Compare commits
250 Commits
v0.3.2
...
v0.4.0.pos
Author | SHA1 | Date | |
---|---|---|---|
a3c226e7eb | |||
b321d4881b | |||
ad6eca408b | |||
205b94942e | |||
3bec41f41a | |||
0739b1947f | |||
77a6572aa5 | |||
0e3f06fe9c | |||
eb69d68804 | |||
7d4e1b85e7 | |||
93deb0b38f | |||
ccb58b23e6 | |||
49782fcb76 | |||
f03cc667a0 | |||
563c1d7ec5 | |||
9c82a1bec3 | |||
b6d103542c | |||
51c31bc10c | |||
3ad438c66f | |||
203d4f82ac | |||
991143cfcd | |||
8b2d3cbc1b | |||
9765b5c406 | |||
430530fc18 | |||
97356f3c7e | |||
f510395bbf | |||
6110c39dc8 | |||
d8658c8cc1 | |||
7bc94a0fdd | |||
756b30a5f3 | |||
395aa823ea | |||
26422e477b | |||
f342153b48 | |||
27a57cad52 | |||
98a42e7078 | |||
0267fef52a | |||
4716a32dd4 | |||
c0935c96d3 | |||
cb40b3ab6b | |||
515386ef3c | |||
a4075cba4d | |||
96aa014d1e | |||
1715056fef | |||
b51c1cc9d2 | |||
ce567a2926 | |||
d6ea427f04 | |||
14ccd94c89 | |||
8267b06c30 | |||
3492859b68 | |||
098e1776ba | |||
10e6322283 | |||
6d9aa00fc4 | |||
1182607e18 | |||
45b6ef6513 | |||
1956931436 | |||
e24336b5a7 | |||
d18f4e73f3 | |||
82c540bebf | |||
8f44facddd | |||
e66b629c04 | |||
76879342a3 | |||
566b57c5c4 | |||
0dc72273b8 | |||
a979d9771e | |||
8af890a865 | |||
dfeb2ecc3a | |||
3a243095e5 | |||
64172a976c | |||
f408d05c52 | |||
0b4997e05c | |||
c13ad1b7bd | |||
819924e749 | |||
01bfb22b41 | |||
e67c295b0c | |||
925f3332ca | |||
b0dfa91dd7 | |||
56a8652f33 | |||
6d93d35308 | |||
837e185142 | |||
42bc386129 | |||
8b268a46a7 | |||
41deac4a3d | |||
af9e53496f | |||
f8a12ecc7f | |||
3c5ab9b811 | |||
743a0b7402 | |||
bfdb1ba5c3 | |||
cf2f084d56 | |||
f721096d48 | |||
e90fc21f2e | |||
ea5f14e6ff | |||
b7050ca7df | |||
c188ecb080 | |||
865732342b | |||
4c07dd28c0 | |||
3bbff9e5ab | |||
6ebd02bdef | |||
523e30ea0c | |||
f1c0fc3919 | |||
6e435de766 | |||
426ec4ec67 | |||
80e254834d | |||
ba8ae1d84f | |||
84eaa68425 | |||
5ee14494e4 | |||
4ad521d8b5 | |||
9474e89ba4 | |||
20478c4d3a | |||
63e8b28a99 | |||
cc63d03fbb | |||
2a60c9bd17 | |||
c614cfee58 | |||
7341c77d69 | |||
ef65dcfa6f | |||
6a9c583e73 | |||
b37cdce2b1 | |||
b30880a762 | |||
49eedea373 | |||
9fdf3de346 | |||
c0c17d4896 | |||
097aa0ea22 | |||
482b0adf1b | |||
8c654c045f | |||
9101d832e6 | |||
93348d9458 | |||
abfc4f3387 | |||
6b78837b29 | |||
120157fd2a | |||
8e67598aa6 | |||
ad50bf4b25 | |||
cf6ff18246 | |||
14e3f9a1b2 | |||
3123f15138 | |||
413366e9a2 | |||
10585e035e | |||
fb96c1e98c | |||
8fa7357f2d | |||
a7af4538ca | |||
604f235937 | |||
14b8ae02e7 | |||
03d37f2441 | |||
a7c871680e | |||
429284dc37 | |||
253a98078a | |||
21539e6856 | |||
b522c4476f | |||
78b6c4845a | |||
b983ba35bd | |||
54be8a0be2 | |||
dfc77408bd | |||
c17ca8ef18 | |||
06ec486794 | |||
8fe8386591 | |||
a37415c31b | |||
81653d9688 | |||
eeab52a4ff | |||
c33afd89f5 | |||
7e9bd08f60 | |||
ae0ccb4017 | |||
739c350c19 | |||
ba8dc958a3 | |||
e221910e77 | |||
b167109ba1 | |||
602358f8a8 | |||
49a3c8662b | |||
b0925b3878 | |||
654865e21d | |||
c9415c19d3 | |||
4c922709b6 | |||
657061fdce | |||
2f8844ba08 | |||
4b59f00e91 | |||
9e8744a545 | |||
e4a28e5316 | |||
0bba88df03 | |||
8437bae6ef | |||
f48c6791b7 | |||
c2c5e0909a | |||
1cb0cc2975 | |||
99c3cfb83c | |||
1ece1ae829 | |||
c59e120c55 | |||
d2339d6840 | |||
b35cc93420 | |||
8cbba4622c | |||
385da2dae2 | |||
2daf23ab0c | |||
cbf4c05b15 | |||
d3c04b6a39 | |||
4cb3b924cd | |||
a33ce60c66 | |||
24aecf421a | |||
2efce05dc3 | |||
8999ec3c16 | |||
05af6da8d9 | |||
9a4548bae7 | |||
ff578cae54 | |||
22de45235c | |||
76e8a70476 | |||
9cbc7e5f3b | |||
27a7b070db | |||
901cf4c52b | |||
d0fae88114 | |||
17c3103c56 | |||
996d095c54 | |||
d65fac2738 | |||
ce4f5a29fb | |||
baee28c46c | |||
29e70e3e88 | |||
82091b864a | |||
c0c2335ce0 | |||
90fbf12540 | |||
49d849b3ab | |||
27ca23dc00 | |||
54d3544784 | |||
703e42ee4b | |||
29a8d6a554 | |||
2c08ff23c0 | |||
bfdcfa6a05 | |||
9289e577ec | |||
a6d471c759 | |||
01a5d18a53 | |||
929b4f2973 | |||
3b7178cfa4 | |||
e46fa5d52e | |||
a8683102cc | |||
71bcaf99e2 | |||
8b430d7dea | |||
e0ade06d63 | |||
4bd18ec0c7 | |||
2410e320b3 | |||
48a8f4a7fd | |||
4dd6416faf | |||
c1c0d00b88 | |||
d9f726c4d0 | |||
d6e4a130b0 | |||
cfc15a1031 | |||
70f3e8e3a1 | |||
ef978fe411 | |||
f7c1234990 | |||
57f044945f | |||
4caf7044e0 | |||
6f32cddf1c | |||
c530e2cfe3 | |||
fd5dcc5c81 | |||
93dc5a2870 | |||
95529e3253 | |||
344020c926 | |||
5574081c49 | |||
d7f396486e |
18
.buildkite/download-images.sh
Normal file
@ -0,0 +1,18 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
set -o pipefail
|
||||
|
||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||
|
||||
# aws s3 sync s3://air-example-data-2/vllm_opensource_llava/ images/
|
||||
mkdir -p images
|
||||
cd images
|
||||
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/stop_sign_pixel_values.pt
|
||||
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/stop_sign_image_features.pt
|
||||
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/cherry_blossom_pixel_values.pt
|
||||
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/cherry_blossom_image_features.pt
|
||||
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/stop_sign.jpg
|
||||
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/cherry_blossom.jpg
|
||||
|
||||
cd -
|
38
.buildkite/run-amd-test.sh
Normal file
@ -0,0 +1,38 @@
|
||||
# This script build the ROCm docker image and run the API server inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
# Print ROCm version
|
||||
rocminfo
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t rocm -f Dockerfile.rocm .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() { docker rm -f rocm || true; }
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image
|
||||
docker run --device /dev/kfd --device /dev/dri --network host --name rocm rocm python3 -m vllm.entrypoints.api_server &
|
||||
|
||||
# Wait for the server to start
|
||||
wait_for_server_to_start() {
|
||||
timeout=300
|
||||
counter=0
|
||||
|
||||
while [ "$(curl -s -o /dev/null -w ''%{http_code}'' localhost:8000/health)" != "200" ]; do
|
||||
sleep 1
|
||||
counter=$((counter + 1))
|
||||
if [ $counter -ge $timeout ]; then
|
||||
echo "Timeout after $timeout seconds"
|
||||
break
|
||||
fi
|
||||
done
|
||||
}
|
||||
wait_for_server_to_start
|
||||
|
||||
# Test a simple prompt
|
||||
curl -X POST -H "Content-Type: application/json" \
|
||||
localhost:8000/generate \
|
||||
-d '{"prompt": "San Francisco is a"}'
|
@ -23,8 +23,9 @@ wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/r
|
||||
# wait for server to start, timeout after 600 seconds
|
||||
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
|
||||
python3 benchmarks/benchmark_serving.py \
|
||||
--backend openai \
|
||||
--dataset ./ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
--backend vllm \
|
||||
--dataset-name sharegpt \
|
||||
--dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--num-prompts 20 \
|
||||
--endpoint /v1/completions \
|
||||
@ -48,7 +49,9 @@ sed -n '$p' benchmark_throughput.txt >> benchmark_results.md # last line
|
||||
echo "### Serving Benchmarks" >> benchmark_results.md
|
||||
sed -n '1p' benchmark_serving.txt >> benchmark_results.md # first line
|
||||
echo "" >> benchmark_results.md
|
||||
tail -n 13 benchmark_serving.txt >> benchmark_results.md # last 13 lines
|
||||
echo '```' >> benchmark_results.md
|
||||
tail -n 20 benchmark_serving.txt >> benchmark_results.md # last 20 lines
|
||||
echo '```' >> benchmark_results.md
|
||||
|
||||
# upload the results to buildkite
|
||||
/workspace/buildkite-agent annotate --style "info" --context "benchmark-results" < benchmark_results.md
|
||||
|
14
.buildkite/run-cpu-test.sh
Normal file
@ -0,0 +1,14 @@
|
||||
# This script build the CPU docker image and run the offline inference inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t cpu-test -f Dockerfile.cpu .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() { docker rm -f cpu-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image and launch offline inference
|
||||
docker run --network host --env VLLM_CPU_KVCACHE_SPACE=1 --name cpu-test cpu-test python3 examples/offline_inference.py
|
@ -12,45 +12,76 @@ steps:
|
||||
command: pytest -v -s async_engine
|
||||
|
||||
- label: Basic Correctness Test
|
||||
command: pytest -v -s --forked basic_correctness
|
||||
command: pytest -v -s basic_correctness
|
||||
|
||||
- label: Core Test
|
||||
command: pytest -v -s core
|
||||
|
||||
- label: Distributed Comm Ops Test
|
||||
command: pytest -v -s --forked test_comm_ops.py
|
||||
command: pytest -v -s test_comm_ops.py
|
||||
working_dir: "/vllm-workspace/tests/distributed"
|
||||
num_gpus: 2 # only support 1 or 2 for now.
|
||||
|
||||
- label: Distributed Correctness Test
|
||||
command: pytest -v -s --forked test_basic_distributed_correctness.py
|
||||
- label: Distributed Tests
|
||||
working_dir: "/vllm-workspace/tests/distributed"
|
||||
num_gpus: 2 # only support 1 or 2 for now.
|
||||
commands:
|
||||
- pytest -v -s test_pynccl.py
|
||||
- TEST_DIST_MODEL=facebook/opt-125m pytest -v -s test_basic_distributed_correctness.py
|
||||
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf pytest -v -s test_basic_distributed_correctness.py
|
||||
|
||||
- label: Engine Test
|
||||
command: pytest -v -s engine
|
||||
command: pytest -v -s engine tokenization test_sequence.py test_config.py
|
||||
|
||||
- label: Entrypoints Test
|
||||
command: pytest -v -s entrypoints
|
||||
|
||||
- label: Kernels Test
|
||||
command: pytest -v -s kernels
|
||||
soft_fail: true
|
||||
- label: Examples Test
|
||||
working_dir: "/vllm-workspace/examples"
|
||||
commands:
|
||||
# install aws cli for llava_example.py
|
||||
- pip install awscli
|
||||
- python3 offline_inference.py
|
||||
- python3 offline_inference_with_prefix.py
|
||||
- python3 llm_engine_example.py
|
||||
- python3 llava_example.py
|
||||
|
||||
- label: Kernels Test %N
|
||||
command: pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 4
|
||||
|
||||
- label: Models Test
|
||||
commands:
|
||||
- pytest -v -s models --forked
|
||||
soft_fail: true
|
||||
- bash ../.buildkite/download-images.sh
|
||||
- pytest -v -s models --ignore=models/test_llava.py --ignore=models/test_mistral.py
|
||||
|
||||
- label: Llava Test
|
||||
commands:
|
||||
- bash ../.buildkite/download-images.sh
|
||||
- pytest -v -s models/test_llava.py
|
||||
|
||||
- label: Prefix Caching Test
|
||||
commands:
|
||||
- pytest -v -s prefix_caching
|
||||
|
||||
- label: Samplers Test
|
||||
command: pytest -v -s samplers --forked
|
||||
command: pytest -v -s samplers
|
||||
|
||||
- label: LogitsProcessor Test
|
||||
command: pytest -v -s test_logits_processor.py
|
||||
|
||||
- label: Worker Test
|
||||
command: pytest -v -s worker
|
||||
|
||||
- label: LoRA Test
|
||||
command: pytest -v -s lora
|
||||
- label: Speculative decoding tests
|
||||
command: pytest -v -s spec_decode
|
||||
|
||||
- label: LoRA Test %N
|
||||
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 4
|
||||
|
||||
- label: Metrics Test
|
||||
command: pytest -v -s metrics
|
||||
|
||||
- label: Benchmarks
|
||||
working_dir: "/vllm-workspace/.buildkite"
|
||||
|
@ -3,6 +3,14 @@
|
||||
{% set default_working_dir = "/vllm-workspace/tests" %}
|
||||
|
||||
steps:
|
||||
- label: "AMD Test"
|
||||
agents:
|
||||
queue: amd
|
||||
command: bash .buildkite/run-amd-test.sh
|
||||
|
||||
- label: "CPU Test"
|
||||
command: bash .buildkite/run-cpu-test.sh
|
||||
|
||||
- label: ":docker: build image"
|
||||
commands:
|
||||
- "docker build --build-arg max_jobs=16 --tag {{ docker_image }} --target test --progress plain ."
|
||||
@ -20,6 +28,9 @@ steps:
|
||||
agents:
|
||||
queue: kubernetes
|
||||
soft_fail: {{ step.soft_fail or false }}
|
||||
{% if step.parallelism %}
|
||||
parallelism: {{ step.parallelism }}
|
||||
{% endif %}
|
||||
retry:
|
||||
automatic:
|
||||
- exit_status: -1 # Agent was lost
|
||||
@ -45,6 +56,8 @@ steps:
|
||||
nvidia.com/gpu: "{{ step.num_gpus or default_num_gpu }}"
|
||||
{% endif %}
|
||||
env:
|
||||
- name: VLLM_USAGE_SOURCE
|
||||
value: ci-test
|
||||
- name: HF_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
|
22
.github/ISSUE_TEMPLATE/100-documentation.yml
vendored
Normal file
@ -0,0 +1,22 @@
|
||||
name: 📚 Documentation
|
||||
description: Report an issue related to https://docs.vllm.ai/
|
||||
title: "[Doc]: "
|
||||
labels: ["documentation"]
|
||||
|
||||
body:
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: 📚 The doc issue
|
||||
description: >
|
||||
A clear and concise description of what content in https://docs.vllm.ai/ is an issue.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Suggest a potential alternative/fix
|
||||
description: >
|
||||
Tell us how we could improve the documentation in this regard.
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for contributing 🎉!
|
39
.github/ISSUE_TEMPLATE/200-installation.yml
vendored
Normal file
@ -0,0 +1,39 @@
|
||||
name: 🛠️ Installation
|
||||
description: Report an issue here when you hit errors during installation.
|
||||
title: "[Installation]: "
|
||||
labels: ["installation"]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Your current environment
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
value: |
|
||||
```text
|
||||
The output of `python collect_env.py`
|
||||
```
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: How you are installing vllm
|
||||
description: |
|
||||
Paste the full command you are trying to execute.
|
||||
value: |
|
||||
```sh
|
||||
pip install -vvv vllm
|
||||
```
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for contributing 🎉!
|
37
.github/ISSUE_TEMPLATE/300-usage.yml
vendored
Normal file
@ -0,0 +1,37 @@
|
||||
name: 💻 Usage
|
||||
description: Raise an issue here if you don't know how to use vllm.
|
||||
title: "[Usage]: "
|
||||
labels: ["usage"]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Your current environment
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
value: |
|
||||
```text
|
||||
The output of `python collect_env.py`
|
||||
```
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: How would you like to use vllm
|
||||
description: |
|
||||
A detailed description of how you want to use vllm.
|
||||
value: |
|
||||
I want to run inference of a [specific model](put link here). I don't know how to integrate it with vllm.
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for contributing 🎉!
|
81
.github/ISSUE_TEMPLATE/400-bug report.yml
vendored
Normal file
@ -0,0 +1,81 @@
|
||||
name: 🐛 Bug report
|
||||
description: Raise an issue here if you find a bug.
|
||||
title: "[Bug]: "
|
||||
labels: ["bug"]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Your current environment
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
value: |
|
||||
```text
|
||||
The output of `python collect_env.py`
|
||||
```
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: 🐛 Describe the bug
|
||||
description: |
|
||||
Please provide a clear and concise description of what the bug is.
|
||||
|
||||
If relevant, add a minimal example so that we can reproduce the error by running the code. It is very important for the snippet to be as succinct (minimal) as possible, so please take time to trim down any irrelevant code to help us debug efficiently. We are going to copy-paste your code and we expect to get the same result as you did: avoid any external data, and include the relevant imports, etc. For example:
|
||||
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
llm = LLM(model="facebook/opt-125m")
|
||||
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
# Print the outputs.
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
```
|
||||
|
||||
If the code is too long (hopefully, it isn't), feel free to put it in a public gist and link it in the issue: https://gist.github.com.
|
||||
|
||||
Please also paste or describe the results you observe instead of the expected results. If you observe an error, please paste the error message including the **full** traceback of the exception. It may be relevant to wrap error messages in ```` ```triple quotes blocks``` ````.
|
||||
placeholder: |
|
||||
A clear and concise description of what the bug is.
|
||||
|
||||
```python
|
||||
# Sample code to reproduce the problem
|
||||
```
|
||||
|
||||
```
|
||||
The error message you got, with the full traceback.
|
||||
```
|
||||
validations:
|
||||
required: true
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
⚠️ Please separate bugs of `transformers` implementation or usage from bugs of `vllm`. If you think anything is wrong with the models' output:
|
||||
|
||||
- Try the counterpart of `transformers` first. If the error appears, please go to [their issues](https://github.com/huggingface/transformers/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc).
|
||||
|
||||
- If the error only appears in vllm, please provide the detailed script of how you run `transformers` and `vllm`, also highlight the difference and what you expect.
|
||||
|
||||
Thanks for contributing 🎉!
|
31
.github/ISSUE_TEMPLATE/500-feature request.yml
vendored
Normal file
@ -0,0 +1,31 @@
|
||||
name: 🚀 Feature request
|
||||
description: Submit a proposal/request for a new vllm feature
|
||||
title: "[Feature]: "
|
||||
labels: ["feature request"]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: 🚀 The feature, motivation and pitch
|
||||
description: >
|
||||
A clear and concise description of the feature proposal. Please outline the motivation for the proposal. Is your feature request related to a specific problem? e.g., *"I'm working on X and would like Y to be possible"*. If this is related to another GitHub issue, please link here too.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Alternatives
|
||||
description: >
|
||||
A description of any alternative solutions or features you've considered, if any.
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Additional context
|
||||
description: >
|
||||
Add any other context or screenshots about the feature request.
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for contributing 🎉!
|
33
.github/ISSUE_TEMPLATE/600-new model.yml
vendored
Normal file
@ -0,0 +1,33 @@
|
||||
name: 🤗 Support request for a new model from huggingface
|
||||
description: Submit a proposal/request for a new model from huggingface
|
||||
title: "[New Model]: "
|
||||
labels: ["new model"]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
|
||||
#### We also highly recommend you read https://docs.vllm.ai/en/latest/models/adding_model.html first to understand how to add a new model.
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: The model to consider.
|
||||
description: >
|
||||
A huggingface url, pointing to the model, e.g. https://huggingface.co/openai-community/gpt2 .
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: The closest model vllm already supports.
|
||||
description: >
|
||||
Here is the list of models already supported by vllm: https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/models . Which model is the most similar to the model you want to add support for?
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: What's your difficulty of supporting the model you want?
|
||||
description: >
|
||||
For example, any new operators or new architecture?
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for contributing 🎉!
|
51
.github/ISSUE_TEMPLATE/700-performance discussion.yml
vendored
Normal file
@ -0,0 +1,51 @@
|
||||
name: ⚡ Discussion on the performance of vllm
|
||||
description: Submit a proposal/discussion about the performance of vllm
|
||||
title: "[Performance]: "
|
||||
labels: ["performance"]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Proposal to improve performance
|
||||
description: >
|
||||
How do you plan to improve vllm's performance?
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Report of performance regression
|
||||
description: >
|
||||
Please provide detailed description of performance comparison to confirm the regression. You may want to run the benchmark script at https://github.com/vllm-project/vllm/tree/main/benchmarks .
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Misc discussion on performance
|
||||
description: >
|
||||
Anything about the performance.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Your current environment (if you think it is necessary)
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
value: |
|
||||
```text
|
||||
The output of `python collect_env.py`
|
||||
```
|
||||
validations:
|
||||
required: false
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for contributing 🎉!
|
21
.github/ISSUE_TEMPLATE/800-misc discussion.yml
vendored
Normal file
@ -0,0 +1,21 @@
|
||||
name: 🎲 Misc/random discussions that do not fit into the above categories.
|
||||
description: Submit a discussion as you like. Note that developers are heavily overloaded and we mainly rely on community users to answer these issues.
|
||||
title: "[Misc]: "
|
||||
labels: ["misc"]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Anything you want to discuss about vllm.
|
||||
description: >
|
||||
Anything you want to discuss about vllm.
|
||||
validations:
|
||||
required: true
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for contributing 🎉!
|
1
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@ -0,0 +1 @@
|
||||
blank_issues_enabled: false
|
64
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
@ -0,0 +1,64 @@
|
||||
FILL IN THE PR DESCRIPTION HERE
|
||||
|
||||
FIX #xxxx (*link existing issues this PR will resolve*)
|
||||
|
||||
**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**
|
||||
|
||||
---
|
||||
|
||||
<details>
|
||||
<!-- inside this <details> section, markdown rendering does not work, so we use raw html here. -->
|
||||
<summary><b> PR Checklist (Click to Expand) </b></summary>
|
||||
|
||||
<p>Thank you for your contribution to vLLM! Before submitting the pull request, please ensure the PR meets the following criteria. This helps vLLM maintain the code quality and improve the efficiency of the review process.</p>
|
||||
|
||||
<h3>PR Title and Classification</h3>
|
||||
<p>Only specific types of PRs will be reviewed. The PR title is prefixed appropriately to indicate the type of change. Please use one of the following:</p>
|
||||
<ul>
|
||||
<li><code>[Bugfix]</code> for bug fixes.</li>
|
||||
<li><code>[CI/Build]</code> for build or continuous integration improvements.</li>
|
||||
<li><code>[Doc]</code> for documentation fixes and improvements.</li>
|
||||
<li><code>[Model]</code> for adding a new model or improving an existing model. Model name should appear in the title.</li>
|
||||
<li><code>[Frontend]</code> For changes on the vLLM frontend (e.g., OpenAI API server, <code>LLM</code> class, etc.) </li>
|
||||
<li><code>[Kernel]</code> for changes affecting CUDA kernels or other compute kernels.</li>
|
||||
<li><code>[Core]</code> for changes in the core vLLM logic (e.g., <code>LLMEngine</code>, <code>AsyncLLMEngine</code>, <code>Scheduler</code>, etc.)</li>
|
||||
<li><code>[Hardware][Vendor]</code> for hardware-specific changes. Vendor name should appear in the prefix (e.g., <code>[Hardware][AMD]</code>).</li>
|
||||
<li><code>[Misc]</code> for PRs that do not fit the above categories. Please use this sparingly.</li>
|
||||
</ul>
|
||||
<p><strong>Note:</strong> If the PR spans more than one category, please include all relevant prefixes.</p>
|
||||
|
||||
<h3>Code Quality</h3>
|
||||
|
||||
<p>The PR need to meet the following code quality standards:</p>
|
||||
|
||||
<ul>
|
||||
<li>We adhere to <a href="https://google.github.io/styleguide/pyguide.html">Google Python style guide</a> and <a href="https://google.github.io/styleguide/cppguide.html">Google C++ style guide</a>.</li>
|
||||
<li>Pass all linter checks. Please use <a href="https://github.com/vllm-project/vllm/blob/main/format.sh"><code>format.sh</code></a> to format your code.</li>
|
||||
<li>The code need to be well-documented to ensure future contributors can easily understand the code.</li>
|
||||
<li>Include sufficient tests to ensure the project to stay correct and robust. This includes both unit tests and integration tests.</li>
|
||||
<li>Please add documentation to <code>docs/source/</code> if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.</li>
|
||||
</ul>
|
||||
|
||||
<h3>Notes for Large Changes</h3>
|
||||
<p>Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with <code>rfc-required</code> and might not go through the PR.</p>
|
||||
|
||||
<h3>What to Expect for the Reviews</h3>
|
||||
|
||||
<p>The goal of the vLLM team is to be a <i>transparent reviewing machine</i>. We would like to make the review process transparent and efficient and make sure no contributor feel confused or frustrated. However, the vLLM team is small, so we need to prioritize some PRs over others. Here is what you can expect from the review process: </p>
|
||||
|
||||
<ul>
|
||||
<li> After the PR is submitted, the PR will be assigned to a reviewer. Every reviewer will pick up the PRs based on their expertise and availability.</li>
|
||||
<li> After the PR is assigned, the reviewer will provide status update every 2-3 days. If the PR is not reviewed within 7 days, please feel free to ping the reviewer or the vLLM team.</li>
|
||||
<li> After the review, the reviewer will put an <code> action-required</code> label on the PR if there are changes required. The contributor should address the comments and ping the reviewer to re-review the PR.</li>
|
||||
<li> Please respond to all comments within a reasonable time frame. If a comment isn't clear or you disagree with a suggestion, feel free to ask for clarification or discuss the suggestion.
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
<h3>Thank You</h3>
|
||||
|
||||
<p> Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM. Your contributions make vLLM a great tool for everyone! </p>
|
||||
|
||||
|
||||
</details>
|
||||
|
||||
|
10
.github/workflows/ruff.yml
vendored
@ -25,7 +25,13 @@ jobs:
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install ruff==0.1.5
|
||||
pip install ruff==0.1.5 codespell==2.2.6 tomli==2.0.1 isort==5.13.2
|
||||
- name: Analysing the code with ruff
|
||||
run: |
|
||||
ruff vllm tests
|
||||
ruff .
|
||||
- name: Spelling check with codespell
|
||||
run: |
|
||||
codespell --toml pyproject.toml
|
||||
- name: Run isort
|
||||
run: |
|
||||
isort . --check-only
|
||||
|
3
.github/workflows/scripts/build.sh
vendored
@ -15,6 +15,7 @@ $python_executable -m pip install -r requirements.txt
|
||||
export MAX_JOBS=1
|
||||
# Make sure punica is built for the release (for LoRA)
|
||||
export VLLM_INSTALL_PUNICA_KERNELS=1
|
||||
|
||||
# Make sure release wheels are built for the following architectures
|
||||
export TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX"
|
||||
# Build
|
||||
$python_executable setup.py bdist_wheel --dist-dir=dist
|
||||
|
1
.yapfignore
Normal file
@ -0,0 +1 @@
|
||||
collect_env.py
|
302
CMakeLists.txt
Normal file
@ -0,0 +1,302 @@
|
||||
cmake_minimum_required(VERSION 3.21)
|
||||
|
||||
project(vllm_extensions LANGUAGES CXX)
|
||||
|
||||
option(VLLM_TARGET_DEVICE "Target device backend for vLLM" "cuda")
|
||||
|
||||
message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")
|
||||
message(STATUS "Target device: ${VLLM_TARGET_DEVICE}")
|
||||
|
||||
include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake)
|
||||
|
||||
#
|
||||
# Supported python versions. These versions will be searched in order, the
|
||||
# first match will be selected. These should be kept in sync with setup.py.
|
||||
#
|
||||
set(PYTHON_SUPPORTED_VERSIONS "3.8" "3.9" "3.10" "3.11")
|
||||
|
||||
# Supported NVIDIA architectures.
|
||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.5;8.0;8.6;8.9;9.0")
|
||||
|
||||
# Supported AMD GPU architectures.
|
||||
set(HIP_SUPPORTED_ARCHS "gfx908;gfx90a;gfx942;gfx1100")
|
||||
|
||||
#
|
||||
# Supported/expected torch versions for CUDA/ROCm.
|
||||
#
|
||||
# Currently, having an incorrect pytorch version results in a warning
|
||||
# rather than an error.
|
||||
#
|
||||
# Note: the CUDA torch version is derived from pyproject.toml and various
|
||||
# requirements.txt files and should be kept consistent. The ROCm torch
|
||||
# versions are derived from Dockerfile.rocm
|
||||
#
|
||||
set(TORCH_SUPPORTED_VERSION_CUDA "2.1.2")
|
||||
set(TORCH_SUPPORTED_VERSION_ROCM_5X "2.0.1")
|
||||
set(TORCH_SUPPORTED_VERSION_ROCM_6X "2.1.1")
|
||||
|
||||
#
|
||||
# Try to find python package with an executable that exactly matches
|
||||
# `VLLM_PYTHON_EXECUTABLE` and is one of the supported versions.
|
||||
#
|
||||
if (VLLM_PYTHON_EXECUTABLE)
|
||||
find_python_from_executable(${VLLM_PYTHON_EXECUTABLE} "${PYTHON_SUPPORTED_VERSIONS}")
|
||||
else()
|
||||
message(FATAL_ERROR
|
||||
"Please set VLLM_PYTHON_EXECUTABLE to the path of the desired python version"
|
||||
" before running cmake configure.")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Update cmake's `CMAKE_PREFIX_PATH` with torch location.
|
||||
#
|
||||
append_cmake_prefix_path("torch" "torch.utils.cmake_prefix_path")
|
||||
|
||||
# Ensure the 'nvcc' command is in the PATH
|
||||
find_program(NVCC_EXECUTABLE nvcc)
|
||||
if (CUDA_FOUND AND NOT NVCC_EXECUTABLE)
|
||||
message(FATAL_ERROR "nvcc not found")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Import torch cmake configuration.
|
||||
# Torch also imports CUDA (and partially HIP) languages with some customizations,
|
||||
# so there is no need to do this explicitly with check_language/enable_language,
|
||||
# etc.
|
||||
#
|
||||
find_package(Torch REQUIRED)
|
||||
|
||||
#
|
||||
# Normally `torch.utils.cpp_extension.CUDAExtension` would add
|
||||
# `libtorch_python.so` for linking against an extension. Torch's cmake
|
||||
# configuration does not include this library (presumably since the cmake
|
||||
# config is used for standalone C++ binaries that link against torch).
|
||||
# The `libtorch_python.so` library defines some of the glue code between
|
||||
# torch/python via pybind and is required by VLLM extensions for this
|
||||
# reason. So, add it by manually with `find_library` using torch's
|
||||
# installed library path.
|
||||
#
|
||||
find_library(torch_python_LIBRARY torch_python PATHS
|
||||
"${TORCH_INSTALL_PREFIX}/lib")
|
||||
|
||||
#
|
||||
# Forward the non-CUDA device extensions to external CMake scripts.
|
||||
#
|
||||
if (NOT VLLM_TARGET_DEVICE STREQUAL "cuda" AND
|
||||
NOT VLLM_TARGET_DEVICE STREQUAL "rocm")
|
||||
if (VLLM_TARGET_DEVICE STREQUAL "cpu")
|
||||
include(${CMAKE_CURRENT_LIST_DIR}/cmake/cpu_extension.cmake)
|
||||
else()
|
||||
message(FATAL_ERROR "Unsupported vLLM target device: ${VLLM_TARGET_DEVICE}")
|
||||
endif()
|
||||
return()
|
||||
endif()
|
||||
|
||||
#
|
||||
# Set up GPU language and check the torch version and warn if it isn't
|
||||
# what is expected.
|
||||
#
|
||||
if (NOT HIP_FOUND AND CUDA_FOUND)
|
||||
set(VLLM_GPU_LANG "CUDA")
|
||||
|
||||
if (NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_CUDA})
|
||||
message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_CUDA} "
|
||||
"expected for CUDA build, saw ${Torch_VERSION} instead.")
|
||||
endif()
|
||||
elseif(HIP_FOUND)
|
||||
set(VLLM_GPU_LANG "HIP")
|
||||
|
||||
# Importing torch recognizes and sets up some HIP/ROCm configuration but does
|
||||
# not let cmake recognize .hip files. In order to get cmake to understand the
|
||||
# .hip extension automatically, HIP must be enabled explicitly.
|
||||
enable_language(HIP)
|
||||
|
||||
# ROCm 5.x
|
||||
if (ROCM_VERSION_DEV_MAJOR EQUAL 5 AND
|
||||
NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM_5X})
|
||||
message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_ROCM_5X} "
|
||||
"expected for ROCMm 5.x build, saw ${Torch_VERSION} instead.")
|
||||
endif()
|
||||
|
||||
# ROCm 6.x
|
||||
if (ROCM_VERSION_DEV_MAJOR EQUAL 6 AND
|
||||
NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM_6X})
|
||||
message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_ROCM_6X} "
|
||||
"expected for ROCMm 6.x build, saw ${Torch_VERSION} instead.")
|
||||
endif()
|
||||
else()
|
||||
message(FATAL_ERROR "Can't find CUDA or HIP installation.")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Override the GPU architectures detected by cmake/torch and filter them by
|
||||
# the supported versions for the current language.
|
||||
# The final set of arches is stored in `VLLM_GPU_ARCHES`.
|
||||
#
|
||||
override_gpu_arches(VLLM_GPU_ARCHES
|
||||
${VLLM_GPU_LANG}
|
||||
"${${VLLM_GPU_LANG}_SUPPORTED_ARCHS}")
|
||||
|
||||
#
|
||||
# Query torch for additional GPU compilation flags for the given
|
||||
# `VLLM_GPU_LANG`.
|
||||
# The final set of arches is stored in `VLLM_GPU_FLAGS`.
|
||||
#
|
||||
get_torch_gpu_compiler_flags(VLLM_GPU_FLAGS ${VLLM_GPU_LANG})
|
||||
|
||||
#
|
||||
# Set nvcc parallelism.
|
||||
#
|
||||
if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Define extension targets
|
||||
#
|
||||
|
||||
#
|
||||
# _C extension
|
||||
#
|
||||
|
||||
set(VLLM_EXT_SRC
|
||||
"csrc/cache_kernels.cu"
|
||||
"csrc/attention/attention_kernels.cu"
|
||||
"csrc/pos_encoding_kernels.cu"
|
||||
"csrc/activation_kernels.cu"
|
||||
"csrc/layernorm_kernels.cu"
|
||||
"csrc/quantization/squeezellm/quant_cuda_kernel.cu"
|
||||
"csrc/quantization/gptq/q_gemm.cu"
|
||||
"csrc/cuda_utils_kernels.cu"
|
||||
"csrc/moe_align_block_size_kernels.cu"
|
||||
"csrc/pybind.cpp")
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
list(APPEND VLLM_EXT_SRC
|
||||
"csrc/quantization/awq/gemm_kernels.cu"
|
||||
"csrc/quantization/marlin/marlin_cuda_kernel.cu"
|
||||
"csrc/custom_all_reduce.cu")
|
||||
endif()
|
||||
|
||||
define_gpu_extension_target(
|
||||
_C
|
||||
DESTINATION vllm
|
||||
LANGUAGE ${VLLM_GPU_LANG}
|
||||
SOURCES ${VLLM_EXT_SRC}
|
||||
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
|
||||
ARCHITECTURES ${VLLM_GPU_ARCHES}
|
||||
WITH_SOABI)
|
||||
|
||||
#
|
||||
# _moe_C extension
|
||||
#
|
||||
|
||||
set(VLLM_MOE_EXT_SRC
|
||||
"csrc/moe/moe_ops.cpp"
|
||||
"csrc/moe/topk_softmax_kernels.cu")
|
||||
|
||||
define_gpu_extension_target(
|
||||
_moe_C
|
||||
DESTINATION vllm
|
||||
LANGUAGE ${VLLM_GPU_LANG}
|
||||
SOURCES ${VLLM_MOE_EXT_SRC}
|
||||
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
|
||||
ARCHITECTURES ${VLLM_GPU_ARCHES}
|
||||
WITH_SOABI)
|
||||
|
||||
#
|
||||
# _punica_C extension
|
||||
#
|
||||
|
||||
set(VLLM_PUNICA_EXT_SRC
|
||||
"csrc/punica/bgmv/bgmv_bf16_bf16_bf16.cu"
|
||||
"csrc/punica/bgmv/bgmv_bf16_bf16_fp16.cu"
|
||||
"csrc/punica/bgmv/bgmv_bf16_fp16_bf16.cu"
|
||||
"csrc/punica/bgmv/bgmv_bf16_fp16_fp16.cu"
|
||||
"csrc/punica/bgmv/bgmv_bf16_fp32_bf16.cu"
|
||||
"csrc/punica/bgmv/bgmv_bf16_fp32_fp16.cu"
|
||||
"csrc/punica/bgmv/bgmv_fp16_bf16_bf16.cu"
|
||||
"csrc/punica/bgmv/bgmv_fp16_bf16_fp16.cu"
|
||||
"csrc/punica/bgmv/bgmv_fp16_fp16_bf16.cu"
|
||||
"csrc/punica/bgmv/bgmv_fp16_fp16_fp16.cu"
|
||||
"csrc/punica/bgmv/bgmv_fp16_fp32_bf16.cu"
|
||||
"csrc/punica/bgmv/bgmv_fp16_fp32_fp16.cu"
|
||||
"csrc/punica/bgmv/bgmv_fp32_bf16_bf16.cu"
|
||||
"csrc/punica/bgmv/bgmv_fp32_bf16_fp16.cu"
|
||||
"csrc/punica/bgmv/bgmv_fp32_fp16_bf16.cu"
|
||||
"csrc/punica/bgmv/bgmv_fp32_fp16_fp16.cu"
|
||||
"csrc/punica/bgmv/bgmv_fp32_fp32_bf16.cu"
|
||||
"csrc/punica/bgmv/bgmv_fp32_fp32_fp16.cu"
|
||||
"csrc/punica/punica_ops.cc")
|
||||
|
||||
#
|
||||
# Copy GPU compilation flags+update for punica
|
||||
#
|
||||
set(VLLM_PUNICA_GPU_FLAGS ${VLLM_GPU_FLAGS})
|
||||
list(REMOVE_ITEM VLLM_PUNICA_GPU_FLAGS
|
||||
"-D__CUDA_NO_HALF_OPERATORS__"
|
||||
"-D__CUDA_NO_HALF_CONVERSIONS__"
|
||||
"-D__CUDA_NO_BFLOAT16_CONVERSIONS__"
|
||||
"-D__CUDA_NO_HALF2_OPERATORS__")
|
||||
|
||||
#
|
||||
# Filter out CUDA architectures < 8.0 for punica.
|
||||
#
|
||||
if (${VLLM_GPU_LANG} STREQUAL "CUDA")
|
||||
set(VLLM_PUNICA_GPU_ARCHES)
|
||||
foreach(ARCH ${VLLM_GPU_ARCHES})
|
||||
string_to_ver(CODE_VER ${ARCH})
|
||||
if (CODE_VER GREATER_EQUAL 8.0)
|
||||
list(APPEND VLLM_PUNICA_GPU_ARCHES ${ARCH})
|
||||
endif()
|
||||
endforeach()
|
||||
message(STATUS "Punica target arches: ${VLLM_PUNICA_GPU_ARCHES}")
|
||||
endif()
|
||||
|
||||
if (VLLM_PUNICA_GPU_ARCHES)
|
||||
define_gpu_extension_target(
|
||||
_punica_C
|
||||
DESTINATION vllm
|
||||
LANGUAGE ${VLLM_GPU_LANG}
|
||||
SOURCES ${VLLM_PUNICA_EXT_SRC}
|
||||
COMPILE_FLAGS ${VLLM_PUNICA_GPU_FLAGS}
|
||||
ARCHITECTURES ${VLLM_PUNICA_GPU_ARCHES}
|
||||
WITH_SOABI)
|
||||
else()
|
||||
message(WARNING "Unable to create _punica_C target because none of the "
|
||||
"requested architectures (${VLLM_GPU_ARCHES}) are supported, i.e. >= 8.0")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Add the `default` target which detects which extensions should be
|
||||
# built based on platform/architecture. This is the same logic that
|
||||
# setup.py uses to select which extensions should be built and should
|
||||
# be kept in sync.
|
||||
#
|
||||
# The `default` target makes direct use of cmake easier since knowledge
|
||||
# of which extensions are supported has been factored in, e.g.
|
||||
#
|
||||
# mkdir build && cd build
|
||||
# cmake -G Ninja -DVLLM_PYTHON_EXECUTABLE=`which python3` -DCMAKE_LIBRARY_OUTPUT_DIRECTORY=../vllm ..
|
||||
# cmake --build . --target default
|
||||
#
|
||||
add_custom_target(default)
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA" OR VLLM_GPU_LANG STREQUAL "HIP")
|
||||
message(STATUS "Enabling C extension.")
|
||||
add_dependencies(default _C)
|
||||
endif()
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
message(STATUS "Enabling moe extension.")
|
||||
add_dependencies(default _moe_C)
|
||||
|
||||
# Enable punica if -DVLLM_INSTALL_PUNICA_KERNELS=ON or
|
||||
# VLLM_INSTALL_PUNICA_KERNELS is set in the environment and
|
||||
# there are supported target arches.
|
||||
if (VLLM_PUNICA_GPU_ARCHES AND
|
||||
(ENV{VLLM_INSTALL_PUNICA_KERNELS} OR VLLM_INSTALL_PUNICA_KERNELS))
|
||||
message(STATUS "Enabling punica extension.")
|
||||
add_dependencies(default _punica_C)
|
||||
endif()
|
||||
endif()
|
@ -45,31 +45,9 @@ pytest tests/
|
||||
If you encounter a bug or have a feature request, please check our issues page first to see if someone else has already reported it.
|
||||
If not, please file a new issue, providing as much relevant information as possible.
|
||||
|
||||
### Coding Style Guide
|
||||
### Pull Requests & Code Reviews
|
||||
|
||||
In general, we adhere to [Google Python style guide](https://google.github.io/styleguide/pyguide.html) and [Google C++ style guide](https://google.github.io/styleguide/cppguide.html).
|
||||
|
||||
We include a formatting script [`format.sh`](./format.sh) to format the code.
|
||||
|
||||
### Pull Requests
|
||||
|
||||
When submitting a pull request:
|
||||
|
||||
1. Make sure your code has been rebased on top of the latest commit on the main branch.
|
||||
2. Ensure code is properly formatted by running [`format.sh`](./format.sh).
|
||||
3. Include a detailed description of the changes in the pull request.
|
||||
Explain why you made the changes you did.
|
||||
If your pull request fixes an open issue, please include a reference to it in the description.
|
||||
|
||||
### Code Reviews
|
||||
|
||||
All submissions, including submissions by project members, require a code review.
|
||||
To make the review process as smooth as possible, please:
|
||||
|
||||
1. Keep your changes as concise as possible.
|
||||
If your pull request involves multiple unrelated changes, consider splitting it into separate pull requests.
|
||||
2. Respond to all comments within a reasonable time frame.
|
||||
If a comment isn't clear or you disagree with a suggestion, feel free to ask for clarification or discuss the suggestion.
|
||||
Please check the PR checklist in the [PR template](.github/PULL_REQUEST_TEMPLATE.md) for detailed guide for contribution.
|
||||
|
||||
### Thank You
|
||||
|
||||
|
39
Dockerfile
@ -35,9 +35,14 @@ COPY requirements-build.txt requirements-build.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install -r requirements-build.txt
|
||||
|
||||
# install compiler cache to speed up compilation leveraging local or remote caching
|
||||
RUN apt-get update -y && apt-get install -y ccache
|
||||
|
||||
# copy input files
|
||||
COPY csrc csrc
|
||||
COPY setup.py setup.py
|
||||
COPY cmake cmake
|
||||
COPY CMakeLists.txt CMakeLists.txt
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY pyproject.toml pyproject.toml
|
||||
COPY vllm/__init__.py vllm/__init__.py
|
||||
@ -54,9 +59,27 @@ ENV NVCC_THREADS=$nvcc_threads
|
||||
# make sure punica kernels are built (for LoRA)
|
||||
ENV VLLM_INSTALL_PUNICA_KERNELS=1
|
||||
|
||||
RUN python3 setup.py build_ext --inplace
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
python3 setup.py build_ext --inplace
|
||||
#################### EXTENSION Build IMAGE ####################
|
||||
|
||||
#################### FLASH_ATTENTION Build IMAGE ####################
|
||||
FROM dev as flash-attn-builder
|
||||
# max jobs used for build
|
||||
ARG max_jobs=2
|
||||
ENV MAX_JOBS=${max_jobs}
|
||||
# flash attention version
|
||||
ARG flash_attn_version=v2.5.6
|
||||
ENV FLASH_ATTN_VERSION=${flash_attn_version}
|
||||
|
||||
WORKDIR /usr/src/flash-attention-v2
|
||||
|
||||
# Download the wheel or build it if a pre-compiled release doesn't exist
|
||||
RUN pip --verbose wheel flash-attn==${FLASH_ATTN_VERSION} \
|
||||
--no-build-isolation --no-deps --no-cache-dir
|
||||
|
||||
#################### FLASH_ATTENTION Build IMAGE ####################
|
||||
|
||||
#################### TEST IMAGE ####################
|
||||
# image to run unit testing suite
|
||||
@ -68,6 +91,9 @@ WORKDIR /vllm-workspace
|
||||
# ADD is used to preserve directory structure
|
||||
ADD . /vllm-workspace/
|
||||
COPY --from=build /workspace/vllm/*.so /vllm-workspace/vllm/
|
||||
# Install flash attention (from pre-built wheel)
|
||||
RUN --mount=type=bind,from=flash-attn-builder,src=/usr/src/flash-attention-v2,target=/usr/src/flash-attention-v2 \
|
||||
pip install /usr/src/flash-attention-v2/*.whl --no-cache-dir
|
||||
# ignore build dependencies installation because we are using pre-complied extensions
|
||||
RUN rm pyproject.toml
|
||||
RUN --mount=type=cache,target=/root/.cache/pip VLLM_USE_PRECOMPILED=1 pip install . --verbose
|
||||
@ -76,7 +102,7 @@ RUN --mount=type=cache,target=/root/.cache/pip VLLM_USE_PRECOMPILED=1 pip instal
|
||||
|
||||
#################### RUNTIME BASE IMAGE ####################
|
||||
# We used base cuda image because pytorch installs its own cuda libraries.
|
||||
# However cupy depends on cuda libraries so we had to switch to the runtime image
|
||||
# However pynccl depends on cuda libraries so we had to switch to the runtime image
|
||||
# In the future it would be nice to get a container with pytorch and cuda without duplicating cuda
|
||||
FROM nvidia/cuda:12.1.0-runtime-ubuntu22.04 AS vllm-base
|
||||
|
||||
@ -88,6 +114,11 @@ WORKDIR /workspace
|
||||
COPY requirements.txt requirements.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install -r requirements.txt
|
||||
|
||||
# Install flash attention (from pre-built wheel)
|
||||
RUN --mount=type=bind,from=flash-attn-builder,src=/usr/src/flash-attention-v2,target=/usr/src/flash-attention-v2 \
|
||||
pip install /usr/src/flash-attention-v2/*.whl --no-cache-dir
|
||||
|
||||
#################### RUNTIME BASE IMAGE ####################
|
||||
|
||||
|
||||
@ -96,10 +127,12 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
FROM vllm-base AS vllm-openai
|
||||
# install additional dependencies for openai api server
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install accelerate
|
||||
pip install accelerate hf_transfer modelscope
|
||||
|
||||
COPY --from=build /workspace/vllm/*.so /workspace/vllm/
|
||||
COPY vllm vllm
|
||||
|
||||
ENV VLLM_USAGE_SOURCE production-docker-image
|
||||
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
#################### OPENAI API SERVER ####################
|
||||
|
20
Dockerfile.cpu
Normal file
@ -0,0 +1,20 @@
|
||||
# This vLLM Dockerfile is used to construct image that can build and run vLLM on x86 CPU platform.
|
||||
|
||||
FROM ubuntu:22.04
|
||||
|
||||
RUN apt-get update -y \
|
||||
&& apt-get install -y git wget vim numactl gcc-12 g++-12 python3 python3-pip \
|
||||
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
|
||||
|
||||
RUN pip install --upgrade pip \
|
||||
&& pip install wheel packaging ninja setuptools>=49.4.0 numpy
|
||||
|
||||
COPY ./ /workspace/vllm
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
RUN pip install -v -r requirements-cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
RUN VLLM_TARGET_DEVICE=cpu python3 setup.py install
|
||||
|
||||
CMD ["/bin/bash"]
|
@ -70,16 +70,16 @@ RUN if [ "$BUILD_FA" = "1" ]; then \
|
||||
&& cd ..; \
|
||||
fi
|
||||
|
||||
COPY ./ /app/vllm
|
||||
|
||||
RUN python3 -m pip install --upgrade pip
|
||||
RUN python3 -m pip install xformers==0.0.23 --no-deps
|
||||
|
||||
# Error related to odd state for numpy 1.20.3 where there is no METADATA etc, but an extra LICENSES_bundled.txt.
|
||||
# Manually removed it so that later steps of numpy upgrade can continue
|
||||
RUN if [ "$BASE_IMAGE" = "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" ]; then \
|
||||
rm -rf /opt/conda/envs/py_3.9/lib/python3.9/site-packages/numpy-1.20.3.dist-info/; fi
|
||||
|
||||
COPY ./ /app/vllm
|
||||
|
||||
RUN python3 -m pip install --upgrade pip
|
||||
RUN python3 -m pip install xformers==0.0.23 --no-deps
|
||||
|
||||
RUN cd /app \
|
||||
&& cd vllm \
|
||||
&& pip install -U -r requirements-rocm.txt \
|
||||
@ -90,6 +90,6 @@ RUN cd /app \
|
||||
&& cd ..
|
||||
|
||||
RUN python3 -m pip install --upgrade pip
|
||||
RUN python3 -m pip install --no-cache-dir ray[all]
|
||||
RUN python3 -m pip install --no-cache-dir ray[all]==2.9.3
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
@ -1,4 +1,6 @@
|
||||
include LICENSE
|
||||
include requirements.txt
|
||||
include CMakeLists.txt
|
||||
|
||||
recursive-include cmake *
|
||||
recursive-include csrc *
|
||||
|
16
README.md
@ -16,6 +16,15 @@ Easy, fast, and cheap LLM serving for everyone
|
||||
|
||||
---
|
||||
|
||||
**The Third vLLM Bay Area Meetup (April 2nd 6pm-8:30pm PT)**
|
||||
|
||||
We are thrilled to announce our third vLLM Meetup!
|
||||
The vLLM team will share recent updates and roadmap.
|
||||
We will also have vLLM collaborators from Roblox coming up to the stage to discuss their experience in deploying LLMs with vLLM.
|
||||
Please register [here](https://robloxandvllmmeetup2024.splashthat.com/) and join us!
|
||||
|
||||
---
|
||||
|
||||
*Latest News* 🔥
|
||||
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
|
||||
- [2024/01] Added ROCm 6.0 support to vLLM.
|
||||
@ -58,6 +67,8 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
|
||||
- Baichuan & Baichuan2 (`baichuan-inc/Baichuan2-13B-Chat`, `baichuan-inc/Baichuan-7B`, etc.)
|
||||
- BLOOM (`bigscience/bloom`, `bigscience/bloomz`, etc.)
|
||||
- ChatGLM (`THUDM/chatglm2-6b`, `THUDM/chatglm3-6b`, etc.)
|
||||
- Command-R (`CohereForAI/c4ai-command-r-v01`, etc.)
|
||||
- DBRX (`databricks/dbrx-base`, `databricks/dbrx-instruct` etc.)
|
||||
- DeciLM (`Deci/DeciLM-7B`, `Deci/DeciLM-7B-instruct`, etc.)
|
||||
- Falcon (`tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc.)
|
||||
- Gemma (`google/gemma-2b`, `google/gemma-7b`, etc.)
|
||||
@ -67,16 +78,21 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
|
||||
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
|
||||
- InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.)
|
||||
- InternLM2 (`internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc.)
|
||||
- Jais (`core42/jais-13b`, `core42/jais-13b-chat`, `core42/jais-30b-v3`, `core42/jais-30b-chat-v3`, etc.)
|
||||
- LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
|
||||
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
|
||||
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, etc.)
|
||||
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
|
||||
- OLMo (`allenai/OLMo-1B`, `allenai/OLMo-7B`, etc.)
|
||||
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
|
||||
- Orion (`OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc.)
|
||||
- Phi (`microsoft/phi-1_5`, `microsoft/phi-2`, etc.)
|
||||
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)
|
||||
- Qwen2 (`Qwen/Qwen2-7B-beta`, `Qwen/Qwen-7B-Chat-beta`, etc.)
|
||||
- Qwen2MoE (`Qwen/Qwen1.5-MoE-A2.7B`, `Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc.)
|
||||
- StableLM(`stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc.)
|
||||
- Starcoder2(`bigcode/starcoder2-3b`, `bigcode/starcoder2-7b`, `bigcode/starcoder2-15b`, etc.)
|
||||
- Xverse (`xverse/XVERSE-7B-Chat`, `xverse/XVERSE-13B-Chat`, `xverse/XVERSE-65B-Chat`, etc.)
|
||||
- Yi (`01-ai/Yi-6B`, `01-ai/Yi-34B`, etc.)
|
||||
|
||||
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
|
||||
|
@ -1,8 +1,10 @@
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
import traceback
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Optional
|
||||
|
||||
import aiohttp
|
||||
from tqdm.asyncio import tqdm
|
||||
@ -26,8 +28,11 @@ class RequestFuncOutput:
|
||||
generated_text: str = ""
|
||||
success: bool = False
|
||||
latency: float = 0
|
||||
ttft: float = 0
|
||||
ttft: float = 0 # Time to first token
|
||||
itl: List[float] = field(
|
||||
default_factory=list) # List of inter-token latencies
|
||||
prompt_len: int = 0
|
||||
error: str = ""
|
||||
|
||||
|
||||
async def async_request_tgi(
|
||||
@ -55,71 +60,38 @@ async def async_request_tgi(
|
||||
|
||||
ttft = 0
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url, json=payload) as response:
|
||||
if response.status == 200:
|
||||
async for data in response.content.iter_any():
|
||||
async for chunk in response.content:
|
||||
chunk = chunk.strip()
|
||||
if not chunk:
|
||||
continue
|
||||
|
||||
chunk = remove_prefix(chunk.decode("utf-8"), "data:")
|
||||
|
||||
data = json.loads(chunk)
|
||||
timestamp = time.perf_counter()
|
||||
# First token
|
||||
if ttft == 0:
|
||||
ttft = time.perf_counter() - st
|
||||
output.ttft = ttft
|
||||
output.latency = time.perf_counter() - st
|
||||
|
||||
body = data.decode("utf-8").lstrip("data:")
|
||||
output.generated_text = json.loads(body)["generated_text"]
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp -
|
||||
most_recent_timestamp)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
output.latency = most_recent_timestamp - st
|
||||
output.success = True
|
||||
else:
|
||||
output.success = False
|
||||
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
|
||||
output.success = False
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
return output
|
||||
|
||||
|
||||
async def async_request_vllm(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith("generate")
|
||||
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
payload = {
|
||||
"prompt": request_func_input.prompt,
|
||||
"n": 1,
|
||||
"best_of": request_func_input.best_of,
|
||||
"use_beam_search": request_func_input.use_beam_search,
|
||||
"temperature": 0.0 if request_func_input.use_beam_search else 1.0,
|
||||
"top_p": 1.0,
|
||||
"max_tokens": request_func_input.output_len,
|
||||
"ignore_eos": True,
|
||||
"stream": True,
|
||||
}
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
|
||||
ttft = 0
|
||||
st = time.perf_counter()
|
||||
try:
|
||||
async with session.post(url=api_url, json=payload) as response:
|
||||
if response.status == 200:
|
||||
async for data in response.content.iter_any():
|
||||
if ttft == 0:
|
||||
ttft = time.perf_counter() - st
|
||||
output.ttft = ttft
|
||||
output.latency = time.perf_counter() - st
|
||||
|
||||
# When streaming, '\0' is appended to the end of the response.
|
||||
body = data.decode("utf-8").strip("\0")
|
||||
output.generated_text = json.loads(
|
||||
body)["text"][0][len(request_func_input.prompt):]
|
||||
output.success = True
|
||||
|
||||
else:
|
||||
output.success = False
|
||||
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
|
||||
output.generated_text = data["generated_text"]
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
@ -146,26 +118,45 @@ async def async_request_trt_llm(
|
||||
}
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
ttft = 0
|
||||
|
||||
ttft = 0
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url, json=payload) as resp:
|
||||
if resp.status == 200:
|
||||
async for data in resp.content.iter_any():
|
||||
async with session.post(url=api_url, json=payload) as response:
|
||||
if response.status == 200:
|
||||
async for chunk in response.content:
|
||||
chunk = chunk.strip()
|
||||
if not chunk:
|
||||
continue
|
||||
|
||||
chunk = remove_prefix(chunk.decode("utf-8"), "data:")
|
||||
|
||||
data = json.loads(chunk)
|
||||
timestamp = time.perf_counter()
|
||||
# First token
|
||||
if ttft == 0:
|
||||
ttft = time.perf_counter() - st
|
||||
output.ttft = ttft
|
||||
output.latency = time.perf_counter() - st
|
||||
|
||||
body = data.decode("utf-8").lstrip("data:")
|
||||
output.generated_text = json.loads(body)["text_output"]
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp -
|
||||
most_recent_timestamp)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
output.latency = most_recent_timestamp - st
|
||||
output.generated_text = json.loads(data)["text_output"]
|
||||
output.success = True
|
||||
|
||||
else:
|
||||
output.error = response.reason
|
||||
output.success = False
|
||||
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
@ -181,34 +172,35 @@ async def async_request_deepspeed_mii(
|
||||
assert not request_func_input.use_beam_search
|
||||
|
||||
payload = {
|
||||
"prompts": request_func_input.prompt,
|
||||
"max_new_tokens": request_func_input.output_len,
|
||||
"ignore_eos": True,
|
||||
"do_sample": True,
|
||||
"temperature":
|
||||
0.01, # deepspeed-mii does not accept 0.0 temperature.
|
||||
"prompt": request_func_input.prompt,
|
||||
"max_tokens": request_func_input.output_len,
|
||||
"temperature": 0.01, # deepspeed-mii does not accept 0.0 temp.
|
||||
"top_p": 1.0,
|
||||
}
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
|
||||
# DeepSpeed-MII doesn't support streaming as of Jan 28 2024, will use 0 as placeholder.
|
||||
# https://github.com/microsoft/DeepSpeed-MII/pull/311
|
||||
# NOTE: DeepSpeed-MII doesn't support streaming as of Jan 28 2024,
|
||||
# will use 0 as placeholder.
|
||||
# See https://github.com/microsoft/DeepSpeed-MII/pull/311
|
||||
output.ttft = 0
|
||||
|
||||
st = time.perf_counter()
|
||||
try:
|
||||
async with session.post(url=request_func_input.api_url,
|
||||
json=payload) as resp:
|
||||
if resp.status == 200:
|
||||
parsed_resp = await resp.json()
|
||||
json=payload) as response:
|
||||
if response.status == 200:
|
||||
parsed_resp = await response.json()
|
||||
output.latency = time.perf_counter() - st
|
||||
output.generated_text = parsed_resp[0]["generated_text"]
|
||||
output.generated_text = parsed_resp["text"][0]
|
||||
output.success = True
|
||||
else:
|
||||
output.error = response.reason
|
||||
output.success = False
|
||||
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
@ -220,7 +212,9 @@ async def async_request_openai_completions(
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith("v1/completions")
|
||||
assert api_url.endswith(
|
||||
"v1/completions"
|
||||
), "OpenAI Completions API URL must end with 'v1/completions'."
|
||||
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
assert not request_func_input.use_beam_search
|
||||
@ -242,43 +236,150 @@ async def async_request_openai_completions(
|
||||
generated_text = ""
|
||||
ttft = 0
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url, json=payload,
|
||||
headers=headers) as response:
|
||||
if response.status == 200:
|
||||
async for chunk in response.content:
|
||||
if ttft == 0:
|
||||
ttft = time.perf_counter() - st
|
||||
output.ttft = ttft
|
||||
|
||||
chunk = chunk.strip()
|
||||
if not chunk:
|
||||
continue
|
||||
|
||||
chunk = chunk.decode("utf-8").lstrip("data: ")
|
||||
chunk = remove_prefix(chunk.decode("utf-8"), "data: ")
|
||||
if chunk == "[DONE]":
|
||||
latency = time.perf_counter() - st
|
||||
else:
|
||||
body = json.loads(chunk)
|
||||
generated_text += body["choices"][0]["text"]
|
||||
data = json.loads(chunk)
|
||||
|
||||
if data["choices"][0]["text"]:
|
||||
timestamp = time.perf_counter()
|
||||
# First token
|
||||
if ttft == 0:
|
||||
ttft = time.perf_counter() - st
|
||||
output.ttft = ttft
|
||||
|
||||
# Decoding phase
|
||||
# NOTE: Some completion API might have a last
|
||||
# usage summary response without a token so we
|
||||
# do not want to include as inter-token-latency
|
||||
elif data.get("usage", None) is None:
|
||||
output.itl.append(timestamp -
|
||||
most_recent_timestamp)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
generated_text += data["choices"][0]["text"]
|
||||
|
||||
output.generated_text = generated_text
|
||||
output.success = True
|
||||
output.latency = latency
|
||||
else:
|
||||
output.success = False
|
||||
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
return output
|
||||
|
||||
|
||||
async def async_request_openai_chat_completions(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(
|
||||
"v1/chat/completions"
|
||||
), "OpenAI Chat Completions API URL must end with 'v1/chat/completions'."
|
||||
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
assert not request_func_input.use_beam_search
|
||||
payload = {
|
||||
"model": request_func_input.model,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": request_func_input.prompt,
|
||||
},
|
||||
],
|
||||
"temperature": 0.0,
|
||||
"max_tokens": request_func_input.output_len,
|
||||
"stream": True,
|
||||
}
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
||||
}
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
|
||||
generated_text = ""
|
||||
ttft = 0
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url, json=payload,
|
||||
headers=headers) as response:
|
||||
if response.status == 200:
|
||||
async for chunk in response.content:
|
||||
chunk = chunk.strip()
|
||||
if not chunk:
|
||||
continue
|
||||
|
||||
chunk = remove_prefix(chunk.decode("utf-8"), "data: ")
|
||||
if chunk == "[DONE]":
|
||||
latency = time.perf_counter() - st
|
||||
else:
|
||||
timestamp = time.perf_counter()
|
||||
data = json.loads(chunk)
|
||||
|
||||
delta = data["choices"][0]["delta"]
|
||||
if delta.get("content", None):
|
||||
# First token
|
||||
if ttft == 0:
|
||||
ttft = time.perf_counter() - st
|
||||
output.ttft = ttft
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp -
|
||||
most_recent_timestamp)
|
||||
|
||||
generated_text += delta["content"]
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
output.generated_text = generated_text
|
||||
output.success = True
|
||||
output.latency = latency
|
||||
else:
|
||||
output.error = response.reason
|
||||
output.success = False
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
return output
|
||||
|
||||
|
||||
# Since vllm must support Python 3.8, we can't use str.removeprefix(prefix)
|
||||
# introduced in Python 3.9
|
||||
def remove_prefix(text: str, prefix: str) -> str:
|
||||
if text.startswith(prefix):
|
||||
return text[len(prefix):]
|
||||
return text
|
||||
|
||||
|
||||
ASYNC_REQUEST_FUNCS = {
|
||||
"tgi": async_request_tgi,
|
||||
"vllm": async_request_vllm,
|
||||
"vllm": async_request_openai_completions,
|
||||
"lmdeploy": async_request_openai_completions,
|
||||
"deepspeed-mii": async_request_deepspeed_mii,
|
||||
"openai": async_request_openai_completions,
|
||||
"openai-chat": async_request_openai_chat_completions,
|
||||
"tensorrt-llm": async_request_trt_llm,
|
||||
}
|
||||
|
@ -16,17 +16,19 @@ def main(args: argparse.Namespace):
|
||||
|
||||
# NOTE(woosuk): If the request cannot be processed in a single batch,
|
||||
# the engine will automatically process the request in multiple batches.
|
||||
llm = LLM(
|
||||
model=args.model,
|
||||
tokenizer=args.tokenizer,
|
||||
quantization=args.quantization,
|
||||
tensor_parallel_size=args.tensor_parallel_size,
|
||||
trust_remote_code=args.trust_remote_code,
|
||||
dtype=args.dtype,
|
||||
enforce_eager=args.enforce_eager,
|
||||
kv_cache_dtype=args.kv_cache_dtype,
|
||||
device=args.device,
|
||||
)
|
||||
llm = LLM(model=args.model,
|
||||
tokenizer=args.tokenizer,
|
||||
quantization=args.quantization,
|
||||
tensor_parallel_size=args.tensor_parallel_size,
|
||||
trust_remote_code=args.trust_remote_code,
|
||||
dtype=args.dtype,
|
||||
enforce_eager=args.enforce_eager,
|
||||
kv_cache_dtype=args.kv_cache_dtype,
|
||||
device=args.device,
|
||||
ray_workers_use_nsight=args.ray_workers_use_nsight,
|
||||
enable_chunked_prefill=args.enable_chunked_prefill,
|
||||
download_dir=args.download_dir,
|
||||
block_size=args.block_size)
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
n=args.n,
|
||||
@ -145,5 +147,25 @@ if __name__ == '__main__':
|
||||
default="cuda",
|
||||
choices=["cuda"],
|
||||
help='device type for vLLM execution, supporting CUDA only currently.')
|
||||
parser.add_argument('--block-size',
|
||||
type=int,
|
||||
default=16,
|
||||
help='block size of key/value cache')
|
||||
parser.add_argument(
|
||||
'--enable-chunked-prefill',
|
||||
type=bool,
|
||||
default=False,
|
||||
help='If True, the prefill requests can be chunked based on the '
|
||||
'max_num_batched_tokens')
|
||||
parser.add_argument(
|
||||
"--ray-workers-use-nsight",
|
||||
action='store_true',
|
||||
help="If specified, use nsight to profile ray workers",
|
||||
)
|
||||
parser.add_argument('--download-dir',
|
||||
type=str,
|
||||
default=None,
|
||||
help='directory to download and load the weights, '
|
||||
'default to the default cache dir of huggingface')
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
52
benchmarks/benchmark_prefix_caching.py
Normal file
@ -0,0 +1,52 @@
|
||||
import argparse
|
||||
import time
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
PROMPT = "You are a helpful assistant in recognizes the content of tables in markdown format. Here is a table as fellows. You need to answer my question about the table.\n# Table\n|Opening|Opening|Sl. No.|Film|Cast|Director|Music Director|Notes|\n|----|----|----|----|----|----|----|----|\n|J A N|9|1|Agni Pushpam|Jayabharathi, Kamalahasan|Jeassy|M. K. Arjunan||\n|J A N|16|2|Priyamvada|Mohan Sharma, Lakshmi, KPAC Lalitha|K. S. Sethumadhavan|V. Dakshinamoorthy||\n|J A N|23|3|Yakshagaanam|Madhu, Sheela|Sheela|M. S. Viswanathan||\n|J A N|30|4|Paalkkadal|Sheela, Sharada|T. K. Prasad|A. T. Ummer||\n|F E B|5|5|Amma|Madhu, Srividya|M. Krishnan Nair|M. K. Arjunan||\n|F E B|13|6|Appooppan|Thikkurissi Sukumaran Nair, Kamal Haasan|P. Bhaskaran|M. S. Baburaj||\n|F E B|20|7|Srishti|Chowalloor Krishnankutty, Ravi Alummoodu|K. T. Muhammad|M. S. Baburaj||\n|F E B|20|8|Vanadevatha|Prem Nazir, Madhubala|Yusufali Kechery|G. Devarajan||\n|F E B|27|9|Samasya|Madhu, Kamalahaasan|K. Thankappan|Shyam||\n|F E B|27|10|Yudhabhoomi|K. P. Ummer, Vidhubala|Crossbelt Mani|R. K. Shekhar||\n|M A R|5|11|Seemantha Puthran|Prem Nazir, Jayabharathi|A. B. Raj|M. K. Arjunan||\n|M A R|12|12|Swapnadanam|Rani Chandra, Dr. Mohandas|K. G. George|Bhaskar Chandavarkar||\n|M A R|19|13|Thulavarsham|Prem Nazir, sreedevi, Sudheer|N. Sankaran Nair|V. Dakshinamoorthy||\n|M A R|20|14|Aruthu|Kaviyoor Ponnamma, Kamalahasan|Ravi|G. Devarajan||\n|M A R|26|15|Swimming Pool|Kamal Haasan, M. G. Soman|J. Sasikumar|M. K. Arjunan||\n\n# Question\nWhat' s the content in the (1,1) cells\n" # noqa: E501
|
||||
|
||||
|
||||
def test_prefix(llm=None, sampling_params=None, prompts=None):
|
||||
start_time = time.time()
|
||||
|
||||
llm.generate(prompts, sampling_params=sampling_params)
|
||||
|
||||
end_time = time.time()
|
||||
print(f"cost time {end_time - start_time}")
|
||||
|
||||
|
||||
def main(args):
|
||||
llm = LLM(model="baichuan-inc/Baichuan2-13B-Chat",
|
||||
tokenizer_mode='auto',
|
||||
trust_remote_code=True,
|
||||
enforce_eager=True,
|
||||
enable_prefix_caching=args.enable_prefix_caching)
|
||||
|
||||
num_prompts = 100
|
||||
prompts = [PROMPT] * num_prompts
|
||||
sampling_params = SamplingParams(temperature=0, max_tokens=100)
|
||||
|
||||
print("------warm up------")
|
||||
test_prefix(
|
||||
llm=llm,
|
||||
prompts=prompts[:1],
|
||||
sampling_params=sampling_params,
|
||||
)
|
||||
|
||||
print("------start generating------")
|
||||
test_prefix(
|
||||
llm=llm,
|
||||
prompts=prompts,
|
||||
sampling_params=sampling_params,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Benchmark the performance with or without automatic '
|
||||
'prefix caching.')
|
||||
parser.add_argument('--enable-prefix-caching',
|
||||
action='store_true',
|
||||
help='enable prefix caching')
|
||||
args = parser.parse_args()
|
||||
main(args)
|
@ -1,39 +1,41 @@
|
||||
"""Benchmark online serving throughput.
|
||||
|
||||
On the server side, run one of the following commands:
|
||||
(vLLM backend)
|
||||
python -m vllm.entrypoints.api_server \
|
||||
vLLM OpenAI API server
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model <your_model> --swap-space 16 \
|
||||
--disable-log-requests
|
||||
|
||||
(TGI backend)
|
||||
./launch_hf_server.sh <your_model>
|
||||
./launch_tgi_server.sh <your_model> <max_batch_total_tokens>
|
||||
|
||||
On the client side, run:
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend <backend> \
|
||||
--tokenizer <your_model> --dataset <target_dataset> \
|
||||
--request-rate <request_rate>
|
||||
--model <your_model> \
|
||||
--dataset-name sharegpt \
|
||||
--dataset-path <path to dataset> \
|
||||
--request-rate <request_rate> \ # By default <request_rate> is inf
|
||||
--num-prompts <num_prompts> # By default <num_prompts> is 1000
|
||||
"""
|
||||
import argparse
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from typing import AsyncGenerator, List, Tuple
|
||||
|
||||
import numpy as np
|
||||
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
|
||||
RequestFuncOutput)
|
||||
from tqdm.asyncio import tqdm
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
|
||||
from backend_request_func import (
|
||||
ASYNC_REQUEST_FUNCS,
|
||||
RequestFuncInput,
|
||||
RequestFuncOutput,
|
||||
)
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -52,7 +54,7 @@ class BenchmarkMetrics:
|
||||
p99_tpot_ms: float
|
||||
|
||||
|
||||
def sample_requests(
|
||||
def sample_sharegpt_requests(
|
||||
dataset_path: str,
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
@ -100,6 +102,73 @@ def sample_requests(
|
||||
return sampled_requests
|
||||
|
||||
|
||||
def sample_sonnet_requests(
|
||||
dataset_path: str,
|
||||
num_requests: int,
|
||||
input_len: int,
|
||||
output_len: int,
|
||||
prefix_len: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
) -> List[Tuple[str, str, int, int]]:
|
||||
assert input_len > prefix_len, "input_len must be greater than prefix_len."
|
||||
|
||||
# Load the dataset.
|
||||
with open(dataset_path) as f:
|
||||
poem_lines = f.readlines()
|
||||
|
||||
# Tokenize the poem lines.
|
||||
poem_token_ids = tokenizer(poem_lines).input_ids
|
||||
average_poem_len = sum(
|
||||
len(token_ids) for token_ids in poem_token_ids) / len(poem_token_ids)
|
||||
|
||||
# Base prefix for all requests.
|
||||
base_prompt = "Pick as many lines as you can from these poem lines:\n"
|
||||
base_message = [{
|
||||
"role": "user",
|
||||
"content": base_prompt,
|
||||
}]
|
||||
base_prompt_formatted = tokenizer.apply_chat_template(
|
||||
base_message, add_generation_prompt=True, tokenize=False)
|
||||
base_prompt_offset = len(tokenizer(base_prompt_formatted).input_ids)
|
||||
|
||||
assert (input_len > base_prompt_offset
|
||||
), f"Please set 'args.input-len' higher than {base_prompt_offset}."
|
||||
num_input_lines = round(
|
||||
(input_len - base_prompt_offset) / average_poem_len)
|
||||
|
||||
# First approximately `prefix_len` number of tokens in the
|
||||
# prompt are fixed poem lines.
|
||||
assert (
|
||||
prefix_len > base_prompt_offset
|
||||
), f"Please set 'args.prefix-len' higher than {base_prompt_offset}."
|
||||
|
||||
num_prefix_lines = round(
|
||||
(prefix_len - base_prompt_offset) / average_poem_len)
|
||||
prefix_lines = poem_lines[:num_prefix_lines]
|
||||
|
||||
# Sample the rest of lines per request.
|
||||
sampled_requests: List[Tuple[str, int, int]] = []
|
||||
for _ in range(num_requests):
|
||||
sampled_lines = "".join(
|
||||
prefix_lines +
|
||||
random.sample(poem_lines, num_input_lines - num_prefix_lines))
|
||||
|
||||
prompt = f"{base_prompt}{sampled_lines}"
|
||||
message = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": prompt,
|
||||
},
|
||||
]
|
||||
prompt_formatted = tokenizer.apply_chat_template(
|
||||
message, add_generation_prompt=True, tokenize=False)
|
||||
prompt_len = len(tokenizer(prompt_formatted).input_ids)
|
||||
sampled_requests.append(
|
||||
(prompt, prompt_formatted, prompt_len, output_len))
|
||||
|
||||
return sampled_requests
|
||||
|
||||
|
||||
async def get_request(
|
||||
input_requests: List[Tuple[str, int, int]],
|
||||
request_rate: float,
|
||||
@ -122,37 +191,42 @@ def calculate_metrics(
|
||||
outputs: List[RequestFuncOutput],
|
||||
dur_s: float,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
) -> BenchmarkMetrics:
|
||||
total_output = 0
|
||||
) -> Tuple[BenchmarkMetrics, List[int]]:
|
||||
actual_output_lens = []
|
||||
total_input = 0
|
||||
completed = 0
|
||||
per_token_latencies = []
|
||||
tpots = []
|
||||
ttfts = []
|
||||
for i in range(len(outputs)):
|
||||
if outputs[i].success:
|
||||
output_len = len(tokenizer.encode(outputs[i].generated_text))
|
||||
total_output += output_len
|
||||
output_len = len(tokenizer(outputs[i].generated_text).input_ids)
|
||||
actual_output_lens.append(output_len)
|
||||
total_input += input_requests[i][1]
|
||||
per_token_latencies.append(outputs[i].latency / output_len)
|
||||
if output_len > 1:
|
||||
tpots.append(
|
||||
(outputs[i].latency - outputs[i].ttft) / (output_len - 1))
|
||||
ttfts.append(outputs[i].ttft)
|
||||
completed += 1
|
||||
else:
|
||||
actual_output_lens.append(0)
|
||||
|
||||
metrics = BenchmarkMetrics(
|
||||
completed=completed,
|
||||
total_input=total_input,
|
||||
total_output=total_output,
|
||||
total_output=sum(actual_output_lens),
|
||||
request_throughput=completed / dur_s,
|
||||
input_throughput=total_input / dur_s,
|
||||
output_throughput=total_output / dur_s,
|
||||
mean_ttft_ms=np.mean(ttfts) * 1000,
|
||||
median_ttft_ms=np.median(ttfts) * 1000,
|
||||
p99_ttft_ms=np.percentile(ttfts, 99) * 1000,
|
||||
mean_tpot_ms=np.mean(per_token_latencies) * 1000,
|
||||
median_tpot_ms=np.median(per_token_latencies) * 1000,
|
||||
p99_tpot_ms=np.percentile(per_token_latencies, 99) * 1000,
|
||||
output_throughput=sum(actual_output_lens) / dur_s,
|
||||
mean_ttft_ms=np.mean(ttfts or 0) *
|
||||
1000, # ttfts is empty if streaming is not supported by backend
|
||||
median_ttft_ms=np.median(ttfts or 0) * 1000,
|
||||
p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
|
||||
mean_tpot_ms=np.mean(tpots) * 1000,
|
||||
median_tpot_ms=np.median(tpots) * 1000,
|
||||
p99_tpot_ms=np.percentile(tpots, 99) * 1000,
|
||||
)
|
||||
|
||||
return metrics
|
||||
return metrics, actual_output_lens
|
||||
|
||||
|
||||
async def benchmark(
|
||||
@ -171,10 +245,10 @@ async def benchmark(
|
||||
else:
|
||||
raise ValueError(f"Unknown backend: {backend}")
|
||||
|
||||
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
|
||||
|
||||
print(f"Traffic request rate: {request_rate}")
|
||||
|
||||
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
|
||||
|
||||
benchmark_start_time = time.perf_counter()
|
||||
tasks = []
|
||||
async for request in get_request(input_requests, request_rate):
|
||||
@ -192,40 +266,53 @@ async def benchmark(
|
||||
asyncio.create_task(
|
||||
request_func(request_func_input=request_func_input,
|
||||
pbar=pbar)))
|
||||
outputs = await asyncio.gather(*tasks)
|
||||
outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)
|
||||
|
||||
if not disable_tqdm:
|
||||
pbar.close()
|
||||
|
||||
benchmark_duration = time.perf_counter() - benchmark_start_time
|
||||
|
||||
metrics = calculate_metrics(
|
||||
metrics, actual_output_lens = calculate_metrics(
|
||||
input_requests=input_requests,
|
||||
outputs=outputs,
|
||||
dur_s=benchmark_duration,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
print(f"Successful requests: {metrics.completed}")
|
||||
print(f"Benchmark duration: {benchmark_duration:2f} s")
|
||||
print(f"Total input tokens: {metrics.total_input}")
|
||||
print(f"Total generated tokens: {metrics.total_output}")
|
||||
print(f"Request throughput: {metrics.request_throughput:.2f} requests/s")
|
||||
print(f"Input token throughput: {metrics.input_throughput:.2f} tokens/s")
|
||||
print(f"Output token throughput: {metrics.output_throughput:.2f} tokens/s")
|
||||
print(f"Mean TTFT: {metrics.mean_ttft_ms:.2f} ms")
|
||||
print(f"Median TTFT: {metrics.median_ttft_ms:.2f} ms")
|
||||
print(f"P99 TTFT: {metrics.p99_ttft_ms:.2f} ms")
|
||||
print(f"Mean TPOT: {metrics.mean_tpot_ms:.2f} ms")
|
||||
print(f"Median TPOT: {metrics.median_tpot_ms:.2f} ms")
|
||||
print(f"P99 TPOT: {metrics.p99_tpot_ms:.2f} ms")
|
||||
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
|
||||
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
|
||||
print("{:<40} {:<10.2f}".format("Benchmark duration (s):",
|
||||
benchmark_duration))
|
||||
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
|
||||
print("{:<40} {:<10}".format("Total generated tokens:",
|
||||
metrics.total_output))
|
||||
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
|
||||
metrics.request_throughput))
|
||||
print("{:<40} {:<10.2f}".format("Input token throughput (tok/s):",
|
||||
metrics.input_throughput))
|
||||
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
|
||||
metrics.output_throughput))
|
||||
print("{s:{c}^{n}}".format(s='Time to First Token', n=50, c='-'))
|
||||
print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
|
||||
print("{:<40} {:<10.2f}".format("Median TTFT (ms):",
|
||||
metrics.median_ttft_ms))
|
||||
print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
|
||||
print("{s:{c}^{n}}".format(s='Time per Output Token (excl. 1st token)',
|
||||
n=50,
|
||||
c='-'))
|
||||
print("{:<40} {:<10.2f}".format("Mean TPOT (ms):", metrics.mean_tpot_ms))
|
||||
print("{:<40} {:<10.2f}".format("Median TPOT (ms):",
|
||||
metrics.median_tpot_ms))
|
||||
print("{:<40} {:<10.2f}".format("P99 TPOT (ms):", metrics.p99_tpot_ms))
|
||||
print("=" * 50)
|
||||
|
||||
result = {
|
||||
"duration": benchmark_duration,
|
||||
"completed": metrics.completed,
|
||||
"total_input_tokens": metrics.total_input,
|
||||
"total_output_tokens": metrics.total_output,
|
||||
"request_inthroughput": metrics.request_throughput,
|
||||
"request_throughput": metrics.request_throughput,
|
||||
"input_throughput": metrics.input_throughput,
|
||||
"output_throughput": metrics.output_throughput,
|
||||
"mean_ttft_ms": metrics.mean_ttft_ms,
|
||||
@ -233,7 +320,13 @@ async def benchmark(
|
||||
"p99_ttft_ms": metrics.p99_ttft_ms,
|
||||
"mean_tpot_ms": metrics.mean_tpot_ms,
|
||||
"median_tpot_ms": metrics.median_tpot_ms,
|
||||
"p99_tpot_ms": metrics.p99_tpot_ms
|
||||
"p99_tpot_ms": metrics.p99_tpot_ms,
|
||||
"input_lens": [output.prompt_len for output in outputs],
|
||||
"output_lens": actual_output_lens,
|
||||
"ttfts": [output.ttft for output in outputs],
|
||||
"itls": [output.itl for output in outputs],
|
||||
"generated_texts": [output.generated_text for output in outputs],
|
||||
"errors": [output.error for output in outputs],
|
||||
}
|
||||
return result
|
||||
|
||||
@ -254,7 +347,58 @@ def main(args: argparse.Namespace):
|
||||
|
||||
tokenizer = get_tokenizer(tokenizer_id,
|
||||
trust_remote_code=args.trust_remote_code)
|
||||
input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
|
||||
|
||||
if args.dataset is not None:
|
||||
warnings.warn(
|
||||
"The '--dataset' argument will be deprecated in the next "
|
||||
"release. Please use '--dataset-name' and "
|
||||
"'--dataset-path' in the future runs.",
|
||||
stacklevel=2)
|
||||
input_requests = sample_sharegpt_requests(
|
||||
dataset_path=args.dataset,
|
||||
num_requests=args.num_prompts,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
elif args.dataset_name == "sharegpt":
|
||||
input_requests = sample_sharegpt_requests(
|
||||
dataset_path=args.dataset_path,
|
||||
num_requests=args.num_prompts,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
elif args.dataset_name == "sonnet":
|
||||
# Do not format the prompt, pass to message directly
|
||||
if args.backend == "openai-chat":
|
||||
input_requests = sample_sonnet_requests(
|
||||
dataset_path=args.dataset_path,
|
||||
num_requests=args.num_prompts,
|
||||
input_len=args.input_len,
|
||||
output_len=args.output_len,
|
||||
prefix_len=args.prefix_len,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
input_requests = [(prompt, prompt_len, output_len)
|
||||
for prompt, prompt_formatted, prompt_len,
|
||||
output_len in input_requests]
|
||||
else:
|
||||
assert (
|
||||
tokenizer.chat_template or tokenizer.default_chat_template
|
||||
), "Tokenizer/model must have chat template for sonnet dataset."
|
||||
input_requests = sample_sonnet_requests(
|
||||
dataset_path=args.dataset_path,
|
||||
num_requests=args.num_prompts,
|
||||
input_len=args.input_len,
|
||||
output_len=args.output_len,
|
||||
prefix_len=args.prefix_len,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
input_requests = [(prompt_formatted, prompt_len, output_len)
|
||||
for prompt, prompt_formatted, prompt_len,
|
||||
output_len in input_requests]
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unknown dataset: {args.dataset_name}")
|
||||
|
||||
benchmark_result = asyncio.run(
|
||||
benchmark(
|
||||
@ -277,13 +421,23 @@ def main(args: argparse.Namespace):
|
||||
current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
result_json["date"] = current_dt
|
||||
result_json["backend"] = backend
|
||||
result_json["version"] = args.version
|
||||
result_json["model_id"] = model_id
|
||||
result_json["tokenizer_id"] = tokenizer_id
|
||||
result_json["best_of"] = args.best_of
|
||||
result_json["use_beam_search"] = args.use_beam_search
|
||||
result_json["num_prompts"] = args.num_prompts
|
||||
|
||||
# Metadata
|
||||
if args.metadata:
|
||||
for item in args.metadata:
|
||||
if "=" in item:
|
||||
kvstring = item.split("=")
|
||||
result_json[kvstring[0].strip()] = kvstring[1].strip()
|
||||
else:
|
||||
raise ValueError(
|
||||
"Invalid metadata format. Please use KEY=VALUE format."
|
||||
)
|
||||
|
||||
# Traffic
|
||||
result_json["request_rate"] = (
|
||||
args.request_rate if args.request_rate < float("inf") else "inf")
|
||||
@ -293,7 +447,9 @@ def main(args: argparse.Namespace):
|
||||
|
||||
# Save to file
|
||||
base_model_id = model_id.split("/")[-1]
|
||||
file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"
|
||||
file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json" #noqa
|
||||
if args.result_dir:
|
||||
file_name = os.path.join(args.result_dir, file_name)
|
||||
with open(file_name, "w") as outfile:
|
||||
json.dump(result_json, outfile)
|
||||
|
||||
@ -307,12 +463,6 @@ if __name__ == "__main__":
|
||||
default="vllm",
|
||||
choices=list(ASYNC_REQUEST_FUNCS.keys()),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--version",
|
||||
type=str,
|
||||
default="N/A",
|
||||
help="Version of the serving backend/engine.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--base-url",
|
||||
type=str,
|
||||
@ -324,12 +474,26 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--endpoint",
|
||||
type=str,
|
||||
default="/generate",
|
||||
default="/v1/completions",
|
||||
help="API endpoint.",
|
||||
)
|
||||
parser.add_argument("--dataset",
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the ShareGPT dataset, will be deprecated in the "
|
||||
"next release.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset-name",
|
||||
type=str,
|
||||
default="sharegpt",
|
||||
choices=["sharegpt", "sonnet"],
|
||||
help="Name of the dataset to benchmark on.",
|
||||
)
|
||||
parser.add_argument("--dataset-path",
|
||||
type=str,
|
||||
required=True,
|
||||
default=None,
|
||||
help="Path to the dataset.")
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
@ -341,7 +505,7 @@ if __name__ == "__main__":
|
||||
"--tokenizer",
|
||||
type=str,
|
||||
help=
|
||||
"Name or path of the tokenizer, if not using the default model tokenizer.",
|
||||
"Name or path of the tokenizer, if not using the default tokenizer.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--best-of",
|
||||
@ -357,6 +521,27 @@ if __name__ == "__main__":
|
||||
default=1000,
|
||||
help="Number of prompts to process.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sonnet-input-len",
|
||||
type=int,
|
||||
default=550,
|
||||
help=
|
||||
"Number of input tokens per request, used only for sonnet dataset.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sonnet-output-len",
|
||||
type=int,
|
||||
default=150,
|
||||
help=
|
||||
"Number of output tokens per request, used only for sonnet dataset.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sonnet-prefix-len",
|
||||
type=int,
|
||||
default=200,
|
||||
help=
|
||||
"Number of prefix tokens per request, used only for sonnet dataset.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--request-rate",
|
||||
type=float,
|
||||
@ -375,13 +560,28 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--disable-tqdm",
|
||||
action="store_true",
|
||||
help="Specify to disbale tqdm progress bar.",
|
||||
help="Specify to disable tqdm progress bar.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save-result",
|
||||
action="store_true",
|
||||
help="Specify to save benchmark results to a json file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--metadata",
|
||||
metavar="KEY=VALUE",
|
||||
nargs="*",
|
||||
help="Key-value pairs (e.g, --metadata version=0.3.3 tp=1) "
|
||||
"for metadata of this run to be saved in the result JSON file "
|
||||
"for record keeping purposes.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--result-dir",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Specify directory to save benchmark json results."
|
||||
"If not specified, results are saved in the current directory.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
@ -6,9 +6,9 @@ import time
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
||||
PreTrainedTokenizerBase)
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def sample_requests(
|
||||
@ -73,21 +73,25 @@ def run_vllm(
|
||||
enforce_eager: bool,
|
||||
kv_cache_dtype: str,
|
||||
device: str,
|
||||
enable_prefix_caching: bool,
|
||||
gpu_memory_utilization: float = 0.9,
|
||||
download_dir: Optional[str] = None,
|
||||
) -> float:
|
||||
from vllm import LLM, SamplingParams
|
||||
llm = LLM(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
quantization=quantization,
|
||||
tensor_parallel_size=tensor_parallel_size,
|
||||
seed=seed,
|
||||
trust_remote_code=trust_remote_code,
|
||||
dtype=dtype,
|
||||
max_model_len=max_model_len,
|
||||
enforce_eager=enforce_eager,
|
||||
kv_cache_dtype=kv_cache_dtype,
|
||||
device=device,
|
||||
)
|
||||
llm = LLM(model=model,
|
||||
tokenizer=tokenizer,
|
||||
quantization=quantization,
|
||||
tensor_parallel_size=tensor_parallel_size,
|
||||
seed=seed,
|
||||
trust_remote_code=trust_remote_code,
|
||||
dtype=dtype,
|
||||
max_model_len=max_model_len,
|
||||
gpu_memory_utilization=gpu_memory_utilization,
|
||||
enforce_eager=enforce_eager,
|
||||
kv_cache_dtype=kv_cache_dtype,
|
||||
device=device,
|
||||
enable_prefix_caching=enable_prefix_caching,
|
||||
download_dir=download_dir)
|
||||
|
||||
# Add the requests to the engine.
|
||||
for prompt, _, output_len in requests:
|
||||
@ -179,13 +183,15 @@ def run_mii(
|
||||
tensor_parallel_size: int,
|
||||
output_len: int,
|
||||
) -> float:
|
||||
from mii import pipeline
|
||||
llm = pipeline(model, tensor_parallel=tensor_parallel_size)
|
||||
from mii import client, serve
|
||||
llm = serve(model, tensor_parallel=tensor_parallel_size)
|
||||
prompts = [prompt for prompt, _, _ in requests]
|
||||
|
||||
start = time.perf_counter()
|
||||
llm(prompts, max_new_tokens=output_len)
|
||||
llm.generate(prompts, max_new_tokens=output_len)
|
||||
end = time.perf_counter()
|
||||
client = client(model)
|
||||
client.terminate_server()
|
||||
return end - start
|
||||
|
||||
|
||||
@ -211,7 +217,9 @@ def main(args: argparse.Namespace):
|
||||
args.seed, args.n, args.use_beam_search,
|
||||
args.trust_remote_code, args.dtype,
|
||||
args.max_model_len, args.enforce_eager,
|
||||
args.kv_cache_dtype, args.device)
|
||||
args.kv_cache_dtype, args.device,
|
||||
args.enable_prefix_caching,
|
||||
args.gpu_memory_utilization, args.download_dir)
|
||||
elif args.backend == "hf":
|
||||
assert args.tensor_parallel_size == 1
|
||||
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
|
||||
@ -286,6 +294,12 @@ if __name__ == "__main__":
|
||||
'The "auto" option will use FP16 precision '
|
||||
'for FP32 and FP16 models, and BF16 precision '
|
||||
'for BF16 models.')
|
||||
parser.add_argument('--gpu-memory-utilization',
|
||||
type=float,
|
||||
default=0.9,
|
||||
help='the fraction of GPU memory to be used for '
|
||||
'the model executor, which can range from 0 to 1.'
|
||||
'If unspecified, will use the default value of 0.9.')
|
||||
parser.add_argument("--enforce-eager",
|
||||
action="store_true",
|
||||
help="enforce eager execution")
|
||||
@ -302,6 +316,15 @@ if __name__ == "__main__":
|
||||
default="cuda",
|
||||
choices=["cuda"],
|
||||
help='device type for vLLM execution, supporting CUDA only currently.')
|
||||
parser.add_argument(
|
||||
"--enable-prefix-caching",
|
||||
action='store_true',
|
||||
help="enable automatic prefix caching for vLLM backend.")
|
||||
parser.add_argument('--download-dir',
|
||||
type=str,
|
||||
default=None,
|
||||
help='directory to download and load the weights, '
|
||||
'default to the default cache dir of huggingface')
|
||||
args = parser.parse_args()
|
||||
if args.tokenizer is None:
|
||||
args.tokenizer = args.model
|
||||
|
182
benchmarks/kernels/benchmark_mixtral_moe.py
Normal file
@ -0,0 +1,182 @@
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import triton
|
||||
|
||||
from vllm.model_executor.layers.fused_moe import (fused_moe,
|
||||
get_config_file_name)
|
||||
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
||||
|
||||
|
||||
def main():
|
||||
method = fused_moe
|
||||
for bs in [
|
||||
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
|
||||
2048, 3072, 4096
|
||||
]:
|
||||
run_grid(bs, method=method)
|
||||
|
||||
|
||||
def run_grid(bs, method):
|
||||
d_model = 4096
|
||||
num_total_experts = 8
|
||||
top_k = 2
|
||||
tp_size = 2
|
||||
model_intermediate_size = 14336
|
||||
num_layers = 32
|
||||
num_calls = 100
|
||||
|
||||
num_warmup_trials = 1
|
||||
num_trials = 1
|
||||
|
||||
configs = []
|
||||
if bs <= 16:
|
||||
BLOCK_SIZES_M = [16]
|
||||
elif bs <= 32:
|
||||
BLOCK_SIZES_M = [16, 32]
|
||||
elif bs <= 64:
|
||||
BLOCK_SIZES_M = [16, 32, 64]
|
||||
elif bs <= 128:
|
||||
BLOCK_SIZES_M = [16, 32, 64, 128]
|
||||
else:
|
||||
BLOCK_SIZES_M = [16, 32, 64, 128, 256]
|
||||
|
||||
for block_size_n in [32, 64, 128, 256]:
|
||||
for block_size_m in BLOCK_SIZES_M:
|
||||
for block_size_k in [64, 128, 256]:
|
||||
for group_size_m in [1, 16, 32, 64]:
|
||||
for num_warps in [4, 8]:
|
||||
configs.append({
|
||||
"BLOCK_SIZE_M": block_size_m,
|
||||
"BLOCK_SIZE_N": block_size_n,
|
||||
"BLOCK_SIZE_K": block_size_k,
|
||||
"GROUP_SIZE_M": group_size_m,
|
||||
"num_warps": num_warps,
|
||||
"num_stages": 4,
|
||||
})
|
||||
|
||||
best_config = None
|
||||
best_time_us = 1e20
|
||||
|
||||
for config in configs:
|
||||
print(f'{tp_size=} {bs=}')
|
||||
print(f'{config}')
|
||||
# warmup
|
||||
print('warming up')
|
||||
try:
|
||||
for _ in range(num_warmup_trials):
|
||||
run_timing(
|
||||
num_calls=num_calls,
|
||||
bs=bs,
|
||||
d_model=d_model,
|
||||
num_total_experts=num_total_experts,
|
||||
top_k=top_k,
|
||||
tp_size=tp_size,
|
||||
model_intermediate_size=model_intermediate_size,
|
||||
method=method,
|
||||
config=config,
|
||||
)
|
||||
except triton.runtime.autotuner.OutOfResources:
|
||||
continue
|
||||
|
||||
# trial
|
||||
print('benchmarking')
|
||||
for _ in range(num_trials):
|
||||
kernel_dur_ms = run_timing(
|
||||
num_calls=num_calls,
|
||||
bs=bs,
|
||||
d_model=d_model,
|
||||
num_total_experts=num_total_experts,
|
||||
top_k=top_k,
|
||||
tp_size=tp_size,
|
||||
model_intermediate_size=model_intermediate_size,
|
||||
method=method,
|
||||
config=config,
|
||||
)
|
||||
|
||||
kernel_dur_us = 1000 * kernel_dur_ms
|
||||
model_dur_ms = kernel_dur_ms * num_layers
|
||||
|
||||
if kernel_dur_us < best_time_us:
|
||||
best_config = config
|
||||
best_time_us = kernel_dur_us
|
||||
|
||||
print(f'{kernel_dur_us=:.1f} {model_dur_ms=:.1f}'
|
||||
f' {bs=} {tp_size=} {top_k=} {num_total_experts=} '
|
||||
f'{d_model=} {model_intermediate_size=} {num_layers=}')
|
||||
|
||||
print("best_time_us", best_time_us)
|
||||
print("best_config", best_config)
|
||||
|
||||
# holds Dict[str, Dict[str, int]]
|
||||
filename = get_config_file_name(num_total_experts,
|
||||
model_intermediate_size // tp_size)
|
||||
print(f"writing config to file {filename}")
|
||||
existing_content = {}
|
||||
if os.path.exists(filename):
|
||||
with open(filename, "r") as f:
|
||||
existing_content = json.load(f)
|
||||
existing_content[str(bs)] = best_config
|
||||
with open(filename, "w") as f:
|
||||
json.dump(existing_content, f, indent=4)
|
||||
f.write("\n")
|
||||
|
||||
|
||||
def run_timing(num_calls: int, bs: int, d_model: int, num_total_experts: int,
|
||||
top_k: int, tp_size: int, model_intermediate_size: int, method,
|
||||
config) -> float:
|
||||
shard_intermediate_size = model_intermediate_size // tp_size
|
||||
|
||||
hidden_states = torch.rand(
|
||||
(bs, d_model),
|
||||
device="cuda:0",
|
||||
dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
ws = torch.rand(
|
||||
(num_total_experts, 2 * shard_intermediate_size, d_model),
|
||||
device=hidden_states.device,
|
||||
dtype=hidden_states.dtype,
|
||||
)
|
||||
|
||||
w2s = torch.rand(
|
||||
(num_total_experts, d_model, shard_intermediate_size),
|
||||
device=hidden_states.device,
|
||||
dtype=hidden_states.dtype,
|
||||
)
|
||||
|
||||
gating_output = F.softmax(torch.rand(
|
||||
(num_calls, bs, num_total_experts),
|
||||
device=hidden_states.device,
|
||||
dtype=torch.float32,
|
||||
),
|
||||
dim=-1)
|
||||
|
||||
start_event = torch.cuda.Event(enable_timing=True)
|
||||
end_event = torch.cuda.Event(enable_timing=True)
|
||||
|
||||
start_event.record()
|
||||
for i in range(num_calls):
|
||||
hidden_states = method(
|
||||
hidden_states=hidden_states,
|
||||
w1=ws,
|
||||
w2=w2s,
|
||||
gating_output=gating_output[i],
|
||||
topk=2,
|
||||
renormalize=True,
|
||||
inplace=True,
|
||||
override_config=config,
|
||||
)
|
||||
end_event.record()
|
||||
end_event.synchronize()
|
||||
|
||||
dur_ms = start_event.elapsed_time(end_event) / num_calls
|
||||
return dur_ms
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
sys.exit(main())
|
@ -1,12 +1,12 @@
|
||||
from typing import Optional
|
||||
import argparse
|
||||
import random
|
||||
import time
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
|
||||
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, create_kv_caches_with_random
|
||||
from vllm._C import ops
|
||||
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, create_kv_caches_with_random
|
||||
|
||||
NUM_BLOCKS = 1024
|
||||
PARTITION_SIZE = 512
|
||||
|
121
benchmarks/kernels/benchmark_rope.py
Normal file
@ -0,0 +1,121 @@
|
||||
import argparse
|
||||
from itertools import accumulate
|
||||
from typing import Optional
|
||||
|
||||
import nvtx
|
||||
import torch
|
||||
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
|
||||
|
||||
def benchmark_rope_kernels_multi_lora(
|
||||
is_neox_style: bool,
|
||||
batch_size: int,
|
||||
seq_len: int,
|
||||
num_heads: int,
|
||||
head_size: int,
|
||||
rotary_dim: Optional[int],
|
||||
dtype: torch.dtype,
|
||||
seed: int,
|
||||
device: str,
|
||||
max_position: int = 8192,
|
||||
base: int = 10000,
|
||||
) -> None:
|
||||
torch.random.manual_seed(seed)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed(seed)
|
||||
torch.set_default_device(device)
|
||||
if rotary_dim is None:
|
||||
rotary_dim = head_size
|
||||
# silulating serving 4 LoRAs
|
||||
scaling_factors = [1, 2, 4, 8]
|
||||
# batched RoPE can take multiple scaling factors
|
||||
batched_rope = get_rope(head_size, rotary_dim, max_position, base,
|
||||
is_neox_style, {
|
||||
"type": "linear",
|
||||
"factor": tuple(scaling_factors)
|
||||
})
|
||||
# non-batched RoPE takes only one scaling factor, we create multiple
|
||||
# instances to simulate the same behavior
|
||||
non_batched_ropes = []
|
||||
for scaling_factor in scaling_factors:
|
||||
non_batched_ropes.append(
|
||||
get_rope(head_size, rotary_dim, max_position, base, is_neox_style,
|
||||
{
|
||||
"type": "linear",
|
||||
"factor": (scaling_factor, )
|
||||
}))
|
||||
|
||||
positions = torch.randint(0, max_position, (batch_size, seq_len))
|
||||
query = torch.randn(batch_size,
|
||||
seq_len,
|
||||
num_heads * head_size,
|
||||
dtype=dtype)
|
||||
key = torch.randn_like(query)
|
||||
|
||||
# create query offsets for batched RoPE, we concat multiple kv cache
|
||||
# together and each query needs to find the right kv cache of its type
|
||||
offset_map = torch.tensor(
|
||||
list(
|
||||
accumulate([0] + [
|
||||
max_position * scaling_factor * 2
|
||||
for scaling_factor in scaling_factors[:-1]
|
||||
])))
|
||||
query_types = torch.randint(0,
|
||||
len(scaling_factors), (batch_size, seq_len),
|
||||
device=device)
|
||||
# map query types to offsets
|
||||
query_offsets = offset_map[query_types]
|
||||
# the kernel takes flattened offsets
|
||||
flatten_offsets = query_offsets.flatten()
|
||||
|
||||
# batched queries of the same type together for non-batched RoPE
|
||||
queries = [query[query_types == i] for i in range(len(scaling_factors))]
|
||||
keys = [key[query_types == i] for i in range(len(scaling_factors))]
|
||||
packed_qkr = zip(queries, keys, non_batched_ropes)
|
||||
# synchronize before start timing
|
||||
torch.cuda.synchronize()
|
||||
with nvtx.annotate("non-batched", color="yellow"):
|
||||
for q, k, r in packed_qkr:
|
||||
r.forward(positions, q, k)
|
||||
torch.cuda.synchronize()
|
||||
with nvtx.annotate("batched", color="green"):
|
||||
batched_rope.forward(positions, query, key, flatten_offsets)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Benchmark the rotary embedding kernels.")
|
||||
parser.add_argument("--is-neox-style", type=bool, default=True)
|
||||
parser.add_argument("--batch-size", type=int, default=16)
|
||||
parser.add_argument("--seq-len", type=int, default=512)
|
||||
parser.add_argument("--num-heads", type=int, default=8)
|
||||
parser.add_argument("--head-size",
|
||||
type=int,
|
||||
choices=[64, 80, 96, 112, 128, 256],
|
||||
default=128)
|
||||
parser.add_argument("--rotary-dim", type=int, choices=[16, 32], default=32)
|
||||
parser.add_argument("--dtype",
|
||||
type=str,
|
||||
choices=["bfloat16", "float"],
|
||||
default="float")
|
||||
parser.add_argument("--seed", type=int, default=0)
|
||||
parser.add_argument("--device",
|
||||
type=str,
|
||||
choices=["cuda:0", "cuda:1"],
|
||||
default="cuda:0")
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
|
||||
benchmark_rope_kernels_multi_lora(
|
||||
is_neox_style=args.is_neox_style,
|
||||
batch_size=args.batch_size,
|
||||
seq_len=args.seq_len,
|
||||
num_heads=args.num_heads,
|
||||
head_size=args.head_size,
|
||||
rotary_dim=args.rotary_dim,
|
||||
dtype=getattr(torch, args.dtype),
|
||||
seed=args.seed,
|
||||
device=args.device,
|
||||
)
|
518
benchmarks/sonnet.txt
Normal file
@ -0,0 +1,518 @@
|
||||
FROM fairest creatures we desire increase,
|
||||
That thereby beauty's rose might never die,
|
||||
But as the riper should by time decease,
|
||||
His tender heir might bear his memory:
|
||||
But thou, contracted to thine own bright eyes,
|
||||
Feed'st thy light'st flame with self-substantial fuel,
|
||||
Making a famine where abundance lies,
|
||||
Thyself thy foe, to thy sweet self too cruel.
|
||||
Thou that art now the world's fresh ornament
|
||||
And only herald to the gaudy spring,
|
||||
Within thine own bud buriest thy content
|
||||
And, tender churl, makest waste in niggarding.
|
||||
Pity the world, or else this glutton be,
|
||||
To eat the world's due, by the grave and thee.
|
||||
When forty winters shall beseige thy brow,
|
||||
And dig deep trenches in thy beauty's field,
|
||||
Thy youth's proud livery, so gazed on now,
|
||||
Will be a tatter'd weed, of small worth held:
|
||||
Then being ask'd where all thy beauty lies,
|
||||
Where all the treasure of thy lusty days,
|
||||
To say, within thine own deep-sunken eyes,
|
||||
Were an all-eating shame and thriftless praise.
|
||||
How much more praise deserved thy beauty's use,
|
||||
If thou couldst answer 'This fair child of mine
|
||||
Shall sum my count and make my old excuse,'
|
||||
Proving his beauty by succession thine!
|
||||
This were to be new made when thou art old,
|
||||
And see thy blood warm when thou feel'st it cold.
|
||||
Look in thy glass, and tell the face thou viewest
|
||||
Now is the time that face should form another;
|
||||
Whose fresh repair if now thou not renewest,
|
||||
Thou dost beguile the world, unbless some mother.
|
||||
For where is she so fair whose unear'd womb
|
||||
Disdains the tillage of thy husbandry?
|
||||
Or who is he so fond will be the tomb
|
||||
Of his self-love, to stop posterity?
|
||||
Thou art thy mother's glass, and she in thee
|
||||
Calls back the lovely April of her prime:
|
||||
So thou through windows of thine age shall see
|
||||
Despite of wrinkles this thy golden time.
|
||||
But if thou live, remember'd not to be,
|
||||
Die single, and thine image dies with thee.
|
||||
Unthrifty loveliness, why dost thou spend
|
||||
Upon thyself thy beauty's legacy?
|
||||
Nature's bequest gives nothing but doth lend,
|
||||
And being frank she lends to those are free.
|
||||
Then, beauteous niggard, why dost thou abuse
|
||||
The bounteous largess given thee to give?
|
||||
Profitless usurer, why dost thou use
|
||||
So great a sum of sums, yet canst not live?
|
||||
For having traffic with thyself alone,
|
||||
Thou of thyself thy sweet self dost deceive.
|
||||
Then how, when nature calls thee to be gone,
|
||||
What acceptable audit canst thou leave?
|
||||
Thy unused beauty must be tomb'd with thee,
|
||||
Which, used, lives th' executor to be.
|
||||
Those hours, that with gentle work did frame
|
||||
The lovely gaze where every eye doth dwell,
|
||||
Will play the tyrants to the very same
|
||||
And that unfair which fairly doth excel:
|
||||
For never-resting time leads summer on
|
||||
To hideous winter and confounds him there;
|
||||
Sap cheque'd with frost and lusty leaves quite gone,
|
||||
Beauty o'ersnow'd and bareness every where:
|
||||
Then, were not summer's distillation left,
|
||||
A liquid prisoner pent in walls of glass,
|
||||
Beauty's effect with beauty were bereft,
|
||||
Nor it nor no remembrance what it was:
|
||||
But flowers distill'd though they with winter meet,
|
||||
Leese but their show; their substance still lives sweet.
|
||||
Then let not winter's ragged hand deface
|
||||
In thee thy summer, ere thou be distill'd:
|
||||
Make sweet some vial; treasure thou some place
|
||||
With beauty's treasure, ere it be self-kill'd.
|
||||
That use is not forbidden usury,
|
||||
Which happies those that pay the willing loan;
|
||||
That's for thyself to breed another thee,
|
||||
Or ten times happier, be it ten for one;
|
||||
Ten times thyself were happier than thou art,
|
||||
If ten of thine ten times refigured thee:
|
||||
Then what could death do, if thou shouldst depart,
|
||||
Leaving thee living in posterity?
|
||||
Be not self-will'd, for thou art much too fair
|
||||
To be death's conquest and make worms thine heir.
|
||||
Lo! in the orient when the gracious light
|
||||
Lifts up his burning head, each under eye
|
||||
Doth homage to his new-appearing sight,
|
||||
Serving with looks his sacred majesty;
|
||||
And having climb'd the steep-up heavenly hill,
|
||||
Resembling strong youth in his middle age,
|
||||
yet mortal looks adore his beauty still,
|
||||
Attending on his golden pilgrimage;
|
||||
But when from highmost pitch, with weary car,
|
||||
Like feeble age, he reeleth from the day,
|
||||
The eyes, 'fore duteous, now converted are
|
||||
From his low tract and look another way:
|
||||
So thou, thyself out-going in thy noon,
|
||||
Unlook'd on diest, unless thou get a son.
|
||||
Music to hear, why hear'st thou music sadly?
|
||||
Sweets with sweets war not, joy delights in joy.
|
||||
Why lovest thou that which thou receivest not gladly,
|
||||
Or else receivest with pleasure thine annoy?
|
||||
If the true concord of well-tuned sounds,
|
||||
By unions married, do offend thine ear,
|
||||
They do but sweetly chide thee, who confounds
|
||||
In singleness the parts that thou shouldst bear.
|
||||
Mark how one string, sweet husband to another,
|
||||
Strikes each in each by mutual ordering,
|
||||
Resembling sire and child and happy mother
|
||||
Who all in one, one pleasing note do sing:
|
||||
Whose speechless song, being many, seeming one,
|
||||
Sings this to thee: 'thou single wilt prove none.'
|
||||
Is it for fear to wet a widow's eye
|
||||
That thou consumest thyself in single life?
|
||||
Ah! if thou issueless shalt hap to die.
|
||||
The world will wail thee, like a makeless wife;
|
||||
The world will be thy widow and still weep
|
||||
That thou no form of thee hast left behind,
|
||||
When every private widow well may keep
|
||||
By children's eyes her husband's shape in mind.
|
||||
Look, what an unthrift in the world doth spend
|
||||
Shifts but his place, for still the world enjoys it;
|
||||
But beauty's waste hath in the world an end,
|
||||
And kept unused, the user so destroys it.
|
||||
No love toward others in that bosom sits
|
||||
That on himself such murderous shame commits.
|
||||
For shame! deny that thou bear'st love to any,
|
||||
Who for thyself art so unprovident.
|
||||
Grant, if thou wilt, thou art beloved of many,
|
||||
But that thou none lovest is most evident;
|
||||
For thou art so possess'd with murderous hate
|
||||
That 'gainst thyself thou stick'st not to conspire.
|
||||
Seeking that beauteous roof to ruinate
|
||||
Which to repair should be thy chief desire.
|
||||
O, change thy thought, that I may change my mind!
|
||||
Shall hate be fairer lodged than gentle love?
|
||||
Be, as thy presence is, gracious and kind,
|
||||
Or to thyself at least kind-hearted prove:
|
||||
Make thee another self, for love of me,
|
||||
That beauty still may live in thine or thee.
|
||||
As fast as thou shalt wane, so fast thou growest
|
||||
In one of thine, from that which thou departest;
|
||||
And that fresh blood which youngly thou bestowest
|
||||
Thou mayst call thine when thou from youth convertest.
|
||||
Herein lives wisdom, beauty and increase:
|
||||
Without this, folly, age and cold decay:
|
||||
If all were minded so, the times should cease
|
||||
And threescore year would make the world away.
|
||||
Let those whom Nature hath not made for store,
|
||||
Harsh featureless and rude, barrenly perish:
|
||||
Look, whom she best endow'd she gave the more;
|
||||
Which bounteous gift thou shouldst in bounty cherish:
|
||||
She carved thee for her seal, and meant thereby
|
||||
Thou shouldst print more, not let that copy die.
|
||||
When I do count the clock that tells the time,
|
||||
And see the brave day sunk in hideous night;
|
||||
When I behold the violet past prime,
|
||||
And sable curls all silver'd o'er with white;
|
||||
When lofty trees I see barren of leaves
|
||||
Which erst from heat did canopy the herd,
|
||||
And summer's green all girded up in sheaves
|
||||
Borne on the bier with white and bristly beard,
|
||||
Then of thy beauty do I question make,
|
||||
That thou among the wastes of time must go,
|
||||
Since sweets and beauties do themselves forsake
|
||||
And die as fast as they see others grow;
|
||||
And nothing 'gainst Time's scythe can make defence
|
||||
Save breed, to brave him when he takes thee hence.
|
||||
O, that you were yourself! but, love, you are
|
||||
No longer yours than you yourself here live:
|
||||
Against this coming end you should prepare,
|
||||
And your sweet semblance to some other give.
|
||||
So should that beauty which you hold in lease
|
||||
Find no determination: then you were
|
||||
Yourself again after yourself's decease,
|
||||
When your sweet issue your sweet form should bear.
|
||||
Who lets so fair a house fall to decay,
|
||||
Which husbandry in honour might uphold
|
||||
Against the stormy gusts of winter's day
|
||||
And barren rage of death's eternal cold?
|
||||
O, none but unthrifts! Dear my love, you know
|
||||
You had a father: let your son say so.
|
||||
Not from the stars do I my judgment pluck;
|
||||
And yet methinks I have astronomy,
|
||||
But not to tell of good or evil luck,
|
||||
Of plagues, of dearths, or seasons' quality;
|
||||
Nor can I fortune to brief minutes tell,
|
||||
Pointing to each his thunder, rain and wind,
|
||||
Or say with princes if it shall go well,
|
||||
By oft predict that I in heaven find:
|
||||
But from thine eyes my knowledge I derive,
|
||||
And, constant stars, in them I read such art
|
||||
As truth and beauty shall together thrive,
|
||||
If from thyself to store thou wouldst convert;
|
||||
Or else of thee this I prognosticate:
|
||||
Thy end is truth's and beauty's doom and date.
|
||||
When I consider every thing that grows
|
||||
Holds in perfection but a little moment,
|
||||
That this huge stage presenteth nought but shows
|
||||
Whereon the stars in secret influence comment;
|
||||
When I perceive that men as plants increase,
|
||||
Cheered and cheque'd even by the self-same sky,
|
||||
Vaunt in their youthful sap, at height decrease,
|
||||
And wear their brave state out of memory;
|
||||
Then the conceit of this inconstant stay
|
||||
Sets you most rich in youth before my sight,
|
||||
Where wasteful Time debateth with Decay,
|
||||
To change your day of youth to sullied night;
|
||||
And all in war with Time for love of you,
|
||||
As he takes from you, I engraft you new.
|
||||
But wherefore do not you a mightier way
|
||||
Make war upon this bloody tyrant, Time?
|
||||
And fortify yourself in your decay
|
||||
With means more blessed than my barren rhyme?
|
||||
Now stand you on the top of happy hours,
|
||||
And many maiden gardens yet unset
|
||||
With virtuous wish would bear your living flowers,
|
||||
Much liker than your painted counterfeit:
|
||||
So should the lines of life that life repair,
|
||||
Which this, Time's pencil, or my pupil pen,
|
||||
Neither in inward worth nor outward fair,
|
||||
Can make you live yourself in eyes of men.
|
||||
To give away yourself keeps yourself still,
|
||||
And you must live, drawn by your own sweet skill.
|
||||
Who will believe my verse in time to come,
|
||||
If it were fill'd with your most high deserts?
|
||||
Though yet, heaven knows, it is but as a tomb
|
||||
Which hides your life and shows not half your parts.
|
||||
If I could write the beauty of your eyes
|
||||
And in fresh numbers number all your graces,
|
||||
The age to come would say 'This poet lies:
|
||||
Such heavenly touches ne'er touch'd earthly faces.'
|
||||
So should my papers yellow'd with their age
|
||||
Be scorn'd like old men of less truth than tongue,
|
||||
And your true rights be term'd a poet's rage
|
||||
And stretched metre of an antique song:
|
||||
But were some child of yours alive that time,
|
||||
You should live twice; in it and in my rhyme.
|
||||
Shall I compare thee to a summer's day?
|
||||
Thou art more lovely and more temperate:
|
||||
Rough winds do shake the darling buds of May,
|
||||
And summer's lease hath all too short a date:
|
||||
Sometime too hot the eye of heaven shines,
|
||||
And often is his gold complexion dimm'd;
|
||||
And every fair from fair sometime declines,
|
||||
By chance or nature's changing course untrimm'd;
|
||||
But thy eternal summer shall not fade
|
||||
Nor lose possession of that fair thou owest;
|
||||
Nor shall Death brag thou wander'st in his shade,
|
||||
When in eternal lines to time thou growest:
|
||||
So long as men can breathe or eyes can see,
|
||||
So long lives this and this gives life to thee.
|
||||
Devouring Time, blunt thou the lion's paws,
|
||||
And make the earth devour her own sweet brood;
|
||||
Pluck the keen teeth from the fierce tiger's jaws,
|
||||
And burn the long-lived phoenix in her blood;
|
||||
Make glad and sorry seasons as thou fleets,
|
||||
And do whate'er thou wilt, swift-footed Time,
|
||||
To the wide world and all her fading sweets;
|
||||
But I forbid thee one most heinous crime:
|
||||
O, carve not with thy hours my love's fair brow,
|
||||
Nor draw no lines there with thine antique pen;
|
||||
Him in thy course untainted do allow
|
||||
For beauty's pattern to succeeding men.
|
||||
Yet, do thy worst, old Time: despite thy wrong,
|
||||
My love shall in my verse ever live young.
|
||||
A woman's face with Nature's own hand painted
|
||||
Hast thou, the master-mistress of my passion;
|
||||
A woman's gentle heart, but not acquainted
|
||||
With shifting change, as is false women's fashion;
|
||||
An eye more bright than theirs, less false in rolling,
|
||||
Gilding the object whereupon it gazeth;
|
||||
A man in hue, all 'hues' in his controlling,
|
||||
Much steals men's eyes and women's souls amazeth.
|
||||
And for a woman wert thou first created;
|
||||
Till Nature, as she wrought thee, fell a-doting,
|
||||
And by addition me of thee defeated,
|
||||
By adding one thing to my purpose nothing.
|
||||
But since she prick'd thee out for women's pleasure,
|
||||
Mine be thy love and thy love's use their treasure.
|
||||
So is it not with me as with that Muse
|
||||
Stirr'd by a painted beauty to his verse,
|
||||
Who heaven itself for ornament doth use
|
||||
And every fair with his fair doth rehearse
|
||||
Making a couplement of proud compare,
|
||||
With sun and moon, with earth and sea's rich gems,
|
||||
With April's first-born flowers, and all things rare
|
||||
That heaven's air in this huge rondure hems.
|
||||
O' let me, true in love, but truly write,
|
||||
And then believe me, my love is as fair
|
||||
As any mother's child, though not so bright
|
||||
As those gold candles fix'd in heaven's air:
|
||||
Let them say more than like of hearsay well;
|
||||
I will not praise that purpose not to sell.
|
||||
My glass shall not persuade me I am old,
|
||||
So long as youth and thou are of one date;
|
||||
But when in thee time's furrows I behold,
|
||||
Then look I death my days should expiate.
|
||||
For all that beauty that doth cover thee
|
||||
Is but the seemly raiment of my heart,
|
||||
Which in thy breast doth live, as thine in me:
|
||||
How can I then be elder than thou art?
|
||||
O, therefore, love, be of thyself so wary
|
||||
As I, not for myself, but for thee will;
|
||||
Bearing thy heart, which I will keep so chary
|
||||
As tender nurse her babe from faring ill.
|
||||
Presume not on thy heart when mine is slain;
|
||||
Thou gavest me thine, not to give back again.
|
||||
As an unperfect actor on the stage
|
||||
Who with his fear is put besides his part,
|
||||
Or some fierce thing replete with too much rage,
|
||||
Whose strength's abundance weakens his own heart.
|
||||
So I, for fear of trust, forget to say
|
||||
The perfect ceremony of love's rite,
|
||||
And in mine own love's strength seem to decay,
|
||||
O'ercharged with burden of mine own love's might.
|
||||
O, let my books be then the eloquence
|
||||
And dumb presagers of my speaking breast,
|
||||
Who plead for love and look for recompense
|
||||
More than that tongue that more hath more express'd.
|
||||
O, learn to read what silent love hath writ:
|
||||
To hear with eyes belongs to love's fine wit.
|
||||
Mine eye hath play'd the painter and hath stell'd
|
||||
Thy beauty's form in table of my heart;
|
||||
My body is the frame wherein 'tis held,
|
||||
And perspective it is the painter's art.
|
||||
For through the painter must you see his skill,
|
||||
To find where your true image pictured lies;
|
||||
Which in my bosom's shop is hanging still,
|
||||
That hath his windows glazed with thine eyes.
|
||||
Now see what good turns eyes for eyes have done:
|
||||
Mine eyes have drawn thy shape, and thine for me
|
||||
Are windows to my breast, where-through the sun
|
||||
Delights to peep, to gaze therein on thee;
|
||||
Yet eyes this cunning want to grace their art;
|
||||
They draw but what they see, know not the heart.
|
||||
Let those who are in favour with their stars
|
||||
Of public honour and proud titles boast,
|
||||
Whilst I, whom fortune of such triumph bars,
|
||||
Unlook'd for joy in that I honour most.
|
||||
Great princes' favourites their fair leaves spread
|
||||
But as the marigold at the sun's eye,
|
||||
And in themselves their pride lies buried,
|
||||
For at a frown they in their glory die.
|
||||
The painful warrior famoused for fight,
|
||||
After a thousand victories once foil'd,
|
||||
Is from the book of honour razed quite,
|
||||
And all the rest forgot for which he toil'd:
|
||||
Then happy I, that love and am beloved
|
||||
Where I may not remove nor be removed.
|
||||
Lord of my love, to whom in vassalage
|
||||
Thy merit hath my duty strongly knit,
|
||||
To thee I send this written embassage,
|
||||
To witness duty, not to show my wit:
|
||||
Duty so great, which wit so poor as mine
|
||||
May make seem bare, in wanting words to show it,
|
||||
But that I hope some good conceit of thine
|
||||
In thy soul's thought, all naked, will bestow it;
|
||||
Till whatsoever star that guides my moving
|
||||
Points on me graciously with fair aspect
|
||||
And puts apparel on my tatter'd loving,
|
||||
To show me worthy of thy sweet respect:
|
||||
Then may I dare to boast how I do love thee;
|
||||
Till then not show my head where thou mayst prove me.
|
||||
Weary with toil, I haste me to my bed,
|
||||
The dear repose for limbs with travel tired;
|
||||
But then begins a journey in my head,
|
||||
To work my mind, when body's work's expired:
|
||||
For then my thoughts, from far where I abide,
|
||||
Intend a zealous pilgrimage to thee,
|
||||
And keep my drooping eyelids open wide,
|
||||
Looking on darkness which the blind do see
|
||||
Save that my soul's imaginary sight
|
||||
Presents thy shadow to my sightless view,
|
||||
Which, like a jewel hung in ghastly night,
|
||||
Makes black night beauteous and her old face new.
|
||||
Lo! thus, by day my limbs, by night my mind,
|
||||
For thee and for myself no quiet find.
|
||||
How can I then return in happy plight,
|
||||
That am debarr'd the benefit of rest?
|
||||
When day's oppression is not eased by night,
|
||||
But day by night, and night by day, oppress'd?
|
||||
And each, though enemies to either's reign,
|
||||
Do in consent shake hands to torture me;
|
||||
The one by toil, the other to complain
|
||||
How far I toil, still farther off from thee.
|
||||
I tell the day, to please them thou art bright
|
||||
And dost him grace when clouds do blot the heaven:
|
||||
So flatter I the swart-complexion'd night,
|
||||
When sparkling stars twire not thou gild'st the even.
|
||||
But day doth daily draw my sorrows longer
|
||||
And night doth nightly make grief's strength seem stronger.
|
||||
When, in disgrace with fortune and men's eyes,
|
||||
I all alone beweep my outcast state
|
||||
And trouble deal heaven with my bootless cries
|
||||
And look upon myself and curse my fate,
|
||||
Wishing me like to one more rich in hope,
|
||||
Featured like him, like him with friends possess'd,
|
||||
Desiring this man's art and that man's scope,
|
||||
With what I most enjoy contented least;
|
||||
Yet in these thoughts myself almost despising,
|
||||
Haply I think on thee, and then my state,
|
||||
Like to the lark at break of day arising
|
||||
From sullen earth, sings hymns at heaven's gate;
|
||||
For thy sweet love remember'd such wealth brings
|
||||
That then I scorn to change my state with kings.
|
||||
When to the sessions of sweet silent thought
|
||||
I summon up remembrance of things past,
|
||||
I sigh the lack of many a thing I sought,
|
||||
And with old woes new wail my dear time's waste:
|
||||
Then can I drown an eye, unused to flow,
|
||||
For precious friends hid in death's dateless night,
|
||||
And weep afresh love's long since cancell'd woe,
|
||||
And moan the expense of many a vanish'd sight:
|
||||
Then can I grieve at grievances foregone,
|
||||
And heavily from woe to woe tell o'er
|
||||
The sad account of fore-bemoaned moan,
|
||||
Which I new pay as if not paid before.
|
||||
But if the while I think on thee, dear friend,
|
||||
All losses are restored and sorrows end.
|
||||
Thy bosom is endeared with all hearts,
|
||||
Which I by lacking have supposed dead,
|
||||
And there reigns love and all love's loving parts,
|
||||
And all those friends which I thought buried.
|
||||
How many a holy and obsequious tear
|
||||
Hath dear religious love stol'n from mine eye
|
||||
As interest of the dead, which now appear
|
||||
But things removed that hidden in thee lie!
|
||||
Thou art the grave where buried love doth live,
|
||||
Hung with the trophies of my lovers gone,
|
||||
Who all their parts of me to thee did give;
|
||||
That due of many now is thine alone:
|
||||
Their images I loved I view in thee,
|
||||
And thou, all they, hast all the all of me.
|
||||
If thou survive my well-contented day,
|
||||
When that churl Death my bones with dust shall cover,
|
||||
And shalt by fortune once more re-survey
|
||||
These poor rude lines of thy deceased lover,
|
||||
Compare them with the bettering of the time,
|
||||
And though they be outstripp'd by every pen,
|
||||
Reserve them for my love, not for their rhyme,
|
||||
Exceeded by the height of happier men.
|
||||
O, then vouchsafe me but this loving thought:
|
||||
'Had my friend's Muse grown with this growing age,
|
||||
A dearer birth than this his love had brought,
|
||||
To march in ranks of better equipage:
|
||||
But since he died and poets better prove,
|
||||
Theirs for their style I'll read, his for his love.'
|
||||
Full many a glorious morning have I seen
|
||||
Flatter the mountain-tops with sovereign eye,
|
||||
Kissing with golden face the meadows green,
|
||||
Gilding pale streams with heavenly alchemy;
|
||||
Anon permit the basest clouds to ride
|
||||
With ugly rack on his celestial face,
|
||||
And from the forlorn world his visage hide,
|
||||
Stealing unseen to west with this disgrace:
|
||||
Even so my sun one early morn did shine
|
||||
With all triumphant splendor on my brow;
|
||||
But out, alack! he was but one hour mine;
|
||||
The region cloud hath mask'd him from me now.
|
||||
Yet him for this my love no whit disdaineth;
|
||||
Suns of the world may stain when heaven's sun staineth.
|
||||
Why didst thou promise such a beauteous day,
|
||||
And make me travel forth without my cloak,
|
||||
To let base clouds o'ertake me in my way,
|
||||
Hiding thy bravery in their rotten smoke?
|
||||
'Tis not enough that through the cloud thou break,
|
||||
To dry the rain on my storm-beaten face,
|
||||
For no man well of such a salve can speak
|
||||
That heals the wound and cures not the disgrace:
|
||||
Nor can thy shame give physic to my grief;
|
||||
Though thou repent, yet I have still the loss:
|
||||
The offender's sorrow lends but weak relief
|
||||
To him that bears the strong offence's cross.
|
||||
Ah! but those tears are pearl which thy love sheds,
|
||||
And they are rich and ransom all ill deeds.
|
||||
No more be grieved at that which thou hast done:
|
||||
Roses have thorns, and silver fountains mud;
|
||||
Clouds and eclipses stain both moon and sun,
|
||||
And loathsome canker lives in sweetest bud.
|
||||
All men make faults, and even I in this,
|
||||
Authorizing thy trespass with compare,
|
||||
Myself corrupting, salving thy amiss,
|
||||
Excusing thy sins more than thy sins are;
|
||||
For to thy sensual fault I bring in sense--
|
||||
Thy adverse party is thy advocate--
|
||||
And 'gainst myself a lawful plea commence:
|
||||
Such civil war is in my love and hate
|
||||
That I an accessary needs must be
|
||||
To that sweet thief which sourly robs from me.
|
||||
Let me confess that we two must be twain,
|
||||
Although our undivided loves are one:
|
||||
So shall those blots that do with me remain
|
||||
Without thy help by me be borne alone.
|
||||
In our two loves there is but one respect,
|
||||
Though in our lives a separable spite,
|
||||
Which though it alter not love's sole effect,
|
||||
Yet doth it steal sweet hours from love's delight.
|
||||
I may not evermore acknowledge thee,
|
||||
Lest my bewailed guilt should do thee shame,
|
||||
Nor thou with public kindness honour me,
|
||||
Unless thou take that honour from thy name:
|
||||
But do not so; I love thee in such sort
|
||||
As, thou being mine, mine is thy good report.
|
||||
As a decrepit father takes delight
|
||||
To see his active child do deeds of youth,
|
||||
So I, made lame by fortune's dearest spite,
|
||||
Take all my comfort of thy worth and truth.
|
||||
For whether beauty, birth, or wealth, or wit,
|
||||
Or any of these all, or all, or more,
|
||||
Entitled in thy parts do crowned sit,
|
||||
I make my love engrafted to this store:
|
||||
So then I am not lame, poor, nor despised,
|
||||
Whilst that this shadow doth such substance give
|
||||
That I in thy abundance am sufficed
|
||||
And by a part of all thy glory live.
|
||||
Look, what is best, that best I wish in thee:
|
||||
This wish I have; then ten times happy me!
|
90
cmake/cpu_extension.cmake
Normal file
@ -0,0 +1,90 @@
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
#
|
||||
# Define environment variables for special configurations
|
||||
#
|
||||
if(DEFINED ENV{VLLM_CPU_AVX512BF16})
|
||||
set(ENABLE_AVX512BF16 ON)
|
||||
endif()
|
||||
|
||||
include_directories("${CMAKE_SOURCE_DIR}/csrc")
|
||||
|
||||
#
|
||||
# Check the compile flags
|
||||
#
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-fopenmp"
|
||||
"-DVLLM_CPU_EXTENSION")
|
||||
|
||||
execute_process(COMMAND cat /proc/cpuinfo
|
||||
RESULT_VARIABLE CPUINFO_RET
|
||||
OUTPUT_VARIABLE CPUINFO)
|
||||
|
||||
if (NOT CPUINFO_RET EQUAL 0)
|
||||
message(FATAL_ERROR "Failed to check CPU features via /proc/cpuinfo")
|
||||
endif()
|
||||
|
||||
function (find_isa CPUINFO TARGET OUT)
|
||||
string(FIND ${CPUINFO} ${TARGET} ISA_FOUND)
|
||||
if(NOT ISA_FOUND EQUAL -1)
|
||||
set(${OUT} ON PARENT_SCOPE)
|
||||
else()
|
||||
set(${OUT} OFF PARENT_SCOPE)
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
|
||||
|
||||
if (AVX512_FOUND)
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-mavx512f"
|
||||
"-mavx512vl"
|
||||
"-mavx512bw"
|
||||
"-mavx512dq")
|
||||
|
||||
find_isa(${CPUINFO} "avx512_bf16" AVX512BF16_FOUND)
|
||||
if (AVX512BF16_FOUND OR ENABLE_AVX512BF16)
|
||||
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND
|
||||
CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 12.3)
|
||||
list(APPEND CXX_COMPILE_FLAGS "-mavx512bf16")
|
||||
else()
|
||||
message(WARNING "Disable AVX512-BF16 ISA support, requires gcc/g++ >= 12.3")
|
||||
endif()
|
||||
else()
|
||||
message(WARNING "Disable AVX512-BF16 ISA support, no avx512_bf16 found in local CPU flags." " If cross-compilation is required, please set env VLLM_CPU_AVX512BF16=1.")
|
||||
endif()
|
||||
else()
|
||||
message(FATAL_ERROR "vLLM CPU backend requires AVX512 ISA support.")
|
||||
endif()
|
||||
|
||||
message(STATUS "CPU extension compile flags: ${CXX_COMPILE_FLAGS}")
|
||||
|
||||
|
||||
#
|
||||
# Define extension targets
|
||||
#
|
||||
|
||||
#
|
||||
# _C extension
|
||||
#
|
||||
set(VLLM_EXT_SRC
|
||||
"csrc/cpu/activation.cpp"
|
||||
"csrc/cpu/attention.cpp"
|
||||
"csrc/cpu/cache.cpp"
|
||||
"csrc/cpu/layernorm.cpp"
|
||||
"csrc/cpu/pos_encoding.cpp"
|
||||
"csrc/cpu/pybind.cpp")
|
||||
|
||||
define_gpu_extension_target(
|
||||
_C
|
||||
DESTINATION vllm
|
||||
LANGUAGE CXX
|
||||
SOURCES ${VLLM_EXT_SRC}
|
||||
COMPILE_FLAGS ${CXX_COMPILE_FLAGS}
|
||||
WITH_SOABI
|
||||
)
|
||||
|
||||
add_custom_target(default)
|
||||
message(STATUS "Enabling C extension.")
|
||||
add_dependencies(default _C)
|
||||
|
73
cmake/hipify.py
Executable file
@ -0,0 +1,73 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
#
|
||||
# A command line tool for running pytorch's hipify preprocessor on CUDA
|
||||
# source files.
|
||||
#
|
||||
# See https://github.com/ROCm/hipify_torch
|
||||
# and <torch install dir>/utils/hipify/hipify_python.py
|
||||
#
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import shutil
|
||||
|
||||
from torch.utils.hipify.hipify_python import hipify
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
# Project directory where all the source + include files live.
|
||||
parser.add_argument(
|
||||
"-p",
|
||||
"--project_dir",
|
||||
help="The project directory.",
|
||||
)
|
||||
|
||||
# Directory where hipified files are written.
|
||||
parser.add_argument(
|
||||
"-o",
|
||||
"--output_dir",
|
||||
help="The output directory.",
|
||||
)
|
||||
|
||||
# Source files to convert.
|
||||
parser.add_argument("sources",
|
||||
help="Source files to hipify.",
|
||||
nargs="*",
|
||||
default=[])
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Limit include scope to project_dir only
|
||||
includes = [os.path.join(args.project_dir, '*')]
|
||||
|
||||
# Get absolute path for all source files.
|
||||
extra_files = [os.path.abspath(s) for s in args.sources]
|
||||
|
||||
# Copy sources from project directory to output directory.
|
||||
# The directory might already exist to hold object files so we ignore that.
|
||||
shutil.copytree(args.project_dir, args.output_dir, dirs_exist_ok=True)
|
||||
|
||||
hipify_result = hipify(project_directory=args.project_dir,
|
||||
output_directory=args.output_dir,
|
||||
header_include_dirs=[],
|
||||
includes=includes,
|
||||
extra_files=extra_files,
|
||||
show_detailed=True,
|
||||
is_pytorch_extension=True,
|
||||
hipify_extra_files_only=True)
|
||||
|
||||
hipified_sources = []
|
||||
for source in args.sources:
|
||||
s_abs = os.path.abspath(source)
|
||||
hipified_s_abs = (hipify_result[s_abs].hipified_path if
|
||||
(s_abs in hipify_result
|
||||
and hipify_result[s_abs].hipified_path is not None)
|
||||
else s_abs)
|
||||
hipified_sources.append(hipified_s_abs)
|
||||
|
||||
assert (len(hipified_sources) == len(args.sources))
|
||||
|
||||
# Print hipified source files.
|
||||
print("\n".join(hipified_sources))
|
351
cmake/utils.cmake
Normal file
@ -0,0 +1,351 @@
|
||||
#
|
||||
# Attempt to find the python package that uses the same python executable as
|
||||
# `EXECUTABLE` and is one of the `SUPPORTED_VERSIONS`.
|
||||
#
|
||||
macro (find_python_from_executable EXECUTABLE SUPPORTED_VERSIONS)
|
||||
file(REAL_PATH ${EXECUTABLE} EXECUTABLE)
|
||||
set(Python_EXECUTABLE ${EXECUTABLE})
|
||||
find_package(Python COMPONENTS Interpreter Development.Module)
|
||||
if (NOT Python_FOUND)
|
||||
message(FATAL_ERROR "Unable to find python matching: ${EXECUTABLE}.")
|
||||
endif()
|
||||
set(_VER "${Python_VERSION_MAJOR}.${Python_VERSION_MINOR}")
|
||||
set(_SUPPORTED_VERSIONS_LIST ${SUPPORTED_VERSIONS} ${ARGN})
|
||||
if (NOT _VER IN_LIST _SUPPORTED_VERSIONS_LIST)
|
||||
message(FATAL_ERROR
|
||||
"Python version (${_VER}) is not one of the supported versions: "
|
||||
"${_SUPPORTED_VERSIONS_LIST}.")
|
||||
endif()
|
||||
message(STATUS "Found python matching: ${EXECUTABLE}.")
|
||||
endmacro()
|
||||
|
||||
#
|
||||
# Run `EXPR` in python. The standard output of python is stored in `OUT` and
|
||||
# has trailing whitespace stripped. If an error is encountered when running
|
||||
# python, a fatal message `ERR_MSG` is issued.
|
||||
#
|
||||
function (run_python OUT EXPR ERR_MSG)
|
||||
execute_process(
|
||||
COMMAND
|
||||
"${Python_EXECUTABLE}" "-c" "${EXPR}"
|
||||
OUTPUT_VARIABLE PYTHON_OUT
|
||||
RESULT_VARIABLE PYTHON_ERROR_CODE
|
||||
ERROR_VARIABLE PYTHON_STDERR
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||
|
||||
if(NOT PYTHON_ERROR_CODE EQUAL 0)
|
||||
message(FATAL_ERROR "${ERR_MSG}: ${PYTHON_STDERR}")
|
||||
endif()
|
||||
set(${OUT} ${PYTHON_OUT} PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
# Run `EXPR` in python after importing `PKG`. Use the result of this to extend
|
||||
# `CMAKE_PREFIX_PATH` so the torch cmake configuration can be imported.
|
||||
macro (append_cmake_prefix_path PKG EXPR)
|
||||
run_python(_PREFIX_PATH
|
||||
"import ${PKG}; print(${EXPR})" "Failed to locate ${PKG} path")
|
||||
list(APPEND CMAKE_PREFIX_PATH ${_PREFIX_PATH})
|
||||
endmacro()
|
||||
|
||||
#
|
||||
# Add a target named `hipify${NAME}` that runs the hipify preprocessor on a set
|
||||
# of CUDA source files. The names of the corresponding "hipified" sources are
|
||||
# stored in `OUT_SRCS`.
|
||||
#
|
||||
function (hipify_sources_target OUT_SRCS NAME ORIG_SRCS)
|
||||
#
|
||||
# Split into C++ and non-C++ (i.e. CUDA) sources.
|
||||
#
|
||||
set(SRCS ${ORIG_SRCS})
|
||||
set(CXX_SRCS ${ORIG_SRCS})
|
||||
list(FILTER SRCS EXCLUDE REGEX "\.(cc)|(cpp)$")
|
||||
list(FILTER CXX_SRCS INCLUDE REGEX "\.(cc)|(cpp)$")
|
||||
|
||||
#
|
||||
# Generate ROCm/HIP source file names from CUDA file names.
|
||||
# Since HIP files are generated code, they will appear in the build area
|
||||
# `CMAKE_CURRENT_BINARY_DIR` directory rather than the original csrc dir.
|
||||
#
|
||||
set(HIP_SRCS)
|
||||
foreach (SRC ${SRCS})
|
||||
string(REGEX REPLACE "\.cu$" "\.hip" SRC ${SRC})
|
||||
string(REGEX REPLACE "cuda" "hip" SRC ${SRC})
|
||||
list(APPEND HIP_SRCS "${CMAKE_CURRENT_BINARY_DIR}/${SRC}")
|
||||
endforeach()
|
||||
|
||||
set(CSRC_BUILD_DIR ${CMAKE_CURRENT_BINARY_DIR}/csrc)
|
||||
add_custom_target(
|
||||
hipify${NAME}
|
||||
COMMAND ${CMAKE_SOURCE_DIR}/cmake/hipify.py -p ${CMAKE_SOURCE_DIR}/csrc -o ${CSRC_BUILD_DIR} ${SRCS}
|
||||
DEPENDS ${CMAKE_SOURCE_DIR}/cmake/hipify.py ${SRCS}
|
||||
BYPRODUCTS ${HIP_SRCS}
|
||||
COMMENT "Running hipify on ${NAME} extension source files.")
|
||||
|
||||
# Swap out original extension sources with hipified sources.
|
||||
list(APPEND HIP_SRCS ${CXX_SRCS})
|
||||
set(${OUT_SRCS} ${HIP_SRCS} PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
#
|
||||
# Get additional GPU compiler flags from torch.
|
||||
#
|
||||
function (get_torch_gpu_compiler_flags OUT_GPU_FLAGS GPU_LANG)
|
||||
if (${GPU_LANG} STREQUAL "CUDA")
|
||||
#
|
||||
# Get common NVCC flags from torch.
|
||||
#
|
||||
run_python(GPU_FLAGS
|
||||
"from torch.utils.cpp_extension import COMMON_NVCC_FLAGS; print(';'.join(COMMON_NVCC_FLAGS))"
|
||||
"Failed to determine torch nvcc compiler flags")
|
||||
|
||||
if (CUDA_VERSION VERSION_GREATER_EQUAL 11.8)
|
||||
list(APPEND GPU_FLAGS "-DENABLE_FP8_E5M2")
|
||||
list(REMOVE_ITEM GPU_FLAGS
|
||||
"-D__CUDA_NO_HALF_OPERATORS__"
|
||||
"-D__CUDA_NO_HALF_CONVERSIONS__"
|
||||
"-D__CUDA_NO_BFLOAT16_CONVERSIONS__"
|
||||
"-D__CUDA_NO_HALF2_OPERATORS__")
|
||||
endif()
|
||||
|
||||
elseif(${GPU_LANG} STREQUAL "HIP")
|
||||
#
|
||||
# Get common HIP/HIPCC flags from torch.
|
||||
#
|
||||
run_python(GPU_FLAGS
|
||||
"import torch.utils.cpp_extension as t; print(';'.join(t.COMMON_HIP_FLAGS + t.COMMON_HIPCC_FLAGS))"
|
||||
"Failed to determine torch nvcc compiler flags")
|
||||
|
||||
list(APPEND GPU_FLAGS
|
||||
"-DUSE_ROCM"
|
||||
"-U__HIP_NO_HALF_CONVERSIONS__"
|
||||
"-U__HIP_NO_HALF_OPERATORS__"
|
||||
"-fno-gpu-rdc")
|
||||
|
||||
endif()
|
||||
set(${OUT_GPU_FLAGS} ${GPU_FLAGS} PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
# Macro for converting a `gencode` version number to a cmake version number.
|
||||
macro(string_to_ver OUT_VER IN_STR)
|
||||
string(REGEX REPLACE "\([0-9]+\)\([0-9]\)" "\\1.\\2" ${OUT_VER} ${IN_STR})
|
||||
endmacro()
|
||||
|
||||
#
|
||||
# Override the GPU architectures detected by cmake/torch and filter them by
|
||||
# `GPU_SUPPORTED_ARCHES`. Sets the final set of architectures in
|
||||
# `GPU_ARCHES`.
|
||||
#
|
||||
# Note: this is defined as a macro since it updates `CMAKE_CUDA_FLAGS`.
|
||||
#
|
||||
macro(override_gpu_arches GPU_ARCHES GPU_LANG GPU_SUPPORTED_ARCHES)
|
||||
set(_GPU_SUPPORTED_ARCHES_LIST ${GPU_SUPPORTED_ARCHES} ${ARGN})
|
||||
message(STATUS "${GPU_LANG} supported arches: ${_GPU_SUPPORTED_ARCHES_LIST}")
|
||||
|
||||
if (${GPU_LANG} STREQUAL "HIP")
|
||||
#
|
||||
# `GPU_ARCHES` controls the `--offload-arch` flags.
|
||||
# `CMAKE_HIP_ARCHITECTURES` is set up by torch and can be controlled
|
||||
# via the `PYTORCH_ROCM_ARCH` env variable.
|
||||
#
|
||||
|
||||
#
|
||||
# Find the intersection of the supported + detected architectures to
|
||||
# set the module architecture flags.
|
||||
#
|
||||
set(${GPU_ARCHES})
|
||||
foreach (_ARCH ${CMAKE_HIP_ARCHITECTURES})
|
||||
if (_ARCH IN_LIST _GPU_SUPPORTED_ARCHES_LIST)
|
||||
list(APPEND ${GPU_ARCHES} ${_ARCH})
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
if(NOT ${GPU_ARCHES})
|
||||
message(FATAL_ERROR
|
||||
"None of the detected ROCm architectures: ${CMAKE_HIP_ARCHITECTURES} is"
|
||||
" supported. Supported ROCm architectures are: ${_GPU_SUPPORTED_ARCHES_LIST}.")
|
||||
endif()
|
||||
|
||||
elseif(${GPU_LANG} STREQUAL "CUDA")
|
||||
#
|
||||
# Setup/process CUDA arch flags.
|
||||
#
|
||||
# The torch cmake setup hardcodes the detected architecture flags in
|
||||
# `CMAKE_CUDA_FLAGS`. Since `CMAKE_CUDA_FLAGS` is a "global" variable, it
|
||||
# can't modified on a per-target basis, e.g. for the `punica` extension.
|
||||
# So, all the `-gencode` flags need to be extracted and removed from
|
||||
# `CMAKE_CUDA_FLAGS` for processing so they can be passed by another method.
|
||||
# Since it's not possible to use `target_compiler_options` for adding target
|
||||
# specific `-gencode` arguments, the target's `CUDA_ARCHITECTURES` property
|
||||
# must be used instead. This requires repackaging the architecture flags
|
||||
# into a format that cmake expects for `CUDA_ARCHITECTURES`.
|
||||
#
|
||||
# This is a bit fragile in that it depends on torch using `-gencode` as opposed
|
||||
# to one of the other nvcc options to specify architectures.
|
||||
#
|
||||
# Note: torch uses the `TORCH_CUDA_ARCH_LIST` environment variable to override
|
||||
# detected architectures.
|
||||
#
|
||||
message(DEBUG "initial CMAKE_CUDA_FLAGS: ${CMAKE_CUDA_FLAGS}")
|
||||
|
||||
# Extract all `-gencode` flags from `CMAKE_CUDA_FLAGS`
|
||||
string(REGEX MATCHALL "-gencode arch=[^ ]+" _CUDA_ARCH_FLAGS
|
||||
${CMAKE_CUDA_FLAGS})
|
||||
|
||||
# Remove all `-gencode` flags from `CMAKE_CUDA_FLAGS` since they will be modified
|
||||
# and passed back via the `CUDA_ARCHITECTURES` property.
|
||||
string(REGEX REPLACE "-gencode arch=[^ ]+ *" "" CMAKE_CUDA_FLAGS
|
||||
${CMAKE_CUDA_FLAGS})
|
||||
|
||||
# If this error is triggered, it might mean that torch has changed how it sets
|
||||
# up nvcc architecture code generation flags.
|
||||
if (NOT _CUDA_ARCH_FLAGS)
|
||||
message(FATAL_ERROR
|
||||
"Could not find any architecture related code generation flags in "
|
||||
"CMAKE_CUDA_FLAGS. (${CMAKE_CUDA_FLAGS})")
|
||||
endif()
|
||||
|
||||
message(DEBUG "final CMAKE_CUDA_FLAGS: ${CMAKE_CUDA_FLAGS}")
|
||||
message(DEBUG "arch flags: ${_CUDA_ARCH_FLAGS}")
|
||||
|
||||
# Initialize the architecture lists to empty.
|
||||
set(${GPU_ARCHES})
|
||||
|
||||
# Process each `gencode` flag.
|
||||
foreach(_ARCH ${_CUDA_ARCH_FLAGS})
|
||||
# For each flag, extract the version number and whether it refers to PTX
|
||||
# or native code.
|
||||
# Note: if a regex matches then `CMAKE_MATCH_1` holds the binding
|
||||
# for that match.
|
||||
|
||||
string(REGEX MATCH "arch=compute_\([0-9]+a?\)" _COMPUTE ${_ARCH})
|
||||
if (_COMPUTE)
|
||||
set(_COMPUTE ${CMAKE_MATCH_1})
|
||||
endif()
|
||||
|
||||
string(REGEX MATCH "code=sm_\([0-9]+a?\)" _SM ${_ARCH})
|
||||
if (_SM)
|
||||
set(_SM ${CMAKE_MATCH_1})
|
||||
endif()
|
||||
|
||||
string(REGEX MATCH "code=compute_\([0-9]+a?\)" _CODE ${_ARCH})
|
||||
if (_CODE)
|
||||
set(_CODE ${CMAKE_MATCH_1})
|
||||
endif()
|
||||
|
||||
# Make sure the virtual architecture can be matched.
|
||||
if (NOT _COMPUTE)
|
||||
message(FATAL_ERROR
|
||||
"Could not determine virtual architecture from: ${_ARCH}.")
|
||||
endif()
|
||||
|
||||
# One of sm_ or compute_ must exist.
|
||||
if ((NOT _SM) AND (NOT _CODE))
|
||||
message(FATAL_ERROR
|
||||
"Could not determine a codegen architecture from: ${_ARCH}.")
|
||||
endif()
|
||||
|
||||
if (_SM)
|
||||
# -real suffix let CMake to only generate elf code for the kernels.
|
||||
# we want this, otherwise the added ptx (default) will increase binary size.
|
||||
set(_VIRT "-real")
|
||||
set(_CODE_ARCH ${_SM})
|
||||
else()
|
||||
# -virtual suffix let CMake to generate ptx code for the kernels.
|
||||
set(_VIRT "-virtual")
|
||||
set(_CODE_ARCH ${_CODE})
|
||||
endif()
|
||||
|
||||
# Check if the current version is in the supported arch list.
|
||||
string_to_ver(_CODE_VER ${_CODE_ARCH})
|
||||
if (NOT _CODE_VER IN_LIST _GPU_SUPPORTED_ARCHES_LIST)
|
||||
message(STATUS "discarding unsupported CUDA arch ${_VER}.")
|
||||
continue()
|
||||
endif()
|
||||
|
||||
# Add it to the arch list.
|
||||
list(APPEND ${GPU_ARCHES} "${_CODE_ARCH}${_VIRT}")
|
||||
endforeach()
|
||||
endif()
|
||||
message(STATUS "${GPU_LANG} target arches: ${${GPU_ARCHES}}")
|
||||
endmacro()
|
||||
|
||||
#
|
||||
# Define a target named `GPU_MOD_NAME` for a single extension. The
|
||||
# arguments are:
|
||||
#
|
||||
# DESTINATION <dest> - Module destination directory.
|
||||
# LANGUAGE <lang> - The GPU language for this module, e.g CUDA, HIP,
|
||||
# etc.
|
||||
# SOURCES <sources> - List of source files relative to CMakeLists.txt
|
||||
# directory.
|
||||
#
|
||||
# Optional arguments:
|
||||
#
|
||||
# ARCHITECTURES <arches> - A list of target GPU architectures in cmake
|
||||
# format.
|
||||
# Refer `CMAKE_CUDA_ARCHITECTURES` documentation
|
||||
# and `CMAKE_HIP_ARCHITECTURES` for more info.
|
||||
# ARCHITECTURES will use cmake's defaults if
|
||||
# not provided.
|
||||
# COMPILE_FLAGS <flags> - Extra compiler flags passed to NVCC/hip.
|
||||
# INCLUDE_DIRECTORIES <dirs> - Extra include directories.
|
||||
# LIBRARIES <libraries> - Extra link libraries.
|
||||
# WITH_SOABI - Generate library with python SOABI suffix name.
|
||||
#
|
||||
# Note: optimization level/debug info is set via cmake build type.
|
||||
#
|
||||
function (define_gpu_extension_target GPU_MOD_NAME)
|
||||
cmake_parse_arguments(PARSE_ARGV 1
|
||||
GPU
|
||||
"WITH_SOABI"
|
||||
"DESTINATION;LANGUAGE"
|
||||
"SOURCES;ARCHITECTURES;COMPILE_FLAGS;INCLUDE_DIRECTORIES;LIBRARIES")
|
||||
|
||||
# Add hipify preprocessing step when building with HIP/ROCm.
|
||||
if (GPU_LANGUAGE STREQUAL "HIP")
|
||||
hipify_sources_target(GPU_SOURCES ${GPU_MOD_NAME} "${GPU_SOURCES}")
|
||||
endif()
|
||||
|
||||
if (GPU_WITH_SOABI)
|
||||
set(GPU_WITH_SOABI WITH_SOABI)
|
||||
else()
|
||||
set(GPU_WITH_SOABI)
|
||||
endif()
|
||||
|
||||
Python_add_library(${GPU_MOD_NAME} MODULE "${GPU_SOURCES}" ${GPU_WITH_SOABI})
|
||||
|
||||
if (GPU_LANGUAGE STREQUAL "HIP")
|
||||
# Make this target dependent on the hipify preprocessor step.
|
||||
add_dependencies(${GPU_MOD_NAME} hipify${GPU_MOD_NAME})
|
||||
endif()
|
||||
|
||||
if (GPU_ARCHITECTURES)
|
||||
set_target_properties(${GPU_MOD_NAME} PROPERTIES
|
||||
${GPU_LANGUAGE}_ARCHITECTURES "${GPU_ARCHITECTURES}")
|
||||
endif()
|
||||
|
||||
set_property(TARGET ${GPU_MOD_NAME} PROPERTY CXX_STANDARD 17)
|
||||
|
||||
target_compile_options(${GPU_MOD_NAME} PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:${GPU_LANGUAGE}>:${GPU_COMPILE_FLAGS}>)
|
||||
|
||||
target_compile_definitions(${GPU_MOD_NAME} PRIVATE
|
||||
"-DTORCH_EXTENSION_NAME=${GPU_MOD_NAME}")
|
||||
|
||||
target_include_directories(${GPU_MOD_NAME} PRIVATE csrc
|
||||
${GPU_INCLUDE_DIRECTORIES})
|
||||
|
||||
target_link_libraries(${GPU_MOD_NAME} PRIVATE torch ${torch_python_LIBRARY}
|
||||
${GPU_LIBRARIES})
|
||||
|
||||
# Don't use `TORCH_LIBRARIES` for CUDA since it pulls in a bunch of
|
||||
# dependencies that are not necessary and may not be installed.
|
||||
if (GPU_LANGUAGE STREQUAL "CUDA")
|
||||
target_link_libraries(${GPU_MOD_NAME} PRIVATE ${CUDA_CUDA_LIB}
|
||||
${CUDA_LIBRARIES})
|
||||
else()
|
||||
target_link_libraries(${GPU_MOD_NAME} PRIVATE ${TORCH_LIBRARIES})
|
||||
endif()
|
||||
|
||||
install(TARGETS ${GPU_MOD_NAME} LIBRARY DESTINATION ${GPU_DESTINATION})
|
||||
endfunction()
|
719
collect_env.py
Normal file
@ -0,0 +1,719 @@
|
||||
# ruff: noqa
|
||||
# code borrowed from https://github.com/pytorch/pytorch/blob/main/torch/utils/collect_env.py
|
||||
|
||||
# Unlike the rest of the PyTorch this file must be python2 compliant.
|
||||
# This script outputs relevant system environment info
|
||||
# Run it with `python collect_env.py` or `python -m torch.utils.collect_env`
|
||||
import datetime
|
||||
import locale
|
||||
import os
|
||||
import re
|
||||
import subprocess
|
||||
import sys
|
||||
from collections import namedtuple
|
||||
|
||||
try:
|
||||
import torch
|
||||
TORCH_AVAILABLE = True
|
||||
except (ImportError, NameError, AttributeError, OSError):
|
||||
TORCH_AVAILABLE = False
|
||||
|
||||
# System Environment Information
|
||||
SystemEnv = namedtuple(
|
||||
'SystemEnv',
|
||||
[
|
||||
'torch_version',
|
||||
'is_debug_build',
|
||||
'cuda_compiled_version',
|
||||
'gcc_version',
|
||||
'clang_version',
|
||||
'cmake_version',
|
||||
'os',
|
||||
'libc_version',
|
||||
'python_version',
|
||||
'python_platform',
|
||||
'is_cuda_available',
|
||||
'cuda_runtime_version',
|
||||
'cuda_module_loading',
|
||||
'nvidia_driver_version',
|
||||
'nvidia_gpu_models',
|
||||
'cudnn_version',
|
||||
'pip_version', # 'pip' or 'pip3'
|
||||
'pip_packages',
|
||||
'conda_packages',
|
||||
'hip_compiled_version',
|
||||
'hip_runtime_version',
|
||||
'miopen_runtime_version',
|
||||
'caching_allocator_config',
|
||||
'is_xnnpack_available',
|
||||
'cpu_info',
|
||||
'rocm_version', # vllm specific field
|
||||
'neuron_sdk_version', # vllm specific field
|
||||
'vllm_version', # vllm specific field
|
||||
'vllm_build_flags', # vllm specific field
|
||||
'gpu_topo', # vllm specific field
|
||||
])
|
||||
|
||||
DEFAULT_CONDA_PATTERNS = {
|
||||
"torch",
|
||||
"numpy",
|
||||
"cudatoolkit",
|
||||
"soumith",
|
||||
"mkl",
|
||||
"magma",
|
||||
"triton",
|
||||
"optree",
|
||||
}
|
||||
|
||||
DEFAULT_PIP_PATTERNS = {
|
||||
"torch",
|
||||
"numpy",
|
||||
"mypy",
|
||||
"flake8",
|
||||
"triton",
|
||||
"optree",
|
||||
"onnx",
|
||||
}
|
||||
|
||||
|
||||
def run(command):
|
||||
"""Return (return-code, stdout, stderr)."""
|
||||
shell = True if type(command) is str else False
|
||||
p = subprocess.Popen(command,
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
shell=shell)
|
||||
raw_output, raw_err = p.communicate()
|
||||
rc = p.returncode
|
||||
if get_platform() == 'win32':
|
||||
enc = 'oem'
|
||||
else:
|
||||
enc = locale.getpreferredencoding()
|
||||
output = raw_output.decode(enc)
|
||||
err = raw_err.decode(enc)
|
||||
return rc, output.strip(), err.strip()
|
||||
|
||||
|
||||
def run_and_read_all(run_lambda, command):
|
||||
"""Run command using run_lambda; reads and returns entire output if rc is 0."""
|
||||
rc, out, _ = run_lambda(command)
|
||||
if rc != 0:
|
||||
return None
|
||||
return out
|
||||
|
||||
|
||||
def run_and_parse_first_match(run_lambda, command, regex):
|
||||
"""Run command using run_lambda, returns the first regex match if it exists."""
|
||||
rc, out, _ = run_lambda(command)
|
||||
if rc != 0:
|
||||
return None
|
||||
match = re.search(regex, out)
|
||||
if match is None:
|
||||
return None
|
||||
return match.group(1)
|
||||
|
||||
|
||||
def run_and_return_first_line(run_lambda, command):
|
||||
"""Run command using run_lambda and returns first line if output is not empty."""
|
||||
rc, out, _ = run_lambda(command)
|
||||
if rc != 0:
|
||||
return None
|
||||
return out.split('\n')[0]
|
||||
|
||||
|
||||
def get_conda_packages(run_lambda, patterns=None):
|
||||
if patterns is None:
|
||||
patterns = DEFAULT_CONDA_PATTERNS
|
||||
conda = os.environ.get('CONDA_EXE', 'conda')
|
||||
out = run_and_read_all(run_lambda, "{} list".format(conda))
|
||||
if out is None:
|
||||
return out
|
||||
|
||||
return "\n".join(line for line in out.splitlines()
|
||||
if not line.startswith("#") and any(name in line
|
||||
for name in patterns))
|
||||
|
||||
|
||||
def get_gcc_version(run_lambda):
|
||||
return run_and_parse_first_match(run_lambda, 'gcc --version', r'gcc (.*)')
|
||||
|
||||
|
||||
def get_clang_version(run_lambda):
|
||||
return run_and_parse_first_match(run_lambda, 'clang --version',
|
||||
r'clang version (.*)')
|
||||
|
||||
|
||||
def get_cmake_version(run_lambda):
|
||||
return run_and_parse_first_match(run_lambda, 'cmake --version',
|
||||
r'cmake (.*)')
|
||||
|
||||
|
||||
def get_nvidia_driver_version(run_lambda):
|
||||
if get_platform() == 'darwin':
|
||||
cmd = 'kextstat | grep -i cuda'
|
||||
return run_and_parse_first_match(run_lambda, cmd,
|
||||
r'com[.]nvidia[.]CUDA [(](.*?)[)]')
|
||||
smi = get_nvidia_smi()
|
||||
return run_and_parse_first_match(run_lambda, smi,
|
||||
r'Driver Version: (.*?) ')
|
||||
|
||||
|
||||
def get_gpu_info(run_lambda):
|
||||
if get_platform() == 'darwin' or (TORCH_AVAILABLE and hasattr(
|
||||
torch.version, 'hip') and torch.version.hip is not None):
|
||||
if TORCH_AVAILABLE and torch.cuda.is_available():
|
||||
if torch.version.hip is not None:
|
||||
prop = torch.cuda.get_device_properties(0)
|
||||
if hasattr(prop, "gcnArchName"):
|
||||
gcnArch = " ({})".format(prop.gcnArchName)
|
||||
else:
|
||||
gcnArch = "NoGCNArchNameOnOldPyTorch"
|
||||
else:
|
||||
gcnArch = ""
|
||||
return torch.cuda.get_device_name(None) + gcnArch
|
||||
return None
|
||||
smi = get_nvidia_smi()
|
||||
uuid_regex = re.compile(r' \(UUID: .+?\)')
|
||||
rc, out, _ = run_lambda(smi + ' -L')
|
||||
if rc != 0:
|
||||
return None
|
||||
# Anonymize GPUs by removing their UUID
|
||||
return re.sub(uuid_regex, '', out)
|
||||
|
||||
|
||||
def get_running_cuda_version(run_lambda):
|
||||
return run_and_parse_first_match(run_lambda, 'nvcc --version',
|
||||
r'release .+ V(.*)')
|
||||
|
||||
|
||||
def get_cudnn_version(run_lambda):
|
||||
"""Return a list of libcudnn.so; it's hard to tell which one is being used."""
|
||||
if get_platform() == 'win32':
|
||||
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
|
||||
cuda_path = os.environ.get('CUDA_PATH', "%CUDA_PATH%")
|
||||
where_cmd = os.path.join(system_root, 'System32', 'where')
|
||||
cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
|
||||
elif get_platform() == 'darwin':
|
||||
# CUDA libraries and drivers can be found in /usr/local/cuda/. See
|
||||
# https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
|
||||
# https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
|
||||
# Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
|
||||
cudnn_cmd = 'ls /usr/local/cuda/lib/libcudnn*'
|
||||
else:
|
||||
cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
|
||||
rc, out, _ = run_lambda(cudnn_cmd)
|
||||
# find will return 1 if there are permission errors or if not found
|
||||
if len(out) == 0 or (rc != 1 and rc != 0):
|
||||
l = os.environ.get('CUDNN_LIBRARY')
|
||||
if l is not None and os.path.isfile(l):
|
||||
return os.path.realpath(l)
|
||||
return None
|
||||
files_set = set()
|
||||
for fn in out.split('\n'):
|
||||
fn = os.path.realpath(fn) # eliminate symbolic links
|
||||
if os.path.isfile(fn):
|
||||
files_set.add(fn)
|
||||
if not files_set:
|
||||
return None
|
||||
# Alphabetize the result because the order is non-deterministic otherwise
|
||||
files = sorted(files_set)
|
||||
if len(files) == 1:
|
||||
return files[0]
|
||||
result = '\n'.join(files)
|
||||
return 'Probably one of the following:\n{}'.format(result)
|
||||
|
||||
|
||||
def get_nvidia_smi():
|
||||
# Note: nvidia-smi is currently available only on Windows and Linux
|
||||
smi = 'nvidia-smi'
|
||||
if get_platform() == 'win32':
|
||||
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
|
||||
program_files_root = os.environ.get('PROGRAMFILES',
|
||||
'C:\\Program Files')
|
||||
legacy_path = os.path.join(program_files_root, 'NVIDIA Corporation',
|
||||
'NVSMI', smi)
|
||||
new_path = os.path.join(system_root, 'System32', smi)
|
||||
smis = [new_path, legacy_path]
|
||||
for candidate_smi in smis:
|
||||
if os.path.exists(candidate_smi):
|
||||
smi = '"{}"'.format(candidate_smi)
|
||||
break
|
||||
return smi
|
||||
|
||||
|
||||
def get_rocm_version(run_lambda):
|
||||
"""Returns the ROCm version if available, otherwise 'N/A'."""
|
||||
return run_and_parse_first_match(run_lambda, 'hipcc --version',
|
||||
r'HIP version: (\S+)')
|
||||
|
||||
|
||||
def get_neuron_sdk_version(run_lambda):
|
||||
# Adapted from your install script
|
||||
try:
|
||||
result = run_lambda(["neuron-ls"])
|
||||
return result if result[0] == 0 else 'N/A'
|
||||
except Exception:
|
||||
return 'N/A'
|
||||
|
||||
|
||||
def get_vllm_version():
|
||||
try:
|
||||
import vllm
|
||||
return vllm.__version__
|
||||
except ImportError:
|
||||
return 'N/A'
|
||||
|
||||
|
||||
def summarize_vllm_build_flags():
|
||||
# This could be a static method if the flags are constant, or dynamic if you need to check environment variables, etc.
|
||||
return 'CUDA Archs: {}; ROCm: {}; Neuron: {}'.format(
|
||||
os.environ.get('TORCH_CUDA_ARCH_LIST', 'Not Set'),
|
||||
'Enabled' if os.environ.get('ROCM_HOME') else 'Disabled',
|
||||
'Enabled' if os.environ.get('NEURON_CORES') else 'Disabled',
|
||||
)
|
||||
|
||||
|
||||
def get_gpu_topo(run_lambda):
|
||||
if get_platform() == 'linux':
|
||||
return run_and_read_all(run_lambda, 'nvidia-smi topo -m')
|
||||
return None
|
||||
|
||||
|
||||
# example outputs of CPU infos
|
||||
# * linux
|
||||
# Architecture: x86_64
|
||||
# CPU op-mode(s): 32-bit, 64-bit
|
||||
# Address sizes: 46 bits physical, 48 bits virtual
|
||||
# Byte Order: Little Endian
|
||||
# CPU(s): 128
|
||||
# On-line CPU(s) list: 0-127
|
||||
# Vendor ID: GenuineIntel
|
||||
# Model name: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
|
||||
# CPU family: 6
|
||||
# Model: 106
|
||||
# Thread(s) per core: 2
|
||||
# Core(s) per socket: 32
|
||||
# Socket(s): 2
|
||||
# Stepping: 6
|
||||
# BogoMIPS: 5799.78
|
||||
# Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr
|
||||
# sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl
|
||||
# xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16
|
||||
# pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand
|
||||
# hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced
|
||||
# fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap
|
||||
# avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1
|
||||
# xsaves wbnoinvd ida arat avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq
|
||||
# avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear flush_l1d arch_capabilities
|
||||
# Virtualization features:
|
||||
# Hypervisor vendor: KVM
|
||||
# Virtualization type: full
|
||||
# Caches (sum of all):
|
||||
# L1d: 3 MiB (64 instances)
|
||||
# L1i: 2 MiB (64 instances)
|
||||
# L2: 80 MiB (64 instances)
|
||||
# L3: 108 MiB (2 instances)
|
||||
# NUMA:
|
||||
# NUMA node(s): 2
|
||||
# NUMA node0 CPU(s): 0-31,64-95
|
||||
# NUMA node1 CPU(s): 32-63,96-127
|
||||
# Vulnerabilities:
|
||||
# Itlb multihit: Not affected
|
||||
# L1tf: Not affected
|
||||
# Mds: Not affected
|
||||
# Meltdown: Not affected
|
||||
# Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
|
||||
# Retbleed: Not affected
|
||||
# Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
|
||||
# Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
|
||||
# Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
|
||||
# Srbds: Not affected
|
||||
# Tsx async abort: Not affected
|
||||
# * win32
|
||||
# Architecture=9
|
||||
# CurrentClockSpeed=2900
|
||||
# DeviceID=CPU0
|
||||
# Family=179
|
||||
# L2CacheSize=40960
|
||||
# L2CacheSpeed=
|
||||
# Manufacturer=GenuineIntel
|
||||
# MaxClockSpeed=2900
|
||||
# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
|
||||
# ProcessorType=3
|
||||
# Revision=27142
|
||||
#
|
||||
# Architecture=9
|
||||
# CurrentClockSpeed=2900
|
||||
# DeviceID=CPU1
|
||||
# Family=179
|
||||
# L2CacheSize=40960
|
||||
# L2CacheSpeed=
|
||||
# Manufacturer=GenuineIntel
|
||||
# MaxClockSpeed=2900
|
||||
# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
|
||||
# ProcessorType=3
|
||||
# Revision=27142
|
||||
|
||||
|
||||
def get_cpu_info(run_lambda):
|
||||
rc, out, err = 0, '', ''
|
||||
if get_platform() == 'linux':
|
||||
rc, out, err = run_lambda('lscpu')
|
||||
elif get_platform() == 'win32':
|
||||
rc, out, err = run_lambda(
|
||||
'wmic cpu get Name,Manufacturer,Family,Architecture,ProcessorType,DeviceID, \
|
||||
CurrentClockSpeed,MaxClockSpeed,L2CacheSize,L2CacheSpeed,Revision /VALUE'
|
||||
)
|
||||
elif get_platform() == 'darwin':
|
||||
rc, out, err = run_lambda("sysctl -n machdep.cpu.brand_string")
|
||||
cpu_info = 'None'
|
||||
if rc == 0:
|
||||
cpu_info = out
|
||||
else:
|
||||
cpu_info = err
|
||||
return cpu_info
|
||||
|
||||
|
||||
def get_platform():
|
||||
if sys.platform.startswith('linux'):
|
||||
return 'linux'
|
||||
elif sys.platform.startswith('win32'):
|
||||
return 'win32'
|
||||
elif sys.platform.startswith('cygwin'):
|
||||
return 'cygwin'
|
||||
elif sys.platform.startswith('darwin'):
|
||||
return 'darwin'
|
||||
else:
|
||||
return sys.platform
|
||||
|
||||
|
||||
def get_mac_version(run_lambda):
|
||||
return run_and_parse_first_match(run_lambda, 'sw_vers -productVersion',
|
||||
r'(.*)')
|
||||
|
||||
|
||||
def get_windows_version(run_lambda):
|
||||
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
|
||||
wmic_cmd = os.path.join(system_root, 'System32', 'Wbem', 'wmic')
|
||||
findstr_cmd = os.path.join(system_root, 'System32', 'findstr')
|
||||
return run_and_read_all(
|
||||
run_lambda,
|
||||
'{} os get Caption | {} /v Caption'.format(wmic_cmd, findstr_cmd))
|
||||
|
||||
|
||||
def get_lsb_version(run_lambda):
|
||||
return run_and_parse_first_match(run_lambda, 'lsb_release -a',
|
||||
r'Description:\t(.*)')
|
||||
|
||||
|
||||
def check_release_file(run_lambda):
|
||||
return run_and_parse_first_match(run_lambda, 'cat /etc/*-release',
|
||||
r'PRETTY_NAME="(.*)"')
|
||||
|
||||
|
||||
def get_os(run_lambda):
|
||||
from platform import machine
|
||||
platform = get_platform()
|
||||
|
||||
if platform == 'win32' or platform == 'cygwin':
|
||||
return get_windows_version(run_lambda)
|
||||
|
||||
if platform == 'darwin':
|
||||
version = get_mac_version(run_lambda)
|
||||
if version is None:
|
||||
return None
|
||||
return 'macOS {} ({})'.format(version, machine())
|
||||
|
||||
if platform == 'linux':
|
||||
# Ubuntu/Debian based
|
||||
desc = get_lsb_version(run_lambda)
|
||||
if desc is not None:
|
||||
return '{} ({})'.format(desc, machine())
|
||||
|
||||
# Try reading /etc/*-release
|
||||
desc = check_release_file(run_lambda)
|
||||
if desc is not None:
|
||||
return '{} ({})'.format(desc, machine())
|
||||
|
||||
return '{} ({})'.format(platform, machine())
|
||||
|
||||
# Unknown platform
|
||||
return platform
|
||||
|
||||
|
||||
def get_python_platform():
|
||||
import platform
|
||||
return platform.platform()
|
||||
|
||||
|
||||
def get_libc_version():
|
||||
import platform
|
||||
if get_platform() != 'linux':
|
||||
return 'N/A'
|
||||
return '-'.join(platform.libc_ver())
|
||||
|
||||
|
||||
def get_pip_packages(run_lambda, patterns=None):
|
||||
"""Return `pip list` output. Note: will also find conda-installed pytorch and numpy packages."""
|
||||
if patterns is None:
|
||||
patterns = DEFAULT_PIP_PATTERNS
|
||||
|
||||
# People generally have `pip` as `pip` or `pip3`
|
||||
# But here it is invoked as `python -mpip`
|
||||
def run_with_pip(pip):
|
||||
out = run_and_read_all(run_lambda, pip + ["list", "--format=freeze"])
|
||||
return "\n".join(line for line in out.splitlines()
|
||||
if any(name in line for name in patterns))
|
||||
|
||||
pip_version = 'pip3' if sys.version[0] == '3' else 'pip'
|
||||
out = run_with_pip([sys.executable, '-mpip'])
|
||||
|
||||
return pip_version, out
|
||||
|
||||
|
||||
def get_cachingallocator_config():
|
||||
ca_config = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', '')
|
||||
return ca_config
|
||||
|
||||
|
||||
def get_cuda_module_loading_config():
|
||||
if TORCH_AVAILABLE and torch.cuda.is_available():
|
||||
torch.cuda.init()
|
||||
config = os.environ.get('CUDA_MODULE_LOADING', '')
|
||||
return config
|
||||
else:
|
||||
return "N/A"
|
||||
|
||||
|
||||
def is_xnnpack_available():
|
||||
if TORCH_AVAILABLE:
|
||||
import torch.backends.xnnpack
|
||||
return str(
|
||||
torch.backends.xnnpack.enabled) # type: ignore[attr-defined]
|
||||
else:
|
||||
return "N/A"
|
||||
|
||||
|
||||
def get_env_info():
|
||||
run_lambda = run
|
||||
pip_version, pip_list_output = get_pip_packages(run_lambda)
|
||||
|
||||
if TORCH_AVAILABLE:
|
||||
version_str = torch.__version__
|
||||
debug_mode_str = str(torch.version.debug)
|
||||
cuda_available_str = str(torch.cuda.is_available())
|
||||
cuda_version_str = torch.version.cuda
|
||||
if not hasattr(torch.version,
|
||||
'hip') or torch.version.hip is None: # cuda version
|
||||
hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
|
||||
else: # HIP version
|
||||
|
||||
def get_version_or_na(cfg, prefix):
|
||||
_lst = [s.rsplit(None, 1)[-1] for s in cfg if prefix in s]
|
||||
return _lst[0] if _lst else 'N/A'
|
||||
|
||||
cfg = torch._C._show_config().split('\n')
|
||||
hip_runtime_version = get_version_or_na(cfg, 'HIP Runtime')
|
||||
miopen_runtime_version = get_version_or_na(cfg, 'MIOpen')
|
||||
cuda_version_str = 'N/A'
|
||||
hip_compiled_version = torch.version.hip
|
||||
else:
|
||||
version_str = debug_mode_str = cuda_available_str = cuda_version_str = 'N/A'
|
||||
hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
|
||||
|
||||
sys_version = sys.version.replace("\n", " ")
|
||||
|
||||
conda_packages = get_conda_packages(run_lambda)
|
||||
|
||||
rocm_version = get_rocm_version(run_lambda)
|
||||
neuron_sdk_version = get_neuron_sdk_version(run_lambda)
|
||||
vllm_version = get_vllm_version()
|
||||
vllm_build_flags = summarize_vllm_build_flags()
|
||||
gpu_topo = get_gpu_topo(run_lambda)
|
||||
|
||||
return SystemEnv(
|
||||
torch_version=version_str,
|
||||
is_debug_build=debug_mode_str,
|
||||
python_version='{} ({}-bit runtime)'.format(
|
||||
sys_version,
|
||||
sys.maxsize.bit_length() + 1),
|
||||
python_platform=get_python_platform(),
|
||||
is_cuda_available=cuda_available_str,
|
||||
cuda_compiled_version=cuda_version_str,
|
||||
cuda_runtime_version=get_running_cuda_version(run_lambda),
|
||||
cuda_module_loading=get_cuda_module_loading_config(),
|
||||
nvidia_gpu_models=get_gpu_info(run_lambda),
|
||||
nvidia_driver_version=get_nvidia_driver_version(run_lambda),
|
||||
cudnn_version=get_cudnn_version(run_lambda),
|
||||
hip_compiled_version=hip_compiled_version,
|
||||
hip_runtime_version=hip_runtime_version,
|
||||
miopen_runtime_version=miopen_runtime_version,
|
||||
pip_version=pip_version,
|
||||
pip_packages=pip_list_output,
|
||||
conda_packages=conda_packages,
|
||||
os=get_os(run_lambda),
|
||||
libc_version=get_libc_version(),
|
||||
gcc_version=get_gcc_version(run_lambda),
|
||||
clang_version=get_clang_version(run_lambda),
|
||||
cmake_version=get_cmake_version(run_lambda),
|
||||
caching_allocator_config=get_cachingallocator_config(),
|
||||
is_xnnpack_available=is_xnnpack_available(),
|
||||
cpu_info=get_cpu_info(run_lambda),
|
||||
rocm_version=rocm_version,
|
||||
neuron_sdk_version=neuron_sdk_version,
|
||||
vllm_version=vllm_version,
|
||||
vllm_build_flags=vllm_build_flags,
|
||||
gpu_topo=gpu_topo,
|
||||
)
|
||||
|
||||
|
||||
env_info_fmt = """
|
||||
PyTorch version: {torch_version}
|
||||
Is debug build: {is_debug_build}
|
||||
CUDA used to build PyTorch: {cuda_compiled_version}
|
||||
ROCM used to build PyTorch: {hip_compiled_version}
|
||||
|
||||
OS: {os}
|
||||
GCC version: {gcc_version}
|
||||
Clang version: {clang_version}
|
||||
CMake version: {cmake_version}
|
||||
Libc version: {libc_version}
|
||||
|
||||
Python version: {python_version}
|
||||
Python platform: {python_platform}
|
||||
Is CUDA available: {is_cuda_available}
|
||||
CUDA runtime version: {cuda_runtime_version}
|
||||
CUDA_MODULE_LOADING set to: {cuda_module_loading}
|
||||
GPU models and configuration: {nvidia_gpu_models}
|
||||
Nvidia driver version: {nvidia_driver_version}
|
||||
cuDNN version: {cudnn_version}
|
||||
HIP runtime version: {hip_runtime_version}
|
||||
MIOpen runtime version: {miopen_runtime_version}
|
||||
Is XNNPACK available: {is_xnnpack_available}
|
||||
|
||||
CPU:
|
||||
{cpu_info}
|
||||
|
||||
Versions of relevant libraries:
|
||||
{pip_packages}
|
||||
{conda_packages}
|
||||
""".strip()
|
||||
|
||||
env_info_fmt += """
|
||||
ROCM Version: {rocm_version}
|
||||
Neuron SDK Version: {neuron_sdk_version}
|
||||
vLLM Version: {vllm_version}
|
||||
vLLM Build Flags:
|
||||
{vllm_build_flags}
|
||||
GPU Topology:
|
||||
{gpu_topo}
|
||||
""".strip()
|
||||
|
||||
|
||||
def pretty_str(envinfo):
|
||||
|
||||
def replace_nones(dct, replacement='Could not collect'):
|
||||
for key in dct.keys():
|
||||
if dct[key] is not None:
|
||||
continue
|
||||
dct[key] = replacement
|
||||
return dct
|
||||
|
||||
def replace_bools(dct, true='Yes', false='No'):
|
||||
for key in dct.keys():
|
||||
if dct[key] is True:
|
||||
dct[key] = true
|
||||
elif dct[key] is False:
|
||||
dct[key] = false
|
||||
return dct
|
||||
|
||||
def prepend(text, tag='[prepend]'):
|
||||
lines = text.split('\n')
|
||||
updated_lines = [tag + line for line in lines]
|
||||
return '\n'.join(updated_lines)
|
||||
|
||||
def replace_if_empty(text, replacement='No relevant packages'):
|
||||
if text is not None and len(text) == 0:
|
||||
return replacement
|
||||
return text
|
||||
|
||||
def maybe_start_on_next_line(string):
|
||||
# If `string` is multiline, prepend a \n to it.
|
||||
if string is not None and len(string.split('\n')) > 1:
|
||||
return '\n{}\n'.format(string)
|
||||
return string
|
||||
|
||||
mutable_dict = envinfo._asdict()
|
||||
|
||||
# If nvidia_gpu_models is multiline, start on the next line
|
||||
mutable_dict['nvidia_gpu_models'] = \
|
||||
maybe_start_on_next_line(envinfo.nvidia_gpu_models)
|
||||
|
||||
# If the machine doesn't have CUDA, report some fields as 'No CUDA'
|
||||
dynamic_cuda_fields = [
|
||||
'cuda_runtime_version',
|
||||
'nvidia_gpu_models',
|
||||
'nvidia_driver_version',
|
||||
]
|
||||
all_cuda_fields = dynamic_cuda_fields + ['cudnn_version']
|
||||
all_dynamic_cuda_fields_missing = all(mutable_dict[field] is None
|
||||
for field in dynamic_cuda_fields)
|
||||
if TORCH_AVAILABLE and not torch.cuda.is_available(
|
||||
) and all_dynamic_cuda_fields_missing:
|
||||
for field in all_cuda_fields:
|
||||
mutable_dict[field] = 'No CUDA'
|
||||
if envinfo.cuda_compiled_version is None:
|
||||
mutable_dict['cuda_compiled_version'] = 'None'
|
||||
|
||||
# Replace True with Yes, False with No
|
||||
mutable_dict = replace_bools(mutable_dict)
|
||||
|
||||
# Replace all None objects with 'Could not collect'
|
||||
mutable_dict = replace_nones(mutable_dict)
|
||||
|
||||
# If either of these are '', replace with 'No relevant packages'
|
||||
mutable_dict['pip_packages'] = replace_if_empty(
|
||||
mutable_dict['pip_packages'])
|
||||
mutable_dict['conda_packages'] = replace_if_empty(
|
||||
mutable_dict['conda_packages'])
|
||||
|
||||
# Tag conda and pip packages with a prefix
|
||||
# If they were previously None, they'll show up as ie '[conda] Could not collect'
|
||||
if mutable_dict['pip_packages']:
|
||||
mutable_dict['pip_packages'] = prepend(
|
||||
mutable_dict['pip_packages'], '[{}] '.format(envinfo.pip_version))
|
||||
if mutable_dict['conda_packages']:
|
||||
mutable_dict['conda_packages'] = prepend(
|
||||
mutable_dict['conda_packages'], '[conda] ')
|
||||
mutable_dict['cpu_info'] = envinfo.cpu_info
|
||||
return env_info_fmt.format(**mutable_dict)
|
||||
|
||||
|
||||
def get_pretty_env_info():
|
||||
return pretty_str(get_env_info())
|
||||
|
||||
|
||||
def main():
|
||||
print("Collecting environment information...")
|
||||
output = get_pretty_env_info()
|
||||
print(output)
|
||||
|
||||
if TORCH_AVAILABLE and hasattr(torch, 'utils') and hasattr(
|
||||
torch.utils, '_crash_handler'):
|
||||
minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR
|
||||
if sys.platform == "linux" and os.path.exists(minidump_dir):
|
||||
dumps = [
|
||||
os.path.join(minidump_dir, dump)
|
||||
for dump in os.listdir(minidump_dir)
|
||||
]
|
||||
latest = max(dumps, key=os.path.getctime)
|
||||
ctime = os.path.getctime(latest)
|
||||
creation_time = datetime.datetime.fromtimestamp(ctime).strftime(
|
||||
'%Y-%m-%d %H:%M:%S')
|
||||
msg = "\n*** Detected a minidump at {} created on {}, ".format(latest, creation_time) + \
|
||||
"if this is related to your bug please include it when you file a report ***"
|
||||
print(msg, file=sys.stderr)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -2,19 +2,16 @@
|
||||
#include <torch/extension.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#include "cuda_compat.h"
|
||||
#include "dispatch_utils.h"
|
||||
|
||||
namespace vllm {
|
||||
|
||||
template<typename T>
|
||||
__device__ __forceinline__ T silu(const T& x) {
|
||||
// x * sigmoid(x)
|
||||
return (T) (((float) x) / (1.0f + expf((float) -x)));
|
||||
}
|
||||
|
||||
template<typename scalar_t>
|
||||
__global__ void silu_and_mul_kernel(
|
||||
// Activation and gating kernel template.
|
||||
template<typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&)>
|
||||
__global__ void act_and_mul_kernel(
|
||||
scalar_t* __restrict__ out, // [..., d]
|
||||
const scalar_t* __restrict__ input, // [..., 2, d]
|
||||
const int d) {
|
||||
@ -22,32 +19,78 @@ __global__ void silu_and_mul_kernel(
|
||||
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
||||
const scalar_t x = VLLM_LDG(&input[token_idx * 2 * d + idx]);
|
||||
const scalar_t y = VLLM_LDG(&input[token_idx * 2 * d + d + idx]);
|
||||
out[token_idx * d + idx] = silu(x) * y;
|
||||
out[token_idx * d + idx] = ACT_FN(x) * y;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
__device__ __forceinline__ T silu_kernel(const T& x) {
|
||||
// x * sigmoid(x)
|
||||
return (T) (((float) x) / (1.0f + expf((float) -x)));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
__device__ __forceinline__ T gelu_kernel(const T& x) {
|
||||
// Equivalent to PyTorch GELU with 'none' approximation.
|
||||
// Refer to:
|
||||
// https://github.com/pytorch/pytorch/blob/8ac9b20d4b090c213799e81acf48a55ea8d437d6/aten/src/ATen/native/cuda/ActivationGeluKernel.cu#L36-L38
|
||||
const float f = (float) x;
|
||||
constexpr float ALPHA = M_SQRT1_2;
|
||||
return (T) (f * 0.5f * (1.0f + ::erf(f * ALPHA)));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
__device__ __forceinline__ T gelu_tanh_kernel(const T& x) {
|
||||
// Equivalent to PyTorch GELU with 'tanh' approximation.
|
||||
// Refer to:
|
||||
// https://github.com/pytorch/pytorch/blob/8ac9b20d4b090c213799e81acf48a55ea8d437d6/aten/src/ATen/native/cuda/ActivationGeluKernel.cu#L25-L30
|
||||
const float f = (float) x;
|
||||
constexpr float BETA = M_SQRT2 * M_2_SQRTPI * 0.5f;
|
||||
constexpr float KAPPA = 0.044715;
|
||||
float x_cube = f * f * f;
|
||||
float inner = BETA * (f + KAPPA * x_cube);
|
||||
return (T) (0.5f * f * (1.0f + ::tanhf(inner)));
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
// Launch activation and gating kernel.
|
||||
#define LAUNCH_ACTIVATION_GATE_KERNEL(KERNEL) \
|
||||
int d = input.size(-1) / 2; \
|
||||
int64_t num_tokens = input.numel() / input.size(-1); \
|
||||
dim3 grid(num_tokens); \
|
||||
dim3 block(std::min(d, 1024)); \
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
|
||||
VLLM_DISPATCH_FLOATING_TYPES( \
|
||||
input.scalar_type(), \
|
||||
"act_and_mul_kernel", \
|
||||
[&] { \
|
||||
vllm::act_and_mul_kernel<scalar_t, KERNEL<scalar_t>><<<grid, block, 0, stream>>>( \
|
||||
out.data_ptr<scalar_t>(), \
|
||||
input.data_ptr<scalar_t>(), \
|
||||
d); \
|
||||
});
|
||||
|
||||
void silu_and_mul(
|
||||
torch::Tensor& out, // [..., d]
|
||||
torch::Tensor& input) // [..., 2 * d]
|
||||
{
|
||||
int64_t num_tokens = input.numel() / input.size(-1);
|
||||
int d = input.size(-1) / 2;
|
||||
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel);
|
||||
}
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(d, 1024));
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
input.scalar_type(),
|
||||
"silu_and_mul_kernel",
|
||||
[&] {
|
||||
vllm::silu_and_mul_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
out.data_ptr<scalar_t>(),
|
||||
input.data_ptr<scalar_t>(),
|
||||
d);
|
||||
});
|
||||
void gelu_and_mul(
|
||||
torch::Tensor& out, // [..., d]
|
||||
torch::Tensor& input) // [..., 2 * d]
|
||||
{
|
||||
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_kernel);
|
||||
}
|
||||
|
||||
void gelu_tanh_and_mul(
|
||||
torch::Tensor& out, // [..., d]
|
||||
torch::Tensor& input) // [..., 2 * d]
|
||||
{
|
||||
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_tanh_kernel);
|
||||
}
|
||||
|
||||
namespace vllm {
|
||||
|
@ -15,9 +15,6 @@
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifdef USE_ROCM
|
||||
#include <hip/hip_runtime.h>
|
||||
#endif
|
||||
|
||||
#include <torch/extension.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
@ -31,11 +28,6 @@
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#ifndef USE_ROCM
|
||||
#define WARP_SIZE 32
|
||||
#else
|
||||
#define WARP_SIZE warpSize
|
||||
#endif
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
|
||||
|
@ -23,13 +23,6 @@ void reshape_and_cache(
|
||||
torch::Tensor& slot_mapping,
|
||||
const std::string& kv_cache_dtype);
|
||||
|
||||
void gather_cached_kv(
|
||||
torch::Tensor& key,
|
||||
torch::Tensor& value,
|
||||
torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache,
|
||||
torch::Tensor& slot_mapping);
|
||||
|
||||
// Just for unittest
|
||||
void convert_fp8_e5m2(
|
||||
torch::Tensor& src_cache,
|
||||
|
@ -269,167 +269,6 @@ void reshape_and_cache(
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// Grid: (num_blocks, block_size).
|
||||
template<typename scalar_t>
|
||||
__global__ void gather_cached_kv_kernel(
|
||||
scalar_t* __restrict__ key, // [num_tokens, [stride], num_heads, head_size]
|
||||
scalar_t* __restrict__ value, // [num_tokens, [stride], num_heads, head_size]
|
||||
const scalar_t* __restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
|
||||
const scalar_t* __restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
|
||||
const int* __restrict__ slot_mapping, // [num_tokens]
|
||||
const int key_stride,
|
||||
const int value_stride,
|
||||
const int num_heads,
|
||||
const int head_size,
|
||||
const int block_size,
|
||||
const int x) {
|
||||
const int token_idx = blockIdx.x;
|
||||
const int slot_idx = slot_mapping[token_idx];
|
||||
const int block_idx = slot_idx / block_size;
|
||||
const int block_offset = slot_idx % block_size;
|
||||
|
||||
const int num_tokens = num_heads * head_size;
|
||||
for (int i = threadIdx.x; i < num_tokens; i += blockDim.x) {
|
||||
const int tgt_key_idx = token_idx * key_stride + i;
|
||||
const int tgt_value_idx = token_idx * value_stride + i;
|
||||
|
||||
const int head_idx = i / head_size;
|
||||
const int head_offset = i % head_size;
|
||||
const int x_idx = head_offset / x; // the offset of the [head_size/x] dimension
|
||||
const int x_offset = head_offset % x;
|
||||
|
||||
const int src_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
|
||||
+ head_idx * (head_size / x) * block_size * x
|
||||
+ x_idx * block_size * x
|
||||
+ block_offset * x
|
||||
+ x_offset;
|
||||
const int src_value_idx = block_idx * num_heads * head_size * block_size
|
||||
+ head_idx * head_size * block_size
|
||||
+ head_offset * block_size
|
||||
+ block_offset;
|
||||
|
||||
key[tgt_key_idx] = VLLM_LDG(&key_cache[src_key_idx]);
|
||||
value[tgt_value_idx] = VLLM_LDG(&value_cache[src_value_idx]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void gather_cached_kv_kernel_optimized(
|
||||
scalar_t *__restrict__ key, // [num_tokens, [stride], num_heads, head_size]
|
||||
scalar_t *__restrict__ value, // [num_tokens, [stride], num_heads, head_size]
|
||||
const scalar_t *__restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
|
||||
const scalar_t *__restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
|
||||
const int *__restrict__ slot_mapping, // [num_tokens]
|
||||
const int key_stride,
|
||||
const int value_stride,
|
||||
const int num_heads,
|
||||
const int head_size,
|
||||
const int block_size,
|
||||
const int x)
|
||||
{
|
||||
const int token_idx = blockIdx.x;
|
||||
const int slot_idx = slot_mapping[token_idx];
|
||||
const int block_idx = slot_idx / block_size;
|
||||
const int block_offset = slot_idx % block_size;
|
||||
|
||||
const int dim = num_heads * head_size;
|
||||
assert(dim % 4 == 0); // this is true for known use cases
|
||||
const int unroll_factor = 4;
|
||||
const int unrolled_dim = dim / unroll_factor;
|
||||
|
||||
for (int i = threadIdx.x; i < unrolled_dim; i += blockDim.x)
|
||||
{
|
||||
int tgt_key_indices[unroll_factor];
|
||||
int tgt_value_indices[unroll_factor];
|
||||
int src_key_indices[unroll_factor];
|
||||
int src_value_indices[unroll_factor];
|
||||
scalar_t keys_to_store[unroll_factor];
|
||||
scalar_t values_to_store[unroll_factor];
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < unroll_factor; ++j)
|
||||
{
|
||||
int index = i + j * unrolled_dim;
|
||||
|
||||
const int tgt_key_idx = token_idx * key_stride + index;
|
||||
const int tgt_value_idx = token_idx * value_stride + index;
|
||||
|
||||
const int head_idx = index / head_size;
|
||||
const int head_offset = index % head_size;
|
||||
const int x_idx = head_offset / x;
|
||||
const int x_offset = head_offset % x;
|
||||
|
||||
const int src_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
|
||||
+ head_idx * (head_size / x) * block_size * x
|
||||
+ x_idx * block_size * x
|
||||
+ block_offset * x
|
||||
+ x_offset;
|
||||
const int src_value_idx = block_idx * num_heads * head_size * block_size
|
||||
+ head_idx * head_size * block_size
|
||||
+ head_offset * block_size
|
||||
+ block_offset;
|
||||
|
||||
tgt_key_indices[j] = tgt_key_idx;
|
||||
tgt_value_indices[j] = tgt_value_idx;
|
||||
src_key_indices[j] = src_key_idx;
|
||||
src_value_indices[j] = src_value_idx;
|
||||
|
||||
keys_to_store[j] = VLLM_LDG(&key_cache[src_key_idx]);
|
||||
values_to_store[j] = VLLM_LDG(&value_cache[src_value_idx]);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < unroll_factor; ++j)
|
||||
{
|
||||
key[tgt_key_indices[j]] = keys_to_store[j];
|
||||
value[tgt_value_indices[j]] = values_to_store[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
void gather_cached_kv(
|
||||
torch::Tensor& key, // [out] [num_tokens, num_heads, head_size]
|
||||
torch::Tensor& value, // [out] [num_tokens, num_heads, head_size]
|
||||
torch::Tensor& key_cache, // [in] [num_blocks, num_heads, head_size/x, block_size, x]
|
||||
torch::Tensor& value_cache, // [in] [num_blocks, num_heads, head_size, block_size]
|
||||
torch::Tensor& slot_mapping) // [in] [num_tokens]
|
||||
{
|
||||
int num_tokens = key.size(0);
|
||||
int num_heads = key.size(1);
|
||||
int head_size = key.size(2);
|
||||
int block_size = key_cache.size(3);
|
||||
int x = key_cache.size(4);
|
||||
|
||||
int key_stride = key.stride(0);
|
||||
int value_stride = value.stride(0);
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(num_heads * head_size, 512));
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(
|
||||
key.scalar_type(),
|
||||
"gather_cached_kv_kernel_optimized",
|
||||
[&] {
|
||||
vllm::gather_cached_kv_kernel_optimized<scalar_t><<<grid, block, 0, stream>>>(
|
||||
key.data_ptr<scalar_t>(),
|
||||
value.data_ptr<scalar_t>(),
|
||||
key_cache.data_ptr<scalar_t>(),
|
||||
value_cache.data_ptr<scalar_t>(),
|
||||
slot_mapping.data_ptr<int>(),
|
||||
key_stride,
|
||||
value_stride,
|
||||
num_heads,
|
||||
head_size,
|
||||
block_size,
|
||||
x);
|
||||
});
|
||||
}
|
||||
|
||||
namespace vllm {
|
||||
|
||||
template<typename Tout, typename Tin>
|
||||
__global__ void convert_fp8_e5m2_kernel(
|
||||
const Tin* __restrict__ src_cache,
|
||||
|
148
csrc/cpu/activation.cpp
Normal file
@ -0,0 +1,148 @@
|
||||
#include "cpu_types.hpp"
|
||||
|
||||
namespace {
|
||||
template <typename scalar_t, vec_op::FP32Vec8 (*func)(const vec_op::FP32Vec8 &),
|
||||
bool is_gated>
|
||||
void activation_kernel(int num_tokens, int d, scalar_t *__restrict__ input,
|
||||
scalar_t *__restrict__ output) {
|
||||
using scalar_vec_t = vec_op::vec_t<scalar_t>;
|
||||
constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num();
|
||||
|
||||
TORCH_CHECK(d % VEC_ELEM_NUM == 0);
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < num_tokens; ++i) {
|
||||
for (int j = 0; j < d; j += VEC_ELEM_NUM) {
|
||||
int start = i * d;
|
||||
if constexpr (is_gated) {
|
||||
start *= 2;
|
||||
}
|
||||
|
||||
const scalar_vec_t x(input + start + j);
|
||||
const vec_op::FP32Vec8 f32_x(x);
|
||||
vec_op::FP32Vec8 f32_ans = func(f32_x);
|
||||
|
||||
if constexpr (is_gated) {
|
||||
const scalar_vec_t y(input + start + d + j);
|
||||
const vec_op::FP32Vec8 f32_y(y);
|
||||
f32_ans = f32_y * f32_ans;
|
||||
}
|
||||
|
||||
const scalar_vec_t result(f32_ans);
|
||||
result.save(output + i * d + j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
FORCE_INLINE vec_op::FP32Vec8 silu_act(const vec_op::FP32Vec8 &x) {
|
||||
const vec_op::FP32Vec8 zeros(0.0);
|
||||
const vec_op::FP32Vec8 ones(1.0);
|
||||
return x / (ones + (zeros - x).exp());
|
||||
}
|
||||
|
||||
FORCE_INLINE vec_op::FP32Vec8 gelu_new_act(const vec_op::FP32Vec8 &x) {
|
||||
const vec_op::FP32Vec8 ones(1.0);
|
||||
const vec_op::FP32Vec8 w1(0.79788456f);
|
||||
const vec_op::FP32Vec8 w2(0.044715f);
|
||||
const vec_op::FP32Vec8 w3(0.5);
|
||||
const vec_op::FP32Vec8 x3 = x * x * x;
|
||||
const vec_op::FP32Vec8 t = (w1 * (x + w2 * x3)).tanh();
|
||||
return w3 * x * (ones + t);
|
||||
}
|
||||
|
||||
FORCE_INLINE vec_op::FP32Vec8 gelu_fast_act(const vec_op::FP32Vec8 &x) {
|
||||
const vec_op::FP32Vec8 ones(1.0);
|
||||
const vec_op::FP32Vec8 w1(0.79788456f);
|
||||
const vec_op::FP32Vec8 w2(0.044715f);
|
||||
const vec_op::FP32Vec8 w3(0.5);
|
||||
const vec_op::FP32Vec8 t = (x * w1 * (ones + x * w2 * x)).tanh();
|
||||
return w3 * x * (ones + t);
|
||||
}
|
||||
|
||||
FORCE_INLINE vec_op::FP32Vec8 gelu_act(const vec_op::FP32Vec8 &x) {
|
||||
const vec_op::FP32Vec8 ones(1.0);
|
||||
const vec_op::FP32Vec8 w1(M_SQRT1_2);
|
||||
const vec_op::FP32Vec8 w2(0.5);
|
||||
return x * w2 * (ones + (x * w1).er());
|
||||
}
|
||||
|
||||
FORCE_INLINE vec_op::FP32Vec8 gelu_tanh_act(const vec_op::FP32Vec8 &x) {
|
||||
const vec_op::FP32Vec8 ones(1.0);
|
||||
const vec_op::FP32Vec8 w1(M_SQRT2 * M_2_SQRTPI * 0.5);
|
||||
const vec_op::FP32Vec8 w2(0.5);
|
||||
const vec_op::FP32Vec8 w3(0.044715);
|
||||
const vec_op::FP32Vec8 x_3 = x * x * x;
|
||||
const vec_op::FP32Vec8 inner = w1 * (x + x_3 * w3);
|
||||
return x * w2 * (ones + inner.tanh());
|
||||
}
|
||||
}; // namespace
|
||||
|
||||
void silu_and_mul(torch::Tensor &out, torch::Tensor &input) {
|
||||
int num_tokens = input.numel() / input.size(-1);
|
||||
int d = input.size(-1) / 2;
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
input.scalar_type(), "silu_and_mul_impl", [&] {
|
||||
CPU_KERNEL_GUARD_IN(silu_and_mul_impl)
|
||||
activation_kernel<scalar_t, silu_act, true>(num_tokens, d,
|
||||
input.data_ptr<scalar_t>(),
|
||||
out.data_ptr<scalar_t>());
|
||||
CPU_KERNEL_GUARD_OUT(silu_and_mul_impl)
|
||||
});
|
||||
}
|
||||
|
||||
void gelu_and_mul(torch::Tensor &out, // [..., d]
|
||||
torch::Tensor &input) // [..., 2 * d]
|
||||
{
|
||||
int num_tokens = input.numel() / input.size(-1);
|
||||
int d = input.size(-1) / 2;
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
input.scalar_type(), "gelu_and_mul_impl", [&] {
|
||||
CPU_KERNEL_GUARD_IN(gelu_and_mul_impl)
|
||||
activation_kernel<scalar_t, gelu_act, true>(num_tokens, d,
|
||||
input.data_ptr<scalar_t>(),
|
||||
out.data_ptr<scalar_t>());
|
||||
CPU_KERNEL_GUARD_OUT(gelu_and_mul_impl)
|
||||
});
|
||||
}
|
||||
|
||||
void gelu_tanh_and_mul(torch::Tensor &out, // [..., d]
|
||||
torch::Tensor &input) // [..., 2 * d]
|
||||
{
|
||||
int num_tokens = input.numel() / input.size(-1);
|
||||
int d = input.size(-1) / 2;
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
input.scalar_type(), "gelu_tanh_and_mul_impl", [&] {
|
||||
CPU_KERNEL_GUARD_IN(gelu_tanh_and_mul_impl)
|
||||
activation_kernel<scalar_t, gelu_tanh_act, true>(
|
||||
num_tokens, d, input.data_ptr<scalar_t>(),
|
||||
out.data_ptr<scalar_t>());
|
||||
CPU_KERNEL_GUARD_OUT(gelu_tanh_and_mul_impl)
|
||||
});
|
||||
}
|
||||
|
||||
void gelu_new(torch::Tensor &out, torch::Tensor &input) {
|
||||
int num_tokens = input.numel() / input.size(-1);
|
||||
int d = input.size(-1);
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "gelu_new_impl", [&] {
|
||||
CPU_KERNEL_GUARD_IN(gelu_new_impl)
|
||||
activation_kernel<scalar_t, gelu_new_act, false>(
|
||||
num_tokens, d, input.data_ptr<scalar_t>(), out.data_ptr<scalar_t>());
|
||||
CPU_KERNEL_GUARD_OUT(gelu_new_impl)
|
||||
});
|
||||
}
|
||||
|
||||
void gelu_fast(torch::Tensor &out, torch::Tensor &input) {
|
||||
int num_tokens = input.numel() / input.size(-1);
|
||||
int d = input.size(-1);
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "gelu_fast_impl", [&] {
|
||||
CPU_KERNEL_GUARD_IN(gelu_fast_impl)
|
||||
activation_kernel<scalar_t, gelu_fast_act, false>(
|
||||
num_tokens, d, input.data_ptr<scalar_t>(), out.data_ptr<scalar_t>());
|
||||
CPU_KERNEL_GUARD_OUT(gelu_fast_impl)
|
||||
});
|
||||
}
|
744
csrc/cpu/attention.cpp
Normal file
@ -0,0 +1,744 @@
|
||||
#include "cpu_types.hpp"
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename scalar_t> struct KernelVecType {
|
||||
using q_load_vec_type = void;
|
||||
using q_vec_type = void;
|
||||
using k_load_vec_type = void;
|
||||
using k_vec_type = void;
|
||||
using qk_acc_vec_type = void;
|
||||
using v_load_vec_type = void;
|
||||
};
|
||||
|
||||
template <> struct KernelVecType<float> {
|
||||
using q_load_vec_type = vec_op::FP32Vec4;
|
||||
using q_vec_type = vec_op::FP32Vec16;
|
||||
using k_load_vec_type = vec_op::FP32Vec16;
|
||||
using k_vec_type = vec_op::FP32Vec16;
|
||||
using qk_acc_vec_type = vec_op::FP32Vec16;
|
||||
using v_load_vec_type = vec_op::FP32Vec16;
|
||||
};
|
||||
|
||||
#ifdef __AVX512BF16__
|
||||
template <> struct KernelVecType<c10::BFloat16> {
|
||||
using q_load_vec_type = vec_op::BF16Vec8;
|
||||
using q_vec_type = vec_op::BF16Vec32;
|
||||
using k_load_vec_type = vec_op::BF16Vec32;
|
||||
using k_vec_type = vec_op::BF16Vec32;
|
||||
using qk_acc_vec_type = vec_op::FP32Vec16;
|
||||
using v_load_vec_type = vec_op::BF16Vec16;
|
||||
};
|
||||
#else
|
||||
template <> struct KernelVecType<c10::BFloat16> {
|
||||
using q_load_vec_type = vec_op::BF16Vec8;
|
||||
using q_vec_type = vec_op::FP32Vec16;
|
||||
using k_load_vec_type = vec_op::BF16Vec16;
|
||||
using k_vec_type = vec_op::FP32Vec16;
|
||||
using qk_acc_vec_type = vec_op::FP32Vec16;
|
||||
using v_load_vec_type = vec_op::BF16Vec16;
|
||||
};
|
||||
#endif
|
||||
|
||||
template <typename T>
|
||||
FORCE_INLINE std::pair<T, T> reduceSoftmax(T *data, const int size,
|
||||
const int capacity) {
|
||||
T max = data[0];
|
||||
for (int i = 1; i < size; ++i) {
|
||||
max = max >= data[i] ? max : data[i];
|
||||
}
|
||||
|
||||
T sum = 0;
|
||||
for (int i = 0; i < size; ++i) {
|
||||
data[i] = std::exp(data[i] - max);
|
||||
sum += data[i];
|
||||
}
|
||||
|
||||
int i = 0;
|
||||
for (; i < size; ++i) {
|
||||
data[i] /= sum;
|
||||
}
|
||||
|
||||
for (; i < capacity; ++i) {
|
||||
data[i] = 0;
|
||||
}
|
||||
|
||||
return {max, sum};
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
FORCE_INLINE std::pair<T, T>
|
||||
reduceSoftmaxAlibi(T *data, const int size, const int capacity,
|
||||
const float alibi_slope, const int start_index,
|
||||
const int context_len) {
|
||||
data[0] += alibi_slope * (start_index - context_len + 1);
|
||||
T max = data[0];
|
||||
for (int i = 1; i < size; ++i) {
|
||||
T qk = data[i] + alibi_slope * (start_index + i - context_len + 1);
|
||||
data[i] = qk;
|
||||
max = max >= qk ? max : qk;
|
||||
}
|
||||
|
||||
T sum = 0;
|
||||
for (int i = 0; i < size; ++i) {
|
||||
data[i] = std::exp(data[i] - max);
|
||||
sum += data[i];
|
||||
}
|
||||
|
||||
int i = 0;
|
||||
for (; i < size; ++i) {
|
||||
data[i] /= sum;
|
||||
}
|
||||
|
||||
for (; i < capacity; ++i) {
|
||||
data[i] = 0;
|
||||
}
|
||||
|
||||
return {max, sum};
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
FORCE_INLINE void reducePartitonSoftmax(const T *max_data, T *sum_data,
|
||||
const int size) {
|
||||
T max = max_data[0];
|
||||
for (int i = 1; i < size; ++i) {
|
||||
max = max >= max_data[i] ? max : max_data[i];
|
||||
}
|
||||
|
||||
T rescaled_sum = 0;
|
||||
for (int i = 0; i < size; ++i) {
|
||||
T rescale_factor = std::exp(max_data[i] - max);
|
||||
rescaled_sum += rescale_factor * sum_data[i];
|
||||
sum_data[i] *= rescale_factor;
|
||||
}
|
||||
for (int i = 0; i < size; ++i) {
|
||||
sum_data[i] /= rescaled_sum + 1e-8;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE, int x>
|
||||
struct reduceQKBlockKernel {
|
||||
using q_load_vec_type = typename KernelVecType<scalar_t>::q_load_vec_type;
|
||||
using q_vec_type = typename KernelVecType<scalar_t>::q_vec_type;
|
||||
using k_load_vec_type = typename KernelVecType<scalar_t>::k_load_vec_type;
|
||||
using k_vec_type = typename KernelVecType<scalar_t>::k_vec_type;
|
||||
using qk_acc_vec_type = typename KernelVecType<scalar_t>::qk_acc_vec_type;
|
||||
|
||||
constexpr static int TOKEN_PER_GROUP = k_load_vec_type::get_elem_num() / x;
|
||||
constexpr static int MAX_GROUP_NUM = 16 / TOKEN_PER_GROUP;
|
||||
constexpr static int UNROLL_GROUP_NUM = MAX_GROUP_NUM / 4;
|
||||
|
||||
static_assert(MAX_GROUP_NUM == 8 || MAX_GROUP_NUM == 4);
|
||||
static_assert(k_load_vec_type::get_elem_num() % x == 0);
|
||||
static_assert(q_load_vec_type::get_elem_num() * sizeof(scalar_t) == 16);
|
||||
|
||||
FORCE_INLINE static void call(const scalar_t *__restrict__ q,
|
||||
const scalar_t *__restrict__ k_block,
|
||||
float *__restrict__ logits, float scale,
|
||||
const int token_num) {
|
||||
const int group_num = (token_num + TOKEN_PER_GROUP - 1) / TOKEN_PER_GROUP;
|
||||
|
||||
qk_acc_vec_type group_accums[MAX_GROUP_NUM];
|
||||
if (token_num == BLOCK_SIZE) {
|
||||
for (int q_offset = 0; q_offset < HEAD_SIZE;
|
||||
q_offset += x, k_block += x * BLOCK_SIZE) {
|
||||
q_load_vec_type q_load_group_vec(q + q_offset);
|
||||
q_vec_type q_group_vec(q_load_group_vec);
|
||||
|
||||
vec_op::unroll_loop<int, MAX_GROUP_NUM>(
|
||||
[k_block, &q_group_vec, &group_accums](int token_group_idx) {
|
||||
k_load_vec_type k_load_group_vec(k_block + token_group_idx * x *
|
||||
TOKEN_PER_GROUP);
|
||||
k_vec_type k_group_vec(k_load_group_vec);
|
||||
vec_op::fma(group_accums[token_group_idx], q_group_vec,
|
||||
k_group_vec);
|
||||
vec_op::prefetch(k_block + x * BLOCK_SIZE +
|
||||
token_group_idx * x * TOKEN_PER_GROUP);
|
||||
});
|
||||
}
|
||||
} else {
|
||||
for (int q_offset = 0; q_offset < HEAD_SIZE;
|
||||
q_offset += x, k_block += x * BLOCK_SIZE) {
|
||||
q_load_vec_type q_load_group_vec(q + q_offset);
|
||||
q_vec_type q_group_vec(q_load_group_vec);
|
||||
for (int token_group_start = 0; token_group_start < group_num;
|
||||
token_group_start += UNROLL_GROUP_NUM) {
|
||||
vec_op::unroll_loop<int, UNROLL_GROUP_NUM>(
|
||||
[token_group_start, k_block, &q_group_vec,
|
||||
&group_accums](int token_group_idx) {
|
||||
token_group_idx += token_group_start;
|
||||
k_load_vec_type k_load_group_vec(k_block + token_group_idx * x *
|
||||
TOKEN_PER_GROUP);
|
||||
k_vec_type k_group_vec(k_load_group_vec);
|
||||
vec_op::fma(group_accums[token_group_idx], q_group_vec,
|
||||
k_group_vec);
|
||||
vec_op::prefetch(k_block + x * BLOCK_SIZE +
|
||||
token_group_idx * x * TOKEN_PER_GROUP);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int token_group_idx = 0; token_group_idx < group_num;
|
||||
++token_group_idx) {
|
||||
vec_op::unroll_loop<int, TOKEN_PER_GROUP>(
|
||||
[&group_accums, logits, scale, token_group_idx](int token_idx) {
|
||||
float dot_v =
|
||||
group_accums[token_group_idx]
|
||||
.template reduce_sub_sum<qk_acc_vec_type::get_elem_num() /
|
||||
TOKEN_PER_GROUP>(token_idx);
|
||||
logits[token_group_idx * TOKEN_PER_GROUP + token_idx] =
|
||||
dot_v * scale;
|
||||
});
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE,
|
||||
int HEAD_PARTITION_SIZE, typename acc_t>
|
||||
FORCE_INLINE void reduceValueBlock(const float *prob, const scalar_t *v_block,
|
||||
acc_t &&acc) {
|
||||
using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
|
||||
constexpr int ELEM_NUM = v_load_vec_type::get_elem_num();
|
||||
static_assert(BLOCK_SIZE == ELEM_NUM);
|
||||
vec_op::FP32Vec16 prob_vec(prob);
|
||||
|
||||
vec_op::unroll_loop<int, HEAD_PARTITION_SIZE>([&](int head_elem_idx) {
|
||||
v_load_vec_type v_vec(v_block + BLOCK_SIZE * head_elem_idx);
|
||||
vec_op::FP32Vec16 fp32_v_vec(v_vec);
|
||||
acc[head_elem_idx] = acc[head_elem_idx] + prob_vec * fp32_v_vec;
|
||||
});
|
||||
}
|
||||
}; // namespace
|
||||
|
||||
// Paged attention v1
|
||||
namespace {
|
||||
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE>
|
||||
struct paged_attention_v1_impl {
|
||||
static void
|
||||
call(scalar_t *__restrict__ out, // [num_seqs, num_heads, head_size]
|
||||
const scalar_t *__restrict__ q, // [num_seqs, num_heads, head_size]
|
||||
const scalar_t *__restrict__ k_cache, // [num_blocks, num_kv_heads,
|
||||
// head_size/x, block_size, x]
|
||||
const scalar_t *__restrict__ v_cache, // [num_blocks, num_kv_heads,
|
||||
// head_size, block_size]
|
||||
const int num_kv_heads, const float scale,
|
||||
const int
|
||||
*__restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
|
||||
const int *__restrict__ context_lens, // [num_seqs]
|
||||
const int max_num_blocks_per_seq,
|
||||
const float *__restrict__ alibi_slopes, // [num_heads]
|
||||
const int q_stride, const int kv_block_stride, const int kv_head_stride,
|
||||
const int num_seqs, const int num_heads) {
|
||||
constexpr int x = 16 / sizeof(scalar_t);
|
||||
const int num_queries_per_kv = num_heads / num_kv_heads;
|
||||
|
||||
static_assert(BLOCK_SIZE == 16);
|
||||
|
||||
int max_context_len = max_num_blocks_per_seq * BLOCK_SIZE;
|
||||
int max_context_len_padded = (max_context_len + 15) & 0xFFFFFFF0;
|
||||
TORCH_CHECK((max_context_len_padded * sizeof(float)) % 64 == 0);
|
||||
|
||||
const int parallel_work_item_num = omp_get_max_threads();
|
||||
|
||||
size_t logits_bytes =
|
||||
parallel_work_item_num * max_context_len_padded * sizeof(float);
|
||||
float *logits = (float *)std::aligned_alloc(
|
||||
64, logits_bytes); // Cacheline alignment for each context token.
|
||||
// [parallel_work_item_num, max_context_len_padded]
|
||||
|
||||
#pragma omp parallel for collapse(2) schedule(dynamic, 1)
|
||||
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
|
||||
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
|
||||
int context_len = context_lens[seq_idx];
|
||||
const int *seq_block_table =
|
||||
block_tables + max_num_blocks_per_seq * seq_idx;
|
||||
const int block_num = (context_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
const int64_t kv_head_idx = head_idx / num_queries_per_kv;
|
||||
const scalar_t *__restrict__ q_vec_ptr =
|
||||
q + seq_idx * q_stride + head_idx * HEAD_SIZE;
|
||||
const int last_block_token_num =
|
||||
context_len - (block_num - 1) * BLOCK_SIZE;
|
||||
float *__restrict__ thread_block_logits =
|
||||
logits + omp_get_thread_num() * max_context_len_padded;
|
||||
|
||||
// Compute logits
|
||||
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
|
||||
const int64_t physical_block_idx = seq_block_table[block_idx];
|
||||
const scalar_t *__restrict__ k_block_cache_ptr =
|
||||
k_cache + physical_block_idx * kv_block_stride +
|
||||
kv_head_idx * kv_head_stride;
|
||||
float *__restrict__ head_block_logits =
|
||||
thread_block_logits + block_idx * BLOCK_SIZE;
|
||||
|
||||
reduceQKBlockKernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, x>::call(
|
||||
q_vec_ptr, k_block_cache_ptr, head_block_logits, scale,
|
||||
block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE);
|
||||
}
|
||||
|
||||
// Compute softmax
|
||||
if (alibi_slopes) {
|
||||
reduceSoftmaxAlibi(thread_block_logits, context_len,
|
||||
block_num * BLOCK_SIZE, alibi_slopes[head_idx], 0,
|
||||
context_len);
|
||||
} else {
|
||||
reduceSoftmax(thread_block_logits, context_len,
|
||||
block_num * BLOCK_SIZE);
|
||||
}
|
||||
|
||||
// Compute value
|
||||
constexpr int head_elem_num_per_partition = 16;
|
||||
constexpr int head_partition_num =
|
||||
HEAD_SIZE / head_elem_num_per_partition;
|
||||
for (int head_part_idx = 0; head_part_idx < head_partition_num;
|
||||
++head_part_idx) {
|
||||
vec_op::FP32Vec16 accums[head_elem_num_per_partition];
|
||||
scalar_t *__restrict__ out_ptr =
|
||||
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE +
|
||||
head_part_idx * head_elem_num_per_partition;
|
||||
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
|
||||
const int64_t physical_block_idx = seq_block_table[block_idx];
|
||||
const float *__restrict__ prob_vec_ptr =
|
||||
thread_block_logits + block_idx * BLOCK_SIZE;
|
||||
const scalar_t *__restrict__ v_block_cache_ptr =
|
||||
v_cache + physical_block_idx * kv_block_stride +
|
||||
kv_head_idx * kv_head_stride +
|
||||
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
|
||||
reduceValueBlock<scalar_t, HEAD_SIZE, BLOCK_SIZE,
|
||||
head_elem_num_per_partition>(
|
||||
prob_vec_ptr, v_block_cache_ptr, accums);
|
||||
|
||||
if (block_idx != block_num - 1) {
|
||||
const int64_t next_physical_block_idx =
|
||||
seq_block_table[block_idx + 1];
|
||||
const scalar_t *__restrict__ next_v_block_cache_ptr =
|
||||
v_cache + next_physical_block_idx * kv_block_stride +
|
||||
kv_head_idx * kv_head_stride +
|
||||
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
|
||||
vec_op::unroll_loop<int, head_elem_num_per_partition>(
|
||||
[&](int head_elem_idx) {
|
||||
if (head_elem_idx % 2 == 0) {
|
||||
vec_op::prefetch(next_v_block_cache_ptr +
|
||||
BLOCK_SIZE * head_elem_idx);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
vec_op::unroll_loop<int, head_elem_num_per_partition>(
|
||||
[&](int head_elem_idx) {
|
||||
float value = accums[head_elem_idx].reduce_sum();
|
||||
vec_op::storeFP32(value, out_ptr + head_elem_idx);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
std::free(logits);
|
||||
}
|
||||
};
|
||||
|
||||
#define LAUNCH_V1_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE) \
|
||||
paged_attention_v1_impl<T, HEAD_SIZE, BLOCK_SIZE>::call( \
|
||||
out_ptr, query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, scale, \
|
||||
block_tables_ptr, context_lens_ptr, max_num_blocks_per_seq, \
|
||||
alibi_slopes_ptr, q_stride, kv_block_stride, kv_head_stride, num_seqs, \
|
||||
num_heads);
|
||||
|
||||
template <typename T, int BLOCK_SIZE>
|
||||
void paged_attention_v1_impl_launcher(
|
||||
torch::Tensor &out, torch::Tensor &query, torch::Tensor &key_cache,
|
||||
torch::Tensor &value_cache, int num_kv_heads, float scale,
|
||||
torch::Tensor &block_tables, torch::Tensor &context_lens,
|
||||
int max_context_len, const c10::optional<torch::Tensor> &alibi_slopes) {
|
||||
int num_seqs = query.size(0);
|
||||
int num_heads = query.size(1);
|
||||
int head_size = query.size(2);
|
||||
int max_num_blocks_per_seq = block_tables.size(1);
|
||||
int q_stride = query.stride(0);
|
||||
int kv_block_stride = key_cache.stride(0);
|
||||
int kv_head_stride = key_cache.stride(1);
|
||||
|
||||
// NOTE: alibi_slopes is optional.
|
||||
const float *alibi_slopes_ptr =
|
||||
alibi_slopes
|
||||
? reinterpret_cast<const float *>(alibi_slopes.value().data_ptr())
|
||||
: nullptr;
|
||||
|
||||
T *out_ptr = reinterpret_cast<T *>(out.data_ptr());
|
||||
T *query_ptr = reinterpret_cast<T *>(query.data_ptr());
|
||||
T *key_cache_ptr = reinterpret_cast<T *>(key_cache.data_ptr());
|
||||
T *value_cache_ptr = reinterpret_cast<T *>(value_cache.data_ptr());
|
||||
int *block_tables_ptr = block_tables.data_ptr<int>();
|
||||
int *context_lens_ptr = context_lens.data_ptr<int>();
|
||||
|
||||
switch (head_size) {
|
||||
case 64:
|
||||
LAUNCH_V1_ATTENTION_KERNEL(T, 64, BLOCK_SIZE);
|
||||
break;
|
||||
case 80:
|
||||
LAUNCH_V1_ATTENTION_KERNEL(T, 80, BLOCK_SIZE);
|
||||
break;
|
||||
case 96:
|
||||
LAUNCH_V1_ATTENTION_KERNEL(T, 96, BLOCK_SIZE);
|
||||
break;
|
||||
case 112:
|
||||
LAUNCH_V1_ATTENTION_KERNEL(T, 112, BLOCK_SIZE);
|
||||
break;
|
||||
case 128:
|
||||
LAUNCH_V1_ATTENTION_KERNEL(T, 128, BLOCK_SIZE);
|
||||
break;
|
||||
case 256:
|
||||
LAUNCH_V1_ATTENTION_KERNEL(T, 256, BLOCK_SIZE);
|
||||
break;
|
||||
default:
|
||||
TORCH_CHECK(false, "Unsupported head size: ", head_size);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
#define CALL_V1_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
|
||||
paged_attention_v1_impl_launcher<T, BLOCK_SIZE>( \
|
||||
out, query, key_cache, value_cache, num_kv_heads, scale, block_tables, \
|
||||
context_lens, max_context_len, alibi_slopes);
|
||||
|
||||
#define CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(T) \
|
||||
switch (block_size) { \
|
||||
case 16: \
|
||||
CALL_V1_KERNEL_LAUNCHER(T, 16); \
|
||||
break; \
|
||||
default: \
|
||||
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
|
||||
break; \
|
||||
}
|
||||
} // namespace
|
||||
|
||||
void paged_attention_v1(torch::Tensor &out, torch::Tensor &query,
|
||||
torch::Tensor &key_cache, torch::Tensor &value_cache,
|
||||
int num_kv_heads, float scale,
|
||||
torch::Tensor &block_tables,
|
||||
torch::Tensor &context_lens, int block_size,
|
||||
int max_context_len,
|
||||
const c10::optional<torch::Tensor> &alibi_slopes,
|
||||
const std::string &kv_cache_dtype) {
|
||||
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v1_impl",
|
||||
[&] {
|
||||
CPU_KERNEL_GUARD_IN(paged_attention_v1_impl)
|
||||
CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t);
|
||||
CPU_KERNEL_GUARD_OUT(paged_attention_v1_impl)
|
||||
});
|
||||
}
|
||||
|
||||
// Paged attention v2
|
||||
namespace {
|
||||
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE, int PARTITION_SIZE>
|
||||
struct paged_attention_v2_impl {
|
||||
static void call(
|
||||
scalar_t *__restrict__ out, // [num_seqs, num_heads, head_size]
|
||||
float *__restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
|
||||
float
|
||||
*__restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
|
||||
scalar_t *__restrict__ tmp_out, // [num_seqs, num_heads,
|
||||
// max_num_partitions, head_size]
|
||||
const scalar_t *__restrict__ q, // [num_seqs, num_heads, head_size]
|
||||
const scalar_t *__restrict__ k_cache, // [num_blocks, num_kv_heads,
|
||||
// head_size/x, block_size, x]
|
||||
const scalar_t *__restrict__ v_cache, // [num_blocks, num_kv_heads,
|
||||
// head_size, block_size]
|
||||
const int num_kv_heads, const float scale,
|
||||
const int
|
||||
*__restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
|
||||
const int *__restrict__ context_lens, // [num_seqs]
|
||||
const int max_num_blocks_per_seq,
|
||||
const float *__restrict__ alibi_slopes, // [num_heads]
|
||||
const int q_stride, const int kv_block_stride, const int kv_head_stride,
|
||||
const int num_seqs, const int num_heads, const int max_num_partitions) {
|
||||
constexpr int x = 16 / sizeof(scalar_t);
|
||||
const int num_queries_per_kv = num_heads / num_kv_heads;
|
||||
|
||||
static_assert(BLOCK_SIZE == 16);
|
||||
static_assert(PARTITION_SIZE * sizeof(float) % 64 == 0);
|
||||
static_assert(PARTITION_SIZE % BLOCK_SIZE == 0);
|
||||
|
||||
#pragma omp parallel for collapse(3) schedule(static, 1)
|
||||
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
|
||||
for (int partition_idx = 0; partition_idx < max_num_partitions;
|
||||
++partition_idx) {
|
||||
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
|
||||
const int context_len = context_lens[seq_idx];
|
||||
const int start_token_idx = partition_idx * PARTITION_SIZE;
|
||||
|
||||
if (start_token_idx >= context_len)
|
||||
continue;
|
||||
|
||||
const int partition_num =
|
||||
(context_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
|
||||
const bool no_reduce = (partition_num == 1);
|
||||
const int context_token_num =
|
||||
(std::min(context_len, start_token_idx + PARTITION_SIZE) -
|
||||
start_token_idx);
|
||||
const int block_num =
|
||||
(context_token_num + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
const int last_block_token_num =
|
||||
context_token_num - (block_num - 1) * BLOCK_SIZE;
|
||||
const int *seq_block_table = block_tables +
|
||||
max_num_blocks_per_seq * seq_idx +
|
||||
start_token_idx / BLOCK_SIZE;
|
||||
const int64_t kv_head_idx = head_idx / num_queries_per_kv;
|
||||
const scalar_t *__restrict__ q_vec_ptr =
|
||||
q + seq_idx * q_stride + head_idx * HEAD_SIZE;
|
||||
|
||||
float logits[PARTITION_SIZE] __attribute__((aligned(64))) = {0};
|
||||
|
||||
// Compute logits
|
||||
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
|
||||
const int64_t physical_block_idx = seq_block_table[block_idx];
|
||||
const scalar_t *__restrict__ k_block_cache_ptr =
|
||||
k_cache + physical_block_idx * kv_block_stride +
|
||||
kv_head_idx * kv_head_stride;
|
||||
float *__restrict__ head_block_logits =
|
||||
logits + block_idx * BLOCK_SIZE;
|
||||
|
||||
reduceQKBlockKernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, x>::call(
|
||||
q_vec_ptr, k_block_cache_ptr, head_block_logits, scale,
|
||||
block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE);
|
||||
}
|
||||
|
||||
std::pair<float, float> max_and_sum;
|
||||
if (alibi_slopes) {
|
||||
max_and_sum = reduceSoftmaxAlibi(
|
||||
logits, context_token_num, block_num * BLOCK_SIZE,
|
||||
alibi_slopes[head_idx], start_token_idx, context_len);
|
||||
} else {
|
||||
max_and_sum = reduceSoftmax(logits, context_token_num,
|
||||
block_num * BLOCK_SIZE);
|
||||
}
|
||||
|
||||
auto &&[max_logit, exp_sum] = max_and_sum;
|
||||
|
||||
scalar_t *__restrict__ output_buffer = nullptr;
|
||||
if (!no_reduce) {
|
||||
auto idx = seq_idx * num_heads * max_num_partitions +
|
||||
head_idx * max_num_partitions + partition_idx;
|
||||
max_logits[idx] = max_logit;
|
||||
exp_sums[idx] = exp_sum;
|
||||
output_buffer =
|
||||
tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
|
||||
head_idx * max_num_partitions * HEAD_SIZE +
|
||||
partition_idx * HEAD_SIZE;
|
||||
} else {
|
||||
output_buffer =
|
||||
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
|
||||
}
|
||||
|
||||
// Compute value
|
||||
constexpr int head_elem_num_per_partition = 16;
|
||||
constexpr int head_partition_num =
|
||||
HEAD_SIZE / head_elem_num_per_partition;
|
||||
for (int head_part_idx = 0; head_part_idx < head_partition_num;
|
||||
++head_part_idx) {
|
||||
vec_op::FP32Vec16 accums[head_elem_num_per_partition];
|
||||
scalar_t *__restrict__ out_ptr =
|
||||
output_buffer + head_part_idx * head_elem_num_per_partition;
|
||||
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
|
||||
const int64_t physical_block_idx = seq_block_table[block_idx];
|
||||
const float *__restrict__ prob_vec_ptr =
|
||||
logits + block_idx * BLOCK_SIZE;
|
||||
const scalar_t *__restrict__ v_block_cache_ptr =
|
||||
v_cache + physical_block_idx * kv_block_stride +
|
||||
kv_head_idx * kv_head_stride +
|
||||
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
|
||||
reduceValueBlock<scalar_t, HEAD_SIZE, BLOCK_SIZE,
|
||||
head_elem_num_per_partition>(
|
||||
prob_vec_ptr, v_block_cache_ptr, accums);
|
||||
|
||||
if (block_idx != block_num - 1) {
|
||||
const int64_t next_physical_block_idx =
|
||||
seq_block_table[block_idx + 1];
|
||||
const scalar_t *__restrict__ next_v_block_cache_ptr =
|
||||
v_cache + next_physical_block_idx * kv_block_stride +
|
||||
kv_head_idx * kv_head_stride +
|
||||
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
|
||||
vec_op::unroll_loop<int, head_elem_num_per_partition>(
|
||||
[&](int head_elem_idx) {
|
||||
if (head_elem_idx % 2 == 0) {
|
||||
vec_op::prefetch(next_v_block_cache_ptr +
|
||||
BLOCK_SIZE * head_elem_idx);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
vec_op::unroll_loop<int, head_elem_num_per_partition>(
|
||||
[&](int head_elem_idx) {
|
||||
float value = accums[head_elem_idx].reduce_sum();
|
||||
vec_op::storeFP32(value, out_ptr + head_elem_idx);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Rescale partition softmax and store the factors to exp_sums
|
||||
#pragma omp parallel for collapse(2) schedule(static, 1)
|
||||
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
|
||||
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
|
||||
const int context_len = context_lens[seq_idx];
|
||||
const int partition_num =
|
||||
(context_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
|
||||
|
||||
if (partition_num == 1)
|
||||
continue;
|
||||
|
||||
reducePartitonSoftmax(
|
||||
max_logits + seq_idx * num_heads * max_num_partitions +
|
||||
head_idx * max_num_partitions,
|
||||
exp_sums + seq_idx * num_heads * max_num_partitions +
|
||||
head_idx * max_num_partitions,
|
||||
partition_num);
|
||||
}
|
||||
}
|
||||
|
||||
// Reduce values
|
||||
using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
|
||||
static_assert(v_load_vec_type::get_elem_num() == BLOCK_SIZE);
|
||||
constexpr int head_elem_num_per_group =
|
||||
16; // Note: didn't align with the cacheline size, due to some HEAD_SIZE
|
||||
// didn't align with 64 bytes
|
||||
static_assert(HEAD_SIZE % head_elem_num_per_group == 0);
|
||||
constexpr int head_group_num = HEAD_SIZE / head_elem_num_per_group;
|
||||
const float *__restrict__ rescale_factors = exp_sums;
|
||||
#pragma omp parallel for collapse(3) schedule(static, 1)
|
||||
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
|
||||
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
|
||||
for (int group_idx = 0; group_idx < head_group_num; ++group_idx) {
|
||||
const int context_len = context_lens[seq_idx];
|
||||
const int partition_num =
|
||||
(context_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
|
||||
|
||||
if (partition_num == 1)
|
||||
continue;
|
||||
|
||||
const float *__restrict__ seq_head_rescale_factors =
|
||||
rescale_factors + seq_idx * num_heads * max_num_partitions +
|
||||
head_idx * max_num_partitions;
|
||||
const scalar_t *__restrict__ seq_head_tmp_out =
|
||||
tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
|
||||
head_idx * max_num_partitions * HEAD_SIZE +
|
||||
group_idx * head_elem_num_per_group;
|
||||
scalar_t *__restrict__ seq_head_output =
|
||||
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE +
|
||||
group_idx * head_elem_num_per_group;
|
||||
|
||||
vec_op::FP32Vec16 acc;
|
||||
for (int i = 0; i < partition_num; ++i) {
|
||||
vec_op::FP32Vec16 rescale_factor(seq_head_rescale_factors[i]);
|
||||
v_load_vec_type value(seq_head_tmp_out + i * HEAD_SIZE);
|
||||
vec_op::FP32Vec16 fp32_value(value);
|
||||
acc = acc + fp32_value * rescale_factor;
|
||||
}
|
||||
v_load_vec_type cast_acc(acc);
|
||||
cast_acc.save(seq_head_output);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#define LAUNCH_V2_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE) \
|
||||
paged_attention_v2_impl<T, HEAD_SIZE, BLOCK_SIZE, PARTITION_SIZE>::call( \
|
||||
out_ptr, exp_sums_ptr, max_logits_ptr, tmp_out_ptr, query_ptr, \
|
||||
key_cache_ptr, value_cache_ptr, num_kv_heads, scale, block_tables_ptr, \
|
||||
context_lens_ptr, max_num_blocks_per_seq, alibi_slopes_ptr, q_stride, \
|
||||
kv_block_stride, kv_head_stride, num_seqs, num_heads, \
|
||||
max_num_partitions);
|
||||
|
||||
template <typename T, int BLOCK_SIZE, int PARTITION_SIZE = 512>
|
||||
void paged_attention_v2_impl_launcher(
|
||||
torch::Tensor &out, torch::Tensor &exp_sums, torch::Tensor &max_logits,
|
||||
torch::Tensor &tmp_out, torch::Tensor &query, torch::Tensor &key_cache,
|
||||
torch::Tensor &value_cache, int num_kv_heads, float scale,
|
||||
torch::Tensor &block_tables, torch::Tensor &context_lens, int block_size,
|
||||
int max_context_len, const c10::optional<torch::Tensor> &alibi_slopes) {
|
||||
int num_seqs = query.size(0);
|
||||
int num_heads = query.size(1);
|
||||
int head_size = query.size(2);
|
||||
int max_num_blocks_per_seq = block_tables.size(1);
|
||||
int q_stride = query.stride(0);
|
||||
int kv_block_stride = key_cache.stride(0);
|
||||
int kv_head_stride = key_cache.stride(1);
|
||||
int max_num_partitions = exp_sums.size(-1);
|
||||
|
||||
// NOTE: alibi_slopes is optional.
|
||||
const float *alibi_slopes_ptr =
|
||||
alibi_slopes
|
||||
? reinterpret_cast<const float *>(alibi_slopes.value().data_ptr())
|
||||
: nullptr;
|
||||
|
||||
T *out_ptr = reinterpret_cast<T *>(out.data_ptr());
|
||||
float *exp_sums_ptr = reinterpret_cast<float *>(exp_sums.data_ptr());
|
||||
float *max_logits_ptr = reinterpret_cast<float *>(max_logits.data_ptr());
|
||||
T *tmp_out_ptr = reinterpret_cast<T *>(tmp_out.data_ptr());
|
||||
T *query_ptr = reinterpret_cast<T *>(query.data_ptr());
|
||||
T *key_cache_ptr = reinterpret_cast<T *>(key_cache.data_ptr());
|
||||
T *value_cache_ptr = reinterpret_cast<T *>(value_cache.data_ptr());
|
||||
int *block_tables_ptr = block_tables.data_ptr<int>();
|
||||
int *context_lens_ptr = context_lens.data_ptr<int>();
|
||||
|
||||
switch (head_size) {
|
||||
case 64:
|
||||
LAUNCH_V2_ATTENTION_KERNEL(T, 64, BLOCK_SIZE);
|
||||
break;
|
||||
case 80:
|
||||
LAUNCH_V2_ATTENTION_KERNEL(T, 80, BLOCK_SIZE);
|
||||
break;
|
||||
case 96:
|
||||
LAUNCH_V2_ATTENTION_KERNEL(T, 96, BLOCK_SIZE);
|
||||
break;
|
||||
case 112:
|
||||
LAUNCH_V2_ATTENTION_KERNEL(T, 112, BLOCK_SIZE);
|
||||
break;
|
||||
case 128:
|
||||
LAUNCH_V2_ATTENTION_KERNEL(T, 128, BLOCK_SIZE);
|
||||
break;
|
||||
case 256:
|
||||
LAUNCH_V2_ATTENTION_KERNEL(T, 256, BLOCK_SIZE);
|
||||
break;
|
||||
default:
|
||||
TORCH_CHECK(false, "Unsupported head size: ", head_size);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
#define CALL_V2_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
|
||||
paged_attention_v2_impl_launcher<T, BLOCK_SIZE>( \
|
||||
out, exp_sums, max_logits, tmp_out, query, key_cache, value_cache, \
|
||||
num_kv_heads, scale, block_tables, context_lens, block_size, \
|
||||
max_context_len, alibi_slopes);
|
||||
|
||||
#define CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(T) \
|
||||
switch (block_size) { \
|
||||
case 16: \
|
||||
CALL_V2_KERNEL_LAUNCHER(T, 16); \
|
||||
break; \
|
||||
default: \
|
||||
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
|
||||
break; \
|
||||
}
|
||||
} // namespace
|
||||
|
||||
void paged_attention_v2(torch::Tensor &out, torch::Tensor &exp_sums,
|
||||
torch::Tensor &max_logits, torch::Tensor &tmp_out,
|
||||
torch::Tensor &query, torch::Tensor &key_cache,
|
||||
torch::Tensor &value_cache, int num_kv_heads,
|
||||
float scale, torch::Tensor &block_tables,
|
||||
torch::Tensor &context_lens, int block_size,
|
||||
int max_context_len,
|
||||
const c10::optional<torch::Tensor> &alibi_slopes,
|
||||
const std::string &kv_cache_dtype) {
|
||||
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v2_impl",
|
||||
[&] {
|
||||
CPU_KERNEL_GUARD_IN(paged_attention_v2_impl)
|
||||
CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t);
|
||||
CPU_KERNEL_GUARD_OUT(paged_attention_v2_impl)
|
||||
});
|
||||
}
|
139
csrc/cpu/cache.cpp
Normal file
@ -0,0 +1,139 @@
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
#include "cpu_types.hpp"
|
||||
|
||||
namespace {
|
||||
template <typename scalar_t>
|
||||
void copy_blocks_cpu_impl(
|
||||
std::vector<torch::Tensor> &key_caches,
|
||||
std::vector<torch::Tensor> &value_caches,
|
||||
const std::vector<std::pair<int64_t, int64_t>> mapping_pairs,
|
||||
const int element_num_per_block, const int layer_num) {
|
||||
const size_t pair_num = mapping_pairs.size();
|
||||
const size_t block_bytes = sizeof(scalar_t) * element_num_per_block;
|
||||
#pragma omp parallel for collapse(2)
|
||||
for (int layer = 0; layer < layer_num; ++layer) {
|
||||
for (size_t pair = 0; pair < pair_num; ++pair) {
|
||||
int64_t source_offset = element_num_per_block * mapping_pairs[pair].first;
|
||||
int64_t target_offset =
|
||||
element_num_per_block * mapping_pairs[pair].second;
|
||||
scalar_t *key_cache_ptr = key_caches[layer].data_ptr<scalar_t>();
|
||||
scalar_t *source_ptr = key_cache_ptr + source_offset;
|
||||
scalar_t *target_ptr = key_cache_ptr + target_offset;
|
||||
std::memcpy(target_ptr, source_ptr, block_bytes);
|
||||
|
||||
scalar_t *value_cache_ptr = value_caches[layer].data_ptr<scalar_t>();
|
||||
source_ptr = value_cache_ptr + source_offset;
|
||||
target_ptr = value_cache_ptr + target_offset;
|
||||
std::memcpy(target_ptr, source_ptr, block_bytes);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void reshape_and_cache_cpu_impl(
|
||||
const scalar_t *__restrict__ key, const scalar_t *__restrict__ value,
|
||||
scalar_t *__restrict__ key_cache, scalar_t *__restrict__ value_cache,
|
||||
const int64_t *__restrict__ slot_mapping, const int num_tokens,
|
||||
const int key_stride, const int value_stride, const int num_heads,
|
||||
const int head_size, const int block_size, const int x) {
|
||||
const int block_elem_num = num_heads * head_size * block_size;
|
||||
|
||||
#pragma omp parallel for collapse(2)
|
||||
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
|
||||
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
|
||||
const int64_t slot_idx = slot_mapping[token_idx];
|
||||
if (slot_idx >= 0) {
|
||||
int src_key_head_idx = token_idx * key_stride + head_idx * head_size;
|
||||
int src_value_head_idx =
|
||||
token_idx * value_stride + head_idx * head_size;
|
||||
const scalar_t *src_key_head_ptr = key + src_key_head_idx;
|
||||
const scalar_t *src_value_head_ptr = value + src_value_head_idx;
|
||||
const int64_t block_index = slot_idx / block_size;
|
||||
const int64_t block_offset = slot_idx % block_size;
|
||||
scalar_t *target_key_head_ptr = key_cache +
|
||||
block_elem_num * block_index +
|
||||
head_idx * block_size * head_size;
|
||||
scalar_t *target_value_head_ptr = value_cache +
|
||||
block_elem_num * block_index +
|
||||
head_idx * block_size * head_size;
|
||||
|
||||
for (int src_key_idx = 0; src_key_idx < head_size; src_key_idx += x) {
|
||||
const int64_t target_offset =
|
||||
src_key_idx * block_size + block_offset * x;
|
||||
for (int i = 0; i < x; ++i) {
|
||||
target_key_head_ptr[target_offset + i] =
|
||||
src_key_head_ptr[src_key_idx + i];
|
||||
}
|
||||
}
|
||||
|
||||
for (int src_value_idx = 0; src_value_idx < head_size;
|
||||
++src_value_idx) {
|
||||
const int64_t target_offset =
|
||||
src_value_idx * block_size + block_offset;
|
||||
target_value_head_ptr[target_offset] =
|
||||
src_value_head_ptr[src_value_idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}; // namespace
|
||||
|
||||
void copy_blocks(std::vector<torch::Tensor> &key_caches,
|
||||
std::vector<torch::Tensor> &value_caches,
|
||||
const std::map<int64_t, std::vector<int64_t>> &block_mapping) {
|
||||
int num_layers = key_caches.size();
|
||||
TORCH_CHECK(num_layers == value_caches.size());
|
||||
if (num_layers == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<std::pair<int64_t, int64_t>> mapping_pairs;
|
||||
mapping_pairs.reserve(block_mapping.size());
|
||||
for (const auto &pair : block_mapping) {
|
||||
for (const auto &dst : pair.second) {
|
||||
mapping_pairs.emplace_back(pair.first, dst);
|
||||
}
|
||||
}
|
||||
|
||||
const int element_num_per_block = key_caches[0][0].numel();
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
key_caches[0].scalar_type(), "copy_blocks_cpu_impl", [&] {
|
||||
CPU_KERNEL_GUARD_IN(copy_blocks_cpu_impl)
|
||||
copy_blocks_cpu_impl<scalar_t>(key_caches, value_caches, mapping_pairs,
|
||||
element_num_per_block, num_layers);
|
||||
CPU_KERNEL_GUARD_OUT(copy_blocks_cpu_impl)
|
||||
});
|
||||
}
|
||||
|
||||
void reshape_and_cache(torch::Tensor &key, torch::Tensor &value,
|
||||
torch::Tensor &key_cache, torch::Tensor &value_cache,
|
||||
torch::Tensor &slot_mapping,
|
||||
const std::string &kv_cache_dtype) {
|
||||
int num_tokens = key.size(0);
|
||||
int num_heads = key.size(1);
|
||||
int head_size = key.size(2);
|
||||
int block_size = key_cache.size(3);
|
||||
int x = key_cache.size(4);
|
||||
|
||||
int key_stride = key.stride(0);
|
||||
int value_stride = value.stride(0);
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
key.scalar_type(), "reshape_and_cache_cpu_impl", [&] {
|
||||
CPU_KERNEL_GUARD_IN(reshape_and_cache_cpu_impl)
|
||||
reshape_and_cache_cpu_impl<scalar_t>(
|
||||
key.data_ptr<scalar_t>(), value.data_ptr<scalar_t>(),
|
||||
key_cache.data_ptr<scalar_t>(), value_cache.data_ptr<scalar_t>(),
|
||||
slot_mapping.data_ptr<int64_t>(), num_tokens, key_stride,
|
||||
value_stride, num_heads, head_size, block_size, x);
|
||||
CPU_KERNEL_GUARD_OUT(reshape_and_cache_cpu_impl)
|
||||
});
|
||||
}
|
||||
|
||||
void swap_blocks(torch::Tensor &src, torch::Tensor &dst,
|
||||
const std::map<int64_t, int64_t> &block_mapping) {
|
||||
TORCH_CHECK(false, "swap_blocks is unsupported on CPU.")
|
||||
}
|
352
csrc/cpu/cpu_types.hpp
Normal file
@ -0,0 +1,352 @@
|
||||
|
||||
#ifndef CPU_TYPES_HPP
|
||||
#define CPU_TYPES_HPP
|
||||
|
||||
#include <immintrin.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
namespace vec_op {
|
||||
|
||||
// FIXME: FP16 is not fully supported in Torch-CPU
|
||||
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
|
||||
|
||||
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
|
||||
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
|
||||
|
||||
#ifndef CPU_OP_GUARD
|
||||
#define CPU_KERNEL_GUARD_IN(NAME)
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME)
|
||||
#else
|
||||
#define CPU_KERNEL_GUARD_IN(NAME) \
|
||||
std::cout << #NAME << " invoked." << std::endl;
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME) std::cout << #NAME << " exit." << std::endl;
|
||||
#endif
|
||||
|
||||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
|
||||
namespace {
|
||||
template <typename T, T... indexes, typename F>
|
||||
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F &&f) {
|
||||
(f(std::integral_constant<T, indexes>{}), ...);
|
||||
}
|
||||
}; // namespace
|
||||
|
||||
template <typename T, T count, typename F,
|
||||
typename = std::enable_if_t<std::is_invocable_v<F, T>>>
|
||||
constexpr void unroll_loop(F &&f) {
|
||||
unroll_loop_item(std::make_integer_sequence<T, count>{}, std::forward<F>(f));
|
||||
}
|
||||
|
||||
template <typename T> struct Vec {
|
||||
constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; }
|
||||
};
|
||||
|
||||
struct FP32Vec8;
|
||||
struct FP32Vec16;
|
||||
|
||||
#ifdef __AVX512FP16__
|
||||
struct FP16Vec8 : public Vec<FP16Vec8> {
|
||||
constexpr static int VEC_ELEM_NUM = 8;
|
||||
|
||||
__m128h reg;
|
||||
|
||||
explicit FP16Vec8(_Float16 v) : reg(_mm_set1_ph(v)) {}
|
||||
|
||||
explicit FP16Vec8(const void *ptr) : reg(_mm_loadu_ph(ptr)) {}
|
||||
|
||||
explicit FP16Vec8(__m128h data) : reg(data) {}
|
||||
|
||||
FP16Vec8 operator*(const FP16Vec8 &b) const {
|
||||
return FP16Vec8(_mm_mul_ph(reg, b.reg));
|
||||
}
|
||||
|
||||
FP16Vec8 operator+(const FP16Vec8 &b) const {
|
||||
return FP16Vec8(_mm_add_ph(reg, b.reg));
|
||||
}
|
||||
|
||||
FP16Vec8 operator-(const FP16Vec8 &b) const {
|
||||
return FP16Vec8(_mm_sub_ph(reg, b.reg));
|
||||
}
|
||||
|
||||
FP16Vec8 operator/(const FP16Vec8 &b) const {
|
||||
return FP16Vec8(_mm_div_ph(reg, b.reg));
|
||||
}
|
||||
|
||||
void save(void *ptr) const { _mm_storeu_ph(ptr, reg); }
|
||||
};
|
||||
#endif
|
||||
|
||||
struct BF16Vec8 : public Vec<BF16Vec8> {
|
||||
constexpr static int VEC_ELEM_NUM = 8;
|
||||
|
||||
__m128i reg;
|
||||
|
||||
explicit BF16Vec8(const void *ptr)
|
||||
: reg((__m128i)_mm_loadu_si128((__m128i *)ptr)) {}
|
||||
|
||||
explicit BF16Vec8(const FP32Vec8 &);
|
||||
|
||||
void save(void *ptr) const { *reinterpret_cast<__m128i *>(ptr) = reg; }
|
||||
};
|
||||
|
||||
struct BF16Vec16 : public Vec<BF16Vec16> {
|
||||
constexpr static int VEC_ELEM_NUM = 16;
|
||||
|
||||
__m256i reg;
|
||||
|
||||
explicit BF16Vec16(const void *ptr)
|
||||
: reg((__m256i)_mm256_loadu_si256((__m256i *)ptr)) {}
|
||||
|
||||
explicit BF16Vec16(const FP32Vec16 &);
|
||||
|
||||
void save(void *ptr) const { *reinterpret_cast<__m256i *>(ptr) = reg; }
|
||||
};
|
||||
|
||||
struct BF16Vec32 : public Vec<BF16Vec32> {
|
||||
constexpr static int VEC_ELEM_NUM = 32;
|
||||
|
||||
__m512i reg;
|
||||
|
||||
explicit BF16Vec32(const void *ptr) : reg((__m512i)_mm512_loadu_si512(ptr)) {}
|
||||
|
||||
explicit BF16Vec32(__m512i data) : reg(data) {}
|
||||
|
||||
explicit BF16Vec32(BF16Vec8 &vec8_data)
|
||||
: reg((__m512i)_mm512_inserti32x4(
|
||||
_mm512_inserti32x4(_mm512_inserti32x4(_mm512_castsi128_si512(
|
||||
(__m128i)vec8_data.reg),
|
||||
(__m128i)vec8_data.reg, 1),
|
||||
(__m128i)vec8_data.reg, 2),
|
||||
(__m128i)vec8_data.reg, 3)) {}
|
||||
|
||||
void save(void *ptr) const { *reinterpret_cast<__m512i *>(ptr) = reg; }
|
||||
};
|
||||
|
||||
struct FP32Vec4 : public Vec<FP32Vec4> {
|
||||
constexpr static int VEC_ELEM_NUM = 4;
|
||||
union AliasReg {
|
||||
__m128 reg;
|
||||
float values[VEC_ELEM_NUM];
|
||||
};
|
||||
|
||||
__m128 reg;
|
||||
|
||||
explicit FP32Vec4(float v) : reg(_mm_set1_ps(v)) {}
|
||||
|
||||
explicit FP32Vec4() : reg(_mm_set1_ps(0.0)) {}
|
||||
|
||||
explicit FP32Vec4(const float *ptr) : reg(_mm_loadu_ps(ptr)) {}
|
||||
|
||||
explicit FP32Vec4(__m128 data) : reg(data) {}
|
||||
|
||||
explicit FP32Vec4(const FP32Vec4 &data) : reg(data.reg) {}
|
||||
};
|
||||
|
||||
struct FP32Vec8 : public Vec<FP32Vec8> {
|
||||
constexpr static int VEC_ELEM_NUM = 8;
|
||||
union AliasReg {
|
||||
__m256 reg;
|
||||
float values[VEC_ELEM_NUM];
|
||||
};
|
||||
|
||||
__m256 reg;
|
||||
|
||||
explicit FP32Vec8(float v) : reg(_mm256_set1_ps(v)) {}
|
||||
|
||||
explicit FP32Vec8() : reg(_mm256_set1_ps(0.0)) {}
|
||||
|
||||
explicit FP32Vec8(const float *ptr) : reg(_mm256_loadu_ps(ptr)) {}
|
||||
|
||||
explicit FP32Vec8(__m256 data) : reg(data) {}
|
||||
|
||||
explicit FP32Vec8(const FP32Vec8 &data) : reg(data.reg) {}
|
||||
|
||||
#ifdef __AVX512FP16__
|
||||
explicit FP32Vec8(__m128h v) : reg(_mm256_cvtph_ps(_mm_castph_si128(v))) {}
|
||||
#endif
|
||||
|
||||
explicit FP32Vec8(const BF16Vec8 &v)
|
||||
: reg(_mm256_castsi256_ps(
|
||||
_mm256_bslli_epi128(_mm256_cvtepu16_epi32(v.reg), 2))) {}
|
||||
|
||||
float reduce_sum() const {
|
||||
AliasReg ar;
|
||||
ar.reg = reg;
|
||||
float result = 0;
|
||||
unroll_loop<int, VEC_ELEM_NUM>([&result, &ar](int i) { result += ar.values[i]; });
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
FP32Vec8 exp() const {
|
||||
AliasReg ar;
|
||||
ar.reg = reg;
|
||||
return FP32Vec8(_mm256_set_ps(expf(ar.values[7]), expf(ar.values[6]),
|
||||
expf(ar.values[5]), expf(ar.values[4]),
|
||||
expf(ar.values[3]), expf(ar.values[2]),
|
||||
expf(ar.values[1]), expf(ar.values[0])));
|
||||
}
|
||||
|
||||
FP32Vec8 tanh() const {
|
||||
AliasReg ar;
|
||||
ar.reg = reg;
|
||||
return FP32Vec8(_mm256_set_ps(tanhf(ar.values[7]), tanhf(ar.values[6]),
|
||||
tanhf(ar.values[5]), tanhf(ar.values[4]),
|
||||
tanhf(ar.values[3]), tanhf(ar.values[2]),
|
||||
tanhf(ar.values[1]), tanhf(ar.values[0])));
|
||||
}
|
||||
|
||||
FP32Vec8 er() const {
|
||||
AliasReg ar;
|
||||
ar.reg = reg;
|
||||
return FP32Vec8(_mm256_set_ps(erf(ar.values[7]), erf(ar.values[6]),
|
||||
erf(ar.values[5]), erf(ar.values[4]),
|
||||
erf(ar.values[3]), erf(ar.values[2]),
|
||||
erf(ar.values[1]), erf(ar.values[0])));
|
||||
}
|
||||
|
||||
FP32Vec8 operator*(const FP32Vec8 &b) const {
|
||||
return FP32Vec8(_mm256_mul_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
FP32Vec8 operator+(const FP32Vec8 &b) const {
|
||||
return FP32Vec8(_mm256_add_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
FP32Vec8 operator-(const FP32Vec8 &b) const {
|
||||
return FP32Vec8(_mm256_sub_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
FP32Vec8 operator/(const FP32Vec8 &b) const {
|
||||
return FP32Vec8(_mm256_div_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
void save(float *ptr) const { _mm256_storeu_ps(ptr, reg); }
|
||||
};
|
||||
|
||||
struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
constexpr static int VEC_ELEM_NUM = 16;
|
||||
union AliasReg {
|
||||
__m512 reg;
|
||||
float values[VEC_ELEM_NUM];
|
||||
};
|
||||
|
||||
__m512 reg;
|
||||
|
||||
explicit FP32Vec16(float v) : reg(_mm512_set1_ps(v)) {}
|
||||
|
||||
explicit FP32Vec16() : reg(_mm512_set1_ps(0.0)) {}
|
||||
|
||||
explicit FP32Vec16(const float *ptr) : reg(_mm512_loadu_ps(ptr)) {}
|
||||
|
||||
explicit FP32Vec16(__m512 data) : reg(data) {}
|
||||
|
||||
explicit FP32Vec16(const FP32Vec16 &data) : reg(data.reg) {}
|
||||
|
||||
explicit FP32Vec16(const FP32Vec4 &data)
|
||||
: reg((__m512)_mm512_inserti32x4(
|
||||
_mm512_inserti32x4(
|
||||
_mm512_inserti32x4(_mm512_castsi128_si512((__m128i)data.reg),
|
||||
(__m128i)data.reg, 1),
|
||||
(__m128i)data.reg, 2),
|
||||
(__m128i)data.reg, 3)) {}
|
||||
|
||||
explicit FP32Vec16(const FP32Vec8 &data)
|
||||
: reg((__m512)_mm512_inserti32x8(
|
||||
_mm512_castsi256_si512((__m256i)data.reg), (__m256i)data.reg, 1)) {}
|
||||
|
||||
explicit FP32Vec16(const BF16Vec16 &v)
|
||||
: reg(_mm512_castsi512_ps(
|
||||
_mm512_bslli_epi128(_mm512_cvtepu16_epi32(v.reg), 2))) {}
|
||||
|
||||
explicit FP32Vec16(const BF16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {}
|
||||
|
||||
FP32Vec16 operator*(const FP32Vec16 &b) const {
|
||||
return FP32Vec16(_mm512_mul_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
FP32Vec16 operator+(const FP32Vec16 &b) const {
|
||||
return FP32Vec16(_mm512_add_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
FP32Vec16 operator-(const FP32Vec16 &b) const {
|
||||
return FP32Vec16(_mm512_sub_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
FP32Vec16 operator/(const FP32Vec16 &b) const {
|
||||
return FP32Vec16(_mm512_div_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
float reduce_sum() const { return _mm512_reduce_add_ps(reg); }
|
||||
|
||||
template <int group_size> float reduce_sub_sum(int idx) {
|
||||
static_assert(VEC_ELEM_NUM % group_size == 0);
|
||||
constexpr uint32_t base_mask = (0xFFFF >> (16 - group_size));
|
||||
__mmask16 mask = _cvtu32_mask16(base_mask << (idx * group_size));
|
||||
return _mm512_mask_reduce_add_ps(mask, reg);
|
||||
}
|
||||
|
||||
void save(float *ptr) const { _mm512_storeu_ps(ptr, reg); }
|
||||
};
|
||||
|
||||
template <typename T> struct VecType { using vec_type = void; };
|
||||
|
||||
template <typename T> using vec_t = typename VecType<T>::vec_type;
|
||||
|
||||
template <> struct VecType<float> { using vec_type = FP32Vec8; };
|
||||
|
||||
#ifdef __AVX512FP16__
|
||||
template <> struct VecType<c10::Half> { using vec_type = FP16Vec16; };
|
||||
#endif
|
||||
|
||||
template <> struct VecType<c10::BFloat16> { using vec_type = BF16Vec8; };
|
||||
|
||||
template <typename T> void storeFP32(float v, T *ptr) { *ptr = v; }
|
||||
|
||||
#ifdef __AVX512FP16__
|
||||
template <> inline void storeFP32<c10::Half>(float v, c10::Half *ptr) {
|
||||
*reinterpret_cast<_Float16 *>(ptr) = v;
|
||||
}
|
||||
#endif
|
||||
|
||||
inline void fma(FP32Vec16 &acc, FP32Vec16 &a, FP32Vec16 &b) {
|
||||
acc = acc + a * b;
|
||||
}
|
||||
|
||||
#ifdef __AVX512BF16__
|
||||
template <> inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16 *ptr) {
|
||||
*reinterpret_cast<__bfloat16 *>(ptr) = _mm_cvtness_sbh(v);
|
||||
}
|
||||
|
||||
inline BF16Vec8::BF16Vec8(const FP32Vec8 &v)
|
||||
: reg((__m128i)_mm256_cvtneps_pbh(v.reg)) {}
|
||||
|
||||
inline BF16Vec16::BF16Vec16(const FP32Vec16 &v)
|
||||
: reg((__m256i)_mm512_cvtneps_pbh(v.reg)) {}
|
||||
|
||||
inline void fma(FP32Vec16 &acc, BF16Vec32 &a, BF16Vec32 &b) {
|
||||
acc.reg = _mm512_dpbf16_ps(acc.reg, (__m512bh)a.reg, (__m512bh)b.reg);
|
||||
}
|
||||
#else
|
||||
template <> inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16 *ptr) {
|
||||
c10::BFloat16 __attribute__((__may_alias__)) *v_ptr =
|
||||
reinterpret_cast<c10::BFloat16 *>(&v);
|
||||
*ptr = *(v_ptr + 1);
|
||||
}
|
||||
|
||||
inline BF16Vec8::BF16Vec8(const FP32Vec8 &v)
|
||||
: reg(_mm256_cvtepi32_epi16(
|
||||
_mm256_bsrli_epi128(_mm256_castps_si256(v.reg), 2))) {}
|
||||
|
||||
inline BF16Vec16::BF16Vec16(const FP32Vec16 &v)
|
||||
: reg(_mm512_cvtepi32_epi16(
|
||||
_mm512_bsrli_epi128(_mm512_castps_si512(v.reg), 2))) {}
|
||||
#endif
|
||||
|
||||
inline void prefetch(const void *addr) { _mm_prefetch(addr, _MM_HINT_T1); }
|
||||
|
||||
}; // namespace vec_op
|
||||
|
||||
#endif
|
117
csrc/cpu/layernorm.cpp
Normal file
@ -0,0 +1,117 @@
|
||||
#include "cpu_types.hpp"
|
||||
|
||||
namespace {
|
||||
template <typename scalar_t>
|
||||
void rms_norm_impl(scalar_t *__restrict__ out,
|
||||
const scalar_t *__restrict__ input,
|
||||
const scalar_t *__restrict__ weight, const float epsilon,
|
||||
const int num_tokens, const int hidden_size) {
|
||||
using scalar_vec_t = vec_op::vec_t<scalar_t>;
|
||||
constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num();
|
||||
TORCH_CHECK(hidden_size % VEC_ELEM_NUM == 0);
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < num_tokens; ++i) {
|
||||
vec_op::FP32Vec8 variance(0.0);
|
||||
auto input_p = input + i * hidden_size;
|
||||
auto output_p = out + i * hidden_size;
|
||||
for (int j = 0; j < hidden_size; j += VEC_ELEM_NUM) {
|
||||
scalar_vec_t x(input_p + j);
|
||||
vec_op::FP32Vec8 fp32_x(x);
|
||||
variance = variance + fp32_x * fp32_x;
|
||||
}
|
||||
|
||||
float s_variance =
|
||||
1.0f / sqrtf(variance.reduce_sum() / (float)hidden_size + epsilon);
|
||||
vec_op::FP32Vec8 fp32_s_variance(s_variance);
|
||||
|
||||
for (int j = 0; j < hidden_size; j += VEC_ELEM_NUM) {
|
||||
scalar_vec_t x(input_p + j);
|
||||
scalar_vec_t w(weight + j);
|
||||
|
||||
vec_op::FP32Vec8 fp32_x(x);
|
||||
vec_op::FP32Vec8 fp32_w(w);
|
||||
|
||||
vec_op::FP32Vec8 fp32_out = fp32_x * fp32_s_variance * fp32_w;
|
||||
|
||||
scalar_vec_t out(fp32_out);
|
||||
out.save(output_p + j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void fused_add_rms_norm_impl(scalar_t *__restrict__ input,
|
||||
scalar_t *__restrict__ residual,
|
||||
const scalar_t *__restrict__ weight,
|
||||
const float epsilon, const int num_tokens,
|
||||
const int hidden_size) {
|
||||
using scalar_vec_t = vec_op::vec_t<scalar_t>;
|
||||
constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num();
|
||||
TORCH_CHECK(hidden_size % VEC_ELEM_NUM == 0);
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < num_tokens; ++i) {
|
||||
vec_op::FP32Vec8 variance(0.0);
|
||||
auto input_p = input + i * hidden_size;
|
||||
auto residual_p = residual + i * hidden_size;
|
||||
for (int j = 0; j < hidden_size; j += VEC_ELEM_NUM) {
|
||||
scalar_vec_t x(input_p + j);
|
||||
scalar_vec_t res(residual_p + j);
|
||||
vec_op::FP32Vec8 fp32_x(x);
|
||||
vec_op::FP32Vec8 fp32_res(res);
|
||||
|
||||
fp32_x = fp32_x + fp32_res;
|
||||
variance = variance + fp32_x * fp32_x;
|
||||
scalar_vec_t out(fp32_x);
|
||||
out.save(residual_p + j);
|
||||
}
|
||||
|
||||
float s_variance =
|
||||
1.0f / sqrtf(variance.reduce_sum() / (float)hidden_size + epsilon);
|
||||
vec_op::FP32Vec8 fp32_s_variance(s_variance);
|
||||
|
||||
for (int j = 0; j < hidden_size; j += VEC_ELEM_NUM) {
|
||||
scalar_vec_t w(weight + j);
|
||||
scalar_vec_t res(residual_p + j);
|
||||
|
||||
vec_op::FP32Vec8 fp32_w(w);
|
||||
vec_op::FP32Vec8 fp32_res(res);
|
||||
|
||||
vec_op::FP32Vec8 fp32_out = fp32_res * fp32_s_variance * fp32_w;
|
||||
|
||||
scalar_vec_t out(fp32_out);
|
||||
out.save(input_p + j);
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
void rms_norm(torch::Tensor &out, torch::Tensor &input,
|
||||
torch::Tensor &weight, float epsilon) {
|
||||
int hidden_size = input.size(-1);
|
||||
int num_tokens = input.numel() / hidden_size;
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rms_norm_impl", [&] {
|
||||
CPU_KERNEL_GUARD_IN(rms_norm_impl)
|
||||
rms_norm_impl(out.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(),
|
||||
weight.data_ptr<scalar_t>(), epsilon, num_tokens,
|
||||
hidden_size);
|
||||
CPU_KERNEL_GUARD_OUT(rms_norm_impl)
|
||||
});
|
||||
}
|
||||
|
||||
void fused_add_rms_norm(torch::Tensor &input, torch::Tensor &residual,
|
||||
torch::Tensor &weight, float epsilon) {
|
||||
int hidden_size = input.size(-1);
|
||||
int num_tokens = input.numel() / hidden_size;
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
input.scalar_type(), "fused_add_rms_norm_impl", [&] {
|
||||
CPU_KERNEL_GUARD_IN(fused_add_rms_norm_impl)
|
||||
fused_add_rms_norm_impl(
|
||||
input.data_ptr<scalar_t>(), residual.data_ptr<scalar_t>(),
|
||||
weight.data_ptr<scalar_t>(), epsilon, num_tokens, hidden_size);
|
||||
CPU_KERNEL_GUARD_OUT(fused_add_rms_norm_impl)
|
||||
});
|
||||
}
|
199
csrc/cpu/pos_encoding.cpp
Normal file
@ -0,0 +1,199 @@
|
||||
|
||||
#include "cpu_types.hpp"
|
||||
|
||||
namespace {
|
||||
template <typename scalar_t>
|
||||
void rotary_embedding_impl(
|
||||
const int64_t
|
||||
*__restrict__ positions, // [batch_size, seq_len] or [num_tokens]
|
||||
scalar_t
|
||||
*__restrict__ query, /// [batch_size, seq_len, num_heads, head_size] or
|
||||
/// [num_tokens, num_heads, head_size]
|
||||
scalar_t
|
||||
*__restrict__ key, // [batch_size, seq_len, num_kv_heads, head_size] or
|
||||
// [num_tokens, num_kv_heads, head_size]
|
||||
const scalar_t
|
||||
*__restrict__ cos_sin_cache, // [max_position, 2, rot_dim // 2]
|
||||
const int rot_dim, const int64_t query_stride, const int64_t key_stride,
|
||||
const int num_heads, const int num_kv_heads, const int head_size,
|
||||
const int num_tokens) {
|
||||
using scalar_vec_t = vec_op::vec_t<scalar_t>;
|
||||
constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num();
|
||||
constexpr int ELEM_SIZE = sizeof(scalar_t);
|
||||
|
||||
const int embed_dim = rot_dim / 2;
|
||||
TORCH_CHECK(embed_dim % VEC_ELEM_NUM == 0);
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
|
||||
int64_t pos = positions[token_idx];
|
||||
const scalar_t *cache_ptr = cos_sin_cache + pos * rot_dim;
|
||||
|
||||
for (int i = 0; i < num_heads; ++i) {
|
||||
const int head_idx = i;
|
||||
const int64_t token_head =
|
||||
token_idx * query_stride + head_idx * head_size;
|
||||
for (int j = 0; j < embed_dim; j += VEC_ELEM_NUM) {
|
||||
const int rot_offset = j;
|
||||
const int x_index = rot_offset;
|
||||
const int y_index = embed_dim + rot_offset;
|
||||
|
||||
const int64_t out_x = token_head + x_index;
|
||||
const int64_t out_y = token_head + y_index;
|
||||
|
||||
const scalar_vec_t cos(cache_ptr + x_index);
|
||||
const scalar_vec_t sin(cache_ptr + y_index);
|
||||
|
||||
const scalar_vec_t q_x(query + out_x);
|
||||
const scalar_vec_t q_y(query + out_y);
|
||||
|
||||
vec_op::FP32Vec8 fp32_cos(cos);
|
||||
vec_op::FP32Vec8 fp32_sin(sin);
|
||||
|
||||
vec_op::FP32Vec8 fp32_q_x(q_x);
|
||||
vec_op::FP32Vec8 fp32_q_y(q_y);
|
||||
|
||||
auto out1 = fp32_q_x * fp32_cos - fp32_q_y * fp32_sin;
|
||||
scalar_vec_t(out1).save(query + out_x);
|
||||
|
||||
auto out2 = fp32_q_y * fp32_cos + fp32_q_x * fp32_sin;
|
||||
scalar_vec_t(out2).save(query + out_y);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < num_kv_heads; ++i) {
|
||||
const int head_idx = i;
|
||||
const int64_t token_head = token_idx * key_stride + head_idx * head_size;
|
||||
for (int j = 0; j < embed_dim; j += VEC_ELEM_NUM) {
|
||||
const int rot_offset = j;
|
||||
const int x_index = rot_offset;
|
||||
const int y_index = embed_dim + rot_offset;
|
||||
|
||||
const int64_t out_x = token_head + x_index;
|
||||
const int64_t out_y = token_head + y_index;
|
||||
|
||||
const scalar_vec_t cos(cache_ptr + x_index);
|
||||
const scalar_vec_t sin(cache_ptr + y_index);
|
||||
|
||||
const scalar_vec_t k_x(key + out_x);
|
||||
const scalar_vec_t k_y(key + out_y);
|
||||
|
||||
vec_op::FP32Vec8 fp32_cos(cos);
|
||||
vec_op::FP32Vec8 fp32_sin(sin);
|
||||
|
||||
vec_op::FP32Vec8 fp32_k_x(k_x);
|
||||
vec_op::FP32Vec8 fp32_k_y(k_y);
|
||||
|
||||
auto out1 = fp32_k_x * fp32_cos - fp32_k_y * fp32_sin;
|
||||
scalar_vec_t(out1).save(key + out_x);
|
||||
auto out2 = fp32_k_y * fp32_cos + fp32_k_x * fp32_sin;
|
||||
scalar_vec_t(out2).save(key + out_y);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void rotary_embedding_gptj_impl(
|
||||
const int64_t
|
||||
*__restrict__ positions, // [batch_size, seq_len] or [num_tokens]
|
||||
scalar_t
|
||||
*__restrict__ query, /// [batch_size, seq_len, num_heads, head_size] or
|
||||
/// [num_tokens, num_heads, head_size]
|
||||
scalar_t
|
||||
*__restrict__ key, // [batch_size, seq_len, num_kv_heads, head_size] or
|
||||
// [num_tokens, num_kv_heads, head_size]
|
||||
const scalar_t
|
||||
*__restrict__ cos_sin_cache, // [max_position, 2, rot_dim // 2]
|
||||
const int rot_dim, const int64_t query_stride, const int64_t key_stride,
|
||||
const int num_heads, const int num_kv_heads, const int head_size,
|
||||
const int num_tokens) {
|
||||
const int embed_dim = rot_dim / 2;
|
||||
|
||||
#pragma omp parallel for collapse(2)
|
||||
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
|
||||
for (int i = 0; i < num_heads; ++i) {
|
||||
int64_t pos = positions[token_idx];
|
||||
const scalar_t *cache_ptr = cos_sin_cache + pos * rot_dim;
|
||||
const scalar_t *cos_cache_ptr = cache_ptr;
|
||||
const scalar_t *sin_cache_ptr = cache_ptr + embed_dim;
|
||||
const int head_idx = i;
|
||||
const int64_t token_head =
|
||||
token_idx * query_stride + head_idx * head_size;
|
||||
scalar_t *head_query = token_head + query;
|
||||
for (int j = 0; j < embed_dim; j += 1) {
|
||||
const int rot_offset = j;
|
||||
const int x_index = 2 * rot_offset;
|
||||
const int y_index = 2 * rot_offset + 1;
|
||||
|
||||
const float cos = cos_cache_ptr[rot_offset];
|
||||
const float sin = sin_cache_ptr[rot_offset];
|
||||
|
||||
const float x = head_query[x_index];
|
||||
const float y = head_query[y_index];
|
||||
|
||||
head_query[x_index] = x * cos - y * sin;
|
||||
head_query[y_index] = y * cos + x * sin;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma omp parallel for collapse(2)
|
||||
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
|
||||
for (int i = 0; i < num_kv_heads; ++i) {
|
||||
int64_t pos = positions[token_idx];
|
||||
const scalar_t *cache_ptr = cos_sin_cache + pos * rot_dim;
|
||||
const scalar_t *cos_cache_ptr = cache_ptr;
|
||||
const scalar_t *sin_cache_ptr = cache_ptr + embed_dim;
|
||||
const int head_idx = i;
|
||||
const int64_t token_head = token_idx * key_stride + head_idx * head_size;
|
||||
scalar_t *head_key = key + token_head;
|
||||
for (int j = 0; j < embed_dim; j += 1) {
|
||||
const int rot_offset = j;
|
||||
const int x_index = 2 * rot_offset;
|
||||
const int y_index = 2 * rot_offset + 1;
|
||||
|
||||
const float cos = cos_cache_ptr[rot_offset];
|
||||
const float sin = sin_cache_ptr[rot_offset];
|
||||
|
||||
const float x = head_key[x_index];
|
||||
const float y = head_key[y_index];
|
||||
|
||||
head_key[x_index] = x * cos - y * sin;
|
||||
head_key[y_index] = y * cos + x * sin;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}; // namespace
|
||||
|
||||
void rotary_embedding(torch::Tensor &positions, torch::Tensor &query,
|
||||
torch::Tensor &key, int head_size,
|
||||
torch::Tensor &cos_sin_cache, bool is_neox) {
|
||||
int num_tokens = query.numel() / query.size(-1);
|
||||
int rot_dim = cos_sin_cache.size(1);
|
||||
int num_heads = query.size(-1) / head_size;
|
||||
int num_kv_heads = key.size(-1) / head_size;
|
||||
int64_t key_stride = key.stride(-2);
|
||||
int64_t query_stride = query.stride(-2);
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
query.scalar_type(), "rotary_embedding_impl", [&] {
|
||||
CPU_KERNEL_GUARD_IN(rotary_embedding_impl)
|
||||
if (is_neox) {
|
||||
rotary_embedding_impl(
|
||||
positions.data_ptr<int64_t>(), query.data_ptr<scalar_t>(),
|
||||
key.data_ptr<scalar_t>(), cos_sin_cache.data_ptr<scalar_t>(),
|
||||
rot_dim, query_stride, key_stride, num_heads, num_kv_heads,
|
||||
head_size, num_tokens);
|
||||
} else {
|
||||
rotary_embedding_gptj_impl(
|
||||
positions.data_ptr<int64_t>(), query.data_ptr<scalar_t>(),
|
||||
key.data_ptr<scalar_t>(), cos_sin_cache.data_ptr<scalar_t>(),
|
||||
rot_dim, query_stride, key_stride, num_heads, num_kv_heads,
|
||||
head_size, num_tokens);
|
||||
}
|
||||
|
||||
CPU_KERNEL_GUARD_OUT(rotary_embedding_impl)
|
||||
});
|
||||
}
|
73
csrc/cpu/pybind.cpp
Normal file
@ -0,0 +1,73 @@
|
||||
#include "cache.h"
|
||||
#include "cuda_utils.h"
|
||||
#include "ops.h"
|
||||
#include <torch/extension.h>
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
// vLLM custom ops
|
||||
pybind11::module ops = m.def_submodule("ops", "vLLM custom operators");
|
||||
|
||||
// Attention ops
|
||||
ops.def(
|
||||
"paged_attention_v1",
|
||||
&paged_attention_v1,
|
||||
"Compute the attention between an input query and the cached keys/values using PagedAttention.");
|
||||
ops.def(
|
||||
"paged_attention_v2",
|
||||
&paged_attention_v2,
|
||||
"PagedAttention V2.");
|
||||
|
||||
// Activation ops
|
||||
ops.def(
|
||||
"silu_and_mul",
|
||||
&silu_and_mul,
|
||||
"Activation function used in SwiGLU.");
|
||||
ops.def(
|
||||
"gelu_and_mul",
|
||||
&gelu_and_mul,
|
||||
"Activation function used in GeGLU with `none` approximation.");
|
||||
ops.def(
|
||||
"gelu_tanh_and_mul",
|
||||
&gelu_tanh_and_mul,
|
||||
"Activation function used in GeGLU with `tanh` approximation.");
|
||||
ops.def(
|
||||
"gelu_new",
|
||||
&gelu_new,
|
||||
"GELU implementation used in GPT-2.");
|
||||
ops.def(
|
||||
"gelu_fast",
|
||||
&gelu_fast,
|
||||
"Approximate GELU implementation.");
|
||||
|
||||
// Layernorm
|
||||
ops.def(
|
||||
"rms_norm",
|
||||
&rms_norm,
|
||||
"Apply Root Mean Square (RMS) Normalization to the input tensor.");
|
||||
|
||||
ops.def(
|
||||
"fused_add_rms_norm",
|
||||
&fused_add_rms_norm,
|
||||
"In-place fused Add and RMS Normalization");
|
||||
|
||||
// Rotary embedding
|
||||
ops.def(
|
||||
"rotary_embedding",
|
||||
&rotary_embedding,
|
||||
"Apply GPT-NeoX or GPT-J style rotary embedding to query and key");
|
||||
|
||||
// Cache ops
|
||||
pybind11::module cache_ops = m.def_submodule("cache_ops", "vLLM cache ops");
|
||||
cache_ops.def(
|
||||
"swap_blocks",
|
||||
&swap_blocks,
|
||||
"Swap in (out) the cache blocks from src to dst");
|
||||
cache_ops.def(
|
||||
"copy_blocks",
|
||||
©_blocks,
|
||||
"Copy the cache blocks from src to dst");
|
||||
cache_ops.def(
|
||||
"reshape_and_cache",
|
||||
&reshape_and_cache,
|
||||
"Reshape the key and value tensors and cache them");
|
||||
}
|
@ -1,5 +1,15 @@
|
||||
#pragma once
|
||||
|
||||
#ifdef USE_ROCM
|
||||
#include <hip/hip_runtime.h>
|
||||
#endif
|
||||
|
||||
#ifndef USE_ROCM
|
||||
#define WARP_SIZE 32
|
||||
#else
|
||||
#define WARP_SIZE warpSize
|
||||
#endif
|
||||
|
||||
#ifndef USE_ROCM
|
||||
#define VLLM_LDG(arg) __ldg(arg)
|
||||
#else
|
||||
|
@ -29,7 +29,7 @@ fptr_t init_custom_ar(torch::Tensor &meta, torch::Tensor &rank_data,
|
||||
std::memcpy(&ipc_handles[i], handles[i].data(), sizeof(cudaIpcMemHandle_t));
|
||||
}
|
||||
return (fptr_t) new vllm::CustomAllreduce(
|
||||
reinterpret_cast<vllm::Metadata *>(meta.data_ptr()), rank_data.data_ptr(),
|
||||
reinterpret_cast<vllm::Signal *>(meta.data_ptr()), rank_data.data_ptr(),
|
||||
rank_data.numel(), ipc_handles, offsets, rank, full_nvlink);
|
||||
}
|
||||
|
||||
@ -62,9 +62,9 @@ bool should_custom_ar(torch::Tensor &inp, int max_size, int world_size,
|
||||
if (inp_size % 16 != 0) return false;
|
||||
if (!_is_weak_contiguous(inp)) return false;
|
||||
if (world_size == 2 || full_nvlink) return inp_size <= max_size;
|
||||
// 4 PCIE GPUs use 2 stage allreduce, and is only faster than NCCL when size
|
||||
// <= 512k
|
||||
return world_size <= 4 && inp_size <= 512 * 1024;
|
||||
// for 4 or more non NVLink-capable GPUs, custom allreduce provides little
|
||||
// performance improvement over NCCL.
|
||||
return false;
|
||||
}
|
||||
|
||||
void _all_reduce(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out,
|
||||
@ -126,7 +126,7 @@ void dispose(fptr_t _fa) {
|
||||
delete fa;
|
||||
}
|
||||
|
||||
int meta_size() { return sizeof(vllm::Metadata); }
|
||||
int meta_size() { return sizeof(vllm::Signal); }
|
||||
|
||||
void register_buffer(fptr_t _fa, torch::Tensor &t,
|
||||
const std::vector<std::string> &handles,
|
||||
|
@ -23,29 +23,17 @@
|
||||
|
||||
namespace vllm {
|
||||
|
||||
constexpr int kMaxBlocks = 64;
|
||||
// note: we don't want to use atomics for signals because peer atomics are no
|
||||
// supported on PCIe links
|
||||
struct Signal {
|
||||
alignas(64) union {
|
||||
uint64_t flag;
|
||||
unsigned char data[8];
|
||||
} start;
|
||||
alignas(64) union {
|
||||
uint64_t flag;
|
||||
unsigned char data[8];
|
||||
} end;
|
||||
alignas(128) uint32_t start[kMaxBlocks][8];
|
||||
alignas(128) uint32_t end[kMaxBlocks][8];
|
||||
};
|
||||
|
||||
struct Metadata {
|
||||
alignas(128) Signal sg;
|
||||
alignas(128) int counter;
|
||||
};
|
||||
static_assert(offsetof(Metadata, counter) == 128);
|
||||
static_assert(sizeof(Metadata) == 256);
|
||||
|
||||
struct __align__(16) RankData { const void *__restrict__ ptrs[8]; };
|
||||
|
||||
struct RankSignals {
|
||||
volatile Signal *signals[8];
|
||||
};
|
||||
struct __align__(16) RankSignals { volatile Signal *signals[8]; };
|
||||
|
||||
// like std::array, but aligned
|
||||
template <typename T, int sz>
|
||||
@ -135,70 +123,49 @@ DINLINE O downcast(array_t<float, O::size> val) {
|
||||
}
|
||||
}
|
||||
|
||||
// compute flag at compile time
|
||||
__host__ __device__ constexpr uint64_t compute_flag(int ngpus) {
|
||||
auto m = std::numeric_limits<uint64_t>::max();
|
||||
return m >> ((8 - ngpus) * 8);
|
||||
}
|
||||
|
||||
// This function is meant to be used as the first synchronization in the all
|
||||
// reduce kernel. Thus, it doesn't need to make any visibility guarantees for
|
||||
// prior memory accesses. Note: volatile writes will not be reordered against
|
||||
// other volatile writes.
|
||||
template <int ngpus>
|
||||
DINLINE void start_sync(const RankSignals &sg, volatile Metadata *meta,
|
||||
DINLINE void start_sync(const RankSignals &sg, volatile Signal *self_sg,
|
||||
int rank) {
|
||||
constexpr auto FLAG = compute_flag(ngpus);
|
||||
if (blockIdx.x == 0) {
|
||||
if (threadIdx.x < ngpus)
|
||||
// simultaneously write to the corresponding byte to all other ranks.
|
||||
// Latency = 1 p2p write
|
||||
sg.signals[threadIdx.x]->start.data[rank] = 255;
|
||||
else if (threadIdx.x == 32)
|
||||
// reset
|
||||
meta->sg.end.flag = 0;
|
||||
}
|
||||
if (threadIdx.x == 0) {
|
||||
while (meta->sg.start.flag != FLAG)
|
||||
if (threadIdx.x < ngpus) {
|
||||
// reset flag for next time
|
||||
self_sg->end[blockIdx.x][threadIdx.x] = 0;
|
||||
// simultaneously write to the corresponding flag of all ranks.
|
||||
// Latency = 1 p2p write
|
||||
sg.signals[threadIdx.x]->start[blockIdx.x][rank] = 1;
|
||||
// wait until we got true from all ranks
|
||||
while (!self_sg->start[blockIdx.x][threadIdx.x])
|
||||
;
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
// This function is meant to be used as the second or the final synchronization
|
||||
// barrier in the all reduce kernel. If it's the final synchronization barrier,
|
||||
// we don't need to make any visibility guarantees for prior memory accesses.
|
||||
template <int ngpus, bool final_sync = false>
|
||||
DINLINE void end_sync(const RankSignals &sg, volatile Metadata *meta,
|
||||
DINLINE void end_sync(const RankSignals &sg, volatile Signal *self_sg,
|
||||
int rank) {
|
||||
constexpr auto FLAG = compute_flag(ngpus);
|
||||
__syncthreads();
|
||||
__shared__ int num;
|
||||
if (threadIdx.x == 0) num = atomicAdd((int *)&meta->counter, 1);
|
||||
__syncthreads();
|
||||
|
||||
// Only the last completing block can perform the end synchronization
|
||||
// This can ensures when the final busy wait ends, all ranks must have
|
||||
// finished reading each other's buffer.
|
||||
if (num == gridDim.x - 1) {
|
||||
if (threadIdx.x == 32) {
|
||||
// reset in a different warp
|
||||
meta->counter = 0;
|
||||
meta->sg.start.flag = 0;
|
||||
} else if (threadIdx.x < ngpus) {
|
||||
// simultaneously write to the corresponding byte to all other ranks.
|
||||
// Latency = 1 p2p write
|
||||
sg.signals[threadIdx.x]->end.data[rank] = 255;
|
||||
}
|
||||
// if this is the final sync, only one block needs it
|
||||
// because kernel exit can serve as sync
|
||||
if constexpr (final_sync) {
|
||||
if (threadIdx.x == 0) {
|
||||
while (meta->sg.end.flag != FLAG)
|
||||
;
|
||||
}
|
||||
}
|
||||
}
|
||||
if constexpr (!final_sync) {
|
||||
if (threadIdx.x == 0) {
|
||||
while (meta->sg.end.flag != FLAG)
|
||||
;
|
||||
}
|
||||
__syncthreads();
|
||||
// eliminate the case that prior writes are not visible after signals become
|
||||
// visible. Note that I did not managed to make this happen through a lot of
|
||||
// testing. Might be the case that hardware provides stronger guarantee than
|
||||
// the memory model.
|
||||
if constexpr (!final_sync) __threadfence_system();
|
||||
if (threadIdx.x < ngpus) {
|
||||
// reset flag for next time
|
||||
self_sg->start[blockIdx.x][threadIdx.x] = 0;
|
||||
// simultaneously write to the corresponding flag of all ranks.
|
||||
// Latency = 1 p2p write
|
||||
sg.signals[threadIdx.x]->end[blockIdx.x][rank] = 1;
|
||||
// wait until we got true from all ranks
|
||||
while (!self_sg->end[blockIdx.x][threadIdx.x])
|
||||
;
|
||||
}
|
||||
if constexpr (!final_sync) __syncthreads();
|
||||
}
|
||||
|
||||
template <typename P, int ngpus, typename A>
|
||||
@ -214,32 +181,32 @@ DINLINE P packed_reduce(const P *ptrs[], int idx) {
|
||||
template <typename T, int ngpus>
|
||||
__global__ void __launch_bounds__(512, 1)
|
||||
cross_device_reduce_1stage(RankData *_dp, RankSignals sg,
|
||||
volatile Metadata *meta, T *__restrict__ result,
|
||||
volatile Signal *self_sg, T *__restrict__ result,
|
||||
int rank, int size) {
|
||||
using P = typename packed_t<T>::P;
|
||||
using A = typename packed_t<T>::A;
|
||||
// note: we don't reorder the address so the accumulation order is the same
|
||||
// for all ranks, ensuring bitwise identical results
|
||||
auto dp = *_dp;
|
||||
start_sync<ngpus>(sg, meta, rank);
|
||||
start_sync<ngpus>(sg, self_sg, rank);
|
||||
// do the actual reduction
|
||||
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
|
||||
idx += gridDim.x * blockDim.x) {
|
||||
((P *)result)[idx] =
|
||||
packed_reduce<P, ngpus, A>((const P **)&dp.ptrs[0], idx);
|
||||
}
|
||||
end_sync<ngpus, true>(sg, meta, rank);
|
||||
end_sync<ngpus, true>(sg, self_sg, rank);
|
||||
}
|
||||
|
||||
template <typename P>
|
||||
DINLINE P *get_tmp_buf(volatile Signal *sg) {
|
||||
return (P *)(((Metadata *)sg) + 1);
|
||||
return (P *)(((Signal *)sg) + 1);
|
||||
}
|
||||
|
||||
template <typename T, int ngpus>
|
||||
__global__ void __launch_bounds__(512, 1)
|
||||
cross_device_reduce_2stage(RankData *_dp, RankSignals sg,
|
||||
volatile Metadata *meta, T *__restrict__ result,
|
||||
volatile Signal *self_sg, T *__restrict__ result,
|
||||
int rank, int size) {
|
||||
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int stride = gridDim.x * blockDim.x;
|
||||
@ -248,6 +215,7 @@ __global__ void __launch_bounds__(512, 1)
|
||||
int part = size / ngpus;
|
||||
int start = rank * part;
|
||||
int end = rank == ngpus - 1 ? size : start + part;
|
||||
int largest_part = part + size % ngpus;
|
||||
const P *ptrs[ngpus];
|
||||
P *tmps[ngpus];
|
||||
#pragma unroll
|
||||
@ -257,75 +225,28 @@ __global__ void __launch_bounds__(512, 1)
|
||||
tmps[i] = get_tmp_buf<P>(sg.signals[target]);
|
||||
}
|
||||
auto tmp_out = tmps[0];
|
||||
start_sync<ngpus>(sg, meta, rank);
|
||||
start_sync<ngpus>(sg, self_sg, rank);
|
||||
// stage 1: reduce scatter
|
||||
for (int idx = start + tid; idx < end; idx += stride) {
|
||||
tmp_out[idx - start] = packed_reduce<P, ngpus, A>(ptrs, idx);
|
||||
}
|
||||
// Maybe TODO: replace this with per-block release-acquire
|
||||
// can save about 1-2us (not a lot though)
|
||||
end_sync<ngpus>(sg, meta, rank);
|
||||
end_sync<ngpus>(sg, self_sg, rank);
|
||||
|
||||
// stage 2: allgather
|
||||
for (int idx = tid; idx < part; idx += stride) {
|
||||
// stage 2: allgather. Note: it's important to match the tid between
|
||||
// the two stages, because visibility across devices is only guaranteed
|
||||
// between threads that have the same tid. If thread i computes the sum of
|
||||
// start + i in the first stage, then thread i also gathers start + i from all
|
||||
// ranks.
|
||||
for (int idx = tid; idx < largest_part; idx += stride) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < ngpus; i++) {
|
||||
int dst_idx = ((rank + i) % ngpus) * part + idx;
|
||||
((P *)result)[dst_idx] = tmps[i][idx];
|
||||
int gather_from_rank = ((rank + i) % ngpus);
|
||||
if (gather_from_rank == ngpus - 1 || idx < part) {
|
||||
int dst_idx = gather_from_rank * part + idx;
|
||||
((P *)result)[dst_idx] = tmps[i][idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
// process the last larger partition
|
||||
int remaining = size - part * ngpus;
|
||||
if (tid < remaining) {
|
||||
int dst_idx = tid + part * ngpus;
|
||||
((P *)result)[dst_idx] = get_tmp_buf<P>(sg.signals[ngpus - 1])[part + tid];
|
||||
}
|
||||
|
||||
// faster than this
|
||||
// for (int idx = tid; idx < size; idx += stride) {
|
||||
// int target_rank = idx / part;
|
||||
// if (target_rank == ngpus) target_rank -= 1;
|
||||
// ((P *)result)[idx] = tmps[target_rank][idx - target_rank * part];
|
||||
// }
|
||||
}
|
||||
|
||||
template <typename T, int ngpus>
|
||||
__global__ void __launch_bounds__(512, 1)
|
||||
cross_device_reduce_half_butterfly(RankData *_dp, RankSignals sg,
|
||||
volatile Metadata *meta,
|
||||
T *__restrict__ result, int rank,
|
||||
int size) {
|
||||
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int stride = gridDim.x * blockDim.x;
|
||||
using P = typename packed_t<T>::P;
|
||||
using A = typename packed_t<T>::A;
|
||||
auto tmp_out = get_tmp_buf<P>(sg.signals[rank]);
|
||||
constexpr int hg = ngpus / 2;
|
||||
// Actually not quite half butterfly.
|
||||
// This is an all-to-all within each group containing half of the ranks
|
||||
// followed by cross-group add. Equivalent to half butterfly when there
|
||||
// are 4 GPUs, a common case for PCIe cards like T4 and A10.
|
||||
const P *ptrs[hg];
|
||||
{
|
||||
int start = rank - rank % hg;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < hg; i++) {
|
||||
ptrs[i] = (const P *)_dp->ptrs[i + start];
|
||||
}
|
||||
}
|
||||
start_sync<ngpus>(sg, meta, rank);
|
||||
for (int idx = tid; idx < size; idx += stride) {
|
||||
tmp_out[idx] = packed_reduce<P, hg, A>(ptrs, idx);
|
||||
}
|
||||
end_sync<ngpus>(sg, meta, rank);
|
||||
|
||||
auto src = get_tmp_buf<P>(sg.signals[(ngpus - 1) - rank % ngpus]);
|
||||
// do the cross group reduction
|
||||
for (int idx = tid; idx < size; idx += stride) {
|
||||
auto tmp = tmp_out[idx];
|
||||
packed_assign_add(tmp, src[idx]);
|
||||
((P *)result)[idx] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
using IPC_KEY = std::array<uint8_t, sizeof(cudaIpcMemHandle_t)>;
|
||||
@ -341,7 +262,7 @@ class CustomAllreduce {
|
||||
// below are device pointers
|
||||
RankSignals sg_;
|
||||
std::unordered_map<void *, RankData *> buffers_;
|
||||
Metadata *meta_;
|
||||
Signal *self_sg_;
|
||||
|
||||
// stores the registered device pointers from all ranks
|
||||
RankData *d_rank_data_base_, *d_rank_data_end_;
|
||||
@ -352,32 +273,32 @@ class CustomAllreduce {
|
||||
/**
|
||||
* meta is a pointer to device metadata and temporary buffer for allreduce.
|
||||
*
|
||||
* There's a total of sizeof(Metadata) of prefix before the actual data,
|
||||
* There's a total of sizeof(Signal) of prefix before the actual data,
|
||||
* so meta + 1 points to actual temporary buffer.
|
||||
*
|
||||
* note: this class does not own any device memory. Any required buffers
|
||||
* are passed in from the constructor
|
||||
*/
|
||||
CustomAllreduce(Metadata *meta, void *rank_data, size_t rank_data_sz,
|
||||
CustomAllreduce(Signal *meta, void *rank_data, size_t rank_data_sz,
|
||||
const cudaIpcMemHandle_t *handles,
|
||||
const std::vector<int64_t> &offsets, int rank,
|
||||
bool full_nvlink = true)
|
||||
: rank_(rank),
|
||||
world_size_(offsets.size()),
|
||||
full_nvlink_(full_nvlink),
|
||||
meta_(meta),
|
||||
self_sg_(meta),
|
||||
d_rank_data_base_(reinterpret_cast<RankData *>(rank_data)),
|
||||
d_rank_data_end_(d_rank_data_base_ + rank_data_sz / sizeof(RankData)) {
|
||||
for (int i = 0; i < world_size_; i++) {
|
||||
Metadata *rank_meta;
|
||||
Signal *rank_sg;
|
||||
if (i != rank_) {
|
||||
char *handle = open_ipc_handle(&handles[i]);
|
||||
handle += offsets[i];
|
||||
rank_meta = (Metadata *)handle;
|
||||
rank_sg = (Signal *)handle;
|
||||
} else {
|
||||
rank_meta = meta_;
|
||||
rank_sg = self_sg_;
|
||||
}
|
||||
sg_.signals[i] = &rank_meta->sg;
|
||||
sg_.signals[i] = rank_sg;
|
||||
}
|
||||
}
|
||||
|
||||
@ -492,6 +413,10 @@ class CustomAllreduce {
|
||||
"custom allreduce currently requires input length to be multiple "
|
||||
"of " +
|
||||
std::to_string(d));
|
||||
if (block_limit > kMaxBlocks)
|
||||
throw std::runtime_error("max supported block limit is " +
|
||||
std::to_string(kMaxBlocks) + ". Got " +
|
||||
std::to_string(block_limit));
|
||||
|
||||
RankData *ptrs;
|
||||
cudaStreamCaptureStatus status;
|
||||
@ -512,9 +437,9 @@ class CustomAllreduce {
|
||||
size /= d;
|
||||
auto bytes = size * sizeof(typename packed_t<T>::P);
|
||||
int blocks = std::min(block_limit, (size + threads - 1) / threads);
|
||||
#define KL(ngpus, name) \
|
||||
name<T, ngpus> \
|
||||
<<<blocks, threads, 0, stream>>>(ptrs, sg_, meta_, output, rank_, size);
|
||||
#define KL(ngpus, name) \
|
||||
name<T, ngpus><<<blocks, threads, 0, stream>>>(ptrs, sg_, self_sg_, output, \
|
||||
rank_, size);
|
||||
#define REDUCE_CASE(ngpus) \
|
||||
case ngpus: { \
|
||||
if (world_size_ == 2) { \
|
||||
@ -526,8 +451,6 @@ class CustomAllreduce {
|
||||
} else { \
|
||||
KL(ngpus, cross_device_reduce_2stage); \
|
||||
} \
|
||||
} else { \
|
||||
KL(ngpus, cross_device_reduce_half_butterfly); \
|
||||
} \
|
||||
break; \
|
||||
}
|
||||
@ -556,7 +479,7 @@ class CustomAllreduce {
|
||||
/**
|
||||
* To inspect PTX/SASS, copy paste this header file to compiler explorer and add
|
||||
a template instantiation:
|
||||
* template void CustomAllreduce::allreduce<half>(cudaStream_t, half *, half *,
|
||||
int, int, int);
|
||||
* template void vllm::CustomAllreduce::allreduce<half>(cudaStream_t, half *,
|
||||
half *, int, int, int);
|
||||
*/
|
||||
} // namespace vllm
|
||||
|
@ -92,7 +92,7 @@ __global__ void gen_data(curandState_t *state, T *data, double *ground_truth,
|
||||
|
||||
template <typename T>
|
||||
void run(int myRank, int nRanks, ncclComm_t &comm, int threads, int block_limit,
|
||||
int data_size) {
|
||||
int data_size, bool performance_test) {
|
||||
T *result;
|
||||
cudaStream_t stream;
|
||||
CUDACHECK(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
|
||||
@ -101,7 +101,7 @@ void run(int myRank, int nRanks, ncclComm_t &comm, int threads, int block_limit,
|
||||
|
||||
cudaIpcMemHandle_t self_data_handle;
|
||||
cudaIpcMemHandle_t data_handles[8];
|
||||
vllm::Metadata *buffer;
|
||||
vllm::Signal *buffer;
|
||||
T *self_data_copy;
|
||||
/**
|
||||
* Allocate IPC buffer
|
||||
@ -115,9 +115,9 @@ void run(int myRank, int nRanks, ncclComm_t &comm, int threads, int block_limit,
|
||||
* convenience.
|
||||
*/
|
||||
CUDACHECK(
|
||||
cudaMalloc(&buffer, 2 * data_size * sizeof(T) + sizeof(vllm::Metadata)));
|
||||
CUDACHECK(cudaMemset(buffer, 0,
|
||||
2 * data_size * sizeof(T) + sizeof(vllm::Metadata)));
|
||||
cudaMalloc(&buffer, 2 * data_size * sizeof(T) + sizeof(vllm::Signal)));
|
||||
CUDACHECK(
|
||||
cudaMemset(buffer, 0, 2 * data_size * sizeof(T) + sizeof(vllm::Signal)));
|
||||
CUDACHECK(cudaMalloc(&self_data_copy, data_size * sizeof(T)));
|
||||
CUDACHECK(cudaIpcGetMemHandle(&self_data_handle, buffer));
|
||||
|
||||
@ -133,7 +133,7 @@ void run(int myRank, int nRanks, ncclComm_t &comm, int threads, int block_limit,
|
||||
offsets, myRank);
|
||||
auto *self_data =
|
||||
reinterpret_cast<T *>(reinterpret_cast<char *>(buffer) +
|
||||
sizeof(vllm::Metadata) + data_size * sizeof(T));
|
||||
sizeof(vllm::Signal) + data_size * sizeof(T));
|
||||
// hack buffer registration
|
||||
{
|
||||
std::vector<std::string> handles;
|
||||
@ -143,8 +143,8 @@ void run(int myRank, int nRanks, ncclComm_t &comm, int threads, int block_limit,
|
||||
char *end = (char *)&data_handles[i + 1];
|
||||
handles.emplace_back(begin, end);
|
||||
}
|
||||
std::vector<int64_t> offsets(
|
||||
nRanks, sizeof(vllm::Metadata) + data_size * sizeof(T));
|
||||
std::vector<int64_t> offsets(nRanks,
|
||||
sizeof(vllm::Signal) + data_size * sizeof(T));
|
||||
fa.register_buffer(handles, offsets, self_data);
|
||||
}
|
||||
|
||||
@ -169,81 +169,112 @@ void run(int myRank, int nRanks, ncclComm_t &comm, int threads, int block_limit,
|
||||
} else {
|
||||
ncclDtype = ncclFloat;
|
||||
}
|
||||
|
||||
dummy_kernel<<<1, 1, 0, stream>>>();
|
||||
constexpr int warmup_iters = 5;
|
||||
constexpr int num_iters = 25;
|
||||
// warmup
|
||||
for (int i = 0; i < warmup_iters; i++) {
|
||||
NCCLCHECK(ncclAllReduce(result, result, data_size, ncclDtype, ncclSum, comm,
|
||||
stream));
|
||||
}
|
||||
CUDACHECK(cudaEventRecord(start, stream));
|
||||
for (int i = 0; i < num_iters; i++) {
|
||||
NCCLCHECK(ncclAllReduce(result, result, data_size, ncclDtype, ncclSum, comm,
|
||||
stream));
|
||||
}
|
||||
CUDACHECK(cudaEventRecord(stop, stream));
|
||||
CUDACHECK(cudaStreamSynchronize(stream));
|
||||
float allreduce_ms = 0;
|
||||
cudaEventElapsedTime(&allreduce_ms, start, stop);
|
||||
|
||||
// if (myRank == 1) dummy_kernel<<<1, 1, 0, stream>>>();
|
||||
// set_data<T><<<16, 1024, 0, stream>>>(self_data, data_size, myRank);
|
||||
|
||||
dummy_kernel<<<1, 1, 0, stream>>>();
|
||||
// warm up
|
||||
for (int i = 0; i < warmup_iters; i++) {
|
||||
fa.allreduce<T>(stream, self_data, result, data_size, threads, block_limit);
|
||||
}
|
||||
CUDACHECK(cudaEventRecord(start, stream));
|
||||
for (int i = 0; i < num_iters; i++) {
|
||||
fa.allreduce<T>(stream, self_data, result, data_size, threads, block_limit);
|
||||
}
|
||||
CUDACHECK(cudaEventRecord(stop, stream));
|
||||
CUDACHECK(cudaStreamSynchronize(stream));
|
||||
|
||||
float duration_ms = 0;
|
||||
cudaEventElapsedTime(&duration_ms, start, stop);
|
||||
if (myRank == 0)
|
||||
printf(
|
||||
"Rank %d done, nGPUs:%d, sz (kb): %d, %d, %d, my time:%.2fus, nccl "
|
||||
"time:%.2fus\n",
|
||||
myRank, nRanks, data_size * sizeof(T) / 1024, threads, block_limit,
|
||||
duration_ms * 1e3 / num_iters, allreduce_ms * 1e3 / num_iters);
|
||||
|
||||
// And wait for all the queued up work to complete
|
||||
CUDACHECK(cudaStreamSynchronize(stream));
|
||||
|
||||
NCCLCHECK(ncclAllReduce(self_data_copy, self_data, data_size, ncclDtype,
|
||||
ncclSum, comm, stream));
|
||||
|
||||
double *nccl_result, *my_result;
|
||||
CUDACHECK(cudaMallocHost(&nccl_result, data_size * sizeof(double)));
|
||||
CUDACHECK(cudaMallocHost(&my_result, data_size * sizeof(double)));
|
||||
|
||||
convert_data<T><<<108, 1024, 0, stream>>>(self_data, result, nccl_result,
|
||||
my_result, data_size);
|
||||
CUDACHECK(cudaStreamSynchronize(stream));
|
||||
|
||||
for (unsigned long j = 0; j < data_size; j++) {
|
||||
auto diff = abs(nccl_result[j] - my_result[j]);
|
||||
if (diff >= 1e-2) {
|
||||
printf("Rank %d: Verification mismatch at %lld: %f != (my) %f, gt=%f\n",
|
||||
myRank, j, nccl_result[j], my_result[j], ground_truth[j]);
|
||||
break;
|
||||
if (performance_test) {
|
||||
dummy_kernel<<<1, 1, 0, stream>>>();
|
||||
constexpr int warmup_iters = 5;
|
||||
constexpr int num_iters = 100;
|
||||
// warmup
|
||||
for (int i = 0; i < warmup_iters; i++) {
|
||||
NCCLCHECK(ncclAllReduce(result, result, data_size, ncclDtype, ncclSum,
|
||||
comm, stream));
|
||||
}
|
||||
}
|
||||
CUDACHECK(cudaEventRecord(start, stream));
|
||||
for (int i = 0; i < num_iters; i++) {
|
||||
NCCLCHECK(ncclAllReduce(result, result, data_size, ncclDtype, ncclSum,
|
||||
comm, stream));
|
||||
}
|
||||
CUDACHECK(cudaEventRecord(stop, stream));
|
||||
CUDACHECK(cudaStreamSynchronize(stream));
|
||||
float allreduce_ms = 0;
|
||||
cudaEventElapsedTime(&allreduce_ms, start, stop);
|
||||
|
||||
long double nccl_diffs = 0.0;
|
||||
long double my_diffs = 0.0;
|
||||
for (int j = 0; j < data_size; j++) {
|
||||
nccl_diffs += abs(nccl_result[j] - ground_truth[j]);
|
||||
my_diffs += abs(my_result[j] - ground_truth[j]);
|
||||
dummy_kernel<<<1, 1, 0, stream>>>();
|
||||
// warm up
|
||||
for (int i = 0; i < warmup_iters; i++) {
|
||||
fa.allreduce<T>(stream, self_data, result, data_size, threads,
|
||||
block_limit);
|
||||
}
|
||||
CUDACHECK(cudaEventRecord(start, stream));
|
||||
for (int i = 0; i < num_iters; i++) {
|
||||
fa.allreduce<T>(stream, self_data, result, data_size, threads,
|
||||
block_limit);
|
||||
}
|
||||
CUDACHECK(cudaEventRecord(stop, stream));
|
||||
CUDACHECK(cudaStreamSynchronize(stream));
|
||||
|
||||
float duration_ms = 0;
|
||||
cudaEventElapsedTime(&duration_ms, start, stop);
|
||||
if (myRank == 0)
|
||||
printf(
|
||||
"Rank %d done, nGPUs:%d, sz (kb): %d, %d, %d, my time:%.2fus, nccl "
|
||||
"time:%.2fus\n",
|
||||
myRank, nRanks, data_size * sizeof(T) / 1024, threads, block_limit,
|
||||
duration_ms * 1e3 / num_iters, allreduce_ms * 1e3 / num_iters);
|
||||
|
||||
// And wait for all the queued up work to complete
|
||||
CUDACHECK(cudaStreamSynchronize(stream));
|
||||
|
||||
NCCLCHECK(ncclAllReduce(self_data_copy, self_data, data_size, ncclDtype,
|
||||
ncclSum, comm, stream));
|
||||
|
||||
convert_data<T><<<108, 1024, 0, stream>>>(self_data, result, nccl_result,
|
||||
my_result, data_size);
|
||||
CUDACHECK(cudaStreamSynchronize(stream));
|
||||
|
||||
for (unsigned long j = 0; j < data_size; j++) {
|
||||
auto diff = abs(nccl_result[j] - my_result[j]);
|
||||
if (diff >= 4e-2) {
|
||||
printf("Rank %d: Verification mismatch at %lld: %f != (my) %f, gt=%f\n",
|
||||
myRank, j, nccl_result[j], my_result[j], ground_truth[j]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
long double nccl_diffs = 0.0;
|
||||
long double my_diffs = 0.0;
|
||||
for (int j = 0; j < data_size; j++) {
|
||||
nccl_diffs += abs(nccl_result[j] - ground_truth[j]);
|
||||
my_diffs += abs(my_result[j] - ground_truth[j]);
|
||||
}
|
||||
if (myRank == 0)
|
||||
std::cout << "average abs diffs: nccl: " << nccl_diffs / data_size
|
||||
<< " me: " << my_diffs / data_size << std::endl;
|
||||
} else {
|
||||
for (int i = 0; i < 100; i++) {
|
||||
fa.allreduce<T>(stream, self_data, result, data_size, threads,
|
||||
block_limit);
|
||||
CUDACHECK(cudaStreamSynchronize(stream));
|
||||
NCCLCHECK(ncclAllReduce(self_data, self_data_copy, data_size, ncclDtype,
|
||||
ncclSum, comm, stream));
|
||||
convert_data<T><<<108, 1024, 0, stream>>>(
|
||||
self_data_copy, result, nccl_result, my_result, data_size);
|
||||
CUDACHECK(cudaStreamSynchronize(stream));
|
||||
|
||||
for (unsigned long j = 0; j < data_size; j++) {
|
||||
auto diff = abs(nccl_result[j] - my_result[j]);
|
||||
if (diff >= 4e-2) {
|
||||
printf(
|
||||
"Rank %d: Verification mismatch at %lld: %f != (my) %f, gt=%f\n",
|
||||
myRank, j, nccl_result[j], my_result[j], ground_truth[j]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (myRank == 0)
|
||||
printf("Test passed: nGPUs:%d, sz (kb): %d, %d, %d\n", nRanks,
|
||||
data_size * sizeof(T) / 1024, threads, block_limit);
|
||||
// long double nccl_diffs = 0.0;
|
||||
// long double my_diffs = 0.0;
|
||||
// for (int j = 0; j < data_size; j++) {
|
||||
// nccl_diffs += abs(nccl_result[j] - ground_truth[j]);
|
||||
// my_diffs += abs(my_result[j] - ground_truth[j]);
|
||||
// }
|
||||
// if (myRank == 0)
|
||||
// std::cout << "average abs diffs: nccl: " << nccl_diffs / data_size
|
||||
// << " me: " << my_diffs / data_size << std::endl;
|
||||
}
|
||||
if (myRank == 0)
|
||||
std::cout << "average abs diffs: nccl: " << nccl_diffs / data_size
|
||||
<< " me: " << my_diffs / data_size << std::endl;
|
||||
|
||||
CUDACHECK(cudaFree(result));
|
||||
CUDACHECK(cudaFree(self_data_copy));
|
||||
@ -269,14 +300,15 @@ int main(int argc, char **argv) {
|
||||
MPI_COMM_WORLD));
|
||||
NCCLCHECK(ncclCommInitRank(&comm, nRanks, id, myRank));
|
||||
|
||||
bool performance_test = true;
|
||||
cudaProfilerStart();
|
||||
// for (int threads : {256, 512}) {
|
||||
// for (int block_limit = 16; block_limit < 112; block_limit += 4) {
|
||||
// run<half>(myRank, nRanks, comm, threads, block_limit, 4096 * 1024);
|
||||
// }
|
||||
// }
|
||||
for (int sz = 512; sz <= (32 << 20); sz *= 2) {
|
||||
run<half>(myRank, nRanks, comm, 512, 36, sz + 8 * 50);
|
||||
for (int sz = 512; sz <= (8 << 20); sz *= 2) {
|
||||
run<half>(myRank, nRanks, comm, 512, 36, sz + 8 * 47, performance_test);
|
||||
}
|
||||
|
||||
cudaProfilerStop();
|
||||
|
@ -4,6 +4,16 @@
|
||||
|
||||
#include "dispatch_utils.h"
|
||||
#include "reduction_utils.cuh"
|
||||
#ifndef USE_ROCM
|
||||
#include <cuda_bf16.h>
|
||||
#include <cuda_fp16.h>
|
||||
#else
|
||||
#include <hip/hip_bf16.h>
|
||||
#include <hip/hip_fp16.h>
|
||||
|
||||
using __nv_bfloat16 = __hip_bfloat16;
|
||||
using __nv_bfloat162 = __hip_bfloat162;
|
||||
#endif
|
||||
|
||||
namespace vllm {
|
||||
|
||||
@ -35,9 +45,199 @@ __global__ void rms_norm_kernel(
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Further optimize this kernel.
|
||||
template<typename scalar_t>
|
||||
__global__ void fused_add_rms_norm_kernel(
|
||||
|
||||
/* Converter structs for the conversion from torch types to HIP/CUDA types,
|
||||
and the associated type conversions within HIP/CUDA. These helpers need
|
||||
to be implemented for now because the relevant type conversion
|
||||
operators/constructors are not consistently implemented by HIP/CUDA, so
|
||||
a generic conversion via type casts cannot be implemented.
|
||||
|
||||
Each struct should have the member static constexpr bool `exists`:
|
||||
If false, the optimized kernel is not used for the corresponding torch type.
|
||||
If true, the struct should be fully defined as shown in the examples below.
|
||||
*/
|
||||
template<typename torch_type>
|
||||
struct _typeConvert { static constexpr bool exists = false; };
|
||||
|
||||
template<>
|
||||
struct _typeConvert<c10::Half> {
|
||||
static constexpr bool exists = true;
|
||||
using hip_type = __half;
|
||||
using packed_hip_type = __half2;
|
||||
|
||||
__device__ static inline float convert(hip_type x) { return __half2float(x); }
|
||||
__device__ static inline float2 convert(packed_hip_type x) { return __half22float2(x); }
|
||||
__device__ static inline hip_type convert(float x) { return __float2half_rn(x); }
|
||||
__device__ static inline packed_hip_type convert(float2 x) { return __float22half2_rn(x); }
|
||||
};
|
||||
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
||||
// CUDA_ARCH < 800 does not have BF16 support
|
||||
// TODO: Add in ROCm support once public headers handle bf16 maturely
|
||||
template<>
|
||||
struct _typeConvert<c10::BFloat16> {
|
||||
static constexpr bool exists = true;
|
||||
using hip_type = __nv_bfloat16;
|
||||
using packed_hip_type = __nv_bfloat162;
|
||||
|
||||
__device__ static inline float convert(hip_type x) { return __bfloat162float(x); }
|
||||
__device__ static inline float2 convert(packed_hip_type x) { return __bfloat1622float2(x); }
|
||||
__device__ static inline hip_type convert(float x) { return __float2bfloat16(x); }
|
||||
__device__ static inline packed_hip_type convert(float2 x) { return __float22bfloat162_rn(x); }
|
||||
};
|
||||
#endif
|
||||
|
||||
|
||||
/* Vector POD struct to generate vectorized and packed FP16/BF16 ops
|
||||
for appropriate specializations of fused_add_rms_norm_kernel.
|
||||
Only functions that are necessary in that kernel are implemented.
|
||||
Alignment to 16 bytes is required to use 128-bit global memory ops.
|
||||
*/
|
||||
template<typename scalar_t, int width>
|
||||
struct alignas(16) _f16Vec {
|
||||
/* Not theoretically necessary that width is a power of 2 but should
|
||||
almost always be the case for optimization purposes */
|
||||
static_assert(width > 0 && (width & (width - 1)) == 0,
|
||||
"Width is not a positive power of 2!");
|
||||
using Converter = _typeConvert<scalar_t>;
|
||||
using T1 = typename Converter::hip_type;
|
||||
using T2 = typename Converter::packed_hip_type;
|
||||
T1 data[width];
|
||||
|
||||
__device__ _f16Vec& operator+=(const _f16Vec<scalar_t, width>& other) {
|
||||
if constexpr (width % 2 == 0) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < width; i += 2) {
|
||||
T2 temp{data[i], data[i+1]};
|
||||
temp += T2{other.data[i], other.data[i+1]};
|
||||
data[i] = temp.x;
|
||||
data[i+1] = temp.y;
|
||||
}
|
||||
} else {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < width; ++i)
|
||||
data[i] += other.data[i];
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
__device__ _f16Vec& operator*=(const _f16Vec<scalar_t, width>& other) {
|
||||
if constexpr (width % 2 == 0) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < width; i += 2) {
|
||||
T2 temp{data[i], data[i+1]};
|
||||
temp *= T2{other.data[i], other.data[i+1]};
|
||||
data[i] = temp.x;
|
||||
data[i+1] = temp.y;
|
||||
}
|
||||
} else {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < width; ++i)
|
||||
data[i] *= other.data[i];
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
__device__ _f16Vec& operator*=(const float scale) {
|
||||
if constexpr (width % 2 == 0) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < width; i += 2) {
|
||||
float2 temp_f = Converter::convert(T2{data[i], data[i+1]});
|
||||
temp_f.x *= scale;
|
||||
temp_f.y *= scale;
|
||||
T2 temp = Converter::convert(temp_f);
|
||||
data[i] = temp.x;
|
||||
data[i+1] = temp.y;
|
||||
}
|
||||
} else {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < width; ++i) {
|
||||
float temp = Converter::convert(data[i]) * scale;
|
||||
data[i] = Converter::convert(temp);
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
__device__ float sum_squares() const {
|
||||
float result = 0.0f;
|
||||
if constexpr (width % 2 == 0) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < width; i += 2) {
|
||||
float2 z = Converter::convert(T2{data[i], data[i+1]});
|
||||
result += z.x * z.x + z.y * z.y;
|
||||
}
|
||||
} else {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < width; ++i) {
|
||||
float x = Converter::convert(data[i]);
|
||||
result += x * x;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
/* Function specialization in the case of FP16/BF16 tensors.
|
||||
Additional optimizations we can make in this case are
|
||||
packed and vectorized operations, which help with the
|
||||
memory latency bottleneck. */
|
||||
template<typename scalar_t, int width>
|
||||
__global__ std::enable_if_t<
|
||||
(width > 0) && _typeConvert<scalar_t>::exists> fused_add_rms_norm_kernel(
|
||||
scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
scalar_t* __restrict__ residual, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ weight, // [hidden_size]
|
||||
const float epsilon,
|
||||
const int num_tokens,
|
||||
const int hidden_size) {
|
||||
// Sanity checks on our vector struct and type-punned pointer arithmetic
|
||||
static_assert(std::is_pod_v<_f16Vec<scalar_t, width>>);
|
||||
static_assert(sizeof(_f16Vec<scalar_t, width>) == sizeof(scalar_t) * width);
|
||||
|
||||
const int vec_hidden_size = hidden_size / width;
|
||||
__shared__ float s_variance;
|
||||
float variance = 0.0f;
|
||||
/* These and the argument pointers are all declared `restrict` as they are
|
||||
not aliased in practice. Argument pointers should not be dereferenced
|
||||
in this kernel as that would be undefined behavior */
|
||||
auto* __restrict__ input_v = reinterpret_cast<_f16Vec<scalar_t, width>*>(input);
|
||||
auto* __restrict__ residual_v = reinterpret_cast<_f16Vec<scalar_t, width>*>(residual);
|
||||
auto* __restrict__ weight_v = reinterpret_cast<const _f16Vec<scalar_t, width>*>(weight);
|
||||
|
||||
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
|
||||
int id = blockIdx.x * vec_hidden_size + idx;
|
||||
_f16Vec<scalar_t, width> temp = input_v[id];
|
||||
temp += residual_v[id];
|
||||
variance += temp.sum_squares();
|
||||
residual_v[id] = temp;
|
||||
}
|
||||
/* Keep the following if-else block in sync with the
|
||||
calculation of max_block_size in fused_add_rms_norm */
|
||||
if (num_tokens < 256) {
|
||||
variance = blockReduceSum<float, 1024>(variance);
|
||||
} else variance = blockReduceSum<float, 256>(variance);
|
||||
if (threadIdx.x == 0) {
|
||||
s_variance = rsqrtf(variance / hidden_size + epsilon);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
|
||||
int id = blockIdx.x * vec_hidden_size + idx;
|
||||
_f16Vec<scalar_t, width> temp = residual_v[id];
|
||||
temp *= s_variance;
|
||||
temp *= weight_v[idx];
|
||||
input_v[id] = temp;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Generic fused_add_rms_norm_kernel
|
||||
The width field is not used here but necessary for other specializations.
|
||||
*/
|
||||
template<typename scalar_t, int width>
|
||||
__global__ std::enable_if_t<
|
||||
(width == 0) || !_typeConvert<scalar_t>::exists> fused_add_rms_norm_kernel(
|
||||
scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
scalar_t* __restrict__ residual, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ weight, // [hidden_size]
|
||||
@ -48,12 +248,17 @@ __global__ void fused_add_rms_norm_kernel(
|
||||
float variance = 0.0f;
|
||||
|
||||
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
|
||||
float x = (float) input[blockIdx.x * hidden_size + idx];
|
||||
x += (float) residual[blockIdx.x * hidden_size + idx];
|
||||
scalar_t z = input[blockIdx.x * hidden_size + idx];
|
||||
z += residual[blockIdx.x * hidden_size + idx];
|
||||
float x = (float) z;
|
||||
variance += x * x;
|
||||
residual[blockIdx.x * hidden_size + idx] = (scalar_t) x;
|
||||
residual[blockIdx.x * hidden_size + idx] = z;
|
||||
}
|
||||
variance = blockReduceSum<float>(variance);
|
||||
/* Keep the following if-else block in sync with the
|
||||
calculation of max_block_size in fused_add_rms_norm */
|
||||
if (num_tokens < 256) {
|
||||
variance = blockReduceSum<float, 1024>(variance);
|
||||
} else variance = blockReduceSum<float, 256>(variance);
|
||||
if (threadIdx.x == 0) {
|
||||
s_variance = rsqrtf(variance / hidden_size + epsilon);
|
||||
}
|
||||
@ -93,6 +298,21 @@ void rms_norm(
|
||||
});
|
||||
}
|
||||
|
||||
#define LAUNCH_FUSED_ADD_RMS_NORM(width) \
|
||||
VLLM_DISPATCH_FLOATING_TYPES( \
|
||||
input.scalar_type(), \
|
||||
"fused_add_rms_norm_kernel", \
|
||||
[&] { \
|
||||
vllm::fused_add_rms_norm_kernel \
|
||||
<scalar_t, width><<<grid, block, 0, stream>>>( \
|
||||
input.data_ptr<scalar_t>(), \
|
||||
residual.data_ptr<scalar_t>(), \
|
||||
weight.data_ptr<scalar_t>(), \
|
||||
epsilon, \
|
||||
num_tokens, \
|
||||
hidden_size); \
|
||||
});
|
||||
|
||||
void fused_add_rms_norm(
|
||||
torch::Tensor& input, // [..., hidden_size]
|
||||
torch::Tensor& residual, // [..., hidden_size]
|
||||
@ -102,19 +322,29 @@ void fused_add_rms_norm(
|
||||
int num_tokens = input.numel() / hidden_size;
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(hidden_size, 1024));
|
||||
/* This kernel is memory-latency bound in many scenarios.
|
||||
When num_tokens is large, a smaller block size allows
|
||||
for increased block occupancy on CUs and better latency
|
||||
hiding on global mem ops. */
|
||||
const int max_block_size = (num_tokens < 256) ? 1024 : 256;
|
||||
dim3 block(std::min(hidden_size, max_block_size));
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
input.scalar_type(),
|
||||
"fused_add_rms_norm_kernel",
|
||||
[&] {
|
||||
vllm::fused_add_rms_norm_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
input.data_ptr<scalar_t>(),
|
||||
residual.data_ptr<scalar_t>(),
|
||||
weight.data_ptr<scalar_t>(),
|
||||
epsilon,
|
||||
num_tokens,
|
||||
hidden_size);
|
||||
});
|
||||
/*If the tensor types are FP16/BF16, try to use the optimized kernel
|
||||
with packed + vectorized ops.
|
||||
Max optimization is achieved with a width-8 vector of FP16/BF16s
|
||||
since we can load at most 128 bits at once in a global memory op.
|
||||
However, this requires each tensor's data to be aligned to 16
|
||||
bytes.
|
||||
*/
|
||||
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
|
||||
auto res_ptr = reinterpret_cast<std::uintptr_t>(residual.data_ptr());
|
||||
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
|
||||
bool ptrs_are_aligned = inp_ptr % 16 == 0 && res_ptr % 16 == 0 \
|
||||
&& wt_ptr % 16 == 0;
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0) {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(8);
|
||||
} else {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(0);
|
||||
}
|
||||
}
|
||||
|
@ -7,10 +7,17 @@
|
||||
#include "cuda_compat.h"
|
||||
#include "dispatch_utils.h"
|
||||
|
||||
const static size_t NUM_MAX_EXPERTS = 64;
|
||||
#define CEILDIV(x,y) (((x) + (y) - 1) / (y))
|
||||
|
||||
namespace vllm {
|
||||
|
||||
namespace {
|
||||
__device__ __forceinline__ int32_t index(int32_t total_col, int32_t row, int32_t col) {
|
||||
// don't worry about overflow because num_experts is relatively small
|
||||
return row * total_col + col;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
|
||||
int32_t *sorted_token_ids,
|
||||
@ -21,10 +28,14 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
|
||||
size_t numel) {
|
||||
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
|
||||
const size_t start_idx = threadIdx.x * tokens_per_thread;
|
||||
__shared__ int32_t tokens_cnts[NUM_MAX_EXPERTS + 1][NUM_MAX_EXPERTS];
|
||||
__shared__ int32_t cumsum[NUM_MAX_EXPERTS + 1];
|
||||
|
||||
extern __shared__ int32_t shared_mem[];
|
||||
|
||||
int32_t* tokens_cnts = shared_mem; // 2d tensor with shape (num_experts + 1, num_experts)
|
||||
int32_t* cumsum = shared_mem + (num_experts + 1) * num_experts; // 1d tensor with shape (num_experts + 1)
|
||||
|
||||
for (int i = 0; i < num_experts; ++i) {
|
||||
tokens_cnts[threadIdx.x + 1][i] = 0;
|
||||
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -33,15 +44,15 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
|
||||
* to expert expert_index.
|
||||
*/
|
||||
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
|
||||
++tokens_cnts[threadIdx.x + 1][topk_ids[i]];
|
||||
++tokens_cnts[index(num_experts, threadIdx.x + 1, topk_ids[i])];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// For each expert we accumulate the token counts from the different threads.
|
||||
tokens_cnts[0][threadIdx.x] = 0;
|
||||
tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
|
||||
for (int i = 1; i <= blockDim.x; ++i) {
|
||||
tokens_cnts[i][threadIdx.x] += tokens_cnts[i-1][threadIdx.x];
|
||||
tokens_cnts[index(num_experts, i, threadIdx.x)] += tokens_cnts[index(num_experts, i-1, threadIdx.x)];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
@ -50,7 +61,7 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
|
||||
if (threadIdx.x == 0) {
|
||||
cumsum[0] = 0;
|
||||
for (int i = 1; i <= num_experts; ++i) {
|
||||
cumsum[i] = cumsum[i-1] + CEILDIV(tokens_cnts[blockDim.x][i - 1], block_size) * block_size;
|
||||
cumsum[i] = cumsum[i-1] + CEILDIV(tokens_cnts[index(num_experts, blockDim.x, i - 1)], block_size) * block_size;
|
||||
}
|
||||
*total_tokens_post_pad = cumsum[num_experts];
|
||||
}
|
||||
@ -78,9 +89,9 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
|
||||
* stores the indices of the tokens processed by the expert with expert_id within
|
||||
* the current thread's token shard.
|
||||
*/
|
||||
int32_t rank_post_pad = tokens_cnts[threadIdx.x][expert_id] + cumsum[expert_id];
|
||||
int32_t rank_post_pad = tokens_cnts[index(num_experts, threadIdx.x, expert_id)] + cumsum[expert_id];
|
||||
sorted_token_ids[rank_post_pad] = i;
|
||||
++tokens_cnts[threadIdx.x][expert_id];
|
||||
++tokens_cnts[index(num_experts, threadIdx.x, expert_id)];
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -93,11 +104,17 @@ void moe_align_block_size(
|
||||
torch::Tensor experts_ids,
|
||||
torch::Tensor num_tokens_post_pad) {
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
assert(num_experts <= NUM_MAX_EXPERTS);
|
||||
VLLM_DISPATCH_INTEGRAL_TYPES(
|
||||
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
|
||||
vllm::moe_align_block_size_kernel<scalar_t><<<1, num_experts, 0, stream>>>(
|
||||
topk_ids.data_ptr<scalar_t>(),
|
||||
// calc needed amount of shared mem for `tokens_cnts` and `cumsum` tensors
|
||||
const int32_t shared_mem = ((num_experts + 1) * num_experts + (num_experts + 1)) * sizeof(int32_t);
|
||||
|
||||
// set dynamic shared mem
|
||||
auto kernel = vllm::moe_align_block_size_kernel<scalar_t>;
|
||||
AT_CUDA_CHECK(
|
||||
VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize((void *)kernel, shared_mem));
|
||||
kernel<<<1, num_experts, shared_mem, stream>>>(
|
||||
topk_ids.data_ptr<scalar_t>(),
|
||||
sorted_token_ids.data_ptr<int32_t>(),
|
||||
experts_ids.data_ptr<int32_t>(),
|
||||
num_tokens_post_pad.data_ptr<int32_t>(),
|
||||
|
33
csrc/ops.h
@ -53,10 +53,28 @@ void rotary_embedding(
|
||||
torch::Tensor& cos_sin_cache,
|
||||
bool is_neox);
|
||||
|
||||
void batched_rotary_embedding(
|
||||
torch::Tensor& positions,
|
||||
torch::Tensor& query,
|
||||
torch::Tensor& key,
|
||||
int head_size,
|
||||
torch::Tensor& cos_sin_cache,
|
||||
bool is_neox,
|
||||
int rot_dim,
|
||||
torch::Tensor& cos_sin_cache_offsets);
|
||||
|
||||
void silu_and_mul(
|
||||
torch::Tensor& out,
|
||||
torch::Tensor& input);
|
||||
|
||||
void gelu_and_mul(
|
||||
torch::Tensor& out,
|
||||
torch::Tensor& input);
|
||||
|
||||
void gelu_tanh_and_mul(
|
||||
torch::Tensor& out,
|
||||
torch::Tensor& input);
|
||||
|
||||
void gelu_new(
|
||||
torch::Tensor& out,
|
||||
torch::Tensor& input);
|
||||
@ -80,6 +98,15 @@ torch::Tensor awq_dequantize(
|
||||
int split_k_iters,
|
||||
int thx,
|
||||
int thy);
|
||||
|
||||
torch::Tensor marlin_gemm(
|
||||
torch::Tensor& a,
|
||||
torch::Tensor& b_q_weight,
|
||||
torch::Tensor& b_scales,
|
||||
torch::Tensor& workspace,
|
||||
int64_t size_m,
|
||||
int64_t size_n,
|
||||
int64_t size_k);
|
||||
#endif
|
||||
|
||||
void squeezellm_gemm(
|
||||
@ -94,11 +121,13 @@ torch::Tensor gptq_gemm(
|
||||
torch::Tensor b_gptq_qzeros,
|
||||
torch::Tensor b_gptq_scales,
|
||||
torch::Tensor b_g_idx,
|
||||
bool use_exllama);
|
||||
bool use_exllama,
|
||||
int bit);
|
||||
|
||||
void gptq_shuffle(
|
||||
torch::Tensor q_weight,
|
||||
torch::Tensor q_perm);
|
||||
torch::Tensor q_perm,
|
||||
int bit);
|
||||
|
||||
void moe_align_block_size(
|
||||
torch::Tensor topk_ids,
|
||||
|
@ -8,7 +8,7 @@
|
||||
namespace vllm {
|
||||
|
||||
template<typename scalar_t, bool IS_NEOX>
|
||||
inline __device__ void apply_rotary_embedding(
|
||||
inline __device__ void apply_token_rotary_embedding(
|
||||
scalar_t* __restrict__ arr,
|
||||
const scalar_t* __restrict__ cos_ptr,
|
||||
const scalar_t* __restrict__ sin_ptr,
|
||||
@ -37,6 +37,42 @@ inline __device__ void apply_rotary_embedding(
|
||||
arr[y_index] = y * cos + x * sin;
|
||||
}
|
||||
|
||||
template<typename scalar_t, bool IS_NEOX>
|
||||
inline __device__ void apply_rotary_embedding(
|
||||
scalar_t* __restrict__ query, // [batch_size, seq_len, num_heads, head_size] or [num_tokens, num_heads, head_size]
|
||||
scalar_t* __restrict__ key, // [batch_size, seq_len, num_kv_heads, head_size] or [num_tokens, num_kv_heads, head_size]
|
||||
const scalar_t* cache_ptr,
|
||||
const int head_size,
|
||||
const int num_heads,
|
||||
const int num_kv_heads,
|
||||
const int rot_dim,
|
||||
const int token_idx,
|
||||
const int64_t query_stride,
|
||||
const int64_t key_stride)
|
||||
{
|
||||
const int embed_dim = rot_dim / 2;
|
||||
const scalar_t* cos_ptr = cache_ptr;
|
||||
const scalar_t* sin_ptr = cache_ptr + embed_dim;
|
||||
|
||||
const int nq = num_heads * embed_dim;
|
||||
for (int i = threadIdx.x; i < nq; i += blockDim.x) {
|
||||
const int head_idx = i / embed_dim;
|
||||
const int64_t token_head = token_idx * query_stride + head_idx * head_size;
|
||||
const int rot_offset = i % embed_dim;
|
||||
apply_token_rotary_embedding<scalar_t, IS_NEOX>(query + token_head, cos_ptr,
|
||||
sin_ptr, rot_offset, embed_dim);
|
||||
}
|
||||
|
||||
const int nk = num_kv_heads * embed_dim;
|
||||
for (int i = threadIdx.x; i < nk; i += blockDim.x) {
|
||||
const int head_idx = i / embed_dim;
|
||||
const int64_t token_head = token_idx * key_stride + head_idx * head_size;
|
||||
const int rot_offset = i % embed_dim;
|
||||
apply_token_rotary_embedding<scalar_t, IS_NEOX>(key + token_head, cos_ptr,
|
||||
sin_ptr, rot_offset, embed_dim);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename scalar_t, bool IS_NEOX>
|
||||
__global__ void rotary_embedding_kernel(
|
||||
const int64_t* __restrict__ positions, // [batch_size, seq_len] or [num_tokens]
|
||||
@ -54,27 +90,29 @@ __global__ void rotary_embedding_kernel(
|
||||
int64_t pos = positions[token_idx];
|
||||
const scalar_t* cache_ptr = cos_sin_cache + pos * rot_dim;
|
||||
|
||||
const int embed_dim = rot_dim / 2;
|
||||
const scalar_t* cos_ptr = cache_ptr;
|
||||
const scalar_t* sin_ptr = cache_ptr + embed_dim;
|
||||
apply_rotary_embedding<scalar_t, IS_NEOX>(query, key, cache_ptr, head_size, num_heads, num_kv_heads, rot_dim, token_idx, query_stride, key_stride);
|
||||
}
|
||||
|
||||
const int nq = num_heads * embed_dim;
|
||||
for (int i = threadIdx.x; i < nq; i += blockDim.x) {
|
||||
const int head_idx = i / embed_dim;
|
||||
const int64_t token_head = token_idx * query_stride + head_idx * head_size;
|
||||
const int rot_offset = i % embed_dim;
|
||||
apply_rotary_embedding<scalar_t, IS_NEOX>(query + token_head, cos_ptr,
|
||||
sin_ptr, rot_offset, embed_dim);
|
||||
}
|
||||
template<typename scalar_t, bool IS_NEOX>
|
||||
__global__ void batched_rotary_embedding_kernel(
|
||||
const int64_t* __restrict__ positions, // [batch_size, seq_len] or [num_tokens]
|
||||
scalar_t* __restrict__ query, // [batch_size, seq_len, num_heads, head_size] or [num_tokens, num_heads, head_size]
|
||||
scalar_t* __restrict__ key, // [batch_size, seq_len, num_kv_heads, head_size] or [num_tokens, num_kv_heads, head_size]
|
||||
const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, rot_dim // 2]
|
||||
const int64_t* __restrict__ cos_sin_cache_offsets, // [batch_size, seq_len] or [num_tokens]
|
||||
const int rot_dim,
|
||||
const int64_t query_stride,
|
||||
const int64_t key_stride,
|
||||
const int num_heads,
|
||||
const int num_kv_heads,
|
||||
const int head_size) {
|
||||
// Each thread block is responsible for one token.
|
||||
const int token_idx = blockIdx.x;
|
||||
int64_t pos = positions[token_idx];
|
||||
int64_t cos_sin_cache_offset = cos_sin_cache_offsets[token_idx];
|
||||
const scalar_t* cache_ptr = cos_sin_cache + (cos_sin_cache_offset + pos) * rot_dim;
|
||||
|
||||
const int nk = num_kv_heads * embed_dim;
|
||||
for (int i = threadIdx.x; i < nk; i += blockDim.x) {
|
||||
const int head_idx = i / embed_dim;
|
||||
const int64_t token_head = token_idx * key_stride + head_idx * head_size;
|
||||
const int rot_offset = i % embed_dim;
|
||||
apply_rotary_embedding<scalar_t, IS_NEOX>(key + token_head, cos_ptr,
|
||||
sin_ptr, rot_offset, embed_dim);
|
||||
}
|
||||
apply_rotary_embedding<scalar_t, IS_NEOX>(query, key, cache_ptr, head_size, num_heads, num_kv_heads, rot_dim, token_idx, query_stride, key_stride);
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
@ -128,3 +166,61 @@ void rotary_embedding(
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/*
|
||||
Batched version of rotary embedding, pack multiple LoRAs together
|
||||
and process in batched manner.
|
||||
*/
|
||||
void batched_rotary_embedding(
|
||||
torch::Tensor& positions, // [batch_size, seq_len] or [num_tokens]
|
||||
torch::Tensor& query, // [batch_size, seq_len, num_heads * head_size] or [num_tokens, num_heads * head_size]
|
||||
torch::Tensor& key, // [batch_size, seq_len, num_kv_heads * head_size] or [num_tokens, num_kv_heads * head_size]
|
||||
int head_size,
|
||||
torch::Tensor& cos_sin_cache, // [max_position, rot_dim]
|
||||
bool is_neox,
|
||||
int rot_dim,
|
||||
torch::Tensor& cos_sin_cache_offsets // [num_tokens]
|
||||
) {
|
||||
int64_t num_tokens = cos_sin_cache_offsets.size(0);
|
||||
int num_heads = query.size(-1) / head_size;
|
||||
int num_kv_heads = key.size(-1) / head_size;
|
||||
int64_t query_stride = query.stride(-2);
|
||||
int64_t key_stride = key.stride(-2);
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(num_heads * rot_dim / 2, 512));
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
query.scalar_type(),
|
||||
"rotary_embedding",
|
||||
[&] {
|
||||
if (is_neox) {
|
||||
vllm::batched_rotary_embedding_kernel<scalar_t, true><<<grid, block, 0, stream>>>(
|
||||
positions.data_ptr<int64_t>(),
|
||||
query.data_ptr<scalar_t>(),
|
||||
key.data_ptr<scalar_t>(),
|
||||
cos_sin_cache.data_ptr<scalar_t>(),
|
||||
cos_sin_cache_offsets.data_ptr<int64_t>(),
|
||||
rot_dim,
|
||||
query_stride,
|
||||
key_stride,
|
||||
num_heads,
|
||||
num_kv_heads,
|
||||
head_size);
|
||||
} else {
|
||||
vllm::batched_rotary_embedding_kernel<scalar_t, false><<<grid, block, 0, stream>>>(
|
||||
positions.data_ptr<int64_t>(),
|
||||
query.data_ptr<scalar_t>(),
|
||||
key.data_ptr<scalar_t>(),
|
||||
cos_sin_cache.data_ptr<scalar_t>(),
|
||||
cos_sin_cache_offsets.data_ptr<int64_t>(),
|
||||
rot_dim,
|
||||
query_stride,
|
||||
key_stride,
|
||||
num_heads,
|
||||
num_kv_heads,
|
||||
head_size);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
@ -14,20 +14,28 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
|
||||
f(in_T, out_T, W_T, narrow, 128) \
|
||||
f(in_T, out_T, W_T, narrow, 256) \
|
||||
f(in_T, out_T, W_T, narrow, 512) \
|
||||
f(in_T, out_T, W_T, narrow, 768) \
|
||||
f(in_T, out_T, W_T, narrow, 1024) \
|
||||
f(in_T, out_T, W_T, narrow, 1152) \
|
||||
f(in_T, out_T, W_T, narrow, 1280) \
|
||||
f(in_T, out_T, W_T, narrow, 1536) \
|
||||
f(in_T, out_T, W_T, narrow, 1728) \
|
||||
f(in_T, out_T, W_T, narrow, 1792) \
|
||||
f(in_T, out_T, W_T, narrow, 2048) \
|
||||
f(in_T, out_T, W_T, narrow, 2304) \
|
||||
f(in_T, out_T, W_T, narrow, 2560) \
|
||||
f(in_T, out_T, W_T, narrow, 2752) \
|
||||
f(in_T, out_T, W_T, narrow, 2816) \
|
||||
f(in_T, out_T, W_T, narrow, 3072) \
|
||||
f(in_T, out_T, W_T, narrow, 3456) \
|
||||
f(in_T, out_T, W_T, narrow, 3584) \
|
||||
f(in_T, out_T, W_T, narrow, 4096) \
|
||||
f(in_T, out_T, W_T, narrow, 4608) \
|
||||
f(in_T, out_T, W_T, narrow, 5120) \
|
||||
f(in_T, out_T, W_T, narrow, 5504) \
|
||||
f(in_T, out_T, W_T, narrow, 5632) \
|
||||
f(in_T, out_T, W_T, narrow, 6144) \
|
||||
f(in_T, out_T, W_T, narrow, 6848) \
|
||||
f(in_T, out_T, W_T, narrow, 6912) \
|
||||
f(in_T, out_T, W_T, narrow, 7168) \
|
||||
f(in_T, out_T, W_T, narrow, 8192) \
|
||||
@ -35,10 +43,14 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
|
||||
f(in_T, out_T, W_T, narrow, 10240) \
|
||||
f(in_T, out_T, W_T, narrow, 11008) \
|
||||
f(in_T, out_T, W_T, narrow, 12288) \
|
||||
f(in_T, out_T, W_T, narrow, 13696) \
|
||||
f(in_T, out_T, W_T, narrow, 13824) \
|
||||
f(in_T, out_T, W_T, narrow, 14336) \
|
||||
f(in_T, out_T, W_T, narrow, 16384) \
|
||||
f(in_T, out_T, W_T, narrow, 20480) \
|
||||
f(in_T, out_T, W_T, narrow, 22016) \
|
||||
f(in_T, out_T, W_T, narrow, 24576) \
|
||||
f(in_T, out_T, W_T, narrow, 27392) \
|
||||
f(in_T, out_T, W_T, narrow, 28672) \
|
||||
f(in_T, out_T, W_T, narrow, 32000) \
|
||||
f(in_T, out_T, W_T, narrow, 32256) \
|
||||
|
@ -10,7 +10,7 @@ TEMPLATE = """
|
||||
#include "bgmv_impl.cuh"
|
||||
|
||||
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, {input_dtype}, {output_dtype}, {weight_dtype})
|
||||
""".lstrip()
|
||||
""".lstrip() # noqa: E501
|
||||
|
||||
for input_dtype in DTYPES:
|
||||
for output_dtype in DTYPES:
|
||||
|
@ -1,7 +1,7 @@
|
||||
#include <cuda_bf16.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <cstdint>
|
||||
|
||||
#include "bgmv/bgmv_config.h"
|
||||
@ -91,6 +91,7 @@ void dispatch_bgmv(torch::Tensor y, torch::Tensor x, torch::Tensor w,
|
||||
CHECK_EQ(w.size(2), h_out);
|
||||
CHECK_EQ(indicies.size(0), x.size(0));
|
||||
CHECK_EQ(y.size(0), x.size(0));
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
|
||||
bool ok = false;
|
||||
if (h_in < 65536 && h_out < 65536) {
|
||||
// TODO: See if we can get rid of this massive nested switch
|
||||
@ -322,6 +323,7 @@ void dispatch_bgmv_low_level(torch::Tensor y, torch::Tensor x, torch::Tensor w,
|
||||
CHECK_EQ(w.size(2), h_out);
|
||||
CHECK_EQ(indicies.size(0), x.size(0));
|
||||
CHECK_EQ(y.size(0), x.size(0));
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
|
||||
bool ok = false;
|
||||
if (h_in < 65536 && h_out < 65536) {
|
||||
// TODO: See if we can get rid of this massive nested switch
|
||||
|
@ -22,6 +22,14 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
"silu_and_mul",
|
||||
&silu_and_mul,
|
||||
"Activation function used in SwiGLU.");
|
||||
ops.def(
|
||||
"gelu_and_mul",
|
||||
&gelu_and_mul,
|
||||
"Activation function used in GeGLU with `none` approximation.");
|
||||
ops.def(
|
||||
"gelu_tanh_and_mul",
|
||||
&gelu_tanh_and_mul,
|
||||
"Activation function used in GeGLU with `tanh` approximation.");
|
||||
ops.def(
|
||||
"gelu_new",
|
||||
&gelu_new,
|
||||
@ -48,11 +56,18 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
&rotary_embedding,
|
||||
"Apply GPT-NeoX or GPT-J style rotary embedding to query and key");
|
||||
|
||||
// Quantization ops
|
||||
ops.def(
|
||||
"batched_rotary_embedding",
|
||||
&batched_rotary_embedding,
|
||||
"Apply GPT-NeoX or GPT-J style rotary embedding to query and key (supports multiple loras)");
|
||||
|
||||
// Quantization ops
|
||||
#ifndef USE_ROCM
|
||||
ops.def("awq_gemm", &awq_gemm, "Quantized GEMM for AWQ");
|
||||
ops.def("marlin_gemm", &marlin_gemm, "Marlin Optimized Quantized GEMM for GPTQ");
|
||||
ops.def("awq_dequantize", &awq_dequantize, "Dequantization for AWQ");
|
||||
#endif
|
||||
|
||||
ops.def("gptq_gemm", &gptq_gemm, "Quantized GEMM for GPTQ");
|
||||
ops.def("gptq_shuffle", &gptq_shuffle, "Post processing for GPTQ");
|
||||
ops.def("squeezellm_gemm", &squeezellm_gemm, "Quantized GEMM for SqueezeLLM");
|
||||
@ -75,10 +90,6 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
"reshape_and_cache",
|
||||
&reshape_and_cache,
|
||||
"Reshape the key and value tensors and cache them");
|
||||
cache_ops.def(
|
||||
"gather_cached_kv",
|
||||
&gather_cached_kv,
|
||||
"Gather key and value from the cache into contiguous QKV tensors");
|
||||
cache_ops.def(
|
||||
"convert_fp8_e5m2",
|
||||
&convert_fp8_e5m2,
|
||||
|
@ -146,6 +146,129 @@ public:
|
||||
__device__ __forceinline__ const uint32_t* item_uint32_ptr(int row, int column) { return &data[row / 8 * width + column]; }
|
||||
};
|
||||
|
||||
class MatrixView_q2_row
|
||||
{
|
||||
public:
|
||||
const uint32_t* data;
|
||||
const int height;
|
||||
const int width;
|
||||
|
||||
__device__ __forceinline__ MatrixView_q2_row(const uint32_t* data, const int height, const int width)
|
||||
: data(data), height(height), width(width)
|
||||
{ }
|
||||
|
||||
__device__ __forceinline__ int item(int row, int column) const
|
||||
{
|
||||
int shift = (column & 0x0f) * 2;
|
||||
return (data[row * width / 16 + column / 16] >> shift) & 0x03;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void item2(int (&items)[2], int row, int column) const
|
||||
{
|
||||
int shift = (column & 0x0f) * 2;
|
||||
uint32_t d = data[row * width / 16 + column / 16] >> shift;
|
||||
items[0] = d & 0x03;
|
||||
items[1] = (d >> 2) & 0x03;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
|
||||
{
|
||||
int shift = (column & 0x0f) * 2;
|
||||
uint32_t d = data[row * width / 16 + column / 16] >> shift;
|
||||
items[0] = d & 0x03;
|
||||
items[1] = (d >> 2) & 0x03;
|
||||
items[2] = (d >> 4) & 0x03;
|
||||
items[3] = (d >> 6) & 0x03;
|
||||
}
|
||||
};
|
||||
|
||||
class MatrixView_q3_row
|
||||
{
|
||||
public:
|
||||
const uint32_t* data;
|
||||
const int height;
|
||||
const int width;
|
||||
|
||||
__device__ __forceinline__ MatrixView_q3_row(const uint32_t* data, const int height, const int width)
|
||||
: data(data), height(height), width(width)
|
||||
{ }
|
||||
|
||||
__device__ __forceinline__ int item(int row, int column) const
|
||||
{
|
||||
int z_w = column * 3 / 32;
|
||||
int z_mod = column & 0x1f;
|
||||
|
||||
if (z_mod == 10) {
|
||||
return (data[row * width * 3 / 32 + z_w] >> 30) | ((data[row * width * 3 / 32 + (z_w + 1)] << 2) & 0x4);
|
||||
} else if (z_mod == 21) {
|
||||
return (data[row * width * 3 / 32 + z_w] >> 31) | ((data[row * width * 3 / 32 + (z_w + 1)] << 1) & 0x6);
|
||||
} else if (z_mod < 10) {
|
||||
return (data[row * width * 3 / 32 + z_w] >> (z_mod * 3)) & 0x07;
|
||||
} else if (z_mod < 21) {
|
||||
return (data[row * width * 3 / 32 + z_w] >> (z_mod * 3 - 32)) & 0x07;
|
||||
} else {
|
||||
return (data[row * width * 3 / 32 + z_w] >> (z_mod * 3 - 64)) & 0x07;
|
||||
}
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
|
||||
{
|
||||
int shift = (column & 0x1f);
|
||||
uint32_t d;
|
||||
if (shift <= 4) {
|
||||
d = data[row * width / 32 * 3 + column * 3 / 32] >> (shift * 3);
|
||||
} else if (shift == 8) {
|
||||
d = (data[row * width / 32 * 3 + column * 3 / 32] >> 24) | ((data[row * width / 32 * 3 + column * 3 / 32 + 1] & 0x0f) << 8);
|
||||
} else if (shift <= 16) {
|
||||
d = data[row * width / 32 * 3 + column * 3 / 32] >> (shift * 3 - 32);
|
||||
} else if (shift == 20) {
|
||||
d = (data[row * width / 32 * 3 + column * 3 / 32] >> 28) | ((data[row * width / 32 * 3 + column * 3 / 32 + 1] & 0xff) << 4);
|
||||
} else {
|
||||
d = data[row * width / 32 * 3 + column * 3 / 32] >> (shift * 3 - 64);
|
||||
}
|
||||
items[0] = d & 0x07;
|
||||
items[1] = (d >> 3) & 0x07;
|
||||
items[2] = (d >> 6) & 0x07;
|
||||
items[3] = (d >> 9) & 0x07;
|
||||
}
|
||||
};
|
||||
|
||||
class MatrixView_q8_row
|
||||
{
|
||||
public:
|
||||
const uint32_t* data;
|
||||
const int height;
|
||||
const int width;
|
||||
|
||||
__device__ __forceinline__ MatrixView_q8_row(const uint32_t* data, const int height, const int width)
|
||||
: data(data), height(height), width(width)
|
||||
{ }
|
||||
|
||||
__device__ __forceinline__ int item(int row, int column) const
|
||||
{
|
||||
int shift = (column & 0x03) * 8;
|
||||
return (data[row * width / 4 + column / 4] >> shift) & 0xff;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void item2(int (&items)[2], int row, int column) const
|
||||
{
|
||||
int shift = (column & 0x03) * 8;
|
||||
uint32_t d = data[row * width / 4 + column / 4] >> shift;
|
||||
items[0] = d & 0xff;
|
||||
items[1] = (d >> 8) & 0xff;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
|
||||
{
|
||||
int shift = (column & 0x03) * 2;
|
||||
uint32_t d = data[row * width / 4 + column / 4] >> shift;
|
||||
items[0] = d & 0xff;
|
||||
items[1] = (d >> 8) & 0xff;
|
||||
items[2] = (d >> 16) & 0xff;
|
||||
items[3] = (d >> 24) & 0xff;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace gptq
|
||||
} // namespace vllm
|
||||
#endif
|
||||
|
87
csrc/quantization/gptq/qdq_2.cuh
Normal file
@ -0,0 +1,87 @@
|
||||
/*
|
||||
Copied from https://github.com/turboderp/exllamav2
|
||||
*/
|
||||
|
||||
#ifndef _qdq_2_cuh
|
||||
#define _qdq_2_cuh
|
||||
|
||||
#include "qdq_util.cuh"
|
||||
|
||||
namespace vllm {
|
||||
namespace gptq {
|
||||
|
||||
// Permutation:
|
||||
//
|
||||
// ffddbb99 77553311 eeccaa88 66442200
|
||||
|
||||
__forceinline__ __device__ void shuffle_2bit_16
|
||||
(
|
||||
uint32_t* q,
|
||||
int stride
|
||||
)
|
||||
{
|
||||
uint32_t qa = q[0];
|
||||
uint32_t qb = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 8; i++)
|
||||
{
|
||||
uint32_t qa0 = qa & 0x03;
|
||||
uint32_t qa1 = (qa & 0x0c) >> 2;
|
||||
qa >>= 4;
|
||||
qb |= (qa1 << (i * 2 + 16));
|
||||
qb |= (qa0 << (i * 2));
|
||||
}
|
||||
q[0] = qb;
|
||||
}
|
||||
|
||||
__forceinline__ __device__ void dequant_2bit_16
|
||||
(
|
||||
const uint32_t q_0,
|
||||
half2 (&dq)[8],
|
||||
int stride,
|
||||
const uint32_t zero
|
||||
)
|
||||
{
|
||||
const uint32_t c0 = 0x64006400;
|
||||
const half y4_ = __float2half_rn(1.0f / 4.0f);
|
||||
const half y16_ = __float2half_rn(1.0f / 16.0f);
|
||||
const half y64_ = __float2half_rn(1.0f / 64.0f);
|
||||
const half2 y4 = __halves2half2(y4_, y4_);
|
||||
const half2 y16 = __halves2half2(y16_, y16_);
|
||||
const half2 y64 = __halves2half2(y64_, y64_);
|
||||
|
||||
const half_uint16 z1_(0xe400 | zero); // half(-1024.0f - zero);
|
||||
const half z4_ = __hsub(__int2half_rn(-256), __int2half_rn(zero));
|
||||
const half z16_ = __hsub(__int2half_rn(-64), __int2half_rn(zero));
|
||||
const half z64_ = __hsub(__int2half_rn(-16), __int2half_rn(zero));
|
||||
const half2 z1 = __half2half2(z1_.as_half);
|
||||
const half2 z4 = __half2half2(z4_);
|
||||
const half2 z16 = __half2half2(z16_);
|
||||
const half2 z64 = __half2half2(z64_);
|
||||
|
||||
uint32_t qa = q_0;
|
||||
half2_uint32 q0((qa & 0x00030003) | c0); // half2(q[ 0], q[ 1]) + 1024
|
||||
half2_uint32 q1((qa & 0x000c000c) | c0); // half2(q[ 2], q[ 3]) * 4 + 1024
|
||||
half2_uint32 q2((qa & 0x00300030) | c0); // half2(q[ 4], q[ 5]) * 16 + 1024
|
||||
half2_uint32 q3((qa & 0x00c000c0) | c0); // half2(q[ 6], q[ 7]) * 64 + 1024
|
||||
qa >>= 8;
|
||||
half2_uint32 q4((qa & 0x00030003) | c0); // half2(q[ 8], q[ 8]) + 1024
|
||||
half2_uint32 q5((qa & 0x000c000c) | c0); // half2(q[10], q[11]) * 4 + 1024
|
||||
half2_uint32 q6((qa & 0x00300030) | c0); // half2(q[12], q[13]) * 16 + 1024
|
||||
half2_uint32 q7((qa & 0x00c000c0) | c0); // half2(q[14], q[15]) * 64 + 1024
|
||||
|
||||
dq[0] = __hadd2(q0.as_half2, z1);
|
||||
dq[1] = __hfma2(q1.as_half2, y4, z4);
|
||||
dq[2] = __hfma2(q2.as_half2, y16, z16);
|
||||
dq[3] = __hfma2(q3.as_half2, y64, z64);
|
||||
dq[4] = __hadd2(q4.as_half2, z1);
|
||||
dq[5] = __hfma2(q5.as_half2, y4, z4);
|
||||
dq[6] = __hfma2(q6.as_half2, y16, z16);
|
||||
dq[7] = __hfma2(q7.as_half2, y64, z64);
|
||||
}
|
||||
|
||||
} // namespace gptq
|
||||
} // namespace vllm
|
||||
|
||||
#endif
|
141
csrc/quantization/gptq/qdq_3.cuh
Normal file
@ -0,0 +1,141 @@
|
||||
#ifndef _qdq_3_cuh
|
||||
#define _qdq_3_cuh
|
||||
|
||||
#include "qdq_util.cuh"
|
||||
|
||||
namespace vllm {
|
||||
namespace gptq {
|
||||
// Permutation:
|
||||
//
|
||||
// v9997775 55333111 u8886664 44222000 (u, v lsb)
|
||||
// vjjjhhhf ffdddbbb uiiiggge eecccaaa
|
||||
// vtttrrrp ppnnnlll usssqqqo oommmkkk
|
||||
|
||||
__forceinline__ __device__ void shuffle_3bit_32
|
||||
(
|
||||
uint32_t* q,
|
||||
int stride
|
||||
)
|
||||
{
|
||||
uint32_t qa = q[0 * stride];
|
||||
uint32_t qb = q[1 * stride];
|
||||
uint32_t qc = q[2 * stride];
|
||||
|
||||
// qa: aa999888 77766655 54443332 22111000
|
||||
// qb: lkkkjjji iihhhggg fffeeedd dcccbbba
|
||||
// qc: vvvuuutt tsssrrrq qqpppooo nnnmmmll
|
||||
|
||||
uint32_t qd = qc >> 26;
|
||||
qc <<= 4;
|
||||
qc |= qb >> 28;
|
||||
qb <<= 2;
|
||||
qb |= qa >> 30;
|
||||
|
||||
// qa: ..999888 77766655 54443332 22111000
|
||||
// qb: ..jjjiii hhhgggff feeedddc ccbbbaaa
|
||||
// qc: ..tttsss rrrqqqpp pooonnnm mmlllkkk
|
||||
// qd: vvvuuu
|
||||
|
||||
uint32_t za = 0;
|
||||
uint32_t zb = 0;
|
||||
uint32_t zc = 0;
|
||||
|
||||
for (int i = 0; i < 5; i++) { uint32_t t0 = qa & 0x07; uint32_t t1 = (qa & 0x38) >> 3; qa >>= 6; za |= (t0 << (i * 3)); za |= (t1 << (i * 3 + 16)); }
|
||||
for (int i = 0; i < 5; i++) { uint32_t t0 = qb & 0x07; uint32_t t1 = (qb & 0x38) >> 3; qb >>= 6; zb |= (t0 << (i * 3)); zb |= (t1 << (i * 3 + 16)); }
|
||||
for (int i = 0; i < 5; i++) { uint32_t t0 = qc & 0x07; uint32_t t1 = (qc & 0x38) >> 3; qc >>= 6; zc |= (t0 << (i * 3)); zc |= (t1 << (i * 3 + 16)); }
|
||||
|
||||
// za: 9997775 55333111 8886664 44222000
|
||||
// zb: jjjhhhf ffdddbbb iiiggge eecccaaa
|
||||
// zc: tttrrrp ppnnnlll sssqqqo oommmkkk
|
||||
// qd: vvvuuu
|
||||
|
||||
za |= ((qd & 0x01) >> 0) << 15;
|
||||
zb |= ((qd & 0x02) >> 1) << 15;
|
||||
zc |= ((qd & 0x04) >> 2) << 15;
|
||||
za |= ((qd & 0x08) >> 3) << 31;
|
||||
zb |= ((qd & 0x10) >> 4) << 31;
|
||||
zc |= ((qd & 0x20) >> 5) << 31;
|
||||
|
||||
// za: v9997775 55333111 u8886664 44222000 (u, v lsb)
|
||||
// zb: vjjjhhhf ffdddbbb uiiiggge eecccaaa
|
||||
// zc: vtttrrrp ppnnnlll usssqqqo oommmkkk
|
||||
|
||||
q[0 * stride] = za;
|
||||
q[1 * stride] = zb;
|
||||
q[2 * stride] = zc;
|
||||
}
|
||||
|
||||
__forceinline__ __device__ void dequant_3bit_32
|
||||
(
|
||||
const uint32_t q_0,
|
||||
const uint32_t q_1,
|
||||
const uint32_t q_2,
|
||||
half2 (&dq)[16],
|
||||
int stride,
|
||||
const uint32_t zero
|
||||
)
|
||||
{
|
||||
const uint32_t c0 = 0x64006400;
|
||||
const half y8_ = __float2half_rn(1.0f / 8.0f);
|
||||
const half y64_ = __float2half_rn(1.0f / 64.0f);
|
||||
const half2 y8 = __halves2half2(y8_, y8_);
|
||||
const half2 y64 = __halves2half2(y64_, y64_);
|
||||
const half_uint16 z1_(0xe400 | zero); // half(-1024.0f - zero);
|
||||
const half z8_ = __hsub(__int2half_rn(-128), __int2half_rn(zero));
|
||||
const half z64_ = __hsub(__int2half_rn(-16), __int2half_rn(zero));
|
||||
const half2 z1 = __halves2half2(z1_.as_half, z1_.as_half);
|
||||
const half2 z8 = __halves2half2(z8_, z8_);
|
||||
const half2 z64 = __halves2half2(z64_, z64_);
|
||||
|
||||
uint32_t qa = q_0;
|
||||
uint32_t qb = q_1;
|
||||
uint32_t qc = q_2;
|
||||
|
||||
half2_uint32 q0((qa & 0x00070007) | c0); // half2(q[ 0], q[ 1]) + 1024
|
||||
half2_uint32 q1((qa & 0x00380038) | c0); // half2(q[ 2], q[ 3]) * 8 + 1024
|
||||
qa >>= 6;
|
||||
half2_uint32 q2((qa & 0x00070007) | c0); // half2(q[ 4], q[ 5]) + 1024
|
||||
half2_uint32 q3((qa & 0x00380038) | c0); // half2(q[ 6], q[ 7]) * 8 + 1024
|
||||
half2_uint32 q4((qa & 0x01c001c0) | c0); // half2(q[ 8], q[ 9]) * 64 + 1024
|
||||
qa >>= 9;
|
||||
qa &= 0x00010001;
|
||||
half2_uint32 q5((qb & 0x00070007) | c0); // half2(q[10], q[11]) + 1024
|
||||
half2_uint32 q6((qb & 0x00380038) | c0); // half2(q[12], q[13]) * 8 + 1024
|
||||
qb >>= 6;
|
||||
half2_uint32 q7((qb & 0x00070007) | c0); // half2(q[14], q[15]) + 1024
|
||||
half2_uint32 q8((qb & 0x00380038) | c0); // half2(q[16], q[17]) * 8 + 1024
|
||||
half2_uint32 q9((qb & 0x01c001c0) | c0); // half2(q[18], q[19]) * 64 + 1024
|
||||
qb >>= 8;
|
||||
qb &= 0x00020002;
|
||||
half2_uint32 q10((qc & 0x00070007) | c0); // half2(q[20], q[21]) + 1024
|
||||
half2_uint32 q11((qc & 0x00380038) | c0); // half2(q[22], q[23]) * 8 + 1024
|
||||
qc >>= 6;
|
||||
half2_uint32 q12((qc & 0x00070007) | c0); // half2(q[24], q[25]) + 1024
|
||||
half2_uint32 q13((qc & 0x00380038) | c0); // half2(q[26], q[27]) * 8 + 1024
|
||||
half2_uint32 q14((qc & 0x01c001c0) | c0); // half2(q[28], q[29]) * 64 + 1024
|
||||
qc >>= 7;
|
||||
qc &= 0x00040004;
|
||||
half2_uint32 q15((qa | qb | qc) | c0);
|
||||
|
||||
dq[ 0] = __hadd2( q0.as_half2, z1);
|
||||
dq[ 1] = __hfma2( q1.as_half2, y8, z8);
|
||||
dq[ 2] = __hadd2( q2.as_half2, z1);
|
||||
dq[ 3] = __hfma2( q3.as_half2, y8, z8);
|
||||
dq[ 4] = __hfma2( q4.as_half2, y64, z64);
|
||||
dq[ 5] = __hadd2( q5.as_half2, z1);
|
||||
dq[ 6] = __hfma2( q6.as_half2, y8, z8);
|
||||
dq[ 7] = __hadd2( q7.as_half2, z1);
|
||||
dq[ 8] = __hfma2( q8.as_half2, y8, z8);
|
||||
dq[ 9] = __hfma2( q9.as_half2, y64, z64);
|
||||
dq[10] = __hadd2(q10.as_half2, z1);
|
||||
dq[11] = __hfma2(q11.as_half2, y8, z8);
|
||||
dq[12] = __hadd2(q12.as_half2, z1);
|
||||
dq[13] = __hfma2(q13.as_half2, y8, z8);
|
||||
dq[14] = __hfma2(q14.as_half2, y64, z64);
|
||||
dq[15] = __hadd2(q15.as_half2, z1);
|
||||
}
|
||||
|
||||
} // namespace gptq
|
||||
} // namespace vllm
|
||||
|
||||
#endif
|
@ -38,16 +38,17 @@ __forceinline__ __device__ void dequant_4bit_8
|
||||
(
|
||||
const uint32_t q_0,
|
||||
half2 (&dq)[4],
|
||||
int stride
|
||||
int stride,
|
||||
const uint32_t zero
|
||||
)
|
||||
{
|
||||
const uint32_t c0 = 0x64006400;
|
||||
const half y16_ = __float2half_rn(1.0f / 16.0f);
|
||||
const half2 y16 = __halves2half2(y16_, y16_);
|
||||
const half z1_ = __float2half_rn(-1024.0f - 8.0f);
|
||||
const half z16_ = __float2half_rn(-1024.0f / 16.0f - 8.0f);
|
||||
const half2 z1 = __halves2half2(z1_, z1_);
|
||||
const half2 z16 = __halves2half2(z16_, z16_);
|
||||
const half_uint16 z1_(0xe400 | zero); // half(-1024.0f - zero);
|
||||
const half z16_ = __hsub(__int2half_rn(-64), __int2half_rn(zero));
|
||||
const half2 z1 = __half2half2(z1_.as_half);
|
||||
const half2 z16 = __half2half2(z16_);
|
||||
|
||||
uint32_t qa = q_0;
|
||||
half2_uint32 q0((qa & 0x000f000f) | c0); // half2(q[ 0], q[ 1]) + 1024
|
||||
@ -143,93 +144,4 @@ __forceinline__ __device__ void dequant_4bit_8_gptq
|
||||
} // namespace gptq
|
||||
} // namespace vllm
|
||||
|
||||
#else
|
||||
|
||||
namespace vllm {
|
||||
namespace gptq {
|
||||
__forceinline__ __device__ void shuffle_4bit_8
|
||||
(
|
||||
uint32_t* q,
|
||||
int stride
|
||||
)
|
||||
{
|
||||
}
|
||||
|
||||
__forceinline__ __device__ void dequant_4bit_8
|
||||
(
|
||||
const uint32_t q_0,
|
||||
half2 (&dq)[4],
|
||||
int stride
|
||||
)
|
||||
{
|
||||
half dqh[8];
|
||||
for (int i = 0; i < 8; i++) dqh[i] = dq_ns(exb(q_0, i * 4, 0x0f), 8);
|
||||
|
||||
for (int i = 0; i < 4; i++) dq[i] = __halves2half2(dqh[i * 2], dqh[i * 2 + 1]);
|
||||
}
|
||||
|
||||
__forceinline__ __device__ void dequant_4bit_8_prep_zero_scale
|
||||
(
|
||||
const uint32_t zero,
|
||||
const half scale,
|
||||
half2 (&z1)[2],
|
||||
half2 (&y1)[2]
|
||||
)
|
||||
{
|
||||
half z = __int2half_rn(-((int)zero));
|
||||
z = __hmul(z, scale);
|
||||
z1[0] = __half2half2(z);
|
||||
y1[0] = __half2half2(scale);
|
||||
}
|
||||
|
||||
__forceinline__ __device__ void dequant_4bit_8_prep_zero
|
||||
(
|
||||
const uint32_t zero,
|
||||
half2(&z1)[2],
|
||||
half2(&y1)[2]
|
||||
)
|
||||
{
|
||||
half z = __int2half_rn(-((int)zero));
|
||||
z1[0] = __half2half2(z);
|
||||
}
|
||||
|
||||
__forceinline__ __device__ void dequant_4bit_8_gptq
|
||||
(
|
||||
const uint32_t q_0,
|
||||
half2 (&dq)[4],
|
||||
half2 (&z1)[2],
|
||||
half2 (&y1)[2],
|
||||
int stride,
|
||||
bool scaled
|
||||
)
|
||||
{
|
||||
half2 dqh2[8];
|
||||
|
||||
uint32_t qa = q_0;
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
half d0 = __int2half_rn(qa & 0x0f); qa >>= 4;
|
||||
half d1 = __int2half_rn(qa & 0x0f); qa >>= 4;
|
||||
dqh2[i] = __halves2half2(d0, d1);
|
||||
}
|
||||
|
||||
if (scaled)
|
||||
{
|
||||
dq[0] = __hfma2(dqh2[0], y1[0], z1[0]);
|
||||
dq[1] = __hfma2(dqh2[1], y1[0], z1[0]);
|
||||
dq[2] = __hfma2(dqh2[2], y1[0], z1[0]);
|
||||
dq[3] = __hfma2(dqh2[3], y1[0], z1[0]);
|
||||
}
|
||||
else
|
||||
{
|
||||
dq[0] = __hadd2(dqh2[0], z1[0]);
|
||||
dq[1] = __hadd2(dqh2[1], z1[0]);
|
||||
dq[2] = __hadd2(dqh2[2], z1[0]);
|
||||
dq[3] = __hadd2(dqh2[3], z1[0]);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace gptq
|
||||
} // namespace vllm
|
||||
|
||||
#endif
|
||||
|
40
csrc/quantization/gptq/qdq_8.cuh
Normal file
@ -0,0 +1,40 @@
|
||||
/*
|
||||
Copied from https://github.com/turboderp/exllamav2
|
||||
*/
|
||||
|
||||
#ifndef _qdq_8_cuh
|
||||
#define _qdq_8_cuh
|
||||
|
||||
#include "qdq_util.cuh"
|
||||
|
||||
namespace vllm {
|
||||
namespace gptq {
|
||||
|
||||
__forceinline__ __device__ void shuffle_8bit_4
|
||||
(
|
||||
uint32_t* q,
|
||||
int stride
|
||||
)
|
||||
{
|
||||
}
|
||||
|
||||
__forceinline__ __device__ void dequant_8bit_8
|
||||
(
|
||||
const uint32_t q_0,
|
||||
const uint32_t q_1,
|
||||
half2 (&dq)[4],
|
||||
int stride,
|
||||
const uint32_t zero
|
||||
)
|
||||
{
|
||||
half dqh[8];
|
||||
for (int i = 0; i < 4; i++) dqh[i ] = dq_ns(exb(q_0, i * 8, 0xff), zero);
|
||||
for (int i = 0; i < 4; i++) dqh[i + 4] = dq_ns(exb(q_1, i * 8, 0xff), zero);
|
||||
|
||||
for (int i = 0; i < 4; i++) dq[i] = __halves2half2(dqh[i * 2], dqh[i * 2 + 1]);
|
||||
}
|
||||
|
||||
} // namespace gptq
|
||||
} // namespace vllm
|
||||
|
||||
#endif
|
209
csrc/quantization/marlin/LICENSE
Normal file
@ -0,0 +1,209 @@
|
||||
Contains code from https://github.com/IST-DASLab/marlin
|
||||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "{}"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright {yyyy} {name of copyright owner}
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
------------------------------------------------------------------------------------
|
||||
|
||||
This product bundles various third-party components under other open source licenses.
|
||||
This section summarizes those components and their licenses. See licenses/
|
||||
for text of these licenses.
|
1145
csrc/quantization/marlin/marlin_cuda_kernel.cu
Normal file
@ -20,33 +20,45 @@
|
||||
#include "cuda_compat.h"
|
||||
|
||||
namespace vllm {
|
||||
|
||||
template<typename T>
|
||||
template<typename T, int numLanes = WARP_SIZE>
|
||||
__inline__ __device__ T warpReduceSum(T val) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1)
|
||||
static_assert(numLanes > 0 && (numLanes & (numLanes - 1)) == 0,
|
||||
"numLanes is not a positive power of 2!");
|
||||
static_assert(numLanes <= WARP_SIZE);
|
||||
#pragma unroll
|
||||
for (int mask = numLanes >> 1; mask > 0; mask >>= 1)
|
||||
val += VLLM_SHFL_XOR_SYNC(val, mask);
|
||||
return val;
|
||||
}
|
||||
|
||||
// Helper function to return the next largest power of 2
|
||||
static constexpr int _nextPow2(unsigned int num) {
|
||||
if (num <= 1) return num;
|
||||
return 1 << (CHAR_BIT * sizeof(num) - __builtin_clz(num - 1));
|
||||
}
|
||||
|
||||
/* Calculate the sum of all elements in a block */
|
||||
template<typename T>
|
||||
template<typename T, int maxBlockSize = 1024>
|
||||
__inline__ __device__ T blockReduceSum(T val) {
|
||||
static __shared__ T shared[32];
|
||||
int lane = threadIdx.x & 0x1f;
|
||||
int wid = threadIdx.x >> 5;
|
||||
static_assert(maxBlockSize <= 1024);
|
||||
if constexpr (maxBlockSize > WARP_SIZE) {
|
||||
val = warpReduceSum<T>(val);
|
||||
// Calculates max number of lanes that need to participate in the last warpReduce
|
||||
constexpr int maxActiveLanes = (maxBlockSize + WARP_SIZE - 1) / WARP_SIZE;
|
||||
static __shared__ T shared[maxActiveLanes];
|
||||
int lane = threadIdx.x % WARP_SIZE;
|
||||
int wid = threadIdx.x / WARP_SIZE;
|
||||
if (lane == 0)
|
||||
shared[wid] = val;
|
||||
|
||||
val = warpReduceSum<T>(val);
|
||||
__syncthreads();
|
||||
|
||||
if (lane == 0)
|
||||
shared[wid] = val;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Modify from blockDim.x << 5 to blockDim.x / 32. to prevent
|
||||
// blockDim.x is not divided by 32
|
||||
val = (threadIdx.x < (blockDim.x / 32.f)) ? shared[lane] : (T)(0.0f);
|
||||
val = warpReduceSum<T>(val);
|
||||
val = (threadIdx.x < blockDim.x / float(WARP_SIZE)) ? shared[lane] : (T)(0.0f);
|
||||
val = warpReduceSum<T, _nextPow2(maxActiveLanes)>(val);
|
||||
} else {
|
||||
// A single warpReduce is equal to blockReduce
|
||||
val = warpReduceSum<T, _nextPow2(maxBlockSize)>(val);
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
|
@ -1,3 +1,12 @@
|
||||
sphinx == 6.2.1
|
||||
sphinx-book-theme == 1.0.1
|
||||
sphinx-copybutton == 0.5.2
|
||||
myst-parser == 2.0.0
|
||||
sphinx-argparse
|
||||
|
||||
# packages to install to build the documentation
|
||||
pydantic
|
||||
-f https://download.pytorch.org/whl/cpu
|
||||
torch
|
||||
py-cpuinfo
|
||||
transformers
|
||||
|
BIN
docs/source/assets/kernel/k_vecs.png
Normal file
After Width: | Height: | Size: 27 KiB |
BIN
docs/source/assets/kernel/key.png
Normal file
After Width: | Height: | Size: 109 KiB |
BIN
docs/source/assets/kernel/logits_vec.png
Normal file
After Width: | Height: | Size: 17 KiB |
BIN
docs/source/assets/kernel/q_vecs.png
Normal file
After Width: | Height: | Size: 41 KiB |
BIN
docs/source/assets/kernel/query.png
Normal file
After Width: | Height: | Size: 32 KiB |
BIN
docs/source/assets/kernel/v_vec.png
Normal file
After Width: | Height: | Size: 42 KiB |
BIN
docs/source/assets/kernel/value.png
Normal file
After Width: | Height: | Size: 167 KiB |
@ -10,10 +10,11 @@
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
|
||||
from sphinx.ext import autodoc
|
||||
import logging
|
||||
|
||||
sys.path.insert(0, os.path.abspath(os.path.join('..', '..')))
|
||||
|
||||
@ -22,7 +23,7 @@ logger = logging.getLogger(__name__)
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = 'vLLM'
|
||||
copyright = '2023, vLLM Team'
|
||||
copyright = '2024, vLLM Team'
|
||||
author = 'the vLLM Team'
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
@ -37,6 +38,8 @@ extensions = [
|
||||
"sphinx_copybutton",
|
||||
"sphinx.ext.autodoc",
|
||||
"sphinx.ext.autosummary",
|
||||
"myst_parser",
|
||||
"sphinxarg.ext",
|
||||
]
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
@ -72,8 +75,16 @@ html_theme_options = {
|
||||
|
||||
# Mock out external dependencies here.
|
||||
autodoc_mock_imports = [
|
||||
"torch", "transformers", "psutil", "aioprometheus", "sentencepiece",
|
||||
"vllm.cuda_utils", "vllm._C"
|
||||
"cpuinfo",
|
||||
"torch",
|
||||
"transformers",
|
||||
"psutil",
|
||||
"prometheus_client",
|
||||
"sentencepiece",
|
||||
"vllm.cuda_utils",
|
||||
"vllm._C",
|
||||
"numpy",
|
||||
"tqdm",
|
||||
]
|
||||
|
||||
for mock_target in autodoc_mock_imports:
|
||||
|
@ -2,5 +2,5 @@ LLMEngine
|
||||
=================================
|
||||
|
||||
.. autoclass:: vllm.engine.llm_engine.LLMEngine
|
||||
:members: add_request, abort_request, step, _init_cache
|
||||
:members: add_request, abort_request, step
|
||||
:show-inheritance:
|
525
docs/source/dev/kernel/paged_attention.rst
Normal file
@ -0,0 +1,525 @@
|
||||
vLLM Paged Attention
|
||||
====================
|
||||
|
||||
- Currently, vLLM utilizes its own implementation of a multi-head query
|
||||
attention kernel (``csrc/attention/attention_kernels.cu``).
|
||||
This kernel is designed to be compatible with
|
||||
vLLM's paged KV caches, where the key and value cache are stored in
|
||||
separate blocks (note that this block concept differs from the GPU
|
||||
thread block. So in a later document, I will refer to vLLM paged
|
||||
attention block as "block", while refer to GPU thread block as
|
||||
"thread block").
|
||||
- To achieve high performance, this kernel relies on a specially
|
||||
designed memory layout and access method, specifically when threads
|
||||
read data from global memory to shared memory. The purpose of this
|
||||
document is to provide a high-level explanation of the kernel
|
||||
implementation step by step, aiding those who wish to learn about the
|
||||
vLLM multi-head query attention kernel. After going through this
|
||||
document, users will likely have a better understanding and feel easier
|
||||
to follow the actual implementation.
|
||||
- Please note that this document may not cover all details, such as how
|
||||
to calculate the correct index for the corresponding data or the dot
|
||||
multiplication implementation. However, after reading this document
|
||||
and becoming familiar with the high-level logic flow, it should be
|
||||
easier for you to read the actual code and understand the details.
|
||||
|
||||
Inputs
|
||||
------
|
||||
|
||||
- The kernel function takes a list of arguments for the current thread
|
||||
to perform its assigned work. The three most important arguments are
|
||||
the input pointers ``q``, ``k_cache``, and ``v_cache``, which point
|
||||
to query, key, and value data on global memory that need to be read
|
||||
and processed. The output pointer ``out`` points to global memory
|
||||
where the result should be written. These four pointers actually
|
||||
refer to multi-dimensional arrays, but each thread only accesses the
|
||||
portion of data assigned to it. I have omitted all other runtime
|
||||
parameters here for simplicity.
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
template<
|
||||
typename scalar_t,
|
||||
int HEAD_SIZE,
|
||||
int BLOCK_SIZE,
|
||||
int NUM_THREADS,
|
||||
int PARTITION_SIZE = 0>
|
||||
__device__ void paged_attention_kernel(
|
||||
... // Other side args.
|
||||
const scalar_t* __restrict__ out, // [num_seqs, num_heads, max_num_partitions, head_size]
|
||||
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
|
||||
const scalar_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
|
||||
const scalar_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
|
||||
... // Other side args.
|
||||
)
|
||||
|
||||
- There are also a list of template arguments above the function
|
||||
signature that are determined during compilation time. ``scalar_t``
|
||||
represents the data type of the query, key, and value data elements,
|
||||
such as FP16. ``HEAD_SIZE`` indicates the number of elements in each
|
||||
head. ``BLOCK_SIZE`` refers to the number of tokens in each block.
|
||||
``NUM_THREADS`` denotes the number of threads in each thread block.
|
||||
``PARTITION_SIZE`` represents the number of tensor parallel GPUs (For
|
||||
simplicity, we assume this is 0 and tensor parallel is disabled).
|
||||
- With these arguments, we need to perform a sequence of preparations.
|
||||
This includes calculating the current head index, block index, and
|
||||
other necessary variables. However, for now, we can ignore these
|
||||
preparations and proceed directly to the actual calculations. It will
|
||||
be easier to understand them once we grasp the entire flow.
|
||||
|
||||
Concepts
|
||||
--------
|
||||
|
||||
- Just before we dive into the calculation flow, I want to describe a
|
||||
few concepts that are needed for later sections. However, you may
|
||||
skip this section and return later if you encounter any confusing
|
||||
terminologies.
|
||||
- **Sequence**: A sequence represents a client request. For example,
|
||||
the data pointed to by ``q`` has a shape of
|
||||
``[num_seqs, num_heads, head_size]``. That represents there are total
|
||||
``num_seqs`` of query sequence data are pointed by ``q``. Since this
|
||||
kernel is a single query attention kernel, each sequence only has one
|
||||
query token. Hence, the ``num_seqs`` equals the total number of tokens
|
||||
that are processed in the batch.
|
||||
- **Context**: The context consists of the generated tokens from the
|
||||
sequence. For instance, ``["What", "is", "your"]`` are the context
|
||||
tokens, and the input query token is ``"name"``. The model might
|
||||
generate the token ``"?"``.
|
||||
- **Vec**: The vec is a list of elements that are fetched and
|
||||
calculated together. For query and key data, the vec size
|
||||
(``VEC_SIZE``) is determined so that each thread group can fetch and
|
||||
calculate 16 bytes of data at a time. For value data, the vec size
|
||||
(``V_VEC_SIZE``) is determined so that each thread can fetch and
|
||||
calculate 16 bytes of data at a time. For example, if the
|
||||
``scalar_t`` is FP16 (2 bytes) and ``THREAD_GROUP_SIZE`` is 2, the
|
||||
``VEC_SIZE`` will be 4, while the ``V_VEC_SIZE`` will be 8.
|
||||
- **Thread group**: The thread group is a small group of
|
||||
threads(\ ``THREAD_GROUP_SIZE``) that fetches and calculates one
|
||||
query token and one key token at a time. Each thread handles only a
|
||||
portion of the token data. The total number of elements processed by
|
||||
one thread group is referred as ``x``. For example, if the thread
|
||||
group contains 2 threads and the head size is 8, then thread 0
|
||||
handles the query and key elements at index 0, 2, 4, 6, while thread
|
||||
1 handles the elements at index 1, 3, 5, 7.
|
||||
- **Block**: The key and value cache data in vLLM are split into
|
||||
blocks. Each block stores data for a fixed number(\ ``BLOCK_SIZE``)
|
||||
of tokens at one head. Each block may contain only a portion of the
|
||||
whole context tokens. For example, if the block size is 16 and the
|
||||
head size is 128, then for one head, one block can store 16 \* 128 =
|
||||
2048 elements.
|
||||
- **Warp**: A warp is a group of 32 threads(\ ``WARP_SIZE``) that
|
||||
execute simultaneously on a stream multiprocessor (SM). In this
|
||||
kernel, each warp processes the calculation between one query token
|
||||
and key tokens of one entire block at a time (it may process multiple
|
||||
blocks in multiple iterations). For example, if there are 4 warps and
|
||||
6 blocks for one context, the assignment would be like warp 0 handles
|
||||
the 0th, 4th blocks, warp 1 handles the 1st, 5th blocks, warp 2
|
||||
handles the 2nd block and warp 3 handles the 3rd block.
|
||||
- **Thread block**: A thread block is a group of
|
||||
threads(\ ``NUM_THREADS``) that can access the same shared memory.
|
||||
Each thread block contains multiple warps(\ ``NUM_WARPS``), and in
|
||||
this kernel, each thread block processes the calculation between one
|
||||
query token and key tokens of a whole context.
|
||||
- **Grid**: A grid is a collection of thread blocks and defines the
|
||||
shape of the collection. In this kernel, the shape is
|
||||
``(num_heads, num_seqs, max_num_partitions)``. Therefore, each thread
|
||||
block only handles the calculation for one head, one sequence, and
|
||||
one partition.
|
||||
|
||||
Query
|
||||
-----
|
||||
|
||||
- This section will introduce how query data is stored in memory and
|
||||
fetched by each thread. As mentioned above, each thread group fetches
|
||||
one query token data, while each thread itself only handles a part of
|
||||
one query token data. Within each warp, every thread group will fetch
|
||||
the same query token data, but will multiply it with different key
|
||||
token data.
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
const scalar_t* q_ptr = q + seq_idx * q_stride + head_idx * HEAD_SIZE;
|
||||
|
||||
.. figure:: ../../assets/kernel/query.png
|
||||
:alt: query
|
||||
:width: 70%
|
||||
:align: center
|
||||
|
||||
Query data of one token at one head
|
||||
|
||||
- Each thread defines its own ``q_ptr`` which points to the assigned
|
||||
query token data on global memory. For example, if ``VEC_SIZE`` is 4
|
||||
and ``HEAD_SIZE`` is 128, the ``q_ptr`` points to data that contains
|
||||
total of 128 elements divided into 128 / 4 = 32 vecs.
|
||||
|
||||
.. figure:: ../../assets/kernel/q_vecs.png
|
||||
:alt: q_vecs
|
||||
:width: 70%
|
||||
:align: center
|
||||
|
||||
``q_vecs`` for one thread group
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
__shared__ Q_vec q_vecs[THREAD_GROUP_SIZE][NUM_VECS_PER_THREAD];
|
||||
|
||||
- Next, we need to read the global memory data pointed to by ``q_ptr``
|
||||
into shared memory as ``q_vecs``. It is important to note that each
|
||||
vecs is assigned to a different row. For example, if the
|
||||
``THREAD_GROUP_SIZE`` is 2, thread 0 will handle the 0th row vecs,
|
||||
while thread 1 handles the 1st row vecs. By reading the query data in
|
||||
this way, neighboring threads like thread 0 and thread 1 can read
|
||||
neighbor memory, achieving the memory coalescing to improve
|
||||
performance.
|
||||
|
||||
Key
|
||||
---
|
||||
|
||||
- Similar to the "Query" section, this section introduces memory layout
|
||||
and assignment for keys. While each thread group only handle one
|
||||
query token one kernel run, it may handle multiple key tokens across
|
||||
multiple iterations. Meanwhile, each warp will process multiple blocks
|
||||
of key tokens in multiple iterations, ensuring that all context
|
||||
tokens are processed by the entire thread group after the kernel run.
|
||||
In this context, "handle" refers to performing the dot multiplication
|
||||
between query data and key data.
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
const scalar_t* k_ptr = k_cache + physical_block_number * kv_block_stride
|
||||
+ kv_head_idx * kv_head_stride
|
||||
+ physical_block_offset * x;
|
||||
|
||||
- Unlike to ``q_ptr``, ``k_ptr`` in each thread will point to different
|
||||
key token at different iterations. As shown above, that ``k_ptr``
|
||||
points to key token data based on ``k_cache`` at assigned block,
|
||||
assigned head and assigned token.
|
||||
|
||||
.. figure:: ../../assets/kernel/key.png
|
||||
:alt: key
|
||||
:width: 70%
|
||||
:align: center
|
||||
|
||||
Key data of all context tokens at one head
|
||||
|
||||
- The diagram above illustrates the memory layout for key data. It
|
||||
assumes that the ``BLOCK_SIZE`` is 16, ``HEAD_SIZE`` is 128, ``x`` is
|
||||
8, ``THREAD_GROUP_SIZE`` is 2, and there are a total of 4 warps. Each
|
||||
rectangle represents all the elements for one key token at one head,
|
||||
which will be processed by one thread group. The left half shows the
|
||||
total 16 blocks of key token data for warp 0, while the right half
|
||||
represents the remaining key token data for other warps or
|
||||
iterations. Inside each rectangle, there are a total 32 vecs (128
|
||||
elements for one token) that will be processed by 2 threads (one
|
||||
thread group) separately.
|
||||
|
||||
.. figure:: ../../assets/kernel/k_vecs.png
|
||||
:alt: k_vecs
|
||||
:width: 70%
|
||||
:align: center
|
||||
|
||||
``k_vecs`` for one thread
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
K_vec k_vecs[NUM_VECS_PER_THREAD]
|
||||
|
||||
- Next, we need to read the key token data from ``k_ptr`` and store
|
||||
them on register memory as ``k_vecs``. We use register memory for
|
||||
``k_vecs`` because it will only be accessed by one thread once,
|
||||
whereas ``q_vecs`` will be accessed by multiple threads multiple
|
||||
times. Each ``k_vecs`` will contain multiple vectors for later
|
||||
calculation. Each vec will be set at each inner iteration. The
|
||||
assignment of vecs allows neighboring threads in a warp to read
|
||||
neighboring memory together, which again promotes the memory
|
||||
coalescing. For instance, thread 0 will read vec 0, while thread 1
|
||||
will read vec 1. In the next inner loop, thread 0 will read vec 2,
|
||||
while thread 1 will read vec 3, and so on.
|
||||
- You may still be a little confused about the overall flow. Don't
|
||||
worry, please keep reading the next "QK" section. It will illustrate
|
||||
the query and key calculation flow in a clearer and higher-level
|
||||
manner.
|
||||
|
||||
QK
|
||||
---
|
||||
|
||||
- As shown the pseudo code below, before the entire for loop block, we
|
||||
fetch the query data for one token and store it in ``q_vecs``. Then,
|
||||
in the outer for loop, we iterate through different ``k_ptrs`` that
|
||||
point to different tokens and prepare the ``k_vecs`` in the inner for
|
||||
loop. Finally, we perform the dot multiplication between the
|
||||
``q_vecs`` and each ``k_vecs``.
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
q_vecs = ...
|
||||
for ... {
|
||||
k_ptr = ...
|
||||
for ... {
|
||||
k_vecs[i] = ...
|
||||
}
|
||||
...
|
||||
float qk = scale * Qk_dot<scalar_t, THREAD_GROUP_SIZE>::dot(q_vecs[thread_group_offset], k_vecs);
|
||||
}
|
||||
|
||||
- As mentioned before, for each thread, it only fetches part of the
|
||||
query and key token data at a time. However, there will be a cross
|
||||
thread group reduction happen in the ``Qk_dot<>::dot`` . So ``qk``
|
||||
returned here is not just between part of the query and key token dot
|
||||
multiplication, but actually a full result between entire query and
|
||||
key token data.
|
||||
- For example, if the value of ``HEAD_SIZE`` is 128 and
|
||||
``THREAD_GROUP_SIZE`` is 2, each thread's ``k_vecs`` will contain
|
||||
total 64 elements. However, the returned ``qk`` is actually the
|
||||
result of dot multiplication between 128 query elements and 128 key
|
||||
elements. If you want to learn more about the details of the dot
|
||||
multiplication and reduction, you may refer to the implementation of
|
||||
``Qk_dot<>::dot``. However, for the sake of simplicity, I will not
|
||||
cover it in this document.
|
||||
|
||||
Softmax
|
||||
-------
|
||||
|
||||
- Next, we need to calculate the normalized softmax for all ``qk``\ s,
|
||||
as shown above, where each :math:`x` represents a ``qk``. To do this,
|
||||
we must obtain the reduced value of ``qk_max``\ (:math:`m(x)`) and
|
||||
the ``exp_sum``\ (:math:`\ell(x)`) of all ``qk``\ s. The reduction
|
||||
should be performed across the entire thread block, encompassing
|
||||
results between the query token and all context key tokens.
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
\begin{gather*}
|
||||
m(x):=\max _i \quad x_i \\ \quad f(x):=\left[\begin{array}{lll}e^{x_1-m(x)} & \ldots & e^{x_B-m(x)}\end{array}\right]\\ \quad \ell(x):=\sum_i f(x)_i \\
|
||||
\quad \operatorname{softmax}(x):=\frac{f(x)}{\ell(x)}
|
||||
\end{gather*}
|
||||
|
||||
``qk_max`` and ``logits``
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- Just right after we get the ``qk`` result, we can set the temporary
|
||||
``logits`` result with ``qk`` (In the end, the ``logits`` should
|
||||
store the normalized softmax result). Also we can compare and collect
|
||||
the ``qk_max`` for all ``qk``\ s that are calculated by current
|
||||
thread group.
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
if (thread_group_offset == 0) {
|
||||
const bool mask = token_idx >= context_len;
|
||||
logits[token_idx - start_token_idx] = mask ? 0.f : qk;
|
||||
qk_max = mask ? qk_max : fmaxf(qk_max, qk);
|
||||
}
|
||||
|
||||
- Please note that the ``logits`` here is on shared memory, so each
|
||||
thread group will set the fields for its own assigned context tokens.
|
||||
Overall, the size of logits should be number of context tokens.
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
for (int mask = WARP_SIZE / 2; mask >= THREAD_GROUP_SIZE; mask /= 2) {
|
||||
qk_max = fmaxf(qk_max, VLLM_SHFL_XOR_SYNC(qk_max, mask));
|
||||
}
|
||||
|
||||
if (lane == 0) {
|
||||
red_smem[warp_idx] = qk_max;
|
||||
}
|
||||
|
||||
- Then we need to get the reduced ``qk_max`` across each warp. The main
|
||||
idea is to make threads in warp to communicate with each other and
|
||||
get the final max ``qk`` .
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
|
||||
qk_max = fmaxf(qk_max, VLLM_SHFL_XOR_SYNC(qk_max, mask));
|
||||
}
|
||||
qk_max = VLLM_SHFL_SYNC(qk_max, 0);
|
||||
|
||||
- Finally, we can get the reduced ``qk_max`` from whole thread block by
|
||||
compare the ``qk_max`` from all warps in this thread block. Then we
|
||||
need to broadcast the final result to each thread.
|
||||
|
||||
``exp_sum``
|
||||
~~~~~~~~~~~
|
||||
|
||||
- Similar to ``qk_max``, we need to get the reduced sum value from the
|
||||
entire thread block too.
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
for (int i = thread_idx; i < num_tokens; i += NUM_THREADS) {
|
||||
float val = __expf(logits[i] - qk_max);
|
||||
logits[i] = val;
|
||||
exp_sum += val;
|
||||
}
|
||||
...
|
||||
exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], exp_sum);
|
||||
|
||||
- Firstly, sum all exp values from each thread group, and meanwhile,
|
||||
convert each entry of ``logits`` from ``qk`` to ``exp(qk - qk_max)``.
|
||||
Please note, the ``qk_max`` here is already the max ``qk`` across the
|
||||
whole thread block. And then we can do reduction for ``exp_sum``
|
||||
across whole thread block just like the ``qk_max``.
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
|
||||
for (int i = thread_idx; i < num_tokens; i += NUM_THREADS) {
|
||||
logits[i] *= inv_sum;
|
||||
}
|
||||
|
||||
- Finally, with the reduced ``qk_max`` and ``exp_sum``, we can obtain
|
||||
the final normalized softmax result as ``logits``. This ``logits``
|
||||
variable will be used for dot multiplication with the value data in
|
||||
later steps. Now, it should store the normalized softmax result of
|
||||
``qk`` for all assigned context tokens.
|
||||
|
||||
Value
|
||||
-----
|
||||
|
||||
.. figure:: ../../assets/kernel/value.png
|
||||
:alt: value
|
||||
:width: 70%
|
||||
:align: center
|
||||
|
||||
Value data of all context tokens at one head
|
||||
|
||||
.. figure:: ../../assets/kernel/logits_vec.png
|
||||
:alt: logits_vec
|
||||
:width: 50%
|
||||
:align: center
|
||||
|
||||
``logits_vec`` for one thread
|
||||
|
||||
.. figure:: ../../assets/kernel/v_vec.png
|
||||
:alt: v_vec
|
||||
:width: 70%
|
||||
:align: center
|
||||
|
||||
List of ``v_vec`` for one thread
|
||||
|
||||
- Now we need to retrieve the value data and perform dot multiplication
|
||||
with ``logits``. Unlike query and key, there is no thread group
|
||||
concept for value data. As shown in diagram, different from key token
|
||||
memory layout, elements from the same column correspond to the same
|
||||
value token. For one block of value data, there are ``HEAD_SIZE`` of
|
||||
rows and ``BLOCK_SIZE`` of columns that are split into multiple
|
||||
``v_vecs``.
|
||||
- Each thread always fetches ``V_VEC_SIZE`` elements from the same
|
||||
``V_VEC_SIZE`` of tokens at a time. As a result, a single thread
|
||||
retrieves multiple ``v_vec``\ s from different rows and the same
|
||||
columns through multiple inner iterations. For each ``v_vec``, it
|
||||
needs to be dot multiplied with the corresponding ``logits_vec``,
|
||||
which is also ``V_VEC_SIZE`` elements from ``logits``. Overall, with
|
||||
multiple inner iterations, each warp will process one block of value
|
||||
tokens. And with multiple outer iterations, the whole context value
|
||||
tokens are processd
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
float accs[NUM_ROWS_PER_THREAD];
|
||||
for ... { // Iteration over different blocks.
|
||||
logits_vec = ...
|
||||
for ... { // Iteration over different rows.
|
||||
v_vec = ...
|
||||
...
|
||||
accs[i] += dot(logits_vec, v_vec);
|
||||
}
|
||||
}
|
||||
|
||||
- As shown in the above pseudo code, in the outer loop, similar to
|
||||
``k_ptr``, ``logits_vec`` iterates over different blocks and reads
|
||||
``V_VEC_SIZE`` elements from ``logits``. In the inner loop, each
|
||||
thread reads ``V_VEC_SIZE`` elements from the same tokens as a
|
||||
``v_vec`` and performs dot multiplication. It is important to note
|
||||
that in each inner iteration, the thread fetches different head
|
||||
position elements for the same tokens. The dot result is then
|
||||
accumulated in ``accs``. Therefore, each entry of ``accs`` is mapped
|
||||
to a head position assigned to the current thread.
|
||||
- For example, if ``BLOCK_SIZE`` is 16 and ``V_VEC_SIZE`` is 8, each
|
||||
thread fetches 8 value elements for 8 tokens at a time. Each element
|
||||
is from different tokens at the same head position. If ``HEAD_SIZE``
|
||||
is 128 and ``WARP_SIZE`` is 32, for each inner loop, a warp needs to
|
||||
fetch ``WARP_SIZE * V_VEC_SIZE = 256`` elements. This means there are
|
||||
a total of 128 \* 16 / 256 = 8 inner iterations for a warp to handle
|
||||
a whole block of value tokens. And each ``accs`` in each thread
|
||||
contains 8 elements that accumulated at 8 different head positions.
|
||||
For the thread 0, the ``accs`` variable will have 8 elements, which
|
||||
are 0th, 32th … 224th elements of a value head that are accumulated
|
||||
from all assigned 8 tokens.
|
||||
|
||||
LV
|
||||
---
|
||||
- Now, we need to perform reduction for ``accs`` within each warp. This
|
||||
process allows each thread to accumulate the ``accs`` for the
|
||||
assigned head positions of all tokens in one block.
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
float acc = accs[i];
|
||||
for (int mask = NUM_V_VECS_PER_ROW / 2; mask >= 1; mask /= 2) {
|
||||
acc += VLLM_SHFL_XOR_SYNC(acc, mask);
|
||||
}
|
||||
accs[i] = acc;
|
||||
}
|
||||
|
||||
- Next, we perform reduction for ``accs`` across all warps, allowing
|
||||
each thread to have the accumulation of ``accs`` for the assigned
|
||||
head positions of all context tokens. Please note that each ``accs``
|
||||
in every thread only stores the accumulation for a portion of
|
||||
elements of the entire head for all context tokens. However, overall,
|
||||
all results for output have been calculated but are just stored in
|
||||
different thread register memory.
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
float* out_smem = reinterpret_cast<float*>(shared_mem);
|
||||
for (int i = NUM_WARPS; i > 1; i /= 2) {
|
||||
// Upper warps write to shared memory.
|
||||
...
|
||||
float* dst = &out_smem[(warp_idx - mid) * HEAD_SIZE];
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
...
|
||||
dst[row_idx] = accs[i];
|
||||
}
|
||||
|
||||
// Lower warps update the output.
|
||||
const float* src = &out_smem[warp_idx * HEAD_SIZE];
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
...
|
||||
accs[i] += src[row_idx];
|
||||
}
|
||||
|
||||
// Write out the accs.
|
||||
}
|
||||
|
||||
Output
|
||||
------
|
||||
|
||||
- Now we can write all of calculated result from local register memory
|
||||
to final output global memory.
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
scalar_t* out_ptr = out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE
|
||||
+ head_idx * max_num_partitions * HEAD_SIZE
|
||||
+ partition_idx * HEAD_SIZE;
|
||||
|
||||
- First, we need to define the ``out_ptr`` variable, which points to
|
||||
the start address of the assigned sequence and assigned head.
|
||||
|
||||
.. code:: cpp
|
||||
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
|
||||
if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
|
||||
from_float(*(out_ptr + row_idx), accs[i]);
|
||||
}
|
||||
}
|
||||
|
||||
- Finally, we need to iterate over different assigned head positions
|
||||
and write out the corresponding accumulated result based on the
|
||||
``out_ptr``.
|
4
docs/source/dev/sampling_params.rst
Normal file
@ -0,0 +1,4 @@
|
||||
Sampling Params
|
||||
===============
|
||||
|
||||
.. automodule:: vllm.sampling_params.SamplingParams
|
@ -100,7 +100,7 @@ You can build and install vLLM from source:
|
||||
|
||||
Build a docker image from `Dockerfile.rocm`, and launch a docker container.
|
||||
|
||||
The `Dokerfile.rocm` is designed to support both ROCm 5.7 and ROCm 6.0 and later versions. It provides flexibility to customize the build of docker image using the following arguments:
|
||||
The `Dockerfile.rocm` is designed to support both ROCm 5.7 and ROCm 6.0 and later versions. It provides flexibility to customize the build of docker image using the following arguments:
|
||||
|
||||
* `BASE_IMAGE`: specifies the base image used when running ``docker build``, specifically the PyTorch on ROCm base image. We have tested ROCm 5.7 and ROCm 6.0. The default is `rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1`
|
||||
* `FX_GFX_ARCHS`: specifies the GFX architecture that is used to build flash-attention, for example, `gfx90a;gfx942` for MI200 and MI300. The default is `gfx90a;gfx942`
|
||||
|
87
docs/source/getting_started/cpu-installation.rst
Normal file
@ -0,0 +1,87 @@
|
||||
.. _installation_cpu:
|
||||
|
||||
Installation with CPU
|
||||
========================
|
||||
|
||||
vLLM initially supports basic model inferencing and serving on x86 CPU platform, with data types FP32 and BF16.
|
||||
|
||||
Table of contents:
|
||||
|
||||
#. :ref:`Requirements <cpu_backend_requirements>`
|
||||
#. :ref:`Quick start using Dockerfile <cpu_backend_quick_start_dockerfile>`
|
||||
#. :ref:`Build from source <build_cpu_backend_from_source>`
|
||||
#. :ref:`Performance tips <cpu_backend_performance_tips>`
|
||||
|
||||
.. _cpu_backend_requirements:
|
||||
|
||||
Requirements
|
||||
------------
|
||||
|
||||
* OS: Linux
|
||||
* Compiler: gcc/g++>=12.3.0 (recommended)
|
||||
* Instruction set architecture (ISA) requirement: AVX512 is required.
|
||||
|
||||
.. _cpu_backend_quick_start_dockerfile:
|
||||
|
||||
Quick start using Dockerfile
|
||||
----------------------------
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ docker build -f Dockerfile.cpu -t vllm-cpu-env --shm-size=4g .
|
||||
$ docker run -it \
|
||||
--rm \
|
||||
--network=host \
|
||||
--cpuset-cpus=<cpu-id-list, optional> \
|
||||
--cpuset-mems=<memory-node, optional> \
|
||||
vllm-cpu-env
|
||||
|
||||
.. _build_cpu_backend_from_source:
|
||||
|
||||
Build from source
|
||||
-----------------
|
||||
|
||||
- First, install required compiler. We recommend to use ``gcc/g++ >= 12.3.0`` as the default compiler to avoid potential problems. For example, on Ubuntu 22.4, you can run:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ sudo apt-get update -y
|
||||
$ sudo apt-get install -y gcc-12 g++-12
|
||||
$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
|
||||
|
||||
- Second, install Python packages for vLLM CPU backend building:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ pip install --upgrade pip
|
||||
$ pip install wheel packaging ninja setuptools>=49.4.0 numpy
|
||||
$ pip install -v -r requirements-cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
- Finally, build and install vLLM CPU backend:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ VLLM_TARGET_DEVICE=cpu python setup.py install
|
||||
|
||||
.. note::
|
||||
- BF16 is the default data type in the current CPU backend (that means the backend will cast FP16 to BF16), and is compatible will all CPUs with AVX512 ISA support.
|
||||
|
||||
- AVX512_BF16 is an extension ISA provides native BF16 data type conversion and vector product instructions, will brings some performance improvement compared with pure AVX512. The CPU backend build script will check the host CPU flags to determine whether to enable AVX512_BF16.
|
||||
|
||||
- If you want to force enable AVX512_BF16 for the cross-compilation, please set environment variable VLLM_CPU_AVX512BF16=1 before the building.
|
||||
|
||||
.. _cpu_backend_performance_tips:
|
||||
|
||||
Performance tips
|
||||
-----------------
|
||||
|
||||
- vLLM CPU backend uses environment variable ``VLLM_CPU_KVCACHE_SPACE`` to specify the KV Cache size (e.g, ``VLLM_CPU_KVCACHE_SPACE=40`` means 40 GB space for KV cache), larger setting will allow vLLM running more requests in parallel. This parameter should be set based on the hardware configuration and memory management pattern of users.
|
||||
|
||||
- vLLM CPU backend uses OpenMP for thread-parallel computation. If you want the best performance on CPU, it will be very critical to isolate CPU cores for OpenMP threads with other thread pools (like web-service event-loop), to avoid CPU oversubscription.
|
||||
|
||||
- If using vLLM CPU backend on a bare-metal machine, it is recommended to disable the hyper-threading.
|
||||
|
||||
- If using vLLM CPU backend on a multi-socket machine with NUMA, be aware to set CPU cores and memory nodes, to avoid the remote memory node access. ``numactl`` is an useful tool for CPU core and memory binding on NUMA platform. Besides, ``--cpuset-cpus`` and ``--cpuset-mems`` arguments of ``docker run`` are also useful.
|
||||
|
||||
|
||||
|
@ -19,7 +19,7 @@ You can install vLLM using pip:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ # (Optional) Create a new conda environment.
|
||||
$ # (Recommended) Create a new conda environment.
|
||||
$ conda create -n myenv python=3.9 -y
|
||||
$ conda activate myenv
|
||||
|
||||
@ -28,24 +28,19 @@ You can install vLLM using pip:
|
||||
|
||||
.. note::
|
||||
|
||||
As of now, vLLM's binaries are compiled on CUDA 12.1 by default.
|
||||
However, you can install vLLM with CUDA 11.8 by running:
|
||||
As of now, vLLM's binaries are compiled with CUDA 12.1 and public PyTorch release versions by default.
|
||||
We also provide vLLM binaries compiled with CUDA 11.8 and public PyTorch release versions:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ # Install vLLM with CUDA 11.8.
|
||||
$ export VLLM_VERSION=0.2.4
|
||||
$ export VLLM_VERSION=0.4.0
|
||||
$ export PYTHON_VERSION=39
|
||||
$ pip install https://github.com/vllm-project/vllm/releases/download/v${VLLM_VERSION}/vllm-${VLLM_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux1_x86_64.whl
|
||||
$ pip install https://github.com/vllm-project/vllm/releases/download/v${VLLM_VERSION}/vllm-${VLLM_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux1_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu118
|
||||
|
||||
$ # Re-install PyTorch with CUDA 11.8.
|
||||
$ pip uninstall torch -y
|
||||
$ pip install torch --upgrade --index-url https://download.pytorch.org/whl/cu118
|
||||
|
||||
$ # Re-install xFormers with CUDA 11.8.
|
||||
$ pip uninstall xformers -y
|
||||
$ pip install --upgrade xformers --index-url https://download.pytorch.org/whl/cu118
|
||||
In order to be performant, vLLM has to compile many cuda kernels. The compilation unfortunately introduces binary incompatibility with other CUDA versions and PyTorch versions, even for the same PyTorch version with different building configurations.
|
||||
|
||||
Therefore, it is recommended to install vLLM with a **fresh new** conda environment. If either you have a different CUDA version or you want to use an existing PyTorch installation, you need to build vLLM from source. See below for instructions.
|
||||
|
||||
.. _build_from_source:
|
||||
|
||||
@ -60,6 +55,15 @@ You can also build and install vLLM from source:
|
||||
$ cd vllm
|
||||
$ pip install -e . # This may take 5-10 minutes.
|
||||
|
||||
.. tip::
|
||||
To avoid your system being overloaded, you can limit the number of compilation jobs
|
||||
to be run simultaneously, via the environment variable `MAX_JOBS`. For example:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ export MAX_JOBS=6
|
||||
$ pip install -e .
|
||||
|
||||
.. tip::
|
||||
If you have trouble building vLLM, we recommend using the NVIDIA PyTorch Docker image.
|
||||
|
||||
@ -68,6 +72,20 @@ You can also build and install vLLM from source:
|
||||
$ # Use `--ipc=host` to make sure the shared memory is large enough.
|
||||
$ docker run --gpus all -it --rm --ipc=host nvcr.io/nvidia/pytorch:23.10-py3
|
||||
|
||||
If you don't want to use docker, it is recommended to have a full installation of CUDA Toolkit. You can download and install it from `the official website <https://developer.nvidia.com/cuda-toolkit-archive>`_. After installation, set the environment variable `CUDA_HOME` to the installation path of CUDA Toolkit, and make sure that the `nvcc` compiler is in your `PATH`, e.g.:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ export CUDA_HOME=/usr/local/cuda
|
||||
$ export PATH="${CUDA_HOME}/bin:$PATH"
|
||||
|
||||
Here is a sanity check to verify that the CUDA Toolkit is correctly installed:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ nvcc --version # verify that nvcc is in your PATH
|
||||
$ ${CUDA_HOME}/bin/nvcc --version # verify that nvcc is in your CUDA_HOME
|
||||
|
||||
.. note::
|
||||
If you are developing the C++ backend of vLLM, consider building vLLM with
|
||||
|
||||
|
136
docs/source/getting_started/neuron-installation.rst
Normal file
@ -0,0 +1,136 @@
|
||||
.. _installation_neuron:
|
||||
|
||||
Installation with Neuron
|
||||
========================
|
||||
|
||||
vLLM 0.3.3 onwards supports model inferencing and serving on AWS Trainium/Inferentia with Neuron SDK.
|
||||
At the moment Paged Attention is not supported in Neuron SDK, but naive continuous batching is supported in transformers-neuronx.
|
||||
Data types currently supported in Neuron SDK are FP16 and BF16.
|
||||
|
||||
Requirements
|
||||
------------
|
||||
|
||||
* OS: Linux
|
||||
* Python: 3.8 -- 3.11
|
||||
* Accelerator: NeuronCore_v2 (in trn1/inf2 instances)
|
||||
* Pytorch 2.0.1/2.1.1
|
||||
* AWS Neuron SDK 2.16/2.17 (Verified on python 3.8)
|
||||
|
||||
Installation steps:
|
||||
|
||||
- :ref:`Build from source <build_from_source_neuron>`
|
||||
|
||||
- :ref:`Step 0. Launch Trn1/Inf2 instances <launch_instances>`
|
||||
- :ref:`Step 1. Install drivers and tools <install_drivers>`
|
||||
- :ref:`Step 2. Install transformers-neuronx and its dependencies <install_tnx>`
|
||||
- :ref:`Step 3. Install vLLM from source <install_vllm>`
|
||||
|
||||
.. _build_from_source_neuron:
|
||||
|
||||
Build from source
|
||||
-----------------
|
||||
|
||||
Following instructions are applicable to Neuron SDK 2.16 and beyond.
|
||||
|
||||
.. _launch_instances:
|
||||
|
||||
Step 0. Launch Trn1/Inf2 instances
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Here are the steps to launch trn1/inf2 instances, in order to install `PyTorch Neuron ("torch-neuronx") Setup on Ubuntu 22.04 LTS <https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/neuron-setup/pytorch/neuronx/ubuntu/torch-neuronx-ubuntu22.html>`_.
|
||||
|
||||
- Please follow the instructions at `launch an Amazon EC2 Instance <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance>`_ to launch an instance. When choosing the instance type at the EC2 console, please make sure to select the correct instance type.
|
||||
- To get more information about instances sizes and pricing see: `Trn1 web page <https://aws.amazon.com/ec2/instance-types/trn1/>`_, `Inf2 web page <https://aws.amazon.com/ec2/instance-types/inf2/>`_
|
||||
- Select Ubuntu Server 22.04 TLS AMI
|
||||
- When launching a Trn1/Inf2, please adjust your primary EBS volume size to a minimum of 512GB.
|
||||
- After launching the instance, follow the instructions in `Connect to your instance <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html>`_ to connect to the instance
|
||||
|
||||
.. _install_drivers:
|
||||
|
||||
Step 1. Install drivers and tools
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The installation of drivers and tools wouldn't be necessary, if `Deep Learning AMI Neuron <https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html>`_ is installed. In case the drivers and tools are not installed on the operating system, follow the steps below:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
# Configure Linux for Neuron repository updates
|
||||
. /etc/os-release
|
||||
sudo tee /etc/apt/sources.list.d/neuron.list > /dev/null <<EOF
|
||||
deb https://apt.repos.neuron.amazonaws.com ${VERSION_CODENAME} main
|
||||
EOF
|
||||
wget -qO - https://apt.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.PUB | sudo apt-key add -
|
||||
|
||||
# Update OS packages
|
||||
sudo apt-get update -y
|
||||
|
||||
# Install OS headers
|
||||
sudo apt-get install linux-headers-$(uname -r) -y
|
||||
|
||||
# Install git
|
||||
sudo apt-get install git -y
|
||||
|
||||
# install Neuron Driver
|
||||
sudo apt-get install aws-neuronx-dkms=2.* -y
|
||||
|
||||
# Install Neuron Runtime
|
||||
sudo apt-get install aws-neuronx-collectives=2.* -y
|
||||
sudo apt-get install aws-neuronx-runtime-lib=2.* -y
|
||||
|
||||
# Install Neuron Tools
|
||||
sudo apt-get install aws-neuronx-tools=2.* -y
|
||||
|
||||
# Add PATH
|
||||
export PATH=/opt/aws/neuron/bin:$PATH
|
||||
|
||||
|
||||
.. _install_tnx:
|
||||
|
||||
Step 2. Install transformers-neuronx and its dependencies
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
`transformers-neuronx <https://github.com/aws-neuron/transformers-neuronx>`_ will be the backend to support inference on trn1/inf2 instances.
|
||||
Follow the steps below to install transformer-neuronx package and its dependencies.
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
# Install Python venv
|
||||
sudo apt-get install -y python3.10-venv g++
|
||||
|
||||
# Create Python venv
|
||||
python3.10 -m venv aws_neuron_venv_pytorch
|
||||
|
||||
# Activate Python venv
|
||||
source aws_neuron_venv_pytorch/bin/activate
|
||||
|
||||
# Install Jupyter notebook kernel
|
||||
pip install ipykernel
|
||||
python3.10 -m ipykernel install --user --name aws_neuron_venv_pytorch --display-name "Python (torch-neuronx)"
|
||||
pip install jupyter notebook
|
||||
pip install environment_kernels
|
||||
|
||||
# Set pip repository pointing to the Neuron repository
|
||||
python -m pip config set global.extra-index-url https://pip.repos.neuron.amazonaws.com
|
||||
|
||||
# Install wget, awscli
|
||||
python -m pip install wget
|
||||
python -m pip install awscli
|
||||
|
||||
# Update Neuron Compiler and Framework
|
||||
python -m pip install --upgrade neuronx-cc==2.* --pre torch-neuronx==2.1.* torchvision transformers-neuronx
|
||||
|
||||
.. _install_vllm:
|
||||
|
||||
Step 3. Install vLLM from source
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Once neuronx-cc and transformers-neuronx packages are installed, we will be able to install vllm as follows:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ git clone https://github.com/vllm-project/vllm.git
|
||||
$ cd vllm
|
||||
$ pip install -U -r requirements-neuron.txt
|
||||
$ pip install .
|
||||
|
||||
If neuron packages are detected correctly in the installation process, ``vllm-0.3.0+neuron212`` will be installed.
|
@ -62,18 +62,20 @@ Documentation
|
||||
|
||||
getting_started/installation
|
||||
getting_started/amd-installation
|
||||
getting_started/neuron-installation
|
||||
getting_started/cpu-installation
|
||||
getting_started/quickstart
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: Serving
|
||||
|
||||
serving/distributed_serving
|
||||
serving/run_on_sky
|
||||
serving/deploying_with_triton
|
||||
serving/openai_compatible_server
|
||||
serving/deploying_with_docker
|
||||
serving/serving_with_langchain
|
||||
serving/distributed_serving
|
||||
serving/metrics
|
||||
serving/usage_stats
|
||||
serving/integrations
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
@ -95,7 +97,9 @@ Documentation
|
||||
:maxdepth: 2
|
||||
:caption: Developer Documentation
|
||||
|
||||
dev/sampling_params
|
||||
dev/engine/engine_index
|
||||
dev/kernel/paged_attention
|
||||
|
||||
Indices and tables
|
||||
==================
|
||||
|
@ -56,8 +56,8 @@ Next, you need to rewrite the :code:`forward` methods of your model by following
|
||||
- return_dict: Optional[bool] = None,
|
||||
-) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
+ positions: torch.Tensor,
|
||||
+ kv_caches: List[KVCache],
|
||||
+ input_metadata: InputMetadata,
|
||||
+ kv_caches: List[torch.Tensor],
|
||||
+ attn_metadata: AttentionMetadata,
|
||||
+) -> Optional[SamplerOutput]:
|
||||
|
||||
1. Update the code by considering that :code:`input_ids` and :code:`positions` are now flattened tensors.
|
||||
|
@ -81,6 +81,10 @@ Below, you can find an explanation of every engine argument for vLLM:
|
||||
|
||||
Token block size for contiguous chunks of tokens.
|
||||
|
||||
.. option:: --enable-prefix-caching
|
||||
|
||||
Enables automatic prefix caching
|
||||
|
||||
.. option:: --seed <seed>
|
||||
|
||||
Random seed for operations.
|
||||
|
@ -58,7 +58,7 @@ LoRA adapted models can also be served with the Open-AI compatible vLLM server.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
python -m vllm.entrypoints.api_server \
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model meta-llama/Llama-2-7b-hf \
|
||||
--enable-lora \
|
||||
--lora-modules sql-lora=~/.cache/huggingface/hub/models--yard1--llama-2-7b-sql-lora-test/
|
||||
@ -89,3 +89,16 @@ with its base model:
|
||||
Requests can specify the LoRA adapter as if it were any other model via the ``model`` request parameter. The requests will be
|
||||
processed according to the server-wide LoRA configuration (i.e. in parallel with base model requests, and potentially other
|
||||
LoRA adapter requests if they were provided and ``max_loras`` is set high enough).
|
||||
|
||||
The following is an example request
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
curl http://localhost:8000/v1/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "sql-lora",
|
||||
"prompt": "San Francisco is a",
|
||||
"max_tokens": 7,
|
||||
"temperature": 0
|
||||
}' | jq
|
||||
|
@ -8,81 +8,125 @@ The following is the list of model architectures that are currently supported by
|
||||
Alongside each architecture, we include some popular models that use it.
|
||||
|
||||
.. list-table::
|
||||
:widths: 25 25 50
|
||||
:widths: 25 25 50 5
|
||||
:header-rows: 1
|
||||
|
||||
* - Architecture
|
||||
- Models
|
||||
- Example HuggingFace Models
|
||||
- :ref:`LoRA <lora>`
|
||||
* - :code:`AquilaForCausalLM`
|
||||
- Aquila
|
||||
- :code:`BAAI/Aquila-7B`, :code:`BAAI/AquilaChat-7B`, etc.
|
||||
- ✅︎
|
||||
* - :code:`BaiChuanForCausalLM`
|
||||
- Baichuan
|
||||
- :code:`baichuan-inc/Baichuan2-13B-Chat`, :code:`baichuan-inc/Baichuan-7B`, etc.
|
||||
- ✅︎
|
||||
* - :code:`ChatGLMModel`
|
||||
- ChatGLM
|
||||
- :code:`THUDM/chatglm2-6b`, :code:`THUDM/chatglm3-6b`, etc.
|
||||
- ✅︎
|
||||
* - :code:`CohereForCausalLM`
|
||||
- Command-R
|
||||
- :code:`CohereForAI/c4ai-command-r-v01`, etc.
|
||||
-
|
||||
* - :code:`DbrxForCausalLM`
|
||||
- DBRX
|
||||
- :code:`databricks/dbrx-base`, :code:`databricks/dbrx-instruct`, etc.
|
||||
-
|
||||
* - :code:`DeciLMForCausalLM`
|
||||
- DeciLM
|
||||
- :code:`Deci/DeciLM-7B`, :code:`Deci/DeciLM-7B-instruct`, etc.
|
||||
-
|
||||
* - :code:`BloomForCausalLM`
|
||||
- BLOOM, BLOOMZ, BLOOMChat
|
||||
- :code:`bigscience/bloom`, :code:`bigscience/bloomz`, etc.
|
||||
-
|
||||
* - :code:`FalconForCausalLM`
|
||||
- Falcon
|
||||
- :code:`tiiuae/falcon-7b`, :code:`tiiuae/falcon-40b`, :code:`tiiuae/falcon-rw-7b`, etc.
|
||||
-
|
||||
* - :code:`GemmaForCausalLM`
|
||||
- Gemma
|
||||
- :code:`google/gemma-2b`, :code:`google/gemma-7b`, etc.
|
||||
- ✅︎
|
||||
* - :code:`GPT2LMHeadModel`
|
||||
- GPT-2
|
||||
- :code:`gpt2`, :code:`gpt2-xl`, etc.
|
||||
-
|
||||
* - :code:`GPTBigCodeForCausalLM`
|
||||
- StarCoder, SantaCoder, WizardCoder
|
||||
- :code:`bigcode/starcoder`, :code:`bigcode/gpt_bigcode-santacoder`, :code:`WizardLM/WizardCoder-15B-V1.0`, etc.
|
||||
-
|
||||
* - :code:`GPTJForCausalLM`
|
||||
- GPT-J
|
||||
- :code:`EleutherAI/gpt-j-6b`, :code:`nomic-ai/gpt4all-j`, etc.
|
||||
-
|
||||
* - :code:`GPTNeoXForCausalLM`
|
||||
- GPT-NeoX, Pythia, OpenAssistant, Dolly V2, StableLM
|
||||
- :code:`EleutherAI/gpt-neox-20b`, :code:`EleutherAI/pythia-12b`, :code:`OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5`, :code:`databricks/dolly-v2-12b`, :code:`stabilityai/stablelm-tuned-alpha-7b`, etc.
|
||||
-
|
||||
* - :code:`InternLMForCausalLM`
|
||||
- InternLM
|
||||
- :code:`internlm/internlm-7b`, :code:`internlm/internlm-chat-7b`, etc.
|
||||
- ✅︎
|
||||
* - :code:`InternLM2ForCausalLM`
|
||||
- InternLM2
|
||||
- :code:`internlm/internlm2-7b`, :code:`internlm/internlm2-chat-7b`, etc.
|
||||
-
|
||||
* - :code:`JAISLMHeadModel`
|
||||
- Jais
|
||||
- :code:`core42/jais-13b`, :code:`core42/jais-13b-chat`, :code:`core42/jais-30b-v3`, :code:`core42/jais-30b-chat-v3`, etc.
|
||||
-
|
||||
* - :code:`LlamaForCausalLM`
|
||||
- LLaMA, LLaMA-2, Vicuna, Alpaca, Yi
|
||||
- :code:`meta-llama/Llama-2-13b-hf`, :code:`meta-llama/Llama-2-70b-hf`, :code:`openlm-research/open_llama_13b`, :code:`lmsys/vicuna-13b-v1.3`, :code:`01-ai/Yi-6B`, :code:`01-ai/Yi-34B`, etc.
|
||||
- ✅︎
|
||||
* - :code:`MistralForCausalLM`
|
||||
- Mistral, Mistral-Instruct
|
||||
- :code:`mistralai/Mistral-7B-v0.1`, :code:`mistralai/Mistral-7B-Instruct-v0.1`, etc.
|
||||
- ✅︎
|
||||
* - :code:`MixtralForCausalLM`
|
||||
- Mixtral-8x7B, Mixtral-8x7B-Instruct
|
||||
- :code:`mistralai/Mixtral-8x7B-v0.1`, :code:`mistralai/Mixtral-8x7B-Instruct-v0.1`, etc.
|
||||
- ✅︎
|
||||
* - :code:`MPTForCausalLM`
|
||||
- MPT, MPT-Instruct, MPT-Chat, MPT-StoryWriter
|
||||
- :code:`mosaicml/mpt-7b`, :code:`mosaicml/mpt-7b-storywriter`, :code:`mosaicml/mpt-30b`, etc.
|
||||
-
|
||||
* - :code:`OLMoForCausalLM`
|
||||
- OLMo
|
||||
- :code:`allenai/OLMo-1B`, :code:`allenai/OLMo-7B`, etc.
|
||||
-
|
||||
* - :code:`OPTForCausalLM`
|
||||
- OPT, OPT-IML
|
||||
- :code:`facebook/opt-66b`, :code:`facebook/opt-iml-max-30b`, etc.
|
||||
-
|
||||
* - :code:`OrionForCausalLM`
|
||||
- Orion
|
||||
- :code:`OrionStarAI/Orion-14B-Base`, :code:`OrionStarAI/Orion-14B-Chat`, etc.
|
||||
-
|
||||
* - :code:`PhiForCausalLM`
|
||||
- Phi
|
||||
- :code:`microsoft/phi-1_5`, :code:`microsoft/phi-2`, etc.
|
||||
-
|
||||
* - :code:`QWenLMHeadModel`
|
||||
- Qwen
|
||||
- :code:`Qwen/Qwen-7B`, :code:`Qwen/Qwen-7B-Chat`, etc.
|
||||
-
|
||||
* - :code:`Qwen2ForCausalLM`
|
||||
- Qwen2
|
||||
- :code:`Qwen/Qwen2-beta-7B`, :code:`Qwen/Qwen2-beta-7B-Chat`, etc.
|
||||
* - :code:`StableLMEpochForCausalLM`
|
||||
- ✅︎
|
||||
* - :code:`Qwen2MoeForCausalLM`
|
||||
- Qwen2MoE
|
||||
- :code:`Qwen/Qwen1.5-MoE-A2.7B`, :code:`Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc.
|
||||
-
|
||||
* - :code:`StableLmForCausalLM`
|
||||
- StableLM
|
||||
- :code:`stabilityai/stablelm-3b-4e1t/` , :code:`stabilityai/stablelm-base-alpha-7b-v2`, etc.
|
||||
-
|
||||
|
||||
If your model uses one of the above model architectures, you can seamlessly run your model with vLLM.
|
||||
Otherwise, please refer to :ref:`Adding a New Model <adding_a_new_model>` for instructions on how to implement support for your model.
|
||||
|
8
docs/source/serving/deploying_with_bentoml.rst
Normal file
@ -0,0 +1,8 @@
|
||||
.. _deploying_with_bentoml:
|
||||
|
||||
Deploying with BentoML
|
||||
======================
|
||||
|
||||
`BentoML <https://github.com/bentoml/BentoML>`_ allows you to deploy a large language model (LLM) server with vLLM as the backend, which exposes OpenAI-compatible endpoints. You can serve the model locally or containerize it as an OCI-complicant image and deploy it on Kubernetes.
|
||||
|
||||
For details, see the tutorial `vLLM inference in the BentoML documentation <https://docs.bentoml.com/en/latest/use-cases/large-language-models/vllm.html>`_.
|
8
docs/source/serving/deploying_with_kserve.rst
Normal file
@ -0,0 +1,8 @@
|
||||
.. _deploying_with_kserve:
|
||||
|
||||
Deploying with KServe
|
||||
============================
|
||||
|
||||
vLLM can be deployed with `KServe <https://github.com/kserve/kserve>`_ on Kubernetes for highly scalable distributed model serving.
|
||||
|
||||
Please see `this guide <https://kserve.github.io/website/latest/modelserving/v1beta1/llm/vllm/>`_ for more details on using vLLM with KServe.
|
11
docs/source/serving/integrations.rst
Normal file
@ -0,0 +1,11 @@
|
||||
Integrations
|
||||
------------
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
run_on_sky
|
||||
deploying_with_kserve
|
||||
deploying_with_triton
|
||||
deploying_with_bentoml
|
||||
serving_with_langchain
|
114
docs/source/serving/openai_compatible_server.md
Normal file
@ -0,0 +1,114 @@
|
||||
# OpenAI Compatible Server
|
||||
|
||||
vLLM provides an HTTP server that implements OpenAI's [Completions](https://platform.openai.com/docs/api-reference/completions) and [Chat](https://platform.openai.com/docs/api-reference/chat) API.
|
||||
|
||||
You can start the server using Python, or using [Docker](deploying_with_docker.rst):
|
||||
```bash
|
||||
python -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-hf --dtype float32 --api-key token-abc123
|
||||
```
|
||||
|
||||
To call the server, you can use the official OpenAI Python client library, or any other HTTP client.
|
||||
```python
|
||||
from openai import OpenAI
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:8000/v1",
|
||||
api_key="token-abc123",
|
||||
)
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model="meta-llama/Llama-2-7b-hf",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Hello!"}
|
||||
]
|
||||
)
|
||||
|
||||
print(completion.choices[0].message)
|
||||
```
|
||||
|
||||
## API Reference
|
||||
Please see the [OpenAI API Reference](https://platform.openai.com/docs/api-reference) for more information on the API. We support all parameters except:
|
||||
- Chat: `tools`, and `tool_choice`.
|
||||
- Completions: `suffix`.
|
||||
|
||||
## Extra Parameters
|
||||
vLLM supports a set of parameters that are not part of the OpenAI API.
|
||||
In order to use them, you can pass them as extra parameters in the OpenAI client.
|
||||
Or directly merge them into the JSON payload if you are using HTTP call directly.
|
||||
|
||||
```python
|
||||
completion = client.chat.completions.create(
|
||||
model="meta-llama/Llama-2-7b-hf",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Classify this sentiment: vLLM is wonderful!"}
|
||||
],
|
||||
extra_body={
|
||||
"guided_choice": ["positive", "negative"]
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
### Extra Parameters for Chat API
|
||||
The following [sampling parameters (click through to see documentation)](../dev/sampling_params.rst) are supported.
|
||||
|
||||
```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
|
||||
:language: python
|
||||
:start-after: begin-chat-completion-sampling-params
|
||||
:end-before: end-chat-completion-sampling-params
|
||||
```
|
||||
|
||||
The following extra parameters are supported:
|
||||
|
||||
```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
|
||||
:language: python
|
||||
:start-after: begin-chat-completion-extra-params
|
||||
:end-before: end-chat-completion-extra-params
|
||||
```
|
||||
|
||||
### Extra Parameters for Completions API
|
||||
The following [sampling parameters (click through to see documentation)](../dev/sampling_params.rst) are supported.
|
||||
|
||||
```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
|
||||
:language: python
|
||||
:start-after: begin-completion-sampling-params
|
||||
:end-before: end-completion-sampling-params
|
||||
```
|
||||
|
||||
The following extra parameters are supported:
|
||||
|
||||
```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
|
||||
:language: python
|
||||
:start-after: begin-completion-extra-params
|
||||
:end-before: end-completion-extra-params
|
||||
```
|
||||
|
||||
## Chat Template
|
||||
|
||||
In order for the language model to support chat protocol, vLLM requires the model to include
|
||||
a chat template in its tokenizer configuration. The chat template is a Jinja2 template that
|
||||
specifies how are roles, messages, and other chat-specific tokens are encoded in the input.
|
||||
|
||||
An example chat template for `meta-llama/Llama-2-7b-chat-hf` can be found [here](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf/blob/09bd0f49e16738cdfaa6e615203e126038736eb0/tokenizer_config.json#L12)
|
||||
|
||||
Some models do not provide a chat template even though they are instruction/chat fine-tuned. For those model,
|
||||
you can manually specify their chat template in the `--chat-template` parameter with the file path to the chat
|
||||
template, or the template in string form. Without a chat template, the server will not be able to process chat
|
||||
and all chat requests will error.
|
||||
|
||||
```bash
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model ... \
|
||||
--chat-template ./path-to-chat-template.jinja
|
||||
```
|
||||
|
||||
vLLM community provides a set of chat templates for popular models. You can find them in the examples
|
||||
directory [here](https://github.com/vllm-project/vllm/tree/main/examples/)
|
||||
|
||||
## Command line arguments for the server
|
||||
|
||||
```{argparse}
|
||||
:module: vllm.entrypoints.openai.cli_args
|
||||
:func: make_arg_parser
|
||||
:prog: vllm-openai-server
|
||||
```
|
57
docs/source/serving/usage_stats.md
Normal file
@ -0,0 +1,57 @@
|
||||
# Usage Stats Collection
|
||||
|
||||
vLLM collects anonymous usage data by default to help the engineering team better understand which hardware and model configurations are widely used. This data allows them to prioritize their efforts on the most common workloads. The collected data is transparent, does not contain any sensitive information, and will be publicly released for the community's benefit.
|
||||
|
||||
## What data is collected?
|
||||
|
||||
You can see the up to date list of data collected by vLLM in the [usage_lib.py](https://github.com/vllm-project/vllm/blob/main/vllm/usage/usage_lib.py).
|
||||
|
||||
Here is an example as of v0.4.0:
|
||||
|
||||
```json
|
||||
{
|
||||
"uuid": "fbe880e9-084d-4cab-a395-8984c50f1109",
|
||||
"provider": "GCP",
|
||||
"num_cpu": 24,
|
||||
"cpu_type": "Intel(R) Xeon(R) CPU @ 2.20GHz",
|
||||
"cpu_family_model_stepping": "6,85,7",
|
||||
"total_memory": 101261135872,
|
||||
"architecture": "x86_64",
|
||||
"platform": "Linux-5.10.0-28-cloud-amd64-x86_64-with-glibc2.31",
|
||||
"gpu_count": 2,
|
||||
"gpu_type": "NVIDIA L4",
|
||||
"gpu_memory_per_device": 23580639232,
|
||||
"model_architecture": "OPTForCausalLM",
|
||||
"vllm_version": "0.3.2+cu123",
|
||||
"context": "LLM_CLASS",
|
||||
"log_time": 1711663373492490000,
|
||||
"source": "production",
|
||||
"dtype": "torch.float16",
|
||||
"tensor_parallel_size": 1,
|
||||
"block_size": 16,
|
||||
"gpu_memory_utilization": 0.9,
|
||||
"quantization": null,
|
||||
"kv_cache_dtype": "auto",
|
||||
"enable_lora": false,
|
||||
"enable_prefix_caching": false,
|
||||
"enforce_eager": false,
|
||||
"disable_custom_all_reduce": true
|
||||
}
|
||||
```
|
||||
|
||||
You can preview the collected data by running the following command:
|
||||
|
||||
```bash
|
||||
tail ~/.config/vllm/usage_stats.json
|
||||
```
|
||||
|
||||
## Opt-out of Usage Stats Collection
|
||||
|
||||
You can opt-out of usage stats collection by setting the VLLM_NO_USAGE_STATS or DO_NOT_TRACK environment variable, or by creating a ~/.config/vllm/do_not_track file:
|
||||
|
||||
```bash
|
||||
# Any of the following methods can disable usage stats collection
|
||||
export VLLM_NO_USAGE_STATS=1
|
||||
export DO_NOT_TRACK=1
|
||||
mkdir -p ~/.config/vllm && touch ~/.config/vllm/do_not_track
|
||||
```
|
@ -1,6 +1,7 @@
|
||||
import argparse
|
||||
from openai import OpenAI
|
||||
|
||||
import gradio as gr
|
||||
from openai import OpenAI
|
||||
|
||||
# Argument parser setup
|
||||
parser = argparse.ArgumentParser(
|
||||
|
90
examples/llava_example.py
Normal file
@ -0,0 +1,90 @@
|
||||
import argparse
|
||||
import os
|
||||
import subprocess
|
||||
|
||||
import torch
|
||||
|
||||
from vllm import LLM
|
||||
from vllm.sequence import MultiModalData
|
||||
|
||||
# The assets are located at `s3://air-example-data-2/vllm_opensource_llava/`.
|
||||
|
||||
|
||||
def run_llava_pixel_values():
|
||||
llm = LLM(
|
||||
model="llava-hf/llava-1.5-7b-hf",
|
||||
image_input_type="pixel_values",
|
||||
image_token_id=32000,
|
||||
image_input_shape="1,3,336,336",
|
||||
image_feature_size=576,
|
||||
)
|
||||
|
||||
prompt = "<image>" * 576 + (
|
||||
"\nUSER: What is the content of this image?\nASSISTANT:")
|
||||
|
||||
# This should be provided by another online or offline component.
|
||||
images = torch.load("images/stop_sign_pixel_values.pt")
|
||||
|
||||
outputs = llm.generate(prompt,
|
||||
multi_modal_data=MultiModalData(
|
||||
type=MultiModalData.Type.IMAGE, data=images))
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
|
||||
|
||||
def run_llava_image_features():
|
||||
llm = LLM(
|
||||
model="llava-hf/llava-1.5-7b-hf",
|
||||
image_input_type="image_features",
|
||||
image_token_id=32000,
|
||||
image_input_shape="1,576,1024",
|
||||
image_feature_size=576,
|
||||
)
|
||||
|
||||
prompt = "<image>" * 576 + (
|
||||
"\nUSER: What is the content of this image?\nASSISTANT:")
|
||||
|
||||
# This should be provided by another online or offline component.
|
||||
images = torch.load("images/stop_sign_image_features.pt")
|
||||
|
||||
outputs = llm.generate(prompt,
|
||||
multi_modal_data=MultiModalData(
|
||||
type=MultiModalData.Type.IMAGE, data=images))
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
|
||||
|
||||
def main(args):
|
||||
if args.type == "pixel_values":
|
||||
run_llava_pixel_values()
|
||||
else:
|
||||
run_llava_image_features()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Demo on Llava")
|
||||
parser.add_argument("--type",
|
||||
type=str,
|
||||
choices=["pixel_values", "image_features"],
|
||||
default="pixel_values",
|
||||
help="image input type")
|
||||
args = parser.parse_args()
|
||||
# Download from s3
|
||||
s3_bucket_path = "s3://air-example-data-2/vllm_opensource_llava/"
|
||||
local_directory = "images"
|
||||
|
||||
# Make sure the local directory exists or create it
|
||||
os.makedirs(local_directory, exist_ok=True)
|
||||
|
||||
# Use AWS CLI to sync the directory, assume anonymous access
|
||||
subprocess.check_call([
|
||||
"aws",
|
||||
"s3",
|
||||
"sync",
|
||||
s3_bucket_path,
|
||||
local_directory,
|
||||
"--no-sign-request",
|
||||
])
|
||||
main(args)
|
@ -1,7 +1,7 @@
|
||||
import argparse
|
||||
from typing import List, Tuple
|
||||
|
||||
from vllm import EngineArgs, LLMEngine, SamplingParams, RequestOutput
|
||||
from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams
|
||||
|
||||
|
||||
def create_test_prompts() -> List[Tuple[str, SamplingParams]]:
|
||||
|