Compare commits

...

168 Commits

Author SHA1 Message Date
c00ddd6834 Add buffer donation to benchmark 2024-04-30 21:58:47 +00:00
881b884046 Add block size 2024-04-27 22:35:28 +00:00
98a3df0f8d Disable memory tracking 2024-04-26 08:56:26 +00:00
3f6288cc89 Fix for binary cache 2024-04-26 08:56:12 +00:00
408ff4950c Tune pages_per_compute_block 2024-04-26 08:55:23 +00:00
278e8a1adc Add tpu 2024-04-26 08:54:52 +00:00
07be6ed3eb Improve benchmark 2024-04-26 08:54:41 +00:00
f6637dba18 Use persistent cache 2024-04-26 07:09:44 +00:00
707a5f6473 Move JAX-smi to worker 2024-04-26 07:05:51 +00:00
57690a9c09 Fix bucketing 2024-04-26 07:05:27 +00:00
b15db234ba Add precompilation step 2024-04-26 05:43:08 +00:00
d1591f0f1f Add op benchmark scripts 2024-04-26 05:35:19 +00:00
85d4488458 yapf 2024-04-26 05:31:31 +00:00
8d072dbfbd yapf 2024-04-26 05:30:25 +00:00
d830766c0c yapf 2024-04-26 05:30:08 +00:00
5ae2f81c2b Add warmup + formatting 2024-04-26 05:28:09 +00:00
4ea41d01a9 yapf 2024-04-26 05:27:38 +00:00
d16a348477 Add comment 2024-04-26 05:27:27 +00:00
aa092834bb Format gemma.py 2024-04-26 05:26:38 +00:00
d2c6a32c0c Fix is_tpu 2024-04-26 05:26:24 +00:00
21f35c2289 Change version 2024-04-26 05:00:26 +00:00
2aa9831dd3 Minor 2024-04-25 23:40:44 +00:00
028f528aad Fix KV cache shape 2024-04-25 23:38:07 +00:00
fa5bacd5b0 Add warmup 2024-04-25 05:06:41 +00:00
b62170e4e3 Fix scheduler 2024-04-25 05:06:22 +00:00
98eda57899 Add timer 2024-04-25 05:06:11 +00:00
81b8b813f1 Pad to avoid recompilation 2024-04-25 04:43:33 +00:00
e2c7dedb3a Minor 2024-04-25 03:28:53 +00:00
5323969fcf Increase #blocks 2024-04-24 08:56:58 +00:00
f42b4c27d8 Include argmax to jit 2024-04-24 08:56:45 +00:00
620e7646d3 Fix cache write 2024-04-24 08:56:30 +00:00
d5fb1c20c1 Fix JAX jit OOM 2024-04-24 07:52:56 +00:00
092e3d6d6d Remove hardcoded path 2024-04-19 08:18:10 +00:00
84284302d8 Minor 2024-04-19 08:08:25 +00:00
743695f586 Fix write_to_kv_cache 2024-04-19 07:51:54 +00:00
62b870fa07 Use FlashAttention kernel 2024-04-17 20:24:45 +00:00
7e3a230c38 Fix paged_attn 2024-04-17 20:06:26 +00:00
186c88c497 explictly return new_kv_caches 2024-04-17 18:42:34 +00:00
ef762cb110 Write kV 2024-04-17 18:21:39 +00:00
756c4e78d3 Add write_to_cache ops 2024-04-17 18:20:55 +00:00
4880de35d2 Add attn_mask 2024-04-17 18:12:20 +00:00
0fb07c08d0 Minor 2024-04-17 18:08:33 +00:00
e4377dd698 Add model runner 2024-04-17 18:04:54 +00:00
5cb213c85e Add flash-attn op 2024-04-17 18:02:28 +00:00
25bbc21ef6 Minor 2024-04-17 18:02:16 +00:00
b25fcc06c2 Minor 2024-04-17 18:02:13 +00:00
6661c030c4 Add paged_attn op 2024-04-17 18:02:00 +00:00
8888d1c474 Fix logit indices 2024-04-17 18:01:43 +00:00
cedb67028a Add gemma 2024-04-17 17:00:10 +00:00
91b47e3f2f JAX-based TPU worker 2024-04-16 17:37:11 +00:00
6d62e4c6aa Add torch to dependencies 2024-04-16 17:06:35 +00:00
de82e95787 Minor 2024-04-16 17:04:46 +00:00
b3b89cf755 Renew TPU executor 2024-04-16 09:42:15 +00:00
6692a30266 Minor 2024-04-16 09:41:53 +00:00
eb0a0466a9 Add JAX requirements 2024-04-16 08:05:54 +00:00
c59c1e7b2c Remove 2024-04-16 08:05:36 +00:00
d4adf92beb Merge branch 'main' into woosuk-tpu 2024-04-16 07:56:53 +00:00
05434764cd LM Format Enforcer Guided Decoding Support (#3868)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-16 05:54:57 +00:00
4e7ee664e2 [Core] Fix engine-use-ray broken (#4105) 2024-04-16 05:24:53 +00:00
37e84a403d [Typing] Fix Sequence type GenericAlias only available after Python 3.9. (#4092) 2024-04-15 14:47:31 -07:00
4695397dcf [Bugfix] Fix ray workers profiling with nsight (#4095) 2024-04-15 14:24:45 -07:00
d619ae2d19 [Doc] Add better clarity for tensorizer usage (#4090)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-15 13:28:25 -07:00
eb46fbfda2 [Core] Simplifications to executor classes (#4071) 2024-04-15 13:05:09 -07:00
0003e9154b [Misc][Minor] Fix CPU block num log in CPUExecutor. (#4088) 2024-04-15 08:35:55 -07:00
e11e200736 [Bugfix] Fix filelock version requirement (#4075) 2024-04-14 21:50:08 -07:00
Roy
8db1bf32f8 [Misc] Upgrade triton to 2.2.0 (#4061) 2024-04-14 17:43:54 -07:00
aceb17cf2d [Docs] document that mixtral 8x22b is supported (#4073) 2024-04-14 14:35:55 -07:00
563c54f760 [BugFix] Fix tensorizer extra in setup.py (#4072) 2024-04-14 14:12:42 -07:00
2cd6b4f362 [Core] avoid too many cuda context by caching p2p test (#4021) 2024-04-13 23:40:21 -07:00
711a000255 [Frontend] [Core] feat: Add model loading using tensorizer (#3476) 2024-04-13 17:13:01 -07:00
989ae2538d [Kernel] Add punica dimension for Baichuan-13B (#4053) 2024-04-13 07:55:05 -07:00
0a430b4ae2 [Bugfix] fix_small_bug_in_neuron_executor (#4051) 2024-04-13 07:54:03 -07:00
ec8e3c695f [Bugfix] fix_log_time_in_metrics (#4050) 2024-04-13 07:52:36 -07:00
98afde19fc [Core][Distributed] improve logging for init dist (#4042) 2024-04-13 07:12:53 -07:00
5c2e66e487 [Bugfix] More type hint fixes for py 3.8 (#4039) 2024-04-12 21:07:04 -07:00
546e721168 [CI/Test] expand ruff and yapf for all supported python version (#4037) 2024-04-13 01:43:37 +00:00
b8aacac31a [Bugfix] Fix LoRA bug (#4032) 2024-04-12 16:56:37 -07:00
d04973ad54 Fix triton compilation issue (#3984)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-12 16:41:26 -07:00
fbb9d9eef4 [Core] fix custom allreduce default value (#4040) 2024-04-12 16:40:39 -07:00
09473ee41c [mypy] Add mypy type annotation part 1 (#4006) 2024-04-12 14:35:50 -07:00
d4ec9ffb95 [Misc] Fix typo in scheduler.py (#4022) 2024-04-12 13:56:04 -07:00
96b6a6d790 [Bugfix] fix type hint for py 3.8 (#4036) 2024-04-12 19:35:44 +00:00
36729bac13 [Test] Test multiple attn backend for chunked prefill. (#4023) 2024-04-12 09:56:57 -07:00
7fd3949a0b [Frontend][Core] Move merge_async_iterators to utils (#4026) 2024-04-12 05:30:54 +00:00
1096717ae9 [Core] Support LoRA on quantized models (#4012) 2024-04-11 21:02:44 -07:00
c2b4a1bce9 [Doc] Add typing hints / mypy types cleanup (#3816)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-11 17:17:21 -07:00
e46a60aa4c [BugFix] Fix handling of stop strings and stop token ids (#3672) 2024-04-11 15:34:12 -07:00
1e96c3341a Add extra punica sizes to support bigger vocabs (#4015) 2024-04-11 22:18:57 +00:00
95e7d4a97c Fix echo/logprob OpenAI completion bug (#3441)
Co-authored-by: Dylan Hawk <dylanwawk@gmail.com>
2024-04-11 22:15:50 +00:00
559eb852f8 [Core] init_distributed_environment align with init_process_group(#4014)
[Core][Distributed] make init_distributed_environment compatible with init_process_group (#4014)
2024-04-11 14:00:48 -07:00
a10d3056da [Core] Set linear_weights directly on the layer (#3977) 2024-04-11 16:35:51 -04:00
8afca50889 [Hardware][Intel] Isolate CPUModelRunner and ModelRunner for better maintenance (#3824) 2024-04-11 11:56:49 -07:00
08ccee1e83 punica fix-bgmv-kernel-640 (#4007) 2024-04-11 08:59:26 -07:00
c1dc547129 [Kernel] Fused MoE Config for Mixtral 8x22 (#4002) 2024-04-11 07:50:00 -07:00
f3d0bf7589 [Doc][Installation] delete python setup.py develop (#3989) 2024-04-11 03:33:02 +00:00
e9da5a40c6 [Misc] Add indirection layer for custom ops (#3913) 2024-04-10 20:26:07 -07:00
e42df7227d [Test] Add xformer and flash attn tests (#3961)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-11 03:09:50 +00:00
caada5e50a [Core][Model] torch.compile for layernorm in commandr (#3985)
[Core][Model] Use torch.compile to accelerate layernorm in commandr (#3985)
2024-04-11 01:48:26 +00:00
67b4221a61 [Core][5/N] Fully working chunked prefill e2e (#3884) 2024-04-10 17:56:48 -07:00
63e7176f26 [Core][Refactor] move parallel_utils into vllm/distributed (#3950)
[WIP][Core][Refactor] move vllm/model_executor/parallel_utils into vllm/distributed and vllm/device_communicators (#3950)
2024-04-10 15:33:30 -07:00
934d3662f7 [Bugfix] handle hf_config with architectures == None (#3982)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-10 22:28:25 +00:00
92cd2e2f21 [Doc] Fix getting stared to use publicly available model (#3963) 2024-04-10 18:05:52 +00:00
e4c4072c94 [Bugfix] Remove key sorting for guided_json parameter in OpenAi compatible Server (#3945) 2024-04-10 10:15:51 -07:00
e35397468f [Doc] Add doc to state our model support policy (#3948)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-10 17:03:02 +00:00
8b317c6dd0 [Model][AMD] ROCm support for 256 head dims for Gemma (#3972) 2024-04-10 08:12:00 -07:00
bd3c144e0b [Bugfix][ROCm] Add numba to Dockerfile.rocm (#3962) 2024-04-10 07:37:17 -07:00
0258b7a94b [Bugfix] handle prompt_logprobs in _apply_min_tokens_penalty (#3876)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-04-10 01:39:56 -07:00
363e6a950f Fix flashattn 2024-04-10 08:02:40 +00:00
696b653193 yapf 2024-04-10 08:02:21 +00:00
0d6402ddfd Fix requirements 2024-04-10 07:52:45 +00:00
60ff6b8c5c Merge branch 'main' into woosuk-tpu 2024-04-10 07:51:35 +00:00
b3104b2a10 [Bugfix] Fix logits processor when prompt_logprobs is not None (#3899) 2024-04-10 00:09:36 -07:00
c2e00af523 [Bugfix] fix utils.py/merge_dict func TypeError: 'type' object is not subscriptable (#3955)
Co-authored-by: tianyi_zhao <tianyi.zhao@transwarp.io>
2024-04-10 04:49:11 +00:00
c013d32c75 [Benchmark] Add cpu options to bench scripts (#3915) 2024-04-09 21:30:03 -07:00
11dd6ebb89 [Misc] Avoid loading incorrect LoRA config (#3777) 2024-04-09 19:47:15 -07:00
6c0b04515f [ROCm][Hardware][AMD] Use Triton Kernel for default FA on ROCm (#3643)
Co-authored-by: jpvillam <jpvillam@amd.com>
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-09 15:10:47 -07:00
e23a43aef8 [Bugfix] Fix KeyError on loading GPT-NeoX (#3925) 2024-04-09 12:11:31 -07:00
e7c7067b45 [Misc] [Core] Implement RFC "Augment BaseExecutor interfaces to enable hardware-agnostic speculative decoding" (#3837) 2024-04-09 11:44:15 -07:00
6d592eb430 [Core] separate distributed_init from worker (#3904) 2024-04-09 08:49:02 +00:00
Roy
d036198e23 [BugFix][Model] Fix commandr RoPE max_position_embeddings (#3919) 2024-04-09 06:17:21 +08:00
59a6abf3c9 [Hotfix][CI/Build][Kernel] CUDA 11.8 does not support layernorm optimizations (#3782) 2024-04-08 14:31:02 -07:00
bc0c0192d1 [Bugfix] Enable Proper attention_bias Usage in Llama Model Configuration (#3767)
Co-authored-by: roy <jasonailu87@gmail.com>
2024-04-08 19:42:35 +00:00
f46864d68d [Bugfix] Added Command-R GPTQ support (#3849)
Co-authored-by: Egor Tolmachev <t333ga@gmail.com>
2024-04-08 14:59:38 +00:00
b4543c8f6b [Model] add minicpm (#3893) 2024-04-08 18:28:36 +08:00
0ce0539d47 [Bugfix] Fix Llava inference with Tensor Parallelism. (#3883) 2024-04-07 22:54:13 +08:00
2f19283549 [Core] latency optimization (#3890) 2024-04-06 19:14:06 -07:00
95baec828f [Core] enable out-of-tree model register (#3871) 2024-04-06 17:11:41 -07:00
e4be7d70bb [CI/Benchmark] add more iteration and use median for robust latency benchmark (#3889) 2024-04-06 21:32:30 +00:00
54951ac4bf [Bugfix] Fix incorrect output on OLMo models in Tensor Parallelism (#3869) 2024-04-05 12:02:09 -07:00
18de883489 [Chunked Prefill][4/n] Chunked prefill scheduler. (#3853) 2024-04-05 10:17:58 -07:00
1d7c940d74 Add option to completion API to truncate prompt tokens (#3144) 2024-04-05 10:15:42 -07:00
cfaf49a167 [Misc] Define common requirements (#3841) 2024-04-05 00:39:17 -07:00
9edec652e2 [Bugfix] Fixing requirements.txt (#3865) 2024-04-04 23:46:01 -07:00
e0dd4d3589 [Misc] Fix linter issues in examples/fp8/quantizer/quantize.py (#3864) 2024-04-04 21:57:33 -07:00
e5043a3e75 [Misc] Add pytest marker to opt-out of global test cleanup (#3863) 2024-04-04 21:54:16 -07:00
d03d64fd2e [CI/Build] refactor dockerfile & fix pip cache
[CI/Build] fix pip cache with vllm_nccl & refactor dockerfile to build wheels (#3859)
2024-04-04 21:53:16 -07:00
78107fa091 [Doc]Add asynchronous engine arguments to documentation. (#3810)
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-04 21:52:01 -07:00
c391e4b68e [Core] improve robustness of pynccl (#3860) 2024-04-04 16:52:12 -07:00
9117f892f0 [Model] Cohere CommandR+ (#3829) 2024-04-04 13:31:49 -07:00
db2a6a41e2 [Hardware][CPU] Update cpu torch to match default of 2.2.1 (#3854) 2024-04-04 19:49:49 +00:00
ca81ff5196 [Core] manage nccl via a pypi package & upgrade to pt 2.2.1 (#3805) 2024-04-04 10:26:19 -07:00
b7782002e1 [Benchmark] Refactor sample_requests in benchmark_throughput (#3613)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-04 09:56:22 +00:00
819a309c0f [Bugfix] Fix args in benchmark_serving (#3836)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-04 07:41:05 +00:00
aabe8f40f2 [Core] [Frontend] Make detokenization optional (#3749)
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-04-03 21:52:18 -07:00
498eb5cfa3 [Bugfix] Add kv_scale input parameter to CPU backend (#3840) 2024-04-04 04:33:08 +00:00
537ee25f43 [Core] Enable hf_transfer by default if available (#3817) 2024-04-04 04:02:43 +00:00
294f8f6665 [BugFix] Pass tokenizer_config to local_tokenizer_group (#3754)
Signed-off-by: Tao He <sighingnow@gmail.com>
2024-04-03 20:31:46 -07:00
b95047f2da [Misc] Publish 3rd meetup slides (#3835) 2024-04-03 15:46:10 -07:00
2ff767b513 Enable scaled FP8 (e4m3fn) KV cache on ROCm (AMD GPU) (#3290)
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: HaiShaw <hixiao@gmail.com>
Co-authored-by: AdrianAbeyta <Adrian.Abeyta@amd.com>
Co-authored-by: Matthew Wong <Matthew.Wong2@amd.com>
Co-authored-by: root <root@gt-pla-u18-08.pla.dcgpu>
Co-authored-by: mawong-amd <156021403+mawong-amd@users.noreply.github.com>
Co-authored-by: ttbachyinsda <ttbachyinsda@outlook.com>
Co-authored-by: guofangze <guofangze@kuaishou.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: jacobthebanana <50071502+jacobthebanana@users.noreply.github.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-03 14:15:55 -07:00
3dcb3e8b98 [3/N] Refactor scheduler for chunked prefill scheduling (#3550) 2024-04-03 14:13:49 -07:00
c64cf38673 [Doc] Update contribution guidelines for better onboarding (#3819) 2024-04-03 07:31:43 +00:00
76b889bf1d [Doc] Update README.md (#3806) 2024-04-02 23:11:10 -07:00
c9b506dad4 [BugFix] Use different mechanism to get vllm version in is_cpu() (#3804) 2024-04-02 23:06:25 -07:00
5757d90e26 [Speculative decoding] Adding configuration object for speculative decoding (#3706)
Co-authored-by: Lily Liu <lilyliupku@gmail.com>
2024-04-03 00:40:57 +00:00
d899009a63 [WIP] Add TPU worker 2024-04-01 08:24:23 +00:00
6894d3efef Add JAX to requirements.txt 2024-04-01 08:23:59 +00:00
38e3d33a62 Add TPU to device config 2024-04-01 08:23:44 +00:00
02e614d922 [WIP] Add Pallas backend 2024-04-01 08:23:32 +00:00
46b31ed98d Fix RoPE output shape 2024-04-01 08:22:47 +00:00
31d05f7edb yapf 2024-04-01 07:07:57 +00:00
4cdb732cef Add TPU to setup 2024-04-01 07:07:38 +00:00
27c592b97b Add get_dtype_size 2024-04-01 06:33:06 +00:00
5083aa9092 Add TPUExecutor 2024-04-01 03:24:07 +00:00
824521c987 Add TPU to DeviceConfig 2024-04-01 03:19:17 +00:00
3b8f43024f Add is_tpu 2024-04-01 03:18:36 +00:00
d148c2ef00 Add requirements 2024-04-01 03:17:43 +00:00
86f073edd6 Add reference 2024-04-01 02:02:13 +00:00
52a1e908e4 Add TPU gemma 2024-04-01 02:01:28 +00:00
241 changed files with 14817 additions and 2347 deletions

View File

@ -12,7 +12,13 @@ steps:
command: pytest -v -s async_engine
- label: Basic Correctness Test
command: pytest -v -s basic_correctness
commands:
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_basic_correctness.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_basic_correctness.py
- VLLM_ATTENTION_BACKEND=ROCM_FLASH pytest -v -s basic_correctness/test_basic_correctness.py
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_ATTENTION_BACKEND=ROCM_FLASH pytest -v -s basic_correctness/test_chunked_prefill.py
- label: Core Test
command: pytest -v -s core
@ -29,12 +35,17 @@ steps:
- pytest -v -s test_pynccl.py
- TEST_DIST_MODEL=facebook/opt-125m pytest -v -s test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf pytest -v -s test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m pytest -v -s test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf pytest -v -s test_chunked_prefill_distributed.py
- label: Engine Test
command: pytest -v -s engine tokenization test_sequence.py test_config.py
- label: Entrypoints Test
command: pytest -v -s entrypoints
commands:
# these tests have to be separated, because each one will allocate all posible GPU memory
- pytest -v -s entrypoints --ignore=entrypoints/test_server_oot_registration.py
- pytest -v -s entrypoints/test_server_oot_registration.py
- label: Examples Test
working_dir: "/vllm-workspace/examples"
@ -80,6 +91,9 @@ steps:
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 4
- label: Tensorizer Test
command: apt-get install curl libsodium23 && pytest -v -s tensorizer
- label: Metrics Test
command: pytest -v -s metrics
@ -90,7 +104,7 @@ steps:
- bash run-benchmarks.sh
- label: Documentation Build
working_dir: "/vllm-workspace/docs"
working_dir: "/vllm-workspace/test_docs/docs"
no_gpu: True
commands:
- pip install -r requirements-docs.txt

50
.github/workflows/mypy.yaml vendored Normal file
View File

@ -0,0 +1,50 @@
name: mypy
on:
# Trigger the workflow on push or pull request,
# but only for the main branch
push:
branches:
- main
pull_request:
branches:
- main
jobs:
ruff:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install mypy==1.9.0
pip install types-setuptools
pip install types-PyYAML
pip install types-requests
pip install types-setuptools
- name: Mypy
run: |
mypy vllm/attention/*.py --follow-imports=skip --config-file pyproject.toml
mypy vllm/core/*.py --follow-imports=skip --config-file pyproject.toml
mypy vllm/distributed/*.py --follow-imports=skip --config-file pyproject.toml
mypy vllm/entrypoints/*.py --follow-imports=skip --config-file pyproject.toml
mypy vllm/executor/*.py --follow-imports=skip --config-file pyproject.toml
mypy vllm/usage/*.py --follow-imports=skip --config-file pyproject.toml
mypy vllm/*.py --follow-imports=skip --config-file pyproject.toml
mypy vllm/transformers_utils/*.py --follow-imports=skip --config-file pyproject.toml
# TODO(sang): Follow up
# mypy vllm/engine/*.py --follow-imports=skip --config-file pyproject.toml
# mypy vllm/worker/*.py --follow-imports=skip --config-file pyproject.toml
# mypy vllm/spec_decoding/*.py --follow-imports=skip --config-file pyproject.toml
# mypy vllm/model_executor/*.py --follow-imports=skip --config-file pyproject.toml
# mypy vllm/lora/*.py --follow-imports=skip --config-file pyproject.toml

View File

@ -49,7 +49,7 @@ jobs:
matrix:
os: ['ubuntu-20.04']
python-version: ['3.8', '3.9', '3.10', '3.11']
pytorch-version: ['2.1.2'] # Must be the most recent version that meets requirements.txt.
pytorch-version: ['2.2.1'] # Must be the most recent version that meets requirements-cuda.txt.
cuda-version: ['11.8', '12.1']
steps:

View File

@ -15,7 +15,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.10"]
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}

View File

@ -9,7 +9,7 @@ LD_LIBRARY_PATH=${cuda_home}/lib64:$LD_LIBRARY_PATH
# Install requirements
$python_executable -m pip install wheel packaging
$python_executable -m pip install -r requirements.txt
$python_executable -m pip install -r requirements-cuda.txt
# Limit the number of parallel jobs to avoid OOM
export MAX_JOBS=1

View File

@ -14,7 +14,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.10"]
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}

1
.gitignore vendored
View File

@ -181,6 +181,7 @@ _build/
# hip files generated by PyTorch
*.hip
*_hip*
hip_compat.h
# Benchmark dataset
*.json

View File

@ -19,7 +19,7 @@ set(PYTHON_SUPPORTED_VERSIONS "3.8" "3.9" "3.10" "3.11")
set(CUDA_SUPPORTED_ARCHS "7.0;7.5;8.0;8.6;8.9;9.0")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx908;gfx90a;gfx942;gfx1100")
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100")
#
# Supported/expected torch versions for CUDA/ROCm.
@ -31,7 +31,7 @@ set(HIP_SUPPORTED_ARCHS "gfx908;gfx90a;gfx942;gfx1100")
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.1.2")
set(TORCH_SUPPORTED_VERSION_CUDA "2.2.1")
set(TORCH_SUPPORTED_VERSION_ROCM_5X "2.0.1")
set(TORCH_SUPPORTED_VERSION_ROCM_6X "2.1.1")

View File

@ -21,7 +21,6 @@ Express your support on Twitter if vLLM aids you, or simply offer your appreciat
### Build from source
```bash
pip install -r requirements.txt
pip install -e . # This may take several minutes.
```
@ -30,6 +29,8 @@ pip install -e . # This may take several minutes.
```bash
pip install -r requirements-dev.txt
# linting and formatting
bash format.sh
# Static type checking
mypy
# Unit tests

View File

@ -2,6 +2,7 @@
# to run the OpenAI compatible server.
#################### BASE BUILD IMAGE ####################
# prepare basic build environment
FROM nvidia/cuda:12.1.0-devel-ubuntu22.04 AS dev
RUN apt-get update -y \
@ -16,18 +17,26 @@ RUN ldconfig /usr/local/cuda-12.1/compat/
WORKDIR /workspace
# install build and runtime dependencies
COPY requirements.txt requirements.txt
COPY requirements-common.txt requirements-common.txt
COPY requirements-cuda.txt requirements-cuda.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements.txt
pip install -r requirements-cuda.txt
# install development dependencies
COPY requirements-dev.txt requirements-dev.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-dev.txt
# cuda arch list used by torch
# can be useful for both `dev` and `test`
# explicitly set the list to avoid issues with torch 2.2
# see https://github.com/pytorch/pytorch/pull/123243
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.6 8.9 9.0+PTX'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
#################### BASE BUILD IMAGE ####################
#################### EXTENSION BUILD IMAGE ####################
#################### WHEEL BUILD IMAGE ####################
FROM dev AS build
# install build dependencies
@ -38,18 +47,16 @@ RUN --mount=type=cache,target=/root/.cache/pip \
# install compiler cache to speed up compilation leveraging local or remote caching
RUN apt-get update -y && apt-get install -y ccache
# copy input files
# files and directories related to build wheels
COPY csrc csrc
COPY setup.py setup.py
COPY cmake cmake
COPY CMakeLists.txt CMakeLists.txt
COPY requirements.txt requirements.txt
COPY requirements-common.txt requirements-common.txt
COPY requirements-cuda.txt requirements-cuda.txt
COPY pyproject.toml pyproject.toml
COPY vllm/__init__.py vllm/__init__.py
COPY vllm vllm
# cuda arch list used by torch
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.6 8.9 9.0+PTX'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
# max jobs used by Ninja to build extensions
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
@ -61,7 +68,15 @@ ENV VLLM_INSTALL_PUNICA_KERNELS=1
ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/ccache \
python3 setup.py build_ext --inplace
--mount=type=cache,target=/root/.cache/pip \
python3 setup.py bdist_wheel --dist-dir=dist
# the `vllm_nccl` package must be installed from source distribution
# pip is too smart to store a wheel in the cache, and other CI jobs
# will directly use the wheel from the cache, which is not what we want.
# we need to remove it manually
RUN --mount=type=cache,target=/root/.cache/pip \
pip cache remove vllm_nccl*
#################### EXTENSION Build IMAGE ####################
#################### FLASH_ATTENTION Build IMAGE ####################
@ -81,57 +96,59 @@ RUN pip --verbose wheel flash-attn==${FLASH_ATTN_VERSION} \
#################### FLASH_ATTENTION Build IMAGE ####################
#################### vLLM installation IMAGE ####################
# image with vLLM installed
FROM nvidia/cuda:12.1.0-base-ubuntu22.04 AS vllm-base
WORKDIR /vllm-workspace
RUN apt-get update -y \
&& apt-get install -y python3-pip git vim
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-12.1/compat/
# install vllm wheel first, so that torch etc will be installed
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
--mount=type=cache,target=/root/.cache/pip \
pip install dist/*.whl --verbose
RUN --mount=type=bind,from=flash-attn-builder,src=/usr/src/flash-attention-v2,target=/usr/src/flash-attention-v2 \
--mount=type=cache,target=/root/.cache/pip \
pip install /usr/src/flash-attention-v2/*.whl --no-cache-dir
#################### vLLM installation IMAGE ####################
#################### TEST IMAGE ####################
# image to run unit testing suite
FROM dev AS test
# note that this uses vllm installed by `pip`
FROM vllm-base AS test
# copy pytorch extensions separately to avoid having to rebuild
# when python code changes
WORKDIR /vllm-workspace
# ADD is used to preserve directory structure
ADD . /vllm-workspace/
COPY --from=build /workspace/vllm/*.so /vllm-workspace/vllm/
# Install flash attention (from pre-built wheel)
RUN --mount=type=bind,from=flash-attn-builder,src=/usr/src/flash-attention-v2,target=/usr/src/flash-attention-v2 \
pip install /usr/src/flash-attention-v2/*.whl --no-cache-dir
# ignore build dependencies installation because we are using pre-complied extensions
RUN rm pyproject.toml
RUN --mount=type=cache,target=/root/.cache/pip VLLM_USE_PRECOMPILED=1 pip install . --verbose
#################### TEST IMAGE ####################
#################### RUNTIME BASE IMAGE ####################
# We used base cuda image because pytorch installs its own cuda libraries.
# However pynccl depends on cuda libraries so we had to switch to the runtime image
# In the future it would be nice to get a container with pytorch and cuda without duplicating cuda
FROM nvidia/cuda:12.1.0-runtime-ubuntu22.04 AS vllm-base
# libnccl required for ray
RUN apt-get update -y \
&& apt-get install -y python3-pip
WORKDIR /workspace
COPY requirements.txt requirements.txt
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements.txt
pip install -r requirements-dev.txt
# Install flash attention (from pre-built wheel)
RUN --mount=type=bind,from=flash-attn-builder,src=/usr/src/flash-attention-v2,target=/usr/src/flash-attention-v2 \
pip install /usr/src/flash-attention-v2/*.whl --no-cache-dir
#################### RUNTIME BASE IMAGE ####################
# doc requires source code
# we hide them inside `test_docs/` , so that this source code
# will not be imported by other tests
RUN mkdir test_docs
RUN mv docs test_docs/
RUN mv vllm test_docs/
#################### TEST IMAGE ####################
#################### OPENAI API SERVER ####################
# openai api server alternative
FROM vllm-base AS vllm-openai
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer modelscope
COPY --from=build /workspace/vllm/*.so /workspace/vllm/
COPY vllm vllm
ENV VLLM_USAGE_SOURCE production-docker-image
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -23,6 +23,9 @@ RUN echo "FA_BRANCH is $FA_BRANCH"
# In that case, we need to use the python reference attention implementation in vllm
ARG BUILD_FA="1"
# whether to build triton on rocm
ARG BUILD_TRITON="1"
# Install some basic utilities
RUN apt-get update && apt-get install python3 python3-pip -y
@ -75,9 +78,20 @@ RUN if [ "$BUILD_FA" = "1" ]; then \
RUN if [ "$BASE_IMAGE" = "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" ]; then \
rm -rf /opt/conda/envs/py_3.9/lib/python3.9/site-packages/numpy-1.20.3.dist-info/; fi
# build triton
RUN if [ "$BUILD_TRITON" = "1" ]; then \
mkdir -p libs \
&& cd libs \
&& pip uninstall -y triton \
&& git clone https://github.com/ROCm/triton.git \
&& cd triton/python \
&& pip3 install . \
&& cd ../..; \
fi
COPY ./ /app/vllm
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --upgrade pip numba
RUN python3 -m pip install xformers==0.0.23 --no-deps
RUN cd /app \

View File

@ -1,5 +1,6 @@
include LICENSE
include requirements.txt
include requirements-common.txt
include requirements-cuda.txt
include CMakeLists.txt
recursive-include cmake *

View File

@ -14,18 +14,8 @@ Easy, fast, and cheap LLM serving for everyone
</p>
---
**The Third vLLM Bay Area Meetup (April 2nd 6pm-8:30pm PT)**
We are thrilled to announce our third vLLM Meetup!
The vLLM team will share recent updates and roadmap.
We will also have vLLM collaborators from Roblox coming up to the stage to discuss their experience in deploying LLMs with vLLM.
Please register [here](https://robloxandvllmmeetup2024.splashthat.com/) and join us!
---
*Latest News* 🔥
- [2024/04] We hosted [the third vLLM meetup](https://robloxandvllmmeetup2024.splashthat.com/) with Roblox! Please find the meetup slides [here](https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing).
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2024/01] Added ROCm 6.0 support to vLLM.
- [2023/12] Added ROCm 5.7 support to vLLM.
@ -80,15 +70,16 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
- InternLM2 (`internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc.)
- Jais (`core42/jais-13b`, `core42/jais-13b-chat`, `core42/jais-30b-v3`, `core42/jais-30b-chat-v3`, etc.)
- LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
- MiniCPM (`openbmb/MiniCPM-2B-sft-bf16`, `openbmb/MiniCPM-2B-dpo-bf16`, etc.)
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, etc.)
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, `mistral-community/Mixtral-8x22B-v0.1`, etc.)
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
- OLMo (`allenai/OLMo-1B`, `allenai/OLMo-7B`, etc.)
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
- Orion (`OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc.)
- Phi (`microsoft/phi-1_5`, `microsoft/phi-2`, etc.)
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)
- Qwen2 (`Qwen/Qwen2-7B-beta`, `Qwen/Qwen-7B-Chat-beta`, etc.)
- Qwen2 (`Qwen/Qwen1.5-7B`, `Qwen/Qwen1.5-7B-Chat`, etc.)
- Qwen2MoE (`Qwen/Qwen1.5-MoE-A2.7B`, `Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc.)
- StableLM(`stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc.)
- Starcoder2(`bigcode/starcoder2-3b`, `bigcode/starcoder2-7b`, `bigcode/starcoder2-15b`, etc.)

View File

@ -27,8 +27,8 @@ class RequestFuncInput:
class RequestFuncOutput:
generated_text: str = ""
success: bool = False
latency: float = 0
ttft: float = 0 # Time to first token
latency: float = 0.0
ttft: float = 0.0 # Time to first token
itl: List[float] = field(
default_factory=list) # List of inter-token latencies
prompt_len: int = 0
@ -58,23 +58,24 @@ async def async_request_tgi(
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk in response.content:
chunk = chunk.strip()
if not chunk:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk.decode("utf-8"), "data:")
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data:")
data = json.loads(chunk)
timestamp = time.perf_counter()
# First token
if ttft == 0:
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
@ -119,23 +120,24 @@ async def async_request_trt_llm(
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk in response.content:
chunk = chunk.strip()
if not chunk:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk.decode("utf-8"), "data:")
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data:")
data = json.loads(chunk)
timestamp = time.perf_counter()
# First token
if ttft == 0:
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
@ -151,7 +153,7 @@ async def async_request_trt_llm(
output.success = True
else:
output.error = response.reason
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
@ -195,7 +197,7 @@ async def async_request_deepspeed_mii(
output.generated_text = parsed_resp["text"][0]
output.success = True
else:
output.error = response.reason
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
@ -234,19 +236,20 @@ async def async_request_openai_completions(
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
if response.status == 200:
async for chunk in response.content:
chunk = chunk.strip()
if not chunk:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk.decode("utf-8"), "data: ")
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data: ")
if chunk == "[DONE]":
latency = time.perf_counter() - st
else:
@ -255,7 +258,7 @@ async def async_request_openai_completions(
if data["choices"][0]["text"]:
timestamp = time.perf_counter()
# First token
if ttft == 0:
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
@ -315,19 +318,20 @@ async def async_request_openai_chat_completions(
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
if response.status == 200:
async for chunk in response.content:
chunk = chunk.strip()
if not chunk:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk.decode("utf-8"), "data: ")
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data: ")
if chunk == "[DONE]":
latency = time.perf_counter() - st
else:
@ -337,7 +341,7 @@ async def async_request_openai_chat_completions(
delta = data["choices"][0]["delta"]
if delta.get("content", None):
# First token
if ttft == 0:
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
@ -354,7 +358,7 @@ async def async_request_openai_chat_completions(
output.success = True
output.latency = latency
else:
output.error = response.reason
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False

View File

@ -0,0 +1,148 @@
import functools
import time
from typing import Tuple
import chex
import jax
import jax.numpy as jnp
_PAD_SLOT_ID = -1
@jax.jit
def write_to_kv_cache1(
key: jax.Array, # [batch_size, seq_len, num_heads, head_size]
value: jax.Array, # [batch_size, seq_len, num_heads, head_size]
k_cache: jax.Array, # [num_heads, num_blocks * block_size, head_size]
v_cache: jax.Array, # [num_heads, num_blocks * block_size, head_size]
slot_mapping: jax.Array, # [batch_size, seq_len]
) -> Tuple[jax.Array, jax.Array]:
num_heads = key.shape[-2]
head_size = key.shape[-1]
key = key.reshape(-1, num_heads, head_size)
key = key.transpose((1, 0, 2))
value = value.reshape(-1, num_heads, head_size)
value = value.transpose((1, 0, 2))
k_cache = k_cache.at[:, slot_mapping.reshape(-1), :].set(key)
v_cache = v_cache.at[:, slot_mapping.reshape(-1), :].set(value)
return k_cache, v_cache
@functools.partial(jax.jit, donate_argnums=(2, 3))
def write_to_kv_cache2(
key: jax.Array, # [batch_size, seq_len, num_heads, head_size]
value: jax.Array, # [batch_size, seq_len, num_heads, head_size]
k_cache: jax.Array, # [num_heads, num_blocks * block_size, head_size]
v_cache: jax.Array, # [num_heads, num_blocks * block_size, head_size]
slot_mapping: jax.Array, # [batch_size, seq_len]
) -> Tuple[jax.Array, jax.Array]:
batch_size = slot_mapping.shape[0]
def cond(val: _IteratorState):
return val.idx < batch_size
def body(val: _IteratorState):
k_cache, v_cache = _write_seq_to_kv_cache(
key[val.idx],
value[val.idx],
val.k_cache,
val.v_cache,
slot_mapping[val.idx],
)
val.k_cache = k_cache
val.v_cache = v_cache
val.idx += 1
return val
iterator = _IteratorState(idx=0, k_cache=k_cache, v_cache=v_cache)
iterator = jax.lax.while_loop(cond, body, iterator)
return iterator.k_cache, iterator.v_cache
@functools.partial(jax.jit, donate_argnums=(2, 3))
def _write_seq_to_kv_cache(
key: jax.Array, # [seq_len, num_heads, head_size]
value: jax.Array, # [seq_len, num_heads, head_size]
k_cache: jax.Array, # [num_heads, num_blocks * block_size, head_size]
v_cache: jax.Array, # [num_heads, num_blocks * block_size, head_size]
slot_mapping: jax.Array, # [seq_len]
) -> Tuple[jax.Array, jax.Array]:
seq_len = slot_mapping.shape[0]
num_heads, _, head_size = k_cache.shape
# Reshape to match the rank of kv_cache.
key = key.reshape(seq_len, num_heads, 1, head_size)
value = value.reshape(seq_len, num_heads, 1, head_size)
def cond(val: _IteratorState):
return jnp.logical_and(
val.idx < seq_len, slot_mapping[val.idx] != _PAD_SLOT_ID)
def body(val: _IteratorState):
slot_idx = slot_mapping[val.idx]
val.k_cache = jax.lax.dynamic_update_slice(
val.k_cache,
key[val.idx],
(0, slot_idx, 0),
)
val.v_cache = jax.lax.dynamic_update_slice(
val.v_cache,
value[val.idx],
(0, slot_idx, 0),
)
val.idx += 1
return val
iterator = _IteratorState(idx=0, k_cache=k_cache, v_cache=v_cache)
iterator = jax.lax.while_loop(cond, body, iterator)
return iterator.k_cache, iterator.v_cache
@chex.dataclass
class _IteratorState:
idx: jnp.int32
k_cache: jnp.ndarray # [num_heads, num_blocks, block_size, head_size]
v_cache: jnp.ndarray # [num_heads, num_blocks, block_size, head_size]
def benchmark_write_to_kv_cache(
batch_size: int,
seq_len: int,
num_kv_heads: int,
head_size: int,
num_blocks: int,
block_size: int,
version: int = 1,
):
if version == 1:
f = write_to_kv_cache1
elif version == 2:
f = write_to_kv_cache2
else:
raise ValueError(f"Invalid version: {version}")
rng_key = jax.random.PRNGKey(0)
key = jax.random.normal(rng_key, (batch_size, seq_len, num_kv_heads, head_size), dtype=jnp.bfloat16)
value = jax.random.normal(rng_key, (batch_size, seq_len, num_kv_heads, head_size), dtype=jnp.bfloat16)
k_cache = jax.random.normal(rng_key, (num_kv_heads, num_blocks * block_size, head_size), dtype=jnp.bfloat16)
v_cache = jax.random.normal(rng_key, (num_kv_heads, num_blocks * block_size, head_size), dtype=jnp.bfloat16)
slot_mapping = jax.random.randint(rng_key, (batch_size, seq_len), 0, num_blocks * block_size, dtype=jnp.int32)
# For JIT compilation.
k_cache, v_cache = f(key, value, k_cache, v_cache, slot_mapping)
k_cache.block_until_ready()
start = time.time()
for _ in range(100):
k_cache, v_cache = f(key, value, k_cache, v_cache, slot_mapping)
k_cache.block_until_ready()
end = time.time()
print(f"Time taken: {(end - start) * 10:.2f} ms")
if __name__ == "__main__":
for num_blocks in [16, 256, 512, 1024, 2048, 8192, 16384]:
print(f"Benchmarking Write to KV Cache w/ {num_blocks} blocks")
benchmark_write_to_kv_cache(16, 256, 16, 256, num_blocks, 16, version=1)

View File

@ -0,0 +1,101 @@
import argparse
import functools
import time
import jax
import jax.numpy as jnp
from jax.experimental.pallas.ops.tpu.paged_attention import paged_attention
BLOCK_SIZE = 16
MAX_NUM_BLOCKS_PER_SEQ = 512
@functools.partial(jax.jit, static_argnums=(6, 7))
def paged_attn(
q: jax.Array, # [batch, 1, num_heads, head_size]
k_cache: jax.Array, # [num_kv_heads, num_blocks * block_size, head_size]
v_cache: jax.Array, # [num_kv_heads, num_blocks * block_size, head_size]
sm_scale: float,
block_tables: jax.Array, # [batch, max_num_blocks_per_batch]
context_lens: jax.Array, # [batch]
block_size: int,
pages_per_compute_block: int,
) -> jax.Array: # [batch, 1, num_heads, head_size]
q = q.squeeze(1)
q = q * sm_scale
head_size = q.shape[-1]
num_slots = k_cache.shape[-2]
k_cache = k_cache.reshape(-1, num_slots // block_size, block_size, head_size)
v_cache = v_cache.reshape(-1, num_slots // block_size, block_size, head_size)
output = paged_attention(
q,
k_cache,
v_cache,
context_lens,
block_tables,
pages_per_compute_block=pages_per_compute_block,
)
return output.reshape(q.shape[0], 1, q.shape[1], q.shape[2])
def benchmark_paged_attn(
batch_size: int,
num_heads: int,
num_kv_heads: int,
head_size: int,
context_len: int,
num_blocks: int,
block_size: int,
pages_per_compute_block: int,
):
rng_key = jax.random.PRNGKey(0)
query = jax.random.normal(rng_key, (batch_size, 1, num_heads, head_size), dtype=jnp.bfloat16)
k_cache = jax.random.normal(rng_key, (num_kv_heads, num_blocks * block_size, head_size), dtype=jnp.bfloat16)
v_cache = jax.random.normal(rng_key, (num_kv_heads, num_blocks * block_size, head_size), dtype=jnp.bfloat16)
sm_scale = head_size ** -0.5
block_tables = jax.random.randint(rng_key, (batch_size, MAX_NUM_BLOCKS_PER_SEQ), 0, num_blocks, dtype=jnp.int32)
context_lens = jnp.array([context_len] * batch_size, dtype=jnp.int32)
# For JIT compilation.
output = paged_attn(query, k_cache, v_cache, sm_scale, block_tables, context_lens, block_size, pages_per_compute_block)
output.block_until_ready()
start = time.time()
for _ in range(100):
output = paged_attn(query, k_cache, v_cache, sm_scale, block_tables, context_lens, block_size, pages_per_compute_block)
output.block_until_ready()
end = time.time()
print(f"Time taken: {(end - start) * 10000:.2f} us")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument("--num-heads", type=int, default=16)
parser.add_argument("--num-kv-heads", type=int, default=16)
parser.add_argument("--head-size", type=int, default=256)
parser.add_argument("--context-len", type=int, default=512)
parser.add_argument("--num-blocks", type=int, default=2048)
args = parser.parse_args()
print(args)
for block_size in [16, 32, 64, 128]:
for pages_per_compute_block in [1, 2, 4, 8, 16, 32, 64, 128]:
if pages_per_compute_block > MAX_NUM_BLOCKS_PER_SEQ:
continue
if block_size * pages_per_compute_block > 1024:
continue
print(f"block_size {block_size}, pages_per_compute_block: {pages_per_compute_block}")
benchmark_paged_attn(
args.batch_size,
args.num_heads,
args.num_kv_heads,
args.head_size,
args.context_len,
args.num_blocks,
block_size,
pages_per_compute_block,
)

View File

@ -24,6 +24,7 @@ def main(args: argparse.Namespace):
dtype=args.dtype,
enforce_eager=args.enforce_eager,
kv_cache_dtype=args.kv_cache_dtype,
quantization_param_path=args.quantization_param_path,
device=args.device,
ray_workers_use_nsight=args.ray_workers_use_nsight,
enable_chunked_prefill=args.enable_chunked_prefill,
@ -67,7 +68,8 @@ def main(args: argparse.Namespace):
return latency
print("Warming up...")
run_to_completion(profile_dir=None)
for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
run_to_completion(profile_dir=None)
if args.profile:
profile_dir = args.profile_result_dir
@ -83,7 +85,12 @@ def main(args: argparse.Namespace):
latencies = []
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
latencies.append(run_to_completion(profile_dir=None))
latencies = np.array(latencies)
percentages = [10, 25, 50, 75, 90]
percentiles = np.percentile(latencies, percentages)
print(f'Avg latency: {np.mean(latencies)} seconds')
for percentage, percentile in zip(percentages, percentiles):
print(f'{percentage}% percentile latency: {percentile} seconds')
if __name__ == '__main__':
@ -105,9 +112,13 @@ if __name__ == '__main__':
default=1,
help='Number of generated sequences per prompt.')
parser.add_argument('--use-beam-search', action='store_true')
parser.add_argument('--num-iters-warmup',
type=int,
default=10,
help='Number of iterations to run for warmup.')
parser.add_argument('--num-iters',
type=int,
default=3,
default=30,
help='Number of iterations to run.')
parser.add_argument('--trust-remote-code',
action='store_true',
@ -127,10 +138,23 @@ if __name__ == '__main__':
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=['auto', 'fp8_e5m2'],
choices=['auto', 'fp8'],
default='auto',
help=
'Data type for kv cache storage. If "auto", will use model data type.')
'Data type for kv cache storage. If "auto", will use model data type. '
'FP8_E5M2 (without scaling) is only supported on cuda version greater '
'than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead supported for '
'common inference criteria.')
parser.add_argument(
'--quantization-param-path',
type=str,
default=None,
help='Path to the JSON file containing the KV cache scaling factors. '
'This should generally be supplied, when KV cache dtype is FP8. '
'Otherwise, KV cache scaling factors default to 1.0, which may cause '
'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is '
'instead supported for common inference criteria.')
parser.add_argument(
'--profile',
action='store_true',
@ -145,16 +169,15 @@ if __name__ == '__main__':
"--device",
type=str,
default="cuda",
choices=["cuda"],
help='device type for vLLM execution, supporting CUDA only currently.')
choices=["cuda", "cpu"],
help='device type for vLLM execution, supporting CUDA and CPU.')
parser.add_argument('--block-size',
type=int,
default=16,
help='block size of key/value cache')
parser.add_argument(
'--enable-chunked-prefill',
type=bool,
default=False,
action='store_true',
help='If True, the prefill requests can be chunked based on the '
'max_num_batched_tokens')
parser.add_argument(

View File

@ -110,7 +110,9 @@ def sample_sonnet_requests(
prefix_len: int,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, str, int, int]]:
assert input_len > prefix_len, "input_len must be greater than prefix_len."
assert (
input_len > prefix_len
), "'args.sonnet-input-len' must be greater than 'args.prefix-input-len'."
# Load the dataset.
with open(dataset_path) as f:
@ -131,8 +133,9 @@ def sample_sonnet_requests(
base_message, add_generation_prompt=True, tokenize=False)
base_prompt_offset = len(tokenizer(base_prompt_formatted).input_ids)
assert (input_len > base_prompt_offset
), f"Please set 'args.input-len' higher than {base_prompt_offset}."
assert (
input_len > base_prompt_offset
), f"Please set 'args.sonnet-input-len' higher than {base_prompt_offset}."
num_input_lines = round(
(input_len - base_prompt_offset) / average_poem_len)
@ -140,7 +143,7 @@ def sample_sonnet_requests(
# prompt are fixed poem lines.
assert (
prefix_len > base_prompt_offset
), f"Please set 'args.prefix-len' higher than {base_prompt_offset}."
), f"Please set 'args.sonnet-prefix-len' higher than {base_prompt_offset}."
num_prefix_lines = round(
(prefix_len - base_prompt_offset) / average_poem_len)
@ -373,9 +376,9 @@ def main(args: argparse.Namespace):
input_requests = sample_sonnet_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
input_len=args.input_len,
output_len=args.output_len,
prefix_len=args.prefix_len,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
)
input_requests = [(prompt, prompt_len, output_len)
@ -388,9 +391,9 @@ def main(args: argparse.Namespace):
input_requests = sample_sonnet_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
input_len=args.input_len,
output_len=args.output_len,
prefix_len=args.prefix_len,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
)
input_requests = [(prompt_formatted, prompt_len, output_len)

View File

@ -29,22 +29,23 @@ def sample_requests(
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Tokenize the prompts and completions.
prompts = [prompt for prompt, _ in dataset]
prompt_token_ids = tokenizer(prompts).input_ids
completions = [completion for _, completion in dataset]
completion_token_ids = tokenizer(completions).input_ids
tokenized_dataset = []
for i in range(len(dataset)):
output_len = len(completion_token_ids[i])
if fixed_output_len is not None:
output_len = fixed_output_len
tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out too long sequences.
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for prompt, prompt_token_ids, output_len in tokenized_dataset:
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
@ -53,9 +54,7 @@ def sample_requests(
continue
filtered_dataset.append((prompt, prompt_len, output_len))
# Sample the requests.
sampled_requests = random.sample(filtered_dataset, num_requests)
return sampled_requests
return filtered_dataset
def run_vllm(
@ -72,26 +71,34 @@ def run_vllm(
max_model_len: Optional[int],
enforce_eager: bool,
kv_cache_dtype: str,
quantization_param_path: Optional[str],
device: str,
enable_prefix_caching: bool,
enable_chunked_prefill: bool,
max_num_batched_tokens: int,
gpu_memory_utilization: float = 0.9,
download_dir: Optional[str] = None,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(model=model,
tokenizer=tokenizer,
quantization=quantization,
tensor_parallel_size=tensor_parallel_size,
seed=seed,
trust_remote_code=trust_remote_code,
dtype=dtype,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
device=device,
enable_prefix_caching=enable_prefix_caching,
download_dir=download_dir)
llm = LLM(
model=model,
tokenizer=tokenizer,
quantization=quantization,
tensor_parallel_size=tensor_parallel_size,
seed=seed,
trust_remote_code=trust_remote_code,
dtype=dtype,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
quantization_param_path=quantization_param_path,
device=device,
enable_prefix_caching=enable_prefix_caching,
download_dir=download_dir,
enable_chunked_prefill=enable_chunked_prefill,
max_num_batched_tokens=max_num_batched_tokens,
)
# Add the requests to the engine.
for prompt, _, output_len in requests:
@ -212,14 +219,15 @@ def main(args: argparse.Namespace):
args.output_len)
if args.backend == "vllm":
elapsed_time = run_vllm(requests, args.model, args.tokenizer,
args.quantization, args.tensor_parallel_size,
args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype,
args.max_model_len, args.enforce_eager,
args.kv_cache_dtype, args.device,
args.enable_prefix_caching,
args.gpu_memory_utilization, args.download_dir)
elapsed_time = run_vllm(
requests, args.model, args.tokenizer, args.quantization,
args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype, args.max_model_len,
args.enforce_eager, args.kv_cache_dtype,
args.quantization_param_path, args.device,
args.enable_prefix_caching, args.enable_chunked_prefill,
args.max_num_batched_tokens, args.gpu_memory_utilization,
args.download_dir)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
@ -306,20 +314,41 @@ if __name__ == "__main__":
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=["auto", "fp8_e5m2"],
choices=["auto", "fp8"],
default="auto",
help=
'Data type for kv cache storage. If "auto", will use model data type.')
'Data type for kv cache storage. If "auto", will use model data type. '
'FP8_E5M2 (without scaling) is only supported on cuda version greater '
'than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead supported for '
'common inference criteria.')
parser.add_argument(
'--quantization-param-path',
type=str,
default=None,
help='Path to the JSON file containing the KV cache scaling factors. '
'This should generally be supplied, when KV cache dtype is FP8. '
'Otherwise, KV cache scaling factors default to 1.0, which may cause '
'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is '
'instead supported for common inference criteria.')
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda"],
help='device type for vLLM execution, supporting CUDA only currently.')
choices=["cuda", "cpu", "tpu"],
help='device type for vLLM execution, supporting CUDA and CPU.')
parser.add_argument(
"--enable-prefix-caching",
action='store_true',
help="enable automatic prefix caching for vLLM backend.")
parser.add_argument("--enable-chunked-prefill",
action='store_true',
help="enable chunked prefill for vLLM backend.")
parser.add_argument('--max-num-batched-tokens',
type=int,
default=None,
help='maximum number of batched tokens per '
'iteration')
parser.add_argument('--download-dir',
type=str,
default=None,

View File

@ -5,7 +5,7 @@ from typing import Optional
import torch
from vllm._C import ops
from vllm import _custom_ops as ops
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, create_kv_caches_with_random
NUM_BLOCKS = 1024
@ -97,6 +97,9 @@ def main(
torch.cuda.cudart().cudaProfilerStart()
start_time = time.perf_counter()
# Using default kv_scale
kv_scale = 1.0
for _ in range(num_iters):
if version == "v1":
ops.paged_attention_v1(
@ -112,6 +115,7 @@ def main(
max_context_len,
alibi_slopes,
kv_cache_dtype,
kv_scale,
)
elif version == "v2":
ops.paged_attention_v2(
@ -130,6 +134,7 @@ def main(
max_context_len,
alibi_slopes,
kv_cache_dtype,
kv_scale,
)
else:
raise ValueError(f"Invalid version: {version}")
@ -179,11 +184,13 @@ if __name__ == '__main__':
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=["auto", "fp8_e5m2"],
choices=["auto", "fp8"],
default="auto",
help=
'Data type for kv cache storage. If "auto", will use model data type.')
parser.add_argument("--device", type=str, choices=["cuda"], default="cuda")
'Data type for kv cache storage. If "auto", will use model data type. '
'FP8_E5M2 (without scaling) is only supported on cuda version greater '
'than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead supported for '
'common inference criteria.')
args = parser.parse_args()
print(args)

View File

@ -100,6 +100,8 @@ function (get_torch_gpu_compiler_flags OUT_GPU_FLAGS GPU_LANG)
if (CUDA_VERSION VERSION_GREATER_EQUAL 11.8)
list(APPEND GPU_FLAGS "-DENABLE_FP8_E5M2")
endif()
if (CUDA_VERSION VERSION_GREATER_EQUAL 12.0)
list(REMOVE_ITEM GPU_FLAGS
"-D__CUDA_NO_HALF_OPERATORS__"
"-D__CUDA_NO_HALF_CONVERSIONS__"
@ -117,6 +119,7 @@ function (get_torch_gpu_compiler_flags OUT_GPU_FLAGS GPU_LANG)
list(APPEND GPU_FLAGS
"-DUSE_ROCM"
"-DENABLE_FP8_E4M3"
"-U__HIP_NO_HALF_CONVERSIONS__"
"-U__HIP_NO_HALF_OPERATORS__"
"-fno-gpu-rdc")

View File

@ -4,4 +4,4 @@
#include "dtype_float16.cuh"
#include "dtype_float32.cuh"
#include "dtype_bfloat16.cuh"
#include "dtype_fp8_e5m2.cuh"
#include "dtype_fp8.cuh"

View File

@ -22,12 +22,26 @@
#include "attention_dtypes.h"
#include "attention_utils.cuh"
#ifdef ENABLE_FP8_E5M2
#if defined(ENABLE_FP8_E5M2)
#include "../quantization/fp8_e5m2_kvcache/quant_utils.cuh"
#elif defined(ENABLE_FP8_E4M3)
#include "../quantization/fp8/amd_detail/quant_utils.cuh"
#endif
#include <algorithm>
#ifdef USE_ROCM
#include <hip/hip_bf16.h>
typedef __hip_bfloat16 __nv_bfloat16;
#endif
#ifndef USE_ROCM
#define WARP_SIZE 32
#else
#define WARP_SIZE warpSize
#endif
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
@ -78,7 +92,7 @@ template<
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS,
bool IS_FP8_E5M2_KV_CACHE,
bool IS_FP8_KV_CACHE,
int PARTITION_SIZE = 0> // Zero means no partitioning.
__device__ void paged_attention_kernel(
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
@ -95,7 +109,8 @@ __device__ void paged_attention_kernel(
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
const int kv_block_stride,
const int kv_head_stride) {
const int kv_head_stride,
const float kv_scale) {
const int seq_idx = blockIdx.y;
const int partition_idx = blockIdx.z;
const int max_num_partitions = gridDim.z;
@ -142,7 +157,7 @@ __device__ void paged_attention_kernel(
constexpr int VEC_SIZE = MAX(16 / (THREAD_GROUP_SIZE * sizeof(scalar_t)), 1);
using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
#ifdef ENABLE_FP8_E5M2
#if defined(ENABLE_FP8_E5M2) || defined(ENABLE_FP8_E4M3)
using Quant_vec = typename Vec<cache_t, VEC_SIZE>::Type;
#endif
@ -208,11 +223,16 @@ __device__ void paged_attention_kernel(
const int vec_idx = thread_group_offset + j * THREAD_GROUP_SIZE;
const int offset1 = (vec_idx * VEC_SIZE) / x;
const int offset2 = (vec_idx * VEC_SIZE) % x;
if constexpr (IS_FP8_E5M2_KV_CACHE) {
#ifdef ENABLE_FP8_E5M2
if constexpr (IS_FP8_KV_CACHE) {
#if defined(ENABLE_FP8_E5M2)
Quant_vec k_vec_quant = *reinterpret_cast<const Quant_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
// Vector conversion from Quant_vec to K_vec.
k_vecs[j] = fp8_e5m2_unscaled::vec_conversion<K_vec, Quant_vec>(k_vec_quant);
#elif defined(ENABLE_FP8_E4M3)
Quant_vec k_vec_quant = *reinterpret_cast<const Quant_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
// Vector conversion from Quant_vec to K_vec. Use scaled_vec_conversion to convert FP8_E4M3 quantized k
// cache vec to k vec in higher precision (FP16, BFloat16, etc.)
k_vecs[j] = fp8_e4m3::scaled_vec_conversion<K_vec, Quant_vec>(k_vec_quant, kv_scale);
#else
assert(false);
#endif
@ -292,7 +312,7 @@ __device__ void paged_attention_kernel(
constexpr int V_VEC_SIZE = MIN(16 / sizeof(scalar_t), BLOCK_SIZE);
using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
using L_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
#ifdef ENABLE_FP8_E5M2
#if defined(ENABLE_FP8_E5M2) || defined(ENABLE_FP8_E4M3)
using V_quant_vec = typename Vec<cache_t, V_VEC_SIZE>::Type;
#endif
using Float_L_vec = typename FloatVec<L_vec>::Type;
@ -328,11 +348,16 @@ __device__ void paged_attention_kernel(
if (row_idx < HEAD_SIZE) {
const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
V_vec v_vec;
if constexpr (IS_FP8_E5M2_KV_CACHE) {
#ifdef ENABLE_FP8_E5M2
if constexpr (IS_FP8_KV_CACHE) {
#if defined(ENABLE_FP8_E5M2)
V_quant_vec v_quant_vec = *reinterpret_cast<const V_quant_vec*>(v_ptr + offset);
// Vector conversion from V_quant_vec to V_vec.
v_vec = fp8_e5m2_unscaled::vec_conversion<V_vec, V_quant_vec>(v_quant_vec);
#elif defined(ENABLE_FP8_E4M3)
V_quant_vec v_quant_vec = *reinterpret_cast<const V_quant_vec*>(v_ptr + offset);
// Vector conversion from V_quant_vec to V_vec. Use scaled_vec_conversion to convert
// FP8_E4M3 quantized v cache vec to v vec in higher precision (FP16, BFloat16, etc.)
v_vec = fp8_e4m3::scaled_vec_conversion<V_vec, V_quant_vec>(v_quant_vec, kv_scale);
#else
assert(false);
#endif
@ -423,7 +448,7 @@ template<
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS,
bool IS_FP8_E5M2_KV_CACHE>
bool IS_FP8_KV_CACHE>
__global__ void paged_attention_v1_kernel(
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
@ -437,11 +462,12 @@ __global__ void paged_attention_v1_kernel(
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
const int kv_block_stride,
const int kv_head_stride) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, IS_FP8_E5M2_KV_CACHE>(
const int kv_head_stride,
const float kv_scale) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, IS_FP8_KV_CACHE>(
/* exp_sums */ nullptr, /* max_logits */ nullptr,
out, q, k_cache, v_cache, num_kv_heads, scale, block_tables, context_lens,
max_num_blocks_per_seq, alibi_slopes, q_stride, kv_block_stride, kv_head_stride);
max_num_blocks_per_seq, alibi_slopes, q_stride, kv_block_stride, kv_head_stride, kv_scale);
}
// Grid: (num_heads, num_seqs, max_num_partitions).
@ -451,7 +477,7 @@ template<
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS,
bool IS_FP8_E5M2_KV_CACHE,
bool IS_FP8_KV_CACHE,
int PARTITION_SIZE>
__global__ void paged_attention_v2_kernel(
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
@ -468,11 +494,12 @@ __global__ void paged_attention_v2_kernel(
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
const int kv_block_stride,
const int kv_head_stride) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, IS_FP8_E5M2_KV_CACHE, PARTITION_SIZE>(
const int kv_head_stride,
const float kv_scale) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, IS_FP8_KV_CACHE, PARTITION_SIZE>(
exp_sums, max_logits, tmp_out, q, k_cache, v_cache, num_kv_heads, scale,
block_tables, context_lens, max_num_blocks_per_seq, alibi_slopes,
q_stride, kv_block_stride, kv_head_stride);
q_stride, kv_block_stride, kv_head_stride, kv_scale);
}
// Grid: (num_heads, num_seqs).
@ -579,9 +606,9 @@ __global__ void paged_attention_v2_reduce_kernel(
#define LAUNCH_PAGED_ATTENTION_V1(HEAD_SIZE) \
VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize( \
((void*)vllm::paged_attention_v1_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, \
IS_FP8_E5M2_KV_CACHE>), shared_mem_size); \
IS_FP8_KV_CACHE>), shared_mem_size); \
vllm::paged_attention_v1_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, \
IS_FP8_E5M2_KV_CACHE><<<grid, block, shared_mem_size, stream>>>( \
IS_FP8_KV_CACHE><<<grid, block, shared_mem_size, stream>>>( \
out_ptr, \
query_ptr, \
key_cache_ptr, \
@ -594,14 +621,15 @@ __global__ void paged_attention_v2_reduce_kernel(
alibi_slopes_ptr, \
q_stride, \
kv_block_stride, \
kv_head_stride);
kv_head_stride, \
kv_scale);
// TODO(woosuk): Tune NUM_THREADS.
template<
typename T,
typename CACHE_T,
int BLOCK_SIZE,
bool IS_FP8_E5M2_KV_CACHE,
bool IS_FP8_KV_CACHE,
int NUM_THREADS = 128>
void paged_attention_v1_launcher(
torch::Tensor& out,
@ -613,7 +641,8 @@ void paged_attention_v1_launcher(
torch::Tensor& block_tables,
torch::Tensor& context_lens,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes) {
const c10::optional<torch::Tensor>& alibi_slopes,
float kv_scale) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
@ -677,8 +706,8 @@ void paged_attention_v1_launcher(
}
}
#define CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE) \
paged_attention_v1_launcher<T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE>( \
#define CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE) \
paged_attention_v1_launcher<T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE>( \
out, \
query, \
key_cache, \
@ -688,20 +717,21 @@ void paged_attention_v1_launcher(
block_tables, \
context_lens, \
max_context_len, \
alibi_slopes);
alibi_slopes, \
kv_scale);
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
// 1, 2, 4, 64, 128, 256.
#define CALL_V1_LAUNCHER_BLOCK_SIZE(T, CACHE_T, IS_FP8_E5M2_KV_CACHE) \
#define CALL_V1_LAUNCHER_BLOCK_SIZE(T, CACHE_T, IS_FP8_KV_CACHE) \
switch (block_size) { \
case 8: \
CALL_V1_LAUNCHER(T, CACHE_T, 8, IS_FP8_E5M2_KV_CACHE); \
CALL_V1_LAUNCHER(T, CACHE_T, 8, IS_FP8_KV_CACHE); \
break; \
case 16: \
CALL_V1_LAUNCHER(T, CACHE_T, 16, IS_FP8_E5M2_KV_CACHE); \
CALL_V1_LAUNCHER(T, CACHE_T, 16, IS_FP8_KV_CACHE); \
break; \
case 32: \
CALL_V1_LAUNCHER(T, CACHE_T, 32, IS_FP8_E5M2_KV_CACHE); \
CALL_V1_LAUNCHER(T, CACHE_T, 32, IS_FP8_KV_CACHE); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
@ -720,7 +750,8 @@ void paged_attention_v1(
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype) {
const std::string& kv_cache_dtype,
float kv_scale) {
if (kv_cache_dtype == "auto") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V1_LAUNCHER_BLOCK_SIZE(float, float, false);
@ -731,7 +762,7 @@ void paged_attention_v1(
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else if (kv_cache_dtype == "fp8_e5m2") {
} else if (kv_cache_dtype == "fp8") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V1_LAUNCHER_BLOCK_SIZE(float, uint8_t, true);
} else if (query.dtype() == at::ScalarType::Half) {
@ -748,7 +779,7 @@ void paged_attention_v1(
#define LAUNCH_PAGED_ATTENTION_V2(HEAD_SIZE) \
vllm::paged_attention_v2_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, \
IS_FP8_E5M2_KV_CACHE, PARTITION_SIZE> \
IS_FP8_KV_CACHE, PARTITION_SIZE> \
<<<grid, block, shared_mem_size, stream>>>( \
exp_sums_ptr, \
max_logits_ptr, \
@ -764,7 +795,8 @@ void paged_attention_v1(
alibi_slopes_ptr, \
q_stride, \
kv_block_stride, \
kv_head_stride); \
kv_head_stride, \
kv_scale); \
vllm::paged_attention_v2_reduce_kernel<T, HEAD_SIZE, NUM_THREADS, PARTITION_SIZE> \
<<<reduce_grid, block, reduce_shared_mem_size, stream>>>( \
out_ptr, \
@ -778,7 +810,7 @@ template<
typename T,
typename CACHE_T,
int BLOCK_SIZE,
bool IS_FP8_E5M2_KV_CACHE,
bool IS_FP8_KV_CACHE,
int NUM_THREADS = 128,
int PARTITION_SIZE = 512>
void paged_attention_v2_launcher(
@ -794,7 +826,8 @@ void paged_attention_v2_launcher(
torch::Tensor& block_tables,
torch::Tensor& context_lens,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes) {
const c10::optional<torch::Tensor>& alibi_slopes,
float kv_scale) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
@ -864,8 +897,8 @@ void paged_attention_v2_launcher(
}
}
#define CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE) \
paged_attention_v2_launcher<T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE>( \
#define CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE) \
paged_attention_v2_launcher<T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE>( \
out, \
exp_sums, \
max_logits, \
@ -878,20 +911,21 @@ void paged_attention_v2_launcher(
block_tables, \
context_lens, \
max_context_len, \
alibi_slopes);
alibi_slopes, \
kv_scale);
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
// 1, 2, 4, 64, 128, 256.
#define CALL_V2_LAUNCHER_BLOCK_SIZE(T, CACHE_T, IS_FP8_E5M2_KV_CACHE) \
#define CALL_V2_LAUNCHER_BLOCK_SIZE(T, CACHE_T, IS_FP8_KV_CACHE) \
switch (block_size) { \
case 8: \
CALL_V2_LAUNCHER(T, CACHE_T, 8, IS_FP8_E5M2_KV_CACHE); \
CALL_V2_LAUNCHER(T, CACHE_T, 8, IS_FP8_KV_CACHE); \
break; \
case 16: \
CALL_V2_LAUNCHER(T, CACHE_T, 16, IS_FP8_E5M2_KV_CACHE); \
CALL_V2_LAUNCHER(T, CACHE_T, 16, IS_FP8_KV_CACHE); \
break; \
case 32: \
CALL_V2_LAUNCHER(T, CACHE_T, 32, IS_FP8_E5M2_KV_CACHE); \
CALL_V2_LAUNCHER(T, CACHE_T, 32, IS_FP8_KV_CACHE); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
@ -913,7 +947,8 @@ void paged_attention_v2(
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype) {
const std::string& kv_cache_dtype,
float kv_scale) {
if (kv_cache_dtype == "auto") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V2_LAUNCHER_BLOCK_SIZE(float, float, false);
@ -924,7 +959,7 @@ void paged_attention_v2(
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else if (kv_cache_dtype == "fp8_e5m2") {
} else if (kv_cache_dtype == "fp8") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V2_LAUNCHER_BLOCK_SIZE(float, uint8_t, true);
} else if (query.dtype() == at::ScalarType::Half) {

View File

@ -8,7 +8,7 @@
#endif
namespace vllm {
#ifdef ENABLE_FP8_E5M2
#if defined(ENABLE_FP8_E5M2) || defined(ENABLE_FP8_E4M3)
// fp8 vector types for quantization of kv cache
template<>

View File

@ -21,9 +21,10 @@ void reshape_and_cache(
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype);
const std::string& kv_cache_dtype,
const float kv_scale);
// Just for unittest
void convert_fp8_e5m2(
void convert_fp8(
torch::Tensor& src_cache,
torch::Tensor& dst_cache);

View File

@ -4,8 +4,10 @@
#include "cuda_compat.h"
#include "dispatch_utils.h"
#ifdef ENABLE_FP8_E5M2
#if defined(ENABLE_FP8_E5M2)
#include "quantization/fp8_e5m2_kvcache/quant_utils.cuh"
#elif defined(ENABLE_FP8_E4M3)
#include "quantization/fp8/amd_detail/quant_utils.cuh"
#endif
#include <algorithm>
@ -151,7 +153,7 @@ void copy_blocks(
namespace vllm {
template<typename scalar_t, typename cache_t, bool is_fp8_e5m2_kv_cache>
template<typename scalar_t, typename cache_t, bool is_fp8_kv_cache>
__global__ void reshape_and_cache_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
@ -163,7 +165,8 @@ __global__ void reshape_and_cache_kernel(
const int num_heads,
const int head_size,
const int block_size,
const int x) {
const int x,
const float kv_scale) {
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
if (slot_idx < 0) {
@ -195,10 +198,13 @@ __global__ void reshape_and_cache_kernel(
+ block_offset;
scalar_t tgt_key = key[src_key_idx];
scalar_t tgt_value = value[src_value_idx];
if constexpr (is_fp8_e5m2_kv_cache) {
#ifdef ENABLE_FP8_E5M2
if constexpr (is_fp8_kv_cache) {
#if defined(ENABLE_FP8_E5M2)
key_cache[tgt_key_idx] = fp8_e5m2_unscaled::vec_conversion<uint8_t, scalar_t>(tgt_key);
value_cache[tgt_value_idx] = fp8_e5m2_unscaled::vec_conversion<uint8_t, scalar_t>(tgt_value);
#elif defined(ENABLE_FP8_E4M3)
key_cache[tgt_key_idx] = fp8_e4m3::scaled_vec_conversion<uint8_t, scalar_t>(tgt_key, kv_scale);
value_cache[tgt_value_idx] = fp8_e4m3::scaled_vec_conversion<uint8_t, scalar_t>(tgt_value, kv_scale);
#else
assert(false);
#endif
@ -211,8 +217,8 @@ __global__ void reshape_and_cache_kernel(
} // namespace vllm
#define CALL_RESHAPE_AND_CACHE(KV_T, CACHE_T, IS_FP8_E5M2_KV_CACHE) \
vllm::reshape_and_cache_kernel<KV_T, CACHE_T, IS_FP8_E5M2_KV_CACHE><<<grid, block, 0, stream>>>( \
#define CALL_RESHAPE_AND_CACHE(KV_T, CACHE_T, IS_FP8_KV_CACHE) \
vllm::reshape_and_cache_kernel<KV_T, CACHE_T, IS_FP8_KV_CACHE><<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(key.data_ptr()), \
reinterpret_cast<KV_T*>(value.data_ptr()), \
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
@ -223,7 +229,8 @@ __global__ void reshape_and_cache_kernel(
num_heads, \
head_size, \
block_size, \
x);
x, \
kv_scale);
void reshape_and_cache(
torch::Tensor& key, // [num_tokens, num_heads, head_size]
@ -231,7 +238,8 @@ void reshape_and_cache(
torch::Tensor& key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size]
torch::Tensor& slot_mapping, // [num_tokens]
const std::string& kv_cache_dtype)
const std::string& kv_cache_dtype,
const float kv_scale)
{
int num_tokens = key.size(0);
int num_heads = key.size(1);
@ -254,7 +262,7 @@ void reshape_and_cache(
} else if (key.dtype() == at::ScalarType::BFloat16) {
CALL_RESHAPE_AND_CACHE(__nv_bfloat16, __nv_bfloat16, false);
}
} else if (kv_cache_dtype == "fp8_e5m2") {
} else if (kv_cache_dtype == "fp8") {
if (key.dtype() == at::ScalarType::Float) {
CALL_RESHAPE_AND_CACHE(float, uint8_t, true);
} else if (key.dtype() == at::ScalarType::Half) {
@ -270,15 +278,17 @@ void reshape_and_cache(
namespace vllm {
template<typename Tout, typename Tin>
__global__ void convert_fp8_e5m2_kernel(
__global__ void convert_fp8_kernel(
const Tin* __restrict__ src_cache,
Tout* __restrict__ dst_cache,
const int64_t block_stride) {
const int64_t block_idx = blockIdx.x;
for (int i = threadIdx.x; i < block_stride; i += blockDim.x) {
int64_t idx = block_idx * block_stride + i;
#ifdef ENABLE_FP8_E5M2
#if defined(ENABLE_FP8_E5M2)
dst_cache[idx] = fp8_e5m2_unscaled::vec_conversion<Tout, Tin>(src_cache[idx]);
#elif defined(ENABLE_FP8_E4M3)
dst_cache[idx] = fp8_e4m3::vec_conversion<Tout, Tin>(src_cache[idx]);
#else
assert(false);
#endif
@ -287,16 +297,25 @@ __global__ void convert_fp8_e5m2_kernel(
} // namespace vllm
#define CALL_CONVERT_FP8_E5M2(Tout, Tin) \
vllm::convert_fp8_e5m2_kernel<Tout, Tin><<<grid, block, 0, stream>>>( \
reinterpret_cast<Tin*>(src_cache.data_ptr()), \
reinterpret_cast<Tout*>(dst_cache.data_ptr()), \
#define CALL_CONVERT_FP8(Tout, Tin) \
vllm::convert_fp8_kernel<Tout, Tin><<<grid, block, 0, stream>>>( \
reinterpret_cast<Tin*>(src_cache.data_ptr()), \
reinterpret_cast<Tout*>(dst_cache.data_ptr()), \
block_stride);
void convert_fp8_e5m2(
void convert_fp8(
torch::Tensor& src_cache,
torch::Tensor& dst_cache)
{
torch::Device src_device = src_cache.device();
torch::Device dst_device = dst_cache.device();
TORCH_CHECK(src_device.is_cuda(), "src must be on a GPU")
TORCH_CHECK(dst_device.is_cuda(), "dst must be on a GPU")
TORCH_CHECK(
src_device.index() == dst_device.index(),
"src and dst must be on the same GPU");
at::cuda::OptionalCUDAGuard device_guard(src_device);
int64_t num_blocks = src_cache.size(0);
int64_t block_stride = src_cache.stride(0);
@ -305,16 +324,16 @@ void convert_fp8_e5m2(
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (src_cache.dtype() == at::ScalarType::Float) {
CALL_CONVERT_FP8_E5M2(uint8_t, float);
CALL_CONVERT_FP8(uint8_t, float);
} else if (src_cache.dtype() == at::ScalarType::Half) {
CALL_CONVERT_FP8_E5M2(uint8_t, uint16_t);
CALL_CONVERT_FP8(uint8_t, uint16_t);
} else if (src_cache.dtype() == at::ScalarType::BFloat16) {
CALL_CONVERT_FP8_E5M2(uint8_t, __nv_bfloat16);
CALL_CONVERT_FP8(uint8_t, __nv_bfloat16);
} else if (dst_cache.dtype() == at::ScalarType::Float) {
CALL_CONVERT_FP8_E5M2(float, uint8_t);
CALL_CONVERT_FP8(float, uint8_t);
} else if (dst_cache.dtype() == at::ScalarType::Half) {
CALL_CONVERT_FP8_E5M2(uint16_t, uint8_t);
CALL_CONVERT_FP8(uint16_t, uint8_t);
} else if (dst_cache.dtype() == at::ScalarType::BFloat16) {
CALL_CONVERT_FP8_E5M2(__nv_bfloat16, uint8_t);
CALL_CONVERT_FP8(__nv_bfloat16, uint8_t);
}
}

View File

@ -419,7 +419,8 @@ void paged_attention_v1(torch::Tensor &out, torch::Tensor &query,
torch::Tensor &context_lens, int block_size,
int max_context_len,
const c10::optional<torch::Tensor> &alibi_slopes,
const std::string &kv_cache_dtype) {
const std::string &kv_cache_dtype, float kv_scale) {
TORCH_CHECK(kv_scale == 1.0f);
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v1_impl",
[&] {
CPU_KERNEL_GUARD_IN(paged_attention_v1_impl)
@ -734,7 +735,8 @@ void paged_attention_v2(torch::Tensor &out, torch::Tensor &exp_sums,
torch::Tensor &context_lens, int block_size,
int max_context_len,
const c10::optional<torch::Tensor> &alibi_slopes,
const std::string &kv_cache_dtype) {
const std::string &kv_cache_dtype, float kv_scale) {
TORCH_CHECK(kv_scale == 1.0f);
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v2_impl",
[&] {
CPU_KERNEL_GUARD_IN(paged_attention_v2_impl)

View File

@ -111,7 +111,9 @@ void copy_blocks(std::vector<torch::Tensor> &key_caches,
void reshape_and_cache(torch::Tensor &key, torch::Tensor &value,
torch::Tensor &key_cache, torch::Tensor &value_cache,
torch::Tensor &slot_mapping,
const std::string &kv_cache_dtype) {
const std::string &kv_cache_dtype, float kv_scale) {
TORCH_CHECK(kv_scale == 1.0f);
int num_tokens = key.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);

View File

@ -59,6 +59,8 @@ __global__ void rms_norm_kernel(
template<typename torch_type>
struct _typeConvert { static constexpr bool exists = false; };
#if defined(USE_ROCM) || (defined(CUDA_VERSION) && (CUDA_VERSION >= 12000))
// CUDA < 12.0 runs into issues with packed type conversion
template<>
struct _typeConvert<c10::Half> {
static constexpr bool exists = true;
@ -85,8 +87,8 @@ struct _typeConvert<c10::BFloat16> {
__device__ static inline hip_type convert(float x) { return __float2bfloat16(x); }
__device__ static inline packed_hip_type convert(float2 x) { return __float22bfloat162_rn(x); }
};
#endif
#endif // defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#endif // defined(USE_ROCM) || (defined(CUDA_VERSION) && (CUDA_VERSION >= 12000))
/* Vector POD struct to generate vectorized and packed FP16/BF16 ops
for appropriate specializations of fused_add_rms_norm_kernel.

View File

@ -14,7 +14,8 @@ void paged_attention_v1(
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype);
const std::string& kv_cache_dtype,
float kv_scale);
void paged_attention_v2(
torch::Tensor& out,
@ -31,7 +32,8 @@ void paged_attention_v2(
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype);
const std::string& kv_cache_dtype,
float kv_scale);
void rms_norm(
torch::Tensor& out,

View File

@ -14,6 +14,7 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
f(in_T, out_T, W_T, narrow, 128) \
f(in_T, out_T, W_T, narrow, 256) \
f(in_T, out_T, W_T, narrow, 512) \
f(in_T, out_T, W_T, narrow, 640) \
f(in_T, out_T, W_T, narrow, 768) \
f(in_T, out_T, W_T, narrow, 1024) \
f(in_T, out_T, W_T, narrow, 1152) \
@ -46,6 +47,7 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
f(in_T, out_T, W_T, narrow, 13696) \
f(in_T, out_T, W_T, narrow, 13824) \
f(in_T, out_T, W_T, narrow, 14336) \
f(in_T, out_T, W_T, narrow, 15360) \
f(in_T, out_T, W_T, narrow, 16384) \
f(in_T, out_T, W_T, narrow, 20480) \
f(in_T, out_T, W_T, narrow, 22016) \
@ -59,7 +61,17 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
f(in_T, out_T, W_T, narrow, 33024) \
f(in_T, out_T, W_T, narrow, 36864) \
f(in_T, out_T, W_T, narrow, 49152) \
// Keep above in sync with vllm/lora/layers::SamplerWithLoRA
f(in_T, out_T, W_T, narrow, 64000) \
f(in_T, out_T, W_T, narrow, 64256) \
f(in_T, out_T, W_T, narrow, 64512) \
f(in_T, out_T, W_T, narrow, 102400) \
f(in_T, out_T, W_T, narrow, 102656) \
f(in_T, out_T, W_T, narrow, 102912) \
f(in_T, out_T, W_T, narrow, 128000) \
f(in_T, out_T, W_T, narrow, 128256) \
f(in_T, out_T, W_T, narrow, 128512) \
// Keep above in sync with vllm/lora/layers::LogitsProcessorWithLoRA
// and vllm/tests/lora/test_punica.py
// Keep this in sync with vllm/config::LoRAConfig
#define FOR_BGMV_WIDE_NARROW(f, in_T, out_T, W_T) \

View File

@ -20,8 +20,8 @@ inline void check_shape(const torch::Tensor &a, const torch::Tensor &b,
}
}
inline constexpr uint32_t pack_u16(uint16_t a, uint16_t b) {
return (uint32_t(a) << 16) | uint32_t(b);
inline constexpr uint64_t pack_u32(uint32_t a, uint32_t b) {
return (uint64_t(a) << 32) | uint64_t(b);
}
#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
@ -46,13 +46,13 @@ inline constexpr uint32_t pack_u16(uint16_t a, uint16_t b) {
template <typename in_T, typename out_T, typename W_T>
inline bool launch_bgmv_kernel(out_T *Y, const in_T *X, const W_T *W,
const int64_t *lora_indices,
uint16_t in_features, uint16_t out_features,
uint32_t in_features, uint32_t out_features,
int64_t y_offset, int64_t full_y_size,
int64_t batch_size, int64_t num_layers,
int64_t layer_idx, float scale) {
switch (pack_u16(in_features, out_features)) {
switch (pack_u32(in_features, out_features)) {
#define CASE_ONESIDE(_in_T, _out_T, _W_T, feat_in, feat_out) \
case pack_u16(feat_in, feat_out): \
case pack_u32(feat_in, feat_out): \
bgmv_kernel<feat_in, feat_out>(Y, X, W, lora_indices, y_offset, \
full_y_size, batch_size, num_layers, \
layer_idx, scale); \
@ -93,7 +93,7 @@ void dispatch_bgmv(torch::Tensor y, torch::Tensor x, torch::Tensor w,
CHECK_EQ(y.size(0), x.size(0));
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
bool ok = false;
if (h_in < 65536 && h_out < 65536) {
if (h_in <= 128512 && h_out <= 128512) {
// TODO: See if we can get rid of this massive nested switch
switch (x.scalar_type()) {
case at::ScalarType::Half:
@ -325,7 +325,7 @@ void dispatch_bgmv_low_level(torch::Tensor y, torch::Tensor x, torch::Tensor w,
CHECK_EQ(y.size(0), x.size(0));
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
bool ok = false;
if (h_in < 65536 && h_out < 65536) {
if (h_in <= 128512 && h_out <= 128512) {
// TODO: See if we can get rid of this massive nested switch
switch (x.scalar_type()) {
case at::ScalarType::Half:

View File

@ -91,9 +91,9 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
&reshape_and_cache,
"Reshape the key and value tensors and cache them");
cache_ops.def(
"convert_fp8_e5m2",
&convert_fp8_e5m2,
"Convert the key and value cache to fp8_e5m2 data type");
"convert_fp8",
&convert_fp8,
"Convert the key and value cache to fp8 data type");
// Cuda utils
pybind11::module cuda_utils = m.def_submodule("cuda_utils", "vLLM cuda utils");

View File

@ -0,0 +1,167 @@
#pragma once
#ifdef __HIPCC__
#include <hip/hip_runtime.h>
#else
#include <type_traits>
#include <stdint.h>
#include <math.h>
#include <iostream>
#endif
#include "hip_float8_impl.h"
struct alignas(1) hip_fp8
{
struct from_bits_t
{
};
HIP_FP8_HOST_DEVICE static constexpr from_bits_t from_bits() { return from_bits_t(); }
uint8_t data;
hip_fp8() = default;
HIP_FP8_HOST_DEVICE constexpr hip_fp8(const hip_fp8&) = default;
HIP_FP8_HOST_DEVICE constexpr hip_fp8(uint8_t v) = delete;
explicit HIP_FP8_HOST_DEVICE constexpr hip_fp8(uint8_t v, from_bits_t)
: data(v)
{
}
#ifdef __HIP__MI300__
// NOTE: ON-DEVICE... always optimal bias
explicit HIP_FP8_DEVICE hip_fp8(float v)
: data(hip_fp8_impl::to_fp8_from_fp32(v))
{
}
explicit HIP_FP8_DEVICE hip_fp8(_Float16 v)
: hip_fp8(static_cast<float>(v))
{
}
// Host only implementation using s/w simulation
explicit HIP_FP8_HOST
#else // __HIP__MI300__
// both Host and DEVICE for non-MI300 using s/w simulation
explicit HIP_FP8_HOST_DEVICE
#endif // __HIP__MI300__
hip_fp8(float v)
{
data = hip_fp8_impl::to_float8<4, 3, float, true /*negative_zero_nan*/, true /*clip*/>(v);
}
explicit HIP_FP8_HOST_DEVICE hip_fp8(double v)
: hip_fp8(static_cast<float>(v))
{
}
#ifdef __HIP__MI300__
// upcast using device specific intrinsic
explicit inline HIP_FP8_DEVICE operator float() const
{
float fval;
uint32_t i32val = static_cast<uint32_t>(data);
// upcast
asm volatile("v_cvt_f32_fp8 %0, %1 src0_sel:BYTE_0" : "=v"(fval) : "v"(i32val));
return fval;
}
explicit inline HIP_FP8_HOST operator float() const
#else // __HIP__MI300__
explicit inline HIP_FP8_HOST_DEVICE operator float() const
#endif // __HIP__MI300__
{
return hip_fp8_impl::from_float8<4, 3, float, true /*negative_zero_nan*/>(data);
}
};
namespace std
{
inline hip_fp8 sin(hip_fp8 a)
{
return hip_fp8(sinf(float(a)));
}
inline hip_fp8 cos(hip_fp8 a)
{
return hip_fp8(cosf(float(a)));
}
HIP_FP8_HOST_DEVICE constexpr hip_fp8 real(const hip_fp8& a)
{
return a;
}
} // namespace std
// Special operator overloading
inline std::ostream& operator<<(std::ostream& os, const hip_fp8& f8)
{
return os << float(f8);
}
// all + operator overloading with mixed types
// mixed types, always converts to f32, does computation in f32, and returns float
inline HIP_FP8_HOST_DEVICE float operator+(const float fa, hip_fp8 b)
{
return (fa + float(b));
}
inline HIP_FP8_HOST_DEVICE float operator+(hip_fp8 a, const float fb)
{
return (float(a) + fb);
}
inline HIP_FP8_HOST_DEVICE hip_fp8 operator+(hip_fp8 a, hip_fp8 b)
{
return hip_fp8(float(a) + float(b));
}
inline HIP_FP8_HOST_DEVICE hip_fp8& operator+=(hip_fp8& a, hip_fp8 b)
{
return a = hip_fp8(float(a) + float(b));
}
// overloading multiplication, always returns float,
inline HIP_FP8_HOST_DEVICE float operator*(hip_fp8 a, hip_fp8 b)
{
return float(a) * float(b);
}
inline HIP_FP8_HOST_DEVICE float operator*(float a, hip_fp8 b)
{
return (a * float(b));
}
inline HIP_FP8_HOST_DEVICE float operator*(hip_fp8 a, float b)
{
return (float(a) * b);
}
inline HIP_FP8_HOST_DEVICE float operator*(int32_t a, hip_fp8 b)
{
return ((float)a * float(b));
}
inline HIP_FP8_HOST_DEVICE float operator*(double a, hip_fp8 b)
{
return ((float)a * float(b));
}
// overloading for compare
inline HIP_FP8_HOST_DEVICE bool operator==(hip_fp8 a, hip_fp8 b)
{
return (a.data == b.data);
}
inline HIP_FP8_HOST_DEVICE bool operator!=(hip_fp8 a, hip_fp8 b)
{
return (a.data != b.data);
}
inline HIP_FP8_HOST_DEVICE bool operator>=(hip_fp8 a, hip_fp8 b)
{
return static_cast<float>(a) >= static_cast<float>(b);
}
inline HIP_FP8_HOST_DEVICE bool operator>(hip_fp8 a, hip_fp8 b)
{
return static_cast<float>(a) > static_cast<float>(b);
}

View File

@ -0,0 +1,316 @@
#pragma once
#if defined(__HIPCC__) && (defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
#define __HIP__MI300__
#endif
#ifdef __HIPCC__
#define HIP_FP8_HOST_DEVICE __host__ __device__
#define HIP_FP8_HOST __host__
#define HIP_FP8_DEVICE __device__
#else
#define HIP_FP8_HOST_DEVICE
#define HIP_FP8_HOST
#define HIP_FP8_DEVICE
#endif
namespace hip_fp8_impl
{
#ifdef __HIP__MI300__
HIP_FP8_DEVICE uint8_t to_fp8_from_fp32(float v)
{
uint8_t i8data;
union {
float fval;
uint32_t i32val;
uint8_t i8val[4]; // NOTE: not endian independent
} val;
uint32_t ival = 0;
val.fval = v;
if ((val.i32val & 0x7F800000) != 0x7F800000) { /// propagate NAN/INF, no clipping
val.fval = __builtin_amdgcn_fmed3f(val.fval, 240.0, -240.0);
}
ival = __builtin_amdgcn_cvt_pk_fp8_f32(val.fval, val.fval, ival,
false); // false -> WORD0
val.i32val = ival;
i8data = val.i8val[0];
return i8data;
}
#endif // __HIP__MI300__
HIP_FP8_HOST inline int clz(uint32_t x)
{
return __builtin_clz(x);
}
#if defined(__HIPCC__) || defined(__CUDA_ARCH__)
HIP_FP8_DEVICE inline int clz(uint32_t x)
{
return __clz(x);
}
#endif
template <int we, int wm, typename T, bool negative_zero_nan, bool clip>
HIP_FP8_HOST_DEVICE uint8_t to_float8(T _x, bool stoch = false, uint32_t rng = 0)
{
#ifdef __HIPCC__
constexpr bool is_half = std::is_same<T, _Float16>::value;
#else
constexpr bool is_half = false;
#endif
constexpr bool is_float = std::is_same<T, float>::value;
static_assert(wm + we == 7, "wm+we==7");
static_assert(is_half || is_float, "Only half and float can be cast to f8");
const int mfmt = (sizeof(T) == 4) ? 23 : 10;
uint32_t x;
if (sizeof(T) == 4) {
x = reinterpret_cast<uint32_t&>(_x);
} else {
x = reinterpret_cast<uint16_t&>(_x);
}
uint32_t head, mantissa;
int exponent, bias;
uint32_t sign;
if (sizeof(T) == 4) {
head = x & 0xFF800000;
mantissa = x & 0x7FFFFF;
exponent = (head >> 23) & 0xFF;
sign = head >> 31;
bias = 127;
} else {
head = x & 0xFC00;
mantissa = x & 0x3FF;
exponent = (head >> 10) & 0x1F;
sign = head >> 15;
bias = 15;
}
uint32_t signed_inf = (sign << 7) + (((1 << we) - 1) << wm);
// Deal with inf and NaNs
if (negative_zero_nan) {
if (sizeof(T) == 4) {
if ((x & 0x7F800000) == 0x7F800000) {
return 0x80;
}
} else {
// if(__hisinf(x) || __hisnan(x))
if ((x & 0x7C00) == 0x7C00) {
return 0x80;
}
}
} else {
if (sizeof(T) == 4) {
if ((x & 0x7F800000) == 0x7F800000) {
return signed_inf + (mantissa != 0 ? 1 : 0);
}
} else {
if ((x & 0x7C00) == 0x7C00) {
return signed_inf + (mantissa != 0 ? 1 : 0);
}
}
}
if (x == 0) {
return 0;
}
// First need to check if it is normal or denorm as there is a difference of
// implicit 1 Then need to adjust the exponent to align with the F8 exponent,
// in the meanwhile, shift The mantissa. Then for stochastic rounding, add rng
// to mantissa and truncate. And for RNE, no need to add rng. Then probably
// need to check whether there is carry and adjust exponent and mantissa again
// For IEEE bias mode, the bias is 2^(k-1) -1 where k is the width of exponent
// bits
const int f8_bias = (1 << (we - 1)) - 1 + (negative_zero_nan ? 1 : 0);
const int f8_denormal_act_exponent = 1 - f8_bias; // actual exponent of f8 denormal
// act_exponent is the actual exponent of fp32/fp16 (after subtracting bias)
// f8_exponent is the converted f8 exponent with bias encoding
// exponent_diff is the diff between fp32/fp16 exponent and f8 exponent,
// the difference needs to be adjusted and mantissa shifted
int act_exponent, f8_exponent, exponent_diff;
if (exponent == 0) { // fp32/fp16 is in denormal.
/* fp32 denormal is below 2^-127 so it is usually not a concern here, we
mostly concern fp16 here. In this case, f8 is usually in denormal. But there
could be exceptions. fp16 denormal has exponent bias 15 while bf8 with NANOO has
exponent bias 16. It means that there are some numbers in fp16 denormal but they
are bf8 (NANOO) normals - smallest bf8 (NANOO) normal is 2^-15. fp16 numbers
where exponent==0 (actual exponent -14) and highest bit of mantissa is 1 are bf8
(NANOO) normal. In this case, the fp16 mantissa should be shift left by 1 */
act_exponent = exponent - bias + 1;
exponent_diff = f8_denormal_act_exponent - act_exponent; // actual exponent is exponent-bias+1 as it is denormal
} else { // fp32/fp16 is normal with implicit 1
act_exponent = exponent - bias;
if (act_exponent <= f8_denormal_act_exponent) {
/* This is the case where fp32/fp16 is normal but it is in f8 denormal
range. For example fp8 nanoo mode, denormal exponent is -7, but if the
fp32/fp16 actual exponent is -7, it is actually larger due to the implicit 1,
Therefore it needs to be adjust to -6 and mantissa shift right by 1.
So for fp32/fp16, exponent -8 is the cut point to convert to fp8 nanoo */
exponent_diff = f8_denormal_act_exponent - act_exponent;
} else { // both fp32/fp16 and f8 are in normal range
exponent_diff = 0; // exponent_diff=0 does not mean there is no difference
// for this case,
// act_exponent could be larger. Just that it does not need shift mantissa
}
mantissa += (1 << mfmt); // Add the implicit 1 into mantissa
}
bool midpoint = (mantissa & ((1 << (mfmt - wm + exponent_diff)) - 1)) ==
static_cast<uint32_t>(1 << (mfmt - wm + exponent_diff - 1));
/* This part is a bit tricky. The judgment of whether it is a tie needs to be
done before we shift right as shift right could rip off some residual part
and make something not midpoint look like midpoint. For example, the fp16
number 0x1002 (0 00100 0000000010), it is larger than midpoint, but after
shift right by 4 bits, it would look like midpoint.
*/
if (exponent_diff > 0) {
mantissa >>= exponent_diff;
} else if (exponent_diff == -1) {
mantissa <<= -exponent_diff;
}
bool implicit_one = mantissa & (1 << mfmt);
// if there is no implicit 1, it means the f8 is denormal and need to adjust
// to denorm exponent
f8_exponent = (act_exponent + exponent_diff) /*actual f8 exponent*/ + f8_bias - (implicit_one ? 0 : 1);
// Now we have the exponent and mantissa adjusted
uint32_t drop_mask = (1 << (mfmt - wm)) - 1;
bool odd = mantissa & (1 << (mfmt - wm)); // if the least significant bit that
// is not truncated is 1
mantissa += (stoch ? rng : (midpoint ? (odd ? mantissa : mantissa - 1) : mantissa)) & drop_mask;
// Now we deal with overflow
if (f8_exponent == 0) {
if ((1 << mfmt) & mantissa) {
f8_exponent = 1; // denormal overflow to become normal, promote exponent
}
} else {
if ((1 << (mfmt + 1)) & mantissa) {
mantissa >>= 1;
f8_exponent++;
}
}
mantissa >>= (mfmt - wm);
// above range: quantize to maximum possible float of the same sign
const int max_exp = (1 << we) - (negative_zero_nan ? 1 : 2);
if (f8_exponent > max_exp) {
if (clip) {
mantissa = (1 << wm) - 1;
f8_exponent = max_exp;
} else {
return signed_inf;
}
}
if (f8_exponent == 0 && mantissa == 0) {
return negative_zero_nan ? 0 : (sign << 7);
}
mantissa &= (1 << wm) - 1;
return (sign << 7) | (f8_exponent << wm) | mantissa;
}
template <int we, int wm, typename T = float, bool negative_zero_nan = true>
inline HIP_FP8_HOST_DEVICE T from_float8(uint8_t x)
{
#ifdef __HIPCC__
constexpr bool is_half = std::is_same<T, _Float16>::value;
#else
constexpr bool is_half = false;
#endif
constexpr bool is_float = std::is_same<T, float>::value;
static_assert(is_half || is_float, "only half and float are supported");
constexpr int weo = is_half ? 5 : 8;
constexpr int wmo = is_half ? 10 : (is_float ? 23 : 7);
T fInf, fNegInf, fNaN, fNeg0;
#ifdef __HIPCC__
if (is_half) {
const uint16_t ihInf = 0x7C00;
const uint16_t ihNegInf = 0xFC00;
const uint16_t ihNaN = 0x7C01;
const uint16_t ihNeg0 = 0x8000;
fInf = reinterpret_cast<const _Float16&>(ihInf);
fNegInf = reinterpret_cast<const _Float16&>(ihNegInf);
fNaN = reinterpret_cast<const _Float16&>(ihNaN);
fNeg0 = reinterpret_cast<const _Float16&>(ihNeg0);
} else
#endif
if (is_float) {
const uint32_t ifInf = 0x7F800000;
const uint32_t ifNegInf = 0xFF800000;
const uint32_t ifNaN = 0x7F800001;
const uint32_t ifNeg0 = 0x80000000;
fInf = reinterpret_cast<const float&>(ifInf);
fNegInf = reinterpret_cast<const float&>(ifNegInf);
fNaN = reinterpret_cast<const float&>(ifNaN);
fNeg0 = reinterpret_cast<const float&>(ifNeg0);
}
if (x == 0) {
return 0;
}
uint32_t sign = x >> 7;
uint32_t mantissa = x & ((1 << wm) - 1);
int exponent = (x & 0x7F) >> wm;
if (negative_zero_nan) {
if (x == 0x80) {
return fNaN;
}
} else {
if (x == 0x80) {
return fNeg0;
}
if (exponent == ((1 << we) - 1)) {
return (mantissa == 0) ? (sign ? fNegInf : fInf) : fNaN;
}
}
typename std::conditional<sizeof(T) == 2, uint16_t, uint32_t>::type retval;
if (we == 5 && is_half && !negative_zero_nan) {
retval = x << 8;
return reinterpret_cast<const T&>(retval);
}
const int exp_low_cutoff = (1 << (weo - 1)) - (1 << (we - 1)) + 1 - (negative_zero_nan ? 1 : 0);
// subnormal input
if (exponent == 0) {
// guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
int sh = 1 + clz(mantissa) - (32 - wm);
mantissa <<= sh;
exponent += 1 - sh;
mantissa &= ((1 << wm) - 1);
}
exponent += exp_low_cutoff - 1;
mantissa <<= wmo - wm;
// subnormal output (occurs when T=half, we=5, negative_zero_nan=true)
if (exponent <= 0) {
mantissa |= 1 << wmo;
mantissa >>= 1 - exponent;
exponent = 0;
}
if (sizeof(T) == 2) {
retval = (sign << 15) | (exponent << 10) | mantissa;
} else {
retval = (sign << 31) | (exponent << 23) | mantissa;
}
return reinterpret_cast<const T&>(retval);
}
} // namespace hip_fp8_impl

View File

@ -0,0 +1,517 @@
#pragma once
#include "hip_float8.h"
#include <hip/hip_fp16.h>
#include <hip/hip_bf16.h>
#include <hip/hip_bfloat16.h>
#include "../../../attention/dtype_float32.cuh"
#include "../../../attention/dtype_bfloat16.cuh"
namespace vllm
{
namespace fp8_e4m3 {
template <typename Tout, typename Tin>
__inline__ __device__ Tout vec_conversion(const Tin& x)
{
return x;
}
template <typename Tout, typename Tin>
__inline__ __device__ Tout scaled_vec_conversion(const Tin& x, const float scale)
{
return x;
}
// fp8 -> half
template <>
__inline__ __device__ uint16_t vec_conversion<uint16_t, uint8_t>(const uint8_t& a)
{
hip_fp8 f8{a, hip_fp8::from_bits()};
__half_raw res;
res.data = static_cast<float>(f8);
return res.x;
}
// fp8x2 -> half2
template <>
__inline__ __device__ uint32_t vec_conversion<uint32_t, uint16_t>(const uint16_t& a)
{
#if defined(__HIP__MI300__) && defined(__HIP_FP8_EXPERIMENTAL_BULK_CONVERT__)
const auto& f2 = __builtin_amdgcn_cvt_pk_f32_fp8(a, 0);
union {
__half2_raw h2r;
uint32_t ui32;
} tmp;
tmp.h2r.x.data = f2[0];
tmp.h2r.y.data = f2[1];
return tmp.ui32;
#else
union {
uint16_t u16[2];
uint32_t u32;
} tmp;
tmp.u16[0] = vec_conversion<uint16_t, uint8_t>(static_cast<uint8_t>(a));
tmp.u16[1] = vec_conversion<uint16_t, uint8_t>(static_cast<uint8_t>(a >> 8U));
return tmp.u32;
#endif
}
// fp8x4 -> half2x2
template <>
__inline__ __device__ uint2 vec_conversion<uint2, uint32_t>(const uint32_t& a)
{
union {
uint2 u32x2;
uint32_t u32[2];
} tmp;
tmp.u32[0] = vec_conversion<uint32_t, uint16_t>((uint16_t)a);
tmp.u32[1] = vec_conversion<uint32_t, uint16_t>((uint16_t)(a >> 16U));
return tmp.u32x2;
}
// fp8x8 -> half2x4
template <>
__inline__ __device__ uint4 vec_conversion<uint4, uint2>(const uint2& a)
{
union {
uint4 u64x2;
uint2 u64[2];
} tmp;
tmp.u64[0] = vec_conversion<uint2, uint32_t>(a.x);
tmp.u64[1] = vec_conversion<uint2, uint32_t>(a.y);
return tmp.u64x2;
}
using __nv_bfloat16 = __hip_bfloat16;
// fp8 -> __nv_bfloat16
template <>
__inline__ __device__ __nv_bfloat16 vec_conversion<__nv_bfloat16, uint8_t>(const uint8_t& a)
{
hip_fp8 f8{a, hip_fp8::from_bits()};
float f{f8};
return __float2bfloat16(f);
}
using __nv_bfloat162 = __hip_bfloat162;
// fp8x2 -> __nv_bfloat162
template <>
__inline__ __device__ __nv_bfloat162 vec_conversion<__nv_bfloat162, uint16_t>(const uint16_t& a)
{
__nv_bfloat162 res;
res.x = vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)a);
res.y = vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)(a >> 8U));
return res;
}
// fp8x4 -> bf16_4_t
template <>
__inline__ __device__ bf16_4_t vec_conversion<bf16_4_t, uint32_t>(const uint32_t& a)
{
bf16_4_t res;
res.x = vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)a);
res.y = vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)(a >> 16U));
return res;
}
// fp8x8 -> bf16_8_t
template <>
__inline__ __device__ bf16_8_t vec_conversion<bf16_8_t, uint2>(const uint2& a)
{
bf16_4_t tmp1, tmp2;
tmp1 = vec_conversion<bf16_4_t, uint32_t>(a.x);
tmp2 = vec_conversion<bf16_4_t, uint32_t>(a.y);
bf16_8_t res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// fp8 -> float
template <>
__inline__ __device__ float vec_conversion<float, uint8_t>(const uint8_t& a)
{
hip_fp8 fp8{a, hip_fp8::from_bits()};
return static_cast<float>(fp8);
}
// fp8x2 -> float2
template <>
__inline__ __device__ float2 vec_conversion<float2, uint16_t>(const uint16_t& a)
{
#if defined(__HIP__MI300__) && defined(__HIP_FP8_EXPERIMENTAL_BULK_CONVERT__)
float2 res;
const auto& f2 = __builtin_amdgcn_cvt_pk_f32_fp8(a, 0);
res.x = f2[0];
res.y = f2[1];
return res;
#else
float2 res;
res.x = vec_conversion<float, uint8_t>(static_cast<uint8_t>(a));
res.y = vec_conversion<float, uint8_t>(static_cast<uint8_t>(a >> 8U));
return res;
#endif
}
// fp8x4 -> float4
template <>
__inline__ __device__ Float4_ vec_conversion<Float4_, uint32_t>(const uint32_t& a)
{
Float4_ res;
res.x = vec_conversion<float2, uint16_t>((uint16_t)a);
res.y = vec_conversion<float2, uint16_t>((uint16_t)(a >> 16U));
return res;
}
// fp8x8 -> float8
template <>
__inline__ __device__ Float8_ vec_conversion<Float8_, uint2>(const uint2& a)
{
Float4_ tmp1, tmp2;
tmp1 = vec_conversion<Float4_, uint32_t>(a.x);
tmp2 = vec_conversion<Float4_, uint32_t>(a.y);
Float8_ res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// half -> fp8
template <>
__inline__ __device__ uint8_t vec_conversion<uint8_t, uint16_t>(const uint16_t& a)
{
__half_raw tmp;
tmp.x = a;
hip_fp8 f8{static_cast<float>(tmp.data)};
return f8.data;
}
// bf16 -> fp8
template <>
__inline__ __device__ uint8_t vec_conversion<uint8_t, __nv_bfloat16>(const __nv_bfloat16& a)
{
hip_fp8 res{__bfloat162float(a)};
return res.data;
}
// float -> fp8
template <>
__inline__ __device__ uint8_t vec_conversion<uint8_t, float>(const float& a)
{
hip_fp8 f8(a);
return f8.data;
}
// fp8x4 -> float4
template <>
__inline__ __device__ float4 vec_conversion<float4, uint32_t>(const uint32_t& a)
{
Float4_ tmp = vec_conversion<Float4_, uint32_t>(a);
float4 res = make_float4(tmp.x.x, tmp.x.y, tmp.y.x, tmp.y.y);
return res;
}
// float2 -> half2
template <>
__inline__ __device__ uint32_t vec_conversion<uint32_t, float2>(const float2& a)
{
union {
half2 float16;
uint32_t uint32;
};
float16 = __float22half2_rn(a);
return uint32;
}
// Float4 -> half2x2
template <>
__inline__ __device__ uint2 vec_conversion<uint2, Float4_>(const Float4_& a)
{
uint2 b;
float2 val;
val.x = a.x.x;
val.y = a.x.y;
b.x = vec_conversion<uint32_t, float2>(val);
val.x = a.y.x;
val.y = a.y.y;
b.y = vec_conversion<uint32_t, float2>(val);
return b;
}
// Float4 -> float4
template <>
__inline__ __device__ float4 vec_conversion<float4, Float4_>(const Float4_& a)
{
float4 b;
b.x = a.x.x;
b.y = a.x.y;
b.z = a.y.x;
b.w = a.y.y;
return b;
}
// Float8 -> half2x4
template <>
__inline__ __device__ uint4 vec_conversion<uint4, Float8_>(const Float8_& a)
{
uint4 b;
b.x = vec_conversion<uint32_t, float2>(a.x);
b.y = vec_conversion<uint32_t, float2>(a.y);
b.z = vec_conversion<uint32_t, float2>(a.z);
b.w = vec_conversion<uint32_t, float2>(a.w);
return b;
}
// float2 -> bfloat162
template <>
__inline__ __device__ __nv_bfloat162 vec_conversion<__nv_bfloat162, float2>(const float2& a)
{
__nv_bfloat162 b = __float22bfloat162_rn(a);
return b;
}
// Float4 -> bfloat162x2
template <>
__inline__ __device__ bf16_4_t vec_conversion<bf16_4_t, Float4_>(const Float4_& a)
{
bf16_4_t b;
b.x = __float22bfloat162_rn(a.x);
b.y = __float22bfloat162_rn(a.y);
return b;
}
// Float8 -> bfloat162x4
template <>
__inline__ __device__ bf16_8_t vec_conversion<bf16_8_t, Float8_>(const Float8_& a)
{
bf16_8_t b;
b.x = __float22bfloat162_rn(a.x);
b.y = __float22bfloat162_rn(a.y);
b.z = __float22bfloat162_rn(a.z);
b.w = __float22bfloat162_rn(a.w);
return b;
}
/* Scaled and vectorized conversions, for data exchange between high and low precision domains
Convention of the scale in API, e.g: FP8_data = Quantization( High_Precision_data / scale )
s.t.
Quantize(HP / scale) => FP8
Dequant(FP8) * scale => HP
*/
// fp8 -> half
template <>
__inline__ __device__ uint16_t scaled_vec_conversion<uint16_t, uint8_t>(const uint8_t& a, const float scale)
{
hip_fp8 f8{a, hip_fp8::from_bits()};
__half_raw res;
res.data = static_cast<float>(f8) * scale;
return res.x;
}
// fp8x2 -> half2
template <>
__inline__ __device__ uint32_t scaled_vec_conversion<uint32_t, uint16_t>(const uint16_t& a, const float scale)
{
#if defined(__HIP__MI300__) && defined(__HIP_FP8_EXPERIMENTAL_BULK_CONVERT__)
const auto& f2 = __builtin_amdgcn_cvt_pk_f32_fp8(a, 0);
union {
__half2_raw h2r;
uint32_t ui32;
} tmp;
tmp.h2r.x.data = f2[0] * scale;
tmp.h2r.y.data = f2[1] * scale;
return tmp.ui32;
#else
union {
uint16_t u16[2];
uint32_t u32;
} tmp;
tmp.u16[0] = scaled_vec_conversion<uint16_t, uint8_t>(static_cast<uint8_t>(a), scale);
tmp.u16[1] = scaled_vec_conversion<uint16_t, uint8_t>(static_cast<uint8_t>(a >> 8U), scale);
return tmp.u32;
#endif
}
// fp8x4 -> half2x2
template <>
__inline__ __device__ uint2 scaled_vec_conversion<uint2, uint32_t>(const uint32_t& a, const float scale)
{
union {
uint2 u32x2;
uint32_t u32[2];
} tmp;
tmp.u32[0] = scaled_vec_conversion<uint32_t, uint16_t>((uint16_t)a, scale);
tmp.u32[1] = scaled_vec_conversion<uint32_t, uint16_t>((uint16_t)(a >> 16U), scale);
return tmp.u32x2;
}
// fp8x8 -> half2x4
template <>
__inline__ __device__ uint4 scaled_vec_conversion<uint4, uint2>(const uint2& a, const float scale)
{
union {
uint4 u64x2;
uint2 u64[2];
} tmp;
tmp.u64[0] = scaled_vec_conversion<uint2, uint32_t>(a.x, scale);
tmp.u64[1] = scaled_vec_conversion<uint2, uint32_t>(a.y, scale);
return tmp.u64x2;
}
using __nv_bfloat16 = __hip_bfloat16;
// fp8 -> __nv_bfloat16
template <>
__inline__ __device__ __nv_bfloat16 scaled_vec_conversion<__nv_bfloat16, uint8_t>(const uint8_t& a, const float scale)
{
hip_fp8 f8{a, hip_fp8::from_bits()};
float f{f8};
return __float2bfloat16(f * scale);
}
using __nv_bfloat162 = __hip_bfloat162;
// fp8x2 -> __nv_bfloat162
template <>
__inline__ __device__ __nv_bfloat162 scaled_vec_conversion<__nv_bfloat162, uint16_t>(const uint16_t& a, const float scale)
{
__nv_bfloat162 res;
res.x = scaled_vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)a, scale);
res.y = scaled_vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)(a >> 8U), scale);
return res;
}
// fp8x4 -> bf16_4_t
template <>
__inline__ __device__ bf16_4_t scaled_vec_conversion<bf16_4_t, uint32_t>(const uint32_t& a, const float scale)
{
bf16_4_t res;
res.x = scaled_vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)a, scale);
res.y = scaled_vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)(a >> 16U), scale);
return res;
}
// fp8x8 -> bf16_8_t
template <>
__inline__ __device__ bf16_8_t scaled_vec_conversion<bf16_8_t, uint2>(const uint2& a, const float scale)
{
bf16_4_t tmp1, tmp2;
tmp1 = scaled_vec_conversion<bf16_4_t, uint32_t>(a.x, scale);
tmp2 = scaled_vec_conversion<bf16_4_t, uint32_t>(a.y, scale);
bf16_8_t res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// fp8 -> float
template <>
__inline__ __device__ float scaled_vec_conversion<float, uint8_t>(const uint8_t& a, const float scale)
{
hip_fp8 fp8{a, hip_fp8::from_bits()};
return static_cast<float>(fp8) * scale;
}
// fp8x2 -> float2
template <>
__inline__ __device__ float2 scaled_vec_conversion<float2, uint16_t>(const uint16_t& a, const float scale)
{
#if defined(__HIP__MI300__) && defined(__HIP_FP8_EXPERIMENTAL_BULK_CONVERT__)
float2 res;
const auto& f2 = __builtin_amdgcn_cvt_pk_f32_fp8(a, 0);
res.x = f2[0] * scale;
res.y = f2[1] * scale;
return res;
#else
float2 res;
res.x = scaled_vec_conversion<float, uint8_t>(static_cast<uint8_t>(a), scale);
res.y = scaled_vec_conversion<float, uint8_t>(static_cast<uint8_t>(a >> 8U), scale);
return res;
#endif
}
// fp8x4 -> float4
template <>
__inline__ __device__ Float4_ scaled_vec_conversion<Float4_, uint32_t>(const uint32_t& a, const float scale)
{
Float4_ res;
res.x = scaled_vec_conversion<float2, uint16_t>((uint16_t)a, scale);
res.y = scaled_vec_conversion<float2, uint16_t>((uint16_t)(a >> 16U), scale);
return res;
}
// fp8x8 -> float8
template <>
__inline__ __device__ Float8_ scaled_vec_conversion<Float8_, uint2>(const uint2& a, const float scale)
{
Float4_ tmp1, tmp2;
tmp1 = scaled_vec_conversion<Float4_, uint32_t>(a.x, scale);
tmp2 = scaled_vec_conversion<Float4_, uint32_t>(a.y, scale);
Float8_ res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
/* Quantize(HP / scale) => FP8 */
// TODO(Hai): vectorized to add
// half -> fp8
template <>
__inline__ __device__ uint8_t scaled_vec_conversion<uint8_t, uint16_t>(const uint16_t& a, const float scale)
{
__half_raw tmp;
tmp.x = a;
hip_fp8 f8{static_cast<float>(tmp.data)/scale};
return f8.data;
}
// bf16 -> fp8
template <>
__inline__ __device__ uint8_t scaled_vec_conversion<uint8_t, __nv_bfloat16>(const __nv_bfloat16& a, const float scale)
{
hip_fp8 res{__bfloat162float(a)/scale};
return res.data;
}
// float -> fp8
template <>
__inline__ __device__ uint8_t scaled_vec_conversion<uint8_t, float>(const float& a, const float scale)
{
hip_fp8 f8(a/scale);
return f8.data;
}
// fp8x4 -> float4
template <>
__inline__ __device__ float4 scaled_vec_conversion<float4, uint32_t>(const uint32_t& a, const float scale)
{
Float4_ tmp = scaled_vec_conversion<Float4_, uint32_t>(a, scale);
float4 res = make_float4(tmp.x.x, tmp.x.y, tmp.y.x, tmp.y.y);
return res;
}
}
} // namespace vllm

View File

@ -2067,7 +2067,7 @@ void gptq_shuffle
const at::cuda::OptionalCUDAGuard device_guard(device_of(q_weight));
vllm::gptq::shuffle_exllama_weight(
(uint32_t*) q_weight.data_ptr(),
q_perm.device().is_meta() ? NULL : (int*) q_perm.data_ptr(),
q_perm.device().is_meta() || q_perm.numel() == 0 ? NULL : (int*) q_perm.data_ptr(),
q_weight.size(0) * 32 / bit,
q_weight.size(1),
bit

View File

@ -11,13 +11,11 @@
# documentation root, use os.path.abspath to make it absolute, like shown here.
import logging
import os
import sys
from typing import List
from sphinx.ext import autodoc
sys.path.insert(0, os.path.abspath(os.path.join('..', '..')))
logger = logging.getLogger(__name__)
# -- Project information -----------------------------------------------------
@ -48,7 +46,7 @@ templates_path = ['_templates']
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = []
exclude_patterns: List[str] = []
# Exclude the prompt "$" when copying code
copybutton_prompt_text = r"\$ "
@ -85,6 +83,7 @@ autodoc_mock_imports = [
"vllm._C",
"numpy",
"tqdm",
"tensorizer",
]
for mock_target in autodoc_mock_imports:

View File

@ -85,13 +85,3 @@ You can also build and install vLLM from source:
$ nvcc --version # verify that nvcc is in your PATH
$ ${CUDA_HOME}/bin/nvcc --version # verify that nvcc is in your CUDA_HOME
.. note::
If you are developing the C++ backend of vLLM, consider building vLLM with
.. code-block:: console
$ python setup.py develop
since it will give you incremental builds. The downside is that this method
is `deprecated by setuptools <https://github.com/pypa/setuptools/issues/917>`_.

View File

@ -91,7 +91,8 @@ Documentation
:caption: Quantization
quantization/auto_awq
quantization/fp8_e5m2_kv_cache
quantization/fp8_e5m2_kvcache
quantization/fp8_e4m3_kvcache
.. toctree::
:maxdepth: 2

View File

@ -21,6 +21,8 @@ This document provides a high-level guide on integrating a `HuggingFace Transfor
Start by forking our `GitHub`_ repository and then :ref:`build it from source <build_from_source>`.
This gives you the ability to modify the codebase and test your model.
.. tip::
If you don't want to fork the repository and modify vLLM's codebase, please refer to the "Out-of-Tree Model Integration" section below.
1. Bring your model code
------------------------
@ -94,3 +96,28 @@ This method should load the weights from the HuggingFace's checkpoint file and a
----------------------
Finally, include your :code:`*ForCausalLM` class in `vllm/model_executor/models/__init__.py <https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/__init__.py>`_ and register it to the :code:`_MODEL_REGISTRY` in `vllm/model_executor/model_loader.py <https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/model_loader.py>`_.
6. Out-of-Tree Model Integration
--------------------------------------------
We also provide a way to integrate a model without modifying the vLLM codebase. Step 2, 3, 4 are still required, but you can skip step 1 and 5.
Just add the following lines in your code:
.. code-block:: python
from vllm import ModelRegistry
from your_code import YourModelForCausalLM
ModelRegistry.register_model("YourModelForCausalLM", YourModelForCausalLM)
If you are running api server with `python -m vllm.entrypoints.openai.api_server args`, you can wrap the entrypoint with the following code:
.. code-block:: python
from vllm import ModelRegistry
from your_code import YourModelForCausalLM
ModelRegistry.register_model("YourModelForCausalLM", YourModelForCausalLM)
import runpy
runpy.run_module('vllm.entrypoints.openai.api_server', run_name='__main__')
Save the above code in a file and run it with `python your_file.py args`.

View File

@ -36,7 +36,7 @@ Below, you can find an explanation of every engine argument for vLLM:
Directory to download and load the weights, default to the default cache dir of huggingface.
.. option:: --load-format {auto,pt,safetensors,npcache,dummy}
.. option:: --load-format {auto,pt,safetensors,npcache,dummy,tensorizer}
The format of the model weights to load.
@ -45,6 +45,7 @@ Below, you can find an explanation of every engine argument for vLLM:
* "safetensors" will load the weights in the safetensors format.
* "npcache" will load the weights in pytorch format and store a numpy cache to speed up the loading.
* "dummy" will initialize the weights with random values, mainly for profiling.
* "tensorizer" will load serialized weights using `CoreWeave's Tensorizer model deserializer. <https://github.com/coreweave/tensorizer>`_ See `examples/tensorize_vllm_model.py <https://github.com/vllm-project/vllm/blob/main/examples/tensorize_vllm_model.py>`_ to serialize a vLLM model, and for more information.
.. option:: --dtype {auto,half,float16,bfloat16,float,float32}
@ -118,3 +119,19 @@ Below, you can find an explanation of every engine argument for vLLM:
.. option:: --quantization (-q) {awq,squeezellm,None}
Method used to quantize the weights.
Async Engine Arguments
----------------------
Below are the additional arguments related to the asynchronous engine:
.. option:: --engine-use-ray
Use Ray to start the LLM engine in a separate process as the server process.
.. option:: --disable-log-requests
Disable logging requests.
.. option:: --max-log-len
Max number of prompt characters or prompt ID numbers being printed in log. Defaults to unlimited.

View File

@ -30,23 +30,23 @@ Alongside each architecture, we include some popular models that use it.
* - :code:`CohereForCausalLM`
- Command-R
- :code:`CohereForAI/c4ai-command-r-v01`, etc.
-
-
* - :code:`DbrxForCausalLM`
- DBRX
- :code:`databricks/dbrx-base`, :code:`databricks/dbrx-instruct`, etc.
-
-
* - :code:`DeciLMForCausalLM`
- DeciLM
- :code:`Deci/DeciLM-7B`, :code:`Deci/DeciLM-7B-instruct`, etc.
-
-
* - :code:`BloomForCausalLM`
- BLOOM, BLOOMZ, BLOOMChat
- :code:`bigscience/bloom`, :code:`bigscience/bloomz`, etc.
-
-
* - :code:`FalconForCausalLM`
- Falcon
- :code:`tiiuae/falcon-7b`, :code:`tiiuae/falcon-40b`, :code:`tiiuae/falcon-rw-7b`, etc.
-
-
* - :code:`GemmaForCausalLM`
- Gemma
- :code:`google/gemma-2b`, :code:`google/gemma-7b`, etc.
@ -54,19 +54,19 @@ Alongside each architecture, we include some popular models that use it.
* - :code:`GPT2LMHeadModel`
- GPT-2
- :code:`gpt2`, :code:`gpt2-xl`, etc.
-
-
* - :code:`GPTBigCodeForCausalLM`
- StarCoder, SantaCoder, WizardCoder
- :code:`bigcode/starcoder`, :code:`bigcode/gpt_bigcode-santacoder`, :code:`WizardLM/WizardCoder-15B-V1.0`, etc.
-
-
* - :code:`GPTJForCausalLM`
- GPT-J
- :code:`EleutherAI/gpt-j-6b`, :code:`nomic-ai/gpt4all-j`, etc.
-
-
* - :code:`GPTNeoXForCausalLM`
- GPT-NeoX, Pythia, OpenAssistant, Dolly V2, StableLM
- :code:`EleutherAI/gpt-neox-20b`, :code:`EleutherAI/pythia-12b`, :code:`OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5`, :code:`databricks/dolly-v2-12b`, :code:`stabilityai/stablelm-tuned-alpha-7b`, etc.
-
-
* - :code:`InternLMForCausalLM`
- InternLM
- :code:`internlm/internlm-7b`, :code:`internlm/internlm-chat-7b`, etc.
@ -83,38 +83,42 @@ Alongside each architecture, we include some popular models that use it.
- LLaMA, LLaMA-2, Vicuna, Alpaca, Yi
- :code:`meta-llama/Llama-2-13b-hf`, :code:`meta-llama/Llama-2-70b-hf`, :code:`openlm-research/open_llama_13b`, :code:`lmsys/vicuna-13b-v1.3`, :code:`01-ai/Yi-6B`, :code:`01-ai/Yi-34B`, etc.
- ✅︎
* - :code:`MiniCPMForCausalLM`
- MiniCPM
- :code:`openbmb/MiniCPM-2B-sft-bf16`, :code:`openbmb/MiniCPM-2B-dpo-bf16`, etc.
-
* - :code:`MistralForCausalLM`
- Mistral, Mistral-Instruct
- :code:`mistralai/Mistral-7B-v0.1`, :code:`mistralai/Mistral-7B-Instruct-v0.1`, etc.
- ✅︎
* - :code:`MixtralForCausalLM`
- Mixtral-8x7B, Mixtral-8x7B-Instruct
- :code:`mistralai/Mixtral-8x7B-v0.1`, :code:`mistralai/Mixtral-8x7B-Instruct-v0.1`, etc.
- :code:`mistralai/Mixtral-8x7B-v0.1`, :code:`mistralai/Mixtral-8x7B-Instruct-v0.1`, :code:`mistral-community/Mixtral-8x22B-v0.1`, etc.
- ✅︎
* - :code:`MPTForCausalLM`
- MPT, MPT-Instruct, MPT-Chat, MPT-StoryWriter
- :code:`mosaicml/mpt-7b`, :code:`mosaicml/mpt-7b-storywriter`, :code:`mosaicml/mpt-30b`, etc.
-
-
* - :code:`OLMoForCausalLM`
- OLMo
- :code:`allenai/OLMo-1B`, :code:`allenai/OLMo-7B`, etc.
-
-
* - :code:`OPTForCausalLM`
- OPT, OPT-IML
- :code:`facebook/opt-66b`, :code:`facebook/opt-iml-max-30b`, etc.
-
-
* - :code:`OrionForCausalLM`
- Orion
- :code:`OrionStarAI/Orion-14B-Base`, :code:`OrionStarAI/Orion-14B-Chat`, etc.
-
-
* - :code:`PhiForCausalLM`
- Phi
- :code:`microsoft/phi-1_5`, :code:`microsoft/phi-2`, etc.
-
-
* - :code:`QWenLMHeadModel`
- Qwen
- :code:`Qwen/Qwen-7B`, :code:`Qwen/Qwen-7B-Chat`, etc.
-
-
* - :code:`Qwen2ForCausalLM`
- Qwen2
- :code:`Qwen/Qwen2-beta-7B`, :code:`Qwen/Qwen2-beta-7B-Chat`, etc.
@ -122,11 +126,11 @@ Alongside each architecture, we include some popular models that use it.
* - :code:`Qwen2MoeForCausalLM`
- Qwen2MoE
- :code:`Qwen/Qwen1.5-MoE-A2.7B`, :code:`Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc.
-
-
* - :code:`StableLmForCausalLM`
- StableLM
- :code:`stabilityai/stablelm-3b-4e1t/` , :code:`stabilityai/stablelm-base-alpha-7b-v2`, etc.
-
-
If your model uses one of the above model architectures, you can seamlessly run your model with vLLM.
Otherwise, please refer to :ref:`Adding a New Model <adding_a_new_model>` for instructions on how to implement support for your model.
@ -164,3 +168,29 @@ Alternatively, you can raise an issue on our `GitHub <https://github.com/vllm-pr
llm = LLM(model=..., revision=..., trust_remote_code=True) # Name or path of your model
output = llm.generate("Hello, my name is")
print(output)
Model Support Policy
---------------------
At vLLM, we are committed to facilitating the integration and support of third-party models within our ecosystem. Our approach is designed to balance the need for robustness and the practical limitations of supporting a wide range of models. Heres how we manage third-party model support:
1. **Community-Driven Support**: We encourage community contributions for adding new models. When a user requests support for a new model, we welcome pull requests (PRs) from the community. These contributions are evaluated primarily on the sensibility of the output they generate, rather than strict consistency with existing implementations such as those in transformers. **Call for contribution:** PRs coming directly from model vendors are greatly appreciated!
2. **Best-Effort Consistency**: While we aim to maintain a level of consistency between the models implemented in vLLM and other frameworks like transformers, complete alignment is not always feasible. Factors like acceleration techniques and the use of low-precision computations can introduce discrepancies. Our commitment is to ensure that the implemented models are functional and produce sensible results.
3. **Issue Resolution and Model Updates**: Users are encouraged to report any bugs or issues they encounter with third-party models. Proposed fixes should be submitted via PRs, with a clear explanation of the problem and the rationale behind the proposed solution. If a fix for one model impacts another, we rely on the community to highlight and address these cross-model dependencies. Note: for bugfix PRs, it is good etiquette to inform the original author to seek their feedback.
4. **Monitoring and Updates**: Users interested in specific models should monitor the commit history for those models (e.g., by tracking changes in the main/vllm/model_executor/models directory). This proactive approach helps users stay informed about updates and changes that may affect the models they use.
5. **Selective Focus**: Our resources are primarily directed towards models with significant user interest and impact. Models that are less frequently used may receive less attention, and we rely on the community to play a more active role in their upkeep and improvement.
Through this approach, vLLM fosters a collaborative environment where both the core development team and the broader community contribute to the robustness and diversity of the third-party models supported in our ecosystem.
Note that, as an inference engine, vLLM does not introduce new models. Therefore, all models supported by vLLM are third-party models in this regard.
We have the following levels of testing for models:
1. **Strict Consistency**: We compare the output of the model with the output of the model in the HuggingFace Transformers library under greedy decoding. This is the most stringent test. Please refer to `test_models.py <https://github.com/vllm-project/vllm/blob/main/tests/models/test_models.py>`_ and `test_big_models.py <https://github.com/vllm-project/vllm/blob/main/tests/models/test_big_models.py>`_ for the models that have passed this test.
2. **Output Sensibility**: We check if the output of the model is sensible and coherent, by measuring the perplexity of the output and checking for any obvious errors. This is a less stringent test.
3. **Runtime Functionality**: We check if the model can be loaded and run without errors. This is the least stringent test. Please refer to `functionality tests <https://github.com/vllm-project/vllm/tree/main/tests>`_ and `examples <https://github.com/vllm-project/vllm/tree/main/examples>`_ for the models that have passed this test.
4. **Community Feedback**: We rely on the community to provide feedback on the models. If a model is broken or not working as expected, we encourage users to raise issues to report it or open pull requests to fix it. The rest of the models fall under this category.

View File

@ -0,0 +1,49 @@
.. _fp8_e4m3_kvcache:
FP8 E4M3 KV Cache
==================
Quantizing the KV cache to FP8 reduces its memory footprint. This increases the number of tokens that can be stored in the cache,
improving throughput. OCP (Open Compute Project www.opencompute.org) specifies two common 8-bit floating point data formats: E5M2
(5 exponent bits and 2 mantissa bits) and E4M3FN (4 exponent bits and 3 mantissa bits), often shortened as E4M3. One benefit of
the E4M3 format over E5M2 is that floating point numbers are represented in higher precision. However, the small dynamic range of
FP8 E4M3 (±240.0 can be represented) typically necessitates the use of a higher-precision (typically FP32) scaling factor alongside
each quantized tensor. For now, only per-tensor (scalar) scaling factors are supported. Development is ongoing to support scaling
factors of a finer granularity (e.g. per-channel).
These scaling factors can be specified by passing an optional quantization param JSON to the LLM engine at load time. If
this JSON is not specified, scaling factors default to 1.0. These scaling factors are typically obtained when running an
unquantized model through a quantizer tool (e.g. AMD quantizer or NVIDIA AMMO).
To install AMMO (AlgorithMic Model Optimization):
.. code-block:: console
$ pip install --no-cache-dir --extra-index-url https://pypi.nvidia.com nvidia-ammo
Studies have shown that FP8 E4M3 quantization typically only minimally degrades inference accuracy. The most recent silicon
offerings e.g. AMD MI300, NVIDIA Hopper or later support native hardware conversion to and from fp32, fp16, bf16, etc.
Thus, LLM inference is greatly accelerated with minimal accuracy loss.
Here is an example of how to enable this feature:
.. code-block:: python
# two float8_e4m3fn kv cache scaling factor files are provided under tests/fp8_kv, please refer to
# https://github.com/vllm-project/vllm/blob/main/examples/fp8/README.md to generate kv_cache_scales.json of your own.
from vllm import LLM, SamplingParams
sampling_params = SamplingParams(temperature=1.3, top_p=0.8)
llm = LLM(model="meta-llama/Llama-2-7b-chat-hf",
kv_cache_dtype="fp8",
quantization_param_path="./tests/fp8_kv/llama2-7b-fp8-kv/kv_cache_scales.json")
prompt = "London is the capital of"
out = llm.generate(prompt, sampling_params)[0].outputs[0].text
print(out)
# output w/ scaling factors: England, the United Kingdom, and one of the world's leading financial,
# output w/o scaling factors: England, located in the southeastern part of the country. It is known
Note, current prefix caching doesn't work with FP8 KV cache enabled, forward_prefix kernel should handle different KV and cache type.

View File

@ -1,4 +1,4 @@
.. _fp8_e5m2_kv_cache:
.. _fp8_kv_cache:
FP8 E5M2 KV Cache
==================
@ -21,7 +21,7 @@ Here is an example of how to enable this feature:
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Create an LLM.
llm = LLM(model="facebook/opt-125m", kv_cache_dtype="fp8_e5m2")
llm = LLM(model="facebook/opt-125m", kv_cache_dtype="fp8")
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
@ -31,3 +31,6 @@ Here is an example of how to enable this feature:
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
Note, current prefix caching doesn't work with FP8 KV cache enabled, forward_prefix kernel should handle different KV and cache type.

View File

@ -4,7 +4,7 @@ vLLM provides an HTTP server that implements OpenAI's [Completions](https://plat
You can start the server using Python, or using [Docker](deploying_with_docker.rst):
```bash
python -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-hf --dtype float32 --api-key token-abc123
python -m vllm.entrypoints.openai.api_server --model mistralai/Mistral-7B-Instruct-v0.2 --dtype auto --api-key token-abc123
```
To call the server, you can use the official OpenAI Python client library, or any other HTTP client.
@ -16,9 +16,8 @@ client = OpenAI(
)
completion = client.chat.completions.create(
model="meta-llama/Llama-2-7b-hf",
model="mistralai/Mistral-7B-Instruct-v0.2",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
]
)
@ -38,9 +37,8 @@ Or directly merge them into the JSON payload if you are using HTTP call directly
```python
completion = client.chat.completions.create(
model="meta-llama/Llama-2-7b-hf",
model="mistralai/Mistral-7B-Instruct-v0.2",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Classify this sentiment: vLLM is wonderful!"}
],
extra_body={
@ -89,7 +87,7 @@ In order for the language model to support chat protocol, vLLM requires the mode
a chat template in its tokenizer configuration. The chat template is a Jinja2 template that
specifies how are roles, messages, and other chat-specific tokens are encoded in the input.
An example chat template for `meta-llama/Llama-2-7b-chat-hf` can be found [here](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf/blob/09bd0f49e16738cdfaa6e615203e126038736eb0/tokenizer_config.json#L12)
An example chat template for `mistralai/Mistral-7B-Instruct-v0.2` can be found [here](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2#instruction-format)
Some models do not provide a chat template even though they are instruction/chat fine-tuned. For those model,
you can manually specify their chat template in the `--chat-template` parameter with the file path to the chat

96
examples/fp8/README.md Normal file
View File

@ -0,0 +1,96 @@
# FP8 KV Cache
This utility extracts the KV cache scaling factors from a quantized HF (Hugging Face) model. The extracted scaling factors are saved to a JSON file, which can later be used by vLLM (variable-length language model) during runtime. This tool is particularly useful when the KV cache data type is FP8 and is intended for use on ROCm (AMD GPU) platforms.
## Prerequisites
- Python 3.x
- PyTorch
- NumPy
- Hugging Face Transformers
- Hugging Face Hub
- AMMO
Before incorporating the FP8 datatype for inference workloads, you must adhere to the following steps:
1. Install all necessary prerequisites and dependencies.
2. Convert HF model into a quantized HF model.
3. Extract KV Cache Scaling Factors from quantized HF model.
4. Load KV Cache Scaling Factors into VLLM.
### 2. Convert HF model into a quantized HF model.
Note: The following steps are adapted from the [TensorRT-LLM repository](https://github.com/NVIDIA/TensorRT-LLM/blob/main/examples/quantization/README.md).
`quantize.py` (examples/fp8/quantizer/quantize.py) uses the quantization toolkit (AMMO) to calibrate the PyTorch models and export TensorRT-LLM checkpoints. Each TensorRT-LLM checkpoint contains a config file (in .json format) and one or several rank weight files (in .safetensors format).
The detailed quantization toolkit (AMMO) conversion guide for FP8 can be found at `examples/fp8/quantizer/README.md`.
### 3. Extract KV Cache Scaling Factors from quantized HF model.
`extract_scales.py` (examples/fp8/extract_scales.py) can be utilized to extract the KV cache scaling factors from your quantized HF model, however at the moment, this tool exclusively supports Llama 2 models. It is also important to note the following:
1. **File Structure**: The utility operates under the assumption that all parameters, including KV cache scaling factors, corresponding to a particular Tensor Parallelism (TP) rank are stored in a single file. These files must adhere to a specific naming convention where the TP rank is immediately identified after a specific keyword (e.g., "rank") in the filename.
2. **TP Decomposition**: The utility assumes consistency between the TP decomposition employed by the quantizer tool and that used by vLLM.
3. **AMMO Compatibility**: Currently, the generated KV cache scaling factors for AMMO remain uniform across all TP ranks.
```python
# prerequisites:
# - Quantized HF LLaMa 2 model
python3 examples/fp8/extract_scales.py --help
Usage: extract_scales.py [-h] --quantized_model QUANTIZED_MODEL [--load_format {auto,safetensors,npz,pt}] [--output_dir OUTPUT_DIR] [--output_name OUTPUT_NAME] [--tp_size TP_SIZE]
KV Scale Extraction Example
optional arguments:
--quantized_model: Specify either the local path to, or name of, a quantized HF model. It is expected that the quantization format is FP8_E4M3, for use on ROCm (AMD GPU).
Optional arguments:
--cache_dir: Specify a cache directory to use in the event of a HF model download. (Default: None)
--load_format: Specify the format of the model's tensor files containing the KV cache scaling factors. (Choices: auto, safetensors, npz, pt; Default: auto)
--revision: Specify the model's revision number. (Default: None)
--output_dir: Specify the output directory. By default the KV cache scaling factors will be saved in the model directory. (Default: None)
--output_name: Specify the output filename. (Default: kv_cache_scales.json)
--tp_size: Specify the tensor-parallel (TP) size that the quantized model should correspond to. If specified, during KV cache scaling factor extraction the observed TP size will be checked against this and an error will be raised if there is a mismatch. (Default: None)
```
```python
Example:
python3 examples/fp8/extract_scales.py --quantized_model <QUANTIZED_MODEL_DIR> --tp_size <TENSOR_PARALLEL_SIZE> --output_dir <PATH_TO_OUTPUT_DIR>
```
### 4. Load KV Cache Scaling Factors into VLLM.
This script evaluates the inference throughput of language models using various backends such as vLLM. It measures the time taken to process a given number of prompts and generate sequences for each prompt. The recently generated KV cache scaling factors are now integrated into the benchmarking process and allow for KV cache scaling factors to be utilized for FP8.
```python
# prerequisites:
# - LLaMa 2 kv_cache_scales.json file
python3 benchmarks/benchmark_throughput.py --help
usage: benchmark_throughput.py [-h] [--backend {vllm,hf,mii}] [--dataset DATASET] [--input-len INPUT_LEN] [--output-len OUTPUT_LEN] [--model MODEL]
[--tokenizer TOKENIZER] [--quantization {awq,gptq,squeezellm,None}] [--tensor-parallel-size TENSOR_PARALLEL_SIZE] [--n N]
[--use-beam-search] [--num-prompts NUM_PROMPTS] [--seed SEED] [--hf-max-batch-size HF_MAX_BATCH_SIZE] [--trust-remote-code]
[--max-model-len MAX_MODEL_LEN] [--dtype {auto,half,float16,bfloat16,float,float32}] [--enforce-eager] [--kv-cache-dtype {auto,fp8}]
[--quantization-param-path KV_CACHE_quantization_param_path]
Benchmark Throughput Example
optional arguments:
-h, --help show this help message and exit
--backend {vllm,hf,mii}
--dataset DATASET Path to the dataset.
--input-len INPUT_LEN Input prompt length for each request
--output-len OUTPUT_LEN Output length for each request. Overrides the output length from the dataset.
--model MODEL
--tokenizer TOKENIZER
--quantization {awq,gptq,squeezellm,None}, -q {awq,gptq,squeezellm,None}
--tensor-parallel-size TENSOR_PARALLEL_SIZE, -tp TENSOR_PARALLEL_SIZE
--n N Number of generated sequences per prompt.
--use-beam-search
--num-prompts NUM_PROMPTS Number of prompts to process.
--seed SEED
--hf-max-batch-size HF_MAX_BATCH_SIZE Maximum batch size for HF backend.
--trust-remote-code trust remote code from huggingface
--max-model-len MAX_MODEL_LEN Maximum length of a sequence (including prompt and output). If None, will be derived from the model.
--dtype {auto,half,float16,bfloat16,float,float32} data type for model weights and activations. The "auto" option will use FP16 precision for FP32 and FP16 models, and BF16 precision for BF16 models.
--enforce-eager enforce eager execution
--kv-cache-dtype {auto,fp8} Data type for kv cache storage. If "auto", will use model data type. FP8_E5M2 (without scaling) is only supported on cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead supported ```for common inference criteria.
--quantization-param-path QUANT_PARAM_JSON Path to the JSON file containing the KV cache scaling factors. This should generally be supplied, when KV cache dtype is FP8. Otherwise, KV cache scaling factors default to 1.0, which may cause accuracy issues. FP8_E5M2 (without scaling) is only supported on cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead supported for common inference criteria.
```
```
Example:
python3 benchmarks/benchmark_throughput.py --input-len <INPUT_LEN> --output-len <OUTPUT_LEN> -tp <TENSOR_PARALLEL_SIZE> --kv-cache-dtype fp8 --quantization-param-path <path/to/kv_cache_scales.json> --model <path-to-llama2>
```python

View File

@ -0,0 +1,367 @@
import argparse
import glob
import json
import os
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
import numpy as np
import torch
from safetensors.torch import safe_open
from vllm.model_executor.layers.quantization.schema import QuantParamSchema
# Adapted from vllm/model_executor/weight_utils.py
# The main differences are that we add the NPZ format and simplify
# its functionality drastically for our purposes (e.g. we assume that
# the quantized model exists locally and there is no need to download it)
def _prepare_hf_weights(
quantized_model_dir: str,
load_format: str = "auto",
fall_back_to_pt: bool = True,
) -> Tuple[str, List[str], bool]:
if not os.path.isdir(quantized_model_dir):
raise FileNotFoundError(
f"The quantized model directory `{quantized_model_dir}` "
"does not exist.")
use_safetensors = False
# Some quantized models use .pt files for storing the weights.
if load_format == "auto":
allow_patterns = ["*.safetensors", "*.bin"]
elif load_format == "safetensors":
use_safetensors = True
allow_patterns = ["*.safetensors"]
elif load_format == "pt":
allow_patterns = ["*.pt"]
elif load_format == "npz":
allow_patterns = ["*.npz"]
else:
raise ValueError(f"Unknown load_format: {load_format}")
if fall_back_to_pt:
allow_patterns += ["*.pt"]
hf_weights_files: List[str] = []
for pattern in allow_patterns:
hf_weights_files += glob.glob(
os.path.join(quantized_model_dir, pattern))
if len(hf_weights_files) > 0:
if pattern == "*.safetensors":
use_safetensors = True
break
if not use_safetensors:
# Exclude files that are not needed for inference.
# https://github.com/huggingface/transformers/blob/v4.34.0/src/transformers/trainer.py#L227-L233
blacklist = [
"training_args.bin",
"optimizer.bin",
"optimizer.pt",
"scheduler.pt",
"scaler.pt",
]
hf_weights_files = [
f for f in hf_weights_files
if not any(f.endswith(x) for x in blacklist)
]
if len(hf_weights_files) == 0:
raise RuntimeError(
f"Cannot find any model weights with `{quantized_model_dir}`")
return hf_weights_files, use_safetensors
# Adapted from vllm/model_executor/weight_utils.py
def _hf_tensorfile_iterator(filename: str, load_format: str,
use_safetensors: bool):
if load_format == "npz":
assert not use_safetensors
with np.load(filename) as data:
for name in data.files:
param = torch.from_numpy(data[name])
yield name, param
elif use_safetensors:
with safe_open(filename, framework="pt") as f:
for name in f.keys(): # NOQA: SIM118
param = f.get_tensor(name)
yield name, param
else:
state = torch.load(filename, map_location="cpu")
for name, param in state.items():
yield name, param
del state
torch.cuda.empty_cache()
def _kv_scales_extractor(
hf_tensor_files: Iterable[str],
use_safetensors: bool,
rank_keyword: str = "rank",
expected_tp_size: Optional[int] = None) -> Dict[int, Dict[int, float]]:
"""
Given a list of files containing tensor data, attempt to extract KV cache
scales from these files. Intended as a helper function taking in the output
from _prepare_hf_weights.
Args:
rank_keyword Matches the number immediately after this keyword in the
tensor filename to determine the TP rank corresponding
to said tensor file
expected_tp_size If specified, the TP size of the tensor files is checked
against this and an error is raised if they don't match.
Returns a dictionary mapping TP ranks to their relevant KV cache scales.
The per-rank scales are themselves represented as a dictionary of layer
indices to the respective per-layer scale.
"""
for char in rank_keyword:
assert not char.isdecimal(
), f"Rank keyword {rank_keyword} contains a numeric character!"
rank_scales_map = {}
for tensor_file in hf_tensor_files:
try:
rank_idx = tensor_file.find(rank_keyword)
if rank_idx != -1:
start_idx = rank_idx + len(rank_keyword)
stop_idx = start_idx
while stop_idx < len(
tensor_file) and tensor_file[stop_idx].isdecimal():
stop_idx += 1
if stop_idx == start_idx:
raise RuntimeError("Did not find rank # in filename.")
rank = int(tensor_file[start_idx:stop_idx])
elif len(hf_tensor_files) == 1:
# Since there is only one tensor file, we can assume
# that it's intended for TP rank 0
rank = 0
else:
raise RuntimeError(
f"Filename does not contain '{rank_keyword}'.")
except RuntimeError:
print("Unable to determine TP rank "
f"corresponding to file '{tensor_file}'")
raise
if rank not in rank_scales_map:
layer_scales_map = {}
rank_scales_map[rank] = layer_scales_map
else:
raise RuntimeError(
f"Tensor file '{tensor_file}' shares TP rank {rank} "
"with another tensor file.")
module_delimiter = ":" if args.load_format == "npz" else "."
for name, param in _hf_tensorfile_iterator(tensor_file,
args.load_format,
use_safetensors):
if "kv_cache_scaling_factor" in name:
nums = [
int(s) for s in name.split(module_delimiter)
if s.isdecimal()
]
assert len(
nums) == 1, f"Could not determine layer idx for {name}"
layer_idx = nums[0]
assert layer_idx not in layer_scales_map, f"Duplicate scaling"\
f" factor corresponding to layer {layer_idx}"
try:
layer_scales_map[layer_idx] = param.item()
except RuntimeError:
print(
"This utility supports only per-tensor scalar scales "
f"for now. The tensor\n {name} = {param} \nis an "
"invalid scale factor.")
raise
if all(
len(layer_scales_map) == 0
for layer_scales_map in rank_scales_map.values()):
# Note: this is true even if the rank_scales_map is empty
print("WARNING: No KV cache scale factors found. No output saved.")
return None
empirical_tp_world_size = max(rank_scales_map.keys()) + 1
if expected_tp_size is not None:
assert expected_tp_size == empirical_tp_world_size, \
f"User expected TP world size = {expected_tp_size} " \
"from model but tool is expecting TP world size = " \
f"{empirical_tp_world_size} from model instead."
for i in range(empirical_tp_world_size):
assert i in rank_scales_map, "Expected TP world size = "\
f"{empirical_tp_world_size} but did not find KV " \
f"cache scaling factors for TP rank {i}"
print(f"Found TP world size = {empirical_tp_world_size} "
"when extracting KV cache scales!")
return rank_scales_map
def _metadata_extractor(quantized_model_dir: str,
metadata_extract_fns: \
Dict[str, Callable[[Dict[str, Any]], Any]]) \
-> Dict[str, Any]:
"""
Given a directory containing quantized model files, this function
aims to extract metadata from the JSON files within this directory.
Each JSON file is expected to represent a dictionary in JSON
format (referred to as a "JSON-dictionary"). Metadata extraction is
defined by a dictionary called metadata_extract_fns, where each
metadata field name is mapped to an extraction function.
These extraction functions are designed to take a JSON-dictionary
as their only argument and return the corresponding metadata.
While extraction functions are permitted to raise exceptions, they
should only raise a KeyError or ValueError if the metadata field
cannot be extracted from the current JSON-dictionary, yet there's
a possibility of finding it in another JSON-dictionary.
The function returns a dictionary that maps metadata fields to
their extracted data. The keys of this dictionary correspond exactly
to those in metadata_extract_fns. If any fields fail to be extracted,
their corresponding values are set to None, and a warning is printed.
"""
if not os.path.isdir(quantized_model_dir):
raise FileNotFoundError(
f"The quantized model directory `{quantized_model_dir}` "
"does not exist.")
metadata_files = glob.glob(os.path.join(quantized_model_dir, "*.json"))
result = {}
for file in metadata_files:
with open(file) as f:
try:
metadata = json.load(f)
except json.JSONDecodeError:
print(f"Could not parse `{file}` as a valid metadata file,"
" skipping it.")
continue
if not isinstance(metadata, dict):
print(f"The file `{file}` does not correspond to a "
"JSON-serialized dictionary, skipping it.")
continue
for metadata_name, extract_fn in metadata_extract_fns.items():
try:
metadata_info = extract_fn(metadata)
if metadata_name not in result:
result[metadata_name] = metadata_info
elif metadata_info != result[metadata_name]:
raise RuntimeError(
"Metadata mismatch! Originally found "
f"{metadata_name} = {result[metadata_name]} but "
f"now found {metadata_name} = {metadata_info} in "
f"`{file}`")
except KeyError:
# It is possible that a given file does not contain some
# of our selected metadata as it could be located in some
# other metadata file.
# 'EFINAE': extract_fn failure is not an error.
pass
except ValueError:
# See above.
pass
# Warn if we cannot find any of the requested metadata
for metadata_name in metadata_extract_fns:
if metadata_name not in result:
print("WARNING: Unable to find requested metadata field "
f"`{metadata_name}`, setting it to None.")
result[metadata_name] = None
return result
def main(args):
metadata_extract_fns = {
"model_type": lambda json_dict: json_dict["layers"][0]["decoder_type"],
"tp_size": lambda json_dict: int(json_dict["tensor_parallel"]),
"model_dtype": lambda json_dict: json_dict["dtype"]
}
recovered_metadata = _metadata_extractor(args.quantized_model,
metadata_extract_fns)
if args.tp_size is not None:
metadata_tp_size = recovered_metadata["tp_size"]
if metadata_tp_size is not None:
assert args.tp_size == metadata_tp_size, \
f"User expected TP world size = {args.tp_size} " \
f"but found TP world size = {metadata_tp_size} from metadata!"
expected_tp_size = args.tp_size or recovered_metadata["tp_size"]
rank_keyword = "rank"
hf_tensor_files, use_safetensors = _prepare_hf_weights(
args.quantized_model, args.load_format)
rank_scales_map = _kv_scales_extractor(hf_tensor_files, use_safetensors,
rank_keyword, expected_tp_size)
# Postprocess: formatting to the current schema. Consider pulling it
# out into a dedicated function should it ever become more complicated.
rank_scales_map = {
rank: {k: scale[k]
for k in sorted(scale.keys())}
for rank, scale in rank_scales_map.items()
}
# TODO: Expand this with activation and weights scaling factors when
# they are used in the future
schema = QuantParamSchema(
model_type=recovered_metadata["model_type"],
kv_cache={
"dtype": ("float8_e4m3fn" if len(rank_scales_map) > 0 else
recovered_metadata["model_dtype"]),
"scaling_factor":
rank_scales_map
},
)
if args.output_dir is None:
output_file = os.path.join(args.quantized_model, args.output_name)
else:
if not os.path.isdir(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
output_file = os.path.join(args.output_dir, args.output_name)
with open(output_file, 'w') as f:
f.write(schema.model_dump_json(indent=4))
print(f"Completed! KV cache scaling factors saved to {output_file}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="This simple utility extracts the "
"KV cache scaling factors from a quantized HF model "
"and saves them to a JSON file compatible with later "
"use by vLLM (pass this file to the appropriate "
"runtime typically using the argument "
"--quantization-param-path <filename>). This is only used "
"if the KV cache dtype is FP8 and on ROCm (AMD GPU).")
parser.add_argument(
"--quantized_model",
help="Specify the directory containing a single quantized HF model. "
"It is expected that the quantization format is FP8_E4M3, for use "
"on ROCm (AMD GPU).",
required=True)
parser.add_argument(
"--load_format",
help="Optionally specify the format of the model's tensor files "
"containing the KV cache scaling factors.",
choices=["auto", "safetensors", "npz", "pt"],
default="auto")
parser.add_argument(
"--output_dir",
help="Optionally specify the output directory. By default the "
"KV cache scaling factors will be saved in the model directory, "
"however you can override this behavior here.",
default=None)
parser.add_argument(
"--output_name",
help="Optionally specify the output filename.",
# TODO: Change this once additional scaling factors are enabled
default="kv_cache_scales.json")
parser.add_argument(
"--tp_size",
help="Optionally specify the tensor-parallel (TP) size that the "
"quantized model should correspond to. If specified, during KV "
"cache scaling factor extraction the observed TP size will be "
"checked against this and an error will be raised if there is "
"a mismatch. If not specified, the quantized model's expected "
"TP size is instead inferred from the largest TP rank observed. "
"The expected TP size is cross-checked against the TP ranks "
"observed in the quantized model and an error is raised if any "
"discrepancies are found.",
default=None,
type=int)
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,32 @@
### Quantizer Utilities
`quantize.py`: NVIDIA Quantization utilities using AMMO, ported from TensorRT-LLM:
`https://github.com/NVIDIA/TensorRT-LLM/blob/main/examples/quantization/quantize.py`
### Prerequisite
#### AMMO (AlgorithMic Model Optimization) Installation: nvidia-ammo 0.7.1 or later
`pip install --no-cache-dir --extra-index-url https://pypi.nvidia.com nvidia-ammo`
#### AMMO Download (code and docs)
`https://developer.nvidia.com/downloads/assets/cuda/files/nvidia-ammo/nvidia_ammo-0.5.0.tar.gz`
`https://developer.nvidia.com/downloads/assets/cuda/files/nvidia-ammo/nvidia_ammo-0.7.1.tar.gz`
### Usage
#### Run on H100 system for speed if FP8; number of GPUs depends on the model size
#### Example: quantize Llama2-7b model from HF to FP8 with FP8 KV Cache:
`python quantize.py --model_dir ./ll2-7b --dtype float16 --qformat fp8 --kv_cache_dtype fp8 --output_dir ./ll2_7b_fp8 --calib_size 512 --tp_size 1`
Outputs: model structure, quantized model & parameters (with scaling factors) are in JSON and Safetensors (npz is generated only for the reference)
```
# ll ./ll2_7b_fp8/
total 19998244
drwxr-xr-x 2 root root 4096 Feb 7 01:08 ./
drwxrwxr-x 8 1060 1061 4096 Feb 7 01:08 ../
-rw-r--r-- 1 root root 176411 Feb 7 01:08 llama_tp1.json
-rw-r--r-- 1 root root 13477087480 Feb 7 01:09 llama_tp1_rank0.npz
-rw-r--r-- 1 root root 7000893272 Feb 7 01:08 rank0.safetensors
#
```

View File

@ -0,0 +1,367 @@
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # noqa: E501
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Adapted from examples/quantization/hf_ptq.py
"""
import argparse
import copy
import json
import random
import time
import ammo.torch.quantization as atq
import numpy as np
import torch
from ammo.torch.export import export_model_config
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer
RAND_SEED = 1234
MAX_SEQ_LEN = 2048
EMPTY_CFG = {
"quant_cfg": {
"*weight_quantizer": {
"enable": False,
},
"*input_quantizer": {
"enable": False
},
"*lm_head*": {
"enable": False
},
"*output_layer*": {
"enable": False
},
"default": {
"enable": False
},
},
"algorithm": "max",
}
KV_CACHE_CFG = {
"*.query_key_value.output_quantizer": {
"num_bits": 8,
"axis": None,
"enable": True
},
"*.Wqkv.output_quantizer": {
"num_bits": 8,
"axis": None,
"enable": True
},
"*.W_pack.output_quantizer": {
"num_bits": 8,
"axis": None,
"enable": True
},
"*.c_attn.output_quantizer": {
"num_bits": 8,
"axis": None,
"enable": True
},
"*.k_proj.output_quantizer": {
"num_bits": 8,
"axis": None,
"enable": True
},
"*.v_proj.output_quantizer": {
"num_bits": 8,
"axis": None,
"enable": True
},
}
QUANT_CFG_CHOICES = {
"int8_sq": atq.INT8_SMOOTHQUANT_CFG,
"fp8": atq.FP8_DEFAULT_CFG,
"int4_awq": atq.INT4_AWQ_CFG,
"w4a8_awq": atq.W4A8_AWQ_BETA_CFG,
"int8_wo": EMPTY_CFG,
"int4_wo": EMPTY_CFG,
"full_prec": EMPTY_CFG,
}
MODEL_NAME_PATTERN_MAP = {
"GPT2": "gpt2",
"Xverse": "llama",
"Llama": "llama",
"Mistral": "llama",
"GPTJ": "gptj",
"FalconForCausalLM": "falcon",
"RWForCausalLM": "falcon",
"baichuan": "baichuan",
"MPT": "mpt",
"Bloom": "bloom",
"ChatGLM": "chatglm",
"QWen": "qwen",
}
def get_tokenizer(ckpt_path, max_seq_len=MAX_SEQ_LEN, model_type=None):
print(f"Initializing tokenizer from {ckpt_path}")
tokenizer = AutoTokenizer.from_pretrained(
ckpt_path,
model_max_length=max_seq_len,
padding_side="left",
trust_remote_code=True,
)
if model_type and model_type == "qwen":
# qwen use token id 151643 as pad and eos tokens
tokenizer.pad_token = tokenizer.convert_ids_to_tokens(151643)
tokenizer.eos_token = tokenizer.convert_ids_to_tokens(151643)
# can't set attribute 'pad_token' for "<unk>"
if tokenizer.pad_token != "<unk>":
tokenizer.pad_token = tokenizer.eos_token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
assert (tokenizer.pad_token
is not None), f"Pad token for {model_type} cannot be set!"
return tokenizer
def get_model(ckpt_path, dtype="fp16", device="cuda"):
print(f"Initializing model from {ckpt_path}")
if dtype == "bf16" or dtype == "bfloat16":
dtype = torch.bfloat16
elif dtype == "fp16" or dtype == "float16":
dtype = torch.float16
elif dtype == "fp32" or dtype == "float32":
dtype = torch.float32
else:
raise NotImplementedError(f"Unknown dtype {dtype}")
# model_kwargs = {"torch_dtype": dtype}
model_kwargs = {"torch_dtype": "auto"}
model = AutoModelForCausalLM.from_pretrained(ckpt_path,
device_map="auto",
**model_kwargs,
trust_remote_code=True)
model.eval()
model_dtype = next(model.parameters()).dtype
if dtype != model_dtype:
print("[TensorRT-LLM][WARNING] The manually set model data type is "
f"{dtype}, but the data type of the HuggingFace model is "
f"{model_dtype}.")
return model
def get_model_type(model):
for k, v in MODEL_NAME_PATTERN_MAP.items():
if k.lower() in type(model).__name__.lower():
return v
return None
def get_calib_dataloader(data="cnn_dailymail",
tokenizer=None,
batch_size=1,
calib_size=512,
block_size=512,
device=None):
print("Loading calibration dataset")
if data == "pileval":
dataset = load_dataset(
"json",
data_files="https://the-eye.eu/public/AI/pile/val.jsonl.zst",
split="train")
dataset = dataset["text"][:calib_size]
elif data == "cnn_dailymail":
dataset = load_dataset("cnn_dailymail", name="3.0.0", split="train")
dataset = dataset["article"][:calib_size]
else:
raise NotImplementedError
batch_encoded = tokenizer.batch_encode_plus(dataset,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=block_size)
if device:
batch_encoded = batch_encoded.to(device)
batch_encoded = batch_encoded["input_ids"]
calib_dataloader = DataLoader(batch_encoded,
batch_size=batch_size,
shuffle=False)
return calib_dataloader
def quantize_model(model, quant_cfg, calib_dataloader=None):
def calibrate_loop():
if calib_dataloader is None:
return
"""Adjusts weights and scaling factors based on selected algorithms."""
for idx, data in enumerate(calib_dataloader):
print(f"Calibrating batch {idx}")
model(data)
print("Starting quantization...")
start_time = time.time()
atq.quantize(model, quant_cfg, forward_loop=calibrate_loop)
end_time = time.time()
print("Quantization done. Total time used: {:.2f} s.".format(end_time -
start_time))
return model
def main(args):
if not torch.cuda.is_available():
raise EnvironmentError("GPU is required for inference.")
random.seed(RAND_SEED)
np.random.seed(RAND_SEED)
model = get_model(args.model_dir, args.dtype, args.device)
model_type = get_model_type(model)
tokenizer = get_tokenizer(args.model_dir, model_type=model_type)
if args.qformat in ["full_prec", "int8_wo", "int4_wo"
] and args.kv_cache_dtype is None:
print(f"No quantization applied, export {args.dtype} model")
else:
if "awq" in args.qformat:
if args.calib_size > 32:
print("AWQ calibration could take longer with calib_size = "
f"{args.calib_size}, Using calib_size=32 instead")
args.calib_size = 32
print("\nAWQ calibration could take longer than other calibration "
"methods. Please increase the batch size to speed up the "
"calibration process. Batch size can be set by adding the "
"argument --batch_size <batch_size> to the command line.\n")
calib_dataloader = get_calib_dataloader(
tokenizer=tokenizer,
batch_size=args.batch_size,
calib_size=args.calib_size,
device=args.device,
)
if args.qformat in QUANT_CFG_CHOICES:
quant_cfg = QUANT_CFG_CHOICES[args.qformat]
else:
raise ValueError(
f"Unsupported quantization format: {args.qformat}")
if "awq" in args.qformat:
quant_cfg = copy.deepcopy(QUANT_CFG_CHOICES[args.qformat])
weight_quantizer = quant_cfg["quant_cfg"][
"*weight_quantizer"] # type: ignore
if isinstance(weight_quantizer, list):
weight_quantizer = weight_quantizer[0]
weight_quantizer["block_sizes"][-1] = args.awq_block_size
if args.kv_cache_dtype is not None:
if args.kv_cache_dtype == "fp8":
for value in KV_CACHE_CFG.values():
value.update({"num_bits": (4, 3)}) # type: ignore
quant_cfg["quant_cfg"].update(KV_CACHE_CFG) # type: ignore
print(quant_cfg)
model = quantize_model(model, quant_cfg, calib_dataloader)
with torch.inference_mode():
if model_type is None:
print(f"Unknown model type {type(model).__name__}. Continue "
"exporting...")
model_type = f"unknown:{type(model).__name__}"
export_path = args.output_dir
start_time = time.time()
if args.qformat == "int4_awq" and model_type == "qwen":
torch.save(model.state_dict(), export_path)
else:
export_npz = (model_type not in [
'gptj', 'falcon', 'chatglm', 'mpt', 'llama', 'baichuan'
])
# export safetensors
export_model_config(
model,
model_type,
getattr(torch, args.dtype),
export_dir=export_path,
inference_tensor_parallel=args.tp_size,
inference_pipeline_parallel=args.pp_size,
# export_tensorrt_llm_config=(not export_npz),
export_tensorrt_llm_config=False,
export_npz=export_npz)
# Workaround for wo quantization
if args.qformat in ["int8_wo", "int4_wo", "full_prec"]:
with open(f"{export_path}/config.json", 'r') as f:
tensorrt_llm_config = json.load(f)
if args.qformat == "int8_wo":
tensorrt_llm_config["quantization"]["quant_algo"] = 'W8A16'
elif args.qformat == "int4_wo":
tensorrt_llm_config["quantization"]["quant_algo"] = 'W4A16'
else:
tensorrt_llm_config["quantization"]["quant_algo"] = None
with open(f"{export_path}/config.json", "w") as f:
json.dump(tensorrt_llm_config, f, indent=4)
end_time = time.time()
print("Quantized model exported to {} \nTotal time used {:.2f} s.".
format(export_path, end_time - start_time))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("--model_dir",
help="Specify where the HuggingFace model is",
required=True)
parser.add_argument("--device", default="cuda")
parser.add_argument("--dtype", help="Model data type.", default="float16")
parser.add_argument(
"--qformat",
help="Quantization format.",
default="full_prec",
choices=[
"fp8", "int8_sq", "int4_awq", "w4a8_awq", "int8_wo", "int4_wo",
"full_prec"
],
)
parser.add_argument("--batch_size",
help="Batch size for calibration.",
type=int,
default=1)
parser.add_argument("--calib_size",
help="Number of samples for calibration.",
type=int,
default=512)
parser.add_argument("--output_dir", default="exported_model")
parser.add_argument("--tp_size", type=int, default=1)
parser.add_argument("--pp_size", type=int, default=1)
parser.add_argument("--awq_block_size", type=int, default=128)
parser.add_argument("--kv_cache_dtype",
help="KV Cache dtype.",
default=None,
choices=["int8", "fp8", None])
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,282 @@
import argparse
import dataclasses
import os
import time
import uuid
from functools import partial
from typing import Type
import torch
import torch.nn as nn
from tensorizer import (DecryptionParams, EncryptionParams, TensorDeserializer,
TensorSerializer, stream_io)
from tensorizer.utils import convert_bytes, get_mem_usage, no_init_or_tensor
from transformers import AutoConfig, PretrainedConfig
from vllm.distributed import initialize_model_parallel
from vllm.engine.arg_utils import EngineArgs
from vllm.engine.llm_engine import LLMEngine
from vllm.model_executor.models import ModelRegistry
from vllm.model_executor.tensorizer_loader import TensorizerArgs
# yapf conflicts with isort for this docstring
# yapf: disable
"""
tensorize_vllm_model.py is a script that can be used to serialize and
deserialize vLLM models. These models can be loaded using tensorizer
to the GPU extremely quickly over an HTTP/HTTPS endpoint, an S3 endpoint,
or locally. Tensor encryption and decryption is also supported, although
libsodium must be installed to use it. Install vllm with tensorizer support
using `pip install vllm[tensorizer]`.
To serialize a model, install vLLM from source, then run something
like this from the root level of this repository:
python -m examples.tensorize_vllm_model \
--model EleutherAI/gpt-j-6B \
--dtype float16 \
serialize \
--serialized-directory s3://my-bucket/ \
--suffix vllm
Which downloads the model from HuggingFace, loads it into vLLM, serializes it,
and saves it to your S3 bucket. A local directory can also be used. This
assumes your S3 credentials are specified as environment variables
in the form of `S3_ACCESS_KEY_ID`, `S3_SECRET_ACCESS_KEY`, and `S3_ENDPOINT`.
To provide S3 credentials directly, you can provide `--s3-access-key-id` and
`--s3-secret-access-key`, as well as `--s3-endpoint` as CLI args to this
script.
You can also encrypt the model weights with a randomly-generated key by
providing a `--keyfile` argument.
To deserialize a model, you can run something like this from the root
level of this repository:
python -m examples.tensorize_vllm_model \
--model EleutherAI/gpt-j-6B \
--dtype float16 \
deserialize \
--path-to-tensors s3://my-bucket/vllm/EleutherAI/gpt-j-6B/vllm/model.tensors
Which downloads the model tensors from your S3 bucket and deserializes them.
You can also provide a `--keyfile` argument to decrypt the model weights if
they were serialized with encryption.
For more information on the available arguments for serializing, run
`python -m examples.tensorize_vllm_model serialize --help`.
Or for deserializing:
`python -m examples.tensorize_vllm_model deserialize --help`.
Once a model is serialized, it can be used to load the model when running the
OpenAI inference client at `vllm/entrypoints/openai/api_server.py` by providing
the `--tensorizer-uri` CLI argument that is functionally the same as the
`--path-to-tensors` argument in this script, along with `--vllm-tensorized`, to
signify that the model to be deserialized is a vLLM model, rather than a
HuggingFace `PreTrainedModel`, which can also be deserialized using tensorizer
in the same inference server, albeit without the speed optimizations. To
deserialize an encrypted file, the `--encryption-keyfile` argument can be used
to provide the path to the keyfile used to encrypt the model weights. For
information on all the arguments that can be used to configure tensorizer's
deserialization, check out the tensorizer options argument group in the
`vllm/entrypoints/openai/api_server.py` script with `--help`.
Tensorizer can also be invoked with the `LLM` class directly to load models:
llm = LLM(model="facebook/opt-125m",
load_format="tensorizer",
tensorizer_uri=path_to_opt_tensors,
num_readers=3,
vllm_tensorized=True)
"""
def parse_args():
parser = argparse.ArgumentParser(
description="An example script that can be used to serialize and "
"deserialize vLLM models. These models "
"can be loaded using tensorizer directly to the GPU "
"extremely quickly. Tensor encryption and decryption is "
"also supported, although libsodium must be installed to "
"use it.")
parser = EngineArgs.add_cli_args(parser)
subparsers = parser.add_subparsers(dest='command')
serialize_parser = subparsers.add_parser(
'serialize', help="Serialize a model to `--serialized-directory`")
serialize_parser.add_argument(
"--suffix",
type=str,
required=False,
help=(
"The suffix to append to the serialized model directory, which is "
"used to construct the location of the serialized model tensors, "
"e.g. if `--serialized-directory` is `s3://my-bucket/` and "
"`--suffix` is `v1`, the serialized model tensors will be "
"saved to "
"`s3://my-bucket/vllm/EleutherAI/gpt-j-6B/v1/model.tensors`. "
"If none is provided, a random UUID will be used."))
serialize_parser.add_argument(
"--serialized-directory",
type=str,
required=True,
help="The directory to serialize the model to. "
"This can be a local directory or S3 URI. The path to where the "
"tensors are saved is a combination of the supplied `dir` and model "
"reference ID. For instance, if `dir` is the serialized directory, "
"and the model HuggingFace ID is `EleutherAI/gpt-j-6B`, tensors will "
"be saved to `dir/vllm/EleutherAI/gpt-j-6B/suffix/model.tensors`, "
"where `suffix` is given by `--suffix` or a random UUID if not "
"provided.")
serialize_parser.add_argument(
"--keyfile",
type=str,
required=False,
help=("Encrypt the model weights with a randomly-generated binary key,"
" and save the key at this path"))
deserialize_parser = subparsers.add_parser(
'deserialize',
help=("Deserialize a model from `--path-to-tensors`"
" to verify it can be loaded and used."))
deserialize_parser.add_argument(
"--path-to-tensors",
type=str,
required=True,
help="The local path or S3 URI to the model tensors to deserialize. ")
deserialize_parser.add_argument(
"--keyfile",
type=str,
required=False,
help=("Path to a binary key to use to decrypt the model weights,"
" if the model was serialized with encryption"))
return parser.parse_args()
def make_model_contiguous(model):
# Ensure tensors are saved in memory contiguously
for param in model.parameters():
param.data = param.data.contiguous()
def _get_vllm_model_architecture(config: PretrainedConfig) -> Type[nn.Module]:
architectures = getattr(config, "architectures", [])
for arch in architectures:
model_cls = ModelRegistry.load_model_cls(arch)
if model_cls is not None:
return model_cls
raise ValueError(
f"Model architectures {architectures} are not supported for now. "
f"Supported architectures: {ModelRegistry.get_supported_archs()}")
def serialize():
eng_args_dict = {f.name: getattr(args, f.name) for f in
dataclasses.fields(EngineArgs)}
engine_args = EngineArgs.from_cli_args(argparse.Namespace(**eng_args_dict))
engine = LLMEngine.from_engine_args(engine_args)
model = (engine.model_executor.driver_worker.
model_runner.model)
encryption_params = EncryptionParams.random() if keyfile else None
if keyfile:
with _write_stream(keyfile) as stream:
stream.write(encryption_params.key)
with _write_stream(model_path) as stream:
serializer = TensorSerializer(stream, encryption=encryption_params)
serializer.write_module(model)
serializer.close()
print("Serialization complete. Model tensors saved to", model_path)
if keyfile:
print("Key saved to", keyfile)
def deserialize():
config = AutoConfig.from_pretrained(model_ref)
with no_init_or_tensor():
model_class = _get_vllm_model_architecture(config)
model = model_class(config)
before_mem = get_mem_usage()
start = time.time()
if keyfile:
with _read_stream(keyfile) as stream:
key = stream.read()
decryption_params = DecryptionParams.from_key(key)
tensorizer_args.deserializer_params['encryption'] = \
decryption_params
with (_read_stream(model_path)) as stream, TensorDeserializer(
stream, **tensorizer_args.deserializer_params) as deserializer:
deserializer.load_into_module(model)
end = time.time()
# Brag about how fast we are.
total_bytes_str = convert_bytes(deserializer.total_tensor_bytes)
duration = end - start
per_second = convert_bytes(deserializer.total_tensor_bytes / duration)
after_mem = get_mem_usage()
print(
f"Deserialized {total_bytes_str} in {end - start:0.2f}s, {per_second}/s"
)
print(f"Memory usage before: {before_mem}")
print(f"Memory usage after: {after_mem}")
return model
args = parse_args()
s3_access_key_id = (args.s3_access_key_id or os.environ.get("S3_ACCESS_KEY_ID")
or None)
s3_secret_access_key = (args.s3_secret_access_key
or os.environ.get("S3_SECRET_ACCESS_KEY") or None)
s3_endpoint = (args.s3_endpoint or os.environ.get("S3_ENDPOINT_URL") or None)
_read_stream, _write_stream = (partial(
stream_io.open_stream,
mode=mode,
s3_access_key_id=s3_access_key_id,
s3_secret_access_key=s3_secret_access_key,
s3_endpoint=s3_endpoint,
) for mode in ("rb", "wb+"))
model_ref = args.model
model_name = model_ref.split("/")[1]
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "8080"
torch.distributed.init_process_group(world_size=1, rank=0)
initialize_model_parallel()
keyfile = args.keyfile if args.keyfile else None
if args.command == "serialize":
input_dir = args.serialized_directory.rstrip('/')
suffix = args.suffix if args.suffix else uuid.uuid4().hex
base_path = f"{input_dir}/vllm/{model_ref}/{suffix}"
model_path = f"{base_path}/model.tensors"
serialize()
elif args.command == "deserialize":
tensorizer_args = TensorizerArgs.from_cli_args(args)
model_path = args.path_to_tensors
deserialize()
else:
raise ValueError("Either serialize or deserialize must be specified.")

View File

@ -93,9 +93,23 @@ fi
echo 'vLLM yapf: Done'
# Run mypy
# TODO(zhuohan): Enable mypy
# echo 'vLLM mypy:'
# mypy
echo 'vLLM mypy:'
mypy vllm/attention/*.py --follow-imports=skip --config-file pyproject.toml
mypy vllm/core/*.py --follow-imports=skip --config-file pyproject.toml
mypy vllm/distributed/*.py --follow-imports=skip --config-file pyproject.toml
mypy vllm/entrypoints/*.py --follow-imports=skip --config-file pyproject.toml
mypy vllm/executor/*.py --follow-imports=skip --config-file pyproject.toml
mypy vllm/usage/*.py --follow-imports=skip --config-file pyproject.toml
mypy vllm/*.py --follow-imports=skip --config-file pyproject.toml
mypy vllm/transformers_utils/*.py --follow-imports=skip --config-file pyproject.toml
# TODO(sang): Follow up
# mypy vllm/engine/*.py --follow-imports=skip --config-file pyproject.toml
# mypy vllm/worker/*.py --follow-imports=skip --config-file pyproject.toml
# mypy vllm/spec_decoding/*.py --follow-imports=skip --config-file pyproject.toml
# mypy vllm/model_executor/*.py --follow-imports=skip --config-file pyproject.toml
# mypy vllm/lora/*.py --follow-imports=skip --config-file pyproject.toml
CODESPELL_EXCLUDES=(
'--skip' '*docs/source/_build/**'
@ -228,5 +242,3 @@ if ! git diff --quiet &>/dev/null; then
exit 1
fi

View File

@ -5,7 +5,7 @@ requires = [
"ninja",
"packaging",
"setuptools >= 49.4.0",
"torch == 2.1.2",
"torch == 2.2.1",
"wheel",
]
build-backend = "setuptools.build_meta"
@ -13,6 +13,10 @@ build-backend = "setuptools.build_meta"
[tool.ruff]
# Allow lines to be as long as 80.
line-length = 80
exclude = [
# External file, leaving license intact
"examples/fp8/quantizer/quantize.py"
]
[tool.ruff.lint]
select = [
@ -42,10 +46,13 @@ ignore = [
python_version = "3.8"
ignore_missing_imports = true
check_untyped_defs = true
files = "vllm"
# TODO(woosuk): Include the code from Megatron and HuggingFace.
exclude = "vllm/model_executor/parallel_utils/|vllm/model_executor/models/"
exclude = [
"vllm/model_executor/parallel_utils/|vllm/model_executor/models/",
]
[tool.codespell]

View File

@ -3,5 +3,5 @@ cmake>=3.21
ninja
packaging
setuptools>=49.4.0
torch==2.1.2
torch==2.2.1
wheel

View File

@ -1,19 +1,17 @@
cmake>=3.21
cmake >= 3.21
ninja # For faster builds.
psutil
ray >= 2.9
sentencepiece # Required for LLaMA tokenizer.
numpy
torch == 2.1.2
requests
py-cpuinfo
transformers >= 4.39.1 # Required for StarCoder2 & Llava.
xformers == 0.0.23.post1 # Required for CUDA 12.1.
fastapi
uvicorn[standard]
pydantic >= 2.0 # Required for OpenAI server.
prometheus_client >= 0.18.0
pynvml == 11.5.0
triton >= 2.1.0
outlines == 0.0.34
tiktoken == 0.6.0 # Required for DBRX tokenizer
tiktoken == 0.6.0 # Required for DBRX tokenizer
lm-format-enforcer == 0.9.3
outlines == 0.0.34 # Requires torch >= 2.1.0
typing_extensions
filelock >= 3.10.4 # filelock starts to support `mode` argument from 3.10.4

View File

@ -1,15 +1,6 @@
cmake>=3.21
ninja # For faster builds.
psutil
ray >= 2.9
sentencepiece # Required for LLaMA tokenizer.
numpy
transformers >= 4.38.0 # Required for Gemma.
fastapi
uvicorn[standard]
pydantic >= 2.0 # Required for OpenAI server.
prometheus_client >= 0.18.0
torch == 2.1.2+cpu
triton >= 2.1.0
filelock == 3.13.3
py-cpuinfo
# Common dependencies
-r requirements-common.txt
# Dependencies for x86_64 CPUs
torch == 2.2.1+cpu
triton >= 2.2.0 # FIXME(woosuk): This is a hack to avoid import error.

9
requirements-cuda.txt Normal file
View File

@ -0,0 +1,9 @@
# Common dependencies
-r requirements-common.txt
# Dependencies for NVIDIA GPUs
ray >= 2.9
pynvml == 11.5.0
vllm-nccl-cu12>=2.18,<2.19 # for downloading nccl library
torch == 2.2.1
xformers == 0.0.25 # Requires PyTorch 2.2.1

View File

@ -7,13 +7,14 @@ codespell==2.2.6
isort==5.13.2
# type checking
mypy==0.991
mypy==1.9.0
types-PyYAML
types-requests
types-setuptools
# testing
pytest
tensorizer==2.9.0a0
pytest-forked
pytest-asyncio
pytest-rerunfailures

View File

@ -1,12 +1,7 @@
sentencepiece # Required for LLaMA tokenizer.
numpy
# Common dependencies
-r requirements-common.txt
# Dependencies for Neuron devices
transformers-neuronx >= 0.9.0
torch-neuronx >= 2.1.0
neuronx-cc
fastapi
uvicorn[standard]
pydantic >= 2.0 # Required for OpenAI server.
prometheus_client >= 0.18.0
requests
psutil
py-cpuinfo

View File

@ -1,18 +1,5 @@
cmake>=3.21
ninja # For faster builds.
typing-extensions>=4.8.0
starlette
requests
py-cpuinfo
psutil
# Common dependencies
-r requirements-common.txt
# Dependencies for AMD GPUs
ray == 2.9.3
sentencepiece # Required for LLaMA tokenizer.
numpy
tokenizers>=0.15.0
transformers >= 4.39.1 # Required for StarCoder2 & Llava.
fastapi
uvicorn[standard]
pydantic >= 2.0 # Required for OpenAI server.
prometheus_client >= 0.18.0
outlines == 0.0.34
tiktoken == 0.6.0 # Required for DBRX tokenizer

6
requirements-tpu.txt Normal file
View File

@ -0,0 +1,6 @@
# Common dependencies
-r requirements-common.txt
torch
jax[tpu] -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
flax >= 0.8

View File

@ -5,7 +5,7 @@ import re
import subprocess
import sys
from shutil import which
from typing import List
from typing import Dict, List
import torch
from packaging.version import Version, parse
@ -52,7 +52,7 @@ class CMakeExtension(Extension):
class cmake_build_ext(build_ext):
# A dict of extension directories that have been configured.
did_config = {}
did_config: Dict[str, bool] = {}
#
# Determine number of compilation jobs and optionally nvcc compile threads.
@ -188,9 +188,9 @@ class cmake_build_ext(build_ext):
def _is_cuda() -> bool:
return VLLM_TARGET_DEVICE == "cuda" \
and torch.version.cuda is not None \
and not _is_neuron()
has_cuda = torch.version.cuda is not None
return (VLLM_TARGET_DEVICE == "cuda" and has_cuda
and not (_is_neuron() or _is_tpu()))
def _is_hip() -> bool:
@ -207,10 +207,18 @@ def _is_neuron() -> bool:
return torch_neuronx_installed
def _is_tpu() -> bool:
return True # FIXME
def _is_cpu() -> bool:
return VLLM_TARGET_DEVICE == "cpu"
def _build_custom_ops() -> bool:
return _is_cuda() or _is_hip() or _is_cpu()
def _install_punica() -> bool:
return bool(int(os.getenv("VLLM_INSTALL_PUNICA_KERNELS", "0")))
@ -261,6 +269,7 @@ def get_nvcc_cuda_version() -> Version:
Adapted from https://github.com/NVIDIA/apex/blob/8b7a1ff183741dd8f9b87e7bafd04cfde99cea28/setup.py
"""
assert CUDA_HOME is not None, "CUDA_HOME is not set"
nvcc_output = subprocess.check_output([CUDA_HOME + "/bin/nvcc", "-V"],
universal_newlines=True)
output = nvcc_output.split()
@ -306,6 +315,8 @@ def get_vllm_version() -> str:
if neuron_version != MAIN_CUDA_VERSION:
neuron_version_str = neuron_version.replace(".", "")[:3]
version += f"+neuron{neuron_version_str}"
elif _is_tpu():
version += "+tpu"
elif _is_cpu():
version += "+cpu"
else:
@ -325,22 +336,40 @@ def read_readme() -> str:
def get_requirements() -> List[str]:
"""Get Python package dependencies from requirements.txt."""
def _read_requirements(filename: str) -> List[str]:
with open(get_path(filename)) as f:
requirements = f.read().strip().split("\n")
resolved_requirements = []
for line in requirements:
if line.startswith("-r "):
resolved_requirements += _read_requirements(line.split()[1])
else:
resolved_requirements.append(line)
return resolved_requirements
if _is_cuda():
with open(get_path("requirements.txt")) as f:
requirements = f.read().strip().split("\n")
requirements = _read_requirements("requirements-cuda.txt")
cuda_major = torch.version.cuda.split(".")[0]
modified_requirements = []
for req in requirements:
if "vllm-nccl-cu12" in req:
modified_requirements.append(
req.replace("vllm-nccl-cu12", f"vllm-nccl-cu{cuda_major}"))
else:
modified_requirements.append(req)
requirements = modified_requirements
elif _is_hip():
with open(get_path("requirements-rocm.txt")) as f:
requirements = f.read().strip().split("\n")
requirements = _read_requirements("requirements-rocm.txt")
elif _is_neuron():
with open(get_path("requirements-neuron.txt")) as f:
requirements = f.read().strip().split("\n")
requirements = _read_requirements("requirements-neuron.txt")
elif _is_tpu():
requirements = _read_requirements("requirements-tpu.txt")
elif _is_cpu():
with open(get_path("requirements-cpu.txt")) as f:
requirements = f.read().strip().split("\n")
requirements = _read_requirements("requirements-cpu.txt")
else:
raise ValueError(
"Unsupported platform, please use CUDA, ROCM or Neuron.")
"Unsupported platform, please use CUDA, ROCm, Neuron, or CPU.")
return requirements
@ -352,7 +381,7 @@ if _is_cuda():
if _install_punica():
ext_modules.append(CMakeExtension(name="vllm._punica_C"))
if not _is_neuron():
if _build_custom_ops():
ext_modules.append(CMakeExtension(name="vllm._C"))
package_data = {
@ -388,6 +417,9 @@ setup(
python_requires=">=3.8",
install_requires=get_requirements(),
ext_modules=ext_modules,
cmdclass={"build_ext": cmake_build_ext} if not _is_neuron() else {},
extras_require={
"tensorizer": ["tensorizer==2.9.0a1"],
},
cmdclass={"build_ext": cmake_build_ext} if _build_custom_ops() else {},
package_data=package_data,
)

View File

@ -25,21 +25,30 @@ def _query_server_long(prompt: str) -> dict:
@pytest.fixture
def api_server(tokenizer_pool_size: int):
def api_server(tokenizer_pool_size: int, engine_use_ray: bool,
worker_use_ray: bool):
script_path = Path(__file__).parent.joinpath(
"api_server_async_engine.py").absolute()
uvicorn_process = subprocess.Popen([
commands = [
sys.executable, "-u",
str(script_path), "--model", "facebook/opt-125m", "--host",
"127.0.0.1", "--tokenizer-pool-size",
str(tokenizer_pool_size)
])
]
if engine_use_ray:
commands.append("--engine-use-ray")
if worker_use_ray:
commands.append("--worker-use-ray")
uvicorn_process = subprocess.Popen(commands)
yield
uvicorn_process.terminate()
@pytest.mark.parametrize("tokenizer_pool_size", [0, 2])
def test_api_server(api_server, tokenizer_pool_size: int):
@pytest.mark.parametrize("worker_use_ray", [False, True])
@pytest.mark.parametrize("engine_use_ray", [False, True])
def test_api_server(api_server, tokenizer_pool_size: int, worker_use_ray: bool,
engine_use_ray: bool):
"""
Run the API server and test it.

View File

@ -0,0 +1,66 @@
"""Compare the outputs of HF and vLLM when using greedy sampling.
It tests chunked prefill. Chunked prefill can be enabled by
enable_chunked_prefill=True. If prefill size exceeds max_num_batched_tokens,
prefill requests are chunked.
Run `pytest tests/models/test_chunked_prefill.py`.
"""
import pytest
MODELS = [
"facebook/opt-125m",
"meta-llama/Llama-2-7b-hf",
]
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16])
@pytest.mark.parametrize("enforce_eager", [False, True])
# NOTE: Increasing this in this suite will fail CI because we currently cannot
# reset distributed env properly. Use a value > 1 just when you test.
@pytest.mark.parametrize("tensor_parallel_size", [1])
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
chunked_prefill_token_size: int,
enforce_eager: bool,
tensor_parallel_size: int,
) -> None:
max_num_seqs = min(chunked_prefill_token_size, 256)
enable_chunked_prefill = False
max_num_batched_tokens = None
if chunked_prefill_token_size != -1:
enable_chunked_prefill = True
max_num_batched_tokens = chunked_prefill_token_size
hf_model = hf_runner(model, dtype=dtype)
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
del hf_model
vllm_model = vllm_runner(
model,
dtype=dtype,
max_num_batched_tokens=max_num_batched_tokens,
enable_chunked_prefill=enable_chunked_prefill,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
max_num_seqs=max_num_seqs,
)
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
del vllm_model
print(vllm_outputs[0])
for i in range(len(example_prompts)):
hf_output_ids, hf_output_str = hf_outputs[i]
vllm_output_ids, vllm_output_str = vllm_outputs[i]
assert hf_output_str == vllm_output_str, (
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
assert hf_output_ids == vllm_output_ids, (
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")

View File

@ -11,8 +11,7 @@ from transformers import (AutoModelForCausalLM, AutoProcessor,
from vllm import LLM, SamplingParams
from vllm.config import TokenizerPoolConfig, VisionLanguageConfig
from vllm.model_executor.parallel_utils.parallel_state import (
destroy_model_parallel)
from vllm.distributed import destroy_model_parallel
from vllm.sequence import MultiModalData
from vllm.transformers_utils.tokenizer import get_tokenizer
@ -56,11 +55,15 @@ def cleanup():
@pytest.fixture()
def should_do_global_cleanup_after_test() -> bool:
def should_do_global_cleanup_after_test(request) -> bool:
"""Allow subdirectories to skip global cleanup by overriding this fixture.
This can provide a ~10x speedup for non-GPU unit tests since they don't need
to initialize torch.
"""
if request.node.get_closest_marker("skip_global_cleanup"):
return False
return True
@ -398,7 +401,7 @@ class VllmRunner:
cleanup()
@pytest.fixture
@pytest.fixture(scope="session")
def vllm_runner():
return VllmRunner

View File

@ -16,7 +16,7 @@ from vllm import SamplingParams
# Allow only 5 sequences of ~1024 tokens in worst case.
"block_size": 16,
"forced_num_gpu_blocks": 5 * (64 + 1),
"num_gpu_blocks_override": 5 * (64 + 1),
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{
@ -162,14 +162,14 @@ def test_v1_v2_greedy_equality_with_cow(baseline_llm_generator,
# Allow only 2 sequences of ~128 tokens in worst case.
# Note 8 = 128/block_size
"forced_num_gpu_blocks": 2 * (8 + 1),
"num_gpu_blocks_override": 2 * (8 + 1),
},
{
"block_size": 8,
# Allow only 2 sequences of ~128 tokens in worst case.
# Note 16 = 128/block_size
"forced_num_gpu_blocks": 2 * (16 + 1),
"num_gpu_blocks_override": 2 * (16 + 1),
}
])
@pytest.mark.parametrize("baseline_llm_kwargs", [{

View File

@ -0,0 +1,563 @@
from typing import List
from unittest.mock import MagicMock
import pytest # noqa
from vllm.config import CacheConfig, SchedulerConfig
from vllm.core.scheduler import Scheduler
from vllm.sequence import Logprob, SequenceGroup
from .utils import create_dummy_prompt
def get_sequence_groups(scheduler_output):
return [s.seq_group for s in scheduler_output.scheduled_seq_groups]
def append_new_token(seq_group, token_id: int):
for seq in seq_group.get_seqs():
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
def schedule_and_update_computed_tokens(scheduler):
metas, out = scheduler.schedule()
for s, meta in zip(out.scheduled_seq_groups, metas):
s.seq_group.update_num_computed_tokens(meta.token_chunk_size)
return metas, out
def test_simple():
"""Verify basic scheduling works."""
block_size = 4
num_seq_group = 4
max_model_len = 16
max_num_batched_tokens = 64
scheduler_config = SchedulerConfig(max_num_batched_tokens,
num_seq_group,
max_model_len,
enable_chunked_prefill=True)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 8
cache_config.num_gpu_blocks = 8
scheduler = Scheduler(scheduler_config, cache_config, None)
running: List[SequenceGroup] = []
# Add seq groups to scheduler.
for i in range(num_seq_group):
_, seq_group = create_dummy_prompt(str(i), prompt_length=block_size)
scheduler.add_seq_group(seq_group)
running.append(seq_group)
# Schedule seq groups prompts.
num_tokens = block_size * num_seq_group
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert set(get_sequence_groups(out)) == set(running)
assert out.num_batched_tokens == num_tokens
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
and not out.blocks_to_swap_out)
assert len(seq_group_meta) == num_seq_group
for s in running:
append_new_token(s, 1)
# Schedule seq groups generation.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert set(get_sequence_groups(out)) == set(running)
assert out.num_batched_tokens == num_seq_group
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
and not out.blocks_to_swap_out)
assert len(seq_group_meta) == num_seq_group
def test_chunk():
"""Verify prefills are chunked properly."""
block_size = 4
max_seqs = 60
max_model_len = 80
max_num_batched_tokens = 64
scheduler_config = SchedulerConfig(max_num_batched_tokens,
max_seqs,
max_model_len,
enable_chunked_prefill=True)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 8
cache_config.num_gpu_blocks = 8
scheduler = Scheduler(scheduler_config, cache_config, None)
running: List[SequenceGroup] = []
# Add seq groups to scheduler.
for i in range(2):
_, seq_group = create_dummy_prompt(str(i), prompt_length=60)
scheduler.add_seq_group(seq_group)
running.append(seq_group)
# Verify the second request is chunked.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert set(get_sequence_groups(out)) == set(running)
assert seq_group_meta[0].token_chunk_size == 60
# Verify it is chunked.
assert seq_group_meta[1].token_chunk_size == 4
assert out.num_prefill_groups == 2
assert out.num_batched_tokens == 64
# Only the first seq group has a new token appended.
append_new_token(running[0], 1)
# One chunked prefill, and one decoding.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert set(get_sequence_groups(out)) == set(running)
# The first one is prefill. Scheduler guarantees ordering.
assert seq_group_meta[0].token_chunk_size == 56
# The second one is a chunked prefill.
assert seq_group_meta[1].token_chunk_size == 1
assert out.num_prefill_groups == 1
assert out.num_batched_tokens == 57
def test_complex():
block_size = 4
max_seqs = 60
max_model_len = 80
max_num_batched_tokens = 64
scheduler_config = SchedulerConfig(max_num_batched_tokens,
max_seqs,
max_model_len,
enable_chunked_prefill=True)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 8
cache_config.num_gpu_blocks = 8
scheduler = Scheduler(scheduler_config, cache_config, None)
running: List[SequenceGroup] = []
# Add seq groups to scheduler.
for i in range(2):
_, seq_group = create_dummy_prompt(str(i), prompt_length=60)
scheduler.add_seq_group(seq_group)
running.append(seq_group)
assert seq_group.is_prefill()
# Verify the second request is chunked.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert set(get_sequence_groups(out)) == set(running)
assert seq_group_meta[0].token_chunk_size == 60
# Verify it is chunked.
assert seq_group_meta[1].token_chunk_size == 4
assert not running[0].is_prefill()
assert running[1].is_prefill()
assert out.num_prefill_groups == 2
assert out.num_batched_tokens == 64
# Only the first seq group has a new token appended.
append_new_token(running[0], 1)
# Add 2 more requsets.
for i in range(2, 4):
_, seq_group = create_dummy_prompt(str(i), prompt_length=60)
scheduler.add_seq_group(seq_group)
running.append(seq_group)
# Decoding & chunked prefill & first chunk of 3rd request is scheduled.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert len(get_sequence_groups(out)) == 3
# The first one is the first chunked prefill.
assert seq_group_meta[0].token_chunk_size == 7
# The second one is the second new chunked prefill.
assert seq_group_meta[1].token_chunk_size == 56
# The last one is decode.
assert seq_group_meta[2].token_chunk_size == 1
# Two of them are in chunked prefill.
assert out.num_prefill_groups == 2
assert out.num_batched_tokens == 64
# The first 2 requests are now in decodine phase.
append_new_token(running[0], 1)
assert not running[0].is_prefill()
append_new_token(running[1], 1)
assert not running[1].is_prefill()
# The third request is still in prefill stage.
assert running[2].is_prefill()
def test_maximal_decoding():
"""Verify decoding requests are prioritized."""
block_size = 4
max_seqs = 2
max_model_len = 2
max_num_batched_tokens = 2
scheduler_config = SchedulerConfig(max_num_batched_tokens,
max_seqs,
max_model_len,
enable_chunked_prefill=True)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 8
cache_config.num_gpu_blocks = 8
scheduler = Scheduler(scheduler_config, cache_config, None)
running: List[SequenceGroup] = []
# Add seq groups to scheduler.
for i in range(2):
_, seq_group = create_dummy_prompt(str(i), prompt_length=2)
scheduler.add_seq_group(seq_group)
running.append(seq_group)
assert seq_group.is_prefill()
# The first prefill is scheduled.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert len(get_sequence_groups(out)) == 1
assert seq_group_meta[0].token_chunk_size == 2
assert not running[0].is_prefill()
assert running[1].is_prefill()
assert out.num_prefill_groups == 1
assert out.num_batched_tokens == 2
# Only the first seq group has a new token appended.
append_new_token(running[0], 1)
# Create one more seq_group.
_, seq_group = create_dummy_prompt("3", prompt_length=2)
scheduler.add_seq_group(seq_group)
running.append(seq_group)
assert seq_group.is_prefill()
# The first decoding + second chunk is scheduled.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert len(get_sequence_groups(out)) == 2
assert seq_group_meta[0].token_chunk_size == 1
assert seq_group_meta[1].token_chunk_size == 1
assert not running[0].is_prefill()
assert running[1].is_prefill()
assert running[2].is_prefill()
assert out.num_prefill_groups == 1
assert out.num_batched_tokens == 2
append_new_token(running[0], 1)
# Decoding + running prefill is prioritized.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert len(get_sequence_groups(out)) == 2
assert seq_group_meta[0].token_chunk_size == 1
assert seq_group_meta[1].token_chunk_size == 1
assert not running[0].is_prefill()
assert not running[1].is_prefill()
assert out.num_prefill_groups == 1
assert out.num_batched_tokens == 2
append_new_token(running[0], 1)
append_new_token(running[1], 1)
# Only decoding is prioritized.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert len(get_sequence_groups(out)) == 2
assert seq_group_meta[0].token_chunk_size == 1
assert seq_group_meta[1].token_chunk_size == 1
assert not running[0].is_prefill()
assert not running[1].is_prefill()
assert out.num_prefill_groups == 0
assert out.num_batched_tokens == 2
append_new_token(running[0], 1)
append_new_token(running[1], 1)
# After aborting the decoding request, the fcfs new prefill is prioritized.
scheduler.abort_seq_group(running[0].request_id)
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert len(get_sequence_groups(out)) == 2
assert seq_group_meta[0].token_chunk_size == 1
assert seq_group_meta[1].token_chunk_size == 1
assert not running[1].is_prefill()
assert running[2].is_prefill()
assert out.num_prefill_groups == 1
assert out.num_batched_tokens == 2
def test_prompt_limit():
"""Verify max_num_batched_tokens < max_model_len is possible."""
block_size = 4
max_seqs = 32
max_model_len = 64
max_num_batched_tokens = 32
scheduler_config = SchedulerConfig(max_num_batched_tokens,
max_seqs,
max_model_len,
enable_chunked_prefill=True)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 8
cache_config.num_gpu_blocks = 8
scheduler = Scheduler(scheduler_config, cache_config, None)
running: List[SequenceGroup] = []
_, seq_group = create_dummy_prompt("1", prompt_length=48)
scheduler.add_seq_group(seq_group)
running.append(seq_group)
assert seq_group.is_prefill()
# The prompt length > max_num_batched_tokens should be still scheduled.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert len(get_sequence_groups(out)) == 1
assert seq_group_meta[0].token_chunk_size == 32
assert running[0].is_prefill()
assert out.num_prefill_groups == 1
assert out.num_batched_tokens == 32
def test_prompt_limit_exceed():
block_size = 4
max_seqs = 64
max_model_len = 32
max_num_batched_tokens = 64
scheduler_config = SchedulerConfig(max_num_batched_tokens,
max_seqs,
max_model_len,
enable_chunked_prefill=True)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 8
cache_config.num_gpu_blocks = 8
scheduler = Scheduler(scheduler_config, cache_config, None)
running: List[SequenceGroup] = []
_, seq_group = create_dummy_prompt("2", prompt_length=48)
scheduler.add_seq_group(seq_group)
running.append(seq_group)
assert seq_group.is_prefill()
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert len(out.ignored_seq_groups) == 1
assert out.ignored_seq_groups[0] == seq_group
def test_swap():
"""Verify swapping works with chunked prefill requests"""
block_size = 4
max_seqs = 30
max_model_len = 200
max_num_batched_tokens = 30
scheduler_config = SchedulerConfig(max_num_batched_tokens,
max_seqs,
max_model_len,
enable_chunked_prefill=True)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 8
cache_config.num_gpu_blocks = 8
scheduler = Scheduler(scheduler_config, cache_config, None)
_, seq_group = create_dummy_prompt("1", prompt_length=60, best_of=2)
scheduler.add_seq_group(seq_group)
_, out = schedule_and_update_computed_tokens(scheduler)
# The request is chunked.
# prefill scheduled now.
assert len(out.scheduled_seq_groups) == 1
assert out.num_prefill_groups == 1
assert seq_group.is_prefill()
assert out.num_batched_tokens == max_num_batched_tokens
# The last request should be swapped out.
scheduler.block_manager.can_append_slots = MagicMock()
def cannot_append_second_group(seq_group, num_lookahead_slots):
return seq_group.request_id != "1"
scheduler.block_manager.can_append_slots.side_effect = (
cannot_append_second_group)
# The running prefill is now swapped.
_, out = schedule_and_update_computed_tokens(scheduler)
assert len(out.scheduled_seq_groups) == 0
assert out.num_batched_tokens == 0
assert out.blocks_to_swap_out != {}
assert out.blocks_to_swap_in == {}
# Add 1 more task. Swap should be prioritized over new prefill.
_, seq_group = create_dummy_prompt("2", prompt_length=60)
scheduler.add_seq_group(seq_group)
_, out = schedule_and_update_computed_tokens(scheduler)
assert len(out.scheduled_seq_groups) == 1
# 3 decodes. It is swapped in.
assert out.num_batched_tokens == 30
assert out.blocks_to_swap_in != {}
assert out.blocks_to_swap_out == {}
def test_running_prefill_prioritized_over_swap():
block_size = 4
max_seqs = 30
max_model_len = 200
max_num_batched_tokens = 30
scheduler_config = SchedulerConfig(max_num_batched_tokens,
max_seqs,
max_model_len,
enable_chunked_prefill=True)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 8
cache_config.num_gpu_blocks = 8
scheduler = Scheduler(scheduler_config, cache_config, None)
_, seq_group = create_dummy_prompt("1", prompt_length=60, best_of=2)
scheduler.add_seq_group(seq_group)
_, out = schedule_and_update_computed_tokens(scheduler)
# The request is chunked.
# prefill scheduled now.
assert len(out.scheduled_seq_groups) == 1
assert out.num_prefill_groups == 1
assert seq_group.is_prefill()
assert out.num_batched_tokens == max_num_batched_tokens
# The request should be swapped out.
scheduler.block_manager.can_append_slots = MagicMock()
def cannot_append_second_group(seq_group, num_lookahead_slots):
return seq_group.request_id != "1"
scheduler.block_manager.can_append_slots.side_effect = (
cannot_append_second_group)
# The running prefill is now swapped.
_, out = schedule_and_update_computed_tokens(scheduler)
assert len(out.scheduled_seq_groups) == 0
assert out.num_batched_tokens == 0
assert out.blocks_to_swap_out != {}
assert out.blocks_to_swap_in == {}
# Add 1 more task. Swap is not possible, so prefill is running.
scheduler.block_manager.can_swap_in = MagicMock()
scheduler.block_manager.can_swap_in.return_value = False
_, seq_group2 = create_dummy_prompt("2", prompt_length=60)
scheduler.add_seq_group(seq_group2)
_, out = schedule_and_update_computed_tokens(scheduler)
assert len(out.scheduled_seq_groups) == 1
# 3 decodes. It is swapped in.
assert out.num_batched_tokens == 30
assert out.blocks_to_swap_in == {}
assert out.blocks_to_swap_out == {}
assert out.scheduled_seq_groups[0].seq_group == seq_group2
# Now although swap is possible, running prefill is prioritized.
scheduler.block_manager.can_swap_in.return_value = True
_, out = schedule_and_update_computed_tokens(scheduler)
assert len(out.scheduled_seq_groups) == 1
# 3 decodes. It is swapped in.
assert out.num_batched_tokens == 30
assert out.blocks_to_swap_in == {}
assert out.blocks_to_swap_out == {}
assert not seq_group2.is_prefill()
assert out.scheduled_seq_groups[0].seq_group == seq_group2
append_new_token(seq_group2, 1)
# Decoding is prioritized.
_, out = schedule_and_update_computed_tokens(scheduler)
assert len(out.scheduled_seq_groups) == 1
# 3 decodes. It is swapped in.
assert out.num_batched_tokens == 1
assert out.blocks_to_swap_in == {}
assert out.blocks_to_swap_out == {}
assert not seq_group2.is_prefill()
assert out.scheduled_seq_groups[0].seq_group == seq_group2
append_new_token(seq_group2, 1)
# Since we abort the sequence group, we can finally swap.
scheduler.abort_seq_group(seq_group2.request_id)
_, out = schedule_and_update_computed_tokens(scheduler)
assert len(out.scheduled_seq_groups) == 1
assert out.num_batched_tokens == 30
assert out.blocks_to_swap_in != {}
assert out.blocks_to_swap_out == {}
def test_chunked_prefill_preempt():
"""Verify preempt works with chunked prefill requests"""
block_size = 4
max_seqs = 30
max_model_len = 200
max_num_batched_tokens = 30
scheduler_config = SchedulerConfig(max_num_batched_tokens,
max_seqs,
max_model_len,
enable_chunked_prefill=True)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 8
cache_config.num_gpu_blocks = 8
scheduler = Scheduler(scheduler_config, cache_config, None)
_, seq_group = create_dummy_prompt("1", prompt_length=60)
scheduler.add_seq_group(seq_group)
_, out = schedule_and_update_computed_tokens(scheduler)
# The request is chunked.
# prefill scheduled now.
assert len(out.scheduled_seq_groups) == 1
assert out.num_prefill_groups == 1
assert seq_group.is_prefill()
assert out.num_batched_tokens == max_num_batched_tokens
# The request should be preempted.
scheduler.block_manager.can_append_slots = MagicMock()
def cannot_append_second_group(seq_group, num_lookahead_slots):
return seq_group.request_id != "1"
scheduler.block_manager.can_append_slots.side_effect = (
cannot_append_second_group)
# The running prefill is now preempted.
_, out = schedule_and_update_computed_tokens(scheduler)
assert len(out.scheduled_seq_groups) == 0
assert out.num_batched_tokens == 0
assert out.blocks_to_swap_out == {}
assert out.blocks_to_swap_in == {}
# Make sure we can reschedule preempted request.
_, out = schedule_and_update_computed_tokens(scheduler)
assert len(out.scheduled_seq_groups) == 1
assert out.num_prefill_groups == 1
assert seq_group.is_prefill()
assert out.num_batched_tokens == max_num_batched_tokens
assert seq_group.get_num_uncomputed_tokens() == 30
# We should be able to run prefill twice as it is chunked.
def cannot_append_second_group(seq_group, num_lookahead_slots):
return True
scheduler.block_manager.can_append_slots.side_effect = (
cannot_append_second_group)
_, out = schedule_and_update_computed_tokens(scheduler)
assert len(out.scheduled_seq_groups) == 1
assert out.num_prefill_groups == 1
assert not seq_group.is_prefill()
assert out.num_batched_tokens == max_num_batched_tokens
def test_chunked_prefill_max_seqs():
block_size = 4
max_seqs = 2
max_model_len = 80
max_num_batched_tokens = 64
scheduler_config = SchedulerConfig(max_num_batched_tokens,
max_seqs,
max_model_len,
enable_chunked_prefill=True)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 8
cache_config.num_gpu_blocks = 8
scheduler = Scheduler(scheduler_config, cache_config, None)
running = []
_, seq_group = create_dummy_prompt("1", prompt_length=65)
scheduler.add_seq_group(seq_group)
running.append(seq_group)
# The first prefill is chunked.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert seq_group_meta[0].token_chunk_size == max_num_batched_tokens
assert len(get_sequence_groups(out)) == 1
# Add new requests.
for i in range(4):
_, seq_group = create_dummy_prompt(str(i), prompt_length=65)
scheduler.add_seq_group(seq_group)
running.append(seq_group)
# Make sure only 2 requests are scheduled.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert out.num_batched_tokens == max_num_batched_tokens
assert len(get_sequence_groups(out)) == 2
assert not running[0].is_prefill()
assert running[1].is_prefill()
append_new_token(running[0], 1)
# Although we have enough token budget, we can only schedule max_seqs.
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert seq_group_meta[0].token_chunk_size == 2
assert seq_group_meta[1].token_chunk_size == 1
assert out.num_batched_tokens == 3
assert len(get_sequence_groups(out)) == max_seqs
assert not running[0].is_prefill()
assert not running[1].is_prefill()

View File

@ -1,11 +1,16 @@
import time
from collections import deque
from typing import List
from unittest.mock import MagicMock
import pytest # noqa
from vllm.config import CacheConfig, SchedulerConfig
from vllm.core.scheduler import Scheduler
from vllm.sequence import Logprob, SequenceGroup
from vllm.config import CacheConfig, LoRAConfig, SchedulerConfig
from vllm.core.interfaces import AllocStatus
from vllm.core.policy import PolicyFactory
from vllm.core.scheduler import Scheduler, SchedulingBudget
from vllm.lora.request import LoRARequest
from vllm.sequence import Logprob, SequenceGroup, SequenceStatus
from .utils import create_dummy_prompt
@ -14,6 +19,26 @@ def get_sequence_groups(scheduler_output):
return [s.seq_group for s in scheduler_output.scheduled_seq_groups]
def append_new_token(out, token_id: int):
seq_groups = get_sequence_groups(out)
for seq_group in seq_groups:
for seq in seq_group.get_seqs():
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
def schedule_and_update_computed_tokens(scheduler):
metas, out = scheduler.schedule()
for s, meta in zip(out.scheduled_seq_groups, metas):
s.seq_group.update_num_computed_tokens(meta.token_chunk_size)
return metas, out
def append_new_token_seq_group(token_chunk_size, seq_group, token_id: int):
seq_group.update_num_computed_tokens(token_chunk_size)
for seq in seq_group.get_seqs():
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
def test_scheduler_add_seq_group():
block_size = 4
scheduler_config = SchedulerConfig(100, 64, 1)
@ -71,20 +96,52 @@ def test_scheduler_schedule_simple():
# Schedule seq groups prompts.
num_tokens = block_size * num_seq_group
seq_group_meta, out = scheduler.schedule()
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert set(get_sequence_groups(out)) == set(running)
assert out.num_batched_tokens == num_tokens
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
and not out.blocks_to_swap_out)
assert len(seq_group_meta) == num_seq_group
append_new_token(out, 1)
# Schedule seq groups generation.
seq_group_meta, out = scheduler.schedule()
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert set(get_sequence_groups(out)) == set(running)
assert out.num_batched_tokens == num_seq_group
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
and not out.blocks_to_swap_out)
assert len(seq_group_meta) == num_seq_group
append_new_token(out, 1)
def test_scheduler_prefill_prioritized():
"""Verify running batched tokens are not applied to prefill requests."""
block_size = 4
max_model_len = 30
max_batched_num_tokens = 30
scheduler_config = SchedulerConfig(max_batched_num_tokens, 2,
max_model_len)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 2
cache_config.num_gpu_blocks = 2
scheduler = Scheduler(scheduler_config, cache_config, None)
# Add seq groups to scheduler.
_, seq_group_a = create_dummy_prompt("1", 1)
scheduler.add_seq_group(seq_group_a)
# Schedule seq groups prompts.
_, out = schedule_and_update_computed_tokens(scheduler)
assert get_sequence_groups(out) == [seq_group_a]
# Add a new prefill request B.
_, seq_group_b = create_dummy_prompt("2", 30)
scheduler.add_seq_group(seq_group_b)
# Verify prefill requests are prioritized. Since max_batched_num_tokens
# is 1, new prefill request has to be scheduled first.
_, out = schedule_and_update_computed_tokens(scheduler)
assert get_sequence_groups(out) == [seq_group_b]
def test_scheduler_schedule_preempt_abort():
@ -103,7 +160,7 @@ def test_scheduler_schedule_preempt_abort():
scheduler.add_seq_group(seq_group_b)
# Schedule seq groups prompts.
seq_group_meta, out = scheduler.schedule()
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert get_sequence_groups(out) == [seq_group_a, seq_group_b]
assert out.num_batched_tokens == block_size * 2 # seq_a and seq_b
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
@ -113,12 +170,10 @@ def test_scheduler_schedule_preempt_abort():
# Append "generated" tokens, allowing the sequence to mark prompt tokens as
# processed.
token_id = 0
seq_a.append_token_id(token_id, {token_id: Logprob(0.0)})
seq_b.append_token_id(token_id, {token_id: Logprob(0.0)})
append_new_token(out, 1)
# Schedule seq groups generation and preempt seq group b.
seq_group_meta, out = scheduler.schedule()
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert get_sequence_groups(out) == [seq_group_a]
assert out.num_batched_tokens == 1
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
@ -128,7 +183,7 @@ def test_scheduler_schedule_preempt_abort():
# Abort seq group a. Re-schedule seq group b prompt with recomputation.
scheduler.abort_seq_group("1")
seq_group_meta, out = scheduler.schedule()
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert get_sequence_groups(out) == [seq_group_b]
assert out.num_batched_tokens == 5 # 4 prompt + 1 generation.
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
@ -158,12 +213,14 @@ def test_scheduler_max_seqs():
scheduler.add_seq_group(all_seq_groups[0])
# Schedule seq groups prompts.
_, out = scheduler.schedule()
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert set(get_sequence_groups(out)) == set([all_seq_groups[0]])
append_new_token(out, 1)
# Schedule seq groups generation.
_, out = scheduler.schedule()
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert set(get_sequence_groups(out)) == set([all_seq_groups[0]])
append_new_token(out, 1)
# Append 2 more seq group
scheduler.add_seq_group(all_seq_groups[1])
@ -172,12 +229,11 @@ def test_scheduler_max_seqs():
# Schedule seq groups prompts.
# Only 1 seq group should be scheduled since max_seq_group is 2
# and one is prompting.
_, out = scheduler.schedule()
_, out = schedule_and_update_computed_tokens(scheduler)
assert set(get_sequence_groups(out)) == set([all_seq_groups[1]])
def test_scheduler_delay_factor():
block_size = 4
scheduler_config = SchedulerConfig(100, 64, 16, delay_factor=0.5)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
@ -186,24 +242,630 @@ def test_scheduler_delay_factor():
scheduler = Scheduler(scheduler_config, cache_config, None)
# schedule first prompt
_, seq_group = create_dummy_prompt("0", prompt_length=block_size)
seq_group_meta, seq_group = create_dummy_prompt("0",
prompt_length=block_size)
scheduler.add_seq_group(seq_group)
seq_group_meta, out = scheduler.schedule()
assert out.prompt_run
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert out.num_prefill_groups > 0
assert seq_group_meta[0].request_id == '0'
append_new_token(out, 1)
# wait for a second before scheduling next prompt
time.sleep(1)
_, seq_group = create_dummy_prompt("1", prompt_length=block_size)
seq_group_meta, seq_group = create_dummy_prompt("1",
prompt_length=block_size)
scheduler.add_seq_group(seq_group)
# second prompt should *not* be scheduled
seq_group_meta, out = scheduler.schedule()
assert not out.prompt_run
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert out.num_prefill_groups == 0
assert seq_group_meta[0].request_id == '0'
append_new_token(out, 1)
# wait for more than 0.5 second and try again
time.sleep(0.6)
seq_group_meta, out = scheduler.schedule()
assert out.prompt_run
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert out.num_prefill_groups > 0
assert seq_group_meta[0].request_id == '1'
append_new_token(out, 1)
def test_swapped_out_prioritized():
scheduler = initialize_scheduler(max_num_seqs=6)
# best_of=2 * 3 == 6 sequences.
for i in range(3):
_, seq_group = create_dummy_prompt(str(i), prompt_length=60, best_of=2)
scheduler.add_seq_group(seq_group)
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
# prefill scheduled now.
assert len(out.scheduled_seq_groups) == 3
append_new_token(out, 1)
# The last request should be swapped out.
scheduler.block_manager.can_append_slots = MagicMock()
def cannot_append_second_group(seq_group, num_lookahead_slots):
return seq_group.request_id != "2"
scheduler.block_manager.can_append_slots.side_effect = (
cannot_append_second_group)
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
assert len(out.scheduled_seq_groups) == 2
assert out.num_batched_tokens == 2
assert out.blocks_to_swap_out != {}
assert out.blocks_to_swap_in == {}
append_new_token(out, 1)
# Add 1 more task. Swap should be prioritized over prefill.
_, seq_group = create_dummy_prompt(str(i), prompt_length=60, best_of=2)
scheduler.add_seq_group(seq_group)
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
append_new_token(out, 1)
assert len(out.scheduled_seq_groups) == 3
# 3 decodes. It is swapped in.
assert out.num_batched_tokens == 3
assert out.blocks_to_swap_in != {}
assert out.blocks_to_swap_out == {}
def initialize_scheduler(*,
max_num_seqs=1000,
max_token_budget=1000,
max_model_len=1000,
lora_config=None):
block_size = 4
scheduler_config = SchedulerConfig(max_token_budget, max_num_seqs,
max_model_len)
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
cache_config.num_cpu_blocks = 8
cache_config.num_gpu_blocks = 8
scheduler = Scheduler(scheduler_config, cache_config, lora_config)
return scheduler
def create_token_budget(token_budget: int = 10000,
max_num_seqs: int = 10000) -> SchedulingBudget:
return SchedulingBudget(
token_budget=token_budget,
max_num_seqs=max_num_seqs,
)
def add_token_budget(budget: SchedulingBudget,
num_batched_tokens: int = 0,
num_curr_seqs: int = 0):
mock_seq_group = create_dummy_prompt('10', prompt_length=60)[1]
budget.add_num_batched_tokens(mock_seq_group.request_id,
num_batched_tokens)
budget.add_num_seqs(mock_seq_group.request_id, num_curr_seqs)
def test_prefill_schedule_max_prompt_len():
"""
Test prompt longer than max_prompt_len is aborted.
"""
scheduler = initialize_scheduler(max_model_len=30)
_, seq_group = create_dummy_prompt(0, prompt_length=60)
waiting = deque([seq_group])
budget = create_token_budget()
remaining_waiting, output = scheduler._schedule_prefills(
waiting, budget, None)
assert len(output.ignored_seq_groups) == 1
assert len(output.seq_groups) == 0
assert budget.num_batched_tokens == 0
assert budget.num_curr_seqs == 0
assert len(remaining_waiting) == 0
def test_prefill_schedule_token_budget():
"""
Test token budget respected.
"""
scheduler = initialize_scheduler()
waiting = deque()
budget = create_token_budget(token_budget=0)
for i in range(2):
_, seq_group = create_dummy_prompt(str(i), prompt_length=60)
waiting.append(seq_group)
# 0 token budget == nothing is scheduled.
remaining_waiting, output = scheduler._schedule_prefills(
waiting, budget, None)
assert len(output.ignored_seq_groups) == 0
assert len(output.seq_groups) == 0
assert budget.num_batched_tokens == 0
assert budget.num_curr_seqs == 0
assert len(remaining_waiting) == 2
# 60 token budget == 1 request scheduled.
budget = create_token_budget(token_budget=60)
remaining_waiting, output = scheduler._schedule_prefills(
waiting, budget, None)
assert len(output.ignored_seq_groups) == 0
assert len(output.seq_groups) == 1
assert budget.num_batched_tokens == 60
assert budget.num_curr_seqs == 1
assert len(remaining_waiting) == 1
# Test when current_batched_tokens respected.
scheduler = initialize_scheduler()
waiting = deque()
budget = create_token_budget(token_budget=60)
add_token_budget(budget, 30, 0)
_, seq_group = create_dummy_prompt(str(i), prompt_length=60)
# Cannot schedule a prompt that doesn't fit the budget.
waiting.append(seq_group)
remaining_waiting, output = scheduler._schedule_prefills(
waiting, budget, None)
assert len(output.ignored_seq_groups) == 0
assert len(output.seq_groups) == 0
assert budget.num_batched_tokens == 30
assert budget.num_curr_seqs == 0
assert len(remaining_waiting) == 1
budget = create_token_budget(token_budget=90)
add_token_budget(budget, 30, 0)
remaining_waiting, output = scheduler._schedule_prefills(
waiting, budget, None)
assert len(output.seq_groups) == 1
assert budget.num_batched_tokens == 90
assert budget.num_curr_seqs == 1
assert len(remaining_waiting) == 0
def test_prefill_schedule_max_seqs():
"""
Test max seq respected.
"""
scheduler = initialize_scheduler()
waiting = deque()
budget = create_token_budget(max_num_seqs=2)
for i in range(3):
_, seq_group = create_dummy_prompt(str(i), prompt_length=60)
waiting.append(seq_group)
remaining_waiting, output = scheduler._schedule_prefills(
waiting, budget, None)
assert len(output.ignored_seq_groups) == 0
assert len(output.seq_groups) == 2
assert budget.num_batched_tokens == 120
assert budget.num_curr_seqs == 2
assert len(remaining_waiting) == 1
# Verify curr_num_seqs respected.
waiting = deque()
budget = create_token_budget(max_num_seqs=2)
add_token_budget(budget, 0, 2)
_, seq_group = create_dummy_prompt(str(i), prompt_length=60)
waiting.append(seq_group)
remaining_waiting, output = scheduler._schedule_prefills(
waiting, budget, None)
assert len(output.ignored_seq_groups) == 0
assert len(output.seq_groups) == 0
assert budget.num_batched_tokens == 0
assert budget.num_curr_seqs == 2
assert len(remaining_waiting) == 1
def test_prefill_schedule_max_lora():
"""
Test max lora is respected and prioritized.
"""
lora_config = LoRAConfig(max_lora_rank=8, max_loras=1)
scheduler = initialize_scheduler(lora_config=lora_config)
waiting = deque()
budget = create_token_budget(token_budget=120)
curr_loras = set()
for i in range(2):
_, seq_group = create_dummy_prompt(str(i),
prompt_length=60,
lora_request=LoRARequest(
lora_name=str(i),
lora_int_id=i + 1,
lora_local_path="abc"))
waiting.append(seq_group)
# Add two more requests to verify lora is prioritized.
# 0: Lora, 1: Lora, 2: regular, 3: regular
# In the first iteration, index 0, 2 is scheduled.
# If a request is not scheduled because it hits max lora, it is
# prioritized. Verify that.
for i in range(2, 4):
_, seq_group = create_dummy_prompt(str(i), prompt_length=60)
waiting.append(seq_group)
# Schedule 2 requests (0 and 2)
remaining_waiting, output = scheduler._schedule_prefills(
waiting, budget, curr_loras)
assert len(output.ignored_seq_groups) == 0
assert len(output.seq_groups) == 2
assert budget.num_batched_tokens == 120
assert budget.num_curr_seqs == 2
assert len(remaining_waiting) == 2
assert len(curr_loras) == 1
# The second lora request is scheduled next as FCFS policy.
# Reset curr_loras so that it can be scheduled.
curr_loras = set()
budget = create_token_budget(token_budget=60)
remaining_waiting, output = scheduler._schedule_prefills(
remaining_waiting, budget, curr_loras)
assert len(output.seq_groups) == 1
assert output.seq_groups[0].seq_group.request_id == "1"
assert len(remaining_waiting) == 1
assert len(curr_loras) == 1
assert budget.num_batched_tokens == 60
def test_prefill_schedule_no_block_manager_capacity():
"""
Test sequence cannot be scheduled due to block manager has no capacity.
"""
scheduler = initialize_scheduler()
waiting = deque()
budget = create_token_budget()
for i in range(3):
_, seq_group = create_dummy_prompt(str(i), prompt_length=60)
waiting.append(seq_group)
scheduler.block_manager.can_allocate = MagicMock()
scheduler.block_manager.can_allocate.return_value = AllocStatus.LATER
remainig_waiting, output = scheduler._schedule_prefills(
waiting, budget, None)
assert len(output.ignored_seq_groups) == 0
assert len(output.seq_groups) == 0
assert budget.num_batched_tokens == 0
assert budget.num_curr_seqs == 0
assert len(remainig_waiting) == 3
scheduler = initialize_scheduler()
waiting = deque()
budget = create_token_budget()
for i in range(3):
_, seq_group = create_dummy_prompt(str(i), prompt_length=60)
waiting.append(seq_group)
scheduler.block_manager.can_allocate = MagicMock()
scheduler.block_manager.can_allocate.return_value = AllocStatus.NEVER
remaining_waiting, output = scheduler._schedule_prefills(
waiting, budget, None)
assert len(output.ignored_seq_groups) == 3
assert len(output.seq_groups) == 0
assert budget.num_batched_tokens == 0
assert budget.num_curr_seqs == 0
assert len(remaining_waiting) == 0
def test_decode_schedule_preempted():
"""
Test decodes cannot be scheduled and preempted.
"""
scheduler = initialize_scheduler()
running = deque()
policy = PolicyFactory.get_policy(policy_name="fcfs")
curr_loras = None
for i in range(3):
_, seq_group = create_dummy_prompt(str(i), prompt_length=60)
scheduler._allocate_and_set_running(seq_group, 60)
append_new_token_seq_group(60, seq_group, 1)
running.append(seq_group)
scheduler.block_manager.can_append_slots = MagicMock()
def cannot_append_second_group(seq_group, num_lookahead_slots):
return seq_group.request_id != "1"
scheduler.block_manager.can_append_slots.side_effect = (
cannot_append_second_group)
# 1 cannot be scheduled, and the lowest priority (request 2)
# should be preempted. 1 will also be preempted.
budget = create_token_budget()
remainig_running, output = scheduler._schedule_running(
running, budget, curr_loras, policy)
assert len(remainig_running) == 0
assert len(output.decode_seq_groups) == 1
assert len(output.prefill_seq_groups) == 0
assert output.decode_seq_groups[0].seq_group.request_id == "0"
assert len(output.preempted) == 2
# Verify budgets are updated.
assert budget.num_batched_tokens == 1
assert budget.num_curr_seqs == 1
# Both should be preempted, not swapped.
assert output.blocks_to_swap_out == {}
# Nothing is copied.
assert output.blocks_to_copy == {}
def test_decode_swap_beam_search():
"""
Test best_of > 1 swap out blocks
"""
scheduler = initialize_scheduler()
running = deque()
policy = PolicyFactory.get_policy(policy_name="fcfs")
curr_loras = None
budget = create_token_budget()
for i in range(3):
_, seq_group = create_dummy_prompt(str(i), prompt_length=60, best_of=2)
scheduler._allocate_and_set_running(seq_group, 60)
running.append(seq_group)
append_new_token_seq_group(60, seq_group, 1)
budget.add_num_seqs(seq_group.request_id,
seq_group.get_max_num_running_seqs())
budget.add_num_batched_tokens(
seq_group.request_id, seq_group.num_seqs(SequenceStatus.RUNNING))
# The last request should be swapped out.
scheduler.block_manager.can_append_slots = MagicMock()
def cannot_append_second_group(seq_group, num_lookahead_slots):
return seq_group.request_id != "2"
scheduler.block_manager.can_append_slots.side_effect = (
cannot_append_second_group)
scheduler.block_manager.swap_out = MagicMock()
expected_swap_mapping = {"5": "7"}
scheduler.block_manager.swap_out.return_value = expected_swap_mapping
remainig_running, output = scheduler._schedule_running(
running, budget, curr_loras, policy)
assert len(remainig_running) == 0
assert len(output.decode_seq_groups) == 2
assert len(output.prefill_seq_groups) == 0
assert output.decode_seq_groups[0].seq_group.request_id == "0"
assert output.decode_seq_groups[1].seq_group.request_id == "1"
assert len(output.preempted) == 0
assert len(output.swapped_out) == 1
# Budget should refledct preempted requests.
assert budget.num_batched_tokens == 2
# since there are 2 sequences, 2 should be subtracted.
assert budget.num_curr_seqs == 4
# Both should be preempted, not swapped.
assert output.blocks_to_swap_out == expected_swap_mapping
# Nothing is copied.
assert output.blocks_to_copy == {}
def test_schedule_decode_blocks_to_copy_update():
"""
Verify blocks_to_copy is updated.
"""
scheduler = initialize_scheduler()
_, seq_group = create_dummy_prompt("1", prompt_length=60, best_of=2)
running = deque()
policy = PolicyFactory.get_policy(policy_name="fcfs")
curr_loras = None
scheduler._allocate_and_set_running(seq_group, 60)
append_new_token_seq_group(60, seq_group, 1)
running.append(seq_group)
# The last request should be swapped out.
scheduler.block_manager.append_slots = MagicMock()
scheduler.block_manager.append_slots.return_value = {2: [3]}
budget = create_token_budget()
remaining_running, output = scheduler._schedule_running(
running, budget, curr_loras, policy)
assert len(remaining_running) == 0
assert len(output.decode_seq_groups) == 1
assert len(output.prefill_seq_groups) == 0
assert len(output.preempted) == 0
assert len(output.swapped_out) == 0
# Nothing is preempted.
assert output.blocks_to_swap_out == {}
# Since append_slot returns the source -> dist mapping, it should
# applied.
assert output.blocks_to_copy == {2: [3]}
def test_schedule_swapped_simple():
scheduler = initialize_scheduler()
swapped = deque()
policy = PolicyFactory.get_policy(policy_name="fcfs")
curr_loras = None
blocks_to_swap_out = {}
_, seq_group = create_dummy_prompt("1", prompt_length=60, best_of=2)
scheduler._allocate_and_set_running(seq_group, 60)
append_new_token_seq_group(60, seq_group, 1)
scheduler._swap_out(seq_group, blocks_to_swap_out)
swapped.append(seq_group)
budget = create_token_budget()
remaining_swapped, output = scheduler._schedule_swapped(
swapped, budget, curr_loras, policy)
assert len(remaining_swapped) == 0
assert budget.num_batched_tokens == 1
assert budget.num_curr_seqs == 2
assert len(output.decode_seq_groups) == 1
assert len(output.prefill_seq_groups) == 0
# swap in is the reverse of swap out
blocks_to_swap_in_reverse = {}
for swapin, swapout in output.blocks_to_swap_in.items():
blocks_to_swap_in_reverse[swapout] = swapin
assert blocks_to_swap_out == blocks_to_swap_in_reverse
def test_schedule_swapped_max_token_budget():
scheduler = initialize_scheduler()
swapped = deque()
policy = PolicyFactory.get_policy(policy_name="fcfs")
curr_loras = None
blocks_to_swap_out = {}
for _ in range(2):
_, seq_group = create_dummy_prompt("1", prompt_length=60, best_of=2)
scheduler._allocate_and_set_running(seq_group, 60)
append_new_token_seq_group(60, seq_group, 1)
scheduler._swap_out(seq_group, blocks_to_swap_out)
swapped.append(seq_group)
budget = create_token_budget(token_budget=1)
remaining_swapped, output = scheduler._schedule_swapped(
swapped, budget, curr_loras, policy)
assert len(remaining_swapped) == 1
assert budget.num_batched_tokens == 1
assert budget.num_curr_seqs == 2
assert len(output.decode_seq_groups) == 1
assert len(output.prefill_seq_groups) == 0
# Verify num_batched_tokens are respected.
budget = create_token_budget(token_budget=1)
add_token_budget(budget, 1, 0)
remaining_swapped, output = scheduler._schedule_swapped(
remaining_swapped, budget, curr_loras, policy)
assert len(remaining_swapped) == 1
assert budget.num_batched_tokens == 1
assert budget.num_curr_seqs == 0
assert len(output.decode_seq_groups) == 0
assert len(output.prefill_seq_groups) == 0
def test_schedule_swapped_max_seqs():
scheduler = initialize_scheduler()
swapped = deque()
policy = PolicyFactory.get_policy(policy_name="fcfs")
curr_loras = None
blocks_to_swap_out = {}
for i in range(4):
_, seq_group = create_dummy_prompt(str(i), prompt_length=60)
scheduler._allocate_and_set_running(seq_group, 60)
append_new_token_seq_group(60, seq_group, 1)
scheduler._swap_out(seq_group, blocks_to_swap_out)
swapped.append(seq_group)
budget = create_token_budget(max_num_seqs=2)
remaining_swapped, output = scheduler._schedule_swapped(
swapped, budget, curr_loras, policy)
assert len(remaining_swapped) == 2
assert budget.num_batched_tokens == 2
assert budget.num_curr_seqs == 2
assert len(output.decode_seq_groups) == 2
assert len(output.prefill_seq_groups) == 0
# Verify num_curr_seqs are respected.
remaining_swapped, output = scheduler._schedule_swapped(
remaining_swapped, budget, curr_loras, policy)
assert len(remaining_swapped) == 2
assert budget.num_batched_tokens == 2
assert budget.num_curr_seqs == 2
assert len(output.decode_seq_groups) == 0
assert len(output.prefill_seq_groups) == 0
def test_schedule_swapped_max_loras():
lora_config = LoRAConfig(max_lora_rank=8, max_loras=1)
scheduler = initialize_scheduler(lora_config=lora_config)
swapped = deque()
policy = PolicyFactory.get_policy(policy_name="fcfs")
curr_loras = set()
blocks_to_swap_out = {}
for i in range(2):
_, seq_group = create_dummy_prompt(str(i),
prompt_length=60,
lora_request=LoRARequest(
lora_name=str(i),
lora_int_id=i + 1,
lora_local_path="abc"))
scheduler._allocate_and_set_running(seq_group, 60)
append_new_token_seq_group(60, seq_group, 1)
scheduler._swap_out(seq_group, blocks_to_swap_out)
swapped.append(seq_group)
budget = create_token_budget()
remaining_swapped, output = scheduler._schedule_swapped(
swapped, budget, curr_loras, policy)
assert len(remaining_swapped) == 1
assert budget.num_batched_tokens == 1
assert budget.num_curr_seqs == 1
assert len(output.decode_seq_groups) == 1
assert len(output.prefill_seq_groups) == 0
assert len(curr_loras) == 1
def test_schedule_swapped_cannot_swap_in():
scheduler = initialize_scheduler()
swapped = deque()
policy = PolicyFactory.get_policy(policy_name="fcfs")
curr_loras = None
blocks_to_swap_out = {}
for _ in range(2):
_, seq_group = create_dummy_prompt("1", prompt_length=60, best_of=2)
scheduler._allocate_and_set_running(seq_group, 60)
append_new_token_seq_group(60, seq_group, 1)
scheduler._swap_out(seq_group, blocks_to_swap_out)
swapped.append(seq_group)
# The last request should be swapped out.
scheduler.block_manager.can_swap_in = MagicMock()
scheduler.block_manager.can_swap_in.return_value = False
# Since we cannot swap in, none of the requests are swapped in.
budget = create_token_budget()
remaining_swapped, output = scheduler._schedule_swapped(
swapped, budget, curr_loras, policy)
assert len(remaining_swapped) == 2
assert budget.num_batched_tokens == 0
assert budget.num_curr_seqs == 0
assert len(output.decode_seq_groups) == 0
assert len(output.prefill_seq_groups) == 0
def test_schedule_swapped_blocks_to_copy():
scheduler = initialize_scheduler()
swapped = deque()
policy = PolicyFactory.get_policy(policy_name="fcfs")
curr_loras = None
_, seq_group = create_dummy_prompt("1", prompt_length=60, best_of=2)
scheduler._allocate_and_set_running(seq_group, 60)
append_new_token_seq_group(60, seq_group, 1)
blocks_to_swap_out = {}
scheduler._swap_out(seq_group, blocks_to_swap_out)
swapped.append(seq_group)
# The last request should be swapped out.
scheduler.block_manager.append_slots = MagicMock()
scheduler.block_manager.append_slots.return_value = {2: [3]}
budget = create_token_budget()
remaining_swapped, output = scheduler._schedule_swapped(
swapped, budget, curr_loras, policy)
assert len(remaining_swapped) == 0
assert len(output.decode_seq_groups) == 1
assert len(output.prefill_seq_groups) == 0
assert output.blocks_to_copy == {2: [3]}
def test_scheduling_budget():
TOKEN_BUDGET = 4
MAX_SEQS = 4
budget = SchedulingBudget(token_budget=TOKEN_BUDGET, max_num_seqs=MAX_SEQS)
assert budget.can_schedule(num_new_tokens=1, num_new_seqs=1)
assert budget.can_schedule(num_new_tokens=4, num_new_seqs=4)
assert not budget.can_schedule(num_new_tokens=1, num_new_seqs=5)
assert not budget.can_schedule(num_new_tokens=5, num_new_seqs=1)
assert not budget.can_schedule(num_new_tokens=5, num_new_seqs=5)
assert budget.remaining_token_budget() == TOKEN_BUDGET
# Verify add/subtract num batched tokens.
_, seq_group = create_dummy_prompt("1", 3)
budget.add_num_batched_tokens(seq_group.request_id, 2)
assert budget.remaining_token_budget() == 2
assert budget.num_batched_tokens == 2
assert budget.can_schedule(num_new_tokens=2, num_new_seqs=1)
assert not budget.can_schedule(num_new_tokens=3, num_new_seqs=1)
# Verify adding another seq group is no-op.
budget.add_num_batched_tokens(seq_group.request_id, 2)
assert budget.remaining_token_budget() == 2
assert budget.num_batched_tokens == 2
budget.subtract_num_batched_tokens(seq_group.request_id, 2)
assert budget.remaining_token_budget() == 4
assert budget.num_batched_tokens == 0
budget.subtract_num_batched_tokens(seq_group.request_id, 2)
assert budget.remaining_token_budget() == 4
assert budget.num_batched_tokens == 0
# Verify add/subtract max seqs.
_, seq_group = create_dummy_prompt("1", 3)
budget.add_num_seqs(seq_group.request_id, 2)
assert budget.can_schedule(num_new_tokens=1, num_new_seqs=2)
assert not budget.can_schedule(num_new_tokens=1, num_new_seqs=3)
assert budget.num_curr_seqs == 2
# Verify adding another seq group is no-op.
budget.add_num_seqs(seq_group.request_id, 2)
assert budget.num_curr_seqs == 2
budget.subtract_num_seqs(seq_group.request_id, 2)
assert budget.num_curr_seqs == 0
budget.subtract_num_seqs(seq_group.request_id, 2)
assert budget.num_curr_seqs == 0

View File

@ -1,14 +1,19 @@
import time
from typing import Tuple
from typing import Optional, Tuple
from vllm import SamplingParams
from vllm.lora.request import LoRARequest
from vllm.sequence import Logprob, Sequence, SequenceGroup
def create_dummy_prompt(
request_id: str,
prompt_length: int,
block_size: int = None) -> Tuple[Sequence, SequenceGroup]:
request_id: str,
prompt_length: int,
block_size: Optional[int] = None,
lora_request: Optional[LoRARequest] = None,
use_beam_search: bool = False,
best_of: int = 1,
) -> Tuple[Sequence, SequenceGroup]:
if not block_size:
block_size = prompt_length
@ -17,8 +22,10 @@ def create_dummy_prompt(
prompt_tokens = list(range(prompt_length))
prompt_str = " ".join([str(t) for t in prompt_tokens])
prompt = Sequence(int(request_id), prompt_str, prompt_tokens, block_size)
seq_group = SequenceGroup(request_id, [prompt], SamplingParams(),
time.time(), None)
seq_group = SequenceGroup(
request_id, [prompt],
SamplingParams(use_beam_search=use_beam_search, best_of=best_of),
time.time(), lora_request)
return prompt, seq_group

View File

@ -33,11 +33,16 @@ def test_models(
dtype: str,
max_tokens: int,
) -> None:
hf_model = hf_runner(model, dtype=dtype)
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
del hf_model
vllm_model = vllm_runner(model, dtype=dtype, tensor_parallel_size=2)
vllm_model = vllm_runner(
model,
dtype=dtype,
tensor_parallel_size=2,
)
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
del vllm_model

View File

@ -0,0 +1,66 @@
"""Compare the outputs of HF and distributed vLLM when using greedy sampling.
vLLM will allocate all the available memory, so we need to run the tests one
by one. The solution is to pass arguments (model name) by environment
variables.
Run:
```sh
TEST_DIST_MODEL=facebook/opt-125m pytest \
test_chunked_prefill_distributed.py
TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf \
test_chunked_prefill_distributed.py
```
"""
import os
import pytest
import torch
MODELS = [
os.environ["TEST_DIST_MODEL"],
]
@pytest.mark.skipif(torch.cuda.device_count() < 2,
reason="Need at least 2 GPUs to run the test.")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [5])
@pytest.mark.parametrize("chunked_prefill_token_size", [16])
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
chunked_prefill_token_size: int,
) -> None:
# Add a chunked prefill config.
max_num_seqs = min(chunked_prefill_token_size, 256)
assert chunked_prefill_token_size != -1
enable_chunked_prefill = True
max_num_batched_tokens = chunked_prefill_token_size
hf_model = hf_runner(model, dtype=dtype)
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
del hf_model
vllm_model = vllm_runner(
model,
dtype=dtype,
tensor_parallel_size=2,
max_num_seqs=max_num_seqs,
enable_chunked_prefill=enable_chunked_prefill,
max_num_batched_tokens=max_num_batched_tokens,
)
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
del vllm_model
for i in range(len(example_prompts)):
hf_output_ids, hf_output_str = hf_outputs[i]
vllm_output_ids, vllm_output_str = vllm_outputs[i]
assert hf_output_str == vllm_output_str, (
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
assert hf_output_ids == vllm_output_ids, (
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")

View File

@ -8,9 +8,9 @@ import pytest
import ray
import torch
from vllm.model_executor.parallel_utils.communication_op import (
broadcast_tensor_dict, tensor_model_parallel_all_gather,
tensor_model_parallel_all_reduce)
from vllm.distributed import (broadcast_tensor_dict,
tensor_model_parallel_all_gather,
tensor_model_parallel_all_reduce)
from vllm.test_utils import (init_test_distributed_environment,
multi_process_tensor_parallel)

View File

@ -6,9 +6,8 @@ import ray
import torch
import torch.distributed as dist
from vllm.model_executor.parallel_utils import custom_all_reduce as custom_ar
from vllm.model_executor.parallel_utils.communication_op import (
tensor_model_parallel_all_reduce)
from vllm.distributed import tensor_model_parallel_all_reduce
from vllm.distributed.device_communicators import custom_all_reduce
from vllm.test_utils import (init_test_distributed_environment,
multi_process_tensor_parallel)
@ -26,10 +25,10 @@ def graph_allreduce(world_size, rank, distributed_init_port):
init_test_distributed_environment(1, world_size, rank,
distributed_init_port)
custom_ar.init_custom_ar()
custom_all_reduce.init_custom_all_reduce()
for sz in test_sizes:
for dtype in [torch.float32, torch.float16, torch.bfloat16]:
with custom_ar.capture():
with custom_all_reduce.capture():
# use integers so result matches NCCL exactly
inp1 = torch.randint(1,
16, (sz, ),
@ -62,8 +61,8 @@ def eager_allreduce(world_size, rank, distributed_init_port):
distributed_init_port)
sz = 1024
custom_ar.init_custom_ar()
fa = custom_ar.get_handle()
custom_all_reduce.init_custom_all_reduce()
fa = custom_all_reduce.get_handle()
inp = torch.ones(sz, dtype=torch.float32, device=device)
out = fa.all_reduce_unreg(inp)
assert torch.allclose(out, inp * world_size)

View File

@ -4,8 +4,8 @@ import os
import pytest
import torch
from vllm.model_executor.parallel_utils.pynccl import (NCCLCommunicator,
ncclGetUniqueId)
from vllm.distributed.device_communicators.pynccl import (NCCLCommunicator,
ncclGetUniqueId)
def distributed_run(fn, world_size):

View File

@ -0,0 +1,32 @@
import pytest
from vllm.entrypoints.llm import LLM
from vllm.sampling_params import SamplingParams
@pytest.mark.parametrize("model", ["facebook/opt-125m"])
def test_computed_prefix_blocks(model: str):
# This test checks if the engine generates completions both with and
# without optional detokenization, that detokenization includes text
# and no-detokenization doesn't, and that both completions have the same
# token_ids.
prompt = (
"You are a helpful assistant. How do I build a car from cardboard and "
"paper clips? Is there an easy to follow video tutorial available "
"online for free?")
llm = LLM(model=model)
sampling_params = SamplingParams(max_tokens=10,
temperature=0.0,
detokenize=False)
outputs_no_detokenization = llm.generate(prompt,
sampling_params)[0].outputs[0]
sampling_params.detokenize = True
outputs_with_detokenization = llm.generate(prompt,
sampling_params)[0].outputs[0]
assert outputs_no_detokenization.text == ''
assert outputs_with_detokenization.text != ''
assert outputs_no_detokenization.token_ids == \
outputs_with_detokenization.token_ids

View File

@ -3,7 +3,7 @@
2. One of the provided stop tokens
3. The EOS token
Run `pytest tests/samplers/test_stop_reason.py`.
Run `pytest tests/engine/test_stop_reason.py`.
"""
import pytest

View File

@ -0,0 +1,111 @@
from typing import Any, List, Optional
import pytest
from vllm import CompletionOutput, LLMEngine, SamplingParams
MODEL = "meta-llama/llama-2-7b-hf"
MAX_TOKENS = 200
@pytest.fixture(scope="session")
def vllm_model(vllm_runner):
return vllm_runner(MODEL)
@pytest.mark.skip_global_cleanup
def test_stop_basic(vllm_model):
_test_stopping(vllm_model.model.llm_engine,
stop=["."],
include_in_output=False,
expected_output="VLLM is a 100% volunteer organization",
expected_reason=".")
_test_stopping(vllm_model.model.llm_engine,
stop=["."],
include_in_output=True,
expected_output="VLLM is a 100% volunteer organization.",
expected_reason=".")
@pytest.mark.skip_global_cleanup
def test_stop_multi_tokens(vllm_model):
_test_stopping(
vllm_model.model.llm_engine,
stop=["group of peo", "short"],
include_in_output=False,
expected_output="VLLM is a 100% volunteer organization. We are a ",
expected_reason="group of peo")
_test_stopping(
vllm_model.model.llm_engine,
stop=["group of peo", "short"],
include_in_output=True,
expected_output=
"VLLM is a 100% volunteer organization. We are a group of peo",
expected_reason="group of peo")
@pytest.mark.skip_global_cleanup
def test_stop_partial_token(vllm_model):
_test_stopping(vllm_model.model.llm_engine,
stop=["gani"],
include_in_output=False,
expected_output="VLLM is a 100% volunteer or",
expected_reason="gani")
_test_stopping(vllm_model.model.llm_engine,
stop=["gani"],
include_in_output=True,
expected_output="VLLM is a 100% volunteer organi",
expected_reason="gani")
@pytest.mark.skip_global_cleanup
def test_stop_token_id(vllm_model):
# token id 13013 => " organization"
_test_stopping(vllm_model.model.llm_engine,
stop_token_ids=[13013],
include_in_output=False,
expected_output="VLLM is a 100% volunteer",
expected_reason=13013)
_test_stopping(vllm_model.model.llm_engine,
stop_token_ids=[13013],
include_in_output=True,
expected_output="VLLM is a 100% volunteer organization",
expected_reason=13013)
def _test_stopping(llm_engine: LLMEngine,
expected_output: str,
expected_reason: Any,
stop: Optional[List[str]] = None,
stop_token_ids: Optional[List[int]] = None,
include_in_output: bool = False) -> None:
llm_engine.add_request(
"id", "A story about vLLM:\n",
SamplingParams(
temperature=0.0,
max_tokens=MAX_TOKENS,
stop=stop,
stop_token_ids=stop_token_ids,
include_stop_str_in_output=include_in_output,
), None)
output: Optional[CompletionOutput] = None
output_text = ""
stop_reason = None
while llm_engine.has_unfinished_requests():
(request_output, ) = llm_engine.step()
(output, ) = request_output.outputs
# Ensure we don't backtrack
assert output.text.startswith(output_text)
output_text = output.text
stop_reason = output.stop_reason
assert output is not None
assert output_text == expected_output
assert stop_reason == expected_reason

View File

@ -1,11 +1,14 @@
# This unit test should be moved to a new
# tests/test_guided_decoding directory.
import pytest
import torch
from transformers import AutoTokenizer
from vllm.model_executor.guided_logits_processors import (JSONLogitsProcessor,
RegexLogitsProcessor)
from vllm.entrypoints.openai.protocol import CompletionRequest
from vllm.model_executor.guided_decoding import (
get_guided_decoding_logits_processor)
from vllm.model_executor.guided_decoding.outlines_logits_processors import (
JSONLogitsProcessor, RegexLogitsProcessor)
TEST_SCHEMA = {
"type": "object",
@ -73,3 +76,36 @@ def test_guided_logits_processors():
json_LP(token_ids, tensor)
assert tensor.shape == original_tensor.shape
assert not torch.allclose(tensor, original_tensor)
@pytest.mark.asyncio
@pytest.mark.parametrize("backend", ["outlines", "lm-format-enforcer"])
async def test_guided_logits_processor_black_box(backend: str):
tokenizer = AutoTokenizer.from_pretrained('HuggingFaceH4/zephyr-7b-beta')
token_ids = tokenizer.encode(
f"Give an example IPv4 address with this regex: {TEST_REGEX}")
regex_request = CompletionRequest(model='test',
prompt=token_ids,
guided_regex=TEST_REGEX)
regex_lp = await get_guided_decoding_logits_processor(
backend, regex_request, tokenizer)
assert regex_lp is not None
tensor = torch.rand(32000)
original_tensor = torch.clone(tensor)
tensor = regex_lp(token_ids, tensor)
assert tensor.shape == original_tensor.shape
assert not torch.allclose(tensor, original_tensor)
token_ids = tokenizer.encode(
f"Give an employee profile that fits this schema: {TEST_SCHEMA}")
json_request = CompletionRequest(model='test',
prompt=token_ids,
guided_json=TEST_SCHEMA)
json_lp = await get_guided_decoding_logits_processor(
backend, json_request, tokenizer)
assert json_lp is not None
tensor = torch.rand(32000)
original_tensor = torch.clone(tensor)
tensor = json_lp(token_ids, tensor)
assert tensor.shape == original_tensor.shape
assert not torch.allclose(tensor, original_tensor)

View File

@ -141,7 +141,7 @@ def server(zephyr_lora_files):
"--max-cpu-loras",
"2",
"--max-num-seqs",
"128"
"128",
])
ray.get(server_runner.ready.remote())
yield server_runner
@ -506,7 +506,10 @@ async def test_logits_bias(server, client: openai.AsyncOpenAI):
assert first_response != completion.choices[0].text
async def test_guided_json_completion(server, client: openai.AsyncOpenAI):
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_json_completion(server, client: openai.AsyncOpenAI,
guided_decoding_backend: str):
completion = await client.completions.create(
model=MODEL_NAME,
prompt=f"Give an example JSON for an employee profile "
@ -514,7 +517,8 @@ async def test_guided_json_completion(server, client: openai.AsyncOpenAI):
n=3,
temperature=1.0,
max_tokens=500,
extra_body=dict(guided_json=TEST_SCHEMA))
extra_body=dict(guided_json=TEST_SCHEMA,
guided_decoding_backend=guided_decoding_backend))
assert completion.id is not None
assert completion.choices is not None and len(completion.choices) == 3
@ -524,7 +528,10 @@ async def test_guided_json_completion(server, client: openai.AsyncOpenAI):
jsonschema.validate(instance=output_json, schema=TEST_SCHEMA)
async def test_guided_json_chat(server, client: openai.AsyncOpenAI):
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_json_chat(server, client: openai.AsyncOpenAI,
guided_decoding_backend: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
@ -538,8 +545,9 @@ async def test_guided_json_chat(server, client: openai.AsyncOpenAI):
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=500,
extra_body=dict(guided_json=TEST_SCHEMA))
max_tokens=1000,
extra_body=dict(guided_json=TEST_SCHEMA,
guided_decoding_backend=guided_decoding_backend))
message = chat_completion.choices[0].message
assert message.content is not None
json1 = json.loads(message.content)
@ -555,8 +563,9 @@ async def test_guided_json_chat(server, client: openai.AsyncOpenAI):
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=500,
extra_body=dict(guided_json=TEST_SCHEMA))
max_tokens=1000,
extra_body=dict(guided_json=TEST_SCHEMA,
guided_decoding_backend=guided_decoding_backend))
message = chat_completion.choices[0].message
assert message.content is not None
json2 = json.loads(message.content)
@ -565,14 +574,18 @@ async def test_guided_json_chat(server, client: openai.AsyncOpenAI):
assert json1["age"] != json2["age"]
async def test_guided_regex_completion(server, client: openai.AsyncOpenAI):
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_regex_completion(server, client: openai.AsyncOpenAI,
guided_decoding_backend: str):
completion = await client.completions.create(
model=MODEL_NAME,
prompt=f"Give an example IPv4 address with this regex: {TEST_REGEX}",
n=3,
temperature=1.0,
max_tokens=20,
extra_body=dict(guided_regex=TEST_REGEX))
extra_body=dict(guided_regex=TEST_REGEX,
guided_decoding_backend=guided_decoding_backend))
assert completion.id is not None
assert completion.choices is not None and len(completion.choices) == 3
@ -581,7 +594,10 @@ async def test_guided_regex_completion(server, client: openai.AsyncOpenAI):
assert re.fullmatch(TEST_REGEX, completion.choices[i].text) is not None
async def test_guided_regex_chat(server, client: openai.AsyncOpenAI):
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_regex_chat(server, client: openai.AsyncOpenAI,
guided_decoding_backend: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
@ -595,7 +611,8 @@ async def test_guided_regex_chat(server, client: openai.AsyncOpenAI):
model=MODEL_NAME,
messages=messages,
max_tokens=20,
extra_body=dict(guided_regex=TEST_REGEX))
extra_body=dict(guided_regex=TEST_REGEX,
guided_decoding_backend=guided_decoding_backend))
ip1 = chat_completion.choices[0].message.content
assert ip1 is not None
assert re.fullmatch(TEST_REGEX, ip1) is not None
@ -606,21 +623,26 @@ async def test_guided_regex_chat(server, client: openai.AsyncOpenAI):
model=MODEL_NAME,
messages=messages,
max_tokens=20,
extra_body=dict(guided_regex=TEST_REGEX))
extra_body=dict(guided_regex=TEST_REGEX,
guided_decoding_backend=guided_decoding_backend))
ip2 = chat_completion.choices[0].message.content
assert ip2 is not None
assert re.fullmatch(TEST_REGEX, ip2) is not None
assert ip1 != ip2
async def test_guided_choice_completion(server, client: openai.AsyncOpenAI):
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_choice_completion(server, client: openai.AsyncOpenAI,
guided_decoding_backend: str):
completion = await client.completions.create(
model=MODEL_NAME,
prompt="The best language for type-safe systems programming is ",
n=2,
temperature=1.0,
max_tokens=10,
extra_body=dict(guided_choice=TEST_CHOICE))
extra_body=dict(guided_choice=TEST_CHOICE,
guided_decoding_backend=guided_decoding_backend))
assert completion.id is not None
assert completion.choices is not None and len(completion.choices) == 2
@ -628,7 +650,10 @@ async def test_guided_choice_completion(server, client: openai.AsyncOpenAI):
assert completion.choices[i].text in TEST_CHOICE
async def test_guided_choice_chat(server, client: openai.AsyncOpenAI):
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_choice_chat(server, client: openai.AsyncOpenAI,
guided_decoding_backend: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
@ -642,7 +667,8 @@ async def test_guided_choice_chat(server, client: openai.AsyncOpenAI):
model=MODEL_NAME,
messages=messages,
max_tokens=10,
extra_body=dict(guided_choice=TEST_CHOICE))
extra_body=dict(guided_choice=TEST_CHOICE,
guided_decoding_backend=guided_decoding_backend))
choice1 = chat_completion.choices[0].message.content
assert choice1 in TEST_CHOICE
@ -655,18 +681,23 @@ async def test_guided_choice_chat(server, client: openai.AsyncOpenAI):
model=MODEL_NAME,
messages=messages,
max_tokens=10,
extra_body=dict(guided_choice=TEST_CHOICE))
extra_body=dict(guided_choice=TEST_CHOICE,
guided_decoding_backend=guided_decoding_backend))
choice2 = chat_completion.choices[0].message.content
assert choice2 in TEST_CHOICE
assert choice1 != choice2
async def test_guided_decoding_type_error(server, client: openai.AsyncOpenAI):
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_decoding_type_error(server, client: openai.AsyncOpenAI,
guided_decoding_backend: str):
with pytest.raises(openai.BadRequestError):
_ = await client.completions.create(
model=MODEL_NAME,
prompt="Give an example JSON that fits this schema: 42",
extra_body=dict(guided_json=42))
extra_body=dict(guided_json=42,
guided_decoding_backend=guided_decoding_backend))
messages = [{
"role": "system",
@ -742,5 +773,36 @@ number: "1" | "2"
assert content.strip() == ground_truth
@pytest.mark.parametrize(
# first test base model, then test loras
"model_name",
[MODEL_NAME, "zephyr-lora", "zephyr-lora2"],
)
async def test_echo_logprob_completion(server, client: openai.AsyncOpenAI,
model_name: str):
tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)
# test using text and token IDs
for prompt in ("Hello, my name is", [0, 0, 0, 0, 0]):
completion = await client.completions.create(model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
echo=True,
logprobs=1)
prompt_text = tokenizer.decode(prompt) if isinstance(prompt,
list) else prompt
assert (completion.choices[0].text is not None
and re.search(r"^" + prompt_text, completion.choices[0].text))
logprobs = completion.choices[0].logprobs
assert logprobs is not None
assert len(logprobs.text_offset) > 5
assert (len(logprobs.token_logprobs) > 5
and logprobs.token_logprobs[0] is None)
assert (len(logprobs.top_logprobs) > 5
and logprobs.top_logprobs[0] is None)
assert len(logprobs.tokens) > 5
if __name__ == "__main__":
pytest.main([__file__])

View File

@ -0,0 +1,66 @@
import multiprocessing
import sys
import time
import torch
from openai import OpenAI, OpenAIError
from vllm import ModelRegistry
from vllm.model_executor.models.opt import OPTForCausalLM
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.utils import get_open_port
class MyOPTForCausalLM(OPTForCausalLM):
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
# this dummy model always predicts the first token
logits = super().compute_logits(hidden_states, sampling_metadata)
logits.zero_()
logits[:, 0] += 1.0
return logits
def server_function(port):
# register our dummy model
ModelRegistry.register_model("OPTForCausalLM", MyOPTForCausalLM)
sys.argv = ["placeholder.py"] + \
("--model facebook/opt-125m --dtype"
f" float32 --api-key token-abc123 --port {port}").split()
import runpy
runpy.run_module('vllm.entrypoints.openai.api_server', run_name='__main__')
def test_oot_registration_for_api_server():
port = get_open_port()
server = multiprocessing.Process(target=server_function, args=(port, ))
server.start()
client = OpenAI(
base_url=f"http://localhost:{port}/v1",
api_key="token-abc123",
)
while True:
try:
completion = client.chat.completions.create(
model="facebook/opt-125m",
messages=[{
"role": "system",
"content": "You are a helpful assistant."
}, {
"role": "user",
"content": "Hello!"
}],
temperature=0,
)
break
except OpenAIError as e:
if "Connection error" in str(e):
time.sleep(3)
else:
raise e
server.kill()
generated_text = completion.choices[0].message.content
# make sure only the first token is generated
rest = generated_text.replace("<s>", "")
assert rest == ""

View File

@ -0,0 +1,90 @@
{
"model_type": "llama",
"kv_cache": {
"dtype": "float8_e4m3fn",
"scaling_factor": {
"0": {
"0": 0.0230364128947258,
"1": 0.01979283057153225,
"2": 0.0241350457072258,
"3": 0.0308314748108387,
"4": 0.0430733822286129,
"5": 0.0370396226644516,
"6": 0.0306222103536129,
"7": 0.0357491634786129,
"8": 0.0358189195394516,
"9": 0.0443289652466774,
"10": 0.0433175228536129,
"11": 0.0416782945394516,
"12": 0.0366908498108387,
"13": 0.0432477705180645,
"14": 0.0410505048930645,
"15": 0.0457589291036129,
"16": 0.0418526791036129,
"17": 0.0432477705180645,
"18": 0.0469447560608387,
"19": 0.0514787957072258,
"20": 0.0541294664144516,
"21": 0.0587681382894516,
"22": 0.0625,
"23": 0.0585588738322258,
"24": 0.0600237175822258,
"25": 0.0588030144572258,
"26": 0.0531180277466774,
"27": 0.06396484375,
"28": 0.0603027381002903,
"29": 0.0582101047039032,
"30": 0.0625348836183548,
"31": 0.0585588738322258,
"32": 0.0582798570394516,
"33": 0.0575125589966774,
"34": 0.0590820349752903,
"35": 0.0614188089966774,
"36": 0.0631975457072258,
"37": 0.0615931935608387,
"38": 0.0601283498108387,
"39": 0.0571986623108387,
"40": 0.0670340433716774,
"41": 0.0523507259786129,
"42": 0.0547223798930645,
"43": 0.0631975457072258,
"44": 0.0663713738322258,
"45": 0.0603376142680645,
"46": 0.0652204304933548,
"47": 0.0734514519572258,
"48": 0.0693708211183548,
"49": 0.0725446492433548,
"50": 0.0627790242433548,
"51": 0.0691266804933548,
"52": 0.0688825398683548,
"53": 0.068429134786129,
"54": 0.0605119988322258,
"55": 0.0799386203289032,
"56": 0.0853097140789032,
"57": 0.0661969929933548,
"58": 0.0689871683716774,
"59": 0.0724051371216774,
"60": 0.0541643425822258,
"61": 0.0626743882894516,
"62": 0.0628487765789032,
"63": 0.0607212632894516,
"64": 0.0589076466858387,
"65": 0.0451660193502903,
"66": 0.0453055277466774,
"67": 0.0414341539144516,
"68": 0.0385044664144516,
"69": 0.0414341539144516,
"70": 0.0466308631002903,
"71": 0.0399693101644516,
"72": 0.0437011756002903,
"73": 0.0434221550822258,
"74": 0.0428989976644516,
"75": 0.0401785746216774,
"76": 0.0431082621216774,
"77": 0.0484444759786129,
"78": 0.0417829267680645,
"79": 0.0418178029358387
}
}
}
}

View File

@ -0,0 +1,42 @@
{
"model_type": "llama",
"kv_cache": {
"dtype": "float8_e4m3fn",
"scaling_factor": {
"0": {
"0": 0.0152239128947258,
"1": 0.0188860222697258,
"2": 0.0354178324341774,
"3": 0.0376674123108387,
"4": 0.0418526791036129,
"5": 0.0433175228536129,
"6": 0.0397600457072258,
"7": 0.0424455925822258,
"8": 0.0415387861430645,
"9": 0.0408412404358387,
"10": 0.0395856611430645,
"11": 0.0377371683716774,
"12": 0.0400739423930645,
"13": 0.040771484375,
"14": 0.0393415205180645,
"15": 0.0369001142680645,
"16": 0.03857421875,
"17": 0.0387486070394516,
"18": 0.0403180830180645,
"19": 0.0396205373108387,
"20": 0.0375627800822258,
"21": 0.0407366082072258,
"22": 0.0432477705180645,
"23": 0.0377022884786129,
"24": 0.0399693101644516,
"25": 0.0374581478536129,
"26": 0.0413295216858387,
"27": 0.0442243330180645,
"28": 0.0424804724752903,
"29": 0.0456891767680645,
"30": 0.0409109964966774,
"31": 0.0482352152466774
}
}
}
}

View File

@ -7,7 +7,7 @@ from allclose_default import get_default_atol, get_default_rtol
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import BlockDiagonalCausalMask
from vllm._C import cache_ops, ops
from vllm import _custom_ops as ops
from vllm.utils import get_max_shared_memory_bytes, is_hip
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
@ -32,7 +32,7 @@ HEAD_SIZES = [64, 80, 96, 112, 128, 256
BLOCK_SIZES = [16, 32]
USE_ALIBI = [False, True]
KV_CACHE_DTYPE = ["auto", "fp8_e5m2"]
KV_CACHE_DTYPE = ["auto", "fp8"]
SEEDS = [0]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
@ -172,6 +172,9 @@ def test_paged_attention(
device)
key_cache, value_cache = key_caches[0], value_caches[0]
# Using default kv_scale
kv_scale = 1.0
# Call the paged attention kernel.
output = torch.empty_like(query)
if version == "v1":
@ -188,6 +191,7 @@ def test_paged_attention(
max_context_len,
alibi_slopes,
kv_cache_dtype,
kv_scale,
)
elif version == "v2":
num_partitions = ((max_context_len + PARTITION_SIZE - 1) //
@ -219,12 +223,13 @@ def test_paged_attention(
max_context_len,
alibi_slopes,
kv_cache_dtype,
kv_scale,
)
else:
raise AssertionError(f"Unknown version: {version}")
# Run the reference implementation.
if kv_cache_dtype == "fp8_e5m2":
if kv_cache_dtype == "fp8":
# Convert cache data back to dtype.
x = 16 // torch.tensor([], dtype=dtype).element_size()
key_cache_shape = (NUM_BLOCKS, num_kv_heads, head_size // x,
@ -232,14 +237,14 @@ def test_paged_attention(
dequantized_key_cache = torch.empty(size=key_cache_shape,
dtype=dtype,
device=device)
cache_ops.convert_fp8_e5m2(key_cache, dequantized_key_cache)
ops.convert_fp8(key_cache, dequantized_key_cache)
key_cache = dequantized_key_cache
value_cache_shape = value_cache.shape
dequantized_value_cache = torch.empty(size=value_cache_shape,
dtype=dtype,
device=device)
cache_ops.convert_fp8_e5m2(value_cache, dequantized_value_cache)
ops.convert_fp8(value_cache, dequantized_value_cache)
value_cache = dequantized_value_cache
ref_output = torch.empty_like(query)
@ -263,7 +268,8 @@ def test_paged_attention(
# NOTE(zhaoyang): FP8 KV Cache will introduce quantization error,
# so we use a relaxed tolerance for the test.
if kv_cache_dtype == "fp8_e5m2":
atol, rtol = 1e-3, 1e-5
if kv_cache_dtype == "fp8":
atol, rtol = 1e-2, 1e-5
assert torch.allclose(output, ref_output, atol=atol, rtol=rtol)

View File

@ -4,7 +4,8 @@ from typing import Tuple
import pytest
import torch
from vllm._C import cache_ops
from vllm import _custom_ops as ops
from vllm.utils import is_hip
COPYING_DIRECTION = [('cuda', 'cpu'), ('cuda', 'cuda'), ('cpu', 'cuda')]
DTYPES = [torch.half, torch.bfloat16, torch.float]
@ -23,7 +24,7 @@ SEEDS = [0]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
KV_CACHE_DTYPE = ["auto", "fp8_e5m2"]
KV_CACHE_DTYPE = ["auto", "fp8"]
@pytest.mark.parametrize("num_mappings", NUM_MAPPINGS)
@ -79,7 +80,7 @@ def test_copy_blocks(
cloned_value_caches = [value_cache.clone() for value_cache in value_caches]
# Call the copy blocks kernel.
cache_ops.copy_blocks(key_caches, value_caches, block_mapping)
ops.copy_blocks(key_caches, value_caches, block_mapping)
# Run the reference implementation.
for src, dsts in block_mapping.items():
@ -105,6 +106,7 @@ def test_copy_blocks(
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@torch.inference_mode()
def test_reshape_and_cache(
kv_cache_factory,
@ -116,7 +118,10 @@ def test_reshape_and_cache(
dtype: torch.dtype,
seed: int,
device: str,
kv_cache_dtype: str,
) -> None:
if not is_hip() and kv_cache_dtype == "fp8":
pytest.skip() # This test is not tuned for e5m2 cuda precision
random.seed(seed)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
@ -132,17 +137,33 @@ def test_reshape_and_cache(
# Create the KV caches.
key_caches, value_caches = kv_cache_factory(num_blocks, block_size, 1,
num_heads, head_size, dtype,
None, seed, device)
num_heads, head_size,
kv_cache_dtype, dtype, seed,
device)
key_cache, value_cache = key_caches[0], value_caches[0]
# Clone the KV caches.
cloned_key_cache = key_cache.clone()
cloned_value_cache = value_cache.clone()
if kv_cache_dtype == "fp8":
cloned_key_cache = torch.empty_like(key_cache, dtype=torch.float16)
ops.convert_fp8(key_cache, cloned_key_cache)
cloned_value_cache = torch.empty_like(value_cache, dtype=torch.float16)
ops.convert_fp8(value_cache, cloned_value_cache)
else:
cloned_key_cache = key_cache.clone()
cloned_value_cache = value_cache.clone()
# Using default kv_scale
kv_scale = 1.0
# Call the reshape_and_cache kernel.
cache_ops.reshape_and_cache(key, value, key_cache, value_cache,
slot_mapping, "auto")
ops.reshape_and_cache(key, value, key_cache, value_cache, slot_mapping,
kv_cache_dtype, kv_scale)
if kv_cache_dtype == "fp8":
result_key_cache = torch.empty_like(key_cache, dtype=torch.float16)
ops.convert_fp8(key_cache, result_key_cache)
result_value_cache = torch.empty_like(value_cache, dtype=torch.float16)
ops.convert_fp8(value_cache, result_value_cache)
# Run the reference implementation.
reshaped_key = key.reshape(num_tokens, *key_cache[0, :, :, 0, :].shape)
@ -156,8 +177,18 @@ def test_reshape_and_cache(
cloned_key_cache[block_idx, :, :, block_offset, :] = reshaped_key[i]
cloned_value_cache[block_idx, :, :, block_offset] = value[i]
assert torch.allclose(key_cache, cloned_key_cache)
assert torch.allclose(value_cache, cloned_value_cache)
if kv_cache_dtype == "fp8":
assert torch.allclose(result_key_cache,
cloned_key_cache,
atol=0.001,
rtol=0.1)
assert torch.allclose(result_value_cache,
cloned_value_cache,
atol=0.001,
rtol=0.1)
else:
assert torch.allclose(key_cache, cloned_key_cache)
assert torch.allclose(value_cache, cloned_value_cache)
@pytest.mark.parametrize("direction", COPYING_DIRECTION)
@ -169,6 +200,7 @@ def test_reshape_and_cache(
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@torch.inference_mode()
def test_swap_blocks(
kv_cache_factory,
@ -181,7 +213,12 @@ def test_swap_blocks(
dtype: torch.dtype,
seed: int,
device: str,
kv_cache_dtype: str,
) -> None:
if kv_cache_dtype == "fp8" and "cpu" in direction:
pytest.skip()
if not is_hip() and kv_cache_dtype == "fp8":
pytest.skip() # This test is not tuned for e5m2 cuda precision
random.seed(seed)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
@ -202,24 +239,60 @@ def test_swap_blocks(
# Create the KV caches on the first device.
src_key_caches, src_value_caches = kv_cache_factory(
num_blocks, block_size, 1, num_heads, head_size, dtype, None, seed,
src_device)
num_blocks, block_size, 1, num_heads, head_size, kv_cache_dtype, dtype,
seed, src_device)
# Create the KV caches on the second device.
dist_key_caches, dist_value_caches = kv_cache_factory(
num_blocks, block_size, 1, num_heads, head_size, dtype, None, seed,
dst_device)
num_blocks, block_size, 1, num_heads, head_size, kv_cache_dtype, dtype,
seed, dst_device)
src_key_caches_clone = src_key_caches[0].clone()
src_value_caches_clone = src_value_caches[0].clone()
# Call the swap_blocks kernel.
cache_ops.swap_blocks(src_key_caches[0], dist_key_caches[0], block_mapping)
cache_ops.swap_blocks(src_value_caches[0], dist_value_caches[0],
block_mapping)
ops.swap_blocks(src_key_caches[0], dist_key_caches[0], block_mapping)
ops.swap_blocks(src_value_caches[0], dist_value_caches[0], block_mapping)
for src, dst in block_mapping.items():
assert torch.allclose(src_key_caches_clone[src].cpu(),
dist_key_caches[0][dst].cpu())
assert torch.allclose(src_value_caches_clone[src].cpu(),
dist_value_caches[0][dst].cpu())
@pytest.mark.skipif(not is_hip(), reason="FP8 conversion test requires e4m3")
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_fp8_conversion(
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
device: str,
) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
low = -224.0
high = 224.0
shape = (num_blocks, num_heads, head_size, block_size)
cache = torch.empty(shape, dtype=dtype, device=device)
cache.uniform_(low, high)
cache_fp8 = torch.empty_like(cache, dtype=torch.uint8)
ops.convert_fp8(cache, cache_fp8)
converted_cache = torch.empty_like(cache)
ops.convert_fp8(cache_fp8, converted_cache)
assert torch.allclose(cache, converted_cache, atol=0.001, rtol=0.1)

View File

@ -73,7 +73,7 @@ def test_mixtral_moe(dtype: torch.dtype):
).cuda()
# Load the weights
vllm_moe.gate.linear_weights["weight"][:] = hf_moe.gate.weight.data
vllm_moe.gate.weight.data[:] = hf_moe.gate.weight.data
for i in range(config.num_local_experts):
weights = (hf_moe.experts[i].w1.weight.data,
hf_moe.experts[i].w3.weight.data)

View File

@ -12,6 +12,7 @@ from huggingface_hub import snapshot_download
import vllm
from vllm.config import LoRAConfig
from vllm.distributed import destroy_model_parallel, initialize_model_parallel
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
RowParallelLinear)
@ -19,8 +20,6 @@ from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.model_loader import get_model
from vllm.model_executor.parallel_utils.parallel_state import (
destroy_model_parallel, initialize_model_parallel)
def cleanup():
@ -144,6 +143,11 @@ def baichuan_lora_files():
return snapshot_download(repo_id="jeeejeee/baichuan7b-text2sql-spider")
@pytest.fixture(scope="session")
def tinyllama_lora_files():
return snapshot_download(repo_id="jashing/tinyllama-colorist-lora")
@pytest.fixture
def llama_2_7b_engine_extra_embeddings() -> nn.Module:
cleanup()

View File

@ -62,7 +62,7 @@ def test_baichuan_lora(baichuan_lora_files):
@pytest.mark.skip("Requires multiple GPUs")
def test_llama_tensor_parallel_equality(baichuan_lora_files):
def test_baichuan_tensor_parallel_equality(baichuan_lora_files):
# Cannot use as it will initialize torch.cuda too early...
# if torch.cuda.device_count() < 4:
# pytest.skip(f"Not enough GPUs for tensor parallelism {4}")

View File

@ -170,7 +170,8 @@ def create_random_inputs(
@torch.inference_mode()
@pytest.mark.parametrize("num_loras", [1, 2, 4, 8])
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_embeddings(dist_init, num_loras, device) -> None:
@pytest.mark.parametrize("vocab_size", [512, 32000, 64000, 128000])
def test_embeddings(dist_init, num_loras, device, vocab_size) -> None:
torch.set_default_device(device)
max_loras = 8
@ -179,9 +180,9 @@ def test_embeddings(dist_init, num_loras, device) -> None:
lora_dtype=torch.float16)
def create_random_embedding_layer():
embedding = VocabParallelEmbedding(512, 256)
embedding = VocabParallelEmbedding(vocab_size, 256)
embedding.weight.data = torch.rand_like(embedding.weight.data)
embedding.weight.data[512:, :] = 0
embedding.weight.data[vocab_size:, :] = 0
lora_embedding = VocabParallelEmbeddingWithLoRA(embedding)
lora_embedding.create_lora_weights(max_loras, lora_config)
@ -203,12 +204,13 @@ def test_embeddings(dist_init, num_loras, device) -> None:
active_lora_ids=list(lora_dict.keys()),
num_inputs=num_loras * 3,
input_size=(200, ),
input_range=(1, 512),
input_range=(1, vocab_size),
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
512, lora_config.lora_extra_vocab_size)
vocab_size,
lora_config.lora_extra_vocab_size)
lora_embedding.set_mapping(*mapping_info)
lora_result = lora_embedding(torch.cat(inputs))
@ -240,12 +242,13 @@ def test_embeddings(dist_init, num_loras, device) -> None:
active_lora_ids=[0],
num_inputs=num_loras * 3,
input_size=(200, ),
input_range=(1, 512),
input_range=(1, vocab_size),
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
512, lora_config.lora_extra_vocab_size)
vocab_size,
lora_config.lora_extra_vocab_size)
lora_embedding.set_mapping(*mapping_info, )
lora_result = lora_embedding(torch.cat(inputs))
@ -263,7 +266,9 @@ def test_embeddings(dist_init, num_loras, device) -> None:
# reason="Fails when loras are in any slot other than the first.")
@pytest.mark.parametrize("num_loras", [1, 2, 4, 8])
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_embeddings_with_new_embeddings(dist_init, num_loras, device) -> None:
@pytest.mark.parametrize("vocab_size", [512, 32000, 64000, 128000])
def test_embeddings_with_new_embeddings(dist_init, num_loras, device,
vocab_size) -> None:
torch.set_default_device(device)
max_loras = 8
@ -272,15 +277,15 @@ def test_embeddings_with_new_embeddings(dist_init, num_loras, device) -> None:
lora_dtype=torch.float16)
def create_random_embedding_layer():
embedding = VocabParallelEmbedding(512, 256)
embedding = VocabParallelEmbedding(vocab_size, 256)
embedding_data = torch.rand_like(embedding.weight.data)
embedding.weight.data = embedding_data
embedding.weight.data[512:, :] = 0
embedding.weight.data[vocab_size:, :] = 0
expanded_embedding = VocabParallelEmbedding(
512 + lora_config.lora_extra_vocab_size * max_loras,
vocab_size + lora_config.lora_extra_vocab_size * max_loras,
256,
org_num_embeddings=512)
expanded_embedding.weight.data[:512, :] = embedding_data
org_num_embeddings=vocab_size)
expanded_embedding.weight.data[:vocab_size, :] = embedding_data
# We need to deepcopy the embedding as it will be modified
# in place
lora_embedding = VocabParallelEmbeddingWithLoRA(
@ -298,7 +303,7 @@ def test_embeddings_with_new_embeddings(dist_init, num_loras, device) -> None:
id_to_index,
layer=lora_embedding,
layer_weights=torch.zeros(
(256, 512 + lora_config.lora_extra_vocab_size)),
(256, vocab_size + lora_config.lora_extra_vocab_size)),
generate_embeddings_tensor=256,
)
@ -316,7 +321,7 @@ def test_embeddings_with_new_embeddings(dist_init, num_loras, device) -> None:
active_lora_ids=list(lora_dict.keys()),
num_inputs=num_loras * 3,
input_size=(200, ),
input_range=(1, 512),
input_range=(1, vocab_size),
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
@ -327,16 +332,18 @@ def test_embeddings_with_new_embeddings(dist_init, num_loras, device) -> None:
for input_, original_input_, lora_id in zip(inputs, original_inputs,
prompt_mapping):
embedding_id = lora_id - 1
input_[-1] = 512 + (embedding_id * embeddings_tensor_len)
original_input_[-1] = 512
input_[-2] = 512 + ((embedding_id + 1) * embeddings_tensor_len - 1)
original_input_[-2] = 512 + embeddings_tensor_len - 1
input_[-1] = vocab_size + (embedding_id * embeddings_tensor_len)
original_input_[-1] = vocab_size
input_[-2] = vocab_size + (
(embedding_id + 1) * embeddings_tensor_len - 1)
original_input_[-2] = vocab_size + embeddings_tensor_len - 1
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
512, lora_config.lora_extra_vocab_size)
vocab_size,
lora_config.lora_extra_vocab_size)
lora_embedding.set_mapping(*mapping_info, )
expanded_embedding.weight[512:512 +
expanded_embedding.weight[vocab_size:vocab_size +
(embeddings_tensor_len *
max_loras)] = torch.cat(embeddings_tensors)
@ -370,14 +377,15 @@ def test_embeddings_with_new_embeddings(dist_init, num_loras, device) -> None:
active_lora_ids=[0],
num_inputs=num_loras * 3,
input_size=(200, ),
input_range=(1, 512),
input_range=(1, vocab_size),
)
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
original_inputs = deepcopy(inputs)
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
512, lora_config.lora_extra_vocab_size)
vocab_size,
lora_config.lora_extra_vocab_size)
lora_embedding.set_mapping(*mapping_info, )
lora_result = lora_embedding(torch.cat(original_inputs))
@ -393,7 +401,9 @@ def test_embeddings_with_new_embeddings(dist_init, num_loras, device) -> None:
@torch.inference_mode()
@pytest.mark.parametrize("num_loras", [1, 2, 4, 8])
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_lm_head_logits_processor(dist_init, num_loras, device) -> None:
@pytest.mark.parametrize("vocab_size", [512, 32000, 64000, 128000])
def test_lm_head_logits_processor(dist_init, num_loras, device,
vocab_size) -> None:
torch.set_default_device(device)
max_loras = 8
@ -402,12 +412,12 @@ def test_lm_head_logits_processor(dist_init, num_loras, device) -> None:
lora_dtype=torch.float16)
def _pretest():
linear = ParallelLMHead(32000 + lora_config.lora_extra_vocab_size,
1024, 32000)
linear = ParallelLMHead(vocab_size + lora_config.lora_extra_vocab_size,
1024, vocab_size)
linear.weight.data = torch.rand_like(linear.weight.data)
linear.weight.data[:, 32000:] = 0
linear.weight.data[:, vocab_size:] = 0
logits_processor = LogitsProcessor(
32000 + lora_config.lora_extra_vocab_size, 32000)
vocab_size + lora_config.lora_extra_vocab_size, vocab_size)
lora_logits_processor = LogitsProcessorWithLoRA(
logits_processor, 1024, linear.weight.dtype, linear.weight.device)
lora_logits_processor.create_lora_weights(max_loras, lora_config)
@ -444,7 +454,7 @@ def test_lm_head_logits_processor(dist_init, num_loras, device) -> None:
lora_mapping,
id_to_index,
max_loras,
32000,
vocab_size,
lora_config.lora_extra_vocab_size,
)
lora_logits_processor.set_mapping(*mapping_info, )
@ -460,7 +470,7 @@ def test_lm_head_logits_processor(dist_init, num_loras, device) -> None:
org_vocab_size:logits_processor.org_vocab_size +
embeddings_tensor_len] = embeddings_tensor
logits_processor.org_vocab_size = (32000 +
logits_processor.org_vocab_size = (vocab_size +
lora_config.lora_extra_vocab_size)
expected_results = []
for input_, lora_id in zip(inputs, prompt_mapping):
@ -468,11 +478,11 @@ def test_lm_head_logits_processor(dist_init, num_loras, device) -> None:
result = logits_processor._get_logits(hidden_states=input_,
embedding=linear.weight,
embedding_bias=None)
result[:, 32000 + embeddings_tensor_len:] = float("-inf")
result[:, vocab_size + embeddings_tensor_len:] = float("-inf")
result += input_ @ lora.lora_a @ lora.lora_b * lora.scaling
expected_results.append(result)
expected_result = torch.cat(expected_results)
logits_processor.org_vocab_size = 32000
logits_processor.org_vocab_size = vocab_size
# Check that resetting the lora weights succeeds
@ -489,14 +499,14 @@ def test_lm_head_logits_processor(dist_init, num_loras, device) -> None:
lora_mapping = LoRAMapping(index_mapping, prompt_mapping)
mapping_info = convert_mapping(lora_mapping, id_to_index, max_loras,
32000,
vocab_size,
lora_config.lora_extra_vocab_size)
lora_logits_processor.set_mapping(*mapping_info, )
lora_result = lora_logits_processor._get_logits(
hidden_states=torch.cat(inputs),
embedding=original_weight,
embedding_bias=None)[:, :32000]
embedding_bias=None)[:, :vocab_size]
expected_result = logits_processor._get_logits(
hidden_states=torch.cat(inputs),
embedding=original_weight,

View File

@ -0,0 +1,40 @@
import pytest
from vllm.lora.models import LoRAModel
from vllm.model_executor.models.baichuan import BaiChuanBaseForCausalLM
@pytest.mark.parametrize("lora_name", ["baichuan7B", "chatglm3-6b"])
def test_load_checkpoints(lora_name, chatglm3_lora_files, baichuan_lora_files):
supported_lora_modules = BaiChuanBaseForCausalLM.supported_lora_modules
packed_modules_mapping = BaiChuanBaseForCausalLM.packed_modules_mapping
embedding_modules = BaiChuanBaseForCausalLM.embedding_modules
embed_padding_modules = BaiChuanBaseForCausalLM.embedding_padding_modules
expected_lora_modules = []
for module in supported_lora_modules:
if module in packed_modules_mapping:
expected_lora_modules.extend(packed_modules_mapping[module])
else:
expected_lora_modules.append(module)
if lora_name == "baichuan7B":
# For the baichuan7B model, load it's LoRA,
# and the test should pass.
LoRAModel.from_local_checkpoint(
baichuan_lora_files,
expected_lora_modules,
lora_model_id=1,
device="cpu",
embedding_modules=embedding_modules,
embedding_padding_modules=embed_padding_modules)
else:
# For the baichuan7B model, load chatglm3-6b's LoRA,
# and the test should raise the following error.
expected_error = "Please verify that the loaded LoRA module is correct" # noqa: E501
with pytest.raises(ValueError, match=expected_error):
LoRAModel.from_local_checkpoint(
chatglm3_lora_files,
expected_lora_modules,
lora_model_id=1,
device="cpu",
embedding_modules=embedding_modules,
embedding_padding_modules=embed_padding_modules)

View File

@ -43,10 +43,52 @@ def _lora_ref_impl(
H1 = H2 = [
128, 256, 512, 1024, 1152, 1280, 1536, 2048, 2304, 2560, 2752, 3072, 3456,
3584, 4096, 4608, 5120, 5504, 5632, 6144, 6848, 6912, 7168, 8192, 9216,
10240, 11008, 13824, 14336, 22016, 24576, 27392, 32000, 32256, 32512,
32768, 33024
128,
256,
512,
1024,
1152,
1280,
1536,
2048,
2304,
2560,
2752,
3072,
3456,
3584,
4096,
4608,
5120,
5504,
5632,
6144,
6848,
6912,
7168,
8192,
9216,
10240,
11008,
13824,
14336,
15360,
22016,
24576,
27392,
32000,
32256,
32512,
32768,
33024,
36864,
49152,
64000,
64256,
102400,
102656,
128000,
128256,
]
SEED = [0xabcdabcd987]
CUDA_DEVICES = [

View File

@ -0,0 +1,179 @@
# Adapted from
# https://github.com/fmmoret/vllm/blob/fm-support-lora-on-quantized-models/tests/lora/test_llama.py
from dataclasses import dataclass
from typing import List
import pytest
import vllm
from vllm.lora.request import LoRARequest
from .conftest import cleanup
@dataclass
class ModelWithQuantization:
model_path: str
quantization: str
MODELS: List[ModelWithQuantization] = [
ModelWithQuantization(model_path="TheBloke/TinyLlama-1.1B-Chat-v0.3-AWQ",
quantization="AWQ"),
ModelWithQuantization(model_path="TheBloke/TinyLlama-1.1B-Chat-v0.3-GPTQ",
quantization="GPTQ"),
]
def do_sample(llm, lora_path: str, lora_id: int, max_tokens=256):
raw_prompts = [
"Give me an orange-ish brown color",
"Give me a neon pink color",
]
def format_prompt_tuples(prompt):
return f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
prompts = [format_prompt_tuples(p) for p in raw_prompts]
sampling_params = vllm.SamplingParams(temperature=0,
max_tokens=max_tokens,
stop=["<|im_end|>"])
outputs = llm.generate(
prompts,
sampling_params,
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
if lora_id else None)
# Print the outputs.
generated_texts = []
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
return generated_texts
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("tp_size", [1])
def test_quant_model_lora(tinyllama_lora_files, model, tp_size):
# Cannot use as it will initialize torch.cuda too early...
# if torch.cuda.device_count() < tp_size:
# pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}")
llm = vllm.LLM(model=model.model_path,
enable_lora=True,
max_num_seqs=16,
max_loras=4,
max_model_len=400,
tensor_parallel_size=tp_size,
quantization=model.quantization,
trust_remote_code=True)
if model.quantization is None:
expected_no_lora_output = [
"Here are some examples of orange-brown colors",
"I'm sorry, I don't have"
]
expected_lora_output = [
"#ff8050",
"#ff8080",
]
elif model.quantization == "AWQ":
expected_no_lora_output = [
"I'm sorry, I don't understand",
"I'm sorry, I don't understand",
]
expected_lora_output = [
"#f07700: A v",
"#f00000: A v",
]
elif model.quantization == "GPTQ":
expected_no_lora_output = [
"I'm sorry, I don't have",
"I'm sorry, I don't have",
]
expected_lora_output = [
"#f08800: This is",
"#f07788 \n#",
]
def expect_match(output, expected_output):
# HACK: GPTQ lora outputs are just incredibly unstable.
# Assert that the outputs changed.
if (model.quantization == "GPTQ"
and expected_output is expected_lora_output):
assert output != expected_no_lora_output
for i, o in enumerate(output):
assert o.startswith(
'#'), f"Expected example {i} to start with # but got {o}"
return
assert output == expected_output
max_tokens = 10
print("lora adapter created")
output = do_sample(llm,
tinyllama_lora_files,
lora_id=0,
max_tokens=max_tokens)
expect_match(output, expected_no_lora_output)
print("lora 1")
output = do_sample(llm,
tinyllama_lora_files,
lora_id=1,
max_tokens=max_tokens)
expect_match(output, expected_lora_output)
print("no lora")
output = do_sample(llm,
tinyllama_lora_files,
lora_id=0,
max_tokens=max_tokens)
expect_match(output, expected_no_lora_output)
print("lora 2")
output = do_sample(llm,
tinyllama_lora_files,
lora_id=2,
max_tokens=max_tokens)
expect_match(output, expected_lora_output)
print("removing lora")
del llm
cleanup()
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.skip("Requires multiple GPUs")
def test_quant_model_tp_equality(tinyllama_lora_files, model):
# Cannot use as it will initialize torch.cuda too early...
# if torch.cuda.device_count() < 2:
# pytest.skip(f"Not enough GPUs for tensor parallelism {2}")
llm_tp1 = vllm.LLM(model=model.model_path,
enable_lora=True,
max_num_seqs=16,
max_loras=4,
tensor_parallel_size=1,
quantization=model.quantization,
trust_remote_code=True)
output_tp1 = do_sample(llm_tp1, tinyllama_lora_files, lora_id=1)
del llm_tp1
cleanup()
llm_tp2 = vllm.LLM(model=model.model_path,
enable_lora=True,
max_num_seqs=16,
max_loras=4,
tensor_parallel_size=2,
quantization=model.quantization)
output_tp2 = do_sample(llm_tp2, tinyllama_lora_files, lora_id=1)
del llm_tp2
cleanup()
assert output_tp1 == output_tp2

View File

@ -3,8 +3,8 @@ import random
import tempfile
from unittest.mock import patch
from vllm.config import (DeviceConfig, LoRAConfig, ModelConfig, ParallelConfig,
SchedulerConfig)
from vllm.config import (CacheConfig, DeviceConfig, LoRAConfig, ModelConfig,
ParallelConfig, SchedulerConfig)
from vllm.lora.models import LoRAMapping
from vllm.lora.request import LoRARequest
from vllm.worker.worker import Worker
@ -27,6 +27,10 @@ def test_worker_apply_lora(sql_lora_files):
parallel_config=ParallelConfig(1, 1, False),
scheduler_config=SchedulerConfig(32, 32, 32),
device_config=DeviceConfig("cuda"),
cache_config=CacheConfig(block_size=16,
gpu_memory_utilization=1.,
swap_space=0,
cache_dtype="auto"),
local_rank=0,
rank=0,
lora_config=LoRAConfig(max_lora_rank=8, max_cpu_loras=32,

View File

@ -0,0 +1,26 @@
import os
import huggingface_hub.constants
import pytest
from vllm.model_executor.weight_utils import enable_hf_transfer
def test_hf_transfer_auto_activation():
if "HF_HUB_ENABLE_HF_TRANSFER" in os.environ:
# in case it is already set, we can't test the auto activation
pytest.skip(
"HF_HUB_ENABLE_HF_TRANSFER is set, can't test auto activation")
enable_hf_transfer()
try:
# enable hf hub transfer if available
import hf_transfer # type: ignore # noqa
HF_TRANFER_ACTIVE = True
except ImportError:
HF_TRANFER_ACTIVE = False
assert (huggingface_hub.constants.HF_HUB_ENABLE_HF_TRANSFER ==
HF_TRANFER_ACTIVE)
if __name__ == "__main__":
test_hf_transfer_auto_activation()

View File

@ -12,7 +12,7 @@ MODELS = [
"gpt2",
"bigcode/tiny_starcoder_py",
"EleutherAI/pythia-70m",
"bigscience/bloom-560m",
"bigscience/bloom-560m", # Testing alibi slopes.
"microsoft/phi-2",
"stabilityai/stablelm-3b-4e1t",
# "allenai/OLMo-1B", # Broken

View File

@ -0,0 +1,32 @@
import torch
from vllm import LLM, ModelRegistry, SamplingParams
from vllm.model_executor.models.opt import OPTForCausalLM
from vllm.model_executor.sampling_metadata import SamplingMetadata
class MyOPTForCausalLM(OPTForCausalLM):
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
# this dummy model always predicts the first token
logits = super().compute_logits(hidden_states, sampling_metadata)
logits.zero_()
logits[:, 0] += 1.0
return logits
def test_oot_registration():
# register our dummy model
ModelRegistry.register_model("OPTForCausalLM", MyOPTForCausalLM)
prompts = ["Hello, my name is", "The text does not matter"]
sampling_params = SamplingParams(temperature=0)
llm = LLM(model="facebook/opt-125m")
first_token = llm.get_tokenizer().decode(0)
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
generated_text = output.outputs[0].text
# make sure only the first token is generated
rest = generated_text.replace(first_token, "")
assert rest == ""

View File

@ -0,0 +1,62 @@
import pytest
import torch
from vllm import SamplingParams
MODELS = ["facebook/opt-125m"]
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
def test_logits_processor_force_generate(
vllm_runner,
example_prompts,
model: str,
dtype: str,
) -> None:
vllm_model = vllm_runner(model, dtype=dtype)
tokenizer = vllm_model.model.get_tokenizer()
repeat_times = 2
enforced_answers = " vLLM"
vllm_token_ids = tokenizer.encode(enforced_answers,
add_special_tokens=False)
max_tokens = len(vllm_token_ids) * repeat_times
def pick_vllm(token_ids, logits):
token_id = vllm_token_ids[len(token_ids) % len(vllm_token_ids)]
logits[token_id] = torch.finfo(logits.dtype).max
return logits
params_with_logprobs = SamplingParams(
logits_processors=[pick_vllm],
prompt_logprobs=3,
max_tokens=max_tokens,
)
# test logits_processors when prompt_logprobs is not None
vllm_model.model._add_request(
prompt=example_prompts[0],
sampling_params=params_with_logprobs,
prompt_token_ids=None,
)
# test prompt_logprobs is not None
vllm_model.model._add_request(
prompt=example_prompts[1],
sampling_params=SamplingParams(
prompt_logprobs=3,
max_tokens=max_tokens,
),
prompt_token_ids=None,
)
# test grouped requests
vllm_model.model._add_request(
prompt=example_prompts[2],
sampling_params=SamplingParams(max_tokens=max_tokens),
prompt_token_ids=None,
)
outputs = vllm_model.model._run_engine(False)
assert outputs[0].outputs[0].text == enforced_answers * repeat_times

View File

@ -1,3 +1,4 @@
import itertools
import random
from typing import List, Optional, Tuple
from unittest.mock import patch
@ -194,11 +195,15 @@ def test_sampler_min_tokens_penalty(seed: int, device: str):
def create_sampling_params(min_tokens,
eos_token_id=0,
stop_token_ids=None):
*,
stop_token_ids: Optional[List[str]] = None,
prompt_logprobs: Optional[int] = None):
sampling_params = SamplingParams(
min_tokens=min_tokens,
max_tokens=9999, # keep higher than max of min_tokens
stop_token_ids=stop_token_ids,
# requesting prompt_logprobs changes the structure of `logits`
prompt_logprobs=prompt_logprobs,
)
sampling_params.eos_token_id = eos_token_id
return sampling_params
@ -217,9 +222,9 @@ def test_sampler_min_tokens_penalty(seed: int, device: str):
expected_penalization = []
sequence_metadata_list = []
# 20% chance to generate seq group metadata list with all prompts
is_prompt = random.random() < 0.2
while batch_size > 0:
# 20% chance to generate prompt seq group with single sequence
is_prompt = random.random() < 0.2
num_seqs = 1 if is_prompt else random.randint(1, batch_size)
eos_token_id = random.randint(0, VOCAB_SIZE - 1)
@ -240,7 +245,7 @@ def test_sampler_min_tokens_penalty(seed: int, device: str):
seq_group_penalization = []
for _ in range(num_seqs):
num_input = random.randint(1, 100)
num_generated = random.randint(1, 100) if not is_prompt else 0
num_generated = 0 if is_prompt else random.randint(1, 100)
seq_data[next(seq_id_counter)] = create_sequence_data(
num_input=num_input, num_generated=num_generated)
seq_group_penalization.append(num_generated < min_tokens)
@ -292,6 +297,21 @@ def test_sampler_min_tokens_penalty(seed: int, device: str):
]
}
prompt_with_penalization_and_prompt_logprobs = {
"expected_penalization": [False, False, True],
"seq_group_metadata_list": [
SequenceGroupMetadata(
request_id="test_1",
is_prompt=True,
seq_data={
next(seq_id_counter): create_sequence_data(num_input=3),
},
sampling_params=create_sampling_params(1, prompt_logprobs=3),
block_tables={},
),
]
}
stop_penalizing_after_min_tokens = {
"expected_penalization": [False],
"seq_group_metadata_list": [
@ -309,8 +329,34 @@ def test_sampler_min_tokens_penalty(seed: int, device: str):
}
stop_token_ids = [42, 99, 42, 0] # intentional duplication
simple_combination = {
"expected_penalization": [True, False, False],
prompt_combination = {
"expected_penalization": [False, True, False],
"seq_group_metadata_list": [
SequenceGroupMetadata(
request_id="test_2",
is_prompt=True,
seq_data={
next(seq_id_counter): create_sequence_data(num_input=2),
},
sampling_params=create_sampling_params(1, prompt_logprobs=3),
block_tables={},
),
SequenceGroupMetadata(
request_id="test_3",
is_prompt=True,
seq_data={
next(seq_id_counter): create_sequence_data(),
},
sampling_params=create_sampling_params(
0, stop_token_ids=stop_token_ids),
block_tables={},
)
]
}
stop_token_ids = [1, 999, 37, 37] # intentional duplication
decode_combination = {
"expected_penalization": [True, False, False, True, False],
"seq_group_metadata_list": [
SequenceGroupMetadata(
request_id="test_1",
@ -327,14 +373,19 @@ def test_sampler_min_tokens_penalty(seed: int, device: str):
),
SequenceGroupMetadata(
request_id="test_2",
is_prompt=True,
is_prompt=False,
seq_data={
next(seq_id_counter): create_sequence_data(),
next(seq_id_counter):
create_sequence_data(num_generated=20),
next(seq_id_counter):
create_sequence_data(num_generated=1),
next(seq_id_counter):
create_sequence_data(num_generated=10),
},
sampling_params=create_sampling_params(
0, stop_token_ids=stop_token_ids),
10, prompt_logprobs=5, stop_token_ids=stop_token_ids),
block_tables={},
)
),
]
}
@ -342,8 +393,10 @@ def test_sampler_min_tokens_penalty(seed: int, device: str):
test_cases = [
prompt_without_penalization,
prompt_with_penalization,
prompt_with_penalization_and_prompt_logprobs,
stop_penalizing_after_min_tokens,
simple_combination,
prompt_combination,
decode_combination,
]
else:
test_cases = [generate_test_case()]
@ -351,30 +404,49 @@ def test_sampler_min_tokens_penalty(seed: int, device: str):
def run_test_case(*,
expected_penalization=None,
seq_group_metadata_list=None):
assert expected_penalization, "Invalid test case"
assert seq_group_metadata_list, "Invalid test case"
assert expected_penalization, \
"Invalid test case, need expected_penalization"
assert seq_group_metadata_list, \
"Invalid test case, need seq_group_metadata_list"
batch_size = 0
prompt_lens = []
sampling_params_per_seq = []
sampling_params_per_row = []
for sgm in seq_group_metadata_list:
num_seqs = len(sgm.seq_data)
batch_size += num_seqs
sampling_params = sgm.sampling_params
for seq_id in sgm.seq_data:
prompt_lens.append(sgm.seq_data[seq_id].get_prompt_len())
sampling_params_per_seq.append(sampling_params)
num_rows = len(sgm.seq_data)
if sgm.is_prompt:
# a prompt seq_group has only one sequence
seq_data = next(iter(sgm.seq_data.values()))
prompt_len = seq_data.get_prompt_len()
prompt_lens.append(prompt_len)
if sgm.sampling_params.prompt_logprobs:
# with prompt_logprobs each token in the prompt has a row in
# logits
num_rows = prompt_len
batch_size += num_rows
sampling_params_per_row.extend(
itertools.repeat(sampling_params, num_rows))
assert len(
expected_penalization
) == batch_size, \
("Invalid test case, expected_penalization does not match computed"
"batch size")
_, fake_logits, sampler, model_runner = _prepare_test(batch_size)
sampling_metadata = model_runner._prepare_sample(
seq_group_metadata_list,
prompt_lens=prompt_lens,
subquery_lens=prompt_lens)
prompt_lens=prompt_lens if prompt_lens else None,
subquery_lens=prompt_lens if prompt_lens else None)
# the logits tensor is modified in-place by the sampler
_ = sampler(logits=fake_logits, sampling_metadata=sampling_metadata)
for logits_idx, (should_penalize, sampling_params) in enumerate(
zip(expected_penalization, sampling_params_per_seq)):
zip(expected_penalization, sampling_params_per_row)):
tokens_to_check = [sampling_params.eos_token_id]
if sampling_params.stop_token_ids:

View File

@ -0,0 +1,41 @@
import pytest
from tests.conftest import cleanup
from vllm import LLM
from vllm.model_executor.utils import set_random_seed
@pytest.fixture
def baseline_llm_generator(common_llm_kwargs, per_test_common_llm_kwargs,
baseline_llm_kwargs, seed):
return create_llm_generator(common_llm_kwargs, per_test_common_llm_kwargs,
baseline_llm_kwargs, seed)
@pytest.fixture
def test_llm_generator(common_llm_kwargs, per_test_common_llm_kwargs,
test_llm_kwargs, seed):
return create_llm_generator(common_llm_kwargs, per_test_common_llm_kwargs,
test_llm_kwargs, seed)
def create_llm_generator(common_llm_kwargs, per_test_common_llm_kwargs,
distinct_llm_kwargs, seed):
kwargs = {
**common_llm_kwargs,
**per_test_common_llm_kwargs,
**distinct_llm_kwargs,
}
def generator_inner():
llm = LLM(**kwargs)
set_random_seed(seed)
yield llm
del llm
cleanup()
for llm in generator_inner():
yield llm
del llm

View File

@ -0,0 +1,50 @@
import pytest
from vllm import SamplingParams
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Use a small model for a fast test.
"model": "facebook/opt-125m",
"speculative_model": "facebook/opt-125m",
"num_speculative_tokens": 5,
# Required for spec decode.
"use_v2_block_manager": True
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [{}])
@pytest.mark.parametrize("seed", [1])
def test_spec_decode_config(test_llm_generator):
output_len = 1024
temperature = 0.0
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(
max_tokens=output_len,
ignore_eos=True,
temperature=temperature,
)
with pytest.raises(
AssertionError,
match="Speculative decoding not yet supported for GPU backend"):
get_token_ids_from_llm_generator(test_llm_generator, prompts,
sampling_params)
def get_token_ids_from_llm_generator(llm_generator, prompts, sampling_params):
for llm in llm_generator:
outputs = llm.generate(prompts, sampling_params, use_tqdm=True)
token_ids = [output.outputs[0].token_ids for output in outputs]
del llm
return token_ids

View File

@ -7,6 +7,7 @@ from .utils import create_seq_group_metadata_from_prompts, mock_worker
@pytest.mark.parametrize('num_target_seq_ids', [100])
@pytest.mark.skip_global_cleanup
def test_create_target_seq_id_iterator(num_target_seq_ids: int):
"""Verify all new sequence ids are greater than all input
seq ids.
@ -27,6 +28,7 @@ def test_create_target_seq_id_iterator(num_target_seq_ids: int):
@pytest.mark.parametrize('k', [1, 2, 6])
@pytest.mark.skip_global_cleanup
def test_get_token_ids_to_score(k: int):
"""Verify correct tokens are selected for scoring.
"""
@ -53,6 +55,7 @@ def test_get_token_ids_to_score(k: int):
@pytest.mark.parametrize('k', [1, 2, 6])
@pytest.mark.skip_global_cleanup
def test_create_single_target_seq_group_metadata(k: int):
"""Verify correct creation of a batch-expanded seq group metadata.
"""

Some files were not shown because too many files have changed in this diff Show More