Compare commits

...

215 Commits

Author SHA1 Message Date
8fbd84bf78 Bump up version to v0.3.2 (#2968)
This version is for more model support. Add support for Gemma models (#2964) and OLMo models (#2832).
2024-02-21 11:47:25 -08:00
7d2dcce175 Support per-request seed (#2514) 2024-02-21 11:47:00 -08:00
dc903e70ac [ROCm] Upgrade transformers to v4.38.0 (#2967) 2024-02-21 09:46:57 -08:00
a9c8212895 [FIX] Add Gemma model to the doc (#2966) 2024-02-21 09:46:15 -08:00
c20ecb6a51 Upgrade transformers to v4.38.0 (#2965) 2024-02-21 09:38:03 -08:00
5253edaacb Add Gemma model (#2964) 2024-02-21 09:34:30 -08:00
017d9f1515 Add metrics to RequestOutput (#2876) 2024-02-20 21:55:57 -08:00
181b27d881 Make vLLM logging formatting optional (#2877) 2024-02-20 14:38:55 -08:00
63e2a6419d [FIX] Fix beam search test (#2930) 2024-02-20 14:37:39 -08:00
264017a2bf [ROCm] include gfx908 as supported (#2792) 2024-02-19 17:58:59 -08:00
e433c115bc Fix vllm:prompt_tokens_total metric calculation (#2869) 2024-02-18 23:55:41 -08:00
86fd8bb0ac Add warning to prevent changes to benchmark api server (#2858) 2024-02-18 21:36:19 -08:00
ab3a5a8259 Support OLMo models. (#2832) 2024-02-18 21:05:15 -08:00
a61f0521b8 [Test] Add basic correctness test (#2908) 2024-02-18 16:44:50 -08:00
537c9755a7 [Minor] Small fix to make distributed init logic in worker looks cleaner (#2905) 2024-02-18 14:39:00 -08:00
786b7f18a5 Add code-revision config argument for Hugging Face Hub (#2892) 2024-02-17 22:36:53 -08:00
8f36444c4f multi-LoRA as extra models in OpenAI server (#2775)
how to serve the loras (mimicking the [multilora inference example](https://github.com/vllm-project/vllm/blob/main/examples/multilora_inference.py)):
```terminal
$ export LORA_PATH=~/.cache/huggingface/hub/models--yard1--llama-2-7b-sql-lora-test/
$ python -m vllm.entrypoints.api_server \
 --model meta-llama/Llama-2-7b-hf \
 --enable-lora \
 --lora-modules sql-lora=$LORA_PATH sql-lora2=$LORA_PATH
```
the above server will list 3 separate values if the user queries `/models`: one for the base served model, and one each for the specified lora modules. in this case sql-lora and sql-lora2 point to the same underlying lora, but this need not be the case. lora config values take the same values they do in EngineArgs

no work has been done here to scope client permissions to specific models
2024-02-17 12:00:48 -08:00
185b2c29e2 Defensively copy sampling_params (#2881)
If the SamplingParams object passed to LLMEngine.add_request() is mutated after it returns, it could affect the async sampling process for that request.

Suggested by @Yard1 https://github.com/vllm-project/vllm/pull/2514#discussion_r1490106059
2024-02-17 11:18:04 -08:00
5f08050d8d Bump up to v0.3.1 (#2887) 2024-02-16 15:05:18 -08:00
64da65b322 Prefix Caching- fix t4 triton error (#2517) 2024-02-16 14:17:55 -08:00
5255d99dc5 [ROCm] Dockerfile fix for flash-attention build (#2885) 2024-02-15 10:22:39 -08:00
4f2ad11135 Fix DeciLM (#2883) 2024-02-14 22:29:57 -08:00
d7afab6d3a [BugFix] Fix GC bug for LLM class (#2882) 2024-02-14 22:17:44 -08:00
31348dff03 Align LoRA code between Mistral and Mixtral (fixes #2875) (#2880)
* Fix AttributeError: MixtralModel object has no attribute org_vocab_size.

* Make LoRA logic for Mistral and Mixtral the same

---------

Co-authored-by: Pernekhan Utemuratov <pernekhan@deepinfra.com>
2024-02-15 01:00:43 +01:00
25e86b6a61 Don't use cupy NCCL for AMD backends (#2855) 2024-02-14 12:30:44 -08:00
Roy
4efbac6d35 Migrate AquilaForCausalLM to LlamaForCausalLM (#2867) 2024-02-14 12:30:24 -08:00
87069ccf68 Fix docker python version (#2845) 2024-02-14 10:17:57 -08:00
7e45107f51 [Fix] Fix memory profiling when GPU is used by multiple processes (#2863) 2024-02-13 19:52:34 -08:00
0c48b37c31 Fix internlm after https://github.com/vllm-project/vllm/pull/2860 (#2861) 2024-02-13 18:01:15 -08:00
7eacffd951 Migrate InternLMForCausalLM to LlamaForCausalLM (#2860)
Co-authored-by: Roy <jasonailu87@gmail.com>
2024-02-13 17:12:05 -08:00
2a543d6efe Add LoRA support for Mixtral (#2831)
* add mixtral lora support

* formatting

* fix incorrectly ported logic

* polish tests

* minor fixes and refactoring

* minor fixes

* formatting

* rename and remove redundant logic

* refactoring

* refactoring

* minor fix

* minor refactoring

* fix code smell
2024-02-14 00:55:45 +01:00
317b29de0f Remove Yi model definition, please use LlamaForCausalLM instead (#2854)
Co-authored-by: Roy <jasonailu87@gmail.com>
2024-02-13 14:22:22 -08:00
a463c333dd Use CuPy for CUDA graphs (#2811) 2024-02-13 11:32:06 -08:00
ea356004d4 Revert "Refactor llama family models (#2637)" (#2851)
This reverts commit 5c976a7e1a1bec875bf6474824b7dff39e38de18.
2024-02-13 09:24:59 -08:00
Roy
5c976a7e1a Refactor llama family models (#2637) 2024-02-13 00:09:23 -08:00
f964493274 [CI] Ensure documentation build is checked in CI (#2842) 2024-02-12 22:53:07 -08:00
a4211a4dc3 Serving Benchmark Refactoring (#2433) 2024-02-12 22:53:00 -08:00
Rex
563836496a Refactor 2 awq gemm kernels into m16nXk32 (#2723)
Co-authored-by: Chunan Zeng <chunanzeng@Chunans-Air.attlocal.net>
2024-02-12 11:02:17 -08:00
4ca2c358b1 Add documentation section about LoRA (#2834) 2024-02-12 17:24:45 +01:00
0580aab02f [ROCm] support Radeon™ 7900 series (gfx1100) without using flash-attention (#2768) 2024-02-10 23:14:37 -08:00
3711811b1d Disable custom all reduce by default (#2808) 2024-02-08 09:58:03 -08:00
65b89d16ee [Ray] Integration compiled DAG off by default (#2471) 2024-02-08 09:57:25 -08:00
931746bc6d Add documentation on how to do incremental builds (#2796) 2024-02-07 14:42:02 -08:00
c81dddb45c [ROCm] Fix build problem resulted from previous commit related to FP8 kv-cache support (#2790) 2024-02-06 22:36:59 -08:00
fe6d09ae61 [Minor] More fix of test_cache.py CI test failure (#2750) 2024-02-06 11:38:38 -08:00
ed70c70ea3 modelscope: fix issue when model parameter is not a model id but path of the model. (#2489) 2024-02-06 09:57:15 -08:00
f0d4e14557 Add fused top-K softmax kernel for MoE (#2769) 2024-02-05 17:38:02 -08:00
2ccee3def6 [ROCm] Fixup arch checks for ROCM (#2627) 2024-02-05 14:59:09 -08:00
b92adec8e8 Set local logging level via env variable (#2774) 2024-02-05 14:26:50 -08:00
56f738ae9b [ROCm] Fix some kernels failed unit tests (#2498) 2024-02-05 14:25:36 -08:00
72d3a30c63 [Minor] Fix benchmark_latency script (#2765) 2024-02-05 12:45:37 -08:00
c9b45adeeb Require triton >= 2.1.0 (#2746)
Co-authored-by: yangrui1 <yangrui@lanjingren.com>
2024-02-04 23:07:36 -08:00
Rex
5a6c81b051 Remove eos tokens from output by default (#2611) 2024-02-04 14:32:42 -08:00
51cd22ce56 set&get llm internal tokenizer instead of the TokenizerGroup (#2741)
Co-authored-by: shujunhua1 <shujunhua1@jd.com>
2024-02-04 14:25:36 -08:00
5ed704ec8c docs: fix langchain (#2736) 2024-02-03 18:17:55 -08:00
4abf6336ec Add one example to run batch inference distributed on Ray (#2696) 2024-02-02 15:41:42 -08:00
0e163fce18 Fix default length_penalty to 1.0 (#2667) 2024-02-01 15:59:39 -08:00
96b6f475dd Remove hardcoded device="cuda" to support more devices (#2503)
Co-authored-by: Jiang Li <jiang1.li@intel.com>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
2024-02-01 15:46:39 -08:00
c410f5d020 Use revision when downloading the quantization config file (#2697)
Co-authored-by: Pernekhan Utemuratov <pernekhan@deepinfra.com>
2024-02-01 15:41:58 -08:00
bb8c697ee0 Update README for meetup slides (#2718) 2024-02-01 14:56:53 -08:00
b9e96b17de fix python 3.8 syntax (#2716) 2024-02-01 14:00:58 -08:00
923797fea4 Fix compile error when using rocm (#2648) 2024-02-01 09:35:09 -08:00
cd9e60c76c Add Internlm2 (#2666) 2024-02-01 09:27:40 -08:00
93b38bea5d Refactor Prometheus and Add Request Level Metrics (#2316) 2024-01-31 14:58:07 -08:00
d0d93b92b1 Add unit test for Mixtral MoE layer (#2677) 2024-01-31 14:34:17 -08:00
89efcf1ce5 [Minor] Fix test_cache.py CI test failure (#2684) 2024-01-31 10:12:11 -08:00
c664b0e683 fix some bugs (#2689) 2024-01-31 10:09:23 -08:00
d69ff0cbbb Fixes assertion failure in prefix caching: the lora index mapping should respect prefix_len (#2688)
Signed-off-by: Tao He <sighingnow@gmail.com>
2024-01-31 18:00:13 +01:00
1af090b57d Bump up version to v0.3.0 (#2656) 2024-01-31 00:07:07 -08:00
3dad944485 Add quantized mixtral support (#2673) 2024-01-30 16:34:10 -08:00
105a40f53a [Minor] Fix false warning when TP=1 (#2674) 2024-01-30 14:39:40 -08:00
bbe9bd9684 [Minor] Fix a small typo (#2672) 2024-01-30 13:40:37 -08:00
4f65af0e25 Add swap_blocks unit tests (#2616) 2024-01-30 09:30:50 -08:00
d79ced3292 Fix 'Actor methods cannot be called directly' when using --engine-use-ray (#2664)
* fix: engine-useray complain

* fix: typo
2024-01-30 17:17:05 +01:00
ab40644669 Fused MOE for Mixtral (#2542)
Co-authored-by: chen shen <scv119@gmail.com>
2024-01-29 22:43:37 -08:00
5d60def02c DeepseekMoE support with Fused MoE kernel (#2453)
Co-authored-by: roy <jasonailu87@gmail.com>
2024-01-29 21:19:48 -08:00
ea8489fce2 ROCm: Allow setting compilation target (#2581) 2024-01-29 10:52:31 -08:00
1b20639a43 No repeated IPC open (#2642) 2024-01-29 10:46:29 -08:00
b72af8f1ed Fix error when tp > 1 (#2644)
Co-authored-by: zhaoyang-star <zhao.yang16@zte.com.cn>
2024-01-28 22:47:39 -08:00
9090bf02e7 Support FP8-E5M2 KV Cache (#2279)
Co-authored-by: zhaoyang <zhao.yang16@zte.com.cn>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-01-28 16:43:54 -08:00
7d648418b8 Update Ray version requirements (#2636) 2024-01-28 14:27:22 -08:00
89be30fa7d Small async_llm_engine refactor (#2618) 2024-01-27 23:28:37 -08:00
f8ecb84c02 Speed up Punica compilation (#2632) 2024-01-27 17:46:56 -08:00
5f036d2bcc [Minor] Fix warning on Ray dependencies (#2630) 2024-01-27 15:43:40 -08:00
380170038e Implement custom all reduce kernels (#2192) 2024-01-27 12:46:35 -08:00
220a47627b Use head_dim in config if exists (#2622) 2024-01-27 10:30:49 -08:00
beb89f68b4 AWQ: Up to 2.66x higher throughput (#2566) 2024-01-26 23:53:17 -08:00
390b495ff3 Don't build punica kernels by default (#2605) 2024-01-26 15:19:19 -08:00
3a0e1fc070 Support for Stable LM 2 (#2598)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-01-26 12:45:19 -08:00
6b7de1a030 [ROCm] add support to ROCm 6.0 and MI300 (#2274) 2024-01-26 12:41:10 -08:00
5265631d15 use a correct device when creating OptionalCUDAGuard (#2583) 2024-01-25 23:48:17 -08:00
2832e7b9f9 fix names and license for Qwen2 (#2589) 2024-01-24 22:37:51 -08:00
3a7dd7e367 Support Batch Completion in Server (#2529) 2024-01-24 17:11:07 -08:00
223c19224b Fix the syntax error in the doc of supported_models (#2584) 2024-01-24 11:22:51 -08:00
f1f6cc10c7 Added include_stop_str_in_output and length_penalty parameters to OpenAI API (#2562) 2024-01-24 10:21:56 -08:00
3209b49033 [Bugfix] fix crash if max_tokens=None (#2570) 2024-01-23 22:38:55 -08:00
1e4277d2d1 lint: format all python file instead of just source code (#2567) 2024-01-23 15:53:06 -08:00
9b945daaf1 [Experimental] Add multi-LoRA support (#1804)
Co-authored-by: Chen Shen <scv119@gmail.com>
Co-authored-by: Shreyas Krishnaswamy <shrekris@anyscale.com>
Co-authored-by: Avnish Narayan <avnish@anyscale.com>
2024-01-23 15:26:37 -08:00
9c1352eb57 [Feature] Simple API token authentication and pluggable middlewares (#1106) 2024-01-23 15:13:00 -08:00
7a0b011dd5 Add a 1-line docstring to explain why calling context_attention_fwd twice in test_prefix_prefill.py (#2553) 2024-01-22 14:47:25 -08:00
63e835cbcc Fix progress bar and allow HTTPS in benchmark_serving.py (#2552) 2024-01-22 14:40:31 -08:00
94b5edeb53 Add qwen2 (#2495) 2024-01-22 14:34:21 -08:00
ab7e6006d6 Fix https://github.com/vllm-project/vllm/issues/2540 (#2545) 2024-01-22 19:02:38 +01:00
18bfcdd05c [Speculative decoding 2/9] Multi-step worker for draft model (#2424) 2024-01-21 16:31:47 -08:00
71d63ed72e migrate pydantic from v1 to v2 (#2531) 2024-01-21 16:05:56 -08:00
d75c40734a [Fix] Keep scheduler.running as deque (#2523) 2024-01-20 22:36:09 -08:00
5b23c3f26f Add group as an argument in broadcast ops (#2522) 2024-01-20 16:00:26 -08:00
00efdc84ba Add benchmark serving to CI (#2505) 2024-01-19 20:20:19 -08:00
Roy
91a61da9b1 [Bugfix] fix load local safetensors model (#2512) 2024-01-19 16:26:16 -08:00
ef9b636e2d Simplify broadcast logic for control messages (#2501) 2024-01-19 11:23:30 -08:00
2709c0009a Support OpenAI API server in benchmark_serving.py (#2172) 2024-01-18 20:34:08 -08:00
dd7e8f5f64 refactor complemention api for readability (#2499) 2024-01-18 16:45:14 -08:00
d2a68364c4 [BugFix] Fix abort_seq_group (#2463) 2024-01-18 15:10:42 -08:00
7e1081139d Don't download both safetensor and bin files. (#2480) 2024-01-18 11:05:53 -08:00
18473cf498 [Neuron] Add an option to build with neuron (#2065) 2024-01-18 10:58:50 -08:00
4df417d059 fix: fix some args desc (#2487) 2024-01-18 09:41:44 -08:00
5d80a9178b Minor fix in prefill cache example (#2494) 2024-01-18 09:40:34 -08:00
8a25d3a71a fix stablelm.py tensor-parallel-size bug (#2482) 2024-01-18 09:39:46 -08:00
d10f8e1d43 [Experimental] Prefix Caching Support (#1669)
Co-authored-by: DouHappy <2278958187@qq.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-01-17 16:32:10 -08:00
14cc317ba4 OpenAI Server refactoring (#2360) 2024-01-16 21:33:14 -08:00
e1957c6ebd Add StableLM3B model (#2372) 2024-01-16 20:32:40 -08:00
8cd5a992bf ci: retry on build failure as well (#2457) 2024-01-16 12:51:04 -08:00
947f0b23cc CI: make sure benchmark script exit on error (#2449) 2024-01-16 09:50:13 -08:00
f780504d12 fix weigit loading for GQA with TP (#2379) 2024-01-15 15:43:59 -08:00
bfc072addf Allow buildkite to retry build on agent lost (#2446) 2024-01-15 15:43:15 -08:00
2a18da257c Announce the second vLLM meetup (#2444) 2024-01-15 14:11:59 -08:00
6e01e8c1c8 [CI] Add Buildkite (#2355) 2024-01-14 12:37:58 -08:00
Roy
9f659bf07f [Minor] Optimize cuda graph memory usage (#2437) 2024-01-14 18:40:51 +01:00
35c4bc20d9 [Minor] Fix err msg (#2431) 2024-01-12 14:02:52 -08:00
218dc2ccda Aligning top_p and top_k Sampling (#1885)
* Align top_p and top_k with huggingface

* remove _get_prompt_and_output_tokens

* rename _apply_top_p_top_k

* compare top_p top_k with hf

* fix test errors
2024-01-12 22:51:03 +01:00
827cbcd37c Update quickstart.rst (#2369) 2024-01-12 12:56:18 -08:00
Ben
cb7a1c1cbf Suggest using dtype=half when OOM. 2024-01-12 12:33:29 -08:00
7878958c0d Address Phi modeling update 2 (#2428) 2024-01-12 12:16:49 -08:00
ce036244c9 Allow setting fastapi root_path argument (#2341) 2024-01-12 10:59:59 -08:00
48cf1e413c fix: deque mutated during iteration in abort_seq_group (#2371) 2024-01-12 17:44:18 +01:00
97460585d9 Add gradio chatbot for openai webserver (#2307) 2024-01-11 19:45:56 -08:00
f745847ef7 [Minor] Fix the format in quick start guide related to Model Scope (#2425) 2024-01-11 19:44:01 -08:00
6549aef245 [DOC] Add additional comments for LLMEngine and AsyncLLMEngine (#1011) 2024-01-11 19:26:49 -08:00
50376faa7b Rename phi_1_5 -> phi (#2385) 2024-01-11 16:23:43 -08:00
4b61c6b669 get_ip(): Fix ipv4 ipv6 dualstack (#2408) 2024-01-10 11:39:58 -08:00
79d64c4954 [Speculative decoding 1/9] Optimized rejection sampler (#2336) 2024-01-09 15:38:41 -08:00
KKY
74cd5abdd1 Add baichuan chat template jinjia file (#2390) 2024-01-09 09:13:02 -08:00
28c3f12104 [Minor] Remove unused code in attention (#2384) 2024-01-08 13:13:08 -08:00
c884819135 Fix eager mode performance (#2377) 2024-01-08 10:11:06 -08:00
05921a9a7a Changed scheduler to use deques instead of lists (#2290)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-01-07 09:48:07 -08:00
d0215a58e7 Ensure metrics are logged regardless of requests (#2347) 2024-01-05 05:24:42 -08:00
937e7b7d7c Build docker image with shared objects from "build" step (#2237) 2024-01-04 09:35:18 -08:00
aee8ef661a Miner fix of type hint (#2340) 2024-01-03 21:27:56 -08:00
2e0b6e7757 Bump up to v0.2.7 (#2337) 2024-01-03 17:35:56 -08:00
941767127c Revert the changes in test_cache (#2335) 2024-01-03 17:32:05 -08:00
74d8d77626 Remove unused const TIMEOUT_TO_PREVENT_DEADLOCK (#2321) 2024-01-03 15:49:07 -08:00
fd4ea8ef5c Use NCCL instead of ray for control-plane communication to remove serialization overhead (#2221) 2024-01-03 11:30:22 -08:00
1066cbd152 Remove deprecated parameter: concurrency_count (#2315) 2024-01-03 09:56:21 -08:00
6ef00b03a2 Enable CUDA graph for GPTQ & SqueezeLLM (#2318) 2024-01-03 09:52:29 -08:00
Roy
9140561059 [Minor] Fix typo and remove unused code (#2305) 2024-01-02 19:23:15 -08:00
77af974b40 [FIX] Support non-zero CUDA devices in custom kernels (#1959) 2024-01-02 19:09:59 -08:00
4934d49274 Support GPT-NeoX Models without attention biases (#2301) 2023-12-30 11:42:04 -05:00
358c328d69 [BUGFIX] Fix communication test (#2285) 2023-12-27 17:18:11 -05:00
4aaafdd289 [BUGFIX] Fix the path of test prompts (#2273) 2023-12-26 10:37:21 -08:00
66b108d142 [BUGFIX] Fix API server test (#2270) 2023-12-26 10:37:06 -08:00
e0ff920001 [BUGFIX] Do not return ignored sentences twice in async llm engine (#2258) 2023-12-26 13:41:09 +08:00
face83c7ec [Docs] Add "About" Heading to README.md (#2260) 2023-12-25 16:37:07 -08:00
1db83e31a2 [Docs] Update installation instructions to include CUDA 11.8 xFormers (#2246) 2023-12-22 23:20:02 -08:00
a1b9cb2a34 [BugFix] Fix recovery logic for sequence group (#2186) 2023-12-20 21:52:37 -08:00
3a4fd5ca59 Disable Ray usage stats collection (#2206) 2023-12-20 21:52:08 -08:00
c17daa9f89 [Docs] Fix broken links (#2222) 2023-12-20 12:43:42 -08:00
bd29cf3d3a Remove Sampler copy stream (#2209) 2023-12-20 00:04:33 -08:00
31bff69151 Make _prepare_sample non-blocking and use pinned memory for input buffers (#2207) 2023-12-19 16:52:46 -08:00
ba4f826738 [BugFix] Fix weight loading for Mixtral with TP (#2208) 2023-12-19 16:16:11 -08:00
de60a3fb93 Added DeciLM-7b and DeciLM-7b-instruct (#2062) 2023-12-19 02:29:33 -08:00
21d5daa4ac Add warning on CUDA graph memory usage (#2182) 2023-12-18 18:16:17 -08:00
290e015c6c Update Help Text for --gpu-memory-utilization Argument (#2183) 2023-12-18 11:33:24 -08:00
1b7c791d60 [ROCm] Fixes for GPTQ on ROCm (#2180) 2023-12-18 10:41:04 -08:00
bbe4466fd9 [Minor] Fix typo (#2166)
Co-authored-by: John-Saxon <zhang.xiangxuan@oushu.com>
2023-12-17 23:28:49 -08:00
08133c4d1a Add SSL arguments to API servers (#2109) 2023-12-18 10:56:23 +08:00
76a7983b23 [BugFix] Fix RoPE kernel on long sequences(#2164) 2023-12-17 17:09:10 -08:00
8041b7305e [BugFix] Raise error when max_model_len is larger than KV cache (#2163) 2023-12-17 17:08:23 -08:00
3ec8c25cd0 [Docs] Update documentation for gpu-memory-utilization option (#2162) 2023-12-17 10:51:57 -08:00
671af2b1c0 Bump up to v0.2.6 (#2157) 2023-12-17 10:34:56 -08:00
6f41f0e377 Disable CUDA graph for SqueezeLLM (#2161) 2023-12-17 10:24:25 -08:00
2c9b638065 [Minor] Fix a typo in .pt weight support (#2160) 2023-12-17 10:12:44 -08:00
a7347d9a6d Make sampler less blocking (#1889) 2023-12-17 23:03:49 +08:00
f8c688d746 [Minor] Add Phi 2 to supported models (#2159) 2023-12-17 02:54:57 -08:00
c9fadda543 [Minor] Fix xformers version (#2158) 2023-12-17 02:28:02 -08:00
30fb0956df [Minor] Add more detailed explanation on quantization argument (#2145) 2023-12-17 01:56:16 -08:00
3a765bd5e1 Temporarily enforce eager mode for GPTQ models (#2154) 2023-12-17 01:51:12 -08:00
26c52a5ea6 [Docs] Add CUDA graph support to docs (#2148) 2023-12-17 01:49:20 -08:00
c3372e87be Remove dependency on CuPy (#2152) 2023-12-17 01:49:07 -08:00
b0a1d667b0 Pin PyTorch & xformers versions (#2155) 2023-12-17 01:46:54 -08:00
e1d5402238 Fix all-reduce memory usage (#2151) 2023-12-17 01:44:45 -08:00
3d1cfbfc74 [Minor] Delete Llama tokenizer warnings (#2146) 2023-12-16 22:05:18 -08:00
37ca558103 Optimize model execution with CUDA graph (#1926)
Co-authored-by: Chen Shen <scv119@gmail.com>
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2023-12-16 21:12:08 -08:00
Roy
eed74a558f Simplify weight loading logic (#2133) 2023-12-16 12:41:23 -08:00
2acd76f346 [ROCm] Temporarily remove GPTQ ROCm support (#2138) 2023-12-15 17:13:58 -08:00
b81a6a6bb3 [Docs] Add supported quantization methods to docs (#2135) 2023-12-15 13:29:22 -08:00
0fbfc4b81b Add GPTQ support (#916) 2023-12-15 03:04:22 -08:00
c06170cc8e Add a flag to include stop string in output text (#1976) 2023-12-15 00:45:58 -08:00
614856da25 Avoid multiple redefinition (#1817) 2023-12-14 09:35:58 -08:00
05bdf4eaf3 Fix Dockerfile.rocm (#2101)
Co-authored-by: miloice <jeffaw99@hotmail.com>
2023-12-14 00:45:58 -08:00
6774bd50b0 Fix typing in AsyncLLMEngine & add toml to requirements-dev (#2100) 2023-12-14 00:19:41 -08:00
31c1f3255e Bump up to v0.2.5 (#2095) 2023-12-13 23:56:15 -08:00
21d93c140d Optimize Mixtral with expert parallelism (#2090) 2023-12-13 23:55:07 -08:00
f1c8520146 [BugFix] Fix input positions for long context with sliding window (#2088) 2023-12-13 12:28:13 -08:00
096827c284 [Docs] Add notes on ROCm-supported models (#2087) 2023-12-13 09:45:34 -08:00
6565d9e33e Update installation instruction for vLLM + CUDA 11.8 (#2086) 2023-12-13 09:25:59 -08:00
f375ec8440 [ROCm] Upgrade xformers version for ROCm & update doc (#2079)
Co-authored-by: miloice <jeffaw99@hotmail.com>
2023-12-13 00:56:05 -08:00
518369d78c Implement lazy model loader (#2044) 2023-12-12 22:21:45 -08:00
30bad5c492 Fix peak memory profiling (#2031) 2023-12-12 22:01:53 -08:00
3fefe271ec Update Dockerfile to build Megablocks (#2042) 2023-12-12 17:34:17 -08:00
6428f1d051 Support MPT with GQA (#1938)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2023-12-12 10:16:05 -08:00
7e1b21daac Remove einops from requirements (#2049) 2023-12-12 09:34:09 -08:00
cb3f30c600 Upgrade transformers version to 4.36.0 (#2046) 2023-12-11 18:39:14 -08:00
f3e024bece [CI/CD] Upgrade PyTorch version to v2.1.1 (#2045) 2023-12-11 17:48:11 -08:00
31d2ab4aff Remove python 3.10 requirement (#2040) 2023-12-11 12:26:42 -08:00
eb17212858 Update Dockerfile to support Mixtral (#2027) 2023-12-11 11:59:08 -08:00
245 changed files with 26080 additions and 3919 deletions

View File

@ -0,0 +1,69 @@
# This script is run by buildkite to run the benchmarks and upload the results to buildkite
set -ex
set -o pipefail
# cd into parent directory of this file
cd "$(dirname "${BASH_SOURCE[0]}")/.."
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
# run python-based benchmarks and upload the result to buildkite
python3 benchmarks/benchmark_latency.py 2>&1 | tee benchmark_latency.txt
bench_latency_exit_code=$?
python3 benchmarks/benchmark_throughput.py --input-len 256 --output-len 256 2>&1 | tee benchmark_throughput.txt
bench_throughput_exit_code=$?
# run server-based benchmarks and upload the result to buildkite
python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-chat-hf &
server_pid=$!
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
# wait for server to start, timeout after 600 seconds
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend openai \
--dataset ./ShareGPT_V3_unfiltered_cleaned_split.json \
--model meta-llama/Llama-2-7b-chat-hf \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer meta-llama/Llama-2-7b-chat-hf \
--save-result \
2>&1 | tee benchmark_serving.txt
bench_serving_exit_code=$?
kill $server_pid
# write the results into a markdown file
echo "### Latency Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_latency.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
sed -n '$p' benchmark_latency.txt >> benchmark_results.md # last line
echo "### Throughput Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_throughput.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
sed -n '$p' benchmark_throughput.txt >> benchmark_results.md # last line
echo "### Serving Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_serving.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
tail -n 13 benchmark_serving.txt >> benchmark_results.md # last 13 lines
# upload the results to buildkite
/workspace/buildkite-agent annotate --style "info" --context "benchmark-results" < benchmark_results.md
# exit with the exit code of the benchmarks
if [ $bench_latency_exit_code -ne 0 ]; then
exit $bench_latency_exit_code
fi
if [ $bench_throughput_exit_code -ne 0 ]; then
exit $bench_throughput_exit_code
fi
if [ $bench_serving_exit_code -ne 0 ]; then
exit $bench_serving_exit_code
fi
/workspace/buildkite-agent artifact upload openai-*.json

View File

@ -0,0 +1,66 @@
# In this file, you can add more tests to run either by adding a new step or
# adding a new command to an existing step. See different options here for examples.
# This script will be feed into Jinja template in `test-template.j2` to generate
# the final pipeline yaml file.
steps:
- label: Regression Test
command: pytest -v -s test_regression.py
working_dir: "/vllm-workspace/tests" # optional
- label: AsyncEngine Test
command: pytest -v -s async_engine
- label: Basic Correctness Test
command: pytest -v -s --forked basic_correctness
- label: Distributed Comm Ops Test
command: pytest -v -s --forked test_comm_ops.py
working_dir: "/vllm-workspace/tests/distributed"
num_gpus: 2 # only support 1 or 2 for now.
- label: Distributed Correctness Test
command: pytest -v -s --forked test_basic_distributed_correctness.py
working_dir: "/vllm-workspace/tests/distributed"
num_gpus: 2 # only support 1 or 2 for now.
- label: Engine Test
command: pytest -v -s engine
- label: Entrypoints Test
command: pytest -v -s entrypoints
- label: Kernels Test
command: pytest -v -s kernels
soft_fail: true
- label: Models Test
commands:
- pytest -v -s models --forked
soft_fail: true
- label: Prefix Caching Test
commands:
- pytest -v -s prefix_caching
- label: Samplers Test
command: pytest -v -s samplers --forked
- label: Worker Test
command: pytest -v -s worker
- label: LoRA Test
command: pytest -v -s lora
- label: Benchmarks
working_dir: "/vllm-workspace/.buildkite"
commands:
- pip install aiohttp
- bash run-benchmarks.sh
- label: Documentation Build
working_dir: "/vllm-workspace/docs"
no_gpu: True
commands:
- pip install -r requirements-docs.txt
- SPHINXOPTS=\"-W\" make html

View File

@ -0,0 +1,56 @@
{% set docker_image = "us-central1-docker.pkg.dev/vllm-405802/vllm-ci-test-repo/vllm-test:$BUILDKITE_COMMIT" %}
{% set default_num_gpu = 1 %}
{% set default_working_dir = "/vllm-workspace/tests" %}
steps:
- label: ":docker: build image"
commands:
- "docker build --build-arg max_jobs=16 --tag {{ docker_image }} --target test --progress plain ."
- "docker push {{ docker_image }}"
env:
DOCKER_BUILDKIT: "1"
retry:
automatic:
- exit_status: -1 # Agent was lost
limit: 5
- wait
{% for step in steps %}
- label: "{{ step.label }}"
agents:
queue: kubernetes
soft_fail: {{ step.soft_fail or false }}
retry:
automatic:
- exit_status: -1 # Agent was lost
limit: 5
plugins:
- kubernetes:
podSpec:
volumes:
- name: dshm
emptyDir:
medium: Memory
containers:
- image: "{{ docker_image }}"
command: ["bash"]
args:
- '-c'
- "'cd {{ (step.working_dir or default_working_dir) | safe }} && {{ step.command or (step.commands | join(' && ')) | safe }}'"
{% if not step.no_gpu %}
resources:
requests:
nvidia.com/gpu: "{{ step.num_gpus or default_num_gpu }}"
limits:
nvidia.com/gpu: "{{ step.num_gpus or default_num_gpu }}"
{% endif %}
env:
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
volumeMounts:
- mountPath: /dev/shm
name: dshm
{% endfor %}

1
.dockerignore Normal file
View File

@ -0,0 +1 @@
vllm/*.so

View File

@ -49,7 +49,7 @@ jobs:
matrix:
os: ['ubuntu-20.04']
python-version: ['3.8', '3.9', '3.10', '3.11']
pytorch-version: ['2.1.0']
pytorch-version: ['2.1.2'] # Must be the most recent version that meets requirements.txt.
cuda-version: ['11.8', '12.1']
steps:

View File

@ -13,6 +13,8 @@ $python_executable -m pip install -r requirements.txt
# Limit the number of parallel jobs to avoid OOM
export MAX_JOBS=1
# Make sure punica is built for the release (for LoRA)
export VLLM_INSTALL_PUNICA_KERNELS=1
# Build
$python_executable setup.py bdist_wheel --dist-dir=dist

View File

@ -28,4 +28,4 @@ jobs:
pip install toml==0.10.2
- name: Running yapf
run: |
yapf --diff --recursive vllm tests
yapf --diff --recursive .

3
.gitignore vendored
View File

@ -181,3 +181,6 @@ _build/
# hip files generated by PyTorch
*.hip
*_hip*
# Benchmark dataset
*.json

View File

@ -1,7 +1,17 @@
# The vLLM Dockerfile is used to construct vLLM image that can be directly used
# to run the OpenAI compatible server.
#################### BASE BUILD IMAGE ####################
FROM nvidia/cuda:12.1.0-devel-ubuntu22.04 AS dev
RUN apt-get update -y \
&& apt-get install -y python3-pip
&& apt-get install -y python3-pip git
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-12.1/compat/
WORKDIR /workspace
@ -14,8 +24,10 @@ RUN --mount=type=cache,target=/root/.cache/pip \
COPY requirements-dev.txt requirements-dev.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-dev.txt
#################### BASE BUILD IMAGE ####################
# image to build pytorch extensions
#################### EXTENSION BUILD IMAGE ####################
FROM dev AS build
# install build dependencies
@ -30,6 +42,7 @@ COPY requirements.txt requirements.txt
COPY pyproject.toml pyproject.toml
COPY vllm/__init__.py vllm/__init__.py
# cuda arch list used by torch
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.6 8.9 9.0+PTX'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
# max jobs used by Ninja to build extensions
@ -38,22 +51,34 @@ ENV MAX_JOBS=${max_jobs}
# number of threads used by nvcc
ARG nvcc_threads=8
ENV NVCC_THREADS=$nvcc_threads
# make sure punica kernels are built (for LoRA)
ENV VLLM_INSTALL_PUNICA_KERNELS=1
RUN python3 setup.py build_ext --inplace
#################### EXTENSION Build IMAGE ####################
#################### TEST IMAGE ####################
# image to run unit testing suite
FROM dev AS test
# copy pytorch extensions separately to avoid having to rebuild
# when python code changes
COPY --from=build /workspace/vllm/*.so /workspace/vllm/
COPY tests tests
COPY vllm vllm
WORKDIR /vllm-workspace
# ADD is used to preserve directory structure
ADD . /vllm-workspace/
COPY --from=build /workspace/vllm/*.so /vllm-workspace/vllm/
# ignore build dependencies installation because we are using pre-complied extensions
RUN rm pyproject.toml
RUN --mount=type=cache,target=/root/.cache/pip VLLM_USE_PRECOMPILED=1 pip install . --verbose
#################### TEST IMAGE ####################
ENTRYPOINT ["python3", "-m", "pytest", "tests"]
# use CUDA base as CUDA runtime dependencies are already installed via pip
FROM nvidia/cuda:12.1.0-base-ubuntu22.04 AS vllm-base
#################### RUNTIME BASE IMAGE ####################
# We used base cuda image because pytorch installs its own cuda libraries.
# However cupy depends on cuda libraries so we had to switch to the runtime image
# In the future it would be nice to get a container with pytorch and cuda without duplicating cuda
FROM nvidia/cuda:12.1.0-runtime-ubuntu22.04 AS vllm-base
# libnccl required for ray
RUN apt-get update -y \
@ -63,22 +88,18 @@ WORKDIR /workspace
COPY requirements.txt requirements.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements.txt
#################### RUNTIME BASE IMAGE ####################
FROM vllm-base AS vllm
COPY --from=build /workspace/vllm/*.so /workspace/vllm/
COPY vllm vllm
EXPOSE 8000
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.api_server"]
#################### OPENAI API SERVER ####################
# openai api server alternative
FROM vllm-base AS vllm-openai
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate fschat
pip install accelerate
COPY --from=build /workspace/vllm/*.so /workspace/vllm/
COPY vllm vllm
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
#################### OPENAI API SERVER ####################

View File

@ -1,4 +1,27 @@
FROM rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1
# default base image
ARG BASE_IMAGE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
FROM $BASE_IMAGE
ARG BASE_IMAGE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
RUN echo "Base image is $BASE_IMAGE"
# BASE_IMAGE for ROCm_5.7: "rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1"
# BASE_IMAGE for ROCm_6.0: "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
ARG FA_GFX_ARCHS="gfx90a;gfx942"
RUN echo "FA_GFX_ARCHS is $FA_GFX_ARCHS"
ARG FA_BRANCH="3d2b6f5"
RUN echo "FA_BRANCH is $FA_BRANCH"
# whether to build flash-attention
# if 0, will not build flash attention
# this is useful for gfx target where flash-attention is not supported
# In that case, we need to use the python reference attention implementation in vllm
ARG BUILD_FA="1"
# Install some basic utilities
RUN apt-get update && apt-get install python3 python3-pip -y
@ -33,26 +56,36 @@ ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib/:/libtorch/lib:
ENV CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/libtorch/include:/libtorch/include/torch/csrc/api/include/:/opt/rocm/include/:
# Install ROCm flash-attention
RUN mkdir libs \
RUN if [ "$BUILD_FA" = "1" ]; then \
mkdir libs \
&& cd libs \
&& git clone https://github.com/ROCmSoftwarePlatform/flash-attention.git \
&& git clone https://github.com/ROCm/flash-attention.git \
&& cd flash-attention \
&& git checkout 3d2b6f5 \
&& git checkout ${FA_BRANCH} \
&& git submodule update --init \
&& export GPU_ARCHS=$(/opt/rocm/llvm/bin/amdgpu-offload-arch) \
&& patch /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/hipify/hipify_python.py hipify_patch.patch \
&& export GPU_ARCHS=${FA_GFX_ARCHS} \
&& if [ "$BASE_IMAGE" = "rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1" ]; then \
patch /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/hipify/hipify_python.py hipify_patch.patch; fi \
&& python3 setup.py install \
&& cd ..
&& cd ..; \
fi
COPY ./ /app/vllm
RUN python3 -m pip install --upgrade pip
RUN pip install xformers==0.0.22.post7 --no-deps
RUN python3 -m pip install xformers==0.0.23 --no-deps
# Error related to odd state for numpy 1.20.3 where there is no METADATA etc, but an extra LICENSES_bundled.txt.
# Manually removed it so that later steps of numpy upgrade can continue
RUN if [ "$BASE_IMAGE" = "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" ]; then \
rm -rf /opt/conda/envs/py_3.9/lib/python3.9/site-packages/numpy-1.20.3.dist-info/; fi
RUN cd /app \
&& cd vllm \
&& pip install -U -r requirements-rocm.txt \
&& bash patch_xformers-0.0.22.post7.rocm.sh \
&& if [ "$BUILD_FA" = "1" ]; then \
bash patch_xformers.rocm.sh; fi \
&& patch /opt/rocm/include/hip/amd_detail/amd_hip_bf16.h /app/vllm/rocm_patch/rocm_bf16.patch \
&& python3 setup.py install \
&& cd ..

View File

@ -17,7 +17,9 @@ Easy, fast, and cheap LLM serving for everyone
---
*Latest News* 🔥
- [2023/12] Added ROCm support to vLLM.
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2024/01] Added ROCm 6.0 support to vLLM.
- [2023/12] Added ROCm 5.7 support to vLLM.
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
- [2023/09] We created our [Discord server](https://discord.gg/jz7wjKhh6g)! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
- [2023/09] We released our [PagedAttention paper](https://arxiv.org/abs/2309.06180) on arXiv!
@ -27,7 +29,7 @@ Easy, fast, and cheap LLM serving for everyone
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
---
## About
vLLM is a fast and easy-to-use library for LLM inference and serving.
vLLM is fast with:
@ -35,6 +37,8 @@ vLLM is fast with:
- State-of-the-art serving throughput
- Efficient management of attention key and value memory with **PagedAttention**
- Continuous batching of incoming requests
- Fast model execution with CUDA/HIP graph
- Quantization: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [SqueezeLLM](https://arxiv.org/abs/2306.07629), FP8 KV Cache
- Optimized CUDA kernels
vLLM is flexible and easy to use with:
@ -44,7 +48,9 @@ vLLM is flexible and easy to use with:
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
- Support NVIDIA CUDA and AMD ROCm.
- Support NVIDIA GPUs and AMD GPUs
- (Experimental) Prefix caching support
- (Experimental) Multi-lora support
vLLM seamlessly supports many Hugging Face models, including the following architectures:
@ -52,19 +58,25 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
- Baichuan & Baichuan2 (`baichuan-inc/Baichuan2-13B-Chat`, `baichuan-inc/Baichuan-7B`, etc.)
- BLOOM (`bigscience/bloom`, `bigscience/bloomz`, etc.)
- ChatGLM (`THUDM/chatglm2-6b`, `THUDM/chatglm3-6b`, etc.)
- DeciLM (`Deci/DeciLM-7B`, `Deci/DeciLM-7B-instruct`, etc.)
- Falcon (`tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc.)
- Gemma (`google/gemma-2b`, `google/gemma-7b`, etc.)
- GPT-2 (`gpt2`, `gpt2-xl`, etc.)
- GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, etc.)
- GPT-J (`EleutherAI/gpt-j-6b`, `nomic-ai/gpt4all-j`, etc.)
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
- InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.)
- InternLM2 (`internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc.)
- LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, etc.)
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
- OLMo (`allenai/OLMo-1B`, `allenai/OLMo-7B`, etc.)
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
- Phi-1.5 (`microsoft/phi-1_5`, etc.)
- Phi (`microsoft/phi-1_5`, `microsoft/phi-2`, etc.)
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)
- Qwen2 (`Qwen/Qwen2-7B-beta`, `Qwen/Qwen-7B-Chat-beta`, etc.)
- StableLM(`stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc.)
- Yi (`01-ai/Yi-6B`, `01-ai/Yi-34B`, etc.)
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
@ -72,10 +84,6 @@ Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/get
```bash
pip install vllm
```
**NOTE:** The Mixtral model additionally requires `megablocks` which can be installed with pip or [from source](https://github.com/stanford-futuredata/megablocks) on **Python 3.10**:
```bash
pip install megablocks
```
## Getting Started

View File

@ -0,0 +1,284 @@
import json
import os
import time
from dataclasses import dataclass
from typing import Optional
import aiohttp
from tqdm.asyncio import tqdm
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
@dataclass
class RequestFuncInput:
prompt: str
api_url: str
prompt_len: int
output_len: int
model: str
best_of: int = 1
use_beam_search: bool = False
@dataclass
class RequestFuncOutput:
generated_text: str = ""
success: bool = False
latency: float = 0
ttft: float = 0
prompt_len: int = 0
async def async_request_tgi(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
params = {
"best_of": request_func_input.best_of,
"max_new_tokens": request_func_input.output_len,
"do_sample": True,
"temperature": 0.01, # TGI does not accept 0.0 temperature.
"top_p": 0.99, # TGI does not accept 1.0 top_p.
}
payload = {
"inputs": request_func_input.prompt,
"parameters": params,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0
st = time.perf_counter()
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for data in response.content.iter_any():
if ttft == 0:
ttft = time.perf_counter() - st
output.ttft = ttft
output.latency = time.perf_counter() - st
body = data.decode("utf-8").lstrip("data:")
output.generated_text = json.loads(body)["generated_text"]
output.success = True
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
async def async_request_vllm(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("generate")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"prompt": request_func_input.prompt,
"n": 1,
"best_of": request_func_input.best_of,
"use_beam_search": request_func_input.use_beam_search,
"temperature": 0.0 if request_func_input.use_beam_search else 1.0,
"top_p": 1.0,
"max_tokens": request_func_input.output_len,
"ignore_eos": True,
"stream": True,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0
st = time.perf_counter()
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for data in response.content.iter_any():
if ttft == 0:
ttft = time.perf_counter() - st
output.ttft = ttft
output.latency = time.perf_counter() - st
# When streaming, '\0' is appended to the end of the response.
body = data.decode("utf-8").strip("\0")
output.generated_text = json.loads(
body)["text"][0][len(request_func_input.prompt):]
output.success = True
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
async def async_request_trt_llm(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
assert request_func_input.best_of == 1
payload = {
"accumulate_tokens": True,
"text_input": request_func_input.prompt,
"temperature": 0.0,
"top_p": 1.0,
"max_tokens": request_func_input.output_len,
"stream": True,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0
st = time.perf_counter()
try:
async with session.post(url=api_url, json=payload) as resp:
if resp.status == 200:
async for data in resp.content.iter_any():
if ttft == 0:
ttft = time.perf_counter() - st
output.ttft = ttft
output.latency = time.perf_counter() - st
body = data.decode("utf-8").lstrip("data:")
output.generated_text = json.loads(body)["text_output"]
output.success = True
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
async def async_request_deepspeed_mii(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert request_func_input.best_of == 1
assert not request_func_input.use_beam_search
payload = {
"prompts": request_func_input.prompt,
"max_new_tokens": request_func_input.output_len,
"ignore_eos": True,
"do_sample": True,
"temperature":
0.01, # deepspeed-mii does not accept 0.0 temperature.
"top_p": 1.0,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
# DeepSpeed-MII doesn't support streaming as of Jan 28 2024, will use 0 as placeholder.
# https://github.com/microsoft/DeepSpeed-MII/pull/311
output.ttft = 0
st = time.perf_counter()
try:
async with session.post(url=request_func_input.api_url,
json=payload) as resp:
if resp.status == 200:
parsed_resp = await resp.json()
output.latency = time.perf_counter() - st
output.generated_text = parsed_resp[0]["generated_text"]
output.success = True
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
async def async_request_openai_completions(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("v1/completions")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
payload = {
"model": request_func_input.model,
"prompt": request_func_input.prompt,
"temperature": 0.0,
"best_of": request_func_input.best_of,
"max_tokens": request_func_input.output_len,
"stream": True,
}
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0
st = time.perf_counter()
try:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
if response.status == 200:
async for chunk in response.content:
if ttft == 0:
ttft = time.perf_counter() - st
output.ttft = ttft
chunk = chunk.strip()
if not chunk:
continue
chunk = chunk.decode("utf-8").lstrip("data: ")
if chunk == "[DONE]":
latency = time.perf_counter() - st
else:
body = json.loads(chunk)
generated_text += body["choices"][0]["text"]
output.generated_text = generated_text
output.success = True
output.latency = latency
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
ASYNC_REQUEST_FUNCS = {
"tgi": async_request_tgi,
"vllm": async_request_vllm,
"deepspeed-mii": async_request_deepspeed_mii,
"openai": async_request_openai_completions,
"tensorrt-llm": async_request_trt_llm,
}

View File

@ -23,6 +23,9 @@ def main(args: argparse.Namespace):
tensor_parallel_size=args.tensor_parallel_size,
trust_remote_code=args.trust_remote_code,
dtype=args.dtype,
enforce_eager=args.enforce_eager,
kv_cache_dtype=args.kv_cache_dtype,
device=args.device,
)
sampling_params = SamplingParams(
@ -34,7 +37,10 @@ def main(args: argparse.Namespace):
max_tokens=args.output_len,
)
print(sampling_params)
dummy_prompt_token_ids = [[0] * args.input_len] * args.batch_size
dummy_prompt_token_ids = np.random.randint(10000,
size=(args.batch_size,
args.input_len))
dummy_prompt_token_ids = dummy_prompt_token_ids.tolist()
def run_to_completion(profile_dir: Optional[str] = None):
if profile_dir:
@ -64,9 +70,11 @@ def main(args: argparse.Namespace):
if args.profile:
profile_dir = args.profile_result_dir
if not profile_dir:
profile_dir = Path(".") / "vllm_benchmark_result" / f"latency_result_{time.time()}"
profile_dir = Path(
"."
) / "vllm_benchmark_result" / f"latency_result_{time.time()}"
print(f"Profiling (results will be saved to '{profile_dir}')...")
run_to_completion(profile_dir=args.profile_result_dir)
run_to_completion(profile_dir=profile_dir)
return
# Benchmark.
@ -84,7 +92,7 @@ if __name__ == '__main__':
parser.add_argument('--tokenizer', type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=['awq', 'squeezellm', None],
choices=['awq', 'gptq', 'squeezellm', None],
default=None)
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--input-len', type=int, default=32)
@ -111,6 +119,16 @@ if __name__ == '__main__':
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument('--enforce-eager',
action='store_true',
help='enforce eager mode and disable CUDA graph')
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=['auto', 'fp8_e5m2'],
default='auto',
help=
'Data type for kv cache storage. If "auto", will use model data type.')
parser.add_argument(
'--profile',
action='store_true',
@ -119,9 +137,13 @@ if __name__ == '__main__':
'--profile-result-dir',
type=str,
default=None,
help=(
'path to save the pytorch profiler output. Can be visualized '
'with ui.perfetto.dev or Tensorboard.'
))
help=('path to save the pytorch profiler output. Can be visualized '
'with ui.perfetto.dev or Tensorboard.'))
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda"],
help='device type for vLLM execution, supporting CUDA only currently.')
args = parser.parse_args()
main(args)

View File

@ -20,15 +20,36 @@ import asyncio
import json
import random
import time
from dataclasses import dataclass
from datetime import datetime
from typing import AsyncGenerator, List, Tuple
import aiohttp
import numpy as np
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from vllm.transformers_utils.tokenizer import get_tokenizer
# (prompt len, output len, latency)
REQUEST_LATENCY: List[Tuple[int, int, float]] = []
from backend_request_func import (
ASYNC_REQUEST_FUNCS,
RequestFuncInput,
RequestFuncOutput,
)
@dataclass
class BenchmarkMetrics:
completed: int
total_input: int
total_output: int
request_throughput: float
input_throughput: float
output_throughput: float
mean_ttft_ms: float
median_ttft_ms: float
p99_ttft_ms: float
mean_tpot_ms: float
median_tpot_ms: float
p99_tpot_ms: float
def sample_requests(
@ -40,15 +61,15 @@ def sample_requests(
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [
data for data in dataset
if len(data["conversations"]) >= 2
]
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [
(data["conversations"][0]["value"], data["conversations"][1]["value"])
for data in dataset
]
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# some of these will be filtered out, so sample more than we need
sampled_indices = random.sample(range(len(dataset)),
int(num_requests * 1.2))
dataset = [dataset[i] for i in sampled_indices]
# Tokenize the prompts and completions.
prompts = [prompt for prompt, _ in dataset]
@ -96,79 +117,125 @@ async def get_request(
await asyncio.sleep(interval)
async def send_request(
backend: str,
api_url: str,
prompt: str,
prompt_len: int,
output_len: int,
best_of: int,
use_beam_search: bool,
) -> None:
request_start_time = time.perf_counter()
def calculate_metrics(
input_requests: List[Tuple[str, int, int]],
outputs: List[RequestFuncOutput],
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
) -> BenchmarkMetrics:
total_output = 0
total_input = 0
completed = 0
per_token_latencies = []
ttfts = []
for i in range(len(outputs)):
if outputs[i].success:
output_len = len(tokenizer.encode(outputs[i].generated_text))
total_output += output_len
total_input += input_requests[i][1]
per_token_latencies.append(outputs[i].latency / output_len)
ttfts.append(outputs[i].ttft)
completed += 1
headers = {"User-Agent": "Benchmark Client"}
if backend == "vllm":
pload = {
"prompt": prompt,
"n": 1,
"best_of": best_of,
"use_beam_search": use_beam_search,
"temperature": 0.0 if use_beam_search else 1.0,
"top_p": 1.0,
"max_tokens": output_len,
"ignore_eos": True,
"stream": False,
}
elif backend == "tgi":
assert not use_beam_search
params = {
"best_of": best_of,
"max_new_tokens": output_len,
"do_sample": True,
}
pload = {
"inputs": prompt,
"parameters": params,
}
else:
raise ValueError(f"Unknown backend: {backend}")
metrics = BenchmarkMetrics(
completed=completed,
total_input=total_input,
total_output=total_output,
request_throughput=completed / dur_s,
input_throughput=total_input / dur_s,
output_throughput=total_output / dur_s,
mean_ttft_ms=np.mean(ttfts) * 1000,
median_ttft_ms=np.median(ttfts) * 1000,
p99_ttft_ms=np.percentile(ttfts, 99) * 1000,
mean_tpot_ms=np.mean(per_token_latencies) * 1000,
median_tpot_ms=np.median(per_token_latencies) * 1000,
p99_tpot_ms=np.percentile(per_token_latencies, 99) * 1000,
)
timeout = aiohttp.ClientTimeout(total=3 * 3600)
async with aiohttp.ClientSession(timeout=timeout) as session:
while True:
async with session.post(api_url, headers=headers, json=pload) as response:
chunks = []
async for chunk, _ in response.content.iter_chunks():
chunks.append(chunk)
output = b"".join(chunks).decode("utf-8")
output = json.loads(output)
# Re-send the request if it failed.
if "error" not in output:
break
request_end_time = time.perf_counter()
request_latency = request_end_time - request_start_time
REQUEST_LATENCY.append((prompt_len, output_len, request_latency))
return metrics
async def benchmark(
backend: str,
api_url: str,
model_id: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: List[Tuple[str, int, int]],
best_of: int,
use_beam_search: bool,
request_rate: float,
) -> None:
tasks: List[asyncio.Task] = []
disable_tqdm: bool,
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS.get(backend)
else:
raise ValueError(f"Unknown backend: {backend}")
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
print(f"Traffic request rate: {request_rate}")
benchmark_start_time = time.perf_counter()
tasks = []
async for request in get_request(input_requests, request_rate):
prompt, prompt_len, output_len = request
task = asyncio.create_task(send_request(backend, api_url, prompt,
prompt_len, output_len,
best_of, use_beam_search))
tasks.append(task)
await asyncio.gather(*tasks)
request_func_input = RequestFuncInput(
model=model_id,
prompt=prompt,
api_url=api_url,
prompt_len=prompt_len,
output_len=output_len,
best_of=best_of,
use_beam_search=use_beam_search,
)
tasks.append(
asyncio.create_task(
request_func(request_func_input=request_func_input,
pbar=pbar)))
outputs = await asyncio.gather(*tasks)
if not disable_tqdm:
pbar.close()
benchmark_duration = time.perf_counter() - benchmark_start_time
metrics = calculate_metrics(
input_requests=input_requests,
outputs=outputs,
dur_s=benchmark_duration,
tokenizer=tokenizer,
)
print(f"Successful requests: {metrics.completed}")
print(f"Benchmark duration: {benchmark_duration:2f} s")
print(f"Total input tokens: {metrics.total_input}")
print(f"Total generated tokens: {metrics.total_output}")
print(f"Request throughput: {metrics.request_throughput:.2f} requests/s")
print(f"Input token throughput: {metrics.input_throughput:.2f} tokens/s")
print(f"Output token throughput: {metrics.output_throughput:.2f} tokens/s")
print(f"Mean TTFT: {metrics.mean_ttft_ms:.2f} ms")
print(f"Median TTFT: {metrics.median_ttft_ms:.2f} ms")
print(f"P99 TTFT: {metrics.p99_ttft_ms:.2f} ms")
print(f"Mean TPOT: {metrics.mean_tpot_ms:.2f} ms")
print(f"Median TPOT: {metrics.median_tpot_ms:.2f} ms")
print(f"P99 TPOT: {metrics.p99_tpot_ms:.2f} ms")
result = {
"duration": benchmark_duration,
"completed": metrics.completed,
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"request_inthroughput": metrics.request_throughput,
"input_throughput": metrics.input_throughput,
"output_throughput": metrics.output_throughput,
"mean_ttft_ms": metrics.mean_ttft_ms,
"median_ttft_ms": metrics.median_ttft_ms,
"p99_ttft_ms": metrics.p99_ttft_ms,
"mean_tpot_ms": metrics.mean_tpot_ms,
"median_tpot_ms": metrics.median_tpot_ms,
"p99_tpot_ms": metrics.p99_tpot_ms
}
return result
def main(args: argparse.Namespace):
@ -176,58 +243,145 @@ def main(args: argparse.Namespace):
random.seed(args.seed)
np.random.seed(args.seed)
api_url = f"http://{args.host}:{args.port}/generate"
tokenizer = get_tokenizer(args.tokenizer, trust_remote_code=args.trust_remote_code)
backend = args.backend
model_id = args.model
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
if args.base_url is not None:
api_url = f"{args.base_url}{args.endpoint}"
else:
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
tokenizer = get_tokenizer(tokenizer_id,
trust_remote_code=args.trust_remote_code)
input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
benchmark_start_time = time.perf_counter()
asyncio.run(benchmark(args.backend, api_url, input_requests, args.best_of,
args.use_beam_search, args.request_rate))
benchmark_end_time = time.perf_counter()
benchmark_time = benchmark_end_time - benchmark_start_time
print(f"Total time: {benchmark_time:.2f} s")
print(f"Throughput: {args.num_prompts / benchmark_time:.2f} requests/s")
benchmark_result = asyncio.run(
benchmark(
backend=backend,
api_url=api_url,
model_id=model_id,
tokenizer=tokenizer,
input_requests=input_requests,
best_of=args.best_of,
use_beam_search=args.use_beam_search,
request_rate=args.request_rate,
disable_tqdm=args.disable_tqdm,
))
# Compute the latency statistics.
avg_latency = np.mean([latency for _, _, latency in REQUEST_LATENCY])
print(f"Average latency: {avg_latency:.2f} s")
avg_per_token_latency = np.mean([
latency / (prompt_len + output_len)
for prompt_len, output_len, latency in REQUEST_LATENCY
])
print(f"Average latency per token: {avg_per_token_latency:.2f} s")
avg_per_output_token_latency = np.mean([
latency / output_len
for _, output_len, latency in REQUEST_LATENCY
])
print("Average latency per output token: "
f"{avg_per_output_token_latency:.2f} s")
# Save config and results to json
if args.save_result:
result_json = {}
# Setup
current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
result_json["date"] = current_dt
result_json["backend"] = backend
result_json["version"] = args.version
result_json["model_id"] = model_id
result_json["tokenizer_id"] = tokenizer_id
result_json["best_of"] = args.best_of
result_json["use_beam_search"] = args.use_beam_search
result_json["num_prompts"] = args.num_prompts
# Traffic
result_json["request_rate"] = (
args.request_rate if args.request_rate < float("inf") else "inf")
# Merge with benchmark result
result_json = {**result_json, **benchmark_result}
# Save to file
base_model_id = model_id.split("/")[-1]
file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"
with open(file_name, "w") as outfile:
json.dump(result_json, outfile)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Benchmark the online serving throughput.")
parser.add_argument("--backend", type=str, default="vllm",
choices=["vllm", "tgi"])
parser.add_argument(
"--backend",
type=str,
default="vllm",
choices=list(ASYNC_REQUEST_FUNCS.keys()),
)
parser.add_argument(
"--version",
type=str,
default="N/A",
help="Version of the serving backend/engine.",
)
parser.add_argument(
"--base-url",
type=str,
default=None,
help="Server or API base url if not using http host and port.",
)
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--dataset", type=str, required=True,
parser.add_argument(
"--endpoint",
type=str,
default="/generate",
help="API endpoint.",
)
parser.add_argument("--dataset",
type=str,
required=True,
help="Path to the dataset.")
parser.add_argument("--tokenizer", type=str, required=True,
help="Name or path of the tokenizer.")
parser.add_argument("--best-of", type=int, default=1,
help="Generates `best_of` sequences per prompt and "
"returns the best one.")
parser.add_argument(
"--model",
type=str,
required=True,
help="Name of the model.",
)
parser.add_argument(
"--tokenizer",
type=str,
help=
"Name or path of the tokenizer, if not using the default model tokenizer.",
)
parser.add_argument(
"--best-of",
type=int,
default=1,
help="Generates `best_of` sequences per prompt and "
"returns the best one.",
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument("--num-prompts", type=int, default=1000,
help="Number of prompts to process.")
parser.add_argument("--request-rate", type=float, default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.")
parser.add_argument(
"--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.",
)
parser.add_argument(
"--request-rate",
type=float,
default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.",
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument('--trust-remote-code', action='store_true',
help='trust remote code from huggingface')
parser.add_argument(
"--trust-remote-code",
action="store_true",
help="Trust remote code from huggingface",
)
parser.add_argument(
"--disable-tqdm",
action="store_true",
help="Specify to disbale tqdm progress bar.",
)
parser.add_argument(
"--save-result",
action="store_true",
help="Specify to save benchmark results to a json file",
)
args = parser.parse_args()
main(args)

View File

@ -69,7 +69,10 @@ def run_vllm(
use_beam_search: bool,
trust_remote_code: bool,
dtype: str,
max_model_len: Optional[int] = None,
max_model_len: Optional[int],
enforce_eager: bool,
kv_cache_dtype: str,
device: str,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(
@ -81,6 +84,9 @@ def run_vllm(
trust_remote_code=trust_remote_code,
dtype=dtype,
max_model_len=max_model_len,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
device=device,
)
# Add the requests to the engine.
@ -204,7 +210,8 @@ def main(args: argparse.Namespace):
args.quantization, args.tensor_parallel_size,
args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype,
args.max_model_len)
args.max_model_len, args.enforce_eager,
args.kv_cache_dtype, args.device)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
@ -244,7 +251,7 @@ if __name__ == "__main__":
parser.add_argument("--tokenizer", type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=['awq', 'squeezellm', None],
choices=['awq', 'gptq', 'squeezellm', None],
default=None)
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
parser.add_argument("--n",
@ -279,6 +286,22 @@ if __name__ == "__main__":
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument("--enforce-eager",
action="store_true",
help="enforce eager execution")
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=["auto", "fp8_e5m2"],
default="auto",
help=
'Data type for kv cache storage. If "auto", will use model data type.')
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda"],
help='device type for vLLM execution, supporting CUDA only currently.')
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model

View File

@ -1,9 +1,11 @@
from typing import Optional
import argparse
import random
import time
import torch
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, create_kv_caches_with_random
from vllm._C import ops
NUM_BLOCKS = 1024
@ -23,17 +25,20 @@ def main(
dtype: torch.dtype,
seed: int,
do_profile: bool,
device: str = "cuda",
kv_cache_dtype: Optional[str] = None,
) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
scale = float(1.0 / (head_size**0.5))
query = torch.empty(num_seqs,
num_query_heads,
head_size,
dtype=dtype,
device="cuda")
device=device)
query.uniform_(-scale, scale)
assert num_query_heads % num_kv_heads == 0
@ -41,11 +46,11 @@ def main(
if use_alibi:
alibi_slopes = torch.randn(num_query_heads,
dtype=torch.float,
device="cuda")
device=device)
context_lens = [context_len for _ in range(num_seqs)]
max_context_len = max(context_lens)
context_lens = torch.tensor(context_lens, dtype=torch.int, device="cuda")
context_lens = torch.tensor(context_lens, dtype=torch.int, device=device)
# Create the block tables.
max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
@ -56,18 +61,18 @@ def main(
for _ in range(max_num_blocks_per_seq)
]
block_tables.append(block_table)
block_tables = torch.tensor(block_tables, dtype=torch.int, device="cuda")
block_tables = torch.tensor(block_tables, dtype=torch.int, device=device)
# Create the KV cache.
x = 16 // torch.tensor([], dtype=dtype).element_size()
key_cache_shape = (NUM_BLOCKS, num_kv_heads, head_size // x, block_size, x)
key_cache = torch.empty(size=key_cache_shape, dtype=dtype, device="cuda")
key_cache.uniform_(-scale, scale)
value_cache_shape = (NUM_BLOCKS, num_kv_heads, head_size, block_size)
value_cache = torch.empty(size=value_cache_shape,
dtype=dtype,
device="cuda")
value_cache.uniform_(-scale, scale)
key_caches, value_caches = create_kv_caches_with_random(NUM_BLOCKS,
block_size,
1,
num_kv_heads,
head_size,
kv_cache_dtype,
dtype,
device=device)
key_cache, value_cache = key_caches[0], value_caches[0]
# Prepare for the paged attention kernel.
output = torch.empty_like(query)
@ -86,7 +91,7 @@ def main(
)
max_logits = torch.empty_like(exp_sums)
def run_benchmark(num_iters: int, profile: bool = False) -> float:
def run_cuda_benchmark(num_iters: int, profile: bool = False) -> float:
torch.cuda.synchronize()
if profile:
torch.cuda.cudart().cudaProfilerStart()
@ -106,6 +111,7 @@ def main(
block_size,
max_context_len,
alibi_slopes,
kv_cache_dtype,
)
elif version == "v2":
ops.paged_attention_v2(
@ -123,6 +129,7 @@ def main(
block_size,
max_context_len,
alibi_slopes,
kv_cache_dtype,
)
else:
raise ValueError(f"Invalid version: {version}")
@ -135,6 +142,7 @@ def main(
# Warmup.
print("Warming up...")
run_benchmark = run_cuda_benchmark
run_benchmark(num_iters=3, profile=False)
# Benchmark.
@ -168,16 +176,19 @@ if __name__ == '__main__':
default="half")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--profile", action="store_true")
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=["auto", "fp8_e5m2"],
default="auto",
help=
'Data type for kv cache storage. If "auto", will use model data type.')
parser.add_argument("--device", type=str, choices=["cuda"], default="cuda")
args = parser.parse_args()
print(args)
if args.num_query_heads % args.num_kv_heads != 0:
raise ValueError("num_query_heads must be divisible by num_kv_heads")
dtype_to_torch_dtype = {
"half": torch.half,
"bfloat16": torch.bfloat16,
"float": torch.float,
}
main(
version=args.version,
num_seqs=args.batch_size,
@ -187,7 +198,8 @@ if __name__ == '__main__':
head_size=args.head_size,
block_size=args.block_size,
use_alibi=args.use_alibi,
dtype=dtype_to_torch_dtype[args.dtype],
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
seed=args.seed,
do_profile=args.profile,
kv_cache_dtype=args.kv_cache_dtype,
)

View File

@ -6,7 +6,7 @@ TOKENS=$2
docker run --gpus all --shm-size 1g -p $PORT:80 \
-v $PWD/data:/data \
ghcr.io/huggingface/text-generation-inference:0.8 \
ghcr.io/huggingface/text-generation-inference:1.4.0 \
--model-id $MODEL \
--sharded false \
--max-input-length 1024 \

View File

@ -1,5 +1,6 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include "cuda_compat.h"
#include "dispatch_utils.h"
@ -36,6 +37,7 @@ void silu_and_mul(
dim3 grid(num_tokens);
dim3 block(std::min(d, 1024));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(),
@ -71,6 +73,7 @@ __global__ void activation_kernel(
int64_t num_tokens = input.numel() / d; \
dim3 grid(num_tokens); \
dim3 block(std::min(d, 1024)); \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), \

View File

@ -4,3 +4,4 @@
#include "dtype_float16.cuh"
#include "dtype_float32.cuh"
#include "dtype_bfloat16.cuh"
#include "dtype_fp8_e5m2.cuh"

View File

@ -21,9 +21,13 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "attention_dtypes.h"
#include "attention_utils.cuh"
#ifdef ENABLE_FP8_E5M2
#include "../quantization/fp8_e5m2_kvcache/quant_utils.cuh"
#endif
#include <algorithm>
@ -78,17 +82,19 @@ inline __device__ float block_sum(float* red_smem, float sum) {
// Grid: (num_heads, num_seqs, max_num_partitions).
template<
typename scalar_t,
typename cache_t,
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS,
bool IS_FP8_E5M2_KV_CACHE,
int PARTITION_SIZE = 0> // Zero means no partitioning.
__device__ void paged_attention_kernel(
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
float* __restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
scalar_t* __restrict__ out, // [num_seqs, num_heads, max_num_partitions, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const scalar_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int num_kv_heads, // [num_heads]
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
@ -144,6 +150,9 @@ __device__ void paged_attention_kernel(
constexpr int VEC_SIZE = MAX(16 / (THREAD_GROUP_SIZE * sizeof(scalar_t)), 1);
using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
#ifdef ENABLE_FP8_E5M2
using Quant_vec = typename Vec<cache_t, VEC_SIZE>::Type;
#endif
constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;
@ -175,7 +184,7 @@ __device__ void paged_attention_kernel(
// x == THREAD_GROUP_SIZE * VEC_SIZE
// Each thread group fetches x elements from the key at a time.
constexpr int x = 16 / sizeof(scalar_t);
constexpr int x = 16 / sizeof(cache_t);
float qk_max = -FLT_MAX;
// Iterate over the key blocks.
@ -201,13 +210,23 @@ __device__ void paged_attention_kernel(
#pragma unroll
for (int j = 0; j < NUM_VECS_PER_THREAD; j++) {
const scalar_t* k_ptr = k_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride
+ physical_block_offset * x;
const cache_t* k_ptr = k_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride
+ physical_block_offset * x;
const int vec_idx = thread_group_offset + j * THREAD_GROUP_SIZE;
const int offset1 = (vec_idx * VEC_SIZE) / x;
const int offset2 = (vec_idx * VEC_SIZE) % x;
k_vecs[j] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
if constexpr (IS_FP8_E5M2_KV_CACHE) {
#ifdef ENABLE_FP8_E5M2
Quant_vec k_vec_quant = *reinterpret_cast<const Quant_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
// Vector conversion from Quant_vec to K_vec.
k_vecs[j] = fp8_e5m2_unscaled::vec_conversion<K_vec, Quant_vec>(k_vec_quant);
#else
assert(false);
#endif
} else {
k_vecs[j] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
}
}
// Compute dot product.
@ -281,6 +300,9 @@ __device__ void paged_attention_kernel(
constexpr int V_VEC_SIZE = MIN(16 / sizeof(scalar_t), BLOCK_SIZE);
using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
using L_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
#ifdef ENABLE_FP8_E5M2
using V_quant_vec = typename Vec<cache_t, V_VEC_SIZE>::Type;
#endif
using Float_L_vec = typename FloatVec<L_vec>::Type;
constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
@ -306,14 +328,25 @@ __device__ void paged_attention_kernel(
L_vec logits_vec;
from_float(logits_vec, *reinterpret_cast<Float_L_vec*>(logits + token_idx - start_token_idx));
const scalar_t* v_ptr = v_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride;
const cache_t* v_ptr = v_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride;
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
if (row_idx < HEAD_SIZE) {
const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
V_vec v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
V_vec v_vec;
if constexpr (IS_FP8_E5M2_KV_CACHE) {
#ifdef ENABLE_FP8_E5M2
V_quant_vec v_quant_vec = *reinterpret_cast<const V_quant_vec*>(v_ptr + offset);
// Vector conversion from V_quant_vec to V_vec.
v_vec = fp8_e5m2_unscaled::vec_conversion<V_vec, V_quant_vec>(v_quant_vec);
#else
assert(false);
#endif
} else {
v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
}
if (block_idx == num_context_blocks - 1) {
// NOTE(woosuk): When v_vec contains the tokens that are out of the context,
// we should explicitly zero out the values since they may contain NaNs.
@ -394,14 +427,16 @@ __device__ void paged_attention_kernel(
// Grid: (num_heads, num_seqs, 1).
template<
typename scalar_t,
typename cache_t,
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS>
int NUM_THREADS,
bool IS_FP8_E5M2_KV_CACHE>
__global__ void paged_attention_v1_kernel(
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const scalar_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int num_kv_heads, // [num_heads]
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
@ -411,7 +446,7 @@ __global__ void paged_attention_v1_kernel(
const int q_stride,
const int kv_block_stride,
const int kv_head_stride) {
paged_attention_kernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>(
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, IS_FP8_E5M2_KV_CACHE>(
/* exp_sums */ nullptr, /* max_logits */ nullptr,
out, q, k_cache, v_cache, num_kv_heads, scale, block_tables, context_lens,
max_num_blocks_per_seq, alibi_slopes, q_stride, kv_block_stride, kv_head_stride);
@ -420,17 +455,19 @@ __global__ void paged_attention_v1_kernel(
// Grid: (num_heads, num_seqs, max_num_partitions).
template<
typename scalar_t,
typename cache_t,
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS,
bool IS_FP8_E5M2_KV_CACHE,
int PARTITION_SIZE>
__global__ void paged_attention_v2_kernel(
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
float* __restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads, max_num_partitions, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const scalar_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int num_kv_heads, // [num_heads]
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
@ -440,7 +477,7 @@ __global__ void paged_attention_v2_kernel(
const int q_stride,
const int kv_block_stride,
const int kv_head_stride) {
paged_attention_kernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, PARTITION_SIZE>(
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, IS_FP8_E5M2_KV_CACHE, PARTITION_SIZE>(
exp_sums, max_logits, tmp_out, q, k_cache, v_cache, num_kv_heads, scale,
block_tables, context_lens, max_num_blocks_per_seq, alibi_slopes,
q_stride, kv_block_stride, kv_head_stride);
@ -549,10 +586,10 @@ __global__ void paged_attention_v2_reduce_kernel(
#define LAUNCH_PAGED_ATTENTION_V1(HEAD_SIZE) \
VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize( \
((void*)vllm::paged_attention_v1_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>), \
shared_mem_size); \
vllm::paged_attention_v1_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS> \
<<<grid, block, shared_mem_size, stream>>>( \
((void*)vllm::paged_attention_v1_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, \
IS_FP8_E5M2_KV_CACHE>), shared_mem_size); \
vllm::paged_attention_v1_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, \
IS_FP8_E5M2_KV_CACHE><<<grid, block, shared_mem_size, stream>>>( \
out_ptr, \
query_ptr, \
key_cache_ptr, \
@ -570,7 +607,9 @@ __global__ void paged_attention_v2_reduce_kernel(
// TODO(woosuk): Tune NUM_THREADS.
template<
typename T,
typename CACHE_T,
int BLOCK_SIZE,
bool IS_FP8_E5M2_KV_CACHE,
int NUM_THREADS = 128>
void paged_attention_v1_launcher(
torch::Tensor& out,
@ -601,8 +640,8 @@ void paged_attention_v1_launcher(
T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
CACHE_T* key_cache_ptr = reinterpret_cast<CACHE_T*>(key_cache.data_ptr());
CACHE_T* value_cache_ptr = reinterpret_cast<CACHE_T*>(value_cache.data_ptr());
int* block_tables_ptr = block_tables.data_ptr<int>();
int* context_lens_ptr = context_lens.data_ptr<int>();
@ -616,6 +655,7 @@ void paged_attention_v1_launcher(
dim3 grid(num_heads, num_seqs, 1);
dim3 block(NUM_THREADS);
const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
switch (head_size) {
// NOTE(woosuk): To reduce the compilation time, we only compile for the
@ -645,35 +685,35 @@ void paged_attention_v1_launcher(
}
}
#define CALL_V1_LAUNCHER(T, BLOCK_SIZE) \
paged_attention_v1_launcher<T, BLOCK_SIZE>( \
out, \
query, \
key_cache, \
value_cache, \
num_kv_heads, \
scale, \
block_tables, \
context_lens, \
max_context_len, \
#define CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE) \
paged_attention_v1_launcher<T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE>( \
out, \
query, \
key_cache, \
value_cache, \
num_kv_heads, \
scale, \
block_tables, \
context_lens, \
max_context_len, \
alibi_slopes);
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
// 1, 2, 4, 64, 128, 256.
#define CALL_V1_LAUNCHER_BLOCK_SIZE(T) \
switch (block_size) { \
case 8: \
CALL_V1_LAUNCHER(T, 8); \
break; \
case 16: \
CALL_V1_LAUNCHER(T, 16); \
break; \
case 32: \
CALL_V1_LAUNCHER(T, 32); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
#define CALL_V1_LAUNCHER_BLOCK_SIZE(T, CACHE_T, IS_FP8_E5M2_KV_CACHE) \
switch (block_size) { \
case 8: \
CALL_V1_LAUNCHER(T, CACHE_T, 8, IS_FP8_E5M2_KV_CACHE); \
break; \
case 16: \
CALL_V1_LAUNCHER(T, CACHE_T, 16, IS_FP8_E5M2_KV_CACHE); \
break; \
case 32: \
CALL_V1_LAUNCHER(T, CACHE_T, 32, IS_FP8_E5M2_KV_CACHE); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
}
void paged_attention_v1(
@ -687,20 +727,36 @@ void paged_attention_v1(
torch::Tensor& context_lens, // [num_seqs]
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes) {
if (query.dtype() == at::ScalarType::Float) {
CALL_V1_LAUNCHER_BLOCK_SIZE(float);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V1_LAUNCHER_BLOCK_SIZE(uint16_t);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V1_LAUNCHER_BLOCK_SIZE(__nv_bfloat16);
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype) {
if (kv_cache_dtype == "auto") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V1_LAUNCHER_BLOCK_SIZE(float, float, false);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V1_LAUNCHER_BLOCK_SIZE(uint16_t, uint16_t, false);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V1_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, __nv_bfloat16, false);
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else if (kv_cache_dtype == "fp8_e5m2") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V1_LAUNCHER_BLOCK_SIZE(float, uint8_t, true);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V1_LAUNCHER_BLOCK_SIZE(uint16_t, uint8_t, true);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V1_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, uint8_t, true);
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
}
}
#define LAUNCH_PAGED_ATTENTION_V2(HEAD_SIZE) \
vllm::paged_attention_v2_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, PARTITION_SIZE> \
vllm::paged_attention_v2_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, \
IS_FP8_E5M2_KV_CACHE, PARTITION_SIZE> \
<<<grid, block, shared_mem_size, stream>>>( \
exp_sums_ptr, \
max_logits_ptr, \
@ -728,7 +784,9 @@ void paged_attention_v1(
template<
typename T,
typename CACHE_T,
int BLOCK_SIZE,
bool IS_FP8_E5M2_KV_CACHE,
int NUM_THREADS = 128,
int PARTITION_SIZE = 512>
void paged_attention_v2_launcher(
@ -766,8 +824,8 @@ void paged_attention_v2_launcher(
float* max_logits_ptr = reinterpret_cast<float*>(max_logits.data_ptr());
T* tmp_out_ptr = reinterpret_cast<T*>(tmp_out.data_ptr());
T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
CACHE_T* key_cache_ptr = reinterpret_cast<CACHE_T*>(key_cache.data_ptr());
CACHE_T* value_cache_ptr = reinterpret_cast<CACHE_T*>(value_cache.data_ptr());
int* block_tables_ptr = block_tables.data_ptr<int>();
int* context_lens_ptr = context_lens.data_ptr<int>();
@ -784,6 +842,7 @@ void paged_attention_v2_launcher(
int reduce_shared_mem_size = 2 * max_num_partitions * sizeof(float);
dim3 block(NUM_THREADS);
const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
switch (head_size) {
// NOTE(woosuk): To reduce the compilation time, we only compile for the
@ -813,38 +872,38 @@ void paged_attention_v2_launcher(
}
}
#define CALL_V2_LAUNCHER(T, BLOCK_SIZE) \
paged_attention_v2_launcher<T, BLOCK_SIZE>( \
out, \
exp_sums, \
max_logits, \
tmp_out, \
query, \
key_cache, \
value_cache, \
num_kv_heads, \
scale, \
block_tables, \
context_lens, \
max_context_len, \
#define CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE) \
paged_attention_v2_launcher<T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE>( \
out, \
exp_sums, \
max_logits, \
tmp_out, \
query, \
key_cache, \
value_cache, \
num_kv_heads, \
scale, \
block_tables, \
context_lens, \
max_context_len, \
alibi_slopes);
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
// 1, 2, 4, 64, 128, 256.
#define CALL_V2_LAUNCHER_BLOCK_SIZE(T) \
switch (block_size) { \
case 8: \
CALL_V2_LAUNCHER(T, 8); \
break; \
case 16: \
CALL_V2_LAUNCHER(T, 16); \
break; \
case 32: \
CALL_V2_LAUNCHER(T, 32); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
#define CALL_V2_LAUNCHER_BLOCK_SIZE(T, CACHE_T, IS_FP8_E5M2_KV_CACHE) \
switch (block_size) { \
case 8: \
CALL_V2_LAUNCHER(T, CACHE_T, 8, IS_FP8_E5M2_KV_CACHE); \
break; \
case 16: \
CALL_V2_LAUNCHER(T, CACHE_T, 16, IS_FP8_E5M2_KV_CACHE); \
break; \
case 32: \
CALL_V2_LAUNCHER(T, CACHE_T, 32, IS_FP8_E5M2_KV_CACHE); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
}
void paged_attention_v2(
@ -861,15 +920,30 @@ void paged_attention_v2(
torch::Tensor& context_lens, // [num_seqs]
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes) {
if (query.dtype() == at::ScalarType::Float) {
CALL_V2_LAUNCHER_BLOCK_SIZE(float);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V2_LAUNCHER_BLOCK_SIZE(uint16_t);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V2_LAUNCHER_BLOCK_SIZE(__nv_bfloat16);
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype) {
if (kv_cache_dtype == "auto") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V2_LAUNCHER_BLOCK_SIZE(float, float, false);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V2_LAUNCHER_BLOCK_SIZE(uint16_t, uint16_t, false);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V2_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, __nv_bfloat16, false);
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else if (kv_cache_dtype == "fp8_e5m2") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V2_LAUNCHER_BLOCK_SIZE(float, uint8_t, true);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V2_LAUNCHER_BLOCK_SIZE(uint16_t, uint8_t, true);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V2_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, uint8_t, true);
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
}
}

View File

@ -0,0 +1,35 @@
#pragma once
#include "attention_generic.cuh"
#include <stdint.h>
#ifdef ENABLE_FP8_E5M2
#include <cuda_fp8.h>
#endif
namespace vllm {
#ifdef ENABLE_FP8_E5M2
// fp8 vector types for quantization of kv cache
template<>
struct Vec<uint8_t, 1> {
using Type = uint8_t;
};
template<>
struct Vec<uint8_t, 2> {
using Type = uint16_t;
};
template<>
struct Vec<uint8_t, 4> {
using Type = uint32_t;
};
template<>
struct Vec<uint8_t, 8> {
using Type = uint2;
};
#endif // ENABLE_FP8_E5M2
} // namespace vllm

View File

@ -1,3 +1,5 @@
#pragma once
#include <torch/extension.h>
#include <map>
@ -18,7 +20,8 @@ void reshape_and_cache(
torch::Tensor& value,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& slot_mapping);
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype);
void gather_cached_kv(
torch::Tensor& key,
@ -26,3 +29,8 @@ void gather_cached_kv(
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& slot_mapping);
// Just for unittest
void convert_fp8_e5m2(
torch::Tensor& src_cache,
torch::Tensor& dst_cache);

View File

@ -1,14 +1,23 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "cuda_compat.h"
#include "dispatch_utils.h"
#ifdef ENABLE_FP8_E5M2
#include "quantization/fp8_e5m2_kvcache/quant_utils.cuh"
#endif
#include <algorithm>
#include <cassert>
#include <map>
#include <vector>
#ifdef USE_ROCM
#include <hip/hip_bf16.h>
typedef __hip_bfloat16 __nv_bfloat16;
#endif
void swap_blocks(
torch::Tensor& src,
torch::Tensor& dst,
@ -33,6 +42,7 @@ void swap_blocks(
char *dst_ptr = static_cast<char*>(dst.data_ptr());
const int64_t block_size_in_bytes = src.element_size() * src[0].numel();
const at::cuda::OptionalCUDAGuard device_guard(src_device.is_cuda() ? src_device : dst_device);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// NOTE(woosuk): This can be slow if the number of blocks is large.
for (const auto& pair : block_mapping) {
@ -127,8 +137,9 @@ void copy_blocks(
const int numel_per_block = key_caches[0][0].numel();
dim3 grid(num_layers, num_pairs);
dim3 block(std::min(1024, numel_per_block));
const at::cuda::OptionalCUDAGuard device_guard(cache_device);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(
key_caches[0].scalar_type(), "copy_blocks_kernel", ([&] {
vllm::copy_blocks_kernel<scalar_t><<<grid, block, 0, stream>>>(
key_cache_ptrs_tensor.data_ptr<int64_t>(),
@ -140,12 +151,12 @@ void copy_blocks(
namespace vllm {
template<typename scalar_t>
template<typename scalar_t, typename cache_t, bool is_fp8_e5m2_kv_cache>
__global__ void reshape_and_cache_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
scalar_t* __restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
scalar_t* __restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
cache_t* __restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
cache_t* __restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int key_stride,
const int value_stride,
@ -182,19 +193,45 @@ __global__ void reshape_and_cache_kernel(
+ head_idx * head_size * block_size
+ head_offset * block_size
+ block_offset;
key_cache[tgt_key_idx] = key[src_key_idx];
value_cache[tgt_value_idx] = value[src_value_idx];
scalar_t tgt_key = key[src_key_idx];
scalar_t tgt_value = value[src_value_idx];
if constexpr (is_fp8_e5m2_kv_cache) {
#ifdef ENABLE_FP8_E5M2
key_cache[tgt_key_idx] = fp8_e5m2_unscaled::vec_conversion<uint8_t, scalar_t>(tgt_key);
value_cache[tgt_value_idx] = fp8_e5m2_unscaled::vec_conversion<uint8_t, scalar_t>(tgt_value);
#else
assert(false);
#endif
} else {
key_cache[tgt_key_idx] = tgt_key;
value_cache[tgt_value_idx] = tgt_value;
}
}
}
} // namespace vllm
#define CALL_RESHAPE_AND_CACHE(KV_T, CACHE_T, IS_FP8_E5M2_KV_CACHE) \
vllm::reshape_and_cache_kernel<KV_T, CACHE_T, IS_FP8_E5M2_KV_CACHE><<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(key.data_ptr()), \
reinterpret_cast<KV_T*>(value.data_ptr()), \
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), \
key_stride, \
value_stride, \
num_heads, \
head_size, \
block_size, \
x);
void reshape_and_cache(
torch::Tensor& key, // [num_tokens, num_heads, head_size]
torch::Tensor& value, // [num_tokens, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size]
torch::Tensor& slot_mapping) // [num_tokens]
torch::Tensor& slot_mapping, // [num_tokens]
const std::string& kv_cache_dtype)
{
int num_tokens = key.size(0);
int num_heads = key.size(1);
@ -207,24 +244,27 @@ void reshape_and_cache(
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
key.scalar_type(),
"reshape_and_cache_kernel",
[&] {
vllm::reshape_and_cache_kernel<scalar_t><<<grid, block, 0, stream>>>(
key.data_ptr<scalar_t>(),
value.data_ptr<scalar_t>(),
key_cache.data_ptr<scalar_t>(),
value_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int64_t>(),
key_stride,
value_stride,
num_heads,
head_size,
block_size,
x);
});
if (kv_cache_dtype == "auto") {
if (key.dtype() == at::ScalarType::Float) {
CALL_RESHAPE_AND_CACHE(float, float, false);
} else if (key.dtype() == at::ScalarType::Half) {
CALL_RESHAPE_AND_CACHE(uint16_t, uint16_t, false);
} else if (key.dtype() == at::ScalarType::BFloat16) {
CALL_RESHAPE_AND_CACHE(__nv_bfloat16, __nv_bfloat16, false);
}
} else if (kv_cache_dtype == "fp8_e5m2") {
if (key.dtype() == at::ScalarType::Float) {
CALL_RESHAPE_AND_CACHE(float, uint8_t, true);
} else if (key.dtype() == at::ScalarType::Half) {
CALL_RESHAPE_AND_CACHE(uint16_t, uint8_t, true);
} else if (key.dtype() == at::ScalarType::BFloat16) {
CALL_RESHAPE_AND_CACHE(__nv_bfloat16, uint8_t, true);
}
} else {
TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
}
}
namespace vllm {
@ -252,12 +292,12 @@ __global__ void gather_cached_kv_kernel(
for (int i = threadIdx.x; i < num_tokens; i += blockDim.x) {
const int tgt_key_idx = token_idx * key_stride + i;
const int tgt_value_idx = token_idx * value_stride + i;
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int x_idx = head_offset / x; // the offset of the [head_size/x] dimension
const int x_offset = head_offset % x;
const int src_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
+ head_idx * (head_size / x) * block_size * x
+ x_idx * block_size * x
@ -367,8 +407,9 @@ void gather_cached_kv(
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(
key.scalar_type(),
"gather_cached_kv_kernel_optimized",
[&] {
@ -386,3 +427,55 @@ void gather_cached_kv(
x);
});
}
namespace vllm {
template<typename Tout, typename Tin>
__global__ void convert_fp8_e5m2_kernel(
const Tin* __restrict__ src_cache,
Tout* __restrict__ dst_cache,
const int64_t block_stride) {
const int64_t block_idx = blockIdx.x;
for (int i = threadIdx.x; i < block_stride; i += blockDim.x) {
int64_t idx = block_idx * block_stride + i;
#ifdef ENABLE_FP8_E5M2
dst_cache[idx] = fp8_e5m2_unscaled::vec_conversion<Tout, Tin>(src_cache[idx]);
#else
assert(false);
#endif
}
}
} // namespace vllm
#define CALL_CONVERT_FP8_E5M2(Tout, Tin) \
vllm::convert_fp8_e5m2_kernel<Tout, Tin><<<grid, block, 0, stream>>>( \
reinterpret_cast<Tin*>(src_cache.data_ptr()), \
reinterpret_cast<Tout*>(dst_cache.data_ptr()), \
block_stride);
void convert_fp8_e5m2(
torch::Tensor& src_cache,
torch::Tensor& dst_cache)
{
int64_t num_blocks = src_cache.size(0);
int64_t block_stride = src_cache.stride(0);
dim3 grid(num_blocks);
dim3 block(std::min(block_stride, int64_t(512)));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (src_cache.dtype() == at::ScalarType::Float) {
CALL_CONVERT_FP8_E5M2(uint8_t, float);
} else if (src_cache.dtype() == at::ScalarType::Half) {
CALL_CONVERT_FP8_E5M2(uint8_t, uint16_t);
} else if (src_cache.dtype() == at::ScalarType::BFloat16) {
CALL_CONVERT_FP8_E5M2(uint8_t, __nv_bfloat16);
} else if (dst_cache.dtype() == at::ScalarType::Float) {
CALL_CONVERT_FP8_E5M2(float, uint8_t);
} else if (dst_cache.dtype() == at::ScalarType::Half) {
CALL_CONVERT_FP8_E5M2(uint16_t, uint8_t);
} else if (dst_cache.dtype() == at::ScalarType::BFloat16) {
CALL_CONVERT_FP8_E5M2(__nv_bfloat16, uint8_t);
}
}

View File

@ -1,5 +1,10 @@
#pragma once
#include <torch/extension.h>
int get_device_attribute(
int attribute,
int device_id);
int get_max_shared_memory_per_block_device_attribute(
int device_id);

View File

@ -1,5 +1,6 @@
#ifdef USE_ROCM
#include <hip/hip_runtime.h>
#include <hip/hip_runtime_api.h>
#endif
int get_device_attribute(
int attribute,
@ -15,3 +16,20 @@ int get_device_attribute(
cudaDeviceGetAttribute(&value, static_cast<cudaDeviceAttr>(attribute), device);
return value;
}
int get_max_shared_memory_per_block_device_attribute(
int device_id)
{
int attribute;
// https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html
// cudaDevAttrMaxSharedMemoryPerBlockOptin = 97 if not is_hip() else 74
#ifdef USE_ROCM
attribute = hipDeviceAttributeMaxSharedMemoryPerBlock;
#else
attribute = cudaDevAttrMaxSharedMemoryPerBlockOptin;
#endif
return get_device_attribute(attribute, device_id);
}

148
csrc/custom_all_reduce.cu Normal file
View File

@ -0,0 +1,148 @@
#include <ATen/cuda/Exceptions.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include <torch/extension.h>
#include "custom_all_reduce.cuh"
// fake pointer type
using fptr_t = uint64_t;
static_assert(sizeof(void *) == sizeof(fptr_t));
fptr_t init_custom_ar(torch::Tensor &meta, torch::Tensor &rank_data,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets, int rank,
bool full_nvlink) {
int world_size = offsets.size();
if (world_size > 8)
throw std::invalid_argument("world size > 8 is not supported");
if (world_size % 2 != 0)
throw std::invalid_argument("Odd num gpus is not supported for now");
if (world_size != handles.size())
throw std::invalid_argument(
"handles length should equal to offsets length");
if (rank < 0 || rank >= world_size)
throw std::invalid_argument("invalid rank passed in");
cudaIpcMemHandle_t ipc_handles[8];
for (int i = 0; i < world_size; i++) {
std::memcpy(&ipc_handles[i], handles[i].data(), sizeof(cudaIpcMemHandle_t));
}
return (fptr_t) new vllm::CustomAllreduce(
reinterpret_cast<vllm::Metadata *>(meta.data_ptr()), rank_data.data_ptr(),
rank_data.numel(), ipc_handles, offsets, rank, full_nvlink);
}
/**
* Make sure tensor t's data lies completely within ((char)t.data_ptr()) +
* t.numel() * t.element_size(). This is slightly weaker than t.is_contiguous()
* because it allows transpose of contiguous slice (i.e. slicing the first
* dimension). Currently, we require this because stride information is not
* passed into the kernels and we treat input tensors as flat.
*
* Examples
* A = torch.zeros(3, 3, 3)
* 1. A: OK
* 2. A[1:]: OK
* 3. A.permute(2, 0, 1): OK
* 4. A[1:].permute(2, 0, 1): OK
* 5. A[None].expand(2, -1, -1, -1): Not OK
* 6. A[:, 1:, 1:]: Not OK
*/
bool _is_weak_contiguous(torch::Tensor &t) {
return t.is_contiguous() ||
(t.storage().nbytes() - t.storage_offset() * t.element_size() ==
t.numel() * t.element_size());
}
bool should_custom_ar(torch::Tensor &inp, int max_size, int world_size,
bool full_nvlink) {
auto inp_size = inp.numel() * inp.element_size();
// custom allreduce requires input byte size to be multiples of 16
if (inp_size % 16 != 0) return false;
if (!_is_weak_contiguous(inp)) return false;
if (world_size == 2 || full_nvlink) return inp_size <= max_size;
// 4 PCIE GPUs use 2 stage allreduce, and is only faster than NCCL when size
// <= 512k
return world_size <= 4 && inp_size <= 512 * 1024;
}
void _all_reduce(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out,
cudaStream_t stream) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
TORCH_CHECK(_is_weak_contiguous(out));
switch (out.scalar_type()) {
case at::ScalarType::Float: {
fa->allreduce<float>(stream, reinterpret_cast<float *>(inp.data_ptr()),
reinterpret_cast<float *>(out.data_ptr()),
out.numel());
break;
}
case at::ScalarType::Half: {
fa->allreduce<half>(stream, reinterpret_cast<half *>(inp.data_ptr()),
reinterpret_cast<half *>(out.data_ptr()),
out.numel());
break;
}
#if (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__))
case at::ScalarType::BFloat16: {
fa->allreduce<nv_bfloat16>(
stream, reinterpret_cast<nv_bfloat16 *>(inp.data_ptr()),
reinterpret_cast<nv_bfloat16 *>(out.data_ptr()), out.numel());
break;
}
#endif
default:
throw std::runtime_error(
"custom allreduce only supports float32, float16 and bfloat16");
}
}
void all_reduce_reg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(inp));
auto stream = c10::cuda::getCurrentCUDAStream().stream();
TORCH_CHECK_EQ(inp.scalar_type(), out.scalar_type());
TORCH_CHECK_EQ(inp.numel(), out.numel());
_all_reduce(_fa, inp, out, stream);
}
void all_reduce_unreg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &reg_buffer,
torch::Tensor &out) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(inp));
auto stream = c10::cuda::getCurrentCUDAStream().stream();
auto input_size = inp.numel() * inp.element_size();
TORCH_CHECK_EQ(inp.scalar_type(), out.scalar_type());
TORCH_CHECK_EQ(inp.numel(), out.numel());
TORCH_CHECK(input_size <= reg_buffer.numel() * reg_buffer.element_size(),
"registered buffer is too small to contain the input");
AT_CUDA_CHECK(cudaMemcpyAsync(reg_buffer.data_ptr(), inp.data_ptr(),
input_size, cudaMemcpyDeviceToDevice, stream));
_all_reduce(_fa, reg_buffer, out, stream);
}
void dispose(fptr_t _fa) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
delete fa;
}
int meta_size() { return sizeof(vllm::Metadata); }
void register_buffer(fptr_t _fa, torch::Tensor &t,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
fa->register_buffer(handles, offsets, t.data_ptr());
}
std::pair<std::vector<uint8_t>, std::vector<int64_t>> get_graph_buffer_ipc_meta(
fptr_t _fa) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
return fa->get_graph_buffer_ipc_meta();
}
void register_graph_buffers(fptr_t _fa, const std::vector<std::string> &handles,
const std::vector<std::vector<int64_t>> &offsets) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
fa->register_graph_buffers(handles, offsets);
}

562
csrc/custom_all_reduce.cuh Normal file
View File

@ -0,0 +1,562 @@
#pragma once
#include <cuda.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <iostream>
#include <limits>
#include <map>
#include <unordered_map>
#include <vector>
#define CUDACHECK(cmd) \
do { \
cudaError_t e = cmd; \
if (e != cudaSuccess) { \
printf("Failed: Cuda error %s:%d '%s'\n", __FILE__, __LINE__, \
cudaGetErrorString(e)); \
exit(EXIT_FAILURE); \
} \
} while (0)
namespace vllm {
struct Signal {
alignas(64) union {
uint64_t flag;
unsigned char data[8];
} start;
alignas(64) union {
uint64_t flag;
unsigned char data[8];
} end;
};
struct Metadata {
alignas(128) Signal sg;
alignas(128) int counter;
};
static_assert(offsetof(Metadata, counter) == 128);
static_assert(sizeof(Metadata) == 256);
struct __align__(16) RankData { const void *__restrict__ ptrs[8]; };
struct RankSignals {
volatile Signal *signals[8];
};
// like std::array, but aligned
template <typename T, int sz>
struct __align__(alignof(T) * sz) array_t {
T data[sz];
using type = T;
static constexpr int size = sz;
};
// use packed type to maximize memory efficiency
// goal: generate ld.128 and st.128 instructions
template <typename T>
struct packed_t {
// the (P)acked type for load/store
using P = array_t<T, 16 / sizeof(T)>;
// the (A)ccumulator type for reduction
using A = array_t<float, 16 / sizeof(T)>;
};
#define DINLINE __device__ __forceinline__
// scalar cast functions
DINLINE float upcast_s(half val) { return __half2float(val); }
template <typename T>
DINLINE T downcast_s(float val);
template <>
DINLINE half downcast_s(float val) {
return __float2half(val);
}
// scalar add functions
// for some reason when compiling with Pytorch, the + operator for half and
// bfloat is disabled so we call the intrinsics directly
DINLINE half &assign_add(half &a, half b) {
a = __hadd(a, b);
return a;
}
DINLINE float &assign_add(float &a, float b) { return a += b; }
#if (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__))
DINLINE float upcast_s(nv_bfloat16 val) { return __bfloat162float(val); }
template <>
DINLINE nv_bfloat16 downcast_s(float val) {
return __float2bfloat16(val);
}
DINLINE nv_bfloat16 &assign_add(nv_bfloat16 &a, nv_bfloat16 b) {
a = __hadd(a, b);
return a;
}
#endif
template <typename T, int N>
DINLINE array_t<T, N> &packed_assign_add(array_t<T, N> &a, array_t<T, N> b) {
#pragma unroll
for (int i = 0; i < N; i++) {
assign_add(a.data[i], b.data[i]);
}
return a;
}
template <typename T, int N>
DINLINE array_t<float, N> upcast(array_t<T, N> val) {
if constexpr (std::is_same<T, float>::value) {
return val;
} else {
array_t<float, N> out;
#pragma unroll
for (int i = 0; i < N; i++) {
out.data[i] = upcast_s(val.data[i]);
}
return out;
}
}
template <typename O>
DINLINE O downcast(array_t<float, O::size> val) {
if constexpr (std::is_same<typename O::type, float>::value) {
return val;
} else {
O out;
#pragma unroll
for (int i = 0; i < O::size; i++) {
out.data[i] = downcast_s<typename O::type>(val.data[i]);
}
return out;
}
}
// compute flag at compile time
__host__ __device__ constexpr uint64_t compute_flag(int ngpus) {
auto m = std::numeric_limits<uint64_t>::max();
return m >> ((8 - ngpus) * 8);
}
template <int ngpus>
DINLINE void start_sync(const RankSignals &sg, volatile Metadata *meta,
int rank) {
constexpr auto FLAG = compute_flag(ngpus);
if (blockIdx.x == 0) {
if (threadIdx.x < ngpus)
// simultaneously write to the corresponding byte to all other ranks.
// Latency = 1 p2p write
sg.signals[threadIdx.x]->start.data[rank] = 255;
else if (threadIdx.x == 32)
// reset
meta->sg.end.flag = 0;
}
if (threadIdx.x == 0) {
while (meta->sg.start.flag != FLAG)
;
}
__syncthreads();
}
template <int ngpus, bool final_sync = false>
DINLINE void end_sync(const RankSignals &sg, volatile Metadata *meta,
int rank) {
constexpr auto FLAG = compute_flag(ngpus);
__syncthreads();
__shared__ int num;
if (threadIdx.x == 0) num = atomicAdd((int *)&meta->counter, 1);
__syncthreads();
// Only the last completing block can perform the end synchronization
// This can ensures when the final busy wait ends, all ranks must have
// finished reading each other's buffer.
if (num == gridDim.x - 1) {
if (threadIdx.x == 32) {
// reset in a different warp
meta->counter = 0;
meta->sg.start.flag = 0;
} else if (threadIdx.x < ngpus) {
// simultaneously write to the corresponding byte to all other ranks.
// Latency = 1 p2p write
sg.signals[threadIdx.x]->end.data[rank] = 255;
}
// if this is the final sync, only one block needs it
// because kernel exit can serve as sync
if constexpr (final_sync) {
if (threadIdx.x == 0) {
while (meta->sg.end.flag != FLAG)
;
}
}
}
if constexpr (!final_sync) {
if (threadIdx.x == 0) {
while (meta->sg.end.flag != FLAG)
;
}
__syncthreads();
}
}
template <typename P, int ngpus, typename A>
DINLINE P packed_reduce(const P *ptrs[], int idx) {
A tmp = upcast(ptrs[0][idx]);
#pragma unroll
for (int i = 1; i < ngpus; i++) {
packed_assign_add(tmp, upcast(ptrs[i][idx]));
}
return downcast<P>(tmp);
}
template <typename T, int ngpus>
__global__ void __launch_bounds__(512, 1)
cross_device_reduce_1stage(RankData *_dp, RankSignals sg,
volatile Metadata *meta, T *__restrict__ result,
int rank, int size) {
using P = typename packed_t<T>::P;
using A = typename packed_t<T>::A;
// note: we don't reorder the address so the accumulation order is the same
// for all ranks, ensuring bitwise identical results
auto dp = *_dp;
start_sync<ngpus>(sg, meta, rank);
// do the actual reduction
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
((P *)result)[idx] =
packed_reduce<P, ngpus, A>((const P **)&dp.ptrs[0], idx);
}
end_sync<ngpus, true>(sg, meta, rank);
}
template <typename P>
DINLINE P *get_tmp_buf(volatile Signal *sg) {
return (P *)(((Metadata *)sg) + 1);
}
template <typename T, int ngpus>
__global__ void __launch_bounds__(512, 1)
cross_device_reduce_2stage(RankData *_dp, RankSignals sg,
volatile Metadata *meta, T *__restrict__ result,
int rank, int size) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = gridDim.x * blockDim.x;
using P = typename packed_t<T>::P;
using A = typename packed_t<T>::A;
int part = size / ngpus;
int start = rank * part;
int end = rank == ngpus - 1 ? size : start + part;
const P *ptrs[ngpus];
P *tmps[ngpus];
#pragma unroll
for (int i = 0; i < ngpus; i++) {
int target = (rank + i) % ngpus;
ptrs[i] = (const P *)_dp->ptrs[target];
tmps[i] = get_tmp_buf<P>(sg.signals[target]);
}
auto tmp_out = tmps[0];
start_sync<ngpus>(sg, meta, rank);
// stage 1: reduce scatter
for (int idx = start + tid; idx < end; idx += stride) {
tmp_out[idx - start] = packed_reduce<P, ngpus, A>(ptrs, idx);
}
// Maybe TODO: replace this with per-block release-acquire
// can save about 1-2us (not a lot though)
end_sync<ngpus>(sg, meta, rank);
// stage 2: allgather
for (int idx = tid; idx < part; idx += stride) {
#pragma unroll
for (int i = 0; i < ngpus; i++) {
int dst_idx = ((rank + i) % ngpus) * part + idx;
((P *)result)[dst_idx] = tmps[i][idx];
}
}
// process the last larger partition
int remaining = size - part * ngpus;
if (tid < remaining) {
int dst_idx = tid + part * ngpus;
((P *)result)[dst_idx] = get_tmp_buf<P>(sg.signals[ngpus - 1])[part + tid];
}
// faster than this
// for (int idx = tid; idx < size; idx += stride) {
// int target_rank = idx / part;
// if (target_rank == ngpus) target_rank -= 1;
// ((P *)result)[idx] = tmps[target_rank][idx - target_rank * part];
// }
}
template <typename T, int ngpus>
__global__ void __launch_bounds__(512, 1)
cross_device_reduce_half_butterfly(RankData *_dp, RankSignals sg,
volatile Metadata *meta,
T *__restrict__ result, int rank,
int size) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = gridDim.x * blockDim.x;
using P = typename packed_t<T>::P;
using A = typename packed_t<T>::A;
auto tmp_out = get_tmp_buf<P>(sg.signals[rank]);
constexpr int hg = ngpus / 2;
// Actually not quite half butterfly.
// This is an all-to-all within each group containing half of the ranks
// followed by cross-group add. Equivalent to half butterfly when there
// are 4 GPUs, a common case for PCIe cards like T4 and A10.
const P *ptrs[hg];
{
int start = rank - rank % hg;
#pragma unroll
for (int i = 0; i < hg; i++) {
ptrs[i] = (const P *)_dp->ptrs[i + start];
}
}
start_sync<ngpus>(sg, meta, rank);
for (int idx = tid; idx < size; idx += stride) {
tmp_out[idx] = packed_reduce<P, hg, A>(ptrs, idx);
}
end_sync<ngpus>(sg, meta, rank);
auto src = get_tmp_buf<P>(sg.signals[(ngpus - 1) - rank % ngpus]);
// do the cross group reduction
for (int idx = tid; idx < size; idx += stride) {
auto tmp = tmp_out[idx];
packed_assign_add(tmp, src[idx]);
((P *)result)[idx] = tmp;
}
}
using IPC_KEY = std::array<uint8_t, sizeof(cudaIpcMemHandle_t)>;
static_assert(sizeof(IPC_KEY) == sizeof(cudaIpcMemHandle_t));
static_assert(alignof(IPC_KEY) == alignof(cudaIpcMemHandle_t));
class CustomAllreduce {
public:
int rank_;
int world_size_;
bool full_nvlink_;
// below are device pointers
RankSignals sg_;
std::unordered_map<void *, RankData *> buffers_;
Metadata *meta_;
// stores the registered device pointers from all ranks
RankData *d_rank_data_base_, *d_rank_data_end_;
std::vector<void *> graph_unreg_buffers_;
// a map from IPC handles to opened IPC pointers
std::map<IPC_KEY, char *> ipc_handles_;
/**
* meta is a pointer to device metadata and temporary buffer for allreduce.
*
* There's a total of sizeof(Metadata) of prefix before the actual data,
* so meta + 1 points to actual temporary buffer.
*
* note: this class does not own any device memory. Any required buffers
* are passed in from the constructor
*/
CustomAllreduce(Metadata *meta, void *rank_data, size_t rank_data_sz,
const cudaIpcMemHandle_t *handles,
const std::vector<int64_t> &offsets, int rank,
bool full_nvlink = true)
: rank_(rank),
world_size_(offsets.size()),
full_nvlink_(full_nvlink),
meta_(meta),
d_rank_data_base_(reinterpret_cast<RankData *>(rank_data)),
d_rank_data_end_(d_rank_data_base_ + rank_data_sz / sizeof(RankData)) {
for (int i = 0; i < world_size_; i++) {
Metadata *rank_meta;
if (i != rank_) {
char *handle = open_ipc_handle(&handles[i]);
handle += offsets[i];
rank_meta = (Metadata *)handle;
} else {
rank_meta = meta_;
}
sg_.signals[i] = &rank_meta->sg;
}
}
char *open_ipc_handle(const void *ipc_handle) {
auto [it, new_handle] =
ipc_handles_.insert({*((IPC_KEY *)ipc_handle), nullptr});
if (new_handle) {
char *ipc_ptr;
CUDACHECK(cudaIpcOpenMemHandle((void **)&ipc_ptr,
*((const cudaIpcMemHandle_t *)ipc_handle),
cudaIpcMemLazyEnablePeerAccess));
it->second = ipc_ptr;
}
return it->second;
}
std::pair<std::vector<uint8_t>, std::vector<int64_t>>
get_graph_buffer_ipc_meta() {
auto num_buffers = graph_unreg_buffers_.size();
auto handle_sz = sizeof(cudaIpcMemHandle_t);
std::vector<uint8_t> handles(handle_sz * num_buffers, 0);
std::vector<int64_t> offsets(num_buffers);
for (int i = 0; i < num_buffers; i++) {
auto ptr = graph_unreg_buffers_[i];
void *base_ptr;
// note: must share the base address of each allocation, or we get wrong
// address
if (cuPointerGetAttribute(&base_ptr,
CU_POINTER_ATTRIBUTE_RANGE_START_ADDR,
(CUdeviceptr)ptr) != CUDA_SUCCESS)
throw std::runtime_error("failed to get pointer attr");
CUDACHECK(cudaIpcGetMemHandle(
(cudaIpcMemHandle_t *)&handles[i * handle_sz], base_ptr));
offsets[i] = ((char *)ptr) - ((char *)base_ptr);
}
return std::make_pair(handles, offsets);
}
void check_rank_data_capacity(size_t num = 1) {
if (d_rank_data_base_ + num > d_rank_data_end_)
throw std::runtime_error(
"Rank data buffer is overflowed by " +
std::to_string(d_rank_data_base_ + num - d_rank_data_end_));
}
void register_buffer(const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets, void *self) {
check_rank_data_capacity();
RankData data;
for (int i = 0; i < world_size_; i++) {
if (i != rank_) {
char *handle = open_ipc_handle(handles[i].data());
handle += offsets[i];
data.ptrs[i] = handle;
} else {
data.ptrs[i] = self;
}
}
auto d_data = d_rank_data_base_++;
CUDACHECK(
cudaMemcpy(d_data, &data, sizeof(RankData), cudaMemcpyHostToDevice));
buffers_[self] = d_data;
}
// note: when registering graph buffers, we intentionally choose to not
// deduplicate the addresses. That means if the allocator reuses some
// addresses, they will be registered again. This is to account for the remote
// possibility of different allocation patterns between ranks. For example,
// rank 1 may get the same input address for the second allreduce, but rank 2
// got a different address. IPC handles have internal reference counting
// mechanism so overhead should be small.
void register_graph_buffers(
const std::vector<std::string> &handles,
const std::vector<std::vector<int64_t>> &offsets) {
auto num_buffers = graph_unreg_buffers_.size();
check_rank_data_capacity(num_buffers);
std::vector<RankData> rank_data(num_buffers);
for (int i = 0; i < num_buffers; i++) {
auto self_ptr = graph_unreg_buffers_[i];
auto &rd = rank_data[i];
for (int j = 0; j < world_size_; j++) {
if (j != rank_) {
char *handle =
open_ipc_handle(&handles[j][i * sizeof(cudaIpcMemHandle_t)]);
handle += offsets[j][i];
rd.ptrs[j] = handle;
} else {
rd.ptrs[j] = self_ptr;
}
}
}
CUDACHECK(cudaMemcpy(d_rank_data_base_, rank_data.data(),
sizeof(RankData) * num_buffers,
cudaMemcpyHostToDevice));
d_rank_data_base_ += num_buffers;
graph_unreg_buffers_.clear();
}
/**
* This is the result after careful grid search. Using 36 blocks give the best
* or close to the best runtime on the devices I tried: A100, A10, A30, T4,
* V100. You'll notice that NCCL kernels also only take a small amount of SMs.
* Not quite sure the underlying reason, but my guess is that too many SMs
* will cause contention on NVLink bus.
*/
template <typename T>
void allreduce(cudaStream_t stream, T *input, T *output, int size,
int threads = 512, int block_limit = 36) {
auto d = packed_t<T>::P::size;
if (size % d != 0)
throw std::runtime_error(
"custom allreduce currently requires input length to be multiple "
"of " +
std::to_string(d));
RankData *ptrs;
cudaStreamCaptureStatus status;
CUDACHECK(cudaStreamIsCapturing(stream, &status));
if (status == cudaStreamCaptureStatusActive) {
ptrs = d_rank_data_base_ + graph_unreg_buffers_.size();
graph_unreg_buffers_.push_back(input);
} else {
auto it = buffers_.find(input);
if (it == buffers_.end())
throw std::runtime_error(
"buffer address " +
std::to_string(reinterpret_cast<uint64_t>(input)) +
" is not registered!");
ptrs = it->second;
}
size /= d;
auto bytes = size * sizeof(typename packed_t<T>::P);
int blocks = std::min(block_limit, (size + threads - 1) / threads);
#define KL(ngpus, name) \
name<T, ngpus> \
<<<blocks, threads, 0, stream>>>(ptrs, sg_, meta_, output, rank_, size);
#define REDUCE_CASE(ngpus) \
case ngpus: { \
if (world_size_ == 2) { \
KL(ngpus, cross_device_reduce_1stage); \
} else if (full_nvlink_) { \
if ((world_size_ <= 4 && bytes < 512 * 1024) || \
(world_size_ <= 8 && bytes < 256 * 1024)) { \
KL(ngpus, cross_device_reduce_1stage); \
} else { \
KL(ngpus, cross_device_reduce_2stage); \
} \
} else { \
KL(ngpus, cross_device_reduce_half_butterfly); \
} \
break; \
}
switch (world_size_) {
REDUCE_CASE(2)
REDUCE_CASE(4)
REDUCE_CASE(6)
REDUCE_CASE(8)
default:
throw std::runtime_error(
"custom allreduce only supports num gpus in (2,4,6,8). Actual num "
"gpus = " +
std::to_string(world_size_));
}
#undef REDUCE_CASE
#undef KL
}
~CustomAllreduce() {
for (auto [_, ptr] : ipc_handles_) {
CUDACHECK(cudaIpcCloseMemHandle(ptr));
}
}
};
/**
* To inspect PTX/SASS, copy paste this header file to compiler explorer and add
a template instantiation:
* template void CustomAllreduce::allreduce<half>(cudaStream_t, half *, half *,
int, int, int);
*/
} // namespace vllm

View File

@ -0,0 +1,284 @@
/**
* This is a standalone test for custom allreduce.
* To compile, make sure you have MPI and NCCL installed in your system.
* export MPI_HOME=XXX
* nvcc -O2 -arch=native -std=c++17 custom_all_reduce_test.cu -o
* custom_all_reduce_test -lnccl -I${MPI_HOME}/include -lmpi
*
* Warning: this C++ test is not designed to be very readable and was used
* during the rapid prototyping process.
*
* To run:
* mpirun -np 8 ./custom_all_reduce_test
*/
#include <cuda.h>
#include <curand_kernel.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits>
#include <vector>
#include "cuda_profiler_api.h"
#include "custom_all_reduce.cuh"
#include "mpi.h"
#include "nccl.h"
#define MPICHECK(cmd) \
do { \
int e = cmd; \
if (e != MPI_SUCCESS) { \
printf("Failed: MPI error %s:%d '%d'\n", __FILE__, __LINE__, e); \
exit(EXIT_FAILURE); \
} \
} while (0)
#define NCCLCHECK(cmd) \
do { \
ncclResult_t r = cmd; \
if (r != ncclSuccess) { \
printf("Failed, NCCL error %s:%d '%s'\n", __FILE__, __LINE__, \
ncclGetErrorString(r)); \
exit(EXIT_FAILURE); \
} \
} while (0)
__global__ void dummy_kernel() {
for (int i = 0; i < 100; i++) __nanosleep(1000000); // 100ms
}
template <typename T>
__global__ void set_data(T *data, int size, int myRank) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
data[idx] = myRank * 0.11f;
}
}
template <typename T>
__global__ void convert_data(const T *data1, const T *data2, double *fdata1,
double *fdata2, int size) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
fdata1[idx] = data1[idx];
fdata2[idx] = data2[idx];
}
}
__global__ void init_rand(curandState_t *state, int size, int nRanks) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
for (int i = 0; i < nRanks; i++) {
curand_init(i + 1, idx, 0, &state[idx * nRanks + i]);
}
}
}
template <typename T>
__global__ void gen_data(curandState_t *state, T *data, double *ground_truth,
int myRank, int nRanks, int size) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
double sum = 0.0;
for (int i = 0; i < nRanks; i++) {
double val = curand_uniform_double(&state[idx * nRanks + i]) * 4;
T hval = val; // downcast first
sum += static_cast<double>(hval);
if (i == myRank) data[idx] = hval;
}
ground_truth[idx] = sum;
}
}
template <typename T>
void run(int myRank, int nRanks, ncclComm_t &comm, int threads, int block_limit,
int data_size) {
T *result;
cudaStream_t stream;
CUDACHECK(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
CUDACHECK(cudaMalloc(&result, data_size * sizeof(T)));
CUDACHECK(cudaMemset(result, 0, data_size * sizeof(T)));
cudaIpcMemHandle_t self_data_handle;
cudaIpcMemHandle_t data_handles[8];
vllm::Metadata *buffer;
T *self_data_copy;
/**
* Allocate IPC buffer
*
* The first section is a temporary buffer for storing intermediate allreduce
* results, if a particular algorithm requires it. The second section is for
* the input to the allreduce. The actual API takes the input pointer as an
* argument (that is, they can and usually should be allocated separately).
* But since the input pointers and the temporary buffer all require IPC
* registration, they are allocated and registered together in the test for
* convenience.
*/
CUDACHECK(
cudaMalloc(&buffer, 2 * data_size * sizeof(T) + sizeof(vllm::Metadata)));
CUDACHECK(cudaMemset(buffer, 0,
2 * data_size * sizeof(T) + sizeof(vllm::Metadata)));
CUDACHECK(cudaMalloc(&self_data_copy, data_size * sizeof(T)));
CUDACHECK(cudaIpcGetMemHandle(&self_data_handle, buffer));
MPICHECK(MPI_Allgather(&self_data_handle, sizeof(cudaIpcMemHandle_t),
MPI_BYTE, data_handles, sizeof(cudaIpcMemHandle_t),
MPI_BYTE, MPI_COMM_WORLD));
void *rank_data;
size_t rank_data_sz = 16 * 1024 * 1024;
CUDACHECK(cudaMalloc(&rank_data, rank_data_sz));
std::vector<int64_t> offsets(nRanks, 0);
vllm::CustomAllreduce fa(buffer, rank_data, rank_data_sz, data_handles,
offsets, myRank);
auto *self_data =
reinterpret_cast<T *>(reinterpret_cast<char *>(buffer) +
sizeof(vllm::Metadata) + data_size * sizeof(T));
// hack buffer registration
{
std::vector<std::string> handles;
handles.reserve(nRanks);
for (int i = 0; i < nRanks; i++) {
char *begin = (char *)&data_handles[i];
char *end = (char *)&data_handles[i + 1];
handles.emplace_back(begin, end);
}
std::vector<int64_t> offsets(
nRanks, sizeof(vllm::Metadata) + data_size * sizeof(T));
fa.register_buffer(handles, offsets, self_data);
}
double *ground_truth;
CUDACHECK(cudaMallocHost(&ground_truth, data_size * sizeof(double)));
curandState_t *states;
CUDACHECK(cudaMalloc(&states, sizeof(curandState_t) * nRanks * data_size));
init_rand<<<108, 1024, 0, stream>>>(states, data_size, nRanks);
gen_data<T><<<108, 1024, 0, stream>>>(states, self_data, ground_truth, myRank,
nRanks, data_size);
CUDACHECK(cudaMemcpyAsync(self_data_copy, self_data, data_size * sizeof(T),
cudaMemcpyDeviceToDevice, stream));
cudaEvent_t start, stop;
CUDACHECK(cudaEventCreate(&start));
CUDACHECK(cudaEventCreate(&stop));
ncclDataType_t ncclDtype;
if (std::is_same<T, half>::value) {
ncclDtype = ncclFloat16;
} else if (std::is_same<T, nv_bfloat16>::value) {
ncclDtype = ncclBfloat16;
} else {
ncclDtype = ncclFloat;
}
dummy_kernel<<<1, 1, 0, stream>>>();
constexpr int warmup_iters = 5;
constexpr int num_iters = 25;
// warmup
for (int i = 0; i < warmup_iters; i++) {
NCCLCHECK(ncclAllReduce(result, result, data_size, ncclDtype, ncclSum, comm,
stream));
}
CUDACHECK(cudaEventRecord(start, stream));
for (int i = 0; i < num_iters; i++) {
NCCLCHECK(ncclAllReduce(result, result, data_size, ncclDtype, ncclSum, comm,
stream));
}
CUDACHECK(cudaEventRecord(stop, stream));
CUDACHECK(cudaStreamSynchronize(stream));
float allreduce_ms = 0;
cudaEventElapsedTime(&allreduce_ms, start, stop);
// if (myRank == 1) dummy_kernel<<<1, 1, 0, stream>>>();
// set_data<T><<<16, 1024, 0, stream>>>(self_data, data_size, myRank);
dummy_kernel<<<1, 1, 0, stream>>>();
// warm up
for (int i = 0; i < warmup_iters; i++) {
fa.allreduce<T>(stream, self_data, result, data_size, threads, block_limit);
}
CUDACHECK(cudaEventRecord(start, stream));
for (int i = 0; i < num_iters; i++) {
fa.allreduce<T>(stream, self_data, result, data_size, threads, block_limit);
}
CUDACHECK(cudaEventRecord(stop, stream));
CUDACHECK(cudaStreamSynchronize(stream));
float duration_ms = 0;
cudaEventElapsedTime(&duration_ms, start, stop);
if (myRank == 0)
printf(
"Rank %d done, nGPUs:%d, sz (kb): %d, %d, %d, my time:%.2fus, nccl "
"time:%.2fus\n",
myRank, nRanks, data_size * sizeof(T) / 1024, threads, block_limit,
duration_ms * 1e3 / num_iters, allreduce_ms * 1e3 / num_iters);
// And wait for all the queued up work to complete
CUDACHECK(cudaStreamSynchronize(stream));
NCCLCHECK(ncclAllReduce(self_data_copy, self_data, data_size, ncclDtype,
ncclSum, comm, stream));
double *nccl_result, *my_result;
CUDACHECK(cudaMallocHost(&nccl_result, data_size * sizeof(double)));
CUDACHECK(cudaMallocHost(&my_result, data_size * sizeof(double)));
convert_data<T><<<108, 1024, 0, stream>>>(self_data, result, nccl_result,
my_result, data_size);
CUDACHECK(cudaStreamSynchronize(stream));
for (unsigned long j = 0; j < data_size; j++) {
auto diff = abs(nccl_result[j] - my_result[j]);
if (diff >= 1e-2) {
printf("Rank %d: Verification mismatch at %lld: %f != (my) %f, gt=%f\n",
myRank, j, nccl_result[j], my_result[j], ground_truth[j]);
break;
}
}
long double nccl_diffs = 0.0;
long double my_diffs = 0.0;
for (int j = 0; j < data_size; j++) {
nccl_diffs += abs(nccl_result[j] - ground_truth[j]);
my_diffs += abs(my_result[j] - ground_truth[j]);
}
if (myRank == 0)
std::cout << "average abs diffs: nccl: " << nccl_diffs / data_size
<< " me: " << my_diffs / data_size << std::endl;
CUDACHECK(cudaFree(result));
CUDACHECK(cudaFree(self_data_copy));
CUDACHECK(cudaFree(rank_data));
CUDACHECK(cudaFree(buffer));
CUDACHECK(cudaFree(states));
CUDACHECK(cudaFreeHost(ground_truth));
CUDACHECK(cudaFreeHost(nccl_result));
CUDACHECK(cudaFreeHost(my_result));
CUDACHECK(cudaStreamDestroy(stream));
}
int main(int argc, char **argv) {
int nRanks, myRank;
MPICHECK(MPI_Init(&argc, &argv));
MPICHECK(MPI_Comm_rank(MPI_COMM_WORLD, &myRank));
MPICHECK(MPI_Comm_size(MPI_COMM_WORLD, &nRanks));
CUDACHECK(cudaSetDevice(myRank));
ncclUniqueId id;
ncclComm_t comm;
if (myRank == 0) ncclGetUniqueId(&id);
MPICHECK(MPI_Bcast(static_cast<void *>(&id), sizeof(id), MPI_BYTE, 0,
MPI_COMM_WORLD));
NCCLCHECK(ncclCommInitRank(&comm, nRanks, id, myRank));
cudaProfilerStart();
// for (int threads : {256, 512}) {
// for (int block_limit = 16; block_limit < 112; block_limit += 4) {
// run<half>(myRank, nRanks, comm, threads, block_limit, 4096 * 1024);
// }
// }
for (int sz = 512; sz <= (32 << 20); sz *= 2) {
run<half>(myRank, nRanks, comm, 512, 36, sz + 8 * 50);
}
cudaProfilerStop();
return EXIT_SUCCESS;
}

View File

@ -2,6 +2,8 @@
* Adapted from
* https://github.com/pytorch/pytorch/blob/v2.0.1/aten/src/ATen/Dispatch.h
*/
#pragma once
#include <torch/extension.h>
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
@ -12,3 +14,24 @@
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH( \
TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
#define VLLM_DISPATCH_CASE_FLOATING_AND_BYTE_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__)
#define VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH( \
TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_AND_BYTE_TYPES(__VA_ARGS__))
#define VLLM_DISPATCH_CASE_INTEGRAL_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Short, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Int, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Long, __VA_ARGS__)
#define VLLM_DISPATCH_INTEGRAL_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH( \
TYPE, NAME, VLLM_DISPATCH_CASE_INTEGRAL_TYPES(__VA_ARGS__))

View File

@ -1,5 +1,6 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "dispatch_utils.h"
#include "reduction_utils.cuh"
@ -76,6 +77,7 @@ void rms_norm(
dim3 grid(num_tokens);
dim3 block(std::min(hidden_size, 1024));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(),
@ -101,6 +103,7 @@ void fused_add_rms_norm(
dim3 grid(num_tokens);
dim3 block(std::min(hidden_size, 1024));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(),

7
csrc/moe/moe_ops.cpp Normal file
View File

@ -0,0 +1,7 @@
#include "moe_ops.h"
#include <torch/extension.h>
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("topk_softmax", &topk_softmax, "Apply topk softmax to the gating outputs.");
}

9
csrc/moe/moe_ops.h Normal file
View File

@ -0,0 +1,9 @@
#pragma once
#include <torch/extension.h>
void topk_softmax(
torch::Tensor& topk_weights,
torch::Tensor& topk_indices,
torch::Tensor& token_expert_indices,
torch::Tensor& gating_output);

View File

@ -0,0 +1,499 @@
/*
* Adapted from https://github.com/NVIDIA/TensorRT-LLM/blob/v0.7.1/cpp/tensorrt_llm/kernels/mixtureOfExperts/moe_kernels.cu
* Copyright (c) 2024, The vLLM team.
* SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cub/cub.cuh>
#include <cub/util_type.cuh>
namespace vllm {
namespace moe {
static constexpr int WARP_SIZE = 32;
/// Aligned array type
template <
typename T,
/// Number of elements in the array
int N,
/// Alignment requirement in bytes
int Alignment = sizeof(T) * N
>
class alignas(Alignment) AlignedArray {
float data[N];
};
// ====================== Softmax things ===============================
// We have our own implementation of softmax here so we can support transposing the output
// in the softmax kernel when we extend this module to support expert-choice routing.
template <int TPB>
__launch_bounds__(TPB) __global__
void moeSoftmax(const float* input, const bool* finished, float* output, const int num_cols)
{
using BlockReduce = cub::BlockReduce<float, TPB>;
__shared__ typename BlockReduce::TempStorage tmpStorage;
__shared__ float normalizing_factor;
__shared__ float float_max;
const int thread_row_offset = blockIdx.x * num_cols;
cub::Sum sum;
float threadData(-FLT_MAX);
// Don't touch finished rows.
if ((finished != nullptr) && finished[blockIdx.x])
{
return;
}
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
{
const int idx = thread_row_offset + ii;
threadData = max(static_cast<float>(input[idx]), threadData);
}
const float maxElem = BlockReduce(tmpStorage).Reduce(threadData, cub::Max());
if (threadIdx.x == 0)
{
float_max = maxElem;
}
__syncthreads();
threadData = 0;
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
{
const int idx = thread_row_offset + ii;
threadData += exp((static_cast<float>(input[idx]) - float_max));
}
const auto Z = BlockReduce(tmpStorage).Reduce(threadData, sum);
if (threadIdx.x == 0)
{
normalizing_factor = 1.f / Z;
}
__syncthreads();
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
{
const int idx = thread_row_offset + ii;
const float val = exp((static_cast<float>(input[idx]) - float_max)) * normalizing_factor;
output[idx] = val;
}
}
template <int TPB>
__launch_bounds__(TPB) __global__ void moeTopK(const float* inputs_after_softmax, const bool* finished, float* output,
int* indices, int* source_rows, const int num_experts, const int k, const int start_expert, const int end_expert)
{
using cub_kvp = cub::KeyValuePair<int, float>;
using BlockReduce = cub::BlockReduce<cub_kvp, TPB>;
__shared__ typename BlockReduce::TempStorage tmpStorage;
cub_kvp thread_kvp;
cub::ArgMax arg_max;
const int num_rows = gridDim.x;
const int block_row = blockIdx.x;
const bool row_is_active = finished ? !finished[block_row] : true;
const int thread_read_offset = blockIdx.x * num_experts;
for (int k_idx = 0; k_idx < k; ++k_idx)
{
thread_kvp.key = 0;
thread_kvp.value = -1.f; // This is OK because inputs are probabilities
cub_kvp inp_kvp;
for (int expert = threadIdx.x; expert < num_experts; expert += TPB)
{
const int idx = thread_read_offset + expert;
inp_kvp.key = expert;
inp_kvp.value = inputs_after_softmax[idx];
for (int prior_k = 0; prior_k < k_idx; ++prior_k)
{
const int prior_winning_expert = indices[k * block_row + prior_k];
if (prior_winning_expert == expert)
{
inp_kvp = thread_kvp;
}
}
thread_kvp = arg_max(inp_kvp, thread_kvp);
}
const cub_kvp result_kvp = BlockReduce(tmpStorage).Reduce(thread_kvp, arg_max);
if (threadIdx.x == 0)
{
// Ignore experts the node isn't responsible for with expert parallelism
const int expert = result_kvp.key;
const bool node_uses_expert = expert >= start_expert && expert < end_expert;
const bool should_process_row = row_is_active && node_uses_expert;
const int idx = k * block_row + k_idx;
output[idx] = result_kvp.value;
indices[idx] = should_process_row ? (expert - start_expert) : num_experts;
assert(indices[idx] >= 0);
source_rows[idx] = k_idx * num_rows + block_row;
}
__syncthreads();
}
}
// ====================== TopK softmax things ===============================
/*
A Top-K gating softmax written to exploit when the number of experts in the MoE layers
are a small power of 2. This allows us to cleanly share the rows among the threads in
a single warp and eliminate communication between warps (so no need to use shared mem).
It fuses the softmax, max and argmax into a single kernel.
Limitations:
1) This implementation is intended for when the number of experts is a small power of 2.
2) This implementation assumes k is small, but will work for any k.
*/
template <int VPT, int NUM_EXPERTS, int WARPS_PER_CTA, int BYTES_PER_LDG>
__launch_bounds__(WARPS_PER_CTA* WARP_SIZE) __global__
void topkGatingSoftmax(const float* input, const bool* finished, float* output, const int num_rows, int* indices,
int* source_rows, const int k, const int start_expert, const int end_expert)
{
// We begin by enforcing compile time assertions and setting up compile time constants.
static_assert(VPT == (VPT & -VPT), "VPT must be power of 2");
static_assert(NUM_EXPERTS == (NUM_EXPERTS & -NUM_EXPERTS), "NUM_EXPERTS must be power of 2");
static_assert(BYTES_PER_LDG == (BYTES_PER_LDG & -BYTES_PER_LDG), "BYTES_PER_LDG must be power of 2");
static_assert(BYTES_PER_LDG <= 16, "BYTES_PER_LDG must be leq 16");
// Number of bytes each thread pulls in per load
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
static constexpr int ELTS_PER_ROW = NUM_EXPERTS;
static constexpr int THREADS_PER_ROW = ELTS_PER_ROW / VPT;
static constexpr int LDG_PER_THREAD = VPT / ELTS_PER_LDG;
// Restrictions based on previous section.
static_assert(VPT % ELTS_PER_LDG == 0, "The elements per thread must be a multiple of the elements per ldg");
static_assert(WARP_SIZE % THREADS_PER_ROW == 0, "The threads per row must cleanly divide the threads per warp");
static_assert(THREADS_PER_ROW == (THREADS_PER_ROW & -THREADS_PER_ROW), "THREADS_PER_ROW must be power of 2");
static_assert(THREADS_PER_ROW <= WARP_SIZE, "THREADS_PER_ROW can be at most warp size");
// We have NUM_EXPERTS elements per row. We specialize for small #experts
static constexpr int ELTS_PER_WARP = WARP_SIZE * VPT;
static constexpr int ROWS_PER_WARP = ELTS_PER_WARP / ELTS_PER_ROW;
static constexpr int ROWS_PER_CTA = WARPS_PER_CTA * ROWS_PER_WARP;
// Restrictions for previous section.
static_assert(ELTS_PER_WARP % ELTS_PER_ROW == 0, "The elts per row must cleanly divide the total elt per warp");
// ===================== From this point, we finally start computing run-time variables. ========================
// Compute CTA and warp rows. We pack multiple rows into a single warp, and a block contains WARPS_PER_CTA warps.
// This, each block processes a chunk of rows. We start by computing the start row for each block.
const int cta_base_row = blockIdx.x * ROWS_PER_CTA;
// Now, using the base row per thread block, we compute the base row per warp.
const int warp_base_row = cta_base_row + threadIdx.y * ROWS_PER_WARP;
// The threads in a warp are split into sub-groups that will work on a row.
// We compute row offset for each thread sub-group
const int thread_row_in_warp = threadIdx.x / THREADS_PER_ROW;
const int thread_row = warp_base_row + thread_row_in_warp;
// Threads with indices out of bounds should early exit here.
if (thread_row >= num_rows)
{
return;
}
const bool row_is_active = finished ? !finished[thread_row] : true;
// We finally start setting up the read pointers for each thread. First, each thread jumps to the start of the
// row it will read.
const float* thread_row_ptr = input + thread_row * ELTS_PER_ROW;
// Now, we compute the group each thread belong to in order to determine the first column to start loads.
const int thread_group_idx = threadIdx.x % THREADS_PER_ROW;
const int first_elt_read_by_thread = thread_group_idx * ELTS_PER_LDG;
const float* thread_read_ptr = thread_row_ptr + first_elt_read_by_thread;
// Determine the pointer type to use to read in the data depending on the BYTES_PER_LDG template param. In theory,
// this can support all powers of 2 up to 16.
// NOTE(woosuk): The original implementation uses CUTLASS aligned array here.
// We defined our own aligned array and use it here to avoid the dependency on CUTLASS.
using AccessType = AlignedArray<float, ELTS_PER_LDG>;
// Finally, we pull in the data from global mem
float row_chunk[VPT];
AccessType* row_chunk_vec_ptr = reinterpret_cast<AccessType*>(&row_chunk);
const AccessType* vec_thread_read_ptr = reinterpret_cast<const AccessType*>(thread_read_ptr);
#pragma unroll
for (int ii = 0; ii < LDG_PER_THREAD; ++ii)
{
row_chunk_vec_ptr[ii] = vec_thread_read_ptr[ii * THREADS_PER_ROW];
}
// First, we perform a max reduce within the thread. We can do the max in fp16 safely (I think) and just
// convert to float afterwards for the exp + sum reduction.
float thread_max = row_chunk[0];
#pragma unroll
for (int ii = 1; ii < VPT; ++ii)
{
thread_max = max(thread_max, row_chunk[ii]);
}
// Now, we find the max within the thread group and distribute among the threads. We use a butterfly reduce.
#pragma unroll
for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2)
{
thread_max = max(thread_max, __shfl_xor_sync(0xFFFFFFFF, thread_max, mask, THREADS_PER_ROW));
}
// From this point, thread max in all the threads have the max within the row.
// Now, we subtract the max from each element in the thread and take the exp. We also compute the thread local sum.
float row_sum = 0;
#pragma unroll
for (int ii = 0; ii < VPT; ++ii)
{
row_chunk[ii] = expf(row_chunk[ii] - thread_max);
row_sum += row_chunk[ii];
}
// Now, we perform the sum reduce within each thread group. Similar to the max reduce, we use a bufferfly pattern.
#pragma unroll
for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2)
{
row_sum += __shfl_xor_sync(0xFFFFFFFF, row_sum, mask, THREADS_PER_ROW);
}
// From this point, all threads have the max and the sum for their rows in the thread_max and thread_sum variables
// respectively. Finally, we can scale the rows for the softmax. Technically, for top-k gating we don't need to
// compute the entire softmax row. We can likely look at the maxes and only compute for the top-k values in the row.
// However, this kernel will likely not be a bottle neck and it seems better to closer match torch and find the
// argmax after computing the softmax.
const float reciprocal_row_sum = 1.f / row_sum;
#pragma unroll
for (int ii = 0; ii < VPT; ++ii)
{
row_chunk[ii] = row_chunk[ii] * reciprocal_row_sum;
}
// Now, softmax_res contains the softmax of the row chunk. Now, I want to find the topk elements in each row, along
// with the max index.
int start_col = first_elt_read_by_thread;
static constexpr int COLS_PER_GROUP_LDG = ELTS_PER_LDG * THREADS_PER_ROW;
for (int k_idx = 0; k_idx < k; ++k_idx)
{
// First, each thread does the local argmax
float max_val = row_chunk[0];
int expert = start_col;
#pragma unroll
for (int ldg = 0, col = start_col; ldg < LDG_PER_THREAD; ++ldg, col += COLS_PER_GROUP_LDG)
{
#pragma unroll
for (int ii = 0; ii < ELTS_PER_LDG; ++ii)
{
float val = row_chunk[ldg * ELTS_PER_LDG + ii];
// No check on the experts here since columns with the smallest index are processed first and only
// updated if > (not >=)
if (val > max_val)
{
max_val = val;
expert = col + ii;
}
}
}
// Now, we perform the argmax reduce. We use the butterfly pattern so threads reach consensus about the max.
// This will be useful for K > 1 so that the threads can agree on "who" had the max value. That thread can
// then blank out their max with -inf and the warp can run more iterations...
#pragma unroll
for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2)
{
float other_max = __shfl_xor_sync(0xFFFFFFFF, max_val, mask, THREADS_PER_ROW);
int other_expert = __shfl_xor_sync(0xFFFFFFFF, expert, mask, THREADS_PER_ROW);
// We want lower indices to "win" in every thread so we break ties this way
if (other_max > max_val || (other_max == max_val && other_expert < expert))
{
max_val = other_max;
expert = other_expert;
}
}
// Write the max for this k iteration to global memory.
if (thread_group_idx == 0)
{
// Add a guard to ignore experts not included by this node
const bool node_uses_expert = expert >= start_expert && expert < end_expert;
const bool should_process_row = row_is_active && node_uses_expert;
// The lead thread from each sub-group will write out the final results to global memory. (This will be a
// single) thread per row of the input/output matrices.
const int idx = k * thread_row + k_idx;
output[idx] = max_val;
indices[idx] = should_process_row ? (expert - start_expert) : NUM_EXPERTS;
source_rows[idx] = k_idx * num_rows + thread_row;
}
// Finally, we clear the value in the thread with the current max if there is another iteration to run.
if (k_idx + 1 < k)
{
const int ldg_group_for_expert = expert / COLS_PER_GROUP_LDG;
const int thread_to_clear_in_group = (expert / ELTS_PER_LDG) % THREADS_PER_ROW;
// Only the thread in the group which produced the max will reset the "winning" value to -inf.
if (thread_group_idx == thread_to_clear_in_group)
{
const int offset_for_expert = expert % ELTS_PER_LDG;
// Safe to set to any negative value since row_chunk values must be between 0 and 1.
row_chunk[ldg_group_for_expert * ELTS_PER_LDG + offset_for_expert] = -10000.f;
}
}
}
}
namespace detail
{
// Constructs some constants needed to partition the work across threads at compile time.
template <int EXPERTS, int BYTES_PER_LDG>
struct TopkConstants
{
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
static_assert(EXPERTS / (ELTS_PER_LDG * WARP_SIZE) == 0 || EXPERTS % (ELTS_PER_LDG * WARP_SIZE) == 0, "");
static constexpr int VECs_PER_THREAD = std::max(1, EXPERTS / (ELTS_PER_LDG * WARP_SIZE));
static constexpr int VPT = VECs_PER_THREAD * ELTS_PER_LDG;
static constexpr int THREADS_PER_ROW = EXPERTS / VPT;
static constexpr int ROWS_PER_WARP = WARP_SIZE / THREADS_PER_ROW;
};
} // namespace detail
template <int EXPERTS, int WARPS_PER_TB>
void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, float* output, int* indices,
int* source_row, const int num_rows, const int k, const int start_expert, const int end_expert, cudaStream_t stream)
{
static constexpr std::size_t MAX_BYTES_PER_LDG = 16;
static constexpr int BYTES_PER_LDG = std::min(MAX_BYTES_PER_LDG, sizeof(float) * EXPERTS);
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG>;
static constexpr int VPT = Constants::VPT;
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
dim3 block_dim(WARP_SIZE, WARPS_PER_TB);
topkGatingSoftmax<VPT, EXPERTS, WARPS_PER_TB, BYTES_PER_LDG><<<num_blocks, block_dim, 0, stream>>>(
input, finished, output, num_rows, indices, source_row, k, start_expert, end_expert);
}
#define LAUNCH_SOFTMAX(NUM_EXPERTS, WARPS_PER_TB) \
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB>( \
gating_output, nullptr, topk_weights, topk_indicies, \
token_expert_indices, num_tokens, topk, 0, num_experts, \
stream);
void topkGatingSoftmaxKernelLauncher(
const float* gating_output,
float* topk_weights,
int* topk_indicies,
int* token_expert_indices,
float* softmax_workspace,
const int num_tokens,
const int num_experts,
const int topk,
cudaStream_t stream) {
static constexpr int WARPS_PER_TB = 4;
switch (num_experts) {
case 1:
LAUNCH_SOFTMAX(1, WARPS_PER_TB);
break;
case 2:
LAUNCH_SOFTMAX(2, WARPS_PER_TB);
break;
case 4:
LAUNCH_SOFTMAX(4, WARPS_PER_TB);
break;
case 8:
LAUNCH_SOFTMAX(8, WARPS_PER_TB);
break;
case 16:
LAUNCH_SOFTMAX(16, WARPS_PER_TB);
break;
case 32:
LAUNCH_SOFTMAX(32, WARPS_PER_TB);
break;
case 64:
LAUNCH_SOFTMAX(64, WARPS_PER_TB);
break;
case 128:
LAUNCH_SOFTMAX(128, WARPS_PER_TB);
break;
case 256:
LAUNCH_SOFTMAX(256, WARPS_PER_TB);
break;
default: {
TORCH_CHECK(softmax_workspace != nullptr,
"softmax_workspace must be provided for num_experts that are not a power of 2.");
static constexpr int TPB = 256;
moeSoftmax<TPB><<<num_tokens, TPB, 0, stream>>>(
gating_output, nullptr, softmax_workspace, num_experts);
moeTopK<TPB><<<num_tokens, TPB, 0, stream>>>(
softmax_workspace, nullptr, topk_weights, topk_indicies, token_expert_indices,
num_experts, topk, 0, num_experts);
}
}
}
} // namespace moe
} // namespace vllm
void topk_softmax(
torch::Tensor& topk_weights, // [num_tokens, topk]
torch::Tensor& topk_indices, // [num_tokens, topk]
torch::Tensor& token_expert_indices, // [num_tokens, topk]
torch::Tensor& gating_output) // [num_tokens, num_experts]
{
const int num_experts = gating_output.size(-1);
const int num_tokens = gating_output.numel() / num_experts;
const int topk = topk_weights.size(-1);
const bool is_pow_2 = (num_experts != 0) && ((num_experts & (num_experts - 1)) == 0);
const bool needs_workspace = !is_pow_2 || num_experts > 256;
const int64_t workspace_size = needs_workspace ? num_tokens * num_experts : 0;
const at::cuda::OptionalCUDAGuard device_guard(device_of(gating_output));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
torch::Tensor softmax_workspace = torch::empty({workspace_size}, gating_output.options());
vllm::moe::topkGatingSoftmaxKernelLauncher(
gating_output.data_ptr<float>(),
topk_weights.data_ptr<float>(),
topk_indices.data_ptr<int>(),
token_expert_indices.data_ptr<int>(),
softmax_workspace.data_ptr<float>(),
num_tokens,
num_experts,
topk,
stream);
}

View File

@ -0,0 +1,108 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/ATen.h>
#include <THC/THCAtomics.cuh>
#include "cuda_compat.h"
#include "dispatch_utils.h"
const static size_t NUM_MAX_EXPERTS = 64;
#define CEILDIV(x,y) (((x) + (y) - 1) / (y))
namespace vllm {
template <typename scalar_t>
__global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
int32_t *sorted_token_ids,
int32_t *expert_ids,
int32_t *total_tokens_post_pad,
int32_t num_experts,
int32_t block_size,
size_t numel) {
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread;
__shared__ int32_t tokens_cnts[NUM_MAX_EXPERTS + 1][NUM_MAX_EXPERTS];
__shared__ int32_t cumsum[NUM_MAX_EXPERTS + 1];
for (int i = 0; i < num_experts; ++i) {
tokens_cnts[threadIdx.x + 1][i] = 0;
}
/**
* In the first step we compute token_cnts[thread_index + 1][expert_index],
* which counts how many tokens in the token shard of thread_index are assigned
* to expert expert_index.
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
++tokens_cnts[threadIdx.x + 1][topk_ids[i]];
}
__syncthreads();
// For each expert we accumulate the token counts from the different threads.
tokens_cnts[0][threadIdx.x] = 0;
for (int i = 1; i <= blockDim.x; ++i) {
tokens_cnts[i][threadIdx.x] += tokens_cnts[i-1][threadIdx.x];
}
__syncthreads();
// We accumulate the token counts of all experts in thread 0.
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
cumsum[i] = cumsum[i-1] + CEILDIV(tokens_cnts[blockDim.x][i - 1], block_size) * block_size;
}
*total_tokens_post_pad = cumsum[num_experts];
}
__syncthreads();
/**
* For each expert, each thread processes the tokens of the corresponding blocks
* and stores the corresponding expert_id for each block.
*/
for (int i = cumsum[threadIdx.x];i < cumsum[threadIdx.x + 1];i += block_size) {
expert_ids[i / block_size] = threadIdx.x;
}
/**
* Each thread processes a token shard, calculating the index of each token after
* sorting by expert number. Given the example topk_ids = [0,1,2,1,2,3,0,3,4] and
* block_size = 4, then the output would be [0, 6, *, *, 1, 3, *, *, 2, 4, *, *, 5, 7, *, *, 8, *, *, *],
* where * represents a padding value(preset in python).
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int32_t expert_id = topk_ids[i];
/** The cumsum[expert_id] stores the starting index of the tokens that the
* expert with expert_id needs to process, and tokens_cnts[threadIdx.x][expert_id]
* stores the indices of the tokens processed by the expert with expert_id within
* the current thread's token shard.
*/
int32_t rank_post_pad = tokens_cnts[threadIdx.x][expert_id] + cumsum[expert_id];
sorted_token_ids[rank_post_pad] = i;
++tokens_cnts[threadIdx.x][expert_id];
}
}
}
void moe_align_block_size(
torch::Tensor topk_ids,
int num_experts,
int block_size,
torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad) {
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
assert(num_experts <= NUM_MAX_EXPERTS);
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
vllm::moe_align_block_size_kernel<scalar_t><<<1, num_experts, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(),
num_experts,
block_size,
topk_ids.numel());
});
}

View File

@ -1,3 +1,5 @@
#pragma once
#include <torch/extension.h>
void paged_attention_v1(
@ -11,7 +13,8 @@ void paged_attention_v1(
torch::Tensor& context_lens,
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes);
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype);
void paged_attention_v2(
torch::Tensor& out,
@ -27,7 +30,8 @@ void paged_attention_v2(
torch::Tensor& context_lens,
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes);
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype);
void rms_norm(
torch::Tensor& out,
@ -68,6 +72,14 @@ torch::Tensor awq_gemm(
torch::Tensor _scaling_factors,
torch::Tensor _zeros,
int split_k_iters);
torch::Tensor awq_dequantize(
torch::Tensor _kernel,
torch::Tensor _scaling_factors,
torch::Tensor _zeros,
int split_k_iters,
int thx,
int thy);
#endif
void squeezellm_gemm(
@ -75,3 +87,44 @@ void squeezellm_gemm(
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor lookup_table);
torch::Tensor gptq_gemm(
torch::Tensor a,
torch::Tensor b_q_weight,
torch::Tensor b_gptq_qzeros,
torch::Tensor b_gptq_scales,
torch::Tensor b_g_idx,
bool use_exllama);
void gptq_shuffle(
torch::Tensor q_weight,
torch::Tensor q_perm);
void moe_align_block_size(
torch::Tensor topk_ids,
int num_experts,
int block_size,
torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad);
#ifndef USE_ROCM
using fptr_t = uint64_t;
fptr_t init_custom_ar(torch::Tensor &meta, torch::Tensor &rank_data,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets, int rank,
bool full_nvlink);
bool should_custom_ar(torch::Tensor &inp, int max_size, int world_size,
bool full_nvlink);
void all_reduce_reg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out);
void all_reduce_unreg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &reg_buffer,
torch::Tensor &out);
void dispose(fptr_t _fa);
int meta_size();
void register_buffer(fptr_t _fa, torch::Tensor &t,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets);
std::pair<std::vector<uint8_t>, std::vector<int64_t>> get_graph_buffer_ipc_meta(fptr_t _fa);
void register_graph_buffers(fptr_t _fa, const std::vector<std::string> &handles,
const std::vector<std::vector<int64_t>> &offsets);
#endif

View File

@ -1,5 +1,6 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "cuda_compat.h"
#include "dispatch_utils.h"
@ -43,8 +44,8 @@ __global__ void rotary_embedding_kernel(
scalar_t* __restrict__ key, // [batch_size, seq_len, num_kv_heads, head_size] or [num_tokens, num_kv_heads, head_size]
const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, rot_dim // 2]
const int rot_dim,
const int query_stride,
const int key_stride,
const int64_t query_stride,
const int64_t key_stride,
const int num_heads,
const int num_kv_heads,
const int head_size) {
@ -60,7 +61,7 @@ __global__ void rotary_embedding_kernel(
const int nq = num_heads * embed_dim;
for (int i = threadIdx.x; i < nq; i += blockDim.x) {
const int head_idx = i / embed_dim;
const int token_head = token_idx * query_stride + head_idx * head_size;
const int64_t token_head = token_idx * query_stride + head_idx * head_size;
const int rot_offset = i % embed_dim;
apply_rotary_embedding<scalar_t, IS_NEOX>(query + token_head, cos_ptr,
sin_ptr, rot_offset, embed_dim);
@ -69,7 +70,7 @@ __global__ void rotary_embedding_kernel(
const int nk = num_kv_heads * embed_dim;
for (int i = threadIdx.x; i < nk; i += blockDim.x) {
const int head_idx = i / embed_dim;
const int token_head = token_idx * key_stride + head_idx * head_size;
const int64_t token_head = token_idx * key_stride + head_idx * head_size;
const int rot_offset = i % embed_dim;
apply_rotary_embedding<scalar_t, IS_NEOX>(key + token_head, cos_ptr,
sin_ptr, rot_offset, embed_dim);
@ -89,11 +90,12 @@ void rotary_embedding(
int rot_dim = cos_sin_cache.size(1);
int num_heads = query.size(-1) / head_size;
int num_kv_heads = key.size(-1) / head_size;
int query_stride = query.stride(-2);
int key_stride = key.stride(-2);
int64_t query_stride = query.stride(-2);
int64_t key_stride = key.stride(-2);
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * rot_dim / 2, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
query.scalar_type(),

217
csrc/punica/LICENSE Normal file
View File

@ -0,0 +1,217 @@
Contains code from https://github.com/punica-ai/punica
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
------------------------------------------------------------------------------------
This product bundles various third-party components under other open source licenses.
This section summarizes those components and their licenses. See licenses/
for text of these licenses.
Apache-2.0
* third_party/nvbench (with LLVM exception)
* third_party/flashinfer
BSD-3-Clause:
* third_party/cutlass

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_bfloat16, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_bfloat16, nv_half)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_half, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_half, nv_half)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, float, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, float, nv_half)

View File

@ -0,0 +1,59 @@
#pragma once
template <int feat_in, int feat_out, typename in_T, typename out_T,
typename W_T>
void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t batch_size, int64_t num_layers,
int64_t layer_idx, float scale);
// clang-format off
#define FOR_BGMV_WIDE(f, in_T, out_T, W_T, narrow) \
f(in_T, out_T, W_T, narrow, 128) \
f(in_T, out_T, W_T, narrow, 256) \
f(in_T, out_T, W_T, narrow, 512) \
f(in_T, out_T, W_T, narrow, 1024) \
f(in_T, out_T, W_T, narrow, 1280) \
f(in_T, out_T, W_T, narrow, 1728) \
f(in_T, out_T, W_T, narrow, 1792) \
f(in_T, out_T, W_T, narrow, 2048) \
f(in_T, out_T, W_T, narrow, 2560) \
f(in_T, out_T, W_T, narrow, 2752) \
f(in_T, out_T, W_T, narrow, 3072) \
f(in_T, out_T, W_T, narrow, 3456) \
f(in_T, out_T, W_T, narrow, 3584) \
f(in_T, out_T, W_T, narrow, 4096) \
f(in_T, out_T, W_T, narrow, 5120) \
f(in_T, out_T, W_T, narrow, 5504) \
f(in_T, out_T, W_T, narrow, 5632) \
f(in_T, out_T, W_T, narrow, 6912) \
f(in_T, out_T, W_T, narrow, 7168) \
f(in_T, out_T, W_T, narrow, 8192) \
f(in_T, out_T, W_T, narrow, 9216) \
f(in_T, out_T, W_T, narrow, 10240) \
f(in_T, out_T, W_T, narrow, 11008) \
f(in_T, out_T, W_T, narrow, 12288) \
f(in_T, out_T, W_T, narrow, 13824) \
f(in_T, out_T, W_T, narrow, 14336) \
f(in_T, out_T, W_T, narrow, 16384) \
f(in_T, out_T, W_T, narrow, 20480) \
f(in_T, out_T, W_T, narrow, 28672) \
f(in_T, out_T, W_T, narrow, 32000) \
f(in_T, out_T, W_T, narrow, 32256) \
f(in_T, out_T, W_T, narrow, 32512) \
f(in_T, out_T, W_T, narrow, 32768) \
f(in_T, out_T, W_T, narrow, 33024) \
f(in_T, out_T, W_T, narrow, 36864) \
f(in_T, out_T, W_T, narrow, 49152) \
// Keep above in sync with vllm/lora/layers::SamplerWithLoRA
// Keep this in sync with vllm/config::LoRAConfig
#define FOR_BGMV_WIDE_NARROW(f, in_T, out_T, W_T) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 8) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 16) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 32) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 64)
// clang-format on

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_bfloat16, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_bfloat16, nv_half)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_half, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_half, nv_half)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, float, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, float, nv_half)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_bfloat16, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_bfloat16, nv_half)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_half, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_half, nv_half)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, float, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, float, nv_half)

View File

@ -0,0 +1,294 @@
#pragma once
#include <ATen/cuda/CUDAContext.h>
#include <cooperative_groups.h>
#include <cuda/pipeline>
#include <cuda_runtime.h>
#include <iostream>
#include <stdio.h>
#include "vec_dtypes.cuh"
namespace cg = cooperative_groups;
// nthrs = (32, 4)
template <int feat_in, int feat_out, size_t vec_size, size_t X_copy_size,
size_t W_copy_size, int tx, int ty, int tz, typename in_T,
typename out_T, typename W_T>
__global__ void
bgmv_shrink_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t num_layers, int64_t layer_idx,
float scale) {
size_t batch_idx = blockIdx.y;
int64_t idx = indicies[batch_idx] * num_layers + layer_idx;
if (idx < 0) {
return;
}
auto block = cg::this_thread_block();
size_t j = blockIdx.x;
constexpr size_t num_pipeline_stages = 2;
constexpr size_t tile_size = tx * ty * vec_size;
__shared__ W_T W_shared[num_pipeline_stages * tile_size];
__shared__ in_T X_shared[num_pipeline_stages * tile_size];
__shared__ float y_warpwise[ty];
size_t W_shared_offset[num_pipeline_stages] = {0U, 1U * tile_size};
size_t X_shared_offset[num_pipeline_stages] = {0U, 1U * tile_size};
auto pipe = cuda::make_pipeline();
// pipeline load W/X and compute WX;
pipe.producer_acquire();
cuda::memcpy_async(W_shared + (threadIdx.y * tx + threadIdx.x) * vec_size,
W + (idx * feat_out + j) * feat_in +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<W_copy_size>(W_copy_size), pipe);
cuda::memcpy_async(X_shared + (threadIdx.y * tx + threadIdx.x) * vec_size,
X + (batch_idx * feat_in) +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<X_copy_size>(X_copy_size), pipe);
pipe.producer_commit();
size_t copy_idx, compute_idx;
float y = 0.f;
vec_t<in_T, vec_size> x_vec;
vec_t<W_T, vec_size> w_vec;
size_t tile_idx;
#pragma unroll
for (tile_idx = 1; tile_idx < (feat_in + tile_size - 1) / tile_size;
++tile_idx) {
copy_idx = tile_idx % num_pipeline_stages;
// pipeline stage: async copy W fragment
pipe.producer_acquire();
if (tile_idx * tile_size + threadIdx.y * tx * vec_size < feat_in) {
cuda::memcpy_async(W_shared + W_shared_offset[copy_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size,
W + (idx * feat_out + j) * feat_in +
tile_idx * tile_size +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<W_copy_size>(W_copy_size), pipe);
cuda::memcpy_async(X_shared + X_shared_offset[copy_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size,
X + (batch_idx * feat_in) + tile_idx * tile_size +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<X_copy_size>(X_copy_size), pipe);
}
pipe.producer_commit();
compute_idx = (tile_idx - 1) % num_pipeline_stages;
// pipeline stage: compute WX
pipe.consumer_wait();
block.sync();
x_vec.load(X_shared + X_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
w_vec.load(W_shared + W_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
float sum = 0.f;
#pragma unroll
for (size_t i = 0; i < vec_size; ++i) {
sum += float(w_vec[i]) * float(x_vec[i]) * scale;
}
#pragma unroll
for (size_t offset = tx / 2; offset > 0; offset /= 2) {
sum += __shfl_down_sync(0xffffffff, sum, offset);
}
y_warpwise[threadIdx.y] = sum;
block.sync();
#pragma unroll
for (size_t i = 0; i < ty; ++i) {
y += y_warpwise[i];
}
block.sync();
pipe.consumer_release();
}
compute_idx = (tile_idx - 1) % num_pipeline_stages;
// final pipeline stage
pipe.consumer_wait();
block.sync();
x_vec.load(X_shared + X_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
w_vec.load(W_shared + W_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
float sum = 0.f;
#pragma unroll
for (size_t i = 0; i < vec_size; ++i) {
sum += float(w_vec[i]) * float(x_vec[i]) * scale;
}
#pragma unroll
for (size_t offset = tx / 2; offset > 0; offset /= 2) {
sum += __shfl_down_sync(0xffffffff, sum, offset);
}
y_warpwise[threadIdx.y] =
((tile_idx - 1) * tile_size + threadIdx.y * tx * vec_size < feat_in)
? sum
: 0.f;
block.sync();
#pragma unroll
for (size_t i = 0; i < ty; ++i) {
y += y_warpwise[i];
}
block.sync();
pipe.consumer_release();
// write Y;
if (block.thread_rank() == 0) {
Y[batch_idx * full_y_size + y_offset + j] += static_cast<out_T>(y);
}
}
// nthrs = (2, 16, 4)
template <int feat_in, int feat_out, size_t vec_size, int tx, int ty, int tz,
typename in_T, typename out_T, typename W_T>
__global__ void
bgmv_expand_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t num_layers, int64_t layer_idx,
float scale) {
size_t batch_idx = blockIdx.y;
int64_t idx = indicies[batch_idx] * num_layers + layer_idx;
if (idx < 0) {
return;
}
auto block = cg::this_thread_block();
size_t tile_idx = blockIdx.x;
// load X;
vec_t<in_T, vec_size> x_vec;
x_vec.load(X + batch_idx * feat_in + threadIdx.x * vec_size);
// load W;
vec_t<W_T, vec_size> w_vec;
w_vec.load(W + (idx * feat_out + tile_idx * tz * ty) * feat_in +
block.thread_rank() * vec_size);
float sum = 0.f;
#pragma unroll
for (size_t i = 0; i < vec_size; ++i) {
sum += float(w_vec[i]) * float(x_vec[i]) * scale;
}
cg::thread_block_tile g = cg::tiled_partition<tx>(block);
#pragma unroll
for (size_t offset = tx / 2; offset > 0; offset /= 2) {
sum += g.shfl_down(sum, offset);
}
sum = g.shfl(sum, 0);
if (threadIdx.x == 0) {
Y[batch_idx * full_y_size + y_offset + tile_idx * (tz * ty) +
threadIdx.z * ty + threadIdx.y] += static_cast<out_T>(sum);
}
}
template <int feat_in, int feat_out, typename in_T, typename out_T,
typename W_T>
void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t batch_size, int64_t num_layers,
int64_t layer_idx, float scale) {
constexpr size_t vec_size = 8;
constexpr int tz = 4;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if constexpr (feat_in < feat_out) {
static_assert(feat_in % vec_size == 0);
constexpr int tx = feat_in / vec_size;
static_assert((32 % tx == 0 && feat_out % (32 / tx * tz) == 0) ||
(16 % tx == 0 && feat_out % (16 / tx * tz) == 0) ||
(8 % tx == 0 && feat_out % (8 / tx * tz) == 0));
if constexpr (32 % tx == 0 && feat_out % (32 / tx * tz) == 0) {
constexpr int ty = 32 / tx;
dim3 nblks(feat_out / (ty * tz), batch_size);
dim3 nthrs(tx, ty, tz);
bgmv_expand_kernel<feat_in, feat_out, vec_size, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else if (16 % tx == 0 && feat_out % (16 / tx * tz) == 0) {
constexpr int ty = 16 / tx;
dim3 nblks(feat_out / (ty * tz), batch_size);
dim3 nthrs(tx, ty, tz);
bgmv_expand_kernel<feat_in, feat_out, vec_size, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else {
constexpr int ty = 8 / tx;
dim3 nblks(feat_out / (ty * tz), batch_size);
dim3 nthrs(tx, ty, tz);
bgmv_expand_kernel<feat_in, feat_out, vec_size, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
}
} else {
static_assert(feat_in % (vec_size * 32) == 0 ||
feat_in % (vec_size * 16) == 0 ||
feat_in % (vec_size * 8) == 0);
if constexpr (feat_in % (vec_size * 32) == 0) {
constexpr int tx = 32;
constexpr int ty = 4;
dim3 nblks(feat_out, batch_size);
dim3 nthrs(tx, ty);
bgmv_shrink_kernel<feat_in, feat_out, vec_size, vec_size * sizeof(in_T),
vec_size * sizeof(W_T), tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else if constexpr (feat_in % (vec_size / 2 * 32) == 0) {
constexpr int tx = 32;
constexpr int ty = 4;
dim3 nblks(feat_out, batch_size);
dim3 nthrs(tx, ty);
bgmv_shrink_kernel<feat_in, feat_out, vec_size / 2,
vec_size * sizeof(in_T) / 2,
vec_size * sizeof(W_T) / 2, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else if constexpr (feat_in % (vec_size / 2 * 16) == 0) {
constexpr int tx = 16;
constexpr int ty = 4;
dim3 nblks(feat_out, batch_size);
dim3 nthrs(tx, ty);
bgmv_shrink_kernel<feat_in, feat_out, vec_size / 2,
vec_size * sizeof(in_T) / 2,
vec_size * sizeof(W_T) / 2, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
}
}
}
#define INST_BGMV(feat_in, feat_out, in_T, out_T, W_T) \
template void bgmv_kernel<feat_in, feat_out>( \
out_T * __restrict__ Y, const in_T *__restrict__ X, \
const W_T *__restrict__ W, const int64_t *__restrict__ indicies, \
int64_t y_offset, int64_t full_y_size, int64_t batch_size, \
int64_t num_layers, int64_t layer_idx, float scale);
#define INST_BGMV_TWOSIDE(in_T, out_T, W_T, narrow, wide) \
INST_BGMV(narrow, wide, in_T, out_T, W_T) \
INST_BGMV(wide, narrow, in_T, out_T, W_T)

View File

@ -0,0 +1,27 @@
DTYPES = ["fp16", "bf16", "fp32"]
DTYPE_MAP = {
"fp16": "nv_half",
"bf16": "nv_bfloat16",
"fp32": "float",
}
TEMPLATE = """
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, {input_dtype}, {output_dtype}, {weight_dtype})
""".lstrip()
for input_dtype in DTYPES:
for output_dtype in DTYPES:
for weight_dtype in DTYPES:
if weight_dtype == "fp32":
# FP32 weights are not supported.
continue
kernel_definition = TEMPLATE.format(
input_dtype=DTYPE_MAP[input_dtype],
output_dtype=DTYPE_MAP[output_dtype],
weight_dtype=DTYPE_MAP[weight_dtype])
filename = f"bgmv_{input_dtype}_{output_dtype}_{weight_dtype}.cu"
with open(filename, "w") as f:
f.write(kernel_definition)

File diff suppressed because it is too large Load Diff

563
csrc/punica/punica_ops.cc Normal file
View File

@ -0,0 +1,563 @@
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <torch/extension.h>
#include <cstdint>
#include "bgmv/bgmv_config.h"
namespace {
//====== utils ======
inline void check_shape(const torch::Tensor &a, const torch::Tensor &b,
const char *a_name, const char *b_name) {
TORCH_CHECK(a.dim() == b.dim(), a_name, ".dim() != ", b_name, ".dim(). ",
a.dim(), " vs ", b.dim());
for (int i = 0; i < a.dim(); ++i) {
TORCH_CHECK(a.size(i) == b.size(i), a_name, ".size(", i, ") != ", b_name,
".size(", i, ")");
}
}
inline constexpr uint32_t pack_u16(uint16_t a, uint16_t b) {
return (uint32_t(a) << 16) | uint32_t(b);
}
#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) \
TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) \
CHECK_CUDA(x); \
CHECK_CONTIGUOUS(x)
#define CHECK_DIM(d, x) \
TORCH_CHECK(x.dim() == d, #x " must be a " #d "D tensor")
#define CHECK_SHAPE(a, b) check_shape(a, b, #a, #b)
#define CHECK_EQ(a, b) \
TORCH_CHECK(a == b, "CHECK_EQ(" #a ", " #b ") failed. ", a, " vs ", b)
//====== bgmv ======
template <typename in_T, typename out_T, typename W_T>
inline bool launch_bgmv_kernel(out_T *Y, const in_T *X, const W_T *W,
const int64_t *lora_indices,
uint16_t in_features, uint16_t out_features,
int64_t y_offset, int64_t full_y_size,
int64_t batch_size, int64_t num_layers,
int64_t layer_idx, float scale) {
switch (pack_u16(in_features, out_features)) {
#define CASE_ONESIDE(_in_T, _out_T, _W_T, feat_in, feat_out) \
case pack_u16(feat_in, feat_out): \
bgmv_kernel<feat_in, feat_out>(Y, X, W, lora_indices, y_offset, \
full_y_size, batch_size, num_layers, \
layer_idx, scale); \
break;
#define CASE(_in_T, _out_T, _W_T, narrow, wide) \
CASE_ONESIDE(in_T, out_T, W_T, narrow, wide) \
CASE_ONESIDE(in_T, out_T, W_T, wide, narrow)
FOR_BGMV_WIDE_NARROW(CASE, _, _, _)
#undef CASE
#undef CASE_ONESIDE
default:
return false;
}
return true;
}
void dispatch_bgmv(torch::Tensor y, torch::Tensor x, torch::Tensor w,
torch::Tensor indicies, int64_t layer_idx, float scale) {
CHECK_INPUT(y);
CHECK_INPUT(x);
CHECK_INPUT(w);
CHECK_INPUT(indicies);
CHECK_DIM(2, y);
CHECK_DIM(2, x);
CHECK_DIM(4, w);
CHECK_DIM(1, indicies);
int64_t B = x.size(0);
int64_t h_in = x.size(1);
int64_t h_out = y.size(1);
int64_t num_layers = w.size(1);
CHECK_EQ(w.size(3), h_in);
CHECK_EQ(w.size(2), h_out);
CHECK_EQ(indicies.size(0), x.size(0));
CHECK_EQ(y.size(0), x.size(0));
bool ok = false;
if (h_in < 65536 && h_out < 65536) {
// TODO: See if we can get rid of this massive nested switch
switch (x.scalar_type()) {
case at::ScalarType::Half:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
default:
break;
}
}
TORCH_CHECK(ok, "No suitable kernel.", " h_in=", h_in, " h_out=", h_out,
" dtype=", x.scalar_type(), " out_dtype=", y.scalar_type());
}
void dispatch_bgmv_low_level(torch::Tensor y, torch::Tensor x, torch::Tensor w,
torch::Tensor indicies, int64_t layer_idx,
float scale, int64_t h_in, int64_t h_out,
int64_t y_offset) {
CHECK_INPUT(y);
CHECK_INPUT(x);
CHECK_INPUT(w);
CHECK_INPUT(indicies);
CHECK_DIM(2, y);
CHECK_DIM(2, x);
CHECK_DIM(4, w);
CHECK_DIM(1, indicies);
int64_t B = x.size(0);
int64_t num_layers = w.size(1);
int64_t full_y_size = y.size(1);
CHECK_EQ(w.size(3), h_in);
CHECK_EQ(w.size(2), h_out);
CHECK_EQ(indicies.size(0), x.size(0));
CHECK_EQ(y.size(0), x.size(0));
bool ok = false;
if (h_in < 65536 && h_out < 65536) {
// TODO: See if we can get rid of this massive nested switch
switch (x.scalar_type()) {
case at::ScalarType::Half:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
default:
break;
}
}
TORCH_CHECK(ok, "No suitable kernel.", " h_in=", h_in, " h_out=", h_out,
" dtype=", x.scalar_type(), " out_dtype=", y.scalar_type());
}
} // namespace
//====== pybind ======
#define DEFINE_pybind(name) m.def(#name, &name, #name);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("dispatch_bgmv", &dispatch_bgmv, "dispatch_bgmv");
m.def("dispatch_bgmv_low_level", &dispatch_bgmv_low_level,
"dispatch_bgmv_low_level");
}

View File

@ -48,13 +48,18 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
&rotary_embedding,
"Apply GPT-NeoX or GPT-J style rotary embedding to query and key");
#ifndef USE_ROCM
// Quantization ops
#ifndef USE_ROCM
ops.def("awq_gemm", &awq_gemm, "Quantized GEMM for AWQ");
ops.def("awq_dequantize", &awq_dequantize, "Dequantization for AWQ");
#endif
ops.def("gptq_gemm", &gptq_gemm, "Quantized GEMM for GPTQ");
ops.def("gptq_shuffle", &gptq_shuffle, "Post processing for GPTQ");
ops.def("squeezellm_gemm", &squeezellm_gemm, "Quantized GEMM for SqueezeLLM");
ops.def(
"moe_align_block_size",
&moe_align_block_size,
"Aligning the number of tokens to be processed by each expert such that it is divisible by the block size.");
// Cache ops
pybind11::module cache_ops = m.def_submodule("cache_ops", "vLLM cache ops");
@ -74,6 +79,10 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
"gather_cached_kv",
&gather_cached_kv,
"Gather key and value from the cache into contiguous QKV tensors");
cache_ops.def(
"convert_fp8_e5m2",
&convert_fp8_e5m2,
"Convert the key and value cache to fp8_e5m2 data type");
// Cuda utils
pybind11::module cuda_utils = m.def_submodule("cuda_utils", "vLLM cuda utils");
@ -81,4 +90,26 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
"get_device_attribute",
&get_device_attribute,
"Gets the specified device attribute.");
cuda_utils.def(
"get_max_shared_memory_per_block_device_attribute",
&get_max_shared_memory_per_block_device_attribute,
"Gets the maximum shared memory per block device attribute.");
#ifndef USE_ROCM
// Custom all-reduce kernels
pybind11::module custom_ar = m.def_submodule("custom_ar", "custom allreduce");
custom_ar.def("init_custom_ar", &init_custom_ar, "init_custom_ar");
custom_ar.def("should_custom_ar", &should_custom_ar, "should_custom_ar");
custom_ar.def("all_reduce_reg", &all_reduce_reg, "all_reduce_reg");
custom_ar.def("all_reduce_unreg", &all_reduce_unreg, "all_reduce_unreg");
custom_ar.def("dispose", &dispose, "dispose");
custom_ar.def("meta_size", &meta_size, "meta_size");
custom_ar.def("register_buffer", &register_buffer, "register_buffer");
custom_ar.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta,
"get_graph_buffer_ipc_meta");
custom_ar.def("register_graph_buffers", &register_graph_buffers,
"register_graph_buffers");
#endif
}

View File

@ -27,72 +27,85 @@ __pack_half2(const half x, const half y) {
return (v1 << 16) | v0;
}
__global__ void __launch_bounds__(64) gemm_forward_4bit_cuda_m16n128k32(int G, int split_k_iters, half* __restrict__ A, int* __restrict__ B, half* __restrict__ scaling_factors, int* __restrict__ zeros, int M, int IC, int OC, half* __restrict__ C)
template<int N>
__global__ void __launch_bounds__(64) gemm_forward_4bit_cuda_m16nXk32(
int G,
int split_k_iters,
half* __restrict__ A,
int* __restrict__ B,
half* __restrict__ scaling_factors,
int* __restrict__ zeros,
int M,
int IC,
int OC,
half* __restrict__ C)
{
// Only support matrix n = 64 or 128
assert(N == 64 || N == 128);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 750
assert(false);
#else
static constexpr uint32_t ZERO = 0x0;
float C_warp[32];
__shared__ half A_shared[16 * (32 + 8)];
__shared__ half B_shared[32 * (128 + 8)];
__shared__ half scaling_factors_shared[128];
__shared__ half zeros_shared[128];
__shared__ half B_shared[32 * (N + 8)];
int j_factors1 = ((OC + 128 - 1) / 128);
__shared__ half scaling_factors_shared[N];
__shared__ half zeros_shared[N];
int j_factors1 = ((OC + N - 1) / N);
int blockIdx_x = 0;
int blockIdx_y = blockIdx.x % ((M + 16 - 1) / 16 * j_factors1);
int blockIdx_z = blockIdx.x / ((M + 16 - 1) / 16 * j_factors1);
half A_shared_warp[8];
half B_shared_warp[32];
for (int j_0_4_init = 0; j_0_4_init < 4; ++j_0_4_init) {
half B_shared_warp[N / 4];
for (int j_0_4_init = 0; j_0_4_init < N / 32; ++j_0_4_init) {
for (int i = 0; i < 8; ++i) {
C_warp[(j_0_4_init * 8) + i] = 0.0;
}
}
static constexpr int row_stride_warp = 32 * 8 / 32;
static constexpr int row_stride = 2 * 32 * 8 / 128;
bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < 128;
static constexpr int row_stride = 2 * 32 * 8 / N;
bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < N;
// TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
bool ld_A_flag = (blockIdx_y / j_factors1 * 16 + threadIdx.y * row_stride_warp + threadIdx.x * 8 / 32) < M; // threadIdx.y is warp_id
// bool wb_C_flag = (threadIdx.x / 4) < M;
half* A_ptr = A
half* A_ptr = A
+ (((int)blockIdx_y) / j_factors1 * 16 + (((int)threadIdx.y) * row_stride_warp) + ((int)threadIdx.x) / (32 / 8)) * IC
+ (((int)threadIdx.x) % (32 / 8)) * 8;
int* B_ptr = B
+ ((int)threadIdx.y) * (OC / 8) * 2
+ (((int)threadIdx.x) / (128 / 8)) * (OC / 8)
+ (((int)blockIdx_y) % j_factors1) * (128 / 8)
+ (((int)threadIdx.x) % (128 / 8)) * 1;
+ ((int)threadIdx.y) * (OC / 8) * (256 / N)
+ (((int)threadIdx.x) / (N / 8)) * (OC / 8)
+ (((int)blockIdx_y) % j_factors1) * (N / 8)
+ (((int)threadIdx.x) % (N / 8)) * 1;
// Why * 1 in the above line?
half* A_shared_ptr = A_shared
+ ((int)threadIdx.y) * row_stride_warp * (32 + 8)
half* A_shared_ptr = A_shared
+ ((int)threadIdx.y) * row_stride_warp * (32 + 8)
+ (((int)threadIdx.x) / (32 / 8)) * (32 + 8)
+ (((int)threadIdx.x) % (32 / 8) ) * 8;
half* B_shared_ptr = B_shared
+ ((int)threadIdx.y) * (row_stride / 2) * (128 + 8)
+ (((int)threadIdx.x) / (128 / 8)) * (128 + 8)
+ (((int)threadIdx.x) % (128 / 8)) * 8;
int* zeros_ptr = zeros
+ (((int)blockIdx_y) % j_factors1) * (128 / 8)
+ ((int)threadIdx.x) % (128 / 8);
half* scaling_factors_ptr = scaling_factors
+ (((int)blockIdx_y) % j_factors1) * (128)
+ (((int)threadIdx.x) % (128 / 8)) * 8;
+ ((int)threadIdx.y) * (row_stride / 2) * (N + 8)
+ (((int)threadIdx.x) / (N / 8)) * (N + 8)
+ (((int)threadIdx.x) % (N / 8)) * 8;
half* C_ptr = C
int* zeros_ptr = zeros
+ (((int)blockIdx_y) % j_factors1) * (N / 8)
+ ((int)threadIdx.x) % (N / 8);
half* scaling_factors_ptr = scaling_factors
+ (((int)blockIdx_y) % j_factors1) * N
+ (((int)threadIdx.x) % (N / 8)) * 8;
half* C_ptr = C
+ static_cast<long long>(blockIdx_z) * M * OC // blockIdz.x -> split_k dim
+ (((int)blockIdx_y) % j_factors1) * 128
+ ((int)threadIdx.y) * 64
+ (((int)blockIdx_y) % j_factors1) * N
+ ((int)threadIdx.y) * (N / 2)
+ (((int)threadIdx.x) % 4) * 2;
// preload s.f. and zeros
@ -123,13 +136,13 @@ __global__ void __launch_bounds__(64) gemm_forward_4bit_cuda_m16n128k32(int G, i
// uint4 B_loaded_scale = make_uint4(0, 0, 0, 0);
int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);
for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 8; ++ax0_ax1_fused_0) {
for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < N / 16; ++ax0_ax1_fused_0) {
// B: 32 x 136 (128+8) float16
// each warp: 32 x 4
// each thr: read 32 bit -> convert to 8xFP16 (a UINT4) -> scale and minus zero -> WB UINT4
// *(uint4*)(B_shared + ((((ax0_ax1_fused_0 * 544) + (((int)threadIdx.y) * 272)) + ((((int)threadIdx.x) >> 4) * 136)) + ((((int)threadIdx.x) & 15) * 8))) = *(uint4*)(B + ((((((k_0_0 * 163840) + (ax0_ax1_fused_0 * 20480)) + (((int)threadIdx.y) * 10240)) + ((((int)threadIdx.x) >> 4) * 5120)) + (((int)blockIdx_y) * 128)) + ((((int)threadIdx.x) & 15) * 8)));
// row stride in shared memory: (NWARPS * 32 * 8 / cta_N)
// row stride in shared memory: (NWARPS * 32 * 8 / cta_N)
uint32_t B_loaded = *(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
//uint4 B_loaded_zero = *(uint4*)(zeros_shared + (threadIdx.x % (cta_N / 8)) * 8);
@ -152,7 +165,7 @@ __global__ void __launch_bounds__(64) gemm_forward_4bit_cuda_m16n128k32(int G, i
*/
// write back
*(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (128 + 8)) = B_loaded_fp16;
*(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (N + 8)) = B_loaded_fp16;
}
__syncthreads();
@ -174,13 +187,13 @@ __global__ void __launch_bounds__(64) gemm_forward_4bit_cuda_m16n128k32(int G, i
);
}
for (int ax1_0 = 0; ax1_0 < 4; ++ax1_0) {
for (int ax1_0 = 0; ax1_0 < N / 32; ++ax1_0) {
{
unsigned int addr;
__asm__ __volatile__(
"{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
: "=r"(addr)
: "l"((void *)((&(B_shared[(((k_0_1 * 2176) + (((int)threadIdx.y) * 64)) + (ax1_0 * 16))])) + (((((int)threadIdx.x) & 15) * 136) + ((((int)threadIdx.x) >> 4) * 8))))
: "l"((void *)((&(B_shared[(((k_0_1 * (N * 16 + 128)) + (((int)threadIdx.y) * (N / 2))) + (ax1_0 * 16))])) + (((((int)threadIdx.x) & 15) * (N + 8)) + ((((int)threadIdx.x) >> 4) * 8))))
);
__asm__ __volatile__(
"ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
@ -190,7 +203,7 @@ __global__ void __launch_bounds__(64) gemm_forward_4bit_cuda_m16n128k32(int G, i
);
}
}
for (int j_0_4 = 0; j_0_4 < 4; ++j_0_4) {
for (int j_0_4 = 0; j_0_4 < N / 32; ++j_0_4) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ == 750
{
__asm__ __volatile__(
@ -258,244 +271,115 @@ __global__ void __launch_bounds__(64) gemm_forward_4bit_cuda_m16n128k32(int G, i
#endif
}
__global__ void __launch_bounds__(64) gemm_forward_4bit_cuda_m16n64k32(int G, int split_k_iters, half* __restrict__ A, int* __restrict__ B, half* __restrict__ scaling_factors, int* __restrict__ zeros, int M, int IC, int OC, half* __restrict__ C)
__global__ void __launch_bounds__(64) dequantize_weights(
int* __restrict__ B,
half* __restrict__ scaling_factors,
int* __restrict__ zeros,
half* __restrict__ C,
int G
)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 750
assert(false);
#else
int j_factors1 = 4;
int row_stride2 = 4;
int split_k_iters = 1;
static constexpr uint32_t ZERO = 0x0;
float C_warp[32];
__shared__ half A_shared[16 * (32 + 8)];
__shared__ half B_shared[32 * (64 + 8)];
__shared__ half scaling_factors_shared[64];
__shared__ half zeros_shared[64];
half B_shared[32 * (128 + 8)];
int j_factors1 = ((OC + 64 - 1) / 64);
half* B_shared_ptr2 = B_shared;
int blockIdx_x = 0;
int blockIdx_y = blockIdx.x % ((M + 16 - 1) / 16 * j_factors1);
int blockIdx_z = blockIdx.x / ((M + 16 - 1) / 16 * j_factors1);
half B_shared_warp[32];
int OC = 512;
half A_shared_warp[8];
half B_shared_warp[16];
for (int j_0_4_init = 0; j_0_4_init < 2; ++j_0_4_init) {
for (int i = 0; i < 8; ++i) {
C_warp[(j_0_4_init * 8) + i] = 0.0;
}
int N = blockDim.x * gridDim.x; // 2
int col = (blockIdx.x * blockDim.x + threadIdx.x);
int row = blockIdx.y * blockDim.y + threadIdx.y;
int index1 = 8 * col + 8 * row * N;
half* C_ptr2 = C + index1;
int index2 = col + row * N;
int* B_ptr2 = B + index2;
int index3 = col + (int)(row / G) * N;
int* zeros_ptr2 = zeros + index3;
int index4 = 8 * col + (int)(row / G) * N * 8;
half* scaling_factors_ptr2 = scaling_factors + index4;
uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr2);
uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr2);
uint32_t B_loaded = *(uint32_t*)B_ptr2;
uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
*(uint4*)B_shared_ptr2 = B_loaded_fp16;
for (int i = 0; i < 8; ++i) {
*(C_ptr2 + i) = B_shared[i];
}
static constexpr int row_stride_warp = 32 * 8 / 32;
static constexpr int row_stride = 2 * 32 * 8 / 64;
bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < 64;
// TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
bool ld_A_flag = (blockIdx_y / j_factors1 * 16 + threadIdx.y * row_stride_warp + threadIdx.x * 8 / 32) < M; // threadIdx.y is warp_id
// bool wb_C_flag = (threadIdx.x / 4) < M;
half* A_ptr = A
+ (((int)blockIdx_y) / j_factors1 * 16 + (((int)threadIdx.y) * row_stride_warp) + ((int)threadIdx.x) / (32 / 8)) * IC
+ (((int)threadIdx.x) % (32 / 8)) * 8;
int* B_ptr = B
+ ((int)threadIdx.y) * (OC / 8) * 4
+ (((int)threadIdx.x) / (64 / 8)) * (OC / 8)
+ (((int)blockIdx_y) % j_factors1) * (64 / 8)
+ (((int)threadIdx.x) % (64 / 8)) * 1;
// Why * 1 in the above line?
half* A_shared_ptr = A_shared
+ ((int)threadIdx.y) * row_stride_warp * (32 + 8)
+ (((int)threadIdx.x) / (32 / 8)) * (32 + 8)
+ (((int)threadIdx.x) % (32 / 8) ) * 8;
half* B_shared_ptr = B_shared
+ ((int)threadIdx.y) * (row_stride / 2) * (64 + 8)
+ (((int)threadIdx.x) / (64 / 8)) * (64 + 8)
+ (((int)threadIdx.x) % (64 / 8)) * 8;
int* zeros_ptr = zeros
+ (((int)blockIdx_y) % j_factors1) * (64 / 8)
+ ((int)threadIdx.x) % (64 / 8);
half* scaling_factors_ptr = scaling_factors
+ (((int)blockIdx_y) % j_factors1) * (64)
+ (((int)threadIdx.x) % (64 / 8)) * 8;
half* C_ptr = C
+ static_cast<long long>(blockIdx_z) * M * OC // blockIdz.x -> split_k dim
+ (((int)blockIdx_y) % j_factors1) * 64
+ ((int)threadIdx.y) * 32
+ (((int)threadIdx.x) % 4) * 2;
// preload s.f. and zeros
int k_bound = (IC / 32 + split_k_iters - 1) / split_k_iters;
if ((k_bound - 1) * split_k_iters * 32 + blockIdx_z * 32 >= IC) k_bound -= 1;
for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
__syncthreads();
// TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
if (ld_A_flag)
{
*(uint4*)(A_shared_ptr) = *(uint4*)(A_ptr + (k_0_0 * 32));
}
else
{
*(uint4*)(A_shared_ptr) = make_uint4(0, 0, 0, 0);
}
// for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 2; ++ax0_ax1_fused_0) {
uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr + k_0_0 * 32 / G * (OC / 8));
uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr + k_0_0 * 32 / G * (OC));
/*
if (blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 0 && threadIdx.y == 0){
printf("%x %x %x %x %x %x %x %x\n", B_loaded_scale.x, B_loaded_scale.y, B_loaded_scale.z, B_loaded_scale.w, B_loaded_zero.x, B_loaded_zero.y, B_loaded_zero.z, B_loaded_zero.w);
}
*/
// uint4 B_loaded_scale = make_uint4(0, 0, 0, 0);
int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);
for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 4; ++ax0_ax1_fused_0) {
// B: 32 x 136 (128+8) float16
// each warp: 32 x 4
// each thr: read 32 bit -> convert to 8xFP16 (a UINT4) -> scale and minus zero -> WB UINT4
// *(uint4*)(B_shared + ((((ax0_ax1_fused_0 * 544) + (((int)threadIdx.y) * 272)) + ((((int)threadIdx.x) >> 4) * 136)) + ((((int)threadIdx.x) & 15) * 8))) = *(uint4*)(B + ((((((k_0_0 * 163840) + (ax0_ax1_fused_0 * 20480)) + (((int)threadIdx.y) * 10240)) + ((((int)threadIdx.x) >> 4) * 5120)) + (((int)blockIdx_y) * 128)) + ((((int)threadIdx.x) & 15) * 8)));
// row stride in shared memory: (NWARPS * 32 * 8 / cta_N)
uint32_t B_loaded = *(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
//uint4 B_loaded_zero = *(uint4*)(zeros_shared + (threadIdx.x % (cta_N / 8)) * 8);
// uint4 B_loaded_scale = *(uint4*)(scaling_factors_shared + (threadIdx.x % (cta_N / 8)) * 8);
// - zero and * scale
// TODO (Haotian): can save 4 assembly instructions if sormulate as deq = q * scale - zero * scale.
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
/*
if (ax0_ax1_fused_0 == 0 && blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 17 && threadIdx.y == 0){
printf("[x] %X %X %X %X\n", B_loaded_fp16.x, B_loaded_fp16.y, B_loaded_fp16.z, B_loaded_fp16.w);
}
*/
// write back
*(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (64 + 8)) = B_loaded_fp16;
}
__syncthreads();
for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1)
{
{
unsigned int addr;
__asm__ __volatile__(
"{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
: "=r"(addr)
: "l"((void *)((&(A_shared[(k_0_1 * 16)])) + (((((int)threadIdx.x) & 15) * 40) + ((((int)threadIdx.x) >> 4) * 8))))
);
__asm__ __volatile__(
"ldmatrix.sync.aligned.m8n8.x4.shared.b16"
"{%0, %1, %2, %3}, [%4];\n"
: "=r"(((unsigned *)(A_shared_warp + 0))[0]), "=r"(((unsigned *)(A_shared_warp + 0))[1]), "=r"(((unsigned *)(A_shared_warp + 0))[2]), "=r"(((unsigned *)(A_shared_warp + 0))[3])
: "r"(addr)
);
}
for (int ax1_0 = 0; ax1_0 < 2; ++ax1_0)
{
{
unsigned int addr;
__asm__ __volatile__(
"{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
: "=r"(addr)
: "l"((void *)((&(B_shared[(((k_0_1 * 1152) + (((int)threadIdx.y) * 32)) + (ax1_0 * 16))])) + (((((int)threadIdx.x) & 15) * 72) + ((((int)threadIdx.x) >> 4) * 8))))
);
__asm__ __volatile__(
"ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
"{%0, %1, %2, %3}, [%4];\n"
: "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[0]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[1]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[2]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[3])
: "r"(addr)
);
}
}
for (int j_0_4 = 0; j_0_4 < 2; ++j_0_4)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ == 750
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
: "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
: "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
}
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
: "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
: "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
}
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
: "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
: "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
}
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
: "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
: "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
}
#else
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
: "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
: "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
}
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
: "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
: "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
}
#endif
}
}
}
// TODO: Shang: Hoist loop invariance.
for (int ax1_0_1 = 0; ax1_0_1 < 2; ++ax1_0_1) {
for (int local_id = 0; local_id < 8; ++local_id) {
int row_offset = (((int)blockIdx_y) / j_factors1) * 16 + ((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;
if (row_offset < M)
{
*(C_ptr + ax1_0_1 * 16 + row_offset * OC + (local_id / 4) * 8 + local_id % 2) = __float2half(C_warp[(ax1_0_1 * 8) + local_id]);
}
}
}
#endif
}
} // namespace awq
} // namespace vllm
torch::Tensor awq_dequantize(
torch::Tensor _kernel,
torch::Tensor _scaling_factors,
torch::Tensor _zeros,
int split_k_iters,
int thx,
int thy)
{
int in_c = _kernel.size(0);
int qout_c = _kernel.size(1);
int out_c = qout_c * 8;
int G = in_c / _scaling_factors.size(0);
int x_thread = thx;
int y_thread = thy;
int x_blocks = 1;
int y_blocks = 1;
if (thx==0) {
x_thread = qout_c;
}
if (thy==0) {
y_thread = in_c;
}
if (thx==0 && thy==0) {
x_thread = 8;
y_thread = 8;
x_blocks = (int)(qout_c / 8);
y_blocks = (int)(in_c / 8);
}
const at::cuda::OptionalCUDAGuard device_guard(device_of(_scaling_factors));
auto options = torch::TensorOptions().dtype(_scaling_factors.dtype()).device(_scaling_factors.device());
at::Tensor _de_kernel = torch::empty({in_c, out_c}, options);
auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
auto de_kernel = reinterpret_cast<half*>(_de_kernel.data_ptr<at::Half>());
auto scaling_factors = reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
dim3 num_blocks(x_blocks, y_blocks);
dim3 threads_per_block(x_thread, y_thread);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
vllm::awq::dequantize_weights<<<num_blocks, threads_per_block, 0, stream>>>(
kernel, scaling_factors, zeros, de_kernel, G);
return _de_kernel;
}
// in_feats: M, IC [float16]
// kernel: IC, OC // 8 [int32] -> cast to IC, OC [uint4b]
// scaling_factors: IC // G, OC [float16]
@ -542,19 +426,21 @@ torch::Tensor awq_gemm(
// threadIdx.x: 32
// threadIdx.y: i_factors[2] * j_factors[2]
dim3 threads_per_block(32, 2);
vllm::awq::gemm_forward_4bit_cuda_m16n128k32<<<num_blocks, threads_per_block, 0, stream>>>(
group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros, num_in_feats, num_in_channels, num_out_channels, out_feats);
vllm::awq::gemm_forward_4bit_cuda_m16nXk32<128><<<num_blocks, threads_per_block, 0, stream>>>(
group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros, num_in_feats, num_in_channels,
num_out_channels, out_feats);
}
else if (num_out_channels % 64 == 0)
{
int j_factors1 = num_out_channels / 64 / 1;
dim3 num_blocks(1 * (num_out_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
// threadIdx.x: 32
// threadIdx.y: i_factors[2] * j_factors[2]
dim3 threads_per_block(32, 2);
vllm::awq::gemm_forward_4bit_cuda_m16n64k32<<<num_blocks, threads_per_block, 0, stream>>>(
group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros, num_in_feats, num_in_channels, num_out_channels, out_feats);
vllm::awq::gemm_forward_4bit_cuda_m16nXk32<64><<<num_blocks, threads_per_block, 0, stream>>>(
group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros, num_in_feats, num_in_channels,
num_out_channels, out_feats);
}
return _out_feats.sum(0);
}

View File

@ -0,0 +1,277 @@
#pragma once
#include <assert.h>
#include <stdint.h>
#include <float.h>
#include <type_traits>
#include "../../attention/attention_dtypes.h"
#include "../../attention/dtype_float32.cuh"
#include "../../attention/dtype_float16.cuh"
#include "../../attention/dtype_bfloat16.cuh"
namespace vllm {
#ifdef ENABLE_FP8_E5M2
namespace fp8_e5m2_unscaled {
template<typename Tout, typename Tin>
__inline__ __device__ Tout vec_conversion(const Tin& x)
{
return x;
}
// fp8 -> half
template<>
__inline__ __device__ uint16_t vec_conversion<uint16_t, uint8_t>(const uint8_t& a)
{
__half_raw res = __nv_cvt_fp8_to_halfraw(a, __NV_E5M2);
return res.x;
}
// fp8x2 -> half2
template<>
__inline__ __device__ uint32_t vec_conversion<uint32_t, uint16_t>(const uint16_t& a)
{
union {
uint16_t u16[2];
uint32_t u32;
} tmp;
__half2_raw res = __nv_cvt_fp8x2_to_halfraw2(a, __NV_E5M2);
tmp.u16[0] = res.x;
tmp.u16[1] = res.y;
return tmp.u32;
}
// fp8x4 -> half2x2
template<>
__inline__ __device__ uint2 vec_conversion<uint2, uint32_t>(const uint32_t& a)
{
union {
uint2 u32x2;
uint32_t u32[2];
} tmp;
tmp.u32[0] = vec_conversion<uint32_t, uint16_t>((uint16_t)a);
tmp.u32[1] = vec_conversion<uint32_t, uint16_t>((uint16_t)(a >> 16U));
return tmp.u32x2;
}
// fp8x8 -> half2x4
template<>
__inline__ __device__ uint4 vec_conversion<uint4, uint2>(const uint2& a)
{
union {
uint4 u64x2;
uint2 u64[2];
} tmp;
tmp.u64[0] = vec_conversion<uint2, uint32_t>(a.x);
tmp.u64[1] = vec_conversion<uint2, uint32_t>(a.y);
return tmp.u64x2;
}
// fp8 -> __nv_bfloat16
template<>
__inline__ __device__ __nv_bfloat16 vec_conversion<__nv_bfloat16, uint8_t>(const uint8_t& a)
{
// Note there is no direct convert function from fp8 to bf16.
// fp8 -> half
__half_raw res = __nv_cvt_fp8_to_halfraw(a, __NV_E5M2);
// half -> float -> bf16
float tmp = half_to_float(res.x);
return __float2bfloat16(tmp);
}
// fp8x2 -> __nv_bfloat162
template<>
__inline__ __device__ __nv_bfloat162 vec_conversion<__nv_bfloat162, uint16_t>(const uint16_t& a)
{
__nv_bfloat162 res;
res.x = vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)a);
res.y = vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)(a >> 8U));
return res;
}
// fp8x4 -> bf16_4_t
template<>
__inline__ __device__ bf16_4_t vec_conversion<bf16_4_t, uint32_t>(const uint32_t& a)
{
bf16_4_t res;
res.x = vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)a);
res.y = vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)(a >> 16U));
return res;
}
// fp8x8 -> bf16_8_t
template<>
__inline__ __device__ bf16_8_t vec_conversion<bf16_8_t, uint2>(const uint2& a)
{
bf16_4_t tmp1, tmp2;
tmp1 = vec_conversion<bf16_4_t, uint32_t>(a.x);
tmp2 = vec_conversion<bf16_4_t, uint32_t>(a.y);
bf16_8_t res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// fp8 -> float
template<>
__inline__ __device__ float vec_conversion<float, uint8_t>(const uint8_t& a)
{
// fp8 -> half
uint16_t tmp = vec_conversion<uint16_t, uint8_t>(a);
// half -> float
return half_to_float(tmp);
}
// fp8x2 -> float2
template<>
__inline__ __device__ float2 vec_conversion<float2, uint16_t>(const uint16_t& a)
{
// fp8x2 -> half2
uint32_t tmp = vec_conversion<uint32_t, uint16_t>(a);
// half2 -> float2
return half2_to_float2(tmp);
}
// fp8x4 -> float4
template<>
__inline__ __device__ Float4_ vec_conversion<Float4_, uint32_t>(const uint32_t& a)
{
Float4_ res;
res.x = vec_conversion<float2, uint16_t>((uint16_t)a);
res.y = vec_conversion<float2, uint16_t>((uint16_t)(a >> 16U));
return res;
}
// fp8x8 -> float8
template<>
__inline__ __device__ Float8_ vec_conversion<Float8_, uint2>(const uint2& a)
{
Float4_ tmp1, tmp2;
tmp1 = vec_conversion<Float4_, uint32_t>(a.x);
tmp2 = vec_conversion<Float4_, uint32_t>(a.y);
Float8_ res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// half -> fp8
template<>
__inline__ __device__ uint8_t vec_conversion<uint8_t, uint16_t>(const uint16_t& a)
{
__half_raw tmp;
tmp.x = a;
__nv_fp8_storage_t res = __nv_cvt_halfraw_to_fp8(tmp, __NV_SATFINITE, __NV_E5M2);
return (uint8_t)res;
}
// bf16 -> fp8
template<>
__inline__ __device__ uint8_t vec_conversion<uint8_t, __nv_bfloat16>(const __nv_bfloat16& a)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
__nv_fp8_storage_t res = __nv_cvt_bfloat16raw_to_fp8(__nv_bfloat16_raw(a), __NV_SATFINITE, __NV_E5M2);
return (uint8_t)res;
#endif
}
// float -> fp8
template<>
__inline__ __device__ uint8_t vec_conversion<uint8_t, float>(const float& a)
{
__nv_fp8_storage_t res = __nv_cvt_float_to_fp8(a, __NV_SATFINITE, __NV_E5M2);
return (uint8_t)res;
}
// fp8x4 -> float4
template<>
__inline__ __device__ float4 vec_conversion<float4, uint32_t>(const uint32_t& a)
{
Float4_ tmp = vec_conversion<Float4_, uint32_t>(a);
float4 res = make_float4(tmp.x.x, tmp.x.y, tmp.y.x, tmp.y.y);
return res;
}
template<>
__inline__ __device__ uint32_t vec_conversion<uint32_t, float2>(const float2& a)
{
union {
half2 float16;
uint32_t uint32;
};
float16 = __float22half2_rn(a);
return uint32;
}
template<>
__inline__ __device__ uint2 vec_conversion<uint2, Float4_>(const Float4_& a)
{
uint2 b;
float2 val;
val.x = a.x.x;
val.y = a.x.y;
b.x = vec_conversion<uint32_t, float2>(val);
val.x = a.y.x;
val.y = a.y.y;
b.y = vec_conversion<uint32_t, float2>(val);
return b;
}
template<>
__inline__ __device__ float4 vec_conversion<float4, Float4_>(const Float4_& a)
{
float4 b;
b.x = a.x.x;
b.y = a.x.y;
b.z = a.y.x;
b.w = a.y.y;
return b;
}
template<>
__inline__ __device__ uint4 vec_conversion<uint4, Float8_>(const Float8_& a)
{
uint4 b;
b.x = vec_conversion<uint32_t, float2>(a.x);
b.y = vec_conversion<uint32_t, float2>(a.y);
b.z = vec_conversion<uint32_t, float2>(a.z);
b.w = vec_conversion<uint32_t, float2>(a.w);
return b;
}
template<>
__inline__ __device__ __nv_bfloat162 vec_conversion<__nv_bfloat162, float2>(const float2 &a) {
__nv_bfloat162 b;
from_float(b, a);
return b;
}
template<>
__inline__ __device__ bf16_4_t vec_conversion<bf16_4_t, Float4_>(const Float4_ &a) {
bf16_4_t b;
from_float(b, a);
return b;
}
template<>
__inline__ __device__ bf16_8_t vec_conversion<bf16_8_t, Float8_>(const Float8_ &a) {
bf16_8_t b;
from_float(b, a);
return b;
}
} // namespace fp8_e5m2_unscaled
#endif // ENABLE_FP8_E5M2
} // namespace vllm

View File

@ -0,0 +1,64 @@
/*
Copied from https://github.com/turboderp/exllamav2
*/
#ifndef _compat_cuh
#define _compat_cuh
namespace vllm {
namespace gptq {
// atomicAdd for half types, to support CC < 7.x
__device__ __forceinline__ void atomicAdd_half(half* address, half val)
{
unsigned int * address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2));
unsigned int old = *address_as_ui;
unsigned int assumed;
do
{
assumed = old;
__half_raw hsum;
hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
half tmpres = __hadd(hsum, val);
hsum = __half_raw(tmpres);
old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16) : (old & 0xffff0000) | hsum.x;
old = atomicCAS(address_as_ui, assumed, old);
}
while (assumed != old);
}
// atomicAdd for half2 types
__device__ __forceinline__ void atomicAdd_half2(half2* address, half2 val)
{
unsigned int* address_as_ui = (unsigned int*)address;
unsigned int old = *address_as_ui;
unsigned int assumed;
do
{
assumed = old;
half2 old_val = *((half2*)&old);
half2 new_val = __hadd2(old_val, val);
old = atomicCAS(address_as_ui, assumed, *((unsigned int*)&new_val));
}
while (assumed != old);
}
//
#if defined(__CUDA_ARCH__) || defined(USE_ROCM)
#if __CUDA_ARCH__ < 700 || defined(USE_ROCM)
__device__ __forceinline__ void atomicAdd(half* address, half val) { atomicAdd_half(address, val); }
#if __CUDA_ARCH__ < 600 || defined(USE_ROCM)
__device__ __forceinline__ void atomicAdd(half2* address, half2 val) { atomicAdd_half2(address, val); }
#endif
#endif
#endif
} // namespace gptq
} // namespace vllm
#endif

View File

@ -0,0 +1,151 @@
/*
Adapted from https://github.com/turboderp/exllamav2 and https://github.com/turboderp/exllama
*/
#ifndef _matrix_view_cuh
#define _matrix_view_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include "qdq_util.cuh"
namespace vllm {
namespace gptq {
class MatrixView_half
{
public:
const half* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_half(const half* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ half item(int row, int column) const { return data[row * width + column]; }
__device__ __forceinline__ half2 item_half2(int row, int column) const { return ((half2*)data)[(row * width + column) / 2]; }
__device__ __forceinline__ half2 item_half2half2(int row, int column) const { return __half2half2(data[row * width + column]); }
__device__ __forceinline__ const half* item_ptr(int row, int column) const { return &data[row * width + column]; }
__device__ __forceinline__ void item4(half (&items)[4], int row, int column) const
{
half2* ptr = (half2*) item_ptr(row, column);
half2 i01 = ptr[0];
half2 i23 = ptr[1];
items[0] = __low2half(i01);
items[1] = __high2half(i01);
items[2] = __low2half(i23);
items[3] = __high2half(i23);
}
__device__ __forceinline__ void item4_f(float (&items)[4], int row, int column) const
{
half2* ptr = (half2*)item_ptr(row, column);
half2 i01 = ptr[0];
half2 i23 = ptr[1];
items[0] = __half2float(__low2half(i01));
items[1] = __half2float(__high2half(i01));
items[2] = __half2float(__low2half(i23));
items[3] = __half2float(__high2half(i23));
}
__device__ __forceinline__ void item4_h2(half2 (&items)[4], int row, int column) const
{
half2* ptr = (half2*)item_ptr(row, column);
half2 i01 = ptr[0];
half2 i23 = ptr[1];
items[0] = __half2half2(__low2half(i01));
items[1] = __half2half2(__high2half(i01));
items[2] = __half2half2(__low2half(i23));
items[3] = __half2half2(__high2half(i23));
}
};
class MatrixView_half_rw
{
public:
half* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_half_rw(half* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ half item(int row, int column) const { return data[row * width + column]; }
__device__ __forceinline__ half2 item_half2(int row, int column) const { return ((half2*)data)[(row * width + column) / 2]; }
__device__ __forceinline__ half* item_ptr(int row, int column) { return &data[row * width + column]; }
__device__ __forceinline__ void set(int row, int column, half value) { data[row * width + column] = value; }
__device__ __forceinline__ void set_half2(int row, int column, half2 value) { ((half2*)data)[(row * width + column) / 2] = value; }
__device__ __forceinline__ void set4(int row, int column, half v0, half v1, half v2, half v3)
{
half2 v01 = __halves2half2(v0, v1);
half2 v23 = __halves2half2(v2, v3);
half2* ptr = (half2*) item_ptr(row, column);
ptr[0] = v01;
ptr[1] = v23;
}
};
class MatrixView_q4_row
{
public:
const uint32_t* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_q4_row(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ int item(int row, int column) const
{
int shift = (column & 0x07) * 4;
return (data[row * width / 8 + column / 8] >> shift) & 0x0f;
}
__device__ __forceinline__ void item2(int (&items)[2], int row, int column) const
{
int shift = (column & 0x07) * 4;
uint32_t d = data[row * width / 8 + column / 8] >> shift;
items[0] = d & 0x0f;
items[1] = (d >> 4) & 0x0f;
}
__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
{
int shift = (column & 0x07) * 4;
uint32_t d = data[row * width / 8 + column / 8] >> shift;
items[0] = d & 0x0f;
items[1] = (d >> 4) & 0x0f;
items[2] = (d >> 8) & 0x0f;
items[3] = (d >> 12) & 0x0f;
}
};
class MatrixView_q4_column
{
public:
const uint32_t* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_q4_column(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ int item(int row, int column) const
{
int shift = (row & 0x07) * 4;
return (data[row / 8 * width + column] >> shift) & 0x0f;
}
__device__ __forceinline__ uint32_t item_uint32_t(int row, int column) { return data[row / 8 * width + column]; }
__device__ __forceinline__ const uint32_t* item_uint32_ptr(int row, int column) { return &data[row / 8 * width + column]; }
};
} // namespace gptq
} // namespace vllm
#endif

View File

@ -0,0 +1,875 @@
/*
Adapted from https://github.com/turboderp/exllamav2 and https://github.com/qwopqwop200/GPTQ-for-LLaMa
*/
#include <cstdint>
#include <cstdio>
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include "compat.cuh"
#include "matrix_view.cuh"
#include "qdq_4.cuh"
namespace vllm {
namespace gptq {
#define BLOCK_KN_SIZE 128
#define BLOCK_M_SIZE_MAX 8
#define MAX_GROUPS_IN_BLOCK (BLOCK_KN_SIZE / 32)
#define MAX_Q_GEMM_ROWS 50
#define MAX_ALT_GEMM_ROWS 8
#define THREADS_X 32
#define THREADS_Y 32
#define DIVIDE(x, size) (((x) + (size) - 1) / (size))
#if defined(USE_ROCM)
#include <hipblas/hipblas.h>
__host__ __forceinline__ hipblasStatus_t __compat_hipblasHgemm(hipblasHandle_t handle,
hipblasOperation_t transA,
hipblasOperation_t transB,
int m,
int n,
int k,
const half* alpha,
const half* AP,
int lda,
const half* BP,
int ldb,
const half* beta,
half* CP,
int ldc) {
return hipblasHgemm(handle, transA, transB, m, n, k,
reinterpret_cast<const hipblasHalf *>(alpha),
reinterpret_cast<const hipblasHalf *>(AP), lda,
reinterpret_cast<const hipblasHalf *>(BP), ldb,
reinterpret_cast<const hipblasHalf *>(beta),
reinterpret_cast<hipblasHalf *>(CP), ldc);
}
#define hipblasHgemm __compat_hipblasHgemm
// Previous version of PyTorch were converting to rocBLAS instead of hipBLAS.
#define rocblas_operation_none HIPBLAS_OP_N
#define rocblas_hgemm __compat_hipblasHgemm
#endif
__forceinline__ __device__ half2 dot22_8(half2(&dq)[4], const half* a_ptr, const half2 g_result)
{
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result);
return __hadd2(result, g_result);
}
__forceinline__ __device__ float dot22_8_f(half2(&dq)[4], const half* a_ptr)
{
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result);
return __half2float(__low2half(result)) + __half2float(__high2half(result));
}
typedef void (*fp_gemm_half_q_half_gptq_kernel)
(
const half*,
const uint32_t*,
const uint32_t*,
const half*,
half*,
const int,
const int,
const int,
const int,
const int*
);
template <bool first_block, int m_count>
__global__ void gemm_half_q_half_gptq_kernel
(
const half* __restrict__ a,
const uint32_t* __restrict__ b_q_weight,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales,
half* __restrict__ c,
const int size_m,
const int size_n,
const int size_k,
const int groups,
const int* __restrict__ b_q_perm
)
{
MatrixView_half a_(a, size_m, size_k);
MatrixView_half_rw c_(c, size_m, size_n);
MatrixView_q4_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
int t = threadIdx.x;
// Block
int offset_n = blockIdx.x * BLOCK_KN_SIZE * 4;
int offset_m = blockIdx.y * m_count;
int offset_k = blockIdx.z * BLOCK_KN_SIZE;
int end_n = min(offset_n + BLOCK_KN_SIZE * 4, size_n);
int end_m = min(offset_m + m_count, size_m);
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
int n = offset_n + t * 4;
// Preload block_a
__shared__ half block_a[m_count][BLOCK_KN_SIZE];
if (offset_k + t < end_k)
{
for (int m = 0; m < m_count; ++m)
{
const half* a_ptr = a_.item_ptr(offset_m + m, 0);
half* block_a_ptr = block_a[m];
half a0;
if (b_q_perm) a0 = a_ptr[b_q_perm[offset_k + t]];
else a0 = a_ptr[offset_k + t];
block_a_ptr[t] = a0;
}
}
// Zero output
if (n >= size_n) return;
if (blockIdx.z == 0)
{
for (int m = 0; m < m_count; m++)
*((uint64_t*)c_.item_ptr(offset_m + m, n)) = 0;
}
__syncthreads();
// Find initial group
int groupsize = size_k / groups;
int group = offset_k / groupsize;
int nextgroup = offset_k + groupsize;
// a, b offset
int qk = offset_k / (32 / 4);
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
const half* a_ptr = &block_a[0][0];
int a_stride = BLOCK_KN_SIZE;
// Initial group
int zeros[4];
float scales[4];
half2 z1z16[4][2];
half2 y1y16[4][2];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_f(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
// Column result
float block_c[m_count][4] = {};
// Dequantize and multiply
int k = offset_k;
while (k < end_k)
{
if (k == nextgroup)
{
group++;
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_f(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
}
#pragma unroll
for (int j = 0; j < 4; j++)
{
const int4* b_ptr4 = (int4*) b_ptr;
int4 load_int4 = *b_ptr4;
half2 dq[4][4];
dequant_4bit_8_gptq(load_int4.x, dq[0], z1z16[0], y1y16[0], size_n, false);
dequant_4bit_8_gptq(load_int4.y, dq[1], z1z16[1], y1y16[1], size_n, false);
dequant_4bit_8_gptq(load_int4.z, dq[2], z1z16[2], y1y16[2], size_n, false);
dequant_4bit_8_gptq(load_int4.w, dq[3], z1z16[3], y1y16[3], size_n, false);
#pragma unroll
for (int m = 0; m < m_count; m++)
{
block_c[m][0] = fma(dot22_8_f(dq[0], a_ptr + m * a_stride), scales[0], block_c[m][0]);
block_c[m][1] = fma(dot22_8_f(dq[1], a_ptr + m * a_stride), scales[1], block_c[m][1]);
block_c[m][2] = fma(dot22_8_f(dq[2], a_ptr + m * a_stride), scales[2], block_c[m][2]);
block_c[m][3] = fma(dot22_8_f(dq[3], a_ptr + m * a_stride), scales[3], block_c[m][3]);
}
b_ptr += size_n;
a_ptr += 8;
}
k += 32;
}
for (int m = 0; m < m_count; m++)
{
half2 *out = (half2*) c_.item_ptr(offset_m + m, n);
half2 result01 = __halves2half2(__float2half_rn(block_c[m][0]), __float2half_rn(block_c[m][1]));
half2 result23 = __halves2half2(__float2half_rn(block_c[m][2]), __float2half_rn(block_c[m][3]));
atomicAdd(out , result01);
atomicAdd(out + 1, result23);
}
}
fp_gemm_half_q_half_gptq_kernel pick_gemm_half_q_half_gptq_kernel(bool first_block, const int m_count)
{
#if BLOCK_M_SIZE_MAX >= 1
if (m_count == 1) return gemm_half_q_half_gptq_kernel<true, 1>;
#endif
#if BLOCK_M_SIZE_MAX >= 2
if (m_count == 2) return gemm_half_q_half_gptq_kernel<true, 2>;
#endif
#if BLOCK_M_SIZE_MAX >= 3
if (m_count == 3) return gemm_half_q_half_gptq_kernel<true, 3>;
#endif
#if BLOCK_M_SIZE_MAX >= 4
if (m_count == 4) return gemm_half_q_half_gptq_kernel<true, 4>;
#endif
#if BLOCK_M_SIZE_MAX >= 5
if (m_count == 5) return gemm_half_q_half_gptq_kernel<true, 5>;
#endif
#if BLOCK_M_SIZE_MAX >= 6
if (m_count == 6) return gemm_half_q_half_gptq_kernel<true, 6>;
#endif
#if BLOCK_M_SIZE_MAX >= 7
if (m_count == 7) return gemm_half_q_half_gptq_kernel<true, 7>;
#endif
#if BLOCK_M_SIZE_MAX >= 8
if (m_count == 8) return gemm_half_q_half_gptq_kernel<true, 8>;
#endif
return NULL;
}
void gemm_half_q_half_cuda_part
(
const half* a,
const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales,
const int* b_q_perm,
half* c,
int size_m,
int size_n,
int size_k,
int m_count,
int groups
)
{
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
blockDim.z = 1;
gridDim.x = DIVIDE(size_n, BLOCK_KN_SIZE * 4);
gridDim.y = DIVIDE(size_m, m_count);
gridDim.z = DIVIDE(size_k, BLOCK_KN_SIZE);
fp_gemm_half_q_half_gptq_kernel kernel = pick_gemm_half_q_half_gptq_kernel(true, m_count);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
kernel<<<gridDim, blockDim, 0, stream>>>
(
a,
b_q_weight,
b_gptq_qzeros,
b_gptq_scales,
c,
size_m,
size_n,
size_k,
groups,
b_q_perm
);
}
__global__ void reconstruct_exllama_kernel
(
const uint32_t* __restrict__ b_q_weight,
const int* __restrict__ b_q_perm,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales,
const int size_k,
const int size_n,
const int groups,
half* __restrict__ b
)
{
MatrixView_half_rw b_(b, size_k, size_n);
MatrixView_q4_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
int offset_k = BLOCK_KN_SIZE * blockIdx.y;
int offset_n = BLOCK_KN_SIZE * blockIdx.x * 4;
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
// Preload remapping table
__shared__ int perm[BLOCK_KN_SIZE];
int t = threadIdx.x;
if (b_q_perm)
{
if (offset_k + t < size_k)
perm[t] = b_q_perm[offset_k + t];
}
// Column
int n = offset_n + t * 4;
if (n >= size_n) return;
// Find initial group
int groupsize = size_k / groups;
int group = offset_k / groupsize;
int nextgroup = offset_k + groupsize;
// b offset
int qk = offset_k / (32 / 4);
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
// Initial zeros/scale
int zeros[4];
half2 scales[4];
half2 z1z16[4][2];
half2 y1y16[4][2];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
__syncthreads();
int k = offset_k;
int lk = 0;
while (k < end_k)
{
if (k == nextgroup)
{
group++;
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
}
for (int p = 0; p < 4; p++)
{
half2 dq[4][4];
const int4* b_ptr4 = (int4*) b_ptr;
int4 load_int4 = *b_ptr4;
dequant_4bit_8_gptq(load_int4.x, dq[0], z1z16[0], y1y16[0], size_n, false);
dequant_4bit_8_gptq(load_int4.y, dq[1], z1z16[1], y1y16[1], size_n, false);
dequant_4bit_8_gptq(load_int4.z, dq[2], z1z16[2], y1y16[2], size_n, false);
dequant_4bit_8_gptq(load_int4.w, dq[3], z1z16[3], y1y16[3], size_n, false);
b_ptr += size_n;
//half* dqh = (half*)dq;
if (b_q_perm)
{
for (int j = 0; j < 4; j++)
{
for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
b_.set4(perm[lk++], n, __low2half(dq[0][j]), __low2half(dq[1][j]), __low2half(dq[2][j]), __low2half(dq[3][j]));
b_.set4(perm[lk++], n, __high2half(dq[0][j]), __high2half(dq[1][j]), __high2half(dq[2][j]), __high2half(dq[3][j]));
}
}
else
{
for (int j = 0; j < 4; j++)
{
for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
b_.set4(offset_k + lk++, n, __low2half(dq[0][j]), __low2half(dq[1][j]), __low2half(dq[2][j]), __low2half(dq[3][j]));
b_.set4(offset_k + lk++, n, __high2half(dq[0][j]), __high2half(dq[1][j]), __high2half(dq[2][j]), __high2half(dq[3][j]));
}
}
}
k += 32;
}
}
void reconstruct_exllama
(
const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales,
const int* b_q_perm,
half* out,
int height,
int width,
int groups
)
{
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
gridDim.y = DIVIDE(height, BLOCK_KN_SIZE);
gridDim.x = DIVIDE(width, BLOCK_KN_SIZE);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
reconstruct_exllama_kernel<<<gridDim, blockDim, 0, stream>>>
(
b_q_weight,
b_q_perm,
b_gptq_qzeros,
b_gptq_scales,
height,
width,
groups,
out
);
}
__global__ void gemm_half_q_half_alt_kernel(
const half2* __restrict__ vec,
const uint32_t* __restrict__ mat,
half* __restrict__ mul,
const half* __restrict__ scales,
const uint32_t* __restrict__ zeros,
const int* __restrict__ g_idx,
int batch,
int height,
int width
)
{
int zero_width = width / 8;
int vec_height = height * 4;
const int blockwidth2 = BLOCK_KN_SIZE / 2;
int b = blockIdx.y * BLOCK_M_SIZE_MAX;
int b_end = min(BLOCK_M_SIZE_MAX, batch - b);
int h = BLOCK_KN_SIZE * blockIdx.z / 8;
int h_end = min(BLOCK_KN_SIZE / 8, height - h) * 4;
int w = BLOCK_KN_SIZE * blockIdx.x + threadIdx.x;
__shared__ half2 blockvec[BLOCK_M_SIZE_MAX][blockwidth2];
if (threadIdx.x < h_end) {
for (int m = 0; m < b_end; ++m) {
blockvec[m][threadIdx.x] =
vec[(m + b) * vec_height + blockIdx.z * BLOCK_KN_SIZE / 2 +
threadIdx.x];
}
}
__shared__ half2 deq2[256][8];
int val = threadIdx.x / 8;
int off = threadIdx.x % 8;
for (; val < 256; val += BLOCK_KN_SIZE / 8) {
deq2[val][off] = __halves2half2(
__int2half_rn(val & 0xF), __int2half_rn(val >> 4)
);
}
if (blockIdx.z == 0)
{
for (int m = 0; m < b_end; m++)
mul[(b + m) * width + w] = __int2half_rn(0);
}
__syncthreads();
int i = width * h + w;
int g_h = h * 8;
int k = 0;
int z_w = w / 8;
int z_mod = (w % 8) * 4;
half2 res2;
half res[BLOCK_M_SIZE_MAX] = {};
unsigned int tmp;
while (k < h_end) {
tmp = mat[i];
half2 scales_tmp[4];
half2 zeros_tmp[4];
for (int tmp_k = 0; tmp_k < 4; tmp_k++) {
int g = g_idx[g_h + (k + tmp_k) * 2];
int g2 = g_idx[g_h + (k + tmp_k) * 2 + 1];
half scale_f = scales[g * width + w];
half scale_f2 = scales[g2 * width + w];
half2 scale = __halves2half2(scale_f, scale_f2);
half2 zero = __halves2half2(
__hmul(scale_f, __int2half_rn(-((zeros[g * zero_width + z_w] >> z_mod) & 0xF) - 1)),
__hmul(scale_f2, __int2half_rn(-((zeros[g2 * zero_width + z_w] >> z_mod) & 0xF) - 1))
);
scales_tmp[tmp_k] = scale;
zeros_tmp[tmp_k] = zero;
}
for (int m = 0; m < b_end; m++) {
#ifndef USE_ROCM
res2 = {};
#else
res2.x = __half_as_ushort(__float2half(0));
res2.y = __half_as_ushort(__float2half(0));
#endif
res2 = __hfma2(__hfma2(deq2[(tmp >> 0) & 0xff][off], scales_tmp[0], zeros_tmp[0]), blockvec[m][k + 0], res2);
res2 = __hfma2(__hfma2(deq2[(tmp >> 8) & 0xff][off], scales_tmp[1], zeros_tmp[1]), blockvec[m][k + 1], res2);
res2 = __hfma2(__hfma2(deq2[(tmp >> 16) & 0xff][off], scales_tmp[2], zeros_tmp[2]), blockvec[m][k + 2], res2);
res2 = __hfma2(__hfma2(deq2[(tmp >> 24) & 0xff][off], scales_tmp[3], zeros_tmp[3]), blockvec[m][k + 3], res2);
#ifndef USE_ROCM
res[m] = __hadd(res[m], __hadd(res2.x, res2.y));
#else
res[m] = __hadd(res[m], __hadd(__ushort_as_half(res2.x), __ushort_as_half(res2.y)));
#endif
}
i += width;
k += 4;
}
for (int m = 0; m < b_end; m++) {
atomicAdd(&mul[(b + m) * width + w], res[m]);
}
}
void gemm_half_q_half_alt
(
const half* a,
const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales,
const int* b_g_idx,
half* c,
int size_m,
int size_n,
int size_k
)
{
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
blockDim.z = 1;
gridDim.x = DIVIDE(size_n, BLOCK_KN_SIZE);
gridDim.y = DIVIDE(size_m, BLOCK_M_SIZE_MAX);
gridDim.z = DIVIDE(size_k, BLOCK_KN_SIZE);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
gemm_half_q_half_alt_kernel<<<gridDim, blockDim, 0, stream>>>
(
(const half2*) a,
b_q_weight,
c,
b_gptq_scales,
b_gptq_qzeros,
b_g_idx,
size_m,
size_k / 8,
size_n
);
}
__global__ void reconstruct_gptq_kernel
(
const uint32_t* __restrict__ w,
const half* __restrict__ w_scales,
const uint32_t* __restrict__ w_zeros,
const int* __restrict__ g_idx,
const int height,
const int width,
const int group,
half* __restrict__ out
)
{
// Start of block
int column = BLOCK_KN_SIZE * blockIdx.x + threadIdx.x;
int row = blockIdx.y * 8;
if (column >= width) return;
// Views
MatrixView_q4_column w_(w, height, width);
MatrixView_half_rw out_(out, height, width);
MatrixView_half w_scales_(w_scales, group, width);
MatrixView_q4_row w_zeros_(w_zeros, group, width);
uint32_t w_read = w_.item_uint32_t(row, column);
half* out_ptr = out_.item_ptr(row, column);
#pragma unroll
for (int s = 0; s < 32; s += 4)
{
int group = g_idx[row + s / 4];
half w_scale = w_scales_.item(group, column);
uint32_t w_zero = w_zeros_.item(group, column) + 1;
half w_item = __hmul(__int2half_rn((int)((w_read >> s) & 0x0f) - w_zero), w_scale);
*out_ptr = w_item; out_ptr += out_.width;
}
}
void reconstruct_gptq
(
const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales,
const int* b_g_idx,
half* out,
int height,
int width,
int groups
)
{
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
gridDim.y = DIVIDE(height, 8);
gridDim.x = DIVIDE(width, BLOCK_KN_SIZE);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
reconstruct_gptq_kernel<<<gridDim, blockDim, 0, stream>>>
(
b_q_weight,
b_gptq_scales,
b_gptq_qzeros,
b_g_idx,
height,
width,
groups,
out
);
}
void gemm_half_q_half_cuda
(
cublasHandle_t cublas_handle,
const half* a,
const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales,
const int* b_g_idx,
half* c,
half* temp_dq,
int size_m,
int size_n,
int size_k,
int groups,
bool use_exllama
)
{
if ((use_exllama && size_m > MAX_Q_GEMM_ROWS) || (!use_exllama && size_m > MAX_ALT_GEMM_ROWS)) {
// Reconstruct FP16 matrix, then cuBLAS
if (use_exllama) {
reconstruct_exllama(b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx, temp_dq,
size_k, size_n, groups);
}
else
{
reconstruct_gptq(b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx,
temp_dq, size_k, size_n, groups);
}
const half alpha = __float2half(1.0f);
const half beta = __float2half(0.0f);
cublasHgemm(cublas_handle,
CUBLAS_OP_N,
CUBLAS_OP_N,
size_n, size_m, size_k,
&alpha, temp_dq, size_n,
a, size_k,
&beta, c, size_n);
}
else if (use_exllama)
{
// Quantized matmul
int max_chunks = size_m / BLOCK_M_SIZE_MAX;
int last_chunk = max_chunks * BLOCK_M_SIZE_MAX;
int last_chunk_size = size_m - last_chunk;
if (max_chunks)
{
gemm_half_q_half_cuda_part(a, b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx,
c, last_chunk, size_n, size_k, BLOCK_M_SIZE_MAX,
groups);
}
if (last_chunk_size)
{
gemm_half_q_half_cuda_part(a + last_chunk * size_k, b_q_weight, b_gptq_qzeros,
b_gptq_scales, b_g_idx, c + last_chunk * size_n,
last_chunk_size, size_n, size_k, last_chunk_size,
groups);
}
}
else
{
gemm_half_q_half_alt(a, b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx,
c, size_m, size_n, size_k);
}
}
__global__ void shuffle_kernel
(
uint32_t* __restrict__ b_q_weight,
const int size_k,
const int size_n
)
{
int n = blockIdx.x * THREADS_X + threadIdx.x;
if (n >= size_n) return;
int k = 0;
uint32_t* b_ptr = b_q_weight + n;
while (k < size_k) { shuffle_4bit_8 (b_ptr, size_n); b_ptr += 1 * size_n; k += 8; }
}
__global__ void make_sequential_kernel
(
const uint32_t* __restrict__ w,
uint32_t* __restrict__ w_new,
const int* __restrict__ q_perm,
const int w_height,
const int w_width
)
{
const uint64_t* w2 = (uint64_t*) w;
uint64_t* w_new2 = (uint64_t*) w_new;
int w2_stride = w_width >> 1;
int w2_column = THREADS_X * blockIdx.x + threadIdx.x;
if (w2_column >= w2_stride) return;
int w_new2_row = blockIdx.y;
int q_perm_idx = w_new2_row << 3;
uint64_t dst = 0;
#pragma unroll
for (int i = 0; i < 8; i++)
{
int source_row = q_perm[q_perm_idx++];
int w2_row = source_row >> 3;
int w2_subrow = source_row & 0x07;
int w2_row_shift = w2_subrow << 2;
int wnew2_row_shift = i << 2;
uint64_t src = w2[w2_row * w2_stride + w2_column];
src >>= w2_row_shift;
src &= 0x0000000f0000000f;
src <<= wnew2_row_shift;
dst |= src;
}
w_new2[w_new2_row * w2_stride + w2_column] = dst;
}
void shuffle_exllama_weight
(
uint32_t* q_weight,
int* q_perm,
int height,
int width
)
{
if (q_perm)
{
uint32_t* new_qweight = NULL;
cudaMalloc(&new_qweight, height / 8 * width * sizeof(uint32_t));
dim3 blockDim, gridDim;
blockDim.x = THREADS_X;
blockDim.y = 1;
gridDim.x = DIVIDE(width, THREADS_X);
gridDim.y = height / 8;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
make_sequential_kernel<<<gridDim, blockDim, 0, stream>>>
(
q_weight,
new_qweight,
q_perm,
height / 8,
width
);
// Replace qweights
cudaMemcpyAsync(q_weight, new_qweight, height / 8 * width * sizeof(uint32_t), cudaMemcpyDeviceToDevice);
// Cleanup
cudaDeviceSynchronize();
cudaFree(new_qweight);
}
dim3 blockDim, gridDim;
blockDim.x = THREADS_X;
blockDim.y = 1;
gridDim.x = DIVIDE(width, THREADS_X);
gridDim.y = 1;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
shuffle_kernel<<<gridDim, blockDim, 0, stream>>>(q_weight, height, width);
}
} // namespace gptq
} // namespace vllm
torch::Tensor gptq_gemm
(
torch::Tensor a,
torch::Tensor b_q_weight,
torch::Tensor b_gptq_qzeros,
torch::Tensor b_gptq_scales,
torch::Tensor b_g_idx,
bool use_exllama
)
{
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device());
at::Tensor c = torch::empty({a.size(0), b_q_weight.size(1)}, options);
at::Tensor temp_dq = torch::empty({b_q_weight.size(0) * 8, b_q_weight.size(1)}, options);
vllm::gptq::gemm_half_q_half_cuda
(
at::cuda::getCurrentCUDABlasHandle(),
(const half*) a.data_ptr(),
(const uint32_t*) b_q_weight.data_ptr(),
(const uint32_t*)b_gptq_qzeros.data_ptr(),
(const half*) b_gptq_scales.data_ptr(),
b_g_idx.device().is_meta() ? NULL : (const int*) b_g_idx.data_ptr(),
(half*) c.data_ptr(),
(half*) temp_dq.data_ptr(),
c.size(0), // m
c.size(1), // n
a.size(1), // k
b_gptq_qzeros.size(0), // group number
use_exllama
);
return c;
}
void gptq_shuffle
(
torch::Tensor q_weight,
torch::Tensor q_perm
)
{
const at::cuda::OptionalCUDAGuard device_guard(device_of(q_weight));
vllm::gptq::shuffle_exllama_weight(
(uint32_t*) q_weight.data_ptr(),
q_perm.device().is_meta() ? NULL : (int*) q_perm.data_ptr(),
q_weight.size(0) * 8,
q_weight.size(1)
);
}

View File

@ -0,0 +1,235 @@
/*
Copied from https://github.com/turboderp/exllamav2
*/
#ifndef _qdq_4_cuh
#define _qdq_4_cuh
#include "qdq_util.cuh"
namespace vllm {
namespace gptq {
// Permutation:
//
// 77775555 33331111 66664444 22220000
__forceinline__ __device__ void shuffle_4bit_8
(
uint32_t* q,
int stride
)
{
uint32_t qa = q[0];
uint32_t qb = 0;
#pragma unroll
for (int i = 0; i < 4; i++)
{
uint32_t qa0 = qa & 0x0f;
uint32_t qa1 = (qa & 0xf0) >> 4;
qa >>= 8;
qb |= (qa1 << (i * 4 + 16));
qb |= (qa0 << (i * 4));
}
q[0] = qb;
}
__forceinline__ __device__ void dequant_4bit_8
(
const uint32_t q_0,
half2 (&dq)[4],
int stride
)
{
const uint32_t c0 = 0x64006400;
const half y16_ = __float2half_rn(1.0f / 16.0f);
const half2 y16 = __halves2half2(y16_, y16_);
const half z1_ = __float2half_rn(-1024.0f - 8.0f);
const half z16_ = __float2half_rn(-1024.0f / 16.0f - 8.0f);
const half2 z1 = __halves2half2(z1_, z1_);
const half2 z16 = __halves2half2(z16_, z16_);
uint32_t qa = q_0;
half2_uint32 q0((qa & 0x000f000f) | c0); // half2(q[ 0], q[ 1]) + 1024
half2_uint32 q1((qa & 0x00f000f0) | c0); // half2(q[ 2], q[ 3]) * 16 + 1024
qa >>= 8;
half2_uint32 q2((qa & 0x000f000f) | c0); // half2(q[ 4], q[ 5]) + 1024
half2_uint32 q3((qa & 0x00f000f0) | c0); // half2(q[ 6], q[ 7]) * 16 + 1024
dq[0] = __hadd2(q0.as_half2, z1);
dq[1] = __hfma2(q1.as_half2, y16, z16);
dq[2] = __hadd2(q2.as_half2, z1);
dq[3] = __hfma2(q3.as_half2, y16, z16);
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero_scale
(
const uint32_t zero,
const half scale,
half2 (&z1z16)[2],
half2 (&y1y16)[2]
)
{
half_uint16 z1(0xe400 | zero); // half(-1024.0f - zero);
half z16 = __hsub(__int2half_rn(-64), __int2half_rn(zero));
half2 scale2 = __half2half2(scale);
z1z16[0] = __hmul2(scale2, __half2half2(z1.as_half));
z1z16[1] = __hmul2(scale2, __half2half2(z16));
const half y1 = __float2half_rn(1.0f);
const half y16 = __float2half_rn(1.0f / 16.0f);
y1y16[0] = __hmul2(scale2, __half2half2(y1));
y1y16[1] = __hmul2(scale2, __half2half2(y16));
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero
(
const uint32_t zero,
half2(&z1z16)[2],
half2(&y1y16)[2]
)
{
half_uint16 z1(0xe400 | zero); // half(-1024.0f - zero);
half z16 = __hsub(__int2half_rn(-64), __int2half_rn(zero));
z1z16[0] = __half2half2(z1.as_half);
z1z16[1] = __half2half2(z16);
const half y1 = __float2half_rn(1.0f);
const half y16 = __float2half_rn(1.0f / 16.0f);
y1y16[0] = __half2half2(y1);
y1y16[1] = __half2half2(y16);
}
__forceinline__ __device__ void dequant_4bit_8_gptq
(
const uint32_t q_0,
half2 (&dq)[4],
half2 (&z1z16)[2],
half2 (&y1y16)[2],
int stride,
bool scaled
)
{
const uint32_t c0 = 0x64006400;
uint32_t qa = q_0;
half2_uint32 q0((qa & 0x000f000f) | c0); // half2( q[0] + 1024, q[1] + 1024 )
half2_uint32 q1((qa & 0x00f000f0) | c0); // half2( q[2] * 16 + 1024, q[3] * 16 + 1024 )
qa >>= 8;
half2_uint32 q2((qa & 0x000f000f) | c0); // half2( q[4] + 1024, q[5] + 1024 )
half2_uint32 q3((qa & 0x00f000f0) | c0); // half2( q[6] * 16 + 1024, q[7] * 16 + 1024 )
if (scaled)
{
dq[0] = __hfma2(q0.as_half2, y1y16[0], z1z16[0]); // half2( q[0] * s - z * s, q[1] * s - z * s)
dq[1] = __hfma2(q1.as_half2, y1y16[1], z1z16[1]); // half2( q[2] * s - z * s, q[3] * s - z * s)
dq[2] = __hfma2(q2.as_half2, y1y16[0], z1z16[0]);
dq[3] = __hfma2(q3.as_half2, y1y16[1], z1z16[1]);
}
else
{
dq[0] = __hadd2(q0.as_half2, z1z16[0]); // half2( q[0] - z, q[1] - z )
dq[1] = __hfma2(q1.as_half2, y1y16[1], z1z16[1]); // half2( q[2] - z, q[3] - z )
dq[2] = __hadd2(q2.as_half2, z1z16[0]); // half2( q[4] - z, q[5] - z )
dq[3] = __hfma2(q3.as_half2, y1y16[1], z1z16[1]); // half2( q[6] - z, q[7] - z )
}
}
} // namespace gptq
} // namespace vllm
#else
namespace vllm {
namespace gptq {
__forceinline__ __device__ void shuffle_4bit_8
(
uint32_t* q,
int stride
)
{
}
__forceinline__ __device__ void dequant_4bit_8
(
const uint32_t q_0,
half2 (&dq)[4],
int stride
)
{
half dqh[8];
for (int i = 0; i < 8; i++) dqh[i] = dq_ns(exb(q_0, i * 4, 0x0f), 8);
for (int i = 0; i < 4; i++) dq[i] = __halves2half2(dqh[i * 2], dqh[i * 2 + 1]);
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero_scale
(
const uint32_t zero,
const half scale,
half2 (&z1)[2],
half2 (&y1)[2]
)
{
half z = __int2half_rn(-((int)zero));
z = __hmul(z, scale);
z1[0] = __half2half2(z);
y1[0] = __half2half2(scale);
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero
(
const uint32_t zero,
half2(&z1)[2],
half2(&y1)[2]
)
{
half z = __int2half_rn(-((int)zero));
z1[0] = __half2half2(z);
}
__forceinline__ __device__ void dequant_4bit_8_gptq
(
const uint32_t q_0,
half2 (&dq)[4],
half2 (&z1)[2],
half2 (&y1)[2],
int stride,
bool scaled
)
{
half2 dqh2[8];
uint32_t qa = q_0;
for (int i = 0; i < 4; i++)
{
half d0 = __int2half_rn(qa & 0x0f); qa >>= 4;
half d1 = __int2half_rn(qa & 0x0f); qa >>= 4;
dqh2[i] = __halves2half2(d0, d1);
}
if (scaled)
{
dq[0] = __hfma2(dqh2[0], y1[0], z1[0]);
dq[1] = __hfma2(dqh2[1], y1[0], z1[0]);
dq[2] = __hfma2(dqh2[2], y1[0], z1[0]);
dq[3] = __hfma2(dqh2[3], y1[0], z1[0]);
}
else
{
dq[0] = __hadd2(dqh2[0], z1[0]);
dq[1] = __hadd2(dqh2[1], z1[0]);
dq[2] = __hadd2(dqh2[2], z1[0]);
dq[3] = __hadd2(dqh2[3], z1[0]);
}
}
} // namespace gptq
} // namespace vllm
#endif

View File

@ -0,0 +1,60 @@
/*
Copied from https://github.com/turboderp/exllamav2
*/
#ifndef _qdq_util_cuh
#define _qdq_util_cuh
namespace vllm {
namespace gptq {
union half2_uint32
{
uint32_t as_uint32;
half2 as_half2;
__device__ half2_uint32(uint32_t val) : as_uint32(val) {}
__device__ half2_uint32(half2 val) : as_half2(val) {}
};
union half_uint16
{
uint16_t as_uint16;
half as_half;
__device__ half_uint16(uint16_t val) : as_uint16(val) {}
__device__ half_uint16(half val) : as_half(val) {}
};
// Max_scale premultiplied by 1/256
__forceinline__ __device__ half dq_scale(const int qs, const half max_scale)
{
int qs_i = qs + 1;
half qs_h = __int2half_rn(qs_i * qs_i);
qs_h = __hmul(qs_h, max_scale);
return qs_h;
}
__forceinline__ __device__ half dq(const int q, const int qzero, const half scale)
{
return __hmul(__int2half_rn(q - qzero), scale);
}
__forceinline__ __device__ half dq_ns(const int q, const int qzero)
{
//return __hsub(__int2half_rn(q), __int2half_rn(qzero));
return __int2half_rn(q - qzero);
}
__forceinline__ __device__ int exb(const uint32_t q, const int shift, const int mask)
{
return (int)((q >> shift) & mask);
}
__forceinline__ __device__ int exb(const uint32_t q1, const uint32_t q0, const int shift, const int mask)
{
return (int)(__funnelshift_rc(q0, q1, shift) & mask);
}
} // namespace gptq
} // namespace vllm
#endif

View File

@ -7,6 +7,7 @@
// half-tensor
#include <c10/cuda/CUDAStream.h>
#include <ATen/cuda/CUDATensorMethods.cuh>
#include <c10/cuda/CUDAGuard.h>
#define BLOCKWIDTH 128
#define BLOCKHEIGHT4 16
@ -200,7 +201,9 @@ void squeezellm_gemm(
);
dim3 threads(BLOCKWIDTH);
vllm::squeezellm::NUQ4MatMulKernel<<<blocks, threads>>>(
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
vllm::squeezellm::NUQ4MatMulKernel<<<blocks, threads, 0, stream>>>(
#ifndef USE_ROCM
(half2*) vec.data<at::Half>(),
#else

View File

@ -9,11 +9,15 @@
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
import os
import sys
from sphinx.ext import autodoc
import logging
sys.path.insert(0, os.path.abspath(os.path.join('..', '..')))
logger = logging.getLogger(__name__)
# -- Project information -----------------------------------------------------
@ -21,7 +25,6 @@ project = 'vLLM'
copyright = '2023, vLLM Team'
author = 'the vLLM Team'
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
@ -32,6 +35,8 @@ extensions = [
"sphinx.ext.viewcode",
"sphinx.ext.intersphinx",
"sphinx_copybutton",
"sphinx.ext.autodoc",
"sphinx.ext.autosummary",
]
# Add any paths that contain templates here, relative to this directory.
@ -55,7 +60,6 @@ html_title = project
html_theme = 'sphinx_book_theme'
html_logo = 'assets/logos/vllm-logo-text-light.png'
html_theme_options = {
'logo_only': True,
'path_to_docs': 'docs/source',
'repository_url': 'https://github.com/vllm-project/vllm',
'use_repository_button': True,
@ -64,4 +68,31 @@ html_theme_options = {
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
# html_static_path = ['_static']
# Mock out external dependencies here.
autodoc_mock_imports = [
"torch", "transformers", "psutil", "aioprometheus", "sentencepiece",
"vllm.cuda_utils", "vllm._C"
]
for mock_target in autodoc_mock_imports:
if mock_target in sys.modules:
logger.info(
f"Potentially problematic mock target ({mock_target}) found; "
"autodoc_mock_imports cannot mock modules that have already "
"been loaded into sys.modules when the sphinx build starts.")
class MockedClassDocumenter(autodoc.ClassDocumenter):
"""Remove note about base class when a class is derived from object."""
def add_line(self, line: str, source: str, *lineno: int) -> None:
if line == " Bases: :py:class:`object`":
return
super().add_line(line, source, *lineno)
autodoc.ClassDocumenter = MockedClassDocumenter
navigation_with_keys = False

View File

@ -0,0 +1,7 @@
AsyncLLMEngine
=================================
.. autoclass:: vllm.engine.async_llm_engine.AsyncLLMEngine
:members: generate, abort
:show-inheritance:

View File

@ -0,0 +1,13 @@
vLLM Engine
=================================
.. automodule:: vllm.engine
.. currentmodule:: vllm.engine
.. toctree::
:maxdepth: 2
:caption: Engines
llm_engine
async_llm_engine

View File

@ -0,0 +1,6 @@
LLMEngine
=================================
.. autoclass:: vllm.engine.llm_engine.LLMEngine
:members: add_request, abort_request, step, _init_cache
:show-inheritance:

View File

@ -3,7 +3,7 @@
Installation with ROCm
======================
vLLM 0.2.x onwards supports model inferencing and serving on AMD GPUs with ROCm.
vLLM 0.2.4 onwards supports model inferencing and serving on AMD GPUs with ROCm.
At the moment AWQ quantization is not supported in ROCm, but SqueezeLLM quantization has been ported.
Data types currently supported in ROCm are FP16 and BF16.
@ -11,10 +11,10 @@ Requirements
------------
* OS: Linux
* Python: 3.8 -- 3.11 (Verified on 3.10)
* GPU: MI200s
* Python: 3.8 -- 3.11
* GPU: MI200s (gfx90a), MI300 (gfx942), Radeon RX 7900 series (gfx1100)
* Pytorch 2.0.1/2.1.1/2.2
* ROCm 5.7
* ROCm 5.7 (Verified on python 3.10) or ROCm 6.0 (Verified on python 3.9)
Installation options:
@ -27,9 +27,11 @@ Installation options:
(Recommended) Option 1: Quick start with vLLM pre-installed in Docker Image
---------------------------------------------------------------------------
This option is for ROCm 5.7 only:
.. code-block:: console
$ docker pull embeddedllminfo/vllm-rocm:vllm-v0.2.3
$ docker pull embeddedllminfo/vllm-rocm:vllm-v0.2.4
$ docker run -it \
--network=host \
--group-add=video \
@ -50,6 +52,9 @@ Option 2: Build from source
You can build and install vLLM from source:
Below instruction is for ROCm 5.7 only.
At the time of this documentation update, PyTorch on ROCm 6.0 wheel is not yet available on the PyTorch website.
0. Install prerequisites (skip if you are already in an environment/docker with the following installed):
- `ROCm <https://rocm.docs.amd.com/en/latest/deploy/linux/index.html>`_
@ -70,12 +75,12 @@ You can build and install vLLM from source:
- ROCm's Flash-attention-2 (v2.0.4) does not support sliding windows attention.
- You might need to downgrade the "ninja" version to 1.10 it is not used when compiling flash-attention-2 (e.g. `pip install ninja==1.10.2.4`)
2. Setup `xformers==0.0.22.post7` without dependencies, and apply patches to adapt for ROCm flash attention
2. Setup `xformers==0.0.23` without dependencies, and apply patches to adapt for ROCm flash attention
.. code-block:: console
$ pip install xformers==0.0.22.post7 --no-deps
$ bash patch_xformers-0.0.22.post7.rocm.sh
$ pip install xformers==0.0.23 --no-deps
$ bash patch_xformers.rocm.sh
3. Build vLLM.
@ -95,6 +100,24 @@ You can build and install vLLM from source:
Build a docker image from `Dockerfile.rocm`, and launch a docker container.
The `Dokerfile.rocm` is designed to support both ROCm 5.7 and ROCm 6.0 and later versions. It provides flexibility to customize the build of docker image using the following arguments:
* `BASE_IMAGE`: specifies the base image used when running ``docker build``, specifically the PyTorch on ROCm base image. We have tested ROCm 5.7 and ROCm 6.0. The default is `rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1`
* `FX_GFX_ARCHS`: specifies the GFX architecture that is used to build flash-attention, for example, `gfx90a;gfx942` for MI200 and MI300. The default is `gfx90a;gfx942`
* `FA_BRANCH`: specifies the branch used to build the flash-attention in `ROCmSoftwarePlatform's flash-attention repo <https://github.com/ROCmSoftwarePlatform/flash-attention>`_. The default is `3d2b6f5`
* `BUILD_FA`: specifies whether to build flash-attention. For `Radeon RX 7900 series (gfx1100) <https://rocm.docs.amd.com/projects/radeon/en/latest/index.html>`_, this should be set to 0 before flash-attention supports this target.
Their values can be passed in when running ``docker build`` with ``--build-arg`` options.
For example, to build docker image for vllm on ROCm 5.7, you can run:
.. code-block:: console
$ docker build --build-arg BASE_IMAGE="rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1" \
-f Dockerfile.rocm -t vllm-rocm .
To build vllm on ROCm 6.0, you can use the default:
.. code-block:: console
$ docker build -f Dockerfile.rocm -t vllm-rocm .
@ -116,6 +139,7 @@ Alternatively, if you plan to install vLLM-ROCm on a local machine or start from
- `ROCm <https://rocm.docs.amd.com/en/latest/deploy/linux/index.html>`_
- `Pytorch <https://pytorch.org/>`_
- `hipBLAS <https://rocm.docs.amd.com/projects/hipBLAS/en/latest/install.html>`_
1. Install `flash attention for ROCm <https://github.com/ROCmSoftwarePlatform/flash-attention/tree/flash_attention_for_rocm>`_
@ -127,12 +151,12 @@ Alternatively, if you plan to install vLLM-ROCm on a local machine or start from
- ROCm's Flash-attention-2 (v2.0.4) does not support sliding windows attention.
- You might need to downgrade the "ninja" version to 1.10 it is not used when compiling flash-attention-2 (e.g. `pip install ninja==1.10.2.4`)
2. Setup `xformers==0.0.22.post7` without dependencies, and apply patches to adapt for ROCm flash attention
2. Setup `xformers==0.0.23` without dependencies, and apply patches to adapt for ROCm flash attention
.. code-block:: console
$ pip install xformers==0.0.22.post7 --no-deps
$ bash patch_xformers-0.0.22.post7.rocm.sh
$ pip install xformers==0.0.23 --no-deps
$ bash patch_xformers.rocm.sh
3. Build vLLM.
@ -141,3 +165,8 @@ Alternatively, if you plan to install vLLM-ROCm on a local machine or start from
$ cd vllm
$ pip install -U -r requirements-rocm.txt
$ python setup.py install # This may take 5-10 minutes.
.. note::
- You may need to turn on the ``--enforce-eager`` flag if you experience process hang when running the `benchmark_thoughput.py` script to test your installation.

View File

@ -20,7 +20,7 @@ You can install vLLM using pip:
.. code-block:: console
$ # (Optional) Create a new conda environment.
$ conda create -n myenv python=3.8 -y
$ conda create -n myenv python=3.9 -y
$ conda activate myenv
$ # Install vLLM with CUDA 12.1.
@ -34,13 +34,18 @@ You can install vLLM using pip:
.. code-block:: console
$ # Install vLLM with CUDA 11.8.
$ # Replace `cp310` with your Python version (e.g., `cp38`, `cp39`, `cp311`).
$ pip install https://github.com/vllm-project/vllm/releases/download/v0.2.2/vllm-0.2.2+cu118-cp310-cp310-manylinux1_x86_64.whl
$ export VLLM_VERSION=0.2.4
$ export PYTHON_VERSION=39
$ pip install https://github.com/vllm-project/vllm/releases/download/v${VLLM_VERSION}/vllm-${VLLM_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux1_x86_64.whl
$ # Re-install PyTorch with CUDA 11.8.
$ pip uninstall torch -y
$ pip install torch --upgrade --index-url https://download.pytorch.org/whl/cu118
$ # Re-install xFormers with CUDA 11.8.
$ pip uninstall xformers -y
$ pip install --upgrade xformers --index-url https://download.pytorch.org/whl/cu118
.. _build_from_source:
@ -62,3 +67,13 @@ You can also build and install vLLM from source:
$ # Use `--ipc=host` to make sure the shared memory is large enough.
$ docker run --gpus all -it --rm --ipc=host nvcr.io/nvidia/pytorch:23.10-py3
.. note::
If you are developing the C++ backend of vLLM, consider building vLLM with
.. code-block:: console
$ python setup.py develop
since it will give you incremental builds. The downside is that this method
is `deprecated by setuptools <https://github.com/pypa/setuptools/issues/917>`_.

View File

@ -11,6 +11,14 @@ This guide shows how to use vLLM to:
Be sure to complete the :ref:`installation instructions <installation>` before continuing with this guide.
.. note::
By default, vLLM downloads model from `HuggingFace <https://huggingface.co/>`_. If you would like to use models from `ModelScope <https://www.modelscope.cn>`_ in the following examples, please set the environment variable:
.. code-block:: shell
export VLLM_USE_MODELSCOPE=True
Offline Batched Inference
-------------------------
@ -40,16 +48,6 @@ Initialize vLLM's engine for offline inference with the ``LLM`` class and the `O
llm = LLM(model="facebook/opt-125m")
Use model from www.modelscope.cn
.. code-block:: shell
export VLLM_USE_MODELSCOPE=True
.. code-block:: python
llm = LLM(model="qwen/Qwen-7B-Chat", revision="v1.1.8", trust_remote_code=True)
Call ``llm.generate`` to generate the outputs. It adds the input prompts to vLLM engine's waiting queue and executes the vLLM engine to generate the outputs with high throughput. The outputs are returned as a list of ``RequestOutput`` objects, which include all the output tokens.
.. code-block:: python
@ -65,49 +63,11 @@ Call ``llm.generate`` to generate the outputs. It adds the input prompts to vLLM
The code example can also be found in `examples/offline_inference.py <https://github.com/vllm-project/vllm/blob/main/examples/offline_inference.py>`_.
API Server
----------
vLLM can be deployed as an LLM service. We provide an example `FastAPI <https://fastapi.tiangolo.com/>`_ server. Check `vllm/entrypoints/api_server.py <https://github.com/vllm-project/vllm/blob/main/vllm/entrypoints/api_server.py>`_ for the server implementation. The server uses ``AsyncLLMEngine`` class to support asynchronous processing of incoming requests.
Start the server:
.. code-block:: console
$ python -m vllm.entrypoints.api_server
Use model from www.modelscope.cn
.. code-block:: console
$ VLLM_USE_MODELSCOPE=True python -m vllm.entrypoints.api_server \
$ --model="qwen/Qwen-7B-Chat" \
$ --revision="v1.1.8" \
$ --trust-remote-code
By default, this command starts the server at ``http://localhost:8000`` with the OPT-125M model.
Query the model in shell:
.. code-block:: console
$ curl http://localhost:8000/generate \
$ -d '{
$ "prompt": "San Francisco is a",
$ "use_beam_search": true,
$ "n": 4,
$ "temperature": 0
$ }'
See `examples/api_client.py <https://github.com/vllm-project/vllm/blob/main/examples/api_client.py>`_ for a more detailed client example.
OpenAI-Compatible Server
------------------------
vLLM can be deployed as a server that mimics the OpenAI API protocol. This allows vLLM to be used as a drop-in replacement for applications using OpenAI API.
By default, it starts the server at ``http://localhost:8000``. You can specify the address with ``--host`` and ``--port`` arguments. The server currently hosts one model at a time (OPT-125M in the above command) and implements `list models <https://platform.openai.com/docs/api-reference/models/list>`_, `create chat completion <https://platform.openai.com/docs/api-reference/chat/completions/create>`_, and `create completion <https://platform.openai.com/docs/api-reference/completions/create>`_ endpoints. We are actively adding support for more endpoints.
vLLM can be deployed as a server that implements the OpenAI API protocol. This allows vLLM to be used as a drop-in replacement for applications using OpenAI API.
By default, it starts the server at ``http://localhost:8000``. You can specify the address with ``--host`` and ``--port`` arguments. The server currently hosts one model at a time (OPT-125M in the command below) and implements `list models <https://platform.openai.com/docs/api-reference/models/list>`_, `create chat completion <https://platform.openai.com/docs/api-reference/chat/completions/create>`_, and `create completion <https://platform.openai.com/docs/api-reference/completions/create>`_ endpoints. We are actively adding support for more endpoints.
Start the server:
@ -116,13 +76,6 @@ Start the server:
$ python -m vllm.entrypoints.openai.api_server \
$ --model facebook/opt-125m
Use model from www.modelscope.cn
.. code-block:: console
$ VLLM_USE_MODELSCOPE=True python -m vllm.entrypoints.openai.api_server \
$ --model="qwen/Qwen-7B-Chat" --revision="v1.1.8" --trust-remote-code
By default, the server uses a predefined chat template stored in the tokenizer. You can override this template by using the ``--chat-template`` argument:
.. code-block:: console
@ -137,6 +90,8 @@ This server can be queried in the same format as OpenAI API. For example, list t
$ curl http://localhost:8000/v1/models
You can pass in the argument ``--api-key`` or environment variable ``VLLM_API_KEY`` to enable the server to check for API key in the header.
Using OpenAI Completions API with vLLM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

View File

@ -30,6 +30,8 @@ vLLM is fast with:
* State-of-the-art serving throughput
* Efficient management of attention key and value memory with **PagedAttention**
* Continuous batching of incoming requests
* Fast model execution with CUDA/HIP graph
* Quantization: `GPTQ <https://arxiv.org/abs/2210.17323>`_, `AWQ <https://arxiv.org/abs/2306.00978>`_, `SqueezeLLM <https://arxiv.org/abs/2306.07629>`_, FP8 KV Cache
* Optimized CUDA kernels
vLLM is flexible and easy to use with:
@ -39,7 +41,9 @@ vLLM is flexible and easy to use with:
* Tensor parallelism support for distributed inference
* Streaming outputs
* OpenAI-compatible API server
* Support NVIDIA CUDA and AMD ROCm.
* Support NVIDIA GPUs and AMD GPUs
* (Experimental) Prefix caching support
* (Experimental) Multi-lora support
For more information, check out the following:
@ -78,9 +82,23 @@ Documentation
models/supported_models
models/adding_model
models/engine_args
models/lora
.. toctree::
:maxdepth: 1
:caption: Quantization
quantization/auto_awq
quantization/auto_awq
quantization/fp8_e5m2_kv_cache
.. toctree::
:maxdepth: 2
:caption: Developer Documentation
dev/engine/engine_index
Indices and tables
==================
* :ref:`genindex`
* :ref:`modindex`

View File

@ -58,11 +58,10 @@ Next, you need to rewrite the :code:`forward` methods of your model by following
+ positions: torch.Tensor,
+ kv_caches: List[KVCache],
+ input_metadata: InputMetadata,
+ cache_events: Optional[List[torch.cuda.Event]],
+) -> SamplerOutput:
+) -> Optional[SamplerOutput]:
3. Update the code by considering that :code:`input_ids` and :code:`positions` are now flattened tensors.
4. Replace the attention operation with either :code:`PagedAttention`, :code:`PagedAttentionWithRoPE`, or :code:`PagedAttentionWithALiBi` depending on the model's architecture.
1. Update the code by considering that :code:`input_ids` and :code:`positions` are now flattened tensors.
2. Replace the attention operation with either :code:`PagedAttention`, :code:`PagedAttentionWithRoPE`, or :code:`PagedAttentionWithALiBi` depending on the model's architecture.
.. note::
Currently, vLLM supports the basic multi-head attention mechanism and its variant with rotary positional embeddings.

View File

@ -89,9 +89,11 @@ Below, you can find an explanation of every engine argument for vLLM:
CPU swap space size (GiB) per GPU.
.. option:: --gpu-memory-utilization <percentage>
.. option:: --gpu-memory-utilization <fraction>
The percentage of GPU memory to be used for the model executor.
The fraction of GPU memory to be used for the model executor, which can range from 0 to 1.
For example, a value of 0.5 would imply 50% GPU memory utilization.
If unspecified, will use the default value of 0.9.
.. option:: --max-num-batched-tokens <tokens>

View File

@ -0,0 +1,91 @@
.. _lora:
Using LoRA adapters
===================
This document shows you how to use `LoRA adapters <https://arxiv.org/abs/2106.09685>`_ with vLLM on top of a base model.
Adapters can be efficiently served on a per request basis with minimal overhead. First we download the adapter(s) and save
them locally with
.. code-block:: python
from huggingface_hub import snapshot_download
sql_lora_path = snapshot_download(repo_id="yard1/llama-2-7b-sql-lora-test")
Then we instantiate the base model and pass in the ``enable_lora=True`` flag:
.. code-block:: python
from vllm import LLM, SamplingParams
from vllm.lora.request import LoRARequest
llm = LLM(model="meta-llama/Llama-2-7b-hf", enable_lora=True)
We can now submit the prompts and call ``llm.generate`` with the ``lora_request`` parameter. The first parameter
of ``LoRARequest`` is a human identifiable name, the second parameter is a globally unique ID for the adapter and
the third parameter is the path to the LoRA adapter.
.. code-block:: python
sampling_params = SamplingParams(
temperature=0,
max_tokens=256,
stop=["[/assistant]"]
)
prompts = [
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]",
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]",
]
outputs = llm.generate(
prompts,
sampling_params,
lora_request=LoRARequest("sql_adapter", 1, sql_lora_path)
)
Check out `examples/multilora_inference.py <https://github.com/vllm-project/vllm/blob/main/examples/multilora_inference.py>`_
for an example of how to use LoRA adapters with the async engine and how to use more advanced configuration options.
Serving LoRA Adapters
---------------------
LoRA adapted models can also be served with the Open-AI compatible vLLM server. To do so, we use
``--lora-modules {name}={path} {name}={path}`` to specify each LoRA module when we kickoff the server:
.. code-block:: bash
python -m vllm.entrypoints.api_server \
--model meta-llama/Llama-2-7b-hf \
--enable-lora \
--lora-modules sql-lora=~/.cache/huggingface/hub/models--yard1--llama-2-7b-sql-lora-test/
The server entrypoint accepts all other LoRA configuration parameters (``max_loras``, ``max_lora_rank``, ``max_cpu_loras``,
etc.), which will apply to all forthcoming requests. Upon querying the ``/models`` endpoint, we should see our LoRA along
with its base model:
.. code-block:: bash
curl localhost:8000/v1/models | jq .
{
"object": "list",
"data": [
{
"id": "meta-llama/Llama-2-7b-hf",
"object": "model",
...
},
{
"id": "sql-lora",
"object": "model",
...
}
]
}
Requests can specify the LoRA adapter as if it were any other model via the ``model`` request parameter. The requests will be
processed according to the server-wide LoRA configuration (i.e. in parallel with base model requests, and potentially other
LoRA adapter requests if they were provided and ``max_loras`` is set high enough).

View File

@ -23,12 +23,18 @@ Alongside each architecture, we include some popular models that use it.
* - :code:`ChatGLMModel`
- ChatGLM
- :code:`THUDM/chatglm2-6b`, :code:`THUDM/chatglm3-6b`, etc.
* - :code:`DeciLMForCausalLM`
- DeciLM
- :code:`Deci/DeciLM-7B`, :code:`Deci/DeciLM-7B-instruct`, etc.
* - :code:`BloomForCausalLM`
- BLOOM, BLOOMZ, BLOOMChat
- :code:`bigscience/bloom`, :code:`bigscience/bloomz`, etc.
* - :code:`FalconForCausalLM`
- Falcon
- :code:`tiiuae/falcon-7b`, :code:`tiiuae/falcon-40b`, :code:`tiiuae/falcon-rw-7b`, etc.
* - :code:`GemmaForCausalLM`
- Gemma
- :code:`google/gemma-2b`, :code:`google/gemma-7b`, etc.
* - :code:`GPT2LMHeadModel`
- GPT-2
- :code:`gpt2`, :code:`gpt2-xl`, etc.
@ -44,9 +50,12 @@ Alongside each architecture, we include some popular models that use it.
* - :code:`InternLMForCausalLM`
- InternLM
- :code:`internlm/internlm-7b`, :code:`internlm/internlm-chat-7b`, etc.
* - :code:`InternLM2ForCausalLM`
- InternLM2
- :code:`internlm/internlm2-7b`, :code:`internlm/internlm2-chat-7b`, etc.
* - :code:`LlamaForCausalLM`
- LLaMA, LLaMA-2, Vicuna, Alpaca, Koala, Guanaco
- :code:`meta-llama/Llama-2-13b-hf`, :code:`meta-llama/Llama-2-70b-hf`, :code:`openlm-research/open_llama_13b`, :code:`lmsys/vicuna-13b-v1.3`, :code:`young-geng/koala`, etc.
- LLaMA, LLaMA-2, Vicuna, Alpaca, Yi
- :code:`meta-llama/Llama-2-13b-hf`, :code:`meta-llama/Llama-2-70b-hf`, :code:`openlm-research/open_llama_13b`, :code:`lmsys/vicuna-13b-v1.3`, :code:`01-ai/Yi-6B`, :code:`01-ai/Yi-34B`, etc.
* - :code:`MistralForCausalLM`
- Mistral, Mistral-Instruct
- :code:`mistralai/Mistral-7B-v0.1`, :code:`mistralai/Mistral-7B-Instruct-v0.1`, etc.
@ -56,23 +65,32 @@ Alongside each architecture, we include some popular models that use it.
* - :code:`MPTForCausalLM`
- MPT, MPT-Instruct, MPT-Chat, MPT-StoryWriter
- :code:`mosaicml/mpt-7b`, :code:`mosaicml/mpt-7b-storywriter`, :code:`mosaicml/mpt-30b`, etc.
* - :code:`OLMoForCausalLM`
- OLMo
- :code:`allenai/OLMo-1B`, :code:`allenai/OLMo-7B`, etc.
* - :code:`OPTForCausalLM`
- OPT, OPT-IML
- :code:`facebook/opt-66b`, :code:`facebook/opt-iml-max-30b`, etc.
* - :code:`PhiForCausalLM`
- Phi-1.5
- :code:`microsoft/phi-1_5`, etc.
- Phi
- :code:`microsoft/phi-1_5`, :code:`microsoft/phi-2`, etc.
* - :code:`QWenLMHeadModel`
- Qwen
- :code:`Qwen/Qwen-7B`, :code:`Qwen/Qwen-7B-Chat`, etc.
* - :code:`YiForCausalLM`
- Yi
- :code:`01-ai/Yi-6B`, :code:`01-ai/Yi-34B`, etc.
* - :code:`Qwen2ForCausalLM`
- Qwen2
- :code:`Qwen/Qwen2-beta-7B`, :code:`Qwen/Qwen2-beta-7B-Chat`, etc.
* - :code:`StableLMEpochForCausalLM`
- StableLM
- :code:`stabilityai/stablelm-3b-4e1t/` , :code:`stabilityai/stablelm-base-alpha-7b-v2`, etc.
If your model uses one of the above model architectures, you can seamlessly run your model with vLLM.
Otherwise, please refer to :ref:`Adding a New Model <adding_a_new_model>` for instructions on how to implement support for your model.
Alternatively, you can raise an issue on our `GitHub <https://github.com/vllm-project/vllm/issues>`_ project.
.. note::
Currently, the ROCm version of vLLM supports Mistral and Mixtral only for context lengths up to 4096.
.. tip::
The easiest way to check if your model is supported is to run the program below:
@ -84,12 +102,17 @@ Alternatively, you can raise an issue on our `GitHub <https://github.com/vllm-pr
output = llm.generate("Hello, my name is")
print(output)
To use model from www.modelscope.cn
If vLLM successfully generates text, it indicates that your model is supported.
.. tip::
To use models from `ModelScope <https://www.modelscope.cn>`_ instead of HuggingFace Hub, set an environment variable:
.. code-block:: shell
$ export VLLM_USE_MODELSCOPE=True
And use with :code:`trust_remote_code=True`.
.. code-block:: python
from vllm import LLM
@ -97,5 +120,3 @@ Alternatively, you can raise an issue on our `GitHub <https://github.com/vllm-pr
llm = LLM(model=..., revision=..., trust_remote_code=True) # Name or path of your model
output = llm.generate("Hello, my name is")
print(output)
If vLLM successfully generates text, it indicates that your model is supported.

View File

@ -0,0 +1,33 @@
.. _fp8_e5m2_kv_cache:
FP8 E5M2 KV Cache
==================
The int8/int4 quantization scheme requires additional scale GPU memory storage, which reduces the expected GPU memory benefits.
The FP8 data format retains 2~3 mantissa bits and can convert float/fp16/bflaot16 and fp8 to each other.
Here is an example of how to enable this feature:
.. code-block:: python
from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Create an LLM.
llm = LLM(model="facebook/opt-125m", kv_cache_dtype="fp8_e5m2")
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

View File

@ -9,13 +9,13 @@ To install langchain, run
.. code-block:: console
$ pip install langchain -q
$ pip install langchain langchain_community -q
To run inference on a single or multiple GPUs, use ``VLLM`` class from ``langchain``.
.. code-block:: python
from langchain.llms import VLLM
from langchain_community.llms import VLLM
llm = VLLM(model="mosaicml/mpt-7b",
trust_remote_code=True, # mandatory for hf models
@ -28,4 +28,4 @@ To run inference on a single or multiple GPUs, use ``VLLM`` class from ``langcha
print(llm("What is the capital of France ?"))
Please refer to this `Tutorial <https://github.com/langchain-ai/langchain/blob/master/docs/extras/integrations/llms/vllm.ipynb>`_ for more details.
Please refer to this `Tutorial <https://python.langchain.com/docs/integrations/llms/vllm>`_ for more details.

View File

@ -0,0 +1,81 @@
import argparse
from openai import OpenAI
import gradio as gr
# Argument parser setup
parser = argparse.ArgumentParser(
description='Chatbot Interface with Customizable Parameters')
parser.add_argument('--model-url',
type=str,
default='http://localhost:8000/v1',
help='Model URL')
parser.add_argument('-m',
'--model',
type=str,
required=True,
help='Model name for the chatbot')
parser.add_argument('--temp',
type=float,
default=0.8,
help='Temperature for text generation')
parser.add_argument('--stop-token-ids',
type=str,
default='',
help='Comma-separated stop token IDs')
parser.add_argument("--host", type=str, default=None)
parser.add_argument("--port", type=int, default=8001)
# Parse the arguments
args = parser.parse_args()
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = args.model_url
# Create an OpenAI client to interact with the API server
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
def predict(message, history):
# Convert chat history to OpenAI format
history_openai_format = [{
"role": "system",
"content": "You are a great ai assistant."
}]
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append({
"role": "assistant",
"content": assistant
})
history_openai_format.append({"role": "user", "content": message})
# Create a chat completion request and send it to the API server
stream = client.chat.completions.create(
model=args.model, # Model name to use
messages=history_openai_format, # Chat history
temperature=args.temp, # Temperature for text generation
stream=True, # Stream response
extra_body={
'repetition_penalty':
1,
'stop_token_ids': [
int(id.strip()) for id in args.stop_token_ids.split(',')
if id.strip()
] if args.stop_token_ids else []
})
# Read and return generated text from response stream
partial_message = ""
for chunk in stream:
partial_message += (chunk.choices[0].delta.content or "")
yield partial_message
# Create and launch a chat interface with Gradio
gr.ChatInterface(predict).queue().launch(server_name=args.host,
server_port=args.port,
share=True)

View File

@ -47,6 +47,6 @@ if __name__ == "__main__":
args = parser.parse_args()
demo = build_demo()
demo.queue(concurrency_count=100).launch(server_name=args.host,
server_port=args.port,
share=True)
demo.queue().launch(server_name=args.host,
server_port=args.port,
share=True)

View File

@ -0,0 +1,119 @@
"""
This example shows how to use the multi-LoRA functionality for offline inference.
Requires HuggingFace credentials for access to Llama2.
"""
from typing import Optional, List, Tuple
from huggingface_hub import snapshot_download
from vllm import EngineArgs, LLMEngine, SamplingParams, RequestOutput
from vllm.lora.request import LoRARequest
def create_test_prompts(
lora_path: str
) -> List[Tuple[str, SamplingParams, Optional[LoRARequest]]]:
"""Create a list of test prompts with their sampling parameters.
2 requests for base model, 4 requests for the LoRA. We define 2
different LoRA adapters (using the same model for demo purposes).
Since we also set `max_loras=1`, the expectation is that the requests
with the second LoRA adapter will be ran after all requests with the
first adapter have finished.
"""
return [
("A robot may not injure a human being",
SamplingParams(temperature=0.0,
logprobs=1,
prompt_logprobs=1,
max_tokens=128), None),
("To be or not to be,",
SamplingParams(temperature=0.8,
top_k=5,
presence_penalty=0.2,
max_tokens=128), None),
("[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]",
SamplingParams(temperature=0.0,
logprobs=1,
prompt_logprobs=1,
max_tokens=128,
stop_token_ids=[32003]),
LoRARequest("sql-lora", 1, lora_path)),
("[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]",
SamplingParams(n=3,
best_of=3,
use_beam_search=True,
temperature=0,
max_tokens=128,
stop_token_ids=[32003]),
LoRARequest("sql-lora", 1, lora_path)),
("[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]",
SamplingParams(temperature=0.0,
logprobs=1,
prompt_logprobs=1,
max_tokens=128,
stop_token_ids=[32003]),
LoRARequest("sql-lora2", 2, lora_path)),
("[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]",
SamplingParams(n=3,
best_of=3,
use_beam_search=True,
temperature=0,
max_tokens=128,
stop_token_ids=[32003]),
LoRARequest("sql-lora", 1, lora_path)),
]
def process_requests(engine: LLMEngine,
test_prompts: List[Tuple[str, SamplingParams,
Optional[LoRARequest]]]):
"""Continuously process a list of prompts and handle the outputs."""
request_id = 0
while test_prompts or engine.has_unfinished_requests():
if test_prompts:
prompt, sampling_params, lora_request = test_prompts.pop(0)
engine.add_request(str(request_id),
prompt,
sampling_params,
lora_request=lora_request)
request_id += 1
request_outputs: List[RequestOutput] = engine.step()
for request_output in request_outputs:
if request_output.finished:
print(request_output)
def initialize_engine() -> LLMEngine:
"""Initialize the LLMEngine."""
# max_loras: controls the number of LoRAs that can be used in the same
# batch. Larger numbers will cause higher memory usage, as each LoRA
# slot requires its own preallocated tensor.
# max_lora_rank: controls the maximum supported rank of all LoRAs. Larger
# numbers will cause higher memory usage. If you know that all LoRAs will
# use the same rank, it is recommended to set this as low as possible.
# max_cpu_loras: controls the size of the CPU LoRA cache.
engine_args = EngineArgs(model="meta-llama/Llama-2-7b-hf",
enable_lora=True,
max_loras=1,
max_lora_rank=8,
max_cpu_loras=2,
max_num_seqs=256)
return LLMEngine.from_engine_args(engine_args)
def main():
"""Main function that sets up and runs the prompt processing."""
engine = initialize_engine()
lora_path = snapshot_download(repo_id="yard1/llama-2-7b-sql-lora-test")
test_prompts = create_test_prompts(lora_path)
process_requests(engine, test_prompts)
if __name__ == '__main__':
main()

View File

@ -0,0 +1,70 @@
"""
This example shows how to use Ray Data for running offline batch inference
distributively on a multi-nodes cluster.
Learn more about Ray Data in https://docs.ray.io/en/latest/data/data.html
"""
from vllm import LLM, SamplingParams
from typing import Dict
import numpy as np
import ray
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Create a class to do batch inference.
class LLMPredictor:
def __init__(self):
# Create an LLM.
self.llm = LLM(model="meta-llama/Llama-2-7b-chat-hf")
def __call__(self, batch: Dict[str, np.ndarray]) -> Dict[str, list]:
# Generate texts from the prompts.
# The output is a list of RequestOutput objects that contain the prompt,
# generated text, and other information.
outputs = self.llm.generate(batch["text"], sampling_params)
prompt = []
generated_text = []
for output in outputs:
prompt.append(output.prompt)
generated_text.append(' '.join([o.text for o in output.outputs]))
return {
"prompt": prompt,
"generated_text": generated_text,
}
# Read one text file from S3. Ray Data supports reading multiple files
# from cloud storage (such as JSONL, Parquet, CSV, binary format).
ds = ray.data.read_text("s3://anonymous@air-example-data/prompts.txt")
# Apply batch inference for all input data.
ds = ds.map_batches(
LLMPredictor,
# Set the concurrency to the number of LLM instances.
concurrency=10,
# Specify the number of GPUs required per LLM instance.
# NOTE: Do NOT set `num_gpus` when using vLLM with tensor-parallelism
# (i.e., `tensor_parallel_size`).
num_gpus=1,
# Specify the batch size for inference.
batch_size=32,
)
# Peek first 10 results.
# NOTE: This is for local testing and debugging. For production use case,
# one should write full result out as shown below.
outputs = ds.take(limit=10)
for output in outputs:
prompt = output["prompt"]
generated_text = output["generated_text"]
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
# Write inference output data out as Parquet files to S3.
# Multiple files would be written to the output destination,
# and each task would write one or more files separately.
#
# ds.write_parquet("s3://<your-output-bucket>")

View File

@ -0,0 +1,59 @@
from vllm import LLM, SamplingParams
prefix = (
"You are an expert school principal, skilled in effectively managing "
"faculty and staff. Draft 10-15 questions for a potential first grade "
"Head Teacher for my K-12, all-girls', independent school that emphasizes "
"community, joyful discovery, and life-long learning. The candidate is "
"coming in for a first-round panel interview for a 8th grade Math "
"teaching role. They have 5 years of previous teaching experience "
"as an assistant teacher at a co-ed, public school with experience "
"in middle school math teaching. Based on these information, fulfill "
"the following paragraph: ")
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.0)
# Create an LLM.
llm = LLM(model="facebook/opt-125m")
generating_prompts = [prefix + prompt for prompt in prompts]
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(generating_prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
print("-" * 80)
# -1 since the last token can change when concatenating prompts.
prefix_pos = len(llm.llm_engine.tokenizer.encode(prefix)) - 1
# The llm.generate call will batch all prompts and send the batch at once if resources allow.
# The prefix will only be cached after the first batch is processed, so we need to call generate once
# to calculate the prefix and cache it.
outputs = llm.generate(generating_prompts[0],
sampling_params,
prefix_pos=[prefix_pos])
# Subsequent batches can leverage the cached prefix
outputs = llm.generate(generating_prompts,
sampling_params,
prefix_pos=[prefix_pos] * len(generating_prompts))
# Print the outputs. You should see the same outputs as before
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

View File

@ -32,6 +32,5 @@ chat_completion = client.chat.completions.create(
model=model,
)
print("Chat completion results:")
print(chat_completion)

View File

@ -21,8 +21,7 @@ completion = client.completions.create(
echo=False,
n=2,
stream=stream,
logprobs=3
)
logprobs=3)
print("Completion results:")
if stream:

View File

@ -0,0 +1,54 @@
# vLLM + Prometheus/Grafana
This is a simple example that shows you how to connect vLLM metric logging to the Prometheus/Grafana stack. For this example, we launch Prometheus and Grafana via Docker. You can checkout other methods through [Prometheus](https://prometheus.io/) and [Grafana](https://grafana.com/) websites.
Install:
- [`docker`](https://docs.docker.com/engine/install/)
- [`docker compose`](https://docs.docker.com/compose/install/linux/#install-using-the-repository)
### Launch
Prometheus metric logging is enabled by default in the OpenAI-compatible server. Launch via the entrypoint:
```bash
python3 -m vllm.entrypoints.openai.api_server \
--model mistralai/Mistral-7B-v0.1 \
--max-model-len 2048 \
--disable-log-requests
```
Launch Prometheus and Grafana servers with `docker compose`:
```bash
docker compose up
```
Submit some sample requests to the server:
```bash
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python3 ../../benchmarks/benchmark_serving.py \
--model mistralai/Mistral-7B-v0.1 \
--tokenizer mistralai/Mistral-7B-v0.1 \
--endpoint /v1/completions \
--dataset ShareGPT_V3_unfiltered_cleaned_split.json \
--request-rate 3.0
```
Navigating to [`http://localhost:8000/metrics`](http://localhost:8000/metrics) will show the raw Prometheus metrics being exposed by vLLM.
### Grafana Dashboard
Navigate to [`http://localhost:3000`](http://localhost:3000). Log in with the default username (`admin`) and password (`admin`).
#### Add Prometheus Data Source
Navigate to [`http://localhost:3000/connections/datasources/new`](http://localhost:3000/connections/datasources/new) and select Prometheus.
On Prometheus configuration page, we need to add the `Prometheus Server URL` in `Connection`. For this setup, Grafana and Prometheus are running in separate containers, but Docker creates DNS name for each containers. You can just use `http://prometheus:9090`.
Click `Save & Test`. You should get a green check saying "Successfully queried the Prometheus API.".
#### Import Dashboard
Navigate to [`http://localhost:3000/dashboard/import`](http://localhost:3000/dashboard/import), upload `grafana.json`, and select the `prometheus` datasource. You should see a screen that looks like the following:
![Grafana Dashboard Image](https://i.imgur.com/R2vH9VW.png)

View File

@ -0,0 +1,19 @@
# docker-compose.yaml
version: "3"
services:
prometheus:
image: prom/prometheus:latest
extra_hosts:
- "host.docker.internal:host-gateway" # allow a direct connection from container to the local machine
ports:
- "9090:9090" # the default port used by Prometheus
volumes:
- ${PWD}/prometheus.yaml:/etc/prometheus/prometheus.yml # mount Prometheus config file
grafana:
image: grafana/grafana:latest
depends_on:
- prometheus
ports:
- "3000:3000" # the default port used by Grafana

View File

@ -0,0 +1,931 @@
{
"__inputs": [
{
"name": "DS_PROMETHEUS",
"label": "prometheus",
"description": "",
"type": "datasource",
"pluginId": "prometheus",
"pluginName": "Prometheus"
}
],
"__elements": {},
"__requires": [
{
"type": "grafana",
"id": "grafana",
"name": "Grafana",
"version": "10.2.3"
},
{
"type": "datasource",
"id": "prometheus",
"name": "Prometheus",
"version": "1.0.0"
},
{
"type": "panel",
"id": "timeseries",
"name": "Time series",
"version": ""
}
],
"annotations": {
"list": [
{
"builtIn": 1,
"datasource": {
"type": "grafana",
"uid": "-- Grafana --"
},
"enable": true,
"hide": true,
"iconColor": "rgba(0, 211, 255, 1)",
"name": "Annotations & Alerts",
"type": "dashboard"
}
]
},
"description": "Monitoring vLLM Inference Server",
"editable": true,
"fiscalYearStartMonth": 0,
"graphTooltip": 0,
"id": null,
"links": [],
"liveNow": false,
"panels": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "End to end request latency measured in seconds.",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
},
"unit": "s"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 0
},
"id": 9,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.99, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P99",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.95, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P95",
"range": true,
"refId": "B",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.9, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P90",
"range": true,
"refId": "C",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.5, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P50",
"range": true,
"refId": "D",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"editorMode": "code",
"expr": "rate(vllm:e2e_request_latency_seconds_sum[$__rate_interval])\n/\nrate(vllm:e2e_request_latency_seconds_count[$__rate_interval])",
"hide": false,
"instant": false,
"legendFormat": "Average",
"range": true,
"refId": "E"
}
],
"title": "E2E Request Latency",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "Number of tokens processed per second",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 0
},
"id": 8,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "rate(vllm:prompt_tokens_total[$__rate_interval])",
"fullMetaSearch": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "Prompt Tokens/Sec",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "rate(vllm:generation_tokens_total[$__rate_interval])",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "Generation Tokens/Sec",
"range": true,
"refId": "B",
"useBackend": false
}
],
"title": "Token Throughput",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "Inter token latency in seconds.",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
},
"unit": "s"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 8
},
"id": 10,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.99, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P99",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.95, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P95",
"range": true,
"refId": "B",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.9, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P90",
"range": true,
"refId": "C",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.5, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P50",
"range": true,
"refId": "D",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"editorMode": "code",
"expr": "rate(vllm:time_per_output_token_seconds_sum[$__rate_interval])\n/\nrate(vllm:time_per_output_token_seconds_count[$__rate_interval])",
"hide": false,
"instant": false,
"legendFormat": "Mean",
"range": true,
"refId": "E"
}
],
"title": "Time Per Output Token Latency",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "Number of requests in RUNNING, WAITING, and SWAPPED state",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
},
"unit": "none"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 8
},
"id": 3,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "vllm:num_requests_running",
"fullMetaSearch": false,
"includeNullMetadata": true,
"instant": false,
"legendFormat": "Num Running",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "vllm:num_requests_swapped",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": true,
"instant": false,
"legendFormat": "Num Swapped",
"range": true,
"refId": "B",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "vllm:num_requests_waiting",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": true,
"instant": false,
"legendFormat": "Num Waiting",
"range": true,
"refId": "C",
"useBackend": false
}
],
"title": "Scheduler State",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "P50, P90, P95, and P99 TTFT latency in seconds.",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
},
"unit": "s"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 16
},
"id": 5,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.99, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P99",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.95, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P95",
"range": true,
"refId": "B",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.9, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P90",
"range": true,
"refId": "C",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.5, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P50",
"range": true,
"refId": "D",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"editorMode": "code",
"expr": "rate(vllm:time_to_first_token_seconds_sum[$__rate_interval])\n/\nrate(vllm:time_to_first_token_seconds_count[$__rate_interval])",
"hide": false,
"instant": false,
"legendFormat": "Average",
"range": true,
"refId": "E"
}
],
"title": "Time To First Token Latency",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "Percentage of used cache blocks by vLLM.",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
},
"unit": "percentunit"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 16
},
"id": 4,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"editorMode": "code",
"expr": "vllm:gpu_cache_usage_perc",
"instant": false,
"legendFormat": "GPU Cache Usage",
"range": true,
"refId": "A"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"editorMode": "code",
"expr": "vllm:cpu_cache_usage_perc",
"hide": false,
"instant": false,
"legendFormat": "CPU Cache Usage",
"range": true,
"refId": "B"
}
],
"title": "Cache Utilization",
"type": "timeseries"
}
],
"refresh": "",
"schemaVersion": 39,
"tags": [],
"templating": {
"list": []
},
"time": {
"from": "now-5m",
"to": "now"
},
"timepicker": {},
"timezone": "",
"title": "vLLM",
"uid": "b281712d-8bff-41ef-9f3f-71ad43c05e9b",
"version": 2,
"weekStart": ""
}

View File

@ -0,0 +1,10 @@
# prometheus.yaml
global:
scrape_interval: 5s
evaluation_interval: 30s
scrape_configs:
- job_name: vllm
static_configs:
- targets:
- 'host.docker.internal:8000'

View File

@ -0,0 +1,22 @@
{{ (messages|selectattr('role', 'equalto', 'system')|list|last).content|trim if (messages|selectattr('role', 'equalto', 'system')|list) else '' }}
{% for message in messages %}
{% if message['role'] == 'user' %}
<reserved_106>
{{ message['content']|trim -}}
{% if not loop.last %}
{% endif %}
{% elif message['role'] == 'assistant' %}
<reserved_107>
{{ message['content']|trim -}}
{% if not loop.last %}
{% endif %}
{% endif %}
{% endfor %}
{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}
<reserved_107>
{% endif %}

View File

@ -71,7 +71,7 @@ format_changed() {
# Format all files
format_all() {
yapf --in-place "${YAPF_FLAGS[@]}" "${YAPF_EXCLUDES[@]}" vllm tests
yapf --in-place "${YAPF_FLAGS[@]}" "${YAPF_EXCLUDES[@]}" .
}
## This flag formats individual files. --files *must* be the first command line

View File

@ -1,21 +1,32 @@
#!/bin/bash
set -e
XFORMERS_VERSION="0.0.23"
export XFORMERS_INSTALLED_VERSION=$(python -c 'import xformers; print(xformers.__version__)')
if [ "$XFORMERS_INSTALLED_VERSION" != "$XFORMERS_VERSION" ]; then
echo "ERROR: xformers version must be ${XFORMERS_VERSION}. ${XFORMERS_INSTALLED_VERSION} is installed"
exit 1
fi
export XFORMERS_FMHA_FLASH_PATH=$(python -c 'from xformers import ops as xops; print(xops.fmha.flash.__file__)')
export XFORMERS_FMHA_COMMON_PATH=$(python -c 'from xformers import ops as xops; print(xops.fmha.common.__file__)')
echo $XFORMERS_FMHA_FLASH_PATH
echo $XFORMERS_FMHA_COMMON_PATH
echo "XFORMERS_FMHA_FLASH_PATH = ${XFORMERS_FMHA_FLASH_PATH}"
echo "XFORMERS_FMHA_COMMON_PATH = ${XFORMERS_FMHA_COMMON_PATH}"
if ! patch -R -p0 -s -f --dry-run $XFORMERS_FMHA_FLASH_PATH "./rocm_patch/flashpy_xformers-0.0.22.post7.rocm.patch"; then
if ! patch -R -p0 -s -f --dry-run $XFORMERS_FMHA_FLASH_PATH "./rocm_patch/flashpy_xformers-${XFORMERS_VERSION}.rocm.patch"; then
echo "Applying patch to ${XFORMERS_FMHA_FLASH_PATH}"
patch -p0 $XFORMERS_FMHA_FLASH_PATH "./rocm_patch/flashpy_xformers-0.0.22.post7.rocm.patch"
patch -p0 $XFORMERS_FMHA_FLASH_PATH "./rocm_patch/flashpy_xformers-${XFORMERS_VERSION}.rocm.patch"
echo "Successfully patch ${XFORMERS_FMHA_FLASH_PATH}"
else
echo "${XFORMERS_FMHA_FLASH_PATH} was patched before"
fi
if ! patch -R -p0 -s -f --dry-run $XFORMERS_FMHA_COMMON_PATH "./rocm_patch/commonpy_xformers-0.0.22.post7.rocm.patch"; then
if ! patch -R -p0 -s -f --dry-run $XFORMERS_FMHA_COMMON_PATH "./rocm_patch/commonpy_xformers-${XFORMERS_VERSION}.rocm.patch"; then
echo "Applying patch to ${XFORMERS_FMHA_COMMON_PATH}"
patch -p0 $XFORMERS_FMHA_COMMON_PATH "./rocm_patch/commonpy_xformers-0.0.22.post7.rocm.patch"
patch -p0 $XFORMERS_FMHA_COMMON_PATH "./rocm_patch/commonpy_xformers-${XFORMERS_VERSION}.rocm.patch"
echo "Successfully patch ${XFORMERS_FMHA_COMMON_PATH}"
else
echo "${XFORMERS_FMHA_COMMON_PATH} was patched before"

View File

@ -4,7 +4,7 @@ requires = [
"ninja",
"packaging",
"setuptools >= 49.4.0",
"torch >= 2.1.0",
"torch == 2.1.2",
"wheel",
]
build-backend = "setuptools.build_meta"

View File

@ -2,5 +2,5 @@
ninja
packaging
setuptools>=49.4.0
torch>=2.1.0
torch==2.1.2
wheel

View File

@ -1,5 +1,6 @@
# formatting
yapf==0.32.0
toml==0.10.2
ruff==0.1.5
# type checking
@ -12,4 +13,9 @@ types-setuptools
pytest
pytest-forked
pytest-asyncio
httpx
einops # required for MPT
flash_attn # required for HuggingFace's llama implementation
openai
requests
ray

Some files were not shown because too many files have changed in this diff Show More