mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
Compare commits
263 Commits
v0.5.1
...
torch_dyna
Author | SHA1 | Date | |
---|---|---|---|
617fb893d5 | |||
55712941e5 | |||
981b0d5673 | |||
d09b94ca58 | |||
bb5494676f | |||
b5f49ee55b | |||
150a1ffbfd | |||
281977bd6e | |||
3bbb4936dc | |||
aa4867791e | |||
71734f1bf2 | |||
50704f52c4 | |||
07278c37dd | |||
85ad7e2d01 | |||
89a84b0bb7 | |||
084a01fd35 | |||
062a1d0fab | |||
2eb9f4ff26 | |||
443c7cf4cf | |||
1adddb14bf | |||
b7215de2c5 | |||
f3ff63c3f4 | |||
cd7edc4e87 | |||
6a1e25b151 | |||
95db75de64 | |||
65b1f121c8 | |||
889da130e7 | |||
b75e314fff | |||
316a41ac1d | |||
0310029a2f | |||
309aaef825 | |||
9e169a4c61 | |||
5689e256ba | |||
740374d456 | |||
d88c458f44 | |||
421e218b37 | |||
5448f67635 | |||
0e63494cf3 | |||
ee812580f7 | |||
40468b13fa | |||
2cf0df3381 | |||
545146349c | |||
f4f8a9d892 | |||
b570811706 | |||
ccc4a73257 | |||
0a740a11ba | |||
c882a7f5b3 | |||
5e8ca973eb | |||
87525fab92 | |||
2f808e69ab | |||
01c16ede6b | |||
72fc704803 | |||
1bedf210e3 | |||
507ef787d8 | |||
58f53034ad | |||
0eb0757bef | |||
38c4b7e863 | |||
a112a84aad | |||
461089a21a | |||
71950af726 | |||
cb1362a889 | |||
bb2fc08072 | |||
3eda4ec780 | |||
22fa2e35cb | |||
c5201240a4 | |||
97234be0ec | |||
c051bfe4eb | |||
9e0b558a09 | |||
e519ae097a | |||
7c2749a4fd | |||
729171ae58 | |||
c5e8330997 | |||
e0c15758b8 | |||
bdf5fd1386 | |||
5a96ee52a3 | |||
42c7f66a38 | |||
69d5ae38dc | |||
fea59c7712 | |||
739b61a348 | |||
89c1c6a196 | |||
42de2cefcb | |||
c9eef37f32 | |||
396d92d5e0 | |||
25e778aa16 | |||
b6df37f943 | |||
14f91fe67c | |||
d7f4178dd9 | |||
082ecd80d5 | |||
f952bbc8ff | |||
9364f74eee | |||
06d6c5fe9f | |||
683e3cb9c4 | |||
9042d68362 | |||
3f8d42c81f | |||
7bd82002ae | |||
2e26564259 | |||
e81522e879 | |||
45ceb85a0c | |||
4cc24f01b1 | |||
07eb6f19f3 | |||
f0bbfaf917 | |||
30efe41532 | |||
9ed82e7074 | |||
51f8aa90ad | |||
a5314e8698 | |||
a921e86392 | |||
6366efc67b | |||
dbe5588554 | |||
d4201e06d5 | |||
b5672a112c | |||
c5df56f88b | |||
1689219ebf | |||
4ffffccb7e | |||
f53b8f0d05 | |||
2d4733ba2d | |||
15c6a079b1 | |||
ecdb462c24 | |||
58ca663224 | |||
4634c8728b | |||
c8a7d51c49 | |||
e2fbaee725 | |||
8a74c68bd1 | |||
61e592747c | |||
d25877dd9b | |||
1c27d25fb5 | |||
18fecc3559 | |||
b5af8c223c | |||
b5241e41d9 | |||
e76466dde2 | |||
5f0b9933e6 | |||
a38524f338 | |||
2fa4623d9e | |||
a9a2e74d21 | |||
e09ce759aa | |||
5fa6e9876e | |||
5bf35a91e4 | |||
a19e8d3726 | |||
10383887e0 | |||
1d094fd7c0 | |||
ce37be7ba0 | |||
7f62077af5 | |||
09c2eb85dd | |||
978aed5300 | |||
160e1d8c99 | |||
94162beb9f | |||
c467dff24f | |||
9f4ccec761 | |||
38ef94888a | |||
2bb0489cb3 | |||
7508a3dc34 | |||
7a3d2a5b95 | |||
d97011512e | |||
37d776606f | |||
d92b3c5cde | |||
9ad32dacd9 | |||
d6f3b3d5c4 | |||
4552e37b55 | |||
ec9933f4a5 | |||
3dee97b05f | |||
4cf256ae7f | |||
64fdc08c72 | |||
4ef95b0f06 | |||
eaec4b9153 | |||
a63a4c6341 | |||
c8fd97f26d | |||
94b82e8c18 | |||
6ae1597ddf | |||
22e79ee8f3 | |||
de19916314 | |||
69672f116c | |||
44874a0bf9 | |||
b47008b4d2 | |||
9bfece89fd | |||
32c9d7f765 | |||
ccb20db8bd | |||
a754dc2cb9 | |||
61e85dbad8 | |||
dbfe254eda | |||
73030b7dae | |||
ccd3c04571 | |||
9dad5cc859 | |||
6ef3bf912c | |||
540c0368b1 | |||
fb6af8bc08 | |||
eeceadaecc | |||
babf52dade | |||
9da4aad44b | |||
41708e5034 | |||
d80aef3776 | |||
e1684a766a | |||
a27f87da34 | |||
16ff6bd58c | |||
f8f9ff57ee | |||
6bc9710f6e | |||
111fc6e7ec | |||
75f64d8b94 | |||
21b2dcedab | |||
07b35af86d | |||
bb1a784b05 | |||
d719ba24c5 | |||
aa48e502fb | |||
4dbebd03cc | |||
b75bce1008 | |||
b039cbbce3 | |||
f9d25c2519 | |||
024ad87cdc | |||
aea19f0989 | |||
f7160d946a | |||
6047187cd8 | |||
b6c16cf8ff | |||
d26a8b3f1f | |||
d59eb98489 | |||
adf32e0a0f | |||
2b0fb53481 | |||
d6ab528997 | |||
7ed6a4f0e1 | |||
a4feba929b | |||
2d23b42d92 | |||
1df43de9bb | |||
52b7fcb35a | |||
b675069d74 | |||
55f692b46e | |||
8a1415cf77 | |||
546b101fa0 | |||
3963a5335b | |||
c4774eb841 | |||
fc17110bbe | |||
439c84581a | |||
99ded1e1c4 | |||
997df46a32 | |||
ae151d73be | |||
44cc76610d | |||
b422d4961a | |||
c38eba3046 | |||
e72ae80b06 | |||
8a924d2248 | |||
5ed3505d82 | |||
da78caecfa | |||
2416b26e11 | |||
d3a245138a | |||
673dd4cae9 | |||
4d6ada947c | |||
a0550cbc80 | |||
08c5bdecae | |||
5d5b4c5fe5 | |||
70c232f85a | |||
a3c9435d93 | |||
4f0e0ea131 | |||
ddc369fba1 | |||
185ad31f37 | |||
543aa48573 | |||
f7a8fa39d8 | |||
717f4bcea0 | |||
16620f439d | |||
3b08fe2b13 | |||
abfe705a02 | |||
333306a252 | |||
6206dcb29e | |||
9389380015 | |||
175c43eca4 | |||
bc96d5c330 | |||
f0250620dd | |||
2de490d60f |
@ -1,7 +1,7 @@
|
||||
import os
|
||||
import zipfile
|
||||
|
||||
MAX_SIZE_MB = 200
|
||||
MAX_SIZE_MB = 250
|
||||
|
||||
|
||||
def print_top_10_largest_files(zip_file):
|
||||
|
@ -1,14 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
set -o pipefail
|
||||
|
||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||
|
||||
# aws s3 sync s3://air-example-data-2/vllm_opensource_llava/ images/
|
||||
mkdir -p images
|
||||
cd images
|
||||
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/stop_sign.jpg
|
||||
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/cherry_blossom.jpg
|
||||
|
||||
cd -
|
@ -0,0 +1,11 @@
|
||||
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m deepseek-ai/DeepSeek-V2-Lite-Chat -b "auto" -l 1000 -f 5 -t 2
|
||||
model_name: "deepseek-ai/DeepSeek-V2-Lite-Chat"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.671
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.664
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
@ -0,0 +1,11 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5
|
||||
model_name: "nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.905
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.905
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
@ -0,0 +1,11 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.752
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.754
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
@ -0,0 +1,11 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.753
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.753
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
@ -0,0 +1,11 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test -b 32 -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.755
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.755
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
@ -1,11 +1,11 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Meta-Llama-3-8B-Instruct-FP8 -b 32 -l 250 -f 5 -t 1
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Meta-Llama-3-8B-Instruct-FP8 -b 32 -l 250 -f 5 -t 1
|
||||
model_name: "neuralmagic/Meta-Llama-3-8B-Instruct-FP8"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.756
|
||||
value: 0.753
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.752
|
||||
limit: 250
|
||||
value: 0.753
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
||||
|
@ -0,0 +1,11 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.728
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.728
|
||||
limit: 250
|
||||
num_fewshot: 5
|
@ -0,0 +1,11 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.758
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.759
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
11
.buildkite/lm-eval-harness/configs/Minitron-4B-Base.yaml
Normal file
11
.buildkite/lm-eval-harness/configs/Minitron-4B-Base.yaml
Normal file
@ -0,0 +1,11 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nvidia/Minitron-4B-Base -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "nvidia/Minitron-4B-Base"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.252
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.252
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
@ -0,0 +1,11 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-FP8W8 -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Qwen2-1.5B-Instruct-FP8W8"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.578
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.585
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
@ -0,0 +1,11 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
|
||||
model_name: "neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.593
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.588
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
@ -0,0 +1,11 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise -b "auto" -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.595
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.582
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
@ -1,3 +1,5 @@
|
||||
Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform.yaml
|
||||
Meta-Llama-3-70B-Instruct.yaml
|
||||
Mixtral-8x7B-Instruct-v0.1.yaml
|
||||
Qwen2-57B-A14-Instruct.yaml
|
||||
DeepSeek-V2-Lite-Chat.yaml
|
||||
|
@ -1,2 +1,9 @@
|
||||
Meta-Llama-3-8B-Instruct.yaml
|
||||
Meta-Llama-3-8B-Instruct-FP8.yaml
|
||||
Meta-Llama-3-8B-Instruct-FP8-compressed-tensors.yaml
|
||||
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors.yaml
|
||||
Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml
|
||||
Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml
|
||||
Minitron-4B-Base.yaml
|
||||
Qwen2-1.5B-Instruct-INT8-compressed-tensors.yaml
|
||||
Qwen2-1.5B-Instruct-FP8W8.yaml
|
||||
|
@ -3,7 +3,7 @@
|
||||
# We use this for fp8, which HF does not support.
|
||||
#
|
||||
# Make sure you have lm-eval-harness installed:
|
||||
# pip install lm-eval==0.4.2
|
||||
# pip install lm-eval==0.4.3
|
||||
|
||||
usage() {
|
||||
echo``
|
||||
@ -46,6 +46,6 @@ while getopts "m:b:l:f:t:" OPT; do
|
||||
done
|
||||
|
||||
lm_eval --model vllm \
|
||||
--model_args pretrained=$MODEL,tensor_parallel_size=$TP_SIZE \
|
||||
--model_args pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,distributed_executor_backend="ray",trust_remote_code=true,max_model_len=4096 \
|
||||
--tasks gsm8k --num_fewshot $FEWSHOT --limit $LIMIT \
|
||||
--batch_size $BATCH_SIZE
|
||||
|
@ -24,7 +24,8 @@ TP_SIZE = os.environ.get("LM_EVAL_TP_SIZE", 1)
|
||||
|
||||
def launch_lm_eval(eval_config):
|
||||
model_args = f"pretrained={eval_config['model_name']}," \
|
||||
f"tensor_parallel_size={TP_SIZE}"
|
||||
f"tensor_parallel_size={TP_SIZE}," \
|
||||
f"add_bos_token=true"
|
||||
|
||||
results = lm_eval.simple_evaluate(
|
||||
model="vllm",
|
||||
|
@ -1,31 +1,53 @@
|
||||
# vLLM benchmark suite
|
||||
|
||||
|
||||
## Introduction
|
||||
|
||||
This directory contains the performance benchmarking CI for vllm.
|
||||
The goal is to help developers know the impact of their PRs on the performance of vllm.
|
||||
This directory contains two sets of benchmark for vllm.
|
||||
- Performance benchmark: benchmark vllm's performance under various workload, for **developers** to gain clarity on whether their PR improves/degrades vllm's performance
|
||||
- Nightly benchmark: compare vllm's performance against alternatives (tgi, trt-llm and lmdeploy), for **the public** to know when to choose vllm.
|
||||
|
||||
This benchmark will be *triggered* upon:
|
||||
- A PR being merged into vllm.
|
||||
- Every commit for those PRs with `perf-benchmarks` label.
|
||||
|
||||
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for more GPUs is comming later), with different models.
|
||||
See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
|
||||
|
||||
|
||||
## Performance benchmark quick overview
|
||||
|
||||
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!), with different models.
|
||||
|
||||
**Benchmarking Duration**: about 1hr.
|
||||
|
||||
**For benchmarking developers**: please try your best to constraint the duration of benchmarking to less than 1.5 hr so that it won't take forever to run.
|
||||
**For benchmarking developers**: please try your best to constraint the duration of benchmarking to about 1 hr so that it won't take forever to run.
|
||||
|
||||
|
||||
## Configuring the workload
|
||||
## Nightly benchmark quick overview
|
||||
|
||||
The benchmarking workload contains three parts:
|
||||
- Latency tests in `latency-tests.json`.
|
||||
- Throughput tests in `throughput-tests.json`.
|
||||
- Serving tests in `serving-tests.json`.
|
||||
**Benchmarking Coverage**: Fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) on Llama-3 8B, 70B and Mixtral 8x7B.
|
||||
|
||||
See [descriptions.md](tests/descriptions.md) for detailed descriptions.
|
||||
**Benchmarking engines**: vllm, TGI, trt-llm and lmdeploy.
|
||||
|
||||
### Latency test
|
||||
**Benchmarking Duration**: about 3.5hrs.
|
||||
|
||||
|
||||
|
||||
## Trigger the benchmark
|
||||
|
||||
Performance benchmark will be triggered when:
|
||||
- A PR being merged into vllm.
|
||||
- Every commit for those PRs with `perf-benchmarks` label.
|
||||
|
||||
Nightly benchmark will be triggered when:
|
||||
- Every commit for those PRs with `nightly-benchmarks` label.
|
||||
|
||||
|
||||
|
||||
|
||||
## Performance benchmark details
|
||||
|
||||
See [descriptions.md](tests/descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
|
||||
|
||||
|
||||
#### Latency test
|
||||
|
||||
Here is an example of one test inside `latency-tests.json`:
|
||||
|
||||
@ -53,12 +75,12 @@ Note that the performance numbers are highly sensitive to the value of the param
|
||||
WARNING: The benchmarking script will save json results by itself, so please do not configure `--output-json` parameter in the json file.
|
||||
|
||||
|
||||
### Throughput test
|
||||
#### Throughput test
|
||||
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `benchmark_throughput.py`.
|
||||
|
||||
The number of this test is also stable -- a slight change on the value of this number might vary the performance numbers by a lot.
|
||||
|
||||
### Serving test
|
||||
#### Serving test
|
||||
We test the throughput by using `benchmark_serving.py` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:
|
||||
|
||||
```
|
||||
@ -95,9 +117,36 @@ The number of this test is less stable compared to the delay and latency benchma
|
||||
|
||||
WARNING: The benchmarking script will save json results by itself, so please do not configure `--save-results` or other results-saving-related parameters in `serving-tests.json`.
|
||||
|
||||
## Visualizing the results
|
||||
#### Visualizing the results
|
||||
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](tests/descriptions.md) with real benchmarking results.
|
||||
You can find the result presented as a table inside the `buildkite/performance-benchmark` job page.
|
||||
If you do not see the table, please wait till the benchmark finish running.
|
||||
The json version of the table (together with the json version of the benchmark) will be also attached to the markdown file.
|
||||
The raw benchmarking results (in the format of json files) are in the `Artifacts` tab of the benchmarking.
|
||||
|
||||
|
||||
|
||||
## Nightly test details
|
||||
|
||||
See [nightly-descriptions.md](nightly-descriptions.md) for the detailed description on test workload, models and docker containers of benchmarking other llm engines.
|
||||
|
||||
|
||||
#### Workflow
|
||||
|
||||
- The [nightly-pipeline.yaml](nightly-pipeline.yaml) specifies the docker containers for different LLM serving engines.
|
||||
- Inside each container, we run [run-nightly-suite.sh](run-nightly-suite.sh), which will probe the serving engine of the current container.
|
||||
- The `run-nightly-suite.sh` will redirect the request to `tests/run-[llm serving engine name]-nightly.sh`, which parses the workload described in [nightly-tests.json](tests/nightly-tests.json) and performs the benchmark.
|
||||
- At last, we run [scripts/plot-nightly-results.py](scripts/plot-nightly-results.py) to collect and plot the final benchmarking results, and update the results to buildkite.
|
||||
|
||||
#### Nightly tests
|
||||
|
||||
In [nightly-tests.json](tests/nightly-tests.json), we include the command line arguments for benchmarking commands, together with the benchmarking test cases. The format is highly similar to performance benchmark.
|
||||
|
||||
#### Docker containers
|
||||
|
||||
The docker containers for benchmarking are specified in `nightly-pipeline.yaml`.
|
||||
|
||||
WARNING: the docker versions are HARD-CODED and SHOULD BE ALIGNED WITH `nightly-descriptions.md`. The docker versions need to be hard-coded as there are several version-specific bug fixes inside `tests/run-[llm serving engine name]-nightly.sh`.
|
||||
|
||||
WARNING: populating `trt-llm` to latest version is not easy, as it requires updating several protobuf files in [tensorrt-demo](https://github.com/neuralmagic/tensorrt-demo.git).
|
||||
|
||||
|
@ -11,7 +11,7 @@ steps:
|
||||
- sh
|
||||
- .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
|
||||
- wait
|
||||
- label: "A100 Benchmark"
|
||||
- label: "A100"
|
||||
agents:
|
||||
queue: A100
|
||||
plugins:
|
||||
@ -42,21 +42,20 @@ steps:
|
||||
- name: devshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
# - label: "H100: NVIDIA SMI"
|
||||
# agents:
|
||||
# queue: H100
|
||||
# plugins:
|
||||
# - docker#v5.11.0:
|
||||
# image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
|
||||
# command:
|
||||
# - bash
|
||||
# - .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
|
||||
# mount-buildkite-agent: true
|
||||
# propagate-environment: true
|
||||
# propagate-uid-gid: false
|
||||
# ipc: host
|
||||
# gpus: all
|
||||
# environment:
|
||||
# - VLLM_USAGE_SOURCE
|
||||
# - HF_TOKEN
|
||||
- label: "H100"
|
||||
agents:
|
||||
queue: H100
|
||||
plugins:
|
||||
- docker#v5.11.0:
|
||||
image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
|
||||
command:
|
||||
- bash
|
||||
- .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
|
||||
mount-buildkite-agent: true
|
||||
propagate-environment: true
|
||||
ipc: host
|
||||
gpus: all
|
||||
environment:
|
||||
- VLLM_USAGE_SOURCE
|
||||
- HF_TOKEN
|
||||
|
||||
|
@ -1,27 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# NOTE(simon): this script runs inside a buildkite agent with CPU only access.
|
||||
set -euo pipefail
|
||||
|
||||
# Install system packages
|
||||
apt update
|
||||
apt install -y curl jq
|
||||
|
||||
# Install minijinja for templating
|
||||
curl -sSfL https://github.com/mitsuhiko/minijinja/releases/latest/download/minijinja-cli-installer.sh | sh
|
||||
source $HOME/.cargo/env
|
||||
|
||||
# If BUILDKITE_PULL_REQUEST != "false", then we check the PR labels using curl and jq
|
||||
if [ "$BUILDKITE_PULL_REQUEST" != "false" ]; then
|
||||
PR_LABELS=$(curl -s "https://api.github.com/repos/vllm-project/vllm/pulls/$BUILDKITE_PULL_REQUEST" | jq -r '.labels[].name')
|
||||
|
||||
if [[ $PR_LABELS == *"perf-benchmarks"* ]]; then
|
||||
echo "This PR has the 'perf-benchmarks' label. Proceeding with the nightly benchmarks."
|
||||
else
|
||||
echo "This PR does not have the 'perf-benchmarks' label. Skipping the nightly benchmarks."
|
||||
exit 0
|
||||
fi
|
||||
fi
|
||||
|
||||
# Upload sample.yaml
|
||||
buildkite-agent pipeline upload .buildkite/nightly-benchmarks/benchmark-pipeline.yaml
|
45
.buildkite/nightly-benchmarks/nightly-descriptions.md
Normal file
45
.buildkite/nightly-benchmarks/nightly-descriptions.md
Normal file
@ -0,0 +1,45 @@
|
||||
|
||||
# Nightly benchmark
|
||||
|
||||
The main goal of this benchmarking is two-fold:
|
||||
- Performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and tgi) leads in performance in what workload.
|
||||
- Reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions in [reproduce.md]().
|
||||
|
||||
|
||||
## Docker images
|
||||
|
||||
We benchmark vllm, tensorrt-llm, lmdeploy and tgi using the following docker images:
|
||||
- vllm/vllm-openai:v0.5.0.post1
|
||||
- nvcr.io/nvidia/tritonserver:24.04-trtllm-python-py3
|
||||
- openmmlab/lmdeploy:v0.5.0
|
||||
- ghcr.io/huggingface/text-generation-inference:2.1
|
||||
|
||||
<!-- Please check <a href="artifact://workspace/build/buildkite/vllm/performance-benchmark/.buildkite/nightly-benchmarks/nightly-pipeline.yaml">nightly-pipeline.yaml</a> artifact for more details on how we deploy the docker images. -->
|
||||
|
||||
|
||||
## Hardware
|
||||
|
||||
One AWS node with 8x NVIDIA A100 GPUs.
|
||||
|
||||
|
||||
## Workload description
|
||||
|
||||
We benchmark vllm, tensorrt-llm, lmdeploy and tgi using the following workload:
|
||||
|
||||
- Input length: randomly sample 500 prompts from ShareGPT dataset (with fixed random seed).
|
||||
- Output length: the corresponding output length of these 500 prompts.
|
||||
- Models: llama-3 8B, llama-3 70B, mixtral 8x7B.
|
||||
- Average QPS (query per second): 4 for the small model (llama-3 8B) and 2 for other two models. For each QPS, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
|
||||
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
|
||||
|
||||
<!-- Check <a href="artifact://workspace/build/buildkite/vllm/performance-benchmark/.buildkite/nightly-benchmarks/tests/nightly-tests.json">nightly-tests.json</a> artifact for more details. -->
|
||||
|
||||
## Plots
|
||||
|
||||
In the following plots, the dot shows the mean and the error bar shows the standard error of the mean. Value 0 means that the corresponding benchmark crashed.
|
||||
|
||||
<img src="artifact://nightly_results.png" alt="Benchmarking results" height=250 >
|
||||
|
||||
## Results
|
||||
|
||||
{nightly_results_benchmarking_table}
|
120
.buildkite/nightly-benchmarks/nightly-pipeline.yaml
Normal file
120
.buildkite/nightly-benchmarks/nightly-pipeline.yaml
Normal file
@ -0,0 +1,120 @@
|
||||
common_pod_spec: &common_pod_spec
|
||||
priorityClassName: perf-benchmark
|
||||
nodeSelector:
|
||||
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
|
||||
volumes:
|
||||
- name: devshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
- name: hf-cache
|
||||
hostPath:
|
||||
path: /root/.cache/huggingface
|
||||
type: Directory
|
||||
|
||||
common_container_settings: &common_container_settings
|
||||
command:
|
||||
- bash .buildkite/nightly-benchmarks/run-nightly-suite.sh
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: 8
|
||||
volumeMounts:
|
||||
- name: devshm
|
||||
mountPath: /dev/shm
|
||||
- name: hf-cache
|
||||
mountPath: /root/.cache/huggingface
|
||||
env:
|
||||
- name: VLLM_USAGE_SOURCE
|
||||
value: ci-test
|
||||
- name: HF_HOME
|
||||
value: /root/.cache/huggingface
|
||||
- name: VLLM_SOURCE_CODE_LOC
|
||||
value: /workspace/build/buildkite/vllm/performance-benchmark
|
||||
- name: HF_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: hf-token-secret
|
||||
key: token
|
||||
|
||||
steps:
|
||||
- block: ":rocket: Ready for comparing vllm against alternatives? This will take 4 hours."
|
||||
- label: "A100 trt benchmark"
|
||||
priority: 100
|
||||
agents:
|
||||
queue: A100
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
<<: *common_pod_spec
|
||||
containers:
|
||||
- image: nvcr.io/nvidia/tritonserver:24.04-trtllm-python-py3
|
||||
<<: *common_container_settings
|
||||
|
||||
- label: "A100 lmdeploy benchmark"
|
||||
priority: 100
|
||||
agents:
|
||||
queue: A100
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
<<: *common_pod_spec
|
||||
containers:
|
||||
- image: openmmlab/lmdeploy:v0.5.0
|
||||
<<: *common_container_settings
|
||||
|
||||
|
||||
- label: "A100 vllm benchmark"
|
||||
priority: 100
|
||||
agents:
|
||||
queue: A100
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
<<: *common_pod_spec
|
||||
containers:
|
||||
- image: vllm/vllm-openai:latest
|
||||
<<: *common_container_settings
|
||||
|
||||
- label: "A100 tgi benchmark"
|
||||
priority: 100
|
||||
agents:
|
||||
queue: A100
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
<<: *common_pod_spec
|
||||
containers:
|
||||
- image: ghcr.io/huggingface/text-generation-inference:2.1
|
||||
<<: *common_container_settings
|
||||
|
||||
- wait
|
||||
|
||||
- label: "Plot"
|
||||
priority: 100
|
||||
agents:
|
||||
queue: A100
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
<<: *common_pod_spec
|
||||
containers:
|
||||
- image: vllm/vllm-openai:v0.5.0.post1
|
||||
command:
|
||||
- bash .buildkite/nightly-benchmarks/scripts/nightly-annotate.sh
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: 8
|
||||
volumeMounts:
|
||||
- name: devshm
|
||||
mountPath: /dev/shm
|
||||
env:
|
||||
- name: VLLM_USAGE_SOURCE
|
||||
value: ci-test
|
||||
- name: VLLM_SOURCE_CODE_LOC
|
||||
value: /workspace/build/buildkite/vllm/performance-benchmark
|
||||
- name: HF_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: hf-token-secret
|
||||
key: token
|
||||
|
||||
- wait
|
@ -54,7 +54,7 @@ wait_for_server() {
|
||||
# wait for vllm server to start
|
||||
# return 1 if vllm server crashes
|
||||
timeout 1200 bash -c '
|
||||
until curl localhost:8000/v1/completions; do
|
||||
until curl -X POST localhost:8000/v1/completions; do
|
||||
sleep 1
|
||||
done' && return 0 || return 1
|
||||
}
|
||||
@ -73,8 +73,17 @@ kill_gpu_processes() {
|
||||
echo "All GPU processes have been killed."
|
||||
fi
|
||||
|
||||
# Sometimes kill with pid doesn't work properly, we can also kill all process running python or python3
|
||||
# since we are in container anyway
|
||||
pkill -9 -f python
|
||||
pkill -9 -f python3
|
||||
|
||||
# waiting for GPU processes to be fully killed
|
||||
sleep 10
|
||||
# loop while nvidia-smi returns any processes
|
||||
while [ -n "$(nvidia-smi --query-compute-apps=pid --format=csv,noheader)" ]; do
|
||||
sleep 1
|
||||
echo "Waiting for GPU processes to be killed"
|
||||
done
|
||||
|
||||
# remove vllm config file
|
||||
rm -rf ~/.config/vllm
|
||||
@ -90,12 +99,19 @@ upload_to_buildkite() {
|
||||
# upload the benchmarking results to buildkite
|
||||
|
||||
# if the agent binary is not found, skip uploading the results, exit 0
|
||||
if [ ! -f /workspace/buildkite-agent ]; then
|
||||
# Check if buildkite-agent is available in the PATH or at /workspace/buildkite-agent
|
||||
if command -v buildkite-agent >/dev/null 2>&1; then
|
||||
BUILDKITE_AGENT_COMMAND="buildkite-agent"
|
||||
elif [ -f /workspace/buildkite-agent ]; then
|
||||
BUILDKITE_AGENT_COMMAND="/workspace/buildkite-agent"
|
||||
else
|
||||
echo "buildkite-agent binary not found. Skip uploading the results."
|
||||
return 0
|
||||
fi
|
||||
/workspace/buildkite-agent annotate --style "info" --context "benchmark-results" < $RESULTS_FOLDER/benchmark_results.md
|
||||
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
|
||||
|
||||
# Use the determined command to annotate and upload artifacts
|
||||
$BUILDKITE_AGENT_COMMAND annotate --style "info" --context "$BUILDKITE_LABEL-benchmark-results" < $RESULTS_FOLDER/benchmark_results.md
|
||||
$BUILDKITE_AGENT_COMMAND artifact upload "$RESULTS_FOLDER/*"
|
||||
}
|
||||
|
||||
run_latency_tests() {
|
||||
@ -269,6 +285,7 @@ run_serving_tests() {
|
||||
echo "Running test case $test_name"
|
||||
echo "Server command: $server_command"
|
||||
eval "$server_command" &
|
||||
server_pid=$!
|
||||
|
||||
# wait until the server is alive
|
||||
wait_for_server
|
||||
@ -318,6 +335,7 @@ run_serving_tests() {
|
||||
done
|
||||
|
||||
# clean up
|
||||
kill -9 $server_pid
|
||||
kill_gpu_processes
|
||||
done
|
||||
}
|
||||
|
76
.buildkite/nightly-benchmarks/run-nightly-suite.sh
Normal file
76
.buildkite/nightly-benchmarks/run-nightly-suite.sh
Normal file
@ -0,0 +1,76 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -o pipefail
|
||||
set -x
|
||||
|
||||
check_gpus() {
|
||||
# check the number of GPUs and GPU type.
|
||||
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
|
||||
if [[ $gpu_count -gt 0 ]]; then
|
||||
echo "GPU found."
|
||||
else
|
||||
echo "Need at least 1 GPU to run benchmarking."
|
||||
exit 1
|
||||
fi
|
||||
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
|
||||
echo "GPU type is $gpu_type"
|
||||
}
|
||||
|
||||
check_hf_token() {
|
||||
# check if HF_TOKEN is available and valid
|
||||
if [[ -z "$HF_TOKEN" ]]; then
|
||||
echo "Error: HF_TOKEN is not set."
|
||||
exit 1
|
||||
elif [[ ! "$HF_TOKEN" =~ ^hf_ ]]; then
|
||||
echo "Error: HF_TOKEN does not start with 'hf_'."
|
||||
exit 1
|
||||
else
|
||||
echo "HF_TOKEN is set and valid."
|
||||
fi
|
||||
}
|
||||
|
||||
main() {
|
||||
|
||||
check_gpus
|
||||
check_hf_token
|
||||
|
||||
df -h
|
||||
|
||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||
(which jq) || (apt-get update && apt-get -y install jq)
|
||||
|
||||
cd $VLLM_SOURCE_CODE_LOC/benchmarks
|
||||
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
|
||||
|
||||
# run lmdeploy
|
||||
if which lmdeploy >/dev/null; then
|
||||
echo "lmdeploy is available, redirect to run-lmdeploy-nightly.sh"
|
||||
bash ../.buildkite/nightly-benchmarks/scripts/run-lmdeploy-nightly.sh
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# run tgi
|
||||
if [ -e /tgi-entrypoint.sh ]; then
|
||||
echo "tgi is available, redirect to run-tgi-nightly.sh"
|
||||
bash ../.buildkite/nightly-benchmarks/scripts/run-tgi-nightly.sh
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# run trt
|
||||
if which trtllm-build >/dev/null; then
|
||||
echo "trtllm is available, redirect to run-trt-nightly.sh"
|
||||
bash ../.buildkite/nightly-benchmarks/scripts/run-trt-nightly.sh
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# run vllm
|
||||
if [ -e /vllm-workspace ]; then
|
||||
echo "vllm is available, redirect to run-vllm-nightly.sh"
|
||||
bash ../.buildkite/nightly-benchmarks/scripts/run-vllm-nightly.sh
|
||||
exit 0
|
||||
fi
|
||||
|
||||
}
|
||||
|
||||
main "$@"
|
26
.buildkite/nightly-benchmarks/scripts/download-tokenizer.py
Normal file
26
.buildkite/nightly-benchmarks/scripts/download-tokenizer.py
Normal file
@ -0,0 +1,26 @@
|
||||
import argparse
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
|
||||
def main(model, cachedir):
|
||||
# Load the tokenizer and save it to the specified directory
|
||||
tokenizer = AutoTokenizer.from_pretrained(model)
|
||||
tokenizer.save_pretrained(cachedir)
|
||||
print(f"Tokenizer saved to {cachedir}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Download and save Hugging Face tokenizer")
|
||||
parser.add_argument("--model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Name of the model")
|
||||
parser.add_argument("--cachedir",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Directory to save the tokenizer")
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args.model, args.cachedir)
|
@ -0,0 +1,6 @@
|
||||
from lmdeploy.serve.openai.api_client import APIClient
|
||||
|
||||
api_client = APIClient("http://localhost:8000")
|
||||
model_name = api_client.available_models[0]
|
||||
|
||||
print(model_name)
|
102
.buildkite/nightly-benchmarks/scripts/launch-trt-server.sh
Normal file
102
.buildkite/nightly-benchmarks/scripts/launch-trt-server.sh
Normal file
@ -0,0 +1,102 @@
|
||||
#!/bin/bash
|
||||
|
||||
|
||||
server_params=$1
|
||||
common_params=$2
|
||||
|
||||
|
||||
|
||||
model_path=$(echo "$common_params" | jq -r '.model')
|
||||
model_name="${model_path#*/}"
|
||||
model_type=$(echo "$server_params" | jq -r '.model_type')
|
||||
model_dtype=$(echo "$server_params" | jq -r '.model_dtype')
|
||||
model_tp_size=$(echo "$common_params" | jq -r '.tp')
|
||||
max_batch_size=$(echo "$server_params" | jq -r '.max_batch_size')
|
||||
max_input_len=$(echo "$server_params" | jq -r '.max_input_len')
|
||||
max_output_len=$(echo "$server_params" | jq -r '.max_output_len')
|
||||
trt_llm_version=$(echo "$server_params" | jq -r '.trt_llm_version')
|
||||
|
||||
cd ~
|
||||
rm -rf models
|
||||
mkdir -p models
|
||||
cd models
|
||||
models_dir=$(pwd)
|
||||
trt_model_path=${models_dir}/${model_name}-trt-ckpt
|
||||
trt_engine_path=${models_dir}/${model_name}-trt-engine
|
||||
|
||||
cd ~
|
||||
rm -rf tensorrt-demo
|
||||
git clone https://github.com/neuralmagic/tensorrt-demo.git
|
||||
cd tensorrt-demo
|
||||
tensorrt_demo_dir=$(pwd)
|
||||
|
||||
# make sure the parameter inside tensorrt_demo is consistent to envvar
|
||||
sed -i.bak "/key: \"tokenizer_dir\"/,/string_value:/s|string_value: \".*\"|string_value: \"$model_path\"|" ./triton_model_repo/postprocessing/config.pbtxt
|
||||
sed -i.bak "/key: \"tokenizer_dir\"/,/string_value:/s|string_value: \".*\"|string_value: \"$model_path\"|" ./triton_model_repo/preprocessing/config.pbtxt
|
||||
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/ensemble/config.pbtxt
|
||||
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/preprocessing/config.pbtxt
|
||||
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/postprocessing/config.pbtxt
|
||||
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/tensorrt_llm_bls/config.pbtxt
|
||||
|
||||
|
||||
cd /
|
||||
rm -rf tensorrtllm_backend
|
||||
git clone https://github.com/triton-inference-server/tensorrtllm_backend.git
|
||||
git lfs install
|
||||
cd tensorrtllm_backend
|
||||
git checkout $trt_llm_version
|
||||
tensorrtllm_backend_dir=$(pwd)
|
||||
git submodule update --init --recursive
|
||||
cp -r ${tensorrt_demo_dir}/triton_model_repo ${tensorrtllm_backend_dir}/
|
||||
|
||||
cd /tensorrtllm_backend
|
||||
cd ./tensorrt_llm/examples/${model_type}
|
||||
|
||||
|
||||
if echo "$common_params" | jq -e 'has("fp8")' > /dev/null; then
|
||||
|
||||
echo "Key 'fp8' exists in common params. Use quantize.py instead of convert_checkpoint.py"
|
||||
echo "Reference: https://github.com/NVIDIA/TensorRT-LLM/blob/main/examples/llama/README.md"
|
||||
python ../quantization/quantize.py \
|
||||
--model_dir ${model_path} \
|
||||
--dtype ${model_dtype} \
|
||||
--tp_size ${model_tp_size} \
|
||||
--output_dir ${trt_model_path} \
|
||||
--qformat fp8 \
|
||||
--kv_cache_dtype fp8 \
|
||||
--calib_size 2
|
||||
|
||||
else
|
||||
|
||||
echo "Key 'fp8' does not exist in common params. Use convert_checkpoint.py"
|
||||
python3 convert_checkpoint.py \
|
||||
--model_dir ${model_path} \
|
||||
--dtype ${model_dtype} \
|
||||
--tp_size ${model_tp_size} \
|
||||
--output_dir ${trt_model_path}
|
||||
|
||||
fi
|
||||
|
||||
|
||||
|
||||
trtllm-build \
|
||||
--checkpoint_dir=${trt_model_path} \
|
||||
--gpt_attention_plugin=${model_dtype} \
|
||||
--gemm_plugin=${model_dtype} \
|
||||
--remove_input_padding=enable \
|
||||
--paged_kv_cache=enable \
|
||||
--tp_size=${model_tp_size} \
|
||||
--max_batch_size=${max_batch_size} \
|
||||
--max_input_len=${max_input_len} \
|
||||
--max_output_len=${max_output_len} \
|
||||
--max_num_tokens=${max_output_len} \
|
||||
--opt_num_tokens=${max_output_len} \
|
||||
--output_dir=${trt_engine_path}
|
||||
|
||||
cd /tensorrtllm_backend/triton_model_repo
|
||||
rm -rf ./tensorrt_llm/1/*
|
||||
cp -r ${trt_engine_path}/* ./tensorrt_llm/1
|
||||
cd /tensorrtllm_backend
|
||||
python3 scripts/launch_triton_server.py \
|
||||
--world_size=${model_tp_size} \
|
||||
--model_repo=/tensorrtllm_backend/triton_model_repo &
|
40
.buildkite/nightly-benchmarks/scripts/nightly-annotate.sh
Normal file
40
.buildkite/nightly-benchmarks/scripts/nightly-annotate.sh
Normal file
@ -0,0 +1,40 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
set -o pipefail
|
||||
|
||||
|
||||
main() {
|
||||
|
||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||
(which jq) || (apt-get update && apt-get -y install jq)
|
||||
|
||||
if [ ! -f /workspace/buildkite-agent ]; then
|
||||
echo "buildkite-agent binary not found. Skip plotting the results."
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# initial annotation
|
||||
description="$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-descriptions.md"
|
||||
|
||||
# download results
|
||||
cd $VLLM_SOURCE_CODE_LOC/benchmarks
|
||||
mkdir -p results/
|
||||
/workspace/buildkite-agent artifact download 'results/*nightly_results.json' results/
|
||||
ls
|
||||
ls results/
|
||||
|
||||
# generate figures
|
||||
python3 -m pip install tabulate pandas matplotlib
|
||||
python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
|
||||
--description $description \
|
||||
--results-folder results/
|
||||
|
||||
# upload results and figures
|
||||
/workspace/buildkite-agent artifact upload "nightly_results.png"
|
||||
/workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-pipeline.yaml
|
||||
/workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/tests/nightly-tests.json
|
||||
/workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly_results.md
|
||||
}
|
||||
|
||||
main "$@"
|
135
.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py
Normal file
135
.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py
Normal file
@ -0,0 +1,135 @@
|
||||
import argparse
|
||||
import json
|
||||
import math
|
||||
from pathlib import Path
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
from tabulate import tabulate
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
parser = argparse.ArgumentParser(
|
||||
description=
|
||||
'Parse command line arguments for summary-nightly-results script.')
|
||||
parser.add_argument('--results-folder',
|
||||
type=str,
|
||||
required=True,
|
||||
help='The folder where the results are stored.')
|
||||
parser.add_argument('--description',
|
||||
type=str,
|
||||
required=True,
|
||||
help='Description of the results.')
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main(args):
|
||||
bar_colors = ['#56B4E9', '#009E73', '#D55E00', '#E69F00']
|
||||
results_folder = Path(args.results_folder)
|
||||
|
||||
results = []
|
||||
|
||||
# collect results
|
||||
for test_file in results_folder.glob("*_nightly_results.json"):
|
||||
with open(test_file, "r") as f:
|
||||
results = results + json.loads(f.read())
|
||||
|
||||
# generate markdown table
|
||||
df = pd.DataFrame.from_dict(results)
|
||||
|
||||
md_table = tabulate(df, headers='keys', tablefmt='pipe', showindex=False)
|
||||
|
||||
with open(args.description, "r") as f:
|
||||
description = f.read()
|
||||
|
||||
description = description.format(
|
||||
nightly_results_benchmarking_table=md_table)
|
||||
|
||||
with open("nightly_results.md", "w") as f:
|
||||
f.write(description)
|
||||
|
||||
plt.rcParams.update({'font.size': 20})
|
||||
|
||||
# plot results
|
||||
fig, axes = plt.subplots(3, 3, figsize=(16, 14))
|
||||
fig.subplots_adjust(hspace=1)
|
||||
methods = ["vllm", "trt", "lmdeploy", "tgi"]
|
||||
for i, model in enumerate(["llama8B", "llama70B", "mixtral8x7B"]):
|
||||
for j, metric in enumerate(["TTFT", "ITL"]):
|
||||
means, stds = [], []
|
||||
for method in methods:
|
||||
target = df['Test name'].str.contains(model)
|
||||
target = target & df['Engine'].str.contains(method)
|
||||
filtered_df = df[target]
|
||||
|
||||
if filtered_df.empty:
|
||||
means.append(0.)
|
||||
stds.append(0.)
|
||||
else:
|
||||
means.append(filtered_df[f"Mean {metric} (ms)"].values[0])
|
||||
std = filtered_df[f"Std {metric} (ms)"].values[0]
|
||||
success = filtered_df["Successful req."].values[0]
|
||||
stds.append(std / math.sqrt(success))
|
||||
|
||||
print(model, metric)
|
||||
print(means, stds)
|
||||
|
||||
ax = axes[i, j + 1]
|
||||
|
||||
bars = ax.bar(
|
||||
["vllm", "trt", "lmdeploy", "tgi"],
|
||||
means,
|
||||
yerr=stds,
|
||||
capsize=10,
|
||||
)
|
||||
for idx, bar in enumerate(bars):
|
||||
bar.set_color(bar_colors[idx])
|
||||
ax.set_ylim(bottom=0)
|
||||
|
||||
ax.set_ylabel(f"{metric} (ms)")
|
||||
ax.set_title(f"{model} {metric}")
|
||||
ax.grid(axis='y')
|
||||
|
||||
metric = "Tput"
|
||||
j = 0
|
||||
if True:
|
||||
tputs = []
|
||||
for method in methods:
|
||||
target = df['Test name'].str.contains(model)
|
||||
target = target & df['Engine'].str.contains(method)
|
||||
filtered_df = df[target]
|
||||
|
||||
if filtered_df.empty:
|
||||
tputs.append(0.)
|
||||
else:
|
||||
input_tput = filtered_df["Input Tput (tok/s)"].values[0]
|
||||
output_tput = filtered_df["Output Tput (tok/s)"].values[0]
|
||||
tputs.append(input_tput + output_tput)
|
||||
|
||||
print(model, metric)
|
||||
print(tputs)
|
||||
|
||||
ax = axes[i, j]
|
||||
|
||||
bars = ax.bar(
|
||||
["vllm", "trt", "lmdeploy", "tgi"],
|
||||
tputs,
|
||||
)
|
||||
for idx, bar in enumerate(bars):
|
||||
bar.set_color(bar_colors[idx])
|
||||
|
||||
ax.set_ylim(bottom=0)
|
||||
|
||||
ax.set_ylabel("Tput (token/s)")
|
||||
ax.set_title(f"{model} {metric}")
|
||||
ax.grid(axis='y')
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig("nightly_results.png", bbox_inches='tight', dpi=400)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_arguments()
|
||||
main(args)
|
218
.buildkite/nightly-benchmarks/scripts/run-lmdeploy-nightly.sh
Normal file
218
.buildkite/nightly-benchmarks/scripts/run-lmdeploy-nightly.sh
Normal file
@ -0,0 +1,218 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -o pipefail
|
||||
|
||||
check_gpus() {
|
||||
# check the number of GPUs and GPU type.
|
||||
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
|
||||
if [[ $gpu_count -gt 0 ]]; then
|
||||
echo "GPU found."
|
||||
else
|
||||
echo "Need at least 1 GPU to run benchmarking."
|
||||
exit 1
|
||||
fi
|
||||
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
|
||||
echo "GPU type is $gpu_type"
|
||||
}
|
||||
|
||||
kill_gpu_processes() {
|
||||
pkill lmdeploy || true
|
||||
# waiting for GPU processes to be fully killed
|
||||
sleep 10
|
||||
# Print the GPU memory usage
|
||||
# so that we know if all GPU processes are killed.
|
||||
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
|
||||
# The memory usage should be 0 MB.
|
||||
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
|
||||
}
|
||||
|
||||
json2args() {
|
||||
# transforms the JSON string to command line args, and '_' is replaced to '-'
|
||||
# example:
|
||||
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
|
||||
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
|
||||
local json_string=$1
|
||||
local args=$(
|
||||
echo "$json_string" | jq -r '
|
||||
to_entries |
|
||||
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
|
||||
join(" ")
|
||||
'
|
||||
)
|
||||
echo "$args"
|
||||
}
|
||||
|
||||
wait_for_server() {
|
||||
# wait for vllm server to start
|
||||
# return 1 if vllm server crashes
|
||||
timeout 1200 bash -c '
|
||||
until curl -s localhost:8000/v1/completions > /dev/null; do
|
||||
sleep 1
|
||||
done' && return 0 || return 1
|
||||
}
|
||||
|
||||
run_serving_tests() {
|
||||
# run serving tests using `benchmark_serving.py`
|
||||
# $1: a json file specifying serving test cases
|
||||
|
||||
local serving_test_file
|
||||
serving_test_file=$1
|
||||
|
||||
# Iterate over serving tests
|
||||
jq -c '.[]' "$serving_test_file" | while read -r params; do
|
||||
# get the test name, and append the GPU type back to it.
|
||||
test_name=$(echo "$params" | jq -r '.test_name')
|
||||
|
||||
# if TEST_SELECTOR is set, only run the test cases that match the selector
|
||||
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
|
||||
echo "Skip test case $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
# append lmdeploy to the test name
|
||||
test_name=lmdeploy_$test_name
|
||||
|
||||
# get common parameters
|
||||
common_params=$(echo "$params" | jq -r '.common_parameters')
|
||||
model=$(echo "$common_params" | jq -r '.model')
|
||||
tp=$(echo "$common_params" | jq -r '.tp')
|
||||
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
|
||||
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
|
||||
port=$(echo "$common_params" | jq -r '.port')
|
||||
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
|
||||
|
||||
|
||||
|
||||
# get client and server arguments
|
||||
server_params=$(echo "$params" | jq -r '.lmdeploy_server_parameters')
|
||||
client_params=$(echo "$params" | jq -r '.lmdeploy_client_parameters')
|
||||
server_args=$(json2args "$server_params")
|
||||
client_args=$(json2args "$client_params")
|
||||
qps_list=$(echo "$params" | jq -r '.qps_list')
|
||||
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
|
||||
echo "Running over qps list $qps_list"
|
||||
|
||||
# check if there is enough GPU to run the test
|
||||
if [[ $gpu_count -lt $tp ]]; then
|
||||
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
# prepare tokenizer
|
||||
rm -rf /tokenizer_cache
|
||||
mkdir /tokenizer_cache
|
||||
python ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \
|
||||
--model "$model" \
|
||||
--cachedir /tokenizer_cache
|
||||
|
||||
server_command="lmdeploy serve api_server $model \
|
||||
--tp $tp \
|
||||
--server-port $port \
|
||||
$server_args"
|
||||
|
||||
# run the server
|
||||
echo "Running test case $test_name"
|
||||
echo "Server command: $server_command"
|
||||
bash -c "$server_command" &
|
||||
|
||||
# wait until the server is alive
|
||||
wait_for_server
|
||||
if [ $? -eq 0 ]; then
|
||||
echo ""
|
||||
echo "lmdeploy server is up and running."
|
||||
else
|
||||
echo ""
|
||||
echo "lmdeploy failed to start within the timeout period."
|
||||
break
|
||||
fi
|
||||
|
||||
# get model name
|
||||
model_name=$(python ../.buildkite/nightly-benchmarks/scripts/get-lmdeploy-modelname.py)
|
||||
|
||||
# iterate over different QPS
|
||||
for qps in $qps_list; do
|
||||
# remove the surrounding single quote from qps
|
||||
if [[ "$qps" == *"inf"* ]]; then
|
||||
echo "qps was $qps"
|
||||
qps="inf"
|
||||
echo "now qps is $qps"
|
||||
fi
|
||||
|
||||
new_test_name=$test_name"_qps_"$qps
|
||||
|
||||
client_command="python3 benchmark_serving.py \
|
||||
--backend lmdeploy \
|
||||
--tokenizer /tokenizer_cache \
|
||||
--dataset-name $dataset_name \
|
||||
--dataset-path $dataset_path \
|
||||
--num-prompts $num_prompts \
|
||||
--port $port \
|
||||
--save-result \
|
||||
--result-dir $RESULTS_FOLDER \
|
||||
--result-filename ${new_test_name}.json \
|
||||
--request-rate $qps \
|
||||
--model \"$model_name\" \
|
||||
$client_args"
|
||||
|
||||
echo "Running test case $test_name with qps $qps"
|
||||
echo "Client command: $client_command"
|
||||
|
||||
eval "$client_command"
|
||||
|
||||
# record the benchmarking commands
|
||||
jq_output=$(jq -n \
|
||||
--arg server "$server_command" \
|
||||
--arg client "$client_command" \
|
||||
--arg gpu "$gpu_type" \
|
||||
--arg engine "lmdeploy" \
|
||||
'{
|
||||
server_command: $server,
|
||||
client_command: $client,
|
||||
gpu_type: $gpu,
|
||||
engine: $engine
|
||||
}')
|
||||
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
|
||||
|
||||
done
|
||||
|
||||
# clean up
|
||||
kill_gpu_processes
|
||||
rm -rf /root/.cache/huggingface/*
|
||||
done
|
||||
}
|
||||
|
||||
|
||||
upload_to_buildkite() {
|
||||
# upload the benchmarking results to buildkite
|
||||
|
||||
# if the agent binary is not found, skip uploading the results, exit 0
|
||||
if [ ! -f /workspace/buildkite-agent ]; then
|
||||
echo "buildkite-agent binary not found. Skip uploading the results."
|
||||
return 0
|
||||
fi
|
||||
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
|
||||
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
|
||||
}
|
||||
|
||||
|
||||
main() {
|
||||
|
||||
check_gpus
|
||||
# enter vllm directory
|
||||
cd $VLLM_SOURCE_CODE_LOC/benchmarks
|
||||
|
||||
declare -g RESULTS_FOLDER=results/
|
||||
mkdir -p $RESULTS_FOLDER
|
||||
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
|
||||
|
||||
python -m pip install transformers==4.41.2
|
||||
|
||||
export CURRENT_LLM_SERVING_ENGINE=lmdeploy
|
||||
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
|
||||
python -m pip install tabulate pandas
|
||||
python $BENCHMARK_ROOT/scripts/summary-nightly-results.py
|
||||
upload_to_buildkite
|
||||
|
||||
}
|
||||
|
||||
main "$@"
|
216
.buildkite/nightly-benchmarks/scripts/run-tgi-nightly.sh
Normal file
216
.buildkite/nightly-benchmarks/scripts/run-tgi-nightly.sh
Normal file
@ -0,0 +1,216 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -o pipefail
|
||||
|
||||
check_gpus() {
|
||||
# check the number of GPUs and GPU type.
|
||||
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
|
||||
if [[ $gpu_count -gt 0 ]]; then
|
||||
echo "GPU found."
|
||||
else
|
||||
echo "Need at least 1 GPU to run benchmarking."
|
||||
exit 1
|
||||
fi
|
||||
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
|
||||
echo "GPU type is $gpu_type"
|
||||
}
|
||||
|
||||
kill_gpu_processes() {
|
||||
pkill text-generation || true
|
||||
# waiting for GPU processes to be fully killed
|
||||
sleep 10
|
||||
# Print the GPU memory usage
|
||||
# so that we know if all GPU processes are killed.
|
||||
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
|
||||
# The memory usage should be 0 MB.
|
||||
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
|
||||
}
|
||||
|
||||
json2args() {
|
||||
# transforms the JSON string to command line args, and '_' is replaced to '-'
|
||||
# example:
|
||||
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
|
||||
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
|
||||
local json_string=$1
|
||||
local args=$(
|
||||
echo "$json_string" | jq -r '
|
||||
to_entries |
|
||||
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
|
||||
join(" ")
|
||||
'
|
||||
)
|
||||
echo "$args"
|
||||
}
|
||||
|
||||
wait_for_server() {
|
||||
timeout 1200 bash -c '
|
||||
until curl -s localhost:8000/generate_stream > /dev/null; do
|
||||
sleep 1
|
||||
done' && return 0 || return 1
|
||||
}
|
||||
|
||||
run_serving_tests() {
|
||||
# run serving tests using `benchmark_serving.py`
|
||||
# $1: a json file specifying serving test cases
|
||||
|
||||
local serving_test_file
|
||||
serving_test_file=$1
|
||||
|
||||
# Iterate over serving tests
|
||||
jq -c '.[]' "$serving_test_file" | while read -r params; do
|
||||
# get the test name, and append the GPU type back to it.
|
||||
test_name=$(echo "$params" | jq -r '.test_name')
|
||||
|
||||
|
||||
# if TEST_SELECTOR is set, only run the test cases that match the selector
|
||||
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
|
||||
echo "Skip test case $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
# append tgi to the test name
|
||||
test_name=tgi_$test_name
|
||||
|
||||
# get common parameters
|
||||
common_params=$(echo "$params" | jq -r '.common_parameters')
|
||||
model=$(echo "$common_params" | jq -r '.model')
|
||||
tp=$(echo "$common_params" | jq -r '.tp')
|
||||
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
|
||||
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
|
||||
port=$(echo "$common_params" | jq -r '.port')
|
||||
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
|
||||
|
||||
# get client and server arguments
|
||||
server_params=$(echo "$params" | jq -r '.tgi_server_parameters')
|
||||
client_params=$(echo "$params" | jq -r '.tgi_client_parameters')
|
||||
server_args=$(json2args "$server_params")
|
||||
client_args=$(json2args "$client_params")
|
||||
qps_list=$(echo "$params" | jq -r '.qps_list')
|
||||
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
|
||||
echo "Running over qps list $qps_list"
|
||||
|
||||
# check if there is enough GPU to run the test
|
||||
if [[ $gpu_count -lt $tp ]]; then
|
||||
echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
if echo "$common_params" | jq -e 'has("fp8")' > /dev/null; then
|
||||
echo "Key 'fp8' exists in common params."
|
||||
server_command="/tgi-entrypoint.sh \
|
||||
--model-id $model \
|
||||
--num-shard $tp \
|
||||
--port $port \
|
||||
--quantize fp8 \
|
||||
$server_args"
|
||||
else
|
||||
echo "Key 'fp8' does not exist in common params."
|
||||
server_command="/tgi-entrypoint.sh \
|
||||
--model-id $model \
|
||||
--num-shard $tp \
|
||||
--port $port \
|
||||
$server_args"
|
||||
fi
|
||||
|
||||
|
||||
|
||||
|
||||
# run the server
|
||||
echo "Running test case $test_name"
|
||||
echo "Server command: $server_command"
|
||||
eval "$server_command" &
|
||||
|
||||
# wait until the server is alive
|
||||
wait_for_server
|
||||
if [ $? -eq 0 ]; then
|
||||
echo ""
|
||||
echo "tgi server is up and running."
|
||||
else
|
||||
echo ""
|
||||
echo "tgi failed to start within the timeout period."
|
||||
break
|
||||
fi
|
||||
|
||||
# iterate over different QPS
|
||||
for qps in $qps_list; do
|
||||
# remove the surrounding single quote from qps
|
||||
if [[ "$qps" == *"inf"* ]]; then
|
||||
echo "qps was $qps"
|
||||
qps="inf"
|
||||
echo "now qps is $qps"
|
||||
fi
|
||||
|
||||
new_test_name=$test_name"_qps_"$qps
|
||||
|
||||
client_command="python3 benchmark_serving.py \
|
||||
--backend tgi \
|
||||
--model $model \
|
||||
--dataset-name $dataset_name \
|
||||
--dataset-path $dataset_path \
|
||||
--num-prompts $num_prompts \
|
||||
--port $port \
|
||||
--save-result \
|
||||
--result-dir $RESULTS_FOLDER \
|
||||
--result-filename ${new_test_name}.json \
|
||||
--request-rate $qps \
|
||||
$client_args"
|
||||
|
||||
echo "Running test case $test_name with qps $qps"
|
||||
echo "Client command: $client_command"
|
||||
|
||||
eval "$client_command"
|
||||
|
||||
# record the benchmarking commands
|
||||
jq_output=$(jq -n \
|
||||
--arg server "$server_command" \
|
||||
--arg client "$client_command" \
|
||||
--arg gpu "$gpu_type" \
|
||||
--arg engine "tgi" \
|
||||
'{
|
||||
server_command: $server,
|
||||
client_command: $client,
|
||||
gpu_type: $gpu,
|
||||
engine: $engine
|
||||
}')
|
||||
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
|
||||
|
||||
done
|
||||
|
||||
# clean up
|
||||
kill_gpu_processes
|
||||
rm -rf /root/.cache/huggingface/*
|
||||
done
|
||||
}
|
||||
|
||||
|
||||
|
||||
upload_to_buildkite() {
|
||||
# upload the benchmarking results to buildkite
|
||||
|
||||
# if the agent binary is not found, skip uploading the results, exit 0
|
||||
if [ ! -f /workspace/buildkite-agent ]; then
|
||||
echo "buildkite-agent binary not found. Skip uploading the results."
|
||||
return 0
|
||||
fi
|
||||
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
|
||||
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
|
||||
}
|
||||
|
||||
main() {
|
||||
|
||||
check_gpus
|
||||
# enter vllm directory
|
||||
cd $VLLM_SOURCE_CODE_LOC/benchmarks
|
||||
declare -g RESULTS_FOLDER=results/
|
||||
mkdir -p $RESULTS_FOLDER
|
||||
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
|
||||
|
||||
export CURRENT_LLM_SERVING_ENGINE=tgi
|
||||
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
|
||||
python -m pip install tabulate pandas
|
||||
python $BENCHMARK_ROOT/scripts/summary-nightly-results.py
|
||||
upload_to_buildkite
|
||||
|
||||
}
|
||||
|
||||
main "$@"
|
214
.buildkite/nightly-benchmarks/scripts/run-trt-nightly.sh
Normal file
214
.buildkite/nightly-benchmarks/scripts/run-trt-nightly.sh
Normal file
@ -0,0 +1,214 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -o pipefail
|
||||
|
||||
check_gpus() {
|
||||
# check the number of GPUs and GPU type.
|
||||
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
|
||||
if [[ $gpu_count -gt 0 ]]; then
|
||||
echo "GPU found."
|
||||
else
|
||||
echo "Need at least 1 GPU to run benchmarking."
|
||||
exit 1
|
||||
fi
|
||||
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
|
||||
echo "GPU type is $gpu_type"
|
||||
}
|
||||
|
||||
kill_gpu_processes() {
|
||||
pkill tritonserver || true
|
||||
# waiting for GPU processes to be fully killed
|
||||
sleep 20
|
||||
# Print the GPU memory usage
|
||||
# so that we know if all GPU processes are killed.
|
||||
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
|
||||
# The memory usage should be 0 MB.
|
||||
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
|
||||
}
|
||||
|
||||
json2args() {
|
||||
# transforms the JSON string to command line args, and '_' is replaced to '-'
|
||||
# example:
|
||||
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
|
||||
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
|
||||
local json_string=$1
|
||||
local args=$(
|
||||
echo "$json_string" | jq -r '
|
||||
to_entries |
|
||||
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
|
||||
join(" ")
|
||||
'
|
||||
)
|
||||
echo "$args"
|
||||
}
|
||||
|
||||
wait_for_server() {
|
||||
timeout 1200 bash -c '
|
||||
until curl -s localhost:8000/generate_stream > /dev/null; do
|
||||
sleep 1
|
||||
done' && return 0 || return 1
|
||||
}
|
||||
|
||||
run_serving_tests() {
|
||||
# run serving tests using `benchmark_serving.py`
|
||||
# $1: a json file specifying serving test cases
|
||||
|
||||
local serving_test_file
|
||||
serving_test_file=$1
|
||||
|
||||
# Iterate over serving tests
|
||||
jq -c '.[]' "$serving_test_file" | while read -r params; do
|
||||
# get the test name, and append the GPU type back to it.
|
||||
test_name=$(echo "$params" | jq -r '.test_name')
|
||||
|
||||
# if TEST_SELECTOR is set, only run the test cases that match the selector
|
||||
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
|
||||
echo "Skip test case $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
# append trt to the test name
|
||||
test_name=trt_$test_name
|
||||
|
||||
# get common parameters
|
||||
common_params=$(echo "$params" | jq -r '.common_parameters')
|
||||
model=$(echo "$common_params" | jq -r '.model')
|
||||
tp=$(echo "$common_params" | jq -r '.tp')
|
||||
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
|
||||
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
|
||||
port=$(echo "$common_params" | jq -r '.port')
|
||||
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
|
||||
|
||||
# get client and server arguments
|
||||
server_params=$(echo "$params" | jq -r '.trt_server_parameters')
|
||||
client_params=$(echo "$params" | jq -r '.trt_client_parameters')
|
||||
client_args=$(json2args "$client_params")
|
||||
qps_list=$(echo "$params" | jq -r '.qps_list')
|
||||
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
|
||||
echo "Running over qps list $qps_list"
|
||||
|
||||
# check if there is enough GPU to run the test
|
||||
if [[ $gpu_count -lt $tp ]]; then
|
||||
echo "Required model_tp_size $tp but only $gpu_count GPU found. Skip testcase $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
|
||||
|
||||
cd $VLLM_SOURCE_CODE_LOC/benchmarks
|
||||
|
||||
|
||||
echo "Running test case $test_name"
|
||||
bash ../.buildkite/nightly-benchmarks/scripts/launch-trt-server.sh "$server_params" "$common_params"
|
||||
|
||||
# wait until the server is alive
|
||||
wait_for_server
|
||||
if [ $? -eq 0 ]; then
|
||||
echo ""
|
||||
echo "trt server is up and running."
|
||||
else
|
||||
echo ""
|
||||
echo "trt failed to start within the timeout period."
|
||||
break
|
||||
fi
|
||||
|
||||
# prepare tokenizer
|
||||
cd $VLLM_SOURCE_CODE_LOC/benchmarks
|
||||
rm -rf /tokenizer_cache
|
||||
mkdir /tokenizer_cache
|
||||
python ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \
|
||||
--model "$model" \
|
||||
--cachedir /tokenizer_cache
|
||||
cd $VLLM_SOURCE_CODE_LOC/benchmarks
|
||||
|
||||
|
||||
# iterate over different QPS
|
||||
for qps in $qps_list; do
|
||||
# remove the surrounding single quote from qps
|
||||
if [[ "$qps" == *"inf"* ]]; then
|
||||
echo "qps was $qps"
|
||||
qps="inf"
|
||||
echo "now qps is $qps"
|
||||
fi
|
||||
|
||||
new_test_name=$test_name"_qps_"$qps
|
||||
|
||||
client_command="python3 benchmark_serving.py \
|
||||
--backend tensorrt-llm \
|
||||
--tokenizer /tokenizer_cache \
|
||||
--model $model \
|
||||
--dataset-name $dataset_name \
|
||||
--dataset-path $dataset_path \
|
||||
--num-prompts $num_prompts \
|
||||
--port $port \
|
||||
--save-result \
|
||||
--result-dir $RESULTS_FOLDER \
|
||||
--result-filename ${new_test_name}.json \
|
||||
--request-rate $qps \
|
||||
$client_args"
|
||||
|
||||
echo "Running test case $test_name with qps $qps"
|
||||
echo "Client command: $client_command"
|
||||
|
||||
eval "$client_command"
|
||||
|
||||
server_command=""
|
||||
# record the benchmarking commands
|
||||
jq_output=$(jq -n \
|
||||
--arg server "$server_command" \
|
||||
--arg client "$client_command" \
|
||||
--arg gpu "$gpu_type" \
|
||||
--arg engine "trt" \
|
||||
'{
|
||||
server_command: $server,
|
||||
client_command: $client,
|
||||
gpu_type: $gpu,
|
||||
engine: $engine
|
||||
}')
|
||||
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
|
||||
|
||||
done
|
||||
|
||||
# clean up
|
||||
kill_gpu_processes
|
||||
rm -rf /root/.cache/huggingface/*
|
||||
done
|
||||
}
|
||||
|
||||
upload_to_buildkite() {
|
||||
# upload the benchmarking results to buildkite
|
||||
|
||||
# if the agent binary is not found, skip uploading the results, exit 0
|
||||
if [ ! -f /workspace/buildkite-agent ]; then
|
||||
echo "buildkite-agent binary not found. Skip uploading the results."
|
||||
return 0
|
||||
fi
|
||||
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
|
||||
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
|
||||
}
|
||||
|
||||
|
||||
main() {
|
||||
|
||||
check_gpus
|
||||
|
||||
|
||||
# enter vllm directory
|
||||
cd $VLLM_SOURCE_CODE_LOC/benchmarks
|
||||
|
||||
declare -g RESULTS_FOLDER=results/
|
||||
mkdir -p $RESULTS_FOLDER
|
||||
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
|
||||
|
||||
# update transformers package, to make sure mixtral tokenizer is available
|
||||
python -m pip install transformers -U
|
||||
|
||||
export CURRENT_LLM_SERVING_ENGINE=trt
|
||||
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
|
||||
python -m pip install tabulate pandas
|
||||
python $BENCHMARK_ROOT/scripts/summary-nightly-results.py
|
||||
upload_to_buildkite
|
||||
|
||||
}
|
||||
|
||||
main "$@"
|
221
.buildkite/nightly-benchmarks/scripts/run-vllm-nightly.sh
Normal file
221
.buildkite/nightly-benchmarks/scripts/run-vllm-nightly.sh
Normal file
@ -0,0 +1,221 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -o pipefail
|
||||
|
||||
check_gpus() {
|
||||
# check the number of GPUs and GPU type.
|
||||
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
|
||||
if [[ $gpu_count -gt 0 ]]; then
|
||||
echo "GPU found."
|
||||
else
|
||||
echo "Need at least 1 GPU to run benchmarking."
|
||||
exit 1
|
||||
fi
|
||||
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
|
||||
echo "GPU type is $gpu_type"
|
||||
}
|
||||
|
||||
kill_gpu_processes() {
|
||||
# kill all processes on GPU.
|
||||
pkill pt_main_thread
|
||||
sleep 10
|
||||
|
||||
# remove vllm config file
|
||||
rm -rf ~/.config/vllm
|
||||
|
||||
# Print the GPU memory usage
|
||||
# so that we know if all GPU processes are killed.
|
||||
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
|
||||
# The memory usage should be 0 MB.
|
||||
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
|
||||
}
|
||||
|
||||
json2args() {
|
||||
# transforms the JSON string to command line args, and '_' is replaced to '-'
|
||||
# example:
|
||||
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
|
||||
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
|
||||
local json_string=$1
|
||||
local args=$(
|
||||
echo "$json_string" | jq -r '
|
||||
to_entries |
|
||||
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
|
||||
join(" ")
|
||||
'
|
||||
)
|
||||
echo "$args"
|
||||
}
|
||||
|
||||
wait_for_server() {
|
||||
# wait for vllm server to start
|
||||
# return 1 if vllm server crashes
|
||||
timeout 1200 bash -c '
|
||||
until curl -s localhost:8000/v1/completions > /dev/null; do
|
||||
sleep 1
|
||||
done' && return 0 || return 1
|
||||
}
|
||||
|
||||
run_serving_tests() {
|
||||
# run serving tests using `benchmark_serving.py`
|
||||
# $1: a json file specifying serving test cases
|
||||
|
||||
local serving_test_file
|
||||
serving_test_file=$1
|
||||
|
||||
# Iterate over serving tests
|
||||
jq -c '.[]' "$serving_test_file" | while read -r params; do
|
||||
# get the test name, and append the GPU type back to it.
|
||||
test_name=$(echo "$params" | jq -r '.test_name')
|
||||
|
||||
# if TEST_SELECTOR is set, only run the test cases that match the selector
|
||||
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
|
||||
echo "Skip test case $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
# append vllm to the test name
|
||||
test_name=vllm_$test_name
|
||||
|
||||
|
||||
# get common parameters
|
||||
common_params=$(echo "$params" | jq -r '.common_parameters')
|
||||
model=$(echo "$common_params" | jq -r '.model')
|
||||
tp=$(echo "$common_params" | jq -r '.tp')
|
||||
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
|
||||
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
|
||||
port=$(echo "$common_params" | jq -r '.port')
|
||||
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
|
||||
|
||||
# get client and server arguments
|
||||
server_params=$(echo "$params" | jq -r '.vllm_server_parameters')
|
||||
client_params=$(echo "$params" | jq -r '.vllm_client_parameters')
|
||||
server_args=$(json2args "$server_params")
|
||||
client_args=$(json2args "$client_params")
|
||||
qps_list=$(echo "$params" | jq -r '.qps_list')
|
||||
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
|
||||
echo "Running over qps list $qps_list"
|
||||
|
||||
# check if there is enough GPU to run the test
|
||||
if [[ $gpu_count -lt $tp ]]; then
|
||||
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
if echo "$common_params" | jq -e 'has("fp8")' > /dev/null; then
|
||||
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
|
||||
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
|
||||
server_command="python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
-tp $tp \
|
||||
--model $model \
|
||||
--port $port \
|
||||
$server_args"
|
||||
else
|
||||
echo "Key 'fp8' does not exist in common params."
|
||||
server_command="python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
-tp $tp \
|
||||
--model $model \
|
||||
--port $port \
|
||||
$server_args"
|
||||
fi
|
||||
|
||||
# run the server
|
||||
echo "Running test case $test_name"
|
||||
echo "Server command: $server_command"
|
||||
eval "$server_command" &
|
||||
|
||||
# wait until the server is alive
|
||||
wait_for_server
|
||||
if [ $? -eq 0 ]; then
|
||||
echo ""
|
||||
echo "vllm server is up and running."
|
||||
else
|
||||
echo ""
|
||||
echo "vllm failed to start within the timeout period."
|
||||
break
|
||||
fi
|
||||
|
||||
# iterate over different QPS
|
||||
for qps in $qps_list; do
|
||||
# remove the surrounding single quote from qps
|
||||
if [[ "$qps" == *"inf"* ]]; then
|
||||
echo "qps was $qps"
|
||||
qps="inf"
|
||||
echo "now qps is $qps"
|
||||
fi
|
||||
|
||||
new_test_name=$test_name"_qps_"$qps
|
||||
|
||||
client_command="python3 benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $model \
|
||||
--dataset-name $dataset_name \
|
||||
--dataset-path $dataset_path \
|
||||
--num-prompts $num_prompts \
|
||||
--port $port \
|
||||
--save-result \
|
||||
--result-dir $RESULTS_FOLDER \
|
||||
--result-filename ${new_test_name}.json \
|
||||
--request-rate $qps \
|
||||
$client_args"
|
||||
|
||||
echo "Running test case $test_name with qps $qps"
|
||||
echo "Client command: $client_command"
|
||||
|
||||
eval "$client_command"
|
||||
|
||||
# record the benchmarking commands
|
||||
jq_output=$(jq -n \
|
||||
--arg server "$server_command" \
|
||||
--arg client "$client_command" \
|
||||
--arg gpu "$gpu_type" \
|
||||
--arg engine "vllm" \
|
||||
'{
|
||||
server_command: $server,
|
||||
client_command: $client,
|
||||
gpu_type: $gpu,
|
||||
engine: $engine
|
||||
}')
|
||||
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
|
||||
|
||||
done
|
||||
|
||||
# clean up
|
||||
kill_gpu_processes
|
||||
rm -rf /root/.cache/huggingface/*
|
||||
done
|
||||
}
|
||||
|
||||
|
||||
upload_to_buildkite() {
|
||||
# upload the benchmarking results to buildkite
|
||||
|
||||
# if the agent binary is not found, skip uploading the results, exit 0
|
||||
if [ ! -f /workspace/buildkite-agent ]; then
|
||||
echo "buildkite-agent binary not found. Skip uploading the results."
|
||||
return 0
|
||||
fi
|
||||
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
|
||||
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
|
||||
}
|
||||
|
||||
main() {
|
||||
|
||||
check_gpus
|
||||
# enter vllm directory
|
||||
cd $VLLM_SOURCE_CODE_LOC/benchmarks
|
||||
declare -g RESULTS_FOLDER=results/
|
||||
mkdir -p $RESULTS_FOLDER
|
||||
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
|
||||
|
||||
export CURRENT_LLM_SERVING_ENGINE=vllm
|
||||
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
|
||||
|
||||
python3 -m pip install tabulate pandas
|
||||
python3 $BENCHMARK_ROOT/scripts/summary-nightly-results.py
|
||||
upload_to_buildkite
|
||||
|
||||
}
|
||||
|
||||
main "$@"
|
@ -0,0 +1,76 @@
|
||||
import datetime
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
from tabulate import tabulate
|
||||
|
||||
results_folder = Path("results/")
|
||||
|
||||
# serving results and the keys that will be printed into markdown
|
||||
serving_results = []
|
||||
serving_column_mapping = {
|
||||
"test_name": "Test name",
|
||||
"gpu_type": "GPU",
|
||||
"completed": "Successful req.",
|
||||
"request_throughput": "Tput (req/s)",
|
||||
"mean_ttft_ms": "Mean TTFT (ms)",
|
||||
"std_ttft_ms": "Std TTFT (ms)",
|
||||
"mean_itl_ms": "Mean ITL (ms)",
|
||||
"std_itl_ms": "Std ITL (ms)",
|
||||
"input_throughput": "Input Tput (tok/s)",
|
||||
"output_throughput": "Output Tput (tok/s)",
|
||||
"engine": "Engine",
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# collect results
|
||||
for test_file in results_folder.glob("*.json"):
|
||||
|
||||
with open(test_file, "r") as f:
|
||||
raw_result = json.loads(f.read())
|
||||
|
||||
# attach the benchmarking command to raw_result
|
||||
with open(test_file.with_suffix(".commands"), "r") as f:
|
||||
command = json.loads(f.read())
|
||||
raw_result.update(command)
|
||||
|
||||
# update the test name of this result
|
||||
raw_result.update({"test_name": test_file.stem})
|
||||
|
||||
# add the result to raw_result
|
||||
serving_results.append(raw_result)
|
||||
continue
|
||||
|
||||
serving_results = pd.DataFrame.from_dict(serving_results)
|
||||
|
||||
if not serving_results.empty:
|
||||
serving_results = serving_results[list(
|
||||
serving_column_mapping.keys())].rename(
|
||||
columns=serving_column_mapping)
|
||||
|
||||
serving_md_table_with_headers = tabulate(serving_results,
|
||||
headers='keys',
|
||||
tablefmt='pipe',
|
||||
showindex=False)
|
||||
# remove the first line of header
|
||||
serving_md_table_lines = serving_md_table_with_headers.split('\n')
|
||||
serving_md_table_without_header = '\n'.join(serving_md_table_lines[2:])
|
||||
|
||||
prefix = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
||||
prefix = prefix + "_" + os.environ.get("CURRENT_LLM_SERVING_ENGINE")
|
||||
|
||||
# document benchmarking results in markdown
|
||||
with open(results_folder / f"{prefix}_nightly_results.md", "w") as f:
|
||||
# document results with header.
|
||||
# for those who wants to reproduce our benchmark.
|
||||
f.write(serving_md_table_with_headers)
|
||||
f.write('\n')
|
||||
|
||||
# document benchmarking results in json
|
||||
with open(results_folder / f"{prefix}_nightly_results.json", "w") as f:
|
||||
|
||||
results = serving_results.to_dict(orient='records')
|
||||
f.write(json.dumps(results))
|
116
.buildkite/nightly-benchmarks/tests/nightly-tests.json
Normal file
116
.buildkite/nightly-benchmarks/tests/nightly-tests.json
Normal file
@ -0,0 +1,116 @@
|
||||
[
|
||||
{
|
||||
"test_name": "llama8B_tp1",
|
||||
"qps_list": [4],
|
||||
"common_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3-8B",
|
||||
"tp": 1,
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 500,
|
||||
"port": 8000
|
||||
},
|
||||
"lmdeploy_server_parameters": {
|
||||
},
|
||||
"lmdeploy_client_parameters": {
|
||||
},
|
||||
"tgi_server_parameters": {
|
||||
},
|
||||
"tgi_client_parameters": {
|
||||
"endpoint": "/generate_stream"
|
||||
},
|
||||
"trt_server_parameters": {
|
||||
"model_type": "llama",
|
||||
"model_dtype": "float16",
|
||||
"max_batch_size": 256,
|
||||
"max_input_len": 4096,
|
||||
"max_output_len": 4096,
|
||||
"trt_llm_version": "r24.04"
|
||||
},
|
||||
"trt_client_parameters": {
|
||||
"endpoint": "/v2/models/ensemble/generate_stream"
|
||||
},
|
||||
"vllm_server_parameters": {
|
||||
"disable_log_stats": "",
|
||||
"disable_log_requests": ""
|
||||
},
|
||||
"vllm_client_parameters": {
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "llama70B_tp4",
|
||||
"qps_list": [2],
|
||||
"common_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
|
||||
"tp": 4,
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 500,
|
||||
"port": 8000
|
||||
},
|
||||
"lmdeploy_server_parameters": {
|
||||
},
|
||||
"lmdeploy_client_parameters": {
|
||||
},
|
||||
"tgi_server_parameters": {
|
||||
},
|
||||
"tgi_client_parameters": {
|
||||
"endpoint": "/generate_stream"
|
||||
},
|
||||
"trt_server_parameters": {
|
||||
"model_type": "llama",
|
||||
"model_dtype": "float16",
|
||||
"max_batch_size": 256,
|
||||
"max_input_len": 4096,
|
||||
"max_output_len": 4096,
|
||||
"trt_llm_version": "r24.04"
|
||||
},
|
||||
"trt_client_parameters": {
|
||||
"endpoint": "/v2/models/ensemble/generate_stream"
|
||||
},
|
||||
"vllm_server_parameters": {
|
||||
"disable_log_stats": "",
|
||||
"disable_log_requests": ""
|
||||
},
|
||||
"vllm_client_parameters": {
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "mixtral8x7B_tp2",
|
||||
"qps_list": [2],
|
||||
"common_parameters": {
|
||||
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
||||
"tp": 2,
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 500,
|
||||
"port": 8000
|
||||
},
|
||||
"lmdeploy_server_parameters": {
|
||||
},
|
||||
"lmdeploy_client_parameters": {
|
||||
},
|
||||
"tgi_server_parameters": {
|
||||
},
|
||||
"tgi_client_parameters": {
|
||||
"endpoint": "/generate_stream"
|
||||
},
|
||||
"trt_server_parameters": {
|
||||
"model_type": "llama",
|
||||
"model_dtype": "float16",
|
||||
"max_batch_size": 256,
|
||||
"max_input_len": 4096,
|
||||
"max_output_len": 4096,
|
||||
"trt_llm_version": "r24.04"
|
||||
},
|
||||
"trt_client_parameters": {
|
||||
"endpoint": "/v2/models/ensemble/generate_stream"
|
||||
},
|
||||
"vllm_server_parameters": {
|
||||
"disable_log_stats": "",
|
||||
"disable_log_requests": ""
|
||||
},
|
||||
"vllm_client_parameters": {
|
||||
}
|
||||
}
|
||||
]
|
@ -1,21 +1,19 @@
|
||||
steps:
|
||||
- block: "Build wheels"
|
||||
|
||||
- label: "Build wheel - Python {{matrix.python_version}}, CUDA {{matrix.cuda_version}}"
|
||||
- label: "Build wheel - CUDA {{matrix.cuda_version}}"
|
||||
agents:
|
||||
queue: cpu_queue
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg CUDA_VERSION={{matrix.cuda_version}} --build-arg PYTHON_VERSION={{matrix.python_version}} --tag vllm-ci:build-image --target build --progress plain ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg buildkite_commit=$BUILDKITE_COMMIT --build-arg USE_SCCACHE=1 --build-arg CUDA_VERSION={{matrix.cuda_version}} --tag vllm-ci:build-image --target build --progress plain ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image cp -r dist /artifacts_host"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
# rename the files to change linux -> manylinux1
|
||||
- "for f in artifacts/dist/*.whl; do mv -- \"$$f\" \"$${f/linux/manylinux1}\"; done"
|
||||
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/$BUILDKITE_COMMIT/"
|
||||
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/nightly/"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
matrix:
|
||||
setup:
|
||||
cuda_version:
|
||||
- "11.8.0"
|
||||
- "12.1.0"
|
||||
python_version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
|
@ -2,6 +2,15 @@
|
||||
set -ex
|
||||
|
||||
# Print ROCm version
|
||||
echo "--- Confirming Clean Initial State"
|
||||
while true; do
|
||||
sleep 3
|
||||
if grep -q clean /opt/amdgpu/etc/gpu_state; then
|
||||
echo "GPUs state is \"clean\""
|
||||
break
|
||||
fi
|
||||
done
|
||||
|
||||
echo "--- ROCm info"
|
||||
rocminfo
|
||||
|
||||
@ -45,15 +54,11 @@ while true; do
|
||||
fi
|
||||
done
|
||||
|
||||
echo "--- Building container"
|
||||
sha=$(git rev-parse --short HEAD)
|
||||
image_name=rocm_${sha}
|
||||
container_name=rocm_${sha}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)
|
||||
docker build \
|
||||
-t ${image_name} \
|
||||
-f Dockerfile.rocm \
|
||||
--progress plain \
|
||||
.
|
||||
echo "--- Pulling container"
|
||||
docker login registry-1.docker.io -u alexeivivanovamd -p ${DH_TOKEN}
|
||||
image_name="rocmshared/vllm-ci:${BUILDKITE_COMMIT}"
|
||||
container_name="rocm_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
|
||||
docker pull ${image_name}
|
||||
|
||||
remove_docker_container() {
|
||||
docker rm -f ${container_name} || docker image rm -f ${image_name} || true
|
||||
@ -62,11 +67,18 @@ trap remove_docker_container EXIT
|
||||
|
||||
echo "--- Running container"
|
||||
|
||||
HF_CACHE="$(realpath ~)/huggingface"
|
||||
mkdir -p ${HF_CACHE}
|
||||
HF_MOUNT="/root/.cache/huggingface"
|
||||
|
||||
docker run \
|
||||
--device /dev/kfd --device /dev/dri \
|
||||
--network host \
|
||||
--shm-size=16gb \
|
||||
--rm \
|
||||
-e HF_TOKEN \
|
||||
-v ${HF_CACHE}:${HF_MOUNT} \
|
||||
-e HF_HOME=${HF_MOUNT} \
|
||||
--name ${container_name} \
|
||||
${image_name} \
|
||||
/bin/bash -c "${@}"
|
||||
|
@ -3,26 +3,38 @@
|
||||
set -ex
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t cpu-test -f Dockerfile.cpu .
|
||||
docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-avx2 -f Dockerfile.cpu .
|
||||
numactl -C 48-95 -N 1 docker build -t cpu-test -f Dockerfile.cpu .
|
||||
numactl -C 48-95 -N 1 docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-avx2 -f Dockerfile.cpu .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() { docker rm -f cpu-test cpu-test-avx2 || true; }
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image
|
||||
# Run the image, setting --shm-size=4g for tensor parallel.
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=48-95 \
|
||||
--cpuset-mems=1 --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --name cpu-test cpu-test
|
||||
--cpuset-mems=1 --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=48-95 \
|
||||
--cpuset-mems=1 --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --name cpu-test-avx2 cpu-test-avx2
|
||||
--cpuset-mems=1 --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-avx2 cpu-test-avx2
|
||||
|
||||
# offline inference
|
||||
docker exec cpu-test bash -c "python3 examples/offline_inference.py"
|
||||
docker exec cpu-test-avx2 bash -c "python3 examples/offline_inference.py"
|
||||
|
||||
# Run basic model test
|
||||
docker exec cpu-test bash -c "cd tests;
|
||||
docker exec cpu-test bash -c "
|
||||
pip install pytest Pillow protobuf
|
||||
cd ../
|
||||
pytest -v -s tests/models -m \"not vlm\" --ignore=tests/models/test_embedding.py --ignore=tests/models/test_registry.py --ignore=tests/models/test_jamba.py" # Mamba on CPU is not supported
|
||||
|
||||
# online inference
|
||||
docker exec cpu-test bash -c "
|
||||
export VLLM_CPU_KVCACHE_SPACE=10
|
||||
export VLLM_CPU_OMP_THREADS_BIND=48-92
|
||||
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m &
|
||||
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
|
||||
python3 benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--dataset-name random \
|
||||
--model facebook/opt-125m \
|
||||
--num-prompts 20 \
|
||||
--endpoint /v1/completions \
|
||||
--tokenizer facebook/opt-125m"
|
||||
|
105
.buildkite/run-multi-node-test.sh
Executable file
105
.buildkite/run-multi-node-test.sh
Executable file
@ -0,0 +1,105 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -euox pipefail
|
||||
|
||||
if [[ $# -lt 4 ]]; then
|
||||
echo "Usage: .buildkite/run-multi-node-test.sh WORKING_DIR NUM_NODES NUM_GPUS DOCKER_IMAGE COMMAND1 COMMAND2 ... COMMANDN"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
WORKING_DIR=$1
|
||||
NUM_NODES=$2
|
||||
NUM_GPUS=$3
|
||||
DOCKER_IMAGE=$4
|
||||
|
||||
shift 4
|
||||
COMMANDS=("$@")
|
||||
if [ ${#COMMANDS[@]} -ne $NUM_NODES ]; then
|
||||
echo "The number of commands must be equal to the number of nodes."
|
||||
echo "Number of nodes: $NUM_NODES"
|
||||
echo "Number of commands: ${#COMMANDS[@]}"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "List of commands"
|
||||
for command in "${COMMANDS[@]}"; do
|
||||
echo $command
|
||||
done
|
||||
|
||||
start_network() {
|
||||
docker network create --subnet=192.168.10.0/24 docker-net
|
||||
}
|
||||
|
||||
start_nodes() {
|
||||
for node in $(seq 0 $(($NUM_NODES-1))); do
|
||||
GPU_DEVICES='"device='
|
||||
for node_gpu in $(seq 0 $(($NUM_GPUS - 1))); do
|
||||
DEVICE_NUM=$(($node * $NUM_GPUS + $node_gpu))
|
||||
GPU_DEVICES+=$(($DEVICE_NUM))
|
||||
if [ $node_gpu -lt $(($NUM_GPUS - 1)) ]; then
|
||||
GPU_DEVICES+=','
|
||||
fi
|
||||
done
|
||||
GPU_DEVICES+='"'
|
||||
|
||||
# start the container in detached mode
|
||||
# things to note:
|
||||
# 1. --shm-size=10.24gb is required. don't use --ipc=host
|
||||
# 2. pass HF_TOKEN to the container
|
||||
# 3. map the huggingface cache directory to the container
|
||||
# 3. assign ip addresses to the containers (head node: 192.168.10.10, worker nodes:
|
||||
# starting from 192.168.10.11)
|
||||
docker run -d --gpus "$GPU_DEVICES" --shm-size=10.24gb -e HF_TOKEN -v ~/.cache/huggingface:/root/.cache/huggingface --name node$node --network docker-net --ip 192.168.10.$((10 + $node)) --rm $DOCKER_IMAGE /bin/bash -c "tail -f /dev/null"
|
||||
|
||||
# organize containers into a ray cluster
|
||||
if [ $node -eq 0 ]; then
|
||||
# start the ray head node
|
||||
docker exec -d node$node /bin/bash -c "ray start --head --port=6379 --block"
|
||||
# wait for the head node to be ready
|
||||
sleep 10
|
||||
else
|
||||
# start the ray worker nodes, and connect them to the head node
|
||||
docker exec -d node$node /bin/bash -c "ray start --address=192.168.10.10:6379 --block"
|
||||
fi
|
||||
done
|
||||
|
||||
# wait for the cluster to be ready
|
||||
sleep 10
|
||||
|
||||
# print the cluster status
|
||||
docker exec node0 /bin/bash -c "ray status"
|
||||
}
|
||||
|
||||
run_nodes() {
|
||||
# important: iterate in reverse order to start the head node last
|
||||
# we start the worker nodes first, in detached mode, and then start the head node
|
||||
# in the foreground, so that the output of the head node is visible in the buildkite logs
|
||||
for node in $(seq $(($NUM_NODES - 1)) -1 0); do
|
||||
GPU_DEVICES='"device='
|
||||
for node_gpu in $(seq 0 $(($NUM_GPUS - 1))); do
|
||||
DEVICE_NUM=$(($node * $NUM_GPUS + $node_gpu))
|
||||
GPU_DEVICES+=$(($DEVICE_NUM))
|
||||
if [ $node_gpu -lt $(($NUM_GPUS - 1)) ]; then
|
||||
GPU_DEVICES+=','
|
||||
fi
|
||||
done
|
||||
GPU_DEVICES+='"'
|
||||
echo "Running node$node with GPU devices: $GPU_DEVICES"
|
||||
if [ $node -ne 0 ]; then
|
||||
docker exec -d node$node /bin/bash -c "cd $WORKING_DIR ; ${COMMANDS[$node]}"
|
||||
else
|
||||
docker exec node$node /bin/bash -c "cd $WORKING_DIR ; ${COMMANDS[$node]}"
|
||||
fi
|
||||
done
|
||||
}
|
||||
cleanup() {
|
||||
for node in $(seq 0 $(($NUM_NODES-1))); do
|
||||
docker stop node$node
|
||||
done
|
||||
docker network rm docker-net
|
||||
}
|
||||
trap cleanup EXIT
|
||||
start_network
|
||||
start_nodes
|
||||
run_nodes
|
||||
|
16
.buildkite/run-tpu-test.sh
Normal file
16
.buildkite/run-tpu-test.sh
Normal file
@ -0,0 +1,16 @@
|
||||
set -e
|
||||
|
||||
# Build the docker image.
|
||||
docker build -f Dockerfile.tpu -t vllm-tpu .
|
||||
|
||||
# Set up cleanup.
|
||||
remove_docker_container() { docker rm -f tpu-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
|
||||
# For HF_TOKEN.
|
||||
source /etc/environment
|
||||
# Run a simple end-to-end example.
|
||||
docker run --privileged --net host --shm-size=16G -it -e HF_TOKEN=$HF_TOKEN --name tpu-test vllm-tpu \
|
||||
python3 /workspace/vllm/examples/offline_inference_tpu.py
|
@ -7,8 +7,31 @@
|
||||
|
||||
|
||||
steps:
|
||||
- label: Async Engine, Inputs, Utils, Worker Test
|
||||
fast_check: true
|
||||
fast_check_only: true
|
||||
commands:
|
||||
- pytest -v -s async_engine # Async Engine
|
||||
- pytest -v -s test_inputs.py
|
||||
- pytest -v -s multimodal
|
||||
- pytest -v -s test_utils.py # Utils
|
||||
- pytest -v -s worker # Worker
|
||||
|
||||
- label: Metrics, Tracing Test
|
||||
fast_check: true
|
||||
fast_check_only: true
|
||||
commands:
|
||||
- pytest -v -s metrics # Metrics
|
||||
- "pip install \
|
||||
opentelemetry-sdk \
|
||||
opentelemetry-api \
|
||||
opentelemetry-exporter-otlp \
|
||||
opentelemetry-semantic-conventions-ai" # Tracing
|
||||
- pytest -v -s tracing
|
||||
|
||||
- label: Regression Test
|
||||
mirror_hardwares: [amd]
|
||||
fast_check: true
|
||||
command: pytest -v -s test_regression.py
|
||||
working_dir: "/vllm-workspace/tests" # optional
|
||||
|
||||
@ -18,16 +41,20 @@ steps:
|
||||
|
||||
- label: Basic Correctness Test
|
||||
mirror_hardwares: [amd]
|
||||
fast_check: true
|
||||
commands:
|
||||
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_basic_correctness.py
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_basic_correctness.py
|
||||
# This flashinfer installation will fail on AMD ROCm, so it is set as optional.
|
||||
- pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.8/flashinfer-0.0.8+cu121torch2.3-cp310-cp310-linux_x86_64.whl || true
|
||||
- pytest -v -s basic_correctness/test_basic_correctness.py
|
||||
- pytest -v -s basic_correctness/test_cpu_offload.py
|
||||
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
|
||||
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
|
||||
|
||||
- label: Core Test
|
||||
mirror_hardwares: [amd]
|
||||
commands:
|
||||
fast_check: true
|
||||
commands:
|
||||
- pytest -v -s core
|
||||
- pytest -v -s distributed/test_parallel_state.py
|
||||
|
||||
@ -39,15 +66,27 @@ steps:
|
||||
- pytest -v -s distributed/test_comm_ops.py
|
||||
- pytest -v -s distributed/test_shm_broadcast.py
|
||||
|
||||
- label: 2 Node Tests (4 GPUs in total)
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
num_nodes: 2
|
||||
commands:
|
||||
- # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up)
|
||||
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py
|
||||
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py
|
||||
- # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up)
|
||||
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py
|
||||
|
||||
- label: Distributed Tests (2 GPUs)
|
||||
mirror_hardwares: [amd]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
commands:
|
||||
- bash ../.buildkite/download-images.sh
|
||||
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py
|
||||
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
|
||||
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
|
||||
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray VLLM_USE_RAY_SPMD_WORKER=1 VLLM_USE_RAY_COMPILED_DAG=1 pytest -v -s distributed/test_basic_distributed_correctness.py
|
||||
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray VLLM_USE_RAY_SPMD_WORKER=1 VLLM_USE_RAY_COMPILED_DAG=1 pytest -v -s distributed/test_basic_distributed_correctness.py
|
||||
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py
|
||||
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py
|
||||
- TEST_DIST_MODEL=llava-hf/llava-1.5-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_multimodal_broadcast.py
|
||||
@ -66,11 +105,13 @@ steps:
|
||||
#mirror_hardwares: [amd]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 4
|
||||
fast_check: true
|
||||
commands:
|
||||
- pytest -v -s distributed/test_pynccl.py
|
||||
# We want to test that models which use 2 GPUs work with 4 GPUs, which is why we duplicate them here.
|
||||
# See https://github.com/vllm-project/vllm/pull/5473#issuecomment-2166601837 for context.
|
||||
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
|
||||
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray VLLM_USE_RAY_SPMD_WORKER=1 VLLM_USE_RAY_COMPILED_DAG=1 pytest -v -s distributed/test_basic_distributed_correctness.py
|
||||
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
|
||||
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
|
||||
|
||||
@ -78,18 +119,17 @@ steps:
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 4
|
||||
commands:
|
||||
- TP_SIZE=2 PP_SIZE=2 EAGER_MODE=1 CHUNKED_PREFILL=1 pytest -v -s distributed/test_pipeline_parallel.py
|
||||
- TP_SIZE=2 PP_SIZE=2 EAGER_MODE=1 CHUNKED_PREFILL=0 pytest -v -s distributed/test_pipeline_parallel.py
|
||||
- TP_SIZE=1 PP_SIZE=3 EAGER_MODE=1 CHUNKED_PREFILL=0 pytest -v -s distributed/test_pipeline_parallel.py
|
||||
- PP_SIZE=4 EAGER_MODE=1 CHUNKED_PREFILL=1 pytest -v -s distributed/test_pipeline_parallel.py
|
||||
- PP_SIZE=4 EAGER_MODE=1 CHUNKED_PREFILL=0 pytest -v -s distributed/test_pipeline_parallel.py
|
||||
|
||||
- pytest -v -s distributed/test_pipeline_parallel.py
|
||||
|
||||
- label: Engine Test
|
||||
mirror_hardwares: [amd]
|
||||
command: pytest -v -s engine tokenization test_sequence.py test_config.py test_logger.py
|
||||
commands:
|
||||
- pytest -v -s engine test_sequence.py test_config.py test_logger.py
|
||||
# OOM in the CI unless we run this separately
|
||||
- pytest -v -s tokenization
|
||||
|
||||
- label: Entrypoints Test
|
||||
fast_check: true
|
||||
mirror_hardwares: [amd]
|
||||
|
||||
commands:
|
||||
@ -104,6 +144,7 @@ steps:
|
||||
# install tensorizer for tensorize_vllm_model.py
|
||||
- pip install awscli tensorizer
|
||||
- python3 offline_inference.py
|
||||
- python3 cpu_offload.py
|
||||
- python3 offline_inference_with_prefix.py
|
||||
- python3 llm_engine_example.py
|
||||
- python3 llava_example.py
|
||||
@ -112,27 +153,25 @@ steps:
|
||||
- label: Inputs Test
|
||||
#mirror_hardwares: [amd]
|
||||
commands:
|
||||
- bash ../.buildkite/download-images.sh
|
||||
- pytest -v -s test_inputs.py
|
||||
- pytest -v -s multimodal
|
||||
|
||||
- label: Kernels Test %N
|
||||
#mirror_hardwares: [amd]
|
||||
commands:
|
||||
- pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.7/flashinfer-0.0.7+cu121torch2.3-cp310-cp310-linux_x86_64.whl
|
||||
- pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.8/flashinfer-0.0.8+cu121torch2.3-cp310-cp310-linux_x86_64.whl
|
||||
- pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 4
|
||||
|
||||
- label: Models Test
|
||||
#mirror_hardwares: [amd]
|
||||
commands:
|
||||
- pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.7/flashinfer-0.0.7+cu121torch2.3-cp310-cp310-linux_x86_64.whl
|
||||
- pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.8/flashinfer-0.0.8+cu121torch2.3-cp310-cp310-linux_x86_64.whl
|
||||
- pytest -v -s models -m \"not vlm\"
|
||||
|
||||
- label: Vision Language Models Test
|
||||
mirror_hardwares: [amd]
|
||||
commands:
|
||||
- bash ../.buildkite/download-images.sh
|
||||
- pytest -v -s models -m vlm
|
||||
|
||||
- label: Prefix Caching Test
|
||||
@ -149,7 +188,9 @@ steps:
|
||||
command: pytest -v -s test_logits_processor.py
|
||||
|
||||
- label: Utils Test
|
||||
command: pytest -v -s test_utils.py
|
||||
commands:
|
||||
- pytest -v -s test_utils.py
|
||||
- pytest -v -s test_embedded_commit.py
|
||||
|
||||
- label: Worker Test
|
||||
mirror_hardwares: [amd]
|
||||
@ -179,7 +220,12 @@ steps:
|
||||
|
||||
- label: Tensorizer Test
|
||||
#mirror_hardwares: [amd]
|
||||
command: apt-get install curl libsodium23 && pytest -v -s tensorizer_loader
|
||||
soft_fail: true
|
||||
fast_check: true
|
||||
commands:
|
||||
- apt-get install -y curl libsodium23
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s tensorizer_loader
|
||||
|
||||
- label: Metrics Test
|
||||
mirror_hardwares: [amd]
|
||||
@ -223,6 +269,7 @@ steps:
|
||||
|
||||
- label: Documentation Build
|
||||
working_dir: "/vllm-workspace/test_docs/docs"
|
||||
fast_check: true
|
||||
no_gpu: True
|
||||
commands:
|
||||
- pip install -r requirements-docs.txt
|
||||
@ -237,7 +284,7 @@ steps:
|
||||
- pytest -v -s distributed/test_custom_all_reduce.py
|
||||
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
|
||||
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
|
||||
- pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.7/flashinfer-0.0.7+cu121torch2.3-cp310-cp310-linux_x86_64.whl
|
||||
- pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.8/flashinfer-0.0.8+cu121torch2.3-cp310-cp310-linux_x86_64.whl
|
||||
- VLLM_ATTENTION_BACKEND=FLASHINFER TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
|
||||
- VLLM_ATTENTION_BACKEND=FLASHINFER TEST_DIST_MODEL=meta-llama/Meta-Llama-3-8B DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
|
||||
- pytest -v -s -x lora/test_mixtral.py
|
||||
|
2
.github/FUNDING.yml
vendored
Normal file
2
.github/FUNDING.yml
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
github: [vllm-project]
|
||||
open_collective: [vllm]
|
21
.github/workflows/add_label_automerge.yml
vendored
Normal file
21
.github/workflows/add_label_automerge.yml
vendored
Normal file
@ -0,0 +1,21 @@
|
||||
name: Add label on auto-merge enabled
|
||||
on:
|
||||
pull_request_target:
|
||||
types:
|
||||
- auto_merge_enabled
|
||||
jobs:
|
||||
add-label-on-auto-merge:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Add label
|
||||
uses: actions/github-script@v5
|
||||
with:
|
||||
script: |
|
||||
github.rest.issues.addLabels({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
labels: ['ready']
|
||||
})
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
23
.github/workflows/add_label_ready_comment.yml
vendored
Normal file
23
.github/workflows/add_label_ready_comment.yml
vendored
Normal file
@ -0,0 +1,23 @@
|
||||
name: Add Ready Label on Ready Comment
|
||||
|
||||
on:
|
||||
issue_comment:
|
||||
types: [created]
|
||||
|
||||
jobs:
|
||||
add-ready-label:
|
||||
runs-on: ubuntu-latest
|
||||
if: github.event.issue.pull_request && contains(github.event.comment.body, '/ready')
|
||||
steps:
|
||||
- name: Add label
|
||||
uses: actions/github-script@v5
|
||||
with:
|
||||
script: |
|
||||
github.rest.issues.addLabels({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
labels: ['ready']
|
||||
})
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
22
.github/workflows/mypy.yaml
vendored
22
.github/workflows/mypy.yaml
vendored
@ -32,20 +32,22 @@ jobs:
|
||||
pip install types-setuptools
|
||||
- name: Mypy
|
||||
run: |
|
||||
mypy tests --config-file pyproject.toml
|
||||
mypy vllm/*.py --config-file pyproject.toml
|
||||
mypy vllm/attention --config-file pyproject.toml
|
||||
mypy vllm/core --config-file pyproject.toml
|
||||
mypy vllm/distributed --config-file pyproject.toml
|
||||
mypy vllm/engine --config-file pyproject.toml
|
||||
mypy vllm/entrypoints --config-file pyproject.toml
|
||||
mypy vllm/executor --config-file pyproject.toml
|
||||
mypy vllm/multimodal --config-file pyproject.toml
|
||||
mypy vllm/usage --config-file pyproject.toml
|
||||
mypy vllm/*.py --config-file pyproject.toml
|
||||
mypy vllm/transformers_utils --config-file pyproject.toml
|
||||
mypy vllm/engine --config-file pyproject.toml
|
||||
mypy vllm/worker --config-file pyproject.toml
|
||||
mypy vllm/spec_decode --config-file pyproject.toml
|
||||
mypy vllm/model_executor --config-file pyproject.toml
|
||||
mypy vllm/lora --config-file pyproject.toml
|
||||
mypy vllm/inputs --config-file pyproject.toml
|
||||
mypy vllm/logging --config-file pyproject.toml
|
||||
mypy tests --config-file pyproject.toml
|
||||
mypy vllm/lora --config-file pyproject.toml
|
||||
mypy vllm/model_executor --config-file pyproject.toml
|
||||
mypy vllm/multimodal --config-file pyproject.toml
|
||||
mypy vllm/platforms --config-file pyproject.toml
|
||||
mypy vllm/spec_decode --config-file pyproject.toml
|
||||
mypy vllm/transformers_utils --config-file pyproject.toml
|
||||
mypy vllm/usage --config-file pyproject.toml
|
||||
mypy vllm/worker --config-file pyproject.toml
|
||||
|
||||
|
2
.github/workflows/publish.yml
vendored
2
.github/workflows/publish.yml
vendored
@ -49,7 +49,7 @@ jobs:
|
||||
matrix:
|
||||
os: ['ubuntu-20.04']
|
||||
python-version: ['3.8', '3.9', '3.10', '3.11']
|
||||
pytorch-version: ['2.3.0'] # Must be the most recent version that meets requirements-cuda.txt.
|
||||
pytorch-version: ['2.3.1'] # Must be the most recent version that meets requirements-cuda.txt.
|
||||
cuda-version: ['11.8', '12.1']
|
||||
|
||||
steps:
|
||||
|
21
.github/workflows/reminder_comment.yml
vendored
Normal file
21
.github/workflows/reminder_comment.yml
vendored
Normal file
@ -0,0 +1,21 @@
|
||||
name: PR Reminder Comment Bot
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [opened]
|
||||
|
||||
jobs:
|
||||
pr_reminder:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Remind to run full CI on PR
|
||||
uses: actions/github-script@v6
|
||||
with:
|
||||
script: |
|
||||
github.rest.issues.createComment({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
body: '👋 Hi! Thank you for contributing to the vLLM project.\n Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which consists a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of default ones by unblocking the steps in your `fast-check` build on Buildkite UI. \n\nOnce the PR is approved and ready to go, please make sure to run full CI as it is required to merge (or just use auto-merge).\n\n To run full CI, you can do one of these:\n- Comment `/ready` on the PR\n- Add `ready` label to the PR\n- Enable auto-merge.\n\n🚀'
|
||||
})
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
3
.gitignore
vendored
3
.gitignore
vendored
@ -1,3 +1,6 @@
|
||||
# vllm commit id, generated by setup.py
|
||||
vllm/commit_id.py
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
|
@ -32,8 +32,8 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx11
|
||||
# requirements.txt files and should be kept consistent. The ROCm torch
|
||||
# versions are derived from Dockerfile.rocm
|
||||
#
|
||||
set(TORCH_SUPPORTED_VERSION_CUDA "2.3.0")
|
||||
set(TORCH_SUPPORTED_VERSION_ROCM "2.4.0")
|
||||
set(TORCH_SUPPORTED_VERSION_CUDA "2.3.1")
|
||||
set(TORCH_SUPPORTED_VERSION_ROCM "2.5.0")
|
||||
|
||||
#
|
||||
# Try to find python package with an executable that exactly matches
|
||||
@ -101,7 +101,7 @@ elseif(HIP_FOUND)
|
||||
# ROCm 5.X and 6.X
|
||||
if (ROCM_VERSION_DEV_MAJOR GREATER_EQUAL 5 AND
|
||||
NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM})
|
||||
message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_ROCM} "
|
||||
message(WARNING "Pytorch version >= ${TORCH_SUPPORTED_VERSION_ROCM} "
|
||||
"expected for ROCm build, saw ${Torch_VERSION} instead.")
|
||||
endif()
|
||||
else()
|
||||
@ -151,6 +151,7 @@ set(VLLM_EXT_SRC
|
||||
"csrc/quantization/fp8/common.cu"
|
||||
"csrc/cuda_utils_kernels.cu"
|
||||
"csrc/moe_align_block_size_kernels.cu"
|
||||
"csrc/prepare_inputs/advance_step.cu"
|
||||
"csrc/torch_bindings.cpp")
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
@ -171,6 +172,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
|
||||
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
|
||||
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
|
||||
"csrc/quantization/gptq_marlin/awq_marlin_repack.cu"
|
||||
"csrc/quantization/fp8/fp8_marlin.cu"
|
||||
"csrc/custom_all_reduce.cu"
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
|
||||
|
53
Dockerfile
53
Dockerfile
@ -8,10 +8,10 @@
|
||||
ARG CUDA_VERSION=12.4.1
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
# prepare basic build environment
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 AS base
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base
|
||||
|
||||
ARG CUDA_VERSION=12.4.1
|
||||
ARG PYTHON_VERSION=3
|
||||
ARG PYTHON_VERSION=3.10
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
@ -21,13 +21,16 @@ RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& apt-get install -y ccache software-properties-common \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv python3-pip \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
&& if [ "${PYTHON_VERSION}" != "3" ]; then update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1; fi \
|
||||
&& python3 --version \
|
||||
&& python3 -m pip --version
|
||||
&& python3 --version
|
||||
|
||||
RUN apt-get update -y \
|
||||
&& apt-get install -y python3-pip git curl sudo
|
||||
&& apt-get install -y git curl sudo
|
||||
|
||||
# Install pip s.t. it will be compatible with our PYTHON_VERSION
|
||||
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION}
|
||||
RUN python3 -m pip --version
|
||||
|
||||
# Workaround for https://github.com/openai/triton/issues/2507 and
|
||||
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
|
||||
@ -58,7 +61,7 @@ ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
#################### WHEEL BUILD IMAGE ####################
|
||||
FROM base AS build
|
||||
|
||||
ARG PYTHON_VERSION=3
|
||||
ARG PYTHON_VERSION=3.10
|
||||
|
||||
# install build dependencies
|
||||
COPY requirements-build.txt requirements-build.txt
|
||||
@ -88,6 +91,9 @@ ENV NVCC_THREADS=$nvcc_threads
|
||||
# make sure punica kernels are built (for LoRA)
|
||||
ENV VLLM_INSTALL_PUNICA_KERNELS=1
|
||||
|
||||
ARG buildkite_commit
|
||||
ENV BUILDKITE_COMMIT=${buildkite_commit}
|
||||
|
||||
ARG USE_SCCACHE
|
||||
# if USE_SCCACHE is set, use sccache to speed up compilation
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
@ -97,10 +103,15 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
&& tar -xzf sccache.tar.gz \
|
||||
&& sudo mv sccache-v0.8.1-x86_64-unknown-linux-musl/sccache /usr/bin/sccache \
|
||||
&& rm -rf sccache.tar.gz sccache-v0.8.1-x86_64-unknown-linux-musl \
|
||||
&& export SCCACHE_BUCKET=vllm-build-sccache \
|
||||
&& if [ "$CUDA_VERSION" = "11.8.0" ]; then \
|
||||
export SCCACHE_BUCKET=vllm-build-sccache-2; \
|
||||
else \
|
||||
export SCCACHE_BUCKET=vllm-build-sccache; \
|
||||
fi \
|
||||
&& export SCCACHE_REGION=us-west-2 \
|
||||
&& export CMAKE_BUILD_TYPE=Release \
|
||||
&& sccache --show-stats \
|
||||
&& python3 setup.py bdist_wheel --dist-dir=dist \
|
||||
&& python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38 \
|
||||
&& sccache --show-stats; \
|
||||
fi
|
||||
|
||||
@ -108,7 +119,7 @@ ENV CCACHE_DIR=/root/.cache/ccache
|
||||
RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=cache,target=/root/.cache/pip \
|
||||
if [ "$USE_SCCACHE" != "1" ]; then \
|
||||
python3 setup.py bdist_wheel --dist-dir=dist; \
|
||||
python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38; \
|
||||
fi
|
||||
|
||||
# check the size of the wheel, we cannot upload wheels larger than 100MB
|
||||
@ -145,12 +156,27 @@ RUN pip --verbose wheel -r requirements-mamba.txt \
|
||||
|
||||
#################### vLLM installation IMAGE ####################
|
||||
# image with vLLM installed
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu22.04 AS vllm-base
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu20.04 AS vllm-base
|
||||
ARG CUDA_VERSION=12.4.1
|
||||
ARG PYTHON_VERSION=3.10
|
||||
WORKDIR /vllm-workspace
|
||||
|
||||
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
&& if [ "${PYTHON_VERSION}" != "3" ]; then update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1; fi \
|
||||
&& python3 --version
|
||||
|
||||
RUN apt-get update -y \
|
||||
&& apt-get install -y python3-pip git vim
|
||||
&& apt-get install -y python3-pip git vim curl libibverbs-dev
|
||||
|
||||
# Install pip s.t. it will be compatible with our PYTHON_VERSION
|
||||
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION}
|
||||
RUN python3 -m pip --version
|
||||
|
||||
# Workaround for https://github.com/openai/triton/issues/2507 and
|
||||
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
|
||||
@ -166,6 +192,9 @@ RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist
|
||||
RUN --mount=type=bind,from=mamba-builder,src=/usr/src/mamba,target=/usr/src/mamba \
|
||||
--mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install /usr/src/mamba/*.whl --no-cache-dir
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.9/flashinfer-0.0.9+cu121torch2.3-cp310-cp310-linux_x86_64.whl
|
||||
#################### vLLM installation IMAGE ####################
|
||||
|
||||
|
||||
|
@ -2,8 +2,8 @@
|
||||
|
||||
FROM ubuntu:22.04 AS cpu-test-1
|
||||
|
||||
RUN apt-get update -y \
|
||||
&& apt-get install -y git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 \
|
||||
RUN apt-get update -y \
|
||||
&& apt-get install -y curl git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 libnuma-dev \
|
||||
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
|
||||
|
||||
# https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/tuning_guide.html
|
||||
@ -13,8 +13,9 @@ RUN pip install intel-openmp
|
||||
|
||||
ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/usr/local/lib/libiomp5.so:$LD_PRELOAD"
|
||||
|
||||
RUN echo 'ulimit -c 0' >> ~/.bashrc
|
||||
|
||||
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_dev/cpu/intel_extension_for_pytorch-2.3.100%2Bgit0eb3473-cp310-cp310-linux_x86_64.whl
|
||||
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_dev/cpu/intel_extension_for_pytorch-2.4.0%2Bgitfbaa4bc-cp310-cp310-linux_x86_64.whl
|
||||
|
||||
RUN pip install --upgrade pip \
|
||||
&& pip install wheel packaging ninja "setuptools>=49.4.0" numpy
|
||||
@ -25,7 +26,7 @@ COPY ./ /workspace/vllm
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
RUN pip install -v -r requirements-cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN pip install -v -r requirements-cpu.txt --extra-index-url https://download.pytorch.org/whl/test/cpu
|
||||
|
||||
# Support for building with non-AVX512 vLLM: docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" ...
|
||||
ARG VLLM_CPU_DISABLE_AVX512
|
||||
|
@ -1,7 +1,7 @@
|
||||
# The vLLM Dockerfile is used to construct vLLM image that can be directly used
|
||||
# to run the OpenAI compatible server.
|
||||
|
||||
FROM ubuntu:22.04 AS dev
|
||||
FROM ubuntu:20.04 AS dev
|
||||
|
||||
RUN apt-get update -y && \
|
||||
apt-get install -y python3-pip git
|
||||
|
100
Dockerfile.rocm
100
Dockerfile.rocm
@ -1,26 +1,24 @@
|
||||
# Default ROCm 6.1 base image
|
||||
ARG BASE_IMAGE="rocm/pytorch:rocm6.1.2_ubuntu20.04_py3.9_pytorch_staging"
|
||||
|
||||
# Tested and supported base rocm/pytorch images
|
||||
ARG ROCm_5_7_BASE="rocm/pytorch:rocm5.7_ubuntu20.04_py3.9_pytorch_2.0.1" \
|
||||
ROCm_6_0_BASE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" \
|
||||
ROCM_6_1_BASE="rocm/pytorch:rocm6.1.2_ubuntu20.04_py3.9_pytorch_staging"
|
||||
|
||||
# Default ROCm ARCHes to build vLLM for.
|
||||
ARG PYTORCH_ROCM_ARCH="gfx908;gfx90a;gfx942;gfx1100"
|
||||
|
||||
# Whether to build CK-based flash-attention
|
||||
# If 0, will not build flash attention
|
||||
# This is useful for gfx target where flash-attention is not supported
|
||||
# (i.e. those that do not appear in `FA_GFX_ARCHS`)
|
||||
# Triton FA is used by default on ROCm now so this is unnecessary.
|
||||
# Whether to install CK-based flash-attention
|
||||
# If 0, will not install flash-attention
|
||||
ARG BUILD_FA="1"
|
||||
# If `TRY_FA_WHEEL=1`, we will try installing flash-attention from `FA_WHEEL_URL`
|
||||
# If this succeeds, we use the downloaded wheel and skip building flash-attention.
|
||||
# Otherwise, ROCm flash-attention from `FA_BRANCH` will be built for the
|
||||
# architectures specified in `FA_GFX_ARCHS`
|
||||
ARG TRY_FA_WHEEL="1"
|
||||
ARG FA_WHEEL_URL="https://github.com/ROCm/flash-attention/releases/download/v2.5.9post1-cktile-vllm/flash_attn-2.5.9.post1-cp39-cp39-linux_x86_64.whl"
|
||||
ARG FA_GFX_ARCHS="gfx90a;gfx942"
|
||||
ARG FA_BRANCH="ae7928c"
|
||||
ARG FA_BRANCH="23a2b1c2"
|
||||
|
||||
# Whether to build triton on rocm
|
||||
ARG BUILD_TRITON="1"
|
||||
ARG TRITON_BRANCH="0ef1848"
|
||||
ARG TRITON_BRANCH="e0fc12c"
|
||||
|
||||
### Base image build stage
|
||||
FROM $BASE_IMAGE AS base
|
||||
@ -48,29 +46,17 @@ RUN apt-get update && apt-get install -y \
|
||||
ARG APP_MOUNT=/vllm-workspace
|
||||
WORKDIR ${APP_MOUNT}
|
||||
|
||||
RUN pip install --upgrade pip
|
||||
RUN python3 -m pip install --upgrade pip
|
||||
# Remove sccache so it doesn't interfere with ccache
|
||||
# TODO: implement sccache support across components
|
||||
RUN apt-get purge -y sccache; pip uninstall -y sccache; rm -f "$(which sccache)"
|
||||
# Install torch == 2.4.0 on ROCm
|
||||
RUN apt-get purge -y sccache; python3 -m pip uninstall -y sccache; rm -f "$(which sccache)"
|
||||
# Install torch == 2.5.0 on ROCm
|
||||
RUN case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \
|
||||
*"rocm-5.7"*) \
|
||||
pip uninstall -y torch torchaudio torchvision \
|
||||
&& pip install --no-cache-dir --pre \
|
||||
torch==2.4.0.dev20240612 torchaudio==2.4.0.dev20240612 \
|
||||
torchvision==0.19.0.dev20240612 \
|
||||
--index-url https://download.pytorch.org/whl/nightly/rocm5.7;; \
|
||||
*"rocm-6.0"*) \
|
||||
pip uninstall -y torch torchaudio torchvision \
|
||||
&& pip install --no-cache-dir --pre \
|
||||
torch==2.4.0.dev20240612 torchaudio==2.4.0.dev20240612 \
|
||||
torchvision==0.19.0.dev20240612 \
|
||||
--index-url https://download.pytorch.org/whl/nightly/rocm6.0;; \
|
||||
*"rocm-6.1"*) \
|
||||
pip uninstall -y torch torchaudio torchvision \
|
||||
&& pip install --no-cache-dir --pre \
|
||||
torch==2.4.0.dev20240612 torchaudio==2.4.0.dev20240612 \
|
||||
torchvision==0.19.0.dev20240612 \
|
||||
python3 -m pip uninstall -y torch torchvision \
|
||||
&& python3 -m pip install --no-cache-dir --pre \
|
||||
torch==2.5.0.dev20240710 \
|
||||
torchvision==0.20.0.dev20240710 \
|
||||
--index-url https://download.pytorch.org/whl/nightly/rocm6.1;; \
|
||||
*) ;; esac
|
||||
|
||||
@ -87,29 +73,31 @@ ENV CCACHE_DIR=/root/.cache/ccache
|
||||
FROM base AS build_amdsmi
|
||||
# Build amdsmi wheel always
|
||||
RUN cd /opt/rocm/share/amd_smi \
|
||||
&& pip wheel . --wheel-dir=/install
|
||||
&& python3 -m pip wheel . --wheel-dir=/install
|
||||
|
||||
|
||||
### Flash-Attention wheel build stage
|
||||
FROM base AS build_fa
|
||||
ARG BUILD_FA
|
||||
ARG TRY_FA_WHEEL
|
||||
ARG FA_WHEEL_URL
|
||||
ARG FA_GFX_ARCHS
|
||||
ARG FA_BRANCH
|
||||
# Build ROCm flash-attention wheel if `BUILD_FA = 1`
|
||||
RUN --mount=type=cache,target=${CCACHE_DIR} \
|
||||
if [ "$BUILD_FA" = "1" ]; then \
|
||||
mkdir -p libs \
|
||||
&& cd libs \
|
||||
&& git clone https://github.com/ROCm/flash-attention.git \
|
||||
&& cd flash-attention \
|
||||
&& git checkout "${FA_BRANCH}" \
|
||||
&& git submodule update --init \
|
||||
&& case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \
|
||||
*"rocm-5.7"*) \
|
||||
export VLLM_TORCH_PATH="$(python3 -c 'import torch; print(torch.__path__[0])')" \
|
||||
&& patch "${VLLM_TORCH_PATH}"/utils/hipify/hipify_python.py hipify_patch.patch;; \
|
||||
*) ;; esac \
|
||||
&& GPU_ARCHS="${FA_GFX_ARCHS}" python3 setup.py bdist_wheel --dist-dir=/install; \
|
||||
if [ "${TRY_FA_WHEEL}" = "1" ] && python3 -m pip install "${FA_WHEEL_URL}"; then \
|
||||
# If a suitable wheel exists, we download it instead of building FA
|
||||
mkdir -p /install && wget -N "${FA_WHEEL_URL}" -P /install; \
|
||||
else \
|
||||
mkdir -p libs \
|
||||
&& cd libs \
|
||||
&& git clone https://github.com/ROCm/flash-attention.git \
|
||||
&& cd flash-attention \
|
||||
&& git checkout "${FA_BRANCH}" \
|
||||
&& git submodule update --init \
|
||||
&& GPU_ARCHS="${FA_GFX_ARCHS}" python3 setup.py bdist_wheel --dist-dir=/install; \
|
||||
fi; \
|
||||
# Create an empty directory otherwise as later build stages expect one
|
||||
else mkdir -p /install; \
|
||||
fi
|
||||
@ -139,16 +127,9 @@ FROM base AS final
|
||||
# Import the vLLM development directory from the build context
|
||||
COPY . .
|
||||
|
||||
# Error related to odd state for numpy 1.20.3 where there is no METADATA etc, but an extra LICENSES_bundled.txt.
|
||||
# Manually remove it so that later steps of numpy upgrade can continue
|
||||
RUN case "$(which python3)" in \
|
||||
*"/opt/conda/envs/py_3.9"*) \
|
||||
rm -rf /opt/conda/envs/py_3.9/lib/python3.9/site-packages/numpy-1.20.3.dist-info/;; \
|
||||
*) ;; esac
|
||||
|
||||
# Package upgrades for useful functionality or to avoid dependency issues
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install --upgrade numba scipy huggingface-hub[cli]
|
||||
python3 -m pip install --upgrade numba scipy huggingface-hub[cli]
|
||||
|
||||
# Make sure punica kernels are built (for LoRA)
|
||||
ENV VLLM_INSTALL_PUNICA_KERNELS=1
|
||||
@ -159,14 +140,11 @@ ENV TOKENIZERS_PARALLELISM=false
|
||||
|
||||
RUN --mount=type=cache,target=${CCACHE_DIR} \
|
||||
--mount=type=cache,target=/root/.cache/pip \
|
||||
pip install -U -r requirements-rocm.txt \
|
||||
python3 -m pip install -Ur requirements-rocm.txt \
|
||||
&& case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \
|
||||
*"rocm-6.0"*) \
|
||||
patch /opt/rocm/include/hip/amd_detail/amd_hip_bf16.h rocm_patch/rocm_bf16.patch;; \
|
||||
*"rocm-6.1"*) \
|
||||
# Bring in upgrades to HIP graph earlier than ROCm 6.2 for vLLM
|
||||
wget -N https://github.com/ROCm/vllm/raw/fa78403/rocm_patch/libamdhip64.so.6 -P rocm_patch \
|
||||
&& cp rocm_patch/libamdhip64.so.6 /opt/rocm/lib/libamdhip64.so.6 \
|
||||
wget -N https://github.com/ROCm/vllm/raw/fa78403/rocm_patch/libamdhip64.so.6 -P /opt/rocm/lib \
|
||||
# Prevent interference if torch bundles its own HIP runtime
|
||||
&& rm -f "$(python3 -c 'import torch; print(torch.__path__[0])')"/lib/libamdhip64.so* || true;; \
|
||||
*) ;; esac \
|
||||
@ -178,7 +156,7 @@ RUN --mount=type=bind,from=build_amdsmi,src=/install,target=/install \
|
||||
mkdir -p libs \
|
||||
&& cp /install/*.whl libs \
|
||||
# Preemptively uninstall to avoid same-version no-installs
|
||||
&& pip uninstall -y amdsmi;
|
||||
&& python3 -m pip uninstall -y amdsmi;
|
||||
|
||||
# Copy triton wheel(s) into final image if they were built
|
||||
RUN --mount=type=bind,from=build_triton,src=/install,target=/install \
|
||||
@ -186,7 +164,7 @@ RUN --mount=type=bind,from=build_triton,src=/install,target=/install \
|
||||
&& if ls /install/*.whl; then \
|
||||
cp /install/*.whl libs \
|
||||
# Preemptively uninstall to avoid same-version no-installs
|
||||
&& pip uninstall -y triton; fi
|
||||
&& python3 -m pip uninstall -y triton; fi
|
||||
|
||||
# Copy flash-attn wheel(s) into final image if they were built
|
||||
RUN --mount=type=bind,from=build_fa,src=/install,target=/install \
|
||||
@ -194,11 +172,11 @@ RUN --mount=type=bind,from=build_fa,src=/install,target=/install \
|
||||
&& if ls /install/*.whl; then \
|
||||
cp /install/*.whl libs \
|
||||
# Preemptively uninstall to avoid same-version no-installs
|
||||
&& pip uninstall -y flash-attn; fi
|
||||
&& python3 -m pip uninstall -y flash-attn; fi
|
||||
|
||||
# Install wheels that were built to the final image
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
if ls libs/*.whl; then \
|
||||
pip install libs/*.whl; fi
|
||||
python3 -m pip install libs/*.whl; fi
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
@ -1,19 +1,20 @@
|
||||
ARG NIGHTLY_DATE="20240601"
|
||||
ARG NIGHTLY_DATE="20240713"
|
||||
ARG BASE_IMAGE="us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.10_tpuvm_$NIGHTLY_DATE"
|
||||
|
||||
FROM $BASE_IMAGE
|
||||
|
||||
WORKDIR /workspace
|
||||
COPY . /workspace/vllm
|
||||
|
||||
ENV VLLM_TARGET_DEVICE="tpu"
|
||||
# Install aiohttp separately to avoid build errors.
|
||||
RUN pip install aiohttp
|
||||
# Install NumPy 1 instead of NumPy 2.
|
||||
RUN pip install "numpy<2"
|
||||
# Install the TPU and Pallas dependencies.
|
||||
RUN pip install torch_xla[tpu] -f https://storage.googleapis.com/libtpu-releases/index.html
|
||||
RUN pip install torch_xla[pallas] -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html
|
||||
|
||||
# Build vLLM.
|
||||
COPY . /workspace/vllm
|
||||
ENV VLLM_TARGET_DEVICE="tpu"
|
||||
RUN cd /workspace/vllm && python setup.py develop
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
@ -1,4 +1,4 @@
|
||||
FROM intel/oneapi-basekit:2024.1.0-devel-ubuntu22.04
|
||||
FROM intel/oneapi-basekit:2024.1.0-devel-ubuntu20.04
|
||||
|
||||
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \
|
||||
echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \
|
||||
|
28
README.md
28
README.md
@ -16,27 +16,14 @@ Easy, fast, and cheap LLM serving for everyone
|
||||
|
||||
---
|
||||
|
||||
**Ray Summit CPF is Open (June 4th to June 20th)!**
|
||||
|
||||
There will be a track for vLLM at the Ray Summit (09/30-10/02, SF) this year!
|
||||
If you have cool projects related to vLLM or LLM inference, we would love to see your proposals.
|
||||
This will be a great chance for everyone in the community to get together and learn.
|
||||
Please submit your proposal [here](https://raysummit.anyscale.com/flow/anyscale/raysummit2024/landing/page/eventsite)
|
||||
|
||||
---
|
||||
|
||||
*Latest News* 🔥
|
||||
- [2024/07] We hosted [the fifth vLLM meetup](https://lu.ma/lp0gyjqr) with AWS! Please find the meetup slides [here](https://docs.google.com/presentation/d/1RgUD8aCfcHocghoP3zmXzck9vX3RCI9yfUAB2Bbcl4Y/edit?usp=sharing).
|
||||
- [2024/07] In partnership with Meta, vLLM officially supports Llama 3.1 with FP8 quantization and pipeline parallelism! Please check out our blog post [here](https://blog.vllm.ai/2024/07/23/llama31.html).
|
||||
- [2024/06] We hosted [the fourth vLLM meetup](https://lu.ma/agivllm) with Cloudflare and BentoML! Please find the meetup slides [here](https://docs.google.com/presentation/d/1iJ8o7V2bQEi0BFEljLTwc5G1S10_Rhv3beed5oB0NJ4/edit?usp=sharing).
|
||||
- [2024/04] We hosted [the third vLLM meetup](https://robloxandvllmmeetup2024.splashthat.com/) with Roblox! Please find the meetup slides [here](https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing).
|
||||
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
|
||||
- [2024/01] Added ROCm 6.0 support to vLLM.
|
||||
- [2023/12] Added ROCm 5.7 support to vLLM.
|
||||
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
|
||||
- [2023/09] We created our [Discord server](https://discord.gg/jz7wjKhh6g)! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
|
||||
- [2023/09] We released our [PagedAttention paper](https://arxiv.org/abs/2309.06180) on arXiv!
|
||||
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) with IBM! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
|
||||
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) with a16z! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
|
||||
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
|
||||
- [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!
|
||||
- [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click [example](https://github.com/skypilot-org/skypilot/blob/master/llm/vllm) to start the vLLM demo, and the [blog post](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/) for the story behind vLLM development on the clouds.
|
||||
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
|
||||
|
||||
---
|
||||
@ -52,14 +39,16 @@ vLLM is fast with:
|
||||
- Quantization: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [SqueezeLLM](https://arxiv.org/abs/2306.07629), FP8 KV Cache
|
||||
- Optimized CUDA kernels
|
||||
|
||||
**Performance benchmark**: We include a [performance benchmark](https://buildkite.com/vllm/performance-benchmark/builds/4068) that compares the performance of vllm against other LLM serving engines ([TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM), [text-generation-inference](https://github.com/huggingface/text-generation-inference) and [lmdeploy](https://github.com/InternLM/lmdeploy)).
|
||||
|
||||
vLLM is flexible and easy to use with:
|
||||
|
||||
- Seamless integration with popular Hugging Face models
|
||||
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
|
||||
- Tensor parallelism support for distributed inference
|
||||
- Tensor parallelism and pipeline parallelism support for distributed inference
|
||||
- Streaming outputs
|
||||
- OpenAI-compatible API server
|
||||
- Support NVIDIA GPUs, AMD GPUs, Intel CPUs and GPUs
|
||||
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs
|
||||
- (Experimental) Prefix caching support
|
||||
- (Experimental) Multi-lora support
|
||||
|
||||
@ -103,6 +92,7 @@ vLLM is a community project. Our compute resources for development and testing a
|
||||
- Databricks
|
||||
- DeepInfra
|
||||
- Dropbox
|
||||
- Google Cloud
|
||||
- Lambda Lab
|
||||
- NVIDIA
|
||||
- Replicate
|
||||
|
@ -390,17 +390,17 @@ def remove_prefix(text: str, prefix: str) -> str:
|
||||
return text
|
||||
|
||||
|
||||
def get_model(pretrained_model_name_or_path: str):
|
||||
def get_model(pretrained_model_name_or_path: str) -> str:
|
||||
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
|
||||
from modelscope import snapshot_download
|
||||
else:
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
model_path = snapshot_download(
|
||||
model_id=pretrained_model_name_or_path,
|
||||
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
|
||||
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
|
||||
return model_path
|
||||
model_path = snapshot_download(
|
||||
model_id=pretrained_model_name_or_path,
|
||||
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
|
||||
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
|
||||
|
||||
return model_path
|
||||
return pretrained_model_name_or_path
|
||||
|
||||
|
||||
def get_tokenizer(
|
||||
|
@ -11,7 +11,7 @@ from tqdm import tqdm
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.engine.arg_utils import EngineArgs
|
||||
from vllm.inputs import PromptStrictInputs
|
||||
from vllm.inputs import PromptInputs
|
||||
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
@ -61,7 +61,7 @@ def main(args: argparse.Namespace):
|
||||
dummy_prompt_token_ids = np.random.randint(10000,
|
||||
size=(args.batch_size,
|
||||
args.input_len))
|
||||
dummy_inputs: List[PromptStrictInputs] = [{
|
||||
dummy_inputs: List[PromptInputs] = [{
|
||||
"prompt_token_ids": batch
|
||||
} for batch in dummy_prompt_token_ids.tolist()]
|
||||
|
||||
|
@ -2,8 +2,8 @@
|
||||
|
||||
On the server side, run one of the following commands:
|
||||
vLLM OpenAI API server
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model <your_model> --swap-space 16 \
|
||||
vllm serve <your_model> \
|
||||
--swap-space 16 \
|
||||
--disable-log-requests
|
||||
|
||||
(TGI backend)
|
||||
@ -17,7 +17,7 @@ On the client side, run:
|
||||
--dataset-path <path to dataset> \
|
||||
--request-rate <request_rate> \ # By default <request_rate> is inf
|
||||
--num-prompts <num_prompts> # By default <num_prompts> is 1000
|
||||
|
||||
|
||||
when using tgi backend, add
|
||||
--endpoint /generate_stream
|
||||
to the end of the command above.
|
||||
@ -60,12 +60,15 @@ class BenchmarkMetrics:
|
||||
output_throughput: float
|
||||
mean_ttft_ms: float
|
||||
median_ttft_ms: float
|
||||
std_ttft_ms: float
|
||||
p99_ttft_ms: float
|
||||
mean_tpot_ms: float
|
||||
median_tpot_ms: float
|
||||
std_tpot_ms: float
|
||||
p99_tpot_ms: float
|
||||
mean_itl_ms: float
|
||||
median_itl_ms: float
|
||||
std_itl_ms: float
|
||||
p99_itl_ms: float
|
||||
|
||||
|
||||
@ -77,7 +80,6 @@ def sample_sharegpt_requests(
|
||||
) -> List[Tuple[str, int, int]]:
|
||||
if fixed_output_len is not None and fixed_output_len < 4:
|
||||
raise ValueError("output_len too small")
|
||||
|
||||
# Load the dataset.
|
||||
with open(dataset_path) as f:
|
||||
dataset = json.load(f)
|
||||
@ -185,6 +187,31 @@ def sample_sonnet_requests(
|
||||
return sampled_requests
|
||||
|
||||
|
||||
def sample_random_requests(
|
||||
input_len: int, output_len: int, num_prompts: int, range_ratio: float,
|
||||
tokenizer: PreTrainedTokenizerBase) -> List[Tuple[str, int, int]]:
|
||||
|
||||
input_lens = np.random.randint(
|
||||
int(input_len * range_ratio),
|
||||
input_len + 1,
|
||||
size=num_prompts,
|
||||
)
|
||||
output_lens = np.random.randint(
|
||||
int(output_len * range_ratio),
|
||||
output_len + 1,
|
||||
size=num_prompts,
|
||||
)
|
||||
offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
|
||||
input_requests = []
|
||||
for i in range(num_prompts):
|
||||
prompt = tokenizer.decode([(offsets[i] + i + j) % tokenizer.vocab_size
|
||||
for j in range(input_lens[i])])
|
||||
input_requests.append(
|
||||
(prompt, int(input_lens[i]), int(output_lens[i])))
|
||||
|
||||
return input_requests
|
||||
|
||||
|
||||
async def get_request(
|
||||
input_requests: List[Tuple[str, int, int]],
|
||||
request_rate: float,
|
||||
@ -196,6 +223,7 @@ async def get_request(
|
||||
if request_rate == float("inf"):
|
||||
# If the request rate is infinity, then we don't need to wait.
|
||||
continue
|
||||
|
||||
# Sample the request interval from the exponential distribution.
|
||||
interval = np.random.exponential(1.0 / request_rate)
|
||||
# The next request will be sent after the interval.
|
||||
@ -219,7 +247,7 @@ def calculate_metrics(
|
||||
# We use the tokenizer to count the number of output tokens for all
|
||||
# serving backends instead of looking at len(outputs[i].itl) since
|
||||
# multiple output tokens may be bundled together
|
||||
# Note: this may inflate the output token count slightly
|
||||
# Note : this may inflate the output token count slightly
|
||||
output_len = len(
|
||||
tokenizer(outputs[i].generated_text,
|
||||
add_special_tokens=False).input_ids)
|
||||
@ -249,12 +277,15 @@ def calculate_metrics(
|
||||
mean_ttft_ms=np.mean(ttfts or 0) *
|
||||
1000, # ttfts is empty if streaming is not supported by backend
|
||||
median_ttft_ms=np.median(ttfts or 0) * 1000,
|
||||
std_ttft_ms=np.std(ttfts or 0) * 1000,
|
||||
p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
|
||||
mean_tpot_ms=np.mean(tpots or 0) * 1000,
|
||||
median_tpot_ms=np.median(tpots or 0) * 1000,
|
||||
std_tpot_ms=np.std(tpots or 0) * 1000,
|
||||
p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
|
||||
mean_itl_ms=np.mean(itls or 0) * 1000,
|
||||
median_itl_ms=np.median(itls or 0) * 1000,
|
||||
std_itl_ms=np.std(itls or 0) * 1000,
|
||||
p99_itl_ms=np.percentile(itls or 0, 99) * 1000,
|
||||
)
|
||||
|
||||
@ -371,12 +402,15 @@ async def benchmark(
|
||||
"output_throughput": metrics.output_throughput,
|
||||
"mean_ttft_ms": metrics.mean_ttft_ms,
|
||||
"median_ttft_ms": metrics.median_ttft_ms,
|
||||
"std_ttft_ms": metrics.std_ttft_ms,
|
||||
"p99_ttft_ms": metrics.p99_ttft_ms,
|
||||
"mean_tpot_ms": metrics.mean_tpot_ms,
|
||||
"median_tpot_ms": metrics.median_tpot_ms,
|
||||
"std_tpot_ms": metrics.std_tpot_ms,
|
||||
"p99_tpot_ms": metrics.p99_tpot_ms,
|
||||
"mean_itl_ms": metrics.mean_itl_ms,
|
||||
"median_itl_ms": metrics.median_itl_ms,
|
||||
"std_itl_ms": metrics.std_itl_ms,
|
||||
"p99_itl_ms": metrics.p99_itl_ms,
|
||||
"input_lens": [output.prompt_len for output in outputs],
|
||||
"output_lens": actual_output_lens,
|
||||
@ -456,6 +490,15 @@ def main(args: argparse.Namespace):
|
||||
for prompt, prompt_formatted, prompt_len,
|
||||
output_len in input_requests]
|
||||
|
||||
elif args.dataset_name == "random":
|
||||
input_requests = sample_random_requests(
|
||||
input_len=args.random_input_len,
|
||||
output_len=args.random_output_len,
|
||||
num_prompts=args.num_prompts,
|
||||
range_ratio=args.random_range_ratio,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unknown dataset: {args.dataset_name}")
|
||||
|
||||
@ -549,7 +592,7 @@ if __name__ == "__main__":
|
||||
"--dataset-name",
|
||||
type=str,
|
||||
default="sharegpt",
|
||||
choices=["sharegpt", "sonnet"],
|
||||
choices=["sharegpt", "sonnet", "random"],
|
||||
help="Name of the dataset to benchmark on.",
|
||||
)
|
||||
parser.add_argument("--dataset-path",
|
||||
@ -566,7 +609,7 @@ if __name__ == "__main__":
|
||||
"--tokenizer",
|
||||
type=str,
|
||||
help=
|
||||
"Name or path of the tokenizer, if not using the default tokenizer.",
|
||||
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
)
|
||||
parser.add_argument(
|
||||
"--best-of",
|
||||
@ -609,6 +652,27 @@ if __name__ == "__main__":
|
||||
help=
|
||||
"Number of prefix tokens per request, used only for sonnet dataset.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--random-input-len",
|
||||
type=int,
|
||||
default=1024,
|
||||
help=
|
||||
"Number of input tokens per request, used only for random sampling.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--random-output-len",
|
||||
type=int,
|
||||
default=128,
|
||||
help=
|
||||
"Number of output tokens per request, used only for random sampling.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--random-range-ratio",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Range of sampled ratio of input/output length, "
|
||||
"used only for random sampling.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--request-rate",
|
||||
type=float,
|
||||
|
@ -20,18 +20,18 @@ DEFAULT_TP_SIZES = [1]
|
||||
# helpers
|
||||
|
||||
|
||||
def to_fp8(tensor: torch.tensor) -> torch.tensor:
|
||||
def to_fp8(tensor: torch.Tensor) -> torch.Tensor:
|
||||
finfo = torch.finfo(torch.float8_e4m3fn)
|
||||
return torch.round(tensor.clamp(
|
||||
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
|
||||
|
||||
|
||||
def to_int8(tensor: torch.tensor) -> torch.tensor:
|
||||
def to_int8(tensor: torch.Tensor) -> torch.Tensor:
|
||||
return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8)
|
||||
|
||||
|
||||
def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
|
||||
k: int) -> Tuple[torch.tensor, torch.tensor]:
|
||||
k: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
|
||||
a = torch.randn((m, k), device='cuda') * 5
|
||||
b = torch.randn((n, k), device='cuda').t() * 5
|
||||
@ -47,15 +47,15 @@ def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
|
||||
# impl
|
||||
|
||||
|
||||
def pytorch_mm_impl(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor,
|
||||
scale_b: torch.tensor,
|
||||
out_dtype: torch.dtype) -> torch.tensor:
|
||||
def pytorch_mm_impl(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor,
|
||||
scale_b: torch.Tensor,
|
||||
out_dtype: torch.dtype) -> torch.Tensor:
|
||||
return torch.mm(a, b)
|
||||
|
||||
|
||||
def pytorch_fp8_impl(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor,
|
||||
scale_b: torch.tensor,
|
||||
out_dtype: torch.dtype) -> torch.tensor:
|
||||
def pytorch_fp8_impl(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor,
|
||||
scale_b: torch.Tensor,
|
||||
out_dtype: torch.dtype) -> torch.Tensor:
|
||||
return torch._scaled_mm(a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
@ -63,9 +63,9 @@ def pytorch_fp8_impl(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor,
|
||||
out_dtype=out_dtype)
|
||||
|
||||
|
||||
def pytorch_fp8_impl_fast_accum(a: torch.tensor, b: torch.tensor,
|
||||
scale_a: torch.tensor, scale_b: torch.tensor,
|
||||
out_dtype: torch.dtype) -> torch.tensor:
|
||||
def pytorch_fp8_impl_fast_accum(a: torch.Tensor, b: torch.Tensor,
|
||||
scale_a: torch.Tensor, scale_b: torch.Tensor,
|
||||
out_dtype: torch.dtype) -> torch.Tensor:
|
||||
return torch._scaled_mm(a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
@ -74,15 +74,15 @@ def pytorch_fp8_impl_fast_accum(a: torch.tensor, b: torch.tensor,
|
||||
use_fast_accum=True)
|
||||
|
||||
|
||||
def cutlass_impl(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor,
|
||||
scale_b: torch.tensor,
|
||||
out_dtype: torch.dtype) -> torch.tensor:
|
||||
def cutlass_impl(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor,
|
||||
scale_b: torch.Tensor,
|
||||
out_dtype: torch.dtype) -> torch.Tensor:
|
||||
return ops.cutlass_scaled_mm(a, b, scale_a, scale_b, out_dtype=out_dtype)
|
||||
|
||||
|
||||
# bench
|
||||
def bench_fn(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor,
|
||||
scale_b: torch.tensor, out_dtype: torch.dtype, label: str,
|
||||
def bench_fn(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor,
|
||||
scale_b: torch.Tensor, out_dtype: torch.dtype, label: str,
|
||||
sub_label: str, fn: Callable, description: str) -> TMeasurement:
|
||||
|
||||
min_run_time = 1
|
||||
|
@ -5,14 +5,16 @@ import torch.utils.benchmark as benchmark
|
||||
from benchmark_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.gptq_marlin import (
|
||||
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N,
|
||||
GPTQ_MARLIN_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_SUPPORTED_NUM_BITS)
|
||||
from vllm.model_executor.layers.quantization.gptq_marlin_24 import (
|
||||
GPTQ_MARLIN_24_MAX_PARALLEL, GPTQ_MARLIN_24_MIN_THREAD_N,
|
||||
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_24_SUPPORTED_NUM_BITS)
|
||||
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
|
||||
MarlinWorkspace, marlin_24_quantize, marlin_quantize)
|
||||
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N,
|
||||
GPTQ_MARLIN_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_SUPPORTED_NUM_BITS)
|
||||
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
|
||||
MarlinWorkspace, marlin_quantize)
|
||||
from vllm.model_executor.layers.quantization.utils.marlin_utils_test_24 import (
|
||||
marlin_24_quantize)
|
||||
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
||||
gptq_pack, quantize_weights, sort_weights)
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
@ -100,7 +100,7 @@ def main(
|
||||
start_time = time.perf_counter()
|
||||
|
||||
# Using default kv_scale
|
||||
kv_scale = 1.0
|
||||
k_scale = v_scale = 1.0
|
||||
|
||||
for _ in range(num_iters):
|
||||
if version == "v1":
|
||||
@ -117,7 +117,8 @@ def main(
|
||||
max_seq_len,
|
||||
alibi_slopes,
|
||||
kv_cache_dtype,
|
||||
kv_scale,
|
||||
k_scale,
|
||||
v_scale,
|
||||
)
|
||||
elif version == "v2":
|
||||
ops.paged_attention_v2(
|
||||
@ -136,7 +137,8 @@ def main(
|
||||
max_seq_len,
|
||||
alibi_slopes,
|
||||
kv_cache_dtype,
|
||||
kv_scale,
|
||||
k_scale,
|
||||
v_scale,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Invalid version: {version}")
|
||||
|
@ -83,6 +83,8 @@ endif()
|
||||
|
||||
message(STATUS "CPU extension compile flags: ${CXX_COMPILE_FLAGS}")
|
||||
|
||||
list(APPEND LIBS "numa")
|
||||
|
||||
|
||||
#
|
||||
# Define extension targets
|
||||
@ -95,6 +97,7 @@ set(VLLM_EXT_SRC
|
||||
"csrc/cpu/activation.cpp"
|
||||
"csrc/cpu/attention.cpp"
|
||||
"csrc/cpu/cache.cpp"
|
||||
"csrc/cpu/utils.cpp"
|
||||
"csrc/cpu/layernorm.cpp"
|
||||
"csrc/cpu/pos_encoding.cpp"
|
||||
"csrc/cpu/torch_bindings.cpp")
|
||||
@ -104,6 +107,7 @@ define_gpu_extension_target(
|
||||
DESTINATION vllm
|
||||
LANGUAGE CXX
|
||||
SOURCES ${VLLM_EXT_SRC}
|
||||
LIBRARIES ${LIBS}
|
||||
COMPILE_FLAGS ${CXX_COMPILE_FLAGS}
|
||||
USE_SABI 3
|
||||
WITH_SOABI
|
||||
|
@ -105,9 +105,9 @@ __device__ void paged_attention_kernel(
|
||||
const int max_num_blocks_per_seq,
|
||||
const float* __restrict__ alibi_slopes, // [num_heads]
|
||||
const int q_stride, const int kv_block_stride, const int kv_head_stride,
|
||||
const float kv_scale, const int tp_rank, const int blocksparse_local_blocks,
|
||||
const int blocksparse_vert_stride, const int blocksparse_block_size,
|
||||
const int blocksparse_head_sliding_step) {
|
||||
const float k_scale, const float v_scale, const int tp_rank,
|
||||
const int blocksparse_local_blocks, const int blocksparse_vert_stride,
|
||||
const int blocksparse_block_size, const int blocksparse_head_sliding_step) {
|
||||
const int seq_idx = blockIdx.y;
|
||||
const int partition_idx = blockIdx.z;
|
||||
const int max_num_partitions = gridDim.z;
|
||||
@ -285,7 +285,7 @@ __device__ void paged_attention_kernel(
|
||||
Quant_vec k_vec_quant = *reinterpret_cast<const Quant_vec*>(
|
||||
k_ptr + offset1 * BLOCK_SIZE * x + offset2);
|
||||
k_vecs[j] = fp8::scaled_convert<K_vec, Quant_vec, KV_DTYPE>(
|
||||
k_vec_quant, kv_scale);
|
||||
k_vec_quant, k_scale);
|
||||
}
|
||||
}
|
||||
|
||||
@ -415,7 +415,7 @@ __device__ void paged_attention_kernel(
|
||||
*reinterpret_cast<const V_quant_vec*>(v_ptr + offset);
|
||||
// Vector conversion from V_quant_vec to V_vec.
|
||||
v_vec = fp8::scaled_convert<V_vec, V_quant_vec, KV_DTYPE>(v_quant_vec,
|
||||
kv_scale);
|
||||
v_scale);
|
||||
}
|
||||
if (block_idx == num_seq_blocks - 1) {
|
||||
// NOTE(woosuk): When v_vec contains the tokens that are out of the
|
||||
@ -513,15 +513,15 @@ __global__ void paged_attention_v1_kernel(
|
||||
const int max_num_blocks_per_seq,
|
||||
const float* __restrict__ alibi_slopes, // [num_heads]
|
||||
const int q_stride, const int kv_block_stride, const int kv_head_stride,
|
||||
const float kv_scale, const int tp_rank, const int blocksparse_local_blocks,
|
||||
const int blocksparse_vert_stride, const int blocksparse_block_size,
|
||||
const int blocksparse_head_sliding_step) {
|
||||
const float k_scale, const float v_scale, const int tp_rank,
|
||||
const int blocksparse_local_blocks, const int blocksparse_vert_stride,
|
||||
const int blocksparse_block_size, const int blocksparse_head_sliding_step) {
|
||||
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS,
|
||||
KV_DTYPE, IS_BLOCK_SPARSE>(
|
||||
/* exp_sums */ nullptr, /* max_logits */ nullptr, out, q, k_cache,
|
||||
v_cache, num_kv_heads, scale, block_tables, seq_lens,
|
||||
max_num_blocks_per_seq, alibi_slopes, q_stride, kv_block_stride,
|
||||
kv_head_stride, kv_scale, tp_rank, blocksparse_local_blocks,
|
||||
kv_head_stride, k_scale, v_scale, tp_rank, blocksparse_local_blocks,
|
||||
blocksparse_vert_stride, blocksparse_block_size,
|
||||
blocksparse_head_sliding_step);
|
||||
}
|
||||
@ -549,14 +549,14 @@ __global__ void paged_attention_v2_kernel(
|
||||
const int max_num_blocks_per_seq,
|
||||
const float* __restrict__ alibi_slopes, // [num_heads]
|
||||
const int q_stride, const int kv_block_stride, const int kv_head_stride,
|
||||
const float kv_scale, const int tp_rank, const int blocksparse_local_blocks,
|
||||
const int blocksparse_vert_stride, const int blocksparse_block_size,
|
||||
const int blocksparse_head_sliding_step) {
|
||||
const float k_scale, const float v_scale, const int tp_rank,
|
||||
const int blocksparse_local_blocks, const int blocksparse_vert_stride,
|
||||
const int blocksparse_block_size, const int blocksparse_head_sliding_step) {
|
||||
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS,
|
||||
KV_DTYPE, IS_BLOCK_SPARSE, PARTITION_SIZE>(
|
||||
exp_sums, max_logits, tmp_out, q, k_cache, v_cache, num_kv_heads, scale,
|
||||
block_tables, seq_lens, max_num_blocks_per_seq, alibi_slopes, q_stride,
|
||||
kv_block_stride, kv_head_stride, kv_scale, tp_rank,
|
||||
kv_block_stride, kv_head_stride, k_scale, v_scale, tp_rank,
|
||||
blocksparse_local_blocks, blocksparse_vert_stride, blocksparse_block_size,
|
||||
blocksparse_head_sliding_step);
|
||||
}
|
||||
@ -682,7 +682,7 @@ __global__ void paged_attention_v2_reduce_kernel(
|
||||
out_ptr, query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, \
|
||||
scale, block_tables_ptr, seq_lens_ptr, max_num_blocks_per_seq, \
|
||||
alibi_slopes_ptr, q_stride, kv_block_stride, kv_head_stride, \
|
||||
kv_scale, tp_rank, blocksparse_local_blocks, \
|
||||
k_scale, v_scale, tp_rank, blocksparse_local_blocks, \
|
||||
blocksparse_vert_stride, blocksparse_block_size, \
|
||||
blocksparse_head_sliding_step);
|
||||
|
||||
@ -694,8 +694,8 @@ void paged_attention_v1_launcher(
|
||||
torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache, int num_kv_heads, float scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens, int max_seq_len,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes, float kv_scale,
|
||||
const int tp_rank, const int blocksparse_local_blocks,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes, float k_scale,
|
||||
float v_scale, const int tp_rank, const int blocksparse_local_blocks,
|
||||
const int blocksparse_vert_stride, const int blocksparse_block_size,
|
||||
const int blocksparse_head_sliding_step) {
|
||||
int num_seqs = query.size(0);
|
||||
@ -770,7 +770,7 @@ void paged_attention_v1_launcher(
|
||||
paged_attention_v1_launcher<T, CACHE_T, BLOCK_SIZE, KV_DTYPE, \
|
||||
IS_BLOCK_SPARSE>( \
|
||||
out, query, key_cache, value_cache, num_kv_heads, scale, block_tables, \
|
||||
seq_lens, max_seq_len, alibi_slopes, kv_scale, tp_rank, \
|
||||
seq_lens, max_seq_len, alibi_slopes, k_scale, v_scale, tp_rank, \
|
||||
blocksparse_local_blocks, blocksparse_vert_stride, \
|
||||
blocksparse_block_size, blocksparse_head_sliding_step);
|
||||
|
||||
@ -815,8 +815,8 @@ void paged_attention_v1(
|
||||
torch::Tensor& seq_lens, // [num_seqs]
|
||||
int64_t block_size, int64_t max_seq_len,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::string& kv_cache_dtype, double kv_scale, const int64_t tp_rank,
|
||||
const int64_t blocksparse_local_blocks,
|
||||
const std::string& kv_cache_dtype, double k_scale, double v_scale,
|
||||
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
|
||||
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
|
||||
const int64_t blocksparse_head_sliding_step) {
|
||||
const bool is_block_sparse = (blocksparse_vert_stride > 1);
|
||||
@ -833,7 +833,7 @@ void paged_attention_v1(
|
||||
exp_sums_ptr, max_logits_ptr, tmp_out_ptr, query_ptr, key_cache_ptr, \
|
||||
value_cache_ptr, num_kv_heads, scale, block_tables_ptr, \
|
||||
seq_lens_ptr, max_num_blocks_per_seq, alibi_slopes_ptr, q_stride, \
|
||||
kv_block_stride, kv_head_stride, kv_scale, tp_rank, \
|
||||
kv_block_stride, kv_head_stride, k_scale, v_scale, tp_rank, \
|
||||
blocksparse_local_blocks, blocksparse_vert_stride, \
|
||||
blocksparse_block_size, blocksparse_head_sliding_step); \
|
||||
vllm::paged_attention_v2_reduce_kernel<T, HEAD_SIZE, NUM_THREADS, \
|
||||
@ -850,8 +850,8 @@ void paged_attention_v2_launcher(
|
||||
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache, int num_kv_heads, float scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens, int max_seq_len,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes, float kv_scale,
|
||||
const int tp_rank, const int blocksparse_local_blocks,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes, float k_scale,
|
||||
float v_scale, const int tp_rank, const int blocksparse_local_blocks,
|
||||
const int blocksparse_vert_stride, const int blocksparse_block_size,
|
||||
const int blocksparse_head_sliding_step) {
|
||||
int num_seqs = query.size(0);
|
||||
@ -932,8 +932,9 @@ void paged_attention_v2_launcher(
|
||||
IS_BLOCK_SPARSE>( \
|
||||
out, exp_sums, max_logits, tmp_out, query, key_cache, value_cache, \
|
||||
num_kv_heads, scale, block_tables, seq_lens, max_seq_len, alibi_slopes, \
|
||||
kv_scale, tp_rank, blocksparse_local_blocks, blocksparse_vert_stride, \
|
||||
blocksparse_block_size, blocksparse_head_sliding_step);
|
||||
k_scale, v_scale, tp_rank, blocksparse_local_blocks, \
|
||||
blocksparse_vert_stride, blocksparse_block_size, \
|
||||
blocksparse_head_sliding_step);
|
||||
|
||||
#define CALL_V2_LAUNCHER_SPARSITY(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE) \
|
||||
switch (is_block_sparse) { \
|
||||
@ -980,8 +981,8 @@ void paged_attention_v2(
|
||||
torch::Tensor& seq_lens, // [num_seqs]
|
||||
int64_t block_size, int64_t max_seq_len,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::string& kv_cache_dtype, double kv_scale, const int64_t tp_rank,
|
||||
const int64_t blocksparse_local_blocks,
|
||||
const std::string& kv_cache_dtype, double k_scale, double v_scale,
|
||||
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
|
||||
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
|
||||
const int64_t blocksparse_head_sliding_step) {
|
||||
const bool is_block_sparse = (blocksparse_vert_stride > 1);
|
||||
|
@ -18,14 +18,15 @@ void copy_blocks(std::vector<torch::Tensor> const& key_caches,
|
||||
void reshape_and_cache(torch::Tensor& key, torch::Tensor& value,
|
||||
torch::Tensor& key_cache, torch::Tensor& value_cache,
|
||||
torch::Tensor& slot_mapping,
|
||||
const std::string& kv_cache_dtype,
|
||||
const double kv_scale);
|
||||
const std::string& kv_cache_dtype, const double k_scale,
|
||||
const double v_scale);
|
||||
|
||||
void reshape_and_cache_flash(torch::Tensor& key, torch::Tensor& value,
|
||||
torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache,
|
||||
torch::Tensor& slot_mapping,
|
||||
const std::string& kv_cache_dtype);
|
||||
const std::string& kv_cache_dtype,
|
||||
const double k_scale, const double v_scale);
|
||||
|
||||
// Just for unittest
|
||||
void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
|
||||
|
@ -159,8 +159,8 @@ __global__ void reshape_and_cache_kernel(
|
||||
// block_size]
|
||||
const int64_t* __restrict__ slot_mapping, // [num_tokens]
|
||||
const int key_stride, const int value_stride, const int num_heads,
|
||||
const int head_size, const int block_size, const int x,
|
||||
const float kv_scale) {
|
||||
const int head_size, const int block_size, const int x, const float k_scale,
|
||||
const float v_scale) {
|
||||
const int64_t token_idx = blockIdx.x;
|
||||
const int64_t slot_idx = slot_mapping[token_idx];
|
||||
if (slot_idx < 0) {
|
||||
@ -196,24 +196,25 @@ __global__ void reshape_and_cache_kernel(
|
||||
value_cache[tgt_value_idx] = tgt_value;
|
||||
} else {
|
||||
key_cache[tgt_key_idx] =
|
||||
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_key, kv_scale);
|
||||
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_key, k_scale);
|
||||
value_cache[tgt_value_idx] =
|
||||
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_value, kv_scale);
|
||||
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_value, v_scale);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
||||
__global__ void reshape_and_cache_flash_kernel(
|
||||
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
|
||||
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
|
||||
scalar_t* __restrict__ k_cache, // [num_blocks, block_size, num_heads,
|
||||
cache_t* __restrict__ key_cache, // [num_blocks, block_size, num_heads,
|
||||
// head_size]
|
||||
scalar_t* __restrict__ v_cache, // [num_blocks, block_size, num_heads,
|
||||
cache_t* __restrict__ value_cache, // [num_blocks, block_size, num_heads,
|
||||
// head_size]
|
||||
const int64_t* __restrict__ slot_mapping, // [num_tokens]
|
||||
const int block_stride, const int key_stride, const int value_stride,
|
||||
const int num_heads, const int head_size, const int block_size) {
|
||||
const int num_heads, const int head_size, const int block_size,
|
||||
const float k_scale, const float v_scale) {
|
||||
const int64_t token_idx = blockIdx.x;
|
||||
const int64_t slot_idx = slot_mapping[token_idx];
|
||||
// NOTE: slot_idx can be -1 if the token is padded
|
||||
@ -228,11 +229,20 @@ __global__ void reshape_and_cache_flash_kernel(
|
||||
const int64_t src_value_idx = token_idx * value_stride + i;
|
||||
const int head_idx = i / head_size;
|
||||
const int head_offset = i % head_size;
|
||||
const int64_t tgt_value_idx = block_idx * block_stride +
|
||||
block_offset * num_heads * head_size +
|
||||
head_idx * head_size + head_offset;
|
||||
k_cache[tgt_value_idx] = key[src_key_idx];
|
||||
v_cache[tgt_value_idx] = value[src_value_idx];
|
||||
const int64_t tgt_key_value_idx = block_idx * block_stride +
|
||||
block_offset * num_heads * head_size +
|
||||
head_idx * head_size + head_offset;
|
||||
scalar_t tgt_key = key[src_key_idx];
|
||||
scalar_t tgt_value = value[src_value_idx];
|
||||
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
|
||||
key_cache[tgt_key_value_idx] = tgt_key;
|
||||
value_cache[tgt_key_value_idx] = tgt_value;
|
||||
} else {
|
||||
key_cache[tgt_key_value_idx] =
|
||||
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_key, k_scale);
|
||||
value_cache[tgt_key_value_idx] =
|
||||
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_value, v_scale);
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace vllm
|
||||
@ -248,7 +258,7 @@ __global__ void reshape_and_cache_flash_kernel(
|
||||
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
|
||||
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
|
||||
slot_mapping.data_ptr<int64_t>(), key_stride, value_stride, \
|
||||
num_heads, head_size, block_size, x, kv_scale);
|
||||
num_heads, head_size, block_size, x, k_scale, v_scale);
|
||||
|
||||
void reshape_and_cache(
|
||||
torch::Tensor& key, // [num_tokens, num_heads, head_size]
|
||||
@ -258,7 +268,8 @@ void reshape_and_cache(
|
||||
torch::Tensor&
|
||||
value_cache, // [num_blocks, num_heads, head_size, block_size]
|
||||
torch::Tensor& slot_mapping, // [num_tokens]
|
||||
const std::string& kv_cache_dtype, const double kv_scale) {
|
||||
const std::string& kv_cache_dtype, const double k_scale,
|
||||
const double v_scale) {
|
||||
int num_tokens = key.size(0);
|
||||
int num_heads = key.size(1);
|
||||
int head_size = key.size(2);
|
||||
@ -277,40 +288,45 @@ void reshape_and_cache(
|
||||
CALL_RESHAPE_AND_CACHE)
|
||||
}
|
||||
|
||||
// KV_T is the stored data type of kv-cache.
|
||||
// CACHE_T is the data type of key and value tensors.
|
||||
// KV_DTYPE is the real data type of kv-cache.
|
||||
#define CALL_RESHAPE_AND_CACHE_FLASH(KV_T, CACHE_T, KV_DTYPE) \
|
||||
vllm::reshape_and_cache_flash_kernel<KV_T, CACHE_T, KV_DTYPE> \
|
||||
<<<grid, block, 0, stream>>>( \
|
||||
reinterpret_cast<KV_T*>(key.data_ptr()), \
|
||||
reinterpret_cast<KV_T*>(value.data_ptr()), \
|
||||
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
|
||||
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
|
||||
slot_mapping.data_ptr<int64_t>(), block_stride, key_stride, \
|
||||
value_stride, num_heads, head_size, block_size, k_scale, v_scale);
|
||||
|
||||
void reshape_and_cache_flash(
|
||||
torch::Tensor& key, // [num_tokens, num_heads, head_size]
|
||||
torch::Tensor& value, // [num_tokens, num_heads, head_size]
|
||||
torch::Tensor& k_cache, // [num_blocks, block_size, num_heads, head_size]
|
||||
torch::Tensor& v_cache, // [num_blocks, block_size, num_heads, head_size]
|
||||
torch::Tensor& key, // [num_tokens, num_heads, head_size]
|
||||
torch::Tensor& value, // [num_tokens, num_heads, head_size]
|
||||
torch::Tensor& key_cache, // [num_blocks, block_size, num_heads, head_size]
|
||||
torch::Tensor&
|
||||
value_cache, // [num_blocks, block_size, num_heads, head_size]
|
||||
torch::Tensor& slot_mapping, // [num_tokens]
|
||||
const std::string& kv_cache_dtype) {
|
||||
// FIXME: only support auto datatype, does not support fp8
|
||||
if (kv_cache_dtype != "auto") {
|
||||
TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
|
||||
}
|
||||
const std::string& kv_cache_dtype, const double k_scale,
|
||||
const double v_scale) {
|
||||
int num_tokens = key.size(0);
|
||||
int num_heads = key.size(1);
|
||||
int head_size = key.size(2);
|
||||
int block_size = k_cache.size(1);
|
||||
int block_size = key_cache.size(1);
|
||||
|
||||
int key_stride = key.stride(0);
|
||||
int value_stride = value.stride(0);
|
||||
int block_stride = k_cache.stride(0);
|
||||
TORCH_CHECK(k_cache.stride(0) == v_cache.stride(0));
|
||||
int block_stride = key_cache.stride(0);
|
||||
TORCH_CHECK(key_cache.stride(0) == value_cache.stride(0));
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(num_heads * head_size, 512));
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
key.scalar_type(), "reshape_and_cache_flash", [&] {
|
||||
vllm::reshape_and_cache_flash_kernel<scalar_t>
|
||||
<<<grid, block, 0, stream>>>(
|
||||
key.data_ptr<scalar_t>(), value.data_ptr<scalar_t>(),
|
||||
k_cache.data_ptr<scalar_t>(), v_cache.data_ptr<scalar_t>(),
|
||||
slot_mapping.data_ptr<int64_t>(), block_stride, key_stride,
|
||||
value_stride, num_heads, head_size, block_size);
|
||||
});
|
||||
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(key.dtype(), kv_cache_dtype,
|
||||
CALL_RESHAPE_AND_CACHE_FLASH);
|
||||
}
|
||||
|
||||
namespace vllm {
|
||||
@ -318,13 +334,13 @@ namespace vllm {
|
||||
template <typename Tout, typename Tin, Fp8KVCacheDataType kv_dt>
|
||||
__global__ void convert_fp8_kernel(const Tin* __restrict__ src_cache,
|
||||
Tout* __restrict__ dst_cache,
|
||||
const float kv_scale,
|
||||
const float scale,
|
||||
const int64_t block_stride) {
|
||||
const int64_t block_idx = blockIdx.x;
|
||||
for (int i = threadIdx.x; i < block_stride; i += blockDim.x) {
|
||||
int64_t idx = block_idx * block_stride + i;
|
||||
dst_cache[idx] =
|
||||
fp8::scaled_convert<Tout, Tin, kv_dt>(src_cache[idx], kv_scale);
|
||||
fp8::scaled_convert<Tout, Tin, kv_dt>(src_cache[idx], scale);
|
||||
}
|
||||
}
|
||||
|
||||
@ -333,11 +349,11 @@ __global__ void convert_fp8_kernel(const Tin* __restrict__ src_cache,
|
||||
#define CALL_CONVERT_FP8(Tout, Tin, KV_DTYPE) \
|
||||
vllm::convert_fp8_kernel<Tout, Tin, KV_DTYPE><<<grid, block, 0, stream>>>( \
|
||||
reinterpret_cast<Tin*>(src_cache.data_ptr()), \
|
||||
reinterpret_cast<Tout*>(dst_cache.data_ptr()), kv_scale, block_stride);
|
||||
reinterpret_cast<Tout*>(dst_cache.data_ptr()), scale, block_stride);
|
||||
|
||||
// Only for testing.
|
||||
void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
|
||||
const double kv_scale, const std::string& kv_cache_dtype) {
|
||||
const double scale, const std::string& kv_cache_dtype) {
|
||||
torch::Device src_device = src_cache.device();
|
||||
torch::Device dst_device = dst_cache.device();
|
||||
TORCH_CHECK(src_device.is_cuda(), "src must be on a GPU")
|
||||
|
@ -423,11 +423,11 @@ void paged_attention_v1(
|
||||
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
|
||||
int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::string& kv_cache_dtype, double kv_scale, const int64_t tp_rank,
|
||||
const int64_t blocksparse_local_blocks,
|
||||
const std::string& kv_cache_dtype, double k_scale, double v_scale,
|
||||
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
|
||||
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
|
||||
const int64_t blocksparse_head_sliding_step) {
|
||||
TORCH_CHECK(kv_scale == 1.0f);
|
||||
TORCH_CHECK(k_scale == 1.0f && v_scale == 1.0f);
|
||||
TORCH_CHECK(blocksparse_vert_stride <= 1,
|
||||
"CPU backend does not support blocksparse attention yet.");
|
||||
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v1_impl",
|
||||
@ -742,11 +742,11 @@ void paged_attention_v2(
|
||||
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
|
||||
int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::string& kv_cache_dtype, double kv_scale, const int64_t tp_rank,
|
||||
const int64_t blocksparse_local_blocks,
|
||||
const std::string& kv_cache_dtype, double k_scale, double v_scale,
|
||||
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
|
||||
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
|
||||
const int64_t blocksparse_head_sliding_step) {
|
||||
TORCH_CHECK(kv_scale == 1.0f);
|
||||
TORCH_CHECK(k_scale == 1.0f && v_scale == 1.0f);
|
||||
TORCH_CHECK(blocksparse_vert_stride <= 1,
|
||||
"CPU backend does not support blocksparse attention yet.");
|
||||
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v2_impl",
|
||||
|
@ -107,8 +107,9 @@ void copy_blocks(std::vector<torch::Tensor> const& key_caches,
|
||||
void reshape_and_cache(torch::Tensor& key, torch::Tensor& value,
|
||||
torch::Tensor& key_cache, torch::Tensor& value_cache,
|
||||
torch::Tensor& slot_mapping,
|
||||
const std::string& kv_cache_dtype, double kv_scale) {
|
||||
TORCH_CHECK(kv_scale == 1.0f);
|
||||
const std::string& kv_cache_dtype, double k_scale,
|
||||
double v_scale) {
|
||||
TORCH_CHECK(k_scale == 1.0f && v_scale == 1.0f);
|
||||
|
||||
int num_tokens = key.size(0);
|
||||
int num_heads = key.size(1);
|
||||
|
@ -4,6 +4,8 @@
|
||||
|
||||
#include <torch/library.h>
|
||||
|
||||
void init_cpu_threads_env(const std::string& cpu_ids);
|
||||
|
||||
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
// vLLM custom ops
|
||||
|
||||
@ -16,8 +18,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
" Tensor value_cache, int num_kv_heads, float scale,"
|
||||
" Tensor block_tables, Tensor seq_lens, int block_size,"
|
||||
" int max_seq_len, Tensor? alibi_slopes,"
|
||||
" str kv_cache_dtype, float kv_scale, int tp_rank,"
|
||||
" int blocksparse_local_blocks,"
|
||||
" str kv_cache_dtype, float k_scale, float v_scale,"
|
||||
" int tp_rank, int blocksparse_local_blocks,"
|
||||
" int blocksparse_vert_stride, int blocksparse_block_size,"
|
||||
" int blocksparse_head_sliding_step) -> ()");
|
||||
ops.impl("paged_attention_v1", torch::kCPU, &paged_attention_v1);
|
||||
@ -30,8 +32,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
" Tensor value_cache, int num_kv_heads, float scale,"
|
||||
" Tensor block_tables, Tensor seq_lens, int block_size,"
|
||||
" int max_seq_len, Tensor? alibi_slopes,"
|
||||
" str kv_cache_dtype, float kv_scale, int tp_rank,"
|
||||
" int blocksparse_local_blocks,"
|
||||
" str kv_cache_dtype, float k_scale, float v_scale,"
|
||||
" int tp_rank, int blocksparse_local_blocks,"
|
||||
" int blocksparse_vert_stride, int blocksparse_block_size,"
|
||||
" int blocksparse_head_sliding_step) -> ()");
|
||||
ops.impl("paged_attention_v2", torch::kCPU, &paged_attention_v2);
|
||||
@ -103,8 +105,13 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
|
||||
" Tensor! key_cache, Tensor! value_cache,"
|
||||
" Tensor slot_mapping,"
|
||||
" str kv_cache_dtype,"
|
||||
" float kv_scale) -> ()");
|
||||
" float k_scale, float v_scale) -> ()");
|
||||
cache_ops.impl("reshape_and_cache", torch::kCPU, &reshape_and_cache);
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _utils), utils) {
|
||||
// CPU utils
|
||||
utils.def("init_cpu_threads_env(str cpu_ids) -> ()", &init_cpu_threads_env);
|
||||
}
|
||||
|
||||
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)
|
||||
|
65
csrc/cpu/utils.cpp
Normal file
65
csrc/cpu/utils.cpp
Normal file
@ -0,0 +1,65 @@
|
||||
#include <numa.h>
|
||||
#include <unistd.h>
|
||||
#include <string>
|
||||
#include <sched.h>
|
||||
|
||||
#include "cpu_types.hpp"
|
||||
|
||||
void init_cpu_threads_env(const std::string& cpu_ids) {
|
||||
bitmask* omp_cpu_mask = numa_parse_cpustring(cpu_ids.c_str());
|
||||
TORCH_CHECK(omp_cpu_mask->size > 0);
|
||||
std::vector<int> omp_cpu_ids;
|
||||
omp_cpu_ids.reserve(omp_cpu_mask->size);
|
||||
|
||||
constexpr int group_size = 8 * sizeof(*omp_cpu_mask->maskp);
|
||||
|
||||
for (int offset = 0; offset < omp_cpu_mask->size; offset += group_size) {
|
||||
unsigned long group_mask = omp_cpu_mask->maskp[offset / group_size];
|
||||
int i = 0;
|
||||
while (group_mask) {
|
||||
if (group_mask & 1) {
|
||||
omp_cpu_ids.emplace_back(offset + i);
|
||||
}
|
||||
++i;
|
||||
group_mask >>= 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Memory node binding
|
||||
if (numa_available() != -1) {
|
||||
int mem_node_id = numa_node_of_cpu(omp_cpu_ids.front());
|
||||
bitmask* mask = numa_parse_nodestring(std::to_string(mem_node_id).c_str());
|
||||
bitmask* src_mask = numa_get_membind();
|
||||
|
||||
int pid = getpid();
|
||||
|
||||
// move all existing pages to the specified numa node.
|
||||
*(src_mask->maskp) = *(src_mask->maskp) ^ *(mask->maskp);
|
||||
int page_num = numa_migrate_pages(pid, src_mask, mask);
|
||||
if (page_num == -1) {
|
||||
TORCH_CHECK(false,
|
||||
"numa_migrate_pages failed. errno: " + std::to_string(errno));
|
||||
}
|
||||
|
||||
// restrict memory allocation node.
|
||||
numa_set_membind(mask);
|
||||
numa_set_strict(1);
|
||||
}
|
||||
|
||||
// OMP threads binding
|
||||
omp_set_num_threads((int)omp_cpu_ids.size());
|
||||
torch::set_num_threads((int)omp_cpu_ids.size());
|
||||
TORCH_CHECK_EQ(omp_cpu_ids.size(), torch::get_num_threads());
|
||||
TORCH_CHECK_EQ(omp_cpu_ids.size(), omp_get_max_threads());
|
||||
#pragma omp parallel for schedule(static, 1)
|
||||
for (size_t i = 0; i < omp_cpu_ids.size(); ++i) {
|
||||
cpu_set_t* mask = CPU_ALLOC(omp_cpu_mask->size);
|
||||
size_t size = CPU_ALLOC_SIZE(omp_cpu_mask->size);
|
||||
CPU_ZERO_S(size, mask);
|
||||
CPU_SET_S(omp_cpu_ids[i], size, mask);
|
||||
sched_setaffinity(0, sizeof(cpu_set_t), mask);
|
||||
CPU_FREE(mask);
|
||||
}
|
||||
|
||||
numa_free_nodemask(omp_cpu_mask);
|
||||
}
|
35
csrc/ops.h
35
csrc/ops.h
@ -8,8 +8,8 @@ void paged_attention_v1(
|
||||
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
|
||||
int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::string& kv_cache_dtype, double kv_scale, const int64_t tp_rank,
|
||||
const int64_t blocksparse_local_blocks,
|
||||
const std::string& kv_cache_dtype, double k_scale, double v_scale,
|
||||
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
|
||||
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
|
||||
const int64_t blocksparse_head_sliding_step);
|
||||
|
||||
@ -19,8 +19,8 @@ void paged_attention_v2(
|
||||
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
|
||||
int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::string& kv_cache_dtype, double kv_scale, const int64_t tp_rank,
|
||||
const int64_t blocksparse_local_blocks,
|
||||
const std::string& kv_cache_dtype, double k_scale, double v_scale,
|
||||
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
|
||||
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
|
||||
const int64_t blocksparse_head_sliding_step);
|
||||
|
||||
@ -52,6 +52,11 @@ void gelu_fast(torch::Tensor& out, torch::Tensor& input);
|
||||
|
||||
void gelu_quick(torch::Tensor& out, torch::Tensor& input);
|
||||
|
||||
void advance_step(int64_t num_seqs, int64_t num_queries, int64_t block_size,
|
||||
torch::Tensor& input_tokens, torch::Tensor& sampled_token_ids,
|
||||
torch::Tensor& input_positions, torch::Tensor& seq_lens,
|
||||
torch::Tensor& slot_mapping, torch::Tensor& block_tables);
|
||||
|
||||
#ifndef USE_ROCM
|
||||
torch::Tensor aqlm_gemm(const torch::Tensor& input, const torch::Tensor& codes,
|
||||
const torch::Tensor& codebooks,
|
||||
@ -84,15 +89,19 @@ torch::Tensor gptq_marlin_24_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
int64_t size_k);
|
||||
|
||||
torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
torch::Tensor& b_scales, torch::Tensor& g_idx,
|
||||
torch::Tensor& perm, torch::Tensor& workspace,
|
||||
int64_t num_bits, int64_t size_m, int64_t size_n,
|
||||
int64_t size_k, bool is_k_full);
|
||||
torch::Tensor& b_scales, torch::Tensor& b_zeros,
|
||||
torch::Tensor& g_idx, torch::Tensor& perm,
|
||||
torch::Tensor& workspace, int64_t num_bits,
|
||||
int64_t size_m, int64_t size_n, int64_t size_k,
|
||||
bool is_k_full, bool has_zp);
|
||||
|
||||
torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm,
|
||||
int64_t size_k, int64_t size_n,
|
||||
int64_t num_bits);
|
||||
|
||||
torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k,
|
||||
int64_t size_n, int64_t num_bits);
|
||||
|
||||
torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
torch::Tensor& b_scales, torch::Tensor& workspace,
|
||||
int64_t num_bits, int64_t size_m, int64_t size_n,
|
||||
@ -123,12 +132,16 @@ torch::Tensor gptq_gemm(torch::Tensor a, torch::Tensor b_q_weight,
|
||||
|
||||
void gptq_shuffle(torch::Tensor q_weight, torch::Tensor q_perm, int64_t bit);
|
||||
|
||||
void static_scaled_fp8_quant(torch::Tensor& out, torch::Tensor& input,
|
||||
torch::Tensor& scale);
|
||||
void static_scaled_fp8_quant(torch::Tensor& out, torch::Tensor const& input,
|
||||
torch::Tensor const& scale);
|
||||
|
||||
void dynamic_scaled_fp8_quant(torch::Tensor& out, torch::Tensor& input,
|
||||
void dynamic_scaled_fp8_quant(torch::Tensor& out, torch::Tensor const& input,
|
||||
torch::Tensor& scale);
|
||||
|
||||
void dynamic_per_token_scaled_fp8_quant(
|
||||
torch::Tensor& out, torch::Tensor const& input, torch::Tensor& scale,
|
||||
c10::optional<torch::Tensor> const& scale_ub);
|
||||
|
||||
void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
|
||||
int64_t block_size, torch::Tensor sorted_token_ids,
|
||||
torch::Tensor experts_ids,
|
||||
|
131
csrc/prepare_inputs/advance_step.cu
Normal file
131
csrc/prepare_inputs/advance_step.cu
Normal file
@ -0,0 +1,131 @@
|
||||
/*
|
||||
* The goal of this GPU kernel is to advance input tensors on the GPU directly
|
||||
* PR: https://github.com/vllm-project/vllm/pull/6338
|
||||
* Current restrictions:
|
||||
* 1. Specialized for DraftModelRunner
|
||||
* 2. Supports flash_attn only
|
||||
*/
|
||||
|
||||
#include "advance_step.cuh"
|
||||
|
||||
namespace prepare_inputs {
|
||||
|
||||
//
|
||||
template <int const num_threads>
|
||||
__global__ void advance_step_kernel(int num_seqs, int num_queries,
|
||||
int block_size, long* input_tokens_ptr,
|
||||
long const* sampled_token_ids_ptr,
|
||||
long* input_positions_ptr,
|
||||
int* seq_lens_ptr, long* slot_mapping_ptr,
|
||||
int const* block_tables_ptr,
|
||||
int64_t const block_tables_stride) {
|
||||
int num_query_blocks = div_ceil(num_queries, num_threads);
|
||||
|
||||
if (blockIdx.x >= num_query_blocks) {
|
||||
return;
|
||||
}
|
||||
|
||||
int cur_query_id = blockIdx.x * num_threads + threadIdx.x;
|
||||
|
||||
if (cur_query_id >= num_queries) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Update input_tokens
|
||||
input_tokens_ptr[cur_query_id] = sampled_token_ids_ptr[cur_query_id];
|
||||
|
||||
int seq_len = seq_lens_ptr[cur_query_id];
|
||||
int next_seq_len = seq_len + 1;
|
||||
int next_input_pos = next_seq_len - 1;
|
||||
|
||||
// Update seq_lens
|
||||
seq_lens_ptr[cur_query_id] = next_seq_len;
|
||||
// Update input_positions
|
||||
input_positions_ptr[cur_query_id] = next_input_pos;
|
||||
|
||||
int const* seq_block_tables_ptr =
|
||||
block_tables_ptr + block_tables_stride * cur_query_id;
|
||||
|
||||
int block_index = next_input_pos / block_size;
|
||||
int block_offset = next_input_pos % block_size;
|
||||
|
||||
int slot_num = seq_block_tables_ptr[block_index] * block_size + block_offset;
|
||||
// Update slot_mapping
|
||||
slot_mapping_ptr[cur_query_id] = slot_num;
|
||||
}
|
||||
|
||||
inline void verify_tensor(std::string const& name, torch::Tensor& t,
|
||||
int64_t const size_0, int64_t const size_1,
|
||||
c10::ScalarType const type) {
|
||||
bool size_0_cond = true;
|
||||
if (size_0 != -1) {
|
||||
size_0_cond = t.size(0) == size_0;
|
||||
}
|
||||
|
||||
bool size_1_cond = true;
|
||||
if (size_1 != -1) {
|
||||
size_1_cond = t.size(1) == size_1;
|
||||
}
|
||||
|
||||
bool is_contiguous = t.is_contiguous();
|
||||
bool same_type = t.dtype() == type;
|
||||
|
||||
bool pass = size_0_cond && size_1_cond && is_contiguous && same_type;
|
||||
if (!pass) {
|
||||
TORCH_CHECK(false, "tensor: name = ", name, ", shape = ", t.sizes(),
|
||||
" is_cont = ", t.is_contiguous(), ", type = ", t.dtype(),
|
||||
" is not as expected: shape = [", size_0, ", ", size_1,
|
||||
"], type = ", type);
|
||||
}
|
||||
}
|
||||
|
||||
void advance_step(int num_seqs, int num_queries, int block_size,
|
||||
torch::Tensor& input_tokens, // type: long
|
||||
torch::Tensor& sampled_token_ids, // type: long
|
||||
torch::Tensor& input_positions, // type: long
|
||||
torch::Tensor& seq_lens, // type: int
|
||||
torch::Tensor& slot_mapping, // type: long
|
||||
torch::Tensor& block_tables) { // type: int
|
||||
|
||||
if (logging) {
|
||||
printf("advance_step:\n");
|
||||
printf(" num_seqs = %d\n", num_seqs);
|
||||
printf(" num_queries = %d\n", num_queries);
|
||||
printf(" block_size = %d\n", block_size);
|
||||
}
|
||||
// Verify all tensors
|
||||
verify_tensor("input_tokens", input_tokens, num_seqs, -1, at::kLong);
|
||||
verify_tensor("sampled_token_ids", sampled_token_ids, num_queries, 1,
|
||||
at::kLong);
|
||||
verify_tensor("input_positions", input_positions, num_seqs, -1, at::kLong);
|
||||
verify_tensor("seq_lens", seq_lens, num_seqs, -1, at::kInt);
|
||||
verify_tensor("slot_mapping", slot_mapping, num_seqs, -1, at::kLong);
|
||||
verify_tensor("block_tables", block_tables, num_seqs, -1, at::kInt);
|
||||
|
||||
int dev = sampled_token_ids.get_device();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev);
|
||||
|
||||
int blocks;
|
||||
cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev);
|
||||
|
||||
advance_step_kernel<max_threads><<<blocks, max_threads, 0, stream>>>(
|
||||
num_seqs, num_queries, block_size,
|
||||
reinterpret_cast<long*>(input_tokens.data_ptr()),
|
||||
reinterpret_cast<long const*>(sampled_token_ids.data_ptr()),
|
||||
reinterpret_cast<long*>(input_positions.data_ptr()),
|
||||
reinterpret_cast<int*>(seq_lens.data_ptr()),
|
||||
reinterpret_cast<long*>(slot_mapping.data_ptr()),
|
||||
reinterpret_cast<int const*>(block_tables.data_ptr()),
|
||||
block_tables.stride(0));
|
||||
}
|
||||
|
||||
} // namespace prepare_inputs
|
||||
|
||||
void advance_step(int64_t num_seqs, int64_t num_queries, int64_t block_size,
|
||||
torch::Tensor& input_tokens, torch::Tensor& sampled_token_ids,
|
||||
torch::Tensor& input_positions, torch::Tensor& seq_lens,
|
||||
torch::Tensor& slot_mapping, torch::Tensor& block_tables) {
|
||||
prepare_inputs::advance_step(num_seqs, num_queries, block_size, input_tokens,
|
||||
sampled_token_ids, input_positions, seq_lens,
|
||||
slot_mapping, block_tables);
|
||||
}
|
19
csrc/prepare_inputs/advance_step.cuh
Normal file
19
csrc/prepare_inputs/advance_step.cuh
Normal file
@ -0,0 +1,19 @@
|
||||
#pragma once
|
||||
|
||||
#include <torch/all.h>
|
||||
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <iostream>
|
||||
|
||||
namespace prepare_inputs {
|
||||
|
||||
static constexpr int max_threads = 256;
|
||||
static constexpr bool logging = false;
|
||||
|
||||
constexpr int div_ceil(int a, int b) { return (a + b - 1) / b; }
|
||||
|
||||
} // namespace prepare_inputs
|
@ -328,20 +328,36 @@ struct Sm90ColOrScalarBroadcast {
|
||||
return EmptyProducerLoadCallbacks{};
|
||||
}
|
||||
|
||||
template<class GTensor, class RTensor>
|
||||
template<class GTensor, class RTensor, class CTensor, class ProblemShape>
|
||||
struct ConsumerStoreCallbacks : EmptyConsumerStoreCallbacks {
|
||||
CUTLASS_DEVICE
|
||||
ConsumerStoreCallbacks(GTensor&& tCgCol, RTensor&& tCrCol, Params const& params)
|
||||
: tCgCol(cute::forward<GTensor>(tCgCol)),
|
||||
tCrCol(cute::forward<RTensor>(tCrCol)),
|
||||
params(params) {}
|
||||
ConsumerStoreCallbacks(
|
||||
GTensor&& tCgCol,
|
||||
RTensor&& tCrCol,
|
||||
CTensor&& tCcCol,
|
||||
ProblemShape problem_shape,
|
||||
Params const& params
|
||||
):
|
||||
tCgCol(cute::forward<GTensor>(tCgCol)),
|
||||
tCrCol(cute::forward<RTensor>(tCrCol)),
|
||||
tCcCol(cute::forward<CTensor>(tCcCol)),
|
||||
m(get<0>(problem_shape)),
|
||||
params(params) {}
|
||||
|
||||
GTensor tCgCol; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
|
||||
RTensor tCrCol; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
|
||||
RTensor tCrCol;
|
||||
CTensor tCcCol; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
|
||||
Params const& params;
|
||||
int m;
|
||||
|
||||
CUTLASS_DEVICE void
|
||||
begin() {
|
||||
Tensor pred = make_tensor<bool>(shape(tCgCol));
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int i = 0; i < size(pred); ++i) {
|
||||
pred(i) = get<0>(tCcCol(i)) < m;
|
||||
}
|
||||
|
||||
if (!params.col_broadcast) {
|
||||
fill(tCrCol, *(params.ptr_col));
|
||||
return;
|
||||
@ -349,7 +365,7 @@ struct Sm90ColOrScalarBroadcast {
|
||||
|
||||
// Filter so we don't issue redundant copies over stride-0 modes
|
||||
// (only works if 0-strides are in same location, which is by construction)
|
||||
copy_aligned(filter(tCgCol), filter(tCrCol));
|
||||
copy_if(pred, filter(tCgCol), filter(tCrCol));
|
||||
}
|
||||
|
||||
template <typename ElementAccumulator, int FragmentSize>
|
||||
@ -381,8 +397,20 @@ struct Sm90ColOrScalarBroadcast {
|
||||
mCol, args.tile_shape_mnk, args.tile_coord_mnkl, args.epi_tile, args.tiled_copy, args.thread_idx);
|
||||
Tensor tCrCol = make_tensor_like(tCgCol); // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
|
||||
|
||||
return ConsumerStoreCallbacks<decltype(tCgCol), decltype(tCrCol)>(
|
||||
cute::move(tCgCol), cute::move(tCrCol), params);
|
||||
// Generate an identity tensor matching the shape of the global tensor and
|
||||
// partition the same way, this will be used to generate the predicate
|
||||
// tensor for loading
|
||||
Tensor cCol = make_identity_tensor(mCol.shape());
|
||||
Tensor tCcCol = sm90_partition_for_epilogue<ReferenceSrc>( // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
|
||||
cCol, args.tile_shape_mnk, args.tile_coord_mnkl, args.epi_tile, args.tiled_copy, args.thread_idx);
|
||||
|
||||
return ConsumerStoreCallbacks(
|
||||
cute::move(tCgCol),
|
||||
cute::move(tCrCol),
|
||||
cute::move(tCcCol),
|
||||
args.problem_shape_mnkl,
|
||||
params
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -38,7 +38,13 @@ bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability) {
|
||||
if (cuda_device_capability >= 90) {
|
||||
return CUDA_VERSION >= 12000;
|
||||
} else if (cuda_device_capability >= 89) {
|
||||
return CUDA_VERSION >= 12040;
|
||||
// CUTLASS Kernels have not been tuned for Ada Lovelace systems
|
||||
// and are slower than torch.mm. Return false unconditionally in this case.
|
||||
return false;
|
||||
|
||||
// Once the CUTLASS kernels have been optimized for Lovelace systems,
|
||||
// use the following check:
|
||||
// return CUDA_VERSION >= 12040;
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -98,4 +104,4 @@ void cutlass_scaled_mm(torch::Tensor& c, torch::Tensor const& a,
|
||||
TORCH_CHECK(version_num >= 75);
|
||||
cutlass_scaled_mm_sm75(c, a, b, a_scales, b_scales, bias);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -7,6 +7,8 @@
|
||||
#include "cuda_compat.h"
|
||||
#include "dispatch_utils.h"
|
||||
|
||||
#include "../../reduction_utils.cuh"
|
||||
|
||||
namespace vllm {
|
||||
|
||||
__device__ __forceinline__ float atomicMaxFloat(float* addr, float value) {
|
||||
@ -21,10 +23,16 @@ __device__ __forceinline__ float atomicMaxFloat(float* addr, float value) {
|
||||
|
||||
#define FP8_E4M3_MAX std::numeric_limits<c10::Float8_e4m3fn>::max()
|
||||
|
||||
template <typename scalar_t>
|
||||
template <bool is_scale_inverted>
|
||||
__device__ __forceinline__ c10::Float8_e4m3fn scaled_fp8_conversion(
|
||||
const scalar_t val, const float inverted_scale) {
|
||||
float x = static_cast<float>(val) * inverted_scale;
|
||||
float const val, float const scale) {
|
||||
float x = 0.0f;
|
||||
if constexpr (is_scale_inverted) {
|
||||
x = val * scale;
|
||||
} else {
|
||||
x = val / scale;
|
||||
}
|
||||
|
||||
float r = fmax(-FP8_E4M3_MAX, fmin(x, FP8_E4M3_MAX));
|
||||
return static_cast<c10::Float8_e4m3fn>(r);
|
||||
}
|
||||
@ -40,7 +48,7 @@ __global__ void segmented_max_reduction(float* __restrict__ scale,
|
||||
const scalar_t* __restrict__ input,
|
||||
int64_t num_elems) {
|
||||
__shared__ float cache[1024];
|
||||
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int64_t i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
// First store maximum for all values processes by
|
||||
// the current thread in cache[threadIdx.x]
|
||||
@ -87,6 +95,70 @@ typedef struct __align__(4) {
|
||||
}
|
||||
float8x4_t;
|
||||
|
||||
template <typename scalar_t>
|
||||
__device__ float thread_max_vec(scalar_t const* __restrict__ input,
|
||||
int64_t const num_elems, int const tid,
|
||||
int const step) {
|
||||
// Vectorized input/output to better utilize memory bandwidth.
|
||||
vec4_t<scalar_t> const* vectorized_in =
|
||||
reinterpret_cast<vec4_t<scalar_t> const*>(input);
|
||||
|
||||
int64_t const num_vec_elems = num_elems >> 2;
|
||||
float absmax_val = 0.0f;
|
||||
|
||||
#pragma unroll 4
|
||||
for (int64_t i = tid; i < num_vec_elems; i += step) {
|
||||
vec4_t<scalar_t> in_vec = vectorized_in[i];
|
||||
absmax_val = max(absmax_val, fabs(in_vec.x));
|
||||
absmax_val = max(absmax_val, fabs(in_vec.y));
|
||||
absmax_val = max(absmax_val, fabs(in_vec.z));
|
||||
absmax_val = max(absmax_val, fabs(in_vec.w));
|
||||
}
|
||||
|
||||
// Handle the remaining elements if num_elems is not divisible by 4
|
||||
for (int64_t i = num_vec_elems * 4 + tid; i < num_elems; i += step) {
|
||||
absmax_val = max(absmax_val, fabs(input[i]));
|
||||
}
|
||||
|
||||
return absmax_val;
|
||||
}
|
||||
|
||||
template <typename scalar_t, bool is_scale_inverted>
|
||||
__device__ void scaled_fp8_conversion_vec(c10::Float8_e4m3fn* __restrict__ out,
|
||||
scalar_t const* __restrict__ input,
|
||||
float const scale,
|
||||
int64_t const num_elems,
|
||||
int const tid, int const step) {
|
||||
// Vectorized input/output to better utilize memory bandwidth.
|
||||
vec4_t<scalar_t> const* vectorized_in =
|
||||
reinterpret_cast<vec4_t<scalar_t> const*>(input);
|
||||
float8x4_t* vectorized_out = reinterpret_cast<float8x4_t*>(out);
|
||||
|
||||
int64_t const num_vec_elems = num_elems >> 2;
|
||||
|
||||
#pragma unroll 4
|
||||
for (int64_t i = tid; i < num_vec_elems; i += step) {
|
||||
vec4_t<scalar_t> in_vec = vectorized_in[i];
|
||||
float8x4_t out_vec;
|
||||
|
||||
out_vec.x = scaled_fp8_conversion<is_scale_inverted>(
|
||||
static_cast<float>(in_vec.x), scale);
|
||||
out_vec.y = scaled_fp8_conversion<is_scale_inverted>(
|
||||
static_cast<float>(in_vec.y), scale);
|
||||
out_vec.z = scaled_fp8_conversion<is_scale_inverted>(
|
||||
static_cast<float>(in_vec.z), scale);
|
||||
out_vec.w = scaled_fp8_conversion<is_scale_inverted>(
|
||||
static_cast<float>(in_vec.w), scale);
|
||||
vectorized_out[i] = out_vec;
|
||||
}
|
||||
|
||||
// Handle the remaining elements if num_elems is not divisible by 4
|
||||
for (int64_t i = num_vec_elems * 4 + tid; i < num_elems; i += step) {
|
||||
out[i] = scaled_fp8_conversion<is_scale_inverted>(
|
||||
static_cast<float>(input[i]), scale);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void scaled_fp8_quant_kernel(c10::Float8_e4m3fn* __restrict__ out,
|
||||
const scalar_t* __restrict__ input,
|
||||
@ -97,38 +169,68 @@ __global__ void scaled_fp8_quant_kernel(c10::Float8_e4m3fn* __restrict__ out,
|
||||
// Invert the scale so that we can use multiplications to avoid expensive
|
||||
// division.
|
||||
const float inverted_scale = 1.0f / (*scale);
|
||||
scaled_fp8_conversion_vec<scalar_t, true>(
|
||||
out, input, inverted_scale, num_elems, tid, blockDim.x * gridDim.x);
|
||||
}
|
||||
|
||||
// Vectorized input/output to better utilize memory bandwidth.
|
||||
const vec4_t<scalar_t>* vectorized_in =
|
||||
reinterpret_cast<const vec4_t<scalar_t>*>(input);
|
||||
float8x4_t* vectorized_out = reinterpret_cast<float8x4_t*>(out);
|
||||
template <typename scalar_t>
|
||||
__global__ void dynamic_per_token_scaled_fp8_quant_kernel(
|
||||
c10::Float8_e4m3fn* __restrict__ out, float* __restrict__ scale,
|
||||
scalar_t const* __restrict__ input, float const* __restrict__ scale_ub,
|
||||
const int hidden_size) {
|
||||
float const min_scaling_factor = 1.0f / (FP8_E4M3_MAX * 512.f);
|
||||
|
||||
int num_vec_elems = num_elems >> 2;
|
||||
int const tid = threadIdx.x;
|
||||
int const token_idx = blockIdx.x;
|
||||
|
||||
#pragma unroll 4
|
||||
for (int i = tid; i < num_vec_elems; i += blockDim.x * gridDim.x) {
|
||||
vec4_t<scalar_t> in_vec = vectorized_in[i];
|
||||
float8x4_t out_vec;
|
||||
scalar_t const* __restrict__ token_input = &input[token_idx * hidden_size];
|
||||
c10::Float8_e4m3fn* __restrict__ token_output = &out[token_idx * hidden_size];
|
||||
|
||||
out_vec.x = scaled_fp8_conversion(in_vec.x, inverted_scale);
|
||||
out_vec.y = scaled_fp8_conversion(in_vec.y, inverted_scale);
|
||||
out_vec.z = scaled_fp8_conversion(in_vec.z, inverted_scale);
|
||||
out_vec.w = scaled_fp8_conversion(in_vec.w, inverted_scale);
|
||||
vectorized_out[i] = out_vec;
|
||||
// For vectorization, token_input and token_output pointers need to be
|
||||
// aligned at 8-byte and 4-byte addresses respectively.
|
||||
bool const can_vectorize = hidden_size % 4 == 0;
|
||||
|
||||
float absmax_val = 0.0f;
|
||||
if (can_vectorize) {
|
||||
absmax_val = thread_max_vec(token_input, hidden_size, tid, blockDim.x);
|
||||
} else {
|
||||
for (int i = tid; i < hidden_size; i += blockDim.x) {
|
||||
float const x = static_cast<float>(token_input[i]);
|
||||
absmax_val = max(absmax_val, fabs(x));
|
||||
}
|
||||
}
|
||||
|
||||
// Handle the remaining elements if num_elems is not divisible by 4
|
||||
for (int i = num_vec_elems * 4 + tid; i < num_elems;
|
||||
i += blockDim.x * gridDim.x) {
|
||||
out[i] = scaled_fp8_conversion(input[i], inverted_scale);
|
||||
float const block_absmax_val_maybe = blockReduceMax(absmax_val);
|
||||
__shared__ float token_scale;
|
||||
if (tid == 0) {
|
||||
if (scale_ub) {
|
||||
token_scale = min(block_absmax_val_maybe, *scale_ub);
|
||||
} else {
|
||||
token_scale = block_absmax_val_maybe;
|
||||
}
|
||||
// token scale computation
|
||||
token_scale = max(token_scale / FP8_E4M3_MAX, min_scaling_factor);
|
||||
scale[token_idx] = token_scale;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Note that we don't use inverted scales so we can match FBGemm impl.
|
||||
if (can_vectorize) {
|
||||
scaled_fp8_conversion_vec<scalar_t, false>(
|
||||
token_output, token_input, token_scale, hidden_size, tid, blockDim.x);
|
||||
} else {
|
||||
for (int i = tid; i < hidden_size; i += blockDim.x) {
|
||||
token_output[i] = scaled_fp8_conversion<false>(
|
||||
static_cast<float>(token_input[i]), token_scale);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
void static_scaled_fp8_quant(torch::Tensor& out, // [..., d]
|
||||
torch::Tensor& input, // [..., d]
|
||||
torch::Tensor& scale) // [1]
|
||||
void static_scaled_fp8_quant(torch::Tensor& out, // [..., d]
|
||||
torch::Tensor const& input, // [..., d]
|
||||
torch::Tensor const& scale) // [1]
|
||||
{
|
||||
int64_t num_tokens = input.numel() / input.size(-1);
|
||||
int64_t num_elems = input.numel();
|
||||
@ -144,9 +246,9 @@ void static_scaled_fp8_quant(torch::Tensor& out, // [..., d]
|
||||
});
|
||||
}
|
||||
|
||||
void dynamic_scaled_fp8_quant(torch::Tensor& out, // [..., d]
|
||||
torch::Tensor& input, // [..., d]
|
||||
torch::Tensor& scale) // [1]
|
||||
void dynamic_scaled_fp8_quant(torch::Tensor& out, // [..., d]
|
||||
torch::Tensor const& input, // [..., d]
|
||||
torch::Tensor& scale) // [1]
|
||||
{
|
||||
int64_t num_tokens = input.numel() / input.size(-1);
|
||||
int64_t num_elems = input.numel();
|
||||
@ -163,3 +265,28 @@ void dynamic_scaled_fp8_quant(torch::Tensor& out, // [..., d]
|
||||
scale.data_ptr<float>(), num_elems);
|
||||
});
|
||||
}
|
||||
|
||||
void dynamic_per_token_scaled_fp8_quant(
|
||||
torch::Tensor& out, // [..., d]
|
||||
torch::Tensor const& input, // [..., d]
|
||||
torch::Tensor& scales, std::optional<at::Tensor> const& scale_ub) {
|
||||
TORCH_CHECK(input.is_contiguous());
|
||||
TORCH_CHECK(out.is_contiguous());
|
||||
|
||||
int const hidden_size = input.size(-1);
|
||||
int const num_tokens = input.numel() / hidden_size;
|
||||
dim3 const grid(num_tokens);
|
||||
dim3 const block(std::min(hidden_size, 1024));
|
||||
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
input.scalar_type(), "dynamic_per_token_scaled_fp8_quant_kernel", [&] {
|
||||
vllm::dynamic_per_token_scaled_fp8_quant_kernel<scalar_t>
|
||||
<<<grid, block, 0, stream>>>(
|
||||
out.data_ptr<c10::Float8_e4m3fn>(), scales.data_ptr<float>(),
|
||||
input.data_ptr<scalar_t>(),
|
||||
scale_ub.has_value() ? scale_ub->data_ptr<float>() : nullptr,
|
||||
hidden_size);
|
||||
});
|
||||
}
|
||||
|
@ -19,10 +19,10 @@
|
||||
* Adapted from https://github.com/IST-DASLab/marlin
|
||||
*/
|
||||
|
||||
#include "../gptq_marlin/gptq_marlin.cuh"
|
||||
#include "../gptq_marlin/gptq_marlin_dtypes.cuh"
|
||||
#include "../gptq_marlin/marlin.cuh"
|
||||
#include "../gptq_marlin/marlin_dtypes.cuh"
|
||||
|
||||
using namespace gptq_marlin;
|
||||
using namespace marlin;
|
||||
|
||||
#define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t) \
|
||||
static_assert(std::is_same<scalar_t, half>::value || \
|
||||
@ -1224,16 +1224,15 @@ torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
", size_k = ", size_k);
|
||||
|
||||
// Verify B
|
||||
TORCH_CHECK(size_k % gptq_marlin::tile_size == 0, "size_k = ", size_k,
|
||||
" is not divisible by tile_size = ", gptq_marlin::tile_size);
|
||||
TORCH_CHECK((size_k / gptq_marlin::tile_size) == b_q_weight.size(0),
|
||||
TORCH_CHECK(size_k % marlin::tile_size == 0, "size_k = ", size_k,
|
||||
" is not divisible by tile_size = ", marlin::tile_size);
|
||||
TORCH_CHECK((size_k / marlin::tile_size) == b_q_weight.size(0),
|
||||
"Shape mismatch: b_q_weight.size(0) = ", b_q_weight.size(0),
|
||||
", size_k = ", size_k, ", tile_size = ", gptq_marlin::tile_size);
|
||||
TORCH_CHECK(b_q_weight.size(1) % gptq_marlin::tile_size == 0,
|
||||
", size_k = ", size_k, ", tile_size = ", marlin::tile_size);
|
||||
TORCH_CHECK(b_q_weight.size(1) % marlin::tile_size == 0,
|
||||
"b_q_weight.size(1) = ", b_q_weight.size(1),
|
||||
" is not divisible by tile_size = ", gptq_marlin::tile_size);
|
||||
int actual_size_n =
|
||||
(b_q_weight.size(1) / gptq_marlin::tile_size) * pack_factor;
|
||||
" is not divisible by tile_size = ", marlin::tile_size);
|
||||
int actual_size_n = (b_q_weight.size(1) / marlin::tile_size) * pack_factor;
|
||||
TORCH_CHECK(size_n == actual_size_n, "size_n = ", size_n,
|
||||
", actual_size_n = ", actual_size_n);
|
||||
|
||||
@ -1274,11 +1273,9 @@ torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
num_groups = b_scales.size(0);
|
||||
|
||||
// Verify workspace size
|
||||
TORCH_CHECK(
|
||||
size_n % gptq_marlin::min_thread_n == 0, "size_n = ", size_n,
|
||||
", is not divisible by min_thread_n = ", gptq_marlin::min_thread_n);
|
||||
int min_workspace_size =
|
||||
(size_n / gptq_marlin::min_thread_n) * gptq_marlin::max_par;
|
||||
TORCH_CHECK(size_n % marlin::min_thread_n == 0, "size_n = ", size_n,
|
||||
", is not divisible by min_thread_n = ", marlin::min_thread_n);
|
||||
int min_workspace_size = (size_n / marlin::min_thread_n) * marlin::max_par;
|
||||
TORCH_CHECK(workspace.numel() >= min_workspace_size,
|
||||
"workspace.numel = ", workspace.numel(),
|
||||
" is below min_workspace_size = ", min_workspace_size);
|
||||
@ -1290,14 +1287,14 @@ torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
b_scales.data_ptr<at::Half>(), size_m, size_n, size_k,
|
||||
workspace.data_ptr(), num_bits, num_groups, group_size, dev,
|
||||
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
|
||||
gptq_marlin::max_par);
|
||||
marlin::max_par);
|
||||
} else if (a.scalar_type() == at::ScalarType::BFloat16) {
|
||||
fp8_marlin::marlin_mm_f16i4<nv_bfloat16>(
|
||||
a.data_ptr<at::BFloat16>(), b_q_weight.data_ptr(),
|
||||
c.data_ptr<at::BFloat16>(), b_scales.data_ptr<at::BFloat16>(), size_m,
|
||||
size_n, size_k, workspace.data_ptr(), num_bits, num_groups, group_size,
|
||||
dev, at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
|
||||
gptq_marlin::max_par);
|
||||
marlin::max_par);
|
||||
} else {
|
||||
TORCH_CHECK(false, "fp8_marlin_gemm only supports bfloat16 and float16");
|
||||
}
|
||||
|
269
csrc/quantization/gptq_marlin/awq_marlin_repack.cu
Normal file
269
csrc/quantization/gptq_marlin/awq_marlin_repack.cu
Normal file
@ -0,0 +1,269 @@
|
||||
#include "marlin.cuh"
|
||||
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
||||
|
||||
namespace marlin {
|
||||
|
||||
template <int const num_threads, int const num_bits, bool const has_perm>
|
||||
__global__ void awq_marlin_repack_kernel(
|
||||
uint32_t const* __restrict__ b_q_weight_ptr, uint32_t* __restrict__ out_ptr,
|
||||
int size_k, int size_n) {}
|
||||
|
||||
} // namespace marlin
|
||||
|
||||
torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm,
|
||||
int64_t size_k, int64_t size_n,
|
||||
int64_t num_bits) {
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
false, "marlin_repack_from_gptq(..) requires CUDA_ARCH >= 8.0");
|
||||
return torch::empty({1, 1});
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
namespace marlin {
|
||||
|
||||
template <int const num_threads, int const num_bits>
|
||||
__global__ void awq_marlin_repack_kernel(
|
||||
uint32_t const* __restrict__ b_q_weight_ptr, uint32_t* __restrict__ out_ptr,
|
||||
int size_k, int size_n) {
|
||||
constexpr int pack_factor = 32 / num_bits;
|
||||
|
||||
int k_tiles = size_k / tile_k_size;
|
||||
int n_tiles = size_n / tile_n_size;
|
||||
int block_k_tiles = div_ceil(k_tiles, gridDim.x);
|
||||
|
||||
int start_k_tile = blockIdx.x * block_k_tiles;
|
||||
if (start_k_tile >= k_tiles) {
|
||||
return;
|
||||
}
|
||||
|
||||
int finish_k_tile = min(start_k_tile + block_k_tiles, k_tiles);
|
||||
|
||||
// Wait until the next thread tile has been loaded to shared memory.
|
||||
auto wait_for_stage = [&]() {
|
||||
// We only have `stages - 2` active fetches since we are double buffering
|
||||
// and can only issue the next fetch when it is guaranteed that the previous
|
||||
// shared memory load is fully complete (as it may otherwise be
|
||||
// overwritten).
|
||||
cp_async_wait<repack_stages - 2>();
|
||||
__syncthreads();
|
||||
};
|
||||
|
||||
extern __shared__ int4 sh[];
|
||||
|
||||
constexpr int tile_n_ints = tile_n_size / pack_factor;
|
||||
|
||||
constexpr int stage_n_threads = tile_n_ints / 4;
|
||||
constexpr int stage_k_threads = tile_k_size;
|
||||
constexpr int stage_size = stage_k_threads * stage_n_threads;
|
||||
|
||||
auto fetch_to_shared = [&](int pipe, int k_tile_id, int n_tile_id) {
|
||||
if (n_tile_id >= n_tiles) {
|
||||
cp_async_fence();
|
||||
return;
|
||||
}
|
||||
|
||||
int first_n = n_tile_id * tile_n_size;
|
||||
int first_n_packed = first_n / pack_factor;
|
||||
|
||||
int4* sh_ptr = sh + stage_size * pipe;
|
||||
|
||||
if (threadIdx.x < stage_size) {
|
||||
int k_id = threadIdx.x / stage_n_threads;
|
||||
int n_id = threadIdx.x % stage_n_threads;
|
||||
|
||||
int first_k = k_tile_id * tile_k_size;
|
||||
|
||||
cp_async4(&sh_ptr[k_id * stage_n_threads + n_id],
|
||||
reinterpret_cast<int4 const*>(
|
||||
&(b_q_weight_ptr[(first_k + k_id) * (size_n / pack_factor) +
|
||||
first_n_packed + (n_id * 4)])));
|
||||
}
|
||||
|
||||
cp_async_fence();
|
||||
};
|
||||
|
||||
auto repack_tile = [&](int pipe, int k_tile_id, int n_tile_id) {
|
||||
if (n_tile_id >= n_tiles) {
|
||||
return;
|
||||
}
|
||||
|
||||
int warp_id = threadIdx.x / 32;
|
||||
int th_id = threadIdx.x % 32;
|
||||
|
||||
if (warp_id >= 4) {
|
||||
return;
|
||||
}
|
||||
|
||||
int tc_col = th_id / 4;
|
||||
int tc_row = (th_id % 4) * 2;
|
||||
|
||||
constexpr int tc_offsets[4] = {0, 1, 8, 9};
|
||||
|
||||
int cur_n = warp_id * 16 + tc_col;
|
||||
int cur_n_packed = cur_n / pack_factor;
|
||||
int cur_n_pos = cur_n % pack_factor;
|
||||
|
||||
constexpr int sh_stride = tile_n_ints;
|
||||
constexpr uint32_t mask = (1 << num_bits) - 1;
|
||||
|
||||
int4* sh_stage_ptr = sh + stage_size * pipe;
|
||||
uint32_t* sh_stage_int_ptr = reinterpret_cast<uint32_t*>(sh_stage_ptr);
|
||||
|
||||
// Undo interleaving
|
||||
int cur_n_pos_unpacked;
|
||||
if constexpr (num_bits == 4) {
|
||||
constexpr int undo_pack[8] = {0, 4, 1, 5, 2, 6, 3, 7};
|
||||
cur_n_pos_unpacked = undo_pack[cur_n_pos];
|
||||
} else {
|
||||
constexpr int undo_pack[4] = {0, 2, 1, 3};
|
||||
cur_n_pos_unpacked = undo_pack[cur_n_pos];
|
||||
}
|
||||
|
||||
uint32_t vals[8];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; i++) {
|
||||
int cur_elem = tc_row + tc_offsets[i];
|
||||
|
||||
int packed_src_0 = sh_stage_int_ptr[cur_n_packed + sh_stride * cur_elem];
|
||||
int packed_src_1 = sh_stage_int_ptr[cur_n_packed + (8 / pack_factor) +
|
||||
sh_stride * cur_elem];
|
||||
|
||||
vals[i] = (packed_src_0 >> (cur_n_pos_unpacked * num_bits)) & mask;
|
||||
vals[4 + i] = (packed_src_1 >> (cur_n_pos_unpacked * num_bits)) & mask;
|
||||
}
|
||||
|
||||
constexpr int tile_size = tile_k_size * tile_n_size / pack_factor;
|
||||
int out_offset = (k_tile_id * n_tiles + n_tile_id) * tile_size;
|
||||
|
||||
// Result of:
|
||||
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
|
||||
if constexpr (num_bits == 4) {
|
||||
constexpr int pack_idx[8] = {0, 2, 4, 6, 1, 3, 5, 7};
|
||||
|
||||
uint32_t res = 0;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 8; i++) {
|
||||
res |= vals[pack_idx[i]] << (i * 4);
|
||||
}
|
||||
|
||||
out_ptr[out_offset + th_id * 4 + warp_id] = res;
|
||||
|
||||
} else {
|
||||
constexpr int pack_idx[4] = {0, 2, 1, 3};
|
||||
|
||||
uint32_t res1 = 0;
|
||||
uint32_t res2 = 0;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; i++) {
|
||||
res1 |= vals[pack_idx[i]] << (i * 8);
|
||||
res2 |= vals[4 + pack_idx[i]] << (i * 8);
|
||||
}
|
||||
|
||||
out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 0] = res1;
|
||||
out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 1] = res2;
|
||||
}
|
||||
};
|
||||
|
||||
auto start_pipes = [&](int k_tile_id, int n_tile_id) {
|
||||
#pragma unroll
|
||||
for (int pipe = 0; pipe < repack_stages - 1; pipe++) {
|
||||
fetch_to_shared(pipe, k_tile_id, n_tile_id + pipe);
|
||||
}
|
||||
|
||||
wait_for_stage();
|
||||
};
|
||||
#pragma unroll
|
||||
for (int k_tile_id = start_k_tile; k_tile_id < finish_k_tile; k_tile_id++) {
|
||||
int n_tile_id = 0;
|
||||
|
||||
start_pipes(k_tile_id, n_tile_id);
|
||||
|
||||
while (n_tile_id < n_tiles) {
|
||||
#pragma unroll
|
||||
for (int pipe = 0; pipe < repack_stages; pipe++) {
|
||||
fetch_to_shared((pipe + repack_stages - 1) % repack_stages, k_tile_id,
|
||||
n_tile_id + pipe + repack_stages - 1);
|
||||
repack_tile(pipe, k_tile_id, n_tile_id + pipe);
|
||||
wait_for_stage();
|
||||
}
|
||||
n_tile_id += repack_stages;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace marlin
|
||||
|
||||
#define CALL_IF(NUM_BITS) \
|
||||
else if (num_bits == NUM_BITS) { \
|
||||
cudaFuncSetAttribute( \
|
||||
marlin::awq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS>, \
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \
|
||||
marlin::awq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS> \
|
||||
<<<blocks, marlin::repack_threads, max_shared_mem, stream>>>( \
|
||||
b_q_weight_ptr, out_ptr, size_k, size_n); \
|
||||
}
|
||||
|
||||
torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k,
|
||||
int64_t size_n, int64_t num_bits) {
|
||||
// Verify compatibility with marlin tile of 16x64
|
||||
TORCH_CHECK(size_k % marlin::tile_k_size == 0, "size_k = ", size_k,
|
||||
" is not divisible by tile_k_size = ", marlin::tile_k_size);
|
||||
TORCH_CHECK(size_n % marlin::tile_n_size == 0, "size_n = ", size_n,
|
||||
" is not divisible by tile_n_size = ", marlin::tile_n_size);
|
||||
|
||||
TORCH_CHECK(num_bits == 4 || num_bits == 8,
|
||||
"num_bits must be 4 or 8. Got = ", num_bits);
|
||||
int const pack_factor = 32 / num_bits;
|
||||
|
||||
// Verify B
|
||||
TORCH_CHECK(b_q_weight.size(0) == size_k,
|
||||
"b_q_weight.size(0) = ", b_q_weight.size(0),
|
||||
" is not size_k = ", size_k);
|
||||
TORCH_CHECK((size_n / pack_factor) == b_q_weight.size(1),
|
||||
"Shape mismatch: b_q_weight.size(1) = ", b_q_weight.size(1),
|
||||
", size_n = ", size_n, ", pack_factor = ", pack_factor);
|
||||
|
||||
// Verify device and strides
|
||||
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
|
||||
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");
|
||||
TORCH_CHECK(b_q_weight.dtype() == at::kInt, "b_q_weight type is not kInt");
|
||||
|
||||
// Alloc buffers
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(b_q_weight));
|
||||
auto options = torch::TensorOptions()
|
||||
.dtype(b_q_weight.dtype())
|
||||
.device(b_q_weight.device());
|
||||
torch::Tensor out = torch::empty(
|
||||
{size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor},
|
||||
options);
|
||||
|
||||
// Get ptrs
|
||||
uint32_t const* b_q_weight_ptr =
|
||||
reinterpret_cast<uint32_t const*>(b_q_weight.data_ptr());
|
||||
uint32_t* out_ptr = reinterpret_cast<uint32_t*>(out.data_ptr());
|
||||
|
||||
// Get dev info
|
||||
int dev = b_q_weight.get_device();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev);
|
||||
int blocks;
|
||||
cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev);
|
||||
|
||||
int max_shared_mem = 0;
|
||||
cudaDeviceGetAttribute(&max_shared_mem,
|
||||
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
|
||||
TORCH_CHECK(max_shared_mem > 0);
|
||||
|
||||
if (false) {
|
||||
}
|
||||
CALL_IF(4)
|
||||
CALL_IF(8)
|
||||
else {
|
||||
TORCH_CHECK(false, "Unsupported repack config: num_bits = ", num_bits);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
#endif
|
@ -19,8 +19,8 @@
|
||||
* Adapted from https://github.com/IST-DASLab/marlin
|
||||
*/
|
||||
|
||||
#include "gptq_marlin.cuh"
|
||||
#include "gptq_marlin_dtypes.cuh"
|
||||
#include "marlin.cuh"
|
||||
#include "marlin_dtypes.cuh"
|
||||
|
||||
#define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t) \
|
||||
static_assert(std::is_same<scalar_t, half>::value || \
|
||||
@ -32,7 +32,7 @@ inline std::string str(T x) {
|
||||
return std::to_string(x);
|
||||
}
|
||||
|
||||
namespace gptq_marlin {
|
||||
namespace marlin {
|
||||
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
||||
|
||||
@ -72,10 +72,11 @@ __global__ void Marlin(
|
||||
} // namespace gptq_marlin
|
||||
|
||||
torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
torch::Tensor& b_scales, torch::Tensor& g_idx,
|
||||
torch::Tensor& perm, torch::Tensor& workspace,
|
||||
int64_t num_bits, int64_t size_m, int64_t size_n,
|
||||
int64_t size_k, bool is_k_full) {
|
||||
torch::Tensor& b_scales, torch::Tensor& b_zeros,
|
||||
torch::Tensor& g_idx, torch::Tensor& perm,
|
||||
torch::Tensor& workspace, int64_t num_bits,
|
||||
int64_t size_m, int64_t size_n, int64_t size_k,
|
||||
bool is_k_full) {
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false,
|
||||
"marlin_gemm(..) requires CUDA_ARCH >= 8.0");
|
||||
return torch::empty({1, 1});
|
||||
@ -264,6 +265,114 @@ dequant_8bit<nv_bfloat16>(int q) {
|
||||
return frag_b;
|
||||
}
|
||||
|
||||
// Zero-point dequantizers
|
||||
|
||||
template <typename scalar_t>
|
||||
__device__ inline typename ScalarType<scalar_t>::FragB dequant_4bit_zp(int q) {
|
||||
STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t);
|
||||
}
|
||||
|
||||
template <>
|
||||
__device__ inline typename ScalarType<half>::FragB dequant_4bit_zp<half>(
|
||||
int q) {
|
||||
const int LO = 0x000f000f;
|
||||
const int HI = 0x00f000f0;
|
||||
const int EX = 0x64006400;
|
||||
// Guarantee that the `(a & b) | c` operations are LOP3s.
|
||||
int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX);
|
||||
int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX);
|
||||
|
||||
const int SUB = 0x64006400;
|
||||
const int MUL = 0x2c002c00;
|
||||
const int ADD = 0xd400d400;
|
||||
typename ScalarType<half>::FragB frag_b;
|
||||
frag_b[0] = __hsub2(*reinterpret_cast<half2*>(&lo),
|
||||
*reinterpret_cast<const half2*>(&SUB));
|
||||
frag_b[1] = __hfma2(*reinterpret_cast<half2*>(&hi),
|
||||
*reinterpret_cast<const half2*>(&MUL),
|
||||
*reinterpret_cast<const half2*>(&ADD));
|
||||
return frag_b;
|
||||
}
|
||||
|
||||
template <>
|
||||
__device__ inline typename ScalarType<nv_bfloat16>::FragB
|
||||
dequant_4bit_zp<nv_bfloat16>(int q) {
|
||||
static constexpr uint32_t MASK = 0x000f000f;
|
||||
static constexpr uint32_t EX = 0x43004300;
|
||||
|
||||
// Guarantee that the `(a & b) | c` operations are LOP3s.
|
||||
|
||||
int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, MASK, EX);
|
||||
q >>= 4;
|
||||
int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, MASK, EX);
|
||||
|
||||
typename ScalarType<nv_bfloat16>::FragB frag_b;
|
||||
static constexpr uint32_t MUL = 0x3F803F80;
|
||||
static constexpr uint32_t ADD = 0xC300C300;
|
||||
|
||||
frag_b[0] = __hfma2(*reinterpret_cast<nv_bfloat162*>(&lo),
|
||||
*reinterpret_cast<const nv_bfloat162*>(&MUL),
|
||||
*reinterpret_cast<const nv_bfloat162*>(&ADD));
|
||||
frag_b[1] = __hfma2(*reinterpret_cast<nv_bfloat162*>(&hi),
|
||||
*reinterpret_cast<const nv_bfloat162*>(&MUL),
|
||||
*reinterpret_cast<const nv_bfloat162*>(&ADD));
|
||||
return frag_b;
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__device__ inline typename ScalarType<scalar_t>::FragB dequant_8bit_zp(int q) {
|
||||
STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t);
|
||||
}
|
||||
|
||||
template <>
|
||||
__device__ inline typename ScalarType<half>::FragB dequant_8bit_zp<half>(
|
||||
int q) {
|
||||
static constexpr uint32_t mask_for_elt_01 = 0x5250;
|
||||
static constexpr uint32_t mask_for_elt_23 = 0x5351;
|
||||
static constexpr uint32_t start_byte_for_fp16 = 0x64646464;
|
||||
|
||||
uint32_t lo = prmt<start_byte_for_fp16, mask_for_elt_01>(q);
|
||||
uint32_t hi = prmt<start_byte_for_fp16, mask_for_elt_23>(q);
|
||||
|
||||
static constexpr uint32_t I8s_TO_F16s_MAGIC_NUM = 0x64006400;
|
||||
|
||||
typename ScalarType<half>::FragB frag_b;
|
||||
frag_b[0] = __hsub2(*reinterpret_cast<half2*>(&lo),
|
||||
*reinterpret_cast<const half2*>(&I8s_TO_F16s_MAGIC_NUM));
|
||||
frag_b[1] = __hsub2(*reinterpret_cast<half2*>(&hi),
|
||||
*reinterpret_cast<const half2*>(&I8s_TO_F16s_MAGIC_NUM));
|
||||
return frag_b;
|
||||
}
|
||||
|
||||
template <>
|
||||
__device__ inline typename ScalarType<nv_bfloat16>::FragB
|
||||
dequant_8bit_zp<nv_bfloat16>(int q) {
|
||||
typename ScalarType<nv_bfloat16>::FragB frag_b;
|
||||
|
||||
float fp32_intermediates[4];
|
||||
uint32_t* fp32_intermediates_casted =
|
||||
reinterpret_cast<uint32_t*>(fp32_intermediates);
|
||||
|
||||
static constexpr uint32_t fp32_base = 0x4B000000;
|
||||
fp32_intermediates_casted[0] = __byte_perm(q, fp32_base, 0x7650);
|
||||
fp32_intermediates_casted[1] = __byte_perm(q, fp32_base, 0x7652);
|
||||
fp32_intermediates_casted[2] = __byte_perm(q, fp32_base, 0x7651);
|
||||
fp32_intermediates_casted[3] = __byte_perm(q, fp32_base, 0x7653);
|
||||
|
||||
fp32_intermediates[0] -= 8388608.f;
|
||||
fp32_intermediates[1] -= 8388608.f;
|
||||
fp32_intermediates[2] -= 8388608.f;
|
||||
fp32_intermediates[3] -= 8388608.f;
|
||||
|
||||
uint32_t* bf16_result_ptr = reinterpret_cast<uint32_t*>(&frag_b);
|
||||
bf16_result_ptr[0] = __byte_perm(fp32_intermediates_casted[0],
|
||||
fp32_intermediates_casted[1], 0x7632);
|
||||
bf16_result_ptr[1] = __byte_perm(fp32_intermediates_casted[2],
|
||||
fp32_intermediates_casted[3], 0x7632);
|
||||
|
||||
return frag_b;
|
||||
}
|
||||
|
||||
// Multiply dequantized values by the corresponding quantization scale; used
|
||||
// only for grouped quantization.
|
||||
template <typename scalar_t>
|
||||
@ -277,6 +386,17 @@ __device__ inline void scale(typename ScalarType<scalar_t>::FragB& frag_b,
|
||||
frag_b[1] = __hmul2(frag_b[1], s);
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__device__ inline void sub_zp(typename ScalarType<scalar_t>::FragB& frag_b,
|
||||
typename ScalarType<scalar_t>::scalar_t2& frag_zp,
|
||||
int i) {
|
||||
using scalar_t2 = typename ScalarType<scalar_t>::scalar_t2;
|
||||
scalar_t2 zp =
|
||||
ScalarType<scalar_t>::num2num2(reinterpret_cast<scalar_t*>(&frag_zp)[i]);
|
||||
frag_b[0] = __hsub2(frag_b[0], zp);
|
||||
frag_b[1] = __hsub2(frag_b[1], zp);
|
||||
}
|
||||
|
||||
// Same as above, but for act_order (each K is multiplied individually)
|
||||
template <typename scalar_t>
|
||||
__device__ inline void scale4(typename ScalarType<scalar_t>::FragB& frag_b,
|
||||
@ -404,6 +524,7 @@ template <typename scalar_t, // compute dtype, half or nv_float16
|
||||
const int stages, // number of stages for the async global->shared
|
||||
// fetch pipeline
|
||||
const bool has_act_order, // whether act_order is enabled
|
||||
const bool has_zp, // whether zero-points are enabled
|
||||
const int group_blocks = -1 // number of consecutive 16x16 blocks
|
||||
// with a separate quantization scale
|
||||
>
|
||||
@ -413,6 +534,8 @@ __global__ void Marlin(
|
||||
int4* __restrict__ C, // fp16 output buffer of shape mxn
|
||||
const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape
|
||||
// (k/groupsize)xn
|
||||
const int4* __restrict__ zp_ptr, // 4bit packed zero-points of shape
|
||||
// (k/groupsize)x(n/pack_factor)
|
||||
const int* __restrict__ g_idx, // int32 group indices of shape k
|
||||
int num_groups, // number of scale groups per output channel
|
||||
int prob_m, // batch dimension m
|
||||
@ -437,6 +560,7 @@ __global__ void Marlin(
|
||||
using FragB = typename ScalarType<scalar_t>::FragB;
|
||||
using FragC = typename ScalarType<scalar_t>::FragC;
|
||||
using FragS = typename ScalarType<scalar_t>::FragS;
|
||||
using FragZP = typename ScalarType<scalar_t>::FragZP;
|
||||
|
||||
constexpr int pack_factor = 32 / num_bits;
|
||||
|
||||
@ -566,6 +690,13 @@ __global__ void Marlin(
|
||||
int tb_n_warps = thread_n_blocks / 4;
|
||||
int act_s_col_tb_stride = act_s_col_warp_stride * tb_n_warps;
|
||||
|
||||
// Zero-points sizes/strides
|
||||
int zp_gl_stride = (prob_n / pack_factor) / 4;
|
||||
constexpr int zp_sh_stride = ((16 * thread_n_blocks) / pack_factor) / 4;
|
||||
constexpr int zp_tb_groups = s_tb_groups;
|
||||
constexpr int zp_sh_stage = has_zp ? zp_tb_groups * zp_sh_stride : 0;
|
||||
int zp_gl_rd_delta = zp_gl_stride;
|
||||
|
||||
// Global A read index of current thread.
|
||||
int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
|
||||
(threadIdx.x % a_gl_rd_delta_o);
|
||||
@ -605,6 +736,19 @@ __global__ void Marlin(
|
||||
int s_sh_wr = threadIdx.x;
|
||||
bool s_sh_wr_pred = threadIdx.x < s_sh_stride;
|
||||
|
||||
// Zero-points
|
||||
int zp_gl_rd;
|
||||
if constexpr (has_zp) {
|
||||
if constexpr (group_blocks == -1) {
|
||||
zp_gl_rd = zp_sh_stride * slice_col + threadIdx.x;
|
||||
} else {
|
||||
zp_gl_rd = zp_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) +
|
||||
zp_sh_stride * slice_col + threadIdx.x;
|
||||
}
|
||||
}
|
||||
int zp_sh_wr = threadIdx.x;
|
||||
bool zp_sh_wr_pred = threadIdx.x < zp_sh_stride;
|
||||
|
||||
// We use a different scale layout for grouped and column-wise quantization as
|
||||
// we scale a `half2` tile in column-major layout in the former and in
|
||||
// row-major in the latter case.
|
||||
@ -616,6 +760,18 @@ __global__ void Marlin(
|
||||
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
||||
(threadIdx.x % 32) % 4;
|
||||
|
||||
// Zero-points have the same read layout as the scales
|
||||
// (without column-wise case)
|
||||
constexpr int num_col_threads = 8;
|
||||
constexpr int num_row_threads = 4;
|
||||
constexpr int num_ints_per_thread = 8 / pack_factor;
|
||||
int zp_sh_rd;
|
||||
if constexpr (has_zp) {
|
||||
zp_sh_rd = num_ints_per_thread * num_col_threads *
|
||||
((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
||||
num_ints_per_thread * ((threadIdx.x % 32) / num_row_threads);
|
||||
}
|
||||
|
||||
// Precompute which thread should not read memory in which iterations; this is
|
||||
// needed if there are more threads than required for a certain tilesize or
|
||||
// when the batchsize is not a multiple of 16.
|
||||
@ -664,14 +820,17 @@ __global__ void Marlin(
|
||||
int4* sh_a = sh;
|
||||
int4* sh_b = sh_a + (stages * a_sh_stage);
|
||||
int4* sh_g_idx = sh_b + (stages * b_sh_stage);
|
||||
int4* sh_s = sh_g_idx + (stages * g_idx_stage);
|
||||
int4* sh_zp = sh_g_idx + (stages * g_idx_stage);
|
||||
int4* sh_s = sh_zp + (stages * zp_sh_stage);
|
||||
|
||||
// Register storage for double buffer of shared memory reads.
|
||||
FragA frag_a[2][thread_m_blocks];
|
||||
I4 frag_b_quant[2][b_thread_vecs];
|
||||
FragC frag_c[thread_m_blocks][4][2];
|
||||
FragS frag_s[2][4]; // No act-order
|
||||
FragS act_frag_s[2][4][4]; // For act-order
|
||||
FragS frag_s[2][4]; // No act-order
|
||||
FragS act_frag_s[2][4][4]; // For act-order
|
||||
int frag_qzp[2][num_ints_per_thread]; // Zero-points
|
||||
FragZP frag_zp; // Zero-points in fp16
|
||||
|
||||
// Zero accumulators.
|
||||
auto zero_accums = [&]() {
|
||||
@ -777,6 +936,28 @@ __global__ void Marlin(
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if constexpr (has_zp && group_blocks != -1) {
|
||||
int4* sh_zp_stage = sh_zp + zp_sh_stage * pipe;
|
||||
|
||||
if constexpr (group_blocks >= thread_k_blocks) {
|
||||
// Only fetch zero-points if this tile starts a new group
|
||||
if (pipe % (group_blocks / thread_k_blocks) == 0) {
|
||||
if (zp_sh_wr_pred) {
|
||||
cp_async4(&sh_zp_stage[zp_sh_wr], &zp_ptr[zp_gl_rd]);
|
||||
}
|
||||
zp_gl_rd += zp_gl_rd_delta;
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < zp_tb_groups; i++) {
|
||||
if (zp_sh_wr_pred) {
|
||||
cp_async4(&sh_zp_stage[i * zp_sh_stride + zp_sh_wr],
|
||||
&zp_ptr[zp_gl_rd]);
|
||||
}
|
||||
zp_gl_rd += zp_gl_rd_delta;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// Insert a fence even when we are winding down the pipeline to ensure that
|
||||
@ -784,6 +965,12 @@ __global__ void Marlin(
|
||||
cp_async_fence();
|
||||
};
|
||||
|
||||
auto fetch_zp_to_shared = [&]() {
|
||||
if (zp_sh_wr_pred) {
|
||||
cp_async4(&sh_zp[zp_sh_wr], &zp_ptr[zp_gl_rd]);
|
||||
}
|
||||
};
|
||||
|
||||
// Wait until the next thread tile has been loaded to shared memory.
|
||||
auto wait_for_stage = [&]() {
|
||||
// We only have `stages - 2` active fetches since we are double buffering
|
||||
@ -932,8 +1119,73 @@ __global__ void Marlin(
|
||||
}
|
||||
};
|
||||
|
||||
auto fetch_zp_to_registers = [&](int k, int full_pipe) {
|
||||
if constexpr (!has_zp) {
|
||||
return;
|
||||
}
|
||||
|
||||
int pipe = full_pipe % stages;
|
||||
|
||||
if constexpr (group_blocks == -1) {
|
||||
for (int i = 0; i < num_ints_per_thread; i++) {
|
||||
frag_qzp[k % 2][i] = (reinterpret_cast<int*>(sh_zp))[zp_sh_rd + i];
|
||||
}
|
||||
|
||||
} else if constexpr (group_blocks >= thread_k_blocks) {
|
||||
int4* sh_zp_stage =
|
||||
sh_zp + zp_sh_stage * ((group_blocks / thread_k_blocks) *
|
||||
(pipe / (group_blocks / thread_k_blocks)));
|
||||
for (int i = 0; i < num_ints_per_thread; i++) {
|
||||
frag_qzp[k % 2][i] =
|
||||
(reinterpret_cast<int*>(sh_zp_stage))[zp_sh_rd + i];
|
||||
}
|
||||
} else {
|
||||
int warp_id = threadIdx.x / 32;
|
||||
int n_warps = thread_n_blocks / 4;
|
||||
|
||||
int warp_row = warp_id / n_warps;
|
||||
|
||||
int cur_k = warp_row * 16;
|
||||
cur_k += k_iter_size * (k % b_sh_wr_iters);
|
||||
|
||||
int k_blocks = cur_k / 16;
|
||||
int cur_group_id = k_blocks / group_blocks;
|
||||
|
||||
int4* sh_zp_stage = sh_zp + zp_sh_stage * pipe;
|
||||
|
||||
sh_zp_stage += cur_group_id * zp_sh_stride;
|
||||
|
||||
for (int i = 0; i < num_ints_per_thread; i++) {
|
||||
frag_qzp[k % 2][i] =
|
||||
(reinterpret_cast<int*>(sh_zp_stage))[zp_sh_rd + i];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Execute the actual tensor core matmul of a sub-tile.
|
||||
auto matmul = [&](int k) {
|
||||
if constexpr (has_zp) {
|
||||
FragB frag_zp_0;
|
||||
FragB frag_zp_1;
|
||||
if constexpr (num_bits == 4) {
|
||||
int zp_quant = frag_qzp[k % 2][0];
|
||||
int zp_quant_shift = zp_quant >> 8;
|
||||
frag_zp_0 = dequant_4bit_zp<scalar_t>(zp_quant);
|
||||
frag_zp_1 = dequant_4bit_zp<scalar_t>(zp_quant_shift);
|
||||
|
||||
} else {
|
||||
int zp_quant_0 = frag_qzp[k % 2][0];
|
||||
int zp_quant_1 = frag_qzp[k % 2][1];
|
||||
frag_zp_0 = dequant_8bit_zp<scalar_t>(zp_quant_0);
|
||||
frag_zp_1 = dequant_8bit_zp<scalar_t>(zp_quant_1);
|
||||
}
|
||||
|
||||
frag_zp[0] = frag_zp_0[0];
|
||||
frag_zp[1] = frag_zp_0[1];
|
||||
frag_zp[2] = frag_zp_1[0];
|
||||
frag_zp[3] = frag_zp_1[1];
|
||||
}
|
||||
|
||||
// We have the m dimension as the inner loop in order to encourage overlapping
|
||||
// dequantization and matmul operations.
|
||||
#pragma unroll
|
||||
@ -944,16 +1196,32 @@ __global__ void Marlin(
|
||||
int b_quant = frag_b_quant[k % 2][0][j];
|
||||
int b_quant_shift = b_quant >> 8;
|
||||
|
||||
frag_b0 = dequant_4bit<scalar_t>(b_quant);
|
||||
frag_b1 = dequant_4bit<scalar_t>(b_quant_shift);
|
||||
if constexpr (has_zp) {
|
||||
frag_b0 = dequant_4bit_zp<scalar_t>(b_quant);
|
||||
frag_b1 = dequant_4bit_zp<scalar_t>(b_quant_shift);
|
||||
|
||||
} else {
|
||||
frag_b0 = dequant_4bit<scalar_t>(b_quant);
|
||||
frag_b1 = dequant_4bit<scalar_t>(b_quant_shift);
|
||||
}
|
||||
|
||||
} else {
|
||||
int* frag_b_quant_ptr = reinterpret_cast<int*>(frag_b_quant[k % 2]);
|
||||
int b_quant_0 = frag_b_quant_ptr[j * 2 + 0];
|
||||
int b_quant_1 = frag_b_quant_ptr[j * 2 + 1];
|
||||
|
||||
frag_b0 = dequant_8bit<scalar_t>(b_quant_0);
|
||||
frag_b1 = dequant_8bit<scalar_t>(b_quant_1);
|
||||
if constexpr (has_zp) {
|
||||
frag_b0 = dequant_8bit_zp<scalar_t>(b_quant_0);
|
||||
frag_b1 = dequant_8bit_zp<scalar_t>(b_quant_1);
|
||||
} else {
|
||||
frag_b0 = dequant_8bit<scalar_t>(b_quant_0);
|
||||
frag_b1 = dequant_8bit<scalar_t>(b_quant_1);
|
||||
}
|
||||
}
|
||||
|
||||
// Apply zero-point to frag_b0
|
||||
if constexpr (has_zp) {
|
||||
sub_zp<scalar_t>(frag_b0, frag_zp[j], 0);
|
||||
}
|
||||
|
||||
// Apply scale to frag_b0
|
||||
@ -967,6 +1235,11 @@ __global__ void Marlin(
|
||||
}
|
||||
}
|
||||
|
||||
// Apply zero-point to frag_b1
|
||||
if constexpr (has_zp) {
|
||||
sub_zp<scalar_t>(frag_b1, frag_zp[j], 1);
|
||||
}
|
||||
|
||||
// Apply scale to frag_b1
|
||||
if constexpr (has_act_order) {
|
||||
scale4<scalar_t>(frag_b1, act_frag_s[k % 2][0][j],
|
||||
@ -1189,6 +1462,12 @@ __global__ void Marlin(
|
||||
}
|
||||
fetch_scales_to_shared(true, g_idx[slice_k_start], g_idx[last_g_idx]);
|
||||
}
|
||||
|
||||
if constexpr (has_zp && group_blocks == -1) {
|
||||
if (i == 0) {
|
||||
fetch_zp_to_shared();
|
||||
}
|
||||
}
|
||||
fetch_to_shared(i, i, i < slice_iters);
|
||||
}
|
||||
|
||||
@ -1197,6 +1476,7 @@ __global__ void Marlin(
|
||||
init_same_group(0);
|
||||
fetch_to_registers(0, 0);
|
||||
fetch_scales_to_registers(0, 0);
|
||||
fetch_zp_to_registers(0, 0);
|
||||
a_gl_rd += a_gl_rd_delta_o * (stages - 1);
|
||||
slice_k_start_shared_fetch += tb_k * (stages - 1);
|
||||
};
|
||||
@ -1217,6 +1497,7 @@ __global__ void Marlin(
|
||||
for (int k = 0; k < b_sh_wr_iters; k++) {
|
||||
fetch_to_registers(k + 1, pipe % stages);
|
||||
fetch_scales_to_registers(k + 1, pipe);
|
||||
fetch_zp_to_registers(k + 1, pipe);
|
||||
if (k == b_sh_wr_iters - 2) {
|
||||
fetch_to_shared((pipe + stages - 1) % stages, pipe,
|
||||
slice_iters >= stages);
|
||||
@ -1354,6 +1635,7 @@ __global__ void Marlin(
|
||||
|
||||
} else {
|
||||
s_gl_rd = s_sh_stride * slice_col + threadIdx.x;
|
||||
zp_gl_rd = zp_sh_stride * slice_col + threadIdx.x;
|
||||
}
|
||||
|
||||
start_pipes();
|
||||
@ -1363,22 +1645,24 @@ __global__ void Marlin(
|
||||
}
|
||||
|
||||
#define __CALL_IF(NUM_BITS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, \
|
||||
THREAD_K_BLOCKS, HAS_ACT_ORDER, GROUP_BLOCKS, NUM_THREADS) \
|
||||
THREAD_K_BLOCKS, HAS_ACT_ORDER, HAS_ZP, GROUP_BLOCKS, \
|
||||
NUM_THREADS) \
|
||||
else if (num_bits == NUM_BITS && thread_m_blocks == THREAD_M_BLOCKS && \
|
||||
thread_n_blocks == THREAD_N_BLOCKS && \
|
||||
thread_k_blocks == THREAD_K_BLOCKS && \
|
||||
has_act_order == HAS_ACT_ORDER && group_blocks == GROUP_BLOCKS && \
|
||||
num_threads == NUM_THREADS) { \
|
||||
has_act_order == HAS_ACT_ORDER && has_zp == HAS_ZP && \
|
||||
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS) { \
|
||||
cudaFuncSetAttribute( \
|
||||
Marlin<scalar_t, NUM_BITS, NUM_THREADS, THREAD_M_BLOCKS, \
|
||||
THREAD_N_BLOCKS, THREAD_K_BLOCKS, pipe_stages, HAS_ACT_ORDER, \
|
||||
GROUP_BLOCKS>, \
|
||||
HAS_ZP, GROUP_BLOCKS>, \
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \
|
||||
Marlin<scalar_t, NUM_BITS, NUM_THREADS, THREAD_M_BLOCKS, \
|
||||
THREAD_N_BLOCKS, THREAD_K_BLOCKS, pipe_stages, HAS_ACT_ORDER, \
|
||||
GROUP_BLOCKS><<<blocks, NUM_THREADS, max_shared_mem, stream>>>( \
|
||||
A_ptr, B_ptr, C_ptr, s_ptr, g_idx_ptr, num_groups, prob_m, prob_n, \
|
||||
prob_k, locks); \
|
||||
HAS_ZP, GROUP_BLOCKS> \
|
||||
<<<blocks, NUM_THREADS, max_shared_mem, stream>>>( \
|
||||
A_ptr, B_ptr, C_ptr, s_ptr, zp_ptr, g_idx_ptr, num_groups, \
|
||||
prob_m, prob_n, prob_k, locks); \
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
@ -1548,39 +1832,61 @@ exec_config_t determine_thread_config(int prob_m, int prob_n, int prob_k,
|
||||
return exec_config_t{0, {-1, -1, -1}};
|
||||
}
|
||||
|
||||
#define CALL_IF(NUM_BITS, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
|
||||
\
|
||||
__CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \
|
||||
\
|
||||
__CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \
|
||||
\
|
||||
__CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \
|
||||
\
|
||||
__CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS)
|
||||
#define GPTQ_CALL_IF(NUM_BITS, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, true, false, 0, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, true, false, 0, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, true, false, 0, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, true, false, 0, NUM_THREADS) \
|
||||
\
|
||||
__CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, false, false, -1, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, false, false, 2, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, false, false, 4, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, false, false, 8, NUM_THREADS) \
|
||||
\
|
||||
__CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, false, false, -1, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, false, false, 2, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, false, false, 4, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, false, false, 8, NUM_THREADS) \
|
||||
\
|
||||
__CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, false, false, -1, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, false, false, 2, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, false, false, 4, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, false, false, 8, NUM_THREADS) \
|
||||
\
|
||||
__CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, false, false, -1, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, false, false, 2, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, false, false, 4, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, false, false, 8, NUM_THREADS)
|
||||
|
||||
#define AWQ_CALL_IF(NUM_BITS, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, false, true, -1, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, false, true, 2, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, false, true, 4, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, false, true, 8, NUM_THREADS) \
|
||||
\
|
||||
__CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, false, true, -1, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, false, true, 2, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, false, true, 4, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, false, true, 8, NUM_THREADS) \
|
||||
\
|
||||
__CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, false, true, -1, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, false, true, 2, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, false, true, 4, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, false, true, 8, NUM_THREADS) \
|
||||
\
|
||||
__CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, false, true, -1, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, false, true, 2, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, false, true, 4, NUM_THREADS) \
|
||||
__CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, false, true, 8, NUM_THREADS)
|
||||
|
||||
template <typename scalar_t>
|
||||
void marlin_mm_f16i4(const void* A, const void* B, void* C, void* s,
|
||||
void marlin_mm_f16i4(const void* A, const void* B, void* C, void* s, void* zp,
|
||||
void* g_idx, void* perm, void* a_tmp, int prob_m,
|
||||
int prob_n, int prob_k, void* workspace, int num_bits,
|
||||
bool has_act_order, bool is_k_full, int num_groups,
|
||||
int group_size, int dev, cudaStream_t stream, int thread_k,
|
||||
int thread_n, int sms, int max_par) {
|
||||
bool has_act_order, bool is_k_full, bool has_zp,
|
||||
int num_groups, int group_size, int dev,
|
||||
cudaStream_t stream, int thread_k, int thread_n, int sms,
|
||||
int max_par) {
|
||||
TORCH_CHECK(num_bits == 4 || num_bits == 8,
|
||||
"num_bits must be 4 or 8. Got = ", num_bits);
|
||||
TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m,
|
||||
@ -1665,6 +1971,7 @@ void marlin_mm_f16i4(const void* A, const void* B, void* C, void* s,
|
||||
const int4* B_ptr = (const int4*)B;
|
||||
int4* C_ptr = (int4*)C;
|
||||
const int4* s_ptr = (const int4*)s;
|
||||
const int4* zp_ptr = (const int4*)zp;
|
||||
const int* g_idx_ptr = (const int*)g_idx;
|
||||
const int* perm_ptr = (const int*)perm;
|
||||
int4* a_tmp_ptr = (int4*)a_tmp;
|
||||
@ -1701,28 +2008,33 @@ void marlin_mm_f16i4(const void* A, const void* B, void* C, void* s,
|
||||
thread_m_blocks = exec_cfg.max_m_blocks;
|
||||
}
|
||||
|
||||
// Define kernel configurations
|
||||
if (false) {
|
||||
}
|
||||
CALL_IF(4, 32, 2, 256)
|
||||
CALL_IF(4, 16, 4, 256)
|
||||
CALL_IF(4, 8, 8, 256)
|
||||
CALL_IF(4, 8, 4, 128)
|
||||
CALL_IF(4, 4, 8, 128)
|
||||
CALL_IF(8, 32, 2, 256)
|
||||
CALL_IF(8, 16, 4, 256)
|
||||
CALL_IF(8, 8, 8, 256)
|
||||
CALL_IF(8, 8, 4, 128)
|
||||
CALL_IF(8, 4, 8, 128)
|
||||
GPTQ_CALL_IF(4, 16, 4, 256)
|
||||
GPTQ_CALL_IF(4, 8, 8, 256)
|
||||
GPTQ_CALL_IF(4, 8, 4, 128)
|
||||
GPTQ_CALL_IF(4, 4, 8, 128)
|
||||
GPTQ_CALL_IF(8, 16, 4, 256)
|
||||
GPTQ_CALL_IF(8, 8, 8, 256)
|
||||
GPTQ_CALL_IF(8, 8, 4, 128)
|
||||
GPTQ_CALL_IF(8, 4, 8, 128)
|
||||
|
||||
AWQ_CALL_IF(4, 16, 4, 256)
|
||||
AWQ_CALL_IF(4, 8, 8, 256)
|
||||
AWQ_CALL_IF(4, 8, 4, 128)
|
||||
AWQ_CALL_IF(4, 4, 8, 128)
|
||||
AWQ_CALL_IF(8, 16, 4, 256)
|
||||
AWQ_CALL_IF(8, 8, 8, 256)
|
||||
AWQ_CALL_IF(8, 8, 4, 128)
|
||||
AWQ_CALL_IF(8, 4, 8, 128)
|
||||
else {
|
||||
TORCH_CHECK(false, "Unsupported shapes: MNK = [" + str(prob_m) + ", " +
|
||||
str(prob_n) + ", " + str(prob_k) + "]" +
|
||||
", has_act_order = " + str(has_act_order) +
|
||||
", num_groups = " + str(num_groups) +
|
||||
", group_size = " + str(group_size) +
|
||||
", thread_m_blocks = " + str(thread_m_blocks) +
|
||||
", thread_n_blocks = " + str(thread_n_blocks) +
|
||||
", thread_k_blocks = " + str(thread_k_blocks));
|
||||
TORCH_CHECK(false, "Unsupported shapes: MNK = [", prob_m, ", ", prob_n,
|
||||
", ", prob_k, "]", ", has_act_order = ", has_act_order,
|
||||
", num_groups = ", num_groups, ", group_size = ", group_size,
|
||||
", thread_m_blocks = ", thread_m_blocks,
|
||||
", thread_n_blocks = ", thread_n_blocks,
|
||||
", thread_k_blocks = ", thread_k_blocks,
|
||||
", num_bits = ", num_bits);
|
||||
}
|
||||
|
||||
A_ptr += 16 * thread_m_blocks * (prob_k / 8) * par;
|
||||
@ -1733,10 +2045,11 @@ void marlin_mm_f16i4(const void* A, const void* B, void* C, void* s,
|
||||
} // namespace gptq_marlin
|
||||
|
||||
torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
torch::Tensor& b_scales, torch::Tensor& g_idx,
|
||||
torch::Tensor& perm, torch::Tensor& workspace,
|
||||
int64_t num_bits, int64_t size_m, int64_t size_n,
|
||||
int64_t size_k, bool is_k_full) {
|
||||
torch::Tensor& b_scales, torch::Tensor& b_zeros,
|
||||
torch::Tensor& g_idx, torch::Tensor& perm,
|
||||
torch::Tensor& workspace, int64_t num_bits,
|
||||
int64_t size_m, int64_t size_n, int64_t size_k,
|
||||
bool is_k_full, bool has_zp) {
|
||||
// Verify num_bits
|
||||
TORCH_CHECK(num_bits == 4 || num_bits == 8,
|
||||
"num_bits must be 4 or 8. Got = ", num_bits);
|
||||
@ -1749,16 +2062,15 @@ torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
", size_k = ", size_k);
|
||||
|
||||
// Verify B
|
||||
TORCH_CHECK(size_k % gptq_marlin::tile_size == 0, "size_k = ", size_k,
|
||||
" is not divisible by tile_size = ", gptq_marlin::tile_size);
|
||||
TORCH_CHECK((size_k / gptq_marlin::tile_size) == b_q_weight.size(0),
|
||||
TORCH_CHECK(size_k % marlin::tile_size == 0, "size_k = ", size_k,
|
||||
" is not divisible by tile_size = ", marlin::tile_size);
|
||||
TORCH_CHECK((size_k / marlin::tile_size) == b_q_weight.size(0),
|
||||
"Shape mismatch: b_q_weight.size(0) = ", b_q_weight.size(0),
|
||||
", size_k = ", size_k, ", tile_size = ", gptq_marlin::tile_size);
|
||||
TORCH_CHECK(b_q_weight.size(1) % gptq_marlin::tile_size == 0,
|
||||
", size_k = ", size_k, ", tile_size = ", marlin::tile_size);
|
||||
TORCH_CHECK(b_q_weight.size(1) % marlin::tile_size == 0,
|
||||
"b_q_weight.size(1) = ", b_q_weight.size(1),
|
||||
" is not divisible by tile_size = ", gptq_marlin::tile_size);
|
||||
int actual_size_n =
|
||||
(b_q_weight.size(1) / gptq_marlin::tile_size) * pack_factor;
|
||||
" is not divisible by tile_size = ", marlin::tile_size);
|
||||
int actual_size_n = (b_q_weight.size(1) / marlin::tile_size) * pack_factor;
|
||||
TORCH_CHECK(size_n == actual_size_n, "size_n = ", size_n,
|
||||
", actual_size_n = ", actual_size_n);
|
||||
|
||||
@ -1772,6 +2084,9 @@ torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
TORCH_CHECK(b_scales.device().is_cuda(), "b_scales is not on GPU");
|
||||
TORCH_CHECK(b_scales.is_contiguous(), "b_scales is not contiguous");
|
||||
|
||||
TORCH_CHECK(b_zeros.device().is_cuda(), "b_zeros is not on GPU");
|
||||
TORCH_CHECK(b_zeros.is_contiguous(), "b_zeros is not contiguous");
|
||||
|
||||
TORCH_CHECK(g_idx.device().is_cuda(), "g_idx is not on GPU");
|
||||
TORCH_CHECK(g_idx.is_contiguous(), "g_idx is not contiguous");
|
||||
|
||||
@ -1805,8 +2120,8 @@ torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
int group_size = -1;
|
||||
bool has_act_order = g_idx.size(0) != 0;
|
||||
|
||||
int b_rank = b_scales.sizes().size();
|
||||
TORCH_CHECK(b_rank == 2, "b_scales rank = ", b_rank, " is not 2");
|
||||
int rank = b_scales.sizes().size();
|
||||
TORCH_CHECK(rank == 2, "b_scales rank = ", rank, " is not 2");
|
||||
TORCH_CHECK(b_scales.size(1) == size_n, "b_scales dim 1 = ", b_scales.size(1),
|
||||
" is not size_n = ", size_n);
|
||||
num_groups = b_scales.size(0);
|
||||
@ -1832,34 +2147,44 @@ torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
}
|
||||
}
|
||||
|
||||
// Verify b_zeros
|
||||
if (has_zp) {
|
||||
int rank = b_zeros.sizes().size();
|
||||
TORCH_CHECK(rank == 2, "b_zeros rank = ", rank, " is not 2");
|
||||
TORCH_CHECK(b_zeros.size(0) == num_groups,
|
||||
"b_zeros dim 0 = ", b_zeros.size(0),
|
||||
" is not num_groups = ", num_groups);
|
||||
TORCH_CHECK(b_zeros.size(1) == size_n / pack_factor,
|
||||
"b_zeros dim 1 = ", b_scales.size(1),
|
||||
" is not size_n / pack_factor = ", size_n / pack_factor);
|
||||
}
|
||||
|
||||
// Verify workspace size
|
||||
TORCH_CHECK(
|
||||
size_n % gptq_marlin::min_thread_n == 0, "size_n = ", size_n,
|
||||
", is not divisible by min_thread_n = ", gptq_marlin::min_thread_n);
|
||||
int min_workspace_size =
|
||||
(size_n / gptq_marlin::min_thread_n) * gptq_marlin::max_par;
|
||||
TORCH_CHECK(size_n % marlin::min_thread_n == 0, "size_n = ", size_n,
|
||||
", is not divisible by min_thread_n = ", marlin::min_thread_n);
|
||||
int min_workspace_size = (size_n / marlin::min_thread_n) * marlin::max_par;
|
||||
TORCH_CHECK(workspace.numel() >= min_workspace_size,
|
||||
"workspace.numel = ", workspace.numel(),
|
||||
" is below min_workspace_size = ", min_workspace_size);
|
||||
|
||||
int dev = a.get_device();
|
||||
if (a.scalar_type() == at::ScalarType::Half) {
|
||||
gptq_marlin::marlin_mm_f16i4<half>(
|
||||
marlin::marlin_mm_f16i4<half>(
|
||||
a.data_ptr<at::Half>(), b_q_weight.data_ptr(), c.data_ptr<at::Half>(),
|
||||
b_scales.data_ptr<at::Half>(), g_idx.data_ptr(), perm.data_ptr(),
|
||||
a_tmp.data_ptr<at::Half>(), size_m, size_n, size_k,
|
||||
workspace.data_ptr(), num_bits, has_act_order, is_k_full, num_groups,
|
||||
group_size, dev, at::cuda::getCurrentCUDAStream(dev), thread_k,
|
||||
thread_n, sms, gptq_marlin::max_par);
|
||||
b_scales.data_ptr<at::Half>(), b_zeros.data_ptr(), g_idx.data_ptr(),
|
||||
perm.data_ptr(), a_tmp.data_ptr<at::Half>(), size_m, size_n, size_k,
|
||||
workspace.data_ptr(), num_bits, has_act_order, is_k_full, has_zp,
|
||||
num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev),
|
||||
thread_k, thread_n, sms, marlin::max_par);
|
||||
} else if (a.scalar_type() == at::ScalarType::BFloat16) {
|
||||
gptq_marlin::marlin_mm_f16i4<nv_bfloat16>(
|
||||
marlin::marlin_mm_f16i4<nv_bfloat16>(
|
||||
a.data_ptr<at::BFloat16>(), b_q_weight.data_ptr(),
|
||||
c.data_ptr<at::BFloat16>(), b_scales.data_ptr<at::BFloat16>(),
|
||||
g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr<at::BFloat16>(),
|
||||
size_m, size_n, size_k, workspace.data_ptr(), num_bits, has_act_order,
|
||||
is_k_full, num_groups, group_size, dev,
|
||||
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
|
||||
gptq_marlin::max_par);
|
||||
b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(),
|
||||
a_tmp.data_ptr<at::BFloat16>(), size_m, size_n, size_k,
|
||||
workspace.data_ptr(), num_bits, has_act_order, is_k_full, has_zp,
|
||||
num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev),
|
||||
thread_k, thread_n, sms, marlin::max_par);
|
||||
} else {
|
||||
TORCH_CHECK(false, "gpt_marlin_gemm only supports bfloat16 and float16");
|
||||
}
|
||||
|
@ -1,23 +1,16 @@
|
||||
#include "gptq_marlin.cuh"
|
||||
|
||||
namespace gptq_marlin {
|
||||
|
||||
static constexpr int repack_stages = 8;
|
||||
|
||||
static constexpr int repack_threads = 256;
|
||||
|
||||
static constexpr int tile_k_size = tile_size;
|
||||
static constexpr int tile_n_size = tile_k_size * 4;
|
||||
#include "marlin.cuh"
|
||||
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
||||
|
||||
namespace marlin {
|
||||
|
||||
template <int const num_threads, int const num_bits, bool const has_perm>
|
||||
__global__ void marlin_repack_kernel(
|
||||
__global__ void gptq_marlin_repack_kernel(
|
||||
uint32_t const* __restrict__ b_q_weight_ptr,
|
||||
uint32_t const* __restrict__ perm_ptr, uint32_t* __restrict__ out_ptr,
|
||||
int size_k, int size_n) {}
|
||||
|
||||
} // namespace gptq_marlin
|
||||
} // namespace marlin
|
||||
|
||||
torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm,
|
||||
int64_t size_k, int64_t size_n,
|
||||
@ -29,8 +22,10 @@ torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm,
|
||||
|
||||
#else
|
||||
|
||||
namespace marlin {
|
||||
|
||||
template <int const num_threads, int const num_bits, bool const has_perm>
|
||||
__global__ void marlin_repack_kernel(
|
||||
__global__ void gptq_marlin_repack_kernel(
|
||||
uint32_t const* __restrict__ b_q_weight_ptr,
|
||||
uint32_t const* __restrict__ perm_ptr, uint32_t* __restrict__ out_ptr,
|
||||
int size_k, int size_n) {
|
||||
@ -259,28 +254,28 @@ __global__ void marlin_repack_kernel(
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace gptq_marlin
|
||||
} // namespace marlin
|
||||
|
||||
#define CALL_IF(NUM_BITS, HAS_PERM) \
|
||||
else if (num_bits == NUM_BITS && has_perm == HAS_PERM) { \
|
||||
cudaFuncSetAttribute( \
|
||||
gptq_marlin::marlin_repack_kernel<gptq_marlin::repack_threads, \
|
||||
NUM_BITS, HAS_PERM>, \
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \
|
||||
gptq_marlin::marlin_repack_kernel<gptq_marlin::repack_threads, NUM_BITS, \
|
||||
HAS_PERM> \
|
||||
<<<blocks, gptq_marlin::repack_threads, max_shared_mem, stream>>>( \
|
||||
b_q_weight_ptr, perm_ptr, out_ptr, size_k, size_n); \
|
||||
#define CALL_IF(NUM_BITS, HAS_PERM) \
|
||||
else if (num_bits == NUM_BITS && has_perm == HAS_PERM) { \
|
||||
cudaFuncSetAttribute( \
|
||||
marlin::gptq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS, \
|
||||
HAS_PERM>, \
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \
|
||||
marlin::gptq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS, \
|
||||
HAS_PERM> \
|
||||
<<<blocks, marlin::repack_threads, max_shared_mem, stream>>>( \
|
||||
b_q_weight_ptr, perm_ptr, out_ptr, size_k, size_n); \
|
||||
}
|
||||
|
||||
torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm,
|
||||
int64_t size_k, int64_t size_n,
|
||||
int64_t num_bits) {
|
||||
// Verify compatibility with marlin tile of 16x64
|
||||
TORCH_CHECK(size_k % gptq_marlin::tile_k_size == 0, "size_k = ", size_k,
|
||||
" is not divisible by tile_k_size = ", gptq_marlin::tile_k_size);
|
||||
TORCH_CHECK(size_n % gptq_marlin::tile_n_size == 0, "size_n = ", size_n,
|
||||
" is not divisible by tile_n_size = ", gptq_marlin::tile_n_size);
|
||||
TORCH_CHECK(size_k % marlin::tile_k_size == 0, "size_k = ", size_k,
|
||||
" is not divisible by tile_k_size = ", marlin::tile_k_size);
|
||||
TORCH_CHECK(size_n % marlin::tile_n_size == 0, "size_n = ", size_n,
|
||||
" is not divisible by tile_n_size = ", marlin::tile_n_size);
|
||||
|
||||
TORCH_CHECK(num_bits == 4 || num_bits == 8,
|
||||
"num_bits must be 4 or 8. Got = ", num_bits);
|
||||
@ -308,10 +303,9 @@ torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm,
|
||||
auto options = torch::TensorOptions()
|
||||
.dtype(b_q_weight.dtype())
|
||||
.device(b_q_weight.device());
|
||||
torch::Tensor out =
|
||||
torch::empty({size_k / gptq_marlin::tile_size,
|
||||
size_n * gptq_marlin::tile_size / pack_factor},
|
||||
options);
|
||||
torch::Tensor out = torch::empty(
|
||||
{size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor},
|
||||
options);
|
||||
|
||||
// Detect if there is act_order
|
||||
bool has_perm = perm.size(0) != 0;
|
||||
|
@ -9,7 +9,9 @@
|
||||
#include <cuda_runtime.h>
|
||||
#include <iostream>
|
||||
|
||||
namespace gptq_marlin {
|
||||
namespace marlin {
|
||||
|
||||
// Marlin params
|
||||
|
||||
// 8 warps are a good choice since every SM has 4 schedulers and having more
|
||||
// than 1 warp per schedule allows some more latency hiding. At the same time,
|
||||
@ -25,6 +27,15 @@ static constexpr int min_thread_k = 64;
|
||||
static constexpr int tile_size = 16;
|
||||
static constexpr int max_par = 16;
|
||||
|
||||
// Repack params
|
||||
static constexpr int repack_stages = 8;
|
||||
|
||||
static constexpr int repack_threads = 256;
|
||||
|
||||
static constexpr int tile_k_size = tile_size;
|
||||
static constexpr int tile_n_size = tile_k_size * 4;
|
||||
|
||||
// Helpers
|
||||
template <typename T, int n>
|
||||
struct Vec {
|
||||
T elems[n];
|
||||
@ -73,4 +84,4 @@ __device__ inline void cp_async_wait() {
|
||||
|
||||
#endif
|
||||
|
||||
} // namespace gptq_marlin
|
||||
} // namespace marlin
|
@ -1,11 +1,11 @@
|
||||
|
||||
#ifndef _data_types_cuh
|
||||
#define _data_types_cuh
|
||||
#include "gptq_marlin.cuh"
|
||||
#include "marlin.cuh"
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_bf16.h>
|
||||
|
||||
namespace gptq_marlin {
|
||||
namespace marlin {
|
||||
|
||||
template <typename scalar_t>
|
||||
class ScalarType {};
|
||||
@ -23,6 +23,7 @@ class ScalarType<half> {
|
||||
using FragB = Vec<half2, 2>;
|
||||
using FragC = Vec<float, 4>;
|
||||
using FragS = Vec<half2, 1>;
|
||||
using FragZP = Vec<half2, 4>;
|
||||
|
||||
static __device__ float inline num2float(const half x) {
|
||||
return __half2float(x);
|
||||
@ -51,6 +52,7 @@ class ScalarType<nv_bfloat16> {
|
||||
using FragB = Vec<nv_bfloat162, 2>;
|
||||
using FragC = Vec<float, 4>;
|
||||
using FragS = Vec<nv_bfloat162, 1>;
|
||||
using FragZP = Vec<nv_bfloat162, 4>;
|
||||
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
||||
static __device__ float inline num2float(const nv_bfloat16 x) {
|
||||
@ -72,6 +74,6 @@ class ScalarType<nv_bfloat16> {
|
||||
#endif
|
||||
};
|
||||
|
||||
} // namespace gptq_marlin
|
||||
} // namespace marlin
|
||||
|
||||
#endif
|
@ -30,7 +30,7 @@ inline std::string str(T x) {
|
||||
return std::to_string(x);
|
||||
}
|
||||
|
||||
namespace marlin {
|
||||
namespace marlin_dense {
|
||||
|
||||
constexpr int ceildiv(int a, int b) { return (a + b - 1) / b; }
|
||||
|
||||
@ -1040,7 +1040,7 @@ void marlin_cuda(const void* A, const void* B, void* C, void* s, int prob_m,
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace marlin
|
||||
} // namespace marlin_dense
|
||||
|
||||
torch::Tensor marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
torch::Tensor& b_scales, torch::Tensor& workspace,
|
||||
@ -1054,24 +1054,25 @@ torch::Tensor marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
TORCH_CHECK(size_k == a.size(1),
|
||||
"Shape mismatch: a.size(1) = " + str(a.size(1)) +
|
||||
", size_k = " + str(size_k));
|
||||
TORCH_CHECK(size_k % marlin::tile_size == 0,
|
||||
"size_k = " + str(size_k) +
|
||||
" is not divisible by tile_size = " + str(marlin::tile_size));
|
||||
TORCH_CHECK((size_k / marlin::tile_size) == b_q_weight.size(0),
|
||||
TORCH_CHECK(size_k % marlin_dense::tile_size == 0,
|
||||
"size_k = " + str(size_k) + " is not divisible by tile_size = " +
|
||||
str(marlin_dense::tile_size));
|
||||
TORCH_CHECK((size_k / marlin_dense::tile_size) == b_q_weight.size(0),
|
||||
"Shape mismatch: b_q_weight.size(0) = " +
|
||||
str(b_q_weight.size(0)) + ", size_k = " + str(size_k) +
|
||||
", tile_size = " + str(marlin::tile_size));
|
||||
", tile_size = " + str(marlin_dense::tile_size));
|
||||
|
||||
// Verify N
|
||||
TORCH_CHECK(b_scales.size(1) == size_n,
|
||||
"b_scales.size(1) = " + str(b_scales.size(1)) +
|
||||
", size_n = " + str(size_n));
|
||||
TORCH_CHECK(b_q_weight.size(1) % marlin::tile_size == 0,
|
||||
"b_q_weight.size(1) = " + str(b_q_weight.size(1)) +
|
||||
" is not divisible by tile_size = " + str(marlin::tile_size));
|
||||
TORCH_CHECK(
|
||||
b_q_weight.size(1) % marlin_dense::tile_size == 0,
|
||||
"b_q_weight.size(1) = " + str(b_q_weight.size(1)) +
|
||||
" is not divisible by tile_size = " + str(marlin_dense::tile_size));
|
||||
|
||||
int actual_size_n =
|
||||
(b_q_weight.size(1) / marlin::tile_size) * marlin::pack_factor_4bit;
|
||||
int actual_size_n = (b_q_weight.size(1) / marlin_dense::tile_size) *
|
||||
marlin_dense::pack_factor_4bit;
|
||||
TORCH_CHECK(
|
||||
size_n == actual_size_n,
|
||||
"size_n = " + str(size_n) + ", actual_size_n = " + str(actual_size_n));
|
||||
@ -1116,21 +1117,22 @@ torch::Tensor marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
"Unexpected groupsize = " + str(groupsize));
|
||||
|
||||
// Verify workspace size
|
||||
TORCH_CHECK(
|
||||
size_n % marlin::min_thread_n == 0,
|
||||
"size_n = " + str(size_n) +
|
||||
", is not divisible by min_thread_n = " + str(marlin::min_thread_n));
|
||||
int min_workspace_size = (size_n / marlin::min_thread_n) * marlin::max_par;
|
||||
TORCH_CHECK(size_n % marlin_dense::min_thread_n == 0,
|
||||
"size_n = " + str(size_n) +
|
||||
", is not divisible by min_thread_n = " +
|
||||
str(marlin_dense::min_thread_n));
|
||||
int min_workspace_size =
|
||||
(size_n / marlin_dense::min_thread_n) * marlin_dense::max_par;
|
||||
TORCH_CHECK(workspace.numel() >= min_workspace_size,
|
||||
"workspace.numel = " + str(workspace.numel()) +
|
||||
" is below min_workspace_size = " + str(min_workspace_size));
|
||||
|
||||
int dev = a.get_device();
|
||||
marlin::marlin_cuda(a.data_ptr(), b_q_weight.data_ptr(), c.data_ptr(),
|
||||
b_scales.data_ptr(), size_m, size_n, size_k,
|
||||
workspace.data_ptr(), groupsize, dev,
|
||||
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n,
|
||||
sms, marlin::max_par);
|
||||
marlin_dense::marlin_cuda(a.data_ptr(), b_q_weight.data_ptr(), c.data_ptr(),
|
||||
b_scales.data_ptr(), size_m, size_n, size_k,
|
||||
workspace.data_ptr(), groupsize, dev,
|
||||
at::cuda::getCurrentCUDAStream(dev), thread_k,
|
||||
thread_n, sms, marlin_dense::max_par);
|
||||
|
||||
return c;
|
||||
}
|
||||
|
@ -27,8 +27,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
" Tensor value_cache, int num_kv_heads, float scale,"
|
||||
" Tensor block_tables, Tensor seq_lens, int block_size,"
|
||||
" int max_seq_len, Tensor? alibi_slopes,"
|
||||
" str kv_cache_dtype, float kv_scale, int tp_rank,"
|
||||
" int blocksparse_local_blocks,"
|
||||
" str kv_cache_dtype, float k_scale, float v_scale,"
|
||||
" int tp_rank, int blocksparse_local_blocks,"
|
||||
" int blocksparse_vert_stride, int blocksparse_block_size,"
|
||||
" int blocksparse_head_sliding_step) -> ()");
|
||||
ops.impl("paged_attention_v1", torch::kCUDA, &paged_attention_v1);
|
||||
@ -41,8 +41,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
" Tensor value_cache, int num_kv_heads, float scale,"
|
||||
" Tensor block_tables, Tensor seq_lens, int block_size,"
|
||||
" int max_seq_len, Tensor? alibi_slopes,"
|
||||
" str kv_cache_dtype, float kv_scale, int tp_rank,"
|
||||
" int blocksparse_local_blocks,"
|
||||
" str kv_cache_dtype, float k_scale, float v_scale,"
|
||||
" int tp_rank, int blocksparse_local_blocks,"
|
||||
" int blocksparse_vert_stride, int blocksparse_block_size,"
|
||||
" int blocksparse_head_sliding_step) -> ()");
|
||||
ops.impl("paged_attention_v2", torch::kCUDA, &paged_attention_v2);
|
||||
@ -72,6 +72,10 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
ops.def("gelu_quick(Tensor! out, Tensor input) -> ()");
|
||||
ops.impl("gelu_quick", torch::kCUDA, &gelu_quick);
|
||||
|
||||
// prepare_inputs advance_step
|
||||
ops.def("advance_step", &advance_step);
|
||||
ops.impl("advance_step", torch::kCUDA, &advance_step);
|
||||
|
||||
// Layernorm
|
||||
// Apply Root Mean Square (RMS) Normalization to the input tensor.
|
||||
ops.def(
|
||||
@ -137,6 +141,10 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
ops.def("gptq_marlin_repack", &gptq_marlin_repack);
|
||||
ops.impl("gptq_marlin_repack", torch::kCUDA, &gptq_marlin_repack);
|
||||
|
||||
// awq_marlin repack from AWQ.
|
||||
ops.def("awq_marlin_repack", &awq_marlin_repack);
|
||||
ops.impl("awq_marlin_repack", torch::kCUDA, &awq_marlin_repack);
|
||||
|
||||
// fp8_marlin Optimized Quantized GEMM for FP8 weight-only.
|
||||
ops.def("fp8_marlin_gemm", &fp8_marlin_gemm);
|
||||
ops.impl("fp8_marlin_gemm", torch::kCUDA, &fp8_marlin_gemm);
|
||||
@ -175,12 +183,20 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
"static_scaled_fp8_quant(Tensor! out, Tensor input, Tensor scale) -> ()");
|
||||
ops.impl("static_scaled_fp8_quant", torch::kCUDA, &static_scaled_fp8_quant);
|
||||
|
||||
// Compute FP8 quantized tensor and scaling factor.
|
||||
// Compute dynamic-per-tensor FP8 quantized tensor and scaling factor.
|
||||
ops.def(
|
||||
"dynamic_scaled_fp8_quant(Tensor! out, Tensor input, Tensor! scale) -> "
|
||||
"()");
|
||||
ops.impl("dynamic_scaled_fp8_quant", torch::kCUDA, &dynamic_scaled_fp8_quant);
|
||||
|
||||
// Compute dynamic-per-token FP8 quantized tensor and scaling factor.
|
||||
ops.def(
|
||||
"dynamic_per_token_scaled_fp8_quant(Tensor! out, Tensor input, Tensor! "
|
||||
"scale, Tensor? scale_ub) -> "
|
||||
"()");
|
||||
ops.impl("dynamic_per_token_scaled_fp8_quant", torch::kCUDA,
|
||||
&dynamic_per_token_scaled_fp8_quant);
|
||||
|
||||
// Aligning the number of tokens to be processed by each expert such
|
||||
// that it is divisible by the block size.
|
||||
ops.def(
|
||||
@ -223,7 +239,7 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
|
||||
" Tensor! key_cache, Tensor! value_cache,"
|
||||
" Tensor slot_mapping,"
|
||||
" str kv_cache_dtype,"
|
||||
" float kv_scale) -> ()");
|
||||
" float k_scale, float v_scale) -> ()");
|
||||
cache_ops.impl("reshape_and_cache", torch::kCUDA, &reshape_and_cache);
|
||||
|
||||
// Reshape the key and value tensors and cache them.
|
||||
@ -232,7 +248,8 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
|
||||
" Tensor! key_cache,"
|
||||
" Tensor! value_cache,"
|
||||
" Tensor slot_mapping,"
|
||||
" str kv_cache_dtype) -> ()");
|
||||
" str kv_cache_dtype,"
|
||||
" float k_scale, float v_scale) -> ()");
|
||||
cache_ops.impl("reshape_and_cache_flash", torch::kCUDA,
|
||||
&reshape_and_cache_flash);
|
||||
|
||||
|
@ -2,7 +2,7 @@ sphinx==6.2.1
|
||||
sphinx-book-theme==1.0.1
|
||||
sphinx-copybutton==0.5.2
|
||||
myst-parser==2.0.0
|
||||
sphinx-argparse
|
||||
sphinx-argparse==0.4.0
|
||||
|
||||
# packages to install to build the documentation
|
||||
pydantic
|
||||
|
@ -5,6 +5,7 @@
|
||||
justify-content: center;
|
||||
align-items: center;
|
||||
font-size: 16px;
|
||||
padding: 0 6px 0 6px;
|
||||
}
|
||||
.notification-bar p {
|
||||
margin: 0;
|
||||
|
@ -5,6 +5,7 @@ vLLM Meetups
|
||||
|
||||
We host regular meetups in San Francisco Bay Area every 2 months. We will share the project updates from the vLLM team and have guest speakers from the industry to share their experience and insights. Please find the materials of our previous meetups below:
|
||||
|
||||
- `The fifth vLLM meetup <https://lu.ma/lp0gyjqr>`__, with AWS, July 24th 2024. `[Slides] <https://docs.google.com/presentation/d/1RgUD8aCfcHocghoP3zmXzck9vX3RCI9yfUAB2Bbcl4Y/edit?usp=sharing>`__
|
||||
- `The fourth vLLM meetup <https://lu.ma/agivllm>`__, with Cloudflare and BentoML, June 11th 2024. `[Slides] <https://docs.google.com/presentation/d/1iJ8o7V2bQEi0BFEljLTwc5G1S10_Rhv3beed5oB0NJ4/edit?usp=sharing>`__
|
||||
- `The third vLLM meetup <https://robloxandvllmmeetup2024.splashthat.com/>`__, with Roblox, April 2nd 2024. `[Slides] <https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing>`__
|
||||
- `The second vLLM meetup <https://lu.ma/ygxbpzhl>`__, with IBM Research, January 31st 2024. `[Slides] <https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing>`__ `[Video (vLLM Update)] <https://youtu.be/Y0C-DUvEnZQ>`__ `[Video (IBM Research & torch.compile)] <https://youtu.be/m0dMtFLI-dg>`__
|
||||
|
@ -13,6 +13,7 @@ vLLM is a community project. Our compute resources for development and testing a
|
||||
- Databricks
|
||||
- DeepInfra
|
||||
- Dropbox
|
||||
- Google Cloud
|
||||
- Lambda Lab
|
||||
- NVIDIA
|
||||
- Replicate
|
||||
|
@ -5,10 +5,10 @@ Input Processing
|
||||
|
||||
.. currentmodule:: vllm.inputs
|
||||
|
||||
vLLM provides a mechanism for defining input processors for each model so that the inputs are processed
|
||||
in :class:`~vllm.LLMEngine` before they are passed to model executors.
|
||||
Each model can override parts of vLLM's :ref:`input processing pipeline <input_processing_pipeline>` via
|
||||
:data:`~vllm.inputs.INPUT_REGISTRY` and :data:`~vllm.multimodal.MULTIMODAL_REGISTRY`.
|
||||
|
||||
Currently, this mechanism is only utilized in :ref:`multi-modal models <multi_modality>` for preprocessing multi-modal input
|
||||
Currently, this mechanism is only utilized in :ref:`multi-modal <multi_modality>` models for preprocessing multi-modal input
|
||||
data in addition to input prompt, but it can be extended to text-only language models when needed.
|
||||
|
||||
Guides
|
||||
|
17
docs/source/dev/multimodal/adding_multimodal_plugin.rst
Normal file
17
docs/source/dev/multimodal/adding_multimodal_plugin.rst
Normal file
@ -0,0 +1,17 @@
|
||||
.. _adding_multimodal_plugin:
|
||||
|
||||
Adding a Multimodal Plugin
|
||||
==========================
|
||||
|
||||
This document teaches you how to add a new modality to vLLM.
|
||||
|
||||
Each modality in vLLM is represented by a :class:`~vllm.multimodal.MultiModalPlugin` and registered to :data:`~vllm.multimodal.MULTIMODAL_REGISTRY`.
|
||||
For vLLM to recognize a new modality type, you have to create a new plugin and then pass it to :meth:`~vllm.multimodal.MultiModalRegistry.register_plugin`.
|
||||
|
||||
The remainder of this document details how to define custom :class:`~vllm.multimodal.MultiModalPlugin` s.
|
||||
|
||||
.. note::
|
||||
This article is a work in progress.
|
||||
|
||||
..
|
||||
TODO: Add more instructions on how to add new plugins once embeddings is in.
|
@ -7,17 +7,13 @@ Multi-Modality
|
||||
|
||||
vLLM provides experimental support for multi-modal models through the :mod:`vllm.multimodal` package.
|
||||
|
||||
:class:`vllm.inputs.PromptStrictInputs` accepts an additional attribute ``multi_modal_data``
|
||||
which allows you to pass in multi-modal input alongside text and token prompts.
|
||||
Multi-modal inputs can be passed alongside text and token prompts to :ref:`supported models <supported_vlms>`
|
||||
via the ``multi_modal_data`` field in :class:`vllm.inputs.PromptInputs`.
|
||||
|
||||
.. note::
|
||||
``multi_modal_data`` can accept keys and values beyond the builtin ones, as long as a customized plugin is registered through
|
||||
:class:`vllm.multimodal.MULTIMODAL_REGISTRY`.
|
||||
Currently, vLLM only has built-in support for image data. You can extend vLLM to process additional modalities
|
||||
by following :ref:`this guide <adding_multimodal_plugin>`.
|
||||
|
||||
By default, vLLM models do not support multi-modal inputs. To enable multi-modal support for a model, please follow :ref:`the guide for adding a new multimodal model. <adding_a_new_multimodal_model>`.
|
||||
|
||||
|
||||
# TODO: Add more instructions on how to do that once embeddings is in.
|
||||
Looking to add your own multi-modal model? Please follow the instructions listed :ref:`here <enabling_multimodal_inputs>`.
|
||||
|
||||
Guides
|
||||
++++++
|
||||
@ -25,7 +21,7 @@ Guides
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
adding_multimodal_model
|
||||
adding_multimodal_plugin
|
||||
|
||||
Module Contents
|
||||
+++++++++++++++
|
||||
@ -44,10 +40,16 @@ Registry
|
||||
Base Classes
|
||||
------------
|
||||
|
||||
.. autoclass:: vllm.multimodal.MultiModalDataDict
|
||||
.. autodata:: vllm.multimodal.NestedTensors
|
||||
|
||||
.. autodata:: vllm.multimodal.BatchedTensors
|
||||
|
||||
.. autoclass:: vllm.multimodal.MultiModalDataBuiltins
|
||||
:members:
|
||||
:show-inheritance:
|
||||
|
||||
.. autodata:: vllm.multimodal.MultiModalDataDict
|
||||
|
||||
.. autoclass:: vllm.multimodal.MultiModalInputs
|
||||
:members:
|
||||
:show-inheritance:
|
||||
|
@ -1,7 +1,7 @@
|
||||
LLM Inputs
|
||||
==========
|
||||
|
||||
.. autodata:: vllm.inputs.PromptStrictInputs
|
||||
.. autodata:: vllm.inputs.PromptInputs
|
||||
|
||||
.. autoclass:: vllm.inputs.TextPrompt
|
||||
:show-inheritance:
|
||||
|
@ -3,7 +3,7 @@
|
||||
Installation with ROCm
|
||||
======================
|
||||
|
||||
vLLM supports AMD GPUs with ROCm 5.7 and 6.0.
|
||||
vLLM supports AMD GPUs with ROCm 6.1.
|
||||
|
||||
Requirements
|
||||
------------
|
||||
@ -11,7 +11,7 @@ Requirements
|
||||
* OS: Linux
|
||||
* Python: 3.8 -- 3.11
|
||||
* GPU: MI200s (gfx90a), MI300 (gfx942), Radeon RX 7900 series (gfx1100)
|
||||
* ROCm 6.0 and ROCm 5.7
|
||||
* ROCm 6.1
|
||||
|
||||
Installation options:
|
||||
|
||||
@ -27,10 +27,10 @@ You can build and install vLLM from source.
|
||||
|
||||
First, build a docker image from `Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/Dockerfile.rocm>`_ and launch a docker container from the image.
|
||||
|
||||
`Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/Dockerfile.rocm>`_ uses ROCm 6.0 by default, but also supports ROCm 5.7.
|
||||
`Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/Dockerfile.rocm>`_ uses ROCm 6.1 by default, but also supports ROCm 5.7 and 6.0 in older vLLM branches.
|
||||
It provides flexibility to customize the build of docker image using the following arguments:
|
||||
|
||||
* `BASE_IMAGE`: specifies the base image used when running ``docker build``, specifically the PyTorch on ROCm base image. We have tested ROCm 5.7 and ROCm 6.0. The default is `rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1`
|
||||
* `BASE_IMAGE`: specifies the base image used when running ``docker build``, specifically the PyTorch on ROCm base image.
|
||||
* `BUILD_FA`: specifies whether to build CK flash-attention. The default is 1. For `Radeon RX 7900 series (gfx1100) <https://rocm.docs.amd.com/projects/radeon/en/latest/index.html>`_, this should be set to 0 before flash-attention supports this target.
|
||||
* `FX_GFX_ARCHS`: specifies the GFX architecture that is used to build CK flash-attention, for example, `gfx90a;gfx942` for MI200 and MI300. The default is `gfx90a;gfx942`
|
||||
* `FA_BRANCH`: specifies the branch used to build the CK flash-attention in `ROCm's flash-attention repo <https://github.com/ROCmSoftwarePlatform/flash-attention>`_. The default is `ae7928c`
|
||||
@ -39,24 +39,17 @@ It provides flexibility to customize the build of docker image using the followi
|
||||
Their values can be passed in when running ``docker build`` with ``--build-arg`` options.
|
||||
|
||||
|
||||
To build vllm on ROCm 6.0 for MI200 and MI300 series, you can use the default:
|
||||
To build vllm on ROCm 6.1 for MI200 and MI300 series, you can use the default:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ docker build -f Dockerfile.rocm -t vllm-rocm .
|
||||
$ DOCKER_BUILDKIT=1 docker build -f Dockerfile.rocm -t vllm-rocm .
|
||||
|
||||
To build vllm on ROCm 6.0 for Radeon RX7900 series (gfx1100), you should specify ``BUILD_FA`` as below:
|
||||
To build vllm on ROCm 6.1 for Radeon RX7900 series (gfx1100), you should specify ``BUILD_FA`` as below:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ docker build --build-arg BUILD_FA="0" -f Dockerfile.rocm -t vllm-rocm .
|
||||
|
||||
To build docker image for vllm on ROCm 5.7, you can specify ``BASE_IMAGE`` as below:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ docker build --build-arg BASE_IMAGE="rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1" \
|
||||
-f Dockerfile.rocm -t vllm-rocm .
|
||||
$ DOCKER_BUILDKIT=1 docker build --build-arg BUILD_FA="0" -f Dockerfile.rocm -t vllm-rocm .
|
||||
|
||||
To run the above docker image ``vllm-rocm``, use the below command:
|
||||
|
||||
@ -85,39 +78,24 @@ Option 2: Build from source
|
||||
0. Install prerequisites (skip if you are already in an environment/docker with the following installed):
|
||||
|
||||
- `ROCm <https://rocm.docs.amd.com/en/latest/deploy/linux/index.html>`_
|
||||
- `Pytorch <https://pytorch.org/>`_
|
||||
- `PyTorch <https://pytorch.org/>`_
|
||||
- `hipBLAS <https://rocm.docs.amd.com/projects/hipBLAS/en/latest/install.html>`_
|
||||
|
||||
For installing PyTorch, you can start from a fresh docker image, e.g, `rocm/pytorch:rocm6.1.2_ubuntu20.04_py3.9_pytorch_staging`, `rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1`, `rocm/pytorch-nightly`.
|
||||
For installing PyTorch, you can start from a fresh docker image, e.g, `rocm/pytorch:rocm6.1.2_ubuntu20.04_py3.9_pytorch_staging`, `rocm/pytorch-nightly`.
|
||||
|
||||
Alternatively, you can install pytorch using pytorch wheels. You can check Pytorch installation guild in Pytorch `Getting Started <https://pytorch.org/get-started/locally/>`_
|
||||
|
||||
For rocm6.0:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ pip3 install torch --index-url https://download.pytorch.org/whl/rocm6.0
|
||||
|
||||
|
||||
For rocm5.7:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ pip install torch --index-url https://download.pytorch.org/whl/rocm5.7
|
||||
Alternatively, you can install PyTorch using PyTorch wheels. You can check PyTorch installation guild in PyTorch `Getting Started <https://pytorch.org/get-started/locally/>`_
|
||||
|
||||
|
||||
1. Install `Triton flash attention for ROCm <https://github.com/ROCm/triton>`_
|
||||
|
||||
Install ROCm's Triton flash attention (the default triton-mlir branch) following the instructions from `ROCm/triton <https://github.com/ROCm/triton/blob/triton-mlir/README.md>`_
|
||||
|
||||
2. Optionally, if you choose to use CK flash attention, you can install `flash attention for ROCm <https://github.com/ROCm/flash-attention/tree/flash_attention_for_rocm>`_
|
||||
2. Optionally, if you choose to use CK flash attention, you can install `flash attention for ROCm <https://github.com/ROCm/flash-attention/tree/ck_tile>`_
|
||||
|
||||
Install ROCm's flash attention (v2.0.4) following the instructions from `ROCm/flash-attention <https://github.com/ROCm/flash-attention/tree/flash_attention_for_rocm#amd-gpurocm-support>`_
|
||||
Install ROCm's flash attention (v2.5.9.post1) following the instructions from `ROCm/flash-attention <https://github.com/ROCm/flash-attention/tree/ck_tile#amd-gpurocm-support>`_
|
||||
Alternatively, wheels intended for vLLM use can be accessed under the releases.
|
||||
|
||||
.. note::
|
||||
- If you are using rocm5.7 with pytorch 2.1.0 onwards, you don't need to apply the `hipify_python.patch`. You can build the ROCm flash attention directly.
|
||||
- If you fail to install `ROCm/flash-attention`, try cloning from the commit `6fd2f8e572805681cd67ef8596c7e2ce521ed3c6`.
|
||||
- ROCm's Flash-attention-2 (v2.0.4) does not support sliding windows attention.
|
||||
- You might need to downgrade the "ninja" version to 1.10 it is not used when compiling flash-attention-2 (e.g. `pip install ninja==1.10.2.4`)
|
||||
|
||||
3. Build vLLM.
|
||||
@ -131,7 +109,43 @@ Install ROCm's flash attention (v2.0.4) following the instructions from `ROCm/fl
|
||||
|
||||
.. tip::
|
||||
|
||||
- You may need to turn on the ``--enforce-eager`` flag if you experience process hang when running the `benchmark_thoughput.py` script to test your installation.
|
||||
For example, vLLM v0.5.3 on ROCM 6.1 can be built with the following steps:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ pip install --upgrade pip
|
||||
|
||||
$ # Install PyTorch
|
||||
$ pip uninstall torch -y
|
||||
$ pip install --no-cache-dir --pre torch==2.5.0.dev20240710 --index-url https://download.pytorch.org/whl/nightly/rocm6.1
|
||||
|
||||
$ # Build & install AMD SMI
|
||||
$ pip install /opt/rocm/share/amd_smi
|
||||
|
||||
$ # Install dependencies
|
||||
$ pip install --upgrade numba scipy huggingface-hub[cli]
|
||||
$ pip install "numpy<2"
|
||||
$ pip install -r requirements-rocm.txt
|
||||
|
||||
$ # Apply the patch to ROCM 6.1 (requires root permission)
|
||||
$ wget -N https://github.com/ROCm/vllm/raw/fa78403/rocm_patch/libamdhip64.so.6 -P /opt/rocm/lib
|
||||
$ rm -f "$(python3 -c 'import torch; print(torch.__path__[0])')"/lib/libamdhip64.so*
|
||||
|
||||
$ # Build vLLM for MI210/MI250/MI300.
|
||||
$ export PYTORCH_ROCM_ARCH="gfx90a;gfx942"
|
||||
$ python3 setup.py develop
|
||||
|
||||
|
||||
.. tip::
|
||||
|
||||
- Triton flash attention is used by default. For benchmarking purposes, it is recommended to run a warm up step before collecting perf numbers.
|
||||
- To use CK flash-attention, please use this flag ``export VLLM_USE_TRITON_FLASH_ATTN=0`` to turn off triton flash attention.
|
||||
- The ROCm version of pytorch, ideally, should match the ROCm driver version.
|
||||
- Triton flash attention does not currently support sliding window attention. If using half precision, please use CK flash-attention for sliding window support.
|
||||
- To use CK flash-attention or PyTorch naive attention, please use this flag ``export VLLM_USE_TRITON_FLASH_ATTN=0`` to turn off triton flash attention.
|
||||
- The ROCm version of PyTorch, ideally, should match the ROCm driver version.
|
||||
|
||||
|
||||
.. tip::
|
||||
- For MI300x (gfx942) users, to achieve optimal performance, please refer to `MI300x tuning guide <https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/index.html>`_ for performance optimization and tuning tips on system and workflow level.
|
||||
For vLLM, please refer to `vLLM performance optimization <https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/workload.html#vllm-performance-optimization>`_.
|
||||
|
||||
|
||||
|
@ -10,6 +10,7 @@ Table of contents:
|
||||
#. :ref:`Requirements <cpu_backend_requirements>`
|
||||
#. :ref:`Quick start using Dockerfile <cpu_backend_quick_start_dockerfile>`
|
||||
#. :ref:`Build from source <build_cpu_backend_from_source>`
|
||||
#. :ref:`Related runtime environment variables <env_intro>`
|
||||
#. :ref:`Intel Extension for PyTorch <ipex_guidance>`
|
||||
#. :ref:`Performance tips <cpu_backend_performance_tips>`
|
||||
|
||||
@ -20,7 +21,7 @@ Requirements
|
||||
|
||||
* OS: Linux
|
||||
* Compiler: gcc/g++>=12.3.0 (optional, recommended)
|
||||
* Instruction set architecture (ISA) requirement: AVX512 is required.
|
||||
* Instruction set architecture (ISA) requirement: AVX512 (optional, recommended)
|
||||
|
||||
.. _cpu_backend_quick_start_dockerfile:
|
||||
|
||||
@ -47,7 +48,7 @@ Build from source
|
||||
.. code-block:: console
|
||||
|
||||
$ sudo apt-get update -y
|
||||
$ sudo apt-get install -y gcc-12 g++-12
|
||||
$ sudo apt-get install -y gcc-12 g++-12 libnuma-dev
|
||||
$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
|
||||
|
||||
- Second, install Python packages for vLLM CPU backend building:
|
||||
@ -71,6 +72,15 @@ Build from source
|
||||
|
||||
- If you want to force enable AVX512_BF16 for the cross-compilation, please set environment variable VLLM_CPU_AVX512BF16=1 before the building.
|
||||
|
||||
.. _env_intro:
|
||||
|
||||
Related runtime environment variables
|
||||
-------------------------------------
|
||||
|
||||
- ``VLLM_CPU_KVCACHE_SPACE``: specify the KV Cache size (e.g, ``VLLM_CPU_KVCACHE_SPACE=40`` means 40 GB space for KV cache), larger setting will allow vLLM running more requests in parallel. This parameter should be set based on the hardware configuration and memory management pattern of users.
|
||||
|
||||
- ``VLLM_CPU_OMP_THREADS_BIND``: specify the CPU cores dedicated to the OpenMP threads. For example, ``VLLM_CPU_OMP_THREADS_BIND=0-31`` means there will be 32 OpenMP threads bound on 0-31 CPU cores. ``VLLM_CPU_OMP_THREADS_BIND=0-31|32-63`` means there will be 2 tensor parallel processes, 32 OpenMP threads of rank0 are bound on 0-31 CPU cores, and the OpenMP threads of rank1 are bound on 32-63 CPU cores.
|
||||
|
||||
.. _ipex_guidance:
|
||||
|
||||
Intel Extension for PyTorch
|
||||
@ -78,15 +88,11 @@ Intel Extension for PyTorch
|
||||
|
||||
- `Intel Extension for PyTorch (IPEX) <https://github.com/intel/intel-extension-for-pytorch>`_ extends PyTorch with up-to-date features optimizations for an extra performance boost on Intel hardware.
|
||||
|
||||
- IPEX after the ``2.3.0`` can be enabled in the CPU backend by default if it is installed.
|
||||
|
||||
.. _cpu_backend_performance_tips:
|
||||
|
||||
Performance tips
|
||||
-----------------
|
||||
|
||||
- vLLM CPU backend uses environment variable ``VLLM_CPU_KVCACHE_SPACE`` to specify the KV Cache size (e.g, ``VLLM_CPU_KVCACHE_SPACE=40`` means 40 GB space for KV cache), larger setting will allow vLLM running more requests in parallel. This parameter should be set based on the hardware configuration and memory management pattern of users.
|
||||
|
||||
- We highly recommend to use TCMalloc for high performance memory allocation and better cache locality. For example, on Ubuntu 22.4, you can run:
|
||||
|
||||
.. code-block:: console
|
||||
@ -96,11 +102,44 @@ Performance tips
|
||||
$ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:$LD_PRELOAD # prepend the library to LD_PRELOAD
|
||||
$ python examples/offline_inference.py # run vLLM
|
||||
|
||||
- vLLM CPU backend uses OpenMP for thread-parallel computation. If you want the best performance on CPU, it will be very critical to isolate CPU cores for OpenMP threads with other thread pools (like web-service event-loop), to avoid CPU oversubscription.
|
||||
- When using the online serving, it is recommended to reserve 1-2 CPU cores for the serving framework to avoid CPU oversubscription. For example, on a platform with 32 physical CPU cores, reserving CPU 30 and 31 for the framework and using CPU 0-29 for OpenMP:
|
||||
|
||||
- If using vLLM CPU backend on a bare-metal machine, it is recommended to disable the hyper-threading.
|
||||
.. code-block:: console
|
||||
|
||||
- If using vLLM CPU backend on a multi-socket machine with NUMA, be aware to set CPU cores and memory nodes, to avoid the remote memory node access. ``numactl`` is an useful tool for CPU core and memory binding on NUMA platform. Besides, ``--cpuset-cpus`` and ``--cpuset-mems`` arguments of ``docker run`` are also useful.
|
||||
$ export VLLM_CPU_KVCACHE_SPACE=40
|
||||
$ export VLLM_CPU_OMP_THREADS_BIND=0-29
|
||||
$ vllm serve facebook/opt-125m
|
||||
|
||||
- If using vLLM CPU backend on a machine with hyper-threading, it is recommended to bind only one OpenMP thread on each physical CPU core using ``VLLM_CPU_OMP_THREADS_BIND``. On a hyper-threading enabled platform with 16 logical CPU cores / 8 physical CPU cores:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ lscpu -e # check the mapping between logical CPU cores and physical CPU cores
|
||||
|
||||
# The "CPU" column means the logical CPU core IDs, and the "CORE" column means the physical core IDs. On this platform, two logical cores are sharing one physical core.
|
||||
CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE MAXMHZ MINMHZ MHZ
|
||||
0 0 0 0 0:0:0:0 yes 2401.0000 800.0000 800.000
|
||||
1 0 0 1 1:1:1:0 yes 2401.0000 800.0000 800.000
|
||||
2 0 0 2 2:2:2:0 yes 2401.0000 800.0000 800.000
|
||||
3 0 0 3 3:3:3:0 yes 2401.0000 800.0000 800.000
|
||||
4 0 0 4 4:4:4:0 yes 2401.0000 800.0000 800.000
|
||||
5 0 0 5 5:5:5:0 yes 2401.0000 800.0000 800.000
|
||||
6 0 0 6 6:6:6:0 yes 2401.0000 800.0000 800.000
|
||||
7 0 0 7 7:7:7:0 yes 2401.0000 800.0000 800.000
|
||||
8 0 0 0 0:0:0:0 yes 2401.0000 800.0000 800.000
|
||||
9 0 0 1 1:1:1:0 yes 2401.0000 800.0000 800.000
|
||||
10 0 0 2 2:2:2:0 yes 2401.0000 800.0000 800.000
|
||||
11 0 0 3 3:3:3:0 yes 2401.0000 800.0000 800.000
|
||||
12 0 0 4 4:4:4:0 yes 2401.0000 800.0000 800.000
|
||||
13 0 0 5 5:5:5:0 yes 2401.0000 800.0000 800.000
|
||||
14 0 0 6 6:6:6:0 yes 2401.0000 800.0000 800.000
|
||||
15 0 0 7 7:7:7:0 yes 2401.0000 800.0000 800.000
|
||||
|
||||
# On this platform, it is recommend to only bind openMP threads on logical CPU cores 0-7 or 8-15
|
||||
$ export VLLM_CPU_OMP_THREADS_BIND=0-7
|
||||
$ python examples/offline_inference.py
|
||||
|
||||
- If using vLLM CPU backend on a multi-socket machine with NUMA, be aware to set CPU cores using ``VLLM_CPU_OMP_THREADS_BIND`` to avoid cross NUMA node memory access.
|
||||
|
||||
|
||||
|
||||
|
@ -19,9 +19,6 @@ If you have already taken care of the above issues, but the vLLM instance still
|
||||
- Set the environment variable ``export NCCL_DEBUG=TRACE`` to turn on more logging for NCCL.
|
||||
- Set the environment variable ``export VLLM_TRACE_FUNCTION=1``. All the function calls in vLLM will be recorded. Inspect these log files, and tell which function crashes or hangs.
|
||||
|
||||
.. warning::
|
||||
vLLM function tracing will generate a lot of logs and slow down the system. Only use it for debugging purposes.
|
||||
|
||||
With more logging, hopefully you can find the root cause of the issue.
|
||||
|
||||
If it crashes, and the error trace shows somewhere around ``self.graph.replay()`` in ``vllm/worker/model_runner.py``, it is a cuda error inside cudagraph. To know the particular cuda operation that causes the error, you can add ``--enforce-eager`` to the command line, or ``enforce_eager=True`` to the ``LLM`` class, to disable the cudagraph optimization. This way, you can locate the exact cuda operation that causes the error.
|
||||
@ -50,6 +47,8 @@ Here are some common issues that can cause hangs:
|
||||
value = cpu_data.mean().item()
|
||||
assert value == world_size, f"Expected {world_size}, got {value}"
|
||||
|
||||
print("sanity check is successful!")
|
||||
|
||||
.. tip::
|
||||
|
||||
Save the script as ``test.py``.
|
||||
@ -62,4 +61,14 @@ Here are some common issues that can cause hangs:
|
||||
- is reachable from all nodes
|
||||
- is set before running the script.
|
||||
|
||||
If the script runs successfully, you should see the message ``sanity check is successful!``.
|
||||
|
||||
If the problem persists, feel free to `open an issue on GitHub <https://github.com/vllm-project/vllm/issues/new/choose>`_, with a detailed description of the issue, your environment, and the logs.
|
||||
|
||||
Some known issues:
|
||||
|
||||
- In ``v0.5.2``, ``v0.5.3``, and ``v0.5.3.post1``, there is a bug caused by `zmq <https://github.com/zeromq/pyzmq/issues/2000>`_ , which can cause hangs at a low probability (once in about 20 times, depending on the machine configuration). The solution is to upgrade to the latest version of ``vllm`` to include the `fix <https://github.com/vllm-project/vllm/pull/6759>`_ .
|
||||
|
||||
.. warning::
|
||||
|
||||
After you find the root cause and solve the issue, remember to turn off all the debugging environment variables defined above, or simply start a new shell to avoid being affected by the debugging settings. If you don't do this, the system might be slow because many debugging functionalities are turned on.
|
||||
|
@ -42,6 +42,19 @@ You can install vLLM using pip:
|
||||
|
||||
Therefore, it is recommended to install vLLM with a **fresh new** conda environment. If either you have a different CUDA version or you want to use an existing PyTorch installation, you need to build vLLM from source. See below for instructions.
|
||||
|
||||
.. note::
|
||||
|
||||
vLLM also publishes a subset of wheels (Python 3.10, 3.11 with CUDA 12) for every commit since v0.5.3. You can download them with the following command:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ export VLLM_VERSION=0.5.2 # vLLM's main branch version is currently set to latest released tag
|
||||
$ pip install https://vllm-wheels.s3.us-west-2.amazonaws.com/nightly/vllm-${VLLM_VERSION}-cp38-abi3-manylinux1_x86_64.whl
|
||||
$ # You can also access a specific commit
|
||||
$ # export VLLM_COMMIT=...
|
||||
$ # pip install https://vllm-wheels.s3.us-west-2.amazonaws.com/${VLLM_COMMIT}/vllm-${VLLM_VERSION}-cp38-abi3-manylinux1_x86_64.whl
|
||||
|
||||
|
||||
.. _build_from_source:
|
||||
|
||||
Build from source
|
||||
|
@ -73,16 +73,13 @@ Start the server:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ python -m vllm.entrypoints.openai.api_server \
|
||||
$ --model facebook/opt-125m
|
||||
$ vllm serve facebook/opt-125m
|
||||
|
||||
By default, the server uses a predefined chat template stored in the tokenizer. You can override this template by using the ``--chat-template`` argument:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ python -m vllm.entrypoints.openai.api_server \
|
||||
$ --model facebook/opt-125m \
|
||||
$ --chat-template ./examples/template_chatml.jinja
|
||||
$ vllm serve facebook/opt-125m --chat-template ./examples/template_chatml.jinja
|
||||
|
||||
This server can be queried in the same format as OpenAI API. For example, list the models:
|
||||
|
||||
|
@ -56,7 +56,7 @@ First, install the dependencies:
|
||||
$ pip uninstall torch torch-xla -y
|
||||
|
||||
$ # Install PyTorch and PyTorch XLA.
|
||||
$ export DATE="+20240601"
|
||||
$ export DATE="+20240713"
|
||||
$ pip install https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch-nightly${DATE}-cp310-cp310-linux_x86_64.whl
|
||||
$ pip install https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-nightly${DATE}-cp310-cp310-linux_x86_64.whl
|
||||
|
||||
@ -85,7 +85,7 @@ Next, build vLLM from source. This will only take a few seconds:
|
||||
ImportError: libopenblas.so.0: cannot open shared object file: No such file or directory
|
||||
|
||||
|
||||
You can install OpenBLAS with the following command:
|
||||
Please install OpenBLAS with the following command:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
|
@ -40,12 +40,13 @@ Quick start using Dockerfile
|
||||
Build from source
|
||||
-----------------
|
||||
|
||||
- First, install required driver and intel OneAPI 2024.1.
|
||||
- First, install required driver and intel OneAPI 2024.1 or later.
|
||||
|
||||
- Second, install Python packages for vLLM XPU backend building:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ source /opt/intel/oneapi/setvars.sh
|
||||
$ pip install --upgrade pip
|
||||
$ pip install -v -r requirements-xpu.txt
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user