Compare commits

...

272 Commits

Author SHA1 Message Date
c7f2cf2b7f [CI] Reduce wheel size by not shipping debug symbols (#4602) 2024-05-04 21:28:58 -07:00
8d8357c8ed bump version to v0.4.2 (#4600) 2024-05-04 17:09:49 -07:00
4302987069 [Bugfix] Fix inappropriate content of model_name tag in Prometheus metrics (#3937) 2024-05-04 15:39:34 -07:00
021b1a2ab7 [CI] check size of the wheels (#4319) 2024-05-04 20:44:36 +00:00
2a052011ca [Kernel] Support MoE Fp8 Checkpoints for Mixtral (Static Weights with Dynamic/Static Activations) (#4527)
Follow on to #4332 to enable FP8 checkpoint loading for Mixtral and supersedes #4436.

This PR enables the following checkpoint loading features for Mixtral:

Supports loading fp8 checkpoints for Mixtral, such as this "nm-testing/Mixtral-8x7B-Instruct-v0.1-FP8" test model
Supports static or dynamic activation quantization with static weight quantization (all per tensor)
Supports different scales for each expert weight
Supports Fp8 in QKV layer
Notes:

The Expert Gate/Router always runs at half / full precision for now.
If there are different weight scales between QKV layer (for separate QKV weights), they are re-quantized using layer.weight_scale.max() so we can have a single gemm for performance.
2024-05-04 11:45:16 -07:00
36fb68f947 [Doc] Chunked Prefill Documentation (#4580) 2024-05-04 00:18:00 -07:00
bc8ad68455 [Misc][Refactor] Introduce ExecuteModelData (#4540) 2024-05-03 17:47:07 -07:00
344bf7cd2d [Misc] add installation time env vars (#4574) 2024-05-03 15:55:56 -07:00
ab50275111 [Speculative decoding] Support target-model logprobs (#4378) 2024-05-03 15:52:01 -07:00
43c413ec57 [Kernel] Use flashinfer for decoding (#4353)
Co-authored-by: LiuXiaoxuanPKU <llilyliupku@gmail.com>
2024-05-03 15:51:27 -07:00
f8e7adda21 Fix/async chat serving (#2727) 2024-05-03 11:04:14 -07:00
7e65477e5e [Bugfix] Allow "None" or "" to be passed to CLI for string args that default to None (#4586) 2024-05-03 10:32:21 -07:00
3521ba4f25 [Core][Model runner refactoring 1/N] Refactor attn metadata term (#4518) 2024-05-03 10:20:12 -07:00
2d7bce9cd5 [Doc] add env vars to the doc (#4572) 2024-05-03 05:13:49 +00:00
ce3f1eedf8 [Misc] remove chunk detected debug logs (#4571) 2024-05-03 04:48:08 +00:00
808632d3b4 [BugFix] Prevent the task of _force_log from being garbage collected (#4567) 2024-05-03 01:35:18 +00:00
344a5d0c33 [Core][Distributed] enable allreduce for multiple tp groups (#4566) 2024-05-02 17:32:33 -07:00
0f8a91401c [Core] Ignore infeasible swap requests. (#4557) 2024-05-02 14:31:20 -07:00
9b5c9f9484 [CI/Build] AMD CI pipeline with extended set of tests. (#4267)
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-05-02 12:29:07 -07:00
32881f3f31 [kernel] fix sliding window in prefix prefill Triton kernel (#4405)
Co-authored-by: SangBin Cho <rkooo567@gmail.com>
2024-05-02 11:23:37 -07:00
5b8a7c1cb0 [Misc] centralize all usage of environment variables (#4548) 2024-05-02 11:13:25 -07:00
1ff0c73a79 [BugFix] Include target-device specific requirements.txt in sdist (#4559) 2024-05-02 10:52:51 -07:00
5ad60b0cbd [Misc] Exclude the tests directory from being packaged (#4552) 2024-05-02 10:50:25 -07:00
fb087af52e [mypy][7/N] Cover all directories (#4555) 2024-05-02 10:47:41 -07:00
7038e8b803 [Kernel] Support running GPTQ 8-bit models in Marlin (#4533) 2024-05-02 12:56:22 -04:00
2a85f93007 [Core][Distributed] enable multiple tp group (#4512)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-05-02 04:28:21 +00:00
cf8cac8c70 [mypy][6/N] Fix all the core subdirectory typing (#4450)
Co-authored-by: Cade Daniel <edacih@gmail.com>
2024-05-02 03:01:00 +00:00
5e401bce17 [CI]Add regression tests to ensure the async engine generates metrics (#4524) 2024-05-01 19:57:12 -07:00
0d62fe58db [Bug fix][Core] assert num_new_tokens == 1 fails when SamplingParams.n is not 1 and max_tokens is large & Add tests for preemption (#4451) 2024-05-01 19:24:13 -07:00
b8afa8b95a [MISC] Rework logger to enable pythonic custom logging configuration to be provided (#4273) 2024-05-01 17:34:40 -07:00
826b82a260 [Misc] Fix expert_ids shape in MoE (#4517) 2024-05-01 23:47:59 +00:00
c9d852d601 [Misc] Remove Mixtral device="cuda" declarations (#4543)
Remove the device="cuda" declarations in mixtral as promised in #4343
2024-05-01 16:30:52 -07:00
6ef09b08f8 [Core][Distributed] fix pynccl del error (#4508) 2024-05-01 15:23:06 -07:00
Roy
3a922c1e7e [Bugfix][Core] Fix and refactor logging stats (#4336) 2024-05-01 20:08:14 +00:00
c47ba4aaa9 [Bugfix] Add validation for seed (#4529) 2024-05-01 19:31:22 +00:00
24bb4fe432 [Kernel] Update fused_moe tuning script for FP8 (#4457)
This PR updates the tuning script for the fused_moe kernel to support FP8 and also adds configurations for TP4. Note that for the configuration I removed num_warps and num_stages for small batch sizes since that improved performance and brought the benchmarks on par with the numbers before in that regime to make sure this is a strict improvement over the status quo.

All the numbers below are for mistralai/Mixtral-8x7B-Instruct-v0.1, 1000 input and 50 output tokens.

Before this PR (with static activation scaling):

qps = 1: 9.8 ms ITL, 0.49s e2e latency
qps = 2: 9.7 ms ITL, 0.49s e2e latency 
qps = 4: 10.1 ms ITL, 0.52s e2e latency
qps = 6: 11.9 ms ITL, 0.59s e2e latency
qps = 8: 14.0 ms ITL, 0.70s e2e latency
qps = 10: 15.7 ms ITL, 0.79s e2e latency

After this PR (with static activation scaling):

qps = 1: 9.8 ms ITL, 0.49s e2e latency
qps = 2: 9.7 ms ITL, 0.49s e2e latency
qps = 4: 10.2 ms ITL, 0.53s e2e latency
qps = 6: 11.9 ms ITL, 0.59s e2e latency
qps = 8: 11.9 ms ITL, 0.59s e2e latency
qps = 10: 12.1 ms ITL, 0.61s e2e latency
2024-05-01 11:47:38 -07:00
a657bfc48a [Core] Add multiproc_worker_utils for multiprocessing-based workers (#4357) 2024-05-01 18:41:59 +00:00
24750f4cad [Core] Enable prefix caching with block manager v2 enabled (#4142)
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
Co-authored-by: Sage Moore <sagemoore@utexas.edu>
2024-05-01 11:20:32 -07:00
b38e42fbca [Speculative decoding] Add ngram prompt lookup decoding (#4237)
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
2024-05-01 11:13:03 -07:00
8b798eec75 [CI/Build][Bugfix] VLLM_USE_PRECOMPILED should skip compilation (#4534)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-05-01 18:01:50 +00:00
69909126a7 [Bugfix] Use random seed if seed is -1 (#4531) 2024-05-01 10:41:17 -07:00
e491c7e053 [Doc] update(example model): for OpenAI compatible serving (#4503) 2024-05-01 10:14:16 -07:00
4dc8026d86 [Bugfix] Fix 307 Redirect for /metrics (#4523) 2024-05-01 09:14:13 -07:00
a88bb9b032 [Bugfix] Fix the fp8 kv_cache check error that occurs when failing to obtain the CUDA version. (#4173)
Signed-off-by: AnyISalIn <anyisalin@gmail.com>
2024-05-01 09:11:03 -07:00
6f1df80436 [Test] Add ignore_eos test (#4519) 2024-05-01 08:45:42 -04:00
d6f4bd7cdd [Misc]Add customized information for models (#4132) 2024-04-30 21:18:14 -07:00
c3845d82dc Allow user to define whitespace pattern for outlines (#4305) 2024-04-30 20:48:39 -07:00
a822eb3413 [Misc] fix typo in block manager (#4453) 2024-04-30 20:41:32 -07:00
f458112e8a [Misc][Typo] type annotation fix (#4495) 2024-04-30 20:21:39 -07:00
2e240c69a9 [Core] Centralize GPU Worker construction (#4419) 2024-05-01 01:06:34 +00:00
ee37328da0 Unable to find Punica extension issue during source code installation (#4494)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-05-01 00:42:09 +00:00
6ad58f42c5 fix_tokenizer_snapshot_download_bug (#4493) 2024-04-30 16:38:50 -07:00
dd1a50a8bc [Bugfix][Minor] Make ignore_eos effective (#4468) 2024-04-30 16:33:33 -07:00
715c2d854d [Frontend] [Core] Tensorizer: support dynamic num_readers, update version (#4467) 2024-04-30 16:32:13 -07:00
a494140433 [Frontend] Support complex message content for chat completions endpoint (#3467)
Co-authored-by: Lily Liu <lilyliupku@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2024-04-30 16:28:46 -07:00
111815d482 [Kernel] Support Fp8 Checkpoints (Dynamic + Static) (#4332)
Co-authored-by: Philipp Moritz <pcmoritz@gmail.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: mgoin <michael@neuralmagic.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-04-30 21:46:12 +00:00
b31a1fb63c [Doc] add visualization for multi-stage dockerfile (#4456)
Signed-off-by: Prashant Gupta <prashantgupta@us.ibm.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-30 17:41:59 +00:00
4bb53e2dde [BugFix] fix num_lookahead_slots missing in async executor (#4165)
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
2024-04-30 10:12:59 -07:00
26f2fb5113 [Core]Refactor gptq_marlin ops (#4466) 2024-04-30 08:14:47 -04:00
fa32207842 [Bugfix][Kernel] Fix compute_type for MoE kernel (#4463) 2024-04-29 22:05:40 -07:00
d627a3d837 [Misc] Upgrade to torch==2.3.0 (#4454) 2024-04-29 20:05:47 -04:00
f4f921b7f1 [Core][Distributed] use cpu group to broadcast metadata in cpu (#4444) 2024-04-29 13:52:22 -07:00
ac5ccf0156 [CI] hotfix: soft fail neuron test (#4458) 2024-04-29 19:50:01 +00:00
73c8d677e5 [Kernel] Marlin Expansion: Support AutoGPTQ Models with Marlin (#3922)
Co-authored-by: alexm <alexm@neuralmagic.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-04-29 09:35:34 -07:00
df29793dc7 [mypy][5/N] Support all typing on model executor (#4427) 2024-04-28 19:01:26 -07:00
03dd7d52bf [CI] clean docker cache for neuron (#4441) 2024-04-28 23:32:07 +00:00
bf480c5302 Add more Prometheus metrics (#2764)
Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-04-28 15:59:33 -07:00
9c7306ac11 [Misc] fix typo in llm_engine init logging (#4428) 2024-04-28 18:58:30 +08:00
4ea1f9678d [BugFix] Resolved Issues For LinearMethod --> QuantConfig (#4418) 2024-04-27 18:35:33 +00:00
ba4be44c32 [BugFix] Fix return type of executor execute_model methods (#4402) 2024-04-27 11:17:45 -07:00
d6e520e170 [Core] Support offline use of local cache for models (#4374)
Signed-off-by: Prashant Gupta <prashantgupta@us.ibm.com>
Co-authored-by: Travis Johnson <tjohnson31415@gmail.com>
2024-04-27 09:59:55 -07:00
81661da7b2 [BugFix] Fix min_tokens when eos_token_id is None (#4389)
Co-authored-by: DefTruth <31974251+deftruth@users.noreply.github.com>
2024-04-27 09:52:46 -07:00
dfea173148 [Bugfix] Abort requests when the connection to /v1/completions is interrupted (#4363) 2024-04-27 09:48:37 -07:00
Roy
7134303cbb [Bugfix][Core] Fix get decoding config from ray (#4335) 2024-04-27 11:30:08 +00:00
3da24c2df7 [Model] Phi-3 4k sliding window temp. fix (#4380) 2024-04-27 18:08:15 +08:00
eefeb16464 [Kernel] Full Tensor Parallelism for LoRA Layers (#3524)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-04-27 00:03:48 -07:00
18d23f642a [ROCm][Hardware][AMD] Enable group query attention for triton FA (#4406) 2024-04-26 23:37:40 -07:00
Roy
87f545ba6f [Misc] Fix logger format typo (#4396) 2024-04-27 13:45:02 +08:00
8947bc3c15 [Frontend][Bugfix] Disallow extra fields in OpenAI API (#4355) 2024-04-27 05:08:24 +00:00
12628d3c78 [Kernel] Optimize FP8 support for MoE kernel / Mixtral via static scales (#4343)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-27 04:49:59 +00:00
258a2c58d0 [Core] Introduce DistributedGPUExecutor abstract class (#4348) 2024-04-27 04:14:26 +00:00
aba47be3fe [Misc] add RFC issue template (#4401)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-26 15:47:45 -07:00
a62aaf1df5 [Misc][Refactor] Generalize linear_method to be quant_method (#4373) 2024-04-26 16:41:14 -04:00
603ad84815 [Core] Refactoring sampler and support prompt logprob for chunked prefill (#4309) 2024-04-26 13:02:02 +00:00
a88081bf76 [CI] Disable non-lazy string operation on logging (#4326)
Co-authored-by: Danny Guinther <dguinther@neuralmagic.com>
2024-04-26 00:16:58 -07:00
2f30e7c72f [Frontend] Add --log-level option to api server (#4377) 2024-04-26 05:36:01 +00:00
a74dee9b62 [Bugfix] Fix parameter name in get_tokenizer (#4107) 2024-04-25 19:10:48 -07:00
cf29b7eda4 [ROCm][Hardware][AMD][Doc] Documentation update for ROCm (#4376)
Co-authored-by: WoosukKwon <woosuk.kwon@berkeley.edu>
2024-04-25 18:12:25 -07:00
efffb63f58 [Core] Move function tracing setup to util function (#4352) 2024-04-25 16:45:12 -07:00
15e7c675b0 [Core] Add shutdown() method to ExecutorBase (#4349) 2024-04-25 16:32:48 -07:00
Roy
b6dcb4d442 [Misc] Fix flash attention backend log (#4368) 2024-04-25 12:43:32 -07:00
b5b4a398a7 [Mypy] Typing lora folder (#4337) 2024-04-25 19:13:50 +00:00
f4bc4de1b1 [Core]refactor aqlm quant ops (#4351) 2024-04-25 15:03:56 -04:00
bd7a8eef25 [Doc] README Phi-3 name fix. (#4372)
Co-authored-by: Caio Mendes <caiocesart@microsoft.com>
2024-04-25 10:32:00 -07:00
7ee82bef1e [CI/Build] Adding functionality to reset the node's GPUs before processing. (#4213) 2024-04-25 09:37:20 -07:00
fbf152d976 [Bugfix][Model] Refactor OLMo model to support new HF format in transformers 4.40.0 (#4324)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-25 09:35:56 -07:00
479d69fad0 [Core] Move ray_utils.py from engine to executor package (#4347) 2024-04-25 06:52:22 +00:00
96e90fdeb3 [Model] Adds Phi-3 support (#4298) 2024-04-25 03:06:57 +00:00
a395a638c2 [Misc] Use public API in benchmark_throughput (#4300) 2024-04-24 21:10:24 +00:00
2768884ac4 [Doc] Add note for docker user (#4340)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-24 21:09:44 +00:00
aae08249ac [Bugfix] Fix marlin kernel crash on H100 (#4218)
This PR addresses the Marlin kernel H100 crash that was reported here: neuralmagic#187.
The reason for the crash was the inline PTX assembly that introduced the async_copy with streaming behavior. The solution is to use the more standard PTX for async_copy (without the fractional L2 policy for "evict_first"). There is no performance difference between standard async_copy PTX and the previous one.
2024-04-24 10:35:01 -07:00
7923dcad12 [Misc] Update ShareGPT Dataset Sampling in Serving Benchmark (#4279) 2024-04-24 09:49:13 -07:00
3cd9b5bb2d [Core][Distributed] use existing torch.cuda.device (#4318)
[Core][Distributed] use existing torch.cuda.device context manager (#4318)
2024-04-24 09:00:20 -07:00
468d761b32 [Misc] Reduce supported Punica dtypes (#4304) 2024-04-23 18:54:33 -07:00
e4bf860a54 [CI][Build] change pynvml to nvidia-ml-py (#4302) 2024-04-23 18:33:12 -07:00
91f50a6fe2 [Core][Distributed] use cpu/gloo to initialize pynccl (#4248) 2024-04-23 18:32:19 -07:00
79a268c4ab [BUG] fixed fp8 conflict with aqlm (#4307)
Fixes fp8 iterface which broke in AQLM merge.
2024-04-23 18:26:33 -07:00
eace8bf0b9 [Kernel] FP8 support for MoE kernel / Mixtral (#4244)
This PR is the first step towards fixing https://github.com/vllm-project/vllm/pull/3208

It implements dynamic per-tensor scaling (see https://github.com/vllm-project/vllm/pull/4118), so users do not need to compute activation scales on a calibration dataset and they also don't need to convert their model checkpoints. It is enough to specify the `quantization="fp8"` argument. You can try out the PR like this:

```python
from vllm import LLM, SamplingParams

prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="mistralai/Mixtral-8x7B-Instruct-v0.1", tensor_parallel_size=2, quantization="fp8")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```

**Performance**: For this PR, the focus is on making the code clean (while still trying to get reasonable performance), there is a bunch of optimizations that we will submit as a follow up PR that significantly improve the performance (similar to the numbers in https://github.com/vllm-project/vllm/pull/3954). With this PR, the results are as follows:

<img width="725" alt="Screenshot 2024-04-21 at 1 31 50 PM" src="https://github.com/vllm-project/vllm/assets/113316/d8fe1118-07a0-4d4e-8530-37a77d465a03">


**Accuracy**: The accuracy with this PR on MMLU on `mistralai/Mixtral-8x7B-v0.1` is as follows:

```
|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.7018|±  |0.0036|
| - humanities     |N/A    |none  |     5|acc   |0.6472|±  |0.0065|
| - other          |N/A    |none  |     5|acc   |0.7673|±  |0.0072|
| - social_sciences|N/A    |none  |     5|acc   |0.8099|±  |0.0070|
| - stem           |N/A    |none  |     5|acc   |0.6131|±  |0.0083|
```
this compares favorably with the fp16 results which are
```
|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.7020|±  |0.1313|
| - humanities     |N/A    |none  |     5|acc   |0.6425|±  |0.1349|
| - other          |N/A    |none  |     5|acc   |0.7744|±  |0.1038|
| - social_sciences|N/A    |none  |     5|acc   |0.8131|±  |0.0695|
| - stem           |N/A    |none  |     5|acc   |0.6108|±  |0.1383|
```

Happy hacking!
2024-04-24 01:18:23 +00:00
1e8f4252aa [Bugfix][Frontend] Raise exception when file-like chat template fails to be opened (#4292) 2024-04-23 18:19:03 +00:00
2b7949c1c2 AQLM CUDA support (#3287)
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-04-23 13:59:33 -04:00
62b5166bd4 [CI] Add ccache for wheel builds job (#4281) 2024-04-23 09:51:41 -07:00
d86285a4a4 [Core][Logging] Add last frame information for better debugging (#4278) 2024-04-23 09:45:52 -07:00
d87f39e9a9 [Bugfix] Add init_cached_hf_modules to RayWorkerWrapper (#4286) 2024-04-23 09:28:35 -07:00
d3c8180ac4 [Bugfix] Fixing max token error message for openai compatible server (#4016) 2024-04-23 19:06:29 +08:00
62b8aebc6f [Speculative decoding 7/9] Speculative decoding end-to-end correctness tests. (#3951) 2024-04-23 08:02:36 +00:00
050f285ff6 [Core] Scheduling optimization 2 (#4280) 2024-04-23 08:02:11 +00:00
8f2ea22bde [Core] Some simplification of WorkerWrapper changes (#4183) 2024-04-23 07:49:08 +00:00
0ae11f78ab [Mypy] Part 3 fix typing for nested directories for most of directory (#4161) 2024-04-22 21:32:44 -07:00
34128a697e Fix autodoc directives (#4272)
Co-authored-by: Harry Mellor <hmellor@oxts.com>
2024-04-23 01:53:01 +00:00
c1b4e4157c [Core][Distributed] use absolute path for library file (#4271) 2024-04-22 17:21:48 -07:00
ceaf4ed003 [Doc] Update the SkyPilot doc with serving and Llama-3 (#4276) 2024-04-22 15:34:31 -07:00
ad8d696a99 [Core] Scheduler perf fix (#4270) 2024-04-22 21:11:06 +00:00
3d925165f2 Add example scripts to documentation (#4225)
Co-authored-by: Harry Mellor <hmellor@oxts.com>
2024-04-22 16:36:54 +00:00
1543680691 [Bugfix] Ensure download_weights_from_hf(..) inside loader is using the revision parameter (#4217) 2024-04-22 09:10:48 -07:00
077f0a2e8a [Frontend] Enable support for CPU backend in AsyncLLMEngine. (#3993)
Signed-off-by: Tao He <sighingnow@gmail.com>
2024-04-22 09:19:51 +00:00
e73ed0f1c6 [Bugfix] Fix type annotations in CPU model runner (#4256) 2024-04-22 00:54:16 -07:00
296cdf8ac7 [Misc] Add vision language model support to CPU backend (#3968) 2024-04-22 00:44:16 -07:00
747b1a7147 [Core][Distributed] fix _is_full_nvlink detection (#4233) 2024-04-21 23:04:16 -07:00
95e5b087cf [AMD][Hardware][Misc][Bugfix] xformer cleanup and light navi logic and CI fixes and refactoring (#4129) 2024-04-21 21:57:24 -07:00
a37d815b83 Make initialization of tokenizer and detokenizer optional (#3748)
Co-authored-by: Yun Ding <yunding@nvidia.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-21 22:06:46 +00:00
7f2593b164 [Doc]: Update the doc of adding new models (#4236) 2024-04-21 09:57:08 -07:00
fe7d648fe5 Don't show default value for flags in EngineArgs (#4223)
Co-authored-by: Harry Mellor <hmellor@oxts.com>
2024-04-21 09:15:28 -07:00
cc74b2b232 Updating lm-format-enforcer version and adding links to decoding libraries in docs (#4222) 2024-04-20 08:33:16 +00:00
91528575ec [Frontend] multiple sampling params support (#3570) 2024-04-20 00:11:57 -07:00
a22cdea371 [Kernel][FP8] Initial support with dynamic per-tensor scaling (#4118)
Provide an initial support to FP8 computation. This PR is inspired by HuggingFace TGI: huggingface/text-generation-inference#1726

This feature can be enabled with --quantization fp8 or -q fp8 when launching an engine.

Algorithm:
We still load a model checkpoint in FP16/BF16. After the weights are loaded, Fp8LinearMethod calculates the per-tensor scaling factor of weights and quantizes the weights accordingly. The scaling factor will then be stored for future use. Meanwhile, the per-tensor scaling factor for activations is calculated in every forward pass.

Initial Results:
Currently tested Mistral-7B on 1xH100. With prompt length ~5 and decoding length 128:

BF16: 1.47s
FP8: 1.66s
I'll try to use larger models and try to find more performance bottleneck. Meanwhile, you're welcome to try this code.
2024-04-20 04:28:57 +00:00
682789d402 Fix missing docs and out of sync EngineArgs (#4219)
Co-authored-by: Harry Mellor <hmellor@oxts.com>
2024-04-19 20:51:33 -07:00
138485a82d [Bugfix] Add fix for JSON whitespace (#4189)
Co-authored-by: Ubuntu <ubuntu@ip-172-31-13-147.ec2.internal>
2024-04-19 20:49:22 -07:00
bc9df1571b Pass tokenizer_revision when getting tokenizer in openai serving (#4214) 2024-04-19 17:13:56 -07:00
15b86408a8 [Misc] add nccl in collect env (#4211) 2024-04-19 19:44:51 +00:00
7be4f5628f [Bugfix][Core] Restore logging of stats in the async engine (#4150) 2024-04-19 08:08:26 -07:00
8f20fc04bf [Misc] fix docstrings (#4191)
Co-authored-by: Zhong Wang <wangzhong@infini-ai.com>
2024-04-19 08:18:33 +00:00
221d93ecbf Bump version of 0.4.1 (#4177) 2024-04-19 01:00:22 -07:00
d17c8477f1 [Bugfix] Fix LoRA loading check (#4138)
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-04-19 00:59:54 -07:00
a134ef6f5e Support eos_token_id from generation_config.json (#4182) 2024-04-19 04:13:36 +00:00
8a7a3e4436 [Core] add an option to log every function call to for debugging hang/crash in distributed inference (#4079)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-18 16:15:12 -07:00
8f9c28fd40 [Bugfix] Fix CustomAllreduce nvlink topology detection (#3974)
[Bugfix] Fix CustomAllreduce pcie nvlink topology detection (#3974) (#4159)
2024-04-18 15:32:47 -07:00
cd2f63fb36 [CI/CD] add neuron docker and ci test scripts (#3571) 2024-04-18 15:26:01 -07:00
87fa80c91f [Misc] Bump transformers to latest version (#4176) 2024-04-18 14:36:39 -07:00
e1bb2fd52d [Bugfix] Support logprobs when using guided_json and other constrained decoding fields (#4149) 2024-04-18 21:12:55 +00:00
705578ae14 [Docs] document that Meta Llama 3 is supported (#4175) 2024-04-18 10:55:48 -07:00
e8cc7967ff [Bugfix][Kernel] allow non-power-of-two head sizes in prefix prefill (#4128) 2024-04-18 00:51:28 -07:00
53b018edcb [Bugfix] Get available quantization methods from quantization registry (#4098) 2024-04-18 00:21:55 -07:00
66ded03067 Allow model to be served under multiple names (#2894)
Co-authored-by: Alexandre Payot <alexandrep@graphcore.ai>
2024-04-18 00:16:26 -07:00
6dc1fc9cfe [Core] nccl integrity check and test (#4155)
[Core] Add integrity check during initialization; add test for it (#4155)
2024-04-17 22:28:52 -07:00
533d2a1f39 [Typing] Mypy typing part 2 (#4043)
Co-authored-by: SangBin Cho <sangcho@sangcho-LT93GQWG9C.local>
2024-04-17 17:28:43 -07:00
a53222544c [Kernel] Add punica dimension for Swallow-MS-7B LoRA (#4134) 2024-04-17 10:02:45 -07:00
fe3b5bbc23 [Bugfix] fix output parsing error for trtllm backend (#4137)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-17 11:07:23 +00:00
8438e0569e [Core] RayWorkerVllm --> WorkerWrapper to reduce duplication (#4024)
[Core] replace narrow-usage RayWorkerVllm to general WorkerWrapper to reduce code duplication (#4024)
2024-04-17 08:34:33 +00:00
11d652bd4f [CI] Move CPU/AMD tests to after wait (#4123) 2024-04-16 22:53:26 -07:00
d150e4f89f [Misc] [CI] Fix CI failure caught after merge (#4126) 2024-04-16 17:56:01 -07:00
e95cd87959 [Speculative decoding 6/9] Integrate speculative decoding with LLMEngine (#3894) 2024-04-16 13:09:21 -07:00
69e1d2fb69 [Core] Refactor model loading code (#4097) 2024-04-16 11:34:39 -07:00
05434764cd LM Format Enforcer Guided Decoding Support (#3868)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-16 05:54:57 +00:00
4e7ee664e2 [Core] Fix engine-use-ray broken (#4105) 2024-04-16 05:24:53 +00:00
37e84a403d [Typing] Fix Sequence type GenericAlias only available after Python 3.9. (#4092) 2024-04-15 14:47:31 -07:00
4695397dcf [Bugfix] Fix ray workers profiling with nsight (#4095) 2024-04-15 14:24:45 -07:00
d619ae2d19 [Doc] Add better clarity for tensorizer usage (#4090)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-15 13:28:25 -07:00
eb46fbfda2 [Core] Simplifications to executor classes (#4071) 2024-04-15 13:05:09 -07:00
0003e9154b [Misc][Minor] Fix CPU block num log in CPUExecutor. (#4088) 2024-04-15 08:35:55 -07:00
e11e200736 [Bugfix] Fix filelock version requirement (#4075) 2024-04-14 21:50:08 -07:00
Roy
8db1bf32f8 [Misc] Upgrade triton to 2.2.0 (#4061) 2024-04-14 17:43:54 -07:00
aceb17cf2d [Docs] document that mixtral 8x22b is supported (#4073) 2024-04-14 14:35:55 -07:00
563c54f760 [BugFix] Fix tensorizer extra in setup.py (#4072) 2024-04-14 14:12:42 -07:00
2cd6b4f362 [Core] avoid too many cuda context by caching p2p test (#4021) 2024-04-13 23:40:21 -07:00
711a000255 [Frontend] [Core] feat: Add model loading using tensorizer (#3476) 2024-04-13 17:13:01 -07:00
989ae2538d [Kernel] Add punica dimension for Baichuan-13B (#4053) 2024-04-13 07:55:05 -07:00
0a430b4ae2 [Bugfix] fix_small_bug_in_neuron_executor (#4051) 2024-04-13 07:54:03 -07:00
ec8e3c695f [Bugfix] fix_log_time_in_metrics (#4050) 2024-04-13 07:52:36 -07:00
98afde19fc [Core][Distributed] improve logging for init dist (#4042) 2024-04-13 07:12:53 -07:00
5c2e66e487 [Bugfix] More type hint fixes for py 3.8 (#4039) 2024-04-12 21:07:04 -07:00
546e721168 [CI/Test] expand ruff and yapf for all supported python version (#4037) 2024-04-13 01:43:37 +00:00
b8aacac31a [Bugfix] Fix LoRA bug (#4032) 2024-04-12 16:56:37 -07:00
d04973ad54 Fix triton compilation issue (#3984)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-12 16:41:26 -07:00
fbb9d9eef4 [Core] fix custom allreduce default value (#4040) 2024-04-12 16:40:39 -07:00
09473ee41c [mypy] Add mypy type annotation part 1 (#4006) 2024-04-12 14:35:50 -07:00
d4ec9ffb95 [Misc] Fix typo in scheduler.py (#4022) 2024-04-12 13:56:04 -07:00
96b6a6d790 [Bugfix] fix type hint for py 3.8 (#4036) 2024-04-12 19:35:44 +00:00
36729bac13 [Test] Test multiple attn backend for chunked prefill. (#4023) 2024-04-12 09:56:57 -07:00
7fd3949a0b [Frontend][Core] Move merge_async_iterators to utils (#4026) 2024-04-12 05:30:54 +00:00
1096717ae9 [Core] Support LoRA on quantized models (#4012) 2024-04-11 21:02:44 -07:00
c2b4a1bce9 [Doc] Add typing hints / mypy types cleanup (#3816)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-11 17:17:21 -07:00
e46a60aa4c [BugFix] Fix handling of stop strings and stop token ids (#3672) 2024-04-11 15:34:12 -07:00
1e96c3341a Add extra punica sizes to support bigger vocabs (#4015) 2024-04-11 22:18:57 +00:00
95e7d4a97c Fix echo/logprob OpenAI completion bug (#3441)
Co-authored-by: Dylan Hawk <dylanwawk@gmail.com>
2024-04-11 22:15:50 +00:00
559eb852f8 [Core] init_distributed_environment align with init_process_group(#4014)
[Core][Distributed] make init_distributed_environment compatible with init_process_group (#4014)
2024-04-11 14:00:48 -07:00
a10d3056da [Core] Set linear_weights directly on the layer (#3977) 2024-04-11 16:35:51 -04:00
8afca50889 [Hardware][Intel] Isolate CPUModelRunner and ModelRunner for better maintenance (#3824) 2024-04-11 11:56:49 -07:00
08ccee1e83 punica fix-bgmv-kernel-640 (#4007) 2024-04-11 08:59:26 -07:00
c1dc547129 [Kernel] Fused MoE Config for Mixtral 8x22 (#4002) 2024-04-11 07:50:00 -07:00
f3d0bf7589 [Doc][Installation] delete python setup.py develop (#3989) 2024-04-11 03:33:02 +00:00
e9da5a40c6 [Misc] Add indirection layer for custom ops (#3913) 2024-04-10 20:26:07 -07:00
e42df7227d [Test] Add xformer and flash attn tests (#3961)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-11 03:09:50 +00:00
caada5e50a [Core][Model] torch.compile for layernorm in commandr (#3985)
[Core][Model] Use torch.compile to accelerate layernorm in commandr (#3985)
2024-04-11 01:48:26 +00:00
67b4221a61 [Core][5/N] Fully working chunked prefill e2e (#3884) 2024-04-10 17:56:48 -07:00
63e7176f26 [Core][Refactor] move parallel_utils into vllm/distributed (#3950)
[WIP][Core][Refactor] move vllm/model_executor/parallel_utils into vllm/distributed and vllm/device_communicators (#3950)
2024-04-10 15:33:30 -07:00
934d3662f7 [Bugfix] handle hf_config with architectures == None (#3982)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-10 22:28:25 +00:00
92cd2e2f21 [Doc] Fix getting stared to use publicly available model (#3963) 2024-04-10 18:05:52 +00:00
e4c4072c94 [Bugfix] Remove key sorting for guided_json parameter in OpenAi compatible Server (#3945) 2024-04-10 10:15:51 -07:00
e35397468f [Doc] Add doc to state our model support policy (#3948)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-10 17:03:02 +00:00
8b317c6dd0 [Model][AMD] ROCm support for 256 head dims for Gemma (#3972) 2024-04-10 08:12:00 -07:00
bd3c144e0b [Bugfix][ROCm] Add numba to Dockerfile.rocm (#3962) 2024-04-10 07:37:17 -07:00
0258b7a94b [Bugfix] handle prompt_logprobs in _apply_min_tokens_penalty (#3876)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-04-10 01:39:56 -07:00
b3104b2a10 [Bugfix] Fix logits processor when prompt_logprobs is not None (#3899) 2024-04-10 00:09:36 -07:00
c2e00af523 [Bugfix] fix utils.py/merge_dict func TypeError: 'type' object is not subscriptable (#3955)
Co-authored-by: tianyi_zhao <tianyi.zhao@transwarp.io>
2024-04-10 04:49:11 +00:00
c013d32c75 [Benchmark] Add cpu options to bench scripts (#3915) 2024-04-09 21:30:03 -07:00
11dd6ebb89 [Misc] Avoid loading incorrect LoRA config (#3777) 2024-04-09 19:47:15 -07:00
6c0b04515f [ROCm][Hardware][AMD] Use Triton Kernel for default FA on ROCm (#3643)
Co-authored-by: jpvillam <jpvillam@amd.com>
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-09 15:10:47 -07:00
e23a43aef8 [Bugfix] Fix KeyError on loading GPT-NeoX (#3925) 2024-04-09 12:11:31 -07:00
e7c7067b45 [Misc] [Core] Implement RFC "Augment BaseExecutor interfaces to enable hardware-agnostic speculative decoding" (#3837) 2024-04-09 11:44:15 -07:00
6d592eb430 [Core] separate distributed_init from worker (#3904) 2024-04-09 08:49:02 +00:00
Roy
d036198e23 [BugFix][Model] Fix commandr RoPE max_position_embeddings (#3919) 2024-04-09 06:17:21 +08:00
59a6abf3c9 [Hotfix][CI/Build][Kernel] CUDA 11.8 does not support layernorm optimizations (#3782) 2024-04-08 14:31:02 -07:00
bc0c0192d1 [Bugfix] Enable Proper attention_bias Usage in Llama Model Configuration (#3767)
Co-authored-by: roy <jasonailu87@gmail.com>
2024-04-08 19:42:35 +00:00
f46864d68d [Bugfix] Added Command-R GPTQ support (#3849)
Co-authored-by: Egor Tolmachev <t333ga@gmail.com>
2024-04-08 14:59:38 +00:00
b4543c8f6b [Model] add minicpm (#3893) 2024-04-08 18:28:36 +08:00
0ce0539d47 [Bugfix] Fix Llava inference with Tensor Parallelism. (#3883) 2024-04-07 22:54:13 +08:00
2f19283549 [Core] latency optimization (#3890) 2024-04-06 19:14:06 -07:00
95baec828f [Core] enable out-of-tree model register (#3871) 2024-04-06 17:11:41 -07:00
e4be7d70bb [CI/Benchmark] add more iteration and use median for robust latency benchmark (#3889) 2024-04-06 21:32:30 +00:00
54951ac4bf [Bugfix] Fix incorrect output on OLMo models in Tensor Parallelism (#3869) 2024-04-05 12:02:09 -07:00
18de883489 [Chunked Prefill][4/n] Chunked prefill scheduler. (#3853) 2024-04-05 10:17:58 -07:00
1d7c940d74 Add option to completion API to truncate prompt tokens (#3144) 2024-04-05 10:15:42 -07:00
cfaf49a167 [Misc] Define common requirements (#3841) 2024-04-05 00:39:17 -07:00
9edec652e2 [Bugfix] Fixing requirements.txt (#3865) 2024-04-04 23:46:01 -07:00
e0dd4d3589 [Misc] Fix linter issues in examples/fp8/quantizer/quantize.py (#3864) 2024-04-04 21:57:33 -07:00
e5043a3e75 [Misc] Add pytest marker to opt-out of global test cleanup (#3863) 2024-04-04 21:54:16 -07:00
d03d64fd2e [CI/Build] refactor dockerfile & fix pip cache
[CI/Build] fix pip cache with vllm_nccl & refactor dockerfile to build wheels (#3859)
2024-04-04 21:53:16 -07:00
78107fa091 [Doc]Add asynchronous engine arguments to documentation. (#3810)
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-04 21:52:01 -07:00
c391e4b68e [Core] improve robustness of pynccl (#3860) 2024-04-04 16:52:12 -07:00
9117f892f0 [Model] Cohere CommandR+ (#3829) 2024-04-04 13:31:49 -07:00
db2a6a41e2 [Hardware][CPU] Update cpu torch to match default of 2.2.1 (#3854) 2024-04-04 19:49:49 +00:00
ca81ff5196 [Core] manage nccl via a pypi package & upgrade to pt 2.2.1 (#3805) 2024-04-04 10:26:19 -07:00
b7782002e1 [Benchmark] Refactor sample_requests in benchmark_throughput (#3613)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-04 09:56:22 +00:00
819a309c0f [Bugfix] Fix args in benchmark_serving (#3836)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-04 07:41:05 +00:00
aabe8f40f2 [Core] [Frontend] Make detokenization optional (#3749)
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-04-03 21:52:18 -07:00
498eb5cfa3 [Bugfix] Add kv_scale input parameter to CPU backend (#3840) 2024-04-04 04:33:08 +00:00
537ee25f43 [Core] Enable hf_transfer by default if available (#3817) 2024-04-04 04:02:43 +00:00
294f8f6665 [BugFix] Pass tokenizer_config to local_tokenizer_group (#3754)
Signed-off-by: Tao He <sighingnow@gmail.com>
2024-04-03 20:31:46 -07:00
b95047f2da [Misc] Publish 3rd meetup slides (#3835) 2024-04-03 15:46:10 -07:00
2ff767b513 Enable scaled FP8 (e4m3fn) KV cache on ROCm (AMD GPU) (#3290)
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: HaiShaw <hixiao@gmail.com>
Co-authored-by: AdrianAbeyta <Adrian.Abeyta@amd.com>
Co-authored-by: Matthew Wong <Matthew.Wong2@amd.com>
Co-authored-by: root <root@gt-pla-u18-08.pla.dcgpu>
Co-authored-by: mawong-amd <156021403+mawong-amd@users.noreply.github.com>
Co-authored-by: ttbachyinsda <ttbachyinsda@outlook.com>
Co-authored-by: guofangze <guofangze@kuaishou.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: jacobthebanana <50071502+jacobthebanana@users.noreply.github.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-03 14:15:55 -07:00
3dcb3e8b98 [3/N] Refactor scheduler for chunked prefill scheduling (#3550) 2024-04-03 14:13:49 -07:00
c64cf38673 [Doc] Update contribution guidelines for better onboarding (#3819) 2024-04-03 07:31:43 +00:00
76b889bf1d [Doc] Update README.md (#3806) 2024-04-02 23:11:10 -07:00
c9b506dad4 [BugFix] Use different mechanism to get vllm version in is_cpu() (#3804) 2024-04-02 23:06:25 -07:00
5757d90e26 [Speculative decoding] Adding configuration object for speculative decoding (#3706)
Co-authored-by: Lily Liu <lilyliupku@gmail.com>
2024-04-03 00:40:57 +00:00
a3c226e7eb [CI/Build] 0.4.0.post1, fix sm 7.0/7.5 binary (#3803) 2024-04-02 12:57:04 -07:00
b321d4881b [Bugfix] Add __init__.py files for vllm/core/block/ and vllm/spec_decode/ (#3798) 2024-04-02 12:35:31 -07:00
ad6eca408b Fix early CUDA init via get_architecture_class_name import (#3770)
Signed-off-by: Lei Wen <wenlei03@qiyi.com>
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
2024-04-02 11:56:26 -07:00
205b94942e [CI/Build] fix TORCH_CUDA_ARCH_LIST in wheel build (#3801) 2024-04-02 11:54:33 -07:00
3bec41f41a [Doc] Fix vLLMEngine Doc Page (#3791) 2024-04-02 09:49:37 -07:00
0739b1947f [Frontend][Bugfix] allow using the default middleware with a root path (#3788)
Co-authored-by: A-Mahla <>
2024-04-02 01:20:28 -07:00
77a6572aa5 [HotFix] [CI/Build] Minor fix for CPU backend CI (#3787) 2024-04-01 22:50:53 -07:00
0e3f06fe9c [Hardware][Intel] Add CPU inference backend (#3634)
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
Co-authored-by: Yuan Zhou <yuan.zhou@intel.com>
2024-04-01 22:07:30 -07:00
eb69d68804 [Misc] [CI/Build] Speed up block manager CPU-only unit tests ~10x by opting-out of GPU cleanup (#3783) 2024-04-02 00:49:51 +00:00
7d4e1b85e7 [Misc] Add support for new autogptq checkpoint_format (#3689)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-04-01 19:32:01 -04:00
93deb0b38f [Speculative decoding 4/9] Lookahead scheduling for speculative decoding (#3250) 2024-04-01 22:55:24 +00:00
ccb58b23e6 [Misc] Fix Benchmark TTFT Calculation for Chat Completions (#3768) 2024-04-01 15:24:30 -07:00
49782fcb76 [Misc] Some minor simplifications to detokenization logic (#3670)
Some simplifications made for clarity.

Also moves detokenization-related functions from tokenizer.py to detokenizer.py.
2024-04-01 13:22:06 -07:00
f03cc667a0 [Misc] Minor fixes in requirements.txt (#3769) 2024-04-01 10:15:48 +00:00
563c1d7ec5 [CI/Build] Make Marlin Tests Green (#3753) 2024-03-30 19:18:34 -07:00
9c82a1bec3 [Doc] Update installation doc (#3746)
[Doc] Update installation doc for build from source and explain the dependency on torch/cuda version (#3746)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-03-30 16:34:38 -07:00
b6d103542c [Kernel] Layernorm performance optimization (#3662) 2024-03-30 14:26:38 -07:00
403 changed files with 37467 additions and 7831 deletions

View File

@ -0,0 +1,36 @@
import os
import zipfile
MAX_SIZE_MB = 100
def print_top_10_largest_files(zip_file):
with zipfile.ZipFile(zip_file, 'r') as z:
file_sizes = [(f, z.getinfo(f).file_size) for f in z.namelist()]
file_sizes.sort(key=lambda x: x[1], reverse=True)
for f, size in file_sizes[:10]:
print(f"{f}: {size/(1024*1024)} MBs uncompressed.")
def check_wheel_size(directory):
for root, _, files in os.walk(directory):
for f in files:
if f.endswith(".whl"):
wheel_path = os.path.join(root, f)
wheel_size = os.path.getsize(wheel_path)
wheel_size_mb = wheel_size / (1024 * 1024)
if wheel_size_mb > MAX_SIZE_MB:
print(
f"Wheel {wheel_path} is too large ({wheel_size_mb} MB) "
f"compare to the allowed size ({MAX_SIZE_MB} MB).")
print_top_10_largest_files(wheel_path)
return 1
else:
print(f"Wheel {wheel_path} is within the allowed size "
f"({wheel_size_mb} MB).")
return 0
if __name__ == "__main__":
import sys
sys.exit(check_wheel_size(sys.argv[1]))

View File

@ -1,38 +1,44 @@
# This script build the ROCm docker image and run the API server inside the container.
# It serves a sanity check for compilation and basic model usage.
# This script build the ROCm docker image and runs test inside it.
set -ex
# Print ROCm version
echo "--- ROCm info"
rocminfo
# Try building the docker image
docker build -t rocm -f Dockerfile.rocm .
echo "--- Resetting GPUs"
# Setup cleanup
remove_docker_container() { docker rm -f rocm || true; }
trap remove_docker_container EXIT
remove_docker_container
echo "reset" > /opt/amdgpu/etc/gpu_state
# Run the image
docker run --device /dev/kfd --device /dev/dri --network host --name rocm rocm python3 -m vllm.entrypoints.api_server &
# Wait for the server to start
wait_for_server_to_start() {
timeout=300
counter=0
while [ "$(curl -s -o /dev/null -w ''%{http_code}'' localhost:8000/health)" != "200" ]; do
sleep 1
counter=$((counter + 1))
if [ $counter -ge $timeout ]; then
echo "Timeout after $timeout seconds"
break
while true; do
sleep 3
if grep -q clean /opt/amdgpu/etc/gpu_state; then
echo "GPUs state is \"clean\""
break
fi
done
}
wait_for_server_to_start
done
echo "--- Building container"
sha=$(git rev-parse --short HEAD)
container_name=rocm_${sha}
docker build \
-t ${container_name} \
-f Dockerfile.rocm \
--progress plain \
.
remove_docker_container() {
docker rm -f ${container_name} || docker image rm -f ${container_name} || true
}
trap remove_docker_container EXIT
echo "--- Running container"
docker run \
--device /dev/kfd --device /dev/dri \
--network host \
--rm \
-e HF_TOKEN \
--name ${container_name} \
${container_name} \
/bin/bash -c $(echo $1 | sed "s/^'//" | sed "s/'$//")
# Test a simple prompt
curl -X POST -H "Content-Type: application/json" \
localhost:8000/generate \
-d '{"prompt": "San Francisco is a"}'

View File

@ -53,6 +53,11 @@ echo '```' >> benchmark_results.md
tail -n 20 benchmark_serving.txt >> benchmark_results.md # last 20 lines
echo '```' >> benchmark_results.md
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
exit 0
fi
# upload the results to buildkite
/workspace/buildkite-agent annotate --style "info" --context "benchmark-results" < benchmark_results.md

View File

@ -0,0 +1,14 @@
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Try building the docker image
docker build -t cpu-test -f Dockerfile.cpu .
# Setup cleanup
remove_docker_container() { docker rm -f cpu-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --network host --env VLLM_CPU_KVCACHE_SPACE=1 --name cpu-test cpu-test python3 examples/offline_inference.py

View File

@ -0,0 +1,51 @@
# This script build the Neuron docker image and run the API server inside the container.
# It serves a sanity check for compilation and basic model usage.
set -e
# Try building the docker image
aws ecr get-login-password --region us-west-2 | docker login --username AWS --password-stdin 763104351884.dkr.ecr.us-west-2.amazonaws.com
# prune old image and containers to save disk space, and only once a day
# by using a timestamp file in tmp.
if [ -f /tmp/neuron-docker-build-timestamp ]; then
last_build=$(cat /tmp/neuron-docker-build-timestamp)
current_time=$(date +%s)
if [ $((current_time - last_build)) -gt 86400 ]; then
docker system prune -f
echo $current_time > /tmp/neuron-docker-build-timestamp
fi
else
echo $(date +%s) > /tmp/neuron-docker-build-timestamp
fi
docker build -t neuron -f Dockerfile.neuron .
# Setup cleanup
remove_docker_container() { docker rm -f neuron || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image
docker run --device=/dev/neuron0 --device=/dev/neuron1 --network host --name neuron neuron python3 -m vllm.entrypoints.api_server \
--model TinyLlama/TinyLlama-1.1B-Chat-v1.0 --max-num-seqs 8 --max-model-len 128 --block-size 128 --device neuron --tensor-parallel-size 2 &
# Wait for the server to start
wait_for_server_to_start() {
timeout=300
counter=0
while [ "$(curl -s -o /dev/null -w ''%{http_code}'' localhost:8000/health)" != "200" ]; do
sleep 1
counter=$((counter + 1))
if [ $counter -ge $timeout ]; then
echo "Timeout after $timeout seconds"
break
fi
done
}
wait_for_server_to_start
# Test a simple prompt
curl -X POST -H "Content-Type: application/json" \
localhost:8000/generate \
-d '{"prompt": "San Francisco is a"}'

View File

@ -12,32 +12,54 @@ steps:
command: pytest -v -s async_engine
- label: Basic Correctness Test
command: pytest -v -s basic_correctness
commands:
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_basic_correctness.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_basic_correctness.py
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Core Test
mirror_hardwares: [amd]
command: pytest -v -s core
- label: Distributed Comm Ops Test
command: pytest -v -s test_comm_ops.py
working_dir: "/vllm-workspace/tests/distributed"
num_gpus: 2 # only support 1 or 2 for now.
num_gpus: 2
- label: Distributed Tests
working_dir: "/vllm-workspace/tests/distributed"
num_gpus: 2 # only support 1 or 2 for now.
mirror_hardwares: [amd]
commands:
- pytest -v -s test_pynccl.py
- pytest -v -s test_pynccl_library.py
- TEST_DIST_MODEL=facebook/opt-125m pytest -v -s test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf pytest -v -s test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m pytest -v -s test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf pytest -v -s test_chunked_prefill_distributed.py
- label: Distributed Tests (Multiple Groups)
working_dir: "/vllm-workspace/tests/distributed"
num_gpus: 4
commands:
- pytest -v -s test_pynccl.py
- label: Engine Test
command: pytest -v -s engine tokenization test_sequence.py test_config.py
mirror_hardwares: [amd]
command: pytest -v -s engine tokenization test_sequence.py test_config.py test_logger.py
- label: Entrypoints Test
command: pytest -v -s entrypoints
commands:
# these tests have to be separated, because each one will allocate all posible GPU memory
- pytest -v -s entrypoints --ignore=entrypoints/test_server_oot_registration.py
- pytest -v -s entrypoints/test_server_oot_registration.py
- label: Examples Test
working_dir: "/vllm-workspace/examples"
mirror_hardwares: [amd]
commands:
# install aws cli for llava_example.py
- pip install awscli
@ -51,16 +73,19 @@ steps:
parallelism: 4
- label: Models Test
mirror_hardwares: [amd]
commands:
- bash ../.buildkite/download-images.sh
- pytest -v -s models --ignore=models/test_llava.py --ignore=models/test_mistral.py
- label: Llava Test
mirror_hardwares: [amd]
commands:
- bash ../.buildkite/download-images.sh
- pytest -v -s models/test_llava.py
- label: Prefix Caching Test
mirror_hardwares: [amd]
commands:
- pytest -v -s prefix_caching
@ -68,29 +93,39 @@ steps:
command: pytest -v -s samplers
- label: LogitsProcessor Test
mirror_hardwares: [amd]
command: pytest -v -s test_logits_processor.py
- label: Worker Test
mirror_hardwares: [amd]
command: pytest -v -s worker
- label: Speculative decoding tests
mirror_hardwares: [amd]
command: pytest -v -s spec_decode
- label: LoRA Test %N
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 4
- label: Tensorizer Test
command: apt-get install curl libsodium23 && pytest -v -s tensorizer_loader
- label: Metrics Test
command: pytest -v -s metrics
- label: Quantization Test
command: pytest -v -s quantization
- label: Benchmarks
working_dir: "/vllm-workspace/.buildkite"
mirror_hardwares: [amd]
commands:
- pip install aiohttp
- bash run-benchmarks.sh
- label: Documentation Build
working_dir: "/vllm-workspace/docs"
working_dir: "/vllm-workspace/test_docs/docs"
no_gpu: True
commands:
- pip install -r requirements-docs.txt

View File

@ -3,10 +3,6 @@
{% set default_working_dir = "/vllm-workspace/tests" %}
steps:
- label: "AMD Test"
agents:
queue: amd
command: bash .buildkite/run-amd-test.sh
- label: ":docker: build image"
commands:
@ -20,6 +16,31 @@ steps:
limit: 5
- wait
- group: "AMD Tests"
depends_on: ~
steps:
{% for step in steps %}
{% if step.mirror_hardwares and "amd" in step.mirror_hardwares %}
- label: "AMD: {{ step.label }}"
agents:
queue: amd
command: bash .buildkite/run-amd-test.sh "'cd {{ (step.working_dir or default_working_dir) | safe }} && {{ step.command or (step.commands | join(' && ')) | safe }}'"
env:
DOCKER_BUILDKIT: "1"
{% endif %}
{% endfor %}
- label: "Neuron Test"
depends_on: ~
agents:
queue: neuron
command: bash .buildkite/run-neuron-test.sh
soft_fail: true
- label: "Intel Test"
depends_on: ~
command: bash .buildkite/run-cpu-test.sh
{% for step in steps %}
- label: "{{ step.label }}"
agents:
@ -35,6 +56,9 @@ steps:
plugins:
- kubernetes:
podSpec:
{% if step.num_gpus %}
priorityClassName: gpu-priority-cls-{{ step.num_gpus }}
{% endif %}
volumes:
- name: dshm
emptyDir:

View File

@ -18,6 +18,7 @@ body:
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
```text
The output of `python collect_env.py`

View File

@ -18,6 +18,7 @@ body:
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
```text
The output of `python collect_env.py`

View File

@ -18,6 +18,7 @@ body:
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
```text
The output of `python collect_env.py`
@ -57,6 +58,8 @@ body:
If the code is too long (hopefully, it isn't), feel free to put it in a public gist and link it in the issue: https://gist.github.com.
Please also paste or describe the results you observe instead of the expected results. If you observe an error, please paste the error message including the **full** traceback of the exception. It may be relevant to wrap error messages in ```` ```triple quotes blocks``` ````.
If you experienced crashes or hangs, it would be helpful to run vllm with `export VLLM_TRACE_FUNCTION=1` . All the function calls in vllm will be recorded. Inspect these log files, and tell which function crashes or hangs.
placeholder: |
A clear and concise description of what the bug is.

View File

@ -39,6 +39,7 @@ body:
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
```text
The output of `python collect_env.py`

49
.github/ISSUE_TEMPLATE/750-RFC.yml vendored Normal file
View File

@ -0,0 +1,49 @@
name: 💬 Request for comments (RFC).
description: Ask for feedback on major architectural changes or design choices.
title: "[RFC]: "
labels: ["RFC"]
body:
- type: markdown
attributes:
value: >
#### Please take a look at previous [RFCs](https://github.com/vllm-project/vllm/issues?q=label%3ARFC+sort%3Aupdated-desc) for reference.
- type: textarea
attributes:
label: Motivation.
description: >
The motivation of the RFC.
validations:
required: true
- type: textarea
attributes:
label: Proposed Change.
description: >
The proposed change of the RFC.
validations:
required: true
- type: textarea
attributes:
label: Feedback Period.
description: >
The feedback period of the RFC. Usually at least one week.
validations:
required: false
- type: textarea
attributes:
label: CC List.
description: >
The list of people you want to CC.
validations:
required: false
- type: textarea
attributes:
label: Any Other Things.
description: >
Any other things you would like to mention.
validations:
required: false
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

50
.github/workflows/mypy.yaml vendored Normal file
View File

@ -0,0 +1,50 @@
name: mypy
on:
# Trigger the workflow on push or pull request,
# but only for the main branch
push:
branches:
- main
pull_request:
branches:
- main
jobs:
ruff:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install mypy==1.9.0
pip install types-setuptools
pip install types-PyYAML
pip install types-requests
pip install types-setuptools
- name: Mypy
run: |
mypy vllm/attention --config-file pyproject.toml
mypy vllm/core --config-file pyproject.toml
mypy vllm/distributed --config-file pyproject.toml
mypy vllm/entrypoints --config-file pyproject.toml
mypy vllm/executor --config-file pyproject.toml
mypy vllm/usage --config-file pyproject.toml
mypy vllm/*.py --config-file pyproject.toml
mypy vllm/transformers_utils --config-file pyproject.toml
mypy vllm/engine --config-file pyproject.toml
mypy vllm/worker --config-file pyproject.toml
mypy vllm/spec_decode --config-file pyproject.toml
mypy vllm/model_executor --config-file pyproject.toml
mypy vllm/lora --config-file pyproject.toml
mypy vllm/logging --config-file pyproject.toml
mypy vllm/model_executor --config-file pyproject.toml

View File

@ -49,13 +49,16 @@ jobs:
matrix:
os: ['ubuntu-20.04']
python-version: ['3.8', '3.9', '3.10', '3.11']
pytorch-version: ['2.1.2'] # Must be the most recent version that meets requirements.txt.
pytorch-version: ['2.3.0'] # Must be the most recent version that meets requirements-cuda.txt.
cuda-version: ['11.8', '12.1']
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Setup ccache
uses: hendrikmuhs/ccache-action@v1.2
- name: Set up Linux Env
if: ${{ runner.os == 'Linux' }}
run: |
@ -76,6 +79,8 @@ jobs:
- name: Build wheel
shell: bash
env:
CMAKE_BUILD_TYPE: Release # do not compile with debug symbol to reduce wheel size
run: |
bash -x .github/workflows/scripts/build.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }}
wheel_name=$(ls dist/*whl | xargs -n 1 basename)

View File

@ -15,7 +15,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.10"]
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}

View File

@ -9,12 +9,13 @@ LD_LIBRARY_PATH=${cuda_home}/lib64:$LD_LIBRARY_PATH
# Install requirements
$python_executable -m pip install wheel packaging
$python_executable -m pip install -r requirements.txt
$python_executable -m pip install -r requirements-cuda.txt
# Limit the number of parallel jobs to avoid OOM
export MAX_JOBS=1
# Make sure punica is built for the release (for LoRA)
export VLLM_INSTALL_PUNICA_KERNELS=1
# Make sure release wheels are built for the following architectures
export TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX"
# Build
$python_executable setup.py bdist_wheel --dist-dir=dist

View File

@ -8,7 +8,7 @@ module.exports = async (github, context, core) => {
generate_release_notes: true,
name: process.env.RELEASE_TAG,
owner: context.repo.owner,
prerelease: false,
prerelease: true,
repo: context.repo.repo,
tag_name: process.env.RELEASE_TAG,
});

View File

@ -14,7 +14,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.10"]
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}

3
.gitignore vendored
View File

@ -70,6 +70,8 @@ instance/
# Sphinx documentation
docs/_build/
docs/source/getting_started/examples/*.rst
!**/*.template.rst
# PyBuilder
.pybuilder/
@ -181,6 +183,7 @@ _build/
# hip files generated by PyTorch
*.hip
*_hip*
hip_compat.h
# Benchmark dataset
*.json

View File

@ -2,7 +2,10 @@ cmake_minimum_required(VERSION 3.21)
project(vllm_extensions LANGUAGES CXX)
option(VLLM_TARGET_DEVICE "Target device backend for vLLM" "cuda")
message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")
message(STATUS "Target device: ${VLLM_TARGET_DEVICE}")
include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake)
@ -16,7 +19,7 @@ set(PYTHON_SUPPORTED_VERSIONS "3.8" "3.9" "3.10" "3.11")
set(CUDA_SUPPORTED_ARCHS "7.0;7.5;8.0;8.6;8.9;9.0")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx908;gfx90a;gfx942;gfx1100")
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100")
#
# Supported/expected torch versions for CUDA/ROCm.
@ -28,7 +31,7 @@ set(HIP_SUPPORTED_ARCHS "gfx908;gfx90a;gfx942;gfx1100")
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.1.2")
set(TORCH_SUPPORTED_VERSION_CUDA "2.3.0")
set(TORCH_SUPPORTED_VERSION_ROCM_5X "2.0.1")
set(TORCH_SUPPORTED_VERSION_ROCM_6X "2.1.1")
@ -76,6 +79,19 @@ find_package(Torch REQUIRED)
find_library(torch_python_LIBRARY torch_python PATHS
"${TORCH_INSTALL_PREFIX}/lib")
#
# Forward the non-CUDA device extensions to external CMake scripts.
#
if (NOT VLLM_TARGET_DEVICE STREQUAL "cuda" AND
NOT VLLM_TARGET_DEVICE STREQUAL "rocm")
if (VLLM_TARGET_DEVICE STREQUAL "cpu")
include(${CMAKE_CURRENT_LIST_DIR}/cmake/cpu_extension.cmake)
else()
message(FATAL_ERROR "Unsupported vLLM target device: ${VLLM_TARGET_DEVICE}")
endif()
return()
endif()
#
# Set up GPU language and check the torch version and warn if it isn't
# what is expected.
@ -151,14 +167,18 @@ set(VLLM_EXT_SRC
"csrc/layernorm_kernels.cu"
"csrc/quantization/squeezellm/quant_cuda_kernel.cu"
"csrc/quantization/gptq/q_gemm.cu"
"csrc/quantization/fp8/fp8_cuda_kernels.cu"
"csrc/cuda_utils_kernels.cu"
"csrc/moe_align_block_size_kernels.cu"
"csrc/pybind.cpp")
if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_EXT_SRC
"csrc/quantization/aqlm/gemm_kernels.cu"
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/quantization/marlin/marlin_cuda_kernel.cu"
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
"csrc/custom_all_reduce.cu")
endif()
@ -194,23 +214,11 @@ define_gpu_extension_target(
set(VLLM_PUNICA_EXT_SRC
"csrc/punica/bgmv/bgmv_bf16_bf16_bf16.cu"
"csrc/punica/bgmv/bgmv_bf16_bf16_fp16.cu"
"csrc/punica/bgmv/bgmv_bf16_fp16_bf16.cu"
"csrc/punica/bgmv/bgmv_bf16_fp16_fp16.cu"
"csrc/punica/bgmv/bgmv_bf16_fp32_bf16.cu"
"csrc/punica/bgmv/bgmv_bf16_fp32_fp16.cu"
"csrc/punica/bgmv/bgmv_fp16_bf16_bf16.cu"
"csrc/punica/bgmv/bgmv_fp16_bf16_fp16.cu"
"csrc/punica/bgmv/bgmv_fp16_fp16_bf16.cu"
"csrc/punica/bgmv/bgmv_fp16_fp16_fp16.cu"
"csrc/punica/bgmv/bgmv_fp16_fp32_bf16.cu"
"csrc/punica/bgmv/bgmv_fp16_fp32_fp16.cu"
"csrc/punica/bgmv/bgmv_fp32_bf16_bf16.cu"
"csrc/punica/bgmv/bgmv_fp32_bf16_fp16.cu"
"csrc/punica/bgmv/bgmv_fp32_fp16_bf16.cu"
"csrc/punica/bgmv/bgmv_fp32_fp16_fp16.cu"
"csrc/punica/bgmv/bgmv_fp32_fp32_bf16.cu"
"csrc/punica/bgmv/bgmv_fp32_fp32_fp16.cu"
"csrc/punica/punica_ops.cc")
#

View File

@ -21,7 +21,6 @@ Express your support on Twitter if vLLM aids you, or simply offer your appreciat
### Build from source
```bash
pip install -r requirements.txt
pip install -e . # This may take several minutes.
```
@ -30,6 +29,8 @@ pip install -e . # This may take several minutes.
```bash
pip install -r requirements-dev.txt
# linting and formatting
bash format.sh
# Static type checking
mypy
# Unit tests

View File

@ -1,8 +1,13 @@
# The vLLM Dockerfile is used to construct vLLM image that can be directly used
# to run the OpenAI compatible server.
# Please update any changes made here to
# docs/source/dev/dockerfile/dockerfile.rst and
# docs/source/assets/dev/dockerfile-stages-dependency.png
#################### BASE BUILD IMAGE ####################
FROM nvidia/cuda:12.1.0-devel-ubuntu22.04 AS dev
# prepare basic build environment
FROM nvidia/cuda:12.4.1-devel-ubuntu22.04 AS dev
RUN apt-get update -y \
&& apt-get install -y python3-pip git
@ -11,23 +16,31 @@ RUN apt-get update -y \
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-12.1/compat/
RUN ldconfig /usr/local/cuda-12.4/compat/
WORKDIR /workspace
# install build and runtime dependencies
COPY requirements.txt requirements.txt
COPY requirements-common.txt requirements-common.txt
COPY requirements-cuda.txt requirements-cuda.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements.txt
pip install -r requirements-cuda.txt
# install development dependencies
COPY requirements-dev.txt requirements-dev.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-dev.txt
# cuda arch list used by torch
# can be useful for both `dev` and `test`
# explicitly set the list to avoid issues with torch 2.2
# see https://github.com/pytorch/pytorch/pull/123243
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.6 8.9 9.0+PTX'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
#################### BASE BUILD IMAGE ####################
#################### EXTENSION BUILD IMAGE ####################
#################### WHEEL BUILD IMAGE ####################
FROM dev AS build
# install build dependencies
@ -38,18 +51,16 @@ RUN --mount=type=cache,target=/root/.cache/pip \
# install compiler cache to speed up compilation leveraging local or remote caching
RUN apt-get update -y && apt-get install -y ccache
# copy input files
# files and directories related to build wheels
COPY csrc csrc
COPY setup.py setup.py
COPY cmake cmake
COPY CMakeLists.txt CMakeLists.txt
COPY requirements.txt requirements.txt
COPY requirements-common.txt requirements-common.txt
COPY requirements-cuda.txt requirements-cuda.txt
COPY pyproject.toml pyproject.toml
COPY vllm/__init__.py vllm/__init__.py
COPY vllm vllm
# cuda arch list used by torch
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.6 8.9 9.0+PTX'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
# max jobs used by Ninja to build extensions
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
@ -61,7 +72,19 @@ ENV VLLM_INSTALL_PUNICA_KERNELS=1
ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/ccache \
python3 setup.py build_ext --inplace
--mount=type=cache,target=/root/.cache/pip \
python3 setup.py bdist_wheel --dist-dir=dist
# check the size of the wheel, we cannot upload wheels larger than 100MB
COPY .buildkite/check-wheel-size.py check-wheel-size.py
RUN python3 check-wheel-size.py dist
# the `vllm_nccl` package must be installed from source distribution
# pip is too smart to store a wheel in the cache, and other CI jobs
# will directly use the wheel from the cache, which is not what we want.
# we need to remove it manually
RUN --mount=type=cache,target=/root/.cache/pip \
pip cache remove vllm_nccl*
#################### EXTENSION Build IMAGE ####################
#################### FLASH_ATTENTION Build IMAGE ####################
@ -70,7 +93,7 @@ FROM dev as flash-attn-builder
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
# flash attention version
ARG flash_attn_version=v2.5.6
ARG flash_attn_version=v2.5.8
ENV FLASH_ATTN_VERSION=${flash_attn_version}
WORKDIR /usr/src/flash-attention-v2
@ -81,57 +104,59 @@ RUN pip --verbose wheel flash-attn==${FLASH_ATTN_VERSION} \
#################### FLASH_ATTENTION Build IMAGE ####################
#################### vLLM installation IMAGE ####################
# image with vLLM installed
FROM nvidia/cuda:12.4.1-base-ubuntu22.04 AS vllm-base
WORKDIR /vllm-workspace
RUN apt-get update -y \
&& apt-get install -y python3-pip git vim
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-12.4/compat/
# install vllm wheel first, so that torch etc will be installed
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
--mount=type=cache,target=/root/.cache/pip \
pip install dist/*.whl --verbose
RUN --mount=type=bind,from=flash-attn-builder,src=/usr/src/flash-attention-v2,target=/usr/src/flash-attention-v2 \
--mount=type=cache,target=/root/.cache/pip \
pip install /usr/src/flash-attention-v2/*.whl --no-cache-dir
#################### vLLM installation IMAGE ####################
#################### TEST IMAGE ####################
# image to run unit testing suite
FROM dev AS test
# note that this uses vllm installed by `pip`
FROM vllm-base AS test
# copy pytorch extensions separately to avoid having to rebuild
# when python code changes
WORKDIR /vllm-workspace
# ADD is used to preserve directory structure
ADD . /vllm-workspace/
COPY --from=build /workspace/vllm/*.so /vllm-workspace/vllm/
# Install flash attention (from pre-built wheel)
RUN --mount=type=bind,from=flash-attn-builder,src=/usr/src/flash-attention-v2,target=/usr/src/flash-attention-v2 \
pip install /usr/src/flash-attention-v2/*.whl --no-cache-dir
# ignore build dependencies installation because we are using pre-complied extensions
RUN rm pyproject.toml
RUN --mount=type=cache,target=/root/.cache/pip VLLM_USE_PRECOMPILED=1 pip install . --verbose
#################### TEST IMAGE ####################
#################### RUNTIME BASE IMAGE ####################
# We used base cuda image because pytorch installs its own cuda libraries.
# However pynccl depends on cuda libraries so we had to switch to the runtime image
# In the future it would be nice to get a container with pytorch and cuda without duplicating cuda
FROM nvidia/cuda:12.1.0-runtime-ubuntu22.04 AS vllm-base
# libnccl required for ray
RUN apt-get update -y \
&& apt-get install -y python3-pip
WORKDIR /workspace
COPY requirements.txt requirements.txt
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements.txt
pip install -r requirements-dev.txt
# Install flash attention (from pre-built wheel)
RUN --mount=type=bind,from=flash-attn-builder,src=/usr/src/flash-attention-v2,target=/usr/src/flash-attention-v2 \
pip install /usr/src/flash-attention-v2/*.whl --no-cache-dir
#################### RUNTIME BASE IMAGE ####################
# doc requires source code
# we hide them inside `test_docs/` , so that this source code
# will not be imported by other tests
RUN mkdir test_docs
RUN mv docs test_docs/
RUN mv vllm test_docs/
#################### TEST IMAGE ####################
#################### OPENAI API SERVER ####################
# openai api server alternative
FROM vllm-base AS vllm-openai
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer modelscope
COPY --from=build /workspace/vllm/*.so /workspace/vllm/
COPY vllm vllm
ENV VLLM_USAGE_SOURCE production-docker-image
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

20
Dockerfile.cpu Normal file
View File

@ -0,0 +1,20 @@
# This vLLM Dockerfile is used to construct image that can build and run vLLM on x86 CPU platform.
FROM ubuntu:22.04
RUN apt-get update -y \
&& apt-get install -y git wget vim numactl gcc-12 g++-12 python3 python3-pip \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
RUN pip install --upgrade pip \
&& pip install wheel packaging ninja setuptools>=49.4.0 numpy
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
RUN pip install -v -r requirements-cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu
RUN VLLM_TARGET_DEVICE=cpu python3 setup.py install
CMD ["/bin/bash"]

36
Dockerfile.neuron Normal file
View File

@ -0,0 +1,36 @@
# default base image
ARG BASE_IMAGE="763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-inference-neuronx:2.1.1-neuronx-py310-sdk2.17.0-ubuntu20.04"
FROM $BASE_IMAGE
RUN echo "Base image is $BASE_IMAGE"
# Install some basic utilities
RUN apt-get update && apt-get install python3 python3-pip -y
### Mount Point ###
# When launching the container, mount the code directory to /app
ARG APP_MOUNT=/app
VOLUME [ ${APP_MOUNT} ]
WORKDIR ${APP_MOUNT}
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas
RUN python3 -m pip install sentencepiece transformers==4.36.2 -U
RUN python3 -m pip install transformers-neuronx --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
RUN python3 -m pip install --pre neuronx-cc==2.12.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
COPY ./vllm /app/vllm/vllm
COPY ./setup.py /app/vllm/setup.py
COPY ./requirements-common.txt /app/vllm/requirements-common.txt
COPY ./requirements-neuron.txt /app/vllm/requirements-neuron.txt
RUN cd /app/vllm \
&& python3 -m pip install -U -r requirements-neuron.txt
ENV VLLM_BUILD_WITH_NEURON 1
RUN cd /app/vllm \
&& pip install -e . \
&& cd ..
CMD ["/bin/bash"]

View File

@ -14,7 +14,7 @@ RUN echo "Base image is $BASE_IMAGE"
ARG FA_GFX_ARCHS="gfx90a;gfx942"
RUN echo "FA_GFX_ARCHS is $FA_GFX_ARCHS"
ARG FA_BRANCH="3d2b6f5"
ARG FA_BRANCH="ae7928c"
RUN echo "FA_BRANCH is $FA_BRANCH"
# whether to build flash-attention
@ -23,6 +23,9 @@ RUN echo "FA_BRANCH is $FA_BRANCH"
# In that case, we need to use the python reference attention implementation in vllm
ARG BUILD_FA="1"
# whether to build triton on rocm
ARG BUILD_TRITON="1"
# Install some basic utilities
RUN apt-get update && apt-get install python3 python3-pip -y
@ -43,7 +46,7 @@ RUN apt-get update && apt-get install -y \
### Mount Point ###
# When launching the container, mount the code directory to /app
ARG APP_MOUNT=/app
ARG APP_MOUNT=/vllm-workspace
VOLUME [ ${APP_MOUNT} ]
WORKDIR ${APP_MOUNT}
@ -75,18 +78,27 @@ RUN if [ "$BUILD_FA" = "1" ]; then \
RUN if [ "$BASE_IMAGE" = "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" ]; then \
rm -rf /opt/conda/envs/py_3.9/lib/python3.9/site-packages/numpy-1.20.3.dist-info/; fi
COPY ./ /app/vllm
# build triton
RUN if [ "$BUILD_TRITON" = "1" ]; then \
mkdir -p libs \
&& cd libs \
&& pip uninstall -y triton \
&& git clone https://github.com/ROCm/triton.git \
&& cd triton/python \
&& pip3 install . \
&& cd ../..; \
fi
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install xformers==0.0.23 --no-deps
WORKDIR /vllm-workspace
COPY . .
RUN cd /app \
&& cd vllm \
&& pip install -U -r requirements-rocm.txt \
&& if [ "$BUILD_FA" = "1" ]; then \
bash patch_xformers.rocm.sh; fi \
&& patch /opt/rocm/include/hip/amd_detail/amd_hip_bf16.h /app/vllm/rocm_patch/rocm_bf16.patch \
RUN python3 -m pip install --upgrade pip numba
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -U -r requirements-rocm.txt \
&& patch /opt/rocm/include/hip/amd_detail/amd_hip_bf16.h ./rocm_patch/rocm_bf16.patch \
&& python3 setup.py install \
&& cp build/lib.linux-x86_64-cpython-39/vllm/_C.cpython-39-x86_64-linux-gnu.so vllm/ \
&& cd ..
RUN python3 -m pip install --upgrade pip

View File

@ -1,5 +1,9 @@
include LICENSE
include requirements.txt
include requirements-common.txt
include requirements-cuda.txt
include requirements-rocm.txt
include requirements-neuron.txt
include requirements-cpu.txt
include CMakeLists.txt
recursive-include cmake *

View File

@ -14,18 +14,8 @@ Easy, fast, and cheap LLM serving for everyone
</p>
---
**The Third vLLM Bay Area Meetup (April 2nd 6pm-8:30pm PT)**
We are thrilled to announce our third vLLM Meetup!
The vLLM team will share recent updates and roadmap.
We will also have vLLM collaborators from Roblox coming up to the stage to discuss their experience in deploying LLMs with vLLM.
Please register [here](https://robloxandvllmmeetup2024.splashthat.com/) and join us!
---
*Latest News* 🔥
- [2024/04] We hosted [the third vLLM meetup](https://robloxandvllmmeetup2024.splashthat.com/) with Roblox! Please find the meetup slides [here](https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing).
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2024/01] Added ROCm 6.0 support to vLLM.
- [2023/12] Added ROCm 5.7 support to vLLM.
@ -79,16 +69,18 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
- InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.)
- InternLM2 (`internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc.)
- Jais (`core42/jais-13b`, `core42/jais-13b-chat`, `core42/jais-30b-v3`, `core42/jais-30b-chat-v3`, etc.)
- LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
- LLaMA, Llama 2, and Meta Llama 3 (`meta-llama/Meta-Llama-3-8B-Instruct`, `meta-llama/Meta-Llama-3-70B-Instruct`, `meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
- MiniCPM (`openbmb/MiniCPM-2B-sft-bf16`, `openbmb/MiniCPM-2B-dpo-bf16`, etc.)
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, etc.)
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, `mistral-community/Mixtral-8x22B-v0.1`, etc.)
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
- OLMo (`allenai/OLMo-1B`, `allenai/OLMo-7B`, etc.)
- OLMo (`allenai/OLMo-1B-hf`, `allenai/OLMo-7B-hf`, etc.)
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
- Orion (`OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc.)
- Phi (`microsoft/phi-1_5`, `microsoft/phi-2`, etc.)
- Phi-3 (`microsoft/Phi-3-mini-4k-instruct`, `microsoft/Phi-3-mini-128k-instruct`, etc.)
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)
- Qwen2 (`Qwen/Qwen2-7B-beta`, `Qwen/Qwen-7B-Chat-beta`, etc.)
- Qwen2 (`Qwen/Qwen1.5-7B`, `Qwen/Qwen1.5-7B-Chat`, etc.)
- Qwen2MoE (`Qwen/Qwen1.5-MoE-A2.7B`, `Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc.)
- StableLM(`stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc.)
- Starcoder2(`bigcode/starcoder2-3b`, `bigcode/starcoder2-7b`, `bigcode/starcoder2-15b`, etc.)

View File

@ -27,8 +27,8 @@ class RequestFuncInput:
class RequestFuncOutput:
generated_text: str = ""
success: bool = False
latency: float = 0
ttft: float = 0 # Time to first token
latency: float = 0.0
ttft: float = 0.0 # Time to first token
itl: List[float] = field(
default_factory=list) # List of inter-token latencies
prompt_len: int = 0
@ -58,23 +58,24 @@ async def async_request_tgi(
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk in response.content:
chunk = chunk.strip()
if not chunk:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk.decode("utf-8"), "data:")
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data:")
data = json.loads(chunk)
timestamp = time.perf_counter()
# First token
if ttft == 0:
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
@ -119,23 +120,25 @@ async def async_request_trt_llm(
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk in response.content:
chunk = chunk.strip()
if not chunk:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk.decode("utf-8"), "data:")
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data:")
data = json.loads(chunk)
output.generated_text += data["text_output"]
timestamp = time.perf_counter()
# First token
if ttft == 0:
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
@ -147,11 +150,10 @@ async def async_request_trt_llm(
most_recent_timestamp = timestamp
output.latency = most_recent_timestamp - st
output.generated_text = json.loads(data)["text_output"]
output.success = True
else:
output.error = response.reason
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
@ -195,7 +197,7 @@ async def async_request_deepspeed_mii(
output.generated_text = parsed_resp["text"][0]
output.success = True
else:
output.error = response.reason
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
@ -234,19 +236,20 @@ async def async_request_openai_completions(
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
if response.status == 200:
async for chunk in response.content:
chunk = chunk.strip()
if not chunk:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk.decode("utf-8"), "data: ")
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data: ")
if chunk == "[DONE]":
latency = time.perf_counter() - st
else:
@ -255,7 +258,7 @@ async def async_request_openai_completions(
if data["choices"][0]["text"]:
timestamp = time.perf_counter()
# First token
if ttft == 0:
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
@ -315,28 +318,30 @@ async def async_request_openai_chat_completions(
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
if response.status == 200:
async for chunk in response.content:
chunk = chunk.strip()
if not chunk:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk.decode("utf-8"), "data: ")
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data: ")
if chunk == "[DONE]":
latency = time.perf_counter() - st
else:
timestamp = time.perf_counter()
data = json.loads(chunk)
if "content" in data["choices"][0]["delta"]:
delta = data["choices"][0]["delta"]
if delta.get("content", None):
# First token
if ttft == 0:
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
@ -345,8 +350,7 @@ async def async_request_openai_chat_completions(
output.itl.append(timestamp -
most_recent_timestamp)
generated_text += data["choices"][0]["delta"][
"content"]
generated_text += delta["content"]
most_recent_timestamp = timestamp
@ -354,7 +358,7 @@ async def async_request_openai_chat_completions(
output.success = True
output.latency = latency
else:
output.error = response.reason
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False

View File

@ -9,6 +9,7 @@ import torch
from tqdm import tqdm
from vllm import LLM, SamplingParams
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
def main(args: argparse.Namespace):
@ -24,6 +25,7 @@ def main(args: argparse.Namespace):
dtype=args.dtype,
enforce_eager=args.enforce_eager,
kv_cache_dtype=args.kv_cache_dtype,
quantization_param_path=args.quantization_param_path,
device=args.device,
ray_workers_use_nsight=args.ray_workers_use_nsight,
enable_chunked_prefill=args.enable_chunked_prefill,
@ -67,7 +69,8 @@ def main(args: argparse.Namespace):
return latency
print("Warming up...")
run_to_completion(profile_dir=None)
for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
run_to_completion(profile_dir=None)
if args.profile:
profile_dir = args.profile_result_dir
@ -83,7 +86,12 @@ def main(args: argparse.Namespace):
latencies = []
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
latencies.append(run_to_completion(profile_dir=None))
latencies = np.array(latencies)
percentages = [10, 25, 50, 75, 90]
percentiles = np.percentile(latencies, percentages)
print(f'Avg latency: {np.mean(latencies)} seconds')
for percentage, percentile in zip(percentages, percentiles):
print(f'{percentage}% percentile latency: {percentile} seconds')
if __name__ == '__main__':
@ -94,7 +102,7 @@ if __name__ == '__main__':
parser.add_argument('--tokenizer', type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=['awq', 'gptq', 'squeezellm', None],
choices=[*QUANTIZATION_METHODS, None],
default=None)
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--input-len', type=int, default=32)
@ -105,9 +113,13 @@ if __name__ == '__main__':
default=1,
help='Number of generated sequences per prompt.')
parser.add_argument('--use-beam-search', action='store_true')
parser.add_argument('--num-iters-warmup',
type=int,
default=10,
help='Number of iterations to run for warmup.')
parser.add_argument('--num-iters',
type=int,
default=3,
default=30,
help='Number of iterations to run.')
parser.add_argument('--trust-remote-code',
action='store_true',
@ -127,10 +139,23 @@ if __name__ == '__main__':
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=['auto', 'fp8_e5m2'],
choices=['auto', 'fp8'],
default='auto',
help=
'Data type for kv cache storage. If "auto", will use model data type.')
'Data type for kv cache storage. If "auto", will use model data type. '
'FP8_E5M2 (without scaling) is only supported on cuda version greater '
'than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead supported for '
'common inference criteria.')
parser.add_argument(
'--quantization-param-path',
type=str,
default=None,
help='Path to the JSON file containing the KV cache scaling factors. '
'This should generally be supplied, when KV cache dtype is FP8. '
'Otherwise, KV cache scaling factors default to 1.0, which may cause '
'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is '
'instead supported for common inference criteria.')
parser.add_argument(
'--profile',
action='store_true',
@ -145,16 +170,15 @@ if __name__ == '__main__':
"--device",
type=str,
default="cuda",
choices=["cuda"],
help='device type for vLLM execution, supporting CUDA only currently.')
choices=["cuda", "cpu"],
help='device type for vLLM execution, supporting CUDA and CPU.')
parser.add_argument('--block-size',
type=int,
default=16,
help='block size of key/value cache')
parser.add_argument(
'--enable-chunked-prefill',
type=bool,
default=False,
action='store_true',
help='If True, the prefill requests can be chunked based on the '
'max_num_batched_tokens')
parser.add_argument(

View File

@ -16,20 +16,22 @@ def test_prefix(llm=None, sampling_params=None, prompts=None):
def main(args):
llm = LLM(model="baichuan-inc/Baichuan2-13B-Chat",
llm = LLM(model=args.model,
tokenizer_mode='auto',
trust_remote_code=True,
enforce_eager=True,
use_v2_block_manager=args.use_v2_block_manager,
tensor_parallel_size=args.tensor_parallel_size,
enable_prefix_caching=args.enable_prefix_caching)
num_prompts = 100
prompts = [PROMPT] * num_prompts
sampling_params = SamplingParams(temperature=0, max_tokens=100)
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
print("------warm up------")
test_prefix(
llm=llm,
prompts=prompts[:1],
prompts=prompts,
sampling_params=sampling_params,
)
@ -45,8 +47,16 @@ if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Benchmark the performance with or without automatic '
'prefix caching.')
parser.add_argument('--model',
type=str,
default='baichuan-inc/Baichuan2-13B-Chat')
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument('--enable-prefix-caching',
action='store_true',
help='enable prefix caching')
parser.add_argument('--use-v2-block-manager',
action='store_true',
help='Use BlockSpaceMangerV2')
args = parser.parse_args()
main(args)

View File

@ -27,7 +27,7 @@ import time
import warnings
from dataclasses import dataclass
from datetime import datetime
from typing import AsyncGenerator, List, Tuple
from typing import AsyncGenerator, List, Optional, Tuple
import numpy as np
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
@ -58,7 +58,11 @@ def sample_sharegpt_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int] = None,
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
@ -68,38 +72,32 @@ def sample_sharegpt_requests(
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# some of these will be filtered out, so sample more than we need
sampled_indices = random.sample(range(len(dataset)),
int(num_requests * 1.2))
dataset = [dataset[i] for i in sampled_indices]
# Shuffle the dataset.
random.shuffle(dataset)
# Tokenize the prompts and completions.
prompts = [prompt for prompt, _ in dataset]
prompt_token_ids = tokenizer(prompts).input_ids
completions = [completion for _, completion in dataset]
completion_token_ids = tokenizer(completions).input_ids
tokenized_dataset = []
for i in range(len(dataset)):
output_len = len(completion_token_ids[i])
tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))
# Filter out too long sequences.
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for prompt, prompt_token_ids, output_len in tokenized_dataset:
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
# This is because TGI causes errors when the input or output length
# is too short.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
filtered_dataset.append((prompt, prompt_len, output_len))
# Sample the requests.
sampled_requests = random.sample(filtered_dataset, num_requests)
return sampled_requests
return filtered_dataset
def sample_sonnet_requests(
@ -110,7 +108,9 @@ def sample_sonnet_requests(
prefix_len: int,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, str, int, int]]:
assert input_len > prefix_len, "input_len must be greater than prefix_len."
assert (
input_len > prefix_len
), "'args.sonnet-input-len' must be greater than 'args.prefix-input-len'."
# Load the dataset.
with open(dataset_path) as f:
@ -131,8 +131,9 @@ def sample_sonnet_requests(
base_message, add_generation_prompt=True, tokenize=False)
base_prompt_offset = len(tokenizer(base_prompt_formatted).input_ids)
assert (input_len > base_prompt_offset
), f"Please set 'args.input-len' higher than {base_prompt_offset}."
assert (
input_len > base_prompt_offset
), f"Please set 'args.sonnet-input-len' higher than {base_prompt_offset}."
num_input_lines = round(
(input_len - base_prompt_offset) / average_poem_len)
@ -140,7 +141,7 @@ def sample_sonnet_requests(
# prompt are fixed poem lines.
assert (
prefix_len > base_prompt_offset
), f"Please set 'args.prefix-len' higher than {base_prompt_offset}."
), f"Please set 'args.sonnet-prefix-len' higher than {base_prompt_offset}."
num_prefix_lines = round(
(prefix_len - base_prompt_offset) / average_poem_len)
@ -358,6 +359,7 @@ def main(args: argparse.Namespace):
dataset_path=args.dataset,
num_requests=args.num_prompts,
tokenizer=tokenizer,
fixed_output_len=args.sharegpt_output_len,
)
elif args.dataset_name == "sharegpt":
@ -365,6 +367,7 @@ def main(args: argparse.Namespace):
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
fixed_output_len=args.sharegpt_output_len,
)
elif args.dataset_name == "sonnet":
@ -373,9 +376,9 @@ def main(args: argparse.Namespace):
input_requests = sample_sonnet_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
input_len=args.input_len,
output_len=args.output_len,
prefix_len=args.prefix_len,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
)
input_requests = [(prompt, prompt_len, output_len)
@ -388,9 +391,9 @@ def main(args: argparse.Namespace):
input_requests = sample_sonnet_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
input_len=args.input_len,
output_len=args.output_len,
prefix_len=args.prefix_len,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
)
input_requests = [(prompt_formatted, prompt_len, output_len)
@ -521,6 +524,12 @@ if __name__ == "__main__":
default=1000,
help="Number of prompts to process.",
)
parser.add_argument(
"--sharegpt-output-len",
type=int,
default=None,
help="Output length for each request. Overrides the output length "
"from the ShareGPT dataset.")
parser.add_argument(
"--sonnet-input-len",
type=int,

View File

@ -10,6 +10,8 @@ from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizerBase)
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
def sample_requests(
dataset_path: str,
@ -29,22 +31,23 @@ def sample_requests(
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Tokenize the prompts and completions.
prompts = [prompt for prompt, _ in dataset]
prompt_token_ids = tokenizer(prompts).input_ids
completions = [completion for _, completion in dataset]
completion_token_ids = tokenizer(completions).input_ids
tokenized_dataset = []
for i in range(len(dataset)):
output_len = len(completion_token_ids[i])
if fixed_output_len is not None:
output_len = fixed_output_len
tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out too long sequences.
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for prompt, prompt_token_ids, output_len in tokenized_dataset:
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
@ -53,9 +56,7 @@ def sample_requests(
continue
filtered_dataset.append((prompt, prompt_len, output_len))
# Sample the requests.
sampled_requests = random.sample(filtered_dataset, num_requests)
return sampled_requests
return filtered_dataset
def run_vllm(
@ -72,47 +73,52 @@ def run_vllm(
max_model_len: Optional[int],
enforce_eager: bool,
kv_cache_dtype: str,
quantization_param_path: Optional[str],
device: str,
enable_prefix_caching: bool,
enable_chunked_prefill: bool,
max_num_batched_tokens: int,
gpu_memory_utilization: float = 0.9,
download_dir: Optional[str] = None,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(model=model,
tokenizer=tokenizer,
quantization=quantization,
tensor_parallel_size=tensor_parallel_size,
seed=seed,
trust_remote_code=trust_remote_code,
dtype=dtype,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
device=device,
enable_prefix_caching=enable_prefix_caching,
download_dir=download_dir)
llm = LLM(
model=model,
tokenizer=tokenizer,
quantization=quantization,
tensor_parallel_size=tensor_parallel_size,
seed=seed,
trust_remote_code=trust_remote_code,
dtype=dtype,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
quantization_param_path=quantization_param_path,
device=device,
enable_prefix_caching=enable_prefix_caching,
download_dir=download_dir,
enable_chunked_prefill=enable_chunked_prefill,
max_num_batched_tokens=max_num_batched_tokens,
)
# Add the requests to the engine.
prompts = []
sampling_params = []
for prompt, _, output_len in requests:
sampling_params = SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
)
# FIXME(woosuk): Do not use internal method.
llm._add_request(
prompt=prompt,
prompt_token_ids=None,
sampling_params=sampling_params,
)
prompts.append(prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
))
start = time.perf_counter()
# FIXME(woosuk): Do not use internal method.
llm._run_engine(use_tqdm=True)
llm.generate(prompts, sampling_params, use_tqdm=True)
end = time.perf_counter()
return end - start
@ -212,14 +218,15 @@ def main(args: argparse.Namespace):
args.output_len)
if args.backend == "vllm":
elapsed_time = run_vllm(requests, args.model, args.tokenizer,
args.quantization, args.tensor_parallel_size,
args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype,
args.max_model_len, args.enforce_eager,
args.kv_cache_dtype, args.device,
args.enable_prefix_caching,
args.gpu_memory_utilization, args.download_dir)
elapsed_time = run_vllm(
requests, args.model, args.tokenizer, args.quantization,
args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype, args.max_model_len,
args.enforce_eager, args.kv_cache_dtype,
args.quantization_param_path, args.device,
args.enable_prefix_caching, args.enable_chunked_prefill,
args.max_num_batched_tokens, args.gpu_memory_utilization,
args.download_dir)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
@ -259,7 +266,7 @@ if __name__ == "__main__":
parser.add_argument("--tokenizer", type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=['awq', 'gptq', 'squeezellm', None],
choices=[*QUANTIZATION_METHODS, None],
default=None)
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
parser.add_argument("--n",
@ -306,20 +313,41 @@ if __name__ == "__main__":
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=["auto", "fp8_e5m2"],
choices=["auto", "fp8"],
default="auto",
help=
'Data type for kv cache storage. If "auto", will use model data type.')
'Data type for kv cache storage. If "auto", will use model data type. '
'FP8_E5M2 (without scaling) is only supported on cuda version greater '
'than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead supported for '
'common inference criteria.')
parser.add_argument(
'--quantization-param-path',
type=str,
default=None,
help='Path to the JSON file containing the KV cache scaling factors. '
'This should generally be supplied, when KV cache dtype is FP8. '
'Otherwise, KV cache scaling factors default to 1.0, which may cause '
'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is '
'instead supported for common inference criteria.')
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda"],
help='device type for vLLM execution, supporting CUDA only currently.')
choices=["cuda", "cpu"],
help='device type for vLLM execution, supporting CUDA and CPU.')
parser.add_argument(
"--enable-prefix-caching",
action='store_true',
help="enable automatic prefix caching for vLLM backend.")
parser.add_argument("--enable-chunked-prefill",
action='store_true',
help="enable chunked prefill for vLLM backend.")
parser.add_argument('--max-num-batched-tokens',
type=int,
default=None,
help='maximum number of batched tokens per '
'iteration')
parser.add_argument('--download-dir',
type=str,
default=None,

View File

@ -0,0 +1,302 @@
import argparse
import os
import sys
from typing import Optional
import torch
import torch.nn.functional as F
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.aqlm import (
dequantize_weight, generic_dequantize_gemm, get_int_dtype,
optimized_dequantize_gemm)
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def torch_mult(
input: torch.Tensor, # [..., in_features]
weights: torch.Tensor,
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
) -> torch.Tensor:
output = F.linear(input, weights)
return output
def dequant_out_scale(
input: torch.Tensor, # [..., in_features]
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
codebooks: torch.
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
if bias is None:
output = F.linear(input, weights, bias)
orig_shape = output.shape
flattened_output = output.view(-1, output.size(-1))
f_scales = scales.view(-1, scales.shape[0])
b_scales = f_scales.expand(flattened_output.shape[0], -1)
flattened_output *= b_scales
return flattened_output.view(orig_shape)
else:
b_scales = scales.view(scales.shape[:-3] + (-1, )).expand(
-1, weights.shape[1])
weights *= b_scales
return F.linear(input, weights, bias)
def dequant_weight_scale(
input: torch.Tensor, # [..., in_features]
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
codebooks: torch.
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
b_scales = scales.view(scales.shape[:-3] + (-1, )).expand(
-1, weights.shape[1])
weights *= b_scales
return F.linear(input, weights, bias)
def dequant_no_scale(
input: torch.Tensor, # [..., in_features]
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
codebooks: torch.
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
return F.linear(input, weights, bias)
# Compare the optimized 1x16 and 2x8 cuda decompression/dequant kernels against
# the generic pytorch version.
# Just visual comparison.
def dequant_test(k: int, parts: torch.tensor, nbooks: int, bits: int) -> None:
n = parts.sum().item()
device = torch.device('cuda:0')
code_range = (1 << bits) // 2
ingroups = 8
codes = torch.randint(-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device)
codebooks = torch.randn(size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device)
count = 0
for index in range(16):
for i in range(8):
for book in range(nbooks):
codebooks[book, index, 0, i] = count * (10**book)
count += 1
print("codes shape", codes.shape)
for i in range(16):
for book in range(nbooks):
codes[0, i, book] = i
codes[0, -i, book] = i
weights = dequantize_weight(codes, codebooks, None)
weights2 = ops.aqlm_dequant(codes, codebooks, parts)
print("weights shape:", weights.shape)
print("weights2 shape:", weights2.shape)
print("weights are:", weights)
print("weights2 are:", weights2)
print("first 128 weights are", weights[0, 0:128].to(torch.int32))
print("first 128 weights2 are:", weights2[0, 0:128].to(torch.int32))
print("last 128 weights are", weights[0, -128:])
print("last 128 weights2 are:", weights2[0, -128:])
def main():
parser = argparse.ArgumentParser(description="Benchmark aqlm performance.")
# Add arguments
parser.add_argument("--nbooks",
type=int,
default=1,
help="Number of codebooks (default: 1)")
parser.add_argument("--bits",
type=int,
default=16,
help="Number of bits per code element (default: 16)")
parser.add_argument(
"--test",
type=bool,
default=False,
help="Run the decompression/dequant tester rather than benchmarking "
"(default: False)")
# Parse the arguments
args = parser.parse_args()
# Extract values
nbooks = args.nbooks
bits = args.bits
if args.test:
dequant_test(4096, torch.tensor((4096, )), nbooks, bits)
return
# Otherwise, benchmark.
methods = [
ops.aqlm_gemm,
dequant_out_scale,
generic_dequantize_gemm,
optimized_dequantize_gemm,
dequant_weight_scale,
torch_mult,
dequant_no_scale,
]
filename = f"./aqlm_benchmark_{nbooks}x{bits}.csv"
print(f"writing benchmarks to file {filename}")
with open(filename, "w") as f:
sys.stdout = f
print('m | k | n | n parts', end='')
for method in methods:
print(f" | {method.__name__.replace('_', ' ')} (µs)", end='')
print('')
# These are reasonable prefill sizes.
ksandpartions = ((4096, (4096, 4096, 4096)), (4096, (4096, )),
(4096, (11008, 11008)), (11008, (4096, )))
# reasonable ranges for m.
for m in [
1, 2, 4, 8, 10, 12, 14, 16, 24, 32, 48, 52, 56, 64, 96, 112,
128, 256, 512, 1024, 1536, 2048, 3072, 4096
]:
print(f'{m}', file=sys.__stdout__)
for ksp in ksandpartions:
run_grid(m, ksp[0], torch.tensor(ksp[1]), nbooks, bits,
methods)
sys.stdout = sys.__stdout__
def run_grid(m: int, k: int, parts: torch.tensor, nbooks: int, bits: int,
methods):
# I didn't see visible improvements from increasing these, but feel free :)
num_warmup_trials = 1
num_trials = 1
num_calls = 100
# warmup.
for method in methods:
for _ in range(num_warmup_trials):
run_timing(
num_calls=num_calls,
m=m,
k=k,
parts=parts,
nbooks=nbooks,
bits=bits,
method=method,
)
n = parts.sum().item()
print(f'{m} | {k} | {n} | {parts.tolist()}', end='')
for method in methods:
best_time_us = 1e20
for _ in range(num_trials):
kernel_dur_ms = run_timing(
num_calls=num_calls,
m=m,
k=k,
parts=parts,
nbooks=nbooks,
bits=bits,
method=method,
)
kernel_dur_us = 1000 * kernel_dur_ms
if kernel_dur_us < best_time_us:
best_time_us = kernel_dur_us
print(f' | {kernel_dur_us:.0f}', end='')
print('')
def run_timing(num_calls: int, m: int, k: int, parts: torch.tensor,
nbooks: int, bits: int, method) -> float:
n = parts.sum().item()
device = torch.device('cuda:0')
input = torch.randn((1, m, k), dtype=torch.float16, device=device)
code_range = (1 << bits) // 2
ingroups = 8
codes = torch.randint(-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device)
codebooks = torch.randn(size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device)
scales = torch.randn(size=(n, 1, 1, 1), dtype=torch.float16, device=device)
# for comparison to just a pytorch mult.
weights = torch.randn((n, k), dtype=torch.float16, device=device)
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
if method is torch_mult:
for i in range(num_calls):
torch_mult(input, weights, scales)
else:
for i in range(num_calls):
method(input, codes, codebooks, scales, parts, None)
end_event.record()
end_event.synchronize()
dur_ms = start_event.elapsed_time(end_event) / num_calls
return dur_ms
if __name__ == "__main__":
sys.exit(main())

View File

@ -1,3 +1,4 @@
import argparse
import json
import os
import sys
@ -5,6 +6,7 @@ import sys
import torch
import torch.nn.functional as F
import triton
from tqdm import tqdm
from vllm.model_executor.layers.fused_moe import (fused_moe,
get_config_file_name)
@ -12,16 +14,16 @@ from vllm.model_executor.layers.fused_moe import (fused_moe,
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def main():
def main(dtype: str):
method = fused_moe
for bs in [
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
2048, 3072, 4096
]:
run_grid(bs, method=method)
run_grid(bs, method=method, dtype=dtype)
def run_grid(bs, method):
def run_grid(bs, method, dtype: str):
d_model = 4096
num_total_experts = 8
top_k = 2
@ -34,39 +36,29 @@ def run_grid(bs, method):
num_trials = 1
configs = []
if bs <= 16:
BLOCK_SIZES_M = [16]
elif bs <= 32:
BLOCK_SIZES_M = [16, 32]
elif bs <= 64:
BLOCK_SIZES_M = [16, 32, 64]
elif bs <= 128:
BLOCK_SIZES_M = [16, 32, 64, 128]
else:
BLOCK_SIZES_M = [16, 32, 64, 128, 256]
for block_size_n in [32, 64, 128, 256]:
for block_size_m in BLOCK_SIZES_M:
for block_size_m in [16, 32, 64, 128, 256]:
for block_size_k in [64, 128, 256]:
for group_size_m in [1, 16, 32, 64]:
for num_warps in [4, 8]:
configs.append({
"BLOCK_SIZE_M": block_size_m,
"BLOCK_SIZE_N": block_size_n,
"BLOCK_SIZE_K": block_size_k,
"GROUP_SIZE_M": group_size_m,
"num_warps": num_warps,
"num_stages": 4,
})
for num_stages in [2, 3, 4, 5]:
configs.append({
"BLOCK_SIZE_M": block_size_m,
"BLOCK_SIZE_N": block_size_n,
"BLOCK_SIZE_K": block_size_k,
"GROUP_SIZE_M": group_size_m,
"num_warps": num_warps,
"num_stages": num_stages,
})
best_config = None
best_time_us = 1e20
for config in configs:
print(f'{tp_size=} {bs=}')
print(f'{config}')
print(f'{tp_size=} {bs=}')
for config in tqdm(configs):
# warmup
print('warming up')
try:
for _ in range(num_warmup_trials):
run_timing(
@ -79,12 +71,12 @@ def run_grid(bs, method):
model_intermediate_size=model_intermediate_size,
method=method,
config=config,
dtype=dtype,
)
except triton.runtime.autotuner.OutOfResources:
continue
# trial
print('benchmarking')
for _ in range(num_trials):
kernel_dur_ms = run_timing(
num_calls=num_calls,
@ -96,6 +88,7 @@ def run_grid(bs, method):
model_intermediate_size=model_intermediate_size,
method=method,
config=config,
dtype=dtype,
)
kernel_dur_us = 1000 * kernel_dur_ms
@ -105,16 +98,18 @@ def run_grid(bs, method):
best_config = config
best_time_us = kernel_dur_us
print(f'{kernel_dur_us=:.1f} {model_dur_ms=:.1f}'
f' {bs=} {tp_size=} {top_k=} {num_total_experts=} '
f'{d_model=} {model_intermediate_size=} {num_layers=}')
tqdm.write(
f'{kernel_dur_us=:.1f} {model_dur_ms=:.1f}'
f' {bs=} {tp_size=} {top_k=} {num_total_experts=} '
f'{d_model=} {model_intermediate_size=} {num_layers=}')
print("best_time_us", best_time_us)
print("best_config", best_config)
# holds Dict[str, Dict[str, int]]
filename = get_config_file_name(num_total_experts,
model_intermediate_size // tp_size)
model_intermediate_size // tp_size,
"float8" if dtype == "float8" else None)
print(f"writing config to file {filename}")
existing_content = {}
if os.path.exists(filename):
@ -128,27 +123,48 @@ def run_grid(bs, method):
def run_timing(num_calls: int, bs: int, d_model: int, num_total_experts: int,
top_k: int, tp_size: int, model_intermediate_size: int, method,
config) -> float:
config, dtype: str) -> float:
shard_intermediate_size = model_intermediate_size // tp_size
hidden_states = torch.rand(
(bs, d_model),
device="cuda:0",
dtype=torch.bfloat16,
dtype=torch.float16,
)
ws = torch.rand(
w1 = torch.rand(
(num_total_experts, 2 * shard_intermediate_size, d_model),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
w2s = torch.rand(
w2 = torch.rand(
(num_total_experts, d_model, shard_intermediate_size),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
w1_scale = None
w2_scale = None
a1_scale = None
a2_scale = None
if dtype == "float8":
w1 = w1.to(torch.float8_e4m3fn)
w2 = w2.to(torch.float8_e4m3fn)
w1_scale = torch.ones(num_total_experts,
device=hidden_states.device,
dtype=torch.float32)
w2_scale = torch.ones(num_total_experts,
device=hidden_states.device,
dtype=torch.float32)
a1_scale = torch.ones(1,
device=hidden_states.device,
dtype=torch.float32)
a2_scale = torch.ones(1,
device=hidden_states.device,
dtype=torch.float32)
gating_output = F.softmax(torch.rand(
(num_calls, bs, num_total_experts),
device=hidden_states.device,
@ -163,13 +179,18 @@ def run_timing(num_calls: int, bs: int, d_model: int, num_total_experts: int,
for i in range(num_calls):
hidden_states = method(
hidden_states=hidden_states,
w1=ws,
w2=w2s,
w1=w1,
w2=w2,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
gating_output=gating_output[i],
topk=2,
renormalize=True,
inplace=True,
override_config=config,
use_fp8=dtype == "float8",
)
end_event.record()
end_event.synchronize()
@ -179,4 +200,16 @@ def run_timing(num_calls: int, bs: int, d_model: int, num_total_experts: int,
if __name__ == "__main__":
sys.exit(main())
parser = argparse.ArgumentParser(
prog='benchmark_mixtral_moe',
description='Benchmark and tune the fused_moe kernel',
)
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['float8', 'float16'],
help='Data type used for fused_moe kernel computations',
)
args = parser.parse_args()
sys.exit(main(args.dtype))

View File

@ -5,7 +5,7 @@ from typing import Optional
import torch
from vllm._C import ops
from vllm import _custom_ops as ops
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, create_kv_caches_with_random
NUM_BLOCKS = 1024
@ -16,7 +16,7 @@ PARTITION_SIZE = 512
def main(
version: str,
num_seqs: int,
context_len: int,
seq_len: int,
num_query_heads: int,
num_kv_heads: int,
head_size: int,
@ -48,12 +48,12 @@ def main(
dtype=torch.float,
device=device)
context_lens = [context_len for _ in range(num_seqs)]
max_context_len = max(context_lens)
context_lens = torch.tensor(context_lens, dtype=torch.int, device=device)
seq_lens = [seq_len for _ in range(num_seqs)]
max_seq_len = max(seq_lens)
seq_lens = torch.tensor(seq_lens, dtype=torch.int, device=device)
# Create the block tables.
max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
block_tables = []
for _ in range(num_seqs):
block_table = [
@ -77,8 +77,7 @@ def main(
# Prepare for the paged attention kernel.
output = torch.empty_like(query)
if version == "v2":
num_partitions = ((max_context_len + PARTITION_SIZE - 1) //
PARTITION_SIZE)
num_partitions = ((max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE)
tmp_output = torch.empty(
size=(num_seqs, num_query_heads, num_partitions, head_size),
dtype=output.dtype,
@ -97,6 +96,9 @@ def main(
torch.cuda.cudart().cudaProfilerStart()
start_time = time.perf_counter()
# Using default kv_scale
kv_scale = 1.0
for _ in range(num_iters):
if version == "v1":
ops.paged_attention_v1(
@ -107,11 +109,12 @@ def main(
num_kv_heads,
scale,
block_tables,
context_lens,
seq_lens,
block_size,
max_context_len,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
kv_scale,
)
elif version == "v2":
ops.paged_attention_v2(
@ -125,11 +128,12 @@ def main(
num_kv_heads,
scale,
block_tables,
context_lens,
seq_lens,
block_size,
max_context_len,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
kv_scale,
)
else:
raise ValueError(f"Invalid version: {version}")
@ -161,7 +165,7 @@ if __name__ == '__main__':
choices=["v1", "v2"],
default="v2")
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument("--context-len", type=int, default=4096)
parser.add_argument("--seq_len", type=int, default=4096)
parser.add_argument("--num-query-heads", type=int, default=64)
parser.add_argument("--num-kv-heads", type=int, default=8)
parser.add_argument("--head-size",
@ -179,11 +183,13 @@ if __name__ == '__main__':
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=["auto", "fp8_e5m2"],
choices=["auto", "fp8"],
default="auto",
help=
'Data type for kv cache storage. If "auto", will use model data type.')
parser.add_argument("--device", type=str, choices=["cuda"], default="cuda")
'Data type for kv cache storage. If "auto", will use model data type. '
'FP8_E5M2 (without scaling) is only supported on cuda version greater '
'than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead supported for '
'common inference criteria.')
args = parser.parse_args()
print(args)
@ -192,7 +198,7 @@ if __name__ == '__main__':
main(
version=args.version,
num_seqs=args.batch_size,
context_len=args.context_len,
seq_len=args.seq_len,
num_query_heads=args.num_query_heads,
num_kv_heads=args.num_kv_heads,
head_size=args.head_size,

90
cmake/cpu_extension.cmake Normal file
View File

@ -0,0 +1,90 @@
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
#
# Define environment variables for special configurations
#
if(DEFINED ENV{VLLM_CPU_AVX512BF16})
set(ENABLE_AVX512BF16 ON)
endif()
include_directories("${CMAKE_SOURCE_DIR}/csrc")
#
# Check the compile flags
#
list(APPEND CXX_COMPILE_FLAGS
"-fopenmp"
"-DVLLM_CPU_EXTENSION")
execute_process(COMMAND cat /proc/cpuinfo
RESULT_VARIABLE CPUINFO_RET
OUTPUT_VARIABLE CPUINFO)
if (NOT CPUINFO_RET EQUAL 0)
message(FATAL_ERROR "Failed to check CPU features via /proc/cpuinfo")
endif()
function (find_isa CPUINFO TARGET OUT)
string(FIND ${CPUINFO} ${TARGET} ISA_FOUND)
if(NOT ISA_FOUND EQUAL -1)
set(${OUT} ON PARENT_SCOPE)
else()
set(${OUT} OFF PARENT_SCOPE)
endif()
endfunction()
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
if (AVX512_FOUND)
list(APPEND CXX_COMPILE_FLAGS
"-mavx512f"
"-mavx512vl"
"-mavx512bw"
"-mavx512dq")
find_isa(${CPUINFO} "avx512_bf16" AVX512BF16_FOUND)
if (AVX512BF16_FOUND OR ENABLE_AVX512BF16)
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND
CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 12.3)
list(APPEND CXX_COMPILE_FLAGS "-mavx512bf16")
else()
message(WARNING "Disable AVX512-BF16 ISA support, requires gcc/g++ >= 12.3")
endif()
else()
message(WARNING "Disable AVX512-BF16 ISA support, no avx512_bf16 found in local CPU flags." " If cross-compilation is required, please set env VLLM_CPU_AVX512BF16=1.")
endif()
else()
message(FATAL_ERROR "vLLM CPU backend requires AVX512 ISA support.")
endif()
message(STATUS "CPU extension compile flags: ${CXX_COMPILE_FLAGS}")
#
# Define extension targets
#
#
# _C extension
#
set(VLLM_EXT_SRC
"csrc/cpu/activation.cpp"
"csrc/cpu/attention.cpp"
"csrc/cpu/cache.cpp"
"csrc/cpu/layernorm.cpp"
"csrc/cpu/pos_encoding.cpp"
"csrc/cpu/pybind.cpp")
define_gpu_extension_target(
_C
DESTINATION vllm
LANGUAGE CXX
SOURCES ${VLLM_EXT_SRC}
COMPILE_FLAGS ${CXX_COMPILE_FLAGS}
WITH_SOABI
)
add_custom_target(default)
message(STATUS "Enabling C extension.")
add_dependencies(default _C)

View File

@ -101,6 +101,13 @@ function (get_torch_gpu_compiler_flags OUT_GPU_FLAGS GPU_LANG)
if (CUDA_VERSION VERSION_GREATER_EQUAL 11.8)
list(APPEND GPU_FLAGS "-DENABLE_FP8_E5M2")
endif()
if (CUDA_VERSION VERSION_GREATER_EQUAL 12.0)
list(REMOVE_ITEM GPU_FLAGS
"-D__CUDA_NO_HALF_OPERATORS__"
"-D__CUDA_NO_HALF_CONVERSIONS__"
"-D__CUDA_NO_BFLOAT16_CONVERSIONS__"
"-D__CUDA_NO_HALF2_OPERATORS__")
endif()
elseif(${GPU_LANG} STREQUAL "HIP")
#
@ -112,6 +119,7 @@ function (get_torch_gpu_compiler_flags OUT_GPU_FLAGS GPU_LANG)
list(APPEND GPU_FLAGS
"-DUSE_ROCM"
"-DENABLE_FP8_E4M3"
"-U__HIP_NO_HALF_CONVERSIONS__"
"-U__HIP_NO_HALF_OPERATORS__"
"-fno-gpu-rdc")

View File

@ -63,6 +63,7 @@ DEFAULT_CONDA_PATTERNS = {
"magma",
"triton",
"optree",
"nccl",
}
DEFAULT_PIP_PATTERNS = {
@ -73,6 +74,7 @@ DEFAULT_PIP_PATTERNS = {
"triton",
"optree",
"onnx",
"nccl",
}

View File

@ -4,4 +4,4 @@
#include "dtype_float16.cuh"
#include "dtype_float32.cuh"
#include "dtype_bfloat16.cuh"
#include "dtype_fp8_e5m2.cuh"
#include "dtype_fp8.cuh"

View File

@ -22,12 +22,26 @@
#include "attention_dtypes.h"
#include "attention_utils.cuh"
#ifdef ENABLE_FP8_E5M2
#if defined(ENABLE_FP8_E5M2)
#include "../quantization/fp8_e5m2_kvcache/quant_utils.cuh"
#elif defined(ENABLE_FP8_E4M3)
#include "../quantization/fp8/amd_detail/quant_utils.cuh"
#endif
#include <algorithm>
#ifdef USE_ROCM
#include <hip/hip_bf16.h>
typedef __hip_bfloat16 __nv_bfloat16;
#endif
#ifndef USE_ROCM
#define WARP_SIZE 32
#else
#define WARP_SIZE warpSize
#endif
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
@ -78,7 +92,7 @@ template<
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS,
bool IS_FP8_E5M2_KV_CACHE,
bool IS_FP8_KV_CACHE,
int PARTITION_SIZE = 0> // Zero means no partitioning.
__device__ void paged_attention_kernel(
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
@ -90,33 +104,34 @@ __device__ void paged_attention_kernel(
const int num_kv_heads, // [num_heads]
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
const int kv_block_stride,
const int kv_head_stride) {
const int kv_head_stride,
const float kv_scale) {
const int seq_idx = blockIdx.y;
const int partition_idx = blockIdx.z;
const int max_num_partitions = gridDim.z;
constexpr bool USE_PARTITIONING = PARTITION_SIZE > 0;
const int context_len = context_lens[seq_idx];
if (USE_PARTITIONING && partition_idx * PARTITION_SIZE >= context_len) {
const int seq_len = seq_lens[seq_idx];
if (USE_PARTITIONING && partition_idx * PARTITION_SIZE >= seq_len) {
// No work to do. Terminate the thread block.
return;
}
const int num_context_blocks = DIVIDE_ROUND_UP(context_len, BLOCK_SIZE);
const int num_blocks_per_partition = USE_PARTITIONING ? PARTITION_SIZE / BLOCK_SIZE : num_context_blocks;
const int num_seq_blocks = DIVIDE_ROUND_UP(seq_len, BLOCK_SIZE);
const int num_blocks_per_partition = USE_PARTITIONING ? PARTITION_SIZE / BLOCK_SIZE : num_seq_blocks;
// [start_block_idx, end_block_idx) is the range of blocks to process.
const int start_block_idx = USE_PARTITIONING ? partition_idx * num_blocks_per_partition : 0;
const int end_block_idx = MIN(start_block_idx + num_blocks_per_partition, num_context_blocks);
const int end_block_idx = MIN(start_block_idx + num_blocks_per_partition, num_seq_blocks);
const int num_blocks = end_block_idx - start_block_idx;
// [start_token_idx, end_token_idx) is the range of tokens to process.
const int start_token_idx = start_block_idx * BLOCK_SIZE;
const int end_token_idx = MIN(start_token_idx + num_blocks * BLOCK_SIZE, context_len);
const int end_token_idx = MIN(start_token_idx + num_blocks * BLOCK_SIZE, seq_len);
const int num_tokens = end_token_idx - start_token_idx;
constexpr int THREAD_GROUP_SIZE = MAX(WARP_SIZE / BLOCK_SIZE, 1);
@ -142,7 +157,7 @@ __device__ void paged_attention_kernel(
constexpr int VEC_SIZE = MAX(16 / (THREAD_GROUP_SIZE * sizeof(scalar_t)), 1);
using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
#ifdef ENABLE_FP8_E5M2
#if defined(ENABLE_FP8_E5M2) || defined(ENABLE_FP8_E4M3)
using Quant_vec = typename Vec<cache_t, VEC_SIZE>::Type;
#endif
@ -208,11 +223,16 @@ __device__ void paged_attention_kernel(
const int vec_idx = thread_group_offset + j * THREAD_GROUP_SIZE;
const int offset1 = (vec_idx * VEC_SIZE) / x;
const int offset2 = (vec_idx * VEC_SIZE) % x;
if constexpr (IS_FP8_E5M2_KV_CACHE) {
#ifdef ENABLE_FP8_E5M2
if constexpr (IS_FP8_KV_CACHE) {
#if defined(ENABLE_FP8_E5M2)
Quant_vec k_vec_quant = *reinterpret_cast<const Quant_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
// Vector conversion from Quant_vec to K_vec.
k_vecs[j] = fp8_e5m2_unscaled::vec_conversion<K_vec, Quant_vec>(k_vec_quant);
#elif defined(ENABLE_FP8_E4M3)
Quant_vec k_vec_quant = *reinterpret_cast<const Quant_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
// Vector conversion from Quant_vec to K_vec. Use scaled_vec_conversion to convert FP8_E4M3 quantized k
// cache vec to k vec in higher precision (FP16, BFloat16, etc.)
k_vecs[j] = fp8_e4m3::scaled_vec_conversion<K_vec, Quant_vec>(k_vec_quant, kv_scale);
#else
assert(false);
#endif
@ -225,12 +245,12 @@ __device__ void paged_attention_kernel(
// This includes a reduction across the threads in the same thread group.
float qk = scale * Qk_dot<scalar_t, THREAD_GROUP_SIZE>::dot(q_vecs[thread_group_offset], k_vecs);
// Add the ALiBi bias if slopes are given.
qk += (alibi_slope != 0) ? alibi_slope * (token_idx - context_len + 1) : 0;
qk += (alibi_slope != 0) ? alibi_slope * (token_idx - seq_len + 1) : 0;
if (thread_group_offset == 0) {
// Store the partial reductions to shared memory.
// NOTE(woosuk): It is required to zero out the masked logits.
const bool mask = token_idx >= context_len;
const bool mask = token_idx >= seq_len;
logits[token_idx - start_token_idx] = mask ? 0.f : qk;
// Update the max value.
qk_max = mask ? qk_max : fmaxf(qk_max, qk);
@ -292,7 +312,7 @@ __device__ void paged_attention_kernel(
constexpr int V_VEC_SIZE = MIN(16 / sizeof(scalar_t), BLOCK_SIZE);
using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
using L_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
#ifdef ENABLE_FP8_E5M2
#if defined(ENABLE_FP8_E5M2) || defined(ENABLE_FP8_E4M3)
using V_quant_vec = typename Vec<cache_t, V_VEC_SIZE>::Type;
#endif
using Float_L_vec = typename FloatVec<L_vec>::Type;
@ -328,25 +348,30 @@ __device__ void paged_attention_kernel(
if (row_idx < HEAD_SIZE) {
const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
V_vec v_vec;
if constexpr (IS_FP8_E5M2_KV_CACHE) {
#ifdef ENABLE_FP8_E5M2
if constexpr (IS_FP8_KV_CACHE) {
#if defined(ENABLE_FP8_E5M2)
V_quant_vec v_quant_vec = *reinterpret_cast<const V_quant_vec*>(v_ptr + offset);
// Vector conversion from V_quant_vec to V_vec.
v_vec = fp8_e5m2_unscaled::vec_conversion<V_vec, V_quant_vec>(v_quant_vec);
#elif defined(ENABLE_FP8_E4M3)
V_quant_vec v_quant_vec = *reinterpret_cast<const V_quant_vec*>(v_ptr + offset);
// Vector conversion from V_quant_vec to V_vec. Use scaled_vec_conversion to convert
// FP8_E4M3 quantized v cache vec to v vec in higher precision (FP16, BFloat16, etc.)
v_vec = fp8_e4m3::scaled_vec_conversion<V_vec, V_quant_vec>(v_quant_vec, kv_scale);
#else
assert(false);
#endif
} else {
v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
}
if (block_idx == num_context_blocks - 1) {
if (block_idx == num_seq_blocks - 1) {
// NOTE(woosuk): When v_vec contains the tokens that are out of the context,
// we should explicitly zero out the values since they may contain NaNs.
// See https://github.com/vllm-project/vllm/issues/641#issuecomment-1682544472
scalar_t* v_vec_ptr = reinterpret_cast<scalar_t*>(&v_vec);
#pragma unroll
for (int j = 0; j < V_VEC_SIZE; j++) {
v_vec_ptr[j] = token_idx + j < context_len ? v_vec_ptr[j] : zero_value;
v_vec_ptr[j] = token_idx + j < seq_len ? v_vec_ptr[j] : zero_value;
}
}
accs[i] += dot(logits_vec, v_vec);
@ -423,7 +448,7 @@ template<
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS,
bool IS_FP8_E5M2_KV_CACHE>
bool IS_FP8_KV_CACHE>
__global__ void paged_attention_v1_kernel(
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
@ -432,16 +457,17 @@ __global__ void paged_attention_v1_kernel(
const int num_kv_heads, // [num_heads]
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
const int kv_block_stride,
const int kv_head_stride) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, IS_FP8_E5M2_KV_CACHE>(
const int kv_head_stride,
const float kv_scale) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, IS_FP8_KV_CACHE>(
/* exp_sums */ nullptr, /* max_logits */ nullptr,
out, q, k_cache, v_cache, num_kv_heads, scale, block_tables, context_lens,
max_num_blocks_per_seq, alibi_slopes, q_stride, kv_block_stride, kv_head_stride);
out, q, k_cache, v_cache, num_kv_heads, scale, block_tables, seq_lens,
max_num_blocks_per_seq, alibi_slopes, q_stride, kv_block_stride, kv_head_stride, kv_scale);
}
// Grid: (num_heads, num_seqs, max_num_partitions).
@ -451,7 +477,7 @@ template<
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS,
bool IS_FP8_E5M2_KV_CACHE,
bool IS_FP8_KV_CACHE,
int PARTITION_SIZE>
__global__ void paged_attention_v2_kernel(
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
@ -463,16 +489,17 @@ __global__ void paged_attention_v2_kernel(
const int num_kv_heads, // [num_heads]
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
const int kv_block_stride,
const int kv_head_stride) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, IS_FP8_E5M2_KV_CACHE, PARTITION_SIZE>(
const int kv_head_stride,
const float kv_scale) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, IS_FP8_KV_CACHE, PARTITION_SIZE>(
exp_sums, max_logits, tmp_out, q, k_cache, v_cache, num_kv_heads, scale,
block_tables, context_lens, max_num_blocks_per_seq, alibi_slopes,
q_stride, kv_block_stride, kv_head_stride);
block_tables, seq_lens, max_num_blocks_per_seq, alibi_slopes,
q_stride, kv_block_stride, kv_head_stride, kv_scale);
}
// Grid: (num_heads, num_seqs).
@ -486,13 +513,13 @@ __global__ void paged_attention_v2_reduce_kernel(
const float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
const float* __restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
const scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads, max_num_partitions, head_size]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ seq_lens, // [num_seqs]
const int max_num_partitions) {
const int num_heads = gridDim.x;
const int head_idx = blockIdx.x;
const int seq_idx = blockIdx.y;
const int context_len = context_lens[seq_idx];
const int num_partitions = DIVIDE_ROUND_UP(context_len, PARTITION_SIZE);
const int seq_len = seq_lens[seq_idx];
const int num_partitions = DIVIDE_ROUND_UP(seq_len, PARTITION_SIZE);
if (num_partitions == 1) {
// No need to reduce. Only copy tmp_out to out.
scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
@ -579,9 +606,9 @@ __global__ void paged_attention_v2_reduce_kernel(
#define LAUNCH_PAGED_ATTENTION_V1(HEAD_SIZE) \
VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize( \
((void*)vllm::paged_attention_v1_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, \
IS_FP8_E5M2_KV_CACHE>), shared_mem_size); \
IS_FP8_KV_CACHE>), shared_mem_size); \
vllm::paged_attention_v1_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, \
IS_FP8_E5M2_KV_CACHE><<<grid, block, shared_mem_size, stream>>>( \
IS_FP8_KV_CACHE><<<grid, block, shared_mem_size, stream>>>( \
out_ptr, \
query_ptr, \
key_cache_ptr, \
@ -589,19 +616,20 @@ __global__ void paged_attention_v2_reduce_kernel(
num_kv_heads, \
scale, \
block_tables_ptr, \
context_lens_ptr, \
seq_lens_ptr, \
max_num_blocks_per_seq, \
alibi_slopes_ptr, \
q_stride, \
kv_block_stride, \
kv_head_stride);
kv_head_stride, \
kv_scale);
// TODO(woosuk): Tune NUM_THREADS.
template<
typename T,
typename CACHE_T,
int BLOCK_SIZE,
bool IS_FP8_E5M2_KV_CACHE,
bool IS_FP8_KV_CACHE,
int NUM_THREADS = 128>
void paged_attention_v1_launcher(
torch::Tensor& out,
@ -611,9 +639,10 @@ void paged_attention_v1_launcher(
int num_kv_heads,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes) {
torch::Tensor& seq_lens,
int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
float kv_scale) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
@ -635,11 +664,11 @@ void paged_attention_v1_launcher(
CACHE_T* key_cache_ptr = reinterpret_cast<CACHE_T*>(key_cache.data_ptr());
CACHE_T* value_cache_ptr = reinterpret_cast<CACHE_T*>(value_cache.data_ptr());
int* block_tables_ptr = block_tables.data_ptr<int>();
int* context_lens_ptr = context_lens.data_ptr<int>();
int* seq_lens_ptr = seq_lens.data_ptr<int>();
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
int padded_max_context_len = DIVIDE_ROUND_UP(max_context_len, BLOCK_SIZE) * BLOCK_SIZE;
int logits_size = padded_max_context_len * sizeof(float);
int padded_max_seq_len = DIVIDE_ROUND_UP(max_seq_len, BLOCK_SIZE) * BLOCK_SIZE;
int logits_size = padded_max_seq_len * sizeof(float);
int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
// Python-side check in vllm.worker.worker._check_if_can_support_max_seq_len
// Keep that in sync with the logic here!
@ -677,8 +706,8 @@ void paged_attention_v1_launcher(
}
}
#define CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE) \
paged_attention_v1_launcher<T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE>( \
#define CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE) \
paged_attention_v1_launcher<T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE>( \
out, \
query, \
key_cache, \
@ -686,22 +715,23 @@ void paged_attention_v1_launcher(
num_kv_heads, \
scale, \
block_tables, \
context_lens, \
max_context_len, \
alibi_slopes);
seq_lens, \
max_seq_len, \
alibi_slopes, \
kv_scale);
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
// 1, 2, 4, 64, 128, 256.
#define CALL_V1_LAUNCHER_BLOCK_SIZE(T, CACHE_T, IS_FP8_E5M2_KV_CACHE) \
#define CALL_V1_LAUNCHER_BLOCK_SIZE(T, CACHE_T, IS_FP8_KV_CACHE) \
switch (block_size) { \
case 8: \
CALL_V1_LAUNCHER(T, CACHE_T, 8, IS_FP8_E5M2_KV_CACHE); \
CALL_V1_LAUNCHER(T, CACHE_T, 8, IS_FP8_KV_CACHE); \
break; \
case 16: \
CALL_V1_LAUNCHER(T, CACHE_T, 16, IS_FP8_E5M2_KV_CACHE); \
CALL_V1_LAUNCHER(T, CACHE_T, 16, IS_FP8_KV_CACHE); \
break; \
case 32: \
CALL_V1_LAUNCHER(T, CACHE_T, 32, IS_FP8_E5M2_KV_CACHE); \
CALL_V1_LAUNCHER(T, CACHE_T, 32, IS_FP8_KV_CACHE); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
@ -716,11 +746,12 @@ void paged_attention_v1(
int num_kv_heads, // [num_heads]
float scale,
torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
torch::Tensor& context_lens, // [num_seqs]
torch::Tensor& seq_lens, // [num_seqs]
int block_size,
int max_context_len,
int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype) {
const std::string& kv_cache_dtype,
float kv_scale) {
if (kv_cache_dtype == "auto") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V1_LAUNCHER_BLOCK_SIZE(float, float, false);
@ -731,7 +762,7 @@ void paged_attention_v1(
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else if (kv_cache_dtype == "fp8_e5m2") {
} else if (kv_cache_dtype == "fp8") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V1_LAUNCHER_BLOCK_SIZE(float, uint8_t, true);
} else if (query.dtype() == at::ScalarType::Half) {
@ -748,7 +779,7 @@ void paged_attention_v1(
#define LAUNCH_PAGED_ATTENTION_V2(HEAD_SIZE) \
vllm::paged_attention_v2_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, \
IS_FP8_E5M2_KV_CACHE, PARTITION_SIZE> \
IS_FP8_KV_CACHE, PARTITION_SIZE> \
<<<grid, block, shared_mem_size, stream>>>( \
exp_sums_ptr, \
max_logits_ptr, \
@ -759,26 +790,27 @@ void paged_attention_v1(
num_kv_heads, \
scale, \
block_tables_ptr, \
context_lens_ptr, \
seq_lens_ptr, \
max_num_blocks_per_seq, \
alibi_slopes_ptr, \
q_stride, \
kv_block_stride, \
kv_head_stride); \
kv_head_stride, \
kv_scale); \
vllm::paged_attention_v2_reduce_kernel<T, HEAD_SIZE, NUM_THREADS, PARTITION_SIZE> \
<<<reduce_grid, block, reduce_shared_mem_size, stream>>>( \
out_ptr, \
exp_sums_ptr, \
max_logits_ptr, \
tmp_out_ptr, \
context_lens_ptr, \
seq_lens_ptr, \
max_num_partitions);
template<
typename T,
typename CACHE_T,
int BLOCK_SIZE,
bool IS_FP8_E5M2_KV_CACHE,
bool IS_FP8_KV_CACHE,
int NUM_THREADS = 128,
int PARTITION_SIZE = 512>
void paged_attention_v2_launcher(
@ -792,9 +824,10 @@ void paged_attention_v2_launcher(
int num_kv_heads,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes) {
torch::Tensor& seq_lens,
int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
float kv_scale) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
@ -819,10 +852,10 @@ void paged_attention_v2_launcher(
CACHE_T* key_cache_ptr = reinterpret_cast<CACHE_T*>(key_cache.data_ptr());
CACHE_T* value_cache_ptr = reinterpret_cast<CACHE_T*>(value_cache.data_ptr());
int* block_tables_ptr = block_tables.data_ptr<int>();
int* context_lens_ptr = context_lens.data_ptr<int>();
int* seq_lens_ptr = seq_lens.data_ptr<int>();
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
int max_num_partitions = DIVIDE_ROUND_UP(max_context_len, PARTITION_SIZE);
int max_num_partitions = DIVIDE_ROUND_UP(max_seq_len, PARTITION_SIZE);
int logits_size = PARTITION_SIZE * sizeof(float);
int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
@ -864,8 +897,8 @@ void paged_attention_v2_launcher(
}
}
#define CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE) \
paged_attention_v2_launcher<T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE>( \
#define CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE) \
paged_attention_v2_launcher<T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE>( \
out, \
exp_sums, \
max_logits, \
@ -876,22 +909,23 @@ void paged_attention_v2_launcher(
num_kv_heads, \
scale, \
block_tables, \
context_lens, \
max_context_len, \
alibi_slopes);
seq_lens, \
max_seq_len, \
alibi_slopes, \
kv_scale);
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
// 1, 2, 4, 64, 128, 256.
#define CALL_V2_LAUNCHER_BLOCK_SIZE(T, CACHE_T, IS_FP8_E5M2_KV_CACHE) \
#define CALL_V2_LAUNCHER_BLOCK_SIZE(T, CACHE_T, IS_FP8_KV_CACHE) \
switch (block_size) { \
case 8: \
CALL_V2_LAUNCHER(T, CACHE_T, 8, IS_FP8_E5M2_KV_CACHE); \
CALL_V2_LAUNCHER(T, CACHE_T, 8, IS_FP8_KV_CACHE); \
break; \
case 16: \
CALL_V2_LAUNCHER(T, CACHE_T, 16, IS_FP8_E5M2_KV_CACHE); \
CALL_V2_LAUNCHER(T, CACHE_T, 16, IS_FP8_KV_CACHE); \
break; \
case 32: \
CALL_V2_LAUNCHER(T, CACHE_T, 32, IS_FP8_E5M2_KV_CACHE); \
CALL_V2_LAUNCHER(T, CACHE_T, 32, IS_FP8_KV_CACHE); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
@ -909,11 +943,12 @@ void paged_attention_v2(
int num_kv_heads, // [num_heads]
float scale,
torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
torch::Tensor& context_lens, // [num_seqs]
torch::Tensor& seq_lens, // [num_seqs]
int block_size,
int max_context_len,
int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype) {
const std::string& kv_cache_dtype,
float kv_scale) {
if (kv_cache_dtype == "auto") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V2_LAUNCHER_BLOCK_SIZE(float, float, false);
@ -924,7 +959,7 @@ void paged_attention_v2(
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else if (kv_cache_dtype == "fp8_e5m2") {
} else if (kv_cache_dtype == "fp8") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V2_LAUNCHER_BLOCK_SIZE(float, uint8_t, true);
} else if (query.dtype() == at::ScalarType::Half) {

View File

@ -8,7 +8,7 @@
#endif
namespace vllm {
#ifdef ENABLE_FP8_E5M2
#if defined(ENABLE_FP8_E5M2) || defined(ENABLE_FP8_E4M3)
// fp8 vector types for quantization of kv cache
template<>

View File

@ -16,6 +16,15 @@ void copy_blocks(
const std::map<int64_t, std::vector<int64_t>>& block_mapping);
void reshape_and_cache(
torch::Tensor& key,
torch::Tensor& value,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype,
const float kv_scale);
void reshape_and_cache_flash(
torch::Tensor& key,
torch::Tensor& value,
torch::Tensor& key_cache,
@ -24,6 +33,6 @@ void reshape_and_cache(
const std::string& kv_cache_dtype);
// Just for unittest
void convert_fp8_e5m2(
void convert_fp8(
torch::Tensor& src_cache,
torch::Tensor& dst_cache);

View File

@ -4,8 +4,10 @@
#include "cuda_compat.h"
#include "dispatch_utils.h"
#ifdef ENABLE_FP8_E5M2
#if defined(ENABLE_FP8_E5M2)
#include "quantization/fp8_e5m2_kvcache/quant_utils.cuh"
#elif defined(ENABLE_FP8_E4M3)
#include "quantization/fp8/amd_detail/quant_utils.cuh"
#endif
#include <algorithm>
@ -151,7 +153,7 @@ void copy_blocks(
namespace vllm {
template<typename scalar_t, typename cache_t, bool is_fp8_e5m2_kv_cache>
template<typename scalar_t, typename cache_t, bool is_fp8_kv_cache>
__global__ void reshape_and_cache_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
@ -163,7 +165,8 @@ __global__ void reshape_and_cache_kernel(
const int num_heads,
const int head_size,
const int block_size,
const int x) {
const int x,
const float kv_scale) {
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
if (slot_idx < 0) {
@ -195,10 +198,13 @@ __global__ void reshape_and_cache_kernel(
+ block_offset;
scalar_t tgt_key = key[src_key_idx];
scalar_t tgt_value = value[src_value_idx];
if constexpr (is_fp8_e5m2_kv_cache) {
#ifdef ENABLE_FP8_E5M2
if constexpr (is_fp8_kv_cache) {
#if defined(ENABLE_FP8_E5M2)
key_cache[tgt_key_idx] = fp8_e5m2_unscaled::vec_conversion<uint8_t, scalar_t>(tgt_key);
value_cache[tgt_value_idx] = fp8_e5m2_unscaled::vec_conversion<uint8_t, scalar_t>(tgt_value);
#elif defined(ENABLE_FP8_E4M3)
key_cache[tgt_key_idx] = fp8_e4m3::scaled_vec_conversion<uint8_t, scalar_t>(tgt_key, kv_scale);
value_cache[tgt_value_idx] = fp8_e4m3::scaled_vec_conversion<uint8_t, scalar_t>(tgt_value, kv_scale);
#else
assert(false);
#endif
@ -209,10 +215,45 @@ __global__ void reshape_and_cache_kernel(
}
}
template<typename scalar_t>
__global__ void reshape_and_cache_flash_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
scalar_t* __restrict__ k_cache, // [num_blocks, block_size, num_heads, head_size]
scalar_t* __restrict__ v_cache, // [num_blocks, block_size, num_heads, head_size]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int block_stride,
const int key_stride,
const int value_stride,
const int num_heads,
const int head_size,
const int block_size) {
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
// NOTE: slot_idx can be -1 if the token is padded
if (slot_idx < 0) {
return;
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
const int n = num_heads * head_size;
for (int i = threadIdx.x; i < n; i += blockDim.x) {
const int64_t src_key_idx = token_idx * key_stride + i;
const int64_t src_value_idx = token_idx * value_stride + i;
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int64_t tgt_value_idx = block_idx * block_stride
+ block_offset * num_heads * head_size
+ head_idx * head_size
+ head_offset;
k_cache[tgt_value_idx] = key[src_key_idx];
v_cache[tgt_value_idx] = value[src_value_idx];
}
}
} // namespace vllm
#define CALL_RESHAPE_AND_CACHE(KV_T, CACHE_T, IS_FP8_E5M2_KV_CACHE) \
vllm::reshape_and_cache_kernel<KV_T, CACHE_T, IS_FP8_E5M2_KV_CACHE><<<grid, block, 0, stream>>>( \
#define CALL_RESHAPE_AND_CACHE(KV_T, CACHE_T, IS_FP8_KV_CACHE) \
vllm::reshape_and_cache_kernel<KV_T, CACHE_T, IS_FP8_KV_CACHE><<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(key.data_ptr()), \
reinterpret_cast<KV_T*>(value.data_ptr()), \
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
@ -223,7 +264,8 @@ __global__ void reshape_and_cache_kernel(
num_heads, \
head_size, \
block_size, \
x);
x, \
kv_scale);
void reshape_and_cache(
torch::Tensor& key, // [num_tokens, num_heads, head_size]
@ -231,7 +273,8 @@ void reshape_and_cache(
torch::Tensor& key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size]
torch::Tensor& slot_mapping, // [num_tokens]
const std::string& kv_cache_dtype)
const std::string& kv_cache_dtype,
const float kv_scale)
{
int num_tokens = key.size(0);
int num_heads = key.size(1);
@ -254,7 +297,7 @@ void reshape_and_cache(
} else if (key.dtype() == at::ScalarType::BFloat16) {
CALL_RESHAPE_AND_CACHE(__nv_bfloat16, __nv_bfloat16, false);
}
} else if (kv_cache_dtype == "fp8_e5m2") {
} else if (kv_cache_dtype == "fp8") {
if (key.dtype() == at::ScalarType::Float) {
CALL_RESHAPE_AND_CACHE(float, uint8_t, true);
} else if (key.dtype() == at::ScalarType::Half) {
@ -267,18 +310,65 @@ void reshape_and_cache(
}
}
void reshape_and_cache_flash(
torch::Tensor& key, // [num_tokens, num_heads, head_size]
torch::Tensor& value, // [num_tokens, num_heads, head_size]
torch::Tensor& k_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor& v_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor& slot_mapping, // [num_tokens]
const std::string& kv_cache_dtype)
{
// FIXME: only support auto datatype, does not support fp8
if (kv_cache_dtype != "auto") {
TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
}
int num_tokens = key.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);
int block_size = k_cache.size(1);
int key_stride = key.stride(0);
int value_stride = value.stride(0);
int block_stride = k_cache.stride(0);
TORCH_CHECK(k_cache.stride(0) == v_cache.stride(0));
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
key.scalar_type(),
"reshape_and_cache_flash",
[&] {
vllm::reshape_and_cache_flash_kernel<scalar_t><<<grid, block, 0, stream>>>(
key.data_ptr<scalar_t>(),
value.data_ptr<scalar_t>(),
k_cache.data_ptr<scalar_t>(),
v_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int64_t>(),
block_stride,
key_stride,
value_stride,
num_heads,
head_size,
block_size);
});
}
namespace vllm {
template<typename Tout, typename Tin>
__global__ void convert_fp8_e5m2_kernel(
__global__ void convert_fp8_kernel(
const Tin* __restrict__ src_cache,
Tout* __restrict__ dst_cache,
const int64_t block_stride) {
const int64_t block_idx = blockIdx.x;
for (int i = threadIdx.x; i < block_stride; i += blockDim.x) {
int64_t idx = block_idx * block_stride + i;
#ifdef ENABLE_FP8_E5M2
#if defined(ENABLE_FP8_E5M2)
dst_cache[idx] = fp8_e5m2_unscaled::vec_conversion<Tout, Tin>(src_cache[idx]);
#elif defined(ENABLE_FP8_E4M3)
dst_cache[idx] = fp8_e4m3::vec_conversion<Tout, Tin>(src_cache[idx]);
#else
assert(false);
#endif
@ -287,16 +377,25 @@ __global__ void convert_fp8_e5m2_kernel(
} // namespace vllm
#define CALL_CONVERT_FP8_E5M2(Tout, Tin) \
vllm::convert_fp8_e5m2_kernel<Tout, Tin><<<grid, block, 0, stream>>>( \
reinterpret_cast<Tin*>(src_cache.data_ptr()), \
reinterpret_cast<Tout*>(dst_cache.data_ptr()), \
#define CALL_CONVERT_FP8(Tout, Tin) \
vllm::convert_fp8_kernel<Tout, Tin><<<grid, block, 0, stream>>>( \
reinterpret_cast<Tin*>(src_cache.data_ptr()), \
reinterpret_cast<Tout*>(dst_cache.data_ptr()), \
block_stride);
void convert_fp8_e5m2(
void convert_fp8(
torch::Tensor& src_cache,
torch::Tensor& dst_cache)
{
torch::Device src_device = src_cache.device();
torch::Device dst_device = dst_cache.device();
TORCH_CHECK(src_device.is_cuda(), "src must be on a GPU")
TORCH_CHECK(dst_device.is_cuda(), "dst must be on a GPU")
TORCH_CHECK(
src_device.index() == dst_device.index(),
"src and dst must be on the same GPU");
at::cuda::OptionalCUDAGuard device_guard(src_device);
int64_t num_blocks = src_cache.size(0);
int64_t block_stride = src_cache.stride(0);
@ -305,16 +404,16 @@ void convert_fp8_e5m2(
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (src_cache.dtype() == at::ScalarType::Float) {
CALL_CONVERT_FP8_E5M2(uint8_t, float);
CALL_CONVERT_FP8(uint8_t, float);
} else if (src_cache.dtype() == at::ScalarType::Half) {
CALL_CONVERT_FP8_E5M2(uint8_t, uint16_t);
CALL_CONVERT_FP8(uint8_t, uint16_t);
} else if (src_cache.dtype() == at::ScalarType::BFloat16) {
CALL_CONVERT_FP8_E5M2(uint8_t, __nv_bfloat16);
CALL_CONVERT_FP8(uint8_t, __nv_bfloat16);
} else if (dst_cache.dtype() == at::ScalarType::Float) {
CALL_CONVERT_FP8_E5M2(float, uint8_t);
CALL_CONVERT_FP8(float, uint8_t);
} else if (dst_cache.dtype() == at::ScalarType::Half) {
CALL_CONVERT_FP8_E5M2(uint16_t, uint8_t);
CALL_CONVERT_FP8(uint16_t, uint8_t);
} else if (dst_cache.dtype() == at::ScalarType::BFloat16) {
CALL_CONVERT_FP8_E5M2(__nv_bfloat16, uint8_t);
CALL_CONVERT_FP8(__nv_bfloat16, uint8_t);
}
}

148
csrc/cpu/activation.cpp Normal file
View File

@ -0,0 +1,148 @@
#include "cpu_types.hpp"
namespace {
template <typename scalar_t, vec_op::FP32Vec8 (*func)(const vec_op::FP32Vec8 &),
bool is_gated>
void activation_kernel(int num_tokens, int d, scalar_t *__restrict__ input,
scalar_t *__restrict__ output) {
using scalar_vec_t = vec_op::vec_t<scalar_t>;
constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num();
TORCH_CHECK(d % VEC_ELEM_NUM == 0);
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
for (int j = 0; j < d; j += VEC_ELEM_NUM) {
int start = i * d;
if constexpr (is_gated) {
start *= 2;
}
const scalar_vec_t x(input + start + j);
const vec_op::FP32Vec8 f32_x(x);
vec_op::FP32Vec8 f32_ans = func(f32_x);
if constexpr (is_gated) {
const scalar_vec_t y(input + start + d + j);
const vec_op::FP32Vec8 f32_y(y);
f32_ans = f32_y * f32_ans;
}
const scalar_vec_t result(f32_ans);
result.save(output + i * d + j);
}
}
}
FORCE_INLINE vec_op::FP32Vec8 silu_act(const vec_op::FP32Vec8 &x) {
const vec_op::FP32Vec8 zeros(0.0);
const vec_op::FP32Vec8 ones(1.0);
return x / (ones + (zeros - x).exp());
}
FORCE_INLINE vec_op::FP32Vec8 gelu_new_act(const vec_op::FP32Vec8 &x) {
const vec_op::FP32Vec8 ones(1.0);
const vec_op::FP32Vec8 w1(0.79788456f);
const vec_op::FP32Vec8 w2(0.044715f);
const vec_op::FP32Vec8 w3(0.5);
const vec_op::FP32Vec8 x3 = x * x * x;
const vec_op::FP32Vec8 t = (w1 * (x + w2 * x3)).tanh();
return w3 * x * (ones + t);
}
FORCE_INLINE vec_op::FP32Vec8 gelu_fast_act(const vec_op::FP32Vec8 &x) {
const vec_op::FP32Vec8 ones(1.0);
const vec_op::FP32Vec8 w1(0.79788456f);
const vec_op::FP32Vec8 w2(0.044715f);
const vec_op::FP32Vec8 w3(0.5);
const vec_op::FP32Vec8 t = (x * w1 * (ones + x * w2 * x)).tanh();
return w3 * x * (ones + t);
}
FORCE_INLINE vec_op::FP32Vec8 gelu_act(const vec_op::FP32Vec8 &x) {
const vec_op::FP32Vec8 ones(1.0);
const vec_op::FP32Vec8 w1(M_SQRT1_2);
const vec_op::FP32Vec8 w2(0.5);
return x * w2 * (ones + (x * w1).er());
}
FORCE_INLINE vec_op::FP32Vec8 gelu_tanh_act(const vec_op::FP32Vec8 &x) {
const vec_op::FP32Vec8 ones(1.0);
const vec_op::FP32Vec8 w1(M_SQRT2 * M_2_SQRTPI * 0.5);
const vec_op::FP32Vec8 w2(0.5);
const vec_op::FP32Vec8 w3(0.044715);
const vec_op::FP32Vec8 x_3 = x * x * x;
const vec_op::FP32Vec8 inner = w1 * (x + x_3 * w3);
return x * w2 * (ones + inner.tanh());
}
}; // namespace
void silu_and_mul(torch::Tensor &out, torch::Tensor &input) {
int num_tokens = input.numel() / input.size(-1);
int d = input.size(-1) / 2;
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "silu_and_mul_impl", [&] {
CPU_KERNEL_GUARD_IN(silu_and_mul_impl)
activation_kernel<scalar_t, silu_act, true>(num_tokens, d,
input.data_ptr<scalar_t>(),
out.data_ptr<scalar_t>());
CPU_KERNEL_GUARD_OUT(silu_and_mul_impl)
});
}
void gelu_and_mul(torch::Tensor &out, // [..., d]
torch::Tensor &input) // [..., 2 * d]
{
int num_tokens = input.numel() / input.size(-1);
int d = input.size(-1) / 2;
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "gelu_and_mul_impl", [&] {
CPU_KERNEL_GUARD_IN(gelu_and_mul_impl)
activation_kernel<scalar_t, gelu_act, true>(num_tokens, d,
input.data_ptr<scalar_t>(),
out.data_ptr<scalar_t>());
CPU_KERNEL_GUARD_OUT(gelu_and_mul_impl)
});
}
void gelu_tanh_and_mul(torch::Tensor &out, // [..., d]
torch::Tensor &input) // [..., 2 * d]
{
int num_tokens = input.numel() / input.size(-1);
int d = input.size(-1) / 2;
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "gelu_tanh_and_mul_impl", [&] {
CPU_KERNEL_GUARD_IN(gelu_tanh_and_mul_impl)
activation_kernel<scalar_t, gelu_tanh_act, true>(
num_tokens, d, input.data_ptr<scalar_t>(),
out.data_ptr<scalar_t>());
CPU_KERNEL_GUARD_OUT(gelu_tanh_and_mul_impl)
});
}
void gelu_new(torch::Tensor &out, torch::Tensor &input) {
int num_tokens = input.numel() / input.size(-1);
int d = input.size(-1);
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "gelu_new_impl", [&] {
CPU_KERNEL_GUARD_IN(gelu_new_impl)
activation_kernel<scalar_t, gelu_new_act, false>(
num_tokens, d, input.data_ptr<scalar_t>(), out.data_ptr<scalar_t>());
CPU_KERNEL_GUARD_OUT(gelu_new_impl)
});
}
void gelu_fast(torch::Tensor &out, torch::Tensor &input) {
int num_tokens = input.numel() / input.size(-1);
int d = input.size(-1);
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "gelu_fast_impl", [&] {
CPU_KERNEL_GUARD_IN(gelu_fast_impl)
activation_kernel<scalar_t, gelu_fast_act, false>(
num_tokens, d, input.data_ptr<scalar_t>(), out.data_ptr<scalar_t>());
CPU_KERNEL_GUARD_OUT(gelu_fast_impl)
});
}

746
csrc/cpu/attention.cpp Normal file
View File

@ -0,0 +1,746 @@
#include "cpu_types.hpp"
namespace {
template <typename scalar_t> struct KernelVecType {
using q_load_vec_type = void;
using q_vec_type = void;
using k_load_vec_type = void;
using k_vec_type = void;
using qk_acc_vec_type = void;
using v_load_vec_type = void;
};
template <> struct KernelVecType<float> {
using q_load_vec_type = vec_op::FP32Vec4;
using q_vec_type = vec_op::FP32Vec16;
using k_load_vec_type = vec_op::FP32Vec16;
using k_vec_type = vec_op::FP32Vec16;
using qk_acc_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::FP32Vec16;
};
#ifdef __AVX512BF16__
template <> struct KernelVecType<c10::BFloat16> {
using q_load_vec_type = vec_op::BF16Vec8;
using q_vec_type = vec_op::BF16Vec32;
using k_load_vec_type = vec_op::BF16Vec32;
using k_vec_type = vec_op::BF16Vec32;
using qk_acc_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::BF16Vec16;
};
#else
template <> struct KernelVecType<c10::BFloat16> {
using q_load_vec_type = vec_op::BF16Vec8;
using q_vec_type = vec_op::FP32Vec16;
using k_load_vec_type = vec_op::BF16Vec16;
using k_vec_type = vec_op::FP32Vec16;
using qk_acc_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::BF16Vec16;
};
#endif
template <typename T>
FORCE_INLINE std::pair<T, T> reduceSoftmax(T *data, const int size,
const int capacity) {
T max = data[0];
for (int i = 1; i < size; ++i) {
max = max >= data[i] ? max : data[i];
}
T sum = 0;
for (int i = 0; i < size; ++i) {
data[i] = std::exp(data[i] - max);
sum += data[i];
}
int i = 0;
for (; i < size; ++i) {
data[i] /= sum;
}
for (; i < capacity; ++i) {
data[i] = 0;
}
return {max, sum};
}
template <typename T>
FORCE_INLINE std::pair<T, T>
reduceSoftmaxAlibi(T *data, const int size, const int capacity,
const float alibi_slope, const int start_index,
const int seq_len) {
data[0] += alibi_slope * (start_index - seq_len + 1);
T max = data[0];
for (int i = 1; i < size; ++i) {
T qk = data[i] + alibi_slope * (start_index + i - seq_len + 1);
data[i] = qk;
max = max >= qk ? max : qk;
}
T sum = 0;
for (int i = 0; i < size; ++i) {
data[i] = std::exp(data[i] - max);
sum += data[i];
}
int i = 0;
for (; i < size; ++i) {
data[i] /= sum;
}
for (; i < capacity; ++i) {
data[i] = 0;
}
return {max, sum};
}
template <typename T>
FORCE_INLINE void reducePartitonSoftmax(const T *max_data, T *sum_data,
const int size) {
T max = max_data[0];
for (int i = 1; i < size; ++i) {
max = max >= max_data[i] ? max : max_data[i];
}
T rescaled_sum = 0;
for (int i = 0; i < size; ++i) {
T rescale_factor = std::exp(max_data[i] - max);
rescaled_sum += rescale_factor * sum_data[i];
sum_data[i] *= rescale_factor;
}
for (int i = 0; i < size; ++i) {
sum_data[i] /= rescaled_sum + 1e-8;
}
}
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE, int x>
struct reduceQKBlockKernel {
using q_load_vec_type = typename KernelVecType<scalar_t>::q_load_vec_type;
using q_vec_type = typename KernelVecType<scalar_t>::q_vec_type;
using k_load_vec_type = typename KernelVecType<scalar_t>::k_load_vec_type;
using k_vec_type = typename KernelVecType<scalar_t>::k_vec_type;
using qk_acc_vec_type = typename KernelVecType<scalar_t>::qk_acc_vec_type;
constexpr static int TOKEN_PER_GROUP = k_load_vec_type::get_elem_num() / x;
constexpr static int MAX_GROUP_NUM = 16 / TOKEN_PER_GROUP;
constexpr static int UNROLL_GROUP_NUM = MAX_GROUP_NUM / 4;
static_assert(MAX_GROUP_NUM == 8 || MAX_GROUP_NUM == 4);
static_assert(k_load_vec_type::get_elem_num() % x == 0);
static_assert(q_load_vec_type::get_elem_num() * sizeof(scalar_t) == 16);
FORCE_INLINE static void call(const scalar_t *__restrict__ q,
const scalar_t *__restrict__ k_block,
float *__restrict__ logits, float scale,
const int token_num) {
const int group_num = (token_num + TOKEN_PER_GROUP - 1) / TOKEN_PER_GROUP;
qk_acc_vec_type group_accums[MAX_GROUP_NUM];
if (token_num == BLOCK_SIZE) {
for (int q_offset = 0; q_offset < HEAD_SIZE;
q_offset += x, k_block += x * BLOCK_SIZE) {
q_load_vec_type q_load_group_vec(q + q_offset);
q_vec_type q_group_vec(q_load_group_vec);
vec_op::unroll_loop<int, MAX_GROUP_NUM>(
[k_block, &q_group_vec, &group_accums](int token_group_idx) {
k_load_vec_type k_load_group_vec(k_block + token_group_idx * x *
TOKEN_PER_GROUP);
k_vec_type k_group_vec(k_load_group_vec);
vec_op::fma(group_accums[token_group_idx], q_group_vec,
k_group_vec);
vec_op::prefetch(k_block + x * BLOCK_SIZE +
token_group_idx * x * TOKEN_PER_GROUP);
});
}
} else {
for (int q_offset = 0; q_offset < HEAD_SIZE;
q_offset += x, k_block += x * BLOCK_SIZE) {
q_load_vec_type q_load_group_vec(q + q_offset);
q_vec_type q_group_vec(q_load_group_vec);
for (int token_group_start = 0; token_group_start < group_num;
token_group_start += UNROLL_GROUP_NUM) {
vec_op::unroll_loop<int, UNROLL_GROUP_NUM>(
[token_group_start, k_block, &q_group_vec,
&group_accums](int token_group_idx) {
token_group_idx += token_group_start;
k_load_vec_type k_load_group_vec(k_block + token_group_idx * x *
TOKEN_PER_GROUP);
k_vec_type k_group_vec(k_load_group_vec);
vec_op::fma(group_accums[token_group_idx], q_group_vec,
k_group_vec);
vec_op::prefetch(k_block + x * BLOCK_SIZE +
token_group_idx * x * TOKEN_PER_GROUP);
});
}
}
}
for (int token_group_idx = 0; token_group_idx < group_num;
++token_group_idx) {
vec_op::unroll_loop<int, TOKEN_PER_GROUP>(
[&group_accums, logits, scale, token_group_idx](int token_idx) {
float dot_v =
group_accums[token_group_idx]
.template reduce_sub_sum<qk_acc_vec_type::get_elem_num() /
TOKEN_PER_GROUP>(token_idx);
logits[token_group_idx * TOKEN_PER_GROUP + token_idx] =
dot_v * scale;
});
}
}
};
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE,
int HEAD_PARTITION_SIZE, typename acc_t>
FORCE_INLINE void reduceValueBlock(const float *prob, const scalar_t *v_block,
acc_t &&acc) {
using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
constexpr int ELEM_NUM = v_load_vec_type::get_elem_num();
static_assert(BLOCK_SIZE == ELEM_NUM);
vec_op::FP32Vec16 prob_vec(prob);
vec_op::unroll_loop<int, HEAD_PARTITION_SIZE>([&](int head_elem_idx) {
v_load_vec_type v_vec(v_block + BLOCK_SIZE * head_elem_idx);
vec_op::FP32Vec16 fp32_v_vec(v_vec);
acc[head_elem_idx] = acc[head_elem_idx] + prob_vec * fp32_v_vec;
});
}
}; // namespace
// Paged attention v1
namespace {
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE>
struct paged_attention_v1_impl {
static void
call(scalar_t *__restrict__ out, // [num_seqs, num_heads, head_size]
const scalar_t *__restrict__ q, // [num_seqs, num_heads, head_size]
const scalar_t *__restrict__ k_cache, // [num_blocks, num_kv_heads,
// head_size/x, block_size, x]
const scalar_t *__restrict__ v_cache, // [num_blocks, num_kv_heads,
// head_size, block_size]
const int num_kv_heads, const float scale,
const int
*__restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int *__restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float *__restrict__ alibi_slopes, // [num_heads]
const int q_stride, const int kv_block_stride, const int kv_head_stride,
const int num_seqs, const int num_heads) {
constexpr int x = 16 / sizeof(scalar_t);
const int num_queries_per_kv = num_heads / num_kv_heads;
static_assert(BLOCK_SIZE == 16);
int max_seq_len = max_num_blocks_per_seq * BLOCK_SIZE;
int max_seq_len_padded = (max_seq_len + 15) & 0xFFFFFFF0;
TORCH_CHECK((max_seq_len_padded * sizeof(float)) % 64 == 0);
const int parallel_work_item_num = omp_get_max_threads();
size_t logits_bytes =
parallel_work_item_num * max_seq_len_padded * sizeof(float);
float *logits = (float *)std::aligned_alloc(
64, logits_bytes); // Cacheline alignment for each context token.
// [parallel_work_item_num, max_seq_len_padded]
#pragma omp parallel for collapse(2) schedule(dynamic, 1)
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
int seq_len = seq_lens[seq_idx];
const int *seq_block_table =
block_tables + max_num_blocks_per_seq * seq_idx;
const int block_num = (seq_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
const int64_t kv_head_idx = head_idx / num_queries_per_kv;
const scalar_t *__restrict__ q_vec_ptr =
q + seq_idx * q_stride + head_idx * HEAD_SIZE;
const int last_block_token_num =
seq_len - (block_num - 1) * BLOCK_SIZE;
float *__restrict__ thread_block_logits =
logits + omp_get_thread_num() * max_seq_len_padded;
// Compute logits
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
const int64_t physical_block_idx = seq_block_table[block_idx];
const scalar_t *__restrict__ k_block_cache_ptr =
k_cache + physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride;
float *__restrict__ head_block_logits =
thread_block_logits + block_idx * BLOCK_SIZE;
reduceQKBlockKernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, x>::call(
q_vec_ptr, k_block_cache_ptr, head_block_logits, scale,
block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE);
}
// Compute softmax
if (alibi_slopes) {
reduceSoftmaxAlibi(thread_block_logits, seq_len,
block_num * BLOCK_SIZE, alibi_slopes[head_idx], 0,
seq_len);
} else {
reduceSoftmax(thread_block_logits, seq_len,
block_num * BLOCK_SIZE);
}
// Compute value
constexpr int head_elem_num_per_partition = 16;
constexpr int head_partition_num =
HEAD_SIZE / head_elem_num_per_partition;
for (int head_part_idx = 0; head_part_idx < head_partition_num;
++head_part_idx) {
vec_op::FP32Vec16 accums[head_elem_num_per_partition];
scalar_t *__restrict__ out_ptr =
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE +
head_part_idx * head_elem_num_per_partition;
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
const int64_t physical_block_idx = seq_block_table[block_idx];
const float *__restrict__ prob_vec_ptr =
thread_block_logits + block_idx * BLOCK_SIZE;
const scalar_t *__restrict__ v_block_cache_ptr =
v_cache + physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride +
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
reduceValueBlock<scalar_t, HEAD_SIZE, BLOCK_SIZE,
head_elem_num_per_partition>(
prob_vec_ptr, v_block_cache_ptr, accums);
if (block_idx != block_num - 1) {
const int64_t next_physical_block_idx =
seq_block_table[block_idx + 1];
const scalar_t *__restrict__ next_v_block_cache_ptr =
v_cache + next_physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride +
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
vec_op::unroll_loop<int, head_elem_num_per_partition>(
[&](int head_elem_idx) {
if (head_elem_idx % 2 == 0) {
vec_op::prefetch(next_v_block_cache_ptr +
BLOCK_SIZE * head_elem_idx);
}
});
}
}
vec_op::unroll_loop<int, head_elem_num_per_partition>(
[&](int head_elem_idx) {
float value = accums[head_elem_idx].reduce_sum();
vec_op::storeFP32(value, out_ptr + head_elem_idx);
});
}
}
}
std::free(logits);
}
};
#define LAUNCH_V1_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE) \
paged_attention_v1_impl<T, HEAD_SIZE, BLOCK_SIZE>::call( \
out_ptr, query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, scale, \
block_tables_ptr, seq_lens_ptr, max_num_blocks_per_seq, \
alibi_slopes_ptr, q_stride, kv_block_stride, kv_head_stride, num_seqs, \
num_heads);
template <typename T, int BLOCK_SIZE>
void paged_attention_v1_impl_launcher(
torch::Tensor &out, torch::Tensor &query, torch::Tensor &key_cache,
torch::Tensor &value_cache, int num_kv_heads, float scale,
torch::Tensor &block_tables, torch::Tensor &seq_lens,
int max_seq_len, const c10::optional<torch::Tensor> &alibi_slopes) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
int max_num_blocks_per_seq = block_tables.size(1);
int q_stride = query.stride(0);
int kv_block_stride = key_cache.stride(0);
int kv_head_stride = key_cache.stride(1);
// NOTE: alibi_slopes is optional.
const float *alibi_slopes_ptr =
alibi_slopes
? reinterpret_cast<const float *>(alibi_slopes.value().data_ptr())
: nullptr;
T *out_ptr = reinterpret_cast<T *>(out.data_ptr());
T *query_ptr = reinterpret_cast<T *>(query.data_ptr());
T *key_cache_ptr = reinterpret_cast<T *>(key_cache.data_ptr());
T *value_cache_ptr = reinterpret_cast<T *>(value_cache.data_ptr());
int *block_tables_ptr = block_tables.data_ptr<int>();
int *seq_lens_ptr = seq_lens.data_ptr<int>();
switch (head_size) {
case 64:
LAUNCH_V1_ATTENTION_KERNEL(T, 64, BLOCK_SIZE);
break;
case 80:
LAUNCH_V1_ATTENTION_KERNEL(T, 80, BLOCK_SIZE);
break;
case 96:
LAUNCH_V1_ATTENTION_KERNEL(T, 96, BLOCK_SIZE);
break;
case 112:
LAUNCH_V1_ATTENTION_KERNEL(T, 112, BLOCK_SIZE);
break;
case 128:
LAUNCH_V1_ATTENTION_KERNEL(T, 128, BLOCK_SIZE);
break;
case 256:
LAUNCH_V1_ATTENTION_KERNEL(T, 256, BLOCK_SIZE);
break;
default:
TORCH_CHECK(false, "Unsupported head size: ", head_size);
break;
}
}
#define CALL_V1_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
paged_attention_v1_impl_launcher<T, BLOCK_SIZE>( \
out, query, key_cache, value_cache, num_kv_heads, scale, block_tables, \
seq_lens, max_seq_len, alibi_slopes);
#define CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(T) \
switch (block_size) { \
case 16: \
CALL_V1_KERNEL_LAUNCHER(T, 16); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
}
} // namespace
void paged_attention_v1(torch::Tensor &out, torch::Tensor &query,
torch::Tensor &key_cache, torch::Tensor &value_cache,
int num_kv_heads, float scale,
torch::Tensor &block_tables,
torch::Tensor &seq_lens, int block_size,
int max_seq_len,
const c10::optional<torch::Tensor> &alibi_slopes,
const std::string &kv_cache_dtype, float kv_scale) {
TORCH_CHECK(kv_scale == 1.0f);
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v1_impl",
[&] {
CPU_KERNEL_GUARD_IN(paged_attention_v1_impl)
CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t);
CPU_KERNEL_GUARD_OUT(paged_attention_v1_impl)
});
}
// Paged attention v2
namespace {
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE, int PARTITION_SIZE>
struct paged_attention_v2_impl {
static void call(
scalar_t *__restrict__ out, // [num_seqs, num_heads, head_size]
float *__restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
float
*__restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
scalar_t *__restrict__ tmp_out, // [num_seqs, num_heads,
// max_num_partitions, head_size]
const scalar_t *__restrict__ q, // [num_seqs, num_heads, head_size]
const scalar_t *__restrict__ k_cache, // [num_blocks, num_kv_heads,
// head_size/x, block_size, x]
const scalar_t *__restrict__ v_cache, // [num_blocks, num_kv_heads,
// head_size, block_size]
const int num_kv_heads, const float scale,
const int
*__restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int *__restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float *__restrict__ alibi_slopes, // [num_heads]
const int q_stride, const int kv_block_stride, const int kv_head_stride,
const int num_seqs, const int num_heads, const int max_num_partitions) {
constexpr int x = 16 / sizeof(scalar_t);
const int num_queries_per_kv = num_heads / num_kv_heads;
static_assert(BLOCK_SIZE == 16);
static_assert(PARTITION_SIZE * sizeof(float) % 64 == 0);
static_assert(PARTITION_SIZE % BLOCK_SIZE == 0);
#pragma omp parallel for collapse(3) schedule(static, 1)
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
for (int partition_idx = 0; partition_idx < max_num_partitions;
++partition_idx) {
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
const int seq_len = seq_lens[seq_idx];
const int start_token_idx = partition_idx * PARTITION_SIZE;
if (start_token_idx >= seq_len)
continue;
const int partition_num =
(seq_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
const bool no_reduce = (partition_num == 1);
const int token_num =
(std::min(seq_len, start_token_idx + PARTITION_SIZE) -
start_token_idx);
const int block_num =
(token_num + BLOCK_SIZE - 1) / BLOCK_SIZE;
const int last_block_token_num =
token_num - (block_num - 1) * BLOCK_SIZE;
const int *seq_block_table = block_tables +
max_num_blocks_per_seq * seq_idx +
start_token_idx / BLOCK_SIZE;
const int64_t kv_head_idx = head_idx / num_queries_per_kv;
const scalar_t *__restrict__ q_vec_ptr =
q + seq_idx * q_stride + head_idx * HEAD_SIZE;
float logits[PARTITION_SIZE] __attribute__((aligned(64))) = {0};
// Compute logits
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
const int64_t physical_block_idx = seq_block_table[block_idx];
const scalar_t *__restrict__ k_block_cache_ptr =
k_cache + physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride;
float *__restrict__ head_block_logits =
logits + block_idx * BLOCK_SIZE;
reduceQKBlockKernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, x>::call(
q_vec_ptr, k_block_cache_ptr, head_block_logits, scale,
block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE);
}
std::pair<float, float> max_and_sum;
if (alibi_slopes) {
max_and_sum = reduceSoftmaxAlibi(
logits, token_num, block_num * BLOCK_SIZE,
alibi_slopes[head_idx], start_token_idx, seq_len);
} else {
max_and_sum = reduceSoftmax(logits, token_num,
block_num * BLOCK_SIZE);
}
auto &&[max_logit, exp_sum] = max_and_sum;
scalar_t *__restrict__ output_buffer = nullptr;
if (!no_reduce) {
auto idx = seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions + partition_idx;
max_logits[idx] = max_logit;
exp_sums[idx] = exp_sum;
output_buffer =
tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
head_idx * max_num_partitions * HEAD_SIZE +
partition_idx * HEAD_SIZE;
} else {
output_buffer =
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
}
// Compute value
constexpr int head_elem_num_per_partition = 16;
constexpr int head_partition_num =
HEAD_SIZE / head_elem_num_per_partition;
for (int head_part_idx = 0; head_part_idx < head_partition_num;
++head_part_idx) {
vec_op::FP32Vec16 accums[head_elem_num_per_partition];
scalar_t *__restrict__ out_ptr =
output_buffer + head_part_idx * head_elem_num_per_partition;
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
const int64_t physical_block_idx = seq_block_table[block_idx];
const float *__restrict__ prob_vec_ptr =
logits + block_idx * BLOCK_SIZE;
const scalar_t *__restrict__ v_block_cache_ptr =
v_cache + physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride +
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
reduceValueBlock<scalar_t, HEAD_SIZE, BLOCK_SIZE,
head_elem_num_per_partition>(
prob_vec_ptr, v_block_cache_ptr, accums);
if (block_idx != block_num - 1) {
const int64_t next_physical_block_idx =
seq_block_table[block_idx + 1];
const scalar_t *__restrict__ next_v_block_cache_ptr =
v_cache + next_physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride +
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
vec_op::unroll_loop<int, head_elem_num_per_partition>(
[&](int head_elem_idx) {
if (head_elem_idx % 2 == 0) {
vec_op::prefetch(next_v_block_cache_ptr +
BLOCK_SIZE * head_elem_idx);
}
});
}
}
vec_op::unroll_loop<int, head_elem_num_per_partition>(
[&](int head_elem_idx) {
float value = accums[head_elem_idx].reduce_sum();
vec_op::storeFP32(value, out_ptr + head_elem_idx);
});
}
}
}
}
// Rescale partition softmax and store the factors to exp_sums
#pragma omp parallel for collapse(2) schedule(static, 1)
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
const int seq_len = seq_lens[seq_idx];
const int partition_num =
(seq_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
if (partition_num == 1)
continue;
reducePartitonSoftmax(
max_logits + seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions,
exp_sums + seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions,
partition_num);
}
}
// Reduce values
using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
static_assert(v_load_vec_type::get_elem_num() == BLOCK_SIZE);
constexpr int head_elem_num_per_group =
16; // Note: didn't align with the cacheline size, due to some HEAD_SIZE
// didn't align with 64 bytes
static_assert(HEAD_SIZE % head_elem_num_per_group == 0);
constexpr int head_group_num = HEAD_SIZE / head_elem_num_per_group;
const float *__restrict__ rescale_factors = exp_sums;
#pragma omp parallel for collapse(3) schedule(static, 1)
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
for (int group_idx = 0; group_idx < head_group_num; ++group_idx) {
const int seq_len = seq_lens[seq_idx];
const int partition_num =
(seq_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
if (partition_num == 1)
continue;
const float *__restrict__ seq_head_rescale_factors =
rescale_factors + seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions;
const scalar_t *__restrict__ seq_head_tmp_out =
tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
head_idx * max_num_partitions * HEAD_SIZE +
group_idx * head_elem_num_per_group;
scalar_t *__restrict__ seq_head_output =
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE +
group_idx * head_elem_num_per_group;
vec_op::FP32Vec16 acc;
for (int i = 0; i < partition_num; ++i) {
vec_op::FP32Vec16 rescale_factor(seq_head_rescale_factors[i]);
v_load_vec_type value(seq_head_tmp_out + i * HEAD_SIZE);
vec_op::FP32Vec16 fp32_value(value);
acc = acc + fp32_value * rescale_factor;
}
v_load_vec_type cast_acc(acc);
cast_acc.save(seq_head_output);
}
}
}
}
};
#define LAUNCH_V2_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE) \
paged_attention_v2_impl<T, HEAD_SIZE, BLOCK_SIZE, PARTITION_SIZE>::call( \
out_ptr, exp_sums_ptr, max_logits_ptr, tmp_out_ptr, query_ptr, \
key_cache_ptr, value_cache_ptr, num_kv_heads, scale, block_tables_ptr, \
seq_lens_ptr, max_num_blocks_per_seq, alibi_slopes_ptr, q_stride, \
kv_block_stride, kv_head_stride, num_seqs, num_heads, \
max_num_partitions);
template <typename T, int BLOCK_SIZE, int PARTITION_SIZE = 512>
void paged_attention_v2_impl_launcher(
torch::Tensor &out, torch::Tensor &exp_sums, torch::Tensor &max_logits,
torch::Tensor &tmp_out, torch::Tensor &query, torch::Tensor &key_cache,
torch::Tensor &value_cache, int num_kv_heads, float scale,
torch::Tensor &block_tables, torch::Tensor &seq_lens, int block_size,
int max_seq_len, const c10::optional<torch::Tensor> &alibi_slopes) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
int max_num_blocks_per_seq = block_tables.size(1);
int q_stride = query.stride(0);
int kv_block_stride = key_cache.stride(0);
int kv_head_stride = key_cache.stride(1);
int max_num_partitions = exp_sums.size(-1);
// NOTE: alibi_slopes is optional.
const float *alibi_slopes_ptr =
alibi_slopes
? reinterpret_cast<const float *>(alibi_slopes.value().data_ptr())
: nullptr;
T *out_ptr = reinterpret_cast<T *>(out.data_ptr());
float *exp_sums_ptr = reinterpret_cast<float *>(exp_sums.data_ptr());
float *max_logits_ptr = reinterpret_cast<float *>(max_logits.data_ptr());
T *tmp_out_ptr = reinterpret_cast<T *>(tmp_out.data_ptr());
T *query_ptr = reinterpret_cast<T *>(query.data_ptr());
T *key_cache_ptr = reinterpret_cast<T *>(key_cache.data_ptr());
T *value_cache_ptr = reinterpret_cast<T *>(value_cache.data_ptr());
int *block_tables_ptr = block_tables.data_ptr<int>();
int *seq_lens_ptr = seq_lens.data_ptr<int>();
switch (head_size) {
case 64:
LAUNCH_V2_ATTENTION_KERNEL(T, 64, BLOCK_SIZE);
break;
case 80:
LAUNCH_V2_ATTENTION_KERNEL(T, 80, BLOCK_SIZE);
break;
case 96:
LAUNCH_V2_ATTENTION_KERNEL(T, 96, BLOCK_SIZE);
break;
case 112:
LAUNCH_V2_ATTENTION_KERNEL(T, 112, BLOCK_SIZE);
break;
case 128:
LAUNCH_V2_ATTENTION_KERNEL(T, 128, BLOCK_SIZE);
break;
case 256:
LAUNCH_V2_ATTENTION_KERNEL(T, 256, BLOCK_SIZE);
break;
default:
TORCH_CHECK(false, "Unsupported head size: ", head_size);
break;
}
}
#define CALL_V2_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
paged_attention_v2_impl_launcher<T, BLOCK_SIZE>( \
out, exp_sums, max_logits, tmp_out, query, key_cache, value_cache, \
num_kv_heads, scale, block_tables, seq_lens, block_size, \
max_seq_len, alibi_slopes);
#define CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(T) \
switch (block_size) { \
case 16: \
CALL_V2_KERNEL_LAUNCHER(T, 16); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
}
} // namespace
void paged_attention_v2(torch::Tensor &out, torch::Tensor &exp_sums,
torch::Tensor &max_logits, torch::Tensor &tmp_out,
torch::Tensor &query, torch::Tensor &key_cache,
torch::Tensor &value_cache, int num_kv_heads,
float scale, torch::Tensor &block_tables,
torch::Tensor &seq_lens, int block_size,
int max_seq_len,
const c10::optional<torch::Tensor> &alibi_slopes,
const std::string &kv_cache_dtype, float kv_scale) {
TORCH_CHECK(kv_scale == 1.0f);
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v2_impl",
[&] {
CPU_KERNEL_GUARD_IN(paged_attention_v2_impl)
CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t);
CPU_KERNEL_GUARD_OUT(paged_attention_v2_impl)
});
}

141
csrc/cpu/cache.cpp Normal file
View File

@ -0,0 +1,141 @@
#include <map>
#include <vector>
#include "cpu_types.hpp"
namespace {
template <typename scalar_t>
void copy_blocks_cpu_impl(
std::vector<torch::Tensor> &key_caches,
std::vector<torch::Tensor> &value_caches,
const std::vector<std::pair<int64_t, int64_t>> mapping_pairs,
const int element_num_per_block, const int layer_num) {
const size_t pair_num = mapping_pairs.size();
const size_t block_bytes = sizeof(scalar_t) * element_num_per_block;
#pragma omp parallel for collapse(2)
for (int layer = 0; layer < layer_num; ++layer) {
for (size_t pair = 0; pair < pair_num; ++pair) {
int64_t source_offset = element_num_per_block * mapping_pairs[pair].first;
int64_t target_offset =
element_num_per_block * mapping_pairs[pair].second;
scalar_t *key_cache_ptr = key_caches[layer].data_ptr<scalar_t>();
scalar_t *source_ptr = key_cache_ptr + source_offset;
scalar_t *target_ptr = key_cache_ptr + target_offset;
std::memcpy(target_ptr, source_ptr, block_bytes);
scalar_t *value_cache_ptr = value_caches[layer].data_ptr<scalar_t>();
source_ptr = value_cache_ptr + source_offset;
target_ptr = value_cache_ptr + target_offset;
std::memcpy(target_ptr, source_ptr, block_bytes);
}
}
}
template <typename scalar_t>
void reshape_and_cache_cpu_impl(
const scalar_t *__restrict__ key, const scalar_t *__restrict__ value,
scalar_t *__restrict__ key_cache, scalar_t *__restrict__ value_cache,
const int64_t *__restrict__ slot_mapping, const int num_tokens,
const int key_stride, const int value_stride, const int num_heads,
const int head_size, const int block_size, const int x) {
const int block_elem_num = num_heads * head_size * block_size;
#pragma omp parallel for collapse(2)
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
const int64_t slot_idx = slot_mapping[token_idx];
if (slot_idx >= 0) {
int src_key_head_idx = token_idx * key_stride + head_idx * head_size;
int src_value_head_idx =
token_idx * value_stride + head_idx * head_size;
const scalar_t *src_key_head_ptr = key + src_key_head_idx;
const scalar_t *src_value_head_ptr = value + src_value_head_idx;
const int64_t block_index = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
scalar_t *target_key_head_ptr = key_cache +
block_elem_num * block_index +
head_idx * block_size * head_size;
scalar_t *target_value_head_ptr = value_cache +
block_elem_num * block_index +
head_idx * block_size * head_size;
for (int src_key_idx = 0; src_key_idx < head_size; src_key_idx += x) {
const int64_t target_offset =
src_key_idx * block_size + block_offset * x;
for (int i = 0; i < x; ++i) {
target_key_head_ptr[target_offset + i] =
src_key_head_ptr[src_key_idx + i];
}
}
for (int src_value_idx = 0; src_value_idx < head_size;
++src_value_idx) {
const int64_t target_offset =
src_value_idx * block_size + block_offset;
target_value_head_ptr[target_offset] =
src_value_head_ptr[src_value_idx];
}
}
}
}
}
}; // namespace
void copy_blocks(std::vector<torch::Tensor> &key_caches,
std::vector<torch::Tensor> &value_caches,
const std::map<int64_t, std::vector<int64_t>> &block_mapping) {
int num_layers = key_caches.size();
TORCH_CHECK(num_layers == value_caches.size());
if (num_layers == 0) {
return;
}
std::vector<std::pair<int64_t, int64_t>> mapping_pairs;
mapping_pairs.reserve(block_mapping.size());
for (const auto &pair : block_mapping) {
for (const auto &dst : pair.second) {
mapping_pairs.emplace_back(pair.first, dst);
}
}
const int element_num_per_block = key_caches[0][0].numel();
VLLM_DISPATCH_FLOATING_TYPES(
key_caches[0].scalar_type(), "copy_blocks_cpu_impl", [&] {
CPU_KERNEL_GUARD_IN(copy_blocks_cpu_impl)
copy_blocks_cpu_impl<scalar_t>(key_caches, value_caches, mapping_pairs,
element_num_per_block, num_layers);
CPU_KERNEL_GUARD_OUT(copy_blocks_cpu_impl)
});
}
void reshape_and_cache(torch::Tensor &key, torch::Tensor &value,
torch::Tensor &key_cache, torch::Tensor &value_cache,
torch::Tensor &slot_mapping,
const std::string &kv_cache_dtype, float kv_scale) {
TORCH_CHECK(kv_scale == 1.0f);
int num_tokens = key.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);
int block_size = key_cache.size(3);
int x = key_cache.size(4);
int key_stride = key.stride(0);
int value_stride = value.stride(0);
VLLM_DISPATCH_FLOATING_TYPES(
key.scalar_type(), "reshape_and_cache_cpu_impl", [&] {
CPU_KERNEL_GUARD_IN(reshape_and_cache_cpu_impl)
reshape_and_cache_cpu_impl<scalar_t>(
key.data_ptr<scalar_t>(), value.data_ptr<scalar_t>(),
key_cache.data_ptr<scalar_t>(), value_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int64_t>(), num_tokens, key_stride,
value_stride, num_heads, head_size, block_size, x);
CPU_KERNEL_GUARD_OUT(reshape_and_cache_cpu_impl)
});
}
void swap_blocks(torch::Tensor &src, torch::Tensor &dst,
const std::map<int64_t, int64_t> &block_mapping) {
TORCH_CHECK(false, "swap_blocks is unsupported on CPU.")
}

352
csrc/cpu/cpu_types.hpp Normal file
View File

@ -0,0 +1,352 @@
#ifndef CPU_TYPES_HPP
#define CPU_TYPES_HPP
#include <immintrin.h>
#include <torch/extension.h>
namespace vec_op {
// FIXME: FP16 is not fully supported in Torch-CPU
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
#ifndef CPU_OP_GUARD
#define CPU_KERNEL_GUARD_IN(NAME)
#define CPU_KERNEL_GUARD_OUT(NAME)
#else
#define CPU_KERNEL_GUARD_IN(NAME) \
std::cout << #NAME << " invoked." << std::endl;
#define CPU_KERNEL_GUARD_OUT(NAME) std::cout << #NAME << " exit." << std::endl;
#endif
#define FORCE_INLINE __attribute__((always_inline)) inline
namespace {
template <typename T, T... indexes, typename F>
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F &&f) {
(f(std::integral_constant<T, indexes>{}), ...);
}
}; // namespace
template <typename T, T count, typename F,
typename = std::enable_if_t<std::is_invocable_v<F, T>>>
constexpr void unroll_loop(F &&f) {
unroll_loop_item(std::make_integer_sequence<T, count>{}, std::forward<F>(f));
}
template <typename T> struct Vec {
constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; }
};
struct FP32Vec8;
struct FP32Vec16;
#ifdef __AVX512FP16__
struct FP16Vec8 : public Vec<FP16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
__m128h reg;
explicit FP16Vec8(_Float16 v) : reg(_mm_set1_ph(v)) {}
explicit FP16Vec8(const void *ptr) : reg(_mm_loadu_ph(ptr)) {}
explicit FP16Vec8(__m128h data) : reg(data) {}
FP16Vec8 operator*(const FP16Vec8 &b) const {
return FP16Vec8(_mm_mul_ph(reg, b.reg));
}
FP16Vec8 operator+(const FP16Vec8 &b) const {
return FP16Vec8(_mm_add_ph(reg, b.reg));
}
FP16Vec8 operator-(const FP16Vec8 &b) const {
return FP16Vec8(_mm_sub_ph(reg, b.reg));
}
FP16Vec8 operator/(const FP16Vec8 &b) const {
return FP16Vec8(_mm_div_ph(reg, b.reg));
}
void save(void *ptr) const { _mm_storeu_ph(ptr, reg); }
};
#endif
struct BF16Vec8 : public Vec<BF16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
__m128i reg;
explicit BF16Vec8(const void *ptr)
: reg((__m128i)_mm_loadu_si128((__m128i *)ptr)) {}
explicit BF16Vec8(const FP32Vec8 &);
void save(void *ptr) const { *reinterpret_cast<__m128i *>(ptr) = reg; }
};
struct BF16Vec16 : public Vec<BF16Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
__m256i reg;
explicit BF16Vec16(const void *ptr)
: reg((__m256i)_mm256_loadu_si256((__m256i *)ptr)) {}
explicit BF16Vec16(const FP32Vec16 &);
void save(void *ptr) const { *reinterpret_cast<__m256i *>(ptr) = reg; }
};
struct BF16Vec32 : public Vec<BF16Vec32> {
constexpr static int VEC_ELEM_NUM = 32;
__m512i reg;
explicit BF16Vec32(const void *ptr) : reg((__m512i)_mm512_loadu_si512(ptr)) {}
explicit BF16Vec32(__m512i data) : reg(data) {}
explicit BF16Vec32(BF16Vec8 &vec8_data)
: reg((__m512i)_mm512_inserti32x4(
_mm512_inserti32x4(_mm512_inserti32x4(_mm512_castsi128_si512(
(__m128i)vec8_data.reg),
(__m128i)vec8_data.reg, 1),
(__m128i)vec8_data.reg, 2),
(__m128i)vec8_data.reg, 3)) {}
void save(void *ptr) const { *reinterpret_cast<__m512i *>(ptr) = reg; }
};
struct FP32Vec4 : public Vec<FP32Vec4> {
constexpr static int VEC_ELEM_NUM = 4;
union AliasReg {
__m128 reg;
float values[VEC_ELEM_NUM];
};
__m128 reg;
explicit FP32Vec4(float v) : reg(_mm_set1_ps(v)) {}
explicit FP32Vec4() : reg(_mm_set1_ps(0.0)) {}
explicit FP32Vec4(const float *ptr) : reg(_mm_loadu_ps(ptr)) {}
explicit FP32Vec4(__m128 data) : reg(data) {}
explicit FP32Vec4(const FP32Vec4 &data) : reg(data.reg) {}
};
struct FP32Vec8 : public Vec<FP32Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
union AliasReg {
__m256 reg;
float values[VEC_ELEM_NUM];
};
__m256 reg;
explicit FP32Vec8(float v) : reg(_mm256_set1_ps(v)) {}
explicit FP32Vec8() : reg(_mm256_set1_ps(0.0)) {}
explicit FP32Vec8(const float *ptr) : reg(_mm256_loadu_ps(ptr)) {}
explicit FP32Vec8(__m256 data) : reg(data) {}
explicit FP32Vec8(const FP32Vec8 &data) : reg(data.reg) {}
#ifdef __AVX512FP16__
explicit FP32Vec8(__m128h v) : reg(_mm256_cvtph_ps(_mm_castph_si128(v))) {}
#endif
explicit FP32Vec8(const BF16Vec8 &v)
: reg(_mm256_castsi256_ps(
_mm256_bslli_epi128(_mm256_cvtepu16_epi32(v.reg), 2))) {}
float reduce_sum() const {
AliasReg ar;
ar.reg = reg;
float result = 0;
unroll_loop<int, VEC_ELEM_NUM>([&result, &ar](int i) { result += ar.values[i]; });
return result;
}
FP32Vec8 exp() const {
AliasReg ar;
ar.reg = reg;
return FP32Vec8(_mm256_set_ps(expf(ar.values[7]), expf(ar.values[6]),
expf(ar.values[5]), expf(ar.values[4]),
expf(ar.values[3]), expf(ar.values[2]),
expf(ar.values[1]), expf(ar.values[0])));
}
FP32Vec8 tanh() const {
AliasReg ar;
ar.reg = reg;
return FP32Vec8(_mm256_set_ps(tanhf(ar.values[7]), tanhf(ar.values[6]),
tanhf(ar.values[5]), tanhf(ar.values[4]),
tanhf(ar.values[3]), tanhf(ar.values[2]),
tanhf(ar.values[1]), tanhf(ar.values[0])));
}
FP32Vec8 er() const {
AliasReg ar;
ar.reg = reg;
return FP32Vec8(_mm256_set_ps(erf(ar.values[7]), erf(ar.values[6]),
erf(ar.values[5]), erf(ar.values[4]),
erf(ar.values[3]), erf(ar.values[2]),
erf(ar.values[1]), erf(ar.values[0])));
}
FP32Vec8 operator*(const FP32Vec8 &b) const {
return FP32Vec8(_mm256_mul_ps(reg, b.reg));
}
FP32Vec8 operator+(const FP32Vec8 &b) const {
return FP32Vec8(_mm256_add_ps(reg, b.reg));
}
FP32Vec8 operator-(const FP32Vec8 &b) const {
return FP32Vec8(_mm256_sub_ps(reg, b.reg));
}
FP32Vec8 operator/(const FP32Vec8 &b) const {
return FP32Vec8(_mm256_div_ps(reg, b.reg));
}
void save(float *ptr) const { _mm256_storeu_ps(ptr, reg); }
};
struct FP32Vec16 : public Vec<FP32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
__m512 reg;
float values[VEC_ELEM_NUM];
};
__m512 reg;
explicit FP32Vec16(float v) : reg(_mm512_set1_ps(v)) {}
explicit FP32Vec16() : reg(_mm512_set1_ps(0.0)) {}
explicit FP32Vec16(const float *ptr) : reg(_mm512_loadu_ps(ptr)) {}
explicit FP32Vec16(__m512 data) : reg(data) {}
explicit FP32Vec16(const FP32Vec16 &data) : reg(data.reg) {}
explicit FP32Vec16(const FP32Vec4 &data)
: reg((__m512)_mm512_inserti32x4(
_mm512_inserti32x4(
_mm512_inserti32x4(_mm512_castsi128_si512((__m128i)data.reg),
(__m128i)data.reg, 1),
(__m128i)data.reg, 2),
(__m128i)data.reg, 3)) {}
explicit FP32Vec16(const FP32Vec8 &data)
: reg((__m512)_mm512_inserti32x8(
_mm512_castsi256_si512((__m256i)data.reg), (__m256i)data.reg, 1)) {}
explicit FP32Vec16(const BF16Vec16 &v)
: reg(_mm512_castsi512_ps(
_mm512_bslli_epi128(_mm512_cvtepu16_epi32(v.reg), 2))) {}
explicit FP32Vec16(const BF16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {}
FP32Vec16 operator*(const FP32Vec16 &b) const {
return FP32Vec16(_mm512_mul_ps(reg, b.reg));
}
FP32Vec16 operator+(const FP32Vec16 &b) const {
return FP32Vec16(_mm512_add_ps(reg, b.reg));
}
FP32Vec16 operator-(const FP32Vec16 &b) const {
return FP32Vec16(_mm512_sub_ps(reg, b.reg));
}
FP32Vec16 operator/(const FP32Vec16 &b) const {
return FP32Vec16(_mm512_div_ps(reg, b.reg));
}
float reduce_sum() const { return _mm512_reduce_add_ps(reg); }
template <int group_size> float reduce_sub_sum(int idx) {
static_assert(VEC_ELEM_NUM % group_size == 0);
constexpr uint32_t base_mask = (0xFFFF >> (16 - group_size));
__mmask16 mask = _cvtu32_mask16(base_mask << (idx * group_size));
return _mm512_mask_reduce_add_ps(mask, reg);
}
void save(float *ptr) const { _mm512_storeu_ps(ptr, reg); }
};
template <typename T> struct VecType { using vec_type = void; };
template <typename T> using vec_t = typename VecType<T>::vec_type;
template <> struct VecType<float> { using vec_type = FP32Vec8; };
#ifdef __AVX512FP16__
template <> struct VecType<c10::Half> { using vec_type = FP16Vec16; };
#endif
template <> struct VecType<c10::BFloat16> { using vec_type = BF16Vec8; };
template <typename T> void storeFP32(float v, T *ptr) { *ptr = v; }
#ifdef __AVX512FP16__
template <> inline void storeFP32<c10::Half>(float v, c10::Half *ptr) {
*reinterpret_cast<_Float16 *>(ptr) = v;
}
#endif
inline void fma(FP32Vec16 &acc, FP32Vec16 &a, FP32Vec16 &b) {
acc = acc + a * b;
}
#ifdef __AVX512BF16__
template <> inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16 *ptr) {
*reinterpret_cast<__bfloat16 *>(ptr) = _mm_cvtness_sbh(v);
}
inline BF16Vec8::BF16Vec8(const FP32Vec8 &v)
: reg((__m128i)_mm256_cvtneps_pbh(v.reg)) {}
inline BF16Vec16::BF16Vec16(const FP32Vec16 &v)
: reg((__m256i)_mm512_cvtneps_pbh(v.reg)) {}
inline void fma(FP32Vec16 &acc, BF16Vec32 &a, BF16Vec32 &b) {
acc.reg = _mm512_dpbf16_ps(acc.reg, (__m512bh)a.reg, (__m512bh)b.reg);
}
#else
template <> inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16 *ptr) {
c10::BFloat16 __attribute__((__may_alias__)) *v_ptr =
reinterpret_cast<c10::BFloat16 *>(&v);
*ptr = *(v_ptr + 1);
}
inline BF16Vec8::BF16Vec8(const FP32Vec8 &v)
: reg(_mm256_cvtepi32_epi16(
_mm256_bsrli_epi128(_mm256_castps_si256(v.reg), 2))) {}
inline BF16Vec16::BF16Vec16(const FP32Vec16 &v)
: reg(_mm512_cvtepi32_epi16(
_mm512_bsrli_epi128(_mm512_castps_si512(v.reg), 2))) {}
#endif
inline void prefetch(const void *addr) { _mm_prefetch(addr, _MM_HINT_T1); }
}; // namespace vec_op
#endif

117
csrc/cpu/layernorm.cpp Normal file
View File

@ -0,0 +1,117 @@
#include "cpu_types.hpp"
namespace {
template <typename scalar_t>
void rms_norm_impl(scalar_t *__restrict__ out,
const scalar_t *__restrict__ input,
const scalar_t *__restrict__ weight, const float epsilon,
const int num_tokens, const int hidden_size) {
using scalar_vec_t = vec_op::vec_t<scalar_t>;
constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num();
TORCH_CHECK(hidden_size % VEC_ELEM_NUM == 0);
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
vec_op::FP32Vec8 variance(0.0);
auto input_p = input + i * hidden_size;
auto output_p = out + i * hidden_size;
for (int j = 0; j < hidden_size; j += VEC_ELEM_NUM) {
scalar_vec_t x(input_p + j);
vec_op::FP32Vec8 fp32_x(x);
variance = variance + fp32_x * fp32_x;
}
float s_variance =
1.0f / sqrtf(variance.reduce_sum() / (float)hidden_size + epsilon);
vec_op::FP32Vec8 fp32_s_variance(s_variance);
for (int j = 0; j < hidden_size; j += VEC_ELEM_NUM) {
scalar_vec_t x(input_p + j);
scalar_vec_t w(weight + j);
vec_op::FP32Vec8 fp32_x(x);
vec_op::FP32Vec8 fp32_w(w);
vec_op::FP32Vec8 fp32_out = fp32_x * fp32_s_variance * fp32_w;
scalar_vec_t out(fp32_out);
out.save(output_p + j);
}
}
}
template <typename scalar_t>
void fused_add_rms_norm_impl(scalar_t *__restrict__ input,
scalar_t *__restrict__ residual,
const scalar_t *__restrict__ weight,
const float epsilon, const int num_tokens,
const int hidden_size) {
using scalar_vec_t = vec_op::vec_t<scalar_t>;
constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num();
TORCH_CHECK(hidden_size % VEC_ELEM_NUM == 0);
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
vec_op::FP32Vec8 variance(0.0);
auto input_p = input + i * hidden_size;
auto residual_p = residual + i * hidden_size;
for (int j = 0; j < hidden_size; j += VEC_ELEM_NUM) {
scalar_vec_t x(input_p + j);
scalar_vec_t res(residual_p + j);
vec_op::FP32Vec8 fp32_x(x);
vec_op::FP32Vec8 fp32_res(res);
fp32_x = fp32_x + fp32_res;
variance = variance + fp32_x * fp32_x;
scalar_vec_t out(fp32_x);
out.save(residual_p + j);
}
float s_variance =
1.0f / sqrtf(variance.reduce_sum() / (float)hidden_size + epsilon);
vec_op::FP32Vec8 fp32_s_variance(s_variance);
for (int j = 0; j < hidden_size; j += VEC_ELEM_NUM) {
scalar_vec_t w(weight + j);
scalar_vec_t res(residual_p + j);
vec_op::FP32Vec8 fp32_w(w);
vec_op::FP32Vec8 fp32_res(res);
vec_op::FP32Vec8 fp32_out = fp32_res * fp32_s_variance * fp32_w;
scalar_vec_t out(fp32_out);
out.save(input_p + j);
}
}
}
} // namespace
void rms_norm(torch::Tensor &out, torch::Tensor &input,
torch::Tensor &weight, float epsilon) {
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rms_norm_impl", [&] {
CPU_KERNEL_GUARD_IN(rms_norm_impl)
rms_norm_impl(out.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(), epsilon, num_tokens,
hidden_size);
CPU_KERNEL_GUARD_OUT(rms_norm_impl)
});
}
void fused_add_rms_norm(torch::Tensor &input, torch::Tensor &residual,
torch::Tensor &weight, float epsilon) {
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "fused_add_rms_norm_impl", [&] {
CPU_KERNEL_GUARD_IN(fused_add_rms_norm_impl)
fused_add_rms_norm_impl(
input.data_ptr<scalar_t>(), residual.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(), epsilon, num_tokens, hidden_size);
CPU_KERNEL_GUARD_OUT(fused_add_rms_norm_impl)
});
}

199
csrc/cpu/pos_encoding.cpp Normal file
View File

@ -0,0 +1,199 @@
#include "cpu_types.hpp"
namespace {
template <typename scalar_t>
void rotary_embedding_impl(
const int64_t
*__restrict__ positions, // [batch_size, seq_len] or [num_tokens]
scalar_t
*__restrict__ query, /// [batch_size, seq_len, num_heads, head_size] or
/// [num_tokens, num_heads, head_size]
scalar_t
*__restrict__ key, // [batch_size, seq_len, num_kv_heads, head_size] or
// [num_tokens, num_kv_heads, head_size]
const scalar_t
*__restrict__ cos_sin_cache, // [max_position, 2, rot_dim // 2]
const int rot_dim, const int64_t query_stride, const int64_t key_stride,
const int num_heads, const int num_kv_heads, const int head_size,
const int num_tokens) {
using scalar_vec_t = vec_op::vec_t<scalar_t>;
constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num();
constexpr int ELEM_SIZE = sizeof(scalar_t);
const int embed_dim = rot_dim / 2;
TORCH_CHECK(embed_dim % VEC_ELEM_NUM == 0);
#pragma omp parallel for
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
int64_t pos = positions[token_idx];
const scalar_t *cache_ptr = cos_sin_cache + pos * rot_dim;
for (int i = 0; i < num_heads; ++i) {
const int head_idx = i;
const int64_t token_head =
token_idx * query_stride + head_idx * head_size;
for (int j = 0; j < embed_dim; j += VEC_ELEM_NUM) {
const int rot_offset = j;
const int x_index = rot_offset;
const int y_index = embed_dim + rot_offset;
const int64_t out_x = token_head + x_index;
const int64_t out_y = token_head + y_index;
const scalar_vec_t cos(cache_ptr + x_index);
const scalar_vec_t sin(cache_ptr + y_index);
const scalar_vec_t q_x(query + out_x);
const scalar_vec_t q_y(query + out_y);
vec_op::FP32Vec8 fp32_cos(cos);
vec_op::FP32Vec8 fp32_sin(sin);
vec_op::FP32Vec8 fp32_q_x(q_x);
vec_op::FP32Vec8 fp32_q_y(q_y);
auto out1 = fp32_q_x * fp32_cos - fp32_q_y * fp32_sin;
scalar_vec_t(out1).save(query + out_x);
auto out2 = fp32_q_y * fp32_cos + fp32_q_x * fp32_sin;
scalar_vec_t(out2).save(query + out_y);
}
}
for (int i = 0; i < num_kv_heads; ++i) {
const int head_idx = i;
const int64_t token_head = token_idx * key_stride + head_idx * head_size;
for (int j = 0; j < embed_dim; j += VEC_ELEM_NUM) {
const int rot_offset = j;
const int x_index = rot_offset;
const int y_index = embed_dim + rot_offset;
const int64_t out_x = token_head + x_index;
const int64_t out_y = token_head + y_index;
const scalar_vec_t cos(cache_ptr + x_index);
const scalar_vec_t sin(cache_ptr + y_index);
const scalar_vec_t k_x(key + out_x);
const scalar_vec_t k_y(key + out_y);
vec_op::FP32Vec8 fp32_cos(cos);
vec_op::FP32Vec8 fp32_sin(sin);
vec_op::FP32Vec8 fp32_k_x(k_x);
vec_op::FP32Vec8 fp32_k_y(k_y);
auto out1 = fp32_k_x * fp32_cos - fp32_k_y * fp32_sin;
scalar_vec_t(out1).save(key + out_x);
auto out2 = fp32_k_y * fp32_cos + fp32_k_x * fp32_sin;
scalar_vec_t(out2).save(key + out_y);
}
}
}
}
template <typename scalar_t>
void rotary_embedding_gptj_impl(
const int64_t
*__restrict__ positions, // [batch_size, seq_len] or [num_tokens]
scalar_t
*__restrict__ query, /// [batch_size, seq_len, num_heads, head_size] or
/// [num_tokens, num_heads, head_size]
scalar_t
*__restrict__ key, // [batch_size, seq_len, num_kv_heads, head_size] or
// [num_tokens, num_kv_heads, head_size]
const scalar_t
*__restrict__ cos_sin_cache, // [max_position, 2, rot_dim // 2]
const int rot_dim, const int64_t query_stride, const int64_t key_stride,
const int num_heads, const int num_kv_heads, const int head_size,
const int num_tokens) {
const int embed_dim = rot_dim / 2;
#pragma omp parallel for collapse(2)
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
for (int i = 0; i < num_heads; ++i) {
int64_t pos = positions[token_idx];
const scalar_t *cache_ptr = cos_sin_cache + pos * rot_dim;
const scalar_t *cos_cache_ptr = cache_ptr;
const scalar_t *sin_cache_ptr = cache_ptr + embed_dim;
const int head_idx = i;
const int64_t token_head =
token_idx * query_stride + head_idx * head_size;
scalar_t *head_query = token_head + query;
for (int j = 0; j < embed_dim; j += 1) {
const int rot_offset = j;
const int x_index = 2 * rot_offset;
const int y_index = 2 * rot_offset + 1;
const float cos = cos_cache_ptr[rot_offset];
const float sin = sin_cache_ptr[rot_offset];
const float x = head_query[x_index];
const float y = head_query[y_index];
head_query[x_index] = x * cos - y * sin;
head_query[y_index] = y * cos + x * sin;
}
}
}
#pragma omp parallel for collapse(2)
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
for (int i = 0; i < num_kv_heads; ++i) {
int64_t pos = positions[token_idx];
const scalar_t *cache_ptr = cos_sin_cache + pos * rot_dim;
const scalar_t *cos_cache_ptr = cache_ptr;
const scalar_t *sin_cache_ptr = cache_ptr + embed_dim;
const int head_idx = i;
const int64_t token_head = token_idx * key_stride + head_idx * head_size;
scalar_t *head_key = key + token_head;
for (int j = 0; j < embed_dim; j += 1) {
const int rot_offset = j;
const int x_index = 2 * rot_offset;
const int y_index = 2 * rot_offset + 1;
const float cos = cos_cache_ptr[rot_offset];
const float sin = sin_cache_ptr[rot_offset];
const float x = head_key[x_index];
const float y = head_key[y_index];
head_key[x_index] = x * cos - y * sin;
head_key[y_index] = y * cos + x * sin;
}
}
}
}
}; // namespace
void rotary_embedding(torch::Tensor &positions, torch::Tensor &query,
torch::Tensor &key, int head_size,
torch::Tensor &cos_sin_cache, bool is_neox) {
int num_tokens = query.numel() / query.size(-1);
int rot_dim = cos_sin_cache.size(1);
int num_heads = query.size(-1) / head_size;
int num_kv_heads = key.size(-1) / head_size;
int64_t key_stride = key.stride(-2);
int64_t query_stride = query.stride(-2);
VLLM_DISPATCH_FLOATING_TYPES(
query.scalar_type(), "rotary_embedding_impl", [&] {
CPU_KERNEL_GUARD_IN(rotary_embedding_impl)
if (is_neox) {
rotary_embedding_impl(
positions.data_ptr<int64_t>(), query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(), cos_sin_cache.data_ptr<scalar_t>(),
rot_dim, query_stride, key_stride, num_heads, num_kv_heads,
head_size, num_tokens);
} else {
rotary_embedding_gptj_impl(
positions.data_ptr<int64_t>(), query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(), cos_sin_cache.data_ptr<scalar_t>(),
rot_dim, query_stride, key_stride, num_heads, num_kv_heads,
head_size, num_tokens);
}
CPU_KERNEL_GUARD_OUT(rotary_embedding_impl)
});
}

73
csrc/cpu/pybind.cpp Normal file
View File

@ -0,0 +1,73 @@
#include "cache.h"
#include "cuda_utils.h"
#include "ops.h"
#include <torch/extension.h>
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
// vLLM custom ops
pybind11::module ops = m.def_submodule("ops", "vLLM custom operators");
// Attention ops
ops.def(
"paged_attention_v1",
&paged_attention_v1,
"Compute the attention between an input query and the cached keys/values using PagedAttention.");
ops.def(
"paged_attention_v2",
&paged_attention_v2,
"PagedAttention V2.");
// Activation ops
ops.def(
"silu_and_mul",
&silu_and_mul,
"Activation function used in SwiGLU.");
ops.def(
"gelu_and_mul",
&gelu_and_mul,
"Activation function used in GeGLU with `none` approximation.");
ops.def(
"gelu_tanh_and_mul",
&gelu_tanh_and_mul,
"Activation function used in GeGLU with `tanh` approximation.");
ops.def(
"gelu_new",
&gelu_new,
"GELU implementation used in GPT-2.");
ops.def(
"gelu_fast",
&gelu_fast,
"Approximate GELU implementation.");
// Layernorm
ops.def(
"rms_norm",
&rms_norm,
"Apply Root Mean Square (RMS) Normalization to the input tensor.");
ops.def(
"fused_add_rms_norm",
&fused_add_rms_norm,
"In-place fused Add and RMS Normalization");
// Rotary embedding
ops.def(
"rotary_embedding",
&rotary_embedding,
"Apply GPT-NeoX or GPT-J style rotary embedding to query and key");
// Cache ops
pybind11::module cache_ops = m.def_submodule("cache_ops", "vLLM cache ops");
cache_ops.def(
"swap_blocks",
&swap_blocks,
"Swap in (out) the cache blocks from src to dst");
cache_ops.def(
"copy_blocks",
&copy_blocks,
"Copy the cache blocks from src to dst");
cache_ops.def(
"reshape_and_cache",
&reshape_and_cache,
"Reshape the key and value tensors and cache them");
}

View File

@ -4,6 +4,16 @@
#include "dispatch_utils.h"
#include "reduction_utils.cuh"
#ifndef USE_ROCM
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#else
#include <hip/hip_bf16.h>
#include <hip/hip_fp16.h>
using __nv_bfloat16 = __hip_bfloat16;
using __nv_bfloat162 = __hip_bfloat162;
#endif
namespace vllm {
@ -35,9 +45,201 @@ __global__ void rms_norm_kernel(
}
}
// TODO: Further optimize this kernel.
template<typename scalar_t>
__global__ void fused_add_rms_norm_kernel(
/* Converter structs for the conversion from torch types to HIP/CUDA types,
and the associated type conversions within HIP/CUDA. These helpers need
to be implemented for now because the relevant type conversion
operators/constructors are not consistently implemented by HIP/CUDA, so
a generic conversion via type casts cannot be implemented.
Each struct should have the member static constexpr bool `exists`:
If false, the optimized kernel is not used for the corresponding torch type.
If true, the struct should be fully defined as shown in the examples below.
*/
template<typename torch_type>
struct _typeConvert { static constexpr bool exists = false; };
#if defined(USE_ROCM) || (defined(CUDA_VERSION) && (CUDA_VERSION >= 12000))
// CUDA < 12.0 runs into issues with packed type conversion
template<>
struct _typeConvert<c10::Half> {
static constexpr bool exists = true;
using hip_type = __half;
using packed_hip_type = __half2;
__device__ static inline float convert(hip_type x) { return __half2float(x); }
__device__ static inline float2 convert(packed_hip_type x) { return __half22float2(x); }
__device__ static inline hip_type convert(float x) { return __float2half_rn(x); }
__device__ static inline packed_hip_type convert(float2 x) { return __float22half2_rn(x); }
};
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
// CUDA_ARCH < 800 does not have BF16 support
// TODO: Add in ROCm support once public headers handle bf16 maturely
template<>
struct _typeConvert<c10::BFloat16> {
static constexpr bool exists = true;
using hip_type = __nv_bfloat16;
using packed_hip_type = __nv_bfloat162;
__device__ static inline float convert(hip_type x) { return __bfloat162float(x); }
__device__ static inline float2 convert(packed_hip_type x) { return __bfloat1622float2(x); }
__device__ static inline hip_type convert(float x) { return __float2bfloat16(x); }
__device__ static inline packed_hip_type convert(float2 x) { return __float22bfloat162_rn(x); }
};
#endif // defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#endif // defined(USE_ROCM) || (defined(CUDA_VERSION) && (CUDA_VERSION >= 12000))
/* Vector POD struct to generate vectorized and packed FP16/BF16 ops
for appropriate specializations of fused_add_rms_norm_kernel.
Only functions that are necessary in that kernel are implemented.
Alignment to 16 bytes is required to use 128-bit global memory ops.
*/
template<typename scalar_t, int width>
struct alignas(16) _f16Vec {
/* Not theoretically necessary that width is a power of 2 but should
almost always be the case for optimization purposes */
static_assert(width > 0 && (width & (width - 1)) == 0,
"Width is not a positive power of 2!");
using Converter = _typeConvert<scalar_t>;
using T1 = typename Converter::hip_type;
using T2 = typename Converter::packed_hip_type;
T1 data[width];
__device__ _f16Vec& operator+=(const _f16Vec<scalar_t, width>& other) {
if constexpr (width % 2 == 0) {
#pragma unroll
for (int i = 0; i < width; i += 2) {
T2 temp{data[i], data[i+1]};
temp += T2{other.data[i], other.data[i+1]};
data[i] = temp.x;
data[i+1] = temp.y;
}
} else {
#pragma unroll
for (int i = 0; i < width; ++i)
data[i] += other.data[i];
}
return *this;
}
__device__ _f16Vec& operator*=(const _f16Vec<scalar_t, width>& other) {
if constexpr (width % 2 == 0) {
#pragma unroll
for (int i = 0; i < width; i += 2) {
T2 temp{data[i], data[i+1]};
temp *= T2{other.data[i], other.data[i+1]};
data[i] = temp.x;
data[i+1] = temp.y;
}
} else {
#pragma unroll
for (int i = 0; i < width; ++i)
data[i] *= other.data[i];
}
return *this;
}
__device__ _f16Vec& operator*=(const float scale) {
if constexpr (width % 2 == 0) {
#pragma unroll
for (int i = 0; i < width; i += 2) {
float2 temp_f = Converter::convert(T2{data[i], data[i+1]});
temp_f.x *= scale;
temp_f.y *= scale;
T2 temp = Converter::convert(temp_f);
data[i] = temp.x;
data[i+1] = temp.y;
}
} else {
#pragma unroll
for (int i = 0; i < width; ++i) {
float temp = Converter::convert(data[i]) * scale;
data[i] = Converter::convert(temp);
}
}
return *this;
}
__device__ float sum_squares() const {
float result = 0.0f;
if constexpr (width % 2 == 0) {
#pragma unroll
for (int i = 0; i < width; i += 2) {
float2 z = Converter::convert(T2{data[i], data[i+1]});
result += z.x * z.x + z.y * z.y;
}
} else {
#pragma unroll
for (int i = 0; i < width; ++i) {
float x = Converter::convert(data[i]);
result += x * x;
}
}
return result;
}
};
/* Function specialization in the case of FP16/BF16 tensors.
Additional optimizations we can make in this case are
packed and vectorized operations, which help with the
memory latency bottleneck. */
template<typename scalar_t, int width>
__global__ std::enable_if_t<
(width > 0) && _typeConvert<scalar_t>::exists> fused_add_rms_norm_kernel(
scalar_t* __restrict__ input, // [..., hidden_size]
scalar_t* __restrict__ residual, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float epsilon,
const int num_tokens,
const int hidden_size) {
// Sanity checks on our vector struct and type-punned pointer arithmetic
static_assert(std::is_pod_v<_f16Vec<scalar_t, width>>);
static_assert(sizeof(_f16Vec<scalar_t, width>) == sizeof(scalar_t) * width);
const int vec_hidden_size = hidden_size / width;
__shared__ float s_variance;
float variance = 0.0f;
/* These and the argument pointers are all declared `restrict` as they are
not aliased in practice. Argument pointers should not be dereferenced
in this kernel as that would be undefined behavior */
auto* __restrict__ input_v = reinterpret_cast<_f16Vec<scalar_t, width>*>(input);
auto* __restrict__ residual_v = reinterpret_cast<_f16Vec<scalar_t, width>*>(residual);
auto* __restrict__ weight_v = reinterpret_cast<const _f16Vec<scalar_t, width>*>(weight);
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
int id = blockIdx.x * vec_hidden_size + idx;
_f16Vec<scalar_t, width> temp = input_v[id];
temp += residual_v[id];
variance += temp.sum_squares();
residual_v[id] = temp;
}
/* Keep the following if-else block in sync with the
calculation of max_block_size in fused_add_rms_norm */
if (num_tokens < 256) {
variance = blockReduceSum<float, 1024>(variance);
} else variance = blockReduceSum<float, 256>(variance);
if (threadIdx.x == 0) {
s_variance = rsqrtf(variance / hidden_size + epsilon);
}
__syncthreads();
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
int id = blockIdx.x * vec_hidden_size + idx;
_f16Vec<scalar_t, width> temp = residual_v[id];
temp *= s_variance;
temp *= weight_v[idx];
input_v[id] = temp;
}
}
/* Generic fused_add_rms_norm_kernel
The width field is not used here but necessary for other specializations.
*/
template<typename scalar_t, int width>
__global__ std::enable_if_t<
(width == 0) || !_typeConvert<scalar_t>::exists> fused_add_rms_norm_kernel(
scalar_t* __restrict__ input, // [..., hidden_size]
scalar_t* __restrict__ residual, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
@ -48,12 +250,17 @@ __global__ void fused_add_rms_norm_kernel(
float variance = 0.0f;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float) input[blockIdx.x * hidden_size + idx];
x += (float) residual[blockIdx.x * hidden_size + idx];
scalar_t z = input[blockIdx.x * hidden_size + idx];
z += residual[blockIdx.x * hidden_size + idx];
float x = (float) z;
variance += x * x;
residual[blockIdx.x * hidden_size + idx] = (scalar_t) x;
residual[blockIdx.x * hidden_size + idx] = z;
}
variance = blockReduceSum<float>(variance);
/* Keep the following if-else block in sync with the
calculation of max_block_size in fused_add_rms_norm */
if (num_tokens < 256) {
variance = blockReduceSum<float, 1024>(variance);
} else variance = blockReduceSum<float, 256>(variance);
if (threadIdx.x == 0) {
s_variance = rsqrtf(variance / hidden_size + epsilon);
}
@ -93,6 +300,21 @@ void rms_norm(
});
}
#define LAUNCH_FUSED_ADD_RMS_NORM(width) \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), \
"fused_add_rms_norm_kernel", \
[&] { \
vllm::fused_add_rms_norm_kernel \
<scalar_t, width><<<grid, block, 0, stream>>>( \
input.data_ptr<scalar_t>(), \
residual.data_ptr<scalar_t>(), \
weight.data_ptr<scalar_t>(), \
epsilon, \
num_tokens, \
hidden_size); \
});
void fused_add_rms_norm(
torch::Tensor& input, // [..., hidden_size]
torch::Tensor& residual, // [..., hidden_size]
@ -102,19 +324,29 @@ void fused_add_rms_norm(
int num_tokens = input.numel() / hidden_size;
dim3 grid(num_tokens);
dim3 block(std::min(hidden_size, 1024));
/* This kernel is memory-latency bound in many scenarios.
When num_tokens is large, a smaller block size allows
for increased block occupancy on CUs and better latency
hiding on global mem ops. */
const int max_block_size = (num_tokens < 256) ? 1024 : 256;
dim3 block(std::min(hidden_size, max_block_size));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(),
"fused_add_rms_norm_kernel",
[&] {
vllm::fused_add_rms_norm_kernel<scalar_t><<<grid, block, 0, stream>>>(
input.data_ptr<scalar_t>(),
residual.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(),
epsilon,
num_tokens,
hidden_size);
});
/*If the tensor types are FP16/BF16, try to use the optimized kernel
with packed + vectorized ops.
Max optimization is achieved with a width-8 vector of FP16/BF16s
since we can load at most 128 bits at once in a global memory op.
However, this requires each tensor's data to be aligned to 16
bytes.
*/
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
auto res_ptr = reinterpret_cast<std::uintptr_t>(residual.data_ptr());
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
bool ptrs_are_aligned = inp_ptr % 16 == 0 && res_ptr % 16 == 0 \
&& wt_ptr % 16 == 0;
if (ptrs_are_aligned && hidden_size % 8 == 0) {
LAUNCH_FUSED_ADD_RMS_NORM(8);
} else {
LAUNCH_FUSED_ADD_RMS_NORM(0);
}
}

View File

@ -10,11 +10,12 @@ void paged_attention_v1(
int num_kv_heads,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
torch::Tensor& seq_lens,
int block_size,
int max_context_len,
int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype);
const std::string& kv_cache_dtype,
float kv_scale);
void paged_attention_v2(
torch::Tensor& out,
@ -27,11 +28,12 @@ void paged_attention_v2(
int num_kv_heads,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
torch::Tensor& seq_lens,
int block_size,
int max_context_len,
int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype);
const std::string& kv_cache_dtype,
float kv_scale);
void rms_norm(
torch::Tensor& out,
@ -84,6 +86,21 @@ void gelu_fast(
torch::Tensor& input);
#ifndef USE_ROCM
torch::Tensor aqlm_gemm(
const torch::Tensor& input,
const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& scales,
const torch::Tensor& codebook_partition_sizes,
const std::optional<torch::Tensor>& bias
);
torch::Tensor aqlm_dequant(
const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& codebook_partition_sizes
);
torch::Tensor awq_gemm(
torch::Tensor _in_feats,
torch::Tensor _kernel,
@ -107,6 +124,26 @@ torch::Tensor marlin_gemm(
int64_t size_m,
int64_t size_n,
int64_t size_k);
torch::Tensor gptq_marlin_gemm(
torch::Tensor &a,
torch::Tensor &b_q_weight,
torch::Tensor &b_scales,
torch::Tensor &g_idx,
torch::Tensor &perm,
torch::Tensor &workspace,
int64_t num_bits,
int64_t size_m,
int64_t size_n,
int64_t size_k,
bool is_k_full);
torch::Tensor gptq_marlin_repack(
torch::Tensor &b_q_weight,
torch::Tensor &perm,
int64_t size_k,
int64_t size_n,
int64_t num_bits);
#endif
void squeezellm_gemm(
@ -129,6 +166,16 @@ void gptq_shuffle(
torch::Tensor q_perm,
int bit);
void static_scaled_fp8_quant(
torch::Tensor& out,
torch::Tensor& input,
torch::Tensor& scale);
void dynamic_scaled_fp8_quant(
torch::Tensor& out,
torch::Tensor& input,
torch::Tensor& scale);
void moe_align_block_size(
torch::Tensor topk_ids,
int num_experts,

View File

@ -2,3 +2,4 @@
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_bfloat16, nv_bfloat16)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, nv_bfloat16, nv_bfloat16, nv_bfloat16)

View File

@ -1,4 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_bfloat16, nv_half)

View File

@ -1,4 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_half, nv_bfloat16)

View File

@ -1,4 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_half, nv_half)

View File

@ -2,3 +2,4 @@
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, float, nv_bfloat16)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, nv_bfloat16, float, nv_bfloat16)

View File

@ -1,4 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, float, nv_half)

View File

@ -14,6 +14,7 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
f(in_T, out_T, W_T, narrow, 128) \
f(in_T, out_T, W_T, narrow, 256) \
f(in_T, out_T, W_T, narrow, 512) \
f(in_T, out_T, W_T, narrow, 640) \
f(in_T, out_T, W_T, narrow, 768) \
f(in_T, out_T, W_T, narrow, 1024) \
f(in_T, out_T, W_T, narrow, 1152) \
@ -46,6 +47,7 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
f(in_T, out_T, W_T, narrow, 13696) \
f(in_T, out_T, W_T, narrow, 13824) \
f(in_T, out_T, W_T, narrow, 14336) \
f(in_T, out_T, W_T, narrow, 15360) \
f(in_T, out_T, W_T, narrow, 16384) \
f(in_T, out_T, W_T, narrow, 20480) \
f(in_T, out_T, W_T, narrow, 22016) \
@ -58,9 +60,88 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
f(in_T, out_T, W_T, narrow, 32768) \
f(in_T, out_T, W_T, narrow, 33024) \
f(in_T, out_T, W_T, narrow, 36864) \
f(in_T, out_T, W_T, narrow, 43264) \
f(in_T, out_T, W_T, narrow, 49152) \
f(in_T, out_T, W_T, narrow, 64000) \
f(in_T, out_T, W_T, narrow, 64256) \
f(in_T, out_T, W_T, narrow, 64512) \
f(in_T, out_T, W_T, narrow, 102400) \
f(in_T, out_T, W_T, narrow, 102656) \
f(in_T, out_T, W_T, narrow, 102912) \
f(in_T, out_T, W_T, narrow, 128000) \
f(in_T, out_T, W_T, narrow, 128256) \
f(in_T, out_T, W_T, narrow, 128512) \
// Keep above in sync with vllm/lora/layers::LogitsProcessorWithLoRA
// and vllm/tests/lora/test_punica.py
// Used for defining kernels going from the variety of
// dim in to the narrow dim out
// Using it for the fully sharded column
// parallel LoRA A which splits the rank dim
#define FOR_INST_BGMV_NARROW(f, in_T, out_T, W_T, narrow) \
f(in_T, out_T, W_T, 128, narrow) \
f(in_T, out_T, W_T, 256, narrow) \
f(in_T, out_T, W_T, 512, narrow) \
f(in_T, out_T, W_T, 640, narrow) \
f(in_T, out_T, W_T, 768, narrow) \
f(in_T, out_T, W_T, 1024, narrow) \
f(in_T, out_T, W_T, 1152, narrow) \
f(in_T, out_T, W_T, 1280, narrow) \
f(in_T, out_T, W_T, 1536, narrow) \
f(in_T, out_T, W_T, 1728, narrow) \
f(in_T, out_T, W_T, 1792, narrow) \
f(in_T, out_T, W_T, 2048, narrow) \
f(in_T, out_T, W_T, 2304, narrow) \
f(in_T, out_T, W_T, 2560, narrow) \
f(in_T, out_T, W_T, 2752, narrow) \
f(in_T, out_T, W_T, 2816, narrow) \
f(in_T, out_T, W_T, 3072, narrow) \
f(in_T, out_T, W_T, 3456, narrow) \
f(in_T, out_T, W_T, 3584, narrow) \
f(in_T, out_T, W_T, 4096, narrow) \
f(in_T, out_T, W_T, 4608, narrow) \
f(in_T, out_T, W_T, 5120, narrow) \
f(in_T, out_T, W_T, 5504, narrow) \
f(in_T, out_T, W_T, 5632, narrow) \
f(in_T, out_T, W_T, 6144, narrow) \
f(in_T, out_T, W_T, 6848, narrow) \
f(in_T, out_T, W_T, 6912, narrow) \
f(in_T, out_T, W_T, 7168, narrow) \
f(in_T, out_T, W_T, 8192, narrow) \
f(in_T, out_T, W_T, 9216, narrow) \
f(in_T, out_T, W_T, 10240, narrow) \
f(in_T, out_T, W_T, 11008, narrow) \
f(in_T, out_T, W_T, 12288, narrow) \
f(in_T, out_T, W_T, 13696, narrow) \
f(in_T, out_T, W_T, 13824, narrow) \
f(in_T, out_T, W_T, 14336, narrow) \
f(in_T, out_T, W_T, 15360, narrow) \
f(in_T, out_T, W_T, 16384, narrow) \
f(in_T, out_T, W_T, 20480, narrow) \
f(in_T, out_T, W_T, 22016, narrow) \
f(in_T, out_T, W_T, 24576, narrow) \
f(in_T, out_T, W_T, 27392, narrow) \
f(in_T, out_T, W_T, 28672, narrow) \
f(in_T, out_T, W_T, 32000, narrow) \
f(in_T, out_T, W_T, 32256, narrow) \
f(in_T, out_T, W_T, 32512, narrow) \
f(in_T, out_T, W_T, 32768, narrow) \
f(in_T, out_T, W_T, 33024, narrow) \
f(in_T, out_T, W_T, 36864, narrow) \
f(in_T, out_T, W_T, 43264, narrow) \
f(in_T, out_T, W_T, 49152, narrow) \
f(in_T, out_T, W_T, 64000, narrow) \
f(in_T, out_T, W_T, 64256, narrow) \
f(in_T, out_T, W_T, 64512, narrow) \
f(in_T, out_T, W_T, 102400, narrow) \
f(in_T, out_T, W_T, 102656, narrow) \
f(in_T, out_T, W_T, 102912, narrow) \
f(in_T, out_T, W_T, 128000, narrow) \
f(in_T, out_T, W_T, 128256, narrow) \
f(in_T, out_T, W_T, 128512, narrow) \
// Keep above in sync with vllm/lora/layers::SamplerWithLoRA
// Keep this in sync with vllm/config::LoRAConfig
#define FOR_BGMV_WIDE_NARROW(f, in_T, out_T, W_T) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 8) \
@ -68,4 +149,14 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 32) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 64)
#define FOR_INST_BGMV_WIDE_NARROW(f, in_T, out_T, W_T) \
FOR_INST_BGMV_NARROW(f, in_T, out_T, W_T, 1) \
FOR_INST_BGMV_NARROW(f, in_T, out_T, W_T, 2) \
FOR_INST_BGMV_NARROW(f, in_T, out_T, W_T, 4) \
f(in_T, out_T, W_T, 8, 64) \
f(in_T, out_T, W_T, 16, 64) \
f(in_T, out_T, W_T, 32, 64) \
f(in_T, out_T, W_T, 64, 64)
// clang-format on

View File

@ -1,4 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_bfloat16, nv_bfloat16)

View File

@ -1,4 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_bfloat16, nv_half)

View File

@ -1,4 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_half, nv_bfloat16)

View File

@ -2,3 +2,4 @@
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_half, nv_half)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, nv_half, nv_half, nv_half)

View File

@ -1,4 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, float, nv_bfloat16)

View File

@ -2,3 +2,4 @@
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, float, nv_half)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, nv_half, float, nv_half)

View File

@ -2,3 +2,4 @@
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_bfloat16, nv_bfloat16)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, float, nv_bfloat16, nv_bfloat16)

View File

@ -1,4 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_bfloat16, nv_half)

View File

@ -1,4 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_half, nv_bfloat16)

View File

@ -2,3 +2,4 @@
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_half, nv_half)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, float, nv_half, nv_half)

View File

@ -1,4 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, float, nv_bfloat16)

View File

@ -1,4 +0,0 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, float, nv_half)

View File

@ -199,7 +199,7 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
constexpr int tz = 4;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if constexpr (feat_in < feat_out) {
if constexpr (feat_in <= feat_out) {
static_assert(feat_in % vec_size == 0);
constexpr int tx = feat_in / vec_size;
@ -289,6 +289,9 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
int64_t y_offset, int64_t full_y_size, int64_t batch_size, \
int64_t num_layers, int64_t layer_idx, float scale);
#define INST_BGMV_ONESIDE(in_T, out_T, W_T, feat_in, feat_out) \
INST_BGMV(feat_in, feat_out, in_T, out_T, W_T)
#define INST_BGMV_TWOSIDE(in_T, out_T, W_T, narrow, wide) \
INST_BGMV(narrow, wide, in_T, out_T, W_T) \
INST_BGMV(wide, narrow, in_T, out_T, W_T)

View File

@ -10,6 +10,7 @@ TEMPLATE = """
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, {input_dtype}, {output_dtype}, {weight_dtype})
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, {input_dtype}, {output_dtype}, {weight_dtype})
""".lstrip() # noqa: E501
for input_dtype in DTYPES:
@ -18,6 +19,26 @@ for input_dtype in DTYPES:
if weight_dtype == "fp32":
# FP32 weights are not supported.
continue
if output_dtype == "fp32":
# LoRA A matrix.
if input_dtype != weight_dtype:
# NOTE(woosuk): While Punica supports the case where the
# input and weight dtypes are different, we only generate
# the kernels the same dtypes to reduce the binary size.
continue
elif input_dtype == "fp32":
# LoRA B matrix.
if output_dtype != weight_dtype:
# NOTE(woosuk): While Punica supports the case where the
# output and weight dtypes are different, we only generate
# the kernels the same dtypes to reduce the binary size.
continue
elif not (input_dtype == output_dtype == weight_dtype):
# NOTE(woosuk): While Punica supports mixed data types for
# input, output, and weight, we only generate the kernels with
# the same data types to reduce the binary size.
continue
kernel_definition = TEMPLATE.format(
input_dtype=DTYPE_MAP[input_dtype],
output_dtype=DTYPE_MAP[output_dtype],

View File

@ -20,8 +20,8 @@ inline void check_shape(const torch::Tensor &a, const torch::Tensor &b,
}
}
inline constexpr uint32_t pack_u16(uint16_t a, uint16_t b) {
return (uint32_t(a) << 16) | uint32_t(b);
inline constexpr uint64_t pack_u32(uint32_t a, uint32_t b) {
return (uint64_t(a) << 32) | uint64_t(b);
}
#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
@ -46,13 +46,30 @@ inline constexpr uint32_t pack_u16(uint16_t a, uint16_t b) {
template <typename in_T, typename out_T, typename W_T>
inline bool launch_bgmv_kernel(out_T *Y, const in_T *X, const W_T *W,
const int64_t *lora_indices,
uint16_t in_features, uint16_t out_features,
uint32_t in_features, uint32_t out_features,
int64_t y_offset, int64_t full_y_size,
int64_t batch_size, int64_t num_layers,
int64_t layer_idx, float scale) {
switch (pack_u16(in_features, out_features)) {
// NOTE(woosuk): While Punica supports various combinations of input/output
// data types, we limit the supported data types to reduce the binary size.
constexpr bool is_input_float = std::is_same<in_T, float>::value;
constexpr bool is_output_float = std::is_same<out_T, float>::value;
if (is_input_float) {
if (!std::is_same<out_T, W_T>::value) {
return false;
}
} else if (is_output_float) {
if (!std::is_same<in_T, W_T>::value) {
return false;
}
} else if (!(std::is_same<in_T, W_T>::value &&
std::is_same<out_T, W_T>::value)) {
return false;
}
switch (pack_u32(in_features, out_features)) {
#define CASE_ONESIDE(_in_T, _out_T, _W_T, feat_in, feat_out) \
case pack_u16(feat_in, feat_out): \
case pack_u32(feat_in, feat_out): \
bgmv_kernel<feat_in, feat_out>(Y, X, W, lora_indices, y_offset, \
full_y_size, batch_size, num_layers, \
layer_idx, scale); \
@ -62,12 +79,12 @@ inline bool launch_bgmv_kernel(out_T *Y, const in_T *X, const W_T *W,
CASE_ONESIDE(in_T, out_T, W_T, wide, narrow)
FOR_BGMV_WIDE_NARROW(CASE, _, _, _)
FOR_INST_BGMV_WIDE_NARROW(CASE_ONESIDE, _, _, _)
#undef CASE
#undef CASE_ONESIDE
default:
return false;
}
return true;
}
@ -93,7 +110,7 @@ void dispatch_bgmv(torch::Tensor y, torch::Tensor x, torch::Tensor w,
CHECK_EQ(y.size(0), x.size(0));
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
bool ok = false;
if (h_in < 65536 && h_out < 65536) {
if (h_in <= 128512 && h_out <= 128512) {
// TODO: See if we can get rid of this massive nested switch
switch (x.scalar_type()) {
case at::ScalarType::Half:
@ -325,7 +342,7 @@ void dispatch_bgmv_low_level(torch::Tensor y, torch::Tensor x, torch::Tensor w,
CHECK_EQ(y.size(0), x.size(0));
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
bool ok = false;
if (h_in < 65536 && h_out < 65536) {
if (h_in <= 128512 && h_out <= 128512) {
// TODO: See if we can get rid of this massive nested switch
switch (x.scalar_type()) {
case at::ScalarType::Half:

View File

@ -63,14 +63,20 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
// Quantization ops
#ifndef USE_ROCM
ops.def("aqlm_gemm", &aqlm_gemm, "Quantized GEMM for AQLM");
ops.def("aqlm_dequant", &aqlm_dequant, "Decompression method for AQLM");
ops.def("awq_gemm", &awq_gemm, "Quantized GEMM for AWQ");
ops.def("marlin_gemm", &marlin_gemm, "Marlin Optimized Quantized GEMM for GPTQ");
ops.def("gptq_marlin_gemm", &gptq_marlin_gemm, "gptq_marlin Optimized Quantized GEMM for GPTQ");
ops.def("gptq_marlin_repack", &gptq_marlin_repack, "gptq_marlin repack from GPTQ");
ops.def("awq_dequantize", &awq_dequantize, "Dequantization for AWQ");
#endif
ops.def("gptq_gemm", &gptq_gemm, "Quantized GEMM for GPTQ");
ops.def("gptq_shuffle", &gptq_shuffle, "Post processing for GPTQ");
ops.def("squeezellm_gemm", &squeezellm_gemm, "Quantized GEMM for SqueezeLLM");
ops.def("static_scaled_fp8_quant", &static_scaled_fp8_quant, "Compute FP8 quantized tensor for given scaling factor");
ops.def("dynamic_scaled_fp8_quant", &dynamic_scaled_fp8_quant, "Compute FP8 quantized tensor and scaling factor");
ops.def(
"moe_align_block_size",
&moe_align_block_size,
@ -91,9 +97,13 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
&reshape_and_cache,
"Reshape the key and value tensors and cache them");
cache_ops.def(
"convert_fp8_e5m2",
&convert_fp8_e5m2,
"Convert the key and value cache to fp8_e5m2 data type");
"reshape_and_cache_flash",
&reshape_and_cache_flash,
"Reshape the key and value tensors and cache them");
cache_ops.def(
"convert_fp8",
&convert_fp8,
"Convert the key and value cache to fp8 data type");
// Cuda utils
pybind11::module cuda_utils = m.def_submodule("cuda_utils", "vLLM cuda utils");

View File

@ -0,0 +1,712 @@
/*
* Modified by Neural Magic
* Adapted from https://github.com/Vahe1994/AQLM
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cuda.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#include <c10/cuda/CUDAStream.h>
#include <c10/cuda/CUDAGuard.h>
#include <iostream>
#include <cstdlib>
namespace vllm {
namespace aqlm {
__global__ void Code1x16MatVec(
const int4* __restrict__ A,
const int4* __restrict__ B,
int4* __restrict__ C,
const int4* __restrict__ codebook,
const int prob_m,
const int prob_k,
const int4 codebook_a_sizes, // cumulative sizes of A spanning each codebook, at most 3 long.
const int codebook_stride // as int4.
) {
int a_gl_stride = prob_k / 8 / 8;
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
bool pred = a_gl_rd < prob_m;
if (pred)
{
// advance to the correct codebook, this easy because we only multiply one column of the codebook.
auto codebook_size = &codebook_a_sizes.x;
while (a_gl_rd >= *codebook_size)
{
codebook += codebook_stride;
++codebook_size;
}
}
int b_gl_rd = 0;
int c_gl_wr = a_gl_rd;
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
__shared__ int4 sh_b[32 * 9];
float res = 0;
int iters = (prob_k / 8 + 8 * 32 - 1) / (8 * 32);
while (iters--) {
// We pad shared memory to avoid bank conflicts during reads
__syncthreads();
for (int i = threadIdx.x; i < 32 * 8; i += blockDim.x) {
if (b_gl_rd + i < prob_k / 8)
sh_b[9 * (i / 8) + i % 8] = B[b_gl_rd + i];
}
__syncthreads();
b_gl_rd += 32 * 8;
int b_sh_rd = 9 * (threadIdx.x % 32);
if (pred && a_gl_rd < a_gl_end) {
const uint16_t* enc = reinterpret_cast<const uint16_t*>(&A[a_gl_rd]);
#pragma unroll
for (int i = 0; i < 8; i++) {
uint32_t dec[4];
// We bypass the L1 cache to avoid massive amounts of memory streaming that doesn't
// actually help us; this brings > 2x speedup.
asm volatile (
"ld.cg.global.v4.u32 {%0, %1, %2, %3}, [%4];"
: "=r"(dec[0]), "=r"(dec[1]), "=r"(dec[2]), "=r"(dec[3])
: "l"((void*) &codebook[enc[i]])
);
half2* a = reinterpret_cast<half2*>(&dec);
half2* b = reinterpret_cast<half2*>(&sh_b[b_sh_rd]);
half2 res2 = {};
#pragma unroll
for (int j = 0; j < 4; j++)
res2 = __hfma2(a[j], b[j], res2);
res += __half2float(res2.x) + __half2float(res2.y);
b_sh_rd++;
}
a_gl_rd += 32;
}
}
if (pred) {
#pragma unroll
for (int i = 16; i > 0; i /= 2)
res += __shfl_down_sync(0xffffffff, res, i);
if (threadIdx.x % 32 == 0)
reinterpret_cast<__half*>(C)[c_gl_wr] = __float2half(res);
}
}
__global__ void Code2x8MatVec(
const int4* __restrict__ A,
const int4* __restrict__ B,
int4* __restrict__ C,
const int4* __restrict__ codebook,
int prob_m,
int prob_k,
const int4 codebook_a_sizes, // cumulative sizes of A spanning each codebook, at most 3 long.
const int codebook_stride // as int4.
) {
int a_gl_stride = prob_k / 8 / 8;
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
bool pred = a_gl_rd < prob_m;
if (pred)
{
// advance to the correct codebook, this easy because we only multiply one column of the codebook.
auto codebook_size = &codebook_a_sizes.x;
while (a_gl_rd >= *codebook_size)
{
codebook += codebook_stride;
++codebook_size;
}
}
int b_gl_rd = 0;
int c_gl_wr = a_gl_rd;
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
int lane = threadIdx.x % 8;
extern __shared__ int4 sh[];
int4* sh_b = sh;
int4* sh_code = sh_b + 32 * 9;
int4* sh_code0 = sh_code;
int4* sh_code1 = sh_code + 256 * 8;
for (int i = threadIdx.x; i < 2 * 256; i += blockDim.x) {
int4 dec = codebook[i];
#pragma unroll
for (int j = 0; j < 8; j++)
sh_code[8 * i + (j + lane) % 8] = dec;
}
__syncthreads();
float res = 0;
int iters = (prob_k / 8 + 8 * 32 - 1) / (8 * 32);
while (iters--) {
// We pad shared memory to avoid bank conflicts during reads
__syncthreads();
for (int i = threadIdx.x; i < 32 * 8; i += blockDim.x) {
if (b_gl_rd + i < prob_k / 8)
sh_b[9 * (i / 8) + i % 8] = B[b_gl_rd + i];
}
__syncthreads();
b_gl_rd += 32 * 8;
int b_sh_rd = 9 * (threadIdx.x % 32);
if (pred && a_gl_rd < a_gl_end) {
const uint8_t* enc = reinterpret_cast<const uint8_t*>(&A[a_gl_rd]);
#pragma unroll
for (int i = 0; i < 8; i++) {
half2* a0 = reinterpret_cast<half2*>(&sh_code0[8 * enc[2 * i + 0] + lane]);
half2* a1 = reinterpret_cast<half2*>(&sh_code1[8 * enc[2 * i + 1] + lane]);
half2* b = reinterpret_cast<half2*>(&sh_b[b_sh_rd]);
half2 res2 = {};
#pragma unroll
for (int j = 0; j < 4; j++)
res2 = __hfma2(__hadd2(a0[j], a1[j]), b[j], res2);
res += __half2float(res2.x) + __half2float(res2.y);
b_sh_rd++;
}
a_gl_rd += 32;
}
}
if (pred) {
#pragma unroll
for (int i = 16; i > 0; i /= 2)
res += __shfl_down_sync(0xffffffff, res, i);
if (threadIdx.x % 32 == 0)
reinterpret_cast<__half*>(C)[c_gl_wr] = __float2half(res);
}
}
__global__ void Code1x16Dequant(
const int4* __restrict__ A,
int4* __restrict__ C,
const int4* __restrict__ codebook,
int prob_m,
int prob_k,
const int4 codebook_a_sizes, // cumulative sizes of A spanning each codebook, at most 3 long, sums to m.
const int codebook_stride // as int4
) {
int a_gl_stride = prob_k / 8 / 8;
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
bool pred = a_gl_rd < prob_m;
if (pred)
{
// advance to the correct codebook, this easy because we only multiply one column of the codebook.
auto codebook_size = &codebook_a_sizes.x;
while (a_gl_rd >= *codebook_size)
{
codebook += codebook_stride;
++codebook_size;
}
}
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
int c_gl_stride = prob_k / 8;
int c_gl_wr = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
c_gl_wr = c_gl_stride * c_gl_wr + (threadIdx.x % 32) * 8;
int iters = (prob_k / 8 - 1) / (8 * 32) + 1;
while (iters--) {
if (pred && a_gl_rd < a_gl_end) {
const uint16_t* enc = reinterpret_cast<const uint16_t*>(&A[a_gl_rd]);
#pragma unroll
for (int i = 0; i < 8; i++) {
int4 chunk;
auto dec = reinterpret_cast<uint32_t*>(&chunk);
// We bypass the L1 cache to avoid massive amounts of memory streaming that doesn't
// actually help us; this brings > 2x speedup.
asm volatile (
"ld.cg.global.v4.u32 {%0, %1, %2, %3}, [%4];"
: "=r"(dec[0]), "=r"(dec[1]), "=r"(dec[2]), "=r"(dec[3])
: "l"((void*) &codebook[enc[i]])
);
C[a_gl_rd * 8 + i] = chunk;
}
}
a_gl_rd += 32;
}
}
__global__ void Code2x8Dequant(
const int4* __restrict__ A,
int4* __restrict__ C,
const int4* __restrict__ codebook,
int prob_m,
int prob_k,
const int4 codebook_a_sizes, // cumulative sizes of A spanning each codebook, at most 3 long, corresponds to cols.
const int codebook_stride // as int4
) {
int a_gl_stride = prob_k / 8 / 8;
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
bool pred = a_gl_rd < prob_m;
if (pred)
{
// advance to the correct codebook, this easy because we only multiply one column of the codebook.
auto codebook_size = &codebook_a_sizes.x;
while (a_gl_rd >= *codebook_size)
{
codebook += codebook_stride;
++codebook_size;
}
}
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
int lane = threadIdx.x % 8;
int c_gl_stride = prob_k / 8;
int c_gl_wr = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
c_gl_wr = c_gl_stride * c_gl_wr + (threadIdx.x % 32) * 8;
extern __shared__ int4 sh[];
int4* sh_code = sh;
int4* sh_code0 = sh_code;
int4* sh_code1 = sh_code + 256 * 8;
for (int i = threadIdx.x; i < 2 * 256; i += blockDim.x) {
int4 dec = codebook[i];
#pragma unroll
for (int j = 0; j < 8; j++)
sh_code[8 * i + (j + lane) % 8] = dec;
}
__syncthreads();
float res = 0;
int iters = (prob_k / 8 - 1) / (8 * 32) + 1;
while (iters--) {
if (pred && a_gl_rd < a_gl_end) {
const uint8_t* enc = reinterpret_cast<const uint8_t*>(&A[a_gl_rd]);
#pragma unroll
for (int i = 0; i < 8; i++) {
int4 chunk;
half2* a0 = reinterpret_cast<half2*>(&sh_code0[8 * enc[2 * i + 0] + lane]);
half2* a1 = reinterpret_cast<half2*>(&sh_code1[8 * enc[2 * i + 1] + lane]);
#pragma unroll
for (int j = 0; j < 4; j++)
reinterpret_cast<half2*>(&chunk)[j] = __hadd2(a0[j], a1[j]);
C[a_gl_rd * 8 + i] = chunk;
}
}
a_gl_rd += 32;
}
}
inline int ceildiv(int a, int b) {
return (a + b - 1) / b;
}
const int THREAD_M = 16;
void code1x16_matvec_cuda(
const void* __restrict__ A,
const void* __restrict__ B,
void* __restrict__ C,
const void* __restrict__ codebook,
int prob_m,
int prob_k,
const int4 codebook_a_sizes,
const int codebook_stride
) {
int sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
int waves = 0;
int thread_m;
do {
waves++;
thread_m = ceildiv(prob_m, waves * sms);
} while (thread_m > THREAD_M);
int blocks = ceildiv(prob_m, thread_m);
int threads = 32 * thread_m;
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
Code1x16MatVec<<<blocks, threads, 16*32*9, stream>>>(
(const int4*) A,
(const int4*) B,
(int4*) C,
(const int4*) codebook,
prob_m,
prob_k,
codebook_a_sizes,
codebook_stride
);
}
void code2x8_matvec_cuda(
const void* __restrict__ A,
const void* __restrict__ B,
void* __restrict__ C,
const void* __restrict__ codebook,
int prob_m,
int prob_k,
const int4 codebook_a_sizes,
const int codebook_stride
) {
int sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
int waves = 0;
int thread_m;
do {
waves++;
thread_m = ceildiv(prob_m, waves * sms);
} while (thread_m > THREAD_M);
int blocks = ceildiv(prob_m, thread_m);
int threads = 32 * thread_m;
int shared = 16 * (2 * 256 * 8 + 32 * 9);
cudaFuncSetAttribute(
Code2x8MatVec, cudaFuncAttributeMaxDynamicSharedMemorySize, shared
);
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
Code2x8MatVec<<<blocks, threads, shared, stream>>>(
(const int4*) A,
(const int4*) B,
(int4*) C,
(const int4*) codebook,
prob_m,
prob_k,
codebook_a_sizes,
codebook_stride
);
}
void code1x16_dequant_cuda(
const void* __restrict__ A,
void* __restrict__ C,
const void* __restrict__ codebook,
int prob_m,
int prob_k,
const int4 codebook_a_sizes, // cumulative sizes of A spanning each codebook, at most 3 long.
const int codebook_stride // as int4.
) {
int sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
int waves = 0;
int thread_m;
do {
waves++;
thread_m = ceildiv(prob_m, waves * sms);
} while (thread_m > THREAD_M);
int blocks = ceildiv(prob_m, thread_m);
int threads = 32 * thread_m;
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
Code1x16Dequant<<<blocks, threads, 0, stream>>>(
(const int4*) A,
(int4*) C,
(const int4*) codebook,
prob_m,
prob_k,
codebook_a_sizes, // cumulative sizes of A spanning each codebook, at most 3 long.
codebook_stride // as int4.
);
}
// Dequantizes the code and codebook into weights.
void code2x8_dequant_cuda(
const void* __restrict__ A,
void* __restrict__ C,
const void* __restrict__ codebook,
int prob_m,
int prob_k,
const int4 codebook_a_sizes, // cumulative sizes of A spanning each codebook, at most 3 long, corresponds to cols.
const int codebook_stride // as int4
) {
int sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
int waves = 0;
int thread_m;
do {
waves++;
thread_m = ceildiv(prob_m, waves * sms);
} while (thread_m > THREAD_M);
int blocks = ceildiv(prob_m, thread_m);
int threads = 32 * thread_m;
int shared = 16 * (2 * 256 * 8 + 32 * 9);
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
cudaFuncSetAttribute(
Code2x8Dequant, cudaFuncAttributeMaxDynamicSharedMemorySize, shared
);
Code2x8Dequant<<<blocks, threads, shared, stream>>>(
(const int4*) A,
(int4*) C,
(const int4*) codebook,
prob_m,
prob_k,
codebook_a_sizes,
codebook_stride
);
}
int codebook_stride(const torch::Tensor& codebooks)
{
return codebooks.stride(0) * codebooks.element_size() / sizeof(int4);
}
void code1x16_matvec(
const torch::Tensor& A,
const torch::Tensor& B,
torch::Tensor& C,
const torch::Tensor& codebook,
const int4 codebook_a_sizes // cumulative sizes of A spanning each codebook, at most 3 long.
) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(A));
int prob_m = C.size(0);
int prob_k = B.size(0);
code1x16_matvec_cuda(
A.data_ptr(),
B.data_ptr(),
C.data_ptr(),
codebook.data_ptr(),
prob_m,
prob_k,
codebook_a_sizes,
codebook_stride(codebook)
);
}
torch::Tensor code1x16_matmat(
const torch::Tensor& input,
const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& scales,
const int4 codebook_a_sizes,
const std::optional<torch::Tensor>& bias) {
auto input_sizes = input.sizes();
auto out_features = codes.size(0) * codebooks.size(2);
auto flat_input = input.reshape({-1, input.size(-1)});
auto flat_output = torch::empty({flat_input.size(0), out_features},
torch::TensorOptions()
.dtype(input.dtype())
.device(input.device())
);
for (int i = 0; i < flat_input.size(0); ++i) {
auto input_vec = flat_input.index({i});
auto output_vec = flat_output.index({i});
code1x16_matvec(
codes.squeeze(2),
input_vec,
output_vec,
codebooks,
codebook_a_sizes
);
}
flat_output *= scales.flatten().unsqueeze(0);
if (bias.has_value()) {
flat_output += bias->unsqueeze(0);
}
auto output_sizes = input_sizes.vec();
output_sizes.pop_back();
output_sizes.push_back(-1);
auto output = flat_output.reshape(output_sizes);
return output;
}
void code2x8_matvec(
const torch::Tensor& A,
const torch::Tensor& B,
torch::Tensor& C,
const torch::Tensor& codebook,
const int4 codebook_a_sizes
) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(A));
int prob_m = C.size(0);
int prob_k = B.size(0);
code2x8_matvec_cuda(
A.data_ptr(),
B.data_ptr(),
C.data_ptr(),
codebook.data_ptr(),
prob_m,
prob_k,
codebook_a_sizes,
2 * codebook_stride(codebook)
);
}
torch::Tensor code2x8_matmat(
const torch::Tensor& input,
const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& scales,
const int4 codebook_a_sizes,
const std::optional<torch::Tensor>& bias
) {
auto input_sizes = input.sizes();
auto out_features = codes.size(0) * codebooks.size(2);
auto flat_input = input.reshape({-1, input.size(-1)});
auto flat_output = torch::empty({flat_input.size(0), out_features},
torch::TensorOptions()
.dtype(input.dtype())
.device(input.device())
);
for (int i = 0; i < flat_input.size(0); ++i) {
auto input_vec = flat_input.index({i});
auto output_vec = flat_output.index({i});
code2x8_matvec(
codes.squeeze(2),
input_vec,
output_vec,
codebooks,
codebook_a_sizes
);
}
flat_output *= scales.flatten().unsqueeze(0);
if (bias.has_value()) {
flat_output += bias->unsqueeze(0);
}
auto output_sizes = input_sizes.vec();
output_sizes.pop_back();
output_sizes.push_back(-1);
auto output = flat_output.reshape(output_sizes);
return output;
}
// Accumulate the partition sizes.
int4 accumulate_sizes(const torch::Tensor& codebook_partition_sizes)
{
int4 cumulative_sizes;
auto cumulative_size = &cumulative_sizes.x;
int i = 0;
int last = 0;
assert(codebook_partition_sizes.size(0) <= 4);
for (; i < codebook_partition_sizes.size(0); ++i, ++cumulative_size)
{
*cumulative_size = codebook_partition_sizes[i].item<int>() + last;
last = *cumulative_size;
}
// fill in the rest with unreachable.
for (; i < 4; ++i, ++cumulative_size)
{
*cumulative_size = last*10;
}
return cumulative_sizes;
}
} // namespace aqlm
} // namespace vllm
torch::Tensor aqlm_gemm(
const torch::Tensor& input,
const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& scales,
const torch::Tensor& codebook_partition_sizes,
const std::optional<torch::Tensor>& bias
)
{
int4 cumulative_sizes = vllm::aqlm::accumulate_sizes(codebook_partition_sizes);
int const nbooks = codebooks.size(0) / codebook_partition_sizes.size(0);
int const entries = codebooks.size(1);
if (nbooks == 1 && entries == (1 << 16))
{
return vllm::aqlm::code1x16_matmat(input, codes, codebooks, scales, cumulative_sizes, bias);
}
if (nbooks == 2 && entries == (1 << 8))
{
return vllm::aqlm::code2x8_matmat(input, codes, codebooks, scales, cumulative_sizes, bias);
}
TORCH_CHECK(false, "AQLM with ", nbooks, " codebooks and ", entries, " entries is not currently supported.")
return {};
}
torch::Tensor aqlm_dequant(
const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& codebook_partition_sizes
)
{
int4 cumulative_sizes = vllm::aqlm::accumulate_sizes(codebook_partition_sizes);
int const nbooks = codebooks.size(0) / codebook_partition_sizes.size(0);
int const entries = codebooks.size(1);
const at::cuda::OptionalCUDAGuard device_guard(device_of(codes));
int rows = codes.size(1);
int cols = codes.size(0);
auto in_features = codes.size(1) * 8;
auto out_features = codes.size(0);
assert(out_features = codebook_partition_sizes.sum().item<int>());
auto weights = torch::empty({out_features, in_features},
torch::TensorOptions()
.dtype(codebooks.dtype())
.device(codebooks.device())
);
if (nbooks == 1 && entries == (1 << 16))
{
vllm::aqlm::code1x16_dequant_cuda(
codes.data_ptr(),
weights.data_ptr(),
codebooks.data_ptr(),
out_features,
in_features,
cumulative_sizes,
vllm::aqlm::codebook_stride(codebooks));
// if you wanted to flip to scaling the weights, (though it's 30%-ish slower and not consistent with gemv implementation.)
// weights *= scales.index({"...", 0, 0});
return weights;
}
if (nbooks == 2 && entries == (1 << 8))
{
vllm::aqlm::code2x8_dequant_cuda(
codes.data_ptr(),
weights.data_ptr(),
codebooks.data_ptr(),
out_features,
in_features,
cumulative_sizes,
vllm::aqlm::codebook_stride(codebooks));
// if you wanted to flip to scaling the weights, (though it's 30%-ish slower and not consistent with gemv implementation)
// weights *= scales.index({"...", 0, 0});
return weights;
}
TORCH_CHECK(false, "AQLM with ", nbooks, " codebooks and ", entries, " entries is not currently supported.")
return {};
}

View File

@ -0,0 +1,167 @@
#pragma once
#ifdef __HIPCC__
#include <hip/hip_runtime.h>
#else
#include <type_traits>
#include <stdint.h>
#include <math.h>
#include <iostream>
#endif
#include "hip_float8_impl.h"
struct alignas(1) hip_fp8
{
struct from_bits_t
{
};
HIP_FP8_HOST_DEVICE static constexpr from_bits_t from_bits() { return from_bits_t(); }
uint8_t data;
hip_fp8() = default;
HIP_FP8_HOST_DEVICE constexpr hip_fp8(const hip_fp8&) = default;
HIP_FP8_HOST_DEVICE constexpr hip_fp8(uint8_t v) = delete;
explicit HIP_FP8_HOST_DEVICE constexpr hip_fp8(uint8_t v, from_bits_t)
: data(v)
{
}
#ifdef __HIP__MI300__
// NOTE: ON-DEVICE... always optimal bias
explicit HIP_FP8_DEVICE hip_fp8(float v)
: data(hip_fp8_impl::to_fp8_from_fp32(v))
{
}
explicit HIP_FP8_DEVICE hip_fp8(_Float16 v)
: hip_fp8(static_cast<float>(v))
{
}
// Host only implementation using s/w simulation
explicit HIP_FP8_HOST
#else // __HIP__MI300__
// both Host and DEVICE for non-MI300 using s/w simulation
explicit HIP_FP8_HOST_DEVICE
#endif // __HIP__MI300__
hip_fp8(float v)
{
data = hip_fp8_impl::to_float8<4, 3, float, true /*negative_zero_nan*/, true /*clip*/>(v);
}
explicit HIP_FP8_HOST_DEVICE hip_fp8(double v)
: hip_fp8(static_cast<float>(v))
{
}
#ifdef __HIP__MI300__
// upcast using device specific intrinsic
explicit inline HIP_FP8_DEVICE operator float() const
{
float fval;
uint32_t i32val = static_cast<uint32_t>(data);
// upcast
asm volatile("v_cvt_f32_fp8 %0, %1 src0_sel:BYTE_0" : "=v"(fval) : "v"(i32val));
return fval;
}
explicit inline HIP_FP8_HOST operator float() const
#else // __HIP__MI300__
explicit inline HIP_FP8_HOST_DEVICE operator float() const
#endif // __HIP__MI300__
{
return hip_fp8_impl::from_float8<4, 3, float, true /*negative_zero_nan*/>(data);
}
};
namespace std
{
inline hip_fp8 sin(hip_fp8 a)
{
return hip_fp8(sinf(float(a)));
}
inline hip_fp8 cos(hip_fp8 a)
{
return hip_fp8(cosf(float(a)));
}
HIP_FP8_HOST_DEVICE constexpr hip_fp8 real(const hip_fp8& a)
{
return a;
}
} // namespace std
// Special operator overloading
inline std::ostream& operator<<(std::ostream& os, const hip_fp8& f8)
{
return os << float(f8);
}
// all + operator overloading with mixed types
// mixed types, always converts to f32, does computation in f32, and returns float
inline HIP_FP8_HOST_DEVICE float operator+(const float fa, hip_fp8 b)
{
return (fa + float(b));
}
inline HIP_FP8_HOST_DEVICE float operator+(hip_fp8 a, const float fb)
{
return (float(a) + fb);
}
inline HIP_FP8_HOST_DEVICE hip_fp8 operator+(hip_fp8 a, hip_fp8 b)
{
return hip_fp8(float(a) + float(b));
}
inline HIP_FP8_HOST_DEVICE hip_fp8& operator+=(hip_fp8& a, hip_fp8 b)
{
return a = hip_fp8(float(a) + float(b));
}
// overloading multiplication, always returns float,
inline HIP_FP8_HOST_DEVICE float operator*(hip_fp8 a, hip_fp8 b)
{
return float(a) * float(b);
}
inline HIP_FP8_HOST_DEVICE float operator*(float a, hip_fp8 b)
{
return (a * float(b));
}
inline HIP_FP8_HOST_DEVICE float operator*(hip_fp8 a, float b)
{
return (float(a) * b);
}
inline HIP_FP8_HOST_DEVICE float operator*(int32_t a, hip_fp8 b)
{
return ((float)a * float(b));
}
inline HIP_FP8_HOST_DEVICE float operator*(double a, hip_fp8 b)
{
return ((float)a * float(b));
}
// overloading for compare
inline HIP_FP8_HOST_DEVICE bool operator==(hip_fp8 a, hip_fp8 b)
{
return (a.data == b.data);
}
inline HIP_FP8_HOST_DEVICE bool operator!=(hip_fp8 a, hip_fp8 b)
{
return (a.data != b.data);
}
inline HIP_FP8_HOST_DEVICE bool operator>=(hip_fp8 a, hip_fp8 b)
{
return static_cast<float>(a) >= static_cast<float>(b);
}
inline HIP_FP8_HOST_DEVICE bool operator>(hip_fp8 a, hip_fp8 b)
{
return static_cast<float>(a) > static_cast<float>(b);
}

View File

@ -0,0 +1,316 @@
#pragma once
#if defined(__HIPCC__) && (defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
#define __HIP__MI300__
#endif
#ifdef __HIPCC__
#define HIP_FP8_HOST_DEVICE __host__ __device__
#define HIP_FP8_HOST __host__
#define HIP_FP8_DEVICE __device__
#else
#define HIP_FP8_HOST_DEVICE
#define HIP_FP8_HOST
#define HIP_FP8_DEVICE
#endif
namespace hip_fp8_impl
{
#ifdef __HIP__MI300__
HIP_FP8_DEVICE uint8_t to_fp8_from_fp32(float v)
{
uint8_t i8data;
union {
float fval;
uint32_t i32val;
uint8_t i8val[4]; // NOTE: not endian independent
} val;
uint32_t ival = 0;
val.fval = v;
if ((val.i32val & 0x7F800000) != 0x7F800000) { /// propagate NAN/INF, no clipping
val.fval = __builtin_amdgcn_fmed3f(val.fval, 240.0, -240.0);
}
ival = __builtin_amdgcn_cvt_pk_fp8_f32(val.fval, val.fval, ival,
false); // false -> WORD0
val.i32val = ival;
i8data = val.i8val[0];
return i8data;
}
#endif // __HIP__MI300__
HIP_FP8_HOST inline int clz(uint32_t x)
{
return __builtin_clz(x);
}
#if defined(__HIPCC__) || defined(__CUDA_ARCH__)
HIP_FP8_DEVICE inline int clz(uint32_t x)
{
return __clz(x);
}
#endif
template <int we, int wm, typename T, bool negative_zero_nan, bool clip>
HIP_FP8_HOST_DEVICE uint8_t to_float8(T _x, bool stoch = false, uint32_t rng = 0)
{
#ifdef __HIPCC__
constexpr bool is_half = std::is_same<T, _Float16>::value;
#else
constexpr bool is_half = false;
#endif
constexpr bool is_float = std::is_same<T, float>::value;
static_assert(wm + we == 7, "wm+we==7");
static_assert(is_half || is_float, "Only half and float can be cast to f8");
const int mfmt = (sizeof(T) == 4) ? 23 : 10;
uint32_t x;
if (sizeof(T) == 4) {
x = reinterpret_cast<uint32_t&>(_x);
} else {
x = reinterpret_cast<uint16_t&>(_x);
}
uint32_t head, mantissa;
int exponent, bias;
uint32_t sign;
if (sizeof(T) == 4) {
head = x & 0xFF800000;
mantissa = x & 0x7FFFFF;
exponent = (head >> 23) & 0xFF;
sign = head >> 31;
bias = 127;
} else {
head = x & 0xFC00;
mantissa = x & 0x3FF;
exponent = (head >> 10) & 0x1F;
sign = head >> 15;
bias = 15;
}
uint32_t signed_inf = (sign << 7) + (((1 << we) - 1) << wm);
// Deal with inf and NaNs
if (negative_zero_nan) {
if (sizeof(T) == 4) {
if ((x & 0x7F800000) == 0x7F800000) {
return 0x80;
}
} else {
// if(__hisinf(x) || __hisnan(x))
if ((x & 0x7C00) == 0x7C00) {
return 0x80;
}
}
} else {
if (sizeof(T) == 4) {
if ((x & 0x7F800000) == 0x7F800000) {
return signed_inf + (mantissa != 0 ? 1 : 0);
}
} else {
if ((x & 0x7C00) == 0x7C00) {
return signed_inf + (mantissa != 0 ? 1 : 0);
}
}
}
if (x == 0) {
return 0;
}
// First need to check if it is normal or denorm as there is a difference of
// implicit 1 Then need to adjust the exponent to align with the F8 exponent,
// in the meanwhile, shift The mantissa. Then for stochastic rounding, add rng
// to mantissa and truncate. And for RNE, no need to add rng. Then probably
// need to check whether there is carry and adjust exponent and mantissa again
// For IEEE bias mode, the bias is 2^(k-1) -1 where k is the width of exponent
// bits
const int f8_bias = (1 << (we - 1)) - 1 + (negative_zero_nan ? 1 : 0);
const int f8_denormal_act_exponent = 1 - f8_bias; // actual exponent of f8 denormal
// act_exponent is the actual exponent of fp32/fp16 (after subtracting bias)
// f8_exponent is the converted f8 exponent with bias encoding
// exponent_diff is the diff between fp32/fp16 exponent and f8 exponent,
// the difference needs to be adjusted and mantissa shifted
int act_exponent, f8_exponent, exponent_diff;
if (exponent == 0) { // fp32/fp16 is in denormal.
/* fp32 denormal is below 2^-127 so it is usually not a concern here, we
mostly concern fp16 here. In this case, f8 is usually in denormal. But there
could be exceptions. fp16 denormal has exponent bias 15 while bf8 with NANOO has
exponent bias 16. It means that there are some numbers in fp16 denormal but they
are bf8 (NANOO) normals - smallest bf8 (NANOO) normal is 2^-15. fp16 numbers
where exponent==0 (actual exponent -14) and highest bit of mantissa is 1 are bf8
(NANOO) normal. In this case, the fp16 mantissa should be shift left by 1 */
act_exponent = exponent - bias + 1;
exponent_diff = f8_denormal_act_exponent - act_exponent; // actual exponent is exponent-bias+1 as it is denormal
} else { // fp32/fp16 is normal with implicit 1
act_exponent = exponent - bias;
if (act_exponent <= f8_denormal_act_exponent) {
/* This is the case where fp32/fp16 is normal but it is in f8 denormal
range. For example fp8 nanoo mode, denormal exponent is -7, but if the
fp32/fp16 actual exponent is -7, it is actually larger due to the implicit 1,
Therefore it needs to be adjust to -6 and mantissa shift right by 1.
So for fp32/fp16, exponent -8 is the cut point to convert to fp8 nanoo */
exponent_diff = f8_denormal_act_exponent - act_exponent;
} else { // both fp32/fp16 and f8 are in normal range
exponent_diff = 0; // exponent_diff=0 does not mean there is no difference
// for this case,
// act_exponent could be larger. Just that it does not need shift mantissa
}
mantissa += (1 << mfmt); // Add the implicit 1 into mantissa
}
bool midpoint = (mantissa & ((1 << (mfmt - wm + exponent_diff)) - 1)) ==
static_cast<uint32_t>(1 << (mfmt - wm + exponent_diff - 1));
/* This part is a bit tricky. The judgment of whether it is a tie needs to be
done before we shift right as shift right could rip off some residual part
and make something not midpoint look like midpoint. For example, the fp16
number 0x1002 (0 00100 0000000010), it is larger than midpoint, but after
shift right by 4 bits, it would look like midpoint.
*/
if (exponent_diff > 0) {
mantissa >>= exponent_diff;
} else if (exponent_diff == -1) {
mantissa <<= -exponent_diff;
}
bool implicit_one = mantissa & (1 << mfmt);
// if there is no implicit 1, it means the f8 is denormal and need to adjust
// to denorm exponent
f8_exponent = (act_exponent + exponent_diff) /*actual f8 exponent*/ + f8_bias - (implicit_one ? 0 : 1);
// Now we have the exponent and mantissa adjusted
uint32_t drop_mask = (1 << (mfmt - wm)) - 1;
bool odd = mantissa & (1 << (mfmt - wm)); // if the least significant bit that
// is not truncated is 1
mantissa += (stoch ? rng : (midpoint ? (odd ? mantissa : mantissa - 1) : mantissa)) & drop_mask;
// Now we deal with overflow
if (f8_exponent == 0) {
if ((1 << mfmt) & mantissa) {
f8_exponent = 1; // denormal overflow to become normal, promote exponent
}
} else {
if ((1 << (mfmt + 1)) & mantissa) {
mantissa >>= 1;
f8_exponent++;
}
}
mantissa >>= (mfmt - wm);
// above range: quantize to maximum possible float of the same sign
const int max_exp = (1 << we) - (negative_zero_nan ? 1 : 2);
if (f8_exponent > max_exp) {
if (clip) {
mantissa = (1 << wm) - 1;
f8_exponent = max_exp;
} else {
return signed_inf;
}
}
if (f8_exponent == 0 && mantissa == 0) {
return negative_zero_nan ? 0 : (sign << 7);
}
mantissa &= (1 << wm) - 1;
return (sign << 7) | (f8_exponent << wm) | mantissa;
}
template <int we, int wm, typename T = float, bool negative_zero_nan = true>
inline HIP_FP8_HOST_DEVICE T from_float8(uint8_t x)
{
#ifdef __HIPCC__
constexpr bool is_half = std::is_same<T, _Float16>::value;
#else
constexpr bool is_half = false;
#endif
constexpr bool is_float = std::is_same<T, float>::value;
static_assert(is_half || is_float, "only half and float are supported");
constexpr int weo = is_half ? 5 : 8;
constexpr int wmo = is_half ? 10 : (is_float ? 23 : 7);
T fInf, fNegInf, fNaN, fNeg0;
#ifdef __HIPCC__
if (is_half) {
const uint16_t ihInf = 0x7C00;
const uint16_t ihNegInf = 0xFC00;
const uint16_t ihNaN = 0x7C01;
const uint16_t ihNeg0 = 0x8000;
fInf = reinterpret_cast<const _Float16&>(ihInf);
fNegInf = reinterpret_cast<const _Float16&>(ihNegInf);
fNaN = reinterpret_cast<const _Float16&>(ihNaN);
fNeg0 = reinterpret_cast<const _Float16&>(ihNeg0);
} else
#endif
if (is_float) {
const uint32_t ifInf = 0x7F800000;
const uint32_t ifNegInf = 0xFF800000;
const uint32_t ifNaN = 0x7F800001;
const uint32_t ifNeg0 = 0x80000000;
fInf = reinterpret_cast<const float&>(ifInf);
fNegInf = reinterpret_cast<const float&>(ifNegInf);
fNaN = reinterpret_cast<const float&>(ifNaN);
fNeg0 = reinterpret_cast<const float&>(ifNeg0);
}
if (x == 0) {
return 0;
}
uint32_t sign = x >> 7;
uint32_t mantissa = x & ((1 << wm) - 1);
int exponent = (x & 0x7F) >> wm;
if (negative_zero_nan) {
if (x == 0x80) {
return fNaN;
}
} else {
if (x == 0x80) {
return fNeg0;
}
if (exponent == ((1 << we) - 1)) {
return (mantissa == 0) ? (sign ? fNegInf : fInf) : fNaN;
}
}
typename std::conditional<sizeof(T) == 2, uint16_t, uint32_t>::type retval;
if (we == 5 && is_half && !negative_zero_nan) {
retval = x << 8;
return reinterpret_cast<const T&>(retval);
}
const int exp_low_cutoff = (1 << (weo - 1)) - (1 << (we - 1)) + 1 - (negative_zero_nan ? 1 : 0);
// subnormal input
if (exponent == 0) {
// guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
int sh = 1 + clz(mantissa) - (32 - wm);
mantissa <<= sh;
exponent += 1 - sh;
mantissa &= ((1 << wm) - 1);
}
exponent += exp_low_cutoff - 1;
mantissa <<= wmo - wm;
// subnormal output (occurs when T=half, we=5, negative_zero_nan=true)
if (exponent <= 0) {
mantissa |= 1 << wmo;
mantissa >>= 1 - exponent;
exponent = 0;
}
if (sizeof(T) == 2) {
retval = (sign << 15) | (exponent << 10) | mantissa;
} else {
retval = (sign << 31) | (exponent << 23) | mantissa;
}
return reinterpret_cast<const T&>(retval);
}
} // namespace hip_fp8_impl

View File

@ -0,0 +1,517 @@
#pragma once
#include "hip_float8.h"
#include <hip/hip_fp16.h>
#include <hip/hip_bf16.h>
#include <hip/hip_bfloat16.h>
#include "../../../attention/dtype_float32.cuh"
#include "../../../attention/dtype_bfloat16.cuh"
namespace vllm
{
namespace fp8_e4m3 {
template <typename Tout, typename Tin>
__inline__ __device__ Tout vec_conversion(const Tin& x)
{
return x;
}
template <typename Tout, typename Tin>
__inline__ __device__ Tout scaled_vec_conversion(const Tin& x, const float scale)
{
return x;
}
// fp8 -> half
template <>
__inline__ __device__ uint16_t vec_conversion<uint16_t, uint8_t>(const uint8_t& a)
{
hip_fp8 f8{a, hip_fp8::from_bits()};
__half_raw res;
res.data = static_cast<float>(f8);
return res.x;
}
// fp8x2 -> half2
template <>
__inline__ __device__ uint32_t vec_conversion<uint32_t, uint16_t>(const uint16_t& a)
{
#if defined(__HIP__MI300__) && defined(__HIP_FP8_EXPERIMENTAL_BULK_CONVERT__)
const auto& f2 = __builtin_amdgcn_cvt_pk_f32_fp8(a, 0);
union {
__half2_raw h2r;
uint32_t ui32;
} tmp;
tmp.h2r.x.data = f2[0];
tmp.h2r.y.data = f2[1];
return tmp.ui32;
#else
union {
uint16_t u16[2];
uint32_t u32;
} tmp;
tmp.u16[0] = vec_conversion<uint16_t, uint8_t>(static_cast<uint8_t>(a));
tmp.u16[1] = vec_conversion<uint16_t, uint8_t>(static_cast<uint8_t>(a >> 8U));
return tmp.u32;
#endif
}
// fp8x4 -> half2x2
template <>
__inline__ __device__ uint2 vec_conversion<uint2, uint32_t>(const uint32_t& a)
{
union {
uint2 u32x2;
uint32_t u32[2];
} tmp;
tmp.u32[0] = vec_conversion<uint32_t, uint16_t>((uint16_t)a);
tmp.u32[1] = vec_conversion<uint32_t, uint16_t>((uint16_t)(a >> 16U));
return tmp.u32x2;
}
// fp8x8 -> half2x4
template <>
__inline__ __device__ uint4 vec_conversion<uint4, uint2>(const uint2& a)
{
union {
uint4 u64x2;
uint2 u64[2];
} tmp;
tmp.u64[0] = vec_conversion<uint2, uint32_t>(a.x);
tmp.u64[1] = vec_conversion<uint2, uint32_t>(a.y);
return tmp.u64x2;
}
using __nv_bfloat16 = __hip_bfloat16;
// fp8 -> __nv_bfloat16
template <>
__inline__ __device__ __nv_bfloat16 vec_conversion<__nv_bfloat16, uint8_t>(const uint8_t& a)
{
hip_fp8 f8{a, hip_fp8::from_bits()};
float f{f8};
return __float2bfloat16(f);
}
using __nv_bfloat162 = __hip_bfloat162;
// fp8x2 -> __nv_bfloat162
template <>
__inline__ __device__ __nv_bfloat162 vec_conversion<__nv_bfloat162, uint16_t>(const uint16_t& a)
{
__nv_bfloat162 res;
res.x = vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)a);
res.y = vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)(a >> 8U));
return res;
}
// fp8x4 -> bf16_4_t
template <>
__inline__ __device__ bf16_4_t vec_conversion<bf16_4_t, uint32_t>(const uint32_t& a)
{
bf16_4_t res;
res.x = vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)a);
res.y = vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)(a >> 16U));
return res;
}
// fp8x8 -> bf16_8_t
template <>
__inline__ __device__ bf16_8_t vec_conversion<bf16_8_t, uint2>(const uint2& a)
{
bf16_4_t tmp1, tmp2;
tmp1 = vec_conversion<bf16_4_t, uint32_t>(a.x);
tmp2 = vec_conversion<bf16_4_t, uint32_t>(a.y);
bf16_8_t res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// fp8 -> float
template <>
__inline__ __device__ float vec_conversion<float, uint8_t>(const uint8_t& a)
{
hip_fp8 fp8{a, hip_fp8::from_bits()};
return static_cast<float>(fp8);
}
// fp8x2 -> float2
template <>
__inline__ __device__ float2 vec_conversion<float2, uint16_t>(const uint16_t& a)
{
#if defined(__HIP__MI300__) && defined(__HIP_FP8_EXPERIMENTAL_BULK_CONVERT__)
float2 res;
const auto& f2 = __builtin_amdgcn_cvt_pk_f32_fp8(a, 0);
res.x = f2[0];
res.y = f2[1];
return res;
#else
float2 res;
res.x = vec_conversion<float, uint8_t>(static_cast<uint8_t>(a));
res.y = vec_conversion<float, uint8_t>(static_cast<uint8_t>(a >> 8U));
return res;
#endif
}
// fp8x4 -> float4
template <>
__inline__ __device__ Float4_ vec_conversion<Float4_, uint32_t>(const uint32_t& a)
{
Float4_ res;
res.x = vec_conversion<float2, uint16_t>((uint16_t)a);
res.y = vec_conversion<float2, uint16_t>((uint16_t)(a >> 16U));
return res;
}
// fp8x8 -> float8
template <>
__inline__ __device__ Float8_ vec_conversion<Float8_, uint2>(const uint2& a)
{
Float4_ tmp1, tmp2;
tmp1 = vec_conversion<Float4_, uint32_t>(a.x);
tmp2 = vec_conversion<Float4_, uint32_t>(a.y);
Float8_ res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// half -> fp8
template <>
__inline__ __device__ uint8_t vec_conversion<uint8_t, uint16_t>(const uint16_t& a)
{
__half_raw tmp;
tmp.x = a;
hip_fp8 f8{static_cast<float>(tmp.data)};
return f8.data;
}
// bf16 -> fp8
template <>
__inline__ __device__ uint8_t vec_conversion<uint8_t, __nv_bfloat16>(const __nv_bfloat16& a)
{
hip_fp8 res{__bfloat162float(a)};
return res.data;
}
// float -> fp8
template <>
__inline__ __device__ uint8_t vec_conversion<uint8_t, float>(const float& a)
{
hip_fp8 f8(a);
return f8.data;
}
// fp8x4 -> float4
template <>
__inline__ __device__ float4 vec_conversion<float4, uint32_t>(const uint32_t& a)
{
Float4_ tmp = vec_conversion<Float4_, uint32_t>(a);
float4 res = make_float4(tmp.x.x, tmp.x.y, tmp.y.x, tmp.y.y);
return res;
}
// float2 -> half2
template <>
__inline__ __device__ uint32_t vec_conversion<uint32_t, float2>(const float2& a)
{
union {
half2 float16;
uint32_t uint32;
};
float16 = __float22half2_rn(a);
return uint32;
}
// Float4 -> half2x2
template <>
__inline__ __device__ uint2 vec_conversion<uint2, Float4_>(const Float4_& a)
{
uint2 b;
float2 val;
val.x = a.x.x;
val.y = a.x.y;
b.x = vec_conversion<uint32_t, float2>(val);
val.x = a.y.x;
val.y = a.y.y;
b.y = vec_conversion<uint32_t, float2>(val);
return b;
}
// Float4 -> float4
template <>
__inline__ __device__ float4 vec_conversion<float4, Float4_>(const Float4_& a)
{
float4 b;
b.x = a.x.x;
b.y = a.x.y;
b.z = a.y.x;
b.w = a.y.y;
return b;
}
// Float8 -> half2x4
template <>
__inline__ __device__ uint4 vec_conversion<uint4, Float8_>(const Float8_& a)
{
uint4 b;
b.x = vec_conversion<uint32_t, float2>(a.x);
b.y = vec_conversion<uint32_t, float2>(a.y);
b.z = vec_conversion<uint32_t, float2>(a.z);
b.w = vec_conversion<uint32_t, float2>(a.w);
return b;
}
// float2 -> bfloat162
template <>
__inline__ __device__ __nv_bfloat162 vec_conversion<__nv_bfloat162, float2>(const float2& a)
{
__nv_bfloat162 b = __float22bfloat162_rn(a);
return b;
}
// Float4 -> bfloat162x2
template <>
__inline__ __device__ bf16_4_t vec_conversion<bf16_4_t, Float4_>(const Float4_& a)
{
bf16_4_t b;
b.x = __float22bfloat162_rn(a.x);
b.y = __float22bfloat162_rn(a.y);
return b;
}
// Float8 -> bfloat162x4
template <>
__inline__ __device__ bf16_8_t vec_conversion<bf16_8_t, Float8_>(const Float8_& a)
{
bf16_8_t b;
b.x = __float22bfloat162_rn(a.x);
b.y = __float22bfloat162_rn(a.y);
b.z = __float22bfloat162_rn(a.z);
b.w = __float22bfloat162_rn(a.w);
return b;
}
/* Scaled and vectorized conversions, for data exchange between high and low precision domains
Convention of the scale in API, e.g: FP8_data = Quantization( High_Precision_data / scale )
s.t.
Quantize(HP / scale) => FP8
Dequant(FP8) * scale => HP
*/
// fp8 -> half
template <>
__inline__ __device__ uint16_t scaled_vec_conversion<uint16_t, uint8_t>(const uint8_t& a, const float scale)
{
hip_fp8 f8{a, hip_fp8::from_bits()};
__half_raw res;
res.data = static_cast<float>(f8) * scale;
return res.x;
}
// fp8x2 -> half2
template <>
__inline__ __device__ uint32_t scaled_vec_conversion<uint32_t, uint16_t>(const uint16_t& a, const float scale)
{
#if defined(__HIP__MI300__) && defined(__HIP_FP8_EXPERIMENTAL_BULK_CONVERT__)
const auto& f2 = __builtin_amdgcn_cvt_pk_f32_fp8(a, 0);
union {
__half2_raw h2r;
uint32_t ui32;
} tmp;
tmp.h2r.x.data = f2[0] * scale;
tmp.h2r.y.data = f2[1] * scale;
return tmp.ui32;
#else
union {
uint16_t u16[2];
uint32_t u32;
} tmp;
tmp.u16[0] = scaled_vec_conversion<uint16_t, uint8_t>(static_cast<uint8_t>(a), scale);
tmp.u16[1] = scaled_vec_conversion<uint16_t, uint8_t>(static_cast<uint8_t>(a >> 8U), scale);
return tmp.u32;
#endif
}
// fp8x4 -> half2x2
template <>
__inline__ __device__ uint2 scaled_vec_conversion<uint2, uint32_t>(const uint32_t& a, const float scale)
{
union {
uint2 u32x2;
uint32_t u32[2];
} tmp;
tmp.u32[0] = scaled_vec_conversion<uint32_t, uint16_t>((uint16_t)a, scale);
tmp.u32[1] = scaled_vec_conversion<uint32_t, uint16_t>((uint16_t)(a >> 16U), scale);
return tmp.u32x2;
}
// fp8x8 -> half2x4
template <>
__inline__ __device__ uint4 scaled_vec_conversion<uint4, uint2>(const uint2& a, const float scale)
{
union {
uint4 u64x2;
uint2 u64[2];
} tmp;
tmp.u64[0] = scaled_vec_conversion<uint2, uint32_t>(a.x, scale);
tmp.u64[1] = scaled_vec_conversion<uint2, uint32_t>(a.y, scale);
return tmp.u64x2;
}
using __nv_bfloat16 = __hip_bfloat16;
// fp8 -> __nv_bfloat16
template <>
__inline__ __device__ __nv_bfloat16 scaled_vec_conversion<__nv_bfloat16, uint8_t>(const uint8_t& a, const float scale)
{
hip_fp8 f8{a, hip_fp8::from_bits()};
float f{f8};
return __float2bfloat16(f * scale);
}
using __nv_bfloat162 = __hip_bfloat162;
// fp8x2 -> __nv_bfloat162
template <>
__inline__ __device__ __nv_bfloat162 scaled_vec_conversion<__nv_bfloat162, uint16_t>(const uint16_t& a, const float scale)
{
__nv_bfloat162 res;
res.x = scaled_vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)a, scale);
res.y = scaled_vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)(a >> 8U), scale);
return res;
}
// fp8x4 -> bf16_4_t
template <>
__inline__ __device__ bf16_4_t scaled_vec_conversion<bf16_4_t, uint32_t>(const uint32_t& a, const float scale)
{
bf16_4_t res;
res.x = scaled_vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)a, scale);
res.y = scaled_vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)(a >> 16U), scale);
return res;
}
// fp8x8 -> bf16_8_t
template <>
__inline__ __device__ bf16_8_t scaled_vec_conversion<bf16_8_t, uint2>(const uint2& a, const float scale)
{
bf16_4_t tmp1, tmp2;
tmp1 = scaled_vec_conversion<bf16_4_t, uint32_t>(a.x, scale);
tmp2 = scaled_vec_conversion<bf16_4_t, uint32_t>(a.y, scale);
bf16_8_t res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// fp8 -> float
template <>
__inline__ __device__ float scaled_vec_conversion<float, uint8_t>(const uint8_t& a, const float scale)
{
hip_fp8 fp8{a, hip_fp8::from_bits()};
return static_cast<float>(fp8) * scale;
}
// fp8x2 -> float2
template <>
__inline__ __device__ float2 scaled_vec_conversion<float2, uint16_t>(const uint16_t& a, const float scale)
{
#if defined(__HIP__MI300__) && defined(__HIP_FP8_EXPERIMENTAL_BULK_CONVERT__)
float2 res;
const auto& f2 = __builtin_amdgcn_cvt_pk_f32_fp8(a, 0);
res.x = f2[0] * scale;
res.y = f2[1] * scale;
return res;
#else
float2 res;
res.x = scaled_vec_conversion<float, uint8_t>(static_cast<uint8_t>(a), scale);
res.y = scaled_vec_conversion<float, uint8_t>(static_cast<uint8_t>(a >> 8U), scale);
return res;
#endif
}
// fp8x4 -> float4
template <>
__inline__ __device__ Float4_ scaled_vec_conversion<Float4_, uint32_t>(const uint32_t& a, const float scale)
{
Float4_ res;
res.x = scaled_vec_conversion<float2, uint16_t>((uint16_t)a, scale);
res.y = scaled_vec_conversion<float2, uint16_t>((uint16_t)(a >> 16U), scale);
return res;
}
// fp8x8 -> float8
template <>
__inline__ __device__ Float8_ scaled_vec_conversion<Float8_, uint2>(const uint2& a, const float scale)
{
Float4_ tmp1, tmp2;
tmp1 = scaled_vec_conversion<Float4_, uint32_t>(a.x, scale);
tmp2 = scaled_vec_conversion<Float4_, uint32_t>(a.y, scale);
Float8_ res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
/* Quantize(HP / scale) => FP8 */
// TODO(Hai): vectorized to add
// half -> fp8
template <>
__inline__ __device__ uint8_t scaled_vec_conversion<uint8_t, uint16_t>(const uint16_t& a, const float scale)
{
__half_raw tmp;
tmp.x = a;
hip_fp8 f8{static_cast<float>(tmp.data)/scale};
return f8.data;
}
// bf16 -> fp8
template <>
__inline__ __device__ uint8_t scaled_vec_conversion<uint8_t, __nv_bfloat16>(const __nv_bfloat16& a, const float scale)
{
hip_fp8 res{__bfloat162float(a)/scale};
return res.data;
}
// float -> fp8
template <>
__inline__ __device__ uint8_t scaled_vec_conversion<uint8_t, float>(const float& a, const float scale)
{
hip_fp8 f8(a/scale);
return f8.data;
}
// fp8x4 -> float4
template <>
__inline__ __device__ float4 scaled_vec_conversion<float4, uint32_t>(const uint32_t& a, const float scale)
{
Float4_ tmp = scaled_vec_conversion<Float4_, uint32_t>(a, scale);
float4 res = make_float4(tmp.x.x, tmp.x.y, tmp.y.x, tmp.y.y);
return res;
}
}
} // namespace vllm

View File

@ -0,0 +1,126 @@
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include <cmath>
#include "cuda_compat.h"
#include "dispatch_utils.h"
namespace vllm {
__device__ __forceinline__ float atomicMaxFloat(float* addr, float value) {
float old;
old = (value >= 0) ? __int_as_float(atomicMax((int*)addr, __float_as_int(value))) :
__uint_as_float(atomicMin((unsigned int*)addr, __float_as_uint(value)));
return old;
}
// Compute the absolute maximum m of the input tensor and store
// m / float8_e4m3::max() in *scale. Each thread block performs a
// reduction tree and the memory in scale is atomically updated.
// So to get the right answer, *scale needs to be initialized to
// a value <= 0.0 and we need to wait for all thread blocks to
// finish before consuming *scale.
template<typename scalar_t>
__global__ void segmented_max_reduction(
float* __restrict__ scale,
const scalar_t* __restrict__ input,
int64_t num_elems) {
__shared__ float cache[1024];
int i = blockDim.x * blockIdx.x + threadIdx.x;
// First store maximum for all values processes by
// the current thread in cache[threadIdx.x]
scalar_t tmp = 0.0;
while (i < num_elems) {
float x = static_cast<float>(input[i]);
tmp = max(tmp, fabs(x));
i += blockDim.x * gridDim.x;
}
cache[threadIdx.x] = tmp;
__syncthreads();
// Now perform parallel reduction within the thread block
int ib = blockDim.x / 2;
while (ib != 0) {
if (threadIdx.x < ib && cache[threadIdx.x + ib] > cache[threadIdx.x]) {
cache[threadIdx.x] = cache[threadIdx.x + ib];
}
__syncthreads();
ib /= 2;
}
// Finally, since cache[0] contains the maximum for this thread block,
// atomically write the max to the target location
if (threadIdx.x == 0) {
atomicMaxFloat(scale, cache[0] / std::numeric_limits<c10::Float8_e4m3fn>::max());
}
}
template<typename scalar_t>
__global__ void scaled_fp8_quant_kernel(
c10::Float8_e4m3fn* __restrict__ out,
const scalar_t* __restrict__ input,
const float* __restrict__ scale,
int64_t num_elems) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
while (i < num_elems) {
out[i] = static_cast<c10::Float8_e4m3fn>(input[i] / *scale);
i += blockDim.x * gridDim.x;
}
}
} // namespace vllm
void static_scaled_fp8_quant(
torch::Tensor& out, // [..., d]
torch::Tensor& input, // [..., d]
torch::Tensor& scale) // [1]
{
int64_t num_tokens = input.numel() / input.size(-1);
int64_t num_elems = input.numel();
dim3 grid(num_tokens);
dim3 block(1024);
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(),
"scaled_fp8_quant_kernel",
[&] {
vllm::scaled_fp8_quant_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<c10::Float8_e4m3fn>(),
input.data_ptr<scalar_t>(),
scale.data_ptr<float>(),
num_elems);
});
}
void dynamic_scaled_fp8_quant(
torch::Tensor& out, // [..., d]
torch::Tensor& input, // [..., d]
torch::Tensor& scale) // [1]
{
int64_t num_tokens = input.numel() / input.size(-1);
int64_t num_elems = input.numel();
dim3 grid(num_tokens);
dim3 block(1024);
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(),
"scaled_fp8_quant_kernel",
[&] {
vllm::segmented_max_reduction<scalar_t><<<grid, block, 0, stream>>>(
scale.data_ptr<float>(),
input.data_ptr<scalar_t>(),
num_elems);
vllm::scaled_fp8_quant_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<c10::Float8_e4m3fn>(),
input.data_ptr<scalar_t>(),
scale.data_ptr<float>(),
num_elems);
});
}

View File

@ -2067,7 +2067,7 @@ void gptq_shuffle
const at::cuda::OptionalCUDAGuard device_guard(device_of(q_weight));
vllm::gptq::shuffle_exllama_weight(
(uint32_t*) q_weight.data_ptr(),
q_perm.device().is_meta() ? NULL : (int*) q_perm.data_ptr(),
q_perm.device().is_meta() || q_perm.numel() == 0 ? NULL : (int*) q_perm.data_ptr(),
q_weight.size(0) * 32 / bit,
q_weight.size(1),
bit

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,70 @@
#pragma once
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <iostream>
namespace gptq_marlin {
// 8 warps are a good choice since every SM has 4 schedulers and having more than 1 warp per
// schedule allows some more latency hiding. At the same time, we want relatively few warps to have
// many registers per warp and small tiles.
static constexpr int default_threads = 256;
static constexpr int pipe_stages = 4; // 4 pipeline stages fit into shared memory
static constexpr int min_thread_n = 64;
static constexpr int min_thread_k = 64;
static constexpr int tile_size = 16;
static constexpr int max_par = 16;
template <typename T, int n>
struct Vec {
T elems[n];
__device__ T& operator[](int i) { return elems[i]; }
};
using I4 = Vec<int, 4>;
constexpr int div_ceil(int a, int b) { return (a + b - 1) / b; }
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
// No support for async
#else
__device__ inline void cp_async4_pred(void* smem_ptr, const void* glob_ptr, bool pred = true) {
const int BYTES = 16;
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
asm volatile("{\n"
" .reg .pred p;\n"
" setp.ne.b32 p, %0, 0;\n"
" @p cp.async.cg.shared.global [%1], [%2], %3;\n"
"}\n" ::"r"((int)pred),
"r"(smem), "l"(glob_ptr), "n"(BYTES));
}
__device__ inline void cp_async4(void* smem_ptr, const void* glob_ptr) {
const int BYTES = 16;
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
asm volatile("{\n"
" cp.async.cg.shared.global [%0], [%1], %2;\n"
"}\n" ::"r"(smem),
"l"(glob_ptr), "n"(BYTES));
}
__device__ inline void cp_async_fence() { asm volatile("cp.async.commit_group;\n" ::); }
template <int n>
__device__ inline void cp_async_wait() {
asm volatile("cp.async.wait_group %0;\n" ::"n"(n));
}
#endif
} // namespace gptq_marlin

View File

@ -0,0 +1,352 @@
#include "gptq_marlin.cuh"
namespace gptq_marlin {
static constexpr int repack_stages = 8;
static constexpr int repack_threads = 256;
static constexpr int tile_k_size = tile_size;
static constexpr int tile_n_size = tile_k_size * 4;
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
template <int const num_threads, int const num_bits, bool const has_perm>
__global__ void
marlin_repack_kernel(uint32_t const *__restrict__ b_q_weight_ptr,
uint32_t const *__restrict__ perm_ptr,
uint32_t *__restrict__ out_ptr, int size_k, int size_n) {}
} // namespace gptq_marlin
torch::Tensor gptq_marlin_repack(torch::Tensor &b_q_weight, torch::Tensor &perm,
int64_t size_k, int64_t size_n,
int64_t num_bits) {
TORCH_CHECK_NOT_IMPLEMENTED(
false, "marlin_repack_from_gptq(..) requires CUDA_ARCH >= 8.0");
return torch::empty({1, 1});
}
#else
template <int const num_threads, int const num_bits, bool const has_perm>
__global__ void
marlin_repack_kernel(uint32_t const *__restrict__ b_q_weight_ptr,
uint32_t const *__restrict__ perm_ptr,
uint32_t *__restrict__ out_ptr, int size_k, int size_n) {
constexpr int pack_factor = 32 / num_bits;
int k_tiles = size_k / tile_k_size;
int n_tiles = size_n / tile_n_size;
int block_k_tiles = div_ceil(k_tiles, gridDim.x);
int start_k_tile = blockIdx.x * block_k_tiles;
if (start_k_tile >= k_tiles) {
return;
}
int finish_k_tile = min(start_k_tile + block_k_tiles, k_tiles);
// Wait until the next thread tile has been loaded to shared memory.
auto wait_for_stage = [&]() {
// We only have `stages - 2` active fetches since we are double buffering
// and can only issue the next fetch when it is guaranteed that the previous
// shared memory load is fully complete (as it may otherwise be
// overwritten).
cp_async_wait<repack_stages - 2>();
__syncthreads();
};
extern __shared__ int4 sh[];
constexpr int perm_size = tile_k_size / 4;
int4 *sh_perm_ptr = sh;
int4 *sh_pipe_ptr = sh_perm_ptr;
if constexpr (has_perm) {
sh_pipe_ptr += perm_size;
}
constexpr int tile_ints = tile_k_size / pack_factor;
constexpr int stage_n_threads = tile_n_size / 4;
constexpr int stage_k_threads = has_perm ? tile_k_size : tile_ints;
constexpr int stage_size = stage_k_threads * stage_n_threads;
auto load_perm_to_shared = [&](int k_tile_id) {
int first_k_int4 = (k_tile_id * tile_k_size) / 4;
int4 const *perm_int4_ptr = reinterpret_cast<int4 const *>(perm_ptr);
if (threadIdx.x < perm_size) {
sh_perm_ptr[threadIdx.x] = perm_int4_ptr[first_k_int4 + threadIdx.x];
}
__syncthreads();
};
auto fetch_to_shared = [&](int pipe, int k_tile_id, int n_tile_id) {
if (n_tile_id >= n_tiles) {
cp_async_fence();
return;
}
int first_n = n_tile_id * tile_n_size;
int4 *sh_ptr = sh_pipe_ptr + stage_size * pipe;
if constexpr (has_perm) {
if (threadIdx.x < stage_size) {
int k_id = threadIdx.x / stage_n_threads;
int n_id = threadIdx.x % stage_n_threads;
uint32_t const *sh_perm_int_ptr =
reinterpret_cast<uint32_t const *>(sh_perm_ptr);
int src_k = sh_perm_int_ptr[k_id];
int src_k_packed = src_k / pack_factor;
cp_async4(
&sh_ptr[k_id * stage_n_threads + n_id],
reinterpret_cast<int4 const *>(&(
b_q_weight_ptr[src_k_packed * size_n + first_n + (n_id * 4)])));
}
} else {
if (threadIdx.x < stage_size) {
int k_id = threadIdx.x / stage_n_threads;
int n_id = threadIdx.x % stage_n_threads;
int first_k = k_tile_id * tile_k_size;
int first_k_packed = first_k / pack_factor;
cp_async4(&sh_ptr[k_id * stage_n_threads + n_id],
reinterpret_cast<int4 const *>(
&(b_q_weight_ptr[(first_k_packed + k_id) * size_n +
first_n + (n_id * 4)])));
}
}
cp_async_fence();
};
auto repack_tile = [&](int pipe, int k_tile_id, int n_tile_id) {
if (n_tile_id >= n_tiles) {
return;
}
int warp_id = threadIdx.x / 32;
int th_id = threadIdx.x % 32;
if (warp_id >= 4) {
return;
}
int tc_col = th_id / 4;
int tc_row = (th_id % 4) * 2;
constexpr int tc_offsets[4] = {0, 1, 8, 9};
int cur_n = warp_id * 16 + tc_col;
constexpr int sh_stride = 64;
constexpr uint32_t mask = (1 << num_bits) - 1;
int4 *sh_stage_ptr = sh_pipe_ptr + stage_size * pipe;
uint32_t *sh_stage_int_ptr = reinterpret_cast<uint32_t *>(sh_stage_ptr);
uint32_t *sh_perm_int_ptr = reinterpret_cast<uint32_t *>(sh_perm_ptr);
uint32_t vals[8];
if constexpr (has_perm) {
for (int i = 0; i < 4; i++) {
int k_idx = tc_row + tc_offsets[i];
uint32_t src_k = sh_perm_int_ptr[k_idx];
uint32_t src_k_pos = src_k % pack_factor;
uint32_t b1_val = sh_stage_int_ptr[k_idx * sh_stride + cur_n];
uint32_t b1_cur_val = (b1_val >> (src_k_pos * num_bits)) & mask;
uint32_t b2_val = sh_stage_int_ptr[k_idx * sh_stride + cur_n + 8];
uint32_t b2_cur_val = (b2_val >> (src_k_pos * num_bits)) & mask;
vals[i] = b1_cur_val;
vals[4 + i] = b2_cur_val;
}
} else {
uint32_t b1_vals[tile_ints];
uint32_t b2_vals[tile_ints];
#pragma unroll
for (int i = 0; i < tile_ints; i++) {
b1_vals[i] = sh_stage_int_ptr[cur_n + sh_stride * i];
b2_vals[i] = sh_stage_int_ptr[cur_n + 8 + sh_stride * i];
}
#pragma unroll
for (int i = 0; i < 4; i++) {
int cur_elem = tc_row + tc_offsets[i];
int cur_int = cur_elem / pack_factor;
int cur_pos = cur_elem % pack_factor;
vals[i] = (b1_vals[cur_int] >> (cur_pos * num_bits)) & mask;
vals[4 + i] = (b2_vals[cur_int] >> (cur_pos * num_bits)) & mask;
}
}
constexpr int tile_size = tile_k_size * tile_n_size / pack_factor;
int out_offset = (k_tile_id * n_tiles + n_tile_id) * tile_size;
// Result of:
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
if constexpr (num_bits == 4) {
constexpr int pack_idx[8] = {0, 2, 4, 6, 1, 3, 5, 7};
uint32_t res = 0;
#pragma unroll
for (int i = 0; i < 8; i++) {
res |= vals[pack_idx[i]] << (i * 4);
}
out_ptr[out_offset + th_id * 4 + warp_id] = res;
} else {
constexpr int pack_idx[4] = {0, 2, 1, 3};
uint32_t res1 = 0;
uint32_t res2 = 0;
#pragma unroll
for (int i = 0; i < 4; i++) {
res1 |= vals[pack_idx[i]] << (i * 8);
res2 |= vals[4 + pack_idx[i]] << (i * 8);
}
out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 0] = res1;
out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 1] = res2;
}
};
auto start_pipes = [&](int k_tile_id, int n_tile_id) {
#pragma unroll
for (int pipe = 0; pipe < repack_stages - 1; pipe++) {
fetch_to_shared(pipe, k_tile_id, n_tile_id + pipe);
}
wait_for_stage();
};
#pragma unroll
for (int k_tile_id = start_k_tile; k_tile_id < finish_k_tile; k_tile_id++) {
int n_tile_id = 0;
if constexpr (has_perm) {
load_perm_to_shared(k_tile_id);
}
start_pipes(k_tile_id, n_tile_id);
while (n_tile_id < n_tiles) {
#pragma unroll
for (int pipe = 0; pipe < repack_stages; pipe++) {
fetch_to_shared((pipe + repack_stages - 1) % repack_stages, k_tile_id,
n_tile_id + pipe + repack_stages - 1);
repack_tile(pipe, k_tile_id, n_tile_id + pipe);
wait_for_stage();
}
n_tile_id += repack_stages;
}
}
}
} // namespace gptq_marlin
#define CALL_IF(NUM_BITS, HAS_PERM) \
else if (num_bits == NUM_BITS && has_perm == HAS_PERM) { \
cudaFuncSetAttribute( \
gptq_marlin::marlin_repack_kernel<gptq_marlin::repack_threads, \
NUM_BITS, HAS_PERM>, \
cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \
gptq_marlin::marlin_repack_kernel<gptq_marlin::repack_threads, NUM_BITS, \
HAS_PERM> \
<<<blocks, gptq_marlin::repack_threads, max_shared_mem, stream>>>( \
b_q_weight_ptr, perm_ptr, out_ptr, size_k, size_n); \
}
torch::Tensor gptq_marlin_repack(torch::Tensor &b_q_weight, torch::Tensor &perm,
int64_t size_k, int64_t size_n,
int64_t num_bits) {
// Verify compatibility with marlin tile of 16x64
TORCH_CHECK(size_k % gptq_marlin::tile_k_size == 0, "size_k = ", size_k,
" is not divisible by tile_k_size = ", gptq_marlin::tile_k_size);
TORCH_CHECK(size_n % gptq_marlin::tile_n_size == 0, "size_n = ", size_n,
" is not divisible by tile_n_size = ", gptq_marlin::tile_n_size);
TORCH_CHECK(num_bits == 4 || num_bits == 8,
"num_bits must be 4 or 8. Got = ", num_bits);
int const pack_factor = 32 / num_bits;
// Verify B
TORCH_CHECK((size_k / pack_factor) == b_q_weight.size(0),
"Shape mismatch: b_q_weight.size(0) = ", b_q_weight.size(0),
", size_k = ", size_k, ", pack_factor = ", pack_factor);
TORCH_CHECK(b_q_weight.size(1) == size_n,
"b_q_weight.size(1) = ", b_q_weight.size(1),
" is not size_n = ", size_n);
// Verify device and strides
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");
TORCH_CHECK(b_q_weight.dtype() == at::kInt, "b_q_weight type is not kInt");
TORCH_CHECK(perm.device().is_cuda(), "perm is not on GPU");
TORCH_CHECK(perm.is_contiguous(), "perm is not contiguous");
TORCH_CHECK(perm.dtype() == at::kInt, "perm type is not at::kInt");
// Alloc buffers
const at::cuda::OptionalCUDAGuard device_guard(device_of(b_q_weight));
auto options = torch::TensorOptions()
.dtype(b_q_weight.dtype())
.device(b_q_weight.device());
torch::Tensor out =
torch::empty({size_k / gptq_marlin::tile_size,
size_n * gptq_marlin::tile_size / pack_factor},
options);
// Detect if there is act_order
bool has_perm = perm.size(0) != 0;
// Get ptrs
uint32_t const *b_q_weight_ptr =
reinterpret_cast<uint32_t const *>(b_q_weight.data_ptr());
uint32_t const *perm_ptr =
reinterpret_cast<uint32_t const *>(perm.data_ptr());
uint32_t *out_ptr = reinterpret_cast<uint32_t *>(out.data_ptr());
// Get dev info
int dev = b_q_weight.get_device();
cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev);
int blocks;
cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev);
int max_shared_mem = 0;
cudaDeviceGetAttribute(&max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
TORCH_CHECK(max_shared_mem > 0);
if (false) {
}
CALL_IF(4, false)
CALL_IF(4, true)
CALL_IF(8, false)
CALL_IF(8, true)
else {
TORCH_CHECK(false, "Unsupported repack config: num_bits = ", num_bits,
", has_perm = ", has_perm);
}
return out;
}
#endif

View File

@ -67,20 +67,13 @@ __device__ inline void cp_async4_pred(void *smem_ptr, const void *glob_ptr,
"r"(smem), "l"(glob_ptr), "n"(BYTES));
}
// Asynchronous global->shared copy with a cache hint indicating that the values
// may be evicted immediately; used for quantized weights B, which are only
// accessed precisely once and should thus not pollute the L2 cache which we
// need for inputs A and outputs C.
__device__ inline void cp_async4_stream(void *smem_ptr, const void *glob_ptr) {
// Asynchronous global->shared copy
__device__ inline void cp_async4(void *smem_ptr, const void *glob_ptr) {
const int BYTES = 16;
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
asm volatile(
"{\n"
" .reg .b64 p;\n"
" createpolicy.fractional.L2::evict_first.b64 p, 1.0;"
" cp.async.cg.shared.global.L2::cache_hint [%0], [%1], %2, p;\n"
"}\n" ::"r"(smem),
"l"(glob_ptr), "n"(BYTES));
asm volatile("{\n"
" cp.async.cg.shared.global [%0], [%1], %2;\n"
"}\n" :: "r"(smem), "l"(glob_ptr), "n"(BYTES));
}
// Async copy fence.
@ -448,14 +441,14 @@ Marlin(const int4 *__restrict__ A, // fp16 input matrix of shape mxk
int4 *sh_b_stage = sh_b + b_sh_stage * pipe;
#pragma unroll
for (int i = 0; i < b_sh_wr_iters; i++) {
cp_async4_stream(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr], B_ptr[i]);
cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr], B_ptr[i]);
B_ptr[i] += b_gl_rd_delta_o;
}
// Only fetch scales if this tile starts a new group
if (group_blocks != -1 && pipe % (group_blocks / thread_k_blocks) == 0) {
int4 *sh_s_stage = sh_s + s_sh_stage * pipe;
if (s_sh_wr_pred)
cp_async4_stream(&sh_s_stage[s_sh_wr], &s[s_gl_rd]);
cp_async4(&sh_s_stage[s_sh_wr], &s[s_gl_rd]);
s_gl_rd += s_gl_rd_delta;
}
}
@ -750,7 +743,7 @@ Marlin(const int4 *__restrict__ A, // fp16 input matrix of shape mxk
// write-out
if (group_blocks == -1 && last) {
if (s_sh_wr_pred)
cp_async4_stream(&sh_s[s_sh_wr], &s[s_gl_rd]);
cp_async4(&sh_s[s_sh_wr], &s[s_gl_rd]);
cp_async_fence();
}
thread_block_reduce();

View File

@ -20,43 +20,45 @@
#include "cuda_compat.h"
namespace vllm {
template<typename T>
template<typename T, int numLanes = WARP_SIZE>
__inline__ __device__ T warpReduceSum(T val) {
#pragma unroll
for (int mask = WARP_SIZE/2; mask > 0; mask >>= 1)
static_assert(numLanes > 0 && (numLanes & (numLanes - 1)) == 0,
"numLanes is not a positive power of 2!");
static_assert(numLanes <= WARP_SIZE);
#pragma unroll
for (int mask = numLanes >> 1; mask > 0; mask >>= 1)
val += VLLM_SHFL_XOR_SYNC(val, mask);
return val;
}
__inline__ __device__ constexpr int _calculateLaneMask(int warp_size) {
return warp_size - 1;
}
__inline__ __device__ constexpr int _calculateWidShift(int warp_size) {
return 5 + (warp_size >> 6);
// Helper function to return the next largest power of 2
static constexpr int _nextPow2(unsigned int num) {
if (num <= 1) return num;
return 1 << (CHAR_BIT * sizeof(num) - __builtin_clz(num - 1));
}
/* Calculate the sum of all elements in a block */
template<typename T>
template<typename T, int maxBlockSize = 1024>
__inline__ __device__ T blockReduceSum(T val) {
static __shared__ T shared[WARP_SIZE];
constexpr auto LANE_MASK = _calculateLaneMask(WARP_SIZE);
constexpr auto WID_SHIFT = _calculateWidShift(WARP_SIZE);
int lane = threadIdx.x & LANE_MASK;
int wid = threadIdx.x >> WID_SHIFT;
static_assert(maxBlockSize <= 1024);
if constexpr (maxBlockSize > WARP_SIZE) {
val = warpReduceSum<T>(val);
// Calculates max number of lanes that need to participate in the last warpReduce
constexpr int maxActiveLanes = (maxBlockSize + WARP_SIZE - 1) / WARP_SIZE;
static __shared__ T shared[maxActiveLanes];
int lane = threadIdx.x % WARP_SIZE;
int wid = threadIdx.x / WARP_SIZE;
if (lane == 0)
shared[wid] = val;
val = warpReduceSum<T>(val);
__syncthreads();
if (lane == 0)
shared[wid] = val;
__syncthreads();
// Modify from blockDim.x << 5 to blockDim.x / 32. to prevent
// blockDim.x is not divided by 32
val = (threadIdx.x < (blockDim.x / (WARP_SIZE * 1.0f))) ? shared[lane] : (T)(0.0f);
val = warpReduceSum<T>(val);
val = (threadIdx.x < blockDim.x / float(WARP_SIZE)) ? shared[lane] : (T)(0.0f);
val = warpReduceSum<T, _nextPow2(maxActiveLanes)>(val);
} else {
// A single warpReduce is equal to blockReduce
val = warpReduceSum<T, _nextPow2(maxBlockSize)>(val);
}
return val;
}

View File

@ -7,4 +7,6 @@ sphinx-argparse
# packages to install to build the documentation
pydantic
-f https://download.pytorch.org/whl/cpu
torch
torch
py-cpuinfo
transformers

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

View File

@ -13,12 +13,12 @@
import logging
import os
import sys
from typing import List
from sphinx.ext import autodoc
sys.path.insert(0, os.path.abspath(os.path.join('..', '..')))
logger = logging.getLogger(__name__)
sys.path.append(os.path.abspath("../.."))
# -- Project information -----------------------------------------------------
@ -48,7 +48,7 @@ templates_path = ['_templates']
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = []
exclude_patterns: List[str] = ["**/*.template.rst"]
# Exclude the prompt "$" when copying code
copybutton_prompt_text = r"\$ "
@ -73,8 +73,16 @@ html_theme_options = {
# so a file named "default.css" will overwrite the builtin "default.css".
# html_static_path = ['_static']
# Generate additional rst documentation here.
def setup(app):
from docs.source.generate_examples import generate_examples
generate_examples()
# Mock out external dependencies here.
autodoc_mock_imports = [
"cpuinfo",
"torch",
"transformers",
"psutil",
@ -84,14 +92,16 @@ autodoc_mock_imports = [
"vllm._C",
"numpy",
"tqdm",
"tensorizer",
]
for mock_target in autodoc_mock_imports:
if mock_target in sys.modules:
logger.info(
f"Potentially problematic mock target ({mock_target}) found; "
"Potentially problematic mock target (%s) found; "
"autodoc_mock_imports cannot mock modules that have already "
"been loaded into sys.modules when the sphinx build starts.")
"been loaded into sys.modules when the sphinx build starts.",
mock_target)
class MockedClassDocumenter(autodoc.ClassDocumenter):

View File

@ -0,0 +1,50 @@
Dockerfile
====================
See `here <https://github.com/vllm-project/vllm/blob/main/Dockerfile>`_ for the main Dockerfile to construct
the image for running an OpenAI compatible server with vLLM.
- Below is a visual representation of the multi-stage Dockerfile. The build graph contains the following nodes:
- All build stages
- The default build target (highlighted in grey)
- External images (with dashed borders)
The edges of the build graph represent:
- FROM ... dependencies (with a solid line and a full arrow head)
- COPY --from=... dependencies (with a dashed line and an empty arrow head)
- RUN --mount=(.*)from=... dependencies (with a dotted line and an empty diamond arrow head)
.. figure:: ../../assets/dev/dockerfile-stages-dependency.png
:alt: query
:width: 100%
:align: center
Made using: https://github.com/patrickhoefler/dockerfilegraph
Commands to regenerate the build graph (make sure to run it **from the `root` directory of the vLLM repository** where the dockerfile is present):
.. code:: bash
dockerfilegraph -o png --legend --dpi 200 --max-label-length 50 --filename Dockerfile
or in case you want to run it directly with the docker image:
.. code:: bash
docker run \
--rm \
--user "$(id -u):$(id -g)" \
--workdir /workspace \
--volume "$(pwd)":/workspace \
ghcr.io/patrickhoefler/dockerfilegraph:alpine \
--output png \
--dpi 200 \
--max-label-length 50 \
--filename Dockerfile \
--legend
(To run it for a different file, you can pass in a different argument to the flag `--filename`.)

View File

@ -1,7 +1,6 @@
AsyncLLMEngine
=================================
.. autoclass:: vllm.engine.async_llm_engine.AsyncLLMEngine
:members: generate, abort
.. autoclass:: vllm.AsyncLLMEngine
:members:
:show-inheritance:

View File

@ -1,6 +1,6 @@
LLMEngine
=================================
.. autoclass:: vllm.engine.llm_engine.LLMEngine
:members: add_request, abort_request, step
:show-inheritance:
.. autoclass:: vllm.LLMEngine
:members:
:show-inheritance:

View File

@ -1,4 +1,5 @@
Sampling Params
===============
.. automodule:: vllm.sampling_params.SamplingParams
.. autoclass:: vllm.SamplingParams
:members:

View File

@ -0,0 +1,61 @@
import re
from pathlib import Path
def fix_case(text: str) -> str:
subs = [
("api", "API"),
("llm", "LLM"),
("vllm", "vLLM"),
("openai", "OpenAI"),
("multilora", "MultiLoRA"),
]
for sub in subs:
text = re.sub(*sub, text, flags=re.IGNORECASE)
return text
def underline(title: str, character: str = "=") -> str:
return f"{title}\n{character * len(title)}"
def generate_title(filename: str) -> str:
# Turn filename into a title
title = filename.replace("_", " ").title()
# Handle acronyms and names
title = fix_case(title)
# Underline title
title = underline(title)
return title
def generate_examples():
root_dir = Path(__file__).parent.parent.parent.resolve()
# Source paths
script_dir = root_dir / "examples"
script_paths = sorted(script_dir.glob("*.py"))
# Destination paths
doc_dir = root_dir / "docs/source/getting_started/examples"
doc_paths = [doc_dir / f"{path.stem}.rst" for path in script_paths]
# Generate the example docs for each example script
for script_path, doc_path in zip(script_paths, doc_paths):
script_url = f"https://github.com/vllm-project/vllm/blob/main/examples/{script_path.name}"
# Make script_path relative to doc_path and call it include_path
include_path = '../../../..' / script_path.relative_to(root_dir)
content = (f"{generate_title(doc_path.stem)}\n\n"
f"Source {script_url}.\n\n"
f".. literalinclude:: {include_path}\n"
" :language: python\n"
" :linenos:\n")
with open(doc_path, "w+") as f:
f.write(content)
# Generate the toctree for the example scripts
with open(doc_dir / "examples_index.template.rst") as f:
examples_index = f.read()
with open(doc_dir / "examples_index.rst", "w+") as f:
example_docs = "\n ".join(path.stem for path in script_paths)
f.write(examples_index.replace(r"%EXAMPLE_DOCS%", example_docs))

View File

@ -3,9 +3,7 @@
Installation with ROCm
======================
vLLM 0.2.4 onwards supports model inferencing and serving on AMD GPUs with ROCm.
At the moment AWQ quantization is not supported in ROCm, but SqueezeLLM quantization has been ported.
Data types currently supported in ROCm are FP16 and BF16.
vLLM supports AMD GPUs with ROCm 5.7 and 6.0.
Requirements
------------
@ -13,114 +11,57 @@ Requirements
* OS: Linux
* Python: 3.8 -- 3.11
* GPU: MI200s (gfx90a), MI300 (gfx942), Radeon RX 7900 series (gfx1100)
* Pytorch 2.0.1/2.1.1/2.2
* ROCm 5.7 (Verified on python 3.10) or ROCm 6.0 (Verified on python 3.9)
* ROCm 6.0 and ROCm 5.7
Installation options:
#. :ref:`(Recommended) Quick start with vLLM pre-installed in Docker Image <quick_start_docker_rocm>`
#. :ref:`Build from source <build_from_source_rocm>`
#. :ref:`Build from source with docker <build_from_source_docker_rocm>`
.. _quick_start_docker_rocm:
(Recommended) Option 1: Quick start with vLLM pre-installed in Docker Image
---------------------------------------------------------------------------
This option is for ROCm 5.7 only:
.. code-block:: console
$ docker pull embeddedllminfo/vllm-rocm:vllm-v0.2.4
$ docker run -it \
--network=host \
--group-add=video \
--ipc=host \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--device /dev/kfd \
--device /dev/dri \
-v <path/to/model>:/app/model \
embeddedllminfo/vllm-rocm \
bash
.. _build_from_source_rocm:
Option 2: Build from source
---------------------------
You can build and install vLLM from source:
Below instruction is for ROCm 5.7 only.
At the time of this documentation update, PyTorch on ROCm 6.0 wheel is not yet available on the PyTorch website.
0. Install prerequisites (skip if you are already in an environment/docker with the following installed):
- `ROCm <https://rocm.docs.amd.com/en/latest/deploy/linux/index.html>`_
- `Pytorch <https://pytorch.org/>`_
.. code-block:: console
$ pip install torch==2.2.0.dev20231206+rocm5.7 --index-url https://download.pytorch.org/whl/nightly/rocm5.7 # tested version
1. Install `flash attention for ROCm <https://github.com/ROCmSoftwarePlatform/flash-attention/tree/flash_attention_for_rocm>`_
Install ROCm's flash attention (v2.0.4) following the instructions from `ROCmSoftwarePlatform/flash-attention <https://github.com/ROCmSoftwarePlatform/flash-attention/tree/flash_attention_for_rocm#amd-gpurocm-support>`_
.. note::
- If you are using rocm5.7 with pytorch 2.1.0 onwards, you don't need to apply the `hipify_python.patch`. You can build the ROCm flash attention directly.
- If you fail to install `ROCmSoftwarePlatform/flash-attention`, try cloning from the commit `6fd2f8e572805681cd67ef8596c7e2ce521ed3c6`.
- ROCm's Flash-attention-2 (v2.0.4) does not support sliding windows attention.
- You might need to downgrade the "ninja" version to 1.10 it is not used when compiling flash-attention-2 (e.g. `pip install ninja==1.10.2.4`)
2. Setup `xformers==0.0.23` without dependencies, and apply patches to adapt for ROCm flash attention
.. code-block:: console
$ pip install xformers==0.0.23 --no-deps
$ bash patch_xformers.rocm.sh
3. Build vLLM.
.. code-block:: console
$ cd vllm
$ pip install -U -r requirements-rocm.txt
$ python setup.py install # This may take 5-10 minutes. Currently, `pip install .`` does not work for ROCm installation
#. :ref:`Build from source <build_from_source_rocm>`
.. _build_from_source_docker_rocm:
Option 3: Build from source with docker
Option 1: Build from source with docker (recommended)
-----------------------------------------------------
You can build and install vLLM from source:
You can build and install vLLM from source.
Build a docker image from `Dockerfile.rocm`, and launch a docker container.
First, build a docker image from `Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/Dockerfile.rocm>`_ and launch a docker container from the image.
The `Dockerfile.rocm` is designed to support both ROCm 5.7 and ROCm 6.0 and later versions. It provides flexibility to customize the build of docker image using the following arguments:
`Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/Dockerfile.rocm>`_ uses ROCm 6.0 by default, but also supports ROCm 5.7.
It provides flexibility to customize the build of docker image using the following arguments:
* `BASE_IMAGE`: specifies the base image used when running ``docker build``, specifically the PyTorch on ROCm base image. We have tested ROCm 5.7 and ROCm 6.0. The default is `rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1`
* `FX_GFX_ARCHS`: specifies the GFX architecture that is used to build flash-attention, for example, `gfx90a;gfx942` for MI200 and MI300. The default is `gfx90a;gfx942`
* `FA_BRANCH`: specifies the branch used to build the flash-attention in `ROCmSoftwarePlatform's flash-attention repo <https://github.com/ROCmSoftwarePlatform/flash-attention>`_. The default is `3d2b6f5`
* `BUILD_FA`: specifies whether to build flash-attention. For `Radeon RX 7900 series (gfx1100) <https://rocm.docs.amd.com/projects/radeon/en/latest/index.html>`_, this should be set to 0 before flash-attention supports this target.
* `BUILD_FA`: specifies whether to build CK flash-attention. The default is 1. For `Radeon RX 7900 series (gfx1100) <https://rocm.docs.amd.com/projects/radeon/en/latest/index.html>`_, this should be set to 0 before flash-attention supports this target.
* `FX_GFX_ARCHS`: specifies the GFX architecture that is used to build CK flash-attention, for example, `gfx90a;gfx942` for MI200 and MI300. The default is `gfx90a;gfx942`
* `FA_BRANCH`: specifies the branch used to build the CK flash-attention in `ROCm's flash-attention repo <https://github.com/ROCmSoftwarePlatform/flash-attention>`_. The default is `ae7928c`
* `BUILD_TRITON`: specifies whether to build triton flash-attention. The default value is 1.
Their values can be passed in when running ``docker build`` with ``--build-arg`` options.
For example, to build docker image for vllm on ROCm 5.7, you can run:
To build vllm on ROCm 6.0 for MI200 and MI300 series, you can use the default:
.. code-block:: console
$ docker build -f Dockerfile.rocm -t vllm-rocm .
To build vllm on ROCm 6.0 for Radeon RX7900 series (gfx1100), you should specify ``BUILD_FA`` as below:
.. code-block:: console
$ docker build --build-arg BUILD_FA="0" -f Dockerfile.rocm -t vllm-rocm .
To build docker image for vllm on ROCm 5.7, you can specify ``BASE_IMAGE`` as below:
.. code-block:: console
$ docker build --build-arg BASE_IMAGE="rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1" \
-f Dockerfile.rocm -t vllm-rocm .
To build vllm on ROCm 6.0, you can use the default:
To run the above docker image ``vllm-rocm``, use the below command:
.. code-block:: console
$ docker build -f Dockerfile.rocm -t vllm-rocm .
$ docker run -it \
--network=host \
--group-add=video \
@ -133,7 +74,13 @@ To build vllm on ROCm 6.0, you can use the default:
vllm-rocm \
bash
Alternatively, if you plan to install vLLM-ROCm on a local machine or start from a fresh docker image (e.g. rocm/pytorch), you can follow the steps below:
Where the `<path/to/model>` is the location where the model is stored, for example, the weights for llama2 or llama3 models.
.. _build_from_source_rocm:
Option 2: Build from source
---------------------------
0. Install prerequisites (skip if you are already in an environment/docker with the following installed):
@ -141,32 +88,50 @@ Alternatively, if you plan to install vLLM-ROCm on a local machine or start from
- `Pytorch <https://pytorch.org/>`_
- `hipBLAS <https://rocm.docs.amd.com/projects/hipBLAS/en/latest/install.html>`_
1. Install `flash attention for ROCm <https://github.com/ROCmSoftwarePlatform/flash-attention/tree/flash_attention_for_rocm>`_
For installing PyTorch, you can start from a fresh docker image, e.g, `rocm6.0.2_ubuntu22.04_py3.10_pytorch_2.1.2`, `rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1`, `rocm/pytorch-nightly`.
Install ROCm's flash attention (v2.0.4) following the instructions from `ROCmSoftwarePlatform/flash-attention <https://github.com/ROCmSoftwarePlatform/flash-attention/tree/flash_attention_for_rocm#amd-gpurocm-support>`_
Alternatively, you can install pytorch using pytorch wheels. You can check Pytorch installation guild in Pytorch `Getting Started <https://pytorch.org/get-started/locally/>`_
For rocm6.0:
.. code-block:: console
$ pip3 install torch --index-url https://download.pytorch.org/whl/rocm6.0
For rocm5.7:
.. code-block:: console
$ pip install torch --index-url https://download.pytorch.org/whl/rocm5.7
1. Install `Triton flash attention for ROCm <https://github.com/ROCm/triton>`_
Install ROCm's Triton flash attention (the default triton-mlir branch) following the instructions from `ROCm/triton <https://github.com/ROCm/triton/blob/triton-mlir/README.md>`_
2. Optionally, if you choose to use CK flash attention, you can install `flash attention for ROCm <https://github.com/ROCm/flash-attention/tree/flash_attention_for_rocm>`_
Install ROCm's flash attention (v2.0.4) following the instructions from `ROCm/flash-attention <https://github.com/ROCm/flash-attention/tree/flash_attention_for_rocm#amd-gpurocm-support>`_
.. note::
- If you are using rocm5.7 with pytorch 2.1.0 onwards, you don't need to apply the `hipify_python.patch`. You can build the ROCm flash attention directly.
- If you fail to install `ROCmSoftwarePlatform/flash-attention`, try cloning from the commit `6fd2f8e572805681cd67ef8596c7e2ce521ed3c6`.
- If you fail to install `ROCm/flash-attention`, try cloning from the commit `6fd2f8e572805681cd67ef8596c7e2ce521ed3c6`.
- ROCm's Flash-attention-2 (v2.0.4) does not support sliding windows attention.
- You might need to downgrade the "ninja" version to 1.10 it is not used when compiling flash-attention-2 (e.g. `pip install ninja==1.10.2.4`)
2. Setup `xformers==0.0.23` without dependencies, and apply patches to adapt for ROCm flash attention
.. code-block:: console
$ pip install xformers==0.0.23 --no-deps
$ bash patch_xformers.rocm.sh
3. Build vLLM.
.. code-block:: console
.. code-block:: console
$ cd vllm
$ pip install -U -r requirements-rocm.txt
$ python setup.py install # This may take 5-10 minutes.
$ cd vllm
$ pip install -U -r requirements-rocm.txt
$ python setup.py install # This may take 5-10 minutes. Currently, `pip install .`` does not work for ROCm installation
.. note::
.. tip::
- You may need to turn on the ``--enforce-eager`` flag if you experience process hang when running the `benchmark_thoughput.py` script to test your installation.
- Triton flash attention is used by default. For benchmarking purposes, it is recommended to run a warm up step before collecting perf numbers.
- To use CK flash-attention, please use this flag ``export VLLM_USE_FLASH_ATTN_TRITON=0`` to turn off triton flash attention.
- The ROCm version of pytorch, ideally, should match the ROCm driver version.

View File

@ -0,0 +1,87 @@
.. _installation_cpu:
Installation with CPU
========================
vLLM initially supports basic model inferencing and serving on x86 CPU platform, with data types FP32 and BF16.
Table of contents:
#. :ref:`Requirements <cpu_backend_requirements>`
#. :ref:`Quick start using Dockerfile <cpu_backend_quick_start_dockerfile>`
#. :ref:`Build from source <build_cpu_backend_from_source>`
#. :ref:`Performance tips <cpu_backend_performance_tips>`
.. _cpu_backend_requirements:
Requirements
------------
* OS: Linux
* Compiler: gcc/g++>=12.3.0 (recommended)
* Instruction set architecture (ISA) requirement: AVX512 is required.
.. _cpu_backend_quick_start_dockerfile:
Quick start using Dockerfile
----------------------------
.. code-block:: console
$ docker build -f Dockerfile.cpu -t vllm-cpu-env --shm-size=4g .
$ docker run -it \
--rm \
--network=host \
--cpuset-cpus=<cpu-id-list, optional> \
--cpuset-mems=<memory-node, optional> \
vllm-cpu-env
.. _build_cpu_backend_from_source:
Build from source
-----------------
- First, install required compiler. We recommend to use ``gcc/g++ >= 12.3.0`` as the default compiler to avoid potential problems. For example, on Ubuntu 22.4, you can run:
.. code-block:: console
$ sudo apt-get update -y
$ sudo apt-get install -y gcc-12 g++-12
$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
- Second, install Python packages for vLLM CPU backend building:
.. code-block:: console
$ pip install --upgrade pip
$ pip install wheel packaging ninja setuptools>=49.4.0 numpy
$ pip install -v -r requirements-cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu
- Finally, build and install vLLM CPU backend:
.. code-block:: console
$ VLLM_TARGET_DEVICE=cpu python setup.py install
.. note::
- BF16 is the default data type in the current CPU backend (that means the backend will cast FP16 to BF16), and is compatible will all CPUs with AVX512 ISA support.
- AVX512_BF16 is an extension ISA provides native BF16 data type conversion and vector product instructions, will brings some performance improvement compared with pure AVX512. The CPU backend build script will check the host CPU flags to determine whether to enable AVX512_BF16.
- If you want to force enable AVX512_BF16 for the cross-compilation, please set environment variable VLLM_CPU_AVX512BF16=1 before the building.
.. _cpu_backend_performance_tips:
Performance tips
-----------------
- vLLM CPU backend uses environment variable ``VLLM_CPU_KVCACHE_SPACE`` to specify the KV Cache size (e.g, ``VLLM_CPU_KVCACHE_SPACE=40`` means 40 GB space for KV cache), larger setting will allow vLLM running more requests in parallel. This parameter should be set based on the hardware configuration and memory management pattern of users.
- vLLM CPU backend uses OpenMP for thread-parallel computation. If you want the best performance on CPU, it will be very critical to isolate CPU cores for OpenMP threads with other thread pools (like web-service event-loop), to avoid CPU oversubscription.
- If using vLLM CPU backend on a bare-metal machine, it is recommended to disable the hyper-threading.
- If using vLLM CPU backend on a multi-socket machine with NUMA, be aware to set CPU cores and memory nodes, to avoid the remote memory node access. ``numactl`` is an useful tool for CPU core and memory binding on NUMA platform. Besides, ``--cpuset-cpus`` and ``--cpuset-mems`` arguments of ``docker run`` are also useful.

View File

@ -0,0 +1,8 @@
Examples
=================================
.. toctree::
:maxdepth: 1
:caption: Scripts
%EXAMPLE_DOCS%

View File

@ -19,7 +19,7 @@ You can install vLLM using pip:
.. code-block:: console
$ # (Optional) Create a new conda environment.
$ # (Recommended) Create a new conda environment.
$ conda create -n myenv python=3.9 -y
$ conda activate myenv
@ -28,24 +28,19 @@ You can install vLLM using pip:
.. note::
As of now, vLLM's binaries are compiled on CUDA 12.1 by default.
However, you can install vLLM with CUDA 11.8 by running:
As of now, vLLM's binaries are compiled with CUDA 12.1 and public PyTorch release versions by default.
We also provide vLLM binaries compiled with CUDA 11.8 and public PyTorch release versions:
.. code-block:: console
$ # Install vLLM with CUDA 11.8.
$ export VLLM_VERSION=0.2.4
$ export VLLM_VERSION=0.4.0
$ export PYTHON_VERSION=39
$ pip install https://github.com/vllm-project/vllm/releases/download/v${VLLM_VERSION}/vllm-${VLLM_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux1_x86_64.whl
$ pip install https://github.com/vllm-project/vllm/releases/download/v${VLLM_VERSION}/vllm-${VLLM_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux1_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu118
$ # Re-install PyTorch with CUDA 11.8.
$ pip uninstall torch -y
$ pip install torch --upgrade --index-url https://download.pytorch.org/whl/cu118
$ # Re-install xFormers with CUDA 11.8.
$ pip uninstall xformers -y
$ pip install --upgrade xformers --index-url https://download.pytorch.org/whl/cu118
In order to be performant, vLLM has to compile many cuda kernels. The compilation unfortunately introduces binary incompatibility with other CUDA versions and PyTorch versions, even for the same PyTorch version with different building configurations.
Therefore, it is recommended to install vLLM with a **fresh new** conda environment. If either you have a different CUDA version or you want to use an existing PyTorch installation, you need to build vLLM from source. See below for instructions.
.. _build_from_source:
@ -58,6 +53,7 @@ You can also build and install vLLM from source:
$ git clone https://github.com/vllm-project/vllm.git
$ cd vllm
$ # export VLLM_INSTALL_PUNICA_KERNELS=1 # optionally build for multi-LoRA capability
$ pip install -e . # This may take 5-10 minutes.
.. tip::
@ -77,12 +73,16 @@ You can also build and install vLLM from source:
$ # Use `--ipc=host` to make sure the shared memory is large enough.
$ docker run --gpus all -it --rm --ipc=host nvcr.io/nvidia/pytorch:23.10-py3
.. note::
If you are developing the C++ backend of vLLM, consider building vLLM with
If you don't want to use docker, it is recommended to have a full installation of CUDA Toolkit. You can download and install it from `the official website <https://developer.nvidia.com/cuda-toolkit-archive>`_. After installation, set the environment variable `CUDA_HOME` to the installation path of CUDA Toolkit, and make sure that the `nvcc` compiler is in your `PATH`, e.g.:
.. code-block:: console
$ python setup.py develop
$ export CUDA_HOME=/usr/local/cuda
$ export PATH="${CUDA_HOME}/bin:$PATH"
since it will give you incremental builds. The downside is that this method
is `deprecated by setuptools <https://github.com/pypa/setuptools/issues/917>`_.
Here is a sanity check to verify that the CUDA Toolkit is correctly installed:
.. code-block:: console
$ nvcc --version # verify that nvcc is in your PATH
$ ${CUDA_HOME}/bin/nvcc --version # verify that nvcc is in your CUDA_HOME

View File

@ -63,7 +63,9 @@ Documentation
getting_started/installation
getting_started/amd-installation
getting_started/neuron-installation
getting_started/cpu-installation
getting_started/quickstart
getting_started/examples/examples_index
.. toctree::
:maxdepth: 1
@ -73,6 +75,7 @@ Documentation
serving/deploying_with_docker
serving/distributed_serving
serving/metrics
serving/env_vars
serving/usage_stats
serving/integrations
@ -84,13 +87,15 @@ Documentation
models/adding_model
models/engine_args
models/lora
models/performance
.. toctree::
:maxdepth: 1
:caption: Quantization
quantization/auto_awq
quantization/fp8_e5m2_kv_cache
quantization/fp8_e5m2_kvcache
quantization/fp8_e4m3_kvcache
.. toctree::
:maxdepth: 2
@ -99,6 +104,7 @@ Documentation
dev/sampling_params
dev/engine/engine_index
dev/kernel/paged_attention
dev/dockerfile/dockerfile
Indices and tables
==================

View File

@ -21,6 +21,8 @@ This document provides a high-level guide on integrating a `HuggingFace Transfor
Start by forking our `GitHub`_ repository and then :ref:`build it from source <build_from_source>`.
This gives you the ability to modify the codebase and test your model.
.. tip::
If you don't want to fork the repository and modify vLLM's codebase, please refer to the "Out-of-Tree Model Integration" section below.
1. Bring your model code
------------------------
@ -93,4 +95,29 @@ This method should load the weights from the HuggingFace's checkpoint file and a
5. Register your model
----------------------
Finally, include your :code:`*ForCausalLM` class in `vllm/model_executor/models/__init__.py <https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/__init__.py>`_ and register it to the :code:`_MODEL_REGISTRY` in `vllm/model_executor/model_loader.py <https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/model_loader.py>`_.
Finally, register your :code:`*ForCausalLM` class to the :code:`_MODELS` in `vllm/model_executor/models/__init__.py <https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/__init__.py>`_.
6. Out-of-Tree Model Integration
--------------------------------------------
We also provide a way to integrate a model without modifying the vLLM codebase. Step 2, 3, 4 are still required, but you can skip step 1 and 5.
Just add the following lines in your code:
.. code-block:: python
from vllm import ModelRegistry
from your_code import YourModelForCausalLM
ModelRegistry.register_model("YourModelForCausalLM", YourModelForCausalLM)
If you are running api server with `python -m vllm.entrypoints.openai.api_server args`, you can wrap the entrypoint with the following code:
.. code-block:: python
from vllm import ModelRegistry
from your_code import YourModelForCausalLM
ModelRegistry.register_model("YourModelForCausalLM", YourModelForCausalLM)
import runpy
runpy.run_module('vllm.entrypoints.openai.api_server', run_name='__main__')
Save the above code in a file and run it with `python your_file.py args`.

Some files were not shown because too many files have changed in this diff Show More