Compare commits

...

502 Commits

Author SHA1 Message Date
617fb893d5 add compile 2024-07-26 19:29:36 -07:00
55712941e5 [Bug Fix] Illegal memory access, FP8 Llama 3.1 405b (#6852) 2024-07-27 02:27:44 +00:00
981b0d5673 [Frontend] Factor out code for running uvicorn (#6828) 2024-07-27 09:58:25 +08:00
d09b94ca58 [TPU] Support collective communications in XLA devices (#6813) 2024-07-27 01:45:57 +00:00
bb5494676f enforce eager mode with bnb quantization temporarily (#6846) 2024-07-27 01:32:20 +00:00
b5f49ee55b Update README.md (#6847) 2024-07-27 00:26:45 +00:00
150a1ffbfd [Doc] Update SkyPilot doc for wrong indents and instructions for update service (#4283) 2024-07-26 14:39:10 -07:00
281977bd6e [Doc] Add Nemotron to supported model docs (#6843) 2024-07-26 17:32:44 -04:00
3bbb4936dc [Hardware] [Intel] Enable Multiprocessing and tensor parallel in CPU backend and update documentation (#6125) 2024-07-26 13:50:10 -07:00
aa4867791e [Misc][TPU] Support TPU in initialize_ray_cluster (#6812) 2024-07-26 19:39:49 +00:00
71734f1bf2 [Build/CI][ROCm] Minor simplification to Dockerfile.rocm (#6811) 2024-07-26 12:28:32 -07:00
50704f52c4 [Bugfix][Kernel] Promote another index to int64_t (#6838) 2024-07-26 18:41:04 +00:00
07278c37dd [Model] Support Nemotron models (Nemotron-3, Nemotron-4, Minitron) (#6611) 2024-07-26 14:33:42 -04:00
85ad7e2d01 [doc][debugging] add known issues for hangs (#6816) 2024-07-25 21:48:05 -07:00
89a84b0bb7 [Core] Use array to speedup padding (#6779) 2024-07-25 21:31:31 -07:00
084a01fd35 [Bugfix] [Easy] Fixed a bug in the multiprocessing GPU executor. (#6770) 2024-07-25 21:25:35 -07:00
062a1d0fab Fix ReplicatedLinear weight loading (#6793) 2024-07-25 19:24:58 -07:00
2eb9f4ff26 [ci] Mark tensorizer as soft fail and separate from grouped test (#6810)
[ci] Mark tensorizer test as soft fail and separate it from grouped test in fast check (#6810)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-25 18:08:33 -07:00
443c7cf4cf [ci][distributed] fix flaky tests (#6806) 2024-07-25 17:44:09 -07:00
1adddb14bf [Core] Fix ray forward_dag error mssg (#6792) 2024-07-25 16:53:25 -07:00
b7215de2c5 [Docs] Publish 5th meetup slides (#6799) 2024-07-25 16:47:55 -07:00
f3ff63c3f4 [doc][distributed] improve multinode serving doc (#6804) 2024-07-25 15:38:32 -07:00
cd7edc4e87 [Bugfix] Fix empty (nullptr) channelwise scales when loading wNa16 using compressed tensors (#6798) 2024-07-25 15:05:09 -07:00
6a1e25b151 [Doc] Add documentations for nightly benchmarks (#6412) 2024-07-25 11:57:16 -07:00
95db75de64 [Bugfix] Add synchronize to prevent possible data race (#6788)
Co-authored-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2024-07-25 10:40:01 -07:00
65b1f121c8 [Bugfix] Fix kv_cache_dtype=fp8 without scales for FP8 checkpoints (#6761) 2024-07-25 09:46:15 -07:00
889da130e7 [ Misc ] fp8-marlin channelwise via compressed-tensors (#6524)
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-07-25 09:46:04 -07:00
b75e314fff [Bugfix] Add image placeholder for OpenAI Compatible Server of MiniCPM-V (#6787)
Co-authored-by: hezhihui <hzh7269@modelbest.cn>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-07-25 09:42:49 -07:00
316a41ac1d [Bugfix] Fix encoding_format in examples/openai_embedding_client.py (#6755) 2024-07-24 22:48:07 -07:00
0310029a2f [Bugfix] Fix awq_marlin and gptq_marlin flags (#6745) 2024-07-24 22:34:11 -07:00
309aaef825 [Bugfix] Fix decode tokens w. CUDA graph (#6757) 2024-07-24 22:33:56 -07:00
9e169a4c61 [Model] Adding support for MiniCPM-V (#4087) 2024-07-24 20:59:30 -07:00
5689e256ba [Frontend] Represent tokens with identifiable strings (#6626) 2024-07-25 09:51:00 +08:00
740374d456 [core][distributed] fix zmq hang (#6759) 2024-07-24 17:37:12 -07:00
d88c458f44 [Doc][AMD][ROCm]Added tips to refer to mi300x tuning guide for mi300x users (#6754) 2024-07-24 14:32:57 -07:00
421e218b37 [Bugfix] Bump transformers to 4.43.2 (#6752) 2024-07-24 13:22:16 -07:00
5448f67635 [Core] Tweaks to model runner/input builder developer APIs (#6712) 2024-07-24 12:17:12 -07:00
0e63494cf3 Add fp8 support to reshape_and_cache_flash (#6667) 2024-07-24 18:36:52 +00:00
ee812580f7 [Frontend] split run_server into build_server and run_server (#6740) 2024-07-24 10:36:04 -07:00
40468b13fa [Bugfix] Miscalculated latency lead to time_to_first_token_seconds inaccurate. (#6686) 2024-07-24 08:58:42 -07:00
2cf0df3381 [Bugfix] Fix speculative decode seeded test (#6743) 2024-07-24 08:58:31 -07:00
545146349c Adding f-string to validation error which is missing (#6748) 2024-07-24 08:55:53 -07:00
f4f8a9d892 [Bugfix]fix modelscope compatible issue (#6730) 2024-07-24 05:04:46 -07:00
b570811706 [Build/CI] Update run-amd-test.sh. Enable Docker Hub login. (#6711) 2024-07-24 05:01:14 -07:00
ccc4a73257 [Docs][ROCm] Detailed instructions to build from source (#6680) 2024-07-24 01:07:23 -07:00
0a740a11ba [Bugfix] Fix token padding for chameleon (#6724) 2024-07-24 01:05:09 -07:00
c882a7f5b3 [SpecDecoding] Update MLPSpeculator CI tests to use smaller model (#6714) 2024-07-24 07:34:22 +00:00
5e8ca973eb [Bugfix] fix flashinfer cudagraph capture for PP (#6708) 2024-07-24 01:49:44 +00:00
87525fab92 [bitsandbytes]: support read bnb pre-quantized model (#5753)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-07-23 23:45:09 +00:00
2f808e69ab [Bugfix] StatLoggers: cache spec decode metrics when they get collected. (#6645)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-07-23 23:05:05 +00:00
01c16ede6b [CI] Add smoke test for non-uniform AutoFP8 quantization (#6702) 2024-07-23 22:45:12 +00:00
72fc704803 [build] relax wheel size limit (#6704) 2024-07-23 14:03:49 -07:00
1bedf210e3 Bump transformers version for Llama 3.1 hotfix and patch Chameleon (#6690) 2024-07-23 13:47:48 -07:00
507ef787d8 [Model] Pipeline Parallel Support for DeepSeek v2 (#6519)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-07-23 12:22:09 -07:00
58f53034ad [Frontend] Add Usage data in each chunk for chat_serving. #6540 (#6652) 2024-07-23 11:41:55 -07:00
0eb0757bef [Misc] Add ignored layers for fp8 quantization (#6657) 2024-07-23 14:04:04 -04:00
38c4b7e863 Bump version to 0.5.3.post1 (#6696) 2024-07-23 10:08:59 -07:00
a112a84aad [BugFix] Fix RoPE error in Llama 3.1 (#6693) 2024-07-23 09:46:05 -07:00
461089a21a [Bugfix] Fix a log error in chunked prefill (#6694) 2024-07-23 09:27:58 -07:00
71950af726 [doc][distributed] fix doc argument order (#6691) 2024-07-23 08:55:33 -07:00
cb1362a889 [Docs] Announce llama3.1 support (#6688) 2024-07-23 08:18:15 -07:00
bb2fc08072 Bump version to v0.5.3 (#6674) 2024-07-23 00:00:08 -07:00
3eda4ec780 support ignore patterns in model loader (#6673) 2024-07-22 23:59:42 -07:00
22fa2e35cb [VLM][Model] Support image input for Chameleon (#6633) 2024-07-22 23:50:48 -07:00
c5201240a4 [misc] only tqdm for first rank (#6672) 2024-07-22 21:57:27 -07:00
97234be0ec [Misc] Manage HTTP connections in one place (#6600) 2024-07-22 21:32:02 -07:00
c051bfe4eb [doc][distributed] doc for setting up multi-node environment (#6529)
[doc][distributed] add more doc for setting up multi-node environment (#6529)
2024-07-22 21:22:09 -07:00
9e0b558a09 [Misc] Support FP8 kv cache scales from compressed-tensors (#6528) 2024-07-23 04:11:50 +00:00
e519ae097a add tqdm when loading checkpoint shards (#6569)
Co-authored-by: tianyi.zhao <tianyi.zhao@transwarp.io>
Co-authored-by: youkaichao <youkaichao@126.com>
2024-07-22 20:48:01 -07:00
7c2749a4fd [misc] add start loading models for users information (#6670) 2024-07-22 20:08:02 -07:00
729171ae58 [Misc] Enable chunked prefill by default for long context models (#6666) 2024-07-22 20:03:13 -07:00
c5e8330997 [Bugfix] Fix null modules_to_not_convert in FBGEMM Fp8 quantization (#6665) 2024-07-22 19:25:05 -07:00
e0c15758b8 [Core] Modulize prepare input and attention metadata builder (#6596) 2024-07-23 00:45:24 +00:00
bdf5fd1386 [Misc] Remove deprecation warning for beam search (#6659) 2024-07-23 00:21:58 +00:00
5a96ee52a3 [ci][build] add back vim in docker (#6661) 2024-07-22 16:26:29 -07:00
42c7f66a38 [Core] Support dynamically loading Lora adapter from HuggingFace (#6234)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-07-22 15:42:40 -07:00
69d5ae38dc [ci] Use different sccache bucket for CUDA 11.8 wheel build (#6656)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-22 14:20:41 -07:00
fea59c7712 [Bugfix][Kernel] Use int64_t for indices in fp8 quant kernels (#6649) 2024-07-22 14:08:30 -06:00
739b61a348 [Frontend] Refactor prompt processing (#4028)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-07-22 10:13:53 -07:00
89c1c6a196 [Bugfix] Fix vocab_size field access in llava_next.py (#6624) 2024-07-22 05:02:51 +00:00
42de2cefcb [Misc] Add a wrapper for torch.inference_mode (#6618) 2024-07-21 18:43:11 -07:00
c9eef37f32 [Model] Initial Support for Chameleon (#5770) 2024-07-21 17:37:51 -07:00
396d92d5e0 [Kernel][Core] Add AWQ support to the Marlin kernel (#6612) 2024-07-21 19:41:42 -04:00
25e778aa16 [Model] Refactor and decouple phi3v image embedding (#6621) 2024-07-21 16:07:58 -07:00
b6df37f943 [Misc] Remove abused noqa (#6619) 2024-07-21 23:47:04 +08:00
14f91fe67c [Spec Decode] Disable Log Prob serialization to CPU for spec decoding for both draft and target models. (#6485) 2024-07-20 23:58:58 -07:00
d7f4178dd9 [Frontend] Move chat utils (#6602)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-07-21 08:38:17 +08:00
082ecd80d5 [ Bugfix ] Fix AutoFP8 fp8 marlin (#6609) 2024-07-20 17:25:56 -06:00
f952bbc8ff [Misc] Fix input_scale typing in w8a8_utils.py (#6579) 2024-07-20 23:11:13 +00:00
9364f74eee [ Kernel ] Enable fp8-marlin for fbgemm-fp8 models (#6606) 2024-07-20 18:50:10 +00:00
06d6c5fe9f [Bugfix][CI/Build][Hardware][AMD] Fix AMD tests, add HF cache, update CK FA, add partially supported model notes (#6543) 2024-07-20 09:39:07 -07:00
683e3cb9c4 [ Misc ] fbgemm checkpoints (#6559) 2024-07-20 09:36:57 -07:00
9042d68362 [Misc] Consolidate and optimize logic for building padded tensors (#6541) 2024-07-20 04:17:24 +00:00
3f8d42c81f Pipeline Parallel: Guard for KeyErrors at request abort (#6587)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-07-19 19:18:19 -07:00
7bd82002ae [Core] Allow specifying custom Executor (#6557) 2024-07-20 01:25:06 +00:00
2e26564259 [ Kernel ] FP8 Dynamic Per Token Quant - Add scale_ub (#6593)
Co-authored-by: Varun Sundar Rabindranth <varun@neuralmagic.com>
2024-07-19 18:15:26 -07:00
e81522e879 [build] add ib in image for out-of-the-box infiniband support (#6599)
[build] add ib so that multi-node support with infiniband can be supported out-of-the-box (#6599)
2024-07-19 17:16:57 -07:00
45ceb85a0c [Docs] Update PP docs (#6598) 2024-07-19 16:38:21 -07:00
4cc24f01b1 [ Kernel ] Enable Dynamic Per Token fp8 (#6547) 2024-07-19 23:08:15 +00:00
07eb6f19f3 [bugfix][distributed] fix multi-node bug for shared memory (#6597) 2024-07-19 15:34:34 -07:00
f0bbfaf917 [Bugfix] [SpecDecode] AsyncMetricsCollector: update time since last collection (#6578) 2024-07-19 14:01:03 -07:00
30efe41532 [Docs] Update docs for wheel location (#6580) 2024-07-19 12:14:11 -07:00
9ed82e7074 [Misc] Small perf improvements (#6520) 2024-07-19 12:10:56 -07:00
51f8aa90ad [Bugfix][Frontend] remove duplicate init logger (#6581) 2024-07-19 10:16:27 -07:00
a5314e8698 [Model] RowParallelLinear: pass bias to quant_method.apply (#6327)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-07-19 07:15:22 -06:00
a921e86392 [BUGFIX] Raise an error for no draft token case when draft_tp>1 (#6369) 2024-07-19 06:01:09 -07:00
6366efc67b [Bugfix][Frontend] Fix missing /metrics endpoint (#6463) 2024-07-19 03:55:13 +00:00
dbe5588554 [ Misc ] non-uniform quantization via compressed-tensors for Llama (#6515) 2024-07-18 22:39:18 -04:00
d4201e06d5 [Bugfix] Make spec. decode respect per-request seed. (#6034)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-07-18 19:22:08 -07:00
b5672a112c [Core] Multiprocessing Pipeline Parallel support (#6130)
Co-authored-by: Murali Andoorveedu <muralidhar.andoorveedu@centml.ai>
2024-07-18 19:15:52 -07:00
c5df56f88b Add support for a rope extension method (#6553) 2024-07-19 01:53:03 +00:00
1689219ebf [CI/Build] Build on Ubuntu 20.04 instead of 22.04 (#6517) 2024-07-18 17:29:25 -07:00
4ffffccb7e [Kernel] Implement fallback for FP8 channelwise using torch._scaled_mm (#6552) 2024-07-18 23:52:22 +00:00
f53b8f0d05 [ci][test] add correctness test for cpu offloading (#6549) 2024-07-18 23:41:06 +00:00
2d4733ba2d Fix PR comment bot (#6554)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-18 14:48:29 -07:00
15c6a079b1 [Model] Support Mistral-Nemo (#6548) 2024-07-18 20:31:50 +00:00
ecdb462c24 [ci] Reword Github bot comment (#6534) 2024-07-18 08:01:45 -07:00
58ca663224 [ Misc ] Improve Min Capability Checking in compressed-tensors (#6522) 2024-07-18 14:39:12 +00:00
4634c8728b [TPU] Refactor TPU worker & model runner (#6506) 2024-07-18 01:34:16 -07:00
c8a7d51c49 [Bugfix] Update flashinfer.py with PagedAttention forwards - Fixes Gemma2 OpenAI Server Crash (#6501) 2024-07-18 07:47:13 +00:00
e2fbaee725 [BugFix][Frontend] Use LoRA tokenizer in OpenAI APIs (#6227)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-07-18 15:13:30 +08:00
8a74c68bd1 [Misc] Minor patch for draft model runner (#6523) 2024-07-18 06:06:21 +00:00
61e592747c [Core] Introduce SPMD worker execution using Ray accelerated DAG (#6032)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
Co-authored-by: Stephanie Wang <swang@cs.berkeley.edu>
2024-07-17 22:27:09 -07:00
d25877dd9b [BugFix] Avoid secondary error in ShmRingBuffer destructor (#6530) 2024-07-17 22:24:43 -07:00
1c27d25fb5 [core][model] yet another cpu offload implementation (#6496)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-07-17 20:54:35 -07:00
18fecc3559 [ Kernel ] Fp8 Channelwise Weight Support (#6487) 2024-07-18 03:18:13 +00:00
b5af8c223c [Model] Pipeline parallel support for Mixtral (#6516) 2024-07-17 19:26:04 -07:00
b5241e41d9 [ Kernel ] FP8 Dynamic-Per-Token Quant Kernel (#6511)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-07-18 01:38:35 +00:00
e76466dde2 [Core] draft_model_runner: Implement prepare_inputs on GPU for advance_step (#6338) 2024-07-17 14:30:28 -07:00
5f0b9933e6 [Bugfix] Fix Ray Metrics API usage (#6354) 2024-07-17 19:40:10 +00:00
a38524f338 [DOC] - Add docker image to Cerebrium Integration (#6510) 2024-07-17 10:22:53 -07:00
2fa4623d9e [Core] Refactor _prepare_model_input_tensors - take 2 (#6164) 2024-07-17 09:37:16 -07:00
a9a2e74d21 [Misc] Use torch.Tensor for type annotation (#6505) 2024-07-17 13:01:10 +00:00
e09ce759aa [TPU] Remove multi-modal args in TPU backend (#6504) 2024-07-17 04:02:53 -07:00
5fa6e9876e [Bugfix] Fix for multinode crash on 4 PP (#6495)
Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
2024-07-17 08:25:10 +00:00
5bf35a91e4 [Doc][CI/Build] Update docs and tests to use vllm serve (#6431) 2024-07-17 07:43:21 +00:00
a19e8d3726 [Misc][Speculative decoding] Typos and typing fixes (#6467)
Co-authored-by: caishangming.csm <caishangming.csm@alibaba-inc.com>
2024-07-17 07:17:07 +00:00
10383887e0 [ROCm] Cleanup Dockerfile and remove outdated patch (#6482) 2024-07-16 22:47:02 -07:00
1d094fd7c0 [Distributed][PP] only create embedding & lm head when necessary (#6455)
original title: [Distributed][Model] Rank-based Component Creation for Pipeline Parallelism Memory Optimization
2024-07-16 19:20:26 -07:00
ce37be7ba0 [misc][distributed] add seed to dummy weights (#6491) 2024-07-16 19:16:34 -07:00
7f62077af5 [misc][distributed] improve tests (#6488) 2024-07-16 17:35:52 -07:00
09c2eb85dd [ci][distributed] add pipeline parallel correctness test (#6410) 2024-07-16 15:44:22 -07:00
978aed5300 [Kernel][Attention] Separate Attention.kv_scale into k_scale and v_scale (#6081) 2024-07-16 15:31:32 -07:00
160e1d8c99 [Misc] Log spec decode metrics (#6454) 2024-07-16 20:37:10 +00:00
94162beb9f [Doc] Fix the lora adapter path in server startup script (#6230) 2024-07-16 10:11:04 -07:00
c467dff24f [Hardware][TPU] Support MoE with Pallas GMM kernel (#6457) 2024-07-16 09:56:28 -07:00
9f4ccec761 [doc][misc] remind to cancel debugging environment variables (#6481)
[doc][misc] remind users to cancel debugging environment variables after debugging (#6481)
2024-07-16 09:45:30 -07:00
38ef94888a [CI/Build] Remove "boardwalk" image asset (#6460) 2024-07-16 08:59:36 -07:00
2bb0489cb3 [Core] Use numpy to speed up padded token processing (#6442) 2024-07-16 08:13:25 -07:00
7508a3dc34 [Misc] Fix typos in spec. decode metrics logging. (#6470)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-07-16 13:55:15 +00:00
7a3d2a5b95 [Frontend] Support for chat completions input in the tokenize endpoint (#5923) 2024-07-16 20:18:09 +08:00
d97011512e [CI/Build] vLLM cache directory for images (#6444) 2024-07-15 23:12:25 -07:00
37d776606f [Docs] Announce 5th meetup (#6458) 2024-07-15 21:04:58 -07:00
Joe
d92b3c5cde [Bugfix][CI/Build] Test prompt adapters in openai entrypoint tests (#6419) 2024-07-15 18:54:15 -07:00
9ad32dacd9 [BugFix][Model] Jamba - Handle aborted requests, Add tests and fix cleanup bug (#6425)
Co-authored-by: Mor Zusman <morz@ai21.com>
2024-07-16 01:32:55 +00:00
d6f3b3d5c4 Pin sphinx-argparse version (#6453)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-16 01:26:11 +00:00
4552e37b55 [CI/Build][TPU] Add TPU CI test (#6277)
Co-authored-by: kevin <kevin@anyscale.com>
2024-07-15 14:31:16 -07:00
ec9933f4a5 [Misc] Add CustomOp Interface to UnquantizedFusedMoEMethod (#6289) 2024-07-15 19:02:14 +00:00
3dee97b05f [Docs] Add Google Cloud to sponsor list (#6450) 2024-07-15 11:58:10 -07:00
4cf256ae7f [misc][distributed] fix pp missing layer condition (#6446) 2024-07-15 10:32:35 -07:00
64fdc08c72 bump version to v0.5.2 (#6433) 2024-07-15 17:27:40 +00:00
4ef95b0f06 [Bugfix] use float32 precision in samplers/test_logprobs.py for comparing with HF (#6409)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-07-15 13:14:49 -04:00
eaec4b9153 [Bugfix] Add custom Triton cache manager to resolve MoE MP issue (#6140)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Chih-Chieh-Yang <chih.chieh.yang@ibm.com>
2024-07-15 10:12:47 -07:00
a63a4c6341 [Misc] Use 0.0.9 version for flashinfer (#6447)
Co-authored-by: Pernekhan Utemuratov <pernekhan@deepinfra.com>
2024-07-15 10:10:26 -07:00
c8fd97f26d [Kernel] Use CUTLASS kernels for the FP8 layers with Bias (#6270) 2024-07-15 13:05:52 -04:00
94b82e8c18 [doc][distributed] add suggestion for distributed inference (#6418) 2024-07-15 09:45:51 -07:00
6ae1597ddf [VLM] Minor space optimization for ClipVisionModel (#6436) 2024-07-15 17:29:51 +08:00
22e79ee8f3 [doc][misc] doc update (#6439) 2024-07-14 23:33:25 -07:00
de19916314 [Bugfix] Convert image to RGB by default (#6430) 2024-07-15 05:39:15 +00:00
69672f116c [core][distributed] simplify code to support pipeline parallel (#6406) 2024-07-14 21:20:51 -07:00
44874a0bf9 [Doc] add env docs for flashinfer backend (#6437) 2024-07-14 21:16:51 -07:00
b47008b4d2 [BugFix] BatchResponseData body should be optional (#6345)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-07-15 04:06:09 +00:00
9bfece89fd Add FUNDING.yml (#6435) 2024-07-14 20:36:16 -07:00
32c9d7f765 Report usage for beam search (#6404) 2024-07-14 19:37:35 -07:00
ccb20db8bd [Bugfix] Benchmark serving script used global parameter 'args' in function 'sample_random_requests' (#6428) 2024-07-14 19:27:01 -07:00
a754dc2cb9 [CI/Build] Cross python wheel (#6394) 2024-07-14 18:54:46 -07:00
61e85dbad8 [Doc] xpu backend requires running setvars.sh (#6393) 2024-07-14 17:10:11 -07:00
dbfe254eda [Feature] vLLM CLI (#5090)
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-07-14 15:36:43 -07:00
73030b7dae [ Misc ] Enable Quantizing All Layers of DeekSeekv2 (#6423) 2024-07-14 21:38:42 +00:00
ccd3c04571 [ci][build] fix commit id (#6420)
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2024-07-14 22:16:21 +08:00
9dad5cc859 [Kernel] Turn off CUTLASS scaled_mm for Ada Lovelace (#6384) 2024-07-14 13:37:19 +00:00
6ef3bf912c Remove unnecessary trailing period in spec_decode.rst (#6405) 2024-07-14 07:58:09 +00:00
540c0368b1 [Model] Initialize Fuyu-8B support (#3924)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-07-14 05:27:14 +00:00
fb6af8bc08 [ Misc ] Apply MoE Refactor to Deepseekv2 To Support Fp8 (#6417) 2024-07-13 20:03:58 -07:00
eeceadaecc [Misc] Add deprecation warning for beam search (#6402) 2024-07-13 11:52:22 -07:00
babf52dade [ Misc ] More Cleanup of Marlin (#6359)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-07-13 10:21:37 +00:00
9da4aad44b Updating LM Format Enforcer version to v10.3 (#6411) 2024-07-13 10:09:12 +00:00
41708e5034 [ci] try to add multi-node tests (#6280)
Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
Co-authored-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
2024-07-12 21:51:48 -07:00
d80aef3776 [Docs] Clean up latest news (#6401) 2024-07-12 19:36:53 -07:00
e1684a766a [Bugfix] Fix hard-coded value of x in context_attention_fwd (#6373)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-07-12 18:30:54 -07:00
a27f87da34 [Doc] Fix Typo in Doc (#6392)
Co-authored-by: Saliya Ekanayake <esaliya@d-matrix.ai>
2024-07-13 00:48:23 +00:00
16ff6bd58c [ci] Fix wording for GH bot (#6398)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-12 16:34:37 -07:00
f8f9ff57ee [Bugfix][TPU] Fix megacore setting for v5e-litepod (#6397) 2024-07-12 15:59:47 -07:00
6bc9710f6e Fix release pipeline's dir permission (#6391) 2024-07-12 15:52:43 -07:00
111fc6e7ec [Misc] Add generated git commit hash as vllm.__commit__ (#6386) 2024-07-12 22:52:15 +00:00
75f64d8b94 [Bugfix] Fix illegal memory access in FP8 MoE kernel (#6382) 2024-07-12 21:33:33 +00:00
21b2dcedab Fix release pipeline's -e flag (#6390) 2024-07-12 14:08:04 -07:00
07b35af86d Fix interpolation in release pipeline (#6389) 2024-07-12 14:03:39 -07:00
bb1a784b05 Fix release-pipeline.yaml (#6388) 2024-07-12 14:00:57 -07:00
d719ba24c5 Build some nightly wheels by default (#6380) 2024-07-12 13:56:59 -07:00
aa48e502fb [MISC] Upgrade dependency to PyTorch 2.3.1 (#5327) 2024-07-12 12:04:26 -07:00
4dbebd03cc [ci] Add GHA workflows to enable full CI run (#6381)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-12 11:36:26 -07:00
b75bce1008 [ci] Add grouped tests & mark tests to run by default for fastcheck pipeline (#6365)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-12 09:58:38 -07:00
b039cbbce3 [Misc] add fixture to guided processor tests (#6341) 2024-07-12 09:55:39 -07:00
f9d25c2519 [Build/CI] Checking/Waiting for the GPU's clean state (#6379) 2024-07-12 09:42:24 -07:00
024ad87cdc [Bugfix] Fix dtype mismatch in PaliGemma (#6367) 2024-07-12 08:22:18 -07:00
aea19f0989 [ Misc ] Support Models With Bias in compressed-tensors integration (#6356) 2024-07-12 11:11:29 -04:00
f7160d946a [Misc][Bugfix] Update transformers for tokenizer issue (#6364) 2024-07-12 08:40:07 +00:00
6047187cd8 [ Misc ] Remove separate bias add (#6353) 2024-07-12 05:06:09 +00:00
b6c16cf8ff [ROCm][AMD] unify CUDA_VISIBLE_DEVICES usage in cuda/rocm (#6352) 2024-07-11 21:30:46 -07:00
d26a8b3f1f [CI/Build] (2/2) Switching AMD CI to store images in Docker Hub (#6350) 2024-07-11 21:26:26 -07:00
d59eb98489 [Model][Phi3-Small] Remove scipy from blocksparse_attention (#6343) 2024-07-12 10:47:17 +08:00
adf32e0a0f [Bugfix] Fix usage stats logging exception warning with OpenVINO (#6349) 2024-07-12 10:47:00 +08:00
2b0fb53481 [distributed][misc] be consistent with pytorch for libcudart.so (#6346)
[distributed][misc] keep consistent with how pytorch finds libcudart.so (#6346)
2024-07-11 19:35:17 -07:00
d6ab528997 [Misc] Remove flashinfer warning, add flashinfer tests to CI (#6351) 2024-07-12 01:32:06 +00:00
7ed6a4f0e1 [ BugFix ] Prompt Logprobs Detokenization (#6223)
Co-authored-by: Zifei Tong <zifeitong@gmail.com>
2024-07-11 22:02:29 +00:00
a4feba929b [CI/Build] Add nightly benchmarking for tgi, tensorrt-llm and lmdeploy (#5362) 2024-07-11 13:28:38 -07:00
2d23b42d92 [doc] update pipeline parallel in readme (#6347) 2024-07-11 11:38:40 -07:00
1df43de9bb [bug fix] Fix llava next feature size calculation. (#6339)
Signed-off-by: Xiaowei Jiang <xwjiang2010@gmail.com>
2024-07-11 17:21:10 +00:00
52b7fcb35a Benchmark: add H100 suite (#6047) 2024-07-11 09:17:07 -07:00
b675069d74 [ Misc ] Refactor Marlin Python Utilities (#6082)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-07-11 15:40:11 +00:00
55f692b46e [BugFix] get_and_reset only when scheduler outputs are not empty (#6266) 2024-07-11 07:40:20 -07:00
8a1415cf77 [Bugfix] GPTBigCodeForCausalLM: Remove lm_head from supported_lora_modules. (#6326)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-07-11 07:05:59 -07:00
546b101fa0 [BugFix]: fix engine timeout due to request abort (#6255)
Signed-off-by: yatta zhang <ytzhang01@foxmail.com>
Signed-off-by: zhangyuntao.dev <zhangyuntao.dev@bytedance.com>
Co-authored-by: zhangyuntao.dev <zhangyuntao.dev@bytedance.com>
2024-07-11 06:46:31 -07:00
3963a5335b [Misc] refactor(config): clean up unused code (#6320) 2024-07-11 09:39:07 +00:00
c4774eb841 [Bugfix] Fix snapshot download in serving benchmark (#6318) 2024-07-11 07:04:05 +00:00
fc17110bbe [BugFix]: set outlines pkg version (#6262) 2024-07-11 04:37:11 +00:00
439c84581a [Doc] Update description of vLLM support for CPUs (#6003) 2024-07-10 21:15:29 -07:00
99ded1e1c4 [Doc] Remove comments incorrectly copied from another project (#6286) 2024-07-10 17:05:26 -07:00
997df46a32 [Bugfix][Neuron] Fix soft prompt method error in NeuronExecutor (#6313) 2024-07-10 16:39:02 -07:00
ae151d73be [Speculative Decoding] Enabling bonus token in speculative decoding for KV cache based models (#5765) 2024-07-10 16:02:47 -07:00
44cc76610d [Bugfix] Fix OpenVINOExecutor abstractmethod error (#6296)
Signed-off-by: sangjune.park <sangjune.park@navercorp.com>
2024-07-10 10:03:32 -07:00
b422d4961a [CI/Build] Enable mypy typing for remaining folders (#6268) 2024-07-10 22:15:55 +08:00
c38eba3046 [Bugfix] MLPSpeculator: Use ParallelLMHead in tie_weights=False case. (#6303)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-07-10 09:04:07 -04:00
e72ae80b06 [Bugfix] Support 2D input shape in MoE layer (#6287) 2024-07-10 09:03:16 -04:00
8a924d2248 [Doc] Guide for adding multi-modal plugins (#6205) 2024-07-10 14:55:34 +08:00
5ed3505d82 [Bugfix][TPU] Add prompt adapter methods to TPUExecutor (#6279) 2024-07-09 19:30:56 -07:00
da78caecfa [core][distributed] zmq fallback for broadcasting large objects (#6183)
[core][distributed] add zmq fallback for broadcasting large objects (#6183)
2024-07-09 18:49:11 -07:00
2416b26e11 [Speculative Decoding] Medusa Implementation with Top-1 proposer (#4978) 2024-07-09 18:34:02 -07:00
d3a245138a [Bugfix]fix and needs_scalar_to_array logic check (#6238)
Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
2024-07-09 23:43:24 +00:00
673dd4cae9 [Docs] Docs update for Pipeline Parallel (#6222)
Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-07-09 16:24:58 -07:00
4d6ada947c [CORE] Adding support for insertion of soft-tuned prompts (#4645)
Co-authored-by: Swapnil Parekh <swapnilp@ibm.com>
Co-authored-by: Joe G <joseph.granados@h2o.ai>
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-07-09 13:26:36 -07:00
a0550cbc80 Add support for multi-node on CI (#5955)
Signed-off-by: kevin <kevin@anyscale.com>
2024-07-09 12:56:56 -07:00
08c5bdecae [Bugfix][TPU] Fix outlines installation in TPU Dockerfile (#6256) 2024-07-09 02:56:06 -07:00
5d5b4c5fe5 [Bugfix][TPU] Add missing None to model input (#6245) 2024-07-09 00:21:37 -07:00
70c232f85a [core][distributed] fix ray worker rank assignment (#6235) 2024-07-08 21:31:44 -07:00
a3c9435d93 [hardware][cuda] use device id under CUDA_VISIBLE_DEVICES for get_device_capability (#6216) 2024-07-08 20:02:15 -07:00
4f0e0ea131 Add FlashInfer to default Dockerfile (#6172) 2024-07-08 13:38:03 -07:00
ddc369fba1 [Bugfix] Mamba cache Cuda Graph padding (#6214) 2024-07-08 11:25:51 -07:00
185ad31f37 [Bugfix] use diskcache in outlines _get_guide #5436 (#6203) 2024-07-08 11:23:24 -07:00
543aa48573 [Kernel] Correctly invoke prefill & decode kernels for cross-attention (towards eventual encoder/decoder model support) (#4888)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-07-08 17:12:15 +00:00
f7a8fa39d8 [Kernel] reloading fused_moe config on the last chunk (#6210) 2024-07-08 08:00:38 -07:00
717f4bcea0 Feature/add benchmark testing (#5947)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-07-08 07:52:06 +00:00
16620f439d do not exclude object field in CompletionStreamResponse (#6196) 2024-07-08 10:32:57 +08:00
3b08fe2b13 [misc][frontend] log all available endpoints (#6195)
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-07-07 15:11:12 -07:00
abfe705a02 [ Misc ] Support Fp8 via llm-compressor (#6110)
Co-authored-by: Robert Shaw <rshaw@neuralmagic>
2024-07-07 20:42:11 +00:00
333306a252 add benchmark for fix length input and output (#5857)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-07-07 07:42:13 +00:00
6206dcb29e [Model] Add PaliGemma (#5189)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-07-07 09:25:50 +08:00
9389380015 [Doc] Move guide for multimodal model and other improvements (#6168) 2024-07-06 17:18:59 +08:00
175c43eca4 [Doc] Reorganize Supported Models by Type (#6167) 2024-07-06 05:59:36 +00:00
bc96d5c330 Move release wheel env var to Dockerfile instead (#6163) 2024-07-05 17:19:53 -07:00
f0250620dd Fix release wheel build env var (#6162) 2024-07-05 16:24:31 -07:00
2de490d60f Update wheel builds to strip debug (#6161) 2024-07-05 14:51:25 -07:00
79d406e918 [Docs] Fix readthedocs for tag build (#6158) 2024-07-05 12:44:40 -07:00
abad5746a7 bump version to v0.5.1 (#6157) 2024-07-05 12:04:51 -07:00
e58294ddf2 [Bugfix] Add verbose error if scipy is missing for blocksparse attention (#5695) 2024-07-05 10:41:01 -07:00
f1e15da6fe [Frontend] Continuous usage stats in OpenAI completion API (#5742) 2024-07-05 10:37:09 -07:00
0097bb1829 [Bugfix] Use templated datasource in grafana.json to allow automatic imports (#6136)
Signed-off-by: Christian Rohmann <christian.rohmann@inovex.de>
2024-07-05 09:49:47 -07:00
ea4b570483 [VLM] Cleanup validation and update docs (#6149) 2024-07-05 05:49:38 +00:00
a41357e941 [VLM] Improve consistency between feature size calculation and dummy data for profiling (#6146) 2024-07-05 09:29:47 +08:00
ae96ef8fbd [VLM] Calculate maximum number of multi-modal tokens by model (#6121) 2024-07-04 16:37:23 -07:00
69ec3ca14c [Kernel][Model] logits_soft_cap for Gemma2 with flashinfer (#6051)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-07-04 16:35:51 -07:00
81d7a50f24 [Hardware][Intel CPU] Adding intel openmp tunings in Docker file (#6008)
Signed-off-by: Yuan Zhou <yuan.zhou@intel.com>
2024-07-04 15:22:12 -07:00
27902d42be [misc][doc] try to add warning for latest html (#5979) 2024-07-04 09:57:09 -07:00
56b325e977 [ROCm][AMD][Model]Adding alibi slopes support in ROCm triton flash attention and naive flash attention (#6043)
Co-authored-by: Hongxia Yang <62075498+hongxiayang@users.noreply.github.com>
2024-07-03 22:19:38 -07:00
3dd507083f [CI/Build] Cleanup VLM tests (#6107) 2024-07-03 18:58:18 -07:00
0ed646b7aa [Distributed][Core] Support Py39 and Py38 for PP (#6120)
Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
2024-07-03 17:52:29 -07:00
1dab9bc8a9 [Bugfix] set OMP_NUM_THREADS to 1 by default for multiprocessing (#6109)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-07-03 16:56:59 -07:00
3de6e6a30e [core][distributed] support n layers % pp size != 0 (#6115) 2024-07-03 16:40:31 -07:00
966fe72141 [doc][misc] bump up py version in installation doc (#6119) 2024-07-03 15:52:04 -07:00
62963d129e [ Misc ] Clean Up CompressedTensorsW8A8 (#6113) 2024-07-03 22:50:08 +00:00
d9e98f42e4 [vlm] Remove vision language config. (#6089)
Signed-off-by: Xiaowei Jiang <xwjiang2010@gmail.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-07-03 22:14:16 +00:00
3c6325f0fc [core][distributed] custom allreduce when pp size > 1 (#6117) 2024-07-03 14:41:32 -07:00
47f0954af0 [Kernel] Expand FP8 support to Ampere GPUs using FP8 Marlin (#5975) 2024-07-03 17:38:00 +00:00
7cd2ebb025 [Bugfix] Fix compute_logits in Jamba (#6093) 2024-07-03 00:32:35 -07:00
f1c78138aa [Doc] Fix Mock Import (#6094) 2024-07-03 00:13:56 -07:00
3a86b54fb0 [VLM][Frontend] Proper Image Prompt Formatting from OpenAI API (#6091)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-07-02 23:41:23 -07:00
f666207161 [misc][distributed] error on invalid state (#6092) 2024-07-02 23:37:29 -07:00
d830656a97 [BugFix] Avoid unnecessary Ray import warnings (#6079) 2024-07-03 14:09:40 +08:00
d18bab3587 [CI] Fix base url doesn't strip "/" (#6087) 2024-07-02 21:31:25 -07:00
9831aec49f [Core] Dynamic image size support for VLMs (#5276)
Signed-off-by: Xiaowei Jiang <xwjiang2010@gmail.com>
Co-authored-by: Xiaowei Jiang <xwjiang2010@gmail.com>
Co-authored-by: ywang96 <ywang@roblox.com>
Co-authored-by: xwjiang2010 <87673679+xwjiang2010@users.noreply.github.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-07-02 20:34:00 -07:00
482045ee77 [hardware][misc] introduce platform abstraction (#6080) 2024-07-02 20:12:22 -07:00
9d6a8daa87 [Model] Jamba support (#4115)
Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
Co-authored-by: Erez Schwartz <erezs@ai21.com>
Co-authored-by: Mor Zusman <morz@ai21.com>
Co-authored-by: tomeras91 <57313761+tomeras91@users.noreply.github.com>
Co-authored-by: Tomer Asida <tomera@ai21.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
Co-authored-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
2024-07-02 23:11:29 +00:00
ee93f4f92a [CORE] Quantized lm-head Framework (#4442)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
Co-authored-by: ZX <zx@lbx.dev>
2024-07-02 22:25:17 +00:00
7c008c51a9 [ Misc ] Refactor MoE to isolate Fp8 From Mixtral (#5970)
Co-authored-by: Robert Shaw <rshaw@neuralmagic>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-07-02 21:54:35 +00:00
4d26d806e1 Update conftest.py (#6076) 2024-07-02 20:14:22 +00:00
c5832d2ae9 [Core] Pipeline Parallel Support (#4412)
Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
2024-07-02 10:58:08 -07:00
15aba081f3 [Speculative Decoding] MLPSpeculator Tensor Parallel support (1/2) (#6050)
Co-authored-by: Sirej Dua <sirej.dua@databricks.com>
Co-authored-by: Sirej Dua <Sirej Dua>
2024-07-02 07:20:29 -07:00
31354e563f [Doc] Reinstate doc dependencies (#6061) 2024-07-02 10:53:16 +00:00
98d6682cd1 [VLM] Remove image_input_type from VLM config (#5852)
Signed-off-by: Xiaowei Jiang <xwjiang2010@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-07-02 07:57:09 +00:00
2c37540aa6 [Frontend] Add template related params to request (#5709) 2024-07-01 23:01:57 -07:00
3476ed0809 [Core] Optimize block_manager_v2 vs block_manager_v1 (to make V2 default) (#5602) 2024-07-01 20:10:37 -07:00
54600709b6 [Model] Changes to MLPSpeculator to support tie_weights and input_scale (#5965)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Joshua Rosenkranz <jmrosenk@us.ibm.com>
2024-07-01 16:40:02 -07:00
e373853e12 [Frontend] Relax api url assertion for openai benchmarking (#6046) 2024-07-01 23:39:10 +00:00
c87ebc3ef9 [BugFix] Ensure worker model loop is always stopped at the right time (#5987) 2024-07-01 16:17:58 -07:00
c4059ea54f [Bugfix] Add explicit end_forward calls to flashinfer (#6044) 2024-07-01 23:08:58 +00:00
8e0817c262 [Bugfix][Doc] Fix Doc Formatting (#6048) 2024-07-01 15:09:11 -07:00
83bdcb6ac3 add FAQ doc under 'serving' (#5946) 2024-07-01 14:11:36 -07:00
12a59959ed [Bugfix] adding chunking mechanism to fused_moe to handle large inputs (#6029) 2024-07-01 21:08:29 +00:00
dec6fc6f3b [Bugfix] Use RayActorError for older versions of Ray in RayTokenizerGroupPool (#6039) 2024-07-01 20:12:40 +00:00
8893130b63 [doc][misc] further lower visibility of simple api server (#6041)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-07-01 10:50:56 -07:00
bb60326836 [Misc] update benchmark backend for scalellm (#6018) 2024-07-01 10:20:33 -07:00
4050d646e5 [doc][misc] remove deprecated api server in doc (#6037) 2024-07-01 12:52:43 -04:00
d76084c12f [ CI ] Re-enable Large Model LM Eval (#6031) 2024-07-01 12:40:45 -04:00
80ca1e6a3a [Speculative Decoding 2/2 ] Integrate typical acceptance sampler into Spec Decode Worker (#5348) 2024-07-01 00:33:05 -07:00
614aa51203 [misc][cuda] use nvml to avoid accidentally cuda initialization (#6007) 2024-06-30 20:07:34 -07:00
af9ad46fca [ Misc ] Refactor w8a8 to use process_weights_after_load (Simplify Weight Loading) (#5940)
Co-authored-by: Robert Shaw <rshaw@neuralmagic>
2024-06-30 23:06:27 +00:00
7836fdcc11 [Misc] Fix get_min_capability (#5971) 2024-06-30 20:15:16 +00:00
deacb7ec44 [ CI ] Temporarily Disable Large LM-Eval Tests (#6005)
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic>
2024-06-30 11:56:56 -07:00
f5e73c9f1b [Lora] Use safetensor keys instead of adapter_config.json to find unexpected modules. (#5909)
Co-authored-by: sang <sangcho@anyscale.com>
2024-06-30 17:11:15 +00:00
c6c240aa0a [Frontend]: Support base64 embedding (#5935)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-06-30 23:53:00 +08:00
2be6955a3f [ci][distributed] fix device count call
[ci][distributed] fix some cuda init that makes it necessary to use spawn (#5991)
2024-06-30 08:06:13 +00:00
9d47f64eb6 [CI/Build] [3/3] Reorganize entrypoints tests (#5966) 2024-06-30 12:58:49 +08:00
cff6a1fec1 [CI/Build] Reuse code for checking output consistency (#5988) 2024-06-30 11:44:25 +08:00
bcc6a09b63 [CI/Build] Temporarily Remove Phi3-Vision from TP Test (#5989) 2024-06-30 09:18:31 +08:00
9def10664e [Bugfix][CI/Build][Hardware][AMD] Install matching torchvision to fix AMD tests (#5949) 2024-06-29 12:47:58 -07:00
75aa1442db [ CI/Build ] LM Eval Harness Based CI Testing (#5838)
Co-authored-by: Robert Shaw <rshaw@neuralmagic>
2024-06-29 13:04:30 -04:00
99397da534 [CI/Build] Add TP test for vision models (#5892) 2024-06-29 15:45:54 +00:00
8dbfcd35bf [ CI/Build ] Added E2E Test For Compressed Tensors (#5839)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
Co-authored-by: Robert Shaw <rshaw@neuralmagic>
2024-06-29 21:12:58 +08:00
f7dac83d95 [Kernel] Raise an exception in MoE kernel if the batch size is larger then 65k (#5939) 2024-06-29 21:04:20 +08:00
7c01f70641 [Core] Optimize SequenceStatus.is_finished by switching to IntEnum (#5974) 2024-06-29 12:47:53 +00:00
51e971d39e [Bugfix] Support eos_token_id from config.json (#5954) 2024-06-29 11:19:02 +00:00
329df38f1a [Misc] Update Phi-3-Vision Example (#5981)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-06-29 14:34:29 +08:00
580353da93 [Bugfix] Fix precisions in Gemma 1 (#5913) 2024-06-29 03:10:21 +00:00
ba4994443a [Kernel] Add punica dimensions for Granite 3b and 8b (#5930)
Signed-off-by: Joe Runde <joe@joerun.de>
2024-06-29 10:48:25 +08:00
906a19cdb0 [Misc] Extend vLLM Metrics logging API (#5925)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-06-29 10:36:06 +08:00
c4bca740e8 [Bugfix] fix missing last itl in openai completions benchmark (#5926) 2024-06-29 10:34:42 +08:00
7f83f40dee [Bugfix][TPU] Fix pad slot id (#5977) 2024-06-28 18:55:17 -07:00
54814fd85b [Bugfix][TPU] Fix TPU sampler output (#5978) 2024-06-28 18:14:16 -07:00
7041de4384 [Kernel] Flashinfer for prefill & decode, with Cudagraph support for decode (#4628)
Co-authored-by: LiuXiaoxuanPKU <llilyliupku@gmail.com>, bong-furiosa <bongwon.jang@furiosa.ai>
2024-06-28 15:28:49 -07:00
6a62cb82cc [Bugfix] Fix Engine Failing After Invalid Request - AsyncEngineDeadError (#5963)
Co-authored-by: Robert Shaw <rshaw@neuralmagic>
2024-06-28 17:46:30 -04:00
5d2a1a9cf0 Unmark more files as executable (#5962) 2024-06-28 17:34:56 -04:00
4bf35ed9ae [Bugfix] Only add Attention.kv_scale if kv cache quantization is enabled (#5936) 2024-06-28 21:12:40 +00:00
be0b3af9e0 Support Deepseek-V2 (#4650)
Co-authored-by: Philipp Moritz <pcmoritz@gmail.com>
2024-06-28 13:24:57 -07:00
2cd402e169 [ Bugfix ] Enabling Loading Models With Fused QKV/MLP on Disk with FP8 (#5921)
Co-authored-by: Robert Shaw <rshaw@neuralmagic>
2024-06-28 18:43:49 +00:00
b185230744 [ Misc ] Remove fp8_shard_indexer from Col/Row Parallel Linear (Simplify Weight Loading) (#5928)
Co-authored-by: Robert Shaw <rshaw@neuralmagic>
2024-06-28 13:49:57 -04:00
6a2d659d28 [Bugfix] Fix compute datatype for cutlass 3.x epilogues (#5931) 2024-06-28 17:10:34 +00:00
b2c620230a [Spec Decode] Introduce DraftModelRunner (#5799) 2024-06-28 09:17:51 -07:00
b90d8cd832 [Distributed] Make it clear that % should not be in tensor dict keys. (#5927)
Signed-off-by: Xiaowei Jiang <xwjiang2010@gmail.com>
2024-06-28 15:20:22 +00:00
3b752a6555 [CI/Build] [2/3] Reorganize entrypoints tests (#5904) 2024-06-28 07:59:18 -07:00
ec1ad0046c [Bugfix] Better error message for MLPSpeculator when num_speculative_tokens is set too high (#5894)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-06-28 07:42:17 -07:00
57f09a419c [Hardware][Intel] OpenVINO vLLM backend (#5379) 2024-06-28 13:50:16 +00:00
5932634409 Unmark fused_moe config json file as executable (#5960) 2024-06-28 06:36:12 -07:00
5cbe8d155c [Core] Registry for processing model inputs (#5214)
Co-authored-by: ywang96 <ywang@roblox.com>
2024-06-28 12:09:56 +00:00
0d0e3a42ac [Bugfix][Hardware][Intel CPU] Fix unpassed multi_modal_kwargs for CPU runner (#5956) 2024-06-28 12:03:41 +00:00
74d55c065b [VLM][BugFix] Make sure that multi_modal_kwargs can broadcast properly with ring buffer. (#5905)
Signed-off-by: Xiaowei Jiang <xwjiang2010@gmail.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-06-28 07:29:13 +00:00
f136da15e1 [Hardware][TPU] Optimize KV cache swapping (#5878) 2024-06-27 21:12:13 -07:00
c3dde367f1 [Kernel][ROCm][AMD] fused_moe Triton configs v2 for mi300X (#5932) 2024-06-27 13:41:08 -07:00
64e8d2a783 [core][misc] remove logical block (#5882) 2024-06-27 13:34:55 -07:00
79c92c7c8a [Model] Add Gemma 2 (#5908) 2024-06-27 13:33:56 -07:00
736ed38849 [CI/Build] Fix Args for _get_logits_warper in Sampler Test (#5922) 2024-06-27 11:43:04 -07:00
365791ff81 [BugFix] Fix min_tokens behaviour for multiple eos tokens (#5849) 2024-06-27 11:31:11 -07:00
691e29ecf3 [BugFix] Fix MLPSpeculator handling of num_speculative_tokens (#5876) 2024-06-27 10:59:33 -07:00
3fd02bda51 [doc][misc] add note for Kubernetes users (#5916) 2024-06-27 10:07:07 -07:00
98cf2ed678 [Model][Bugfix] Implicit model flags and reenable Phi-3-Vision (#5896) 2024-06-27 09:08:10 -07:00
e9d32d077d [CI/Build] [1/3] Reorganize entrypoints tests (#5526) 2024-06-27 12:43:17 +00:00
2061f0b8a7 [Bugfix] Fix img_sizes Parsing in Phi3-Vision (#5888) 2024-06-27 08:29:24 +00:00
96354d6a29 [Model] Add base class for LoRA-supported models (#5018) 2024-06-27 16:03:04 +08:00
d12af207d2 [VLM][Bugfix] Make sure that multi_modal_kwargs is broadcasted properly (#5880)
Signed-off-by: Xiaowei Jiang <xwjiang2010@gmail.com>
2024-06-27 15:15:24 +08:00
6eabc6cb0e [Doc] Add note about context length in Phi-3-Vision example (#5887) 2024-06-26 23:20:01 -07:00
2110557dab [BugFix] Fix cuda graph for MLPSpeculator (#5875)
Co-authored-by: Abhinav Goyal <abhinav.goyal@flipkart.com>
2024-06-27 04:12:10 +00:00
b9e84259e9 [Misc] Add example for LLaVA-NeXT (#5879) 2024-06-26 17:57:16 -07:00
294104c3f9 [doc] update usage of env var to avoid conflict (#5873) 2024-06-26 17:57:12 -04:00
38a1674abb Support CPU inference with VSX PowerPC ISA (#5652) 2024-06-26 21:53:04 +00:00
f5c8628fdc [Bugfix][TPU] Fix CPU cache allocation (#5869) 2024-06-26 13:42:40 -07:00
cbc53b6b8d [Hardware][TPU] Support parallel sampling & Swapping (#5855) 2024-06-26 11:07:49 -07:00
c54269d967 [Frontend] Add tokenize/detokenize endpoints (#5054) 2024-06-26 16:54:22 +00:00
5bfd1bbc98 [Kernel] Adding bias epilogue support for cutlass_scaled_mm (#5560)
Co-authored-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
Co-authored-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2024-06-26 15:16:00 +00:00
6984c02a27 [CI/Build] Refactor image test assets (#5821) 2024-06-26 01:02:34 -07:00
3439c5a8e3 [Bugfix][TPU] Fix KV cache size calculation (#5860) 2024-06-26 00:58:23 -07:00
6806998bf9 [Bugfix] Fix embedding to support 2D inputs (#5829) 2024-06-26 00:15:22 -07:00
515080ad2f [bugfix][distributed] fix shm broadcast when the queue size is full (#5801) 2024-06-25 21:56:02 -07:00
3aa7b6cf66 [Misc][Doc] Add Example of using OpenAI Server with VLM (#5832) 2024-06-25 20:34:25 -07:00
dda4811591 [Core] Refactor Worker and ModelRunner to consolidate control plane communication (#5408)
Signed-off-by: Stephanie Wang <swang@cs.berkeley.edu>
Signed-off-by: Stephanie <swang@anyscale.com>
Co-authored-by: Stephanie <swang@anyscale.com>
2024-06-25 20:30:03 -07:00
82079729cc [Bugfix] Fix assertion in NeuronExecutor (#5841) 2024-06-25 19:52:10 -07:00
c2a8ac75e0 [CI/Build] Add E2E tests for MLPSpeculator (#5791)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-06-26 00:04:08 +00:00
f178e56c68 [Hardware][TPU] Raise errors for unsupported sampling params (#5850) 2024-06-25 16:58:23 -07:00
dd793d1de5 [Hardware][AMD][CI/Build][Doc] Upgrade to ROCm 6.1, Dockerfile improvements, test fixes (#5422) 2024-06-25 15:56:15 -07:00
bc34937d68 [Hardware][TPU] Refactor TPU backend (#5831) 2024-06-25 15:25:52 -07:00
dd248f7675 [Misc] Update w4a16 compressed-tensors support to include w8a16 (#5794) 2024-06-25 19:23:35 +00:00
d9b34baedd [CI/Build] Add unit testing for FlexibleArgumentParser (#5798) 2024-06-25 12:18:03 -07:00
c18ebfdd71 [doc][distributed] add both gloo and nccl tests (#5834) 2024-06-25 15:10:28 -04:00
67882dbb44 [Core] Add fault tolerance for RayTokenizerGroupPool (#5748) 2024-06-25 10:15:10 -07:00
7b99314301 [Misc] Remove useless code in cpu_worker (#5824) 2024-06-25 09:41:36 -07:00
2ce5d6688b [Speculative Decoding] Support draft model on different tensor-parallel size than target model (#5414) 2024-06-25 09:56:06 +00:00
f23871e9ee [Doc] Add notice about breaking changes to VLMs (#5818) 2024-06-25 01:25:03 -07:00
e9de9dd551 [ci] Remove aws template (#5757)
Signed-off-by: kevin <kevin@anyscale.com>
2024-06-24 21:09:02 -07:00
ba991d5c84 [Bugfix] Fix FlexibleArgumentParser replaces _ with - for actual args (#5795) 2024-06-24 17:01:19 -06:00
1744cc99ba [Doc] Add Phi-3-medium to list of supported models (#5788) 2024-06-24 10:48:55 -07:00
e72dc6cb35 [Doc] Add "Suggest edit" button to doc pages (#5789) 2024-06-24 10:26:17 -07:00
c246212952 [doc][faq] add warning to download models for every nodes (#5783) 2024-06-24 15:37:42 +08:00
edd5fe5fa2 [Bugfix] Add phi3v resize for dynamic shape and fix torchvision requirement (#5772) 2024-06-24 12:11:53 +08:00
5d4d90536f [Distributed] Add send and recv helpers (#5719) 2024-06-23 14:42:28 -07:00
6c916ac8a8 [BugFix] [Kernel] Add Cutlass2x fallback kernels (#5744)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-06-23 21:07:11 +00:00
832ea88fcb [core][distributed] improve shared memory broadcast (#5754) 2024-06-22 10:00:43 -07:00
8c00f9c15d [Docs][TPU] Add installation tip for TPU (#5761) 2024-06-21 23:09:40 -07:00
0cbc1d2b4f [Bugfix] Fix pin_lora error in TPU executor (#5760) 2024-06-21 22:25:14 -07:00
ff9ddbceee [Misc] Remove #4789 workaround left in vllm/entrypoints/openai/run_batch.py (#5756) 2024-06-22 03:33:12 +00:00
9c62db07ed [Model] Support Qwen-VL and Qwen-VL-Chat models with text-only inputs (#5710)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-06-22 02:07:08 +00:00
cf90ae0123 [CI][Hardware][Intel GPU] add Intel GPU(XPU) ci pipeline (#5616) 2024-06-21 17:09:34 -07:00
f5dda63eb5 [LoRA] Add support for pinning lora adapters in the LRU cache (#5603) 2024-06-21 15:42:46 -07:00
7187507301 [ci][test] fix ca test in main (#5746) 2024-06-21 14:04:26 -07:00
f1e72cc19a [BugFix] exclude version 1.15.0 for modelscope (#5668) 2024-06-21 13:15:48 -06:00
5b15bde539 [Doc] Documentation on supported hardware for quantization methods (#5745) 2024-06-21 12:44:29 -04:00
bd620b01fb [Kernel][CPU] Add Quick gelu to CPU (#5717) 2024-06-21 06:39:40 +00:00
d9a252bc8e [Core][Distributed] add shm broadcast (#5399)
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-06-21 05:12:35 +00:00
67005a07bc [Bugfix] Add fully sharded layer for QKVParallelLinearWithLora (#5665)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-06-21 04:46:28 +00:00
c35e4a3dd7 [BugFix] Fix test_phi3v.py (#5725) 2024-06-21 04:45:34 +00:00
1f5674218f [Kernel] Add punica dimension for Qwen2 LoRA (#5441) 2024-06-20 17:55:41 -07:00
b12518d3cf [Model] MLPSpeculator speculative decoding support (#4947)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>

Co-authored-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
Co-authored-by: Davis Wertheimer <Davis.Wertheimer@ibm.com>
2024-06-20 20:23:12 -04:00
6c5b7af152 [distributed][misc] use fork by default for mp (#5669) 2024-06-20 17:06:34 -07:00
8065a7e220 [Frontend] Add FlexibleArgumentParser to support both underscore and dash in names (#5718) 2024-06-20 17:00:13 -06:00
3f3b6b2150 [Bugfix] Fix the CUDA version check for FP8 support in the CUTLASS kernels (#5715) 2024-06-20 18:36:10 +00:00
a7dcc62086 [Kernel] Update Cutlass int8 kernel configs for SM80 (#5275)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-06-20 13:33:21 +00:00
ad137cd111 [Model] Port over CLIPVisionModel for VLMs (#5591) 2024-06-20 11:52:09 +00:00
111af1fa2c [Kernel] Update Cutlass int8 kernel configs for SM90 (#5514)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-06-20 06:37:08 +00:00
1b2eaac316 [Bugfix][Doc] FIx Duplicate Explicit Target Name Errors (#5703) 2024-06-19 23:10:47 -07:00
3730a1c832 [Misc] Improve conftest (#5681) 2024-06-19 19:09:21 -07:00
949e49a685 [ci] Limit num gpus if specified for A100 (#5694)
Signed-off-by: kevin <kevin@anyscale.com>
2024-06-19 16:30:03 -07:00
4a30d7e3cc [Misc] Add per channel support for static activation quantization; update w8a8 schemes to share base classes (#5650) 2024-06-19 18:06:44 -04:00
e83db9e7e3 [Doc] Update docker references (#5614)
Signed-off-by: Rafael Vasquez <rafvasq21@gmail.com>
2024-06-19 15:01:45 -07:00
78687504f7 [Bugfix] AsyncLLMEngine hangs with asyncio.run (#5654) 2024-06-19 13:57:12 -07:00
d571ca0108 [ci][distributed] add tests for custom allreduce (#5689) 2024-06-19 20:16:04 +00:00
afed90a034 [Frontend][Bugfix] Fix preemption_mode -> preemption-mode for CLI arg in arg_utils.py (#5688) 2024-06-19 14:41:42 -04:00
3ee5c4bca5 [ci] Add A100 queue into AWS CI template (#5648)
Signed-off-by: kevin <kevin@anyscale.com>
2024-06-19 08:42:13 -06:00
e9c2732b97 [CI/Build] Add tqdm to dependencies (#5680) 2024-06-19 08:37:33 -06:00
d8714530d1 [Misc]Add param max-model-len in benchmark_latency.py (#5629) 2024-06-19 18:19:08 +08:00
7d46c8d378 [Bugfix] Fix sampling_params passed incorrectly in Phi3v example (#5684) 2024-06-19 17:58:32 +08:00
da971ec7a5 [Model] Add FP8 kv cache for Qwen2 (#5656) 2024-06-19 09:38:26 +00:00
3eea74889f [misc][distributed] use 127.0.0.1 for single-node (#5619) 2024-06-19 08:05:00 +00:00
f758aed0e8 [Bugfix][CI/Build][AMD][ROCm]Fixed the cmake build bug which generate garbage on certain devices (#5641) 2024-06-18 23:21:29 -07:00
e5150f2c28 [Bugfix] Added test for sampling repetition penalty bug. (#5659)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-06-19 06:03:55 +00:00
59a1eb59c9 [Bugfix] Fix Phi-3 Long RoPE scaling implementation (#5628) 2024-06-19 01:46:38 +00:00
6820724e51 [Bugfix] Fix w8a8 benchmarks for int8 case (#5643) 2024-06-19 00:33:25 +00:00
b23ce92032 [Bugfix] Fix CUDA version check for mma warning suppression (#5642) 2024-06-18 23:48:49 +00:00
2bd231a7b7 [Doc] Added cerebrium as Integration option (#5553) 2024-06-18 15:56:59 -07:00
8a173382c8 [Bugfix] Fix for inconsistent behaviour related to sampling and repetition penalties (#5639)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-06-18 14:18:37 -07:00
07feecde1a [Model] LoRA support added for command-r (#5178) 2024-06-18 11:01:21 -07:00
19091efc44 [ci] Setup Release pipeline and build release wheels with cache (#5610)
Signed-off-by: kevin <kevin@anyscale.com>
2024-06-18 11:00:36 -07:00
95db455e7f [Misc] Add channel-wise quantization support for w8a8 dynamic per token activation quantization (#5542) 2024-06-18 12:45:05 -04:00
7879f24dcc [Misc] Add OpenTelemetry support (#4687)
This PR adds basic support for OpenTelemetry distributed tracing.
It includes changes to enable tracing functionality and improve monitoring capabilities.

I've also added a markdown with print-screens to guide users how to use this feature. You can find it here
2024-06-19 01:17:03 +09:00
13db4369d9 [ci] Deprecate original CI template (#5624)
Signed-off-by: kevin <kevin@anyscale.com>
2024-06-18 14:26:20 +00:00
4ad7b53e59 [CI/Build][Misc] Update Pytest Marker for VLMs (#5623) 2024-06-18 13:10:04 +00:00
f0cc0e68e3 [Misc] Remove import from transformers logging (#5625) 2024-06-18 12:12:19 +00:00
db5ec52ad7 [bugfix][distributed] improve p2p capability test (#5612)
[bugfix][distributed] do not error if two processes do not agree on p2p capability (#5612)
2024-06-18 07:21:05 +00:00
114d7270ff [CI] Avoid naming different metrics with the same name in performance benchmark (#5615) 2024-06-17 21:37:18 -07:00
32c86e494a [Misc] Fix typo (#5618) 2024-06-17 20:58:30 -07:00
8eadcf0b90 [misc][typo] fix typo (#5620) 2024-06-17 20:54:57 -07:00
5002175e80 [Kernel] Add punica dimensions for Granite 13b (#5559)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2024-06-18 03:54:11 +00:00
daef218b55 [Model] Initialize Phi-3-vision support (#4986) 2024-06-17 19:34:33 -07:00
fa9e385229 [Speculative Decoding 1/2 ] Add typical acceptance sampling as one of the sampling techniques in the verifier (#5131) 2024-06-17 21:29:09 -05:00
26e1188e51 [Fix] Use utf-8 encoding in entrypoints/openai/run_batch.py (#5606) 2024-06-17 23:16:10 +00:00
a3e8a05d4c [Bugfix] Fix KV head calculation for MPT models when using GQA (#5142) 2024-06-17 15:26:41 -07:00
e441bad674 [Optimization] use a pool to reuse LogicalTokenBlock.token_ids (#5584) 2024-06-17 22:08:05 +00:00
1b44aaf4e3 [bugfix][distributed] fix 16 gpus local rank arrangement (#5604) 2024-06-17 21:35:04 +00:00
9e4e6fe207 [CI] the readability of benchmarking and prepare for dashboard (#5571)
[CI] Improve the readability of performance benchmarking results and prepare for upcoming performance dashboard (#5571)
2024-06-17 11:41:08 -07:00
ab66536dbf [CI/BUILD] Support non-AVX512 vLLM building and testing (#5574) 2024-06-17 14:36:10 -04:00
728c4c8a06 [Hardware][Intel GPU] Add Intel GPU(XPU) inference backend (#3814)
Co-authored-by: Jiang Li <jiang1.li@intel.com>
Co-authored-by: Abhilash Majumder <abhilash.majumder@intel.com>
Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-06-17 11:01:25 -07:00
1f12122b17 [Misc] use AutoTokenizer for benchmark serving when vLLM not installed (#5588) 2024-06-17 09:40:35 -07:00
890d8d960b [Kernel] compressed-tensors marlin 24 support (#5435) 2024-06-17 12:32:48 -04:00
9e74d9d003 Correct alignment in the seq_len diagram. (#5592)
Co-authored-by: Liqian Chen <liqian.chen@deeplang.ai>
2024-06-17 12:05:33 -04:00
9333fb8eb9 [Model] Rename Phi3 rope scaling type (#5595) 2024-06-17 12:04:14 -04:00
e2b85cf86a Fix w8a8 benchmark and add Llama-3-8B (#5562) 2024-06-17 06:48:06 +00:00
845a3f26f9 [Doc] add debugging tips for crash and multi-node debugging (#5581) 2024-06-17 10:08:01 +08:00
f07d513320 [build][misc] limit numpy version (#5582) 2024-06-16 16:07:01 -07:00
4a6769053a [CI][BugFix] Flip is_quant_method_supported condition (#5577) 2024-06-16 14:07:34 +00:00
f31c1f90e3 Add basic correctness 2 GPU tests to 4 GPU pipeline (#5518) 2024-06-16 07:48:02 +00:00
3ce2c050dd [Fix] Correct OpenAI batch response format (#5554) 2024-06-15 16:57:54 -07:00
1c0afa13c5 [BugFix] Don't start a Ray cluster when not using Ray (#5570) 2024-06-15 16:30:51 -07:00
d919ecc771 add gptq_marlin test for bug report https://github.com/vllm-project/vllm/issues/5088 (#5145) 2024-06-15 13:38:16 -04:00
e691918e3b [misc] Do not allow to use lora with chunked prefill. (#5538)
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2024-06-15 14:59:36 +00:00
81fbb3655f [CI/Build] Test both text and token IDs in batched OpenAI Completions API (#5568) 2024-06-15 07:29:42 -04:00
0e9164b40a [mypy] Enable type checking for test directory (#5017) 2024-06-15 04:45:31 +00:00
1b8a0d71cf [Core][Bugfix]: fix prefix caching for blockv2 (#5364)
Signed-off-by: Lei Wen <wenlei03@qiyi.com>
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
2024-06-14 17:23:56 -07:00
bd7efe95d0 Add ccache to amd (#5555) 2024-06-14 17:18:22 -07:00
f5bb85b435 [Core][Distributed] improve p2p cache generation (#5528) 2024-06-14 14:47:45 -07:00
28c145eb57 [Bugfix] Fix typo in Pallas backend (#5558) 2024-06-14 14:40:09 -07:00
e2afb03c92 [Bugfix] Enable loading FP8 checkpoints for gpt_bigcode models (#5460)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2024-06-14 20:28:11 +00:00
6e2527a7cb [Doc] Update documentation on Tensorizer (#5471) 2024-06-14 11:27:57 -07:00
cdab68dcdb [Docs] Add ZhenFund as a Sponsor (#5548) 2024-06-14 11:17:21 -07:00
d1c3d7d139 [misc][distributed] fix benign error in is_in_the_same_node (#5512) 2024-06-14 10:59:28 -07:00
77490c6f2f [Core] Remove duplicate processing in async engine (#5525) 2024-06-14 10:04:42 -07:00
48f589e18b [mis] fix flaky test of test_cuda_device_count_stateless (#5546) 2024-06-14 10:02:23 -07:00
348616ac4b [Kernel] Suppress mma.sp warning on CUDA 12.5 and later (#5401) 2024-06-14 10:02:00 -07:00
15985680e2 [ Misc ] Rs/compressed tensors cleanup (#5432)
Co-authored-by: mgoin <michael@neuralmagic.com>
Co-authored-by: Dipika Sikka <dipikasikka1@gmail.com>
2024-06-14 10:01:46 -07:00
d74674bbd9 [Misc] Fix arg names (#5524) 2024-06-14 09:47:44 -07:00
703475f6c2 [Kernel] Fix CUTLASS 3.x custom broadcast load epilogue (#5516) 2024-06-14 09:30:15 -07:00
d47af2bc02 [CI/Build] Disable LLaVA-NeXT CPU test (#5529) 2024-06-14 09:27:30 -07:00
319ad7f1d3 [CI/Build][Misc] Add CI that benchmarks vllm performance on those PRs with perf-benchmarks label (#5073)
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-06-13 22:36:20 -07:00
0f0d8bc065 bump version to v0.5.0.post1 (#5522) 2024-06-13 19:42:06 -07:00
55d6361b13 [Misc] Fix arg names in quantizer script (#5507) 2024-06-13 19:02:53 -07:00
cd9c0d65d9 [Hardware][Intel] Support CPU inference with AVX2 ISA (#5452) 2024-06-13 17:22:24 -06:00
632 changed files with 54194 additions and 12187 deletions

View File

@ -1,7 +1,7 @@
import os
import zipfile
MAX_SIZE_MB = 200
MAX_SIZE_MB = 250
def print_top_10_largest_files(zip_file):

View File

@ -1,18 +0,0 @@
#!/bin/bash
set -ex
set -o pipefail
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
# aws s3 sync s3://air-example-data-2/vllm_opensource_llava/ images/
mkdir -p images
cd images
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/stop_sign_pixel_values.pt
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/stop_sign_image_features.pt
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/cherry_blossom_pixel_values.pt
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/cherry_blossom_image_features.pt
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/stop_sign.jpg
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/cherry_blossom.jpg
cd -

View File

@ -0,0 +1,11 @@
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m deepseek-ai/DeepSeek-V2-Lite-Chat -b "auto" -l 1000 -f 5 -t 2
model_name: "deepseek-ai/DeepSeek-V2-Lite-Chat"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.671
- name: "exact_match,flexible-extract"
value: 0.664
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5
model_name: "nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.905
- name: "exact_match,flexible-extract"
value: 0.905
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-70B-Instruct -b 32 -l 250 -f 5
model_name: "meta-llama/Meta-Llama-3-70B-Instruct"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.892
- name: "exact_match,flexible-extract"
value: 0.892
limit: 250
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.752
- name: "exact_match,flexible-extract"
value: 0.754
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.753
- name: "exact_match,flexible-extract"
value: 0.753
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test -b 32 -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.755
- name: "exact_match,flexible-extract"
value: 0.755
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Meta-Llama-3-8B-Instruct-FP8 -b 32 -l 250 -f 5 -t 1
model_name: "neuralmagic/Meta-Llama-3-8B-Instruct-FP8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.753
- name: "exact_match,flexible-extract"
value: 0.753
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.728
- name: "exact_match,flexible-extract"
value: 0.728
limit: 250
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.758
- name: "exact_match,flexible-extract"
value: 0.759
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-8B-Instruct -b 32 -l 250 -f 5 -t 1
model_name: "meta-llama/Meta-Llama-3-8B-Instruct"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.756
- name: "exact_match,flexible-extract"
value: 0.752
limit: 250
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nvidia/Minitron-4B-Base -b auto -l 1000 -f 5 -t 1
model_name: "nvidia/Minitron-4B-Base"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.252
- name: "exact_match,flexible-extract"
value: 0.252
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic -b "auto" -l 250 -f 5 -t 8
model_name: "neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.86
- name: "exact_match,flexible-extract"
value: 0.86
limit: 250
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8 -b "auto" -l 250 -f 5 -t 4
model_name: "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.624
- name: "exact_match,flexible-extract"
value: 0.624
limit: 250
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1 -b 32 -l 250 -f 5 -t 4
model_name: "mistralai/Mixtral-8x7B-Instruct-v0.1"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.616
- name: "exact_match,flexible-extract"
value: 0.632
limit: 250
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-FP8W8 -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Qwen2-1.5B-Instruct-FP8W8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.578
- name: "exact_match,flexible-extract"
value: 0.585
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
model_name: "neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.593
- name: "exact_match,flexible-extract"
value: 0.588
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise -b "auto" -l 1000 -f 5 -t 1
model_name: "nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.595
- name: "exact_match,flexible-extract"
value: 0.582
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m Qwen/Qwen2-57B-A14B-Instruct -b "auto" -l 250 -f 5 -t 4
model_name: "Qwen/Qwen2-57B-A14B-Instruct"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.792
- name: "exact_match,flexible-extract"
value: 0.824
limit: 250
num_fewshot: 5

View File

@ -0,0 +1,5 @@
Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform.yaml
Meta-Llama-3-70B-Instruct.yaml
Mixtral-8x7B-Instruct-v0.1.yaml
Qwen2-57B-A14-Instruct.yaml
DeepSeek-V2-Lite-Chat.yaml

View File

@ -0,0 +1,9 @@
Meta-Llama-3-8B-Instruct.yaml
Meta-Llama-3-8B-Instruct-FP8.yaml
Meta-Llama-3-8B-Instruct-FP8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml
Minitron-4B-Base.yaml
Qwen2-1.5B-Instruct-INT8-compressed-tensors.yaml
Qwen2-1.5B-Instruct-FP8W8.yaml

View File

@ -0,0 +1,46 @@
#!/bin/bash
# We can use this script to compute baseline accuracy on GSM for transformers.
#
# Make sure you have lm-eval-harness installed:
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@9516087b81a61d0e220b22cc1b75be76de23bc10
usage() {
echo``
echo "Runs lm eval harness on GSM8k using huggingface transformers."
echo "This pathway is intended to be used to create baselines for "
echo "our automated nm-test-accuracy workflow"
echo
echo "usage: ${0} <options>"
echo
echo " -m - huggingface stub or local directory of the model"
echo " -b - batch size to run the evaluation at"
echo " -l - limit number of samples to run"
echo " -f - number of fewshot samples to use"
echo
}
while getopts "m:b:l:f:" OPT; do
case ${OPT} in
m )
MODEL="$OPTARG"
;;
b )
BATCH_SIZE="$OPTARG"
;;
l )
LIMIT="$OPTARG"
;;
f )
FEWSHOT="$OPTARG"
;;
\? )
usage
exit 1
;;
esac
done
lm_eval --model hf \
--model_args pretrained=$MODEL,parallelize=True \
--tasks gsm8k --num_fewshot $FEWSHOT --limit $LIMIT \
--batch_size $BATCH_SIZE

View File

@ -0,0 +1,51 @@
#!/bin/bash
# We can use this script to compute baseline accuracy on GSM for vllm.
# We use this for fp8, which HF does not support.
#
# Make sure you have lm-eval-harness installed:
# pip install lm-eval==0.4.3
usage() {
echo``
echo "Runs lm eval harness on GSM8k using huggingface transformers."
echo "This pathway is intended to be used to create baselines for "
echo "our automated nm-test-accuracy workflow"
echo
echo "usage: ${0} <options>"
echo
echo " -m - huggingface stub or local directory of the model"
echo " -b - batch size to run the evaluation at"
echo " -l - limit number of samples to run"
echo " -f - number of fewshot samples to use"
echo " -t - tensor parallel size to run at"
echo
}
while getopts "m:b:l:f:t:" OPT; do
case ${OPT} in
m )
MODEL="$OPTARG"
;;
b )
BATCH_SIZE="$OPTARG"
;;
l )
LIMIT="$OPTARG"
;;
f )
FEWSHOT="$OPTARG"
;;
t )
TP_SIZE="$OPTARG"
;;
\? )
usage
exit 1
;;
esac
done
lm_eval --model vllm \
--model_args pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,distributed_executor_backend="ray",trust_remote_code=true,max_model_len=4096 \
--tasks gsm8k --num_fewshot $FEWSHOT --limit $LIMIT \
--batch_size $BATCH_SIZE

View File

@ -0,0 +1,59 @@
#!/bin/bash
usage() {
echo``
echo "Runs lm eval harness on GSM8k using vllm and compares to "
echo "precomputed baseline (measured by HF transformers.)"
echo
echo "usage: ${0} <options>"
echo
echo " -c - path to the test data config (e.g. configs/small-models.txt)"
echo " -t - tensor parallel size"
echo
}
SUCCESS=0
while getopts "c:t:" OPT; do
case ${OPT} in
c )
CONFIG="$OPTARG"
;;
t )
TP_SIZE="$OPTARG"
;;
\? )
usage
exit 1
;;
esac
done
# Parse list of configs.
IFS=$'\n' read -d '' -r -a MODEL_CONFIGS < $CONFIG
for MODEL_CONFIG in "${MODEL_CONFIGS[@]}"
do
LOCAL_SUCCESS=0
echo "=== RUNNING MODEL: $MODEL_CONFIG WITH TP SIZE: $TP_SIZE==="
export LM_EVAL_TEST_DATA_FILE=$PWD/configs/${MODEL_CONFIG}
export LM_EVAL_TP_SIZE=$TP_SIZE
pytest -s test_lm_eval_correctness.py || LOCAL_SUCCESS=$?
if [[ $LOCAL_SUCCESS == 0 ]]; then
echo "=== PASSED MODEL: ${MODEL_CONFIG} ==="
else
echo "=== FAILED MODEL: ${MODEL_CONFIG} ==="
fi
SUCCESS=$((SUCCESS + LOCAL_SUCCESS))
done
if [ "${SUCCESS}" -eq "0" ]; then
exit 0
else
exit 1
fi

View File

@ -0,0 +1,55 @@
"""
LM eval harness on model to compare vs HF baseline computed offline.
Configs are found in configs/$MODEL.yaml
* export LM_EVAL_TEST_DATA_FILE=configs/Meta-Llama-3-70B-Instruct.yaml
* export LM_EVAL_TP_SIZE=4
* pytest -s test_lm_eval_correctness.py
"""
import os
from pathlib import Path
import lm_eval
import numpy
import yaml
RTOL = 0.02
TEST_DATA_FILE = os.environ.get(
"LM_EVAL_TEST_DATA_FILE",
".buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml")
TP_SIZE = os.environ.get("LM_EVAL_TP_SIZE", 1)
def launch_lm_eval(eval_config):
model_args = f"pretrained={eval_config['model_name']}," \
f"tensor_parallel_size={TP_SIZE}," \
f"add_bos_token=true"
results = lm_eval.simple_evaluate(
model="vllm",
model_args=model_args,
tasks=[task["name"] for task in eval_config["tasks"]],
num_fewshot=eval_config["num_fewshot"],
limit=eval_config["limit"],
batch_size="auto")
return results
def test_lm_eval_correctness():
eval_config = yaml.safe_load(
Path(TEST_DATA_FILE).read_text(encoding="utf-8"))
# Launch eval requests.
results = launch_lm_eval(eval_config)
# Confirm scores match ground truth.
for task in eval_config["tasks"]:
for metric in task["metrics"]:
ground_truth = metric["value"]
measured_value = results["results"][task["name"]][metric["name"]]
print(f'{task["name"]} | {metric["name"]}: '
f'ground_truth={ground_truth} | measured={measured_value}')
assert numpy.isclose(ground_truth, measured_value, rtol=RTOL)

View File

@ -0,0 +1,152 @@
# vLLM benchmark suite
## Introduction
This directory contains two sets of benchmark for vllm.
- Performance benchmark: benchmark vllm's performance under various workload, for **developers** to gain clarity on whether their PR improves/degrades vllm's performance
- Nightly benchmark: compare vllm's performance against alternatives (tgi, trt-llm and lmdeploy), for **the public** to know when to choose vllm.
See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
## Performance benchmark quick overview
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!), with different models.
**Benchmarking Duration**: about 1hr.
**For benchmarking developers**: please try your best to constraint the duration of benchmarking to about 1 hr so that it won't take forever to run.
## Nightly benchmark quick overview
**Benchmarking Coverage**: Fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) on Llama-3 8B, 70B and Mixtral 8x7B.
**Benchmarking engines**: vllm, TGI, trt-llm and lmdeploy.
**Benchmarking Duration**: about 3.5hrs.
## Trigger the benchmark
Performance benchmark will be triggered when:
- A PR being merged into vllm.
- Every commit for those PRs with `perf-benchmarks` label.
Nightly benchmark will be triggered when:
- Every commit for those PRs with `nightly-benchmarks` label.
## Performance benchmark details
See [descriptions.md](tests/descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
#### Latency test
Here is an example of one test inside `latency-tests.json`:
```json
[
{
"test_name": "latency_llama8B_tp1",
"parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"tensor_parallel_size": 1,
"load_format": "dummy",
"num_iters_warmup": 5,
"num_iters": 15
}
},
]
```
In this example:
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-benchmarks-suite.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
Note that the performance numbers are highly sensitive to the value of the parameters. Please make sure the parameters are set correctly.
WARNING: The benchmarking script will save json results by itself, so please do not configure `--output-json` parameter in the json file.
#### Throughput test
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `benchmark_throughput.py`.
The number of this test is also stable -- a slight change on the value of this number might vary the performance numbers by a lot.
#### Serving test
We test the throughput by using `benchmark_serving.py` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:
```
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"tensor_parallel_size": 1,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
]
```
Inside this example:
- The `test_name` attribute is also a unique identifier for the test. It must start with `serving_`.
- The `server-parameters` includes the command line arguments for vLLM server.
- The `client-parameters` includes the command line arguments for `benchmark_serving.py`.
- The `qps_list` controls the list of qps for test. It will be used to configure the `--request-rate` parameter in `benchmark_serving.py`
The number of this test is less stable compared to the delay and latency benchmarks (due to randomized sharegpt dataset sampling inside `benchmark_serving.py`), but a large change on this number (e.g. 5% change) still vary the output greatly.
WARNING: The benchmarking script will save json results by itself, so please do not configure `--save-results` or other results-saving-related parameters in `serving-tests.json`.
#### Visualizing the results
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](tests/descriptions.md) with real benchmarking results.
You can find the result presented as a table inside the `buildkite/performance-benchmark` job page.
If you do not see the table, please wait till the benchmark finish running.
The json version of the table (together with the json version of the benchmark) will be also attached to the markdown file.
The raw benchmarking results (in the format of json files) are in the `Artifacts` tab of the benchmarking.
## Nightly test details
See [nightly-descriptions.md](nightly-descriptions.md) for the detailed description on test workload, models and docker containers of benchmarking other llm engines.
#### Workflow
- The [nightly-pipeline.yaml](nightly-pipeline.yaml) specifies the docker containers for different LLM serving engines.
- Inside each container, we run [run-nightly-suite.sh](run-nightly-suite.sh), which will probe the serving engine of the current container.
- The `run-nightly-suite.sh` will redirect the request to `tests/run-[llm serving engine name]-nightly.sh`, which parses the workload described in [nightly-tests.json](tests/nightly-tests.json) and performs the benchmark.
- At last, we run [scripts/plot-nightly-results.py](scripts/plot-nightly-results.py) to collect and plot the final benchmarking results, and update the results to buildkite.
#### Nightly tests
In [nightly-tests.json](tests/nightly-tests.json), we include the command line arguments for benchmarking commands, together with the benchmarking test cases. The format is highly similar to performance benchmark.
#### Docker containers
The docker containers for benchmarking are specified in `nightly-pipeline.yaml`.
WARNING: the docker versions are HARD-CODED and SHOULD BE ALIGNED WITH `nightly-descriptions.md`. The docker versions need to be hard-coded as there are several version-specific bug fixes inside `tests/run-[llm serving engine name]-nightly.sh`.
WARNING: populating `trt-llm` to latest version is not easy, as it requires updating several protobuf files in [tensorrt-demo](https://github.com/neuralmagic/tensorrt-demo.git).

View File

@ -0,0 +1,61 @@
steps:
- label: "Wait for container to be ready"
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
containers:
- image: badouralix/curl-jq
command:
- sh
- .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
- wait
- label: "A100"
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
priorityClassName: perf-benchmark
containers:
- image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
nodeSelector:
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
volumes:
- name: devshm
emptyDir:
medium: Memory
- label: "H100"
agents:
queue: H100
plugins:
- docker#v5.11.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash
- .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
mount-buildkite-agent: true
propagate-environment: true
ipc: host
gpus: all
environment:
- VLLM_USAGE_SOURCE
- HF_TOKEN

View File

@ -1,26 +0,0 @@
#!/usr/bin/env bash
set -euo pipefail
# Install system packages
apt update
apt install -y curl jq
# Install minijinja for templating
curl -sSfL https://github.com/mitsuhiko/minijinja/releases/latest/download/minijinja-cli-installer.sh | sh
source $HOME/.cargo/env
# If BUILDKITE_PULL_REQUEST != "false", then we check the PR labels using curl and jq
if [ "$BUILDKITE_PULL_REQUEST" != "false" ]; then
PR_LABELS=$(curl -s "https://api.github.com/repos/vllm-project/vllm/pulls/$BUILDKITE_PULL_REQUEST" | jq -r '.labels[].name')
if [[ $PR_LABELS == *"perf-benchmarks"* ]]; then
echo "This PR has the 'perf-benchmarks' label. Proceeding with the nightly benchmarks."
else
echo "This PR does not have the 'perf-benchmarks' label. Skipping the nightly benchmarks."
exit 0
fi
fi
# Upload sample.yaml
buildkite-agent pipeline upload .buildkite/nightly-benchmarks/sample.yaml

View File

@ -0,0 +1,45 @@
# Nightly benchmark
The main goal of this benchmarking is two-fold:
- Performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and tgi) leads in performance in what workload.
- Reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions in [reproduce.md]().
## Docker images
We benchmark vllm, tensorrt-llm, lmdeploy and tgi using the following docker images:
- vllm/vllm-openai:v0.5.0.post1
- nvcr.io/nvidia/tritonserver:24.04-trtllm-python-py3
- openmmlab/lmdeploy:v0.5.0
- ghcr.io/huggingface/text-generation-inference:2.1
<!-- Please check <a href="artifact://workspace/build/buildkite/vllm/performance-benchmark/.buildkite/nightly-benchmarks/nightly-pipeline.yaml">nightly-pipeline.yaml</a> artifact for more details on how we deploy the docker images. -->
## Hardware
One AWS node with 8x NVIDIA A100 GPUs.
## Workload description
We benchmark vllm, tensorrt-llm, lmdeploy and tgi using the following workload:
- Input length: randomly sample 500 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 500 prompts.
- Models: llama-3 8B, llama-3 70B, mixtral 8x7B.
- Average QPS (query per second): 4 for the small model (llama-3 8B) and 2 for other two models. For each QPS, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
<!-- Check <a href="artifact://workspace/build/buildkite/vllm/performance-benchmark/.buildkite/nightly-benchmarks/tests/nightly-tests.json">nightly-tests.json</a> artifact for more details. -->
## Plots
In the following plots, the dot shows the mean and the error bar shows the standard error of the mean. Value 0 means that the corresponding benchmark crashed.
<img src="artifact://nightly_results.png" alt="Benchmarking results" height=250 >
## Results
{nightly_results_benchmarking_table}

View File

@ -0,0 +1,120 @@
common_pod_spec: &common_pod_spec
priorityClassName: perf-benchmark
nodeSelector:
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
volumes:
- name: devshm
emptyDir:
medium: Memory
- name: hf-cache
hostPath:
path: /root/.cache/huggingface
type: Directory
common_container_settings: &common_container_settings
command:
- bash .buildkite/nightly-benchmarks/run-nightly-suite.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
- name: hf-cache
mountPath: /root/.cache/huggingface
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_HOME
value: /root/.cache/huggingface
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
steps:
- block: ":rocket: Ready for comparing vllm against alternatives? This will take 4 hours."
- label: "A100 trt benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: nvcr.io/nvidia/tritonserver:24.04-trtllm-python-py3
<<: *common_container_settings
- label: "A100 lmdeploy benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: openmmlab/lmdeploy:v0.5.0
<<: *common_container_settings
- label: "A100 vllm benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: vllm/vllm-openai:latest
<<: *common_container_settings
- label: "A100 tgi benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: ghcr.io/huggingface/text-generation-inference:2.1
<<: *common_container_settings
- wait
- label: "Plot"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: vllm/vllm-openai:v0.5.0.post1
command:
- bash .buildkite/nightly-benchmarks/scripts/nightly-annotate.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
- wait

View File

@ -0,0 +1,376 @@
#!/bin/bash
# This script should be run inside the CI process
# This script assumes that we are already inside the vllm/ directory
# Benchmarking results will be available inside vllm/benchmarks/results/
# Do not set -e, as the mixtral 8x22B model tends to crash occasionally
# and we still want to see other benchmarking results even when mixtral crashes.
set -o pipefail
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
check_hf_token() {
# check if HF_TOKEN is available and valid
if [[ -z "$HF_TOKEN" ]]; then
echo "Error: HF_TOKEN is not set."
exit 1
elif [[ ! "$HF_TOKEN" =~ ^hf_ ]]; then
echo "Error: HF_TOKEN does not start with 'hf_'."
exit 1
else
echo "HF_TOKEN is set and valid."
fi
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
timeout 1200 bash -c '
until curl -X POST localhost:8000/v1/completions; do
sleep 1
done' && return 0 || return 1
}
kill_gpu_processes() {
# kill all processes on GPU.
pids=$(nvidia-smi --query-compute-apps=pid --format=csv,noheader)
if [ -z "$pids" ]; then
echo "No GPU processes found."
else
for pid in $pids; do
kill -9 "$pid"
echo "Killed process with PID: $pid"
done
echo "All GPU processes have been killed."
fi
# Sometimes kill with pid doesn't work properly, we can also kill all process running python or python3
# since we are in container anyway
pkill -9 -f python
pkill -9 -f python3
# waiting for GPU processes to be fully killed
# loop while nvidia-smi returns any processes
while [ -n "$(nvidia-smi --query-compute-apps=pid --format=csv,noheader)" ]; do
sleep 1
echo "Waiting for GPU processes to be killed"
done
# remove vllm config file
rm -rf ~/.config/vllm
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
# Check if buildkite-agent is available in the PATH or at /workspace/buildkite-agent
if command -v buildkite-agent >/dev/null 2>&1; then
BUILDKITE_AGENT_COMMAND="buildkite-agent"
elif [ -f /workspace/buildkite-agent ]; then
BUILDKITE_AGENT_COMMAND="/workspace/buildkite-agent"
else
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# Use the determined command to annotate and upload artifacts
$BUILDKITE_AGENT_COMMAND annotate --style "info" --context "$BUILDKITE_LABEL-benchmark-results" < $RESULTS_FOLDER/benchmark_results.md
$BUILDKITE_AGENT_COMMAND artifact upload "$RESULTS_FOLDER/*"
}
run_latency_tests() {
# run latency tests using `benchmark_latency.py`
# $1: a json file specifying latency test cases
local latency_test_file
latency_test_file=$1
# Iterate over latency tests
jq -c '.[]' "$latency_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
if [[ ! "$test_name" =~ ^latency_ ]]; then
echo "In latency-test.json, test_name must start with \"latency_\"."
exit 1
fi
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# get arguments
latency_params=$(echo "$params" | jq -r '.parameters')
latency_args=$(json2args "$latency_params")
# check if there is enough GPU to run the test
tp=$(echo "$latency_params" | jq -r '.tensor_parallel_size')
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $testname."
continue
fi
latency_command="python3 benchmark_latency.py \
--output-json $RESULTS_FOLDER/${test_name}.json \
$latency_args"
echo "Running test case $test_name"
echo "Latency command: $latency_command"
# recoding benchmarking command ang GPU command
jq_output=$(jq -n \
--arg latency "$latency_command" \
--arg gpu "$gpu_type" \
'{
latency_command: $latency,
gpu_type: $gpu
}')
echo "$jq_output" > "$RESULTS_FOLDER/$test_name.commands"
# run the benchmark
eval "$latency_command"
kill_gpu_processes
done
}
run_throughput_tests() {
# run throughput tests using `benchmark_throughput.py`
# $1: a json file specifying throughput test cases
local throughput_test_file
throughput_test_file=$1
# Iterate over throughput tests
jq -c '.[]' "$throughput_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
if [[ ! "$test_name" =~ ^throughput_ ]]; then
echo "In throughput-test.json, test_name must start with \"throughput_\"."
exit 1
fi
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# get arguments
throughput_params=$(echo "$params" | jq -r '.parameters')
throughput_args=$(json2args "$throughput_params")
# check if there is enough GPU to run the test
tp=$(echo $throughput_params | jq -r '.tensor_parallel_size')
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $testname."
continue
fi
throughput_command="python3 benchmark_throughput.py \
--output-json $RESULTS_FOLDER/${test_name}.json \
$throughput_args"
echo "Running test case $test_name"
echo "Throughput command: $throughput_command"
# recoding benchmarking command ang GPU command
jq_output=$(jq -n \
--arg command "$throughput_command" \
--arg gpu "$gpu_type" \
'{
throughput_command: $command,
gpu_type: $gpu
}')
echo "$jq_output" > "$RESULTS_FOLDER/$test_name.commands"
# run the benchmark
eval "$throughput_command"
kill_gpu_processes
done
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
if [[ ! "$test_name" =~ ^serving_ ]]; then
echo "In serving-test.json, test_name must start with \"serving_\"."
exit 1
fi
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# get client and server arguments
server_params=$(echo "$params" | jq -r '.server_parameters')
client_params=$(echo "$params" | jq -r '.client_parameters')
server_args=$(json2args "$server_params")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
tp=$(echo "$server_params" | jq -r '.tensor_parallel_size')
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $testname."
continue
fi
# check if server model and client model is aligned
server_model=$(echo "$server_params" | jq -r '.model')
client_model=$(echo "$client_params" | jq -r '.model')
if [[ $server_model != "$client_model" ]]; then
echo "Server model and client model must be the same. Skip testcase $testname."
continue
fi
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
$server_args"
# run the server
echo "Running test case $test_name"
echo "Server command: $server_command"
eval "$server_command" &
server_pid=$!
# wait until the server is alive
wait_for_server
if [ $? -eq 0 ]; then
echo ""
echo "vllm server is up and running."
else
echo ""
echo "vllm failed to start within the timeout period."
fi
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
client_command="python3 benchmark_serving.py \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu
}')
echo "$jq_output" > "$RESULTS_FOLDER/${new_test_name}.commands"
done
# clean up
kill -9 $server_pid
kill_gpu_processes
done
}
main() {
check_gpus
check_hf_token
# dependencies
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)
# get the current IP address, required by benchmark_serving.py
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
# turn of the reporting of the status of each request, to clean up the terminal output
export VLLM_LOG_LEVEL="WARNING"
# prepare for benchmarking
cd benchmarks || exit 1
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
QUICK_BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
# benchmarking
run_serving_tests $QUICK_BENCHMARK_ROOT/tests/serving-tests.json
run_latency_tests $QUICK_BENCHMARK_ROOT/tests/latency-tests.json
run_throughput_tests $QUICK_BENCHMARK_ROOT/tests/throughput-tests.json
# postprocess benchmarking results
pip install tabulate pandas
python3 $QUICK_BENCHMARK_ROOT/scripts/convert-results-json-to-markdown.py
upload_to_buildkite
}
main "$@"

View File

@ -0,0 +1,76 @@
#!/bin/bash
set -o pipefail
set -x
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
check_hf_token() {
# check if HF_TOKEN is available and valid
if [[ -z "$HF_TOKEN" ]]; then
echo "Error: HF_TOKEN is not set."
exit 1
elif [[ ! "$HF_TOKEN" =~ ^hf_ ]]; then
echo "Error: HF_TOKEN does not start with 'hf_'."
exit 1
else
echo "HF_TOKEN is set and valid."
fi
}
main() {
check_gpus
check_hf_token
df -h
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)
cd $VLLM_SOURCE_CODE_LOC/benchmarks
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
# run lmdeploy
if which lmdeploy >/dev/null; then
echo "lmdeploy is available, redirect to run-lmdeploy-nightly.sh"
bash ../.buildkite/nightly-benchmarks/scripts/run-lmdeploy-nightly.sh
exit 0
fi
# run tgi
if [ -e /tgi-entrypoint.sh ]; then
echo "tgi is available, redirect to run-tgi-nightly.sh"
bash ../.buildkite/nightly-benchmarks/scripts/run-tgi-nightly.sh
exit 0
fi
# run trt
if which trtllm-build >/dev/null; then
echo "trtllm is available, redirect to run-trt-nightly.sh"
bash ../.buildkite/nightly-benchmarks/scripts/run-trt-nightly.sh
exit 0
fi
# run vllm
if [ -e /vllm-workspace ]; then
echo "vllm is available, redirect to run-vllm-nightly.sh"
bash ../.buildkite/nightly-benchmarks/scripts/run-vllm-nightly.sh
exit 0
fi
}
main "$@"

View File

@ -1,39 +0,0 @@
steps:
# NOTE(simon): You can create separate blocks for different jobs
- label: "A100: NVIDIA SMI"
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
containers:
# - image: us-central1-docker.pkg.dev/vllm-405802/vllm-ci-test-repo/vllm-test:$BUILDKITE_COMMIT
# TODO(simon): check latest main branch or use the PR image.
- image: us-central1-docker.pkg.dev/vllm-405802/vllm-ci-test-repo/vllm-test:45c35f0d58f4508bf43bd6af1d3d0d0ec0c915e6
command:
- bash -c 'nvidia-smi && nvidia-smi topo -m && pwd && ls'
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
nodeSelector:
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
volumes:
- name: devshm
emptyDir:
medium: Memory
# TODO(simon): bring H100 online
# - label: "H100: NVIDIA SMI"
# agents:
# queue: H100
# plugins:
# - docker#v5.11.0:
# image: us-central1-docker.pkg.dev/vllm-405802/vllm-ci-test-repo/vllm-test:45c35f0d58f4508bf43bd6af1d3d0d0ec0c915e6
# command:
# - bash -c 'nvidia-smi && nvidia-smi topo -m'
# propagate-environment: true
# ipc: host
# gpus: all

View File

@ -0,0 +1,192 @@
import json
import os
from pathlib import Path
import pandas as pd
from tabulate import tabulate
results_folder = Path("results/")
# latency results and the keys that will be printed into markdown
latency_results = []
latency_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
"avg_latency": "Mean latency (ms)",
# "P10": "P10 (s)",
# "P25": "P25 (s)",
"P50": "Median latency (ms)",
# "P75": "P75 (s)",
# "P90": "P90 (s)",
"P99": "P99 latency (ms)",
}
# throughput tests and the keys that will be printed into markdown
throughput_results = []
throughput_results_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
# "num_requests": "# of req.",
# "total_num_tokens": "Total # of tokens",
# "elapsed_time": "Elapsed time (s)",
"requests_per_second": "Tput (req/s)",
# "tokens_per_second": "Tput (tok/s)",
}
# serving results and the keys that will be printed into markdown
serving_results = []
serving_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
# "completed": "# of req.",
"request_throughput": "Tput (req/s)",
# "input_throughput": "Input Tput (tok/s)",
# "output_throughput": "Output Tput (tok/s)",
"mean_ttft_ms": "Mean TTFT (ms)",
"median_ttft_ms": "Median TTFT (ms)",
"p99_ttft_ms": "P99 TTFT (ms)",
# "mean_tpot_ms": "Mean TPOT (ms)",
# "median_tpot_ms": "Median",
# "p99_tpot_ms": "P99",
"mean_itl_ms": "Mean ITL (ms)",
"median_itl_ms": "Median ITL (ms)",
"p99_itl_ms": "P99 ITL (ms)",
}
def read_markdown(file):
if os.path.exists(file):
with open(file, "r") as f:
return f.read() + "\n"
else:
return f"{file} not found.\n"
def results_to_json(latency, throughput, serving):
return json.dumps({
'latency': latency.to_dict(),
'throughput': throughput.to_dict(),
'serving': serving.to_dict()
})
if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
with open(test_file, "r") as f:
raw_result = json.loads(f.read())
if "serving" in str(test_file):
# this result is generated via `benchmark_serving.py`
# attach the benchmarking command to raw_result
with open(test_file.with_suffix(".commands"), "r") as f:
command = json.loads(f.read())
raw_result.update(command)
# update the test name of this result
raw_result.update({"test_name": test_file.stem})
# add the result to raw_result
serving_results.append(raw_result)
continue
elif "latency" in f.name:
# this result is generated via `benchmark_latency.py`
# attach the benchmarking command to raw_result
with open(test_file.with_suffix(".commands"), "r") as f:
command = json.loads(f.read())
raw_result.update(command)
# update the test name of this result
raw_result.update({"test_name": test_file.stem})
# get different percentiles
for perc in [10, 25, 50, 75, 90, 99]:
# Multiply 1000 to convert the time unit from s to ms
raw_result.update(
{f"P{perc}": 1000 * raw_result["percentiles"][str(perc)]})
raw_result["avg_latency"] = raw_result["avg_latency"] * 1000
# add the result to raw_result
latency_results.append(raw_result)
continue
elif "throughput" in f.name:
# this result is generated via `benchmark_throughput.py`
# attach the benchmarking command to raw_result
with open(test_file.with_suffix(".commands"), "r") as f:
command = json.loads(f.read())
raw_result.update(command)
# update the test name of this result
raw_result.update({"test_name": test_file.stem})
# add the result to raw_result
throughput_results.append(raw_result)
continue
print(f"Skipping {test_file}")
latency_results = pd.DataFrame.from_dict(latency_results)
serving_results = pd.DataFrame.from_dict(serving_results)
throughput_results = pd.DataFrame.from_dict(throughput_results)
raw_results_json = results_to_json(latency_results, throughput_results,
serving_results)
# remapping the key, for visualization purpose
if not latency_results.empty:
latency_results = latency_results[list(
latency_column_mapping.keys())].rename(
columns=latency_column_mapping)
if not serving_results.empty:
serving_results = serving_results[list(
serving_column_mapping.keys())].rename(
columns=serving_column_mapping)
if not throughput_results.empty:
throughput_results = throughput_results[list(
throughput_results_column_mapping.keys())].rename(
columns=throughput_results_column_mapping)
processed_results_json = results_to_json(latency_results,
throughput_results,
serving_results)
# get markdown tables
latency_md_table = tabulate(latency_results,
headers='keys',
tablefmt='pipe',
showindex=False)
serving_md_table = tabulate(serving_results,
headers='keys',
tablefmt='pipe',
showindex=False)
throughput_md_table = tabulate(throughput_results,
headers='keys',
tablefmt='pipe',
showindex=False)
# document the result
with open(results_folder / "benchmark_results.md", "w") as f:
results = read_markdown(
"../.buildkite/nightly-benchmarks/tests/descriptions.md")
results = results.format(
latency_tests_markdown_table=latency_md_table,
throughput_tests_markdown_table=throughput_md_table,
serving_tests_markdown_table=serving_md_table,
benchmarking_results_in_json_string=processed_results_json)
f.write(results)
# document benchmarking results in json
with open(results_folder / "benchmark_results.json", "w") as f:
results = latency_results.to_dict(
orient='records') + throughput_results.to_dict(
orient='records') + serving_results.to_dict(orient='records')
f.write(json.dumps(results))

View File

@ -0,0 +1,26 @@
import argparse
from transformers import AutoTokenizer
def main(model, cachedir):
# Load the tokenizer and save it to the specified directory
tokenizer = AutoTokenizer.from_pretrained(model)
tokenizer.save_pretrained(cachedir)
print(f"Tokenizer saved to {cachedir}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Download and save Hugging Face tokenizer")
parser.add_argument("--model",
type=str,
required=True,
help="Name of the model")
parser.add_argument("--cachedir",
type=str,
required=True,
help="Directory to save the tokenizer")
args = parser.parse_args()
main(args.model, args.cachedir)

View File

@ -0,0 +1,6 @@
from lmdeploy.serve.openai.api_client import APIClient
api_client = APIClient("http://localhost:8000")
model_name = api_client.available_models[0]
print(model_name)

View File

@ -0,0 +1,102 @@
#!/bin/bash
server_params=$1
common_params=$2
model_path=$(echo "$common_params" | jq -r '.model')
model_name="${model_path#*/}"
model_type=$(echo "$server_params" | jq -r '.model_type')
model_dtype=$(echo "$server_params" | jq -r '.model_dtype')
model_tp_size=$(echo "$common_params" | jq -r '.tp')
max_batch_size=$(echo "$server_params" | jq -r '.max_batch_size')
max_input_len=$(echo "$server_params" | jq -r '.max_input_len')
max_output_len=$(echo "$server_params" | jq -r '.max_output_len')
trt_llm_version=$(echo "$server_params" | jq -r '.trt_llm_version')
cd ~
rm -rf models
mkdir -p models
cd models
models_dir=$(pwd)
trt_model_path=${models_dir}/${model_name}-trt-ckpt
trt_engine_path=${models_dir}/${model_name}-trt-engine
cd ~
rm -rf tensorrt-demo
git clone https://github.com/neuralmagic/tensorrt-demo.git
cd tensorrt-demo
tensorrt_demo_dir=$(pwd)
# make sure the parameter inside tensorrt_demo is consistent to envvar
sed -i.bak "/key: \"tokenizer_dir\"/,/string_value:/s|string_value: \".*\"|string_value: \"$model_path\"|" ./triton_model_repo/postprocessing/config.pbtxt
sed -i.bak "/key: \"tokenizer_dir\"/,/string_value:/s|string_value: \".*\"|string_value: \"$model_path\"|" ./triton_model_repo/preprocessing/config.pbtxt
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/ensemble/config.pbtxt
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/preprocessing/config.pbtxt
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/postprocessing/config.pbtxt
sed -i.bak "s|\(max_batch_size:\s*\)[0-9]*|\1$max_batch_size|g" ./triton_model_repo/tensorrt_llm_bls/config.pbtxt
cd /
rm -rf tensorrtllm_backend
git clone https://github.com/triton-inference-server/tensorrtllm_backend.git
git lfs install
cd tensorrtllm_backend
git checkout $trt_llm_version
tensorrtllm_backend_dir=$(pwd)
git submodule update --init --recursive
cp -r ${tensorrt_demo_dir}/triton_model_repo ${tensorrtllm_backend_dir}/
cd /tensorrtllm_backend
cd ./tensorrt_llm/examples/${model_type}
if echo "$common_params" | jq -e 'has("fp8")' > /dev/null; then
echo "Key 'fp8' exists in common params. Use quantize.py instead of convert_checkpoint.py"
echo "Reference: https://github.com/NVIDIA/TensorRT-LLM/blob/main/examples/llama/README.md"
python ../quantization/quantize.py \
--model_dir ${model_path} \
--dtype ${model_dtype} \
--tp_size ${model_tp_size} \
--output_dir ${trt_model_path} \
--qformat fp8 \
--kv_cache_dtype fp8 \
--calib_size 2
else
echo "Key 'fp8' does not exist in common params. Use convert_checkpoint.py"
python3 convert_checkpoint.py \
--model_dir ${model_path} \
--dtype ${model_dtype} \
--tp_size ${model_tp_size} \
--output_dir ${trt_model_path}
fi
trtllm-build \
--checkpoint_dir=${trt_model_path} \
--gpt_attention_plugin=${model_dtype} \
--gemm_plugin=${model_dtype} \
--remove_input_padding=enable \
--paged_kv_cache=enable \
--tp_size=${model_tp_size} \
--max_batch_size=${max_batch_size} \
--max_input_len=${max_input_len} \
--max_output_len=${max_output_len} \
--max_num_tokens=${max_output_len} \
--opt_num_tokens=${max_output_len} \
--output_dir=${trt_engine_path}
cd /tensorrtllm_backend/triton_model_repo
rm -rf ./tensorrt_llm/1/*
cp -r ${trt_engine_path}/* ./tensorrt_llm/1
cd /tensorrtllm_backend
python3 scripts/launch_triton_server.py \
--world_size=${model_tp_size} \
--model_repo=/tensorrtllm_backend/triton_model_repo &

View File

@ -0,0 +1,40 @@
#!/bin/bash
set -ex
set -o pipefail
main() {
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip plotting the results."
exit 0
fi
# initial annotation
description="$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-descriptions.md"
# download results
cd $VLLM_SOURCE_CODE_LOC/benchmarks
mkdir -p results/
/workspace/buildkite-agent artifact download 'results/*nightly_results.json' results/
ls
ls results/
# generate figures
python3 -m pip install tabulate pandas matplotlib
python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
--description $description \
--results-folder results/
# upload results and figures
/workspace/buildkite-agent artifact upload "nightly_results.png"
/workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-pipeline.yaml
/workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/tests/nightly-tests.json
/workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly_results.md
}
main "$@"

View File

@ -0,0 +1,135 @@
import argparse
import json
import math
from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
from tabulate import tabulate
def parse_arguments():
parser = argparse.ArgumentParser(
description=
'Parse command line arguments for summary-nightly-results script.')
parser.add_argument('--results-folder',
type=str,
required=True,
help='The folder where the results are stored.')
parser.add_argument('--description',
type=str,
required=True,
help='Description of the results.')
args = parser.parse_args()
return args
def main(args):
bar_colors = ['#56B4E9', '#009E73', '#D55E00', '#E69F00']
results_folder = Path(args.results_folder)
results = []
# collect results
for test_file in results_folder.glob("*_nightly_results.json"):
with open(test_file, "r") as f:
results = results + json.loads(f.read())
# generate markdown table
df = pd.DataFrame.from_dict(results)
md_table = tabulate(df, headers='keys', tablefmt='pipe', showindex=False)
with open(args.description, "r") as f:
description = f.read()
description = description.format(
nightly_results_benchmarking_table=md_table)
with open("nightly_results.md", "w") as f:
f.write(description)
plt.rcParams.update({'font.size': 20})
# plot results
fig, axes = plt.subplots(3, 3, figsize=(16, 14))
fig.subplots_adjust(hspace=1)
methods = ["vllm", "trt", "lmdeploy", "tgi"]
for i, model in enumerate(["llama8B", "llama70B", "mixtral8x7B"]):
for j, metric in enumerate(["TTFT", "ITL"]):
means, stds = [], []
for method in methods:
target = df['Test name'].str.contains(model)
target = target & df['Engine'].str.contains(method)
filtered_df = df[target]
if filtered_df.empty:
means.append(0.)
stds.append(0.)
else:
means.append(filtered_df[f"Mean {metric} (ms)"].values[0])
std = filtered_df[f"Std {metric} (ms)"].values[0]
success = filtered_df["Successful req."].values[0]
stds.append(std / math.sqrt(success))
print(model, metric)
print(means, stds)
ax = axes[i, j + 1]
bars = ax.bar(
["vllm", "trt", "lmdeploy", "tgi"],
means,
yerr=stds,
capsize=10,
)
for idx, bar in enumerate(bars):
bar.set_color(bar_colors[idx])
ax.set_ylim(bottom=0)
ax.set_ylabel(f"{metric} (ms)")
ax.set_title(f"{model} {metric}")
ax.grid(axis='y')
metric = "Tput"
j = 0
if True:
tputs = []
for method in methods:
target = df['Test name'].str.contains(model)
target = target & df['Engine'].str.contains(method)
filtered_df = df[target]
if filtered_df.empty:
tputs.append(0.)
else:
input_tput = filtered_df["Input Tput (tok/s)"].values[0]
output_tput = filtered_df["Output Tput (tok/s)"].values[0]
tputs.append(input_tput + output_tput)
print(model, metric)
print(tputs)
ax = axes[i, j]
bars = ax.bar(
["vllm", "trt", "lmdeploy", "tgi"],
tputs,
)
for idx, bar in enumerate(bars):
bar.set_color(bar_colors[idx])
ax.set_ylim(bottom=0)
ax.set_ylabel("Tput (token/s)")
ax.set_title(f"{model} {metric}")
ax.grid(axis='y')
fig.tight_layout()
fig.savefig("nightly_results.png", bbox_inches='tight', dpi=400)
if __name__ == '__main__':
args = parse_arguments()
main(args)

View File

@ -0,0 +1,218 @@
#!/bin/bash
set -o pipefail
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
kill_gpu_processes() {
pkill lmdeploy || true
# waiting for GPU processes to be fully killed
sleep 10
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
timeout 1200 bash -c '
until curl -s localhost:8000/v1/completions > /dev/null; do
sleep 1
done' && return 0 || return 1
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# append lmdeploy to the test name
test_name=lmdeploy_$test_name
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
# get client and server arguments
server_params=$(echo "$params" | jq -r '.lmdeploy_server_parameters')
client_params=$(echo "$params" | jq -r '.lmdeploy_client_parameters')
server_args=$(json2args "$server_params")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
# prepare tokenizer
rm -rf /tokenizer_cache
mkdir /tokenizer_cache
python ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \
--model "$model" \
--cachedir /tokenizer_cache
server_command="lmdeploy serve api_server $model \
--tp $tp \
--server-port $port \
$server_args"
# run the server
echo "Running test case $test_name"
echo "Server command: $server_command"
bash -c "$server_command" &
# wait until the server is alive
wait_for_server
if [ $? -eq 0 ]; then
echo ""
echo "lmdeploy server is up and running."
else
echo ""
echo "lmdeploy failed to start within the timeout period."
break
fi
# get model name
model_name=$(python ../.buildkite/nightly-benchmarks/scripts/get-lmdeploy-modelname.py)
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
client_command="python3 benchmark_serving.py \
--backend lmdeploy \
--tokenizer /tokenizer_cache \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--model \"$model_name\" \
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "lmdeploy" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
# clean up
kill_gpu_processes
rm -rf /root/.cache/huggingface/*
done
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
main() {
check_gpus
# enter vllm directory
cd $VLLM_SOURCE_CODE_LOC/benchmarks
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
python -m pip install transformers==4.41.2
export CURRENT_LLM_SERVING_ENGINE=lmdeploy
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
python -m pip install tabulate pandas
python $BENCHMARK_ROOT/scripts/summary-nightly-results.py
upload_to_buildkite
}
main "$@"

View File

@ -0,0 +1,216 @@
#!/bin/bash
set -o pipefail
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
kill_gpu_processes() {
pkill text-generation || true
# waiting for GPU processes to be fully killed
sleep 10
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
timeout 1200 bash -c '
until curl -s localhost:8000/generate_stream > /dev/null; do
sleep 1
done' && return 0 || return 1
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# append tgi to the test name
test_name=tgi_$test_name
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
# get client and server arguments
server_params=$(echo "$params" | jq -r '.tgi_server_parameters')
client_params=$(echo "$params" | jq -r '.tgi_client_parameters')
server_args=$(json2args "$server_params")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if echo "$common_params" | jq -e 'has("fp8")' > /dev/null; then
echo "Key 'fp8' exists in common params."
server_command="/tgi-entrypoint.sh \
--model-id $model \
--num-shard $tp \
--port $port \
--quantize fp8 \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="/tgi-entrypoint.sh \
--model-id $model \
--num-shard $tp \
--port $port \
$server_args"
fi
# run the server
echo "Running test case $test_name"
echo "Server command: $server_command"
eval "$server_command" &
# wait until the server is alive
wait_for_server
if [ $? -eq 0 ]; then
echo ""
echo "tgi server is up and running."
else
echo ""
echo "tgi failed to start within the timeout period."
break
fi
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
client_command="python3 benchmark_serving.py \
--backend tgi \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "tgi" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
# clean up
kill_gpu_processes
rm -rf /root/.cache/huggingface/*
done
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
main() {
check_gpus
# enter vllm directory
cd $VLLM_SOURCE_CODE_LOC/benchmarks
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
export CURRENT_LLM_SERVING_ENGINE=tgi
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
python -m pip install tabulate pandas
python $BENCHMARK_ROOT/scripts/summary-nightly-results.py
upload_to_buildkite
}
main "$@"

View File

@ -0,0 +1,214 @@
#!/bin/bash
set -o pipefail
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
kill_gpu_processes() {
pkill tritonserver || true
# waiting for GPU processes to be fully killed
sleep 20
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
timeout 1200 bash -c '
until curl -s localhost:8000/generate_stream > /dev/null; do
sleep 1
done' && return 0 || return 1
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# append trt to the test name
test_name=trt_$test_name
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
# get client and server arguments
server_params=$(echo "$params" | jq -r '.trt_server_parameters')
client_params=$(echo "$params" | jq -r '.trt_client_parameters')
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required model_tp_size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
cd $VLLM_SOURCE_CODE_LOC/benchmarks
echo "Running test case $test_name"
bash ../.buildkite/nightly-benchmarks/scripts/launch-trt-server.sh "$server_params" "$common_params"
# wait until the server is alive
wait_for_server
if [ $? -eq 0 ]; then
echo ""
echo "trt server is up and running."
else
echo ""
echo "trt failed to start within the timeout period."
break
fi
# prepare tokenizer
cd $VLLM_SOURCE_CODE_LOC/benchmarks
rm -rf /tokenizer_cache
mkdir /tokenizer_cache
python ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \
--model "$model" \
--cachedir /tokenizer_cache
cd $VLLM_SOURCE_CODE_LOC/benchmarks
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
client_command="python3 benchmark_serving.py \
--backend tensorrt-llm \
--tokenizer /tokenizer_cache \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
server_command=""
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "trt" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
# clean up
kill_gpu_processes
rm -rf /root/.cache/huggingface/*
done
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
main() {
check_gpus
# enter vllm directory
cd $VLLM_SOURCE_CODE_LOC/benchmarks
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
# update transformers package, to make sure mixtral tokenizer is available
python -m pip install transformers -U
export CURRENT_LLM_SERVING_ENGINE=trt
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
python -m pip install tabulate pandas
python $BENCHMARK_ROOT/scripts/summary-nightly-results.py
upload_to_buildkite
}
main "$@"

View File

@ -0,0 +1,221 @@
#!/bin/bash
set -o pipefail
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
echo "GPU type is $gpu_type"
}
kill_gpu_processes() {
# kill all processes on GPU.
pkill pt_main_thread
sleep 10
# remove vllm config file
rm -rf ~/.config/vllm
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
timeout 1200 bash -c '
until curl -s localhost:8000/v1/completions > /dev/null; do
sleep 1
done' && return 0 || return 1
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# append vllm to the test name
test_name=vllm_$test_name
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
# get client and server arguments
server_params=$(echo "$params" | jq -r '.vllm_server_parameters')
client_params=$(echo "$params" | jq -r '.vllm_client_parameters')
server_args=$(json2args "$server_params")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if echo "$common_params" | jq -e 'has("fp8")' > /dev/null; then
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
-tp $tp \
--model $model \
--port $port \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
-tp $tp \
--model $model \
--port $port \
$server_args"
fi
# run the server
echo "Running test case $test_name"
echo "Server command: $server_command"
eval "$server_command" &
# wait until the server is alive
wait_for_server
if [ $? -eq 0 ]; then
echo ""
echo "vllm server is up and running."
else
echo ""
echo "vllm failed to start within the timeout period."
break
fi
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
client_command="python3 benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "vllm" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
# clean up
kill_gpu_processes
rm -rf /root/.cache/huggingface/*
done
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
main() {
check_gpus
# enter vllm directory
cd $VLLM_SOURCE_CODE_LOC/benchmarks
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
export CURRENT_LLM_SERVING_ENGINE=vllm
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
python3 -m pip install tabulate pandas
python3 $BENCHMARK_ROOT/scripts/summary-nightly-results.py
upload_to_buildkite
}
main "$@"

View File

@ -0,0 +1,76 @@
import datetime
import json
import os
from pathlib import Path
import pandas as pd
from tabulate import tabulate
results_folder = Path("results/")
# serving results and the keys that will be printed into markdown
serving_results = []
serving_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
"completed": "Successful req.",
"request_throughput": "Tput (req/s)",
"mean_ttft_ms": "Mean TTFT (ms)",
"std_ttft_ms": "Std TTFT (ms)",
"mean_itl_ms": "Mean ITL (ms)",
"std_itl_ms": "Std ITL (ms)",
"input_throughput": "Input Tput (tok/s)",
"output_throughput": "Output Tput (tok/s)",
"engine": "Engine",
}
if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
with open(test_file, "r") as f:
raw_result = json.loads(f.read())
# attach the benchmarking command to raw_result
with open(test_file.with_suffix(".commands"), "r") as f:
command = json.loads(f.read())
raw_result.update(command)
# update the test name of this result
raw_result.update({"test_name": test_file.stem})
# add the result to raw_result
serving_results.append(raw_result)
continue
serving_results = pd.DataFrame.from_dict(serving_results)
if not serving_results.empty:
serving_results = serving_results[list(
serving_column_mapping.keys())].rename(
columns=serving_column_mapping)
serving_md_table_with_headers = tabulate(serving_results,
headers='keys',
tablefmt='pipe',
showindex=False)
# remove the first line of header
serving_md_table_lines = serving_md_table_with_headers.split('\n')
serving_md_table_without_header = '\n'.join(serving_md_table_lines[2:])
prefix = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
prefix = prefix + "_" + os.environ.get("CURRENT_LLM_SERVING_ENGINE")
# document benchmarking results in markdown
with open(results_folder / f"{prefix}_nightly_results.md", "w") as f:
# document results with header.
# for those who wants to reproduce our benchmark.
f.write(serving_md_table_with_headers)
f.write('\n')
# document benchmarking results in json
with open(results_folder / f"{prefix}_nightly_results.json", "w") as f:
results = serving_results.to_dict(orient='records')
f.write(json.dumps(results))

View File

@ -0,0 +1,17 @@
#!/bin/sh
TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-test-repo:pull" | jq -r .token)
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-test-repo/manifests/$BUILDKITE_COMMIT"
retries=0
while [ $retries -lt 1000 ]; do
if [ $(curl -s -L -H "Authorization: Bearer $TOKEN" -o /dev/null -w "%{http_code}" $URL) -eq 200 ]; then
exit 0
fi
echo "Waiting for image to be available..."
retries=$((retries + 1))
sleep 5
done
exit 1

View File

@ -0,0 +1,67 @@
## Latency tests
This test suite aims to test vllm's end-to-end latency under a controlled setup.
- Input length: 32 tokens.
- Output length: 128 tokens.
- Batch size: fixed (8).
- Models: llama-3 8B, llama-3 70B, mixtral 8x7B.
- Evaluation metrics: end-to-end latency (mean, median, p99).
### Latency benchmarking results
{latency_tests_markdown_table}
## Throughput tests
This test suite aims to test vllm's throughput.
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm to achieve maximum throughput.
- Models: llama-3 8B, llama-3 70B, mixtral 8x7B.
- Evaluation metrics: throughput.
### Throughput benchmarking results
{throughput_tests_markdown_table}
## Serving tests
This test suite aims to test vllm's real serving metrics.
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm and the arrival pattern of the requests.
- **Average QPS (query per second)**: 1, 4, 16 and inf. QPS = inf means all requests come at once. For other QPS values, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
- Models: llama-3 8B, llama-3 70B, mixtral 8x7B.
- Evaluation metrics: throughput, TTFT (time to the first token, with mean, median and p99), ITL (inter-token latency, with mean, median and p99).
### Serving benchmarking results
{serving_tests_markdown_table}
## json version of the benchmarking tables
This section contains the data of the markdown tables above in JSON format.
You can load the benchmarking tables into pandas dataframes as follows:
```python
import json
import pandas as pd
benchmarking_results_json = """The json string"""
benchmarking_results = json.loads(benchmarking_results_json)
latency_results = pd.DataFrame.from_dict(benchmarking_results["latency"])
throughput_results = pd.DataFrame.from_dict(benchmarking_results["throughput"])
serving_results = pd.DataFrame.from_dict(benchmarking_results["serving"])
```
The json string for all benchmarking tables:
```json
{benchmarking_results_in_json_string}
```
You can also check the raw experiment data in the Artifact tab of the Buildkite page.

View File

@ -0,0 +1,32 @@
[
{
"test_name": "latency_llama8B_tp1",
"parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"tensor_parallel_size": 1,
"load_format": "dummy",
"num_iters_warmup": 5,
"num_iters": 15
}
},
{
"test_name": "latency_llama70B_tp4",
"parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"num-iters-warmup": 5,
"num-iters": 15
}
},
{
"test_name": "latency_mixtral8x7B_tp2",
"parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"tensor_parallel_size": 2,
"load_format": "dummy",
"num-iters-warmup": 5,
"num-iters": 15
}
}
]

View File

@ -0,0 +1,116 @@
[
{
"test_name": "llama8B_tp1",
"qps_list": [4],
"common_parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"tp": 1,
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 500,
"port": 8000
},
"lmdeploy_server_parameters": {
},
"lmdeploy_client_parameters": {
},
"tgi_server_parameters": {
},
"tgi_client_parameters": {
"endpoint": "/generate_stream"
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "float16",
"max_batch_size": 256,
"max_input_len": 4096,
"max_output_len": 4096,
"trt_llm_version": "r24.04"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": ""
},
"vllm_client_parameters": {
}
},
{
"test_name": "llama70B_tp4",
"qps_list": [2],
"common_parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"tp": 4,
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 500,
"port": 8000
},
"lmdeploy_server_parameters": {
},
"lmdeploy_client_parameters": {
},
"tgi_server_parameters": {
},
"tgi_client_parameters": {
"endpoint": "/generate_stream"
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "float16",
"max_batch_size": 256,
"max_input_len": 4096,
"max_output_len": 4096,
"trt_llm_version": "r24.04"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": ""
},
"vllm_client_parameters": {
}
},
{
"test_name": "mixtral8x7B_tp2",
"qps_list": [2],
"common_parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"tp": 2,
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 500,
"port": 8000
},
"lmdeploy_server_parameters": {
},
"lmdeploy_client_parameters": {
},
"tgi_server_parameters": {
},
"tgi_client_parameters": {
"endpoint": "/generate_stream"
},
"trt_server_parameters": {
"model_type": "llama",
"model_dtype": "float16",
"max_batch_size": 256,
"max_input_len": 4096,
"max_output_len": 4096,
"trt_llm_version": "r24.04"
},
"trt_client_parameters": {
"endpoint": "/v2/models/ensemble/generate_stream"
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": ""
},
"vllm_client_parameters": {
}
}
]

View File

@ -0,0 +1,59 @@
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"tensor_parallel_size": 1,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama70B_tp4_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"tensor_parallel_size": 4,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_mixtral8x7B_tp2_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"tensor_parallel_size": 2,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
}
]

View File

@ -0,0 +1,35 @@
[
{
"test_name": "throughput_llama8B_tp1",
"parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"tensor_parallel_size": 1,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"backend": "vllm"
}
},
{
"test_name": "throughput_llama70B_tp4",
"parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"backend": "vllm"
}
},
{
"test_name": "throughput_mixtral8x7B_tp2",
"parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"tensor_parallel_size": 2,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"backend": "vllm"
}
}
]

View File

@ -0,0 +1,19 @@
steps:
- label: "Build wheel - CUDA {{matrix.cuda_version}}"
agents:
queue: cpu_queue
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg buildkite_commit=$BUILDKITE_COMMIT --build-arg USE_SCCACHE=1 --build-arg CUDA_VERSION={{matrix.cuda_version}} --tag vllm-ci:build-image --target build --progress plain ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
# rename the files to change linux -> manylinux1
- "for f in artifacts/dist/*.whl; do mv -- \"$$f\" \"$${f/linux/manylinux1}\"; done"
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/$BUILDKITE_COMMIT/"
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/nightly/"
env:
DOCKER_BUILDKIT: "1"
matrix:
setup:
cuda_version:
- "11.8.0"
- "12.1.0"

View File

@ -2,6 +2,15 @@
set -ex
# Print ROCm version
echo "--- Confirming Clean Initial State"
while true; do
sleep 3
if grep -q clean /opt/amdgpu/etc/gpu_state; then
echo "GPUs state is \"clean\""
break
fi
done
echo "--- ROCm info"
rocminfo
@ -45,15 +54,11 @@ while true; do
fi
done
echo "--- Building container"
sha=$(git rev-parse --short HEAD)
image_name=rocm_${sha}
container_name=rocm_${sha}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)
docker build \
-t ${image_name} \
-f Dockerfile.rocm \
--progress plain \
.
echo "--- Pulling container"
docker login registry-1.docker.io -u alexeivivanovamd -p ${DH_TOKEN}
image_name="rocmshared/vllm-ci:${BUILDKITE_COMMIT}"
container_name="rocm_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
docker pull ${image_name}
remove_docker_container() {
docker rm -f ${container_name} || docker image rm -f ${image_name} || true
@ -62,11 +67,18 @@ trap remove_docker_container EXIT
echo "--- Running container"
HF_CACHE="$(realpath ~)/huggingface"
mkdir -p ${HF_CACHE}
HF_MOUNT="/root/.cache/huggingface"
docker run \
--device /dev/kfd --device /dev/dri \
--network host \
--shm-size=16gb \
--rm \
-e HF_TOKEN \
-v ${HF_CACHE}:${HF_MOUNT} \
-e HF_HOME=${HF_MOUNT} \
--name ${container_name} \
${image_name} \
/bin/bash -c "${@}"

View File

@ -3,22 +3,38 @@
set -ex
# Try building the docker image
docker build -t cpu-test -f Dockerfile.cpu .
numactl -C 48-95 -N 1 docker build -t cpu-test -f Dockerfile.cpu .
numactl -C 48-95 -N 1 docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-avx2 -f Dockerfile.cpu .
# Setup cleanup
remove_docker_container() { docker rm -f cpu-test || true; }
remove_docker_container() { docker rm -f cpu-test cpu-test-avx2 || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image
docker run -itd -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=48-95 --cpuset-mems=1 --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --name cpu-test cpu-test
# Run the image, setting --shm-size=4g for tensor parallel.
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=48-95 \
--cpuset-mems=1 --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=48-95 \
--cpuset-mems=1 --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-avx2 cpu-test-avx2
# offline inference
docker exec cpu-test bash -c "python3 examples/offline_inference.py"
docker exec cpu-test-avx2 bash -c "python3 examples/offline_inference.py"
# Run basic model test
docker exec cpu-test bash -c "cd tests;
docker exec cpu-test bash -c "
pip install pytest Pillow protobuf
bash ../.buildkite/download-images.sh
cd ../
pytest -v -s tests/models --ignore=tests/models/test_llava.py --ignore=tests/models/test_embedding.py --ignore=tests/models/test_registry.py"
pytest -v -s tests/models -m \"not vlm\" --ignore=tests/models/test_embedding.py --ignore=tests/models/test_registry.py --ignore=tests/models/test_jamba.py" # Mamba on CPU is not supported
# online inference
docker exec cpu-test bash -c "
export VLLM_CPU_KVCACHE_SPACE=10
export VLLM_CPU_OMP_THREADS_BIND=48-92
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m &
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name random \
--model facebook/opt-125m \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer facebook/opt-125m"

105
.buildkite/run-multi-node-test.sh Executable file
View File

@ -0,0 +1,105 @@
#!/bin/bash
set -euox pipefail
if [[ $# -lt 4 ]]; then
echo "Usage: .buildkite/run-multi-node-test.sh WORKING_DIR NUM_NODES NUM_GPUS DOCKER_IMAGE COMMAND1 COMMAND2 ... COMMANDN"
exit 1
fi
WORKING_DIR=$1
NUM_NODES=$2
NUM_GPUS=$3
DOCKER_IMAGE=$4
shift 4
COMMANDS=("$@")
if [ ${#COMMANDS[@]} -ne $NUM_NODES ]; then
echo "The number of commands must be equal to the number of nodes."
echo "Number of nodes: $NUM_NODES"
echo "Number of commands: ${#COMMANDS[@]}"
exit 1
fi
echo "List of commands"
for command in "${COMMANDS[@]}"; do
echo $command
done
start_network() {
docker network create --subnet=192.168.10.0/24 docker-net
}
start_nodes() {
for node in $(seq 0 $(($NUM_NODES-1))); do
GPU_DEVICES='"device='
for node_gpu in $(seq 0 $(($NUM_GPUS - 1))); do
DEVICE_NUM=$(($node * $NUM_GPUS + $node_gpu))
GPU_DEVICES+=$(($DEVICE_NUM))
if [ $node_gpu -lt $(($NUM_GPUS - 1)) ]; then
GPU_DEVICES+=','
fi
done
GPU_DEVICES+='"'
# start the container in detached mode
# things to note:
# 1. --shm-size=10.24gb is required. don't use --ipc=host
# 2. pass HF_TOKEN to the container
# 3. map the huggingface cache directory to the container
# 3. assign ip addresses to the containers (head node: 192.168.10.10, worker nodes:
# starting from 192.168.10.11)
docker run -d --gpus "$GPU_DEVICES" --shm-size=10.24gb -e HF_TOKEN -v ~/.cache/huggingface:/root/.cache/huggingface --name node$node --network docker-net --ip 192.168.10.$((10 + $node)) --rm $DOCKER_IMAGE /bin/bash -c "tail -f /dev/null"
# organize containers into a ray cluster
if [ $node -eq 0 ]; then
# start the ray head node
docker exec -d node$node /bin/bash -c "ray start --head --port=6379 --block"
# wait for the head node to be ready
sleep 10
else
# start the ray worker nodes, and connect them to the head node
docker exec -d node$node /bin/bash -c "ray start --address=192.168.10.10:6379 --block"
fi
done
# wait for the cluster to be ready
sleep 10
# print the cluster status
docker exec node0 /bin/bash -c "ray status"
}
run_nodes() {
# important: iterate in reverse order to start the head node last
# we start the worker nodes first, in detached mode, and then start the head node
# in the foreground, so that the output of the head node is visible in the buildkite logs
for node in $(seq $(($NUM_NODES - 1)) -1 0); do
GPU_DEVICES='"device='
for node_gpu in $(seq 0 $(($NUM_GPUS - 1))); do
DEVICE_NUM=$(($node * $NUM_GPUS + $node_gpu))
GPU_DEVICES+=$(($DEVICE_NUM))
if [ $node_gpu -lt $(($NUM_GPUS - 1)) ]; then
GPU_DEVICES+=','
fi
done
GPU_DEVICES+='"'
echo "Running node$node with GPU devices: $GPU_DEVICES"
if [ $node -ne 0 ]; then
docker exec -d node$node /bin/bash -c "cd $WORKING_DIR ; ${COMMANDS[$node]}"
else
docker exec node$node /bin/bash -c "cd $WORKING_DIR ; ${COMMANDS[$node]}"
fi
done
}
cleanup() {
for node in $(seq 0 $(($NUM_NODES-1))); do
docker stop node$node
done
docker network rm docker-net
}
trap cleanup EXIT
start_network
start_nodes
run_nodes

14
.buildkite/run-openvino-test.sh Executable file
View File

@ -0,0 +1,14 @@
# This script build the OpenVINO docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Try building the docker image
docker build -t openvino-test -f Dockerfile.openvino .
# Setup cleanup
remove_docker_container() { docker rm -f openvino-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/vllm/examples/offline_inference.py

View File

@ -0,0 +1,16 @@
set -e
# Build the docker image.
docker build -f Dockerfile.tpu -t vllm-tpu .
# Set up cleanup.
remove_docker_container() { docker rm -f tpu-test || true; }
trap remove_docker_container EXIT
# Remove the container that might not be cleaned up in the previous run.
remove_docker_container
# For HF_TOKEN.
source /etc/environment
# Run a simple end-to-end example.
docker run --privileged --net host --shm-size=16G -it -e HF_TOKEN=$HF_TOKEN --name tpu-test vllm-tpu \
python3 /workspace/vllm/examples/offline_inference_tpu.py

View File

@ -0,0 +1,14 @@
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Try building the docker image
docker build -t xpu-test -f Dockerfile.xpu .
# Setup cleanup
remove_docker_container() { docker rm -f xpu-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --network host --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path xpu-test python3 examples/offline_inference.py

View File

@ -1,11 +1,37 @@
# In this file, you can add more tests to run either by adding a new step or
# adding a new command to an existing step. See different options here for examples.
# This script will be feed into Jinja template in `test-template.j2` to generate
# the final pipeline yaml file.
# This script will be feed into Jinja template in `test-template-aws.j2` at
# https://github.com/vllm-project/buildkite-ci/blob/main/scripts/test-template-aws.j2
# to generate the final pipeline yaml file.
steps:
- label: Async Engine, Inputs, Utils, Worker Test
fast_check: true
fast_check_only: true
commands:
- pytest -v -s async_engine # Async Engine
- pytest -v -s test_inputs.py
- pytest -v -s multimodal
- pytest -v -s test_utils.py # Utils
- pytest -v -s worker # Worker
- label: Metrics, Tracing Test
fast_check: true
fast_check_only: true
commands:
- pytest -v -s metrics # Metrics
- "pip install \
opentelemetry-sdk \
opentelemetry-api \
opentelemetry-exporter-otlp \
opentelemetry-semantic-conventions-ai" # Tracing
- pytest -v -s tracing
- label: Regression Test
mirror_hardwares: [amd]
fast_check: true
command: pytest -v -s test_regression.py
working_dir: "/vllm-workspace/tests" # optional
@ -15,24 +41,43 @@ steps:
- label: Basic Correctness Test
mirror_hardwares: [amd]
fast_check: true
commands:
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_basic_correctness.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_basic_correctness.py
# This flashinfer installation will fail on AMD ROCm, so it is set as optional.
- pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.8/flashinfer-0.0.8+cu121torch2.3-cp310-cp310-linux_x86_64.whl || true
- pytest -v -s basic_correctness/test_basic_correctness.py
- pytest -v -s basic_correctness/test_cpu_offload.py
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Core Test
mirror_hardwares: [amd]
command: pytest -v -s core
fast_check: true
commands:
- pytest -v -s core
- pytest -v -s distributed/test_parallel_state.py
- label: Distributed Comm Ops Test
#mirror_hardwares: [amd]
command: pytest -v -s distributed/test_comm_ops.py
working_dir: "/vllm-workspace/tests"
num_gpus: 2
commands:
- pytest -v -s distributed/test_comm_ops.py
- pytest -v -s distributed/test_shm_broadcast.py
- label: Distributed Tests
- label: 2 Node Tests (4 GPUs in total)
working_dir: "/vllm-workspace/tests"
num_gpus: 2
num_nodes: 2
commands:
- # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py
- # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py
- label: Distributed Tests (2 GPUs)
mirror_hardwares: [amd]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
@ -40,33 +85,56 @@ steps:
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray VLLM_USE_RAY_SPMD_WORKER=1 VLLM_USE_RAY_COMPILED_DAG=1 pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray VLLM_USE_RAY_SPMD_WORKER=1 VLLM_USE_RAY_COMPILED_DAG=1 pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=llava-hf/llava-1.5-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_multimodal_broadcast.py
- TEST_DIST_MODEL=microsoft/Phi-3-vision-128k-instruct DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_multimodal_broadcast.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_chunked_prefill_distributed.py
- pytest -v -s spec_decode/e2e/test_integration_dist.py
- TEST_DIST_MODEL=llava-hf/llava-1.5-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_multimodal_broadcast.py
- TEST_DIST_MODEL=microsoft/Phi-3-vision-128k-instruct DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_multimodal_broadcast.py
- pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s distributed/test_utils.py
- label: Distributed Tests (Multiple Groups)
- label: Distributed Tests (4 GPUs)
#mirror_hardwares: [amd]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
fast_check: true
commands:
- pytest -v -s distributed/test_pynccl.py
# We want to test that models which use 2 GPUs work with 4 GPUs, which is why we duplicate them here.
# See https://github.com/vllm-project/vllm/pull/5473#issuecomment-2166601837 for context.
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray VLLM_USE_RAY_SPMD_WORKER=1 VLLM_USE_RAY_COMPILED_DAG=1 pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
- label: Pipeline Parallelism Test
working_dir: "/vllm-workspace/tests"
num_gpus: 4
commands:
- pytest -v -s distributed/test_pipeline_parallel.py
- label: Engine Test
mirror_hardwares: [amd]
command: pytest -v -s engine tokenization test_sequence.py test_config.py test_logger.py
commands:
- pytest -v -s engine test_sequence.py test_config.py test_logger.py
# OOM in the CI unless we run this separately
- pytest -v -s tokenization
- label: Entrypoints Test
fast_check: true
mirror_hardwares: [amd]
commands:
- pytest -v -s entrypoints -m llm
- pytest -v -s entrypoints -m openai
- pytest -v -s entrypoints/llm
- pytest -v -s entrypoints/openai
- label: Examples Test
working_dir: "/vllm-workspace/examples"
@ -76,6 +144,7 @@ steps:
# install tensorizer for tensorize_vllm_model.py
- pip install awscli tensorizer
- python3 offline_inference.py
- python3 cpu_offload.py
- python3 offline_inference_with_prefix.py
- python3 llm_engine_example.py
- python3 llava_example.py
@ -84,25 +153,26 @@ steps:
- label: Inputs Test
#mirror_hardwares: [amd]
commands:
- bash ../.buildkite/download-images.sh
- pytest -v -s test_inputs.py
- pytest -v -s multimodal
- label: Kernels Test %N
#mirror_hardwares: [amd]
command: pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
commands:
- pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.8/flashinfer-0.0.8+cu121torch2.3-cp310-cp310-linux_x86_64.whl
- pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 4
- label: Models Test
#mirror_hardwares: [amd]
commands:
- pytest -v -s models -m \"not llava\"
- pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.8/flashinfer-0.0.8+cu121torch2.3-cp310-cp310-linux_x86_64.whl
- pytest -v -s models -m \"not vlm\"
- label: Llava Test
- label: Vision Language Models Test
mirror_hardwares: [amd]
commands:
- bash ../.buildkite/download-images.sh
- pytest -v -s models -m llava
- pytest -v -s models -m vlm
- label: Prefix Caching Test
mirror_hardwares: [amd]
@ -118,7 +188,9 @@ steps:
command: pytest -v -s test_logits_processor.py
- label: Utils Test
command: pytest -v -s test_utils.py
commands:
- pytest -v -s test_utils.py
- pytest -v -s test_embedded_commit.py
- label: Worker Test
mirror_hardwares: [amd]
@ -141,11 +213,19 @@ steps:
num_gpus: 4
# This test runs llama 13B, so it is required to run on 4 GPUs.
commands:
# FIXIT: find out which code initialize cuda before running the test
# before the fix, we need to use spawn to test it
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s -x lora/test_long_context.py
- label: Tensorizer Test
#mirror_hardwares: [amd]
command: apt-get install curl libsodium23 && pytest -v -s tensorizer_loader
soft_fail: true
fast_check: true
commands:
- apt-get install -y curl libsodium23
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s tensorizer_loader
- label: Metrics Test
mirror_hardwares: [amd]
@ -155,6 +235,15 @@ steps:
#mirror_hardwares: [amd]
command: pytest -v -s quantization
- label: Tracing Test
commands:
- "pip install \
opentelemetry-sdk \
opentelemetry-api \
opentelemetry-exporter-otlp \
opentelemetry-semantic-conventions-ai"
- pytest -v -s tracing
- label: Benchmarks
working_dir: "/vllm-workspace/.buildkite"
mirror_hardwares: [amd]
@ -162,9 +251,40 @@ steps:
- pip install aiohttp
- bash run-benchmarks.sh
- label: LM Eval Small Models
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
commands:
- pip install lm-eval
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-small.txt -t 1
- label: LM Eval Large Models
gpu: a100
num_gpus: 4
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
commands:
- pip install lm-eval
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-large.txt -t 4
- label: Documentation Build
working_dir: "/vllm-workspace/test_docs/docs"
fast_check: true
no_gpu: True
commands:
- pip install -r requirements-docs.txt
- SPHINXOPTS=\"-W\" make html
- label: Distributed Tests (A100)
gpu: a100
num_gpus: 4
commands:
# NOTE: don't test llama model here, it seems hf implementation is buggy
# see https://github.com/vllm-project/vllm/pull/5689 for details
- pytest -v -s distributed/test_custom_all_reduce.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
- pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.8/flashinfer-0.0.8+cu121torch2.3-cp310-cp310-linux_x86_64.whl
- VLLM_ATTENTION_BACKEND=FLASHINFER TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- VLLM_ATTENTION_BACKEND=FLASHINFER TEST_DIST_MODEL=meta-llama/Meta-Llama-3-8B DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- pytest -v -s -x lora/test_mixtral.py

View File

@ -1,92 +0,0 @@
{% set docker_image = "public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT" %}
{% set default_working_dir = "/vllm-workspace/tests" %}
steps:
- label: ":docker: build image"
agents:
queue: cpu_queue
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --tag {{ docker_image }} --target test --progress plain ."
- "docker push {{ docker_image }}"
env:
DOCKER_BUILDKIT: "1"
retry:
automatic:
- exit_status: -1 # Agent was lost
limit: 5
- exit_status: -10 # Agent was lost
limit: 5
- wait
- group: "AMD Tests"
depends_on: ~
steps:
{% for step in steps %}
{% if step.mirror_hardwares and "amd" in step.mirror_hardwares %}
- label: "AMD: {{ step.label }}"
agents:
queue: amd
command: bash .buildkite/run-amd-test.sh "cd {{ (step.working_dir or default_working_dir) | safe }} ; {{ step.command or (step.commands | join(" ; ")) | safe }}"
env:
DOCKER_BUILDKIT: "1"
soft_fail: true
{% endif %}
{% endfor %}
- label: "Neuron Test"
depends_on: ~
agents:
queue: neuron
command: bash .buildkite/run-neuron-test.sh
soft_fail: false
- label: "Intel Test"
depends_on: ~
agents:
queue: intel
command: bash .buildkite/run-cpu-test.sh
{% for step in steps %}
- label: "{{ step.label }}"
agents:
{% if step.label == "Documentation Build" %}
queue: small_cpu_queue
{% elif step.no_gpu %}
queue: cpu_queue
{% elif step.num_gpus == 2 or step.num_gpus == 4 %}
queue: gpu_4_queue
{% else %}
queue: gpu_1_queue
{% endif %}
soft_fail: {{ step.soft_fail or false }}
{% if step.parallelism %}
parallelism: {{ step.parallelism }}
{% endif %}
retry:
automatic:
- exit_status: -1 # Agent was lost
limit: 5
- exit_status: -10 # Agent was lost
limit: 5
plugins:
- docker#v5.2.0:
image: {{ docker_image }}
always-pull: true
propagate-environment: true
{% if not step.no_gpu %}
gpus: all
{% endif %}
{% if step.label == "Benchmarks" %}
mount-buildkite-agent: true
{% endif %}
command: ["bash", "-c", "cd {{ (step.working_dir or default_working_dir) | safe }} && {{ step.command or (step.commands | join(' && ')) | safe }}"]
environment:
- VLLM_USAGE_SOURCE=ci-test
- HF_TOKEN
{% if step.label == "Speculative decoding tests" %}
- VLLM_ATTENTION_BACKEND=XFORMERS
{% endif %}
volumes:
- /dev/shm:/dev/shm
{% endfor %}

View File

@ -1,96 +0,0 @@
{% set docker_image = "us-central1-docker.pkg.dev/vllm-405802/vllm-ci-test-repo/vllm-test:$BUILDKITE_COMMIT" %}
{% set default_num_gpu = 1 %}
{% set default_working_dir = "/vllm-workspace/tests" %}
steps:
- label: ":docker: build image"
commands:
- "docker build --build-arg max_jobs=16 --tag {{ docker_image }} --target test --progress plain ."
- "docker push {{ docker_image }}"
env:
DOCKER_BUILDKIT: "1"
retry:
automatic:
- exit_status: -1 # Agent was lost
limit: 5
- exit_status: -10 # Agent was lost
limit: 5
- wait
- group: "AMD Tests"
depends_on: ~
steps:
{% for step in steps %}
{% if step.mirror_hardwares and "amd" in step.mirror_hardwares %}
- label: "AMD: {{ step.label }}"
agents:
queue: amd
command: bash .buildkite/run-amd-test.sh "cd {{ (step.working_dir or default_working_dir) | safe }} ; {{ step.command or (step.commands | join(" ; ")) | safe }}"
env:
DOCKER_BUILDKIT: "1"
soft_fail: true
{% endif %}
{% endfor %}
- label: "Neuron Test"
depends_on: ~
agents:
queue: neuron
command: bash .buildkite/run-neuron-test.sh
soft_fail: false
- label: "Intel Test"
depends_on: ~
agents:
queue: intel
command: bash .buildkite/run-cpu-test.sh
{% for step in steps %}
- label: "{{ step.label }}"
agents:
queue: kubernetes
soft_fail: {{ step.soft_fail or false }}
{% if step.parallelism %}
parallelism: {{ step.parallelism }}
{% endif %}
retry:
automatic:
- exit_status: -1 # Agent was lost
limit: 5
- exit_status: -10 # Agent was lost
limit: 5
plugins:
- kubernetes:
podSpec:
{% if step.num_gpus %}
priorityClassName: gpu-priority-cls-{{ step.num_gpus }}
{% endif %}
volumes:
- name: dshm
emptyDir:
medium: Memory
containers:
- image: "{{ docker_image }}"
command: ["bash"]
args:
- '-c'
- "'cd {{ (step.working_dir or default_working_dir) | safe }} && {{ step.command or (step.commands | join(' && ')) | safe }}'"
{% if not step.no_gpu %}
resources:
requests:
nvidia.com/gpu: "{{ step.num_gpus or default_num_gpu }}"
limits:
nvidia.com/gpu: "{{ step.num_gpus or default_num_gpu }}"
{% endif %}
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
volumeMounts:
- mountPath: /dev/shm
name: dshm
{% endfor %}

2
.github/FUNDING.yml vendored Normal file
View File

@ -0,0 +1,2 @@
github: [vllm-project]
open_collective: [vllm]

View File

@ -0,0 +1,21 @@
name: Add label on auto-merge enabled
on:
pull_request_target:
types:
- auto_merge_enabled
jobs:
add-label-on-auto-merge:
runs-on: ubuntu-latest
steps:
- name: Add label
uses: actions/github-script@v5
with:
script: |
github.rest.issues.addLabels({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
labels: ['ready']
})
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@ -0,0 +1,23 @@
name: Add Ready Label on Ready Comment
on:
issue_comment:
types: [created]
jobs:
add-ready-label:
runs-on: ubuntu-latest
if: github.event.issue.pull_request && contains(github.event.comment.body, '/ready')
steps:
- name: Add label
uses: actions/github-script@v5
with:
script: |
github.rest.issues.addLabels({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
labels: ['ready']
})
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@ -32,20 +32,22 @@ jobs:
pip install types-setuptools
- name: Mypy
run: |
mypy tests --config-file pyproject.toml
mypy vllm/*.py --config-file pyproject.toml
mypy vllm/attention --config-file pyproject.toml
mypy vllm/core --config-file pyproject.toml
mypy vllm/distributed --config-file pyproject.toml
mypy vllm/engine --config-file pyproject.toml
mypy vllm/entrypoints --config-file pyproject.toml
mypy vllm/executor --config-file pyproject.toml
mypy vllm/multimodal --config-file pyproject.toml
mypy vllm/usage --config-file pyproject.toml
mypy vllm/*.py --config-file pyproject.toml
mypy vllm/transformers_utils --config-file pyproject.toml
mypy vllm/engine --config-file pyproject.toml
mypy vllm/worker --config-file pyproject.toml
mypy vllm/spec_decode --config-file pyproject.toml
mypy vllm/model_executor --config-file pyproject.toml
mypy vllm/lora --config-file pyproject.toml
mypy vllm/inputs --config-file pyproject.toml
mypy vllm/logging --config-file pyproject.toml
mypy vllm/model_executor --config-file pyproject.toml
mypy vllm/lora --config-file pyproject.toml
mypy vllm/model_executor --config-file pyproject.toml
mypy vllm/multimodal --config-file pyproject.toml
mypy vllm/platforms --config-file pyproject.toml
mypy vllm/spec_decode --config-file pyproject.toml
mypy vllm/transformers_utils --config-file pyproject.toml
mypy vllm/usage --config-file pyproject.toml
mypy vllm/worker --config-file pyproject.toml

View File

@ -49,7 +49,7 @@ jobs:
matrix:
os: ['ubuntu-20.04']
python-version: ['3.8', '3.9', '3.10', '3.11']
pytorch-version: ['2.3.0'] # Must be the most recent version that meets requirements-cuda.txt.
pytorch-version: ['2.3.1'] # Must be the most recent version that meets requirements-cuda.txt.
cuda-version: ['11.8', '12.1']
steps:

21
.github/workflows/reminder_comment.yml vendored Normal file
View File

@ -0,0 +1,21 @@
name: PR Reminder Comment Bot
on:
pull_request_target:
types: [opened]
jobs:
pr_reminder:
runs-on: ubuntu-latest
steps:
- name: Remind to run full CI on PR
uses: actions/github-script@v6
with:
script: |
github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: '👋 Hi! Thank you for contributing to the vLLM project.\n Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which consists a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of default ones by unblocking the steps in your `fast-check` build on Buildkite UI. \n\nOnce the PR is approved and ready to go, please make sure to run full CI as it is required to merge (or just use auto-merge).\n\n To run full CI, you can do one of these:\n- Comment `/ready` on the PR\n- Add `ready` label to the PR\n- Enable auto-merge.\n\n🚀'
})
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

3
.gitignore vendored
View File

@ -1,3 +1,6 @@
# vllm commit id, generated by setup.py
vllm/commit_id.py
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]

View File

@ -2,7 +2,8 @@ cmake_minimum_required(VERSION 3.21)
project(vllm_extensions LANGUAGES CXX)
option(VLLM_TARGET_DEVICE "Target device backend for vLLM" "cuda")
# CUDA by default, can be overridden by using -DVLLM_TARGET_DEVICE=... (used by setup.py)
set(VLLM_TARGET_DEVICE "cuda" CACHE STRING "Target device backend for vLLM")
message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")
message(STATUS "Target device: ${VLLM_TARGET_DEVICE}")
@ -31,9 +32,8 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx11
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.3.0")
set(TORCH_SUPPORTED_VERSION_ROCM_5X "2.0.1")
set(TORCH_SUPPORTED_VERSION_ROCM_6X "2.1.1")
set(TORCH_SUPPORTED_VERSION_CUDA "2.3.1")
set(TORCH_SUPPORTED_VERSION_ROCM "2.5.0")
#
# Try to find python package with an executable that exactly matches
@ -98,18 +98,11 @@ elseif(HIP_FOUND)
# .hip extension automatically, HIP must be enabled explicitly.
enable_language(HIP)
# ROCm 5.x
if (ROCM_VERSION_DEV_MAJOR EQUAL 5 AND
NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM_5X})
message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_ROCM_5X} "
"expected for ROCMm 5.x build, saw ${Torch_VERSION} instead.")
endif()
# ROCm 6.x
if (ROCM_VERSION_DEV_MAJOR EQUAL 6 AND
NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM_6X})
message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_ROCM_6X} "
"expected for ROCMm 6.x build, saw ${Torch_VERSION} instead.")
# ROCm 5.X and 6.X
if (ROCM_VERSION_DEV_MAJOR GREATER_EQUAL 5 AND
NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM})
message(WARNING "Pytorch version >= ${TORCH_SUPPORTED_VERSION_ROCM} "
"expected for ROCm build, saw ${Torch_VERSION} instead.")
endif()
else()
message(FATAL_ERROR "Can't find CUDA or HIP installation.")
@ -158,6 +151,7 @@ set(VLLM_EXT_SRC
"csrc/quantization/fp8/common.cu"
"csrc/cuda_utils_kernels.cu"
"csrc/moe_align_block_size_kernels.cu"
"csrc/prepare_inputs/advance_step.cu"
"csrc/torch_bindings.cpp")
if(VLLM_GPU_LANG STREQUAL "CUDA")
@ -178,6 +172,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
"csrc/quantization/gptq_marlin/awq_marlin_repack.cu"
"csrc/quantization/fp8/fp8_marlin.cu"
"csrc/custom_all_reduce.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu"

View File

@ -5,18 +5,38 @@
# docs/source/dev/dockerfile/dockerfile.rst and
# docs/source/assets/dev/dockerfile-stages-dependency.png
ARG CUDA_VERSION=12.4.1
#################### BASE BUILD IMAGE ####################
# prepare basic build environment
FROM nvidia/cuda:12.4.1-devel-ubuntu22.04 AS dev
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base
ARG CUDA_VERSION=12.4.1
ARG PYTHON_VERSION=3.10
ENV DEBIAN_FRONTEND=noninteractive
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
&& apt-get update -y \
&& apt-get install -y ccache software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa \
&& apt-get update -y \
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
&& if [ "${PYTHON_VERSION}" != "3" ]; then update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1; fi \
&& python3 --version
RUN apt-get update -y \
&& apt-get install -y python3-pip git curl sudo
&& apt-get install -y git curl sudo
# Install pip s.t. it will be compatible with our PYTHON_VERSION
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION}
RUN python3 -m pip --version
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-12.4/compat/
RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
WORKDIR /workspace
@ -24,14 +44,11 @@ WORKDIR /workspace
COPY requirements-common.txt requirements-common.txt
COPY requirements-cuda.txt requirements-cuda.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-cuda.txt
python3 -m pip install -r requirements-cuda.txt
# install development dependencies
COPY requirements-lint.txt requirements-lint.txt
COPY requirements-test.txt requirements-test.txt
COPY requirements-dev.txt requirements-dev.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-dev.txt
COPY requirements-mamba.txt requirements-mamba.txt
RUN python3 -m pip install packaging
RUN python3 -m pip install -r requirements-mamba.txt
# cuda arch list used by torch
# can be useful for both `dev` and `test`
@ -41,14 +58,16 @@ ARG torch_cuda_arch_list='7.0 7.5 8.0 8.6 8.9 9.0+PTX'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
#################### BASE BUILD IMAGE ####################
#################### WHEEL BUILD IMAGE ####################
FROM dev AS build
FROM base AS build
ARG PYTHON_VERSION=3.10
# install build dependencies
COPY requirements-build.txt requirements-build.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-build.txt
python3 -m pip install -r requirements-build.txt
# install compiler cache to speed up compilation leveraging local or remote caching
RUN apt-get update -y && apt-get install -y ccache
@ -72,6 +91,9 @@ ENV NVCC_THREADS=$nvcc_threads
# make sure punica kernels are built (for LoRA)
ENV VLLM_INSTALL_PUNICA_KERNELS=1
ARG buildkite_commit
ENV BUILDKITE_COMMIT=${buildkite_commit}
ARG USE_SCCACHE
# if USE_SCCACHE is set, use sccache to speed up compilation
RUN --mount=type=cache,target=/root/.cache/pip \
@ -81,10 +103,15 @@ RUN --mount=type=cache,target=/root/.cache/pip \
&& tar -xzf sccache.tar.gz \
&& sudo mv sccache-v0.8.1-x86_64-unknown-linux-musl/sccache /usr/bin/sccache \
&& rm -rf sccache.tar.gz sccache-v0.8.1-x86_64-unknown-linux-musl \
&& export SCCACHE_BUCKET=vllm-build-sccache \
&& if [ "$CUDA_VERSION" = "11.8.0" ]; then \
export SCCACHE_BUCKET=vllm-build-sccache-2; \
else \
export SCCACHE_BUCKET=vllm-build-sccache; \
fi \
&& export SCCACHE_REGION=us-west-2 \
&& export CMAKE_BUILD_TYPE=Release \
&& sccache --show-stats \
&& python3 setup.py bdist_wheel --dist-dir=dist \
&& python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38 \
&& sccache --show-stats; \
fi
@ -92,7 +119,7 @@ ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/ccache \
--mount=type=cache,target=/root/.cache/pip \
if [ "$USE_SCCACHE" != "1" ]; then \
python3 setup.py bdist_wheel --dist-dir=dist; \
python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38; \
fi
# check the size of the wheel, we cannot upload wheels larger than 100MB
@ -101,24 +128,73 @@ RUN python3 check-wheel-size.py dist
#################### EXTENSION Build IMAGE ####################
#################### DEV IMAGE ####################
FROM base as dev
COPY requirements-lint.txt requirements-lint.txt
COPY requirements-test.txt requirements-test.txt
COPY requirements-dev.txt requirements-dev.txt
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-dev.txt
#################### DEV IMAGE ####################
#################### MAMBA Build IMAGE ####################
FROM dev as mamba-builder
# max jobs used for build
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
WORKDIR /usr/src/mamba
COPY requirements-mamba.txt requirements-mamba.txt
# Download the wheel or build it if a pre-compiled release doesn't exist
RUN pip --verbose wheel -r requirements-mamba.txt \
--no-build-isolation --no-deps --no-cache-dir
#################### MAMBA Build IMAGE ####################
#################### vLLM installation IMAGE ####################
# image with vLLM installed
FROM nvidia/cuda:12.4.1-base-ubuntu22.04 AS vllm-base
FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu20.04 AS vllm-base
ARG CUDA_VERSION=12.4.1
ARG PYTHON_VERSION=3.10
WORKDIR /vllm-workspace
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
&& apt-get update -y \
&& apt-get install -y ccache software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa \
&& apt-get update -y \
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
&& if [ "${PYTHON_VERSION}" != "3" ]; then update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1; fi \
&& python3 --version
RUN apt-get update -y \
&& apt-get install -y python3-pip git vim
&& apt-get install -y python3-pip git vim curl libibverbs-dev
# Install pip s.t. it will be compatible with our PYTHON_VERSION
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION}
RUN python3 -m pip --version
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-12.4/compat/
RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
# install vllm wheel first, so that torch etc will be installed
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
--mount=type=cache,target=/root/.cache/pip \
pip install dist/*.whl --verbose
python3 -m pip install dist/*.whl --verbose
RUN --mount=type=bind,from=mamba-builder,src=/usr/src/mamba,target=/usr/src/mamba \
--mount=type=cache,target=/root/.cache/pip \
python3 -m pip install /usr/src/mamba/*.whl --no-cache-dir
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.9/flashinfer-0.0.9+cu121torch2.3-cp310-cp310-linux_x86_64.whl
#################### vLLM installation IMAGE ####################
@ -131,7 +207,7 @@ ADD . /vllm-workspace/
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-dev.txt
python3 -m pip install -r requirements-dev.txt
# doc requires source code
# we hide them inside `test_docs/` , so that this source code
@ -148,7 +224,7 @@ FROM vllm-base AS vllm-openai
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer modelscope
pip install accelerate hf_transfer 'modelscope!=1.15.0'
ENV VLLM_USAGE_SOURCE production-docker-image

View File

@ -2,13 +2,20 @@
FROM ubuntu:22.04 AS cpu-test-1
RUN apt-get update -y \
&& apt-get install -y git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 \
RUN apt-get update -y \
&& apt-get install -y curl git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 libnuma-dev \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
RUN echo 'export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:$LD_PRELOAD' >> ~/.bashrc
# https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/tuning_guide.html
# intel-openmp provides additional performance improvement vs. openmp
# tcmalloc provides better memory allocation efficiency, e.g, holding memory in caches to speed up access of commonly-used objects.
RUN pip install intel-openmp
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_dev/cpu/intel_extension_for_pytorch-2.3.100%2Bgit0eb3473-cp310-cp310-linux_x86_64.whl
ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/usr/local/lib/libiomp5.so:$LD_PRELOAD"
RUN echo 'ulimit -c 0' >> ~/.bashrc
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_dev/cpu/intel_extension_for_pytorch-2.4.0%2Bgitfbaa4bc-cp310-cp310-linux_x86_64.whl
RUN pip install --upgrade pip \
&& pip install wheel packaging ninja "setuptools>=49.4.0" numpy
@ -19,7 +26,11 @@ COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
RUN pip install -v -r requirements-cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu
RUN pip install -v -r requirements-cpu.txt --extra-index-url https://download.pytorch.org/whl/test/cpu
# Support for building with non-AVX512 vLLM: docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" ...
ARG VLLM_CPU_DISABLE_AVX512
ENV VLLM_CPU_DISABLE_AVX512=${VLLM_CPU_DISABLE_AVX512}
RUN VLLM_TARGET_DEVICE=cpu python3 setup.py install
@ -27,4 +38,4 @@ WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
CMD ["/bin/bash"]
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

26
Dockerfile.openvino Normal file
View File

@ -0,0 +1,26 @@
# The vLLM Dockerfile is used to construct vLLM image that can be directly used
# to run the OpenAI compatible server.
FROM ubuntu:20.04 AS dev
RUN apt-get update -y && \
apt-get install -y python3-pip git
WORKDIR /workspace
# copy requirements
COPY requirements-build.txt /workspace/vllm/
COPY requirements-common.txt /workspace/vllm/
COPY requirements-openvino.txt /workspace/vllm/
COPY vllm/ /workspace/vllm/vllm
COPY setup.py /workspace/vllm/
# install build requirements
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" python3 -m pip install -r /workspace/vllm/requirements-build.txt
# build vLLM with OpenVINO backend
RUN PIP_PRE=1 PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu https://storage.openvinotoolkit.org/simple/wheels/nightly/" VLLM_TARGET_DEVICE="openvino" python3 -m pip install /workspace/vllm/
COPY examples/ /workspace/vllm/examples
COPY benchmarks/ /workspace/vllm/benchmarks
CMD ["/bin/bash"]

22
Dockerfile.ppc64le Normal file
View File

@ -0,0 +1,22 @@
FROM mambaorg/micromamba
ARG MAMBA_DOCKERFILE_ACTIVATE=1
USER root
RUN apt-get update -y && apt-get install -y git wget vim numactl gcc-12 g++-12 protobuf-compiler libprotobuf-dev && update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
# Some packages in requirements-cpu are installed here
# IBM provides optimized packages for ppc64le processors in the open-ce project for mamba
# Currently these may not be available for venv or pip directly
RUN micromamba install -y -n base -c https://ftp.osuosl.org/pub/open-ce/1.11.0-p10/ -c defaults python=3.10 pytorch-cpu=2.1.2 torchvision-cpu=0.16.2 && micromamba clean --all --yes
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
# These packages will be in rocketce eventually
RUN pip install -v -r requirements-cpu.txt --prefer-binary --extra-index-url https://repo.fury.io/mgiessing
RUN VLLM_TARGET_DEVICE=cpu python3 setup.py install
WORKDIR /vllm-workspace
ENTRYPOINT ["/opt/conda/bin/python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -1,35 +1,33 @@
# default base image
ARG BASE_IMAGE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
# Default ROCm 6.1 base image
ARG BASE_IMAGE="rocm/pytorch:rocm6.1.2_ubuntu20.04_py3.9_pytorch_staging"
FROM $BASE_IMAGE
# Default ROCm ARCHes to build vLLM for.
ARG PYTORCH_ROCM_ARCH="gfx908;gfx90a;gfx942;gfx1100"
ARG BASE_IMAGE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
RUN echo "Base image is $BASE_IMAGE"
# BASE_IMAGE for ROCm_5.7: "rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1"
# BASE_IMAGE for ROCm_6.0: "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
ARG FA_GFX_ARCHS="gfx90a;gfx942"
RUN echo "FA_GFX_ARCHS is $FA_GFX_ARCHS"
ARG FA_BRANCH="ae7928c"
RUN echo "FA_BRANCH is $FA_BRANCH"
# whether to build flash-attention
# if 0, will not build flash attention
# this is useful for gfx target where flash-attention is not supported
# In that case, we need to use the python reference attention implementation in vllm
# Whether to install CK-based flash-attention
# If 0, will not install flash-attention
ARG BUILD_FA="1"
# If `TRY_FA_WHEEL=1`, we will try installing flash-attention from `FA_WHEEL_URL`
# If this succeeds, we use the downloaded wheel and skip building flash-attention.
# Otherwise, ROCm flash-attention from `FA_BRANCH` will be built for the
# architectures specified in `FA_GFX_ARCHS`
ARG TRY_FA_WHEEL="1"
ARG FA_WHEEL_URL="https://github.com/ROCm/flash-attention/releases/download/v2.5.9post1-cktile-vllm/flash_attn-2.5.9.post1-cp39-cp39-linux_x86_64.whl"
ARG FA_GFX_ARCHS="gfx90a;gfx942"
ARG FA_BRANCH="23a2b1c2"
# whether to build triton on rocm
# Whether to build triton on rocm
ARG BUILD_TRITON="1"
ARG TRITON_BRANCH="e0fc12c"
### Base image build stage
FROM $BASE_IMAGE AS base
# Import arg(s) defined before this build stage
ARG PYTORCH_ROCM_ARCH
# Install some basic utilities
RUN apt-get update && apt-get install python3 python3-pip -y
# Install some basic utilities
RUN apt-get update && apt-get install -y \
curl \
ca-certificates \
@ -40,76 +38,145 @@ RUN apt-get update && apt-get install -y \
build-essential \
wget \
unzip \
nvidia-cuda-toolkit \
tmux \
ccache \
&& rm -rf /var/lib/apt/lists/*
### Mount Point ###
# When launching the container, mount the code directory to /app
# When launching the container, mount the code directory to /vllm-workspace
ARG APP_MOUNT=/vllm-workspace
VOLUME [ ${APP_MOUNT} ]
WORKDIR ${APP_MOUNT}
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas
# Remove sccache so it doesn't interfere with ccache
# TODO: implement sccache support across components
RUN apt-get purge -y sccache; python3 -m pip uninstall -y sccache; rm -f "$(which sccache)"
# Install torch == 2.5.0 on ROCm
RUN case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \
*"rocm-6.1"*) \
python3 -m pip uninstall -y torch torchvision \
&& python3 -m pip install --no-cache-dir --pre \
torch==2.5.0.dev20240710 \
torchvision==0.20.0.dev20240710 \
--index-url https://download.pytorch.org/whl/nightly/rocm6.1;; \
*) ;; esac
ENV LLVM_SYMBOLIZER_PATH=/opt/rocm/llvm/bin/llvm-symbolizer
ENV PATH=$PATH:/opt/rocm/bin:/libtorch/bin:
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib/:/libtorch/lib:
ENV CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/libtorch/include:/libtorch/include/torch/csrc/api/include/:/opt/rocm/include/:
# Install ROCm flash-attention
RUN if [ "$BUILD_FA" = "1" ]; then \
mkdir libs \
&& cd libs \
&& git clone https://github.com/ROCm/flash-attention.git \
&& cd flash-attention \
&& git checkout ${FA_BRANCH} \
&& git submodule update --init \
&& export GPU_ARCHS=${FA_GFX_ARCHS} \
&& if [ "$BASE_IMAGE" = "rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1" ]; then \
patch /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/hipify/hipify_python.py hipify_patch.patch; fi \
&& python3 setup.py install \
&& cd ..; \
ENV PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}
ENV CCACHE_DIR=/root/.cache/ccache
### AMD-SMI build stage
FROM base AS build_amdsmi
# Build amdsmi wheel always
RUN cd /opt/rocm/share/amd_smi \
&& python3 -m pip wheel . --wheel-dir=/install
### Flash-Attention wheel build stage
FROM base AS build_fa
ARG BUILD_FA
ARG TRY_FA_WHEEL
ARG FA_WHEEL_URL
ARG FA_GFX_ARCHS
ARG FA_BRANCH
# Build ROCm flash-attention wheel if `BUILD_FA = 1`
RUN --mount=type=cache,target=${CCACHE_DIR} \
if [ "$BUILD_FA" = "1" ]; then \
if [ "${TRY_FA_WHEEL}" = "1" ] && python3 -m pip install "${FA_WHEEL_URL}"; then \
# If a suitable wheel exists, we download it instead of building FA
mkdir -p /install && wget -N "${FA_WHEEL_URL}" -P /install; \
else \
mkdir -p libs \
&& cd libs \
&& git clone https://github.com/ROCm/flash-attention.git \
&& cd flash-attention \
&& git checkout "${FA_BRANCH}" \
&& git submodule update --init \
&& GPU_ARCHS="${FA_GFX_ARCHS}" python3 setup.py bdist_wheel --dist-dir=/install; \
fi; \
# Create an empty directory otherwise as later build stages expect one
else mkdir -p /install; \
fi
# Error related to odd state for numpy 1.20.3 where there is no METADATA etc, but an extra LICENSES_bundled.txt.
# Manually removed it so that later steps of numpy upgrade can continue
RUN if [ "$BASE_IMAGE" = "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" ]; then \
rm -rf /opt/conda/envs/py_3.9/lib/python3.9/site-packages/numpy-1.20.3.dist-info/; fi
# build triton
RUN if [ "$BUILD_TRITON" = "1" ]; then \
### Triton wheel build stage
FROM base AS build_triton
ARG BUILD_TRITON
ARG TRITON_BRANCH
# Build triton wheel if `BUILD_TRITON = 1`
RUN --mount=type=cache,target=${CCACHE_DIR} \
if [ "$BUILD_TRITON" = "1" ]; then \
mkdir -p libs \
&& cd libs \
&& pip uninstall -y triton \
&& git clone https://github.com/ROCm/triton.git \
&& cd triton/python \
&& pip3 install . \
&& cd ../..; \
&& git clone https://github.com/OpenAI/triton.git \
&& cd triton \
&& git checkout "${TRITON_BRANCH}" \
&& cd python \
&& python3 setup.py bdist_wheel --dist-dir=/install; \
# Create an empty directory otherwise as later build stages expect one
else mkdir -p /install; \
fi
WORKDIR /vllm-workspace
### Final vLLM build stage
FROM base AS final
# Import the vLLM development directory from the build context
COPY . .
#RUN python3 -m pip install pynvml # to be removed eventually
RUN python3 -m pip install --upgrade pip numba
# Package upgrades for useful functionality or to avoid dependency issues
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install --upgrade numba scipy huggingface-hub[cli]
# make sure punica kernels are built (for LoRA)
# Make sure punica kernels are built (for LoRA)
ENV VLLM_INSTALL_PUNICA_KERNELS=1
# Workaround for ray >= 2.10.0
ENV RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1
# Silences the HF Tokenizers warning
ENV TOKENIZERS_PARALLELISM=false
ENV VLLM_NCCL_SO_PATH=/opt/rocm/lib/librccl.so
RUN --mount=type=cache,target=${CCACHE_DIR} \
--mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -Ur requirements-rocm.txt \
&& case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \
*"rocm-6.1"*) \
# Bring in upgrades to HIP graph earlier than ROCm 6.2 for vLLM
wget -N https://github.com/ROCm/vllm/raw/fa78403/rocm_patch/libamdhip64.so.6 -P /opt/rocm/lib \
# Prevent interference if torch bundles its own HIP runtime
&& rm -f "$(python3 -c 'import torch; print(torch.__path__[0])')"/lib/libamdhip64.so* || true;; \
*) ;; esac \
&& python3 setup.py clean --all \
&& python3 setup.py develop
# Copy amdsmi wheel into final image
RUN --mount=type=bind,from=build_amdsmi,src=/install,target=/install \
mkdir -p libs \
&& cp /install/*.whl libs \
# Preemptively uninstall to avoid same-version no-installs
&& python3 -m pip uninstall -y amdsmi;
# Copy triton wheel(s) into final image if they were built
RUN --mount=type=bind,from=build_triton,src=/install,target=/install \
mkdir -p libs \
&& if ls /install/*.whl; then \
cp /install/*.whl libs \
# Preemptively uninstall to avoid same-version no-installs
&& python3 -m pip uninstall -y triton; fi
# Copy flash-attn wheel(s) into final image if they were built
RUN --mount=type=bind,from=build_fa,src=/install,target=/install \
mkdir -p libs \
&& if ls /install/*.whl; then \
cp /install/*.whl libs \
# Preemptively uninstall to avoid same-version no-installs
&& python3 -m pip uninstall -y flash-attn; fi
# Install wheels that were built to the final image
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -U -r requirements-rocm.txt \
&& patch /opt/rocm/include/hip/amd_detail/amd_hip_bf16.h ./rocm_patch/rocm_bf16.patch \
&& python3 setup.py install \
&& cp build/lib.linux-x86_64-cpython-39/vllm/_C.abi3.so vllm/ \
&& cp build/lib.linux-x86_64-cpython-39/vllm/_punica_C.abi3.so vllm/ \
&& cp build/lib.linux-x86_64-cpython-39/vllm/_moe_C.abi3.so vllm/ \
&& cd ..
if ls libs/*.whl; then \
python3 -m pip install libs/*.whl; fi
CMD ["/bin/bash"]

View File

@ -1,19 +1,20 @@
ARG NIGHTLY_DATE="20240601"
ARG NIGHTLY_DATE="20240713"
ARG BASE_IMAGE="us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.10_tpuvm_$NIGHTLY_DATE"
FROM $BASE_IMAGE
WORKDIR /workspace
COPY . /workspace/vllm
ENV VLLM_TARGET_DEVICE="tpu"
# Install aiohttp separately to avoid build errors.
RUN pip install aiohttp
# Install NumPy 1 instead of NumPy 2.
RUN pip install "numpy<2"
# Install the TPU and Pallas dependencies.
RUN pip install torch_xla[tpu] -f https://storage.googleapis.com/libtpu-releases/index.html
RUN pip install torch_xla[pallas] -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html
# Build vLLM.
COPY . /workspace/vllm
ENV VLLM_TARGET_DEVICE="tpu"
RUN cd /workspace/vllm && python setup.py develop
CMD ["/bin/bash"]

22
Dockerfile.xpu Normal file
View File

@ -0,0 +1,22 @@
FROM intel/oneapi-basekit:2024.1.0-devel-ubuntu20.04
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \
echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \
chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \
rm /etc/apt/sources.list.d/intel-graphics.list && \
wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \
echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
chmod 644 /usr/share/keyrings/intel-graphics.gpg
RUN apt-get update -y \
&& apt-get install -y curl libicu70 lsb-release git wget vim numactl python3 python3-pip
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
RUN pip install -v -r requirements-xpu.txt
RUN VLLM_TARGET_DEVICE=xpu python3 setup.py install
CMD ["/bin/bash"]

View File

@ -16,27 +16,14 @@ Easy, fast, and cheap LLM serving for everyone
---
**Ray Summit CPF is Open (June 4th to June 20th)!**
There will be a track for vLLM at the Ray Summit (09/30-10/02, SF) this year!
If you have cool projects related to vLLM or LLM inference, we would love to see your proposals.
This will be a great chance for everyone in the community to get together and learn.
Please submit your proposal [here](https://raysummit.anyscale.com/flow/anyscale/raysummit2024/landing/page/eventsite)
---
*Latest News* 🔥
- [2024/07] We hosted [the fifth vLLM meetup](https://lu.ma/lp0gyjqr) with AWS! Please find the meetup slides [here](https://docs.google.com/presentation/d/1RgUD8aCfcHocghoP3zmXzck9vX3RCI9yfUAB2Bbcl4Y/edit?usp=sharing).
- [2024/07] In partnership with Meta, vLLM officially supports Llama 3.1 with FP8 quantization and pipeline parallelism! Please check out our blog post [here](https://blog.vllm.ai/2024/07/23/llama31.html).
- [2024/06] We hosted [the fourth vLLM meetup](https://lu.ma/agivllm) with Cloudflare and BentoML! Please find the meetup slides [here](https://docs.google.com/presentation/d/1iJ8o7V2bQEi0BFEljLTwc5G1S10_Rhv3beed5oB0NJ4/edit?usp=sharing).
- [2024/04] We hosted [the third vLLM meetup](https://robloxandvllmmeetup2024.splashthat.com/) with Roblox! Please find the meetup slides [here](https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing).
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2024/01] Added ROCm 6.0 support to vLLM.
- [2023/12] Added ROCm 5.7 support to vLLM.
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
- [2023/09] We created our [Discord server](https://discord.gg/jz7wjKhh6g)! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
- [2023/09] We released our [PagedAttention paper](https://arxiv.org/abs/2309.06180) on arXiv!
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) with IBM! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) with a16z! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
- [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!
- [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click [example](https://github.com/skypilot-org/skypilot/blob/master/llm/vllm) to start the vLLM demo, and the [blog post](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/) for the story behind vLLM development on the clouds.
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
---
@ -52,14 +39,16 @@ vLLM is fast with:
- Quantization: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [SqueezeLLM](https://arxiv.org/abs/2306.07629), FP8 KV Cache
- Optimized CUDA kernels
**Performance benchmark**: We include a [performance benchmark](https://buildkite.com/vllm/performance-benchmark/builds/4068) that compares the performance of vllm against other LLM serving engines ([TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM), [text-generation-inference](https://github.com/huggingface/text-generation-inference) and [lmdeploy](https://github.com/InternLM/lmdeploy)).
vLLM is flexible and easy to use with:
- Seamless integration with popular Hugging Face models
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
- Tensor parallelism support for distributed inference
- Tensor parallelism and pipeline parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
- Support NVIDIA GPUs, AMD GPUs, and Intel CPUs
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs
- (Experimental) Prefix caching support
- (Experimental) Multi-lora support
@ -103,6 +92,7 @@ vLLM is a community project. Our compute resources for development and testing a
- Databricks
- DeepInfra
- Dropbox
- Google Cloud
- Lambda Lab
- NVIDIA
- Replicate
@ -112,6 +102,7 @@ vLLM is a community project. Our compute resources for development and testing a
- Trainy
- UC Berkeley
- UC San Diego
- ZhenFund
We also have an official fundraising venue through [OpenCollective](https://opencollective.com/vllm). We plan to use the fund to support the development, maintenance, and adoption of vLLM.

View File

@ -4,10 +4,13 @@ import sys
import time
import traceback
from dataclasses import dataclass, field
from typing import List, Optional
from typing import List, Optional, Union
import aiohttp
import huggingface_hub.constants
from tqdm.asyncio import tqdm
from transformers import (AutoTokenizer, PreTrainedTokenizer,
PreTrainedTokenizerFast)
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
@ -222,8 +225,8 @@ async def async_request_openai_completions(
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(
"v1/completions"
), "OpenAI Completions API URL must end with 'v1/completions'."
"completions"
), "OpenAI Completions API URL must end with 'completions'."
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
@ -262,6 +265,9 @@ async def async_request_openai_completions(
else:
data = json.loads(chunk)
# NOTE: Some completion API might have a last
# usage summary response without a token so we
# want to check a token was generated
if data["choices"][0]["text"]:
timestamp = time.perf_counter()
# First token
@ -270,12 +276,8 @@ async def async_request_openai_completions(
output.ttft = ttft
# Decoding phase
# NOTE: Some completion API might have a last
# usage summary response without a token so we
# do not want to include as inter-token-latency
elif data.get("usage", None) is None:
output.itl.append(timestamp -
most_recent_timestamp)
output.itl.append(timestamp -
most_recent_timestamp)
most_recent_timestamp = timestamp
generated_text += data["choices"][0]["text"]
@ -302,8 +304,8 @@ async def async_request_openai_chat_completions(
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(
"v1/chat/completions"
), "OpenAI Chat Completions API URL must end with 'v1/chat/completions'."
"chat/completions"
), "OpenAI Chat Completions API URL must end with 'chat/completions'."
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
@ -388,6 +390,30 @@ def remove_prefix(text: str, prefix: str) -> str:
return text
def get_model(pretrained_model_name_or_path: str) -> str:
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
from modelscope import snapshot_download
model_path = snapshot_download(
model_id=pretrained_model_name_or_path,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
return model_path
return pretrained_model_name_or_path
def get_tokenizer(
pretrained_model_name_or_path: str, trust_remote_code: bool
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
if pretrained_model_name_or_path is not None and not os.path.exists(
pretrained_model_name_or_path):
pretrained_model_name_or_path = get_model(
pretrained_model_name_or_path)
return AutoTokenizer.from_pretrained(pretrained_model_name_or_path,
trust_remote_code=trust_remote_code)
ASYNC_REQUEST_FUNCS = {
"tgi": async_request_tgi,
"vllm": async_request_openai_completions,
@ -396,4 +422,5 @@ ASYNC_REQUEST_FUNCS = {
"openai": async_request_openai_completions,
"openai-chat": async_request_openai_chat_completions,
"tensorrt-llm": async_request_trt_llm,
"scalellm": async_request_openai_completions,
}

View File

@ -10,8 +10,10 @@ import torch
from tqdm import tqdm
from vllm import LLM, SamplingParams
from vllm.inputs import PromptStrictInputs
from vllm.engine.arg_utils import EngineArgs
from vllm.inputs import PromptInputs
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.utils import FlexibleArgumentParser
def main(args: argparse.Namespace):
@ -19,25 +21,33 @@ def main(args: argparse.Namespace):
# NOTE(woosuk): If the request cannot be processed in a single batch,
# the engine will automatically process the request in multiple batches.
llm = LLM(model=args.model,
speculative_model=args.speculative_model,
num_speculative_tokens=args.num_speculative_tokens,
tokenizer=args.tokenizer,
quantization=args.quantization,
tensor_parallel_size=args.tensor_parallel_size,
trust_remote_code=args.trust_remote_code,
dtype=args.dtype,
enforce_eager=args.enforce_eager,
kv_cache_dtype=args.kv_cache_dtype,
quantization_param_path=args.quantization_param_path,
device=args.device,
ray_workers_use_nsight=args.ray_workers_use_nsight,
use_v2_block_manager=args.use_v2_block_manager,
enable_chunked_prefill=args.enable_chunked_prefill,
download_dir=args.download_dir,
block_size=args.block_size,
gpu_memory_utilization=args.gpu_memory_utilization,
distributed_executor_backend=args.distributed_executor_backend)
llm = LLM(
model=args.model,
speculative_model=args.speculative_model,
num_speculative_tokens=args.num_speculative_tokens,
speculative_draft_tensor_parallel_size=\
args.speculative_draft_tensor_parallel_size,
tokenizer=args.tokenizer,
quantization=args.quantization,
tensor_parallel_size=args.tensor_parallel_size,
trust_remote_code=args.trust_remote_code,
dtype=args.dtype,
max_model_len=args.max_model_len,
enforce_eager=args.enforce_eager,
kv_cache_dtype=args.kv_cache_dtype,
quantization_param_path=args.quantization_param_path,
device=args.device,
ray_workers_use_nsight=args.ray_workers_use_nsight,
use_v2_block_manager=args.use_v2_block_manager,
enable_chunked_prefill=args.enable_chunked_prefill,
download_dir=args.download_dir,
block_size=args.block_size,
gpu_memory_utilization=args.gpu_memory_utilization,
load_format=args.load_format,
distributed_executor_backend=args.distributed_executor_backend,
otlp_traces_endpoint=args.otlp_traces_endpoint,
enable_prefix_caching=args.enable_prefix_caching,
)
sampling_params = SamplingParams(
n=args.n,
@ -51,7 +61,7 @@ def main(args: argparse.Namespace):
dummy_prompt_token_ids = np.random.randint(10000,
size=(args.batch_size,
args.input_len))
dummy_inputs: List[PromptStrictInputs] = [{
dummy_inputs: List[PromptInputs] = [{
"prompt_token_ids": batch
} for batch in dummy_prompt_token_ids.tolist()]
@ -96,7 +106,7 @@ def main(args: argparse.Namespace):
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
latencies.append(run_to_completion(profile_dir=None))
latencies = np.array(latencies)
percentages = [10, 25, 50, 75, 90]
percentages = [10, 25, 50, 75, 90, 99]
percentiles = np.percentile(latencies, percentages)
print(f'Avg latency: {np.mean(latencies)} seconds')
for percentage, percentile in zip(percentages, percentiles):
@ -114,12 +124,16 @@ def main(args: argparse.Namespace):
if __name__ == '__main__':
parser = argparse.ArgumentParser(
parser = FlexibleArgumentParser(
description='Benchmark the latency of processing a single batch of '
'requests till completion.')
parser.add_argument('--model', type=str, default='facebook/opt-125m')
parser.add_argument('--speculative-model', type=str, default=None)
parser.add_argument('--num-speculative-tokens', type=int, default=None)
parser.add_argument('--speculative-draft-tensor-parallel-size',
'-spec-draft-tp',
type=int,
default=None)
parser.add_argument('--tokenizer', type=str, default=None)
parser.add_argument('--quantization',
'-q',
@ -145,6 +159,12 @@ if __name__ == '__main__':
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
parser.add_argument(
'--max-model-len',
type=int,
default=None,
help='Maximum length of a sequence (including prompt and output). '
'If None, will be derived from the model.')
parser.add_argument(
'--dtype',
type=str,
@ -188,9 +208,10 @@ if __name__ == '__main__':
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda", "cpu", "tpu"],
help='device type for vLLM execution, supporting CUDA and CPU.')
default="auto",
choices=["auto", "cuda", "cpu", "openvino", "tpu", "xpu"],
help='device type for vLLM execution, supporting CUDA, OpenVINO and '
'CPU.')
parser.add_argument('--block-size',
type=int,
default=16,
@ -200,6 +221,9 @@ if __name__ == '__main__':
action='store_true',
help='If True, the prefill requests can be chunked based on the '
'max_num_batched_tokens')
parser.add_argument("--enable-prefix-caching",
action='store_true',
help="Enable automatic prefix caching")
parser.add_argument('--use-v2-block-manager', action='store_true')
parser.add_argument(
"--ray-workers-use-nsight",
@ -222,6 +246,29 @@ if __name__ == '__main__':
help='the fraction of GPU memory to be used for '
'the model executor, which can range from 0 to 1.'
'If unspecified, will use the default value of 0.9.')
parser.add_argument(
'--load-format',
type=str,
default=EngineArgs.load_format,
choices=[
'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer',
'bitsandbytes'
],
help='The format of the model weights to load.\n\n'
'* "auto" will try to load the weights in the safetensors format '
'and fall back to the pytorch bin format if safetensors format '
'is not available.\n'
'* "pt" will load the weights in the pytorch bin format.\n'
'* "safetensors" will load the weights in the safetensors format.\n'
'* "npcache" will load the weights in pytorch format and store '
'a numpy cache to speed up the loading.\n'
'* "dummy" will initialize the weights with random values, '
'which is mainly for profiling.\n'
'* "tensorizer" will load the weights using tensorizer from '
'CoreWeave. See the Tensorize vLLM Model script in the Examples'
'section for more information.\n'
'* "bitsandbytes" will load the weights using bitsandbytes '
'quantization.\n')
parser.add_argument(
'--distributed-executor-backend',
choices=['ray', 'mp'],
@ -229,5 +276,10 @@ if __name__ == '__main__':
help='Backend to use for distributed serving. When more than 1 GPU '
'is used, will be automatically set to "ray" if installed '
'or "mp" (multiprocessing) otherwise.')
parser.add_argument(
'--otlp-traces-endpoint',
type=str,
default=None,
help='Target URL to which OpenTelemetry traces will be sent.')
args = parser.parse_args()
main(args)

View File

@ -1,7 +1,7 @@
import argparse
import time
from vllm import LLM, SamplingParams
from vllm.utils import FlexibleArgumentParser
PROMPT = "You are a helpful assistant in recognizes the content of tables in markdown format. Here is a table as fellows. You need to answer my question about the table.\n# Table\n|Opening|Opening|Sl. No.|Film|Cast|Director|Music Director|Notes|\n|----|----|----|----|----|----|----|----|\n|J A N|9|1|Agni Pushpam|Jayabharathi, Kamalahasan|Jeassy|M. K. Arjunan||\n|J A N|16|2|Priyamvada|Mohan Sharma, Lakshmi, KPAC Lalitha|K. S. Sethumadhavan|V. Dakshinamoorthy||\n|J A N|23|3|Yakshagaanam|Madhu, Sheela|Sheela|M. S. Viswanathan||\n|J A N|30|4|Paalkkadal|Sheela, Sharada|T. K. Prasad|A. T. Ummer||\n|F E B|5|5|Amma|Madhu, Srividya|M. Krishnan Nair|M. K. Arjunan||\n|F E B|13|6|Appooppan|Thikkurissi Sukumaran Nair, Kamal Haasan|P. Bhaskaran|M. S. Baburaj||\n|F E B|20|7|Srishti|Chowalloor Krishnankutty, Ravi Alummoodu|K. T. Muhammad|M. S. Baburaj||\n|F E B|20|8|Vanadevatha|Prem Nazir, Madhubala|Yusufali Kechery|G. Devarajan||\n|F E B|27|9|Samasya|Madhu, Kamalahaasan|K. Thankappan|Shyam||\n|F E B|27|10|Yudhabhoomi|K. P. Ummer, Vidhubala|Crossbelt Mani|R. K. Shekhar||\n|M A R|5|11|Seemantha Puthran|Prem Nazir, Jayabharathi|A. B. Raj|M. K. Arjunan||\n|M A R|12|12|Swapnadanam|Rani Chandra, Dr. Mohandas|K. G. George|Bhaskar Chandavarkar||\n|M A R|19|13|Thulavarsham|Prem Nazir, sreedevi, Sudheer|N. Sankaran Nair|V. Dakshinamoorthy||\n|M A R|20|14|Aruthu|Kaviyoor Ponnamma, Kamalahasan|Ravi|G. Devarajan||\n|M A R|26|15|Swimming Pool|Kamal Haasan, M. G. Soman|J. Sasikumar|M. K. Arjunan||\n\n# Question\nWhat' s the content in the (1,1) cells\n" # noqa: E501
@ -44,7 +44,7 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser(
parser = FlexibleArgumentParser(
description='Benchmark the performance with or without automatic '
'prefix caching.')
parser.add_argument('--model',

View File

@ -2,8 +2,8 @@
On the server side, run one of the following commands:
vLLM OpenAI API server
python -m vllm.entrypoints.openai.api_server \
--model <your_model> --swap-space 16 \
vllm serve <your_model> \
--swap-space 16 \
--disable-log-requests
(TGI backend)
@ -17,7 +17,7 @@ On the client side, run:
--dataset-path <path to dataset> \
--request-rate <request_rate> \ # By default <request_rate> is inf
--num-prompts <num_prompts> # By default <num_prompts> is 1000
when using tgi backend, add
--endpoint /generate_stream
to the end of the command above.
@ -31,7 +31,7 @@ import time
import warnings
from dataclasses import dataclass
from datetime import datetime
from typing import AsyncGenerator, List, Optional, Tuple
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple
import numpy as np
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
@ -39,7 +39,15 @@ from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from vllm.transformers_utils.tokenizer import get_tokenizer
try:
from vllm.transformers_utils.tokenizer import get_tokenizer
except ImportError:
from backend_request_func import get_tokenizer
try:
from vllm.utils import FlexibleArgumentParser
except ImportError:
from argparse import ArgumentParser as FlexibleArgumentParser
@dataclass
@ -52,12 +60,15 @@ class BenchmarkMetrics:
output_throughput: float
mean_ttft_ms: float
median_ttft_ms: float
std_ttft_ms: float
p99_ttft_ms: float
mean_tpot_ms: float
median_tpot_ms: float
std_tpot_ms: float
p99_tpot_ms: float
mean_itl_ms: float
median_itl_ms: float
std_itl_ms: float
p99_itl_ms: float
@ -69,7 +80,6 @@ def sample_sharegpt_requests(
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
@ -177,6 +187,31 @@ def sample_sonnet_requests(
return sampled_requests
def sample_random_requests(
input_len: int, output_len: int, num_prompts: int, range_ratio: float,
tokenizer: PreTrainedTokenizerBase) -> List[Tuple[str, int, int]]:
input_lens = np.random.randint(
int(input_len * range_ratio),
input_len + 1,
size=num_prompts,
)
output_lens = np.random.randint(
int(output_len * range_ratio),
output_len + 1,
size=num_prompts,
)
offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
input_requests = []
for i in range(num_prompts):
prompt = tokenizer.decode([(offsets[i] + i + j) % tokenizer.vocab_size
for j in range(input_lens[i])])
input_requests.append(
(prompt, int(input_lens[i]), int(output_lens[i])))
return input_requests
async def get_request(
input_requests: List[Tuple[str, int, int]],
request_rate: float,
@ -188,6 +223,7 @@ async def get_request(
if request_rate == float("inf"):
# If the request rate is infinity, then we don't need to wait.
continue
# Sample the request interval from the exponential distribution.
interval = np.random.exponential(1.0 / request_rate)
# The next request will be sent after the interval.
@ -200,18 +236,18 @@ def calculate_metrics(
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
) -> Tuple[BenchmarkMetrics, List[int]]:
actual_output_lens = []
actual_output_lens: List[int] = []
total_input = 0
completed = 0
itls = []
tpots = []
ttfts = []
itls: List[float] = []
tpots: List[float] = []
ttfts: List[float] = []
for i in range(len(outputs)):
if outputs[i].success:
# We use the tokenizer to count the number of output tokens for all
# serving backends instead of looking at len(outputs[i].itl) since
# multiple output tokens may be bundled together
# Note: this may inflate the output token count slightly
# Note : this may inflate the output token count slightly
output_len = len(
tokenizer(outputs[i].generated_text,
add_special_tokens=False).input_ids)
@ -241,12 +277,15 @@ def calculate_metrics(
mean_ttft_ms=np.mean(ttfts or 0) *
1000, # ttfts is empty if streaming is not supported by backend
median_ttft_ms=np.median(ttfts or 0) * 1000,
std_ttft_ms=np.std(ttfts or 0) * 1000,
p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
mean_tpot_ms=np.mean(tpots or 0) * 1000,
median_tpot_ms=np.median(tpots or 0) * 1000,
std_tpot_ms=np.std(tpots or 0) * 1000,
p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
mean_itl_ms=np.mean(itls or 0) * 1000,
median_itl_ms=np.median(itls or 0) * 1000,
std_itl_ms=np.std(itls or 0) * 1000,
p99_itl_ms=np.percentile(itls or 0, 99) * 1000,
)
@ -265,7 +304,7 @@ async def benchmark(
disable_tqdm: bool,
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS.get(backend)
request_func = ASYNC_REQUEST_FUNCS[backend]
else:
raise ValueError(f"Unknown backend: {backend}")
@ -292,7 +331,7 @@ async def benchmark(
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
benchmark_start_time = time.perf_counter()
tasks = []
tasks: List[asyncio.Task] = []
async for request in get_request(input_requests, request_rate):
prompt, prompt_len, output_len = request
request_func_input = RequestFuncInput(
@ -310,7 +349,7 @@ async def benchmark(
pbar=pbar)))
outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)
if not disable_tqdm:
if pbar is not None:
pbar.close()
benchmark_duration = time.perf_counter() - benchmark_start_time
@ -363,12 +402,15 @@ async def benchmark(
"output_throughput": metrics.output_throughput,
"mean_ttft_ms": metrics.mean_ttft_ms,
"median_ttft_ms": metrics.median_ttft_ms,
"std_ttft_ms": metrics.std_ttft_ms,
"p99_ttft_ms": metrics.p99_ttft_ms,
"mean_tpot_ms": metrics.mean_tpot_ms,
"median_tpot_ms": metrics.median_tpot_ms,
"std_tpot_ms": metrics.std_tpot_ms,
"p99_tpot_ms": metrics.p99_tpot_ms,
"mean_itl_ms": metrics.mean_itl_ms,
"median_itl_ms": metrics.median_itl_ms,
"std_itl_ms": metrics.std_itl_ms,
"p99_itl_ms": metrics.p99_itl_ms,
"input_lens": [output.prompt_len for output in outputs],
"output_lens": actual_output_lens,
@ -448,6 +490,15 @@ def main(args: argparse.Namespace):
for prompt, prompt_formatted, prompt_len,
output_len in input_requests]
elif args.dataset_name == "random":
input_requests = sample_random_requests(
input_len=args.random_input_len,
output_len=args.random_output_len,
num_prompts=args.num_prompts,
range_ratio=args.random_range_ratio,
tokenizer=tokenizer,
)
else:
raise ValueError(f"Unknown dataset: {args.dataset_name}")
@ -466,7 +517,7 @@ def main(args: argparse.Namespace):
# Save config and results to json
if args.save_result:
result_json = {}
result_json: Dict[str, Any] = {}
# Setup
current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
@ -499,6 +550,8 @@ def main(args: argparse.Namespace):
# Save to file
base_model_id = model_id.split("/")[-1]
file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json" #noqa
if args.result_filename:
file_name = args.result_filename
if args.result_dir:
file_name = os.path.join(args.result_dir, file_name)
with open(file_name, "w") as outfile:
@ -506,7 +559,7 @@ def main(args: argparse.Namespace):
if __name__ == "__main__":
parser = argparse.ArgumentParser(
parser = FlexibleArgumentParser(
description="Benchmark the online serving throughput.")
parser.add_argument(
"--backend",
@ -539,7 +592,7 @@ if __name__ == "__main__":
"--dataset-name",
type=str,
default="sharegpt",
choices=["sharegpt", "sonnet"],
choices=["sharegpt", "sonnet", "random"],
help="Name of the dataset to benchmark on.",
)
parser.add_argument("--dataset-path",
@ -556,7 +609,7 @@ if __name__ == "__main__":
"--tokenizer",
type=str,
help=
"Name or path of the tokenizer, if not using the default tokenizer.",
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
)
parser.add_argument(
"--best-of",
@ -599,6 +652,27 @@ if __name__ == "__main__":
help=
"Number of prefix tokens per request, used only for sonnet dataset.",
)
parser.add_argument(
"--random-input-len",
type=int,
default=1024,
help=
"Number of input tokens per request, used only for random sampling.",
)
parser.add_argument(
"--random-output-len",
type=int,
default=128,
help=
"Number of output tokens per request, used only for random sampling.",
)
parser.add_argument(
"--random-range-ratio",
type=float,
default=1.0,
help="Range of sampled ratio of input/output length, "
"used only for random sampling.",
)
parser.add_argument(
"--request-rate",
type=float,
@ -639,6 +713,15 @@ if __name__ == "__main__":
help="Specify directory to save benchmark json results."
"If not specified, results are saved in the current directory.",
)
parser.add_argument(
"--result-filename",
type=str,
default=None,
help="Specify the filename to save benchmark json results."
"If not specified, results will be saved in "
"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"
" format.",
)
args = parser.parse_args()
main(args)

View File

@ -10,7 +10,9 @@ from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizerBase)
from vllm.engine.arg_utils import EngineArgs
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.utils import FlexibleArgumentParser
def sample_requests(
@ -81,6 +83,7 @@ def run_vllm(
distributed_executor_backend: Optional[str],
gpu_memory_utilization: float = 0.9,
download_dir: Optional[str] = None,
load_format: str = EngineArgs.load_format,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(
@ -102,11 +105,12 @@ def run_vllm(
enable_chunked_prefill=enable_chunked_prefill,
max_num_batched_tokens=max_num_batched_tokens,
distributed_executor_backend=distributed_executor_backend,
load_format=load_format,
)
# Add the requests to the engine.
prompts = []
sampling_params = []
prompts: List[str] = []
sampling_params: List[SamplingParams] = []
for prompt, _, output_len in requests:
prompts.append(prompt)
sampling_params.append(
@ -228,7 +232,7 @@ def main(args: argparse.Namespace):
args.quantization_param_path, args.device,
args.enable_prefix_caching, args.enable_chunked_prefill,
args.max_num_batched_tokens, args.distributed_executor_backend,
args.gpu_memory_utilization, args.download_dir)
args.gpu_memory_utilization, args.download_dir, args.load_format)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
@ -258,7 +262,7 @@ def main(args: argparse.Namespace):
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Benchmark the throughput.")
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf", "mii"],
@ -345,9 +349,10 @@ if __name__ == "__main__":
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda", "cpu", "tpu"],
help='device type for vLLM execution, supporting CUDA and CPU.')
default="auto",
choices=["auto", "cuda", "cpu", "openvino", "tpu", "xpu"],
help='device type for vLLM execution, supporting CUDA, OpenVINO and '
'CPU.')
parser.add_argument(
"--enable-prefix-caching",
action='store_true',
@ -377,6 +382,29 @@ if __name__ == "__main__":
help='Backend to use for distributed serving. When more than 1 GPU '
'is used, will be automatically set to "ray" if installed '
'or "mp" (multiprocessing) otherwise.')
parser.add_argument(
'--load-format',
type=str,
default=EngineArgs.load_format,
choices=[
'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer',
'bitsandbytes'
],
help='The format of the model weights to load.\n\n'
'* "auto" will try to load the weights in the safetensors format '
'and fall back to the pytorch bin format if safetensors format '
'is not available.\n'
'* "pt" will load the weights in the pytorch bin format.\n'
'* "safetensors" will load the weights in the safetensors format.\n'
'* "npcache" will load the weights in pytorch format and store '
'a numpy cache to speed up the loading.\n'
'* "dummy" will initialize the weights with random values, '
'which is mainly for profiling.\n'
'* "tensorizer" will load the weights using tensorizer from '
'CoreWeave. See the Tensorize vLLM Model script in the Examples'
'section for more information.\n'
'* "bitsandbytes" will load the weights using bitsandbytes '
'quantization.\n')
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model

View File

@ -11,6 +11,7 @@ from torch.utils.benchmark import Measurement as TMeasurement
from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())[1:]
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
@ -19,18 +20,18 @@ DEFAULT_TP_SIZES = [1]
# helpers
def to_fp8(tensor: torch.tensor) -> torch.tensor:
def to_fp8(tensor: torch.Tensor) -> torch.Tensor:
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
def to_int8(tensor: torch.tensor) -> torch.tensor:
def to_int8(tensor: torch.Tensor) -> torch.Tensor:
return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8)
def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
k: int) -> Tuple[torch.tensor, torch.tensor]:
k: int) -> Tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device='cuda') * 5
b = torch.randn((n, k), device='cuda').t() * 5
@ -46,15 +47,15 @@ def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
# impl
def pytorch_i8_impl(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor,
scale_b: torch.tensor,
out_dtype: torch.dtype) -> torch.tensor:
def pytorch_mm_impl(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: torch.dtype) -> torch.Tensor:
return torch.mm(a, b)
def pytorch_fp8_impl(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor,
scale_b: torch.tensor,
out_dtype: torch.dtype) -> torch.tensor:
def pytorch_fp8_impl(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: torch.dtype) -> torch.Tensor:
return torch._scaled_mm(a,
b,
scale_a=scale_a,
@ -62,9 +63,9 @@ def pytorch_fp8_impl(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor,
out_dtype=out_dtype)
def pytorch_fp8_impl_fast_accum(a: torch.tensor, b: torch.tensor,
scale_a: torch.tensor, scale_b: torch.tensor,
out_dtype: torch.dtype) -> torch.tensor:
def pytorch_fp8_impl_fast_accum(a: torch.Tensor, b: torch.Tensor,
scale_a: torch.Tensor, scale_b: torch.Tensor,
out_dtype: torch.dtype) -> torch.Tensor:
return torch._scaled_mm(a,
b,
scale_a=scale_a,
@ -73,15 +74,15 @@ def pytorch_fp8_impl_fast_accum(a: torch.tensor, b: torch.tensor,
use_fast_accum=True)
def cutlass_impl(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor,
scale_b: torch.tensor,
out_dtype: torch.dtype) -> torch.tensor:
def cutlass_impl(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: torch.dtype) -> torch.Tensor:
return ops.cutlass_scaled_mm(a, b, scale_a, scale_b, out_dtype=out_dtype)
# bench
def bench_fn(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor,
scale_b: torch.tensor, out_dtype: torch.dtype, label: str,
def bench_fn(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor,
scale_b: torch.Tensor, out_dtype: torch.dtype, label: str,
sub_label: str, fn: Callable, description: str) -> TMeasurement:
min_run_time = 1
@ -115,14 +116,13 @@ def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
timers.append(
bench_fn(a.to(dtype=torch.bfloat16, device="cuda"),
b.to(dtype=torch.bfloat16, device="cuda"), scale_a, scale_b,
torch.bfloat16, label, sub_label, pytorch_i8_impl,
torch.bfloat16, label, sub_label, pytorch_mm_impl,
"pytorch_bf16_bf16_bf16_matmul-no-scales"))
# cutlass impl
timers.append(
bench_fn(a, b, scale_a.to(device="cpu"), scale_b.to(device="cpu"),
torch.bfloat16, label, sub_label, cutlass_impl,
"cutlass_i8_i8_bf16_scaled_mm"))
bench_fn(a, b, scale_a, scale_b, torch.bfloat16, label, sub_label,
cutlass_impl, "cutlass_i8_i8_bf16_scaled_mm"))
return timers
@ -136,6 +136,13 @@ def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
timers = []
# pytorch impl w. bf16
timers.append(
bench_fn(a.to(dtype=torch.bfloat16, device="cuda"),
b.to(dtype=torch.bfloat16, device="cuda"), scale_a, scale_b,
torch.bfloat16, label, sub_label, pytorch_mm_impl,
"pytorch_bf16_bf16_bf16_matmul-no-scales"))
# pytorch impl: bf16 output, without fp8 fast accum
timers.append(
bench_fn(a, b, scale_a, scale_b, torch.bfloat16, label, sub_label,
@ -160,14 +167,12 @@ def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
# cutlass impl: bf16 output
timers.append(
bench_fn(a, b, scale_a.to(device="cpu"), scale_b.to(device="cpu"),
torch.bfloat16, label, sub_label, cutlass_impl,
"cutlass_fp8_fp8_bf16_scaled_mm"))
bench_fn(a, b, scale_a, scale_b, torch.bfloat16, label, sub_label,
cutlass_impl, "cutlass_fp8_fp8_bf16_scaled_mm"))
# cutlass impl: fp16 output
timers.append(
bench_fn(a, b, scale_a.to(device="cpu"), scale_b.to(device="cpu"),
torch.float16, label, sub_label, cutlass_impl,
"cutlass_fp8_fp8_fp16_scaled_mm"))
bench_fn(a, b, scale_a, scale_b, torch.float16, label, sub_label,
cutlass_impl, "cutlass_fp8_fp8_fp16_scaled_mm"))
return timers
@ -289,7 +294,7 @@ if __name__ == '__main__':
return torch.float8_e4m3fn
raise ValueError("unsupported dtype")
parser = argparse.ArgumentParser(
parser = FlexibleArgumentParser(
description="""
Benchmark Cutlass GEMM.

View File

@ -22,6 +22,12 @@ WEIGHT_SHAPES = {
([4096, 22016], 1),
([11008, 4096], 0),
],
"meta-llama/Llama-3-8b": [
([4096, 6144], 1),
([4096, 4096], 0),
([4096, 28672], 1),
([14336, 4096], 0),
],
"meta-llama/Llama-2-13b-hf": [
([5120, 15360], 1),
([5120, 5120], 0),

View File

@ -1,4 +1,3 @@
import argparse
import os
import sys
from typing import Optional
@ -10,6 +9,7 @@ from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.aqlm import (
dequantize_weight, generic_dequantize_gemm, get_int_dtype,
optimized_dequantize_gemm)
from vllm.utils import FlexibleArgumentParser
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
@ -86,9 +86,9 @@ def dequant_no_scale(
# Compare the optimized 1x16 and 2x8 cuda decompression/dequant kernels against
# the generic pytorch version.
# Just visual comparison.
def dequant_test(k: int, parts: torch.tensor, nbooks: int, bits: int) -> None:
def dequant_test(k: int, parts: torch.Tensor, nbooks: int, bits: int) -> None:
n = parts.sum().item()
n = int(parts.sum().item())
device = torch.device('cuda:0')
@ -137,7 +137,7 @@ def dequant_test(k: int, parts: torch.tensor, nbooks: int, bits: int) -> None:
def main():
parser = argparse.ArgumentParser(description="Benchmark aqlm performance.")
parser = FlexibleArgumentParser(description="Benchmark aqlm performance.")
# Add arguments
parser.add_argument("--nbooks",
@ -204,7 +204,7 @@ def main():
sys.stdout = sys.__stdout__
def run_grid(m: int, k: int, parts: torch.tensor, nbooks: int, bits: int,
def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int,
methods):
# I didn't see visible improvements from increasing these, but feel free :)
@ -252,10 +252,10 @@ def run_grid(m: int, k: int, parts: torch.tensor, nbooks: int, bits: int,
print('')
def run_timing(num_calls: int, m: int, k: int, parts: torch.tensor,
def run_timing(num_calls: int, m: int, k: int, parts: torch.Tensor,
nbooks: int, bits: int, method) -> float:
n = parts.sum().item()
n = int(parts.sum().item())
device = torch.device('cuda:0')

View File

@ -1,20 +1,23 @@
import argparse
from typing import List
import torch
import torch.utils.benchmark as benchmark
from benchmark_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.gptq_marlin import (
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_SUPPORTED_NUM_BITS)
from vllm.model_executor.layers.quantization.gptq_marlin_24 import (
GPTQ_MARLIN_24_MAX_PARALLEL, GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_24_SUPPORTED_NUM_BITS)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
MarlinWorkspace, marlin_24_quantize, marlin_quantize)
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_SUPPORTED_NUM_BITS)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
MarlinWorkspace, marlin_quantize)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test_24 import (
marlin_24_quantize)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
gptq_pack, quantize_weights, sort_weights)
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = ["meta-llama/Llama-2-7b-hf/TP1"]
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
@ -23,8 +26,9 @@ ACT_ORDER_OPTS = [False, True]
K_FULL_OPTS = [False, True]
def bench_run(results, model, act_order, is_k_full, num_bits, group_size,
size_m, size_k, size_n):
def bench_run(results: List[benchmark.Measurement], model: str,
act_order: bool, is_k_full: bool, num_bits: int, group_size: int,
size_m: int, size_k: int, size_n: int):
label = "Quant Matmul"
sub_label = ("{}, act={} k_full={}, b={}, g={}, "
@ -156,7 +160,7 @@ def main(args):
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
results = []
results: List[benchmark.Measurement] = []
for model in args.models:
for layer in WEIGHT_SHAPES[model]:
@ -209,7 +213,7 @@ def main(args):
# python benchmark_marlin.py --batch-sizes 1 16 32 --limit-k 4096 --limit-n 4096 --limit-group-size 128 --limit-num-bits 4 --limit-act-order 0 --limit-k-full 1 # noqa E501
#
if __name__ == "__main__":
parser = argparse.ArgumentParser(
parser = FlexibleArgumentParser(
description="Benchmark Marlin across specified models/shapes/batches")
parser.add_argument(
"--models",

View File

@ -1,7 +1,7 @@
import argparse
import time
from datetime import datetime
from typing import Any, Dict, List, Tuple
from typing import Any, Dict, List, Tuple, TypedDict
import ray
import torch
@ -10,10 +10,20 @@ from ray.experimental.tqdm_ray import tqdm
from transformers import AutoConfig
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.utils import FlexibleArgumentParser
class BenchmarkConfig(TypedDict):
BLOCK_SIZE_M: int
BLOCK_SIZE_N: int
BLOCK_SIZE_K: int
GROUP_SIZE_M: int
num_warps: int
num_stages: int
def benchmark_config(
config: Dict[str, int],
config: BenchmarkConfig,
num_tokens: int,
num_experts: int,
shard_intermediate_size: int,
@ -92,7 +102,7 @@ def benchmark_config(
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
latencies = []
latencies: List[float] = []
for i in range(num_iters):
prepare(i)
torch.cuda.synchronize()
@ -111,7 +121,7 @@ def get_configs_compute_bound() -> List[Dict[str, int]]:
# Reduced search space for faster tuning.
# TODO(woosuk): Increase the search space and use a performance model to
# prune the search space.
configs = []
configs: List[BenchmarkConfig] = []
for num_stages in [2, 3, 4, 5]:
for block_m in [16, 32, 64, 128, 256]:
for block_k in [64, 128, 256]:
@ -175,8 +185,8 @@ class BenchmarkWorker:
topk: int,
dtype: torch.dtype,
use_fp8: bool,
search_space: List[Dict[str, int]],
) -> Dict[str, int]:
search_space: List[BenchmarkConfig],
) -> BenchmarkConfig:
best_config = None
best_time = float("inf")
for config in tqdm(search_space):
@ -199,10 +209,11 @@ class BenchmarkWorker:
best_config = config
now = datetime.now()
print(f"{now.ctime()}] Completed tuning for batch_size={num_tokens}")
assert best_config is not None
return best_config
def sort_config(config: Dict[str, int]) -> Dict[str, int]:
def sort_config(config: BenchmarkConfig) -> BenchmarkConfig:
return {
"BLOCK_SIZE_M": config["BLOCK_SIZE_M"],
"BLOCK_SIZE_N": config["BLOCK_SIZE_N"],
@ -214,7 +225,7 @@ def sort_config(config: Dict[str, int]) -> Dict[str, int]:
def save_configs(
configs: Dict[int, Dict[str, int]],
configs: Dict[int, BenchmarkConfig],
num_experts: int,
shard_intermediate_size: int,
hidden_size: int,
@ -305,7 +316,7 @@ def main(args: argparse.Namespace):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser = FlexibleArgumentParser()
parser.add_argument("--model",
type=str,
default="mistralai/Mixtral-8x7B-Instruct-v0.1")

View File

@ -1,12 +1,12 @@
import argparse
import random
import time
from typing import Optional
from typing import List, Optional
import torch
from vllm import _custom_ops as ops
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, create_kv_caches_with_random
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
create_kv_caches_with_random)
NUM_BLOCKS = 1024
PARTITION_SIZE = 512
@ -54,14 +54,17 @@ def main(
# Create the block tables.
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
block_tables = []
block_tables_lst: List[List[int]] = []
for _ in range(num_seqs):
block_table = [
random.randint(0, NUM_BLOCKS - 1)
for _ in range(max_num_blocks_per_seq)
]
block_tables.append(block_table)
block_tables = torch.tensor(block_tables, dtype=torch.int, device=device)
block_tables_lst.append(block_table)
block_tables = torch.tensor(block_tables_lst,
dtype=torch.int,
device=device)
# Create the KV cache.
key_caches, value_caches = create_kv_caches_with_random(NUM_BLOCKS,
@ -97,7 +100,7 @@ def main(
start_time = time.perf_counter()
# Using default kv_scale
kv_scale = 1.0
k_scale = v_scale = 1.0
for _ in range(num_iters):
if version == "v1":
@ -114,7 +117,8 @@ def main(
max_seq_len,
alibi_slopes,
kv_cache_dtype,
kv_scale,
k_scale,
v_scale,
)
elif version == "v2":
ops.paged_attention_v2(
@ -133,7 +137,8 @@ def main(
max_seq_len,
alibi_slopes,
kv_cache_dtype,
kv_scale,
k_scale,
v_scale,
)
else:
raise ValueError(f"Invalid version: {version}")
@ -158,14 +163,14 @@ def main(
if __name__ == '__main__':
parser = argparse.ArgumentParser(
parser = FlexibleArgumentParser(
description="Benchmark the paged attention kernel.")
parser.add_argument("--version",
type=str,
choices=["v1", "v2"],
default="v2")
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument("--seq_len", type=int, default=4096)
parser.add_argument("--seq-len", type=int, default=4096)
parser.add_argument("--num-query-heads", type=int, default=64)
parser.add_argument("--num-kv-heads", type=int, default=8)
parser.add_argument("--head-size",

View File

@ -1,11 +1,12 @@
import argparse
from itertools import accumulate
from typing import Optional
from typing import List, Optional
import nvtx
import torch
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.rotary_embedding import (RotaryEmbedding,
get_rope)
from vllm.utils import FlexibleArgumentParser
def benchmark_rope_kernels_multi_lora(
@ -37,7 +38,7 @@ def benchmark_rope_kernels_multi_lora(
})
# non-batched RoPE takes only one scaling factor, we create multiple
# instances to simulate the same behavior
non_batched_ropes = []
non_batched_ropes: List[RotaryEmbedding] = []
for scaling_factor in scaling_factors:
non_batched_ropes.append(
get_rope(head_size, rotary_dim, max_position, base, is_neox_style,
@ -85,7 +86,7 @@ def benchmark_rope_kernels_multi_lora(
if __name__ == '__main__':
parser = argparse.ArgumentParser(
parser = FlexibleArgumentParser(
description="Benchmark the rotary embedding kernels.")
parser.add_argument("--is-neox-style", type=bool, default=True)
parser.add_argument("--batch-size", type=int, default=16)

View File

@ -1,8 +1,8 @@
import argparse
import cProfile
import pstats
from vllm import LLM, SamplingParams
from vllm.utils import FlexibleArgumentParser
# A very long prompt, total number of tokens is about 15k.
LONG_PROMPT = ["You are an expert in large language models, aren't you?"
@ -47,7 +47,7 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser(
parser = FlexibleArgumentParser(
description='Benchmark the performance of hashing function in'
'automatic prefix caching.')
parser.add_argument('--model', type=str, default='lmsys/longchat-7b-16k')

View File

@ -33,9 +33,23 @@ function (find_isa CPUINFO TARGET OUT)
endif()
endfunction()
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
function (is_avx512_disabled OUT)
set(DISABLE_AVX512 $ENV{VLLM_CPU_DISABLE_AVX512})
if(DISABLE_AVX512 AND DISABLE_AVX512 STREQUAL "true")
set(${OUT} ON PARENT_SCOPE)
else()
set(${OUT} OFF PARENT_SCOPE)
endif()
endfunction()
if (AVX512_FOUND)
is_avx512_disabled(AVX512_DISABLED)
find_isa(${CPUINFO} "avx2" AVX2_FOUND)
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
find_isa(${CPUINFO} "POWER10" POWER10_FOUND)
find_isa(${CPUINFO} "POWER9" POWER9_FOUND)
if (AVX512_FOUND AND NOT AVX512_DISABLED)
list(APPEND CXX_COMPILE_FLAGS
"-mavx512f"
"-mavx512vl"
@ -53,12 +67,24 @@ if (AVX512_FOUND)
else()
message(WARNING "Disable AVX512-BF16 ISA support, no avx512_bf16 found in local CPU flags." " If cross-compilation is required, please set env VLLM_CPU_AVX512BF16=1.")
endif()
elseif (AVX2_FOUND)
list(APPEND CXX_COMPILE_FLAGS "-mavx2")
message(WARNING "vLLM CPU backend using AVX2 ISA")
elseif (POWER9_FOUND OR POWER10_FOUND)
message(STATUS "PowerPC detected")
# Check for PowerPC VSX support
list(APPEND CXX_COMPILE_FLAGS
"-mvsx"
"-mcpu=native"
"-mtune=native")
else()
message(FATAL_ERROR "vLLM CPU backend requires AVX512 ISA support.")
message(FATAL_ERROR "vLLM CPU backend requires AVX512 or AVX2 or Power9+ ISA support.")
endif()
message(STATUS "CPU extension compile flags: ${CXX_COMPILE_FLAGS}")
list(APPEND LIBS "numa")
#
# Define extension targets
@ -71,6 +97,7 @@ set(VLLM_EXT_SRC
"csrc/cpu/activation.cpp"
"csrc/cpu/attention.cpp"
"csrc/cpu/cache.cpp"
"csrc/cpu/utils.cpp"
"csrc/cpu/layernorm.cpp"
"csrc/cpu/pos_encoding.cpp"
"csrc/cpu/torch_bindings.cpp")
@ -80,6 +107,7 @@ define_gpu_extension_target(
DESTINATION vllm
LANGUAGE CXX
SOURCES ${VLLM_EXT_SRC}
LIBRARIES ${LIBS}
COMPILE_FLAGS ${CXX_COMPILE_FLAGS}
USE_SABI 3
WITH_SOABI

View File

@ -147,16 +147,23 @@ macro(override_gpu_arches GPU_ARCHES GPU_LANG GPU_SUPPORTED_ARCHES)
if (${GPU_LANG} STREQUAL "HIP")
#
# `GPU_ARCHES` controls the `--offload-arch` flags.
# `CMAKE_HIP_ARCHITECTURES` is set up by torch and can be controlled
# via the `PYTORCH_ROCM_ARCH` env variable.
#
# If PYTORCH_ROCM_ARCH env variable exists, then we take it as a list,
# if not, then we use CMAKE_HIP_ARCHITECTURES which was generated by calling
# "rocm_agent_enumerator" in "enable_language(HIP)"
# (in file Modules/CMakeDetermineHIPCompiler.cmake)
#
if(DEFINED ENV{PYTORCH_ROCM_ARCH})
set(HIP_ARCHITECTURES $ENV{PYTORCH_ROCM_ARCH})
else()
set(HIP_ARCHITECTURES ${CMAKE_HIP_ARCHITECTURES})
endif()
#
# Find the intersection of the supported + detected architectures to
# set the module architecture flags.
#
set(${GPU_ARCHES})
foreach (_ARCH ${CMAKE_HIP_ARCHITECTURES})
foreach (_ARCH ${HIP_ARCHITECTURES})
if (_ARCH IN_LIST _GPU_SUPPORTED_ARCHES_LIST)
list(APPEND ${GPU_ARCHES} ${_ARCH})
endif()
@ -164,7 +171,7 @@ macro(override_gpu_arches GPU_ARCHES GPU_LANG GPU_SUPPORTED_ARCHES)
if(NOT ${GPU_ARCHES})
message(FATAL_ERROR
"None of the detected ROCm architectures: ${CMAKE_HIP_ARCHITECTURES} is"
"None of the detected ROCm architectures: ${HIP_ARCHITECTURES} is"
" supported. Supported ROCm architectures are: ${_GPU_SUPPORTED_ARCHES_LIST}.")
endif()

View File

@ -135,6 +135,12 @@ __device__ __forceinline__ T gelu_fast_kernel(const T& x) {
return ((T)0.5) * x * (((T)1.0) + t);
}
template <typename T>
__device__ __forceinline__ T gelu_quick_kernel(const T& x) {
// x * sigmoid(1.702 * x)
return (T)(((float)x) / (1.0f + expf(-1.702f * (float)x)));
}
} // namespace vllm
void gelu_new(torch::Tensor& out, // [..., d]
@ -148,3 +154,9 @@ void gelu_fast(torch::Tensor& out, // [..., d]
{
LAUNCH_ACTIVATION_KERNEL(vllm::gelu_fast_kernel);
}
void gelu_quick(torch::Tensor& out, // [..., d]
torch::Tensor& input) // [..., d]
{
LAUNCH_ACTIVATION_KERNEL(vllm::gelu_quick_kernel);
}

View File

@ -105,9 +105,9 @@ __device__ void paged_attention_kernel(
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride, const int kv_block_stride, const int kv_head_stride,
const float kv_scale, const int tp_rank, const int blocksparse_local_blocks,
const int blocksparse_vert_stride, const int blocksparse_block_size,
const int blocksparse_head_sliding_step) {
const float k_scale, const float v_scale, const int tp_rank,
const int blocksparse_local_blocks, const int blocksparse_vert_stride,
const int blocksparse_block_size, const int blocksparse_head_sliding_step) {
const int seq_idx = blockIdx.y;
const int partition_idx = blockIdx.z;
const int max_num_partitions = gridDim.z;
@ -285,7 +285,7 @@ __device__ void paged_attention_kernel(
Quant_vec k_vec_quant = *reinterpret_cast<const Quant_vec*>(
k_ptr + offset1 * BLOCK_SIZE * x + offset2);
k_vecs[j] = fp8::scaled_convert<K_vec, Quant_vec, KV_DTYPE>(
k_vec_quant, kv_scale);
k_vec_quant, k_scale);
}
}
@ -415,7 +415,7 @@ __device__ void paged_attention_kernel(
*reinterpret_cast<const V_quant_vec*>(v_ptr + offset);
// Vector conversion from V_quant_vec to V_vec.
v_vec = fp8::scaled_convert<V_vec, V_quant_vec, KV_DTYPE>(v_quant_vec,
kv_scale);
v_scale);
}
if (block_idx == num_seq_blocks - 1) {
// NOTE(woosuk): When v_vec contains the tokens that are out of the
@ -513,15 +513,15 @@ __global__ void paged_attention_v1_kernel(
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride, const int kv_block_stride, const int kv_head_stride,
const float kv_scale, const int tp_rank, const int blocksparse_local_blocks,
const int blocksparse_vert_stride, const int blocksparse_block_size,
const int blocksparse_head_sliding_step) {
const float k_scale, const float v_scale, const int tp_rank,
const int blocksparse_local_blocks, const int blocksparse_vert_stride,
const int blocksparse_block_size, const int blocksparse_head_sliding_step) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS,
KV_DTYPE, IS_BLOCK_SPARSE>(
/* exp_sums */ nullptr, /* max_logits */ nullptr, out, q, k_cache,
v_cache, num_kv_heads, scale, block_tables, seq_lens,
max_num_blocks_per_seq, alibi_slopes, q_stride, kv_block_stride,
kv_head_stride, kv_scale, tp_rank, blocksparse_local_blocks,
kv_head_stride, k_scale, v_scale, tp_rank, blocksparse_local_blocks,
blocksparse_vert_stride, blocksparse_block_size,
blocksparse_head_sliding_step);
}
@ -549,14 +549,14 @@ __global__ void paged_attention_v2_kernel(
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride, const int kv_block_stride, const int kv_head_stride,
const float kv_scale, const int tp_rank, const int blocksparse_local_blocks,
const int blocksparse_vert_stride, const int blocksparse_block_size,
const int blocksparse_head_sliding_step) {
const float k_scale, const float v_scale, const int tp_rank,
const int blocksparse_local_blocks, const int blocksparse_vert_stride,
const int blocksparse_block_size, const int blocksparse_head_sliding_step) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS,
KV_DTYPE, IS_BLOCK_SPARSE, PARTITION_SIZE>(
exp_sums, max_logits, tmp_out, q, k_cache, v_cache, num_kv_heads, scale,
block_tables, seq_lens, max_num_blocks_per_seq, alibi_slopes, q_stride,
kv_block_stride, kv_head_stride, kv_scale, tp_rank,
kv_block_stride, kv_head_stride, k_scale, v_scale, tp_rank,
blocksparse_local_blocks, blocksparse_vert_stride, blocksparse_block_size,
blocksparse_head_sliding_step);
}
@ -682,7 +682,7 @@ __global__ void paged_attention_v2_reduce_kernel(
out_ptr, query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, \
scale, block_tables_ptr, seq_lens_ptr, max_num_blocks_per_seq, \
alibi_slopes_ptr, q_stride, kv_block_stride, kv_head_stride, \
kv_scale, tp_rank, blocksparse_local_blocks, \
k_scale, v_scale, tp_rank, blocksparse_local_blocks, \
blocksparse_vert_stride, blocksparse_block_size, \
blocksparse_head_sliding_step);
@ -694,8 +694,8 @@ void paged_attention_v1_launcher(
torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int num_kv_heads, float scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes, float kv_scale,
const int tp_rank, const int blocksparse_local_blocks,
const c10::optional<torch::Tensor>& alibi_slopes, float k_scale,
float v_scale, const int tp_rank, const int blocksparse_local_blocks,
const int blocksparse_vert_stride, const int blocksparse_block_size,
const int blocksparse_head_sliding_step) {
int num_seqs = query.size(0);
@ -770,7 +770,7 @@ void paged_attention_v1_launcher(
paged_attention_v1_launcher<T, CACHE_T, BLOCK_SIZE, KV_DTYPE, \
IS_BLOCK_SPARSE>( \
out, query, key_cache, value_cache, num_kv_heads, scale, block_tables, \
seq_lens, max_seq_len, alibi_slopes, kv_scale, tp_rank, \
seq_lens, max_seq_len, alibi_slopes, k_scale, v_scale, tp_rank, \
blocksparse_local_blocks, blocksparse_vert_stride, \
blocksparse_block_size, blocksparse_head_sliding_step);
@ -815,8 +815,8 @@ void paged_attention_v1(
torch::Tensor& seq_lens, // [num_seqs]
int64_t block_size, int64_t max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype, double kv_scale, const int64_t tp_rank,
const int64_t blocksparse_local_blocks,
const std::string& kv_cache_dtype, double k_scale, double v_scale,
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
const int64_t blocksparse_head_sliding_step) {
const bool is_block_sparse = (blocksparse_vert_stride > 1);
@ -833,7 +833,7 @@ void paged_attention_v1(
exp_sums_ptr, max_logits_ptr, tmp_out_ptr, query_ptr, key_cache_ptr, \
value_cache_ptr, num_kv_heads, scale, block_tables_ptr, \
seq_lens_ptr, max_num_blocks_per_seq, alibi_slopes_ptr, q_stride, \
kv_block_stride, kv_head_stride, kv_scale, tp_rank, \
kv_block_stride, kv_head_stride, k_scale, v_scale, tp_rank, \
blocksparse_local_blocks, blocksparse_vert_stride, \
blocksparse_block_size, blocksparse_head_sliding_step); \
vllm::paged_attention_v2_reduce_kernel<T, HEAD_SIZE, NUM_THREADS, \
@ -850,8 +850,8 @@ void paged_attention_v2_launcher(
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int num_kv_heads, float scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes, float kv_scale,
const int tp_rank, const int blocksparse_local_blocks,
const c10::optional<torch::Tensor>& alibi_slopes, float k_scale,
float v_scale, const int tp_rank, const int blocksparse_local_blocks,
const int blocksparse_vert_stride, const int blocksparse_block_size,
const int blocksparse_head_sliding_step) {
int num_seqs = query.size(0);
@ -932,8 +932,9 @@ void paged_attention_v2_launcher(
IS_BLOCK_SPARSE>( \
out, exp_sums, max_logits, tmp_out, query, key_cache, value_cache, \
num_kv_heads, scale, block_tables, seq_lens, max_seq_len, alibi_slopes, \
kv_scale, tp_rank, blocksparse_local_blocks, blocksparse_vert_stride, \
blocksparse_block_size, blocksparse_head_sliding_step);
k_scale, v_scale, tp_rank, blocksparse_local_blocks, \
blocksparse_vert_stride, blocksparse_block_size, \
blocksparse_head_sliding_step);
#define CALL_V2_LAUNCHER_SPARSITY(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE) \
switch (is_block_sparse) { \
@ -980,8 +981,8 @@ void paged_attention_v2(
torch::Tensor& seq_lens, // [num_seqs]
int64_t block_size, int64_t max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype, double kv_scale, const int64_t tp_rank,
const int64_t blocksparse_local_blocks,
const std::string& kv_cache_dtype, double k_scale, double v_scale,
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
const int64_t blocksparse_head_sliding_step) {
const bool is_block_sparse = (blocksparse_vert_stride > 1);

View File

@ -18,14 +18,15 @@ void copy_blocks(std::vector<torch::Tensor> const& key_caches,
void reshape_and_cache(torch::Tensor& key, torch::Tensor& value,
torch::Tensor& key_cache, torch::Tensor& value_cache,
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype,
const double kv_scale);
const std::string& kv_cache_dtype, const double k_scale,
const double v_scale);
void reshape_and_cache_flash(torch::Tensor& key, torch::Tensor& value,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype);
const std::string& kv_cache_dtype,
const double k_scale, const double v_scale);
// Just for unittest
void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,

View File

@ -159,8 +159,8 @@ __global__ void reshape_and_cache_kernel(
// block_size]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int key_stride, const int value_stride, const int num_heads,
const int head_size, const int block_size, const int x,
const float kv_scale) {
const int head_size, const int block_size, const int x, const float k_scale,
const float v_scale) {
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
if (slot_idx < 0) {
@ -196,24 +196,25 @@ __global__ void reshape_and_cache_kernel(
value_cache[tgt_value_idx] = tgt_value;
} else {
key_cache[tgt_key_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_key, kv_scale);
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_key, k_scale);
value_cache[tgt_value_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_value, kv_scale);
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_value, v_scale);
}
}
}
template <typename scalar_t>
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void reshape_and_cache_flash_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
scalar_t* __restrict__ k_cache, // [num_blocks, block_size, num_heads,
cache_t* __restrict__ key_cache, // [num_blocks, block_size, num_heads,
// head_size]
scalar_t* __restrict__ v_cache, // [num_blocks, block_size, num_heads,
cache_t* __restrict__ value_cache, // [num_blocks, block_size, num_heads,
// head_size]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int block_stride, const int key_stride, const int value_stride,
const int num_heads, const int head_size, const int block_size) {
const int num_heads, const int head_size, const int block_size,
const float k_scale, const float v_scale) {
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
// NOTE: slot_idx can be -1 if the token is padded
@ -228,11 +229,20 @@ __global__ void reshape_and_cache_flash_kernel(
const int64_t src_value_idx = token_idx * value_stride + i;
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int64_t tgt_value_idx = block_idx * block_stride +
block_offset * num_heads * head_size +
head_idx * head_size + head_offset;
k_cache[tgt_value_idx] = key[src_key_idx];
v_cache[tgt_value_idx] = value[src_value_idx];
const int64_t tgt_key_value_idx = block_idx * block_stride +
block_offset * num_heads * head_size +
head_idx * head_size + head_offset;
scalar_t tgt_key = key[src_key_idx];
scalar_t tgt_value = value[src_value_idx];
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
key_cache[tgt_key_value_idx] = tgt_key;
value_cache[tgt_key_value_idx] = tgt_value;
} else {
key_cache[tgt_key_value_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_key, k_scale);
value_cache[tgt_key_value_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_value, v_scale);
}
}
}
} // namespace vllm
@ -248,7 +258,7 @@ __global__ void reshape_and_cache_flash_kernel(
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), key_stride, value_stride, \
num_heads, head_size, block_size, x, kv_scale);
num_heads, head_size, block_size, x, k_scale, v_scale);
void reshape_and_cache(
torch::Tensor& key, // [num_tokens, num_heads, head_size]
@ -258,7 +268,8 @@ void reshape_and_cache(
torch::Tensor&
value_cache, // [num_blocks, num_heads, head_size, block_size]
torch::Tensor& slot_mapping, // [num_tokens]
const std::string& kv_cache_dtype, const double kv_scale) {
const std::string& kv_cache_dtype, const double k_scale,
const double v_scale) {
int num_tokens = key.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);
@ -277,40 +288,45 @@ void reshape_and_cache(
CALL_RESHAPE_AND_CACHE)
}
// KV_T is the stored data type of kv-cache.
// CACHE_T is the data type of key and value tensors.
// KV_DTYPE is the real data type of kv-cache.
#define CALL_RESHAPE_AND_CACHE_FLASH(KV_T, CACHE_T, KV_DTYPE) \
vllm::reshape_and_cache_flash_kernel<KV_T, CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(key.data_ptr()), \
reinterpret_cast<KV_T*>(value.data_ptr()), \
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), block_stride, key_stride, \
value_stride, num_heads, head_size, block_size, k_scale, v_scale);
void reshape_and_cache_flash(
torch::Tensor& key, // [num_tokens, num_heads, head_size]
torch::Tensor& value, // [num_tokens, num_heads, head_size]
torch::Tensor& k_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor& v_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor& key, // [num_tokens, num_heads, head_size]
torch::Tensor& value, // [num_tokens, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor&
value_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor& slot_mapping, // [num_tokens]
const std::string& kv_cache_dtype) {
// FIXME: only support auto datatype, does not support fp8
if (kv_cache_dtype != "auto") {
TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
}
const std::string& kv_cache_dtype, const double k_scale,
const double v_scale) {
int num_tokens = key.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);
int block_size = k_cache.size(1);
int block_size = key_cache.size(1);
int key_stride = key.stride(0);
int value_stride = value.stride(0);
int block_stride = k_cache.stride(0);
TORCH_CHECK(k_cache.stride(0) == v_cache.stride(0));
int block_stride = key_cache.stride(0);
TORCH_CHECK(key_cache.stride(0) == value_cache.stride(0));
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
key.scalar_type(), "reshape_and_cache_flash", [&] {
vllm::reshape_and_cache_flash_kernel<scalar_t>
<<<grid, block, 0, stream>>>(
key.data_ptr<scalar_t>(), value.data_ptr<scalar_t>(),
k_cache.data_ptr<scalar_t>(), v_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int64_t>(), block_stride, key_stride,
value_stride, num_heads, head_size, block_size);
});
DISPATCH_BY_KV_CACHE_DTYPE(key.dtype(), kv_cache_dtype,
CALL_RESHAPE_AND_CACHE_FLASH);
}
namespace vllm {
@ -318,13 +334,13 @@ namespace vllm {
template <typename Tout, typename Tin, Fp8KVCacheDataType kv_dt>
__global__ void convert_fp8_kernel(const Tin* __restrict__ src_cache,
Tout* __restrict__ dst_cache,
const float kv_scale,
const float scale,
const int64_t block_stride) {
const int64_t block_idx = blockIdx.x;
for (int i = threadIdx.x; i < block_stride; i += blockDim.x) {
int64_t idx = block_idx * block_stride + i;
dst_cache[idx] =
fp8::scaled_convert<Tout, Tin, kv_dt>(src_cache[idx], kv_scale);
fp8::scaled_convert<Tout, Tin, kv_dt>(src_cache[idx], scale);
}
}
@ -333,11 +349,11 @@ __global__ void convert_fp8_kernel(const Tin* __restrict__ src_cache,
#define CALL_CONVERT_FP8(Tout, Tin, KV_DTYPE) \
vllm::convert_fp8_kernel<Tout, Tin, KV_DTYPE><<<grid, block, 0, stream>>>( \
reinterpret_cast<Tin*>(src_cache.data_ptr()), \
reinterpret_cast<Tout*>(dst_cache.data_ptr()), kv_scale, block_stride);
reinterpret_cast<Tout*>(dst_cache.data_ptr()), scale, block_stride);
// Only for testing.
void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
const double kv_scale, const std::string& kv_cache_dtype) {
const double scale, const std::string& kv_cache_dtype) {
torch::Device src_device = src_cache.device();
torch::Device dst_device = dst_cache.device();
TORCH_CHECK(src_device.is_cuda(), "src must be on a GPU")

View File

@ -59,6 +59,13 @@ FORCE_INLINE vec_op::FP32Vec8 gelu_fast_act(const vec_op::FP32Vec8& x) {
return w3 * x * (ones + t);
}
FORCE_INLINE vec_op::FP32Vec8 gelu_quick_act(const vec_op::FP32Vec8& x) {
const vec_op::FP32Vec8 zeros(0.0);
const vec_op::FP32Vec8 ones(1.0);
const vec_op::FP32Vec8 w1(1.702f);
return x / (ones + (zeros - w1 * x).exp());
}
FORCE_INLINE vec_op::FP32Vec8 gelu_act(const vec_op::FP32Vec8& x) {
const vec_op::FP32Vec8 ones(1.0);
const vec_op::FP32Vec8 w1(M_SQRT1_2);
@ -142,3 +149,15 @@ void gelu_fast(torch::Tensor& out, torch::Tensor& input) {
CPU_KERNEL_GUARD_OUT(gelu_fast_impl)
});
}
void gelu_quick(torch::Tensor& out, torch::Tensor& input) {
int num_tokens = input.numel() / input.size(-1);
int d = input.size(-1);
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "gelu_quick_impl", [&] {
CPU_KERNEL_GUARD_IN(gelu_quick_impl)
activation_kernel<scalar_t, gelu_quick_act, false>(
num_tokens, d, input.data_ptr<scalar_t>(), out.data_ptr<scalar_t>());
CPU_KERNEL_GUARD_OUT(gelu_quick_impl)
});
}

View File

@ -423,11 +423,11 @@ void paged_attention_v1(
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype, double kv_scale, const int64_t tp_rank,
const int64_t blocksparse_local_blocks,
const std::string& kv_cache_dtype, double k_scale, double v_scale,
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
const int64_t blocksparse_head_sliding_step) {
TORCH_CHECK(kv_scale == 1.0f);
TORCH_CHECK(k_scale == 1.0f && v_scale == 1.0f);
TORCH_CHECK(blocksparse_vert_stride <= 1,
"CPU backend does not support blocksparse attention yet.");
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v1_impl",
@ -742,11 +742,11 @@ void paged_attention_v2(
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype, double kv_scale, const int64_t tp_rank,
const int64_t blocksparse_local_blocks,
const std::string& kv_cache_dtype, double k_scale, double v_scale,
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
const int64_t blocksparse_head_sliding_step) {
TORCH_CHECK(kv_scale == 1.0f);
TORCH_CHECK(k_scale == 1.0f && v_scale == 1.0f);
TORCH_CHECK(blocksparse_vert_stride <= 1,
"CPU backend does not support blocksparse attention yet.");
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v2_impl",

View File

@ -107,8 +107,9 @@ void copy_blocks(std::vector<torch::Tensor> const& key_caches,
void reshape_and_cache(torch::Tensor& key, torch::Tensor& value,
torch::Tensor& key_cache, torch::Tensor& value_cache,
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype, double kv_scale) {
TORCH_CHECK(kv_scale == 1.0f);
const std::string& kv_cache_dtype, double k_scale,
double v_scale) {
TORCH_CHECK(k_scale == 1.0f && v_scale == 1.0f);
int num_tokens = key.size(0);
int num_heads = key.size(1);

View File

@ -2,351 +2,14 @@
#ifndef CPU_TYPES_HPP
#define CPU_TYPES_HPP
#include <immintrin.h>
#include <torch/all.h>
namespace vec_op {
// FIXME: FP16 is not fully supported in Torch-CPU
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
#ifndef CPU_OP_GUARD
#define CPU_KERNEL_GUARD_IN(NAME)
#define CPU_KERNEL_GUARD_OUT(NAME)
#if defined(__x86_64__)
//x86 implementation
#include "cpu_types_x86.hpp"
#elif defined(__POWER9_VECTOR__)
//ppc implementation
#include "cpu_types_vsx.hpp"
#else
#define CPU_KERNEL_GUARD_IN(NAME) \
std::cout << #NAME << " invoked." << std::endl;
#define CPU_KERNEL_GUARD_OUT(NAME) std::cout << #NAME << " exit." << std::endl;
#warning "unsupported vLLM cpu implementation"
#endif
#define FORCE_INLINE __attribute__((always_inline)) inline
namespace {
template <typename T, T... indexes, typename F>
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F &&f) {
(f(std::integral_constant<T, indexes>{}), ...);
}
}; // namespace
template <typename T, T count, typename F,
typename = std::enable_if_t<std::is_invocable_v<F, T>>>
constexpr void unroll_loop(F &&f) {
unroll_loop_item(std::make_integer_sequence<T, count>{}, std::forward<F>(f));
}
template <typename T> struct Vec {
constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; }
};
struct FP32Vec8;
struct FP32Vec16;
#ifdef __AVX512FP16__
struct FP16Vec8 : public Vec<FP16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
__m128h reg;
explicit FP16Vec8(_Float16 v) : reg(_mm_set1_ph(v)) {}
explicit FP16Vec8(const void *ptr) : reg(_mm_loadu_ph(ptr)) {}
explicit FP16Vec8(__m128h data) : reg(data) {}
FP16Vec8 operator*(const FP16Vec8 &b) const {
return FP16Vec8(_mm_mul_ph(reg, b.reg));
}
FP16Vec8 operator+(const FP16Vec8 &b) const {
return FP16Vec8(_mm_add_ph(reg, b.reg));
}
FP16Vec8 operator-(const FP16Vec8 &b) const {
return FP16Vec8(_mm_sub_ph(reg, b.reg));
}
FP16Vec8 operator/(const FP16Vec8 &b) const {
return FP16Vec8(_mm_div_ph(reg, b.reg));
}
void save(void *ptr) const { _mm_storeu_ph(ptr, reg); }
};
#endif
struct BF16Vec8 : public Vec<BF16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
__m128i reg;
explicit BF16Vec8(const void *ptr)
: reg((__m128i)_mm_loadu_si128((__m128i *)ptr)) {}
explicit BF16Vec8(const FP32Vec8 &);
void save(void *ptr) const { *reinterpret_cast<__m128i *>(ptr) = reg; }
};
struct BF16Vec16 : public Vec<BF16Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
__m256i reg;
explicit BF16Vec16(const void *ptr)
: reg((__m256i)_mm256_loadu_si256((__m256i *)ptr)) {}
explicit BF16Vec16(const FP32Vec16 &);
void save(void *ptr) const { *reinterpret_cast<__m256i *>(ptr) = reg; }
};
struct BF16Vec32 : public Vec<BF16Vec32> {
constexpr static int VEC_ELEM_NUM = 32;
__m512i reg;
explicit BF16Vec32(const void *ptr) : reg((__m512i)_mm512_loadu_si512(ptr)) {}
explicit BF16Vec32(__m512i data) : reg(data) {}
explicit BF16Vec32(BF16Vec8 &vec8_data)
: reg((__m512i)_mm512_inserti32x4(
_mm512_inserti32x4(_mm512_inserti32x4(_mm512_castsi128_si512(
(__m128i)vec8_data.reg),
(__m128i)vec8_data.reg, 1),
(__m128i)vec8_data.reg, 2),
(__m128i)vec8_data.reg, 3)) {}
void save(void *ptr) const { *reinterpret_cast<__m512i *>(ptr) = reg; }
};
struct FP32Vec4 : public Vec<FP32Vec4> {
constexpr static int VEC_ELEM_NUM = 4;
union AliasReg {
__m128 reg;
float values[VEC_ELEM_NUM];
};
__m128 reg;
explicit FP32Vec4(float v) : reg(_mm_set1_ps(v)) {}
explicit FP32Vec4() : reg(_mm_set1_ps(0.0)) {}
explicit FP32Vec4(const float *ptr) : reg(_mm_loadu_ps(ptr)) {}
explicit FP32Vec4(__m128 data) : reg(data) {}
explicit FP32Vec4(const FP32Vec4 &data) : reg(data.reg) {}
};
struct FP32Vec8 : public Vec<FP32Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
union AliasReg {
__m256 reg;
float values[VEC_ELEM_NUM];
};
__m256 reg;
explicit FP32Vec8(float v) : reg(_mm256_set1_ps(v)) {}
explicit FP32Vec8() : reg(_mm256_set1_ps(0.0)) {}
explicit FP32Vec8(const float *ptr) : reg(_mm256_loadu_ps(ptr)) {}
explicit FP32Vec8(__m256 data) : reg(data) {}
explicit FP32Vec8(const FP32Vec8 &data) : reg(data.reg) {}
#ifdef __AVX512FP16__
explicit FP32Vec8(__m128h v) : reg(_mm256_cvtph_ps(_mm_castph_si128(v))) {}
#endif
explicit FP32Vec8(const BF16Vec8 &v)
: reg(_mm256_castsi256_ps(
_mm256_bslli_epi128(_mm256_cvtepu16_epi32(v.reg), 2))) {}
float reduce_sum() const {
AliasReg ar;
ar.reg = reg;
float result = 0;
unroll_loop<int, VEC_ELEM_NUM>([&result, &ar](int i) { result += ar.values[i]; });
return result;
}
FP32Vec8 exp() const {
AliasReg ar;
ar.reg = reg;
return FP32Vec8(_mm256_set_ps(expf(ar.values[7]), expf(ar.values[6]),
expf(ar.values[5]), expf(ar.values[4]),
expf(ar.values[3]), expf(ar.values[2]),
expf(ar.values[1]), expf(ar.values[0])));
}
FP32Vec8 tanh() const {
AliasReg ar;
ar.reg = reg;
return FP32Vec8(_mm256_set_ps(tanhf(ar.values[7]), tanhf(ar.values[6]),
tanhf(ar.values[5]), tanhf(ar.values[4]),
tanhf(ar.values[3]), tanhf(ar.values[2]),
tanhf(ar.values[1]), tanhf(ar.values[0])));
}
FP32Vec8 er() const {
AliasReg ar;
ar.reg = reg;
return FP32Vec8(_mm256_set_ps(erf(ar.values[7]), erf(ar.values[6]),
erf(ar.values[5]), erf(ar.values[4]),
erf(ar.values[3]), erf(ar.values[2]),
erf(ar.values[1]), erf(ar.values[0])));
}
FP32Vec8 operator*(const FP32Vec8 &b) const {
return FP32Vec8(_mm256_mul_ps(reg, b.reg));
}
FP32Vec8 operator+(const FP32Vec8 &b) const {
return FP32Vec8(_mm256_add_ps(reg, b.reg));
}
FP32Vec8 operator-(const FP32Vec8 &b) const {
return FP32Vec8(_mm256_sub_ps(reg, b.reg));
}
FP32Vec8 operator/(const FP32Vec8 &b) const {
return FP32Vec8(_mm256_div_ps(reg, b.reg));
}
void save(float *ptr) const { _mm256_storeu_ps(ptr, reg); }
};
struct FP32Vec16 : public Vec<FP32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
__m512 reg;
float values[VEC_ELEM_NUM];
};
__m512 reg;
explicit FP32Vec16(float v) : reg(_mm512_set1_ps(v)) {}
explicit FP32Vec16() : reg(_mm512_set1_ps(0.0)) {}
explicit FP32Vec16(const float *ptr) : reg(_mm512_loadu_ps(ptr)) {}
explicit FP32Vec16(__m512 data) : reg(data) {}
explicit FP32Vec16(const FP32Vec16 &data) : reg(data.reg) {}
explicit FP32Vec16(const FP32Vec4 &data)
: reg((__m512)_mm512_inserti32x4(
_mm512_inserti32x4(
_mm512_inserti32x4(_mm512_castsi128_si512((__m128i)data.reg),
(__m128i)data.reg, 1),
(__m128i)data.reg, 2),
(__m128i)data.reg, 3)) {}
explicit FP32Vec16(const FP32Vec8 &data)
: reg((__m512)_mm512_inserti32x8(
_mm512_castsi256_si512((__m256i)data.reg), (__m256i)data.reg, 1)) {}
explicit FP32Vec16(const BF16Vec16 &v)
: reg(_mm512_castsi512_ps(
_mm512_bslli_epi128(_mm512_cvtepu16_epi32(v.reg), 2))) {}
explicit FP32Vec16(const BF16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {}
FP32Vec16 operator*(const FP32Vec16 &b) const {
return FP32Vec16(_mm512_mul_ps(reg, b.reg));
}
FP32Vec16 operator+(const FP32Vec16 &b) const {
return FP32Vec16(_mm512_add_ps(reg, b.reg));
}
FP32Vec16 operator-(const FP32Vec16 &b) const {
return FP32Vec16(_mm512_sub_ps(reg, b.reg));
}
FP32Vec16 operator/(const FP32Vec16 &b) const {
return FP32Vec16(_mm512_div_ps(reg, b.reg));
}
float reduce_sum() const { return _mm512_reduce_add_ps(reg); }
template <int group_size> float reduce_sub_sum(int idx) {
static_assert(VEC_ELEM_NUM % group_size == 0);
constexpr uint32_t base_mask = (0xFFFF >> (16 - group_size));
__mmask16 mask = _cvtu32_mask16(base_mask << (idx * group_size));
return _mm512_mask_reduce_add_ps(mask, reg);
}
void save(float *ptr) const { _mm512_storeu_ps(ptr, reg); }
};
template <typename T> struct VecType { using vec_type = void; };
template <typename T> using vec_t = typename VecType<T>::vec_type;
template <> struct VecType<float> { using vec_type = FP32Vec8; };
#ifdef __AVX512FP16__
template <> struct VecType<c10::Half> { using vec_type = FP16Vec16; };
#endif
template <> struct VecType<c10::BFloat16> { using vec_type = BF16Vec8; };
template <typename T> void storeFP32(float v, T *ptr) { *ptr = v; }
#ifdef __AVX512FP16__
template <> inline void storeFP32<c10::Half>(float v, c10::Half *ptr) {
*reinterpret_cast<_Float16 *>(ptr) = v;
}
#endif
inline void fma(FP32Vec16 &acc, FP32Vec16 &a, FP32Vec16 &b) {
acc = acc + a * b;
}
#ifdef __AVX512BF16__
template <> inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16 *ptr) {
*reinterpret_cast<__bfloat16 *>(ptr) = _mm_cvtness_sbh(v);
}
inline BF16Vec8::BF16Vec8(const FP32Vec8 &v)
: reg((__m128i)_mm256_cvtneps_pbh(v.reg)) {}
inline BF16Vec16::BF16Vec16(const FP32Vec16 &v)
: reg((__m256i)_mm512_cvtneps_pbh(v.reg)) {}
inline void fma(FP32Vec16 &acc, BF16Vec32 &a, BF16Vec32 &b) {
acc.reg = _mm512_dpbf16_ps(acc.reg, (__m512bh)a.reg, (__m512bh)b.reg);
}
#else
template <> inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16 *ptr) {
c10::BFloat16 __attribute__((__may_alias__)) *v_ptr =
reinterpret_cast<c10::BFloat16 *>(&v);
*ptr = *(v_ptr + 1);
}
inline BF16Vec8::BF16Vec8(const FP32Vec8 &v)
: reg(_mm256_cvtepi32_epi16(
_mm256_bsrli_epi128(_mm256_castps_si256(v.reg), 2))) {}
inline BF16Vec16::BF16Vec16(const FP32Vec16 &v)
: reg(_mm512_cvtepi32_epi16(
_mm512_bsrli_epi128(_mm512_castps_si512(v.reg), 2))) {}
#endif
inline void prefetch(const void *addr) { _mm_prefetch(addr, _MM_HINT_T1); }
}; // namespace vec_op
#endif

Some files were not shown because too many files have changed in this diff Show More