUDA [12.0, 12.2) (#11311)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-12-19 02:43:30 +00:00
fdea8ec167 [V1] VLM - enable processor cache by default (#11305)
Signed-off-by: Alexander Matveev <alexm@neuralmagic.com>
2024-12-18 18:54:46 -05:00
ca5f54a9b9 [Bugfix] fix minicpmv test (#11304)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-12-18 10:34:26 -08:00
f954fe0e65 [FIX] update openai version (#11287)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2024-12-18 10:17:05 -08:00
362cff1eb3 [CI][Misc] Remove Github Action Release Workflow (#11274) 2024-12-18 10:16:53 -08:00
996aa70f00 [Bugfix] Fix broken phi3-v mm_processor_kwargs tests (#11263)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-12-18 10:16:40 -08:00
60508ffda9 [Kernel]: Cutlass 2:4 Sparsity + FP8/Int8 Quant Support (#10995)
Co-authored-by: Faraz Shahsavan <faraz.shahsavan@gmail.com>
Co-authored-by: ilmarkov <markovilya197@gmail.com>
Co-authored-by: Rahul Tuli <rahul@neuralmagic.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
2024-12-18 09:57:16 -05:00
f04e407e6b [MISC][XPU]update ipex link for CI fix (#11278) 2024-12-17 22:34:23 -08:00
8b79f9e107 [Bugfix] Fix guided decoding with tokenizer mode mistral (#11046) 2024-12-17 22:34:08 -08:00
866fa4550d [Bugfix] Restore support for larger block sizes (#11259)
Signed-off-by: Konrad Zawora <kzawora@habana.ai>
2024-12-17 16:39:07 -08:00
bf8717ebae [V1] Prefix caching for vision language models (#11187)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
2024-12-17 16:37:59 -08:00
c77eb8a33c [Bugfix] Set temperature=0.7 in test_guided_choice_chat (#11264) 2024-12-17 16:34:06 -08:00
2d1b9baa8f [Bugfix] Fix request cancellation without polling (#11190) 2024-12-17 12:26:32 -08:00
f9ecbb18bf [Misc] Allow passing logits_soft_cap for xformers backend (#11252)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-12-17 00:37:04 -08:00
02222a0256 [Misc] Kernel Benchmark for RMSNorm (#11241)
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Xiaoyu Zhang <BBuf@users.noreply.github.com>
2024-12-17 06:57:02 +00:00
2bfdbf2a36 [V1][Core] Use weakref.finalize instead of atexit (#11242)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-12-16 22:11:33 -08:00
e88db68cf5 [Platform] platform agnostic for EngineArgs initialization (#11225)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2024-12-16 22:11:06 -08:00
59c9b6ebeb [V1][VLM] Proper memory profiling for image language models (#11210)
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: ywang96 <ywang@example.com>
2024-12-16 22:10:57 -08:00
66d4b16724 [Frontend] Add OpenAI API support for input_audio (#11027)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-16 22:09:58 -08:00
0064f697d3 [CI] Add test case with JSON schema using references + use xgrammar by default with OpenAI parse (#10935)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-12-17 11:39:58 +08:00
35bae114a8 fix gh200 tests on main (#11246)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-16 17:22:38 -08:00
88a412ed3d [torch.compile] fast inductor (#11108)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-12-16 16:15:22 -08:00
c301616ed2 [ci][tests] add gh200 tests (#11244)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-16 15:53:18 -08:00
35ffa682b1 [Docs] hint to enable use of GPU performance counters in profiling tools for multi-node distributed serving (#11235)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-12-16 22:20:39 +00:00
551603feff [core] overhaul memory profiling and fix backward compatibility (#10511)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-16 13:32:25 -08:00
efbce85f4d [misc] Layerwise profile updates (#10242)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-12-16 18:14:57 +00:00
2ca830dbaa [Doc] Reorder vision language examples in alphabet order (#11228)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-12-16 11:23:33 +00:00
d927dbcd88 [Model] Refactor Ultravox to use merged input processor (#11198)
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-12-16 10:09:53 +00:00
bddbbcb132 [Model] Support Cohere2ForCausalLM (Cohere R7B) (#11203) 2024-12-16 09:56:19 +00:00
b3b1526f03 WIP: [CI/Build] simplify Dockerfile build for ARM64 / GH200 (#11212)
Signed-off-by: drikster80 <ed.sealing@gmail.com>
Co-authored-by: drikster80 <ed.sealing@gmail.com>
2024-12-16 09:20:49 +00:00
17138af7c4 [Bugfix] Fix the default value for temperature in ChatCompletionRequest (#11219) 2024-12-16 00:15:40 -08:00
69ba344de8 [Bugfix] Fix block size validation (#10938) 2024-12-15 16:38:40 -08:00
da6f409246 Update deploying_with_k8s.rst (#10922) 2024-12-15 16:33:58 -08:00
25ebed2f8c [V1][Minor] Cache np arange to reduce input preparation overhead (#11214)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-12-15 13:33:00 -08:00
d263bd9df7 [Core] Support disaggregated prefill with Mooncake Transfer Engine (#10884)
Signed-off-by: Shangming Cai <caishangming@linux.alibaba.com>
2024-12-15 21:28:18 +00:00
38e599d6a8 [Doc] add documentation for disaggregated prefilling (#11197)
Signed-off-by: Kuntai Du <kuntai@uchicago.edu>
2024-12-15 13:31:16 -06:00
96d673e0f8 [Bugfix] Fix error handling of unsupported sliding window (#11213)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-15 10:59:42 -07:00
b10609e6a1 [Misc] Clean up multi-modal processor (#11207)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-15 06:30:28 +00:00
a1c02058ba [torch.compile] allow tracking forward time (#11081)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-14 19:45:00 -08:00
15859f2357 [[Misc]Upgrade bitsandbytes to the latest version 0.45.0 (#11201) 2024-12-15 03:03:06 +00:00
886936837c [Performance][Core] Optimize the performance of evictor v1 and v2 by applying a priority queue and lazy deletion (#7209) 2024-12-14 11:38:10 -08:00
6d917d0eeb Enable mypy checking on V1 code (#11105)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2024-12-14 09:54:04 -08:00
93abf23a64 [VLM] Fully dynamic prompt replacement in merged input processor (#11199)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-14 17:52:18 +00:00
9c3dadd1c9 [Frontend] Add logits_processors as an extra completion argument (#11150)
Signed-off-by: Brad Hilton <brad.hilton.nw@gmail.com>
2024-12-14 16:46:42 +00:00
3cb5769883 [Misc] Minor improvements to the readability of PunicaWrapperBase (#11200)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-14 16:38:27 +00:00
ea7bd68d10 [V1][Bugfix] Fix V1 TP trust-remote-code (#11182)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-12-14 08:21:23 +00:00
48259264a4 [Core] Update outlines and increase its threadpool size (#11140)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-12-14 07:46:18 +00:00
24a3d12b82 update compressed-tensors to latest version (#11183)
Co-authored-by: dhuangnm <dhuang@MacBook-Pro-2.local>
2024-12-14 03:22:44 +00:00
9855aea21b [Bugfix][V1] Re-compute an entire block when fully cache hit (#11186)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
2024-12-13 17:08:23 -08:00
4b5b8a6a3b [V1][Bugfix] Fix EngineCoreProc profile (#11185)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-12-13 17:02:35 -08:00
4863e5fba5 [Core] V1: Use multiprocessing by default (#11074)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-12-13 16:27:32 -08:00
0d8451c3a4 [Distributed] Allow the placement group more time to wait for resources to be ready (#11138)
Signed-off-by: Jiaxin Shan <seedjeffwan@gmail.com>
2024-12-13 20:17:37 +00:00
0a56bcc03d [Bugfix][Hardware][CPU] Enable Gemma2 with SDPA on CPU backend (#11169) 2024-12-13 18:00:40 +00:00
0920ab9131 [Doc] Reorganize online pooling APIs (#11172)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-14 00:22:22 +08:00
238c0d93b4 [Misc] Add tokenizer_mode param to benchmark_serving.py (#11174)
Signed-off-by: Alexander Matveev <alexm@neuralmagic.com>
2024-12-13 16:19:10 +00:00
5b0ed8391d [Bugfix] using len(tokenizer) instead of tokenizer.vocab_size in AllowedTokenIdsLogitsProcessor (#11156) 2024-12-13 15:56:19 +00:00
c31d4a57a6 [Core] support LoRA and prompt adapter in content-based hashing for Block Manager v2 prefix caching (#8240) 2024-12-13 07:51:25 -08:00
d1fa714cb1 [Refactor]A simple device-related refactor (#11163)
Signed-off-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2024-12-13 13:39:00 +00:00
969da7d70b [V1][VLM] Fix edge case bug for InternVL2 (#11165)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-12-13 11:09:30 +00:00
eeec9e3390 [Frontend] Separate pooling APIs in offline inference (#11129)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-13 10:40:07 +00:00
f93bf2b189 [Bugfix][CI][CPU] add missing datasets package to requirements-cpu.txt (#11159)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2024-12-13 08:50:35 +00:00
7cd7409142 PaliGemma 2 support (#11142) 2024-12-13 07:40:07 +00:00
be39e3cd18 [core] clean up cudagraph batchsize padding logic (#10996)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-13 06:57:50 +00:00
34f1a806d5 [Bugfix][V1] Fix 'NoneType' object has no attribute 'hash_value' (#11157)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
2024-12-13 06:30:06 +00:00
00c1bde5d8 [ROCm][AMD] Disable auto enabling chunked prefill on ROCm (#11146)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2024-12-13 05:31:26 +00:00
3989a79824 [Bugfix] Update starcoder2 to remap k/v scale names for kv_cache quantization (#11148) 2024-12-13 05:07:20 +00:00
1efce68605 [Bugfix] Use runner_type instead of task in GritLM (#11144)
Signed-off-by: Pooya Davoodi <pooya.davoodi@parasail.io>
2024-12-13 04:09:53 +00:00
30870b4f66 [torch.compile] Dynamic fp8 + rms_norm fusion (#10906)
Signed-off-by: luka <luka@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-12-13 03:19:23 +00:00
78ed8f57d8 [Misc][V1] Fix type in v1 prefix caching (#11151) 2024-12-13 00:57:40 +00:00
db6c264a1e [Bugfix] Fix value unpack error of simple connector for KVCache transfer. (#11058)
Signed-off-by: ShangmingCai <csmthu@gmail.com>
2024-12-12 21:19:17 +00:00
9f3974a319 Fix logging of the vLLM Config (#11143) 2024-12-12 12:05:57 -08:00
2c97eca1ff [Misc] Validate grammar and fail early (#11119) 2024-12-12 18:34:26 +00:00
5d712571af [Bugfix] Quick fix to make Pixtral-HF load correctly again after 39e227c7ae. (#11024) 2024-12-12 18:09:20 +00:00
d4d5291cc2 fix(docs): typo in helm install instructions (#11141)
Signed-off-by: Ramon Ziai <ramon.ziai@bettermarks.com>
2024-12-12 17:36:32 +00:00
4816d20aa4 [V1] Fix torch profiling for offline inference (#11125)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-12-12 15:51:53 +00:00
85362f028c [Misc][LoRA] Ensure Lora Adapter requests return adapter name (#11094)
Signed-off-by: Jiaxin Shan <seedjeffwan@gmail.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-12 09:25:16 +00:00
62de37a38e [core][distributed] initialization from StatelessProcessGroup (#10986)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-12 09:04:19 +00:00
8195824206 [Hardware][Intel-Gaudi] Enable LoRA support for Intel Gaudi (HPU) (#10565)
Signed-off-by: Sanju C Sudhakaran <scsudhakaran@habana.ai>
2024-12-12 08:09:28 +00:00
f092153fbe [V1] Use more persistent buffers to optimize input preparation overheads (#11111)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-12-11 23:14:20 -08:00
1da8f0e1dd [Model] Add support for embedding model GritLM (#10816)
Signed-off-by: Pooya Davoodi <pooya.davoodi@parasail.io>
2024-12-12 06:39:16 +00:00
ccede2b264 [Core] cleanup zmq ipc sockets on exit (#11115)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-12-11 19:12:24 -08:00
24a36d6d5f Update link to LlamaStack remote vLLM guide in serving_with_llamastack.rst (#11112)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2024-12-12 02:39:21 +00:00
8fb26dac61 [Docs] Add media kit (#11121) 2024-12-11 17:33:11 -08:00
7439a8b5fc [Bugfix] Multiple fixes to tool streaming with hermes and mistral (#10979)
Signed-off-by: cedonley <clayton@donley.io>
2024-12-12 01:10:12 +00:00
4e11683368 [V1] VLM preprocessor hashing (#11020)
Signed-off-by: Roger Wang <ywang@roblox.com>
Signed-off-by: Alexander Matveev <alexm@neuralmagic.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-12-12 00:55:30 +00:00
452a723bf2 [V1][Core] Remove should_shutdown to simplify core process termination (#11113)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-12-11 23:34:54 +00:00
d1e21a979b [CI/Build] Split up VLM tests (#11083)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-12 06:18:16 +08:00
72ff3a9686 [core] Bump ray to use _overlap_gpu_communication in compiled graph tests (#10410)
Signed-off-by: Rui Qiao <ubuntu@ip-172-31-15-128.us-west-2.compute.internal>
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
Co-authored-by: Rui Qiao <ubuntu@ip-172-31-15-128.us-west-2.compute.internal>
2024-12-11 11:36:35 -08:00
66aaa7722d [torch.compile] remove graph logging in ci (#11110)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-11 10:59:50 -08:00
d643c2aba1 [V1] Use input_ids as input for text-only models (#11032)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-12-11 10:49:23 -08:00
91642db952 [torch.compile] use depyf to dump torch.compile internals (#10972)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-11 10:43:05 -08:00
fd22220687 [Doc] Installed version of llmcompressor for int8/fp8 quantization (#11103)
Signed-off-by: Guangda Liu <bingps@users.noreply.github.com>
Co-authored-by: Guangda Liu <bingps@users.noreply.github.com>
2024-12-11 15:43:24 +00:00
b2f775456e [CI/Build] Enable prefix caching test for AMD (#11098)
Signed-off-by: Hissu Hyvarinen <hissu.hyvarinen@amd.com>
2024-12-11 15:23:37 +00:00
cad5c0a6ed [Doc] Update docs to refer to pooling models (#11093)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-11 13:36:27 +00:00
8f10d5e393 [Misc] Split up pooling tasks (#10820)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-11 01:28:00 -08:00
40766ca1b8 [Bugfix]: Clamp -inf logprob values in prompt_logprobs (#11073)
Signed-off-by: Rafael Vasquez <rafvasq21@gmail.com>
2024-12-11 01:27:39 -08:00
2e32f5d28d [Bugfix] Fix Idefics3 fails during multi-image inference (#11080)
Signed-off-by: B-201 <Joy25810@foxmail.com>
2024-12-11 01:27:07 -08:00
61b1d2f6ae [Core] v1: Use atexit to handle engine core client shutdown (#11076)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-12-11 01:26:36 -08:00
9974fca047 [ci/build] Fix entrypoints test and pin outlines version (#11088) 2024-12-11 01:01:53 -08:00
3fb4b4f163 [ci/build] Fix AMD CI dependencies (#11087) 2024-12-11 00:39:53 -08:00
2e33fe4191 [CI/Build] Check transformers v4.47 (#10991)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-11 05:02:02 +00:00
e39400a4b6 Fix streaming for granite tool call when <|tool_call|> is present (#11069)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2024-12-11 04:51:40 +00:00
ffa48c9146 [Model] PP support for Mamba-like models (#10992)
Signed-off-by: mzusman <mor.zusmann@gmail.com>
2024-12-10 21:53:37 -05:00
d5c5154fcf [Misc] LoRA + Chunked Prefill (#9057) 2024-12-11 10:09:20 +08:00
9a93973708 [Bugfix] Fix Mamba multistep (#11071)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-12-11 00:16:22 +00:00
134810b3d9 [V1][Bugfix] Always set enable_chunked_prefill = True for V1 (#11061)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-12-10 14:41:23 -08:00
75f89dc44c [torch.compile] add a flag to track batchsize statistics (#11059)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-10 12:40:52 -08:00
e739194926 [Core] Update to outlines >= 0.1.8 (#10576)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-12-10 12:08:16 -08:00
250ee65d72 [BUG] Remove token param #10921 (#11022)
Signed-off-by: Flavia Beo <flavia.beo@ibm.com>
2024-12-10 17:38:15 +00:00
9b9cef3145 [Bugfix] Backport request id validation to v0 (#11036)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-12-10 16:38:23 +00:00
d05f88679b [Misc][LoRA] Add PEFTHelper for LoRA (#11003)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-10 11:12:01 +00:00
beb16b2c81 [Bugfix] Handle <|tool_call|> token in granite tool parser (#11039)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-12-10 10:27:11 +00:00
fe2e10c71b Add example of helm chart for vllm deployment on k8s (#9199)
Signed-off-by: Maxime Fournioux <55544262+mfournioux@users.noreply.github.com>
2024-12-10 09:19:27 +00:00
82c73fd510 [Bugfix] cuda error running llama 3.2 (#11047) 2024-12-10 07:41:11 +00:00
bfd610430c Update README.md (#11034) 2024-12-09 23:08:10 -08:00
e35879c276 [Bugfix] Fix xgrammar failing to read a vocab_size from LlavaConfig on PixtralHF. (#11043) 2024-12-10 14:54:22 +08:00
ebf778061d monitor metrics of tokens per step using cudagraph batchsizes (#11031)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-09 22:35:36 -08:00
28b3a1c7e5 [V1] Multiprocessing Tensor Parallel Support for v1 (#9856)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-12-10 06:28:14 +00:00
bc192a2b09 [Pixtral] Improve loading (#11040) 2024-12-10 06:09:32 +00:00
980ad394a8 [Frontend] Use request id from header (#10968)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-12-10 13:46:29 +08:00
391d7b2763 [Bugfix] Fix usage of deprecated decorator (#11025)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-10 13:45:47 +08:00
d1f6d1c8af [Model] Add has_weight to RMSNorm and re-enable weights loading tracker for Mamba (#10739)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-12-10 10:23:07 +08:00
6d525288c1 [Docs] Add dedicated tool calling page to docs (#10554)
Signed-off-by: mgoin <michael@neuralmagic.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-12-09 20:15:34 -05:00
6faec54505 [V1] Do not store None in self.generators (#11038)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-12-09 15:08:19 -08:00
5ed5d5f128 Build tpu image in release pipeline (#10936)
Signed-off-by: Richard Liu <ricliu@google.com>
Co-authored-by: Kevin H. Luu <kevin@anyscale.com>
2024-12-09 23:07:48 +00:00
b63ba84832 [ROCm][bugfix] scpecilative decoding worker class (#11035)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2024-12-09 14:00:29 -08:00
9c6459e4cb [Neuron] Upgrade neuron to 2.20.2 (#11016)
Signed-off-by: Jerzy Zagorski <jzagorsk@amazon.com>
Co-authored-by: Jerzy Zagorski <jzagorsk@amazon.com>
2024-12-09 13:53:24 -08:00
1a2f8fb828 [v1] fix use compile sizes (#11000)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-09 13:47:24 -08:00
cbcbdb1ceb [Bugfix][Hardware][Gaudi] Bump vllm_hpu_extension version (#11028)
Signed-off-by: Konrad Zawora <kzawora@habana.ai>
2024-12-09 13:21:06 -08:00
a811dd6608 [Model] merged input processor for Phi-3-Vision models (#10977)
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-12-09 12:55:10 -08:00
ca871491ed [Misc][LoRA] Abstract PunicaWrapper (#10955)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-09 12:54:44 -08:00
3b61cb450d [V1] Further reduce CPU overheads in flash-attn (#10989)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-12-09 12:38:46 -08:00
edc4fa3188 [ci/build] Recompile CI dependencies list with Python 3.12 (#11013)
Signed-off-by: kevin <kevin@anyscale.com>
2024-12-09 11:46:58 -08:00
25b79d9fd3 [V1] Input Batch Relocation (#10962)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-12-09 09:33:41 -08:00
aea2fc38c3 [Platform] Move async output check to platform (#10768)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2024-12-09 17:24:46 +00:00
e691b26f6f [Core] Require xgrammar >= 0.1.6 (#11021)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-12-09 16:44:27 +00:00
c690357928 [V1] Fix Detokenizer loading in AsyncLLM (#10997)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-12-09 16:27:10 +00:00
d1c2e15eb3 [torch.compile] add dynamo time tracking (#11005)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-08 23:09:04 -08:00
af7c4a92e6 [Doc][V1] Add V1 support column for multimodal models (#10998)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-12-08 22:29:16 -08:00
46004e83a2 [misc] clean up and unify logging (#10999)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-08 17:28:27 -08:00
43b05fa314 [torch.compile][misc] fix comments (#10993)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-08 11:18:18 -08:00
a11f326528 [V1] Initial support of multimodal models for V1 re-arch (#10699)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-12-08 12:50:51 +00:00
fd57d2b534 [torch.compile] allow candidate compile sizes (#10984)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-08 11:05:21 +00:00
7be15d9356 [core][misc] remove use_dummy driver for _run_workers (#10920)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-07 12:06:08 -08:00
1b62745b1d [core][executor] simplify instance id (#10976)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-07 09:33:45 -08:00
78029b34ed [BugFix][Kernel]: fix illegal memory access in causal_conv1d when conv_states is None (#10928)
Signed-off-by: xffxff <1247714429@qq.com>
2024-12-08 01:21:18 +08:00
c889d5888b [Doc] Explicitly state that PP isn't compatible with speculative decoding yet (#10975)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-07 17:20:49 +00:00
39e227c7ae [Model] Update multi-modal processor to support Mantis(LLaVA) model (#10711)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-07 17:10:05 +00:00
1c768fe537 [Doc] Explicitly state that InternVL 2.5 is supported (#10978)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-07 16:58:02 +00:00
bf0e382e16 [Model] Composite weight loading for multimodal Qwen2 (#10944)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-07 07:22:52 -07:00
b26b4cd03c [Misc][LoRA] Refactor and clean MergedQKVParallelLinearWithLora implementation (#10958)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-12-07 18:33:49 +08:00
f13cf9ad50 [Build] Fix for the Wswitch-bool clang warning (#10060)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2024-12-07 09:03:44 +00:00
955fa9533a [3/N] Support and implement merged input processor for LLaVA model (#10676)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-12-07 00:50:58 -08:00
acf092d348 [Bugfix] Fix test-pipeline.yaml (#10973)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-07 12:08:54 +08:00
69d357ba12 [Core] Cleanup startup logging a bit (#10961)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-12-07 02:30:23 +00:00
dcdc3fafe5 [ci] fix broken tests (#10956)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-06 11:25:47 -08:00
c05cfb67da [misc] fix typo (#10960)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-06 11:25:20 -08:00
7406274041 [Doc] add KubeAI to serving integrations (#10837)
Signed-off-by: Sam Stoelinga <sammiestoel@gmail.com>
2024-12-06 17:03:56 +00:00
8b59631855 [Core] Support Lark grammars for XGrammar (#10870)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-12-06 08:34:29 -07:00
a1887f2c96 [torch.compile] fix deprecated code (#10948)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-06 11:01:23 +00:00
222f5b082a [CI/Build] Fix broken multimodal test (#10950) 2024-12-06 10:41:23 +00:00
b031a455a9 [torch.compile] add logging for compilation time (#10941)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-12-06 10:07:15 +00:00
db87eb6c67 [torch.compile] use size tuning for specific sizes (#10933)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-05 20:30:41 -08:00
9743d64e4e [ci][build] add tests for python only compilation (#10915)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-05 08:54:47 -08:00
a43065272f [Misc][Gaudi] Avoid torch.compile and enable lazy collectives (#10897)
Signed-off-by: Konrad Zawora <kzawora@habana.ai>
2024-12-05 08:47:46 -08:00
998eeafe58 [CI/Build] Bump test transformers version (#10106)
Signed-off-by: Isotr0py <2037008807@qq.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-05 16:05:52 +00:00
571da8fc43 [Misc][LoRA] Clean up the function interface of Punica (#10917)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-05 13:22:28 +00:00
39c89e71a8 [Misc] Update llama 3.2 template to support system prompt with images (#10901)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-12-05 05:54:06 +00:00
1f958a7d52 [Bugfix] Fix BNB loader target_modules (#10720)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-05 13:20:26 +08:00
aa39a8e175 [Doc] Create a new "Usage" section (#10827)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-05 11:19:35 +08:00
8d370e91cb [Bugfix] Fallback to outlines for complex json schemas (#10899)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-12-05 11:14:06 +08:00
7883c2bbe7 [benchmark] Make H100 benchmark optional (#10908) 2024-12-04 17:02:17 -08:00
2a56e1264f [V1] Fix when max_model_len is not divisible by block_size (#10903)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-12-04 16:54:05 -08:00
e4c34c23de [CI/Build] improve python-only dev setup (#9621)
Signed-off-by: Daniele Trifirò <dtrifiro@redhat.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-12-04 21:48:13 +00:00
82eb5ea8f3 Benchmark serving structured output (#10880)
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-12-04 16:28:21 -05:00
10398b4706 [Model] Consolidate ViTs attention implementation without mask (#10893)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-12-04 18:11:08 +00:00
01d079fd8e [LoRA] Change lora_tokenizers capacity (#10796)
Signed-off-by: Xin Yang <xyang19@gmail.com>
2024-12-04 17:40:16 +00:00
c92acb9693 [ci/build] Update vLLM postmerge ECR repo (#10887) 2024-12-04 09:01:20 +00:00
8db957ee3a [bugfix] fixed parameter “n” when set parameter “bestof” > 1 (#10854)
Signed-off-by: jianzheng <57654625+o2363286@users.noreply.github.com>
2024-12-04 08:48:22 +00:00
c9ca4fce3f [ci/build] Job to build and push release image (#10877) 2024-12-04 15:02:40 +08:00
fa2dea61df [ci/build] Change queue name for Release jobs (#10875) 2024-12-04 15:02:16 +08:00
b5b647b084 Drop ROCm load format check (#10767)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2024-12-04 04:32:21 +00:00
d2bd88b122 [CI/Build] Replace mean with torch.all in test_pynccl.py (#10876)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-12-04 03:23:21 +00:00
381ac93bb5 [Benchmark] Benchmark structured output with datasets (#10557)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
2024-12-03 17:21:06 -07:00
a061fe601e [Build][Bugfix] Using the correct type hint (#10866)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2024-12-03 15:47:55 -05:00
7c32b6861e [Frontend] correctly record prefill and decode time metrics (#10853)
Signed-off-by: Tomer Asida <tomera@ai21.com>
2024-12-03 19:13:31 +00:00
7090c27bb2 [Bugfix] Only require XGrammar on x86 (#10865)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-12-03 10:32:21 -08:00
2f2cdc745a [MISC][XPU] quick fix for XPU CI (#10859)
Signed-off-by: yan ma <yan.ma@intel.com>
2024-12-03 17:16:31 +00:00
3bc94cab69 [V1] VLM - Run the mm_mapper preprocessor in the frontend process (#10640)
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-12-03 10:33:10 +00:00
f6084f6324 [Speculative Decoding] Move indices to device before filtering output (#10850)
Co-authored-by: Yang Zheng(SW)(Alex) <you@example.com>
2024-12-03 17:01:39 +08:00
9323a3153b [Core][Performance] Add XGrammar support for guided decoding and set it as default (#10785)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Signed-off-by: mgoin <michael@neuralmagic.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-12-03 15:17:00 +08:00
3257d449fa [Misc] Remove deprecated names (#10817)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-03 06:52:57 +00:00
ef51831ee8 [Doc] Add github links for source code references (#10672)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-03 06:46:07 +00:00
dc5ce861bf [torch.compile] remove compilation_context and simplify code (#10838)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-03 06:19:02 +00:00
21fe7b481a [core][distributed] add pynccl broadcast (#10843)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-03 04:53:23 +00:00
a4cf256159 [Bugfix] Fix QKVParallelLinearWithShardedLora bias bug (#10844)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-03 12:10:29 +08:00
d746268e92 [Model] support bitsandbytes quantization with minicpm model (#10842)
Signed-off-by: Ubuntu <zixuanzhang@bytedance.com>
2024-12-03 03:06:41 +00:00
4433195ab7 [Bugfix] Prevent benchmark_throughput.py from using duplicated random prompts (#10753) 2024-12-03 02:26:15 +00:00
4c05edb33a [Model] Add TP and BNB quantization support to LlavaMultiModalProjector (#10834)
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-12-02 23:06:09 +00:00
9b14d978aa Fix openvino on GPU (#10793) 2024-12-02 18:52:19 +00:00
519cc6ca12 [Misc][XPU] Avoid torch compile for XPU platform (#10747)
Signed-off-by: yan ma <yan.ma@intel.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-12-02 17:53:55 +00:00
b45f0d7946 [Misc][LoRA] Move the implementation of lora bias to punica.py (#10829)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-12-02 17:53:36 +00:00
a4c4daf364 [misc] use out argument for flash attention (#10822)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-02 10:50:10 +00:00
e95f275f57 [CI/Build] Update mistral_common version for tests and docs (#10825)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-02 10:26:10 +00:00
ef31eabc68 [Model]: add some tests for aria model (#10770)
Signed-off-by: xffxff <1247714429@qq.com>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2024-12-02 05:36:36 +00:00
995a148575 [doc]Update config docstring (#10732)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2024-12-02 04:14:45 +00:00
63a164172d [misc] remove xverse modeling file (#10814)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-02 03:27:13 +00:00
e25810ae29 Fill TorchSDPAAttentionMetadata seq_lens_field for prefill (#10799)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2024-12-02 10:05:32 +08:00
073a4bd1c0 [Kernel] Use out arg in flash_attn_varlen_func (#10811)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-12-01 17:55:39 -08:00
b7954776fd [core] Avoid metrics log noise when idle - include speculative decodi… (#10809) 2024-12-02 01:49:48 +00:00
b18c9bbaba [Model] Add BNB support to Llava and Pixtral-HF (#10795)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-12-02 01:31:09 +00:00
0590ec3fd9 [Core] Implement disagg prefill by StatelessProcessGroup (#10502)
This PR provides initial support for single-node disaggregated prefill in 1P1D scenario.
Signed-off-by: KuntaiDu <kuntai@uchicago.edu>
Co-authored-by: ApostaC <yihua98@uchicago.edu>
Co-authored-by: YaoJiayi <120040070@link.cuhk.edu.cn>
2024-12-01 19:01:00 -06:00
c11f172187 [Misc] Adding MMMU-Pro vision dataset to serving benchmark (#10804)
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2024-12-01 08:47:05 +00:00
169a0ff911 [doc] add warning about comparing hf and vllm outputs (#10805)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-12-01 00:41:38 -08:00
d2f058e76c [Misc] Rename embedding classes to pooling (#10801)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-01 14:36:51 +08:00
f877a7d12a [Misc] Improve type annotations for support_torch_compile (#10763)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-30 17:48:35 -08:00
133707123e [Model] Replace embedding models with pooling adapter (#10769)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-01 08:02:54 +08:00
7e4bbda573 [doc] format fix (#10789)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2024-11-30 11:38:40 +00:00
e7cfc4ef4c [Interleaved ATTN] Support for Mistral-8B (#10591)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-11-30 07:45:50 +00:00
16ee07f22a [Model] Refactor Molmo weights loading to use AutoWeightsLoader (#10771)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-30 04:19:14 +00:00
40bc242579 [Bugfix] Fix OpenVino/Neuron driver_worker init (#10779)
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2024-11-30 12:07:13 +08:00
661175bc82 [platform] Add verify_quantization in platform. (#10757)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2024-11-29 15:22:21 +00:00
3132aac043 [Bugfix] Fix Idefics3 bug (#10778)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-29 13:56:46 +00:00
c82b432d4a [Misc] typo find in sampling_metadata.py (#10740) 2024-11-29 05:17:57 +00:00
fa6ecb9aa7 [Model] Clean up MiniCPMV (#10751)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-29 04:47:06 +00:00
c83919c7a6 [Model] Add Internlm2 LoRA support (#5064)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-28 17:29:04 +00:00
98f47f2a40 [V1] Optimize the CPU overheads in FlashAttention custom op (#10733)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-28 09:01:02 -08:00
8c1e77fb58 [Kernel] Update vllm-flash-attn version to reduce CPU overheads (#10742)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-28 08:31:28 -08:00
5fc5ce0fe4 [Model] Added GLM-4 series hf format model support vllm==0.6.4 (#10561)
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2024-11-28 14:53:31 +00:00
3ed5e73146 [TPU] Update requirements-tpu (#10726)
Signed-off-by: Richard Liu <ricliu@google.com>
2024-11-28 02:30:48 -08:00
9a8bff0285 [Kernel] Update vllm-flash-attn version (#10736)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-28 02:25:59 -08:00
a79b122400 [V1] Do not allocate beyond the max_model_len (#10730)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-28 00:13:15 -08:00
d9b4b3f069 [Bug][CLI] Allow users to disable prefix caching explicitly (#10724)
Signed-off-by: rickyx <rickyx@anyscale.com>
2024-11-27 23:59:28 -08:00
278be671a3 [Doc] Update model in arch_overview.rst to match comment (#10701)
Signed-off-by: spacewander <spacewanderlzx@gmail.com>
2024-11-27 23:58:39 -08:00
70dc14fbd0 [Model] support bitsandbytes quantization with minicpm3 model (#10682)
Signed-off-by: Ubuntu <zixuanzhang@bytedance.com>
2024-11-27 23:58:02 -08:00
cb4e1c3f3a [misc] upgrade filelock version (#10731)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-27 19:54:58 -08:00
395b1c7454 [Frontend] don't block event loop in tokenization (preprocess) in OpenAI compatible server (#10635)
Signed-off-by: Tomer Asida <tomera@ai21.com>
2024-11-27 13:21:10 -08:00
9b4b150395 [Bugfix] Ignore lm_head when loading embedding models (#10719)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-27 19:05:29 +00:00
197b4484a3 [Bugfix][Mamba] Fix Multistep on Mamba-like models (#10705)
Signed-off-by: mzusman <mor.zusmann@gmail.com>
2024-11-27 19:02:27 +00:00
b98c62ba49 [Bugfix] Fix GGUF inference with FP16 unquantized checkpoint (#10675)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-27 10:43:17 -08:00
c411def234 [torch.compile] fix shape specialization (#10722)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-27 10:16:10 -08:00
308cc5e21e [ci] fix slow tests (#10698)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-27 09:26:14 -08:00
9e0a147d50 [V1] Update interface for mistral-format Pixtral (#10703)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-11-27 12:26:27 +00:00
418cb3b93f [Bugfix][Hardware][CPU] Fix intel-omp version to avoid segfault (#10700)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2024-11-27 11:55:38 +00:00
1209261e93 [Model] Support telechat2 (#10311)
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: xiangw2 <xiangw2@chinatelecom.cn>
Co-authored-by: Isotr0py <2037008807@qq.com>
2024-11-27 11:32:35 +00:00
e2251109c7 [Kernel] Remove if-else with identical branches in marlin 2:4 (#10687)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-11-26 22:55:32 -08:00
15cc2a9f1a [Misc]Further reduce BNB static variable (#10597)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-26 22:54:12 -08:00
e85250b1d1 [Hardware][Gaudi]add get_name method for HPUAttentionBackend (#10667)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2024-11-26 22:49:40 -08:00
cfb3bf25fb [bugfix] fix the default value of llm_int8_threshold in BitsAndBytesConfig (#10657) 2024-11-27 13:55:23 +08:00
1bf905ddaa [Bugfix][SpecDecode] apply sampling parameters to target probabilities for consistency in rejection sampling. (#10198)
Signed-off-by: jeongin601 <0200angela@gmail.com>
Signed-off-by: jeong_in.bae <jeong_in.bae@navercorp.com>
2024-11-27 05:07:30 +00:00
0a4d968500 [V1] Update interface for idefics3 (#10680)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-11-27 10:04:01 +08:00
0a71900bc9 Remove hard-dependencies of Speculative decode to CUDA workers (#10587)
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
2024-11-26 17:57:11 -08:00
2f0a0a17a4 [V1] Refactor model executable interface for multimodal models (#10570)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-11-26 20:46:11 +00:00
7576cd38df [Bugfix] Check bnb_4bit_quant_storage for bitsandbytes (#10642) 2024-11-26 12:29:00 -08:00
9a99273b48 [Bugfix] Fix using -O[0,3] with LLM entrypoint (#10677)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-11-26 10:44:01 -08:00
f5792c7c4a [Hardware][NVIDIA] Add non-NVML CUDA mode for Jetson (#9735)
Signed-off-by: Conroy Cheers <conroy@corncheese.org>
2024-11-26 10:26:28 -08:00
db66e018ea [Bugfix] Fix for Spec model TP + Chunked Prefill (#10232)
Signed-off-by: andoorve <37849411+andoorve@users.noreply.github.com>
Signed-off-by: Sourashis Roy <sroy@roblox.com>
Co-authored-by: Sourashis Roy <sroy@roblox.com>
2024-11-26 09:11:16 -08:00
1f6584ee85 [V1] Enable profile for LLMEngine (#10665) 2024-11-26 10:36:45 +00:00
334d64d1e8 [ci] add vllm_test_utils (#10659)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-26 00:20:04 -08:00
940635343a [Misc] Remove outdated init protocols (#10655)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-26 14:55:00 +08:00
9a88f89799 custom allreduce + torch.compile (#10121)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-11-25 22:00:16 -08:00
519e8e4182 [v1] EngineArgs for better config handling for v1 (#10382)
Signed-off-by: rickyx <rickyx@anyscale.com>
2024-11-25 21:09:43 -08:00
a6760f6456 [Feature] vLLM ARM Enablement for AARCH64 CPUs (#9228)
Signed-off-by: Sanket Kale <sanketk.kale@fujitsu.com>
Co-authored-by: Sanket Kale <sanketk.kale@fujitsu.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-11-25 18:32:39 -08:00
45ac4ff270 [bugfix] fix aria model and add torch.compile (#10645)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-25 18:32:09 -08:00
6e9ff050c8 [misc] do not read HOST_IP (#10644)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-25 17:04:50 -08:00
9db713a1dc [Model] Add OLMo November 2024 model (#10503) 2024-11-25 17:26:40 -05:00
1b583cfefa [Doc] Fix typos in docs (#10636)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-25 10:15:45 -08:00
cf73f0c95e [Model] Enable optional prefix when loading embedding models (#10639)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-25 18:14:33 +00:00
b1d920531f [Model]: Add support for Aria model (#10514)
Signed-off-by: xffxff <1247714429@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2024-11-25 18:10:55 +00:00
452a4e80c3 [Docs] Add Snowflake Slides (#10641)
Signed-off-by: simon-mo <simon.mo@hey.com>
2024-11-25 09:34:46 -08:00
c27df94e1f [Bugfix] Fix chunked prefill with model dtype float32 on Turing Devices (#9850)
Signed-off-by: Wallas Santos <wallashss@ibm.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-11-25 12:23:32 -05:00
d04b13a380 [Bug]: Authorization ignored when root_path is set (#10606)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2024-11-25 16:21:41 +00:00
2b0879bfc2 Super tiny little typo fix (#10633) 2024-11-25 13:08:30 +00:00
ed46f14321 [Model] Support is_causal HF config field for Qwen2 model (#10621)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-25 09:51:20 +00:00
05d1f8c9c6 [misc] move functions to config.py (#10624)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-25 09:27:30 +00:00
25d806e953 [misc] add torch.compile compatibility check (#10618)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-24 23:40:08 -08:00
65813781a2 [torch.compile] add warning for unsupported models (#10622)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-24 23:27:51 -08:00
7c2134beda [torch.compile] force inductor threads (#10620)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-24 23:04:21 -08:00
a30a605d21 [Doc] Add encoder-based models to Supported Models page (#10616)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-25 06:34:07 +00:00
571841b7fc [torch.compile] support encoder based models (#10613)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-25 05:24:33 +00:00
7ea3cd7c3e [Refactor][MISC] del redundant code in ParallelConfig.postinit (#10614)
Signed-off-by: MengqingCao <cmq0113@163.com>
2024-11-25 05:14:56 +00:00
214efc2c3c Support Cross encoder models (#10400)
Signed-off-by: Max de Bayser <maxdebayser@gmail.com>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Signed-off-by: Flavia Beo <flavia.beo@ibm.com>
Co-authored-by: Flavia Beo <flavia.beo@ibm.com>
2024-11-24 18:56:20 -08:00
49628fe13e [Doc] Update README.md with Ray Summit talk links (#10610) 2024-11-24 16:45:09 -08:00
e4fbb14414 [doc] update the code to add models (#10603)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-11-24 11:21:40 -08:00
c055747867 [model][utils] add extract_layer_index utility function (#10599)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-23 22:22:54 -08:00
eda2b3589c Revert "Print running script to enhance CI log readability" (#10601) 2024-11-23 21:31:47 -08:00
1c445dca51 [CI/Build] Print running script to enhance CI log readability (#10594)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-24 03:57:13 +00:00
1700c543a5 [Bugfix] Fix LoRA weight sharding (#10450)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-11-23 17:23:17 -08:00
17d8fc1806 [bugfix] Fix example/tensorize_vllm_model tests (#10595)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-23 17:22:33 -08:00
04668ebe7a [Bugfix] Avoid import AttentionMetadata explicitly in Mllama (#10593)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-23 18:12:20 +00:00
651f6c31ac For ppc64le, disabled tests for now and addressed space issues (#10538) 2024-11-23 09:33:53 +00:00
86a44fb896 [Platforms] Refactor openvino code (#10573)
Signed-off-by: statelesshz <hzji210@gmail.com>
2024-11-22 22:23:12 -08:00
4cfe5d2bca [Bugfix] multi_modal_kwargs broadcast for CPU tensor parallel (#10541)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-22 21:25:46 -08:00
c8acd80548 [2/N] handling placeholders in merged multi-modal processor (#10485)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-22 21:25:09 -08:00
4634a89d18 Prefix Cache Aware Scheduling [1/n] (#10128)
Signed-off-by: rickyx <rickyx@anyscale.com>
2024-11-22 21:15:55 -08:00
7c25fe45a6 [AMD] Add support for GGUF quantization on ROCm (#10254) 2024-11-22 21:14:49 -08:00
02a43f82a9 Update default max_num_batch_tokens for chunked prefill to 2048 (#10544) 2024-11-22 21:14:19 -08:00
cfea9c04ef [Model] Fix Baichuan BNB online quantization (#10572)
Signed-off-by: Chen Wu <cntryroa@gmail.com>
2024-11-22 21:13:59 -08:00
7d8ffb344f [Bugfix] Internal Server Error when tool_choice is incorrect. (#10567)
Signed-off-by: Varun Shenoy <varun.vinayak.shenoy@oracle.com>
2024-11-22 21:13:29 -08:00
4aba6e3d1a [core] gemma2 full context length support (#10584)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-22 20:13:54 -08:00
978b39744b [Misc] Add pynccl wrappers for all_gather and reduce_scatter (#9432) 2024-11-22 22:14:03 -05:00
ebda51968b [Core] Fix broken log configuration (#10458)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-23 10:23:51 +08:00
9195dbdbca [Bugfix][Frontend] Update Llama Chat Templates to also support Non-Tool use (#10164)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-11-23 10:17:38 +08:00
d559979c54 [bugfix] fix cpu tests (#10585)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-22 17:34:03 -08:00
d345f409b7 [V1] EngineCore supports profiling (#10564)
Signed-off-by: Abatom <abzhonghua@gmail.com>
2024-11-22 17:16:15 -08:00
28598f3939 [Core] remove temporary local variables in LLMEngine.__init__ (#10577)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-22 16:22:53 -08:00
948c859571 support bitsandbytes quantization with qwen model (#10549)
Signed-off-by: Ubuntu <zixuanzhang@bytedance.com>
2024-11-22 16:16:14 -08:00
97814fbf0f [v1] Refactor KVCacheManager for more hash input than token ids (#10507)
Signed-off-by: rickyx <rickyx@anyscale.com>
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-11-22 23:27:25 +00:00
eebad39f26 [torch.compile] support all attention backends (#10558)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-22 14:04:42 -08:00
db100c5cde [bugfix] fix full graph tests (#10581)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-22 10:02:14 -08:00
11fcf0e066 Remove token-adding chat embedding params (#10551)
Signed-off-by: Noam Gat <noamgat@gmail.com>
2024-11-21 23:59:47 -08:00
b6374e09b0 [Bugfix] Fix Phi-3 BNB quantization with tensor parallel (#9948)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-22 15:01:56 +08:00
a111d0151f [platforms] absorb worker cls difference into platforms folder (#10555)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2024-11-21 21:00:32 -08:00
446c7806b2 [Minor] Fix line-too-long (#10563)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-21 19:40:40 -08:00
33e0a2540a [9/N] torch.compile LLM usage (#10552)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-21 19:13:31 -08:00
aed074860a [Benchmark] Add new H100 machine (#10547) 2024-11-21 18:27:20 -08:00
9afa014552 Add small example to metrics.rst (#10550) 2024-11-21 23:43:43 +00:00
46fe9b46d8 [Minor] Revert change in offline inference example (#10545)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-21 21:28:16 +00:00
cf656f5a02 [misc] improve error message (#10553)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-21 13:13:17 -08:00
edec3385b6 [CI][Installation] Avoid uploading CUDA 11.8 wheel (#10535)
Signed-off-by: simon-mo <simon.mo@hey.com>
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-11-21 13:03:58 -08:00
f9310cbd0c [V1] Fix Compilation config & Enable CUDA graph by default (#10528)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-21 12:53:39 -08:00
7560ae5caf [8/N] enable cli flag without a space (#10529)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-21 12:30:42 -08:00
e7a8341c7c [Bugfix] Allow token ID-only inputs in Qwen2-Audio (#10536)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-21 18:09:43 +00:00
c51e397fe8 [Misc] Suppress duplicated logging regarding multimodal input pipeline (#10530)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-11-21 09:21:31 -08:00
2385b60d83 [Kernel] Register punica ops directly (#10522)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-21 09:18:11 -08:00
da7e702c6f [Bug]: When apply continue_final_message for OpenAI server, the "echo":false is ignored (#10180)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2024-11-21 16:24:32 +00:00
4d676f0852 [Bugfix] Embedding model pooling_type equals ALL and multi input's bug (#10494) 2024-11-21 14:40:02 +00:00
d5ec121f95 [Model] Expose dynamic_image_size as mm_processor_kwargs for InternVL2 models (#10518)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-21 14:20:08 +00:00
8a93a598d9 fix the issue that len(tokenizer(prompt)["input_ids"]) > prompt_len (#10524)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-11-21 11:15:36 +00:00
1cfde82ffd [Model] Add Support for Multimodal Granite Models (#10291)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-11-21 10:46:20 +00:00
f0e0238016 [Doc] fix a small typo in docstring of llama_tool_parser (#10513) 2024-11-21 09:05:23 +00:00
aaddce5d26 [platforms] improve error message for unspecified platforms (#10520)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-20 23:07:56 -08:00
3430857b64 [Misc] Increase default video fetch timeout (#10495)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-20 23:06:42 -08:00
8b0fe06c89 [torch.compile] Inductor code caching fix (#10273)
Signed-off-by: luka <luka@neuralmagic.com>
Signed-off-by: Luka Govedic <luka.govedic@gmail.com>
2024-11-20 21:44:57 -08:00
9d827170a3 [Platforms] Add device_type in Platform (#10508)
Signed-off-by: MengqingCao <cmq0113@163.com>
2024-11-21 04:44:20 +00:00
6c1208d083 [Core] Add Sliding Window Support with Flashinfer (#10462)
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
2024-11-20 19:56:47 -08:00
388ee3de66 [torch.compile] limit inductor threads and lazy import quant (#10482)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-20 18:36:33 -08:00
2f77b6cfec [TPU] Implement prefix caching for TPUs (#10307)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-20 13:54:15 -08:00
c68f7ede6a [Bugfix]: allow extra fields in requests to openai compatible server (#10463)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2024-11-20 16:42:21 -05:00
0cd3d9717e [7/N] torch.compile, reduce compilation time (#10460)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-20 11:20:38 -08:00
5f1d6af2b6 [perf bench] H200 development (#9768)
Signed-off-by: simon-mo <simon.mo@hey.com>
2024-11-20 11:06:56 -08:00
772a66732d [platforms] restore xpu check for parallel config (#10479)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-20 17:13:28 +00:00
63f1fde277 [Hardware][CPU] Support chunked-prefill and prefix-caching on CPU (#10355)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2024-11-20 10:57:39 +00:00
d5b28447e0 [Platforms] Refactor xpu code (#10468)
Signed-off-by: MengqingCao <cmq0113@163.com>
2024-11-19 22:52:13 -08:00
09dbf9ff16 [Bugfix] Handle conflicts between modern and legacy fields (#10471)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-20 14:45:08 +08:00
343041c4c4 [model] Reduce medusa weight (#10454)
Signed-off-by: skylee-01 <497627264@qq.com>
2024-11-20 06:05:55 +00:00
ed701ca963 [ci/build] Combine nightly and optional (#10465) 2024-11-19 21:36:03 -08:00
7629a9c6e5 [CI/Build] Support compilation with local cutlass path (#10423) (#10424) 2024-11-19 21:35:50 -08:00
709c9f1f25 [CI/Build] Add sphinx/rst linter for docs (#10366) 2024-11-19 21:35:31 -08:00
b4be5a8adb [Bugfix] Enforce no chunked prefill for embedding models (#10470)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-20 05:12:51 +00:00
ad44437ba3 [Bugfix] Fix Mamba model initialization and MLP Speculator weights loading (#10456)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-20 05:04:05 +00:00
9e05252b46 [Misc] Add __setitem__ for LazyDict (#10469)
Signed-off-by: Yanyi Liu <wolfsonliu@163.com>
2024-11-20 04:44:57 +00:00
d200972e7f [Bugfix] Marlin 2:4 temp fix for large M dim (>256) (#10464)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2024-11-19 19:40:33 -08:00
d5b68aba2f [CI/Build] Update Dockerfile.rocm (#10434)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2024-11-19 17:19:59 -08:00
a324d3a1a7 Change granite chat template to keep json list formatting for tool calls (#10452)
Signed-off-by: Max de Bayser <maxdebayser@gmail.com>
2024-11-19 18:16:54 -07:00
b00b33d77e [Model][Quantization] HQQ support through Marlin kernel expansion (#9766)
Signed-off-by: ElizaWszola <eliza@neuralmagic.com>
2024-11-19 13:31:12 -08:00
efa9084628 [Core] Avoid metrics log noise when idle (#8868)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-19 21:05:25 +00:00
803f37eaaa [6/N] torch.compile rollout to users (#10437)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-19 10:09:03 -08:00
fd9f124971 [Doc] fix link for page that was renamed (#10455)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-19 09:48:30 -08:00
1ea291a417 Fix: Build error seen on Power Architecture (#10421)
Signed-off-by: Manjul Mohan <manjul.mohan@ibm.com>
Signed-off-by: B-201 <Joy25810@foxmail.com>
Signed-off-by: Isotr0py <2037008807@qq.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Signed-off-by: ismael-dm <ismaeldm99@gmail.com>
Signed-off-by: Andrew Nesbitt <andrewnez@gmail.com>
Signed-off-by: mgoin <michael@neuralmagic.com>
Signed-off-by: yan ma <yan.ma@intel.com>
Signed-off-by: Angus Wang <wangjadehao@gmail.com>
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Signed-off-by: rickyx <rickyx@anyscale.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: Mengqing Cao <cmq0113@163.com>
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
Co-authored-by: Manjul Mohan manjul.mohan@ibm.com <manjulmohan@ltcd97-lp2.aus.stglabs.ibm.com>
Co-authored-by: B-201 <Joy25810@foxmail.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: ismael-dm <ismaeldm99@gmail.com>
Co-authored-by: Andrew Nesbitt <andrewnez@gmail.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
Co-authored-by: Yan Ma <yan.ma@intel.com>
Co-authored-by: Angus Wang <wangjadehao@gmail.com>
Co-authored-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: Ricky Xu <rickyx@anyscale.com>
Co-authored-by: Kevin H. Luu <kevin@anyscale.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Mengqing Cao <cmq0113@163.com>
Co-authored-by: Travis Johnson <tsjohnso@us.ibm.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2024-11-19 09:34:57 -08:00
11fd7ea639 [Pixtral-Large] Pixtral actually has no bias in vision-lang adapter (#10449) 2024-11-19 17:33:06 +00:00
f028dff33d [BugFix] Fix hermes tool parser output error stream arguments in some cases (#10395) (#10398)
Signed-off-by: xiyuan lee <lixiyuan@haier.com>
2024-11-19 13:42:50 +00:00
b4614656b8 [CI][CPU] adding numa node number as container name suffix (#10441)
Signed-off-by: Yuan Zhou <yuan.zhou@intel.com>
2024-11-19 13:16:43 +00:00
25f9c78961 [misc][plugin] improve plugin loading (#10443)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-19 10:43:21 +00:00
5390d6664f [Doc] Add the start of an arch overview page (#10368) 2024-11-19 09:52:11 +00:00
382b6a4852 [Misc] Avoid misleading warning messages (#10438)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-19 08:54:58 +00:00
272e31c0bd [Bugfix] Guard for negative counter metrics to prevent crash (#10430)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-11-19 04:57:10 +00:00
74f8c2cf5f Add openai.beta.chat.completions.parse example to structured_outputs.rst (#10433) 2024-11-19 04:37:46 +00:00
8c1fb50705 [Platform][Refactor] Extract func get_default_attn_backend to Platform (#10358)
Signed-off-by: Mengqing Cao <cmq0113@163.com>
2024-11-19 11:22:26 +08:00
7eb719df13 [Bugfix]Fix Phi-3 BNB online quantization (#10417)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-19 03:21:42 +00:00
284203f171 [ci/build] Have dependabot ignore all patch update (#10436)
We have too many dependencies and all patch updates can be a little noisy. This is to have dependabot ignore all patch version updates.
2024-11-19 01:04:25 +00:00
90a6c759ca [misc] partial prefix & random input generation benchmark (#9929)
Signed-off-by: rickyx <rickyx@anyscale.com>
2024-11-18 15:39:14 -08:00
2298e69b5f [ci][bugfix] fix kernel tests (#10431)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-18 15:29:37 -08:00
a03ea40792 [3/N][torch.compile] consolidate custom op logging (#10399)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-18 15:14:59 -08:00
96d999fbe8 [Kernel] Initial Machete W4A8 support + Refactors (#9855)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2024-11-18 12:59:29 -07:00
c2170a5b39 [Kernel] Explicitly specify other value in tl.load calls (#9014)
Signed-off-by: Angus Wang <wangjadehao@gmail.com>
2024-11-18 11:39:40 -08:00
6b2d25efc7 [Hardware][XPU] AWQ/GPTQ support for xpu backend (#10107)
Signed-off-by: yan ma <yan.ma@intel.com>
2024-11-18 11:18:05 -07:00
281cc4b3cd [Model][Bugfix] Support TP for PixtralHF ViT (#10405)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-11-18 10:04:14 -08:00
4f686d139f Fix open_collective value in FUNDING.yml (#10426)
Signed-off-by: Andrew Nesbitt <andrewnez@gmail.com>
2024-11-18 09:52:42 -08:00
31894a2155 [Doc] Add documentation for Structured Outputs (#9943)
Signed-off-by: ismael-dm <ismaeldm99@gmail.com>
2024-11-18 09:52:12 -08:00
7851b45196 [5/N][torch.compile] torch.jit.script --> torch.compile (#10406)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-18 23:20:06 +08:00
4186be8111 [Doc] Update doc for LoRA support in GLM-4V (#10425)
Signed-off-by: B-201 <Joy25810@foxmail.com>
2024-11-18 15:08:30 +00:00
e7ebb662d7 [Model] Remove transformers attention porting in VITs (#10414)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-18 21:45:21 +08:00
5be4e52b65 [Model][LoRA]LoRA support added for glm-4v (#10418)
Signed-off-by: B-201 <Joy25810@foxmail.com>
2024-11-18 12:57:10 +00:00
01aae1cc68 [Model] Remove redundant softmax when using PoolingType.STEP (#10415) 2024-11-18 10:05:36 +00:00
c7dec926f6 [VLM] Report multi_modal_placeholders in output (#10407)
Signed-off-by: Linkun Chen <lkchen+anyscale@github.com>
2024-11-18 16:06:16 +08:00
51bb12d17b [4/N][torch.compile] clean up set_torch_compile_backend (#10401)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-17 23:57:20 -08:00
47826cacf0 [Bugfix] Ignore ray reinit error when current platform is ROCm or XPU (#10375)
Signed-off-by: Hollow Man <hollowman@opensuse.org>
2024-11-18 11:29:26 +08:00
c4e464333e [Misc] Add uninitialized params tracking for AutoWeightsLoader (#10327)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-18 09:07:46 +08:00
d1557e66d3 [Misc] Enhance offline_inference to support user-configurable paramet… (#10392)
Signed-off-by: wchen61 <wchen61@foxmail.com>
2024-11-17 11:32:40 +00:00
80d85c5d7b [Bugfix] Fix mrope_position_delta in non-last prefill chunk (#10403)
Signed-off-by: imkero <kerorek@outlook.com>
2024-11-17 08:50:24 +00:00
76aab90ab6 [Hardware] [HPU]add mark_step for hpu (#10239)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2024-11-17 00:44:44 -08:00
8d74b5aee9 [platforms] refactor cpu code (#10402)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-16 23:14:23 -08:00
cf349c4a97 [Bugfix][CPU] Fix CPU embedding runner with tensor parallel (#10394)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-16 23:12:04 -08:00
905d0f0af4 [CI/Build] Fix IDC hpu [Device not found] issue (#10384)
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
2024-11-17 14:58:22 +08:00
643ecf7b11 [V1] Refactor model executable interface for all text-only language models (#10374)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-11-17 05:18:46 +00:00
4fd9375028 [2/N][torch.compile] make compilation cfg part of vllm cfg (#10383)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-16 18:02:14 -08:00
661a34fd4f [V1] Add code owners for V1 (#10397)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-16 10:45:26 -08:00
361c29e174 [Bugfix] Fix M-RoPE position calculation when chunked prefill is enabled (#10388)
Signed-off-by: imkero <kerorek@outlook.com>
2024-11-17 02:10:00 +08:00
b98d89efd4 [Misc] Medusa supports custom bias (#10361) 2024-11-16 16:33:01 +00:00
8b6725b0cf [Misc] Update benchmark to support image_url file or http (#10287)
Signed-off-by: rbbang <anjaehyun87@gmail.com>
2024-11-16 18:15:40 +08:00
1d75472626 [BugFix] [Kernel] Fix GPU SEGV occuring in fused_moe kernel (#10385)
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
2024-11-16 09:55:05 +00:00
2f427c2d16 [misc][plugin] improve log messages (#10386)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-16 01:23:20 -08:00
755b85359b [doc] add doc for the plugin system (#10372)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-15 21:46:27 -08:00
32e46e000f [Frontend] Automatic detection of chat content format from AST (#9919)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-16 13:35:40 +08:00
4f168f69a3 [Docs] Misc updates to TPU installation instructions (#10165) 2024-11-15 13:26:17 -08:00
3e8d14d8a1 [Doc] Move PR template content to docs (#10159)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-15 13:20:20 -08:00
a067f85e08 [Frontend] Add --version flag to CLI (#10369)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-15 13:13:53 -08:00
c76ac49d26 [Docs] Add Nebius as sponsors (#10371)
Signed-off-by: simon-mo <simon.mo@hey.com>
2024-11-15 12:47:40 -08:00
939 changed files with 69583 additions and 29043 deletions

View File

@ -0,0 +1,24 @@
import argparse
import os
template = """<!DOCTYPE html>
<html>
<body>
<h1>Links for vLLM</h1/>
<a href="../{wheel_html_escaped}">{wheel}</a><br/>
</body>
</html>
"""
parser = argparse.ArgumentParser()
parser.add_argument("--wheel", help="The wheel path.", required=True)
args = parser.parse_args()
filename = os.path.basename(args.wheel)
with open("index.html", "w") as f:
print(f"Generated index.html for {args.wheel}")
# cloudfront requires escaping the '+' character
f.write(
template.format(wheel=filename,
wheel_html_escaped=filename.replace("+", "%2B")))

View File

@ -1,5 +1,6 @@
steps:
- label: "Wait for container to be ready"
key: wait-for-container-image
agents:
queue: A100
plugins:
@ -9,16 +10,18 @@ steps:
- image: badouralix/curl-jq
command:
- sh .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
- wait
- label: "A100"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: A100
depends_on: wait-for-container-image
plugins:
- kubernetes:
podSpec:
priorityClassName: perf-benchmark
containers:
- image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
- image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
command:
- bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
resources:
@ -41,20 +44,49 @@ steps:
- name: devshm
emptyDir:
medium: Memory
# - label: "H100"
# agents:
# queue: H100
# plugins:
# - docker#v5.11.0:
# image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
# command:
# - bash
# - .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
# mount-buildkite-agent: true
# propagate-environment: true
# ipc: host
# gpus: all
# environment:
# - VLLM_USAGE_SOURCE
# - HF_TOKEN
- label: "H200"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: H200
depends_on: wait-for-container-image
plugins:
- docker#v5.12.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
command:
- bash
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
mount-buildkite-agent: true
propagate-environment: true
ipc: host
gpus: 4,5,6,7
volumes:
- /data/benchmark-hf-cache:/root/.cache/huggingface
environment:
- VLLM_USAGE_SOURCE
- HF_TOKEN
#- block: "Run H100 Benchmark"
#key: block-h100
#depends_on: ~
- label: "H100"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: H100
depends_on: wait-for-container-image
plugins:
- docker#v5.12.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
command:
- bash
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
mount-buildkite-agent: true
propagate-environment: true
ipc: host
gpus: all # see CUDA_VISIBLE_DEVICES for actual GPUs used
volumes:
- /data/benchmark-hf-cache:/root/.cache/huggingface
environment:
- VLLM_USAGE_SOURCE
- HF_TOKEN

View File

@ -157,6 +157,18 @@ if __name__ == "__main__":
throughput_results,
serving_results)
for df in [latency_results, serving_results, throughput_results]:
if df.empty:
continue
# Sort all dataframes by their respective "Test name" columns
df.sort_values(by="Test name", inplace=True)
# The GPUs sometimes come in format of "GPUTYPE\nGPUTYPE\n...",
# we want to turn it into "8xGPUTYPE"
df["GPU"] = df["GPU"].apply(
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}")
# get markdown tables
latency_md_table = tabulate(latency_results,
headers='keys',

View File

@ -6,6 +6,7 @@
# Do not set -e, as the mixtral 8x22B model tends to crash occasionally
# and we still want to see other benchmarking results even when mixtral crashes.
set -x
set -o pipefail
check_gpus() {
@ -85,11 +86,7 @@ kill_gpu_processes() {
ps -aux
lsof -t -i:8000 | xargs -r kill -9
pkill -f pt_main_thread
# this line doesn't work now
# ps aux | grep python | grep openai | awk '{print $2}' | xargs -r kill -9
pkill -f python3
pkill -f /usr/bin/python3
pgrep python3 | xargs -r kill -9
# wait until GPU memory usage smaller than 1GB
@ -289,7 +286,7 @@ run_serving_tests() {
# run the server
echo "Running test case $test_name"
echo "Server command: $server_command"
eval "$server_command" &
bash -c "$server_command" &
server_pid=$!
# wait until the server is alive
@ -322,7 +319,7 @@ run_serving_tests() {
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
bash -c "$client_command"
# record the benchmarking commands
jq_output=$(jq -n \

View File

@ -1,6 +1,6 @@
#!/bin/sh
TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-test-repo:pull" | jq -r .token)
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-test-repo/manifests/$BUILDKITE_COMMIT"
TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-postmerge-repo:pull" | jq -r .token)
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-postmerge-repo/manifests/$BUILDKITE_COMMIT"
TIMEOUT_SECONDS=10

View File

@ -1,7 +1,7 @@
steps:
- label: "Build wheel - CUDA 12.1"
agents:
queue: cpu_queue
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain ."
- "mkdir artifacts"
@ -18,7 +18,7 @@ steps:
- label: "Build wheel - CUDA 11.8"
# depends_on: block-build-cu118-wheel
agents:
queue: cpu_queue
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain ."
- "mkdir artifacts"
@ -26,3 +26,47 @@ steps:
- "bash .buildkite/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
- block: "Build release image"
depends_on: ~
key: block-release-image-build
- label: "Build release image"
depends_on: block-release-image-build
agents:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- label: "Build and publish TPU release image"
depends_on: ~
if: build.env("NIGHTLY") == "1"
agents:
queue: tpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm/vllm-tpu:nightly --tag vllm/vllm-tpu:$BUILDKITE_COMMIT --progress plain -f Dockerfile.tpu ."
- "docker push vllm/vllm-tpu:nightly"
- "docker push vllm/vllm-tpu:$BUILDKITE_COMMIT"
plugins:
- docker-login#v3.0.0:
username: vllm
password-env: DOCKERHUB_TOKEN
env:
DOCKER_BUILDKIT: "1"
- block: "Build CPU release image"
key: block-cpu-release-image-build
depends_on: ~
- label: "Build and publish CPU release image"
depends_on: block-cpu-release-image-build
agents:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$RELEASE_VERSION --progress plain -f Dockerfile.cpu ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$RELEASE_VERSION"
env:
DOCKER_BUILDKIT: "1"

View File

@ -85,7 +85,6 @@ if [[ $commands == *" kernels "* ]]; then
--ignore=kernels/test_encoder_decoder_attn.py \
--ignore=kernels/test_flash_attn.py \
--ignore=kernels/test_flashinfer.py \
--ignore=kernels/test_gguf.py \
--ignore=kernels/test_int8_quant.py \
--ignore=kernels/test_machete_gemm.py \
--ignore=kernels/test_mamba_ssm.py \

View File

@ -4,49 +4,11 @@
# It serves a sanity check for compilation and basic model usage.
set -ex
# Try building the docker image
docker build -t cpu-test -f Dockerfile.ppc64le .
# Setup cleanup
remove_docker_container() { docker rm -f cpu-test || true; }
remove_docker_container() { docker rm -f cpu-test || true; docker system prune -f; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image, setting --shm-size=4g for tensor parallel.
source /etc/environment
#docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN="$HF_TOKEN" --name cpu-test cpu-test
# Try building the docker image
docker build -t cpu-test -f Dockerfile.ppc64le .
function cpu_tests() {
set -e
# Run basic model test
docker exec cpu-test bash -c "
set -e
pip install pytest pytest-asyncio \
decord einops librosa peft Pillow sentence-transformers soundfile \
transformers_stream_generator matplotlib datamodel_code_generator
pip install torchvision --index-url https://download.pytorch.org/whl/cpu
pytest -v -s tests/models/decoder_only/language -m cpu_model
pytest -v -s tests/models/embedding/language -m cpu_model
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
pytest -v -s tests/models/decoder_only/audio_language -m cpu_model
pytest -v -s tests/models/decoder_only/vision_language -m cpu_model"
# online inference
docker exec cpu-test bash -c "
set -e
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m &
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name random \
--model facebook/opt-125m \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer facebook/opt-125m"
}
# All of CPU tests are expected to be finished less than 25 mins.
export -f cpu_tests
timeout 25m bash -c "cpu_tests"

View File

@ -9,30 +9,31 @@ CORE_RANGE=${CORE_RANGE:-48-95}
NUMA_NODE=${NUMA_NODE:-1}
# Try building the docker image
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build -t cpu-test -f Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-avx2 -f Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build -t cpu-test-"$BUILDKITE_BUILD_NUMBER" -f Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 -f Dockerfile.cpu .
# Setup cleanup
remove_docker_container() { docker rm -f cpu-test cpu-test-avx2 || true; }
remove_docker_container() { docker rm -f cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image, setting --shm-size=4g for tensor parallel.
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-avx2 cpu-test-avx2
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2
function cpu_tests() {
set -e
export NUMA_NODE=$2
# offline inference
docker exec cpu-test-avx2 bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" bash -c "
set -e
python3 examples/offline_inference.py"
# Run basic model test
docker exec cpu-test bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
pip install pytest pytest-asyncio \
decord einops librosa peft Pillow sentence-transformers soundfile \
@ -45,20 +46,26 @@ function cpu_tests() {
pytest -v -s tests/models/decoder_only/vision_language -m cpu_model"
# Run compressed-tensor test
docker exec cpu-test bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynamic_per_token"
# Run AWQ test
docker exec cpu-test bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
tests/quantization/test_ipex_quant.py"
# Run chunked-prefill and prefix-cache test
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
pytest -s -v -k cpu_model \
tests/basic_correctness/test_chunked_prefill.py"
# online inference
docker exec cpu-test bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
export VLLM_CPU_KVCACHE_SPACE=10
export VLLM_CPU_OMP_THREADS_BIND=$1
@ -75,4 +82,4 @@ function cpu_tests() {
# All of CPU tests are expected to be finished less than 25 mins.
export -f cpu_tests
timeout 25m bash -c "cpu_tests $CORE_RANGE"
timeout 30m bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"

View File

@ -0,0 +1,28 @@
#!/bin/bash
# This script build the GH200 docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Skip the new torch installation during build since we are using the specified version for arm64 in the Dockerfile
python3 use_existing_torch.py
# Try building the docker image
DOCKER_BUILDKIT=1 docker build . \
--target vllm-openai \
--platform "linux/arm64" \
-t gh200-test \
--build-arg max_jobs=66 \
--build-arg nvcc_threads=2 \
--build-arg torch_cuda_arch_list="9.0+PTX" \
--build-arg vllm_fa_cmake_gpu_arches="90-real"
# Setup cleanup
remove_docker_container() { docker rm -f gh200-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image and test offline inference
docker run --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c '
python3 examples/offline_inference.py
'

View File

@ -13,4 +13,4 @@ trap remove_docker_container EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --runtime=habana --name=hpu-test --network=host -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference.py
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference.py

View File

@ -3,6 +3,18 @@
# This script build the Neuron docker image and run the API server inside the container.
# It serves a sanity check for compilation and basic model usage.
set -e
set -v
image_name="neuron/vllm-ci"
container_name="neuron_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
HF_CACHE="$(realpath ~)/huggingface"
mkdir -p "${HF_CACHE}"
HF_MOUNT="/root/.cache/huggingface"
NEURON_COMPILE_CACHE_URL="$(realpath ~)/neuron_compile_cache"
mkdir -p "${NEURON_COMPILE_CACHE_URL}"
NEURON_COMPILE_CACHE_MOUNT="/root/.cache/neuron_compile_cache"
# Try building the docker image
aws ecr get-login-password --region us-west-2 | docker login --username AWS --password-stdin 763104351884.dkr.ecr.us-west-2.amazonaws.com
@ -13,41 +25,30 @@ if [ -f /tmp/neuron-docker-build-timestamp ]; then
last_build=$(cat /tmp/neuron-docker-build-timestamp)
current_time=$(date +%s)
if [ $((current_time - last_build)) -gt 86400 ]; then
docker image prune -f
docker system prune -f
rm -rf "${HF_MOUNT:?}/*"
rm -rf "${NEURON_COMPILE_CACHE_MOUNT:?}/*"
echo "$current_time" > /tmp/neuron-docker-build-timestamp
fi
else
date "+%s" > /tmp/neuron-docker-build-timestamp
fi
docker build -t neuron -f Dockerfile.neuron .
docker build -t "${image_name}" -f Dockerfile.neuron .
# Setup cleanup
remove_docker_container() { docker rm -f neuron || true; }
remove_docker_container() {
docker image rm -f "${image_name}" || true;
}
trap remove_docker_container EXIT
remove_docker_container
# Run the image
docker run --device=/dev/neuron0 --device=/dev/neuron1 --network host --name neuron neuron python3 -m vllm.entrypoints.api_server \
--model TinyLlama/TinyLlama-1.1B-Chat-v1.0 --max-num-seqs 8 --max-model-len 128 --block-size 128 --device neuron --tensor-parallel-size 2 &
# Wait for the server to start
wait_for_server_to_start() {
timeout=300
counter=0
while [ "$(curl -s -o /dev/null -w '%{http_code}' localhost:8000/health)" != "200" ]; do
sleep 1
counter=$((counter + 1))
if [ $counter -ge $timeout ]; then
echo "Timeout after $timeout seconds"
break
fi
done
}
wait_for_server_to_start
# Test a simple prompt
curl -X POST -H "Content-Type: application/json" \
localhost:8000/generate \
-d '{"prompt": "San Francisco is a"}'
docker run --rm -it --device=/dev/neuron0 --device=/dev/neuron1 --network host \
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
-v "${NEURON_COMPILE_CACHE_URL}:${NEURON_COMPILE_CACHE_MOUNT}" \
-e "NEURON_COMPILE_CACHE_URL=${NEURON_COMPILE_CACHE_MOUNT}" \
--name "${container_name}" \
${image_name} \
/bin/bash -c "python3 /workspace/vllm/examples/offline_inference_neuron.py"

View File

@ -12,5 +12,8 @@ remove_docker_container() { docker rm -f xpu-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --network host --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path --entrypoint="" xpu-test python3 examples/offline_inference.py
# Run the image and test offline inference/tensor parallel
docker run --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path --entrypoint="" xpu-test sh -c '
python3 examples/offline_inference.py
python3 examples/offline_inference_cli.py -tp 2
'

View File

@ -9,8 +9,7 @@
# label(str): the name of the test. emoji allowed.
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
# fast_check_only(bool): run this test on fastcheck pipeline only
# nightly(bool): run this test in nightly pipeline only
# optional(bool): never run this test by default (i.e. need to unblock manually)
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's scheduled nightly run.
# command(str): the single command to run for tests. incompatible with commands.
# commands(list): the list of commands to run for test. incompatbile with command.
# mirror_hardwares(list): the list of hardwares to run the test on as well. currently only supports [amd]
@ -51,7 +50,9 @@ steps:
- tests/multimodal
- tests/test_utils
- tests/worker
- tests/standalone_tests/lazy_torch_compile.py
commands:
- python3 standalone_tests/lazy_torch_compile.py
- pytest -v -s mq_llm_engine # MQLLMEngine
- pytest -v -s async_engine # AsyncLLMEngine
- NUM_SCHEDULER_STEPS=4 pytest -v -s async_engine/test_async_llm_engine.py
@ -60,6 +61,13 @@ steps:
- pytest -v -s test_utils.py # Utils
- pytest -v -s worker # Worker
- label: Python-only Installation Test
source_file_dependencies:
- tests/standalone_tests/python_only_compile.sh
- setup.py
commands:
- bash standalone_tests/python_only_compile.sh
- label: Basic Correctness Test # 30min
#mirror_hardwares: [amd]
fast_check: true
@ -98,14 +106,12 @@ steps:
source_file_dependencies:
- vllm/
commands:
- pip install -e ./plugins/vllm_add_dummy_model
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_guided_generate.py
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py
- pytest -v -s entrypoints/openai/test_oot_registration.py # it needs a clean process
- pytest -v -s entrypoints/test_chat_utils.py
- pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
@ -171,16 +177,16 @@ steps:
- vllm/
- tests/v1
commands:
- pytest -v -s v1
- VLLM_USE_V1=1 pytest -v -s v1
- label: Examples Test # 15min
- label: Examples Test # 25min
working_dir: "/vllm-workspace/examples"
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/entrypoints
- examples/
commands:
- pip install awscli tensorizer # for llava example and tensorizer test
- pip install tensorizer # for tensorizer test
- python3 offline_inference.py
- python3 cpu_offload.py
- python3 offline_inference_chat.py
@ -190,10 +196,13 @@ steps:
- python3 offline_inference_vision_language_multi_image.py
- python3 tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference_encoder_decoder.py
- python3 offline_profile.py --model facebook/opt-125m
- python3 offline_inference_classification.py
- python3 offline_inference_embedding.py
- python3 offline_inference_scoring.py
- python3 offline_profile.py --model facebook/opt-125m run_num_steps --num-steps 2
- label: Prefix Caching Test # 9min
#mirror_hardwares: [amd]
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/prefix_caching
@ -213,8 +222,12 @@ steps:
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/model_executor/layers
- vllm/model_executor/guided_decoding
- tests/test_logits_processor
command: pytest -v -s test_logits_processor.py
- tests/model_executor/test_guided_processors
commands:
- pytest -v -s test_logits_processor.py
- pytest -v -s model_executor/test_guided_processors.py
- label: Speculative decoding tests # 30min
source_file_dependencies:
@ -229,7 +242,7 @@ steps:
source_file_dependencies:
- vllm/lora
- tests/lora
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py --ignore=lora/test_minicpmv_tp.py
parallelism: 4
- label: "PyTorch Fullgraph Smoke Test" # 9min
@ -313,17 +326,15 @@ steps:
##### models test #####
- label: Basic Models Test # 30min
- label: Basic Models Test # 24min
source_file_dependencies:
- vllm/
- tests/models
commands:
- pip install -e ./plugins/vllm_add_dummy_model
- pytest -v -s models/test_oot_registration.py # it needs a clean process
- pytest -v -s models/test_registry.py
- pytest -v -s models/test_initialization.py
- label: Language Models Test (Standard) # 42min
- label: Language Models Test (Standard) # 32min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
@ -333,10 +344,9 @@ steps:
commands:
- pytest -v -s models/decoder_only/language -m 'core_model or quant_model'
- pytest -v -s models/embedding/language -m core_model
- pytest -v -s models/embedding/vision_language -m core_model
- label: Language Models Test (Extended) # 50min
nightly: true
- label: Language Models Test (Extended) # 1h10min
optional: true
source_file_dependencies:
- vllm/
- tests/models/decoder_only/language
@ -345,24 +355,27 @@ steps:
commands:
- pytest -v -s models/decoder_only/language -m 'not core_model and not quant_model'
- pytest -v -s models/embedding/language -m 'not core_model'
- pytest -v -s models/embedding/vision_language -m 'not core_model'
- label: Multi-Modal Models Test (Standard) # 26min
- label: Multi-Modal Models Test (Standard) # 40min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/models/decoder_only/audio_language
- tests/models/decoder_only/vision_language
- tests/models/embedding/vision_language
- tests/models/encoder_decoder/audio_language
- tests/models/encoder_decoder/vision_language
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/decoder_only/audio_language -m 'core_model or quant_model'
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'core_model or quant_model'
- pytest -v -s models/embedding/vision_language -m core_model
- pytest -v -s models/encoder_decoder/audio_language -m core_model
- pytest -v -s models/encoder_decoder/language -m core_model
- pytest -v -s models/encoder_decoder/vision_language -m core_model
- label: Multi-Modal Models Test (Extended) # 1h15m
nightly: true
- label: Multi-Modal Models Test (Extended) 1 # 48m
optional: true
source_file_dependencies:
- vllm/
- tests/models/decoder_only/audio_language
@ -370,14 +383,26 @@ steps:
- tests/models/embedding/vision_language
- tests/models/encoder_decoder/vision_language
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/decoder_only/audio_language -m 'not core_model and not quant_model'
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=0) and not core_model and not quant_model'
# HACK - run phi3v tests separately to sidestep this transformers bug
# https://github.com/huggingface/transformers/issues/34307
- pytest -v -s models/decoder_only/vision_language/test_phi3v.py
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
- pytest -v -s --ignore models/decoder_only/vision_language/test_models.py --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
- pytest -v -s models/embedding/vision_language -m 'not core_model'
- pytest -v -s models/encoder_decoder/language -m 'not core_model'
- pytest -v -s models/encoder_decoder/vision_language -m 'not core_model'
- label: Multi-Modal Models Test (Extended) 2 # 38m
optional: true
source_file_dependencies:
- vllm/
- tests/models/decoder_only/vision_language
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=1) and not core_model and not quant_model'
# This test is used only in PR development phase to test individual models and should never run on main
- label: Custom Models Test
optional: true
@ -412,11 +437,11 @@ steps:
- tests/distributed/
commands:
- # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep -q 'Same node test passed'
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep 'Same node test passed'
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_multi_node_assignment.py
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py
- # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep -q 'Same node test passed'
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep 'Same node test passed'
- label: Distributed Tests (2 GPUs) # 40min
#mirror_hardwares: [amd]
@ -429,19 +454,40 @@ steps:
- vllm/model_executor/models/
- tests/distributed/
- vllm/compilation
- vllm/worker/worker_base.py
- vllm/worker/worker.py
- vllm/worker/model_runner.py
commands:
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep -q 'Same node test passed'
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m distributed_2_gpus
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
# Avoid importing model tests that cause CUDA reinitialization error
- pytest models/encoder_decoder/language/test_bart.py -v -s -m distributed_2_gpus
- pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m distributed_2_gpus
- pytest models/decoder_only/vision_language/test_models.py -v -s -m distributed_2_gpus
- pytest models/encoder_decoder/language/test_bart.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/decoder_only/vision_language/test_models.py -v -s -m 'distributed(num_gpus=2)'
- pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/disagg_test.py
- label: Plugin Tests (2 GPUs) # 40min
working_dir: "/vllm-workspace/tests"
num_gpus: 2
fast_check: true
source_file_dependencies:
- vllm/plugins/
- tests/plugins/
commands:
# begin platform plugin tests, all the code in-between runs on dummy platform
- pip install -e ./plugins/vllm_add_dummy_platform
- pytest -v -s plugins_tests/test_platform_plugins.py
- pip uninstall vllm_add_dummy_platform -y
# end platform plugin tests
# other tests continue here:
- pip install -e ./plugins/vllm_add_dummy_model
- pytest -v -s distributed/test_distributed_oot.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- pytest -v -s entrypoints/openai/test_oot_registration.py # it needs a clean process
- pytest -v -s models/test_oot_registration.py # it needs a clean process
- label: Multi-step Tests (4 GPUs) # 36min
working_dir: "/vllm-workspace/tests"
@ -474,18 +520,23 @@ steps:
- pytest -v -s distributed/test_pp_cudagraph.py
- pytest -v -s distributed/test_pipeline_parallel.py
- label: LoRA Long Context (Distributed) # 11min
# This test runs llama 13B, so it is required to run on 4 GPUs.
- label: LoRA TP Test (Distributed)
num_gpus: 4
soft_fail: true
source_file_dependencies:
- vllm/lora
- tests/lora/test_long_context
- tests/lora
commands:
# FIXIT: find out which code initialize cuda before running the test
# before the fix, we need to use spawn to test it
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
# This test runs llama 13B, so it is required to run on 4 GPUs.
- pytest -v -s -x lora/test_long_context.py
# There is some Tensor Parallelism related processing logic in LoRA that
# requires multi-GPU testing for validation.
- pytest -v -s -x lora/test_chatglm3_tp.py
- pytest -v -s -x lora/test_llama_tp.py
- pytest -v -s -x lora/test_minicpmv_tp.py
- label: Weight Loading Multiple GPU Test # 33min
working_dir: "/vllm-workspace/tests"
@ -513,6 +564,7 @@ steps:
- label: Distributed Tests (A100) # optional
gpu: a100
optional: true
num_gpus: 4
source_file_dependencies:
- vllm/
@ -521,11 +573,12 @@ steps:
# see https://github.com/vllm-project/vllm/pull/5689 for details
- pytest -v -s distributed/test_custom_all_reduce.py
- torchrun --nproc_per_node=2 distributed/test_ca_buffer_sharing.py
- TARGET_TEST_SUITE=A100 pytest basic_correctness/ -v -s -m distributed_2_gpus
- TARGET_TEST_SUITE=A100 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
- pytest -v -s -x lora/test_mixtral.py
- label: LM Eval Large Models # optional
gpu: a100
optional: true
num_gpus: 4
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:

View File

@ -23,16 +23,49 @@ wheel="$new_wheel"
version=$(unzip -p "$wheel" '**/METADATA' | grep '^Version: ' | cut -d' ' -f2)
echo "Version: $version"
normal_wheel="$wheel" # Save the original wheel filename
# If the version contains "dev", rename it to v1.0.0.dev for consistency
if [[ $version == *dev* ]]; then
new_version="1.0.0.dev"
suffix="${version##*.}"
if [[ $suffix == cu* ]]; then
new_version="1.0.0.dev+${suffix}"
else
new_version="1.0.0.dev"
fi
new_wheel="${wheel/$version/$new_version}"
mv -- "$wheel" "$new_wheel"
# use cp to keep both files in the artifacts directory
cp -- "$wheel" "$new_wheel"
wheel="$new_wheel"
version="$new_version"
fi
# Upload the wheel to S3
python3 .buildkite/generate_index.py --wheel "$normal_wheel"
# generate index for this commit
aws s3 cp "$wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
else
# only upload index.html for cu12 wheels (default wheels)
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
fi
# generate index for nightly
aws s3 cp "$wheel" "s3://vllm-wheels/nightly/"
aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
else
# only upload index.html for cu12 wheels (default wheels)
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
fi
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"

17
.github/CODEOWNERS vendored
View File

@ -3,13 +3,16 @@
# This lists cover the "core" components of vLLM that require careful review
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/core @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/engine/llm_engine.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/executor/executor_base.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/worker/worker_base.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/worker/worker.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/model_executor/layers/sampler.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
CMakeLists.txt @tlrmchlsmth @WoosukKwon
/vllm/core @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/engine/llm_engine.py @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
CMakeLists.txt @tlrmchlsmth
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-neuralmagic @njhill @ywang96 @comaniac @alexm-neuralmagic
# Test ownership
/tests/async_engine @njhill @robertgshaw2-neuralmagic @simon-mo

2
.github/FUNDING.yml vendored
View File

@ -1,2 +1,2 @@
github: [vllm-project]
open_collective: [vllm]
open_collective: vllm

View File

@ -9,7 +9,7 @@ body:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
#### We also highly recommend you read https://docs.vllm.ai/en/latest/models/adding_model.html first to understand how to add a new model.
#### We also highly recommend you read https://docs.vllm.ai/en/latest/contributing/model/adding_model.html first to understand how to add a new model.
- type: textarea
attributes:
label: The model to consider.

View File

@ -2,73 +2,4 @@ FILL IN THE PR DESCRIPTION HERE
FIX #xxxx (*link existing issues this PR will resolve*)
**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**
---
<details>
<!-- inside this <details> section, markdown rendering does not work, so we use raw html here. -->
<summary><b> PR Checklist (Click to Expand) </b></summary>
<p>Thank you for your contribution to vLLM! Before submitting the pull request, please ensure the PR meets the following criteria. This helps vLLM maintain the code quality and improve the efficiency of the review process.</p>
<h3>PR Title and Classification</h3>
<p>Only specific types of PRs will be reviewed. The PR title is prefixed appropriately to indicate the type of change. Please use one of the following:</p>
<ul>
<li><code>[Bugfix]</code> for bug fixes.</li>
<li><code>[CI/Build]</code> for build or continuous integration improvements.</li>
<li><code>[Doc]</code> for documentation fixes and improvements.</li>
<li><code>[Model]</code> for adding a new model or improving an existing model. Model name should appear in the title.</li>
<li><code>[Frontend]</code> For changes on the vLLM frontend (e.g., OpenAI API server, <code>LLM</code> class, etc.) </li>
<li><code>[Kernel]</code> for changes affecting CUDA kernels or other compute kernels.</li>
<li><code>[Core]</code> for changes in the core vLLM logic (e.g., <code>LLMEngine</code>, <code>AsyncLLMEngine</code>, <code>Scheduler</code>, etc.)</li>
<li><code>[Hardware][Vendor]</code> for hardware-specific changes. Vendor name should appear in the prefix (e.g., <code>[Hardware][AMD]</code>).</li>
<li><code>[Misc]</code> for PRs that do not fit the above categories. Please use this sparingly.</li>
</ul>
<p><strong>Note:</strong> If the PR spans more than one category, please include all relevant prefixes.</p>
<h3>Code Quality</h3>
<p>The PR need to meet the following code quality standards:</p>
<ul>
<li>We adhere to <a href="https://google.github.io/styleguide/pyguide.html">Google Python style guide</a> and <a href="https://google.github.io/styleguide/cppguide.html">Google C++ style guide</a>.</li>
<li>Pass all linter checks. Please use <a href="https://github.com/vllm-project/vllm/blob/main/format.sh"><code>format.sh</code></a> to format your code.</li>
<li>The code need to be well-documented to ensure future contributors can easily understand the code.</li>
<li>Include sufficient tests to ensure the project to stay correct and robust. This includes both unit tests and integration tests.</li>
<li>Please add documentation to <code>docs/source/</code> if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.</li>
</ul>
<h3>Adding or changing kernels</h3>
<p>Each custom kernel needs a schema and one or more implementations to be registered with PyTorch.</p>
<ul>
<li>Make sure custom ops are registered following PyTorch guidelines: <a href="https://pytorch.org/tutorials/advanced/cpp_custom_ops.html#cpp-custom-ops-tutorial">Custom C++ and CUDA Operators</a> and <a href="https://docs.google.com/document/d/1_W62p8WJOQQUzPsJYa7s701JXt0qf2OfLub2sbkHOaU">The Custom Operators Manual</a></li>
<li>Custom operations that return <code>Tensors</code> require meta-functions. Meta-functions should be implemented and registered in python so that dynamic dims can be handled automatically. See above documents for a description of meta-functions.</li>
<li>Use <a href="https://pytorch.org/docs/stable/library.html#torch.library.opcheck"><code>torch.libary.opcheck()</code></a> to test the function registration and meta-function for any registered ops. See <code>tests/kernels</code> for examples.</li>
<li>When changing the C++ signature of an existing op, the schema must be updated to reflect the changes.</li>
<li>If a new custom type is needed, see the following document: <a href="https://docs.google.com/document/d/18fBMPuOJ0fY5ZQ6YyrHUppw9FA332CpNtgB6SOIgyuA">Custom Class Support in PT2</a>.
</ul>
<h3>Notes for Large Changes</h3>
<p>Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with <code>rfc-required</code> and might not go through the PR.</p>
<h3>What to Expect for the Reviews</h3>
<p>The goal of the vLLM team is to be a <i>transparent reviewing machine</i>. We would like to make the review process transparent and efficient and make sure no contributor feel confused or frustrated. However, the vLLM team is small, so we need to prioritize some PRs over others. Here is what you can expect from the review process: </p>
<ul>
<li> After the PR is submitted, the PR will be assigned to a reviewer. Every reviewer will pick up the PRs based on their expertise and availability.</li>
<li> After the PR is assigned, the reviewer will provide status update every 2-3 days. If the PR is not reviewed within 7 days, please feel free to ping the reviewer or the vLLM team.</li>
<li> After the review, the reviewer will put an <code> action-required</code> label on the PR if there are changes required. The contributor should address the comments and ping the reviewer to re-review the PR.</li>
<li> Please respond to all comments within a reasonable time frame. If a comment isn't clear or you disagree with a suggestion, feel free to ask for clarification or discuss the suggestion.
</li>
</ul>
<h3>Thank You</h3>
<p> Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM. Your contributions make vLLM a great tool for everyone! </p>
</details>
**BEFORE SUBMITTING, PLEASE READ https://docs.vllm.ai/en/latest/contributing/overview.html **

View File

@ -15,6 +15,8 @@ updates:
allow:
- dependency-type: "all"
ignore:
- dependency-name: "*"
update-types: ["version-update:semver-patch"]
- dependency-name: "torch"
- dependency-name: "torchvision"
- dependency-name: "xformers"
@ -24,9 +26,6 @@ updates:
- dependency-name: "ray[adag]"
- dependency-name: "lm-eval"
groups:
patch-update:
applies-to: version-updates
update-types: ["patch"]
minor-update:
applies-to: version-updates
update-types: ["minor"]

View File

@ -15,19 +15,36 @@ NEW=/tmp/new_pr_body.txt
gh pr view --json body --template "{{.body}}" "${PR_NUMBER}" > "${OLD}"
cp "${OLD}" "${NEW}"
# Remove all lines after and including "**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**"
sed -i '/\*\*BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE\*\*/,$d' "${NEW}"
# Remove "FIX #xxxx (*link existing issues this PR will resolve*)"
sed -i '/FIX #xxxx.*$/d' "${NEW}"
# Remove "FILL IN THE PR DESCRIPTION HERE"
sed -i '/FILL IN THE PR DESCRIPTION HERE/d' "${NEW}"
# Remove all lines after and including "**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**"
sed -i '/\*\*BEFORE SUBMITTING, PLEASE READ.*\*\*/,$d' "${NEW}"
# Remove HTML <details> section that includes <summary> text of "PR Checklist (Click to Expand)"
python3 - <<EOF
import re
with open("${NEW}", "r") as file:
content = file.read()
pattern = re.compile(r'(---\n\n)?<details>.*?<summary>.*?PR Checklist \(Click to Expand\).*?</summary>.*?</details>', re.DOTALL)
content = re.sub(pattern, '', content)
with open("${NEW}", "w") as file:
file.write(content)
EOF
# Run this only if ${NEW} is different than ${OLD}
if ! cmp -s "${OLD}" "${NEW}"; then
echo "Updating PR body"
gh pr edit --body-file "${NEW}" "${PR_NUMBER}"
echo
echo "Updated PR body:"
echo
cat "${NEW}"
else
echo "No changes needed"
fi

81
.github/workflows/lint-and-deploy.yaml vendored Normal file
View File

@ -0,0 +1,81 @@
name: Lint and Deploy Charts
on: pull_request
jobs:
lint-and-deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
fetch-depth: 0
- name: Set up Helm
uses: azure/setup-helm@fe7b79cd5ee1e45176fcad797de68ecaf3ca4814 # v4.2.0
with:
version: v3.14.4
#Python is required because ct lint runs Yamale and yamllint which require Python.
- uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
with:
python-version: '3.13'
- name: Set up chart-testing
uses: helm/chart-testing-action@e6669bcd63d7cb57cb4380c33043eebe5d111992 # v2.6.1
with:
version: v3.10.1
- name: Run chart-testing (lint)
run: ct lint --target-branch ${{ github.event.repository.default_branch }} --chart-dirs examples/chart-helm --charts examples/chart-helm
- name: Setup minio
run: |
docker network create vllm-net
docker run -d -p 9000:9000 --name minio --net vllm-net \
-e "MINIO_ACCESS_KEY=minioadmin" \
-e "MINIO_SECRET_KEY=minioadmin" \
-v /tmp/data:/data \
-v /tmp/config:/root/.minio \
minio/minio server /data
export AWS_ACCESS_KEY_ID=minioadmin
export AWS_SECRET_ACCESS_KEY=minioadmin
export AWS_EC2_METADATA_DISABLED=true
mkdir opt-125m
cd opt-125m && curl -O -Ls "https://huggingface.co/facebook/opt-125m/resolve/main/{pytorch_model.bin,config.json,generation_config.json,merges.txt,special_tokens_map.json,tokenizer_config.json,vocab.json}" && cd ..
aws --endpoint-url http://127.0.0.1:9000/ s3 mb s3://testbucket
aws --endpoint-url http://127.0.0.1:9000/ s3 cp opt-125m/ s3://testbucket/opt-125m --recursive
- name: Create kind cluster
uses: helm/kind-action@0025e74a8c7512023d06dc019c617aa3cf561fde # v1.10.0
- name: Build the Docker image vllm cpu
run: docker buildx build -f Dockerfile.cpu -t vllm-cpu-env .
- name: Configuration of docker images, network and namespace for the kind cluster
run: |
docker pull amazon/aws-cli:2.6.4
kind load docker-image amazon/aws-cli:2.6.4 --name chart-testing
kind load docker-image vllm-cpu-env:latest --name chart-testing
docker network connect vllm-net "$(docker ps -aqf "name=chart-testing-control-plane")"
kubectl create ns ns-vllm
- name: Run chart-testing (install)
run: |
export AWS_ACCESS_KEY_ID=minioadmin
export AWS_SECRET_ACCESS_KEY=minioadmin
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/chart-helm -f examples/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
- name: curl test
run: |
kubectl -n ns-vllm port-forward service/test-vllm-service 8001:80 &
sleep 10
CODE="$(curl -v -f --location http://localhost:8001/v1/completions \
--header "Content-Type: application/json" \
--data '{
"model": "opt-125m",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'):$CODE"
echo "$CODE"

37
.github/workflows/png-lint.yml vendored Normal file
View File

@ -0,0 +1,37 @@
name: Lint PNG exports from excalidraw
on:
push:
branches:
- "main"
paths:
- '*.excalidraw.png'
- '.github/workflows/png-lint.yml'
pull_request:
branches:
- "main"
paths:
- '*.excalidraw.png'
- '.github/workflows/png-lint.yml'
env:
LC_ALL: en_US.UTF-8
defaults:
run:
shell: bash
permissions:
contents: read
jobs:
actionlint:
runs-on: ubuntu-latest
steps:
- name: "Checkout"
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
fetch-depth: 0
- name: "Run png-lint.sh to check excalidraw exported images"
run: |
tools/png-lint.sh

View File

@ -39,67 +39,68 @@ jobs:
const script = require('.github/workflows/scripts/create_release.js')
await script(github, context, core)
wheel:
name: Build Wheel
runs-on: ${{ matrix.os }}
needs: release
# NOTE(simon): No longer build wheel using Github Actions. See buildkite's release workflow.
# wheel:
# name: Build Wheel
# runs-on: ${{ matrix.os }}
# needs: release
strategy:
fail-fast: false
matrix:
os: ['ubuntu-20.04']
python-version: ['3.9', '3.10', '3.11', '3.12']
pytorch-version: ['2.4.0'] # Must be the most recent version that meets requirements-cuda.txt.
cuda-version: ['11.8', '12.1']
# strategy:
# fail-fast: false
# matrix:
# os: ['ubuntu-20.04']
# python-version: ['3.9', '3.10', '3.11', '3.12']
# pytorch-version: ['2.4.0'] # Must be the most recent version that meets requirements-cuda.txt.
# cuda-version: ['11.8', '12.1']
steps:
- name: Checkout
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
# steps:
# - name: Checkout
# uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Setup ccache
uses: hendrikmuhs/ccache-action@ed74d11c0b343532753ecead8a951bb09bb34bc9 # v1.2.14
with:
create-symlink: true
key: ${{ github.job }}-${{ matrix.python-version }}-${{ matrix.cuda-version }}
# - name: Setup ccache
# uses: hendrikmuhs/ccache-action@ed74d11c0b343532753ecead8a951bb09bb34bc9 # v1.2.14
# with:
# create-symlink: true
# key: ${{ github.job }}-${{ matrix.python-version }}-${{ matrix.cuda-version }}
- name: Set up Linux Env
if: ${{ runner.os == 'Linux' }}
run: |
bash -x .github/workflows/scripts/env.sh
# - name: Set up Linux Env
# if: ${{ runner.os == 'Linux' }}
# run: |
# bash -x .github/workflows/scripts/env.sh
- name: Set up Python
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
with:
python-version: ${{ matrix.python-version }}
# - name: Set up Python
# uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
# with:
# python-version: ${{ matrix.python-version }}
- name: Install CUDA ${{ matrix.cuda-version }}
run: |
bash -x .github/workflows/scripts/cuda-install.sh ${{ matrix.cuda-version }} ${{ matrix.os }}
# - name: Install CUDA ${{ matrix.cuda-version }}
# run: |
# bash -x .github/workflows/scripts/cuda-install.sh ${{ matrix.cuda-version }} ${{ matrix.os }}
- name: Install PyTorch ${{ matrix.pytorch-version }} with CUDA ${{ matrix.cuda-version }}
run: |
bash -x .github/workflows/scripts/pytorch-install.sh ${{ matrix.python-version }} ${{ matrix.pytorch-version }} ${{ matrix.cuda-version }}
# - name: Install PyTorch ${{ matrix.pytorch-version }} with CUDA ${{ matrix.cuda-version }}
# run: |
# bash -x .github/workflows/scripts/pytorch-install.sh ${{ matrix.python-version }} ${{ matrix.pytorch-version }} ${{ matrix.cuda-version }}
- name: Build wheel
shell: bash
env:
CMAKE_BUILD_TYPE: Release # do not compile with debug symbol to reduce wheel size
run: |
bash -x .github/workflows/scripts/build.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }}
wheel_name=$(find dist -name "*whl" -print0 | xargs -0 -n 1 basename)
asset_name=${wheel_name//"linux"/"manylinux1"}
echo "wheel_name=${wheel_name}" >> "$GITHUB_ENV"
echo "asset_name=${asset_name}" >> "$GITHUB_ENV"
# - name: Build wheel
# shell: bash
# env:
# CMAKE_BUILD_TYPE: Release # do not compile with debug symbol to reduce wheel size
# run: |
# bash -x .github/workflows/scripts/build.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }}
# wheel_name=$(find dist -name "*whl" -print0 | xargs -0 -n 1 basename)
# asset_name=${wheel_name//"linux"/"manylinux1"}
# echo "wheel_name=${wheel_name}" >> "$GITHUB_ENV"
# echo "asset_name=${asset_name}" >> "$GITHUB_ENV"
- name: Upload Release Asset
uses: actions/upload-release-asset@e8f9f06c4b078e705bd2ea027f0926603fc9b4d5 # v1.0.2
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
upload_url: ${{ needs.release.outputs.upload_url }}
asset_path: ./dist/${{ env.wheel_name }}
asset_name: ${{ env.asset_name }}
asset_content_type: application/*
# - name: Upload Release Asset
# uses: actions/upload-release-asset@e8f9f06c4b078e705bd2ea027f0926603fc9b4d5 # v1.0.2
# env:
# GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# with:
# upload_url: ${{ needs.release.outputs.upload_url }}
# asset_path: ./dist/${{ env.wheel_name }}
# asset_name: ${{ env.asset_name }}
# asset_content_type: application/*
# (Danielkinz): This last step will publish the .whl to pypi. Warning: untested
# - name: Publish package

32
.github/workflows/sphinx-lint.yml vendored Normal file
View File

@ -0,0 +1,32 @@
name: Lint documentation
on:
push:
branches:
- main
paths:
- "docs/**"
pull_request:
branches:
- main
paths:
- "docs/**"
jobs:
sphinx-lint:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.12"]
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements-lint.txt
- name: Linting docs
run: tools/sphinx-lint.sh

2
.gitignore vendored
View File

@ -81,6 +81,8 @@ instance/
docs/_build/
docs/source/getting_started/examples/*.rst
!**/*.template.rst
docs/source/getting_started/examples/*.md
!**/*.template.md
# PyBuilder
.pybuilder/

View File

@ -34,7 +34,7 @@ install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12")
# Supported NVIDIA architectures.
set(CUDA_SUPPORTED_ARCHS "7.0;7.5;8.0;8.6;8.9;9.0")
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101")
@ -196,6 +196,8 @@ set(VLLM_EXT_SRC
"csrc/quantization/gptq/q_gemm.cu"
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
"csrc/quantization/fp8/common.cu"
"csrc/quantization/fused_kernels/fused_layernorm_dynamic_per_token_quant.cu"
"csrc/quantization/gguf/gguf_kernel.cu"
"csrc/cuda_utils_kernels.cu"
"csrc/prepare_inputs/advance_step.cu"
"csrc/torch_bindings.cpp")
@ -204,19 +206,32 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
# Set CUTLASS_REVISION manually -- its revision detection doesn't work in this case.
set(CUTLASS_REVISION "v3.5.1" CACHE STRING "CUTLASS revision to use")
set(CUTLASS_REVISION "v3.6.0" CACHE STRING "CUTLASS revision to use")
FetchContent_Declare(
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
set(VLLM_CUTLASS_SRC_DIR $ENV{VLLM_CUTLASS_SRC_DIR})
endif()
if(VLLM_CUTLASS_SRC_DIR)
if(NOT IS_ABSOLUTE VLLM_CUTLASS_SRC_DIR)
get_filename_component(VLLM_CUTLASS_SRC_DIR "${VLLM_CUTLASS_SRC_DIR}" ABSOLUTE)
endif()
message(STATUS "The VLLM_CUTLASS_SRC_DIR is set, using ${VLLM_CUTLASS_SRC_DIR} for compilation")
FetchContent_Declare(cutlass SOURCE_DIR ${VLLM_CUTLASS_SRC_DIR})
else()
FetchContent_Declare(
cutlass
GIT_REPOSITORY https://github.com/nvidia/cutlass.git
GIT_TAG v3.5.1
GIT_TAG v3.6.0
GIT_PROGRESS TRUE
# Speed up CUTLASS download by retrieving only the specified GIT_TAG instead of the history.
# Important: If GIT_SHALLOW is enabled then GIT_TAG works only with branch names and tags.
# So if the GIT_TAG above is updated to a commit hash, GIT_SHALLOW must be set to FALSE
GIT_SHALLOW TRUE
)
)
endif()
FetchContent_MakeAvailable(cutlass)
list(APPEND VLLM_EXT_SRC
@ -224,10 +239,12 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
"csrc/quantization/aqlm/gemm_kernels.cu"
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/quantization/gguf/gguf_kernel.cu"
"csrc/custom_all_reduce.cu"
"csrc/permute_cols.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu")
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
"csrc/sparse/cutlass/sparse_compressor_entry.cu"
"csrc/cutlass_extensions/common.cpp")
set_gencode_flags_for_srcs(
SRCS "${VLLM_EXT_SRC}"
@ -236,7 +253,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# Only build Marlin kernels if we are building for at least some compatible archs.
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
# are not supported by Machete yet.
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.9;9.0" ${CUDA_ARCHS})
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.7;8.9;9.0" ${CUDA_ARCHS})
if (MARLIN_ARCHS)
set(MARLIN_SRCS
"csrc/quantization/fp8/fp8_marlin.cu"
@ -256,7 +273,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
" in CUDA target architectures")
endif()
#
# The cutlass_scaled_mm kernels for Hopper (c3x, i.e. CUTLASS 3.x) require
# CUDA 12.0 or later (and only work on Hopper, 9.0/9.0a for now).
cuda_archs_loose_intersection(SCALED_MM_3X_ARCHS "9.0;9.0a" "${CUDA_ARCHS}")
@ -288,7 +304,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# For the cutlass_scaled_mm kernels we want to build the c2x (CUTLASS 2.x)
# kernels for the remaining archs that are not already built for 3x.
cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS
"7.5;8.0;8.6;8.9;9.0" "${CUDA_ARCHS}")
"7.5;8.0;8.6;8.7;8.9;9.0" "${CUDA_ARCHS}")
# subtract out the archs that are already built for 3x
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
if (SCALED_MM_2X_ARCHS)
@ -309,6 +325,31 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
#
# 2:4 Sparse Kernels
# The 2:4 sparse kernels cutlass_scaled_sparse_mm and cutlass_compressor
# require CUDA 12.2 or later (and only work on Hopper, 9.0/9.0a for now).
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_3X_ARCHS)
set(SRCS "csrc/sparse/cutlass/sparse_compressor_c3x.cu"
"csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_3X_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SPARSE_SCALED_MM_C3X=1")
message(STATUS "Building sparse_scaled_mm_c3x for archs: ${SCALED_MM_3X_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_3X_ARCHS)
message(STATUS "Not building sparse_scaled_mm_c3x kernels as CUDA Compiler version is "
"not >= 12.2, we recommend upgrading to CUDA 12.2 or later "
"if you intend on running FP8 sparse quantized models on Hopper.")
else()
message(STATUS "Not building sparse_scaled_mm_c3x as no compatible archs found "
"in CUDA target architectures")
endif()
endif()
#
# Machete kernels
@ -390,7 +431,7 @@ define_gpu_extension_target(
SOURCES ${VLLM_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR}
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR};${CUTLASS_TOOLS_UTIL_INCLUDE_DIR}
USE_SABI 3
WITH_SOABI)
@ -414,7 +455,7 @@ set_gencode_flags_for_srcs(
CUDA_ARCHS "${CUDA_ARCHS}")
if(VLLM_GPU_LANG STREQUAL "CUDA")
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.9;9.0" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.7;8.9;9.0" "${CUDA_ARCHS}")
if (MARLIN_MOE_ARCHS)
set(MARLIN_MOE_SRC
"csrc/moe/marlin_kernels/marlin_moe_kernel.h"
@ -509,7 +550,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 5259c586c403a4e4d8bf69973c159b40cc346fb9
GIT_TAG 96266b1111111f3d11aabefaf3bacbab6a89d03c
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -2,7 +2,7 @@
# to run the OpenAI compatible server.
# Please update any changes made here to
# docs/source/dev/dockerfile/dockerfile.rst and
# docs/source/dev/dockerfile/dockerfile.md and
# docs/source/assets/dev/dockerfile-stages-dependency.png
ARG CUDA_VERSION=12.4.1
@ -11,6 +11,7 @@ ARG CUDA_VERSION=12.4.1
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base
ARG CUDA_VERSION=12.4.1
ARG PYTHON_VERSION=3.12
ARG TARGETPLATFORM
ENV DEBIAN_FRONTEND=noninteractive
# Install Python and other dependencies
@ -44,12 +45,21 @@ RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
WORKDIR /workspace
# install build and runtime dependencies
# arm64 (GH200) build follows the practice of "use existing pytorch" build,
# we need to install torch and torchvision from the nightly builds first,
# pytorch will not appear as a vLLM dependency in all of the following steps
# after this step
RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
python3 -m pip install --index-url https://download.pytorch.org/whl/nightly/cu124 "torch==2.6.0.dev20241210+cu124" "torchvision==0.22.0.dev20241215"; \
fi
COPY requirements-common.txt requirements-common.txt
COPY requirements-cuda.txt requirements-cuda.txt
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-cuda.txt
# cuda arch list used by torch
# can be useful for both `dev` and `test`
# explicitly set the list to avoid issues with torch 2.2
@ -63,6 +73,7 @@ ENV VLLM_FA_CMAKE_GPU_ARCHES=${vllm_fa_cmake_gpu_arches}
#################### WHEEL BUILD IMAGE ####################
FROM base AS build
ARG TARGETPLATFORM
# install build dependencies
COPY requirements-build.txt requirements-build.txt
@ -134,8 +145,8 @@ COPY requirements-test.txt requirements-test.txt
COPY requirements-dev.txt requirements-dev.txt
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-dev.txt
#################### DEV IMAGE ####################
#################### vLLM installation IMAGE ####################
# image with vLLM installed
FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu22.04 AS vllm-base
@ -143,6 +154,7 @@ ARG CUDA_VERSION=12.4.1
ARG PYTHON_VERSION=3.12
WORKDIR /vllm-workspace
ENV DEBIAN_FRONTEND=noninteractive
ARG TARGETPLATFORM
RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \
echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment
@ -151,7 +163,7 @@ RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
&& apt-get update -y \
&& apt-get install -y ccache software-properties-common git curl sudo vim python3-pip \
&& apt-get install -y ccache software-properties-common git curl wget sudo vim python3-pip \
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
&& add-apt-repository ppa:deadsnakes/ppa \
&& apt-get update -y \
@ -168,18 +180,28 @@ RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
# or future versions of triton.
RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
# install vllm wheel first, so that torch etc will be installed
# arm64 (GH200) build follows the practice of "use existing pytorch" build,
# we need to install torch and torchvision from the nightly builds first,
# pytorch will not appear as a vLLM dependency in all of the following steps
# after this step
RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
python3 -m pip install --index-url https://download.pytorch.org/whl/nightly/cu124 "torch==2.6.0.dev20241210+cu124" "torchvision==0.22.0.dev20241215"; \
fi
# Install vllm wheel first, so that torch etc will be installed.
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
--mount=type=cache,target=/root/.cache/pip \
python3 -m pip install dist/*.whl --verbose
RUN --mount=type=cache,target=/root/.cache/pip \
. /etc/environment && \
python3 -m pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.6/flashinfer-0.1.6+cu121torch2.4-cp${PYTHON_VERSION_STR}-cp${PYTHON_VERSION_STR}-linux_x86_64.whl
. /etc/environment && \
if [ "$TARGETPLATFORM" != "linux/arm64" ]; then \
python3 -m pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.6/flashinfer-0.1.6+cu121torch2.4-cp${PYTHON_VERSION_STR}-cp${PYTHON_VERSION_STR}-linux_x86_64.whl; \
fi
COPY examples examples
#################### vLLM installation IMAGE ####################
#################### TEST IMAGE ####################
# image to run unit testing suite
# note that this uses vllm installed by `pip`
@ -191,6 +213,10 @@ ADD . /vllm-workspace/
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-dev.txt
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -e tests/vllm_test_utils
# enable fast downloads from hf (for testing)
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install hf_transfer
@ -205,18 +231,30 @@ COPY vllm/v1 /usr/local/lib/python3.12/dist-packages/vllm/v1
RUN mkdir test_docs
RUN mv docs test_docs/
RUN mv vllm test_docs/
#################### TEST IMAGE ####################
#################### OPENAI API SERVER ####################
# openai api server alternative
FROM vllm-base AS vllm-openai
# base openai image with additional requirements, for any subsequent openai-style images
FROM vllm-base AS vllm-openai-base
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.44.0' timm==0.9.10
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.42.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
else \
pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.45.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
fi
ENV VLLM_USAGE_SOURCE production-docker-image
# define sagemaker first, so it is not default from `docker build`
FROM vllm-openai-base AS vllm-sagemaker
COPY examples/sagemaker-entrypoint.sh .
RUN chmod +x sagemaker-entrypoint.sh
ENTRYPOINT ["./sagemaker-entrypoint.sh"]
FROM vllm-openai-base AS vllm-openai
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
#################### OPENAI API SERVER ####################

62
Dockerfile.arm Normal file
View File

@ -0,0 +1,62 @@
# This vLLM Dockerfile is used to construct an image that can build and run vLLM on ARM CPU platform.
FROM ubuntu:22.04 AS cpu-test-arm
ENV CCACHE_DIR=/root/.cache/ccache
ENV CMAKE_CXX_COMPILER_LAUNCHER=ccache
RUN --mount=type=cache,target=/var/cache/apt \
apt-get update -y \
&& apt-get install -y curl ccache git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 libnuma-dev \
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
# tcmalloc provides better memory allocation efficiency, e.g., holding memory in caches to speed up access of commonly-used objects.
RUN --mount=type=cache,target=/root/.cache/pip \
pip install py-cpuinfo # Use this to gather CPU info and optimize based on ARM Neoverse cores
# Set LD_PRELOAD for tcmalloc on ARM
ENV LD_PRELOAD="/usr/lib/aarch64-linux-gnu/libtcmalloc_minimal.so.4"
RUN echo 'ulimit -c 0' >> ~/.bashrc
WORKDIR /workspace
ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,src=requirements-build.txt,target=requirements-build.txt \
pip install --upgrade pip && \
pip install -r requirements-build.txt
FROM cpu-test-arm AS build
WORKDIR /workspace/vllm
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,src=requirements-common.txt,target=requirements-common.txt \
--mount=type=bind,src=requirements-cpu.txt,target=requirements-cpu.txt \
pip install -v -r requirements-cpu.txt
COPY . .
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
# Disabling AVX512 specific optimizations for ARM
ARG VLLM_CPU_DISABLE_AVX512="true"
ENV VLLM_CPU_DISABLE_AVX512=${VLLM_CPU_DISABLE_AVX512}
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/ccache \
--mount=type=bind,source=.git,target=.git \
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel && \
pip install dist/*.whl && \
rm -rf dist
WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -16,7 +16,7 @@ RUN --mount=type=cache,target=/var/cache/apt \
# intel-openmp provides additional performance improvement vs. openmp
# tcmalloc provides better memory allocation efficiency, e.g, holding memory in caches to speed up access of commonly-used objects.
RUN --mount=type=cache,target=/root/.cache/pip \
pip install intel-openmp
pip install intel-openmp==2025.0.1
ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/usr/local/lib/libiomp5.so"
@ -26,10 +26,10 @@ RUN pip install intel_extension_for_pytorch==2.5.0
WORKDIR /workspace
COPY requirements-build.txt requirements-build.txt
ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,src=requirements-build.txt,target=requirements-build.txt \
pip install --upgrade pip && \
pip install -r requirements-build.txt
@ -37,9 +37,9 @@ FROM cpu-test-1 AS build
WORKDIR /workspace/vllm
COPY requirements-common.txt requirements-common.txt
COPY requirements-cpu.txt requirements-cpu.txt
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,src=requirements-common.txt,target=requirements-common.txt \
--mount=type=bind,src=requirements-cpu.txt,target=requirements-cpu.txt \
pip install -v -r requirements-cpu.txt
COPY . .
@ -62,4 +62,8 @@ WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -e tests/vllm_test_utils
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -11,6 +11,9 @@ ENV PT_HPU_ENABLE_LAZY_COLLECTIVES=true
RUN VLLM_TARGET_DEVICE=hpu python3 setup.py install
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks

View File

@ -1,5 +1,6 @@
# default base image
ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.1.2-neuronx-py310-sdk2.20.0-ubuntu20.04"
# https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.5.1-neuronx-py310-sdk2.21.0-ubuntu22.04"
FROM $BASE_IMAGE
@ -14,16 +15,17 @@ RUN apt-get update && \
ffmpeg libsm6 libxext6 libgl1
### Mount Point ###
# When launching the container, mount the code directory to /app
ARG APP_MOUNT=/app
# When launching the container, mount the code directory to /workspace
ARG APP_MOUNT=/workspace
VOLUME [ ${APP_MOUNT} ]
WORKDIR ${APP_MOUNT}/vllm
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas
RUN python3 -m pip install sentencepiece transformers==4.36.2 -U
RUN python3 -m pip install sentencepiece transformers==4.45.2 -U
RUN python3 -m pip install transformers-neuronx --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
RUN python3 -m pip install --pre neuronx-cc==2.15.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
RUN python3 -m pip install neuronx-cc==2.16.345.0 --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
RUN python3 -m pip install pytest
COPY . .
ARG GIT_REPO_CHECK=0
@ -38,4 +40,10 @@ ENV VLLM_TARGET_DEVICE neuron
RUN --mount=type=bind,source=.git,target=.git \
pip install --no-build-isolation -v -e .
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
# overwrite entrypoint to run bash script
RUN echo "import subprocess; import sys; subprocess.check_call(sys.argv[1:])" > /usr/local/bin/dockerd-entrypoint.py
CMD ["/bin/bash"]

View File

@ -22,4 +22,7 @@ RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" VLLM_TARGET_DEVIC
COPY examples/ /workspace/examples
COPY benchmarks/ /workspace/benchmarks
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
CMD ["/bin/bash"]

View File

@ -29,6 +29,9 @@ RUN --mount=type=cache,target=/root/.cache/pip \
RUN --mount=type=bind,source=.git,target=.git \
VLLM_TARGET_DEVICE=cpu python3 setup.py install
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks

View File

@ -51,9 +51,9 @@ RUN --mount=type=cache,target=/root/.cache/pip \
*"rocm-6.2"*) \
python3 -m pip uninstall -y torch torchvision \
&& python3 -m pip install --pre \
torch==2.6.0.dev20240918 \
torch==2.6.0.dev20241113+rocm6.2 \
'setuptools-scm>=8' \
torchvision==0.20.0.dev20240918 \
torchvision==0.20.0.dev20241113+rocm6.2 \
--extra-index-url https://download.pytorch.org/whl/nightly/rocm6.2;; \
*) ;; esac
@ -168,4 +168,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
if ls libs/*.whl; then \
python3 -m pip install libs/*.whl; fi
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
CMD ["/bin/bash"]

View File

@ -22,4 +22,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
-r requirements-tpu.txt
RUN python3 setup.py develop
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
CMD ["/bin/bash"]

View File

@ -64,5 +64,6 @@ RUN --mount=type=cache,target=/root/.cache/pip \
ENV VLLM_USAGE_SOURCE production-docker-image \
TRITON_XPU_PROFILE 1
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -16,9 +16,10 @@ Easy, fast, and cheap LLM serving for everyone
---
*Latest News* 🔥
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing).
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing), and Snowflake team [here](https://docs.google.com/presentation/d/1qF3RkDAbOULwz9WK5TOltt2fE9t6uIc_hVNLFAaQX6A/edit?usp=sharing).
- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there!
- [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://raysummit.anyscale.com/flow/anyscale/raysummit2024/landing/page/sessioncatalog?tab.day=20241001&search.sessiontracks=1719251906298001uzJ2) from other vLLM contributors and users!
- [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://www.youtube.com/playlist?list=PLzTswPQNepXl6AQwifuwUImLPFRVpksjR) from other vLLM contributors and users!
- [2024/09] We hosted [the sixth vLLM meetup](https://lu.ma/87q3nvnh) with NVIDIA! Please find the meetup slides [here](https://docs.google.com/presentation/d/1wrLGwytQfaOTd5wCGSPNhoaW3nq0E-9wqyP7ny93xRs/edit?usp=sharing).
- [2024/07] We hosted [the fifth vLLM meetup](https://lu.ma/lp0gyjqr) with AWS! Please find the meetup slides [here](https://docs.google.com/presentation/d/1RgUD8aCfcHocghoP3zmXzck9vX3RCI9yfUAB2Bbcl4Y/edit?usp=sharing).
- [2024/07] In partnership with Meta, vLLM officially supports Llama 3.1 with FP8 quantization and pipeline parallelism! Please check out our blog post [here](https://blog.vllm.ai/2024/07/23/llama31.html).
@ -59,7 +60,7 @@ vLLM is flexible and easy to use with:
vLLM seamlessly supports most popular open-source models on HuggingFace, including:
- Transformer-like LLMs (e.g., Llama)
- Mixture-of-Expert LLMs (e.g., Mixtral)
- Mixture-of-Expert LLMs (e.g., Mixtral, Deepseek-V2 and V3)
- Embedding Models (e.g. E5-Mistral)
- Multi-modal LLMs (e.g., LLaVA)
@ -76,7 +77,7 @@ pip install vllm
Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to learn more.
- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)
- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)
- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)
- [List of Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)
## Contributing
@ -100,6 +101,7 @@ vLLM is a community project. Our compute resources for development and testing a
- Dropbox
- Google Cloud
- Lambda Lab
- Nebius
- NVIDIA
- Replicate
- Roblox
@ -132,3 +134,7 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
* For coordinating contributions and development, please use Slack.
* For security disclosures, please use Github's security advisory feature.
* For collaborations and partnerships, please contact us at vllm-questions AT lists.berkeley.edu.
## Media Kit
* If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit).

View File

@ -4,7 +4,7 @@
If you believe you have found a security vulnerability in vLLM, we encourage you to let us know right away. We will investigate all legitimate reports and do our best to quickly fix the problem.
Please report security issues privately using [the vulnerability submission form](https://github.com/vllm-project/vllm/security/advisories/new).
Please report security issues privately using [the vulnerability submission form](https://github.com/vllm-project/vllm/security/advisories/new). Reports will then be triaged by the [vulnerability management team](https://docs.vllm.ai/contributing/vulnerability_management/).
---

View File

@ -24,6 +24,7 @@ class RequestFuncInput:
model: str
best_of: int = 1
logprobs: Optional[int] = None
extra_body: Optional[dict] = None
multi_modal_content: Optional[dict] = None
ignore_eos: bool = False
@ -36,6 +37,7 @@ class RequestFuncOutput:
ttft: float = 0.0 # Time to first token
itl: List[float] = field(
default_factory=list) # List of inter-token latencies
tpot: float = 0.0 # avg next-token latencies
prompt_len: int = 0
error: str = ""
@ -54,6 +56,7 @@ async def async_request_tgi(
"do_sample": True,
"temperature": 0.01, # TGI does not accept 0.0 temperature.
"top_p": 0.99, # TGI does not accept 1.0 top_p.
"truncate": request_func_input.prompt_len,
# TGI does not accept ignore_eos flag.
}
payload = {
@ -241,6 +244,8 @@ async def async_request_openai_completions(
"stream": True,
"ignore_eos": request_func_input.ignore_eos,
}
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
}
@ -335,6 +340,8 @@ async def async_request_openai_chat_completions(
"stream": True,
"ignore_eos": request_func_input.ignore_eos,
}
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",

View File

@ -0,0 +1,494 @@
"""Benchmark guided decoding throughput."""
import argparse
import dataclasses
import json
import os
import random
import time
from typing import List
import datasets
import pandas as pd
import uvloop
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
build_async_engine_client_from_engine_args)
from vllm.sampling_params import GuidedDecodingParams
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
@dataclasses.dataclass
class SampleRequest:
"""A class representing a single inference request for benchmarking.
Attributes:
prompt: The input text prompt for the model.
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
images).
prompt_len: The length of the prompt in tokens.
expected_output_len: The expected length of the output in tokens.
"""
prompt: str
prompt_len: int
expected_output_len: int
schema: dict
structure_type: str = 'json'
completion: str = None
def run_vllm(requests: List[SampleRequest],
engine_args: EngineArgs,
n: int,
guided_decoding_rate: float = 1.0,
warmup: bool = False) -> float:
from vllm import LLM, SamplingParams
llm = LLM(**vars(engine_args))
# Add the requests to the engine.
prompts: List[str] = []
sampling_params: List[SamplingParams] = []
# create a list containing random selected true or false
guided_decoding_req_idx = random.sample(
range(len(requests)), int(len(requests) * guided_decoding_rate))
if warmup:
print(">>>>> Running warmup prompt, for the first 5")
# We setup the first 5 requests to warmup FSM
# if using xgrammar dataset, we will skip warmup
warmup_requests = requests[:5]
for i, request in enumerate(warmup_requests):
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
guided_decoding=GuidedDecodingParams(json=request.schema)
if guided_decoding_rate > 0 else None,
))
llm.generate(prompts, sampling_params, use_tqdm=False)
print(">>>>> Benchmark started...")
prompts = []
sampling_params = []
for i, request in enumerate(requests):
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
guided_decoding=GuidedDecodingParams(
**{request.structure_type: request.schema})
if i in guided_decoding_req_idx else None,
))
start = time.perf_counter()
outputs = llm.generate(prompts, sampling_params, use_tqdm=False)
ret = []
for output, request in zip(outputs, requests):
generated_text = output.outputs[0].text
ret.append({
"generated": generated_text,
"expected": request.completion
})
end = time.perf_counter()
return end - start, ret
async def run_vllm_async(
requests: List[SampleRequest],
engine_args: AsyncEngineArgs,
n: int,
guided_decoding_rate: float = 1.0,
warmup: bool = False,
disable_frontend_multiprocessing: bool = False) -> float:
from vllm import SamplingParams
async with build_async_engine_client_from_engine_args(
engine_args, disable_frontend_multiprocessing) as llm:
# Add the requests to the engine.
prompts: List[str] = []
sampling_params: List[SamplingParams] = []
guided_decoding_req_idx = random.sample(
range(len(requests)), int(len(requests) * guided_decoding_rate))
if warmup:
print(">>>>>> Running warmup prompt, for the first 5")
# We setup the first 5 requests to warmup FSM
# if using xgrammar dataset, we will skip warmup
warmup_requests = requests[:5]
for i, request in enumerate(warmup_requests):
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
guided_decoding=GuidedDecodingParams(
json=request.schema)
if guided_decoding_rate > 0 else None,
))
generators = []
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
generator = llm.generate(prompt, sp, request_id=f"test{i}")
generators.append(generator)
all_gens = merge_async_iterators(*generators)
async for i, res in all_gens:
pass
print(">>>>> Benchmark started...")
prompts = []
sampling_params = []
for i, request in enumerate(requests):
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
guided_decoding=GuidedDecodingParams(json=request.schema)
if i in guided_decoding_req_idx else None,
))
generators = []
start_time = []
latencies = []
start = time.perf_counter()
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
generator = llm.generate(prompt, sp, request_id=f"test{i}")
generators.append(generator)
start_time.append(time.perf_counter())
latencies.append([])
all_gens = merge_async_iterators(*generators)
generated_texts = [''] * len(requests)
async for i, res in all_gens:
generated_texts[i] = res.outputs[0].text
lat = time.perf_counter() - start_time[i]
latencies[i].append(lat)
ret = [{
'generated': gt,
'expected': req.completion
} for gt, req in zip(generated_texts, requests)]
end = time.perf_counter()
first_latency = pd.Series([lat[0] * 1000 for lat in latencies])
next_latency = pd.Series([(lat[-1] - lat[0]) / len(lat[1:]) * 1000
for lat in latencies])
return end - start, ret, (first_latency, next_latency)
def sample_requests(tokenizer: PreTrainedTokenizerBase,
args: argparse.Namespace) -> List[SampleRequest]:
if args.dataset == 'json':
if args.json_schema_path is None:
dir_path = os.path.dirname(os.path.realpath(__file__))
args.json_schema_path = os.path.join(dir_path,
"structured_schemas",
"structured_schema_1.json")
with open(args.json_schema_path) as f:
schema = json.load(f)
prompt = f"Generate an example of a user profile given the following schema: {json.dumps(schema)}" # noqa: E501
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "grammar":
schema = """
?start: select_statement
?select_statement: "SELECT " column_list " FROM " table_name
?column_list: column_name ("," column_name)*
?table_name: identifier
?column_name: identifier
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
"""
prompt = "Generate an SQL query to show the 'username' \
and 'email' from the 'users' table."
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "regex":
regex = r"\w+@\w+\.com\n"
args.regex = regex
prompt = "Generate an email address for Alan Turing, \
who works in Enigma. End in .com and new line. \
Example result: alan.turing@enigma.com\n"
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=regex,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "choice":
choice = ["Positive", "Negative"]
args.choice = choice
prompt = "Classify this sentiment: vLLM is wonderful!"
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=choice,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "xgrammar_bench":
args.warmup = False
requests: List[SampleRequest] = []
dataset = datasets.load_dataset("NousResearch/json-mode-eval",
split="train")
print(f"dataset has {len(dataset)} entries")
len_dataset = len(dataset)
for data_point_idx in range(args.num_prompts):
idx = data_point_idx
while idx >= len_dataset:
idx -= len_dataset
schema = dataset["schema"][idx]
prompt = tokenizer.apply_chat_template(dataset["prompt"][idx],
tokenize=False)
input_len = len(tokenizer(prompt).input_ids)
completion = dataset["completion"][idx]
requests.append(
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
completion=completion))
return requests
def evaluate(ret, args):
def _eval_correctness_json(expected, actual):
# extract json string from string using regex
import re
actual = actual.replace('\n', '').replace(' ', '').strip()
try:
actual = re.search(r'\{.*\}', actual).group()
actual = json.loads(actual)
except Exception:
return False
return True
def _eval_correctness_choice(expected, actual):
return actual in args.choice
def _eval_correctness_regex(expected, actual):
import re
return re.match(args.regex, actual) is not None
def _eval_correctness(expected, actual):
if args.structure_type == 'json':
return _eval_correctness_json(expected, actual)
elif args.structure_type == 'regex':
return _eval_correctness_regex(expected, actual)
elif args.structure_type == 'choice':
return _eval_correctness_choice(expected, actual)
else:
return None
scores = []
for res in ret:
score = _eval_correctness(res['expected'], res['generated'])
res['correctness'] = score
scores.append(score)
not_none_scores = [score for score in scores if score is not None]
return (sum(not_none_scores) / len(not_none_scores) *
100) if len(not_none_scores) > 0 else None
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
# async engine is working for 'regex', 'choice' and 'grammar'
if args.dataset == 'grammar':
args.structure_type = 'grammar'
args.async_engine = False
elif args.dataset == 'regex':
args.structure_type = 'regex'
args.async_engine = False
elif args.dataset == 'choice':
args.structure_type = 'choice'
args.async_engine = False
else:
args.structure_type = 'json'
if args.no_guided_decoding:
args.guided_decoding_ratio = 0
if args.save_results:
result_file_name = f'{args.guided_decoding_ratio}guided'
result_file_name += f"_{args.model.split('/')[-1]}"
result_file_name += f"_{args.dataset}"
result_file_name += f"_{args.num_prompts}"
result_file_name += f"_out{args.output_len}"
result_file_name += f"_async{args.async_engine}"
result_file_name += f"_warmup{args.warmup}"
result_file_name += f"_chunkedprefill{args.enable_chunked_prefill}"
result_file_name += ".txt"
else:
result_file_name = None
# Synthesize a prompt with the given input length.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
requests = sample_requests(tokenizer, args)
if args.async_engine:
engine_args = AsyncEngineArgs.from_cli_args(args)
elapsed_time, ret, (first_latency, next_latency) = uvloop.run(
run_vllm_async(requests, engine_args, args.n,
args.guided_decoding_ratio, args.warmup,
args.disable_frontend_multiprocessing))
else:
engine_args = EngineArgs.from_cli_args(args)
elapsed_time, ret = run_vllm(requests, engine_args, args.n,
args.guided_decoding_ratio, args.warmup)
first_latency, next_latency = None, None
score = evaluate(ret, args)
total_num_tokens = sum(request.prompt_len + request.expected_output_len
for request in requests)
total_output_tokens = sum(request.expected_output_len
for request in requests)
if first_latency is not None:
latency_breakdown = "\nFirst token latency(msecs):\n"
latency_breakdown += f"{first_latency.describe()}"
latency_breakdown += "\nNext token latency(msecs):\n"
latency_breakdown += f"{next_latency.describe()}"
print(
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
f"{total_output_tokens / elapsed_time:.2f} output tokens/s",
f"Correct rate is {score} %",
f"{latency_breakdown if first_latency is not None else ''}")
# Output JSON results if specified
if args.output_json or result_file_name:
results = {
"elapsed_time": elapsed_time,
"num_requests": len(requests),
"total_num_tokens": total_num_tokens,
"total_output_tokens": total_output_tokens,
"requests_per_second": len(requests) / elapsed_time,
"tokens_per_second": f"{total_num_tokens / elapsed_time:.2f}",
"output_tokens_per_second":
f"{total_output_tokens / elapsed_time:.2f}",
"correct_rate(%)": score
}
results = {"outputs": ret, **results}
if first_latency is not None:
results["first_token_latency(msecs)"] = first_latency.describe(
).to_dict()
results["next_token_latency(msecs)"] = next_latency.describe(
).to_dict()
if args.output_json:
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
elif result_file_name:
with open(result_file_name, "w") as f:
json.dump(results, f, indent=4)
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark guided decoding.")
parser = AsyncEngineArgs.add_cli_args(parser)
parser.add_argument("--output-len",
type=int,
default=512,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument(
"--dataset",
default='json',
choices=['json', 'grammar', 'regex', 'choice', 'xgrammar_bench'])
parser.add_argument("--json_schema_path",
type=str,
default=None,
help="Path to json schema.")
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--num-prompts",
type=int,
default=10,
help="Number of prompts to process.")
parser.add_argument(
'--output-json',
type=str,
default=None,
help='Path to save the throughput results in JSON format.')
parser.add_argument("--async-engine",
action='store_true',
default=False,
help="Use vLLM async engine rather than LLM class.")
parser.add_argument("--no-guided-decoding",
action='store_true',
default=False,
help="Whether to disable JSON decoding or not.")
parser.add_argument("--guided-decoding-ratio",
type=float,
default=1.0,
help="Ratio of Guided Decoding requests")
parser.add_argument("--disable-frontend-multiprocessing",
action='store_true',
default=False,
help="Disable decoupled async engine frontend.")
parser.add_argument("--warmup",
action="store_true",
default=False,
help="Run warmup prompts before benchmark.")
parser.add_argument("--save-results",
action="store_true",
default=False,
help="save output results.")
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
main(args)

View File

@ -0,0 +1,184 @@
"""
Offline benchmark to test the long document QA throughput.
Example usage:
# This command run the vllm with 50GB CPU memory for offloading
# The workload samples 8 different prompts with a default input
# length of 20000 tokens, then replicates each prompt 2 times
# in random order.
python benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 8 \
--repeat-count 2
Commandline arguments:
--num-documents: The number of documents to sample prompts from.
--document-length: The length of each document in tokens.
(Optional, default: 20000)
--output-len: The number of tokens to generate for each prompt.
(Optional, default: 10)
--repeat-count: The number of times to repeat each prompt.
(Optional, default: 2)
--repeat-mode: The mode to repeat prompts. The supported modes are:
- 'random': shuffle the prompts randomly. (Default)
- 'tile': the entire prompt list is repeated in sequence. (Potentially
lowest cache hit)
- 'interleave': each prompt is repeated consecutively before
moving to the next element. (Highest cache hit)
--shuffle-seed: Random seed when the repeat mode is "random".
(Optional, default: 0)
In the meantime, it also supports all the vLLM engine args to initialize the
LLM engine. You can refer to the `vllm.engine.arg_utils.EngineArgs` for more
details.
"""
import dataclasses
import random
import time
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.utils import FlexibleArgumentParser
def test_long_document_qa(llm=None, sampling_params=None, prompts=None):
"""
Test long document QA with the given prompts and sampling parameters.
Print the time spent in processing all the prompts.
Args:
llm: The language model used for generating responses.
sampling_params: Sampling parameter used to generate the response.
prompts: A list of prompt strings to be processed by the LLM.
"""
start_time = time.time()
llm.generate(prompts, sampling_params=sampling_params)
end_time = time.time()
print(f"Time to execute all requests: {end_time - start_time:.4f} secs")
def repeat_prompts(prompts, repeat_count, mode: str):
"""
Repeat each prompt in the list for a specified number of times.
The order of prompts in the output list depends on the mode.
Args:
prompts: A list of prompts to be repeated.
repeat_count: The number of times each prompt is repeated.
mode: The mode of repetition. Supported modes are:
- 'random': Shuffle the prompts randomly after repetition.
- 'tile': Repeat the entire prompt list in sequence.
Example: [1, 2, 3] -> [1, 2, 3, 1, 2, 3].
- 'interleave': Repeat each prompt consecutively before moving to
the next. Example: [1, 2, 3] -> [1, 1, 2, 2, 3, 3].
Returns:
A list of repeated prompts in the specified order.
Raises:
ValueError: If an invalid mode is provided.
"""
print("Repeat mode: ", mode)
if mode == 'random':
repeated_prompts = prompts * repeat_count
random.shuffle(repeated_prompts)
return repeated_prompts
elif mode == 'tile':
return prompts * repeat_count
elif mode == 'interleave':
repeated_prompts = []
for prompt in prompts:
repeated_prompts.extend([prompt] * repeat_count)
return repeated_prompts
else:
raise ValueError(f"Invalid mode: {mode}, only support "
"'random', 'tile', 'interleave'")
def main(args):
random.seed(args.shuffle_seed)
# Prepare the prompts:
# we append the document id at the beginning to avoid any of the document
# being the prefix of other documents
prompts = [
str(i) + ' '.join(['hi'] * args.document_length)
for i in range(args.num_documents)
]
prompts = repeat_prompts(prompts, args.repeat_count, mode=args.repeat_mode)
warmup_prompts = [
"This is warm up request " + str(i) + \
' '.join(['hi'] * args.document_length)
for i in range(args.num_documents)]
# Create the LLM engine
engine_args = EngineArgs.from_cli_args(args)
llm = LLM(**dataclasses.asdict(engine_args))
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
print("------warm up------")
test_long_document_qa(
llm=llm,
prompts=warmup_prompts,
sampling_params=sampling_params,
)
print("------start generating------")
test_long_document_qa(
llm=llm,
prompts=prompts,
sampling_params=sampling_params,
)
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description=
'Benchmark the performance with or without automatic prefix caching.')
parser.add_argument(
'--document-length',
type=int,
# Roughly the number of tokens for a system paper,
# excluding images
default=20000,
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')
parser.add_argument('--num-documents',
type=int,
default=8,
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument('--repeat-count',
type=int,
default=2,
help='Number of times to repeat each prompt')
parser.add_argument("--repeat-mode",
type=str,
default='random',
help='The mode to repeat prompts. The supported '
'modes are "random", "tile", and "interleave". '
'See repeat_prompts() in the source code for details.')
parser.add_argument("--shuffle-seed",
type=int,
default=0,
help='Random seed when the repeat mode is "random"')
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()
main(args)

View File

@ -54,13 +54,30 @@ def test_prefix(llm=None, sampling_params=None, prompts=None):
print(f"cost time {end_time - start_time}")
def sample_requests(
@dataclasses.dataclass
class Request:
prompt: str
prompt_len: int
output_len: int
def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> str:
vocab = tokenizer.get_vocab()
# Remove the special tokens.
vocab = {
k: v
for k, v in vocab.items() if k not in tokenizer.all_special_ids
}
return random.choices(list(vocab.values()), k=length)
def sample_requests_from_dataset(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
input_length_range: Tuple[int, int],
fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
) -> List[Request]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
@ -77,31 +94,55 @@ def sample_requests(
random.shuffle(dataset)
min_len, max_len = input_length_range
assert min_len >= 0 and max_len >= min_len, "input_length_range too small"
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
filtered_requests: List[Request] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
if len(filtered_requests) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
prompt_token_ids = tokenizer(dataset[i][0]).input_ids
prompt = tokenizer.decode(prompt_token_ids)
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
output_len = (len(completion_token_ids)
if fixed_output_len is None else fixed_output_len)
if min_len <= prompt_len <= max_len:
filtered_dataset.append((prompt, prompt_len, output_len))
filtered_requests.append(Request(prompt, prompt_len, output_len))
return filtered_dataset
return filtered_requests
def repeat_and_sort_requests(requests: List[Tuple[str, int, int]],
def sample_requests_from_random(
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
input_length_range: Tuple[int, int],
fixed_output_len: Optional[int],
prefix_len: int,
) -> List[Request]:
requests = []
prefix_token_ids = sample_tokens(tokenizer, prefix_len)
min_len, max_len = input_length_range
for i in range(num_requests):
unique_part_token_ids = sample_tokens(
tokenizer,
random.randint(min_len - prefix_len, max_len - prefix_len))
prompt_token_ids = prefix_token_ids + unique_part_token_ids
prompt = tokenizer.decode(prompt_token_ids)
prompt_len = len(prompt_token_ids)
assert (min_len <= prompt_len <= max_len
), f"prompt_len {prompt_len} out of range {min_len}:{max_len}"
requests.append(Request(prompt, prompt_len, fixed_output_len))
return requests
def repeat_and_sort_requests(requests: List[Request],
repeat_count: int,
sort: bool = False) -> List[str]:
repeated_requests = requests * repeat_count
@ -109,7 +150,7 @@ def repeat_and_sort_requests(requests: List[Tuple[str, int, int]],
repeated_requests.sort(key=lambda x: x[1])
else:
random.shuffle(repeated_requests)
return [req[0] for req in repeated_requests]
return [req.prompt for req in repeated_requests]
def main(args):
@ -117,9 +158,12 @@ def main(args):
input_length_range = tuple(map(int, args.input_length_range.split(':')))
random.seed(args.seed)
if args.dataset_path is not None:
print(f"Start to sample {args.num_prompts} prompts"
if args.prefix_len > 0:
raise ValueError("prefix-len is not supported when "
"dataset-path is provided.")
print(f"Start to sample {args.num_prompts} prompts "
f"from {args.dataset_path}")
filtered_datasets = sample_requests(
filtered_requests = sample_requests_from_dataset(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
@ -127,9 +171,22 @@ def main(args):
fixed_output_len=args.output_len,
)
else:
prompt_len = len(tokenizer(PROMPT).input_ids)
filtered_datasets = [(PROMPT, prompt_len, args.output_len)
] * args.num_prompts
print(f"Start to sample {args.num_prompts} prompts from random")
filtered_requests = sample_requests_from_random(
num_requests=args.num_prompts,
tokenizer=tokenizer,
input_length_range=input_length_range,
fixed_output_len=args.output_len,
prefix_len=args.prefix_len,
)
# Print some helpful stats of the requests.
print(f"Sampled {len(filtered_requests)} requests.")
prompt_lens = [req.prompt_len for req in filtered_requests]
print(f"Average input length: {sum(prompt_lens) / len(prompt_lens)}")
print(f"P50 input length: {sorted(prompt_lens)[len(prompt_lens) // 2]}")
print(f"Min Prompt Length: {min(prompt_lens)}")
print(f"Max Prompt Length: {max(prompt_lens)}")
engine_args = EngineArgs.from_cli_args(args)
@ -137,8 +194,8 @@ def main(args):
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
print("Testing filtered datasets")
prompts = repeat_and_sort_requests(filtered_datasets,
print("Testing filtered requests")
prompts = repeat_and_sort_requests(filtered_requests,
repeat_count=args.repeat_count,
sort=args.sort)
@ -161,20 +218,29 @@ if __name__ == "__main__":
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument('--num-prompts',
type=int,
default=1,
required=True,
help="Number of the prompts sampled from dataset")
parser.add_argument('--repeat-count',
type=int,
default=100,
default=1,
help='Number of times to repeat each prompt')
parser.add_argument('--sort',
action='store_true',
help='Sort prompts by input length')
parser.add_argument('--input-length-range',
type=str,
default='128:256',
required=True,
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')
parser.add_argument(
"--prefix-len",
type=int,
default=0,
help="Specifies the length of a common prefix to be "
"added to the input prompt. The input-length-range will "
"subtract this length when filtering prompts. Only used "
"when dataset-path is not provided.",
)
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()

View File

@ -199,6 +199,56 @@ def sample_sonnet_requests(
return sampled_requests
def sample_mmmu_pro_vision_requests(
dataset,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int] = None,
) -> List[Tuple[str, str, int, Optional[Dict[str, Collection[str]]]]]:
sampled_requests: List[Tuple[str, int, int, Dict[str,
Collection[str]]]] = []
for data in dataset:
if len(sampled_requests) == num_requests:
break
# MMMU-Pro vision direct prompt
# Ref: https://github.com/MMMU-Benchmark/MMMU/blob/6ce42f4d8f70c1841c67867152648974415b5cac/mmmu-pro/prompts.yaml#L5
prompt = (
"Answer with the option letter from the given choices directly. "
"The last line of your response should be of the following "
"format: 'Answer: $LETTER' (without quotes) where LETTER is one of "
"options.")
prompt_token_ids = tokenizer(prompt).input_ids
if fixed_output_len is None:
# Default max output len is set to 128
print("--hf-output-len is not provided. Using default value 128.")
fixed_output_len = 128
prompt_len = len(prompt_token_ids)
output_len = fixed_output_len
assert isinstance(
data["image"],
Image), ("Input image format must be `PIL.Image.Image`, "
f"given {type(data['image'])}.")
image: Image = data["image"]
image = image.convert("RGB")
image_data = io.BytesIO()
image.save(image_data, format='JPEG')
image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8")
mm_content = {
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
},
}
sampled_requests.append((prompt, prompt_len, output_len, mm_content))
return sampled_requests
def sample_hf_requests(
dataset_path: str,
dataset_subset: str,
@ -208,6 +258,21 @@ def sample_hf_requests(
random_seed: int,
fixed_output_len: Optional[int] = None,
) -> List[Tuple[str, str, int, Optional[Dict[str, Collection[str]]]]]:
# Special case for MMMU-Pro vision dataset
if dataset_path == 'MMMU/MMMU_Pro' and dataset_subset == 'vision':
assert dataset_split == "test"
dataset = load_dataset(dataset_path,
name=dataset_subset,
split=dataset_split,
streaming=True)
assert "image" in dataset.features, (
"MMMU/MMMU_Pro vision dataset must have 'image' column.")
filter_func = lambda x: isinstance(x["image"], Image)
dataset = dataset.shuffle(seed=random_seed).filter(filter_func)
return sample_mmmu_pro_vision_requests(dataset, num_requests,
tokenizer, fixed_output_len)
dataset = load_dataset(dataset_path,
name=dataset_subset,
split=dataset_split,
@ -251,6 +316,19 @@ def sample_hf_requests(
"url": f"data:image/jpeg;base64,{image_base64}"
},
}
elif "image" in data and isinstance(data["image"], str):
if (data["image"].startswith("http://") or \
data["image"].startswith("file://")):
image_url = data["image"]
else:
image_url = f"file://{data['image']}"
mm_content = {
"type": "image_url",
"image_url": {
"url": image_url
},
}
else:
mm_content = None
@ -703,6 +781,7 @@ def main(args: argparse.Namespace):
backend = args.backend
model_id = args.model
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
tokenizer_mode = args.tokenizer_mode
if args.base_url is not None:
api_url = f"{args.base_url}{args.endpoint}"
@ -712,6 +791,7 @@ def main(args: argparse.Namespace):
base_url = f"http://{args.host}:{args.port}"
tokenizer = get_tokenizer(tokenizer_id,
tokenizer_mode=tokenizer_mode,
trust_remote_code=args.trust_remote_code)
if args.dataset is not None:
@ -1132,5 +1212,15 @@ if __name__ == "__main__":
"from the sampled HF dataset.",
)
parser.add_argument(
'--tokenizer-mode',
type=str,
default="auto",
choices=['auto', 'slow', 'mistral'],
help='The tokenizer mode.\n\n* "auto" will use the '
'fast tokenizer if available.\n* "slow" will '
'always use the slow tokenizer. \n* '
'"mistral" will always use the `mistral_common` tokenizer.')
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,881 @@
r"""Benchmark online serving throughput with guided decoding.
On the server side, run one of the following commands:
(vLLM OpenAI API server)
vllm serve <your_model> --disable-log-requests
(TGI backend)
./launch_tgi_server.sh <your_model> <max_batch_total_tokens>
On the client side, run:
python benchmarks/benchmark_serving.py \
--backend <backend> \
--model <your_model> \
--dataset json \
--guided-decoding-ratio 1.0 \
--guided-decoding-backend xgrammar \
--request-rate 10 \
--num-prompts 1000
when using tgi backend, add
--endpoint /generate_stream
to the end of the command above.
"""
import argparse
import asyncio
import dataclasses
import json
import os
import random
import time
import warnings
from dataclasses import dataclass
from typing import AsyncGenerator, List, Optional, Tuple
import datasets
import numpy as np
import pandas as pd
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
RequestFuncOutput)
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
try:
from vllm.transformers_utils.tokenizer import get_tokenizer
except ImportError:
from backend_request_func import get_tokenizer
try:
from vllm.utils import FlexibleArgumentParser
except ImportError:
from argparse import ArgumentParser as FlexibleArgumentParser
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
@dataclass
class BenchmarkMetrics:
completed: int
total_input: int
total_output: int
request_throughput: float
request_goodput: float
output_throughput: float
total_token_throughput: float
mean_ttft_ms: float
median_ttft_ms: float
std_ttft_ms: float
percentiles_ttft_ms: List[Tuple[float, float]]
mean_tpot_ms: float
median_tpot_ms: float
std_tpot_ms: float
percentiles_tpot_ms: List[Tuple[float, float]]
mean_itl_ms: float
median_itl_ms: float
std_itl_ms: float
percentiles_itl_ms: List[Tuple[float, float]]
# E2EL stands for end-to-end latency per request.
# It is the time taken on the client side from sending
# a request to receiving a complete response.
mean_e2el_ms: float
median_e2el_ms: float
std_e2el_ms: float
percentiles_e2el_ms: List[Tuple[float, float]]
@dataclasses.dataclass
class SampleRequest:
"""A class representing a single inference request for benchmarking.
Attributes:
prompt: The input text prompt for the model.
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
images).
prompt_len: The length of the prompt in tokens.
expected_output_len: The expected length of the output in tokens.
"""
prompt: str
prompt_len: int
expected_output_len: int
schema: dict
structure_type: str
completion: str = None
def sample_requests(tokenizer: PreTrainedTokenizerBase,
args: argparse.Namespace) -> List[SampleRequest]:
if args.dataset == 'json':
if args.json_schema_path is None:
dir_path = os.path.dirname(os.path.realpath(__file__))
args.json_schema_path = os.path.join(dir_path,
"structured_schemas",
"structured_schema_1.json")
with open(args.json_schema_path) as f:
schema = json.load(f)
prompt = f"Generate an example of a user profile given the following schema: {json.dumps(schema)}" # noqa: E501
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "grammar":
schema = """
?start: select_statement
?select_statement: "SELECT " column_list " FROM " table_name
?column_list: column_name ("," column_name)*
?table_name: identifier
?column_name: identifier
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
"""
prompt = "Generate an SQL query to show the 'username' \
and 'email' from the 'users' table."
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "regex":
regex = r"\w+@\w+\.com\n"
args.regex = regex
prompt = "Generate an email address for Alan Turing, \
who works in Enigma. End in .com and new line. \
Example result: alan.turing@enigma.com\n"
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=regex,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "choice":
choice = ["Positive", "Negative"]
args.choice = choice
prompt = "Classify this sentiment: vLLM is wonderful!"
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=choice,
structure_type=args.structure_type)
for _ in range(args.num_prompts)
]
elif args.dataset == "xgrammar_bench":
requests: List[SampleRequest] = []
dataset = datasets.load_dataset("NousResearch/json-mode-eval",
split="train")
print(f"dataset has {len(dataset)} entries")
len_dataset = len(dataset)
for data_point_idx in range(args.num_prompts):
idx = data_point_idx
while idx >= len_dataset:
idx -= len_dataset
schema = dataset["schema"][idx]
prompt = tokenizer.apply_chat_template(dataset["prompt"][idx],
tokenize=False)
input_len = len(tokenizer(prompt).input_ids)
completion = dataset["completion"][idx]
requests.append(
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type,
completion=completion))
return requests
async def get_request(
input_requests: List[SampleRequest],
request_rate: float,
burstiness: float = 1.0,
) -> AsyncGenerator[Tuple[int, SampleRequest], None]:
"""
Asynchronously generates requests at a specified rate
with OPTIONAL burstiness.
Args:
input_requests:
A list of input requests, each represented as a tuple.
request_rate:
The rate at which requests are generated (requests/s).
burstiness (optional):
The burstiness factor of the request generation.
Only takes effect when request_rate is not inf.
Default value is 1, which follows a Poisson process.
Otherwise, the request intervals follow a gamma distribution.
A lower burstiness value (0 < burstiness < 1) results
in more bursty requests, while a higher burstiness value
(burstiness > 1) results in a more uniform arrival of requests.
"""
input_requests = iter(input_requests)
# Calculate scale parameter theta to maintain the desired request_rate.
assert burstiness > 0, (
f"A positive burstiness factor is expected, but given {burstiness}.")
theta = 1.0 / (request_rate * burstiness)
for i, request in enumerate(input_requests):
yield i, request
if request_rate == float("inf"):
# If the request rate is infinity, then we don't need to wait.
continue
# Sample the request interval from the gamma distribution.
# If burstiness is 1, it follows exponential distribution.
interval = np.random.gamma(shape=burstiness, scale=theta)
# The next request will be sent after the interval.
await asyncio.sleep(interval)
def calculate_metrics(
input_requests: List[Tuple[str, int, int]],
outputs: List[RequestFuncOutput],
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
selected_percentile_metrics: List[str],
selected_percentiles: List[float],
) -> Tuple[BenchmarkMetrics, List[int]]:
actual_output_lens: List[int] = []
total_input = 0
completed = 0
good_completed = 0
itls: List[float] = []
tpots: List[float] = []
all_tpots: List[float] = []
ttfts: List[float] = []
e2els: List[float] = []
for i in range(len(outputs)):
if outputs[i].success:
# We use the tokenizer to count the number of output tokens for all
# serving backends instead of looking at len(outputs[i].itl) since
# multiple output tokens may be bundled together
# Note : this may inflate the output token count slightly
output_len = len(
tokenizer(outputs[i].generated_text,
add_special_tokens=False).input_ids)
actual_output_lens.append(output_len)
total_input += input_requests[i].prompt_len
tpot = 0
if output_len > 1:
tpot = (outputs[i].latency - outputs[i].ttft) / (output_len -
1)
tpots.append(tpot)
outputs[i].tpot = sum(tpots) / len(tpots) if len(tpots) else 0
# Note: if output_len <= 1, we regard tpot as 0 for goodput
all_tpots.append(tpot)
itls += outputs[i].itl
ttfts.append(outputs[i].ttft)
e2els.append(outputs[i].latency)
completed += 1
else:
actual_output_lens.append(0)
if completed == 0:
warnings.warn(
"All requests failed. This is likely due to a misconfiguration "
"on the benchmark arguments.",
stacklevel=2)
metrics = BenchmarkMetrics(
completed=completed,
total_input=total_input,
total_output=sum(actual_output_lens),
request_throughput=completed / dur_s,
request_goodput=good_completed / dur_s,
output_throughput=sum(actual_output_lens) / dur_s,
total_token_throughput=(total_input + sum(actual_output_lens)) / dur_s,
mean_ttft_ms=np.mean(ttfts or 0) *
1000, # ttfts is empty if streaming is not supported by backend
std_ttft_ms=np.std(ttfts or 0) * 1000,
median_ttft_ms=np.median(ttfts or 0) * 1000,
percentiles_ttft_ms=[(p, np.percentile(ttfts or 0, p) * 1000)
for p in selected_percentiles],
mean_tpot_ms=np.mean(tpots or 0) * 1000,
std_tpot_ms=np.std(tpots or 0) * 1000,
median_tpot_ms=np.median(tpots or 0) * 1000,
percentiles_tpot_ms=[(p, np.percentile(tpots or 0, p) * 1000)
for p in selected_percentiles],
mean_itl_ms=np.mean(itls or 0) * 1000,
std_itl_ms=np.std(itls or 0) * 1000,
median_itl_ms=np.median(itls or 0) * 1000,
percentiles_itl_ms=[(p, np.percentile(itls or 0, p) * 1000)
for p in selected_percentiles],
mean_e2el_ms=np.mean(e2els or 0) * 1000,
std_e2el_ms=np.std(e2els or 0) * 1000,
median_e2el_ms=np.median(e2els or 0) * 1000,
percentiles_e2el_ms=[(p, np.percentile(e2els or 0, p) * 1000)
for p in selected_percentiles],
)
return metrics, actual_output_lens
async def benchmark(
backend: str,
api_url: str,
base_url: str,
model_id: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: List[SampleRequest],
request_rate: float,
burstiness: float,
disable_tqdm: bool,
profile: bool,
selected_percentile_metrics: List[str],
selected_percentiles: List[str],
ignore_eos: bool,
max_concurrency: Optional[int],
guided_decoding_ratio: float,
guided_decoding_backend: str,
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS[backend]
else:
raise ValueError(f"Unknown backend: {backend}")
def prepare_extra_body(request) -> dict:
extra_body = {}
# Add the schema to the extra_body
extra_body[request.structure_type] = request.schema
# Add the specific guided_decoding_backend
extra_body["guided_decoding_backend"] = guided_decoding_backend
return extra_body
print("Starting initial single prompt test run...")
guided_decoding_req_idx = random.sample(
range(len(input_requests)),
int(len(input_requests) * guided_decoding_ratio))
test_request = input_requests[0]
test_input = RequestFuncInput(
model=model_id,
prompt=test_request.prompt,
api_url=api_url,
prompt_len=test_request.prompt_len,
output_len=test_request.expected_output_len,
ignore_eos=ignore_eos,
extra_body=prepare_extra_body(test_request),
)
test_output = await request_func(request_func_input=test_input)
if not test_output.success:
raise ValueError(
"Initial test run failed - Please make sure benchmark arguments "
f"are correctly specified. Error: {test_output.error}")
else:
print("Initial test run completed. Starting main benchmark run...")
if profile:
print("Starting profiler...")
profile_input = RequestFuncInput(
model=model_id,
prompt=test_request.prompt,
api_url=base_url + "/start_profile",
prompt_len=test_request.prompt_len,
output_len=test_request.expected_output_len,
ignore_eos=ignore_eos,
extra_body=prepare_extra_body(test_request),
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler started")
if burstiness == 1.0:
distribution = "Poisson process"
else:
distribution = "Gamma distribution"
print(f"Traffic request rate: {request_rate}")
print(f"Burstiness factor: {burstiness} ({distribution})")
print(f"Maximum request concurrency: {max_concurrency}")
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
# This can be used once the minimum Python version is 3.10 or higher,
# and it will simplify the code in limited_request_func.
# semaphore = (asyncio.Semaphore(max_concurrency)
# if max_concurrency else contextlib.nullcontext())
semaphore = (asyncio.Semaphore(max_concurrency)
if max_concurrency else None)
async def limited_request_func(request_func_input, pbar):
if semaphore is None:
return await request_func(request_func_input=request_func_input,
pbar=pbar)
async with semaphore:
return await request_func(request_func_input=request_func_input,
pbar=pbar)
benchmark_start_time = time.perf_counter()
tasks: List[asyncio.Task] = []
expected: List[str] = []
async for i, request in get_request(input_requests, request_rate,
burstiness):
extra_body = prepare_extra_body(
request) if i in guided_decoding_req_idx else None
request_func_input = RequestFuncInput(
model=model_id,
prompt=request.prompt,
api_url=api_url,
prompt_len=request.prompt_len,
output_len=request.expected_output_len,
ignore_eos=ignore_eos,
extra_body=extra_body,
)
expected.append(request.completion)
tasks.append(
asyncio.create_task(
limited_request_func(request_func_input=request_func_input,
pbar=pbar)))
outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)
if profile:
print("Stopping profiler...")
profile_input = RequestFuncInput(
model=model_id,
prompt=test_request.prompt,
api_url=base_url + "/stop_profile",
prompt_len=test_request.prompt_len,
output_len=test_request.expected_output_len,
extra_body={test_request.structure_type: test_request.schema},
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler stopped")
if pbar is not None:
pbar.close()
benchmark_duration = time.perf_counter() - benchmark_start_time
metrics, actual_output_lens = calculate_metrics(
input_requests=input_requests,
outputs=outputs,
dur_s=benchmark_duration,
tokenizer=tokenizer,
selected_percentile_metrics=selected_percentile_metrics,
selected_percentiles=selected_percentiles,
)
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):",
benchmark_duration))
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
print("{:<40} {:<10}".format("Total generated tokens:",
metrics.total_output))
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
metrics.request_throughput))
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
metrics.output_throughput))
print("{:<40} {:<10.2f}".format("Total Token throughput (tok/s):",
metrics.total_token_throughput))
result = {
"duration":
benchmark_duration,
"completed":
metrics.completed,
"total_input_tokens":
metrics.total_input,
"total_output_tokens":
metrics.total_output,
"request_throughput":
metrics.request_throughput,
"output_throughput":
metrics.output_throughput,
"total_token_throughput":
metrics.total_token_throughput,
"ttft_description":
pd.Series([output.ttft for output in outputs]).describe().to_dict(),
"tpot_description":
pd.Series([output.tpot for output in outputs]).describe().to_dict(),
"input_lens": [output.prompt_len for output in outputs],
"output_lens":
actual_output_lens,
"ttfts": [output.ttft for output in outputs],
"itls": [output.itl for output in outputs],
"errors": [output.error for output in outputs],
}
ret = [{
'generated': output.generated_text,
'expected': gt
} for output, gt in zip(outputs, expected)]
def process_one_metric(
# E.g., "ttft"
metric_attribute_name: str,
# E.g., "TTFT"
metric_name: str,
# E.g., "Time to First Token"
metric_header: str,
):
# This function prints and adds statistics of the specified
# metric.
if metric_attribute_name not in selected_percentile_metrics:
return
print("{s:{c}^{n}}".format(s=metric_header, n=50, c='-'))
print("{:<40} {:<10.2f}".format(
f"Mean {metric_name} (ms):",
getattr(metrics, f"mean_{metric_attribute_name}_ms")))
print("{:<40} {:<10.2f}".format(
f"Median {metric_name} (ms):",
getattr(metrics, f"median_{metric_attribute_name}_ms")))
result[f"mean_{metric_attribute_name}_ms"] = getattr(
metrics, f"mean_{metric_attribute_name}_ms")
result[f"median_{metric_attribute_name}_ms"] = getattr(
metrics, f"median_{metric_attribute_name}_ms")
result[f"std_{metric_attribute_name}_ms"] = getattr(
metrics, f"std_{metric_attribute_name}_ms")
for p, value in getattr(metrics,
f"percentiles_{metric_attribute_name}_ms"):
p_word = str(int(p)) if int(p) == p else str(p)
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):",
value))
result[f"p{p_word}_{metric_attribute_name}_ms"] = value
process_one_metric("ttft", "TTFT", "Time to First Token")
process_one_metric("tpot", "TPOT",
"Time per Output Token (excl. 1st token)")
process_one_metric("itl", "ITL", "Inter-token Latency")
process_one_metric("e2el", "E2EL", "End-to-end Latency")
print("=" * 50)
return result, ret
def evaluate(ret, args):
def _eval_correctness_json(expected, actual):
# extract json string from string using regex
import re
actual = actual.replace('\n', '').replace(' ', '').strip()
try:
actual = re.search(r'\{.*\}', actual).group()
actual = json.loads(actual)
except Exception:
return False
return True
def _eval_correctness_choice(expected, actual):
return actual in args.choice
def _eval_correctness_regex(expected, actual):
import re
return re.match(args.regex, actual) is not None
def _eval_correctness(expected, actual):
if args.structure_type == 'guided_json':
return _eval_correctness_json(expected, actual)
elif args.structure_type == 'guided_regex':
return _eval_correctness_regex(expected, actual)
elif args.structure_type == 'guided_choice':
return _eval_correctness_choice(expected, actual)
else:
return None
scores = []
for res in ret:
score = _eval_correctness(res['expected'], res['generated'])
res['correctness'] = score
scores.append(score)
not_none_scores = [score for score in scores if score is not None]
return (sum(not_none_scores) / len(not_none_scores) *
100) if len(not_none_scores) > 0 else None
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
backend = args.backend
model_id = args.model
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
if args.base_url is not None:
api_url = f"{args.base_url}{args.endpoint}"
base_url = f"{args.base_url}"
else:
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
base_url = f"http://{args.host}:{args.port}"
tokenizer = get_tokenizer(tokenizer_id,
trust_remote_code=args.trust_remote_code)
if args.dataset == 'grammar':
args.structure_type = 'guided_grammar'
elif args.dataset == 'regex':
args.structure_type = 'guided_regex'
elif args.dataset == 'choice':
args.structure_type = 'guided_choice'
else:
args.structure_type = 'guided_json'
if args.no_guided_decoding:
args.guided_decoding_ratio = 0
if args.save_results:
result_file_name = f'{args.guided_decoding_ratio}guided'
result_file_name += f"_{backend}"
result_file_name += f"_{args.request_rate}qps"
result_file_name += f"_{args.model.split('/')[-1]}"
result_file_name += f"_{args.dataset}"
result_file_name += f"_{args.num_prompts}"
result_file_name += f"_out{args.output_len}"
result_file_name += ".txt"
else:
result_file_name = None
input_requests = sample_requests(tokenizer, args)
benchmark_result, ret = asyncio.run(
benchmark(
backend=backend,
api_url=api_url,
base_url=base_url,
model_id=model_id,
tokenizer=tokenizer,
input_requests=input_requests,
request_rate=args.request_rate,
burstiness=args.burstiness,
disable_tqdm=args.disable_tqdm,
profile=args.profile,
selected_percentile_metrics=args.percentile_metrics.split(","),
selected_percentiles=[
float(p) for p in args.metric_percentiles.split(",")
],
ignore_eos=args.ignore_eos,
max_concurrency=args.max_concurrency,
guided_decoding_ratio=args.guided_decoding_ratio,
guided_decoding_backend=args.guided_decoding_backend,
))
# Save config and results to json
score = evaluate(ret, args)
print("correct_rate(%)", score, '\n')
if args.save_results:
results = {
"backend":
backend,
"model_id":
model_id,
"tokenizer_id":
tokenizer_id,
"num_prompts":
args.num_prompts,
"request_rate":
args.request_rate if args.request_rate < float("inf") else "inf",
"burstiness":
args.burstiness,
"max_concurrency":
args.max_concurrency,
"correct_rate(%)":
score
}
results = {"outputs": ret, **results, **benchmark_result}
# Save to file
if args.result_filename:
result_file_name = args.result_filename
if args.result_dir:
result_file_name = os.path.join(args.result_dir, result_file_name)
with open(result_file_name, "w", encoding='utf-8') as outfile:
json.dump(results, outfile, indent=4)
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the online serving throughput.")
parser.add_argument(
"--backend",
type=str,
default="vllm",
choices=list(ASYNC_REQUEST_FUNCS.keys()),
)
parser.add_argument(
"--base-url",
type=str,
default=None,
help="Server or API base url if not using http host and port.",
)
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument(
"--endpoint",
type=str,
default="/v1/completions",
help="API endpoint.",
)
parser.add_argument(
"--dataset",
default='json',
choices=['json', 'grammar', 'regex', 'choice', 'xgrammar_bench'])
parser.add_argument("--json_schema_path",
type=str,
default=None,
help="Path to json schema.")
parser.add_argument(
"--max-concurrency",
type=int,
default=None,
help="Maximum number of concurrent requests. This can be used "
"to help simulate an environment where a higher level component "
"is enforcing a maximum number of concurrent requests. While the "
"--request-rate argument controls the rate at which requests are "
"initiated, this argument will control how many are actually allowed "
"to execute at a time. This means that when used in combination, the "
"actual request rate may be lower than specified with --request-rate, "
"if the server is not processing requests fast enough to keep up.")
parser.add_argument(
"--model",
type=str,
required=True,
help="Name of the model.",
)
parser.add_argument(
"--tokenizer",
type=str,
help=
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
)
parser.add_argument(
"--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.",
)
parser.add_argument(
"--output-len",
type=int,
default=128,
help="Number of output tokens.",
)
parser.add_argument(
"--request-rate",
type=float,
default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process or gamma distribution "
"to synthesize the request arrival times.",
)
parser.add_argument(
"--burstiness",
type=float,
default=1.0,
help="Burstiness factor of the request generation. "
"Only take effect when request_rate is not inf. "
"Default value is 1, which follows Poisson process. "
"Otherwise, the request intervals follow a gamma distribution. "
"A lower burstiness value (0 < burstiness < 1) results in more "
"bursty requests. A higher burstiness value (burstiness > 1) "
"results in a more uniform arrival of requests.",
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument(
"--trust-remote-code",
action="store_true",
help="Trust remote code from huggingface",
)
parser.add_argument(
"--disable-tqdm",
action="store_true",
help="Specify to disable tqdm progress bar.",
)
parser.add_argument(
"--save-results",
action="store_true",
help="Specify to save benchmark results to a json file",
)
parser.add_argument(
"--profile",
action="store_true",
help="Use Torch Profiler. The endpoint must be launched with "
"VLLM_TORCH_PROFILER_DIR to enable profiler.",
)
parser.add_argument(
"--result-dir",
type=str,
default=None,
help="Specify directory to save benchmark json results."
"If not specified, results are saved in the current directory.",
)
parser.add_argument(
"--result-filename",
type=str,
default=None,
help="Specify the filename to save benchmark json results."
"If not specified, results will be saved in "
"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"
" format.",
)
parser.add_argument(
"--ignore-eos",
action="store_true",
help="Set ignore_eos flag when sending the benchmark request."
"Warning: ignore_eos is not supported in deepspeed_mii and tgi.")
parser.add_argument(
"--percentile-metrics",
type=str,
default="ttft,tpot,itl",
help="Comma-seperated list of selected metrics to report percentils. "
"This argument specifies the metrics to report percentiles. "
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
"Default value is \"ttft,tpot,itl\".")
parser.add_argument(
"--metric-percentiles",
type=str,
default="99",
help="Comma-seperated list of percentiles for selected metrics. "
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
"Default value is \"99\". "
"Use \"--percentile-metrics\" to select metrics.",
)
parser.add_argument("--no-guided-decoding",
action='store_true',
default=False,
help="Whether to disable JSON decoding or not.")
parser.add_argument("--guided-decoding-ratio",
type=float,
default=1.0,
help="Ratio of Guided Decoding requests")
parser.add_argument("--guided-decoding-backend",
type=str,
choices=["outlines", "lm-format-enforcer", "xgrammar"],
default="xgrammar",
help="Backend to use for guided decoding")
args = parser.parse_args()
main(args)

View File

@ -4,7 +4,8 @@ import dataclasses
import json
import random
import time
from typing import List, Optional
from functools import cache
from typing import Dict, List, Optional, Tuple
import torch
import uvloop
@ -17,8 +18,11 @@ from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
build_async_engine_client_from_engine_args)
from vllm.inputs import TextPrompt
from vllm.lora.request import LoRARequest
from vllm.lora.utils import get_adapter_absolute_path
from vllm.multimodal import MultiModalDataDict
from vllm.sampling_params import BeamSearchParams
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
@ -28,15 +32,17 @@ class SampleRequest:
Attributes:
prompt: The input text prompt for the model.
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
images).
prompt_len: The length of the prompt in tokens.
expected_output_len: The expected length of the output in tokens.
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
images).
lora_request: Optional LoRARequest specifying the LoRA to use.
"""
prompt: str
prompt_len: int
expected_output_len: int
multi_modal_data: Optional[MultiModalDataDict] = None
lora_request: Optional[LoRARequest] = None
def _get_prompt_for_image_model(question: str, *, model: str) -> str:
@ -60,8 +66,30 @@ def _get_prompt_for_image_model(question: str, *, model: str) -> str:
raise ValueError(f"Unsupported model {model}")
@cache
def lora_path_on_disk(lora_path: str) -> str:
return get_adapter_absolute_path(lora_path)
lora_tokenizer_cache: Dict[int, AnyTokenizer] = {}
def get_random_lora_request(
args: argparse.Namespace
) -> Tuple[LoRARequest, Optional[AnyTokenizer]]:
global lora_tokenizer_cache
lora_id = random.randint(1, args.max_loras)
lora_request = LoRARequest(lora_name=str(lora_id),
lora_int_id=lora_id,
lora_path=lora_path_on_disk(args.lora_path))
if lora_id not in lora_tokenizer_cache:
lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request)
return lora_request, lora_tokenizer_cache[lora_id]
def sample_requests(tokenizer: PreTrainedTokenizerBase,
args: argparse.Namespace) -> List[SampleRequest]:
dataset_path: str = args.dataset
num_requests: int = args.num_prompts
fixed_output_len: Optional[int] = args.output_len
@ -79,7 +107,9 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
# Filter out sequences that are too long or too short
filtered_dataset: List[SampleRequest] = []
for data in dataset:
for data in tqdm(dataset,
total=len(filtered_dataset),
desc="sampling requests"):
if len(filtered_dataset) == num_requests:
break
@ -102,9 +132,16 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
continue
prompt = _get_prompt_for_image_model(question=prompt, model=model)
request_tokenizer = tokenizer
lora_request: Optional[LoRARequest] = None
if args.enable_lora:
lora_request, lora_tokenizer = get_random_lora_request(args)
if lora_tokenizer:
request_tokenizer = lora_tokenizer
# Tokenize the prompts and completions.
prompt_token_ids = tokenizer(prompt).input_ids
completion_token_ids = tokenizer(completion).input_ids
prompt_token_ids = request_tokenizer(prompt).input_ids
completion_token_ids = request_tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
@ -118,7 +155,8 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
SampleRequest(prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=multi_modal_data))
multi_modal_data=multi_modal_data,
lora_request=lora_request))
return filtered_dataset
@ -146,14 +184,21 @@ def run_vllm(
ignore_eos=True,
max_tokens=request.expected_output_len,
))
lora_requests: Optional[List[LoRARequest]] = None
if engine_args.enable_lora:
lora_requests = [request.lora_request for request in requests]
use_beam_search = False
if not use_beam_search:
start = time.perf_counter()
llm.generate(prompts, sampling_params, use_tqdm=True)
llm.generate(prompts,
sampling_params,
lora_request=lora_requests,
use_tqdm=True)
end = time.perf_counter()
else:
assert lora_requests is None, "BeamSearch API does not support LoRA"
prompts = [request.prompt for request in requests]
# output_len should be the same for all requests.
output_len = requests[0][2]
@ -185,6 +230,7 @@ async def run_vllm_async(
# Add the requests to the engine.
prompts: List[TextPrompt] = []
sampling_params: List[SamplingParams] = []
lora_requests: List[Optional[LoRARequest]] = []
for request in requests:
prompts.append(
TextPrompt(prompt=request.prompt,
@ -197,11 +243,16 @@ async def run_vllm_async(
ignore_eos=True,
max_tokens=request.expected_output_len,
))
lora_requests.append(request.lora_request)
generators = []
start = time.perf_counter()
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
generator = llm.generate(prompt, sp, request_id=f"test{i}")
for i, (prompt, sp,
lr) in enumerate(zip(prompts, sampling_params, lora_requests)):
generator = llm.generate(prompt,
sp,
lora_request=lr,
request_id=f"test{i}")
generators.append(generator)
all_gens = merge_async_iterators(*generators)
async for i, res in all_gens:
@ -294,23 +345,45 @@ def main(args: argparse.Namespace):
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
if args.dataset is None:
# Synthesize a prompt with the given input length.
# As tokenizer may add additional tokens like BOS, we need to try
# different lengths to get the desired input length.
for i in range(-10, 10):
prompt = "hi " * (args.input_len + i)
tokenized_prompt = tokenizer(prompt).input_ids
if len(tokenized_prompt) == args.input_len:
break
else:
raise ValueError(
f"Failed to synthesize a prompt with {args.input_len} tokens.")
requests = [
SampleRequest(prompt=prompt,
prompt_len=args.input_len,
expected_output_len=args.output_len)
for _ in range(args.num_prompts)
]
vocab_size = tokenizer.vocab_size
requests = []
for _ in range(args.num_prompts):
request_tokenizer = tokenizer
lora_request: Optional[LoRARequest] = None
if args.enable_lora:
lora_request, lora_tokenizer = get_random_lora_request(args)
if lora_tokenizer:
request_tokenizer = lora_tokenizer
# Synthesize a prompt with the given input length.
candidate_ids = [
random.randint(0, vocab_size - 1)
for _ in range(args.input_len)
]
# As tokenizer may add additional tokens like BOS, we need to try
# different lengths to get the desired input length.
for _ in range(5): # Max attempts to correct
candidate_prompt = request_tokenizer.decode(candidate_ids)
tokenized_len = len(request_tokenizer.encode(candidate_prompt))
if tokenized_len == args.input_len:
break
# Adjust length based on difference
diff = args.input_len - tokenized_len
if diff > 0:
candidate_ids.extend([
random.randint(100, vocab_size - 100)
for _ in range(diff)
])
else:
candidate_ids = candidate_ids[:diff]
requests.append(
SampleRequest(prompt=candidate_prompt,
prompt_len=args.input_len,
expected_output_len=args.output_len,
lora_request=lora_request))
else:
requests = sample_requests(tokenizer, args)
@ -409,6 +482,14 @@ if __name__ == "__main__":
action='store_true',
default=False,
help="Disable decoupled async engine frontend.")
# LoRA
parser.add_argument(
"--lora-path",
type=str,
default=None,
help="Path to the lora adapters to use. This can be an absolute path, "
"a relative path, or a Hugging Face model identifier.")
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()
if args.tokenizer is None:
@ -418,6 +499,8 @@ if __name__ == "__main__":
assert args.output_len is not None
else:
assert args.input_len is None
if args.enable_lora:
assert args.lora_path is not None
if args.backend == "vllm":
if args.hf_max_batch_size is not None:
@ -427,6 +510,9 @@ if __name__ == "__main__":
raise ValueError("HF max batch size is required for HF backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.enable_lora is not None:
raise ValueError("LoRA benchmarking is only supported for vLLM"
" backend")
elif args.backend == "mii":
if args.dtype != "auto":
raise ValueError("dtype must be auto for MII backend.")
@ -439,4 +525,7 @@ if __name__ == "__main__":
if args.tokenizer != args.model:
raise ValueError("Tokenizer must be the same as the model for MII "
"backend.")
if args.enable_lora is not None:
raise ValueError("LoRA benchmarking is only supported for vLLM"
" backend")
main(args)

View File

@ -0,0 +1,384 @@
import argparse
import copy
import itertools
import pickle as pkl
import time
from typing import Callable, Iterable, List, Tuple
import torch
import torch.utils.benchmark as TBenchmark
from torch.utils.benchmark import Measurement as TMeasurement
from utils import make_rand_sparse_tensors
from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
DEFAULT_TP_SIZES = [1]
# bench
def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
**kwargs) -> TMeasurement:
min_run_time = 1
globals = {
"args": args,
"kwargs": kwargs,
"fn": fn,
}
return TBenchmark.Timer(
stmt="fn(*args, **kwargs)",
globals=globals,
label=label,
sub_label=sub_label,
description=description,
).blocked_autorange(min_run_time=min_run_time)
def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
sub_label: str) -> Iterable[TMeasurement]:
assert dtype == torch.int8
b_compressed, e, a, b = make_rand_sparse_tensors(torch.int8, m, n, k)
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
out = ops.cutlass_scaled_sparse_mm(a, b_compressed, e, scale_a, scale_b,
torch.bfloat16)
out_ref = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16)
if not torch.allclose(out, out_ref):
print("Incorrect results")
print(out)
print(out_ref)
else:
print("Correct results")
timers = []
# pytorch impl - bfloat16
timers.append(
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm, a.to(dtype=torch.bfloat16),
b.to(dtype=torch.bfloat16)))
# pytorch impl - float16
timers.append(
bench_fn(label, sub_label,
"pytorch_fp16_fp16_fp16_matmul-no-scales", torch.mm,
a.to(dtype=torch.float16), b.to(dtype=torch.float16)))
# cutlass impl
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
torch.bfloat16))
# cutlass with bias
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_bias",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16,
bias))
# cutlass sparse impl
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.bfloat16))
# cutlass sparse with bias
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.bfloat16, bias))
return timers
def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
sub_label: str) -> Iterable[TMeasurement]:
assert dtype == torch.float8_e4m3fn
b_compressed, e, a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, m, n,
k)
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
out = ops.cutlass_scaled_sparse_mm(a, b_compressed, e, scale_a, scale_b,
torch.bfloat16)
out_ref = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16)
if not torch.allclose(out, out_ref):
print("Incorrect results")
print(out)
print(out_ref)
else:
print("Correct results")
timers = []
# pytorch impl w. bf16
timers.append(
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm, a.to(dtype=torch.bfloat16, device="cuda"),
b.to(dtype=torch.bfloat16, device="cuda")))
# pytorch impl: bf16 output, without fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16))
# pytorch impl: bf16 output, with fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16,
use_fast_accum=True))
# pytorch impl: fp16 output, without fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16))
# pytorch impl: fp16 output, with fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16,
use_fast_accum=True))
# cutlass impl: bf16 output
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
torch.bfloat16))
# cutlass impl: bf16 output
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.bfloat16))
# cutlass impl: fp16 output
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.float16))
# cutlass impl: bf16 output, with bias
timers.append(
bench_fn(label, sub_label,
"cutlass_fp8_fp8_bf16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.bfloat16, bias))
# cutlass impl: fp16 output, with bias
timers.append(
bench_fn(label, sub_label,
"cutlass_fp8_fp8_fp16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.float16, bias.to(dtype=torch.float16)))
return timers
def bench(dtype: torch.dtype, m: int, k: int, n: int, label: str,
sub_label: str) -> Iterable[TMeasurement]:
if dtype == torch.int8:
return bench_int8(dtype, m, k, n, label, sub_label)
if dtype == torch.float8_e4m3fn:
return bench_fp8(dtype, m, k, n, label, sub_label)
raise ValueError("unsupported type")
# runner
def print_timers(timers: Iterable[TMeasurement]):
compare = TBenchmark.Compare(timers)
compare.print()
def run(dtype: torch.dtype,
MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]:
results = []
for m, k, n in MKNs:
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm",
f"MKN=({m}x{k}x{n})")
print_timers(timers)
results.extend(timers)
return results
# output makers
def make_output(data: Iterable[TMeasurement],
MKNs: Iterable[Tuple[int, int, int]],
base_description: str,
timestamp=None):
print(f"== All Results {base_description} ====")
print_timers(data)
# pickle all the results
timestamp = int(time.time()) if timestamp is None else timestamp
with open(f"{base_description}-{timestamp}.pkl", "wb") as f:
pkl.dump(data, f)
# argparse runners
def run_square_bench(args):
dim_sizes = list(
range(args.dim_start, args.dim_end + 1, args.dim_increment))
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
data = run(args.dtype, MKNs)
make_output(data, MKNs, f"square_bench-{args.dtype}")
def run_range_bench(args):
dim_sizes = list(range(args.dim_start, args.dim_end, args.dim_increment))
n = len(dim_sizes)
Ms = [args.m_constant] * n if args.m_constant is not None else dim_sizes
Ks = [args.k_constant] * n if args.k_constant is not None else dim_sizes
Ns = [args.n_constant] * n if args.n_constant is not None else dim_sizes
MKNs = list(zip(Ms, Ks, Ns))
data = run(args.dtype, MKNs)
make_output(data, MKNs, f"range_bench-{args.dtype}")
def run_model_bench(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
def model_shapes(model_name: str, tp_size: int) -> List[Tuple[int, int]]:
KNs = []
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model_name]):
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
KNs.append(KN)
return KNs
model_bench_data = []
models_tps = list(itertools.product(args.models, args.tp_sizes))
for model, tp_size in models_tps:
Ms = args.batch_sizes
KNs = model_shapes(model, tp_size)
MKNs = []
for m in Ms:
for k, n in KNs:
MKNs.append((m, k, n))
data = run(args.dtype, MKNs)
model_bench_data.append(data)
# Print all results
for data, model_tp in zip(model_bench_data, models_tps):
model, tp_size = model_tp
print(f"== Results {args.dtype} {model}-TP{tp_size} ====")
print_timers(data)
timestamp = int(time.time())
all_data = []
for d in model_bench_data:
all_data.extend(d)
# pickle all data
with open(f"model_bench-{args.dtype}-{timestamp}.pkl", "wb") as f:
pkl.dump(all_data, f)
if __name__ == '__main__':
def to_torch_dtype(dt):
if dt == "int8":
return torch.int8
if dt == "fp8":
return torch.float8_e4m3fn
raise ValueError("unsupported dtype")
parser = FlexibleArgumentParser(
description="""
Benchmark Cutlass GEMM.
To run square GEMMs:
python3 ./benchmarks/cutlass_benchmarks/sparse_benchmarks.py --dtype fp8 square_bench --dim-start 128 --dim-end 512 --dim-increment 64
To run constant N and K and sweep M:
python3 ./benchmarks/cutlass_benchmarks/sparse_benchmarks.py --dtype fp8 range_bench --dim-start 128 --dim-end 512 --dim-increment 64 --n-constant 16384 --k-constant 16384
To run dimensions from a model:
python3 ./benchmarks/cutlass_benchmarks/sparse_benchmarks.py --dtype fp8 model_bench --models meta-llama/Llama-2-7b-hf --batch-sizes 16 --tp-sizes 1
Output:
- a .pkl file, that is a list of raw torch.benchmark.utils.Measurements for the pytorch and cutlass implementations for the various GEMMs.
""", # noqa: E501
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--dtype",
type=to_torch_dtype,
required=True,
help="Available options are ['int8', 'fp8']")
subparsers = parser.add_subparsers(dest="cmd")
square_parser = subparsers.add_parser("square_bench")
square_parser.add_argument("--dim-start", type=int, required=True)
square_parser.add_argument("--dim-end", type=int, required=True)
square_parser.add_argument("--dim-increment", type=int, required=True)
square_parser.set_defaults(func=run_square_bench)
range_parser = subparsers.add_parser("range_bench")
range_parser.add_argument("--dim-start", type=int, required=True)
range_parser.add_argument("--dim-end", type=int, required=True)
range_parser.add_argument("--dim-increment", type=int, required=True)
range_parser.add_argument("--m-constant", type=int, default=None)
range_parser.add_argument("--n-constant", type=int, default=None)
range_parser.add_argument("--k-constant", type=int, default=None)
range_parser.set_defaults(func=run_range_bench)
model_parser = subparsers.add_parser("model_bench")
model_parser.add_argument("--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys())
model_parser.add_argument("--tp-sizes",
nargs="+",
type=int,
default=DEFAULT_TP_SIZES)
model_parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
model_parser.set_defaults(func=run_model_bench)
args = parser.parse_args()
args.func(args)

View File

@ -0,0 +1,96 @@
# Cutlass bench utils
from typing import Iterable, Tuple
import torch
import vllm._custom_ops as ops
def to_fp8(tensor: torch.Tensor) -> torch.Tensor:
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
def to_int8(tensor: torch.Tensor) -> torch.Tensor:
return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8)
def to_bf16(tensor: torch.Tensor) -> torch.Tensor:
return tensor.to(dtype=torch.bfloat16)
def to_fp16(tensor: torch.Tensor) -> torch.Tensor:
return tensor.to(dtype=torch.float16)
def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
k: int) -> Tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device='cuda') * 5
b = torch.randn((n, k), device='cuda').t() * 5
if dtype == torch.int8:
return to_int8(a), to_int8(b)
if dtype == torch.float8_e4m3fn:
return to_fp8(a), to_fp8(b)
raise ValueError("unsupported dtype")
def prune_to_2_4(tensor):
# Reshape tensor to [N, 4] where N is number of groups of 4
original_shape = tensor.shape
reshaped = tensor.reshape(-1, 4)
# Get indices of top 2 absolute values in each group of 4
_, indices = torch.topk(torch.abs(reshaped), k=2, dim=1)
# Create binary mask
mask = torch.zeros_like(reshaped)
mask.scatter_(dim=1,
index=indices,
src=torch.ones_like(indices, dtype=mask.dtype))
# Apply mask and reshape back
pruned = reshaped * mask
# Turn all -0.0 to 0.0
pruned[pruned == -0.0] = 0.0
return pruned.reshape(original_shape)
def make_rand_sparse_tensors(dtype: torch.dtype, m: int, n: int,
k: int) -> Tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device='cuda') * 5
b = torch.randn((n, k), device='cuda').t() * 5
b = prune_to_2_4(b.t()).t()
if dtype == torch.int8:
a, b = to_int8(a), to_int8(b)
elif dtype == torch.float8_e4m3fn:
a, b = to_fp8(a), to_fp8(b)
elif dtype == torch.float16:
a, b = to_fp16(a), to_fp16(b)
elif dtype == torch.bfloat16:
a, b = to_bf16(a), to_bf16(b)
else:
raise ValueError("unsupported dtype")
b_compressed, e = ops.cutlass_sparse_compress(b.t())
# Compressed B, Metadata, Original A, B
return b_compressed, e, a, b
def make_n_rand_sparse_tensors(num_tensors: int, dtype: torch.dtype,
m: int, n: int, k: int) -> \
Tuple[Iterable[torch.Tensor], Iterable[torch.Tensor]]:
ABs = []
for _ in range(num_tensors):
b_comp, e, a, b = make_rand_sparse_tensors(dtype, m, n, k)
if b_comp is not None:
ABs.append(make_rand_sparse_tensors(dtype, m, n, k))
BComps, Es, As, Bs = zip(*ABs)
return list(BComps), list(Es), list(As), list(Bs)

View File

@ -8,6 +8,7 @@ from typing import Callable, Iterable, List, Tuple
import torch
import torch.utils.benchmark as TBenchmark
from torch.utils.benchmark import Measurement as TMeasurement
from utils import make_rand_tensors
from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
@ -17,31 +18,6 @@ DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
DEFAULT_TP_SIZES = [1]
# helpers
def to_fp8(tensor: torch.Tensor) -> torch.Tensor:
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
def to_int8(tensor: torch.Tensor) -> torch.Tensor:
return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8)
def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
k: int) -> Tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device='cuda') * 5
b = torch.randn((n, k), device='cuda').t() * 5
if dtype == torch.int8:
return to_int8(a), to_int8(b)
if dtype == torch.float8_e4m3fn:
return to_fp8(a), to_fp8(b)
raise ValueError("unsupported dtype")
# bench
def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
@ -386,4 +362,4 @@ Benchmark Cutlass GEMM.
model_parser.set_defaults(func=run_model_bench)
args = parser.parse_args()
args.func(args)
args.func(args)

View File

@ -40,4 +40,4 @@ WEIGHT_SHAPES = {
([8192, 57344], 1),
([28672, 8192], 0),
],
}
}

View File

@ -0,0 +1,145 @@
#!/bin/bash
# benchmark the overhead of disaggregated prefill.
# methodology:
# - send all request to prefill vLLM instance. It will buffer KV cache.
# - then send all request to decode instance.
# - The TTFT of decode instance is the overhead.
set -ex
kill_gpu_processes() {
# kill all processes on GPU.
pgrep pt_main_thread | xargs -r kill -9
pgrep python3 | xargs -r kill -9
sleep 10
# remove vllm config file
rm -rf ~/.config/vllm
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
local port=$1
timeout 1200 bash -c "
until curl -s localhost:${port}/v1/completions > /dev/null; do
sleep 1
done" && return 0 || return 1
}
benchmark() {
export VLLM_LOGGING_LEVEL=DEBUG
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
# compare chunked prefill with disaggregated prefill
results_folder="./results"
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
dataset_name="sonnet"
dataset_path="../sonnet_4x.txt"
num_prompts=10
qps=$1
prefix_len=50
input_len=2048
output_len=$2
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8100 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8200 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
wait_for_server 8100
wait_for_server 8200
# let the prefill instance finish prefill
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8100 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1.json \
--request-rate "inf"
# send the request to decode.
# The TTFT of this command will be the overhead of disagg prefill impl.
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8200 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1_overhead.json \
--request-rate "$qps"
kill_gpu_processes
}
main() {
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get -y install jq)
(which socat) || (apt-get -y install socat)
pip install quart httpx datasets
cd "$(dirname "$0")"
cd ..
# create sonnet-4x.txt
echo "" > sonnet_4x.txt
for _ in {1..4}
do
cat sonnet.txt >> sonnet_4x.txt
done
cd disagg_benchmarks
rm -rf results
mkdir results
default_qps=1
default_output_len=1
benchmark $default_qps $default_output_len
}
main "$@"

View File

@ -0,0 +1,163 @@
#!/bin/bash
# Requirement: 2x GPUs.
# Model: meta-llama/Meta-Llama-3.1-8B-Instruct
# Query: 1024 input tokens, 6 output tokens, QPS 2/4/6/8, 100 requests
# Resource: 2x GPU
# Approaches:
# 2. Chunked prefill: 2 vllm instance with tp=4, equivalent to 1 tp=4 instance with QPS 4
# 3. Disaggregated prefill: 1 prefilling instance and 1 decoding instance
# Prefilling instance: max_output_token=1
# Decoding instance: force the input tokens be the same across requests to bypass prefilling
set -ex
kill_gpu_processes() {
# kill all processes on GPU.
pgrep pt_main_thread | xargs -r kill -9
pgrep python3 | xargs -r kill -9
for port in 8000 8100 8200; do lsof -t -i:$port | xargs -r kill -9; done
sleep 1
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
local port=$1
timeout 1200 bash -c "
until curl -s localhost:${port}/v1/completions > /dev/null; do
sleep 1
done" && return 0 || return 1
}
launch_chunked_prefill() {
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
# disagg prefill
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8100 \
--max-model-len 10000 \
--enable-chunked-prefill \
--gpu-memory-utilization 0.6 &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8200 \
--max-model-len 10000 \
--enable-chunked-prefill \
--gpu-memory-utilization 0.6 &
wait_for_server 8100
wait_for_server 8200
python3 round_robin_proxy.py &
sleep 1
}
launch_disagg_prefill() {
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
# disagg prefill
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8100 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
--port 8200 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
wait_for_server 8100
wait_for_server 8200
python3 disagg_prefill_proxy_server.py &
sleep 1
}
benchmark() {
results_folder="./results"
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
dataset_name="sonnet"
dataset_path="../sonnet_4x.txt"
num_prompts=100
qps=$1
prefix_len=50
input_len=1024
output_len=$2
tag=$3
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8000 \
--save-result \
--result-dir $results_folder \
--result-filename "$tag"-qps-"$qps".json \
--request-rate "$qps"
sleep 2
}
main() {
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get -y install jq)
(which socat) || (apt-get -y install socat)
(which lsof) || (apt-get -y install lsof)
pip install quart httpx matplotlib aiohttp datasets
cd "$(dirname "$0")"
cd ..
# create sonnet-4x.txt so that we can sample 2048 tokens for input
echo "" > sonnet_4x.txt
for _ in {1..4}
do
cat sonnet.txt >> sonnet_4x.txt
done
cd disagg_benchmarks
rm -rf results
mkdir results
default_output_len=6
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
launch_chunked_prefill
for qps in 2 4 6 8; do
benchmark $qps $default_output_len chunked_prefill
done
kill_gpu_processes
launch_disagg_prefill
for qps in 2 4 6 8; do
benchmark $qps $default_output_len disagg_prefill
done
kill_gpu_processes
python3 visualize_benchmark_results.py
}
main "$@"

View File

@ -0,0 +1,61 @@
import os
import aiohttp
from quart import Quart, make_response, request
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
app = Quart(__name__)
async def forward_request(url, data):
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
}
async with session.post(url=url, json=data,
headers=headers) as response:
if response.status == 200:
# if response.headers.get('Transfer-Encoding') == 'chunked':
if True:
async for chunk_bytes in response.content.iter_chunked(
1024):
yield chunk_bytes
else:
content = await response.read()
yield content
@app.route('/v1/completions', methods=['POST'])
async def handle_request():
try:
original_request_data = await request.get_json()
prefill_request = original_request_data.copy()
# change max_tokens = 1 to let it only do prefill
prefill_request['max_tokens'] = 1
# finish prefill
async for _ in forward_request('http://localhost:8100/v1/completions',
prefill_request):
continue
# return decode
generator = forward_request('http://localhost:8200/v1/completions',
original_request_data)
response = await make_response(generator)
response.timeout = None
return response
except Exception as e:
import sys
import traceback
exc_info = sys.exc_info()
print("Error occurred in disagg prefill proxy server")
print(e)
print("".join(traceback.format_exception(*exc_info)))
if __name__ == '__main__':
app.run(port=8000)

View File

@ -0,0 +1,60 @@
import asyncio
import itertools
import aiohttp
from aiohttp import web
class RoundRobinProxy:
def __init__(self, target_ports):
self.target_ports = target_ports
self.port_cycle = itertools.cycle(self.target_ports)
async def handle_request(self, request):
target_port = next(self.port_cycle)
target_url = f"http://localhost:{target_port}{request.path_qs}"
async with aiohttp.ClientSession() as session:
try:
# Forward the request
async with session.request(
method=request.method,
url=target_url,
headers=request.headers,
data=request.content,
) as response:
# Start sending the response
resp = web.StreamResponse(status=response.status,
headers=response.headers)
await resp.prepare(request)
# Stream the response content
async for chunk in response.content.iter_any():
await resp.write(chunk)
await resp.write_eof()
return resp
except Exception as e:
return web.Response(text=f"Error: {str(e)}", status=500)
async def main():
proxy = RoundRobinProxy([8100, 8200])
app = web.Application()
app.router.add_route('*', '/{path:.*}', proxy.handle_request)
runner = web.AppRunner(app)
await runner.setup()
site = web.TCPSite(runner, 'localhost', 8000)
await site.start()
print("Proxy server started on http://localhost:8000")
# Keep the server running
await asyncio.Event().wait()
if __name__ == '__main__':
asyncio.run(main())

View File

@ -0,0 +1,46 @@
import json
import matplotlib.pyplot as plt
import pandas as pd
if __name__ == "__main__":
data = []
for name in ['disagg_prefill', 'chunked_prefill']:
for qps in [2, 4, 6, 8]:
with open(f"results/{name}-qps-{qps}.json") as f:
x = json.load(f)
x['name'] = name
x['qps'] = qps
data.append(x)
df = pd.DataFrame.from_dict(data)
dis_df = df[df['name'] == 'disagg_prefill']
chu_df = df[df['name'] == 'chunked_prefill']
plt.style.use('bmh')
plt.rcParams['font.size'] = 20
for key in [
'mean_ttft_ms', 'median_ttft_ms', 'p99_ttft_ms', 'mean_itl_ms',
'median_itl_ms', 'p99_itl_ms'
]:
fig, ax = plt.subplots(figsize=(11, 7))
plt.plot(dis_df['qps'],
dis_df[key],
label='disagg_prefill',
marker='o',
linewidth=4)
plt.plot(chu_df['qps'],
chu_df[key],
label='chunked_prefill',
marker='o',
linewidth=4)
ax.legend()
ax.set_xlabel('QPS')
ax.set_ylabel(key)
ax.set_ylim(bottom=0)
fig.savefig(f'results/{key}.png')
plt.close(fig)

View File

@ -0,0 +1,173 @@
import pickle as pkl
import time
from dataclasses import dataclass
from itertools import product
from typing import Callable, Iterable, List, Optional
import torch
import torch.utils.benchmark as TBenchmark
from torch.utils.benchmark import Measurement as TMeasurement
from tqdm import tqdm
import vllm._custom_ops as ops
from vllm.model_executor.layers.layernorm import RMSNorm
@dataclass
class bench_params_t:
num_tokens: int
hidden_size: int
add_residual: bool
dtype: torch.dtype
def description(self):
return (f'N {self.num_tokens} '
f'x D {self.hidden_size} '
f'x R {self.add_residual} '
f'x DT {self.dtype}')
def get_bench_params() -> List[bench_params_t]:
## Test Fixtures
NUM_TOKENS = [2**x for x in range(11)]
HIDDEN_SIZES = list(range(1024, 8129, 1024))
ADD_RESIDUAL = [True, False]
DTYPES = [torch.bfloat16, torch.float]
combinations = product(NUM_TOKENS, HIDDEN_SIZES, ADD_RESIDUAL, DTYPES)
bench_params = list(map(lambda x: \
bench_params_t(x[0], x[1], x[2], x[3]), combinations))
return bench_params
# Reference impls
def unfused_int8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor,
residual: Optional[torch.Tensor],
quant_dtype: torch.dtype):
# Norm
torch_out = None
if residual is None:
torch_out = rms_norm_layer.forward_cuda(x, residual)
else:
torch_out, _ = rms_norm_layer.forward_cuda(x, residual)
# Quant
torch_out, _, _ = ops.scaled_int8_quant(torch_out)
def unfused_fp8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor,
residual: Optional[torch.Tensor],
quant_dtype: torch.dtype):
# Norm
torch_out = None
if residual is None:
torch_out = rms_norm_layer.forward_cuda(x, residual)
else:
torch_out, _ = rms_norm_layer.forward_cuda(x, residual)
# Quant
torch_out, _ = ops.scaled_fp8_quant(torch_out)
def fused_impl(
rms_norm_layer: RMSNorm, # this stores the weights
x: torch.Tensor,
residual: Optional[torch.Tensor],
quant_dtype: torch.dtype):
out, _ = ops.rms_norm_dynamic_per_token_quant(x,
rms_norm_layer.weight,
1e-6,
quant_dtype,
residual=residual)
# Bench functions
def bench_fn(rms_norm_layer: RMSNorm, x: torch.Tensor, residual: torch.Tensor,
quant_dtype: torch.dtype, label: str, sub_label: str,
fn: Callable, description: str) -> TMeasurement:
min_run_time = 1
globals = {
"rms_norm_layer": rms_norm_layer,
"x": x,
"residual": residual,
"quant_dtype": quant_dtype,
"fn": fn,
}
return TBenchmark.Timer(
stmt="fn(rms_norm_layer, x, residual, quant_dtype)",
globals=globals,
label=label,
sub_label=sub_label,
description=description,
).blocked_autorange(min_run_time=min_run_time)
def bench(params: bench_params_t, label: str, sub_label: str) \
-> Iterable[TMeasurement]:
# Make inputs
layer = RMSNorm(params.hidden_size, 1e-6).to(dtype=params.dtype)
# Make weights
layer.weight.data.normal_(mean=1.0, std=0.1)
# Make inputs
scale = 1 / params.hidden_size
x = torch.randn(params.num_tokens,
params.hidden_size,
dtype=params.dtype,
device='cuda') * scale
residual = (torch.randn_like(x) * scale).to(device='cuda') \
if params.add_residual else None
timers = []
# unfused int8 impl.
timers.append(
bench_fn(layer, x, residual, torch.int8, label, sub_label,
unfused_int8_impl, "unfused_int8_impl"))
# unfused fp8 impl.
timers.append(
bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label,
unfused_fp8_impl, "unfused_fp8_impl"))
# fused int8 impl.
timers.append(
bench_fn(layer, x, residual, torch.int8, label, sub_label, fused_impl,
"fused_int8_impl"))
# fused fp8 impl.
timers.append(
bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label,
fused_impl, "fused_fp8_impl"))
print_timers(timers)
return timers
# launch bench
# runner
def print_timers(timers: Iterable[TMeasurement]):
compare = TBenchmark.Compare(timers)
compare.print()
def main():
torch.set_default_device('cuda')
bench_params = get_bench_params()
timers = []
for bp in tqdm(bench_params):
timers.extend(
bench(bp, "rms-norm-dynamic-per-token-quant", bp.description()))
print_timers(timers)
# pickle all the results
timestamp = int(time.time())
with open(f"rms_norm_dpt_quant-{timestamp}.pkl", "wb") as f:
pkl.dump(timers, f)
if __name__ == '__main__':
main()

View File

@ -2,8 +2,10 @@ import argparse
import copy
import itertools
import math
import os
import pickle as pkl
import time
from dataclasses import dataclass
from itertools import product
from typing import Callable, Iterable, List, Optional, Tuple
@ -15,11 +17,12 @@ from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N, marlin_permute_scales)
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N, marlin_permute_scales,
marlin_zero_points)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
MarlinWorkspace)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
gptq_pack, pack_rows, quantize_weights)
pack_rows, quantize_weights)
from vllm.scalar_type import ScalarType, scalar_types
from vllm.utils import FlexibleArgumentParser
@ -27,149 +30,350 @@ DEFAULT_MODELS = ["meta-llama/Llama-3-8b", "meta-llama/Llama-2-70b-hf"]
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512, 1024]
DEFAULT_TP_SIZES = [1]
NVTX_PROFILE = os.environ.get("NVTX_PROFILE", False)
def machete_pack_weights(w_q: torch.tensor, wtype: ScalarType) -> torch.tensor:
w_q = pack_rows(w_q, wtype.size_bits, *w_q.shape)
w_q = w_q.t().contiguous().t() # make col major
return ops.machete_prepack_B(w_q, wtype)
if NVTX_PROFILE:
import nvtx
def make_bench_tensors(
atype: torch.dtype, wtype: ScalarType, group_size: int, m: int, n: int,
k: int
) -> Tuple[torch.tensor, List[Tuple[torch.tensor, torch.tensor, torch.tensor,
torch.tensor]]]:
def terse_type_name(dt):
return {
torch.bfloat16: "bf16",
torch.float16: "fp16",
torch.int8: "int8",
torch.float8_e4m3fn: "fp8",
torch.bfloat16: "bf16",
torch.float: "float",
torch.int: "int",
}[dt]
@dataclass
class BenchmarkTensors:
w_ref: torch.Tensor
a: torch.Tensor
w_q: torch.Tensor
group_size: Optional[int]
wtype: ScalarType
w_g_s: torch.Tensor
w_g_zp: Optional[torch.Tensor]
w_ch_s: Optional[torch.Tensor]
w_tok_s: Optional[torch.Tensor]
@dataclass
class TypeConfig:
act_type: torch.dtype
weight_type: ScalarType
output_type: Optional[torch.dtype]
group_scale_type: Optional[torch.dtype]
group_zero_type: Optional[torch.dtype]
channel_scale_type: Optional[torch.dtype]
token_scale_type: Optional[torch.dtype]
def rand_data(shape, dtype=torch.float16, scale=1):
if dtype.is_floating_point:
return (scale * torch.rand(shape, device="cuda") - 0.3).to(dtype)
else:
return torch.randint(-15, 15, shape, dtype=dtype, device="cuda")
def quantize_and_pack(atype: torch.dtype,
w: torch.Tensor,
wtype: ScalarType,
stype: Optional[torch.dtype],
group_size: Optional[int],
zero_points: bool = False):
assert wtype.is_integer(), "TODO: support floating point weights"
w_ref, w_q, w_s, w_zp = quantize_weights(
w,
wtype,
group_size=group_size,
zero_points=zero_points,
# to match how the kernel applies zps
ref_zero_points_after_scales=True)
w_q = pack_rows(w_q, wtype.size_bits, *w_q.shape)
return w_ref, w_q, w_s, w_zp
def create_bench_tensors(shape: Tuple[int, int, int], types: TypeConfig,
group_size: Optional[int]) -> List[BenchmarkTensors]:
m, n, k = shape
# we want to make sure that weights don't fit into L2 cache between runs so
# we construct enough weights to exceed L2 cache, which is 50mb on a H100
# so we target total weight size > 2*50mb
num_weights = math.ceil(2 * 50 * 1024**2 * 8 / (k * n * wtype.size_bits))
num_weights = math.ceil(2 * 50 * 1024**2 * 8 /
(k * n * types.weight_type.size_bits))
a = torch.randn((m, k), device="cuda", dtype=atype) * 5
weights = [
torch.randn((k, n), device="cuda", dtype=atype)
for _ in range(num_weights)
]
quanitized_weights = [
quantize_weights(w, wtype, group_size) for w in weights
]
a = rand_data((m, k), types.act_type, scale=5)
return a, quanitized_weights
benchmark_tensors: List[BenchmarkTensors] = []
for _ in range(num_weights):
w = rand_data((k, n), types.act_type, scale=5)
if types.group_scale_type is not None:
w = w.to(types.group_scale_type)
if w.dtype.itemsize == 1:
w = w.to(torch.float16)
w_ref, w_q_packed, w_s, w_zp = quantize_and_pack(
a.dtype, w, types.weight_type, types.group_scale_type, group_size,
types.group_zero_type is not None)
if not a.dtype.is_floating_point:
aiinfo = torch.iinfo(a.dtype)
w_ref = w_ref.round().clamp(aiinfo.min, aiinfo.max)
w_ref = w_ref.to(torch.float32)
w_ch_s = None if types.channel_scale_type is None else\
rand_data((n,), types.channel_scale_type)
w_tok_s = None if types.token_scale_type is None else\
rand_data((m,), types.token_scale_type)
benchmark_tensors.append(
BenchmarkTensors(w_ref=w_ref,
a=a,
w_q=w_q_packed,
wtype=types.weight_type,
w_g_s=w_s,
w_g_zp=w_zp,
group_size=group_size,
w_ch_s=w_ch_s,
w_tok_s=w_tok_s))
return benchmark_tensors
def torch_matmul_f16_create_bench_fn(bt: BenchmarkTensors) -> Callable:
a = bt.a
w = bt.w_ref.to(bt.a.dtype) # use float reference tensor
if a.dtype not in [torch.float16, torch.bfloat16]:
a = a.to(torch.float16)
w = w.to(torch.float16)
return lambda: torch.matmul(a, w)
def cutlass_scaled_mm_create_bench_fn(bt: BenchmarkTensors) -> Callable:
if bt.w_ch_s is not None and bt.w_tok_s is not None:
scale_a = bt.w_tok_s.to(torch.float32)
scale_b = bt.w_ch_s.to(torch.float32)
else:
scale_a = torch.tensor(1.0, dtype=torch.float32, device=bt.a.device)
scale_b = torch.tensor(1.0, dtype=torch.float32, device=bt.a.device)
w_col_major = bt.w_ref.to(bt.a.dtype).t().contiguous().t()
return lambda: ops.cutlass_scaled_mm(
bt.a, w_col_major, scale_a, scale_b, out_dtype=torch.float16)
def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
device = bt.a.device
workspace = MarlinWorkspace(bt.w_ref.shape[1], GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_MAX_PARALLEL)
if bt.w_g_zp is None:
w_zp = torch.empty(0, dtype=torch.int, device=device)
else:
w_zp = marlin_zero_points(bt.w_g_zp, bt.w_ref.shape[0],
bt.w_ref.shape[1], bt.wtype.size_bits)
if bt.group_size is None:
w_s = torch.tensor([], device="cuda", dtype=torch.half)
else:
w_s = marlin_permute_scales(bt.w_g_s, bt.w_ref.shape[0],
bt.w_ref.shape[1], bt.group_size)
sort_indices = torch.empty(0, dtype=torch.int, device=device)
g_idx = torch.empty(0, dtype=torch.int, device=device)
w_q = ops.gptq_marlin_repack(bt.w_q, sort_indices, bt.w_ref.shape[0],
bt.w_ref.shape[1], bt.wtype.size_bits)
if bt.a.dtype.is_floating_point:
assert bt.w_ch_s is None
assert bt.w_tok_s is None
assert bt.group_size is not None
fn = lambda: ops.gptq_marlin_gemm(a=bt.a,
b_q_weight=w_q,
b_scales=w_s,
b_zeros=w_zp,
g_idx=g_idx,
perm=sort_indices,
workspace=workspace.scratch,
b_q_type=bt.wtype,
size_m=bt.a.shape[0],
size_n=bt.w_ref.shape[1],
size_k=bt.w_ref.shape[0],
is_k_full=True,
is_zp_float=False)
else:
assert bt.a.dtype == torch.int8
assert bt.wtype == scalar_types.uint4b8
if bt.w_ch_s is not None:
s_ch = bt.w_ch_s.to(torch.float32)
else:
s_ch = torch.ones(bt.w_ref.shape[1],
dtype=torch.float32,
device=device)
if bt.w_tok_s is not None:
s_tok = bt.w_tok_s.to(torch.float32)
else:
s_tok = torch.ones(bt.a.shape[0],
dtype=torch.float32,
device=device)
fn = lambda: ops.marlin_qqq_gemm(a=bt.a,
b_q_weight=w_q,
s_group=w_s,
s_tok=s_tok,
s_ch=s_ch,
workspace=workspace.scratch,
size_m=bt.a.shape[0],
size_n=bt.w_ref.shape[1],
size_k=bt.w_ref.shape[0])
return fn
def machete_create_bench_fn(bt: BenchmarkTensors,
out_type=torch.dtype,
schedule=None) -> Callable:
w_q = bt.w_q.t().contiguous().t() # make col major
w_q = ops.machete_prepack_B(w_q, bt.a.dtype, bt.wtype,
None if bt.w_g_s is None else bt.w_g_s.dtype)
w_g_zp = bt.w_g_zp
if w_g_zp is not None:
w_g_zp = -1 * bt.w_g_s * (w_g_zp.to(bt.w_g_s.dtype))
return lambda: ops.machete_mm(
a=bt.a,
b_q=bt.w_q,
b_type=bt.wtype,
b_group_scales=bt.w_g_s,
b_group_zeros=w_g_zp,
b_group_size=bt.group_size,
b_channel_scales=bt.w_ch_s,
a_token_scales=bt.w_tok_s,
out_type=out_type,
schedule=schedule,
)
# impl
# bench
def bench_fn(label: str, sub_label: str, description: str,
fn: Callable) -> TMeasurement:
min_run_time = 1
return TBenchmark.Timer(
stmt="fn()",
def bench_fns(label: str, sub_label: str, description: str,
fns: List[Callable]):
min_run_time = 1 if not NVTX_PROFILE else 0.1
res = TBenchmark.Timer(
stmt="""
for fn in fns:
fn()
""",
globals={
"fn": fn
"fns": fns
},
label=label,
sub_label=sub_label,
description=description,
).blocked_autorange(min_run_time=min_run_time)
if NVTX_PROFILE:
with nvtx.annotate("mm-bench"), nvtx.annotate(
f"{label}|{sub_label}|{description}"):
fns[0]()
def loop_over_weights(
a: torch.tensor, weights: List[Tuple[torch.tensor, torch.tensor,
torch.tensor, torch.tensor]],
fn: Callable[[torch.tensor, torch.tensor, torch.tensor, torch.tensor],
None]):
for w_ref, w_q, w_s, _ in weights:
fn(a, w_ref, w_q, w_s)
return res
_SWEEP_SCHEDULES_RESULTS: Optional[pd.DataFrame] = None
_SWEEP_SCHEDULES_RESULTS_CSV: Optional[str] = None
def bench(atype: torch.dtype,
wtype: ScalarType,
def bench(types: TypeConfig,
group_size: int,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
benchmark_marlinv1: bool = True,
sweep_schedules: bool = True) -> Iterable[TMeasurement]:
global _SWEEP_SCHEDULES_RESULTS
sweep_schedules: bool = True) -> List[TMeasurement]:
benchmark_tensors = create_bench_tensors((m, n, k), types, group_size)
sub_label += f", L={len(benchmark_tensors)}"
a, weights = make_bench_tensors(atype, wtype, group_size, m, n, k)
sub_label += f", L={len(weights)}"
weights_machete = [(w_ref, machete_pack_weights(w_q, wtype), w_s, w_zp)
for w_ref, w_q, w_s, w_zp in weights]
name_type_string = f"W{types.weight_type}"+\
f"-A{terse_type_name(types.act_type)}"
if types.group_scale_type is not None:
name_type_string += f"-GS{terse_type_name(types.group_scale_type)}"
if types.group_zero_type is not None:
name_type_string += f"-GZ{terse_type_name(types.group_zero_type)}"
if group_size is not None:
name_type_string += f"-G{group_size}"
if types.channel_scale_type is not None:
name_type_string += f"-CS{terse_type_name(types.channel_scale_type)}"
if types.token_scale_type is not None:
name_type_string += f"-TS{terse_type_name(types.token_scale_type)}"
timers = []
# pytorch impl
timers.append(
bench_fn(
label, sub_label, "torch.matmul", lambda: loop_over_weights(
a,
weights,
lambda a, w_ref, w_q, w_s: torch.matmul(a, w_ref),
)))
bench_fns(
label, sub_label, "torch.matmul (fp16)",
[torch_matmul_f16_create_bench_fn(bt)
for bt in benchmark_tensors]))
if benchmark_marlinv1:
w_ref = weights[0][0]
w_zp_empty = torch.empty(0, dtype=torch.int, device=w_ref.device)
sort_indices = torch.empty(0, dtype=torch.int, device=w_ref.device)
g_idx = torch.empty(0, dtype=torch.int, device=w_ref.device)
def marlinv1_pack_weights(w_q: torch.tensor) -> torch.tensor:
w_q_gptq = gptq_pack(w_q, wtype.size_bits, *w_ref.shape)
return ops.gptq_marlin_repack(w_q_gptq, sort_indices, *w_ref.shape,
wtype.size_bits)
def marlinv1_permute_scales(w_s: torch.tensor) -> torch.tensor:
return marlin_permute_scales(w_s, *w_ref.shape, group_size)
weights_marlinv1 = [(w_ref, marlinv1_pack_weights(w_q),
marlinv1_permute_scales(w_s), w_zp)
for w_ref, w_q, w_s, w_zp in weights]
workspace = MarlinWorkspace(w_ref.shape[1], GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_MAX_PARALLEL)
# marlinv1
if types.act_type == torch.int8 or types.act_type == torch.float8_e4m3fn:
timers.append(
bench_fn(
label, sub_label, "marlin_orig", lambda: loop_over_weights(
a, weights_marlinv1, lambda a, w_ref, w_q, w_s: ops.
gptq_marlin_gemm(a,
w_q,
w_s,
w_zp_empty,
g_idx,
sort_indices,
workspace.scratch,
wtype,
size_m=a.shape[0],
size_n=w_ref.shape[1],
size_k=w_ref.shape[0],
is_k_full=True))))
bench_fns(
label, sub_label,
f"cutlass_scaled_mm ({terse_type_name(types.act_type)})", [
cutlass_scaled_mm_create_bench_fn(bt)
for bt in benchmark_tensors
]))
if types.act_type != torch.float8_e4m3fn:
timers.append(
bench_fns(label, sub_label, f"marlin ({name_type_string})",
[marlin_create_bench_fn(bt)
for bt in benchmark_tensors]))
# machete
timers.append(
bench_fn(
label, sub_label, "machete_heuristic", lambda: loop_over_weights(
a, weights_machete, lambda a, _, w_q, w_s: ops.machete_gemm(
a, w_q, wtype, b_scales=w_s, b_group_size=group_size))))
bench_fns(label, sub_label, f"machete ({name_type_string})", [
machete_create_bench_fn(bt, out_type=types.output_type)
for bt in benchmark_tensors
]))
if sweep_schedules:
global _SWEEP_SCHEDULES_RESULTS
print("Finding best schedule for machete")
best = None
best_schedule = None
schedules = ops.machete_supported_schedules(wtype)
schedules = ops.machete_supported_schedules(
a_type=types.act_type,
b_type=types.weight_type,
group_scales_type=types.group_scale_type,
group_zeros_type=types.group_zero_type,
token_scales_type=types.token_scale_type,
channel_scales_type=types.channel_scale_type,
out_type=types.output_type)
if schedules is None or len(schedules) == 0:
raise ValueError("No schedules found to sweep")
for schedule in reversed(schedules):
schedule_M = int(schedule.split("_")[0].split("x")[1])
@ -177,16 +381,11 @@ def bench(atype: torch.dtype,
if schedule_M >= 2 * max(m, 16) or schedule_M < m // 4:
continue
def run(a, _, w_q, w_s, schedule=schedule):
ops.machete_gemm(a,
w_q,
wtype,
w_s,
b_group_size=group_size,
schedule=schedule)
res = bench_fn(label, sub_label, "machete_best",
lambda: loop_over_weights(a, weights_machete, run))
res = bench_fns(label, sub_label, "machete_best", [
machete_create_bench_fn(
bt, out_type=types.output_type, schedule=schedule)
for bt in benchmark_tensors
])
results_row = {
"M": m,
@ -213,25 +412,33 @@ def bench(atype: torch.dtype,
# runner
def print_timers(timers: Iterable[TMeasurement]):
def print_timers(timers: List[TMeasurement]):
compare = TBenchmark.Compare(timers)
compare.print()
def run(dtype: torch.dtype, sweep_schedules: bool,
MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]:
def run(args, MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]:
types = TypeConfig(
act_type=args.act_type,
weight_type=scalar_types.uint4b8 if args.group_zero_type is None \
else scalar_types.uint4,
output_type=args.out_type,
group_scale_type=args.group_scale_type,
group_zero_type=args.group_zero_type,
channel_scale_type=args.channel_scale_type,
token_scale_type=args.token_scale_type,
)
results = []
results: List[TMeasurement] = []
for m, k, n in MKNs:
timers = bench(dtype,
scalar_types.uint4b8,
128,
timers = bench(types,
args.group_size,
m,
k,
n,
f"{dtype}-gemm",
f"{args.act_type}-gemm",
f"MKN=({m}x{k}x{n})",
sweep_schedules=sweep_schedules)
sweep_schedules=args.sweep_schedules)
print_timers(timers)
results.extend(timers)
@ -240,7 +447,7 @@ def run(dtype: torch.dtype, sweep_schedules: bool,
# output makers
def make_output(
data: Iterable[TMeasurement],
data: List[TMeasurement],
MKNs: Iterable[Tuple[int, int, int]],
base_description: str,
timestamp=None,
@ -262,7 +469,6 @@ def run_square_bench(args):
dim_sizes = list(
range(args.dim_start, args.dim_end + 1, args.dim_increment))
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
data = run(args.dtype, args.sweep_schedules, MKNs)
make_output(data, MKNs, f"square_bench-{args.dtype}")
@ -306,33 +512,49 @@ def run_model_bench(args):
for k, n in KNs:
MKNs.append((m, k, n))
data = run(args.dtype, args.sweep_schedules, MKNs)
data = run(args, MKNs)
model_bench_data.append(data)
type_string = f"{args.act_type}"
# Print all results
for data, model_tp in zip(model_bench_data, models_tps):
model, tp_size = model_tp
print(f"== Results {args.dtype} {model}-TP{tp_size} ====")
print(f"== Results {type_string} {model}-TP{tp_size} ====")
print_timers(data)
timestamp = int(time.time())
timestr = time.strftime("%Y%m%d-%H%M%S")
all_data = []
all_results = []
for d in model_bench_data:
all_data.extend(d)
all_results.extend(d)
# pickle all data
with open(f"model_bench-{args.dtype}-{timestamp}.pkl", "wb") as f:
pkl.dump(all_data, f)
with open(f"model_bench-{type_string}-{timestr}.pkl", "wb") as f:
args_dict = vars(args)
args_dict.pop("func")
pkl.dump({
"args": args_dict,
"results": all_results,
}, f)
if __name__ == "__main__":
def to_torch_dtype(dt):
if dt == "bfloat16":
return torch.bfloat16
if dt == "float16":
return torch.float16
raise ValueError("unsupported dtype")
return {
"bfloat16": torch.bfloat16,
"float16": torch.float16,
"int8": torch.int8,
"float8_e4m3fn": torch.float8_e4m3fn,
"int": torch.int,
"float": torch.float,
}[dt]
class ToTorchDtype(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, to_torch_dtype(values))
parser = FlexibleArgumentParser(
description="""
@ -352,12 +574,42 @@ Benchmark Machete GEMM.
""", # noqa: E501
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"--dtype",
type=to_torch_dtype,
"--act-type",
action=ToTorchDtype,
required=True,
help="Available options are ['bfloat16', 'float16']",
choices=['bfloat16', 'float16', 'int8', 'float8_e4m3fn'],
)
parser.add_argument(
"--group-scale-type",
action=ToTorchDtype,
choices=['bfloat16', 'float16'],
)
parser.add_argument(
"--group-zero-type",
type=to_torch_dtype,
choices=['bfloat16', 'float16'],
)
parser.add_argument(
"--channel-scale-type",
action=ToTorchDtype,
choices=['float'],
)
parser.add_argument(
"--token-scale-type",
action=ToTorchDtype,
choices=['float'],
)
parser.add_argument(
"--out-type",
action=ToTorchDtype,
choices=['bfloat16', 'float16'],
)
parser.add_argument(
"--group-size",
type=int,
help="Available options are ['None', '-1', '128'], default=128",
default=128,
)
parser.add_argument(
"--sweep-schedules",

View File

@ -131,7 +131,7 @@ def bench_run(results: List[benchmark.Measurement], model: str,
results.append(
benchmark.Timer(
stmt=
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False)", # noqa: E501
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False, False)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
@ -141,7 +141,7 @@ def bench_run(results: List[benchmark.Measurement], model: str,
results.append(
benchmark.Timer(
stmt=
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True)", # noqa: E501
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True, False)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,

View File

@ -0,0 +1,262 @@
import itertools
from typing import Optional, Tuple, Union
import torch
import triton
from flashinfer.norm import fused_add_rmsnorm, rmsnorm
from torch import nn
from vllm import _custom_ops as vllm_ops
class HuggingFaceRMSNorm(nn.Module):
def __init__(self, hidden_size: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(
self,
x: torch.Tensor,
residual: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
orig_dtype = x.dtype
x = x.to(torch.float32)
if residual is not None:
x = x + residual.to(torch.float32)
residual = x.to(orig_dtype)
variance = x.pow(2).mean(dim=-1, keepdim=True)
x = x * torch.rsqrt(variance + self.variance_epsilon)
x = x.to(orig_dtype) * self.weight
if residual is None:
return x
else:
return x, residual
def rmsnorm_naive(
x: torch.Tensor,
weight: torch.Tensor,
residual: Optional[torch.Tensor] = None,
eps: float = 1e-6,
):
naive_norm = HuggingFaceRMSNorm(x.shape[-1], eps=eps)
naive_norm.weight = nn.Parameter(weight)
naive_norm = naive_norm.to(x.device)
orig_shape = x.shape
x = x.view(-1, x.shape[-1])
if residual is not None:
residual = residual.view(-1, residual.shape[-1])
output = naive_norm(x, residual)
if isinstance(output, tuple):
output = (output[0].view(orig_shape), output[1].view(orig_shape))
else:
output = output.view(orig_shape)
return output
def rmsnorm_flashinfer(
x: torch.Tensor,
weight: torch.Tensor,
residual: Optional[torch.Tensor] = None,
eps: float = 1e-6,
):
orig_shape = x.shape
x = x.view(-1, x.shape[-1])
if residual is not None:
residual = residual.view(-1, residual.shape[-1])
if residual is not None:
fused_add_rmsnorm(x, residual, weight, eps)
output = (x, residual)
else:
output = rmsnorm(x, weight, eps)
if isinstance(output, tuple):
output = (output[0].view(orig_shape), output[1].view(orig_shape))
else:
output = output.view(orig_shape)
return output
def rmsnorm_vllm(
x: torch.Tensor,
weight: torch.Tensor,
residual: Optional[torch.Tensor] = None,
eps: float = 1e-6,
):
orig_shape = x.shape
x = x.view(-1, x.shape[-1])
if residual is not None:
residual = residual.view(-1, residual.shape[-1])
if residual is not None:
vllm_ops.fused_add_rms_norm(x, residual, weight, eps)
output = (x, residual)
else:
out = torch.empty_like(x)
vllm_ops.rms_norm(out, x, weight, eps)
output = out
if isinstance(output, tuple):
output = (output[0].view(orig_shape), output[1].view(orig_shape))
else:
output = output.view(orig_shape)
return output
def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True):
dtype = torch.bfloat16
x = torch.randn(batch_size,
seq_len,
hidden_size,
dtype=dtype,
device="cuda")
weight = torch.ones(hidden_size, dtype=dtype, device="cuda")
residual = torch.randn_like(x) if use_residual else None
output_naive = rmsnorm_naive(
x.clone(), weight,
residual.clone() if residual is not None else None)
output_flashinfer = rmsnorm_flashinfer(
x.clone(), weight,
residual.clone() if residual is not None else None)
output_vllm = rmsnorm_vllm(
x.clone(), weight,
residual.clone() if residual is not None else None)
if use_residual:
output_naive = output_naive[0]
output_flashinfer = output_flashinfer[0]
output_vllm = output_vllm[0]
print(f"Naive output={output_naive}")
print(f"FlashInfer output={output_flashinfer}")
print(f"VLLM output={output_vllm}")
if torch.allclose(output_naive, output_flashinfer, atol=1e-2,
rtol=1e-2) and torch.allclose(
output_naive, output_vllm, atol=1e-2, rtol=1e-2):
print("✅ All implementations match")
else:
print("❌ Implementations differ")
batch_size_range = [2**i for i in range(0, 7, 2)]
seq_length_range = [2**i for i in range(6, 11, 1)]
head_num_range = [32, 48]
configs = list(
itertools.product(head_num_range, batch_size_range, seq_length_range))
def get_benchmark(use_residual):
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["head_num", "batch_size", "seq_len"],
x_vals=[list(_) for _ in configs],
line_arg="provider",
line_vals=["huggingface", "flashinfer", "vllm"],
line_names=["HuggingFace", "FlashInfer", "vLLM"],
styles=[("blue", "-"), ("green", "-"), ("red", "-")],
ylabel="us",
plot_name=
f"rmsnorm-perf-{'with' if use_residual else 'without'}-residual",
args={},
))
def benchmark(head_num, batch_size, seq_len, provider):
dtype = torch.bfloat16
hidden_size = head_num * 128 # assuming head_dim = 128
x = torch.randn(batch_size,
seq_len,
hidden_size,
dtype=dtype,
device="cuda")
weight = torch.ones(hidden_size, dtype=dtype, device="cuda")
residual = torch.randn_like(x) if use_residual else None
quantiles = [0.5, 0.2, 0.8]
if provider == "huggingface":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: rmsnorm_naive(
x.clone(),
weight,
residual.clone() if residual is not None else None,
),
quantiles=quantiles,
)
elif provider == "flashinfer":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: rmsnorm_flashinfer(
x.clone(),
weight,
residual.clone() if residual is not None else None,
),
quantiles=quantiles,
)
else:
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: rmsnorm_vllm(
x.clone(),
weight,
residual.clone() if residual is not None else None,
),
quantiles=quantiles,
)
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
return benchmark
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--batch-size",
type=int,
default=4,
help="Batch size",
)
parser.add_argument(
"--seq-len",
type=int,
default=128,
help="Sequence length",
)
parser.add_argument(
"--hidden-size",
type=int,
default=4096,
help="Hidden size (2nd dimension) of the sequence",
)
parser.add_argument("--use-residual",
action="store_true",
help="Whether to use residual connection")
parser.add_argument(
"--save-path",
type=str,
default="./configs/rmsnorm/",
help="Path to save rmsnorm benchmark results",
)
args = parser.parse_args()
# Run correctness test
calculate_diff(batch_size=args.batch_size,
seq_len=args.seq_len,
hidden_size=args.hidden_size,
use_residual=args.use_residual)
# Get the benchmark function with proper use_residual setting
benchmark = get_benchmark(args.use_residual)
# Run performance benchmark
benchmark.run(print_data=True, save_path=args.save_path)

View File

@ -20,10 +20,11 @@ if __name__ == "__main__":
args = parser.parse_args()
with open(args.filename, 'rb') as f:
data: List[TMeasurement] = pickle.load(f)
data = pickle.load(f)
raw_results: List[TMeasurement] = data["results"]
results = defaultdict(lambda: list())
for v in data:
for v in raw_results:
result = re.search(r"MKN=\(\d+x(\d+x\d+)\)", v.task_spec.sub_label)
if result is not None:
KN = result.group(1)

View File

@ -40,4 +40,10 @@ WEIGHT_SHAPES = {
([8192, 57344], 1),
([28672, 8192], 0),
],
"meta-llama/Llama-3.1-405b-hf": [
([16384, 18432], 1),
([16384, 16384], 0),
([16384, 106496], 1),
([53248, 16384], 0),
],
}

View File

@ -0,0 +1,113 @@
{
"$schema":
"https://json-schema.org/draft/2020-12/schema",
"title":
"User Profile",
"type":
"object",
"properties": {
"userId": {
"type": "string",
"description": "Unique identifier for the user."
},
"personalInfo": {
"type": "object",
"properties": {
"firstName": {
"type": "string",
"description": "The user's first name."
},
"lastName": {
"type": "string",
"description": "The user's last name."
},
"age": {
"type": "integer",
"minimum": 0,
"description": "The user's age."
},
"phoneNumbers": {
"type":
"array",
"items": {
"type": "object",
"properties": {
"type": {
"type": "string",
"enum": ["home", "work", "mobile"],
"description": "Type of phone number."
},
"number": {
"type": "string",
"pattern": "^\\+?[1-9]\\d{1,14}$",
"description": "Phone number in E.164 format."
}
},
"required": ["type", "number"]
},
"description":
"List of phone numbers associated with the user."
}
},
"required": ["firstName", "lastName"]
},
"address": {
"type": "object",
"properties": {
"street": {
"type": "string",
"description": "Street address."
},
"city": {
"type": "string",
"description": "City name."
},
"state": {
"type": "string",
"description": "State or province."
},
"postalCode": {
"type": "string",
"pattern": "^\\d{5}(-\\d{4})?$",
"description": "Postal code."
},
"country": {
"type": "string",
"description": "Country name."
}
},
"required": ["street", "city", "state", "postalCode", "country"]
},
"preferences": {
"type": "object",
"properties": {
"newsletterSubscribed": {
"type":
"boolean",
"description":
"Indicates if the user is subscribed to the newsletter."
},
"favoriteCategories": {
"type": "array",
"items": {
"type": "string"
},
"description": "List of user's favorite categories."
}
},
"required": ["newsletterSubscribed"]
},
"accountStatus": {
"type": "string",
"enum": ["active", "inactive", "suspended"],
"description": "Current status of the user's account."
},
"registrationDate": {
"type": "string",
"format": "date-time",
"description": "ISO 8601 formatted date-time of user registration."
}
},
"required":
["userId", "personalInfo", "address", "accountStatus", "registrationDate"]
}

View File

@ -16,9 +16,14 @@ include_directories("${CMAKE_SOURCE_DIR}/csrc")
#
# Check the compile flags
#
if (CMAKE_SYSTEM_PROCESSOR MATCHES "x86_64")
list(APPEND CXX_COMPILE_FLAGS
"-mf16c"
)
endif()
list(APPEND CXX_COMPILE_FLAGS
"-fopenmp"
"-mf16c"
"-DVLLM_CPU_EXTENSION")
execute_process(COMMAND cat /proc/cpuinfo
@ -53,6 +58,8 @@ find_isa(${CPUINFO} "avx2" AVX2_FOUND)
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
find_isa(${CPUINFO} "POWER10" POWER10_FOUND)
find_isa(${CPUINFO} "POWER9" POWER9_FOUND)
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
find_isa(${CPUINFO} "bf16" ARM_BF16_FOUND) # Check for ARM BF16 support
if (AVX512_FOUND AND NOT AVX512_DISABLED)
list(APPEND CXX_COMPILE_FLAGS
@ -72,9 +79,11 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED)
else()
message(WARNING "Disable AVX512-BF16 ISA support, no avx512_bf16 found in local CPU flags." " If cross-compilation is required, please set env VLLM_CPU_AVX512BF16=1.")
endif()
elseif (AVX2_FOUND)
list(APPEND CXX_COMPILE_FLAGS "-mavx2")
message(WARNING "vLLM CPU backend using AVX2 ISA")
elseif (POWER9_FOUND OR POWER10_FOUND)
message(STATUS "PowerPC detected")
# Check for PowerPC VSX support
@ -82,8 +91,20 @@ elseif (POWER9_FOUND OR POWER10_FOUND)
"-mvsx"
"-mcpu=native"
"-mtune=native")
elseif (ASIMD_FOUND)
message(STATUS "ARMv8 or later architecture detected")
if(ARM_BF16_FOUND)
message(STATUS "BF16 extension detected")
set(MARCH_FLAGS "-march=armv8.2-a+bf16+dotprod+fp16")
add_compile_definitions(ARM_BF16_SUPPORT)
else()
message(WARNING "BF16 functionality is not available")
set(MARCH_FLAGS "-march=armv8.2-a+dotprod+fp16")
endif()
list(APPEND CXX_COMPILE_FLAGS ${MARCH_FLAGS})
else()
message(FATAL_ERROR "vLLM CPU backend requires AVX512 or AVX2 or Power9+ ISA support.")
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA or ARMv8 support.")
endif()
#
@ -153,4 +174,4 @@ define_gpu_extension_target(
WITH_SOABI
)
message(STATUS "Enabling C extension.")
message(STATUS "Enabling C extension.")

View File

@ -53,7 +53,7 @@ void paged_attention_v1_launcher(
torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int num_kv_heads, float scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes, float k_scale,
const std::optional<torch::Tensor>& alibi_slopes, float k_scale,
float v_scale, const int tp_rank, const int blocksparse_local_blocks,
const int blocksparse_vert_stride, const int blocksparse_block_size,
const int blocksparse_head_sliding_step) {
@ -140,13 +140,10 @@ void paged_attention_v1_launcher(
blocksparse_block_size, blocksparse_head_sliding_step);
#define CALL_V1_LAUNCHER_SPARSITY(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE) \
switch (is_block_sparse) { \
case true: \
CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, true); \
break; \
case false: \
CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, false); \
break; \
if (is_block_sparse) { \
CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, true); \
} else { \
CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, false); \
}
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
@ -179,7 +176,7 @@ void paged_attention_v1(
torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
torch::Tensor& seq_lens, // [num_seqs]
int64_t block_size, int64_t max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype, double k_scale, double v_scale,
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,

View File

@ -54,7 +54,7 @@ void paged_attention_v2_launcher(
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int num_kv_heads, float scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes, float k_scale,
const std::optional<torch::Tensor>& alibi_slopes, float k_scale,
float v_scale, const int tp_rank, const int blocksparse_local_blocks,
const int blocksparse_vert_stride, const int blocksparse_block_size,
const int blocksparse_head_sliding_step) {
@ -147,13 +147,10 @@ void paged_attention_v2_launcher(
blocksparse_head_sliding_step);
#define CALL_V2_LAUNCHER_SPARSITY(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE) \
switch (is_block_sparse) { \
case true: \
CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, true); \
break; \
case false: \
CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, false); \
break; \
if (is_block_sparse) { \
CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, true); \
} else { \
CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, false); \
}
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
@ -190,7 +187,7 @@ void paged_attention_v2(
torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
torch::Tensor& seq_lens, // [num_seqs]
int64_t block_size, int64_t max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype, double k_scale, double v_scale,
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,

View File

@ -307,10 +307,20 @@ void reshape_and_cache_flash(
torch::Tensor& key_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor&
value_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor& slot_mapping, // [num_tokens]
torch::Tensor& slot_mapping, // [num_tokens] or [num_actual_tokens]
const std::string& kv_cache_dtype, const double k_scale,
const double v_scale) {
int num_tokens = key.size(0);
// NOTE(woosuk): In vLLM V1, key.size(0) can be different from
// slot_mapping.size(0) because of padding for CUDA graphs.
// In vLLM V0, key.size(0) is always equal to slot_mapping.size(0) because
// both include padding.
// In vLLM V1, however, key.size(0) can be larger than slot_mapping.size(0)
// since key includes padding for CUDA graphs, while slot_mapping does not.
// In this case, slot_mapping.size(0) represents the actual number of tokens
// before padding.
// For compatibility with both cases, we use slot_mapping.size(0) as the
// number of tokens.
int num_tokens = slot_mapping.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);
int block_size = key_cache.size(1);

7
csrc/core/math.hpp Normal file
View File

@ -0,0 +1,7 @@
#include <climits>
#include <iostream>
inline uint32_t next_pow_2(uint32_t const num) {
if (num <= 1) return num;
return 1 << (CHAR_BIT * sizeof(num) - __builtin_clz(num - 1));
}

View File

@ -24,12 +24,20 @@ struct KernelVecType<float> {
template <>
struct KernelVecType<c10::Half> {
#ifdef __powerpc64__
// Power architecture-specific vector types
using q_load_vec_type = vec_op::FP32Vec8;
using k_load_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::FP32Vec16;
#else
// Fallback for other architectures, including x86
using q_load_vec_type = vec_op::FP16Vec8;
using q_vec_type = vec_op::FP32Vec16;
using k_load_vec_type = vec_op::FP16Vec16;
using v_load_vec_type = vec_op::FP16Vec16;
#endif
using q_vec_type = vec_op::FP32Vec16;
using k_vec_type = vec_op::FP32Vec16;
using qk_acc_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::FP16Vec16;
};
#ifdef __AVX512BF16__
@ -43,6 +51,10 @@ struct KernelVecType<c10::BFloat16> {
using v_load_vec_type = vec_op::BF16Vec16;
};
#else
#ifdef __aarch64__
#ifndef ARM_BF16_SUPPORT
// pass
#else
template <>
struct KernelVecType<c10::BFloat16> {
using q_load_vec_type = vec_op::BF16Vec8;
@ -52,6 +64,18 @@ struct KernelVecType<c10::BFloat16> {
using qk_acc_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::BF16Vec16;
};
#endif
#else
template <>
struct KernelVecType<c10::BFloat16> {
using q_load_vec_type = vec_op::BF16Vec8;
using q_vec_type = vec_op::FP32Vec16;
using k_load_vec_type = vec_op::BF16Vec16;
using k_vec_type = vec_op::FP32Vec16;
using qk_acc_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::BF16Vec16;
};
#endif
#endif
template <typename T>
@ -362,7 +386,7 @@ void paged_attention_v1_impl_launcher(
torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int num_kv_heads, float scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes) {
const std::optional<torch::Tensor>& alibi_slopes) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
@ -435,7 +459,7 @@ void paged_attention_v1(
torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
int64_t max_seq_len, const std::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype, double k_scale, double v_scale,
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
@ -678,7 +702,7 @@ void paged_attention_v2_impl_launcher(
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int num_kv_heads, float scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int block_size,
int max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes) {
int max_seq_len, const std::optional<torch::Tensor>& alibi_slopes) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
@ -757,7 +781,7 @@ void paged_attention_v2(
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
int64_t max_seq_len, const std::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype, double k_scale, double v_scale,
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
@ -771,4 +795,4 @@ void paged_attention_v2(
CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t);
CPU_KERNEL_GUARD_OUT(paged_attention_v2_impl)
});
}
}

View File

@ -1,4 +1,3 @@
#ifndef CPU_TYPES_HPP
#define CPU_TYPES_HPP
@ -8,8 +7,11 @@
#elif defined(__POWER9_VECTOR__)
//ppc implementation
#include "cpu_types_vsx.hpp"
#elif defined(__aarch64__)
//arm implementation
#include "cpu_types_arm.hpp"
#else
#warning "unsupported vLLM cpu implementation"
#endif
#endif
#endif

515
csrc/cpu/cpu_types_arm.hpp Normal file
View File

@ -0,0 +1,515 @@
#include <arm_neon.h>
#include <torch/all.h>
#include <cmath>
namespace vec_op {
#ifdef ARM_BF16_SUPPORT
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
#else
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__)
#endif
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
#ifndef CPU_OP_GUARD
#define CPU_KERNEL_GUARD_IN(NAME)
#define CPU_KERNEL_GUARD_OUT(NAME)
#else
#define CPU_KERNEL_GUARD_IN(NAME) \
std::cout << #NAME << " invoked." << std::endl;
#define CPU_KERNEL_GUARD_OUT(NAME) std::cout << #NAME << " exit." << std::endl;
#endif
#define FORCE_INLINE __attribute__((always_inline)) inline
namespace {
template <typename T, T... indexes, typename F>
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F &&f) {
(f(std::integral_constant<T, indexes>{}), ...);
};
};
template <typename T, T count, typename F,
typename = std::enable_if_t<std::is_invocable_v<F, T>>>
constexpr void unroll_loop(F &&f) {
unroll_loop_item(std::make_integer_sequence<T, count>{}, std::forward<F>(f));
}
template <typename T> struct Vec {
constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; };
};
struct FP32Vec8;
struct FP32Vec16;
struct FP16Vec8 : public Vec<FP16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
float16x8_t reg;
explicit FP16Vec8(const void *ptr)
: reg(vld1q_f16(static_cast<const __fp16 *>(ptr))) {};
explicit FP16Vec8(const FP32Vec8 &);
void save(void *ptr) const {
vst1q_f16(static_cast<__fp16 *>(ptr), reg);
}
};
struct FP16Vec16 : public Vec<FP16Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
float16x8x2_t reg;
explicit FP16Vec16(const void *ptr) {
reg.val[0] = vld1q_f16(reinterpret_cast<const __fp16*>(ptr));
reg.val[1] = vld1q_f16(reinterpret_cast<const __fp16*>(ptr) + 8);
}
explicit FP16Vec16(const FP32Vec16& vec);
void save(void *ptr) const {
vst1q_f16(reinterpret_cast<__fp16*>(ptr), reg.val[0]);
vst1q_f16(reinterpret_cast<__fp16*>(ptr) + 8, reg.val[1]);
}
void save(void *ptr, const int elem_num) const {
int full_blocks = elem_num / 8;
int remainder = elem_num % 8;
if (full_blocks > 0) {
vst1q_f16(reinterpret_cast<__fp16*>(ptr), reg.val[0]);
if (full_blocks > 1) {
vst1q_f16(reinterpret_cast<__fp16*>(ptr) + 8, reg.val[1]);
}
}
if (remainder > 0) {
float16x8_t temp = reg.val[full_blocks];
for (int i = 0; i < remainder; ++i) {
reinterpret_cast<__fp16*>(ptr)[full_blocks * 8 + i] = vgetq_lane_f16(temp, i);
}
}
}
};
#ifdef ARM_BF16_SUPPORT
struct BF16Vec8 : public Vec<BF16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
bfloat16x8_t reg;
explicit BF16Vec8(const void *ptr)
: reg(*reinterpret_cast<const bfloat16x8_t *>(ptr)) {};
explicit BF16Vec8(bfloat16x8_t data) : reg(data) {};
explicit BF16Vec8(const FP32Vec8 &);
explicit BF16Vec8(float32x4x2_t v) : reg(vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.val[0]), v.val[1])) {};
void save(void *ptr) const { *reinterpret_cast<bfloat16x8_t *>(ptr) = reg; }
};
struct BF16Vec16 : public Vec<BF16Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
bfloat16x8x2_t reg;
explicit BF16Vec16(const void *ptr)
: reg(*reinterpret_cast<const bfloat16x8x2_t *>(ptr)) {};
explicit BF16Vec16(bfloat16x8x2_t data) : reg(data) {};
explicit BF16Vec16(const FP32Vec16 &);
explicit BF16Vec16(float32x4x4_t v) : reg({
vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.val[0]), v.val[1]),
vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.val[2]), v.val[3])
}){};
void save(void *ptr) const { *reinterpret_cast<bfloat16x8x2_t *>(ptr) = reg; };
};
struct BF16Vec32 : public Vec<BF16Vec32> {
constexpr static int VEC_ELEM_NUM = 32;
bfloat16x8x4_t reg;
explicit BF16Vec32(const void *ptr)
: reg(*reinterpret_cast<const bfloat16x8x4_t *>(ptr)) {};
explicit BF16Vec32(bfloat16x8x4_t data) : reg(data) {};
explicit BF16Vec32(const BF16Vec8 &vec8_data) : reg({
vec8_data.reg,
vec8_data.reg,
vec8_data.reg,
vec8_data.reg
}) {};
void save(void *ptr) const { *reinterpret_cast<bfloat16x8x4_t *>(ptr) = reg; };
};
#endif
struct FP32Vec4 : public Vec<FP32Vec4> {
constexpr static int VEC_ELEM_NUM = 4;
union AliasReg {
float32x4_t reg;
float values[VEC_ELEM_NUM];
};
float32x4_t reg;
explicit FP32Vec4(float v) : reg(vdupq_n_f32(v)) {};
explicit FP32Vec4() : reg(vdupq_n_f32(0.0f)) {};
explicit FP32Vec4(const float *ptr) : reg(vld1q_f32(ptr)) {};
explicit FP32Vec4(float32x4_t data) : reg(data) {};
explicit FP32Vec4(const FP32Vec4 &data) : reg(data.reg) {};
};
struct FP32Vec8 : public Vec<FP32Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
union AliasReg {
float32x4x2_t reg;
float values[VEC_ELEM_NUM];
};
float32x4x2_t reg;
explicit FP32Vec8(float v) : reg({vmovq_n_f32(v), vmovq_n_f32(v)}) {};
explicit FP32Vec8() : reg({vmovq_n_f32(0.0), vmovq_n_f32(0.0)}) {};
explicit FP32Vec8(const float *ptr) : reg({vld1q_f32(ptr), vld1q_f32(ptr + 4)}) {};
explicit FP32Vec8(float32x4x2_t data) : reg(data) {};
explicit FP32Vec8(const FP32Vec8 &data) : reg(data.reg) {};
explicit FP32Vec8(const FP16Vec8 &v) {
reg.val[0] = vcvt_f32_f16(vget_low_f16(v.reg));
reg.val[1] = vcvt_f32_f16(vget_high_f16(v.reg));
};
explicit FP32Vec8(float16x8_t v) : reg({vcvt_f32_f16(vget_low_f16(v)), vcvt_f32_f16(vget_high_f16(v))}) {};
#ifdef ARM_BF16_SUPPORT
explicit FP32Vec8(bfloat16x8_t v) : reg({vcvtq_low_f32_bf16(v), vcvtq_high_f32_bf16(v)}) {};
explicit FP32Vec8(const BF16Vec8 &v) : reg({vcvtq_low_f32_bf16(v.reg), vcvtq_high_f32_bf16(v.reg)}) {};
#endif
float reduce_sum() const {
AliasReg ar;
ar.reg = reg;
float answer = 0;
unroll_loop<int, VEC_ELEM_NUM>([&answer, &ar](int i) { answer += ar.values[i]; });
return answer;
}
FP32Vec8 exp() const {
AliasReg ar;
ar.reg = reg;
float32x2_t exp_vec0 = {expf(ar.values[0]), expf(ar.values[1])};
float32x2_t exp_vec1 = {expf(ar.values[2]), expf(ar.values[3])};
float32x2_t exp_vec2 = {expf(ar.values[4]), expf(ar.values[5])};
float32x2_t exp_vec3 = {expf(ar.values[6]), expf(ar.values[7])};
float32x4_t result0 = vcombine_f32(exp_vec0, exp_vec1);
float32x4_t result1 = vcombine_f32(exp_vec2, exp_vec3);
float32x4x2_t result;
result.val[0] = result0;
result.val[1] = result1;
return FP32Vec8(result);
}
FP32Vec8 tanh() const {
AliasReg ar;
ar.reg = reg;
float32x2_t tanh_vec0 = {tanhf(ar.values[0]), tanhf(ar.values[1])};
float32x2_t tanh_vec1 = {tanhf(ar.values[2]), tanhf(ar.values[3])};
float32x2_t tanh_vec2 = {tanhf(ar.values[4]), tanhf(ar.values[5])};
float32x2_t tanh_vec3 = {tanhf(ar.values[6]), tanhf(ar.values[7])};
float32x4_t result0 = vcombine_f32(tanh_vec0, tanh_vec1);
float32x4_t result1 = vcombine_f32(tanh_vec2, tanh_vec3);
float32x4x2_t result;
result.val[0] = result0;
result.val[1] = result1;
return FP32Vec8(result);
}
FP32Vec8 er() const {
AliasReg ar;
ar.reg = reg;
float32x2_t er_vec0 = {static_cast<float32_t>(erf(ar.values[0])), static_cast<float32_t>(erf(ar.values[1]))};
float32x2_t er_vec1 = {static_cast<float32_t>(erf(ar.values[2])), static_cast<float32_t>(erf(ar.values[3]))};
float32x2_t er_vec2 = {static_cast<float32_t>(erf(ar.values[4])), static_cast<float32_t>(erf(ar.values[5]))};
float32x2_t er_vec3 = {static_cast<float32_t>(erf(ar.values[6])), static_cast<float32_t>(erf(ar.values[7]))};
float32x4_t result0 = vcombine_f32(er_vec0, er_vec1);
float32x4_t result1 = vcombine_f32(er_vec2, er_vec3);
float32x4x2_t result;
result.val[0] = result0;
result.val[1] = result1;
return FP32Vec8(result);
}
FP32Vec8 operator*(const FP32Vec8 &b) const {
return FP32Vec8(float32x4x2_t({vmulq_f32(reg.val[0], b.reg.val[0]), vmulq_f32(reg.val[1], b.reg.val[1])}));
}
FP32Vec8 operator+(const FP32Vec8 &b) const {
return FP32Vec8(float32x4x2_t({vaddq_f32(reg.val[0], b.reg.val[0]), vaddq_f32(reg.val[1], b.reg.val[1])}));
}
FP32Vec8 operator-(const FP32Vec8 &b) const {
return FP32Vec8(float32x4x2_t({vsubq_f32(reg.val[0], b.reg.val[0]), vsubq_f32(reg.val[1], b.reg.val[1])}));
}
FP32Vec8 operator/(const FP32Vec8 &b) const {
return FP32Vec8(float32x4x2_t({vdivq_f32(reg.val[0], b.reg.val[0]), vdivq_f32(reg.val[1], b.reg.val[1])}));
}
void save(float *ptr) const {
vst1q_f32(ptr, reg.val[0]);
vst1q_f32(ptr + 4, reg.val[1]);
}
};
struct FP32Vec16 : public Vec<FP32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
float32x4x4_t reg;
float values[VEC_ELEM_NUM];
};
float32x4x4_t reg;
explicit FP32Vec16(float v) : reg({vmovq_n_f32(v), vmovq_n_f32(v), vmovq_n_f32(v), vmovq_n_f32(v)}) {}
explicit FP32Vec16() : reg({vmovq_n_f32(0.0), vmovq_n_f32(0.0), vmovq_n_f32(0.0), vmovq_n_f32(0.0)}) {}
explicit FP32Vec16(const float *ptr) : reg({vld1q_f32(ptr), vld1q_f32(ptr + 4), vld1q_f32(ptr + 8), vld1q_f32(ptr + 12)}) {}
explicit FP32Vec16(float32x4x4_t data) : reg(data) {}
explicit FP32Vec16(const FP32Vec8 &data) {
reg.val[0] = data.reg.val[0];
reg.val[1] = data.reg.val[1];
reg.val[2] = data.reg.val[0];
reg.val[3] = data.reg.val[1];
}
explicit FP32Vec16(const FP32Vec16 &data) : reg(data.reg) {}
explicit FP32Vec16(const FP16Vec8 &v) : FP32Vec16(FP32Vec8(v.reg)) {}
#ifdef ARM_BF16_SUPPORT
explicit FP32Vec16(bfloat16x8x2_t v) : reg({
vcvtq_low_f32_bf16(v.val[0]),
vcvtq_high_f32_bf16(v.val[0]),
vcvtq_low_f32_bf16(v.val[1]),
vcvtq_high_f32_bf16(v.val[1])
}) {};
#endif
explicit FP32Vec16(const FP32Vec4 &data) {
reg.val[0] = data.reg;
reg.val[1] = data.reg;
reg.val[2] = data.reg;
reg.val[3] = data.reg;
};
#ifdef ARM_BF16_SUPPORT
explicit FP32Vec16(const BF16Vec16 &v) : reg({
vcvtq_low_f32_bf16(v.reg.val[0]),
vcvtq_high_f32_bf16(v.reg.val[0]),
vcvtq_low_f32_bf16(v.reg.val[1]),
vcvtq_high_f32_bf16(v.reg.val[1])
}) {};
explicit FP32Vec16(const BF16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {};
#endif
explicit FP32Vec16(const FP16Vec16 &v) {
reg.val[0] = vcvt_f32_f16(vget_low_f16(v.reg.val[0]));
reg.val[1] = vcvt_f32_f16(vget_high_f16(v.reg.val[0]));
reg.val[2] = vcvt_f32_f16(vget_low_f16(v.reg.val[1]));
reg.val[3] = vcvt_f32_f16(vget_high_f16(v.reg.val[1]));
};
FP32Vec16 operator+(const FP32Vec16 &b) const {
return FP32Vec16(float32x4x4_t({
vaddq_f32(reg.val[0], b.reg.val[0]),
vaddq_f32(reg.val[1], b.reg.val[1]),
vaddq_f32(reg.val[2], b.reg.val[2]),
vaddq_f32(reg.val[3], b.reg.val[3])}));
};
FP32Vec16 operator*(const FP32Vec16 &b) const {
return FP32Vec16(float32x4x4_t({
vmulq_f32(reg.val[0], b.reg.val[0]),
vmulq_f32(reg.val[1], b.reg.val[1]),
vmulq_f32(reg.val[2], b.reg.val[2]),
vmulq_f32(reg.val[3], b.reg.val[3])}));
};
FP32Vec16 operator-(const FP32Vec16 &b) const {
return FP32Vec16(float32x4x4_t({
vsubq_f32(reg.val[0], b.reg.val[0]),
vsubq_f32(reg.val[1], b.reg.val[1]),
vsubq_f32(reg.val[2], b.reg.val[2]),
vsubq_f32(reg.val[3], b.reg.val[3])
}));
};
FP32Vec16 operator/(const FP32Vec16 &b) const {
return FP32Vec16(float32x4x4_t({
vdivq_f32(reg.val[0], b.reg.val[0]),
vdivq_f32(reg.val[1], b.reg.val[1]),
vdivq_f32(reg.val[2], b.reg.val[2]),
vdivq_f32(reg.val[3], b.reg.val[3])
}));
};
float reduce_sum() const {
AliasReg ar;
ar.reg = reg;
float answer = 0;
unroll_loop<int, VEC_ELEM_NUM>([&answer, &ar](int i) { answer += ar.values[i]; });
return answer;
};
template <int group_size> float reduce_sub_sum(int idx) {
static_assert(VEC_ELEM_NUM % group_size == 0);
AliasReg ar;
ar.reg = reg;
float answer = 0;
const int start = idx * group_size;
unroll_loop<int, group_size>(
[&answer, &start, ar](int i) { answer += ar.values[start + i]; });
return answer;
};
void save(float *ptr) const {
vst1q_f32(ptr, reg.val[0]);
vst1q_f32(ptr + 4, reg.val[1]);
vst1q_f32(ptr + 8, reg.val[2]);
vst1q_f32(ptr + 12, reg.val[3]);
};
};
template <typename T> struct VecType { using vec_type = void; };
template <typename T> using vec_t = typename VecType<T>::vec_type;
template <> struct VecType<float> { using vec_type = FP32Vec8; };
template <> struct VecType<c10::Half> { using vec_type = FP16Vec8; };
#ifdef ARM_BF16_SUPPORT
template <> struct VecType<c10::BFloat16> { using vec_type = BF16Vec8; };
#endif
template <typename T> void storeFP32(float v, T *ptr) { *ptr = v; }
template <> inline void storeFP32<c10::Half>(float v, c10::Half *ptr) {
*reinterpret_cast<__fp16 *>(ptr) = v;
}
inline FP16Vec16::FP16Vec16(const FP32Vec16 &v) {
float16x4_t low_0 = vcvt_f16_f32(v.reg.val[0]);
float16x4_t high_0 = vcvt_f16_f32(v.reg.val[1]);
float16x4_t low_1 = vcvt_f16_f32(v.reg.val[2]);
float16x4_t high_1 = vcvt_f16_f32(v.reg.val[3]);
reg.val[0] = vcombine_f16(low_0, high_0);
reg.val[1] = vcombine_f16(low_1, high_1);
};
inline FP16Vec8 :: FP16Vec8(const FP32Vec8 &v) {
float16x4_t lower_half = vcvt_f16_f32(v.reg.val[0]);
float16x4_t upper_half = vcvt_f16_f32(v.reg.val[1]);
reg = vcombine_f16(lower_half, upper_half);
};
inline void fma(FP32Vec16 &acc, FP32Vec16 &a, FP32Vec16 &b) {
acc.reg.val[0] = vfmaq_f32(acc.reg.val[0], a.reg.val[0], b.reg.val[0]);
acc.reg.val[1] = vfmaq_f32(acc.reg.val[1], a.reg.val[1], b.reg.val[1]);
acc.reg.val[2] = vfmaq_f32(acc.reg.val[2], a.reg.val[2], b.reg.val[2]);
acc.reg.val[3] = vfmaq_f32(acc.reg.val[3], a.reg.val[3], b.reg.val[3]);
};
#ifdef ARM_BF16_SUPPORT
inline void fma(FP32Vec16 &acc, BF16Vec32 &a, BF16Vec32 &b) {
float32x4_t a0_low = vcvt_f32_bf16(vget_low_bf16(a.reg.val[0]));
float32x4_t a0_high = vcvt_f32_bf16(vget_high_bf16(a.reg.val[0]));
float32x4_t a1_low = vcvt_f32_bf16(vget_low_bf16(a.reg.val[1]));
float32x4_t a1_high = vcvt_f32_bf16(vget_high_bf16(a.reg.val[1]));
float32x4_t b0_low = vcvt_f32_bf16(vget_low_bf16(b.reg.val[0]));
float32x4_t b0_high = vcvt_f32_bf16(vget_high_bf16(b.reg.val[0]));
float32x4_t b1_low = vcvt_f32_bf16(vget_low_bf16(b.reg.val[1]));
float32x4_t b1_high = vcvt_f32_bf16(vget_high_bf16(b.reg.val[1]));
acc.reg.val[0] = vfmaq_f32(acc.reg.val[0], a0_low, b0_low);
acc.reg.val[1] = vfmaq_f32(acc.reg.val[1], a0_high, b0_high);
acc.reg.val[2] = vfmaq_f32(acc.reg.val[2], a1_low, b1_low);
acc.reg.val[3] = vfmaq_f32(acc.reg.val[3], a1_high, b1_high);
};
#endif
#ifdef ARM_BF16_SUPPORT
inline BF16Vec8::BF16Vec8(const FP32Vec8 &v) : reg(vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.reg.val[0]), v.reg.val[1])) {};
inline BF16Vec16::BF16Vec16(const FP32Vec16 &v) : reg({
vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.reg.val[0]), v.reg.val[1]),
vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.reg.val[2]), v.reg.val[3])
}){};
#endif
inline void prefetch(const void *addr) {
__builtin_prefetch(addr, 0, 1);
};
#ifdef ARM_BF16_SUPPORT
template <>
inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16 *ptr) {
*reinterpret_cast<__bf16 *>(ptr) = vcvth_bf16_f32(v);
};
#endif
};

View File

@ -25,7 +25,13 @@ struct KernelVecType<c10::BFloat16> {
template <>
struct KernelVecType<c10::Half> {
#ifdef __powerpc64__
// Power architecture-specific vector type
using load_vec_type = vec_op::FP32Vec16;
#else
// Fallback for other architectures
using load_vec_type = vec_op::FP16Vec16;
#endif
using azp_adj_load_vec_type = vec_op::INT32Vec16;
using cvt_vec_type = vec_op::FP32Vec16;
};
@ -353,7 +359,7 @@ void int8_scaled_mm(torch::Tensor& c, // [M, OC], row-major
const torch::Tensor& b, // [IC, OC], column-major
const torch::Tensor& a_scales, // [1] or [M]
const torch::Tensor& b_scales, // [1] or [OC]
const c10::optional<torch::Tensor>& bias // [OC]
const std::optional<torch::Tensor>& bias // [OC]
) {
CPU_KERNEL_GUARD_IN(cutlass_scaled_mm)
// Checks for conformality
@ -436,8 +442,8 @@ void int8_scaled_mm_azp(torch::Tensor& c, // [M, OC], row-major
const torch::Tensor& a_scales, // [1] or [M]
const torch::Tensor& b_scales, // [1] or [OC]
const torch::Tensor& azp_adj, // [OC]
const c10::optional<torch::Tensor>& azp, // [1] or [M]
const c10::optional<torch::Tensor>& bias // [OC]
const std::optional<torch::Tensor>& azp, // [1] or [M]
const std::optional<torch::Tensor>& bias // [OC]
) {
CPU_KERNEL_GUARD_IN(cutlass_scaled_mm_azp)
// Checks for conformality
@ -555,7 +561,7 @@ void int8_scaled_mm_azp(torch::Tensor& c, // [M, OC], row-major
void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size]
const torch::Tensor& input, // [..., hidden_size]
const torch::Tensor& scale,
c10::optional<torch::Tensor> const& azp) {
std::optional<torch::Tensor> const& azp) {
CPU_KERNEL_GUARD_IN(static_scaled_int8_quant)
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());
@ -584,7 +590,7 @@ void dynamic_scaled_int8_quant(
torch::Tensor& out, // [..., hidden_size]
const torch::Tensor& input, // [..., hidden_size]
torch::Tensor& scale, // [..., 1]
c10::optional<torch::Tensor> const& azp) {
std::optional<torch::Tensor> const& azp) {
CPU_KERNEL_GUARD_IN(dynamic_scaled_int8_quant)
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());

View File

@ -9,14 +9,14 @@ std::string init_cpu_threads_env(const std::string& cpu_ids);
void int8_scaled_mm(torch::Tensor& c, const torch::Tensor& a,
const torch::Tensor& b, const torch::Tensor& a_scales,
const torch::Tensor& b_scales,
const c10::optional<torch::Tensor>& bias);
const std::optional<torch::Tensor>& bias);
void int8_scaled_mm_azp(torch::Tensor& c, const torch::Tensor& a,
const torch::Tensor& b, const torch::Tensor& a_scales,
const torch::Tensor& b_scales,
const torch::Tensor& azp_adj,
const c10::optional<torch::Tensor>& azp,
const c10::optional<torch::Tensor>& bias);
const std::optional<torch::Tensor>& azp,
const std::optional<torch::Tensor>& bias);
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// vLLM custom ops

View File

@ -0,0 +1,11 @@
#include "cutlass_extensions/common.hpp"
int32_t get_sm_version_num() {
int32_t major_capability, minor_capability;
cudaDeviceGetAttribute(&major_capability, cudaDevAttrComputeCapabilityMajor,
0);
cudaDeviceGetAttribute(&minor_capability, cudaDevAttrComputeCapabilityMinor,
0);
int32_t version_num = major_capability * 10 + minor_capability;
return version_num;
}

View File

@ -0,0 +1,35 @@
#pragma once
#include "cutlass/cutlass.h"
#include <climits>
#include "cuda_runtime.h"
#include <iostream>
/**
* Helper function for checking CUTLASS errors
*/
#define CUTLASS_CHECK(status) \
{ \
cutlass::Status error = status; \
TORCH_CHECK(error == cutlass::Status::kSuccess, \
cutlassGetStatusString(error)); \
}
/**
* Panic wrapper for unwinding CUDA runtime errors
*/
#define CUDA_CHECK(status) \
{ \
cudaError_t error = status; \
TORCH_CHECK(error == cudaSuccess, cudaGetErrorString(error)); \
}
inline int get_cuda_max_shared_memory_per_block_opt_in(int const device) {
int max_shared_mem_per_block_opt_in = 0;
cudaDeviceGetAttribute(&max_shared_mem_per_block_opt_in,
cudaDevAttrMaxSharedMemoryPerBlockOptin,
device);
return max_shared_mem_per_block_opt_in;
}
int32_t get_sm_version_num();

View File

@ -20,9 +20,9 @@ CUTE_HOST_DEVICE static constexpr auto permute_layout(Layout l) {
// is the layout f(x) = x
template <typename Layout>
CUTE_HOST_DEVICE static constexpr bool is_identity_layout() {
if constexpr (std::is_same_v<Layout, void>)
if constexpr (std::is_same_v<Layout, void>) {
return true;
else {
} else {
constexpr auto coalesced_layout = coalesce(Layout{});
if constexpr (rank(coalesced_layout) == 1 &&
stride<0>(coalesced_layout) == 1) {

View File

@ -52,6 +52,7 @@
// clang-format off
#include "cutlass/epilogue/threadblock/fusion/visitor_2x.hpp"
#include "cutlass/epilogue/threadblock/fusion/visitors.hpp"
#include "cute/tensor.hpp"
namespace cutlass::epilogue::threadblock {

View File

@ -0,0 +1,319 @@
#pragma once
#include "cutlass_extensions/epilogue/broadcast_load_epilogue_c2x.hpp"
/*
This file defines custom epilogues for fusing channel scales, token scales,
bias, and activation zero-points onto a GEMM operation using the
CUTLASS 2.x API, for sm80 (Ampere) NVIDIA GPUs.
Epilogues must contain a public type named EVTCompute of type Sm80EVT,
as well as a static prepare_args function that constructs an
EVTCompute::Arguments struct.
*/
namespace vllm::c2x {
using namespace cute;
/*
* This class provides the common load descriptors for the
* ScaledEpilogue[...] classes
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBase {
protected:
using Accum = cutlass::epilogue::threadblock::VisitorAccFetch;
template <typename T>
using ColOrScalarLoad =
cutlass::epilogue::threadblock::VisitorColOrScalarBroadcast<
OutputTileThreadMap, T, Stride<Int<1>, Int<0>, Int<0>>>;
template <typename T>
using RowOrScalarLoad =
cutlass::epilogue::threadblock::VisitorRowOrScalarBroadcast<
OutputTileThreadMap, T, Stride<Int<0>, Int<1>, Int<0>>>;
template <typename T>
using ColLoad = cutlass::epilogue::threadblock::VisitorColBroadcast<
OutputTileThreadMap, T, Stride<Int<1>, Int<0>, Int<0>>>;
template <typename T>
using RowLoad = cutlass::epilogue::threadblock::VisitorRowBroadcast<
OutputTileThreadMap, T, Stride<Int<0>, Int<1>, Int<0>>>;
template <typename T>
using RowOrZeroLoad =
cutlass::epilogue::threadblock::VisitorRowOrZeroBroadcast<
OutputTileThreadMap, T, Stride<Int<0>, Int<1>, Int<0>>>;
// This utility function constructs the arguments for the load descriptors
// from a tensor. It can handle both row and column, as well as row/column or
// scalar cases.
template <typename Descriptor, typename T>
static auto args_from_tensor(torch::Tensor const& tensor) {
using Arguments = typename Descriptor::Arguments;
auto* data_ptr = static_cast<T*>(tensor.data_ptr());
if constexpr (std::is_same_v<Descriptor, ColOrScalarLoad<T>> ||
std::is_same_v<Descriptor, RowOrScalarLoad<T>>) {
return Arguments{data_ptr, tensor.numel() != 1};
} else {
// it would technically work but no use case as data_ptr is never nullptr
static_assert(!std::is_same_v<Descriptor, RowOrZeroLoad<T>>);
return Arguments{data_ptr};
}
}
// This overload handles the case where there might not be a tensor, in which
// case a nullptr is passed and a constant (0) is used.
template <typename Descriptor, typename T>
static auto args_from_tensor(std::optional<torch::Tensor> const& tensor) {
static_assert(std::is_same_v<Descriptor, RowOrZeroLoad<T>>);
using Arguments = typename Descriptor::Arguments;
auto* data_ptr = tensor ? static_cast<T*>(tensor->data_ptr()) : nullptr;
return Arguments{data_ptr};
}
};
/*
This epilogue function defines a quantized GEMM operation similar to
torch._scaled_mm.
A and B may be both either int8 or fp8_e4m3. A can be quantized per-tensor or
per-row. B can be quantized per-tensor or per-column.
Any combination of per-tensor and per-row or column is supported.
A and B must have symmetric quantization (zero point == 0).
So the GEMM operation is D = (a_scales * A) (b_scales * B), where the
scales are applied elementwise with numpy-style broadcasting.
ScaleA and ScaleB define the epilogue functions that apply the scales for
the A and B operands respectively. These scales may be either per-tensor or
per row or column.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogue
: private ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
private:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Compute0 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTCompute0 =
cutlass::epilogue::threadblock::Sm80EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::threadblock::Sm80EVT<Compute1, ScaleA, EVTCompute0>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
typename EVTCompute0::Arguments evt0_args{b_args};
return ArgumentType{a_args, evt0_args};
}
};
/*
* This epilogue performs the same operation as ScaledEpilogue, but adds a bias.
* This bias can also be used in the per-tensor azp case, where the activation
* zero point (azp) is used to compute an azp correction term,
* which is folded into the bias.
*
* The bias tensor must be per-output channel.
* ScaleA and ScaleB can be per-tensor or per-token/per-channel.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBias
: protected ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
protected:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template RowLoad<ElementD>;
using Compute0 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTCompute0 =
cutlass::epilogue::threadblock::Sm80EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute = cutlass::epilogue::threadblock::Sm80EVT<Compute1, ScaleA,
EVTCompute0, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
typename EVTCompute0::Arguments evt0_args{b_args};
return ArgumentType{a_args, evt0_args, bias_args};
}
};
/*
* This epilogue directly supports per-tensor azp in int32 form.
* As opposed to the per-token epilogue below, this epilogue only has an azp_adj
* term, which should already be multiplied with the scalar azp.
* The azp_adj term is a 1D tensor of shape (1,n), computed as azp * J @ B.
*
* This epilogue also supports bias, which remains per-channel.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBiasAzp
: protected ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
private:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template RowOrZeroLoad<ElementD>;
// This is the full AZP term, azp * J @ B, shape (1,n)
using AzpWithAdj = typename SUPER::template RowLoad<int32_t>;
// Compute float(accum - azp_adj), both operands are int32_t
using ComputeAzp = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::minus, float, int32_t,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeAzp =
cutlass::epilogue::threadblock::Sm80EVT<ComputeAzp, Accum, AzpWithAdj>;
using ComputeScaleB = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeScaleB =
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleB, ScaleB,
EVTComputeAzp>;
using ComputeScaleBiasA = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleBiasA, ScaleA,
EVTComputeScaleB, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
std::optional<torch::Tensor> const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
auto azp_adj_args =
SUPER::template args_from_tensor<AzpWithAdj, int32_t>(azp_adj);
typename EVTComputeAzp::Arguments evt_azp_args{{}, azp_adj_args};
typename EVTComputeScaleB::Arguments evt_scale_b_args{b_args, evt_azp_args};
return ArgumentType{a_args, evt_scale_b_args, bias_args};
}
};
/*
* This epilogue supports per-token azp by computing and applying
* the correction term using a rank-1 update. If the term were materialized,
* it would require O(m*n) space, and this way it only requires O(m+n) space.
* The azp term is a 1D tensor of shape (m,1), and represents the unscaled zero
* point for each row of A.
* The azp_adj term is a 1D tensor of shape (1,n), computed as J @ B.
*
* This epilogue also supports bias, which remains per-channel.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBiasAzpToken
: protected ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
private:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template RowOrZeroLoad<ElementD>;
// Per-token azp term, shape (m,1)
using Azp = typename SUPER::template ColLoad<int32_t>;
// This is the AZP adjustment term, J @ B, shape (1,n)
using AzpAdj = typename SUPER::template RowLoad<int32_t>;
// Compute azp * azp_adj
using ComputeAzp = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, int32_t, int32_t,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeAzp =
cutlass::epilogue::threadblock::Sm80EVT<ComputeAzp, Azp, AzpAdj>;
// Compute float(accum - azp*azp_adj), all operands are int32_t
using ComputeAcc = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::minus, float, int32_t,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeAcc =
cutlass::epilogue::threadblock::Sm80EVT<ComputeAcc, Accum, EVTComputeAzp>;
using ComputeScaleB = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeScaleB =
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleB, ScaleB,
EVTComputeAcc>;
using ComputeScaleBiasA = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleBiasA, ScaleA,
EVTComputeScaleB, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
torch::Tensor const& azp,
std::optional<torch::Tensor> const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
auto azp_args = SUPER::template args_from_tensor<Azp, int32_t>(azp);
auto azp_adj_args =
SUPER::template args_from_tensor<AzpAdj, int32_t>(azp_adj);
typename EVTComputeAzp::Arguments evt_azp_args{azp_args, azp_adj_args};
typename EVTComputeAcc::Arguments evt_acc_args{{}, evt_azp_args};
typename EVTComputeScaleB::Arguments evt_scale_b_args{b_args, evt_acc_args};
return ArgumentType{a_args, evt_scale_b_args, bias_args};
}
};
}; // namespace vllm::c2x

View File

@ -0,0 +1,317 @@
#pragma once
#include "cutlass_extensions/epilogue/broadcast_load_epilogue_c3x.hpp"
/*
This file defines custom epilogues for fusing channel scales, token scales,
bias, and activation zero-points onto a GEMM operation using the
CUTLASS 3.x API, for NVIDIA GPUs with sm90a (Hopper) or later.
Epilogues must contain a public type named EVTCompute of type Sm90EVT,
as well as a static prepare_args function that constructs an
EVTCompute::Arguments struct.
*/
namespace vllm::c3x {
using namespace cute;
/*
* This class provides the common load descriptors for the
* ScaledEpilogue[...] classes
*/
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
struct ScaledEpilogueBase {
protected:
using Accum = cutlass::epilogue::fusion::Sm90AccFetch;
template <typename T>
using ColOrScalarLoad = cutlass::epilogue::fusion::Sm90ColOrScalarBroadcast<
0 /*Stages*/, typename EpilogueDescriptor::TileShape, T,
Stride<Int<1>, Int<0>, Int<0>>>;
template <typename T>
using RowOrScalarLoad = cutlass::epilogue::fusion::Sm90RowOrScalarBroadcast<
0 /*Stages*/, typename EpilogueDescriptor::TileShape, T,
Stride<Int<0>, Int<1>, Int<0>>>;
// Don't want to support nullptr by default
template <typename T, bool EnableNullPtr = false>
using ColLoad = cutlass::epilogue::fusion::Sm90ColBroadcast<
0 /*Stages*/, typename EpilogueDescriptor::TileShape, T, T,
Stride<Int<1>, Int<0>, Int<0>>, 128 / sizeof_bits_v<T>, EnableNullPtr>;
// Don't want to support nullptr by default
template <typename T, bool EnableNullPtr = false>
using RowLoad = cutlass::epilogue::fusion::Sm90RowBroadcast<
0 /*Stages*/, typename EpilogueDescriptor::TileShape, T, T,
Stride<Int<0>, Int<1>, Int<0>>, 128 / sizeof_bits_v<T>, EnableNullPtr>;
// This utility function constructs the arguments for the load descriptors
// from a tensor. It can handle both row and column, as well as row/column or
// scalar cases.
template <typename Descriptor, typename T>
static auto args_from_tensor(torch::Tensor const& tensor) {
using Arguments = typename Descriptor::Arguments;
auto* data_ptr = static_cast<T*>(tensor.data_ptr());
if constexpr (std::is_same_v<Descriptor, ColOrScalarLoad<T>> ||
std::is_same_v<Descriptor, RowOrScalarLoad<T>>) {
return Arguments{data_ptr, tensor.numel() != 1};
} else {
static_assert(!std::is_same_v<Descriptor, ColLoad<T, true>> &&
!std::is_same_v<Descriptor, RowLoad<T, true>>);
return Arguments{data_ptr};
}
}
// This overload handles the case where there might not be a tensor, in which
// case a nullptr is passed and a constant (0) is used.
template <typename Descriptor, typename T>
static auto args_from_tensor(std::optional<torch::Tensor> const& tensor) {
using Arguments = typename Descriptor::Arguments;
auto* data_ptr = tensor ? static_cast<T*>(tensor->data_ptr()) : nullptr;
static_assert(std::is_same_v<Descriptor, ColLoad<T, true>> ||
std::is_same_v<Descriptor, RowLoad<T, true>>);
return Arguments{data_ptr};
}
};
/*
This epilogue function defines a quantized GEMM operation similar to
torch.scaled_mm_.
A and B may be both either int8 or fp8_e4m3. A can be
quantized per-tensor or per-row. B can be quantized per-tensor or per-column.
Any combination of per-tensor and per-row or column is supported.
A and B must have symmetric quantization (zero point == 0).
So the GEMM operation is D = (a_scales * A) (b_scales * B), where the
scales are applied elementwise with numpy-style broadcasting.
ScaleA and ScaleB define the epilogue functions that apply the scales for
the A and B operands respectively. These scales may be either per-tensor or
per row or column.
*/
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
struct ScaledEpilogue
: private ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor> {
private:
using SUPER = ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Compute0 = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTCompute0 =
cutlass::epilogue::fusion::Sm90EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiplies, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::fusion::Sm90EVT<Compute1, ScaleA, EVTCompute0>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
typename EVTCompute0::Arguments evt0_args{b_args};
return ArgumentType{a_args, evt0_args};
}
};
/*
* This epilogue performs the same operation as ScaledEpilogue, but adds a bias.
* This bias can also be used in the per-tensor azp case, where the activation
* zero point (azp) is used to compute an azp correction term,
* which is folded into the bias.
*
* The bias tensor must be per-output channel.
* ScaleA and ScaleB can be per-tensor or per-token/per-channel.
*/
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
struct ScaledEpilogueBias
: private ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor> {
private:
using SUPER = ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template RowLoad<ElementD>;
using Compute0 = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTCompute0 =
cutlass::epilogue::fusion::Sm90EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::fusion::Sm90EVT<Compute1, ScaleA, EVTCompute0, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
typename EVTCompute0::Arguments evt0_args{b_args};
return ArgumentType{a_args, evt0_args, bias_args};
}
};
/*
* This epilogue directly supports per-tensor azp in int32 form.
* As opposed to the per-token epilogue below, this epilogue only has an azp_adj
* term, which should already be multiplied with the scalar azp.
* The azp_adj term is a 1D tensor of shape (1,n), computed as azp * J @ B.
*
* This epilogue also supports bias, which remains per-channel.
*/
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
struct ScaledEpilogueBiasAzp
: private ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor> {
private:
using SUPER = ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template RowLoad<ElementD, true>;
// This is the full AZP term, azp * J @ B, shape (1,n)
using AzpWithAdj = typename SUPER::template RowLoad<int32_t>;
// Compute float(accum - azp_adj), both operands are int32_t
using ComputeAzp = cutlass::epilogue::fusion::Sm90Compute<
cutlass::minus, float, int32_t,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeAzp =
cutlass::epilogue::fusion::Sm90EVT<ComputeAzp, Accum, AzpWithAdj>;
using ComputeScaleB = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeScaleB =
cutlass::epilogue::fusion::Sm90EVT<ComputeScaleB, ScaleB, EVTComputeAzp>;
using ComputeScaleBiasA = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::fusion::Sm90EVT<ComputeScaleBiasA, ScaleA,
EVTComputeScaleB, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
std::optional<torch::Tensor> const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
auto azp_adj_args =
SUPER::template args_from_tensor<AzpWithAdj, int32_t>(azp_adj);
typename EVTComputeAzp::Arguments evt_azp_args{{}, azp_adj_args};
typename EVTComputeScaleB::Arguments evt_scale_b_args{b_args, evt_azp_args};
return ArgumentType{a_args, evt_scale_b_args, bias_args};
}
};
/*
* This epilogue supports per-token azp by computing and applying
* the correction term using a rank-1 update. If the term were materialized,
* it would require O(m*n) space, and this way it only requires O(m+n) space.
* The azp term is a 1D tensor of shape (m,1), and represents the unscaled zero
* point for each row of A.
* The azp_adj term is a 1D tensor of shape (1,n), computed as J @ B.
*
* This epilogue also supports bias, which remains per-channel.
*/
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
struct ScaledEpilogueBiasAzpToken
: private ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor> {
private:
using SUPER = ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template RowLoad<ElementD, true>;
// Per-token azp term, shape (m,1)
using Azp = typename SUPER::template ColLoad<int32_t>;
// This is the AZP adjustment term, J @ B, shape (1,n)
using AzpAdj = typename SUPER::template RowLoad<int32_t>;
// Compute azp * azp_adj
using ComputeAzp = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiplies, int32_t, int32_t,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeAzp =
cutlass::epilogue::fusion::Sm90EVT<ComputeAzp, Azp, AzpAdj>;
// Compute float(accum - azp*azp_adj), all operands are int32_t
using ComputeAcc = cutlass::epilogue::fusion::Sm90Compute<
cutlass::minus, float, int32_t,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeAcc =
cutlass::epilogue::fusion::Sm90EVT<ComputeAcc, Accum, EVTComputeAzp>;
using ComputeScaleB = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeScaleB =
cutlass::epilogue::fusion::Sm90EVT<ComputeScaleB, ScaleB, EVTComputeAcc>;
using ComputeScaleBiasA = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::fusion::Sm90EVT<ComputeScaleBiasA, ScaleA,
EVTComputeScaleB, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
torch::Tensor const& azp,
std::optional<torch::Tensor> const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
auto azp_args = SUPER::template args_from_tensor<Azp, int32_t>(azp);
auto azp_adj_args =
SUPER::template args_from_tensor<AzpAdj, int32_t>(azp_adj);
typename EVTComputeAzp::Arguments evt_azp_args{azp_args, azp_adj_args};
typename EVTComputeAcc::Arguments evt_acc_args{{}, evt_azp_args};
typename EVTComputeScaleB::Arguments evt_scale_b_args{b_args, evt_acc_args};
return ArgumentType{a_args, evt_scale_b_args, bias_args};
}
};
}; // namespace vllm::c3x

View File

@ -97,7 +97,7 @@ static inline auto make_cute_layout(torch::Tensor const& tensor,
template <typename Stride>
static inline auto maybe_make_cute_layout(
c10::optional<torch::Tensor> const& tensor,
std::optional<torch::Tensor> const& tensor,
std::string_view name = "tensor") {
using Layout = decltype(make_cute_layout<Stride>(*tensor));

View File

@ -14,9 +14,9 @@ class VLLMDataType(enum.Enum):
class MixedInputKernelScheduleType(enum.Enum):
TmaWarpSpecializedMixedInput = enum_auto()
TmaWarpSpecializedPingpongMixedInput = enum_auto()
TmaWarpSpecializedCooperativeMixedInput = enum_auto()
TmaWarpSpecialized = enum_auto()
TmaWarpSpecializedPingpong = enum_auto()
TmaWarpSpecializedCooperative = enum_auto()
VLLMDataTypeNames: Dict[Union[VLLMDataType, DataType], str] = {
@ -35,15 +35,44 @@ VLLMDataTypeTag: Dict[Union[VLLMDataType, DataType], str] = {
}
}
VLLMDataTypeSize: Dict[Union[VLLMDataType, DataType], int] = {
**DataTypeSize, # type: ignore
**{
VLLMDataType.u4b8: 4,
VLLMDataType.u8b128: 8,
}
}
VLLMDataTypeVLLMScalarTypeTag: Dict[Union[VLLMDataType, DataType], str] = {
VLLMDataType.u4b8: "vllm::kU4B8",
VLLMDataType.u8b128: "vllm::kU8B128",
DataType.u4: "vllm::kU4",
DataType.u8: "vllm::kU8",
DataType.s4: "vllm::kS4",
DataType.s8: "vllm::kS8",
DataType.f16: "vllm::kFloat16",
DataType.bf16: "vllm::kBfloat16",
}
VLLMDataTypeTorchDataTypeTag: Dict[Union[VLLMDataType, DataType], str] = {
DataType.u8: "at::ScalarType::Byte",
DataType.s8: "at::ScalarType::Char",
DataType.e4m3: "at::ScalarType::Float8_e4m3fn",
DataType.s32: "at::ScalarType::Int",
DataType.f16: "at::ScalarType::Half",
DataType.bf16: "at::ScalarType::BFloat16",
DataType.f32: "at::ScalarType::Float",
}
VLLMKernelScheduleTag: Dict[Union[
MixedInputKernelScheduleType, KernelScheduleType], str] = {
**KernelScheduleTag, # type: ignore
**{
MixedInputKernelScheduleType.TmaWarpSpecializedMixedInput:
"cutlass::gemm::KernelTmaWarpSpecializedMixedInput",
MixedInputKernelScheduleType.TmaWarpSpecializedPingpongMixedInput:
"cutlass::gemm::KernelTmaWarpSpecializedPingpongMixedInput",
MixedInputKernelScheduleType.TmaWarpSpecializedCooperativeMixedInput:
"cutlass::gemm::KernelTmaWarpSpecializedCooperativeMixedInput",
MixedInputKernelScheduleType.TmaWarpSpecialized:
"cutlass::gemm::KernelTmaWarpSpecialized",
MixedInputKernelScheduleType.TmaWarpSpecializedPingpong:
"cutlass::gemm::KernelTmaWarpSpecializedPingpong",
MixedInputKernelScheduleType.TmaWarpSpecializedCooperative:
"cutlass::gemm::KernelTmaWarpSpecializedCooperative",
}
}

View File

@ -3,6 +3,7 @@
#include "cutlass/numeric_conversion.h"
#include "cutlass_extensions/vllm_custom_types.cuh"
#include "cutlass_extensions/cute_utils.cuh"
#include "cutlass_extensions/vllm_type_utils.cuh"
// this file extends:
// https://github.com/NVIDIA/cutlass/blob/cutlass-3.5.0/include/cutlass/numeric_conversion.h
@ -28,8 +29,19 @@ struct InterleavedNumericArrayConverter {
CUTLASS_DEVICE
static result_type convert(source_type const& source) {
CUTE_INVALID_CONTROL_PATH(
"InterleavedNumericArrayConverter not implemented\n");
if (cute::elect_one_sync()) {
if constexpr (std::is_same_v<IlvBlkLayout, void>) {
printf(
"Convert %s <= %s (N = %d, IlvBlkLayout = void), not implemented\n",
nameof_v<T>, nameof_v<S>, N);
} else {
printf(
"Convert %s <= %s (N = %d, size(IlvBlkLayout{}) = %d), not "
"implemented\n",
nameof_v<T>, nameof_v<S>, N, size(IlvBlkLayout{}));
}
__brkpt();
}
return {};
}
@ -56,11 +68,6 @@ struct InterleavedNumericArrayConverter<
result_type operator()(source_type const& s) const { return convert(s); }
};
// TODO (LucasWilkinson): Implement
// for Array<cutlass::float8_e4m3fn, N> <= Array<vllm_uint4b8_t, N>
// ....
template <typename RegConvert32bit, typename T, typename S, int N>
struct ArrayConverterPacked32Bit {
using result_type = Array<T, N>;
@ -86,14 +93,16 @@ struct ArrayConverterPacked32Bit {
using ScalarConverter = NumericConverter<T, S>;
template <typename PackedSrc>
CUTLASS_DEVICE static uint32_t to_reg(PackedSrc const& source) {
CUTLASS_DEVICE static auto to_regs(PackedSrc const& src) {
if constexpr (sizeof(PackedSrc) == 1) {
return static_cast<uint32_t>(reinterpret_cast<const uint8_t&>(source));
return Array<uint32_t, 1>{reinterpret_cast<uint8_t const&>(src)};
} else if constexpr (sizeof(PackedSrc) == 2) {
return static_cast<uint32_t>(reinterpret_cast<const uint16_t&>(source));
return Array<uint32_t, 1>{reinterpret_cast<uint16_t const&>(src)};
} else if constexpr (sizeof(PackedSrc) == 4) {
return Array<uint32_t, 1>{reinterpret_cast<uint32_t const&>(src)};
} else {
static_assert(sizeof(PackedSrc) == 4);
return reinterpret_cast<const uint32_t&>(source);
static_assert(sizeof(PackedSrc) == 8);
return reinterpret_cast<Array<uint32_t, 2> const&>(src);
}
}
@ -110,7 +119,7 @@ struct ArrayConverterPacked32Bit {
static_assert(std::is_same_v<typename PackedSrcType::Element, S>);
static_assert(std::is_same_v<typename PackedResultType::Element, T>);
return RegConvert32bit::template convert<PackedResultType>(to_reg(source));
return RegConvert32bit::template convert<PackedResultType>(to_regs(source));
}
friend class detail::VectorizedConverter;
@ -140,6 +149,131 @@ struct ArrayConverterPacked32Bit {
}
};
// Convert 8 4bit values packed into a 32bit register to 8 8bit values packed
// into 2 32bit register.
template <uint8_t LUT0, uint8_t LUT1, uint8_t LUT2, uint8_t LUT3, //
uint8_t LUT4, uint8_t LUT5, uint8_t LUT6, uint8_t LUT7, //
uint8_t LUT8, uint8_t LUT9, uint8_t LUT10, uint8_t LUT11, //
uint8_t LUT12, uint8_t LUT13, uint8_t LUT14, uint8_t LUT15>
CUTLASS_DEVICE cutlass::AlignedArray<uint32_t, 2> lut_4bit_to_8bit_convert(
uint32_t src) {
cutlass::AlignedArray<uint32_t, 2> r;
// Determines if the value is in the top half of the LUT if set or
// (i.e. LUT[8:15]) in the bottom half (i.e. LUT[0:7]) if not set. Then move
// into bit position 0x4 of each nibble so when or'd with final_prmt_base it
// selects the correct candidate. When elements in final_prmt_base
// are >= 0x4, the high candidate is selected (i.e. LUT[8:15]), when elements
// are < 0x4, the low candidate is selected (i.e. LUT[0:7])
uint32_t high_bit = (src & 0x88888888) >> 1;
// `high_bit` is OR'd with 0x31203120 to find the correct value in the LUT
// (selects correct high or low candidate)
const uint32_t final_prmt_base = 0x32103210;
// Ignore the high bit when indexing into LUT, for each 4bit value
// we index into both the high and low candidates then use
// high_bit | final_prmt_base to select the correct candidate
uint32_t lut_idx = (src & 0x77777777);
auto pack = [](uint8_t a, uint8_t b, uint8_t c, uint8_t d) {
return uint32_t(a) | (uint32_t(b) << 8) | (uint32_t(c) << 16) |
(uint32_t(d) << 24);
};
static constexpr uint32_t LOW_0 = pack(LUT0, LUT1, LUT2, LUT3);
static constexpr uint32_t LOW_1 = pack(LUT4, LUT5, LUT6, LUT7);
static constexpr uint32_t HIGH_0 = pack(LUT8, LUT9, LUT10, LUT11);
static constexpr uint32_t HIGH_1 = pack(LUT12, LUT13, LUT14, LUT15);
CUTLASS_PRAGMA_UNROLL
for (int ii = 0; ii < 2; ++ii, lut_idx >>= 16, high_bit >>= 16) {
uint32_t final_prmt_idx = final_prmt_base | high_bit;
// This uses a look up table to convert packed int4s to packed int8s,
// using the int4 value as the index to prmt. It first select both the
// high and low candidates, then uses the high bit (i.e. `high_bit`) to
// select the correct candidate.
asm volatile(
"{\n"
" .reg .b32 low, high;\n"
" prmt.b32 low, %1, %2, %5;\n"
" prmt.b32 high, %3, %4, %5;\n"
" prmt.b32 %0, low, high, %6;\n"
"}\n"
: "=r"(r[ii])
: "n"(LOW_0), "n"(LOW_1), "n"(HIGH_0), "n"(HIGH_1), "r"(lut_idx),
"r"(final_prmt_idx));
}
return r;
};
// for Array<int8_t, N> <= Array<vllm_uint4b8_t, N>
template <FloatRoundStyle Round, int N>
struct NumericArrayConverter<int8_t, vllm_uint4b8_t, N, Round> {
using result_type = Array<int8_t, N>;
using source_type = Array<vllm_uint4b8_t, N>;
static FloatRoundStyle const round_style = Round;
private:
struct RegConvert {
template <typename PackedResultType>
CUTLASS_DEVICE static PackedResultType convert(Array<uint32_t, 1> src_) {
// [-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7] as int8s
auto r = lut_4bit_to_8bit_convert<0xF8, 0xF9, 0xFA, 0xFB, //
0xFC, 0xFD, 0xFE, 0xFF, //
0x00, 0x01, 0x02, 0x03, //
0x04, 0x05, 0x06, 0x07>(src_[0]);
return reinterpret_cast<PackedResultType&>(r);
};
};
public:
CUTLASS_DEVICE
static result_type convert(source_type const& source) {
return ArrayConverterPacked32Bit<RegConvert, typename result_type::Element,
typename source_type::Element,
N>::convert(source);
}
CUTLASS_DEVICE
result_type operator()(source_type const& s) const { return convert(s); }
};
// for Array<cutlass::float_e4m3_t, N> <= Array<vllm_uint4b8_t, N>
template <FloatRoundStyle Round, int N>
struct NumericArrayConverter<cutlass::float_e4m3_t, vllm_uint4b8_t, N, Round> {
using result_type = Array<cutlass::float_e4m3_t, N>;
using source_type = Array<vllm_uint4b8_t, N>;
static FloatRoundStyle const round_style = Round;
private:
struct RegConvert {
template <typename PackedResultType>
CUTLASS_DEVICE static PackedResultType convert(Array<uint32_t, 1> src_) {
// [-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7] as fp8s
auto r = lut_4bit_to_8bit_convert<0xD0, 0xCE, 0xCC, 0xCA, //
0xC8, 0xC4, 0xC0, 0xB8, //
0x00, 0x38, 0x40, 0x44, //
0x48, 0x4A, 0x4C, 0x4E>(src_[0]);
return reinterpret_cast<PackedResultType&>(r);
};
};
public:
CUTLASS_DEVICE
static result_type convert(source_type const& source) {
return ArrayConverterPacked32Bit<RegConvert, typename result_type::Element,
typename source_type::Element,
N>::convert(source);
}
CUTLASS_DEVICE
result_type operator()(source_type const& s) const { return convert(s); }
};
// for Array<cutlass::half_t, N> <= Array<vllm_uint4b8_t, N>
template <FloatRoundStyle Round, int N>
struct NumericArrayConverter<cutlass::half_t, vllm_uint4b8_t, N, Round> {
@ -148,7 +282,8 @@ struct NumericArrayConverter<cutlass::half_t, vllm_uint4b8_t, N, Round> {
struct RegConvert {
template <typename PackedResultType>
CUTLASS_DEVICE static PackedResultType convert(uint32_t src) {
CUTLASS_DEVICE static PackedResultType convert(Array<uint32_t, 1> src_) {
uint32_t src = src_[0];
using RegArray =
cutlass::AlignedArray<uint32_t, PackedResultType::kElements / 2,
sizeof(PackedResultType)>;
@ -249,7 +384,8 @@ struct InterleavedNumericArrayConverter<Layout<Shape<_2, _4>, Stride<_4, _1>>,
private:
struct RegConvert {
template <typename PackedResultType>
CUTLASS_DEVICE static PackedResultType convert(uint32_t src) {
CUTLASS_DEVICE static PackedResultType convert(Array<uint32_t, 1> src_) {
uint32_t src = src_[0];
using RegArray =
cutlass::AlignedArray<uint32_t, PackedResultType::kElements / 2,
sizeof(PackedResultType)>;
@ -338,7 +474,8 @@ struct InterleavedNumericArrayConverter<Layout<Shape<_2, _4>, Stride<_4, _1>>,
private:
struct RegConvert {
template <typename PackedResultType>
CUTLASS_DEVICE static PackedResultType convert(uint32_t src) {
CUTLASS_DEVICE static PackedResultType convert(Array<uint32_t, 1> src_) {
uint32_t src = src_[0];
using RegArray =
cutlass::AlignedArray<uint32_t, PackedResultType::kElements / 2,
sizeof(PackedResultType)>;
@ -417,7 +554,8 @@ struct NumericArrayConverter<cutlass::half_t, vllm_uint8b128_t, N, Round> {
struct RegConvert {
template <typename PackedResultType>
CUTLASS_DEVICE static PackedResultType convert(uint32_t src) {
CUTLASS_DEVICE static PackedResultType convert(Array<uint32_t, 1> src_) {
uint32_t src = src_[0];
// Hold output FP16s in reg. We need 1 reg for every 2 elements
using RegArray =
cutlass::AlignedArray<uint32_t, PackedResultType::kElements / 2,
@ -469,7 +607,8 @@ struct NumericArrayConverter<float, vllm_uint8b128_t, N, Round> {
private:
struct RegConvert {
template <typename PackedResultType>
CUTLASS_DEVICE static PackedResultType convert(uint32_t src) {
CUTLASS_DEVICE static PackedResultType convert(Array<uint32_t, 1> src_) {
uint32_t src = src_[0];
PackedResultType r;
// __byte_perm simulates the add.u32 0x4B000000 to every u8 element of
@ -513,7 +652,8 @@ struct NumericArrayConverter<cutlass::bfloat16_t, vllm_uint4b8_t, N, Round> {
private:
struct RegConvert {
template <typename PackedResultType>
CUTLASS_DEVICE static PackedResultType convert(uint32_t src_reg) {
CUTLASS_DEVICE static PackedResultType convert(Array<uint32_t, 1> src_) {
uint32_t src_reg = src_[0];
// Hold output BF16s in reg. We need 1 reg for every 2 elements
using RegArray =
cutlass::AlignedArray<uint32_t, PackedResultType::kElements / 2,
@ -603,7 +743,8 @@ struct InterleavedNumericArrayConverter<Layout<Shape<_2, _4>, Stride<_4, _1>>,
private:
struct RegConvert {
template <typename PackedResultType>
CUTLASS_DEVICE static PackedResultType convert(uint32_t src) {
CUTLASS_DEVICE static PackedResultType convert(Array<uint32_t, 1> src_) {
uint32_t src = src_[0];
using RegArray =
cutlass::AlignedArray<uint32_t, PackedResultType::kElements / 2,
sizeof(PackedResultType)>;
@ -671,7 +812,8 @@ struct InterleavedNumericArrayConverter<Layout<Shape<_2, _4>, Stride<_4, _1>>,
private:
struct RegConvert {
template <typename PackedResultType>
CUTLASS_DEVICE static PackedResultType convert(uint32_t src) {
CUTLASS_DEVICE static PackedResultType convert(Array<uint32_t, 1> src_) {
uint32_t src = src_[0];
using RegArray =
cutlass::AlignedArray<uint32_t, PackedResultType::kElements / 2,
sizeof(PackedResultType)>;
@ -788,6 +930,61 @@ struct NumericArrayConverter<cutlass::bfloat16_t, vllm_uint8b128_t, N, Round> {
#endif
// for Array<int8_t, N> <= Array<cutlass::half_t, N>
// FastFP16toINT8 from https://arxiv.org/pdf/2406.09904
template <FloatRoundStyle Round, int N>
struct NumericArrayConverter<int8_t, cutlass::half_t, N, Round> {
using result_type = Array<int8_t, N>;
using source_type = Array<cutlass::half_t, N>;
struct RegConvert {
// FastFP16toINT8 from https://arxiv.org/pdf/2406.09904
template <typename PackedResultType, int src_regs>
CUTLASS_DEVICE static PackedResultType convert(
Array<uint32_t, src_regs> src) {
// Hold output int8s in reg. We need 1 reg for every 4 elements
using RegArray = cutlass::AlignedArray<
uint32_t, std::max(PackedResultType::kElements / 4, size_t(1))>;
RegArray r;
static constexpr uint32_t MAGIC_BIAS_ = 0x64806480;
auto MAGIC_BIAS = *reinterpret_cast<const half2*>(&MAGIC_BIAS_);
*reinterpret_cast<half2*>(&src[0]) =
__hadd2(*reinterpret_cast<half2*>(&src[0]), MAGIC_BIAS);
if constexpr (src_regs > 1) {
*reinterpret_cast<half2*>(&src[1]) =
__hadd2(*reinterpret_cast<half2*>(&src[1]), MAGIC_BIAS);
}
static_assert(PackedResultType::kElements <= 4);
uint32_t uint8s;
static constexpr uint32_t MASK_0246 = 0x6420;
static constexpr uint32_t UINT8s_TO_INT8s_MASK = 0x80808080;
asm volatile("prmt.b32 %0,%1,%2,%3;\n"
: "=r"(uint8s)
: "r"(src[0]), "r"((src_regs > 1) ? src[1] : src[0]),
"n"(MASK_0246));
uint32_t int8s = (uint8s ^ UINT8s_TO_INT8s_MASK);
return reinterpret_cast<PackedResultType&>(int8s);
};
};
public:
CUTLASS_DEVICE
static result_type convert(source_type const& source) {
return ArrayConverterPacked32Bit<RegConvert, typename result_type::Element,
typename source_type::Element,
N>::convert(source);
}
CUTLASS_DEVICE
result_type operator()(source_type const& s) const { return convert(s); }
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace cutlass

View File

@ -0,0 +1,42 @@
#include "cutlass/bfloat16.h"
#include "cutlass/half.h"
#include "cuda_bf16.h"
#include "cutlass_extensions/vllm_custom_types.cuh"
namespace cutlass {
template <typename T>
struct nameof {
static constexpr char const* value = "unknown";
};
template <typename T>
inline constexpr auto nameof_v = nameof<T>::value;
#define NAMEOF_TYPE(T) \
template <> \
struct nameof<T> { \
static constexpr char const* value = #T; \
};
NAMEOF_TYPE(float_e4m3_t)
NAMEOF_TYPE(float_e5m2_t)
NAMEOF_TYPE(half_t)
NAMEOF_TYPE(nv_bfloat16)
NAMEOF_TYPE(bfloat16_t)
NAMEOF_TYPE(float)
NAMEOF_TYPE(int4b_t)
NAMEOF_TYPE(int8_t)
NAMEOF_TYPE(int32_t)
NAMEOF_TYPE(int64_t)
NAMEOF_TYPE(vllm_uint4b8_t)
NAMEOF_TYPE(uint4b_t)
NAMEOF_TYPE(uint8_t)
NAMEOF_TYPE(vllm_uint8b128_t)
NAMEOF_TYPE(uint32_t)
NAMEOF_TYPE(uint64_t)
}; // namespace cutlass

View File

@ -14,6 +14,20 @@
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
// TODO(luka/varun): use FP8_TYPE macro after refactoring
#ifndef USE_ROCM
#define VLLM_DISPATCH_CASE_QUANT_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__)
#else
#define VLLM_DISPATCH_CASE_QUANT_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float8_e4m3fnuz, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__)
#endif
#define VLLM_DISPATCH_QUANT_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_QUANT_TYPES(__VA_ARGS__))
#define VLLM_DISPATCH_CASE_FLOATING_AND_BYTE_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \

View File

@ -53,12 +53,12 @@ void set_conv_params_fwd(ConvParamsBase &params,
const at::Tensor x,
const at::Tensor weight,
const at::Tensor out,
const c10::optional<at::Tensor>& bias,
const std::optional<at::Tensor>& bias,
bool silu_activation,
int64_t pad_slot_id,
const c10::optional<at::Tensor>& query_start_loc = std::nullopt,
const c10::optional<at::Tensor>& cache_indices = std::nullopt,
const c10::optional<at::Tensor>& has_initial_state = std::nullopt) {
const std::optional<at::Tensor>& query_start_loc = std::nullopt,
const std::optional<at::Tensor>& cache_indices = std::nullopt,
const std::optional<at::Tensor>& has_initial_state = std::nullopt) {
// Reset the parameters
memset(&params, 0, sizeof(params));
@ -93,11 +93,11 @@ void set_conv_params_fwd(ConvParamsBase &params,
void causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight,
const c10::optional<at::Tensor> &bias_,
const c10::optional<at::Tensor> &conv_states,
const c10::optional<at::Tensor> &query_start_loc,
const c10::optional<at::Tensor> &cache_indices,
const c10::optional<at::Tensor> &has_initial_state,
const std::optional<at::Tensor> &bias_,
const std::optional<at::Tensor> &conv_states,
const std::optional<at::Tensor> &query_start_loc,
const std::optional<at::Tensor> &cache_indices,
const std::optional<at::Tensor> &has_initial_state,
bool silu_activation,
// used to identify padding entries if cache_indices provided
// in case of padding, the kernel will return early
@ -194,10 +194,10 @@ void causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight,
void causal_conv1d_update(const at::Tensor &x,
const at::Tensor &conv_state,
const at::Tensor &weight,
const c10::optional<at::Tensor> &bias_,
const std::optional<at::Tensor> &bias_,
bool silu_activation,
const c10::optional<at::Tensor> &cache_seqlens_,
const c10::optional<at::Tensor> &conv_state_indices_,
const std::optional<at::Tensor> &cache_seqlens_,
const std::optional<at::Tensor> &conv_state_indices_,
// used to identify padding entries if cache_indices provided
// in case of padding, the kernel will return early
int64_t pad_slot_id) {
@ -424,7 +424,7 @@ void causal_conv1d_fwd_kernel(ConvParamsBase params) {
// and the one before it (chunk = n_chunks - 1 and chunk = n_chunks - 2),
// (which occurs when `final_state_position` is a non-positivie index)
// we load the correct data from smem_exchange from both chunks, the last chunk iteration and the one before it
if (final_state_position < 0 && seqlen > kWidth){
if (conv_states != nullptr && final_state_position < 0 && seqlen > kWidth){
input_t vals_load[kNElts] = {0};
if ((chunk == n_chunks - 2) && (tidx == kNThreads - 1)){
// chunk = n_chunks - 2, a segment of the final state sits in the last index

View File

@ -402,14 +402,14 @@ void set_ssm_params_fwd(SSMParamsBase &params,
const torch::Tensor out,
const torch::Tensor z,
const torch::Tensor out_z,
const c10::optional<at::Tensor>& D,
const c10::optional<at::Tensor>& delta_bias,
const std::optional<at::Tensor>& D,
const std::optional<at::Tensor>& delta_bias,
const torch::Tensor ssm_states,
bool has_z,
bool delta_softplus,
const c10::optional<at::Tensor>& query_start_loc,
const c10::optional<at::Tensor>& cache_indices,
const c10::optional<at::Tensor>& has_initial_state,
const std::optional<at::Tensor>& query_start_loc,
const std::optional<at::Tensor>& cache_indices,
const std::optional<at::Tensor>& has_initial_state,
bool varlen,
int64_t pad_slot_id) {
@ -504,13 +504,13 @@ void set_ssm_params_fwd(SSMParamsBase &params,
void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta,
const torch::Tensor &A, const torch::Tensor &B, const torch::Tensor &C,
const c10::optional<torch::Tensor> &D_,
const c10::optional<torch::Tensor> &z_,
const c10::optional<torch::Tensor> &delta_bias_,
const std::optional<torch::Tensor> &D_,
const std::optional<torch::Tensor> &z_,
const std::optional<torch::Tensor> &delta_bias_,
bool delta_softplus,
const c10::optional<torch::Tensor> &query_start_loc,
const c10::optional<torch::Tensor> &cache_indices,
const c10::optional<torch::Tensor> &has_initial_state,
const std::optional<torch::Tensor> &query_start_loc,
const std::optional<torch::Tensor> &cache_indices,
const std::optional<torch::Tensor> &has_initial_state,
const torch::Tensor &ssm_states,
// used to identify padding entries if cache_indices provided
// in case of padding, the kernel will return early

View File

@ -113,6 +113,92 @@ __global__ void moe_align_block_size_kernel(scalar_t* __restrict__ topk_ids,
}
}
// TODO(simon): this is temporarily adapted from
// https://github.com/sgl-project/sglang/commit/31548116a8dc8c6df7e146e0587335a59fc5b9d7
// we did this to unblock Deepseek V3 but there should be a better
// implementation to manage shared memory.
template <typename scalar_t>
__global__ void moe_align_block_size_global_mem_kernel(
scalar_t* __restrict__ topk_ids, int32_t* sorted_token_ids,
int32_t* expert_ids, int32_t* total_tokens_post_pad, int32_t num_experts,
int32_t block_size, size_t numel, int32_t* tokens_cnts, int32_t* cumsum) {
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread;
for (int i = 0; i < num_experts; ++i) {
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
}
/**
* In the first step we compute token_cnts[thread_index + 1][expert_index],
* which counts how many tokens in the token shard of thread_index are
* assigned to expert expert_index.
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
++tokens_cnts[index(num_experts, threadIdx.x + 1, topk_ids[i])];
}
__syncthreads();
// For each expert we accumulate the token counts from the different threads.
if (threadIdx.x < num_experts) {
tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
for (int i = 1; i <= blockDim.x; ++i) {
tokens_cnts[index(num_experts, i, threadIdx.x)] +=
tokens_cnts[index(num_experts, i - 1, threadIdx.x)];
}
}
__syncthreads();
// We accumulate the token counts of all experts in thread 0.
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
cumsum[i] = cumsum[i - 1] +
CEILDIV(tokens_cnts[index(num_experts, blockDim.x, i - 1)],
block_size) *
block_size;
}
*total_tokens_post_pad = cumsum[num_experts];
}
__syncthreads();
/**
* For each expert, each thread processes the tokens of the corresponding
* blocks and stores the corresponding expert_id for each block.
*/
if (threadIdx.x < num_experts) {
for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1];
i += block_size) {
expert_ids[i / block_size] = threadIdx.x;
}
}
/**
* Each thread processes a token shard, calculating the index of each token
* after sorting by expert number. Given the example topk_ids =
* [0,1,2,1,2,3,0,3,4] and block_size = 4, then the output would be [0, 6, *,
* *, 1, 3, *, *, 2, 4, *, *, 5, 7, *, *, 8, *, *, *], where * represents a
* padding value(preset in python).
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int32_t expert_id = topk_ids[i];
/** The cumsum[expert_id] stores the starting index of the tokens that the
* expert with expert_id needs to process, and
* tokens_cnts[threadIdx.x][expert_id] stores the indices of the tokens
* processed by the expert with expert_id within the current thread's token
* shard.
*/
int32_t rank_post_pad =
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] +
cumsum[expert_id];
sorted_token_ids[rank_post_pad] = i;
++tokens_cnts[index(num_experts, threadIdx.x, expert_id)];
}
}
template <typename scalar_t, int TOPK>
__global__ void moe_sum_kernel(
scalar_t* __restrict__ out, // [..., d]
@ -137,25 +223,61 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad) {
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
// calc needed amount of shared mem for `tokens_cnts` and `cumsum`
// tensors
const int32_t num_thread = max((int32_t)num_experts, WARP_SIZE);
const int32_t shared_mem =
((num_thread + 1) * num_experts + (num_experts + 1)) *
sizeof(int32_t);
// set dynamic shared mem
auto kernel = vllm::moe::moe_align_block_size_kernel<scalar_t>;
AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(
(void*)kernel, shared_mem));
kernel<<<1, num_thread, shared_mem, stream>>>(
topk_ids.data_ptr<scalar_t>(), sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
topk_ids.numel());
});
// If we have very large number of experts, we can no longer use shared
// memory.
// TODO(simon): the right solution should be calculating the exact right
// amount of shared memory and use that. The num_experts >= 256 is just a
// temporary solution to unblock Deepseek V3.
if (num_experts >= 256) {
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_global_mem_kernel", [&] {
// calc needed amount of shared mem for `tokens_cnts` and `cumsum`
// tensors
const int32_t num_thread = max((int32_t)num_experts, WARP_SIZE);
const int32_t mem_tokens_cnts =
((num_experts + 1) * num_experts) * sizeof(int32_t);
const int32_t mem_cumsum = (num_experts + 1) * sizeof(int32_t);
// allocate global memory
int32_t* tokens_cnts;
int32_t* cumsum;
cudaMalloc(&tokens_cnts, mem_tokens_cnts);
cudaMalloc(&cumsum, mem_cumsum);
auto kernel =
vllm::moe::moe_align_block_size_global_mem_kernel<scalar_t>;
kernel<<<1, num_thread, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
topk_ids.numel(), tokens_cnts, cumsum);
cudaFree(tokens_cnts);
cudaFree(cumsum);
});
} else {
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
// calc needed amount of shared mem for `tokens_cnts` and `cumsum`
// tensors
const int32_t num_thread = max((int32_t)num_experts, WARP_SIZE);
const int32_t shared_mem =
((num_thread + 1) * num_experts + (num_experts + 1)) *
sizeof(int32_t);
// set dynamic shared mem
auto kernel = vllm::moe::moe_align_block_size_kernel<scalar_t>;
AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(
(void*)kernel, shared_mem));
kernel<<<1, num_thread, shared_mem, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
topk_ids.numel());
});
}
}
void moe_sum(torch::Tensor& input, // [num_tokens, topk, hidden_size]

View File

@ -33,7 +33,7 @@ void paged_attention_v1(
torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
int64_t max_seq_len, const std::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype, double k_scale, double v_scale,
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
@ -44,7 +44,7 @@ void paged_attention_v2(
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
int64_t max_seq_len, const std::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype, double k_scale, double v_scale,
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
@ -66,6 +66,14 @@ void fused_add_rms_norm_static_fp8_quant(torch::Tensor& out,
torch::Tensor& weight,
torch::Tensor& scale, double epsilon);
void rms_norm_dynamic_per_token_quant(torch::Tensor& out,
torch::Tensor const& input,
torch::Tensor const& weight,
torch::Tensor& scales,
double const epsilon,
std::optional<torch::Tensor> scale_ub,
std::optional<torch::Tensor> residual);
void rotary_embedding(torch::Tensor& positions, torch::Tensor& query,
torch::Tensor& key, int64_t head_size,
torch::Tensor& cos_sin_cache, bool is_neox);
@ -128,6 +136,7 @@ torch::Tensor awq_dequantize(torch::Tensor _kernel,
int64_t thx, int64_t thy);
torch::Tensor permute_cols(torch::Tensor const& A, torch::Tensor const& perm);
#endif
torch::Tensor ggml_dequantize(torch::Tensor W, int64_t type, int64_t m,
int64_t n);
@ -138,29 +147,41 @@ torch::Tensor ggml_mul_mat_vec_a8(torch::Tensor W, torch::Tensor X,
torch::Tensor ggml_mul_mat_a8(torch::Tensor W, torch::Tensor X, int64_t type,
int64_t row);
#ifndef USE_ROCM
bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability);
void cutlass_scaled_mm(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b, torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
c10::optional<torch::Tensor> const& bias);
std::optional<torch::Tensor> const& bias);
void cutlass_scaled_mm_azp(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
c10::optional<torch::Tensor> const& azp,
c10::optional<torch::Tensor> const& bias);
std::optional<torch::Tensor> const& azp,
std::optional<torch::Tensor> const& bias);
bool cutlass_sparse_scaled_mm_supported(int64_t cuda_device_capability);
void cutlass_scaled_sparse_mm(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b, torch::Tensor const& e,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
std::optional<torch::Tensor> const& bias);
bool cutlass_sparse_compress_entry(torch::Tensor& a_compressed,
torch::Tensor& e, torch::Tensor const& a);
#endif
void static_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input,
torch::Tensor const& scale,
c10::optional<torch::Tensor> const& azp);
std::optional<torch::Tensor> const& azp);
void dynamic_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input,
torch::Tensor& scales,
c10::optional<torch::Tensor> const& azp);
std::optional<torch::Tensor> const& azp);
torch::Tensor gptq_gemm(torch::Tensor a, torch::Tensor b_q_weight,
torch::Tensor b_gptq_qzeros,
@ -177,34 +198,34 @@ void dynamic_scaled_fp8_quant(torch::Tensor& out, torch::Tensor const& input,
void dynamic_per_token_scaled_fp8_quant(
torch::Tensor& out, torch::Tensor const& input, torch::Tensor& scale,
c10::optional<torch::Tensor> const& scale_ub);
std::optional<torch::Tensor> const& scale_ub);
void selective_scan_fwd(const torch::Tensor& u, const torch::Tensor& delta,
const torch::Tensor& A, const torch::Tensor& B,
const torch::Tensor& C,
const c10::optional<torch::Tensor>& D_,
const c10::optional<torch::Tensor>& z_,
const c10::optional<torch::Tensor>& delta_bias_,
const std::optional<torch::Tensor>& D_,
const std::optional<torch::Tensor>& z_,
const std::optional<torch::Tensor>& delta_bias_,
bool delta_softplus,
const c10::optional<torch::Tensor>& query_start_loc,
const c10::optional<torch::Tensor>& cache_indices,
const c10::optional<torch::Tensor>& has_initial_state,
const std::optional<torch::Tensor>& query_start_loc,
const std::optional<torch::Tensor>& cache_indices,
const std::optional<torch::Tensor>& has_initial_state,
const torch::Tensor& ssm_states, int64_t pad_slot_id);
void causal_conv1d_update(const at::Tensor& x, const at::Tensor& conv_state,
const at::Tensor& weight,
const c10::optional<at::Tensor>& bias_,
const std::optional<at::Tensor>& bias_,
bool silu_activation,
const c10::optional<at::Tensor>& cache_seqlens_,
const c10::optional<at::Tensor>& conv_state_indices_,
const std::optional<at::Tensor>& cache_seqlens_,
const std::optional<at::Tensor>& conv_state_indices_,
int64_t pad_slot_id);
void causal_conv1d_fwd(const at::Tensor& x, const at::Tensor& weight,
const c10::optional<at::Tensor>& bias_,
const c10::optional<at::Tensor>& conv_states,
const c10::optional<at::Tensor>& query_start_loc,
const c10::optional<at::Tensor>& cache_indices,
const c10::optional<at::Tensor>& has_initial_state,
const std::optional<at::Tensor>& bias_,
const std::optional<at::Tensor>& conv_states,
const std::optional<at::Tensor>& query_start_loc,
const std::optional<at::Tensor>& cache_indices,
const std::optional<at::Tensor>& has_initial_state,
bool silu_activation, int64_t pad_slot_id);
#ifndef USE_ROCM

View File

@ -226,7 +226,7 @@ __global__ void dynamic_scaled_int8_azp_quant_kernel(
void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size]
torch::Tensor const& input, // [..., hidden_size]
torch::Tensor const& scale,
c10::optional<torch::Tensor> const& azp) {
std::optional<torch::Tensor> const& azp) {
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK(scale.numel() == 1);
@ -257,7 +257,7 @@ void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size]
void dynamic_scaled_int8_quant(
torch::Tensor& out, // [..., hidden_size]
torch::Tensor const& input, // [..., hidden_size]
torch::Tensor& scales, c10::optional<torch::Tensor> const& azp) {
torch::Tensor& scales, std::optional<torch::Tensor> const& azp) {
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK(scales.is_contiguous());

View File

@ -1,27 +0,0 @@
#pragma once
#include "cutlass/cutlass.h"
#include <climits>
/**
* Helper function for checking CUTLASS errors
*/
#define CUTLASS_CHECK(status) \
{ \
TORCH_CHECK(status == cutlass::Status::kSuccess, \
cutlassGetStatusString(status)) \
}
inline uint32_t next_pow_2(uint32_t const num) {
if (num <= 1) return num;
return 1 << (CHAR_BIT * sizeof(num) - __builtin_clz(num - 1));
}
inline int get_cuda_max_shared_memory_per_block_opt_in(int const device) {
int max_shared_mem_per_block_opt_in = 0;
cudaDeviceGetAttribute(&max_shared_mem_per_block_opt_in,
cudaDevAttrMaxSharedMemoryPerBlockOptin,
device);
return max_shared_mem_per_block_opt_in;
}

View File

@ -8,6 +8,10 @@
#include "scaled_mm_c2x_sm89_fp8_dispatch.cuh"
#include "scaled_mm_c2x_sm89_int8_dispatch.cuh"
#include "cutlass_extensions/epilogue/scaled_mm_epilogues_c2x.hpp"
using namespace vllm;
/*
This file defines quantized GEMM operations using the CUTLASS 2.x API, for
NVIDIA GPUs with SM versions prior to sm90 (Hopper).
@ -22,12 +26,11 @@ void cutlass_scaled_mm_sm75_epilogue(torch::Tensor& out, torch::Tensor const& a,
TORCH_CHECK(b.dtype() == torch::kInt8);
if (out.dtype() == torch::kBFloat16) {
return vllm::cutlass_gemm_sm75_dispatch<int8_t, cutlass::bfloat16_t,
Epilogue>(
return cutlass_gemm_sm75_dispatch<int8_t, cutlass::bfloat16_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else {
TORCH_CHECK(out.dtype() == torch::kFloat16);
return vllm::cutlass_gemm_sm75_dispatch<int8_t, cutlass::half_t, Epilogue>(
return cutlass_gemm_sm75_dispatch<int8_t, cutlass::half_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
}
}
@ -36,16 +39,16 @@ void cutlass_scaled_mm_sm75(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
c10::optional<torch::Tensor> const& bias) {
std::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
if (bias) {
TORCH_CHECK(bias->dtype() == out.dtype(),
"currently bias dtype must match output dtype ", out.dtype());
return cutlass_scaled_mm_sm75_epilogue<vllm::ScaledEpilogueBias>(
return cutlass_scaled_mm_sm75_epilogue<c2x::ScaledEpilogueBias>(
out, a, b, a_scales, b_scales, *bias);
} else {
return cutlass_scaled_mm_sm75_epilogue<vllm::ScaledEpilogue>(
return cutlass_scaled_mm_sm75_epilogue<c2x::ScaledEpilogue>(
out, a, b, a_scales, b_scales);
}
}
@ -55,16 +58,16 @@ void cutlass_scaled_mm_azp_sm75(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
c10::optional<torch::Tensor> const& azp,
c10::optional<torch::Tensor> const& bias) {
std::optional<torch::Tensor> const& azp,
std::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
if (azp) {
return cutlass_scaled_mm_sm75_epilogue<vllm::ScaledEpilogueBiasAzpToken>(
return cutlass_scaled_mm_sm75_epilogue<c2x::ScaledEpilogueBiasAzpToken>(
out, a, b, a_scales, b_scales, azp_adj, *azp, bias);
} else {
return cutlass_scaled_mm_sm75_epilogue<vllm::ScaledEpilogueBiasAzp>(
return cutlass_scaled_mm_sm75_epilogue<c2x::ScaledEpilogueBiasAzp>(
out, a, b, a_scales, b_scales, azp_adj, bias);
}
}
@ -78,12 +81,11 @@ void cutlass_scaled_mm_sm80_epilogue(torch::Tensor& out, torch::Tensor const& a,
TORCH_CHECK(b.dtype() == torch::kInt8);
if (out.dtype() == torch::kBFloat16) {
return vllm::cutlass_gemm_sm80_dispatch<int8_t, cutlass::bfloat16_t,
Epilogue>(
return cutlass_gemm_sm80_dispatch<int8_t, cutlass::bfloat16_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else {
TORCH_CHECK(out.dtype() == torch::kFloat16);
return vllm::cutlass_gemm_sm80_dispatch<int8_t, cutlass::half_t, Epilogue>(
return cutlass_gemm_sm80_dispatch<int8_t, cutlass::half_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
}
}
@ -92,16 +94,16 @@ void cutlass_scaled_mm_sm80(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
c10::optional<torch::Tensor> const& bias) {
std::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
if (bias) {
TORCH_CHECK(bias->dtype() == out.dtype(),
"currently bias dtype must match output dtype ", out.dtype());
return cutlass_scaled_mm_sm80_epilogue<vllm::ScaledEpilogueBias>(
return cutlass_scaled_mm_sm80_epilogue<c2x::ScaledEpilogueBias>(
out, a, b, a_scales, b_scales, *bias);
} else {
return cutlass_scaled_mm_sm80_epilogue<vllm::ScaledEpilogue>(
return cutlass_scaled_mm_sm80_epilogue<c2x::ScaledEpilogue>(
out, a, b, a_scales, b_scales);
}
}
@ -111,16 +113,16 @@ void cutlass_scaled_mm_azp_sm80(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
c10::optional<torch::Tensor> const& azp,
c10::optional<torch::Tensor> const& bias) {
std::optional<torch::Tensor> const& azp,
std::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
if (azp) {
return cutlass_scaled_mm_sm80_epilogue<vllm::ScaledEpilogueBiasAzpToken>(
return cutlass_scaled_mm_sm80_epilogue<c2x::ScaledEpilogueBiasAzpToken>(
out, a, b, a_scales, b_scales, azp_adj, *azp, bias);
} else {
return cutlass_scaled_mm_sm80_epilogue<vllm::ScaledEpilogueBiasAzp>(
return cutlass_scaled_mm_sm80_epilogue<c2x::ScaledEpilogueBiasAzp>(
out, a, b, a_scales, b_scales, azp_adj, bias);
}
}
@ -134,13 +136,12 @@ void cutlass_scaled_mm_sm89_epilogue(torch::Tensor& out, torch::Tensor const& a,
TORCH_CHECK(b.dtype() == torch::kInt8);
if (out.dtype() == torch::kBFloat16) {
return vllm::cutlass_gemm_sm89_int8_dispatch<int8_t, cutlass::bfloat16_t,
Epilogue>(
return cutlass_gemm_sm89_int8_dispatch<int8_t, cutlass::bfloat16_t,
Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else {
assert(out.dtype() == torch::kFloat16);
return vllm::cutlass_gemm_sm89_int8_dispatch<int8_t, cutlass::half_t,
Epilogue>(
return cutlass_gemm_sm89_int8_dispatch<int8_t, cutlass::half_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
}
} else {
@ -148,13 +149,13 @@ void cutlass_scaled_mm_sm89_epilogue(torch::Tensor& out, torch::Tensor const& a,
TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);
if (out.dtype() == torch::kBFloat16) {
return vllm::cutlass_gemm_sm89_fp8_dispatch<
cutlass::float_e4m3_t, cutlass::bfloat16_t, Epilogue>(
return cutlass_gemm_sm89_fp8_dispatch<cutlass::float_e4m3_t,
cutlass::bfloat16_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else {
TORCH_CHECK(out.dtype() == torch::kFloat16);
return vllm::cutlass_gemm_sm89_fp8_dispatch<cutlass::float_e4m3_t,
cutlass::half_t, Epilogue>(
return cutlass_gemm_sm89_fp8_dispatch<cutlass::float_e4m3_t,
cutlass::half_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
}
}
@ -164,16 +165,16 @@ void cutlass_scaled_mm_sm89(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
c10::optional<torch::Tensor> const& bias) {
std::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
if (bias) {
TORCH_CHECK(bias->dtype() == out.dtype(),
"currently bias dtype must match output dtype ", out.dtype());
return cutlass_scaled_mm_sm89_epilogue<vllm::ScaledEpilogueBias>(
return cutlass_scaled_mm_sm89_epilogue<c2x::ScaledEpilogueBias>(
out, a, b, a_scales, b_scales, *bias);
} else {
return cutlass_scaled_mm_sm89_epilogue<vllm::ScaledEpilogue>(
return cutlass_scaled_mm_sm89_epilogue<c2x::ScaledEpilogue>(
out, a, b, a_scales, b_scales);
}
}
@ -183,16 +184,16 @@ void cutlass_scaled_mm_azp_sm89(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
c10::optional<torch::Tensor> const& azp,
c10::optional<torch::Tensor> const& bias) {
std::optional<torch::Tensor> const& azp,
std::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
if (azp) {
return cutlass_scaled_mm_sm89_epilogue<vllm::ScaledEpilogueBiasAzpToken>(
return cutlass_scaled_mm_sm89_epilogue<c2x::ScaledEpilogueBiasAzpToken>(
out, a, b, a_scales, b_scales, azp_adj, *azp, bias);
} else {
return cutlass_scaled_mm_sm89_epilogue<vllm::ScaledEpilogueBiasAzp>(
return cutlass_scaled_mm_sm89_epilogue<c2x::ScaledEpilogueBiasAzp>(
out, a, b, a_scales, b_scales, azp_adj, bias);
}
}

View File

@ -21,16 +21,16 @@
#include "cutlass/epilogue/threadblock/fusion/visitors.hpp"
#include "cutlass/gemm/kernel/default_gemm_universal_with_visitor.h"
#include "broadcast_load_epilogue_c2x.hpp"
#include "common.hpp"
#include "core/math.hpp"
#include "cutlass_extensions/common.hpp"
// clang-format on
using namespace cute;
/*
Epilogue functions can be defined to post-process the output before it is
written to GPU memory.
Epilogues must contain a public type named EVTCompute of type Sm80EVT,
Epilogues defined in,
csrc/cutlass_extensions/epilogue/scaled_mm_epilogues_c2x.hpp
must contain a public type named EVTCompute of type Sm80EVT,
as well as a static prepare_args function that constructs an
EVTCompute::Arguments struct.
*/
@ -71,307 +71,6 @@ struct enable_sm89_to_sm90 : Kernel {
#endif
}
};
/*
* This class provides the common load descriptors for the
* ScaledEpilogue[...] classes
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBase {
protected:
using Accum = cutlass::epilogue::threadblock::VisitorAccFetch;
template <typename T>
using ColOrScalarLoad =
cutlass::epilogue::threadblock::VisitorColOrScalarBroadcast<
OutputTileThreadMap, T, Stride<Int<1>, Int<0>, Int<0>>>;
template <typename T>
using RowOrScalarLoad =
cutlass::epilogue::threadblock::VisitorRowOrScalarBroadcast<
OutputTileThreadMap, T, Stride<Int<0>, Int<1>, Int<0>>>;
template <typename T>
using ColLoad = cutlass::epilogue::threadblock::VisitorColBroadcast<
OutputTileThreadMap, T, Stride<Int<1>, Int<0>, Int<0>>>;
template <typename T>
using RowLoad = cutlass::epilogue::threadblock::VisitorRowBroadcast<
OutputTileThreadMap, T, Stride<Int<0>, Int<1>, Int<0>>>;
template <typename T>
using RowOrZeroLoad =
cutlass::epilogue::threadblock::VisitorRowOrZeroBroadcast<
OutputTileThreadMap, T, Stride<Int<0>, Int<1>, Int<0>>>;
// This utility function constructs the arguments for the load descriptors
// from a tensor. It can handle both row and column, as well as row/column or
// scalar cases.
template <typename Descriptor, typename T>
static auto args_from_tensor(torch::Tensor const& tensor) {
using Arguments = typename Descriptor::Arguments;
auto* data_ptr = static_cast<T*>(tensor.data_ptr());
if constexpr (std::is_same_v<Descriptor, ColOrScalarLoad<T>> ||
std::is_same_v<Descriptor, RowOrScalarLoad<T>>) {
return Arguments{data_ptr, tensor.numel() != 1};
} else {
// it would technically work but no use case as data_ptr is never nullptr
static_assert(!std::is_same_v<Descriptor, RowOrZeroLoad<T>>);
return Arguments{data_ptr};
}
}
// This overload handles the case where there might not be a tensor, in which
// case a nullptr is passed and a constant (0) is used.
template <typename Descriptor, typename T>
static auto args_from_tensor(c10::optional<torch::Tensor> const& tensor) {
static_assert(std::is_same_v<Descriptor, RowOrZeroLoad<T>>);
using Arguments = typename Descriptor::Arguments;
auto* data_ptr = tensor ? static_cast<T*>(tensor->data_ptr()) : nullptr;
return Arguments{data_ptr};
}
};
/*
This epilogue function defines a quantized GEMM operation similar to
torch._scaled_mm.
A and B may be both either int8 or fp8_e4m3. A can be quantized per-tensor or
per-row. B can be quantized per-tensor or per-column.
Any combination of per-tensor and per-row or column is supported.
A and B must have symmetric quantization (zero point == 0).
So the GEMM operation is D = (a_scales * A) (b_scales * B), where the
scales are applied elementwise with numpy-style broadcasting.
ScaleA and ScaleB define the epilogue functions that apply the scales for
the A and B operands respectively. These scales may be either per-tensor or
per row or column.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogue
: private ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
private:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Compute0 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTCompute0 =
cutlass::epilogue::threadblock::Sm80EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::threadblock::Sm80EVT<Compute1, ScaleA, EVTCompute0>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
typename EVTCompute0::Arguments evt0_args{b_args};
return ArgumentType{a_args, evt0_args};
}
};
/*
* This epilogue performs the same operation as ScaledEpilogue, but adds a bias.
* This bias can also be used in the per-tensor azp case, where the activation
* zero point (azp) is used to compute an azp correction term,
* which is folded into the bias.
*
* The bias tensor must be per-output channel.
* ScaleA and ScaleB can be per-tensor or per-token/per-channel.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBias
: protected ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
protected:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template RowLoad<ElementD>;
using Compute0 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTCompute0 =
cutlass::epilogue::threadblock::Sm80EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute = cutlass::epilogue::threadblock::Sm80EVT<Compute1, ScaleA,
EVTCompute0, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
typename EVTCompute0::Arguments evt0_args{b_args};
return ArgumentType{a_args, evt0_args, bias_args};
}
};
/*
* This epilogue directly supports per-tensor azp in int32 form.
* As opposed to the per-token epilogue below, this epilogue only has an azp_adj
* term, which should already be multiplied with the scalar azp.
* The azp_adj term is a 1D tensor of shape (1,n), computed as azp * J @ B.
*
* This epilogue also supports bias, which remains per-channel.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBiasAzp
: protected ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
private:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template RowOrZeroLoad<ElementD>;
// This is the full AZP term, azp * J @ B, shape (1,n)
using AzpWithAdj = typename SUPER::template RowLoad<int32_t>;
// Compute float(accum - azp_adj), both operands are int32_t
using ComputeAzp = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::minus, float, int32_t,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeAzp =
cutlass::epilogue::threadblock::Sm80EVT<ComputeAzp, Accum, AzpWithAdj>;
using ComputeScaleB = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeScaleB =
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleB, ScaleB,
EVTComputeAzp>;
using ComputeScaleBiasA = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleBiasA, ScaleA,
EVTComputeScaleB, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
c10::optional<torch::Tensor> const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
auto azp_adj_args =
SUPER::template args_from_tensor<AzpWithAdj, int32_t>(azp_adj);
typename EVTComputeAzp::Arguments evt_azp_args{{}, azp_adj_args};
typename EVTComputeScaleB::Arguments evt_scale_b_args{b_args, evt_azp_args};
return ArgumentType{a_args, evt_scale_b_args, bias_args};
}
};
/*
* This epilogue supports per-token azp by computing and applying
* the correction term using a rank-1 update. If the term were materialized,
* it would require O(m*n) space, and this way it only requires O(m+n) space.
* The azp term is a 1D tensor of shape (m,1), and represents the unscaled zero
* point for each row of A.
* The azp_adj term is a 1D tensor of shape (1,n), computed as J @ B.
*
* This epilogue also supports bias, which remains per-channel.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBiasAzpToken
: protected ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
private:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template RowOrZeroLoad<ElementD>;
// Per-token azp term, shape (m,1)
using Azp = typename SUPER::template ColLoad<int32_t>;
// This is the AZP adjustment term, J @ B, shape (1,n)
using AzpAdj = typename SUPER::template RowLoad<int32_t>;
// Compute azp * azp_adj
using ComputeAzp = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, int32_t, int32_t,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeAzp =
cutlass::epilogue::threadblock::Sm80EVT<ComputeAzp, Azp, AzpAdj>;
// Compute float(accum - azp*azp_adj), all operands are int32_t
using ComputeAcc = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::minus, float, int32_t,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeAcc =
cutlass::epilogue::threadblock::Sm80EVT<ComputeAcc, Accum, EVTComputeAzp>;
using ComputeScaleB = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeScaleB =
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleB, ScaleB,
EVTComputeAcc>;
using ComputeScaleBiasA = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleBiasA, ScaleA,
EVTComputeScaleB, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
torch::Tensor const& azp,
c10::optional<torch::Tensor> const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
auto azp_args = SUPER::template args_from_tensor<Azp, int32_t>(azp);
auto azp_adj_args =
SUPER::template args_from_tensor<AzpAdj, int32_t>(azp_adj);
typename EVTComputeAzp::Arguments evt_azp_args{azp_args, azp_adj_args};
typename EVTComputeAcc::Arguments evt_acc_args{{}, evt_azp_args};
typename EVTComputeScaleB::Arguments evt_scale_b_args{b_args, evt_acc_args};
return ArgumentType{a_args, evt_scale_b_args, bias_args};
}
};
template <typename Arch, template <typename> typename ArchGuard,
typename ElementAB_, typename ElementD_,
template <typename, typename> typename Epilogue_, typename TileShape,

View File

@ -1,682 +1,18 @@
// clang-format will break include orders
// clang-format off
#include <cudaTypedefs.h>
#if defined CUDA_VERSION && CUDA_VERSION >= 12000
#include <torch/all.h>
#include "scaled_mm_c3x_sm90_fp8_dispatch.cuh"
#include "scaled_mm_c3x_sm90_int8_dispatch.cuh"
#include <ATen/cuda/CUDAContext.h>
#include <iostream>
#include <sstream>
#include <vector>
#include "cutlass/cutlass.h"
#include "cute/tensor.hpp"
#include "cute/atom/mma_atom.hpp"
#include "cutlass/numeric_types.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "broadcast_load_epilogue_c3x.hpp"
#include "common.hpp"
// clang-format on
using namespace cute;
#include "cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp"
using namespace vllm;
/*
This file defines quantized GEMM operations using the CUTLASS 3.x API, for
NVIDIA GPUs with sm90a (Hopper) or later.
Epilogue functions can be defined to post-process the output before it is
written to GPU memory.
Epilogues must contain a public type named EVTCompute of type Sm90EVT,
as well as a static prepare_args function that constructs an
EVTCompute::Arguments struct.
*/
namespace {
// A wrapper for the GEMM kernel that is used to guard against compilation on
// architectures that will never use the kernel. The purpose of this is to
// reduce the size of the compiled binary.
// __CUDA_ARCH__ is not defined in host code, so this lets us smuggle the ifdef
// into code that will be executed on the device where it is defined.
template <typename Kernel>
struct enable_sm90_or_later : Kernel {
template <typename... Args>
CUTLASS_DEVICE void operator()(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 900
Kernel::operator()(std::forward<Args>(args)...);
#endif
}
};
/*
* This class provides the common load descriptors for the
* ScaledEpilogue[...] classes
*/
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
struct ScaledEpilogueBase {
protected:
using Accum = cutlass::epilogue::fusion::Sm90AccFetch;
template <typename T>
using ColOrScalarLoad = cutlass::epilogue::fusion::Sm90ColOrScalarBroadcast<
0 /*Stages*/, typename EpilogueDescriptor::TileShape, T,
Stride<Int<1>, Int<0>, Int<0>>>;
template <typename T>
using RowOrScalarLoad = cutlass::epilogue::fusion::Sm90RowOrScalarBroadcast<
0 /*Stages*/, typename EpilogueDescriptor::TileShape, T,
Stride<Int<0>, Int<1>, Int<0>>>;
// Don't want to support nullptr by default
template <typename T, bool EnableNullPtr = false>
using ColLoad = cutlass::epilogue::fusion::Sm90ColBroadcast<
0 /*Stages*/, typename EpilogueDescriptor::TileShape, T,
Stride<Int<1>, Int<0>, Int<0>>, 128 / sizeof_bits_v<T>, EnableNullPtr>;
// Don't want to support nullptr by default
template <typename T, bool EnableNullPtr = false>
using RowLoad = cutlass::epilogue::fusion::Sm90RowBroadcast<
0 /*Stages*/, typename EpilogueDescriptor::TileShape, T,
Stride<Int<0>, Int<1>, Int<0>>, 128 / sizeof_bits_v<T>, EnableNullPtr>;
// This utility function constructs the arguments for the load descriptors
// from a tensor. It can handle both row and column, as well as row/column or
// scalar cases.
template <typename Descriptor, typename T>
static auto args_from_tensor(torch::Tensor const& tensor) {
using Arguments = typename Descriptor::Arguments;
auto* data_ptr = static_cast<T*>(tensor.data_ptr());
if constexpr (std::is_same_v<Descriptor, ColOrScalarLoad<T>> ||
std::is_same_v<Descriptor, RowOrScalarLoad<T>>) {
return Arguments{data_ptr, tensor.numel() != 1};
} else {
static_assert(!std::is_same_v<Descriptor, ColLoad<T, true>> &&
!std::is_same_v<Descriptor, RowLoad<T, true>>);
return Arguments{data_ptr};
}
}
// This overload handles the case where there might not be a tensor, in which
// case a nullptr is passed and a constant (0) is used.
template <typename Descriptor, typename T>
static auto args_from_tensor(c10::optional<torch::Tensor> const& tensor) {
using Arguments = typename Descriptor::Arguments;
auto* data_ptr = tensor ? static_cast<T*>(tensor->data_ptr()) : nullptr;
static_assert(std::is_same_v<Descriptor, ColLoad<T, true>> ||
std::is_same_v<Descriptor, RowLoad<T, true>>);
return Arguments{data_ptr};
}
};
/*
This epilogue function defines a quantized GEMM operation similar to
torch.scaled_mm_.
A and B may be both either int8 or fp8_e4m3. A can be
quantized per-tensor or per-row. B can be quantized per-tensor or per-column.
Any combination of per-tensor and per-row or column is supported.
A and B must have symmetric quantization (zero point == 0).
So the GEMM operation is D = (a_scales * A) (b_scales * B), where the
scales are applied elementwise with numpy-style broadcasting.
ScaleA and ScaleB define the epilogue functions that apply the scales for
the A and B operands respectively. These scales may be either per-tensor or
per row or column.
*/
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
struct ScaledEpilogue
: private ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor> {
private:
using SUPER = ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Compute0 = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTCompute0 =
cutlass::epilogue::fusion::Sm90EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiplies, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::fusion::Sm90EVT<Compute1, ScaleA, EVTCompute0>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
typename EVTCompute0::Arguments evt0_args{b_args};
return ArgumentType{a_args, evt0_args};
}
};
/*
* This epilogue performs the same operation as ScaledEpilogue, but adds a bias.
* This bias can also be used in the per-tensor azp case, where the activation
* zero point (azp) is used to compute an azp correction term,
* which is folded into the bias.
*
* The bias tensor must be per-output channel.
* ScaleA and ScaleB can be per-tensor or per-token/per-channel.
*/
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
struct ScaledEpilogueBias
: private ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor> {
private:
using SUPER = ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template RowLoad<ElementD>;
using Compute0 = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTCompute0 =
cutlass::epilogue::fusion::Sm90EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::fusion::Sm90EVT<Compute1, ScaleA, EVTCompute0, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
typename EVTCompute0::Arguments evt0_args{b_args};
return ArgumentType{a_args, evt0_args, bias_args};
}
};
/*
* This epilogue directly supports per-tensor azp in int32 form.
* As opposed to the per-token epilogue below, this epilogue only has an azp_adj
* term, which should already be multiplied with the scalar azp.
* The azp_adj term is a 1D tensor of shape (1,n), computed as azp * J @ B.
*
* This epilogue also supports bias, which remains per-channel.
*/
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
struct ScaledEpilogueBiasAzp
: private ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor> {
private:
using SUPER = ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template RowLoad<ElementD, true>;
// This is the full AZP term, azp * J @ B, shape (1,n)
using AzpWithAdj = typename SUPER::template RowLoad<int32_t>;
// Compute float(accum - azp_adj), both operands are int32_t
using ComputeAzp = cutlass::epilogue::fusion::Sm90Compute<
cutlass::minus, float, int32_t,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeAzp =
cutlass::epilogue::fusion::Sm90EVT<ComputeAzp, Accum, AzpWithAdj>;
using ComputeScaleB = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeScaleB =
cutlass::epilogue::fusion::Sm90EVT<ComputeScaleB, ScaleB, EVTComputeAzp>;
using ComputeScaleBiasA = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::fusion::Sm90EVT<ComputeScaleBiasA, ScaleA,
EVTComputeScaleB, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
c10::optional<torch::Tensor> const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
auto azp_adj_args =
SUPER::template args_from_tensor<AzpWithAdj, int32_t>(azp_adj);
typename EVTComputeAzp::Arguments evt_azp_args{{}, azp_adj_args};
typename EVTComputeScaleB::Arguments evt_scale_b_args{b_args, evt_azp_args};
return ArgumentType{a_args, evt_scale_b_args, bias_args};
}
};
/*
* This epilogue supports per-token azp by computing and applying
* the correction term using a rank-1 update. If the term were materialized,
* it would require O(m*n) space, and this way it only requires O(m+n) space.
* The azp term is a 1D tensor of shape (m,1), and represents the unscaled zero
* point for each row of A.
* The azp_adj term is a 1D tensor of shape (1,n), computed as J @ B.
*
* This epilogue also supports bias, which remains per-channel.
*/
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
struct ScaledEpilogueBiasAzpToken
: private ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor> {
private:
using SUPER = ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
using Bias = typename SUPER::template RowLoad<ElementD, true>;
// Per-token azp term, shape (m,1)
using Azp = typename SUPER::template ColLoad<int32_t>;
// This is the AZP adjustment term, J @ B, shape (1,n)
using AzpAdj = typename SUPER::template RowLoad<int32_t>;
// Compute azp * azp_adj
using ComputeAzp = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiplies, int32_t, int32_t,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeAzp =
cutlass::epilogue::fusion::Sm90EVT<ComputeAzp, Azp, AzpAdj>;
// Compute float(accum - azp*azp_adj), all operands are int32_t
using ComputeAcc = cutlass::epilogue::fusion::Sm90Compute<
cutlass::minus, float, int32_t,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeAcc =
cutlass::epilogue::fusion::Sm90EVT<ComputeAcc, Accum, EVTComputeAzp>;
using ComputeScaleB = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTComputeScaleB =
cutlass::epilogue::fusion::Sm90EVT<ComputeScaleB, ScaleB, EVTComputeAcc>;
using ComputeScaleBiasA = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::fusion::Sm90EVT<ComputeScaleBiasA, ScaleA,
EVTComputeScaleB, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
torch::Tensor const& azp,
c10::optional<torch::Tensor> const& bias) {
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
auto azp_args = SUPER::template args_from_tensor<Azp, int32_t>(azp);
auto azp_adj_args =
SUPER::template args_from_tensor<AzpAdj, int32_t>(azp_adj);
typename EVTComputeAzp::Arguments evt_azp_args{azp_args, azp_adj_args};
typename EVTComputeAcc::Arguments evt_acc_args{{}, evt_azp_args};
typename EVTComputeScaleB::Arguments evt_scale_b_args{b_args, evt_acc_args};
return ArgumentType{a_args, evt_scale_b_args, bias_args};
}
};
template <typename ElementAB_, typename ElementD_,
template <typename, typename, typename> typename Epilogue_,
typename TileShape, typename ClusterShape, typename KernelSchedule,
typename EpilogueSchedule>
struct cutlass_3x_gemm {
using ElementAB = ElementAB_;
using ElementD = ElementD_;
using ElementAcc =
typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
float>::type;
using EpilogueDescriptor =
cutlass::epilogue::collective::detail::EpilogueDescriptor<
TileShape, cutlass::epilogue::collective::EpilogueTileAuto, ElementD,
ElementD, EpilogueSchedule>;
using Epilogue = Epilogue_<ElementAcc, ElementD, EpilogueDescriptor>;
using StrideD = Stride<int64_t, Int<1>, Int<0>>;
using ElementC = void;
using StrideC = StrideD;
using EVTCompute = typename Epilogue::EVTCompute;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, TileShape,
ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
ElementAcc, float, ElementC, StrideC, 4, ElementD, StrideD, 4,
EpilogueSchedule, EVTCompute>::CollectiveOp;
static constexpr size_t CEStorageSize =
sizeof(typename CollectiveEpilogue::SharedStorage);
using Stages = typename cutlass::gemm::collective::StageCountAutoCarveout<
static_cast<int>(CEStorageSize)>;
// clang-format off
using CollectiveMainloop =
typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
ElementAB, cutlass::layout::RowMajor, 16,
ElementAB, cutlass::layout::ColumnMajor, 16,
ElementAcc, TileShape, ClusterShape,
Stages,
KernelSchedule>::CollectiveOp;
// clang-format on
using KernelType = enable_sm90_or_later<cutlass::gemm::kernel::GemmUniversal<
cute::Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue,
cutlass::gemm::PersistentScheduler>>;
struct GemmKernel : public KernelType {};
};
template <typename Gemm, typename... EpilogueArgs>
void cutlass_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... epilogue_params) {
using ElementAB = typename Gemm::ElementAB;
using ElementD = typename Gemm::ElementD;
int32_t m = a.size(0);
int32_t n = b.size(1);
int32_t k = a.size(1);
int64_t lda = a.stride(0);
int64_t ldb = b.stride(1);
int64_t ldc = out.stride(0);
using StrideA = Stride<int64_t, Int<1>, int64_t>;
using StrideB = Stride<int64_t, Int<1>, int64_t>;
using StrideC = typename Gemm::StrideC;
StrideA a_stride{lda, Int<1>{}, 0};
StrideB b_stride{ldb, Int<1>{}, 0};
StrideC c_stride{ldc, Int<1>{}, Int<0>{}};
using GemmKernel = typename Gemm::GemmKernel;
typename GemmKernel::ProblemShape prob_shape{m, n, k, 1};
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
auto b_ptr = static_cast<ElementAB*>(b.data_ptr());
typename GemmKernel::MainloopArguments mainloop_args{a_ptr, a_stride, b_ptr,
b_stride};
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
typename GemmKernel::EpilogueArguments epilogue_args{
Gemm::Epilogue::prepare_args(
std::forward<EpilogueArgs>(epilogue_params)...),
c_ptr, c_stride, c_ptr, c_stride};
typename GemmKernel::Arguments args{cutlass::gemm::GemmUniversalMode::kGemm,
prob_shape, mainloop_args, epilogue_args};
// Launch the CUTLASS GEMM kernel.
using GemmOp = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
GemmOp gemm_op;
CUTLASS_CHECK(gemm_op.can_implement(args));
size_t workspace_size = gemm_op.get_workspace_size(args);
auto const workspace_options =
torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
auto workspace = torch::empty(workspace_size, workspace_options);
auto stream = at::cuda::getCurrentCUDAStream(a.get_device());
cutlass::Status status = gemm_op.run(args, workspace.data_ptr(), stream);
CUTLASS_CHECK(status);
}
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_default {
// M in (128, inf)
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M128 {
// M in (64, 128]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M64 {
// M in [1, 64]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _128>;
using ClusterShape = Shape<_1, _8, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_default {
// For M > 128 and any N
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule =
typename cutlass::gemm::KernelTmaWarpSpecializedPingpong;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M128 {
// For M in (64, 128] and any N
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule =
typename cutlass::gemm::KernelTmaWarpSpecializedPingpong;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M64 {
// For M in (32, 64] and any N
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M32_NBig {
// For M in [1, 32] and N >= 8192
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _256>;
using ClusterShape = Shape<_1, _4, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M32_NSmall {
// For M in [1, 32] and N < 8192
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _8, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
} // namespace
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_gemm_sm90_fp8_dispatch(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);
using Cutlass3xGemmDefault =
typename sm90_fp8_config_default<InType, OutType,
Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM64 =
typename sm90_fp8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM128 =
typename sm90_fp8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
uint32_t const m = a.size(0);
uint32_t const mp2 =
std::max(static_cast<uint32_t>(64), next_pow_2(m)); // next power of 2
if (mp2 <= 64) {
// m in [1, 64]
return cutlass_gemm_caller<Cutlass3xGemmM64>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// m in (64, 128]
return cutlass_gemm_caller<Cutlass3xGemmM128>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
// m in (128, inf)
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_gemm_sm90_int8_dispatch(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, int8_t>());
TORCH_CHECK(a.dtype() == torch::kInt8);
TORCH_CHECK(b.dtype() == torch::kInt8);
using Cutlass3xGemmDefault =
typename sm90_int8_config_default<InType, OutType,
Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM128 =
typename sm90_int8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM64 =
typename sm90_int8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM32NBig =
typename sm90_int8_config_M32_NBig<InType, OutType,
Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM32NSmall =
typename sm90_int8_config_M32_NSmall<InType, OutType,
Epilogue>::Cutlass3xGemm;
uint32_t const n = out.size(1);
bool const is_small_n = n < 8192;
uint32_t const m = a.size(0);
uint32_t const mp2 =
std::max(static_cast<uint32_t>(32), next_pow_2(m)); // next power of 2
if (mp2 <= 32) {
// m in [1, 32]
if (is_small_n) {
return cutlass_gemm_caller<Cutlass3xGemmM32NSmall>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
return cutlass_gemm_caller<Cutlass3xGemmM32NBig>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
} else if (mp2 <= 64) {
// m in (32, 64]
return cutlass_gemm_caller<Cutlass3xGemmM64>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// m in (64, 128]
return cutlass_gemm_caller<Cutlass3xGemmM128>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
// m in (128, inf)
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
template <template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_scaled_mm_sm90_epilogue(torch::Tensor& out, torch::Tensor const& a,
@ -715,17 +51,17 @@ void cutlass_scaled_mm_sm90(torch::Tensor& c, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
c10::optional<torch::Tensor> const& bias) {
std::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
if (bias) {
TORCH_CHECK(bias->dtype() == c.dtype(),
"currently bias dtype must match output dtype ", c.dtype());
return cutlass_scaled_mm_sm90_epilogue<ScaledEpilogueBias>(
return cutlass_scaled_mm_sm90_epilogue<c3x::ScaledEpilogueBias>(
c, a, b, a_scales, b_scales, *bias);
} else {
return cutlass_scaled_mm_sm90_epilogue<ScaledEpilogue>(c, a, b, a_scales,
b_scales);
return cutlass_scaled_mm_sm90_epilogue<c3x::ScaledEpilogue>(
c, a, b, a_scales, b_scales);
}
}
@ -734,16 +70,16 @@ void cutlass_scaled_mm_azp_sm90(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& azp_adj,
c10::optional<torch::Tensor> const& azp,
c10::optional<torch::Tensor> const& bias) {
std::optional<torch::Tensor> const& azp,
std::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
if (azp) {
return cutlass_scaled_mm_sm90_epilogue<ScaledEpilogueBiasAzpToken>(
return cutlass_scaled_mm_sm90_epilogue<c3x::ScaledEpilogueBiasAzpToken>(
out, a, b, a_scales, b_scales, azp_adj, *azp, bias);
} else {
return cutlass_scaled_mm_sm90_epilogue<ScaledEpilogueBiasAzp>(
return cutlass_scaled_mm_sm90_epilogue<c3x::ScaledEpilogueBiasAzp>(
out, a, b, a_scales, b_scales, azp_adj, bias);
}
}

View File

@ -0,0 +1,160 @@
#pragma once
// clang-format will break include orders
// clang-format off
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include "cutlass/cutlass.h"
#include "cute/tensor.hpp"
#include "cute/atom/mma_atom.hpp"
#include "cutlass/numeric_types.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "core/math.hpp"
#include "cutlass_extensions/common.hpp"
// clang-format on
/*
Epilogues defined in,
csrc/cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp,
must contain a public type named EVTCompute of type Sm90EVT, as well as a
static prepare_args function that constructs an EVTCompute::Arguments struct.
*/
using namespace cute;
namespace vllm {
// A wrapper for the GEMM kernel that is used to guard against compilation on
// architectures that will never use the kernel. The purpose of this is to
// reduce the size of the compiled binary.
// __CUDA_ARCH__ is not defined in host code, so this lets us smuggle the ifdef
// into code that will be executed on the device where it is defined.
template <typename Kernel>
struct enable_sm90_or_later : Kernel {
template <typename... Args>
CUTLASS_DEVICE void operator()(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 900
Kernel::operator()(std::forward<Args>(args)...);
#endif
}
};
template <typename ElementAB_, typename ElementD_,
template <typename, typename, typename> typename Epilogue_,
typename TileShape, typename ClusterShape, typename KernelSchedule,
typename EpilogueSchedule>
struct cutlass_3x_gemm {
using ElementAB = ElementAB_;
using ElementD = ElementD_;
using ElementAcc =
typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
float>::type;
using EpilogueDescriptor =
cutlass::epilogue::collective::detail::EpilogueDescriptor<
TileShape, cutlass::epilogue::collective::EpilogueTileAuto, ElementD,
ElementD, EpilogueSchedule>;
using Epilogue = Epilogue_<ElementAcc, ElementD, EpilogueDescriptor>;
using StrideD = Stride<int64_t, Int<1>, Int<0>>;
using ElementC = void;
using StrideC = StrideD;
using EVTCompute = typename Epilogue::EVTCompute;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, TileShape,
ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
ElementAcc, float, ElementC, StrideC, 4, ElementD, StrideD, 4,
EpilogueSchedule, EVTCompute>::CollectiveOp;
static constexpr size_t CEStorageSize =
sizeof(typename CollectiveEpilogue::SharedStorage);
using Stages = typename cutlass::gemm::collective::StageCountAutoCarveout<
static_cast<int>(CEStorageSize)>;
// clang-format off
using CollectiveMainloop =
typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
ElementAB, cutlass::layout::RowMajor, 16,
ElementAB, cutlass::layout::ColumnMajor, 16,
ElementAcc, TileShape, ClusterShape,
Stages,
KernelSchedule>::CollectiveOp;
// clang-format on
using KernelType = enable_sm90_or_later<cutlass::gemm::kernel::GemmUniversal<
cute::Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue,
cutlass::gemm::PersistentScheduler>>;
struct GemmKernel : public KernelType {};
};
template <typename Gemm, typename... EpilogueArgs>
void cutlass_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... epilogue_params) {
using ElementAB = typename Gemm::ElementAB;
using ElementD = typename Gemm::ElementD;
int32_t m = a.size(0);
int32_t n = b.size(1);
int32_t k = a.size(1);
int64_t lda = a.stride(0);
int64_t ldb = b.stride(1);
int64_t ldc = out.stride(0);
using StrideA = Stride<int64_t, Int<1>, int64_t>;
using StrideB = Stride<int64_t, Int<1>, int64_t>;
using StrideC = typename Gemm::StrideC;
StrideA a_stride{lda, Int<1>{}, 0};
StrideB b_stride{ldb, Int<1>{}, 0};
StrideC c_stride{ldc, Int<1>{}, Int<0>{}};
using GemmKernel = typename Gemm::GemmKernel;
typename GemmKernel::ProblemShape prob_shape{m, n, k, 1};
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
auto b_ptr = static_cast<ElementAB*>(b.data_ptr());
typename GemmKernel::MainloopArguments mainloop_args{a_ptr, a_stride, b_ptr,
b_stride};
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
typename GemmKernel::EpilogueArguments epilogue_args{
Gemm::Epilogue::prepare_args(
std::forward<EpilogueArgs>(epilogue_params)...),
c_ptr, c_stride, c_ptr, c_stride};
typename GemmKernel::Arguments args{cutlass::gemm::GemmUniversalMode::kGemm,
prob_shape, mainloop_args, epilogue_args};
// Launch the CUTLASS GEMM kernel.
using GemmOp = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
GemmOp gemm_op;
CUTLASS_CHECK(gemm_op.can_implement(args));
size_t workspace_size = gemm_op.get_workspace_size(args);
auto const workspace_options =
torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
auto workspace = torch::empty(workspace_size, workspace_options);
auto stream = at::cuda::getCurrentCUDAStream(a.get_device());
cutlass::Status status = gemm_op.run(args, workspace.data_ptr(), stream);
CUTLASS_CHECK(status);
}
} // namespace vllm

View File

@ -0,0 +1,96 @@
#pragma once
#include "scaled_mm_c3x.cuh"
/**
* This file defines Gemm kernel configurations for SM90 (fp8) based on the Gemm
* shape.
*/
namespace vllm {
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_default {
// M in (128, inf)
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M128 {
// M in (64, 128]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M64 {
// M in [1, 64]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _128>;
using ClusterShape = Shape<_1, _8, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
inline void cutlass_gemm_sm90_fp8_dispatch(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);
using Cutlass3xGemmDefault =
typename sm90_fp8_config_default<InType, OutType,
Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM64 =
typename sm90_fp8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM128 =
typename sm90_fp8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
uint32_t const m = a.size(0);
uint32_t const mp2 =
std::max(static_cast<uint32_t>(64), next_pow_2(m)); // next power of 2
if (mp2 <= 64) {
// m in [1, 64]
return cutlass_gemm_caller<Cutlass3xGemmM64>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// m in (64, 128]
return cutlass_gemm_caller<Cutlass3xGemmM128>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
// m in (128, inf)
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
} // namespace vllm

View File

@ -0,0 +1,140 @@
#pragma once
#include "scaled_mm_c3x.cuh"
/**
* This file defines Gemm kernel configurations for SM90 (int8) based on the
* Gemm shape.
*/
namespace vllm {
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_default {
// For M > 128 and any N
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule =
typename cutlass::gemm::KernelTmaWarpSpecializedPingpong;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M128 {
// For M in (64, 128] and any N
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule =
typename cutlass::gemm::KernelTmaWarpSpecializedPingpong;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M64 {
// For M in (32, 64] and any N
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M32_NBig {
// For M in [1, 32] and N >= 8192
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _256>;
using ClusterShape = Shape<_1, _4, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M32_NSmall {
// For M in [1, 32] and N < 8192
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _8, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
inline void cutlass_gemm_sm90_int8_dispatch(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, int8_t>());
TORCH_CHECK(a.dtype() == torch::kInt8);
TORCH_CHECK(b.dtype() == torch::kInt8);
using Cutlass3xGemmDefault =
typename sm90_int8_config_default<InType, OutType,
Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM128 =
typename sm90_int8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM64 =
typename sm90_int8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM32NBig =
typename sm90_int8_config_M32_NBig<InType, OutType,
Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM32NSmall =
typename sm90_int8_config_M32_NSmall<InType, OutType,
Epilogue>::Cutlass3xGemm;
uint32_t const n = out.size(1);
bool const is_small_n = n < 8192;
uint32_t const m = a.size(0);
uint32_t const mp2 =
std::max(static_cast<uint32_t>(32), next_pow_2(m)); // next power of 2
if (mp2 <= 32) {
// m in [1, 32]
if (is_small_n) {
return cutlass_gemm_caller<Cutlass3xGemmM32NSmall>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
return cutlass_gemm_caller<Cutlass3xGemmM32NBig>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
} else if (mp2 <= 64) {
// m in (32, 64]
return cutlass_gemm_caller<Cutlass3xGemmM64>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// m in (64, 128]
return cutlass_gemm_caller<Cutlass3xGemmM128>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
// m in (128, inf)
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
} // namespace vllm

Some files were not shown because too many files have changed in this diff Show More