Compare commits

...

988 Commits

Author SHA1 Message Date
02dbf30e9a [Build] skip renaming files for release wheels pipeline (#9671)
Signed-off-by: simon-mo <simon.mo@hey.com>
2024-11-14 23:31:52 -08:00
2ac6d0e75b [Misc] Consolidate pooler config overrides (#10351)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-15 06:59:00 +00:00
2ec8827288 [Bugfix] Qwen-vl output is inconsistent in speculative decoding (#10350) 2024-11-15 05:40:10 +00:00
b40cf6402e [Model] Support Qwen2 embeddings and use tags to select model tests (#10184) 2024-11-14 20:23:09 -08:00
2885ba0e24 [Misc] Change RedundantReshapesPass and FusionPass logging from info to debug (#10308)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-11-15 02:44:26 +00:00
bf2ddc6610 [bugfix] Fix static asymmetric quantization case (#10334)
Signed-off-by: Daniël de Kok <me@danieldk.eu>
Signed-off-by: luka <luka@neuralmagic.com>
Co-authored-by: Daniël de Kok <me@danieldk.eu>
2024-11-15 09:35:11 +08:00
972112d82f [Bugfix] Fix unable to load some models (#10312)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-14 16:55:54 -08:00
11cd1ae6ad [Tool parsing] Improve / correct mistral tool parsing (#10333) 2024-11-15 00:42:49 +00:00
554af9228d [Bugfix] use AF_INET6 for OpenAI Compatible Server with ipv6 (#9583)
Signed-off-by: xiaozijin <xiaozijin@bytedance.com>
2024-11-14 16:38:53 -08:00
b2e0ad3b59 [Perf] Reduce peak memory usage of llama (#10339)
Signed-off-by: andoorve <37849411+andoorve@users.noreply.github.com>
2024-11-15 00:38:20 +00:00
4a18fd14ba Support Roberta embedding models (#9387)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Signed-off-by: Flavia Beo <flavia.beo@ibm.com>
Co-authored-by: Flavia Beo <flavia.beo@ibm.com>
2024-11-14 21:23:29 +00:00
1dbae0329c [Docs] Publish meetup slides (#10331)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-14 16:19:38 +00:00
675d603400 [CI/Build] Make shellcheck happy (#10285)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-14 09:47:53 +00:00
03025c023f [CI/Build] Fix CPU CI online inference timeout (#10314)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-14 16:45:32 +08:00
29f3ef26a3 [ci][distributed] disable hanging tests (#10317)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-14 00:23:39 -08:00
294bf467ba [Model] Add BNB quantization support for Idefics3 (#10310)
Signed-off-by: B-201 <Joy25810@foxmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-14 06:31:44 +00:00
52b48c1ead [BugFix]: properly deserialize tool_calls iterator before processing by mistral-common when MistralTokenizer is used (#9951)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2024-11-14 04:48:16 +00:00
f67ce05d0b [Frontend] Pythonic tool parser (#9859)
Signed-off-by: Mike Depinet <mike@fixie.ai>
2024-11-14 04:14:34 +00:00
e0853b6508 [Misc] format.sh: Simplify tool_version_check (#10305)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-14 11:12:35 +08:00
504ac53d18 [misc] error early for old-style class (#10304)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-13 18:55:39 -08:00
15bb8330aa [Bugfix] Fix tensor parallel for qwen2 classification model (#10297)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-14 10:54:59 +08:00
ac49b59d8b [Bugfix] bitsandbytes models fail to run pipeline parallel (#10200)
Signed-off-by: Hoang Cong Duc <hoangcongducltt@gmail.com>
2024-11-13 09:56:39 -07:00
0b8bb86bf1 [1/N] Initial prototype for multi-modal processor (#10044)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-13 12:39:03 +00:00
bb7991aa29 [V1] Add missing tokenizer options for Detokenizer (#10288)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-11-13 11:02:56 +00:00
d909acf9fe [Model][LoRA]LoRA support added for idefics3 (#10281)
Signed-off-by: B-201 <Joy25810@foxmail.com>
2024-11-13 17:25:59 +08:00
b6dde33019 [Core] Flashinfer - Remove advance step size restriction (#10282) 2024-11-13 16:29:32 +08:00
1b886aa104 [Model] Adding Support for Qwen2VL as an Embedding Model. Using MrLight/dse-qwen2-2b-mrl-v1 (#9944)
Signed-off-by: FurtherAI <austin.veselka@lighton.ai>
Co-authored-by: FurtherAI <austin.veselka@lighton.ai>
2024-11-13 08:28:13 +00:00
3945c82346 [Model] Add support for Qwen2-VL video embeddings input & multiple image embeddings input with varied resolutions (#10221)
Signed-off-by: imkero <kerorek@outlook.com>
2024-11-13 07:07:22 +00:00
032fcf16ae [Doc] Fix typo in arg_utils.py (#10264)
Signed-off-by: Xin Yang <xyang19@gmail.com>
2024-11-12 21:54:52 -08:00
56a955e774 Bump to compressed-tensors v0.8.0 (#10279)
Signed-off-by: Dipika <dipikasikka1@gmail.com>
2024-11-12 21:54:10 -08:00
bbd3e86926 [V1] Support VLMs with fine-grained scheduling (#9871)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-11-13 04:53:13 +00:00
0d4ea3fb5c [core][distributed] use tcp store directly (#10275)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-12 17:36:08 -08:00
112fa0bbe5 [V1] Fix CI tests on V1 engine (#10272)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-12 16:17:20 -08:00
377b74fe87 Revert "[ci][build] limit cmake version" (#10271) 2024-11-12 15:06:48 -08:00
18081451f9 [doc] improve debugging doc (#10270)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-12 14:43:52 -08:00
96ae0eaeb2 [doc] fix location of runllm widget (#10266)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-12 14:34:39 -08:00
1f55e05713 [V1] Enable Inductor when using piecewise CUDA graphs (#10268)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-12 13:39:56 -08:00
8a06428c70 [LoRA] Adds support for bias in LoRA (#5733)
Signed-off-by: Umesh Deshpande <udeshpa@us.ibm.com>
Co-authored-by: Umesh Deshpande <udeshpa@us.ibm.com>
2024-11-12 11:08:40 -08:00
b41fb9d3b1 [Encoder Decoder] Update Mllama to run with both FlashAttention and XFormers (#9982)
Signed-off-by: Sourashis Roy <sroy@roblox.com>
2024-11-12 10:53:57 -08:00
7c65527918 [V1] Use pickle for serializing EngineCoreRequest & Add multimodal inputs to EngineCoreRequest (#10245)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-12 08:57:14 -08:00
47db6ec831 [Frontend] Add per-request number of cached token stats (#10174) 2024-11-12 16:42:28 +00:00
176fcb1c71 [Bugfix] Fix QwenModel argument (#10262)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2024-11-12 16:36:51 +00:00
a838ba7254 [Misc]Fix Idefics3Model argument (#10255)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-12 13:07:11 +00:00
36c513a076 [BugFix] Do not raise a ValueError when tool_choice is set to the supported none option and tools are not defined. (#10000)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2024-11-12 11:13:46 +00:00
d201d41973 [CI][CPU]refactor CPU tests to allow to bind with different cores (#10222)
Signed-off-by: Yuan Zhou <yuan.zhou@intel.com>
2024-11-12 10:07:32 +00:00
3a28f18b0b [doc] explain the class hierarchy in vLLM (#10240)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-11 22:56:44 -08:00
812c981fa0 Splitting attention kernel file (#10091)
Signed-off-by: maleksan85 <maleksan@amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
2024-11-11 22:55:07 -08:00
7f5edb5900 [Misc][LoRA] Replace hardcoded cuda device with configurable argument (#10223)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-12 11:10:15 +08:00
eea55cca5b [1/N] torch.compile user interface design (#10237)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-11 18:01:06 -08:00
9cdba9669c [Doc] Update help text for --distributed-executor-backend (#10231)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-12 09:55:09 +08:00
d1c6799b88 [doc] update debugging guide (#10236)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-11 15:21:12 -08:00
6ace6fba2c [V1] AsyncLLM Implementation (#9826)
Signed-off-by: Nick Hill <nickhill@us.ibm.com>
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-11-11 23:05:38 +00:00
08f93e7439 Make shutil rename in python_only_dev (#10233)
Signed-off-by: shcheglovnd <shcheglovnd@avride.ai>
2024-11-11 14:29:19 -08:00
9d5b4e4dea [V1] Enable custom ops with piecewise CUDA graphs (#10228)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-11 11:58:07 -08:00
8a7fe47d32 [misc][distributed] auto port selection and disable tests (#10226)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-11 11:54:59 -08:00
4800339c62 Add docs on serving with Llama Stack (#10183)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2024-11-11 11:28:55 -08:00
fe15729a2b [V1] Use custom ops for piecewise CUDA graphs (#10227)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-11 11:26:48 -08:00
330e82d34a [v1][torch.compile] support managing cudagraph buffer (#10203)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-11 11:10:27 -08:00
d7a4f2207b [V1] Do not use inductor for piecewise CUDA graphs (#10225)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-11 11:05:57 -08:00
f9dadfbee3 [V1] Fix detokenizer ports (#10224)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-11 10:42:07 -08:00
25144ceed0 Bump actions/setup-python from 5.2.0 to 5.3.0 (#10209)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-11-11 17:24:10 +00:00
e6de9784d2 [core][distributed] add stateless process group (#10216)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-11 09:02:14 -08:00
36fc439de0 [Doc] fix doc string typo in block_manager swap_out function (#10212) 2024-11-11 08:53:07 -08:00
874f551b36 [Metrics] add more metrics (#4464)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-12 00:17:38 +08:00
2cebda42bb [Bugfix][Hardware][CPU] Fix broken encoder-decoder CPU runner (#10218)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-11 12:37:58 +00:00
5fb1f935b0 [V1] Allow tokenizer_mode and trust_remote_code for Detokenizer (#10211)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-11-11 18:01:18 +08:00
36e4acd02a [LoRA][Kernel] Remove the unused libentry module (#10214)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-11 09:43:23 +00:00
58170d6503 [Hardware][CPU] Add embedding models support for CPU backend (#10193)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-11 08:54:28 +00:00
9804ac7c7c Bump the patch-update group with 5 updates (#10210)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-11-11 07:22:40 +00:00
f89d18ff74 [6/N] pass whole config to inner model (#10205)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-11 06:41:46 +00:00
f0f2e5638e [doc] improve debugging code (#10206)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-10 17:49:40 -08:00
ad9a78bf64 [Doc] Fix typo error in vllm/entrypoints/openai/cli_args.py (#10196) 2024-11-11 00:14:22 +00:00
73b9083e99 [misc] improve cloudpickle registration and tests (#10202)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-11 00:10:53 +00:00
20cf2f553c [Misc] small fixes to function tracing file path (#9543)
Signed-off-by: Shawn Du <shawnd200@outlook.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-11-10 15:21:06 -08:00
bfb7d61a7c [doc] Polish the integration with huggingface doc (#10195)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-11-10 10:22:04 -08:00
19682023b6 [Doc] Fix typo error in CONTRIBUTING.md (#10190)
Signed-off-by: FuryMartin <furymartin9910@outlook.com>
2024-11-10 07:47:24 +00:00
9fa4bdde9d [ci][build] limit cmake version (#10188)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-09 16:27:26 -08:00
51c2e1fcef [CI/Build] Split up models tests (#10069)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-09 11:39:14 -08:00
b09895a618 [Frontend][Core] Override HF config.json via CLI (#5836)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-09 16:19:27 +00:00
d88bff1b96 [Frontend] add add_request_id middleware (#9594)
Signed-off-by: cjackal <44624812+cjackal@users.noreply.github.com>
2024-11-09 10:18:29 +00:00
9e37266420 bugfix: fix the bug that stream generate not work (#2756) 2024-11-09 10:09:48 +00:00
8a4358ecb5 [doc] explaining the integration with huggingface (#10173)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-09 01:02:54 -08:00
bd46357ad9 [bugfix] fix broken tests of mlp speculator (#10177)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-09 00:04:50 -08:00
f192aeba74 [Bugfix] Enable some fp8 and quantized fullgraph tests (#10171)
Signed-off-by: Bill Nell <bill@neuralmagic.com>
2024-11-09 08:01:27 +00:00
8e1529dc57 [CI/Build] Add run-hpu-test.sh script (#10167)
Signed-off-by: Chendi.Xue <chendi.xue@intel.com>
2024-11-09 06:26:52 +00:00
1a95f10ee7 [5/N] pass the whole config to model (#9983)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-09 14:17:28 +08:00
49d2a41a86 [Doc] Adjust RunLLM location (#10176)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-08 20:07:10 -08:00
47672f38b5 [CI/Build] Fix VLM broadcast tests tensor_parallel_size passing (#10161)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-09 04:02:59 +00:00
f83feccd7f [Bugfix] Ignore GPTQ quantization of Qwen2-VL visual module (#10169)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-11-09 03:36:46 +00:00
e0191a95d8 [0/N] Rename MultiModalInputs to MultiModalKwargs (#10040)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-09 11:31:02 +08:00
d7edca1dee [CI/Build] Adding timeout in CPU CI to avoid CPU test queue blocking (#6892)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-09 03:27:11 +00:00
127c07480e [Kernel][Triton] Add Triton implementation for scaled_mm_triton to support fp8 and int8 SmoothQuant, symmetric case (#9857)
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
2024-11-08 19:59:22 -05:00
10b67d865d [Bugfix] SymIntArrayRef expected to contain concrete integers (#10170)
Signed-off-by: Bill Nell <bill@neuralmagic.com>
2024-11-08 14:44:18 -08:00
4f93dfe952 [torch.compile] Fuse RMSNorm with quant (#9138)
Signed-off-by: luka <luka@neuralmagic.com>
Co-authored-by: youkaichao <youkaichao@126.com>
2024-11-08 21:20:08 +00:00
e1b5a82179 Rename vllm.logging to vllm.logging_utils (#10134) 2024-11-08 20:53:24 +00:00
87713c6053 [CI/Build] Ignore .gitignored files for shellcheck (#10162)
Signed-off-by: luka <luka@neuralmagic.com>
2024-11-08 19:53:36 +00:00
b5815c8413 [V1] Fix non-cudagraph op name (#10166)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-08 10:23:04 -08:00
6b30471586 [Misc] Improve Web UI (#10090)
Signed-off-by: Rafael Vasquez <rafvasq21@gmail.com>
2024-11-08 09:51:04 -08:00
f6778620a9 Disable spec-decode + chunked-prefill for draft models with tensor parallelism > 1 (#10136)
Signed-off-by: Sourashis Roy <sroy@roblox.com>
2024-11-08 15:56:18 +00:00
0535e5fe6c Fix edge case Mistral tokenizer (#10152) 2024-11-08 15:42:27 +00:00
b489fc3c91 [CI/Build] Update CPU tests to include all "standard" tests (#5481)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-08 23:30:04 +08:00
208ce622c7 [V1]Enable APC by default only for text models (#10148)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-11-08 14:39:41 +00:00
1ff4aed5bd [Model] Expose size to Idefics3 as mm_processor_kwargs (#10146)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-08 09:56:58 +00:00
f10797c0ce [Bugfix][XPU] Fix xpu tp by introducing XpuCommunicator (#10144)
Signed-off-by: yan ma <yan.ma@intel.com>
2024-11-08 09:41:03 +00:00
f4c2187e29 [Misc] Fix typo in #5895 (#10145)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-08 09:07:01 +00:00
aea6ad629f Add hf_transfer to testing image (#10096) 2024-11-08 08:35:25 +00:00
da07a9ead7 Fixes a typo about 'max_decode_seq_len' which causes crashes with cuda graph. (#9285)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
2024-11-08 05:31:28 +00:00
3a7f15a398 [Doc] Move CONTRIBUTING to docs site (#9924)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-08 05:15:12 +00:00
7371749d54 [Misc] Fix ImportError causing by triton (#9493) 2024-11-08 05:08:51 +00:00
ad39bd640c [Bugfix] Add error handling when server cannot respond any valid tokens (#5895) 2024-11-08 04:58:37 +00:00
40d0e7411d [Doc] Update FAQ links in spec_decode.rst (#9662)
Signed-off-by: whyiug <whyiug@hotmail.com>
2024-11-08 04:44:58 +00:00
6bb52b0f97 [CI/Build] Give PR cleanup job PR write access (#10139)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-08 12:10:20 +08:00
201fc07730 [V1] Prefix caching (take 2) (#9972)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
2024-11-07 17:34:44 -08:00
42b4f46b71 [V1] Add all_token_ids attribute to Request (#10135)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-07 17:08:24 -08:00
073a472728 [Misc] report relevant env vars in collect_env.py tool (#9293) 2024-11-07 16:14:01 -08:00
93bff421bc Bump actions/checkout from 4.2.1 to 4.2.2 (#9746)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-11-07 21:44:58 +00:00
28b2877d30 Online video support for VLMs (#10020)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: litianjian <litianjian@bytedance.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-07 20:25:59 +00:00
97b8475beb Bump actions/setup-python from 5.2.0 to 5.3.0 (#9745)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-11-07 18:55:35 +00:00
a2f1f3b089 [CI/Build] Automate PR body text cleanup (#10082)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-07 18:26:28 +00:00
3be5b26a76 [CI/Build] Add shell script linting using shellcheck (#7925)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-07 18:17:29 +00:00
de0e61a323 [CI/Build] Always run mypy (#10122)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-07 16:43:16 +00:00
9d43afcc53 [Feature] [Spec decode]: Combine chunked prefill with speculative decoding (#9291)
Signed-off-by: NickLucche <nlucches@redhat.com>
2024-11-07 08:15:14 -08:00
ae62fd17c0 [Frontend] Tool calling parser for Granite 3.0 models (#9027)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2024-11-07 07:09:02 -08:00
a62bc0109c [Misc] Add Gamma-Distribution Request Generation Support for Serving Benchmark. (#10105)
Signed-off-by: Mozhou <spli161006@gmail.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-11-07 11:20:30 +00:00
999df95b4e [Bugfix] Make image processor respect mm_processor_kwargs for Qwen2-VL (#10112)
Signed-off-by: Jiahao Li <liplus17@163.com>
2024-11-07 10:50:44 +00:00
a6f332d0d9 [Hardware][CPU][bugfix] Fix half dtype support on AVX2-only target (#10108)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2024-11-07 18:42:50 +08:00
0dfba97b42 [Frontend] Fix multiple values for keyword argument error (#10075) (#10076)
Signed-off-by: Lei <ylxx@live.com>
2024-11-07 09:07:19 +00:00
aa9078fa03 Adds method to read the pooling types from model's files (#9506)
Signed-off-by: Flavia Beo <flavia.beo@ibm.com>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Max de Bayser <mbayser@br.ibm.com>
2024-11-07 08:42:40 +00:00
e036e527a0 [CI/Build] Improve mypy + python version matrix (#10041)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-07 07:54:16 +00:00
6192e9b8fe [Core][Distributed] Refactor ipc buffer init in CustomAllreduce (#10030)
Signed-off-by: Hanzhi Zhou <hanzhi713@gmail.com>
2024-11-06 23:50:47 -08:00
d7263a1bb8 Doc: Improve benchmark documentation (#9927)
Signed-off-by: Rafael Vasquez <rafvasq21@gmail.com>
2024-11-06 23:50:35 -08:00
104d729656 [CI/Build] re-add codespell to CI (#10083)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-06 22:54:46 -08:00
db7db4aab9 [Misc] Consolidate ModelConfig code related to HF config (#10104)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-07 06:00:21 +00:00
1fa020c539 [V1][BugFix] Fix Generator construction in greedy + seed case (#10097)
Signed-off-by: Nick Hill <nhill@redhat.com>
2024-11-07 05:06:57 +00:00
e7b84c394d [doc] add back Python 3.8 ABI (#10100)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-06 21:06:41 -08:00
a4b3e0c1e9 [Hardware][CPU] Update torch 2.5 (#9911)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2024-11-07 04:43:08 +00:00
29862b884b [Frontend] Adjust try/except blocks in API impl (#10056)
Signed-off-by: Nick Hill <nhill@redhat.com>
2024-11-06 20:07:51 -08:00
d3859f1891 [Misc][XPU] Upgrade to Pytorch 2.5 for xpu backend (#9823)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
Signed-off-by: yan ma <yan.ma@intel.com>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
2024-11-06 17:29:03 -08:00
4ab3256644 [Bugfix] Fix FP8 torch._scaled_mm fallback for torch>2.5 with CUDA<12.4 (#10095)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-11-07 00:54:13 +00:00
719c1ca468 [core][distributed] add stateless_init_process_group (#10072)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-06 16:42:09 -08:00
74f2f8a0f1 [CI/Build] Always run the ruff workflow (#10092)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-06 22:25:23 +00:00
d58268c56a [V1] Make v1 more testable (#9888)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-11-06 11:57:35 -08:00
87bd7e0515 [CI/Build] change conflict PR comment from mergify (#10080)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-06 10:15:42 -08:00
098f94de42 [CI/Build] Drop Python 3.8 support (#10038)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-06 14:31:01 +00:00
399c798608 Remove ScaledActivation for AWQ (#10057)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-11-06 14:27:06 +00:00
406d4cc480 [Model][LoRA]LoRA support added for Qwen2VLForConditionalGeneration (#10022)
Signed-off-by: ericperfect <ericperfectttt@gmail.com>
2024-11-06 14:13:15 +00:00
a5bba7d234 [Model] Add Idefics3 support (#9767)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: B-201 <Joy25810@foxmail.com>
Co-authored-by: B-201 <Joy25810@foxmail.com>
2024-11-06 11:41:17 +00:00
2003cc3513 [Model][LoRA]LoRA support added for LlamaEmbeddingModel (#10071)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-06 09:49:19 +00:00
6a585a23d2 [Hotfix] Fix ruff errors (#10073)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-06 01:24:28 -08:00
a02a50e6e5 [Hardware][Intel-Gaudi] Add Intel Gaudi (HPU) inference backend (#6143)
Signed-off-by: yuwenzho <yuwen.zhou@intel.com>
Signed-off-by: Chendi.Xue <chendi.xue@intel.com>
Signed-off-by: Bob Zhu <bob.zhu@intel.com>
Signed-off-by: zehao-intel <zehao.huang@intel.com>
Signed-off-by: Konrad Zawora <kzawora@habana.ai>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
Co-authored-by: Sanju C Sudhakaran <scsudhakaran@habana.ai>
Co-authored-by: Michal Adamczyk <madamczyk@habana.ai>
Co-authored-by: Marceli Fylcek <mfylcek@habana.ai>
Co-authored-by: Himangshu Lahkar <49579433+hlahkar@users.noreply.github.com>
Co-authored-by: Vivek Goel <vgoel@habana.ai>
Co-authored-by: yuwenzho <yuwen.zhou@intel.com>
Co-authored-by: Dominika Olszewska <dolszewska@habana.ai>
Co-authored-by: barak goldberg <149692267+bgoldberg-habana@users.noreply.github.com>
Co-authored-by: Michal Szutenberg <37601244+szutenberg@users.noreply.github.com>
Co-authored-by: Jan Kaniecki <jkaniecki@habana.ai>
Co-authored-by: Agata Dobrzyniewicz <160237065+adobrzyniewicz-habana@users.noreply.github.com>
Co-authored-by: Krzysztof Wisniewski <kwisniewski@habana.ai>
Co-authored-by: Dudi Lester <160421192+dudilester@users.noreply.github.com>
Co-authored-by: Ilia Taraban <tarabanil@gmail.com>
Co-authored-by: Chendi.Xue <chendi.xue@intel.com>
Co-authored-by: Michał Kuligowski <mkuligowski@habana.ai>
Co-authored-by: Jakub Maksymczuk <jmaksymczuk@habana.ai>
Co-authored-by: Tomasz Zielinski <85164140+tzielinski-habana@users.noreply.github.com>
Co-authored-by: Sun Choi <schoi@habana.ai>
Co-authored-by: Iryna Boiko <iboiko@habana.ai>
Co-authored-by: Bob Zhu <41610754+czhu15@users.noreply.github.com>
Co-authored-by: hlin99 <73271530+hlin99@users.noreply.github.com>
Co-authored-by: Zehao Huang <zehao.huang@intel.com>
Co-authored-by: Andrzej Kotłowski <Andrzej.Kotlowski@intel.com>
Co-authored-by: Yan Tomsinsky <73292515+Yantom1@users.noreply.github.com>
Co-authored-by: Nir David <ndavid@habana.ai>
Co-authored-by: Yu-Zhou <yu.zhou@intel.com>
Co-authored-by: Ruheena Suhani Shaik <rsshaik@habana.ai>
Co-authored-by: Karol Damaszke <kdamaszke@habana.ai>
Co-authored-by: Marcin Swiniarski <mswiniarski@habana.ai>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: Jacek Czaja <jacek.czaja@intel.com>
Co-authored-by: Jacek Czaja <jczaja@habana.ai>
Co-authored-by: Yuan <yuan.zhou@outlook.com>
2024-11-06 01:09:10 -08:00
a5fda50a10 [CI/Build] Fix large_gpu_mark reason (#10070)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-06 08:50:37 +00:00
21063c11c7 [CI/Build] drop support for Python 3.8 EOL (#8464)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2024-11-06 07:11:55 +00:00
4be3a45158 [distributed] add function to create ipc buffers directly (#10064)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-05 22:35:03 -08:00
4089985552 [V1] Integrate Piecewise CUDA graphs (#10058)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-11-05 22:16:04 -08:00
9d59b75593 [Bugfix] Remove CustomChatCompletionContentPartParam multimodal input type (#10054)
Signed-off-by: Zifei Tong <zifeitong@gmail.com>
2024-11-06 05:13:09 +00:00
ea928f608c [Bugfix] Gpt-j-6B patch kv_scale to k_scale path (#10063)
Signed-off-by: Alex Rakowski <alex.rakowski@amd.com>
Signed-off-by: Alex Rakowski <182798202+arakowsk-amd@users.noreply.github.com>
2024-11-06 05:10:40 +00:00
2bcbae704c [Bugfix] Fix edge-case crash when using chat with the Mistral Tekken Tokenizer (#10051)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-11-06 04:28:29 +00:00
ffc0f2b47a [Model][OpenVINO] Fix regressions from #8346 (#10045)
Signed-off-by: Peter Salas <peter@fixie.ai>
2024-11-06 04:19:15 +00:00
82bfc38d07 [Misc] Sort the list of embedding models (#10037)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-06 04:05:05 +00:00
c4cacbaa7f [v1] reduce graph capture time for piecewise cudagraph (#10059)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-05 18:19:50 -08:00
0c63c34f72 [Bugfix][SpecDecode] kv corruption with bonus tokens in spec decode (#9730)
Co-authored-by: LiuXiaoxuanPKU <lilyliupku@gmail.com>
2024-11-06 01:45:45 +00:00
966e31697b [Bugfix] Fix pickle of input when async output processing is on (#9931)
Signed-off-by: Wallas Santos <wallashss@ibm.com>
2024-11-06 00:39:26 +00:00
43300bd98a [Bugfix] Properly propagate trust_remote_code settings (#10047)
Signed-off-by: Zifei Tong <zifeitong@gmail.com>
2024-11-05 16:34:40 -08:00
ca9844b340 [bugfix] fix weak ref in piecewise cudagraph and tractable test (#10048)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-05 14:49:20 -08:00
235366fe2e [CI] Prune back the number of tests in tests/kernels/* (#9932)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-11-05 16:02:32 -05:00
02462465ea [CI] Prune tests/models/decoder_only/language/* tests (#9940)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-11-05 16:02:23 -05:00
b9c64c0ca7 [Misc] Modify BNB parameter name (#9997)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-05 14:40:08 -05:00
d2e80332a7 [Feature] Update benchmark_throughput.py to support image input (#9851)
Signed-off-by: Linkun Chen <github+anyscale@lkchen.net>
Co-authored-by: Linkun Chen <github+anyscale@lkchen.net>
2024-11-05 19:30:02 +00:00
a53046b16f [Model] Support quantization of PixtralHFTransformer for PixtralHF (#9921)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-11-05 10:42:20 -08:00
731aec5be7 [CI/Build] Limit github CI jobs based on files changed (#9928)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-05 10:30:42 -08:00
09d3550372 [Misc] Add logging for CUDA memory (#10027)
Signed-off-by: Chenghao Yang <yangalan1996@gmail.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Chenghao Yang <yangalan1996@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-11-05 09:50:50 -08:00
cd34029e91 Refactor TPU requirements file and pin build dependencies (#10010)
Signed-off-by: Richard Liu <ricliu@google.com>
2024-11-05 16:48:44 +00:00
5952d81139 [Frontend] Fix tcp port reservation for api server (#10012)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-11-05 07:50:57 -08:00
93dee88f6b [Misc] vllm CLI flags should be ordered for better user readability (#10017)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2024-11-05 18:59:56 +08:00
7a83b1aec0 [BugFix] Lazy import ray (#10021) 2024-11-05 10:04:10 +00:00
ad23318928 [Bugfix] Fixup Mamba (#10004)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-11-05 03:46:38 +00:00
bbc3619dc8 [Core] Make encoder-decoder inputs a nested structure to be more composable (#9604)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-05 10:07:31 +08:00
04bbf38e05 [Core] Use os.sched_yield in ShmRingBuffer instead of time.sleep (#9994)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-11-05 01:08:21 +00:00
8f0a9ca890 [Bugfix] Respect modules_to_not_convert within awq_marlin (#9895)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-11-04 16:57:44 -07:00
2094062b4e [4.5/N] bugfix for quant config in speculative decode (#10007)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-04 15:11:59 -08:00
d93478b399 [Bugfix] Upgrade to pytorch 2.5.1 (#10001)
Signed-off-by: Bill Nell <bill@neuralmagic.com>
2024-11-04 15:11:28 -08:00
ac04a97a9f [Frontend] Add max_tokens prometheus metric (#9881)
Signed-off-by: Tomer Asida <tomera@ai21.com>
2024-11-04 22:53:24 +00:00
9a5664d4a4 [Misc] Refactor benchmark_throughput.py (#9779)
Signed-off-by: Linkun Chen <github+anyscale@lkchen.net>
Co-authored-by: Linkun Chen <lkchen@github.com>
Co-authored-by: Linkun Chen <github+anyscale@lkchen.net>
2024-11-04 14:32:16 -08:00
04cef2c6ab [Bugfix] Fix MQLLMEngine hanging (#9973)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
2024-11-04 16:01:43 -05:00
6e056bcf04 [Doc] Update VLM doc about loading from local files (#9999)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-11-04 19:47:11 +00:00
5208dc7a20 [Bugfix][CI/Build][Hardware][AMD] Shard ID parameters in AMD tests running parallel jobs (#9279)
Signed-off-by: Hissu Hyvarinen <hissu.hyvarinen@amd.com>
2024-11-04 11:37:46 -08:00
1c45f4c385 [CI] Basic Integration Test For TPU (#9968)
Signed-off-by: Robert Shaw <rshaw@neuralmagic.com>
2024-11-04 11:34:26 -08:00
603a661ae8 [Model] factoring out MambaMixer out of Jamba (#8993)
Signed-off-by: mzusman <mor.zusmann@gmail.com>
2024-11-04 18:00:00 +00:00
fb2716d641 [Misc]Reduce BNB static variable (#9987)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-04 17:04:40 +00:00
8d72bb20fa [4/N] make quant config first-class citizen (#9978)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-04 08:51:31 -08:00
ac6b8f19b9 [Frontend] Multi-Modality Support for Loading Local Image Files (#9915)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2024-11-04 15:34:57 +00:00
ccb5376a9a [Bugfix][OpenVINO] Fix circular reference #9939 (#9974)
Signed-off-by: MengqingCao <cmq0113@163.com>
2024-11-04 18:14:13 +08:00
ea4adeddc1 [Bugfix] Fix E2EL mean and median stats (#9984)
Signed-off-by: daitran2k1 <tranquangdai7a@gmail.com>
2024-11-04 09:37:58 +00:00
4dbcbbeb09 [Misc] Compute query_start_loc/seq_start_loc on CPU (#9447)
Co-authored-by: Yang Zheng(SW)(Alex) <you@example.com>
2024-11-04 08:54:37 +00:00
b67feb1274 [Bugfix]Using the correct type hints (#9885)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2024-11-04 06:19:51 +00:00
c49f0407ba [Bugfix] Fix MiniCPMV and Mllama BNB bug (#9917)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-11-04 03:36:41 +00:00
91c9ebbb1b [V1] Fix Configs (#9971) 2024-11-04 00:24:40 +00:00
54597724f4 [Model] Add support for H2OVL-Mississippi models (#9747)
Signed-off-by: Shanshan Wang <shanshan.wang@h2o.ai>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-11-04 00:15:36 +00:00
1f1b6d6eda [V1] Support per-request seed (#9945)
Signed-off-by: Nick Hill <nickhill@us.ibm.com>
2024-11-03 09:14:17 -08:00
3bb4befea7 [bugfix] fix tsts (#9959)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-02 15:54:05 -07:00
ae5279a163 [torch.compile] Adding torch compile to vision-language models (#9946) 2024-11-02 12:56:05 -07:00
1b73ab2a1f [CI/Build] Quoting around > (#9956) 2024-11-02 12:50:28 -07:00
cea808f325 [3/N] model runner pass the whole config to model (#9958)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-02 12:08:49 -07:00
74b529ceee [bugfix] fix chatglm dummy_data_for_glmv (#9955)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-02 08:03:33 -07:00
d6459b4516 [V1] Fix EngineArgs refactor on V1 (#9954) 2024-11-02 07:44:38 -07:00
e893795443 [2/N] executor pass the complete config to worker/modelrunner (#9938)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2024-11-02 07:35:05 -07:00
1d4cfe2be1 [Doc] Updated tpu-installation.rst with more details (#9926)
Signed-off-by: Michael Green <mikegre@google.com>
2024-11-02 10:06:45 -04:00
eed92f12fc [Docs] Update Granite 3.0 models in supported models table (#9930)
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: Nick Hill <nickhill@us.ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-11-02 09:02:18 +00:00
af7380d83b [torch.compile] fix cpu broken code (#9947)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-01 23:35:47 -07:00
a78dd3303e [Encoder Decoder] Add flash_attn kernel support for encoder-decoder models (#9559) 2024-11-01 23:22:49 -07:00
d522034c85 [ci/build] Have dependabot ignore pinned dependencies (#9935)
Signed-off-by: kevin <kevin@anyscale.com>
2024-11-01 23:56:13 +00:00
6c0b7f548d [Core][VLM] Add precise multi-modal placeholder tracking (#8346)
Signed-off-by: Peter Salas <peter@fixie.ai>
2024-11-01 16:21:10 -07:00
d151fde834 [ci/build] Bump the patch-update group with 10 updates (#9897)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Kevin H. Luu <kevin@anyscale.com>
2024-11-01 23:04:42 +00:00
27cd36e6e2 [Bugfix] PicklingError on RayTaskError (#9934)
Signed-off-by: Gene Su <e870252314@gmail.com>
2024-11-01 22:08:23 +00:00
18bd7587b7 [1/N] pass the complete config from engine to executor (#9933)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-01 13:51:57 -07:00
598b6d7b07 [Bugfix/Core] Flashinfer k_scale and v_scale (#9861) 2024-11-01 12:15:05 -07:00
aff1fd8188 [torch.compile] use interpreter with stable api from pytorch (#9889)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-01 11:50:37 -07:00
4581d2cc02 [Core] Refactor: Clean up unused argument in Scheduler._preempt (#9696)
Signed-off-by: André Jonasson <andre.jonasson@gmail.com>
2024-11-01 11:41:38 -07:00
1dd4cb2935 [Bugfix] Fix edge cases for MistralTokenizer (#9625)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
Signed-off-by: Prashant Gupta <prashantgupta@us.ibm.com>
Co-authored-by: Prashant Gupta <prashantgupta@us.ibm.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2024-11-01 10:33:15 -07:00
ba0d892074 [Frontend] Use a proper chat template for VLM2Vec (#9912) 2024-11-01 14:09:07 +00:00
30a2e80742 [CI/Build] Add Model Tests for PixtralHF (#9813) 2024-11-01 07:55:29 -06:00
06386a64dd [Frontend] Chat-based Embeddings API (#9759) 2024-11-01 08:13:35 +00:00
d3aa2a8b2f [Doc] Update multi-input support (#9906) 2024-11-01 07:34:49 +00:00
2b5bf20988 [torch.compile] Adding torch compile annotations to some models (#9876)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-11-01 00:25:47 -07:00
93a76dd21d [Model] Support bitsandbytes for MiniCPMV (#9891)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-11-01 13:31:56 +08:00
566cd27797 [torch.compile] rework test plans (#9866)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-10-31 22:20:17 -07:00
37a4947dcd [Bugfix] Fix layer skip logic with bitsandbytes (#9887)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-11-01 13:12:44 +08:00
96e0c9cbbd [torch.compile] directly register custom op (#9896)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-10-31 21:56:09 -07:00
031a7995f3 [Bugfix][Frontend] Reject guided decoding in multistep mode (#9892)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-11-01 01:09:46 +00:00
b63c64d95b [ci/build] Configure dependabot to update pip dependencies (#9811)
Signed-off-by: kevin <kevin@anyscale.com>
2024-10-31 15:55:38 -07:00
9fb12f7848 [BugFix][Kernel] Fix Illegal memory access in causal_conv1d in H100 (#9838)
Signed-off-by: mzusman <mor.zusmann@gmail.com>
2024-10-31 20:06:25 +00:00
55650c83a0 [Bugfix] Fix illegal memory access error with chunked prefill, prefix caching, block manager v2 and xformers enabled together (#9532)
Signed-off-by: sasha0552 <admin@sasha0552.org>
2024-10-31 11:46:36 -07:00
77f7ef2908 [CI/Build] Adding a forced docker system prune to clean up space (#9849) 2024-11-01 01:02:58 +08:00
16b8f7a86f [CI/Build] Add Model Tests for Qwen2-VL (#9846)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-10-31 09:10:52 -07:00
5608e611c2 [Doc] Update Qwen documentation (#9869) 2024-10-31 08:54:18 +00:00
3ea2dc2ec4 [Misc] Remove deprecated arg for cuda graph capture (#9864)
Signed-off-by: Roger Wang <ywang@roblox.com>
2024-10-31 07:22:07 +00:00
d087bf863e [Model] Support quantization of Qwen2VisionTransformer (#9817)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-10-30 22:41:20 -07:00
890ca36072 Revert "[Bugfix] Use host argument to bind to interface (#9798)" (#9852) 2024-10-31 01:44:51 +00:00
abbfb6134d [Misc][OpenAI] deprecate max_tokens in favor of new max_completion_tokens field for chat completion endpoint (#9837) 2024-10-30 18:15:56 -07:00
64384bbcdf [torch.compile] upgrade tests (#9858)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-10-30 16:34:22 -07:00
00d91c8a2c [CI/Build] Simplify exception trace in api server tests (#9787)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-10-30 14:52:05 -07:00
c2cd1a2142 [doc] update pp support (#9853)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-10-30 13:36:51 -07:00
c787f2d81d [Neuron] Update Dockerfile.neuron to fix build failure (#9822) 2024-10-30 12:22:02 -07:00
33d257735f [Doc] link bug for multistep guided decoding (#9843)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-10-30 17:28:29 +00:00
3b3f1e7436 [Bugfix][core] replace heartbeat with pid check (#9818)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-10-30 09:34:07 -07:00
9ff4511e43 [Misc] Add chunked-prefill support on FlashInfer. (#9781) 2024-10-30 09:33:53 -07:00
81f09cfd80 [Model] Support math-shepherd-mistral-7b-prm model (#9697)
Signed-off-by: Went-Liang <wenteng_liang@163.com>
2024-10-30 09:33:42 -07:00
cc98f1e079 [CI/Build] VLM Test Consolidation (#9372)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2024-10-30 09:32:17 -07:00
211fe91aa8 [TPU] Correctly profile peak memory usage & Upgrade PyTorch XLA (#9438) 2024-10-30 09:41:38 +00:00
6aa6020f9b [Misc] Specify minimum pynvml version (#9827)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-10-29 23:05:43 -07:00
ff5ed6e1bc [torch.compile] rework compile control with piecewise cudagraph (#9715)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-10-29 23:03:49 -07:00
7b0365efef [Doc] Add the DCO to CONTRIBUTING.md (#9803)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-10-30 05:22:23 +00:00
04a3ae0aca [Bugfix] Fix multi nodes TP+PP for XPU (#8884)
Signed-off-by: YiSheng5 <syhm@mail.ustc.edu.cn>
Signed-off-by: yan ma <yan.ma@intel.com>
Co-authored-by: YiSheng5 <syhm@mail.ustc.edu.cn>
2024-10-29 21:34:45 -07:00
62fac4b9aa [ci/build] Pin CI dependencies version with pip-compile (#9810)
Signed-off-by: kevin <kevin@anyscale.com>
2024-10-30 03:34:55 +00:00
226688bd61 [Bugfix][VLM] Make apply_fp8_linear work with >2D input (#9812) 2024-10-29 19:49:44 -07:00
64cb1cdc3f Update README.md (#9819) 2024-10-29 17:28:43 -07:00
1ab6f6b4ad [core][distributed] fix custom allreduce in pytorch 2.5 (#9815)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-10-29 17:06:24 -07:00
bc73e9821c [Bugfix] Fix prefix strings for quantized VLMs (#9772) 2024-10-29 16:02:59 -07:00
8d7724104a [Docs] Add notes about Snowflake Meetup (#9814)
Signed-off-by: simon-mo <simon.mo@hey.com>
2024-10-29 15:19:02 -07:00
882a1ad0de [Model] tool calling support for ibm-granite/granite-20b-functioncalling (#8339)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Maximilien de Bayser <maxdebayser@gmail.com>
2024-10-29 15:07:37 -07:00
67bdf8e523 [Bugfix][Frontend] Guard against bad token ids (#9634)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-10-29 14:13:20 -07:00
0ad216f575 [MISC] Set label value to timestamp over 0, to keep track of recent history (#9777)
Signed-off-by: Kunjan Patel <kunjanp@google.com>
2024-10-29 19:52:19 +00:00
7585ec996f [CI/Build] mergify: fix rules for ci/build label (#9804)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-10-29 19:24:42 +00:00
ab6f981671 [CI][Bugfix] Skip chameleon for transformers 4.46.1 (#9808) 2024-10-29 11:12:43 -07:00
ac3d748dba [Model] Add LlamaEmbeddingModel as an embedding Implementation of LlamaModel (#9806) 2024-10-29 10:40:35 -07:00
0ce7798f44 [Misc]: Typo fix: Renaming classes (casualLM -> causalLM) (#9801)
Signed-off-by: Yannick Schnider <Yannick.Schnider1@ibm.com>
2024-10-29 10:39:20 -07:00
0f43387157 [Bugfix] Use host argument to bind to interface (#9798) 2024-10-29 10:37:59 -07:00
08600ddc68 Fix the log to correct guide user to install modelscope (#9793)
Signed-off-by: yuze.zyz <yuze.zyz@alibaba-inc.com>
2024-10-29 10:36:59 -07:00
74fc2d77ae [Misc] Add metrics for request queue time, forward time, and execute time (#9659) 2024-10-29 10:32:56 -07:00
622b7ab955 [Hardware] using current_platform.seed_everything (#9785)
Signed-off-by: wangshuai09 <391746016@qq.com>
2024-10-29 14:47:44 +00:00
09500f7dde [Model] Add BNB quantization support for Mllama (#9720) 2024-10-29 08:20:02 -04:00
ef7865b4f9 [Frontend] re-enable multi-modality input in the new beam search implementation (#9427)
Signed-off-by: Qishuai Ferdinandzhong@gmail.com
2024-10-29 11:49:47 +00:00
eae3d48181 [Bugfix] Use temporary directory in registry (#9721) 2024-10-28 22:08:20 -07:00
e74f2d448c [Doc] Specify async engine args in docs (#9726) 2024-10-28 22:07:57 -07:00
7a4df5f200 [Model][LoRA]LoRA support added for Qwen (#9622)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-10-29 04:14:07 +00:00
c5d7fb9ddc [Doc] fix third-party model example (#9771)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-10-28 19:39:21 -07:00
76ed5340f0 [torch.compile] add deepseek v2 compile (#9775)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-10-28 14:35:17 -07:00
97b61bfae6 [misc] avoid circular import (#9765)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-10-28 20:51:23 +00:00
aa0addb397 Adding "torch compile" annotations to moe models (#9758) 2024-10-28 13:49:56 -07:00
5f8d8075f9 [Model][VLM] Add multi-video support for LLaVA-Onevision (#8905)
Co-authored-by: litianjian <litianjian@bytedance.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-10-28 18:04:10 +00:00
8b0e4f2ad7 [CI/Build] Adopt Mergify for auto-labeling PRs (#9259)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-10-28 09:38:09 -07:00
2adb4409e0 [Bugfix] Fix ray instance detect issue (#9439) 2024-10-28 07:13:03 +00:00
feb92fbe4a Fix beam search eos (#9627) 2024-10-28 06:59:37 +00:00
32176fee73 [torch.compile] support moe models (#9632)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-10-27 21:58:04 -07:00
4e2d95e372 [Hardware][ROCM] using current_platform.is_rocm (#9642)
Signed-off-by: wangshuai09 <391746016@qq.com>
2024-10-28 04:07:00 +00:00
34a9941620 [Bugfix] Fix load config when using bools (#9533) 2024-10-27 13:46:41 -04:00
e130c40e4e Fix cache management in "Close inactive issues and PRs" actions workflow (#9734) 2024-10-27 10:30:03 -07:00
3cb07a36a2 [Misc] Upgrade to pytorch 2.5 (#9588)
Signed-off-by: Bill Nell <bill@neuralmagic.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-10-27 09:44:24 +00:00
8549c82660 [core] cudagraph output with tensor weak reference (#9724)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-10-27 00:19:28 -07:00
67a6882da4 [Misc] SpecDecodeWorker supports profiling (#9719)
Signed-off-by: Abatom <abatom@163.com>
2024-10-27 04:18:03 +00:00
6650e6a930 [Model] Add classification Task with Qwen2ForSequenceClassification (#9704)
Signed-off-by: Kevin-Yang <ykcha9@gmail.com>
Co-authored-by: Kevin-Yang <ykcha9@gmail.com>
2024-10-26 17:53:35 +00:00
07e981fdf4 [Frontend] Bad words sampling parameter (#9717)
Signed-off-by: Vasily Alexeev <alvasian@yandex.ru>
2024-10-26 16:29:38 +00:00
55137e8ee3 Fix: MI100 Support By Bypassing Custom Paged Attention (#9560) 2024-10-26 12:12:57 +00:00
5cbdccd151 [Hardware][openvino] is_openvino --> current_platform.is_openvino (#9716) 2024-10-26 10:59:06 +00:00
067e77f9a8 [Bugfix] Steaming continuous_usage_stats default to False (#9709)
Signed-off-by: Sam Stoelinga <sammiestoel@gmail.com>
2024-10-26 05:05:47 +00:00
6567e13724 [Bugfix] Fix crash with llama 3.2 vision models and guided decoding (#9631)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
Co-authored-by: pavlo-ruban <pavlo.ruban@servicenow.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-10-25 15:42:56 -07:00
228cfbd03f [Doc] Improve quickstart documentation (#9256)
Signed-off-by: Rafael Vasquez <rafvasq21@gmail.com>
2024-10-25 14:32:10 -07:00
ca0d92227e [Bugfix] Fix compressed_tensors_moe bad config.strategy (#9677) 2024-10-25 12:40:33 -07:00
9645b9f646 [V1] Support sliding window attention (#9679)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-10-24 22:20:37 -07:00
a6f3721861 [Model] add a lora module for granite 3.0 MoE models (#9673) 2024-10-24 22:00:17 -07:00
9f7b4ba865 [ci/Build] Skip Chameleon for transformers 4.46.0 on broadcast test #9675 (#9676) 2024-10-24 20:59:00 -07:00
c91ed47c43 [Bugfix] Remove xformers requirement for Pixtral (#9597)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-10-24 15:38:05 -07:00
59449095ab [Performance][Kernel] Fused_moe Performance Improvement (#9384)
Signed-off-by: charlifu <charlifu@amd.com>
2024-10-24 15:37:52 -07:00
e26d37a185 [Log][Bugfix] Fix default value check for image_url.detail (#9663) 2024-10-24 10:44:38 -07:00
722d46edb9 [Model] Compute Llava Next Max Tokens / Dummy Data From Gridpoints (#9650)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2024-10-24 10:42:24 -07:00
c866e0079d [CI/Build] Fix VLM test failures when using transformers v4.46 (#9666) 2024-10-25 01:40:40 +08:00
d27cfbf791 [torch.compile] Adding torch compile annotations to some models (#9641)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-10-24 09:31:42 -07:00
de662d32b5 Increase operation per run limit for "Close inactive issues and PRs" workflow (#9661)
Signed-off-by: Harry Mellor <hej.mellor@gmail.com>
2024-10-24 12:17:45 -04:00
f58454968f [Bugfix]Disable the post_norm layer of the vision encoder for LLaVA models (#9653) 2024-10-24 07:52:07 -07:00
b979143d5b [Doc] Move additional tips/notes to the top (#9647) 2024-10-24 09:43:59 +00:00
ad6f78053e [torch.compile] expanding support and fix allgather compilation (#9637)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-10-24 01:32:15 -07:00
295a061fb3 [Kernel] add kernel for FATReLU (#9610)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2024-10-24 16:18:27 +08:00
8a02cd045a [torch.compile] Adding torch compile annotations to some models (#9639)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-10-24 00:54:57 -07:00
4fdc581f9e [core] simplify seq group code (#9569)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-10-24 00:16:44 -07:00
3770071eb4 [V1][Bugfix] Clean up requests when aborted (#9629)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-10-23 23:33:22 -07:00
836e8ef6ee [Bugfix] Fix PP for ChatGLM and Molmo (#9422) 2024-10-24 06:12:05 +00:00
056a68c7db [XPU] avoid triton import for xpu (#9440)
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-10-24 05:14:00 +00:00
33bab41060 [Bugfix]: Make chat content text allow type content (#9358)
Signed-off-by: Vinay Damodaran <vrdn@hey.com>
2024-10-24 05:05:49 +00:00
b7df53cd42 [Bugfix] Use "vision_model" prefix for MllamaVisionModel (#9628)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-10-24 10:07:44 +08:00
bb01f2915e [Bugfix][Model] Fix Mllama SDPA illegal memory access for batched multi-image (#9626)
Signed-off-by: mgoin <michael@neuralmagic.com>
2024-10-24 10:03:44 +08:00
b548d7a5f4 [CI/Build] Add bot to close stale issues and PRs (#9436) 2024-10-23 15:45:26 -07:00
fc6c274626 [Model] Add Qwen2-Audio model support (#9248)
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-10-23 17:54:22 +00:00
150b779081 [Frontend] Enable Online Multi-image Support for MLlama (#9393)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-10-23 17:28:57 +00:00
9013e24f7b [torch.compile] Adding torch compile annotations to some models (#9614) 2024-10-23 10:07:48 -07:00
fd0e2cfdb2 [Misc] Separate total and output tokens in benchmark_throughput.py (#8914) 2024-10-23 16:47:20 +00:00
e5ac6a4199 [Bugfix] Fix divide by zero when serving Mamba models (#9617)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-10-23 16:40:43 +00:00
dbdd3b5e5a [misc] comment to avoid future confusion about baichuan (#9620)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-10-23 09:14:44 -07:00
e7116c017c [Bugfix] Fix _init_vision_model in NVLM_D model (#9611)
Co-authored-by: Isotr0py <2037008807@qq.com>
2024-10-23 14:09:04 +00:00
31a08f5bd2 [Model] Add min_pixels / max_pixels to Qwen2VL as mm_processor_kwargs (#9612)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2024-10-23 14:05:18 +00:00
c18e1a3418 [VLM] Enable overriding whether post layernorm is used in vision encoder + fix quant args (#9217)
Co-authored-by: Isotr0py <2037008807@qq.com>
2024-10-23 11:27:37 +00:00
3ff57ebfca [Model] Initialize Florence-2 language backbone support (#9555) 2024-10-23 10:42:47 +00:00
2394962d70 [Hardware][XPU] using current_platform.is_xpu (#9605) 2024-10-23 08:28:21 +00:00
51c24c9736 [Build] Fix FetchContent multiple build issue (#9596)
Signed-off-by: luka <luka@neuralmagic.com>
2024-10-23 12:43:07 +08:00
831540cf04 [Model] Support E5-V (#9576) 2024-10-23 11:35:29 +08:00
29061ed9df [Misc] Add an env var VLLM_LOGGING_PREFIX, if set, it will be prepend to all logging messages (#9590) 2024-10-23 11:17:28 +08:00
65050a40e6 [Bugfix] Generate exactly input_len tokens in benchmark_throughput (#9592) 2024-10-22 17:45:35 -07:00
208cb34c81 [Doc]: Update tensorizer docs to include vllm[tensorizer] (#7889)
Co-authored-by: Kaunil Dhruv <dhruv.kaunil@gmail.com>
2024-10-22 15:43:25 -07:00
b17046e298 [BugFix] Fix metrics error for --num-scheduler-steps > 1 (#8234) 2024-10-22 15:43:03 -07:00
d1e8240875 [Bugfix] Fix spurious "No compiled cutlass_scaled_mm ..." for W8A8 on Turing (#9487) 2024-10-22 15:41:13 -07:00
cb6fdaa0a0 [Misc] Make benchmarks use EngineArgs (#9529) 2024-10-22 15:40:38 -07:00
23b899a8e6 [Bugfix] fix detokenizer shallow copy (#5919) 2024-10-22 15:38:12 -07:00
17c79f3c36 [torch.compile] auto infer dynamic_arg_dims from type annotation (#9589) 2024-10-22 13:43:37 -07:00
cd5601ac37 [BugFix] Prevent exporting duplicate OpenTelemetry spans (#9017) 2024-10-22 11:11:53 -07:00
434984e665 [Frontend] Support custom request_id from request (#9550)
Co-authored-by: Yuhong Guo <yuhong.gyh@antgroup.com>
2024-10-22 18:07:30 +00:00
32a1ee74a0 [Hardware][Intel CPU][DOC] Update docs for CPU backend (#6212)
Signed-off-by: Yuan Zhou <yuan.zhou@intel.com>
Co-authored-by: Rafael Vasquez <rafvasq21@gmail.com>
Co-authored-by: Gubrud, Aaron D <aaron.d.gubrud@intel.com>
Co-authored-by: adgubrud <96072084+adgubrud@users.noreply.github.com>
2024-10-22 10:38:04 -07:00
08075c3448 [Bugfix] Eagle: change config name for fc bias (#9580) 2024-10-22 16:14:22 +00:00
bb392ea2d2 [Model][VLM] Initialize support for Mono-InternVL model (#9528) 2024-10-22 16:01:46 +00:00
9dbcce84a7 [Neuron] [Bugfix] Fix neuron startup (#9374)
Co-authored-by: Jerzy Zagorski <jzagorsk@amazon.com>
2024-10-22 12:51:41 +00:00
a48e3ec052 [CI/Build][LoRA] Temporarily fix long context failure issue (#9579) 2024-10-22 11:32:51 +00:00
6c5af09b39 [V1] Implement vLLM V1 [1/N] (#9289) 2024-10-22 01:24:07 -07:00
3ddbe25502 [Hardware][CPU] using current_platform.is_cpu (#9536) 2024-10-22 00:50:43 -07:00
0d02747f2e support TP in qwen2 bnb (#9574) 2024-10-22 07:13:23 +00:00
f7db5f0fa9 [Doc] Use shell code-blocks and fix section headers (#9508)
Signed-off-by: Rafael Vasquez <rafvasq21@gmail.com>
2024-10-22 06:43:24 +00:00
ca30c3c84b [Core] Remove evictor_v1 (#9572) 2024-10-22 04:55:49 +00:00
c0292211ce [CI/Build] Replaced some models on tests for smaller ones (#9570)
Signed-off-by: Wallas Santos <wallashss@ibm.com>
2024-10-22 04:52:14 +00:00
74692421f7 [Bugfix]: phi.py get rope_theta from config file (#9503)
Co-authored-by: Isotr0py <2037008807@qq.com>
2024-10-22 02:53:36 +00:00
29acd2c34c [Bugfix][OpenVINO] fix_dockerfile_openvino (#9552) 2024-10-21 19:47:52 -07:00
f085995a7b [CI/Build] Remove unnecessary fork_new_process (#9484) 2024-10-21 19:47:29 -07:00
b729901139 [Bugfix]: serialize config by value for --trust-remote-code (#6751)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-10-21 19:46:24 -07:00
76a5e13270 [core] move parallel sampling out from vllm core (#9302) 2024-10-22 00:31:44 +00:00
ef7faad1b8 🐛 Fixup more test failures from memory profiling (#9563)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-10-21 17:10:56 -07:00
575dcebe9a [CI] Make format checker error message more user-friendly by using emoji (#9564)
This PR makes format checker error message more user-friendly by adding emojis.
2024-10-21 23:45:15 +00:00
711f3a7806 [Frontend] Don't log duplicate error stacktrace for every request in the batch (#9023)
Signed-off-by: Wallas Santos <wallashss@ibm.com>
2024-10-21 14:49:41 -07:00
15713e3b75 [BugFix] Update draft model TP size check to allow matching target TP size (#9394)
Co-authored-by: Baoyuan Qi <qibaoyuan@126.com>
2024-10-21 14:14:29 -07:00
d621c43df7 [doc] fix format (#9562) 2024-10-21 13:54:57 -07:00
9d9186be97 [Frontend] Reduce frequency of client cancellation checking (#7959) 2024-10-21 13:28:10 -07:00
5241aa1494 [Model][Bugfix] Fix batching with multi-image in PixtralHF (#9518) 2024-10-21 14:20:07 -04:00
ec6bd6c4c6 [BugFix] Use correct python3 binary in Docker.ppc64le entrypoint (#9492)
Signed-off-by: Varad Ahirwadkar <varad.ahirwadkar1@ibm.com>
2024-10-21 17:43:02 +00:00
8ca8954841 [Bugfix][Misc]: fix graph capture for decoder (#9549) 2024-10-21 17:33:30 +00:00
f6b97293aa [Model] FalconMamba Support (#9325) 2024-10-21 12:50:16 -04:00
496e991da8 [Doc] Consistent naming of attention backends (#9498)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-10-21 22:29:57 +08:00
696b01af8f [CI/Build] Split up decoder-only LM tests (#9488)
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-10-20 21:27:50 -07:00
855e0e6f97 [Frontend][Misc] Goodput metric support (#9338) 2024-10-20 18:39:32 +00:00
4fa3e33349 [Kernel] Support sliding window in flash attention backend (#9403) 2024-10-20 10:57:52 -07:00
962d2c6349 [Model][Pixtral] Use memory_efficient_attention for PixtralHFVision (#9520) 2024-10-20 05:29:14 +00:00
5b59fe0f08 [Bugfix] Pass json-schema to GuidedDecodingParams and make test stronger (#9530) 2024-10-20 00:05:02 +00:00
8e3e7f2713 [Model][Pixtral] Optimizations for input_processor_for_pixtral_hf (#9514) 2024-10-19 10:44:29 -04:00
263d8ee150 [Bugfix] Fix missing task for speculative decoding (#9524) 2024-10-19 06:49:40 +00:00
c5eea3c8ba [Frontend] Support simpler image input format (#9478) 2024-10-18 23:17:07 -07:00
85dc92fc98 [CI/Build] Configure matcher for actionlint workflow (#9511)
Signed-off-by: Russell Bryant <russell.bryant@gmail.com>
2024-10-19 06:04:18 +00:00
dfd951ed9b [CI/Build] Add error matching for ruff output (#9513)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-10-19 05:42:20 +00:00
82c25151ec [Doc] update gpu-memory-utilization flag docs (#9507)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-10-19 11:26:36 +08:00
1325872ec8 [Frontend] Avoid creating guided decoding LogitsProcessor unnecessarily (#9521) 2024-10-18 20:21:01 -07:00
380e18639f 🐛 fix torch memory profiling (#9516)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-10-18 21:25:19 -04:00
337ed76671 [Bugfix] Fix offline mode when using mistral_common (#9457) 2024-10-18 18:12:32 -07:00
0c9a5258f9 [Kernel] Add env variable to force flashinfer backend to enable tensor cores (#9497)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Chih-Chieh Yang <chih.chieh.yang@ibm.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-10-18 17:55:48 -07:00
d11bf435a0 [MISC] Consolidate cleanup() and refactor offline_inference_with_prefix.py (#9510) 2024-10-18 14:30:55 -07:00
9bb10a7d27 [MISC] Add lora requests to metrics (#9477)
Co-authored-by: Kunjan Patel <kunjanp_google_com@vllm.us-central1-a.c.kunjanp-gke-dev-2.internal>
2024-10-18 20:50:18 +00:00
3921a2f29e [Model] Support Pixtral models in the HF Transformers format (#9036) 2024-10-18 13:29:56 -06:00
67a7e5ef38 [CI/Build] Add error matching config for mypy (#9512) 2024-10-18 12:17:53 -07:00
051eaf6db3 [Model] Add user-configurable task for models that support both generation and embedding (#9424) 2024-10-18 11:31:58 -07:00
7dbe738d65 [Misc] benchmark: Add option to set max concurrency (#9390)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-10-18 11:15:28 -07:00
ae8b633ba3 [Bugfix] Fix offline_inference_with_prefix.py (#9505) 2024-10-18 16:59:19 +00:00
1bbbcc0b1d [CI/Build] Fix lint errors in mistral tokenizer (#9504) 2024-10-19 00:09:35 +08:00
25aeb7d4c9 [BugFix] Fix and simplify completion API usage streaming (#9475) 2024-10-18 14:10:26 +00:00
d2b1bf55ec [Frontend][Feature] Add jamba tool parser (#9154) 2024-10-18 10:27:48 +00:00
1ffc8a7362 [BugFix] Typing fixes to RequestOutput.prompt and beam search (#9473) 2024-10-18 07:19:53 +00:00
944dd8edaf [CI/Build] Use commit hash references for github actions (#9430) 2024-10-17 21:54:58 -07:00
154a8ae880 [Qwen2.5] Support bnb quant for Qwen2.5 (#9467) 2024-10-18 04:40:14 +00:00
de4008e2ab [Bugfix][Core] Use torch.cuda.memory_stats() to profile peak memory usage (#9352)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-10-17 22:47:27 -04:00
48138a8415 [BugFix] Stop silent failures on compressed-tensors parsing (#9381) 2024-10-17 18:54:00 -07:00
343f8e0905 Support BERTModel (first encoder-only embedding model) (#9056)
Signed-off-by: Max de Bayser <maxdebayser@gmail.com>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Andrew Feldman <afeldman@neuralmagic.com>
Co-authored-by: afeldman-nm <156691304+afeldman-nm@users.noreply.github.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: laishzh <laishengzhang@gmail.com>
Co-authored-by: Max de Bayser <maxdebayser@gmail.com>
Co-authored-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2024-10-17 23:21:01 +00:00
bb76538bbd [Hardwware][Neuron] Simplify model load for transformers-neuronx library (#9380) 2024-10-17 15:39:39 -07:00
d615b5c9f8 [Bugfix] Print warnings related to mistral_common tokenizer only once (#9468) 2024-10-17 21:44:20 +00:00
d65049daab [Bugfix] Add random_seed to sample_hf_requests in benchmark_serving script (#9013)
Co-authored-by: Isotr0py <2037008807@qq.com>
2024-10-17 21:11:11 +00:00
eca2c5f7c0 [Bugfix] Fix support for dimension like integers and ScalarType (#9299) 2024-10-17 19:08:34 +00:00
0f41fbe5a3 [torch.compile] Fine-grained CustomOp enabling mechanism (#9300) 2024-10-17 18:36:37 +00:00
7871659abb [Misc] Remove commit id file (#9470) 2024-10-17 10:34:37 -07:00
a2c71c5405 [CI/Build] remove .github from .dockerignore, add dirty repo check (#9375) 2024-10-17 10:25:06 -07:00
81ede99ca4 [Core] Deprecating block manager v1 and make block manager v2 default (#8704)
Removing the block manager v1. This is the initial piece of prefix-caching-centric design. In order to achieve prefix-caching-centric design, we need to simplify the code path so that we only use v2 block manager (which has much higher performance on prefix caching).
2024-10-17 11:38:15 -05:00
5eda21e773 [Hardware][CPU] compressed-tensor INT8 W8A8 AZP support (#9344) 2024-10-17 12:21:04 -04:00
8e1cddcd44 [TPU] Call torch._sync(param) during weight loading (#9437) 2024-10-17 09:00:11 -07:00
5e443b594f [Bugfix] Allow prefill of assistant response when using mistral_common (#9446) 2024-10-17 15:06:37 +00:00
9d30a056e7 [misc] CUDA Time Layerwise Profiler (#8337)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-10-17 10:36:09 -04:00
390be74649 [Misc] Print stack trace using logger.exception (#9461) 2024-10-17 13:55:48 +00:00
e312e52b44 [Kernel] Add Exllama as a backend for compressed-tensors (#9395) 2024-10-17 09:48:26 -04:00
dbfa8d31d5 Add notes on the use of Slack (#9442) 2024-10-17 04:46:46 +00:00
92d86da217 [BugFix] [Kernel] Fix GPU SEGV occurring in int8 kernels (#9391) 2024-10-17 01:34:06 +00:00
c3fab5f769 [Bugfix][Kernel] Prevent integer overflow in fp8 dynamic per-token quantize kernel (#9425) 2024-10-16 23:46:06 +00:00
776dbd74f1 [CI/Build] mypy: Resolve some errors from checking vllm/engine (#9267)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-10-16 22:55:59 +00:00
8345045833 [Performance][Spec Decode] Optimize ngram lookup performance (#9333) 2024-10-16 13:37:45 -06:00
5b8a1fde84 [Model][Bugfix] Add FATReLU activation and support for openbmb/MiniCPM-S-1B-sft (#9396) 2024-10-16 16:40:24 +00:00
fb60ae9b91 [Kernel][Model] Improve continuous batching for Jamba and Mamba (#9189) 2024-10-16 12:12:43 -04:00
415f76a9cb Support mistral interleaved attn (#9414) 2024-10-16 13:28:30 +00:00
cf1d62a644 [Model] Support SDPA attention for Molmo vision backbone (#9410) 2024-10-16 11:52:01 +00:00
59230ef32b [Misc] Consolidate example usage of OpenAI client for multimodal models (#9412)
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-10-16 11:20:51 +00:00
cee711fdbb [Core] Rename input data types (#8688) 2024-10-16 10:49:37 +00:00
1de76a0e55 [CI/Build] Test VLM embeddings (#9406) 2024-10-16 09:44:30 +00:00
7abba39ee6 [Model] VLM2Vec, the first multimodal embedding model in vLLM (#9303) 2024-10-16 14:31:00 +08:00
7e7eae338d [Misc] Standardize RoPE handling for Qwen2-VL (#9250) 2024-10-16 13:56:17 +08:00
ed920135c8 [Bugfix] Molmo text-only input bug fix (#9397)
Co-authored-by: sanghol <sanghol@allenai.org>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-10-16 04:56:09 +00:00
717a5f82cd [Bugfix][CI/Build] Fix CUDA 11.8 Build (#9386) 2024-10-16 00:15:21 +00:00
ba30942240 [Bugfix] Fix vLLM UsageInfo and logprobs None AssertionError with empty token_ids (#9034)
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-10-15 15:40:43 -07:00
22f8a69549 [Misc] Directly use compressed-tensors for checkpoint definitions (#8909)
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-10-15 15:40:25 -07:00
5d264f4ab8 pass ignore_eos parameter to all benchmark_serving calls (#9349) 2024-10-15 13:30:44 -07:00
e9d517f276 [BugFix] Fix chat API continuous usage stats (#9357) 2024-10-14 23:19:48 -07:00
55e081fbad [Bugfix] Update InternVL input mapper to support image embeds (#9351) 2024-10-14 21:29:19 -07:00
8e836d982a [Doc] Fix code formatting in spec_decode.rst (#9348) 2024-10-14 21:29:11 -07:00
44eaa5a5d9 [Frontend] Clarify model_type error messages (#9345) 2024-10-14 21:29:01 -07:00
169b530607 [Bugfix] Clean up some cruft in mamba.py (#9343) 2024-10-15 00:24:25 +00:00
f0fe4fe86d [Model] Make llama3.2 support multiple and interleaved images (#9095) 2024-10-14 15:24:26 -07:00
4d31cd424b [Frontend] merge beam search implementations (#9296) 2024-10-14 15:05:52 -07:00
473e7b3606 [TPU] Fix TPU SMEM OOM by Pallas paged attention kernel (#9350) 2024-10-14 15:02:06 -07:00
fd47e57f4b [Docs] Remove PDF build from Readtehdocs (#9347) 2024-10-14 11:57:47 -07:00
203ab8f80f [CI/Build] setuptools-scm fixes (#8900) 2024-10-14 11:34:47 -07:00
4141608c6a [Hardware][intel GPU] add async output process for xpu (#8897) 2024-10-14 12:23:33 -06:00
dfe43a2071 [Model] Molmo vLLM Integration (#9016)
Co-authored-by: sanghol <sanghol@allenai.org>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-10-14 07:56:24 -07:00
16b24e7dcd [Bugfix] Bandaid fix for speculative decoding tests (#9327) 2024-10-13 23:02:11 +00:00
f519902c52 [CI] Fix merge conflict (#9317) 2024-10-13 06:41:23 +00:00
250e26a63e [Bugfix]Fix MiniCPM's LoRA bug (#9286) 2024-10-12 09:36:47 -07:00
2b184ddd4f [Misc][Installation] Improve source installation script and doc (#9309)
Co-authored-by: youkaichao <youkaichao@126.com>
2024-10-12 09:36:40 -07:00
00298e092c [Bugfix] Fix bug of xformer prefill for encoder-decoder (#9026) 2024-10-12 15:00:43 +08:00
89feb4c84d [SpecDec] Remove Batch Expansion (2/3) (#9298) 2024-10-12 05:13:37 +00:00
ec10cb8511 [BugFix] Fix tool call finish reason in streaming case (#9209)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2024-10-11 18:24:26 -07:00
d11b46f3a5 [bugfix] fix f-string for error (#9295)
Signed-off-by: Prashant Gupta <prashantgupta@us.ibm.com>
2024-10-11 17:03:48 -07:00
c6cf9295e1 [Bugfix] Sets is_first_step_output for TPUModelRunner (#9202) 2024-10-11 13:28:10 -07:00
de9fb4bef8 [Bugfix][CI/Build] Fix docker build where CUDA archs < 7.0 are being detected (#9254) 2024-10-11 15:57:39 -04:00
8baf85e4e9 [Doc] Compatibility matrix for mutual exclusive features (#8512)
Signed-off-by: Wallas Santos <wallashss@ibm.com>
2024-10-11 11:18:50 -07:00
1a1823871d [Doc] Remove outdated comment to avoid misunderstanding (#9287) 2024-10-11 18:02:03 +00:00
6cf1167c1a [Model] Add GLM-4v support and meet vllm==0.6.2 (#9242) 2024-10-11 17:36:13 +00:00
f710090d8e [Kernel] adding fused moe kernel config for L40S TP4 (#9245) 2024-10-11 08:54:22 -07:00
7342a7d7f8 [Model] Support Mamba (#6484) 2024-10-11 15:40:06 +00:00
df3dcdf49d [Bugfix] Fix priority in multiprocessing engine (#9277) 2024-10-11 15:35:35 +00:00
36ea79079b [Misc][LoRA] Support loading LoRA weights for target_modules in reg format (#9275) 2024-10-11 12:31:21 +00:00
e808156f30 [Misc] Collect model support info in a single process per model (#9233) 2024-10-11 11:08:11 +00:00
cbc2ef5529 [misc] hide best_of from engine (#9261)
Co-authored-by: Brendan Wong <bjwpokemon@gmail.com>
2024-10-10 21:30:44 -07:00
94bf9ae4e9 [Misc] Fix sampling from sonnet for long context case (#9235) 2024-10-11 00:33:16 +00:00
f990bab2a4 [Doc][Neuron] add note to neuron documentation about resolving triton issue (#9257)
Signed-off-by: omrishiv <327609+omrishiv@users.noreply.github.com>
2024-10-10 23:36:32 +00:00
e00c094f15 [torch.compile] generic decorators (#9258) 2024-10-10 15:54:23 -07:00
a78c6ba7c8 [ci/build] Add placeholder command for custom models test (#9262) 2024-10-10 15:45:09 -07:00
fb870fd491 Bump actions/setup-python from 3 to 5 (#9195)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-10-10 13:30:46 -07:00
270953bafb Bump actions/checkout from 3 to 4 (#9196)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-10-10 13:30:35 -07:00
9cc811c4ff Bump actions/github-script from 6 to 7 (#9197)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-10-10 13:30:24 -07:00
e4d652ea3e [torch.compile] integration with compilation control (#9058) 2024-10-10 12:39:36 -07:00
78c0b4166c Suggest codeowners for the core componenets (#9210) 2024-10-10 12:29:24 -07:00
21efb603f5 [CI/Build] Make the Dockerfile.cpu file's PIP_EXTRA_INDEX_URL Configurable as a Build Argument (#9252) 2024-10-10 18:18:18 +00:00
055f3270d4 [Doc] Improve debugging documentation (#9204)
Signed-off-by: Rafael Vasquez <rafvasq21@gmail.com>
2024-10-10 10:48:51 -07:00
18511aeda6 [Bugfix] Fix Machete unittests failing with NotImplementedError (#9218) 2024-10-10 17:39:56 +00:00
83ea5c72b9 [OpenVINO] Use torch 2.4.0 and newer optimim version (#9121)
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-10-10 11:18:58 -06:00
04de9057ab [Model] support input image embedding for minicpmv (#9237) 2024-10-10 15:00:47 +00:00
07c11cf4d4 [Bugfix] Fix lm_head weights tying with lora for llama (#9227) 2024-10-10 21:11:56 +08:00
f3a507f1d3 [Core] Add an environment variable which needs to be set explicitly to allow BlockSpaceManagerV1 (#9149) 2024-10-10 14:17:17 +08:00
a64e7b9407 [Bugfix] Machete garbage results for some models (large K dim) (#9212) 2024-10-10 14:16:17 +08:00
ce00231a8b [Bugfix] Fix Weight Loading Multiple GPU Test - Large Models (#9213) 2024-10-10 14:15:40 +08:00
de895f1697 [misc] improve model support check in another process (#9208) 2024-10-09 21:58:27 -07:00
cf25b93bdd [Core] Fix invalid args to _process_request (#9201)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-10-10 12:10:09 +08:00
d5fbb8706d [CI/Build] Update Dockerfile install+deploy image to ubuntu 22.04 (#9130)
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-10-09 12:51:47 -06:00
cdca8994bd [CI/Build] mypy: check vllm/entrypoints (#9194)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-10-09 17:15:28 +00:00
ca77dd7a44 [Hardware][CPU] Support AWQ for CPU backend (#7515) 2024-10-09 10:28:08 -06:00
7dea289066 Add Dependabot configuration for GitHub Actions updates (#1217)
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-10-09 08:16:26 -07:00
cfaa6008e6 [Bugfix] Access get_vocab instead of vocab in tool parsers (#9188) 2024-10-09 08:59:57 -06:00
21906a6f50 [Bugfix] Fix lora loading for Compressed Tensors in #9120 (#9179) 2024-10-09 12:10:44 +00:00
dc4aea677a [Doc] Fix VLM prompt placeholder sample bug (#9170) 2024-10-09 08:59:42 +00:00
c8627cd41b [ci][test] use load dummy for testing (#9165) 2024-10-09 00:38:40 -07:00
8bfaa4e31e [Bugfix] fix composite weight loading and EAGLE weight loading (#9160) 2024-10-09 00:36:55 -07:00
0b5b5d767e [Frontend] Log the maximum supported concurrency (#8831) 2024-10-09 00:03:14 -07:00
cdc72e3c80 [Model] Remap FP8 kv_scale in CommandR and DBRX (#9174) 2024-10-09 06:43:06 +00:00
7627172bf4 [Bugfix][Doc] Report neuron error in output (#9159) 2024-10-08 22:43:34 -07:00
480b7f40cf [Misc] Improve validation errors around best_of and n (#9167)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-10-09 04:54:48 +00:00
acce7630c1 Update link to KServe deployment guide (#9173) 2024-10-09 03:58:49 +00:00
ffc4b27ea8 Add classifiers in setup.py (#9171) 2024-10-08 19:30:48 -07:00
2f4117c38e support bitsandbytes quantization with more models (#9148) 2024-10-08 19:52:19 -06:00
9ba0bd6aa6 Add lm-eval directly to requirements-test.txt (#9161) 2024-10-08 18:22:31 -07:00
2a131965a8 mypy: check additional directories (#9162)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-10-08 22:08:22 +00:00
bd37b9fbe2 [Bugfix] Try to handle older versions of pytorch (#9086) 2024-10-08 14:28:12 -07:00
de24046fcd [Doc] Improve contributing and installation documentation (#9132)
Signed-off-by: Rafael Vasquez <rafvasq21@gmail.com>
2024-10-08 20:22:08 +00:00
1874c6a1b0 [Doc] Update vlm.rst to include an example on videos (#9155)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-10-08 18:12:29 +00:00
9a94ca4a5d [Bugfix] fix OpenAI API server startup with --disable-frontend-multiprocessing (#8537) 2024-10-08 09:38:40 -07:00
cfba685bd4 [CI/Build] Add examples folder into Docker image so that we can leverage the templates*.jinja when serving models (#8758)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
2024-10-08 09:37:34 -07:00
069d3bd8d0 [Frontend] Add Early Validation For Chat Template / Tool Call Parser (#9151)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2024-10-08 14:31:26 +00:00
a3691b6b5e [Core][Frontend] Add Support for Inference Time mm_processor_kwargs (#9131)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2024-10-08 14:12:56 +00:00
8c746226c9 [Frontend] API support for beam search for MQLLMEngine (#9117) 2024-10-08 05:51:43 +00:00
e1faa2a598 [misc] improve ux on readme (#9147) 2024-10-07 22:26:25 -07:00
80b57f00d5 [Intel GPU] Fix xpu decode input (#9145) 2024-10-08 03:51:14 +00:00
04c12f8157 [misc] update utils to support comparing multiple settings (#9140) 2024-10-08 02:51:49 +00:00
8eeb857084 Add Slack to README (#9137) 2024-10-07 17:06:21 -07:00
fa45513a51 [misc] fix comment and variable name (#9139) 2024-10-07 16:07:05 -07:00
c0d9a98d0c [Doc] Include performance benchmark in README (#9135) 2024-10-07 15:04:06 -07:00
e0dbdb013d [CI/Build] Add linting for github actions workflows (#7876)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-10-07 21:18:10 +00:00
93cf74a8a7 [Doc]: Add deploying_with_k8s guide (#8451) 2024-10-07 13:31:45 -07:00
151ef4efd2 [Model] Support NVLM-D and fix QK Norm in InternViT (#9045)
Co-authored-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2024-10-07 11:55:12 +00:00
f19da64871 [Core] Refactor GGUF parameters packing and forwarding (#8859) 2024-10-07 10:01:46 +00:00
4f95ffee6f [Hardware][CPU] Cross-attention and Encoder-Decoder models support on CPU backend (#9089) 2024-10-07 06:50:35 +00:00
8c6de96ea1 [Model] Explicit interface for vLLM models and support OOT embedding models (#9108) 2024-10-07 06:10:35 +00:00
18b296fdb2 [core] remove beam search from the core (#9105) 2024-10-07 05:47:04 +00:00
c8f26bb636 [BugFix][Core] Fix BlockManagerV2 when Encoder Input is None (#9103) 2024-10-07 03:52:42 +00:00
487678d046 [Bugfix][Hardware][CPU] Fix CPU model input for decode (#9044) 2024-10-06 19:14:27 -07:00
cb3b2b9ba4 [Bugfix] Fix incorrect updates to num_computed_tokens in multi-step scheduling (#9038)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-10-06 12:48:11 -07:00
fdf59d30ea [Bugfix] fix tool_parser error handling when serve a model not support it (#8709) 2024-10-06 12:51:08 +00:00
b22b798471 [Model] PP support for embedding models and update docs (#9090)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-10-06 16:35:27 +08:00
f22619fe96 [Misc] Remove user-facing error for removed VLM args (#9104) 2024-10-06 01:33:52 -07:00
168cab6bbf [Frontend] API support for beam search (#9087)
Co-authored-by: youkaichao <youkaichao@126.com>
2024-10-05 23:39:03 -07:00
23fea8714a [Bugfix] Fix try-catch conditions to import correct Flash Attention Backend in Draft Model (#9101) 2024-10-06 13:00:04 +08:00
f4dd830e09 [core] use forward context for flash infer (#9097) 2024-10-05 19:37:31 -07:00
5df1834895 [Bugfix] Fix order of arguments matters in config.yaml (#8960) 2024-10-05 17:35:11 +00:00
cfadb9c687 [Bugfix] Deprecate registration of custom configs to huggingface (#9083) 2024-10-05 21:56:40 +08:00
15986f598c [Model] Support Gemma2 embedding model (#9004) 2024-10-05 06:57:05 +00:00
53b3a33027 [Bugfix] Fixes Phi3v & Ultravox Multimodal EmbeddingInputs (#8979) 2024-10-04 22:05:37 -07:00
dac914b0d6 [Bugfix] use blockmanagerv1 for encoder-decoder (#9084)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-10-05 04:45:38 +00:00
a95354a36e [Doc] Update README.md with Ray summit slides (#9088) 2024-10-05 02:54:45 +00:00
663874e048 [torch.compile] improve allreduce registration (#9061) 2024-10-04 16:43:50 -07:00
cc90419e89 [Hardware][Neuron] Add on-device sampling support for Neuron (#8746)
Co-authored-by: Ashraf Mahgoub <ashymahg@amazon.com>
2024-10-04 16:42:20 -07:00
27302dd584 [Misc] Fix CI lint (#9085) 2024-10-04 16:07:54 -07:00
0cc566ca8f [Misc] Add random seed for prefix cache benchmark (#9081) 2024-10-04 21:58:57 +00:00
05c531be47 [Misc] Improved prefix cache example (#9077) 2024-10-04 21:38:42 +00:00
fbb74420e7 [CI] Update performance benchmark: upgrade trt-llm to r24.07, and add SGLang (#7412) 2024-10-04 14:01:44 -07:00
05d686432f [Kernel] Zero point support in fused MarlinMoE kernel + AWQ Fused MoE (#8973)
Co-authored-by: Dipika <dipikasikka1@gmail.com>
Co-authored-by: Dipika Sikka <ds3822@columbia.edu>
2024-10-04 12:34:44 -06:00
0dcc8cbe5a Adds truncate_prompt_tokens param for embeddings creation (#8999)
Signed-off-by: Flavia Beo <flavia.beo@ibm.com>
2024-10-04 18:31:40 +00:00
26aa325f4f [Core][VLM] Test registration for OOT multimodal models (#8717)
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-10-04 10:38:25 -07:00
e5dc713c23 [Hardware][PowerPC] Make oneDNN dependency optional for Power (#9039)
Signed-off-by: Varad Ahirwadkar <varad.ahirwadkar1@ibm.com>
2024-10-04 17:24:42 +00:00
36eecfbddb Remove AMD Ray Summit Banner (#9075) 2024-10-04 10:17:16 -07:00
9ade8bbc8d [Model] add a bunch of supported lora modules for mixtral (#9008)
Signed-off-by: Prashant Gupta <prashantgupta@us.ibm.com>
2024-10-04 16:24:40 +00:00
22482e495e [Bugfix] Flash attention arches not getting set properly (#9062) 2024-10-04 09:43:15 -06:00
3d826d2c52 [Bugfix] Reshape the dimensions of the input image embeddings in Qwen2VL (#9071) 2024-10-04 14:34:58 +00:00
0e36fd4909 [Misc] Move registry to its own file (#9064) 2024-10-04 10:01:37 +00:00
0f6d7a9a34 [Models] Add remaining model PP support (#7168)
Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
Signed-off-by: Murali Andoorveedu <muralidhar.andoorveedu@centml.ai>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-10-04 10:56:58 +08:00
303d44790a [Misc] Enable multi-step output streaming by default (#9047) 2024-10-03 22:55:42 -04:00
aeb37c2a72 [CI/Build] Per file CUDA Archs (improve wheel size and dev build times) (#8845) 2024-10-03 22:55:25 -04:00
3dbb215b38 [Frontend][Feature] support tool calling for internlm/internlm2_5-7b-chat model (#8405) 2024-10-04 10:36:39 +08:00
2838d6b38e [Bugfix] Weight loading fix for OPT model (#9042)
Co-authored-by: dvres <dvres@fri.uni-lj.si>
2024-10-03 19:53:29 -04:00
91add85ec4 Fix failing spec decode test (#9054) 2024-10-03 23:07:29 +00:00
9aaf14c62e [misc] add forward context for attention (#9029) 2024-10-03 12:09:42 -07:00
63e39937f9 [Frontend] [Neuron] Parse literals out of override-neuron-config (#8959)
Co-authored-by: Jerzy Zagorski <jzagorsk@amazon.com>
2024-10-03 18:02:07 +00:00
f5d72b2fc6 [Core] Make BlockSpaceManagerV2 the default BlockManager to use. (#8678) 2024-10-03 09:44:21 -07:00
83caf35e08 [BugFix] Enforce Mistral ToolCall id constraint when using the Mistral tool call parser (#9020) 2024-10-03 16:44:52 +08:00
01843c89b8 [Misc] log when using default MoE config (#8971) 2024-10-03 04:31:07 +00:00
19a4dd0990 [Bugfix] example template should not add parallel_tool_prompt if tools is none (#9007) 2024-10-03 03:04:17 +00:00
18c2e30c57 [Doc] Update Granite model docs (#9025) 2024-10-03 02:42:24 +00:00
19f0d25796 [Model] Adding Granite MoE. (#8206)
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-10-03 09:33:57 +08:00
f58d4fccc9 [OpenVINO] Enable GPU support for OpenVINO vLLM backend (#8192) 2024-10-02 17:50:01 -04:00
afb050b29d [Core] CUDA Graphs for Multi-Step + Chunked-Prefill (#8645)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-10-02 19:44:39 +00:00
7f60520deb [Misc] Update Default Image Mapper Error Log (#8977)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-10-02 11:44:38 +00:00
563649aafe [Core] Combined support for multi-step scheduling, chunked prefill & prefix caching (#8804)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Andrew Feldman <afeld2012@gmail.com>
2024-10-02 07:52:20 +00:00
1570203864 [Spec Decode] (1/2) Remove batch expansion (#8839) 2024-10-01 16:04:42 -07:00
22f5851b80 Update benchmark_serving.py to read and write json-datasets, results in UTF8, for better compatibility with Windows (#8997) 2024-10-01 11:07:06 -07:00
4f341bd4bf [Doc] Update list of supported models (#8987) 2024-10-02 00:35:39 +08:00
35bd215168 [Core] [Frontend] Priority scheduling for embeddings and in the OpenAI-API (#8965) 2024-10-01 09:58:06 +00:00
1fe0a4264a [Bugfix] Fix Token IDs Reference for MiniCPM-V When Images are Provided With No Placeholders (#8991)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2024-10-01 09:52:44 +00:00
bc4eb65b54 [Bugfix] Fix Fuyu tensor parallel inference (#8986) 2024-10-01 17:51:41 +08:00
82f3937e59 [Misc] add process_weights_after_loading for DummyLoader (#8969) 2024-10-01 03:46:41 +00:00
7da2487591 [torch.compile] fix tensor alias (#8982) 2024-10-01 03:40:48 +00:00
aaccca2b4d [CI/Build] Fix machete generated kernel files ordering (#8976)
Signed-off-by: kevin <kevin@anyscale.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-10-01 03:33:12 +00:00
062c89e7c9 [Frontend][Core] Move guided decoding params into sampling params (#8252)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-10-01 09:34:25 +08:00
bce324487a [CI][SpecDecode] Fix spec decode tests, use flash attention backend for spec decode CI tests. (#8975) 2024-10-01 00:51:40 +00:00
1425a1bcf9 [ci] Add CODEOWNERS for test directories (#8795)
Signed-off-by: kevin <kevin@anyscale.com>
2024-10-01 00:47:08 +00:00
1cabfcefb6 [Misc] Adjust max_position_embeddings for LoRA compatibility (#8957) 2024-09-30 12:57:39 +00:00
be76e5aabf [Core] Make scheduling policy settable via EngineArgs (#8956) 2024-09-30 12:28:44 +00:00
2ae25f79cf [Model] Expose InternVL2 max_dynamic_patch as a mm_processor_kwarg (#8946) 2024-09-30 13:01:20 +08:00
8e60afa15e [Model][LoRA]LoRA support added for MiniCPMV2.6 (#8943)
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-09-30 04:31:55 +00:00
b6d7392579 [Misc][CI/Build] Include cv2 via mistral_common[opencv] (#8951) 2024-09-30 04:28:26 +00:00
e01ab595d8 [Model] support input embeddings for qwen2vl (#8856) 2024-09-30 03:16:10 +00:00
f13a07b1f8 [Kernel][Model] Varlen prefill + Prefill chunking support for mamba kernels and Jamba model (#8533) 2024-09-29 17:35:58 -04:00
6c9ba48fde [Frontend] Added support for HF's new continue_final_message parameter (#8942) 2024-09-29 17:59:47 +00:00
1fb9c1b0bf [Misc] Fix typo in BlockSpaceManagerV1 (#8944) 2024-09-29 15:05:54 +00:00
31f46a0d35 [BugFix] Fix seeded random sampling with encoder-decoder models (#8870)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-09-29 09:43:14 +00:00
3d49776bbb [Model][LoRA]LoRA support added for MiniCPMV2.5 (#7199) 2024-09-29 06:59:45 +00:00
bc2ef1f77c [Model] Support Qwen2.5-Math-RM-72B (#8896) 2024-09-28 21:19:39 -07:00
2e7fe7e79f [Build/CI] Set FETCHCONTENT_BASE_DIR to one location for better caching (#8930) 2024-09-29 03:13:01 +00:00
26a68d5d7e [CI/Build] Add test decorator for minimum GPU memory (#8925) 2024-09-29 02:50:51 +00:00
d081da0064 [Bugfix] Fix Marlin MoE act order when is_k_full == False (#8741)
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-09-28 18:19:40 -07:00
5bf8789b2a [Bugfix] Block manager v2 with preemption and lookahead slots (#8824) 2024-09-29 09:17:45 +08:00
d1537039ce [Core] Improve choice of Python multiprocessing method (#8823)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: youkaichao <youkaichao@126.com>
2024-09-29 09:17:07 +08:00
cc276443b5 [doc] organize installation doc and expose per-commit docker (#8931) 2024-09-28 17:48:41 -07:00
e585b583a9 [Bugfix] Support testing prefill throughput with benchmark_serving.py --hf-output-len 1 (#8891) 2024-09-28 18:51:22 +00:00
090e945e36 [Frontend] Make beam search emulator temperature modifiable (#8928)
Co-authored-by: Eduard Balzin <nfunctor@yahoo.fr>
2024-09-28 11:30:21 -07:00
e1a3f5e831 [CI/Build] Update models tests & examples (#8874)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-09-28 09:54:35 -07:00
19d02ff938 [Bugfix] Fix PP for Multi-Step (#8887) 2024-09-28 08:52:46 -07:00
39d3f8d94f [Bugfix] Fix code for downloading models from modelscope (#8443) 2024-09-28 08:24:12 -07:00
b0298aa8cc [Misc] Remove vLLM patch of BaichuanTokenizer (#8921) 2024-09-28 08:11:25 +00:00
260024a374 [Bugfix][Intel] Fix XPU Dockerfile Build (#7824)
Signed-off-by: tylertitsworth <tyler.titsworth@intel.com>
Co-authored-by: youkaichao <youkaichao@126.com>
2024-09-27 23:45:50 -07:00
d86f6b2afb [misc] fix wheel name (#8919) 2024-09-27 22:10:44 -07:00
bd429f2b75 [Core] Priority-based scheduling in async engine (#8850) 2024-09-27 15:07:10 -07:00
18e60d7d13 [misc][distributed] add VLLM_SKIP_P2P_CHECK flag (#8911) 2024-09-27 14:27:56 -07:00
c2ec430ab5 [Core] Multi-Step + Single Step Prefills via Chunked Prefill code path (#8378)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-09-27 13:32:07 -07:00
c5d55356f9 [Bugfix] fix for deepseek w4a16 (#8906)
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-09-27 13:12:34 -06:00
172d1cd276 [Kernel] AQ AZP 4/4: Integrate asymmetric quantization to linear method (#7271) 2024-09-27 14:25:10 -04:00
a9b15c606f [torch.compile] use empty tensor instead of None for profiling (#8875) 2024-09-27 08:11:32 -07:00
8df2dc3c88 [TPU] Update pallas.py to support trillium (#8871) 2024-09-27 01:16:55 -07:00
6d792d2f31 [Bugfix][VLM] Fix Fuyu batching inference with max_num_seqs>1 (#8892) 2024-09-27 01:15:58 -07:00
0e088750af [MISC] Fix invalid escape sequence '\' (#8830)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
2024-09-27 01:13:25 -07:00
dc4e3df5c2 [misc] fix collect env (#8894) 2024-09-27 00:26:38 -07:00
3b00b9c26c [Core] renamePromptInputs and inputs (#8876) 2024-09-26 20:35:15 -07:00
344cd2b6f4 [Feature] Add support for Llama 3.1 and 3.2 tool use (#8343)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2024-09-26 17:01:42 -07:00
1b49148e47 [Installation] Allow lower versions of FastAPI to maintain Ray 2.9 compatibility (#8764) 2024-09-26 16:54:09 -07:00
4b377d6feb [BugFix] Fix test breakages from transformers 4.45 upgrade (#8829) 2024-09-26 16:46:43 -07:00
71d21c73ab [Bugfix] Fixup advance_step.cu warning (#8815) 2024-09-26 16:23:45 -07:00
ee2da3e9ef fix validation: Only set tool_choice auto if at least one tool is provided (#8568) 2024-09-26 16:23:17 -07:00
e2f6f26e86 [Bugfix] Fix print_warning_once's line info (#8867) 2024-09-26 16:18:26 -07:00
b28d2104de [Misc] Change dummy profiling and BOS fallback warns to log once (#8820) 2024-09-26 16:18:14 -07:00
93d364da34 [Bugfix] Include encoder prompts len to non-stream api usage response (#8861) 2024-09-26 15:47:00 -07:00
d9cfbc891e [ci] Soft fail Entrypoints, Samplers, LoRA, Decoder-only VLM (#8872)
Signed-off-by: kevin <kevin@anyscale.com>
2024-09-26 15:02:16 -07:00
70de39f6b4 [misc][installation] build from source without compilation (#8818) 2024-09-26 13:19:04 -07:00
68988d4e0d [CI/Build] Fix missing ci dependencies (#8834) 2024-09-26 11:04:39 -07:00
520db4dbc1 [Docs] Add README to the build docker image (#8825) 2024-09-26 11:02:52 -07:00
f70bccac75 [Build/CI] Upgrade to gcc 10 in the base build Docker image (#8814) 2024-09-26 10:07:18 -07:00
4bb98f2190 [Misc] Update config loading for Qwen2-VL and remove Granite (#8837) 2024-09-26 07:45:30 -07:00
7193774b1f [Misc] Support quantization of MllamaForCausalLM (#8822) 2024-09-25 14:46:22 -07:00
e2c6e0a829 [Doc] Update doc for Transformers 4.45 (#8817) 2024-09-25 13:29:48 -07:00
770ec6024f [Model] Add support for the multi-modal Llama 3.2 model (#8811)
Co-authored-by: simon-mo <xmo@berkeley.edu>
Co-authored-by: Chang Su <chang.s.su@oracle.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-09-25 13:29:32 -07:00
4f1ba0844b Revert "rename PromptInputs and inputs with backward compatibility (#8760) (#8810) 2024-09-25 10:36:26 -07:00
873edda6cf [Misc] Support FP8 MoE for compressed-tensors (#8588) 2024-09-25 09:43:36 -07:00
64840dfae4 [Frontend] MQLLMEngine supports profiling. (#8761) 2024-09-25 09:37:41 -07:00
28e1299e60 rename PromptInputs and inputs with backward compatibility (#8760) 2024-09-25 09:36:47 -07:00
0c4d2ad5e6 [VLM][Bugfix] internvl with num_scheduler_steps > 1 (#8614) 2024-09-25 09:35:53 -07:00
c6f2485c82 [[Misc]] Add extra deps for openai server image (#8792) 2024-09-25 09:35:23 -07:00
300da09177 [Kernel] Fullgraph and opcheck tests (#8479) 2024-09-25 08:35:52 -06:00
1c046447a6 [CI/Build][Bugfix][Doc][ROCm] CI fix and doc update after ROCm 6.2 upgrade (#8777) 2024-09-25 22:26:37 +08:00
8fae5ed7f6 [Misc] Fix minor typo in scheduler (#8765) 2024-09-25 00:53:03 -07:00
3368c3ab36 [Bugfix] Ray 2.9.x doesn't expose available_resources_per_node (#8767)
Signed-off-by: darthhexx <darthhexx@gmail.com>
2024-09-25 00:52:26 -07:00
1ac3de09cd [Frontend] OpenAI server: propagate usage accounting to FastAPI middleware layer (#8672) 2024-09-25 07:49:26 +00:00
3e073e66f1 [Bugfix] load fc bias from config for eagle (#8790) 2024-09-24 23:16:30 -07:00
c23953675f [Hardware][CPU] Enable mrope and support Qwen2-VL on CPU backend (#8770) 2024-09-24 23:16:11 -07:00
e3dd0692fa [BugFix] Propagate 'trust_remote_code' setting in internvl and minicpmv (#8250) 2024-09-25 05:53:43 +00:00
fc3afc20df Fix tests in test_chunked_prefill_scheduler which fail with BlockManager V2 (#8752) 2024-09-24 21:26:36 -07:00
b4522474a3 [Bugfix][Kernel] Implement acquire/release polyfill for Pascal (#8776) 2024-09-24 21:26:33 -07:00
ee777d9c30 Fix test_schedule_swapped_simple in test_scheduler.py (#8780) 2024-09-24 21:26:18 -07:00
6e0c9d6bd0 [Bugfix] Use heartbeats instead of health checks (#8583) 2024-09-24 20:37:38 -07:00
6da1ab6b41 [Core] Adding Priority Scheduling (#5958) 2024-09-24 19:50:50 -07:00
01b6f9e1f0 [Core][Bugfix] Support prompt_logprobs returned with speculative decoding (#8047)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-09-24 17:29:56 -07:00
13f9f7a3d0 [[Misc]Upgrade bitsandbytes to the latest version 0.44.0 (#8768) 2024-09-24 17:08:55 -07:00
1e7d5c01f5 [misc] soft drop beam search (#8763) 2024-09-24 15:48:39 -07:00
2467b642dd [CI/Build] fix setuptools-scm usage (#8771) 2024-09-24 12:38:12 -07:00
72fc97a0f1 [Bugfix] Fix torch dynamo fixes caused by replace_parameters (#8748) 2024-09-24 14:33:21 -04:00
2529d09b5a [Frontend] Batch inference for llm.chat() API (#8648)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-09-24 09:44:11 -07:00
a928ded995 [Kernel] Split Marlin MoE kernels into multiple files (#8661)
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-09-24 09:31:42 -07:00
cc4325b66a [Bugfix] Fix potentially unsafe custom allreduce synchronization (#8558) 2024-09-24 01:08:14 -07:00
8ff7ced996 [Model] Expose Phi3v num_crops as a mm_processor_kwarg (#8658)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-09-24 07:36:46 +00:00
3f06bae907 [Core][Model] Support loading weights by ID within models (#7931) 2024-09-24 07:14:15 +00:00
b8747e8a7c [MISC] Skip dumping inputs when unpicklable (#8744) 2024-09-24 06:10:03 +00:00
3185fb0cca Revert "[Core] Rename PromptInputs to PromptType, and inputs to prompt" (#8750) 2024-09-24 05:45:20 +00:00
0250dd68c5 re-implement beam search on top of vllm core (#8726)
Co-authored-by: Brendan Wong <bjwpokemon@gmail.com>
2024-09-23 22:08:12 -07:00
88577ac928 Fix tests in test_scheduler.py that fail with BlockManager V2 (#8728) 2024-09-24 04:43:13 +00:00
530821d00c [Hardware][AMD] ROCm6.2 upgrade (#8674) 2024-09-23 18:52:39 -07:00
1a2aef3e59 Add output streaming support to multi-step + async while ensuring RequestOutput obj reuse (#8335) 2024-09-23 15:38:04 -07:00
5f7bb58427 Fix typical acceptance sampler with correct recovered token ids (#8562) 2024-09-23 12:32:27 -07:00
b05f5c9238 [Core] Allow IPv6 in VLLM_HOST_IP with zmq (#8575)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-09-23 12:15:41 -07:00
9b0e3ec970 [Kernel][LoRA] Add assertion for punica sgmv kernels (#7585) 2024-09-23 18:57:42 +00:00
86e9c8df29 [Kernel] (2/N) Machete - Integrate into CompressedTensorsWNA16 and GPTQMarlin (#7701)
Co-authored-by: mgoin <michael@neuralmagic.com>
Co-authored-by: Divakar Verma <137818590+divakar-amd@users.noreply.github.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-09-23 13:46:26 -04:00
ee5f34b1c2 [CI/Build] use setuptools-scm to set __version__ (#4738)
Co-authored-by: youkaichao <youkaichao@126.com>
2024-09-23 09:44:26 -07:00
f2bd246c17 [VLM] Fix paligemma, fuyu and persimmon with transformers 4.45 : use config.text_config.vocab_size (#8707) 2024-09-23 14:43:09 +00:00
a79e522984 [Model] Support pp for qwen2-vl (#8696) 2024-09-23 13:46:59 +00:00
3e83c12b5c [Bugfix][CPU] fix missing input intermediate_tensors in the cpu_model_runner (#8733) 2024-09-23 13:15:16 +00:00
e551ca1555 [Hardware][CPU] Refactor CPU model runner (#8729) 2024-09-23 20:12:20 +08:00
9b8c8ba119 [Core][Frontend] Support Passing Multimodal Processor Kwargs (#8657)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2024-09-23 07:44:48 +00:00
d23679eb99 [Bugfix] fix docker build for xpu (#8652) 2024-09-22 22:54:18 -07:00
57a0702e63 [Bugfix] Fix CPU CMake build (#8723)
Co-authored-by: Yuan <yuan.zhou@intel.com>
2024-09-22 20:40:46 -07:00
3dda7c2250 [Bugfix] Avoid some bogus messages RE CUTLASS's revision when building (#8702) 2024-09-22 22:24:59 -04:00
92ba7e7477 [misc] upgrade mistral-common (#8715) 2024-09-22 15:41:59 -07:00
d4a2ac8302 [build] enable existing pytorch (for GH200, aarch64, nightly) (#8713) 2024-09-22 12:47:54 -07:00
c6bd70d772 [SpecDec][Misc] Cleanup, remove bonus token logic. (#8701) 2024-09-22 12:34:14 -07:00
5b59532760 [Model][VLM] Add LLaVA-Onevision model support (#8486)
Co-authored-by: litianjian <litianjian@bytedance.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-09-22 10:51:44 -07:00
ca2b628b3c [MISC] rename CudaMemoryProfiler to DeviceMemoryProfiler (#8703) 2024-09-22 10:44:09 -07:00
8ca5051b9a [Misc] Use NamedTuple in Multi-image example (#8705)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2024-09-22 20:56:20 +08:00
06ed2815e2 [Model] Refactor BLIP/BLIP-2 to support composite model loading (#8407) 2024-09-22 12:24:21 +00:00
0e40ac9b7b [ci][build] fix vllm-flash-attn (#8699) 2024-09-21 23:24:58 -07:00
13d88d4137 [Bugfix] Refactor composite weight loading logic (#8656) 2024-09-22 04:33:27 +00:00
d66ac62854 [Kernel][Bugfix] Delete some more useless code in marlin_moe_ops.cu (#8643) 2024-09-21 23:45:02 +00:00
9dc7c6c7f3 [dbrx] refactor dbrx experts to extend FusedMoe class (#8518) 2024-09-21 15:09:39 -06:00
ec4aaad812 [Kernel][Triton][AMD] Remove tl.atomic_add from awq_gemm_kernel, 2-5x speedup MI300, minor improvement for MI250 (#8646) 2024-09-21 09:20:54 +00:00
4dfdf43196 [Doc] Fix typo in AMD installation guide (#8689) 2024-09-21 00:24:12 -07:00
5e85f4f82a [VLM] Use SequenceData.from_token_counts to create dummy data (#8687) 2024-09-20 23:28:56 -07:00
71c60491f2 [Kernel] Build flash-attn from source (#8245) 2024-09-20 23:27:10 -07:00
0faab90eb0 [beam search] add output for manually checking the correctness (#8684) 2024-09-20 19:55:33 -07:00
0455c46ed4 [Core] Factor out common code in SequenceData and Sequence (#8675) 2024-09-21 02:30:39 +00:00
d4bf085ad0 [MISC] add support custom_op check (#8557)
Co-authored-by: youkaichao <youkaichao@126.com>
2024-09-20 19:03:55 -07:00
0057894ef7 [Core] Rename PromptInputs and inputs(#8673) 2024-09-20 19:00:54 -07:00
0f961b3ce9 [Bugfix] Fix incorrect llava next feature size calculation (#8496) 2024-09-20 22:48:32 +00:00
7f9c8902e3 [Hardware][AWS] update neuron to 2.20 (#8676)
Signed-off-by: omrishiv <327609+omrishiv@users.noreply.github.com>
2024-09-20 15:19:44 -07:00
7c8566aa4f [Doc] neuron documentation update (#8671)
Signed-off-by: omrishiv <327609+omrishiv@users.noreply.github.com>
2024-09-20 15:04:37 -07:00
b4e4eda92e [Bugfix][Core] Fix tekken edge case for mistral tokenizer (#8640) 2024-09-20 14:33:03 -07:00
2874bac618 [Bugfix] Config got an unexpected keyword argument 'engine' (#8556) 2024-09-20 14:00:45 -07:00
035fa895ec [Misc] Show AMD GPU topology in collect_env.py (#8649) 2024-09-20 13:52:19 -07:00
b28298f2f4 [Bugfix] Validate SamplingParam n is an int (#8548) 2024-09-20 12:46:02 -07:00
2940afa04e [CI/Build] Removing entrypoints/openai/test_embedding.py test from ROCm build (#8670) 2024-09-20 10:27:44 -07:00
3b63de9353 [Model] Add OLMoE (#7922) 2024-09-20 09:31:41 -07:00
260d40b5ea [Core] Support Lora lineage and base model metadata management (#6315) 2024-09-20 06:20:56 +00:00
9e5ec35b1f [bugfix] [AMD] add multi-step advance_step to ROCmFlashAttentionMetadata (#8474) 2024-09-19 20:49:54 -07:00
18ae428a0d [Bugfix] Fix Phi3.5 mini and MoE LoRA inference (#8571) 2024-09-20 08:54:02 +08:00
de6f90a13d [Misc] guard against change in cuda library name (#8609) 2024-09-20 06:36:30 +08:00
6cb748e190 [CI/Build] Re-enabling Entrypoints tests on ROCm, excluding ones that fail (#8551) 2024-09-19 13:06:32 -07:00
9e99407e3c Create SECURITY.md (#8642) 2024-09-19 12:16:28 -07:00
ea4647b7d7 [Doc] Add documentation for GGUF quantization (#8618) 2024-09-19 13:15:55 -06:00
e42c634acb [Core] simplify logits resort in _apply_top_k_top_p (#8619) 2024-09-19 18:28:25 +00:00
9cc373f390 [Kernel][Amd] Add fp8 kv cache support for rocm custom paged attention (#8577) 2024-09-19 17:37:57 +00:00
76515f303b [Frontend] Use MQLLMEngine for embeddings models too (#8584) 2024-09-19 12:51:06 -04:00
855c8ae2c9 [MISC] remove engine_use_ray in benchmark_throughput.py (#8615) 2024-09-18 22:33:20 -07:00
c52ec5f034 [Bugfix] fixing sonnet benchmark bug in benchmark_serving.py (#8616) 2024-09-19 05:24:24 +00:00
02c9afa2d0 Revert "[Misc][Bugfix] Disable guided decoding for mistral tokenizer" (#8593) 2024-09-19 04:14:28 +00:00
3118f63385 [Bugfix] [Encoder-Decoder] Bugfix for encoder specific metadata construction during decode of encoder-decoder models. (#8545) 2024-09-19 02:24:15 +00:00
4c34ce8916 [Kernel] Remove marlin moe templating on thread_m_blocks (#8573)
Co-authored-by: lwilkinson@neuralmagic.com
2024-09-19 01:42:49 +00:00
0d47bf3bf4 [Bugfix] add dead_error property to engine client (#8574)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-09-18 22:10:01 +00:00
d9cd78eb71 [BugFix] Nonzero exit code if MQLLMEngine startup fails (#8572) 2024-09-18 20:17:55 +00:00
db9120cded [Kernel] Change interface to Mamba selective_state_update for continuous batching (#8039) 2024-09-18 20:05:06 +00:00
b3195bc9e4 [AMD][ROCm]Quantization methods on ROCm; Fix _scaled_mm call (#8380)
Co-authored-by: Alexei-V-Ivanov-AMD <156011006+Alexei-V-Ivanov-AMD@users.noreply.github.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-09-18 10:41:08 -07:00
e18749ff09 [Model] Support Solar Model (#8386)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-09-18 11:04:00 -06:00
d65798f78c [Core] zmq: bind only to 127.0.0.1 for local-only usage (#8543)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-09-18 16:10:27 +00:00
a8c1d161a7 [Core] *Prompt* logprobs support in Multi-step (#8199) 2024-09-18 08:38:43 -07:00
7c7714d856 [Core][Bugfix][Perf] Introduce MQLLMEngine to avoid asyncio OH (#8157)
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-09-18 13:56:58 +00:00
9d104b5beb [CI/Build] Update Ruff version (#8469)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-09-18 11:00:56 +00:00
6ffa3f314c [CI/Build] Avoid CUDA initialization (#8534) 2024-09-18 10:38:11 +00:00
e351572900 [Misc] Add argument to disable FastAPI docs (#8554) 2024-09-18 09:51:59 +00:00
95965d31b6 [CI/Build] fix Dockerfile.cpu on podman (#8540) 2024-09-18 10:49:53 +08:00
8110e44529 [Kernel] Change interface to Mamba causal_conv1d_update for continuous batching (#8012) 2024-09-17 23:44:27 +00:00
09deb4721f [CI/Build] Excluding kernels/test_gguf.py from ROCm (#8520) 2024-09-17 16:40:29 -07:00
fa0c114fad [doc] improve installation doc (#8550)
Co-authored-by: Andy Dai <76841985+Imss27@users.noreply.github.com>
2024-09-17 16:24:06 -07:00
98f9713399 [Bugfix] Fix TP > 1 for new granite (#8544)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-09-17 23:17:08 +00:00
56c3de018c [Misc] Don't dump contents of kvcache tensors on errors (#8527) 2024-09-17 12:24:29 -07:00
a54ed80249 [Model] Add mistral function calling format to all models loaded with "mistral" format (#8515)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-09-17 17:50:37 +00:00
9855b99502 [Feature][kernel] tensor parallelism with bitsandbytes quantization (#8434) 2024-09-17 08:09:12 -07:00
1009e93c5d [Encoder decoder] Add cuda graph support during decoding for encoder-decoder models (#7631) 2024-09-17 07:35:01 -07:00
1b6de8352b [Benchmark] Support sample from HF datasets and image input for benchmark_serving (#8495) 2024-09-17 07:34:27 +00:00
cbdb252259 [Misc] Limit to ray[adag] 2.35 to avoid backward incompatible change (#8509)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2024-09-17 00:06:26 -07:00
99aa4eddaf [torch.compile] register allreduce operations as custom ops (#8526) 2024-09-16 22:57:57 -07:00
ee2bceaaa6 [Misc][Bugfix] Disable guided decoding for mistral tokenizer (#8521) 2024-09-16 22:22:45 -07:00
1c1bb388e0 [Frontend] Improve Nullable kv Arg Parsing (#8525)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2024-09-17 04:17:32 +00:00
546034b466 [refactor] remove triton based sampler (#8524) 2024-09-16 20:04:48 -07:00
cca61642e0 [Bugfix] Fix 3.12 builds on main (#8510)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-09-17 00:01:45 +00:00
5ce45eb54d [misc] small qol fixes for release process (#8517) 2024-09-16 15:11:27 -07:00
5478c4b41f [perf bench] set timeout to debug hanging (#8516) 2024-09-16 14:30:02 -07:00
47f5e03b5b [Bugfix] Bind api server port before starting engine (#8491) 2024-09-16 13:56:28 -07:00
2759a43a26 [doc] update doc on testing and debugging (#8514) 2024-09-16 12:10:23 -07:00
5d73ae49d6 [Kernel] AQ AZP 3/4: Asymmetric quantization kernels (#7270) 2024-09-16 11:52:40 -07:00
781e3b9a42 [Bugfix][Kernel] Fix build for sm_60 in GGUF kernel (#8506) 2024-09-16 12:15:57 -06:00
acd5511b6d [BugFix] Fix clean shutdown issues (#8492) 2024-09-16 09:33:46 -07:00
837c1968f9 [Frontend] Expose revision arg in OpenAI server (#8501) 2024-09-16 15:55:26 +00:00
a091e2da3e [Kernel] Enable 8-bit weights in Fused Marlin MoE (#8032)
Co-authored-by: Dipika <dipikasikka1@gmail.com>
2024-09-16 09:47:19 -06:00
fc990f9795 [Bugfix][Kernel] Add IQ1_M quantization implementation to GGUF kernel (#8357) 2024-09-15 16:51:44 -06:00
3724d5f6b5 [Bugfix][Model] Fix Python 3.8 compatibility in Pixtral model by updating type annotations (#8490) 2024-09-15 04:20:05 +00:00
50e9ec41fc [TPU] Implement multi-step scheduling (#8489) 2024-09-14 16:58:31 -07:00
47790f3e32 [torch.compile] add a flag to disable custom op (#8488) 2024-09-14 13:07:16 -07:00
a36e070dad [torch.compile] fix functionalization (#8480) 2024-09-14 09:46:04 -07:00
8a0cf1ddc3 [Model] support minicpm3 (#8297)
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-09-14 14:50:26 +00:00
1ef0d2efd0 [Kernel][Hardware][Amd]Custom paged attention kernel for rocm (#8310) 2024-09-13 17:01:11 -07:00
851725202a [Hardware][intel GPU] bump up ipex version to 2.3 (#8365)
Co-authored-by: Yan Ma <yan.ma@intel.com>
2024-09-13 16:54:34 -07:00
9ba0817ff1 bump version to v0.6.1.post2 (#8473) 2024-09-13 11:35:00 -07:00
18e9e1f7b3 [HotFix] Fix final output truncation with stop string + streaming (#8468) 2024-09-13 11:31:12 -07:00
f57092c00b [Doc] Add oneDNN installation to CPU backend documentation (#8467) 2024-09-13 18:06:30 +00:00
a84e598e21 [CI/Build] Reorganize models tests (#7820) 2024-09-13 10:20:06 -07:00
0a4806f0a9 [plugin][torch.compile] allow to add custom compile backend (#8445) 2024-09-13 09:32:42 -07:00
ecd7a1d5b6 [Installation] Gate FastAPI version for Python 3.8 (#8456) 2024-09-13 09:02:26 -07:00
a2469127db [misc][ci] fix quant test (#8449) 2024-09-13 17:20:14 +08:00
06311e2956 [Misc] Skip loading extra bias for Qwen2-VL GPTQ-Int8 (#8442) 2024-09-13 07:58:28 +00:00
cab69a15e4 [doc] recommend pip instead of conda (#8446) 2024-09-12 23:52:41 -07:00
9b4a3b235e [CI/Build] Enable InternVL2 PP test only on single node (#8437) 2024-09-13 06:35:20 +00:00
acda0b35d0 bump version to v0.6.1.post1 (#8440) 2024-09-12 21:39:49 -07:00
ba77527955 [bugfix] torch profiler bug for single gpu with GPUExecutor (#8354) 2024-09-12 21:30:00 -07:00
6821020109 [Bugfix] Fix async log stats (#8417) 2024-09-12 20:48:59 -07:00
8427550488 [CI/Build] Update pixtral tests to use JSON (#8436) 2024-09-13 03:47:52 +00:00
3f79bc3d1a [Bugfix] Bump fastapi and pydantic version (#8435) 2024-09-13 03:21:42 +00:00
40c396533d [Bugfix] Mapping physical device indices for e2e test utils (#8290) 2024-09-13 11:06:28 +08:00
5ec9c0fb3c [Core] Factor out input preprocessing to a separate class (#7329) 2024-09-13 02:56:13 +00:00
8f44a92d85 [BugFix] fix group_topk (#8430) 2024-09-13 09:23:42 +08:00
360ddbd37e [Misc] Update Pixtral example (#8431) 2024-09-12 17:31:18 -07:00
a480939e8e [Bugfix] Fix weight loading issue by rename variable. (#8293) 2024-09-12 19:25:00 -04:00
d31174a4e1 [Hotfix][Pixtral] Fix multiple images bugs (#8415) 2024-09-12 15:21:51 -07:00
b61bd98f90 [CI/Build] Disable multi-node test for InternVL2 (#8428) 2024-09-12 15:05:35 -07:00
c16369455f [Hotfix][Core][VLM] Disable chunked prefill by default and prefix caching for multimodal models (#8425) 2024-09-12 14:06:51 -07:00
019877253b [Bugfix] multi-step + flashinfer: ensure cuda graph compatible (#8427) 2024-09-12 21:01:50 +00:00
551ce01078 [Core] Add engine option to return only deltas or final output (#7381) 2024-09-12 12:02:00 -07:00
a6c0f3658d [multi-step] add flashinfer backend (#7928) 2024-09-12 11:16:22 -07:00
f2e263b801 [Bugfix] Offline mode fix (#8376)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-09-12 11:11:57 -07:00
1f0c75afa9 [BugFix] Fix Duplicate Assignment in Hermes2ProToolParser (#8423) 2024-09-12 11:10:11 -07:00
8a23e93302 [BugFix] lazy init _copy_stream to avoid torch init wrong gpu instance (#8403) 2024-09-12 10:47:42 -07:00
c6202daeed [Model] Support multiple images for qwen-vl (#8247)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-09-12 10:10:54 -07:00
e56bf27741 [Bugfix] Fix InternVL2 inference with various num_patches (#8375)
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-09-12 10:10:35 -07:00
520ca380ae [Hotfix][VLM] Fixing max position embeddings for Pixtral (#8399) 2024-09-12 09:28:37 -07:00
7de49aa86c [torch.compile] hide slicing under custom op for inductor (#8384) 2024-09-12 00:11:55 -07:00
42ffba11ad [Misc] Use RoPE cache for MRoPE (#8396) 2024-09-11 23:13:14 -07:00
295c4730a8 [Misc] Raise error when using encoder/decoder model with cpu backend (#8355) 2024-09-12 05:45:24 +00:00
1bf2dd9df0 [Gemma2] add bitsandbytes support for Gemma2 (#8338) 2024-09-11 21:53:12 -07:00
5a60699c45 [Bugfix]: Fix the logic for deciding if tool parsing is used (#8366) 2024-09-12 03:55:30 +00:00
b6c75e1cf2 Fix the AMD weight loading tests (#8390) 2024-09-11 20:35:33 -07:00
b71c956deb [TPU] Use Ray for default distributed backend (#8389) 2024-09-11 20:31:51 -07:00
f842a7aff1 [misc] remove engine_use_ray (#8126) 2024-09-11 18:23:36 -07:00
a65cb16067 [MISC] Dump model runner inputs when crashing (#8305) 2024-09-12 01:12:25 +00:00
3fd2b0d21c Bump version to v0.6.1 (#8379) 2024-09-11 14:42:11 -07:00
d394787e52 Pixtral (#8377)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-09-11 14:41:55 -07:00
775f00f81e [Speculative Decoding] Test refactor (#8317)
Co-authored-by: youkaichao <youkaichao@126.com>
2024-09-11 14:07:34 -07:00
8baa454937 [Misc] Move device options to a single place (#8322) 2024-09-11 13:25:58 -07:00
73202dbe77 [Kernel][Misc] register ops to prevent graph breaks (#6917)
Co-authored-by: Sage Moore <sage@neuralmagic.com>
2024-09-11 12:52:19 -07:00
7015417fd4 [Bugfix] Add missing attributes in mistral tokenizer (#8364) 2024-09-11 11:36:54 -07:00
aea02f30de [CI/Build] Excluding test_moe.py from AMD Kernels tests for investigation (#8373) 2024-09-11 18:31:41 +00:00
0b952af458 [Hardware][Intel] Support compressed-tensor W8A8 for CPU backend (#7257) 2024-09-11 09:46:46 -07:00
3b7fea770f [Model][VLM] Add Qwen2-VL model support (#7905)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-09-11 09:31:19 -07:00
cea95dfb94 [Frontend] Create ErrorResponse instead of raising exceptions in run_batch (#8347) 2024-09-11 05:30:11 +00:00
6a512a00df [model] Support for Llava-Next-Video model (#7559)
Co-authored-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-09-10 22:21:36 -07:00
efcf946a15 [Hardware][NV] Add support for ModelOpt static scaling checkpoints. (#6112) 2024-09-11 00:38:40 -04:00
1230263e16 [Bugfix] Fix InternVL2 vision embeddings process with pipeline parallel (#8299) 2024-09-11 10:11:01 +08:00
e497b8aeff [Misc] Skip loading extra bias for Qwen2-MOE GPTQ models (#8329) 2024-09-10 20:59:19 -04:00
94144e726c [CI/Build][Kernel] Update CUTLASS to 3.5.1 tag (#8043) 2024-09-10 23:51:58 +00:00
1d5e397aa4 [Core/Bugfix] pass VLLM_ATTENTION_BACKEND to ray workers (#8172) 2024-09-10 23:46:08 +00:00
22f3a4bc6c [Bugfix] lookahead block table with cuda graph max capture (#8340)
[Bugfix] Ensure multistep lookahead allocation is compatible with cuda graph max capture (#8340)
2024-09-10 16:00:35 -07:00
b1f3e18958 [MISC] Keep chunked prefill enabled by default with long context when prefix caching is enabled (#8342) 2024-09-10 22:28:28 +00:00
04e7c4e771 [Misc] remove peft as dependency for prompt models (#8162) 2024-09-10 17:21:56 -04:00
5faedf1b62 [Spec Decode] Move ops.advance_step to flash attn advance_step (#8224) 2024-09-10 13:18:14 -07:00
02751a7a42 Fix ppc64le buildkite job (#8309) 2024-09-10 12:58:34 -07:00
f421f3cefb [CI/Build] Enabling kernels tests for AMD, ignoring some of then that fail (#8130) 2024-09-10 11:51:15 -07:00
8c054b7a62 [Frontend] Clean up type annotations for mistral tokenizer (#8314) 2024-09-10 16:49:11 +00:00
6234385f4a [CI/Build] enable ccache/scccache for HIP builds (#8327) 2024-09-10 08:55:08 -07:00
da1a844e61 [Bugfix] Fix missing post_layernorm in CLIP (#8155) 2024-09-10 08:22:50 +00:00
a1d874224d Add NVIDIA Meetup slides, announce AMD meetup, and add contact info (#8319) 2024-09-09 23:21:00 -07:00
6cd5e5b07e [Misc] Fused MoE Marlin support for GPTQ (#8217) 2024-09-09 23:02:52 -04:00
c7cb5c3335 [Misc] GPTQ Activation Ordering (#8135) 2024-09-09 16:27:26 -04:00
f9b4a2d415 [Bugfix] Correct adapter usage for cohere and jamba (#8292) 2024-09-09 11:20:46 -07:00
58fcc8545a [Frontend] Add progress reporting to run_batch.py (#8060)
Co-authored-by: Adam Lugowski <adam.lugowski@parasail.io>
2024-09-09 11:16:37 -07:00
08287ef675 [Bugfix] Streamed tool calls now more strictly follow OpenAI's format; ensures Vercel AI SDK compatibility (#8272) 2024-09-09 10:45:11 -04:00
4ef41b8476 [Bugfix] Fix async postprocessor in case of preemption (#8267) 2024-09-07 21:01:51 -07:00
cfe712bf1a [CI/Build] Use python 3.12 in cuda image (#8133)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-09-07 13:03:16 -07:00
b962ee1470 ppc64le: Dockerfile fixed, and a script for buildkite (#8026) 2024-09-07 11:18:40 -07:00
36bf8150cc [Model][VLM] Decouple weight loading logic for Paligemma (#8269) 2024-09-07 17:45:44 +00:00
e807125936 [Model][VLM] Support multi-images inputs for InternVL2 models (#8201) 2024-09-07 16:38:23 +08:00
9f68e00d27 [Bugfix] Fix broken OpenAI tensorizer test (#8258) 2024-09-07 08:02:39 +00:00
ce2702a923 [tpu][misc] fix typo (#8260) 2024-09-06 22:40:46 -07:00
795b662cff Enable Random Prefix Caching in Serving Profiling Tool (benchmark_serving.py) (#8241) 2024-09-06 20:18:16 -07:00
2f707fcb35 [Model] Multi-input support for LLaVA (#8238) 2024-09-07 02:57:24 +00:00
41e95c5247 [Bugfix] Fix Hermes tool call chat template bug (#8256)
Co-authored-by: Kyle Mistele <kyle@constellate.ai>
2024-09-07 10:49:01 +08:00
12dd715807 [misc] [doc] [frontend] LLM torch profiler support (#7943) 2024-09-06 17:48:48 -07:00
29f49cd6e3 [Model] Allow loading from original Mistral format (#8168)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-09-06 17:02:05 -06:00
23f322297f [Misc] Remove SqueezeLLM (#8220) 2024-09-06 16:29:03 -06:00
9db52eab3d [Kernel] [Triton] Memory optimization for awq_gemm and awq_dequantize, 2x throughput (#8248) 2024-09-06 16:26:09 -06:00
1447c97e75 [CI/Build] Increasing timeout for multiproc worker tests (#8203) 2024-09-06 11:51:03 -07:00
de80783b69 [Misc] Use ray[adag] dependency instead of cuda (#7938) 2024-09-06 09:18:35 -07:00
e5cab71531 [Frontend] Add --logprobs argument to benchmark_serving.py (#8191) 2024-09-06 09:01:14 -07:00
baa5467547 [BugFix] Fix Granite model configuration (#8216) 2024-09-06 11:39:29 +08:00
db3bf7c991 [Core] Support load and unload LoRA in api server (#6566)
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2024-09-05 18:10:33 -07:00
2febcf2777 [Documentation][Spec Decode] Add documentation about lossless guarantees in Speculative Decoding in vLLM (#7962) 2024-09-05 16:25:29 -04:00
2ee45281a5 Move verify_marlin_supported to GPTQMarlinLinearMethod (#8165) 2024-09-05 11:09:46 -04:00
9da25a88aa [MODEL] Qwen Multimodal Support (Qwen-VL / Qwen-VL-Chat) (#8029)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-09-05 12:48:10 +00:00
8685ba1a1e Inclusion of InternVLChatModel In PP_SUPPORTED_MODELS(Pipeline Parallelism) (#7860) 2024-09-05 11:33:37 +00:00
288a938872 [Doc] Indicate more information about supported modalities (#8181) 2024-09-05 10:51:53 +00:00
e39ebf5cf5 [Core/Bugfix] Add query dtype as per FlashInfer API requirements. (#8173) 2024-09-05 05:12:26 +00:00
ba262c4e5a [ci] Mark LoRA test as soft-fail (#8160)
Signed-off-by: kevin <kevin@anyscale.com>
2024-09-04 20:33:12 -07:00
4624d98dbd [Misc] Clean up RoPE forward_native (#8076) 2024-09-04 20:31:48 -07:00
1afc931987 [bugfix] >1.43 constraint for openai (#8169)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-09-04 17:35:36 -07:00
e01c2beb7d [Doc] [Misc] Create CODE_OF_CONDUCT.md (#8161) 2024-09-04 16:50:13 -07:00
32e7db2536 Bump version to v0.6.0 (#8166) 2024-09-04 16:34:27 -07:00
008cf886c9 [Neuron] Adding support for adding/ overriding neuron configuration a… (#8062)
Co-authored-by: Harsha Bikki <harbikh@amazon.com>
2024-09-04 16:33:43 -07:00
77d9e514a2 [MISC] Replace input token throughput with total token throughput (#8164)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-09-04 20:23:22 +00:00
e02ce498be [Feature] OpenAI-Compatible Tools API + Streaming for Hermes & Mistral models (#5649)
Co-authored-by: constellate <constellate@1-ai-appserver-staging.codereach.com>
Co-authored-by: Kyle Mistele <kyle@constellate.ai>
2024-09-04 13:18:13 -07:00
561d6f8077 [CI] Change test input in Gemma LoRA test (#8163) 2024-09-04 13:05:50 -07:00
d1dec64243 [CI/Build][ROCm] Enabling LoRA tests on ROCm (#7369)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-09-04 11:57:54 -07:00
2ad2e5608e [MISC] Consolidate FP8 kv-cache tests (#8131) 2024-09-04 18:53:25 +00:00
d3311562fb [Bugfix] remove post_layernorm in siglip (#8106) 2024-09-04 18:55:37 +08:00
ccd7207191 chore: Update check-wheel-size.py to read MAX_SIZE_MB from env (#8103) 2024-09-03 23:17:05 -07:00
855c262a6b [Frontend] Multimodal support in offline chat (#8098) 2024-09-04 05:22:17 +00:00
2be8ec6e71 [Model] Add Ultravox support for multiple audio chunks (#7963) 2024-09-04 04:38:21 +00:00
e16fa99a6a [Misc] Update fbgemmfp8 to use vLLMParameters (#7972)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-09-03 20:12:41 -06:00
61f4a93d14 [TPU][Bugfix] Use XLA rank for persistent cache path (#8137) 2024-09-03 18:35:33 -07:00
d4db9f53c8 [Benchmark] Add --async-engine option to benchmark_throughput.py (#7964) 2024-09-03 20:57:41 -04:00
2188a60c7e [Misc] Update GPTQ to use vLLMParameters (#7976) 2024-09-03 17:21:44 -04:00
dc0b6066ab [CI] Change PR remainder to avoid at-mentions (#8134) 2024-09-03 14:11:42 -07:00
0af3abe3d3 [TPU][Bugfix] Fix next_token_ids shape (#8128) 2024-09-03 13:29:24 -07:00
f1575dc99f [ci] Fix GHA workflow (#8129)
Signed-off-by: kevin <kevin@anyscale.com>
2024-09-03 13:25:09 -07:00
c02638efb3 [CI/Build] make pip install vllm work in macos (for import only) (#8118) 2024-09-03 12:37:08 -07:00
652c83b697 [Misc] Raise a more informative exception in add/remove_logger (#7750) 2024-09-03 12:28:25 -07:00
6d646d08a2 [Core] Optimize Async + Multi-step (#8050) 2024-09-03 18:50:29 +00:00
95a178f861 [CI] Only PR reviewers/committers can trigger CI on PR (#8124)
Signed-off-by: kevin <kevin@anyscale.com>
2024-09-03 11:32:27 -07:00
bd852f2a8b [Performance] Enable chunked prefill and prefix caching together (#8120)
Co-authored-by: Tao He <sighingnow@gmail.com>
Co-authored-by: Juelianqvq <Juelianqvq@noreply.github.com>
2024-09-03 10:49:18 -07:00
ec266536b7 [Bugfix][VLM] Add fallback to SDPA for ViT model running on CPU backend (#8061) 2024-09-03 21:37:52 +08:00
0fbc6696c2 [Bugfix] Fix single output condition in output processor (#7881) 2024-09-02 20:35:42 -07:00
6e36f4fa6c improve chunked prefill performance
[Bugfix] Fix #7592 vllm 0.5.4 enable_chunked_prefill throughput is slightly lower than 0.5.3~0.5.0. (#7874)
2024-09-02 14:20:12 -07:00
dd2a6a82e3 [Bugfix] Fix internlm2 tensor parallel inference (#8055) 2024-09-02 23:48:56 +08:00
4ca65a9763 [Core][Bugfix] Accept GGUF model without .gguf extension (#8056) 2024-09-02 08:43:26 -04:00
e2b2aa5a0f [TPU] Align worker index with node boundary (#7932) 2024-09-01 23:09:46 -07:00
e6a26ed037 [SpecDecode][Kernel] Flashinfer Rejection Sampling (#7244) 2024-09-01 21:23:29 -07:00
f8d60145b4 [Model] Add Granite model (#7436)
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-09-01 18:37:18 -07:00
5b86b19954 [Misc] Optional installation of audio related packages (#8063) 2024-09-01 14:46:57 -07:00
5231f0898e [Frontend][VLM] Add support for multiple multi-modal items (#8049) 2024-08-31 16:35:53 -07:00
8423aef4c8 [BugFix][Core] Multistep Fix Crash on Request Cancellation (#8059) 2024-08-31 19:44:03 +00:00
4f5d8446ed [Bugfix] Fix ModelScope models in v0.5.5 (#8037) 2024-08-31 00:27:58 -07:00
d05f0a9db2 [Bugfix] Fix import error in Phi-3.5-MoE (#8052) 2024-08-30 22:26:55 -07:00
622f8abff8 [Bugfix] bugfix and add model test for flashinfer fp8 kv cache. (#8013) 2024-08-30 22:18:50 -07:00
1248e8506a [Model] Adding support for MSFT Phi-3.5-MoE (#7729)
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Zeqi Lin <zelin@microsoft.com>
Co-authored-by: Zeqi Lin <Zeqi.Lin@microsoft.com>
2024-08-30 13:42:57 -06:00
2684efc467 [TPU][Bugfix] Fix tpu type api (#8035) 2024-08-30 09:01:26 -07:00
058344f89a [Frontend]-config-cli-args (#7737)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Kaunil Dhruv <kaunil_dhruv@intuit.com>
2024-08-30 08:21:02 -07:00
98cef6a227 [Core] Increase default max_num_batched_tokens for multimodal models (#8028) 2024-08-30 08:20:34 -07:00
f97be32d1d [VLM][Model] TP support for ViTs (#7186)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-08-30 08:19:27 -07:00
afd39a4511 [Bugfix] Fix import error in Exaone model (#8034) 2024-08-30 08:03:28 -07:00
2148441fd3 [TPU] Support single and multi-host TPUs on GKE (#7613) 2024-08-30 00:27:40 -07:00
dc13e99348 [MODEL] add Exaone model support (#7819) 2024-08-29 23:34:20 -07:00
34a0e96d46 [Kernel] changing fused moe kernel chunk size default to 32k (#7995) 2024-08-30 04:11:39 +00:00
80c7b089b1 [TPU] Async output processing for TPU (#8011) 2024-08-29 19:35:29 -07:00
428dd1445e [Core] Logprobs support in Multi-step (#7652) 2024-08-29 19:19:08 -07:00
4abed65c58 [VLM] Disallow overflowing max_model_len for multimodal models (#7998) 2024-08-29 17:49:04 -07:00
0c785d344d Add more percentiles and latencies (#7759) 2024-08-29 16:48:11 -07:00
4664ceaad6 support bitsandbytes 8-bit and FP4 quantized models (#7445) 2024-08-29 19:09:08 -04:00
257afc37c5 [Neuron] Adding support for context-lenght, token-gen buckets. (#7885)
Co-authored-by: Harsha Bikki <harbikh@amazon.com>
2024-08-29 13:58:14 -07:00
86a677de42 [misc] update tpu int8 to use new vLLM Parameters (#7973) 2024-08-29 16:46:55 -04:00
d78789ac16 [Bugfix] Fix incorrect vocal embedding shards for GGUF model in tensor parallelism (#7954) 2024-08-29 15:54:49 -04:00
c334b1898b extend cuda graph size for H200 (#7894)
Co-authored-by: youkaichao <youkaichao@126.com>
2024-08-29 12:15:04 -07:00
6b3421567d [Core][Kernels] Enable FP8 KV Cache with Flashinfer backend. + BugFix for kv_cache_dtype=auto (#7985)
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-08-29 14:53:11 -04:00
3f60f2244e [Core] Combine async postprocessor and multi-step (#7921) 2024-08-29 11:18:26 -07:00
f205c09854 [Bugfix] Unify rank computation across regular decoding and speculative decoding (#7899) 2024-08-28 22:18:13 -07:00
ef99a78760 Revert "[Core][Kernels] Use FlashInfer backend for FP8 KV Cache when available." (#7982) 2024-08-28 21:27:06 -07:00
74d5543ec5 [VLM][Core] Fix exceptions on ragged NestedTensors (#7974) 2024-08-29 03:24:31 +00:00
a7f65c2be9 [torch.compile] remove reset (#7975) 2024-08-28 17:32:26 -07:00
4289cad37f [Frontend] Minor optimizations to zmq decoupled front-end (#7957)
Co-authored-by: Robert Shaw <rshaw@neuralmagic>
2024-08-28 17:22:43 -07:00
af59df0a10 Remove faulty Meta-Llama-3-8B-Instruct-FP8.yaml lm-eval test (#7961) 2024-08-28 19:19:17 -04:00
ce6bf3a2cf [torch.compile] avoid Dynamo guard evaluation overhead (#7898)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-08-28 16:10:12 -07:00
3cdfe1f38b [Bugfix] Make torch registration of punica ops optional (#7970) 2024-08-28 16:11:49 -06:00
fdd9daafa3 [Kernel/Model] Migrate mamba_ssm and causal_conv1d kernels to vLLM (#7651) 2024-08-28 15:06:52 -07:00
8c56e57def [Doc] fix 404 link (#7966) 2024-08-28 13:54:23 -07:00
eeffde1ac0 [TPU] Upgrade PyTorch XLA nightly (#7967) 2024-08-28 13:10:21 -07:00
e5697d161c [Kernel] [Triton] [AMD] Adding Triton implementations awq_dequantize and awq_gemm to support AWQ (#7386) 2024-08-28 15:37:47 -04:00
b98cc28f91 [Core][Kernels] Use FlashInfer backend for FP8 KV Cache when available. (#7798)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-08-28 10:01:22 -07:00
ef9baee3c5 [Bugfix][VLM] Fix incompatibility between #7902 and #7230 (#7948) 2024-08-28 08:11:18 -07:00
98c12cffe5 [Doc] fix the autoAWQ example (#7937) 2024-08-28 12:12:32 +00:00
f52a43a8b9 [ci][test] fix pp test failure (#7945) 2024-08-28 01:27:07 -07:00
e3580537a4 [Performance] Enable chunked prefill and prefix caching together (#7753) 2024-08-28 00:36:31 -07:00
f508e03e7f [Core] Async_output_proc: Add virtual engine support (towards pipeline parallel) (#7911) 2024-08-28 00:02:30 -07:00
51f86bf487 [mypy][CI/Build] Fix mypy errors (#7929) 2024-08-27 23:47:44 -07:00
c166e7e43e [Bugfix] Allow ScalarType to be compiled with pytorch 2.3 and add checks for registering FakeScalarType and dynamo support. (#7886) 2024-08-27 23:13:45 -04:00
bc6e42a9b1 [hardware][rocm] allow rocm to override default env var (#7926) 2024-08-27 19:50:06 -07:00
fab5f53e2d [Core][VLM] Stack multimodal tensors to represent multiple images within each prompt (#7902) 2024-08-28 01:53:56 +00:00
9c71c97ae2 [mypy] Enable mypy type checking for vllm/core (#7229) 2024-08-28 07:11:14 +08:00
5340a2dccf [Model] Add multi-image input support for LLaVA-Next offline inference (#7230) 2024-08-28 07:09:02 +08:00
345be0e244 [benchmark] Update TGI version (#7917) 2024-08-27 15:07:53 -07:00
fc911880cc [Kernel] Expand MoE weight loading + Add Fused Marlin MoE Kernel (#7766)
Co-authored-by: ElizaWszola <eliza@neuralmagic.com>
2024-08-27 15:07:09 -07:00
ed6f002d33 [cuda][misc] error on empty CUDA_VISIBLE_DEVICES (#7924) 2024-08-27 12:06:11 -07:00
b09c755be8 [Bugfix] Fix phi3v incorrect image_idx when using async engine (#7916) 2024-08-27 17:36:09 +00:00
42e932c7d4 [CI/Build][ROCm] Enabling tensorizer tests for ROCm (#7237) 2024-08-27 10:09:13 -07:00
076169f603 [Hardware][Intel GPU] Add intel GPU pipeline parallel support. (#7810) 2024-08-27 10:07:02 -07:00
9db642138b [CI/Build][VLM] Cleanup multiple images inputs model test (#7897) 2024-08-27 15:28:30 +00:00
6fc4e6e07a [Model] Add Mistral Tokenization to improve robustness and chat encoding (#7739) 2024-08-27 12:40:02 +00:00
9606c7197d Revert #7509 (#7887) 2024-08-27 00:16:31 -07:00
64cc644425 [core][torch.compile] discard the compile for profiling (#7796) 2024-08-26 21:33:58 -07:00
39178c7fbc [Tests] Disable retries and use context manager for openai client (#7565) 2024-08-26 21:33:17 -07:00
2eedede875 [Core] Asynchronous Output Processor (#7049)
Co-authored-by: Alexander Matveev <alexm@neuralmagic.com>
2024-08-26 20:53:20 -07:00
015e6cc252 [Misc] Update compressed tensors lifecycle to remove prefix from create_weights (#7825) 2024-08-26 18:09:34 -06:00
760e9f71a8 [Bugfix] neuron: enable tensor parallelism (#7562)
Signed-off-by: omrishiv <327609+omrishiv@users.noreply.github.com>
2024-08-26 15:13:13 -07:00
05826c887b [misc] fix custom allreduce p2p cache file generation (#7853) 2024-08-26 15:02:25 -07:00
dd9857f5fa [Misc] Update gptq_marlin_24 to use vLLMParameters (#7762)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-08-26 17:44:54 -04:00
665304092d [Misc] Update qqq to use vLLMParameters (#7805) 2024-08-26 13:16:15 -06:00
2deb029d11 [Performance][BlockManagerV2] Mark prefix cache block as computed after schedule (#7822) 2024-08-26 11:24:53 -07:00
029c71de11 [CI/Build] Avoid downloading all HF files in RemoteOpenAIServer (#7836) 2024-08-26 05:31:10 +00:00
0b769992ec [Bugfix]: Use float32 for base64 embedding (#7855)
Signed-off-by: Hollow Man <hollowman@opensuse.org>
2024-08-26 03:16:38 +00:00
1856aff4d6 [Spec Decoding] Streamline batch expansion tensor manipulation (#7851) 2024-08-25 15:45:14 -07:00
70c094ade6 [misc][cuda] improve pynvml warning (#7852) 2024-08-25 14:30:09 -07:00
2059b8d9ca [Misc] Remove snapshot_download usage in InternVL2 test (#7835) 2024-08-25 15:53:09 +00:00
8aaf3d5347 [Model][VLM] Support multi-images inputs for Phi-3-vision models (#7783) 2024-08-25 11:51:20 +00:00
80162c44b1 [Bugfix] Fix Phi-3v crash when input images are of certain sizes (#7840) 2024-08-24 18:16:24 -07:00
aab0fcdb63 [ci][test] fix RemoteOpenAIServer (#7838) 2024-08-24 17:31:28 +00:00
ea9fa160e3 [ci][test] exclude model download time in server start time (#7834) 2024-08-24 01:03:27 -07:00
7d9ffa2ae1 [misc][core] lazy import outlines (#7831) 2024-08-24 00:51:38 -07:00
d81abefd2e [Frontend] add json_schema support from OpenAI protocol (#7654) 2024-08-23 23:07:24 -07:00
8da48e4d95 [Frontend] Publish Prometheus metrics in run_batch API (#7641) 2024-08-23 23:04:22 -07:00
6885fde317 [Bugfix] Fix run_batch logger (#7640) 2024-08-23 13:58:26 -07:00
9db93de20c [Core] Add multi-step support to LLMEngine (#7789) 2024-08-23 12:45:53 -07:00
1073 changed files with 113978 additions and 31979 deletions

View File

@ -1,36 +1,43 @@
import os
import sys
import zipfile
MAX_SIZE_MB = 250
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 250 MB
VLLM_MAX_SIZE_MB = int(os.environ.get('VLLM_MAX_SIZE_MB', 250))
def print_top_10_largest_files(zip_file):
"""Print the top 10 largest files in the given zip file."""
with zipfile.ZipFile(zip_file, 'r') as z:
file_sizes = [(f, z.getinfo(f).file_size) for f in z.namelist()]
file_sizes.sort(key=lambda x: x[1], reverse=True)
for f, size in file_sizes[:10]:
print(f"{f}: {size/(1024*1024)} MBs uncompressed.")
print(f"{f}: {size / (1024 * 1024):.2f} MBs uncompressed.")
def check_wheel_size(directory):
"""Check the size of .whl files in the given directory."""
for root, _, files in os.walk(directory):
for f in files:
if f.endswith(".whl"):
wheel_path = os.path.join(root, f)
wheel_size = os.path.getsize(wheel_path)
wheel_size_mb = wheel_size / (1024 * 1024)
if wheel_size_mb > MAX_SIZE_MB:
print(
f"Wheel {wheel_path} is too large ({wheel_size_mb} MB) "
f"compare to the allowed size ({MAX_SIZE_MB} MB).")
for file_name in files:
if file_name.endswith(".whl"):
wheel_path = os.path.join(root, file_name)
wheel_size_mb = os.path.getsize(wheel_path) / (1024 * 1024)
if wheel_size_mb > VLLM_MAX_SIZE_MB:
print(f"Not allowed: Wheel {wheel_path} is larger "
f"({wheel_size_mb:.2f} MB) than the limit "
f"({VLLM_MAX_SIZE_MB} MB).")
print_top_10_largest_files(wheel_path)
return 1
else:
print(f"Wheel {wheel_path} is within the allowed size "
f"({wheel_size_mb} MB).")
f"({wheel_size_mb:.2f} MB).")
return 0
if __name__ == "__main__":
import sys
sys.exit(check_wheel_size(sys.argv[1]))
if len(sys.argv) < 2:
print("Usage: python check-wheel-size.py <directory>")
sys.exit(1)
directory = sys.argv[1]
sys.exit(check_wheel_size(directory))

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.764
- name: "exact_match,flexible-extract"
value: 0.764
limit: 250
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
model_name: "neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.356
- name: "exact_match,flexible-extract"
value: 0.358
limit: 1000
num_fewshot: 5

View File

@ -1,7 +1,7 @@
Meta-Llama-3-8B-Instruct.yaml
Meta-Llama-3-8B-Instruct-FP8.yaml
Meta-Llama-3-8B-Instruct-FP8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors.yaml
Meta-Llama-3.2-1B-Instruct-INT8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors-asym.yaml
Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml
Minitron-4B-Base-FP8.yaml

View File

@ -2,7 +2,7 @@
# We can use this script to compute baseline accuracy on GSM for transformers.
#
# Make sure you have lm-eval-harness installed:
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@9516087b81a61d0e220b22cc1b75be76de23bc10
# pip install lm-eval==0.4.4
usage() {
echo``
@ -41,6 +41,6 @@ while getopts "m:b:l:f:" OPT; do
done
lm_eval --model hf \
--model_args pretrained=$MODEL,parallelize=True \
--tasks gsm8k --num_fewshot $FEWSHOT --limit $LIMIT \
--batch_size $BATCH_SIZE
--model_args "pretrained=$MODEL,parallelize=True" \
--tasks gsm8k --num_fewshot "$FEWSHOT" --limit "$LIMIT" \
--batch_size "$BATCH_SIZE"

View File

@ -3,7 +3,7 @@
# We use this for fp8, which HF does not support.
#
# Make sure you have lm-eval-harness installed:
# pip install lm-eval==0.4.3
# pip install lm-eval==0.4.4
usage() {
echo``
@ -46,6 +46,6 @@ while getopts "m:b:l:f:t:" OPT; do
done
lm_eval --model vllm \
--model_args pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,distributed_executor_backend="ray",trust_remote_code=true,max_model_len=4096 \
--tasks gsm8k --num_fewshot $FEWSHOT --limit $LIMIT \
--batch_size $BATCH_SIZE
--model_args "pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,distributed_executor_backend=ray,trust_remote_code=true,max_model_len=4096" \
--tasks gsm8k --num_fewshot "$FEWSHOT" --limit "$LIMIT" \
--batch_size "$BATCH_SIZE"

View File

@ -30,7 +30,7 @@ while getopts "c:t:" OPT; do
done
# Parse list of configs.
IFS=$'\n' read -d '' -r -a MODEL_CONFIGS < $CONFIG
IFS=$'\n' read -d '' -r -a MODEL_CONFIGS < "$CONFIG"
for MODEL_CONFIG in "${MODEL_CONFIGS[@]}"
do

View File

@ -49,10 +49,15 @@ def test_lm_eval_correctness():
results = launch_lm_eval(eval_config)
# Confirm scores match ground truth.
success = True
for task in eval_config["tasks"]:
for metric in task["metrics"]:
ground_truth = metric["value"]
measured_value = results["results"][task["name"]][metric["name"]]
print(f'{task["name"]} | {metric["name"]}: '
f'ground_truth={ground_truth} | measured={measured_value}')
assert numpy.isclose(ground_truth, measured_value, rtol=RTOL)
success = success and numpy.isclose(
ground_truth, measured_value, rtol=RTOL)
# Assert at the end, print all scores even on failure for debugging.
assert success

View File

@ -8,8 +8,7 @@ steps:
containers:
- image: badouralix/curl-jq
command:
- sh
- .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
- sh .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
- wait
- label: "A100"
agents:

View File

@ -0,0 +1,28 @@
## Description
This file contains the downloading link for benchmarking results.
- [benchmarking pipeline](artifact://nightly-pipeline.yaml)
- [benchmarking results](artifact://results.zip)
- [benchmarking code](artifact://nightly-benchmarks.zip)
Please download the visualization scripts in the post
## Results reproduction
- Find the docker we use in `benchmarking pipeline`
- Deploy the docker, and inside the docker:
- Download `nightly-benchmarks.zip`.
- In the same folder, run the following code
```
export HF_TOKEN=<your HF token>
apt update
apt install -y git
unzip nightly-benchmarks.zip
VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
```
And the results will be inside `./benchmarks/results`.

View File

@ -1,45 +1,39 @@
# Nightly benchmark
The main goal of this benchmarking is two-fold:
- Performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and tgi) leads in performance in what workload.
- Reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions in [reproduce.md]().
This benchmark aims to:
- Provide performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and SGLang) leads in performance in what workload.
- Be reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions.
Latest results: [results link](https://blog.vllm.ai/2024/09/05/perf-update.html), scroll to the end.
Latest reproduction guilde: [github issue link](https://github.com/vllm-project/vllm/issues/8176)
## Docker images
## Setup
We benchmark vllm, tensorrt-llm, lmdeploy and tgi using the following docker images:
- vllm/vllm-openai:v0.5.0.post1
- nvcr.io/nvidia/tritonserver:24.04-trtllm-python-py3
- openmmlab/lmdeploy:v0.5.0
- ghcr.io/huggingface/text-generation-inference:2.1
- Docker images:
- vLLM: `vllm/vllm-openai:v0.6.2`
- SGLang: `lmsysorg/sglang:v0.3.2-cu121`
- LMDeploy: `openmmlab/lmdeploy:v0.6.1-cu12`
- TensorRT-LLM: `nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3`
- *NOTE: we uses r24.07 as the current implementation only works for this version. We are going to bump this up.*
- Check [nightly-pipeline.yaml](nightly-pipeline.yaml) for the concrete docker images, specs and commands we use for the benchmark.
- Hardware
- 8x Nvidia A100 GPUs
- Workload:
- Dataset
- ShareGPT dataset
- Prefill-heavy dataset (in average 462 input tokens, 16 tokens as output)
- Decode-heavy dataset (in average 462 input tokens, 256 output tokens)
- Check [nightly-tests.json](tests/nightly-tests.json) for the concrete configuration of datasets we use.
- Models: llama-3 8B, llama-3 70B.
- We do not use llama 3.1 as it is incompatible with trt-llm r24.07. ([issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105)).
- Average QPS (query per second): 2, 4, 8, 16, 32 and inf.
- Queries are randomly sampled, and arrival patterns are determined via Poisson process, but all with fixed random seed.
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
<!-- Please check <a href="artifact://workspace/build/buildkite/vllm/performance-benchmark/.buildkite/nightly-benchmarks/nightly-pipeline.yaml">nightly-pipeline.yaml</a> artifact for more details on how we deploy the docker images. -->
# Known issues
## Hardware
One AWS node with 8x NVIDIA A100 GPUs.
## Workload description
We benchmark vllm, tensorrt-llm, lmdeploy and tgi using the following workload:
- Input length: randomly sample 500 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 500 prompts.
- Models: llama-3 8B, llama-3 70B, mixtral 8x7B.
- Average QPS (query per second): 4 for the small model (llama-3 8B) and 2 for other two models. For each QPS, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
<!-- Check <a href="artifact://workspace/build/buildkite/vllm/performance-benchmark/.buildkite/nightly-benchmarks/tests/nightly-tests.json">nightly-tests.json</a> artifact for more details. -->
## Plots
In the following plots, the dot shows the mean and the error bar shows the standard error of the mean. Value 0 means that the corresponding benchmark crashed.
<img src="artifact://nightly_results.png" alt="Benchmarking results" height=250 >
## Results
{nightly_results_benchmarking_table}
- TRT-LLM crashes with Llama 3.1 8B [issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105).
- TGI does not support `ignore-eos` flag.

View File

@ -13,7 +13,7 @@ common_pod_spec: &common_pod_spec
common_container_settings: &common_container_settings
command:
- bash .buildkite/nightly-benchmarks/run-nightly-suite.sh
- bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
resources:
limits:
nvidia.com/gpu: 8
@ -37,7 +37,10 @@ common_container_settings: &common_container_settings
steps:
- block: ":rocket: Ready for comparing vllm against alternatives? This will take 4 hours."
- label: "A100 trt benchmark"
- label: "A100 vllm step 10"
priority: 100
agents:
queue: A100
@ -46,7 +49,21 @@ steps:
podSpec:
<<: *common_pod_spec
containers:
- image: nvcr.io/nvidia/tritonserver:24.04-trtllm-python-py3
- image: vllm/vllm-openai:v0.6.2
<<: *common_container_settings
- label: "A100 sglang benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: lmsysorg/sglang:v0.3.2-cu121
<<: *common_container_settings
- label: "A100 lmdeploy benchmark"
@ -58,11 +75,13 @@ steps:
podSpec:
<<: *common_pod_spec
containers:
- image: openmmlab/lmdeploy:v0.5.0
- image: openmmlab/lmdeploy:v0.6.1-cu12
<<: *common_container_settings
- label: "A100 vllm benchmark"
- label: "A100 trt llama-8B"
priority: 100
agents:
queue: A100
@ -71,10 +90,25 @@ steps:
podSpec:
<<: *common_pod_spec
containers:
- image: vllm/vllm-openai:latest
- image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
<<: *common_container_settings
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_HOME
value: /root/.cache/huggingface
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
- name: TEST_SELECTOR
value: "llama8B"
- label: "A100 tgi benchmark"
- label: "A100 trt llama-70B"
priority: 100
agents:
queue: A100
@ -83,12 +117,54 @@ steps:
podSpec:
<<: *common_pod_spec
containers:
- image: ghcr.io/huggingface/text-generation-inference:2.1
- image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
<<: *common_container_settings
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_HOME
value: /root/.cache/huggingface
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
- name: TEST_SELECTOR
value: "llama70B"
# FIXME(Kuntai): uncomment this after NVIDIA gives us their test docker image
# - label: "A100 trt benchmark"
# priority: 100
# agents:
# queue: A100
# plugins:
# - kubernetes:
# podSpec:
# <<: *common_pod_spec
# containers:
# - image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
# <<: *common_container_settings
# FIXME(Kuntai): uncomment this after TGI supports `--ignore-eos`.
# - label: "A100 tgi benchmark"
# priority: 100
# agents:
# queue: A100
# plugins:
# - kubernetes:
# podSpec:
# <<: *common_pod_spec
# containers:
# - image: ghcr.io/huggingface/text-generation-inference:2.2.0
# <<: *common_container_settings
- wait
- label: "Plot"
- label: "Collect the results"
priority: 100
agents:
queue: A100
@ -117,4 +193,4 @@ steps:
name: hf-token-secret
key: token
- wait
- block: ":rocket: check the results!"

View File

@ -1,76 +0,0 @@
#!/bin/bash
set -o pipefail
set -x
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
check_hf_token() {
# check if HF_TOKEN is available and valid
if [[ -z "$HF_TOKEN" ]]; then
echo "Error: HF_TOKEN is not set."
exit 1
elif [[ ! "$HF_TOKEN" =~ ^hf_ ]]; then
echo "Error: HF_TOKEN does not start with 'hf_'."
exit 1
else
echo "HF_TOKEN is set and valid."
fi
}
main() {
check_gpus
check_hf_token
df -h
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)
cd $VLLM_SOURCE_CODE_LOC/benchmarks
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
# run lmdeploy
if which lmdeploy >/dev/null; then
echo "lmdeploy is available, redirect to run-lmdeploy-nightly.sh"
bash ../.buildkite/nightly-benchmarks/scripts/run-lmdeploy-nightly.sh
exit 0
fi
# run tgi
if [ -e /tgi-entrypoint.sh ]; then
echo "tgi is available, redirect to run-tgi-nightly.sh"
bash ../.buildkite/nightly-benchmarks/scripts/run-tgi-nightly.sh
exit 0
fi
# run trt
if which trtllm-build >/dev/null; then
echo "trtllm is available, redirect to run-trt-nightly.sh"
bash ../.buildkite/nightly-benchmarks/scripts/run-trt-nightly.sh
exit 0
fi
# run vllm
if [ -e /vllm-workspace ]; then
echo "vllm is available, redirect to run-vllm-nightly.sh"
bash ../.buildkite/nightly-benchmarks/scripts/run-vllm-nightly.sh
exit 0
fi
}
main "$@"

View File

@ -56,7 +56,7 @@ serving_column_mapping = {
def read_markdown(file):
if os.path.exists(file):
with open(file, "r") as f:
with open(file) as f:
return f.read() + "\n"
else:
return f"{file} not found.\n"
@ -75,14 +75,14 @@ if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
with open(test_file, "r") as f:
with open(test_file) as f:
raw_result = json.loads(f.read())
if "serving" in str(test_file):
# this result is generated via `benchmark_serving.py`
# attach the benchmarking command to raw_result
with open(test_file.with_suffix(".commands"), "r") as f:
with open(test_file.with_suffix(".commands")) as f:
command = json.loads(f.read())
raw_result.update(command)
@ -97,7 +97,7 @@ if __name__ == "__main__":
# this result is generated via `benchmark_latency.py`
# attach the benchmarking command to raw_result
with open(test_file.with_suffix(".commands"), "r") as f:
with open(test_file.with_suffix(".commands")) as f:
command = json.loads(f.read())
raw_result.update(command)
@ -119,7 +119,7 @@ if __name__ == "__main__":
# this result is generated via `benchmark_throughput.py`
# attach the benchmarking command to raw_result
with open(test_file.with_suffix(".commands"), "r") as f:
with open(test_file.with_suffix(".commands")) as f:
command = json.loads(f.read())
raw_result.update(command)

View File

@ -0,0 +1,95 @@
import argparse
import json
from pathlib import Path
import numpy as np
import pandas as pd
from tabulate import tabulate
def parse_arguments():
parser = argparse.ArgumentParser(
description=
'Parse command line arguments for summary-nightly-results script.')
parser.add_argument('--results-folder',
type=str,
required=True,
help='The folder where the results are stored.')
parser.add_argument('--description',
type=str,
required=True,
help='Description of the results.')
args = parser.parse_args()
return args
def get_perf(df, method, model, metric):
means = []
for qps in [2, 4, 8, 16, "inf"]:
target = df['Test name'].str.contains(model)
target = target & df['Engine'].str.contains(method)
target = target & df['Test name'].str.contains("qps_" + str(qps))
filtered_df = df[target]
if filtered_df.empty:
means.append(0.)
else:
means.append(filtered_df[metric].values[0])
return np.array(means)
def get_perf_w_std(df, method, model, metric):
if metric in ["TTFT", "ITL"]:
mean = get_perf(df, method, model, "Mean " + metric + " (ms)")
mean = mean.tolist()
std = get_perf(df, method, model, "Std " + metric + " (ms)")
if std.mean() == 0:
std = None
success = get_perf(df, method, model, "Successful req.")
if std is not None:
std = std / np.sqrt(success)
std = std.tolist()
else:
assert metric == "Tput"
mean = get_perf(df, method, model, "Input Tput (tok/s)") + get_perf(
df, method, model, "Output Tput (tok/s)")
mean = mean.tolist()
std = None
return mean, std
def main(args):
results_folder = Path(args.results_folder)
results = []
# collect results
for test_file in results_folder.glob("*_nightly_results.json"):
with open(test_file) as f:
results = results + json.loads(f.read())
# generate markdown table
df = pd.DataFrame.from_dict(results)
md_table = tabulate(df, headers='keys', tablefmt='pipe', showindex=False)
with open(args.description) as f:
description = f.read()
description = description.format(
nightly_results_benchmarking_table=md_table)
with open("nightly_results.md", "w") as f:
f.write(description)
if __name__ == '__main__':
args = parse_arguments()
main(args)

View File

@ -0,0 +1,228 @@
#!/bin/bash
# Currently FP8 benchmark is NOT enabled.
set -x
server_params=$1
common_params=$2
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
launch_trt_server() {
model_path=$(echo "$common_params" | jq -r '.model')
model_name="${model_path#*/}"
model_type=$(echo "$server_params" | jq -r '.model_type')
model_dtype=$(echo "$server_params" | jq -r '.model_dtype')
model_tp_size=$(echo "$common_params" | jq -r '.tp')
max_batch_size=$(echo "$server_params" | jq -r '.max_batch_size')
max_input_len=$(echo "$server_params" | jq -r '.max_input_len')
max_seq_len=$(echo "$server_params" | jq -r '.max_seq_len')
max_num_tokens=$(echo "$server_params" | jq -r '.max_num_tokens')
trt_llm_version=$(echo "$server_params" | jq -r '.trt_llm_version')
# create model caching directory
cd ~
rm -rf models
mkdir -p models
cd models
models_dir=$(pwd)
trt_model_path=${models_dir}/${model_name}-trt-ckpt
trt_engine_path=${models_dir}/${model_name}-trt-engine
# clone tensorrt backend
cd /
rm -rf tensorrtllm_backend
git clone https://github.com/triton-inference-server/tensorrtllm_backend.git
git lfs install
cd tensorrtllm_backend
git checkout "$trt_llm_version"
git submodule update --init --recursive
# build trtllm engine
cd /tensorrtllm_backend
cd "./tensorrt_llm/examples/${model_type}"
python3 convert_checkpoint.py \
--model_dir "${model_path}" \
--dtype "${model_dtype}" \
--tp_size "${model_tp_size}" \
--output_dir "${trt_model_path}"
trtllm-build \
--checkpoint_dir "${trt_model_path}" \
--use_fused_mlp \
--reduce_fusion disable \
--workers 8 \
--gpt_attention_plugin "${model_dtype}" \
--gemm_plugin "${model_dtype}" \
--tp_size "${model_tp_size}" \
--max_batch_size "${max_batch_size}" \
--max_input_len "${max_input_len}" \
--max_seq_len "${max_seq_len}" \
--max_num_tokens "${max_num_tokens}" \
--output_dir "${trt_engine_path}"
# handle triton protobuf files and launch triton server
cd /tensorrtllm_backend
mkdir triton_model_repo
cp -r all_models/inflight_batcher_llm/* triton_model_repo/
cd triton_model_repo
rm -rf ./tensorrt_llm/1/*
cp -r "${trt_engine_path}"/* ./tensorrt_llm/1
python3 ../tools/fill_template.py -i tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,engine_dir:/tensorrtllm_backend/triton_model_repo/tensorrt_llm/1,decoupled_mode:true,batching_strategy:inflight_fused_batching,batch_scheduler_policy:guaranteed_no_evict,exclude_input_in_output:true,triton_max_batch_size:2048,max_queue_delay_microseconds:0,max_beam_width:1,max_queue_size:2048,enable_kv_cache_reuse:false
python3 ../tools/fill_template.py -i preprocessing/config.pbtxt "triton_max_batch_size:2048,tokenizer_dir:$model_path,preprocessing_instance_count:5"
python3 ../tools/fill_template.py -i postprocessing/config.pbtxt "triton_max_batch_size:2048,tokenizer_dir:$model_path,postprocessing_instance_count:5,skip_special_tokens:false"
python3 ../tools/fill_template.py -i ensemble/config.pbtxt triton_max_batch_size:"$max_batch_size"
python3 ../tools/fill_template.py -i tensorrt_llm_bls/config.pbtxt "triton_max_batch_size:$max_batch_size,decoupled_mode:true,accumulate_tokens:False,bls_instance_count:1"
cd /tensorrtllm_backend
python3 scripts/launch_triton_server.py \
--world_size="${model_tp_size}" \
--model_repo=/tensorrtllm_backend/triton_model_repo &
}
launch_tgi_server() {
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
port=$(echo "$common_params" | jq -r '.port')
server_args=$(json2args "$server_params")
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
echo "Key 'fp8' exists in common params."
server_command="/tgi-entrypoint.sh \
--model-id $model \
--num-shard $tp \
--port $port \
--quantize fp8 \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="/tgi-entrypoint.sh \
--model-id $model \
--num-shard $tp \
--port $port \
$server_args"
fi
echo "Server command: $server_command"
eval "$server_command" &
}
launch_lmdeploy_server() {
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
port=$(echo "$common_params" | jq -r '.port')
server_args=$(json2args "$server_params")
server_command="lmdeploy serve api_server $model \
--tp $tp \
--server-port $port \
$server_args"
# run the server
echo "Server command: $server_command"
bash -c "$server_command" &
}
launch_sglang_server() {
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
port=$(echo "$common_params" | jq -r '.port')
server_args=$(json2args "$server_params")
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
server_command="python3 \
-m sglang.launch_server \
--tp $tp \
--model-path $model \
--port $port \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="python3 \
-m sglang.launch_server \
--tp $tp \
--model-path $model \
--port $port \
$server_args"
fi
# run the server
echo "Server command: $server_command"
eval "$server_command" &
}
launch_vllm_server() {
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
port=$(echo "$common_params" | jq -r '.port')
server_args=$(json2args "$server_params")
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
-tp $tp \
--model $model \
--port $port \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
-tp $tp \
--model $model \
--port $port \
$server_args"
fi
# run the server
echo "Server command: $server_command"
eval "$server_command" &
}
main() {
if [[ "$CURRENT_LLM_SERVING_ENGINE" == "trt" ]]; then
launch_trt_server
fi
if [[ "$CURRENT_LLM_SERVING_ENGINE" == "tgi" ]]; then
launch_tgi_server
fi
if [[ "$CURRENT_LLM_SERVING_ENGINE" == "lmdeploy" ]]; then
launch_lmdeploy_server
fi
if [[ "$CURRENT_LLM_SERVING_ENGINE" == "sglang" ]]; then
launch_sglang_server
fi
if [[ "$CURRENT_LLM_SERVING_ENGINE" == *"vllm"* ]]; then
launch_vllm_server
fi
}
main

View File

@ -1,102 +0,0 @@
#!/bin/bash
server_params=$1
common_params=$2
model_path=$(echo "$common_params" | jq -r '.model')
model_name="${model_path#*/}"
model_type=$(echo "$server_params" | jq -r '.model_type')
model_dtype=$(echo "$server_params" | jq -r '.model_dtype')
model_tp_size=$(echo "$common_params" | jq -r '.tp')
max_batch_size=$(echo "$server_params" | jq -r '.max_batch_size')
max_input_len=$(echo "$server_params" | jq -r '.max_input_len')
max_output_len=$(echo "$server_params" | jq -r '.max_output_len')
trt_llm_version=$(echo "$server_params" | jq -r '.trt_llm_version')
cd ~
rm -rf models
mkdir -p models
cd models
models_dir=$(pwd)
trt_model_path=${models_dir}/${model_name}-trt-ckpt
trt_engine_path=${models_dir}/${model_name}-trt-engine
cd ~
rm -rf tensorrt-demo
git clone https://github.com/neuralmagic/tensorrt-demo.git
cd tensorrt-demo
tensorrt_demo_dir=$(pwd)
# make sure the parameter inside tensorrt_demo is consistent to envvar
sed -i.bak "/key: \"tokenizer_dir\"/,/string_value:/s|string_value: \".*\"|string_value: \"$model_path\"|" ./triton_model_repo/postprocessing/config.pbtxt
sed -i.bak "/key: \"tokenizer_dir\"/,/string_value:/s|string_value: \".*\"|string_value: \"$model_path\"|" ./triton_model_repo/preprocessing/config.pbtxt
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/ensemble/config.pbtxt
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/preprocessing/config.pbtxt
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/postprocessing/config.pbtxt
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/tensorrt_llm_bls/config.pbtxt
cd /
rm -rf tensorrtllm_backend
git clone https://github.com/triton-inference-server/tensorrtllm_backend.git
git lfs install
cd tensorrtllm_backend
git checkout $trt_llm_version
tensorrtllm_backend_dir=$(pwd)
git submodule update --init --recursive
cp -r ${tensorrt_demo_dir}/triton_model_repo ${tensorrtllm_backend_dir}/
cd /tensorrtllm_backend
cd ./tensorrt_llm/examples/${model_type}
if echo "$common_params" | jq -e 'has("fp8")' > /dev/null; then
echo "Key 'fp8' exists in common params. Use quantize.py instead of convert_checkpoint.py"
echo "Reference: https://github.com/NVIDIA/TensorRT-LLM/blob/main/examples/llama/README.md"
python ../quantization/quantize.py \
--model_dir ${model_path} \
--dtype ${model_dtype} \
--tp_size ${model_tp_size} \
--output_dir ${trt_model_path} \
--qformat fp8 \
--kv_cache_dtype fp8 \
--calib_size 2
else
echo "Key 'fp8' does not exist in common params. Use convert_checkpoint.py"
python3 convert_checkpoint.py \
--model_dir ${model_path} \
--dtype ${model_dtype} \
--tp_size ${model_tp_size} \
--output_dir ${trt_model_path}
fi
trtllm-build \
--checkpoint_dir=${trt_model_path} \
--gpt_attention_plugin=${model_dtype} \
--gemm_plugin=${model_dtype} \
--remove_input_padding=enable \
--paged_kv_cache=enable \
--tp_size=${model_tp_size} \
--max_batch_size=${max_batch_size} \
--max_input_len=${max_input_len} \
--max_output_len=${max_output_len} \
--max_num_tokens=${max_output_len} \
--opt_num_tokens=${max_output_len} \
--output_dir=${trt_engine_path}
cd /tensorrtllm_backend/triton_model_repo
rm -rf ./tensorrt_llm/1/*
cp -r ${trt_engine_path}/* ./tensorrt_llm/1
cd /tensorrtllm_backend
python3 scripts/launch_triton_server.py \
--world_size=${model_tp_size} \
--model_repo=/tensorrtllm_backend/triton_model_repo &

View File

@ -8,6 +8,7 @@ main() {
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)
(which zip) || (apt-get install -y zip)
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip plotting the results."
@ -15,26 +16,63 @@ main() {
fi
# initial annotation
description="$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-descriptions.md"
#description="$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-descriptions.md"
# download results
cd $VLLM_SOURCE_CODE_LOC/benchmarks
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
mkdir -p results/
/workspace/buildkite-agent artifact download 'results/*nightly_results.json' results/
ls
ls results/
# generate figures
python3 -m pip install tabulate pandas matplotlib
python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
--description $description \
--results-folder results/
# upload benchmark results
zip -r results.zip results/
/workspace/buildkite-agent artifact upload "results.zip"
# upload benchmarking scripts
cd "$VLLM_SOURCE_CODE_LOC/"
zip -r nightly-benchmarks.zip .buildkite/ benchmarks/
/workspace/buildkite-agent artifact upload "nightly-benchmarks.zip"
cd "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/"
# upload benchmarking pipeline
/workspace/buildkite-agent artifact upload "nightly-pipeline.yaml"
cd "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/"
/workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly-annotation.md
# upload results and figures
/workspace/buildkite-agent artifact upload "nightly_results.png"
/workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-pipeline.yaml
/workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/tests/nightly-tests.json
/workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly_results.md
# The figures should be genereated by a separate process outside the CI/CD pipeline
# # generate figures
# python3 -m pip install tabulate pandas matplotlib
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/generate-nightly-markdown.py \
# --description $description \
# --results-folder results/
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
# --description $description \
# --results-folder results/ \
# --dataset sharegpt
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
# --description $description \
# --results-folder results/ \
# --dataset sonnet_2048_128
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
# --description $description \
# --results-folder results/ \
# --dataset sonnet_128_2048
# # upload results and figures
# /workspace/buildkite-agent artifact upload "nightly_results*.png"
# /workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-pipeline.yaml
# /workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/tests/nightly-tests.json
# /workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly_results.md
}
main "$@"
main "$@"

View File

@ -1,135 +0,0 @@
import argparse
import json
import math
from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
from tabulate import tabulate
def parse_arguments():
parser = argparse.ArgumentParser(
description=
'Parse command line arguments for summary-nightly-results script.')
parser.add_argument('--results-folder',
type=str,
required=True,
help='The folder where the results are stored.')
parser.add_argument('--description',
type=str,
required=True,
help='Description of the results.')
args = parser.parse_args()
return args
def main(args):
bar_colors = ['#56B4E9', '#009E73', '#D55E00', '#E69F00']
results_folder = Path(args.results_folder)
results = []
# collect results
for test_file in results_folder.glob("*_nightly_results.json"):
with open(test_file, "r") as f:
results = results + json.loads(f.read())
# generate markdown table
df = pd.DataFrame.from_dict(results)
md_table = tabulate(df, headers='keys', tablefmt='pipe', showindex=False)
with open(args.description, "r") as f:
description = f.read()
description = description.format(
nightly_results_benchmarking_table=md_table)
with open("nightly_results.md", "w") as f:
f.write(description)
plt.rcParams.update({'font.size': 20})
# plot results
fig, axes = plt.subplots(3, 3, figsize=(16, 14))
fig.subplots_adjust(hspace=1)
methods = ["vllm", "trt", "lmdeploy", "tgi"]
for i, model in enumerate(["llama8B", "llama70B", "mixtral8x7B"]):
for j, metric in enumerate(["TTFT", "ITL"]):
means, stds = [], []
for method in methods:
target = df['Test name'].str.contains(model)
target = target & df['Engine'].str.contains(method)
filtered_df = df[target]
if filtered_df.empty:
means.append(0.)
stds.append(0.)
else:
means.append(filtered_df[f"Mean {metric} (ms)"].values[0])
std = filtered_df[f"Std {metric} (ms)"].values[0]
success = filtered_df["Successful req."].values[0]
stds.append(std / math.sqrt(success))
print(model, metric)
print(means, stds)
ax = axes[i, j + 1]
bars = ax.bar(
["vllm", "trt", "lmdeploy", "tgi"],
means,
yerr=stds,
capsize=10,
)
for idx, bar in enumerate(bars):
bar.set_color(bar_colors[idx])
ax.set_ylim(bottom=0)
ax.set_ylabel(f"{metric} (ms)")
ax.set_title(f"{model} {metric}")
ax.grid(axis='y')
metric = "Tput"
j = 0
if True:
tputs = []
for method in methods:
target = df['Test name'].str.contains(model)
target = target & df['Engine'].str.contains(method)
filtered_df = df[target]
if filtered_df.empty:
tputs.append(0.)
else:
input_tput = filtered_df["Input Tput (tok/s)"].values[0]
output_tput = filtered_df["Output Tput (tok/s)"].values[0]
tputs.append(input_tput + output_tput)
print(model, metric)
print(tputs)
ax = axes[i, j]
bars = ax.bar(
["vllm", "trt", "lmdeploy", "tgi"],
tputs,
)
for idx, bar in enumerate(bars):
bar.set_color(bar_colors[idx])
ax.set_ylim(bottom=0)
ax.set_ylabel("Tput (token/s)")
ax.set_title(f"{model} {metric}")
ax.grid(axis='y')
fig.tight_layout()
fig.savefig("nightly_results.png", bbox_inches='tight', dpi=400)
if __name__ == '__main__':
args = parse_arguments()
main(args)

View File

@ -1,218 +0,0 @@
#!/bin/bash
set -o pipefail
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
kill_gpu_processes() {
pkill lmdeploy || true
# waiting for GPU processes to be fully killed
sleep 10
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
timeout 1200 bash -c '
until curl -s localhost:8000/v1/completions > /dev/null; do
sleep 1
done' && return 0 || return 1
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# append lmdeploy to the test name
test_name=lmdeploy_$test_name
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
# get client and server arguments
server_params=$(echo "$params" | jq -r '.lmdeploy_server_parameters')
client_params=$(echo "$params" | jq -r '.lmdeploy_client_parameters')
server_args=$(json2args "$server_params")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
# prepare tokenizer
rm -rf /tokenizer_cache
mkdir /tokenizer_cache
python ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \
--model "$model" \
--cachedir /tokenizer_cache
server_command="lmdeploy serve api_server $model \
--tp $tp \
--server-port $port \
$server_args"
# run the server
echo "Running test case $test_name"
echo "Server command: $server_command"
bash -c "$server_command" &
# wait until the server is alive
wait_for_server
if [ $? -eq 0 ]; then
echo ""
echo "lmdeploy server is up and running."
else
echo ""
echo "lmdeploy failed to start within the timeout period."
break
fi
# get model name
model_name=$(python ../.buildkite/nightly-benchmarks/scripts/get-lmdeploy-modelname.py)
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
client_command="python3 benchmark_serving.py \
--backend lmdeploy \
--tokenizer /tokenizer_cache \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--model \"$model_name\" \
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "lmdeploy" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
# clean up
kill_gpu_processes
rm -rf /root/.cache/huggingface/*
done
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
main() {
check_gpus
# enter vllm directory
cd $VLLM_SOURCE_CODE_LOC/benchmarks
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
python -m pip install transformers==4.41.2
export CURRENT_LLM_SERVING_ENGINE=lmdeploy
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
python -m pip install tabulate pandas
python $BENCHMARK_ROOT/scripts/summary-nightly-results.py
upload_to_buildkite
}
main "$@"

View File

@ -0,0 +1,355 @@
#!/bin/bash
set -o pipefail
set -x
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type="$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')"
echo "GPU type is $gpu_type"
}
check_hf_token() {
# check if HF_TOKEN is available and valid
if [[ -z "$HF_TOKEN" ]]; then
echo "Error: HF_TOKEN is not set."
exit 1
elif [[ ! "$HF_TOKEN" =~ ^hf_ ]]; then
echo "Error: HF_TOKEN does not start with 'hf_'."
exit 1
else
echo "HF_TOKEN is set and valid."
fi
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
get_current_llm_serving_engine() {
if which lmdeploy >/dev/null; then
echo "Container: lmdeploy"
export CURRENT_LLM_SERVING_ENGINE=lmdeploy
return
fi
if [ -e /tgi-entrypoint.sh ]; then
echo "Container: tgi"
export CURRENT_LLM_SERVING_ENGINE=tgi
return
fi
if which trtllm-build >/dev/null; then
echo "Container: tensorrt-llm"
export CURRENT_LLM_SERVING_ENGINE=trt
return
fi
if [ -e /sgl-workspace ]; then
echo "Container: sglang"
export CURRENT_LLM_SERVING_ENGINE=sglang
return
fi
if [ -e /vllm-workspace ]; then
echo "Container: vllm"
# move to a completely irrelevant directory, to avoid import vllm from current folder
export CURRENT_LLM_SERVING_ENGINE=vllm
return
fi
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
kill_gpu_processes() {
pkill -f python
pkill -f python3
pkill -f tritonserver
pkill -f pt_main_thread
pkill -f text-generation
pkill -f lmdeploy
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
sleep 1
done
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
timeout 1200 bash -c '
until curl -s localhost:8000/v1/completions > /dev/null; do
sleep 1
done' && return 0 || return 1
}
ensure_installed() {
# Ensure that the given command is installed by apt-get
local cmd=$1
if ! which "$cmd" >/dev/null; then
apt-get update && apt-get install -y "$cmd"
fi
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# prepend the current serving engine to the test name
test_name=${CURRENT_LLM_SERVING_ENGINE}_${test_name}
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
reuse_server=$(echo "$common_params" | jq -r '.reuse_server')
# get client and server arguments
server_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_server_parameters")
client_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_client_parameters")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if [[ $reuse_server == "true" ]]; then
echo "Reuse previous server for test case $test_name"
else
kill_gpu_processes
bash "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/launch-server.sh" \
"$server_params" "$common_params"
fi
if wait_for_server; then
echo ""
echo "$CURRENT_LLM_SERVING_ENGINE server is up and running."
else
echo ""
echo "$CURRENT_LLM_SERVING_ENGINE failed to start within the timeout period."
break
fi
# prepare tokenizer
# this is required for lmdeploy.
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
rm -rf /tokenizer_cache
mkdir /tokenizer_cache
python3 ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \
--model "$model" \
--cachedir /tokenizer_cache
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
# change model name for lmdeploy (it will not follow standard hf name)
if [[ "$CURRENT_LLM_SERVING_ENGINE" == "lmdeploy" ]]; then
model=$(python ../.buildkite/nightly-benchmarks/scripts/get-lmdeploy-modelname.py)
fi
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
backend=$CURRENT_LLM_SERVING_ENGINE
if [[ $backend = "trt" ]]; then
backend="tensorrt-llm"
fi
if [[ "$backend" == *"vllm"* ]]; then
backend="vllm"
fi
if [[ "$dataset_name" = "sharegpt" ]]; then
client_command="python3 benchmark_serving.py \
--backend $backend \
--tokenizer /tokenizer_cache \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--ignore-eos \
$client_args"
elif [[ "$dataset_name" = "sonnet" ]]; then
sonnet_input_len=$(echo "$common_params" | jq -r '.sonnet_input_len')
sonnet_output_len=$(echo "$common_params" | jq -r '.sonnet_output_len')
sonnet_prefix_len=$(echo "$common_params" | jq -r '.sonnet_prefix_len')
client_command="python3 benchmark_serving.py \
--backend $backend \
--tokenizer /tokenizer_cache \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--sonnet-input-len $sonnet_input_len \
--sonnet-output-len $sonnet_output_len \
--sonnet-prefix-len $sonnet_prefix_len \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--ignore-eos \
$client_args"
else
echo "The dataset name must be either 'sharegpt' or 'sonnet'. Got $dataset_name."
exit 1
fi
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
server_command="None"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "$CURRENT_LLM_SERVING_ENGINE" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
done
kill_gpu_processes
}
prepare_dataset() {
# download sharegpt dataset
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
# duplicate sonnet by 4x, to allow benchmarking with input length 2048
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
echo "" > sonnet_4x.txt
for _ in {1..4}
do
cat sonnet.txt >> sonnet_4x.txt
done
}
main() {
# check if the environment variable is successfully injected from yaml
check_gpus
check_hf_token
get_current_llm_serving_engine
pip install -U transformers
# check storage
df -h
ensure_installed wget
ensure_installed curl
ensure_installed jq
prepare_dataset
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT="$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/"
# run the test
run_serving_tests "$BENCHMARK_ROOT/tests/nightly-tests.json"
# upload benchmark results to buildkite
python3 -m pip install tabulate pandas
python3 "$BENCHMARK_ROOT/scripts/summary-nightly-results.py"
upload_to_buildkite
}
main "$@"

View File

@ -17,7 +17,7 @@ check_gpus() {
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
declare -g gpu_type=$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')
echo "GPU type is $gpu_type"
}
@ -93,7 +93,7 @@ kill_gpu_processes() {
# wait until GPU memory usage smaller than 1GB
while [ $(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1) -ge 1000 ]; do
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
sleep 1
done
@ -117,7 +117,7 @@ upload_to_buildkite() {
fi
# Use the determined command to annotate and upload artifacts
$BUILDKITE_AGENT_COMMAND annotate --style "info" --context "$BUILDKITE_LABEL-benchmark-results" <$RESULTS_FOLDER/benchmark_results.md
$BUILDKITE_AGENT_COMMAND annotate --style "info" --context "$BUILDKITE_LABEL-benchmark-results" < "$RESULTS_FOLDER/benchmark_results.md"
$BUILDKITE_AGENT_COMMAND artifact upload "$RESULTS_FOLDER/*"
}
@ -150,7 +150,7 @@ run_latency_tests() {
# check if there is enough GPU to run the test
tp=$(echo "$latency_params" | jq -r '.tensor_parallel_size')
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $testname."
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
@ -206,9 +206,9 @@ run_throughput_tests() {
throughput_args=$(json2args "$throughput_params")
# check if there is enough GPU to run the test
tp=$(echo $throughput_params | jq -r '.tensor_parallel_size')
tp=$(echo "$throughput_params" | jq -r '.tensor_parallel_size')
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $testname."
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
@ -270,7 +270,7 @@ run_serving_tests() {
# check if there is enough GPU to run the test
tp=$(echo "$server_params" | jq -r '.tensor_parallel_size')
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $testname."
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
@ -278,7 +278,7 @@ run_serving_tests() {
server_model=$(echo "$server_params" | jq -r '.model')
client_model=$(echo "$client_params" | jq -r '.model')
if [[ $server_model != "$client_model" ]]; then
echo "Server model and client model must be the same. Skip testcase $testname."
echo "Server model and client model must be the same. Skip testcase $test_name."
continue
fi
@ -293,8 +293,7 @@ run_serving_tests() {
server_pid=$!
# wait until the server is alive
wait_for_server
if [ $? -eq 0 ]; then
if wait_for_server; then
echo ""
echo "vllm server is up and running."
else

View File

@ -1,216 +0,0 @@
#!/bin/bash
set -o pipefail
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
kill_gpu_processes() {
pkill text-generation || true
# waiting for GPU processes to be fully killed
sleep 10
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
timeout 1200 bash -c '
until curl -s localhost:8000/generate_stream > /dev/null; do
sleep 1
done' && return 0 || return 1
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# append tgi to the test name
test_name=tgi_$test_name
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
# get client and server arguments
server_params=$(echo "$params" | jq -r '.tgi_server_parameters')
client_params=$(echo "$params" | jq -r '.tgi_client_parameters')
server_args=$(json2args "$server_params")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if echo "$common_params" | jq -e 'has("fp8")' > /dev/null; then
echo "Key 'fp8' exists in common params."
server_command="/tgi-entrypoint.sh \
--model-id $model \
--num-shard $tp \
--port $port \
--quantize fp8 \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="/tgi-entrypoint.sh \
--model-id $model \
--num-shard $tp \
--port $port \
$server_args"
fi
# run the server
echo "Running test case $test_name"
echo "Server command: $server_command"
eval "$server_command" &
# wait until the server is alive
wait_for_server
if [ $? -eq 0 ]; then
echo ""
echo "tgi server is up and running."
else
echo ""
echo "tgi failed to start within the timeout period."
break
fi
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
client_command="python3 benchmark_serving.py \
--backend tgi \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "tgi" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
# clean up
kill_gpu_processes
rm -rf /root/.cache/huggingface/*
done
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
main() {
check_gpus
# enter vllm directory
cd $VLLM_SOURCE_CODE_LOC/benchmarks
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
export CURRENT_LLM_SERVING_ENGINE=tgi
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
python -m pip install tabulate pandas
python $BENCHMARK_ROOT/scripts/summary-nightly-results.py
upload_to_buildkite
}
main "$@"

View File

@ -1,214 +0,0 @@
#!/bin/bash
set -o pipefail
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
kill_gpu_processes() {
pkill tritonserver || true
# waiting for GPU processes to be fully killed
sleep 20
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
timeout 1200 bash -c '
until curl -s localhost:8000/generate_stream > /dev/null; do
sleep 1
done' && return 0 || return 1
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# append trt to the test name
test_name=trt_$test_name
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
# get client and server arguments
server_params=$(echo "$params" | jq -r '.trt_server_parameters')
client_params=$(echo "$params" | jq -r '.trt_client_parameters')
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required model_tp_size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
cd $VLLM_SOURCE_CODE_LOC/benchmarks
echo "Running test case $test_name"
bash ../.buildkite/nightly-benchmarks/scripts/launch-trt-server.sh "$server_params" "$common_params"
# wait until the server is alive
wait_for_server
if [ $? -eq 0 ]; then
echo ""
echo "trt server is up and running."
else
echo ""
echo "trt failed to start within the timeout period."
break
fi
# prepare tokenizer
cd $VLLM_SOURCE_CODE_LOC/benchmarks
rm -rf /tokenizer_cache
mkdir /tokenizer_cache
python ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \
--model "$model" \
--cachedir /tokenizer_cache
cd $VLLM_SOURCE_CODE_LOC/benchmarks
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
client_command="python3 benchmark_serving.py \
--backend tensorrt-llm \
--tokenizer /tokenizer_cache \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
server_command=""
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "trt" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
# clean up
kill_gpu_processes
rm -rf /root/.cache/huggingface/*
done
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
main() {
check_gpus
# enter vllm directory
cd $VLLM_SOURCE_CODE_LOC/benchmarks
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
# update transformers package, to make sure mixtral tokenizer is available
python -m pip install transformers -U
export CURRENT_LLM_SERVING_ENGINE=trt
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
python -m pip install tabulate pandas
python $BENCHMARK_ROOT/scripts/summary-nightly-results.py
upload_to_buildkite
}
main "$@"

View File

@ -1,221 +0,0 @@
#!/bin/bash
set -o pipefail
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
kill_gpu_processes() {
# kill all processes on GPU.
pkill pt_main_thread
sleep 10
# remove vllm config file
rm -rf ~/.config/vllm
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
timeout 1200 bash -c '
until curl -s localhost:8000/v1/completions > /dev/null; do
sleep 1
done' && return 0 || return 1
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# append vllm to the test name
test_name=vllm_$test_name
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
# get client and server arguments
server_params=$(echo "$params" | jq -r '.vllm_server_parameters')
client_params=$(echo "$params" | jq -r '.vllm_client_parameters')
server_args=$(json2args "$server_params")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if echo "$common_params" | jq -e 'has("fp8")' > /dev/null; then
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
-tp $tp \
--model $model \
--port $port \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
-tp $tp \
--model $model \
--port $port \
$server_args"
fi
# run the server
echo "Running test case $test_name"
echo "Server command: $server_command"
eval "$server_command" &
# wait until the server is alive
wait_for_server
if [ $? -eq 0 ]; then
echo ""
echo "vllm server is up and running."
else
echo ""
echo "vllm failed to start within the timeout period."
break
fi
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
client_command="python3 benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "vllm" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
# clean up
kill_gpu_processes
rm -rf /root/.cache/huggingface/*
done
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
main() {
check_gpus
# enter vllm directory
cd $VLLM_SOURCE_CODE_LOC/benchmarks
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
export CURRENT_LLM_SERVING_ENGINE=vllm
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
python3 -m pip install tabulate pandas
python3 $BENCHMARK_ROOT/scripts/summary-nightly-results.py
upload_to_buildkite
}
main "$@"

View File

@ -17,10 +17,17 @@ serving_column_mapping = {
"request_throughput": "Tput (req/s)",
"mean_ttft_ms": "Mean TTFT (ms)",
"std_ttft_ms": "Std TTFT (ms)",
"median_ttft_ms": "Median TTFT (ms)",
"mean_itl_ms": "Mean ITL (ms)",
"std_itl_ms": "Std ITL (ms)",
"input_throughput": "Input Tput (tok/s)",
"median_itl_ms": "Median ITL (ms)",
"mean_tpot_ms": "Mean TPOT (ms)",
"std_tpot_ms": "Std TPOT (ms)",
"median_tpot_ms": "Median TPOT (ms)",
"total_token_throughput": "Total Token Tput (tok/s)",
"output_throughput": "Output Tput (tok/s)",
"total_input_tokens": "Total input tokens",
"total_output_tokens": "Total output tokens",
"engine": "Engine",
}
@ -29,11 +36,11 @@ if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
with open(test_file, "r") as f:
with open(test_file) as f:
raw_result = json.loads(f.read())
# attach the benchmarking command to raw_result
with open(test_file.with_suffix(".commands"), "r") as f:
with open(test_file.with_suffix(".commands")) as f:
command = json.loads(f.read())
raw_result.update(command)

View File

@ -2,9 +2,11 @@
TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-test-repo:pull" | jq -r .token)
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-test-repo/manifests/$BUILDKITE_COMMIT"
TIMEOUT_SECONDS=10
retries=0
while [ $retries -lt 1000 ]; do
if [ $(curl -s -L -H "Authorization: Bearer $TOKEN" -o /dev/null -w "%{http_code}" $URL) -eq 200 ]; then
if [ "$(curl -s --max-time "$TIMEOUT_SECONDS" -L -H "Authorization: Bearer $TOKEN" -o /dev/null -w "%{http_code}" "$URL")" -eq 200 ]; then
exit 0
fi
@ -14,4 +16,4 @@ while [ $retries -lt 1000 ]; do
sleep 5
done
exit 1
exit 1

View File

@ -1,16 +1,18 @@
[
{
"test_name": "llama8B_tp1",
"qps_list": [4],
"test_name": "llama8B_tp1_sharegpt",
"qps_list": [4,8,16,32,"inf"],
"common_parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"model": "meta-llama/Meta-Llama-3-8B-Instruct",
"tp": 1,
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 500,
"port": 8000
"port": 8000,
"reuse_server": false
},
"lmdeploy_server_parameters": {
"dtype": "bfloat16"
},
"lmdeploy_client_parameters": {
},
@ -21,34 +23,158 @@
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "float16",
"max_batch_size": 256,
"model_dtype": "bfloat16",
"max_batch_size": 2048,
"max_input_len": 4096,
"max_output_len": 4096,
"trt_llm_version": "r24.04"
"max_seq_len": 6144,
"max_num_tokens": 16384,
"trt_llm_version": "v0.11.0"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": ""
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
"vllm_client_parameters": {
},
"sglang_server_parameters": {
"disable_radix_cache": "",
"enable_torch_compile": "",
"dtype": "bfloat16"
},
"sglang_client_parameters": {
}
},
{
"test_name": "llama70B_tp4",
"qps_list": [2],
"test_name": "llama8B_tp1_sonnet_512_16",
"qps_list": [4,8,16,32,"inf"],
"common_parameters": {
"model": "meta-llama/Meta-Llama-3-8B-Instruct",
"tp": 1,
"dataset_name": "sonnet",
"dataset_path": "./sonnet_4x.txt",
"num_prompts": 500,
"port": 8000,
"sonnet_input_len": 512,
"sonnet_output_len": 16,
"sonnet_prefix_len": 50,
"reuse_server": true
},
"lmdeploy_server_parameters": {
"dtype": "bfloat16"
},
"lmdeploy_client_parameters": {
},
"tgi_server_parameters": {
},
"tgi_client_parameters": {
"endpoint": "/generate_stream"
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "bfloat16",
"max_batch_size": 2048,
"max_input_len": 4096,
"max_seq_len": 6144,
"max_num_tokens": 16384,
"trt_llm_version": "v0.11.0"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
"vllm_client_parameters": {
},
"sglang_server_parameters": {
"disable_radix_cache": "",
"enable_torch_compile": "",
"dtype": "bfloat16"
},
"sglang_client_parameters": {
}
},
{
"test_name": "llama8B_tp1_sonnet_512_256",
"qps_list": [4,8,16,32,"inf"],
"common_parameters": {
"model": "meta-llama/Meta-Llama-3-8B-Instruct",
"tp": 1,
"dataset_name": "sonnet",
"dataset_path": "./sonnet_4x.txt",
"num_prompts": 500,
"port": 8000,
"sonnet_input_len": 512,
"sonnet_output_len": 256,
"sonnet_prefix_len": 50,
"reuse_server": true
},
"lmdeploy_server_parameters": {
"dtype": "bfloat16"
},
"lmdeploy_client_parameters": {
},
"tgi_server_parameters": {
},
"tgi_client_parameters": {
"endpoint": "/generate_stream"
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "bfloat16",
"max_batch_size": 2048,
"max_input_len": 4096,
"max_seq_len": 6144,
"max_num_tokens": 16384,
"trt_llm_version": "v0.11.0"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
"vllm_client_parameters": {
},
"sglang_server_parameters": {
"disable_radix_cache": "",
"enable_torch_compile": "",
"dtype": "bfloat16"
},
"sglang_client_parameters": {
}
},
{
"test_name": "llama70B_tp4_sharegpt",
"qps_list": [4,8,16,32,"inf"],
"common_parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"tp": 4,
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 500,
"port": 8000
"port": 8000,
"reuse_server": false
},
"lmdeploy_server_parameters": {
"dtype": "bfloat16"
},
"lmdeploy_client_parameters": {
},
@ -59,34 +185,50 @@
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "float16",
"max_batch_size": 256,
"model_dtype": "bfloat16",
"max_batch_size": 2048,
"max_input_len": 4096,
"max_output_len": 4096,
"trt_llm_version": "r24.04"
"max_seq_len": 6144,
"max_num_tokens": 16384,
"trt_llm_version": "v0.11.0"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": ""
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
"vllm_client_parameters": {
},
"sglang_server_parameters": {
"disable_radix_cache": "",
"dtype": "bfloat16"
},
"sglang_client_parameters": {
}
},
{
"test_name": "mixtral8x7B_tp2",
"qps_list": [2],
"test_name": "llama70B_tp4_sonnet_512_16",
"qps_list": [4,8,16,32,"inf"],
"common_parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"tp": 2,
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"tp": 4,
"dataset_name": "sonnet",
"dataset_path": "./sonnet_4x.txt",
"num_prompts": 500,
"port": 8000
"port": 8000,
"sonnet_input_len": 512,
"sonnet_output_len": 16,
"sonnet_prefix_len": 50,
"reuse_server": true
},
"lmdeploy_server_parameters": {
"dtype": "bfloat16"
},
"lmdeploy_client_parameters": {
},
@ -97,20 +239,85 @@
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "float16",
"max_batch_size": 256,
"model_dtype": "bfloat16",
"max_batch_size": 2048,
"max_input_len": 4096,
"max_output_len": 4096,
"trt_llm_version": "r24.04"
"max_seq_len": 6144,
"max_num_tokens": 16384,
"trt_llm_version": "v0.11.0"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": ""
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
"vllm_client_parameters": {
},
"sglang_server_parameters": {
"disable_radix_cache": "",
"dtype": "bfloat16"
},
"sglang_client_parameters": {
}
},
{
"test_name": "llama70B_tp4_sonnet_512_256",
"qps_list": [4,8,16,32,"inf"],
"common_parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"tp": 4,
"dataset_name": "sonnet",
"dataset_path": "./sonnet_4x.txt",
"num_prompts": 500,
"port": 8000,
"sonnet_input_len": 512,
"sonnet_output_len": 256,
"sonnet_prefix_len": 50,
"reuse_server": true
},
"lmdeploy_server_parameters": {
"dtype": "bfloat16"
},
"lmdeploy_client_parameters": {
},
"tgi_server_parameters": {
},
"tgi_client_parameters": {
"endpoint": "/generate_stream"
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "bfloat16",
"max_batch_size": 2048,
"max_input_len": 4096,
"max_seq_len": 6144,
"max_num_tokens": 16384,
"trt_llm_version": "v0.11.0"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
"vllm_client_parameters": {
},
"sglang_server_parameters": {
"disable_radix_cache": "",
"dtype": "bfloat16"
},
"sglang_client_parameters": {
}
}
]

View File

@ -3,30 +3,26 @@ steps:
agents:
queue: cpu_queue
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg buildkite_commit=$BUILDKITE_COMMIT --build-arg USE_SCCACHE=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
# rename the files to change linux -> manylinux1
- "for f in artifacts/dist/*.whl; do mv -- \"$$f\" \"$${f/linux/manylinux1}\"; done"
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/$BUILDKITE_COMMIT/"
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/nightly/"
- "bash .buildkite/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
- block: "Build CUDA 11.8 wheel"
key: block-build-cu118-wheel
# Note(simon): We can always build CUDA 11.8 wheel to ensure the build is working.
# However, this block can be uncommented to save some compute hours.
# - block: "Build CUDA 11.8 wheel"
# key: block-build-cu118-wheel
- label: "Build wheel - CUDA 11.8"
depends_on: block-build-cu118-wheel
# depends_on: block-build-cu118-wheel
agents:
queue: cpu_queue
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg buildkite_commit=$BUILDKITE_COMMIT --build-arg USE_SCCACHE=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
# rename the files to change linux -> manylinux1
- "for f in artifacts/dist/*.whl; do mv -- \"$$f\" \"$${f/linux/manylinux1}\"; done"
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/$BUILDKITE_COMMIT/"
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/nightly/"
- "bash .buildkite/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"

99
.buildkite/run-amd-test.sh Normal file → Executable file
View File

@ -1,5 +1,7 @@
#!/bin/bash
# This script runs test inside the corresponding ROCm docker container.
set -ex
set -o pipefail
# Print ROCm version
echo "--- Confirming Clean Initial State"
@ -31,8 +33,8 @@ cleanup_docker() {
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes
docker volume prune -f
# Remove unused volumes / force the system prune for old images as well.
docker volume prune -f && docker system prune --force --filter "until=72h" --all
echo "Docker images and volumes cleanup completed."
else
echo "Disk usage is below $threshold%. No cleanup needed."
@ -57,28 +59,99 @@ done
echo "--- Pulling container"
image_name="rocm/vllm-ci:${BUILDKITE_COMMIT}"
container_name="rocm_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
docker pull ${image_name}
docker pull "${image_name}"
remove_docker_container() {
docker rm -f ${container_name} || docker image rm -f ${image_name} || true
docker rm -f "${container_name}" || docker image rm -f "${image_name}" || true
}
trap remove_docker_container EXIT
echo "--- Running container"
HF_CACHE="$(realpath ~)/huggingface"
mkdir -p ${HF_CACHE}
mkdir -p "${HF_CACHE}"
HF_MOUNT="/root/.cache/huggingface"
docker run \
commands=$@
echo "Commands:$commands"
#ignore certain kernels tests
if [[ $commands == *" kernels "* ]]; then
commands="${commands} \
--ignore=kernels/test_attention.py \
--ignore=kernels/test_attention_selector.py \
--ignore=kernels/test_blocksparse_attention.py \
--ignore=kernels/test_causal_conv1d.py \
--ignore=kernels/test_cutlass.py \
--ignore=kernels/test_encoder_decoder_attn.py \
--ignore=kernels/test_flash_attn.py \
--ignore=kernels/test_flashinfer.py \
--ignore=kernels/test_gguf.py \
--ignore=kernels/test_int8_quant.py \
--ignore=kernels/test_machete_gemm.py \
--ignore=kernels/test_mamba_ssm.py \
--ignore=kernels/test_marlin_gemm.py \
--ignore=kernels/test_moe.py \
--ignore=kernels/test_prefix_prefill.py \
--ignore=kernels/test_rand.py \
--ignore=kernels/test_sampler.py"
fi
#ignore certain Entrypoints tests
if [[ $commands == *" entrypoints/openai "* ]]; then
commands=${commands//" entrypoints/openai "/" entrypoints/openai \
--ignore=entrypoints/openai/test_accuracy.py \
--ignore=entrypoints/openai/test_audio.py \
--ignore=entrypoints/openai/test_encoder_decoder.py \
--ignore=entrypoints/openai/test_embedding.py \
--ignore=entrypoints/openai/test_oot_registration.py "}
fi
PARALLEL_JOB_COUNT=8
# check if the command contains shard flag, we will run all shards in parallel because the host have 8 GPUs.
if [[ $commands == *"--shard-id="* ]]; then
# assign job count as the number of shards used
commands=${commands//"--num-shards= "/"--num-shards=${PARALLEL_JOB_COUNT} "}
for GPU in $(seq 0 $(($PARALLEL_JOB_COUNT-1))); do
# assign shard-id for each shard
commands_gpu=${commands//"--shard-id= "/"--shard-id=${GPU} "}
echo "Shard ${GPU} commands:$commands_gpu"
docker run \
--device /dev/kfd --device /dev/dri \
--network host \
--shm-size=16gb \
--rm \
-e HIP_VISIBLE_DEVICES="${GPU}" \
-e HF_TOKEN \
-v ${HF_CACHE}:${HF_MOUNT} \
-e HF_HOME=${HF_MOUNT} \
--name ${container_name} \
${image_name} \
/bin/bash -c "${@}"
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
--name "${container_name}_${GPU}" \
"${image_name}" \
/bin/bash -c "${commands_gpu}" \
|& while read -r line; do echo ">>Shard $GPU: $line"; done &
PIDS+=($!)
done
#wait for all processes to finish and collect exit codes
for pid in "${PIDS[@]}"; do
wait "${pid}"
STATUS+=($?)
done
for st in "${STATUS[@]}"; do
if [[ ${st} -ne 0 ]]; then
echo "One of the processes failed with $st"
exit "${st}"
fi
done
else
docker run \
--device /dev/kfd --device /dev/dri \
--network host \
--shm-size=16gb \
--rm \
-e HIP_VISIBLE_DEVICES=0 \
-e HF_TOKEN \
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
--name "${container_name}" \
"${image_name}" \
/bin/bash -c "${commands}"
fi

View File

@ -1,3 +1,5 @@
#!/bin/bash
# This script is run by buildkite to run the benchmarks and upload the results to buildkite
set -ex

View File

@ -0,0 +1,52 @@
#!/bin/bash
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Try building the docker image
docker build -t cpu-test -f Dockerfile.ppc64le .
# Setup cleanup
remove_docker_container() { docker rm -f cpu-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image, setting --shm-size=4g for tensor parallel.
source /etc/environment
#docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN="$HF_TOKEN" --name cpu-test cpu-test
function cpu_tests() {
set -e
# Run basic model test
docker exec cpu-test bash -c "
set -e
pip install pytest pytest-asyncio \
decord einops librosa peft Pillow sentence-transformers soundfile \
transformers_stream_generator matplotlib datamodel_code_generator
pip install torchvision --index-url https://download.pytorch.org/whl/cpu
pytest -v -s tests/models/decoder_only/language -m cpu_model
pytest -v -s tests/models/embedding/language -m cpu_model
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
pytest -v -s tests/models/decoder_only/audio_language -m cpu_model
pytest -v -s tests/models/decoder_only/vision_language -m cpu_model"
# online inference
docker exec cpu-test bash -c "
set -e
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m &
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name random \
--model facebook/opt-125m \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer facebook/opt-125m"
}
# All of CPU tests are expected to be finished less than 25 mins.
export -f cpu_tests
timeout 25m bash -c "cpu_tests"

View File

@ -1,10 +1,16 @@
#!/bin/bash
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# allow to bind to different cores
CORE_RANGE=${CORE_RANGE:-48-95}
NUMA_NODE=${NUMA_NODE:-1}
# Try building the docker image
numactl -C 48-95 -N 1 docker build -t cpu-test -f Dockerfile.cpu .
numactl -C 48-95 -N 1 docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-avx2 -f Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build -t cpu-test -f Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-avx2 -f Dockerfile.cpu .
# Setup cleanup
remove_docker_container() { docker rm -f cpu-test cpu-test-avx2 || true; }
@ -12,29 +18,61 @@ trap remove_docker_container EXIT
remove_docker_container
# Run the image, setting --shm-size=4g for tensor parallel.
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=48-95 \
--cpuset-mems=1 --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=48-95 \
--cpuset-mems=1 --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-avx2 cpu-test-avx2
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-avx2 cpu-test-avx2
# offline inference
docker exec cpu-test-avx2 bash -c "python3 examples/offline_inference.py"
function cpu_tests() {
set -e
# Run basic model test
docker exec cpu-test bash -c "
pip install pytest matplotlib einops transformers_stream_generator
pytest -v -s tests/models -m \"not vlm\" --ignore=tests/models/test_embedding.py --ignore=tests/models/test_oot_registration.py --ignore=tests/models/test_registry.py --ignore=tests/models/test_jamba.py --ignore=tests/models/test_danube3_4b.py" # Mamba and Danube3-4B on CPU is not supported
# offline inference
docker exec cpu-test-avx2 bash -c "
set -e
python3 examples/offline_inference.py"
# online inference
docker exec cpu-test bash -c "
export VLLM_CPU_KVCACHE_SPACE=10
export VLLM_CPU_OMP_THREADS_BIND=48-92
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m &
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name random \
--model facebook/opt-125m \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer facebook/opt-125m"
# Run basic model test
docker exec cpu-test bash -c "
set -e
pip install pytest pytest-asyncio \
decord einops librosa peft Pillow sentence-transformers soundfile \
transformers_stream_generator matplotlib datamodel_code_generator
pip install torchvision --index-url https://download.pytorch.org/whl/cpu
pytest -v -s tests/models/decoder_only/language -m cpu_model
pytest -v -s tests/models/embedding/language -m cpu_model
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
pytest -v -s tests/models/decoder_only/audio_language -m cpu_model
pytest -v -s tests/models/decoder_only/vision_language -m cpu_model"
# Run compressed-tensor test
docker exec cpu-test bash -c "
set -e
pytest -s -v \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynamic_per_token"
# Run AWQ test
docker exec cpu-test bash -c "
set -e
pytest -s -v \
tests/quantization/test_ipex_quant.py"
# online inference
docker exec cpu-test bash -c "
set -e
export VLLM_CPU_KVCACHE_SPACE=10
export VLLM_CPU_OMP_THREADS_BIND=$1
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m --dtype half &
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name random \
--model facebook/opt-125m \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer facebook/opt-125m"
}
# All of CPU tests are expected to be finished less than 25 mins.
export -f cpu_tests
timeout 25m bash -c "cpu_tests $CORE_RANGE"

View File

@ -0,0 +1,16 @@
#!/bin/bash
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Try building the docker image
docker build -t hpu-test-env -f Dockerfile.hpu .
# Setup cleanup
remove_docker_container() { docker rm -f hpu-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --runtime=habana --name=hpu-test --network=host -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference.py

View File

@ -14,7 +14,7 @@ DOCKER_IMAGE=$4
shift 4
COMMANDS=("$@")
if [ ${#COMMANDS[@]} -ne $NUM_NODES ]; then
if [ ${#COMMANDS[@]} -ne "$NUM_NODES" ]; then
echo "The number of commands must be equal to the number of nodes."
echo "Number of nodes: $NUM_NODES"
echo "Number of commands: ${#COMMANDS[@]}"
@ -23,7 +23,7 @@ fi
echo "List of commands"
for command in "${COMMANDS[@]}"; do
echo $command
echo "$command"
done
start_network() {
@ -36,7 +36,7 @@ start_nodes() {
for node_gpu in $(seq 0 $(($NUM_GPUS - 1))); do
DEVICE_NUM=$(($node * $NUM_GPUS + $node_gpu))
GPU_DEVICES+=$(($DEVICE_NUM))
if [ $node_gpu -lt $(($NUM_GPUS - 1)) ]; then
if [ "$node_gpu" -lt $(($NUM_GPUS - 1)) ]; then
GPU_DEVICES+=','
fi
done
@ -49,17 +49,20 @@ start_nodes() {
# 3. map the huggingface cache directory to the container
# 3. assign ip addresses to the containers (head node: 192.168.10.10, worker nodes:
# starting from 192.168.10.11)
docker run -d --gpus "$GPU_DEVICES" --shm-size=10.24gb -e HF_TOKEN -v ~/.cache/huggingface:/root/.cache/huggingface --name node$node --network docker-net --ip 192.168.10.$((10 + $node)) --rm $DOCKER_IMAGE /bin/bash -c "tail -f /dev/null"
docker run -d --gpus "$GPU_DEVICES" --shm-size=10.24gb -e HF_TOKEN \
-v ~/.cache/huggingface:/root/.cache/huggingface --name "node$node" \
--network docker-net --ip 192.168.10.$((10 + $node)) --rm "$DOCKER_IMAGE" \
/bin/bash -c "tail -f /dev/null"
# organize containers into a ray cluster
if [ $node -eq 0 ]; then
if [ "$node" -eq 0 ]; then
# start the ray head node
docker exec -d node$node /bin/bash -c "ray start --head --port=6379 --block"
docker exec -d "node$node" /bin/bash -c "ray start --head --port=6379 --block"
# wait for the head node to be ready
sleep 10
else
# start the ray worker nodes, and connect them to the head node
docker exec -d node$node /bin/bash -c "ray start --address=192.168.10.10:6379 --block"
docker exec -d "node$node" /bin/bash -c "ray start --address=192.168.10.10:6379 --block"
fi
done
@ -79,22 +82,22 @@ run_nodes() {
for node_gpu in $(seq 0 $(($NUM_GPUS - 1))); do
DEVICE_NUM=$(($node * $NUM_GPUS + $node_gpu))
GPU_DEVICES+=$(($DEVICE_NUM))
if [ $node_gpu -lt $(($NUM_GPUS - 1)) ]; then
if [ "$node_gpu" -lt $(($NUM_GPUS - 1)) ]; then
GPU_DEVICES+=','
fi
done
GPU_DEVICES+='"'
echo "Running node$node with GPU devices: $GPU_DEVICES"
if [ $node -ne 0 ]; then
docker exec -d node$node /bin/bash -c "cd $WORKING_DIR ; ${COMMANDS[$node]}"
if [ "$node" -ne 0 ]; then
docker exec -d "node$node" /bin/bash -c "cd $WORKING_DIR ; ${COMMANDS[$node]}"
else
docker exec node$node /bin/bash -c "cd $WORKING_DIR ; ${COMMANDS[$node]}"
docker exec "node$node" /bin/bash -c "cd $WORKING_DIR ; ${COMMANDS[$node]}"
fi
done
}
cleanup() {
for node in $(seq 0 $(($NUM_NODES-1))); do
docker stop node$node
docker stop "node$node"
done
docker network rm docker-net
}

View File

@ -1,3 +1,5 @@
#!/bin/bash
# This script build the Neuron docker image and run the API server inside the container.
# It serves a sanity check for compilation and basic model usage.
set -e
@ -12,10 +14,10 @@ if [ -f /tmp/neuron-docker-build-timestamp ]; then
current_time=$(date +%s)
if [ $((current_time - last_build)) -gt 86400 ]; then
docker system prune -f
echo $current_time > /tmp/neuron-docker-build-timestamp
echo "$current_time" > /tmp/neuron-docker-build-timestamp
fi
else
echo $(date +%s) > /tmp/neuron-docker-build-timestamp
date "+%s" > /tmp/neuron-docker-build-timestamp
fi
docker build -t neuron -f Dockerfile.neuron .
@ -34,7 +36,7 @@ wait_for_server_to_start() {
timeout=300
counter=0
while [ "$(curl -s -o /dev/null -w ''%{http_code}'' localhost:8000/health)" != "200" ]; do
while [ "$(curl -s -o /dev/null -w '%{http_code}' localhost:8000/health)" != "200" ]; do
sleep 1
counter=$((counter + 1))
if [ $counter -ge $timeout ]; then

View File

@ -1,3 +1,5 @@
#!/bin/bash
# This script build the OpenVINO docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
@ -11,4 +13,4 @@ trap remove_docker_container EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/vllm/examples/offline_inference.py
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/examples/offline_inference.py

View File

@ -1,3 +1,5 @@
#!/bin/bash
set -e
# Build the docker image.
@ -12,5 +14,4 @@ remove_docker_container
# For HF_TOKEN.
source /etc/environment
# Run a simple end-to-end example.
docker run --privileged --net host --shm-size=16G -it -e HF_TOKEN=$HF_TOKEN --name tpu-test vllm-tpu \
python3 /workspace/vllm/examples/offline_inference_tpu.py
docker run --privileged --net host --shm-size=16G -it -e "HF_TOKEN=$HF_TOKEN" --name tpu-test vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git && python3 -m pip install pytest && python3 -m pip install lm_eval[api]==0.4.4 && pytest -v -s /workspace/vllm/tests/entrypoints/openai/test_accuracy.py && pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py && python3 /workspace/vllm/tests/tpu/test_compilation.py && python3 /workspace/vllm/examples/offline_inference_tpu.py"

View File

@ -1,3 +1,5 @@
#!/bin/bash
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
@ -11,4 +13,4 @@ trap remove_docker_container EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --network host --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path xpu-test python3 examples/offline_inference.py
docker run --network host --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path --entrypoint="" xpu-test python3 examples/offline_inference.py

View File

@ -9,6 +9,8 @@
# label(str): the name of the test. emoji allowed.
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
# fast_check_only(bool): run this test on fastcheck pipeline only
# nightly(bool): run this test in nightly pipeline only
# optional(bool): never run this test by default (i.e. need to unblock manually)
# command(str): the single command to run for tests. incompatible with commands.
# commands(list): the list of commands to run for test. incompatbile with command.
# mirror_hardwares(list): the list of hardwares to run the test on as well. currently only supports [amd]
@ -39,17 +41,20 @@ steps:
# Check API reference (if it fails, you may have missing mock imports)
- grep \"sig sig-object py\" build/html/dev/sampling_params.html
- label: Async Engine, Inputs, Utils, Worker Test # 15min
- label: Async Engine, Inputs, Utils, Worker Test # 24min
fast_check: true
source_file_dependencies:
- vllm/
- tests/mq_llm_engine
- tests/async_engine
- tests/test_inputs
- tests/multimodal
- tests/test_utils
- tests/worker
commands:
- pytest -v -s async_engine # Async Engine
- pytest -v -s mq_llm_engine # MQLLMEngine
- pytest -v -s async_engine # AsyncLLMEngine
- NUM_SCHEDULER_STEPS=4 pytest -v -s async_engine/test_async_llm_engine.py
- pytest -v -s test_inputs.py
- pytest -v -s multimodal
- pytest -v -s test_utils.py # Utils
@ -60,14 +65,22 @@ steps:
fast_check: true
source_file_dependencies:
- vllm/
- tests/basic_correctness
- tests/basic_correctness/test_basic_correctness
- tests/basic_correctness/test_cpu_offload
- tests/basic_correctness/test_preemption
commands:
- pytest -v -s basic_correctness/test_basic_correctness.py
- pytest -v -s basic_correctness/test_cpu_offload.py
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Chunked Prefill Test
source_file_dependencies:
- vllm/
- tests/basic_correctness/test_chunked_prefill
commands:
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Core Test # 10min
mirror_hardwares: [amd]
fast_check: true
@ -78,17 +91,23 @@ steps:
commands:
- pytest -v -s core
- label: Entrypoints Test # 20min
- label: Entrypoints Test # 40min
working_dir: "/vllm-workspace/tests"
fast_check: true
#mirror_hardwares: [amd]
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
commands:
- pip install -e ./plugins/vllm_add_dummy_model
- pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@a4987bba6e9e9b3f22bd3a6c1ecf0abd04fd5622#egg=lm_eval[api]
- pytest -v -s entrypoints/llm
- pytest -v -s entrypoints/openai
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_guided_generate.py
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py
- pytest -v -s entrypoints/openai/test_oot_registration.py # it needs a clean process
- pytest -v -s entrypoints/test_chat_utils.py
- pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Distributed Tests (4 GPUs) # 10min
working_dir: "/vllm-workspace/tests"
@ -99,7 +118,10 @@ steps:
- vllm/core/
- tests/distributed
- tests/spec_decode/e2e/test_integration_dist_tp4
- tests/compile
commands:
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
- pytest -v -s distributed/test_pynccl.py
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
@ -127,7 +149,9 @@ steps:
source_file_dependencies:
- vllm/
- tests/test_regression
command: pytest -v -s test_regression.py
commands:
- pip install modelscope
- pytest -v -s test_regression.py
working_dir: "/vllm-workspace/tests" # optional
- label: Engine Test # 10min
@ -141,7 +165,15 @@ steps:
# OOM in the CI unless we run this separately
- pytest -v -s tokenization
- label: Examples Test # 12min
- label: V1 Test
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/v1
commands:
- pytest -v -s v1
- label: Examples Test # 15min
working_dir: "/vllm-workspace/examples"
#mirror_hardwares: [amd]
source_file_dependencies:
@ -155,33 +187,12 @@ steps:
- python3 offline_inference_with_prefix.py
- python3 llm_engine_example.py
- python3 offline_inference_vision_language.py
- python3 offline_inference_vision_language_multi_image.py
- python3 tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference_encoder_decoder.py
- python3 offline_profile.py --model facebook/opt-125m
- label: Models Test # 1hr10min
source_file_dependencies:
- vllm/
- tests/models
commands:
- pip install -e ./plugins/vllm_add_dummy_model
- pytest -v -s models/test_oot_registration.py # it needs a clean process
- pytest -v -s models -m \"not vlm\" --ignore=models/test_oot_registration.py
- label: torch compile integration test
source_file_dependencies:
- vllm/
commands:
- pytest -v -s ./compile/test_full_graph.py
- label: Vision Language Models Test # 42min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
commands:
- pytest -v -s models -m vlm
- label: Prefix Caching Test # 7min
- label: Prefix Caching Test # 9min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
@ -189,7 +200,7 @@ steps:
commands:
- pytest -v -s prefix_caching
- label: Samplers Test # 18min
- label: Samplers Test # 36min
source_file_dependencies:
- vllm/model_executor/layers
- vllm/sampling_metadata.py
@ -205,24 +216,42 @@ steps:
- tests/test_logits_processor
command: pytest -v -s test_logits_processor.py
- label: Speculative decoding tests # 22min
- label: Speculative decoding tests # 30min
source_file_dependencies:
- vllm/spec_decode
- tests/spec_decode
commands:
# See https://github.com/vllm-project/vllm/issues/5152
- export VLLM_ATTENTION_BACKEND=XFORMERS
- pytest -v -s spec_decode
- pytest -v -s spec_decode/e2e/test_multistep_correctness.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py
- label: LoRA Test %N # 30min each
- label: LoRA Test %N # 15min each
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/lora
- csrc/punica
- tests/lora
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py
parallelism: 4
- label: Kernels Test %N # 30min each
- label: "PyTorch Fullgraph Smoke Test" # 9min
fast_check: true
source_file_dependencies:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_basic_correctness.py
# these tests need to be separated, cannot combine
- pytest -v -s compile/piecewise/test_simple.py
- pytest -v -s compile/piecewise/test_toy_llama.py
- label: "PyTorch Fullgraph Test" # 18min
source_file_dependencies:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_full_graph.py
- label: Kernels Test %N # 1h each
mirror_hardwares: [amd]
source_file_dependencies:
- csrc/
- vllm/attention
@ -232,12 +261,13 @@ steps:
parallelism: 4
- label: Tensorizer Test # 11min
mirror_hardwares: [amd]
soft_fail: true
source_file_dependencies:
- vllm/model_executor/model_loader
- tests/tensorizer_loader
commands:
- apt-get install -y curl libsodium23
- apt-get update && apt-get install -y curl libsodium23
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s tensorizer_loader
@ -247,15 +277,14 @@ steps:
source_file_dependencies:
- benchmarks/
commands:
- pip install aiohttp
- bash run-benchmarks.sh
- label: Quantization Test # 15min
- label: Quantization Test # 33min
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
- tests/quantization
command: pytest -v -s quantization
command: VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
- label: LM Eval Small Models # 53min
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
@ -263,10 +292,101 @@ steps:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- pip install lm-eval
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-small.txt -t 1
- label: Encoder Decoder tests # 5min
source_file_dependencies:
- vllm/
- tests/encoder_decoder
commands:
- pytest -v -s encoder_decoder
- label: OpenAI-Compatible Tool Use # 20 min
fast_check: false
mirror_hardwares: [ amd ]
source_file_dependencies:
- vllm/
- tests/tool_use
commands:
- pytest -v -s tool_use
##### models test #####
- label: Basic Models Test # 30min
source_file_dependencies:
- vllm/
- tests/models
commands:
- pip install -e ./plugins/vllm_add_dummy_model
- pytest -v -s models/test_oot_registration.py # it needs a clean process
- pytest -v -s models/test_registry.py
- pytest -v -s models/test_initialization.py
- label: Language Models Test (Standard) # 42min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/models/decoder_only/language
- tests/models/embedding/language
- tests/models/encoder_decoder/language
commands:
- pytest -v -s models/decoder_only/language -m 'core_model or quant_model'
- pytest -v -s models/embedding/language -m core_model
- pytest -v -s models/embedding/vision_language -m core_model
- label: Language Models Test (Extended) # 50min
nightly: true
source_file_dependencies:
- vllm/
- tests/models/decoder_only/language
- tests/models/embedding/language
- tests/models/encoder_decoder/language
commands:
- pytest -v -s models/decoder_only/language -m 'not core_model and not quant_model'
- pytest -v -s models/embedding/language -m 'not core_model'
- pytest -v -s models/embedding/vision_language -m 'not core_model'
- label: Multi-Modal Models Test (Standard) # 26min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/models/decoder_only/audio_language
- tests/models/decoder_only/vision_language
- tests/models/embedding/vision_language
- tests/models/encoder_decoder/vision_language
commands:
- pytest -v -s models/decoder_only/audio_language -m 'core_model or quant_model'
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'core_model or quant_model'
- pytest -v -s models/encoder_decoder/language -m core_model
- pytest -v -s models/encoder_decoder/vision_language -m core_model
- label: Multi-Modal Models Test (Extended) # 1h15m
nightly: true
source_file_dependencies:
- vllm/
- tests/models/decoder_only/audio_language
- tests/models/decoder_only/vision_language
- tests/models/embedding/vision_language
- tests/models/encoder_decoder/vision_language
commands:
- pytest -v -s models/decoder_only/audio_language -m 'not core_model and not quant_model'
# HACK - run phi3v tests separately to sidestep this transformers bug
# https://github.com/huggingface/transformers/issues/34307
- pytest -v -s models/decoder_only/vision_language/test_phi3v.py
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
- pytest -v -s models/encoder_decoder/language -m 'not core_model'
- pytest -v -s models/encoder_decoder/vision_language -m 'not core_model'
# This test is used only in PR development phase to test individual models and should never run on main
- label: Custom Models Test
optional: true
commands:
- echo 'Testing custom models...'
# PR authors can temporarily add commands below to test individual models
# e.g. pytest -v -s models/encoder_decoder/vision_language/test_mllama.py
# *To avoid merge conflicts, remember to REMOVE (not just comment out) them before merging the PR*
##### 1 GPU test #####
##### multi gpus test #####
@ -292,13 +412,13 @@ steps:
- tests/distributed/
commands:
- # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep -q 'Same node test passed'
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_multi_node_assignment.py
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py
- # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep -q 'Same node test passed'
- label: Distributed Tests (2 GPUs) # 28min
- label: Distributed Tests (2 GPUs) # 40min
#mirror_hardwares: [amd]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
@ -308,19 +428,22 @@ steps:
- vllm/executor/
- vllm/model_executor/models/
- tests/distributed/
- vllm/compilation
commands:
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py
- TARGET_TEST_SUITE=L4 pytest -v -s distributed/test_basic_distributed_correctness.py
- pytest -v -s distributed/test_basic_distributed_correctness_enc_dec.py
- pytest -v -s distributed/test_chunked_prefill_distributed.py
- pytest -v -s distributed/test_multimodal_broadcast.py
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep -q 'Same node test passed'
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m distributed_2_gpus
# Avoid importing model tests that cause CUDA reinitialization error
- pytest models/encoder_decoder/language/test_bart.py -v -s -m distributed_2_gpus
- pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m distributed_2_gpus
- pytest models/decoder_only/vision_language/test_models.py -v -s -m distributed_2_gpus
- pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
- pip install -e ./plugins/vllm_add_dummy_model
- pytest -v -s distributed/test_distributed_oot.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s distributed/test_utils.py
- label: Multi-step Tests (4 GPUs) # 21min
- label: Multi-step Tests (4 GPUs) # 36min
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
@ -335,9 +458,10 @@ steps:
- vllm/engine
- tests/multi_step
commands:
- pytest -v -s multi_step/test_correctness.py
- pytest -v -s multi_step/test_correctness_async_llm.py
- pytest -v -s multi_step/test_correctness_llm.py
- label: Pipeline Parallelism Test # 23min
- label: Pipeline Parallelism Test # 45min
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
@ -353,9 +477,9 @@ steps:
- label: LoRA Long Context (Distributed) # 11min
# This test runs llama 13B, so it is required to run on 4 GPUs.
num_gpus: 4
soft_fail: true
source_file_dependencies:
- vllm/lora
- csrc/punica
- tests/lora/test_long_context
commands:
# FIXIT: find out which code initialize cuda before running the test
@ -363,14 +487,25 @@ steps:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s -x lora/test_long_context.py
- label: Weight Loading Multiple GPU Test
- label: Weight Loading Multiple GPU Test # 33min
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/
- tests/weight_loading
commands:
- bash weight_loading/run_model_weight_loading_test.sh
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models.txt
- label: Weight Loading Multiple GPU Test - Large Models # optional
working_dir: "/vllm-workspace/tests"
num_gpus: 2
gpu: a100
optional: true
source_file_dependencies:
- vllm/
- tests/weight_loading
commands:
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
##### multi gpus test #####
@ -385,7 +520,8 @@ steps:
# NOTE: don't test llama model here, it seems hf implementation is buggy
# see https://github.com/vllm-project/vllm/pull/5689 for details
- pytest -v -s distributed/test_custom_all_reduce.py
- TARGET_TEST_SUITE=A100 pytest -v -s distributed/test_basic_distributed_correctness.py
- torchrun --nproc_per_node=2 distributed/test_ca_buffer_sharing.py
- TARGET_TEST_SUITE=A100 pytest basic_correctness/ -v -s -m distributed_2_gpus
- pytest -v -s -x lora/test_mixtral.py
- label: LM Eval Large Models # optional
@ -396,6 +532,5 @@ steps:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- pip install lm-eval
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-large.txt -t 4

View File

@ -0,0 +1,38 @@
#!/usr/bin/env bash
set -ex
# Assume wheels are in artifacts/dist/*.whl
wheel_files=(artifacts/dist/*.whl)
# Check that exactly one wheel is found
if [[ ${#wheel_files[@]} -ne 1 ]]; then
echo "Error: Expected exactly one wheel file in artifacts/dist/, but found ${#wheel_files[@]}"
exit 1
fi
# Get the single wheel file
wheel="${wheel_files[0]}"
# Rename 'linux' to 'manylinux1' in the wheel filename
new_wheel="${wheel/linux/manylinux1}"
mv -- "$wheel" "$new_wheel"
wheel="$new_wheel"
# Extract the version from the wheel
version=$(unzip -p "$wheel" '**/METADATA' | grep '^Version: ' | cut -d' ' -f2)
echo "Version: $version"
# If the version contains "dev", rename it to v1.0.0.dev for consistency
if [[ $version == *dev* ]]; then
new_version="1.0.0.dev"
new_wheel="${wheel/$version/$new_version}"
mv -- "$wheel" "$new_wheel"
wheel="$new_wheel"
version="$new_version"
fi
# Upload the wheel to S3
aws s3 cp "$wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
aws s3 cp "$wheel" "s3://vllm-wheels/nightly/"
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"

View File

@ -1,4 +1,33 @@
vllm/*.so
/.venv
/build
dist
vllm/*.so
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
.mypy_cache
# Distribution / packaging
.Python
/build/
cmake-build-*/
CMakeUserPresets.json
develop-eggs/
/dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

30
.github/CODEOWNERS vendored Normal file
View File

@ -0,0 +1,30 @@
# See https://help.github.com/articles/about-codeowners/
# for more info about CODEOWNERS file
# This lists cover the "core" components of vLLM that require careful review
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/core @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/engine/llm_engine.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/executor/executor_base.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/worker/worker_base.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/worker/worker.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
/vllm/model_executor/layers/sampler.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
CMakeLists.txt @tlrmchlsmth @WoosukKwon
# Test ownership
/tests/async_engine @njhill @robertgshaw2-neuralmagic @simon-mo
/tests/test_inputs.py @DarkLight1337 @ywang96
/tests/entrypoints @DarkLight1337 @robertgshaw2-neuralmagic @simon-mo
/tests/models @DarkLight1337 @ywang96
/tests/multimodal @DarkLight1337 @ywang96
/tests/prefix_caching @comaniac @KuntaiDu
/tests/spec_decode @njhill @LiuXiaoxuanPKU
/tests/kernels @tlrmchlsmth @WoosukKwon
/tests/quantization @mgoin @robertgshaw2-neuralmagic
/.buildkite/lm-eval-harness @mgoin @simon-mo
/tests/distributed/test_multi_node_assignment.py @youkaichao
/tests/distributed/test_pipeline_parallel.py @youkaichao
/tests/distributed/test_same_node.py @youkaichao
/tests/multi_step @alexm-neuralmagic @comaniac
/tests/weight_loading @mgoin @youkaichao
/tests/basic_correctness/test_chunked_prefill @rkooo567 @comaniac

View File

@ -30,6 +30,15 @@ body:
</details>
validations:
required: true
- type: textarea
attributes:
label: Model Input Dumps
description: |
If you are facing crashing due to illegal memory access or other issues with model execution, vLLM may dump the problematic input of the model. In this case, you will see the message `Error in model execution (input dumped to /tmp/err_xxx.pkl)`. If you see this message, please zip the file (because GitHub doesn't support .pkl file format) and upload it here. This will help us to reproduce the issue and facilitate the debugging process.
placeholder: |
Upload the dumped input file.
validations:
required: false
- type: textarea
attributes:
label: 🐛 Describe the bug

View File

@ -39,6 +39,16 @@ FIX #xxxx (*link existing issues this PR will resolve*)
<li>Please add documentation to <code>docs/source/</code> if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.</li>
</ul>
<h3>Adding or changing kernels</h3>
<p>Each custom kernel needs a schema and one or more implementations to be registered with PyTorch.</p>
<ul>
<li>Make sure custom ops are registered following PyTorch guidelines: <a href="https://pytorch.org/tutorials/advanced/cpp_custom_ops.html#cpp-custom-ops-tutorial">Custom C++ and CUDA Operators</a> and <a href="https://docs.google.com/document/d/1_W62p8WJOQQUzPsJYa7s701JXt0qf2OfLub2sbkHOaU">The Custom Operators Manual</a></li>
<li>Custom operations that return <code>Tensors</code> require meta-functions. Meta-functions should be implemented and registered in python so that dynamic dims can be handled automatically. See above documents for a description of meta-functions.</li>
<li>Use <a href="https://pytorch.org/docs/stable/library.html#torch.library.opcheck"><code>torch.libary.opcheck()</code></a> to test the function registration and meta-function for any registered ops. See <code>tests/kernels</code> for examples.</li>
<li>When changing the C++ signature of an existing op, the schema must be updated to reflect the changes.</li>
<li>If a new custom type is needed, see the following document: <a href="https://docs.google.com/document/d/18fBMPuOJ0fY5ZQ6YyrHUppw9FA332CpNtgB6SOIgyuA">Custom Class Support in PT2</a>.
</ul>
<h3>Notes for Large Changes</h3>
<p>Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with <code>rfc-required</code> and might not go through the PR.</p>

32
.github/dependabot.yml vendored Normal file
View File

@ -0,0 +1,32 @@
version: 2
updates:
# Maintain dependencies for GitHub Actions
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/"
schedule:
interval: "weekly"
labels: ["dependencies"]
open-pull-requests-limit: 5
reviewers: ["khluu", "simon-mo"]
allow:
- dependency-type: "all"
ignore:
- dependency-name: "torch"
- dependency-name: "torchvision"
- dependency-name: "xformers"
- dependency-name: "lm-format-enforcer"
- dependency-name: "gguf"
- dependency-name: "compressed-tensors"
- dependency-name: "ray[adag]"
- dependency-name: "lm-eval"
groups:
patch-update:
applies-to: version-updates
update-types: ["patch"]
minor-update:
applies-to: version-updates
update-types: ["minor"]

60
.github/mergify.yml vendored Normal file
View File

@ -0,0 +1,60 @@
pull_request_rules:
- name: label-documentation
description: Automatically apply documentation label
conditions:
- or:
- files~=^[^/]+\.md$
- files~=^docs/
actions:
label:
add:
- documentation
- name: label-ci-build
description: Automatically apply ci/build label
conditions:
- or:
- files~=^\.github/
- files~=\.buildkite/
- files~=^cmake/
- files=CMakeLists.txt
- files~=^Dockerfile
- files~=^requirements.*\.txt
- files=setup.py
actions:
label:
add:
- ci/build
- name: label-frontend
description: Automatically apply frontend label
conditions:
- files~=^vllm/entrypoints/
actions:
label:
add:
- frontend
- name: ping author on conflicts and add 'needs-rebase' label
conditions:
- conflict
- -closed
actions:
label:
add:
- needs-rebase
comment:
message: |
This pull request has merge conflicts that must be resolved before it can be
merged. Please rebase the PR, @{{author}}.
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork
- name: remove 'needs-rebase' label when conflict is resolved
conditions:
- -conflict
- -closed
actions:
label:
remove:
- needs-rebase

33
.github/scripts/cleanup_pr_body.sh vendored Executable file
View File

@ -0,0 +1,33 @@
#!/bin/bash
set -eu
# ensure 1 argument is passed
if [ "$#" -ne 1 ]; then
echo "Usage: $0 <pr_number>"
exit 1
fi
PR_NUMBER=$1
OLD=/tmp/orig_pr_body.txt
NEW=/tmp/new_pr_body.txt
gh pr view --json body --template "{{.body}}" "${PR_NUMBER}" > "${OLD}"
cp "${OLD}" "${NEW}"
# Remove all lines after and including "**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**"
sed -i '/\*\*BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE\*\*/,$d' "${NEW}"
# Remove "FIX #xxxx (*link existing issues this PR will resolve*)"
sed -i '/FIX #xxxx.*$/d' "${NEW}"
# Remove "FILL IN THE PR DESCRIPTION HERE"
sed -i '/FILL IN THE PR DESCRIPTION HERE/d' "${NEW}"
# Run this only if ${NEW} is different than ${OLD}
if ! cmp -s "${OLD}" "${NEW}"; then
echo "Updating PR body"
gh pr edit --body-file "${NEW}" "${PR_NUMBER}"
else
echo "No changes needed"
fi

40
.github/workflows/actionlint.yml vendored Normal file
View File

@ -0,0 +1,40 @@
name: Lint GitHub Actions workflows
on:
push:
branches:
- "main"
paths:
- '.github/workflows/*.ya?ml'
- '.github/workflows/actionlint.*'
- '.github/workflows/matchers/actionlint.json'
pull_request:
branches:
- "main"
paths:
- '.github/workflows/*.ya?ml'
- '.github/workflows/actionlint.*'
- '.github/workflows/matchers/actionlint.json'
env:
LC_ALL: en_US.UTF-8
defaults:
run:
shell: bash
permissions:
contents: read
jobs:
actionlint:
runs-on: ubuntu-latest
steps:
- name: "Checkout"
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
fetch-depth: 0
- name: "Run actionlint"
run: |
echo "::add-matcher::.github/workflows/matchers/actionlint.json"
tools/actionlint.sh -color

View File

@ -8,7 +8,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Add label
uses: actions/github-script@v5
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
with:
script: |
github.rest.issues.addLabels({

View File

@ -1,23 +0,0 @@
name: Add Ready Label on Ready Comment
on:
issue_comment:
types: [created]
jobs:
add-ready-label:
runs-on: ubuntu-latest
if: github.event.issue.pull_request && contains(github.event.comment.body, '/ready')
steps:
- name: Add label
uses: actions/github-script@v5
with:
script: |
github.rest.issues.addLabels({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
labels: ['ready']
})
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@ -6,9 +6,21 @@ on:
push:
branches:
- main
paths:
- '**/*.h'
- '**/*.cpp'
- '**/*.cu'
- '**/*.cuh'
- '.github/workflows/clang-format.yml'
pull_request:
branches:
- main
paths:
- '**/*.h'
- '**/*.cpp'
- '**/*.cu'
- '**/*.cuh'
- '.github/workflows/clang-format.yml'
jobs:
clang-format:
@ -17,9 +29,9 @@ jobs:
matrix:
python-version: ["3.11"]
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
@ -38,4 +50,4 @@ jobs:
)
find csrc/ \( -name '*.h' -o -name '*.cpp' -o -name '*.cu' -o -name '*.cuh' \) -print \
| grep -vFf <(printf "%s\n" "${EXCLUDES[@]}") \
| xargs clang-format --dry-run --Werror
| xargs clang-format --dry-run --Werror

26
.github/workflows/cleanup_pr_body.yml vendored Normal file
View File

@ -0,0 +1,26 @@
name: Cleanup PR Body
on:
pull_request_target:
types: [opened, reopened, edited]
permissions:
pull-requests: write
jobs:
update-description:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Set up Python
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
with:
python-version: '3.12'
- name: Update PR description
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: .github/scripts/cleanup_pr_body.sh "${{ github.event.number }}"

45
.github/workflows/codespell.yml vendored Normal file
View File

@ -0,0 +1,45 @@
name: codespell
on:
# Trigger the workflow on push or pull request,
# but only for the main branch
push:
branches:
- main
paths:
- "**/*.py"
- "**/*.md"
- "**/*.rst"
- pyproject.toml
- requirements-lint.txt
- .github/workflows/codespell.yml
pull_request:
branches:
- main
paths:
- "**/*.py"
- "**/*.md"
- "**/*.rst"
- pyproject.toml
- requirements-lint.txt
- .github/workflows/codespell.yml
jobs:
codespell:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.12"]
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements-lint.txt
- name: Spelling check with codespell
run: |
codespell --toml pyproject.toml

View File

@ -0,0 +1,17 @@
{
"problemMatcher": [
{
"owner": "actionlint",
"pattern": [
{
"regexp": "^(?:\\x1b\\[\\d+m)?(.+?)(?:\\x1b\\[\\d+m)*:(?:\\x1b\\[\\d+m)*(\\d+)(?:\\x1b\\[\\d+m)*:(?:\\x1b\\[\\d+m)*(\\d+)(?:\\x1b\\[\\d+m)*: (?:\\x1b\\[\\d+m)*(.+?)(?:\\x1b\\[\\d+m)* \\[(.+?)\\]$",
"file": 1,
"line": 2,
"column": 3,
"message": 4,
"code": 5
}
]
}
]
}

16
.github/workflows/matchers/mypy.json vendored Normal file
View File

@ -0,0 +1,16 @@
{
"problemMatcher": [
{
"owner": "mypy",
"pattern": [
{
"regexp": "^(.+):(\\d+):\\s(error|warning):\\s(.+)$",
"file": 1,
"line": 2,
"severity": 3,
"message": 4
}
]
}
]
}

17
.github/workflows/matchers/ruff.json vendored Normal file
View File

@ -0,0 +1,17 @@
{
"problemMatcher": [
{
"owner": "ruff",
"pattern": [
{
"regexp": "^(.+?):(\\d+):(\\d+): (\\w+): (.+)$",
"file": 1,
"line": 2,
"column": 3,
"code": 4,
"message": 5
}
]
}
]
}

View File

@ -6,20 +6,35 @@ on:
push:
branches:
- main
paths:
- '**/*.py'
- '.github/workflows/mypy.yaml'
- 'tools/mypy.sh'
- 'pyproject.toml'
pull_request:
branches:
- main
# This workflow is only relevant when one of the following files changes.
# However, we have github configured to expect and require this workflow
# to run and pass before github with auto-merge a pull request. Until github
# allows more flexible auto-merge policy, we can just run this on every PR.
# It doesn't take that long to run, anyway.
#paths:
# - '**/*.py'
# - '.github/workflows/mypy.yaml'
# - 'tools/mypy.sh'
# - 'pyproject.toml'
jobs:
ruff:
mypy:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
python-version: ["3.9", "3.10", "3.11", "3.12"]
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
@ -32,16 +47,5 @@ jobs:
pip install types-setuptools
- name: Mypy
run: |
mypy
mypy tests --follow-imports skip
mypy vllm/attention --follow-imports skip
mypy vllm/core --follow-imports skip
mypy vllm/distributed --follow-imports skip
mypy vllm/engine --follow-imports skip
mypy vllm/executor --follow-imports skip
mypy vllm/lora --follow-imports skip
mypy vllm/model_executor --follow-imports skip
mypy vllm/prompt_adapter --follow-imports skip
mypy vllm/spec_decode --follow-imports skip
mypy vllm/worker --follow-imports skip
echo "::add-matcher::.github/workflows/matchers/mypy.json"
tools/mypy.sh 1 ${{ matrix.python-version }}

View File

@ -21,16 +21,16 @@ jobs:
upload_url: ${{ steps.create_release.outputs.upload_url }}
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Extract branch info
shell: bash
run: |
echo "release_tag=${GITHUB_REF#refs/*/}" >> $GITHUB_ENV
echo "release_tag=${GITHUB_REF#refs/*/}" >> "$GITHUB_ENV"
- name: Create Release
id: create_release
uses: "actions/github-script@v6"
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
env:
RELEASE_TAG: ${{ env.release_tag }}
with:
@ -48,16 +48,16 @@ jobs:
fail-fast: false
matrix:
os: ['ubuntu-20.04']
python-version: ['3.8', '3.9', '3.10', '3.11', '3.12']
python-version: ['3.9', '3.10', '3.11', '3.12']
pytorch-version: ['2.4.0'] # Must be the most recent version that meets requirements-cuda.txt.
cuda-version: ['11.8', '12.1']
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Setup ccache
uses: hendrikmuhs/ccache-action@v1.2
uses: hendrikmuhs/ccache-action@ed74d11c0b343532753ecead8a951bb09bb34bc9 # v1.2.14
with:
create-symlink: true
key: ${{ github.job }}-${{ matrix.python-version }}-${{ matrix.cuda-version }}
@ -68,7 +68,7 @@ jobs:
bash -x .github/workflows/scripts/env.sh
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
with:
python-version: ${{ matrix.python-version }}
@ -86,13 +86,13 @@ jobs:
CMAKE_BUILD_TYPE: Release # do not compile with debug symbol to reduce wheel size
run: |
bash -x .github/workflows/scripts/build.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }}
wheel_name=$(ls dist/*whl | xargs -n 1 basename)
wheel_name=$(find dist -name "*whl" -print0 | xargs -0 -n 1 basename)
asset_name=${wheel_name//"linux"/"manylinux1"}
echo "wheel_name=${wheel_name}" >> $GITHUB_ENV
echo "asset_name=${asset_name}" >> $GITHUB_ENV
echo "wheel_name=${wheel_name}" >> "$GITHUB_ENV"
echo "asset_name=${asset_name}" >> "$GITHUB_ENV"
- name: Upload Release Asset
uses: actions/upload-release-asset@v1
uses: actions/upload-release-asset@e8f9f06c4b078e705bd2ea027f0926603fc9b4d5 # v1.0.2
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:

View File

@ -8,14 +8,14 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Remind to run full CI on PR
uses: actions/github-script@v6
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
with:
script: |
github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: '👋 Hi! Thank you for contributing to the vLLM project.\n Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which consists a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of default ones by unblocking the steps in your `fast-check` build on Buildkite UI. \n\nOnce the PR is approved and ready to go, please make sure to run full CI as it is required to merge (or just use auto-merge).\n\n To run full CI, you can do one of these:\n- Comment `/ready` on the PR\n- Add `ready` label to the PR\n- Enable auto-merge.\n\n🚀'
body: '👋 Hi! Thank you for contributing to the vLLM project.\n Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which starts running only a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of those by going to your `fastcheck` build on Buildkite UI (linked in the PR checks section) and unblock them. If you do not have permission to unblock, ping `simon-mo` or `khluu` to add you in our Buildkite org. \n\nOnce the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.\n\n To run CI, PR reviewers can do one of these:\n- Add `ready` label to the PR\n- Enable auto-merge.\n\n🚀'
})
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@ -1,23 +0,0 @@
name: Remove ready Label on notready Comment
on:
issue_comment:
types: [created]
jobs:
add-ready-label:
runs-on: ubuntu-latest
if: github.event.issue.pull_request && contains(github.event.comment.body, '/notready')
steps:
- name: Remove ready label
uses: actions/github-script@v5
with:
script: |
github.rest.issues.removeLabel({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
name: 'ready'
})
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@ -6,32 +6,47 @@ on:
push:
branches:
- main
paths:
- "**/*.py"
- pyproject.toml
- requirements-lint.txt
- .github/workflows/matchers/ruff.json
- .github/workflows/ruff.yml
pull_request:
branches:
- main
# This workflow is only relevant when one of the following files changes.
# However, we have github configured to expect and require this workflow
# to run and pass before github with auto-merge a pull request. Until github
# allows more flexible auto-merge policy, we can just run this on every PR.
# It doesn't take that long to run, anyway.
#paths:
# - "**/*.py"
# - pyproject.toml
# - requirements-lint.txt
# - .github/workflows/matchers/ruff.json
# - .github/workflows/ruff.yml
jobs:
ruff:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
python-version: ["3.12"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install ruff==0.1.5 codespell==2.3.0 tomli==2.0.1 isort==5.13.2
- name: Analysing the code with ruff
run: |
ruff .
- name: Spelling check with codespell
run: |
codespell --toml pyproject.toml
- name: Run isort
run: |
isort . --check-only
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements-lint.txt
- name: Analysing the code with ruff
run: |
echo "::add-matcher::.github/workflows/matchers/ruff.json"
ruff check --output-format github .
- name: Run isort
run: |
isort . --check-only

View File

@ -1,4 +1,5 @@
#!/bin/bash
set -eux
python_executable=python$1
cuda_home=/usr/local/cuda-$2
@ -8,12 +9,15 @@ PATH=${cuda_home}/bin:$PATH
LD_LIBRARY_PATH=${cuda_home}/lib64:$LD_LIBRARY_PATH
# Install requirements
$python_executable -m pip install wheel packaging
$python_executable -m pip install -r requirements-cuda.txt
$python_executable -m pip install -r requirements-build.txt -r requirements-cuda.txt
# Limit the number of parallel jobs to avoid OOM
export MAX_JOBS=1
# Make sure release wheels are built for the following architectures
export TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX"
export VLLM_FA_CMAKE_GPU_ARCHES="80-real;90-real"
bash tools/check_repo.sh
# Build
$python_executable setup.py bdist_wheel --dist-dir=dist

View File

@ -1,16 +1,16 @@
#!/bin/bash
# Replace '.' with '-' ex: 11.8 -> 11-8
cuda_version=$(echo $1 | tr "." "-")
cuda_version=$(echo "$1" | tr "." "-")
# Removes '-' and '.' ex: ubuntu-20.04 -> ubuntu2004
OS=$(echo $2 | tr -d ".\-")
OS=$(echo "$2" | tr -d ".\-")
# Installs CUDA
wget -nv https://developer.download.nvidia.com/compute/cuda/repos/${OS}/x86_64/cuda-keyring_1.1-1_all.deb
wget -nv "https://developer.download.nvidia.com/compute/cuda/repos/${OS}/x86_64/cuda-keyring_1.1-1_all.deb"
sudo dpkg -i cuda-keyring_1.1-1_all.deb
rm cuda-keyring_1.1-1_all.deb
sudo apt -qq update
sudo apt -y install cuda-${cuda_version} cuda-nvcc-${cuda_version} cuda-libraries-dev-${cuda_version}
sudo apt -y install "cuda-${cuda_version}" "cuda-nvcc-${cuda_version}" "cuda-libraries-dev-${cuda_version}"
sudo apt clean
# Test nvcc

View File

@ -6,7 +6,7 @@ cuda_version=$3
# Install torch
$python_executable -m pip install numpy pyyaml scipy ipython mkl mkl-include ninja cython typing pandas typing-extensions dataclasses setuptools && conda clean -ya
$python_executable -m pip install torch==${pytorch_version}+cu${cuda_version//./} --extra-index-url https://download.pytorch.org/whl/cu${cuda_version//./}
$python_executable -m pip install torch=="${pytorch_version}+cu${cuda_version//./}" --extra-index-url "https://download.pytorch.org/whl/cu${cuda_version//./}"
# Print version information
$python_executable --version

37
.github/workflows/shellcheck.yml vendored Normal file
View File

@ -0,0 +1,37 @@
name: Lint shell scripts
on:
push:
branches:
- "main"
paths:
- '**/*.sh'
- '.github/workflows/shellcheck.yml'
pull_request:
branches:
- "main"
paths:
- '**/*.sh'
- '.github/workflows/shellcheck.yml'
env:
LC_ALL: en_US.UTF-8
defaults:
run:
shell: bash
permissions:
contents: read
jobs:
shellcheck:
runs-on: ubuntu-latest
steps:
- name: "Checkout"
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
fetch-depth: 0
- name: "Check shell scripts"
run: |
tools/shellcheck.sh

52
.github/workflows/stale.yml vendored Normal file
View File

@ -0,0 +1,52 @@
name: 'Close inactive issues and PRs'
on:
schedule:
# Daily at 1:30 AM UTC
- cron: '30 1 * * *'
jobs:
close-issues-and-pull-requests:
permissions:
issues: write
pull-requests: write
actions: write
runs-on: ubuntu-latest
steps:
- uses: actions/stale@28ca1036281a5e5922ead5184a1bbf96e5fc984e # v9.0.0
with:
# Increasing this value ensures that changes to this workflow
# propagate to all issues and PRs in days rather than months
operations-per-run: 1000
exempt-draft-pr: true
exempt-issue-labels: 'keep-open'
exempt-pr-labels: 'keep-open'
labels-to-add-when-unstale: 'unstale'
labels-to-remove-when-stale: 'unstale'
days-before-issue-stale: 90
days-before-issue-close: 30
stale-issue-label: 'stale'
stale-issue-message: >
This issue has been automatically marked as stale because it has not
had any activity within 90 days. It will be automatically closed if no
further activity occurs within 30 days. Leave a comment if
you feel this issue should remain open. Thank you!
close-issue-message: >
This issue has been automatically closed due to inactivity. Please
feel free to reopen if you feel it is still relevant. Thank you!
days-before-pr-stale: 90
days-before-pr-close: 30
stale-pr-label: 'stale'
stale-pr-message: >
This pull request has been automatically marked as stale because it
has not had any activity within 90 days. It will be automatically
closed if no further activity occurs within 30 days. Leave a comment
if you feel this pull request should remain open. Thank you!
close-pr-message: >
This pull request has been automatically closed due to inactivity.
Please feel free to reopen if you intend to continue working on it.
Thank you!

View File

@ -6,26 +6,33 @@ on:
push:
branches:
- main
paths:
- "**/*.py"
- .github/workflows/yapf.yml
pull_request:
branches:
- main
paths:
- "**/*.py"
- .github/workflows/yapf.yml
jobs:
yapf:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
python-version: ["3.12"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install yapf==0.32.0
pip install toml==0.10.2
- name: Running yapf
run: |
yapf --diff --recursive .
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install yapf==0.32.0
pip install toml==0.10.2
- name: Running yapf
run: |
yapf --diff --recursive .

14
.gitignore vendored
View File

@ -1,5 +1,8 @@
# vllm commit id, generated by setup.py
vllm/commit_id.py
# version file generated by setuptools-scm
/vllm/_version.py
# vllm-flash-attn built from source
vllm/vllm_flash_attn/
# Byte-compiled / optimized / DLL files
__pycache__/
@ -12,6 +15,8 @@ __pycache__/
# Distribution / packaging
.Python
build/
cmake-build-*/
CMakeUserPresets.json
develop-eggs/
dist/
downloads/
@ -28,6 +33,7 @@ share/python-wheels/
.installed.cfg
*.egg
MANIFEST
/.deps/
# PyInstaller
# Usually these files are written by a python script from a template
@ -193,3 +199,7 @@ hip_compat.h
# Benchmark dataset
benchmarks/*.json
# Linting
actionlint
shellcheck*/

View File

@ -6,17 +6,16 @@ version: 2
build:
os: ubuntu-22.04
tools:
python: "3.8"
python: "3.12"
sphinx:
configuration: docs/source/conf.py
fail_on_warning: true
configuration: docs/source/conf.py
fail_on_warning: true
# If using Sphinx, optionally build your docs in additional formats such as PDF
formats:
- pdf
formats: []
# Optionally declare the Python requirements required to build your docs
python:
install:
- requirements: docs/requirements-docs.txt
install:
- requirements: docs/requirements-docs.txt

9
.shellcheckrc Normal file
View File

@ -0,0 +1,9 @@
# rules currently disabled:
#
# SC1091 (info): Not following: <sourced file> was not specified as input (see shellcheck -x)
# SC2004 (style): $/${} is unnecessary on arithmetic variables.
# SC2129 (style): Consider using { cmd1; cmd2; } >> file instead of individual redirects.
# SC2155 (warning): Declare and assign separately to avoid masking return values.
# SC2164 (warning): Use 'cd ... || exit' or 'cd ... || return' in case cd fails.
#
disable=SC1091,SC2004,SC2129,SC2155,SC2164

View File

@ -1,5 +1,16 @@
cmake_minimum_required(VERSION 3.26)
# When building directly using CMake, make sure you run the install step
# (it places the .so files in the correct location).
#
# Example:
# mkdir build && cd build
# cmake -G Ninja -DVLLM_PYTHON_EXECUTABLE=`which python3` -DCMAKE_INSTALL_PREFIX=.. ..
# cmake --build . --target install
#
# If you want to only build one target, make sure to install it manually:
# cmake --build . --target _C
# cmake --install . --component _C
project(vllm_extensions LANGUAGES CXX)
# CUDA by default, can be overridden by using -DVLLM_TARGET_DEVICE=... (used by setup.py)
@ -13,17 +24,20 @@ include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake)
# Suppress potential warnings about unused manually-specified variables
set(ignoreMe "${VLLM_PYTHON_PATH}")
# Prevent installation of dependencies (cutlass) by default.
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
#
# Supported python versions. These versions will be searched in order, the
# first match will be selected. These should be kept in sync with setup.py.
#
set(PYTHON_SUPPORTED_VERSIONS "3.8" "3.9" "3.10" "3.11" "3.12")
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12")
# Supported NVIDIA architectures.
set(CUDA_SUPPORTED_ARCHS "7.0;7.5;8.0;8.6;8.9;9.0")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100")
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101")
#
# Supported/expected torch versions for CUDA/ROCm.
@ -35,8 +49,8 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx11
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.4.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.5.0")
set(TORCH_SUPPORTED_VERSION_CUDA "2.5.1")
set(TORCH_SUPPORTED_VERSION_ROCM "2.5.1")
#
# Try to find python package with an executable that exactly matches
@ -69,39 +83,6 @@ endif()
#
find_package(Torch REQUIRED)
#
# Add the `default` target which detects which extensions should be
# built based on platform/architecture. This is the same logic that
# setup.py uses to select which extensions should be built and should
# be kept in sync.
#
# The `default` target makes direct use of cmake easier since knowledge
# of which extensions are supported has been factored in, e.g.
#
# mkdir build && cd build
# cmake -G Ninja -DVLLM_PYTHON_EXECUTABLE=`which python3` -DCMAKE_LIBRARY_OUTPUT_DIRECTORY=../vllm ..
# cmake --build . --target default
#
add_custom_target(default)
message(STATUS "Enabling core extension.")
# Define _core_C extension
# built for (almost) every target platform, (excludes TPU and Neuron)
set(VLLM_EXT_SRC
"csrc/core/torch_bindings.cpp")
define_gpu_extension_target(
_core_C
DESTINATION vllm
LANGUAGE CXX
SOURCES ${VLLM_EXT_SRC}
COMPILE_FLAGS ${CXX_COMPILE_FLAGS}
USE_SABI 3
WITH_SOABI)
add_dependencies(default _core_C)
#
# Forward the non-CUDA device extensions to external CMake scripts.
#
@ -144,14 +125,32 @@ else()
message(FATAL_ERROR "Can't find CUDA or HIP installation.")
endif()
#
# Override the GPU architectures detected by cmake/torch and filter them by
# the supported versions for the current language.
# The final set of arches is stored in `VLLM_GPU_ARCHES`.
#
override_gpu_arches(VLLM_GPU_ARCHES
${VLLM_GPU_LANG}
"${${VLLM_GPU_LANG}_SUPPORTED_ARCHS}")
if(VLLM_GPU_LANG STREQUAL "CUDA")
#
# For cuda we want to be able to control which architectures we compile for on
# a per-file basis in order to cut down on compile time. So here we extract
# the set of architectures we want to compile for and remove the from the
# CMAKE_CUDA_FLAGS so that they are not applied globally.
#
clear_cuda_arches(CUDA_ARCH_FLAGS)
extract_unique_cuda_archs_ascending(CUDA_ARCHS "${CUDA_ARCH_FLAGS}")
message(STATUS "CUDA target architectures: ${CUDA_ARCHS}")
# Filter the target architectures by the supported supported archs
# since for some files we will build for all CUDA_ARCHS.
cuda_archs_loose_intersection(CUDA_ARCHS
"${CUDA_SUPPORTED_ARCHS}" "${CUDA_ARCHS}")
message(STATUS "CUDA supported target architectures: ${CUDA_ARCHS}")
else()
#
# For other GPU targets override the GPU architectures detected by cmake/torch
# and filter them by the supported versions for the current language.
# The final set of arches is stored in `VLLM_GPU_ARCHES`.
#
override_gpu_arches(VLLM_GPU_ARCHES
${VLLM_GPU_LANG}
"${${VLLM_GPU_LANG}_SUPPORTED_ARCHS}")
endif()
#
# Query torch for additional GPU compilation flags for the given
@ -167,6 +166,17 @@ if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
endif()
#
# Use FetchContent for C++ dependencies that are compiled as part of vLLM's build process.
# setup.py will override FETCHCONTENT_BASE_DIR to play nicely with sccache.
# Each dependency that produces build artifacts should override its BINARY_DIR to avoid
# conflicts between build types. It should instead be set to ${CMAKE_BINARY_DIR}/<dependency>.
#
include(FetchContent)
file(MAKE_DIRECTORY ${FETCHCONTENT_BASE_DIR}) # Ensure the directory exists
message(STATUS "FetchContent base directory: ${FETCHCONTENT_BASE_DIR}")
#
# Define other extension targets
#
@ -177,106 +187,202 @@ endif()
set(VLLM_EXT_SRC
"csrc/cache_kernels.cu"
"csrc/attention/attention_kernels.cu"
"csrc/attention/paged_attention_v1.cu"
"csrc/attention/paged_attention_v2.cu"
"csrc/pos_encoding_kernels.cu"
"csrc/activation_kernels.cu"
"csrc/layernorm_kernels.cu"
"csrc/quantization/squeezellm/quant_cuda_kernel.cu"
"csrc/layernorm_quant_kernels.cu"
"csrc/quantization/gptq/q_gemm.cu"
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
"csrc/quantization/fp8/common.cu"
"csrc/cuda_utils_kernels.cu"
"csrc/moe_align_block_size_kernels.cu"
"csrc/prepare_inputs/advance_step.cu"
"csrc/torch_bindings.cpp")
if(VLLM_GPU_LANG STREQUAL "CUDA")
include(FetchContent)
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
# Set CUTLASS_REVISION manually -- its revision detection doesn't work in this case.
set(CUTLASS_REVISION "v3.5.1" CACHE STRING "CUTLASS revision to use")
FetchContent_Declare(
cutlass
GIT_REPOSITORY https://github.com/nvidia/cutlass.git
# CUTLASS 3.5.1
GIT_TAG 06b21349bcf6ddf6a1686a47a137ad1446579db9
GIT_TAG v3.5.1
GIT_PROGRESS TRUE
# Speed up CUTLASS download by retrieving only the specified GIT_TAG instead of the history.
# Important: If GIT_SHALLOW is enabled then GIT_TAG works only with branch names and tags.
# So if the GIT_TAG above is updated to a commit hash, GIT_SHALLOW must be set to FALSE
GIT_SHALLOW TRUE
)
FetchContent_MakeAvailable(cutlass)
list(APPEND VLLM_EXT_SRC
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
"csrc/quantization/aqlm/gemm_kernels.cu"
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/quantization/marlin/dense/marlin_cuda_kernel.cu"
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
"csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu"
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
"csrc/quantization/gptq_marlin/awq_marlin_repack.cu"
"csrc/quantization/gguf/gguf_kernel.cu"
"csrc/quantization/fp8/fp8_marlin.cu"
"csrc/custom_all_reduce.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu")
"csrc/permute_cols.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu")
set_gencode_flags_for_srcs(
SRCS "${VLLM_EXT_SRC}"
CUDA_ARCHS "${CUDA_ARCHS}")
# Only build Marlin kernels if we are building for at least some compatible archs.
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
# are not supported by Machete yet.
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.9;9.0" ${CUDA_ARCHS})
if (MARLIN_ARCHS)
set(MARLIN_SRCS
"csrc/quantization/fp8/fp8_marlin.cu"
"csrc/quantization/marlin/dense/marlin_cuda_kernel.cu"
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
"csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu"
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
"csrc/quantization/gptq_marlin/awq_marlin_repack.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_SRCS}"
CUDA_ARCHS "${MARLIN_ARCHS}")
list(APPEND VLLM_EXT_SRC "${MARLIN_SRCS}")
message(STATUS "Building Marlin kernels for archs: ${MARLIN_ARCHS}")
else()
message(STATUS "Not building Marlin kernels as no compatible archs found"
" in CUDA target architectures")
endif()
#
# The CUTLASS kernels for Hopper require sm90a to be enabled.
# This is done via the below gencode option, BUT that creates kernels for both sm90 and sm90a.
# That adds an extra 17MB to compiled binary, so instead we selectively enable it.
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0)
set_source_files_properties(
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu"
PROPERTIES
COMPILE_FLAGS
"-gencode arch=compute_90a,code=sm_90a")
# The cutlass_scaled_mm kernels for Hopper (c3x, i.e. CUTLASS 3.x) require
# CUDA 12.0 or later (and only work on Hopper, 9.0/9.0a for now).
cuda_archs_loose_intersection(SCALED_MM_3X_ARCHS "9.0;9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_3X_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_3X_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SCALED_MM_C3X=1")
message(STATUS "Building scaled_mm_c3x for archs: ${SCALED_MM_3X_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_3X_ARCHS)
message(STATUS "Not building scaled_mm_c3x as CUDA Compiler version is "
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "
"later if you intend on running FP8 quantized models on "
"Hopper.")
else()
message(STATUS "Not building scaled_mm_c3x as no compatible archs found "
"in CUDA target architectures")
endif()
# clear SCALED_MM_3X_ARCHS so the scaled_mm_c2x kernels know we didn't
# build any 3x kernels
set(SCALED_MM_3X_ARCHS)
endif()
#
# For the cutlass_scaled_mm kernels we want to build the c2x (CUTLASS 2.x)
# kernels for the remaining archs that are not already built for 3x.
cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS
"7.5;8.0;8.6;8.9;9.0" "${CUDA_ARCHS}")
# subtract out the archs that are already built for 3x
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
if (SCALED_MM_2X_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_2X_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SCALED_MM_C2X=1")
message(STATUS "Building scaled_mm_c2x for archs: ${SCALED_MM_2X_ARCHS}")
else()
if (SCALED_MM_3X_ARCHS)
message(STATUS "Not building scaled_mm_c2x as all archs are already built"
" for and covered by scaled_mm_c3x")
else()
message(STATUS "Not building scaled_mm_c2x as no compatible archs found "
"in CUDA target architectures")
endif()
endif()
#
# Machete kernels
# The machete kernels only work on hopper and require CUDA 12.0 or later.
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0)
# Only build Machete kernels if we are building for something compatible with sm90a
cuda_archs_loose_intersection(MACHETE_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND MACHETE_ARCHS)
#
# For the Machete kernels we automatically generate sources for various
# For the Machete kernels we automatically generate sources for various
# preselected input type pairs and schedules.
# Generate sources:
execute_process(
COMMAND ${CMAKE_COMMAND} -E env
PYTHONPATH=${CMAKE_CURRENT_SOURCE_DIR}/csrc/cutlass_extensions/:${CUTLASS_DIR}/python/:${VLLM_PYTHON_PATH}:$PYTHONPATH
${Python_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/csrc/quantization/machete/generate.py
RESULT_VARIABLE machete_generation_result
OUTPUT_VARIABLE machete_generation_output
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log
)
set(MACHETE_GEN_SCRIPT
${CMAKE_CURRENT_SOURCE_DIR}/csrc/quantization/machete/generate.py)
file(MD5 ${MACHETE_GEN_SCRIPT} MACHETE_GEN_SCRIPT_HASH)
if (NOT machete_generation_result EQUAL 0)
message(FATAL_ERROR "Machete generation failed."
" Result: \"${machete_generation_result}\""
"\nCheck the log for details: "
"${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log")
message(STATUS "Machete generation script hash: ${MACHETE_GEN_SCRIPT_HASH}")
message(STATUS "Last run machete generate script hash: $CACHE{MACHETE_GEN_SCRIPT_HASH}")
if (NOT DEFINED CACHE{MACHETE_GEN_SCRIPT_HASH}
OR NOT $CACHE{MACHETE_GEN_SCRIPT_HASH} STREQUAL ${MACHETE_GEN_SCRIPT_HASH})
execute_process(
COMMAND ${CMAKE_COMMAND} -E env
PYTHONPATH=${CMAKE_CURRENT_SOURCE_DIR}/csrc/cutlass_extensions/:${CUTLASS_DIR}/python/:${VLLM_PYTHON_PATH}:$PYTHONPATH
${Python_EXECUTABLE} ${MACHETE_GEN_SCRIPT}
RESULT_VARIABLE machete_generation_result
OUTPUT_VARIABLE machete_generation_output
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log
)
if (NOT machete_generation_result EQUAL 0)
message(FATAL_ERROR "Machete generation failed."
" Result: \"${machete_generation_result}\""
"\nCheck the log for details: "
"${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log")
else()
set(MACHETE_GEN_SCRIPT_HASH ${MACHETE_GEN_SCRIPT_HASH}
CACHE STRING "Last run machete generate script hash" FORCE)
message(STATUS "Machete generation completed successfully.")
endif()
else()
message(STATUS "Machete generation completed successfully.")
message(STATUS "Machete generation script has not changed, skipping generation.")
endif()
# Add machete generated sources
file(GLOB MACHETE_GEN_SOURCES "csrc/quantization/machete/generated/*.cu")
list(APPEND VLLM_EXT_SRC ${MACHETE_GEN_SOURCES})
message(STATUS "Machete generated sources: ${MACHETE_GEN_SOURCES}")
set_source_files_properties(
${MACHETE_GEN_SOURCES}
PROPERTIES
COMPILE_FLAGS
"-gencode arch=compute_90a,code=sm_90a")
# forward compatible
set_gencode_flags_for_srcs(
SRCS "${MACHETE_GEN_SOURCES}"
CUDA_ARCHS "${MACHETE_ARCHS}")
list(APPEND VLLM_EXT_SRC
csrc/quantization/machete/machete_pytorch.cu)
message(STATUS "Building Machete kernels for archs: ${MACHETE_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0
AND MACHETE_ARCHS)
message(STATUS "Not building Machete kernels as CUDA Compiler version is "
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "
"later if you intend on running w4a16 quantized models on "
"Hopper.")
else()
message(STATUS "Not building Machete kernels as no compatible archs "
"found in CUDA target architectures")
endif()
endif()
# Add pytorch binding for machete (add on even CUDA < 12.0 so that we can
# raise an error if the user that this was built with an incompatible
# CUDA version)
list(APPEND VLLM_EXT_SRC
csrc/quantization/machete/machete_pytorch.cu)
# if CUDA endif
endif()
message(STATUS "Enabling C extension.")
define_gpu_extension_target(
_C
DESTINATION vllm
@ -288,14 +394,51 @@ define_gpu_extension_target(
USE_SABI 3
WITH_SOABI)
# If CUTLASS is compiled on NVCC >= 12.5, it by default uses
# cudaGetDriverEntryPointByVersion as a wrapper to avoid directly calling the
# driver API. This causes problems when linking with earlier versions of CUDA.
# Setting this variable sidesteps the issue by calling the driver directly.
target_compile_definitions(_C PRIVATE CUTLASS_ENABLE_DIRECT_CUDA_DRIVER_CALL=1)
#
# _moe_C extension
#
set(VLLM_MOE_EXT_SRC
"csrc/moe/torch_bindings.cpp"
"csrc/moe/moe_align_sum_kernels.cu"
"csrc/moe/topk_softmax_kernels.cu")
set_gencode_flags_for_srcs(
SRCS "${VLLM_MOE_EXT_SRC}"
CUDA_ARCHS "${CUDA_ARCHS}")
if(VLLM_GPU_LANG STREQUAL "CUDA")
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.9;9.0" "${CUDA_ARCHS}")
if (MARLIN_MOE_ARCHS)
set(MARLIN_MOE_SRC
"csrc/moe/marlin_kernels/marlin_moe_kernel.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.cu"
"csrc/moe/marlin_moe_ops.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_MOE_SRC}"
CUDA_ARCHS "${MARLIN_MOE_ARCHS}")
list(APPEND VLLM_MOE_EXT_SRC "${MARLIN_MOE_SRC}")
message(STATUS "Building Marlin MOE kernels for archs: ${MARLIN_MOE_ARCHS}")
else()
message(STATUS "Not building Marlin MOE kernels as no compatible archs found"
" in CUDA target architectures")
endif()
endif()
message(STATUS "Enabling moe extension.")
define_gpu_extension_target(
_moe_C
DESTINATION vllm
@ -306,13 +449,98 @@ define_gpu_extension_target(
USE_SABI 3
WITH_SOABI)
if(VLLM_GPU_LANG STREQUAL "HIP")
#
# _rocm_C extension
#
set(VLLM_ROCM_EXT_SRC
"csrc/rocm/torch_bindings.cpp"
"csrc/rocm/attention.cu")
if(VLLM_GPU_LANG STREQUAL "CUDA" OR VLLM_GPU_LANG STREQUAL "HIP")
message(STATUS "Enabling C extension.")
add_dependencies(default _C)
message(STATUS "Enabling moe extension.")
add_dependencies(default _moe_C)
define_gpu_extension_target(
_rocm_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${VLLM_ROCM_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
USE_SABI 3
WITH_SOABI)
endif()
# vllm-flash-attn currently only supported on CUDA
if (NOT VLLM_TARGET_DEVICE STREQUAL "cuda")
return()
endif ()
# vLLM flash attention requires VLLM_GPU_ARCHES to contain the set of target
# arches in the CMake syntax (75-real, 89-virtual, etc), since we clear the
# arches in the CUDA case (and instead set the gencodes on a per file basis)
# we need to manually set VLLM_GPU_ARCHES here.
if(VLLM_GPU_LANG STREQUAL "CUDA")
foreach(_ARCH ${CUDA_ARCHS})
string(REPLACE "." "" _ARCH "${_ARCH}")
list(APPEND VLLM_GPU_ARCHES "${_ARCH}-real")
endforeach()
endif()
#
# Build vLLM flash attention from source
#
# IMPORTANT: This has to be the last thing we do, because vllm-flash-attn uses the same macros/functions as vLLM.
# Because functions all belong to the global scope, vllm-flash-attn's functions overwrite vLLMs.
# They should be identical but if they aren't, this is a massive footgun.
#
# The vllm-flash-attn install rules are nested under vllm to make sure the library gets installed in the correct place.
# To only install vllm-flash-attn, use --component vllm_flash_attn_c.
# If no component is specified, vllm-flash-attn is still installed.
# If VLLM_FLASH_ATTN_SRC_DIR is set, vllm-flash-attn is installed from that directory instead of downloading.
# This is to enable local development of vllm-flash-attn within vLLM.
# It can be set as an environment variable or passed as a cmake argument.
# The environment variable takes precedence.
if (DEFINED ENV{VLLM_FLASH_ATTN_SRC_DIR})
set(VLLM_FLASH_ATTN_SRC_DIR $ENV{VLLM_FLASH_ATTN_SRC_DIR})
endif()
if(VLLM_FLASH_ATTN_SRC_DIR)
FetchContent_Declare(vllm-flash-attn SOURCE_DIR ${VLLM_FLASH_ATTN_SRC_DIR})
else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 5259c586c403a4e4d8bf69973c159b40cc346fb9
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
)
endif()
# Set the parent build flag so that the vllm-flash-attn library does not redo compile flag and arch initialization.
set(VLLM_PARENT_BUILD ON)
# Ensure the vllm/vllm_flash_attn directory exists before installation
install(CODE "file(MAKE_DIRECTORY \"\${CMAKE_INSTALL_PREFIX}/vllm/vllm_flash_attn\")" COMPONENT vllm_flash_attn_c)
# Make sure vllm-flash-attn install rules are nested under vllm/
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY FALSE)" COMPONENT vllm_flash_attn_c)
install(CODE "set(OLD_CMAKE_INSTALL_PREFIX \"\${CMAKE_INSTALL_PREFIX}\")" COMPONENT vllm_flash_attn_c)
install(CODE "set(CMAKE_INSTALL_PREFIX \"\${CMAKE_INSTALL_PREFIX}/vllm/\")" COMPONENT vllm_flash_attn_c)
# Fetch the vllm-flash-attn library
FetchContent_MakeAvailable(vllm-flash-attn)
message(STATUS "vllm-flash-attn is available at ${vllm-flash-attn_SOURCE_DIR}")
# Restore the install prefix
install(CODE "set(CMAKE_INSTALL_PREFIX \"\${OLD_CMAKE_INSTALL_PREFIX}\")" COMPONENT vllm_flash_attn_c)
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" COMPONENT vllm_flash_attn_c)
# Copy over the vllm-flash-attn python files
install(
DIRECTORY ${vllm-flash-attn_SOURCE_DIR}/vllm_flash_attn/
DESTINATION vllm/vllm_flash_attn
COMPONENT vllm_flash_attn_c
FILES_MATCHING PATTERN "*.py"
)
# Nothing after vllm-flash-attn, see comment about macros above

128
CODE_OF_CONDUCT.md Normal file
View File

@ -0,0 +1,128 @@
# vLLM Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socioeconomic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the overall
community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or advances of
any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email address,
without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official email address,
posting via an official social media account, or acting as an appointed
representative at an online or offline/IRL event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement in the #code-of-conduct
channel in the [vLLM Discord](https://discord.com/invite/jz7wjKhh6g).
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series of
actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within the
community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant](https://www.contributor-covenant.org/),
version 2.1, available at
[v2.1](https://www.contributor-covenant.org/version/2/1/code_of_conduct.html).
Community Impact Guidelines were inspired by
[Mozilla's code of conduct enforcement ladder](https://github.com/mozilla/inclusion).
For answers to common questions about this code of conduct, see the
[Contributor Covenant FAQ](https://www.contributor-covenant.org/faq). Translations are available at
[Contributor Covenant translations](https://www.contributor-covenant.org/translations).

View File

@ -1,56 +1,3 @@
# Contributing to vLLM
Thank you for your interest in contributing to vLLM!
Our community is open to everyone and welcomes all kinds of contributions, no matter how small or large.
There are several ways you can contribute to the project:
- Identify and report any issues or bugs.
- Request or add a new model.
- Suggest or implement new features.
However, remember that contributions aren't just about code.
We believe in the power of community support; thus, answering queries, assisting others, and enhancing the documentation are highly regarded and beneficial contributions.
Finally, one of the most impactful ways to support us is by raising awareness about vLLM.
Talk about it in your blog posts, highlighting how it's driving your incredible projects.
Express your support on Twitter if vLLM aids you, or simply offer your appreciation by starring our repository.
## Setup for development
### Build from source
```bash
pip install -e . # This may take several minutes.
```
### Testing
```bash
pip install -r requirements-dev.txt
# linting and formatting
bash format.sh
# Static type checking
mypy
# Unit tests
pytest tests/
```
**Note:** Currently, the repository does not pass the mypy tests.
## Contributing Guidelines
### Issue Reporting
If you encounter a bug or have a feature request, please check our issues page first to see if someone else has already reported it.
If not, please file a new issue, providing as much relevant information as possible.
### Pull Requests & Code Reviews
Please check the PR checklist in the [PR template](.github/PULL_REQUEST_TEMPLATE.md) for detailed guide for contribution.
### Thank You
Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM.
Your contributions make vLLM a great tool for everyone!
You may find information about contributing to vLLM on [docs.vllm.ai](https://docs.vllm.ai/en/latest/contributing/overview.html).

34
DCO Normal file
View File

@ -0,0 +1,34 @@
Developer Certificate of Origin
Version 1.1
Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.
Developer's Certificate of Origin 1.1
By making a contribution to this project, I certify that:
(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or
(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or
(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.
(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

View File

@ -10,7 +10,7 @@ ARG CUDA_VERSION=12.4.1
# prepare basic build environment
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base
ARG CUDA_VERSION=12.4.1
ARG PYTHON_VERSION=3.10
ARG PYTHON_VERSION=3.12
ENV DEBIAN_FRONTEND=noninteractive
# Install Python and other dependencies
@ -27,6 +27,14 @@ RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
&& python3 --version && python3 -m pip --version
# Upgrade to GCC 10 to avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92519
# as it was causing spam when compiling the CUTLASS kernels
RUN apt-get install -y gcc-10 g++-10
RUN update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 110 --slave /usr/bin/g++ g++ /usr/bin/g++-10
RUN <<EOF
gcc --version
EOF
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
@ -37,14 +45,10 @@ WORKDIR /workspace
# install build and runtime dependencies
COPY requirements-common.txt requirements-common.txt
COPY requirements-adag.txt requirements-adag.txt
COPY requirements-cuda.txt requirements-cuda.txt
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-cuda.txt
COPY requirements-mamba.txt requirements-mamba.txt
RUN python3 -m pip install packaging
RUN python3 -m pip install -r requirements-mamba.txt
# cuda arch list used by torch
# can be useful for both `dev` and `test`
@ -52,6 +56,9 @@ RUN python3 -m pip install -r requirements-mamba.txt
# see https://github.com/pytorch/pytorch/pull/123243
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.6 8.9 9.0+PTX'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
# Override the arch list for flash-attn to reduce the binary size
ARG vllm_fa_cmake_gpu_arches='80-real;90-real'
ENV VLLM_FA_CMAKE_GPU_ARCHES=${vllm_fa_cmake_gpu_arches}
#################### BASE BUILD IMAGE ####################
#################### WHEEL BUILD IMAGE ####################
@ -63,16 +70,10 @@ COPY requirements-build.txt requirements-build.txt
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-build.txt
# files and directories related to build wheels
COPY csrc csrc
COPY setup.py setup.py
COPY cmake cmake
COPY CMakeLists.txt CMakeLists.txt
COPY requirements-common.txt requirements-common.txt
COPY requirements-adag.txt requirements-adag.txt
COPY requirements-cuda.txt requirements-cuda.txt
COPY pyproject.toml pyproject.toml
COPY vllm vllm
COPY . .
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
# max jobs used by Ninja to build extensions
ARG max_jobs=2
@ -81,14 +82,13 @@ ENV MAX_JOBS=${max_jobs}
ARG nvcc_threads=8
ENV NVCC_THREADS=$nvcc_threads
ARG buildkite_commit
ENV BUILDKITE_COMMIT=${buildkite_commit}
ARG USE_SCCACHE
ARG SCCACHE_BUCKET_NAME=vllm-build-sccache
ARG SCCACHE_REGION_NAME=us-west-2
ARG SCCACHE_S3_NO_CREDENTIALS=0
# if USE_SCCACHE is set, use sccache to speed up compilation
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,source=.git,target=.git \
if [ "$USE_SCCACHE" = "1" ]; then \
echo "Installing sccache..." \
&& curl -L -o sccache.tar.gz https://github.com/mozilla/sccache/releases/download/v0.8.1/sccache-v0.8.1-x86_64-unknown-linux-musl.tar.gz \
@ -97,6 +97,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
&& rm -rf sccache.tar.gz sccache-v0.8.1-x86_64-unknown-linux-musl \
&& export SCCACHE_BUCKET=${SCCACHE_BUCKET_NAME} \
&& export SCCACHE_REGION=${SCCACHE_REGION_NAME} \
&& export SCCACHE_S3_NO_CREDENTIALS=${SCCACHE_S3_NO_CREDENTIALS} \
&& export SCCACHE_IDLE_TIMEOUT=0 \
&& export CMAKE_BUILD_TYPE=Release \
&& sccache --show-stats \
@ -107,14 +108,22 @@ RUN --mount=type=cache,target=/root/.cache/pip \
ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/ccache \
--mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,source=.git,target=.git \
if [ "$USE_SCCACHE" != "1" ]; then \
python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38; \
fi
# check the size of the wheel, we cannot upload wheels larger than 100MB
# Check the size of the wheel if RUN_WHEEL_CHECK is true
COPY .buildkite/check-wheel-size.py check-wheel-size.py
RUN python3 check-wheel-size.py dist
# Default max size of the wheel is 250MB
ARG VLLM_MAX_SIZE_MB=250
ENV VLLM_MAX_SIZE_MB=$VLLM_MAX_SIZE_MB
ARG RUN_WHEEL_CHECK=true
RUN if [ "$RUN_WHEEL_CHECK" = "true" ]; then \
python3 check-wheel-size.py dist; \
else \
echo "Skipping wheel size check."; \
fi
#################### EXTENSION Build IMAGE ####################
#################### DEV IMAGE ####################
@ -127,27 +136,11 @@ RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-dev.txt
#################### DEV IMAGE ####################
#################### MAMBA Build IMAGE ####################
FROM dev as mamba-builder
# max jobs used for build
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
WORKDIR /usr/src/mamba
COPY requirements-mamba.txt requirements-mamba.txt
# Download the wheel or build it if a pre-compiled release doesn't exist
RUN pip --verbose wheel -r requirements-mamba.txt \
--no-build-isolation --no-deps --no-cache-dir
#################### MAMBA Build IMAGE ####################
#################### vLLM installation IMAGE ####################
# image with vLLM installed
FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu20.04 AS vllm-base
FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu22.04 AS vllm-base
ARG CUDA_VERSION=12.4.1
ARG PYTHON_VERSION=3.10
ARG PYTHON_VERSION=3.12
WORKDIR /vllm-workspace
ENV DEBIAN_FRONTEND=noninteractive
@ -159,6 +152,7 @@ RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
&& apt-get update -y \
&& apt-get install -y ccache software-properties-common git curl sudo vim python3-pip \
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
&& add-apt-repository ppa:deadsnakes/ppa \
&& apt-get update -y \
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv libibverbs-dev \
@ -179,13 +173,10 @@ RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist
--mount=type=cache,target=/root/.cache/pip \
python3 -m pip install dist/*.whl --verbose
RUN --mount=type=bind,from=mamba-builder,src=/usr/src/mamba,target=/usr/src/mamba \
--mount=type=cache,target=/root/.cache/pip \
python3 -m pip install /usr/src/mamba/*.whl --no-cache-dir
RUN --mount=type=cache,target=/root/.cache/pip \
. /etc/environment && \
python3 -m pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.4/flashinfer-0.1.4+cu121torch2.4-cp${PYTHON_VERSION_STR}-cp${PYTHON_VERSION_STR}-linux_x86_64.whl
python3 -m pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.6/flashinfer-0.1.6+cu121torch2.4-cp${PYTHON_VERSION_STR}-cp${PYTHON_VERSION_STR}-linux_x86_64.whl
COPY examples examples
#################### vLLM installation IMAGE ####################
@ -200,6 +191,14 @@ ADD . /vllm-workspace/
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-dev.txt
# enable fast downloads from hf (for testing)
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install hf_transfer
ENV HF_HUB_ENABLE_HF_TRANSFER 1
# Copy in the v1 package for testing (it isn't distributed yet)
COPY vllm/v1 /usr/local/lib/python3.12/dist-packages/vllm/v1
# doc requires source code
# we hide them inside `test_docs/` , so that this source code
# will not be imported by other tests
@ -215,7 +214,7 @@ FROM vllm-base AS vllm-openai
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer 'modelscope!=1.15.0'
pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.44.0' timm==0.9.10
ENV VLLM_USAGE_SOURCE production-docker-image

View File

@ -2,9 +2,14 @@
FROM ubuntu:22.04 AS cpu-test-1
ENV CCACHE_DIR=/root/.cache/ccache
ENV CMAKE_CXX_COMPILER_LAUNCHER=ccache
RUN --mount=type=cache,target=/var/cache/apt \
apt-get update -y \
&& apt-get install -y curl ccache git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 libnuma-dev \
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
# https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/tuning_guide.html
@ -17,9 +22,12 @@ ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/usr/local/li
RUN echo 'ulimit -c 0' >> ~/.bashrc
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_dev/cpu/intel_extension_for_pytorch-2.4.0%2Bgitfbaa4bc-cp310-cp310-linux_x86_64.whl
RUN pip install intel_extension_for_pytorch==2.5.0
ENV PIP_EXTRA_INDEX_URL=https://download.pytorch.org/whl/cpu
WORKDIR /workspace
ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,src=requirements-build.txt,target=requirements-build.txt \
pip install --upgrade pip && \
@ -34,17 +42,21 @@ RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,src=requirements-cpu.txt,target=requirements-cpu.txt \
pip install -v -r requirements-cpu.txt
COPY ./ ./
COPY . .
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
# Support for building with non-AVX512 vLLM: docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" ...
ARG VLLM_CPU_DISABLE_AVX512
ENV VLLM_CPU_DISABLE_AVX512=${VLLM_CPU_DISABLE_AVX512}
ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/ccache \
--mount=type=bind,source=.git,target=.git \
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel && \
pip install dist/*.whl
pip install dist/*.whl && \
rm -rf dist
WORKDIR /workspace/

18
Dockerfile.hpu Normal file
View File

@ -0,0 +1,18 @@
FROM vault.habana.ai/gaudi-docker/1.18.0/ubuntu22.04/habanalabs/pytorch-installer-2.4.0:latest
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
RUN pip install -v -r requirements-hpu.txt
ENV no_proxy=localhost,127.0.0.1
ENV PT_HPU_ENABLE_LAZY_COLLECTIVES=true
RUN VLLM_TARGET_DEVICE=hpu python3 setup.py install
WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -1,36 +1,41 @@
# default base image
ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.1.2-neuronx-py310-sdk2.19.1-ubuntu20.04"
ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.1.2-neuronx-py310-sdk2.20.0-ubuntu20.04"
FROM $BASE_IMAGE
RUN echo "Base image is $BASE_IMAGE"
# Install some basic utilities
RUN apt-get update && apt-get install python3 python3-pip -y
RUN apt-get update && \
apt-get install -y \
git \
python3 \
python3-pip \
ffmpeg libsm6 libxext6 libgl1
### Mount Point ###
# When launching the container, mount the code directory to /app
ARG APP_MOUNT=/app
VOLUME [ ${APP_MOUNT} ]
WORKDIR ${APP_MOUNT}
WORKDIR ${APP_MOUNT}/vllm
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas
RUN python3 -m pip install sentencepiece transformers==4.36.2 -U
RUN python3 -m pip install transformers-neuronx --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
RUN python3 -m pip install --pre neuronx-cc==2.12.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
RUN python3 -m pip install --pre neuronx-cc==2.15.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
COPY ./vllm /app/vllm/vllm
COPY ./setup.py /app/vllm/setup.py
COPY ./requirements-common.txt /app/vllm/requirements-common.txt
COPY ./requirements-neuron.txt /app/vllm/requirements-neuron.txt
COPY . .
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
RUN cd /app/vllm \
&& python3 -m pip install -U -r requirements-neuron.txt
RUN python3 -m pip install -U \
'cmake>=3.26' ninja packaging 'setuptools-scm>=8' wheel jinja2 \
-r requirements-neuron.txt
ENV VLLM_TARGET_DEVICE neuron
RUN cd /app/vllm \
&& pip install -e . \
&& cd ..
RUN --mount=type=bind,source=.git,target=.git \
pip install --no-build-isolation -v -e .
CMD ["/bin/bash"]

View File

@ -4,26 +4,22 @@
FROM ubuntu:22.04 AS dev
RUN apt-get update -y && \
apt-get install -y python3-pip git
apt-get install -y \
git python3-pip \
ffmpeg libsm6 libxext6 libgl1
WORKDIR /workspace
# copy requirements
COPY requirements-build.txt /workspace/vllm/
COPY requirements-common.txt /workspace/vllm/
COPY requirements-openvino.txt /workspace/vllm/
COPY vllm/ /workspace/vllm/vllm
COPY csrc/core /workspace/vllm/csrc/core
COPY cmake/utils.cmake /workspace/vllm/cmake/
COPY CMakeLists.txt /workspace/vllm/
COPY setup.py /workspace/vllm/
COPY . .
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
# install build requirements
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" python3 -m pip install -r /workspace/vllm/requirements-build.txt
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" python3 -m pip install -r /workspace/requirements-build.txt
# build vLLM with OpenVINO backend
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" VLLM_TARGET_DEVICE="openvino" python3 -m pip install /workspace/vllm/
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" VLLM_TARGET_DEVICE="openvino" python3 -m pip install /workspace
COPY examples/ /workspace/vllm/examples
COPY benchmarks/ /workspace/vllm/benchmarks
COPY examples/ /workspace/examples
COPY benchmarks/ /workspace/benchmarks
CMD ["/bin/bash"]

View File

@ -2,21 +2,35 @@ FROM mambaorg/micromamba
ARG MAMBA_DOCKERFILE_ACTIVATE=1
USER root
RUN apt-get update -y && apt-get install -y git wget vim numactl gcc-12 g++-12 protobuf-compiler libprotobuf-dev && update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
ENV PATH="/usr/local/cargo/bin:$PATH:/opt/conda/bin/"
RUN apt-get update -y && apt-get install -y git wget curl vim libnuma-dev libsndfile-dev libprotobuf-dev build-essential ffmpeg libsm6 libxext6 libgl1
# Some packages in requirements-cpu are installed here
# IBM provides optimized packages for ppc64le processors in the open-ce project for mamba
# Currently these may not be available for venv or pip directly
RUN micromamba install -y -n base -c https://ftp.osuosl.org/pub/open-ce/1.11.0-p10/ -c defaults python=3.10 pytorch-cpu=2.1.2 torchvision-cpu=0.16.2 && micromamba clean --all --yes
RUN micromamba install -y -n base -c https://ftp.osuosl.org/pub/open-ce/1.11.0-p10/ -c defaults python=3.10 torchvision-cpu=0.16.2 rust && micromamba clean --all --yes
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi
# These packages will be in rocketce eventually
RUN pip install -v -r requirements-cpu.txt --prefer-binary --extra-index-url https://repo.fury.io/mgiessing
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -v --prefer-binary --extra-index-url https://repo.fury.io/mgiessing \
'cmake>=3.26' ninja packaging 'setuptools-scm>=8' wheel jinja2 \
torch==2.3.1 \
-r requirements-cpu.txt \
xformers uvloop==0.20.0
RUN VLLM_TARGET_DEVICE=cpu python3 setup.py install
RUN --mount=type=bind,source=.git,target=.git \
VLLM_TARGET_DEVICE=cpu python3 setup.py install
WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
WORKDIR /vllm-workspace
ENTRYPOINT ["/opt/conda/bin/python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -1,5 +1,5 @@
# Default ROCm 6.1 base image
ARG BASE_IMAGE="rocm/pytorch:rocm6.1.2_ubuntu20.04_py3.9_pytorch_staging"
# Default ROCm 6.2 base image
ARG BASE_IMAGE="rocm/pytorch:rocm6.2_ubuntu20.04_py3.9_pytorch_release_2.3.0"
# Default ROCm ARCHes to build vLLM for.
ARG PYTORCH_ROCM_ARCH="gfx908;gfx90a;gfx942;gfx1100"
@ -7,18 +7,12 @@ ARG PYTORCH_ROCM_ARCH="gfx908;gfx90a;gfx942;gfx1100"
# Whether to install CK-based flash-attention
# If 0, will not install flash-attention
ARG BUILD_FA="1"
# If `TRY_FA_WHEEL=1`, we will try installing flash-attention from `FA_WHEEL_URL`
# If this succeeds, we use the downloaded wheel and skip building flash-attention.
# Otherwise, ROCm flash-attention from `FA_BRANCH` will be built for the
# architectures specified in `FA_GFX_ARCHS`
ARG TRY_FA_WHEEL="1"
ARG FA_WHEEL_URL="https://github.com/ROCm/flash-attention/releases/download/v2.5.9post1-cktile-vllm/flash_attn-2.5.9.post1-cp39-cp39-linux_x86_64.whl"
ARG FA_GFX_ARCHS="gfx90a;gfx942"
ARG FA_BRANCH="23a2b1c2"
ARG FA_BRANCH="3cea2fb"
# Whether to build triton on rocm
ARG BUILD_TRITON="1"
ARG TRITON_BRANCH="e0fc12c"
ARG TRITON_BRANCH="e192dba"
### Base image build stage
FROM $BASE_IMAGE AS base
@ -50,14 +44,17 @@ RUN python3 -m pip install --upgrade pip
# Remove sccache so it doesn't interfere with ccache
# TODO: implement sccache support across components
RUN apt-get purge -y sccache; python3 -m pip uninstall -y sccache; rm -f "$(which sccache)"
# Install torch == 2.5.0 on ROCm
RUN case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \
*"rocm-6.1"*) \
# Install torch == 2.6.0 on ROCm
RUN --mount=type=cache,target=/root/.cache/pip \
case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \
*"rocm-6.2"*) \
python3 -m pip uninstall -y torch torchvision \
&& python3 -m pip install --no-cache-dir --pre \
torch==2.5.0.dev20240726 \
torchvision==0.20.0.dev20240726 \
--index-url https://download.pytorch.org/whl/nightly/rocm6.1;; \
&& python3 -m pip install --pre \
torch==2.6.0.dev20240918 \
'setuptools-scm>=8' \
torchvision==0.20.0.dev20240918 \
--extra-index-url https://download.pytorch.org/whl/nightly/rocm6.2;; \
*) ;; esac
ENV LLVM_SYMBOLIZER_PATH=/opt/rocm/llvm/bin/llvm-symbolizer
@ -79,25 +76,18 @@ RUN cd /opt/rocm/share/amd_smi \
### Flash-Attention wheel build stage
FROM base AS build_fa
ARG BUILD_FA
ARG TRY_FA_WHEEL
ARG FA_WHEEL_URL
ARG FA_GFX_ARCHS
ARG FA_BRANCH
# Build ROCm flash-attention wheel if `BUILD_FA = 1`
RUN --mount=type=cache,target=${CCACHE_DIR} \
if [ "$BUILD_FA" = "1" ]; then \
if [ "${TRY_FA_WHEEL}" = "1" ] && python3 -m pip install "${FA_WHEEL_URL}"; then \
# If a suitable wheel exists, we download it instead of building FA
mkdir -p /install && wget -N "${FA_WHEEL_URL}" -P /install; \
else \
mkdir -p libs \
&& cd libs \
&& git clone https://github.com/ROCm/flash-attention.git \
&& cd flash-attention \
&& git checkout "${FA_BRANCH}" \
&& git submodule update --init \
&& GPU_ARCHS="${FA_GFX_ARCHS}" python3 setup.py bdist_wheel --dist-dir=/install; \
fi; \
mkdir -p libs \
&& cd libs \
&& git clone https://github.com/ROCm/flash-attention.git \
&& cd flash-attention \
&& git checkout "${FA_BRANCH}" \
&& git submodule update --init \
&& GPU_ARCHS="${FA_GFX_ARCHS}" python3 setup.py bdist_wheel --dist-dir=/install; \
# Create an empty directory otherwise as later build stages expect one
else mkdir -p /install; \
fi
@ -112,6 +102,7 @@ RUN --mount=type=cache,target=${CCACHE_DIR} \
if [ "$BUILD_TRITON" = "1" ]; then \
mkdir -p libs \
&& cd libs \
&& python3 -m pip install ninja cmake wheel pybind11 \
&& git clone https://github.com/OpenAI/triton.git \
&& cd triton \
&& git checkout "${TRITON_BRANCH}" \
@ -126,10 +117,15 @@ RUN --mount=type=cache,target=${CCACHE_DIR} \
FROM base AS final
# Import the vLLM development directory from the build context
COPY . .
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
RUN python3 -m pip install --upgrade pip
# Package upgrades for useful functionality or to avoid dependency issues
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install --upgrade numba scipy huggingface-hub[cli]
python3 -m pip install --upgrade numba scipy huggingface-hub[cli] pytest-shard
# Workaround for ray >= 2.10.0
@ -138,15 +134,9 @@ ENV RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1
ENV TOKENIZERS_PARALLELISM=false
RUN --mount=type=cache,target=${CCACHE_DIR} \
--mount=type=bind,source=.git,target=.git \
--mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -Ur requirements-rocm.txt \
&& case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \
*"rocm-6.1"*) \
# Bring in upgrades to HIP graph earlier than ROCm 6.2 for vLLM
wget -N https://github.com/ROCm/vllm/raw/fa78403/rocm_patch/libamdhip64.so.6 -P /opt/rocm/lib \
# Prevent interference if torch bundles its own HIP runtime
&& rm -f "$(python3 -c 'import torch; print(torch.__path__[0])')"/lib/libamdhip64.so* || true;; \
*) ;; esac \
&& python3 setup.py clean --all \
&& python3 setup.py develop

View File

@ -1,17 +1,25 @@
ARG NIGHTLY_DATE="20240808"
ARG NIGHTLY_DATE="20241017"
ARG BASE_IMAGE="us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.10_tpuvm_$NIGHTLY_DATE"
FROM $BASE_IMAGE
WORKDIR /workspace
WORKDIR /workspace/vllm
# Install the TPU and Pallas dependencies.
RUN python3 -m pip install torch_xla[tpu] -f https://storage.googleapis.com/libtpu-releases/index.html
RUN python3 -m pip install torch_xla[pallas] -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html
# Install some basic utilities
RUN apt-get update && apt-get install -y \
git \
ffmpeg libsm6 libxext6 libgl1
# Build vLLM.
COPY . /workspace/vllm
COPY . .
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi
ENV VLLM_TARGET_DEVICE="tpu"
RUN cd /workspace/vllm && python3 -m pip install -r requirements-tpu.txt
RUN cd /workspace/vllm && python3 setup.py develop
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,source=.git,target=.git \
python3 -m pip install \
-r requirements-tpu.txt
RUN python3 setup.py develop
CMD ["/bin/bash"]

View File

@ -1,22 +1,68 @@
FROM intel/oneapi-basekit:2024.1.0-devel-ubuntu20.04
FROM intel/oneapi-basekit:2024.2.1-0-devel-ubuntu22.04 AS vllm-base
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \
echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \
chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \
rm /etc/apt/sources.list.d/intel-graphics.list && \
wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \
echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
chmod 644 /usr/share/keyrings/intel-graphics.gpg
RUN apt-get update -y \
&& apt-get install -y curl libicu70 lsb-release git wget vim numactl python3 python3-pip
COPY ./ /workspace/vllm
RUN apt-get update -y && \
apt-get install -y --no-install-recommends --fix-missing \
curl \
ffmpeg \
git \
libsndfile1 \
libsm6 \
libxext6 \
libgl1 \
lsb-release \
numactl \
python3 \
python3-dev \
python3-pip \
# vim \
wget
WORKDIR /workspace/vllm
COPY requirements-xpu.txt /workspace/vllm/requirements-xpu.txt
COPY requirements-common.txt /workspace/vllm/requirements-common.txt
RUN pip install -v -r requirements-xpu.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install --no-cache-dir \
-r requirements-xpu.txt
RUN VLLM_TARGET_DEVICE=xpu python3 setup.py install
RUN git clone https://github.com/intel/pti-gpu && \
cd pti-gpu/sdk && \
git checkout 6c491f07a777ed872c2654ca9942f1d0dde0a082 && \
mkdir build && \
cd build && \
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=../cmake/toolchains/icpx_toolchain.cmake -DBUILD_TESTING=OFF .. && \
make -j && \
cmake --install . --config Release --prefix "/usr/local"
ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/lib/"
COPY . .
ARG GIT_REPO_CHECK
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi
ENV VLLM_TARGET_DEVICE=xpu
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,source=.git,target=.git \
python3 setup.py install
CMD ["/bin/bash"]
FROM vllm-base AS vllm-openai
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer 'modelscope!=1.15.0'
ENV VLLM_USAGE_SOURCE production-docker-image \
TRITON_XPU_PROFILE 1
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -1,5 +1,4 @@
include LICENSE
include requirements-adag.txt
include requirements-common.txt
include requirements-cuda.txt
include requirements-rocm.txt

View File

@ -10,22 +10,16 @@ Easy, fast, and cheap LLM serving for everyone
</h3>
<p align="center">
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> |
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
</p>
---
**vLLM & NVIDIA Triton User Meetup (Monday, September 9, 5pm-9pm PT) at Fort Mason, San Francisco**
We are excited to announce our sixth vLLM Meetup, in collaboration with NVIDIA Triton Team.
Join us to hear the vLLM's recent update about performance.
Register now [here](https://lu.ma/87q3nvnh) and be part of the event!
---
*Latest News* 🔥
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing).
- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there!
- [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://raysummit.anyscale.com/flow/anyscale/raysummit2024/landing/page/sessioncatalog?tab.day=20241001&search.sessiontracks=1719251906298001uzJ2) from other vLLM contributors and users!
- [2024/09] We hosted [the sixth vLLM meetup](https://lu.ma/87q3nvnh) with NVIDIA! Please find the meetup slides [here](https://docs.google.com/presentation/d/1wrLGwytQfaOTd5wCGSPNhoaW3nq0E-9wqyP7ny93xRs/edit?usp=sharing).
- [2024/07] We hosted [the fifth vLLM meetup](https://lu.ma/lp0gyjqr) with AWS! Please find the meetup slides [here](https://docs.google.com/presentation/d/1RgUD8aCfcHocghoP3zmXzck9vX3RCI9yfUAB2Bbcl4Y/edit?usp=sharing).
- [2024/07] In partnership with Meta, vLLM officially supports Llama 3.1 with FP8 quantization and pipeline parallelism! Please check out our blog post [here](https://blog.vllm.ai/2024/07/23/llama31.html).
- [2024/06] We hosted [the fourth vLLM meetup](https://lu.ma/agivllm) with Cloudflare and BentoML! Please find the meetup slides [here](https://docs.google.com/presentation/d/1iJ8o7V2bQEi0BFEljLTwc5G1S10_Rhv3beed5oB0NJ4/edit?usp=sharing).
@ -50,7 +44,7 @@ vLLM is fast with:
- Speculative decoding
- Chunked prefill
**Performance benchmark**: We include a [performance benchmark](https://buildkite.com/vllm/performance-benchmark/builds/4068) that compares the performance of vLLM against other LLM serving engines ([TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM), [text-generation-inference](https://github.com/huggingface/text-generation-inference) and [lmdeploy](https://github.com/InternLM/lmdeploy)).
**Performance benchmark**: We include a performance benchmark at the end of [our blog post](https://blog.vllm.ai/2024/09/05/perf-update.html). It compares the performance of vLLM against other LLM serving engines ([TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM), [SGLang](https://github.com/sgl-project/sglang) and [LMDeploy](https://github.com/InternLM/lmdeploy)). The implementation is under [nightly-benchmarks folder](.buildkite/nightly-benchmarks/) and you can [reproduce](https://github.com/vllm-project/vllm/issues/8176) this benchmark using our one-click runnable script.
vLLM is flexible and easy to use with:
@ -130,3 +124,11 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
year={2023}
}
```
## Contact Us
* For technical questions and feature requests, please use Github issues or discussions.
* For discussing with fellow users, please use Discord.
* For coordinating contributions and development, please use Slack.
* For security disclosures, please use Github's security advisory feature.
* For collaborations and partnerships, please contact us at vllm-questions AT lists.berkeley.edu.

11
SECURITY.md Normal file
View File

@ -0,0 +1,11 @@
# Security Policy
## Reporting a Vulnerability
If you believe you have found a security vulnerability in vLLM, we encourage you to let us know right away. We will investigate all legitimate reports and do our best to quickly fix the problem.
Please report security issues privately using [the vulnerability submission form](https://github.com/vllm-project/vllm/security/advisories/new).
---
Please see [PyTorch's Security Policy](https://github.com/pytorch/pytorch/blob/main/SECURITY.md) for more information and recommendations on how to securely interact with models.

View File

@ -6,3 +6,14 @@ You can download the dataset by running:
```bash
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
```
## Downloading the ShareGPT4V dataset
The json file refers to several image datasets (coco, llava, etc.). The benchmark scripts
will ignore a datapoint if the referred image is missing.
```bash
wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/resolve/main/sharegpt4v_instruct_gpt4-vision_cap100k.json
mkdir coco -p
wget http://images.cocodataset.org/zips/train2017.zip -O coco/train2017.zip
unzip coco/train2017.zip -d coco/
```

View File

@ -23,7 +23,9 @@ class RequestFuncInput:
output_len: int
model: str
best_of: int = 1
use_beam_search: bool = False
logprobs: Optional[int] = None
multi_modal_content: Optional[dict] = None
ignore_eos: bool = False
@dataclass
@ -46,13 +48,13 @@ async def async_request_tgi(
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
params = {
"best_of": request_func_input.best_of,
"max_new_tokens": request_func_input.output_len,
"do_sample": True,
"temperature": 0.01, # TGI does not accept 0.0 temperature.
"top_p": 0.99, # TGI does not accept 1.0 top_p.
# TGI does not accept ignore_eos flag.
}
payload = {
"inputs": request_func_input.prompt,
@ -77,7 +79,7 @@ async def async_request_tgi(
# any data, we should skip it.
if chunk_bytes.startswith(":"):
continue
chunk = remove_prefix(chunk_bytes, "data:")
chunk = chunk_bytes.removeprefix("data:")
data = json.loads(chunk)
timestamp = time.perf_counter()
@ -117,7 +119,6 @@ async def async_request_trt_llm(
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
assert request_func_input.best_of == 1
payload = {
"accumulate_tokens": True,
@ -127,6 +128,8 @@ async def async_request_trt_llm(
"max_tokens": request_func_input.output_len,
"stream": True,
}
if request_func_input.ignore_eos:
payload["min_length"] = request_func_input.output_len
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
@ -141,8 +144,8 @@ async def async_request_trt_llm(
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data:")
chunk = chunk_bytes.decode("utf-8").removeprefix(
"data:")
data = json.loads(chunk)
output.generated_text += data["text_output"]
@ -181,7 +184,6 @@ async def async_request_deepspeed_mii(
) -> RequestFuncOutput:
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert request_func_input.best_of == 1
assert not request_func_input.use_beam_search
payload = {
"prompt": request_func_input.prompt,
@ -229,14 +231,15 @@ async def async_request_openai_completions(
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
payload = {
"model": request_func_input.model,
"prompt": request_func_input.prompt,
"temperature": 0.0,
"best_of": request_func_input.best_of,
"max_tokens": request_func_input.output_len,
"logprobs": request_func_input.logprobs,
"stream": True,
"ignore_eos": request_func_input.ignore_eos,
}
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
@ -253,13 +256,14 @@ async def async_request_openai_completions(
async with session.post(url=api_url, json=payload,
headers=headers) as response:
if response.status == 200:
first_chunk_received = False
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data: ")
chunk = chunk_bytes.decode("utf-8").removeprefix(
"data: ")
if chunk == "[DONE]":
latency = time.perf_counter() - st
else:
@ -271,7 +275,8 @@ async def async_request_openai_completions(
if data["choices"][0]["text"]:
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
if not first_chunk_received:
first_chunk_received = True
ttft = time.perf_counter() - st
output.ttft = ttft
@ -282,9 +287,14 @@ async def async_request_openai_completions(
most_recent_timestamp = timestamp
generated_text += data["choices"][0]["text"]
if first_chunk_received:
output.success = True
else:
output.success = False
output.error = (
"Never received a valid chunk to calculate TTFT."
"This response will be marked as failed!")
output.generated_text = generated_text
output.success = True
output.latency = latency
else:
output.error = response.reason or ""
@ -309,18 +319,21 @@ async def async_request_openai_chat_completions(
), "OpenAI Chat Completions API URL must end with 'chat/completions'."
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
content = [{"type": "text", "text": request_func_input.prompt}]
if request_func_input.multi_modal_content:
content.append(request_func_input.multi_modal_content)
payload = {
"model": request_func_input.model,
"messages": [
{
"role": "user",
"content": request_func_input.prompt,
"content": content
},
],
"temperature": 0.0,
"max_tokens": request_func_input.output_len,
"max_completion_tokens": request_func_input.output_len,
"stream": True,
"ignore_eos": request_func_input.ignore_eos,
}
headers = {
"Content-Type": "application/json",
@ -343,8 +356,8 @@ async def async_request_openai_chat_completions(
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data: ")
chunk = chunk_bytes.decode("utf-8").removeprefix(
"data: ")
if chunk == "[DONE]":
latency = time.perf_counter() - st
else:
@ -383,14 +396,6 @@ async def async_request_openai_chat_completions(
return output
# Since vllm must support Python 3.8, we can't use str.removeprefix(prefix)
# introduced in Python 3.9
def remove_prefix(text: str, prefix: str) -> str:
if text.startswith(prefix):
return text[len(prefix):]
return text
def get_model(pretrained_model_name_or_path: str) -> str:
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
from modelscope import snapshot_download
@ -424,4 +429,5 @@ ASYNC_REQUEST_FUNCS = {
"openai-chat": async_request_openai_chat_completions,
"tensorrt-llm": async_request_trt_llm,
"scalellm": async_request_openai_completions,
"sglang": async_request_openai_completions,
}

View File

@ -1,5 +1,6 @@
"""Benchmark the latency of processing a single batch of requests."""
import argparse
import dataclasses
import json
import time
from pathlib import Path
@ -11,49 +12,23 @@ from tqdm import tqdm
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.inputs import PromptInputs
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.inputs import PromptType
from vllm.utils import FlexibleArgumentParser
def main(args: argparse.Namespace):
print(args)
engine_args = EngineArgs.from_cli_args(args)
# NOTE(woosuk): If the request cannot be processed in a single batch,
# the engine will automatically process the request in multiple batches.
llm = LLM(
model=args.model,
speculative_model=args.speculative_model,
num_speculative_tokens=args.num_speculative_tokens,
speculative_draft_tensor_parallel_size=\
args.speculative_draft_tensor_parallel_size,
tokenizer=args.tokenizer,
quantization=args.quantization,
tensor_parallel_size=args.tensor_parallel_size,
trust_remote_code=args.trust_remote_code,
dtype=args.dtype,
max_model_len=args.max_model_len,
enforce_eager=args.enforce_eager,
kv_cache_dtype=args.kv_cache_dtype,
quantization_param_path=args.quantization_param_path,
device=args.device,
ray_workers_use_nsight=args.ray_workers_use_nsight,
use_v2_block_manager=args.use_v2_block_manager,
enable_chunked_prefill=args.enable_chunked_prefill,
download_dir=args.download_dir,
block_size=args.block_size,
gpu_memory_utilization=args.gpu_memory_utilization,
load_format=args.load_format,
distributed_executor_backend=args.distributed_executor_backend,
otlp_traces_endpoint=args.otlp_traces_endpoint,
enable_prefix_caching=args.enable_prefix_caching,
)
llm = LLM(**dataclasses.asdict(engine_args))
sampling_params = SamplingParams(
n=args.n,
temperature=0.0 if args.use_beam_search else 1.0,
temperature=1.0,
top_p=1.0,
use_beam_search=args.use_beam_search,
ignore_eos=True,
max_tokens=args.output_len,
)
@ -61,7 +36,7 @@ def main(args: argparse.Namespace):
dummy_prompt_token_ids = np.random.randint(10000,
size=(args.batch_size,
args.input_len))
dummy_inputs: List[PromptInputs] = [{
dummy_prompts: List[PromptType] = [{
"prompt_token_ids": batch
} for batch in dummy_prompt_token_ids.tolist()]
@ -74,13 +49,13 @@ def main(args: argparse.Namespace):
],
on_trace_ready=torch.profiler.tensorboard_trace_handler(
str(profile_dir))) as p:
llm.generate(dummy_inputs,
llm.generate(dummy_prompts,
sampling_params=sampling_params,
use_tqdm=False)
print(p.key_averages())
else:
start_time = time.perf_counter()
llm.generate(dummy_inputs,
llm.generate(dummy_prompts,
sampling_params=sampling_params,
use_tqdm=False)
end_time = time.perf_counter()
@ -127,19 +102,6 @@ if __name__ == '__main__':
parser = FlexibleArgumentParser(
description='Benchmark the latency of processing a single batch of '
'requests till completion.')
parser.add_argument('--model', type=str, default='facebook/opt-125m')
parser.add_argument('--speculative-model', type=str, default=None)
parser.add_argument('--num-speculative-tokens', type=int, default=None)
parser.add_argument('--speculative-draft-tensor-parallel-size',
'-spec-draft-tp',
type=int,
default=None)
parser.add_argument('--tokenizer', type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=[*QUANTIZATION_METHODS, None],
default=None)
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--input-len', type=int, default=32)
parser.add_argument('--output-len', type=int, default=128)
parser.add_argument('--batch-size', type=int, default=8)
@ -156,45 +118,6 @@ if __name__ == '__main__':
type=int,
default=30,
help='Number of iterations to run.')
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
parser.add_argument(
'--max-model-len',
type=int,
default=None,
help='Maximum length of a sequence (including prompt and output). '
'If None, will be derived from the model.')
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument('--enforce-eager',
action='store_true',
help='enforce eager mode and disable CUDA graph')
parser.add_argument(
'--kv-cache-dtype',
type=str,
choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'],
default="auto",
help='Data type for kv cache storage. If "auto", will use model '
'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. '
'ROCm (AMD GPU) supports fp8 (=fp8_e4m3)')
parser.add_argument(
'--quantization-param-path',
type=str,
default=None,
help='Path to the JSON file containing the KV cache scaling factors. '
'This should generally be supplied, when KV cache dtype is FP8. '
'Otherwise, KV cache scaling factors default to 1.0, which may cause '
'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is '
'instead supported for common inference criteria.')
parser.add_argument(
'--profile',
action='store_true',
@ -205,81 +128,12 @@ if __name__ == '__main__':
default=None,
help=('path to save the pytorch profiler output. Can be visualized '
'with ui.perfetto.dev or Tensorboard.'))
parser.add_argument(
"--device",
type=str,
default="auto",
choices=["auto", "cuda", "cpu", "openvino", "tpu", "xpu"],
help='device type for vLLM execution, supporting CUDA, OpenVINO and '
'CPU.')
parser.add_argument('--block-size',
type=int,
default=16,
help='block size of key/value cache')
parser.add_argument(
'--enable-chunked-prefill',
action='store_true',
help='If True, the prefill requests can be chunked based on the '
'max_num_batched_tokens')
parser.add_argument("--enable-prefix-caching",
action='store_true',
help="Enable automatic prefix caching")
parser.add_argument('--use-v2-block-manager', action='store_true')
parser.add_argument(
"--ray-workers-use-nsight",
action='store_true',
help="If specified, use nsight to profile ray workers",
)
parser.add_argument('--download-dir',
type=str,
default=None,
help='directory to download and load the weights, '
'default to the default cache dir of huggingface')
parser.add_argument(
'--output-json',
type=str,
default=None,
help='Path to save the latency results in JSON format.')
parser.add_argument('--gpu-memory-utilization',
type=float,
default=0.9,
help='the fraction of GPU memory to be used for '
'the model executor, which can range from 0 to 1.'
'If unspecified, will use the default value of 0.9.')
parser.add_argument(
'--load-format',
type=str,
default=EngineArgs.load_format,
choices=[
'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer',
'bitsandbytes'
],
help='The format of the model weights to load.\n\n'
'* "auto" will try to load the weights in the safetensors format '
'and fall back to the pytorch bin format if safetensors format '
'is not available.\n'
'* "pt" will load the weights in the pytorch bin format.\n'
'* "safetensors" will load the weights in the safetensors format.\n'
'* "npcache" will load the weights in pytorch format and store '
'a numpy cache to speed up the loading.\n'
'* "dummy" will initialize the weights with random values, '
'which is mainly for profiling.\n'
'* "tensorizer" will load the weights using tensorizer from '
'CoreWeave. See the Tensorize vLLM Model script in the Examples'
'section for more information.\n'
'* "bitsandbytes" will load the weights using bitsandbytes '
'quantization.\n')
parser.add_argument(
'--distributed-executor-backend',
choices=['ray', 'mp'],
default=None,
help='Backend to use for distributed serving. When more than 1 GPU '
'is used, will be automatically set to "ray" if installed '
'or "mp" (multiprocessing) otherwise.')
parser.add_argument(
'--otlp-traces-endpoint',
type=str,
default=None,
help='Target URL to which OpenTelemetry traces will be sent.')
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()
main(args)

View File

@ -25,6 +25,7 @@ ShareGPT example usage:
--input-length-range 128:256
"""
import dataclasses
import json
import random
import time
@ -33,6 +34,7 @@ from typing import List, Optional, Tuple
from transformers import PreTrainedTokenizerBase
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.utils import FlexibleArgumentParser
try:
@ -113,10 +115,10 @@ def repeat_and_sort_requests(requests: List[Tuple[str, int, int]],
def main(args):
tokenizer = get_tokenizer(args.model, trust_remote_code=True)
input_length_range = tuple(map(int, args.input_length_range.split(':')))
random.seed(args.seed)
if args.dataset_path is not None:
print(f"Start to sample {args.num_prompts} prompts"
"from {args.dataset_path}")
f"from {args.dataset_path}")
filtered_datasets = sample_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
@ -129,13 +131,9 @@ def main(args):
filtered_datasets = [(PROMPT, prompt_len, args.output_len)
] * args.num_prompts
llm = LLM(model=args.model,
tokenizer_mode='auto',
trust_remote_code=True,
enforce_eager=True,
use_v2_block_manager=args.use_v2_block_manager,
tensor_parallel_size=args.tensor_parallel_size,
enable_prefix_caching=args.enable_prefix_caching)
engine_args = EngineArgs.from_cli_args(args)
llm = LLM(**dataclasses.asdict(engine_args))
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
@ -144,13 +142,6 @@ def main(args):
repeat_count=args.repeat_count,
sort=args.sort)
print("------warm up------")
test_prefix(
llm=llm,
prompts=prompts,
sampling_params=sampling_params,
)
print("------start generating------")
test_prefix(
llm=llm,
@ -163,21 +154,11 @@ if __name__ == "__main__":
parser = FlexibleArgumentParser(
description=
'Benchmark the performance with or without automatic prefix caching.')
parser.add_argument('--model',
type=str,
default='baichuan-inc/Baichuan2-13B-Chat')
parser.add_argument("--dataset-path",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument('--enable-prefix-caching',
action='store_true',
help='enable prefix caching')
parser.add_argument('--use-v2-block-manager',
action='store_true',
help='Use BlockSpaceMangerV2')
parser.add_argument('--num-prompts',
type=int,
default=1,
@ -194,5 +175,7 @@ if __name__ == "__main__":
default='128:256',
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,177 @@
"""Benchmark offline prioritization."""
import argparse
import dataclasses
import json
import random
import time
from typing import List, Optional, Tuple
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from vllm.engine.arg_utils import EngineArgs
from vllm.utils import FlexibleArgumentParser
def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
#Select a equi-probable random priority
priority = 0 if random.random() < 0.5 else 1
filtered_dataset.append((prompt, prompt_len, output_len, priority))
return filtered_dataset
def run_vllm(
requests: List[Tuple[str, int, int]],
n: int,
engine_args: EngineArgs,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
# Add the requests to the engine.
prompts = []
sampling_params = []
priority = []
for prompt, _, output_len, _priority in requests:
prompts.append(prompt)
priority.append(_priority)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=output_len,
))
start = time.perf_counter()
llm.generate(prompts, sampling_params, priority=priority, use_tqdm=True)
end = time.perf_counter()
return end - start
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
if args.dataset is None:
# Synthesize a prompt with the given input length.
prompt = "hi" * (args.input_len - 1)
requests = [(prompt, args.input_len, args.output_len)
for _ in range(args.num_prompts)]
else:
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
args.output_len)
if args.backend == "vllm":
elapsed_time = run_vllm(requests, args.n,
EngineArgs.from_cli_args(args))
else:
raise ValueError(f"Unknown backend: {args.backend}")
total_num_tokens = sum(prompt_len + output_len
for _, prompt_len, output_len, priority in requests)
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} tokens/s")
# Output JSON results if specified
if args.output_json:
results = {
"elapsed_time": elapsed_time,
"num_requests": len(requests),
"total_num_tokens": total_num_tokens,
"requests_per_second": len(requests) / elapsed_time,
"tokens_per_second": total_num_tokens / elapsed_time,
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf", "mii"],
default="vllm")
parser.add_argument("--dataset",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument("--input-len",
type=int,
default=None,
help="Input prompt length for each request")
parser.add_argument("--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--num-prompts",
type=int,
default=200,
help="Number of prompts to process.")
parser.add_argument(
'--output-json',
type=str,
default=None,
help='Path to save the throughput results in JSON format.')
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
if args.dataset is None:
assert args.input_len is not None
assert args.output_len is not None
else:
assert args.input_len is None
main(args)

View File

@ -1,4 +1,4 @@
"""Benchmark online serving throughput.
r"""Benchmark online serving throughput.
On the server side, run one of the following commands:
vLLM OpenAI API server
@ -24,6 +24,8 @@ On the client side, run:
"""
import argparse
import asyncio
import base64
import io
import json
import os
import random
@ -31,11 +33,13 @@ import time
import warnings
from dataclasses import dataclass
from datetime import datetime
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple
from typing import Any, AsyncGenerator, Collection, Dict, List, Optional, Tuple
import numpy as np
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
RequestFuncOutput)
from datasets import load_dataset
from PIL.Image import Image
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
@ -49,6 +53,8 @@ try:
except ImportError:
from argparse import ArgumentParser as FlexibleArgumentParser
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
@dataclass
class BenchmarkMetrics:
@ -56,20 +62,28 @@ class BenchmarkMetrics:
total_input: int
total_output: int
request_throughput: float
input_throughput: float
request_goodput: float
output_throughput: float
total_token_throughput: float
mean_ttft_ms: float
median_ttft_ms: float
std_ttft_ms: float
p99_ttft_ms: float
percentiles_ttft_ms: List[Tuple[float, float]]
mean_tpot_ms: float
median_tpot_ms: float
std_tpot_ms: float
p99_tpot_ms: float
percentiles_tpot_ms: List[Tuple[float, float]]
mean_itl_ms: float
median_itl_ms: float
std_itl_ms: float
p99_itl_ms: float
percentiles_itl_ms: List[Tuple[float, float]]
# E2EL stands for end-to-end latency per request.
# It is the time taken on the client side from sending
# a request to receiving a complete response.
mean_e2el_ms: float
median_e2el_ms: float
std_e2el_ms: float
percentiles_e2el_ms: List[Tuple[float, float]]
def sample_sharegpt_requests(
@ -77,11 +91,9 @@ def sample_sharegpt_requests(
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int] = None,
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
) -> List[Tuple[str, int, int, None]]:
# Load the dataset.
with open(dataset_path) as f:
with open(dataset_path, encoding='utf-8') as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
@ -106,13 +118,13 @@ def sample_sharegpt_requests(
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
if prompt_len < 4 or (fixed_output_len is None and output_len < 4):
# Prune too short sequences.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
filtered_dataset.append((prompt, prompt_len, output_len))
filtered_dataset.append((prompt, prompt_len, output_len, None))
return filtered_dataset
@ -124,13 +136,13 @@ def sample_sonnet_requests(
output_len: int,
prefix_len: int,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, str, int, int]]:
) -> List[Tuple[str, str, int, int, None]]:
assert (
input_len > prefix_len
), "'args.sonnet-input-len' must be greater than 'args.prefix-input-len'."
# Load the dataset.
with open(dataset_path) as f:
with open(dataset_path, encoding='utf-8') as f:
poem_lines = f.readlines()
# Tokenize the poem lines.
@ -167,9 +179,9 @@ def sample_sonnet_requests(
# Sample the rest of lines per request.
sampled_requests: List[Tuple[str, int, int]] = []
for _ in range(num_requests):
sampled_lines = "".join(
prefix_lines +
random.sample(poem_lines, num_input_lines - num_prefix_lines))
num_lines_needed = num_input_lines - num_prefix_lines
sampled_lines = "".join(prefix_lines +
random.choices(poem_lines, k=num_lines_needed))
prompt = f"{base_prompt}{sampled_lines}"
message = [
@ -182,14 +194,82 @@ def sample_sonnet_requests(
message, add_generation_prompt=True, tokenize=False)
prompt_len = len(tokenizer(prompt_formatted).input_ids)
sampled_requests.append(
(prompt, prompt_formatted, prompt_len, output_len))
(prompt, prompt_formatted, prompt_len, output_len, None))
return sampled_requests
def sample_hf_requests(
dataset_path: str,
dataset_subset: str,
dataset_split: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
random_seed: int,
fixed_output_len: Optional[int] = None,
) -> List[Tuple[str, str, int, Optional[Dict[str, Collection[str]]]]]:
dataset = load_dataset(dataset_path,
name=dataset_subset,
split=dataset_split,
streaming=True)
assert "conversations" in dataset.features, (
"HF Dataset must have 'conversations' column.")
filter_func = lambda x: len(x["conversations"]) >= 2
filtered_dataset = dataset.shuffle(seed=random_seed).filter(filter_func)
sampled_requests: List[Tuple[str, int, int, Dict[str,
Collection[str]]]] = []
for data in filtered_dataset:
if len(sampled_requests) == num_requests:
break
# Tokenize the prompts and completions.
prompt = data["conversations"][0]["value"]
prompt_token_ids = tokenizer(prompt).input_ids
completion = data["conversations"][1]["value"]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if fixed_output_len is None and (prompt_len < 4 or output_len < 4):
# Prune too short sequences.
continue
if fixed_output_len is None and \
(prompt_len > 1024 or prompt_len + output_len > 2048):
# Prune too long sequences.
continue
if "image" in data and isinstance(data["image"], Image):
image: Image = data["image"]
image = image.convert("RGB")
image_data = io.BytesIO()
image.save(image_data, format='JPEG')
image_base64 = base64.b64encode(
image_data.getvalue()).decode("utf-8")
mm_content = {
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
},
}
else:
mm_content = None
sampled_requests.append((prompt, prompt_len, output_len, mm_content))
return sampled_requests
def sample_random_requests(
input_len: int, output_len: int, num_prompts: int, range_ratio: float,
tokenizer: PreTrainedTokenizerBase) -> List[Tuple[str, int, int]]:
prefix_len: int,
input_len: int,
output_len: int,
num_prompts: int,
range_ratio: float,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, int, int]]:
prefix_token_ids = np.random.randint(0,
tokenizer.vocab_size,
size=prefix_len).tolist()
input_lens = np.random.randint(
int(input_len * range_ratio),
@ -204,10 +284,12 @@ def sample_random_requests(
offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
input_requests = []
for i in range(num_prompts):
prompt = tokenizer.decode([(offsets[i] + i + j) % tokenizer.vocab_size
prompt = tokenizer.decode(prefix_token_ids +
[(offsets[i] + i + j) % tokenizer.vocab_size
for j in range(input_lens[i])])
input_requests.append(
(prompt, int(input_lens[i]), int(output_lens[i])))
input_requests.append((prompt, int(prefix_len + input_lens[i]),
int(output_lens[i]), None))
return input_requests
@ -215,8 +297,33 @@ def sample_random_requests(
async def get_request(
input_requests: List[Tuple[str, int, int]],
request_rate: float,
burstiness: float = 1.0,
) -> AsyncGenerator[Tuple[str, int, int], None]:
"""
Asynchronously generates requests at a specified rate
with OPTIONAL burstiness.
Args:
input_requests:
A list of input requests, each represented as a tuple.
request_rate:
The rate at which requests are generated (requests/s).
burstiness (optional):
The burstiness factor of the request generation.
Only takes effect when request_rate is not inf.
Default value is 1, which follows a Poisson process.
Otherwise, the request intervals follow a gamma distribution.
A lower burstiness value (0 < burstiness < 1) results
in more bursty requests, while a higher burstiness value
(burstiness > 1) results in a more uniform arrival of requests.
"""
input_requests = iter(input_requests)
# Calculate scale parameter theta to maintain the desired request_rate.
assert burstiness > 0, (
f"A positive burstiness factor is expected, but given {burstiness}.")
theta = 1.0 / (request_rate * burstiness)
for request in input_requests:
yield request
@ -224,8 +331,9 @@ async def get_request(
# If the request rate is infinity, then we don't need to wait.
continue
# Sample the request interval from the exponential distribution.
interval = np.random.exponential(1.0 / request_rate)
# Sample the request interval from the gamma distribution.
# If burstiness is 1, it follows exponential distribution.
interval = np.random.gamma(shape=burstiness, scale=theta)
# The next request will be sent after the interval.
await asyncio.sleep(interval)
@ -235,13 +343,19 @@ def calculate_metrics(
outputs: List[RequestFuncOutput],
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
selected_percentile_metrics: List[str],
selected_percentiles: List[float],
gootput_config_dict: Dict[str, float],
) -> Tuple[BenchmarkMetrics, List[int]]:
actual_output_lens: List[int] = []
total_input = 0
completed = 0
good_completed = 0
itls: List[float] = []
tpots: List[float] = []
all_tpots: List[float] = []
ttfts: List[float] = []
e2els: List[float] = []
for i in range(len(outputs)):
if outputs[i].success:
# We use the tokenizer to count the number of output tokens for all
@ -253,15 +367,42 @@ def calculate_metrics(
add_special_tokens=False).input_ids)
actual_output_lens.append(output_len)
total_input += input_requests[i][1]
tpot = 0
if output_len > 1:
tpots.append(
(outputs[i].latency - outputs[i].ttft) / (output_len - 1))
tpot = (outputs[i].latency - outputs[i].ttft) / (output_len -
1)
tpots.append(tpot)
# Note: if output_len <= 1, we regard tpot as 0 for goodput
all_tpots.append(tpot)
itls += outputs[i].itl
ttfts.append(outputs[i].ttft)
e2els.append(outputs[i].latency)
completed += 1
else:
actual_output_lens.append(0)
if gootput_config_dict:
valid_metrics = []
slo_values = []
if "ttft" in gootput_config_dict:
valid_metrics.append(ttfts)
slo_values.append(gootput_config_dict["ttft"] /
MILLISECONDS_TO_SECONDS_CONVERSION)
if "tpot" in gootput_config_dict:
valid_metrics.append(all_tpots)
slo_values.append(gootput_config_dict["tpot"] /
MILLISECONDS_TO_SECONDS_CONVERSION)
if "e2el" in gootput_config_dict:
valid_metrics.append(e2els)
slo_values.append(gootput_config_dict["e2el"] /
MILLISECONDS_TO_SECONDS_CONVERSION)
for req_metric in zip(*valid_metrics):
is_good_req = all([s >= r for s, r in zip(slo_values, req_metric)])
if is_good_req:
good_completed += 1
if completed == 0:
warnings.warn(
"All requests failed. This is likely due to a misconfiguration "
@ -272,21 +413,30 @@ def calculate_metrics(
total_input=total_input,
total_output=sum(actual_output_lens),
request_throughput=completed / dur_s,
input_throughput=total_input / dur_s,
request_goodput=good_completed / dur_s,
output_throughput=sum(actual_output_lens) / dur_s,
total_token_throughput=(total_input + sum(actual_output_lens)) / dur_s,
mean_ttft_ms=np.mean(ttfts or 0) *
1000, # ttfts is empty if streaming is not supported by backend
median_ttft_ms=np.median(ttfts or 0) * 1000,
std_ttft_ms=np.std(ttfts or 0) * 1000,
p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
median_ttft_ms=np.median(ttfts or 0) * 1000,
percentiles_ttft_ms=[(p, np.percentile(ttfts or 0, p) * 1000)
for p in selected_percentiles],
mean_tpot_ms=np.mean(tpots or 0) * 1000,
median_tpot_ms=np.median(tpots or 0) * 1000,
std_tpot_ms=np.std(tpots or 0) * 1000,
p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
median_tpot_ms=np.median(tpots or 0) * 1000,
percentiles_tpot_ms=[(p, np.percentile(tpots or 0, p) * 1000)
for p in selected_percentiles],
mean_itl_ms=np.mean(itls or 0) * 1000,
median_itl_ms=np.median(itls or 0) * 1000,
std_itl_ms=np.std(itls or 0) * 1000,
p99_itl_ms=np.percentile(itls or 0, 99) * 1000,
median_itl_ms=np.median(itls or 0) * 1000,
percentiles_itl_ms=[(p, np.percentile(itls or 0, p) * 1000)
for p in selected_percentiles],
mean_e2el_ms=np.mean(e2els or 0) * 1000,
std_e2el_ms=np.std(e2els or 0) * 1000,
median_e2el_ms=np.median(e2els or 0) * 1000,
percentiles_e2el_ms=[(p, np.percentile(e2els or 0, p) * 1000)
for p in selected_percentiles],
)
return metrics, actual_output_lens
@ -299,11 +449,17 @@ async def benchmark(
model_id: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: List[Tuple[str, int, int]],
logprobs: Optional[int],
best_of: int,
use_beam_search: bool,
request_rate: float,
burstiness: float,
disable_tqdm: bool,
profile: bool,
selected_percentile_metrics: List[str],
selected_percentiles: List[str],
ignore_eos: bool,
gootput_config_dict: Dict[str, float],
max_concurrency: Optional[int],
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS[backend]
@ -311,15 +467,22 @@ async def benchmark(
raise ValueError(f"Unknown backend: {backend}")
print("Starting initial single prompt test run...")
test_prompt, test_prompt_len, test_output_len = input_requests[0]
test_prompt, test_prompt_len, test_output_len, test_mm_content = (
input_requests[0])
if backend != "openai-chat" and test_mm_content is not None:
# multi-modal benchmark is only available on OpenAI Chat backend.
raise ValueError(
"Multi-modal content is only supported on 'openai-chat' backend.")
test_input = RequestFuncInput(
model=model_id,
prompt=test_prompt,
api_url=api_url,
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
best_of=best_of,
use_beam_search=use_beam_search,
multi_modal_content=test_mm_content,
ignore_eos=ignore_eos,
)
test_output = await request_func(request_func_input=test_input)
if not test_output.success:
@ -331,40 +494,62 @@ async def benchmark(
if profile:
print("Starting profiler...")
profile_input = RequestFuncInput(
model=model_id,
prompt=test_prompt,
api_url=base_url + "/start_profile",
prompt_len=test_prompt_len,
output_len=test_output_len,
best_of=best_of,
use_beam_search=use_beam_search,
)
profile_input = RequestFuncInput(model=model_id,
prompt=test_prompt,
api_url=base_url + "/start_profile",
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
best_of=best_of,
multi_modal_content=test_mm_content,
ignore_eos=ignore_eos)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler started")
if burstiness == 1.0:
distribution = "Poisson process"
else:
distribution = "Gamma distribution"
print(f"Traffic request rate: {request_rate}")
print(f"Burstiness factor: {burstiness} ({distribution})")
print(f"Maximum request concurrency: {max_concurrency}")
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
# This can be used once the minimum Python version is 3.10 or higher,
# and it will simplify the code in limited_request_func.
# semaphore = (asyncio.Semaphore(max_concurrency)
# if max_concurrency else contextlib.nullcontext())
semaphore = (asyncio.Semaphore(max_concurrency)
if max_concurrency else None)
async def limited_request_func(request_func_input, pbar):
if semaphore is None:
return await request_func(request_func_input=request_func_input,
pbar=pbar)
async with semaphore:
return await request_func(request_func_input=request_func_input,
pbar=pbar)
benchmark_start_time = time.perf_counter()
tasks: List[asyncio.Task] = []
async for request in get_request(input_requests, request_rate):
prompt, prompt_len, output_len = request
request_func_input = RequestFuncInput(
model=model_id,
prompt=prompt,
api_url=api_url,
prompt_len=prompt_len,
output_len=output_len,
best_of=best_of,
use_beam_search=use_beam_search,
)
async for request in get_request(input_requests, request_rate, burstiness):
prompt, prompt_len, output_len, mm_content = request
request_func_input = RequestFuncInput(model=model_id,
prompt=prompt,
api_url=api_url,
prompt_len=prompt_len,
output_len=output_len,
logprobs=logprobs,
best_of=best_of,
multi_modal_content=mm_content,
ignore_eos=ignore_eos)
tasks.append(
asyncio.create_task(
request_func(request_func_input=request_func_input,
pbar=pbar)))
limited_request_func(request_func_input=request_func_input,
pbar=pbar)))
outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)
if profile:
@ -375,8 +560,8 @@ async def benchmark(
api_url=base_url + "/stop_profile",
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
best_of=best_of,
use_beam_search=use_beam_search,
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
@ -392,6 +577,9 @@ async def benchmark(
outputs=outputs,
dur_s=benchmark_duration,
tokenizer=tokenizer,
selected_percentile_metrics=selected_percentile_metrics,
selected_percentiles=selected_percentiles,
gootput_config_dict=gootput_config_dict,
)
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
@ -403,27 +591,13 @@ async def benchmark(
metrics.total_output))
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
metrics.request_throughput))
print("{:<40} {:<10.2f}".format("Input token throughput (tok/s):",
metrics.input_throughput))
if gootput_config_dict:
print("{:<40} {:<10.2f}".format("Request goodput (req/s):",
metrics.request_goodput))
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
metrics.output_throughput))
print("{s:{c}^{n}}".format(s='Time to First Token', n=50, c='-'))
print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
print("{:<40} {:<10.2f}".format("Median TTFT (ms):",
metrics.median_ttft_ms))
print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
print("{s:{c}^{n}}".format(s='Time per Output Token (excl. 1st token)',
n=50,
c='-'))
print("{:<40} {:<10.2f}".format("Mean TPOT (ms):", metrics.mean_tpot_ms))
print("{:<40} {:<10.2f}".format("Median TPOT (ms):",
metrics.median_tpot_ms))
print("{:<40} {:<10.2f}".format("P99 TPOT (ms):", metrics.p99_tpot_ms))
print("{s:{c}^{n}}".format(s='Inter-token Latency', n=50, c='-'))
print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms))
print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms))
print("{:<40} {:<10.2f}".format("P99 ITL (ms):", metrics.p99_itl_ms))
print("=" * 50)
print("{:<40} {:<10.2f}".format("Total Token throughput (tok/s):",
metrics.total_token_throughput))
result = {
"duration": benchmark_duration,
@ -431,20 +605,10 @@ async def benchmark(
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"request_throughput": metrics.request_throughput,
"input_throughput": metrics.input_throughput,
"request_goodput:":
metrics.request_goodput if gootput_config_dict else None,
"output_throughput": metrics.output_throughput,
"mean_ttft_ms": metrics.mean_ttft_ms,
"median_ttft_ms": metrics.median_ttft_ms,
"std_ttft_ms": metrics.std_ttft_ms,
"p99_ttft_ms": metrics.p99_ttft_ms,
"mean_tpot_ms": metrics.mean_tpot_ms,
"median_tpot_ms": metrics.median_tpot_ms,
"std_tpot_ms": metrics.std_tpot_ms,
"p99_tpot_ms": metrics.p99_tpot_ms,
"mean_itl_ms": metrics.mean_itl_ms,
"median_itl_ms": metrics.median_itl_ms,
"std_itl_ms": metrics.std_itl_ms,
"p99_itl_ms": metrics.p99_itl_ms,
"total_token_throughput": metrics.total_token_throughput,
"input_lens": [output.prompt_len for output in outputs],
"output_lens": actual_output_lens,
"ttfts": [output.ttft for output in outputs],
@ -452,9 +616,85 @@ async def benchmark(
"generated_texts": [output.generated_text for output in outputs],
"errors": [output.error for output in outputs],
}
def process_one_metric(
# E.g., "ttft"
metric_attribute_name: str,
# E.g., "TTFT"
metric_name: str,
# E.g., "Time to First Token"
metric_header: str,
):
# This function prints and adds statistics of the specified
# metric.
if metric_attribute_name not in selected_percentile_metrics:
return
print("{s:{c}^{n}}".format(s=metric_header, n=50, c='-'))
print("{:<40} {:<10.2f}".format(
f"Mean {metric_name} (ms):",
getattr(metrics, f"mean_{metric_attribute_name}_ms")))
print("{:<40} {:<10.2f}".format(
f"Median {metric_name} (ms):",
getattr(metrics, f"median_{metric_attribute_name}_ms")))
result[f"mean_{metric_attribute_name}_ms"] = getattr(
metrics, f"mean_{metric_attribute_name}_ms")
result[f"median_{metric_attribute_name}_ms"] = getattr(
metrics, f"median_{metric_attribute_name}_ms")
result[f"std_{metric_attribute_name}_ms"] = getattr(
metrics, f"std_{metric_attribute_name}_ms")
for p, value in getattr(metrics,
f"percentiles_{metric_attribute_name}_ms"):
p_word = str(int(p)) if int(p) == p else str(p)
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):",
value))
result[f"p{p_word}_{metric_attribute_name}_ms"] = value
process_one_metric("ttft", "TTFT", "Time to First Token")
process_one_metric("tpot", "TPOT",
"Time per Output Token (excl. 1st token)")
process_one_metric("itl", "ITL", "Inter-token Latency")
process_one_metric("e2el", "E2EL", "End-to-end Latency")
print("=" * 50)
return result
def check_goodput_args(args):
# Check and parse goodput arguments
gootput_config_dict = {}
VALID_NAMES = ["ttft", "tpot", "e2el"]
if args.goodput:
gootput_config_dict = parse_goodput(args.goodput)
for slo_name, slo_val in gootput_config_dict.items():
if slo_name not in VALID_NAMES:
raise ValueError(
f"Invalid metric name found, {slo_name}: {slo_val}. "
"The service level objective name should be one of "
f"{str(VALID_NAMES)}. ")
if slo_val < 0:
raise ValueError(
f"Invalid value found, {slo_name}: {slo_val}. "
"The service level objective value should be "
"non-negative.")
return gootput_config_dict
def parse_goodput(slo_pairs):
gootput_config_dict = {}
try:
for slo_pair in slo_pairs:
slo_name, slo_val = slo_pair.split(":")
gootput_config_dict[slo_name] = float(slo_val)
except ValueError as err:
raise argparse.ArgumentTypeError(
"Invalid format found for service level objectives. "
"Specify service level objectives for goodput as \"KEY:VALUE\" "
"pairs, where the key is a metric name, and the value is a "
"number in milliseconds.") from err
return gootput_config_dict
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
@ -506,9 +746,9 @@ def main(args: argparse.Namespace):
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
)
input_requests = [(prompt, prompt_len, output_len)
input_requests = [(prompt, prompt_len, output_len, None)
for prompt, prompt_formatted, prompt_len,
output_len in input_requests]
output_len, _ in input_requests]
else:
assert (
tokenizer.chat_template or tokenizer.default_chat_template
@ -521,12 +761,24 @@ def main(args: argparse.Namespace):
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
)
input_requests = [(prompt_formatted, prompt_len, output_len)
input_requests = [(prompt_formatted, prompt_len, output_len, None)
for prompt, prompt_formatted, prompt_len,
output_len in input_requests]
output_len, _ in input_requests]
elif args.dataset_name == "hf":
input_requests = sample_hf_requests(
dataset_path=args.dataset_path,
dataset_subset=args.hf_subset,
dataset_split=args.hf_split,
num_requests=args.num_prompts,
tokenizer=tokenizer,
random_seed=args.seed,
fixed_output_len=args.hf_output_len,
)
elif args.dataset_name == "random":
input_requests = sample_random_requests(
prefix_len=args.random_prefix_len,
input_len=args.random_input_len,
output_len=args.random_output_len,
num_prompts=args.num_prompts,
@ -537,6 +789,8 @@ def main(args: argparse.Namespace):
else:
raise ValueError(f"Unknown dataset: {args.dataset_name}")
gootput_config_dict = check_goodput_args(args)
benchmark_result = asyncio.run(
benchmark(
backend=backend,
@ -545,11 +799,19 @@ def main(args: argparse.Namespace):
model_id=model_id,
tokenizer=tokenizer,
input_requests=input_requests,
logprobs=args.logprobs,
best_of=args.best_of,
use_beam_search=args.use_beam_search,
request_rate=args.request_rate,
burstiness=args.burstiness,
disable_tqdm=args.disable_tqdm,
profile=args.profile,
selected_percentile_metrics=args.percentile_metrics.split(","),
selected_percentiles=[
float(p) for p in args.metric_percentiles.split(",")
],
ignore_eos=args.ignore_eos,
gootput_config_dict=gootput_config_dict,
max_concurrency=args.max_concurrency,
))
# Save config and results to json
@ -563,7 +825,6 @@ def main(args: argparse.Namespace):
result_json["model_id"] = model_id
result_json["tokenizer_id"] = tokenizer_id
result_json["best_of"] = args.best_of
result_json["use_beam_search"] = args.use_beam_search
result_json["num_prompts"] = args.num_prompts
# Metadata
@ -580,18 +841,22 @@ def main(args: argparse.Namespace):
# Traffic
result_json["request_rate"] = (
args.request_rate if args.request_rate < float("inf") else "inf")
result_json["burstiness"] = args.burstiness
result_json["max_concurrency"] = args.max_concurrency
# Merge with benchmark result
result_json = {**result_json, **benchmark_result}
# Save to file
base_model_id = model_id.split("/")[-1]
file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json" #noqa
max_concurrency_str = (f"-concurrency{args.max_concurrency}"
if args.max_concurrency is not None else "")
file_name = f"{backend}-{args.request_rate}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json" #noqa
if args.result_filename:
file_name = args.result_filename
if args.result_dir:
file_name = os.path.join(args.result_dir, file_name)
with open(file_name, "w") as outfile:
with open(file_name, "w", encoding='utf-8') as outfile:
json.dump(result_json, outfile)
@ -629,13 +894,27 @@ if __name__ == "__main__":
"--dataset-name",
type=str,
default="sharegpt",
choices=["sharegpt", "sonnet", "random"],
choices=["sharegpt", "sonnet", "random", "hf"],
help="Name of the dataset to benchmark on.",
)
parser.add_argument("--dataset-path",
type=str,
default=None,
help="Path to the dataset.")
help="Path to the sharegpt/sonnet dataset. "
"Or the huggingface dataset ID if using HF dataset.")
parser.add_argument(
"--max-concurrency",
type=int,
default=None,
help="Maximum number of concurrent requests. This can be used "
"to help simulate an environment where a higher level component "
"is enforcing a maximum number of concurrent requests. While the "
"--request-rate argument controls the rate at which requests are "
"initiated, this argument will control how many are actually allowed "
"to execute at a time. This means that when used in combination, the "
"actual request rate may be lower than specified with --request-rate, "
"if the server is not processing requests fast enough to keep up.")
parser.add_argument(
"--model",
type=str,
@ -663,52 +942,14 @@ if __name__ == "__main__":
help="Number of prompts to process.",
)
parser.add_argument(
"--sharegpt-output-len",
"--logprobs",
type=int,
default=None,
help="Output length for each request. Overrides the output length "
"from the ShareGPT dataset.")
parser.add_argument(
"--sonnet-input-len",
type=int,
default=550,
help=
"Number of input tokens per request, used only for sonnet dataset.",
)
parser.add_argument(
"--sonnet-output-len",
type=int,
default=150,
help=
"Number of output tokens per request, used only for sonnet dataset.",
)
parser.add_argument(
"--sonnet-prefix-len",
type=int,
default=200,
help=
"Number of prefix tokens per request, used only for sonnet dataset.",
)
parser.add_argument(
"--random-input-len",
type=int,
default=1024,
help=
"Number of input tokens per request, used only for random sampling.",
)
parser.add_argument(
"--random-output-len",
type=int,
default=128,
help=
"Number of output tokens per request, used only for random sampling.",
)
parser.add_argument(
"--random-range-ratio",
type=float,
default=1.0,
help="Range of sampled ratio of input/output length, "
"used only for random sampling.",
help=("Number of logprobs-per-token to compute & return as part of "
"the request. If unspecified, then either (1) if beam search "
"is disabled, no logprobs are computed & a single dummy "
"logprob is returned for each token; or (2) if beam search "
"is enabled 1 logprob per token is computed"),
)
parser.add_argument(
"--request-rate",
@ -716,8 +957,20 @@ if __name__ == "__main__":
default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.",
"Otherwise, we use Poisson process or gamma distribution "
"to synthesize the request arrival times.",
)
parser.add_argument(
"--burstiness",
type=float,
default=1.0,
help="Burstiness factor of the request generation. "
"Only take effect when request_rate is not inf. "
"Default value is 1, which follows Poisson process. "
"Otherwise, the request intervals follow a gamma distribution. "
"A lower burstiness value (0 < burstiness < 1) results in more "
"bursty requests. A higher burstiness value (burstiness > 1) "
"results in a more uniform arrival of requests.",
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument(
@ -765,6 +1018,119 @@ if __name__ == "__main__":
"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"
" format.",
)
parser.add_argument(
"--ignore-eos",
action="store_true",
help="Set ignore_eos flag when sending the benchmark request."
"Warning: ignore_eos is not supported in deepspeed_mii and tgi.")
parser.add_argument(
"--percentile-metrics",
type=str,
default="ttft,tpot,itl",
help="Comma-seperated list of selected metrics to report percentils. "
"This argument specifies the metrics to report percentiles. "
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
"Default value is \"ttft,tpot,itl\".")
parser.add_argument(
"--metric-percentiles",
type=str,
default="99",
help="Comma-seperated list of percentiles for selected metrics. "
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
"Default value is \"99\". "
"Use \"--percentile-metrics\" to select metrics.",
)
parser.add_argument(
"--goodput",
nargs="+",
required=False,
help="Specify service level objectives for goodput as \"KEY:VALUE\" "
"pairs, where the key is a metric name, and the value is in "
"milliseconds. Multiple \"KEY:VALUE\" pairs can be provided, "
"separated by spaces. Allowed request level metric names are "
"\"ttft\", \"tpot\", \"e2el\". For more context on the definition of "
"goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 "
"and the blog: https://hao-ai-lab.github.io/blogs/distserve")
# group for dataset specific arguments
sonnet_group = parser.add_argument_group("sonnet dataset options")
sonnet_group.add_argument(
"--sonnet-input-len",
type=int,
default=550,
help=
"Number of input tokens per request, used only for sonnet dataset.",
)
sonnet_group.add_argument(
"--sonnet-output-len",
type=int,
default=150,
help=
"Number of output tokens per request, used only for sonnet dataset.",
)
sonnet_group.add_argument(
"--sonnet-prefix-len",
type=int,
default=200,
help=
"Number of prefix tokens per request, used only for sonnet dataset.",
)
sharegpt_group = parser.add_argument_group("sharegpt dataset options")
sharegpt_group.add_argument(
"--sharegpt-output-len",
type=int,
default=None,
help="Output length for each request. Overrides the output length "
"from the ShareGPT dataset.")
random_group = parser.add_argument_group("random dataset options")
random_group.add_argument(
"--random-input-len",
type=int,
default=1024,
help=
"Number of input tokens per request, used only for random sampling.",
)
random_group.add_argument(
"--random-output-len",
type=int,
default=128,
help=
"Number of output tokens per request, used only for random sampling.",
)
random_group.add_argument(
"--random-range-ratio",
type=float,
default=1.0,
help="Range of sampled ratio of input/output length, "
"used only for random sampling.",
)
random_group.add_argument(
"--random-prefix-len",
type=int,
default=0,
help="Number of fixed prefix tokens before random "
" context. The length range of context in a random "
" request is [random-prefix-len, "
" random-prefix-len + random-prefix-len * random-range-ratio).")
hf_group = parser.add_argument_group("hf dataset options")
hf_group.add_argument("--hf-subset",
type=str,
default=None,
help="Subset of the HF dataset.")
hf_group.add_argument("--hf-split",
type=str,
default=None,
help="Split of the HF dataset.")
hf_group.add_argument(
"--hf-output-len",
type=int,
default=None,
help="Output length for each request. Overrides the output lengths "
"from the sampled HF dataset.",
)
args = parser.parse_args()
main(args)

View File

@ -1,26 +1,71 @@
"""Benchmark offline inference throughput."""
import argparse
import dataclasses
import json
import random
import time
from typing import List, Optional, Tuple
from typing import List, Optional
import torch
import uvloop
from PIL import Image
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizerBase)
from vllm.engine.arg_utils import EngineArgs
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.utils import FlexibleArgumentParser
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
build_async_engine_client_from_engine_args)
from vllm.inputs import TextPrompt
from vllm.multimodal import MultiModalDataDict
from vllm.sampling_params import BeamSearchParams
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
@dataclasses.dataclass
class SampleRequest:
"""A class representing a single inference request for benchmarking.
Attributes:
prompt: The input text prompt for the model.
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
images).
prompt_len: The length of the prompt in tokens.
expected_output_len: The expected length of the output in tokens.
"""
prompt: str
prompt_len: int
expected_output_len: int
multi_modal_data: Optional[MultiModalDataDict] = None
def _get_prompt_for_image_model(question: str, *, model: str) -> str:
"""Prepend and append special tokens around the question to form a prompt.
Args:
question: The input question text to wrap with special tokens
model: The name of the model being used, to determine which special
tokens to add
Returns:
The formatted prompt string with appropriate special tokens for the
model
Raises:
ValueError: If an unsupported model name is provided
"""
model = model.lower()
if "pixtral" in model:
return f"<s>[INST]{question}\n[IMG][/INST]"
raise ValueError(f"Unsupported model {model}")
def sample_requests(tokenizer: PreTrainedTokenizerBase,
args: argparse.Namespace) -> List[SampleRequest]:
dataset_path: str = args.dataset
num_requests: int = args.num_prompts
fixed_output_len: Optional[int] = args.output_len
model: str = args.model
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
@ -29,23 +74,36 @@ def sample_requests(
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for i in range(len(dataset)):
filtered_dataset: List[SampleRequest] = []
for data in dataset:
if len(filtered_dataset) == num_requests:
break
# Only keep the first two turns of each conversation.
prompt = data["conversations"][0]["value"]
completion = data["conversations"][1]["value"]
multi_modal_data: Optional[MultiModalDataDict] = None
if "image" in data:
multi_modal_data = multi_modal_data or {}
image_path = data["image"]
# TODO(vllm-project/vllm/issues/9778): Support multiple images.
assert isinstance(image_path,
str), "Only support single image input"
try:
multi_modal_data["image"] = Image.open(image_path).convert(
"RGB")
except FileNotFoundError:
# Ignore datapoint where asset is missing
continue
prompt = _get_prompt_for_image_model(question=prompt, model=model)
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
@ -56,89 +114,110 @@ def sample_requests(
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
filtered_dataset.append((prompt, prompt_len, output_len))
filtered_dataset.append(
SampleRequest(prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=multi_modal_data))
return filtered_dataset
def run_vllm(
requests: List[Tuple[str, int, int]],
model: str,
tokenizer: str,
quantization: Optional[str],
tensor_parallel_size: int,
seed: int,
requests: List[SampleRequest],
n: int,
use_beam_search: bool,
trust_remote_code: bool,
dtype: str,
max_model_len: Optional[int],
enforce_eager: bool,
kv_cache_dtype: str,
quantization_param_path: Optional[str],
device: str,
enable_prefix_caching: bool,
enable_chunked_prefill: bool,
max_num_batched_tokens: int,
distributed_executor_backend: Optional[str],
gpu_memory_utilization: float = 0.9,
download_dir: Optional[str] = None,
load_format: str = EngineArgs.load_format,
engine_args: EngineArgs,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(
model=model,
tokenizer=tokenizer,
quantization=quantization,
tensor_parallel_size=tensor_parallel_size,
seed=seed,
trust_remote_code=trust_remote_code,
dtype=dtype,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
quantization_param_path=quantization_param_path,
device=device,
enable_prefix_caching=enable_prefix_caching,
download_dir=download_dir,
enable_chunked_prefill=enable_chunked_prefill,
max_num_batched_tokens=max_num_batched_tokens,
distributed_executor_backend=distributed_executor_backend,
load_format=load_format,
)
llm = LLM(**dataclasses.asdict(engine_args))
# Add the requests to the engine.
prompts: List[str] = []
prompts: List[TextPrompt] = []
sampling_params: List[SamplingParams] = []
for prompt, _, output_len in requests:
prompts.append(prompt)
for request in requests:
prompts.append(
TextPrompt(prompt=request.prompt,
multi_modal_data=request.multi_modal_data))
sampling_params.append(
SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
temperature=1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
max_tokens=request.expected_output_len,
))
start = time.perf_counter()
llm.generate(prompts, sampling_params, use_tqdm=True)
end = time.perf_counter()
use_beam_search = False
if not use_beam_search:
start = time.perf_counter()
llm.generate(prompts, sampling_params, use_tqdm=True)
end = time.perf_counter()
else:
prompts = [request.prompt for request in requests]
# output_len should be the same for all requests.
output_len = requests[0][2]
for request in requests:
assert request.expected_output_len == output_len
start = time.perf_counter()
llm.beam_search(
prompts,
BeamSearchParams(
beam_width=n,
max_tokens=output_len,
ignore_eos=True,
))
end = time.perf_counter()
return end - start
async def run_vllm_async(
requests: List[SampleRequest],
n: int,
engine_args: AsyncEngineArgs,
disable_frontend_multiprocessing: bool = False,
) -> float:
from vllm import SamplingParams
async with build_async_engine_client_from_engine_args(
engine_args, disable_frontend_multiprocessing) as llm:
# Add the requests to the engine.
prompts: List[TextPrompt] = []
sampling_params: List[SamplingParams] = []
for request in requests:
prompts.append(
TextPrompt(prompt=request.prompt,
multi_modal_data=request.multi_modal_data))
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
))
generators = []
start = time.perf_counter()
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
generator = llm.generate(prompt, sp, request_id=f"test{i}")
generators.append(generator)
all_gens = merge_async_iterators(*generators)
async for i, res in all_gens:
pass
end = time.perf_counter()
return end - start
def run_hf(
requests: List[Tuple[str, int, int]],
requests: List[SampleRequest],
model: str,
tokenizer: PreTrainedTokenizerBase,
n: int,
use_beam_search: bool,
max_batch_size: int,
trust_remote_code: bool,
) -> float:
assert not use_beam_search
llm = AutoModelForCausalLM.from_pretrained(
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
if llm.config.model_type == "llama":
@ -170,7 +249,7 @@ def run_hf(
padding=True).input_ids
llm_outputs = llm.generate(
input_ids=input_ids.cuda(),
do_sample=not use_beam_search,
do_sample=True,
num_return_sequences=n,
temperature=1.0,
top_p=1.0,
@ -190,14 +269,14 @@ def run_hf(
def run_mii(
requests: List[Tuple[str, int, int]],
requests: List[SampleRequest],
model: str,
tensor_parallel_size: int,
output_len: int,
) -> float:
from mii import client, serve
llm = serve(model, tensor_parallel=tensor_parallel_size)
prompts = [prompt for prompt, _, _ in requests]
prompts = [request.prompt for request in requests]
start = time.perf_counter()
llm.generate(prompts, max_new_tokens=output_len)
@ -216,37 +295,60 @@ def main(args: argparse.Namespace):
args.tokenizer, trust_remote_code=args.trust_remote_code)
if args.dataset is None:
# Synthesize a prompt with the given input length.
prompt = "hi" * (args.input_len - 1)
requests = [(prompt, args.input_len, args.output_len)
for _ in range(args.num_prompts)]
# As tokenizer may add additional tokens like BOS, we need to try
# different lengths to get the desired input length.
for i in range(-10, 10):
prompt = "hi " * (args.input_len + i)
tokenized_prompt = tokenizer(prompt).input_ids
if len(tokenized_prompt) == args.input_len:
break
else:
raise ValueError(
f"Failed to synthesize a prompt with {args.input_len} tokens.")
requests = [
SampleRequest(prompt=prompt,
prompt_len=args.input_len,
expected_output_len=args.output_len)
for _ in range(args.num_prompts)
]
else:
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
args.output_len)
requests = sample_requests(tokenizer, args)
is_multi_modal = any(request.multi_modal_data is not None
for request in requests)
if args.backend == "vllm":
elapsed_time = run_vllm(
requests, args.model, args.tokenizer, args.quantization,
args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype, args.max_model_len,
args.enforce_eager, args.kv_cache_dtype,
args.quantization_param_path, args.device,
args.enable_prefix_caching, args.enable_chunked_prefill,
args.max_num_batched_tokens, args.distributed_executor_backend,
args.gpu_memory_utilization, args.download_dir, args.load_format)
if args.async_engine:
elapsed_time = uvloop.run(
run_vllm_async(
requests,
args.n,
AsyncEngineArgs.from_cli_args(args),
args.disable_frontend_multiprocessing,
))
else:
elapsed_time = run_vllm(requests, args.n,
EngineArgs.from_cli_args(args))
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
args.use_beam_search, args.hf_max_batch_size,
args.trust_remote_code)
args.hf_max_batch_size, args.trust_remote_code)
elif args.backend == "mii":
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
args.output_len)
else:
raise ValueError(f"Unknown backend: {args.backend}")
total_num_tokens = sum(prompt_len + output_len
for _, prompt_len, output_len in requests)
total_num_tokens = sum(request.prompt_len + request.expected_output_len
for request in requests)
total_output_tokens = sum(request.expected_output_len
for request in requests)
if is_multi_modal:
print("\033[91mWARNING\033[0m: Multi-modal request detected. The "
"following metrics are not accurate because image tokens are not"
" counted. See vllm-project/vllm/issues/9778 for details.")
# TODO(vllm-project/vllm/issues/9778): Count molti-modal token length.
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} tokens/s")
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
f"{total_output_tokens / elapsed_time:.2f} output tokens/s")
# Output JSON results if specified
if args.output_json:
@ -270,7 +372,9 @@ if __name__ == "__main__":
parser.add_argument("--dataset",
type=str,
default=None,
help="Path to the dataset.")
help="Path to the dataset. The dataset is expected to "
"be a json in form of List[Dict[..., conversations: "
"List[Dict[..., value: <prompt_or_response>]]]]")
parser.add_argument("--input-len",
type=int,
default=None,
@ -280,131 +384,32 @@ if __name__ == "__main__":
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--model", type=str, default="facebook/opt-125m")
parser.add_argument("--tokenizer", type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=[*QUANTIZATION_METHODS, None],
default=None)
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument("--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--hf-max-batch-size",
type=int,
default=None,
help="Maximum batch size for HF backend.")
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
parser.add_argument(
'--max-model-len',
type=int,
default=None,
help='Maximum length of a sequence (including prompt and output). '
'If None, will be derived from the model.')
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument('--gpu-memory-utilization',
type=float,
default=0.9,
help='the fraction of GPU memory to be used for '
'the model executor, which can range from 0 to 1.'
'If unspecified, will use the default value of 0.9.')
parser.add_argument("--enforce-eager",
action="store_true",
help="enforce eager execution")
parser.add_argument(
'--kv-cache-dtype',
type=str,
choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'],
default="auto",
help='Data type for kv cache storage. If "auto", will use model '
'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. '
'ROCm (AMD GPU) supports fp8 (=fp8_e4m3)')
parser.add_argument(
'--quantization-param-path',
type=str,
default=None,
help='Path to the JSON file containing the KV cache scaling factors. '
'This should generally be supplied, when KV cache dtype is FP8. '
'Otherwise, KV cache scaling factors default to 1.0, which may cause '
'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is '
'instead supported for common inference criteria.')
parser.add_argument(
"--device",
type=str,
default="auto",
choices=["auto", "cuda", "cpu", "openvino", "tpu", "xpu"],
help='device type for vLLM execution, supporting CUDA, OpenVINO and '
'CPU.')
parser.add_argument(
"--enable-prefix-caching",
action='store_true',
help="enable automatic prefix caching for vLLM backend.")
parser.add_argument("--enable-chunked-prefill",
action='store_true',
help="enable chunked prefill for vLLM backend.")
parser.add_argument('--max-num-batched-tokens',
type=int,
default=None,
help='maximum number of batched tokens per '
'iteration')
parser.add_argument('--download-dir',
type=str,
default=None,
help='directory to download and load the weights, '
'default to the default cache dir of huggingface')
parser.add_argument(
'--output-json',
type=str,
default=None,
help='Path to save the throughput results in JSON format.')
parser.add_argument(
'--distributed-executor-backend',
choices=['ray', 'mp'],
default=None,
help='Backend to use for distributed serving. When more than 1 GPU '
'is used, will be automatically set to "ray" if installed '
'or "mp" (multiprocessing) otherwise.')
parser.add_argument(
'--load-format',
type=str,
default=EngineArgs.load_format,
choices=[
'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer',
'bitsandbytes'
],
help='The format of the model weights to load.\n\n'
'* "auto" will try to load the weights in the safetensors format '
'and fall back to the pytorch bin format if safetensors format '
'is not available.\n'
'* "pt" will load the weights in the pytorch bin format.\n'
'* "safetensors" will load the weights in the safetensors format.\n'
'* "npcache" will load the weights in pytorch format and store '
'a numpy cache to speed up the loading.\n'
'* "dummy" will initialize the weights with random values, '
'which is mainly for profiling.\n'
'* "tensorizer" will load the weights using tensorizer from '
'CoreWeave. See the Tensorize vLLM Model script in the Examples'
'section for more information.\n'
'* "bitsandbytes" will load the weights using bitsandbytes '
'quantization.\n')
parser.add_argument("--async-engine",
action='store_true',
default=False,
help="Use vLLM async engine rather than LLM class.")
parser.add_argument("--disable-frontend-multiprocessing",
action='store_true',
default=False,
help="Disable decoupled async engine frontend.")
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
@ -427,8 +432,6 @@ if __name__ == "__main__":
raise ValueError("dtype must be auto for MII backend.")
if args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.use_beam_search:
raise ValueError("Beam search is not supported for MII backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.hf_max_batch_size is not None:

View File

@ -1,9 +1,9 @@
import random
import time
import torch
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.platforms import current_platform
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
@ -16,10 +16,7 @@ def main(num_tokens: int,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
current_platform.seed_everything(seed)
torch.set_default_device("cuda")
layer = RMSNorm(hidden_size).to(dtype=dtype)

View File

@ -4,8 +4,10 @@ import itertools
import math
import pickle as pkl
import time
from typing import Callable, Iterable, List, Tuple
from itertools import product
from typing import Callable, Iterable, List, Optional, Tuple
import pandas as pd
import torch
import torch.utils.benchmark as TBenchmark
from torch.utils.benchmark import Measurement as TMeasurement
@ -84,6 +86,10 @@ def loop_over_weights(
fn(a, w_ref, w_q, w_s)
_SWEEP_SCHEDULES_RESULTS: Optional[pd.DataFrame] = None
_SWEEP_SCHEDULES_RESULTS_CSV: Optional[str] = None
def bench(atype: torch.dtype,
wtype: ScalarType,
group_size: int,
@ -94,6 +100,8 @@ def bench(atype: torch.dtype,
sub_label: str,
benchmark_marlinv1: bool = True,
sweep_schedules: bool = True) -> Iterable[TMeasurement]:
global _SWEEP_SCHEDULES_RESULTS
a, weights = make_bench_tensors(atype, wtype, group_size, m, n, k)
sub_label += f", L={len(weights)}"
@ -163,6 +171,11 @@ def bench(atype: torch.dtype,
best_schedule = None
schedules = ops.machete_supported_schedules(wtype)
for schedule in reversed(schedules):
schedule_M = int(schedule.split("_")[0].split("x")[1])
# Prune known bad schedules
if schedule_M >= 2 * max(m, 16) or schedule_M < m // 4:
continue
def run(a, _, w_q, w_s, schedule=schedule):
ops.machete_gemm(a,
@ -175,6 +188,20 @@ def bench(atype: torch.dtype,
res = bench_fn(label, sub_label, "machete_best",
lambda: loop_over_weights(a, weights_machete, run))
results_row = {
"M": m,
"K": k,
"N": n,
"group_size": group_size,
"schedule": schedule,
"median": res.median,
}
if _SWEEP_SCHEDULES_RESULTS is None:
_SWEEP_SCHEDULES_RESULTS = pd.DataFrame(
columns=results_row.keys())
_SWEEP_SCHEDULES_RESULTS.\
loc[len(_SWEEP_SCHEDULES_RESULTS)] = results_row
print(f" {res.median:5.5} ", schedule)
if not best or res.median < best.median:
best = res
@ -235,18 +262,22 @@ def run_square_bench(args):
dim_sizes = list(
range(args.dim_start, args.dim_end + 1, args.dim_increment))
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
data = run(args.dtype, args.sweep_schedules, MKNs)
make_output(data, MKNs, f"square_bench-{args.dtype}")
def run_range_bench(args):
dim_sizes = list(range(args.dim_start, args.dim_end, args.dim_increment))
n = len(dim_sizes)
Ms = [args.m_constant] * n if args.m_constant is not None else dim_sizes
Ks = [args.k_constant] * n if args.k_constant is not None else dim_sizes
Ns = [args.n_constant] * n if args.n_constant is not None else dim_sizes
MKNs = list(zip(Ms, Ks, Ns))
m_start, k_start, n_start = (int(x) for x in args.dim_start.split(","))
m_end, k_end, n_end = (int(x) for x in args.dim_end.split(","))
m_increment, k_increment, n_increment = \
(int(x) for x in args.dim_increment.split(","))
Ms = list(range(m_start, m_end + 1, m_increment))
Ks = list(range(k_start, k_end + 1, k_increment))
Ns = list(range(n_start, n_end + 1, n_increment))
MKNs = list(product(Ms, Ks, Ns))
data = run(args.dtype, args.sweep_schedules, MKNs)
make_output(data, MKNs, f"range_bench-{args.dtype}")
@ -333,6 +364,9 @@ Benchmark Machete GEMM.
action="store_true",
help="Run a sweep over all supported schedules",
)
parser.add_argument("--sweep-csv-out",
help="CSV to store sweep results",
default="sch_sweep_results.csv")
subparsers = parser.add_subparsers(dest="cmd", required=True)
square_parser = subparsers.add_parser("square_bench")
@ -342,12 +376,21 @@ Benchmark Machete GEMM.
square_parser.set_defaults(func=run_square_bench)
range_parser = subparsers.add_parser("range_bench")
range_parser.add_argument("--dim-start", type=int, required=True)
range_parser.add_argument("--dim-end", type=int, required=True)
range_parser.add_argument("--dim-increment", type=int, required=True)
range_parser.add_argument("--m-constant", type=int, default=None)
range_parser.add_argument("--n-constant", type=int, default=None)
range_parser.add_argument("--k-constant", type=int, default=None)
range_parser.add_argument(
"--dim-start",
type=str,
required=True,
help="Start value for M,K,N as common separated list")
range_parser.add_argument(
"--dim-end",
type=str,
required=True,
help="End value (inclusive) for M,K,N as common separated list")
range_parser.add_argument(
"--dim-increment",
type=str,
required=True,
help="Increment value for M,K,N as common separated list")
range_parser.set_defaults(func=run_range_bench)
model_parser = subparsers.add_parser("model_bench")
@ -369,4 +412,9 @@ Benchmark Machete GEMM.
model_parser.set_defaults(func=run_model_bench)
args = parser.parse_args()
_SWEEP_SCHEDULES_RESULTS_CSV = args.sweep_csv_out
args.func(args)
if _SWEEP_SCHEDULES_RESULTS is not None:
_SWEEP_SCHEDULES_RESULTS.to_csv(_SWEEP_SCHEDULES_RESULTS_CSV)

View File

@ -10,6 +10,7 @@ from ray.experimental.tqdm_ray import tqdm
from transformers import AutoConfig
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
@ -88,22 +89,23 @@ def benchmark_config(
input_gating.copy_(gating_output[i])
def run():
fused_moe(
x,
w1,
w2,
input_gating,
topk,
renormalize=True,
inplace=True,
override_config=config,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a16=use_int8_w8a16,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
)
from vllm.model_executor.layers.fused_moe import override_config
with override_config(config):
fused_moe(
x,
w1,
w2,
input_gating,
topk,
renormalize=True,
inplace=True,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a16=use_int8_w8a16,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
)
# JIT compilation & warmup
run()
@ -166,7 +168,7 @@ class BenchmarkWorker:
def __init__(self, seed: int) -> None:
torch.set_default_device("cuda")
torch.cuda.manual_seed_all(seed)
current_platform.seed_everything(seed)
self.seed = seed
def benchmark(
@ -180,7 +182,7 @@ class BenchmarkWorker:
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
) -> Tuple[Dict[str, int], float]:
torch.cuda.manual_seed_all(self.seed)
current_platform.seed_everything(self.seed)
dtype_str = get_config_dtype_str(dtype,
use_int8_w8a16=use_int8_w8a16,
use_fp8_w8a8=use_fp8_w8a8)

View File

@ -5,6 +5,7 @@ from typing import List, Optional
import torch
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
create_kv_caches_with_random)
@ -28,10 +29,7 @@ def main(
device: str = "cuda",
kv_cache_dtype: Optional[str] = None,
) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
current_platform.seed_everything(seed)
scale = float(1.0 / (head_size**0.5))
query = torch.empty(num_seqs,

View File

@ -1,9 +1,9 @@
import random
import time
import torch
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
@ -17,10 +17,7 @@ def main(num_tokens: int,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
current_platform.seed_everything(seed)
torch.set_default_device("cuda")
x = torch.randn(num_tokens, hidden_size, dtype=dtype)

View File

@ -6,6 +6,7 @@ import torch
from vllm.model_executor.layers.rotary_embedding import (RotaryEmbedding,
get_rope)
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
@ -22,9 +23,7 @@ def benchmark_rope_kernels_multi_lora(
max_position: int = 8192,
base: int = 10000,
) -> None:
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
if rotary_dim is None:
rotary_dim = head_size
@ -33,7 +32,7 @@ def benchmark_rope_kernels_multi_lora(
# batched RoPE can take multiple scaling factors
batched_rope = get_rope(head_size, rotary_dim, max_position, base,
is_neox_style, {
"type": "linear",
"rope_type": "linear",
"factor": tuple(scaling_factors)
})
# non-batched RoPE takes only one scaling factor, we create multiple
@ -43,7 +42,7 @@ def benchmark_rope_kernels_multi_lora(
non_batched_ropes.append(
get_rope(head_size, rotary_dim, max_position, base, is_neox_style,
{
"type": "linear",
"rope_type": "linear",
"factor": (scaling_factor, )
}))

Some files were not shown because too many files have changed in this diff Show More