Compare commits

...

41 Commits

Author SHA1 Message Date
82091b864a Bump up to v0.3.3 (#3129) 2024-03-01 12:58:06 -08:00
c0c2335ce0 Integrate Marlin Kernels for Int4 GPTQ inference (#2497)
Co-authored-by: Robert Shaw <114415538+rib-2@users.noreply.github.com>
Co-authored-by: alexm <alexm@neuralmagic.com>
2024-03-01 12:47:51 -08:00
90fbf12540 fix relative import path of protocol.py (#3134)
Co-authored-by: huohuarong <huohuarong@zuoshouyisheng.com>
2024-03-01 19:42:06 +00:00
49d849b3ab docs: Add tutorial on deploying vLLM model with KServe (#2586)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2024-03-01 11:04:14 -08:00
27ca23dc00 Remove exclude_unset in streaming response (#3143) 2024-03-01 09:59:06 -08:00
54d3544784 Fix: Output text is always truncated in some models (#3016) 2024-03-01 07:52:22 +00:00
703e42ee4b Add guided decoding for OpenAI API server (#2819)
Co-authored-by: br3no <breno@veltefaria.de>
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-02-29 22:13:08 +00:00
29a8d6a554 [Fix] Don't deep-copy LogitsProcessors when copying SamplingParams (#3099) 2024-02-29 19:20:42 +00:00
2c08ff23c0 Fix building from source on WSL (#3112) 2024-02-29 11:13:58 -08:00
bfdcfa6a05 Support starcoder2 architecture (#3089) 2024-02-29 00:51:48 -08:00
9289e577ec add cache_config's info to prometheus metrics. (#3100) 2024-02-29 06:15:18 +00:00
a6d471c759 Fix: AttributeError in OpenAI-compatible server (#3018) 2024-02-28 22:04:07 -08:00
01a5d18a53 Add Support for 2/3/8-bit GPTQ Quantization Models (#2330) 2024-02-28 21:52:23 -08:00
929b4f2973 Add LoRA support for Gemma (#3050) 2024-02-28 13:03:28 -08:00
3b7178cfa4 [Neuron] Support inference with transformers-neuronx (#2569) 2024-02-28 09:34:34 -08:00
e46fa5d52e Restrict prometheus_client >= 0.18.0 to prevent errors when importing pkgs (#3070) 2024-02-28 05:38:26 +00:00
a8683102cc multi-lora documentation fix (#3064) 2024-02-27 21:26:15 -08:00
71bcaf99e2 Enable GQA support in the prefix prefill kernels (#3007)
Signed-off-by: Tao He <sighingnow@gmail.com>
2024-02-27 01:14:31 -08:00
8b430d7dea [Minor] Fix StableLMEpochForCausalLM -> StableLmForCausalLM (#3046) 2024-02-26 20:23:50 -08:00
e0ade06d63 Support logit bias for OpenAI API (#3027) 2024-02-27 11:51:53 +08:00
4bd18ec0c7 [Minor] Fix type annotation in fused moe (#3045) 2024-02-26 19:44:29 -08:00
2410e320b3 fix get_ip error in pure ipv6 environment (#2931) 2024-02-26 19:22:16 -08:00
48a8f4a7fd Support Orion model (#2539)
Co-authored-by: zhangdacheng <zhangdacheng@ainirobot.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-02-26 19:17:06 -08:00
Roy
4dd6416faf Fix stablelm (#3038) 2024-02-26 18:31:10 -08:00
Roy
c1c0d00b88 Don't use cupy when enforce_eager=True (#3037) 2024-02-26 17:33:38 -08:00
Roy
d9f726c4d0 [Minor] Remove unused config files (#3039) 2024-02-26 17:25:22 -08:00
d6e4a130b0 [Minor] Remove gather_cached_kv kernel (#3043) 2024-02-26 15:00:54 -08:00
cfc15a1031 Optimize Triton MoE Kernel (#2979)
Co-authored-by: Cade Daniel <edacih@gmail.com>
2024-02-26 13:48:56 -08:00
70f3e8e3a1 Add LogProbs for Chat Completions in OpenAI (#2918) 2024-02-26 10:39:34 +08:00
ef978fe411 Port metrics from aioprometheus to prometheus_client (#2730) 2024-02-25 11:54:00 -08:00
f7c1234990 [Fix] Fissertion on YaRN model len (#2984) 2024-02-23 12:57:48 -08:00
57f044945f Fix nvcc not found in vlm-openai image (#2781) 2024-02-22 14:25:07 -08:00
4caf7044e0 Include tokens from prompt phase in counter_generation_tokens (#2802) 2024-02-22 14:00:12 -08:00
6f32cddf1c Remove Flash Attention in test env (#2982) 2024-02-22 09:58:29 -08:00
c530e2cfe3 [FIX] Fix a bug in initializing Yarn RoPE (#2983) 2024-02-22 01:40:05 -08:00
fd5dcc5c81 Optimize GeGLU layer in Gemma (#2975) 2024-02-21 20:17:52 -08:00
93dc5a2870 chore(vllm): codespell for spell checking (#2820) 2024-02-21 18:56:01 -08:00
95529e3253 Use Llama RMSNorm custom op for Gemma (#2974) 2024-02-21 18:28:23 -08:00
Roy
344020c926 Migrate MistralForCausalLM to LlamaForCausalLM (#2868) 2024-02-21 18:25:05 -08:00
5574081c49 Added early stopping to completion APIs (#2939) 2024-02-21 18:24:01 -08:00
d7f396486e Update comment (#2934) 2024-02-21 18:18:37 -08:00
105 changed files with 6171 additions and 1053 deletions

View File

@ -50,7 +50,10 @@ steps:
command: pytest -v -s worker
- label: LoRA Test
command: pytest -v -s lora
command: pytest -v -s lora --forked
- label: Metrics Test
command: pytest -v -s metrics
- label: Benchmarks
working_dir: "/vllm-workspace/.buildkite"

View File

@ -25,7 +25,10 @@ jobs:
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install ruff==0.1.5
pip install ruff==0.1.5 codespell==2.2.6 tomli==2.0.1
- name: Analysing the code with ruff
run: |
ruff vllm tests
- name: Spelling check with codespell
run: |
codespell --toml pyproject.toml

View File

@ -73,10 +73,12 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
- OLMo (`allenai/OLMo-1B`, `allenai/OLMo-7B`, etc.)
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
- Orion (`OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc.)
- Phi (`microsoft/phi-1_5`, `microsoft/phi-2`, etc.)
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)
- Qwen2 (`Qwen/Qwen2-7B-beta`, `Qwen/Qwen-7B-Chat-beta`, etc.)
- StableLM(`stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc.)
- Starcoder2(`bigcode/starcoder2-3b`, `bigcode/starcoder2-7b`, `bigcode/starcoder2-15b`, etc.)
- Yi (`01-ai/Yi-6B`, `01-ai/Yi-34B`, etc.)
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):

View File

@ -7,7 +7,7 @@ On the server side, run one of the following commands:
--disable-log-requests
(TGI backend)
./launch_hf_server.sh <your_model>
./launch_tgi_server.sh <your_model> <max_batch_total_tokens>
On the client side, run:
python benchmarks/benchmark_serving.py \
@ -375,7 +375,7 @@ if __name__ == "__main__":
parser.add_argument(
"--disable-tqdm",
action="store_true",
help="Specify to disbale tqdm progress bar.",
help="Specify to disable tqdm progress bar.",
)
parser.add_argument(
"--save-result",

View File

@ -0,0 +1,172 @@
import json
import os
import sys
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from vllm.model_executor.layers.fused_moe import fused_moe
import torch
import torch.nn.functional as F
import triton
def main():
method = fused_moe
for bs in [
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
2048, 3072, 4096
]:
run_grid(bs, method=method)
def run_grid(bs, method):
d_model = 4096
num_total_experts = 8
top_k = 2
tp_size = 2
model_intermediate_size = 14336
num_layers = 32
num_calls = 100
num_warmup_trials = 1
num_trials = 1
configs = []
if bs <= 16:
BLOCK_SIZES_M = [16]
elif bs <= 32:
BLOCK_SIZES_M = [16, 32]
elif bs <= 64:
BLOCK_SIZES_M = [16, 32, 64]
elif bs <= 128:
BLOCK_SIZES_M = [16, 32, 64, 128]
else:
BLOCK_SIZES_M = [16, 32, 64, 128, 256]
for block_size_n in [32, 64, 128, 256]:
for block_size_m in BLOCK_SIZES_M:
for block_size_k in [64, 128, 256]:
for group_size_m in [1, 16, 32, 64]:
for num_warps in [4, 8]:
configs.append({
"BLOCK_SIZE_M": block_size_m,
"BLOCK_SIZE_N": block_size_n,
"BLOCK_SIZE_K": block_size_k,
"GROUP_SIZE_M": group_size_m,
"num_warps": num_warps,
"num_stages": 4,
})
best_config = None
best_time_us = 1e20
for config in configs:
print(f'{tp_size=} {bs=}')
print(f'{config}')
# warmup
print(f'warming up')
try:
for _ in range(num_warmup_trials):
run_timing(
num_calls=num_calls,
bs=bs,
d_model=d_model,
num_total_experts=num_total_experts,
top_k=top_k,
tp_size=tp_size,
model_intermediate_size=model_intermediate_size,
method=method,
config=config,
)
except triton.runtime.autotuner.OutOfResources:
continue
# trial
print(f'benchmarking')
for _ in range(num_trials):
kernel_dur_ms = run_timing(
num_calls=num_calls,
bs=bs,
d_model=d_model,
num_total_experts=num_total_experts,
top_k=top_k,
tp_size=tp_size,
model_intermediate_size=model_intermediate_size,
method=method,
config=config,
)
kernel_dur_us = 1000 * kernel_dur_ms
model_dur_ms = kernel_dur_ms * num_layers
if kernel_dur_us < best_time_us:
best_config = config
best_time_us = kernel_dur_us
print(
f'{kernel_dur_us=:.1f} {model_dur_ms=:.1f} {bs=} {tp_size=} {top_k=} {num_total_experts=} {d_model=} {model_intermediate_size=} {num_layers=}'
)
print("best_time_us", best_time_us)
print("best_config", best_config)
filename = "/tmp/config.jsonl"
print(f"writing config to file {filename}")
with open(filename, "a") as f:
f.write(json.dumps({str(bs): best_config}) + "\n")
def run_timing(num_calls: int, bs: int, d_model: int, num_total_experts: int,
top_k: int, tp_size: int, model_intermediate_size: int, method,
config) -> float:
shard_intermediate_size = model_intermediate_size // tp_size
hidden_states = torch.rand(
(bs, d_model),
device="cuda:0",
dtype=torch.bfloat16,
)
ws = torch.rand(
(num_total_experts, 2 * shard_intermediate_size, d_model),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
w2s = torch.rand(
(num_total_experts, d_model, shard_intermediate_size),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
gating_output = F.softmax(torch.rand(
(num_calls, bs, num_total_experts),
device=hidden_states.device,
dtype=torch.float32,
),
dim=-1)
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for i in range(num_calls):
hidden_states = method(
hidden_states=hidden_states,
w1=ws,
w2=w2s,
gating_output=gating_output[i],
topk=2,
renormalize=True,
inplace=True,
override_config=config,
)
end_event.record()
end_event.synchronize()
dur_ms = start_event.elapsed_time(end_event) / num_calls
return dur_ms
if __name__ == "__main__":
sys.exit(main())

View File

@ -2,19 +2,16 @@
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include <cmath>
#include "cuda_compat.h"
#include "dispatch_utils.h"
namespace vllm {
template<typename T>
__device__ __forceinline__ T silu(const T& x) {
// x * sigmoid(x)
return (T) (((float) x) / (1.0f + expf((float) -x)));
}
template<typename scalar_t>
__global__ void silu_and_mul_kernel(
// Activation and gating kernel template.
template<typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&)>
__global__ void act_and_mul_kernel(
scalar_t* __restrict__ out, // [..., d]
const scalar_t* __restrict__ input, // [..., 2, d]
const int d) {
@ -22,32 +19,58 @@ __global__ void silu_and_mul_kernel(
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
const scalar_t x = VLLM_LDG(&input[token_idx * 2 * d + idx]);
const scalar_t y = VLLM_LDG(&input[token_idx * 2 * d + d + idx]);
out[token_idx * d + idx] = silu(x) * y;
out[token_idx * d + idx] = ACT_FN(x) * y;
}
}
template<typename T>
__device__ __forceinline__ T silu_kernel(const T& x) {
// x * sigmoid(x)
return (T) (((float) x) / (1.0f + expf((float) -x)));
}
template<typename T>
__device__ __forceinline__ T gelu_kernel(const T& x) {
// Equivalent to PyTorch GELU with 'none' approximation.
// Refer to:
// https://github.com/pytorch/pytorch/blob/8ac9b20d4b090c213799e81acf48a55ea8d437d6/aten/src/ATen/native/cuda/ActivationGeluKernel.cu#L38
const float f = (float) x;
constexpr float ALPHA = M_SQRT1_2;
return (T) (f * 0.5f * (1.0f + ::erf(f * ALPHA)));
}
} // namespace vllm
// Launch activation and gating kernel.
#define LAUNCH_ACTIVATION_GATE_KERNEL(KERNEL) \
int d = input.size(-1) / 2; \
int64_t num_tokens = input.numel() / input.size(-1); \
dim3 grid(num_tokens); \
dim3 block(std::min(d, 1024)); \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), \
"act_and_mul_kernel", \
[&] { \
vllm::act_and_mul_kernel<scalar_t, KERNEL<scalar_t>><<<grid, block, 0, stream>>>( \
out.data_ptr<scalar_t>(), \
input.data_ptr<scalar_t>(), \
d); \
});
void silu_and_mul(
torch::Tensor& out, // [..., d]
torch::Tensor& input) // [..., 2 * d]
{
int64_t num_tokens = input.numel() / input.size(-1);
int d = input.size(-1) / 2;
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel);
}
dim3 grid(num_tokens);
dim3 block(std::min(d, 1024));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(),
"silu_and_mul_kernel",
[&] {
vllm::silu_and_mul_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
d);
});
void gelu_and_mul(
torch::Tensor& out, // [..., d]
torch::Tensor& input) // [..., 2 * d]
{
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_kernel);
}
namespace vllm {

View File

@ -23,13 +23,6 @@ void reshape_and_cache(
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype);
void gather_cached_kv(
torch::Tensor& key,
torch::Tensor& value,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& slot_mapping);
// Just for unittest
void convert_fp8_e5m2(
torch::Tensor& src_cache,

View File

@ -269,167 +269,6 @@ void reshape_and_cache(
namespace vllm {
// Grid: (num_blocks, block_size).
template<typename scalar_t>
__global__ void gather_cached_kv_kernel(
scalar_t* __restrict__ key, // [num_tokens, [stride], num_heads, head_size]
scalar_t* __restrict__ value, // [num_tokens, [stride], num_heads, head_size]
const scalar_t* __restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
const scalar_t* __restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
const int* __restrict__ slot_mapping, // [num_tokens]
const int key_stride,
const int value_stride,
const int num_heads,
const int head_size,
const int block_size,
const int x) {
const int token_idx = blockIdx.x;
const int slot_idx = slot_mapping[token_idx];
const int block_idx = slot_idx / block_size;
const int block_offset = slot_idx % block_size;
const int num_tokens = num_heads * head_size;
for (int i = threadIdx.x; i < num_tokens; i += blockDim.x) {
const int tgt_key_idx = token_idx * key_stride + i;
const int tgt_value_idx = token_idx * value_stride + i;
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int x_idx = head_offset / x; // the offset of the [head_size/x] dimension
const int x_offset = head_offset % x;
const int src_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
+ head_idx * (head_size / x) * block_size * x
+ x_idx * block_size * x
+ block_offset * x
+ x_offset;
const int src_value_idx = block_idx * num_heads * head_size * block_size
+ head_idx * head_size * block_size
+ head_offset * block_size
+ block_offset;
key[tgt_key_idx] = VLLM_LDG(&key_cache[src_key_idx]);
value[tgt_value_idx] = VLLM_LDG(&value_cache[src_value_idx]);
}
}
template <typename scalar_t>
__global__ void gather_cached_kv_kernel_optimized(
scalar_t *__restrict__ key, // [num_tokens, [stride], num_heads, head_size]
scalar_t *__restrict__ value, // [num_tokens, [stride], num_heads, head_size]
const scalar_t *__restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
const scalar_t *__restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
const int *__restrict__ slot_mapping, // [num_tokens]
const int key_stride,
const int value_stride,
const int num_heads,
const int head_size,
const int block_size,
const int x)
{
const int token_idx = blockIdx.x;
const int slot_idx = slot_mapping[token_idx];
const int block_idx = slot_idx / block_size;
const int block_offset = slot_idx % block_size;
const int dim = num_heads * head_size;
assert(dim % 4 == 0); // this is true for known use cases
const int unroll_factor = 4;
const int unrolled_dim = dim / unroll_factor;
for (int i = threadIdx.x; i < unrolled_dim; i += blockDim.x)
{
int tgt_key_indices[unroll_factor];
int tgt_value_indices[unroll_factor];
int src_key_indices[unroll_factor];
int src_value_indices[unroll_factor];
scalar_t keys_to_store[unroll_factor];
scalar_t values_to_store[unroll_factor];
#pragma unroll
for (int j = 0; j < unroll_factor; ++j)
{
int index = i + j * unrolled_dim;
const int tgt_key_idx = token_idx * key_stride + index;
const int tgt_value_idx = token_idx * value_stride + index;
const int head_idx = index / head_size;
const int head_offset = index % head_size;
const int x_idx = head_offset / x;
const int x_offset = head_offset % x;
const int src_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
+ head_idx * (head_size / x) * block_size * x
+ x_idx * block_size * x
+ block_offset * x
+ x_offset;
const int src_value_idx = block_idx * num_heads * head_size * block_size
+ head_idx * head_size * block_size
+ head_offset * block_size
+ block_offset;
tgt_key_indices[j] = tgt_key_idx;
tgt_value_indices[j] = tgt_value_idx;
src_key_indices[j] = src_key_idx;
src_value_indices[j] = src_value_idx;
keys_to_store[j] = VLLM_LDG(&key_cache[src_key_idx]);
values_to_store[j] = VLLM_LDG(&value_cache[src_value_idx]);
}
#pragma unroll
for (int j = 0; j < unroll_factor; ++j)
{
key[tgt_key_indices[j]] = keys_to_store[j];
value[tgt_value_indices[j]] = values_to_store[j];
}
}
}
} // namespace vllm
void gather_cached_kv(
torch::Tensor& key, // [out] [num_tokens, num_heads, head_size]
torch::Tensor& value, // [out] [num_tokens, num_heads, head_size]
torch::Tensor& key_cache, // [in] [num_blocks, num_heads, head_size/x, block_size, x]
torch::Tensor& value_cache, // [in] [num_blocks, num_heads, head_size, block_size]
torch::Tensor& slot_mapping) // [in] [num_tokens]
{
int num_tokens = key.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);
int block_size = key_cache.size(3);
int x = key_cache.size(4);
int key_stride = key.stride(0);
int value_stride = value.stride(0);
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(
key.scalar_type(),
"gather_cached_kv_kernel_optimized",
[&] {
vllm::gather_cached_kv_kernel_optimized<scalar_t><<<grid, block, 0, stream>>>(
key.data_ptr<scalar_t>(),
value.data_ptr<scalar_t>(),
key_cache.data_ptr<scalar_t>(),
value_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int>(),
key_stride,
value_stride,
num_heads,
head_size,
block_size,
x);
});
}
namespace vllm {
template<typename Tout, typename Tin>
__global__ void convert_fp8_e5m2_kernel(
const Tin* __restrict__ src_cache,

View File

@ -57,6 +57,10 @@ void silu_and_mul(
torch::Tensor& out,
torch::Tensor& input);
void gelu_and_mul(
torch::Tensor& out,
torch::Tensor& input);
void gelu_new(
torch::Tensor& out,
torch::Tensor& input);
@ -80,6 +84,15 @@ torch::Tensor awq_dequantize(
int split_k_iters,
int thx,
int thy);
torch::Tensor marlin_gemm(
torch::Tensor& a,
torch::Tensor& b_q_weight,
torch::Tensor& b_scales,
torch::Tensor& workspace,
int64_t size_m,
int64_t size_n,
int64_t size_k);
#endif
void squeezellm_gemm(
@ -94,11 +107,13 @@ torch::Tensor gptq_gemm(
torch::Tensor b_gptq_qzeros,
torch::Tensor b_gptq_scales,
torch::Tensor b_g_idx,
bool use_exllama);
bool use_exllama,
int bit);
void gptq_shuffle(
torch::Tensor q_weight,
torch::Tensor q_perm);
torch::Tensor q_perm,
int bit);
void moe_align_block_size(
torch::Tensor topk_ids,

View File

@ -28,6 +28,7 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
f(in_T, out_T, W_T, narrow, 5120) \
f(in_T, out_T, W_T, narrow, 5504) \
f(in_T, out_T, W_T, narrow, 5632) \
f(in_T, out_T, W_T, narrow, 6144) \
f(in_T, out_T, W_T, narrow, 6912) \
f(in_T, out_T, W_T, narrow, 7168) \
f(in_T, out_T, W_T, narrow, 8192) \
@ -39,6 +40,7 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
f(in_T, out_T, W_T, narrow, 14336) \
f(in_T, out_T, W_T, narrow, 16384) \
f(in_T, out_T, W_T, narrow, 20480) \
f(in_T, out_T, W_T, narrow, 24576) \
f(in_T, out_T, W_T, narrow, 28672) \
f(in_T, out_T, W_T, narrow, 32000) \
f(in_T, out_T, W_T, narrow, 32256) \

View File

@ -22,6 +22,10 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
"silu_and_mul",
&silu_and_mul,
"Activation function used in SwiGLU.");
ops.def(
"gelu_and_mul",
&gelu_and_mul,
"Activation function used in GeGLU.");
ops.def(
"gelu_new",
&gelu_new,
@ -48,11 +52,13 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
&rotary_embedding,
"Apply GPT-NeoX or GPT-J style rotary embedding to query and key");
// Quantization ops
// Quantization ops
#ifndef USE_ROCM
ops.def("awq_gemm", &awq_gemm, "Quantized GEMM for AWQ");
ops.def("marlin_gemm", &marlin_gemm, "Marlin Optimized Quantized GEMM for GPTQ");
ops.def("awq_dequantize", &awq_dequantize, "Dequantization for AWQ");
#endif
ops.def("gptq_gemm", &gptq_gemm, "Quantized GEMM for GPTQ");
ops.def("gptq_shuffle", &gptq_shuffle, "Post processing for GPTQ");
ops.def("squeezellm_gemm", &squeezellm_gemm, "Quantized GEMM for SqueezeLLM");
@ -75,10 +81,6 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
"reshape_and_cache",
&reshape_and_cache,
"Reshape the key and value tensors and cache them");
cache_ops.def(
"gather_cached_kv",
&gather_cached_kv,
"Gather key and value from the cache into contiguous QKV tensors");
cache_ops.def(
"convert_fp8_e5m2",
&convert_fp8_e5m2,

View File

@ -146,6 +146,129 @@ public:
__device__ __forceinline__ const uint32_t* item_uint32_ptr(int row, int column) { return &data[row / 8 * width + column]; }
};
class MatrixView_q2_row
{
public:
const uint32_t* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_q2_row(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ int item(int row, int column) const
{
int shift = (column & 0x0f) * 2;
return (data[row * width / 16 + column / 16] >> shift) & 0x03;
}
__device__ __forceinline__ void item2(int (&items)[2], int row, int column) const
{
int shift = (column & 0x0f) * 2;
uint32_t d = data[row * width / 16 + column / 16] >> shift;
items[0] = d & 0x03;
items[1] = (d >> 2) & 0x03;
}
__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
{
int shift = (column & 0x0f) * 2;
uint32_t d = data[row * width / 16 + column / 16] >> shift;
items[0] = d & 0x03;
items[1] = (d >> 2) & 0x03;
items[2] = (d >> 4) & 0x03;
items[3] = (d >> 6) & 0x03;
}
};
class MatrixView_q3_row
{
public:
const uint32_t* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_q3_row(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ int item(int row, int column) const
{
int z_w = column * 3 / 32;
int z_mod = column & 0x1f;
if (z_mod == 10) {
return (data[row * width * 3 / 32 + z_w] >> 30) | ((data[row * width * 3 / 32 + (z_w + 1)] << 2) & 0x4);
} else if (z_mod == 21) {
return (data[row * width * 3 / 32 + z_w] >> 31) | ((data[row * width * 3 / 32 + (z_w + 1)] << 1) & 0x6);
} else if (z_mod < 10) {
return (data[row * width * 3 / 32 + z_w] >> (z_mod * 3)) & 0x07;
} else if (z_mod < 21) {
return (data[row * width * 3 / 32 + z_w] >> (z_mod * 3 - 32)) & 0x07;
} else {
return (data[row * width * 3 / 32 + z_w] >> (z_mod * 3 - 64)) & 0x07;
}
}
__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
{
int shift = (column & 0x1f);
uint32_t d;
if (shift <= 4) {
d = data[row * width / 32 * 3 + column * 3 / 32] >> (shift * 3);
} else if (shift == 8) {
d = (data[row * width / 32 * 3 + column * 3 / 32] >> 24) | ((data[row * width / 32 * 3 + column * 3 / 32 + 1] & 0x0f) << 8);
} else if (shift <= 16) {
d = data[row * width / 32 * 3 + column * 3 / 32] >> (shift * 3 - 32);
} else if (shift == 20) {
d = (data[row * width / 32 * 3 + column * 3 / 32] >> 28) | ((data[row * width / 32 * 3 + column * 3 / 32 + 1] & 0xff) << 4);
} else {
d = data[row * width / 32 * 3 + column * 3 / 32] >> (shift * 3 - 64);
}
items[0] = d & 0x07;
items[1] = (d >> 3) & 0x07;
items[2] = (d >> 6) & 0x07;
items[3] = (d >> 9) & 0x07;
}
};
class MatrixView_q8_row
{
public:
const uint32_t* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_q8_row(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ int item(int row, int column) const
{
int shift = (column & 0x03) * 8;
return (data[row * width / 4 + column / 4] >> shift) & 0xff;
}
__device__ __forceinline__ void item2(int (&items)[2], int row, int column) const
{
int shift = (column & 0x03) * 8;
uint32_t d = data[row * width / 4 + column / 4] >> shift;
items[0] = d & 0xff;
items[1] = (d >> 8) & 0xff;
}
__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
{
int shift = (column & 0x03) * 2;
uint32_t d = data[row * width / 4 + column / 4] >> shift;
items[0] = d & 0xff;
items[1] = (d >> 8) & 0xff;
items[2] = (d >> 16) & 0xff;
items[3] = (d >> 24) & 0xff;
}
};
} // namespace gptq
} // namespace vllm
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,87 @@
/*
Copied from https://github.com/turboderp/exllamav2
*/
#ifndef _qdq_2_cuh
#define _qdq_2_cuh
#include "qdq_util.cuh"
namespace vllm {
namespace gptq {
// Permutation:
//
// ffddbb99 77553311 eeccaa88 66442200
__forceinline__ __device__ void shuffle_2bit_16
(
uint32_t* q,
int stride
)
{
uint32_t qa = q[0];
uint32_t qb = 0;
#pragma unroll
for (int i = 0; i < 8; i++)
{
uint32_t qa0 = qa & 0x03;
uint32_t qa1 = (qa & 0x0c) >> 2;
qa >>= 4;
qb |= (qa1 << (i * 2 + 16));
qb |= (qa0 << (i * 2));
}
q[0] = qb;
}
__forceinline__ __device__ void dequant_2bit_16
(
const uint32_t q_0,
half2 (&dq)[8],
int stride,
const uint32_t zero
)
{
const uint32_t c0 = 0x64006400;
const half y4_ = __float2half_rn(1.0f / 4.0f);
const half y16_ = __float2half_rn(1.0f / 16.0f);
const half y64_ = __float2half_rn(1.0f / 64.0f);
const half2 y4 = __halves2half2(y4_, y4_);
const half2 y16 = __halves2half2(y16_, y16_);
const half2 y64 = __halves2half2(y64_, y64_);
const half_uint16 z1_(0xe400 | zero); // half(-1024.0f - zero);
const half z4_ = __hsub(__int2half_rn(-256), __int2half_rn(zero));
const half z16_ = __hsub(__int2half_rn(-64), __int2half_rn(zero));
const half z64_ = __hsub(__int2half_rn(-16), __int2half_rn(zero));
const half2 z1 = __half2half2(z1_.as_half);
const half2 z4 = __half2half2(z4_);
const half2 z16 = __half2half2(z16_);
const half2 z64 = __half2half2(z64_);
uint32_t qa = q_0;
half2_uint32 q0((qa & 0x00030003) | c0); // half2(q[ 0], q[ 1]) + 1024
half2_uint32 q1((qa & 0x000c000c) | c0); // half2(q[ 2], q[ 3]) * 4 + 1024
half2_uint32 q2((qa & 0x00300030) | c0); // half2(q[ 4], q[ 5]) * 16 + 1024
half2_uint32 q3((qa & 0x00c000c0) | c0); // half2(q[ 6], q[ 7]) * 64 + 1024
qa >>= 8;
half2_uint32 q4((qa & 0x00030003) | c0); // half2(q[ 8], q[ 8]) + 1024
half2_uint32 q5((qa & 0x000c000c) | c0); // half2(q[10], q[11]) * 4 + 1024
half2_uint32 q6((qa & 0x00300030) | c0); // half2(q[12], q[13]) * 16 + 1024
half2_uint32 q7((qa & 0x00c000c0) | c0); // half2(q[14], q[15]) * 64 + 1024
dq[0] = __hadd2(q0.as_half2, z1);
dq[1] = __hfma2(q1.as_half2, y4, z4);
dq[2] = __hfma2(q2.as_half2, y16, z16);
dq[3] = __hfma2(q3.as_half2, y64, z64);
dq[4] = __hadd2(q4.as_half2, z1);
dq[5] = __hfma2(q5.as_half2, y4, z4);
dq[6] = __hfma2(q6.as_half2, y16, z16);
dq[7] = __hfma2(q7.as_half2, y64, z64);
}
} // namespace gptq
} // namespace vllm
#endif

View File

@ -0,0 +1,141 @@
#ifndef _qdq_3_cuh
#define _qdq_3_cuh
#include "qdq_util.cuh"
namespace vllm {
namespace gptq {
// Permutation:
//
// v9997775 55333111 u8886664 44222000 (u, v lsb)
// vjjjhhhf ffdddbbb uiiiggge eecccaaa
// vtttrrrp ppnnnlll usssqqqo oommmkkk
__forceinline__ __device__ void shuffle_3bit_32
(
uint32_t* q,
int stride
)
{
uint32_t qa = q[0 * stride];
uint32_t qb = q[1 * stride];
uint32_t qc = q[2 * stride];
// qa: aa999888 77766655 54443332 22111000
// qb: lkkkjjji iihhhggg fffeeedd dcccbbba
// qc: vvvuuutt tsssrrrq qqpppooo nnnmmmll
uint32_t qd = qc >> 26;
qc <<= 4;
qc |= qb >> 28;
qb <<= 2;
qb |= qa >> 30;
// qa: ..999888 77766655 54443332 22111000
// qb: ..jjjiii hhhgggff feeedddc ccbbbaaa
// qc: ..tttsss rrrqqqpp pooonnnm mmlllkkk
// qd: vvvuuu
uint32_t za = 0;
uint32_t zb = 0;
uint32_t zc = 0;
for (int i = 0; i < 5; i++) { uint32_t t0 = qa & 0x07; uint32_t t1 = (qa & 0x38) >> 3; qa >>= 6; za |= (t0 << (i * 3)); za |= (t1 << (i * 3 + 16)); }
for (int i = 0; i < 5; i++) { uint32_t t0 = qb & 0x07; uint32_t t1 = (qb & 0x38) >> 3; qb >>= 6; zb |= (t0 << (i * 3)); zb |= (t1 << (i * 3 + 16)); }
for (int i = 0; i < 5; i++) { uint32_t t0 = qc & 0x07; uint32_t t1 = (qc & 0x38) >> 3; qc >>= 6; zc |= (t0 << (i * 3)); zc |= (t1 << (i * 3 + 16)); }
// za: 9997775 55333111 8886664 44222000
// zb: jjjhhhf ffdddbbb iiiggge eecccaaa
// zc: tttrrrp ppnnnlll sssqqqo oommmkkk
// qd: vvvuuu
za |= ((qd & 0x01) >> 0) << 15;
zb |= ((qd & 0x02) >> 1) << 15;
zc |= ((qd & 0x04) >> 2) << 15;
za |= ((qd & 0x08) >> 3) << 31;
zb |= ((qd & 0x10) >> 4) << 31;
zc |= ((qd & 0x20) >> 5) << 31;
// za: v9997775 55333111 u8886664 44222000 (u, v lsb)
// zb: vjjjhhhf ffdddbbb uiiiggge eecccaaa
// zc: vtttrrrp ppnnnlll usssqqqo oommmkkk
q[0 * stride] = za;
q[1 * stride] = zb;
q[2 * stride] = zc;
}
__forceinline__ __device__ void dequant_3bit_32
(
const uint32_t q_0,
const uint32_t q_1,
const uint32_t q_2,
half2 (&dq)[16],
int stride,
const uint32_t zero
)
{
const uint32_t c0 = 0x64006400;
const half y8_ = __float2half_rn(1.0f / 8.0f);
const half y64_ = __float2half_rn(1.0f / 64.0f);
const half2 y8 = __halves2half2(y8_, y8_);
const half2 y64 = __halves2half2(y64_, y64_);
const half_uint16 z1_(0xe400 | zero); // half(-1024.0f - zero);
const half z8_ = __hsub(__int2half_rn(-128), __int2half_rn(zero));
const half z64_ = __hsub(__int2half_rn(-16), __int2half_rn(zero));
const half2 z1 = __halves2half2(z1_.as_half, z1_.as_half);
const half2 z8 = __halves2half2(z8_, z8_);
const half2 z64 = __halves2half2(z64_, z64_);
uint32_t qa = q_0;
uint32_t qb = q_1;
uint32_t qc = q_2;
half2_uint32 q0((qa & 0x00070007) | c0); // half2(q[ 0], q[ 1]) + 1024
half2_uint32 q1((qa & 0x00380038) | c0); // half2(q[ 2], q[ 3]) * 8 + 1024
qa >>= 6;
half2_uint32 q2((qa & 0x00070007) | c0); // half2(q[ 4], q[ 5]) + 1024
half2_uint32 q3((qa & 0x00380038) | c0); // half2(q[ 6], q[ 7]) * 8 + 1024
half2_uint32 q4((qa & 0x01c001c0) | c0); // half2(q[ 8], q[ 9]) * 64 + 1024
qa >>= 9;
qa &= 0x00010001;
half2_uint32 q5((qb & 0x00070007) | c0); // half2(q[10], q[11]) + 1024
half2_uint32 q6((qb & 0x00380038) | c0); // half2(q[12], q[13]) * 8 + 1024
qb >>= 6;
half2_uint32 q7((qb & 0x00070007) | c0); // half2(q[14], q[15]) + 1024
half2_uint32 q8((qb & 0x00380038) | c0); // half2(q[16], q[17]) * 8 + 1024
half2_uint32 q9((qb & 0x01c001c0) | c0); // half2(q[18], q[19]) * 64 + 1024
qb >>= 8;
qb &= 0x00020002;
half2_uint32 q10((qc & 0x00070007) | c0); // half2(q[20], q[21]) + 1024
half2_uint32 q11((qc & 0x00380038) | c0); // half2(q[22], q[23]) * 8 + 1024
qc >>= 6;
half2_uint32 q12((qc & 0x00070007) | c0); // half2(q[24], q[25]) + 1024
half2_uint32 q13((qc & 0x00380038) | c0); // half2(q[26], q[27]) * 8 + 1024
half2_uint32 q14((qc & 0x01c001c0) | c0); // half2(q[28], q[29]) * 64 + 1024
qc >>= 7;
qc &= 0x00040004;
half2_uint32 q15((qa | qb | qc) | c0);
dq[ 0] = __hadd2( q0.as_half2, z1);
dq[ 1] = __hfma2( q1.as_half2, y8, z8);
dq[ 2] = __hadd2( q2.as_half2, z1);
dq[ 3] = __hfma2( q3.as_half2, y8, z8);
dq[ 4] = __hfma2( q4.as_half2, y64, z64);
dq[ 5] = __hadd2( q5.as_half2, z1);
dq[ 6] = __hfma2( q6.as_half2, y8, z8);
dq[ 7] = __hadd2( q7.as_half2, z1);
dq[ 8] = __hfma2( q8.as_half2, y8, z8);
dq[ 9] = __hfma2( q9.as_half2, y64, z64);
dq[10] = __hadd2(q10.as_half2, z1);
dq[11] = __hfma2(q11.as_half2, y8, z8);
dq[12] = __hadd2(q12.as_half2, z1);
dq[13] = __hfma2(q13.as_half2, y8, z8);
dq[14] = __hfma2(q14.as_half2, y64, z64);
dq[15] = __hadd2(q15.as_half2, z1);
}
} // namespace gptq
} // namespace vllm
#endif

View File

@ -38,16 +38,17 @@ __forceinline__ __device__ void dequant_4bit_8
(
const uint32_t q_0,
half2 (&dq)[4],
int stride
int stride,
const uint32_t zero
)
{
const uint32_t c0 = 0x64006400;
const half y16_ = __float2half_rn(1.0f / 16.0f);
const half2 y16 = __halves2half2(y16_, y16_);
const half z1_ = __float2half_rn(-1024.0f - 8.0f);
const half z16_ = __float2half_rn(-1024.0f / 16.0f - 8.0f);
const half2 z1 = __halves2half2(z1_, z1_);
const half2 z16 = __halves2half2(z16_, z16_);
const half_uint16 z1_(0xe400 | zero); // half(-1024.0f - zero);
const half z16_ = __hsub(__int2half_rn(-64), __int2half_rn(zero));
const half2 z1 = __half2half2(z1_.as_half);
const half2 z16 = __half2half2(z16_);
uint32_t qa = q_0;
half2_uint32 q0((qa & 0x000f000f) | c0); // half2(q[ 0], q[ 1]) + 1024
@ -143,93 +144,4 @@ __forceinline__ __device__ void dequant_4bit_8_gptq
} // namespace gptq
} // namespace vllm
#else
namespace vllm {
namespace gptq {
__forceinline__ __device__ void shuffle_4bit_8
(
uint32_t* q,
int stride
)
{
}
__forceinline__ __device__ void dequant_4bit_8
(
const uint32_t q_0,
half2 (&dq)[4],
int stride
)
{
half dqh[8];
for (int i = 0; i < 8; i++) dqh[i] = dq_ns(exb(q_0, i * 4, 0x0f), 8);
for (int i = 0; i < 4; i++) dq[i] = __halves2half2(dqh[i * 2], dqh[i * 2 + 1]);
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero_scale
(
const uint32_t zero,
const half scale,
half2 (&z1)[2],
half2 (&y1)[2]
)
{
half z = __int2half_rn(-((int)zero));
z = __hmul(z, scale);
z1[0] = __half2half2(z);
y1[0] = __half2half2(scale);
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero
(
const uint32_t zero,
half2(&z1)[2],
half2(&y1)[2]
)
{
half z = __int2half_rn(-((int)zero));
z1[0] = __half2half2(z);
}
__forceinline__ __device__ void dequant_4bit_8_gptq
(
const uint32_t q_0,
half2 (&dq)[4],
half2 (&z1)[2],
half2 (&y1)[2],
int stride,
bool scaled
)
{
half2 dqh2[8];
uint32_t qa = q_0;
for (int i = 0; i < 4; i++)
{
half d0 = __int2half_rn(qa & 0x0f); qa >>= 4;
half d1 = __int2half_rn(qa & 0x0f); qa >>= 4;
dqh2[i] = __halves2half2(d0, d1);
}
if (scaled)
{
dq[0] = __hfma2(dqh2[0], y1[0], z1[0]);
dq[1] = __hfma2(dqh2[1], y1[0], z1[0]);
dq[2] = __hfma2(dqh2[2], y1[0], z1[0]);
dq[3] = __hfma2(dqh2[3], y1[0], z1[0]);
}
else
{
dq[0] = __hadd2(dqh2[0], z1[0]);
dq[1] = __hadd2(dqh2[1], z1[0]);
dq[2] = __hadd2(dqh2[2], z1[0]);
dq[3] = __hadd2(dqh2[3], z1[0]);
}
}
} // namespace gptq
} // namespace vllm
#endif

View File

@ -0,0 +1,40 @@
/*
Copied from https://github.com/turboderp/exllamav2
*/
#ifndef _qdq_8_cuh
#define _qdq_8_cuh
#include "qdq_util.cuh"
namespace vllm {
namespace gptq {
__forceinline__ __device__ void shuffle_8bit_4
(
uint32_t* q,
int stride
)
{
}
__forceinline__ __device__ void dequant_8bit_8
(
const uint32_t q_0,
const uint32_t q_1,
half2 (&dq)[4],
int stride,
const uint32_t zero
)
{
half dqh[8];
for (int i = 0; i < 4; i++) dqh[i ] = dq_ns(exb(q_0, i * 8, 0xff), zero);
for (int i = 0; i < 4; i++) dqh[i + 4] = dq_ns(exb(q_1, i * 8, 0xff), zero);
for (int i = 0; i < 4; i++) dq[i] = __halves2half2(dqh[i * 2], dqh[i * 2 + 1]);
}
} // namespace gptq
} // namespace vllm
#endif

View File

@ -0,0 +1,209 @@
Contains code from https://github.com/IST-DASLab/marlin
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
------------------------------------------------------------------------------------
This product bundles various third-party components under other open source licenses.
This section summarizes those components and their licenses. See licenses/
for text of these licenses.

File diff suppressed because it is too large Load Diff

View File

@ -72,7 +72,7 @@ html_theme_options = {
# Mock out external dependencies here.
autodoc_mock_imports = [
"torch", "transformers", "psutil", "aioprometheus", "sentencepiece",
"torch", "transformers", "psutil", "prometheus_client", "sentencepiece",
"vllm.cuda_utils", "vllm._C"
]

View File

@ -70,6 +70,7 @@ Documentation
serving/distributed_serving
serving/run_on_sky
serving/deploying_with_kserve
serving/deploying_with_triton
serving/deploying_with_docker
serving/serving_with_langchain

View File

@ -58,7 +58,7 @@ LoRA adapted models can also be served with the Open-AI compatible vLLM server.
.. code-block:: bash
python -m vllm.entrypoints.api_server \
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-2-7b-hf \
--enable-lora \
--lora-modules sql-lora=~/.cache/huggingface/hub/models--yard1--llama-2-7b-sql-lora-test/
@ -89,3 +89,15 @@ with its base model:
Requests can specify the LoRA adapter as if it were any other model via the ``model`` request parameter. The requests will be
processed according to the server-wide LoRA configuration (i.e. in parallel with base model requests, and potentially other
LoRA adapter requests if they were provided and ``max_loras`` is set high enough).
The following is an example request
.. code-block::bash
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "sql-lora",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}' | jq

View File

@ -71,6 +71,9 @@ Alongside each architecture, we include some popular models that use it.
* - :code:`OPTForCausalLM`
- OPT, OPT-IML
- :code:`facebook/opt-66b`, :code:`facebook/opt-iml-max-30b`, etc.
* - :code:`OrionForCausalLM`
- Orion
- :code:`OrionStarAI/Orion-14B-Base`, :code:`OrionStarAI/Orion-14B-Chat`, etc.
* - :code:`PhiForCausalLM`
- Phi
- :code:`microsoft/phi-1_5`, :code:`microsoft/phi-2`, etc.
@ -80,7 +83,7 @@ Alongside each architecture, we include some popular models that use it.
* - :code:`Qwen2ForCausalLM`
- Qwen2
- :code:`Qwen/Qwen2-beta-7B`, :code:`Qwen/Qwen2-beta-7B-Chat`, etc.
* - :code:`StableLMEpochForCausalLM`
* - :code:`StableLmForCausalLM`
- StableLM
- :code:`stabilityai/stablelm-3b-4e1t/` , :code:`stabilityai/stablelm-base-alpha-7b-v2`, etc.

View File

@ -0,0 +1,8 @@
.. _deploying_with_kserve:
Deploying with KServe
============================
vLLM can be deployed with `KServe <https://github.com/kserve/kserve>`_ on Kubernetes for highly scalable distributed model serving.
Please see `this guide <https://kserve.github.io/website/latest/modelserving/v1beta1/llm/vllm/>`_ for more details on using vLLM with KServe.

View File

@ -0,0 +1,33 @@
from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Create an LLM.
llm = LLM(
model="openlm-research/open_llama_3b",
max_num_seqs=8,
# The max_model_len and block_size arguments are required to be same as max sequence length,
# when targeting neuron device. Currently, this is a known limitation in continuous batching
# support in transformers-neuronx.
# TODO(liangfu): Support paged-attention in transformers-neuronx.
max_model_len=128,
block_size=128,
# The device can be automatically detected when AWS Neuron SDK is installed.
# The device argument can be either unspecified for automated detection, or explicitly assigned.
device="neuron")
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

View File

@ -24,6 +24,7 @@ builtin cd "$ROOT" || exit 1
YAPF_VERSION=$(yapf --version | awk '{print $2}')
RUFF_VERSION=$(ruff --version | awk '{print $2}')
MYPY_VERSION=$(mypy --version | awk '{print $2}')
CODESPELL_VERSION=$(codespell --version)
# # params: tool name, tool version, required version
tool_version_check() {
@ -36,6 +37,7 @@ tool_version_check() {
tool_version_check "yapf" $YAPF_VERSION "$(grep yapf requirements-dev.txt | cut -d'=' -f3)"
tool_version_check "ruff" $RUFF_VERSION "$(grep "ruff==" requirements-dev.txt | cut -d'=' -f3)"
tool_version_check "mypy" "$MYPY_VERSION" "$(grep mypy requirements-dev.txt | cut -d'=' -f3)"
tool_version_check "codespell" "$CODESPELL_VERSION" "$(grep codespell requirements-dev.txt | cut -d'=' -f3)"
YAPF_FLAGS=(
'--recursive'
@ -93,6 +95,47 @@ echo 'vLLM yapf: Done'
# echo 'vLLM mypy:'
# mypy
# check spelling of specified files
spell_check() {
codespell "$@"
}
spell_check_all(){
codespell --toml pyproject.toml
}
# Spelling check of files that differ from main branch.
spell_check_changed() {
# The `if` guard ensures that the list of filenames is not empty, which
# could cause ruff to receive 0 positional arguments, making it hang
# waiting for STDIN.
#
# `diff-filter=ACM` and $MERGEBASE is to ensure we only lint files that
# exist on both branches.
MERGEBASE="$(git merge-base origin/main HEAD)"
if ! git diff --diff-filter=ACM --quiet --exit-code "$MERGEBASE" -- '*.py' '*.pyi' &>/dev/null; then
git diff --name-only --diff-filter=ACM "$MERGEBASE" -- '*.py' '*.pyi' | xargs \
codespell
fi
}
# Run Codespell
## This flag runs spell check of individual files. --files *must* be the first command line
## arg to use this option.
if [[ "$1" == '--files' ]]; then
spell_check "${@:2}"
# If `--all` is passed, then any further arguments are ignored and the
# entire python directory is linted.
elif [[ "$1" == '--all' ]]; then
spell_check_all
else
# Check spelling only of the files that changed in last commit.
spell_check_changed
fi
echo 'vLLM codespell: Done'
# Lint specified files
lint() {
ruff "$@"
@ -117,9 +160,9 @@ lint_changed() {
}
# Run Ruff
echo 'vLLM Ruff:'
## This flag lints individual files. --files *must* be the first command line
## arg to use this option.
echo 'vLLM ruff:'
### This flag lints individual files. --files *must* be the first command line
### arg to use this option.
if [[ "$1" == '--files' ]]; then
lint "${@:2}"
# If `--all` is passed, then any further arguments are ignored and the
@ -139,3 +182,5 @@ if ! git diff --quiet &>/dev/null; then
exit 1
fi

View File

@ -1,8 +0,0 @@
[mypy]
python_version = 3.8
ignore_missing_imports = True
files = vllm
# TODO(woosuk): Include the code from Megatron and HuggingFace.
exclude = vllm/model_executor/parallel_utils/|vllm/model_executor/models/

View File

@ -31,4 +31,22 @@ ignore = [
"E731",
# line too long, handled by black formatting
"E501",
# .strip() with multi-character strings
"B005",
# Loop control variable not used within loop body
"B007",
]
[tool.mypy]
python_version = "3.8"
ignore_missing_imports = true
files = "vllm"
# TODO(woosuk): Include the code from Megatron and HuggingFace.
exclude = "vllm/model_executor/parallel_utils/|vllm/model_executor/models/"
[tool.codespell]
ignore-words-list = "dout, te, indicies"
skip = "./tests/prompts"

View File

@ -1,7 +1,9 @@
# formatting
yapf==0.32.0
toml==0.10.2
tomli==2.0.1
ruff==0.1.5
codespell==2.2.6
# type checking
mypy==0.991
@ -13,9 +15,9 @@ types-setuptools
pytest
pytest-forked
pytest-asyncio
pytest-rerunfailures
httpx
einops # required for MPT
flash_attn # required for HuggingFace's llama implementation
openai
requests
ray
ray

View File

@ -6,4 +6,4 @@ neuronx-cc
fastapi
uvicorn[standard]
pydantic >= 2.0 # Required for OpenAI server.
aioprometheus[starlette]
prometheus_client >= 0.18.0

View File

@ -10,4 +10,4 @@ transformers >= 4.38.0 # Required for Gemma.
fastapi
uvicorn[standard]
pydantic >= 2.0 # Required for OpenAI server.
aioprometheus[starlette]
prometheus_client >= 0.18.0

View File

@ -9,7 +9,8 @@ xformers == 0.0.23.post1 # Required for CUDA 12.1.
fastapi
uvicorn[standard]
pydantic >= 2.0 # Required for OpenAI server.
aioprometheus[starlette]
prometheus_client >= 0.18.0
pynvml == 11.5.0
triton >= 2.1.0
outlines >= 0.0.27
cupy-cuda12x == 12.1.0 # Required for CUDA graphs. CUDA 11.8 users should install cupy-cuda11x instead.

View File

@ -36,7 +36,7 @@ def _is_neuron() -> bool:
torch_neuronx_installed = True
try:
subprocess.run(["neuron-ls"], capture_output=True, check=True)
except FileNotFoundError:
except (FileNotFoundError, PermissionError):
torch_neuronx_installed = False
return torch_neuronx_installed
@ -342,6 +342,8 @@ vllm_extension_sources = [
if _is_cuda():
vllm_extension_sources.append("csrc/quantization/awq/gemm_kernels.cu")
vllm_extension_sources.append(
"csrc/quantization/marlin/marlin_cuda_kernel.cu")
vllm_extension_sources.append("csrc/custom_all_reduce.cu")
# Add MoE kernels.
@ -432,7 +434,9 @@ def get_requirements() -> List[str]:
return requirements
package_data = {"vllm": ["py.typed"]}
package_data = {
"vllm": ["py.typed", "model_executor/layers/fused_moe/configs/*.json"]
}
if os.environ.get("VLLM_USE_PRECOMPILED"):
ext_modules = []
package_data["vllm"].append("*.so")

View File

@ -165,6 +165,7 @@ class VllmRunner:
dtype: str = "half",
disable_log_stats: bool = True,
tensor_parallel_size: int = 1,
**kwargs,
) -> None:
self.model = LLM(
model=model_name,
@ -174,6 +175,7 @@ class VllmRunner:
swap_space=0,
disable_log_stats=disable_log_stats,
tensor_parallel_size=tensor_parallel_size,
**kwargs,
)
def generate(
@ -197,6 +199,24 @@ class VllmRunner:
outputs.append((req_sample_output_ids, req_sample_output_strs))
return outputs
def generate_w_logprobs(
self,
prompts: List[str],
sampling_params: SamplingParams,
) -> List[Tuple[List[int], str]]:
assert sampling_params.logprobs is not None
req_outputs = self.model.generate(prompts,
sampling_params=sampling_params)
outputs = []
for req_output in req_outputs:
for sample in req_output.outputs:
output_str = sample.text
output_ids = sample.token_ids
output_logprobs = sample.logprobs
outputs.append((output_ids, output_str, output_logprobs))
return outputs
def generate_greedy(
self,
prompts: List[str],
@ -207,6 +227,20 @@ class VllmRunner:
return [(output_ids[0], output_str[0])
for output_ids, output_str in outputs]
def generate_greedy_logprobs(
self,
prompts: List[str],
max_tokens: int,
num_logprobs: int,
) -> List[Tuple[List[int], str]]:
greedy_logprobs_params = SamplingParams(temperature=0.0,
max_tokens=max_tokens,
logprobs=num_logprobs)
outputs = self.generate_w_logprobs(prompts, greedy_logprobs_params)
return [(output_ids, output_str, output_logprobs)
for output_ids, output_str, output_logprobs in outputs]
def generate_beam_search(
self,
prompts: List[str],

View File

@ -0,0 +1,75 @@
# This unit test should be moved to a new
# tests/test_guided_decoding directory.
from transformers import AutoTokenizer
import torch
from vllm.model_executor.guided_logits_processors import (RegexLogitsProcessor,
JSONLogitsProcessor)
TEST_SCHEMA = {
"type": "object",
"properties": {
"name": {
"type": "string"
},
"age": {
"type": "integer"
},
"skills": {
"type": "array",
"items": {
"type": "string",
"maxLength": 10
},
"minItems": 3
},
"work history": {
"type": "array",
"items": {
"type": "object",
"properties": {
"company": {
"type": "string"
},
"duration": {
"type": "string"
},
"position": {
"type": "string"
}
},
"required": ["company", "position"]
}
}
},
"required": ["name", "age", "skills", "work history"]
}
TEST_REGEX = r"((25[0-5]|(2[0-4]|1\d|[1-9]|)\d)\.){3}" + \
r"(25[0-5]|(2[0-4]|1\d|[1-9]|)\d)"
def test_guided_logits_processors():
"""Basic unit test for RegexLogitsProcessor and JSONLogitsProcessor."""
tokenizer = AutoTokenizer.from_pretrained('HuggingFaceH4/zephyr-7b-beta')
regex_LP = RegexLogitsProcessor(TEST_REGEX, tokenizer)
json_LP = JSONLogitsProcessor(TEST_SCHEMA, tokenizer)
regex_LP.init_state()
token_ids = tokenizer.encode(
f"Give an example IPv4 address with this regex: {TEST_REGEX}")
tensor = torch.rand(32000)
original_tensor = torch.clone(tensor)
regex_LP(token_ids, tensor)
assert tensor.shape == original_tensor.shape
assert not torch.allclose(tensor, original_tensor)
json_LP.init_state()
token_ids = tokenizer.encode(
f"Give an employee profile that fits this schema: {TEST_SCHEMA}")
tensor = torch.rand(32000)
original_tensor = torch.clone(tensor)
json_LP(token_ids, tensor)
assert tensor.shape == original_tensor.shape
assert not torch.allclose(tensor, original_tensor)

View File

@ -9,10 +9,64 @@ import ray # using Ray for overall ease of process management, parallel request
import openai # use the official client for correctness check
from huggingface_hub import snapshot_download # downloading lora to test lora requests
# imports for guided decoding tests
import json
import jsonschema
import re
from vllm.transformers_utils.tokenizer import get_tokenizer
MAX_SERVER_START_WAIT_S = 600 # wait for server to start for 60 seconds
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta" # any model with a chat template should work here
LORA_NAME = "typeof/zephyr-7b-beta-lora" # technically this needs Mistral-7B-v0.1 as base, but we're not testing generation quality here
TEST_SCHEMA = {
"type": "object",
"properties": {
"name": {
"type": "string"
},
"age": {
"type": "integer"
},
"skills": {
"type": "array",
"items": {
"type": "string",
"maxLength": 10
},
"minItems": 3
},
"work history": {
"type": "array",
"items": {
"type": "object",
"properties": {
"company": {
"type": "string"
},
"duration": {
"type": "string"
},
"position": {
"type": "string"
}
},
"required": ["company", "position"]
}
}
},
"required": ["name", "age", "skills", "work history"]
}
TEST_REGEX = r"((25[0-5]|(2[0-4]|1\d|[1-9]|)\d)\.){3}" + \
r"(25[0-5]|(2[0-4]|1\d|[1-9]|)\d)"
TEST_CHOICE = [
"Python", "Java", "JavaScript", "C++", "C#", "PHP", "TypeScript", "Ruby",
"Swift", "Kotlin"
]
pytestmark = pytest.mark.asyncio
@ -155,15 +209,18 @@ async def test_single_chat_session(server, client: openai.AsyncOpenAI,
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
)
chat_completion = await client.chat.completions.create(model=model_name,
messages=messages,
max_tokens=10,
logprobs=True,
top_logprobs=10)
assert chat_completion.id is not None
assert chat_completion.choices is not None and len(
chat_completion.choices) == 1
assert chat_completion.choices[0].message is not None
assert chat_completion.choices[0].logprobs is not None
assert chat_completion.choices[0].logprobs.top_logprobs is not None
assert len(chat_completion.choices[0].logprobs.top_logprobs[0]) == 10
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
@ -198,13 +255,11 @@ async def test_completion_streaming(server, client: openai.AsyncOpenAI,
single_output = single_completion.choices[0].text
single_usage = single_completion.usage
stream = await client.completions.create(
model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=True,
)
stream = await client.completions.create(model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=True)
chunks = []
async for chunk in stream:
chunks.append(chunk.choices[0].text)
@ -309,5 +364,236 @@ async def test_batch_completions(server, client: openai.AsyncOpenAI,
assert texts[0] == texts[1]
async def test_logits_bias(server, client: openai.AsyncOpenAI):
prompt = "Hello, my name is"
max_tokens = 5
tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)
# Test exclusive selection
token_id = 1000
completion = await client.completions.create(
model=MODEL_NAME,
prompt=prompt,
max_tokens=max_tokens,
temperature=0.0,
logit_bias={str(token_id): 100},
seed=42,
)
assert completion.choices[0].text is not None and len(
completion.choices[0].text) >= 5
response_tokens = tokenizer(completion.choices[0].text,
add_special_tokens=False)["input_ids"]
expected_tokens = tokenizer(tokenizer.decode([token_id] * 5),
add_special_tokens=False)["input_ids"]
assert all([
response == expected
for response, expected in zip(response_tokens, expected_tokens)
])
# Test ban
completion = await client.completions.create(
model=MODEL_NAME,
prompt=prompt,
max_tokens=max_tokens,
temperature=0.0,
)
response_tokens = tokenizer(completion.choices[0].text,
add_special_tokens=False)["input_ids"]
first_response = completion.choices[0].text
completion = await client.completions.create(
model=MODEL_NAME,
prompt=prompt,
max_tokens=max_tokens,
temperature=0.0,
logit_bias={str(token): -100
for token in response_tokens},
)
assert first_response != completion.choices[0].text
async def test_guided_json_completion(server, client: openai.AsyncOpenAI):
completion = await client.completions.create(
model=MODEL_NAME,
prompt=
f"Give an example JSON for an employee profile that fits this schema: {TEST_SCHEMA}",
n=3,
temperature=1.0,
max_tokens=500,
extra_body=dict(guided_json=TEST_SCHEMA))
assert completion.id is not None
assert completion.choices is not None and len(completion.choices) == 3
for i in range(3):
assert completion.choices[i].text is not None
output_json = json.loads(completion.choices[i].text)
jsonschema.validate(instance=output_json, schema=TEST_SCHEMA)
async def test_guided_json_chat(server, client: openai.AsyncOpenAI):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "Give an example JSON for an employee profile that " + \
f"fits this schema: {TEST_SCHEMA}"
}]
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=500,
extra_body=dict(guided_json=TEST_SCHEMA))
message = chat_completion.choices[0].message
assert message.content is not None
json1 = json.loads(message.content)
jsonschema.validate(instance=json1, schema=TEST_SCHEMA)
messages.append({"role": "assistant", "content": message.content})
messages.append({
"role":
"user",
"content":
"Give me another one with a different name and age"
})
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=500,
extra_body=dict(guided_json=TEST_SCHEMA))
message = chat_completion.choices[0].message
assert message.content is not None
json2 = json.loads(message.content)
jsonschema.validate(instance=json2, schema=TEST_SCHEMA)
assert json1["name"] != json2["name"]
assert json1["age"] != json2["age"]
async def test_guided_regex_completion(server, client: openai.AsyncOpenAI):
completion = await client.completions.create(
model=MODEL_NAME,
prompt=f"Give an example IPv4 address with this regex: {TEST_REGEX}",
n=3,
temperature=1.0,
max_tokens=20,
extra_body=dict(guided_regex=TEST_REGEX))
assert completion.id is not None
assert completion.choices is not None and len(completion.choices) == 3
for i in range(3):
assert completion.choices[i].text is not None
assert re.fullmatch(TEST_REGEX, completion.choices[i].text) is not None
async def test_guided_regex_chat(server, client: openai.AsyncOpenAI):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
f"Give an example IP address with this regex: {TEST_REGEX}"
}]
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=20,
extra_body=dict(guided_regex=TEST_REGEX))
ip1 = chat_completion.choices[0].message.content
assert ip1 is not None
assert re.fullmatch(TEST_REGEX, ip1) is not None
messages.append({"role": "assistant", "content": ip1})
messages.append({"role": "user", "content": "Give me a different one"})
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=20,
extra_body=dict(guided_regex=TEST_REGEX))
ip2 = chat_completion.choices[0].message.content
assert ip2 is not None
assert re.fullmatch(TEST_REGEX, ip2) is not None
assert ip1 != ip2
async def test_guided_choice_completion(server, client: openai.AsyncOpenAI):
completion = await client.completions.create(
model=MODEL_NAME,
prompt="The best language for type-safe systems programming is ",
n=2,
temperature=1.0,
max_tokens=10,
extra_body=dict(guided_choice=TEST_CHOICE))
assert completion.id is not None
assert completion.choices is not None and len(completion.choices) == 2
for i in range(2):
assert completion.choices[i].text in TEST_CHOICE
async def test_guided_choice_chat(server, client: openai.AsyncOpenAI):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
"The best language for type-safe systems programming is "
}]
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=10,
extra_body=dict(guided_choice=TEST_CHOICE))
choice1 = chat_completion.choices[0].message.content
assert choice1 in TEST_CHOICE
messages.append({"role": "assistant", "content": choice1})
messages.append({
"role": "user",
"content": "I disagree, pick another one"
})
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=10,
extra_body=dict(guided_choice=TEST_CHOICE))
choice2 = chat_completion.choices[0].message.content
assert choice2 in TEST_CHOICE
assert choice1 != choice2
async def test_guided_decoding_type_error(server, client: openai.AsyncOpenAI):
with pytest.raises(openai.BadRequestError):
_ = await client.completions.create(
model=MODEL_NAME,
prompt="Give an example JSON that fits this schema: 42",
extra_body=dict(guided_json=42))
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
"The best language for type-safe systems programming is "
}]
with pytest.raises(openai.BadRequestError):
_ = await client.chat.completions.create(model=MODEL_NAME,
messages=messages,
extra_body=dict(guided_regex={
1: "Python",
2: "C++"
}))
with pytest.raises(openai.BadRequestError):
_ = await client.completions.create(
model=MODEL_NAME,
prompt="Give an example string that fits this regex",
extra_body=dict(guided_regex=TEST_REGEX, guided_json=TEST_SCHEMA))
if __name__ == "__main__":
pytest.main([__file__])

View File

@ -1,7 +1,10 @@
from typing import Type
import pytest
import torch
from vllm.model_executor.layers.activation import FastGELU, NewGELU, SiluAndMul
from vllm.model_executor.layers.activation import (FastGELU, GeluAndMul,
NewGELU, SiluAndMul)
from allclose_default import get_default_atol, get_default_rtol
DTYPES = [torch.half, torch.bfloat16, torch.float]
@ -13,13 +16,15 @@ CUDA_DEVICES = [
]
@pytest.mark.parametrize("activation", [SiluAndMul, GeluAndMul])
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("d", D)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_silu_and_mul(
def test_act_and_mul(
activation: Type[torch.nn.Module],
num_tokens: int,
d: int,
dtype: torch.dtype,
@ -31,22 +36,23 @@ def test_silu_and_mul(
torch.cuda.manual_seed(seed)
torch.set_default_device(device)
x = torch.randn(num_tokens, 2 * d, dtype=dtype)
layer = SiluAndMul()
layer = activation()
out = layer(x)
ref_out = layer._forward(x)
assert torch.allclose(out,
ref_out,
atol=get_default_atol(out),
rtol=get_default_rtol(out))
# The SiLU and GELU implementations are equivalent to the native PyTorch
# implementations, so we can do exact comparison.
assert torch.allclose(out, ref_out, atol=0.0, rtol=0.0)
@pytest.mark.parametrize("activation", [FastGELU, NewGELU])
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("d", D)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_gelu_new(
def test_activation(
activation: Type[torch.nn.Module],
num_tokens: int,
d: int,
dtype: torch.dtype,
@ -58,33 +64,7 @@ def test_gelu_new(
torch.cuda.manual_seed(seed)
torch.set_default_device(device)
x = torch.randn(num_tokens, d, dtype=dtype)
layer = NewGELU()
out = layer(x)
ref_out = layer._forward(x)
assert torch.allclose(out,
ref_out,
atol=get_default_atol(out),
rtol=get_default_rtol(out))
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("d", D)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_gelu_fast(
num_tokens: int,
d: int,
dtype: torch.dtype,
seed: int,
device: str,
) -> None:
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.set_default_device(device)
x = torch.randn(num_tokens, d, dtype=dtype)
layer = FastGELU()
layer = activation()
out = layer(x)
ref_out = layer._forward(x)
assert torch.allclose(out,

View File

@ -8,7 +8,8 @@ from vllm.model_executor.layers.triton_kernel.prefix_prefill import (
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import BlockDiagonalCausalFromBottomRightMask
NUM_HEADS = [12]
NUM_HEADS = [64]
NUM_QUERIES_PER_KV = [1, 8, 64]
HEAD_SIZES = [128]
DTYPES = [torch.float16]
CUDA_DEVICES = [
@ -17,12 +18,14 @@ CUDA_DEVICES = [
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("num_queries_per_kv", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_contexted_kv_attention(
num_heads: int,
num_queries_per_kv: int,
head_size: int,
dtype: torch.dtype,
device: str,
@ -41,28 +44,29 @@ def test_contexted_kv_attention(
subquery_lens = [random.randint(16, MAX_SEQ_LEN) for _ in range(BS)]
ctx_lens = [random.randint(16, MAX_CTX_LEN) for _ in range(BS)]
seq_lens = [a + b for a, b in zip(subquery_lens, ctx_lens)]
num_kv_heads = num_heads // num_queries_per_kv
num_tokens = sum(subquery_lens)
query = torch.empty(num_tokens, num_heads, head_size, dtype=dtype)
query.uniform_(-1e-3, 1e-3)
output = torch.empty(num_tokens, num_heads, head_size, dtype=dtype)
kv = torch.empty(sum(seq_lens), 2, num_heads, head_size, dtype=dtype)
kv = torch.empty(sum(seq_lens), 2, num_kv_heads, head_size, dtype=dtype)
kv.uniform_(-1e-3, 1e-3)
key, value = kv.unbind(dim=1)
k_cache = torch.zeros(cache_size,
block_size,
num_heads,
num_kv_heads,
head_size,
dtype=dtype)
v_cache = torch.zeros(cache_size,
block_size,
num_heads,
num_kv_heads,
head_size,
dtype=dtype)
k = torch.zeros(sum(subquery_lens), num_heads, head_size, dtype=dtype)
v = torch.zeros(sum(subquery_lens), num_heads, head_size, dtype=dtype)
k = torch.zeros(sum(subquery_lens), num_kv_heads, head_size, dtype=dtype)
v = torch.zeros(sum(subquery_lens), num_kv_heads, head_size, dtype=dtype)
values = torch.arange(0, cache_size, dtype=torch.long)
values = values[torch.randperm(cache_size)]
block_table = values[:BS * max_block_per_request].view(
@ -93,19 +97,21 @@ def test_contexted_kv_attention(
end_loc = start_loc + block_size
start_slot = block_table[i, block_id] * block_size
end_slot = start_slot + end_loc - start_loc
k_cache.view(-1, num_heads, head_size)[start_slot:end_slot].copy_(
key[start_loc:end_loc])
v_cache.view(-1, num_heads, head_size)[start_slot:end_slot].copy_(
value[start_loc:end_loc])
k_cache.view(-1, num_kv_heads,
head_size)[start_slot:end_slot].copy_(
key[start_loc:end_loc])
v_cache.view(-1, num_kv_heads,
head_size)[start_slot:end_slot].copy_(
value[start_loc:end_loc])
cur_ctx += block_size
block_id += 1
# transpose K_cache[num_blocks, block_size, num_kv_heads, head_size]
# to K_cache[num_blocks, num_kv_heads, head_size/8, block_size, 8]
k_cache = k_cache.view(-1, block_size, num_heads, head_size // 8,
k_cache = k_cache.view(-1, block_size, num_kv_heads, head_size // 8,
8).permute(0, 2, 3, 1, 4).contiguous()
# transpose V_cache[num_blocks, block_size, num_kv_heads, head_size]
# to V_cache[num_blocks, num_kv_heads, head_size, block_size]
v_cache = v_cache.view(-1, block_size, num_heads,
v_cache = v_cache.view(-1, block_size, num_kv_heads,
head_size).permute(0, 2, 3, 1).contiguous()
# Warm up the Triton kernel by calling it once before actually measuring generation time
@ -123,12 +129,29 @@ def test_contexted_kv_attention(
attn_op = xops.fmha.cutlass.FwOp()
if num_kv_heads != num_heads:
# As of Nov 2023, xformers only supports MHA. For MQA/GQA,
# project the key and value tensors to the desired number of
# heads.
#
# see also: vllm/model_executor/layers/attention.py
query = query.view(query.shape[0], num_kv_heads, num_queries_per_kv,
query.shape[-1])
key = key[:, :, None, :].expand(key.shape[0], num_kv_heads,
num_queries_per_kv, key.shape[-1])
value = value[:, :,
None, :].expand(value.shape[0], num_kv_heads,
num_queries_per_kv, value.shape[-1])
query = query.unsqueeze(0)
key = key.unsqueeze(0)
value = value.unsqueeze(0)
attn_bias = BlockDiagonalCausalFromBottomRightMask.from_seqlens(
subquery_lens, seq_lens)
output_ref = xops.memory_efficient_attention_forward(
query.unsqueeze(0),
key.unsqueeze(0),
value.unsqueeze(0),
query,
key,
value,
attn_bias=attn_bias,
p=0.0,
scale=scale,
@ -137,9 +160,9 @@ def test_contexted_kv_attention(
torch.cuda.synchronize()
start_time = time.time()
output_ref = xops.memory_efficient_attention_forward(
query.unsqueeze(0),
key.unsqueeze(0),
value.unsqueeze(0),
query,
key,
value,
attn_bias=attn_bias,
p=0.0,
scale=scale,
@ -148,5 +171,5 @@ def test_contexted_kv_attention(
torch.cuda.synchronize()
end_time = time.time()
print(f"xformers Time: {(end_time - start_time)*1000:.2f} ms")
output_ref = output_ref.squeeze(0)
output_ref = output_ref.squeeze(0, 2)
assert torch.allclose(output_ref, output, atol=1e-6, rtol=0)

View File

@ -126,14 +126,21 @@ def mixtral_lora_files():
return snapshot_download(repo_id="terrysun/mixtral-lora-adapter")
@pytest.fixture(scope="session")
def gemma_lora_files():
return snapshot_download(repo_id="wskwon/gemma-7b-test-lora")
@pytest.fixture
def llama_2_7b_engine_extra_embeddings() -> nn.Module:
cleanup()
get_model_old = get_model
def get_model_patched(model_config, device_config, lora_config=None):
return get_model_old(model_config, device_config,
LoRAConfig(max_loras=4, max_lora_rank=8))
def get_model_patched(model_config, device_config, **kwargs):
return get_model_old(model_config,
device_config,
lora_config=LoRAConfig(max_loras=4,
max_lora_rank=8))
with patch("vllm.worker.model_runner.get_model", get_model_patched):
engine = vllm.LLM("meta-llama/Llama-2-7b-hf", enable_lora=False)

46
tests/lora/test_gemma.py Normal file
View File

@ -0,0 +1,46 @@
import vllm
from vllm.lora.request import LoRARequest
MODEL_PATH = "google/gemma-7b"
def do_sample(llm, lora_path: str, lora_id: int) -> str:
prompts = [
"Quote: Imagination is",
"Quote: Be yourself;",
"Quote: So many books,",
]
sampling_params = vllm.SamplingParams(temperature=0, max_tokens=32)
outputs = llm.generate(
prompts,
sampling_params,
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
if lora_id else None)
# Print the outputs.
generated_texts = []
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text.strip()
generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
return generated_texts
def test_gemma_lora(gemma_lora_files):
llm = vllm.LLM(MODEL_PATH,
max_model_len=1024,
enable_lora=True,
max_loras=4)
expected_lora_output = [
"more important than knowledge.\nAuthor: Albert Einstein\n",
"everyone else is already taken.\nAuthor: Oscar Wilde\n",
"so little time\nAuthor: Frank Zappa\n",
]
output1 = do_sample(llm, gemma_lora_files, lora_id=1)
for i in range(len(expected_lora_output)):
assert output1[i].startswith(expected_lora_output[i])
output2 = do_sample(llm, gemma_lora_files, lora_id=2)
for i in range(len(expected_lora_output)):
assert output2[i].startswith(expected_lora_output[i])

View File

@ -279,7 +279,7 @@ def test_embeddings_with_new_embeddings(dist_init, num_loras, device) -> None:
256,
org_num_embeddings=512)
expanded_embedding.weight.data[:512, :] = embedding_data
# We need to deepcopy the embedding as it will be modifed
# We need to deepcopy the embedding as it will be modified
# in place
lora_embedding = VocabParallelEmbeddingWithLoRA(
deepcopy(expanded_embedding))

View File

@ -15,7 +15,7 @@ def do_sample(llm, lora_path: str, lora_id: int):
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_95 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one mora for a low tone mora with a gloss of /˩okiru/ [òkìɽɯ́]? [/user] [assistant]",
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE candidate (people_id VARCHAR, unsure_rate INTEGER); CREATE TABLE people (sex VARCHAR, people_id VARCHAR)\n\n question: which gender got the highest average uncertain ratio. [/user] [assistant]",
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_60 (pick INTEGER, former_wnba_team VARCHAR)\n\n question: What pick was a player that previously played for the Minnesota Lynx? [/user] [assistant]",
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the womens doubles for werner schlager [/user] [assistant]"
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]"
]
sampling_params = vllm.SamplingParams(temperature=0,
max_tokens=256,
@ -53,7 +53,7 @@ def test_llama_lora(sql_lora_files, tp_size):
"\n\n answer: 1\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_96 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one mora for a high tone mora with a gloss of /˧kot/ [kòt]? [/user] [assistant]\n\n answer: 2\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_97 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one mora for a high tone mora with a gloss of /˧kot/ [kòt]? [/user] [assistant]\n\n answer: 2\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_98 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one m",
" Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE candidate (people_id VARCHAR, unsure_rate INTEGER); CREATE TABLE people (sex VARCHAR, people_id VARCHAR)\n\n question: which gender got the highest average uncertain ratio. ",
" Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_60 (pick INTEGER, former_wnba_team VARCHAR)\n\n question: What pick was a player that previously played for the Minnesota Lynx? ",
"\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the womens doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the womens doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the womens doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE",
"\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE",
]
expected_lora_output = [
" SELECT icao FROM table_name_74 WHERE airport = 'lilongwe international airport' ",

View File

@ -44,8 +44,8 @@ def _lora_ref_impl(
H1 = H2 = [
128, 256, 512, 1024, 1280, 2048, 2560, 2752, 3072, 3456, 3584, 4096, 5120,
5504, 5632, 6912, 7168, 8192, 9216, 10240, 11008, 13824, 14336, 32000,
32256, 32512, 32768, 33024
5504, 5632, 6144, 6912, 7168, 8192, 9216, 10240, 11008, 13824, 14336,
24576, 32000, 32256, 32512, 32768, 33024
]
SEED = [0xabcdabcd987]

View File

@ -1,5 +1,4 @@
import pytest
import vllm.engine.metrics
MODELS = [
"facebook/opt-125m",
@ -9,14 +8,17 @@ MODELS = [
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize("max_tokens", [128])
def test_metrics(
def test_metric_counter_prompt_tokens(
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
vllm_model = vllm_runner(model, dtype=dtype, disable_log_stats=False)
vllm_model = vllm_runner(model,
dtype=dtype,
disable_log_stats=False,
gpu_memory_utilization=0.4)
tokenizer = vllm_model.model.get_tokenizer()
prompt_token_counts = [len(tokenizer.encode(p)) for p in example_prompts]
# This test needs at least 2 prompts in a batch of different lengths to verify their token count is correct despite padding.
@ -26,8 +28,41 @@ def test_metrics(
vllm_prompt_token_count = sum(prompt_token_counts)
_ = vllm_model.generate_greedy(example_prompts, max_tokens)
metric_count = vllm.engine.metrics.counter_prompt_tokens.get_value({})
stat_logger = vllm_model.model.llm_engine.stat_logger
metric_count = stat_logger.metrics.counter_prompt_tokens.labels(
**stat_logger.labels)._value.get()
assert vllm_prompt_token_count == metric_count, (
f"prompt token count: {vllm_prompt_token_count!r}\nmetric: {metric_count!r}"
)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize("max_tokens", [128])
def test_metric_counter_generation_tokens(
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
vllm_model = vllm_runner(model,
dtype=dtype,
disable_log_stats=False,
gpu_memory_utilization=0.4)
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
tokenizer = vllm_model.model.get_tokenizer()
stat_logger = vllm_model.model.llm_engine.stat_logger
metric_count = stat_logger.metrics.counter_generation_tokens.labels(
**stat_logger.labels)._value.get()
vllm_generation_count = 0
for i in range(len(example_prompts)):
vllm_output_ids, vllm_output_str = vllm_outputs[i]
prompt_ids = tokenizer.encode(example_prompts[i])
# vllm_output_ids contains both prompt tokens and generation tokens. We're interested only in the count of the generation tokens.
vllm_generation_count += len(vllm_output_ids) - len(prompt_ids)
assert vllm_generation_count == metric_count, (
f"generation token count: {vllm_generation_count!r}\nmetric: {metric_count!r}"
)

View File

@ -0,0 +1,97 @@
"""Compare the outputs of a GPTQ model to a Marlin model.
Note: GPTQ and Marlin do not have bitwise correctness.
As a result, in this test, we just confirm that the top selected tokens of the
Marlin/GPTQ models are in the top 3 selections of each other.
Note: Marlin internally uses locks to synchronize the threads. This can
result in very slight nondeterminism for Marlin. As a result, we re-run the test
up to 3 times to see if we pass.
Run `pytest tests/models/test_marlin.py --forked`.
"""
import pytest
import torch
from dataclasses import dataclass
from vllm.model_executor.layers.quantization import _QUANTIZATION_CONFIG_REGISTRY
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
marlin_not_supported = (
capability < _QUANTIZATION_CONFIG_REGISTRY["marlin"].get_min_capability())
@dataclass
class ModelPair:
model_marlin: str
model_gptq: str
model_pairs = [
ModelPair(model_marlin="nm-testing/zephyr-beta-7b-marlin-g128",
model_gptq="nm-testing/zephyr-beta-7b-gptq-g128"),
ModelPair(model_marlin="robertgshaw2/zephyr-7b-beta-channelwise-marlin",
model_gptq="robertgshaw2/zephyr-7b-beta-channelwise-gptq"),
ModelPair(model_marlin="robertgshaw2/TinyLlama-1.1B-Chat-v1.0-g128-marlin",
model_gptq="robertgshaw2/TinyLlama-1.1B-Chat-v1.0-g128-gptq")
]
@pytest.mark.flaky(reruns=2)
@pytest.mark.skipif(marlin_not_supported,
reason="Marlin is not supported on this GPU type.")
@pytest.mark.parametrize("model_pair", model_pairs)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [3])
def test_models(
vllm_runner,
example_prompts,
model_pair: ModelPair,
dtype: str,
max_tokens: int,
num_logprobs: int,
) -> None:
marlin_model = vllm_runner(model_pair.model_marlin, dtype=dtype)
marlin_outputs = marlin_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
# Note: not sure why, but deleting just the model on Ada Lovelace
# does not free the GPU memory. On Ampere, deleting the just model
# frees the memory.
del marlin_model.model.llm_engine.driver_worker
del marlin_model
gptq_model = vllm_runner(model_pair.model_gptq, dtype=dtype)
gptq_outputs = gptq_model.generate_greedy_logprobs(example_prompts,
max_tokens,
num_logprobs)
# Note: not sure why, but deleting just the model on Ada Lovelace
# does not free the GPU memory. On Ampere, deleting the just model
# frees the memory.
del gptq_model.model.llm_engine.driver_worker
del gptq_model
# loop through the prompts
for prompt_idx in range(len(example_prompts)):
gptq_output_ids, gptq_output_str, gptq_logprobs = gptq_outputs[
prompt_idx]
marlin_output_ids, marlin_output_str, marlin_logprobs = marlin_outputs[
prompt_idx]
for idx, (gptq_output_id, marlin_output_id) in enumerate(
zip(gptq_output_ids, marlin_output_ids)):
# If sequence is not an exact match,
if marlin_output_id != gptq_output_id:
# Each predicted token must be in top 5 of the other's
assert gptq_output_id in marlin_logprobs[idx], (
f"Test{prompt_idx}:\nGPTQ:\t{gptq_output_str!r}\nMarlin:\t{marlin_output_str!r}"
)
assert marlin_output_id in gptq_logprobs[idx], (
f"Test{prompt_idx}:\nGPTQ:\t{gptq_output_str!r}\nMarlin:\t{marlin_output_str!r}"
)
# Break out since sequences will now diverge.
break

View File

@ -19,6 +19,7 @@ MODELS = [
"microsoft/phi-2",
"stabilityai/stablelm-3b-4e1t",
"allenai/OLMo-1B",
"bigcode/starcoder2-3b",
]

View File

@ -8,7 +8,7 @@ from vllm.entrypoints.llm import LLM
from vllm.outputs import CompletionOutput, RequestOutput
from vllm.sampling_params import SamplingParams
__version__ = "0.3.2"
__version__ = "0.3.3"
__all__ = [
"LLM",

View File

@ -8,7 +8,7 @@ from transformers import PretrainedConfig
from vllm.logger import init_logger
from vllm.transformers_utils.config import get_config
from vllm.utils import get_cpu_memory, is_hip, get_nvcc_cuda_version
from vllm.utils import get_cpu_memory, is_hip, is_neuron, get_nvcc_cuda_version
logger = init_logger(__name__)
@ -155,15 +155,21 @@ class ModelConfig:
self.tokenizer_mode = tokenizer_mode
def _verify_quantization(self) -> None:
supported_quantization = ["awq", "gptq", "squeezellm"]
rocm_not_supported_quantization = ["awq"]
supported_quantization = ["awq", "gptq", "squeezellm", "marlin"]
rocm_not_supported_quantization = ["awq", "marlin"]
if self.quantization is not None:
self.quantization = self.quantization.lower()
# Parse quantization method from the HF model config, if available.
hf_quant_config = getattr(self.hf_config, "quantization_config", None)
if hf_quant_config is not None:
hf_quant_method = str(hf_quant_config["quant_method"]).lower()
# If the GPTQ model is serialized in marlin format, use marlin.
if (hf_quant_method == "gptq"
and "is_marlin_format" in hf_quant_config
and hf_quant_config["is_marlin_format"]):
hf_quant_method = "marlin"
if self.quantization is None:
self.quantization = hf_quant_method
elif self.quantization != hf_quant_method:
@ -183,9 +189,11 @@ class ModelConfig:
raise ValueError(
f"{self.quantization} quantization is currently not supported "
f"in ROCm.")
logger.warning(f"{self.quantization} quantization is not fully "
"optimized yet. The speed can be slower than "
"non-quantized models.")
if self.quantization != "marlin":
logger.warning(
f"{self.quantization} quantization is not fully "
"optimized yet. The speed can be slower than "
"non-quantized models.")
def _verify_cuda_graph(self) -> None:
if self.max_context_len_to_capture is None:
@ -308,6 +316,10 @@ class CacheConfig:
self.num_gpu_blocks = None
self.num_cpu_blocks = None
def metrics_info(self):
# convert cache_config to dict(key: str, value:str) for prometheus metrics info
return {key: str(value) for key, value in self.__dict__.items()}
def _verify_args(self) -> None:
if self.gpu_memory_utilization > 1.0:
raise ValueError(
@ -319,7 +331,7 @@ class CacheConfig:
pass
elif self.cache_dtype == "fp8_e5m2":
nvcc_cuda_version = get_nvcc_cuda_version()
if nvcc_cuda_version < Version("11.8"):
if nvcc_cuda_version and nvcc_cuda_version < Version("11.8"):
raise ValueError(
"FP8 is not supported when cuda version is lower than 11.8."
)
@ -380,13 +392,21 @@ class ParallelConfig:
disable_custom_all_reduce: bool = False,
) -> None:
self.pipeline_parallel_size = pipeline_parallel_size
self.tensor_parallel_size = tensor_parallel_size
if is_neuron():
# For Neuron device support, here we assign TP=1 to avoid sharding within vLLM directly.
# Transformer-neuronx would take neuron_tp_degree attribute, and distribute the workload
# to multiple NeuronCores.
self.tensor_parallel_size = 1
self.neuron_tp_degree = tensor_parallel_size
else:
self.tensor_parallel_size = tensor_parallel_size
self.worker_use_ray = worker_use_ray
self.max_parallel_loading_workers = max_parallel_loading_workers
self.disable_custom_all_reduce = disable_custom_all_reduce
self.world_size = pipeline_parallel_size * tensor_parallel_size
if self.world_size > 1:
self.world_size = pipeline_parallel_size * self.tensor_parallel_size
# Ray worker is not supported for Neuron backend.
if self.world_size > 1 and not is_neuron():
self.worker_use_ray = True
self._verify_args()
@ -465,8 +485,29 @@ class SchedulerConfig:
class DeviceConfig:
def __init__(self, device: str = "cuda") -> None:
self.device = torch.device(device)
def __init__(self, device: str = "auto") -> None:
if device == "auto":
# Automated device type detection
if torch.cuda.is_available():
self.device_type = "cuda"
elif is_neuron():
self.device_type = "neuron"
else:
raise RuntimeError("No supported device detected.")
else:
# Device type is assigned explicitly
self.device_type = device
# Some device types require processing inputs on CPU
if self.device_type in ["neuron"]:
self.device = torch.device("cpu")
else:
# Set device with device type
self.device = torch.device(self.device_type)
@property
def is_neuron(self):
return self.device_type == "neuron"
@dataclass

View File

@ -178,7 +178,7 @@ class BlockSpaceManager:
if len(block_table) < len(logical_blocks):
if (self.block_sliding_window
and len(block_table) >= self.block_sliding_window):
# re-use a block
# reuse a block
block_table.append(block_table[len(block_table) %
self.block_sliding_window])
else:

View File

@ -158,7 +158,7 @@ class Scheduler:
return len(self.waiting) + len(self.running) + len(self.swapped)
def _schedule(self) -> SchedulerOutputs:
# Blocks that need to be swaped or copied before model execution.
# Blocks that need to be swapped or copied before model execution.
blocks_to_swap_in: Dict[int, int] = {}
blocks_to_swap_out: Dict[int, int] = {}
blocks_to_copy: Dict[int, List[int]] = {}

View File

@ -44,7 +44,7 @@ class EngineArgs:
lora_extra_vocab_size: int = 256
lora_dtype = 'auto'
max_cpu_loras: Optional[int] = None
device: str = 'cuda'
device: str = 'auto'
def __post_init__(self):
if self.tokenizer is None:
@ -171,7 +171,7 @@ class EngineArgs:
parser.add_argument('--block-size',
type=int,
default=EngineArgs.block_size,
choices=[8, 16, 32],
choices=[8, 16, 32, 128],
help='token block size')
parser.add_argument('--seed',
type=int,
@ -264,13 +264,11 @@ class EngineArgs:
help=('Maximum number of LoRAs to store in CPU memory. '
'Must be >= than max_num_seqs. '
'Defaults to max_num_seqs.'))
parser.add_argument(
"--device",
type=str,
default=EngineArgs.device,
choices=["cuda"],
help=('Device type for vLLM execution. '
'Currently, only CUDA-compatible devices are supported.'))
parser.add_argument("--device",
type=str,
default=EngineArgs.device,
choices=["auto", "cuda", "neuron"],
help='Device type for vLLM execution.')
return parser
@classmethod

View File

@ -333,6 +333,9 @@ class AsyncLLMEngine:
return (self.background_loop is not None
and not self.background_loop.done())
def get_tokenizer(self):
return self.engine.tokenizer.tokenizer
def start_background_loop(self) -> None:
"""Start the background loop."""
if self.is_running:

View File

@ -3,6 +3,7 @@ from collections import defaultdict
import os
import time
import pickle
import importlib
from typing import (TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple,
Union)
@ -20,7 +21,8 @@ from vllm.sequence import (SamplerOutput, Sequence, SequenceGroup,
SequenceGroupOutput, SequenceOutput, SequenceStatus)
from vllm.transformers_utils.tokenizer import (detokenize_incrementally,
TokenizerGroup)
from vllm.utils import Counter, set_cuda_visible_devices, get_ip, get_open_port, get_distributed_init_method
from vllm.utils import (Counter, set_cuda_visible_devices, get_ip,
get_open_port, get_distributed_init_method)
if ray:
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
@ -31,6 +33,12 @@ if TYPE_CHECKING:
logger = init_logger(__name__)
_LOCAL_LOGGING_INTERVAL_SEC = 5
# A map between the device type (in device config) to its worker module.
DEVICE_TO_WORKER_MODULE_MAP = {
"cuda": "vllm.worker.worker",
"neuron": "vllm.worker.neuron_worker",
}
# If the env var is set, it uses the Ray's compiled DAG API
# which optimizes the control plane overhead.
# Run VLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
@ -128,7 +136,9 @@ class LLMEngine:
# Metric Logging.
if self.log_stats:
self.stat_logger = StatLogger(
local_interval=_LOCAL_LOGGING_INTERVAL_SEC)
local_interval=_LOCAL_LOGGING_INTERVAL_SEC,
labels=dict(model_name=model_config.model))
self.stat_logger.info("cache_config", self.cache_config)
self.forward_dag = None
if USE_RAY_COMPILED_DAG:
@ -137,10 +147,17 @@ class LLMEngine:
def get_tokenizer_for_seq(self, sequence: Sequence):
return self.tokenizer.get_lora_tokenizer(sequence.lora_request)
def _dispatch_worker(self):
worker_module = DEVICE_TO_WORKER_MODULE_MAP[
self.device_config.device_type]
imported_worker = importlib.import_module(worker_module)
Worker = imported_worker.Worker
return Worker
def _init_workers(self):
# Lazy import the Worker to avoid importing torch.cuda/xformers
# before CUDA_VISIBLE_DEVICES is set in the Worker
from vllm.worker.worker import Worker
Worker = self._dispatch_worker()
assert self.parallel_config.world_size == 1, (
"Ray is required if parallel_config.world_size > 1.")
@ -242,7 +259,7 @@ class LLMEngine:
# Lazy import the Worker to avoid importing torch.cuda/xformers
# before CUDA_VISIBLE_DEVICES is set in the Worker
from vllm.worker.worker import Worker
Worker = self._dispatch_worker()
# Initialize torch distributed process group for the workers.
model_config = copy.deepcopy(self.model_config)
@ -283,7 +300,10 @@ class LLMEngine:
is_driver_worker=True,
)
self._run_workers("init_model", cupy_port=get_open_port())
# don't use cupy for eager mode
self._run_workers("init_model",
cupy_port=get_open_port()
if not model_config.enforce_eager else None)
self._run_workers(
"load_model",
max_concurrent_workers=self.parallel_config.
@ -464,8 +484,9 @@ class LLMEngine:
prompt_token_ids[:prefix_pos], lora_request.lora_int_id
if lora_request else 0) if prefix_pos is not None else None
# Defensive copy of SamplingParams, which are used by the sampler
sampling_params = copy.deepcopy(sampling_params)
# Defensive copy of SamplingParams, which are used by the sampler,
# this doesn't deep-copy LogitsProcessor objects
sampling_params = sampling_params.clone()
# Create the sequence group.
seq_group = SequenceGroup(request_id, [seq], sampling_params,
@ -872,6 +893,9 @@ class LLMEngine:
num_prompt_tokens = sum(
len(seq_group.prompt_token_ids)
for seq_group in scheduler_outputs.scheduled_seq_groups)
num_generation_tokens = sum(
seq_group.num_seqs()
for seq_group in scheduler_outputs.scheduled_seq_groups)
else:
num_generation_tokens = scheduler_outputs.num_batched_tokens
@ -956,7 +980,10 @@ class LLMEngine:
def _finalize_sequence(self, seq: Sequence,
sampling_params: SamplingParams,
stop_string: str) -> None:
if not sampling_params.include_stop_str_in_output and stop_string:
if sampling_params.include_stop_str_in_output:
return
if stop_string and seq.output_text.endswith(stop_string):
# Truncate the output text so that the stop string is
# not included in the output.
seq.output_text = seq.output_text[:-len(stop_string)]

View File

@ -1,66 +1,98 @@
from vllm.logger import init_logger
from aioprometheus import Counter, Gauge, Histogram
from prometheus_client import Counter, Gauge, Histogram, Info, REGISTRY, disable_created_metrics
import time
import numpy as np
from typing import List
from typing import Dict, List
from dataclasses import dataclass
logger = init_logger(__name__)
labels = {}
def add_global_metrics_labels(**kwargs):
labels.update(kwargs)
disable_created_metrics()
# The begin-* and end* here are used by the documentation generator
# to extract the metrics definitions.
# begin-metrics-definitions
gauge_avg_prompt_throughput = Gauge("vllm:avg_prompt_throughput_toks_per_s",
"Average prefill throughput in tokens/s.")
gauge_avg_generation_throughput = Gauge(
"vllm:avg_generation_throughput_toks_per_s",
"Average generation throughput in tokens/s.")
counter_prompt_tokens = Counter("vllm:prompt_tokens_total",
"Number of prefill tokens processed.")
counter_generation_tokens = Counter("vllm:generation_tokens_total",
"Number of generation tokens processed.")
class Metrics:
gauge_scheduler_running = Gauge(
"vllm:num_requests_running",
"Number of requests currently running on GPU.")
gauge_scheduler_swapped = Gauge("vllm:num_requests_swapped",
"Number of requests swapped to CPU.")
gauge_scheduler_waiting = Gauge("vllm:num_requests_waiting",
"Number of requests waiting to be processed.")
def __init__(self, labelnames: List[str]):
# Unregister any existing vLLM collectors
for collector in list(REGISTRY._collector_to_names):
if hasattr(collector, "_name") and "vllm" in collector._name:
REGISTRY.unregister(collector)
self.info_cache_config = Info(
name='vllm:cache_config',
documentation='information of cache_config')
# System stats
self.gauge_scheduler_running = Gauge(
name="vllm:num_requests_running",
documentation="Number of requests currently running on GPU.",
labelnames=labelnames)
self.gauge_scheduler_swapped = Gauge(
name="vllm:num_requests_swapped",
documentation="Number of requests swapped to CPU.",
labelnames=labelnames)
self.gauge_scheduler_waiting = Gauge(
name="vllm:num_requests_waiting",
documentation="Number of requests waiting to be processed.",
labelnames=labelnames)
self.gauge_gpu_cache_usage = Gauge(
name="vllm:gpu_cache_usage_perc",
documentation="GPU KV-cache usage. 1 means 100 percent usage.",
labelnames=labelnames)
self.gauge_cpu_cache_usage = Gauge(
name="vllm:cpu_cache_usage_perc",
documentation="CPU KV-cache usage. 1 means 100 percent usage.",
labelnames=labelnames)
# Raw stats from last model iteration
self.counter_prompt_tokens = Counter(
name="vllm:prompt_tokens_total",
documentation="Number of prefill tokens processed.",
labelnames=labelnames)
self.counter_generation_tokens = Counter(
name="vllm:generation_tokens_total",
documentation="Number of generation tokens processed.",
labelnames=labelnames)
self.histogram_time_to_first_token = Histogram(
name="vllm:time_to_first_token_seconds",
documentation="Histogram of time to first token in seconds.",
labelnames=labelnames,
buckets=[
0.001, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.25, 0.5,
0.75, 1.0, 2.5, 5.0, 7.5, 10.0
])
self.histogram_time_per_output_token = Histogram(
name="vllm:time_per_output_token_seconds",
documentation="Histogram of time per output token in seconds.",
labelnames=labelnames,
buckets=[
0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75,
1.0, 2.5
])
self.histogram_e2e_request_latency = Histogram(
name="vllm:e2e_request_latency_seconds",
documentation="Histogram of end to end request latency in seconds.",
labelnames=labelnames,
buckets=[1.0, 2.5, 5.0, 10.0, 15.0, 20.0, 30.0, 40.0, 50.0, 60.0])
# Legacy metrics
self.gauge_avg_prompt_throughput = Gauge(
name="vllm:avg_prompt_throughput_toks_per_s",
documentation="Average prefill throughput in tokens/s.",
labelnames=labelnames,
)
self.gauge_avg_generation_throughput = Gauge(
name="vllm:avg_generation_throughput_toks_per_s",
documentation="Average generation throughput in tokens/s.",
labelnames=labelnames,
)
gauge_gpu_cache_usage = Gauge(
"vllm:gpu_cache_usage_perc",
"GPU KV-cache usage. 1 means 100 percent usage.")
gauge_cpu_cache_usage = Gauge(
"vllm:cpu_cache_usage_perc",
"CPU KV-cache usage. 1 means 100 percent usage.")
histogram_time_to_first_token = Histogram(
"vllm:time_to_first_token_seconds",
"Histogram of time to first token in seconds.",
buckets=[
0.001, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.25, 0.5, 0.75, 1.0,
2.5, 5.0, 7.5, 10.0
])
histogram_time_per_output_tokens = Histogram(
"vllm:time_per_output_token_seconds",
"Histogram of time per output token in seconds.",
buckets=[
0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 2.5
])
histogram_e2e_request_latency = Histogram(
"vllm:e2e_request_latency_seconds",
"Histogram of end to end request latency in seconds.",
buckets=[1.0, 2.5, 5.0, 10.0, 15.0, 20.0, 30.0, 40.0, 50.0, 60.0])
# end-metrics-definitions
@ -87,7 +119,7 @@ class Stats:
class StatLogger:
"""StatLogger is used LLMEngine to log to Promethus and Stdout."""
def __init__(self, local_interval: float) -> None:
def __init__(self, local_interval: float, labels: Dict[str, str]) -> None:
# Metadata for logging locally.
self.last_local_log = time.monotonic()
self.local_interval = local_interval
@ -96,6 +128,14 @@ class StatLogger:
self.num_prompt_tokens: List[int] = []
self.num_generation_tokens: List[int] = []
# Prometheus metrics
self.labels = labels
self.metrics = Metrics(labelnames=list(labels.keys()))
def info(self, type: str, obj: object) -> None:
if type == "cache_config":
self.metrics.info_cache_config.info(obj.metrics_info())
def _get_throughput(self, tracked_stats: List[int], now: float) -> float:
return float(np.sum(tracked_stats) / (now - self.last_local_log))
@ -105,23 +145,33 @@ class StatLogger:
def _log_prometheus(self, stats: Stats) -> None:
# Set system stat gauges.
gauge_scheduler_running.set(labels, stats.num_running)
gauge_scheduler_swapped.set(labels, stats.num_swapped)
gauge_scheduler_waiting.set(labels, stats.num_waiting)
gauge_gpu_cache_usage.set(labels, stats.gpu_cache_usage)
gauge_cpu_cache_usage.set(labels, stats.cpu_cache_usage)
self.metrics.gauge_scheduler_running.labels(**self.labels).set(
stats.num_running)
self.metrics.gauge_scheduler_swapped.labels(**self.labels).set(
stats.num_swapped)
self.metrics.gauge_scheduler_waiting.labels(**self.labels).set(
stats.num_waiting)
self.metrics.gauge_gpu_cache_usage.labels(**self.labels).set(
stats.gpu_cache_usage)
self.metrics.gauge_cpu_cache_usage.labels(**self.labels).set(
stats.cpu_cache_usage)
# Add to token counters.
counter_prompt_tokens.add(labels, stats.num_prompt_tokens)
counter_generation_tokens.add(labels, stats.num_generation_tokens)
self.metrics.counter_prompt_tokens.labels(**self.labels).inc(
stats.num_prompt_tokens)
self.metrics.counter_generation_tokens.labels(**self.labels).inc(
stats.num_generation_tokens)
# Observe request level latencies in histograms.
for ttft in stats.time_to_first_tokens:
histogram_time_to_first_token.observe(labels, ttft)
self.metrics.histogram_time_to_first_token.labels(
**self.labels).observe(ttft)
for tpot in stats.time_per_output_tokens:
histogram_time_per_output_tokens.observe(labels, tpot)
self.metrics.histogram_time_per_output_token.labels(
**self.labels).observe(tpot)
for e2e in stats.time_e2e_requests:
histogram_e2e_request_latency.observe(labels, e2e)
self.metrics.histogram_e2e_request_latency.labels(
**self.labels).observe(e2e)
def _log_prometheus_interval(self, prompt_throughput: float,
generation_throughput: float) -> None:
@ -130,8 +180,10 @@ class StatLogger:
# Moving forward, we should use counters like counter_prompt_tokens, counter_generation_tokens
# Which log raw data and calculate summaries using rate() on the grafana/prometheus side.
# See https://github.com/vllm-project/vllm/pull/2316#discussion_r1464204666
gauge_avg_prompt_throughput.set(labels, prompt_throughput)
gauge_avg_generation_throughput.set(labels, generation_throughput)
self.metrics.gauge_avg_prompt_throughput.labels(
**self.labels).set(prompt_throughput)
self.metrics.gauge_avg_generation_throughput.labels(
**self.labels).set(generation_throughput)
def log(self, stats: Stats) -> None:
"""Called by LLMEngine.

View File

@ -6,8 +6,7 @@ import os
import importlib
import inspect
from aioprometheus import MetricsMiddleware
from aioprometheus.asgi.starlette import metrics
from prometheus_client import make_asgi_app
import fastapi
import uvicorn
from http import HTTPStatus
@ -18,7 +17,6 @@ from fastapi.responses import JSONResponse, StreamingResponse, Response
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.engine.metrics import add_global_metrics_labels
from vllm.entrypoints.openai.protocol import CompletionRequest, ChatCompletionRequest, ErrorResponse
from vllm.logger import init_logger
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
@ -141,8 +139,9 @@ def parse_args():
return parser.parse_args()
app.add_middleware(MetricsMiddleware) # Trace HTTP server metrics
app.add_route("/metrics", metrics) # Exposes HTTP metrics
# Add prometheus asgi middleware to route /metrics requests
metrics_app = make_asgi_app()
app.mount("/metrics", metrics_app)
@app.exception_handler(RequestValidationError)
@ -242,9 +241,6 @@ if __name__ == "__main__":
openai_serving_completion = OpenAIServingCompletion(
engine, served_model, args.lora_modules)
# Register labels for metrics
add_global_metrics_labels(model_name=engine_args.model)
app.root_path = args.root_path
uvicorn.run(app,
host=args.host,

View File

@ -3,11 +3,13 @@
import time
from typing import Dict, List, Literal, Optional, Union
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, model_validator
from vllm.utils import random_uuid
from vllm.sampling_params import SamplingParams
import torch
class ErrorResponse(BaseModel):
object: str = "error"
@ -55,7 +57,7 @@ class UsageInfo(BaseModel):
class ChatCompletionRequest(BaseModel):
model: str
messages: Union[str, List[Dict[str, str]]]
messages: List[Dict[str, str]]
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
n: Optional[int] = 1
@ -63,6 +65,8 @@ class ChatCompletionRequest(BaseModel):
seed: Optional[int] = None
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False
logprobs: Optional[bool] = False
top_logprobs: Optional[int] = None
presence_penalty: Optional[float] = 0.0
frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[Dict[str, float]] = None
@ -72,6 +76,7 @@ class ChatCompletionRequest(BaseModel):
top_k: Optional[int] = -1
ignore_eos: Optional[bool] = False
use_beam_search: Optional[bool] = False
early_stopping: Optional[bool] = False
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
skip_special_tokens: Optional[bool] = True
spaces_between_special_tokens: Optional[bool] = True
@ -81,8 +86,28 @@ class ChatCompletionRequest(BaseModel):
min_p: Optional[float] = 0.0
include_stop_str_in_output: Optional[bool] = False
length_penalty: Optional[float] = 1.0
guided_json: Optional[Union[str, dict, BaseModel]] = None
guided_regex: Optional[str] = None
guided_choice: Optional[List[str]] = None
def to_sampling_params(self) -> SamplingParams:
if self.logprobs and not self.top_logprobs:
raise ValueError("Top logprobs must be set when logprobs is.")
logits_processors = None
if self.logit_bias:
def logit_bias_logits_processor(
token_ids: List[int],
logits: torch.Tensor) -> torch.Tensor:
for token_id, bias in self.logit_bias.items():
# Clamp the bias between -100 and 100 per OpenAI API spec
bias = min(100, max(-100, bias))
logits[int(token_id)] += bias
return logits
logits_processors = [logit_bias_logits_processor]
return SamplingParams(
n=self.n,
presence_penalty=self.presence_penalty,
@ -95,16 +120,34 @@ class ChatCompletionRequest(BaseModel):
stop=self.stop,
stop_token_ids=self.stop_token_ids,
max_tokens=self.max_tokens,
logprobs=self.top_logprobs if self.logprobs else None,
prompt_logprobs=self.top_logprobs if self.echo else None,
best_of=self.best_of,
top_k=self.top_k,
ignore_eos=self.ignore_eos,
use_beam_search=self.use_beam_search,
early_stopping=self.early_stopping,
skip_special_tokens=self.skip_special_tokens,
spaces_between_special_tokens=self.spaces_between_special_tokens,
include_stop_str_in_output=self.include_stop_str_in_output,
length_penalty=self.length_penalty,
logits_processors=logits_processors,
)
@model_validator(mode="before")
@classmethod
def check_guided_decoding_count(cls, data):
guide_count = sum([
"guided_json" in data and data["guided_json"] is not None,
"guided_regex" in data and data["guided_regex"] is not None,
"guided_choice" in data and data["guided_choice"] is not None
])
if guide_count > 1:
raise ValueError(
"You can only use one kind of guided decoding "
"('guided_json', 'guided_regex' or 'guided_choice').")
return data
class CompletionRequest(BaseModel):
model: str
@ -129,6 +172,7 @@ class CompletionRequest(BaseModel):
top_k: Optional[int] = -1
ignore_eos: Optional[bool] = False
use_beam_search: Optional[bool] = False
early_stopping: Optional[bool] = False
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
skip_special_tokens: Optional[bool] = True
spaces_between_special_tokens: Optional[bool] = True
@ -136,10 +180,27 @@ class CompletionRequest(BaseModel):
min_p: Optional[float] = 0.0
include_stop_str_in_output: Optional[bool] = False
length_penalty: Optional[float] = 1.0
guided_json: Optional[Union[str, dict, BaseModel]] = None
guided_regex: Optional[str] = None
guided_choice: Optional[List[str]] = None
def to_sampling_params(self):
echo_without_generation = self.echo and self.max_tokens == 0
logits_processors = None
if self.logit_bias:
def logit_bias_logits_processor(
token_ids: List[int],
logits: torch.Tensor) -> torch.Tensor:
for token_id, bias in self.logit_bias.items():
# Clamp the bias between -100 and 100 per OpenAI API spec
bias = min(100, max(-100, bias))
logits[int(token_id)] += bias
return logits
logits_processors = [logit_bias_logits_processor]
return SamplingParams(
n=self.n,
best_of=self.best_of,
@ -157,13 +218,29 @@ class CompletionRequest(BaseModel):
max_tokens=self.max_tokens if not echo_without_generation else 1,
logprobs=self.logprobs,
use_beam_search=self.use_beam_search,
early_stopping=self.early_stopping,
prompt_logprobs=self.logprobs if self.echo else None,
skip_special_tokens=self.skip_special_tokens,
spaces_between_special_tokens=(self.spaces_between_special_tokens),
include_stop_str_in_output=self.include_stop_str_in_output,
length_penalty=self.length_penalty,
logits_processors=logits_processors,
)
@model_validator(mode="before")
@classmethod
def check_guided_decoding_count(cls, data):
guide_count = sum([
"guided_json" in data and data["guided_json"] is not None,
"guided_regex" in data and data["guided_regex"] is not None,
"guided_choice" in data and data["guided_choice"] is not None
])
if guide_count > 1:
raise ValueError(
"You can only use one kind of guided decoding "
"('guided_json', 'guided_regex' or 'guided_choice').")
return data
class LogProbs(BaseModel):
text_offset: List[int] = Field(default_factory=list)
@ -212,6 +289,7 @@ class ChatMessage(BaseModel):
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
logprobs: Optional[LogProbs] = None
finish_reason: Optional[Literal["stop", "length"]] = None
@ -232,6 +310,7 @@ class DeltaMessage(BaseModel):
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
logprobs: Optional[LogProbs] = None
finish_reason: Optional[Literal["stop", "length"]] = None

View File

@ -12,6 +12,7 @@ from vllm.entrypoints.openai.protocol import (
UsageInfo)
from vllm.outputs import RequestOutput
from vllm.entrypoints.openai.serving_engine import OpenAIServing, LoRA
from vllm.model_executor.guided_decoding import get_guided_decoding_logits_processor
logger = init_logger(__name__)
@ -39,19 +40,13 @@ class OpenAIServingChat(OpenAIServing):
See https://platform.openai.com/docs/api-reference/chat/create
for the API specification. This API mimics the OpenAI ChatCompletion API.
NOTE: Currently we do not support the following features:
NOTE: Currently we do not support the following feature:
- function_call (Users should implement this by themselves)
- logit_bias (to be supported by vLLM engine)
"""
error_check_ret = await self._check_model(request)
if error_check_ret is not None:
return error_check_ret
if request.logit_bias is not None and len(request.logit_bias) > 0:
# TODO: support logit_bias in vLLM engine.
return self.create_error_response(
"logit_bias is not currently supported")
try:
prompt = self.tokenizer.apply_chat_template(
conversation=request.messages,
@ -68,6 +63,14 @@ class OpenAIServingChat(OpenAIServing):
prompt=prompt)
sampling_params = request.to_sampling_params()
lora_request = self._maybe_get_lora(request)
guided_decode_logits_processor = (
await get_guided_decoding_logits_processor(
request, self.engine.get_tokenizer()))
if guided_decode_logits_processor:
if sampling_params.logits_processors is None:
sampling_params.logits_processors = []
sampling_params.logits_processors.append(
guided_decode_logits_processor)
except ValueError as e:
return self.create_error_response(str(e))
@ -86,7 +89,7 @@ class OpenAIServingChat(OpenAIServing):
if request.add_generation_prompt:
return self.response_role
else:
return request.messages[-1].role
return request.messages[-1]["role"]
async def chat_completion_stream_generator(
self, request: ChatCompletionRequest,
@ -101,7 +104,10 @@ class OpenAIServingChat(OpenAIServing):
role = self.get_chat_request_role(request)
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i, delta=DeltaMessage(role=role), finish_reason=None)
index=i,
delta=DeltaMessage(role=role),
logprobs=None,
finish_reason=None)
chunk = ChatCompletionStreamResponse(id=request_id,
object=chunk_object_type,
created=created_time,
@ -118,6 +124,7 @@ class OpenAIServingChat(OpenAIServing):
"content") and request.messages[-1].get(
"role") == role:
last_msg_content = request.messages[-1]["content"]
if last_msg_content:
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
@ -129,6 +136,7 @@ class OpenAIServingChat(OpenAIServing):
object=chunk_object_type,
created=created_time,
choices=[choice_data],
logprobs=None,
model=model_name)
data = chunk.model_dump_json(exclude_unset=True)
yield f"data: {data}\n\n"
@ -145,15 +153,29 @@ class OpenAIServingChat(OpenAIServing):
if finish_reason_sent[i]:
continue
delta_token_ids = output.token_ids[previous_num_tokens[i]:]
top_logprobs = output.logprobs[
previous_num_tokens[i]:] if output.logprobs else None
if request.logprobs:
logprobs = self._create_logprobs(
token_ids=delta_token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
initial_text_offset=len(previous_texts[i]),
)
else:
logprobs = None
delta_text = output.text[len(previous_texts[i]):]
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
if output.finish_reason is None:
# Send token-by-token response for each request.n
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=delta_text),
logprobs=logprobs,
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
@ -174,6 +196,7 @@ class OpenAIServingChat(OpenAIServing):
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=delta_text),
logprobs=logprobs,
finish_reason=output.finish_reason)
chunk = ChatCompletionStreamResponse(
id=request_id,
@ -208,11 +231,25 @@ class OpenAIServingChat(OpenAIServing):
assert final_res is not None
choices = []
role = self.get_chat_request_role(request)
for output in final_res.outputs:
token_ids = output.token_ids
top_logprobs = output.logprobs
if request.logprobs:
logprobs = self._create_logprobs(
token_ids=token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
)
else:
logprobs = None
choice_data = ChatCompletionResponseChoice(
index=output.index,
message=ChatMessage(role=role, content=output.text),
logprobs=logprobs,
finish_reason=output.finish_reason,
)
choices.append(choice_data)

View File

@ -5,7 +5,7 @@ from typing import AsyncGenerator, AsyncIterator, Callable, List, Optional, Dict
from vllm.logger import init_logger
from vllm.utils import random_uuid
from vllm.engine.async_llm_engine import AsyncLLMEngine
from .protocol import (
from vllm.entrypoints.openai.protocol import (
CompletionRequest,
CompletionResponse,
CompletionResponseChoice,
@ -16,6 +16,7 @@ from .protocol import (
)
from vllm.outputs import RequestOutput
from vllm.entrypoints.openai.serving_engine import OpenAIServing, LoRA
from vllm.model_executor.guided_decoding import get_guided_decoding_logits_processor
logger = init_logger(__name__)
@ -95,7 +96,7 @@ async def completion_stream_generator(
logprobs=logprobs,
finish_reason=finish_reason,
)
]).model_dump_json(exclude_unset=True)
]).model_dump_json()
yield f"data: {response_json}\n\n"
if output.finish_reason is not None: # return final usage
@ -120,7 +121,7 @@ async def completion_stream_generator(
)
],
usage=final_usage,
).model_dump_json(exclude_unset=True)
).model_dump_json()
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
@ -264,10 +265,9 @@ class OpenAIServingCompletion(OpenAIServing):
See https://platform.openai.com/docs/api-reference/completions/create
for the API specification. This API mimics the OpenAI Completion API.
NOTE: Currently we do not support the following features:
NOTE: Currently we do not support the following feature:
- suffix (the language models we currently support do not support
suffix)
- logit_bias (to be supported by vLLM engine)
"""
error_check_ret = await self._check_model(request)
if error_check_ret is not None:
@ -277,9 +277,6 @@ class OpenAIServingCompletion(OpenAIServing):
if request.suffix is not None:
return self.create_error_response(
"suffix is not currently supported")
if request.logit_bias is not None and len(request.logit_bias) > 0:
return self.create_error_response(
"logit_bias is not currently supported")
model_name = request.model
request_id = f"cmpl-{random_uuid()}"
@ -290,6 +287,14 @@ class OpenAIServingCompletion(OpenAIServing):
try:
sampling_params = request.to_sampling_params()
lora_request = self._maybe_get_lora(request)
guided_decode_logit_processor = (
await get_guided_decoding_logits_processor(
request, self.engine.get_tokenizer()))
if guided_decode_logit_processor is not None:
if sampling_params.logits_processors is None:
sampling_params.logits_processors = []
sampling_params.logits_processors.append(
guided_decode_logit_processor)
prompt_is_tokens, prompts = parse_prompt_format(request.prompt)
for i, prompt in enumerate(prompts):
@ -301,7 +306,7 @@ class OpenAIServingCompletion(OpenAIServing):
request, prompt=prompt)
generators.append(
self.engine.generate(None,
self.engine.generate(prompt,
sampling_params,
f"{request_id}-{i}",
prompt_token_ids=input_ids,

View File

@ -795,6 +795,10 @@ class SamplerWithLoRA(BaseLayerWithLoRA):
self.dtype = dtype
self.device = device
@property
def logits_as_hidden_states(self):
return self.base_layer.logits_as_hidden_states
@property
def vocab_size(self):
return self.base_layer.vocab_size

View File

@ -87,7 +87,7 @@ def add_lora(y: torch.Tensor,
r = wb_t_all.size(-1)
if buffer is None:
# We set the buffer to be float32 by default to avoid
# numerical innacuracies that would otherwise happen
# numerical inaccuracies that would otherwise happen
# due to downcasting.
buffer = torch.zeros((x.size(0), r),
dtype=torch.float32,

View File

@ -1,7 +1,6 @@
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.model_loader import get_model
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.utils import set_random_seed
from vllm.model_executor.utils import set_random_seed, get_model
__all__ = [
"InputMetadata",

View File

@ -0,0 +1,99 @@
import asyncio
import concurrent.futures
from copy import copy
from enum import Enum
from functools import lru_cache
from json import dumps as json_dumps
from re import escape as regex_escape
from typing import Union, Tuple
from pydantic import BaseModel
from vllm.entrypoints.openai.protocol import CompletionRequest, ChatCompletionRequest
from vllm.model_executor.guided_logits_processors import JSONLogitsProcessor, RegexLogitsProcessor
class GuidedDecodingMode(Enum):
JSON = "json"
REGEX = "regex"
CHOICE = "choice"
global_thread_pool = None # used for generating logits processor fsm
async def get_guided_decoding_logits_processor(
request: Union[CompletionRequest, ChatCompletionRequest],
tokenizer) -> Union[JSONLogitsProcessor, RegexLogitsProcessor]:
"""
Given an OpenAI-compatible request, check for guided decoding parameters
and get the necessary logits processor for the given guide.
We cache logit processors by (guide, tokenizer), and on cache hit
we make a shallow copy to reuse the same underlying FSM.
"""
global global_thread_pool
guide, mode = _get_guide_and_mode(request)
if not guide:
return None
if global_thread_pool is None:
global_thread_pool = concurrent.futures.ThreadPoolExecutor(
max_workers=2)
loop = asyncio.get_running_loop()
result = await loop.run_in_executor(global_thread_pool,
_get_cached_logits_processor, guide,
tokenizer, mode)
logits_processor = copy(result)
# reset logits processor's internal state
logits_processor.init_state()
return logits_processor
def _get_guide_and_mode(
request: Union[CompletionRequest, ChatCompletionRequest]
) -> Tuple[str, GuidedDecodingMode]:
if request.guided_json:
if not isinstance(request.guided_json, (str, dict, BaseModel)):
raise TypeError("JSON schema must be str, dict, or BaseModel")
json = request.guided_json
if isinstance(json, dict):
# turn dict into hashable string
json = json_dumps(json, sort_keys=True)
elif isinstance(json, BaseModel):
# use pydantic signature so that different model classes
# with the same fields will get hashed the same
json = str(json.__signature__)
return json, GuidedDecodingMode.JSON
elif request.guided_regex:
if not isinstance(request.guided_regex, str):
raise TypeError("Regex must be string")
return request.guided_regex, GuidedDecodingMode.REGEX
elif request.guided_choice:
if not isinstance(request.guided_choice, list):
raise TypeError("Choices must be a list")
# choice just uses regex
choices = [
regex_escape(str(choice)) for choice in request.guided_choice
]
choices_regex = "(" + "|".join(choices) + ")"
return choices_regex, GuidedDecodingMode.CHOICE
else:
return None, None
@lru_cache(maxsize=32)
def _get_cached_logits_processor(guide: str, tokenizer,
mode: GuidedDecodingMode):
if mode == GuidedDecodingMode.JSON:
return JSONLogitsProcessor(guide, tokenizer)
elif mode == GuidedDecodingMode.REGEX or mode == GuidedDecodingMode.CHOICE:
return RegexLogitsProcessor(guide, tokenizer)
else:
raise ValueError(f"Unknown guided decoding mode {mode}")

View File

@ -0,0 +1,129 @@
# Copyright 2024- the Outlines developers
# This file is adapted from
# https://github.com/outlines-dev/outlines/blob/main/outlines/serve/vllm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import math
from collections import defaultdict
from typing import Union, DefaultDict, Dict, List, Optional
import torch
from pydantic import BaseModel
from outlines.fsm.fsm import RegexFSM
from outlines.fsm.json_schema import build_regex_from_schema
class RegexLogitsProcessor:
def __init__(self, regex_string: str, tokenizer):
"""Compile the FSM that drives the regex-structured generation.
Parameters
----------
regex_string
A string that represents a regular expression
tokenizer
The model's tokenizer
"""
tokenizer = self.adapt_tokenizer(tokenizer)
fsm = RegexFSM(regex_string, tokenizer)
self.fsm = fsm
def init_state(self):
"""Initialize the FSM states."""
self.fsm_state: DefaultDict[int, int] = defaultdict(int)
def __call__(self, input_ids: List[int],
scores: torch.Tensor) -> torch.Tensor:
"""Use the FSM to bias the logits before sampling the next token."""
seq_id = hash(tuple(input_ids))
if len(input_ids) == 0:
self.init_state()
else:
last_token = input_ids[-1]
last_seq_id = hash(tuple(input_ids[:-1]))
self.fsm_state[seq_id] = self.fsm.next_state(
self.fsm_state[last_seq_id], last_token)
allowed_tokens = self.fsm.allowed_token_ids(self.fsm_state[seq_id])
mask = torch.full((scores.shape[-1], ),
-math.inf,
device=scores.device)
mask[allowed_tokens] = 0
scores.add_(mask)
return scores
def adapt_tokenizer(self, tokenizer):
"""Adapt vLLM's tokenizer to use to compile the FSM.
The API of Outlines tokenizers is slightly different to that of
`transformers`. In addition we need to handle the missing spaces to
Llama's tokenizer to be able to compile FSMs for this model.
"""
tokenizer.vocabulary = tokenizer.get_vocab()
tokenizer.special_tokens = set(tokenizer.all_special_tokens)
def convert_token_to_string(token: str) -> str:
from transformers.file_utils import SPIECE_UNDERLINE
string = tokenizer.convert_tokens_to_string([token])
# A hack to handle missing spaces to HF's Llama tokenizers
if token.startswith(SPIECE_UNDERLINE) or token == "<0x20>":
return " " + string
return string
tokenizer.convert_token_to_string = convert_token_to_string
return tokenizer
class JSONLogitsProcessor(RegexLogitsProcessor):
def __init__(self,
schema: Union[str, Dict, BaseModel],
tokenizer,
whitespace_pattern: Optional[str] = None):
"""Compile the FSM that drives the JSON-guided generation.
Parameters
----------
schema
A JSON schema that encodes the structure we want the model to generate
tokenizer
The model's tokenizer
whitespace_pattern
Pattern to use for JSON syntactic whitespace (doesn't impact string literals)
Example: allow only a single space or newline with `whitespace_pattern=r"[\n ]?"`
"""
if isinstance(schema, type(BaseModel)):
schema_str = json.dumps(schema.model_json_schema())
elif isinstance(schema, Dict):
schema_str = json.dumps(schema)
elif isinstance(schema, str):
schema_str = schema
else:
raise ValueError(
f"Cannot parse schema {schema}. The schema must be either " +
"a Pydantic object, a dictionary or a string that contains the JSON "
+ "Schema specification")
regex_string = build_regex_from_schema(schema_str, whitespace_pattern)
super().__init__(regex_string, tokenizer)

View File

@ -37,6 +37,29 @@ class SiluAndMul(nn.Module):
return out
class GeluAndMul(nn.Module):
"""An activation function for GeGLU.
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
Shapes:
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
return: (batch_size, seq_len, d) or (num_tokens, d)
"""
def _forward(self, x: torch.Tensor) -> torch.Tensor:
"""PyTorch-native implementation equivalent to forward()."""
d = x.shape[-1] // 2
return F.gelu(x[..., :d]) * x[..., d:]
def forward(self, x: torch.Tensor) -> torch.Tensor:
d = x.shape[-1] // 2
output_shape = (x.shape[:-1] + (d, ))
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
ops.gelu_and_mul(out, x)
return out
class NewGELU(nn.Module):
def _forward(self, x: torch.Tensor) -> torch.Tensor:

View File

@ -137,25 +137,27 @@ class PagedAttention(nn.Module):
)
if input_metadata.is_prompt:
# Prompt run.
if self.num_kv_heads != self.num_heads:
# As of Nov 2023, xformers only supports MHA. For MQA/GQA,
# project the key and value tensors to the desired number of
# heads.
# TODO(woosuk): Use MQA/GQA kernels for higher performance.
query = query.view(query.shape[0], self.num_kv_heads,
self.num_queries_per_kv, query.shape[-1])
key = key[:, :,
None, :].expand(key.shape[0], self.num_kv_heads,
self.num_queries_per_kv,
key.shape[-1])
value = value[:, :, None, :].expand(value.shape[0],
self.num_kv_heads,
self.num_queries_per_kv,
value.shape[-1])
# normal attention
if (key_cache is None or value_cache is None
or input_metadata.block_tables.numel() == 0):
if self.num_kv_heads != self.num_heads:
# As of Nov 2023, xformers only supports MHA. For MQA/GQA,
# project the key and value tensors to the desired number of
# heads.
# TODO(woosuk): Use MQA/GQA kernels for higher performance.
query = query.view(query.shape[0], self.num_kv_heads,
self.num_queries_per_kv,
query.shape[-1])
key = key[:, :,
None, :].expand(key.shape[0], self.num_kv_heads,
self.num_queries_per_kv,
key.shape[-1])
value = value[:, :,
None, :].expand(value.shape[0],
self.num_kv_heads,
self.num_queries_per_kv,
value.shape[-1])
# Set attention bias if not provided. This typically happens at
# the very attention layer of every iteration.
# FIXME(woosuk): This is a hack.

View File

@ -0,0 +1,5 @@
from vllm.model_executor.layers.fused_moe.fused_moe import fused_moe
__all__ = [
"fused_moe",
]

View File

@ -0,0 +1,20 @@
{
"1": {"BLOCK_SIZE_M": 16, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 4},
"2": {"BLOCK_SIZE_M": 16, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 7},
"4": {"BLOCK_SIZE_M": 16, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 6},
"8": {"BLOCK_SIZE_M": 16, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 7},
"16": {"BLOCK_SIZE_M": 16, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 7},
"24": {"BLOCK_SIZE_M": 16, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 4},
"32": {"BLOCK_SIZE_M": 16, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 4},
"64": {"BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 4},
"96": {"BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 16, "num_warps": 4, "num_stages": 4},
"128": {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 6},
"192": {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 6},
"256": {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 16, "num_warps": 8, "num_stages": 4},
"512": {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 32, "num_warps": 8, "num_stages": 4},
"1024": {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 64, "num_warps": 8, "num_stages": 4},
"1536": {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 16, "num_warps": 8, "num_stages": 4},
"2048": {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 16, "num_warps": 4, "num_stages": 4},
"3072": {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 1, "num_warps": 8, "num_stages": 4},
"4096": {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 32, "GROUP_SIZE_M": 16, "num_warps": 8, "num_stages": 4}
}

View File

@ -0,0 +1,24 @@
{
"1": {"BLOCK_SIZE_M": 16, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 4, "num_warps": 4, "num_stages": 4},
"2": {"BLOCK_SIZE_M": 16, "BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 256, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 4},
"4": {"BLOCK_SIZE_M": 16, "BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 256, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 4},
"8": {"BLOCK_SIZE_M": 16, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 2, "num_warps": 8, "num_stages": 4},
"16": {"BLOCK_SIZE_M": 16, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 4, "num_warps": 4, "num_stages": 4},
"24": {"BLOCK_SIZE_M": 16, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 4, "num_warps": 4, "num_stages": 4},
"32": {"BLOCK_SIZE_M": 16, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 4},
"80": {"BLOCK_SIZE_M": 32, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 4},
"96": {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 4},
"128": {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 4},
"192": {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 1, "num_warps": 4, "num_stages": 4},
"200": {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 2, "num_warps": 4, "num_stages": 4},
"208": {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 2, "num_warps": 4, "num_stages": 4},
"216": {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 16, "num_warps": 4, "num_stages": 4},
"224": {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "GROUP_SIZE_M": 32, "num_warps": 4, "num_stages": 4},
"256": {"BLOCK_SIZE_M": 64, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 32, "num_warps": 4, "num_stages": 4},
"512": {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 64, "num_warps": 8, "num_stages": 4},
"1024": {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 64, "num_warps": 8, "num_stages": 4},
"1536": {"BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 64, "num_warps": 8, "num_stages": 4},
"2048": {"BLOCK_SIZE_M": 256, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 64, "num_warps": 8, "num_stages": 4},
"3072": {"BLOCK_SIZE_M": 256, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 64, "num_warps": 8, "num_stages": 4},
"4096": {"BLOCK_SIZE_M": 256, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 64, "GROUP_SIZE_M": 64, "num_warps": 8, "num_stages": 4}
}

View File

@ -0,0 +1,10 @@
This directory contains tuned configurations for different settings of the fused_moe kernel.
For different settings of
- E (number of experts)
- N (intermediate size)
- device_name (torch.cuda.get_device_name())
the JSON file contains a mapping from M (batch size) to the chosen configuration.
The example configurations provided are for the Mixtral model for TP2 on H100
and TP4 on A100. Mixtral has intermediate size N = 14336, i.e. for TP2 we have
N = 7168 and for TP4 we have N = 3584.

View File

@ -1,11 +1,19 @@
"""Fused MoE kernel."""
import functools
import json
import os
from typing import Any, Dict, Optional, Tuple
import torch
import triton
import triton.language as tl
from vllm._C import ops
from vllm.logger import init_logger
from vllm.utils import is_hip
logger = init_logger(__name__)
@triton.jit
def fused_moe_kernel(
@ -129,7 +137,7 @@ def fused_moe_kernel(
def moe_align_block_size(
topk_ids: torch.Tensor, block_size: int,
num_experts: int) -> (torch.Tensor, torch.Tensor, torch.Tensor):
num_experts: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Aligns the token distribution across experts to be compatible with block size for matrix multiplication.
@ -177,7 +185,8 @@ def invoke_fused_moe_kernel(A: torch.Tensor, B: torch.Tensor, C: torch.Tensor,
sorted_token_ids: torch.Tensor,
expert_ids: torch.Tensor,
num_tokens_post_padded: torch.Tensor,
mul_routed_weight: bool, top_k: int, config: dict):
mul_routed_weight: bool, top_k: int,
config: Dict[str, Any]) -> None:
assert topk_weights.stride(1) == 1
assert sorted_token_ids.stride(0) == 1
@ -210,6 +219,34 @@ def invoke_fused_moe_kernel(A: torch.Tensor, B: torch.Tensor, C: torch.Tensor,
)
@functools.lru_cache
def get_moe_configs(E: int, N: int) -> Optional[Dict[int, Any]]:
"""
Return optimized configurations for the fused MoE kernel.
The return value will be a dictionary that maps an irregular grid of batch sizes
to configurations of the fused_moe kernel. To evaluate the kernel on a given batch
size bs, the closest batch size in the grid should be picked and the associated
configuration chosen to invoke the kernel.
"""
# First look up if an optimized configuration is available in the configs directory
device_name = torch.cuda.get_device_name().replace(" ", "_")
config_file_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "configs",
f"E={E},N={N},device_name={device_name}.json")
if os.path.exists(config_file_path):
with open(config_file_path) as f:
logger.info(
f"Using configuration from {config_file_path} for MoE layer.")
# If a configuration has been found, return it
return {int(key): val for key, val in json.load(f).items()}
# If no optimized configuration is available, we will use the default configuration
return None
def fused_moe(
hidden_states: torch.Tensor,
w1: torch.Tensor,
@ -218,6 +255,7 @@ def fused_moe(
topk: int,
renormalize: bool,
inplace: bool = False,
override_config: Optional[Dict[str, Any]] = None,
) -> torch.Tensor:
"""
This function computes a Mixture of Experts (MoE) layer using two sets of weights, w1 and w2, and top-k gating mechanism.
@ -230,6 +268,7 @@ def fused_moe(
- topk (int): The number of top-k experts to select.
- renormalize (bool): If True, renormalize the top-k weights to sum to 1.
- inplace (bool): If True, perform the operation in-place. Defaults to False.
- override_config (Optional[Dict[str, Any]]): Optional override for the kernel configuration.
Returns:
- torch.Tensor: The output tensor after applying the MoE layer.
@ -279,20 +318,31 @@ def fused_moe(
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
config = {
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 64,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
}
if override_config:
config = override_config
else:
# First try to load optimal config from the file
configs = get_moe_configs(E, w2.shape[2])
if topk_ids.numel() <= w1.shape[0]:
config = {
'BLOCK_SIZE_M': 16,
'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 64,
'GROUP_SIZE_M': 1
}
if configs:
# If an optimal configuration map has been found, look up the optimal config
config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
else:
# Else use the default config
config = {
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 64,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
}
if M <= E:
config = {
'BLOCK_SIZE_M': 16,
'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 64,
'GROUP_SIZE_M': 1
}
intermediate_cache1 = torch.empty((M, topk_ids.shape[1], N),
device=hidden_states.device,

View File

@ -17,6 +17,14 @@ from vllm.logger import init_logger
logger = init_logger(__name__)
def adjust_marlin_shard(param, shard_size, shard_offset):
marlin_tile_size = getattr(param, "marlin_tile_size", None)
if marlin_tile_size is None:
return shard_size, shard_offset
return shard_size * marlin_tile_size, shard_offset * marlin_tile_size
class LinearMethodBase(ABC):
"""Base class for different (maybe quantized) linear methods."""
@ -276,6 +284,11 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
# If marlin, we need to adjust the offset and size to account for the tiling.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
loaded_weight_shard = loaded_weight.narrow(
output_dim, shard_offset, shard_size)
self.weight_loader(param, loaded_weight_shard, shard_id)
@ -293,6 +306,11 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
# If marlin, we need to adjust the offset and size to account for the tiling.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
param_data = param_data.narrow(output_dim, shard_offset,
shard_size)
start_idx = tp_rank * shard_size
@ -372,6 +390,7 @@ class QKVParallelLinear(ColumnParallelLinear):
loaded_shard_id: Optional[str] = None):
param_data = param.data
output_dim = getattr(param, "output_dim", None)
if loaded_shard_id is None:
# Loaded weight is already packed.
if output_dim is None:
@ -393,6 +412,11 @@ class QKVParallelLinear(ColumnParallelLinear):
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
# If marlin, we need to adjust the offset and size to account for the tiling.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
loaded_weight_shard = loaded_weight.narrow(
output_dim, shard_offset, shard_size)
self.weight_loader(param, loaded_weight_shard, shard_id)
@ -417,6 +441,11 @@ class QKVParallelLinear(ColumnParallelLinear):
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
# If marlin, we need to adjust the offset and size to account for the tiling.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
param_data = param_data.narrow(output_dim, shard_offset,
shard_size)
if loaded_shard_id == "q":

View File

@ -4,11 +4,13 @@ from vllm.model_executor.layers.quantization.base_config import QuantizationConf
from vllm.model_executor.layers.quantization.awq import AWQConfig
from vllm.model_executor.layers.quantization.gptq import GPTQConfig
from vllm.model_executor.layers.quantization.squeezellm import SqueezeLLMConfig
from vllm.model_executor.layers.quantization.marlin import MarlinConfig
_QUANTIZATION_CONFIG_REGISTRY = {
"awq": AWQConfig,
"gptq": GPTQConfig,
"squeezellm": SqueezeLLMConfig,
"marlin": MarlinConfig,
}

View File

@ -1,6 +1,7 @@
import enum
from enum import Enum
from typing import Any, Dict, List, Optional
from fractions import Fraction
import torch
from torch.nn.parameter import Parameter
@ -27,11 +28,10 @@ class GPTQConfig(QuantizationConfig):
self.weight_bits = weight_bits
self.group_size = group_size
self.desc_act = desc_act
self.pack_factor = 32 // self.weight_bits
# exllama kernel v1 only supports 4 bit
if self.weight_bits != 4:
self.pack_factor = Fraction(32, self.weight_bits)
if self.weight_bits not in [2, 3, 4, 8]:
raise ValueError(
"Currently, only 4-bit weight quantization is supported for "
"Currently, only 2/3/4/8-bit weight quantization is supported for "
f"GPTQ, but got {self.weight_bits} bits.")
def __repr__(self) -> str:
@ -101,7 +101,7 @@ class GPTQLinearMethod(LinearMethodBase):
"The input size is not aligned with the quantized "
"weight shape. This can be caused by too large "
"tensor parallel size.")
if output_size_per_partition % self.quant_config.pack_factor != 0:
if output_size_per_partition % self.quant_config.pack_factor.numerator != 0:
raise ValueError(
"The output size is not aligned with the quantized "
"weight shape. This can be caused by too large "
@ -201,11 +201,13 @@ class GPTQLinearMethod(LinearMethodBase):
else:
weights["g_idx"] = torch.empty((1, 1), device="meta")
weights["exllama_state"] = ExllamaState.READY
ops.gptq_shuffle(weights["qweight"], weights["g_idx"])
ops.gptq_shuffle(weights["qweight"], weights["g_idx"],
self.quant_config.weight_bits)
output = ops.gptq_gemm(reshaped_x, weights["qweight"],
weights["qzeros"], weights["scales"],
weights["g_idx"],
weights["exllama_state"] == ExllamaState.READY)
weights["exllama_state"] == ExllamaState.READY,
self.quant_config.weight_bits)
if bias is not None:
output = output + bias
return output.reshape(out_shape)

View File

@ -0,0 +1,210 @@
from typing import Any, Dict, List, Optional
import torch
from torch.nn.parameter import Parameter
from vllm._C import ops
from vllm.model_executor.layers.linear import LinearMethodBase, set_weight_attrs
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
class MarlinConfig(QuantizationConfig):
"""Config class for Marlin.
Reference: https://github.com/IST-DASLab/marlin/tree/master
"""
def __init__(
self,
group_size: int,
) -> None:
# Group size for the quantization.
self.group_size = group_size
if self.group_size != 128 and self.group_size != -1:
raise ValueError(
"Currently, only group size 128 and -1 (channelwise) is supported for "
f"Marlin, but got group_size of {self.group_size}")
# 4 Bits packed into 32 bit datatype.
self.pack_factor = 32 // 4
# Tile size used by marlin kernels.
self.tile_size = 16
# Min out_features dim
self.min_n_threads = 64
# Min in_features dim
self.min_k_threads = 128
# Max parallel problems to solve at once (improves large batch performance)
self.max_parallel = 16
# Permutation length used by the marlin kernels.
self.perm_len = 1024
def __repr__(self) -> str:
return f"MarlinConfig(group_size={self.group_size}"
@classmethod
def get_name(cls) -> str:
return "marlin"
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.half]
@classmethod
# Need to figure it out
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> List[str]:
return ["quantize_config.json"]
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "MarlinConfig":
group_size = cls.get_from_keys(config, ["group_size"])
return cls(group_size)
def get_linear_method(self) -> "MarlinLinearMethod":
return MarlinLinearMethod(self)
def get_scaled_act_names(self) -> List[str]:
return []
class MarlinLinearMethod(LinearMethodBase):
"""Linear method for Marlin.
Args:
quant_config: The Marlin quantization config.
"""
def __init__(self, quant_config: MarlinConfig):
self.quant_config = quant_config
def create_weights(
self,
input_size_per_partition: int,
output_size_per_partition: int,
input_size: int,
output_size: int,
params_dtype: torch.dtype,
) -> Dict[str, Any]:
del output_size # Unused.
if params_dtype != torch.float16:
raise ValueError(
f"The params dtype must be float16, but got {params_dtype}")
# Validate output_size_per_partition
if output_size_per_partition % self.quant_config.min_n_threads != 0:
raise ValueError(
f"Weight output_size_per_partition = {output_size_per_partition} is not divisible by min_n_threads = {self.quant_config.min_n_threads}."
)
if output_size_per_partition % self.quant_config.pack_factor != 0:
raise ValueError(
f"Weight output_size_per_partition = {output_size_per_partition} is not divisible by pack_factor = {self.quant_config.pack_factor}."
)
# Validate input_size_per_partition
if input_size_per_partition % self.quant_config.min_k_threads != 0:
raise ValueError(
f"Weight input_size_per_partition = {input_size_per_partition} is not divisible by min_k_threads = {self.quant_config.min_k_threads}."
)
if self.quant_config.group_size != -1 and input_size_per_partition % self.quant_config.group_size != 0:
raise ValueError(
f"Weight input_size_per_partition = f{input_size_per_partition} is not divisible by group_size = {self.quant_config.group_size}."
)
# Check that we have at least 4 tiles horizontally in the shard
num_tiles_per_perm = self.quant_config.perm_len // (
self.quant_config.tile_size**2)
if output_size_per_partition % num_tiles_per_perm != 0:
raise ValueError(
"Each permutation group must reside on the same gpu")
# Quantized 4Bit weights packed into Int32.
qweight = Parameter(
torch.empty(
input_size_per_partition // self.quant_config.tile_size,
output_size_per_partition * self.quant_config.tile_size //
self.quant_config.pack_factor,
device="cuda",
dtype=torch.int32,
),
requires_grad=False,
)
set_weight_attrs(
qweight,
{
"input_dim": 0,
"output_dim": 1,
"packed_dim": 1,
"pack_factor": self.quant_config.pack_factor,
"marlin_tile_size": self.quant_config.tile_size,
},
)
# Determine if channelwise or not
input_groups = 1 if self.quant_config.group_size == -1 else input_size_per_partition // self.quant_config.group_size
scales = Parameter(
torch.empty(
input_groups,
output_size_per_partition,
device="cuda",
dtype=params_dtype,
),
requires_grad=False,
)
set_weight_attrs(
scales,
{
"input_dim": None if input_groups == 1 else 0,
"output_dim": 1,
},
)
# Allocate workspace (Used for internal locking mechanism)
max_workspace_size = (
output_size_per_partition //
self.quant_config.min_n_threads) * self.quant_config.max_parallel
workspace = Parameter(torch.zeros(max_workspace_size,
device="cuda",
dtype=torch.int),
requires_grad=False)
return {
"B": qweight,
"s": scales,
"workspace": workspace,
}
def apply_weights(
self,
weights: Dict[str, Any],
x: torch.Tensor,
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
qweight = weights["B"]
scales = weights["s"]
workspace = weights["workspace"]
x_2d = x.view(-1, x.shape[-1])
size_m = x_2d.shape[0]
size_k = x_2d.shape[1]
size_n = scales.shape[1]
output_2d = ops.marlin_gemm(x_2d, qweight, scales, workspace, size_m,
size_n, size_k)
output = output_2d.view(x.shape[:-1] + (output_2d.shape[1], ))
if bias is not None:
output.add_(bias) # In-place add
return output

View File

@ -245,13 +245,11 @@ def _yarn_find_correction_range(low_rot: int,
def _yarn_linear_ramp_mask(low: float, high: float, dim: int,
dtype: torch.dtype,
device: torch.device) -> torch.Tensor:
dtype: torch.dtype) -> torch.Tensor:
if low == high:
high += 0.001 # Prevent singularity
linear_func = (torch.arange(dim, dtype=dtype, device=device) -
low) / (high - low)
linear_func = (torch.arange(dim, dtype=dtype) - low) / (high - low)
ramp_func = torch.clamp(linear_func, 0, 1)
return ramp_func
@ -356,7 +354,6 @@ def get_rope(
elif scaling_type == "yarn":
original_max_position = rope_scaling[
"original_max_position_embeddings"]
assert max_position == original_max_position * scaling_factor
extra_kwargs = {
k: v
for k, v in rope_scaling.items()

View File

@ -10,6 +10,7 @@ from vllm.model_executor.sampling_metadata import SamplingMetadata, SamplingTens
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.sequence import (PromptLogprobs, SampleLogprobs, SamplerOutput,
SequenceData, SequenceGroupOutput, SequenceOutput)
from vllm.utils import is_neuron
class Sampler(nn.Module):
@ -32,6 +33,8 @@ class Sampler(nn.Module):
org_vocab_size: Optional[int] = None) -> None:
super().__init__()
self.vocab_size = vocab_size
# Transformers-neuronx generate outputs as logits directly.
self.logits_as_hidden_states = is_neuron()
# original vocabulary size (without LoRA).
self.org_vocab_size = org_vocab_size or vocab_size
@ -55,10 +58,14 @@ class Sampler(nn.Module):
embedding_bias: Optional[torch.Tensor] = None,
) -> Optional[SamplerOutput]:
# Get the hidden states that we use for sampling.
hidden_states = _prune_hidden_states(hidden_states, sampling_metadata)
if self.logits_as_hidden_states:
logits = hidden_states
else:
hidden_states = _prune_hidden_states(hidden_states,
sampling_metadata)
# Get the logits for the next tokens.
logits = self._get_logits(hidden_states, embedding, embedding_bias)
# Get the logits for the next tokens.
logits = self._get_logits(hidden_states, embedding, embedding_bias)
# Only perform sampling in the driver worker.
# Note: `_get_logits` is still distributed across TP workers because
@ -395,7 +402,8 @@ def _sample(
sample_metadata[sampling_type] = (seq_group_ids, seq_groups,
is_prompts, sample_indices)
if sampling_type == SamplingType.GREEDY:
greedy_samples = torch.argmax(logprobs[sample_indices], dim=-1)
greedy_samples = torch.argmax(logprobs[sample_indices.long()],
dim=-1)
elif sampling_type in (SamplingType.RANDOM, SamplingType.RANDOM_SEED):
max_best_of = 1
for seq_group, is_prompt in zip(seq_groups, is_prompts):
@ -407,7 +415,7 @@ def _sample(
"generators": sampling_metadata.generators,
}
multinomial_samples[sampling_type] = _multinomial(
probs[sample_indices], max_best_of, **seeded_args)
probs[sample_indices.long()], max_best_of, **seeded_args)
elif sampling_type == SamplingType.BEAM:
beam_search_logprobs = logprobs[sample_indices]
else:

View File

@ -45,6 +45,7 @@ if triton.__version__ >= "2.1.0":
stride_v_cache_h,
stride_v_cache_d,
stride_v_cache_bl,
num_queries_per_kv: int,
BLOCK_M: tl.constexpr,
BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
@ -53,6 +54,8 @@ if triton.__version__ >= "2.1.0":
cur_head = tl.program_id(1)
start_m = tl.program_id(2)
cur_kv_head = cur_head // num_queries_per_kv
cur_batch_ctx_len = tl.load(B_Ctxlen + cur_batch)
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
@ -85,13 +88,14 @@ if triton.__version__ >= "2.1.0":
mask=(start_n + offs_n) < cur_batch_ctx_len,
other=0)
off_k = (bn[None, :] * stride_k_cache_bs +
cur_head * stride_k_cache_h +
cur_kv_head * stride_k_cache_h +
(offs_d[:, None] // x) * stride_k_cache_d +
((start_n + offs_n[None, :]) % block_size) *
stride_k_cache_bl +
(offs_d[:, None] % x) * stride_k_cache_x)
off_v = (
bn[:, None] * stride_v_cache_bs + cur_head * stride_v_cache_h +
bn[:, None] * stride_v_cache_bs +
cur_kv_head * stride_v_cache_h +
offs_d[None, :] * stride_v_cache_d +
(start_n + offs_n[:, None]) % block_size * stride_v_cache_bl)
k = tl.load(K_cache + off_k,
@ -131,9 +135,9 @@ if triton.__version__ >= "2.1.0":
l_i = l_i_new
m_i = m_i_new
off_k = (offs_n[None, :] * stride_kbs + cur_head * stride_kh +
off_k = (offs_n[None, :] * stride_kbs + cur_kv_head * stride_kh +
offs_d[:, None] * stride_kd)
off_v = (offs_n[:, None] * stride_vbs + cur_head * stride_vh +
off_v = (offs_n[:, None] * stride_vbs + cur_kv_head * stride_vh +
offs_d[None, :] * stride_vd)
k_ptrs = K + off_k
v_ptrs = V + off_v
@ -232,6 +236,7 @@ if triton.__version__ >= "2.1.0":
stride_v_cache_h,
stride_v_cache_d,
stride_v_cache_bl,
num_queries_per_kv: int,
BLOCK_M: tl.constexpr,
BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
@ -240,6 +245,8 @@ if triton.__version__ >= "2.1.0":
cur_head = tl.program_id(1)
start_m = tl.program_id(2)
cur_kv_head = cur_head // num_queries_per_kv
cur_batch_ctx_len = tl.load(B_Ctxlen + cur_batch)
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
@ -272,13 +279,14 @@ if triton.__version__ >= "2.1.0":
mask=(start_n + offs_n) < cur_batch_ctx_len,
other=0)
off_k = (bn[None, :] * stride_k_cache_bs +
cur_head * stride_k_cache_h +
cur_kv_head * stride_k_cache_h +
(offs_d[:, None] // x) * stride_k_cache_d +
((start_n + offs_n[None, :]) % block_size) *
stride_k_cache_bl +
(offs_d[:, None] % x) * stride_k_cache_x)
off_v = (
bn[:, None] * stride_v_cache_bs + cur_head * stride_v_cache_h +
bn[:, None] * stride_v_cache_bs +
cur_kv_head * stride_v_cache_h +
offs_d[None, :] * stride_v_cache_d +
(start_n + offs_n[:, None]) % block_size * stride_v_cache_bl)
k = tl.load(K_cache + off_k,
@ -317,9 +325,9 @@ if triton.__version__ >= "2.1.0":
l_i = l_i_new
m_i = m_i_new
off_k = (offs_n[None, :] * stride_kbs + cur_head * stride_kh +
off_k = (offs_n[None, :] * stride_kbs + cur_kv_head * stride_kh +
offs_d[:, None] * stride_kd)
off_v = (offs_n[:, None] * stride_vbs + cur_head * stride_vh +
off_v = (offs_n[:, None] * stride_vbs + cur_kv_head * stride_vh +
offs_d[None, :] * stride_vd)
k_ptrs = K + off_k
v_ptrs = V + off_v
@ -420,6 +428,7 @@ if triton.__version__ >= "2.1.0":
stride_v_cache_h,
stride_v_cache_d,
stride_v_cache_bl,
num_queries_per_kv: int,
BLOCK_M: tl.constexpr,
BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
@ -429,6 +438,8 @@ if triton.__version__ >= "2.1.0":
cur_head = tl.program_id(1)
start_m = tl.program_id(2)
cur_kv_head = cur_head // num_queries_per_kv
# cur_batch_seq_len: the length of prompts
# cur_batch_ctx_len: the length of prefix
# cur_batch_in_all_start_index: the start id of the dim=0
@ -468,13 +479,14 @@ if triton.__version__ >= "2.1.0":
mask=(start_n + offs_n) < cur_batch_ctx_len,
other=0)
off_k = (bn[None, :] * stride_k_cache_bs +
cur_head * stride_k_cache_h +
cur_kv_head * stride_k_cache_h +
(offs_d[:, None] // x) * stride_k_cache_d +
((start_n + offs_n[None, :]) % block_size) *
stride_k_cache_bl +
(offs_d[:, None] % x) * stride_k_cache_x)
off_v = (
bn[:, None] * stride_v_cache_bs + cur_head * stride_v_cache_h +
bn[:, None] * stride_v_cache_bs +
cur_kv_head * stride_v_cache_h +
offs_d[None, :] * stride_v_cache_d +
(start_n + offs_n[:, None]) % block_size * stride_v_cache_bl)
k = tl.load(K_cache + off_k,
@ -522,9 +534,9 @@ if triton.__version__ >= "2.1.0":
l_i = l_i_new
m_i = m_i_new
off_k = (offs_n[None, :] * stride_kbs + cur_head * stride_kh +
off_k = (offs_n[None, :] * stride_kbs + cur_kv_head * stride_kh +
offs_d[:, None] * stride_kd)
off_v = (offs_n[:, None] * stride_vbs + cur_head * stride_vh +
off_v = (offs_n[:, None] * stride_vbs + cur_kv_head * stride_vh +
offs_d[None, :] * stride_vd)
k_ptrs = K + off_k
v_ptrs = V + off_v
@ -537,7 +549,7 @@ if triton.__version__ >= "2.1.0":
alibi_start_q = tl.arange(
0, BLOCK_M) + block_start_loc + cur_batch_ctx_len
alibi_start_k = cur_batch_ctx_len
# # init debuger
# # init debugger
# offset_db_q = tl.arange(0, BLOCK_M) + block_start_loc
# offset_db_k = tl.arange(0, BLOCK_N)
# calc q[BLOCK_M, BLOCK_MODEL] mul k[prefix_len: , BLOCK_DMODEL]
@ -628,6 +640,7 @@ if triton.__version__ >= "2.1.0":
sm_scale = 1.0 / (Lq**0.5)
batch, head = b_seq_len.shape[0], q.shape[1]
num_queries_per_kv = q.shape[1] // k.shape[1]
grid = (batch, head, triton.cdiv(max_input_len, BLOCK)) # batch, head,
@ -674,6 +687,7 @@ if triton.__version__ >= "2.1.0":
v_cache.stride(2),
v_cache.stride(
3), #[num_blocks, num_kv_heads, head_size, block_size]
num_queries_per_kv=num_queries_per_kv,
BLOCK_M=BLOCK,
BLOCK_DMODEL=Lk,
BLOCK_N=BLOCK,
@ -721,6 +735,7 @@ if triton.__version__ >= "2.1.0":
v_cache.stride(2),
v_cache.stride(
3), #[num_blocks, num_kv_heads, head_size, block_size]
num_queries_per_kv=num_queries_per_kv,
BLOCK_M=BLOCK,
BLOCK_DMODEL=Lk,
BLOCK_N=BLOCK,

View File

@ -1,11 +1,11 @@
"""Utilities for selecting and loading models."""
import contextlib
from typing import Optional, Type
from typing import Type
import torch
import torch.nn as nn
from vllm.config import DeviceConfig, ModelConfig, LoRAConfig
from vllm.config import DeviceConfig, ModelConfig
from vllm.model_executor.models import ModelRegistry
from vllm.model_executor.weight_utils import (get_quant_config,
initialize_dummy_weights)
@ -37,9 +37,9 @@ def _get_model_architecture(model_config: ModelConfig) -> Type[nn.Module]:
f"Supported architectures: {ModelRegistry.get_supported_archs()}")
def get_model(model_config: ModelConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig] = None) -> nn.Module:
def get_model(model_config: ModelConfig, device_config: DeviceConfig,
**kwargs) -> nn.Module:
lora_config = kwargs.get("lora_config", None)
model_class = _get_model_architecture(model_config)
# Get the (maybe quantized) linear method.

View File

@ -4,7 +4,7 @@ from typing import List, Optional, Type
import torch.nn as nn
from vllm.logger import init_logger
from vllm.utils import is_hip
from vllm.utils import is_hip, is_neuron
logger = init_logger(__name__)
@ -30,7 +30,7 @@ _MODELS = {
"LlamaForCausalLM": ("llama", "LlamaForCausalLM"),
# For decapoda-research/llama-*
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),
"MistralForCausalLM": ("mistral", "MistralForCausalLM"),
"MistralForCausalLM": ("llama", "LlamaForCausalLM"),
"MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"),
"QuantMixtralForCausalLM": ("mixtral_quant", "MixtralForCausalLM"),
# transformers's mpt class has lower case
@ -38,11 +38,14 @@ _MODELS = {
"MPTForCausalLM": ("mpt", "MPTForCausalLM"),
"OLMoForCausalLM": ("olmo", "OLMoForCausalLM"),
"OPTForCausalLM": ("opt", "OPTForCausalLM"),
"OrionForCausalLM": ("orion", "OrionForCausalLM"),
"PhiForCausalLM": ("phi", "PhiForCausalLM"),
"QWenLMHeadModel": ("qwen", "QWenLMHeadModel"),
"Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"),
"RWForCausalLM": ("falcon", "FalconForCausalLM"),
"StableLMEpochForCausalLM": ("stablelm", "StablelmForCausalLM"),
"StableLmForCausalLM": ("stablelm", "StablelmForCausalLM"),
"Starcoder2ForCausalLM": ("starcoder2", "Starcoder2ForCausalLM"),
}
# Models not supported by ROCm.
@ -59,6 +62,9 @@ _ROCM_PARTIALLY_SUPPORTED_MODELS = {
"Sliding window attention is not yet supported in ROCm's flash attention",
}
# Models not supported by Neuron.
_NEURON_SUPPORTED_MODELS = {"LlamaForCausalLM": "neuron.llama"}
class ModelRegistry:
@ -75,8 +81,15 @@ class ModelRegistry:
logger.warning(
f"Model architecture {model_arch} is partially supported "
"by ROCm: " + _ROCM_PARTIALLY_SUPPORTED_MODELS[model_arch])
elif is_neuron():
if model_arch not in _NEURON_SUPPORTED_MODELS:
raise ValueError(
f"Model architecture {model_arch} is not supported by "
"Neuron for now.")
module_name, model_cls_name = _MODELS[model_arch]
if is_neuron():
module_name = _NEURON_SUPPORTED_MODELS[model_arch]
module = importlib.import_module(
f"vllm.model_executor.models.{module_name}")
return getattr(module, model_cls_name, None)

View File

@ -23,6 +23,7 @@ from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
@ -42,7 +43,6 @@ from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs.baichuan import BaiChuanConfig
KVCache = Tuple[torch.Tensor, torch.Tensor]
@ -186,7 +186,7 @@ class BaiChuanAttention(nn.Module):
class BaiChuanDecoderLayer(nn.Module):
def __init__(self,
config: BaiChuanConfig,
config: PretrainedConfig,
position_embedding: str,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
@ -245,7 +245,7 @@ class BaiChuanDecoderLayer(nn.Module):
class BaiChuanModel(nn.Module):
def __init__(self,
config: BaiChuanConfig,
config: PretrainedConfig,
position_embedding: str,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()

View File

@ -41,7 +41,7 @@ class DeciLMForCausalLM(LlamaForCausalLM):
Based on the llama executor.
The main difference is that DeciLM uses Variable Grouped Query Attention.
The constant number of GQA heads in the decoder is overriden with a value
The constant number of GQA heads in the decoder is overridden with a value
per layer.
Usually, in the HuggingFace implementation, instead of

View File

@ -20,10 +20,13 @@ import torch
from torch import nn
from transformers import GemmaConfig
from vllm.config import LoRAConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import GeluAndMul
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
LinearMethodBase,
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
@ -40,21 +43,6 @@ from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class GemmaRMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * (1 + self.weight)
class GemmaMLP(nn.Module):
def __init__(
@ -64,27 +52,21 @@ class GemmaMLP(nn.Module):
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.gate_proj = ColumnParallelLinear(hidden_size,
intermediate_size,
bias=False,
linear_method=linear_method)
self.up_proj = ColumnParallelLinear(hidden_size,
intermediate_size,
bias=False,
linear_method=linear_method)
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2,
bias=False,
linear_method=linear_method)
self.down_proj = RowParallelLinear(intermediate_size,
hidden_size,
bias=False,
linear_method=linear_method)
self.act_fn = nn.GELU()
self.act_fn = GeluAndMul()
def forward(self, x):
gate, _ = self.gate_proj(x)
gate = self.act_fn(gate)
up, _ = self.up_proj(x)
fuse = gate * up
outputs, _ = self.down_proj(fuse)
return outputs
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class GemmaAttention(nn.Module):
@ -185,10 +167,10 @@ class GemmaDecoderLayer(nn.Module):
intermediate_size=config.intermediate_size,
linear_method=linear_method,
)
self.input_layernorm = GemmaRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = GemmaRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
@ -196,25 +178,27 @@ class GemmaDecoderLayer(nn.Module):
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
return hidden_states, residual
class GemmaModel(nn.Module):
@ -235,7 +219,7 @@ class GemmaModel(nn.Module):
GemmaDecoderLayer(config, linear_method)
for _ in range(config.num_hidden_layers)
])
self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
@ -246,27 +230,53 @@ class GemmaModel(nn.Module):
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
# Normalize the embedding by sqrt(hidden_size)
hidden_states = hidden_states * (self.config.hidden_size**0.5)
hidden_states *= self.config.hidden_size**0.5
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states = layer(
hidden_states, residual = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
residual,
)
hidden_states = self.norm(hidden_states)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class GemmaForCausalLM(nn.Module):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
# LoRA specific attributes
supported_lora_modules = [
"qkv_proj",
"o_proj",
"gate_up_proj",
"down_proj",
]
# Gemma does not apply LoRA to the embedding layer.
embedding_modules = {}
embedding_padding_modules = []
def __init__(
self,
config: GemmaConfig,
linear_method: Optional[LinearMethodBase] = None,
lora_config: Optional[LoRAConfig] = None,
) -> None:
del lora_config # Unused.
super().__init__()
self.config = config
self.linear_method = linear_method
@ -304,6 +314,8 @@ class GemmaForCausalLM(nn.Module):
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params = set()
@ -318,9 +330,10 @@ class GemmaForCausalLM(nn.Module):
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra layer for lora models.
if "lm_head" in name:
continue
# GemmaRMSNorm is different from Llama's in that it multiplies
# (1 + weight) to the output, instead of just weight.
if "norm.weight" in name:
loaded_weight += 1.0
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
@ -329,5 +342,5 @@ class GemmaForCausalLM(nn.Module):
unloaded_params = params_dict.keys() - loaded_params
if unloaded_params:
raise RuntimeError(
f"Some weights are not initialized from checkpoints: {unloaded_params}"
)
"Some weights are not initialized from checkpoints: "
f"{unloaded_params}")

View File

@ -27,6 +27,7 @@ import torch
from torch import nn
from transformers import LlamaConfig
from vllm.config import LoRAConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.attention import PagedAttention
@ -45,7 +46,6 @@ from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
from vllm.config import LoRAConfig
KVCache = Tuple[torch.Tensor, torch.Tensor]
@ -92,6 +92,7 @@ class LlamaAttention(nn.Module):
max_position_embeddings: int = 8192,
linear_method: Optional[LinearMethodBase] = None,
bias: bool = False,
sliding_window: Optional[int] = None,
) -> None:
super().__init__()
self.hidden_size = hidden_size
@ -141,7 +142,8 @@ class LlamaAttention(nn.Module):
self.attn = PagedAttention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads)
num_kv_heads=self.num_kv_heads,
sliding_window=sliding_window)
def forward(
self,
@ -172,6 +174,7 @@ class LlamaDecoderLayer(nn.Module):
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
sliding_window = getattr(config, "sliding_window", None)
self.self_attn = LlamaAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
@ -182,6 +185,7 @@ class LlamaDecoderLayer(nn.Module):
max_position_embeddings=max_position_embeddings,
linear_method=linear_method,
bias=getattr(config, "bias", False),
sliding_window=sliding_window,
)
self.mlp = LlamaMLP(
hidden_size=self.hidden_size,

View File

@ -0,0 +1,79 @@
"""Inference-only LLaMA model compatible with HuggingFace weights."""
import os
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import LlamaConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class LlamaForCausalLM(nn.Module):
def __init__(
self,
config: LlamaConfig,
linear_method=None,
) -> None:
super().__init__()
self.config = config
self.linear_method = linear_method
self.model = None
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
with torch.inference_mode():
block_size = self.model.context_buckets[-1]
if input_metadata.is_prompt:
seq_ids = input_metadata.slot_mapping[:, 0] // block_size
else:
seq_ids = input_metadata.block_tables
logits = self.model(input_ids,
cache_ids=positions,
start_ids=seq_ids.flatten())
return logits
def sample(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.model.chkpt_model.lm_head,
hidden_states, sampling_metadata)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None,
**kwargs):
from transformers_neuronx.llama.model import LlamaForSampling
split_model_dir = f"{model_name_or_path}-split"
if os.path.isdir(os.path.join(model_name_or_path,
"pytorch_model.bin")):
split_model_dir = model_name_or_path
elif not os.path.exists(f"{model_name_or_path}-split"):
from transformers.models.llama import LlamaForCausalLM
from transformers_neuronx.module import save_pretrained_split
hf_model = LlamaForCausalLM.from_pretrained(model_name_or_path,
low_cpu_mem_usage=True)
save_pretrained_split(hf_model, f"{model_name_or_path}-split")
self.model = LlamaForSampling.from_pretrained(split_model_dir,
**kwargs)
self.model.to_neuron()

View File

@ -61,7 +61,9 @@ from vllm.model_executor.weight_utils import (
hf_model_weights_iterator,
)
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs.olmo import OLMoConfig
# this model must need this dependency
from hf_olmo import OLMoConfig
KVCache = Tuple[torch.Tensor, torch.Tensor]

View File

@ -1,36 +1,18 @@
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Mistral model compatible with HuggingFace weights."""
from typing import List, Optional, Tuple
# https://huggingface.co/OrionStarAI/Orion-14B-Base/blob/main/modeling_orion.py
# Copyright (c) OrionStar Inc.
# LICENSE: https://huggingface.co/OrionStarAI/Orion-14B-Base/blob/main/LICENSE
"""Inference-only Orion-14B model compatible with HuggingFace weights."""
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import nn
from transformers import MistralConfig
from transformers import PretrainedConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
MergedColumnParallelLinear,
QKVParallelLinear,
@ -38,19 +20,18 @@ from vllm.model_executor.layers.linear import (LinearMethodBase,
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead, DEFAULT_VOCAB_PADDING_SIZE)
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
from vllm.config import LoRAConfig
KVCache = Tuple[torch.Tensor, torch.Tensor]
class MistralMLP(nn.Module):
class OrionMLP(nn.Module):
def __init__(
self,
@ -80,16 +61,18 @@ class MistralMLP(nn.Module):
return x
class MistralAttention(nn.Module):
class OrionAttention(nn.Module):
def __init__(self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position: int = 4096 * 32,
rope_theta: float = 10000,
linear_method: Optional[LinearMethodBase] = None,
sliding_window: Optional[int] = None) -> None:
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
@ -111,7 +94,7 @@ class MistralAttention(nn.Module):
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.sliding_window = sliding_window
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size,
@ -131,14 +114,14 @@ class MistralAttention(nn.Module):
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position,
base=self.rope_theta,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
)
self.attn = PagedAttention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
sliding_window=self.sliding_window)
num_kv_heads=self.num_kv_heads)
def forward(
self,
@ -156,35 +139,39 @@ class MistralAttention(nn.Module):
return output
class MistralDecoderLayer(nn.Module):
class OrionDecoderLayer(nn.Module):
def __init__(
self,
config: MistralConfig,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
# Requires transformers > 4.32.0
rope_theta = getattr(config, "rope_theta", 10000)
self.self_attn = MistralAttention(
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
self.self_attn = OrionAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
max_position=config.max_position_embeddings,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
linear_method=linear_method,
sliding_window=config.sliding_window)
self.mlp = MistralMLP(
)
self.mlp = OrionMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
linear_method=linear_method,
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.input_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
@ -195,12 +182,8 @@ class MistralDecoderLayer(nn.Module):
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
@ -208,39 +191,36 @@ class MistralDecoderLayer(nn.Module):
input_metadata=input_metadata,
)
hidden_states = residual + hidden_states
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
hidden_states = residual + hidden_states
return hidden_states, None
class MistralModel(nn.Module):
class OrionModel(nn.Module):
def __init__(
self,
config: MistralConfig,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None,
lora_config: Optional[LoRAConfig] = None,
) -> None:
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
lora_vocab = (lora_config.lora_extra_vocab_size *
(lora_config.max_loras or 1)) if lora_config else 0
self.vocab_size = config.vocab_size + lora_vocab
self.org_vocab_size = config.vocab_size
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
)
self.layers = nn.ModuleList([
MistralDecoderLayer(config, linear_method)
OrionDecoderLayer(config, linear_method)
for _ in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
@ -260,63 +240,23 @@ class MistralModel(nn.Module):
input_metadata,
residual,
)
hidden_states, _ = self.norm(hidden_states, residual)
hidden_states = self.norm(hidden_states)
return hidden_states
class MistralForCausalLM(nn.Module):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
# LoRA specific attributes
supported_lora_modules = [
"qkv_proj",
"o_proj",
"gate_up_proj",
"down_proj",
"embed_tokens",
"lm_head",
]
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
embedding_padding_modules = ["lm_head"]
class OrionForCausalLM(nn.Module):
def __init__(
self,
config: MistralConfig,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None,
lora_config: Optional[LoRAConfig] = None,
) -> None:
super().__init__()
self.config = config
self.linear_method = linear_method
self.model = MistralModel(config,
linear_method,
lora_config=lora_config)
unpadded_vocab_size = config.vocab_size
if lora_config:
unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config else lora_config.lora_vocab_padding_size,
)
self.sampler = Sampler(unpadded_vocab_size, config.vocab_size)
self.model = OrionModel(config, linear_method)
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
@ -356,6 +296,11 @@ class MistralForCausalLM(nn.Module):
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
if ("rotary_emb.cos_cached" in name
or "rotary_emb.sin_cached" in name):
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue

View File

@ -8,6 +8,7 @@ from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
@ -27,7 +28,6 @@ from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs.qwen import QWenConfig
KVCache = Tuple[torch.Tensor, torch.Tensor]
@ -127,7 +127,7 @@ class QWenBlock(nn.Module):
def __init__(
self,
config: QWenConfig,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
@ -179,7 +179,7 @@ class QWenModel(nn.Module):
def __init__(
self,
config: QWenConfig,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
@ -222,7 +222,7 @@ class QWenLMHeadModel(nn.Module):
def __init__(
self,
config: QWenConfig,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()

View File

@ -94,7 +94,9 @@ class StablelmAttention(nn.Module):
1, self.total_num_key_value_heads // tp_size)
self.head_dim = self.hidden_size // self.total_num_heads
self.max_position_embeddings = config.max_position_embeddings
self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
rope_pct = getattr(config, "rope_pct",
getattr(config, "partial_rotary_factor", 1))
self.rotary_ndims = int(self.head_dim * rope_pct)
self.scaling = self.head_dim**-0.5
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_key_value_heads * self.head_dim
@ -114,7 +116,6 @@ class StablelmAttention(nn.Module):
self.hidden_size,
bias=False,
linear_method=linear_method)
self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.rotary_ndims,
@ -152,10 +153,11 @@ class StablelmDecoderLayer(nn.Module):
super().__init__()
self.self_attn = StablelmAttention(config)
self.mlp = StablelmMLP(config, linear_method)
self.input_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.norm_eps)
norm_eps = getattr(config, "norm_eps",
getattr(config, "layer_norm_eps", 1e-05))
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.norm_eps)
eps=norm_eps)
def forward(
self,
@ -199,7 +201,9 @@ class StableLMEpochModel(nn.Module):
StablelmDecoderLayer(config, linear_method)
for _ in range(config.num_hidden_layers)
])
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
norm_eps = getattr(config, "norm_eps",
getattr(config, "layer_norm_eps", 1e-05))
self.norm = nn.LayerNorm(config.hidden_size, eps=norm_eps)
def forward(
self,

View File

@ -0,0 +1,310 @@
# coding=utf-8
# Copyright 2024 BigCode and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Starcoder2 model."""
from typing import List, Optional, Tuple
import torch
from torch import nn
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
LinearMethodBase,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead, DEFAULT_VOCAB_PADDING_SIZE)
from vllm.model_executor.parallel_utils.parallel_state import get_tensor_model_parallel_world_size
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
try:
from transformers import Starcoder2Config
except ImportError:
# fallback to PretrainedConfig
# NOTE: Please install transformers from source or use transformers>=4.39.0
from transformers import PretrainedConfig as Starcoder2Config
KVCache = Tuple[torch.Tensor, torch.Tensor]
class Starcoder2Attention(nn.Module):
def __init__(self,
config: Starcoder2Config,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = config.num_attention_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = config.num_key_value_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = self.hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = config.rope_theta
self.max_position_embeddings = config.max_position_embeddings
self.use_bias = config.use_bias
self.sliding_window = config.sliding_window
self.qkv_proj = QKVParallelLinear(
self.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=self.use_bias,
linear_method=linear_method,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
self.hidden_size,
bias=self.use_bias,
linear_method=linear_method,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position_embeddings,
base=int(self.rope_theta),
is_neox_style=True,
)
self.attn = PagedAttention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
sliding_window=self.sliding_window,
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.o_proj(attn_output)
return output
class Starcoder2MLP(nn.Module):
def __init__(self,
config: Starcoder2Config,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.c_fc = ColumnParallelLinear(
config.hidden_size,
config.intermediate_size,
bias=config.use_bias,
linear_method=linear_method,
)
self.c_proj = RowParallelLinear(
config.intermediate_size,
config.hidden_size,
bias=config.use_bias,
linear_method=linear_method,
)
self.act = get_act_fn(config.hidden_act,
intermediate_size=config.intermediate_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.c_proj(hidden_states)
return hidden_states
class Starcoder2DecoderLayer(nn.Module):
def __init__(self,
config: Starcoder2Config,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Starcoder2Attention(config,
linear_method=linear_method)
self.mlp = Starcoder2MLP(config, linear_method=linear_method)
self.input_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.norm_epsilon)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.norm_epsilon)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
# Self Attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Starcoder2Model(nn.Module):
def __init__(self,
config: Starcoder2Config,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
# TODO: consider padding_idx (currently removed)
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
config.hidden_size)
self.layers = nn.ModuleList([
Starcoder2DecoderLayer(config, linear_method=linear_method)
for _ in range(config.num_hidden_layers)
])
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states = layer(positions, hidden_states, kv_caches[i],
input_metadata)
hidden_states = self.norm(hidden_states)
return hidden_states
class Starcoder2ForCausalLM(nn.Module):
def __init__(self,
config: Starcoder2Config,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.config = config
self.model = Starcoder2Model(config, linear_method=linear_method)
self.vocab_size = config.vocab_size
self.unpadded_vocab_size = config.vocab_size
if config.tie_word_embeddings:
self.lm_head_weight = self.model.embed_tokens.weight
else:
self.unpadded_vocab_size = config.vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
)
self.lm_head_weight = self.lm_head.weight
self.sampler = Sampler(self.unpadded_vocab_size, config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def sample(
self,
hidden_states: Optional[torch.Tensor],
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
sampling_metadata)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
if self.config.tie_word_embeddings and "lm_head.weight" in name:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)

View File

@ -0,0 +1,66 @@
"""Utilities for selecting and loading models."""
from typing import Type
import torch
import torch.nn as nn
from transformers import PretrainedConfig
from vllm.config import ModelConfig, DeviceConfig
from vllm.model_executor.models import ModelRegistry
TORCH_DTYPE_TO_NEURON_AMP = {
"auto": "f32",
"half": "f16",
"float16": "f16",
"bfloat16": "bf16",
"float": "f32",
"float32": "f32",
torch.float16: "f16",
torch.bfloat16: "bf16",
torch.float32: "f32",
}
def _get_model_architecture(config: PretrainedConfig) -> Type[nn.Module]:
architectures = getattr(config, "architectures", [])
for arch in architectures:
model_cls = ModelRegistry.load_model_cls(arch)
if model_cls is not None:
return model_cls
raise ValueError(
f"Model architectures {architectures} are not supported for now. "
f"Supported architectures: {ModelRegistry.get_supported_archs()}")
def get_model(model_config: ModelConfig, device_config: DeviceConfig,
**kwargs) -> nn.Module:
from transformers_neuronx.config import NeuronConfig, ContinuousBatchingConfig
parallel_config = kwargs.get("parallel_config")
scheduler_config = kwargs.get("scheduler_config")
model_class = _get_model_architecture(model_config.hf_config)
linear_method = None
# Create a model instance.
model = model_class(model_config.hf_config, linear_method)
continuous_batching_config = ContinuousBatchingConfig(
batch_size_for_shared_caches=scheduler_config.max_num_seqs)
neuron_config = NeuronConfig(
continuous_batching=continuous_batching_config)
# Load the weights from the cached or downloaded files.
model.load_weights(
model_config.model,
model_config.download_dir,
model_config.load_format,
model_config.revision,
tp_degree=parallel_config.neuron_tp_degree,
amp=TORCH_DTYPE_TO_NEURON_AMP[model_config.dtype],
neuron_config=neuron_config,
context_length_estimate=[scheduler_config.max_model_len],
n_positions=[scheduler_config.max_model_len],
batch_size=scheduler_config.max_num_seqs)
return model.eval()

View File

@ -36,14 +36,14 @@ def init_custom_ar() -> None:
if world_size not in _SUPPORTED_WORLD_SIZES:
logger.warn(
"Custom allreduce is disabled due to an unsupported world size: "
"%d. Supported world sizes: %s. To slience this warning, specify"
"%d. Supported world sizes: %s. To silence this warning, specify"
"disable_custom_all_reduce=True explicitly.", world_size,
str(_SUPPORTED_WORLD_SIZES))
return
if not _can_p2p(rank, world_size):
logger.warn(
"Custom allreduce is disabled because your platform lacks GPU P2P"
" capability. To slience this warning, specify"
" capability. To silence this warning, specify"
"disable_custom_all_reduce=True explicitly.")
return
_CA_HANDLE = CustomAllreduce(rank, world_size)

View File

@ -189,7 +189,7 @@ def get_pipeline_model_parallel_next_rank():
def get_pipeline_model_parallel_prev_rank():
"""Return the global rank that preceeds the caller in the pipeline"""
"""Return the global rank that precedes the caller in the pipeline"""
assert _PIPELINE_GLOBAL_RANKS is not None, (
"Pipeline parallel group is not initialized")
rank_in_pipeline = get_pipeline_model_parallel_rank()

View File

@ -5,7 +5,7 @@ import torch
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.sequence import SequenceData
from vllm.utils import in_wsl
from vllm.utils import in_wsl, is_neuron
_SAMPLING_EPS = 1e-5
@ -155,7 +155,7 @@ class SamplingTensors:
dtype: torch.dtype) -> "SamplingTensors":
# Note that the performance will be very bad without
# pinned memory.
pin_memory = not in_wsl()
pin_memory = not in_wsl() and not is_neuron()
prompt_max_len = max(len(tokens) for tokens in prompt_tokens)
prompt_padded_tokens = [
tokens + [vocab_size] * (prompt_max_len - len(tokens))

View File

@ -1,10 +1,18 @@
"""Utils for model executor."""
import random
import importlib
from typing import Any, Dict, Optional
import numpy as np
import torch
from vllm.config import DeviceConfig, ModelConfig
DEVICE_TO_MODEL_LOADER_MAP = {
"cuda": "model_loader",
"neuron": "neuron_model_loader",
}
def set_random_seed(seed: int) -> None:
random.seed(seed)
@ -33,3 +41,12 @@ def set_weight_attrs(
assert not hasattr(
weight, key), (f"Overwriting existing tensor attribute: {key}")
setattr(weight, key, value)
def get_model(model_config: ModelConfig, device_config: DeviceConfig,
**kwargs) -> torch.nn.Module:
model_loader_module = DEVICE_TO_MODEL_LOADER_MAP[device_config.device_type]
imported_model_loader = importlib.import_module(
f"vllm.model_executor.{model_loader_module}")
get_model_fn = imported_model_loader.get_model
return get_model_fn(model_config, device_config, **kwargs)

View File

@ -1,4 +1,5 @@
"""Sampling parameters for text generation."""
import copy
from enum import IntEnum
from functools import cached_property
from typing import Callable, List, Optional, Union
@ -237,6 +238,20 @@ class SamplingParams:
return SamplingType.RANDOM_SEED
return SamplingType.RANDOM
def clone(self) -> "SamplingParams":
"""Deep copy excluding LogitsProcessor objects.
LogitsProcessor objects are excluded because they may contain an
arbitrary, nontrivial amount of data.
See https://github.com/vllm-project/vllm/issues/3087
"""
logit_processor_refs = None if self.logits_processors is None else {
id(lp): lp
for lp in self.logits_processors
}
return copy.deepcopy(self, memo=logit_processor_refs)
def __repr__(self) -> str:
return (
f"SamplingParams(n={self.n}, "

View File

@ -5,12 +5,11 @@ from transformers import AutoConfig, PretrainedConfig
from vllm.transformers_utils.configs import *
_CONFIG_REGISTRY = {
"baichuan": BaiChuanConfig,
"chatglm": ChatGLMConfig,
"mpt": MPTConfig,
"qwen": QWenConfig,
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)
"RefinedWebModel": RWConfig, # For tiiuae/falcon-7b(-instruct)
"starcoder2": Starcoder2Config,
}
@ -18,6 +17,15 @@ def get_config(model: str,
trust_remote_code: bool,
revision: Optional[str] = None,
code_revision: Optional[str] = None) -> PretrainedConfig:
# FIXME(woosuk): This is a temporary fix for StarCoder2.
# Remove this when the model is supported by HuggingFace transformers.
if "bigcode" in model and "starcoder2" in model:
config_class = _CONFIG_REGISTRY["starcoder2"]
config = config_class.from_pretrained(model,
revision=revision,
code_revision=code_revision)
return config
try:
config = AutoConfig.from_pretrained(
model,

View File

@ -1,18 +1,14 @@
from vllm.transformers_utils.configs.baichuan import BaiChuanConfig
from vllm.transformers_utils.configs.chatglm import ChatGLMConfig
from vllm.transformers_utils.configs.mpt import MPTConfig
from vllm.transformers_utils.configs.olmo import OLMoConfig
from vllm.transformers_utils.configs.qwen import QWenConfig
# RWConfig is for the original tiiuae/falcon-40b(-instruct) and
# tiiuae/falcon-7b(-instruct) models. Newer Falcon models will use the
# `FalconConfig` class from the official HuggingFace transformers library.
from vllm.transformers_utils.configs.falcon import RWConfig
from vllm.transformers_utils.configs.starcoder2 import Starcoder2Config
__all__ = [
"BaiChuanConfig",
"ChatGLMConfig",
"MPTConfig",
"OLMoConfig",
"QWenConfig",
"RWConfig",
"Starcoder2Config",
]

View File

@ -1,62 +0,0 @@
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers.configuration_utils import PretrainedConfig
class BaiChuanConfig(PretrainedConfig):
model_type = "baichuan"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=64000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
hidden_act="silu",
max_position_embeddings=4096,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@ -1,72 +0,0 @@
# coding=utf-8
# adapted from https://github.com/allenai/OLMo/blob/v0.2.4/hf_olmo/configuration_olmo.py
"""OLMo configuration"""
from transformers import PretrainedConfig
class OLMoConfig(PretrainedConfig):
model_type = 'olmo'
attribute_map = {
'num_attention_heads': 'n_heads',
'hidden_size': 'd_model',
'num_hidden_layers': 'n_layers',
}
# Note that the defaults for these attributes are equivalent to the base GPT2 model.
def __init__(
self,
d_model=768,
n_heads=12,
n_layers=12,
mlp_ratio=4,
mlp_hidden_size=None,
activation_type="swiglu",
block_type="sequential",
block_group_size=1,
alibi=False,
alibi_bias_max=8.0,
rope=False,
rope_full_precision=True,
multi_query_attention=False,
attention_layer_norm=False,
layer_norm_type="default",
layer_norm_with_affine=True,
attention_layer_norm_with_affine=True,
max_sequence_length=1024,
include_bias=True,
bias_for_layer_norm=None,
scale_logits=False,
vocab_size=50257,
embedding_size=50304,
weight_tying=True,
eos_token_id=50256,
pad_token_id=50256,
**kwargs,
):
self.d_model = d_model
self.n_heads = n_heads
self.n_layers = n_layers
self.mlp_ratio = mlp_ratio
self.mlp_hidden_size = mlp_hidden_size
self.activation_type = activation_type
self.block_type = block_type
self.block_group_size = block_group_size
self.alibi = alibi
self.alibi_bias_max = alibi_bias_max
self.rope = rope
self.rope_full_precision = rope_full_precision
self.multi_query_attention = multi_query_attention
self.attention_layer_norm = attention_layer_norm
self.layer_norm_type = layer_norm_type
self.layer_norm_with_affine = layer_norm_with_affine
self.attention_layer_norm_with_affine = attention_layer_norm_with_affine
self.max_sequence_length = max_sequence_length
self.include_bias = include_bias
self.bias_for_layer_norm = bias_for_layer_norm
self.scale_logits = scale_logits
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.weight_tying = weight_tying
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
super().__init__(**kwargs)

View File

@ -1,60 +0,0 @@
# Copyright (c) Alibaba Cloud.
# LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE
from transformers import PretrainedConfig
class QWenConfig(PretrainedConfig):
model_type = "qwen"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=151936,
hidden_size=4096,
num_hidden_layers=32,
num_attention_heads=32,
emb_dropout_prob=0.0,
attn_dropout_prob=0.0,
layer_norm_epsilon=1e-6,
initializer_range=0.02,
max_position_embeddings=8192,
scale_attn_weights=True,
use_cache=True,
bf16=False,
fp16=False,
fp32=False,
kv_channels=128,
rotary_pct=1.0,
rotary_emb_base=10000,
use_dynamic_ntk=True,
use_logn_attn=True,
use_flash_attn="auto",
intermediate_size=22016,
no_bias=True,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.emb_dropout_prob = emb_dropout_prob
self.attn_dropout_prob = attn_dropout_prob
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.scale_attn_weights = scale_attn_weights
self.use_cache = use_cache
self.max_position_embeddings = max_position_embeddings
self.bf16 = bf16
self.fp16 = fp16
self.fp32 = fp32
self.kv_channels = kv_channels
self.rotary_pct = rotary_pct
self.rotary_emb_base = rotary_emb_base
self.use_dynamic_ntk = use_dynamic_ntk
self.use_logn_attn = use_logn_attn
self.use_flash_attn = use_flash_attn
self.no_bias = no_bias
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)

Some files were not shown because too many files have changed in this diff Show More