Compare commits

..

2 Commits

Author SHA1 Message Date
3d40c834f0 v0.2.1.post1 2023-10-17 16:30:46 +00:00
d0fb047de3 [BugFix] Define __eq__ in SequenceGroupOutputs (#1389) 2023-10-17 08:35:27 +00:00
1278 changed files with 12855 additions and 258820 deletions

View File

@ -1,43 +0,0 @@
import os
import sys
import zipfile
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 250 MB
VLLM_MAX_SIZE_MB = int(os.environ.get('VLLM_MAX_SIZE_MB', 250))
def print_top_10_largest_files(zip_file):
"""Print the top 10 largest files in the given zip file."""
with zipfile.ZipFile(zip_file, 'r') as z:
file_sizes = [(f, z.getinfo(f).file_size) for f in z.namelist()]
file_sizes.sort(key=lambda x: x[1], reverse=True)
for f, size in file_sizes[:10]:
print(f"{f}: {size / (1024 * 1024):.2f} MBs uncompressed.")
def check_wheel_size(directory):
"""Check the size of .whl files in the given directory."""
for root, _, files in os.walk(directory):
for file_name in files:
if file_name.endswith(".whl"):
wheel_path = os.path.join(root, file_name)
wheel_size_mb = os.path.getsize(wheel_path) / (1024 * 1024)
if wheel_size_mb > VLLM_MAX_SIZE_MB:
print(f"Not allowed: Wheel {wheel_path} is larger "
f"({wheel_size_mb:.2f} MB) than the limit "
f"({VLLM_MAX_SIZE_MB} MB).")
print_top_10_largest_files(wheel_path)
return 1
else:
print(f"Wheel {wheel_path} is within the allowed size "
f"({wheel_size_mb:.2f} MB).")
return 0
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Usage: python check-wheel-size.py <directory>")
sys.exit(1)
directory = sys.argv[1]
sys.exit(check_wheel_size(directory))

View File

@ -1,12 +0,0 @@
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m deepseek-ai/DeepSeek-V2-Lite-Chat -b "auto" -l 1000 -f 5 -t 2
model_name: "deepseek-ai/DeepSeek-V2-Lite-Chat"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.671
- name: "exact_match,flexible-extract"
value: 0.664
limit: 1000
num_fewshot: 5
trust_remote_code: True

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5
model_name: "nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.905
- name: "exact_match,flexible-extract"
value: 0.905
limit: 1000
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-70B-Instruct -b 32 -l 250 -f 5
model_name: "meta-llama/Meta-Llama-3-70B-Instruct"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.892
- name: "exact_match,flexible-extract"
value: 0.892
limit: 250
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.752
- name: "exact_match,flexible-extract"
value: 0.754
limit: 1000
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.753
- name: "exact_match,flexible-extract"
value: 0.753
limit: 1000
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test -b 32 -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.755
- name: "exact_match,flexible-extract"
value: 0.755
limit: 1000
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Meta-Llama-3-8B-Instruct-FP8 -b 32 -l 250 -f 5 -t 1
model_name: "neuralmagic/Meta-Llama-3-8B-Instruct-FP8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.753
- name: "exact_match,flexible-extract"
value: 0.753
limit: 1000
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.764
- name: "exact_match,flexible-extract"
value: 0.764
limit: 250
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.728
- name: "exact_match,flexible-extract"
value: 0.728
limit: 250
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.758
- name: "exact_match,flexible-extract"
value: 0.759
limit: 1000
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-8B-Instruct -b 32 -l 250 -f 5 -t 1
model_name: "meta-llama/Meta-Llama-3-8B-Instruct"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.756
- name: "exact_match,flexible-extract"
value: 0.752
limit: 250
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m HandH1998/QQQ-Llama-3-8b-g128 -b 32 -l 1000 -f 5 -t 1
model_name: "HandH1998/QQQ-Llama-3-8b-g128"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.419
- name: "exact_match,flexible-extract"
value: 0.416
limit: 1000
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m mgoin/Minitron-4B-Base-FP8 -b auto -l 1000 -f 5 -t 1
model_name: "mgoin/Minitron-4B-Base-FP8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.233
- name: "exact_match,flexible-extract"
value: 0.236
limit: 1000
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic -b "auto" -l 250 -f 5 -t 8
model_name: "neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.86
- name: "exact_match,flexible-extract"
value: 0.86
limit: 250
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8 -b "auto" -l 250 -f 5 -t 4
model_name: "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.624
- name: "exact_match,flexible-extract"
value: 0.624
limit: 250
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1 -b 32 -l 250 -f 5 -t 4
model_name: "mistralai/Mixtral-8x7B-Instruct-v0.1"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.616
- name: "exact_match,flexible-extract"
value: 0.632
limit: 250
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-FP8W8 -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Qwen2-1.5B-Instruct-FP8W8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.578
- name: "exact_match,flexible-extract"
value: 0.585
limit: 1000
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
model_name: "neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.593
- name: "exact_match,flexible-extract"
value: 0.588
limit: 1000
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise -b "auto" -l 1000 -f 5 -t 1
model_name: "nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.595
- name: "exact_match,flexible-extract"
value: 0.582
limit: 1000
num_fewshot: 5

View File

@ -1,11 +0,0 @@
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m Qwen/Qwen2-57B-A14B-Instruct -b "auto" -l 250 -f 5 -t 4
model_name: "Qwen/Qwen2-57B-A14B-Instruct"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.792
- name: "exact_match,flexible-extract"
value: 0.824
limit: 250
num_fewshot: 5

View File

@ -1,5 +0,0 @@
Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform.yaml
Meta-Llama-3-70B-Instruct.yaml
Mixtral-8x7B-Instruct-v0.1.yaml
Qwen2-57B-A14-Instruct.yaml
DeepSeek-V2-Lite-Chat.yaml

View File

@ -1,10 +0,0 @@
Meta-Llama-3-8B-Instruct.yaml
Meta-Llama-3-8B-Instruct-FP8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors-asym.yaml
Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml
Minitron-4B-Base-FP8.yaml
Qwen2-1.5B-Instruct-INT8-compressed-tensors.yaml
Qwen2-1.5B-Instruct-FP8W8.yaml
Meta-Llama-3-8B-QQQ.yaml

View File

@ -1,46 +0,0 @@
#!/bin/bash
# We can use this script to compute baseline accuracy on GSM for transformers.
#
# Make sure you have lm-eval-harness installed:
# pip install lm-eval==0.4.4
usage() {
echo``
echo "Runs lm eval harness on GSM8k using huggingface transformers."
echo "This pathway is intended to be used to create baselines for "
echo "our automated nm-test-accuracy workflow"
echo
echo "usage: ${0} <options>"
echo
echo " -m - huggingface stub or local directory of the model"
echo " -b - batch size to run the evaluation at"
echo " -l - limit number of samples to run"
echo " -f - number of fewshot samples to use"
echo
}
while getopts "m:b:l:f:" OPT; do
case ${OPT} in
m )
MODEL="$OPTARG"
;;
b )
BATCH_SIZE="$OPTARG"
;;
l )
LIMIT="$OPTARG"
;;
f )
FEWSHOT="$OPTARG"
;;
\? )
usage
exit 1
;;
esac
done
lm_eval --model hf \
--model_args pretrained=$MODEL,parallelize=True \
--tasks gsm8k --num_fewshot $FEWSHOT --limit $LIMIT \
--batch_size $BATCH_SIZE

View File

@ -1,51 +0,0 @@
#!/bin/bash
# We can use this script to compute baseline accuracy on GSM for vllm.
# We use this for fp8, which HF does not support.
#
# Make sure you have lm-eval-harness installed:
# pip install lm-eval==0.4.4
usage() {
echo``
echo "Runs lm eval harness on GSM8k using huggingface transformers."
echo "This pathway is intended to be used to create baselines for "
echo "our automated nm-test-accuracy workflow"
echo
echo "usage: ${0} <options>"
echo
echo " -m - huggingface stub or local directory of the model"
echo " -b - batch size to run the evaluation at"
echo " -l - limit number of samples to run"
echo " -f - number of fewshot samples to use"
echo " -t - tensor parallel size to run at"
echo
}
while getopts "m:b:l:f:t:" OPT; do
case ${OPT} in
m )
MODEL="$OPTARG"
;;
b )
BATCH_SIZE="$OPTARG"
;;
l )
LIMIT="$OPTARG"
;;
f )
FEWSHOT="$OPTARG"
;;
t )
TP_SIZE="$OPTARG"
;;
\? )
usage
exit 1
;;
esac
done
lm_eval --model vllm \
--model_args pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,distributed_executor_backend="ray",trust_remote_code=true,max_model_len=4096 \
--tasks gsm8k --num_fewshot $FEWSHOT --limit $LIMIT \
--batch_size $BATCH_SIZE

View File

@ -1,59 +0,0 @@
#!/bin/bash
usage() {
echo``
echo "Runs lm eval harness on GSM8k using vllm and compares to "
echo "precomputed baseline (measured by HF transformers.)"
echo
echo "usage: ${0} <options>"
echo
echo " -c - path to the test data config (e.g. configs/small-models.txt)"
echo " -t - tensor parallel size"
echo
}
SUCCESS=0
while getopts "c:t:" OPT; do
case ${OPT} in
c )
CONFIG="$OPTARG"
;;
t )
TP_SIZE="$OPTARG"
;;
\? )
usage
exit 1
;;
esac
done
# Parse list of configs.
IFS=$'\n' read -d '' -r -a MODEL_CONFIGS < $CONFIG
for MODEL_CONFIG in "${MODEL_CONFIGS[@]}"
do
LOCAL_SUCCESS=0
echo "=== RUNNING MODEL: $MODEL_CONFIG WITH TP SIZE: $TP_SIZE==="
export LM_EVAL_TEST_DATA_FILE=$PWD/configs/${MODEL_CONFIG}
export LM_EVAL_TP_SIZE=$TP_SIZE
pytest -s test_lm_eval_correctness.py || LOCAL_SUCCESS=$?
if [[ $LOCAL_SUCCESS == 0 ]]; then
echo "=== PASSED MODEL: ${MODEL_CONFIG} ==="
else
echo "=== FAILED MODEL: ${MODEL_CONFIG} ==="
fi
SUCCESS=$((SUCCESS + LOCAL_SUCCESS))
done
if [ "${SUCCESS}" -eq "0" ]; then
exit 0
else
exit 1
fi

View File

@ -1,63 +0,0 @@
"""
LM eval harness on model to compare vs HF baseline computed offline.
Configs are found in configs/$MODEL.yaml
* export LM_EVAL_TEST_DATA_FILE=configs/Meta-Llama-3-70B-Instruct.yaml
* export LM_EVAL_TP_SIZE=4
* pytest -s test_lm_eval_correctness.py
"""
import os
from pathlib import Path
import lm_eval
import numpy
import yaml
RTOL = 0.05
TEST_DATA_FILE = os.environ.get(
"LM_EVAL_TEST_DATA_FILE",
".buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml")
TP_SIZE = os.environ.get("LM_EVAL_TP_SIZE", 1)
def launch_lm_eval(eval_config):
trust_remote_code = eval_config.get('trust_remote_code', False)
model_args = f"pretrained={eval_config['model_name']}," \
f"tensor_parallel_size={TP_SIZE}," \
f"add_bos_token=true," \
f"trust_remote_code={trust_remote_code}"
results = lm_eval.simple_evaluate(
model="vllm",
model_args=model_args,
tasks=[task["name"] for task in eval_config["tasks"]],
num_fewshot=eval_config["num_fewshot"],
limit=eval_config["limit"],
batch_size="auto")
return results
def test_lm_eval_correctness():
eval_config = yaml.safe_load(
Path(TEST_DATA_FILE).read_text(encoding="utf-8"))
# Launch eval requests.
results = launch_lm_eval(eval_config)
# Confirm scores match ground truth.
success = True
for task in eval_config["tasks"]:
for metric in task["metrics"]:
ground_truth = metric["value"]
measured_value = results["results"][task["name"]][metric["name"]]
print(f'{task["name"]} | {metric["name"]}: '
f'ground_truth={ground_truth} | measured={measured_value}')
success = success and numpy.isclose(
ground_truth, measured_value, rtol=RTOL)
# Assert at the end, print all scores even on failure for debugging.
assert success

View File

@ -1,153 +0,0 @@
# vLLM benchmark suite
## Introduction
This directory contains two sets of benchmark for vllm.
- Performance benchmark: benchmark vllm's performance under various workload, for **developers** to gain clarity on whether their PR improves/degrades vllm's performance
- Nightly benchmark: compare vllm's performance against alternatives (tgi, trt-llm and lmdeploy), for **the public** to know when to choose vllm.
See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
## Performance benchmark quick overview
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!), with different models.
**Benchmarking Duration**: about 1hr.
**For benchmarking developers**: please try your best to constraint the duration of benchmarking to about 1 hr so that it won't take forever to run.
## Nightly benchmark quick overview
**Benchmarking Coverage**: Fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) on Llama-3 8B, 70B and Mixtral 8x7B.
**Benchmarking engines**: vllm, TGI, trt-llm and lmdeploy.
**Benchmarking Duration**: about 3.5hrs.
## Trigger the benchmark
Performance benchmark will be triggered when:
- A PR being merged into vllm.
- Every commit for those PRs with `perf-benchmarks` label AND `ready` label.
Nightly benchmark will be triggered when:
- Every commit for those PRs with `perf-benchmarks` label and `nightly-benchmarks` label.
## Performance benchmark details
See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
#### Latency test
Here is an example of one test inside `latency-tests.json`:
```json
[
{
"test_name": "latency_llama8B_tp1",
"parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"tensor_parallel_size": 1,
"load_format": "dummy",
"num_iters_warmup": 5,
"num_iters": 15
}
},
]
```
In this example:
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
Note that the performance numbers are highly sensitive to the value of the parameters. Please make sure the parameters are set correctly.
WARNING: The benchmarking script will save json results by itself, so please do not configure `--output-json` parameter in the json file.
#### Throughput test
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `benchmark_throughput.py`.
The number of this test is also stable -- a slight change on the value of this number might vary the performance numbers by a lot.
#### Serving test
We test the throughput by using `benchmark_serving.py` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:
```
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"tensor_parallel_size": 1,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
]
```
Inside this example:
- The `test_name` attribute is also a unique identifier for the test. It must start with `serving_`.
- The `server-parameters` includes the command line arguments for vLLM server.
- The `client-parameters` includes the command line arguments for `benchmark_serving.py`.
- The `qps_list` controls the list of qps for test. It will be used to configure the `--request-rate` parameter in `benchmark_serving.py`
The number of this test is less stable compared to the delay and latency benchmarks (due to randomized sharegpt dataset sampling inside `benchmark_serving.py`), but a large change on this number (e.g. 5% change) still vary the output greatly.
WARNING: The benchmarking script will save json results by itself, so please do not configure `--save-results` or other results-saving-related parameters in `serving-tests.json`.
#### Visualizing the results
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](tests/descriptions.md) with real benchmarking results.
You can find the result presented as a table inside the `buildkite/performance-benchmark` job page.
If you do not see the table, please wait till the benchmark finish running.
The json version of the table (together with the json version of the benchmark) will be also attached to the markdown file.
The raw benchmarking results (in the format of json files) are in the `Artifacts` tab of the benchmarking.
## Nightly test details
See [nightly-descriptions.md](nightly-descriptions.md) for the detailed description on test workload, models and docker containers of benchmarking other llm engines.
#### Workflow
- The [nightly-pipeline.yaml](nightly-pipeline.yaml) specifies the docker containers for different LLM serving engines.
- Inside each container, we run [run-nightly-suite.sh](run-nightly-suite.sh), which will probe the serving engine of the current container.
- The `run-nightly-suite.sh` will redirect the request to `tests/run-[llm serving engine name]-nightly.sh`, which parses the workload described in [nightly-tests.json](tests/nightly-tests.json) and performs the benchmark.
- At last, we run [scripts/plot-nightly-results.py](scripts/plot-nightly-results.py) to collect and plot the final benchmarking results, and update the results to buildkite.
#### Nightly tests
In [nightly-tests.json](tests/nightly-tests.json), we include the command line arguments for benchmarking commands, together with the benchmarking test cases. The format is highly similar to performance benchmark.
#### Docker containers
The docker containers for benchmarking are specified in `nightly-pipeline.yaml`.
WARNING: the docker versions are HARD-CODED and SHOULD BE ALIGNED WITH `nightly-descriptions.md`. The docker versions need to be hard-coded as there are several version-specific bug fixes inside `tests/run-[llm serving engine name]-nightly.sh`.
WARNING: populating `trt-llm` to latest version is not easy, as it requires updating several protobuf files in [tensorrt-demo](https://github.com/neuralmagic/tensorrt-demo.git).

View File

@ -1,60 +0,0 @@
steps:
- label: "Wait for container to be ready"
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
containers:
- image: badouralix/curl-jq
command:
- sh .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
- wait
- label: "A100"
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
priorityClassName: perf-benchmark
containers:
- image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
nodeSelector:
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
volumes:
- name: devshm
emptyDir:
medium: Memory
# - label: "H100"
# agents:
# queue: H100
# plugins:
# - docker#v5.11.0:
# image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
# command:
# - bash
# - .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
# mount-buildkite-agent: true
# propagate-environment: true
# ipc: host
# gpus: all
# environment:
# - VLLM_USAGE_SOURCE
# - HF_TOKEN

View File

@ -1,28 +0,0 @@
## Description
This file contains the downloading link for benchmarking results.
- [benchmarking pipeline](artifact://nightly-pipeline.yaml)
- [benchmarking results](artifact://results.zip)
- [benchmarking code](artifact://nightly-benchmarks.zip)
Please download the visualization scripts in the post
## Results reproduction
- Find the docker we use in `benchmarking pipeline`
- Deploy the docker, and inside the docker:
- Download `nightly-benchmarks.zip`.
- In the same folder, run the following code
```
export HF_TOKEN=<your HF token>
apt update
apt install -y git
unzip nightly-benchmarks.zip
VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
```
And the results will be inside `./benchmarks/results`.

View File

@ -1,39 +0,0 @@
# Nightly benchmark
This benchmark aims to:
- Provide performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and SGLang) leads in performance in what workload.
- Be reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions.
Latest results: [results link](https://blog.vllm.ai/2024/09/05/perf-update.html), scroll to the end.
Latest reproduction guilde: [github issue link](https://github.com/vllm-project/vllm/issues/8176)
## Setup
- Docker images:
- vLLM: `vllm/vllm-openai:v0.6.2`
- SGLang: `lmsysorg/sglang:v0.3.2-cu121`
- LMDeploy: `openmmlab/lmdeploy:v0.6.1-cu12`
- TensorRT-LLM: `nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3`
- *NOTE: we uses r24.07 as the current implementation only works for this version. We are going to bump this up.*
- Check [nightly-pipeline.yaml](nightly-pipeline.yaml) for the concrete docker images, specs and commands we use for the benchmark.
- Hardware
- 8x Nvidia A100 GPUs
- Workload:
- Dataset
- ShareGPT dataset
- Prefill-heavy dataset (in average 462 input tokens, 16 tokens as output)
- Decode-heavy dataset (in average 462 input tokens, 256 output tokens)
- Check [nightly-tests.json](tests/nightly-tests.json) for the concrete configuration of datasets we use.
- Models: llama-3 8B, llama-3 70B.
- We do not use llama 3.1 as it is incompatible with trt-llm r24.07. ([issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105)).
- Average QPS (query per second): 2, 4, 8, 16, 32 and inf.
- Queries are randomly sampled, and arrival patterns are determined via Poisson process, but all with fixed random seed.
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
# Known issues
- TRT-LLM crashes with Llama 3.1 8B [issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105).
- TGI does not support `ignore-eos` flag.

View File

@ -1,196 +0,0 @@
common_pod_spec: &common_pod_spec
priorityClassName: perf-benchmark
nodeSelector:
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
volumes:
- name: devshm
emptyDir:
medium: Memory
- name: hf-cache
hostPath:
path: /root/.cache/huggingface
type: Directory
common_container_settings: &common_container_settings
command:
- bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
- name: hf-cache
mountPath: /root/.cache/huggingface
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_HOME
value: /root/.cache/huggingface
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
steps:
- block: ":rocket: Ready for comparing vllm against alternatives? This will take 4 hours."
- label: "A100 vllm step 10"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: vllm/vllm-openai:v0.6.2
<<: *common_container_settings
- label: "A100 sglang benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: lmsysorg/sglang:v0.3.2-cu121
<<: *common_container_settings
- label: "A100 lmdeploy benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: openmmlab/lmdeploy:v0.6.1-cu12
<<: *common_container_settings
- label: "A100 trt llama-8B"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
<<: *common_container_settings
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_HOME
value: /root/.cache/huggingface
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
- name: TEST_SELECTOR
value: "llama8B"
- label: "A100 trt llama-70B"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
<<: *common_container_settings
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_HOME
value: /root/.cache/huggingface
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
- name: TEST_SELECTOR
value: "llama70B"
# FIXME(Kuntai): uncomment this after NVIDIA gives us their test docker image
# - label: "A100 trt benchmark"
# priority: 100
# agents:
# queue: A100
# plugins:
# - kubernetes:
# podSpec:
# <<: *common_pod_spec
# containers:
# - image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
# <<: *common_container_settings
# FIXME(Kuntai): uncomment this after TGI supports `--ignore-eos`.
# - label: "A100 tgi benchmark"
# priority: 100
# agents:
# queue: A100
# plugins:
# - kubernetes:
# podSpec:
# <<: *common_pod_spec
# containers:
# - image: ghcr.io/huggingface/text-generation-inference:2.2.0
# <<: *common_container_settings
- wait
- label: "Collect the results"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: vllm/vllm-openai:v0.5.0.post1
command:
- bash .buildkite/nightly-benchmarks/scripts/nightly-annotate.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
- block: ":rocket: check the results!"

View File

@ -1,62 +0,0 @@
## Latency tests
- Input length: 32 tokens.
- Output length: 128 tokens.
- Batch size: fixed (8).
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- Evaluation metrics: end-to-end latency (mean, median, p99).
{latency_tests_markdown_table}
## Throughput tests
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm to achieve maximum throughput.
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- Evaluation metrics: throughput.
{throughput_tests_markdown_table}
## Serving tests
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm and the arrival pattern of the requests.
- **Average QPS (query per second)**: 1, 4, 16 and inf. QPS = inf means all requests come at once. For other QPS values, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- We also added a speculative decoding test for llama-3 70B, under QPS 2
- Evaluation metrics: throughput, TTFT (time to the first token, with mean, median and p99), ITL (inter-token latency, with mean, median and p99).
{serving_tests_markdown_table}
## json version of the benchmarking tables
This section contains the data of the markdown tables above in JSON format.
You can load the benchmarking tables into pandas dataframes as follows:
```python
import json
import pandas as pd
benchmarking_results_json = """The json string"""
benchmarking_results = json.loads(benchmarking_results_json)
latency_results = pd.DataFrame.from_dict(benchmarking_results["latency"])
throughput_results = pd.DataFrame.from_dict(benchmarking_results["throughput"])
serving_results = pd.DataFrame.from_dict(benchmarking_results["serving"])
```
The json string for all benchmarking tables:
```json
{benchmarking_results_in_json_string}
```
You can also check the raw experiment data in the Artifact tab of the Buildkite page.

View File

@ -1,192 +0,0 @@
import json
import os
from pathlib import Path
import pandas as pd
from tabulate import tabulate
results_folder = Path("results/")
# latency results and the keys that will be printed into markdown
latency_results = []
latency_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
"avg_latency": "Mean latency (ms)",
# "P10": "P10 (s)",
# "P25": "P25 (s)",
"P50": "Median latency (ms)",
# "P75": "P75 (s)",
# "P90": "P90 (s)",
"P99": "P99 latency (ms)",
}
# throughput tests and the keys that will be printed into markdown
throughput_results = []
throughput_results_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
# "num_requests": "# of req.",
# "total_num_tokens": "Total # of tokens",
# "elapsed_time": "Elapsed time (s)",
"requests_per_second": "Tput (req/s)",
# "tokens_per_second": "Tput (tok/s)",
}
# serving results and the keys that will be printed into markdown
serving_results = []
serving_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
# "completed": "# of req.",
"request_throughput": "Tput (req/s)",
# "input_throughput": "Input Tput (tok/s)",
# "output_throughput": "Output Tput (tok/s)",
"mean_ttft_ms": "Mean TTFT (ms)",
"median_ttft_ms": "Median TTFT (ms)",
"p99_ttft_ms": "P99 TTFT (ms)",
# "mean_tpot_ms": "Mean TPOT (ms)",
# "median_tpot_ms": "Median",
# "p99_tpot_ms": "P99",
"mean_itl_ms": "Mean ITL (ms)",
"median_itl_ms": "Median ITL (ms)",
"p99_itl_ms": "P99 ITL (ms)",
}
def read_markdown(file):
if os.path.exists(file):
with open(file, "r") as f:
return f.read() + "\n"
else:
return f"{file} not found.\n"
def results_to_json(latency, throughput, serving):
return json.dumps({
'latency': latency.to_dict(),
'throughput': throughput.to_dict(),
'serving': serving.to_dict()
})
if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
with open(test_file, "r") as f:
raw_result = json.loads(f.read())
if "serving" in str(test_file):
# this result is generated via `benchmark_serving.py`
# attach the benchmarking command to raw_result
with open(test_file.with_suffix(".commands"), "r") as f:
command = json.loads(f.read())
raw_result.update(command)
# update the test name of this result
raw_result.update({"test_name": test_file.stem})
# add the result to raw_result
serving_results.append(raw_result)
continue
elif "latency" in f.name:
# this result is generated via `benchmark_latency.py`
# attach the benchmarking command to raw_result
with open(test_file.with_suffix(".commands"), "r") as f:
command = json.loads(f.read())
raw_result.update(command)
# update the test name of this result
raw_result.update({"test_name": test_file.stem})
# get different percentiles
for perc in [10, 25, 50, 75, 90, 99]:
# Multiply 1000 to convert the time unit from s to ms
raw_result.update(
{f"P{perc}": 1000 * raw_result["percentiles"][str(perc)]})
raw_result["avg_latency"] = raw_result["avg_latency"] * 1000
# add the result to raw_result
latency_results.append(raw_result)
continue
elif "throughput" in f.name:
# this result is generated via `benchmark_throughput.py`
# attach the benchmarking command to raw_result
with open(test_file.with_suffix(".commands"), "r") as f:
command = json.loads(f.read())
raw_result.update(command)
# update the test name of this result
raw_result.update({"test_name": test_file.stem})
# add the result to raw_result
throughput_results.append(raw_result)
continue
print(f"Skipping {test_file}")
latency_results = pd.DataFrame.from_dict(latency_results)
serving_results = pd.DataFrame.from_dict(serving_results)
throughput_results = pd.DataFrame.from_dict(throughput_results)
raw_results_json = results_to_json(latency_results, throughput_results,
serving_results)
# remapping the key, for visualization purpose
if not latency_results.empty:
latency_results = latency_results[list(
latency_column_mapping.keys())].rename(
columns=latency_column_mapping)
if not serving_results.empty:
serving_results = serving_results[list(
serving_column_mapping.keys())].rename(
columns=serving_column_mapping)
if not throughput_results.empty:
throughput_results = throughput_results[list(
throughput_results_column_mapping.keys())].rename(
columns=throughput_results_column_mapping)
processed_results_json = results_to_json(latency_results,
throughput_results,
serving_results)
# get markdown tables
latency_md_table = tabulate(latency_results,
headers='keys',
tablefmt='pipe',
showindex=False)
serving_md_table = tabulate(serving_results,
headers='keys',
tablefmt='pipe',
showindex=False)
throughput_md_table = tabulate(throughput_results,
headers='keys',
tablefmt='pipe',
showindex=False)
# document the result
with open(results_folder / "benchmark_results.md", "w") as f:
results = read_markdown("../.buildkite/nightly-benchmarks/" +
"performance-benchmarks-descriptions.md")
results = results.format(
latency_tests_markdown_table=latency_md_table,
throughput_tests_markdown_table=throughput_md_table,
serving_tests_markdown_table=serving_md_table,
benchmarking_results_in_json_string=processed_results_json)
f.write(results)
# document benchmarking results in json
with open(results_folder / "benchmark_results.json", "w") as f:
results = latency_results.to_dict(
orient='records') + throughput_results.to_dict(
orient='records') + serving_results.to_dict(orient='records')
f.write(json.dumps(results))

View File

@ -1,26 +0,0 @@
import argparse
from transformers import AutoTokenizer
def main(model, cachedir):
# Load the tokenizer and save it to the specified directory
tokenizer = AutoTokenizer.from_pretrained(model)
tokenizer.save_pretrained(cachedir)
print(f"Tokenizer saved to {cachedir}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Download and save Hugging Face tokenizer")
parser.add_argument("--model",
type=str,
required=True,
help="Name of the model")
parser.add_argument("--cachedir",
type=str,
required=True,
help="Directory to save the tokenizer")
args = parser.parse_args()
main(args.model, args.cachedir)

View File

@ -1,95 +0,0 @@
import argparse
import json
from pathlib import Path
import numpy as np
import pandas as pd
from tabulate import tabulate
def parse_arguments():
parser = argparse.ArgumentParser(
description=
'Parse command line arguments for summary-nightly-results script.')
parser.add_argument('--results-folder',
type=str,
required=True,
help='The folder where the results are stored.')
parser.add_argument('--description',
type=str,
required=True,
help='Description of the results.')
args = parser.parse_args()
return args
def get_perf(df, method, model, metric):
means = []
for qps in [2, 4, 8, 16, "inf"]:
target = df['Test name'].str.contains(model)
target = target & df['Engine'].str.contains(method)
target = target & df['Test name'].str.contains("qps_" + str(qps))
filtered_df = df[target]
if filtered_df.empty:
means.append(0.)
else:
means.append(filtered_df[metric].values[0])
return np.array(means)
def get_perf_w_std(df, method, model, metric):
if metric in ["TTFT", "ITL"]:
mean = get_perf(df, method, model, "Mean " + metric + " (ms)")
mean = mean.tolist()
std = get_perf(df, method, model, "Std " + metric + " (ms)")
if std.mean() == 0:
std = None
success = get_perf(df, method, model, "Successful req.")
if std is not None:
std = std / np.sqrt(success)
std = std.tolist()
else:
assert metric == "Tput"
mean = get_perf(df, method, model, "Input Tput (tok/s)") + get_perf(
df, method, model, "Output Tput (tok/s)")
mean = mean.tolist()
std = None
return mean, std
def main(args):
results_folder = Path(args.results_folder)
results = []
# collect results
for test_file in results_folder.glob("*_nightly_results.json"):
with open(test_file, "r") as f:
results = results + json.loads(f.read())
# generate markdown table
df = pd.DataFrame.from_dict(results)
md_table = tabulate(df, headers='keys', tablefmt='pipe', showindex=False)
with open(args.description, "r") as f:
description = f.read()
description = description.format(
nightly_results_benchmarking_table=md_table)
with open("nightly_results.md", "w") as f:
f.write(description)
if __name__ == '__main__':
args = parse_arguments()
main(args)

View File

@ -1,6 +0,0 @@
from lmdeploy.serve.openai.api_client import APIClient
api_client = APIClient("http://localhost:8000")
model_name = api_client.available_models[0]
print(model_name)

View File

@ -1,241 +0,0 @@
#!/bin/bash
# Currently FP8 benchmark is NOT enabled.
set -x
server_params=$1
common_params=$2
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
launch_trt_server() {
model_path=$(echo "$common_params" | jq -r '.model')
model_name="${model_path#*/}"
model_type=$(echo "$server_params" | jq -r '.model_type')
model_dtype=$(echo "$server_params" | jq -r '.model_dtype')
model_tp_size=$(echo "$common_params" | jq -r '.tp')
max_batch_size=$(echo "$server_params" | jq -r '.max_batch_size')
max_input_len=$(echo "$server_params" | jq -r '.max_input_len')
max_seq_len=$(echo "$server_params" | jq -r '.max_seq_len')
max_num_tokens=$(echo "$server_params" | jq -r '.max_num_tokens')
trt_llm_version=$(echo "$server_params" | jq -r '.trt_llm_version')
# create model caching directory
cd ~
rm -rf models
mkdir -p models
cd models
models_dir=$(pwd)
trt_model_path=${models_dir}/${model_name}-trt-ckpt
trt_engine_path=${models_dir}/${model_name}-trt-engine
# clone tensorrt backend
cd /
rm -rf tensorrtllm_backend
git clone https://github.com/triton-inference-server/tensorrtllm_backend.git
git lfs install
cd tensorrtllm_backend
git checkout $trt_llm_version
tensorrtllm_backend_dir=$(pwd)
git submodule update --init --recursive
# build trtllm engine
cd /tensorrtllm_backend
cd ./tensorrt_llm/examples/${model_type}
python3 convert_checkpoint.py \
--model_dir ${model_path} \
--dtype ${model_dtype} \
--tp_size ${model_tp_size} \
--output_dir ${trt_model_path}
trtllm-build \
--checkpoint_dir ${trt_model_path} \
--use_fused_mlp \
--reduce_fusion disable \
--workers 8 \
--gpt_attention_plugin ${model_dtype} \
--gemm_plugin ${model_dtype} \
--tp_size ${model_tp_size} \
--max_batch_size ${max_batch_size} \
--max_input_len ${max_input_len} \
--max_seq_len ${max_seq_len} \
--max_num_tokens ${max_num_tokens} \
--output_dir ${trt_engine_path}
# handle triton protobuf files and launch triton server
cd /tensorrtllm_backend
mkdir triton_model_repo
cp -r all_models/inflight_batcher_llm/* triton_model_repo/
cd triton_model_repo
rm -rf ./tensorrt_llm/1/*
cp -r ${trt_engine_path}/* ./tensorrt_llm/1
python3 ../tools/fill_template.py -i tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,engine_dir:/tensorrtllm_backend/triton_model_repo/tensorrt_llm/1,decoupled_mode:true,batching_strategy:inflight_fused_batching,batch_scheduler_policy:guaranteed_no_evict,exclude_input_in_output:true,triton_max_batch_size:2048,max_queue_delay_microseconds:0,max_beam_width:1,max_queue_size:2048,enable_kv_cache_reuse:false
python3 ../tools/fill_template.py -i preprocessing/config.pbtxt triton_max_batch_size:2048,tokenizer_dir:$model_path,preprocessing_instance_count:5
python3 ../tools/fill_template.py -i postprocessing/config.pbtxt triton_max_batch_size:2048,tokenizer_dir:$model_path,postprocessing_instance_count:5,skip_special_tokens:false
python3 ../tools/fill_template.py -i ensemble/config.pbtxt triton_max_batch_size:$max_batch_size
python3 ../tools/fill_template.py -i tensorrt_llm_bls/config.pbtxt triton_max_batch_size:$max_batch_size,decoupled_mode:true,accumulate_tokens:"False",bls_instance_count:1
cd /tensorrtllm_backend
python3 scripts/launch_triton_server.py \
--world_size=${model_tp_size} \
--model_repo=/tensorrtllm_backend/triton_model_repo &
}
launch_tgi_server() {
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
server_args=$(json2args "$server_params")
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
echo "Key 'fp8' exists in common params."
server_command="/tgi-entrypoint.sh \
--model-id $model \
--num-shard $tp \
--port $port \
--quantize fp8 \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="/tgi-entrypoint.sh \
--model-id $model \
--num-shard $tp \
--port $port \
$server_args"
fi
echo "Server command: $server_command"
eval "$server_command" &
}
launch_lmdeploy_server() {
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
server_args=$(json2args "$server_params")
server_command="lmdeploy serve api_server $model \
--tp $tp \
--server-port $port \
$server_args"
# run the server
echo "Server command: $server_command"
bash -c "$server_command" &
}
launch_sglang_server() {
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
server_args=$(json2args "$server_params")
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
server_command="python3 \
-m sglang.launch_server \
--tp $tp \
--model-path $model \
--port $port \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="python3 \
-m sglang.launch_server \
--tp $tp \
--model-path $model \
--port $port \
$server_args"
fi
# run the server
echo "Server command: $server_command"
eval "$server_command" &
}
launch_vllm_server() {
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
server_args=$(json2args "$server_params")
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
-tp $tp \
--model $model \
--port $port \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
-tp $tp \
--model $model \
--port $port \
$server_args"
fi
# run the server
echo "Server command: $server_command"
eval "$server_command" &
}
main() {
if [[ $CURRENT_LLM_SERVING_ENGINE == "trt" ]]; then
launch_trt_server
fi
if [[ $CURRENT_LLM_SERVING_ENGINE == "tgi" ]]; then
launch_tgi_server
fi
if [[ $CURRENT_LLM_SERVING_ENGINE == "lmdeploy" ]]; then
launch_lmdeploy_server
fi
if [[ $CURRENT_LLM_SERVING_ENGINE == "sglang" ]]; then
launch_sglang_server
fi
if [[ "$CURRENT_LLM_SERVING_ENGINE" == *"vllm"* ]]; then
launch_vllm_server
fi
}
main

View File

@ -1,78 +0,0 @@
#!/bin/bash
set -ex
set -o pipefail
main() {
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)
(which zip) || (apt-get install -y zip)
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip plotting the results."
exit 0
fi
# initial annotation
description="$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-descriptions.md"
# download results
cd $VLLM_SOURCE_CODE_LOC/benchmarks
mkdir -p results/
/workspace/buildkite-agent artifact download 'results/*nightly_results.json' results/
ls
ls results/
# upload benchmark results
zip -r results.zip results/
/workspace/buildkite-agent artifact upload "results.zip"
# upload benchmarking scripts
cd $VLLM_SOURCE_CODE_LOC/
zip -r nightly-benchmarks.zip .buildkite/ benchmarks/
/workspace/buildkite-agent artifact upload "nightly-benchmarks.zip"
cd $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/
# upload benchmarking pipeline
/workspace/buildkite-agent artifact upload "nightly-pipeline.yaml"
cd $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/
/workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly-annotation.md
# The figures should be genereated by a separate process outside the CI/CD pipeline
# # generate figures
# python3 -m pip install tabulate pandas matplotlib
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/generate-nightly-markdown.py \
# --description $description \
# --results-folder results/
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
# --description $description \
# --results-folder results/ \
# --dataset sharegpt
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
# --description $description \
# --results-folder results/ \
# --dataset sonnet_2048_128
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
# --description $description \
# --results-folder results/ \
# --dataset sonnet_128_2048
# # upload results and figures
# /workspace/buildkite-agent artifact upload "nightly_results*.png"
# /workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-pipeline.yaml
# /workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/tests/nightly-tests.json
# /workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly_results.md
}
main "$@"

View File

@ -1,357 +0,0 @@
#!/bin/bash
set -o pipefail
set -x
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
check_hf_token() {
# check if HF_TOKEN is available and valid
if [[ -z "$HF_TOKEN" ]]; then
echo "Error: HF_TOKEN is not set."
exit 1
elif [[ ! "$HF_TOKEN" =~ ^hf_ ]]; then
echo "Error: HF_TOKEN does not start with 'hf_'."
exit 1
else
echo "HF_TOKEN is set and valid."
fi
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
get_current_llm_serving_engine() {
if which lmdeploy >/dev/null; then
echo "Container: lmdeploy"
export CURRENT_LLM_SERVING_ENGINE=lmdeploy
return
fi
if [ -e /tgi-entrypoint.sh ]; then
echo "Container: tgi"
export CURRENT_LLM_SERVING_ENGINE=tgi
return
fi
if which trtllm-build >/dev/null; then
echo "Container: tensorrt-llm"
export CURRENT_LLM_SERVING_ENGINE=trt
return
fi
if [ -e /sgl-workspace ]; then
echo "Container: sglang"
export CURRENT_LLM_SERVING_ENGINE=sglang
return
fi
if [ -e /vllm-workspace ]; then
echo "Container: vllm"
# move to a completely irrelevant directory, to avoid import vllm from current folder
export CURRENT_LLM_SERVING_ENGINE=vllm
return
fi
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
kill_gpu_processes() {
pkill -f python
pkill -f python3
pkill -f tritonserver
pkill -f pt_main_thread
pkill -f text-generation
pkill -f lmdeploy
while [ $(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1) -ge 1000 ]; do
sleep 1
done
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
timeout 1200 bash -c '
until curl -s localhost:8000/v1/completions > /dev/null; do
sleep 1
done' && return 0 || return 1
}
ensure_installed() {
# Ensure that the given command is installed by apt-get
local cmd=$1
if ! which $cmd >/dev/null; then
apt-get update && apt-get install -y $cmd
fi
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# prepend the current serving engine to the test name
test_name=${CURRENT_LLM_SERVING_ENGINE}_${test_name}
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
reuse_server=$(echo "$common_params" | jq -r '.reuse_server')
# get client and server arguments
server_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_server_parameters")
client_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_client_parameters")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if [[ $reuse_server == "true" ]]; then
echo "Reuse previous server for test case $test_name"
else
kill_gpu_processes
bash $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/launch-server.sh \
"$server_params" "$common_params"
fi
wait_for_server
if [ $? -eq 0 ]; then
echo ""
echo "$CURRENT_LLM_SERVING_ENGINE server is up and running."
else
echo ""
echo "$CURRENT_LLM_SERVING_ENGINE failed to start within the timeout period."
break
fi
# prepare tokenizer
# this is required for lmdeploy.
cd $VLLM_SOURCE_CODE_LOC/benchmarks
rm -rf /tokenizer_cache
mkdir /tokenizer_cache
python3 ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \
--model "$model" \
--cachedir /tokenizer_cache
cd $VLLM_SOURCE_CODE_LOC/benchmarks
# change model name for lmdeploy (it will not follow standard hf name)
if [[ "$CURRENT_LLM_SERVING_ENGINE" == "lmdeploy" ]]; then
model=$(python ../.buildkite/nightly-benchmarks/scripts/get-lmdeploy-modelname.py)
fi
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
backend=$CURRENT_LLM_SERVING_ENGINE
if [[ $backend = "trt" ]]; then
backend="tensorrt-llm"
fi
if [[ "$backend" == *"vllm"* ]]; then
backend="vllm"
fi
if [[ "$dataset_name" = "sharegpt" ]]; then
client_command="python3 benchmark_serving.py \
--backend $backend \
--tokenizer /tokenizer_cache \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--ignore-eos \
$client_args"
elif [[ "$dataset_name" = "sonnet" ]]; then
sonnet_input_len=$(echo "$common_params" | jq -r '.sonnet_input_len')
sonnet_output_len=$(echo "$common_params" | jq -r '.sonnet_output_len')
sonnet_prefix_len=$(echo "$common_params" | jq -r '.sonnet_prefix_len')
client_command="python3 benchmark_serving.py \
--backend $backend \
--tokenizer /tokenizer_cache \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--sonnet-input-len $sonnet_input_len \
--sonnet-output-len $sonnet_output_len \
--sonnet-prefix-len $sonnet_prefix_len \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--ignore-eos \
$client_args"
else
echo "The dataset name must be either 'sharegpt' or 'sonnet'. Got $dataset_name."
exit 1
fi
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
server_command="None"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "$CURRENT_LLM_SERVING_ENGINE" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
done
kill_gpu_processes
}
prepare_dataset() {
# download sharegpt dataset
cd $VLLM_SOURCE_CODE_LOC/benchmarks
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
# duplicate sonnet by 4x, to allow benchmarking with input length 2048
cd $VLLM_SOURCE_CODE_LOC/benchmarks
echo "" > sonnet_4x.txt
for _ in {1..4}
do
cat sonnet.txt >> sonnet_4x.txt
done
}
main() {
# check if the environment variable is successfully injected from yaml
check_gpus
check_hf_token
get_current_llm_serving_engine
pip install -U transformers
# check storage
df -h
ensure_installed wget
ensure_installed curl
ensure_installed jq
prepare_dataset
cd $VLLM_SOURCE_CODE_LOC/benchmarks
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT=$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/
# run the test
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
# upload benchmark results to buildkite
python3 -m pip install tabulate pandas
python3 $BENCHMARK_ROOT/scripts/summary-nightly-results.py
upload_to_buildkite
}
main "$@"

View File

@ -1,381 +0,0 @@
#!/bin/bash
# This script should be run inside the CI process
# This script assumes that we are already inside the vllm/ directory
# Benchmarking results will be available inside vllm/benchmarks/results/
# Do not set -e, as the mixtral 8x22B model tends to crash occasionally
# and we still want to see other benchmarking results even when mixtral crashes.
set -o pipefail
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
check_hf_token() {
# check if HF_TOKEN is available and valid
if [[ -z "$HF_TOKEN" ]]; then
echo "Error: HF_TOKEN is not set."
exit 1
elif [[ ! "$HF_TOKEN" =~ ^hf_ ]]; then
echo "Error: HF_TOKEN does not start with 'hf_'."
exit 1
else
echo "HF_TOKEN is set and valid."
fi
}
ensure_sharegpt_downloaded() {
local FILE=ShareGPT_V3_unfiltered_cleaned_split.json
if [ ! -f "$FILE" ]; then
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/$FILE
else
echo "$FILE already exists."
fi
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
timeout 1200 bash -c '
until curl -X POST localhost:8000/v1/completions; do
sleep 1
done' && return 0 || return 1
}
kill_processes_launched_by_current_bash() {
# Kill all python processes launched from current bash script
current_shell_pid=$$
processes=$(ps -eo pid,ppid,command | awk -v ppid="$current_shell_pid" -v proc="$1" '$2 == ppid && $3 ~ proc {print $1}')
if [ -n "$processes" ]; then
echo "Killing the following processes matching '$1':"
echo "$processes"
echo "$processes" | xargs kill -9
else
echo "No processes found matching '$1'."
fi
}
kill_gpu_processes() {
ps -aux
lsof -t -i:8000 | xargs -r kill -9
pkill -f pt_main_thread
# this line doesn't work now
# ps aux | grep python | grep openai | awk '{print $2}' | xargs -r kill -9
pkill -f python3
pkill -f /usr/bin/python3
# wait until GPU memory usage smaller than 1GB
while [ $(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1) -ge 1000 ]; do
sleep 1
done
# remove vllm config file
rm -rf ~/.config/vllm
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
# Check if buildkite-agent is available in the PATH or at /workspace/buildkite-agent
if command -v buildkite-agent >/dev/null 2>&1; then
BUILDKITE_AGENT_COMMAND="buildkite-agent"
elif [ -f /workspace/buildkite-agent ]; then
BUILDKITE_AGENT_COMMAND="/workspace/buildkite-agent"
else
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# Use the determined command to annotate and upload artifacts
$BUILDKITE_AGENT_COMMAND annotate --style "info" --context "$BUILDKITE_LABEL-benchmark-results" <$RESULTS_FOLDER/benchmark_results.md
$BUILDKITE_AGENT_COMMAND artifact upload "$RESULTS_FOLDER/*"
}
run_latency_tests() {
# run latency tests using `benchmark_latency.py`
# $1: a json file specifying latency test cases
local latency_test_file
latency_test_file=$1
# Iterate over latency tests
jq -c '.[]' "$latency_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
if [[ ! "$test_name" =~ ^latency_ ]]; then
echo "In latency-test.json, test_name must start with \"latency_\"."
exit 1
fi
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# get arguments
latency_params=$(echo "$params" | jq -r '.parameters')
latency_args=$(json2args "$latency_params")
# check if there is enough GPU to run the test
tp=$(echo "$latency_params" | jq -r '.tensor_parallel_size')
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $testname."
continue
fi
latency_command="python3 benchmark_latency.py \
--output-json $RESULTS_FOLDER/${test_name}.json \
$latency_args"
echo "Running test case $test_name"
echo "Latency command: $latency_command"
# recoding benchmarking command ang GPU command
jq_output=$(jq -n \
--arg latency "$latency_command" \
--arg gpu "$gpu_type" \
'{
latency_command: $latency,
gpu_type: $gpu
}')
echo "$jq_output" >"$RESULTS_FOLDER/$test_name.commands"
# run the benchmark
eval "$latency_command"
kill_gpu_processes
done
}
run_throughput_tests() {
# run throughput tests using `benchmark_throughput.py`
# $1: a json file specifying throughput test cases
local throughput_test_file
throughput_test_file=$1
# Iterate over throughput tests
jq -c '.[]' "$throughput_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
if [[ ! "$test_name" =~ ^throughput_ ]]; then
echo "In throughput-test.json, test_name must start with \"throughput_\"."
exit 1
fi
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# get arguments
throughput_params=$(echo "$params" | jq -r '.parameters')
throughput_args=$(json2args "$throughput_params")
# check if there is enough GPU to run the test
tp=$(echo $throughput_params | jq -r '.tensor_parallel_size')
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $testname."
continue
fi
throughput_command="python3 benchmark_throughput.py \
--output-json $RESULTS_FOLDER/${test_name}.json \
$throughput_args"
echo "Running test case $test_name"
echo "Throughput command: $throughput_command"
# recoding benchmarking command ang GPU command
jq_output=$(jq -n \
--arg command "$throughput_command" \
--arg gpu "$gpu_type" \
'{
throughput_command: $command,
gpu_type: $gpu
}')
echo "$jq_output" >"$RESULTS_FOLDER/$test_name.commands"
# run the benchmark
eval "$throughput_command"
kill_gpu_processes
done
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
if [[ ! "$test_name" =~ ^serving_ ]]; then
echo "In serving-test.json, test_name must start with \"serving_\"."
exit 1
fi
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# get client and server arguments
server_params=$(echo "$params" | jq -r '.server_parameters')
client_params=$(echo "$params" | jq -r '.client_parameters')
server_args=$(json2args "$server_params")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
tp=$(echo "$server_params" | jq -r '.tensor_parallel_size')
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $testname."
continue
fi
# check if server model and client model is aligned
server_model=$(echo "$server_params" | jq -r '.model')
client_model=$(echo "$client_params" | jq -r '.model')
if [[ $server_model != "$client_model" ]]; then
echo "Server model and client model must be the same. Skip testcase $testname."
continue
fi
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
$server_args"
# run the server
echo "Running test case $test_name"
echo "Server command: $server_command"
eval "$server_command" &
server_pid=$!
# wait until the server is alive
wait_for_server
if [ $? -eq 0 ]; then
echo ""
echo "vllm server is up and running."
else
echo ""
echo "vllm failed to start within the timeout period."
fi
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
client_command="python3 benchmark_serving.py \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
# clean up
kill -9 $server_pid
kill_gpu_processes
done
}
main() {
check_gpus
check_hf_token
# dependencies
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)
(which lsof) || (apt-get update && apt-get install -y lsof)
# get the current IP address, required by benchmark_serving.py
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
# turn of the reporting of the status of each request, to clean up the terminal output
export VLLM_LOG_LEVEL="WARNING"
# prepare for benchmarking
cd benchmarks || exit 1
ensure_sharegpt_downloaded
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
QUICK_BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
# benchmarking
run_serving_tests $QUICK_BENCHMARK_ROOT/tests/serving-tests.json
run_latency_tests $QUICK_BENCHMARK_ROOT/tests/latency-tests.json
run_throughput_tests $QUICK_BENCHMARK_ROOT/tests/throughput-tests.json
# postprocess benchmarking results
pip install tabulate pandas
python3 $QUICK_BENCHMARK_ROOT/scripts/convert-results-json-to-markdown.py
upload_to_buildkite
}
main "$@"

View File

@ -1,83 +0,0 @@
import datetime
import json
import os
from pathlib import Path
import pandas as pd
from tabulate import tabulate
results_folder = Path("results/")
# serving results and the keys that will be printed into markdown
serving_results = []
serving_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
"completed": "Successful req.",
"request_throughput": "Tput (req/s)",
"mean_ttft_ms": "Mean TTFT (ms)",
"std_ttft_ms": "Std TTFT (ms)",
"median_ttft_ms": "Median TTFT (ms)",
"mean_itl_ms": "Mean ITL (ms)",
"std_itl_ms": "Std ITL (ms)",
"median_itl_ms": "Median ITL (ms)",
"mean_tpot_ms": "Mean TPOT (ms)",
"std_tpot_ms": "Std TPOT (ms)",
"median_tpot_ms": "Median TPOT (ms)",
"total_token_throughput": "Total Token Tput (tok/s)",
"output_throughput": "Output Tput (tok/s)",
"total_input_tokens": "Total input tokens",
"total_output_tokens": "Total output tokens",
"engine": "Engine",
}
if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
with open(test_file, "r") as f:
raw_result = json.loads(f.read())
# attach the benchmarking command to raw_result
with open(test_file.with_suffix(".commands"), "r") as f:
command = json.loads(f.read())
raw_result.update(command)
# update the test name of this result
raw_result.update({"test_name": test_file.stem})
# add the result to raw_result
serving_results.append(raw_result)
continue
serving_results = pd.DataFrame.from_dict(serving_results)
if not serving_results.empty:
serving_results = serving_results[list(
serving_column_mapping.keys())].rename(
columns=serving_column_mapping)
serving_md_table_with_headers = tabulate(serving_results,
headers='keys',
tablefmt='pipe',
showindex=False)
# remove the first line of header
serving_md_table_lines = serving_md_table_with_headers.split('\n')
serving_md_table_without_header = '\n'.join(serving_md_table_lines[2:])
prefix = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
prefix = prefix + "_" + os.environ.get("CURRENT_LLM_SERVING_ENGINE")
# document benchmarking results in markdown
with open(results_folder / f"{prefix}_nightly_results.md", "w") as f:
# document results with header.
# for those who wants to reproduce our benchmark.
f.write(serving_md_table_with_headers)
f.write('\n')
# document benchmarking results in json
with open(results_folder / f"{prefix}_nightly_results.json", "w") as f:
results = serving_results.to_dict(orient='records')
f.write(json.dumps(results))

View File

@ -1,19 +0,0 @@
#!/bin/sh
TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-test-repo:pull" | jq -r .token)
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-test-repo/manifests/$BUILDKITE_COMMIT"
TIMEOUT_SECONDS=10
retries=0
while [ $retries -lt 1000 ]; do
if [ $(curl -s --max-time $TIMEOUT_SECONDS -L -H "Authorization: Bearer $TOKEN" -o /dev/null -w "%{http_code}" $URL) -eq 200 ]; then
exit 0
fi
echo "Waiting for image to be available..."
retries=$((retries + 1))
sleep 5
done
exit 1

View File

@ -1,32 +0,0 @@
[
{
"test_name": "latency_llama8B_tp1",
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"num_iters_warmup": 5,
"num_iters": 15
}
},
{
"test_name": "latency_llama70B_tp4",
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"num-iters-warmup": 5,
"num-iters": 15
}
},
{
"test_name": "latency_mixtral8x7B_tp2",
"parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"tensor_parallel_size": 2,
"load_format": "dummy",
"num-iters-warmup": 5,
"num-iters": 15
}
}
]

View File

@ -1,323 +0,0 @@
[
{
"test_name": "llama8B_tp1_sharegpt",
"qps_list": [4,8,16,32,"inf"],
"common_parameters": {
"model": "meta-llama/Meta-Llama-3-8B-Instruct",
"tp": 1,
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 500,
"port": 8000,
"reuse_server": false
},
"lmdeploy_server_parameters": {
"dtype": "bfloat16"
},
"lmdeploy_client_parameters": {
},
"tgi_server_parameters": {
},
"tgi_client_parameters": {
"endpoint": "/generate_stream"
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "bfloat16",
"max_batch_size": 2048,
"max_input_len": 4096,
"max_seq_len": 6144,
"max_num_tokens": 16384,
"trt_llm_version": "v0.11.0"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
"vllm_client_parameters": {
},
"sglang_server_parameters": {
"disable_radix_cache": "",
"enable_torch_compile": "",
"dtype": "bfloat16"
},
"sglang_client_parameters": {
}
},
{
"test_name": "llama8B_tp1_sonnet_512_16",
"qps_list": [4,8,16,32,"inf"],
"common_parameters": {
"model": "meta-llama/Meta-Llama-3-8B-Instruct",
"tp": 1,
"dataset_name": "sonnet",
"dataset_path": "./sonnet_4x.txt",
"num_prompts": 500,
"port": 8000,
"sonnet_input_len": 512,
"sonnet_output_len": 16,
"sonnet_prefix_len": 50,
"reuse_server": true
},
"lmdeploy_server_parameters": {
"dtype": "bfloat16"
},
"lmdeploy_client_parameters": {
},
"tgi_server_parameters": {
},
"tgi_client_parameters": {
"endpoint": "/generate_stream"
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "bfloat16",
"max_batch_size": 2048,
"max_input_len": 4096,
"max_seq_len": 6144,
"max_num_tokens": 16384,
"trt_llm_version": "v0.11.0"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
"vllm_client_parameters": {
},
"sglang_server_parameters": {
"disable_radix_cache": "",
"enable_torch_compile": "",
"dtype": "bfloat16"
},
"sglang_client_parameters": {
}
},
{
"test_name": "llama8B_tp1_sonnet_512_256",
"qps_list": [4,8,16,32,"inf"],
"common_parameters": {
"model": "meta-llama/Meta-Llama-3-8B-Instruct",
"tp": 1,
"dataset_name": "sonnet",
"dataset_path": "./sonnet_4x.txt",
"num_prompts": 500,
"port": 8000,
"sonnet_input_len": 512,
"sonnet_output_len": 256,
"sonnet_prefix_len": 50,
"reuse_server": true
},
"lmdeploy_server_parameters": {
"dtype": "bfloat16"
},
"lmdeploy_client_parameters": {
},
"tgi_server_parameters": {
},
"tgi_client_parameters": {
"endpoint": "/generate_stream"
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "bfloat16",
"max_batch_size": 2048,
"max_input_len": 4096,
"max_seq_len": 6144,
"max_num_tokens": 16384,
"trt_llm_version": "v0.11.0"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
"vllm_client_parameters": {
},
"sglang_server_parameters": {
"disable_radix_cache": "",
"enable_torch_compile": "",
"dtype": "bfloat16"
},
"sglang_client_parameters": {
}
},
{
"test_name": "llama70B_tp4_sharegpt",
"qps_list": [4,8,16,32,"inf"],
"common_parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"tp": 4,
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 500,
"port": 8000,
"reuse_server": false
},
"lmdeploy_server_parameters": {
"dtype": "bfloat16"
},
"lmdeploy_client_parameters": {
},
"tgi_server_parameters": {
},
"tgi_client_parameters": {
"endpoint": "/generate_stream"
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "bfloat16",
"max_batch_size": 2048,
"max_input_len": 4096,
"max_seq_len": 6144,
"max_num_tokens": 16384,
"trt_llm_version": "v0.11.0"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
"vllm_client_parameters": {
},
"sglang_server_parameters": {
"disable_radix_cache": "",
"dtype": "bfloat16"
},
"sglang_client_parameters": {
}
},
{
"test_name": "llama70B_tp4_sonnet_512_16",
"qps_list": [4,8,16,32,"inf"],
"common_parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"tp": 4,
"dataset_name": "sonnet",
"dataset_path": "./sonnet_4x.txt",
"num_prompts": 500,
"port": 8000,
"sonnet_input_len": 512,
"sonnet_output_len": 16,
"sonnet_prefix_len": 50,
"reuse_server": true
},
"lmdeploy_server_parameters": {
"dtype": "bfloat16"
},
"lmdeploy_client_parameters": {
},
"tgi_server_parameters": {
},
"tgi_client_parameters": {
"endpoint": "/generate_stream"
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "bfloat16",
"max_batch_size": 2048,
"max_input_len": 4096,
"max_seq_len": 6144,
"max_num_tokens": 16384,
"trt_llm_version": "v0.11.0"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
"vllm_client_parameters": {
},
"sglang_server_parameters": {
"disable_radix_cache": "",
"dtype": "bfloat16"
},
"sglang_client_parameters": {
}
},
{
"test_name": "llama70B_tp4_sonnet_512_256",
"qps_list": [4,8,16,32,"inf"],
"common_parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"tp": 4,
"dataset_name": "sonnet",
"dataset_path": "./sonnet_4x.txt",
"num_prompts": 500,
"port": 8000,
"sonnet_input_len": 512,
"sonnet_output_len": 256,
"sonnet_prefix_len": 50,
"reuse_server": true
},
"lmdeploy_server_parameters": {
"dtype": "bfloat16"
},
"lmdeploy_client_parameters": {
},
"tgi_server_parameters": {
},
"tgi_client_parameters": {
"endpoint": "/generate_stream"
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "bfloat16",
"max_batch_size": 2048,
"max_input_len": 4096,
"max_seq_len": 6144,
"max_num_tokens": 16384,
"trt_llm_version": "v0.11.0"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
"vllm_client_parameters": {
},
"sglang_server_parameters": {
"disable_radix_cache": "",
"dtype": "bfloat16"
},
"sglang_client_parameters": {
}
}
]

View File

@ -1,80 +0,0 @@
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama70B_tp4_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"tensor_parallel_size": 4,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_mixtral8x7B_tp2_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"tensor_parallel_size": 2,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama70B_tp4_sharegpt_specdecode",
"qps_list": [2],
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"disable_log_requests": "",
"tensor_parallel_size": 4,
"swap_space": 16,
"speculative_model": "turboderp/Qwama-0.5B-Instruct",
"num_speculative_tokens": 4,
"speculative_draft_tensor_parallel_size": 1,
"use_v2_block_manager": ""
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
}
]

View File

@ -1,35 +0,0 @@
[
{
"test_name": "throughput_llama8B_tp1",
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"backend": "vllm"
}
},
{
"test_name": "throughput_llama70B_tp4",
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"backend": "vllm"
}
},
{
"test_name": "throughput_mixtral8x7B_tp2",
"parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"tensor_parallel_size": 2,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"backend": "vllm"
}
}
]

View File

@ -1,33 +0,0 @@
steps:
- label: "Build wheel - CUDA 12.1"
agents:
queue: cpu_queue
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
# rename the files to change linux -> manylinux1
- "for f in artifacts/dist/*.whl; do mv -- \"$$f\" \"$${f/linux/manylinux1}\"; done"
- "mv artifacts/dist/$(ls artifacts/dist) artifacts/dist/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl"
- "aws s3 cp artifacts/dist/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl s3://vllm-wheels/$BUILDKITE_COMMIT/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl"
- "aws s3 cp artifacts/dist/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl s3://vllm-wheels/nightly/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl"
env:
DOCKER_BUILDKIT: "1"
- block: "Build CUDA 11.8 wheel"
key: block-build-cu118-wheel
- label: "Build wheel - CUDA 11.8"
depends_on: block-build-cu118-wheel
agents:
queue: cpu_queue
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
# rename the files to change linux -> manylinux1
- "for f in artifacts/dist/*.whl; do mv -- \"$$f\" \"$${f/linux/manylinux1}\"; done"
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/$BUILDKITE_COMMIT/"
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/nightly/"
env:
DOCKER_BUILDKIT: "1"

View File

@ -1,154 +0,0 @@
# This script runs test inside the corresponding ROCm docker container.
set -o pipefail
# Print ROCm version
echo "--- Confirming Clean Initial State"
while true; do
sleep 3
if grep -q clean /opt/amdgpu/etc/gpu_state; then
echo "GPUs state is \"clean\""
break
fi
done
echo "--- ROCm info"
rocminfo
# cleanup older docker images
cleanup_docker() {
# Get Docker's root directory
docker_root=$(docker info -f '{{.DockerRootDir}}')
if [ -z "$docker_root" ]; then
echo "Failed to determine Docker root directory."
exit 1
fi
echo "Docker root directory: $docker_root"
# Check disk usage of the filesystem where Docker's root directory is located
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
# Define the threshold
threshold=70
if [ "$disk_usage" -gt "$threshold" ]; then
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes
docker volume prune -f
echo "Docker images and volumes cleanup completed."
else
echo "Disk usage is below $threshold%. No cleanup needed."
fi
}
# Call the cleanup docker function
cleanup_docker
echo "--- Resetting GPUs"
echo "reset" > /opt/amdgpu/etc/gpu_state
while true; do
sleep 3
if grep -q clean /opt/amdgpu/etc/gpu_state; then
echo "GPUs state is \"clean\""
break
fi
done
echo "--- Pulling container"
image_name="rocm/vllm-ci:${BUILDKITE_COMMIT}"
container_name="rocm_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
docker pull ${image_name}
remove_docker_container() {
docker rm -f ${container_name} || docker image rm -f ${image_name} || true
}
trap remove_docker_container EXIT
echo "--- Running container"
HF_CACHE="$(realpath ~)/huggingface"
mkdir -p ${HF_CACHE}
HF_MOUNT="/root/.cache/huggingface"
commands=$@
echo "Commands:$commands"
#ignore certain kernels tests
if [[ $commands == *" kernels "* ]]; then
commands="${commands} \
--ignore=kernels/test_attention.py \
--ignore=kernels/test_attention_selector.py \
--ignore=kernels/test_blocksparse_attention.py \
--ignore=kernels/test_causal_conv1d.py \
--ignore=kernels/test_cutlass.py \
--ignore=kernels/test_encoder_decoder_attn.py \
--ignore=kernels/test_flash_attn.py \
--ignore=kernels/test_flashinfer.py \
--ignore=kernels/test_gguf.py \
--ignore=kernels/test_int8_quant.py \
--ignore=kernels/test_machete_gemm.py \
--ignore=kernels/test_mamba_ssm.py \
--ignore=kernels/test_marlin_gemm.py \
--ignore=kernels/test_moe.py \
--ignore=kernels/test_prefix_prefill.py \
--ignore=kernels/test_rand.py \
--ignore=kernels/test_sampler.py"
fi
#ignore certain Entrypoints tests
if [[ $commands == *" entrypoints/openai "* ]]; then
commands=${commands//" entrypoints/openai "/" entrypoints/openai \
--ignore=entrypoints/openai/test_accuracy.py \
--ignore=entrypoints/openai/test_audio.py \
--ignore=entrypoints/openai/test_encoder_decoder.py \
--ignore=entrypoints/openai/test_embedding.py \
--ignore=entrypoints/openai/test_oot_registration.py "}
fi
PARALLEL_JOB_COUNT=8
# check if the command contains shard flag, we will run all shards in parallel because the host have 8 GPUs.
if [[ $commands == *"--shard-id="* ]]; then
for GPU in $(seq 0 $(($PARALLEL_JOB_COUNT-1))); do
#replace shard arguments
commands=${commands//"--shard-id= "/"--shard-id=${GPU} "}
commands=${commands//"--num-shards= "/"--num-shards=${PARALLEL_JOB_COUNT} "}
echo "Shard ${GPU} commands:$commands"
docker run \
--device /dev/kfd --device /dev/dri \
--network host \
--shm-size=16gb \
--rm \
-e HIP_VISIBLE_DEVICES=${GPU} \
-e HF_TOKEN \
-v ${HF_CACHE}:${HF_MOUNT} \
-e HF_HOME=${HF_MOUNT} \
--name ${container_name}_${GPU} \
${image_name} \
/bin/bash -c "${commands}" \
|& while read -r line; do echo ">>Shard $GPU: $line"; done &
PIDS+=($!)
done
#wait for all processes to finish and collect exit codes
for pid in ${PIDS[@]}; do
wait ${pid}
STATUS+=($?)
done
for st in ${STATUS[@]}; do
if [[ ${st} -ne 0 ]]; then
echo "One of the processes failed with $st"
exit ${st}
fi
done
else
docker run \
--device /dev/kfd --device /dev/dri \
--network host \
--shm-size=16gb \
--rm \
-e HIP_VISIBLE_DEVICES=0 \
-e HF_TOKEN \
-v ${HF_CACHE}:${HF_MOUNT} \
-e HF_HOME=${HF_MOUNT} \
--name ${container_name} \
${image_name} \
/bin/bash -c "${commands}"
fi

View File

@ -1,78 +0,0 @@
# This script is run by buildkite to run the benchmarks and upload the results to buildkite
set -ex
set -o pipefail
# cd into parent directory of this file
cd "$(dirname "${BASH_SOURCE[0]}")/.."
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
# run python-based benchmarks and upload the result to buildkite
python3 benchmarks/benchmark_latency.py --output-json latency_results.json 2>&1 | tee benchmark_latency.txt
bench_latency_exit_code=$?
python3 benchmarks/benchmark_throughput.py --input-len 256 --output-len 256 --output-json throughput_results.json 2>&1 | tee benchmark_throughput.txt
bench_throughput_exit_code=$?
# run server-based benchmarks and upload the result to buildkite
python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-chat-hf &
server_pid=$!
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
# wait for server to start, timeout after 600 seconds
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name sharegpt \
--dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json \
--model meta-llama/Llama-2-7b-chat-hf \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer meta-llama/Llama-2-7b-chat-hf \
--save-result \
2>&1 | tee benchmark_serving.txt
bench_serving_exit_code=$?
kill $server_pid
# write the results into a markdown file
echo "### Latency Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_latency.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
sed -n '$p' benchmark_latency.txt >> benchmark_results.md # last line
echo "### Throughput Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_throughput.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
sed -n '$p' benchmark_throughput.txt >> benchmark_results.md # last line
echo "### Serving Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_serving.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
echo '```' >> benchmark_results.md
tail -n 24 benchmark_serving.txt >> benchmark_results.md # last 24 lines
echo '```' >> benchmark_results.md
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /usr/bin/buildkite-agent ]; then
exit 0
fi
# upload the results to buildkite
buildkite-agent annotate --style "info" --context "benchmark-results" < benchmark_results.md
# exit with the exit code of the benchmarks
if [ $bench_latency_exit_code -ne 0 ]; then
exit $bench_latency_exit_code
fi
if [ $bench_throughput_exit_code -ne 0 ]; then
exit $bench_throughput_exit_code
fi
if [ $bench_serving_exit_code -ne 0 ]; then
exit $bench_serving_exit_code
fi
rm ShareGPT_V3_unfiltered_cleaned_split.json
buildkite-agent artifact upload "*.json"

View File

@ -1,39 +0,0 @@
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Try building the docker image
docker build -t cpu-test -f Dockerfile.ppc64le .
# Setup cleanup
remove_docker_container() { docker rm -f cpu-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image, setting --shm-size=4g for tensor parallel.
source /etc/environment
#docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN=$HF_TOKEN --name cpu-test cpu-test
# Run basic model test
docker exec cpu-test bash -c "
pip install pytest matplotlib einops transformers_stream_generator
pytest -v -s tests/models -m \"not vlm\" \
--ignore=tests/models/test_embedding.py \
--ignore=tests/models/test_oot_registration.py \
--ignore=tests/models/test_registry.py \
--ignore=tests/models/test_jamba.py \
--ignore=tests/models/test_mamba.py \
--ignore=tests/models/test_danube3_4b.py" # Mamba kernels and Danube3-4B on CPU is not supported
# online inference
docker exec cpu-test bash -c "
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m &
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name random \
--model facebook/opt-125m \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer facebook/opt-125m"

View File

@ -1,57 +0,0 @@
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Try building the docker image
numactl -C 48-95 -N 1 docker build -t cpu-test -f Dockerfile.cpu .
numactl -C 48-95 -N 1 docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-avx2 -f Dockerfile.cpu .
# Setup cleanup
remove_docker_container() { docker rm -f cpu-test cpu-test-avx2 || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image, setting --shm-size=4g for tensor parallel.
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=48-95 \
--cpuset-mems=1 --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=48-95 \
--cpuset-mems=1 --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-avx2 cpu-test-avx2
# offline inference
docker exec cpu-test-avx2 bash -c "python3 examples/offline_inference.py"
# Run basic model test
docker exec cpu-test bash -c "
pip install pytest matplotlib einops transformers_stream_generator datamodel_code_generator
pytest -v -s tests/models/encoder_decoder/language
pytest -v -s tests/models/decoder_only/language \
--ignore=tests/models/test_fp8.py \
--ignore=tests/models/decoder_only/language/test_jamba.py \
--ignore=tests/models/decoder_only/language/test_mamba.py \
--ignore=tests/models/decoder_only/language/test_granitemoe.py \
--ignore=tests/models/decoder_only/language/test_danube3_4b.py" # Mamba and Danube3-4B on CPU is not supported
# Run compressed-tensor test
# docker exec cpu-test bash -c "
# pytest -s -v \
# tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
# tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynanmic_per_token"
# Run AWQ test
docker exec cpu-test bash -c "
pytest -s -v \
tests/quantization/test_ipex_quant.py"
# online inference
docker exec cpu-test bash -c "
export VLLM_CPU_KVCACHE_SPACE=10
export VLLM_CPU_OMP_THREADS_BIND=48-92
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m &
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name random \
--model facebook/opt-125m \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer facebook/opt-125m"

View File

@ -1,105 +0,0 @@
#!/bin/bash
set -euox pipefail
if [[ $# -lt 4 ]]; then
echo "Usage: .buildkite/run-multi-node-test.sh WORKING_DIR NUM_NODES NUM_GPUS DOCKER_IMAGE COMMAND1 COMMAND2 ... COMMANDN"
exit 1
fi
WORKING_DIR=$1
NUM_NODES=$2
NUM_GPUS=$3
DOCKER_IMAGE=$4
shift 4
COMMANDS=("$@")
if [ ${#COMMANDS[@]} -ne $NUM_NODES ]; then
echo "The number of commands must be equal to the number of nodes."
echo "Number of nodes: $NUM_NODES"
echo "Number of commands: ${#COMMANDS[@]}"
exit 1
fi
echo "List of commands"
for command in "${COMMANDS[@]}"; do
echo $command
done
start_network() {
docker network create --subnet=192.168.10.0/24 docker-net
}
start_nodes() {
for node in $(seq 0 $(($NUM_NODES-1))); do
GPU_DEVICES='"device='
for node_gpu in $(seq 0 $(($NUM_GPUS - 1))); do
DEVICE_NUM=$(($node * $NUM_GPUS + $node_gpu))
GPU_DEVICES+=$(($DEVICE_NUM))
if [ $node_gpu -lt $(($NUM_GPUS - 1)) ]; then
GPU_DEVICES+=','
fi
done
GPU_DEVICES+='"'
# start the container in detached mode
# things to note:
# 1. --shm-size=10.24gb is required. don't use --ipc=host
# 2. pass HF_TOKEN to the container
# 3. map the huggingface cache directory to the container
# 3. assign ip addresses to the containers (head node: 192.168.10.10, worker nodes:
# starting from 192.168.10.11)
docker run -d --gpus "$GPU_DEVICES" --shm-size=10.24gb -e HF_TOKEN -v ~/.cache/huggingface:/root/.cache/huggingface --name node$node --network docker-net --ip 192.168.10.$((10 + $node)) --rm $DOCKER_IMAGE /bin/bash -c "tail -f /dev/null"
# organize containers into a ray cluster
if [ $node -eq 0 ]; then
# start the ray head node
docker exec -d node$node /bin/bash -c "ray start --head --port=6379 --block"
# wait for the head node to be ready
sleep 10
else
# start the ray worker nodes, and connect them to the head node
docker exec -d node$node /bin/bash -c "ray start --address=192.168.10.10:6379 --block"
fi
done
# wait for the cluster to be ready
sleep 10
# print the cluster status
docker exec node0 /bin/bash -c "ray status"
}
run_nodes() {
# important: iterate in reverse order to start the head node last
# we start the worker nodes first, in detached mode, and then start the head node
# in the foreground, so that the output of the head node is visible in the buildkite logs
for node in $(seq $(($NUM_NODES - 1)) -1 0); do
GPU_DEVICES='"device='
for node_gpu in $(seq 0 $(($NUM_GPUS - 1))); do
DEVICE_NUM=$(($node * $NUM_GPUS + $node_gpu))
GPU_DEVICES+=$(($DEVICE_NUM))
if [ $node_gpu -lt $(($NUM_GPUS - 1)) ]; then
GPU_DEVICES+=','
fi
done
GPU_DEVICES+='"'
echo "Running node$node with GPU devices: $GPU_DEVICES"
if [ $node -ne 0 ]; then
docker exec -d node$node /bin/bash -c "cd $WORKING_DIR ; ${COMMANDS[$node]}"
else
docker exec node$node /bin/bash -c "cd $WORKING_DIR ; ${COMMANDS[$node]}"
fi
done
}
cleanup() {
for node in $(seq 0 $(($NUM_NODES-1))); do
docker stop node$node
done
docker network rm docker-net
}
trap cleanup EXIT
start_network
start_nodes
run_nodes

View File

@ -1,51 +0,0 @@
# This script build the Neuron docker image and run the API server inside the container.
# It serves a sanity check for compilation and basic model usage.
set -e
# Try building the docker image
aws ecr get-login-password --region us-west-2 | docker login --username AWS --password-stdin 763104351884.dkr.ecr.us-west-2.amazonaws.com
# prune old image and containers to save disk space, and only once a day
# by using a timestamp file in tmp.
if [ -f /tmp/neuron-docker-build-timestamp ]; then
last_build=$(cat /tmp/neuron-docker-build-timestamp)
current_time=$(date +%s)
if [ $((current_time - last_build)) -gt 86400 ]; then
docker system prune -f
echo $current_time > /tmp/neuron-docker-build-timestamp
fi
else
echo $(date +%s) > /tmp/neuron-docker-build-timestamp
fi
docker build -t neuron -f Dockerfile.neuron .
# Setup cleanup
remove_docker_container() { docker rm -f neuron || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image
docker run --device=/dev/neuron0 --device=/dev/neuron1 --network host --name neuron neuron python3 -m vllm.entrypoints.api_server \
--model TinyLlama/TinyLlama-1.1B-Chat-v1.0 --max-num-seqs 8 --max-model-len 128 --block-size 128 --device neuron --tensor-parallel-size 2 &
# Wait for the server to start
wait_for_server_to_start() {
timeout=300
counter=0
while [ "$(curl -s -o /dev/null -w ''%{http_code}'' localhost:8000/health)" != "200" ]; do
sleep 1
counter=$((counter + 1))
if [ $counter -ge $timeout ]; then
echo "Timeout after $timeout seconds"
break
fi
done
}
wait_for_server_to_start
# Test a simple prompt
curl -X POST -H "Content-Type: application/json" \
localhost:8000/generate \
-d '{"prompt": "San Francisco is a"}'

View File

@ -1,14 +0,0 @@
# This script build the OpenVINO docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Try building the docker image
docker build -t openvino-test -f Dockerfile.openvino .
# Setup cleanup
remove_docker_container() { docker rm -f openvino-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/vllm/examples/offline_inference.py

View File

@ -1,15 +0,0 @@
set -e
# Build the docker image.
docker build -f Dockerfile.tpu -t vllm-tpu .
# Set up cleanup.
remove_docker_container() { docker rm -f tpu-test || true; }
trap remove_docker_container EXIT
# Remove the container that might not be cleaned up in the previous run.
remove_docker_container
# For HF_TOKEN.
source /etc/environment
# Run a simple end-to-end example.
docker run --privileged --net host --shm-size=16G -it -e HF_TOKEN=$HF_TOKEN --name tpu-test vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git && python3 -m pip install pytest && pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py && python3 /workspace/vllm/tests/tpu/test_compilation.py && python3 /workspace/vllm/examples/offline_inference_tpu.py"

View File

@ -1,14 +0,0 @@
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Try building the docker image
docker build -t xpu-test -f Dockerfile.xpu .
# Setup cleanup
remove_docker_container() { docker rm -f xpu-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --network host --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path --entrypoint="" xpu-test python3 examples/offline_inference.py

View File

@ -1,505 +0,0 @@
# In this file, you can add more tests to run either by adding a new step or
# adding a new command to an existing step. See different options here for examples.
# This script will be feed into Jinja template in `test-template-aws.j2` at
# https://github.com/vllm-project/buildkite-ci/blob/main/scripts/test-template-aws.j2
# to generate the final pipeline yaml file.
# Documentation
# label(str): the name of the test. emoji allowed.
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
# fast_check_only(bool): run this test on fastcheck pipeline only
# optional(bool): never run this test by default (i.e. need to unblock manually)
# command(str): the single command to run for tests. incompatible with commands.
# commands(list): the list of commands to run for test. incompatbile with command.
# mirror_hardwares(list): the list of hardwares to run the test on as well. currently only supports [amd]
# gpu(str): override the GPU selection for the test. default is on L4 GPUs. currently only supports a100
# num_gpus(int): override the number of GPUs for the test. default to 1 GPU. currently support 2,4.
# num_nodes(int): whether to simulate multi-node setup by launch multiple containers on one host,
# in this case, commands must be specified. the first command runs on first host, the second
# command runs on the second host.
# working_dir(str): specify the place where command should execute, default to /vllm-workspace/tests
# source_file_dependencies(list): the list of prefix to opt-in the test for, if empty, the test will always run.
# When adding a test
# - If the test belong to an existing group, add it there
# - If the test is short, add to any existing step
# - If the test takes more than 10min, then it is okay to create a new step.
# Note that all steps execute in parallel.
steps:
##### fast check tests #####
- label: Documentation Build # 2min
working_dir: "/vllm-workspace/test_docs/docs"
fast_check: true
no_gpu: True
commands:
- pip install -r requirements-docs.txt
- SPHINXOPTS=\"-W\" make html
# Check API reference (if it fails, you may have missing mock imports)
- grep \"sig sig-object py\" build/html/dev/sampling_params.html
- label: Async Engine, Inputs, Utils, Worker Test # 24min
fast_check: true
source_file_dependencies:
- vllm/
- tests/mq_llm_engine
- tests/async_engine
- tests/test_inputs
- tests/multimodal
- tests/test_utils
- tests/worker
commands:
- pytest -v -s mq_llm_engine # MQLLMEngine
- pytest -v -s async_engine # AsyncLLMEngine
- NUM_SCHEDULER_STEPS=4 pytest -v -s async_engine/test_async_llm_engine.py
- pytest -v -s test_inputs.py
- pytest -v -s multimodal
- pytest -v -s test_utils.py # Utils
- pytest -v -s worker # Worker
- label: Basic Correctness Test # 30min
#mirror_hardwares: [amd]
fast_check: true
source_file_dependencies:
- vllm/
- tests/basic_correctness/test_basic_correctness
- tests/basic_correctness/test_cpu_offload
- tests/basic_correctness/test_preemption
commands:
- pytest -v -s basic_correctness/test_basic_correctness.py
- pytest -v -s basic_correctness/test_cpu_offload.py
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Chunked Prefill Test
source_file_dependencies:
- vllm/
- tests/basic_correctness/test_chunked_prefill
commands:
- VLLM_ATTENTION_BACKEND=XFORMERS VLLM_ALLOW_DEPRECATED_BLOCK_MANAGER_V1=1 pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN VLLM_ALLOW_DEPRECATED_BLOCK_MANAGER_V1=1 pytest -v -s basic_correctness/test_chunked_prefill.py
- label: Core Test # 10min
mirror_hardwares: [amd]
fast_check: true
source_file_dependencies:
- vllm/core
- vllm/distributed
- tests/core
commands:
- VLLM_ALLOW_DEPRECATED_BLOCK_MANAGER_V1=1 pytest -v -s core/test_scheduler.py
- VLLM_ALLOW_DEPRECATED_BLOCK_MANAGER_V1=1 pytest -v -s core core/test_chunked_prefill_scheduler.py
- VLLM_ALLOW_DEPRECATED_BLOCK_MANAGER_V1=1 pytest -v -s core core/block/e2e/test_correctness.py
- VLLM_ALLOW_DEPRECATED_BLOCK_MANAGER_V1=1 pytest -v -s core core/block/e2e/test_correctness_sliding_window.py
- pytest -v -s core --ignore=core/block/e2e/test_correctness.py --ignore=core/test_scheduler.py --ignore=core/test_chunked_prefill_scheduler.py --ignore=core/block/e2e/test_correctness.py --ignore=core/block/e2e/test_correctness_sliding_window.py
- label: Entrypoints Test # 40min
working_dir: "/vllm-workspace/tests"
fast_check: true
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
commands:
- pip install -e ./plugins/vllm_add_dummy_model
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_guided_generate.py
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py
- pytest -v -s entrypoints/openai/test_oot_registration.py # it needs a clean process
- pytest -v -s entrypoints/test_chat_utils.py
- pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Distributed Tests (4 GPUs) # 10min
working_dir: "/vllm-workspace/tests"
num_gpus: 4
fast_check: true
source_file_dependencies:
- vllm/distributed/
- vllm/core/
- tests/distributed
- tests/spec_decode/e2e/test_integration_dist_tp4
- tests/compile
commands:
- pytest -v -s compile/test_basic_correctness.py
- pytest -v -s distributed/test_pynccl.py
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
- label: Metrics, Tracing Test # 10min
num_gpus: 2
fast_check: true
source_file_dependencies:
- vllm/
- tests/metrics
- tests/tracing
commands:
- pytest -v -s metrics
- "pip install \
'opentelemetry-sdk>=1.26.0,<1.27.0' \
'opentelemetry-api>=1.26.0,<1.27.0' \
'opentelemetry-exporter-otlp>=1.26.0,<1.27.0' \
'opentelemetry-semantic-conventions-ai>=0.4.1,<0.5.0'"
- pytest -v -s tracing
##### fast check tests #####
##### 1 GPU test #####
- label: Regression Test # 5min
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/test_regression
commands:
- pip install modelscope
- pytest -v -s test_regression.py
working_dir: "/vllm-workspace/tests" # optional
- label: Engine Test # 10min
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/engine
- tests/tokenization
commands:
- pytest -v -s engine test_sequence.py test_config.py test_logger.py
# OOM in the CI unless we run this separately
- pytest -v -s tokenization
- label: Examples Test # 15min
working_dir: "/vllm-workspace/examples"
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/entrypoints
- examples/
commands:
- pip install awscli tensorizer # for llava example and tensorizer test
- python3 offline_inference.py
- python3 cpu_offload.py
- python3 offline_inference_chat.py
- python3 offline_inference_with_prefix.py
- python3 llm_engine_example.py
- python3 offline_inference_vision_language.py
- python3 offline_inference_vision_language_multi_image.py
- python3 tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference_encoder_decoder.py
- label: Prefix Caching Test # 9min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/prefix_caching
commands:
- VLLM_ALLOW_DEPRECATED_BLOCK_MANAGER_V1=1 pytest -v -s prefix_caching/test_prefix_caching.py
- pytest -v -s prefix_caching --ignore=prefix_caching/test_prefix_caching.py
- label: Samplers Test # 36min
source_file_dependencies:
- vllm/model_executor/layers
- vllm/sampling_metadata.py
- tests/samplers
commands:
- pytest -v -s samplers
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
- label: LogitsProcessor Test # 5min
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/model_executor/layers
- tests/test_logits_processor
command: pytest -v -s test_logits_processor.py
- label: Speculative decoding tests # 30min
source_file_dependencies:
- vllm/spec_decode
- tests/spec_decode
commands:
- pytest -v -s spec_decode/e2e/test_multistep_correctness.py
- VLLM_ALLOW_DEPRECATED_BLOCK_MANAGER_V1=1 pytest -v -s spec_decode/e2e/test_compatibility.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py --ignore=spec_decode/e2e/test_compatibility.py
- label: LoRA Test %N # 15min each
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/lora
- tests/lora
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py
parallelism: 4
- label: "PyTorch Fullgraph Smoke Test" # 9min
fast_check: true
source_file_dependencies:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_basic_correctness.py
# TODO: re-write in comparison tests, and fix symbolic shape
# for quantization ops.
# - label: "PyTorch Fullgraph Test" # 18min
# source_file_dependencies:
# - vllm/
# - tests/compile
# commands:
# - pytest -v -s compile/test_full_graph.py
- label: Kernels Test %N # 1h each
mirror_hardwares: [amd]
source_file_dependencies:
- csrc/
- vllm/attention
- tests/kernels
commands:
- pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 4
- label: Tensorizer Test # 11min
mirror_hardwares: [amd]
soft_fail: true
source_file_dependencies:
- vllm/model_executor/model_loader
- tests/tensorizer_loader
commands:
- apt-get update && apt-get install -y curl libsodium23
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s tensorizer_loader
- label: Benchmarks # 9min
working_dir: "/vllm-workspace/.buildkite"
mirror_hardwares: [amd]
source_file_dependencies:
- benchmarks/
commands:
- pip install aiohttp
- bash run-benchmarks.sh
- label: Quantization Test # 33min
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
- tests/quantization
command: VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
- label: LM Eval Small Models # 53min
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-small.txt -t 1
- label: Encoder Decoder tests # 5min
source_file_dependencies:
- vllm/
- tests/encoder_decoder
commands:
- pytest -v -s encoder_decoder
- label: OpenAI-Compatible Tool Use # 20 min
fast_check: false
mirror_hardwares: [ amd ]
source_file_dependencies:
- vllm/
- tests/tool_use
commands:
- pytest -v -s tool_use
##### models test #####
- label: Basic Models Test # 3min
source_file_dependencies:
- vllm/
- tests/models
commands:
- pip install -e ./plugins/vllm_add_dummy_model
- pytest -v -s models/test_oot_registration.py # it needs a clean process
- pytest -v -s models/*.py --ignore=models/test_oot_registration.py
- label: Decoder-only Language Models Test # 1h36min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/models/decoder_only/language
commands:
- pytest -v -s models/decoder_only/language
- label: Decoder-only Multi-Modal Models Test # 1h31min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/models/decoder_only/audio_language
- tests/models/decoder_only/vision_language
commands:
- pytest -v -s models/decoder_only/audio_language
- pytest -v -s models/decoder_only/vision_language
- label: Other Models Test # 6min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/models/embedding/language
- tests/models/encoder_decoder/language
- tests/models/encoder_decoder/vision_language
commands:
- pytest -v -s models/embedding/language
- pytest -v -s models/encoder_decoder/language
- pytest -v -s models/encoder_decoder/vision_language
# This test is used only in PR development phase to test individual models and should never run on main
- label: Custom Models Test
optional: true
commands:
- echo 'Testing custom models...'
# PR authors can temporarily add commands below to test individual models
# e.g. pytest -v -s models/encoder_decoder/vision_language/test_mllama.py
# *To avoid merge conflicts, remember to REMOVE (not just comment out) them before merging the PR*
##### 1 GPU test #####
##### multi gpus test #####
- label: Distributed Comm Ops Test # 7min
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/distributed
- tests/distributed
commands:
- pytest -v -s distributed/test_comm_ops.py
- pytest -v -s distributed/test_shm_broadcast.py
- label: 2 Node Tests (4 GPUs in total) # 16min
working_dir: "/vllm-workspace/tests"
num_gpus: 2
num_nodes: 2
source_file_dependencies:
- vllm/distributed/
- vllm/engine/
- vllm/executor/
- vllm/model_executor/models/
- tests/distributed/
commands:
- # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep -q 'Same node test passed'
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_multi_node_assignment.py
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py
- # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep -q 'Same node test passed'
- label: Distributed Tests (2 GPUs) # 40min
#mirror_hardwares: [amd]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/distributed/
- vllm/engine/
- vllm/executor/
- vllm/model_executor/models/
- tests/distributed/
- vllm/compilation
commands:
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep -q 'Same node test passed'
- TARGET_TEST_SUITE=L4 VLLM_ALLOW_DEPRECATED_BLOCK_MANAGER_V1=1 pytest basic_correctness/ -v -s -m distributed_2_gpus
# Avoid importing model tests that cause CUDA reinitialization error
- pytest models/encoder_decoder/language/test_bart.py -v -s -m distributed_2_gpus
- pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m distributed_2_gpus
- pytest models/decoder_only/vision_language/test_broadcast.py -v -s -m distributed_2_gpus
- pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
- pip install -e ./plugins/vllm_add_dummy_model
- pytest -v -s distributed/test_distributed_oot.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s distributed/test_utils.py
- label: Multi-step Tests (4 GPUs) # 36min
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
- vllm/model_executor/layers/sampler.py
- vllm/sequence.py
- vllm/worker/worker_base.py
- vllm/worker/worker.py
- vllm/worker/multi_step_worker.py
- vllm/worker/model_runner_base.py
- vllm/worker/model_runner.py
- vllm/worker/multi_step_model_runner.py
- vllm/engine
- tests/multi_step
commands:
- pytest -v -s multi_step/test_correctness_async_llm.py
- pytest -v -s multi_step/test_correctness_llm.py
- label: Pipeline Parallelism Test # 45min
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
- vllm/distributed/
- vllm/engine/
- vllm/executor/
- vllm/model_executor/models/
- tests/distributed/
commands:
- pytest -v -s distributed/test_pp_cudagraph.py
- pytest -v -s distributed/test_pipeline_parallel.py
- label: LoRA Long Context (Distributed) # 11min
# This test runs llama 13B, so it is required to run on 4 GPUs.
num_gpus: 4
soft_fail: true
source_file_dependencies:
- vllm/lora
- tests/lora/test_long_context
commands:
# FIXIT: find out which code initialize cuda before running the test
# before the fix, we need to use spawn to test it
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s -x lora/test_long_context.py
- label: Weight Loading Multiple GPU Test # 33min
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/
- tests/weight_loading
commands:
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models.txt
- label: Weight Loading Multiple GPU Test - Large Models # optional
working_dir: "/vllm-workspace/tests"
num_gpus: 2
gpu: a100
optional: true
source_file_dependencies:
- vllm/
- tests/weight_loading
commands:
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
##### multi gpus test #####
##### A100 test #####
- label: Distributed Tests (A100) # optional
gpu: a100
num_gpus: 4
source_file_dependencies:
- vllm/
commands:
# NOTE: don't test llama model here, it seems hf implementation is buggy
# see https://github.com/vllm-project/vllm/pull/5689 for details
- pytest -v -s distributed/test_custom_all_reduce.py
- TARGET_TEST_SUITE=A100 pytest basic_correctness/ -v -s -m distributed_2_gpus
- pytest -v -s -x lora/test_mixtral.py
- label: LM Eval Large Models # optional
gpu: a100
num_gpus: 4
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-large.txt -t 4

View File

@ -1,26 +0,0 @@
BasedOnStyle: Google
UseTab: Never
IndentWidth: 2
ColumnLimit: 80
# Force pointers to the type for C++.
DerivePointerAlignment: false
PointerAlignment: Left
# Reordering #include statements can (and currently will) introduce errors
SortIncludes: false
# Style choices
AlignConsecutiveAssignments: false
AlignConsecutiveDeclarations: false
IndentPPDirectives: BeforeHash
IncludeCategories:
- Regex: '^<'
Priority: 4
- Regex: '^"(llvm|llvm-c|clang|clang-c|mlir|mlir-c)/'
Priority: 3
- Regex: '^"(qoda|\.\.)/'
Priority: 2
- Regex: '.*'
Priority: 1

View File

@ -1,34 +0,0 @@
/.github/
/.venv
/build
dist
vllm/*.so
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
.mypy_cache
# Distribution / packaging
.Python
/build/
cmake-build-*/
CMakeUserPresets.json
develop-eggs/
/dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

30
.github/CODEOWNERS vendored
View File

@ -1,30 +0,0 @@
# See https://help.github.com/articles/about-codeowners/
# for more info about CODEOWNERS file
# This lists cover the "core" components of vLLM that require careful review
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/core @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/engine/llm_engine.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/executor/executor_base.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/worker/worker_base.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/worker/worker.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/model_executor/layers/sampler.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
CMakeLists.txt @tlrmchlsmth @WoosukKwon
# Test ownership
/tests/async_engine @njhill @robertgshaw2-neuralmagic @simon-mo
/tests/test_inputs.py @DarkLight1337 @ywang96
/tests/entrypoints @DarkLight1337 @robertgshaw2-neuralmagic @simon-mo
/tests/models @DarkLight1337 @ywang96
/tests/multimodal @DarkLight1337 @ywang96
/tests/prefix_caching @comaniac @KuntaiDu
/tests/spec_decode @njhill @LiuXiaoxuanPKU
/tests/kernels @tlrmchlsmth @WoosukKwon
/tests/quantization @mgoin @robertgshaw2-neuralmagic
/.buildkite/lm-eval-harness @mgoin @simon-mo
/tests/distributed/test_multi_node_assignment.py @youkaichao
/tests/distributed/test_pipeline_parallel.py @youkaichao
/tests/distributed/test_same_node.py @youkaichao
/tests/multi_step @alexm-neuralmagic @comaniac
/tests/weight_loading @mgoin @youkaichao
/tests/basic_correctness/test_chunked_prefill @rkooo567 @comaniac

2
.github/FUNDING.yml vendored
View File

@ -1,2 +0,0 @@
github: [vllm-project]
open_collective: [vllm]

View File

@ -1,29 +0,0 @@
name: 📚 Documentation
description: Report an issue related to https://docs.vllm.ai/
title: "[Doc]: "
labels: ["documentation"]
body:
- type: textarea
attributes:
label: 📚 The doc issue
description: >
A clear and concise description of what content in https://docs.vllm.ai/ is an issue.
validations:
required: true
- type: textarea
attributes:
label: Suggest a potential alternative/fix
description: >
Tell us how we could improve the documentation in this regard.
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -1,47 +0,0 @@
name: 🛠️ Installation
description: Report an issue here when you hit errors during installation.
title: "[Installation]: "
labels: ["installation"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Your current environment
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
```text
The output of `python collect_env.py`
```
validations:
required: true
- type: textarea
attributes:
label: How you are installing vllm
description: |
Paste the full command you are trying to execute.
value: |
```sh
pip install -vvv vllm
```
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -1,45 +0,0 @@
name: 💻 Usage
description: Raise an issue here if you don't know how to use vllm.
title: "[Usage]: "
labels: ["usage"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Your current environment
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
```text
The output of `python collect_env.py`
```
validations:
required: true
- type: textarea
attributes:
label: How would you like to use vllm
description: |
A detailed description of how you want to use vllm.
value: |
I want to run inference of a [specific model](put link here). I don't know how to integrate it with vllm.
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -1,107 +0,0 @@
name: 🐛 Bug report
description: Raise an issue here if you find a bug.
title: "[Bug]: "
labels: ["bug"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Your current environment
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
<details>
<summary>The output of `python collect_env.py`</summary>
```text
Your output of `python collect_env.py` here
```
</details>
validations:
required: true
- type: textarea
attributes:
label: Model Input Dumps
description: |
If you are facing crashing due to illegal memory access or other issues with model execution, vLLM may dump the problematic input of the model. In this case, you will see the message `Error in model execution (input dumped to /tmp/err_xxx.pkl)`. If you see this message, please zip the file (because GitHub doesn't support .pkl file format) and upload it here. This will help us to reproduce the issue and facilitate the debugging process.
placeholder: |
Upload the dumped input file.
validations:
required: false
- type: textarea
attributes:
label: 🐛 Describe the bug
description: |
Please provide a clear and concise description of what the bug is.
If relevant, add a minimal example so that we can reproduce the error by running the code. It is very important for the snippet to be as succinct (minimal) as possible, so please take time to trim down any irrelevant code to help us debug efficiently. We are going to copy-paste your code and we expect to get the same result as you did: avoid any external data, and include the relevant imports, etc. For example:
```python
from vllm import LLM, SamplingParams
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="facebook/opt-125m")
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
If the code is too long (hopefully, it isn't), feel free to put it in a public gist and link it in the issue: https://gist.github.com.
Please also paste or describe the results you observe instead of the expected results. If you observe an error, please paste the error message including the **full** traceback of the exception. It may be relevant to wrap error messages in ```` ```triple quotes blocks``` ````.
Please set the environment variable `export VLLM_LOGGING_LEVEL=DEBUG` to turn on more logging to help debugging potential issues.
If you experienced crashes or hangs, it would be helpful to run vllm with `export VLLM_TRACE_FUNCTION=1` . All the function calls in vllm will be recorded. Inspect these log files, and tell which function crashes or hangs.
placeholder: |
A clear and concise description of what the bug is.
```python
# Sample code to reproduce the problem
```
```
The error message you got, with the full traceback.
```
validations:
required: true
- type: markdown
attributes:
value: >
⚠️ Please separate bugs of `transformers` implementation or usage from bugs of `vllm`. If you think anything is wrong with the models' output:
- Try the counterpart of `transformers` first. If the error appears, please go to [their issues](https://github.com/huggingface/transformers/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc).
- If the error only appears in vllm, please provide the detailed script of how you run `transformers` and `vllm`, also highlight the difference and what you expect.
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -1,38 +0,0 @@
name: 🚀 Feature request
description: Submit a proposal/request for a new vllm feature
title: "[Feature]: "
labels: ["feature request"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: 🚀 The feature, motivation and pitch
description: >
A clear and concise description of the feature proposal. Please outline the motivation for the proposal. Is your feature request related to a specific problem? e.g., *"I'm working on X and would like Y to be possible"*. If this is related to another GitHub issue, please link here too.
validations:
required: true
- type: textarea
attributes:
label: Alternatives
description: >
A description of any alternative solutions or features you've considered, if any.
- type: textarea
attributes:
label: Additional context
description: >
Add any other context or screenshots about the feature request.
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -1,40 +0,0 @@
name: 🤗 Support request for a new model from huggingface
description: Submit a proposal/request for a new model from huggingface
title: "[New Model]: "
labels: ["new model"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
#### We also highly recommend you read https://docs.vllm.ai/en/latest/models/adding_model.html first to understand how to add a new model.
- type: textarea
attributes:
label: The model to consider.
description: >
A huggingface url, pointing to the model, e.g. https://huggingface.co/openai-community/gpt2 .
validations:
required: true
- type: textarea
attributes:
label: The closest model vllm already supports.
description: >
Here is the list of models already supported by vllm: https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/models . Which model is the most similar to the model you want to add support for?
- type: textarea
attributes:
label: What's your difficulty of supporting the model you want?
description: >
For example, any new operators or new architecture?
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -1,59 +0,0 @@
name: ⚡ Discussion on the performance of vllm
description: Submit a proposal/discussion about the performance of vllm
title: "[Performance]: "
labels: ["performance"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Proposal to improve performance
description: >
How do you plan to improve vllm's performance?
validations:
required: false
- type: textarea
attributes:
label: Report of performance regression
description: >
Please provide detailed description of performance comparison to confirm the regression. You may want to run the benchmark script at https://github.com/vllm-project/vllm/tree/main/benchmarks .
validations:
required: false
- type: textarea
attributes:
label: Misc discussion on performance
description: >
Anything about the performance.
validations:
required: false
- type: textarea
attributes:
label: Your current environment (if you think it is necessary)
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
```text
The output of `python collect_env.py`
```
validations:
required: false
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -1,56 +0,0 @@
name: 💬 Request for comments (RFC).
description: Ask for feedback on major architectural changes or design choices.
title: "[RFC]: "
labels: ["RFC"]
body:
- type: markdown
attributes:
value: >
#### Please take a look at previous [RFCs](https://github.com/vllm-project/vllm/issues?q=label%3ARFC+sort%3Aupdated-desc) for reference.
- type: textarea
attributes:
label: Motivation.
description: >
The motivation of the RFC.
validations:
required: true
- type: textarea
attributes:
label: Proposed Change.
description: >
The proposed change of the RFC.
validations:
required: true
- type: textarea
attributes:
label: Feedback Period.
description: >
The feedback period of the RFC. Usually at least one week.
validations:
required: false
- type: textarea
attributes:
label: CC List.
description: >
The list of people you want to CC.
validations:
required: false
- type: textarea
attributes:
label: Any Other Things.
description: >
Any other things you would like to mention.
validations:
required: false
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -1,28 +0,0 @@
name: 🎲 Misc/random discussions that do not fit into the above categories.
description: Submit a discussion as you like. Note that developers are heavily overloaded and we mainly rely on community users to answer these issues.
title: "[Misc]: "
labels: ["misc"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Anything you want to discuss about vllm.
description: >
Anything you want to discuss about vllm.
validations:
required: true
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -1 +0,0 @@
blank_issues_enabled: false

View File

@ -1,74 +0,0 @@
FILL IN THE PR DESCRIPTION HERE
FIX #xxxx (*link existing issues this PR will resolve*)
**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**
---
<details>
<!-- inside this <details> section, markdown rendering does not work, so we use raw html here. -->
<summary><b> PR Checklist (Click to Expand) </b></summary>
<p>Thank you for your contribution to vLLM! Before submitting the pull request, please ensure the PR meets the following criteria. This helps vLLM maintain the code quality and improve the efficiency of the review process.</p>
<h3>PR Title and Classification</h3>
<p>Only specific types of PRs will be reviewed. The PR title is prefixed appropriately to indicate the type of change. Please use one of the following:</p>
<ul>
<li><code>[Bugfix]</code> for bug fixes.</li>
<li><code>[CI/Build]</code> for build or continuous integration improvements.</li>
<li><code>[Doc]</code> for documentation fixes and improvements.</li>
<li><code>[Model]</code> for adding a new model or improving an existing model. Model name should appear in the title.</li>
<li><code>[Frontend]</code> For changes on the vLLM frontend (e.g., OpenAI API server, <code>LLM</code> class, etc.) </li>
<li><code>[Kernel]</code> for changes affecting CUDA kernels or other compute kernels.</li>
<li><code>[Core]</code> for changes in the core vLLM logic (e.g., <code>LLMEngine</code>, <code>AsyncLLMEngine</code>, <code>Scheduler</code>, etc.)</li>
<li><code>[Hardware][Vendor]</code> for hardware-specific changes. Vendor name should appear in the prefix (e.g., <code>[Hardware][AMD]</code>).</li>
<li><code>[Misc]</code> for PRs that do not fit the above categories. Please use this sparingly.</li>
</ul>
<p><strong>Note:</strong> If the PR spans more than one category, please include all relevant prefixes.</p>
<h3>Code Quality</h3>
<p>The PR need to meet the following code quality standards:</p>
<ul>
<li>We adhere to <a href="https://google.github.io/styleguide/pyguide.html">Google Python style guide</a> and <a href="https://google.github.io/styleguide/cppguide.html">Google C++ style guide</a>.</li>
<li>Pass all linter checks. Please use <a href="https://github.com/vllm-project/vllm/blob/main/format.sh"><code>format.sh</code></a> to format your code.</li>
<li>The code need to be well-documented to ensure future contributors can easily understand the code.</li>
<li>Include sufficient tests to ensure the project to stay correct and robust. This includes both unit tests and integration tests.</li>
<li>Please add documentation to <code>docs/source/</code> if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.</li>
</ul>
<h3>Adding or changing kernels</h3>
<p>Each custom kernel needs a schema and one or more implementations to be registered with PyTorch.</p>
<ul>
<li>Make sure custom ops are registered following PyTorch guidelines: <a href="https://pytorch.org/tutorials/advanced/cpp_custom_ops.html#cpp-custom-ops-tutorial">Custom C++ and CUDA Operators</a> and <a href="https://docs.google.com/document/d/1_W62p8WJOQQUzPsJYa7s701JXt0qf2OfLub2sbkHOaU">The Custom Operators Manual</a></li>
<li>Custom operations that return <code>Tensors</code> require meta-functions. Meta-functions should be implemented and registered in python so that dynamic dims can be handled automatically. See above documents for a description of meta-functions.</li>
<li>Use <a href="https://pytorch.org/docs/stable/library.html#torch.library.opcheck"><code>torch.libary.opcheck()</code></a> to test the function registration and meta-function for any registered ops. See <code>tests/kernels</code> for examples.</li>
<li>When changing the C++ signature of an existing op, the schema must be updated to reflect the changes.</li>
<li>If a new custom type is needed, see the following document: <a href="https://docs.google.com/document/d/18fBMPuOJ0fY5ZQ6YyrHUppw9FA332CpNtgB6SOIgyuA">Custom Class Support in PT2</a>.
</ul>
<h3>Notes for Large Changes</h3>
<p>Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with <code>rfc-required</code> and might not go through the PR.</p>
<h3>What to Expect for the Reviews</h3>
<p>The goal of the vLLM team is to be a <i>transparent reviewing machine</i>. We would like to make the review process transparent and efficient and make sure no contributor feel confused or frustrated. However, the vLLM team is small, so we need to prioritize some PRs over others. Here is what you can expect from the review process: </p>
<ul>
<li> After the PR is submitted, the PR will be assigned to a reviewer. Every reviewer will pick up the PRs based on their expertise and availability.</li>
<li> After the PR is assigned, the reviewer will provide status update every 2-3 days. If the PR is not reviewed within 7 days, please feel free to ping the reviewer or the vLLM team.</li>
<li> After the review, the reviewer will put an <code> action-required</code> label on the PR if there are changes required. The contributor should address the comments and ping the reviewer to re-review the PR.</li>
<li> Please respond to all comments within a reasonable time frame. If a comment isn't clear or you disagree with a suggestion, feel free to ask for clarification or discuss the suggestion.
</li>
</ul>
<h3>Thank You</h3>
<p> Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM. Your contributions make vLLM a great tool for everyone! </p>
</details>

View File

@ -1,7 +0,0 @@
version: 2
updates:
# Maintain dependencies for GitHub Actions
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "weekly"

View File

@ -1,37 +0,0 @@
name: Lint GitHub Actions workflows
on:
push:
branches:
- "main"
paths:
- '.github/workflows/*.ya?ml'
- '.github/workflows/actionlint.*'
pull_request:
branches:
- "main"
paths:
- '.github/workflows/*.ya?ml'
- '.github/workflows/actionlint.*'
env:
LC_ALL: en_US.UTF-8
defaults:
run:
shell: bash
permissions:
contents: read
jobs:
actionlint:
runs-on: ubuntu-latest
steps:
- name: "Checkout"
uses: actions/checkout@eef61447b9ff4aafe5dcd4e0bbf5d482be7e7871 # v4.2.1
with:
fetch-depth: 0
- name: "Run actionlint"
run: |
tools/actionlint.sh -color

View File

@ -1,21 +0,0 @@
name: Add label on auto-merge enabled
on:
pull_request_target:
types:
- auto_merge_enabled
jobs:
add-label-on-auto-merge:
runs-on: ubuntu-latest
steps:
- name: Add label
uses: actions/github-script@v7
with:
script: |
github.rest.issues.addLabels({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
labels: ['ready']
})
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@ -1,41 +0,0 @@
name: clang-format
on:
# Trigger the workflow on push or pull request,
# but only for the main branch
push:
branches:
- main
pull_request:
branches:
- main
jobs:
clang-format:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.11"]
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install clang-format==18.1.5
- name: Running clang-format
run: |
EXCLUDES=(
'csrc/moe/topk_softmax_kernels.cu'
'csrc/quantization/gguf/ggml-common.h'
'csrc/quantization/gguf/dequantize.cuh'
'csrc/quantization/gguf/vecdotq.cuh'
'csrc/quantization/gguf/mmq.cuh'
'csrc/quantization/gguf/mmvq.cuh'
)
find csrc/ \( -name '*.h' -o -name '*.cpp' -o -name '*.cu' -o -name '*.cuh' \) -print \
| grep -vFf <(printf "%s\n" "${EXCLUDES[@]}") \
| xargs clang-format --dry-run --Werror

View File

@ -1,17 +0,0 @@
{
"problemMatcher": [
{
"owner": "actionlint",
"pattern": [
{
"regexp": "^(?:\\x1b\\[\\d+m)?(.+?)(?:\\x1b\\[\\d+m)*:(?:\\x1b\\[\\d+m)*(\\d+)(?:\\x1b\\[\\d+m)*:(?:\\x1b\\[\\d+m)*(\\d+)(?:\\x1b\\[\\d+m)*: (?:\\x1b\\[\\d+m)*(.+?)(?:\\x1b\\[\\d+m)* \\[(.+?)\\]$",
"file": 1,
"line": 2,
"column": 3,
"message": 4,
"code": 5
}
]
}
]
}

View File

@ -21,16 +21,16 @@ jobs:
upload_url: ${{ steps.create_release.outputs.upload_url }}
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Extract branch info
shell: bash
run: |
echo "release_tag=${GITHUB_REF#refs/*/}" >> "$GITHUB_ENV"
echo "release_tag=${GITHUB_REF#refs/*/}" >> $GITHUB_ENV
- name: Create Release
id: create_release
uses: "actions/github-script@v7"
uses: "actions/github-script@v6"
env:
RELEASE_TAG: ${{ env.release_tag }}
with:
@ -43,24 +43,18 @@ jobs:
name: Build Wheel
runs-on: ${{ matrix.os }}
needs: release
strategy:
fail-fast: false
matrix:
os: ['ubuntu-20.04']
python-version: ['3.8', '3.9', '3.10', '3.11', '3.12']
pytorch-version: ['2.4.0'] # Must be the most recent version that meets requirements-cuda.txt.
cuda-version: ['11.8', '12.1']
python-version: ['3.8', '3.9', '3.10', '3.11']
pytorch-version: ['2.0.1']
cuda-version: ['11.8'] # Github runner can't build anything older than 11.8
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Setup ccache
uses: hendrikmuhs/ccache-action@v1.2
with:
create-symlink: true
key: ${{ github.job }}-${{ matrix.python-version }}-${{ matrix.cuda-version }}
uses: actions/checkout@v3
- name: Set up Linux Env
if: ${{ runner.os == 'Linux' }}
@ -68,7 +62,7 @@ jobs:
bash -x .github/workflows/scripts/env.sh
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
@ -82,15 +76,13 @@ jobs:
- name: Build wheel
shell: bash
env:
CMAKE_BUILD_TYPE: Release # do not compile with debug symbol to reduce wheel size
run: |
bash -x .github/workflows/scripts/build.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }}
wheel_name=$(find dist -name "*whl" -print0 | xargs -0 -n 1 basename)
wheel_name=$(ls dist/*whl | xargs -n 1 basename)
asset_name=${wheel_name//"linux"/"manylinux1"}
echo "wheel_name=${wheel_name}" >> "$GITHUB_ENV"
echo "asset_name=${asset_name}" >> "$GITHUB_ENV"
echo "wheel_name=${wheel_name}" >> $GITHUB_ENV
echo "asset_name=${asset_name}" >> $GITHUB_ENV
- name: Upload Release Asset
uses: actions/upload-release-asset@v1
env:

View File

@ -1,4 +1,4 @@
name: mypy
name: pylint
on:
# Trigger the workflow on push or pull request,
@ -11,25 +11,21 @@ on:
- main
jobs:
mypy:
pylint:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
python-version: ["3.10"]
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install mypy==1.11.1
pip install types-setuptools
pip install types-PyYAML
pip install types-requests
pip install types-setuptools
- name: Mypy
pip install pylint==2.8.2
- name: Analysing the code with pylint
run: |
tools/mypy.sh
pylint vllm tests

View File

@ -1,21 +0,0 @@
name: PR Reminder Comment Bot
on:
pull_request_target:
types: [opened]
jobs:
pr_reminder:
runs-on: ubuntu-latest
steps:
- name: Remind to run full CI on PR
uses: actions/github-script@v7
with:
script: |
github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: '👋 Hi! Thank you for contributing to the vLLM project.\n Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which starts running only a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of those by going to your `fastcheck` build on Buildkite UI (linked in the PR checks section) and unblock them. If you do not have permission to unblock, ping `simon-mo` or `khluu` to add you in our Buildkite org. \n\nOnce the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.\n\n To run CI, PR reviewers can do one of these:\n- Add `ready` label to the PR\n- Enable auto-merge.\n\n🚀'
})
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@ -1,37 +0,0 @@
name: ruff
on:
# Trigger the workflow on push or pull request,
# but only for the main branch
push:
branches:
- main
pull_request:
branches:
- main
jobs:
ruff:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements-lint.txt
- name: Analysing the code with ruff
run: |
ruff check .
- name: Spelling check with codespell
run: |
codespell --toml pyproject.toml
- name: Run isort
run: |
isort . --check-only

View File

@ -8,12 +8,8 @@ PATH=${cuda_home}/bin:$PATH
LD_LIBRARY_PATH=${cuda_home}/lib64:$LD_LIBRARY_PATH
# Install requirements
$python_executable -m pip install -r requirements-build.txt -r requirements-cuda.txt
$python_executable -m pip install wheel packaging
$python_executable -m pip install -r requirements.txt
# Limit the number of parallel jobs to avoid OOM
export MAX_JOBS=1
# Make sure release wheels are built for the following architectures
export TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX"
export VLLM_FA_CMAKE_GPU_ARCHES="80-real;90-real"
# Build
$python_executable setup.py bdist_wheel --dist-dir=dist

View File

@ -8,7 +8,7 @@ module.exports = async (github, context, core) => {
generate_release_notes: true,
name: process.env.RELEASE_TAG,
owner: context.repo.owner,
prerelease: true,
prerelease: false,
repo: context.repo.repo,
tag_name: process.env.RELEASE_TAG,
});

View File

@ -16,8 +16,3 @@ sudo apt clean
# Test nvcc
PATH=/usr/local/cuda-$1/bin:${PATH}
nvcc --version
# Log gcc, g++, c++ versions
gcc --version
g++ --version
c++ --version

View File

@ -14,11 +14,11 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
python-version: ["3.10"]
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
@ -28,4 +28,4 @@ jobs:
pip install toml==0.10.2
- name: Running yapf
run: |
yapf --diff --recursive .
yapf --diff --recursive vllm tests

25
.gitignore vendored
View File

@ -1,9 +1,3 @@
# version file generated by setuptools-scm
/vllm/_version.py
# vllm-flash-attn built from source
vllm/vllm_flash_attn/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
@ -15,8 +9,6 @@ __pycache__/
# Distribution / packaging
.Python
build/
cmake-build-*/
CMakeUserPresets.json
develop-eggs/
dist/
downloads/
@ -33,7 +25,6 @@ share/python-wheels/
.installed.cfg
*.egg
MANIFEST
/.deps/
# PyInstaller
# Usually these files are written by a python script from a template
@ -79,8 +70,6 @@ instance/
# Sphinx documentation
docs/_build/
docs/source/getting_started/examples/*.rst
!**/*.template.rst
# PyBuilder
.pybuilder/
@ -93,9 +82,6 @@ target/
profile_default/
ipython_config.py
# generated files
**/generated/**
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
@ -191,14 +177,3 @@ _build/
# vim swap files
*.swo
*.swp
# hip files generated by PyTorch
*.hip
*_hip*
hip_compat.h
# Benchmark dataset
benchmarks/*.json
# Linting
actionlint

434
.pylintrc Normal file
View File

@ -0,0 +1,434 @@
# This Pylint rcfile contains a best-effort configuration to uphold the
# best-practices and style described in the Google Python style guide:
# https://google.github.io/styleguide/pyguide.html
#
# Its canonical open-source location is:
# https://google.github.io/styleguide/pylintrc
[MASTER]
# Files or directories to be skipped. They should be base names, not paths.
ignore=docs
# Files or directories matching the regex patterns are skipped. The regex
# matches against base names, not paths.
ignore-patterns=
# Pickle collected data for later comparisons.
persistent=no
# List of plugins (as comma separated values of python modules names) to load,
# usually to register additional checkers.
load-plugins=
# Use multiple processes to speed up Pylint.
jobs=4
# Allow loading of arbitrary C extensions. Extensions are imported into the
# active Python interpreter and may run arbitrary code.
unsafe-load-any-extension=no
[MESSAGES CONTROL]
# Only show warnings with the listed confidence levels. Leave empty to show
# all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED
confidence=
# Enable the message, report, category or checker with the given id(s). You can
# either give multiple identifier separated by comma (,) or put this option
# multiple time (only on the command line, not in the configuration file where
# it should appear only once). See also the "--disable" option for examples.
#enable=
# Disable the message, report, category or checker with the given id(s). You
# can either give multiple identifiers separated by comma (,) or put this
# option multiple times (only on the command line, not in the configuration
# file where it should appear only once).You can also use "--disable=all" to
# disable everything first and then reenable specific checks. For example, if
# you want to run only the similarities checker, you can use "--disable=all
# --enable=similarities". If you want to run only the classes checker, but have
# no Warning level messages displayed, use"--disable=all --enable=classes
# --disable=W"
disable=abstract-method,
apply-builtin,
arguments-differ,
attribute-defined-outside-init,
backtick,
bad-option-value,
basestring-builtin,
buffer-builtin,
c-extension-no-member,
consider-using-enumerate,
cmp-builtin,
cmp-method,
coerce-builtin,
coerce-method,
delslice-method,
div-method,
duplicate-code,
eq-without-hash,
execfile-builtin,
file-builtin,
filter-builtin-not-iterating,
fixme,
getslice-method,
global-statement,
hex-method,
idiv-method,
implicit-str-concat-in-sequence,
import-error,
import-self,
import-star-module-level,
inconsistent-return-statements,
input-builtin,
intern-builtin,
invalid-str-codec,
locally-disabled,
logging-fstring-interpolation, # added by vLLM
logging-not-lazy, # added by vLLM
long-builtin,
long-suffix,
map-builtin-not-iterating,
misplaced-comparison-constant,
missing-class-docstring, # TODO (vLLM): enable
missing-function-docstring,
missing-module-docstring, # TODO (vLLM): enable
metaclass-assignment,
next-method-called,
next-method-defined,
no-absolute-import,
no-else-break,
no-else-continue,
no-else-raise,
no-else-return,
no-init, # added
no-member,
no-name-in-module,
no-self-use,
nonzero-method,
oct-method,
old-division,
old-ne-operator,
old-octal-literal,
old-raise-syntax,
parameter-unpacking,
print-statement,
raising-string,
range-builtin-not-iterating,
raw_input-builtin,
rdiv-method,
reduce-builtin,
relative-import,
reload-builtin,
round-builtin,
setslice-method,
signature-differs,
standarderror-builtin,
suppressed-message,
sys-max-int,
too-few-public-methods,
too-many-ancestors,
too-many-arguments,
too-many-boolean-expressions,
too-many-branches,
too-many-instance-attributes,
too-many-locals,
too-many-nested-blocks,
too-many-public-methods,
too-many-return-statements,
too-many-statements,
trailing-newlines,
unichr-builtin,
unicode-builtin,
unnecessary-pass,
unpacking-in-except,
unspecified-encoding,
useless-else-on-loop,
useless-object-inheritance,
useless-suppression,
using-cmp-argument,
wrong-import-order,
xrange-builtin,
zip-builtin-not-iterating,
[REPORTS]
# Set the output format. Available formats are text, parseable, colorized, msvs
# (visual studio) and html. You can also give a reporter class, eg
# mypackage.mymodule.MyReporterClass.
output-format=text
# Tells whether to display a full report or only the messages
reports=no
# Python expression which should return a note less than 10 (10 is the highest
# note). You have access to the variables errors warning, statement which
# respectively contain the number of errors / warnings messages and the total
# number of statements analyzed. This is used by the global evaluation report
# (RP0004).
evaluation=10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)
# Template used to display messages. This is a python new-style format string
# used to format the message information. See doc for all details
#msg-template=
[BASIC]
# Good variable names which should always be accepted, separated by a comma
good-names=main,_
# Bad variable names which should always be refused, separated by a comma
bad-names=
# Colon-delimited sets of names that determine each other's naming style when
# the name regexes allow several styles.
name-group=
# Include a hint for the correct naming format with invalid-name
include-naming-hint=no
# List of decorators that produce properties, such as abc.abstractproperty. Add
# to this list to register other decorators that produce valid properties.
property-classes=abc.abstractproperty,cached_property.cached_property,cached_property.threaded_cached_property,cached_property.cached_property_with_ttl,cached_property.threaded_cached_property_with_ttl
# Regular expression matching correct function names
function-rgx=^(?:(?P<exempt>setUp|tearDown|setUpModule|tearDownModule)|(?P<camel_case>_?[A-Z][a-zA-Z0-9]*)|(?P<snake_case>_?[a-z][a-z0-9_]*))$
# Regular expression matching correct variable names
variable-rgx=^[a-z][a-z0-9_]*$
# Regular expression matching correct constant names
const-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
# Regular expression matching correct attribute names
attr-rgx=^_{0,2}[a-z][a-z0-9_]*$
# Regular expression matching correct argument names
argument-rgx=^[a-z][a-z0-9_]*$
# Regular expression matching correct class attribute names
class-attribute-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
# Regular expression matching correct inline iteration names
inlinevar-rgx=^[a-z][a-z0-9_]*$
# Regular expression matching correct class names
class-rgx=^_?[A-Z][a-zA-Z0-9]*$
# Regular expression matching correct module names
module-rgx=^(_?[a-z][a-z0-9_]*|__init__)$
# Regular expression matching correct method names
method-rgx=(?x)^(?:(?P<exempt>_[a-z0-9_]+__|runTest|setUp|tearDown|setUpTestCase|tearDownTestCase|setupSelf|tearDownClass|setUpClass|(test|assert)_*[A-Z0-9][a-zA-Z0-9_]*|next)|(?P<camel_case>_{0,2}[A-Z][a-zA-Z0-9_]*)|(?P<snake_case>_{0,2}[a-z][a-z0-9_]*))$
# Regular expression which should only match function or class names that do
# not require a docstring.
no-docstring-rgx=(__.*__|main|test.*|.*test|.*Test)$
# Minimum line length for functions/classes that require docstrings, shorter
# ones are exempt.
docstring-min-length=10
[TYPECHECK]
# List of decorators that produce context managers, such as
# contextlib.contextmanager. Add to this list to register other decorators that
# produce valid context managers.
contextmanager-decorators=contextlib.contextmanager,contextlib2.contextmanager
# Tells whether missing members accessed in mixin class should be ignored. A
# mixin class is detected if its name ends with "mixin" (case insensitive).
ignore-mixin-members=yes
# List of module names for which member attributes should not be checked
# (useful for modules/projects where namespaces are manipulated during runtime
# and thus existing member attributes cannot be deduced by static analysis. It
# supports qualified module names, as well as Unix pattern matching.
ignored-modules=
# List of class names for which member attributes should not be checked (useful
# for classes with dynamically set attributes). This supports the use of
# qualified names.
ignored-classes=optparse.Values,thread._local,_thread._local
# List of members which are set dynamically and missed by pylint inference
# system, and so shouldn't trigger E1101 when accessed. Python regular
# expressions are accepted.
generated-members=
[FORMAT]
# Maximum number of characters on a single line.
max-line-length=80
# TODO(https://github.com/PyCQA/pylint/issues/3352): Direct pylint to exempt
# lines made too long by directives to pytype.
# Regexp for a line that is allowed to be longer than the limit.
ignore-long-lines=(?x)(
^\s*(\#\ )?<?https?://\S+>?$|
^\s*(from\s+\S+\s+)?import\s+.+$)
# Allow the body of an if to be on the same line as the test if there is no
# else.
single-line-if-stmt=yes
# Maximum number of lines in a module
max-module-lines=99999
# String used as indentation unit. The internal Google style guide mandates 2
# spaces. Google's externaly-published style guide says 4, consistent with
# PEP 8. Here, we use 2 spaces, for conformity with many open-sourced Google
# projects (like TensorFlow).
indent-string=' '
# Number of spaces of indent required inside a hanging or continued line.
indent-after-paren=4
# Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
expected-line-ending-format=
[MISCELLANEOUS]
# List of note tags to take in consideration, separated by a comma.
notes=TODO
[STRING]
# This flag controls whether inconsistent-quotes generates a warning when the
# character used as a quote delimiter is used inconsistently within a module.
check-quote-consistency=yes
[VARIABLES]
# Tells whether we should check for unused import in __init__ files.
init-import=no
# A regular expression matching the name of dummy variables (i.e. expectedly
# not used).
dummy-variables-rgx=^\*{0,2}(_$|unused_|dummy_)
# List of additional names supposed to be defined in builtins. Remember that
# you should avoid to define new builtins when possible.
additional-builtins=
# List of strings which can identify a callback function by name. A callback
# name must start or end with one of those strings.
callbacks=cb_,_cb
# List of qualified module names which can have objects that can redefine
# builtins.
redefining-builtins-modules=six,six.moves,past.builtins,future.builtins,functools
[LOGGING]
# Logging modules to check that the string format arguments are in logging
# function parameter format
logging-modules=logging,absl.logging,tensorflow.io.logging
[SIMILARITIES]
# Minimum lines number of a similarity.
min-similarity-lines=4
# Ignore comments when computing similarities.
ignore-comments=yes
# Ignore docstrings when computing similarities.
ignore-docstrings=yes
# Ignore imports when computing similarities.
ignore-imports=no
[SPELLING]
# Spelling dictionary name. Available dictionaries: none. To make it working
# install python-enchant package.
spelling-dict=
# List of comma separated words that should not be checked.
spelling-ignore-words=
# A path to a file that contains private dictionary; one word per line.
spelling-private-dict-file=
# Tells whether to store unknown words to indicated private dictionary in
# --spelling-private-dict-file option instead of raising a message.
spelling-store-unknown-words=no
[IMPORTS]
# Deprecated modules which should not be used, separated by a comma
deprecated-modules=regsub,
TERMIOS,
Bastion,
rexec,
sets
# Create a graph of every (i.e. internal and external) dependencies in the
# given file (report RP0402 must not be disabled)
import-graph=
# Create a graph of external dependencies in the given file (report RP0402 must
# not be disabled)
ext-import-graph=
# Create a graph of internal dependencies in the given file (report RP0402 must
# not be disabled)
int-import-graph=
# Force import order to recognize a module as part of the standard
# compatibility libraries.
known-standard-library=
# Force import order to recognize a module as part of a third party library.
known-third-party=enchant, absl
# Analyse import fallback blocks. This can be used to support both Python 2 and
# 3 compatible code, which means that the block might have code that exists
# only in one or another interpreter, leading to false positives when analysed.
analyse-fallback-blocks=no
[CLASSES]
# List of method names used to declare (i.e. assign) instance attributes.
defining-attr-methods=__init__,
__new__,
setUp
# List of member names, which should be excluded from the protected access
# warning.
exclude-protected=_asdict,
_fields,
_replace,
_source,
_make
# List of valid names for the first argument in a class method.
valid-classmethod-first-arg=cls,
class_
# List of valid names for the first argument in a metaclass class method.
valid-metaclass-classmethod-first-arg=mcs
[EXCEPTIONS]
# Exceptions that will emit a warning when being caught. Defaults to
# "Exception"
overgeneral-exceptions=StandardError,
Exception,
BaseException

View File

@ -10,13 +10,12 @@ build:
sphinx:
configuration: docs/source/conf.py
fail_on_warning: true
# If using Sphinx, optionally build your docs in additional formats such as PDF
formats: []
formats:
- pdf
# Optionally declare the Python requirements required to build your docs
python:
install:
- requirements: docs/requirements-docs.txt

View File

@ -1 +0,0 @@
collect_env.py

View File

@ -1,560 +0,0 @@
cmake_minimum_required(VERSION 3.26)
# When building directly using CMake, make sure you run the install step
# (it places the .so files in the correct location).
#
# Example:
# mkdir build && cd build
# cmake -G Ninja -DVLLM_PYTHON_EXECUTABLE=`which python3` -DCMAKE_INSTALL_PREFIX=.. ..
# cmake --build . --target install
#
# If you want to only build one target, make sure to install it manually:
# cmake --build . --target _C
# cmake --install . --component _C
project(vllm_extensions LANGUAGES CXX)
# CUDA by default, can be overridden by using -DVLLM_TARGET_DEVICE=... (used by setup.py)
set(VLLM_TARGET_DEVICE "cuda" CACHE STRING "Target device backend for vLLM")
message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")
message(STATUS "Target device: ${VLLM_TARGET_DEVICE}")
include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake)
# Suppress potential warnings about unused manually-specified variables
set(ignoreMe "${VLLM_PYTHON_PATH}")
# Prevent installation of dependencies (cutlass) by default.
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
#
# Supported python versions. These versions will be searched in order, the
# first match will be selected. These should be kept in sync with setup.py.
#
set(PYTHON_SUPPORTED_VERSIONS "3.8" "3.9" "3.10" "3.11" "3.12")
# Supported NVIDIA architectures.
set(CUDA_SUPPORTED_ARCHS "7.0;7.5;8.0;8.6;8.9;9.0")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100")
#
# Supported/expected torch versions for CUDA/ROCm.
#
# Currently, having an incorrect pytorch version results in a warning
# rather than an error.
#
# Note: the CUDA torch version is derived from pyproject.toml and various
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.4.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.5.0")
#
# Try to find python package with an executable that exactly matches
# `VLLM_PYTHON_EXECUTABLE` and is one of the supported versions.
#
if (VLLM_PYTHON_EXECUTABLE)
find_python_from_executable(${VLLM_PYTHON_EXECUTABLE} "${PYTHON_SUPPORTED_VERSIONS}")
else()
message(FATAL_ERROR
"Please set VLLM_PYTHON_EXECUTABLE to the path of the desired python version"
" before running cmake configure.")
endif()
#
# Update cmake's `CMAKE_PREFIX_PATH` with torch location.
#
append_cmake_prefix_path("torch" "torch.utils.cmake_prefix_path")
# Ensure the 'nvcc' command is in the PATH
find_program(NVCC_EXECUTABLE nvcc)
if (CUDA_FOUND AND NOT NVCC_EXECUTABLE)
message(FATAL_ERROR "nvcc not found")
endif()
#
# Import torch cmake configuration.
# Torch also imports CUDA (and partially HIP) languages with some customizations,
# so there is no need to do this explicitly with check_language/enable_language,
# etc.
#
find_package(Torch REQUIRED)
#
message(STATUS "Enabling core extension.")
# Define _core_C extension
# built for (almost) every target platform, (excludes TPU and Neuron)
set(VLLM_EXT_SRC
"csrc/core/torch_bindings.cpp")
define_gpu_extension_target(
_core_C
DESTINATION vllm
LANGUAGE CXX
SOURCES ${VLLM_EXT_SRC}
COMPILE_FLAGS ${CXX_COMPILE_FLAGS}
USE_SABI 3
WITH_SOABI)
#
# Forward the non-CUDA device extensions to external CMake scripts.
#
if (NOT VLLM_TARGET_DEVICE STREQUAL "cuda" AND
NOT VLLM_TARGET_DEVICE STREQUAL "rocm")
if (VLLM_TARGET_DEVICE STREQUAL "cpu")
include(${CMAKE_CURRENT_LIST_DIR}/cmake/cpu_extension.cmake)
else()
return()
endif()
return()
endif()
#
# Set up GPU language and check the torch version and warn if it isn't
# what is expected.
#
if (NOT HIP_FOUND AND CUDA_FOUND)
set(VLLM_GPU_LANG "CUDA")
if (NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_CUDA})
message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_CUDA} "
"expected for CUDA build, saw ${Torch_VERSION} instead.")
endif()
elseif(HIP_FOUND)
set(VLLM_GPU_LANG "HIP")
# Importing torch recognizes and sets up some HIP/ROCm configuration but does
# not let cmake recognize .hip files. In order to get cmake to understand the
# .hip extension automatically, HIP must be enabled explicitly.
enable_language(HIP)
# ROCm 5.X and 6.X
if (ROCM_VERSION_DEV_MAJOR GREATER_EQUAL 5 AND
NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM})
message(WARNING "Pytorch version >= ${TORCH_SUPPORTED_VERSION_ROCM} "
"expected for ROCm build, saw ${Torch_VERSION} instead.")
endif()
else()
message(FATAL_ERROR "Can't find CUDA or HIP installation.")
endif()
if(VLLM_GPU_LANG STREQUAL "CUDA")
#
# For cuda we want to be able to control which architectures we compile for on
# a per-file basis in order to cut down on compile time. So here we extract
# the set of architectures we want to compile for and remove the from the
# CMAKE_CUDA_FLAGS so that they are not applied globally.
#
clear_cuda_arches(CUDA_ARCH_FLAGS)
extract_unique_cuda_archs_ascending(CUDA_ARCHS "${CUDA_ARCH_FLAGS}")
message(STATUS "CUDA target architectures: ${CUDA_ARCHS}")
# Filter the target architectures by the supported supported archs
# since for some files we will build for all CUDA_ARCHS.
cuda_archs_loose_intersection(CUDA_ARCHS
"${CUDA_SUPPORTED_ARCHS}" "${CUDA_ARCHS}")
message(STATUS "CUDA supported target architectures: ${CUDA_ARCHS}")
else()
#
# For other GPU targets override the GPU architectures detected by cmake/torch
# and filter them by the supported versions for the current language.
# The final set of arches is stored in `VLLM_GPU_ARCHES`.
#
override_gpu_arches(VLLM_GPU_ARCHES
${VLLM_GPU_LANG}
"${${VLLM_GPU_LANG}_SUPPORTED_ARCHS}")
endif()
#
# Query torch for additional GPU compilation flags for the given
# `VLLM_GPU_LANG`.
# The final set of arches is stored in `VLLM_GPU_FLAGS`.
#
get_torch_gpu_compiler_flags(VLLM_GPU_FLAGS ${VLLM_GPU_LANG})
#
# Set nvcc parallelism.
#
if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
endif()
#
# Use FetchContent for C++ dependencies that are compiled as part of vLLM's build process.
# Configure it to place files in vllm/.deps, in order to play nicely with sccache.
#
include(FetchContent)
get_filename_component(PROJECT_ROOT_DIR "${CMAKE_CURRENT_SOURCE_DIR}" ABSOLUTE)
file(MAKE_DIRECTORY "${FETCHCONTENT_BASE_DIR}")
set(FETCHCONTENT_BASE_DIR "${PROJECT_ROOT_DIR}/.deps")
message(STATUS "FetchContent base directory: ${FETCHCONTENT_BASE_DIR}")
#
# Define other extension targets
#
#
# _C extension
#
set(VLLM_EXT_SRC
"csrc/cache_kernels.cu"
"csrc/attention/attention_kernels.cu"
"csrc/pos_encoding_kernels.cu"
"csrc/activation_kernels.cu"
"csrc/layernorm_kernels.cu"
"csrc/quantization/gptq/q_gemm.cu"
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
"csrc/quantization/fp8/common.cu"
"csrc/cuda_utils_kernels.cu"
"csrc/moe_align_block_size_kernels.cu"
"csrc/prepare_inputs/advance_step.cu"
"csrc/torch_bindings.cpp")
if(VLLM_GPU_LANG STREQUAL "CUDA")
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
# Set CUTLASS_REVISION manually -- its revision detection doesn't work in this case.
set(CUTLASS_REVISION "v3.5.1" CACHE STRING "CUTLASS revision to use")
FetchContent_Declare(
cutlass
GIT_REPOSITORY https://github.com/nvidia/cutlass.git
GIT_TAG v3.5.1
GIT_PROGRESS TRUE
# Speed up CUTLASS download by retrieving only the specified GIT_TAG instead of the history.
# Important: If GIT_SHALLOW is enabled then GIT_TAG works only with branch names and tags.
# So if the GIT_TAG above is updated to a commit hash, GIT_SHALLOW must be set to FALSE
GIT_SHALLOW TRUE
)
FetchContent_MakeAvailable(cutlass)
list(APPEND VLLM_EXT_SRC
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
"csrc/quantization/aqlm/gemm_kernels.cu"
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/quantization/gguf/gguf_kernel.cu"
"csrc/custom_all_reduce.cu"
"csrc/permute_cols.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu")
set_gencode_flags_for_srcs(
SRCS "${VLLM_EXT_SRC}"
CUDA_ARCHS "${CUDA_ARCHS}")
# Only build Marlin kernels if we are building for at least some compatible archs.
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
# are not supported by Machete yet.
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.9;9.0" ${CUDA_ARCHS})
if (MARLIN_ARCHS)
set(MARLIN_SRCS
"csrc/quantization/fp8/fp8_marlin.cu"
"csrc/quantization/marlin/dense/marlin_cuda_kernel.cu"
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
"csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu"
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
"csrc/quantization/gptq_marlin/awq_marlin_repack.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_SRCS}"
CUDA_ARCHS "${MARLIN_ARCHS}")
list(APPEND VLLM_EXT_SRC "${MARLIN_SRCS}")
message(STATUS "Building Marlin kernels for archs: ${MARLIN_ARCHS}")
else()
message(STATUS "Not building Marlin kernels as no compatible archs found"
"in CUDA target architectures")
endif()
#
# The cutlass_scaled_mm kernels for Hopper (c3x, i.e. CUTLASS 3.x) require
# CUDA 12.0 or later (and only work on Hopper, 9.0/9.0a for now).
cuda_archs_loose_intersection(SCALED_MM_3X_ARCHS "9.0;9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_3X_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_3X_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SCALED_MM_C3X=1")
message(STATUS "Building scaled_mm_c3x for archs: ${SCALED_MM_3X_ARCHS}")
else()
# clear SCALED_MM_3X_ARCHS so the scaled_mm_c2x kernels know we didn't
# build any 3x kernels
set(SCALED_MM_3X_ARCHS)
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_3X_ARCHS)
message(STATUS "Not building scaled_mm_c3x as CUDA Compiler version is "
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "
"later if you intend on running FP8 quantized models on "
"Hopper.")
else()
message(STATUS "Not building scaled_mm_c3x as no compatible archs found "
"in CUDA target architectures")
endif()
endif()
#
# For the cutlass_scaled_mm kernels we want to build the c2x (CUTLASS 2.x)
# kernels for the remaining archs that are not already built for 3x.
cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS
"7.5;8.0;8.6;8.9;9.0;9.0a" "${CUDA_ARCHS}")
# subtract out the archs that are already built for 3x
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
if (SCALED_MM_2X_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_2X_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SCALED_MM_C2X=1")
message(STATUS "Building scaled_mm_c2x for archs: ${SCALED_MM_2X_ARCHS}")
else()
if (SCALED_MM_3X_ARCHS)
message(STATUS "Not building scaled_mm_c2x as all archs are already built"
" for and covered by scaled_mm_c3x")
else()
message(STATUS "Not building scaled_mm_c2x as no compatible archs found "
"in CUDA target architectures")
endif()
endif()
#
# Machete kernels
# The machete kernels only work on hopper and require CUDA 12.0 or later.
# Only build Machete kernels if we are building for something compatible with sm90a
cuda_archs_loose_intersection(MACHETE_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND MACHETE_ARCHS)
#
# For the Machete kernels we automatically generate sources for various
# preselected input type pairs and schedules.
# Generate sources:
set(MACHETE_GEN_SCRIPT
${CMAKE_CURRENT_SOURCE_DIR}/csrc/quantization/machete/generate.py)
file(MD5 ${MACHETE_GEN_SCRIPT} MACHETE_GEN_SCRIPT_HASH)
message(STATUS "Machete generation script hash: ${MACHETE_GEN_SCRIPT_HASH}")
message(STATUS "Last run machete generate script hash: $CACHE{MACHETE_GEN_SCRIPT_HASH}")
if (NOT DEFINED CACHE{MACHETE_GEN_SCRIPT_HASH}
OR NOT $CACHE{MACHETE_GEN_SCRIPT_HASH} STREQUAL ${MACHETE_GEN_SCRIPT_HASH})
execute_process(
COMMAND ${CMAKE_COMMAND} -E env
PYTHONPATH=${CMAKE_CURRENT_SOURCE_DIR}/csrc/cutlass_extensions/:${CUTLASS_DIR}/python/:${VLLM_PYTHON_PATH}:$PYTHONPATH
${Python_EXECUTABLE} ${MACHETE_GEN_SCRIPT}
RESULT_VARIABLE machete_generation_result
OUTPUT_VARIABLE machete_generation_output
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log
)
if (NOT machete_generation_result EQUAL 0)
message(FATAL_ERROR "Machete generation failed."
" Result: \"${machete_generation_result}\""
"\nCheck the log for details: "
"${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log")
else()
set(MACHETE_GEN_SCRIPT_HASH ${MACHETE_GEN_SCRIPT_HASH}
CACHE STRING "Last run machete generate script hash" FORCE)
message(STATUS "Machete generation completed successfully.")
endif()
else()
message(STATUS "Machete generation script has not changed, skipping generation.")
endif()
# Add machete generated sources
file(GLOB MACHETE_GEN_SOURCES "csrc/quantization/machete/generated/*.cu")
list(APPEND VLLM_EXT_SRC ${MACHETE_GEN_SOURCES})
# forward compatible
set_gencode_flags_for_srcs(
SRCS "${MACHETE_GEN_SOURCES}"
CUDA_ARCHS "${MACHETE_ARCHS}")
list(APPEND VLLM_EXT_SRC
csrc/quantization/machete/machete_pytorch.cu)
message(STATUS "Building Machete kernels for archs: ${MACHETE_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0
AND MACHETE_ARCHS)
message(STATUS "Not building Machete kernels as CUDA Compiler version is "
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "
"later if you intend on running w4a16 quantized models on "
"Hopper.")
else()
message(STATUS "Not building Machete kernels as no compatible archs "
"found in CUDA target architectures")
endif()
endif()
# if CUDA endif
endif()
message(STATUS "Enabling C extension.")
define_gpu_extension_target(
_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${VLLM_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR}
USE_SABI 3
WITH_SOABI)
# If CUTLASS is compiled on NVCC >= 12.5, it by default uses
# cudaGetDriverEntryPointByVersion as a wrapper to avoid directly calling the
# driver API. This causes problems when linking with earlier versions of CUDA.
# Setting this variable sidesteps the issue by calling the driver directly.
target_compile_definitions(_C PRIVATE CUTLASS_ENABLE_DIRECT_CUDA_DRIVER_CALL=1)
#
# _moe_C extension
#
set(VLLM_MOE_EXT_SRC
"csrc/moe/torch_bindings.cpp"
"csrc/moe/topk_softmax_kernels.cu")
set_gencode_flags_for_srcs(
SRCS "${VLLM_MOE_EXT_SRC}"
CUDA_ARCHS "${CUDA_ARCHS}")
if(VLLM_GPU_LANG STREQUAL "CUDA")
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.9;9.0" "${CUDA_ARCHS}")
if (MARLIN_MOE_ARCHS)
set(MARLIN_MOE_SRC
"csrc/moe/marlin_kernels/marlin_moe_kernel.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.cu"
"csrc/moe/marlin_moe_ops.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_MOE_SRC}"
CUDA_ARCHS "${MARLIN_MOE_ARCHS}")
list(APPEND VLLM_MOE_EXT_SRC "${MARLIN_MOE_SRC}")
message(STATUS "Building Marlin MOE kernels for archs: ${MARLIN_MOE_ARCHS}")
else()
message(STATUS "Not building Marlin MOE kernels as no compatible archs found"
"in CUDA target architectures")
endif()
endif()
message(STATUS "Enabling moe extension.")
define_gpu_extension_target(
_moe_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${VLLM_MOE_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
USE_SABI 3
WITH_SOABI)
if(VLLM_GPU_LANG STREQUAL "HIP")
#
# _rocm_C extension
#
set(VLLM_ROCM_EXT_SRC
"csrc/rocm/torch_bindings.cpp"
"csrc/rocm/attention.cu")
define_gpu_extension_target(
_rocm_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${VLLM_ROCM_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
USE_SABI 3
WITH_SOABI)
endif()
# vllm-flash-attn currently only supported on CUDA
if (NOT VLLM_TARGET_DEVICE STREQUAL "cuda")
return()
endif ()
# vLLM flash attention requires VLLM_GPU_ARCHES to contain the set of target
# arches in the CMake syntax (75-real, 89-virtual, etc), since we clear the
# arches in the CUDA case (and instead set the gencodes on a per file basis)
# we need to manually set VLLM_GPU_ARCHES here.
if(VLLM_GPU_LANG STREQUAL "CUDA")
foreach(_ARCH ${CUDA_ARCHS})
string(REPLACE "." "" _ARCH "${_ARCH}")
list(APPEND VLLM_GPU_ARCHES "${_ARCH}-real")
endforeach()
endif()
#
# Build vLLM flash attention from source
#
# IMPORTANT: This has to be the last thing we do, because vllm-flash-attn uses the same macros/functions as vLLM.
# Because functions all belong to the global scope, vllm-flash-attn's functions overwrite vLLMs.
# They should be identical but if they aren't, this is a massive footgun.
#
# The vllm-flash-attn install rules are nested under vllm to make sure the library gets installed in the correct place.
# To only install vllm-flash-attn, use --component vllm_flash_attn_c.
# If no component is specified, vllm-flash-attn is still installed.
# If VLLM_FLASH_ATTN_SRC_DIR is set, vllm-flash-attn is installed from that directory instead of downloading.
# This is to enable local development of vllm-flash-attn within vLLM.
# It can be set as an environment variable or passed as a cmake argument.
# The environment variable takes precedence.
if (DEFINED ENV{VLLM_FLASH_ATTN_SRC_DIR})
set(VLLM_FLASH_ATTN_SRC_DIR $ENV{VLLM_FLASH_ATTN_SRC_DIR})
endif()
if(VLLM_FLASH_ATTN_SRC_DIR)
FetchContent_Declare(vllm-flash-attn SOURCE_DIR ${VLLM_FLASH_ATTN_SRC_DIR})
else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 013f0c4fc47e6574060879d9734c1df8c5c273bd
GIT_PROGRESS TRUE
)
endif()
# Set the parent build flag so that the vllm-flash-attn library does not redo compile flag and arch initialization.
set(VLLM_PARENT_BUILD ON)
# Ensure the vllm/vllm_flash_attn directory exists before installation
install(CODE "file(MAKE_DIRECTORY \"\${CMAKE_INSTALL_PREFIX}/vllm/vllm_flash_attn\")" COMPONENT vllm_flash_attn_c)
# Make sure vllm-flash-attn install rules are nested under vllm/
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY FALSE)" COMPONENT vllm_flash_attn_c)
install(CODE "set(OLD_CMAKE_INSTALL_PREFIX \"\${CMAKE_INSTALL_PREFIX}\")" COMPONENT vllm_flash_attn_c)
install(CODE "set(CMAKE_INSTALL_PREFIX \"\${CMAKE_INSTALL_PREFIX}/vllm/\")" COMPONENT vllm_flash_attn_c)
# Fetch the vllm-flash-attn library
FetchContent_MakeAvailable(vllm-flash-attn)
message(STATUS "vllm-flash-attn is available at ${vllm-flash-attn_SOURCE_DIR}")
# Restore the install prefix
install(CODE "set(CMAKE_INSTALL_PREFIX \"\${OLD_CMAKE_INSTALL_PREFIX}\")" COMPONENT vllm_flash_attn_c)
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" COMPONENT vllm_flash_attn_c)
# Copy over the vllm-flash-attn python files
install(
DIRECTORY ${vllm-flash-attn_SOURCE_DIR}/vllm_flash_attn/
DESTINATION vllm/vllm_flash_attn
COMPONENT vllm_flash_attn_c
FILES_MATCHING PATTERN "*.py"
)
# Nothing after vllm-flash-attn, see comment about macros above

View File

@ -1,128 +0,0 @@
# vLLM Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socioeconomic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the overall
community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or advances of
any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email address,
without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official email address,
posting via an official social media account, or acting as an appointed
representative at an online or offline/IRL event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement in the #code-of-conduct
channel in the [vLLM Discord](https://discord.com/invite/jz7wjKhh6g).
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series of
actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within the
community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant](https://www.contributor-covenant.org/),
version 2.1, available at
[v2.1](https://www.contributor-covenant.org/version/2/1/code_of_conduct.html).
Community Impact Guidelines were inspired by
[Mozilla's code of conduct enforcement ladder](https://github.com/mozilla/inclusion).
For answers to common questions about this code of conduct, see the
[Contributor Covenant FAQ](https://www.contributor-covenant.org/faq). Translations are available at
[Contributor Covenant translations](https://www.contributor-covenant.org/translations).

View File

@ -1,50 +1,77 @@
# Contributing to vLLM
Thank you for your interest in contributing to vLLM! Our community is open to everyone and welcomes all kinds of contributions, no matter how small or large. There are several ways you can contribute to the project:
Thank you for your interest in contributing to vLLM!
Our community is open to everyone and welcomes all kinds of contributions, no matter how small or large.
There are several ways you can contribute to the project:
- Identify and report any issues or bugs.
- Request or add support for a new model.
- Request or add a new model.
- Suggest or implement new features.
- Improve documentation or contribute a how-to guide.
We also believe in the power of community support; thus, answering queries, offering PR reviews, and assisting others are also highly regarded and beneficial contributions.
However, remember that contributions aren't just about code.
We believe in the power of community support; thus, answering queries, assisting others, and enhancing the documentation are highly regarded and beneficial contributions.
Finally, one of the most impactful ways to support us is by raising awareness about vLLM. Talk about it in your blog posts and highlight how it's driving your incredible projects. Express your support on social media if you're using vLLM, or simply offer your appreciation by starring our repository!
Finally, one of the most impactful ways to support us is by raising awareness about vLLM.
Talk about it in your blog posts, highlighting how it's driving your incredible projects.
Express your support on Twitter if vLLM aids you, or simply offer your appreciation by starring our repository.
## Developing
## Setup for development
Depending on the kind of development you'd like to do (e.g. Python, CUDA), you can choose to build vLLM with or without compilation. Check out the [building from source](https://docs.vllm.ai/en/latest/getting_started/installation.html#build-from-source) documentation for details.
### Build from source
```bash
pip install -r requirements.txt
pip install -e . # This may take several minutes.
```
## Testing
### Testing
```bash
pip install -r requirements-dev.txt
# linting and formatting
bash format.sh
# Static type checking
mypy
# Unit tests
pytest tests/
```
**Note:** Currently, the repository does not pass the ``mypy`` tests.
**Note:** Currently, the repository does not pass the mypy tests.
## Contribution Guidelines
### Issues
## Contributing Guidelines
If you encounter a bug or have a feature request, please [search existing issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue) first to see if it has already been reported. If not, please [file a new issue](https://github.com/vllm-project/vllm/issues/new/choose), providing as much relevant information as possible.
### Issue Reporting
> [!IMPORTANT]
> If you discover a security vulnerability, please follow the instructions [here](/SECURITY.md#reporting-a-vulnerability).
If you encounter a bug or have a feature request, please check our issues page first to see if someone else has already reported it.
If not, please file a new issue, providing as much relevant information as possible.
### Pull Requests & Code Reviews
### Coding Style Guide
Please check the PR checklist in the [PR template](.github/PULL_REQUEST_TEMPLATE.md) for detailed guide for contribution.
In general, we adhere to [Google Python style guide](https://google.github.io/styleguide/pyguide.html) and [Google C++ style guide](https://google.github.io/styleguide/cppguide.html).
We include a formatting script [`format.sh`](./format.sh) to format the code.
### Pull Requests
When submitting a pull request:
1. Make sure your code has been rebased on top of the latest commit on the main branch.
2. Ensure code is properly formatted by running [`format.sh`](./format.sh).
3. Include a detailed description of the changes in the pull request.
Explain why you made the changes you did.
If your pull request fixes an open issue, please include a reference to it in the description.
### Code Reviews
All submissions, including submissions by project members, require a code review.
To make the review process as smooth as possible, please:
1. Keep your changes as concise as possible.
If your pull request involves multiple unrelated changes, consider splitting it into separate pull requests.
2. Respond to all comments within a reasonable time frame.
If a comment isn't clear or you disagree with a suggestion, feel free to ask for clarification or discuss the suggestion.
### Thank You
Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM.
All of your contributions help make vLLM a great tool and community for everyone!
Your contributions make vLLM a great tool for everyone!

View File

@ -1,212 +0,0 @@
# The vLLM Dockerfile is used to construct vLLM image that can be directly used
# to run the OpenAI compatible server.
# Please update any changes made here to
# docs/source/dev/dockerfile/dockerfile.rst and
# docs/source/assets/dev/dockerfile-stages-dependency.png
ARG CUDA_VERSION=12.4.1
#################### BASE BUILD IMAGE ####################
# prepare basic build environment
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base
ARG CUDA_VERSION=12.4.1
ARG PYTHON_VERSION=3.12
ENV DEBIAN_FRONTEND=noninteractive
# Install Python and other dependencies
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
&& apt-get update -y \
&& apt-get install -y ccache software-properties-common git curl sudo \
&& add-apt-repository ppa:deadsnakes/ppa \
&& apt-get update -y \
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
&& python3 --version && python3 -m pip --version
# Upgrade to GCC 10 to avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92519
# as it was causing spam when compiling the CUTLASS kernels
RUN apt-get install -y gcc-10 g++-10
RUN update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 110 --slave /usr/bin/g++ g++ /usr/bin/g++-10
RUN <<EOF
gcc --version
EOF
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
WORKDIR /workspace
# install build and runtime dependencies
COPY requirements-common.txt requirements-common.txt
COPY requirements-cuda.txt requirements-cuda.txt
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-cuda.txt
# cuda arch list used by torch
# can be useful for both `dev` and `test`
# explicitly set the list to avoid issues with torch 2.2
# see https://github.com/pytorch/pytorch/pull/123243
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.6 8.9 9.0+PTX'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
# Override the arch list for flash-attn to reduce the binary size
ARG vllm_fa_cmake_gpu_arches='80-real;90-real'
ENV VLLM_FA_CMAKE_GPU_ARCHES=${vllm_fa_cmake_gpu_arches}
#################### BASE BUILD IMAGE ####################
#################### WHEEL BUILD IMAGE ####################
FROM base AS build
# install build dependencies
COPY requirements-build.txt requirements-build.txt
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-build.txt
# files and directories related to build wheels
COPY . .
# max jobs used by Ninja to build extensions
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
# number of threads used by nvcc
ARG nvcc_threads=8
ENV NVCC_THREADS=$nvcc_threads
ARG USE_SCCACHE
ARG SCCACHE_BUCKET_NAME=vllm-build-sccache
ARG SCCACHE_REGION_NAME=us-west-2
ARG SCCACHE_S3_NO_CREDENTIALS=0
# if USE_SCCACHE is set, use sccache to speed up compilation
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,source=.git,target=.git \
if [ "$USE_SCCACHE" = "1" ]; then \
echo "Installing sccache..." \
&& curl -L -o sccache.tar.gz https://github.com/mozilla/sccache/releases/download/v0.8.1/sccache-v0.8.1-x86_64-unknown-linux-musl.tar.gz \
&& tar -xzf sccache.tar.gz \
&& sudo mv sccache-v0.8.1-x86_64-unknown-linux-musl/sccache /usr/bin/sccache \
&& rm -rf sccache.tar.gz sccache-v0.8.1-x86_64-unknown-linux-musl \
&& export SCCACHE_BUCKET=${SCCACHE_BUCKET_NAME} \
&& export SCCACHE_REGION=${SCCACHE_REGION_NAME} \
&& export SCCACHE_S3_NO_CREDENTIALS=${SCCACHE_S3_NO_CREDENTIALS} \
&& export SCCACHE_IDLE_TIMEOUT=0 \
&& export CMAKE_BUILD_TYPE=Release \
&& sccache --show-stats \
&& python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38 \
&& sccache --show-stats; \
fi
ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/ccache \
--mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,source=.git,target=.git \
if [ "$USE_SCCACHE" != "1" ]; then \
python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38; \
fi
# Check the size of the wheel if RUN_WHEEL_CHECK is true
COPY .buildkite/check-wheel-size.py check-wheel-size.py
# Default max size of the wheel is 250MB
ARG VLLM_MAX_SIZE_MB=250
ENV VLLM_MAX_SIZE_MB=$VLLM_MAX_SIZE_MB
ARG RUN_WHEEL_CHECK=true
RUN if [ "$RUN_WHEEL_CHECK" = "true" ]; then \
python3 check-wheel-size.py dist; \
else \
echo "Skipping wheel size check."; \
fi
#################### EXTENSION Build IMAGE ####################
#################### DEV IMAGE ####################
FROM base as dev
COPY requirements-lint.txt requirements-lint.txt
COPY requirements-test.txt requirements-test.txt
COPY requirements-dev.txt requirements-dev.txt
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-dev.txt
#################### DEV IMAGE ####################
#################### vLLM installation IMAGE ####################
# image with vLLM installed
FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu22.04 AS vllm-base
ARG CUDA_VERSION=12.4.1
ARG PYTHON_VERSION=3.12
WORKDIR /vllm-workspace
ENV DEBIAN_FRONTEND=noninteractive
RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \
echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment
# Install Python and other dependencies
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
&& apt-get update -y \
&& apt-get install -y ccache software-properties-common git curl sudo vim python3-pip \
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
&& add-apt-repository ppa:deadsnakes/ppa \
&& apt-get update -y \
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv libibverbs-dev \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
&& python3 --version && python3 -m pip --version
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
# install vllm wheel first, so that torch etc will be installed
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
--mount=type=cache,target=/root/.cache/pip \
python3 -m pip install dist/*.whl --verbose
RUN --mount=type=cache,target=/root/.cache/pip \
. /etc/environment && \
python3 -m pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.6/flashinfer-0.1.6+cu121torch2.4-cp${PYTHON_VERSION_STR}-cp${PYTHON_VERSION_STR}-linux_x86_64.whl
COPY examples examples
#################### vLLM installation IMAGE ####################
#################### TEST IMAGE ####################
# image to run unit testing suite
# note that this uses vllm installed by `pip`
FROM vllm-base AS test
ADD . /vllm-workspace/
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-dev.txt
# doc requires source code
# we hide them inside `test_docs/` , so that this source code
# will not be imported by other tests
RUN mkdir test_docs
RUN mv docs test_docs/
RUN mv vllm test_docs/
#################### TEST IMAGE ####################
#################### OPENAI API SERVER ####################
# openai api server alternative
FROM vllm-base AS vllm-openai
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer 'modelscope!=1.15.0' bitsandbytes>=0.44.0 timm==0.9.10
ENV VLLM_USAGE_SOURCE production-docker-image
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
#################### OPENAI API SERVER ####################

View File

@ -1,75 +0,0 @@
# This vLLM Dockerfile is used to construct image that can build and run vLLM on x86 CPU platform.
FROM ubuntu:22.04 AS cpu-test-1
ENV CCACHE_DIR=/root/.cache/ccache
ENV CMAKE_CXX_COMPILER_LAUNCHER=ccache
RUN --mount=type=cache,target=/var/cache/apt \
apt-get update -y \
&& apt-get install -y curl ccache git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 libnuma-dev \
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
# https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/tuning_guide.html
# intel-openmp provides additional performance improvement vs. openmp
# tcmalloc provides better memory allocation efficiency, e.g, holding memory in caches to speed up access of commonly-used objects.
RUN --mount=type=cache,target=/root/.cache/pip \
pip install intel-openmp
ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/usr/local/lib/libiomp5.so"
RUN echo 'ulimit -c 0' >> ~/.bashrc
RUN pip install intel_extension_for_pytorch==2.4.0
WORKDIR /workspace
ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,src=requirements-build.txt,target=requirements-build.txt \
pip install --upgrade pip && \
pip install -r requirements-build.txt
# install oneDNN
RUN git clone -b rls-v3.5 https://github.com/oneapi-src/oneDNN.git
RUN --mount=type=cache,target=/root/.cache/ccache \
cmake -B ./oneDNN/build -S ./oneDNN -G Ninja -DONEDNN_LIBRARY_TYPE=STATIC \
-DONEDNN_BUILD_DOC=OFF \
-DONEDNN_BUILD_EXAMPLES=OFF \
-DONEDNN_BUILD_TESTS=OFF \
-DONEDNN_BUILD_GRAPH=OFF \
-DONEDNN_ENABLE_WORKLOAD=INFERENCE \
-DONEDNN_ENABLE_PRIMITIVE=MATMUL && \
cmake --build ./oneDNN/build --target install --config Release
FROM cpu-test-1 AS build
WORKDIR /workspace/vllm
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,src=requirements-common.txt,target=requirements-common.txt \
--mount=type=bind,src=requirements-cpu.txt,target=requirements-cpu.txt \
pip install -v -r requirements-cpu.txt
COPY ./ ./
# Support for building with non-AVX512 vLLM: docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" ...
ARG VLLM_CPU_DISABLE_AVX512
ENV VLLM_CPU_DISABLE_AVX512=${VLLM_CPU_DISABLE_AVX512}
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/ccache \
--mount=type=bind,source=.git,target=.git \
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel && \
pip install dist/*.whl && \
rm -rf dist
WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -1,41 +0,0 @@
# default base image
ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.1.2-neuronx-py310-sdk2.20.0-ubuntu20.04"
FROM $BASE_IMAGE
RUN echo "Base image is $BASE_IMAGE"
# Install some basic utilities
RUN apt-get update && \
apt-get install -y \
git \
python3 \
python3-pip \
ffmpeg libsm6 libxext6 libgl1
### Mount Point ###
# When launching the container, mount the code directory to /app
ARG APP_MOUNT=/app
VOLUME [ ${APP_MOUNT} ]
WORKDIR ${APP_MOUNT}
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas
RUN python3 -m pip install sentencepiece transformers==4.36.2 -U
RUN python3 -m pip install transformers-neuronx --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
RUN python3 -m pip install --pre neuronx-cc==2.15.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
COPY . /app/vllm
RUN cd /app/vllm \
&& python3 -m pip install -U \
cmake>=3.26 ninja packaging setuptools-scm>=8 wheel jinja2 \
-r requirements-neuron.txt
ENV VLLM_TARGET_DEVICE neuron
RUN --mount=type=bind,source=.git,target=.git \
cd /app/vllm \
&& pip install --no-build-isolation -v -e . \
&& cd ..
CMD ["/bin/bash"]

View File

@ -1,22 +0,0 @@
# The vLLM Dockerfile is used to construct vLLM image that can be directly used
# to run the OpenAI compatible server.
FROM ubuntu:22.04 AS dev
RUN apt-get update -y && \
apt-get install -y \
git python3-pip \
ffmpeg libsm6 libxext6 libgl1
WORKDIR /workspace
COPY . .
# install build requirements
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" python3 -m pip install -r /workspace/vllm/requirements-build.txt
# build vLLM with OpenVINO backend
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" VLLM_TARGET_DEVICE="openvino" python3 -m pip install /workspace/vllm/
COPY examples/ /workspace/vllm/examples
COPY benchmarks/ /workspace/vllm/benchmarks
CMD ["/bin/bash"]

View File

@ -1,33 +0,0 @@
FROM mambaorg/micromamba
ARG MAMBA_DOCKERFILE_ACTIVATE=1
USER root
ENV PATH="/usr/local/cargo/bin:$PATH:/opt/conda/bin/"
RUN apt-get update -y && apt-get install -y git wget curl vim libnuma-dev libsndfile-dev libprotobuf-dev build-essential ffmpeg libsm6 libxext6 libgl1
# Some packages in requirements-cpu are installed here
# IBM provides optimized packages for ppc64le processors in the open-ce project for mamba
# Currently these may not be available for venv or pip directly
RUN micromamba install -y -n base -c https://ftp.osuosl.org/pub/open-ce/1.11.0-p10/ -c defaults python=3.10 torchvision-cpu=0.16.2 rust && micromamba clean --all --yes
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
# These packages will be in rocketce eventually
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -v --prefer-binary --extra-index-url https://repo.fury.io/mgiessing \
cmake>=3.26 ninja packaging setuptools-scm>=8 wheel jinja2 \
torch==2.3.1 \
-r requirements-cpu.txt \
xformers uvloop==0.20.0
RUN --mount=type=bind,source=.git,target=.git \
VLLM_TARGET_DEVICE=cpu python3 setup.py install
WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -1,166 +0,0 @@
# Default ROCm 6.2 base image
ARG BASE_IMAGE="rocm/pytorch:rocm6.2_ubuntu20.04_py3.9_pytorch_release_2.3.0"
# Default ROCm ARCHes to build vLLM for.
ARG PYTORCH_ROCM_ARCH="gfx908;gfx90a;gfx942;gfx1100"
# Whether to install CK-based flash-attention
# If 0, will not install flash-attention
ARG BUILD_FA="1"
ARG FA_GFX_ARCHS="gfx90a;gfx942"
ARG FA_BRANCH="3cea2fb"
# Whether to build triton on rocm
ARG BUILD_TRITON="1"
ARG TRITON_BRANCH="e192dba"
### Base image build stage
FROM $BASE_IMAGE AS base
# Import arg(s) defined before this build stage
ARG PYTORCH_ROCM_ARCH
# Install some basic utilities
RUN apt-get update && apt-get install python3 python3-pip -y
RUN apt-get update && apt-get install -y \
curl \
ca-certificates \
sudo \
git \
bzip2 \
libx11-6 \
build-essential \
wget \
unzip \
tmux \
ccache \
&& rm -rf /var/lib/apt/lists/*
# When launching the container, mount the code directory to /vllm-workspace
ARG APP_MOUNT=/vllm-workspace
WORKDIR ${APP_MOUNT}
RUN python3 -m pip install --upgrade pip
# Remove sccache so it doesn't interfere with ccache
# TODO: implement sccache support across components
RUN apt-get purge -y sccache; python3 -m pip uninstall -y sccache; rm -f "$(which sccache)"
# Install torch == 2.6.0 on ROCm
RUN --mount=type=cache,target=/root/.cache/pip \
case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \
*"rocm-6.2"*) \
python3 -m pip uninstall -y torch torchvision \
&& python3 -m pip install --pre \
torch==2.6.0.dev20240918 \
setuptools-scm>=8 \
torchvision==0.20.0.dev20240918 \
--extra-index-url https://download.pytorch.org/whl/nightly/rocm6.2;; \
*) ;; esac
ENV LLVM_SYMBOLIZER_PATH=/opt/rocm/llvm/bin/llvm-symbolizer
ENV PATH=$PATH:/opt/rocm/bin:/libtorch/bin:
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib/:/libtorch/lib:
ENV CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/libtorch/include:/libtorch/include/torch/csrc/api/include/:/opt/rocm/include/:
ENV PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}
ENV CCACHE_DIR=/root/.cache/ccache
### AMD-SMI build stage
FROM base AS build_amdsmi
# Build amdsmi wheel always
RUN cd /opt/rocm/share/amd_smi \
&& python3 -m pip wheel . --wheel-dir=/install
### Flash-Attention wheel build stage
FROM base AS build_fa
ARG BUILD_FA
ARG FA_GFX_ARCHS
ARG FA_BRANCH
# Build ROCm flash-attention wheel if `BUILD_FA = 1`
RUN --mount=type=cache,target=${CCACHE_DIR} \
if [ "$BUILD_FA" = "1" ]; then \
mkdir -p libs \
&& cd libs \
&& git clone https://github.com/ROCm/flash-attention.git \
&& cd flash-attention \
&& git checkout "${FA_BRANCH}" \
&& git submodule update --init \
&& GPU_ARCHS="${FA_GFX_ARCHS}" python3 setup.py bdist_wheel --dist-dir=/install; \
# Create an empty directory otherwise as later build stages expect one
else mkdir -p /install; \
fi
### Triton wheel build stage
FROM base AS build_triton
ARG BUILD_TRITON
ARG TRITON_BRANCH
# Build triton wheel if `BUILD_TRITON = 1`
RUN --mount=type=cache,target=${CCACHE_DIR} \
if [ "$BUILD_TRITON" = "1" ]; then \
mkdir -p libs \
&& cd libs \
&& python3 -m pip install ninja cmake wheel pybind11 \
&& git clone https://github.com/OpenAI/triton.git \
&& cd triton \
&& git checkout "${TRITON_BRANCH}" \
&& cd python \
&& python3 setup.py bdist_wheel --dist-dir=/install; \
# Create an empty directory otherwise as later build stages expect one
else mkdir -p /install; \
fi
### Final vLLM build stage
FROM base AS final
# Import the vLLM development directory from the build context
COPY . .
# Package upgrades for useful functionality or to avoid dependency issues
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install --upgrade numba scipy huggingface-hub[cli] pytest-shard
# Workaround for ray >= 2.10.0
ENV RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1
# Silences the HF Tokenizers warning
ENV TOKENIZERS_PARALLELISM=false
RUN --mount=type=cache,target=${CCACHE_DIR} \
--mount=type=bind,source=.git,target=.git \
--mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -Ur requirements-rocm.txt \
&& python3 setup.py clean --all \
&& python3 setup.py develop
# Copy amdsmi wheel into final image
RUN --mount=type=bind,from=build_amdsmi,src=/install,target=/install \
mkdir -p libs \
&& cp /install/*.whl libs \
# Preemptively uninstall to avoid same-version no-installs
&& python3 -m pip uninstall -y amdsmi;
# Copy triton wheel(s) into final image if they were built
RUN --mount=type=bind,from=build_triton,src=/install,target=/install \
mkdir -p libs \
&& if ls /install/*.whl; then \
cp /install/*.whl libs \
# Preemptively uninstall to avoid same-version no-installs
&& python3 -m pip uninstall -y triton; fi
# Copy flash-attn wheel(s) into final image if they were built
RUN --mount=type=bind,from=build_fa,src=/install,target=/install \
mkdir -p libs \
&& if ls /install/*.whl; then \
cp /install/*.whl libs \
# Preemptively uninstall to avoid same-version no-installs
&& python3 -m pip uninstall -y flash-attn; fi
# Install wheels that were built to the final image
RUN --mount=type=cache,target=/root/.cache/pip \
if ls libs/*.whl; then \
python3 -m pip install libs/*.whl; fi
CMD ["/bin/bash"]

View File

@ -1,29 +0,0 @@
ARG NIGHTLY_DATE="20240828"
ARG BASE_IMAGE="us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.10_tpuvm_$NIGHTLY_DATE"
FROM $BASE_IMAGE
WORKDIR /workspace
# Install some basic utilities
RUN apt-get update && apt-get install -y \
git \
ffmpeg libsm6 libxext6 libgl1
# Install the TPU and Pallas dependencies.
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install torch_xla[tpu] -f https://storage.googleapis.com/libtpu-releases/index.html
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install torch_xla[pallas] -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html
# Build vLLM.
COPY . /workspace/vllm
ENV VLLM_TARGET_DEVICE="tpu"
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,source=.git,target=.git \
cd /workspace/vllm && \
python3 -m pip install \
cmake>=3.26 ninja packaging setuptools-scm>=8 wheel jinja2 \
-r requirements-tpu.txt
RUN cd /workspace/vllm && python3 setup.py develop
CMD ["/bin/bash"]

Some files were not shown because too many files have changed in this diff Show More