Compare commits

...

4 Commits

11 changed files with 496 additions and 126 deletions

View File

@ -33,20 +33,27 @@
//
// This file is a modified excerpt of
// include/cutlass/epilogue/fusion/visitor_load.hpp from
// https://github.com/NVIDIA/cutlass It's beem modified to support either
// row/column or scalar broadcasting, like is already supported in CUTLASS 3.x.
// Important because this saves us a factor 4x on the number of kernels
// compiled.
// https://github.com/NVIDIA/cutlass v3.5.0
// It has been modified to support either
// row/column or scalar broadcasting where the tensor being loaded from is
// always passed in via a device pointer. This lets one compiled kernel handle
// all cases of per-tensor or per-channel/per-token quantization.
//
// This interface also allows the scales to be passed in as tensors that
// consistently reside on the device, which avoids an issue with a previous
// implementation where scalars needed to be on the CPU since they
// were passed in via float values. This created a potential performance hazard
// if scales were initially on the device, and caused torch.compile graph
// breaks when moving scales to the CPU.
//
#pragma once
// Turn off clang-format for the entire file to keep it close to upstream
// clang-format off
#include "cutlass/epilogue/threadblock/fusion/visitor_2x.hpp"
#include "cute/tensor.hpp"
// clang-format on
namespace cutlass::epilogue::threadblock {
using namespace cute;
@ -59,9 +66,11 @@ template<
>
struct VisitorRowOrScalarBroadcast {
// This struct has been modified to have a bool indicating that ptr_row is a
// scalar that must be broadcast.
struct Arguments {
Element const* ptr_row = nullptr;
Element null_default = Element(0);
bool row_broadcast = true;
StrideMNL dRow = {};
};
@ -125,25 +134,25 @@ struct VisitorRowOrScalarBroadcast {
auto coord_v = filter(tC_cRow);
auto dst_v = filter(tC_rRow);
if (params_ptr->ptr_row) {
if (params_ptr->row_broadcast) {
// In this case we are loading from a row vector and broadcasting
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < size(src_v); ++i) {
bool guard = get<1>(coord_v(i)) < n;
cutlass::arch::global_load<VecType, sizeof(VecType)>(dst_v(i), (void const*)&src_v(i), guard);
cutlass::arch::global_load<VecType, sizeof(VecType)>(
dst_v(i), (void const*)&src_v(i), guard);
}
} else {
// In this case we are loading from a scalar and broadcasting
VecType filled_vec;
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < VecLength; i++) {
reinterpret_cast<Element*>(&filled_vec)[i] = params_ptr->null_default;
reinterpret_cast<Element*>(&filled_vec)[i] = *(params_ptr->ptr_row);
}
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < size(src_v); ++i) {
if(get<1>(coord_v(i)) < n)
{
if (get<1>(coord_v(i)) < n) {
dst_v(i) = filled_vec;
}
}
@ -208,9 +217,11 @@ template<
>
struct VisitorColOrScalarBroadcast {
// This struct has been modified to have a bool indicating that ptr_col is a
// scalar that must be broadcast.
struct Arguments {
Element const* ptr_col = nullptr;
Element null_default = Element(0);
bool col_broadcast = true;
StrideMNL dCol = {};
};
@ -230,11 +241,6 @@ struct VisitorColOrScalarBroadcast {
struct SharedStorage { };
// Global load type
static int constexpr vec_bits = ThreadMap::kElementsPerAccess * sizeof_bits<Element>::value;
using VecType = uint_bit_t<cute::min(128, vec_bits)>;
static int constexpr VecLength = sizeof(VecType) / sizeof(Element);
CUTLASS_HOST_DEVICE
VisitorColOrScalarBroadcast() { }
@ -267,7 +273,7 @@ struct VisitorColOrScalarBroadcast {
int m;
// This function is modified from VisitorColBroadcast
CUTLASS_DEVICE void
CUTLASS_DEVICE void
begin_epilogue() {
clear(tC_rCol);
@ -277,7 +283,7 @@ struct VisitorColOrScalarBroadcast {
pred(i) = get<0>(tC_cCol(i)) < m;
}
if (params_ptr->ptr_col) {
if (params_ptr->col_broadcast) {
// In this case we are loading from a column vector and broadcasting
copy_if(pred, tC_gCol, tC_rCol);
} else {
@ -286,8 +292,8 @@ struct VisitorColOrScalarBroadcast {
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < size(dst_v); ++i) {
if(pred(i)){
dst_v(i) = params_ptr->null_default;
if (pred(i)) {
dst_v(i) = *(params_ptr->ptr_col);
}
}
}

View File

@ -0,0 +1,389 @@
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights
*reserved. SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
*this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
//
// This file is a modified excerpt of
// include/cutlass/epilogue/fusion/sm90_visitor_load_tma_warpspecialized.hpp
// from https://github.com/NVIDIA/cutlass v3.5.0
// It has been modified to support either row/column or scalar broadcasting
// where the tensor being loaded from is always passed in via a device pointer.
// This lets one compiled kernel handle all cases of per-tensor or
// per-channel/per-token quantization.
//
// This interface also allows the scales to be passed in as tensors that
// consistently reside on the device, which avoids an issue with a previous
// implementation where scalars needed to be on the CPU since they
// were passed in via float values. This created a potential performance hazard
// if scales were initially on the device, and caused torch.compile graphs
// breaks when moving scales to the CPU.
//
#pragma once
// Turn off clang-format for the entire file to keep it close to upstream
// clang-format off
#include "cutlass/cutlass.h"
#include "cutlass/arch/barrier.h"
#include "cute/tensor.hpp"
#include "cutlass/epilogue/fusion/sm90_visitor_tma_warpspecialized.hpp"
namespace cutlass::epilogue::fusion {
using namespace cute;
using namespace detail;
// Row vector broadcast
template<
// Row bcast reuses the mbarriers from the epilogue subtile load pipeline, so this must be at least
// ceil_div(StagesC, epi tiles per CTA tile) + 1 to ensure no data races
int Stages,
class CtaTileShapeMNK,
class Element,
class StrideMNL = Stride<_0,_1,_0>,
int Alignment = 128 / sizeof_bits_v<Element>
>
struct Sm90RowOrScalarBroadcast {
static_assert(Alignment * sizeof_bits_v<Element> % 128 == 0, "sub-16B alignment not supported yet");
static_assert(
(cute::is_same_v<StrideMNL, Stride<_0,_1, _0>>) || // row vector broadcast, e.g. per-col alpha/bias
(cute::is_same_v<StrideMNL, Stride<_0,_1,int>>)); // batched row vector broadcast
// Accumulator doesn't distribute row elements evenly amongst threads so we must buffer in smem
struct SharedStorage {
alignas(16) array_aligned<Element, size<1>(CtaTileShapeMNK{}) * Stages> smem_row;
};
// This struct has been modified to have a bool indicating that ptr_row is a
// scalar that must be broadcast, instead of containing a scalar that is
// valid if ptr_row is null.
struct Arguments {
Element const* ptr_row = nullptr;
bool row_broadcast = true;
StrideMNL dRow = {};
};
using Params = Arguments;
template <class ProblemShape>
static constexpr Params
to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) {
return args;
}
template <class ProblemShape>
static size_t
get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) {
return 0;
}
template <class ProblemShape>
static cutlass::Status
initialize_workspace(ProblemShape const& problem_shape, Arguments const& args, void* workspace, cudaStream_t stream,
CudaHostAdapter* cuda_adapter = nullptr) {
return cutlass::Status::kSuccess;
}
CUTLASS_HOST_DEVICE
Sm90RowOrScalarBroadcast() { }
CUTLASS_HOST_DEVICE
Sm90RowOrScalarBroadcast(Params const& params, SharedStorage const& shared_storage)
: params(params),
smem_row(const_cast<Element*>(shared_storage.smem_row.data())) { }
Params params;
Element* smem_row;
CUTLASS_DEVICE bool
is_producer_load_needed() const {
return true;
}
CUTLASS_DEVICE bool
is_C_load_needed() const {
return false;
}
CUTLASS_DEVICE bool
is_zero() const {
return (!params.row_broadcast && *(params.ptr_row) == Element(0));
}
template <int EpiTiles, class GTensor, class STensor>
struct ProducerLoadCallbacks : EmptyProducerLoadCallbacks {
CUTLASS_DEVICE
ProducerLoadCallbacks(GTensor&& gRow, STensor&& sRow, Params const& params)
: gRow(cute::forward<GTensor>(gRow)),
sRow(cute::forward<STensor>(sRow)),
params(params) {}
GTensor gRow; // (CTA_M,CTA_N)
STensor sRow; // (CTA_M,CTA_N,PIPE)
Params const& params;
CUTLASS_DEVICE void
begin(uint64_t* full_mbarrier_ptr, int load_iteration, bool issue_tma_load) {
if (params.ptr_row == nullptr) {
return;
}
if (issue_tma_load) {
// Increment the expect-tx count of the first subtile's mbarrier by the row vector's byte-size
constexpr uint32_t copy_bytes = size<1>(CtaTileShapeMNK{}) * sizeof_bits_v<Element> / 8;
cutlass::arch::ClusterTransactionBarrier::expect_transaction(full_mbarrier_ptr, copy_bytes);
// Issue the TMA bulk copy
auto bulk_copy = Copy_Atom<SM90_BULK_COPY_AUTO, Element>{}.with(*full_mbarrier_ptr);
// Filter so we don't issue redundant copies over stride-0 modes
int bcast_pipe_index = (load_iteration / EpiTiles) % Stages;
copy(bulk_copy, filter(gRow), filter(sRow(_,_,bcast_pipe_index)));
}
}
};
template <class... Args>
CUTLASS_DEVICE auto
get_producer_load_callbacks(ProducerLoadArgs<Args...> const& args) {
auto [M, N, K, L] = args.problem_shape_mnkl;
auto [m, n, k, l] = args.tile_coord_mnkl;
Tensor mRow = make_tensor(make_gmem_ptr(params.ptr_row), make_shape(M,N,L), params.dRow);
Tensor gRow = local_tile(mRow, take<0,2>(args.tile_shape_mnk), make_coord(m,n,l)); // (CTA_M,CTA_N)
Tensor sRow = make_tensor(make_smem_ptr(smem_row), // (CTA_M,CTA_N,PIPE)
make_shape(size<0>(CtaTileShapeMNK{}), size<1>(CtaTileShapeMNK{}), Stages),
make_stride(_0{},_1{},size<1>(CtaTileShapeMNK{})));
constexpr int EpiTiles = decltype(size<1>(zipped_divide(make_layout(take<0,2>(args.tile_shape_mnk)), args.epi_tile)))::value;
return ProducerLoadCallbacks<EpiTiles, decltype(gRow), decltype(sRow)>(
cute::move(gRow), cute::move(sRow), params);
}
template <int EpiTiles, class RTensor, class STensor>
struct ConsumerStoreCallbacks : EmptyConsumerStoreCallbacks {
CUTLASS_DEVICE
ConsumerStoreCallbacks(RTensor&& tCrRow, STensor&& tCsRow, Params const& params)
: tCrRow(cute::forward<RTensor>(tCrRow)),
tCsRow(cute::forward<STensor>(tCsRow)),
params(params) {}
RTensor tCrRow; // (CPY,CPY_M,CPY_N)
STensor tCsRow; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N,PIPE)
Params const& params;
CUTLASS_DEVICE void
previsit(int epi_m, int epi_n, int load_iteration, bool is_producer_load_needed) {
if (!params.row_broadcast) {
fill(tCrRow, *(params.ptr_row));
return;
}
if (epi_m == 0) { // Assumes M-major subtile loop
// Filter so we don't issue redundant copies over stride-0 modes
// (only works if 0-strides are in same location, which is by construction)
int bcast_pipe_index = (load_iteration / EpiTiles) % Stages;
copy_aligned(filter(tCsRow(_,_,_,epi_m,epi_n,bcast_pipe_index)), filter(tCrRow));
}
}
template <typename ElementAccumulator, int FragmentSize>
CUTLASS_DEVICE Array<Element, FragmentSize>
visit(Array<ElementAccumulator, FragmentSize> const& frg_acc, int epi_v, int epi_m, int epi_n) {
Array<Element, FragmentSize> frg_row;
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < FragmentSize; ++i) {
frg_row[i] = tCrRow(epi_v * FragmentSize + i);
}
return frg_row;
}
};
template <
bool ReferenceSrc, // do register tensors reference the src or dst layout of the tiled copy
class... Args
>
CUTLASS_DEVICE auto
get_consumer_store_callbacks(ConsumerStoreArgs<Args...> const& args) {
Tensor sRow = make_tensor(make_smem_ptr(smem_row), // (CTA_M,CTA_N,PIPE)
make_shape(size<0>(CtaTileShapeMNK{}), size<1>(CtaTileShapeMNK{}), Stages),
make_stride(_0{},_1{},size<1>(CtaTileShapeMNK{})));
Tensor tCsRow = sm90_partition_for_epilogue<ReferenceSrc>( // (CPY,CPY_M,CPY_N,EPI_M,EPI_N,PIPE)
sRow, args.epi_tile, args.tiled_copy, args.thread_idx);
Tensor tCrRow = make_tensor_like(take<0,3>(tCsRow)); // (CPY,CPY_M,CPY_N)
constexpr int EpiTiles = decltype(size<1>(zipped_divide(make_layout(take<0,2>(args.tile_shape_mnk)), args.epi_tile)))::value;
return ConsumerStoreCallbacks<EpiTiles, decltype(tCrRow), decltype(tCsRow)>(
cute::move(tCrRow), cute::move(tCsRow), params);
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
// Column vector broadcast
template<
int Stages,
class CtaTileShapeMNK,
class Element,
class StrideMNL = Stride<_1,_0,_0>,
int Alignment = 128 / sizeof_bits_v<Element>
>
struct Sm90ColOrScalarBroadcast {
static_assert(Stages == 0, "Column broadcast doesn't support smem usage yet");
static_assert(Alignment * sizeof_bits_v<Element> % 128 == 0, "sub-16B alignment not supported yet");
static_assert(
(cute::is_same_v<StrideMNL, Stride<_1,_0, _0>>) || // col vector broadcast, e.g. per-row alpha/bias
(cute::is_same_v<StrideMNL, Stride<_1,_0,int>>)); // batched col vector broadcast, e.g. batched per-row bias
// Accumulator distributes col elements evenly amongst threads so we can just directly load from gmem
struct SharedStorage { };
// This struct has been modified to have a bool indicating that ptr_col is a
// scalar that must be broadcast, instead of containing a scalar that is
// valid if ptr_col is null.
struct Arguments {
Element const* ptr_col = nullptr;
bool col_broadcast = true;
StrideMNL dCol = {};
};
using Params = Arguments;
template <class ProblemShape>
static constexpr Params
to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) {
return args;
}
template <class ProblemShape>
static size_t
get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) {
return 0;
}
template <class ProblemShape>
static cutlass::Status
initialize_workspace(ProblemShape const& problem_shape, Arguments const& args, void* workspace, cudaStream_t stream,
CudaHostAdapter* cuda_adapter = nullptr) {
return cutlass::Status::kSuccess;
}
CUTLASS_DEVICE bool
is_producer_load_needed() const {
return false;
}
CUTLASS_DEVICE bool
is_C_load_needed() const {
return false;
}
CUTLASS_DEVICE bool
is_zero() const {
return (!params.col_broadcast && *(params.ptr_col) == Element(0));
}
CUTLASS_HOST_DEVICE
Sm90ColOrScalarBroadcast() { }
CUTLASS_HOST_DEVICE
Sm90ColOrScalarBroadcast(Params const& params, SharedStorage const& shared_storage)
: params(params) { }
Params params;
template <class... Args>
CUTLASS_DEVICE auto
get_producer_load_callbacks(ProducerLoadArgs<Args...> const& args) {
return EmptyProducerLoadCallbacks{};
}
template<class GTensor, class RTensor>
struct ConsumerStoreCallbacks : EmptyConsumerStoreCallbacks {
CUTLASS_DEVICE
ConsumerStoreCallbacks(GTensor&& tCgCol, RTensor&& tCrCol, Params const& params)
: tCgCol(cute::forward<GTensor>(tCgCol)),
tCrCol(cute::forward<RTensor>(tCrCol)),
params(params) {}
GTensor tCgCol; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
RTensor tCrCol; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
Params const& params;
CUTLASS_DEVICE void
begin() {
if (!params.col_broadcast) {
fill(tCrCol, *(params.ptr_col));
return;
}
// Filter so we don't issue redundant copies over stride-0 modes
// (only works if 0-strides are in same location, which is by construction)
copy_aligned(filter(tCgCol), filter(tCrCol));
}
template <typename ElementAccumulator, int FragmentSize>
CUTLASS_DEVICE Array<Element, FragmentSize>
visit(Array<ElementAccumulator, FragmentSize> const& frg_acc, int epi_v, int epi_m, int epi_n) {
Array<Element, FragmentSize> frg_col;
Tensor tCrCol_mn = tCrCol(_,_,_,epi_m,epi_n);
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < FragmentSize; ++i) {
frg_col[i] = tCrCol_mn(epi_v * FragmentSize + i);
}
return frg_col;
}
};
template <
bool ReferenceSrc, // do register tensors reference the src or dst layout of the tiled copy
class... Args
>
CUTLASS_DEVICE auto
get_consumer_store_callbacks(ConsumerStoreArgs<Args...> const& args) {
auto [M, N, K, L] = args.problem_shape_mnkl;
Tensor mCol = make_tensor(make_gmem_ptr(params.ptr_col), make_shape(M,N,L), params.dCol);
Tensor tCgCol = sm90_partition_for_epilogue<ReferenceSrc>( // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
mCol, args.tile_shape_mnk, args.tile_coord_mnkl, args.epi_tile, args.tiled_copy, args.thread_idx);
Tensor tCrCol = make_tensor_like(tCgCol); // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
return ConsumerStoreCallbacks<decltype(tCgCol), decltype(tCrCol)>(
cute::move(tCgCol), cute::move(tCrCol), params);
}
};
}

View File

@ -22,7 +22,7 @@
#include "cutlass/epilogue/threadblock/fusion/visitors.hpp"
#include "cutlass/gemm/kernel/default_gemm_universal_with_visitor.h"
#include "cutlass_visitor_2x_broadcast_epilogue.hpp"
#include "broadcast_load_epilogue_c2x.hpp"
#include "common.hpp"
// clang-format on
@ -145,17 +145,11 @@ void cutlass_scaled_mm_dq_dispatcher(torch::Tensor& out, torch::Tensor const& a,
auto a_scales_ptr = a_scales.data_ptr<float>();
auto b_scales_ptr = b_scales.data_ptr<float>();
// If A and B are quantized per-tensor, then these scale tensors are scalars,
// and they are passed in via the second argument.
using ScaleAArgs = typename Gemm::ScaleA::Arguments;
ScaleAArgs a_args = a_scales.numel() == 1
? ScaleAArgs{nullptr, a_scales.item<float>(), {}}
: ScaleAArgs{a_scales.data_ptr<float>(), {}, {}};
using ScaleBArgs = typename Gemm::ScaleB::Arguments;
ScaleBArgs b_args = b_scales.numel() == 1
? ScaleBArgs{nullptr, b_scales.item<float>(), {}}
: ScaleBArgs{b_scales.data_ptr<float>(), {}, {}};
ScaleBArgs b_args{b_scales.data_ptr<float>(), b_scales.numel() != 1, {}};
ScaleAArgs a_args{a_scales.data_ptr<float>(), a_scales.numel() != 1, {}};
typename Gemm::EVTCompute0::Arguments evt0_compute_args{b_args};

View File

@ -18,11 +18,14 @@
#include "cute/atom/mma_atom.hpp"
#include "cutlass/numeric_types.h"
#include "cutlass/util/device_memory.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "broadcast_load_epilogue_c3x.hpp"
#include "common.hpp"
// clang-format on
@ -65,7 +68,7 @@ struct cutlass_3x_gemm {
using Accum = cutlass::epilogue::fusion::Sm90AccFetch;
using ScaleA = cutlass::epilogue::fusion::Sm90ColBroadcast<
using ScaleA = cutlass::epilogue::fusion::Sm90ColOrScalarBroadcast<
0 /*Stages*/, typename EpilogueDescriptor::TileShape, float,
Stride<Int<1>, Int<0>, Int<0>>>;
@ -73,7 +76,7 @@ struct cutlass_3x_gemm {
cutlass::epilogue::collective::detail::RowBroadcastDescriptor<
EpilogueDescriptor, float>;
using ScaleB = cutlass::epilogue::fusion::Sm90RowBroadcast<
using ScaleB = cutlass::epilogue::fusion::Sm90RowOrScalarBroadcast<
ScaleBDescriptor::Stages, typename EpilogueDescriptor::TileShape,
typename ScaleBDescriptor::Element, Stride<Int<0>, Int<1>, Int<0>>>;
@ -166,13 +169,9 @@ void cutlass_scaled_mm_dq_dispatcher(torch::Tensor& out, torch::Tensor const& a,
using ScaleA_Args = typename Gemm::ScaleA::Arguments;
using ScaleB_Args = typename Gemm::ScaleB::Arguments;
ScaleA_Args a_args = a_scales.numel() == 1
? ScaleA_Args{nullptr, a_scales.item<float>(), {}}
: ScaleA_Args{a_scales.data_ptr<float>(), {}, {}};
ScaleB_Args b_args = b_scales.numel() == 1
? ScaleB_Args{nullptr, b_scales.item<float>(), {}}
: ScaleB_Args{b_scales.data_ptr<float>(), {}, {}};
ScaleA_Args a_args{a_scales.data_ptr<float>(), a_scales.numel() != 1, {}};
ScaleB_Args b_args{b_scales.data_ptr<float>(), b_scales.numel() != 1, {}};
args.epilogue.thread = {a_args, {b_args}};
@ -182,10 +181,11 @@ void cutlass_scaled_mm_dq_dispatcher(torch::Tensor& out, torch::Tensor const& a,
CUTLASS_CHECK(gemm_op.can_implement(args));
size_t workspace_size = gemm_op.get_workspace_size(args);
TORCH_CHECK(workspace_size == 0);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
auto stream = at::cuda::getCurrentCUDAStream(a.get_device());
cutlass::Status status = gemm_op.run(args, stream);
cutlass::Status status = gemm_op.run(args, workspace.get(), stream);
CUTLASS_CHECK(status);
}
} // namespace

View File

@ -59,7 +59,7 @@ exclude = [
]
[tool.codespell]
ignore-words-list = "dout, te, indicies"
ignore-words-list = "dout, te, indicies, subtile"
skip = "./tests/prompts,./benchmarks/sonnet.txt,./tests/lora/data,./build"
[tool.isort]

View File

@ -187,19 +187,22 @@ class cmake_build_ext(build_ext):
if not os.path.exists(self.build_temp):
os.makedirs(self.build_temp)
targets = []
# Build all the extensions
for ext in self.extensions:
self.configure(ext)
targets.append(remove_prefix(ext.name, "vllm."))
ext_target_name = remove_prefix(ext.name, "vllm.")
num_jobs, _ = self.compute_num_jobs()
num_jobs, _ = self.compute_num_jobs()
build_args = [
'--build', '.', '--target', ext_target_name, '-j',
str(num_jobs)
]
build_args = [
"--build",
".",
f"-j={num_jobs}",
*[f"--target={name}" for name in targets],
]
subprocess.check_call(['cmake', *build_args], cwd=self.build_temp)
subprocess.check_call(["cmake", *build_args], cwd=self.build_temp)
def _is_cuda() -> bool:

View File

@ -207,14 +207,21 @@ class CutlassLayer(torch.nn.Module):
self.out_dtype)
def test_cutlass_cuda_graph():
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
def test_cutlass_cuda_graph(per_act_token: bool, per_out_ch: bool):
m, n, k = 512, 512, 512
a = to_int8(torch.randn((m, k), device="cuda"))
b = to_int8(torch.randn((n, k), device="cuda").t())
scale_a = (torch.randn((m, 1), device="cuda", dtype=torch.float32) / 10)
scale_b = (torch.randn((1, n), device="cuda", dtype=torch.float32) / 10)
m_a_scales = m if per_act_token else 1
n_b_scales = n if per_out_ch else 1
scale_a = (torch.randn(
(m_a_scales, 1), device="cuda", dtype=torch.float32) / 10)
scale_b = (torch.randn(
(1, n_b_scales), device="cuda", dtype=torch.float32) / 10)
# Construct a trivial model with a single layer that calls a CUTLASS kernel
model = CutlassLayer(b, scale_a, scale_b, torch.bfloat16)

View File

@ -1,5 +1,5 @@
"""Token blocks."""
from typing import List
from typing import List, Optional
from vllm.utils import Device
@ -25,6 +25,7 @@ class LogicalTokenBlock:
self.token_ids = [_BLANK_TOKEN_ID] * block_size
self.num_tokens = 0
self.block_hash: Optional[int] = None
def is_empty(self) -> bool:
return self.num_tokens == 0

View File

@ -262,8 +262,7 @@ class BlockSpaceManagerV1(BlockSpaceManager):
self.cross_block_tables: Dict[str, BlockTable] = {}
def _get_seq_num_required_blocks(self, seq: Sequence) -> int:
return 0 if seq is None \
else len(seq.logical_token_blocks)
return 0 if seq is None else len(seq.logical_token_blocks)
def can_allocate(self, seq_group: SequenceGroup) -> AllocStatus:
# FIXME(woosuk): Here we assume that all sequences in the group share
@ -275,8 +274,8 @@ class BlockSpaceManagerV1(BlockSpaceManager):
seq_group.get_seqs(status=SequenceStatus.WAITING)[0])
cross_num_required_blocks = self._get_seq_num_required_blocks(
seq_group.get_encoder_seq())
num_required_blocks = self_num_required_blocks + \
cross_num_required_blocks
num_required_blocks = (self_num_required_blocks +
cross_num_required_blocks)
if self.block_sliding_window is not None:
@ -293,9 +292,9 @@ class BlockSpaceManagerV1(BlockSpaceManager):
else:
return AllocStatus.LATER
def _allocate_sequence(self, \
seq: Sequence, \
ref_count: int, \
def _allocate_sequence(self,
seq: Sequence,
ref_count: int,
is_encoder_decoder: bool = True) -> BlockTable:
# Allocate new physical token blocks that will store the prompt tokens.
num_prompt_blocks = len(seq.logical_token_blocks)
@ -328,10 +327,8 @@ class BlockSpaceManagerV1(BlockSpaceManager):
# NOTE: Here we assume that all sequences in the group have the same
# decoder prompt.
seq = seq_group.get_seqs(status=SequenceStatus.WAITING)[0]
block_table: BlockTable = \
self._allocate_sequence(seq,
seq_group.num_seqs(),
is_encoder_decoder)
block_table: BlockTable = self._allocate_sequence(
seq, seq_group.num_seqs(), is_encoder_decoder)
# Assign the self-attention block tables for each sequence.
for seq in seq_group.get_seqs(status=SequenceStatus.WAITING):
@ -368,6 +365,7 @@ class BlockSpaceManagerV1(BlockSpaceManager):
# Compute a new hash for the block so that it can be shared by other
# Sequences
new_hash = seq.hash_of_block(len(seq.logical_token_blocks) - 1)
assert new_hash is not None, "Last block is not full."
# if new_hash is already in the cached table, then free last_block
# and return the cached version
@ -406,9 +404,7 @@ class BlockSpaceManagerV1(BlockSpaceManager):
# content hash.
if not self.enable_caching:
return self.gpu_allocator.allocate()
block_hash: Optional[int] = None
if (self._is_last_block_full(seq)):
block_hash = seq.hash_of_block(len(seq.logical_token_blocks) - 1)
block_hash = seq.hash_of_block(len(seq.logical_token_blocks) - 1)
num_hashed_tokens = seq.num_hashed_tokens_of_block(
len(seq.logical_token_blocks) - 1)
@ -553,18 +549,14 @@ class BlockSpaceManagerV1(BlockSpaceManager):
# dict is efficient in lookup `if cpu_block in mapping`
mapping: Dict[PhysicalTokenBlock, PhysicalTokenBlock] = {}
for seq in seq_group.get_seqs(status=SequenceStatus.SWAPPED):
self.block_tables[seq.seq_id] = \
self._swap_block_table(self.block_tables[seq.seq_id],
self.cpu_allocator,
self.gpu_allocator,
mapping)
self.block_tables[seq.seq_id] = self._swap_block_table(
self.block_tables[seq.seq_id], self.cpu_allocator,
self.gpu_allocator, mapping)
if seq_group.is_encoder_decoder():
self.cross_block_tables[request_id] = \
self._swap_block_table(self.cross_block_tables[request_id],
self.cpu_allocator,
self.gpu_allocator,
mapping)
self.cross_block_tables[request_id] = self._swap_block_table(
self.cross_block_tables[request_id], self.cpu_allocator,
self.gpu_allocator, mapping)
return [(cpu_block.block_number, gpu_block.block_number)
for cpu_block, gpu_block in mapping.items()]
@ -580,18 +572,14 @@ class BlockSpaceManagerV1(BlockSpaceManager):
# dict is efficient in lookup `if gpu_block in mapping`
mapping: Dict[PhysicalTokenBlock, PhysicalTokenBlock] = {}
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
self.block_tables[seq.seq_id] = \
self._swap_block_table(self.block_tables[seq.seq_id],
self.gpu_allocator,
self.cpu_allocator,
mapping)
self.block_tables[seq.seq_id] = self._swap_block_table(
self.block_tables[seq.seq_id], self.gpu_allocator,
self.cpu_allocator, mapping)
if seq_group.is_encoder_decoder():
self.cross_block_tables[request_id] = \
self._swap_block_table(self.cross_block_tables[request_id],
self.gpu_allocator,
self.cpu_allocator,
mapping)
self.cross_block_tables[request_id] = self._swap_block_table(
self.cross_block_tables[request_id], self.gpu_allocator,
self.cpu_allocator, mapping)
return [(cpu_block.block_number, gpu_block.block_number)
for cpu_block, gpu_block in mapping.items()]

View File

@ -41,46 +41,19 @@ class CompressedTensorsW8A8StaticTensor(CompressedTensorsScheme):
# TODO: remove zero_point parameters once the configs given remove them
# Note on input/weight scales and zero_points
#
# When the scales have a single value, it is required that they be
# on the CPU for 2 reasons,
# 1. Performance:
# When the scales (input_scale/weight_scales) have only a single
# value, we perform a scalar broadcast of that value during the
# quant/dequant operations. The "quant" and the "gemm+dequant"
# kernels accept the Scalar by-value. These tensors are allocated
# on the CPU in order to avoid the GPU-to-CPU copy when passing
# by-value.
#
# 2. CUDA Graphs:
# CUDA Graphs don't support GPU-to-CPU copy operations during
# stream capture.
#
# TODO: zero-points are not supported yet. But we expect a similar
# pattern.
is_tensor_partitioned = len(output_partition_sizes) != 1
weight_scale_dim = sum(
output_partition_sizes) if is_tensor_partitioned else 1
weight_scale_device = "cpu" if weight_scale_dim == 1 else "cuda"
input_scale = Parameter(torch.empty(1,
device="cpu",
dtype=torch.float32),
input_scale = Parameter(torch.empty(1, dtype=torch.float32),
requires_grad=False)
input_zero_point = Parameter(torch.empty(1,
device="cpu",
dtype=torch.int8),
input_zero_point = Parameter(torch.empty(1, dtype=torch.int8),
requires_grad=False)
weight_scale = Parameter(torch.empty(weight_scale_dim,
device=weight_scale_device,
dtype=torch.float32),
requires_grad=False)
weight_zero_point = Parameter(torch.empty(1,
device="cpu",
dtype=torch.int8),
weight_zero_point = Parameter(torch.empty(1, dtype=torch.int8),
requires_grad=False)
weight = Parameter(torch.empty(sum(output_partition_sizes),

View File

@ -269,15 +269,24 @@ class Sequence:
return self.output_text[:-buffer_length] if truncate else (
self.output_text)
def hash_of_block(self, logical_idx: int) -> int:
# TODO This can produce incorrect hash when block size > prompt size
# Compute the number of tokens in the sequence
def hash_of_block(self, logical_idx: int) -> Optional[int]:
"""Return the hash of the block if it is full."""
# TODO: The current hashing function is O(L^2). We should optimize
# this in the future.
num_tokens = self.num_hashed_tokens_of_block(logical_idx)
hashed_tokens = self.data.get_prefix_token_ids(num_tokens)
return hash((hashed_tokens, self.lora_int_id))
assert logical_idx < len(self.logical_token_blocks), (
f"logical_idx={logical_idx} is out of range for "
f"logical_token_blocks={len(self.logical_token_blocks)}")
block = self.logical_token_blocks[logical_idx]
if block.block_hash is not None:
return block.block_hash
if not block.is_full():
return None
num_hashed_tokens = self.num_hashed_tokens_of_block(logical_idx)
hashed_tokens = self.data.get_prefix_token_ids(num_hashed_tokens)
block_hash = hash((hashed_tokens, self.lora_int_id))
# Cache the block hash for future use.
block.block_hash = block_hash
return block_hash
def num_hashed_tokens_of_block(self, logical_idx: int):
return logical_idx * self.block_size + self.block_size
@ -632,7 +641,7 @@ class SequenceGroupMetadata:
state: Internal state tied to this sequence group.
multi_modal_data: Multi modal data.
encoder_seq_data: Optional sequence data for encoder prompt
(SequenceGroup.encoder_seq). Should be None
(SequenceGroup.encoder_seq). Should be None
unless you are working with an encoder/decoder
model.
cross_block_table: Optional cross-attention block table associated