Compare commits

...

789 Commits

Author SHA1 Message Date
3fd2b0d21c Bump version to v0.6.1 (#8379) 2024-09-11 14:42:11 -07:00
d394787e52 Pixtral (#8377)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-09-11 14:41:55 -07:00
775f00f81e [Speculative Decoding] Test refactor (#8317)
Co-authored-by: youkaichao <youkaichao@126.com>
2024-09-11 14:07:34 -07:00
8baa454937 [Misc] Move device options to a single place (#8322) 2024-09-11 13:25:58 -07:00
73202dbe77 [Kernel][Misc] register ops to prevent graph breaks (#6917)
Co-authored-by: Sage Moore <sage@neuralmagic.com>
2024-09-11 12:52:19 -07:00
7015417fd4 [Bugfix] Add missing attributes in mistral tokenizer (#8364) 2024-09-11 11:36:54 -07:00
aea02f30de [CI/Build] Excluding test_moe.py from AMD Kernels tests for investigation (#8373) 2024-09-11 18:31:41 +00:00
0b952af458 [Hardware][Intel] Support compressed-tensor W8A8 for CPU backend (#7257) 2024-09-11 09:46:46 -07:00
3b7fea770f [Model][VLM] Add Qwen2-VL model support (#7905)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-09-11 09:31:19 -07:00
cea95dfb94 [Frontend] Create ErrorResponse instead of raising exceptions in run_batch (#8347) 2024-09-11 05:30:11 +00:00
6a512a00df [model] Support for Llava-Next-Video model (#7559)
Co-authored-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-09-10 22:21:36 -07:00
efcf946a15 [Hardware][NV] Add support for ModelOpt static scaling checkpoints. (#6112) 2024-09-11 00:38:40 -04:00
1230263e16 [Bugfix] Fix InternVL2 vision embeddings process with pipeline parallel (#8299) 2024-09-11 10:11:01 +08:00
e497b8aeff [Misc] Skip loading extra bias for Qwen2-MOE GPTQ models (#8329) 2024-09-10 20:59:19 -04:00
94144e726c [CI/Build][Kernel] Update CUTLASS to 3.5.1 tag (#8043) 2024-09-10 23:51:58 +00:00
1d5e397aa4 [Core/Bugfix] pass VLLM_ATTENTION_BACKEND to ray workers (#8172) 2024-09-10 23:46:08 +00:00
22f3a4bc6c [Bugfix] lookahead block table with cuda graph max capture (#8340)
[Bugfix] Ensure multistep lookahead allocation is compatible with cuda graph max capture (#8340)
2024-09-10 16:00:35 -07:00
b1f3e18958 [MISC] Keep chunked prefill enabled by default with long context when prefix caching is enabled (#8342) 2024-09-10 22:28:28 +00:00
04e7c4e771 [Misc] remove peft as dependency for prompt models (#8162) 2024-09-10 17:21:56 -04:00
5faedf1b62 [Spec Decode] Move ops.advance_step to flash attn advance_step (#8224) 2024-09-10 13:18:14 -07:00
02751a7a42 Fix ppc64le buildkite job (#8309) 2024-09-10 12:58:34 -07:00
f421f3cefb [CI/Build] Enabling kernels tests for AMD, ignoring some of then that fail (#8130) 2024-09-10 11:51:15 -07:00
8c054b7a62 [Frontend] Clean up type annotations for mistral tokenizer (#8314) 2024-09-10 16:49:11 +00:00
6234385f4a [CI/Build] enable ccache/scccache for HIP builds (#8327) 2024-09-10 08:55:08 -07:00
da1a844e61 [Bugfix] Fix missing post_layernorm in CLIP (#8155) 2024-09-10 08:22:50 +00:00
a1d874224d Add NVIDIA Meetup slides, announce AMD meetup, and add contact info (#8319) 2024-09-09 23:21:00 -07:00
6cd5e5b07e [Misc] Fused MoE Marlin support for GPTQ (#8217) 2024-09-09 23:02:52 -04:00
c7cb5c3335 [Misc] GPTQ Activation Ordering (#8135) 2024-09-09 16:27:26 -04:00
f9b4a2d415 [Bugfix] Correct adapter usage for cohere and jamba (#8292) 2024-09-09 11:20:46 -07:00
58fcc8545a [Frontend] Add progress reporting to run_batch.py (#8060)
Co-authored-by: Adam Lugowski <adam.lugowski@parasail.io>
2024-09-09 11:16:37 -07:00
08287ef675 [Bugfix] Streamed tool calls now more strictly follow OpenAI's format; ensures Vercel AI SDK compatibility (#8272) 2024-09-09 10:45:11 -04:00
4ef41b8476 [Bugfix] Fix async postprocessor in case of preemption (#8267) 2024-09-07 21:01:51 -07:00
cfe712bf1a [CI/Build] Use python 3.12 in cuda image (#8133)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-09-07 13:03:16 -07:00
b962ee1470 ppc64le: Dockerfile fixed, and a script for buildkite (#8026) 2024-09-07 11:18:40 -07:00
36bf8150cc [Model][VLM] Decouple weight loading logic for Paligemma (#8269) 2024-09-07 17:45:44 +00:00
e807125936 [Model][VLM] Support multi-images inputs for InternVL2 models (#8201) 2024-09-07 16:38:23 +08:00
9f68e00d27 [Bugfix] Fix broken OpenAI tensorizer test (#8258) 2024-09-07 08:02:39 +00:00
ce2702a923 [tpu][misc] fix typo (#8260) 2024-09-06 22:40:46 -07:00
795b662cff Enable Random Prefix Caching in Serving Profiling Tool (benchmark_serving.py) (#8241) 2024-09-06 20:18:16 -07:00
2f707fcb35 [Model] Multi-input support for LLaVA (#8238) 2024-09-07 02:57:24 +00:00
41e95c5247 [Bugfix] Fix Hermes tool call chat template bug (#8256)
Co-authored-by: Kyle Mistele <kyle@constellate.ai>
2024-09-07 10:49:01 +08:00
12dd715807 [misc] [doc] [frontend] LLM torch profiler support (#7943) 2024-09-06 17:48:48 -07:00
29f49cd6e3 [Model] Allow loading from original Mistral format (#8168)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-09-06 17:02:05 -06:00
23f322297f [Misc] Remove SqueezeLLM (#8220) 2024-09-06 16:29:03 -06:00
9db52eab3d [Kernel] [Triton] Memory optimization for awq_gemm and awq_dequantize, 2x throughput (#8248) 2024-09-06 16:26:09 -06:00
1447c97e75 [CI/Build] Increasing timeout for multiproc worker tests (#8203) 2024-09-06 11:51:03 -07:00
de80783b69 [Misc] Use ray[adag] dependency instead of cuda (#7938) 2024-09-06 09:18:35 -07:00
e5cab71531 [Frontend] Add --logprobs argument to benchmark_serving.py (#8191) 2024-09-06 09:01:14 -07:00
baa5467547 [BugFix] Fix Granite model configuration (#8216) 2024-09-06 11:39:29 +08:00
db3bf7c991 [Core] Support load and unload LoRA in api server (#6566)
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2024-09-05 18:10:33 -07:00
2febcf2777 [Documentation][Spec Decode] Add documentation about lossless guarantees in Speculative Decoding in vLLM (#7962) 2024-09-05 16:25:29 -04:00
2ee45281a5 Move verify_marlin_supported to GPTQMarlinLinearMethod (#8165) 2024-09-05 11:09:46 -04:00
9da25a88aa [MODEL] Qwen Multimodal Support (Qwen-VL / Qwen-VL-Chat) (#8029)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-09-05 12:48:10 +00:00
8685ba1a1e Inclusion of InternVLChatModel In PP_SUPPORTED_MODELS(Pipeline Parallelism) (#7860) 2024-09-05 11:33:37 +00:00
288a938872 [Doc] Indicate more information about supported modalities (#8181) 2024-09-05 10:51:53 +00:00
e39ebf5cf5 [Core/Bugfix] Add query dtype as per FlashInfer API requirements. (#8173) 2024-09-05 05:12:26 +00:00
ba262c4e5a [ci] Mark LoRA test as soft-fail (#8160)
Signed-off-by: kevin <kevin@anyscale.com>
2024-09-04 20:33:12 -07:00
4624d98dbd [Misc] Clean up RoPE forward_native (#8076) 2024-09-04 20:31:48 -07:00
1afc931987 [bugfix] >1.43 constraint for openai (#8169)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-09-04 17:35:36 -07:00
e01c2beb7d [Doc] [Misc] Create CODE_OF_CONDUCT.md (#8161) 2024-09-04 16:50:13 -07:00
32e7db2536 Bump version to v0.6.0 (#8166) 2024-09-04 16:34:27 -07:00
008cf886c9 [Neuron] Adding support for adding/ overriding neuron configuration a… (#8062)
Co-authored-by: Harsha Bikki <harbikh@amazon.com>
2024-09-04 16:33:43 -07:00
77d9e514a2 [MISC] Replace input token throughput with total token throughput (#8164)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-09-04 20:23:22 +00:00
e02ce498be [Feature] OpenAI-Compatible Tools API + Streaming for Hermes & Mistral models (#5649)
Co-authored-by: constellate <constellate@1-ai-appserver-staging.codereach.com>
Co-authored-by: Kyle Mistele <kyle@constellate.ai>
2024-09-04 13:18:13 -07:00
561d6f8077 [CI] Change test input in Gemma LoRA test (#8163) 2024-09-04 13:05:50 -07:00
d1dec64243 [CI/Build][ROCm] Enabling LoRA tests on ROCm (#7369)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-09-04 11:57:54 -07:00
2ad2e5608e [MISC] Consolidate FP8 kv-cache tests (#8131) 2024-09-04 18:53:25 +00:00
d3311562fb [Bugfix] remove post_layernorm in siglip (#8106) 2024-09-04 18:55:37 +08:00
ccd7207191 chore: Update check-wheel-size.py to read MAX_SIZE_MB from env (#8103) 2024-09-03 23:17:05 -07:00
855c262a6b [Frontend] Multimodal support in offline chat (#8098) 2024-09-04 05:22:17 +00:00
2be8ec6e71 [Model] Add Ultravox support for multiple audio chunks (#7963) 2024-09-04 04:38:21 +00:00
e16fa99a6a [Misc] Update fbgemmfp8 to use vLLMParameters (#7972)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-09-03 20:12:41 -06:00
61f4a93d14 [TPU][Bugfix] Use XLA rank for persistent cache path (#8137) 2024-09-03 18:35:33 -07:00
d4db9f53c8 [Benchmark] Add --async-engine option to benchmark_throughput.py (#7964) 2024-09-03 20:57:41 -04:00
2188a60c7e [Misc] Update GPTQ to use vLLMParameters (#7976) 2024-09-03 17:21:44 -04:00
dc0b6066ab [CI] Change PR remainder to avoid at-mentions (#8134) 2024-09-03 14:11:42 -07:00
0af3abe3d3 [TPU][Bugfix] Fix next_token_ids shape (#8128) 2024-09-03 13:29:24 -07:00
f1575dc99f [ci] Fix GHA workflow (#8129)
Signed-off-by: kevin <kevin@anyscale.com>
2024-09-03 13:25:09 -07:00
c02638efb3 [CI/Build] make pip install vllm work in macos (for import only) (#8118) 2024-09-03 12:37:08 -07:00
652c83b697 [Misc] Raise a more informative exception in add/remove_logger (#7750) 2024-09-03 12:28:25 -07:00
6d646d08a2 [Core] Optimize Async + Multi-step (#8050) 2024-09-03 18:50:29 +00:00
95a178f861 [CI] Only PR reviewers/committers can trigger CI on PR (#8124)
Signed-off-by: kevin <kevin@anyscale.com>
2024-09-03 11:32:27 -07:00
bd852f2a8b [Performance] Enable chunked prefill and prefix caching together (#8120)
Co-authored-by: Tao He <sighingnow@gmail.com>
Co-authored-by: Juelianqvq <Juelianqvq@noreply.github.com>
2024-09-03 10:49:18 -07:00
ec266536b7 [Bugfix][VLM] Add fallback to SDPA for ViT model running on CPU backend (#8061) 2024-09-03 21:37:52 +08:00
0fbc6696c2 [Bugfix] Fix single output condition in output processor (#7881) 2024-09-02 20:35:42 -07:00
6e36f4fa6c improve chunked prefill performance
[Bugfix] Fix #7592 vllm 0.5.4 enable_chunked_prefill throughput is slightly lower than 0.5.3~0.5.0. (#7874)
2024-09-02 14:20:12 -07:00
dd2a6a82e3 [Bugfix] Fix internlm2 tensor parallel inference (#8055) 2024-09-02 23:48:56 +08:00
4ca65a9763 [Core][Bugfix] Accept GGUF model without .gguf extension (#8056) 2024-09-02 08:43:26 -04:00
e2b2aa5a0f [TPU] Align worker index with node boundary (#7932) 2024-09-01 23:09:46 -07:00
e6a26ed037 [SpecDecode][Kernel] Flashinfer Rejection Sampling (#7244) 2024-09-01 21:23:29 -07:00
f8d60145b4 [Model] Add Granite model (#7436)
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-09-01 18:37:18 -07:00
5b86b19954 [Misc] Optional installation of audio related packages (#8063) 2024-09-01 14:46:57 -07:00
5231f0898e [Frontend][VLM] Add support for multiple multi-modal items (#8049) 2024-08-31 16:35:53 -07:00
8423aef4c8 [BugFix][Core] Multistep Fix Crash on Request Cancellation (#8059) 2024-08-31 19:44:03 +00:00
4f5d8446ed [Bugfix] Fix ModelScope models in v0.5.5 (#8037) 2024-08-31 00:27:58 -07:00
d05f0a9db2 [Bugfix] Fix import error in Phi-3.5-MoE (#8052) 2024-08-30 22:26:55 -07:00
622f8abff8 [Bugfix] bugfix and add model test for flashinfer fp8 kv cache. (#8013) 2024-08-30 22:18:50 -07:00
1248e8506a [Model] Adding support for MSFT Phi-3.5-MoE (#7729)
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Zeqi Lin <zelin@microsoft.com>
Co-authored-by: Zeqi Lin <Zeqi.Lin@microsoft.com>
2024-08-30 13:42:57 -06:00
2684efc467 [TPU][Bugfix] Fix tpu type api (#8035) 2024-08-30 09:01:26 -07:00
058344f89a [Frontend]-config-cli-args (#7737)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Kaunil Dhruv <kaunil_dhruv@intuit.com>
2024-08-30 08:21:02 -07:00
98cef6a227 [Core] Increase default max_num_batched_tokens for multimodal models (#8028) 2024-08-30 08:20:34 -07:00
f97be32d1d [VLM][Model] TP support for ViTs (#7186)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-08-30 08:19:27 -07:00
afd39a4511 [Bugfix] Fix import error in Exaone model (#8034) 2024-08-30 08:03:28 -07:00
2148441fd3 [TPU] Support single and multi-host TPUs on GKE (#7613) 2024-08-30 00:27:40 -07:00
dc13e99348 [MODEL] add Exaone model support (#7819) 2024-08-29 23:34:20 -07:00
34a0e96d46 [Kernel] changing fused moe kernel chunk size default to 32k (#7995) 2024-08-30 04:11:39 +00:00
80c7b089b1 [TPU] Async output processing for TPU (#8011) 2024-08-29 19:35:29 -07:00
428dd1445e [Core] Logprobs support in Multi-step (#7652) 2024-08-29 19:19:08 -07:00
4abed65c58 [VLM] Disallow overflowing max_model_len for multimodal models (#7998) 2024-08-29 17:49:04 -07:00
0c785d344d Add more percentiles and latencies (#7759) 2024-08-29 16:48:11 -07:00
4664ceaad6 support bitsandbytes 8-bit and FP4 quantized models (#7445) 2024-08-29 19:09:08 -04:00
257afc37c5 [Neuron] Adding support for context-lenght, token-gen buckets. (#7885)
Co-authored-by: Harsha Bikki <harbikh@amazon.com>
2024-08-29 13:58:14 -07:00
86a677de42 [misc] update tpu int8 to use new vLLM Parameters (#7973) 2024-08-29 16:46:55 -04:00
d78789ac16 [Bugfix] Fix incorrect vocal embedding shards for GGUF model in tensor parallelism (#7954) 2024-08-29 15:54:49 -04:00
c334b1898b extend cuda graph size for H200 (#7894)
Co-authored-by: youkaichao <youkaichao@126.com>
2024-08-29 12:15:04 -07:00
6b3421567d [Core][Kernels] Enable FP8 KV Cache with Flashinfer backend. + BugFix for kv_cache_dtype=auto (#7985)
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-08-29 14:53:11 -04:00
3f60f2244e [Core] Combine async postprocessor and multi-step (#7921) 2024-08-29 11:18:26 -07:00
f205c09854 [Bugfix] Unify rank computation across regular decoding and speculative decoding (#7899) 2024-08-28 22:18:13 -07:00
ef99a78760 Revert "[Core][Kernels] Use FlashInfer backend for FP8 KV Cache when available." (#7982) 2024-08-28 21:27:06 -07:00
74d5543ec5 [VLM][Core] Fix exceptions on ragged NestedTensors (#7974) 2024-08-29 03:24:31 +00:00
a7f65c2be9 [torch.compile] remove reset (#7975) 2024-08-28 17:32:26 -07:00
4289cad37f [Frontend] Minor optimizations to zmq decoupled front-end (#7957)
Co-authored-by: Robert Shaw <rshaw@neuralmagic>
2024-08-28 17:22:43 -07:00
af59df0a10 Remove faulty Meta-Llama-3-8B-Instruct-FP8.yaml lm-eval test (#7961) 2024-08-28 19:19:17 -04:00
ce6bf3a2cf [torch.compile] avoid Dynamo guard evaluation overhead (#7898)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-08-28 16:10:12 -07:00
3cdfe1f38b [Bugfix] Make torch registration of punica ops optional (#7970) 2024-08-28 16:11:49 -06:00
fdd9daafa3 [Kernel/Model] Migrate mamba_ssm and causal_conv1d kernels to vLLM (#7651) 2024-08-28 15:06:52 -07:00
8c56e57def [Doc] fix 404 link (#7966) 2024-08-28 13:54:23 -07:00
eeffde1ac0 [TPU] Upgrade PyTorch XLA nightly (#7967) 2024-08-28 13:10:21 -07:00
e5697d161c [Kernel] [Triton] [AMD] Adding Triton implementations awq_dequantize and awq_gemm to support AWQ (#7386) 2024-08-28 15:37:47 -04:00
b98cc28f91 [Core][Kernels] Use FlashInfer backend for FP8 KV Cache when available. (#7798)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-08-28 10:01:22 -07:00
ef9baee3c5 [Bugfix][VLM] Fix incompatibility between #7902 and #7230 (#7948) 2024-08-28 08:11:18 -07:00
98c12cffe5 [Doc] fix the autoAWQ example (#7937) 2024-08-28 12:12:32 +00:00
f52a43a8b9 [ci][test] fix pp test failure (#7945) 2024-08-28 01:27:07 -07:00
e3580537a4 [Performance] Enable chunked prefill and prefix caching together (#7753) 2024-08-28 00:36:31 -07:00
f508e03e7f [Core] Async_output_proc: Add virtual engine support (towards pipeline parallel) (#7911) 2024-08-28 00:02:30 -07:00
51f86bf487 [mypy][CI/Build] Fix mypy errors (#7929) 2024-08-27 23:47:44 -07:00
c166e7e43e [Bugfix] Allow ScalarType to be compiled with pytorch 2.3 and add checks for registering FakeScalarType and dynamo support. (#7886) 2024-08-27 23:13:45 -04:00
bc6e42a9b1 [hardware][rocm] allow rocm to override default env var (#7926) 2024-08-27 19:50:06 -07:00
fab5f53e2d [Core][VLM] Stack multimodal tensors to represent multiple images within each prompt (#7902) 2024-08-28 01:53:56 +00:00
9c71c97ae2 [mypy] Enable mypy type checking for vllm/core (#7229) 2024-08-28 07:11:14 +08:00
5340a2dccf [Model] Add multi-image input support for LLaVA-Next offline inference (#7230) 2024-08-28 07:09:02 +08:00
345be0e244 [benchmark] Update TGI version (#7917) 2024-08-27 15:07:53 -07:00
fc911880cc [Kernel] Expand MoE weight loading + Add Fused Marlin MoE Kernel (#7766)
Co-authored-by: ElizaWszola <eliza@neuralmagic.com>
2024-08-27 15:07:09 -07:00
ed6f002d33 [cuda][misc] error on empty CUDA_VISIBLE_DEVICES (#7924) 2024-08-27 12:06:11 -07:00
b09c755be8 [Bugfix] Fix phi3v incorrect image_idx when using async engine (#7916) 2024-08-27 17:36:09 +00:00
42e932c7d4 [CI/Build][ROCm] Enabling tensorizer tests for ROCm (#7237) 2024-08-27 10:09:13 -07:00
076169f603 [Hardware][Intel GPU] Add intel GPU pipeline parallel support. (#7810) 2024-08-27 10:07:02 -07:00
9db642138b [CI/Build][VLM] Cleanup multiple images inputs model test (#7897) 2024-08-27 15:28:30 +00:00
6fc4e6e07a [Model] Add Mistral Tokenization to improve robustness and chat encoding (#7739) 2024-08-27 12:40:02 +00:00
9606c7197d Revert #7509 (#7887) 2024-08-27 00:16:31 -07:00
64cc644425 [core][torch.compile] discard the compile for profiling (#7796) 2024-08-26 21:33:58 -07:00
39178c7fbc [Tests] Disable retries and use context manager for openai client (#7565) 2024-08-26 21:33:17 -07:00
2eedede875 [Core] Asynchronous Output Processor (#7049)
Co-authored-by: Alexander Matveev <alexm@neuralmagic.com>
2024-08-26 20:53:20 -07:00
015e6cc252 [Misc] Update compressed tensors lifecycle to remove prefix from create_weights (#7825) 2024-08-26 18:09:34 -06:00
760e9f71a8 [Bugfix] neuron: enable tensor parallelism (#7562)
Signed-off-by: omrishiv <327609+omrishiv@users.noreply.github.com>
2024-08-26 15:13:13 -07:00
05826c887b [misc] fix custom allreduce p2p cache file generation (#7853) 2024-08-26 15:02:25 -07:00
dd9857f5fa [Misc] Update gptq_marlin_24 to use vLLMParameters (#7762)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-08-26 17:44:54 -04:00
665304092d [Misc] Update qqq to use vLLMParameters (#7805) 2024-08-26 13:16:15 -06:00
2deb029d11 [Performance][BlockManagerV2] Mark prefix cache block as computed after schedule (#7822) 2024-08-26 11:24:53 -07:00
029c71de11 [CI/Build] Avoid downloading all HF files in RemoteOpenAIServer (#7836) 2024-08-26 05:31:10 +00:00
0b769992ec [Bugfix]: Use float32 for base64 embedding (#7855)
Signed-off-by: Hollow Man <hollowman@opensuse.org>
2024-08-26 03:16:38 +00:00
1856aff4d6 [Spec Decoding] Streamline batch expansion tensor manipulation (#7851) 2024-08-25 15:45:14 -07:00
70c094ade6 [misc][cuda] improve pynvml warning (#7852) 2024-08-25 14:30:09 -07:00
2059b8d9ca [Misc] Remove snapshot_download usage in InternVL2 test (#7835) 2024-08-25 15:53:09 +00:00
8aaf3d5347 [Model][VLM] Support multi-images inputs for Phi-3-vision models (#7783) 2024-08-25 11:51:20 +00:00
80162c44b1 [Bugfix] Fix Phi-3v crash when input images are of certain sizes (#7840) 2024-08-24 18:16:24 -07:00
aab0fcdb63 [ci][test] fix RemoteOpenAIServer (#7838) 2024-08-24 17:31:28 +00:00
ea9fa160e3 [ci][test] exclude model download time in server start time (#7834) 2024-08-24 01:03:27 -07:00
7d9ffa2ae1 [misc][core] lazy import outlines (#7831) 2024-08-24 00:51:38 -07:00
d81abefd2e [Frontend] add json_schema support from OpenAI protocol (#7654) 2024-08-23 23:07:24 -07:00
8da48e4d95 [Frontend] Publish Prometheus metrics in run_batch API (#7641) 2024-08-23 23:04:22 -07:00
6885fde317 [Bugfix] Fix run_batch logger (#7640) 2024-08-23 13:58:26 -07:00
9db93de20c [Core] Add multi-step support to LLMEngine (#7789) 2024-08-23 12:45:53 -07:00
09c7792610 Bump version to v0.5.5 (#7823) 2024-08-23 11:35:33 -07:00
f1df5dbfd6 [Misc] Update marlin to use vLLMParameters (#7803) 2024-08-23 14:30:52 -04:00
35ee2ad6b9 [github][misc] promote asking llm first (#7809) 2024-08-23 09:38:50 -07:00
e25fee57c2 [BugFix] Fix server crash on empty prompt (#7746)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2024-08-23 13:12:44 +00:00
faeddb565d [misc] Add Torch profiler support for CPU-only devices (#7806) 2024-08-23 05:46:25 +00:00
fc5ebbd1d3 [Hardware][Intel GPU] refactor xpu_model_runner for tp (#7712) 2024-08-22 20:06:54 -07:00
c01a6cb231 [Ray backend] Better error when pg topology is bad. (#7584)
Co-authored-by: youkaichao <youkaichao@126.com>
2024-08-22 17:44:25 -07:00
b903e1ba7f [Frontend] error suppression cleanup (#7786)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-08-22 21:50:21 +00:00
a152246428 [Misc] fix typo in triton import warning (#7794) 2024-08-22 13:51:23 -07:00
666ad0aa16 [ci] Cleanup & refactor Dockerfile to pass different Python versions and sccache bucket via build args (#7705)
Signed-off-by: kevin <kevin@anyscale.com>
2024-08-22 20:10:55 +00:00
15310b5101 [Bugfix] Use LoadFormat values for vllm serve --load-format (#7784) 2024-08-22 11:37:08 -07:00
57792ed469 [Doc] Fix incorrect docs from #7615 (#7788) 2024-08-22 10:02:06 -07:00
d3b5b98021 [Misc] Enhance prefix-caching benchmark tool (#6568) 2024-08-22 09:32:02 -07:00
cc0eaf12b1 [Bugfix] spec decode handle None entries in topk args in create_sequence_group_output (#7232)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-08-22 09:33:48 -04:00
955b5191c9 [Misc] update fp8 to use vLLMParameter (#7437) 2024-08-22 08:36:18 -04:00
55d63b1211 [Bugfix] Don't build machete on cuda <12.0 (#7757) 2024-08-22 08:28:52 -04:00
4f419c00a6 Fix ShardedStateLoader for vllm fp8 quantization (#7708) 2024-08-22 08:25:04 -04:00
a3fce56b88 [Speculative Decoding] EAGLE Implementation with Top-1 proposer (#6830) 2024-08-22 02:42:24 -07:00
b3856bef7d [Misc] Use torch.compile for GemmaRMSNorm (#7642) 2024-08-22 01:14:13 -07:00
8c6f694a79 [ci] refine dependency for distributed tests (#7776) 2024-08-22 00:54:15 -07:00
eeee1c3b1a [TPU] Avoid initializing TPU runtime in is_tpu (#7763) 2024-08-21 21:31:49 -07:00
aae74ef95c Revert "[Kernel] Expand MoE weight loading + Add Fused Marlin MoE Kernel (#7527)" (#7764) 2024-08-22 03:42:14 +00:00
cde9183b40 [Bug][Frontend] Improve ZMQ client robustness (#7443)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-08-22 02:18:11 +00:00
df1a21131d [Model] Fix Phi-3.5-vision-instruct 'num_crops' issue (#7710) 2024-08-22 09:36:24 +08:00
7937009a7e [Kernel] Replaced blockReduce[...] functions with cub::BlockReduce (#7233)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-08-21 20:18:00 -04:00
9984605412 [AMD][CI/Build] Disambiguation of the function call for ROCm 6.2 headers compatibility (#7477)
Co-authored-by: Charlie Fu <Charlie.Fu@amd.com>
2024-08-21 16:47:36 -07:00
7eebe8ccaa [distributed][misc] error on same VLLM_HOST_IP setting (#7756) 2024-08-21 16:25:34 -07:00
8678a69ab5 [Kernel] Expand MoE weight loading + Add Fused Marlin MoE Kernel (#7527)
Co-authored-by: ElizaWszola <eliza@neuralmagic.com>
2024-08-21 16:17:10 -07:00
5844017285 [ci] [multi-step] narrow multi-step test dependency paths (#7760) 2024-08-21 15:52:40 -07:00
1ca0d4f86b [Model] Add UltravoxModel and UltravoxConfig (#7615) 2024-08-21 22:49:39 +00:00
dd53c4b023 [misc] Add Torch profiler support (#7451)
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-08-21 15:39:26 -07:00
970dfdc01d [Frontend] Improve Startup Failure UX (#7716) 2024-08-21 19:53:01 +00:00
91f4522cbf [multi-step] Raise error if not using async engine (#7703) 2024-08-21 11:49:19 -07:00
1b32e02648 [Bugfix] Pass PYTHONPATH from setup.py to CMake (#7730) 2024-08-21 11:17:48 -07:00
f7e3b0c5aa [Bugfix][Frontend] Fix Issues Under High Load With zeromq Frontend (#7394)
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-08-21 13:34:14 -04:00
d3c002eadc [Bugfix] chat method add_generation_prompt param (#7734) 2024-08-21 17:33:35 +00:00
9b73a2f498 [Spec Decoding] Use target model max length as default for draft model (#7706) 2024-08-22 00:23:22 +08:00
6925cdbeea [Bugfix][Hardware][CPU] Fix mm_limits initialization for CPU backend (#7735) 2024-08-21 16:23:03 +00:00
53328d7536 [BUG] fix crash on flashinfer backend with cudagraph disabled, when attention group_size not in [1,2,4,8] (#7509) 2024-08-21 08:54:31 -07:00
c75363fbc0 [BugFix] Avoid premature async generator exit and raise all exception variations (#7698) 2024-08-21 11:45:55 -04:00
dd3fa0e430 [Bugfix] Mirror jinja2 in pyproject.toml (#7723) 2024-08-21 13:41:17 +00:00
baaedfdb2d [mypy] Enable following imports for entrypoints (#7248)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: Fei <dfdfcai4@gmail.com>
2024-08-20 23:28:21 -07:00
4506641212 [Doc] Section for Multimodal Language Models (#7719) 2024-08-20 23:24:01 -07:00
12e1c65bc9 [Model] Add AWQ quantization support for InternVL2 model (#7187) 2024-08-20 23:18:57 -07:00
b74a125800 [ci] try to log process using the port to debug the port usage (#7711) 2024-08-20 17:41:12 -07:00
66a9e713a7 [Core] Pipe worker_class_fn argument in Executor (#7707) 2024-08-21 00:37:39 +00:00
9e51b6a626 [ci][test] adjust max wait time for cpu offloading test (#7709) 2024-08-20 17:12:44 -07:00
6e4658c7aa [Intel GPU] fix xpu not support punica kernel (which use torch.library.custom_op) (#7685) 2024-08-20 12:01:09 -07:00
3b682179dd [Core] Add AttentionState abstraction (#7663) 2024-08-20 18:50:45 +00:00
c6af027a35 [Misc] Add jinja2 as an explicit build requirement (#7695) 2024-08-20 17:17:47 +00:00
2aa00d59ad [CI/Build] Pin OpenTelemetry versions and make errors clearer (#7266)
[CI/Build] Pin OpenTelemetry versions and make a availability errors clearer (#7266)
2024-08-20 10:02:21 -07:00
c42590f97a [Hardware] [Intel GPU] refactor xpu worker/executor (#7686) 2024-08-20 09:54:10 -07:00
aae6927be0 [VLM][Model] Add test for InternViT vision encoder (#7409) 2024-08-20 23:10:20 +08:00
398521ad19 [OpenVINO] Updated documentation (#7687) 2024-08-20 07:33:56 -06:00
5288c06aa0 [Kernel] (1/N) Machete - Hopper Optimized Mixed Precision Linear Kernel (#7174) 2024-08-20 07:09:33 -06:00
b6f99a6ffe [Core] Refactor executor classes for easier inheritance (#7673)
[Core] Refactor executor classes to make it easier to inherit GPUExecutor (#7673)
2024-08-20 00:56:50 -07:00
ad28a74beb [misc][cuda] add warning for pynvml user (#7675) 2024-08-20 00:35:09 -07:00
e6d811dd13 [XPU] fallback to native implementation for xpu custom op (#7670) 2024-08-20 00:26:09 -07:00
c4be16e1a7 [misc] add nvidia related library in collect env (#7674) 2024-08-19 23:22:49 -07:00
3d8a5f063d [CI] Organizing performance benchmark files (#7616) 2024-08-19 22:43:54 -07:00
f4fc7337bf [Bugfix] support tie_word_embeddings for all models (#5724) 2024-08-19 20:00:04 -07:00
0df7ec0b2d [ci] Install Buildkite test suite analysis (#7667)
Signed-off-by: kevin <kevin@anyscale.com>
2024-08-19 19:55:04 -07:00
312f761232 [Speculative Decoding] Fixing hidden states handling in batch expansion (#7508) 2024-08-19 17:58:14 -07:00
e54ebc2f8f [doc] fix doc build error caused by msgspec (#7659) 2024-08-19 17:50:59 -07:00
67e02fa8a4 [Bugfix] use StoreBoolean instead of type=bool for --disable-logprobs-during-spec-decoding (#7665)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-08-20 00:43:09 +00:00
43735bf5e1 [TPU] Remove redundant input tensor cloning (#7660) 2024-08-19 15:55:04 -07:00
da115230fd [Bugfix] Don't disable existing loggers (#7664) 2024-08-19 15:11:58 -07:00
7601cb044d [Core] Support tensor parallelism for GGUF quantization (#7520) 2024-08-19 17:30:14 -04:00
47b65a5508 [core] Multi Step Scheduling (#7000)
Co-authored-by: afeldman-nm <156691304+afeldman-nm@users.noreply.github.com>
2024-08-19 13:52:13 -07:00
dad961ef5c [Bugfix] fix lora_dtype value type in arg_utils.py - part 2 (#5428) 2024-08-19 20:47:00 +00:00
3ac50b47d0 [MISC] Add prefix cache hit rate to metrics (#7606) 2024-08-19 11:52:07 -07:00
df845b2b46 [Misc] Remove Gemma RoPE (#7638) 2024-08-19 09:29:31 -07:00
1a36287b89 [Bugfix] Fix xpu build (#7644) 2024-08-18 22:00:09 -07:00
f710fb5265 [Core] Use flashinfer sampling kernel when available (#7137)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-08-19 03:24:03 +00:00
ff7ec82c4d [Core] Optimize SPMD architecture with delta + serialization optimization (#7109) 2024-08-18 17:57:20 -07:00
200a2ffa6b [Misc] Refactor Llama3 RoPE initialization (#7637) 2024-08-18 17:18:12 -07:00
40e1360bb6 [CI/Build] Add text-only test for Qwen models (#7475)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2024-08-19 07:43:46 +08:00
e3b318216d [ Bugfix ] Fix Prometheus Metrics With zeromq Frontend (#7279)
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-08-18 20:19:48 +00:00
ab7165f2c7 [TPU] Optimize RoPE forward_native2 (#7636) 2024-08-18 01:15:10 -07:00
0c2fa50b84 [TPU] Use mark_dynamic only for dummy run (#7634) 2024-08-18 00:18:53 -07:00
ce143353c6 [TPU] Skip creating empty tensor (#7630) 2024-08-17 14:22:46 -07:00
bbf55c4805 [VLM] Refactor MultiModalConfig initialization and profiling (#7530) 2024-08-17 13:30:55 -07:00
1ef13cf92f [Misc]Fix BitAndBytes exception messages (#7626) 2024-08-17 12:02:14 -07:00
832163b875 [ci][test] allow longer wait time for api server (#7629) 2024-08-17 11:26:38 -07:00
e73f76eec6 [Model] Pipeline parallel support for JAIS (#7603) 2024-08-17 11:11:09 -07:00
d95cc0a55c [core][misc] update libcudart finding (#7620)
Co-authored-by: cjackal <44624812+cjackal@users.noreply.github.com>
2024-08-16 23:01:35 -07:00
5bf45db7df [ci][test] fix engine/logger test (#7621) 2024-08-16 23:00:59 -07:00
eed020f673 [misc] use nvml to get consistent device name (#7582) 2024-08-16 21:15:13 -07:00
7c0b7ea214 [Bugfix] add >= 1.0 constraint for openai dependency (#7612) 2024-08-16 20:56:01 -07:00
4706eb628e [aDAG] Unflake aDAG + PP tests (#7600) 2024-08-16 20:49:30 -07:00
bae888cb8e [Bugfix] Clear engine reference in AsyncEngineRPCServer (#7618)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2024-08-16 20:44:05 -07:00
6bd19551b0 .[Build/CI] Enabling passing AMD tests. (#7610) 2024-08-16 20:25:32 -07:00
e680349994 [Bugfix] Fix custom_ar support check (#7617) 2024-08-16 19:05:49 -07:00
44f26a9466 [Model] Align nemotron config with final HF state and fix lm-eval-small (#7611) 2024-08-16 15:56:34 -07:00
37fd47e780 [Kernel] fix types used in aqlm and ggml kernels to support dynamo (#7596) 2024-08-16 14:00:11 -07:00
7759ae958f [Kernel][Misc] dynamo support for ScalarType (#7594) 2024-08-16 13:59:49 -07:00
9f69856356 [Kernel] register punica functions as torch ops (#7591) 2024-08-16 13:59:38 -07:00
d4f0f17b02 [Doc] Update quantization supported hardware table (#7595) 2024-08-16 13:59:27 -07:00
b3f4e17935 [Doc] Add docs for llmcompressor INT8 and FP8 checkpoints (#7444) 2024-08-16 13:59:16 -07:00
93478b63d2 [Core] Fix tracking of model forward time in case of PP>1 (#7440)
[Core] Fix tracking of model forward time to the span traces in case of PP>1 (#7440)
2024-08-16 13:46:01 -07:00
f366f6339b [spec decode] [4/N] Move update_flash_attn_metadata to attn backend (#7571)
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-08-16 11:41:56 -07:00
855866caa9 [Kernel] Add tuned triton configs for ExpertsInt8 (#7601) 2024-08-16 11:37:01 -07:00
7fc23be81c [Kernel] W8A16 Int8 inside FusedMoE (#7415) 2024-08-16 10:06:51 -07:00
e837b624f2 [Feature][Hardware][Amd] Add fp8 Linear Layer for Rocm (#7210) 2024-08-16 10:06:30 -07:00
ec724a725e support tqdm in notebooks (#7510) 2024-08-16 09:17:50 -07:00
0e39a33c6d [Bugfix][Hardware][AMD][Frontend] add quantization param to embedding checking method (#7513) 2024-08-16 10:05:18 -06:00
6fc5b0f249 [CI] Fix crashes of performance benchmark (#7500) 2024-08-16 08:08:45 -07:00
9587b050fb [Core] Use uvloop with zmq-decoupled front-end (#7570) 2024-08-15 22:48:07 -07:00
54bd9a03c4 register custom op for flash attn and use from torch.ops (#7536) 2024-08-15 22:38:56 -07:00
50b8d08dbd [Misc/Testing] Use torch.testing.assert_close (#7324) 2024-08-16 04:24:04 +00:00
e165528778 [CI] Move quantization cpu offload tests out of fastcheck (#7574) 2024-08-15 21:16:20 -07:00
3b19e39dc5 Chat method for offline llm (#5049)
Co-authored-by: nunjunj <ray@g-3ff9f30f2ed650001.c.vllm-405802.internal>
Co-authored-by: nunjunj <ray@g-1df6075697c3f0001.c.vllm-405802.internal>
Co-authored-by: nunjunj <ray@g-c5a2c23abc49e0001.c.vllm-405802.internal>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-08-15 19:41:34 -07:00
4cd7d47fed [ci/test] rearrange tests and make adag test soft fail (#7572) 2024-08-15 19:39:04 -07:00
f878c8feb0 [Feature]: Add OpenAI server prompt_logprobs support #6508 (#7453) 2024-08-16 02:38:08 +00:00
b67ae00cdb [Misc] Add quantization config support for speculative model. (#7343) 2024-08-15 19:34:28 -07:00
9c8e2d1161 [Bugfix][Harmless] Fix float16 dtype for model_is_embedding (#7566) 2024-08-15 18:26:19 -07:00
21313e09e3 [Bugfix] Fix default weight loading for scalars (#7534) 2024-08-15 13:10:22 -07:00
f4da5f7b6d [Misc] Update dockerfile for CPU to cover protobuf installation (#7182) 2024-08-15 10:03:01 -07:00
9c1f78d5d6 [Bugfix] update neuron for version > 0.5.0 (#7175)
Signed-off-by: omrishiv <327609+omrishiv@users.noreply.github.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-08-15 09:44:14 -07:00
fc93e56143 [Bugfix][TPU] Correct env variable for XLA cache path (#7544) 2024-08-15 00:02:29 -07:00
22b39e11f2 llama_index serving integration documentation (#6973)
Co-authored-by: pavanmantha <pavan.mantha@thevaslabs.io>
2024-08-14 15:38:37 -07:00
f55a9aea45 [Misc] Revert compressed-tensors code reuse (#7521) 2024-08-14 15:07:37 -07:00
951fdd66d3 [TPU] Set per-rank XLA cache (#7533) 2024-08-14 14:47:51 -07:00
2ecf7b1757 [core] [3/N] multi-step args and sequence.py (#7452) 2024-08-14 12:32:45 -07:00
3f674a49b5 [VLM][Core] Support profiling with multiple multi-modal inputs per prompt (#7126) 2024-08-14 17:55:42 +00:00
70b746efcf [Misc] Deprecation Warning when setting --engine-use-ray (#7424)
Signed-off-by: Wallas Santos <wallashss@ibm.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
Co-authored-by: youkaichao <youkaichao@126.com>
2024-08-14 09:44:27 -07:00
67d115db08 [Bugfix][Frontend] Disable embedding API for chat models (#7504)
Co-authored-by: jack <jack@alex>
2024-08-14 09:15:19 -07:00
d3d9cb6e4b [ci] fix model tests (#7507) 2024-08-14 01:01:43 -07:00
c134a46402 Fix empty output when temp is too low (#2937)
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2024-08-14 05:31:44 +00:00
199adbb7cf [doc] update test script to include cudagraph (#7501) 2024-08-13 21:52:58 -07:00
dd164d72f3 [Bugfix][Docs] Update list of mock imports (#7493) 2024-08-13 20:37:30 -07:00
ea49e6a3c8 [misc][ci] fix cpu test with plugins (#7489) 2024-08-13 19:27:46 -07:00
97992802f3 [CI/Build]Reduce the time consumption for LoRA tests (#7396) 2024-08-13 17:27:29 -07:00
59edd0f134 [Bugfix][CI] Import ray under guard (#7486) 2024-08-13 17:12:58 -07:00
a08df8322e [TPU] Support multi-host inference (#7457) 2024-08-13 16:31:20 -07:00
16422ea76f [misc][plugin] add plugin system implementation (#7426) 2024-08-13 16:24:17 -07:00
373538f973 [Misc] compressed-tensors code reuse (#7277) 2024-08-13 19:05:15 -04:00
33e5d7e6b6 [frontend] spawn engine process from api server process (#7484) 2024-08-13 15:40:17 -07:00
c5c7768264 Announce NVIDIA Meetup (#7483)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-08-13 14:28:36 -07:00
b1e5afc3e7 [Misc] Update awq and awq_marlin to use vLLMParameters (#7422) 2024-08-13 17:08:20 -04:00
d3bdfd3ab9 [Misc] Update Fused MoE weight loading (#7334) 2024-08-13 14:57:45 -04:00
fb377d7e74 [Misc] Update gptq_marlin to use new vLLMParameters (#7281) 2024-08-13 14:30:11 -04:00
181abbc27d [Misc] Update LM Eval Tolerance (#7473) 2024-08-13 14:28:14 -04:00
00c3d68e45 [Frontend][Core] Add plumbing to support audio language models (#7446) 2024-08-13 17:39:33 +00:00
e20233d361 Revert "[Doc] Update supported_hardware.rst (#7276)" (#7467) 2024-08-13 01:37:08 -07:00
d6e634f3d7 [TPU] Suppress import custom_ops warning (#7458) 2024-08-13 00:30:30 -07:00
4d2dc5072b [hardware] unify usage of is_tpu to current_platform.is_tpu() (#7102) 2024-08-13 00:16:42 -07:00
7025b11d94 [Bugfix] Fix weight loading for Chameleon when TP>1 (#7410) 2024-08-13 05:33:41 +00:00
5469146bcc [ci] Remove fast check cancel workflow (#7455) 2024-08-12 21:19:51 -07:00
97a6be95ba [Misc] improve logits processors logging message (#7435) 2024-08-13 02:29:34 +00:00
9ba85bc152 [mypy] Misc. typing improvements (#7417) 2024-08-13 09:20:20 +08:00
198d6a2898 [Core] Shut down aDAG workers with clean async llm engine exit (#7224)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2024-08-12 17:57:16 -07:00
774cd1d3bf [CI/Build] bump minimum cmake version (#6999) 2024-08-12 16:29:20 -07:00
91294d56e1 [Bugfix] Handle PackageNotFoundError when checking for xpu version (#7398) 2024-08-12 16:07:20 -07:00
a046f86397 [Core/Bugfix] Add FP8 K/V Scale and dtype conversion for prefix/prefill Triton Kernel (#7208)
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-08-12 22:47:41 +00:00
4ddc4743d7 [Core] Consolidate GB constant and enable float GB arguments (#7416) 2024-08-12 14:14:14 -07:00
6aa33cb2dd [Misc] Use scalar type to dispatch to different gptq_marlin kernels (#7323) 2024-08-12 14:40:13 -04:00
1137f343aa [ci] Cancel fastcheck when PR is ready (#7433)
Signed-off-by: kevin <kevin@anyscale.com>
2024-08-12 10:59:14 -07:00
9b3e2edd30 [ci] Cancel fastcheck run when PR is marked ready (#7427)
Signed-off-by: kevin <kevin@anyscale.com>
2024-08-12 10:56:52 -07:00
65950e8f58 [ci] Entrypoints run upon changes in vllm/ (#7423)
Signed-off-by: kevin <kevin@anyscale.com>
2024-08-12 10:18:03 -07:00
cfba4def5d [Bugfix] Fix logit soft cap in flash-attn backend (#7425) 2024-08-12 09:58:28 -07:00
d2bc4510a4 [CI/Build] bump Dockerfile.neuron image base, use public ECR (#6832) 2024-08-12 09:53:35 -07:00
24154f8618 [Frontend] Disallow passing model as both argument and option (#7347) 2024-08-12 12:58:34 +00:00
e6e42e4b17 [Core][VLM] Support image embeddings as input (#6613) 2024-08-12 16:16:06 +08:00
ec2affa8ae [Kernel] Flashinfer correctness fix for v0.1.3 (#7319) 2024-08-12 07:59:17 +00:00
86ab567bae [CI/Build] Minor refactoring for vLLM assets (#7407) 2024-08-12 02:41:52 +00:00
f020a6297e [Docs] Update readme (#7316) 2024-08-11 17:13:37 -07:00
6c8e595710 [misc] add commit id in collect env (#7405) 2024-08-11 15:40:48 -07:00
02b1988b9f [Doc] building vLLM with VLLM_TARGET_DEVICE=empty (#7403) 2024-08-11 14:38:17 -07:00
386087970a [CI/Build] build on empty device for better dev experience (#4773) 2024-08-11 13:09:44 -07:00
c08e2b3086 [core] [2/N] refactor worker_base input preparation for multi-step (#7387) 2024-08-11 08:50:08 -07:00
4fb7b52a2c Updating LM Format Enforcer version to v0.10.6 (#7189) 2024-08-11 08:11:50 -04:00
90bab18f24 [TPU] Use mark_dynamic to reduce compilation time (#7340) 2024-08-10 18:12:22 -07:00
4c5d8e8ea9 [Bugfix] Fix phi3v batch inference when images have different aspect ratio (#7392) 2024-08-10 16:19:33 +00:00
baa240252e [Core] Fix edge case in chunked prefill + block manager v2 (#7380) 2024-08-09 23:48:49 +00:00
999ef0b917 [Misc] Add numpy implementation of compute_slot_mapping (#7377) 2024-08-09 22:52:29 +00:00
5c6c54d67a [Bugfix] Fix PerTensorScaleParameter weight loading for fused models (#7376) 2024-08-09 21:23:46 +00:00
933790c209 [Core] Add span metrics for model_forward, scheduler and sampler time (#7089) 2024-08-09 13:55:13 -07:00
70d268a399 [Bugfix] Fix ITL recording in serving benchmark (#7372) 2024-08-09 10:00:00 -07:00
249b88228d [Frontend] Support embeddings in the run_batch API (#7132)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-08-09 09:48:21 -07:00
74af2bbd90 [Bugfix] Fix reinit procedure in ModelInputForGPUBuilder (#7360) 2024-08-09 16:35:49 +00:00
fc7b8d1eef [Performance] e2e overheads reduction: Small followup diff (#7364) 2024-08-09 15:49:36 +00:00
67abdbb42f [VLM][Doc] Add stop_token_ids to InternVL example (#7354) 2024-08-09 14:51:04 +00:00
07ab160741 [Model][Jamba] Mamba cache single buffer (#6739)
Co-authored-by: Mor Zusman <morz@ai21.com>
2024-08-09 10:07:06 -04:00
b4e9528f95 [Core] Streamline stream termination in AsyncLLMEngine (#7336) 2024-08-09 07:06:36 +00:00
57b7be0e1c [Speculative decoding] [Multi-Step] decouple should_modify_greedy_probs_inplace (#6971) 2024-08-09 05:42:45 +00:00
99b4cf5f23 [Bugfix] Fix speculative decoding with MLPSpeculator with padded vocabulary (#7218)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-08-08 22:08:46 -07:00
e02ac55617 [Performance] Optimize e2e overheads: Reduce python allocations (#7162) 2024-08-08 21:34:28 -07:00
73388c07a4 [TPU] Fix dockerfile.tpu (#7331) 2024-08-08 20:24:58 -07:00
7eb4a51c5f [Core] Support serving encoder/decoder models (#7258) 2024-08-09 10:39:41 +08:00
0fa14907da [TPU] Add Load-time W8A16 quantization for TPU Backend (#7005) 2024-08-08 18:35:49 -07:00
5923532e15 Add Skywork AI as Sponsor (#7314) 2024-08-08 13:59:57 -07:00
a049b107e2 [Misc] Temporarily resolve the error of BitAndBytes (#7308) 2024-08-08 13:42:58 -07:00
8334c39f37 [Bugfix] Fix new Llama3.1 GGUF model loading (#7269) 2024-08-08 13:42:44 -07:00
e904576743 [CI/Build] Dockerfile.cpu improvements (#7298) 2024-08-08 15:24:52 -04:00
e14fb22e59 [Doc] Put collect_env issue output in a <detail> block (#7310) 2024-08-08 11:22:49 -07:00
782e53ab59 [Bugfix][fast] Fix the get_num_blocks_touched logic (#6849) 2024-08-08 10:43:30 -07:00
21b9c49aa3 [Frontend] Kill the server on engine death (#6594)
Signed-off-by: Joe Runde <joe@joerun.de>
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-08-08 09:47:48 -07:00
5fb4a3f678 [Bugfix][Kernel] Increased atol to fix failing tests (#7305) 2024-08-08 12:16:13 -04:00
757ac70a64 [Model] Rename MiniCPMVQwen2 to MiniCPMV2.6 (#7273) 2024-08-08 14:02:41 +00:00
6dffa4b0a6 [Bugfix] Fix LoRA with PP (#7292) 2024-08-08 00:02:27 -07:00
48abee9e54 [Frontend] remove max_num_batched_tokens limit for lora (#7288) 2024-08-08 06:17:29 +00:00
746709642c [Misc] Fix typos in scheduler.py (#7285)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2024-08-07 17:06:01 -07:00
e53dfd3eaf [Kernel] Fix Flashinfer Correctness (#7284) 2024-08-07 16:26:52 -07:00
6d94420246 [Doc] Update supported_hardware.rst (#7276) 2024-08-07 14:21:50 -07:00
fc1493a01e [FrontEnd] Make merge_async_iterators is_cancelled arg optional (#7282) 2024-08-07 13:35:14 -07:00
311f743831 [Bugfix] Fix gptq failure on T4s (#7264) 2024-08-07 20:05:37 +00:00
469b3bc538 [ci] Make building wheels per commit optional (#7278)
Signed-off-by: kevin <kevin@anyscale.com>
2024-08-07 11:34:25 -07:00
5223199e03 [Bugfix][FP8] Fix dynamic FP8 Marlin quantization (#7219) 2024-08-07 11:23:12 -07:00
fde47d3bc2 [BugFix] Fix frontend multiprocessing hang (#7217)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
2024-08-07 18:09:36 +00:00
0e12cd67a8 [Doc] add online speculative decoding example (#7243) 2024-08-07 09:58:02 -07:00
80cbe10c59 [OpenVINO] migrate to latest dependencies versions (#7251) 2024-08-07 09:49:10 -07:00
b764547616 [Bugfix] Fix input processor for InternVL2 model (#7164)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-08-07 09:32:07 -07:00
ab0f5e2823 Fixes typo in function name (#7275)
Signed-off-by: Rafael Vasquez <rafvasq21@gmail.com>
2024-08-07 09:29:27 -07:00
564985729a [ BugFix ] Move zmq frontend to IPC instead of TCP (#7222) 2024-08-07 16:24:56 +00:00
0f7052bc7e [Misc] Refactor linear layer weight loading; introduce BasevLLMParameter and weight_loader_v2 (#5874) 2024-08-07 09:17:58 -07:00
639159b2a6 [distributed][misc] add specialized method for cuda platform (#7249) 2024-08-07 08:54:52 -07:00
66d617e343 [Frontend] Gracefully handle missing chat template and fix CI failure (#7238)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-08-07 09:12:05 +00:00
7b261092de [BUGFIX]: top_k is expected to be an integer. (#7227) 2024-08-07 00:32:16 -07:00
2385c8f374 [Doc] Mock new dependencies for documentation (#7245) 2024-08-07 06:43:03 +00:00
9a3f49ae07 [BugFix] Overhaul async request cancellation (#7111) 2024-08-07 13:21:41 +08:00
f9a5600649 [Bugfix] Fix GPTQ and GPTQ Marlin CPU Offloading (#7225) 2024-08-06 18:34:26 -07:00
fd95e026e0 [Core] Subclass ModelRunner to support cross-attention & encoder sequences (towards eventual encoder/decoder model support) (#4942)
Co-authored-by: Andrew Feldman <afeld2012@gmail.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-08-06 16:51:47 -04:00
660470e5a3 [Core] Optimize evictor-v2 performance (#7193) 2024-08-06 12:34:25 -07:00
8d59dbb000 [Kernel] Add per-tensor and per-token AZP epilogues (#5941)
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-08-06 18:17:08 +00:00
5c60c8c423 [SpecDecode] [Minor] Fix spec decode sampler tests (#7183) 2024-08-06 10:40:32 -07:00
00afc78590 [Bugfix] add gguf dependency (#7198)
Co-authored-by: katarzyna.papis <kpapis@kpapis-u20.sclab.intel.com>
2024-08-06 10:08:35 -07:00
541c1852d3 [ BugFix ] Fix ZMQ when VLLM_PORT is set (#7205) 2024-08-06 09:26:26 -07:00
a3bbbfa1d8 [BugFix] Fix DeepSeek remote code (#7178) 2024-08-06 08:16:53 -07:00
1f26efbb3a [Model] Support SigLIP encoder and alternative decoders for LLaVA models (#7153)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-08-06 16:55:31 +08:00
9118217f58 [LoRA] Relax LoRA condition (#7146) 2024-08-06 01:57:25 +00:00
e3c664bfcb [Build] Add initial conditional testing spec (#6841) 2024-08-05 17:39:22 -07:00
360bd67cf0 [Core] Support loading GGUF model (#5191)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-08-05 17:54:23 -06:00
ef527be06c [MISC] Use non-blocking transfer in prepare_input (#7172) 2024-08-05 23:41:27 +00:00
89b8db6bb2 [Bugfix] Specify device when loading LoRA and embedding tensors (#7129)
Co-authored-by: Jacob Schein <jacobschein@Jacobs-MacBook-Pro-2.local>
2024-08-05 16:35:47 -07:00
789937af2e [Doc] [SpecDecode] Update MLPSpeculator documentation (#7100)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-08-05 23:29:43 +00:00
dfb1a15dcb [ci][frontend] deduplicate tests (#7101) 2024-08-05 15:59:22 -07:00
4db5176d97 bump version to v0.5.4 (#7139) 2024-08-05 14:39:48 -07:00
4cf1dc39be [Bugfix][CI/Build] Fix CUTLASS FetchContent (#7171) 2024-08-05 14:22:57 -07:00
6e4852ce28 [CI/Build] Suppress divide-by-zero and missing return statement warnings (#7001) 2024-08-05 16:00:01 -04:00
8571ac4672 [Kernel] Update CUTLASS to 3.5.1 (#7085) 2024-08-05 15:13:43 -04:00
997cf78308 [Misc] Fix typo in GroupCoordinator.recv() (#7167)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2024-08-05 11:10:16 -07:00
57f560aa23 [BugFix] Use args.trust_remote_code (#7121) 2024-08-05 09:26:14 -07:00
003f8ee128 [BugFix] Use IP4 localhost form for zmq bind (#7163) 2024-08-05 08:41:03 -07:00
e9630458c7 [SpecDecode] Support FlashInfer in DraftModelRunner (#6926) 2024-08-05 08:05:05 -07:00
82a1b1a82b [Speculative decoding] Add periodic log with time spent in proposal/scoring/verification (#6963) 2024-08-05 08:46:44 +00:00
c0d8f1636c [Model] SiglipVisionModel ported from transformers (#6942)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-08-05 06:22:12 +00:00
cc08fc7225 [Frontend] Reapply "Factor out code for running uvicorn" (#7095) 2024-08-04 20:40:51 -07:00
7b86e7c9cd [Model] Add multi-image support for minicpmv (#7122)
Co-authored-by: hezhihui <hzh7269@modelbest.cn>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-08-05 09:23:17 +08:00
f80ab3521c Clean up remaining Punica C information (#7027) 2024-08-04 15:37:08 -07:00
16a1cc9bb2 [misc][distributed] improve libcudart.so finding (#7127) 2024-08-04 11:31:51 -07:00
b1c9aa3daa [Bugfix] [SpecDecode] Default speculative_draft_tensor_parallel_size to 1 when using MLPSpeculator (#7105)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-08-04 07:13:18 -07:00
179a6a36f2 [Model]Refactor MiniCPMV (#7020)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-08-04 08:12:41 +00:00
83c644fe7e [core][misc] simply output processing with shortcut code path (#7117) 2024-08-04 00:22:19 -07:00
9fadc7b7a0 [misc] add zmq in collect env (#7119) 2024-08-03 22:03:46 -07:00
654bc5ca49 Support for guided decoding for offline LLM (#6878)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-08-04 03:12:09 +00:00
825b044863 [Frontend] Warn if user max_model_len is greater than derived max_model_len (#7080)
Signed-off-by: Jefferson Fialho <jfialho@ibm.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-08-03 16:01:38 -07:00
44dcb52e39 [ci][test] finalize fork_new_process_for_each_test (#7114) 2024-08-03 10:44:53 -07:00
67d745cc68 [CI] Temporarily turn off H100 performance benchmark (#7104) 2024-08-02 23:52:44 -07:00
99d7cabd7b [LoRA] ReplicatedLinear support LoRA (#7081) 2024-08-02 22:40:19 -07:00
fb2c1c86c1 [Bugfix] Fix block table for seqs that have prefix cache hits (#7018) 2024-08-02 22:38:15 -07:00
0c25435daa [Model] Refactor and decouple weight loading logic for InternVL2 model (#7067) 2024-08-02 22:36:14 -07:00
a0d164567c [ci][distributed] disable ray dag tests (#7099) 2024-08-02 22:32:04 -07:00
04e5583425 [ci][distributed] merge distributed test commands (#7097)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-08-02 21:33:53 -07:00
8c025fa703 [Frontend] Factor out chat message parsing (#7055) 2024-08-02 21:31:27 -07:00
69ea15e5cc [ci][distributed] shorten wait time if server hangs (#7098) 2024-08-02 21:05:16 -07:00
ed812a73fa [ Frontend ] Multiprocessing for OpenAI Server with zeromq (#6883)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
Co-authored-by: Joe Runde <Joseph.Runde@ibm.com>
Co-authored-by: Joe Runde <joe@joerun.de>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-08-02 18:27:28 -07:00
708989341e [misc] add a flag to enable compile (#7092) 2024-08-02 16:18:45 -07:00
22e718ff1a [Misc] Revive to use loopback address for driver IP (#7091)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2024-08-02 15:50:00 -07:00
05308891e2 [Core] Pipeline parallel with Ray ADAG (#6837)
Support pipeline-parallelism with Ray accelerated DAG.

Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2024-08-02 13:55:40 -07:00
a8d604ca2a [Misc] Disambiguate quantized types via a new ScalarType (#6396) 2024-08-02 13:51:58 -07:00
b482b9a5b1 [CI/Build] Add support for Python 3.12 (#7035) 2024-08-02 13:51:22 -07:00
806949514a [ci] set timeout for test_oot_registration.py (#7082) 2024-08-02 10:03:24 -07:00
c16eaac500 [Hardware][Intel CPU] Update torch 2.4.0 for CPU backend (#6931) 2024-08-02 08:55:58 -07:00
db35186391 [Core] Comment out unused code in sampler (#7023) 2024-08-02 00:58:26 -07:00
660dea1235 [cuda][misc] remove error_on_invalid_device_count_status (#7069) 2024-08-02 00:14:21 -07:00
cf2a1a4d9d Fix tracing.py (#7065) 2024-08-01 23:28:00 -07:00
252357793d [ci][distributed] try to fix pp test (#7054) 2024-08-01 22:03:12 -07:00
3bb4b1e4cd [mypy] Speed up mypy checking (#7056) 2024-08-01 19:49:43 -07:00
954f7305a1 [Kernel] Fix input for flashinfer prefill wrapper. (#7008) 2024-08-01 18:44:16 -07:00
6ce01f3066 [Performance] Optimize get_seqs (#7051) 2024-08-01 18:29:52 -07:00
6a11fdfbb8 [CI/Build][Bugfix] Fix CUTLASS header-only line (#7034) 2024-08-01 13:51:15 -07:00
805a8a75f2 [Misc] Support attention logits soft-capping with flash-attn (#7022) 2024-08-01 13:14:37 -07:00
562e580abc Update run-amd-test.sh (#7044) 2024-08-01 13:12:37 -07:00
fc912e0886 [Models] Support Qwen model with PP (#6974)
Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
2024-08-01 12:40:43 -07:00
f4fd390f5d [Bugfix] Lower gemma's unloaded_params exception to warning (#7002) 2024-08-01 12:01:07 -07:00
fb3db61688 [CI/Build] Remove sparseml requirement from testing (#7037) 2024-08-01 12:00:51 -07:00
2dd34371a6 [Bugfix] Fix RMSNorm forward in InternViT attention qk_layernorm (#6992) 2024-08-01 12:00:28 -07:00
7e0861bd0b [CI/Build] Update PyTorch to 2.4.0 (#6951)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-08-01 11:11:24 -07:00
a72a424b3e [Build/CI] Fixing Docker Hub quota issue. (#7043) 2024-08-01 11:07:37 -07:00
c8a7e93273 [core][scheduler] simplify and improve scheduler (#6867) 2024-07-31 23:51:09 -07:00
3c10591ef2 [Bugfix] Set SamplingParams.max_tokens for OpenAI requests if not provided by user (#6954) 2024-07-31 21:13:34 -07:00
0437492ea9 PP comm optimization: replace send with partial send + allgather (#6695)
Co-authored-by: Aurick Qiao <aurick.qiao@snowflake.com>
2024-07-31 20:15:42 -07:00
630dd9e0ae [Bugfix][Model] Skip loading lm_head weights if using tie_word_embeddings (#6758)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-07-31 19:49:11 -07:00
23993a7997 [Bugfix][TPU] Do not use torch.Generator for TPUs (#6981) 2024-07-31 18:50:28 -07:00
1d2e7fb73f [Model] Pipeline parallel support for Qwen2 (#6924) 2024-07-31 18:49:51 -07:00
7ecee34321 [Kernel][RFC] Refactor the punica kernel based on Triton (#5036) 2024-07-31 17:12:24 -07:00
7eb0cb4a14 Revert "[Frontend] Factor out code for running uvicorn" (#7012)
Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
2024-07-31 16:34:26 -07:00
a0dce9383a [Misc] Add compressed-tensors to optimized quant list (#7006) 2024-07-31 14:40:44 -07:00
35e9c12bfa [Kernel] Tuned int8 Cutlass Kernels for SM75 (T4) (#6996)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-07-31 14:40:32 -07:00
93548eb37e [Kernel] Enable FP8 Cutlass for Ada Lovelace (#6950)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-07-31 14:40:22 -07:00
460c1884e3 [Bugfix] Support cpu offloading with fp8 quantization (#6960) 2024-07-31 12:47:46 -07:00
bd70013407 [MISC] Introduce pipeline parallelism partition strategies (#6920)
Co-authored-by: youkaichao <youkaichao@126.com>
2024-07-31 12:02:17 -07:00
2ee8d3ba55 [Model] use FusedMoE layer in Jamba (#6935) 2024-07-31 12:00:24 -07:00
daed30c4a9 [Bugfix] Fix feature size calculation for LLaVA-NeXT (#6982) 2024-07-31 23:46:17 +08:00
2f4e108f75 [Bugfix] Clean up MiniCPM-V (#6939)
Co-authored-by: hezhihui <hzh7269@modelbest.cn>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-07-31 14:39:19 +00:00
6512937de1 Support W4A8 quantization for vllm (#5218) 2024-07-31 07:55:21 -06:00
Fei
c0644cf9ce [Bugfix] fix logit processor excceed vocab size issue (#6927) 2024-07-31 16:16:01 +08:00
533d1932d2 [Bugfix][TPU] Set readonly=True for non-root devices (#6980) 2024-07-31 00:19:28 -07:00
9f0e69b653 [CI/Build] Fix mypy errors (#6968) 2024-07-30 19:49:48 -07:00
f230cc2ca6 [Bugfix] Fix broadcasting logic for multi_modal_kwargs (#6836) 2024-07-31 10:38:45 +08:00
da1f7cc12a [mypy] Enable following imports for some directories (#6681) 2024-07-31 10:38:03 +08:00
c32ab8be1a [Speculative decoding] Add serving benchmark for llama3 70b + speculative decoding (#6964) 2024-07-31 00:53:21 +00:00
fb4f530bf5 [CI] [nightly benchmark] Do not re-download sharegpt dataset if exists (#6706) 2024-07-30 16:28:49 -07:00
79319cedfa [Nightly benchmarking suite] Remove pkill python from run benchmark suite (#6965) 2024-07-30 16:28:05 -07:00
40c27a7cbb [Build] Temporarily Disable Kernels and LoRA tests (#6961) 2024-07-30 14:59:48 -07:00
6ca8031e71 [core][misc] improve free_finished_seq_groups (#6865)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-07-30 14:32:12 -07:00
d7a299edaa [Kernel] Remove scaled_fp8_quant kernel padding footgun (#6842) 2024-07-30 16:37:01 -04:00
052b6f8ca4 [Bugfix] Fix tensorizer memory profiling bug during testing (#6881) 2024-07-30 11:48:50 -07:00
5895b24677 [OpenVINO] Updated OpenVINO requirements and build docs (#6948) 2024-07-30 11:33:01 -07:00
cbbc904470 [Kernel] Squash a few more warnings (#6914) 2024-07-30 13:50:42 -04:00
5cf9254a9c [BugFix] Fix use of per-request seed with pipeline parallel (#6698) 2024-07-30 10:40:08 -07:00
f058403683 [Doc] Super tiny fix doc typo (#6949) 2024-07-30 09:14:03 -07:00
c66c7f86ac [Bugfix] Fix PaliGemma MMP (#6930) 2024-07-30 02:20:57 -07:00
6e063ea35b [TPU] Fix greedy decoding (#6933) 2024-07-30 02:06:29 -07:00
af647fb8b3 [Kernel] Tuned int8 kernels for Ada Lovelace (#6848)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-07-29 20:24:58 -06:00
61a97c32f6 [Kernel] Fix marlin divide-by-zero warnings (#6904) 2024-07-30 01:26:07 +00:00
4fbf4aa128 [ci] GHA workflow to remove ready label upon "/notready" comment (#6921)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-29 17:03:45 -07:00
aae6d36f7e [Kernel] Remove unused variables in awq/gemm_kernels.cu (#6908) 2024-07-29 18:01:17 -06:00
9f69d8245a [Frontend] New allowed_token_ids decoding request parameter (#6753) 2024-07-29 23:37:27 +00:00
9a7e2d0534 [Bugfix] Allow vllm to still work if triton is not installed. (#6786)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-07-29 14:51:27 -07:00
7f8d612d24 [TPU] Support tensor parallelism in async llm engine (#6891) 2024-07-29 12:42:21 -07:00
60d1c6e584 [Kernel] Fix deprecation function warnings squeezellm quant_cuda_kernel (#6901) 2024-07-29 09:59:02 -07:00
db9e5708a9 [Core] Reduce unnecessary compute when logprobs=None (#6532) 2024-07-29 16:47:31 +00:00
766435e660 [Kernel] Tuned FP8 Kernels for Ada Lovelace (#6677)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-07-29 09:42:35 -06:00
7cbd9ec7a9 [Model] Initialize support for InternVL2 series models (#6514)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-07-29 10:16:30 +00:00
3eeb148f46 [Misc] Pass cutlass_fp8_supported correctly in fbgemm_fp8 (#6871) 2024-07-28 11:13:49 -04:00
b1366a9534 Add Nemotron to PP_SUPPORTED_MODELS (#6863) 2024-07-27 15:05:17 -07:00
75acdaa4b6 [Kernel] Increase precision of GPTQ/AWQ Marlin kernel (#6795) 2024-07-27 17:52:33 -04:00
fad5576c58 [TPU] Reduce compilation time & Upgrade PyTorch XLA version (#6856) 2024-07-27 10:28:33 -07:00
f954d0715c [Docs] Add RunLLM chat widget (#6857) 2024-07-27 09:24:46 -07:00
1ad86acf17 [Model] Initial support for BLIP-2 (#5920)
Co-authored-by: ywang96 <ywang@roblox.com>
2024-07-27 11:53:07 +00:00
ecb33a28cb [CI/Build][Doc] Update CI and Doc for VLM example changes (#6860) 2024-07-27 09:54:14 +00:00
a57d75821c [bugfix] make args.stream work (#6831) 2024-07-27 09:07:02 +00:00
925de97e05 [Bugfix] Fix VLM example typo (#6859) 2024-07-27 14:24:08 +08:00
aa46953a20 [Misc][VLM][Doc] Consolidate offline examples for vision language models (#6858)
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2024-07-26 22:44:13 -07:00
593e79e733 [Bugfix] torch.set_num_threads() in multiproc_gpu_executor (#6802)
[Bugfix] Use torch.set_num_threads() to configure parallelism in multiproc_gpu_executor (#6802)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-07-26 22:15:20 -07:00
c53041ae3b [Doc] Add missing mock import to docs conf.py (#6834) 2024-07-27 04:47:33 +00:00
52f07e3dec [Hardware][TPU] Implement tensor parallelism with Ray (#5871) 2024-07-26 20:54:27 -07:00
Joe
14dbd5a767 [Model] H2O Danube3-4b (#6451) 2024-07-26 20:47:50 -07:00
ed94e4f427 [Bugfix][Model] Jamba assertions and no chunked prefill by default for Jamba (#6784) 2024-07-26 20:45:31 -07:00
3c3012398e [Doc] add VLLM_TARGET_DEVICE=neuron to documentation for neuron (#6844)
Signed-off-by: omrishiv <327609+omrishiv@users.noreply.github.com>
2024-07-26 20:20:16 -07:00
ced36cd89b [ROCm] Upgrade PyTorch nightly version (#6845) 2024-07-26 20:16:13 -07:00
969d032265 [Bugfix]: Fix Tensorizer test failures (#6835) 2024-07-26 20:02:25 -07:00
55712941e5 [Bug Fix] Illegal memory access, FP8 Llama 3.1 405b (#6852) 2024-07-27 02:27:44 +00:00
981b0d5673 [Frontend] Factor out code for running uvicorn (#6828) 2024-07-27 09:58:25 +08:00
d09b94ca58 [TPU] Support collective communications in XLA devices (#6813) 2024-07-27 01:45:57 +00:00
bb5494676f enforce eager mode with bnb quantization temporarily (#6846) 2024-07-27 01:32:20 +00:00
b5f49ee55b Update README.md (#6847) 2024-07-27 00:26:45 +00:00
150a1ffbfd [Doc] Update SkyPilot doc for wrong indents and instructions for update service (#4283) 2024-07-26 14:39:10 -07:00
281977bd6e [Doc] Add Nemotron to supported model docs (#6843) 2024-07-26 17:32:44 -04:00
3bbb4936dc [Hardware] [Intel] Enable Multiprocessing and tensor parallel in CPU backend and update documentation (#6125) 2024-07-26 13:50:10 -07:00
aa4867791e [Misc][TPU] Support TPU in initialize_ray_cluster (#6812) 2024-07-26 19:39:49 +00:00
71734f1bf2 [Build/CI][ROCm] Minor simplification to Dockerfile.rocm (#6811) 2024-07-26 12:28:32 -07:00
50704f52c4 [Bugfix][Kernel] Promote another index to int64_t (#6838) 2024-07-26 18:41:04 +00:00
07278c37dd [Model] Support Nemotron models (Nemotron-3, Nemotron-4, Minitron) (#6611) 2024-07-26 14:33:42 -04:00
85ad7e2d01 [doc][debugging] add known issues for hangs (#6816) 2024-07-25 21:48:05 -07:00
89a84b0bb7 [Core] Use array to speedup padding (#6779) 2024-07-25 21:31:31 -07:00
084a01fd35 [Bugfix] [Easy] Fixed a bug in the multiprocessing GPU executor. (#6770) 2024-07-25 21:25:35 -07:00
062a1d0fab Fix ReplicatedLinear weight loading (#6793) 2024-07-25 19:24:58 -07:00
2eb9f4ff26 [ci] Mark tensorizer as soft fail and separate from grouped test (#6810)
[ci] Mark tensorizer test as soft fail and separate it from grouped test in fast check (#6810)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-25 18:08:33 -07:00
443c7cf4cf [ci][distributed] fix flaky tests (#6806) 2024-07-25 17:44:09 -07:00
1adddb14bf [Core] Fix ray forward_dag error mssg (#6792) 2024-07-25 16:53:25 -07:00
b7215de2c5 [Docs] Publish 5th meetup slides (#6799) 2024-07-25 16:47:55 -07:00
f3ff63c3f4 [doc][distributed] improve multinode serving doc (#6804) 2024-07-25 15:38:32 -07:00
cd7edc4e87 [Bugfix] Fix empty (nullptr) channelwise scales when loading wNa16 using compressed tensors (#6798) 2024-07-25 15:05:09 -07:00
6a1e25b151 [Doc] Add documentations for nightly benchmarks (#6412) 2024-07-25 11:57:16 -07:00
95db75de64 [Bugfix] Add synchronize to prevent possible data race (#6788)
Co-authored-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2024-07-25 10:40:01 -07:00
65b1f121c8 [Bugfix] Fix kv_cache_dtype=fp8 without scales for FP8 checkpoints (#6761) 2024-07-25 09:46:15 -07:00
889da130e7 [ Misc ] fp8-marlin channelwise via compressed-tensors (#6524)
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-07-25 09:46:04 -07:00
b75e314fff [Bugfix] Add image placeholder for OpenAI Compatible Server of MiniCPM-V (#6787)
Co-authored-by: hezhihui <hzh7269@modelbest.cn>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-07-25 09:42:49 -07:00
316a41ac1d [Bugfix] Fix encoding_format in examples/openai_embedding_client.py (#6755) 2024-07-24 22:48:07 -07:00
0310029a2f [Bugfix] Fix awq_marlin and gptq_marlin flags (#6745) 2024-07-24 22:34:11 -07:00
309aaef825 [Bugfix] Fix decode tokens w. CUDA graph (#6757) 2024-07-24 22:33:56 -07:00
9e169a4c61 [Model] Adding support for MiniCPM-V (#4087) 2024-07-24 20:59:30 -07:00
5689e256ba [Frontend] Represent tokens with identifiable strings (#6626) 2024-07-25 09:51:00 +08:00
740374d456 [core][distributed] fix zmq hang (#6759) 2024-07-24 17:37:12 -07:00
d88c458f44 [Doc][AMD][ROCm]Added tips to refer to mi300x tuning guide for mi300x users (#6754) 2024-07-24 14:32:57 -07:00
421e218b37 [Bugfix] Bump transformers to 4.43.2 (#6752) 2024-07-24 13:22:16 -07:00
5448f67635 [Core] Tweaks to model runner/input builder developer APIs (#6712) 2024-07-24 12:17:12 -07:00
0e63494cf3 Add fp8 support to reshape_and_cache_flash (#6667) 2024-07-24 18:36:52 +00:00
ee812580f7 [Frontend] split run_server into build_server and run_server (#6740) 2024-07-24 10:36:04 -07:00
40468b13fa [Bugfix] Miscalculated latency lead to time_to_first_token_seconds inaccurate. (#6686) 2024-07-24 08:58:42 -07:00
2cf0df3381 [Bugfix] Fix speculative decode seeded test (#6743) 2024-07-24 08:58:31 -07:00
545146349c Adding f-string to validation error which is missing (#6748) 2024-07-24 08:55:53 -07:00
f4f8a9d892 [Bugfix]fix modelscope compatible issue (#6730) 2024-07-24 05:04:46 -07:00
b570811706 [Build/CI] Update run-amd-test.sh. Enable Docker Hub login. (#6711) 2024-07-24 05:01:14 -07:00
ccc4a73257 [Docs][ROCm] Detailed instructions to build from source (#6680) 2024-07-24 01:07:23 -07:00
0a740a11ba [Bugfix] Fix token padding for chameleon (#6724) 2024-07-24 01:05:09 -07:00
c882a7f5b3 [SpecDecoding] Update MLPSpeculator CI tests to use smaller model (#6714) 2024-07-24 07:34:22 +00:00
5e8ca973eb [Bugfix] fix flashinfer cudagraph capture for PP (#6708) 2024-07-24 01:49:44 +00:00
87525fab92 [bitsandbytes]: support read bnb pre-quantized model (#5753)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-07-23 23:45:09 +00:00
2f808e69ab [Bugfix] StatLoggers: cache spec decode metrics when they get collected. (#6645)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-07-23 23:05:05 +00:00
01c16ede6b [CI] Add smoke test for non-uniform AutoFP8 quantization (#6702) 2024-07-23 22:45:12 +00:00
72fc704803 [build] relax wheel size limit (#6704) 2024-07-23 14:03:49 -07:00
1bedf210e3 Bump transformers version for Llama 3.1 hotfix and patch Chameleon (#6690) 2024-07-23 13:47:48 -07:00
507ef787d8 [Model] Pipeline Parallel Support for DeepSeek v2 (#6519)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-07-23 12:22:09 -07:00
58f53034ad [Frontend] Add Usage data in each chunk for chat_serving. #6540 (#6652) 2024-07-23 11:41:55 -07:00
0eb0757bef [Misc] Add ignored layers for fp8 quantization (#6657) 2024-07-23 14:04:04 -04:00
38c4b7e863 Bump version to 0.5.3.post1 (#6696) 2024-07-23 10:08:59 -07:00
a112a84aad [BugFix] Fix RoPE error in Llama 3.1 (#6693) 2024-07-23 09:46:05 -07:00
461089a21a [Bugfix] Fix a log error in chunked prefill (#6694) 2024-07-23 09:27:58 -07:00
71950af726 [doc][distributed] fix doc argument order (#6691) 2024-07-23 08:55:33 -07:00
cb1362a889 [Docs] Announce llama3.1 support (#6688) 2024-07-23 08:18:15 -07:00
bb2fc08072 Bump version to v0.5.3 (#6674) 2024-07-23 00:00:08 -07:00
3eda4ec780 support ignore patterns in model loader (#6673) 2024-07-22 23:59:42 -07:00
22fa2e35cb [VLM][Model] Support image input for Chameleon (#6633) 2024-07-22 23:50:48 -07:00
c5201240a4 [misc] only tqdm for first rank (#6672) 2024-07-22 21:57:27 -07:00
97234be0ec [Misc] Manage HTTP connections in one place (#6600) 2024-07-22 21:32:02 -07:00
c051bfe4eb [doc][distributed] doc for setting up multi-node environment (#6529)
[doc][distributed] add more doc for setting up multi-node environment (#6529)
2024-07-22 21:22:09 -07:00
9e0b558a09 [Misc] Support FP8 kv cache scales from compressed-tensors (#6528) 2024-07-23 04:11:50 +00:00
e519ae097a add tqdm when loading checkpoint shards (#6569)
Co-authored-by: tianyi.zhao <tianyi.zhao@transwarp.io>
Co-authored-by: youkaichao <youkaichao@126.com>
2024-07-22 20:48:01 -07:00
7c2749a4fd [misc] add start loading models for users information (#6670) 2024-07-22 20:08:02 -07:00
729171ae58 [Misc] Enable chunked prefill by default for long context models (#6666) 2024-07-22 20:03:13 -07:00
c5e8330997 [Bugfix] Fix null modules_to_not_convert in FBGEMM Fp8 quantization (#6665) 2024-07-22 19:25:05 -07:00
e0c15758b8 [Core] Modulize prepare input and attention metadata builder (#6596) 2024-07-23 00:45:24 +00:00
bdf5fd1386 [Misc] Remove deprecation warning for beam search (#6659) 2024-07-23 00:21:58 +00:00
5a96ee52a3 [ci][build] add back vim in docker (#6661) 2024-07-22 16:26:29 -07:00
42c7f66a38 [Core] Support dynamically loading Lora adapter from HuggingFace (#6234)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-07-22 15:42:40 -07:00
69d5ae38dc [ci] Use different sccache bucket for CUDA 11.8 wheel build (#6656)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-22 14:20:41 -07:00
fea59c7712 [Bugfix][Kernel] Use int64_t for indices in fp8 quant kernels (#6649) 2024-07-22 14:08:30 -06:00
739b61a348 [Frontend] Refactor prompt processing (#4028)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-07-22 10:13:53 -07:00
89c1c6a196 [Bugfix] Fix vocab_size field access in llava_next.py (#6624) 2024-07-22 05:02:51 +00:00
42de2cefcb [Misc] Add a wrapper for torch.inference_mode (#6618) 2024-07-21 18:43:11 -07:00
c9eef37f32 [Model] Initial Support for Chameleon (#5770) 2024-07-21 17:37:51 -07:00
396d92d5e0 [Kernel][Core] Add AWQ support to the Marlin kernel (#6612) 2024-07-21 19:41:42 -04:00
25e778aa16 [Model] Refactor and decouple phi3v image embedding (#6621) 2024-07-21 16:07:58 -07:00
b6df37f943 [Misc] Remove abused noqa (#6619) 2024-07-21 23:47:04 +08:00
14f91fe67c [Spec Decode] Disable Log Prob serialization to CPU for spec decoding for both draft and target models. (#6485) 2024-07-20 23:58:58 -07:00
d7f4178dd9 [Frontend] Move chat utils (#6602)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-07-21 08:38:17 +08:00
082ecd80d5 [ Bugfix ] Fix AutoFP8 fp8 marlin (#6609) 2024-07-20 17:25:56 -06:00
f952bbc8ff [Misc] Fix input_scale typing in w8a8_utils.py (#6579) 2024-07-20 23:11:13 +00:00
9364f74eee [ Kernel ] Enable fp8-marlin for fbgemm-fp8 models (#6606) 2024-07-20 18:50:10 +00:00
06d6c5fe9f [Bugfix][CI/Build][Hardware][AMD] Fix AMD tests, add HF cache, update CK FA, add partially supported model notes (#6543) 2024-07-20 09:39:07 -07:00
683e3cb9c4 [ Misc ] fbgemm checkpoints (#6559) 2024-07-20 09:36:57 -07:00
9042d68362 [Misc] Consolidate and optimize logic for building padded tensors (#6541) 2024-07-20 04:17:24 +00:00
3f8d42c81f Pipeline Parallel: Guard for KeyErrors at request abort (#6587)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-07-19 19:18:19 -07:00
7bd82002ae [Core] Allow specifying custom Executor (#6557) 2024-07-20 01:25:06 +00:00
2e26564259 [ Kernel ] FP8 Dynamic Per Token Quant - Add scale_ub (#6593)
Co-authored-by: Varun Sundar Rabindranth <varun@neuralmagic.com>
2024-07-19 18:15:26 -07:00
e81522e879 [build] add ib in image for out-of-the-box infiniband support (#6599)
[build] add ib so that multi-node support with infiniband can be supported out-of-the-box (#6599)
2024-07-19 17:16:57 -07:00
45ceb85a0c [Docs] Update PP docs (#6598) 2024-07-19 16:38:21 -07:00
4cc24f01b1 [ Kernel ] Enable Dynamic Per Token fp8 (#6547) 2024-07-19 23:08:15 +00:00
07eb6f19f3 [bugfix][distributed] fix multi-node bug for shared memory (#6597) 2024-07-19 15:34:34 -07:00
f0bbfaf917 [Bugfix] [SpecDecode] AsyncMetricsCollector: update time since last collection (#6578) 2024-07-19 14:01:03 -07:00
30efe41532 [Docs] Update docs for wheel location (#6580) 2024-07-19 12:14:11 -07:00
9ed82e7074 [Misc] Small perf improvements (#6520) 2024-07-19 12:10:56 -07:00
51f8aa90ad [Bugfix][Frontend] remove duplicate init logger (#6581) 2024-07-19 10:16:27 -07:00
a5314e8698 [Model] RowParallelLinear: pass bias to quant_method.apply (#6327)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-07-19 07:15:22 -06:00
a921e86392 [BUGFIX] Raise an error for no draft token case when draft_tp>1 (#6369) 2024-07-19 06:01:09 -07:00
6366efc67b [Bugfix][Frontend] Fix missing /metrics endpoint (#6463) 2024-07-19 03:55:13 +00:00
dbe5588554 [ Misc ] non-uniform quantization via compressed-tensors for Llama (#6515) 2024-07-18 22:39:18 -04:00
d4201e06d5 [Bugfix] Make spec. decode respect per-request seed. (#6034)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-07-18 19:22:08 -07:00
b5672a112c [Core] Multiprocessing Pipeline Parallel support (#6130)
Co-authored-by: Murali Andoorveedu <muralidhar.andoorveedu@centml.ai>
2024-07-18 19:15:52 -07:00
c5df56f88b Add support for a rope extension method (#6553) 2024-07-19 01:53:03 +00:00
1689219ebf [CI/Build] Build on Ubuntu 20.04 instead of 22.04 (#6517) 2024-07-18 17:29:25 -07:00
4ffffccb7e [Kernel] Implement fallback for FP8 channelwise using torch._scaled_mm (#6552) 2024-07-18 23:52:22 +00:00
f53b8f0d05 [ci][test] add correctness test for cpu offloading (#6549) 2024-07-18 23:41:06 +00:00
2d4733ba2d Fix PR comment bot (#6554)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-18 14:48:29 -07:00
15c6a079b1 [Model] Support Mistral-Nemo (#6548) 2024-07-18 20:31:50 +00:00
ecdb462c24 [ci] Reword Github bot comment (#6534) 2024-07-18 08:01:45 -07:00
58ca663224 [ Misc ] Improve Min Capability Checking in compressed-tensors (#6522) 2024-07-18 14:39:12 +00:00
4634c8728b [TPU] Refactor TPU worker & model runner (#6506) 2024-07-18 01:34:16 -07:00
c8a7d51c49 [Bugfix] Update flashinfer.py with PagedAttention forwards - Fixes Gemma2 OpenAI Server Crash (#6501) 2024-07-18 07:47:13 +00:00
e2fbaee725 [BugFix][Frontend] Use LoRA tokenizer in OpenAI APIs (#6227)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-07-18 15:13:30 +08:00
8a74c68bd1 [Misc] Minor patch for draft model runner (#6523) 2024-07-18 06:06:21 +00:00
61e592747c [Core] Introduce SPMD worker execution using Ray accelerated DAG (#6032)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
Co-authored-by: Stephanie Wang <swang@cs.berkeley.edu>
2024-07-17 22:27:09 -07:00
d25877dd9b [BugFix] Avoid secondary error in ShmRingBuffer destructor (#6530) 2024-07-17 22:24:43 -07:00
1c27d25fb5 [core][model] yet another cpu offload implementation (#6496)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-07-17 20:54:35 -07:00
18fecc3559 [ Kernel ] Fp8 Channelwise Weight Support (#6487) 2024-07-18 03:18:13 +00:00
b5af8c223c [Model] Pipeline parallel support for Mixtral (#6516) 2024-07-17 19:26:04 -07:00
b5241e41d9 [ Kernel ] FP8 Dynamic-Per-Token Quant Kernel (#6511)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-07-18 01:38:35 +00:00
e76466dde2 [Core] draft_model_runner: Implement prepare_inputs on GPU for advance_step (#6338) 2024-07-17 14:30:28 -07:00
5f0b9933e6 [Bugfix] Fix Ray Metrics API usage (#6354) 2024-07-17 19:40:10 +00:00
a38524f338 [DOC] - Add docker image to Cerebrium Integration (#6510) 2024-07-17 10:22:53 -07:00
2fa4623d9e [Core] Refactor _prepare_model_input_tensors - take 2 (#6164) 2024-07-17 09:37:16 -07:00
a9a2e74d21 [Misc] Use torch.Tensor for type annotation (#6505) 2024-07-17 13:01:10 +00:00
e09ce759aa [TPU] Remove multi-modal args in TPU backend (#6504) 2024-07-17 04:02:53 -07:00
5fa6e9876e [Bugfix] Fix for multinode crash on 4 PP (#6495)
Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
2024-07-17 08:25:10 +00:00
5bf35a91e4 [Doc][CI/Build] Update docs and tests to use vllm serve (#6431) 2024-07-17 07:43:21 +00:00
a19e8d3726 [Misc][Speculative decoding] Typos and typing fixes (#6467)
Co-authored-by: caishangming.csm <caishangming.csm@alibaba-inc.com>
2024-07-17 07:17:07 +00:00
10383887e0 [ROCm] Cleanup Dockerfile and remove outdated patch (#6482) 2024-07-16 22:47:02 -07:00
1d094fd7c0 [Distributed][PP] only create embedding & lm head when necessary (#6455)
original title: [Distributed][Model] Rank-based Component Creation for Pipeline Parallelism Memory Optimization
2024-07-16 19:20:26 -07:00
ce37be7ba0 [misc][distributed] add seed to dummy weights (#6491) 2024-07-16 19:16:34 -07:00
7f62077af5 [misc][distributed] improve tests (#6488) 2024-07-16 17:35:52 -07:00
09c2eb85dd [ci][distributed] add pipeline parallel correctness test (#6410) 2024-07-16 15:44:22 -07:00
978aed5300 [Kernel][Attention] Separate Attention.kv_scale into k_scale and v_scale (#6081) 2024-07-16 15:31:32 -07:00
160e1d8c99 [Misc] Log spec decode metrics (#6454) 2024-07-16 20:37:10 +00:00
94162beb9f [Doc] Fix the lora adapter path in server startup script (#6230) 2024-07-16 10:11:04 -07:00
c467dff24f [Hardware][TPU] Support MoE with Pallas GMM kernel (#6457) 2024-07-16 09:56:28 -07:00
9f4ccec761 [doc][misc] remind to cancel debugging environment variables (#6481)
[doc][misc] remind users to cancel debugging environment variables after debugging (#6481)
2024-07-16 09:45:30 -07:00
38ef94888a [CI/Build] Remove "boardwalk" image asset (#6460) 2024-07-16 08:59:36 -07:00
2bb0489cb3 [Core] Use numpy to speed up padded token processing (#6442) 2024-07-16 08:13:25 -07:00
7508a3dc34 [Misc] Fix typos in spec. decode metrics logging. (#6470)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-07-16 13:55:15 +00:00
7a3d2a5b95 [Frontend] Support for chat completions input in the tokenize endpoint (#5923) 2024-07-16 20:18:09 +08:00
d97011512e [CI/Build] vLLM cache directory for images (#6444) 2024-07-15 23:12:25 -07:00
37d776606f [Docs] Announce 5th meetup (#6458) 2024-07-15 21:04:58 -07:00
Joe
d92b3c5cde [Bugfix][CI/Build] Test prompt adapters in openai entrypoint tests (#6419) 2024-07-15 18:54:15 -07:00
9ad32dacd9 [BugFix][Model] Jamba - Handle aborted requests, Add tests and fix cleanup bug (#6425)
Co-authored-by: Mor Zusman <morz@ai21.com>
2024-07-16 01:32:55 +00:00
d6f3b3d5c4 Pin sphinx-argparse version (#6453)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-16 01:26:11 +00:00
4552e37b55 [CI/Build][TPU] Add TPU CI test (#6277)
Co-authored-by: kevin <kevin@anyscale.com>
2024-07-15 14:31:16 -07:00
ec9933f4a5 [Misc] Add CustomOp Interface to UnquantizedFusedMoEMethod (#6289) 2024-07-15 19:02:14 +00:00
3dee97b05f [Docs] Add Google Cloud to sponsor list (#6450) 2024-07-15 11:58:10 -07:00
4cf256ae7f [misc][distributed] fix pp missing layer condition (#6446) 2024-07-15 10:32:35 -07:00
64fdc08c72 bump version to v0.5.2 (#6433) 2024-07-15 17:27:40 +00:00
4ef95b0f06 [Bugfix] use float32 precision in samplers/test_logprobs.py for comparing with HF (#6409)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-07-15 13:14:49 -04:00
eaec4b9153 [Bugfix] Add custom Triton cache manager to resolve MoE MP issue (#6140)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Chih-Chieh-Yang <chih.chieh.yang@ibm.com>
2024-07-15 10:12:47 -07:00
a63a4c6341 [Misc] Use 0.0.9 version for flashinfer (#6447)
Co-authored-by: Pernekhan Utemuratov <pernekhan@deepinfra.com>
2024-07-15 10:10:26 -07:00
c8fd97f26d [Kernel] Use CUTLASS kernels for the FP8 layers with Bias (#6270) 2024-07-15 13:05:52 -04:00
94b82e8c18 [doc][distributed] add suggestion for distributed inference (#6418) 2024-07-15 09:45:51 -07:00
6ae1597ddf [VLM] Minor space optimization for ClipVisionModel (#6436) 2024-07-15 17:29:51 +08:00
22e79ee8f3 [doc][misc] doc update (#6439) 2024-07-14 23:33:25 -07:00
de19916314 [Bugfix] Convert image to RGB by default (#6430) 2024-07-15 05:39:15 +00:00
69672f116c [core][distributed] simplify code to support pipeline parallel (#6406) 2024-07-14 21:20:51 -07:00
44874a0bf9 [Doc] add env docs for flashinfer backend (#6437) 2024-07-14 21:16:51 -07:00
b47008b4d2 [BugFix] BatchResponseData body should be optional (#6345)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-07-15 04:06:09 +00:00
9bfece89fd Add FUNDING.yml (#6435) 2024-07-14 20:36:16 -07:00
32c9d7f765 Report usage for beam search (#6404) 2024-07-14 19:37:35 -07:00
ccb20db8bd [Bugfix] Benchmark serving script used global parameter 'args' in function 'sample_random_requests' (#6428) 2024-07-14 19:27:01 -07:00
a754dc2cb9 [CI/Build] Cross python wheel (#6394) 2024-07-14 18:54:46 -07:00
61e85dbad8 [Doc] xpu backend requires running setvars.sh (#6393) 2024-07-14 17:10:11 -07:00
dbfe254eda [Feature] vLLM CLI (#5090)
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-07-14 15:36:43 -07:00
73030b7dae [ Misc ] Enable Quantizing All Layers of DeekSeekv2 (#6423) 2024-07-14 21:38:42 +00:00
ccd3c04571 [ci][build] fix commit id (#6420)
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2024-07-14 22:16:21 +08:00
9dad5cc859 [Kernel] Turn off CUTLASS scaled_mm for Ada Lovelace (#6384) 2024-07-14 13:37:19 +00:00
6ef3bf912c Remove unnecessary trailing period in spec_decode.rst (#6405) 2024-07-14 07:58:09 +00:00
540c0368b1 [Model] Initialize Fuyu-8B support (#3924)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-07-14 05:27:14 +00:00
fb6af8bc08 [ Misc ] Apply MoE Refactor to Deepseekv2 To Support Fp8 (#6417) 2024-07-13 20:03:58 -07:00
eeceadaecc [Misc] Add deprecation warning for beam search (#6402) 2024-07-13 11:52:22 -07:00
babf52dade [ Misc ] More Cleanup of Marlin (#6359)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-07-13 10:21:37 +00:00
9da4aad44b Updating LM Format Enforcer version to v10.3 (#6411) 2024-07-13 10:09:12 +00:00
41708e5034 [ci] try to add multi-node tests (#6280)
Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
Co-authored-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
2024-07-12 21:51:48 -07:00
d80aef3776 [Docs] Clean up latest news (#6401) 2024-07-12 19:36:53 -07:00
e1684a766a [Bugfix] Fix hard-coded value of x in context_attention_fwd (#6373)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-07-12 18:30:54 -07:00
a27f87da34 [Doc] Fix Typo in Doc (#6392)
Co-authored-by: Saliya Ekanayake <esaliya@d-matrix.ai>
2024-07-13 00:48:23 +00:00
16ff6bd58c [ci] Fix wording for GH bot (#6398)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-12 16:34:37 -07:00
f8f9ff57ee [Bugfix][TPU] Fix megacore setting for v5e-litepod (#6397) 2024-07-12 15:59:47 -07:00
6bc9710f6e Fix release pipeline's dir permission (#6391) 2024-07-12 15:52:43 -07:00
111fc6e7ec [Misc] Add generated git commit hash as vllm.__commit__ (#6386) 2024-07-12 22:52:15 +00:00
75f64d8b94 [Bugfix] Fix illegal memory access in FP8 MoE kernel (#6382) 2024-07-12 21:33:33 +00:00
21b2dcedab Fix release pipeline's -e flag (#6390) 2024-07-12 14:08:04 -07:00
07b35af86d Fix interpolation in release pipeline (#6389) 2024-07-12 14:03:39 -07:00
bb1a784b05 Fix release-pipeline.yaml (#6388) 2024-07-12 14:00:57 -07:00
d719ba24c5 Build some nightly wheels by default (#6380) 2024-07-12 13:56:59 -07:00
aa48e502fb [MISC] Upgrade dependency to PyTorch 2.3.1 (#5327) 2024-07-12 12:04:26 -07:00
4dbebd03cc [ci] Add GHA workflows to enable full CI run (#6381)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-12 11:36:26 -07:00
b75bce1008 [ci] Add grouped tests & mark tests to run by default for fastcheck pipeline (#6365)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-12 09:58:38 -07:00
b039cbbce3 [Misc] add fixture to guided processor tests (#6341) 2024-07-12 09:55:39 -07:00
f9d25c2519 [Build/CI] Checking/Waiting for the GPU's clean state (#6379) 2024-07-12 09:42:24 -07:00
024ad87cdc [Bugfix] Fix dtype mismatch in PaliGemma (#6367) 2024-07-12 08:22:18 -07:00
aea19f0989 [ Misc ] Support Models With Bias in compressed-tensors integration (#6356) 2024-07-12 11:11:29 -04:00
f7160d946a [Misc][Bugfix] Update transformers for tokenizer issue (#6364) 2024-07-12 08:40:07 +00:00
6047187cd8 [ Misc ] Remove separate bias add (#6353) 2024-07-12 05:06:09 +00:00
b6c16cf8ff [ROCm][AMD] unify CUDA_VISIBLE_DEVICES usage in cuda/rocm (#6352) 2024-07-11 21:30:46 -07:00
d26a8b3f1f [CI/Build] (2/2) Switching AMD CI to store images in Docker Hub (#6350) 2024-07-11 21:26:26 -07:00
d59eb98489 [Model][Phi3-Small] Remove scipy from blocksparse_attention (#6343) 2024-07-12 10:47:17 +08:00
adf32e0a0f [Bugfix] Fix usage stats logging exception warning with OpenVINO (#6349) 2024-07-12 10:47:00 +08:00
2b0fb53481 [distributed][misc] be consistent with pytorch for libcudart.so (#6346)
[distributed][misc] keep consistent with how pytorch finds libcudart.so (#6346)
2024-07-11 19:35:17 -07:00
d6ab528997 [Misc] Remove flashinfer warning, add flashinfer tests to CI (#6351) 2024-07-12 01:32:06 +00:00
7ed6a4f0e1 [ BugFix ] Prompt Logprobs Detokenization (#6223)
Co-authored-by: Zifei Tong <zifeitong@gmail.com>
2024-07-11 22:02:29 +00:00
a4feba929b [CI/Build] Add nightly benchmarking for tgi, tensorrt-llm and lmdeploy (#5362) 2024-07-11 13:28:38 -07:00
2d23b42d92 [doc] update pipeline parallel in readme (#6347) 2024-07-11 11:38:40 -07:00
1df43de9bb [bug fix] Fix llava next feature size calculation. (#6339)
Signed-off-by: Xiaowei Jiang <xwjiang2010@gmail.com>
2024-07-11 17:21:10 +00:00
52b7fcb35a Benchmark: add H100 suite (#6047) 2024-07-11 09:17:07 -07:00
b675069d74 [ Misc ] Refactor Marlin Python Utilities (#6082)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-07-11 15:40:11 +00:00
55f692b46e [BugFix] get_and_reset only when scheduler outputs are not empty (#6266) 2024-07-11 07:40:20 -07:00
8a1415cf77 [Bugfix] GPTBigCodeForCausalLM: Remove lm_head from supported_lora_modules. (#6326)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-07-11 07:05:59 -07:00
546b101fa0 [BugFix]: fix engine timeout due to request abort (#6255)
Signed-off-by: yatta zhang <ytzhang01@foxmail.com>
Signed-off-by: zhangyuntao.dev <zhangyuntao.dev@bytedance.com>
Co-authored-by: zhangyuntao.dev <zhangyuntao.dev@bytedance.com>
2024-07-11 06:46:31 -07:00
3963a5335b [Misc] refactor(config): clean up unused code (#6320) 2024-07-11 09:39:07 +00:00
c4774eb841 [Bugfix] Fix snapshot download in serving benchmark (#6318) 2024-07-11 07:04:05 +00:00
fc17110bbe [BugFix]: set outlines pkg version (#6262) 2024-07-11 04:37:11 +00:00
439c84581a [Doc] Update description of vLLM support for CPUs (#6003) 2024-07-10 21:15:29 -07:00
99ded1e1c4 [Doc] Remove comments incorrectly copied from another project (#6286) 2024-07-10 17:05:26 -07:00
997df46a32 [Bugfix][Neuron] Fix soft prompt method error in NeuronExecutor (#6313) 2024-07-10 16:39:02 -07:00
ae151d73be [Speculative Decoding] Enabling bonus token in speculative decoding for KV cache based models (#5765) 2024-07-10 16:02:47 -07:00
44cc76610d [Bugfix] Fix OpenVINOExecutor abstractmethod error (#6296)
Signed-off-by: sangjune.park <sangjune.park@navercorp.com>
2024-07-10 10:03:32 -07:00
b422d4961a [CI/Build] Enable mypy typing for remaining folders (#6268) 2024-07-10 22:15:55 +08:00
c38eba3046 [Bugfix] MLPSpeculator: Use ParallelLMHead in tie_weights=False case. (#6303)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-07-10 09:04:07 -04:00
e72ae80b06 [Bugfix] Support 2D input shape in MoE layer (#6287) 2024-07-10 09:03:16 -04:00
8a924d2248 [Doc] Guide for adding multi-modal plugins (#6205) 2024-07-10 14:55:34 +08:00
5ed3505d82 [Bugfix][TPU] Add prompt adapter methods to TPUExecutor (#6279) 2024-07-09 19:30:56 -07:00
da78caecfa [core][distributed] zmq fallback for broadcasting large objects (#6183)
[core][distributed] add zmq fallback for broadcasting large objects (#6183)
2024-07-09 18:49:11 -07:00
2416b26e11 [Speculative Decoding] Medusa Implementation with Top-1 proposer (#4978) 2024-07-09 18:34:02 -07:00
d3a245138a [Bugfix]fix and needs_scalar_to_array logic check (#6238)
Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
2024-07-09 23:43:24 +00:00
673dd4cae9 [Docs] Docs update for Pipeline Parallel (#6222)
Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-07-09 16:24:58 -07:00
4d6ada947c [CORE] Adding support for insertion of soft-tuned prompts (#4645)
Co-authored-by: Swapnil Parekh <swapnilp@ibm.com>
Co-authored-by: Joe G <joseph.granados@h2o.ai>
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-07-09 13:26:36 -07:00
a0550cbc80 Add support for multi-node on CI (#5955)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-09 12:56:56 -07:00
08c5bdecae [Bugfix][TPU] Fix outlines installation in TPU Dockerfile (#6256) 2024-07-09 02:56:06 -07:00
5d5b4c5fe5 [Bugfix][TPU] Add missing None to model input (#6245) 2024-07-09 00:21:37 -07:00
70c232f85a [core][distributed] fix ray worker rank assignment (#6235) 2024-07-08 21:31:44 -07:00
a3c9435d93 [hardware][cuda] use device id under CUDA_VISIBLE_DEVICES for get_device_capability (#6216) 2024-07-08 20:02:15 -07:00
4f0e0ea131 Add FlashInfer to default Dockerfile (#6172) 2024-07-08 13:38:03 -07:00
ddc369fba1 [Bugfix] Mamba cache Cuda Graph padding (#6214) 2024-07-08 11:25:51 -07:00
185ad31f37 [Bugfix] use diskcache in outlines _get_guide #5436 (#6203) 2024-07-08 11:23:24 -07:00
543aa48573 [Kernel] Correctly invoke prefill & decode kernels for cross-attention (towards eventual encoder/decoder model support) (#4888)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-07-08 17:12:15 +00:00
f7a8fa39d8 [Kernel] reloading fused_moe config on the last chunk (#6210) 2024-07-08 08:00:38 -07:00
717f4bcea0 Feature/add benchmark testing (#5947)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-07-08 07:52:06 +00:00
16620f439d do not exclude object field in CompletionStreamResponse (#6196) 2024-07-08 10:32:57 +08:00
3b08fe2b13 [misc][frontend] log all available endpoints (#6195)
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-07-07 15:11:12 -07:00
abfe705a02 [ Misc ] Support Fp8 via llm-compressor (#6110)
Co-authored-by: Robert Shaw <rshaw@neuralmagic>
2024-07-07 20:42:11 +00:00
333306a252 add benchmark for fix length input and output (#5857)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-07-07 07:42:13 +00:00
6206dcb29e [Model] Add PaliGemma (#5189)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-07-07 09:25:50 +08:00
9389380015 [Doc] Move guide for multimodal model and other improvements (#6168) 2024-07-06 17:18:59 +08:00
175c43eca4 [Doc] Reorganize Supported Models by Type (#6167) 2024-07-06 05:59:36 +00:00
bc96d5c330 Move release wheel env var to Dockerfile instead (#6163) 2024-07-05 17:19:53 -07:00
f0250620dd Fix release wheel build env var (#6162) 2024-07-05 16:24:31 -07:00
2de490d60f Update wheel builds to strip debug (#6161) 2024-07-05 14:51:25 -07:00
897 changed files with 104993 additions and 21310 deletions

View File

@ -1,36 +1,43 @@
import os
import sys
import zipfile
MAX_SIZE_MB = 200
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 250 MB
VLLM_MAX_SIZE_MB = int(os.environ.get('VLLM_MAX_SIZE_MB', 250))
def print_top_10_largest_files(zip_file):
"""Print the top 10 largest files in the given zip file."""
with zipfile.ZipFile(zip_file, 'r') as z:
file_sizes = [(f, z.getinfo(f).file_size) for f in z.namelist()]
file_sizes.sort(key=lambda x: x[1], reverse=True)
for f, size in file_sizes[:10]:
print(f"{f}: {size/(1024*1024)} MBs uncompressed.")
print(f"{f}: {size / (1024 * 1024):.2f} MBs uncompressed.")
def check_wheel_size(directory):
"""Check the size of .whl files in the given directory."""
for root, _, files in os.walk(directory):
for f in files:
if f.endswith(".whl"):
wheel_path = os.path.join(root, f)
wheel_size = os.path.getsize(wheel_path)
wheel_size_mb = wheel_size / (1024 * 1024)
if wheel_size_mb > MAX_SIZE_MB:
print(
f"Wheel {wheel_path} is too large ({wheel_size_mb} MB) "
f"compare to the allowed size ({MAX_SIZE_MB} MB).")
for file_name in files:
if file_name.endswith(".whl"):
wheel_path = os.path.join(root, file_name)
wheel_size_mb = os.path.getsize(wheel_path) / (1024 * 1024)
if wheel_size_mb > VLLM_MAX_SIZE_MB:
print(f"Not allowed: Wheel {wheel_path} is larger "
f"({wheel_size_mb:.2f} MB) than the limit "
f"({VLLM_MAX_SIZE_MB} MB).")
print_top_10_largest_files(wheel_path)
return 1
else:
print(f"Wheel {wheel_path} is within the allowed size "
f"({wheel_size_mb} MB).")
f"({wheel_size_mb:.2f} MB).")
return 0
if __name__ == "__main__":
import sys
sys.exit(check_wheel_size(sys.argv[1]))
if len(sys.argv) < 2:
print("Usage: python check-wheel-size.py <directory>")
sys.exit(1)
directory = sys.argv[1]
sys.exit(check_wheel_size(directory))

View File

@ -1,14 +0,0 @@
#!/bin/bash
set -ex
set -o pipefail
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
# aws s3 sync s3://air-example-data-2/vllm_opensource_llava/ images/
mkdir -p images
cd images
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/stop_sign.jpg
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/cherry_blossom.jpg
cd -

View File

@ -0,0 +1,12 @@
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m deepseek-ai/DeepSeek-V2-Lite-Chat -b "auto" -l 1000 -f 5 -t 2
model_name: "deepseek-ai/DeepSeek-V2-Lite-Chat"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.671
- name: "exact_match,flexible-extract"
value: 0.664
limit: 1000
num_fewshot: 5
trust_remote_code: True

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5
model_name: "nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.905
- name: "exact_match,flexible-extract"
value: 0.905
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.752
- name: "exact_match,flexible-extract"
value: 0.754
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.753
- name: "exact_match,flexible-extract"
value: 0.753
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test -b 32 -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.755
- name: "exact_match,flexible-extract"
value: 0.755
limit: 1000
num_fewshot: 5

View File

@ -1,11 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Meta-Llama-3-8B-Instruct-FP8 -b 32 -l 250 -f 5 -t 1
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Meta-Llama-3-8B-Instruct-FP8 -b 32 -l 250 -f 5 -t 1
model_name: "neuralmagic/Meta-Llama-3-8B-Instruct-FP8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.756
value: 0.753
- name: "exact_match,flexible-extract"
value: 0.752
limit: 250
value: 0.753
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.728
- name: "exact_match,flexible-extract"
value: 0.728
limit: 250
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.758
- name: "exact_match,flexible-extract"
value: 0.759
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m HandH1998/QQQ-Llama-3-8b-g128 -b 32 -l 1000 -f 5 -t 1
model_name: "HandH1998/QQQ-Llama-3-8b-g128"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.419
- name: "exact_match,flexible-extract"
value: 0.416
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m mgoin/Minitron-4B-Base-FP8 -b auto -l 1000 -f 5 -t 1
model_name: "mgoin/Minitron-4B-Base-FP8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.233
- name: "exact_match,flexible-extract"
value: 0.236
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-FP8W8 -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Qwen2-1.5B-Instruct-FP8W8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.578
- name: "exact_match,flexible-extract"
value: 0.585
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
model_name: "neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.593
- name: "exact_match,flexible-extract"
value: 0.588
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise -b "auto" -l 1000 -f 5 -t 1
model_name: "nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.595
- name: "exact_match,flexible-extract"
value: 0.582
limit: 1000
num_fewshot: 5

View File

@ -1,3 +1,5 @@
Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform.yaml
Meta-Llama-3-70B-Instruct.yaml
Mixtral-8x7B-Instruct-v0.1.yaml
Qwen2-57B-A14-Instruct.yaml
DeepSeek-V2-Lite-Chat.yaml

View File

@ -1,2 +1,9 @@
Meta-Llama-3-8B-Instruct.yaml
Meta-Llama-3-8B-Instruct-FP8.yaml
Meta-Llama-3-8B-Instruct-FP8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml
Minitron-4B-Base-FP8.yaml
Qwen2-1.5B-Instruct-INT8-compressed-tensors.yaml
Qwen2-1.5B-Instruct-FP8W8.yaml
Meta-Llama-3-8B-QQQ.yaml

View File

@ -3,7 +3,7 @@
# We use this for fp8, which HF does not support.
#
# Make sure you have lm-eval-harness installed:
# pip install lm-eval==0.4.2
# pip install lm-eval==0.4.3
usage() {
echo``
@ -46,6 +46,6 @@ while getopts "m:b:l:f:t:" OPT; do
done
lm_eval --model vllm \
--model_args pretrained=$MODEL,tensor_parallel_size=$TP_SIZE \
--model_args pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,distributed_executor_backend="ray",trust_remote_code=true,max_model_len=4096 \
--tasks gsm8k --num_fewshot $FEWSHOT --limit $LIMIT \
--batch_size $BATCH_SIZE

View File

@ -14,7 +14,7 @@ import lm_eval
import numpy
import yaml
RTOL = 0.02
RTOL = 0.05
TEST_DATA_FILE = os.environ.get(
"LM_EVAL_TEST_DATA_FILE",
".buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml")
@ -23,8 +23,12 @@ TP_SIZE = os.environ.get("LM_EVAL_TP_SIZE", 1)
def launch_lm_eval(eval_config):
trust_remote_code = eval_config.get('trust_remote_code', False)
model_args = f"pretrained={eval_config['model_name']}," \
f"tensor_parallel_size={TP_SIZE}"
f"tensor_parallel_size={TP_SIZE}," \
f"add_bos_token=true," \
f"trust_remote_code={trust_remote_code}"
results = lm_eval.simple_evaluate(
model="vllm",

View File

@ -1,31 +1,54 @@
# vLLM benchmark suite
## Introduction
This directory contains the performance benchmarking CI for vllm.
The goal is to help developers know the impact of their PRs on the performance of vllm.
This directory contains two sets of benchmark for vllm.
- Performance benchmark: benchmark vllm's performance under various workload, for **developers** to gain clarity on whether their PR improves/degrades vllm's performance
- Nightly benchmark: compare vllm's performance against alternatives (tgi, trt-llm and lmdeploy), for **the public** to know when to choose vllm.
This benchmark will be *triggered* upon:
- A PR being merged into vllm.
- Every commit for those PRs with `perf-benchmarks` label.
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for more GPUs is comming later), with different models.
See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
## Performance benchmark quick overview
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!), with different models.
**Benchmarking Duration**: about 1hr.
**For benchmarking developers**: please try your best to constraint the duration of benchmarking to less than 1.5 hr so that it won't take forever to run.
**For benchmarking developers**: please try your best to constraint the duration of benchmarking to about 1 hr so that it won't take forever to run.
## Configuring the workload
## Nightly benchmark quick overview
The benchmarking workload contains three parts:
- Latency tests in `latency-tests.json`.
- Throughput tests in `throughput-tests.json`.
- Serving tests in `serving-tests.json`.
**Benchmarking Coverage**: Fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) on Llama-3 8B, 70B and Mixtral 8x7B.
See [descriptions.md](tests/descriptions.md) for detailed descriptions.
**Benchmarking engines**: vllm, TGI, trt-llm and lmdeploy.
### Latency test
**Benchmarking Duration**: about 3.5hrs.
## Trigger the benchmark
Performance benchmark will be triggered when:
- A PR being merged into vllm.
- Every commit for those PRs with `perf-benchmarks` label AND `ready` label.
Nightly benchmark will be triggered when:
- Every commit for those PRs with `perf-benchmarks` label and `nightly-benchmarks` label.
## Performance benchmark details
See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
#### Latency test
Here is an example of one test inside `latency-tests.json`:
@ -46,19 +69,19 @@ Here is an example of one test inside `latency-tests.json`:
In this example:
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-benchmarks-suite.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
Note that the performance numbers are highly sensitive to the value of the parameters. Please make sure the parameters are set correctly.
WARNING: The benchmarking script will save json results by itself, so please do not configure `--output-json` parameter in the json file.
### Throughput test
#### Throughput test
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `benchmark_throughput.py`.
The number of this test is also stable -- a slight change on the value of this number might vary the performance numbers by a lot.
### Serving test
#### Serving test
We test the throughput by using `benchmark_serving.py` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:
```
@ -95,9 +118,36 @@ The number of this test is less stable compared to the delay and latency benchma
WARNING: The benchmarking script will save json results by itself, so please do not configure `--save-results` or other results-saving-related parameters in `serving-tests.json`.
## Visualizing the results
#### Visualizing the results
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](tests/descriptions.md) with real benchmarking results.
You can find the result presented as a table inside the `buildkite/performance-benchmark` job page.
If you do not see the table, please wait till the benchmark finish running.
The json version of the table (together with the json version of the benchmark) will be also attached to the markdown file.
The raw benchmarking results (in the format of json files) are in the `Artifacts` tab of the benchmarking.
## Nightly test details
See [nightly-descriptions.md](nightly-descriptions.md) for the detailed description on test workload, models and docker containers of benchmarking other llm engines.
#### Workflow
- The [nightly-pipeline.yaml](nightly-pipeline.yaml) specifies the docker containers for different LLM serving engines.
- Inside each container, we run [run-nightly-suite.sh](run-nightly-suite.sh), which will probe the serving engine of the current container.
- The `run-nightly-suite.sh` will redirect the request to `tests/run-[llm serving engine name]-nightly.sh`, which parses the workload described in [nightly-tests.json](tests/nightly-tests.json) and performs the benchmark.
- At last, we run [scripts/plot-nightly-results.py](scripts/plot-nightly-results.py) to collect and plot the final benchmarking results, and update the results to buildkite.
#### Nightly tests
In [nightly-tests.json](tests/nightly-tests.json), we include the command line arguments for benchmarking commands, together with the benchmarking test cases. The format is highly similar to performance benchmark.
#### Docker containers
The docker containers for benchmarking are specified in `nightly-pipeline.yaml`.
WARNING: the docker versions are HARD-CODED and SHOULD BE ALIGNED WITH `nightly-descriptions.md`. The docker versions need to be hard-coded as there are several version-specific bug fixes inside `tests/run-[llm serving engine name]-nightly.sh`.
WARNING: populating `trt-llm` to latest version is not easy, as it requires updating several protobuf files in [tensorrt-demo](https://github.com/neuralmagic/tensorrt-demo.git).

View File

@ -11,7 +11,7 @@ steps:
- sh
- .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
- wait
- label: "A100 Benchmark"
- label: "A100"
agents:
queue: A100
plugins:
@ -21,7 +21,7 @@ steps:
containers:
- image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
- bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
resources:
limits:
nvidia.com/gpu: 8
@ -42,7 +42,7 @@ steps:
- name: devshm
emptyDir:
medium: Memory
# - label: "H100: NVIDIA SMI"
# - label: "H100"
# agents:
# queue: H100
# plugins:
@ -53,7 +53,6 @@ steps:
# - .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
# mount-buildkite-agent: true
# propagate-environment: true
# propagate-uid-gid: false
# ipc: host
# gpus: all
# environment:

View File

@ -1,27 +0,0 @@
#!/usr/bin/env bash
# NOTE(simon): this script runs inside a buildkite agent with CPU only access.
set -euo pipefail
# Install system packages
apt update
apt install -y curl jq
# Install minijinja for templating
curl -sSfL https://github.com/mitsuhiko/minijinja/releases/latest/download/minijinja-cli-installer.sh | sh
source $HOME/.cargo/env
# If BUILDKITE_PULL_REQUEST != "false", then we check the PR labels using curl and jq
if [ "$BUILDKITE_PULL_REQUEST" != "false" ]; then
PR_LABELS=$(curl -s "https://api.github.com/repos/vllm-project/vllm/pulls/$BUILDKITE_PULL_REQUEST" | jq -r '.labels[].name')
if [[ $PR_LABELS == *"perf-benchmarks"* ]]; then
echo "This PR has the 'perf-benchmarks' label. Proceeding with the nightly benchmarks."
else
echo "This PR does not have the 'perf-benchmarks' label. Skipping the nightly benchmarks."
exit 0
fi
fi
# Upload sample.yaml
buildkite-agent pipeline upload .buildkite/nightly-benchmarks/benchmark-pipeline.yaml

View File

@ -0,0 +1,45 @@
# Nightly benchmark
The main goal of this benchmarking is two-fold:
- Performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and tgi) leads in performance in what workload.
- Reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions in [reproduce.md]().
## Docker images
We benchmark vllm, tensorrt-llm, lmdeploy and tgi using the following docker images:
- vllm/vllm-openai:v0.5.0.post1
- nvcr.io/nvidia/tritonserver:24.04-trtllm-python-py3
- openmmlab/lmdeploy:v0.5.0
- ghcr.io/huggingface/text-generation-inference:2.1
<!-- Please check <a href="artifact://workspace/build/buildkite/vllm/performance-benchmark/.buildkite/nightly-benchmarks/nightly-pipeline.yaml">nightly-pipeline.yaml</a> artifact for more details on how we deploy the docker images. -->
## Hardware
One AWS node with 8x NVIDIA A100 GPUs.
## Workload description
We benchmark vllm, tensorrt-llm, lmdeploy and tgi using the following workload:
- Input length: randomly sample 500 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 500 prompts.
- Models: llama-3 8B, llama-3 70B, mixtral 8x7B.
- Average QPS (query per second): 4 for the small model (llama-3 8B) and 2 for other two models. For each QPS, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
<!-- Check <a href="artifact://workspace/build/buildkite/vllm/performance-benchmark/.buildkite/nightly-benchmarks/tests/nightly-tests.json">nightly-tests.json</a> artifact for more details. -->
## Plots
In the following plots, the dot shows the mean and the error bar shows the standard error of the mean. Value 0 means that the corresponding benchmark crashed.
<img src="artifact://nightly_results.png" alt="Benchmarking results" height=250 >
## Results
{nightly_results_benchmarking_table}

View File

@ -0,0 +1,120 @@
common_pod_spec: &common_pod_spec
priorityClassName: perf-benchmark
nodeSelector:
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
volumes:
- name: devshm
emptyDir:
medium: Memory
- name: hf-cache
hostPath:
path: /root/.cache/huggingface
type: Directory
common_container_settings: &common_container_settings
command:
- bash .buildkite/nightly-benchmarks/run-nightly-suite.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
- name: hf-cache
mountPath: /root/.cache/huggingface
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_HOME
value: /root/.cache/huggingface
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
steps:
- block: ":rocket: Ready for comparing vllm against alternatives? This will take 4 hours."
- label: "A100 trt benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: nvcr.io/nvidia/tritonserver:24.04-trtllm-python-py3
<<: *common_container_settings
- label: "A100 lmdeploy benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: openmmlab/lmdeploy:v0.5.0
<<: *common_container_settings
- label: "A100 vllm benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: vllm/vllm-openai:latest
<<: *common_container_settings
- label: "A100 tgi benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: ghcr.io/huggingface/text-generation-inference:2.1
<<: *common_container_settings
- wait
- label: "Plot"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: vllm/vllm-openai:v0.5.0.post1
command:
- bash .buildkite/nightly-benchmarks/scripts/nightly-annotate.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
- wait

View File

@ -1,47 +1,42 @@
## Latency tests
This test suite aims to test vllm's end-to-end latency under a controlled setup.
- Input length: 32 tokens.
- Output length: 128 tokens.
- Batch size: fixed (8).
- Models: llama-3 8B, llama-3 70B, mixtral 8x7B.
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- Evaluation metrics: end-to-end latency (mean, median, p99).
### Latency benchmarking results
{latency_tests_markdown_table}
## Throughput tests
This test suite aims to test vllm's throughput.
## Throughput tests
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm to achieve maximum throughput.
- Models: llama-3 8B, llama-3 70B, mixtral 8x7B.
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- Evaluation metrics: throughput.
### Throughput benchmarking results
{throughput_tests_markdown_table}
## Serving tests
This test suite aims to test vllm's real serving metrics.
## Serving tests
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm and the arrival pattern of the requests.
- **Average QPS (query per second)**: 1, 4, 16 and inf. QPS = inf means all requests come at once. For other QPS values, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
- Models: llama-3 8B, llama-3 70B, mixtral 8x7B.
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- We also added a speculative decoding test for llama-3 70B, under QPS 2
- Evaluation metrics: throughput, TTFT (time to the first token, with mean, median and p99), ITL (inter-token latency, with mean, median and p99).
### Serving benchmarking results
{serving_tests_markdown_table}
## json version of the benchmarking tables
This section contains the data of the markdown tables above in JSON format.

View File

@ -0,0 +1,76 @@
#!/bin/bash
set -o pipefail
set -x
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
check_hf_token() {
# check if HF_TOKEN is available and valid
if [[ -z "$HF_TOKEN" ]]; then
echo "Error: HF_TOKEN is not set."
exit 1
elif [[ ! "$HF_TOKEN" =~ ^hf_ ]]; then
echo "Error: HF_TOKEN does not start with 'hf_'."
exit 1
else
echo "HF_TOKEN is set and valid."
fi
}
main() {
check_gpus
check_hf_token
df -h
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)
cd $VLLM_SOURCE_CODE_LOC/benchmarks
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
# run lmdeploy
if which lmdeploy >/dev/null; then
echo "lmdeploy is available, redirect to run-lmdeploy-nightly.sh"
bash ../.buildkite/nightly-benchmarks/scripts/run-lmdeploy-nightly.sh
exit 0
fi
# run tgi
if [ -e /tgi-entrypoint.sh ]; then
echo "tgi is available, redirect to run-tgi-nightly.sh"
bash ../.buildkite/nightly-benchmarks/scripts/run-tgi-nightly.sh
exit 0
fi
# run trt
if which trtllm-build >/dev/null; then
echo "trtllm is available, redirect to run-trt-nightly.sh"
bash ../.buildkite/nightly-benchmarks/scripts/run-trt-nightly.sh
exit 0
fi
# run vllm
if [ -e /vllm-workspace ]; then
echo "vllm is available, redirect to run-vllm-nightly.sh"
bash ../.buildkite/nightly-benchmarks/scripts/run-vllm-nightly.sh
exit 0
fi
}
main "$@"

View File

@ -174,8 +174,8 @@ if __name__ == "__main__":
# document the result
with open(results_folder / "benchmark_results.md", "w") as f:
results = read_markdown(
"../.buildkite/nightly-benchmarks/tests/descriptions.md")
results = read_markdown("../.buildkite/nightly-benchmarks/" +
"performance-benchmarks-descriptions.md")
results = results.format(
latency_tests_markdown_table=latency_md_table,
throughput_tests_markdown_table=throughput_md_table,

View File

@ -0,0 +1,26 @@
import argparse
from transformers import AutoTokenizer
def main(model, cachedir):
# Load the tokenizer and save it to the specified directory
tokenizer = AutoTokenizer.from_pretrained(model)
tokenizer.save_pretrained(cachedir)
print(f"Tokenizer saved to {cachedir}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Download and save Hugging Face tokenizer")
parser.add_argument("--model",
type=str,
required=True,
help="Name of the model")
parser.add_argument("--cachedir",
type=str,
required=True,
help="Directory to save the tokenizer")
args = parser.parse_args()
main(args.model, args.cachedir)

View File

@ -0,0 +1,6 @@
from lmdeploy.serve.openai.api_client import APIClient
api_client = APIClient("http://localhost:8000")
model_name = api_client.available_models[0]
print(model_name)

View File

@ -0,0 +1,102 @@
#!/bin/bash
server_params=$1
common_params=$2
model_path=$(echo "$common_params" | jq -r '.model')
model_name="${model_path#*/}"
model_type=$(echo "$server_params" | jq -r '.model_type')
model_dtype=$(echo "$server_params" | jq -r '.model_dtype')
model_tp_size=$(echo "$common_params" | jq -r '.tp')
max_batch_size=$(echo "$server_params" | jq -r '.max_batch_size')
max_input_len=$(echo "$server_params" | jq -r '.max_input_len')
max_output_len=$(echo "$server_params" | jq -r '.max_output_len')
trt_llm_version=$(echo "$server_params" | jq -r '.trt_llm_version')
cd ~
rm -rf models
mkdir -p models
cd models
models_dir=$(pwd)
trt_model_path=${models_dir}/${model_name}-trt-ckpt
trt_engine_path=${models_dir}/${model_name}-trt-engine
cd ~
rm -rf tensorrt-demo
git clone https://github.com/neuralmagic/tensorrt-demo.git
cd tensorrt-demo
tensorrt_demo_dir=$(pwd)
# make sure the parameter inside tensorrt_demo is consistent to envvar
sed -i.bak "/key: \"tokenizer_dir\"/,/string_value:/s|string_value: \".*\"|string_value: \"$model_path\"|" ./triton_model_repo/postprocessing/config.pbtxt
sed -i.bak "/key: \"tokenizer_dir\"/,/string_value:/s|string_value: \".*\"|string_value: \"$model_path\"|" ./triton_model_repo/preprocessing/config.pbtxt
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/ensemble/config.pbtxt
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/preprocessing/config.pbtxt
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/postprocessing/config.pbtxt
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/tensorrt_llm_bls/config.pbtxt
cd /
rm -rf tensorrtllm_backend
git clone https://github.com/triton-inference-server/tensorrtllm_backend.git
git lfs install
cd tensorrtllm_backend
git checkout $trt_llm_version
tensorrtllm_backend_dir=$(pwd)
git submodule update --init --recursive
cp -r ${tensorrt_demo_dir}/triton_model_repo ${tensorrtllm_backend_dir}/
cd /tensorrtllm_backend
cd ./tensorrt_llm/examples/${model_type}
if echo "$common_params" | jq -e 'has("fp8")' > /dev/null; then
echo "Key 'fp8' exists in common params. Use quantize.py instead of convert_checkpoint.py"
echo "Reference: https://github.com/NVIDIA/TensorRT-LLM/blob/main/examples/llama/README.md"
python ../quantization/quantize.py \
--model_dir ${model_path} \
--dtype ${model_dtype} \
--tp_size ${model_tp_size} \
--output_dir ${trt_model_path} \
--qformat fp8 \
--kv_cache_dtype fp8 \
--calib_size 2
else
echo "Key 'fp8' does not exist in common params. Use convert_checkpoint.py"
python3 convert_checkpoint.py \
--model_dir ${model_path} \
--dtype ${model_dtype} \
--tp_size ${model_tp_size} \
--output_dir ${trt_model_path}
fi
trtllm-build \
--checkpoint_dir=${trt_model_path} \
--gpt_attention_plugin=${model_dtype} \
--gemm_plugin=${model_dtype} \
--remove_input_padding=enable \
--paged_kv_cache=enable \
--tp_size=${model_tp_size} \
--max_batch_size=${max_batch_size} \
--max_input_len=${max_input_len} \
--max_output_len=${max_output_len} \
--max_num_tokens=${max_output_len} \
--opt_num_tokens=${max_output_len} \
--output_dir=${trt_engine_path}
cd /tensorrtllm_backend/triton_model_repo
rm -rf ./tensorrt_llm/1/*
cp -r ${trt_engine_path}/* ./tensorrt_llm/1
cd /tensorrtllm_backend
python3 scripts/launch_triton_server.py \
--world_size=${model_tp_size} \
--model_repo=/tensorrtllm_backend/triton_model_repo &

View File

@ -0,0 +1,40 @@
#!/bin/bash
set -ex
set -o pipefail
main() {
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip plotting the results."
exit 0
fi
# initial annotation
description="$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-descriptions.md"
# download results
cd $VLLM_SOURCE_CODE_LOC/benchmarks
mkdir -p results/
/workspace/buildkite-agent artifact download 'results/*nightly_results.json' results/
ls
ls results/
# generate figures
python3 -m pip install tabulate pandas matplotlib
python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
--description $description \
--results-folder results/
# upload results and figures
/workspace/buildkite-agent artifact upload "nightly_results.png"
/workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-pipeline.yaml
/workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/tests/nightly-tests.json
/workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly_results.md
}
main "$@"

View File

@ -0,0 +1,135 @@
import argparse
import json
import math
from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
from tabulate import tabulate
def parse_arguments():
parser = argparse.ArgumentParser(
description=
'Parse command line arguments for summary-nightly-results script.')
parser.add_argument('--results-folder',
type=str,
required=True,
help='The folder where the results are stored.')
parser.add_argument('--description',
type=str,
required=True,
help='Description of the results.')
args = parser.parse_args()
return args
def main(args):
bar_colors = ['#56B4E9', '#009E73', '#D55E00', '#E69F00']
results_folder = Path(args.results_folder)
results = []
# collect results
for test_file in results_folder.glob("*_nightly_results.json"):
with open(test_file, "r") as f:
results = results + json.loads(f.read())
# generate markdown table
df = pd.DataFrame.from_dict(results)
md_table = tabulate(df, headers='keys', tablefmt='pipe', showindex=False)
with open(args.description, "r") as f:
description = f.read()
description = description.format(
nightly_results_benchmarking_table=md_table)
with open("nightly_results.md", "w") as f:
f.write(description)
plt.rcParams.update({'font.size': 20})
# plot results
fig, axes = plt.subplots(3, 3, figsize=(16, 14))
fig.subplots_adjust(hspace=1)
methods = ["vllm", "trt", "lmdeploy", "tgi"]
for i, model in enumerate(["llama8B", "llama70B", "mixtral8x7B"]):
for j, metric in enumerate(["TTFT", "ITL"]):
means, stds = [], []
for method in methods:
target = df['Test name'].str.contains(model)
target = target & df['Engine'].str.contains(method)
filtered_df = df[target]
if filtered_df.empty:
means.append(0.)
stds.append(0.)
else:
means.append(filtered_df[f"Mean {metric} (ms)"].values[0])
std = filtered_df[f"Std {metric} (ms)"].values[0]
success = filtered_df["Successful req."].values[0]
stds.append(std / math.sqrt(success))
print(model, metric)
print(means, stds)
ax = axes[i, j + 1]
bars = ax.bar(
["vllm", "trt", "lmdeploy", "tgi"],
means,
yerr=stds,
capsize=10,
)
for idx, bar in enumerate(bars):
bar.set_color(bar_colors[idx])
ax.set_ylim(bottom=0)
ax.set_ylabel(f"{metric} (ms)")
ax.set_title(f"{model} {metric}")
ax.grid(axis='y')
metric = "Tput"
j = 0
if True:
tputs = []
for method in methods:
target = df['Test name'].str.contains(model)
target = target & df['Engine'].str.contains(method)
filtered_df = df[target]
if filtered_df.empty:
tputs.append(0.)
else:
input_tput = filtered_df["Input Tput (tok/s)"].values[0]
output_tput = filtered_df["Output Tput (tok/s)"].values[0]
tputs.append(input_tput + output_tput)
print(model, metric)
print(tputs)
ax = axes[i, j]
bars = ax.bar(
["vllm", "trt", "lmdeploy", "tgi"],
tputs,
)
for idx, bar in enumerate(bars):
bar.set_color(bar_colors[idx])
ax.set_ylim(bottom=0)
ax.set_ylabel("Tput (token/s)")
ax.set_title(f"{model} {metric}")
ax.grid(axis='y')
fig.tight_layout()
fig.savefig("nightly_results.png", bbox_inches='tight', dpi=400)
if __name__ == '__main__':
args = parse_arguments()
main(args)

View File

@ -0,0 +1,218 @@
#!/bin/bash
set -o pipefail
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
kill_gpu_processes() {
pkill lmdeploy || true
# waiting for GPU processes to be fully killed
sleep 10
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
timeout 1200 bash -c '
until curl -s localhost:8000/v1/completions > /dev/null; do
sleep 1
done' && return 0 || return 1
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# append lmdeploy to the test name
test_name=lmdeploy_$test_name
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
# get client and server arguments
server_params=$(echo "$params" | jq -r '.lmdeploy_server_parameters')
client_params=$(echo "$params" | jq -r '.lmdeploy_client_parameters')
server_args=$(json2args "$server_params")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
# prepare tokenizer
rm -rf /tokenizer_cache
mkdir /tokenizer_cache
python ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \
--model "$model" \
--cachedir /tokenizer_cache
server_command="lmdeploy serve api_server $model \
--tp $tp \
--server-port $port \
$server_args"
# run the server
echo "Running test case $test_name"
echo "Server command: $server_command"
bash -c "$server_command" &
# wait until the server is alive
wait_for_server
if [ $? -eq 0 ]; then
echo ""
echo "lmdeploy server is up and running."
else
echo ""
echo "lmdeploy failed to start within the timeout period."
break
fi
# get model name
model_name=$(python ../.buildkite/nightly-benchmarks/scripts/get-lmdeploy-modelname.py)
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
client_command="python3 benchmark_serving.py \
--backend lmdeploy \
--tokenizer /tokenizer_cache \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--model \"$model_name\" \
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "lmdeploy" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
# clean up
kill_gpu_processes
rm -rf /root/.cache/huggingface/*
done
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
main() {
check_gpus
# enter vllm directory
cd $VLLM_SOURCE_CODE_LOC/benchmarks
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
python -m pip install transformers==4.41.2
export CURRENT_LLM_SERVING_ENGINE=lmdeploy
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
python -m pip install tabulate pandas
python $BENCHMARK_ROOT/scripts/summary-nightly-results.py
upload_to_buildkite
}
main "$@"

View File

@ -34,6 +34,15 @@ check_hf_token() {
fi
}
ensure_sharegpt_downloaded() {
local FILE=ShareGPT_V3_unfiltered_cleaned_split.json
if [ ! -f "$FILE" ]; then
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/$FILE
else
echo "$FILE already exists."
fi
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
@ -54,48 +63,62 @@ wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
timeout 1200 bash -c '
until curl localhost:8000/v1/completions; do
until curl -X POST localhost:8000/v1/completions; do
sleep 1
done' && return 0 || return 1
}
kill_gpu_processes() {
# kill all processes on GPU.
pids=$(nvidia-smi --query-compute-apps=pid --format=csv,noheader)
if [ -z "$pids" ]; then
echo "No GPU processes found."
kill_processes_launched_by_current_bash() {
# Kill all python processes launched from current bash script
current_shell_pid=$$
processes=$(ps -eo pid,ppid,command | awk -v ppid="$current_shell_pid" -v proc="$1" '$2 == ppid && $3 ~ proc {print $1}')
if [ -n "$processes" ]; then
echo "Killing the following processes matching '$1':"
echo "$processes"
echo "$processes" | xargs kill -9
else
for pid in $pids; do
kill -9 "$pid"
echo "Killed process with PID: $pid"
done
echo "All GPU processes have been killed."
echo "No processes found matching '$1'."
fi
}
# waiting for GPU processes to be fully killed
sleep 10
kill_gpu_processes() {
ps -aux
lsof -t -i:8000 | xargs -r kill -9
pkill -f pt_main_thread
# this line doesn't work now
# ps aux | grep python | grep openai | awk '{print $2}' | xargs -r kill -9
pkill -f python3
pkill -f /usr/bin/python3
# wait until GPU memory usage smaller than 1GB
while [ $(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1) -ge 1000 ]; do
sleep 1
done
# remove vllm config file
rm -rf ~/.config/vllm
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
# Check if buildkite-agent is available in the PATH or at /workspace/buildkite-agent
if command -v buildkite-agent >/dev/null 2>&1; then
BUILDKITE_AGENT_COMMAND="buildkite-agent"
elif [ -f /workspace/buildkite-agent ]; then
BUILDKITE_AGENT_COMMAND="/workspace/buildkite-agent"
else
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
/workspace/buildkite-agent annotate --style "info" --context "benchmark-results" < $RESULTS_FOLDER/benchmark_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
# Use the determined command to annotate and upload artifacts
$BUILDKITE_AGENT_COMMAND annotate --style "info" --context "$BUILDKITE_LABEL-benchmark-results" <$RESULTS_FOLDER/benchmark_results.md
$BUILDKITE_AGENT_COMMAND artifact upload "$RESULTS_FOLDER/*"
}
run_latency_tests() {
@ -156,7 +179,6 @@ run_latency_tests() {
done
}
run_throughput_tests() {
# run throughput tests using `benchmark_throughput.py`
# $1: a json file specifying throughput test cases
@ -236,7 +258,6 @@ run_serving_tests() {
continue
fi
# get client and server arguments
server_params=$(echo "$params" | jq -r '.server_parameters')
client_params=$(echo "$params" | jq -r '.client_parameters')
@ -269,6 +290,7 @@ run_serving_tests() {
echo "Running test case $test_name"
echo "Server command: $server_command"
eval "$server_command" &
server_pid=$!
# wait until the server is alive
wait_for_server
@ -318,6 +340,7 @@ run_serving_tests() {
done
# clean up
kill -9 $server_pid
kill_gpu_processes
done
}
@ -329,6 +352,7 @@ main() {
# dependencies
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)
(which lsof) || (apt-get update && apt-get install -y lsof)
# get the current IP address, required by benchmark_serving.py
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
@ -337,7 +361,7 @@ main() {
# prepare for benchmarking
cd benchmarks || exit 1
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
ensure_sharegpt_downloaded
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
QUICK_BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
@ -347,7 +371,6 @@ main() {
run_latency_tests $QUICK_BENCHMARK_ROOT/tests/latency-tests.json
run_throughput_tests $QUICK_BENCHMARK_ROOT/tests/throughput-tests.json
# postprocess benchmarking results
pip install tabulate pandas
python3 $QUICK_BENCHMARK_ROOT/scripts/convert-results-json-to-markdown.py

View File

@ -0,0 +1,216 @@
#!/bin/bash
set -o pipefail
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
kill_gpu_processes() {
pkill text-generation || true
# waiting for GPU processes to be fully killed
sleep 10
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
timeout 1200 bash -c '
until curl -s localhost:8000/generate_stream > /dev/null; do
sleep 1
done' && return 0 || return 1
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# append tgi to the test name
test_name=tgi_$test_name
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
# get client and server arguments
server_params=$(echo "$params" | jq -r '.tgi_server_parameters')
client_params=$(echo "$params" | jq -r '.tgi_client_parameters')
server_args=$(json2args "$server_params")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if echo "$common_params" | jq -e 'has("fp8")' > /dev/null; then
echo "Key 'fp8' exists in common params."
server_command="/tgi-entrypoint.sh \
--model-id $model \
--num-shard $tp \
--port $port \
--quantize fp8 \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="/tgi-entrypoint.sh \
--model-id $model \
--num-shard $tp \
--port $port \
$server_args"
fi
# run the server
echo "Running test case $test_name"
echo "Server command: $server_command"
eval "$server_command" &
# wait until the server is alive
wait_for_server
if [ $? -eq 0 ]; then
echo ""
echo "tgi server is up and running."
else
echo ""
echo "tgi failed to start within the timeout period."
break
fi
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
client_command="python3 benchmark_serving.py \
--backend tgi \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "tgi" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
# clean up
kill_gpu_processes
rm -rf /root/.cache/huggingface/*
done
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
main() {
check_gpus
# enter vllm directory
cd $VLLM_SOURCE_CODE_LOC/benchmarks
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
export CURRENT_LLM_SERVING_ENGINE=tgi
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
python -m pip install tabulate pandas
python $BENCHMARK_ROOT/scripts/summary-nightly-results.py
upload_to_buildkite
}
main "$@"

View File

@ -0,0 +1,214 @@
#!/bin/bash
set -o pipefail
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
kill_gpu_processes() {
pkill tritonserver || true
# waiting for GPU processes to be fully killed
sleep 20
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
timeout 1200 bash -c '
until curl -s localhost:8000/generate_stream > /dev/null; do
sleep 1
done' && return 0 || return 1
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# append trt to the test name
test_name=trt_$test_name
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
# get client and server arguments
server_params=$(echo "$params" | jq -r '.trt_server_parameters')
client_params=$(echo "$params" | jq -r '.trt_client_parameters')
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required model_tp_size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
cd $VLLM_SOURCE_CODE_LOC/benchmarks
echo "Running test case $test_name"
bash ../.buildkite/nightly-benchmarks/scripts/launch-trt-server.sh "$server_params" "$common_params"
# wait until the server is alive
wait_for_server
if [ $? -eq 0 ]; then
echo ""
echo "trt server is up and running."
else
echo ""
echo "trt failed to start within the timeout period."
break
fi
# prepare tokenizer
cd $VLLM_SOURCE_CODE_LOC/benchmarks
rm -rf /tokenizer_cache
mkdir /tokenizer_cache
python ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \
--model "$model" \
--cachedir /tokenizer_cache
cd $VLLM_SOURCE_CODE_LOC/benchmarks
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
client_command="python3 benchmark_serving.py \
--backend tensorrt-llm \
--tokenizer /tokenizer_cache \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
server_command=""
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "trt" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
# clean up
kill_gpu_processes
rm -rf /root/.cache/huggingface/*
done
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
main() {
check_gpus
# enter vllm directory
cd $VLLM_SOURCE_CODE_LOC/benchmarks
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
# update transformers package, to make sure mixtral tokenizer is available
python -m pip install transformers -U
export CURRENT_LLM_SERVING_ENGINE=trt
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
python -m pip install tabulate pandas
python $BENCHMARK_ROOT/scripts/summary-nightly-results.py
upload_to_buildkite
}
main "$@"

View File

@ -0,0 +1,221 @@
#!/bin/bash
set -o pipefail
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
kill_gpu_processes() {
# kill all processes on GPU.
pkill pt_main_thread
sleep 10
# remove vllm config file
rm -rf ~/.config/vllm
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
timeout 1200 bash -c '
until curl -s localhost:8000/v1/completions > /dev/null; do
sleep 1
done' && return 0 || return 1
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# append vllm to the test name
test_name=vllm_$test_name
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
# get client and server arguments
server_params=$(echo "$params" | jq -r '.vllm_server_parameters')
client_params=$(echo "$params" | jq -r '.vllm_client_parameters')
server_args=$(json2args "$server_params")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if echo "$common_params" | jq -e 'has("fp8")' > /dev/null; then
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
-tp $tp \
--model $model \
--port $port \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
-tp $tp \
--model $model \
--port $port \
$server_args"
fi
# run the server
echo "Running test case $test_name"
echo "Server command: $server_command"
eval "$server_command" &
# wait until the server is alive
wait_for_server
if [ $? -eq 0 ]; then
echo ""
echo "vllm server is up and running."
else
echo ""
echo "vllm failed to start within the timeout period."
break
fi
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
client_command="python3 benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "vllm" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
# clean up
kill_gpu_processes
rm -rf /root/.cache/huggingface/*
done
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
main() {
check_gpus
# enter vllm directory
cd $VLLM_SOURCE_CODE_LOC/benchmarks
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
export CURRENT_LLM_SERVING_ENGINE=vllm
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
python3 -m pip install tabulate pandas
python3 $BENCHMARK_ROOT/scripts/summary-nightly-results.py
upload_to_buildkite
}
main "$@"

View File

@ -0,0 +1,76 @@
import datetime
import json
import os
from pathlib import Path
import pandas as pd
from tabulate import tabulate
results_folder = Path("results/")
# serving results and the keys that will be printed into markdown
serving_results = []
serving_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
"completed": "Successful req.",
"request_throughput": "Tput (req/s)",
"mean_ttft_ms": "Mean TTFT (ms)",
"std_ttft_ms": "Std TTFT (ms)",
"mean_itl_ms": "Mean ITL (ms)",
"std_itl_ms": "Std ITL (ms)",
"input_throughput": "Input Tput (tok/s)",
"output_throughput": "Output Tput (tok/s)",
"engine": "Engine",
}
if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
with open(test_file, "r") as f:
raw_result = json.loads(f.read())
# attach the benchmarking command to raw_result
with open(test_file.with_suffix(".commands"), "r") as f:
command = json.loads(f.read())
raw_result.update(command)
# update the test name of this result
raw_result.update({"test_name": test_file.stem})
# add the result to raw_result
serving_results.append(raw_result)
continue
serving_results = pd.DataFrame.from_dict(serving_results)
if not serving_results.empty:
serving_results = serving_results[list(
serving_column_mapping.keys())].rename(
columns=serving_column_mapping)
serving_md_table_with_headers = tabulate(serving_results,
headers='keys',
tablefmt='pipe',
showindex=False)
# remove the first line of header
serving_md_table_lines = serving_md_table_with_headers.split('\n')
serving_md_table_without_header = '\n'.join(serving_md_table_lines[2:])
prefix = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
prefix = prefix + "_" + os.environ.get("CURRENT_LLM_SERVING_ENGINE")
# document benchmarking results in markdown
with open(results_folder / f"{prefix}_nightly_results.md", "w") as f:
# document results with header.
# for those who wants to reproduce our benchmark.
f.write(serving_md_table_with_headers)
f.write('\n')
# document benchmarking results in json
with open(results_folder / f"{prefix}_nightly_results.json", "w") as f:
results = serving_results.to_dict(orient='records')
f.write(json.dumps(results))

View File

@ -2,7 +2,7 @@
{
"test_name": "latency_llama8B_tp1",
"parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"num_iters_warmup": 5,
@ -12,7 +12,7 @@
{
"test_name": "latency_llama70B_tp4",
"parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"num-iters-warmup": 5,

View File

@ -0,0 +1,116 @@
[
{
"test_name": "llama8B_tp1",
"qps_list": [4],
"common_parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"tp": 1,
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 500,
"port": 8000
},
"lmdeploy_server_parameters": {
},
"lmdeploy_client_parameters": {
},
"tgi_server_parameters": {
},
"tgi_client_parameters": {
"endpoint": "/generate_stream"
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "float16",
"max_batch_size": 256,
"max_input_len": 4096,
"max_output_len": 4096,
"trt_llm_version": "r24.04"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": ""
},
"vllm_client_parameters": {
}
},
{
"test_name": "llama70B_tp4",
"qps_list": [2],
"common_parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"tp": 4,
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 500,
"port": 8000
},
"lmdeploy_server_parameters": {
},
"lmdeploy_client_parameters": {
},
"tgi_server_parameters": {
},
"tgi_client_parameters": {
"endpoint": "/generate_stream"
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "float16",
"max_batch_size": 256,
"max_input_len": 4096,
"max_output_len": 4096,
"trt_llm_version": "r24.04"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": ""
},
"vllm_client_parameters": {
}
},
{
"test_name": "mixtral8x7B_tp2",
"qps_list": [2],
"common_parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"tp": 2,
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 500,
"port": 8000
},
"lmdeploy_server_parameters": {
},
"lmdeploy_client_parameters": {
},
"tgi_server_parameters": {
},
"tgi_client_parameters": {
"endpoint": "/generate_stream"
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "float16",
"max_batch_size": 256,
"max_input_len": 4096,
"max_output_len": 4096,
"trt_llm_version": "r24.04"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": ""
},
"vllm_client_parameters": {
}
}
]

View File

@ -3,7 +3,7 @@
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"swap_space": 16,
"disable_log_stats": "",
@ -11,7 +11,7 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
@ -22,7 +22,7 @@
"test_name": "serving_llama70B_tp4_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"tensor_parallel_size": 4,
"swap_space": 16,
"disable_log_stats": "",
@ -30,7 +30,7 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
@ -55,5 +55,26 @@
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama70B_tp4_sharegpt_specdecode",
"qps_list": [2],
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"disable_log_requests": "",
"tensor_parallel_size": 4,
"swap_space": 16,
"speculative_model": "turboderp/Qwama-0.5B-Instruct",
"num_speculative_tokens": 4,
"speculative_draft_tensor_parallel_size": 1,
"use_v2_block_manager": ""
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
}
]

View File

@ -2,7 +2,7 @@
{
"test_name": "throughput_llama8B_tp1",
"parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
@ -13,7 +13,7 @@
{
"test_name": "throughput_llama70B_tp4",
"parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",

View File

@ -1,21 +1,32 @@
steps:
- block: "Build wheels"
- label: "Build wheel - Python {{matrix.python_version}}, CUDA {{matrix.cuda_version}}"
- label: "Build wheel - CUDA 12.1"
agents:
queue: cpu_queue
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg CUDA_VERSION={{matrix.cuda_version}} --build-arg PYTHON_VERSION={{matrix.python_version}} --tag vllm-ci:build-image --target build --progress plain ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg buildkite_commit=$BUILDKITE_COMMIT --build-arg USE_SCCACHE=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image cp -r dist /artifacts_host"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
# rename the files to change linux -> manylinux1
- "for f in artifacts/dist/*.whl; do mv -- \"$$f\" \"$${f/linux/manylinux1}\"; done"
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/$BUILDKITE_COMMIT/"
matrix:
setup:
cuda_version:
- "11.8.0"
- "12.1.0"
python_version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/nightly/"
env:
DOCKER_BUILDKIT: "1"
- block: "Build CUDA 11.8 wheel"
key: block-build-cu118-wheel
- label: "Build wheel - CUDA 11.8"
depends_on: block-build-cu118-wheel
agents:
queue: cpu_queue
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg buildkite_commit=$BUILDKITE_COMMIT --build-arg USE_SCCACHE=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
# rename the files to change linux -> manylinux1
- "for f in artifacts/dist/*.whl; do mv -- \"$$f\" \"$${f/linux/manylinux1}\"; done"
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/$BUILDKITE_COMMIT/"
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/nightly/"
env:
DOCKER_BUILDKIT: "1"

94
.buildkite/run-amd-test.sh Normal file → Executable file
View File

@ -1,7 +1,16 @@
# This script runs test inside the corresponding ROCm docker container.
set -ex
set -o pipefail
# Print ROCm version
echo "--- Confirming Clean Initial State"
while true; do
sleep 3
if grep -q clean /opt/amdgpu/etc/gpu_state; then
echo "GPUs state is \"clean\""
break
fi
done
echo "--- ROCm info"
rocminfo
@ -45,15 +54,10 @@ while true; do
fi
done
echo "--- Building container"
sha=$(git rev-parse --short HEAD)
image_name=rocm_${sha}
container_name=rocm_${sha}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)
docker build \
-t ${image_name} \
-f Dockerfile.rocm \
--progress plain \
.
echo "--- Pulling container"
image_name="rocm/vllm-ci:${BUILDKITE_COMMIT}"
container_name="rocm_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
docker pull ${image_name}
remove_docker_container() {
docker rm -f ${container_name} || docker image rm -f ${image_name} || true
@ -62,12 +66,78 @@ trap remove_docker_container EXIT
echo "--- Running container"
HF_CACHE="$(realpath ~)/huggingface"
mkdir -p ${HF_CACHE}
HF_MOUNT="/root/.cache/huggingface"
commands=$@
echo "Commands:$commands"
#ignore certain kernels tests
if [[ $commands == *" kernels "* ]]; then
commands="${commands} \
--ignore=kernels/test_attention.py \
--ignore=kernels/test_attention_selector.py \
--ignore=kernels/test_blocksparse_attention.py \
--ignore=kernels/test_causal_conv1d.py \
--ignore=kernels/test_cutlass.py \
--ignore=kernels/test_encoder_decoder_attn.py \
--ignore=kernels/test_flash_attn.py \
--ignore=kernels/test_flashinfer.py \
--ignore=kernels/test_int8_quant.py \
--ignore=kernels/test_machete_gemm.py \
--ignore=kernels/test_mamba_ssm.py \
--ignore=kernels/test_marlin_gemm.py \
--ignore=kernels/test_moe.py \
--ignore=kernels/test_prefix_prefill.py \
--ignore=kernels/test_rand.py \
--ignore=kernels/test_sampler.py"
fi
PARALLEL_JOB_COUNT=8
# check if the command contains shard flag, we will run all shards in parallel because the host have 8 GPUs.
if [[ $commands == *"--shard-id="* ]]; then
for GPU in $(seq 0 $(($PARALLEL_JOB_COUNT-1))); do
#replace shard arguments
commands=${commands//"--shard-id= "/"--shard-id=${GPU} "}
commands=${commands//"--num-shards= "/"--num-shards=${PARALLEL_JOB_COUNT} "}
echo "Shard ${GPU} commands:$commands"
docker run \
--device /dev/kfd --device /dev/dri \
--network host \
--shm-size=16gb \
--rm \
-e HIP_VISIBLE_DEVICES=${GPU} \
-e HF_TOKEN \
-v ${HF_CACHE}:${HF_MOUNT} \
-e HF_HOME=${HF_MOUNT} \
--name ${container_name}_${GPU} \
${image_name} \
/bin/bash -c "${commands}" \
|& while read -r line; do echo ">>Shard $GPU: $line"; done &
PIDS+=($!)
done
#wait for all processes to finish and collect exit codes
for pid in ${PIDS[@]}; do
wait ${pid}
STATUS+=($?)
done
for st in ${STATUS[@]}; do
if [[ ${st} -ne 0 ]]; then
echo "One of the processes failed with $st"
exit ${st}
fi
done
else
docker run \
--device /dev/kfd --device /dev/dri \
--network host \
--shm-size=16gb \
--rm \
-e HIP_VISIBLE_DEVICES=0 \
-e HF_TOKEN \
-v ${HF_CACHE}:${HF_MOUNT} \
-e HF_HOME=${HF_MOUNT} \
--name ${container_name} \
${image_name} \
/bin/bash -c "${@}"
/bin/bash -c "${commands}"
fi

View File

@ -0,0 +1,33 @@
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Try building the docker image
docker build -t cpu-test -f Dockerfile.ppc64le .
# Setup cleanup
remove_docker_container() { docker rm -f cpu-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image, setting --shm-size=4g for tensor parallel.
source /etc/environment
#docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN=$HF_TOKEN --name cpu-test cpu-test
# Run basic model test
docker exec cpu-test bash -c "
pip install pytest matplotlib einops transformers_stream_generator
pytest -v -s tests/models -m \"not vlm\" --ignore=tests/models/test_embedding.py --ignore=tests/models/test_oot_registration.py --ignore=tests/models/test_registry.py --ignore=tests/models/test_jamba.py --ignore=tests/models/test_danube3_4b.py" # Mamba and Danube3-4B on CPU is not supported
# online inference
docker exec cpu-test bash -c "
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m &
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name random \
--model facebook/opt-125m \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer facebook/opt-125m"

View File

@ -3,26 +3,49 @@
set -ex
# Try building the docker image
docker build -t cpu-test -f Dockerfile.cpu .
docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-avx2 -f Dockerfile.cpu .
numactl -C 48-95 -N 1 docker build -t cpu-test -f Dockerfile.cpu .
numactl -C 48-95 -N 1 docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-avx2 -f Dockerfile.cpu .
# Setup cleanup
remove_docker_container() { docker rm -f cpu-test cpu-test-avx2 || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image
# Run the image, setting --shm-size=4g for tensor parallel.
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=48-95 \
--cpuset-mems=1 --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --name cpu-test cpu-test
--cpuset-mems=1 --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=48-95 \
--cpuset-mems=1 --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --name cpu-test-avx2 cpu-test-avx2
--cpuset-mems=1 --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-avx2 cpu-test-avx2
# offline inference
docker exec cpu-test bash -c "python3 examples/offline_inference.py"
docker exec cpu-test-avx2 bash -c "python3 examples/offline_inference.py"
# Run basic model test
docker exec cpu-test bash -c "cd tests;
pip install pytest Pillow protobuf
cd ../
pytest -v -s tests/models -m \"not vlm\" --ignore=tests/models/test_embedding.py --ignore=tests/models/test_registry.py --ignore=tests/models/test_jamba.py" # Mamba on CPU is not supported
docker exec cpu-test bash -c "
pip install pytest matplotlib einops transformers_stream_generator
pytest -v -s tests/models -m \"not vlm\" --ignore=tests/models/test_embedding.py \
--ignore=tests/models/test_oot_registration.py \
--ignore=tests/models/test_registry.py \
--ignore=tests/models/test_fp8.py \
--ignore=tests/models/test_jamba.py \
--ignore=tests/models/test_danube3_4b.py" # Mamba and Danube3-4B on CPU is not supported
# Run compressed-tensor test
docker exec cpu-test bash -c "
pytest -s -v \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynanmic_per_token"
# online inference
docker exec cpu-test bash -c "
export VLLM_CPU_KVCACHE_SPACE=10
export VLLM_CPU_OMP_THREADS_BIND=48-92
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m &
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name random \
--model facebook/opt-125m \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer facebook/opt-125m"

105
.buildkite/run-multi-node-test.sh Executable file
View File

@ -0,0 +1,105 @@
#!/bin/bash
set -euox pipefail
if [[ $# -lt 4 ]]; then
echo "Usage: .buildkite/run-multi-node-test.sh WORKING_DIR NUM_NODES NUM_GPUS DOCKER_IMAGE COMMAND1 COMMAND2 ... COMMANDN"
exit 1
fi
WORKING_DIR=$1
NUM_NODES=$2
NUM_GPUS=$3
DOCKER_IMAGE=$4
shift 4
COMMANDS=("$@")
if [ ${#COMMANDS[@]} -ne $NUM_NODES ]; then
echo "The number of commands must be equal to the number of nodes."
echo "Number of nodes: $NUM_NODES"
echo "Number of commands: ${#COMMANDS[@]}"
exit 1
fi
echo "List of commands"
for command in "${COMMANDS[@]}"; do
echo $command
done
start_network() {
docker network create --subnet=192.168.10.0/24 docker-net
}
start_nodes() {
for node in $(seq 0 $(($NUM_NODES-1))); do
GPU_DEVICES='"device='
for node_gpu in $(seq 0 $(($NUM_GPUS - 1))); do
DEVICE_NUM=$(($node * $NUM_GPUS + $node_gpu))
GPU_DEVICES+=$(($DEVICE_NUM))
if [ $node_gpu -lt $(($NUM_GPUS - 1)) ]; then
GPU_DEVICES+=','
fi
done
GPU_DEVICES+='"'
# start the container in detached mode
# things to note:
# 1. --shm-size=10.24gb is required. don't use --ipc=host
# 2. pass HF_TOKEN to the container
# 3. map the huggingface cache directory to the container
# 3. assign ip addresses to the containers (head node: 192.168.10.10, worker nodes:
# starting from 192.168.10.11)
docker run -d --gpus "$GPU_DEVICES" --shm-size=10.24gb -e HF_TOKEN -v ~/.cache/huggingface:/root/.cache/huggingface --name node$node --network docker-net --ip 192.168.10.$((10 + $node)) --rm $DOCKER_IMAGE /bin/bash -c "tail -f /dev/null"
# organize containers into a ray cluster
if [ $node -eq 0 ]; then
# start the ray head node
docker exec -d node$node /bin/bash -c "ray start --head --port=6379 --block"
# wait for the head node to be ready
sleep 10
else
# start the ray worker nodes, and connect them to the head node
docker exec -d node$node /bin/bash -c "ray start --address=192.168.10.10:6379 --block"
fi
done
# wait for the cluster to be ready
sleep 10
# print the cluster status
docker exec node0 /bin/bash -c "ray status"
}
run_nodes() {
# important: iterate in reverse order to start the head node last
# we start the worker nodes first, in detached mode, and then start the head node
# in the foreground, so that the output of the head node is visible in the buildkite logs
for node in $(seq $(($NUM_NODES - 1)) -1 0); do
GPU_DEVICES='"device='
for node_gpu in $(seq 0 $(($NUM_GPUS - 1))); do
DEVICE_NUM=$(($node * $NUM_GPUS + $node_gpu))
GPU_DEVICES+=$(($DEVICE_NUM))
if [ $node_gpu -lt $(($NUM_GPUS - 1)) ]; then
GPU_DEVICES+=','
fi
done
GPU_DEVICES+='"'
echo "Running node$node with GPU devices: $GPU_DEVICES"
if [ $node -ne 0 ]; then
docker exec -d node$node /bin/bash -c "cd $WORKING_DIR ; ${COMMANDS[$node]}"
else
docker exec node$node /bin/bash -c "cd $WORKING_DIR ; ${COMMANDS[$node]}"
fi
done
}
cleanup() {
for node in $(seq 0 $(($NUM_NODES-1))); do
docker stop node$node
done
docker network rm docker-net
}
trap cleanup EXIT
start_network
start_nodes
run_nodes

View File

@ -0,0 +1,15 @@
set -e
# Build the docker image.
docker build -f Dockerfile.tpu -t vllm-tpu .
# Set up cleanup.
remove_docker_container() { docker rm -f tpu-test || true; }
trap remove_docker_container EXIT
# Remove the container that might not be cleaned up in the previous run.
remove_docker_container
# For HF_TOKEN.
source /etc/environment
# Run a simple end-to-end example.
docker run --privileged --net host --shm-size=16G -it -e HF_TOKEN=$HF_TOKEN --name tpu-test vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git && python3 -m pip install pytest && pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py && python3 /workspace/vllm/tests/tpu/test_compilation.py && python3 /workspace/vllm/examples/offline_inference_tpu.py"

View File

@ -5,239 +5,426 @@
# https://github.com/vllm-project/buildkite-ci/blob/main/scripts/test-template-aws.j2
# to generate the final pipeline yaml file.
# Documentation
# label(str): the name of the test. emoji allowed.
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
# fast_check_only(bool): run this test on fastcheck pipeline only
# command(str): the single command to run for tests. incompatible with commands.
# commands(list): the list of commands to run for test. incompatbile with command.
# mirror_hardwares(list): the list of hardwares to run the test on as well. currently only supports [amd]
# gpu(str): override the GPU selection for the test. default is on L4 GPUs. currently only supports a100
# num_gpus(int): override the number of GPUs for the test. default to 1 GPU. currently support 2,4.
# num_nodes(int): whether to simulate multi-node setup by launch multiple containers on one host,
# in this case, commands must be specified. the first command runs on first host, the second
# command runs on the second host.
# working_dir(str): specify the place where command should execute, default to /vllm-workspace/tests
# source_file_dependencies(list): the list of prefix to opt-in the test for, if empty, the test will always run.
# When adding a test
# - If the test belong to an existing group, add it there
# - If the test is short, add to any existing step
# - If the test takes more than 10min, then it is okay to create a new step.
# Note that all steps execute in parallel.
steps:
- label: Regression Test
mirror_hardwares: [amd]
command: pytest -v -s test_regression.py
working_dir: "/vllm-workspace/tests" # optional
##### fast check tests #####
- label: AsyncEngine Test
#mirror_hardwares: [amd]
command: pytest -v -s async_engine
- label: Basic Correctness Test
mirror_hardwares: [amd]
- label: Documentation Build # 2min
working_dir: "/vllm-workspace/test_docs/docs"
fast_check: true
no_gpu: True
commands:
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_basic_correctness.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_basic_correctness.py
- pip install -r requirements-docs.txt
- SPHINXOPTS=\"-W\" make html
# Check API reference (if it fails, you may have missing mock imports)
- grep \"sig sig-object py\" build/html/dev/sampling_params.html
- label: Async Engine, Inputs, Utils, Worker Test # 15min
fast_check: true
source_file_dependencies:
- vllm/
- tests/async_engine
- tests/test_inputs
- tests/multimodal
- tests/test_utils
- tests/worker
commands:
- pytest -v -s async_engine # Async Engine
- pytest -v -s test_inputs.py
- pytest -v -s multimodal
- pytest -v -s test_utils.py # Utils
- pytest -v -s worker # Worker
- label: Basic Correctness Test # 30min
#mirror_hardwares: [amd]
fast_check: true
source_file_dependencies:
- vllm/
- tests/basic_correctness
commands:
- pytest -v -s basic_correctness/test_basic_correctness.py
- pytest -v -s basic_correctness/test_cpu_offload.py
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Core Test
- label: Core Test # 10min
mirror_hardwares: [amd]
fast_check: true
source_file_dependencies:
- vllm/core
- vllm/distributed
- tests/core
commands:
- pytest -v -s core
- pytest -v -s distributed/test_parallel_state.py
- label: Distributed Comm Ops Test
- label: Entrypoints Test # 20min
working_dir: "/vllm-workspace/tests"
fast_check: true
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
commands:
- pip install -e ./plugins/vllm_add_dummy_model
- pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@a4987bba6e9e9b3f22bd3a6c1ecf0abd04fd5622#egg=lm_eval[api]
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
- pytest -v -s entrypoints/openai
- pytest -v -s entrypoints/test_chat_utils.py
- label: Distributed Tests (4 GPUs) # 10min
working_dir: "/vllm-workspace/tests"
num_gpus: 4
fast_check: true
source_file_dependencies:
- vllm/distributed/
- vllm/core/
- tests/distributed
- tests/spec_decode/e2e/test_integration_dist_tp4
commands:
- pytest -v -s distributed/test_pynccl.py
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
- label: Metrics, Tracing Test # 10min
num_gpus: 2
fast_check: true
source_file_dependencies:
- vllm/
- tests/metrics
- tests/tracing
commands:
- pytest -v -s metrics
- "pip install \
'opentelemetry-sdk>=1.26.0,<1.27.0' \
'opentelemetry-api>=1.26.0,<1.27.0' \
'opentelemetry-exporter-otlp>=1.26.0,<1.27.0' \
'opentelemetry-semantic-conventions-ai>=0.4.1,<0.5.0'"
- pytest -v -s tracing
##### fast check tests #####
##### 1 GPU test #####
- label: Regression Test # 5min
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/test_regression
command: pytest -v -s test_regression.py
working_dir: "/vllm-workspace/tests" # optional
- label: Engine Test # 10min
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/engine
- tests/tokenization
commands:
- pytest -v -s engine test_sequence.py test_config.py test_logger.py
# OOM in the CI unless we run this separately
- pytest -v -s tokenization
- label: Examples Test # 12min
working_dir: "/vllm-workspace/examples"
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/entrypoints
- examples/
commands:
- pip install awscli tensorizer # for llava example and tensorizer test
- python3 offline_inference.py
- python3 cpu_offload.py
- python3 offline_inference_chat.py
- python3 offline_inference_with_prefix.py
- python3 llm_engine_example.py
- python3 offline_inference_vision_language.py
- python3 offline_inference_vision_language_multi_image.py
- python3 tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference_encoder_decoder.py
- label: Models Test # 1hr10min
source_file_dependencies:
- vllm/
- tests/models
commands:
- pip install -e ./plugins/vllm_add_dummy_model
- pytest -v -s models/test_oot_registration.py # it needs a clean process
- pytest -v -s models -m \"not vlm\" --ignore=models/test_oot_registration.py
- label: torch compile integration test
source_file_dependencies:
- vllm/
commands:
- pytest -v -s ./compile/test_full_graph.py
- pytest -v -s ./compile/test_wrapper.py
- label: Vision Language Models Test # 42min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
commands:
- pytest -v -s models -m vlm
- label: Prefix Caching Test # 7min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/prefix_caching
commands:
- pytest -v -s prefix_caching
- label: Samplers Test # 18min
source_file_dependencies:
- vllm/model_executor/layers
- vllm/sampling_metadata.py
- tests/samplers
commands:
- pytest -v -s samplers
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
- label: LogitsProcessor Test # 5min
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/model_executor/layers
- tests/test_logits_processor
command: pytest -v -s test_logits_processor.py
- label: Speculative decoding tests # 22min
source_file_dependencies:
- vllm/spec_decode
- tests/spec_decode
commands:
# See https://github.com/vllm-project/vllm/issues/5152
- export VLLM_ATTENTION_BACKEND=XFORMERS
- pytest -v -s spec_decode/e2e/test_multistep_correctness.py
- pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py
- label: LoRA Test %N # 30min each
mirror_hardwares: [amd]
source_file_dependencies:
- vllm/lora
- tests/lora
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py
parallelism: 4
- label: Kernels Test %N # 30min each
mirror_hardwares: [amd]
source_file_dependencies:
- csrc/
- vllm/attention
- tests/kernels
commands:
- pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 4
- label: Tensorizer Test # 11min
mirror_hardwares: [amd]
soft_fail: true
source_file_dependencies:
- vllm/model_executor/model_loader
- tests/tensorizer_loader
commands:
- apt-get update && apt-get install -y curl libsodium23
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s tensorizer_loader
- label: Benchmarks # 9min
working_dir: "/vllm-workspace/.buildkite"
mirror_hardwares: [amd]
source_file_dependencies:
- benchmarks/
commands:
- pip install aiohttp
- bash run-benchmarks.sh
- label: Quantization Test # 15min
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
- tests/quantization
command: pytest -v -s quantization
- label: LM Eval Small Models # 53min
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- pip install lm-eval
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-small.txt -t 1
- label: OpenAI-Compatible Tool Use # 20 min
fast_check: false
mirror_hardwares: [ amd ]
source_file_dependencies:
- vllm/
- tests/tool_use
commands:
- pytest -v -s tool_use
##### 1 GPU test #####
##### multi gpus test #####
- label: Distributed Comm Ops Test # 7min
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/distributed
- tests/distributed
commands:
- pytest -v -s distributed/test_comm_ops.py
- pytest -v -s distributed/test_shm_broadcast.py
- label: Distributed Tests (2 GPUs)
mirror_hardwares: [amd]
- label: 2 Node Tests (4 GPUs in total) # 16min
working_dir: "/vllm-workspace/tests"
num_gpus: 2
num_nodes: 2
source_file_dependencies:
- vllm/distributed/
- vllm/engine/
- vllm/executor/
- vllm/model_executor/models/
- tests/distributed/
commands:
- # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_multi_node_assignment.py
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py
- # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py
- label: Distributed Tests (2 GPUs) # 28min
#mirror_hardwares: [amd]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/distributed/
- vllm/engine/
- vllm/executor/
- vllm/model_executor/models/
- tests/distributed/
commands:
- bash ../.buildkite/download-images.sh
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=llava-hf/llava-1.5-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_multimodal_broadcast.py
- TEST_DIST_MODEL=microsoft/Phi-3-vision-128k-instruct DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_multimodal_broadcast.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=llava-hf/llava-1.5-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_multimodal_broadcast.py
- TEST_DIST_MODEL=microsoft/Phi-3-vision-128k-instruct DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_multimodal_broadcast.py
- TARGET_TEST_SUITE=L4 pytest -v -s distributed/test_basic_distributed_correctness.py
- pytest -v -s distributed/test_basic_distributed_correctness_enc_dec.py
- pytest -v -s distributed/test_chunked_prefill_distributed.py
- pytest -v -s distributed/test_multimodal_broadcast.py
- pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
- pip install -e ./plugins/vllm_add_dummy_model
- pytest -v -s distributed/test_distributed_oot.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s distributed/test_utils.py
- label: Distributed Tests (4 GPUs)
#mirror_hardwares: [amd]
- label: Multi-step Tests (4 GPUs) # 21min
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
- vllm/model_executor/layers/sampler.py
- vllm/sequence.py
- vllm/worker/worker_base.py
- vllm/worker/worker.py
- vllm/worker/multi_step_worker.py
- vllm/worker/model_runner_base.py
- vllm/worker/model_runner.py
- vllm/worker/multi_step_model_runner.py
- vllm/engine
- tests/multi_step
commands:
- pytest -v -s distributed/test_pynccl.py
# We want to test that models which use 2 GPUs work with 4 GPUs, which is why we duplicate them here.
# See https://github.com/vllm-project/vllm/pull/5473#issuecomment-2166601837 for context.
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
- pytest -v -s multi_step/test_correctness_async_llm.py
- pytest -v -s multi_step/test_correctness_llm.py
- label: Pipeline Parallelism Test
- label: Pipeline Parallelism Test # 23min
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
- vllm/distributed/
- vllm/engine/
- vllm/executor/
- vllm/model_executor/models/
- tests/distributed/
commands:
- TP_SIZE=2 PP_SIZE=2 EAGER_MODE=1 CHUNKED_PREFILL=1 pytest -v -s distributed/test_pipeline_parallel.py
- TP_SIZE=2 PP_SIZE=2 EAGER_MODE=1 CHUNKED_PREFILL=0 pytest -v -s distributed/test_pipeline_parallel.py
- TP_SIZE=1 PP_SIZE=3 EAGER_MODE=1 CHUNKED_PREFILL=0 pytest -v -s distributed/test_pipeline_parallel.py
- PP_SIZE=4 EAGER_MODE=1 CHUNKED_PREFILL=1 pytest -v -s distributed/test_pipeline_parallel.py
- PP_SIZE=4 EAGER_MODE=1 CHUNKED_PREFILL=0 pytest -v -s distributed/test_pipeline_parallel.py
- pytest -v -s distributed/test_pp_cudagraph.py
- pytest -v -s distributed/test_pipeline_parallel.py
- label: Engine Test
mirror_hardwares: [amd]
command: pytest -v -s engine tokenization test_sequence.py test_config.py test_logger.py
- label: Entrypoints Test
mirror_hardwares: [amd]
commands:
- pytest -v -s entrypoints/llm
- pytest -v -s entrypoints/openai
- label: Examples Test
working_dir: "/vllm-workspace/examples"
mirror_hardwares: [amd]
commands:
# install aws cli for llava_example.py
# install tensorizer for tensorize_vllm_model.py
- pip install awscli tensorizer
- python3 offline_inference.py
- python3 offline_inference_with_prefix.py
- python3 llm_engine_example.py
- python3 llava_example.py
- python3 tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- label: Inputs Test
#mirror_hardwares: [amd]
commands:
- bash ../.buildkite/download-images.sh
- pytest -v -s test_inputs.py
- pytest -v -s multimodal
- label: Kernels Test %N
#mirror_hardwares: [amd]
commands:
- pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.7/flashinfer-0.0.7+cu121torch2.3-cp310-cp310-linux_x86_64.whl
- pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 4
- label: Models Test
#mirror_hardwares: [amd]
commands:
- pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.7/flashinfer-0.0.7+cu121torch2.3-cp310-cp310-linux_x86_64.whl
- pytest -v -s models -m \"not vlm\"
- label: Vision Language Models Test
mirror_hardwares: [amd]
commands:
- bash ../.buildkite/download-images.sh
- pytest -v -s models -m vlm
- label: Prefix Caching Test
mirror_hardwares: [amd]
commands:
- pytest -v -s prefix_caching
- label: Samplers Test
#mirror_hardwares: [amd]
command: pytest -v -s samplers
- label: LogitsProcessor Test
mirror_hardwares: [amd]
command: pytest -v -s test_logits_processor.py
- label: Utils Test
command: pytest -v -s test_utils.py
- label: Worker Test
mirror_hardwares: [amd]
command: pytest -v -s worker
- label: Speculative decoding tests
#mirror_hardwares: [amd]
commands:
# See https://github.com/vllm-project/vllm/issues/5152
- export VLLM_ATTENTION_BACKEND=XFORMERS
- pytest -v -s spec_decode
- label: LoRA Test %N
#mirror_hardwares: [amd]
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py
parallelism: 4
- label: LoRA Long Context (Distributed)
#mirror_hardwares: [amd]
num_gpus: 4
- label: LoRA Long Context (Distributed) # 11min
# This test runs llama 13B, so it is required to run on 4 GPUs.
num_gpus: 4
soft_fail: true
source_file_dependencies:
- vllm/lora
- tests/lora/test_long_context
commands:
# FIXIT: find out which code initialize cuda before running the test
# before the fix, we need to use spawn to test it
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s -x lora/test_long_context.py
- label: Tensorizer Test
#mirror_hardwares: [amd]
command: apt-get install curl libsodium23 && pytest -v -s tensorizer_loader
- label: Metrics Test
mirror_hardwares: [amd]
command: pytest -v -s metrics
- label: Quantization Test
#mirror_hardwares: [amd]
command: pytest -v -s quantization
- label: Tracing Test
- label: Weight Loading Multiple GPU Test
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/
- tests/weight_loading
commands:
- "pip install \
opentelemetry-sdk \
opentelemetry-api \
opentelemetry-exporter-otlp \
opentelemetry-semantic-conventions-ai"
- pytest -v -s tracing
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models.txt
- label: Benchmarks
working_dir: "/vllm-workspace/.buildkite"
mirror_hardwares: [amd]
- label: Weight Loading Multiple GPU Test - Large Models # optional
working_dir: "/vllm-workspace/tests"
num_gpus: 2
gpu: a100
optional: true
source_file_dependencies:
- vllm/
- tests/weight_loading
commands:
- pip install aiohttp
- bash run-benchmarks.sh
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
- label: LM Eval Small Models
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
commands:
- pip install lm-eval
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-small.txt -t 1
- label: LM Eval Large Models
gpu: a100
num_gpus: 4
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
commands:
- pip install lm-eval
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-large.txt -t 4
- label: Documentation Build
working_dir: "/vllm-workspace/test_docs/docs"
no_gpu: True
commands:
- pip install -r requirements-docs.txt
- SPHINXOPTS=\"-W\" make html
- label: Distributed Tests (A100)
##### multi gpus test #####
##### A100 test #####
- label: Distributed Tests (A100) # optional
gpu: a100
num_gpus: 4
source_file_dependencies:
- vllm/
commands:
# NOTE: don't test llama model here, it seems hf implementation is buggy
# see https://github.com/vllm-project/vllm/pull/5689 for details
- pytest -v -s distributed/test_custom_all_reduce.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
- pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.7/flashinfer-0.0.7+cu121torch2.3-cp310-cp310-linux_x86_64.whl
- VLLM_ATTENTION_BACKEND=FLASHINFER TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- VLLM_ATTENTION_BACKEND=FLASHINFER TEST_DIST_MODEL=meta-llama/Meta-Llama-3-8B DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TARGET_TEST_SUITE=A100 pytest -v -s distributed/test_basic_distributed_correctness.py
- pytest -v -s -x lora/test_mixtral.py
- label: LM Eval Large Models # optional
gpu: a100
num_gpus: 4
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- pip install lm-eval
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-large.txt -t 4

View File

@ -1 +1,4 @@
vllm/*.so
/.venv
/build
dist

2
.github/FUNDING.yml vendored Normal file
View File

@ -0,0 +1,2 @@
github: [vllm-project]
open_collective: [vllm]

View File

@ -20,3 +20,10 @@ body:
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -38,3 +38,10 @@ body:
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -36,3 +36,10 @@ body:
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -20,9 +20,14 @@ body:
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
<details>
<summary>The output of `python collect_env.py`</summary>
```text
The output of `python collect_env.py`
Your output of `python collect_env.py` here
```
</details>
validations:
required: true
- type: textarea
@ -84,3 +89,10 @@ body:
- If the error only appears in vllm, please provide the detailed script of how you run `transformers` and `vllm`, also highlight the difference and what you expect.
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -29,3 +29,10 @@ body:
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -31,3 +31,10 @@ body:
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -50,3 +50,10 @@ body:
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -47,3 +47,10 @@ body:
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -19,3 +19,10 @@ body:
attributes:
value: >
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:
label: Before submitting a new issue...
options:
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
required: true

View File

@ -39,6 +39,16 @@ FIX #xxxx (*link existing issues this PR will resolve*)
<li>Please add documentation to <code>docs/source/</code> if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.</li>
</ul>
<h3>Adding or changing kernels</h3>
<p>Each custom kernel needs a schema and one or more implementations to be registered with PyTorch.</p>
<ul>
<li>Make sure custom ops are registered following PyTorch guidelines: <a href="https://pytorch.org/tutorials/advanced/cpp_custom_ops.html#cpp-custom-ops-tutorial">Custom C++ and CUDA Operators</a> and <a href="https://docs.google.com/document/d/1_W62p8WJOQQUzPsJYa7s701JXt0qf2OfLub2sbkHOaU">The Custom Operators Manual</a></li>
<li>Custom operations that return <code>Tensors</code> require meta-functions. Meta-functions should be implemented and registered in python so that dynamic dims can be handled automatically. See above documents for a description of meta-functions.</li>
<li>Use <a href="https://pytorch.org/docs/stable/library.html#torch.library.opcheck"><code>torch.libary.opcheck()</code></a> to test the function registration and meta-function for any registered ops. See <code>tests/kernels</code> for examples.</li>
<li>When changing the C++ signature of an existing op, the schema must be updated to reflect the changes.</li>
<li>If a new custom type is needed, see the following document: <a href="https://docs.google.com/document/d/18fBMPuOJ0fY5ZQ6YyrHUppw9FA332CpNtgB6SOIgyuA">Custom Class Support in PT2</a>.
</ul>
<h3>Notes for Large Changes</h3>
<p>Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with <code>rfc-required</code> and might not go through the PR.</p>

View File

@ -0,0 +1,21 @@
name: Add label on auto-merge enabled
on:
pull_request_target:
types:
- auto_merge_enabled
jobs:
add-label-on-auto-merge:
runs-on: ubuntu-latest
steps:
- name: Add label
uses: actions/github-script@v5
with:
script: |
github.rest.issues.addLabels({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
labels: ['ready']
})
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@ -30,12 +30,11 @@ jobs:
run: |
EXCLUDES=(
'csrc/moe/topk_softmax_kernels.cu'
'csrc/punica/bgmv/bgmv_bf16_bf16_bf16.cu'
'csrc/punica/bgmv/bgmv_config.h'
'csrc/punica/bgmv/bgmv_impl.cuh'
'csrc/punica/bgmv/vec_dtypes.cuh'
'csrc/punica/punica_ops.cu'
'csrc/punica/type_convert.h'
'csrc/quantization/gguf/ggml-common.h'
'csrc/quantization/gguf/dequantize.cuh'
'csrc/quantization/gguf/vecdotq.cuh'
'csrc/quantization/gguf/mmq.cuh'
'csrc/quantization/gguf/mmvq.cuh'
)
find csrc/ \( -name '*.h' -o -name '*.cpp' -o -name '*.cu' -o -name '*.cuh' \) -print \
| grep -vFf <(printf "%s\n" "${EXCLUDES[@]}") \

View File

@ -15,7 +15,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
@ -25,27 +25,22 @@ jobs:
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install mypy==1.9.0
pip install mypy==1.11.1
pip install types-setuptools
pip install types-PyYAML
pip install types-requests
pip install types-setuptools
- name: Mypy
run: |
mypy vllm/attention --config-file pyproject.toml
mypy vllm/core --config-file pyproject.toml
mypy vllm/distributed --config-file pyproject.toml
mypy vllm/entrypoints --config-file pyproject.toml
mypy vllm/executor --config-file pyproject.toml
mypy vllm/multimodal --config-file pyproject.toml
mypy vllm/usage --config-file pyproject.toml
mypy vllm/*.py --config-file pyproject.toml
mypy vllm/transformers_utils --config-file pyproject.toml
mypy vllm/engine --config-file pyproject.toml
mypy vllm/worker --config-file pyproject.toml
mypy vllm/spec_decode --config-file pyproject.toml
mypy vllm/model_executor --config-file pyproject.toml
mypy vllm/lora --config-file pyproject.toml
mypy vllm/logging --config-file pyproject.toml
mypy tests --config-file pyproject.toml
mypy
mypy tests --follow-imports skip
mypy vllm/attention --follow-imports skip
mypy vllm/distributed --follow-imports skip
mypy vllm/engine --follow-imports skip
mypy vllm/executor --follow-imports skip
mypy vllm/lora --follow-imports skip
mypy vllm/model_executor --follow-imports skip
mypy vllm/prompt_adapter --follow-imports skip
mypy vllm/spec_decode --follow-imports skip
mypy vllm/worker --follow-imports skip

View File

@ -48,8 +48,8 @@ jobs:
fail-fast: false
matrix:
os: ['ubuntu-20.04']
python-version: ['3.8', '3.9', '3.10', '3.11']
pytorch-version: ['2.3.0'] # Must be the most recent version that meets requirements-cuda.txt.
python-version: ['3.8', '3.9', '3.10', '3.11', '3.12']
pytorch-version: ['2.4.0'] # Must be the most recent version that meets requirements-cuda.txt.
cuda-version: ['11.8', '12.1']
steps:

21
.github/workflows/reminder_comment.yml vendored Normal file
View File

@ -0,0 +1,21 @@
name: PR Reminder Comment Bot
on:
pull_request_target:
types: [opened]
jobs:
pr_reminder:
runs-on: ubuntu-latest
steps:
- name: Remind to run full CI on PR
uses: actions/github-script@v6
with:
script: |
github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: '👋 Hi! Thank you for contributing to the vLLM project.\n Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which starts running only a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of those by going to your `fastcheck` build on Buildkite UI (linked in the PR checks section) and unblock them. If you do not have permission to unblock, ping `simon-mo` or `khluu` to add you in our Buildkite org. \n\nOnce the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.\n\n To run CI, PR reviewers can do one of these:\n- Add `ready` label to the PR\n- Enable auto-merge.\n\n🚀'
})
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@ -15,7 +15,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}

View File

@ -13,8 +13,6 @@ $python_executable -m pip install -r requirements-cuda.txt
# Limit the number of parallel jobs to avoid OOM
export MAX_JOBS=1
# Make sure punica is built for the release (for LoRA)
export VLLM_INSTALL_PUNICA_KERNELS=1
# Make sure release wheels are built for the following architectures
export TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX"
# Build

View File

@ -14,7 +14,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}

8
.gitignore vendored
View File

@ -1,3 +1,6 @@
# vllm commit id, generated by setup.py
vllm/commit_id.py
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
@ -84,6 +87,9 @@ target/
profile_default/
ipython_config.py
# generated files
**/generated/**
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
@ -186,4 +192,4 @@ _build/
hip_compat.h
# Benchmark dataset
*.json
benchmarks/*.json

View File

@ -10,6 +10,7 @@ build:
sphinx:
configuration: docs/source/conf.py
fail_on_warning: true
# If using Sphinx, optionally build your docs in additional formats such as PDF
formats:

View File

@ -1,4 +1,4 @@
cmake_minimum_required(VERSION 3.21)
cmake_minimum_required(VERSION 3.26)
project(vllm_extensions LANGUAGES CXX)
@ -10,11 +10,14 @@ message(STATUS "Target device: ${VLLM_TARGET_DEVICE}")
include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake)
# Suppress potential warnings about unused manually-specified variables
set(ignoreMe "${VLLM_PYTHON_PATH}")
#
# Supported python versions. These versions will be searched in order, the
# first match will be selected. These should be kept in sync with setup.py.
#
set(PYTHON_SUPPORTED_VERSIONS "3.8" "3.9" "3.10" "3.11")
set(PYTHON_SUPPORTED_VERSIONS "3.8" "3.9" "3.10" "3.11" "3.12")
# Supported NVIDIA architectures.
set(CUDA_SUPPORTED_ARCHS "7.0;7.5;8.0;8.6;8.9;9.0")
@ -32,8 +35,8 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx11
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.3.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.4.0")
set(TORCH_SUPPORTED_VERSION_CUDA "2.4.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.5.0")
#
# Try to find python package with an executable that exactly matches
@ -66,6 +69,39 @@ endif()
#
find_package(Torch REQUIRED)
#
# Add the `default` target which detects which extensions should be
# built based on platform/architecture. This is the same logic that
# setup.py uses to select which extensions should be built and should
# be kept in sync.
#
# The `default` target makes direct use of cmake easier since knowledge
# of which extensions are supported has been factored in, e.g.
#
# mkdir build && cd build
# cmake -G Ninja -DVLLM_PYTHON_EXECUTABLE=`which python3` -DCMAKE_LIBRARY_OUTPUT_DIRECTORY=../vllm ..
# cmake --build . --target default
#
add_custom_target(default)
message(STATUS "Enabling core extension.")
# Define _core_C extension
# built for (almost) every target platform, (excludes TPU and Neuron)
set(VLLM_EXT_SRC
"csrc/core/torch_bindings.cpp")
define_gpu_extension_target(
_core_C
DESTINATION vllm
LANGUAGE CXX
SOURCES ${VLLM_EXT_SRC}
COMPILE_FLAGS ${CXX_COMPILE_FLAGS}
USE_SABI 3
WITH_SOABI)
add_dependencies(default _core_C)
#
# Forward the non-CUDA device extensions to external CMake scripts.
#
@ -74,7 +110,7 @@ if (NOT VLLM_TARGET_DEVICE STREQUAL "cuda" AND
if (VLLM_TARGET_DEVICE STREQUAL "cpu")
include(${CMAKE_CURRENT_LIST_DIR}/cmake/cpu_extension.cmake)
else()
message(FATAL_ERROR "Unsupported vLLM target device: ${VLLM_TARGET_DEVICE}")
return()
endif()
return()
endif()
@ -101,7 +137,7 @@ elseif(HIP_FOUND)
# ROCm 5.X and 6.X
if (ROCM_VERSION_DEV_MAJOR GREATER_EQUAL 5 AND
NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM})
message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_ROCM} "
message(WARNING "Pytorch version >= ${TORCH_SUPPORTED_VERSION_ROCM} "
"expected for ROCm build, saw ${Torch_VERSION} instead.")
endif()
else()
@ -132,7 +168,7 @@ if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
endif()
#
# Define extension targets
# Define other extension targets
#
#
@ -145,32 +181,42 @@ set(VLLM_EXT_SRC
"csrc/pos_encoding_kernels.cu"
"csrc/activation_kernels.cu"
"csrc/layernorm_kernels.cu"
"csrc/quantization/squeezellm/quant_cuda_kernel.cu"
"csrc/quantization/gptq/q_gemm.cu"
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
"csrc/quantization/fp8/common.cu"
"csrc/cuda_utils_kernels.cu"
"csrc/moe_align_block_size_kernels.cu"
"csrc/prepare_inputs/advance_step.cu"
"csrc/torch_bindings.cpp")
if(VLLM_GPU_LANG STREQUAL "CUDA")
include(FetchContent)
SET(CUTLASS_ENABLE_HEADERS_ONLY=ON)
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
FetchContent_Declare(
cutlass
GIT_REPOSITORY https://github.com/nvidia/cutlass.git
# CUTLASS 3.5.0
GIT_TAG 7d49e6c7e2f8896c47f586706e67e1fb215529dc
GIT_TAG v3.5.1
GIT_PROGRESS TRUE
# Speed up CUTLASS download by retrieving only the specified GIT_TAG instead of the history.
# Important: If GIT_SHALLOW is enabled then GIT_TAG works only with branch names and tags.
# So if the GIT_TAG above is updated to a commit hash, GIT_SHALLOW must be set to FALSE
GIT_SHALLOW TRUE
)
FetchContent_MakeAvailable(cutlass)
list(APPEND VLLM_EXT_SRC
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
"csrc/quantization/aqlm/gemm_kernels.cu"
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/quantization/marlin/dense/marlin_cuda_kernel.cu"
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
"csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu"
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
"csrc/quantization/gptq_marlin/awq_marlin_repack.cu"
"csrc/quantization/gguf/gguf_kernel.cu"
"csrc/quantization/fp8/fp8_marlin.cu"
"csrc/custom_all_reduce.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
@ -189,6 +235,52 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"-gencode arch=compute_90a,code=sm_90a")
endif()
#
# Machete kernels
# The machete kernels only work on hopper and require CUDA 12.0 or later.
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0)
#
# For the Machete kernels we automatically generate sources for various
# preselected input type pairs and schedules.
# Generate sources:
execute_process(
COMMAND ${CMAKE_COMMAND} -E env
PYTHONPATH=${CMAKE_CURRENT_SOURCE_DIR}/csrc/cutlass_extensions/:${CUTLASS_DIR}/python/:${VLLM_PYTHON_PATH}:$PYTHONPATH
${Python_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/csrc/quantization/machete/generate.py
RESULT_VARIABLE machete_generation_result
OUTPUT_VARIABLE machete_generation_output
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log
)
if (NOT machete_generation_result EQUAL 0)
message(FATAL_ERROR "Machete generation failed."
" Result: \"${machete_generation_result}\""
"\nCheck the log for details: "
"${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log")
else()
message(STATUS "Machete generation completed successfully.")
endif()
# Add machete generated sources
file(GLOB MACHETE_GEN_SOURCES "csrc/quantization/machete/generated/*.cu")
list(APPEND VLLM_EXT_SRC ${MACHETE_GEN_SOURCES})
message(STATUS "Machete generated sources: ${MACHETE_GEN_SOURCES}")
set_source_files_properties(
${MACHETE_GEN_SOURCES}
PROPERTIES
COMPILE_FLAGS
"-gencode arch=compute_90a,code=sm_90a")
endif()
# Add pytorch binding for machete (add on even CUDA < 12.0 so that we can
# raise an error if the user that this was built with an incompatible
# CUDA version)
list(APPEND VLLM_EXT_SRC
csrc/quantization/machete/machete_pytorch.cu)
endif()
define_gpu_extension_target(
@ -198,10 +290,16 @@ define_gpu_extension_target(
SOURCES ${VLLM_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR};${CUTLASS_TOOLS_UTIL_INCLUDE_DIR}
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR}
USE_SABI 3
WITH_SOABI)
# If CUTLASS is compiled on NVCC >= 12.5, it by default uses
# cudaGetDriverEntryPointByVersion as a wrapper to avoid directly calling the
# driver API. This causes problems when linking with earlier versions of CUDA.
# Setting this variable sidesteps the issue by calling the driver directly.
target_compile_definitions(_C PRIVATE CUTLASS_ENABLE_DIRECT_CUDA_DRIVER_CALL=1)
#
# _moe_C extension
#
@ -210,6 +308,11 @@ set(VLLM_MOE_EXT_SRC
"csrc/moe/torch_bindings.cpp"
"csrc/moe/topk_softmax_kernels.cu")
if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_MOE_EXT_SRC
"csrc/moe/marlin_moe_ops.cu")
endif()
define_gpu_extension_target(
_moe_C
DESTINATION vllm
@ -220,76 +323,7 @@ define_gpu_extension_target(
USE_SABI 3
WITH_SOABI)
#
# _punica_C extension
#
set(VLLM_PUNICA_EXT_SRC
"csrc/punica/bgmv/bgmv_bf16_bf16_bf16.cu"
"csrc/punica/bgmv/bgmv_bf16_fp32_bf16.cu"
"csrc/punica/bgmv/bgmv_fp16_fp16_fp16.cu"
"csrc/punica/bgmv/bgmv_fp16_fp32_fp16.cu"
"csrc/punica/bgmv/bgmv_fp32_bf16_bf16.cu"
"csrc/punica/bgmv/bgmv_fp32_fp16_fp16.cu"
"csrc/punica/punica_ops.cu"
"csrc/punica/torch_bindings.cpp")
#
# Copy GPU compilation flags+update for punica
#
set(VLLM_PUNICA_GPU_FLAGS ${VLLM_GPU_FLAGS})
list(REMOVE_ITEM VLLM_PUNICA_GPU_FLAGS
"-D__CUDA_NO_HALF_OPERATORS__"
"-D__CUDA_NO_HALF_CONVERSIONS__"
"-D__CUDA_NO_BFLOAT16_CONVERSIONS__"
"-D__CUDA_NO_HALF2_OPERATORS__")
#
# Filter out CUDA architectures < 8.0 for punica.
#
if (${VLLM_GPU_LANG} STREQUAL "CUDA")
set(VLLM_PUNICA_GPU_ARCHES)
foreach(ARCH ${VLLM_GPU_ARCHES})
string_to_ver(CODE_VER ${ARCH})
if (CODE_VER GREATER_EQUAL 8.0)
list(APPEND VLLM_PUNICA_GPU_ARCHES ${ARCH})
endif()
endforeach()
message(STATUS "Punica target arches: ${VLLM_PUNICA_GPU_ARCHES}")
elseif(${VLLM_GPU_LANG} STREQUAL "HIP")
set(VLLM_PUNICA_GPU_ARCHES ${VLLM_GPU_ARCHES})
message(STATUS "Punica target arches: ${VLLM_PUNICA_GPU_ARCHES}")
endif()
if (VLLM_PUNICA_GPU_ARCHES)
define_gpu_extension_target(
_punica_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${VLLM_PUNICA_EXT_SRC}
COMPILE_FLAGS ${VLLM_PUNICA_GPU_FLAGS}
ARCHITECTURES ${VLLM_PUNICA_GPU_ARCHES}
USE_SABI 3
WITH_SOABI)
else()
message(WARNING "Unable to create _punica_C target because none of the "
"requested architectures (${VLLM_GPU_ARCHES}) are supported, i.e. >= 8.0")
endif()
#
# Add the `default` target which detects which extensions should be
# built based on platform/architecture. This is the same logic that
# setup.py uses to select which extensions should be built and should
# be kept in sync.
#
# The `default` target makes direct use of cmake easier since knowledge
# of which extensions are supported has been factored in, e.g.
#
# mkdir build && cd build
# cmake -G Ninja -DVLLM_PYTHON_EXECUTABLE=`which python3` -DCMAKE_LIBRARY_OUTPUT_DIRECTORY=../vllm ..
# cmake --build . --target default
#
add_custom_target(default)
if(VLLM_GPU_LANG STREQUAL "CUDA" OR VLLM_GPU_LANG STREQUAL "HIP")
message(STATUS "Enabling C extension.")
@ -298,12 +332,4 @@ if(VLLM_GPU_LANG STREQUAL "CUDA" OR VLLM_GPU_LANG STREQUAL "HIP")
message(STATUS "Enabling moe extension.")
add_dependencies(default _moe_C)
# Enable punica if -DVLLM_INSTALL_PUNICA_KERNELS=ON or
# VLLM_INSTALL_PUNICA_KERNELS is set in the environment and
# there are supported target arches.
if (VLLM_PUNICA_GPU_ARCHES AND
(ENV{VLLM_INSTALL_PUNICA_KERNELS} OR VLLM_INSTALL_PUNICA_KERNELS))
message(STATUS "Enabling punica extension.")
add_dependencies(default _punica_C)
endif()
endif()

128
CODE_OF_CONDUCT.md Normal file
View File

@ -0,0 +1,128 @@
# vLLM Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socioeconomic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the overall
community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or advances of
any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email address,
without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official email address,
posting via an official social media account, or acting as an appointed
representative at an online or offline/IRL event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement in the #code-of-conduct
channel in the [vLLM Discord](https://discord.com/invite/jz7wjKhh6g).
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series of
actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within the
community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant](https://www.contributor-covenant.org/),
version 2.1, available at
[v2.1](https://www.contributor-covenant.org/version/2/1/code_of_conduct.html).
Community Impact Guidelines were inspired by
[Mozilla's code of conduct enforcement ladder](https://github.com/mozilla/inclusion).
For answers to common questions about this code of conduct, see the
[Contributor Covenant FAQ](https://www.contributor-covenant.org/faq). Translations are available at
[Contributor Covenant translations](https://www.contributor-covenant.org/translations).

View File

@ -8,26 +8,24 @@
ARG CUDA_VERSION=12.4.1
#################### BASE BUILD IMAGE ####################
# prepare basic build environment
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 AS base
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base
ARG CUDA_VERSION=12.4.1
ARG PYTHON_VERSION=3
ARG PYTHON_VERSION=3.12
ENV DEBIAN_FRONTEND=noninteractive
# Install Python and other dependencies
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
&& apt-get update -y \
&& apt-get install -y ccache software-properties-common \
&& apt-get install -y ccache software-properties-common git curl sudo \
&& add-apt-repository ppa:deadsnakes/ppa \
&& apt-get update -y \
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv python3-pip \
&& if [ "${PYTHON_VERSION}" != "3" ]; then update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1; fi \
&& python3 --version \
&& python3 -m pip --version
RUN apt-get update -y \
&& apt-get install -y python3-pip git curl sudo
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
&& python3 --version && python3 -m pip --version
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
@ -43,9 +41,6 @@ COPY requirements-cuda.txt requirements-cuda.txt
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-cuda.txt
COPY requirements-mamba.txt requirements-mamba.txt
RUN python3 -m pip install packaging
RUN python3 -m pip install -r requirements-mamba.txt
# cuda arch list used by torch
# can be useful for both `dev` and `test`
@ -58,17 +53,12 @@ ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
#################### WHEEL BUILD IMAGE ####################
FROM base AS build
ARG PYTHON_VERSION=3
# install build dependencies
COPY requirements-build.txt requirements-build.txt
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-build.txt
# install compiler cache to speed up compilation leveraging local or remote caching
RUN apt-get update -y && apt-get install -y ccache
# files and directories related to build wheels
COPY csrc csrc
COPY setup.py setup.py
@ -85,10 +75,13 @@ ENV MAX_JOBS=${max_jobs}
# number of threads used by nvcc
ARG nvcc_threads=8
ENV NVCC_THREADS=$nvcc_threads
# make sure punica kernels are built (for LoRA)
ENV VLLM_INSTALL_PUNICA_KERNELS=1
ARG buildkite_commit
ENV BUILDKITE_COMMIT=${buildkite_commit}
ARG USE_SCCACHE
ARG SCCACHE_BUCKET_NAME=vllm-build-sccache
ARG SCCACHE_REGION_NAME=us-west-2
# if USE_SCCACHE is set, use sccache to speed up compilation
RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$USE_SCCACHE" = "1" ]; then \
@ -97,10 +90,12 @@ RUN --mount=type=cache,target=/root/.cache/pip \
&& tar -xzf sccache.tar.gz \
&& sudo mv sccache-v0.8.1-x86_64-unknown-linux-musl/sccache /usr/bin/sccache \
&& rm -rf sccache.tar.gz sccache-v0.8.1-x86_64-unknown-linux-musl \
&& export SCCACHE_BUCKET=vllm-build-sccache \
&& export SCCACHE_REGION=us-west-2 \
&& export SCCACHE_BUCKET=${SCCACHE_BUCKET_NAME} \
&& export SCCACHE_REGION=${SCCACHE_REGION_NAME} \
&& export SCCACHE_IDLE_TIMEOUT=0 \
&& export CMAKE_BUILD_TYPE=Release \
&& sccache --show-stats \
&& python3 setup.py bdist_wheel --dist-dir=dist \
&& python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38 \
&& sccache --show-stats; \
fi
@ -108,13 +103,20 @@ ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/ccache \
--mount=type=cache,target=/root/.cache/pip \
if [ "$USE_SCCACHE" != "1" ]; then \
python3 setup.py bdist_wheel --dist-dir=dist; \
python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38; \
fi
# check the size of the wheel, we cannot upload wheels larger than 100MB
# Check the size of the wheel if RUN_WHEEL_CHECK is true
COPY .buildkite/check-wheel-size.py check-wheel-size.py
RUN python3 check-wheel-size.py dist
# Default max size of the wheel is 250MB
ARG VLLM_MAX_SIZE_MB=250
ENV VLLM_MAX_SIZE_MB=$VLLM_MAX_SIZE_MB
ARG RUN_WHEEL_CHECK=true
RUN if [ "$RUN_WHEEL_CHECK" = "true" ]; then \
python3 check-wheel-size.py dist; \
else \
echo "Skipping wheel size check."; \
fi
#################### EXTENSION Build IMAGE ####################
#################### DEV IMAGE ####################
@ -127,30 +129,31 @@ RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-dev.txt
#################### DEV IMAGE ####################
#################### MAMBA Build IMAGE ####################
FROM dev as mamba-builder
# max jobs used for build
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
WORKDIR /usr/src/mamba
COPY requirements-mamba.txt requirements-mamba.txt
# Download the wheel or build it if a pre-compiled release doesn't exist
RUN pip --verbose wheel -r requirements-mamba.txt \
--no-build-isolation --no-deps --no-cache-dir
#################### MAMBA Build IMAGE ####################
#################### vLLM installation IMAGE ####################
# image with vLLM installed
FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu22.04 AS vllm-base
FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu20.04 AS vllm-base
ARG CUDA_VERSION=12.4.1
ARG PYTHON_VERSION=3.12
WORKDIR /vllm-workspace
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update -y \
&& apt-get install -y python3-pip git vim
RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \
echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment
# Install Python and other dependencies
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
&& apt-get update -y \
&& apt-get install -y ccache software-properties-common git curl sudo vim python3-pip \
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
&& add-apt-repository ppa:deadsnakes/ppa \
&& apt-get update -y \
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv libibverbs-dev \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
&& python3 --version && python3 -m pip --version
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
@ -163,9 +166,9 @@ RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist
--mount=type=cache,target=/root/.cache/pip \
python3 -m pip install dist/*.whl --verbose
RUN --mount=type=bind,from=mamba-builder,src=/usr/src/mamba,target=/usr/src/mamba \
--mount=type=cache,target=/root/.cache/pip \
python3 -m pip install /usr/src/mamba/*.whl --no-cache-dir
RUN --mount=type=cache,target=/root/.cache/pip \
. /etc/environment && \
python3 -m pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.6/flashinfer-0.1.6+cu121torch2.4-cp${PYTHON_VERSION_STR}-cp${PYTHON_VERSION_STR}-linux_x86_64.whl
#################### vLLM installation IMAGE ####################
@ -177,6 +180,10 @@ FROM vllm-base AS test
ADD . /vllm-workspace/
# install development dependencies (for testing)
# A newer setuptools is required for installing some test dependencies from source that do not publish python 3.12 wheels
# This installation must complete before the test dependencies are collected and installed.
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install "setuptools>=74.1.1"
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-dev.txt

View File

@ -2,36 +2,66 @@
FROM ubuntu:22.04 AS cpu-test-1
RUN apt-get update -y \
&& apt-get install -y git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 \
ENV CCACHE_DIR=/root/.cache/ccache
ENV CMAKE_CXX_COMPILER_LAUNCHER=ccache
RUN --mount=type=cache,target=/var/cache/apt \
apt-get update -y \
&& apt-get install -y curl ccache git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 libnuma-dev \
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
# https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/tuning_guide.html
# intel-openmp provides additional performance improvement vs. openmp
# tcmalloc provides better memory allocation efficiency, e.g, holding memory in caches to speed up access of commonly-used objects.
RUN pip install intel-openmp
RUN --mount=type=cache,target=/root/.cache/pip \
pip install intel-openmp
ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/usr/local/lib/libiomp5.so:$LD_PRELOAD"
ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/usr/local/lib/libiomp5.so"
RUN echo 'ulimit -c 0' >> ~/.bashrc
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_dev/cpu/intel_extension_for_pytorch-2.3.100%2Bgit0eb3473-cp310-cp310-linux_x86_64.whl
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_dev/cpu/intel_extension_for_pytorch-2.4.0%2Bgitfbaa4bc-cp310-cp310-linux_x86_64.whl
RUN pip install --upgrade pip \
&& pip install wheel packaging ninja "setuptools>=49.4.0" numpy
ENV PIP_EXTRA_INDEX_URL=https://download.pytorch.org/whl/cpu
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,src=requirements-build.txt,target=requirements-build.txt \
pip install --upgrade pip && \
pip install -r requirements-build.txt
# install oneDNN
RUN git clone -b rls-v3.5 https://github.com/oneapi-src/oneDNN.git
RUN --mount=type=cache,target=/root/.cache/ccache \
cmake -B ./oneDNN/build -S ./oneDNN -G Ninja -DONEDNN_LIBRARY_TYPE=STATIC \
-DONEDNN_BUILD_DOC=OFF \
-DONEDNN_BUILD_EXAMPLES=OFF \
-DONEDNN_BUILD_TESTS=OFF \
-DONEDNN_BUILD_GRAPH=OFF \
-DONEDNN_ENABLE_WORKLOAD=INFERENCE \
-DONEDNN_ENABLE_PRIMITIVE=MATMUL && \
cmake --build ./oneDNN/build --target install --config Release
FROM cpu-test-1 AS build
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
RUN pip install -v -r requirements-cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,src=requirements-common.txt,target=requirements-common.txt \
--mount=type=bind,src=requirements-cpu.txt,target=requirements-cpu.txt \
pip install -v -r requirements-cpu.txt
COPY ./ ./
# Support for building with non-AVX512 vLLM: docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" ...
ARG VLLM_CPU_DISABLE_AVX512
ENV VLLM_CPU_DISABLE_AVX512=${VLLM_CPU_DISABLE_AVX512}
RUN VLLM_TARGET_DEVICE=cpu python3 setup.py install
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/ccache \
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel && \
pip install dist/*.whl
WORKDIR /workspace/

View File

@ -1,12 +1,14 @@
# default base image
ARG BASE_IMAGE="763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-inference-neuronx:2.1.1-neuronx-py310-sdk2.17.0-ubuntu20.04"
ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.1.2-neuronx-py310-sdk2.19.1-ubuntu20.04"
FROM $BASE_IMAGE
RUN echo "Base image is $BASE_IMAGE"
# Install some basic utilities
RUN apt-get update && apt-get install python3 python3-pip -y
RUN apt-get update \
&& apt-get install python3 python3-pip -y \
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1
### Mount Point ###
# When launching the container, mount the code directory to /app

View File

@ -4,7 +4,8 @@
FROM ubuntu:22.04 AS dev
RUN apt-get update -y && \
apt-get install -y python3-pip git
apt-get install -y python3-pip git && \
apt-get install -y ffmpeg libsm6 libxext6 libgl1
WORKDIR /workspace
# copy requirements
@ -13,12 +14,15 @@ COPY requirements-common.txt /workspace/vllm/
COPY requirements-openvino.txt /workspace/vllm/
COPY vllm/ /workspace/vllm/vllm
COPY csrc/core /workspace/vllm/csrc/core
COPY cmake/utils.cmake /workspace/vllm/cmake/
COPY CMakeLists.txt /workspace/vllm/
COPY setup.py /workspace/vllm/
# install build requirements
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" python3 -m pip install -r /workspace/vllm/requirements-build.txt
# build vLLM with OpenVINO backend
RUN PIP_PRE=1 PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu https://storage.openvinotoolkit.org/simple/wheels/nightly/" VLLM_TARGET_DEVICE="openvino" python3 -m pip install /workspace/vllm/
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" VLLM_TARGET_DEVICE="openvino" python3 -m pip install /workspace/vllm/
COPY examples/ /workspace/vllm/examples
COPY benchmarks/ /workspace/vllm/benchmarks

View File

@ -2,21 +2,26 @@ FROM mambaorg/micromamba
ARG MAMBA_DOCKERFILE_ACTIVATE=1
USER root
RUN apt-get update -y && apt-get install -y git wget vim numactl gcc-12 g++-12 protobuf-compiler libprotobuf-dev && update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
ENV PATH="/usr/local/cargo/bin:$PATH:/opt/conda/bin/"
RUN apt-get update -y && apt-get install -y git wget curl vim libnuma-dev libsndfile-dev libprotobuf-dev build-essential ffmpeg libsm6 libxext6 libgl1
# Some packages in requirements-cpu are installed here
# IBM provides optimized packages for ppc64le processors in the open-ce project for mamba
# Currently these may not be available for venv or pip directly
RUN micromamba install -y -n base -c https://ftp.osuosl.org/pub/open-ce/1.11.0-p10/ -c defaults python=3.10 pytorch-cpu=2.1.2 torchvision-cpu=0.16.2 && micromamba clean --all --yes
RUN micromamba install -y -n base -c https://ftp.osuosl.org/pub/open-ce/1.11.0-p10/ -c defaults python=3.10 torchvision-cpu=0.16.2 rust && micromamba clean --all --yes
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
# These packages will be in rocketce eventually
RUN pip install -v -r requirements-cpu.txt --prefer-binary --extra-index-url https://repo.fury.io/mgiessing
RUN pip install -v cmake xformers torch==2.3.1 uvloop==0.20.0 -r requirements-cpu.txt --prefer-binary --extra-index-url https://repo.fury.io/mgiessing
RUN VLLM_TARGET_DEVICE=cpu python3 setup.py install
WORKDIR /vllm-workspace
ENTRYPOINT ["/opt/conda/bin/python3", "-m", "vllm.entrypoints.openai.api_server"]
WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -1,26 +1,24 @@
# Default ROCm 6.1 base image
ARG BASE_IMAGE="rocm/pytorch:rocm6.1.2_ubuntu20.04_py3.9_pytorch_staging"
# Tested and supported base rocm/pytorch images
ARG ROCm_5_7_BASE="rocm/pytorch:rocm5.7_ubuntu20.04_py3.9_pytorch_2.0.1" \
ROCm_6_0_BASE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" \
ROCM_6_1_BASE="rocm/pytorch:rocm6.1.2_ubuntu20.04_py3.9_pytorch_staging"
# Default ROCm ARCHes to build vLLM for.
ARG PYTORCH_ROCM_ARCH="gfx908;gfx90a;gfx942;gfx1100"
# Whether to build CK-based flash-attention
# If 0, will not build flash attention
# This is useful for gfx target where flash-attention is not supported
# (i.e. those that do not appear in `FA_GFX_ARCHS`)
# Triton FA is used by default on ROCm now so this is unnecessary.
# Whether to install CK-based flash-attention
# If 0, will not install flash-attention
ARG BUILD_FA="1"
# If `TRY_FA_WHEEL=1`, we will try installing flash-attention from `FA_WHEEL_URL`
# If this succeeds, we use the downloaded wheel and skip building flash-attention.
# Otherwise, ROCm flash-attention from `FA_BRANCH` will be built for the
# architectures specified in `FA_GFX_ARCHS`
ARG TRY_FA_WHEEL="1"
ARG FA_WHEEL_URL="https://github.com/ROCm/flash-attention/releases/download/v2.5.9post1-cktile-vllm/flash_attn-2.5.9.post1-cp39-cp39-linux_x86_64.whl"
ARG FA_GFX_ARCHS="gfx90a;gfx942"
ARG FA_BRANCH="ae7928c"
ARG FA_BRANCH="23a2b1c2"
# Whether to build triton on rocm
ARG BUILD_TRITON="1"
ARG TRITON_BRANCH="0ef1848"
ARG TRITON_BRANCH="e0fc12c"
### Base image build stage
FROM $BASE_IMAGE AS base
@ -48,29 +46,17 @@ RUN apt-get update && apt-get install -y \
ARG APP_MOUNT=/vllm-workspace
WORKDIR ${APP_MOUNT}
RUN pip install --upgrade pip
RUN python3 -m pip install --upgrade pip
# Remove sccache so it doesn't interfere with ccache
# TODO: implement sccache support across components
RUN apt-get purge -y sccache; pip uninstall -y sccache; rm -f "$(which sccache)"
# Install torch == 2.4.0 on ROCm
RUN apt-get purge -y sccache; python3 -m pip uninstall -y sccache; rm -f "$(which sccache)"
# Install torch == 2.5.0 on ROCm
RUN case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \
*"rocm-5.7"*) \
pip uninstall -y torch torchaudio torchvision \
&& pip install --no-cache-dir --pre \
torch==2.4.0.dev20240612 torchaudio==2.4.0.dev20240612 \
torchvision==0.19.0.dev20240612 \
--index-url https://download.pytorch.org/whl/nightly/rocm5.7;; \
*"rocm-6.0"*) \
pip uninstall -y torch torchaudio torchvision \
&& pip install --no-cache-dir --pre \
torch==2.4.0.dev20240612 torchaudio==2.4.0.dev20240612 \
torchvision==0.19.0.dev20240612 \
--index-url https://download.pytorch.org/whl/nightly/rocm6.0;; \
*"rocm-6.1"*) \
pip uninstall -y torch torchaudio torchvision \
&& pip install --no-cache-dir --pre \
torch==2.4.0.dev20240612 torchaudio==2.4.0.dev20240612 \
torchvision==0.19.0.dev20240612 \
python3 -m pip uninstall -y torch torchvision \
&& python3 -m pip install --no-cache-dir --pre \
torch==2.5.0.dev20240726 \
torchvision==0.20.0.dev20240726 \
--index-url https://download.pytorch.org/whl/nightly/rocm6.1;; \
*) ;; esac
@ -87,29 +73,31 @@ ENV CCACHE_DIR=/root/.cache/ccache
FROM base AS build_amdsmi
# Build amdsmi wheel always
RUN cd /opt/rocm/share/amd_smi \
&& pip wheel . --wheel-dir=/install
&& python3 -m pip wheel . --wheel-dir=/install
### Flash-Attention wheel build stage
FROM base AS build_fa
ARG BUILD_FA
ARG TRY_FA_WHEEL
ARG FA_WHEEL_URL
ARG FA_GFX_ARCHS
ARG FA_BRANCH
# Build ROCm flash-attention wheel if `BUILD_FA = 1`
RUN --mount=type=cache,target=${CCACHE_DIR} \
if [ "$BUILD_FA" = "1" ]; then \
if [ "${TRY_FA_WHEEL}" = "1" ] && python3 -m pip install "${FA_WHEEL_URL}"; then \
# If a suitable wheel exists, we download it instead of building FA
mkdir -p /install && wget -N "${FA_WHEEL_URL}" -P /install; \
else \
mkdir -p libs \
&& cd libs \
&& git clone https://github.com/ROCm/flash-attention.git \
&& cd flash-attention \
&& git checkout "${FA_BRANCH}" \
&& git submodule update --init \
&& case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \
*"rocm-5.7"*) \
export VLLM_TORCH_PATH="$(python3 -c 'import torch; print(torch.__path__[0])')" \
&& patch "${VLLM_TORCH_PATH}"/utils/hipify/hipify_python.py hipify_patch.patch;; \
*) ;; esac \
&& GPU_ARCHS="${FA_GFX_ARCHS}" python3 setup.py bdist_wheel --dist-dir=/install; \
fi; \
# Create an empty directory otherwise as later build stages expect one
else mkdir -p /install; \
fi
@ -139,19 +127,11 @@ FROM base AS final
# Import the vLLM development directory from the build context
COPY . .
# Error related to odd state for numpy 1.20.3 where there is no METADATA etc, but an extra LICENSES_bundled.txt.
# Manually remove it so that later steps of numpy upgrade can continue
RUN case "$(which python3)" in \
*"/opt/conda/envs/py_3.9"*) \
rm -rf /opt/conda/envs/py_3.9/lib/python3.9/site-packages/numpy-1.20.3.dist-info/;; \
*) ;; esac
# Package upgrades for useful functionality or to avoid dependency issues
RUN --mount=type=cache,target=/root/.cache/pip \
pip install --upgrade numba scipy huggingface-hub[cli]
python3 -m pip install --upgrade numba scipy huggingface-hub[cli]
# Make sure punica kernels are built (for LoRA)
ENV VLLM_INSTALL_PUNICA_KERNELS=1
# Workaround for ray >= 2.10.0
ENV RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1
# Silences the HF Tokenizers warning
@ -159,14 +139,11 @@ ENV TOKENIZERS_PARALLELISM=false
RUN --mount=type=cache,target=${CCACHE_DIR} \
--mount=type=cache,target=/root/.cache/pip \
pip install -U -r requirements-rocm.txt \
python3 -m pip install -Ur requirements-rocm.txt \
&& case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \
*"rocm-6.0"*) \
patch /opt/rocm/include/hip/amd_detail/amd_hip_bf16.h rocm_patch/rocm_bf16.patch;; \
*"rocm-6.1"*) \
# Bring in upgrades to HIP graph earlier than ROCm 6.2 for vLLM
wget -N https://github.com/ROCm/vllm/raw/fa78403/rocm_patch/libamdhip64.so.6 -P rocm_patch \
&& cp rocm_patch/libamdhip64.so.6 /opt/rocm/lib/libamdhip64.so.6 \
wget -N https://github.com/ROCm/vllm/raw/fa78403/rocm_patch/libamdhip64.so.6 -P /opt/rocm/lib \
# Prevent interference if torch bundles its own HIP runtime
&& rm -f "$(python3 -c 'import torch; print(torch.__path__[0])')"/lib/libamdhip64.so* || true;; \
*) ;; esac \
@ -178,7 +155,7 @@ RUN --mount=type=bind,from=build_amdsmi,src=/install,target=/install \
mkdir -p libs \
&& cp /install/*.whl libs \
# Preemptively uninstall to avoid same-version no-installs
&& pip uninstall -y amdsmi;
&& python3 -m pip uninstall -y amdsmi;
# Copy triton wheel(s) into final image if they were built
RUN --mount=type=bind,from=build_triton,src=/install,target=/install \
@ -186,7 +163,7 @@ RUN --mount=type=bind,from=build_triton,src=/install,target=/install \
&& if ls /install/*.whl; then \
cp /install/*.whl libs \
# Preemptively uninstall to avoid same-version no-installs
&& pip uninstall -y triton; fi
&& python3 -m pip uninstall -y triton; fi
# Copy flash-attn wheel(s) into final image if they were built
RUN --mount=type=bind,from=build_fa,src=/install,target=/install \
@ -194,11 +171,11 @@ RUN --mount=type=bind,from=build_fa,src=/install,target=/install \
&& if ls /install/*.whl; then \
cp /install/*.whl libs \
# Preemptively uninstall to avoid same-version no-installs
&& pip uninstall -y flash-attn; fi
&& python3 -m pip uninstall -y flash-attn; fi
# Install wheels that were built to the final image
RUN --mount=type=cache,target=/root/.cache/pip \
if ls libs/*.whl; then \
pip install libs/*.whl; fi
python3 -m pip install libs/*.whl; fi
CMD ["/bin/bash"]

View File

@ -1,19 +1,20 @@
ARG NIGHTLY_DATE="20240601"
ARG NIGHTLY_DATE="20240828"
ARG BASE_IMAGE="us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.10_tpuvm_$NIGHTLY_DATE"
FROM $BASE_IMAGE
WORKDIR /workspace
COPY . /workspace/vllm
ENV VLLM_TARGET_DEVICE="tpu"
# Install aiohttp separately to avoid build errors.
RUN pip install aiohttp
# Install some basic utilities
RUN apt-get update && apt-get install -y ffmpeg libsm6 libxext6 libgl1
# Install the TPU and Pallas dependencies.
RUN pip install torch_xla[tpu] -f https://storage.googleapis.com/libtpu-releases/index.html
RUN pip install torch_xla[pallas] -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html
RUN python3 -m pip install torch_xla[tpu] -f https://storage.googleapis.com/libtpu-releases/index.html
RUN python3 -m pip install torch_xla[pallas] -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html
# Build vLLM.
RUN cd /workspace/vllm && python setup.py develop
COPY . /workspace/vllm
ENV VLLM_TARGET_DEVICE="tpu"
RUN cd /workspace/vllm && python3 -m pip install -r requirements-tpu.txt
RUN cd /workspace/vllm && python3 setup.py develop
CMD ["/bin/bash"]

View File

@ -1,4 +1,4 @@
FROM intel/oneapi-basekit:2024.1.0-devel-ubuntu22.04
FROM intel/oneapi-basekit:2024.1.0-devel-ubuntu20.04
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \
echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \
@ -9,8 +9,7 @@ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRO
chmod 644 /usr/share/keyrings/intel-graphics.gpg
RUN apt-get update -y \
&& apt-get install -y curl libicu70 lsb-release git wget vim numactl python3 python3-pip
&& apt-get install -y curl libicu70 lsb-release git wget vim numactl python3 python3-pip ffmpeg libsm6 libxext6 libgl1
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm

View File

@ -10,33 +10,30 @@ Easy, fast, and cheap LLM serving for everyone
</h3>
<p align="center">
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> |
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> |
</p>
---
**Ray Summit CPF is Open (June 4th to June 20th)!**
**vLLM, AMD, Anyscale Meet & Greet at [Ray Summit 2024](http://raysummit.anyscale.com) (Monday, Sept 30th, 5-7pm PT) at Marriott Marquis San Francisco**
There will be a track for vLLM at the Ray Summit (09/30-10/02, SF) this year!
If you have cool projects related to vLLM or LLM inference, we would love to see your proposals.
This will be a great chance for everyone in the community to get together and learn.
Please submit your proposal [here](https://raysummit.anyscale.com/flow/anyscale/raysummit2024/landing/page/eventsite)
We are excited to announce our special vLLM event in collaboration with AMD and Anyscale.
Join us to learn more about recent advancements of vLLM on MI300X.
Register [here](https://lu.ma/db5ld9n5) and be a part of the event!
---
*Latest News* 🔥
- [2024/09] We hosted [the sixth vLLM meetup](https://lu.ma/87q3nvnh) with NVIDIA! Please find the meetup slides [here](https://docs.google.com/presentation/d/1wrLGwytQfaOTd5wCGSPNhoaW3nq0E-9wqyP7ny93xRs/edit?usp=sharing).
- [2024/07] We hosted [the fifth vLLM meetup](https://lu.ma/lp0gyjqr) with AWS! Please find the meetup slides [here](https://docs.google.com/presentation/d/1RgUD8aCfcHocghoP3zmXzck9vX3RCI9yfUAB2Bbcl4Y/edit?usp=sharing).
- [2024/07] In partnership with Meta, vLLM officially supports Llama 3.1 with FP8 quantization and pipeline parallelism! Please check out our blog post [here](https://blog.vllm.ai/2024/07/23/llama31.html).
- [2024/06] We hosted [the fourth vLLM meetup](https://lu.ma/agivllm) with Cloudflare and BentoML! Please find the meetup slides [here](https://docs.google.com/presentation/d/1iJ8o7V2bQEi0BFEljLTwc5G1S10_Rhv3beed5oB0NJ4/edit?usp=sharing).
- [2024/04] We hosted [the third vLLM meetup](https://robloxandvllmmeetup2024.splashthat.com/) with Roblox! Please find the meetup slides [here](https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing).
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2024/01] Added ROCm 6.0 support to vLLM.
- [2023/12] Added ROCm 5.7 support to vLLM.
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
- [2023/09] We created our [Discord server](https://discord.gg/jz7wjKhh6g)! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
- [2023/09] We released our [PagedAttention paper](https://arxiv.org/abs/2309.06180) on arXiv!
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) with IBM! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) with a16z! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
- [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!
- [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click [example](https://github.com/skypilot-org/skypilot/blob/master/llm/vllm) to start the vLLM demo, and the [blog post](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/) for the story behind vLLM development on the clouds.
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
---
@ -49,30 +46,35 @@ vLLM is fast with:
- Efficient management of attention key and value memory with **PagedAttention**
- Continuous batching of incoming requests
- Fast model execution with CUDA/HIP graph
- Quantization: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [SqueezeLLM](https://arxiv.org/abs/2306.07629), FP8 KV Cache
- Optimized CUDA kernels
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), INT4, INT8, and FP8.
- Optimized CUDA kernels, including integration with FlashAttention and FlashInfer.
- Speculative decoding
- Chunked prefill
**Performance benchmark**: We include a [performance benchmark](https://buildkite.com/vllm/performance-benchmark/builds/4068) that compares the performance of vLLM against other LLM serving engines ([TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM), [text-generation-inference](https://github.com/huggingface/text-generation-inference) and [lmdeploy](https://github.com/InternLM/lmdeploy)).
vLLM is flexible and easy to use with:
- Seamless integration with popular Hugging Face models
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
- Tensor parallelism support for distributed inference
- Tensor parallelism and pipeline parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
- Support NVIDIA GPUs, AMD GPUs, Intel CPUs and GPUs
- (Experimental) Prefix caching support
- (Experimental) Multi-lora support
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron.
- Prefix caching support
- Multi-lora support
vLLM seamlessly supports most popular open-source models on HuggingFace, including:
- Transformer-like LLMs (e.g., Llama)
- Mixture-of-Expert LLMs (e.g., Mixtral)
- Embedding Models (e.g. E5-Mistral)
- Multi-modal LLMs (e.g., LLaVA)
Find the full list of supported models [here](https://docs.vllm.ai/en/latest/models/supported_models.html).
## Getting Started
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
Install vLLM with `pip` or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
```bash
pip install vllm
@ -103,12 +105,14 @@ vLLM is a community project. Our compute resources for development and testing a
- Databricks
- DeepInfra
- Dropbox
- Google Cloud
- Lambda Lab
- NVIDIA
- Replicate
- Roblox
- RunPod
- Sequoia Capital
- Skywork AI
- Trainy
- UC Berkeley
- UC San Diego
@ -127,3 +131,10 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
year={2023}
}
```
## Contact Us
* For technical questions and feature requests, please use Github issues or discussions.
* For discussing with fellow users, please use Discord.
* For security disclosures, please use Github's security advisory feature.
* For collaborations and partnerships, please contact us at vllm-questions AT lists.berkeley.edu.

View File

@ -24,6 +24,7 @@ class RequestFuncInput:
model: str
best_of: int = 1
use_beam_search: bool = False
logprobs: Optional[int] = None
@dataclass
@ -225,8 +226,8 @@ async def async_request_openai_completions(
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(
"completions"
), "OpenAI Completions API URL must end with 'completions'."
("completions", "profile")
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
@ -236,6 +237,7 @@ async def async_request_openai_completions(
"temperature": 0.0,
"best_of": request_func_input.best_of,
"max_tokens": request_func_input.output_len,
"logprobs": request_func_input.logprobs,
"stream": True,
}
headers = {
@ -276,6 +278,7 @@ async def async_request_openai_completions(
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp -
most_recent_timestamp)
@ -390,17 +393,17 @@ def remove_prefix(text: str, prefix: str) -> str:
return text
def get_model(pretrained_model_name_or_path: str):
def get_model(pretrained_model_name_or_path: str) -> str:
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
from modelscope import snapshot_download
else:
from huggingface_hub import snapshot_download
model_path = snapshot_download(
model_id=pretrained_model_name_or_path,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
return model_path
return pretrained_model_name_or_path
def get_tokenizer(

View File

@ -10,8 +10,8 @@ import torch
from tqdm import tqdm
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.inputs import PromptStrictInputs
from vllm.engine.arg_utils import DEVICE_OPTIONS, EngineArgs
from vllm.inputs import PromptInputs
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.utils import FlexibleArgumentParser
@ -61,7 +61,7 @@ def main(args: argparse.Namespace):
dummy_prompt_token_ids = np.random.randint(10000,
size=(args.batch_size,
args.input_len))
dummy_inputs: List[PromptStrictInputs] = [{
dummy_inputs: List[PromptInputs] = [{
"prompt_token_ids": batch
} for batch in dummy_prompt_token_ids.tolist()]
@ -205,13 +205,11 @@ if __name__ == '__main__':
default=None,
help=('path to save the pytorch profiler output. Can be visualized '
'with ui.perfetto.dev or Tensorboard.'))
parser.add_argument(
"--device",
parser.add_argument("--device",
type=str,
default="auto",
choices=["auto", "cuda", "cpu", "openvino", "tpu", "xpu"],
help='device type for vLLM execution, supporting CUDA, OpenVINO and '
'CPU.')
choices=DEVICE_OPTIONS,
help='device type for vLLM execution')
parser.add_argument('--block-size',
type=int,
default=16,

View File

@ -1,8 +1,45 @@
"""
Benchmark the efficiency of prefix caching.
This script allows you to benchmark the performance of
a model with and without prefix caching using either fixed prompts
or prompts sampled from the ShareGPT dataset.
Fixed example usage:
python benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-prompts 1 \
--repeat-count 100
ShareGPT example usage:
# This command samples 20 prompts with input lengths
# between 128 and 256 tokens from the ShareGPT dataset,
# then replicates each prompt 5 times.
python benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--dataset-path /path/to/ShareGPT_V3_unfiltered_cleaned_split.json \
--enable-prefix-caching \
--num-prompts 20 \
--repeat-count 5 \
--input-length-range 128:256
"""
import json
import random
import time
from typing import List, Optional, Tuple
from transformers import PreTrainedTokenizerBase
from vllm import LLM, SamplingParams
from vllm.utils import FlexibleArgumentParser
try:
from vllm.transformers_utils.tokenizer import get_tokenizer
except ImportError:
from backend_request_func import get_tokenizer
PROMPT = "You are a helpful assistant in recognizes the content of tables in markdown format. Here is a table as fellows. You need to answer my question about the table.\n# Table\n|Opening|Opening|Sl. No.|Film|Cast|Director|Music Director|Notes|\n|----|----|----|----|----|----|----|----|\n|J A N|9|1|Agni Pushpam|Jayabharathi, Kamalahasan|Jeassy|M. K. Arjunan||\n|J A N|16|2|Priyamvada|Mohan Sharma, Lakshmi, KPAC Lalitha|K. S. Sethumadhavan|V. Dakshinamoorthy||\n|J A N|23|3|Yakshagaanam|Madhu, Sheela|Sheela|M. S. Viswanathan||\n|J A N|30|4|Paalkkadal|Sheela, Sharada|T. K. Prasad|A. T. Ummer||\n|F E B|5|5|Amma|Madhu, Srividya|M. Krishnan Nair|M. K. Arjunan||\n|F E B|13|6|Appooppan|Thikkurissi Sukumaran Nair, Kamal Haasan|P. Bhaskaran|M. S. Baburaj||\n|F E B|20|7|Srishti|Chowalloor Krishnankutty, Ravi Alummoodu|K. T. Muhammad|M. S. Baburaj||\n|F E B|20|8|Vanadevatha|Prem Nazir, Madhubala|Yusufali Kechery|G. Devarajan||\n|F E B|27|9|Samasya|Madhu, Kamalahaasan|K. Thankappan|Shyam||\n|F E B|27|10|Yudhabhoomi|K. P. Ummer, Vidhubala|Crossbelt Mani|R. K. Shekhar||\n|M A R|5|11|Seemantha Puthran|Prem Nazir, Jayabharathi|A. B. Raj|M. K. Arjunan||\n|M A R|12|12|Swapnadanam|Rani Chandra, Dr. Mohandas|K. G. George|Bhaskar Chandavarkar||\n|M A R|19|13|Thulavarsham|Prem Nazir, sreedevi, Sudheer|N. Sankaran Nair|V. Dakshinamoorthy||\n|M A R|20|14|Aruthu|Kaviyoor Ponnamma, Kamalahasan|Ravi|G. Devarajan||\n|M A R|26|15|Swimming Pool|Kamal Haasan, M. G. Soman|J. Sasikumar|M. K. Arjunan||\n\n# Question\nWhat' s the content in the (1,1) cells\n" # noqa: E501
@ -15,7 +52,83 @@ def test_prefix(llm=None, sampling_params=None, prompts=None):
print(f"cost time {end_time - start_time}")
def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
input_length_range: Tuple[int, int],
fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Shuffle the dataset.
random.shuffle(dataset)
min_len, max_len = input_length_range
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
if min_len <= prompt_len <= max_len:
filtered_dataset.append((prompt, prompt_len, output_len))
return filtered_dataset
def repeat_and_sort_requests(requests: List[Tuple[str, int, int]],
repeat_count: int,
sort: bool = False) -> List[str]:
repeated_requests = requests * repeat_count
if sort:
repeated_requests.sort(key=lambda x: x[1])
else:
random.shuffle(repeated_requests)
return [req[0] for req in repeated_requests]
def main(args):
tokenizer = get_tokenizer(args.model, trust_remote_code=True)
input_length_range = tuple(map(int, args.input_length_range.split(':')))
if args.dataset_path is not None:
print(f"Start to sample {args.num_prompts} prompts"
"from {args.dataset_path}")
filtered_datasets = sample_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
input_length_range=input_length_range,
fixed_output_len=args.output_len,
)
else:
prompt_len = len(tokenizer(PROMPT).input_ids)
filtered_datasets = [(PROMPT, prompt_len, args.output_len)
] * args.num_prompts
llm = LLM(model=args.model,
tokenizer_mode='auto',
trust_remote_code=True,
@ -24,10 +137,13 @@ def main(args):
tensor_parallel_size=args.tensor_parallel_size,
enable_prefix_caching=args.enable_prefix_caching)
num_prompts = 100
prompts = [PROMPT] * num_prompts
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
print("Testing filtered datasets")
prompts = repeat_and_sort_requests(filtered_datasets,
repeat_count=args.repeat_count,
sort=args.sort)
print("------warm up------")
test_prefix(
llm=llm,
@ -45,11 +161,15 @@ def main(args):
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Benchmark the performance with or without automatic '
'prefix caching.')
description=
'Benchmark the performance with or without automatic prefix caching.')
parser.add_argument('--model',
type=str,
default='baichuan-inc/Baichuan2-13B-Chat')
parser.add_argument("--dataset-path",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument('--enable-prefix-caching',
@ -58,5 +178,21 @@ if __name__ == "__main__":
parser.add_argument('--use-v2-block-manager',
action='store_true',
help='Use BlockSpaceMangerV2')
parser.add_argument('--num-prompts',
type=int,
default=1,
help="Number of the prompts sampled from dataset")
parser.add_argument('--repeat-count',
type=int,
default=100,
help='Number of times to repeat each prompt')
parser.add_argument('--sort',
action='store_true',
help='Sort prompts by input length')
parser.add_argument('--input-length-range',
type=str,
default='128:256',
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')
args = parser.parse_args()
main(args)

View File

@ -2,8 +2,8 @@
On the server side, run one of the following commands:
vLLM OpenAI API server
python -m vllm.entrypoints.openai.api_server \
--model <your_model> --swap-space 16 \
vllm serve <your_model> \
--swap-space 16 \
--disable-log-requests
(TGI backend)
@ -56,17 +56,27 @@ class BenchmarkMetrics:
total_input: int
total_output: int
request_throughput: float
input_throughput: float
output_throughput: float
total_token_throughput: float
mean_ttft_ms: float
median_ttft_ms: float
p99_ttft_ms: float
std_ttft_ms: float
percentiles_ttft_ms: List[Tuple[float, float]]
mean_tpot_ms: float
median_tpot_ms: float
p99_tpot_ms: float
std_tpot_ms: float
percentiles_tpot_ms: List[Tuple[float, float]]
mean_itl_ms: float
median_itl_ms: float
p99_itl_ms: float
std_itl_ms: float
percentiles_itl_ms: List[Tuple[float, float]]
# E2EL stands for end-to-end latency per request.
# It is the time taken on the client side from sending
# a request to receiving a complete response.
mean_e2el_ms: float
median_e2el_ms: float
std_e2el_ms: float
percentiles_e2el_ms: List[Tuple[float, float]]
def sample_sharegpt_requests(
@ -77,7 +87,6 @@ def sample_sharegpt_requests(
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
@ -185,6 +194,41 @@ def sample_sonnet_requests(
return sampled_requests
def sample_random_requests(
prefix_len: int,
input_len: int,
output_len: int,
num_prompts: int,
range_ratio: float,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, int, int]]:
prefix_token_ids = np.random.randint(0,
tokenizer.vocab_size,
size=prefix_len).tolist()
input_lens = np.random.randint(
int(input_len * range_ratio),
input_len + 1,
size=num_prompts,
)
output_lens = np.random.randint(
int(output_len * range_ratio),
output_len + 1,
size=num_prompts,
)
offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
input_requests = []
for i in range(num_prompts):
prompt = tokenizer.decode(prefix_token_ids +
[(offsets[i] + i + j) % tokenizer.vocab_size
for j in range(input_lens[i])])
input_requests.append(
(prompt, int(prefix_len + input_lens[i]), int(output_lens[i])))
return input_requests
async def get_request(
input_requests: List[Tuple[str, int, int]],
request_rate: float,
@ -196,6 +240,7 @@ async def get_request(
if request_rate == float("inf"):
# If the request rate is infinity, then we don't need to wait.
continue
# Sample the request interval from the exponential distribution.
interval = np.random.exponential(1.0 / request_rate)
# The next request will be sent after the interval.
@ -207,6 +252,8 @@ def calculate_metrics(
outputs: List[RequestFuncOutput],
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
selected_percentile_metrics: List[str],
selected_percentiles: List[float],
) -> Tuple[BenchmarkMetrics, List[int]]:
actual_output_lens: List[int] = []
total_input = 0
@ -214,6 +261,7 @@ def calculate_metrics(
itls: List[float] = []
tpots: List[float] = []
ttfts: List[float] = []
e2els: List[float] = []
for i in range(len(outputs)):
if outputs[i].success:
# We use the tokenizer to count the number of output tokens for all
@ -230,6 +278,7 @@ def calculate_metrics(
(outputs[i].latency - outputs[i].ttft) / (output_len - 1))
itls += outputs[i].itl
ttfts.append(outputs[i].ttft)
e2els.append(outputs[i].latency)
completed += 1
else:
actual_output_lens.append(0)
@ -244,18 +293,29 @@ def calculate_metrics(
total_input=total_input,
total_output=sum(actual_output_lens),
request_throughput=completed / dur_s,
input_throughput=total_input / dur_s,
output_throughput=sum(actual_output_lens) / dur_s,
total_token_throughput=(total_input + sum(actual_output_lens)) / dur_s,
mean_ttft_ms=np.mean(ttfts or 0) *
1000, # ttfts is empty if streaming is not supported by backend
std_ttft_ms=np.std(ttfts or 0) * 1000,
median_ttft_ms=np.median(ttfts or 0) * 1000,
p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
percentiles_ttft_ms=[(p, np.percentile(ttfts or 0, p) * 1000)
for p in selected_percentiles],
mean_tpot_ms=np.mean(tpots or 0) * 1000,
std_tpot_ms=np.std(tpots or 0) * 1000,
median_tpot_ms=np.median(tpots or 0) * 1000,
p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
percentiles_tpot_ms=[(p, np.percentile(tpots or 0, p) * 1000)
for p in selected_percentiles],
mean_itl_ms=np.mean(itls or 0) * 1000,
std_itl_ms=np.std(itls or 0) * 1000,
median_itl_ms=np.median(itls or 0) * 1000,
p99_itl_ms=np.percentile(itls or 0, 99) * 1000,
percentiles_itl_ms=[(p, np.percentile(itls or 0, p) * 1000)
for p in selected_percentiles],
mean_e2el_ms=np.median(e2els or 0) * 1000,
std_e2el_ms=np.std(e2els or 0) * 1000,
median_e2el_ms=np.mean(e2els or 0) * 1000,
percentiles_e2el_ms=[(p, np.percentile(e2els or 0, p) * 1000)
for p in selected_percentiles],
)
return metrics, actual_output_lens
@ -264,13 +324,18 @@ def calculate_metrics(
async def benchmark(
backend: str,
api_url: str,
base_url: str,
model_id: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: List[Tuple[str, int, int]],
logprobs: Optional[int],
best_of: int,
use_beam_search: bool,
request_rate: float,
disable_tqdm: bool,
profile: bool,
selected_percentile_metrics: List[str],
selected_percentiles: List[str],
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS[backend]
@ -285,6 +350,7 @@ async def benchmark(
api_url=api_url,
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
best_of=best_of,
use_beam_search=use_beam_search,
)
@ -295,6 +361,23 @@ async def benchmark(
f"are correctly specified. Error: {test_output.error}")
else:
print("Initial test run completed. Starting main benchmark run...")
if profile:
print("Starting profiler...")
profile_input = RequestFuncInput(
model=model_id,
prompt=test_prompt,
api_url=base_url + "/start_profile",
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
best_of=best_of,
use_beam_search=use_beam_search,
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler started")
print(f"Traffic request rate: {request_rate}")
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
@ -309,6 +392,7 @@ async def benchmark(
api_url=api_url,
prompt_len=prompt_len,
output_len=output_len,
logprobs=logprobs,
best_of=best_of,
use_beam_search=use_beam_search,
)
@ -318,6 +402,22 @@ async def benchmark(
pbar=pbar)))
outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)
if profile:
print("Stopping profiler...")
profile_input = RequestFuncInput(
model=model_id,
prompt=test_prompt,
api_url=base_url + "/stop_profile",
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
best_of=best_of,
use_beam_search=use_beam_search,
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler stopped")
if pbar is not None:
pbar.close()
@ -328,6 +428,8 @@ async def benchmark(
outputs=outputs,
dur_s=benchmark_duration,
tokenizer=tokenizer,
selected_percentile_metrics=selected_percentile_metrics,
selected_percentiles=selected_percentiles,
)
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
@ -339,27 +441,10 @@ async def benchmark(
metrics.total_output))
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
metrics.request_throughput))
print("{:<40} {:<10.2f}".format("Input token throughput (tok/s):",
metrics.input_throughput))
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
metrics.output_throughput))
print("{s:{c}^{n}}".format(s='Time to First Token', n=50, c='-'))
print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
print("{:<40} {:<10.2f}".format("Median TTFT (ms):",
metrics.median_ttft_ms))
print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
print("{s:{c}^{n}}".format(s='Time per Output Token (excl. 1st token)',
n=50,
c='-'))
print("{:<40} {:<10.2f}".format("Mean TPOT (ms):", metrics.mean_tpot_ms))
print("{:<40} {:<10.2f}".format("Median TPOT (ms):",
metrics.median_tpot_ms))
print("{:<40} {:<10.2f}".format("P99 TPOT (ms):", metrics.p99_tpot_ms))
print("{s:{c}^{n}}".format(s='Inter-token Latency', n=50, c='-'))
print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms))
print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms))
print("{:<40} {:<10.2f}".format("P99 ITL (ms):", metrics.p99_itl_ms))
print("=" * 50)
print("{:<40} {:<10.2f}".format("Total Token throughput (tok/s):",
metrics.total_token_throughput))
result = {
"duration": benchmark_duration,
@ -367,17 +452,8 @@ async def benchmark(
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"request_throughput": metrics.request_throughput,
"input_throughput": metrics.input_throughput,
"output_throughput": metrics.output_throughput,
"mean_ttft_ms": metrics.mean_ttft_ms,
"median_ttft_ms": metrics.median_ttft_ms,
"p99_ttft_ms": metrics.p99_ttft_ms,
"mean_tpot_ms": metrics.mean_tpot_ms,
"median_tpot_ms": metrics.median_tpot_ms,
"p99_tpot_ms": metrics.p99_tpot_ms,
"mean_itl_ms": metrics.mean_itl_ms,
"median_itl_ms": metrics.median_itl_ms,
"p99_itl_ms": metrics.p99_itl_ms,
"total_token_throughput": metrics.total_token_throughput,
"input_lens": [output.prompt_len for output in outputs],
"output_lens": actual_output_lens,
"ttfts": [output.ttft for output in outputs],
@ -385,6 +461,47 @@ async def benchmark(
"generated_texts": [output.generated_text for output in outputs],
"errors": [output.error for output in outputs],
}
def process_one_metric(
# E.g., "ttft"
metric_attribute_name: str,
# E.g., "TTFT"
metric_name: str,
# E.g., "Time to First Token"
metric_header: str,
):
# This function print and add statistics of the specified
# metric.
if metric_attribute_name not in selected_percentile_metrics:
return
print("{s:{c}^{n}}".format(s=metric_header, n=50, c='-'))
print("{:<40} {:<10.2f}".format(
f"Mean {metric_name} (ms):",
getattr(metrics, f"mean_{metric_attribute_name}_ms")))
print("{:<40} {:<10.2f}".format(
f"Median {metric_name} (ms):",
getattr(metrics, f"median_{metric_attribute_name}_ms")))
result[f"mean_{metric_attribute_name}_ms"] = getattr(
metrics, f"mean_{metric_attribute_name}_ms")
result[f"median_{metric_attribute_name}_ms"] = getattr(
metrics, f"median_{metric_attribute_name}_ms")
result[f"std_{metric_attribute_name}_ms"] = getattr(
metrics, f"std_{metric_attribute_name}_ms")
for p, value in getattr(metrics,
f"percentiles_{metric_attribute_name}_ms"):
p_word = str(int(p)) if int(p) == p else str(p)
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):",
value))
result[f"p{p_word}_{metric_attribute_name}_ms"] = value
process_one_metric("ttft", "TTFT", "Time to First Token")
process_one_metric("tpot", "TPOT",
"Time per Output Token (excl. 1st token)")
process_one_metric("itl", "ITL", "Inter-token Latency")
process_one_metric("e2el", "E2EL", "End-to-end Latency")
print("=" * 50)
return result
@ -399,8 +516,10 @@ def main(args: argparse.Namespace):
if args.base_url is not None:
api_url = f"{args.base_url}{args.endpoint}"
base_url = f"{args.base_url}"
else:
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
base_url = f"http://{args.host}:{args.port}"
tokenizer = get_tokenizer(tokenizer_id,
trust_remote_code=args.trust_remote_code)
@ -456,6 +575,16 @@ def main(args: argparse.Namespace):
for prompt, prompt_formatted, prompt_len,
output_len in input_requests]
elif args.dataset_name == "random":
input_requests = sample_random_requests(
prefix_len=args.random_prefix_len,
input_len=args.random_input_len,
output_len=args.random_output_len,
num_prompts=args.num_prompts,
range_ratio=args.random_range_ratio,
tokenizer=tokenizer,
)
else:
raise ValueError(f"Unknown dataset: {args.dataset_name}")
@ -463,13 +592,20 @@ def main(args: argparse.Namespace):
benchmark(
backend=backend,
api_url=api_url,
base_url=base_url,
model_id=model_id,
tokenizer=tokenizer,
input_requests=input_requests,
logprobs=args.logprobs,
best_of=args.best_of,
use_beam_search=args.use_beam_search,
request_rate=args.request_rate,
disable_tqdm=args.disable_tqdm,
profile=args.profile,
selected_percentile_metrics=args.percentile_metrics.split(","),
selected_percentiles=[
float(p) for p in args.metric_percentiles.split(",")
],
))
# Save config and results to json
@ -549,7 +685,7 @@ if __name__ == "__main__":
"--dataset-name",
type=str,
default="sharegpt",
choices=["sharegpt", "sonnet"],
choices=["sharegpt", "sonnet", "random"],
help="Name of the dataset to benchmark on.",
)
parser.add_argument("--dataset-path",
@ -566,7 +702,7 @@ if __name__ == "__main__":
"--tokenizer",
type=str,
help=
"Name or path of the tokenizer, if not using the default tokenizer.",
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
)
parser.add_argument(
"--best-of",
@ -602,6 +738,16 @@ if __name__ == "__main__":
help=
"Number of output tokens per request, used only for sonnet dataset.",
)
parser.add_argument(
"--logprobs",
type=int,
default=None,
help=("Number of logprobs-per-token to compute & return as part of "
"the request. If unspecified, then either (1) if beam search "
"is disabled, no logprobs are computed & a single dummy "
"logprob is returned for each token; or (2) if beam search "
"is enabled 1 logprob per token is computed"),
)
parser.add_argument(
"--sonnet-prefix-len",
type=int,
@ -609,6 +755,35 @@ if __name__ == "__main__":
help=
"Number of prefix tokens per request, used only for sonnet dataset.",
)
parser.add_argument(
"--random-input-len",
type=int,
default=1024,
help=
"Number of input tokens per request, used only for random sampling.",
)
parser.add_argument(
"--random-output-len",
type=int,
default=128,
help=
"Number of output tokens per request, used only for random sampling.",
)
parser.add_argument(
"--random-range-ratio",
type=float,
default=1.0,
help="Range of sampled ratio of input/output length, "
"used only for random sampling.",
)
parser.add_argument(
"--random-prefix-len",
type=int,
default=0,
help="Number of fixed prefix tokens before random "
" context. The length range of context in a random "
" request is [random-prefix-len, "
" random-prefix-len + random-prefix-len * random-range-ratio).")
parser.add_argument(
"--request-rate",
type=float,
@ -629,6 +804,12 @@ if __name__ == "__main__":
action="store_true",
help="Specify to disable tqdm progress bar.",
)
parser.add_argument(
"--profile",
action="store_true",
help="Use Torch Profiler. The endpoint must be launched with "
"VLLM_TORCH_PROFILER_DIR to enable profiler.",
)
parser.add_argument(
"--save-result",
action="store_true",
@ -658,6 +839,23 @@ if __name__ == "__main__":
"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"
" format.",
)
parser.add_argument(
"--percentile-metrics",
type=str,
default="ttft,tpot,itl",
help="Comma-seperated list of selected metrics to report percentils. "
"This argument specifies the metrics to report percentiles. "
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
"Default value is \"ttft,tpot,itl\".")
parser.add_argument(
"--metric-percentiles",
type=str,
default="99",
help="Comma-seperated list of percentiles for selected metrics. "
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
"Default value is \"99\". "
"Use \"--percentile-metrics\" to select metrics.",
)
args = parser.parse_args()
main(args)

View File

@ -6,13 +6,16 @@ import time
from typing import List, Optional, Tuple
import torch
import uvloop
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizerBase)
from vllm.engine.arg_utils import EngineArgs
from vllm.engine.arg_utils import DEVICE_OPTIONS, AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
build_async_engine_client_from_engine_args)
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.utils import FlexibleArgumentParser
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
def sample_requests(
@ -82,8 +85,11 @@ def run_vllm(
max_num_batched_tokens: int,
distributed_executor_backend: Optional[str],
gpu_memory_utilization: float = 0.9,
num_scheduler_steps: int = 1,
use_v2_block_manager: bool = False,
download_dir: Optional[str] = None,
load_format: str = EngineArgs.load_format,
disable_async_output_proc: bool = False,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(
@ -106,6 +112,9 @@ def run_vllm(
max_num_batched_tokens=max_num_batched_tokens,
distributed_executor_backend=distributed_executor_backend,
load_format=load_format,
num_scheduler_steps=num_scheduler_steps,
use_v2_block_manager=use_v2_block_manager,
disable_async_output_proc=disable_async_output_proc,
)
# Add the requests to the engine.
@ -129,6 +138,93 @@ def run_vllm(
return end - start
async def run_vllm_async(
requests: List[Tuple[str, int, int]],
model: str,
tokenizer: str,
quantization: Optional[str],
tensor_parallel_size: int,
seed: int,
n: int,
use_beam_search: bool,
trust_remote_code: bool,
dtype: str,
max_model_len: Optional[int],
enforce_eager: bool,
kv_cache_dtype: str,
quantization_param_path: Optional[str],
device: str,
enable_prefix_caching: bool,
enable_chunked_prefill: bool,
max_num_batched_tokens: int,
distributed_executor_backend: Optional[str],
gpu_memory_utilization: float = 0.9,
num_scheduler_steps: int = 1,
use_v2_block_manager: bool = False,
download_dir: Optional[str] = None,
load_format: str = EngineArgs.load_format,
disable_async_output_proc: bool = False,
disable_frontend_multiprocessing: bool = False,
) -> float:
from vllm import SamplingParams
engine_args = AsyncEngineArgs(
model=model,
tokenizer=tokenizer,
quantization=quantization,
tensor_parallel_size=tensor_parallel_size,
seed=seed,
trust_remote_code=trust_remote_code,
dtype=dtype,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
quantization_param_path=quantization_param_path,
device=device,
enable_prefix_caching=enable_prefix_caching,
download_dir=download_dir,
enable_chunked_prefill=enable_chunked_prefill,
max_num_batched_tokens=max_num_batched_tokens,
distributed_executor_backend=distributed_executor_backend,
load_format=load_format,
num_scheduler_steps=num_scheduler_steps,
use_v2_block_manager=use_v2_block_manager,
disable_async_output_proc=disable_async_output_proc,
worker_use_ray=False,
engine_use_ray=False,
disable_log_requests=True,
)
async with build_async_engine_client_from_engine_args(
engine_args, disable_frontend_multiprocessing) as llm:
# Add the requests to the engine.
prompts: List[str] = []
sampling_params: List[SamplingParams] = []
for prompt, _, output_len in requests:
prompts.append(prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
))
generators = []
start = time.perf_counter()
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
generator = llm.generate(prompt, sp, request_id=f"test{i}")
generators.append(generator)
all_gens = merge_async_iterators(*generators)
async for i, res in all_gens:
pass
end = time.perf_counter()
return end - start
def run_hf(
requests: List[Tuple[str, int, int]],
model: str,
@ -224,7 +320,7 @@ def main(args: argparse.Namespace):
args.output_len)
if args.backend == "vllm":
elapsed_time = run_vllm(
run_args = [
requests, args.model, args.tokenizer, args.quantization,
args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype, args.max_model_len,
@ -232,7 +328,16 @@ def main(args: argparse.Namespace):
args.quantization_param_path, args.device,
args.enable_prefix_caching, args.enable_chunked_prefill,
args.max_num_batched_tokens, args.distributed_executor_backend,
args.gpu_memory_utilization, args.download_dir, args.load_format)
args.gpu_memory_utilization, args.num_scheduler_steps,
args.use_v2_block_manager, args.download_dir, args.load_format,
args.disable_async_output_proc
]
if args.async_engine:
run_args.append(args.disable_frontend_multiprocessing)
elapsed_time = uvloop.run(run_vllm_async(*run_args))
else:
elapsed_time = run_vllm(*run_args)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
@ -346,17 +451,23 @@ if __name__ == "__main__":
'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is '
'instead supported for common inference criteria.')
parser.add_argument(
"--device",
parser.add_argument("--device",
type=str,
default="auto",
choices=["auto", "cuda", "cpu", "openvino", "tpu", "xpu"],
help='device type for vLLM execution, supporting CUDA, OpenVINO and '
'CPU.')
choices=DEVICE_OPTIONS,
help='device type for vLLM execution')
parser.add_argument(
"--num-scheduler-steps",
type=int,
default=1,
help="Maximum number of forward steps per scheduler call.")
parser.add_argument("--use-v2-block-manager",
action='store_true',
help="Enable block manager v2.")
parser.add_argument(
"--enable-prefix-caching",
action='store_true',
help="enable automatic prefix caching for vLLM backend.")
help="Enable automatic prefix caching for vLLM backend.")
parser.add_argument("--enable-chunked-prefill",
action='store_true',
help="enable chunked prefill for vLLM backend.")
@ -405,6 +516,19 @@ if __name__ == "__main__":
'section for more information.\n'
'* "bitsandbytes" will load the weights using bitsandbytes '
'quantization.\n')
parser.add_argument(
"--disable-async-output-proc",
action='store_true',
default=False,
help="Disable async output processor for vLLM backend.")
parser.add_argument("--async-engine",
action='store_true',
default=False,
help="Use vLLM async engine rather than LLM class.")
parser.add_argument("--disable-frontend-multiprocessing",
action='store_true',
default=False,
help="Disable decoupled async engine frontend.")
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model

View File

@ -13,26 +13,25 @@ from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())[1:]
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
DEFAULT_TP_SIZES = [1]
# helpers
def to_fp8(tensor: torch.tensor) -> torch.tensor:
def to_fp8(tensor: torch.Tensor) -> torch.Tensor:
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
def to_int8(tensor: torch.tensor) -> torch.tensor:
def to_int8(tensor: torch.Tensor) -> torch.Tensor:
return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8)
def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
k: int) -> Tuple[torch.tensor, torch.tensor]:
k: int) -> Tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device='cuda') * 5
b = torch.randn((n, k), device='cuda').t() * 5
@ -44,59 +43,18 @@ def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
raise ValueError("unsupported dtype")
# impl
def pytorch_mm_impl(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor,
scale_b: torch.tensor,
out_dtype: torch.dtype) -> torch.tensor:
return torch.mm(a, b)
def pytorch_fp8_impl(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor,
scale_b: torch.tensor,
out_dtype: torch.dtype) -> torch.tensor:
return torch._scaled_mm(a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=out_dtype)
def pytorch_fp8_impl_fast_accum(a: torch.tensor, b: torch.tensor,
scale_a: torch.tensor, scale_b: torch.tensor,
out_dtype: torch.dtype) -> torch.tensor:
return torch._scaled_mm(a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=out_dtype,
use_fast_accum=True)
def cutlass_impl(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor,
scale_b: torch.tensor,
out_dtype: torch.dtype) -> torch.tensor:
return ops.cutlass_scaled_mm(a, b, scale_a, scale_b, out_dtype=out_dtype)
# bench
def bench_fn(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor,
scale_b: torch.tensor, out_dtype: torch.dtype, label: str,
sub_label: str, fn: Callable, description: str) -> TMeasurement:
def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
**kwargs) -> TMeasurement:
min_run_time = 1
globals = {
"a": a,
"b": b,
"scale_a": scale_a,
"scale_b": scale_b,
"out_dtype": out_dtype,
"args": args,
"kwargs": kwargs,
"fn": fn,
}
return TBenchmark.Timer(
stmt="fn(a, b, scale_a, scale_b, out_dtype)",
stmt="fn(*args, **kwargs)",
globals=globals,
label=label,
sub_label=sub_label,
@ -110,19 +68,58 @@ def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
a, b = make_rand_tensors(torch.int8, m, n, k)
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
azp = torch.zeros((m, ), device="cuda", dtype=torch.int32)
azp_adj = torch.zeros((n, ), device="cuda", dtype=torch.int32)
timers = []
# pytorch impl
# pytorch impl - bfloat16
timers.append(
bench_fn(a.to(dtype=torch.bfloat16, device="cuda"),
b.to(dtype=torch.bfloat16, device="cuda"), scale_a, scale_b,
torch.bfloat16, label, sub_label, pytorch_mm_impl,
"pytorch_bf16_bf16_bf16_matmul-no-scales"))
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm, a.to(dtype=torch.bfloat16),
b.to(dtype=torch.bfloat16)))
# pytorch impl - float16
timers.append(
bench_fn(label, sub_label,
"pytorch_fp16_fp16_fp16_matmul-no-scales", torch.mm,
a.to(dtype=torch.float16), b.to(dtype=torch.float16)))
# cutlass impl
timers.append(
bench_fn(a, b, scale_a, scale_b, torch.bfloat16, label, sub_label,
cutlass_impl, "cutlass_i8_i8_bf16_scaled_mm"))
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
torch.bfloat16))
# cutlass with bias
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_bias",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16,
bias))
# cutlass with azp per-tensor
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp",
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
torch.bfloat16, azp_adj))
# cutlass with azp per-tensor + bias
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp_bias",
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
torch.bfloat16, azp_adj, None, bias))
# cutlass with azp per-token
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp_pt",
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
torch.bfloat16, azp_adj, azp))
# cutlass with azp per-token + bias
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp_pt_bias",
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
torch.bfloat16, azp_adj, azp, bias))
return timers
@ -133,46 +130,88 @@ def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
a, b = make_rand_tensors(torch.float8_e4m3fn, m, n, k)
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
timers = []
# pytorch impl w. bf16
timers.append(
bench_fn(a.to(dtype=torch.bfloat16, device="cuda"),
b.to(dtype=torch.bfloat16, device="cuda"), scale_a, scale_b,
torch.bfloat16, label, sub_label, pytorch_mm_impl,
"pytorch_bf16_bf16_bf16_matmul-no-scales"))
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm, a.to(dtype=torch.bfloat16, device="cuda"),
b.to(dtype=torch.bfloat16, device="cuda")))
# pytorch impl: bf16 output, without fp8 fast accum
timers.append(
bench_fn(a, b, scale_a, scale_b, torch.bfloat16, label, sub_label,
pytorch_fp8_impl, "pytorch_fp8_fp8_bf16_scaled_mm"))
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16))
# pytorch impl: bf16 output, with fp8 fast accum
timers.append(
bench_fn(a, b, scale_a, scale_b, torch.bfloat16, label, sub_label,
pytorch_fp8_impl_fast_accum,
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum"))
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16,
use_fast_accum=True))
# pytorch impl: fp16 output, without fp8 fast accum
timers.append(
bench_fn(a, b, scale_a, scale_b, torch.float16, label, sub_label,
pytorch_fp8_impl, "pytorch_fp8_fp8_fp16_scaled_mm"))
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16))
# pytorch impl: fp16 output, with fp8 fast accum
timers.append(
bench_fn(a, b, scale_a, scale_b, torch.float16, label, sub_label,
pytorch_fp8_impl_fast_accum,
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum"))
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16,
use_fast_accum=True))
# cutlass impl: bf16 output
timers.append(
bench_fn(a, b, scale_a, scale_b, torch.bfloat16, label, sub_label,
cutlass_impl, "cutlass_fp8_fp8_bf16_scaled_mm"))
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
torch.bfloat16))
# cutlass impl: fp16 output
timers.append(
bench_fn(a, b, scale_a, scale_b, torch.float16, label, sub_label,
cutlass_impl, "cutlass_fp8_fp8_fp16_scaled_mm"))
bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_mm",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.float16))
# cutlass impl: bf16 output, with bias
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm_bias",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16,
bias))
# cutlass impl: fp16 output, with bias
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_mm_bias",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.float16,
bias.to(dtype=torch.float16)))
return timers
@ -193,7 +232,6 @@ def print_timers(timers: Iterable[TMeasurement]):
def run(dtype: torch.dtype,
MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]:
results = []
for m, k, n in MKNs:
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm",
@ -209,7 +247,6 @@ def make_output(data: Iterable[TMeasurement],
MKNs: Iterable[Tuple[int, int, int]],
base_description: str,
timestamp=None):
print(f"== All Results {base_description} ====")
print_timers(data)
@ -244,7 +281,6 @@ def run_range_bench(args):
def run_model_bench(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")

View File

@ -0,0 +1,89 @@
import random
import time
import torch
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
@torch.inference_mode()
def main(num_tokens: int,
hidden_size: int,
add_residual: bool,
dtype: torch.dtype,
seed: int = 0,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.set_default_device("cuda")
layer = RMSNorm(hidden_size).to(dtype=dtype)
layer.weight.data.normal_(mean=1.0, std=0.1)
scale = 1 / (2 * hidden_size)
x = torch.randn(num_tokens, hidden_size, dtype=dtype)
x *= scale
residual = torch.randn_like(x) * scale if add_residual else None
def run_cuda_benchmark(num_iters: int, profile: bool = False) -> float:
torch.cuda.synchronize()
if profile:
torch.cuda.cudart().cudaProfilerStart()
start_time = time.perf_counter()
for _ in range(num_iters):
layer(x, residual)
torch.cuda.synchronize()
end_time = time.perf_counter()
if profile:
torch.cuda.cudart().cudaProfilerStart()
return (end_time - start_time) / num_iters
# Warmup.
print("Warming up...")
run_benchmark = run_cuda_benchmark
run_benchmark(num_iters=num_warmup_iters, profile=False)
# Benchmark.
if do_profile:
latency = run_benchmark(num_iters=1, profile=True)
else:
latency = run_benchmark(num_iters=num_iters, profile=False)
print(f"Kernel running time: {latency * 1000000:.3f} us")
if __name__ == '__main__':
parser = FlexibleArgumentParser(
description="Benchmark the layernorm kernel.")
parser.add_argument("--num-tokens", type=int, default=4096)
parser.add_argument("--hidden-size", type=int, default=8192)
parser.add_argument("--add-residual", action="store_true")
parser.add_argument("--dtype",
type=str,
choices=["half", "bfloat16", "float"],
default="half")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--profile", action="store_true")
parser.add_argument("--num-warmup-iters", type=int, default=5)
parser.add_argument("--num-iters",
type=int,
default=100,
help="Number of benchmark iterations. "
"If --profile is set, this number is ignored")
args = parser.parse_args()
print(args)
main(num_tokens=args.num_tokens,
hidden_size=args.hidden_size,
add_residual=args.add_residual,
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
seed=args.seed,
do_profile=args.profile,
num_warmup_iters=args.num_warmup_iters,
num_iters=args.num_iters)

View File

@ -0,0 +1,372 @@
import argparse
import copy
import itertools
import math
import pickle as pkl
import time
from typing import Callable, Iterable, List, Tuple
import torch
import torch.utils.benchmark as TBenchmark
from torch.utils.benchmark import Measurement as TMeasurement
from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N, marlin_permute_scales)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
MarlinWorkspace)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
gptq_pack, pack_rows, quantize_weights)
from vllm.scalar_type import ScalarType, scalar_types
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = ["meta-llama/Llama-3-8b", "meta-llama/Llama-2-70b-hf"]
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512, 1024]
DEFAULT_TP_SIZES = [1]
def machete_pack_weights(w_q: torch.tensor, wtype: ScalarType) -> torch.tensor:
w_q = pack_rows(w_q, wtype.size_bits, *w_q.shape)
w_q = w_q.t().contiguous().t() # make col major
return ops.machete_prepack_B(w_q, wtype)
def make_bench_tensors(
atype: torch.dtype, wtype: ScalarType, group_size: int, m: int, n: int,
k: int
) -> Tuple[torch.tensor, List[Tuple[torch.tensor, torch.tensor, torch.tensor,
torch.tensor]]]:
assert wtype.is_integer(), "TODO: support floating point weights"
# we want to make sure that weights don't fit into L2 cache between runs so
# we construct enough weights to exceed L2 cache, which is 50mb on a H100
# so we target total weight size > 2*50mb
num_weights = math.ceil(2 * 50 * 1024**2 * 8 / (k * n * wtype.size_bits))
a = torch.randn((m, k), device="cuda", dtype=atype) * 5
weights = [
torch.randn((k, n), device="cuda", dtype=atype)
for _ in range(num_weights)
]
quanitized_weights = [
quantize_weights(w, wtype, group_size) for w in weights
]
return a, quanitized_weights
# impl
# bench
def bench_fn(label: str, sub_label: str, description: str,
fn: Callable) -> TMeasurement:
min_run_time = 1
return TBenchmark.Timer(
stmt="fn()",
globals={
"fn": fn
},
label=label,
sub_label=sub_label,
description=description,
).blocked_autorange(min_run_time=min_run_time)
def loop_over_weights(
a: torch.tensor, weights: List[Tuple[torch.tensor, torch.tensor,
torch.tensor, torch.tensor]],
fn: Callable[[torch.tensor, torch.tensor, torch.tensor, torch.tensor],
None]):
for w_ref, w_q, w_s, _ in weights:
fn(a, w_ref, w_q, w_s)
def bench(atype: torch.dtype,
wtype: ScalarType,
group_size: int,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
benchmark_marlinv1: bool = True,
sweep_schedules: bool = True) -> Iterable[TMeasurement]:
a, weights = make_bench_tensors(atype, wtype, group_size, m, n, k)
sub_label += f", L={len(weights)}"
weights_machete = [(w_ref, machete_pack_weights(w_q, wtype), w_s, w_zp)
for w_ref, w_q, w_s, w_zp in weights]
timers = []
# pytorch impl
timers.append(
bench_fn(
label, sub_label, "torch.matmul", lambda: loop_over_weights(
a,
weights,
lambda a, w_ref, w_q, w_s: torch.matmul(a, w_ref),
)))
if benchmark_marlinv1:
w_ref = weights[0][0]
w_zp_empty = torch.empty(0, dtype=torch.int, device=w_ref.device)
sort_indices = torch.empty(0, dtype=torch.int, device=w_ref.device)
g_idx = torch.empty(0, dtype=torch.int, device=w_ref.device)
def marlinv1_pack_weights(w_q: torch.tensor) -> torch.tensor:
w_q_gptq = gptq_pack(w_q, wtype.size_bits, *w_ref.shape)
return ops.gptq_marlin_repack(w_q_gptq, sort_indices, *w_ref.shape,
wtype.size_bits)
def marlinv1_permute_scales(w_s: torch.tensor) -> torch.tensor:
return marlin_permute_scales(w_s, *w_ref.shape, group_size)
weights_marlinv1 = [(w_ref, marlinv1_pack_weights(w_q),
marlinv1_permute_scales(w_s), w_zp)
for w_ref, w_q, w_s, w_zp in weights]
workspace = MarlinWorkspace(w_ref.shape[1], GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_MAX_PARALLEL)
# marlinv1
timers.append(
bench_fn(
label, sub_label, "marlin_orig", lambda: loop_over_weights(
a, weights_marlinv1, lambda a, w_ref, w_q, w_s: ops.
gptq_marlin_gemm(a,
w_q,
w_s,
w_zp_empty,
g_idx,
sort_indices,
workspace.scratch,
wtype,
size_m=a.shape[0],
size_n=w_ref.shape[1],
size_k=w_ref.shape[0],
is_k_full=True))))
# machete
timers.append(
bench_fn(
label, sub_label, "machete_heuristic", lambda: loop_over_weights(
a, weights_machete, lambda a, _, w_q, w_s: ops.machete_gemm(
a, w_q, wtype, b_scales=w_s, b_group_size=group_size))))
if sweep_schedules:
print("Finding best schedule for machete")
best = None
best_schedule = None
schedules = ops.machete_supported_schedules(wtype)
for schedule in reversed(schedules):
def run(a, _, w_q, w_s, schedule=schedule):
ops.machete_gemm(a,
w_q,
wtype,
w_s,
b_group_size=group_size,
schedule=schedule)
res = bench_fn(label, sub_label, "machete_best",
lambda: loop_over_weights(a, weights_machete, run))
print(f" {res.median:5.5} ", schedule)
if not best or res.median < best.median:
best = res
best_schedule = schedule
print("Best schedule:", best_schedule)
timers.append(best)
return timers
# runner
def print_timers(timers: Iterable[TMeasurement]):
compare = TBenchmark.Compare(timers)
compare.print()
def run(dtype: torch.dtype, sweep_schedules: bool,
MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]:
results = []
for m, k, n in MKNs:
timers = bench(dtype,
scalar_types.uint4b8,
128,
m,
k,
n,
f"{dtype}-gemm",
f"MKN=({m}x{k}x{n})",
sweep_schedules=sweep_schedules)
print_timers(timers)
results.extend(timers)
return results
# output makers
def make_output(
data: Iterable[TMeasurement],
MKNs: Iterable[Tuple[int, int, int]],
base_description: str,
timestamp=None,
):
print(f"== All Results {base_description} ====")
print_timers(data)
# pickle all the results
timestamp = int(time.time()) if timestamp is None else timestamp
with open(f"{base_description}-{timestamp}.pkl", "wb") as f:
pkl.dump(data, f)
# argparse runners
def run_square_bench(args):
dim_sizes = list(
range(args.dim_start, args.dim_end + 1, args.dim_increment))
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
data = run(args.dtype, args.sweep_schedules, MKNs)
make_output(data, MKNs, f"square_bench-{args.dtype}")
def run_range_bench(args):
dim_sizes = list(range(args.dim_start, args.dim_end, args.dim_increment))
n = len(dim_sizes)
Ms = [args.m_constant] * n if args.m_constant is not None else dim_sizes
Ks = [args.k_constant] * n if args.k_constant is not None else dim_sizes
Ns = [args.n_constant] * n if args.n_constant is not None else dim_sizes
MKNs = list(zip(Ms, Ks, Ns))
data = run(args.dtype, args.sweep_schedules, MKNs)
make_output(data, MKNs, f"range_bench-{args.dtype}")
def run_model_bench(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
def model_shapes(model_name: str, tp_size: int) -> List[Tuple[int, int]]:
KNs = []
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model_name]):
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
KNs.append(KN)
return KNs
model_bench_data = []
models_tps = list(itertools.product(args.models, args.tp_sizes))
for model, tp_size in models_tps:
Ms = args.batch_sizes
KNs = model_shapes(model, tp_size)
MKNs = []
for m in Ms:
for k, n in KNs:
MKNs.append((m, k, n))
data = run(args.dtype, args.sweep_schedules, MKNs)
model_bench_data.append(data)
# Print all results
for data, model_tp in zip(model_bench_data, models_tps):
model, tp_size = model_tp
print(f"== Results {args.dtype} {model}-TP{tp_size} ====")
print_timers(data)
timestamp = int(time.time())
all_data = []
for d in model_bench_data:
all_data.extend(d)
# pickle all data
with open(f"model_bench-{args.dtype}-{timestamp}.pkl", "wb") as f:
pkl.dump(all_data, f)
if __name__ == "__main__":
def to_torch_dtype(dt):
if dt == "bfloat16":
return torch.bfloat16
if dt == "float16":
return torch.float16
raise ValueError("unsupported dtype")
parser = FlexibleArgumentParser(
description="""
Benchmark Machete GEMM.
To run square GEMMs:
python3 ./benchmarks/kernels/benchmark_machete.py --dtype float16 square_bench --dim-start 128 --dim-end 512 --dim-increment 64
To run constant N and K and sweep M:
python3 ./benchmarks/kernels/benchmark_machete.py --dtype float16 range_bench --dim-start 128 --dim-end 512 --dim-increment 64 --n-constant 16384 --k-constant 16384
To run dimensions from a model:
python3 ./benchmarks/kernels/benchmark_machete.py --dtype float16 model_bench --models meta-llama/Llama-2-7b-hf --batch-sizes 16 --tp-sizes 1
Output:
- a .pkl file, that is a list of raw torch.benchmark.utils.Measurements for the pytorch and cutlass implementations for the various GEMMs.
""", # noqa: E501
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"--dtype",
type=to_torch_dtype,
required=True,
help="Available options are ['bfloat16', 'float16']",
)
parser.add_argument(
"--sweep-schedules",
action="store_true",
help="Run a sweep over all supported schedules",
)
subparsers = parser.add_subparsers(dest="cmd", required=True)
square_parser = subparsers.add_parser("square_bench")
square_parser.add_argument("--dim-start", type=int, required=True)
square_parser.add_argument("--dim-end", type=int, required=True)
square_parser.add_argument("--dim-increment", type=int, required=True)
square_parser.set_defaults(func=run_square_bench)
range_parser = subparsers.add_parser("range_bench")
range_parser.add_argument("--dim-start", type=int, required=True)
range_parser.add_argument("--dim-end", type=int, required=True)
range_parser.add_argument("--dim-increment", type=int, required=True)
range_parser.add_argument("--m-constant", type=int, default=None)
range_parser.add_argument("--n-constant", type=int, default=None)
range_parser.add_argument("--k-constant", type=int, default=None)
range_parser.set_defaults(func=run_range_bench)
model_parser = subparsers.add_parser("model_bench")
model_parser.add_argument(
"--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys(),
)
model_parser.add_argument("--tp-sizes",
nargs="+",
type=int,
default=DEFAULT_TP_SIZES)
model_parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
model_parser.set_defaults(func=run_model_bench)
args = parser.parse_args()
args.func(args)

View File

@ -5,16 +5,19 @@ import torch.utils.benchmark as benchmark
from benchmark_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.gptq_marlin import (
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_SUPPORTED_NUM_BITS)
from vllm.model_executor.layers.quantization.gptq_marlin_24 import (
GPTQ_MARLIN_24_MAX_PARALLEL, GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_24_SUPPORTED_NUM_BITS)
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
MarlinWorkspace, marlin_24_quantize, marlin_quantize)
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N,
MARLIN_SUPPORTED_GROUP_SIZES, query_marlin_supported_quant_types)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
MarlinWorkspace, marlin_quantize)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test_24 import (
marlin_24_quantize)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
gptq_pack, quantize_weights, sort_weights)
gptq_pack, gptq_quantize_weights, sort_weights)
from vllm.scalar_type import ScalarType
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = ["meta-llama/Llama-2-7b-hf/TP1"]
@ -25,13 +28,14 @@ K_FULL_OPTS = [False, True]
def bench_run(results: List[benchmark.Measurement], model: str,
act_order: bool, is_k_full: bool, num_bits: int, group_size: int,
size_m: int, size_k: int, size_n: int):
act_order: bool, is_k_full: bool, quant_type: ScalarType,
group_size: int, size_m: int, size_k: int, size_n: int):
label = "Quant Matmul"
sub_label = ("{}, act={} k_full={}, b={}, g={}, "
"MKN=({}x{}x{})".format(model, act_order, is_k_full, num_bits,
group_size, size_m, size_k, size_n))
sub_label = ("{}, act={} k_full={}, q={}, g={}, "
"MKN=({}x{}x{})".format(model, act_order, is_k_full,
str(quant_type), group_size, size_m,
size_k, size_n))
print(f"Testing: {sub_label}")
@ -48,16 +52,18 @@ def bench_run(results: List[benchmark.Measurement], model: str,
marlin_g_idx,
marlin_sort_indices,
marlin_rand_perm,
) = marlin_quantize(b, num_bits, group_size, act_order)
) = marlin_quantize(b, quant_type, group_size, act_order)
# Marlin_24 quant
(marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta,
marlin_24_s) = marlin_24_quantize(b, num_bits, group_size)
marlin_24_s) = marlin_24_quantize(b, quant_type, group_size)
marlin_zp = torch.empty(0, dtype=torch.int, device=b.device)
# GPTQ quant
(w_ref, q_w, s, g_idx,
rand_perm) = quantize_weights(b, num_bits, group_size, act_order)
q_w_gptq = gptq_pack(q_w, num_bits, size_k, size_n)
rand_perm) = gptq_quantize_weights(b, quant_type, group_size, act_order)
q_w_gptq = gptq_pack(q_w, quant_type.size_bits, size_k, size_n)
# For act_order, sort the "weights" and "g_idx"
# so that group ids are increasing
@ -71,10 +77,11 @@ def bench_run(results: List[benchmark.Measurement], model: str,
marlin_24_workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_MAX_PARALLEL)
marlin_zp = torch.zeros_like(marlin_s, dtype=torch.int)
globals = {
# Gen params
"num_bits": num_bits,
"quant_type": quant_type,
"group_size": group_size,
"size_m": size_m,
"size_n": size_n,
@ -85,6 +92,7 @@ def bench_run(results: List[benchmark.Measurement], model: str,
"marlin_w_ref": marlin_w_ref,
"marlin_q_w": marlin_q_w,
"marlin_s": marlin_s,
"marlin_zp": marlin_zp,
"marlin_g_idx": marlin_g_idx,
"marlin_sort_indices": marlin_sort_indices,
"marlin_rand_perm": marlin_rand_perm,
@ -123,19 +131,29 @@ def bench_run(results: List[benchmark.Measurement], model: str,
results.append(
benchmark.Timer(
stmt=
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, num_bits, size_m, size_n, size_k, is_k_full)", # noqa: E501
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_gemm",
description="gptq_marlin_gemm_fp16",
).blocked_autorange(min_run_time=min_run_time))
if (num_bits in GPTQ_MARLIN_24_SUPPORTED_NUM_BITS
results.append(
benchmark.Timer(
stmt=
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_gemm_fp32",
).blocked_autorange(min_run_time=min_run_time))
if (quant_type in GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES
and group_size in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES):
results.append(
benchmark.Timer(
stmt=
"output = gptq_marlin_24_gemm(a, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, marlin_24_workspace.scratch, num_bits, size_m, size_n, size_k)", # noqa: E501
"output = gptq_marlin_24_gemm(a, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, marlin_24_workspace.scratch, quant_type, size_m, size_n, size_k)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
@ -145,7 +163,7 @@ def bench_run(results: List[benchmark.Measurement], model: str,
results.append(
benchmark.Timer(
stmt=
"q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, num_bits)", # noqa: E501
"q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, quant_type.size_bits)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
@ -181,12 +199,13 @@ def main(args):
) > 0 and is_k_full not in args.limit_k_full:
continue
for num_bits in GPTQ_MARLIN_SUPPORTED_NUM_BITS:
if len(args.limit_num_bits
) > 0 and num_bits not in args.limit_num_bits:
for quant_type in query_marlin_supported_quant_types(
False):
if len(args.limit_num_bits) > 0 and \
quant_type.size_bits not in args.limit_num_bits:
continue
for group_size in GPTQ_MARLIN_SUPPORTED_GROUP_SIZES:
for group_size in MARLIN_SUPPORTED_GROUP_SIZES:
if len(
args.limit_group_size
) > 0 and group_size not in args.limit_group_size:
@ -200,8 +219,8 @@ def main(args):
for size_m in args.batch_sizes:
bench_run(results, model, act_order, is_k_full,
num_bits, group_size, size_m, size_k,
size_n)
quant_type, group_size, size_m,
size_k, size_n)
compare = benchmark.Compare(results)
compare.print()

View File

@ -30,11 +30,28 @@ def benchmark_config(
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8: bool,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
num_iters: int = 100,
) -> float:
init_dtype = torch.float16 if use_fp8 else dtype
init_dtype = torch.float16 if use_fp8_w8a8 else dtype
x = torch.randn(num_tokens, hidden_size, dtype=dtype)
if use_int8_w8a16:
w1 = torch.randint(-127,
127, (
num_experts,
shard_intermediate_size,
hidden_size,
),
dtype=torch.int8)
w2 = torch.randint(-127,
127, (
num_experts,
hidden_size,
shard_intermediate_size // 2,
),
dtype=torch.int8)
else:
w1 = torch.randn(num_experts,
shard_intermediate_size,
hidden_size,
@ -52,7 +69,11 @@ def benchmark_config(
w2_scale = None
a1_scale = None
a2_scale = None
if use_fp8:
if use_int8_w8a16:
w1_scale = torch.randn((num_experts, 2 * shard_intermediate_size),
dtype=torch.float32)
w2_scale = torch.randn((hidden_size, num_experts), dtype=torch.float32)
if use_fp8_w8a8:
w1_scale = torch.randn(num_experts, dtype=torch.float32)
w2_scale = torch.randn(num_experts, dtype=torch.float32)
a1_scale = torch.randn(1, dtype=torch.float32)
@ -76,7 +97,8 @@ def benchmark_config(
renormalize=True,
inplace=True,
override_config=config,
use_fp8=use_fp8,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a16=use_int8_w8a16,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
@ -155,11 +177,13 @@ class BenchmarkWorker:
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8: bool,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
) -> Tuple[Dict[str, int], float]:
torch.cuda.manual_seed_all(self.seed)
dtype_str = "float8" if use_fp8 else None
dtype_str = get_config_dtype_str(dtype,
use_int8_w8a16=use_int8_w8a16,
use_fp8_w8a8=use_fp8_w8a8)
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# is the intermediate size after silu_and_mul.
op_config = get_moe_configs(num_experts, shard_intermediate_size // 2,
@ -173,7 +197,8 @@ class BenchmarkWorker:
key=lambda x: abs(x - num_tokens))]
kernel_time = benchmark_config(config, num_tokens, num_experts,
shard_intermediate_size, hidden_size,
topk, dtype, use_fp8)
topk, dtype, use_fp8_w8a8,
use_int8_w8a16)
return config, kernel_time
def tune(
@ -184,9 +209,10 @@ class BenchmarkWorker:
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8: bool,
search_space: List[BenchmarkConfig],
) -> BenchmarkConfig:
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
search_space: List[Dict[str, int]],
) -> Dict[str, int]:
best_config = None
best_time = float("inf")
for config in tqdm(search_space):
@ -198,7 +224,8 @@ class BenchmarkWorker:
hidden_size,
topk,
dtype,
use_fp8,
use_fp8_w8a8,
use_int8_w8a16,
num_iters=10)
except triton.runtime.autotuner.OutOfResources:
# Some configurations may be invalid and fail to compile.
@ -224,20 +251,19 @@ def sort_config(config: BenchmarkConfig) -> BenchmarkConfig:
}
def save_configs(
configs: Dict[int, BenchmarkConfig],
num_experts: int,
shard_intermediate_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8: bool,
) -> None:
dtype_str = "float8" if use_fp8 else None
def save_configs(configs: Dict[int, BenchmarkConfig], num_experts: int,
shard_intermediate_size: int, hidden_size: int, topk: int,
dtype: torch.dtype, use_fp8_w8a8: bool,
use_int8_w8a16: bool) -> None:
dtype_str = get_config_dtype_str(dtype,
use_int8_w8a16=use_int8_w8a16,
use_fp8_w8a8=use_fp8_w8a8)
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# is the intermediate size after silu_and_mul.
filename = get_config_file_name(num_experts, shard_intermediate_size // 2,
dtype_str)
print(f"Writing best config to {filename}...")
with open(filename, "w") as f:
json.dump(configs, f, indent=4)
@ -253,6 +279,11 @@ def main(args: argparse.Namespace):
topk = config.ffn_config.moe_top_k
intermediate_size = config.ffn_config.ffn_hidden_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] == "JambaForCausalLM":
E = config.num_experts
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
else:
# Default: Mixtral.
E = config.num_local_experts
@ -262,7 +293,8 @@ def main(args: argparse.Namespace):
hidden_size = config.hidden_size
dtype = config.torch_dtype
use_fp8 = args.dtype == "fp8"
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
use_int8_w8a16 = args.dtype == "int8_w8a16"
if args.batch_size is None:
batch_sizes = [
@ -294,20 +326,20 @@ def main(args: argparse.Namespace):
start = time.time()
configs = _distribute(
"tune", [(batch_size, E, shard_intermediate_size, hidden_size,
topk, dtype, use_fp8, search_space)
topk, dtype, use_fp8_w8a8, use_int8_w8a16, search_space)
for batch_size in batch_sizes])
best_configs = {
M: sort_config(config)
for M, config in zip(batch_sizes, configs)
}
save_configs(best_configs, E, shard_intermediate_size, hidden_size,
topk, dtype, use_fp8)
topk, dtype, use_fp8_w8a8, use_int8_w8a16)
end = time.time()
print(f"Tuning took {end - start:.2f} seconds")
else:
outputs = _distribute("benchmark",
[(batch_size, E, shard_intermediate_size,
hidden_size, topk, dtype, use_fp8)
outputs = _distribute(
"benchmark", [(batch_size, E, shard_intermediate_size, hidden_size,
topk, dtype, use_fp8_w8a8, use_int8_w8a16)
for batch_size in batch_sizes])
for batch_size, (config, kernel_time) in zip(batch_sizes, outputs):
@ -323,7 +355,7 @@ if __name__ == "__main__":
parser.add_argument("--tp-size", "-tp", type=int, default=2)
parser.add_argument("--dtype",
type=str,
choices=["auto", "fp8"],
choices=["auto", "fp8_w8a8", "int8_w8a16"],
default="auto")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--batch-size", type=int, required=False)

View File

@ -100,7 +100,7 @@ def main(
start_time = time.perf_counter()
# Using default kv_scale
kv_scale = 1.0
k_scale = v_scale = 1.0
for _ in range(num_iters):
if version == "v1":
@ -117,7 +117,8 @@ def main(
max_seq_len,
alibi_slopes,
kv_cache_dtype,
kv_scale,
k_scale,
v_scale,
)
elif version == "v2":
ops.paged_attention_v2(
@ -136,7 +137,8 @@ def main(
max_seq_len,
alibi_slopes,
kv_cache_dtype,
kv_scale,
k_scale,
v_scale,
)
else:
raise ValueError(f"Invalid version: {version}")
@ -173,7 +175,7 @@ if __name__ == '__main__':
parser.add_argument("--num-kv-heads", type=int, default=8)
parser.add_argument("--head-size",
type=int,
choices=[64, 80, 96, 112, 128, 192, 256],
choices=[64, 80, 96, 112, 120, 128, 192, 256],
default=128)
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
parser.add_argument("--use-alibi", action="store_true")

View File

@ -0,0 +1,103 @@
import random
import time
import torch
from vllm import _custom_ops as ops
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
@torch.inference_mode()
def main(num_tokens: int,
hidden_size: int,
static_scale: bool,
quant_dtype: torch.dtype,
dtype: torch.dtype,
seed: int = 0,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.set_default_device("cuda")
x = torch.randn(num_tokens, hidden_size, dtype=dtype)
scale = torch.randn(1, 1, dtype=torch.float32) if static_scale else None
def run_cuda_benchmark(num_iters: int, profile: bool = False) -> float:
torch.cuda.synchronize()
if profile:
torch.cuda.cudart().cudaProfilerStart()
start_time = time.perf_counter()
for _ in range(num_iters):
if quant_dtype == torch.int8:
ops.scaled_int8_quant(x, scale)
else:
ops.scaled_fp8_quant(x, scale)
torch.cuda.synchronize()
end_time = time.perf_counter()
if profile:
torch.cuda.cudart().cudaProfilerStart()
return (end_time - start_time) / num_iters
# Warmup.
print("Warming up...")
run_benchmark = run_cuda_benchmark
run_benchmark(num_iters=num_warmup_iters, profile=False)
# Benchmark.
if do_profile:
latency = run_benchmark(num_iters=1, profile=True)
else:
latency = run_benchmark(num_iters=num_iters, profile=False)
print(f"Kernel running time: {latency * 1000000:.3f} us")
if __name__ == '__main__':
def to_torch_dtype(dt):
if dt == "int8":
return torch.int8
if dt == "fp8":
return torch.float8_e4m3fn
raise ValueError(f"Unsupported dtype: {dt}")
parser = FlexibleArgumentParser(
description="Benchmark the quantization (fp8 or int8) kernel.")
parser.add_argument("--num-tokens", type=int, default=4096)
parser.add_argument("--hidden-size", type=int, default=8192)
parser.add_argument("--static-scale", action="store_true")
parser.add_argument("--quant-dtype",
type=str,
choices=["fp8", "int8"],
default="int8")
parser.add_argument("--dtype",
type=str,
choices=["half", "bfloat16", "float"],
default="half")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--profile", action="store_true")
parser.add_argument("--num-warmup-iters", type=int, default=5)
parser.add_argument("--num-iters",
type=int,
default=100,
help="Number of benchmark iterations. "
"If --profile is set, this number is ignored")
args = parser.parse_args()
print(args)
main(num_tokens=args.num_tokens,
hidden_size=args.hidden_size,
static_scale=args.static_scale,
quant_dtype=to_torch_dtype(args.quant_dtype),
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
seed=args.seed,
do_profile=args.profile,
num_warmup_iters=args.num_warmup_iters,
num_iters=args.num_iters)

View File

@ -94,7 +94,7 @@ if __name__ == '__main__':
parser.add_argument("--num-heads", type=int, default=8)
parser.add_argument("--head-size",
type=int,
choices=[64, 80, 96, 112, 128, 192, 256],
choices=[64, 80, 96, 112, 120, 128, 192, 256],
default=128)
parser.add_argument("--rotary-dim", type=int, choices=[16, 32], default=32)
parser.add_argument("--dtype",

View File

@ -0,0 +1,64 @@
import math
import pickle
import re
from collections import defaultdict
from typing import List
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from torch.utils.benchmark import Measurement as TMeasurement
from vllm.utils import FlexibleArgumentParser
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Benchmark the latency of processing a single batch of '
'requests till completion.')
parser.add_argument('filename', type=str)
args = parser.parse_args()
with open(args.filename, 'rb') as f:
data: List[TMeasurement] = pickle.load(f)
results = defaultdict(lambda: list())
for v in data:
result = re.search(r"MKN=\(\d+x(\d+x\d+)\)", v.task_spec.sub_label)
if result is not None:
KN = result.group(1)
else:
raise Exception("MKN not found")
result = re.search(r"MKN=\((\d+)x\d+x\d+\)", v.task_spec.sub_label)
if result is not None:
M = result.group(1)
else:
raise Exception("MKN not found")
kernel = v.task_spec.description
results[KN].append({
"kernel": kernel,
"batch_size": M,
"median": v.median
})
rows = int(math.ceil(len(results) / 2))
fig, axs = plt.subplots(rows, 2, figsize=(12, 5 * rows))
axs = axs.flatten()
axs_idx = 0
for shape, data in results.items():
plt.sca(axs[axs_idx])
df = pd.DataFrame(data)
sns.lineplot(data=df,
x="batch_size",
y="median",
hue="kernel",
style="kernel",
markers=True,
dashes=False,
palette="Dark2")
plt.title(f"Shape: {shape}")
plt.ylabel("time (median, s)")
axs_idx += 1
plt.tight_layout()
plt.savefig("graph_machete_bench.pdf")

View File

@ -0,0 +1,43 @@
# Weight Shapes are in the format
# ([K, N], TP_SPLIT_DIM)
# Example:
# A shape of ([14336, 4096], 0) indicates the following GEMM shape,
# - TP1 : K = 14336, N = 4096
# - TP2 : K = 7168, N = 4096
# A shape of ([4096, 6144], 1) indicates the following GEMM shape,
# - TP1 : K = 4096, N = 6144
# - TP4 : K = 4096, N = 1536
# TP1 shapes
WEIGHT_SHAPES = {
"mistralai/Mistral-7B-v0.1": [
([4096, 6144], 1),
([4096, 4096], 0),
([4096, 28672], 1),
([14336, 4096], 0),
],
"meta-llama/Llama-2-7b-hf": [
([4096, 12288], 1),
([4096, 4096], 0),
([4096, 22016], 1),
([11008, 4096], 0),
],
"meta-llama/Llama-3-8b": [
([4096, 6144], 1),
([4096, 4096], 0),
([4096, 28672], 1),
([14336, 4096], 0),
],
"meta-llama/Llama-2-13b-hf": [
([5120, 15360], 1),
([5120, 5120], 0),
([5120, 27648], 1),
([13824, 5120], 0),
],
"meta-llama/Llama-2-70b-hf": [
([8192, 10240], 1),
([8192, 8192], 0),
([8192, 57344], 1),
([28672, 8192], 0),
],
}

View File

@ -6,7 +6,7 @@ TOKENS=$2
docker run -e HF_TOKEN=$HF_TOKEN --gpus all --shm-size 1g -p $PORT:80 \
-v $PWD/data:/data \
ghcr.io/huggingface/text-generation-inference:1.4.0 \
ghcr.io/huggingface/text-generation-inference:2.2.0 \
--model-id $MODEL \
--sharded false \
--max-input-length 1024 \

View File

@ -1,4 +1,5 @@
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(CMAKE_CXX_STANDARD 17)
#
# Define environment variables for special configurations
@ -83,10 +84,7 @@ endif()
message(STATUS "CPU extension compile flags: ${CXX_COMPILE_FLAGS}")
#
# Define extension targets
#
list(APPEND LIBS dnnl numa)
#
# _C extension
@ -95,20 +93,31 @@ set(VLLM_EXT_SRC
"csrc/cpu/activation.cpp"
"csrc/cpu/attention.cpp"
"csrc/cpu/cache.cpp"
"csrc/cpu/utils.cpp"
"csrc/cpu/layernorm.cpp"
"csrc/cpu/pos_encoding.cpp"
"csrc/cpu/torch_bindings.cpp")
if (AVX512_FOUND AND NOT AVX512_DISABLED)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
${VLLM_EXT_SRC})
endif()
#
# Define extension targets
#
define_gpu_extension_target(
_C
DESTINATION vllm
LANGUAGE CXX
SOURCES ${VLLM_EXT_SRC}
LIBRARIES ${LIBS}
COMPILE_FLAGS ${CXX_COMPILE_FLAGS}
USE_SABI 3
WITH_SOABI
)
add_custom_target(default)
message(STATUS "Enabling C extension.")
add_dependencies(default _C)

View File

@ -181,7 +181,7 @@ macro(override_gpu_arches GPU_ARCHES GPU_LANG GPU_SUPPORTED_ARCHES)
#
# The torch cmake setup hardcodes the detected architecture flags in
# `CMAKE_CUDA_FLAGS`. Since `CMAKE_CUDA_FLAGS` is a "global" variable, it
# can't modified on a per-target basis, e.g. for the `punica` extension.
# can't modified on a per-target basis.
# So, all the `-gencode` flags need to be extracted and removed from
# `CMAKE_CUDA_FLAGS` for processing so they can be passed by another method.
# Since it's not possible to use `target_compiler_options` for adding target
@ -350,6 +350,7 @@ function (define_gpu_extension_target GPU_MOD_NAME)
target_include_directories(${GPU_MOD_NAME} PRIVATE csrc
${GPU_INCLUDE_DIRECTORIES})
# TODO: is torch_python_LIBRARY needed?
target_link_libraries(${GPU_MOD_NAME} PRIVATE torch ${torch_python_LIBRARY}
${GPU_LIBRARIES})

Some files were not shown because too many files have changed in this diff Show More