Compare commits

..

860 Commits

Author SHA1 Message Date
c7f2cf2b7f [CI] Reduce wheel size by not shipping debug symbols (#4602) 2024-05-04 21:28:58 -07:00
8d8357c8ed bump version to v0.4.2 (#4600) 2024-05-04 17:09:49 -07:00
4302987069 [Bugfix] Fix inappropriate content of model_name tag in Prometheus metrics (#3937) 2024-05-04 15:39:34 -07:00
021b1a2ab7 [CI] check size of the wheels (#4319) 2024-05-04 20:44:36 +00:00
2a052011ca [Kernel] Support MoE Fp8 Checkpoints for Mixtral (Static Weights with Dynamic/Static Activations) (#4527)
Follow on to #4332 to enable FP8 checkpoint loading for Mixtral and supersedes #4436.

This PR enables the following checkpoint loading features for Mixtral:

Supports loading fp8 checkpoints for Mixtral, such as this "nm-testing/Mixtral-8x7B-Instruct-v0.1-FP8" test model
Supports static or dynamic activation quantization with static weight quantization (all per tensor)
Supports different scales for each expert weight
Supports Fp8 in QKV layer
Notes:

The Expert Gate/Router always runs at half / full precision for now.
If there are different weight scales between QKV layer (for separate QKV weights), they are re-quantized using layer.weight_scale.max() so we can have a single gemm for performance.
2024-05-04 11:45:16 -07:00
36fb68f947 [Doc] Chunked Prefill Documentation (#4580) 2024-05-04 00:18:00 -07:00
bc8ad68455 [Misc][Refactor] Introduce ExecuteModelData (#4540) 2024-05-03 17:47:07 -07:00
344bf7cd2d [Misc] add installation time env vars (#4574) 2024-05-03 15:55:56 -07:00
ab50275111 [Speculative decoding] Support target-model logprobs (#4378) 2024-05-03 15:52:01 -07:00
43c413ec57 [Kernel] Use flashinfer for decoding (#4353)
Co-authored-by: LiuXiaoxuanPKU <llilyliupku@gmail.com>
2024-05-03 15:51:27 -07:00
f8e7adda21 Fix/async chat serving (#2727) 2024-05-03 11:04:14 -07:00
7e65477e5e [Bugfix] Allow "None" or "" to be passed to CLI for string args that default to None (#4586) 2024-05-03 10:32:21 -07:00
3521ba4f25 [Core][Model runner refactoring 1/N] Refactor attn metadata term (#4518) 2024-05-03 10:20:12 -07:00
2d7bce9cd5 [Doc] add env vars to the doc (#4572) 2024-05-03 05:13:49 +00:00
ce3f1eedf8 [Misc] remove chunk detected debug logs (#4571) 2024-05-03 04:48:08 +00:00
808632d3b4 [BugFix] Prevent the task of _force_log from being garbage collected (#4567) 2024-05-03 01:35:18 +00:00
344a5d0c33 [Core][Distributed] enable allreduce for multiple tp groups (#4566) 2024-05-02 17:32:33 -07:00
0f8a91401c [Core] Ignore infeasible swap requests. (#4557) 2024-05-02 14:31:20 -07:00
9b5c9f9484 [CI/Build] AMD CI pipeline with extended set of tests. (#4267)
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-05-02 12:29:07 -07:00
32881f3f31 [kernel] fix sliding window in prefix prefill Triton kernel (#4405)
Co-authored-by: SangBin Cho <rkooo567@gmail.com>
2024-05-02 11:23:37 -07:00
5b8a7c1cb0 [Misc] centralize all usage of environment variables (#4548) 2024-05-02 11:13:25 -07:00
1ff0c73a79 [BugFix] Include target-device specific requirements.txt in sdist (#4559) 2024-05-02 10:52:51 -07:00
5ad60b0cbd [Misc] Exclude the tests directory from being packaged (#4552) 2024-05-02 10:50:25 -07:00
fb087af52e [mypy][7/N] Cover all directories (#4555) 2024-05-02 10:47:41 -07:00
7038e8b803 [Kernel] Support running GPTQ 8-bit models in Marlin (#4533) 2024-05-02 12:56:22 -04:00
2a85f93007 [Core][Distributed] enable multiple tp group (#4512)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-05-02 04:28:21 +00:00
cf8cac8c70 [mypy][6/N] Fix all the core subdirectory typing (#4450)
Co-authored-by: Cade Daniel <edacih@gmail.com>
2024-05-02 03:01:00 +00:00
5e401bce17 [CI]Add regression tests to ensure the async engine generates metrics (#4524) 2024-05-01 19:57:12 -07:00
0d62fe58db [Bug fix][Core] assert num_new_tokens == 1 fails when SamplingParams.n is not 1 and max_tokens is large & Add tests for preemption (#4451) 2024-05-01 19:24:13 -07:00
b8afa8b95a [MISC] Rework logger to enable pythonic custom logging configuration to be provided (#4273) 2024-05-01 17:34:40 -07:00
826b82a260 [Misc] Fix expert_ids shape in MoE (#4517) 2024-05-01 23:47:59 +00:00
c9d852d601 [Misc] Remove Mixtral device="cuda" declarations (#4543)
Remove the device="cuda" declarations in mixtral as promised in #4343
2024-05-01 16:30:52 -07:00
6ef09b08f8 [Core][Distributed] fix pynccl del error (#4508) 2024-05-01 15:23:06 -07:00
Roy
3a922c1e7e [Bugfix][Core] Fix and refactor logging stats (#4336) 2024-05-01 20:08:14 +00:00
c47ba4aaa9 [Bugfix] Add validation for seed (#4529) 2024-05-01 19:31:22 +00:00
24bb4fe432 [Kernel] Update fused_moe tuning script for FP8 (#4457)
This PR updates the tuning script for the fused_moe kernel to support FP8 and also adds configurations for TP4. Note that for the configuration I removed num_warps and num_stages for small batch sizes since that improved performance and brought the benchmarks on par with the numbers before in that regime to make sure this is a strict improvement over the status quo.

All the numbers below are for mistralai/Mixtral-8x7B-Instruct-v0.1, 1000 input and 50 output tokens.

Before this PR (with static activation scaling):

qps = 1: 9.8 ms ITL, 0.49s e2e latency
qps = 2: 9.7 ms ITL, 0.49s e2e latency 
qps = 4: 10.1 ms ITL, 0.52s e2e latency
qps = 6: 11.9 ms ITL, 0.59s e2e latency
qps = 8: 14.0 ms ITL, 0.70s e2e latency
qps = 10: 15.7 ms ITL, 0.79s e2e latency

After this PR (with static activation scaling):

qps = 1: 9.8 ms ITL, 0.49s e2e latency
qps = 2: 9.7 ms ITL, 0.49s e2e latency
qps = 4: 10.2 ms ITL, 0.53s e2e latency
qps = 6: 11.9 ms ITL, 0.59s e2e latency
qps = 8: 11.9 ms ITL, 0.59s e2e latency
qps = 10: 12.1 ms ITL, 0.61s e2e latency
2024-05-01 11:47:38 -07:00
a657bfc48a [Core] Add multiproc_worker_utils for multiprocessing-based workers (#4357) 2024-05-01 18:41:59 +00:00
24750f4cad [Core] Enable prefix caching with block manager v2 enabled (#4142)
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
Co-authored-by: Sage Moore <sagemoore@utexas.edu>
2024-05-01 11:20:32 -07:00
b38e42fbca [Speculative decoding] Add ngram prompt lookup decoding (#4237)
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
2024-05-01 11:13:03 -07:00
8b798eec75 [CI/Build][Bugfix] VLLM_USE_PRECOMPILED should skip compilation (#4534)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-05-01 18:01:50 +00:00
69909126a7 [Bugfix] Use random seed if seed is -1 (#4531) 2024-05-01 10:41:17 -07:00
e491c7e053 [Doc] update(example model): for OpenAI compatible serving (#4503) 2024-05-01 10:14:16 -07:00
4dc8026d86 [Bugfix] Fix 307 Redirect for /metrics (#4523) 2024-05-01 09:14:13 -07:00
a88bb9b032 [Bugfix] Fix the fp8 kv_cache check error that occurs when failing to obtain the CUDA version. (#4173)
Signed-off-by: AnyISalIn <anyisalin@gmail.com>
2024-05-01 09:11:03 -07:00
6f1df80436 [Test] Add ignore_eos test (#4519) 2024-05-01 08:45:42 -04:00
d6f4bd7cdd [Misc]Add customized information for models (#4132) 2024-04-30 21:18:14 -07:00
c3845d82dc Allow user to define whitespace pattern for outlines (#4305) 2024-04-30 20:48:39 -07:00
a822eb3413 [Misc] fix typo in block manager (#4453) 2024-04-30 20:41:32 -07:00
f458112e8a [Misc][Typo] type annotation fix (#4495) 2024-04-30 20:21:39 -07:00
2e240c69a9 [Core] Centralize GPU Worker construction (#4419) 2024-05-01 01:06:34 +00:00
ee37328da0 Unable to find Punica extension issue during source code installation (#4494)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-05-01 00:42:09 +00:00
6ad58f42c5 fix_tokenizer_snapshot_download_bug (#4493) 2024-04-30 16:38:50 -07:00
dd1a50a8bc [Bugfix][Minor] Make ignore_eos effective (#4468) 2024-04-30 16:33:33 -07:00
715c2d854d [Frontend] [Core] Tensorizer: support dynamic num_readers, update version (#4467) 2024-04-30 16:32:13 -07:00
a494140433 [Frontend] Support complex message content for chat completions endpoint (#3467)
Co-authored-by: Lily Liu <lilyliupku@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2024-04-30 16:28:46 -07:00
111815d482 [Kernel] Support Fp8 Checkpoints (Dynamic + Static) (#4332)
Co-authored-by: Philipp Moritz <pcmoritz@gmail.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: mgoin <michael@neuralmagic.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-04-30 21:46:12 +00:00
b31a1fb63c [Doc] add visualization for multi-stage dockerfile (#4456)
Signed-off-by: Prashant Gupta <prashantgupta@us.ibm.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-30 17:41:59 +00:00
4bb53e2dde [BugFix] fix num_lookahead_slots missing in async executor (#4165)
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
2024-04-30 10:12:59 -07:00
26f2fb5113 [Core]Refactor gptq_marlin ops (#4466) 2024-04-30 08:14:47 -04:00
fa32207842 [Bugfix][Kernel] Fix compute_type for MoE kernel (#4463) 2024-04-29 22:05:40 -07:00
d627a3d837 [Misc] Upgrade to torch==2.3.0 (#4454) 2024-04-29 20:05:47 -04:00
f4f921b7f1 [Core][Distributed] use cpu group to broadcast metadata in cpu (#4444) 2024-04-29 13:52:22 -07:00
ac5ccf0156 [CI] hotfix: soft fail neuron test (#4458) 2024-04-29 19:50:01 +00:00
73c8d677e5 [Kernel] Marlin Expansion: Support AutoGPTQ Models with Marlin (#3922)
Co-authored-by: alexm <alexm@neuralmagic.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-04-29 09:35:34 -07:00
df29793dc7 [mypy][5/N] Support all typing on model executor (#4427) 2024-04-28 19:01:26 -07:00
03dd7d52bf [CI] clean docker cache for neuron (#4441) 2024-04-28 23:32:07 +00:00
bf480c5302 Add more Prometheus metrics (#2764)
Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-04-28 15:59:33 -07:00
9c7306ac11 [Misc] fix typo in llm_engine init logging (#4428) 2024-04-28 18:58:30 +08:00
4ea1f9678d [BugFix] Resolved Issues For LinearMethod --> QuantConfig (#4418) 2024-04-27 18:35:33 +00:00
ba4be44c32 [BugFix] Fix return type of executor execute_model methods (#4402) 2024-04-27 11:17:45 -07:00
d6e520e170 [Core] Support offline use of local cache for models (#4374)
Signed-off-by: Prashant Gupta <prashantgupta@us.ibm.com>
Co-authored-by: Travis Johnson <tjohnson31415@gmail.com>
2024-04-27 09:59:55 -07:00
81661da7b2 [BugFix] Fix min_tokens when eos_token_id is None (#4389)
Co-authored-by: DefTruth <31974251+deftruth@users.noreply.github.com>
2024-04-27 09:52:46 -07:00
dfea173148 [Bugfix] Abort requests when the connection to /v1/completions is interrupted (#4363) 2024-04-27 09:48:37 -07:00
Roy
7134303cbb [Bugfix][Core] Fix get decoding config from ray (#4335) 2024-04-27 11:30:08 +00:00
3da24c2df7 [Model] Phi-3 4k sliding window temp. fix (#4380) 2024-04-27 18:08:15 +08:00
eefeb16464 [Kernel] Full Tensor Parallelism for LoRA Layers (#3524)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-04-27 00:03:48 -07:00
18d23f642a [ROCm][Hardware][AMD] Enable group query attention for triton FA (#4406) 2024-04-26 23:37:40 -07:00
Roy
87f545ba6f [Misc] Fix logger format typo (#4396) 2024-04-27 13:45:02 +08:00
8947bc3c15 [Frontend][Bugfix] Disallow extra fields in OpenAI API (#4355) 2024-04-27 05:08:24 +00:00
12628d3c78 [Kernel] Optimize FP8 support for MoE kernel / Mixtral via static scales (#4343)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-27 04:49:59 +00:00
258a2c58d0 [Core] Introduce DistributedGPUExecutor abstract class (#4348) 2024-04-27 04:14:26 +00:00
aba47be3fe [Misc] add RFC issue template (#4401)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-26 15:47:45 -07:00
a62aaf1df5 [Misc][Refactor] Generalize linear_method to be quant_method (#4373) 2024-04-26 16:41:14 -04:00
603ad84815 [Core] Refactoring sampler and support prompt logprob for chunked prefill (#4309) 2024-04-26 13:02:02 +00:00
a88081bf76 [CI] Disable non-lazy string operation on logging (#4326)
Co-authored-by: Danny Guinther <dguinther@neuralmagic.com>
2024-04-26 00:16:58 -07:00
2f30e7c72f [Frontend] Add --log-level option to api server (#4377) 2024-04-26 05:36:01 +00:00
a74dee9b62 [Bugfix] Fix parameter name in get_tokenizer (#4107) 2024-04-25 19:10:48 -07:00
cf29b7eda4 [ROCm][Hardware][AMD][Doc] Documentation update for ROCm (#4376)
Co-authored-by: WoosukKwon <woosuk.kwon@berkeley.edu>
2024-04-25 18:12:25 -07:00
efffb63f58 [Core] Move function tracing setup to util function (#4352) 2024-04-25 16:45:12 -07:00
15e7c675b0 [Core] Add shutdown() method to ExecutorBase (#4349) 2024-04-25 16:32:48 -07:00
Roy
b6dcb4d442 [Misc] Fix flash attention backend log (#4368) 2024-04-25 12:43:32 -07:00
b5b4a398a7 [Mypy] Typing lora folder (#4337) 2024-04-25 19:13:50 +00:00
f4bc4de1b1 [Core]refactor aqlm quant ops (#4351) 2024-04-25 15:03:56 -04:00
bd7a8eef25 [Doc] README Phi-3 name fix. (#4372)
Co-authored-by: Caio Mendes <caiocesart@microsoft.com>
2024-04-25 10:32:00 -07:00
7ee82bef1e [CI/Build] Adding functionality to reset the node's GPUs before processing. (#4213) 2024-04-25 09:37:20 -07:00
fbf152d976 [Bugfix][Model] Refactor OLMo model to support new HF format in transformers 4.40.0 (#4324)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-25 09:35:56 -07:00
479d69fad0 [Core] Move ray_utils.py from engine to executor package (#4347) 2024-04-25 06:52:22 +00:00
96e90fdeb3 [Model] Adds Phi-3 support (#4298) 2024-04-25 03:06:57 +00:00
a395a638c2 [Misc] Use public API in benchmark_throughput (#4300) 2024-04-24 21:10:24 +00:00
2768884ac4 [Doc] Add note for docker user (#4340)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-24 21:09:44 +00:00
aae08249ac [Bugfix] Fix marlin kernel crash on H100 (#4218)
This PR addresses the Marlin kernel H100 crash that was reported here: neuralmagic#187.
The reason for the crash was the inline PTX assembly that introduced the async_copy with streaming behavior. The solution is to use the more standard PTX for async_copy (without the fractional L2 policy for "evict_first"). There is no performance difference between standard async_copy PTX and the previous one.
2024-04-24 10:35:01 -07:00
7923dcad12 [Misc] Update ShareGPT Dataset Sampling in Serving Benchmark (#4279) 2024-04-24 09:49:13 -07:00
3cd9b5bb2d [Core][Distributed] use existing torch.cuda.device (#4318)
[Core][Distributed] use existing torch.cuda.device context manager (#4318)
2024-04-24 09:00:20 -07:00
468d761b32 [Misc] Reduce supported Punica dtypes (#4304) 2024-04-23 18:54:33 -07:00
e4bf860a54 [CI][Build] change pynvml to nvidia-ml-py (#4302) 2024-04-23 18:33:12 -07:00
91f50a6fe2 [Core][Distributed] use cpu/gloo to initialize pynccl (#4248) 2024-04-23 18:32:19 -07:00
79a268c4ab [BUG] fixed fp8 conflict with aqlm (#4307)
Fixes fp8 iterface which broke in AQLM merge.
2024-04-23 18:26:33 -07:00
eace8bf0b9 [Kernel] FP8 support for MoE kernel / Mixtral (#4244)
This PR is the first step towards fixing https://github.com/vllm-project/vllm/pull/3208

It implements dynamic per-tensor scaling (see https://github.com/vllm-project/vllm/pull/4118), so users do not need to compute activation scales on a calibration dataset and they also don't need to convert their model checkpoints. It is enough to specify the `quantization="fp8"` argument. You can try out the PR like this:

```python
from vllm import LLM, SamplingParams

prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="mistralai/Mixtral-8x7B-Instruct-v0.1", tensor_parallel_size=2, quantization="fp8")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```

**Performance**: For this PR, the focus is on making the code clean (while still trying to get reasonable performance), there is a bunch of optimizations that we will submit as a follow up PR that significantly improve the performance (similar to the numbers in https://github.com/vllm-project/vllm/pull/3954). With this PR, the results are as follows:

<img width="725" alt="Screenshot 2024-04-21 at 1 31 50 PM" src="https://github.com/vllm-project/vllm/assets/113316/d8fe1118-07a0-4d4e-8530-37a77d465a03">


**Accuracy**: The accuracy with this PR on MMLU on `mistralai/Mixtral-8x7B-v0.1` is as follows:

```
|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.7018|±  |0.0036|
| - humanities     |N/A    |none  |     5|acc   |0.6472|±  |0.0065|
| - other          |N/A    |none  |     5|acc   |0.7673|±  |0.0072|
| - social_sciences|N/A    |none  |     5|acc   |0.8099|±  |0.0070|
| - stem           |N/A    |none  |     5|acc   |0.6131|±  |0.0083|
```
this compares favorably with the fp16 results which are
```
|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.7020|±  |0.1313|
| - humanities     |N/A    |none  |     5|acc   |0.6425|±  |0.1349|
| - other          |N/A    |none  |     5|acc   |0.7744|±  |0.1038|
| - social_sciences|N/A    |none  |     5|acc   |0.8131|±  |0.0695|
| - stem           |N/A    |none  |     5|acc   |0.6108|±  |0.1383|
```

Happy hacking!
2024-04-24 01:18:23 +00:00
1e8f4252aa [Bugfix][Frontend] Raise exception when file-like chat template fails to be opened (#4292) 2024-04-23 18:19:03 +00:00
2b7949c1c2 AQLM CUDA support (#3287)
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-04-23 13:59:33 -04:00
62b5166bd4 [CI] Add ccache for wheel builds job (#4281) 2024-04-23 09:51:41 -07:00
d86285a4a4 [Core][Logging] Add last frame information for better debugging (#4278) 2024-04-23 09:45:52 -07:00
d87f39e9a9 [Bugfix] Add init_cached_hf_modules to RayWorkerWrapper (#4286) 2024-04-23 09:28:35 -07:00
d3c8180ac4 [Bugfix] Fixing max token error message for openai compatible server (#4016) 2024-04-23 19:06:29 +08:00
62b8aebc6f [Speculative decoding 7/9] Speculative decoding end-to-end correctness tests. (#3951) 2024-04-23 08:02:36 +00:00
050f285ff6 [Core] Scheduling optimization 2 (#4280) 2024-04-23 08:02:11 +00:00
8f2ea22bde [Core] Some simplification of WorkerWrapper changes (#4183) 2024-04-23 07:49:08 +00:00
0ae11f78ab [Mypy] Part 3 fix typing for nested directories for most of directory (#4161) 2024-04-22 21:32:44 -07:00
34128a697e Fix autodoc directives (#4272)
Co-authored-by: Harry Mellor <hmellor@oxts.com>
2024-04-23 01:53:01 +00:00
c1b4e4157c [Core][Distributed] use absolute path for library file (#4271) 2024-04-22 17:21:48 -07:00
ceaf4ed003 [Doc] Update the SkyPilot doc with serving and Llama-3 (#4276) 2024-04-22 15:34:31 -07:00
ad8d696a99 [Core] Scheduler perf fix (#4270) 2024-04-22 21:11:06 +00:00
3d925165f2 Add example scripts to documentation (#4225)
Co-authored-by: Harry Mellor <hmellor@oxts.com>
2024-04-22 16:36:54 +00:00
1543680691 [Bugfix] Ensure download_weights_from_hf(..) inside loader is using the revision parameter (#4217) 2024-04-22 09:10:48 -07:00
077f0a2e8a [Frontend] Enable support for CPU backend in AsyncLLMEngine. (#3993)
Signed-off-by: Tao He <sighingnow@gmail.com>
2024-04-22 09:19:51 +00:00
e73ed0f1c6 [Bugfix] Fix type annotations in CPU model runner (#4256) 2024-04-22 00:54:16 -07:00
296cdf8ac7 [Misc] Add vision language model support to CPU backend (#3968) 2024-04-22 00:44:16 -07:00
747b1a7147 [Core][Distributed] fix _is_full_nvlink detection (#4233) 2024-04-21 23:04:16 -07:00
95e5b087cf [AMD][Hardware][Misc][Bugfix] xformer cleanup and light navi logic and CI fixes and refactoring (#4129) 2024-04-21 21:57:24 -07:00
a37d815b83 Make initialization of tokenizer and detokenizer optional (#3748)
Co-authored-by: Yun Ding <yunding@nvidia.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-21 22:06:46 +00:00
7f2593b164 [Doc]: Update the doc of adding new models (#4236) 2024-04-21 09:57:08 -07:00
fe7d648fe5 Don't show default value for flags in EngineArgs (#4223)
Co-authored-by: Harry Mellor <hmellor@oxts.com>
2024-04-21 09:15:28 -07:00
cc74b2b232 Updating lm-format-enforcer version and adding links to decoding libraries in docs (#4222) 2024-04-20 08:33:16 +00:00
91528575ec [Frontend] multiple sampling params support (#3570) 2024-04-20 00:11:57 -07:00
a22cdea371 [Kernel][FP8] Initial support with dynamic per-tensor scaling (#4118)
Provide an initial support to FP8 computation. This PR is inspired by HuggingFace TGI: huggingface/text-generation-inference#1726

This feature can be enabled with --quantization fp8 or -q fp8 when launching an engine.

Algorithm:
We still load a model checkpoint in FP16/BF16. After the weights are loaded, Fp8LinearMethod calculates the per-tensor scaling factor of weights and quantizes the weights accordingly. The scaling factor will then be stored for future use. Meanwhile, the per-tensor scaling factor for activations is calculated in every forward pass.

Initial Results:
Currently tested Mistral-7B on 1xH100. With prompt length ~5 and decoding length 128:

BF16: 1.47s
FP8: 1.66s
I'll try to use larger models and try to find more performance bottleneck. Meanwhile, you're welcome to try this code.
2024-04-20 04:28:57 +00:00
682789d402 Fix missing docs and out of sync EngineArgs (#4219)
Co-authored-by: Harry Mellor <hmellor@oxts.com>
2024-04-19 20:51:33 -07:00
138485a82d [Bugfix] Add fix for JSON whitespace (#4189)
Co-authored-by: Ubuntu <ubuntu@ip-172-31-13-147.ec2.internal>
2024-04-19 20:49:22 -07:00
bc9df1571b Pass tokenizer_revision when getting tokenizer in openai serving (#4214) 2024-04-19 17:13:56 -07:00
15b86408a8 [Misc] add nccl in collect env (#4211) 2024-04-19 19:44:51 +00:00
7be4f5628f [Bugfix][Core] Restore logging of stats in the async engine (#4150) 2024-04-19 08:08:26 -07:00
8f20fc04bf [Misc] fix docstrings (#4191)
Co-authored-by: Zhong Wang <wangzhong@infini-ai.com>
2024-04-19 08:18:33 +00:00
221d93ecbf Bump version of 0.4.1 (#4177) 2024-04-19 01:00:22 -07:00
d17c8477f1 [Bugfix] Fix LoRA loading check (#4138)
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-04-19 00:59:54 -07:00
a134ef6f5e Support eos_token_id from generation_config.json (#4182) 2024-04-19 04:13:36 +00:00
8a7a3e4436 [Core] add an option to log every function call to for debugging hang/crash in distributed inference (#4079)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-18 16:15:12 -07:00
8f9c28fd40 [Bugfix] Fix CustomAllreduce nvlink topology detection (#3974)
[Bugfix] Fix CustomAllreduce pcie nvlink topology detection (#3974) (#4159)
2024-04-18 15:32:47 -07:00
cd2f63fb36 [CI/CD] add neuron docker and ci test scripts (#3571) 2024-04-18 15:26:01 -07:00
87fa80c91f [Misc] Bump transformers to latest version (#4176) 2024-04-18 14:36:39 -07:00
e1bb2fd52d [Bugfix] Support logprobs when using guided_json and other constrained decoding fields (#4149) 2024-04-18 21:12:55 +00:00
705578ae14 [Docs] document that Meta Llama 3 is supported (#4175) 2024-04-18 10:55:48 -07:00
e8cc7967ff [Bugfix][Kernel] allow non-power-of-two head sizes in prefix prefill (#4128) 2024-04-18 00:51:28 -07:00
53b018edcb [Bugfix] Get available quantization methods from quantization registry (#4098) 2024-04-18 00:21:55 -07:00
66ded03067 Allow model to be served under multiple names (#2894)
Co-authored-by: Alexandre Payot <alexandrep@graphcore.ai>
2024-04-18 00:16:26 -07:00
6dc1fc9cfe [Core] nccl integrity check and test (#4155)
[Core] Add integrity check during initialization; add test for it (#4155)
2024-04-17 22:28:52 -07:00
533d2a1f39 [Typing] Mypy typing part 2 (#4043)
Co-authored-by: SangBin Cho <sangcho@sangcho-LT93GQWG9C.local>
2024-04-17 17:28:43 -07:00
a53222544c [Kernel] Add punica dimension for Swallow-MS-7B LoRA (#4134) 2024-04-17 10:02:45 -07:00
fe3b5bbc23 [Bugfix] fix output parsing error for trtllm backend (#4137)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-17 11:07:23 +00:00
8438e0569e [Core] RayWorkerVllm --> WorkerWrapper to reduce duplication (#4024)
[Core] replace narrow-usage RayWorkerVllm to general WorkerWrapper to reduce code duplication (#4024)
2024-04-17 08:34:33 +00:00
11d652bd4f [CI] Move CPU/AMD tests to after wait (#4123) 2024-04-16 22:53:26 -07:00
d150e4f89f [Misc] [CI] Fix CI failure caught after merge (#4126) 2024-04-16 17:56:01 -07:00
e95cd87959 [Speculative decoding 6/9] Integrate speculative decoding with LLMEngine (#3894) 2024-04-16 13:09:21 -07:00
69e1d2fb69 [Core] Refactor model loading code (#4097) 2024-04-16 11:34:39 -07:00
05434764cd LM Format Enforcer Guided Decoding Support (#3868)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-16 05:54:57 +00:00
4e7ee664e2 [Core] Fix engine-use-ray broken (#4105) 2024-04-16 05:24:53 +00:00
37e84a403d [Typing] Fix Sequence type GenericAlias only available after Python 3.9. (#4092) 2024-04-15 14:47:31 -07:00
4695397dcf [Bugfix] Fix ray workers profiling with nsight (#4095) 2024-04-15 14:24:45 -07:00
d619ae2d19 [Doc] Add better clarity for tensorizer usage (#4090)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-15 13:28:25 -07:00
eb46fbfda2 [Core] Simplifications to executor classes (#4071) 2024-04-15 13:05:09 -07:00
0003e9154b [Misc][Minor] Fix CPU block num log in CPUExecutor. (#4088) 2024-04-15 08:35:55 -07:00
e11e200736 [Bugfix] Fix filelock version requirement (#4075) 2024-04-14 21:50:08 -07:00
Roy
8db1bf32f8 [Misc] Upgrade triton to 2.2.0 (#4061) 2024-04-14 17:43:54 -07:00
aceb17cf2d [Docs] document that mixtral 8x22b is supported (#4073) 2024-04-14 14:35:55 -07:00
563c54f760 [BugFix] Fix tensorizer extra in setup.py (#4072) 2024-04-14 14:12:42 -07:00
2cd6b4f362 [Core] avoid too many cuda context by caching p2p test (#4021) 2024-04-13 23:40:21 -07:00
711a000255 [Frontend] [Core] feat: Add model loading using tensorizer (#3476) 2024-04-13 17:13:01 -07:00
989ae2538d [Kernel] Add punica dimension for Baichuan-13B (#4053) 2024-04-13 07:55:05 -07:00
0a430b4ae2 [Bugfix] fix_small_bug_in_neuron_executor (#4051) 2024-04-13 07:54:03 -07:00
ec8e3c695f [Bugfix] fix_log_time_in_metrics (#4050) 2024-04-13 07:52:36 -07:00
98afde19fc [Core][Distributed] improve logging for init dist (#4042) 2024-04-13 07:12:53 -07:00
5c2e66e487 [Bugfix] More type hint fixes for py 3.8 (#4039) 2024-04-12 21:07:04 -07:00
546e721168 [CI/Test] expand ruff and yapf for all supported python version (#4037) 2024-04-13 01:43:37 +00:00
b8aacac31a [Bugfix] Fix LoRA bug (#4032) 2024-04-12 16:56:37 -07:00
d04973ad54 Fix triton compilation issue (#3984)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-12 16:41:26 -07:00
fbb9d9eef4 [Core] fix custom allreduce default value (#4040) 2024-04-12 16:40:39 -07:00
09473ee41c [mypy] Add mypy type annotation part 1 (#4006) 2024-04-12 14:35:50 -07:00
d4ec9ffb95 [Misc] Fix typo in scheduler.py (#4022) 2024-04-12 13:56:04 -07:00
96b6a6d790 [Bugfix] fix type hint for py 3.8 (#4036) 2024-04-12 19:35:44 +00:00
36729bac13 [Test] Test multiple attn backend for chunked prefill. (#4023) 2024-04-12 09:56:57 -07:00
7fd3949a0b [Frontend][Core] Move merge_async_iterators to utils (#4026) 2024-04-12 05:30:54 +00:00
1096717ae9 [Core] Support LoRA on quantized models (#4012) 2024-04-11 21:02:44 -07:00
c2b4a1bce9 [Doc] Add typing hints / mypy types cleanup (#3816)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-11 17:17:21 -07:00
e46a60aa4c [BugFix] Fix handling of stop strings and stop token ids (#3672) 2024-04-11 15:34:12 -07:00
1e96c3341a Add extra punica sizes to support bigger vocabs (#4015) 2024-04-11 22:18:57 +00:00
95e7d4a97c Fix echo/logprob OpenAI completion bug (#3441)
Co-authored-by: Dylan Hawk <dylanwawk@gmail.com>
2024-04-11 22:15:50 +00:00
559eb852f8 [Core] init_distributed_environment align with init_process_group(#4014)
[Core][Distributed] make init_distributed_environment compatible with init_process_group (#4014)
2024-04-11 14:00:48 -07:00
a10d3056da [Core] Set linear_weights directly on the layer (#3977) 2024-04-11 16:35:51 -04:00
8afca50889 [Hardware][Intel] Isolate CPUModelRunner and ModelRunner for better maintenance (#3824) 2024-04-11 11:56:49 -07:00
08ccee1e83 punica fix-bgmv-kernel-640 (#4007) 2024-04-11 08:59:26 -07:00
c1dc547129 [Kernel] Fused MoE Config for Mixtral 8x22 (#4002) 2024-04-11 07:50:00 -07:00
f3d0bf7589 [Doc][Installation] delete python setup.py develop (#3989) 2024-04-11 03:33:02 +00:00
e9da5a40c6 [Misc] Add indirection layer for custom ops (#3913) 2024-04-10 20:26:07 -07:00
e42df7227d [Test] Add xformer and flash attn tests (#3961)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-11 03:09:50 +00:00
caada5e50a [Core][Model] torch.compile for layernorm in commandr (#3985)
[Core][Model] Use torch.compile to accelerate layernorm in commandr (#3985)
2024-04-11 01:48:26 +00:00
67b4221a61 [Core][5/N] Fully working chunked prefill e2e (#3884) 2024-04-10 17:56:48 -07:00
63e7176f26 [Core][Refactor] move parallel_utils into vllm/distributed (#3950)
[WIP][Core][Refactor] move vllm/model_executor/parallel_utils into vllm/distributed and vllm/device_communicators (#3950)
2024-04-10 15:33:30 -07:00
934d3662f7 [Bugfix] handle hf_config with architectures == None (#3982)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-10 22:28:25 +00:00
92cd2e2f21 [Doc] Fix getting stared to use publicly available model (#3963) 2024-04-10 18:05:52 +00:00
e4c4072c94 [Bugfix] Remove key sorting for guided_json parameter in OpenAi compatible Server (#3945) 2024-04-10 10:15:51 -07:00
e35397468f [Doc] Add doc to state our model support policy (#3948)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-10 17:03:02 +00:00
8b317c6dd0 [Model][AMD] ROCm support for 256 head dims for Gemma (#3972) 2024-04-10 08:12:00 -07:00
bd3c144e0b [Bugfix][ROCm] Add numba to Dockerfile.rocm (#3962) 2024-04-10 07:37:17 -07:00
0258b7a94b [Bugfix] handle prompt_logprobs in _apply_min_tokens_penalty (#3876)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-04-10 01:39:56 -07:00
b3104b2a10 [Bugfix] Fix logits processor when prompt_logprobs is not None (#3899) 2024-04-10 00:09:36 -07:00
c2e00af523 [Bugfix] fix utils.py/merge_dict func TypeError: 'type' object is not subscriptable (#3955)
Co-authored-by: tianyi_zhao <tianyi.zhao@transwarp.io>
2024-04-10 04:49:11 +00:00
c013d32c75 [Benchmark] Add cpu options to bench scripts (#3915) 2024-04-09 21:30:03 -07:00
11dd6ebb89 [Misc] Avoid loading incorrect LoRA config (#3777) 2024-04-09 19:47:15 -07:00
6c0b04515f [ROCm][Hardware][AMD] Use Triton Kernel for default FA on ROCm (#3643)
Co-authored-by: jpvillam <jpvillam@amd.com>
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-09 15:10:47 -07:00
e23a43aef8 [Bugfix] Fix KeyError on loading GPT-NeoX (#3925) 2024-04-09 12:11:31 -07:00
e7c7067b45 [Misc] [Core] Implement RFC "Augment BaseExecutor interfaces to enable hardware-agnostic speculative decoding" (#3837) 2024-04-09 11:44:15 -07:00
6d592eb430 [Core] separate distributed_init from worker (#3904) 2024-04-09 08:49:02 +00:00
Roy
d036198e23 [BugFix][Model] Fix commandr RoPE max_position_embeddings (#3919) 2024-04-09 06:17:21 +08:00
59a6abf3c9 [Hotfix][CI/Build][Kernel] CUDA 11.8 does not support layernorm optimizations (#3782) 2024-04-08 14:31:02 -07:00
bc0c0192d1 [Bugfix] Enable Proper attention_bias Usage in Llama Model Configuration (#3767)
Co-authored-by: roy <jasonailu87@gmail.com>
2024-04-08 19:42:35 +00:00
f46864d68d [Bugfix] Added Command-R GPTQ support (#3849)
Co-authored-by: Egor Tolmachev <t333ga@gmail.com>
2024-04-08 14:59:38 +00:00
b4543c8f6b [Model] add minicpm (#3893) 2024-04-08 18:28:36 +08:00
0ce0539d47 [Bugfix] Fix Llava inference with Tensor Parallelism. (#3883) 2024-04-07 22:54:13 +08:00
2f19283549 [Core] latency optimization (#3890) 2024-04-06 19:14:06 -07:00
95baec828f [Core] enable out-of-tree model register (#3871) 2024-04-06 17:11:41 -07:00
e4be7d70bb [CI/Benchmark] add more iteration and use median for robust latency benchmark (#3889) 2024-04-06 21:32:30 +00:00
54951ac4bf [Bugfix] Fix incorrect output on OLMo models in Tensor Parallelism (#3869) 2024-04-05 12:02:09 -07:00
18de883489 [Chunked Prefill][4/n] Chunked prefill scheduler. (#3853) 2024-04-05 10:17:58 -07:00
1d7c940d74 Add option to completion API to truncate prompt tokens (#3144) 2024-04-05 10:15:42 -07:00
cfaf49a167 [Misc] Define common requirements (#3841) 2024-04-05 00:39:17 -07:00
9edec652e2 [Bugfix] Fixing requirements.txt (#3865) 2024-04-04 23:46:01 -07:00
e0dd4d3589 [Misc] Fix linter issues in examples/fp8/quantizer/quantize.py (#3864) 2024-04-04 21:57:33 -07:00
e5043a3e75 [Misc] Add pytest marker to opt-out of global test cleanup (#3863) 2024-04-04 21:54:16 -07:00
d03d64fd2e [CI/Build] refactor dockerfile & fix pip cache
[CI/Build] fix pip cache with vllm_nccl & refactor dockerfile to build wheels (#3859)
2024-04-04 21:53:16 -07:00
78107fa091 [Doc]Add asynchronous engine arguments to documentation. (#3810)
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-04 21:52:01 -07:00
c391e4b68e [Core] improve robustness of pynccl (#3860) 2024-04-04 16:52:12 -07:00
9117f892f0 [Model] Cohere CommandR+ (#3829) 2024-04-04 13:31:49 -07:00
db2a6a41e2 [Hardware][CPU] Update cpu torch to match default of 2.2.1 (#3854) 2024-04-04 19:49:49 +00:00
ca81ff5196 [Core] manage nccl via a pypi package & upgrade to pt 2.2.1 (#3805) 2024-04-04 10:26:19 -07:00
b7782002e1 [Benchmark] Refactor sample_requests in benchmark_throughput (#3613)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-04 09:56:22 +00:00
819a309c0f [Bugfix] Fix args in benchmark_serving (#3836)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-04 07:41:05 +00:00
aabe8f40f2 [Core] [Frontend] Make detokenization optional (#3749)
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-04-03 21:52:18 -07:00
498eb5cfa3 [Bugfix] Add kv_scale input parameter to CPU backend (#3840) 2024-04-04 04:33:08 +00:00
537ee25f43 [Core] Enable hf_transfer by default if available (#3817) 2024-04-04 04:02:43 +00:00
294f8f6665 [BugFix] Pass tokenizer_config to local_tokenizer_group (#3754)
Signed-off-by: Tao He <sighingnow@gmail.com>
2024-04-03 20:31:46 -07:00
b95047f2da [Misc] Publish 3rd meetup slides (#3835) 2024-04-03 15:46:10 -07:00
2ff767b513 Enable scaled FP8 (e4m3fn) KV cache on ROCm (AMD GPU) (#3290)
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: HaiShaw <hixiao@gmail.com>
Co-authored-by: AdrianAbeyta <Adrian.Abeyta@amd.com>
Co-authored-by: Matthew Wong <Matthew.Wong2@amd.com>
Co-authored-by: root <root@gt-pla-u18-08.pla.dcgpu>
Co-authored-by: mawong-amd <156021403+mawong-amd@users.noreply.github.com>
Co-authored-by: ttbachyinsda <ttbachyinsda@outlook.com>
Co-authored-by: guofangze <guofangze@kuaishou.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: jacobthebanana <50071502+jacobthebanana@users.noreply.github.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-03 14:15:55 -07:00
3dcb3e8b98 [3/N] Refactor scheduler for chunked prefill scheduling (#3550) 2024-04-03 14:13:49 -07:00
c64cf38673 [Doc] Update contribution guidelines for better onboarding (#3819) 2024-04-03 07:31:43 +00:00
76b889bf1d [Doc] Update README.md (#3806) 2024-04-02 23:11:10 -07:00
c9b506dad4 [BugFix] Use different mechanism to get vllm version in is_cpu() (#3804) 2024-04-02 23:06:25 -07:00
5757d90e26 [Speculative decoding] Adding configuration object for speculative decoding (#3706)
Co-authored-by: Lily Liu <lilyliupku@gmail.com>
2024-04-03 00:40:57 +00:00
a3c226e7eb [CI/Build] 0.4.0.post1, fix sm 7.0/7.5 binary (#3803) 2024-04-02 12:57:04 -07:00
b321d4881b [Bugfix] Add __init__.py files for vllm/core/block/ and vllm/spec_decode/ (#3798) 2024-04-02 12:35:31 -07:00
ad6eca408b Fix early CUDA init via get_architecture_class_name import (#3770)
Signed-off-by: Lei Wen <wenlei03@qiyi.com>
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
2024-04-02 11:56:26 -07:00
205b94942e [CI/Build] fix TORCH_CUDA_ARCH_LIST in wheel build (#3801) 2024-04-02 11:54:33 -07:00
3bec41f41a [Doc] Fix vLLMEngine Doc Page (#3791) 2024-04-02 09:49:37 -07:00
0739b1947f [Frontend][Bugfix] allow using the default middleware with a root path (#3788)
Co-authored-by: A-Mahla <>
2024-04-02 01:20:28 -07:00
77a6572aa5 [HotFix] [CI/Build] Minor fix for CPU backend CI (#3787) 2024-04-01 22:50:53 -07:00
0e3f06fe9c [Hardware][Intel] Add CPU inference backend (#3634)
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
Co-authored-by: Yuan Zhou <yuan.zhou@intel.com>
2024-04-01 22:07:30 -07:00
eb69d68804 [Misc] [CI/Build] Speed up block manager CPU-only unit tests ~10x by opting-out of GPU cleanup (#3783) 2024-04-02 00:49:51 +00:00
7d4e1b85e7 [Misc] Add support for new autogptq checkpoint_format (#3689)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-04-01 19:32:01 -04:00
93deb0b38f [Speculative decoding 4/9] Lookahead scheduling for speculative decoding (#3250) 2024-04-01 22:55:24 +00:00
ccb58b23e6 [Misc] Fix Benchmark TTFT Calculation for Chat Completions (#3768) 2024-04-01 15:24:30 -07:00
49782fcb76 [Misc] Some minor simplifications to detokenization logic (#3670)
Some simplifications made for clarity.

Also moves detokenization-related functions from tokenizer.py to detokenizer.py.
2024-04-01 13:22:06 -07:00
f03cc667a0 [Misc] Minor fixes in requirements.txt (#3769) 2024-04-01 10:15:48 +00:00
563c1d7ec5 [CI/Build] Make Marlin Tests Green (#3753) 2024-03-30 19:18:34 -07:00
9c82a1bec3 [Doc] Update installation doc (#3746)
[Doc] Update installation doc for build from source and explain the dependency on torch/cuda version (#3746)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-03-30 16:34:38 -07:00
b6d103542c [Kernel] Layernorm performance optimization (#3662) 2024-03-30 14:26:38 -07:00
51c31bc10c CMake build elf without PTX (#3739) 2024-03-30 01:53:08 +00:00
3ad438c66f Fix build when nvtools is missing (#3698) 2024-03-29 18:52:39 -07:00
203d4f82ac [Core][Bugfix] cache len of tokenizer (#3741) 2024-03-29 18:46:39 -07:00
991143cfcd [BugFix] Use consistent logger everywhere (#3738) 2024-03-29 23:26:44 +00:00
8b2d3cbc1b usage lib get version another way (#3735) 2024-03-29 15:57:08 -07:00
9765b5c406 [ROCm][Bugfix] Fixed several bugs related to rccl path and attention selector logic (#3699) 2024-03-29 14:52:36 -07:00
430530fc18 bump version to v0.4.0 (#3712) 2024-03-29 12:28:33 -07:00
97356f3c7e [Bugfix] Command-R Max Model Length (#3727) 2024-03-29 12:27:51 -07:00
Roy
f510395bbf [BugFix][Frontend] Fix completion logprobs=0 error (#3731) 2024-03-29 09:38:21 -07:00
Roy
6110c39dc8 [BugFix] Fix tokenizer out of vocab size (#3685) 2024-03-29 08:18:59 -07:00
d8658c8cc1 Usage Stats Collection (#2852) 2024-03-28 22:16:12 -07:00
7bc94a0fdd add ccache to docker build image (#3704) 2024-03-28 22:14:24 -07:00
756b30a5f3 [Core][Test] move local_rank to the last arg with default value(#3711)
[Core][Test] move local_rank to the last arg with default value to keep api compatible (#3711)
2024-03-28 21:19:45 -07:00
395aa823ea [Misc] Minor type annotation fix (#3716) 2024-03-28 21:12:24 -07:00
26422e477b [Test] Make model tests run again and remove --forked from pytest (#3631)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-03-28 21:06:40 -07:00
f342153b48 Revert "bump version to v0.4.0" (#3708) 2024-03-28 18:49:42 -07:00
27a57cad52 bump version to v0.4.0 (#3705) 2024-03-28 18:26:51 -07:00
98a42e7078 [Benchmark] Change mii to use persistent deployment and support tensor parallel (#3628) 2024-03-28 17:33:52 -07:00
0267fef52a [Core] fix del of communicator (#3702) 2024-03-29 00:24:58 +00:00
4716a32dd4 fix logging msg for block manager (#3701) 2024-03-28 23:29:55 +00:00
c0935c96d3 [Bugfix] Set enable_prefix_caching=True in prefix caching example (#3703) 2024-03-28 16:26:30 -07:00
cb40b3ab6b [Kernel] Add MoE Triton kernel configs for A100 40GB (#3700) 2024-03-28 15:26:24 -07:00
Roy
515386ef3c [Core] Support multi-node inference(eager and cuda graph) (#3686) 2024-03-28 15:01:55 -07:00
a4075cba4d [CI] Add test case to run examples scripts (#3638) 2024-03-28 14:36:10 -07:00
96aa014d1e fix benchmark format reporting in buildkite (#3693) 2024-03-28 14:35:16 -07:00
1715056fef [Bugfix] Update neuron_executor.py to add optional vision_language_config (#3695) 2024-03-28 10:43:34 -07:00
b51c1cc9d2 [2/N] Chunked prefill data update (#3538) 2024-03-28 10:06:01 -07:00
ce567a2926 [Kernel] DBRX Triton MoE kernel H100 (#3692) 2024-03-28 10:05:34 -07:00
d6ea427f04 [Model] Add support for Qwen2MoeModel (#3346) 2024-03-28 15:19:59 +00:00
14ccd94c89 [Core][Bugfix]Refactor block manager for better testability (#3492) 2024-03-27 23:59:28 -07:00
8267b06c30 [Kernel] Add Triton MoE kernel configs for DBRX on A100 (#3679) 2024-03-27 22:22:25 -07:00
3492859b68 [CI/Build] update default number of jobs and nvcc threads to avoid overloading the system (#3675) 2024-03-28 00:18:54 -04:00
098e1776ba [Model] Add support for xverse (#3610)
Co-authored-by: willhe <hexin@xverse.cn>
Co-authored-by: root <root@localhost.localdomain>
2024-03-27 18:12:54 -07:00
Roy
10e6322283 [Model] Fix and clean commandr (#3671) 2024-03-28 00:20:00 +00:00
6d9aa00fc4 [Docs] Add Command-R to supported models (#3669) 2024-03-27 15:20:00 -07:00
1182607e18 Add support for Cohere's Command-R model (#3433)
Co-authored-by: José Maria Pombal <jose.pombal@unbabel.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-03-27 14:19:32 -07:00
45b6ef6513 feat(benchmarks): Add Prefix Caching Benchmark to Serving Benchmark (#3277) 2024-03-27 13:39:26 -07:00
1956931436 [Misc] add the "download-dir" option to the latency/throughput benchmarks (#3621) 2024-03-27 13:39:05 -07:00
e24336b5a7 [Model] Add support for DBRX (#3660) 2024-03-27 13:01:46 -07:00
d18f4e73f3 [Bugfix] [Hotfix] fix nccl library name (#3661) 2024-03-27 17:23:54 +00:00
82c540bebf [Bugfix] More faithful implementation of Gemma (#3653) 2024-03-27 09:37:18 -07:00
8f44facddd [Core] remove cupy dependency (#3625) 2024-03-27 00:33:26 -07:00
e66b629c04 [Misc] Minor fix in KVCache type (#3652) 2024-03-26 23:14:06 -07:00
76879342a3 [Doc]add lora support (#3649) 2024-03-27 02:06:46 +00:00
566b57c5c4 [Kernel] support non-zero cuda devices in punica kernels (#3636) 2024-03-27 00:37:42 +00:00
0dc72273b8 [BugFix] Fix ipv4 address parsing regression (#3645) 2024-03-26 14:39:44 -07:00
a979d9771e [Bugfix] Fix ipv6 address parsing bug (#3641) 2024-03-26 11:58:20 -07:00
8af890a865 Enable more models to inference based on LoRA (#3382)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-03-25 18:09:31 -07:00
dfeb2ecc3a [Misc] Include matched stop string/token in responses (#2976)
Co-authored-by: Sahil Suneja <sahilsuneja@gmail.com>
2024-03-25 17:31:32 -07:00
3a243095e5 Optimize _get_ranks in Sampler (#3623) 2024-03-25 16:03:02 -07:00
64172a976c [Feature] Add vision language model support. (#3042) 2024-03-25 14:16:30 -07:00
f408d05c52 hotfix isort on logprobs ranks pr (#3622) 2024-03-25 11:55:46 -07:00
0b4997e05c [Bugfix] API stream returning two stops (#3450)
Co-authored-by: Dylan Hawk <dylanwawk@gmail.com>
2024-03-25 10:14:34 -07:00
c13ad1b7bd feat: implement the min_tokens sampling parameter (#3124)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-03-25 10:14:26 -07:00
819924e749 [Core] Adding token ranks along with logprobs (#3516)
Co-authored-by: Swapnil Parekh <swapnilp@ibm.com>
2024-03-25 10:13:10 -07:00
01bfb22b41 [CI] Try introducing isort. (#3495) 2024-03-25 07:59:47 -07:00
e67c295b0c [Bugfix] fix automatic prefix args and add log info (#3608) 2024-03-25 05:35:22 -07:00
925f3332ca [Core] Refactor Attention Take 2 (#3462) 2024-03-25 04:39:33 +00:00
b0dfa91dd7 [Model] Add starcoder2 awq support (#3569) 2024-03-24 21:07:36 -07:00
56a8652f33 [Bugfix] store lock file in tmp directory (#3578)" (#3599)
Co-authored-by: youkaichao <youkaichao@126.com>
2024-03-24 20:06:50 -07:00
6d93d35308 [BugFix] tensor.get_device() -> tensor.device (#3604) 2024-03-24 19:01:13 -07:00
837e185142 [CI/Build] fix flaky test (#3602) 2024-03-24 17:43:05 -07:00
42bc386129 [CI/Build] respect the common environment variable MAX_JOBS (#3600) 2024-03-24 17:04:00 -07:00
8b268a46a7 [CI] typo fix: is_hip --> is_hip() (#3595) 2024-03-24 16:03:06 -07:00
41deac4a3d [BugFix] 1D query fix for MoE models (#3597) 2024-03-24 16:00:16 -07:00
af9e53496f [BugFix] Fix Falcon tied embeddings (#3590)
Co-authored-by: 44670 <44670@users.noreply.github.com>
2024-03-24 06:34:01 -07:00
f8a12ecc7f [Misc] Bump transformers version (#3592) 2024-03-24 06:32:45 -07:00
3c5ab9b811 [Misc] Fix BLOOM copyright notice (#3591) 2024-03-23 23:30:56 -07:00
743a0b7402 [Bugfix] use SoftLockFile instead of LockFile (#3578) 2024-03-23 11:43:11 -07:00
bfdb1ba5c3 [Core] Improve detokenization performance for prefill (#3469)
Co-authored-by: MeloYang <meloyang05@gmail.com>
2024-03-22 13:44:12 -07:00
cf2f084d56 Dynamic scheduler delay to improve ITL performance (#3279)
Co-authored-by: Jan van Lunteren <jvl@zurich.ibm.com>
2024-03-22 12:28:14 -07:00
f721096d48 [BugFix] Some fixes for custom allreduce kernels (#2760) 2024-03-21 23:02:58 -07:00
e90fc21f2e [Hardware][Neuron] Refactor neuron support (#3471) 2024-03-22 01:22:17 +00:00
Roy
ea5f14e6ff [Bugfix][Model] Fix Qwen2 (#3554) 2024-03-22 00:18:58 +00:00
b7050ca7df [BugFix] gemma loading after quantization or LoRA. (#3553) 2024-03-21 13:16:57 -07:00
c188ecb080 [Misc] Bump up transformers to v4.39.0 & Remove StarCoder2Config (#3551)
Co-authored-by: Roy <jasonailu87@gmail.com>
Co-authored-by: Roger Meier <r.meier@siemens.com>
2024-03-21 07:58:12 -07:00
Roy
865732342b [Misc][Log] Add log for tokenizer length not equal to vocabulary size (#3500) 2024-03-21 18:07:48 +08:00
4c07dd28c0 [🚀 Ready to be merged] Added support for Jais models (#3183) 2024-03-21 09:45:24 +00:00
3bbff9e5ab Fix 1D query issue from _prune_hidden_states (#3539) 2024-03-21 08:49:06 +00:00
6ebd02bdef [PREFIX CACHING FOLLOW UP] OrderedDict-based evictor (#3431)
Co-authored-by: rsnm2 <rshaw@neuralmagic.com>
Co-authored-by: Luka <luka@paperspace>
2024-03-20 23:20:04 -07:00
523e30ea0c [BugFix] Hot fix in setup.py for neuron build (#3537) 2024-03-20 17:59:52 -07:00
Roy
f1c0fc3919 Migrate logits computation and gather to model_runner (#3233) 2024-03-20 23:25:01 +00:00
6e435de766 [1/n][Chunked Prefill] Refactor input query shapes (#3236) 2024-03-20 14:46:05 -07:00
426ec4ec67 [1/n] Triton sampling kernel (#3186)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-03-20 14:45:08 -07:00
80e254834d [Bugfix] Fix ROCm support in CMakeLists.txt (#3534) 2024-03-20 21:05:03 +00:00
ba8ae1d84f Check for _is_cuda() in compute_num_jobs (#3481) 2024-03-20 10:06:56 -07:00
84eaa68425 Abort when nvcc command is not found in the PATH (#3527) 2024-03-20 09:28:29 -07:00
5ee14494e4 [Misc] Remove cache stream and cache events (#3461) 2024-03-20 00:38:53 -07:00
4ad521d8b5 [Core] Add generic typing to LRUCache (#3511) 2024-03-20 00:36:09 -07:00
9474e89ba4 [PREFIX CACHING FOLLOW UP] A bunch of fixes to block allocator performance when automatic prefix caching is disabled (#3357)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-03-20 00:11:11 -07:00
20478c4d3a Use lru_cache for some environment detection utils (#3508) 2024-03-19 21:34:15 +00:00
63e8b28a99 [Doc] minor fix of spelling in amd-installation.rst (#3506) 2024-03-19 20:32:30 +00:00
cc63d03fbb Revert "[Core] Cache some utils" (#3507) 2024-03-19 13:22:58 -07:00
2a60c9bd17 [Doc] minor fix to neuron-installation.rst (#3505) 2024-03-19 13:21:35 -07:00
c614cfee58 Update dockerfile with ModelScope support (#3429) 2024-03-19 10:54:59 -07:00
7341c77d69 [BugFix] Avoid initializing CUDA too early (#3487) 2024-03-18 23:05:20 -07:00
ef65dcfa6f [Doc] Add docs about OpenAI compatible server (#3288) 2024-03-18 22:05:34 -07:00
6a9c583e73 [Core] print error before deadlock (#3459) 2024-03-19 04:06:23 +00:00
b37cdce2b1 [Core] Cache some utils (#3474) 2024-03-18 17:14:26 -07:00
b30880a762 [Misc] Update README for the Third vLLM Meetup (#3479) 2024-03-18 15:58:38 -07:00
49eedea373 [Core] Zero-copy asdict for InputMetadata (#3475) 2024-03-18 22:56:40 +00:00
9fdf3de346 Cmake based build system (#2830) 2024-03-18 15:38:33 -07:00
c0c17d4896 [Misc] Fix PR Template (#3478) 2024-03-18 15:00:31 -07:00
097aa0ea22 [CI/Build] Fix Bad Import In Test (#3473) 2024-03-18 20:28:00 +00:00
482b0adf1b [Testing] Add test_config.py to CI (#3437) 2024-03-18 12:48:45 -07:00
8c654c045f CI: Add ROCm Docker Build (#2886) 2024-03-18 19:33:47 +00:00
9101d832e6 [Bugfix] Make moe_align_block_size AMD-compatible (#3470) 2024-03-18 11:26:24 -07:00
93348d9458 [CI] Shard tests for LoRA and Kernels to speed up (#3445) 2024-03-17 14:56:30 -07:00
abfc4f3387 [Misc] Use dataclass for InputMetadata (#3452)
Co-authored-by: youkaichao <youkaichao@126.com>
2024-03-17 10:02:46 +00:00
6b78837b29 Fix setup.py neuron-ls issue (#2671) 2024-03-16 16:00:25 -07:00
120157fd2a Support arbitrary json_object in OpenAI and Context Free Grammar (#3211) 2024-03-16 13:35:27 -07:00
8e67598aa6 [Misc] fix line length for entire codebase (#3444) 2024-03-16 00:36:29 -07:00
ad50bf4b25 fix lint 2024-03-15 22:23:38 -07:00
cf6ff18246 Fix Baichuan chat template (#3340) 2024-03-15 21:02:12 -07:00
14e3f9a1b2 Replace lstrip() with removeprefix() to fix Ruff linter warning (#2958) 2024-03-15 21:01:30 -07:00
3123f15138 Fixes the incorrect argument in the prefix-prefill test cases (#3246) 2024-03-15 20:58:10 -07:00
413366e9a2 [Misc] PR templates (#3413)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-03-15 18:25:51 -07:00
10585e035e Removed Extraneous Print Message From OAI Server (#3440) 2024-03-16 00:35:36 +00:00
fb96c1e98c Asynchronous tokenization (#2879) 2024-03-15 23:37:01 +00:00
8fa7357f2d fix document error for value and v_vec illustration (#3421) 2024-03-15 16:06:09 -07:00
a7af4538ca Fix issue templates (#3436) 2024-03-15 21:26:00 +00:00
604f235937 [Misc] add error message in non linux platform (#3438) 2024-03-15 21:21:37 +00:00
14b8ae02e7 Fixes the misuse/mixuse of time.time()/time.monotonic() (#3220)
Signed-off-by: Tao He <sighingnow@gmail.com>
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-03-15 18:25:43 +00:00
03d37f2441 [Fix] Add args for mTLS support (#3430)
Co-authored-by: declark1 <daniel.clark@ibm.com>
2024-03-15 09:56:13 -07:00
a7c871680e Fix tie_word_embeddings for Qwen2. (#3344) 2024-03-15 09:36:53 -07:00
429284dc37 Fix dist.broadcast stall without group argument (#3408) 2024-03-14 23:25:05 -07:00
253a98078a Add chat templates for ChatGLM (#3418) 2024-03-14 23:19:22 -07:00
21539e6856 Add chat templates for Falcon (#3420) 2024-03-14 23:19:02 -07:00
b522c4476f [Misc] add HOST_IP env var (#3419)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-03-14 21:32:52 -07:00
78b6c4845a Dynamically configure shared memory size for moe_align_block_size_kernel (#3376) 2024-03-14 18:18:07 -07:00
b983ba35bd fix marlin config repr (#3414) 2024-03-14 16:26:19 -07:00
54be8a0be2 Fix assertion failure in Qwen 1.5 with prefix caching enabled (#3373)
Co-authored-by: Cade Daniel <edacih@gmail.com>
2024-03-14 13:56:57 -07:00
dfc77408bd [issue templates] add some issue templates (#3412) 2024-03-14 13:16:00 -07:00
c17ca8ef18 Add args for mTLS support (#3410)
Co-authored-by: Daniel Clark <daniel.clark@ibm.com>
2024-03-14 13:11:45 -07:00
06ec486794 Install flash_attn in Docker image (#3396) 2024-03-14 10:55:54 -07:00
8fe8386591 [Kernel] change benchmark script so that result can be directly used; tune moe kernel in A100/H100 with tp=2,4,8 (#3389) 2024-03-14 08:11:48 +00:00
a37415c31b allow user to chose which vllm's merics to display in grafana (#3393) 2024-03-14 06:35:13 +00:00
81653d9688 [Hotfix] [Debug] test_openai_server.py::test_guided_regex_completion (#3383) 2024-03-13 17:02:21 -07:00
eeab52a4ff [FIX] Simpler fix for async engine running on ray (#3371) 2024-03-13 14:18:40 -07:00
c33afd89f5 Fix lint (#3388) 2024-03-13 13:56:49 -07:00
7e9bd08f60 Add batched RoPE kernel (#3095) 2024-03-13 13:45:26 -07:00
ae0ccb4017 Add missing kernel for CodeLlama-34B on A/H100 (no tensor parallelism) when using Multi-LoRA. (#3350) 2024-03-13 12:18:25 -07:00
739c350c19 [Minor Fix] Use cupy-cuda11x in CUDA 11.8 build (#3256) 2024-03-13 09:43:24 -07:00
ba8dc958a3 [Minor] Fix bias in if to remove ambiguity (#3259) 2024-03-13 09:16:55 -07:00
e221910e77 add hf_transfer to requirements.txt (#3031) 2024-03-12 23:33:43 -07:00
b167109ba1 [Fix] Fix quantization="gptq" when using Marlin (#3319)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-03-12 22:51:42 -07:00
602358f8a8 Add kernel for GeGLU with approximate GELU (#3337) 2024-03-12 22:06:17 -07:00
49a3c8662b Fixes #1556 double free (#3347) 2024-03-13 00:30:08 +00:00
b0925b3878 docs: Add BentoML deployment doc (#3336)
Signed-off-by: Sherlock113 <sherlockxu07@gmail.com>
2024-03-12 10:34:30 -07:00
654865e21d Support Mistral Model Inference with transformers-neuronx (#3153) 2024-03-11 13:19:51 -07:00
c9415c19d3 [ROCm] Fix warp and lane calculation in blockReduceSum (#3321) 2024-03-11 13:14:07 -07:00
4c922709b6 Add distributed model executor abstraction (#3191) 2024-03-11 11:03:45 -07:00
657061fdce [docs] Add LoRA support information for models (#3299) 2024-03-11 00:54:51 -07:00
2f8844ba08 Re-enable the 80 char line width limit (#3305) 2024-03-10 19:49:14 -07:00
4b59f00e91 [Fix] Fix best_of behavior when n=1 (#3298) 2024-03-10 19:17:46 -07:00
Roy
9e8744a545 [BugFix] Fix get tokenizer when using ray (#3301) 2024-03-10 19:17:16 -07:00
e4a28e5316 [ROCM] Fix blockReduceSum to use correct warp counts for ROCm and CUDA (#3262) 2024-03-10 15:27:45 -07:00
0bba88df03 Enhance lora tests with more layer and rank variations (#3243) 2024-03-09 17:14:16 -08:00
8437bae6ef [Speculative decoding 3/9] Worker which speculates, scores, and applies rejection sampling (#3103) 2024-03-08 23:32:46 -08:00
f48c6791b7 [FIX] Fix prefix test error on main (#3286) 2024-03-08 17:16:14 -08:00
c2c5e0909a Move model filelocks from /tmp/ to ~/.cache/vllm/locks/ dir (#3241) 2024-03-08 13:33:10 -08:00
1cb0cc2975 [FIX] Make flash_attn optional (#3269) 2024-03-08 10:52:20 -08:00
99c3cfb83c [Docs] Fix Unmocked Imports (#3275) 2024-03-08 09:58:01 -08:00
1ece1ae829 [Minor Fix] Fix comments in benchmark_serving (#3252) 2024-03-07 22:22:59 -08:00
c59e120c55 Feature add lora support for Qwen2 (#3177) 2024-03-07 21:58:24 -08:00
d2339d6840 Connect engine healthcheck to openai server (#3260) 2024-03-07 16:38:12 -08:00
b35cc93420 Fix auto prefix bug (#3239) 2024-03-07 16:37:28 -08:00
8cbba4622c Possible fix for conflict between Automated Prefix Caching (#2762) and multi-LoRA support (#1804) (#3263) 2024-03-07 23:03:22 +00:00
385da2dae2 Measure model memory usage (#3120) 2024-03-07 11:42:42 -08:00
2daf23ab0c Separate attention backends (#3005) 2024-03-07 01:45:50 -08:00
cbf4c05b15 Update requirements-dev.txt to include package for benchmarking scripts. (#3181)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-03-07 08:39:28 +00:00
d3c04b6a39 Add GPTQ support for Gemma (#3200) 2024-03-07 08:19:14 +08:00
4cb3b924cd Add tqdm dynamic_ncols=True (#3242) 2024-03-06 22:41:42 +00:00
a33ce60c66 [Testing] Fix core tests (#3224) 2024-03-06 01:04:23 -08:00
24aecf421a [Tests] Add block manager and scheduler tests (#3108) 2024-03-05 18:23:34 -08:00
2efce05dc3 [Fix] Avoid pickling entire LLMEngine for Ray workers (#3207)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-03-06 00:17:20 +00:00
8999ec3c16 Store eos_token_id in Sequence for easy access (#3166) 2024-03-05 15:35:43 -08:00
05af6da8d9 [ROCm] enable cupy in order to enable cudagraph mode for AMD GPUs (#3123)
Co-authored-by: lcskrishna <lollachaitanya@gmail.com>
2024-03-04 18:14:53 -08:00
9a4548bae7 Fix the openai benchmarking requests to work with latest OpenAI apis (#2992)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-03-04 15:51:56 -08:00
ff578cae54 Add health check, make async Engine more robust (#3015)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-03-04 22:01:40 +00:00
22de45235c Push logprob generation to LLMEngine (#3065)
Co-authored-by: Avnish Narayan <avnish@anyscale.com>
2024-03-04 19:54:06 +00:00
76e8a70476 [Minor fix] The domain dns.google may cause a socket.gaierror exception (#3176)
Co-authored-by: guofangze <guofangze@kuaishou.com>
2024-03-04 19:17:12 +00:00
9cbc7e5f3b enable --gpu-memory-utilization in benchmark_throughput.py (#3175)
Co-authored-by: zixiao <shunli.dsl@alibaba-inc.com>
2024-03-04 10:37:58 -08:00
27a7b070db Add document for vllm paged attention kernel. (#2978) 2024-03-04 09:23:34 -08:00
901cf4c52b [Minor Fix] Remove unused code in benchmark_prefix_caching.py (#3171) 2024-03-03 22:48:27 -08:00
d0fae88114 [DOC] add setup document to support neuron backend (#2777) 2024-03-04 01:03:51 +00:00
17c3103c56 Make it easy to profile workers with nsight (#3162)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-03-03 16:19:13 -08:00
996d095c54 [FIX] Fix styles in automatic prefix caching & add a automatic prefix caching benchmark (#3158) 2024-03-03 14:37:18 -08:00
d65fac2738 Add vLLM version info to logs and openai API server (#3161) 2024-03-02 21:00:29 -08:00
ce4f5a29fb Add Automatic Prefix Caching (#2762)
Co-authored-by: ElizaWszola <eliza@neuralmagic.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-03-02 00:50:01 -08:00
baee28c46c Reorder kv dtype check to avoid nvcc not found error on AMD platform (#3104) 2024-03-02 14:34:48 +08:00
29e70e3e88 allow user chose log level by --log-level instead of fixed 'info'. (#3109)
Co-authored-by: zixiao <shunli.dsl@alibaba-inc.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-03-01 23:28:41 +00:00
82091b864a Bump up to v0.3.3 (#3129) 2024-03-01 12:58:06 -08:00
c0c2335ce0 Integrate Marlin Kernels for Int4 GPTQ inference (#2497)
Co-authored-by: Robert Shaw <114415538+rib-2@users.noreply.github.com>
Co-authored-by: alexm <alexm@neuralmagic.com>
2024-03-01 12:47:51 -08:00
90fbf12540 fix relative import path of protocol.py (#3134)
Co-authored-by: huohuarong <huohuarong@zuoshouyisheng.com>
2024-03-01 19:42:06 +00:00
49d849b3ab docs: Add tutorial on deploying vLLM model with KServe (#2586)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2024-03-01 11:04:14 -08:00
27ca23dc00 Remove exclude_unset in streaming response (#3143) 2024-03-01 09:59:06 -08:00
54d3544784 Fix: Output text is always truncated in some models (#3016) 2024-03-01 07:52:22 +00:00
703e42ee4b Add guided decoding for OpenAI API server (#2819)
Co-authored-by: br3no <breno@veltefaria.de>
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-02-29 22:13:08 +00:00
29a8d6a554 [Fix] Don't deep-copy LogitsProcessors when copying SamplingParams (#3099) 2024-02-29 19:20:42 +00:00
2c08ff23c0 Fix building from source on WSL (#3112) 2024-02-29 11:13:58 -08:00
bfdcfa6a05 Support starcoder2 architecture (#3089) 2024-02-29 00:51:48 -08:00
9289e577ec add cache_config's info to prometheus metrics. (#3100) 2024-02-29 06:15:18 +00:00
a6d471c759 Fix: AttributeError in OpenAI-compatible server (#3018) 2024-02-28 22:04:07 -08:00
01a5d18a53 Add Support for 2/3/8-bit GPTQ Quantization Models (#2330) 2024-02-28 21:52:23 -08:00
929b4f2973 Add LoRA support for Gemma (#3050) 2024-02-28 13:03:28 -08:00
3b7178cfa4 [Neuron] Support inference with transformers-neuronx (#2569) 2024-02-28 09:34:34 -08:00
e46fa5d52e Restrict prometheus_client >= 0.18.0 to prevent errors when importing pkgs (#3070) 2024-02-28 05:38:26 +00:00
a8683102cc multi-lora documentation fix (#3064) 2024-02-27 21:26:15 -08:00
71bcaf99e2 Enable GQA support in the prefix prefill kernels (#3007)
Signed-off-by: Tao He <sighingnow@gmail.com>
2024-02-27 01:14:31 -08:00
8b430d7dea [Minor] Fix StableLMEpochForCausalLM -> StableLmForCausalLM (#3046) 2024-02-26 20:23:50 -08:00
e0ade06d63 Support logit bias for OpenAI API (#3027) 2024-02-27 11:51:53 +08:00
4bd18ec0c7 [Minor] Fix type annotation in fused moe (#3045) 2024-02-26 19:44:29 -08:00
2410e320b3 fix get_ip error in pure ipv6 environment (#2931) 2024-02-26 19:22:16 -08:00
48a8f4a7fd Support Orion model (#2539)
Co-authored-by: zhangdacheng <zhangdacheng@ainirobot.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-02-26 19:17:06 -08:00
Roy
4dd6416faf Fix stablelm (#3038) 2024-02-26 18:31:10 -08:00
Roy
c1c0d00b88 Don't use cupy when enforce_eager=True (#3037) 2024-02-26 17:33:38 -08:00
Roy
d9f726c4d0 [Minor] Remove unused config files (#3039) 2024-02-26 17:25:22 -08:00
d6e4a130b0 [Minor] Remove gather_cached_kv kernel (#3043) 2024-02-26 15:00:54 -08:00
cfc15a1031 Optimize Triton MoE Kernel (#2979)
Co-authored-by: Cade Daniel <edacih@gmail.com>
2024-02-26 13:48:56 -08:00
70f3e8e3a1 Add LogProbs for Chat Completions in OpenAI (#2918) 2024-02-26 10:39:34 +08:00
ef978fe411 Port metrics from aioprometheus to prometheus_client (#2730) 2024-02-25 11:54:00 -08:00
f7c1234990 [Fix] Fissertion on YaRN model len (#2984) 2024-02-23 12:57:48 -08:00
57f044945f Fix nvcc not found in vlm-openai image (#2781) 2024-02-22 14:25:07 -08:00
4caf7044e0 Include tokens from prompt phase in counter_generation_tokens (#2802) 2024-02-22 14:00:12 -08:00
6f32cddf1c Remove Flash Attention in test env (#2982) 2024-02-22 09:58:29 -08:00
c530e2cfe3 [FIX] Fix a bug in initializing Yarn RoPE (#2983) 2024-02-22 01:40:05 -08:00
fd5dcc5c81 Optimize GeGLU layer in Gemma (#2975) 2024-02-21 20:17:52 -08:00
93dc5a2870 chore(vllm): codespell for spell checking (#2820) 2024-02-21 18:56:01 -08:00
95529e3253 Use Llama RMSNorm custom op for Gemma (#2974) 2024-02-21 18:28:23 -08:00
Roy
344020c926 Migrate MistralForCausalLM to LlamaForCausalLM (#2868) 2024-02-21 18:25:05 -08:00
5574081c49 Added early stopping to completion APIs (#2939) 2024-02-21 18:24:01 -08:00
d7f396486e Update comment (#2934) 2024-02-21 18:18:37 -08:00
8fbd84bf78 Bump up version to v0.3.2 (#2968)
This version is for more model support. Add support for Gemma models (#2964) and OLMo models (#2832).
2024-02-21 11:47:25 -08:00
7d2dcce175 Support per-request seed (#2514) 2024-02-21 11:47:00 -08:00
dc903e70ac [ROCm] Upgrade transformers to v4.38.0 (#2967) 2024-02-21 09:46:57 -08:00
a9c8212895 [FIX] Add Gemma model to the doc (#2966) 2024-02-21 09:46:15 -08:00
c20ecb6a51 Upgrade transformers to v4.38.0 (#2965) 2024-02-21 09:38:03 -08:00
5253edaacb Add Gemma model (#2964) 2024-02-21 09:34:30 -08:00
017d9f1515 Add metrics to RequestOutput (#2876) 2024-02-20 21:55:57 -08:00
181b27d881 Make vLLM logging formatting optional (#2877) 2024-02-20 14:38:55 -08:00
63e2a6419d [FIX] Fix beam search test (#2930) 2024-02-20 14:37:39 -08:00
264017a2bf [ROCm] include gfx908 as supported (#2792) 2024-02-19 17:58:59 -08:00
e433c115bc Fix vllm:prompt_tokens_total metric calculation (#2869) 2024-02-18 23:55:41 -08:00
86fd8bb0ac Add warning to prevent changes to benchmark api server (#2858) 2024-02-18 21:36:19 -08:00
ab3a5a8259 Support OLMo models. (#2832) 2024-02-18 21:05:15 -08:00
a61f0521b8 [Test] Add basic correctness test (#2908) 2024-02-18 16:44:50 -08:00
537c9755a7 [Minor] Small fix to make distributed init logic in worker looks cleaner (#2905) 2024-02-18 14:39:00 -08:00
786b7f18a5 Add code-revision config argument for Hugging Face Hub (#2892) 2024-02-17 22:36:53 -08:00
8f36444c4f multi-LoRA as extra models in OpenAI server (#2775)
how to serve the loras (mimicking the [multilora inference example](https://github.com/vllm-project/vllm/blob/main/examples/multilora_inference.py)):
```terminal
$ export LORA_PATH=~/.cache/huggingface/hub/models--yard1--llama-2-7b-sql-lora-test/
$ python -m vllm.entrypoints.api_server \
 --model meta-llama/Llama-2-7b-hf \
 --enable-lora \
 --lora-modules sql-lora=$LORA_PATH sql-lora2=$LORA_PATH
```
the above server will list 3 separate values if the user queries `/models`: one for the base served model, and one each for the specified lora modules. in this case sql-lora and sql-lora2 point to the same underlying lora, but this need not be the case. lora config values take the same values they do in EngineArgs

no work has been done here to scope client permissions to specific models
2024-02-17 12:00:48 -08:00
185b2c29e2 Defensively copy sampling_params (#2881)
If the SamplingParams object passed to LLMEngine.add_request() is mutated after it returns, it could affect the async sampling process for that request.

Suggested by @Yard1 https://github.com/vllm-project/vllm/pull/2514#discussion_r1490106059
2024-02-17 11:18:04 -08:00
5f08050d8d Bump up to v0.3.1 (#2887) 2024-02-16 15:05:18 -08:00
64da65b322 Prefix Caching- fix t4 triton error (#2517) 2024-02-16 14:17:55 -08:00
5255d99dc5 [ROCm] Dockerfile fix for flash-attention build (#2885) 2024-02-15 10:22:39 -08:00
4f2ad11135 Fix DeciLM (#2883) 2024-02-14 22:29:57 -08:00
d7afab6d3a [BugFix] Fix GC bug for LLM class (#2882) 2024-02-14 22:17:44 -08:00
31348dff03 Align LoRA code between Mistral and Mixtral (fixes #2875) (#2880)
* Fix AttributeError: MixtralModel object has no attribute org_vocab_size.

* Make LoRA logic for Mistral and Mixtral the same

---------

Co-authored-by: Pernekhan Utemuratov <pernekhan@deepinfra.com>
2024-02-15 01:00:43 +01:00
25e86b6a61 Don't use cupy NCCL for AMD backends (#2855) 2024-02-14 12:30:44 -08:00
Roy
4efbac6d35 Migrate AquilaForCausalLM to LlamaForCausalLM (#2867) 2024-02-14 12:30:24 -08:00
87069ccf68 Fix docker python version (#2845) 2024-02-14 10:17:57 -08:00
7e45107f51 [Fix] Fix memory profiling when GPU is used by multiple processes (#2863) 2024-02-13 19:52:34 -08:00
0c48b37c31 Fix internlm after https://github.com/vllm-project/vllm/pull/2860 (#2861) 2024-02-13 18:01:15 -08:00
7eacffd951 Migrate InternLMForCausalLM to LlamaForCausalLM (#2860)
Co-authored-by: Roy <jasonailu87@gmail.com>
2024-02-13 17:12:05 -08:00
2a543d6efe Add LoRA support for Mixtral (#2831)
* add mixtral lora support

* formatting

* fix incorrectly ported logic

* polish tests

* minor fixes and refactoring

* minor fixes

* formatting

* rename and remove redundant logic

* refactoring

* refactoring

* minor fix

* minor refactoring

* fix code smell
2024-02-14 00:55:45 +01:00
317b29de0f Remove Yi model definition, please use LlamaForCausalLM instead (#2854)
Co-authored-by: Roy <jasonailu87@gmail.com>
2024-02-13 14:22:22 -08:00
a463c333dd Use CuPy for CUDA graphs (#2811) 2024-02-13 11:32:06 -08:00
ea356004d4 Revert "Refactor llama family models (#2637)" (#2851)
This reverts commit 5c976a7e1a1bec875bf6474824b7dff39e38de18.
2024-02-13 09:24:59 -08:00
Roy
5c976a7e1a Refactor llama family models (#2637) 2024-02-13 00:09:23 -08:00
f964493274 [CI] Ensure documentation build is checked in CI (#2842) 2024-02-12 22:53:07 -08:00
a4211a4dc3 Serving Benchmark Refactoring (#2433) 2024-02-12 22:53:00 -08:00
Rex
563836496a Refactor 2 awq gemm kernels into m16nXk32 (#2723)
Co-authored-by: Chunan Zeng <chunanzeng@Chunans-Air.attlocal.net>
2024-02-12 11:02:17 -08:00
4ca2c358b1 Add documentation section about LoRA (#2834) 2024-02-12 17:24:45 +01:00
0580aab02f [ROCm] support Radeon™ 7900 series (gfx1100) without using flash-attention (#2768) 2024-02-10 23:14:37 -08:00
3711811b1d Disable custom all reduce by default (#2808) 2024-02-08 09:58:03 -08:00
65b89d16ee [Ray] Integration compiled DAG off by default (#2471) 2024-02-08 09:57:25 -08:00
931746bc6d Add documentation on how to do incremental builds (#2796) 2024-02-07 14:42:02 -08:00
c81dddb45c [ROCm] Fix build problem resulted from previous commit related to FP8 kv-cache support (#2790) 2024-02-06 22:36:59 -08:00
fe6d09ae61 [Minor] More fix of test_cache.py CI test failure (#2750) 2024-02-06 11:38:38 -08:00
ed70c70ea3 modelscope: fix issue when model parameter is not a model id but path of the model. (#2489) 2024-02-06 09:57:15 -08:00
f0d4e14557 Add fused top-K softmax kernel for MoE (#2769) 2024-02-05 17:38:02 -08:00
2ccee3def6 [ROCm] Fixup arch checks for ROCM (#2627) 2024-02-05 14:59:09 -08:00
b92adec8e8 Set local logging level via env variable (#2774) 2024-02-05 14:26:50 -08:00
56f738ae9b [ROCm] Fix some kernels failed unit tests (#2498) 2024-02-05 14:25:36 -08:00
72d3a30c63 [Minor] Fix benchmark_latency script (#2765) 2024-02-05 12:45:37 -08:00
c9b45adeeb Require triton >= 2.1.0 (#2746)
Co-authored-by: yangrui1 <yangrui@lanjingren.com>
2024-02-04 23:07:36 -08:00
Rex
5a6c81b051 Remove eos tokens from output by default (#2611) 2024-02-04 14:32:42 -08:00
51cd22ce56 set&get llm internal tokenizer instead of the TokenizerGroup (#2741)
Co-authored-by: shujunhua1 <shujunhua1@jd.com>
2024-02-04 14:25:36 -08:00
5ed704ec8c docs: fix langchain (#2736) 2024-02-03 18:17:55 -08:00
4abf6336ec Add one example to run batch inference distributed on Ray (#2696) 2024-02-02 15:41:42 -08:00
0e163fce18 Fix default length_penalty to 1.0 (#2667) 2024-02-01 15:59:39 -08:00
96b6f475dd Remove hardcoded device="cuda" to support more devices (#2503)
Co-authored-by: Jiang Li <jiang1.li@intel.com>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
2024-02-01 15:46:39 -08:00
c410f5d020 Use revision when downloading the quantization config file (#2697)
Co-authored-by: Pernekhan Utemuratov <pernekhan@deepinfra.com>
2024-02-01 15:41:58 -08:00
bb8c697ee0 Update README for meetup slides (#2718) 2024-02-01 14:56:53 -08:00
b9e96b17de fix python 3.8 syntax (#2716) 2024-02-01 14:00:58 -08:00
923797fea4 Fix compile error when using rocm (#2648) 2024-02-01 09:35:09 -08:00
cd9e60c76c Add Internlm2 (#2666) 2024-02-01 09:27:40 -08:00
93b38bea5d Refactor Prometheus and Add Request Level Metrics (#2316) 2024-01-31 14:58:07 -08:00
d0d93b92b1 Add unit test for Mixtral MoE layer (#2677) 2024-01-31 14:34:17 -08:00
89efcf1ce5 [Minor] Fix test_cache.py CI test failure (#2684) 2024-01-31 10:12:11 -08:00
c664b0e683 fix some bugs (#2689) 2024-01-31 10:09:23 -08:00
d69ff0cbbb Fixes assertion failure in prefix caching: the lora index mapping should respect prefix_len (#2688)
Signed-off-by: Tao He <sighingnow@gmail.com>
2024-01-31 18:00:13 +01:00
1af090b57d Bump up version to v0.3.0 (#2656) 2024-01-31 00:07:07 -08:00
3dad944485 Add quantized mixtral support (#2673) 2024-01-30 16:34:10 -08:00
105a40f53a [Minor] Fix false warning when TP=1 (#2674) 2024-01-30 14:39:40 -08:00
bbe9bd9684 [Minor] Fix a small typo (#2672) 2024-01-30 13:40:37 -08:00
4f65af0e25 Add swap_blocks unit tests (#2616) 2024-01-30 09:30:50 -08:00
d79ced3292 Fix 'Actor methods cannot be called directly' when using --engine-use-ray (#2664)
* fix: engine-useray complain

* fix: typo
2024-01-30 17:17:05 +01:00
ab40644669 Fused MOE for Mixtral (#2542)
Co-authored-by: chen shen <scv119@gmail.com>
2024-01-29 22:43:37 -08:00
5d60def02c DeepseekMoE support with Fused MoE kernel (#2453)
Co-authored-by: roy <jasonailu87@gmail.com>
2024-01-29 21:19:48 -08:00
ea8489fce2 ROCm: Allow setting compilation target (#2581) 2024-01-29 10:52:31 -08:00
1b20639a43 No repeated IPC open (#2642) 2024-01-29 10:46:29 -08:00
b72af8f1ed Fix error when tp > 1 (#2644)
Co-authored-by: zhaoyang-star <zhao.yang16@zte.com.cn>
2024-01-28 22:47:39 -08:00
9090bf02e7 Support FP8-E5M2 KV Cache (#2279)
Co-authored-by: zhaoyang <zhao.yang16@zte.com.cn>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-01-28 16:43:54 -08:00
7d648418b8 Update Ray version requirements (#2636) 2024-01-28 14:27:22 -08:00
89be30fa7d Small async_llm_engine refactor (#2618) 2024-01-27 23:28:37 -08:00
f8ecb84c02 Speed up Punica compilation (#2632) 2024-01-27 17:46:56 -08:00
5f036d2bcc [Minor] Fix warning on Ray dependencies (#2630) 2024-01-27 15:43:40 -08:00
380170038e Implement custom all reduce kernels (#2192) 2024-01-27 12:46:35 -08:00
220a47627b Use head_dim in config if exists (#2622) 2024-01-27 10:30:49 -08:00
beb89f68b4 AWQ: Up to 2.66x higher throughput (#2566) 2024-01-26 23:53:17 -08:00
390b495ff3 Don't build punica kernels by default (#2605) 2024-01-26 15:19:19 -08:00
3a0e1fc070 Support for Stable LM 2 (#2598)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-01-26 12:45:19 -08:00
6b7de1a030 [ROCm] add support to ROCm 6.0 and MI300 (#2274) 2024-01-26 12:41:10 -08:00
5265631d15 use a correct device when creating OptionalCUDAGuard (#2583) 2024-01-25 23:48:17 -08:00
2832e7b9f9 fix names and license for Qwen2 (#2589) 2024-01-24 22:37:51 -08:00
3a7dd7e367 Support Batch Completion in Server (#2529) 2024-01-24 17:11:07 -08:00
223c19224b Fix the syntax error in the doc of supported_models (#2584) 2024-01-24 11:22:51 -08:00
f1f6cc10c7 Added include_stop_str_in_output and length_penalty parameters to OpenAI API (#2562) 2024-01-24 10:21:56 -08:00
3209b49033 [Bugfix] fix crash if max_tokens=None (#2570) 2024-01-23 22:38:55 -08:00
1e4277d2d1 lint: format all python file instead of just source code (#2567) 2024-01-23 15:53:06 -08:00
9b945daaf1 [Experimental] Add multi-LoRA support (#1804)
Co-authored-by: Chen Shen <scv119@gmail.com>
Co-authored-by: Shreyas Krishnaswamy <shrekris@anyscale.com>
Co-authored-by: Avnish Narayan <avnish@anyscale.com>
2024-01-23 15:26:37 -08:00
9c1352eb57 [Feature] Simple API token authentication and pluggable middlewares (#1106) 2024-01-23 15:13:00 -08:00
7a0b011dd5 Add a 1-line docstring to explain why calling context_attention_fwd twice in test_prefix_prefill.py (#2553) 2024-01-22 14:47:25 -08:00
63e835cbcc Fix progress bar and allow HTTPS in benchmark_serving.py (#2552) 2024-01-22 14:40:31 -08:00
94b5edeb53 Add qwen2 (#2495) 2024-01-22 14:34:21 -08:00
ab7e6006d6 Fix https://github.com/vllm-project/vllm/issues/2540 (#2545) 2024-01-22 19:02:38 +01:00
18bfcdd05c [Speculative decoding 2/9] Multi-step worker for draft model (#2424) 2024-01-21 16:31:47 -08:00
71d63ed72e migrate pydantic from v1 to v2 (#2531) 2024-01-21 16:05:56 -08:00
d75c40734a [Fix] Keep scheduler.running as deque (#2523) 2024-01-20 22:36:09 -08:00
5b23c3f26f Add group as an argument in broadcast ops (#2522) 2024-01-20 16:00:26 -08:00
00efdc84ba Add benchmark serving to CI (#2505) 2024-01-19 20:20:19 -08:00
Roy
91a61da9b1 [Bugfix] fix load local safetensors model (#2512) 2024-01-19 16:26:16 -08:00
ef9b636e2d Simplify broadcast logic for control messages (#2501) 2024-01-19 11:23:30 -08:00
2709c0009a Support OpenAI API server in benchmark_serving.py (#2172) 2024-01-18 20:34:08 -08:00
dd7e8f5f64 refactor complemention api for readability (#2499) 2024-01-18 16:45:14 -08:00
d2a68364c4 [BugFix] Fix abort_seq_group (#2463) 2024-01-18 15:10:42 -08:00
7e1081139d Don't download both safetensor and bin files. (#2480) 2024-01-18 11:05:53 -08:00
18473cf498 [Neuron] Add an option to build with neuron (#2065) 2024-01-18 10:58:50 -08:00
4df417d059 fix: fix some args desc (#2487) 2024-01-18 09:41:44 -08:00
5d80a9178b Minor fix in prefill cache example (#2494) 2024-01-18 09:40:34 -08:00
8a25d3a71a fix stablelm.py tensor-parallel-size bug (#2482) 2024-01-18 09:39:46 -08:00
d10f8e1d43 [Experimental] Prefix Caching Support (#1669)
Co-authored-by: DouHappy <2278958187@qq.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-01-17 16:32:10 -08:00
14cc317ba4 OpenAI Server refactoring (#2360) 2024-01-16 21:33:14 -08:00
e1957c6ebd Add StableLM3B model (#2372) 2024-01-16 20:32:40 -08:00
8cd5a992bf ci: retry on build failure as well (#2457) 2024-01-16 12:51:04 -08:00
947f0b23cc CI: make sure benchmark script exit on error (#2449) 2024-01-16 09:50:13 -08:00
f780504d12 fix weigit loading for GQA with TP (#2379) 2024-01-15 15:43:59 -08:00
bfc072addf Allow buildkite to retry build on agent lost (#2446) 2024-01-15 15:43:15 -08:00
2a18da257c Announce the second vLLM meetup (#2444) 2024-01-15 14:11:59 -08:00
6e01e8c1c8 [CI] Add Buildkite (#2355) 2024-01-14 12:37:58 -08:00
Roy
9f659bf07f [Minor] Optimize cuda graph memory usage (#2437) 2024-01-14 18:40:51 +01:00
35c4bc20d9 [Minor] Fix err msg (#2431) 2024-01-12 14:02:52 -08:00
218dc2ccda Aligning top_p and top_k Sampling (#1885)
* Align top_p and top_k with huggingface

* remove _get_prompt_and_output_tokens

* rename _apply_top_p_top_k

* compare top_p top_k with hf

* fix test errors
2024-01-12 22:51:03 +01:00
827cbcd37c Update quickstart.rst (#2369) 2024-01-12 12:56:18 -08:00
Ben
cb7a1c1cbf Suggest using dtype=half when OOM. 2024-01-12 12:33:29 -08:00
7878958c0d Address Phi modeling update 2 (#2428) 2024-01-12 12:16:49 -08:00
ce036244c9 Allow setting fastapi root_path argument (#2341) 2024-01-12 10:59:59 -08:00
48cf1e413c fix: deque mutated during iteration in abort_seq_group (#2371) 2024-01-12 17:44:18 +01:00
97460585d9 Add gradio chatbot for openai webserver (#2307) 2024-01-11 19:45:56 -08:00
f745847ef7 [Minor] Fix the format in quick start guide related to Model Scope (#2425) 2024-01-11 19:44:01 -08:00
6549aef245 [DOC] Add additional comments for LLMEngine and AsyncLLMEngine (#1011) 2024-01-11 19:26:49 -08:00
50376faa7b Rename phi_1_5 -> phi (#2385) 2024-01-11 16:23:43 -08:00
4b61c6b669 get_ip(): Fix ipv4 ipv6 dualstack (#2408) 2024-01-10 11:39:58 -08:00
79d64c4954 [Speculative decoding 1/9] Optimized rejection sampler (#2336) 2024-01-09 15:38:41 -08:00
KKY
74cd5abdd1 Add baichuan chat template jinjia file (#2390) 2024-01-09 09:13:02 -08:00
28c3f12104 [Minor] Remove unused code in attention (#2384) 2024-01-08 13:13:08 -08:00
c884819135 Fix eager mode performance (#2377) 2024-01-08 10:11:06 -08:00
05921a9a7a Changed scheduler to use deques instead of lists (#2290)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-01-07 09:48:07 -08:00
d0215a58e7 Ensure metrics are logged regardless of requests (#2347) 2024-01-05 05:24:42 -08:00
937e7b7d7c Build docker image with shared objects from "build" step (#2237) 2024-01-04 09:35:18 -08:00
aee8ef661a Miner fix of type hint (#2340) 2024-01-03 21:27:56 -08:00
2e0b6e7757 Bump up to v0.2.7 (#2337) 2024-01-03 17:35:56 -08:00
941767127c Revert the changes in test_cache (#2335) 2024-01-03 17:32:05 -08:00
74d8d77626 Remove unused const TIMEOUT_TO_PREVENT_DEADLOCK (#2321) 2024-01-03 15:49:07 -08:00
fd4ea8ef5c Use NCCL instead of ray for control-plane communication to remove serialization overhead (#2221) 2024-01-03 11:30:22 -08:00
1066cbd152 Remove deprecated parameter: concurrency_count (#2315) 2024-01-03 09:56:21 -08:00
6ef00b03a2 Enable CUDA graph for GPTQ & SqueezeLLM (#2318) 2024-01-03 09:52:29 -08:00
Roy
9140561059 [Minor] Fix typo and remove unused code (#2305) 2024-01-02 19:23:15 -08:00
77af974b40 [FIX] Support non-zero CUDA devices in custom kernels (#1959) 2024-01-02 19:09:59 -08:00
4934d49274 Support GPT-NeoX Models without attention biases (#2301) 2023-12-30 11:42:04 -05:00
358c328d69 [BUGFIX] Fix communication test (#2285) 2023-12-27 17:18:11 -05:00
4aaafdd289 [BUGFIX] Fix the path of test prompts (#2273) 2023-12-26 10:37:21 -08:00
66b108d142 [BUGFIX] Fix API server test (#2270) 2023-12-26 10:37:06 -08:00
e0ff920001 [BUGFIX] Do not return ignored sentences twice in async llm engine (#2258) 2023-12-26 13:41:09 +08:00
face83c7ec [Docs] Add "About" Heading to README.md (#2260) 2023-12-25 16:37:07 -08:00
1db83e31a2 [Docs] Update installation instructions to include CUDA 11.8 xFormers (#2246) 2023-12-22 23:20:02 -08:00
a1b9cb2a34 [BugFix] Fix recovery logic for sequence group (#2186) 2023-12-20 21:52:37 -08:00
3a4fd5ca59 Disable Ray usage stats collection (#2206) 2023-12-20 21:52:08 -08:00
c17daa9f89 [Docs] Fix broken links (#2222) 2023-12-20 12:43:42 -08:00
bd29cf3d3a Remove Sampler copy stream (#2209) 2023-12-20 00:04:33 -08:00
31bff69151 Make _prepare_sample non-blocking and use pinned memory for input buffers (#2207) 2023-12-19 16:52:46 -08:00
ba4f826738 [BugFix] Fix weight loading for Mixtral with TP (#2208) 2023-12-19 16:16:11 -08:00
de60a3fb93 Added DeciLM-7b and DeciLM-7b-instruct (#2062) 2023-12-19 02:29:33 -08:00
21d5daa4ac Add warning on CUDA graph memory usage (#2182) 2023-12-18 18:16:17 -08:00
290e015c6c Update Help Text for --gpu-memory-utilization Argument (#2183) 2023-12-18 11:33:24 -08:00
1b7c791d60 [ROCm] Fixes for GPTQ on ROCm (#2180) 2023-12-18 10:41:04 -08:00
bbe4466fd9 [Minor] Fix typo (#2166)
Co-authored-by: John-Saxon <zhang.xiangxuan@oushu.com>
2023-12-17 23:28:49 -08:00
08133c4d1a Add SSL arguments to API servers (#2109) 2023-12-18 10:56:23 +08:00
76a7983b23 [BugFix] Fix RoPE kernel on long sequences(#2164) 2023-12-17 17:09:10 -08:00
8041b7305e [BugFix] Raise error when max_model_len is larger than KV cache (#2163) 2023-12-17 17:08:23 -08:00
3ec8c25cd0 [Docs] Update documentation for gpu-memory-utilization option (#2162) 2023-12-17 10:51:57 -08:00
671af2b1c0 Bump up to v0.2.6 (#2157) 2023-12-17 10:34:56 -08:00
6f41f0e377 Disable CUDA graph for SqueezeLLM (#2161) 2023-12-17 10:24:25 -08:00
2c9b638065 [Minor] Fix a typo in .pt weight support (#2160) 2023-12-17 10:12:44 -08:00
a7347d9a6d Make sampler less blocking (#1889) 2023-12-17 23:03:49 +08:00
f8c688d746 [Minor] Add Phi 2 to supported models (#2159) 2023-12-17 02:54:57 -08:00
c9fadda543 [Minor] Fix xformers version (#2158) 2023-12-17 02:28:02 -08:00
30fb0956df [Minor] Add more detailed explanation on quantization argument (#2145) 2023-12-17 01:56:16 -08:00
3a765bd5e1 Temporarily enforce eager mode for GPTQ models (#2154) 2023-12-17 01:51:12 -08:00
26c52a5ea6 [Docs] Add CUDA graph support to docs (#2148) 2023-12-17 01:49:20 -08:00
c3372e87be Remove dependency on CuPy (#2152) 2023-12-17 01:49:07 -08:00
b0a1d667b0 Pin PyTorch & xformers versions (#2155) 2023-12-17 01:46:54 -08:00
e1d5402238 Fix all-reduce memory usage (#2151) 2023-12-17 01:44:45 -08:00
3d1cfbfc74 [Minor] Delete Llama tokenizer warnings (#2146) 2023-12-16 22:05:18 -08:00
37ca558103 Optimize model execution with CUDA graph (#1926)
Co-authored-by: Chen Shen <scv119@gmail.com>
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2023-12-16 21:12:08 -08:00
Roy
eed74a558f Simplify weight loading logic (#2133) 2023-12-16 12:41:23 -08:00
2acd76f346 [ROCm] Temporarily remove GPTQ ROCm support (#2138) 2023-12-15 17:13:58 -08:00
b81a6a6bb3 [Docs] Add supported quantization methods to docs (#2135) 2023-12-15 13:29:22 -08:00
0fbfc4b81b Add GPTQ support (#916) 2023-12-15 03:04:22 -08:00
c06170cc8e Add a flag to include stop string in output text (#1976) 2023-12-15 00:45:58 -08:00
614856da25 Avoid multiple redefinition (#1817) 2023-12-14 09:35:58 -08:00
05bdf4eaf3 Fix Dockerfile.rocm (#2101)
Co-authored-by: miloice <jeffaw99@hotmail.com>
2023-12-14 00:45:58 -08:00
6774bd50b0 Fix typing in AsyncLLMEngine & add toml to requirements-dev (#2100) 2023-12-14 00:19:41 -08:00
31c1f3255e Bump up to v0.2.5 (#2095) 2023-12-13 23:56:15 -08:00
21d93c140d Optimize Mixtral with expert parallelism (#2090) 2023-12-13 23:55:07 -08:00
f1c8520146 [BugFix] Fix input positions for long context with sliding window (#2088) 2023-12-13 12:28:13 -08:00
096827c284 [Docs] Add notes on ROCm-supported models (#2087) 2023-12-13 09:45:34 -08:00
6565d9e33e Update installation instruction for vLLM + CUDA 11.8 (#2086) 2023-12-13 09:25:59 -08:00
f375ec8440 [ROCm] Upgrade xformers version for ROCm & update doc (#2079)
Co-authored-by: miloice <jeffaw99@hotmail.com>
2023-12-13 00:56:05 -08:00
518369d78c Implement lazy model loader (#2044) 2023-12-12 22:21:45 -08:00
30bad5c492 Fix peak memory profiling (#2031) 2023-12-12 22:01:53 -08:00
3fefe271ec Update Dockerfile to build Megablocks (#2042) 2023-12-12 17:34:17 -08:00
6428f1d051 Support MPT with GQA (#1938)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2023-12-12 10:16:05 -08:00
7e1b21daac Remove einops from requirements (#2049) 2023-12-12 09:34:09 -08:00
cb3f30c600 Upgrade transformers version to 4.36.0 (#2046) 2023-12-11 18:39:14 -08:00
f3e024bece [CI/CD] Upgrade PyTorch version to v2.1.1 (#2045) 2023-12-11 17:48:11 -08:00
31d2ab4aff Remove python 3.10 requirement (#2040) 2023-12-11 12:26:42 -08:00
eb17212858 Update Dockerfile to support Mixtral (#2027) 2023-12-11 11:59:08 -08:00
4dd4b5c538 Bump up to v0.2.4 (#2034) 2023-12-11 11:49:39 -08:00
6120e5aaea Fix import error msg for megablocks (#2038) 2023-12-11 11:40:56 -08:00
Ram
2eaa81b236 Update README.md to add megablocks requirement for mixtral (#2033) 2023-12-11 11:37:34 -08:00
81ce2a4b26 [Minor] Fix type annotation in Mixtral (#2036) 2023-12-11 11:32:39 -08:00
5dd80d3777 Fix latency benchmark script (#2035) 2023-12-11 11:19:08 -08:00
beeee69bc9 Revert adding Megablocks (#2030) 2023-12-11 10:49:00 -08:00
Ram
9bf28d0b69 Update requirements.txt for mixtral (#2029) 2023-12-11 10:39:29 -08:00
c0ce15dfb2 Update run_on_sky.rst (#2025)
sharable -> shareable
2023-12-11 10:32:58 -08:00
b9bcdc7158 Change the load format to pt for Mixtral (#2028) 2023-12-11 10:32:17 -08:00
4ff0203987 Minor fixes for Mixtral (#2015) 2023-12-11 09:16:15 -08:00
b5f882cc98 Mixtral 8x7B support (#2011)
Co-authored-by: Pierre Stock <p@mistral.ai>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-12-11 01:09:15 -08:00
2e8fc0d4c3 Fix completion API echo and logprob combo (#1992) 2023-12-10 13:20:30 -08:00
wbn
dacaf5a400 Replace head_mapping params with num_kv_heads to attention kernel. (#1997)
Co-authored-by: wangguoya <wangguoya@baidu.com>
Co-authored-by: Yang Zhao <zhaoyangstar@foxmail.com>
2023-12-10 10:12:53 -08:00
24cde76a15 [Minor] Add comment on skipping rope caches (#2004) 2023-12-10 10:04:12 -08:00
1aa1361510 Fix OpenAI server completion_tokens referenced before assignment (#1996) 2023-12-09 21:01:21 -08:00
fe470ae5ad [Minor] Fix code style for baichuan (#2003) 2023-12-09 19:24:29 -08:00
3a8c2381f7 Fix for KeyError on Loading LLaMA (#1978) 2023-12-09 15:59:57 -08:00
c85b80c2b6 [Docker] Add cuda arch list as build option (#1950) 2023-12-08 09:53:47 -08:00
2b981012a6 Fix Baichuan2-7B-Chat (#1987) 2023-12-08 09:38:36 -08:00
6ccc0bfffb Merge EmbeddedLLM/vllm-rocm into vLLM main (#1836)
Co-authored-by: Philipp Moritz <pcmoritz@gmail.com>
Co-authored-by: Amir Balwel <amoooori04@gmail.com>
Co-authored-by: root <kuanfu.liu@akirakan.com>
Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: kuanfu <kuanfu.liu@embeddedllm.com>
Co-authored-by: miloice <17350011+kliuae@users.noreply.github.com>
2023-12-07 23:16:52 -08:00
c8e7eb1eb3 fix typo in getenv call (#1972) 2023-12-07 16:04:41 -08:00
24f60a54f4 [Docker] Adding number of nvcc_threads during build as envar (#1893) 2023-12-07 11:00:32 -08:00
42c02f5892 Fix quickstart.rst typo jinja (#1964) 2023-12-07 08:34:44 -08:00
ebede26ebf Make InternLM follow rope_scaling in config.json (#1956)
Co-authored-by: lijie8 <lijie8@sensetime.com>
2023-12-07 08:32:08 -08:00
d940ce497e Fix typo in adding_model.rst (#1947)
adpated -> adapted
2023-12-06 10:04:26 -08:00
05ff90b692 Save pytorch profiler output for latency benchmark (#1871)
* Save profiler output

* Apply feedback from code review
2023-12-05 20:55:55 -08:00
1d9b737e05 Support ChatGLMForConditionalGeneration (#1932)
Co-authored-by: shujunhua1 <shujunhua1@jd.com>
2023-12-05 10:52:48 -08:00
Roy
60dc62dc9e add custom server params (#1868) 2023-12-03 12:59:18 -08:00
0f90effc66 Bump up to v0.2.3 (#1903) 2023-12-03 12:27:47 -08:00
464dd985e3 Fix num_gpus when TP > 1 (#1852) 2023-12-03 12:24:30 -08:00
c07a442854 chore(examples-docs): upgrade to OpenAI V1 (#1785) 2023-12-03 01:11:22 -08:00
cd3aa153a4 Fix broken worker test (#1900) 2023-12-02 22:17:33 -08:00
9b294976a2 Add PyTorch-native implementation of custom layers (#1898) 2023-12-02 21:18:40 -08:00
5313c2cb8b Add Production Metrics in Prometheus format (#1890) 2023-12-02 16:37:44 -08:00
5f09cbdb63 Fix broken sampler tests (#1896)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2023-12-02 16:06:17 -08:00
4cefa9b49b [Docs] Update the AWQ documentation to highlight performance issue (#1883) 2023-12-02 15:52:47 -08:00
f86bd6190a Fix the typo in SamplingParams' docstring (#1886) 2023-12-01 02:06:36 -08:00
e5452ddfd6 Normalize head weights for Baichuan 2 (#1876) 2023-11-30 20:03:58 -08:00
d06980dfa7 Fix Baichuan tokenizer error (#1874) 2023-11-30 18:35:50 -08:00
66785cc05c Support chat template and echo for chat API (#1756) 2023-11-30 16:43:13 -08:00
05a38612b0 docs: add instruction for langchain (#1162) 2023-11-30 10:57:44 -08:00
Roy
d27f4bae39 Fix rope cache key error (#1867) 2023-11-30 08:29:28 -08:00
8d8c2f6ffe Support max-model-len argument for throughput benchmark (#1858) 2023-11-30 08:10:24 -08:00
51d3cb951d Remove max_num_seqs in latency benchmark script (#1855) 2023-11-30 00:00:32 -08:00
e74b1736a1 Add profile option to latency benchmark script (#1839) 2023-11-29 23:42:52 -08:00
f07c1ceaa5 [FIX] Fix docker build error (#1831) (#1832)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2023-11-29 23:06:50 -08:00
63b2206ad0 Avoid multiple instantiations of the RoPE class (#1828) 2023-11-29 23:06:27 -08:00
27feead2f8 Refactor Worker & InputMetadata (#1843) 2023-11-29 22:16:37 -08:00
c782195662 Disable Logs Requests should Disable Logging of requests. (#1779)
Co-authored-by: Michael McCulloch <mjm.gitlab@fastmail.com>
2023-11-29 21:50:02 -08:00
0f621c2c7d [Docs] Add information about using shared memory in docker (#1845) 2023-11-29 18:33:56 -08:00
a9e4574261 Refactor Attention (#1840) 2023-11-29 15:37:31 -08:00
0229c386c5 Better integration with Ray Serve (#1821)
Co-authored-by: FlorianJoncour <florian@zetta-sys.com>
2023-11-29 13:25:43 -08:00
a7b3e33078 [Fix] Fix RoPE in ChatGLM-32K (#1841) 2023-11-29 13:01:19 -08:00
e19a64c7ef [FIX] Fix formatting error in main branch (#1822) 2023-11-28 16:56:43 -08:00
1cb4ad8de9 [FIX] Fix formatting error 2023-11-29 00:40:19 +00:00
6ed068a71a Use the type BlockTable (#1791) 2023-11-28 16:34:05 -08:00
708e6c18b0 [FIX] Fix class naming (#1803) 2023-11-28 14:08:01 -08:00
b943890484 Fix OPT param names (#1819) 2023-11-28 11:22:44 -08:00
a1125ad4df Correct comments in parallel_state.py (#1818) 2023-11-28 10:19:35 -08:00
a8b150c595 Init model on GPU to reduce CPU memory footprint (#1796) 2023-11-27 11:18:26 -08:00
665cbcec4b Added echo function to OpenAI API server. (#1504) 2023-11-26 21:29:17 -08:00
7c600440f7 Fix model docstrings (#1764) 2023-11-23 23:04:44 -08:00
e0c6f556e8 [Build] Avoid building too many extensions (#1624) 2023-11-23 16:31:19 -08:00
de23687d16 Fix repetition penalty aligned with huggingface (#1577) 2023-11-22 14:41:44 -08:00
4cea74c73b Set top_p=0 and top_k=-1 in greedy sampling (#1748) 2023-11-22 12:51:09 -08:00
a921d8be9d [DOCS] Add engine args documentation (#1741) 2023-11-22 12:31:27 -08:00
094f716bf2 Add stop_token_ids in SamplingParams.__repr__ (#1745) 2023-11-21 20:13:53 -08:00
7d761fe3c1 [FIX] Fix the case when input_is_parallel=False for ScaledActivation (#1737) 2023-11-20 23:56:48 -08:00
cf35d8f3d7 [BugFix] Fix TP support for AWQ (#1731) 2023-11-20 21:42:45 -08:00
4bb6b67188 fix RAM OOM when load large models in tensor parallel mode. (#1395)
Co-authored-by: ran_lin <rlin@thoughtworks.com>
2023-11-20 19:02:42 -08:00
819b18e7ba Rewrite torch.repeat_interleave to remove cpu synchronization (#1599) 2023-11-20 17:46:32 -08:00
19849db573 [Fix] Fix bugs in scheduler (#1727) 2023-11-20 16:10:50 -08:00
3d4ceb292c Fix hanging in the scheduler caused by long prompts (#1534) 2023-11-20 16:06:49 -08:00
f5a37c6c6c [BugFix] Fix a bug in loading safetensors (#1732) 2023-11-20 15:51:18 -08:00
32c927b53f [FIX] Update the doc link in README.md (#1730) 2023-11-20 12:46:24 -08:00
5ffc0d13a2 Migrate linter from pylint to ruff (#1665) 2023-11-20 11:58:01 -08:00
112627e8b2 [Docs] Fix the code block's format in deploying_with_docker page (#1722) 2023-11-20 01:22:39 -08:00
37c1e3c218 Documentation about official docker image (#1709) 2023-11-19 20:56:26 -08:00
06e9ebebd5 Add instructions to install vLLM+cu118 (#1717) 2023-11-18 23:48:58 -08:00
c5f7740d89 Bump up to v0.2.2 (#1689) 2023-11-18 21:57:07 -08:00
be66d9b125 Fix warning msg on quantization (#1715) 2023-11-18 21:49:55 -08:00
e1054247ba [Optimization] Implement fused add rmsnorm (#1667) 2023-11-18 18:18:02 -08:00
8d17774f92 Add AWQ support for all models (#1714) 2023-11-18 17:56:47 -08:00
e946260cf3 use get_tensor in safe_open (#1696) 2023-11-18 16:45:18 -08:00
edb305584b Support download models from www.modelscope.cn (#1588) 2023-11-17 20:38:31 -08:00
bb00f66e19 Use quantization_config in hf config (#1695) 2023-11-17 16:23:49 -08:00
Roy
e87557b069 Support Min P Sampler (#1642) 2023-11-17 16:20:49 -08:00
dcc543a298 [Minor] Fix comment (#1704) 2023-11-17 09:42:49 -08:00
0fc280b06c Update the adding-model doc according to the new refactor (#1692) 2023-11-16 18:46:26 -08:00
20d0699d49 [Fix] Fix comm test (#1691) 2023-11-16 16:28:39 -08:00
686f5e3210 Return usage for openai streaming requests (#1663) 2023-11-16 15:28:36 -08:00
415d109527 [Fix] Update Supported Models List (#1690) 2023-11-16 14:47:26 -08:00
521b35f799 Support Microsoft Phi 1.5 (#1664) 2023-11-16 14:28:39 -08:00
cb08cd0d75 [Minor] Fix duplication of ignored seq group in engine step (#1666) 2023-11-16 13:11:41 -08:00
2a2c135b41 Fix loading error when safetensors contains empty tensor (#1687) 2023-11-16 10:38:10 -08:00
65ea2ddf17 feat(config): support parsing torch.dtype (#1641)
Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
2023-11-16 01:31:06 -08:00
b514d3c496 Revert MptConfig to MPTConfig (#1668) 2023-11-16 01:19:39 -08:00
7076fa1c9f TP/quantization/weight loading refactor part 2 - Refactor quantized linear logic and extend quantization support to all models (#1622)
Refactor the tensor parallelism, quantization, and weight-loading codes.

Summary of the new features enabled by this PR:
- **All models** are able to be quantized with AWQ and SqueezeLLM, and [soon GPTQ](https://github.com/vllm-project/vllm/pull/1580).
- Model loading code became much simpler.
- Support model parallelism for all MQA/GQA models when the number of key/value heads is smaller than the tensor parallel size.
2023-11-15 22:50:41 -08:00
660a7fcfa4 Add DeepSpeed MII backend to benchmark script (#1649) 2023-11-14 12:35:30 -08:00
054072bee5 [Minor] Move RoPE selection logic to get_rope (#1633) 2023-11-12 16:04:50 -08:00
eb825c1e74 Fix #1474 - AssertionError:assert param_slice.shape == loaded_weight.shape (#1631) 2023-11-12 15:53:12 -08:00
1b290ace4f Run default _AsyncLLMEngine._run_workers_async in threadpool (#1628) 2023-11-11 14:50:44 -08:00
Sin
0d578228ca config parser: add ChatGLM2 seq_length to _get_and_verify_max_len (#1617) 2023-11-09 19:29:51 -08:00
aebfcb262a Dockerfile: Upgrade Cuda to 12.1 (#1609) 2023-11-09 11:49:02 -08:00
ab9e8488d5 Add Yi model to quantization support (#1600) 2023-11-09 11:47:14 -08:00
fd58b73a40 Build CUDA11.8 wheels for release (#1596) 2023-11-09 03:52:29 -08:00
8efe23f150 Fix input_metadata.selected_token_indices in worker prepare_inputs (#1546) 2023-11-08 14:19:12 -08:00
06458a0b42 Upgrade to CUDA 12 (#1527)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2023-11-08 14:17:49 -08:00
1a2bbc9301 ChatGLM Support (#1261) 2023-11-06 16:09:33 -08:00
Roy
e7f579eb97 Support Yi model (#1567) 2023-11-06 15:26:03 -08:00
8516999495 Add Quantization and AutoAWQ to docs (#1235) 2023-11-04 22:43:39 -07:00
9f669a9a7c Support YaRN models (#1264)
Signed-off-by: Antoni Baum <antoni.baum@protonmail.com>
Co-authored-by: Viktor Ferenczi <viktor@ferenczi.eu>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2023-11-03 14:12:48 -07:00
555bdcc5a3 Added logits processor API to sampling params (#1469) 2023-11-03 14:12:15 -07:00
54ca1ba71d docs: add description (#1553) 2023-11-03 09:14:52 -07:00
9738b84a08 Force paged attention v2 for long contexts (#1510) 2023-11-01 16:24:32 -07:00
1fe0990023 Remove MPTConfig (#1529) 2023-11-01 15:29:05 -07:00
7e90a2d117 Add /health Endpoint for both Servers (#1540) 2023-11-01 10:29:44 -07:00
5687d584fe [BugFix] Set engine_use_ray=True when TP>1 (#1531) 2023-11-01 02:14:18 -07:00
cf8849f2d6 Add MptForCausalLM key in model_loader (#1526) 2023-10-31 15:46:53 -07:00
e575df33b1 [Small] Formatter only checks lints in changed files (#1528) 2023-10-31 15:39:38 -07:00
0ce8647dc5 Fix integer overflows in attention & cache ops (#1514) 2023-10-31 15:19:30 -07:00
9cabcb7645 Add Dockerfile (#1350) 2023-10-31 12:36:47 -07:00
7b895c5976 [Fix] Fix duplicated logging messages (#1524) 2023-10-31 09:04:47 -07:00
7013a80170 Add support for spaces_between_special_tokens 2023-10-30 16:52:56 -07:00
79a30912b8 Add py.typed so consumers of vLLM can get type checking (#1509)
* Add py.typed so consumers of vLLM can get type checking

* Update py.typed

---------
Co-authored-by: aarnphm <29749331+aarnphm@users.noreply.github.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-10-30 14:50:47 -07:00
2f3d36a8a1 Fix logging so we actually get info level entries in the log. (#1494) 2023-10-30 10:02:21 -07:00
ac8d36f3e5 Refactor LLMEngine demo script for clarity and modularity (#1413)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-10-30 09:14:37 -07:00
15f5632365 Delay GPU->CPU sync in sampling (#1337) 2023-10-30 09:01:34 -07:00
aa9af07cac Fix bias in InternLM (#1501) 2023-10-29 16:24:18 -07:00
69be658bba Support repetition_penalty (#1424) 2023-10-29 10:02:41 -07:00
beac8dd461 fix: don't skip first special token. (#1497) 2023-10-29 04:26:36 -07:00
28b47d1e49 Add rope_scaling to Aquila model (#1457) 2023-10-29 04:25:21 -07:00
1f24755bf8 Support SqueezeLLM (#1326)
Co-authored-by: squeeze-ai-lab <squeezeailab.bair@gmail.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2023-10-21 23:14:59 -07:00
bf31d3606a Pin pydantic dependency versions (#1429) 2023-10-21 11:18:58 -07:00
d189170b6c remove useless statements (#1408) 2023-10-20 08:52:07 -07:00
f61dc8072f Fix type hints (#1427) 2023-10-20 08:50:47 -07:00
f8a1e39fae [BugFix] Define __eq__ in SequenceGroupOutputs (#1389) 2023-10-17 01:09:44 -07:00
a132435204 Fix typo (#1383) 2023-10-16 21:53:37 -07:00
9524867701 Add Mistral 7B to test_models (#1366) 2023-10-16 17:49:54 -07:00
c1376e0f82 Change scheduler & input tensor shape (#1381) 2023-10-16 17:48:42 -07:00
571 changed files with 94167 additions and 10790 deletions

View File

@ -0,0 +1,36 @@
import os
import zipfile
MAX_SIZE_MB = 100
def print_top_10_largest_files(zip_file):
with zipfile.ZipFile(zip_file, 'r') as z:
file_sizes = [(f, z.getinfo(f).file_size) for f in z.namelist()]
file_sizes.sort(key=lambda x: x[1], reverse=True)
for f, size in file_sizes[:10]:
print(f"{f}: {size/(1024*1024)} MBs uncompressed.")
def check_wheel_size(directory):
for root, _, files in os.walk(directory):
for f in files:
if f.endswith(".whl"):
wheel_path = os.path.join(root, f)
wheel_size = os.path.getsize(wheel_path)
wheel_size_mb = wheel_size / (1024 * 1024)
if wheel_size_mb > MAX_SIZE_MB:
print(
f"Wheel {wheel_path} is too large ({wheel_size_mb} MB) "
f"compare to the allowed size ({MAX_SIZE_MB} MB).")
print_top_10_largest_files(wheel_path)
return 1
else:
print(f"Wheel {wheel_path} is within the allowed size "
f"({wheel_size_mb} MB).")
return 0
if __name__ == "__main__":
import sys
sys.exit(check_wheel_size(sys.argv[1]))

View File

@ -0,0 +1,18 @@
#!/bin/bash
set -ex
set -o pipefail
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
# aws s3 sync s3://air-example-data-2/vllm_opensource_llava/ images/
mkdir -p images
cd images
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/stop_sign_pixel_values.pt
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/stop_sign_image_features.pt
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/cherry_blossom_pixel_values.pt
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/cherry_blossom_image_features.pt
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/stop_sign.jpg
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/cherry_blossom.jpg
cd -

View File

@ -0,0 +1,44 @@
# This script build the ROCm docker image and runs test inside it.
set -ex
# Print ROCm version
echo "--- ROCm info"
rocminfo
echo "--- Resetting GPUs"
echo "reset" > /opt/amdgpu/etc/gpu_state
while true; do
sleep 3
if grep -q clean /opt/amdgpu/etc/gpu_state; then
echo "GPUs state is \"clean\""
break
fi
done
echo "--- Building container"
sha=$(git rev-parse --short HEAD)
container_name=rocm_${sha}
docker build \
-t ${container_name} \
-f Dockerfile.rocm \
--progress plain \
.
remove_docker_container() {
docker rm -f ${container_name} || docker image rm -f ${container_name} || true
}
trap remove_docker_container EXIT
echo "--- Running container"
docker run \
--device /dev/kfd --device /dev/dri \
--network host \
--rm \
-e HF_TOKEN \
--name ${container_name} \
${container_name} \
/bin/bash -c $(echo $1 | sed "s/^'//" | sed "s/'$//")

View File

@ -0,0 +1,77 @@
# This script is run by buildkite to run the benchmarks and upload the results to buildkite
set -ex
set -o pipefail
# cd into parent directory of this file
cd "$(dirname "${BASH_SOURCE[0]}")/.."
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
# run python-based benchmarks and upload the result to buildkite
python3 benchmarks/benchmark_latency.py 2>&1 | tee benchmark_latency.txt
bench_latency_exit_code=$?
python3 benchmarks/benchmark_throughput.py --input-len 256 --output-len 256 2>&1 | tee benchmark_throughput.txt
bench_throughput_exit_code=$?
# run server-based benchmarks and upload the result to buildkite
python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-chat-hf &
server_pid=$!
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
# wait for server to start, timeout after 600 seconds
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name sharegpt \
--dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json \
--model meta-llama/Llama-2-7b-chat-hf \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer meta-llama/Llama-2-7b-chat-hf \
--save-result \
2>&1 | tee benchmark_serving.txt
bench_serving_exit_code=$?
kill $server_pid
# write the results into a markdown file
echo "### Latency Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_latency.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
sed -n '$p' benchmark_latency.txt >> benchmark_results.md # last line
echo "### Throughput Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_throughput.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
sed -n '$p' benchmark_throughput.txt >> benchmark_results.md # last line
echo "### Serving Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_serving.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
echo '```' >> benchmark_results.md
tail -n 20 benchmark_serving.txt >> benchmark_results.md # last 20 lines
echo '```' >> benchmark_results.md
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
exit 0
fi
# upload the results to buildkite
/workspace/buildkite-agent annotate --style "info" --context "benchmark-results" < benchmark_results.md
# exit with the exit code of the benchmarks
if [ $bench_latency_exit_code -ne 0 ]; then
exit $bench_latency_exit_code
fi
if [ $bench_throughput_exit_code -ne 0 ]; then
exit $bench_throughput_exit_code
fi
if [ $bench_serving_exit_code -ne 0 ]; then
exit $bench_serving_exit_code
fi
/workspace/buildkite-agent artifact upload openai-*.json

View File

@ -0,0 +1,14 @@
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Try building the docker image
docker build -t cpu-test -f Dockerfile.cpu .
# Setup cleanup
remove_docker_container() { docker rm -f cpu-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --network host --env VLLM_CPU_KVCACHE_SPACE=1 --name cpu-test cpu-test python3 examples/offline_inference.py

View File

@ -0,0 +1,51 @@
# This script build the Neuron docker image and run the API server inside the container.
# It serves a sanity check for compilation and basic model usage.
set -e
# Try building the docker image
aws ecr get-login-password --region us-west-2 | docker login --username AWS --password-stdin 763104351884.dkr.ecr.us-west-2.amazonaws.com
# prune old image and containers to save disk space, and only once a day
# by using a timestamp file in tmp.
if [ -f /tmp/neuron-docker-build-timestamp ]; then
last_build=$(cat /tmp/neuron-docker-build-timestamp)
current_time=$(date +%s)
if [ $((current_time - last_build)) -gt 86400 ]; then
docker system prune -f
echo $current_time > /tmp/neuron-docker-build-timestamp
fi
else
echo $(date +%s) > /tmp/neuron-docker-build-timestamp
fi
docker build -t neuron -f Dockerfile.neuron .
# Setup cleanup
remove_docker_container() { docker rm -f neuron || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image
docker run --device=/dev/neuron0 --device=/dev/neuron1 --network host --name neuron neuron python3 -m vllm.entrypoints.api_server \
--model TinyLlama/TinyLlama-1.1B-Chat-v1.0 --max-num-seqs 8 --max-model-len 128 --block-size 128 --device neuron --tensor-parallel-size 2 &
# Wait for the server to start
wait_for_server_to_start() {
timeout=300
counter=0
while [ "$(curl -s -o /dev/null -w ''%{http_code}'' localhost:8000/health)" != "200" ]; do
sleep 1
counter=$((counter + 1))
if [ $counter -ge $timeout ]; then
echo "Timeout after $timeout seconds"
break
fi
done
}
wait_for_server_to_start
# Test a simple prompt
curl -X POST -H "Content-Type: application/json" \
localhost:8000/generate \
-d '{"prompt": "San Francisco is a"}'

View File

@ -0,0 +1,132 @@
# In this file, you can add more tests to run either by adding a new step or
# adding a new command to an existing step. See different options here for examples.
# This script will be feed into Jinja template in `test-template.j2` to generate
# the final pipeline yaml file.
steps:
- label: Regression Test
command: pytest -v -s test_regression.py
working_dir: "/vllm-workspace/tests" # optional
- label: AsyncEngine Test
command: pytest -v -s async_engine
- label: Basic Correctness Test
commands:
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_basic_correctness.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_basic_correctness.py
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Core Test
mirror_hardwares: [amd]
command: pytest -v -s core
- label: Distributed Comm Ops Test
command: pytest -v -s test_comm_ops.py
working_dir: "/vllm-workspace/tests/distributed"
num_gpus: 2
- label: Distributed Tests
working_dir: "/vllm-workspace/tests/distributed"
num_gpus: 2 # only support 1 or 2 for now.
mirror_hardwares: [amd]
commands:
- pytest -v -s test_pynccl_library.py
- TEST_DIST_MODEL=facebook/opt-125m pytest -v -s test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf pytest -v -s test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m pytest -v -s test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf pytest -v -s test_chunked_prefill_distributed.py
- label: Distributed Tests (Multiple Groups)
working_dir: "/vllm-workspace/tests/distributed"
num_gpus: 4
commands:
- pytest -v -s test_pynccl.py
- label: Engine Test
mirror_hardwares: [amd]
command: pytest -v -s engine tokenization test_sequence.py test_config.py test_logger.py
- label: Entrypoints Test
commands:
# these tests have to be separated, because each one will allocate all posible GPU memory
- pytest -v -s entrypoints --ignore=entrypoints/test_server_oot_registration.py
- pytest -v -s entrypoints/test_server_oot_registration.py
- label: Examples Test
working_dir: "/vllm-workspace/examples"
mirror_hardwares: [amd]
commands:
# install aws cli for llava_example.py
- pip install awscli
- python3 offline_inference.py
- python3 offline_inference_with_prefix.py
- python3 llm_engine_example.py
- python3 llava_example.py
- label: Kernels Test %N
command: pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 4
- label: Models Test
mirror_hardwares: [amd]
commands:
- bash ../.buildkite/download-images.sh
- pytest -v -s models --ignore=models/test_llava.py --ignore=models/test_mistral.py
- label: Llava Test
mirror_hardwares: [amd]
commands:
- bash ../.buildkite/download-images.sh
- pytest -v -s models/test_llava.py
- label: Prefix Caching Test
mirror_hardwares: [amd]
commands:
- pytest -v -s prefix_caching
- label: Samplers Test
command: pytest -v -s samplers
- label: LogitsProcessor Test
mirror_hardwares: [amd]
command: pytest -v -s test_logits_processor.py
- label: Worker Test
mirror_hardwares: [amd]
command: pytest -v -s worker
- label: Speculative decoding tests
mirror_hardwares: [amd]
command: pytest -v -s spec_decode
- label: LoRA Test %N
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 4
- label: Tensorizer Test
command: apt-get install curl libsodium23 && pytest -v -s tensorizer_loader
- label: Metrics Test
command: pytest -v -s metrics
- label: Quantization Test
command: pytest -v -s quantization
- label: Benchmarks
working_dir: "/vllm-workspace/.buildkite"
mirror_hardwares: [amd]
commands:
- pip install aiohttp
- bash run-benchmarks.sh
- label: Documentation Build
working_dir: "/vllm-workspace/test_docs/docs"
no_gpu: True
commands:
- pip install -r requirements-docs.txt
- SPHINXOPTS=\"-W\" make html

View File

@ -0,0 +1,90 @@
{% set docker_image = "us-central1-docker.pkg.dev/vllm-405802/vllm-ci-test-repo/vllm-test:$BUILDKITE_COMMIT" %}
{% set default_num_gpu = 1 %}
{% set default_working_dir = "/vllm-workspace/tests" %}
steps:
- label: ":docker: build image"
commands:
- "docker build --build-arg max_jobs=16 --tag {{ docker_image }} --target test --progress plain ."
- "docker push {{ docker_image }}"
env:
DOCKER_BUILDKIT: "1"
retry:
automatic:
- exit_status: -1 # Agent was lost
limit: 5
- wait
- group: "AMD Tests"
depends_on: ~
steps:
{% for step in steps %}
{% if step.mirror_hardwares and "amd" in step.mirror_hardwares %}
- label: "AMD: {{ step.label }}"
agents:
queue: amd
command: bash .buildkite/run-amd-test.sh "'cd {{ (step.working_dir or default_working_dir) | safe }} && {{ step.command or (step.commands | join(' && ')) | safe }}'"
env:
DOCKER_BUILDKIT: "1"
{% endif %}
{% endfor %}
- label: "Neuron Test"
depends_on: ~
agents:
queue: neuron
command: bash .buildkite/run-neuron-test.sh
soft_fail: true
- label: "Intel Test"
depends_on: ~
command: bash .buildkite/run-cpu-test.sh
{% for step in steps %}
- label: "{{ step.label }}"
agents:
queue: kubernetes
soft_fail: {{ step.soft_fail or false }}
{% if step.parallelism %}
parallelism: {{ step.parallelism }}
{% endif %}
retry:
automatic:
- exit_status: -1 # Agent was lost
limit: 5
plugins:
- kubernetes:
podSpec:
{% if step.num_gpus %}
priorityClassName: gpu-priority-cls-{{ step.num_gpus }}
{% endif %}
volumes:
- name: dshm
emptyDir:
medium: Memory
containers:
- image: "{{ docker_image }}"
command: ["bash"]
args:
- '-c'
- "'cd {{ (step.working_dir or default_working_dir) | safe }} && {{ step.command or (step.commands | join(' && ')) | safe }}'"
{% if not step.no_gpu %}
resources:
requests:
nvidia.com/gpu: "{{ step.num_gpus or default_num_gpu }}"
limits:
nvidia.com/gpu: "{{ step.num_gpus or default_num_gpu }}"
{% endif %}
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
volumeMounts:
- mountPath: /dev/shm
name: dshm
{% endfor %}

1
.dockerignore Normal file
View File

@ -0,0 +1 @@
vllm/*.so

View File

@ -0,0 +1,22 @@
name: 📚 Documentation
description: Report an issue related to https://docs.vllm.ai/
title: "[Doc]: "
labels: ["documentation"]
body:
- type: textarea
attributes:
label: 📚 The doc issue
description: >
A clear and concise description of what content in https://docs.vllm.ai/ is an issue.
validations:
required: true
- type: textarea
attributes:
label: Suggest a potential alternative/fix
description: >
Tell us how we could improve the documentation in this regard.
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

View File

@ -0,0 +1,40 @@
name: 🛠️ Installation
description: Report an issue here when you hit errors during installation.
title: "[Installation]: "
labels: ["installation"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Your current environment
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
```text
The output of `python collect_env.py`
```
validations:
required: true
- type: textarea
attributes:
label: How you are installing vllm
description: |
Paste the full command you are trying to execute.
value: |
```sh
pip install -vvv vllm
```
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

38
.github/ISSUE_TEMPLATE/300-usage.yml vendored Normal file
View File

@ -0,0 +1,38 @@
name: 💻 Usage
description: Raise an issue here if you don't know how to use vllm.
title: "[Usage]: "
labels: ["usage"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Your current environment
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
```text
The output of `python collect_env.py`
```
validations:
required: true
- type: textarea
attributes:
label: How would you like to use vllm
description: |
A detailed description of how you want to use vllm.
value: |
I want to run inference of a [specific model](put link here). I don't know how to integrate it with vllm.
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

View File

@ -0,0 +1,84 @@
name: 🐛 Bug report
description: Raise an issue here if you find a bug.
title: "[Bug]: "
labels: ["bug"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Your current environment
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
```text
The output of `python collect_env.py`
```
validations:
required: true
- type: textarea
attributes:
label: 🐛 Describe the bug
description: |
Please provide a clear and concise description of what the bug is.
If relevant, add a minimal example so that we can reproduce the error by running the code. It is very important for the snippet to be as succinct (minimal) as possible, so please take time to trim down any irrelevant code to help us debug efficiently. We are going to copy-paste your code and we expect to get the same result as you did: avoid any external data, and include the relevant imports, etc. For example:
```python
from vllm import LLM, SamplingParams
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="facebook/opt-125m")
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
If the code is too long (hopefully, it isn't), feel free to put it in a public gist and link it in the issue: https://gist.github.com.
Please also paste or describe the results you observe instead of the expected results. If you observe an error, please paste the error message including the **full** traceback of the exception. It may be relevant to wrap error messages in ```` ```triple quotes blocks``` ````.
If you experienced crashes or hangs, it would be helpful to run vllm with `export VLLM_TRACE_FUNCTION=1` . All the function calls in vllm will be recorded. Inspect these log files, and tell which function crashes or hangs.
placeholder: |
A clear and concise description of what the bug is.
```python
# Sample code to reproduce the problem
```
```
The error message you got, with the full traceback.
```
validations:
required: true
- type: markdown
attributes:
value: >
⚠️ Please separate bugs of `transformers` implementation or usage from bugs of `vllm`. If you think anything is wrong with the models' output:
- Try the counterpart of `transformers` first. If the error appears, please go to [their issues](https://github.com/huggingface/transformers/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc).
- If the error only appears in vllm, please provide the detailed script of how you run `transformers` and `vllm`, also highlight the difference and what you expect.
Thanks for contributing 🎉!

View File

@ -0,0 +1,31 @@
name: 🚀 Feature request
description: Submit a proposal/request for a new vllm feature
title: "[Feature]: "
labels: ["feature request"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: 🚀 The feature, motivation and pitch
description: >
A clear and concise description of the feature proposal. Please outline the motivation for the proposal. Is your feature request related to a specific problem? e.g., *"I'm working on X and would like Y to be possible"*. If this is related to another GitHub issue, please link here too.
validations:
required: true
- type: textarea
attributes:
label: Alternatives
description: >
A description of any alternative solutions or features you've considered, if any.
- type: textarea
attributes:
label: Additional context
description: >
Add any other context or screenshots about the feature request.
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

View File

@ -0,0 +1,33 @@
name: 🤗 Support request for a new model from huggingface
description: Submit a proposal/request for a new model from huggingface
title: "[New Model]: "
labels: ["new model"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
#### We also highly recommend you read https://docs.vllm.ai/en/latest/models/adding_model.html first to understand how to add a new model.
- type: textarea
attributes:
label: The model to consider.
description: >
A huggingface url, pointing to the model, e.g. https://huggingface.co/openai-community/gpt2 .
validations:
required: true
- type: textarea
attributes:
label: The closest model vllm already supports.
description: >
Here is the list of models already supported by vllm: https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/models . Which model is the most similar to the model you want to add support for?
- type: textarea
attributes:
label: What's your difficulty of supporting the model you want?
description: >
For example, any new operators or new architecture?
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

View File

@ -0,0 +1,52 @@
name: ⚡ Discussion on the performance of vllm
description: Submit a proposal/discussion about the performance of vllm
title: "[Performance]: "
labels: ["performance"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Proposal to improve performance
description: >
How do you plan to improve vllm's performance?
validations:
required: false
- type: textarea
attributes:
label: Report of performance regression
description: >
Please provide detailed description of performance comparison to confirm the regression. You may want to run the benchmark script at https://github.com/vllm-project/vllm/tree/main/benchmarks .
validations:
required: false
- type: textarea
attributes:
label: Misc discussion on performance
description: >
Anything about the performance.
validations:
required: false
- type: textarea
attributes:
label: Your current environment (if you think it is necessary)
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
```text
The output of `python collect_env.py`
```
validations:
required: false
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

49
.github/ISSUE_TEMPLATE/750-RFC.yml vendored Normal file
View File

@ -0,0 +1,49 @@
name: 💬 Request for comments (RFC).
description: Ask for feedback on major architectural changes or design choices.
title: "[RFC]: "
labels: ["RFC"]
body:
- type: markdown
attributes:
value: >
#### Please take a look at previous [RFCs](https://github.com/vllm-project/vllm/issues?q=label%3ARFC+sort%3Aupdated-desc) for reference.
- type: textarea
attributes:
label: Motivation.
description: >
The motivation of the RFC.
validations:
required: true
- type: textarea
attributes:
label: Proposed Change.
description: >
The proposed change of the RFC.
validations:
required: true
- type: textarea
attributes:
label: Feedback Period.
description: >
The feedback period of the RFC. Usually at least one week.
validations:
required: false
- type: textarea
attributes:
label: CC List.
description: >
The list of people you want to CC.
validations:
required: false
- type: textarea
attributes:
label: Any Other Things.
description: >
Any other things you would like to mention.
validations:
required: false
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

View File

@ -0,0 +1,21 @@
name: 🎲 Misc/random discussions that do not fit into the above categories.
description: Submit a discussion as you like. Note that developers are heavily overloaded and we mainly rely on community users to answer these issues.
title: "[Misc]: "
labels: ["misc"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Anything you want to discuss about vllm.
description: >
Anything you want to discuss about vllm.
validations:
required: true
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

1
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@ -0,0 +1 @@
blank_issues_enabled: false

64
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@ -0,0 +1,64 @@
FILL IN THE PR DESCRIPTION HERE
FIX #xxxx (*link existing issues this PR will resolve*)
**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**
---
<details>
<!-- inside this <details> section, markdown rendering does not work, so we use raw html here. -->
<summary><b> PR Checklist (Click to Expand) </b></summary>
<p>Thank you for your contribution to vLLM! Before submitting the pull request, please ensure the PR meets the following criteria. This helps vLLM maintain the code quality and improve the efficiency of the review process.</p>
<h3>PR Title and Classification</h3>
<p>Only specific types of PRs will be reviewed. The PR title is prefixed appropriately to indicate the type of change. Please use one of the following:</p>
<ul>
<li><code>[Bugfix]</code> for bug fixes.</li>
<li><code>[CI/Build]</code> for build or continuous integration improvements.</li>
<li><code>[Doc]</code> for documentation fixes and improvements.</li>
<li><code>[Model]</code> for adding a new model or improving an existing model. Model name should appear in the title.</li>
<li><code>[Frontend]</code> For changes on the vLLM frontend (e.g., OpenAI API server, <code>LLM</code> class, etc.) </li>
<li><code>[Kernel]</code> for changes affecting CUDA kernels or other compute kernels.</li>
<li><code>[Core]</code> for changes in the core vLLM logic (e.g., <code>LLMEngine</code>, <code>AsyncLLMEngine</code>, <code>Scheduler</code>, etc.)</li>
<li><code>[Hardware][Vendor]</code> for hardware-specific changes. Vendor name should appear in the prefix (e.g., <code>[Hardware][AMD]</code>).</li>
<li><code>[Misc]</code> for PRs that do not fit the above categories. Please use this sparingly.</li>
</ul>
<p><strong>Note:</strong> If the PR spans more than one category, please include all relevant prefixes.</p>
<h3>Code Quality</h3>
<p>The PR need to meet the following code quality standards:</p>
<ul>
<li>We adhere to <a href="https://google.github.io/styleguide/pyguide.html">Google Python style guide</a> and <a href="https://google.github.io/styleguide/cppguide.html">Google C++ style guide</a>.</li>
<li>Pass all linter checks. Please use <a href="https://github.com/vllm-project/vllm/blob/main/format.sh"><code>format.sh</code></a> to format your code.</li>
<li>The code need to be well-documented to ensure future contributors can easily understand the code.</li>
<li>Include sufficient tests to ensure the project to stay correct and robust. This includes both unit tests and integration tests.</li>
<li>Please add documentation to <code>docs/source/</code> if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.</li>
</ul>
<h3>Notes for Large Changes</h3>
<p>Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with <code>rfc-required</code> and might not go through the PR.</p>
<h3>What to Expect for the Reviews</h3>
<p>The goal of the vLLM team is to be a <i>transparent reviewing machine</i>. We would like to make the review process transparent and efficient and make sure no contributor feel confused or frustrated. However, the vLLM team is small, so we need to prioritize some PRs over others. Here is what you can expect from the review process: </p>
<ul>
<li> After the PR is submitted, the PR will be assigned to a reviewer. Every reviewer will pick up the PRs based on their expertise and availability.</li>
<li> After the PR is assigned, the reviewer will provide status update every 2-3 days. If the PR is not reviewed within 7 days, please feel free to ping the reviewer or the vLLM team.</li>
<li> After the review, the reviewer will put an <code> action-required</code> label on the PR if there are changes required. The contributor should address the comments and ping the reviewer to re-review the PR.</li>
<li> Please respond to all comments within a reasonable time frame. If a comment isn't clear or you disagree with a suggestion, feel free to ask for clarification or discuss the suggestion.
</li>
</ul>
<h3>Thank You</h3>
<p> Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM. Your contributions make vLLM a great tool for everyone! </p>
</details>

50
.github/workflows/mypy.yaml vendored Normal file
View File

@ -0,0 +1,50 @@
name: mypy
on:
# Trigger the workflow on push or pull request,
# but only for the main branch
push:
branches:
- main
pull_request:
branches:
- main
jobs:
ruff:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install mypy==1.9.0
pip install types-setuptools
pip install types-PyYAML
pip install types-requests
pip install types-setuptools
- name: Mypy
run: |
mypy vllm/attention --config-file pyproject.toml
mypy vllm/core --config-file pyproject.toml
mypy vllm/distributed --config-file pyproject.toml
mypy vllm/entrypoints --config-file pyproject.toml
mypy vllm/executor --config-file pyproject.toml
mypy vllm/usage --config-file pyproject.toml
mypy vllm/*.py --config-file pyproject.toml
mypy vllm/transformers_utils --config-file pyproject.toml
mypy vllm/engine --config-file pyproject.toml
mypy vllm/worker --config-file pyproject.toml
mypy vllm/spec_decode --config-file pyproject.toml
mypy vllm/model_executor --config-file pyproject.toml
mypy vllm/lora --config-file pyproject.toml
mypy vllm/logging --config-file pyproject.toml
mypy vllm/model_executor --config-file pyproject.toml

View File

@ -43,19 +43,22 @@ jobs:
name: Build Wheel
runs-on: ${{ matrix.os }}
needs: release
strategy:
fail-fast: false
matrix:
os: ['ubuntu-20.04']
python-version: ['3.8', '3.9', '3.10', '3.11']
pytorch-version: ['2.0.1']
cuda-version: ['11.8'] # Github runner can't build anything older than 11.8
pytorch-version: ['2.3.0'] # Must be the most recent version that meets requirements-cuda.txt.
cuda-version: ['11.8', '12.1']
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Setup ccache
uses: hendrikmuhs/ccache-action@v1.2
- name: Set up Linux Env
if: ${{ runner.os == 'Linux' }}
run: |
@ -76,13 +79,15 @@ jobs:
- name: Build wheel
shell: bash
env:
CMAKE_BUILD_TYPE: Release # do not compile with debug symbol to reduce wheel size
run: |
bash -x .github/workflows/scripts/build.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }}
wheel_name=$(ls dist/*whl | xargs -n 1 basename)
asset_name=${wheel_name//"linux"/"manylinux1"}
echo "wheel_name=${wheel_name}" >> $GITHUB_ENV
echo "asset_name=${asset_name}" >> $GITHUB_ENV
- name: Upload Release Asset
uses: actions/upload-release-asset@v1
env:

View File

@ -1,4 +1,4 @@
name: pylint
name: ruff
on:
# Trigger the workflow on push or pull request,
@ -11,11 +11,11 @@ on:
- main
jobs:
pylint:
ruff:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.10"]
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
@ -25,7 +25,13 @@ jobs:
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pylint==2.8.2
- name: Analysing the code with pylint
pip install ruff==0.1.5 codespell==2.2.6 tomli==2.0.1 isort==5.13.2
- name: Analysing the code with ruff
run: |
pylint vllm tests
ruff .
- name: Spelling check with codespell
run: |
codespell --toml pyproject.toml
- name: Run isort
run: |
isort . --check-only

View File

@ -9,7 +9,13 @@ LD_LIBRARY_PATH=${cuda_home}/lib64:$LD_LIBRARY_PATH
# Install requirements
$python_executable -m pip install wheel packaging
$python_executable -m pip install -r requirements.txt
$python_executable -m pip install -r requirements-cuda.txt
# Limit the number of parallel jobs to avoid OOM
export MAX_JOBS=1
# Make sure punica is built for the release (for LoRA)
export VLLM_INSTALL_PUNICA_KERNELS=1
# Make sure release wheels are built for the following architectures
export TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX"
# Build
$python_executable setup.py bdist_wheel --dist-dir=dist

View File

@ -8,7 +8,7 @@ module.exports = async (github, context, core) => {
generate_release_notes: true,
name: process.env.RELEASE_TAG,
owner: context.repo.owner,
prerelease: false,
prerelease: true,
repo: context.repo.repo,
tag_name: process.env.RELEASE_TAG,
});

View File

@ -16,3 +16,8 @@ sudo apt clean
# Test nvcc
PATH=/usr/local/cuda-$1/bin:${PATH}
nvcc --version
# Log gcc, g++, c++ versions
gcc --version
g++ --version
c++ --version

View File

@ -14,7 +14,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.10"]
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
@ -28,4 +28,4 @@ jobs:
pip install toml==0.10.2
- name: Running yapf
run: |
yapf --diff --recursive vllm tests
yapf --diff --recursive .

10
.gitignore vendored
View File

@ -70,6 +70,8 @@ instance/
# Sphinx documentation
docs/_build/
docs/source/getting_started/examples/*.rst
!**/*.template.rst
# PyBuilder
.pybuilder/
@ -177,3 +179,11 @@ _build/
# vim swap files
*.swo
*.swp
# hip files generated by PyTorch
*.hip
*_hip*
hip_compat.h
# Benchmark dataset
*.json

434
.pylintrc
View File

@ -1,434 +0,0 @@
# This Pylint rcfile contains a best-effort configuration to uphold the
# best-practices and style described in the Google Python style guide:
# https://google.github.io/styleguide/pyguide.html
#
# Its canonical open-source location is:
# https://google.github.io/styleguide/pylintrc
[MASTER]
# Files or directories to be skipped. They should be base names, not paths.
ignore=docs
# Files or directories matching the regex patterns are skipped. The regex
# matches against base names, not paths.
ignore-patterns=
# Pickle collected data for later comparisons.
persistent=no
# List of plugins (as comma separated values of python modules names) to load,
# usually to register additional checkers.
load-plugins=
# Use multiple processes to speed up Pylint.
jobs=4
# Allow loading of arbitrary C extensions. Extensions are imported into the
# active Python interpreter and may run arbitrary code.
unsafe-load-any-extension=no
[MESSAGES CONTROL]
# Only show warnings with the listed confidence levels. Leave empty to show
# all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED
confidence=
# Enable the message, report, category or checker with the given id(s). You can
# either give multiple identifier separated by comma (,) or put this option
# multiple time (only on the command line, not in the configuration file where
# it should appear only once). See also the "--disable" option for examples.
#enable=
# Disable the message, report, category or checker with the given id(s). You
# can either give multiple identifiers separated by comma (,) or put this
# option multiple times (only on the command line, not in the configuration
# file where it should appear only once).You can also use "--disable=all" to
# disable everything first and then reenable specific checks. For example, if
# you want to run only the similarities checker, you can use "--disable=all
# --enable=similarities". If you want to run only the classes checker, but have
# no Warning level messages displayed, use"--disable=all --enable=classes
# --disable=W"
disable=abstract-method,
apply-builtin,
arguments-differ,
attribute-defined-outside-init,
backtick,
bad-option-value,
basestring-builtin,
buffer-builtin,
c-extension-no-member,
consider-using-enumerate,
cmp-builtin,
cmp-method,
coerce-builtin,
coerce-method,
delslice-method,
div-method,
duplicate-code,
eq-without-hash,
execfile-builtin,
file-builtin,
filter-builtin-not-iterating,
fixme,
getslice-method,
global-statement,
hex-method,
idiv-method,
implicit-str-concat-in-sequence,
import-error,
import-self,
import-star-module-level,
inconsistent-return-statements,
input-builtin,
intern-builtin,
invalid-str-codec,
locally-disabled,
logging-fstring-interpolation, # added by vLLM
logging-not-lazy, # added by vLLM
long-builtin,
long-suffix,
map-builtin-not-iterating,
misplaced-comparison-constant,
missing-class-docstring, # TODO (vLLM): enable
missing-function-docstring,
missing-module-docstring, # TODO (vLLM): enable
metaclass-assignment,
next-method-called,
next-method-defined,
no-absolute-import,
no-else-break,
no-else-continue,
no-else-raise,
no-else-return,
no-init, # added
no-member,
no-name-in-module,
no-self-use,
nonzero-method,
oct-method,
old-division,
old-ne-operator,
old-octal-literal,
old-raise-syntax,
parameter-unpacking,
print-statement,
raising-string,
range-builtin-not-iterating,
raw_input-builtin,
rdiv-method,
reduce-builtin,
relative-import,
reload-builtin,
round-builtin,
setslice-method,
signature-differs,
standarderror-builtin,
suppressed-message,
sys-max-int,
too-few-public-methods,
too-many-ancestors,
too-many-arguments,
too-many-boolean-expressions,
too-many-branches,
too-many-instance-attributes,
too-many-locals,
too-many-nested-blocks,
too-many-public-methods,
too-many-return-statements,
too-many-statements,
trailing-newlines,
unichr-builtin,
unicode-builtin,
unnecessary-pass,
unpacking-in-except,
unspecified-encoding,
useless-else-on-loop,
useless-object-inheritance,
useless-suppression,
using-cmp-argument,
wrong-import-order,
xrange-builtin,
zip-builtin-not-iterating,
[REPORTS]
# Set the output format. Available formats are text, parseable, colorized, msvs
# (visual studio) and html. You can also give a reporter class, eg
# mypackage.mymodule.MyReporterClass.
output-format=text
# Tells whether to display a full report or only the messages
reports=no
# Python expression which should return a note less than 10 (10 is the highest
# note). You have access to the variables errors warning, statement which
# respectively contain the number of errors / warnings messages and the total
# number of statements analyzed. This is used by the global evaluation report
# (RP0004).
evaluation=10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)
# Template used to display messages. This is a python new-style format string
# used to format the message information. See doc for all details
#msg-template=
[BASIC]
# Good variable names which should always be accepted, separated by a comma
good-names=main,_
# Bad variable names which should always be refused, separated by a comma
bad-names=
# Colon-delimited sets of names that determine each other's naming style when
# the name regexes allow several styles.
name-group=
# Include a hint for the correct naming format with invalid-name
include-naming-hint=no
# List of decorators that produce properties, such as abc.abstractproperty. Add
# to this list to register other decorators that produce valid properties.
property-classes=abc.abstractproperty,cached_property.cached_property,cached_property.threaded_cached_property,cached_property.cached_property_with_ttl,cached_property.threaded_cached_property_with_ttl
# Regular expression matching correct function names
function-rgx=^(?:(?P<exempt>setUp|tearDown|setUpModule|tearDownModule)|(?P<camel_case>_?[A-Z][a-zA-Z0-9]*)|(?P<snake_case>_?[a-z][a-z0-9_]*))$
# Regular expression matching correct variable names
variable-rgx=^[a-z][a-z0-9_]*$
# Regular expression matching correct constant names
const-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
# Regular expression matching correct attribute names
attr-rgx=^_{0,2}[a-z][a-z0-9_]*$
# Regular expression matching correct argument names
argument-rgx=^[a-z][a-z0-9_]*$
# Regular expression matching correct class attribute names
class-attribute-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
# Regular expression matching correct inline iteration names
inlinevar-rgx=^[a-z][a-z0-9_]*$
# Regular expression matching correct class names
class-rgx=^_?[A-Z][a-zA-Z0-9]*$
# Regular expression matching correct module names
module-rgx=^(_?[a-z][a-z0-9_]*|__init__)$
# Regular expression matching correct method names
method-rgx=(?x)^(?:(?P<exempt>_[a-z0-9_]+__|runTest|setUp|tearDown|setUpTestCase|tearDownTestCase|setupSelf|tearDownClass|setUpClass|(test|assert)_*[A-Z0-9][a-zA-Z0-9_]*|next)|(?P<camel_case>_{0,2}[A-Z][a-zA-Z0-9_]*)|(?P<snake_case>_{0,2}[a-z][a-z0-9_]*))$
# Regular expression which should only match function or class names that do
# not require a docstring.
no-docstring-rgx=(__.*__|main|test.*|.*test|.*Test)$
# Minimum line length for functions/classes that require docstrings, shorter
# ones are exempt.
docstring-min-length=10
[TYPECHECK]
# List of decorators that produce context managers, such as
# contextlib.contextmanager. Add to this list to register other decorators that
# produce valid context managers.
contextmanager-decorators=contextlib.contextmanager,contextlib2.contextmanager
# Tells whether missing members accessed in mixin class should be ignored. A
# mixin class is detected if its name ends with "mixin" (case insensitive).
ignore-mixin-members=yes
# List of module names for which member attributes should not be checked
# (useful for modules/projects where namespaces are manipulated during runtime
# and thus existing member attributes cannot be deduced by static analysis. It
# supports qualified module names, as well as Unix pattern matching.
ignored-modules=
# List of class names for which member attributes should not be checked (useful
# for classes with dynamically set attributes). This supports the use of
# qualified names.
ignored-classes=optparse.Values,thread._local,_thread._local
# List of members which are set dynamically and missed by pylint inference
# system, and so shouldn't trigger E1101 when accessed. Python regular
# expressions are accepted.
generated-members=
[FORMAT]
# Maximum number of characters on a single line.
max-line-length=80
# TODO(https://github.com/PyCQA/pylint/issues/3352): Direct pylint to exempt
# lines made too long by directives to pytype.
# Regexp for a line that is allowed to be longer than the limit.
ignore-long-lines=(?x)(
^\s*(\#\ )?<?https?://\S+>?$|
^\s*(from\s+\S+\s+)?import\s+.+$)
# Allow the body of an if to be on the same line as the test if there is no
# else.
single-line-if-stmt=yes
# Maximum number of lines in a module
max-module-lines=99999
# String used as indentation unit. The internal Google style guide mandates 2
# spaces. Google's externaly-published style guide says 4, consistent with
# PEP 8. Here, we use 2 spaces, for conformity with many open-sourced Google
# projects (like TensorFlow).
indent-string=' '
# Number of spaces of indent required inside a hanging or continued line.
indent-after-paren=4
# Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
expected-line-ending-format=
[MISCELLANEOUS]
# List of note tags to take in consideration, separated by a comma.
notes=TODO
[STRING]
# This flag controls whether inconsistent-quotes generates a warning when the
# character used as a quote delimiter is used inconsistently within a module.
check-quote-consistency=yes
[VARIABLES]
# Tells whether we should check for unused import in __init__ files.
init-import=no
# A regular expression matching the name of dummy variables (i.e. expectedly
# not used).
dummy-variables-rgx=^\*{0,2}(_$|unused_|dummy_)
# List of additional names supposed to be defined in builtins. Remember that
# you should avoid to define new builtins when possible.
additional-builtins=
# List of strings which can identify a callback function by name. A callback
# name must start or end with one of those strings.
callbacks=cb_,_cb
# List of qualified module names which can have objects that can redefine
# builtins.
redefining-builtins-modules=six,six.moves,past.builtins,future.builtins,functools
[LOGGING]
# Logging modules to check that the string format arguments are in logging
# function parameter format
logging-modules=logging,absl.logging,tensorflow.io.logging
[SIMILARITIES]
# Minimum lines number of a similarity.
min-similarity-lines=4
# Ignore comments when computing similarities.
ignore-comments=yes
# Ignore docstrings when computing similarities.
ignore-docstrings=yes
# Ignore imports when computing similarities.
ignore-imports=no
[SPELLING]
# Spelling dictionary name. Available dictionaries: none. To make it working
# install python-enchant package.
spelling-dict=
# List of comma separated words that should not be checked.
spelling-ignore-words=
# A path to a file that contains private dictionary; one word per line.
spelling-private-dict-file=
# Tells whether to store unknown words to indicated private dictionary in
# --spelling-private-dict-file option instead of raising a message.
spelling-store-unknown-words=no
[IMPORTS]
# Deprecated modules which should not be used, separated by a comma
deprecated-modules=regsub,
TERMIOS,
Bastion,
rexec,
sets
# Create a graph of every (i.e. internal and external) dependencies in the
# given file (report RP0402 must not be disabled)
import-graph=
# Create a graph of external dependencies in the given file (report RP0402 must
# not be disabled)
ext-import-graph=
# Create a graph of internal dependencies in the given file (report RP0402 must
# not be disabled)
int-import-graph=
# Force import order to recognize a module as part of the standard
# compatibility libraries.
known-standard-library=
# Force import order to recognize a module as part of a third party library.
known-third-party=enchant, absl
# Analyse import fallback blocks. This can be used to support both Python 2 and
# 3 compatible code, which means that the block might have code that exists
# only in one or another interpreter, leading to false positives when analysed.
analyse-fallback-blocks=no
[CLASSES]
# List of method names used to declare (i.e. assign) instance attributes.
defining-attr-methods=__init__,
__new__,
setUp
# List of member names, which should be excluded from the protected access
# warning.
exclude-protected=_asdict,
_fields,
_replace,
_source,
_make
# List of valid names for the first argument in a class method.
valid-classmethod-first-arg=cls,
class_
# List of valid names for the first argument in a metaclass class method.
valid-metaclass-classmethod-first-arg=mcs
[EXCEPTIONS]
# Exceptions that will emit a warning when being caught. Defaults to
# "Exception"
overgeneral-exceptions=StandardError,
Exception,
BaseException

1
.yapfignore Normal file
View File

@ -0,0 +1 @@
collect_env.py

294
CMakeLists.txt Normal file
View File

@ -0,0 +1,294 @@
cmake_minimum_required(VERSION 3.21)
project(vllm_extensions LANGUAGES CXX)
option(VLLM_TARGET_DEVICE "Target device backend for vLLM" "cuda")
message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")
message(STATUS "Target device: ${VLLM_TARGET_DEVICE}")
include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake)
#
# Supported python versions. These versions will be searched in order, the
# first match will be selected. These should be kept in sync with setup.py.
#
set(PYTHON_SUPPORTED_VERSIONS "3.8" "3.9" "3.10" "3.11")
# Supported NVIDIA architectures.
set(CUDA_SUPPORTED_ARCHS "7.0;7.5;8.0;8.6;8.9;9.0")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100")
#
# Supported/expected torch versions for CUDA/ROCm.
#
# Currently, having an incorrect pytorch version results in a warning
# rather than an error.
#
# Note: the CUDA torch version is derived from pyproject.toml and various
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.3.0")
set(TORCH_SUPPORTED_VERSION_ROCM_5X "2.0.1")
set(TORCH_SUPPORTED_VERSION_ROCM_6X "2.1.1")
#
# Try to find python package with an executable that exactly matches
# `VLLM_PYTHON_EXECUTABLE` and is one of the supported versions.
#
if (VLLM_PYTHON_EXECUTABLE)
find_python_from_executable(${VLLM_PYTHON_EXECUTABLE} "${PYTHON_SUPPORTED_VERSIONS}")
else()
message(FATAL_ERROR
"Please set VLLM_PYTHON_EXECUTABLE to the path of the desired python version"
" before running cmake configure.")
endif()
#
# Update cmake's `CMAKE_PREFIX_PATH` with torch location.
#
append_cmake_prefix_path("torch" "torch.utils.cmake_prefix_path")
# Ensure the 'nvcc' command is in the PATH
find_program(NVCC_EXECUTABLE nvcc)
if (CUDA_FOUND AND NOT NVCC_EXECUTABLE)
message(FATAL_ERROR "nvcc not found")
endif()
#
# Import torch cmake configuration.
# Torch also imports CUDA (and partially HIP) languages with some customizations,
# so there is no need to do this explicitly with check_language/enable_language,
# etc.
#
find_package(Torch REQUIRED)
#
# Normally `torch.utils.cpp_extension.CUDAExtension` would add
# `libtorch_python.so` for linking against an extension. Torch's cmake
# configuration does not include this library (presumably since the cmake
# config is used for standalone C++ binaries that link against torch).
# The `libtorch_python.so` library defines some of the glue code between
# torch/python via pybind and is required by VLLM extensions for this
# reason. So, add it by manually with `find_library` using torch's
# installed library path.
#
find_library(torch_python_LIBRARY torch_python PATHS
"${TORCH_INSTALL_PREFIX}/lib")
#
# Forward the non-CUDA device extensions to external CMake scripts.
#
if (NOT VLLM_TARGET_DEVICE STREQUAL "cuda" AND
NOT VLLM_TARGET_DEVICE STREQUAL "rocm")
if (VLLM_TARGET_DEVICE STREQUAL "cpu")
include(${CMAKE_CURRENT_LIST_DIR}/cmake/cpu_extension.cmake)
else()
message(FATAL_ERROR "Unsupported vLLM target device: ${VLLM_TARGET_DEVICE}")
endif()
return()
endif()
#
# Set up GPU language and check the torch version and warn if it isn't
# what is expected.
#
if (NOT HIP_FOUND AND CUDA_FOUND)
set(VLLM_GPU_LANG "CUDA")
if (NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_CUDA})
message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_CUDA} "
"expected for CUDA build, saw ${Torch_VERSION} instead.")
endif()
elseif(HIP_FOUND)
set(VLLM_GPU_LANG "HIP")
# Importing torch recognizes and sets up some HIP/ROCm configuration but does
# not let cmake recognize .hip files. In order to get cmake to understand the
# .hip extension automatically, HIP must be enabled explicitly.
enable_language(HIP)
# ROCm 5.x
if (ROCM_VERSION_DEV_MAJOR EQUAL 5 AND
NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM_5X})
message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_ROCM_5X} "
"expected for ROCMm 5.x build, saw ${Torch_VERSION} instead.")
endif()
# ROCm 6.x
if (ROCM_VERSION_DEV_MAJOR EQUAL 6 AND
NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM_6X})
message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_ROCM_6X} "
"expected for ROCMm 6.x build, saw ${Torch_VERSION} instead.")
endif()
else()
message(FATAL_ERROR "Can't find CUDA or HIP installation.")
endif()
#
# Override the GPU architectures detected by cmake/torch and filter them by
# the supported versions for the current language.
# The final set of arches is stored in `VLLM_GPU_ARCHES`.
#
override_gpu_arches(VLLM_GPU_ARCHES
${VLLM_GPU_LANG}
"${${VLLM_GPU_LANG}_SUPPORTED_ARCHS}")
#
# Query torch for additional GPU compilation flags for the given
# `VLLM_GPU_LANG`.
# The final set of arches is stored in `VLLM_GPU_FLAGS`.
#
get_torch_gpu_compiler_flags(VLLM_GPU_FLAGS ${VLLM_GPU_LANG})
#
# Set nvcc parallelism.
#
if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
endif()
#
# Define extension targets
#
#
# _C extension
#
set(VLLM_EXT_SRC
"csrc/cache_kernels.cu"
"csrc/attention/attention_kernels.cu"
"csrc/pos_encoding_kernels.cu"
"csrc/activation_kernels.cu"
"csrc/layernorm_kernels.cu"
"csrc/quantization/squeezellm/quant_cuda_kernel.cu"
"csrc/quantization/gptq/q_gemm.cu"
"csrc/quantization/fp8/fp8_cuda_kernels.cu"
"csrc/cuda_utils_kernels.cu"
"csrc/moe_align_block_size_kernels.cu"
"csrc/pybind.cpp")
if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_EXT_SRC
"csrc/quantization/aqlm/gemm_kernels.cu"
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/quantization/marlin/marlin_cuda_kernel.cu"
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
"csrc/custom_all_reduce.cu")
endif()
define_gpu_extension_target(
_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${VLLM_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
WITH_SOABI)
#
# _moe_C extension
#
set(VLLM_MOE_EXT_SRC
"csrc/moe/moe_ops.cpp"
"csrc/moe/topk_softmax_kernels.cu")
define_gpu_extension_target(
_moe_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${VLLM_MOE_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
WITH_SOABI)
#
# _punica_C extension
#
set(VLLM_PUNICA_EXT_SRC
"csrc/punica/bgmv/bgmv_bf16_bf16_bf16.cu"
"csrc/punica/bgmv/bgmv_bf16_fp32_bf16.cu"
"csrc/punica/bgmv/bgmv_fp16_fp16_fp16.cu"
"csrc/punica/bgmv/bgmv_fp16_fp32_fp16.cu"
"csrc/punica/bgmv/bgmv_fp32_bf16_bf16.cu"
"csrc/punica/bgmv/bgmv_fp32_fp16_fp16.cu"
"csrc/punica/punica_ops.cc")
#
# Copy GPU compilation flags+update for punica
#
set(VLLM_PUNICA_GPU_FLAGS ${VLLM_GPU_FLAGS})
list(REMOVE_ITEM VLLM_PUNICA_GPU_FLAGS
"-D__CUDA_NO_HALF_OPERATORS__"
"-D__CUDA_NO_HALF_CONVERSIONS__"
"-D__CUDA_NO_BFLOAT16_CONVERSIONS__"
"-D__CUDA_NO_HALF2_OPERATORS__")
#
# Filter out CUDA architectures < 8.0 for punica.
#
if (${VLLM_GPU_LANG} STREQUAL "CUDA")
set(VLLM_PUNICA_GPU_ARCHES)
foreach(ARCH ${VLLM_GPU_ARCHES})
string_to_ver(CODE_VER ${ARCH})
if (CODE_VER GREATER_EQUAL 8.0)
list(APPEND VLLM_PUNICA_GPU_ARCHES ${ARCH})
endif()
endforeach()
message(STATUS "Punica target arches: ${VLLM_PUNICA_GPU_ARCHES}")
endif()
if (VLLM_PUNICA_GPU_ARCHES)
define_gpu_extension_target(
_punica_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${VLLM_PUNICA_EXT_SRC}
COMPILE_FLAGS ${VLLM_PUNICA_GPU_FLAGS}
ARCHITECTURES ${VLLM_PUNICA_GPU_ARCHES}
WITH_SOABI)
else()
message(WARNING "Unable to create _punica_C target because none of the "
"requested architectures (${VLLM_GPU_ARCHES}) are supported, i.e. >= 8.0")
endif()
#
# Add the `default` target which detects which extensions should be
# built based on platform/architecture. This is the same logic that
# setup.py uses to select which extensions should be built and should
# be kept in sync.
#
# The `default` target makes direct use of cmake easier since knowledge
# of which extensions are supported has been factored in, e.g.
#
# mkdir build && cd build
# cmake -G Ninja -DVLLM_PYTHON_EXECUTABLE=`which python3` -DCMAKE_LIBRARY_OUTPUT_DIRECTORY=../vllm ..
# cmake --build . --target default
#
add_custom_target(default)
if(VLLM_GPU_LANG STREQUAL "CUDA" OR VLLM_GPU_LANG STREQUAL "HIP")
message(STATUS "Enabling C extension.")
add_dependencies(default _C)
endif()
if(VLLM_GPU_LANG STREQUAL "CUDA")
message(STATUS "Enabling moe extension.")
add_dependencies(default _moe_C)
# Enable punica if -DVLLM_INSTALL_PUNICA_KERNELS=ON or
# VLLM_INSTALL_PUNICA_KERNELS is set in the environment and
# there are supported target arches.
if (VLLM_PUNICA_GPU_ARCHES AND
(ENV{VLLM_INSTALL_PUNICA_KERNELS} OR VLLM_INSTALL_PUNICA_KERNELS))
message(STATUS "Enabling punica extension.")
add_dependencies(default _punica_C)
endif()
endif()

View File

@ -21,7 +21,6 @@ Express your support on Twitter if vLLM aids you, or simply offer your appreciat
### Build from source
```bash
pip install -r requirements.txt
pip install -e . # This may take several minutes.
```
@ -30,6 +29,8 @@ pip install -e . # This may take several minutes.
```bash
pip install -r requirements-dev.txt
# linting and formatting
bash format.sh
# Static type checking
mypy
# Unit tests
@ -45,31 +46,9 @@ pytest tests/
If you encounter a bug or have a feature request, please check our issues page first to see if someone else has already reported it.
If not, please file a new issue, providing as much relevant information as possible.
### Coding Style Guide
### Pull Requests & Code Reviews
In general, we adhere to [Google Python style guide](https://google.github.io/styleguide/pyguide.html) and [Google C++ style guide](https://google.github.io/styleguide/cppguide.html).
We include a formatting script [`format.sh`](./format.sh) to format the code.
### Pull Requests
When submitting a pull request:
1. Make sure your code has been rebased on top of the latest commit on the main branch.
2. Ensure code is properly formatted by running [`format.sh`](./format.sh).
3. Include a detailed description of the changes in the pull request.
Explain why you made the changes you did.
If your pull request fixes an open issue, please include a reference to it in the description.
### Code Reviews
All submissions, including submissions by project members, require a code review.
To make the review process as smooth as possible, please:
1. Keep your changes as concise as possible.
If your pull request involves multiple unrelated changes, consider splitting it into separate pull requests.
2. Respond to all comments within a reasonable time frame.
If a comment isn't clear or you disagree with a suggestion, feel free to ask for clarification or discuss the suggestion.
Please check the PR checklist in the [PR template](.github/PULL_REQUEST_TEMPLATE.md) for detailed guide for contribution.
### Thank You

163
Dockerfile Normal file
View File

@ -0,0 +1,163 @@
# The vLLM Dockerfile is used to construct vLLM image that can be directly used
# to run the OpenAI compatible server.
# Please update any changes made here to
# docs/source/dev/dockerfile/dockerfile.rst and
# docs/source/assets/dev/dockerfile-stages-dependency.png
#################### BASE BUILD IMAGE ####################
# prepare basic build environment
FROM nvidia/cuda:12.4.1-devel-ubuntu22.04 AS dev
RUN apt-get update -y \
&& apt-get install -y python3-pip git
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-12.4/compat/
WORKDIR /workspace
# install build and runtime dependencies
COPY requirements-common.txt requirements-common.txt
COPY requirements-cuda.txt requirements-cuda.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-cuda.txt
# install development dependencies
COPY requirements-dev.txt requirements-dev.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-dev.txt
# cuda arch list used by torch
# can be useful for both `dev` and `test`
# explicitly set the list to avoid issues with torch 2.2
# see https://github.com/pytorch/pytorch/pull/123243
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.6 8.9 9.0+PTX'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
#################### BASE BUILD IMAGE ####################
#################### WHEEL BUILD IMAGE ####################
FROM dev AS build
# install build dependencies
COPY requirements-build.txt requirements-build.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-build.txt
# install compiler cache to speed up compilation leveraging local or remote caching
RUN apt-get update -y && apt-get install -y ccache
# files and directories related to build wheels
COPY csrc csrc
COPY setup.py setup.py
COPY cmake cmake
COPY CMakeLists.txt CMakeLists.txt
COPY requirements-common.txt requirements-common.txt
COPY requirements-cuda.txt requirements-cuda.txt
COPY pyproject.toml pyproject.toml
COPY vllm vllm
# max jobs used by Ninja to build extensions
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
# number of threads used by nvcc
ARG nvcc_threads=8
ENV NVCC_THREADS=$nvcc_threads
# make sure punica kernels are built (for LoRA)
ENV VLLM_INSTALL_PUNICA_KERNELS=1
ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/ccache \
--mount=type=cache,target=/root/.cache/pip \
python3 setup.py bdist_wheel --dist-dir=dist
# check the size of the wheel, we cannot upload wheels larger than 100MB
COPY .buildkite/check-wheel-size.py check-wheel-size.py
RUN python3 check-wheel-size.py dist
# the `vllm_nccl` package must be installed from source distribution
# pip is too smart to store a wheel in the cache, and other CI jobs
# will directly use the wheel from the cache, which is not what we want.
# we need to remove it manually
RUN --mount=type=cache,target=/root/.cache/pip \
pip cache remove vllm_nccl*
#################### EXTENSION Build IMAGE ####################
#################### FLASH_ATTENTION Build IMAGE ####################
FROM dev as flash-attn-builder
# max jobs used for build
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
# flash attention version
ARG flash_attn_version=v2.5.8
ENV FLASH_ATTN_VERSION=${flash_attn_version}
WORKDIR /usr/src/flash-attention-v2
# Download the wheel or build it if a pre-compiled release doesn't exist
RUN pip --verbose wheel flash-attn==${FLASH_ATTN_VERSION} \
--no-build-isolation --no-deps --no-cache-dir
#################### FLASH_ATTENTION Build IMAGE ####################
#################### vLLM installation IMAGE ####################
# image with vLLM installed
FROM nvidia/cuda:12.4.1-base-ubuntu22.04 AS vllm-base
WORKDIR /vllm-workspace
RUN apt-get update -y \
&& apt-get install -y python3-pip git vim
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-12.4/compat/
# install vllm wheel first, so that torch etc will be installed
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
--mount=type=cache,target=/root/.cache/pip \
pip install dist/*.whl --verbose
RUN --mount=type=bind,from=flash-attn-builder,src=/usr/src/flash-attention-v2,target=/usr/src/flash-attention-v2 \
--mount=type=cache,target=/root/.cache/pip \
pip install /usr/src/flash-attention-v2/*.whl --no-cache-dir
#################### vLLM installation IMAGE ####################
#################### TEST IMAGE ####################
# image to run unit testing suite
# note that this uses vllm installed by `pip`
FROM vllm-base AS test
ADD . /vllm-workspace/
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-dev.txt
# doc requires source code
# we hide them inside `test_docs/` , so that this source code
# will not be imported by other tests
RUN mkdir test_docs
RUN mv docs test_docs/
RUN mv vllm test_docs/
#################### TEST IMAGE ####################
#################### OPENAI API SERVER ####################
# openai api server alternative
FROM vllm-base AS vllm-openai
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer modelscope
ENV VLLM_USAGE_SOURCE production-docker-image
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
#################### OPENAI API SERVER ####################

20
Dockerfile.cpu Normal file
View File

@ -0,0 +1,20 @@
# This vLLM Dockerfile is used to construct image that can build and run vLLM on x86 CPU platform.
FROM ubuntu:22.04
RUN apt-get update -y \
&& apt-get install -y git wget vim numactl gcc-12 g++-12 python3 python3-pip \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
RUN pip install --upgrade pip \
&& pip install wheel packaging ninja setuptools>=49.4.0 numpy
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
RUN pip install -v -r requirements-cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu
RUN VLLM_TARGET_DEVICE=cpu python3 setup.py install
CMD ["/bin/bash"]

36
Dockerfile.neuron Normal file
View File

@ -0,0 +1,36 @@
# default base image
ARG BASE_IMAGE="763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-inference-neuronx:2.1.1-neuronx-py310-sdk2.17.0-ubuntu20.04"
FROM $BASE_IMAGE
RUN echo "Base image is $BASE_IMAGE"
# Install some basic utilities
RUN apt-get update && apt-get install python3 python3-pip -y
### Mount Point ###
# When launching the container, mount the code directory to /app
ARG APP_MOUNT=/app
VOLUME [ ${APP_MOUNT} ]
WORKDIR ${APP_MOUNT}
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas
RUN python3 -m pip install sentencepiece transformers==4.36.2 -U
RUN python3 -m pip install transformers-neuronx --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
RUN python3 -m pip install --pre neuronx-cc==2.12.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
COPY ./vllm /app/vllm/vllm
COPY ./setup.py /app/vllm/setup.py
COPY ./requirements-common.txt /app/vllm/requirements-common.txt
COPY ./requirements-neuron.txt /app/vllm/requirements-neuron.txt
RUN cd /app/vllm \
&& python3 -m pip install -U -r requirements-neuron.txt
ENV VLLM_BUILD_WITH_NEURON 1
RUN cd /app/vllm \
&& pip install -e . \
&& cd ..
CMD ["/bin/bash"]

107
Dockerfile.rocm Normal file
View File

@ -0,0 +1,107 @@
# default base image
ARG BASE_IMAGE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
FROM $BASE_IMAGE
ARG BASE_IMAGE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
RUN echo "Base image is $BASE_IMAGE"
# BASE_IMAGE for ROCm_5.7: "rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1"
# BASE_IMAGE for ROCm_6.0: "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
ARG FA_GFX_ARCHS="gfx90a;gfx942"
RUN echo "FA_GFX_ARCHS is $FA_GFX_ARCHS"
ARG FA_BRANCH="ae7928c"
RUN echo "FA_BRANCH is $FA_BRANCH"
# whether to build flash-attention
# if 0, will not build flash attention
# this is useful for gfx target where flash-attention is not supported
# In that case, we need to use the python reference attention implementation in vllm
ARG BUILD_FA="1"
# whether to build triton on rocm
ARG BUILD_TRITON="1"
# Install some basic utilities
RUN apt-get update && apt-get install python3 python3-pip -y
# Install some basic utilities
RUN apt-get update && apt-get install -y \
curl \
ca-certificates \
sudo \
git \
bzip2 \
libx11-6 \
build-essential \
wget \
unzip \
nvidia-cuda-toolkit \
tmux \
&& rm -rf /var/lib/apt/lists/*
### Mount Point ###
# When launching the container, mount the code directory to /app
ARG APP_MOUNT=/vllm-workspace
VOLUME [ ${APP_MOUNT} ]
WORKDIR ${APP_MOUNT}
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas
ENV LLVM_SYMBOLIZER_PATH=/opt/rocm/llvm/bin/llvm-symbolizer
ENV PATH=$PATH:/opt/rocm/bin:/libtorch/bin:
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib/:/libtorch/lib:
ENV CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/libtorch/include:/libtorch/include/torch/csrc/api/include/:/opt/rocm/include/:
# Install ROCm flash-attention
RUN if [ "$BUILD_FA" = "1" ]; then \
mkdir libs \
&& cd libs \
&& git clone https://github.com/ROCm/flash-attention.git \
&& cd flash-attention \
&& git checkout ${FA_BRANCH} \
&& git submodule update --init \
&& export GPU_ARCHS=${FA_GFX_ARCHS} \
&& if [ "$BASE_IMAGE" = "rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1" ]; then \
patch /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/hipify/hipify_python.py hipify_patch.patch; fi \
&& python3 setup.py install \
&& cd ..; \
fi
# Error related to odd state for numpy 1.20.3 where there is no METADATA etc, but an extra LICENSES_bundled.txt.
# Manually removed it so that later steps of numpy upgrade can continue
RUN if [ "$BASE_IMAGE" = "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" ]; then \
rm -rf /opt/conda/envs/py_3.9/lib/python3.9/site-packages/numpy-1.20.3.dist-info/; fi
# build triton
RUN if [ "$BUILD_TRITON" = "1" ]; then \
mkdir -p libs \
&& cd libs \
&& pip uninstall -y triton \
&& git clone https://github.com/ROCm/triton.git \
&& cd triton/python \
&& pip3 install . \
&& cd ../..; \
fi
WORKDIR /vllm-workspace
COPY . .
RUN python3 -m pip install --upgrade pip numba
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -U -r requirements-rocm.txt \
&& patch /opt/rocm/include/hip/amd_detail/amd_hip_bf16.h ./rocm_patch/rocm_bf16.patch \
&& python3 setup.py install \
&& cp build/lib.linux-x86_64-cpython-39/vllm/_C.cpython-39-x86_64-linux-gnu.so vllm/ \
&& cd ..
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --no-cache-dir ray[all]==2.9.3
CMD ["/bin/bash"]

View File

@ -1,4 +1,10 @@
include LICENSE
include requirements.txt
include requirements-common.txt
include requirements-cuda.txt
include requirements-rocm.txt
include requirements-neuron.txt
include requirements-cpu.txt
include CMakeLists.txt
recursive-include cmake *
recursive-include csrc *

View File

@ -10,13 +10,15 @@ Easy, fast, and cheap LLM serving for everyone
</h3>
<p align="center">
| <a href="https://vllm.readthedocs.io/en/latest/"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> |
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> |
</p>
---
*Latest News* 🔥
- [2024/04] We hosted [the third vLLM meetup](https://robloxandvllmmeetup2024.splashthat.com/) with Roblox! Please find the meetup slides [here](https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing).
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2024/01] Added ROCm 6.0 support to vLLM.
- [2023/12] Added ROCm 5.7 support to vLLM.
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
- [2023/09] We created our [Discord server](https://discord.gg/jz7wjKhh6g)! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
- [2023/09] We released our [PagedAttention paper](https://arxiv.org/abs/2309.06180) on arXiv!
@ -26,7 +28,7 @@ Easy, fast, and cheap LLM serving for everyone
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
---
## About
vLLM is a fast and easy-to-use library for LLM inference and serving.
vLLM is fast with:
@ -34,6 +36,8 @@ vLLM is fast with:
- State-of-the-art serving throughput
- Efficient management of attention key and value memory with **PagedAttention**
- Continuous batching of incoming requests
- Fast model execution with CUDA/HIP graph
- Quantization: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [SqueezeLLM](https://arxiv.org/abs/2306.07629), FP8 KV Cache
- Optimized CUDA kernels
vLLM is flexible and easy to use with:
@ -43,23 +47,45 @@ vLLM is flexible and easy to use with:
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
- Support NVIDIA GPUs and AMD GPUs
- (Experimental) Prefix caching support
- (Experimental) Multi-lora support
vLLM seamlessly supports many Hugging Face models, including the following architectures:
- Aquila & Aquila2 (`BAAI/AquilaChat2-7B`, `BAAI/AquilaChat2-34B`, `BAAI/Aquila-7B`, `BAAI/AquilaChat-7B`, etc.)
- Baichuan (`baichuan-inc/Baichuan-7B`, `baichuan-inc/Baichuan-13B-Chat`, etc.)
- Baichuan & Baichuan2 (`baichuan-inc/Baichuan2-13B-Chat`, `baichuan-inc/Baichuan-7B`, etc.)
- BLOOM (`bigscience/bloom`, `bigscience/bloomz`, etc.)
- ChatGLM (`THUDM/chatglm2-6b`, `THUDM/chatglm3-6b`, etc.)
- Command-R (`CohereForAI/c4ai-command-r-v01`, etc.)
- DBRX (`databricks/dbrx-base`, `databricks/dbrx-instruct` etc.)
- DeciLM (`Deci/DeciLM-7B`, `Deci/DeciLM-7B-instruct`, etc.)
- Falcon (`tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc.)
- Gemma (`google/gemma-2b`, `google/gemma-7b`, etc.)
- GPT-2 (`gpt2`, `gpt2-xl`, etc.)
- GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, etc.)
- GPT-J (`EleutherAI/gpt-j-6b`, `nomic-ai/gpt4all-j`, etc.)
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
- InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.)
- LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
- InternLM2 (`internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc.)
- Jais (`core42/jais-13b`, `core42/jais-13b-chat`, `core42/jais-30b-v3`, `core42/jais-30b-chat-v3`, etc.)
- LLaMA, Llama 2, and Meta Llama 3 (`meta-llama/Meta-Llama-3-8B-Instruct`, `meta-llama/Meta-Llama-3-70B-Instruct`, `meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
- MiniCPM (`openbmb/MiniCPM-2B-sft-bf16`, `openbmb/MiniCPM-2B-dpo-bf16`, etc.)
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, `mistral-community/Mixtral-8x22B-v0.1`, etc.)
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
- OLMo (`allenai/OLMo-1B-hf`, `allenai/OLMo-7B-hf`, etc.)
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
- Orion (`OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc.)
- Phi (`microsoft/phi-1_5`, `microsoft/phi-2`, etc.)
- Phi-3 (`microsoft/Phi-3-mini-4k-instruct`, `microsoft/Phi-3-mini-128k-instruct`, etc.)
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)
- Qwen2 (`Qwen/Qwen1.5-7B`, `Qwen/Qwen1.5-7B-Chat`, etc.)
- Qwen2MoE (`Qwen/Qwen1.5-MoE-A2.7B`, `Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc.)
- StableLM(`stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc.)
- Starcoder2(`bigcode/starcoder2-3b`, `bigcode/starcoder2-7b`, `bigcode/starcoder2-15b`, etc.)
- Xverse (`xverse/XVERSE-7B-Chat`, `xverse/XVERSE-13B-Chat`, `xverse/XVERSE-65B-Chat`, etc.)
- Yi (`01-ai/Yi-6B`, `01-ai/Yi-34B`, etc.)
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):

View File

@ -0,0 +1,389 @@
import json
import os
import sys
import time
import traceback
from dataclasses import dataclass, field
from typing import List, Optional
import aiohttp
from tqdm.asyncio import tqdm
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
@dataclass
class RequestFuncInput:
prompt: str
api_url: str
prompt_len: int
output_len: int
model: str
best_of: int = 1
use_beam_search: bool = False
@dataclass
class RequestFuncOutput:
generated_text: str = ""
success: bool = False
latency: float = 0.0
ttft: float = 0.0 # Time to first token
itl: List[float] = field(
default_factory=list) # List of inter-token latencies
prompt_len: int = 0
error: str = ""
async def async_request_tgi(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
params = {
"best_of": request_func_input.best_of,
"max_new_tokens": request_func_input.output_len,
"do_sample": True,
"temperature": 0.01, # TGI does not accept 0.0 temperature.
"top_p": 0.99, # TGI does not accept 1.0 top_p.
}
payload = {
"inputs": request_func_input.prompt,
"parameters": params,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data:")
data = json.loads(chunk)
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp -
most_recent_timestamp)
most_recent_timestamp = timestamp
output.latency = most_recent_timestamp - st
output.success = True
output.generated_text = data["generated_text"]
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_trt_llm(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
assert request_func_input.best_of == 1
payload = {
"accumulate_tokens": True,
"text_input": request_func_input.prompt,
"temperature": 0.0,
"top_p": 1.0,
"max_tokens": request_func_input.output_len,
"stream": True,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data:")
data = json.loads(chunk)
output.generated_text += data["text_output"]
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp -
most_recent_timestamp)
most_recent_timestamp = timestamp
output.latency = most_recent_timestamp - st
output.success = True
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_deepspeed_mii(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert request_func_input.best_of == 1
assert not request_func_input.use_beam_search
payload = {
"prompt": request_func_input.prompt,
"max_tokens": request_func_input.output_len,
"temperature": 0.01, # deepspeed-mii does not accept 0.0 temp.
"top_p": 1.0,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
# NOTE: DeepSpeed-MII doesn't support streaming as of Jan 28 2024,
# will use 0 as placeholder.
# See https://github.com/microsoft/DeepSpeed-MII/pull/311
output.ttft = 0
st = time.perf_counter()
try:
async with session.post(url=request_func_input.api_url,
json=payload) as response:
if response.status == 200:
parsed_resp = await response.json()
output.latency = time.perf_counter() - st
output.generated_text = parsed_resp["text"][0]
output.success = True
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_openai_completions(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(
"v1/completions"
), "OpenAI Completions API URL must end with 'v1/completions'."
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
payload = {
"model": request_func_input.model,
"prompt": request_func_input.prompt,
"temperature": 0.0,
"best_of": request_func_input.best_of,
"max_tokens": request_func_input.output_len,
"stream": True,
}
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data: ")
if chunk == "[DONE]":
latency = time.perf_counter() - st
else:
data = json.loads(chunk)
if data["choices"][0]["text"]:
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
# NOTE: Some completion API might have a last
# usage summary response without a token so we
# do not want to include as inter-token-latency
elif data.get("usage", None) is None:
output.itl.append(timestamp -
most_recent_timestamp)
most_recent_timestamp = timestamp
generated_text += data["choices"][0]["text"]
output.generated_text = generated_text
output.success = True
output.latency = latency
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_openai_chat_completions(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(
"v1/chat/completions"
), "OpenAI Chat Completions API URL must end with 'v1/chat/completions'."
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
payload = {
"model": request_func_input.model,
"messages": [
{
"role": "user",
"content": request_func_input.prompt,
},
],
"temperature": 0.0,
"max_tokens": request_func_input.output_len,
"stream": True,
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data: ")
if chunk == "[DONE]":
latency = time.perf_counter() - st
else:
timestamp = time.perf_counter()
data = json.loads(chunk)
delta = data["choices"][0]["delta"]
if delta.get("content", None):
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp -
most_recent_timestamp)
generated_text += delta["content"]
most_recent_timestamp = timestamp
output.generated_text = generated_text
output.success = True
output.latency = latency
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
# Since vllm must support Python 3.8, we can't use str.removeprefix(prefix)
# introduced in Python 3.9
def remove_prefix(text: str, prefix: str) -> str:
if text.startswith(prefix):
return text[len(prefix):]
return text
ASYNC_REQUEST_FUNCS = {
"tgi": async_request_tgi,
"vllm": async_request_openai_completions,
"lmdeploy": async_request_openai_completions,
"deepspeed-mii": async_request_deepspeed_mii,
"openai": async_request_openai_completions,
"openai-chat": async_request_openai_chat_completions,
"tensorrt-llm": async_request_trt_llm,
}

View File

@ -1,30 +1,36 @@
"""Benchmark the latency of processing a single batch of requests."""
import argparse
import time
from pathlib import Path
from typing import Optional
import numpy as np
import torch
from tqdm import tqdm
from vllm import LLM, SamplingParams
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
def main(args: argparse.Namespace):
print(args)
# Process all the requests in a single batch if possible.
# NOTE(woosuk): If the request cannot be processed in a single batch,
# the engine will automatically process the request in multiple batches.
llm = LLM(
model=args.model,
tokenizer=args.tokenizer,
quantization=args.quantization,
tensor_parallel_size=args.tensor_parallel_size,
max_num_seqs=args.batch_size,
max_num_batched_tokens=args.batch_size * args.input_len,
trust_remote_code=args.trust_remote_code,
dtype=args.dtype,
)
llm = LLM(model=args.model,
tokenizer=args.tokenizer,
quantization=args.quantization,
tensor_parallel_size=args.tensor_parallel_size,
trust_remote_code=args.trust_remote_code,
dtype=args.dtype,
enforce_eager=args.enforce_eager,
kv_cache_dtype=args.kv_cache_dtype,
quantization_param_path=args.quantization_param_path,
device=args.device,
ray_workers_use_nsight=args.ray_workers_use_nsight,
enable_chunked_prefill=args.enable_chunked_prefill,
download_dir=args.download_dir,
block_size=args.block_size)
sampling_params = SamplingParams(
n=args.n,
@ -35,31 +41,57 @@ def main(args: argparse.Namespace):
max_tokens=args.output_len,
)
print(sampling_params)
dummy_prompt_token_ids = [[0] * args.input_len] * args.batch_size
dummy_prompt_token_ids = np.random.randint(10000,
size=(args.batch_size,
args.input_len))
dummy_prompt_token_ids = dummy_prompt_token_ids.tolist()
def run_to_completion(profile: bool = False):
if profile:
torch.cuda.cudart().cudaProfilerStart()
start_time = time.perf_counter()
llm.generate(prompt_token_ids=dummy_prompt_token_ids,
sampling_params=sampling_params,
use_tqdm=False)
end_time = time.perf_counter()
latency = end_time - start_time
if profile:
torch.cuda.cudart().cudaProfilerStop()
return latency
def run_to_completion(profile_dir: Optional[str] = None):
if profile_dir:
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
on_trace_ready=torch.profiler.tensorboard_trace_handler(
str(profile_dir))) as p:
llm.generate(prompt_token_ids=dummy_prompt_token_ids,
sampling_params=sampling_params,
use_tqdm=False)
print(p.key_averages())
else:
start_time = time.perf_counter()
llm.generate(prompt_token_ids=dummy_prompt_token_ids,
sampling_params=sampling_params,
use_tqdm=False)
end_time = time.perf_counter()
latency = end_time - start_time
return latency
print("Warming up...")
run_to_completion(profile=False)
for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
run_to_completion(profile_dir=None)
if args.profile:
profile_dir = args.profile_result_dir
if not profile_dir:
profile_dir = Path(
"."
) / "vllm_benchmark_result" / f"latency_result_{time.time()}"
print(f"Profiling (results will be saved to '{profile_dir}')...")
run_to_completion(profile_dir=profile_dir)
return
# Benchmark.
latencies = []
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
latencies.append(run_to_completion(profile=False))
latencies.append(run_to_completion(profile_dir=None))
latencies = np.array(latencies)
percentages = [10, 25, 50, 75, 90]
percentiles = np.percentile(latencies, percentages)
print(f'Avg latency: {np.mean(latencies)} seconds')
for percentage, percentile in zip(percentages, percentiles):
print(f'{percentage}% percentile latency: {percentile} seconds')
if __name__ == '__main__':
@ -70,7 +102,7 @@ if __name__ == '__main__':
parser.add_argument('--tokenizer', type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=['awq', None],
choices=[*QUANTIZATION_METHODS, None],
default=None)
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--input-len', type=int, default=32)
@ -81,9 +113,13 @@ if __name__ == '__main__':
default=1,
help='Number of generated sequences per prompt.')
parser.add_argument('--use-beam-search', action='store_true')
parser.add_argument('--num-iters-warmup',
type=int,
default=10,
help='Number of iterations to run for warmup.')
parser.add_argument('--num-iters',
type=int,
default=3,
default=30,
help='Number of iterations to run.')
parser.add_argument('--trust-remote-code',
action='store_true',
@ -97,5 +133,63 @@ if __name__ == '__main__':
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument('--enforce-eager',
action='store_true',
help='enforce eager mode and disable CUDA graph')
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=['auto', 'fp8'],
default='auto',
help=
'Data type for kv cache storage. If "auto", will use model data type. '
'FP8_E5M2 (without scaling) is only supported on cuda version greater '
'than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead supported for '
'common inference criteria.')
parser.add_argument(
'--quantization-param-path',
type=str,
default=None,
help='Path to the JSON file containing the KV cache scaling factors. '
'This should generally be supplied, when KV cache dtype is FP8. '
'Otherwise, KV cache scaling factors default to 1.0, which may cause '
'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is '
'instead supported for common inference criteria.')
parser.add_argument(
'--profile',
action='store_true',
help='profile the generation process of a single batch')
parser.add_argument(
'--profile-result-dir',
type=str,
default=None,
help=('path to save the pytorch profiler output. Can be visualized '
'with ui.perfetto.dev or Tensorboard.'))
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda", "cpu"],
help='device type for vLLM execution, supporting CUDA and CPU.')
parser.add_argument('--block-size',
type=int,
default=16,
help='block size of key/value cache')
parser.add_argument(
'--enable-chunked-prefill',
action='store_true',
help='If True, the prefill requests can be chunked based on the '
'max_num_batched_tokens')
parser.add_argument(
"--ray-workers-use-nsight",
action='store_true',
help="If specified, use nsight to profile ray workers",
)
parser.add_argument('--download-dir',
type=str,
default=None,
help='directory to download and load the weights, '
'default to the default cache dir of huggingface')
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,62 @@
import argparse
import time
from vllm import LLM, SamplingParams
PROMPT = "You are a helpful assistant in recognizes the content of tables in markdown format. Here is a table as fellows. You need to answer my question about the table.\n# Table\n|Opening|Opening|Sl. No.|Film|Cast|Director|Music Director|Notes|\n|----|----|----|----|----|----|----|----|\n|J A N|9|1|Agni Pushpam|Jayabharathi, Kamalahasan|Jeassy|M. K. Arjunan||\n|J A N|16|2|Priyamvada|Mohan Sharma, Lakshmi, KPAC Lalitha|K. S. Sethumadhavan|V. Dakshinamoorthy||\n|J A N|23|3|Yakshagaanam|Madhu, Sheela|Sheela|M. S. Viswanathan||\n|J A N|30|4|Paalkkadal|Sheela, Sharada|T. K. Prasad|A. T. Ummer||\n|F E B|5|5|Amma|Madhu, Srividya|M. Krishnan Nair|M. K. Arjunan||\n|F E B|13|6|Appooppan|Thikkurissi Sukumaran Nair, Kamal Haasan|P. Bhaskaran|M. S. Baburaj||\n|F E B|20|7|Srishti|Chowalloor Krishnankutty, Ravi Alummoodu|K. T. Muhammad|M. S. Baburaj||\n|F E B|20|8|Vanadevatha|Prem Nazir, Madhubala|Yusufali Kechery|G. Devarajan||\n|F E B|27|9|Samasya|Madhu, Kamalahaasan|K. Thankappan|Shyam||\n|F E B|27|10|Yudhabhoomi|K. P. Ummer, Vidhubala|Crossbelt Mani|R. K. Shekhar||\n|M A R|5|11|Seemantha Puthran|Prem Nazir, Jayabharathi|A. B. Raj|M. K. Arjunan||\n|M A R|12|12|Swapnadanam|Rani Chandra, Dr. Mohandas|K. G. George|Bhaskar Chandavarkar||\n|M A R|19|13|Thulavarsham|Prem Nazir, sreedevi, Sudheer|N. Sankaran Nair|V. Dakshinamoorthy||\n|M A R|20|14|Aruthu|Kaviyoor Ponnamma, Kamalahasan|Ravi|G. Devarajan||\n|M A R|26|15|Swimming Pool|Kamal Haasan, M. G. Soman|J. Sasikumar|M. K. Arjunan||\n\n# Question\nWhat' s the content in the (1,1) cells\n" # noqa: E501
def test_prefix(llm=None, sampling_params=None, prompts=None):
start_time = time.time()
llm.generate(prompts, sampling_params=sampling_params)
end_time = time.time()
print(f"cost time {end_time - start_time}")
def main(args):
llm = LLM(model=args.model,
tokenizer_mode='auto',
trust_remote_code=True,
enforce_eager=True,
use_v2_block_manager=args.use_v2_block_manager,
tensor_parallel_size=args.tensor_parallel_size,
enable_prefix_caching=args.enable_prefix_caching)
num_prompts = 100
prompts = [PROMPT] * num_prompts
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
print("------warm up------")
test_prefix(
llm=llm,
prompts=prompts,
sampling_params=sampling_params,
)
print("------start generating------")
test_prefix(
llm=llm,
prompts=prompts,
sampling_params=sampling_params,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Benchmark the performance with or without automatic '
'prefix caching.')
parser.add_argument('--model',
type=str,
default='baichuan-inc/Baichuan2-13B-Chat')
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument('--enable-prefix-caching',
action='store_true',
help='enable prefix caching')
parser.add_argument('--use-v2-block-manager',
action='store_true',
help='Use BlockSpaceMangerV2')
args = parser.parse_args()
main(args)

View File

@ -1,81 +1,172 @@
"""Benchmark online serving throughput.
On the server side, run one of the following commands:
(vLLM backend)
python -m vllm.entrypoints.api_server \
vLLM OpenAI API server
python -m vllm.entrypoints.openai.api_server \
--model <your_model> --swap-space 16 \
--disable-log-requests
(TGI backend)
./launch_hf_server.sh <your_model>
./launch_tgi_server.sh <your_model> <max_batch_total_tokens>
On the client side, run:
python benchmarks/benchmark_serving.py \
--backend <backend> \
--tokenizer <your_model> --dataset <target_dataset> \
--request-rate <request_rate>
--model <your_model> \
--dataset-name sharegpt \
--dataset-path <path to dataset> \
--request-rate <request_rate> \ # By default <request_rate> is inf
--num-prompts <num_prompts> # By default <num_prompts> is 1000
"""
import argparse
import asyncio
import json
import os
import random
import time
from typing import AsyncGenerator, List, Tuple
import warnings
from dataclasses import dataclass
from datetime import datetime
from typing import AsyncGenerator, List, Optional, Tuple
import aiohttp
import numpy as np
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
RequestFuncOutput)
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from vllm.transformers_utils.tokenizer import get_tokenizer
# (prompt len, output len, latency)
REQUEST_LATENCY: List[Tuple[int, int, float]] = []
@dataclass
class BenchmarkMetrics:
completed: int
total_input: int
total_output: int
request_throughput: float
input_throughput: float
output_throughput: float
mean_ttft_ms: float
median_ttft_ms: float
p99_ttft_ms: float
mean_tpot_ms: float
median_tpot_ms: float
p99_tpot_ms: float
def sample_requests(
def sample_sharegpt_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int] = None,
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [
data for data in dataset
if len(data["conversations"]) >= 2
]
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [
(data["conversations"][0]["value"], data["conversations"][1]["value"])
for data in dataset
]
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Tokenize the prompts and completions.
prompts = [prompt for prompt, _ in dataset]
prompt_token_ids = tokenizer(prompts).input_ids
completions = [completion for _, completion in dataset]
completion_token_ids = tokenizer(completions).input_ids
tokenized_dataset = []
for i in range(len(dataset)):
output_len = len(completion_token_ids[i])
tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out too long sequences.
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for prompt, prompt_token_ids, output_len in tokenized_dataset:
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
# This is because TGI causes errors when the input or output length
# is too short.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
filtered_dataset.append((prompt, prompt_len, output_len))
# Sample the requests.
sampled_requests = random.sample(filtered_dataset, num_requests)
return filtered_dataset
def sample_sonnet_requests(
dataset_path: str,
num_requests: int,
input_len: int,
output_len: int,
prefix_len: int,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, str, int, int]]:
assert (
input_len > prefix_len
), "'args.sonnet-input-len' must be greater than 'args.prefix-input-len'."
# Load the dataset.
with open(dataset_path) as f:
poem_lines = f.readlines()
# Tokenize the poem lines.
poem_token_ids = tokenizer(poem_lines).input_ids
average_poem_len = sum(
len(token_ids) for token_ids in poem_token_ids) / len(poem_token_ids)
# Base prefix for all requests.
base_prompt = "Pick as many lines as you can from these poem lines:\n"
base_message = [{
"role": "user",
"content": base_prompt,
}]
base_prompt_formatted = tokenizer.apply_chat_template(
base_message, add_generation_prompt=True, tokenize=False)
base_prompt_offset = len(tokenizer(base_prompt_formatted).input_ids)
assert (
input_len > base_prompt_offset
), f"Please set 'args.sonnet-input-len' higher than {base_prompt_offset}."
num_input_lines = round(
(input_len - base_prompt_offset) / average_poem_len)
# First approximately `prefix_len` number of tokens in the
# prompt are fixed poem lines.
assert (
prefix_len > base_prompt_offset
), f"Please set 'args.sonnet-prefix-len' higher than {base_prompt_offset}."
num_prefix_lines = round(
(prefix_len - base_prompt_offset) / average_poem_len)
prefix_lines = poem_lines[:num_prefix_lines]
# Sample the rest of lines per request.
sampled_requests: List[Tuple[str, int, int]] = []
for _ in range(num_requests):
sampled_lines = "".join(
prefix_lines +
random.sample(poem_lines, num_input_lines - num_prefix_lines))
prompt = f"{base_prompt}{sampled_lines}"
message = [
{
"role": "user",
"content": prompt,
},
]
prompt_formatted = tokenizer.apply_chat_template(
message, add_generation_prompt=True, tokenize=False)
prompt_len = len(tokenizer(prompt_formatted).input_ids)
sampled_requests.append(
(prompt, prompt_formatted, prompt_len, output_len))
return sampled_requests
@ -96,79 +187,149 @@ async def get_request(
await asyncio.sleep(interval)
async def send_request(
backend: str,
api_url: str,
prompt: str,
prompt_len: int,
output_len: int,
best_of: int,
use_beam_search: bool,
) -> None:
request_start_time = time.perf_counter()
def calculate_metrics(
input_requests: List[Tuple[str, int, int]],
outputs: List[RequestFuncOutput],
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
) -> Tuple[BenchmarkMetrics, List[int]]:
actual_output_lens = []
total_input = 0
completed = 0
tpots = []
ttfts = []
for i in range(len(outputs)):
if outputs[i].success:
output_len = len(tokenizer(outputs[i].generated_text).input_ids)
actual_output_lens.append(output_len)
total_input += input_requests[i][1]
if output_len > 1:
tpots.append(
(outputs[i].latency - outputs[i].ttft) / (output_len - 1))
ttfts.append(outputs[i].ttft)
completed += 1
else:
actual_output_lens.append(0)
headers = {"User-Agent": "Benchmark Client"}
if backend == "vllm":
pload = {
"prompt": prompt,
"n": 1,
"best_of": best_of,
"use_beam_search": use_beam_search,
"temperature": 0.0 if use_beam_search else 1.0,
"top_p": 1.0,
"max_tokens": output_len,
"ignore_eos": True,
"stream": False,
}
elif backend == "tgi":
assert not use_beam_search
params = {
"best_of": best_of,
"max_new_tokens": output_len,
"do_sample": True,
}
pload = {
"inputs": prompt,
"parameters": params,
}
else:
raise ValueError(f"Unknown backend: {backend}")
metrics = BenchmarkMetrics(
completed=completed,
total_input=total_input,
total_output=sum(actual_output_lens),
request_throughput=completed / dur_s,
input_throughput=total_input / dur_s,
output_throughput=sum(actual_output_lens) / dur_s,
mean_ttft_ms=np.mean(ttfts or 0) *
1000, # ttfts is empty if streaming is not supported by backend
median_ttft_ms=np.median(ttfts or 0) * 1000,
p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
mean_tpot_ms=np.mean(tpots) * 1000,
median_tpot_ms=np.median(tpots) * 1000,
p99_tpot_ms=np.percentile(tpots, 99) * 1000,
)
timeout = aiohttp.ClientTimeout(total=3 * 3600)
async with aiohttp.ClientSession(timeout=timeout) as session:
while True:
async with session.post(api_url, headers=headers, json=pload) as response:
chunks = []
async for chunk, _ in response.content.iter_chunks():
chunks.append(chunk)
output = b"".join(chunks).decode("utf-8")
output = json.loads(output)
# Re-send the request if it failed.
if "error" not in output:
break
request_end_time = time.perf_counter()
request_latency = request_end_time - request_start_time
REQUEST_LATENCY.append((prompt_len, output_len, request_latency))
return metrics, actual_output_lens
async def benchmark(
backend: str,
api_url: str,
model_id: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: List[Tuple[str, int, int]],
best_of: int,
use_beam_search: bool,
request_rate: float,
) -> None:
tasks: List[asyncio.Task] = []
disable_tqdm: bool,
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS.get(backend)
else:
raise ValueError(f"Unknown backend: {backend}")
print(f"Traffic request rate: {request_rate}")
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
benchmark_start_time = time.perf_counter()
tasks = []
async for request in get_request(input_requests, request_rate):
prompt, prompt_len, output_len = request
task = asyncio.create_task(send_request(backend, api_url, prompt,
prompt_len, output_len,
best_of, use_beam_search))
tasks.append(task)
await asyncio.gather(*tasks)
request_func_input = RequestFuncInput(
model=model_id,
prompt=prompt,
api_url=api_url,
prompt_len=prompt_len,
output_len=output_len,
best_of=best_of,
use_beam_search=use_beam_search,
)
tasks.append(
asyncio.create_task(
request_func(request_func_input=request_func_input,
pbar=pbar)))
outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)
if not disable_tqdm:
pbar.close()
benchmark_duration = time.perf_counter() - benchmark_start_time
metrics, actual_output_lens = calculate_metrics(
input_requests=input_requests,
outputs=outputs,
dur_s=benchmark_duration,
tokenizer=tokenizer,
)
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):",
benchmark_duration))
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
print("{:<40} {:<10}".format("Total generated tokens:",
metrics.total_output))
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
metrics.request_throughput))
print("{:<40} {:<10.2f}".format("Input token throughput (tok/s):",
metrics.input_throughput))
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
metrics.output_throughput))
print("{s:{c}^{n}}".format(s='Time to First Token', n=50, c='-'))
print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
print("{:<40} {:<10.2f}".format("Median TTFT (ms):",
metrics.median_ttft_ms))
print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
print("{s:{c}^{n}}".format(s='Time per Output Token (excl. 1st token)',
n=50,
c='-'))
print("{:<40} {:<10.2f}".format("Mean TPOT (ms):", metrics.mean_tpot_ms))
print("{:<40} {:<10.2f}".format("Median TPOT (ms):",
metrics.median_tpot_ms))
print("{:<40} {:<10.2f}".format("P99 TPOT (ms):", metrics.p99_tpot_ms))
print("=" * 50)
result = {
"duration": benchmark_duration,
"completed": metrics.completed,
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"request_throughput": metrics.request_throughput,
"input_throughput": metrics.input_throughput,
"output_throughput": metrics.output_throughput,
"mean_ttft_ms": metrics.mean_ttft_ms,
"median_ttft_ms": metrics.median_ttft_ms,
"p99_ttft_ms": metrics.p99_ttft_ms,
"mean_tpot_ms": metrics.mean_tpot_ms,
"median_tpot_ms": metrics.median_tpot_ms,
"p99_tpot_ms": metrics.p99_tpot_ms,
"input_lens": [output.prompt_len for output in outputs],
"output_lens": actual_output_lens,
"ttfts": [output.ttft for output in outputs],
"itls": [output.itl for output in outputs],
"generated_texts": [output.generated_text for output in outputs],
"errors": [output.error for output in outputs],
}
return result
def main(args: argparse.Namespace):
@ -176,58 +337,260 @@ def main(args: argparse.Namespace):
random.seed(args.seed)
np.random.seed(args.seed)
api_url = f"http://{args.host}:{args.port}/generate"
tokenizer = get_tokenizer(args.tokenizer, trust_remote_code=args.trust_remote_code)
input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
backend = args.backend
model_id = args.model
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
benchmark_start_time = time.perf_counter()
asyncio.run(benchmark(args.backend, api_url, input_requests, args.best_of,
args.use_beam_search, args.request_rate))
benchmark_end_time = time.perf_counter()
benchmark_time = benchmark_end_time - benchmark_start_time
print(f"Total time: {benchmark_time:.2f} s")
print(f"Throughput: {args.num_prompts / benchmark_time:.2f} requests/s")
if args.base_url is not None:
api_url = f"{args.base_url}{args.endpoint}"
else:
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
# Compute the latency statistics.
avg_latency = np.mean([latency for _, _, latency in REQUEST_LATENCY])
print(f"Average latency: {avg_latency:.2f} s")
avg_per_token_latency = np.mean([
latency / (prompt_len + output_len)
for prompt_len, output_len, latency in REQUEST_LATENCY
])
print(f"Average latency per token: {avg_per_token_latency:.2f} s")
avg_per_output_token_latency = np.mean([
latency / output_len
for _, output_len, latency in REQUEST_LATENCY
])
print("Average latency per output token: "
f"{avg_per_output_token_latency:.2f} s")
tokenizer = get_tokenizer(tokenizer_id,
trust_remote_code=args.trust_remote_code)
if args.dataset is not None:
warnings.warn(
"The '--dataset' argument will be deprecated in the next "
"release. Please use '--dataset-name' and "
"'--dataset-path' in the future runs.",
stacklevel=2)
input_requests = sample_sharegpt_requests(
dataset_path=args.dataset,
num_requests=args.num_prompts,
tokenizer=tokenizer,
fixed_output_len=args.sharegpt_output_len,
)
elif args.dataset_name == "sharegpt":
input_requests = sample_sharegpt_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
fixed_output_len=args.sharegpt_output_len,
)
elif args.dataset_name == "sonnet":
# Do not format the prompt, pass to message directly
if args.backend == "openai-chat":
input_requests = sample_sonnet_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
)
input_requests = [(prompt, prompt_len, output_len)
for prompt, prompt_formatted, prompt_len,
output_len in input_requests]
else:
assert (
tokenizer.chat_template or tokenizer.default_chat_template
), "Tokenizer/model must have chat template for sonnet dataset."
input_requests = sample_sonnet_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
)
input_requests = [(prompt_formatted, prompt_len, output_len)
for prompt, prompt_formatted, prompt_len,
output_len in input_requests]
else:
raise ValueError(f"Unknown dataset: {args.dataset_name}")
benchmark_result = asyncio.run(
benchmark(
backend=backend,
api_url=api_url,
model_id=model_id,
tokenizer=tokenizer,
input_requests=input_requests,
best_of=args.best_of,
use_beam_search=args.use_beam_search,
request_rate=args.request_rate,
disable_tqdm=args.disable_tqdm,
))
# Save config and results to json
if args.save_result:
result_json = {}
# Setup
current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
result_json["date"] = current_dt
result_json["backend"] = backend
result_json["model_id"] = model_id
result_json["tokenizer_id"] = tokenizer_id
result_json["best_of"] = args.best_of
result_json["use_beam_search"] = args.use_beam_search
result_json["num_prompts"] = args.num_prompts
# Metadata
if args.metadata:
for item in args.metadata:
if "=" in item:
kvstring = item.split("=")
result_json[kvstring[0].strip()] = kvstring[1].strip()
else:
raise ValueError(
"Invalid metadata format. Please use KEY=VALUE format."
)
# Traffic
result_json["request_rate"] = (
args.request_rate if args.request_rate < float("inf") else "inf")
# Merge with benchmark result
result_json = {**result_json, **benchmark_result}
# Save to file
base_model_id = model_id.split("/")[-1]
file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json" #noqa
if args.result_dir:
file_name = os.path.join(args.result_dir, file_name)
with open(file_name, "w") as outfile:
json.dump(result_json, outfile)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Benchmark the online serving throughput.")
parser.add_argument("--backend", type=str, default="vllm",
choices=["vllm", "tgi"])
parser.add_argument(
"--backend",
type=str,
default="vllm",
choices=list(ASYNC_REQUEST_FUNCS.keys()),
)
parser.add_argument(
"--base-url",
type=str,
default=None,
help="Server or API base url if not using http host and port.",
)
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--dataset", type=str, required=True,
parser.add_argument(
"--endpoint",
type=str,
default="/v1/completions",
help="API endpoint.",
)
parser.add_argument(
"--dataset",
type=str,
default=None,
help="Path to the ShareGPT dataset, will be deprecated in the "
"next release.",
)
parser.add_argument(
"--dataset-name",
type=str,
default="sharegpt",
choices=["sharegpt", "sonnet"],
help="Name of the dataset to benchmark on.",
)
parser.add_argument("--dataset-path",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument("--tokenizer", type=str, required=True,
help="Name or path of the tokenizer.")
parser.add_argument("--best-of", type=int, default=1,
help="Generates `best_of` sequences per prompt and "
"returns the best one.")
parser.add_argument(
"--model",
type=str,
required=True,
help="Name of the model.",
)
parser.add_argument(
"--tokenizer",
type=str,
help=
"Name or path of the tokenizer, if not using the default tokenizer.",
)
parser.add_argument(
"--best-of",
type=int,
default=1,
help="Generates `best_of` sequences per prompt and "
"returns the best one.",
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument("--num-prompts", type=int, default=1000,
help="Number of prompts to process.")
parser.add_argument("--request-rate", type=float, default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.")
parser.add_argument(
"--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.",
)
parser.add_argument(
"--sharegpt-output-len",
type=int,
default=None,
help="Output length for each request. Overrides the output length "
"from the ShareGPT dataset.")
parser.add_argument(
"--sonnet-input-len",
type=int,
default=550,
help=
"Number of input tokens per request, used only for sonnet dataset.",
)
parser.add_argument(
"--sonnet-output-len",
type=int,
default=150,
help=
"Number of output tokens per request, used only for sonnet dataset.",
)
parser.add_argument(
"--sonnet-prefix-len",
type=int,
default=200,
help=
"Number of prefix tokens per request, used only for sonnet dataset.",
)
parser.add_argument(
"--request-rate",
type=float,
default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.",
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument('--trust-remote-code', action='store_true',
help='trust remote code from huggingface')
parser.add_argument(
"--trust-remote-code",
action="store_true",
help="Trust remote code from huggingface",
)
parser.add_argument(
"--disable-tqdm",
action="store_true",
help="Specify to disable tqdm progress bar.",
)
parser.add_argument(
"--save-result",
action="store_true",
help="Specify to save benchmark results to a json file",
)
parser.add_argument(
"--metadata",
metavar="KEY=VALUE",
nargs="*",
help="Key-value pairs (e.g, --metadata version=0.3.3 tp=1) "
"for metadata of this run to be saved in the result JSON file "
"for record keeping purposes.",
)
parser.add_argument(
"--result-dir",
type=str,
default=None,
help="Specify directory to save benchmark json results."
"If not specified, results are saved in the current directory.",
)
args = parser.parse_args()
main(args)

View File

@ -6,18 +6,22 @@ import time
from typing import List, Optional, Tuple
import torch
from transformers import AutoModelForCausalLM, PreTrainedTokenizerBase
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizerBase)
from vllm import LLM, SamplingParams
from vllm.transformers_utils.tokenizer import get_tokenizer
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
@ -27,20 +31,23 @@ def sample_requests(
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Tokenize the prompts and completions.
prompts = [prompt for prompt, _ in dataset]
prompt_token_ids = tokenizer(prompts).input_ids
completions = [completion for _, completion in dataset]
completion_token_ids = tokenizer(completions).input_ids
tokenized_dataset = []
for i in range(len(dataset)):
output_len = len(completion_token_ids[i])
tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out too long sequences.
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for prompt, prompt_token_ids, output_len in tokenized_dataset:
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
@ -49,9 +56,7 @@ def sample_requests(
continue
filtered_dataset.append((prompt, prompt_len, output_len))
# Sample the requests.
sampled_requests = random.sample(filtered_dataset, num_requests)
return sampled_requests
return filtered_dataset
def run_vllm(
@ -65,7 +70,18 @@ def run_vllm(
use_beam_search: bool,
trust_remote_code: bool,
dtype: str,
max_model_len: Optional[int],
enforce_eager: bool,
kv_cache_dtype: str,
quantization_param_path: Optional[str],
device: str,
enable_prefix_caching: bool,
enable_chunked_prefill: bool,
max_num_batched_tokens: int,
gpu_memory_utilization: float = 0.9,
download_dir: Optional[str] = None,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(
model=model,
tokenizer=tokenizer,
@ -74,28 +90,35 @@ def run_vllm(
seed=seed,
trust_remote_code=trust_remote_code,
dtype=dtype,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
quantization_param_path=quantization_param_path,
device=device,
enable_prefix_caching=enable_prefix_caching,
download_dir=download_dir,
enable_chunked_prefill=enable_chunked_prefill,
max_num_batched_tokens=max_num_batched_tokens,
)
# Add the requests to the engine.
prompts = []
sampling_params = []
for prompt, _, output_len in requests:
sampling_params = SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
)
# FIXME(woosuk): Do not use internal method.
llm._add_request(
prompt=prompt,
prompt_token_ids=None,
sampling_params=sampling_params,
)
prompts.append(prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
))
start = time.perf_counter()
# FIXME(woosuk): Do use internal method.
llm._run_engine(use_tqdm=True)
llm.generate(prompts, sampling_params, use_tqdm=True)
end = time.perf_counter()
return end - start
@ -160,25 +183,58 @@ def run_hf(
return end - start
def run_mii(
requests: List[Tuple[str, int, int]],
model: str,
tensor_parallel_size: int,
output_len: int,
) -> float:
from mii import client, serve
llm = serve(model, tensor_parallel=tensor_parallel_size)
prompts = [prompt for prompt, _, _ in requests]
start = time.perf_counter()
llm.generate(prompts, max_new_tokens=output_len)
end = time.perf_counter()
client = client(model)
client.terminate_server()
return end - start
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
# Sample the requests.
tokenizer = get_tokenizer(args.tokenizer,
trust_remote_code=args.trust_remote_code)
requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
if args.dataset is None:
# Synthesize a prompt with the given input length.
prompt = "hi" * (args.input_len - 1)
requests = [(prompt, args.input_len, args.output_len)
for _ in range(args.num_prompts)]
else:
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
args.output_len)
if args.backend == "vllm":
elapsed_time = run_vllm(requests, args.model, args.tokenizer,
args.quantization, args.tensor_parallel_size,
args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype)
elapsed_time = run_vllm(
requests, args.model, args.tokenizer, args.quantization,
args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype, args.max_model_len,
args.enforce_eager, args.kv_cache_dtype,
args.quantization_param_path, args.device,
args.enable_prefix_caching, args.enable_chunked_prefill,
args.max_num_batched_tokens, args.gpu_memory_utilization,
args.download_dir)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
args.use_beam_search, args.hf_max_batch_size,
args.trust_remote_code)
elif args.backend == "mii":
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
args.output_len)
else:
raise ValueError(f"Unknown backend: {args.backend}")
total_num_tokens = sum(prompt_len + output_len
@ -191,17 +247,26 @@ if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf"],
choices=["vllm", "hf", "mii"],
default="vllm")
parser.add_argument("--dataset",
type=str,
required=True,
default=None,
help="Path to the dataset.")
parser.add_argument("--input-len",
type=int,
default=None,
help="Input prompt length for each request")
parser.add_argument("--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--model", type=str, default="facebook/opt-125m")
parser.add_argument("--tokenizer", type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=['awq', None],
choices=[*QUANTIZATION_METHODS, None],
default=None)
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
parser.add_argument("--n",
@ -221,6 +286,12 @@ if __name__ == "__main__":
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
parser.add_argument(
'--max-model-len',
type=int,
default=None,
help='Maximum length of a sequence (including prompt and output). '
'If None, will be derived from the model.')
parser.add_argument(
'--dtype',
type=str,
@ -230,7 +301,66 @@ if __name__ == "__main__":
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument('--gpu-memory-utilization',
type=float,
default=0.9,
help='the fraction of GPU memory to be used for '
'the model executor, which can range from 0 to 1.'
'If unspecified, will use the default value of 0.9.')
parser.add_argument("--enforce-eager",
action="store_true",
help="enforce eager execution")
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=["auto", "fp8"],
default="auto",
help=
'Data type for kv cache storage. If "auto", will use model data type. '
'FP8_E5M2 (without scaling) is only supported on cuda version greater '
'than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead supported for '
'common inference criteria.')
parser.add_argument(
'--quantization-param-path',
type=str,
default=None,
help='Path to the JSON file containing the KV cache scaling factors. '
'This should generally be supplied, when KV cache dtype is FP8. '
'Otherwise, KV cache scaling factors default to 1.0, which may cause '
'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is '
'instead supported for common inference criteria.')
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda", "cpu"],
help='device type for vLLM execution, supporting CUDA and CPU.')
parser.add_argument(
"--enable-prefix-caching",
action='store_true',
help="enable automatic prefix caching for vLLM backend.")
parser.add_argument("--enable-chunked-prefill",
action='store_true',
help="enable chunked prefill for vLLM backend.")
parser.add_argument('--max-num-batched-tokens',
type=int,
default=None,
help='maximum number of batched tokens per '
'iteration')
parser.add_argument('--download-dir',
type=str,
default=None,
help='directory to download and load the weights, '
'default to the default cache dir of huggingface')
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
if args.dataset is None:
assert args.input_len is not None
assert args.output_len is not None
else:
assert args.input_len is None
if args.backend == "vllm":
if args.hf_max_batch_size is not None:
@ -240,7 +370,18 @@ if __name__ == "__main__":
raise ValueError("HF max batch size is required for HF backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.tokenizer is None:
args.tokenizer = args.model
elif args.backend == "mii":
if args.dtype != "auto":
raise ValueError("dtype must be auto for MII backend.")
if args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.use_beam_search:
raise ValueError("Beam search is not supported for MII backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
if args.tokenizer != args.model:
raise ValueError("Tokenizer must be the same as the model for MII "
"backend.")
main(args)

View File

@ -0,0 +1,302 @@
import argparse
import os
import sys
from typing import Optional
import torch
import torch.nn.functional as F
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.aqlm import (
dequantize_weight, generic_dequantize_gemm, get_int_dtype,
optimized_dequantize_gemm)
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def torch_mult(
input: torch.Tensor, # [..., in_features]
weights: torch.Tensor,
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
) -> torch.Tensor:
output = F.linear(input, weights)
return output
def dequant_out_scale(
input: torch.Tensor, # [..., in_features]
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
codebooks: torch.
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
if bias is None:
output = F.linear(input, weights, bias)
orig_shape = output.shape
flattened_output = output.view(-1, output.size(-1))
f_scales = scales.view(-1, scales.shape[0])
b_scales = f_scales.expand(flattened_output.shape[0], -1)
flattened_output *= b_scales
return flattened_output.view(orig_shape)
else:
b_scales = scales.view(scales.shape[:-3] + (-1, )).expand(
-1, weights.shape[1])
weights *= b_scales
return F.linear(input, weights, bias)
def dequant_weight_scale(
input: torch.Tensor, # [..., in_features]
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
codebooks: torch.
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
b_scales = scales.view(scales.shape[:-3] + (-1, )).expand(
-1, weights.shape[1])
weights *= b_scales
return F.linear(input, weights, bias)
def dequant_no_scale(
input: torch.Tensor, # [..., in_features]
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
codebooks: torch.
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
return F.linear(input, weights, bias)
# Compare the optimized 1x16 and 2x8 cuda decompression/dequant kernels against
# the generic pytorch version.
# Just visual comparison.
def dequant_test(k: int, parts: torch.tensor, nbooks: int, bits: int) -> None:
n = parts.sum().item()
device = torch.device('cuda:0')
code_range = (1 << bits) // 2
ingroups = 8
codes = torch.randint(-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device)
codebooks = torch.randn(size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device)
count = 0
for index in range(16):
for i in range(8):
for book in range(nbooks):
codebooks[book, index, 0, i] = count * (10**book)
count += 1
print("codes shape", codes.shape)
for i in range(16):
for book in range(nbooks):
codes[0, i, book] = i
codes[0, -i, book] = i
weights = dequantize_weight(codes, codebooks, None)
weights2 = ops.aqlm_dequant(codes, codebooks, parts)
print("weights shape:", weights.shape)
print("weights2 shape:", weights2.shape)
print("weights are:", weights)
print("weights2 are:", weights2)
print("first 128 weights are", weights[0, 0:128].to(torch.int32))
print("first 128 weights2 are:", weights2[0, 0:128].to(torch.int32))
print("last 128 weights are", weights[0, -128:])
print("last 128 weights2 are:", weights2[0, -128:])
def main():
parser = argparse.ArgumentParser(description="Benchmark aqlm performance.")
# Add arguments
parser.add_argument("--nbooks",
type=int,
default=1,
help="Number of codebooks (default: 1)")
parser.add_argument("--bits",
type=int,
default=16,
help="Number of bits per code element (default: 16)")
parser.add_argument(
"--test",
type=bool,
default=False,
help="Run the decompression/dequant tester rather than benchmarking "
"(default: False)")
# Parse the arguments
args = parser.parse_args()
# Extract values
nbooks = args.nbooks
bits = args.bits
if args.test:
dequant_test(4096, torch.tensor((4096, )), nbooks, bits)
return
# Otherwise, benchmark.
methods = [
ops.aqlm_gemm,
dequant_out_scale,
generic_dequantize_gemm,
optimized_dequantize_gemm,
dequant_weight_scale,
torch_mult,
dequant_no_scale,
]
filename = f"./aqlm_benchmark_{nbooks}x{bits}.csv"
print(f"writing benchmarks to file {filename}")
with open(filename, "w") as f:
sys.stdout = f
print('m | k | n | n parts', end='')
for method in methods:
print(f" | {method.__name__.replace('_', ' ')} (µs)", end='')
print('')
# These are reasonable prefill sizes.
ksandpartions = ((4096, (4096, 4096, 4096)), (4096, (4096, )),
(4096, (11008, 11008)), (11008, (4096, )))
# reasonable ranges for m.
for m in [
1, 2, 4, 8, 10, 12, 14, 16, 24, 32, 48, 52, 56, 64, 96, 112,
128, 256, 512, 1024, 1536, 2048, 3072, 4096
]:
print(f'{m}', file=sys.__stdout__)
for ksp in ksandpartions:
run_grid(m, ksp[0], torch.tensor(ksp[1]), nbooks, bits,
methods)
sys.stdout = sys.__stdout__
def run_grid(m: int, k: int, parts: torch.tensor, nbooks: int, bits: int,
methods):
# I didn't see visible improvements from increasing these, but feel free :)
num_warmup_trials = 1
num_trials = 1
num_calls = 100
# warmup.
for method in methods:
for _ in range(num_warmup_trials):
run_timing(
num_calls=num_calls,
m=m,
k=k,
parts=parts,
nbooks=nbooks,
bits=bits,
method=method,
)
n = parts.sum().item()
print(f'{m} | {k} | {n} | {parts.tolist()}', end='')
for method in methods:
best_time_us = 1e20
for _ in range(num_trials):
kernel_dur_ms = run_timing(
num_calls=num_calls,
m=m,
k=k,
parts=parts,
nbooks=nbooks,
bits=bits,
method=method,
)
kernel_dur_us = 1000 * kernel_dur_ms
if kernel_dur_us < best_time_us:
best_time_us = kernel_dur_us
print(f' | {kernel_dur_us:.0f}', end='')
print('')
def run_timing(num_calls: int, m: int, k: int, parts: torch.tensor,
nbooks: int, bits: int, method) -> float:
n = parts.sum().item()
device = torch.device('cuda:0')
input = torch.randn((1, m, k), dtype=torch.float16, device=device)
code_range = (1 << bits) // 2
ingroups = 8
codes = torch.randint(-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device)
codebooks = torch.randn(size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device)
scales = torch.randn(size=(n, 1, 1, 1), dtype=torch.float16, device=device)
# for comparison to just a pytorch mult.
weights = torch.randn((n, k), dtype=torch.float16, device=device)
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
if method is torch_mult:
for i in range(num_calls):
torch_mult(input, weights, scales)
else:
for i in range(num_calls):
method(input, codes, codebooks, scales, parts, None)
end_event.record()
end_event.synchronize()
dur_ms = start_event.elapsed_time(end_event) / num_calls
return dur_ms
if __name__ == "__main__":
sys.exit(main())

View File

@ -0,0 +1,215 @@
import argparse
import json
import os
import sys
import torch
import torch.nn.functional as F
import triton
from tqdm import tqdm
from vllm.model_executor.layers.fused_moe import (fused_moe,
get_config_file_name)
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def main(dtype: str):
method = fused_moe
for bs in [
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
2048, 3072, 4096
]:
run_grid(bs, method=method, dtype=dtype)
def run_grid(bs, method, dtype: str):
d_model = 4096
num_total_experts = 8
top_k = 2
tp_size = 2
model_intermediate_size = 14336
num_layers = 32
num_calls = 100
num_warmup_trials = 1
num_trials = 1
configs = []
for block_size_n in [32, 64, 128, 256]:
for block_size_m in [16, 32, 64, 128, 256]:
for block_size_k in [64, 128, 256]:
for group_size_m in [1, 16, 32, 64]:
for num_warps in [4, 8]:
for num_stages in [2, 3, 4, 5]:
configs.append({
"BLOCK_SIZE_M": block_size_m,
"BLOCK_SIZE_N": block_size_n,
"BLOCK_SIZE_K": block_size_k,
"GROUP_SIZE_M": group_size_m,
"num_warps": num_warps,
"num_stages": num_stages,
})
best_config = None
best_time_us = 1e20
print(f'{tp_size=} {bs=}')
for config in tqdm(configs):
# warmup
try:
for _ in range(num_warmup_trials):
run_timing(
num_calls=num_calls,
bs=bs,
d_model=d_model,
num_total_experts=num_total_experts,
top_k=top_k,
tp_size=tp_size,
model_intermediate_size=model_intermediate_size,
method=method,
config=config,
dtype=dtype,
)
except triton.runtime.autotuner.OutOfResources:
continue
# trial
for _ in range(num_trials):
kernel_dur_ms = run_timing(
num_calls=num_calls,
bs=bs,
d_model=d_model,
num_total_experts=num_total_experts,
top_k=top_k,
tp_size=tp_size,
model_intermediate_size=model_intermediate_size,
method=method,
config=config,
dtype=dtype,
)
kernel_dur_us = 1000 * kernel_dur_ms
model_dur_ms = kernel_dur_ms * num_layers
if kernel_dur_us < best_time_us:
best_config = config
best_time_us = kernel_dur_us
tqdm.write(
f'{kernel_dur_us=:.1f} {model_dur_ms=:.1f}'
f' {bs=} {tp_size=} {top_k=} {num_total_experts=} '
f'{d_model=} {model_intermediate_size=} {num_layers=}')
print("best_time_us", best_time_us)
print("best_config", best_config)
# holds Dict[str, Dict[str, int]]
filename = get_config_file_name(num_total_experts,
model_intermediate_size // tp_size,
"float8" if dtype == "float8" else None)
print(f"writing config to file {filename}")
existing_content = {}
if os.path.exists(filename):
with open(filename, "r") as f:
existing_content = json.load(f)
existing_content[str(bs)] = best_config
with open(filename, "w") as f:
json.dump(existing_content, f, indent=4)
f.write("\n")
def run_timing(num_calls: int, bs: int, d_model: int, num_total_experts: int,
top_k: int, tp_size: int, model_intermediate_size: int, method,
config, dtype: str) -> float:
shard_intermediate_size = model_intermediate_size // tp_size
hidden_states = torch.rand(
(bs, d_model),
device="cuda:0",
dtype=torch.float16,
)
w1 = torch.rand(
(num_total_experts, 2 * shard_intermediate_size, d_model),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
w2 = torch.rand(
(num_total_experts, d_model, shard_intermediate_size),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
w1_scale = None
w2_scale = None
a1_scale = None
a2_scale = None
if dtype == "float8":
w1 = w1.to(torch.float8_e4m3fn)
w2 = w2.to(torch.float8_e4m3fn)
w1_scale = torch.ones(num_total_experts,
device=hidden_states.device,
dtype=torch.float32)
w2_scale = torch.ones(num_total_experts,
device=hidden_states.device,
dtype=torch.float32)
a1_scale = torch.ones(1,
device=hidden_states.device,
dtype=torch.float32)
a2_scale = torch.ones(1,
device=hidden_states.device,
dtype=torch.float32)
gating_output = F.softmax(torch.rand(
(num_calls, bs, num_total_experts),
device=hidden_states.device,
dtype=torch.float32,
),
dim=-1)
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for i in range(num_calls):
hidden_states = method(
hidden_states=hidden_states,
w1=w1,
w2=w2,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
gating_output=gating_output[i],
topk=2,
renormalize=True,
inplace=True,
override_config=config,
use_fp8=dtype == "float8",
)
end_event.record()
end_event.synchronize()
dur_ms = start_event.elapsed_time(end_event) / num_calls
return dur_ms
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog='benchmark_mixtral_moe',
description='Benchmark and tune the fused_moe kernel',
)
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['float8', 'float16'],
help='Data type used for fused_moe kernel computations',
)
args = parser.parse_args()
sys.exit(main(args.dtype))

View File

@ -1,10 +1,12 @@
import argparse
import random
import time
from typing import Optional
import torch
from vllm import attention_ops
from vllm import _custom_ops as ops
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, create_kv_caches_with_random
NUM_BLOCKS = 1024
PARTITION_SIZE = 512
@ -14,7 +16,7 @@ PARTITION_SIZE = 512
def main(
version: str,
num_seqs: int,
context_len: int,
seq_len: int,
num_query_heads: int,
num_kv_heads: int,
head_size: int,
@ -23,36 +25,35 @@ def main(
dtype: torch.dtype,
seed: int,
do_profile: bool,
device: str = "cuda",
kv_cache_dtype: Optional[str] = None,
) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
scale = float(1.0 / (head_size**0.5))
query = torch.empty(num_seqs,
num_query_heads,
head_size,
dtype=dtype,
device="cuda")
device=device)
query.uniform_(-scale, scale)
assert num_query_heads % num_kv_heads == 0
num_queries_per_kv = num_query_heads // num_kv_heads
head_mapping = torch.repeat_interleave(
torch.arange(num_kv_heads, dtype=torch.int32, device="cuda"),
num_queries_per_kv)
alibi_slopes = None
if use_alibi:
alibi_slopes = torch.randn(num_query_heads,
dtype=torch.float,
device="cuda")
device=device)
context_lens = [context_len for _ in range(num_seqs)]
max_context_len = max(context_lens)
context_lens = torch.tensor(context_lens, dtype=torch.int, device="cuda")
seq_lens = [seq_len for _ in range(num_seqs)]
max_seq_len = max(seq_lens)
seq_lens = torch.tensor(seq_lens, dtype=torch.int, device=device)
# Create the block tables.
max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
block_tables = []
for _ in range(num_seqs):
block_table = [
@ -60,24 +61,23 @@ def main(
for _ in range(max_num_blocks_per_seq)
]
block_tables.append(block_table)
block_tables = torch.tensor(block_tables, dtype=torch.int, device="cuda")
block_tables = torch.tensor(block_tables, dtype=torch.int, device=device)
# Create the KV cache.
x = 16 // torch.tensor([], dtype=dtype).element_size()
key_cache_shape = (NUM_BLOCKS, num_kv_heads, head_size // x, block_size, x)
key_cache = torch.empty(size=key_cache_shape, dtype=dtype, device="cuda")
key_cache.uniform_(-scale, scale)
value_cache_shape = (NUM_BLOCKS, num_kv_heads, head_size, block_size)
value_cache = torch.empty(size=value_cache_shape,
dtype=dtype,
device="cuda")
value_cache.uniform_(-scale, scale)
key_caches, value_caches = create_kv_caches_with_random(NUM_BLOCKS,
block_size,
1,
num_kv_heads,
head_size,
kv_cache_dtype,
dtype,
device=device)
key_cache, value_cache = key_caches[0], value_caches[0]
# Prepare for the paged attention kernel.
output = torch.empty_like(query)
if version == "v2":
num_partitions = ((max_context_len + PARTITION_SIZE - 1) //
PARTITION_SIZE)
num_partitions = ((max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE)
tmp_output = torch.empty(
size=(num_seqs, num_query_heads, num_partitions, head_size),
dtype=output.dtype,
@ -90,29 +90,34 @@ def main(
)
max_logits = torch.empty_like(exp_sums)
def run_benchmark(num_iters: int, profile: bool = False) -> float:
def run_cuda_benchmark(num_iters: int, profile: bool = False) -> float:
torch.cuda.synchronize()
if profile:
torch.cuda.cudart().cudaProfilerStart()
start_time = time.perf_counter()
# Using default kv_scale
kv_scale = 1.0
for _ in range(num_iters):
if version == "v1":
attention_ops.paged_attention_v1(
ops.paged_attention_v1(
output,
query,
key_cache,
value_cache,
head_mapping,
num_kv_heads,
scale,
block_tables,
context_lens,
seq_lens,
block_size,
max_context_len,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
kv_scale,
)
elif version == "v2":
attention_ops.paged_attention_v2(
ops.paged_attention_v2(
output,
exp_sums,
max_logits,
@ -120,13 +125,15 @@ def main(
query,
key_cache,
value_cache,
head_mapping,
num_kv_heads,
scale,
block_tables,
context_lens,
seq_lens,
block_size,
max_context_len,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
kv_scale,
)
else:
raise ValueError(f"Invalid version: {version}")
@ -139,6 +146,7 @@ def main(
# Warmup.
print("Warming up...")
run_benchmark = run_cuda_benchmark
run_benchmark(num_iters=3, profile=False)
# Benchmark.
@ -157,7 +165,7 @@ if __name__ == '__main__':
choices=["v1", "v2"],
default="v2")
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument("--context-len", type=int, default=4096)
parser.add_argument("--seq_len", type=int, default=4096)
parser.add_argument("--num-query-heads", type=int, default=64)
parser.add_argument("--num-kv-heads", type=int, default=8)
parser.add_argument("--head-size",
@ -172,26 +180,32 @@ if __name__ == '__main__':
default="half")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--profile", action="store_true")
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=["auto", "fp8"],
default="auto",
help=
'Data type for kv cache storage. If "auto", will use model data type. '
'FP8_E5M2 (without scaling) is only supported on cuda version greater '
'than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead supported for '
'common inference criteria.')
args = parser.parse_args()
print(args)
if args.num_query_heads % args.num_kv_heads != 0:
raise ValueError("num_query_heads must be divisible by num_kv_heads")
dtype_to_torch_dtype = {
"half": torch.half,
"bfloat16": torch.bfloat16,
"float": torch.float,
}
main(
version=args.version,
num_seqs=args.batch_size,
context_len=args.context_len,
seq_len=args.seq_len,
num_query_heads=args.num_query_heads,
num_kv_heads=args.num_kv_heads,
head_size=args.head_size,
block_size=args.block_size,
use_alibi=args.use_alibi,
dtype=dtype_to_torch_dtype[args.dtype],
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
seed=args.seed,
do_profile=args.profile,
kv_cache_dtype=args.kv_cache_dtype,
)

View File

@ -0,0 +1,121 @@
import argparse
from itertools import accumulate
from typing import Optional
import nvtx
import torch
from vllm.model_executor.layers.rotary_embedding import get_rope
def benchmark_rope_kernels_multi_lora(
is_neox_style: bool,
batch_size: int,
seq_len: int,
num_heads: int,
head_size: int,
rotary_dim: Optional[int],
dtype: torch.dtype,
seed: int,
device: str,
max_position: int = 8192,
base: int = 10000,
) -> None:
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.set_default_device(device)
if rotary_dim is None:
rotary_dim = head_size
# silulating serving 4 LoRAs
scaling_factors = [1, 2, 4, 8]
# batched RoPE can take multiple scaling factors
batched_rope = get_rope(head_size, rotary_dim, max_position, base,
is_neox_style, {
"type": "linear",
"factor": tuple(scaling_factors)
})
# non-batched RoPE takes only one scaling factor, we create multiple
# instances to simulate the same behavior
non_batched_ropes = []
for scaling_factor in scaling_factors:
non_batched_ropes.append(
get_rope(head_size, rotary_dim, max_position, base, is_neox_style,
{
"type": "linear",
"factor": (scaling_factor, )
}))
positions = torch.randint(0, max_position, (batch_size, seq_len))
query = torch.randn(batch_size,
seq_len,
num_heads * head_size,
dtype=dtype)
key = torch.randn_like(query)
# create query offsets for batched RoPE, we concat multiple kv cache
# together and each query needs to find the right kv cache of its type
offset_map = torch.tensor(
list(
accumulate([0] + [
max_position * scaling_factor * 2
for scaling_factor in scaling_factors[:-1]
])))
query_types = torch.randint(0,
len(scaling_factors), (batch_size, seq_len),
device=device)
# map query types to offsets
query_offsets = offset_map[query_types]
# the kernel takes flattened offsets
flatten_offsets = query_offsets.flatten()
# batched queries of the same type together for non-batched RoPE
queries = [query[query_types == i] for i in range(len(scaling_factors))]
keys = [key[query_types == i] for i in range(len(scaling_factors))]
packed_qkr = zip(queries, keys, non_batched_ropes)
# synchronize before start timing
torch.cuda.synchronize()
with nvtx.annotate("non-batched", color="yellow"):
for q, k, r in packed_qkr:
r.forward(positions, q, k)
torch.cuda.synchronize()
with nvtx.annotate("batched", color="green"):
batched_rope.forward(positions, query, key, flatten_offsets)
torch.cuda.synchronize()
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="Benchmark the rotary embedding kernels.")
parser.add_argument("--is-neox-style", type=bool, default=True)
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--seq-len", type=int, default=512)
parser.add_argument("--num-heads", type=int, default=8)
parser.add_argument("--head-size",
type=int,
choices=[64, 80, 96, 112, 128, 256],
default=128)
parser.add_argument("--rotary-dim", type=int, choices=[16, 32], default=32)
parser.add_argument("--dtype",
type=str,
choices=["bfloat16", "float"],
default="float")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--device",
type=str,
choices=["cuda:0", "cuda:1"],
default="cuda:0")
args = parser.parse_args()
print(args)
benchmark_rope_kernels_multi_lora(
is_neox_style=args.is_neox_style,
batch_size=args.batch_size,
seq_len=args.seq_len,
num_heads=args.num_heads,
head_size=args.head_size,
rotary_dim=args.rotary_dim,
dtype=getattr(torch, args.dtype),
seed=args.seed,
device=args.device,
)

View File

@ -6,7 +6,7 @@ TOKENS=$2
docker run --gpus all --shm-size 1g -p $PORT:80 \
-v $PWD/data:/data \
ghcr.io/huggingface/text-generation-inference:0.8 \
ghcr.io/huggingface/text-generation-inference:1.4.0 \
--model-id $MODEL \
--sharded false \
--max-input-length 1024 \

518
benchmarks/sonnet.txt Normal file
View File

@ -0,0 +1,518 @@
FROM fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light'st flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel.
Thou that art now the world's fresh ornament
And only herald to the gaudy spring,
Within thine own bud buriest thy content
And, tender churl, makest waste in niggarding.
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.
When forty winters shall beseige thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery, so gazed on now,
Will be a tatter'd weed, of small worth held:
Then being ask'd where all thy beauty lies,
Where all the treasure of thy lusty days,
To say, within thine own deep-sunken eyes,
Were an all-eating shame and thriftless praise.
How much more praise deserved thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.
Look in thy glass, and tell the face thou viewest
Now is the time that face should form another;
Whose fresh repair if now thou not renewest,
Thou dost beguile the world, unbless some mother.
For where is she so fair whose unear'd womb
Disdains the tillage of thy husbandry?
Or who is he so fond will be the tomb
Of his self-love, to stop posterity?
Thou art thy mother's glass, and she in thee
Calls back the lovely April of her prime:
So thou through windows of thine age shall see
Despite of wrinkles this thy golden time.
But if thou live, remember'd not to be,
Die single, and thine image dies with thee.
Unthrifty loveliness, why dost thou spend
Upon thyself thy beauty's legacy?
Nature's bequest gives nothing but doth lend,
And being frank she lends to those are free.
Then, beauteous niggard, why dost thou abuse
The bounteous largess given thee to give?
Profitless usurer, why dost thou use
So great a sum of sums, yet canst not live?
For having traffic with thyself alone,
Thou of thyself thy sweet self dost deceive.
Then how, when nature calls thee to be gone,
What acceptable audit canst thou leave?
Thy unused beauty must be tomb'd with thee,
Which, used, lives th' executor to be.
Those hours, that with gentle work did frame
The lovely gaze where every eye doth dwell,
Will play the tyrants to the very same
And that unfair which fairly doth excel:
For never-resting time leads summer on
To hideous winter and confounds him there;
Sap cheque'd with frost and lusty leaves quite gone,
Beauty o'ersnow'd and bareness every where:
Then, were not summer's distillation left,
A liquid prisoner pent in walls of glass,
Beauty's effect with beauty were bereft,
Nor it nor no remembrance what it was:
But flowers distill'd though they with winter meet,
Leese but their show; their substance still lives sweet.
Then let not winter's ragged hand deface
In thee thy summer, ere thou be distill'd:
Make sweet some vial; treasure thou some place
With beauty's treasure, ere it be self-kill'd.
That use is not forbidden usury,
Which happies those that pay the willing loan;
That's for thyself to breed another thee,
Or ten times happier, be it ten for one;
Ten times thyself were happier than thou art,
If ten of thine ten times refigured thee:
Then what could death do, if thou shouldst depart,
Leaving thee living in posterity?
Be not self-will'd, for thou art much too fair
To be death's conquest and make worms thine heir.
Lo! in the orient when the gracious light
Lifts up his burning head, each under eye
Doth homage to his new-appearing sight,
Serving with looks his sacred majesty;
And having climb'd the steep-up heavenly hill,
Resembling strong youth in his middle age,
yet mortal looks adore his beauty still,
Attending on his golden pilgrimage;
But when from highmost pitch, with weary car,
Like feeble age, he reeleth from the day,
The eyes, 'fore duteous, now converted are
From his low tract and look another way:
So thou, thyself out-going in thy noon,
Unlook'd on diest, unless thou get a son.
Music to hear, why hear'st thou music sadly?
Sweets with sweets war not, joy delights in joy.
Why lovest thou that which thou receivest not gladly,
Or else receivest with pleasure thine annoy?
If the true concord of well-tuned sounds,
By unions married, do offend thine ear,
They do but sweetly chide thee, who confounds
In singleness the parts that thou shouldst bear.
Mark how one string, sweet husband to another,
Strikes each in each by mutual ordering,
Resembling sire and child and happy mother
Who all in one, one pleasing note do sing:
Whose speechless song, being many, seeming one,
Sings this to thee: 'thou single wilt prove none.'
Is it for fear to wet a widow's eye
That thou consumest thyself in single life?
Ah! if thou issueless shalt hap to die.
The world will wail thee, like a makeless wife;
The world will be thy widow and still weep
That thou no form of thee hast left behind,
When every private widow well may keep
By children's eyes her husband's shape in mind.
Look, what an unthrift in the world doth spend
Shifts but his place, for still the world enjoys it;
But beauty's waste hath in the world an end,
And kept unused, the user so destroys it.
No love toward others in that bosom sits
That on himself such murderous shame commits.
For shame! deny that thou bear'st love to any,
Who for thyself art so unprovident.
Grant, if thou wilt, thou art beloved of many,
But that thou none lovest is most evident;
For thou art so possess'd with murderous hate
That 'gainst thyself thou stick'st not to conspire.
Seeking that beauteous roof to ruinate
Which to repair should be thy chief desire.
O, change thy thought, that I may change my mind!
Shall hate be fairer lodged than gentle love?
Be, as thy presence is, gracious and kind,
Or to thyself at least kind-hearted prove:
Make thee another self, for love of me,
That beauty still may live in thine or thee.
As fast as thou shalt wane, so fast thou growest
In one of thine, from that which thou departest;
And that fresh blood which youngly thou bestowest
Thou mayst call thine when thou from youth convertest.
Herein lives wisdom, beauty and increase:
Without this, folly, age and cold decay:
If all were minded so, the times should cease
And threescore year would make the world away.
Let those whom Nature hath not made for store,
Harsh featureless and rude, barrenly perish:
Look, whom she best endow'd she gave the more;
Which bounteous gift thou shouldst in bounty cherish:
She carved thee for her seal, and meant thereby
Thou shouldst print more, not let that copy die.
When I do count the clock that tells the time,
And see the brave day sunk in hideous night;
When I behold the violet past prime,
And sable curls all silver'd o'er with white;
When lofty trees I see barren of leaves
Which erst from heat did canopy the herd,
And summer's green all girded up in sheaves
Borne on the bier with white and bristly beard,
Then of thy beauty do I question make,
That thou among the wastes of time must go,
Since sweets and beauties do themselves forsake
And die as fast as they see others grow;
And nothing 'gainst Time's scythe can make defence
Save breed, to brave him when he takes thee hence.
O, that you were yourself! but, love, you are
No longer yours than you yourself here live:
Against this coming end you should prepare,
And your sweet semblance to some other give.
So should that beauty which you hold in lease
Find no determination: then you were
Yourself again after yourself's decease,
When your sweet issue your sweet form should bear.
Who lets so fair a house fall to decay,
Which husbandry in honour might uphold
Against the stormy gusts of winter's day
And barren rage of death's eternal cold?
O, none but unthrifts! Dear my love, you know
You had a father: let your son say so.
Not from the stars do I my judgment pluck;
And yet methinks I have astronomy,
But not to tell of good or evil luck,
Of plagues, of dearths, or seasons' quality;
Nor can I fortune to brief minutes tell,
Pointing to each his thunder, rain and wind,
Or say with princes if it shall go well,
By oft predict that I in heaven find:
But from thine eyes my knowledge I derive,
And, constant stars, in them I read such art
As truth and beauty shall together thrive,
If from thyself to store thou wouldst convert;
Or else of thee this I prognosticate:
Thy end is truth's and beauty's doom and date.
When I consider every thing that grows
Holds in perfection but a little moment,
That this huge stage presenteth nought but shows
Whereon the stars in secret influence comment;
When I perceive that men as plants increase,
Cheered and cheque'd even by the self-same sky,
Vaunt in their youthful sap, at height decrease,
And wear their brave state out of memory;
Then the conceit of this inconstant stay
Sets you most rich in youth before my sight,
Where wasteful Time debateth with Decay,
To change your day of youth to sullied night;
And all in war with Time for love of you,
As he takes from you, I engraft you new.
But wherefore do not you a mightier way
Make war upon this bloody tyrant, Time?
And fortify yourself in your decay
With means more blessed than my barren rhyme?
Now stand you on the top of happy hours,
And many maiden gardens yet unset
With virtuous wish would bear your living flowers,
Much liker than your painted counterfeit:
So should the lines of life that life repair,
Which this, Time's pencil, or my pupil pen,
Neither in inward worth nor outward fair,
Can make you live yourself in eyes of men.
To give away yourself keeps yourself still,
And you must live, drawn by your own sweet skill.
Who will believe my verse in time to come,
If it were fill'd with your most high deserts?
Though yet, heaven knows, it is but as a tomb
Which hides your life and shows not half your parts.
If I could write the beauty of your eyes
And in fresh numbers number all your graces,
The age to come would say 'This poet lies:
Such heavenly touches ne'er touch'd earthly faces.'
So should my papers yellow'd with their age
Be scorn'd like old men of less truth than tongue,
And your true rights be term'd a poet's rage
And stretched metre of an antique song:
But were some child of yours alive that time,
You should live twice; in it and in my rhyme.
Shall I compare thee to a summer's day?
Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May,
And summer's lease hath all too short a date:
Sometime too hot the eye of heaven shines,
And often is his gold complexion dimm'd;
And every fair from fair sometime declines,
By chance or nature's changing course untrimm'd;
But thy eternal summer shall not fade
Nor lose possession of that fair thou owest;
Nor shall Death brag thou wander'st in his shade,
When in eternal lines to time thou growest:
So long as men can breathe or eyes can see,
So long lives this and this gives life to thee.
Devouring Time, blunt thou the lion's paws,
And make the earth devour her own sweet brood;
Pluck the keen teeth from the fierce tiger's jaws,
And burn the long-lived phoenix in her blood;
Make glad and sorry seasons as thou fleets,
And do whate'er thou wilt, swift-footed Time,
To the wide world and all her fading sweets;
But I forbid thee one most heinous crime:
O, carve not with thy hours my love's fair brow,
Nor draw no lines there with thine antique pen;
Him in thy course untainted do allow
For beauty's pattern to succeeding men.
Yet, do thy worst, old Time: despite thy wrong,
My love shall in my verse ever live young.
A woman's face with Nature's own hand painted
Hast thou, the master-mistress of my passion;
A woman's gentle heart, but not acquainted
With shifting change, as is false women's fashion;
An eye more bright than theirs, less false in rolling,
Gilding the object whereupon it gazeth;
A man in hue, all 'hues' in his controlling,
Much steals men's eyes and women's souls amazeth.
And for a woman wert thou first created;
Till Nature, as she wrought thee, fell a-doting,
And by addition me of thee defeated,
By adding one thing to my purpose nothing.
But since she prick'd thee out for women's pleasure,
Mine be thy love and thy love's use their treasure.
So is it not with me as with that Muse
Stirr'd by a painted beauty to his verse,
Who heaven itself for ornament doth use
And every fair with his fair doth rehearse
Making a couplement of proud compare,
With sun and moon, with earth and sea's rich gems,
With April's first-born flowers, and all things rare
That heaven's air in this huge rondure hems.
O' let me, true in love, but truly write,
And then believe me, my love is as fair
As any mother's child, though not so bright
As those gold candles fix'd in heaven's air:
Let them say more than like of hearsay well;
I will not praise that purpose not to sell.
My glass shall not persuade me I am old,
So long as youth and thou are of one date;
But when in thee time's furrows I behold,
Then look I death my days should expiate.
For all that beauty that doth cover thee
Is but the seemly raiment of my heart,
Which in thy breast doth live, as thine in me:
How can I then be elder than thou art?
O, therefore, love, be of thyself so wary
As I, not for myself, but for thee will;
Bearing thy heart, which I will keep so chary
As tender nurse her babe from faring ill.
Presume not on thy heart when mine is slain;
Thou gavest me thine, not to give back again.
As an unperfect actor on the stage
Who with his fear is put besides his part,
Or some fierce thing replete with too much rage,
Whose strength's abundance weakens his own heart.
So I, for fear of trust, forget to say
The perfect ceremony of love's rite,
And in mine own love's strength seem to decay,
O'ercharged with burden of mine own love's might.
O, let my books be then the eloquence
And dumb presagers of my speaking breast,
Who plead for love and look for recompense
More than that tongue that more hath more express'd.
O, learn to read what silent love hath writ:
To hear with eyes belongs to love's fine wit.
Mine eye hath play'd the painter and hath stell'd
Thy beauty's form in table of my heart;
My body is the frame wherein 'tis held,
And perspective it is the painter's art.
For through the painter must you see his skill,
To find where your true image pictured lies;
Which in my bosom's shop is hanging still,
That hath his windows glazed with thine eyes.
Now see what good turns eyes for eyes have done:
Mine eyes have drawn thy shape, and thine for me
Are windows to my breast, where-through the sun
Delights to peep, to gaze therein on thee;
Yet eyes this cunning want to grace their art;
They draw but what they see, know not the heart.
Let those who are in favour with their stars
Of public honour and proud titles boast,
Whilst I, whom fortune of such triumph bars,
Unlook'd for joy in that I honour most.
Great princes' favourites their fair leaves spread
But as the marigold at the sun's eye,
And in themselves their pride lies buried,
For at a frown they in their glory die.
The painful warrior famoused for fight,
After a thousand victories once foil'd,
Is from the book of honour razed quite,
And all the rest forgot for which he toil'd:
Then happy I, that love and am beloved
Where I may not remove nor be removed.
Lord of my love, to whom in vassalage
Thy merit hath my duty strongly knit,
To thee I send this written embassage,
To witness duty, not to show my wit:
Duty so great, which wit so poor as mine
May make seem bare, in wanting words to show it,
But that I hope some good conceit of thine
In thy soul's thought, all naked, will bestow it;
Till whatsoever star that guides my moving
Points on me graciously with fair aspect
And puts apparel on my tatter'd loving,
To show me worthy of thy sweet respect:
Then may I dare to boast how I do love thee;
Till then not show my head where thou mayst prove me.
Weary with toil, I haste me to my bed,
The dear repose for limbs with travel tired;
But then begins a journey in my head,
To work my mind, when body's work's expired:
For then my thoughts, from far where I abide,
Intend a zealous pilgrimage to thee,
And keep my drooping eyelids open wide,
Looking on darkness which the blind do see
Save that my soul's imaginary sight
Presents thy shadow to my sightless view,
Which, like a jewel hung in ghastly night,
Makes black night beauteous and her old face new.
Lo! thus, by day my limbs, by night my mind,
For thee and for myself no quiet find.
How can I then return in happy plight,
That am debarr'd the benefit of rest?
When day's oppression is not eased by night,
But day by night, and night by day, oppress'd?
And each, though enemies to either's reign,
Do in consent shake hands to torture me;
The one by toil, the other to complain
How far I toil, still farther off from thee.
I tell the day, to please them thou art bright
And dost him grace when clouds do blot the heaven:
So flatter I the swart-complexion'd night,
When sparkling stars twire not thou gild'st the even.
But day doth daily draw my sorrows longer
And night doth nightly make grief's strength seem stronger.
When, in disgrace with fortune and men's eyes,
I all alone beweep my outcast state
And trouble deal heaven with my bootless cries
And look upon myself and curse my fate,
Wishing me like to one more rich in hope,
Featured like him, like him with friends possess'd,
Desiring this man's art and that man's scope,
With what I most enjoy contented least;
Yet in these thoughts myself almost despising,
Haply I think on thee, and then my state,
Like to the lark at break of day arising
From sullen earth, sings hymns at heaven's gate;
For thy sweet love remember'd such wealth brings
That then I scorn to change my state with kings.
When to the sessions of sweet silent thought
I summon up remembrance of things past,
I sigh the lack of many a thing I sought,
And with old woes new wail my dear time's waste:
Then can I drown an eye, unused to flow,
For precious friends hid in death's dateless night,
And weep afresh love's long since cancell'd woe,
And moan the expense of many a vanish'd sight:
Then can I grieve at grievances foregone,
And heavily from woe to woe tell o'er
The sad account of fore-bemoaned moan,
Which I new pay as if not paid before.
But if the while I think on thee, dear friend,
All losses are restored and sorrows end.
Thy bosom is endeared with all hearts,
Which I by lacking have supposed dead,
And there reigns love and all love's loving parts,
And all those friends which I thought buried.
How many a holy and obsequious tear
Hath dear religious love stol'n from mine eye
As interest of the dead, which now appear
But things removed that hidden in thee lie!
Thou art the grave where buried love doth live,
Hung with the trophies of my lovers gone,
Who all their parts of me to thee did give;
That due of many now is thine alone:
Their images I loved I view in thee,
And thou, all they, hast all the all of me.
If thou survive my well-contented day,
When that churl Death my bones with dust shall cover,
And shalt by fortune once more re-survey
These poor rude lines of thy deceased lover,
Compare them with the bettering of the time,
And though they be outstripp'd by every pen,
Reserve them for my love, not for their rhyme,
Exceeded by the height of happier men.
O, then vouchsafe me but this loving thought:
'Had my friend's Muse grown with this growing age,
A dearer birth than this his love had brought,
To march in ranks of better equipage:
But since he died and poets better prove,
Theirs for their style I'll read, his for his love.'
Full many a glorious morning have I seen
Flatter the mountain-tops with sovereign eye,
Kissing with golden face the meadows green,
Gilding pale streams with heavenly alchemy;
Anon permit the basest clouds to ride
With ugly rack on his celestial face,
And from the forlorn world his visage hide,
Stealing unseen to west with this disgrace:
Even so my sun one early morn did shine
With all triumphant splendor on my brow;
But out, alack! he was but one hour mine;
The region cloud hath mask'd him from me now.
Yet him for this my love no whit disdaineth;
Suns of the world may stain when heaven's sun staineth.
Why didst thou promise such a beauteous day,
And make me travel forth without my cloak,
To let base clouds o'ertake me in my way,
Hiding thy bravery in their rotten smoke?
'Tis not enough that through the cloud thou break,
To dry the rain on my storm-beaten face,
For no man well of such a salve can speak
That heals the wound and cures not the disgrace:
Nor can thy shame give physic to my grief;
Though thou repent, yet I have still the loss:
The offender's sorrow lends but weak relief
To him that bears the strong offence's cross.
Ah! but those tears are pearl which thy love sheds,
And they are rich and ransom all ill deeds.
No more be grieved at that which thou hast done:
Roses have thorns, and silver fountains mud;
Clouds and eclipses stain both moon and sun,
And loathsome canker lives in sweetest bud.
All men make faults, and even I in this,
Authorizing thy trespass with compare,
Myself corrupting, salving thy amiss,
Excusing thy sins more than thy sins are;
For to thy sensual fault I bring in sense--
Thy adverse party is thy advocate--
And 'gainst myself a lawful plea commence:
Such civil war is in my love and hate
That I an accessary needs must be
To that sweet thief which sourly robs from me.
Let me confess that we two must be twain,
Although our undivided loves are one:
So shall those blots that do with me remain
Without thy help by me be borne alone.
In our two loves there is but one respect,
Though in our lives a separable spite,
Which though it alter not love's sole effect,
Yet doth it steal sweet hours from love's delight.
I may not evermore acknowledge thee,
Lest my bewailed guilt should do thee shame,
Nor thou with public kindness honour me,
Unless thou take that honour from thy name:
But do not so; I love thee in such sort
As, thou being mine, mine is thy good report.
As a decrepit father takes delight
To see his active child do deeds of youth,
So I, made lame by fortune's dearest spite,
Take all my comfort of thy worth and truth.
For whether beauty, birth, or wealth, or wit,
Or any of these all, or all, or more,
Entitled in thy parts do crowned sit,
I make my love engrafted to this store:
So then I am not lame, poor, nor despised,
Whilst that this shadow doth such substance give
That I in thy abundance am sufficed
And by a part of all thy glory live.
Look, what is best, that best I wish in thee:
This wish I have; then ten times happy me!

90
cmake/cpu_extension.cmake Normal file
View File

@ -0,0 +1,90 @@
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
#
# Define environment variables for special configurations
#
if(DEFINED ENV{VLLM_CPU_AVX512BF16})
set(ENABLE_AVX512BF16 ON)
endif()
include_directories("${CMAKE_SOURCE_DIR}/csrc")
#
# Check the compile flags
#
list(APPEND CXX_COMPILE_FLAGS
"-fopenmp"
"-DVLLM_CPU_EXTENSION")
execute_process(COMMAND cat /proc/cpuinfo
RESULT_VARIABLE CPUINFO_RET
OUTPUT_VARIABLE CPUINFO)
if (NOT CPUINFO_RET EQUAL 0)
message(FATAL_ERROR "Failed to check CPU features via /proc/cpuinfo")
endif()
function (find_isa CPUINFO TARGET OUT)
string(FIND ${CPUINFO} ${TARGET} ISA_FOUND)
if(NOT ISA_FOUND EQUAL -1)
set(${OUT} ON PARENT_SCOPE)
else()
set(${OUT} OFF PARENT_SCOPE)
endif()
endfunction()
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
if (AVX512_FOUND)
list(APPEND CXX_COMPILE_FLAGS
"-mavx512f"
"-mavx512vl"
"-mavx512bw"
"-mavx512dq")
find_isa(${CPUINFO} "avx512_bf16" AVX512BF16_FOUND)
if (AVX512BF16_FOUND OR ENABLE_AVX512BF16)
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND
CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 12.3)
list(APPEND CXX_COMPILE_FLAGS "-mavx512bf16")
else()
message(WARNING "Disable AVX512-BF16 ISA support, requires gcc/g++ >= 12.3")
endif()
else()
message(WARNING "Disable AVX512-BF16 ISA support, no avx512_bf16 found in local CPU flags." " If cross-compilation is required, please set env VLLM_CPU_AVX512BF16=1.")
endif()
else()
message(FATAL_ERROR "vLLM CPU backend requires AVX512 ISA support.")
endif()
message(STATUS "CPU extension compile flags: ${CXX_COMPILE_FLAGS}")
#
# Define extension targets
#
#
# _C extension
#
set(VLLM_EXT_SRC
"csrc/cpu/activation.cpp"
"csrc/cpu/attention.cpp"
"csrc/cpu/cache.cpp"
"csrc/cpu/layernorm.cpp"
"csrc/cpu/pos_encoding.cpp"
"csrc/cpu/pybind.cpp")
define_gpu_extension_target(
_C
DESTINATION vllm
LANGUAGE CXX
SOURCES ${VLLM_EXT_SRC}
COMPILE_FLAGS ${CXX_COMPILE_FLAGS}
WITH_SOABI
)
add_custom_target(default)
message(STATUS "Enabling C extension.")
add_dependencies(default _C)

73
cmake/hipify.py Executable file
View File

@ -0,0 +1,73 @@
#!/usr/bin/env python3
#
# A command line tool for running pytorch's hipify preprocessor on CUDA
# source files.
#
# See https://github.com/ROCm/hipify_torch
# and <torch install dir>/utils/hipify/hipify_python.py
#
import argparse
import os
import shutil
from torch.utils.hipify.hipify_python import hipify
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Project directory where all the source + include files live.
parser.add_argument(
"-p",
"--project_dir",
help="The project directory.",
)
# Directory where hipified files are written.
parser.add_argument(
"-o",
"--output_dir",
help="The output directory.",
)
# Source files to convert.
parser.add_argument("sources",
help="Source files to hipify.",
nargs="*",
default=[])
args = parser.parse_args()
# Limit include scope to project_dir only
includes = [os.path.join(args.project_dir, '*')]
# Get absolute path for all source files.
extra_files = [os.path.abspath(s) for s in args.sources]
# Copy sources from project directory to output directory.
# The directory might already exist to hold object files so we ignore that.
shutil.copytree(args.project_dir, args.output_dir, dirs_exist_ok=True)
hipify_result = hipify(project_directory=args.project_dir,
output_directory=args.output_dir,
header_include_dirs=[],
includes=includes,
extra_files=extra_files,
show_detailed=True,
is_pytorch_extension=True,
hipify_extra_files_only=True)
hipified_sources = []
for source in args.sources:
s_abs = os.path.abspath(source)
hipified_s_abs = (hipify_result[s_abs].hipified_path if
(s_abs in hipify_result
and hipify_result[s_abs].hipified_path is not None)
else s_abs)
hipified_sources.append(hipified_s_abs)
assert (len(hipified_sources) == len(args.sources))
# Print hipified source files.
print("\n".join(hipified_sources))

354
cmake/utils.cmake Normal file
View File

@ -0,0 +1,354 @@
#
# Attempt to find the python package that uses the same python executable as
# `EXECUTABLE` and is one of the `SUPPORTED_VERSIONS`.
#
macro (find_python_from_executable EXECUTABLE SUPPORTED_VERSIONS)
file(REAL_PATH ${EXECUTABLE} EXECUTABLE)
set(Python_EXECUTABLE ${EXECUTABLE})
find_package(Python COMPONENTS Interpreter Development.Module)
if (NOT Python_FOUND)
message(FATAL_ERROR "Unable to find python matching: ${EXECUTABLE}.")
endif()
set(_VER "${Python_VERSION_MAJOR}.${Python_VERSION_MINOR}")
set(_SUPPORTED_VERSIONS_LIST ${SUPPORTED_VERSIONS} ${ARGN})
if (NOT _VER IN_LIST _SUPPORTED_VERSIONS_LIST)
message(FATAL_ERROR
"Python version (${_VER}) is not one of the supported versions: "
"${_SUPPORTED_VERSIONS_LIST}.")
endif()
message(STATUS "Found python matching: ${EXECUTABLE}.")
endmacro()
#
# Run `EXPR` in python. The standard output of python is stored in `OUT` and
# has trailing whitespace stripped. If an error is encountered when running
# python, a fatal message `ERR_MSG` is issued.
#
function (run_python OUT EXPR ERR_MSG)
execute_process(
COMMAND
"${Python_EXECUTABLE}" "-c" "${EXPR}"
OUTPUT_VARIABLE PYTHON_OUT
RESULT_VARIABLE PYTHON_ERROR_CODE
ERROR_VARIABLE PYTHON_STDERR
OUTPUT_STRIP_TRAILING_WHITESPACE)
if(NOT PYTHON_ERROR_CODE EQUAL 0)
message(FATAL_ERROR "${ERR_MSG}: ${PYTHON_STDERR}")
endif()
set(${OUT} ${PYTHON_OUT} PARENT_SCOPE)
endfunction()
# Run `EXPR` in python after importing `PKG`. Use the result of this to extend
# `CMAKE_PREFIX_PATH` so the torch cmake configuration can be imported.
macro (append_cmake_prefix_path PKG EXPR)
run_python(_PREFIX_PATH
"import ${PKG}; print(${EXPR})" "Failed to locate ${PKG} path")
list(APPEND CMAKE_PREFIX_PATH ${_PREFIX_PATH})
endmacro()
#
# Add a target named `hipify${NAME}` that runs the hipify preprocessor on a set
# of CUDA source files. The names of the corresponding "hipified" sources are
# stored in `OUT_SRCS`.
#
function (hipify_sources_target OUT_SRCS NAME ORIG_SRCS)
#
# Split into C++ and non-C++ (i.e. CUDA) sources.
#
set(SRCS ${ORIG_SRCS})
set(CXX_SRCS ${ORIG_SRCS})
list(FILTER SRCS EXCLUDE REGEX "\.(cc)|(cpp)$")
list(FILTER CXX_SRCS INCLUDE REGEX "\.(cc)|(cpp)$")
#
# Generate ROCm/HIP source file names from CUDA file names.
# Since HIP files are generated code, they will appear in the build area
# `CMAKE_CURRENT_BINARY_DIR` directory rather than the original csrc dir.
#
set(HIP_SRCS)
foreach (SRC ${SRCS})
string(REGEX REPLACE "\.cu$" "\.hip" SRC ${SRC})
string(REGEX REPLACE "cuda" "hip" SRC ${SRC})
list(APPEND HIP_SRCS "${CMAKE_CURRENT_BINARY_DIR}/${SRC}")
endforeach()
set(CSRC_BUILD_DIR ${CMAKE_CURRENT_BINARY_DIR}/csrc)
add_custom_target(
hipify${NAME}
COMMAND ${CMAKE_SOURCE_DIR}/cmake/hipify.py -p ${CMAKE_SOURCE_DIR}/csrc -o ${CSRC_BUILD_DIR} ${SRCS}
DEPENDS ${CMAKE_SOURCE_DIR}/cmake/hipify.py ${SRCS}
BYPRODUCTS ${HIP_SRCS}
COMMENT "Running hipify on ${NAME} extension source files.")
# Swap out original extension sources with hipified sources.
list(APPEND HIP_SRCS ${CXX_SRCS})
set(${OUT_SRCS} ${HIP_SRCS} PARENT_SCOPE)
endfunction()
#
# Get additional GPU compiler flags from torch.
#
function (get_torch_gpu_compiler_flags OUT_GPU_FLAGS GPU_LANG)
if (${GPU_LANG} STREQUAL "CUDA")
#
# Get common NVCC flags from torch.
#
run_python(GPU_FLAGS
"from torch.utils.cpp_extension import COMMON_NVCC_FLAGS; print(';'.join(COMMON_NVCC_FLAGS))"
"Failed to determine torch nvcc compiler flags")
if (CUDA_VERSION VERSION_GREATER_EQUAL 11.8)
list(APPEND GPU_FLAGS "-DENABLE_FP8_E5M2")
endif()
if (CUDA_VERSION VERSION_GREATER_EQUAL 12.0)
list(REMOVE_ITEM GPU_FLAGS
"-D__CUDA_NO_HALF_OPERATORS__"
"-D__CUDA_NO_HALF_CONVERSIONS__"
"-D__CUDA_NO_BFLOAT16_CONVERSIONS__"
"-D__CUDA_NO_HALF2_OPERATORS__")
endif()
elseif(${GPU_LANG} STREQUAL "HIP")
#
# Get common HIP/HIPCC flags from torch.
#
run_python(GPU_FLAGS
"import torch.utils.cpp_extension as t; print(';'.join(t.COMMON_HIP_FLAGS + t.COMMON_HIPCC_FLAGS))"
"Failed to determine torch nvcc compiler flags")
list(APPEND GPU_FLAGS
"-DUSE_ROCM"
"-DENABLE_FP8_E4M3"
"-U__HIP_NO_HALF_CONVERSIONS__"
"-U__HIP_NO_HALF_OPERATORS__"
"-fno-gpu-rdc")
endif()
set(${OUT_GPU_FLAGS} ${GPU_FLAGS} PARENT_SCOPE)
endfunction()
# Macro for converting a `gencode` version number to a cmake version number.
macro(string_to_ver OUT_VER IN_STR)
string(REGEX REPLACE "\([0-9]+\)\([0-9]\)" "\\1.\\2" ${OUT_VER} ${IN_STR})
endmacro()
#
# Override the GPU architectures detected by cmake/torch and filter them by
# `GPU_SUPPORTED_ARCHES`. Sets the final set of architectures in
# `GPU_ARCHES`.
#
# Note: this is defined as a macro since it updates `CMAKE_CUDA_FLAGS`.
#
macro(override_gpu_arches GPU_ARCHES GPU_LANG GPU_SUPPORTED_ARCHES)
set(_GPU_SUPPORTED_ARCHES_LIST ${GPU_SUPPORTED_ARCHES} ${ARGN})
message(STATUS "${GPU_LANG} supported arches: ${_GPU_SUPPORTED_ARCHES_LIST}")
if (${GPU_LANG} STREQUAL "HIP")
#
# `GPU_ARCHES` controls the `--offload-arch` flags.
# `CMAKE_HIP_ARCHITECTURES` is set up by torch and can be controlled
# via the `PYTORCH_ROCM_ARCH` env variable.
#
#
# Find the intersection of the supported + detected architectures to
# set the module architecture flags.
#
set(${GPU_ARCHES})
foreach (_ARCH ${CMAKE_HIP_ARCHITECTURES})
if (_ARCH IN_LIST _GPU_SUPPORTED_ARCHES_LIST)
list(APPEND ${GPU_ARCHES} ${_ARCH})
endif()
endforeach()
if(NOT ${GPU_ARCHES})
message(FATAL_ERROR
"None of the detected ROCm architectures: ${CMAKE_HIP_ARCHITECTURES} is"
" supported. Supported ROCm architectures are: ${_GPU_SUPPORTED_ARCHES_LIST}.")
endif()
elseif(${GPU_LANG} STREQUAL "CUDA")
#
# Setup/process CUDA arch flags.
#
# The torch cmake setup hardcodes the detected architecture flags in
# `CMAKE_CUDA_FLAGS`. Since `CMAKE_CUDA_FLAGS` is a "global" variable, it
# can't modified on a per-target basis, e.g. for the `punica` extension.
# So, all the `-gencode` flags need to be extracted and removed from
# `CMAKE_CUDA_FLAGS` for processing so they can be passed by another method.
# Since it's not possible to use `target_compiler_options` for adding target
# specific `-gencode` arguments, the target's `CUDA_ARCHITECTURES` property
# must be used instead. This requires repackaging the architecture flags
# into a format that cmake expects for `CUDA_ARCHITECTURES`.
#
# This is a bit fragile in that it depends on torch using `-gencode` as opposed
# to one of the other nvcc options to specify architectures.
#
# Note: torch uses the `TORCH_CUDA_ARCH_LIST` environment variable to override
# detected architectures.
#
message(DEBUG "initial CMAKE_CUDA_FLAGS: ${CMAKE_CUDA_FLAGS}")
# Extract all `-gencode` flags from `CMAKE_CUDA_FLAGS`
string(REGEX MATCHALL "-gencode arch=[^ ]+" _CUDA_ARCH_FLAGS
${CMAKE_CUDA_FLAGS})
# Remove all `-gencode` flags from `CMAKE_CUDA_FLAGS` since they will be modified
# and passed back via the `CUDA_ARCHITECTURES` property.
string(REGEX REPLACE "-gencode arch=[^ ]+ *" "" CMAKE_CUDA_FLAGS
${CMAKE_CUDA_FLAGS})
# If this error is triggered, it might mean that torch has changed how it sets
# up nvcc architecture code generation flags.
if (NOT _CUDA_ARCH_FLAGS)
message(FATAL_ERROR
"Could not find any architecture related code generation flags in "
"CMAKE_CUDA_FLAGS. (${CMAKE_CUDA_FLAGS})")
endif()
message(DEBUG "final CMAKE_CUDA_FLAGS: ${CMAKE_CUDA_FLAGS}")
message(DEBUG "arch flags: ${_CUDA_ARCH_FLAGS}")
# Initialize the architecture lists to empty.
set(${GPU_ARCHES})
# Process each `gencode` flag.
foreach(_ARCH ${_CUDA_ARCH_FLAGS})
# For each flag, extract the version number and whether it refers to PTX
# or native code.
# Note: if a regex matches then `CMAKE_MATCH_1` holds the binding
# for that match.
string(REGEX MATCH "arch=compute_\([0-9]+a?\)" _COMPUTE ${_ARCH})
if (_COMPUTE)
set(_COMPUTE ${CMAKE_MATCH_1})
endif()
string(REGEX MATCH "code=sm_\([0-9]+a?\)" _SM ${_ARCH})
if (_SM)
set(_SM ${CMAKE_MATCH_1})
endif()
string(REGEX MATCH "code=compute_\([0-9]+a?\)" _CODE ${_ARCH})
if (_CODE)
set(_CODE ${CMAKE_MATCH_1})
endif()
# Make sure the virtual architecture can be matched.
if (NOT _COMPUTE)
message(FATAL_ERROR
"Could not determine virtual architecture from: ${_ARCH}.")
endif()
# One of sm_ or compute_ must exist.
if ((NOT _SM) AND (NOT _CODE))
message(FATAL_ERROR
"Could not determine a codegen architecture from: ${_ARCH}.")
endif()
if (_SM)
# -real suffix let CMake to only generate elf code for the kernels.
# we want this, otherwise the added ptx (default) will increase binary size.
set(_VIRT "-real")
set(_CODE_ARCH ${_SM})
else()
# -virtual suffix let CMake to generate ptx code for the kernels.
set(_VIRT "-virtual")
set(_CODE_ARCH ${_CODE})
endif()
# Check if the current version is in the supported arch list.
string_to_ver(_CODE_VER ${_CODE_ARCH})
if (NOT _CODE_VER IN_LIST _GPU_SUPPORTED_ARCHES_LIST)
message(STATUS "discarding unsupported CUDA arch ${_VER}.")
continue()
endif()
# Add it to the arch list.
list(APPEND ${GPU_ARCHES} "${_CODE_ARCH}${_VIRT}")
endforeach()
endif()
message(STATUS "${GPU_LANG} target arches: ${${GPU_ARCHES}}")
endmacro()
#
# Define a target named `GPU_MOD_NAME` for a single extension. The
# arguments are:
#
# DESTINATION <dest> - Module destination directory.
# LANGUAGE <lang> - The GPU language for this module, e.g CUDA, HIP,
# etc.
# SOURCES <sources> - List of source files relative to CMakeLists.txt
# directory.
#
# Optional arguments:
#
# ARCHITECTURES <arches> - A list of target GPU architectures in cmake
# format.
# Refer `CMAKE_CUDA_ARCHITECTURES` documentation
# and `CMAKE_HIP_ARCHITECTURES` for more info.
# ARCHITECTURES will use cmake's defaults if
# not provided.
# COMPILE_FLAGS <flags> - Extra compiler flags passed to NVCC/hip.
# INCLUDE_DIRECTORIES <dirs> - Extra include directories.
# LIBRARIES <libraries> - Extra link libraries.
# WITH_SOABI - Generate library with python SOABI suffix name.
#
# Note: optimization level/debug info is set via cmake build type.
#
function (define_gpu_extension_target GPU_MOD_NAME)
cmake_parse_arguments(PARSE_ARGV 1
GPU
"WITH_SOABI"
"DESTINATION;LANGUAGE"
"SOURCES;ARCHITECTURES;COMPILE_FLAGS;INCLUDE_DIRECTORIES;LIBRARIES")
# Add hipify preprocessing step when building with HIP/ROCm.
if (GPU_LANGUAGE STREQUAL "HIP")
hipify_sources_target(GPU_SOURCES ${GPU_MOD_NAME} "${GPU_SOURCES}")
endif()
if (GPU_WITH_SOABI)
set(GPU_WITH_SOABI WITH_SOABI)
else()
set(GPU_WITH_SOABI)
endif()
Python_add_library(${GPU_MOD_NAME} MODULE "${GPU_SOURCES}" ${GPU_WITH_SOABI})
if (GPU_LANGUAGE STREQUAL "HIP")
# Make this target dependent on the hipify preprocessor step.
add_dependencies(${GPU_MOD_NAME} hipify${GPU_MOD_NAME})
endif()
if (GPU_ARCHITECTURES)
set_target_properties(${GPU_MOD_NAME} PROPERTIES
${GPU_LANGUAGE}_ARCHITECTURES "${GPU_ARCHITECTURES}")
endif()
set_property(TARGET ${GPU_MOD_NAME} PROPERTY CXX_STANDARD 17)
target_compile_options(${GPU_MOD_NAME} PRIVATE
$<$<COMPILE_LANGUAGE:${GPU_LANGUAGE}>:${GPU_COMPILE_FLAGS}>)
target_compile_definitions(${GPU_MOD_NAME} PRIVATE
"-DTORCH_EXTENSION_NAME=${GPU_MOD_NAME}")
target_include_directories(${GPU_MOD_NAME} PRIVATE csrc
${GPU_INCLUDE_DIRECTORIES})
target_link_libraries(${GPU_MOD_NAME} PRIVATE torch ${torch_python_LIBRARY}
${GPU_LIBRARIES})
# Don't use `TORCH_LIBRARIES` for CUDA since it pulls in a bunch of
# dependencies that are not necessary and may not be installed.
if (GPU_LANGUAGE STREQUAL "CUDA")
target_link_libraries(${GPU_MOD_NAME} PRIVATE ${CUDA_CUDA_LIB}
${CUDA_LIBRARIES})
else()
target_link_libraries(${GPU_MOD_NAME} PRIVATE ${TORCH_LIBRARIES})
endif()
install(TARGETS ${GPU_MOD_NAME} LIBRARY DESTINATION ${GPU_DESTINATION})
endfunction()

721
collect_env.py Normal file
View File

@ -0,0 +1,721 @@
# ruff: noqa
# code borrowed from https://github.com/pytorch/pytorch/blob/main/torch/utils/collect_env.py
# Unlike the rest of the PyTorch this file must be python2 compliant.
# This script outputs relevant system environment info
# Run it with `python collect_env.py` or `python -m torch.utils.collect_env`
import datetime
import locale
import os
import re
import subprocess
import sys
from collections import namedtuple
try:
import torch
TORCH_AVAILABLE = True
except (ImportError, NameError, AttributeError, OSError):
TORCH_AVAILABLE = False
# System Environment Information
SystemEnv = namedtuple(
'SystemEnv',
[
'torch_version',
'is_debug_build',
'cuda_compiled_version',
'gcc_version',
'clang_version',
'cmake_version',
'os',
'libc_version',
'python_version',
'python_platform',
'is_cuda_available',
'cuda_runtime_version',
'cuda_module_loading',
'nvidia_driver_version',
'nvidia_gpu_models',
'cudnn_version',
'pip_version', # 'pip' or 'pip3'
'pip_packages',
'conda_packages',
'hip_compiled_version',
'hip_runtime_version',
'miopen_runtime_version',
'caching_allocator_config',
'is_xnnpack_available',
'cpu_info',
'rocm_version', # vllm specific field
'neuron_sdk_version', # vllm specific field
'vllm_version', # vllm specific field
'vllm_build_flags', # vllm specific field
'gpu_topo', # vllm specific field
])
DEFAULT_CONDA_PATTERNS = {
"torch",
"numpy",
"cudatoolkit",
"soumith",
"mkl",
"magma",
"triton",
"optree",
"nccl",
}
DEFAULT_PIP_PATTERNS = {
"torch",
"numpy",
"mypy",
"flake8",
"triton",
"optree",
"onnx",
"nccl",
}
def run(command):
"""Return (return-code, stdout, stderr)."""
shell = True if type(command) is str else False
p = subprocess.Popen(command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
shell=shell)
raw_output, raw_err = p.communicate()
rc = p.returncode
if get_platform() == 'win32':
enc = 'oem'
else:
enc = locale.getpreferredencoding()
output = raw_output.decode(enc)
err = raw_err.decode(enc)
return rc, output.strip(), err.strip()
def run_and_read_all(run_lambda, command):
"""Run command using run_lambda; reads and returns entire output if rc is 0."""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
return out
def run_and_parse_first_match(run_lambda, command, regex):
"""Run command using run_lambda, returns the first regex match if it exists."""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
match = re.search(regex, out)
if match is None:
return None
return match.group(1)
def run_and_return_first_line(run_lambda, command):
"""Run command using run_lambda and returns first line if output is not empty."""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
return out.split('\n')[0]
def get_conda_packages(run_lambda, patterns=None):
if patterns is None:
patterns = DEFAULT_CONDA_PATTERNS
conda = os.environ.get('CONDA_EXE', 'conda')
out = run_and_read_all(run_lambda, "{} list".format(conda))
if out is None:
return out
return "\n".join(line for line in out.splitlines()
if not line.startswith("#") and any(name in line
for name in patterns))
def get_gcc_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'gcc --version', r'gcc (.*)')
def get_clang_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'clang --version',
r'clang version (.*)')
def get_cmake_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'cmake --version',
r'cmake (.*)')
def get_nvidia_driver_version(run_lambda):
if get_platform() == 'darwin':
cmd = 'kextstat | grep -i cuda'
return run_and_parse_first_match(run_lambda, cmd,
r'com[.]nvidia[.]CUDA [(](.*?)[)]')
smi = get_nvidia_smi()
return run_and_parse_first_match(run_lambda, smi,
r'Driver Version: (.*?) ')
def get_gpu_info(run_lambda):
if get_platform() == 'darwin' or (TORCH_AVAILABLE and hasattr(
torch.version, 'hip') and torch.version.hip is not None):
if TORCH_AVAILABLE and torch.cuda.is_available():
if torch.version.hip is not None:
prop = torch.cuda.get_device_properties(0)
if hasattr(prop, "gcnArchName"):
gcnArch = " ({})".format(prop.gcnArchName)
else:
gcnArch = "NoGCNArchNameOnOldPyTorch"
else:
gcnArch = ""
return torch.cuda.get_device_name(None) + gcnArch
return None
smi = get_nvidia_smi()
uuid_regex = re.compile(r' \(UUID: .+?\)')
rc, out, _ = run_lambda(smi + ' -L')
if rc != 0:
return None
# Anonymize GPUs by removing their UUID
return re.sub(uuid_regex, '', out)
def get_running_cuda_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'nvcc --version',
r'release .+ V(.*)')
def get_cudnn_version(run_lambda):
"""Return a list of libcudnn.so; it's hard to tell which one is being used."""
if get_platform() == 'win32':
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
cuda_path = os.environ.get('CUDA_PATH', "%CUDA_PATH%")
where_cmd = os.path.join(system_root, 'System32', 'where')
cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
elif get_platform() == 'darwin':
# CUDA libraries and drivers can be found in /usr/local/cuda/. See
# https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
# https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
# Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
cudnn_cmd = 'ls /usr/local/cuda/lib/libcudnn*'
else:
cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
rc, out, _ = run_lambda(cudnn_cmd)
# find will return 1 if there are permission errors or if not found
if len(out) == 0 or (rc != 1 and rc != 0):
l = os.environ.get('CUDNN_LIBRARY')
if l is not None and os.path.isfile(l):
return os.path.realpath(l)
return None
files_set = set()
for fn in out.split('\n'):
fn = os.path.realpath(fn) # eliminate symbolic links
if os.path.isfile(fn):
files_set.add(fn)
if not files_set:
return None
# Alphabetize the result because the order is non-deterministic otherwise
files = sorted(files_set)
if len(files) == 1:
return files[0]
result = '\n'.join(files)
return 'Probably one of the following:\n{}'.format(result)
def get_nvidia_smi():
# Note: nvidia-smi is currently available only on Windows and Linux
smi = 'nvidia-smi'
if get_platform() == 'win32':
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
program_files_root = os.environ.get('PROGRAMFILES',
'C:\\Program Files')
legacy_path = os.path.join(program_files_root, 'NVIDIA Corporation',
'NVSMI', smi)
new_path = os.path.join(system_root, 'System32', smi)
smis = [new_path, legacy_path]
for candidate_smi in smis:
if os.path.exists(candidate_smi):
smi = '"{}"'.format(candidate_smi)
break
return smi
def get_rocm_version(run_lambda):
"""Returns the ROCm version if available, otherwise 'N/A'."""
return run_and_parse_first_match(run_lambda, 'hipcc --version',
r'HIP version: (\S+)')
def get_neuron_sdk_version(run_lambda):
# Adapted from your install script
try:
result = run_lambda(["neuron-ls"])
return result if result[0] == 0 else 'N/A'
except Exception:
return 'N/A'
def get_vllm_version():
try:
import vllm
return vllm.__version__
except ImportError:
return 'N/A'
def summarize_vllm_build_flags():
# This could be a static method if the flags are constant, or dynamic if you need to check environment variables, etc.
return 'CUDA Archs: {}; ROCm: {}; Neuron: {}'.format(
os.environ.get('TORCH_CUDA_ARCH_LIST', 'Not Set'),
'Enabled' if os.environ.get('ROCM_HOME') else 'Disabled',
'Enabled' if os.environ.get('NEURON_CORES') else 'Disabled',
)
def get_gpu_topo(run_lambda):
if get_platform() == 'linux':
return run_and_read_all(run_lambda, 'nvidia-smi topo -m')
return None
# example outputs of CPU infos
# * linux
# Architecture: x86_64
# CPU op-mode(s): 32-bit, 64-bit
# Address sizes: 46 bits physical, 48 bits virtual
# Byte Order: Little Endian
# CPU(s): 128
# On-line CPU(s) list: 0-127
# Vendor ID: GenuineIntel
# Model name: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
# CPU family: 6
# Model: 106
# Thread(s) per core: 2
# Core(s) per socket: 32
# Socket(s): 2
# Stepping: 6
# BogoMIPS: 5799.78
# Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr
# sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl
# xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16
# pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand
# hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced
# fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap
# avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1
# xsaves wbnoinvd ida arat avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq
# avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear flush_l1d arch_capabilities
# Virtualization features:
# Hypervisor vendor: KVM
# Virtualization type: full
# Caches (sum of all):
# L1d: 3 MiB (64 instances)
# L1i: 2 MiB (64 instances)
# L2: 80 MiB (64 instances)
# L3: 108 MiB (2 instances)
# NUMA:
# NUMA node(s): 2
# NUMA node0 CPU(s): 0-31,64-95
# NUMA node1 CPU(s): 32-63,96-127
# Vulnerabilities:
# Itlb multihit: Not affected
# L1tf: Not affected
# Mds: Not affected
# Meltdown: Not affected
# Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
# Retbleed: Not affected
# Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
# Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
# Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
# Srbds: Not affected
# Tsx async abort: Not affected
# * win32
# Architecture=9
# CurrentClockSpeed=2900
# DeviceID=CPU0
# Family=179
# L2CacheSize=40960
# L2CacheSpeed=
# Manufacturer=GenuineIntel
# MaxClockSpeed=2900
# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
# ProcessorType=3
# Revision=27142
#
# Architecture=9
# CurrentClockSpeed=2900
# DeviceID=CPU1
# Family=179
# L2CacheSize=40960
# L2CacheSpeed=
# Manufacturer=GenuineIntel
# MaxClockSpeed=2900
# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
# ProcessorType=3
# Revision=27142
def get_cpu_info(run_lambda):
rc, out, err = 0, '', ''
if get_platform() == 'linux':
rc, out, err = run_lambda('lscpu')
elif get_platform() == 'win32':
rc, out, err = run_lambda(
'wmic cpu get Name,Manufacturer,Family,Architecture,ProcessorType,DeviceID, \
CurrentClockSpeed,MaxClockSpeed,L2CacheSize,L2CacheSpeed,Revision /VALUE'
)
elif get_platform() == 'darwin':
rc, out, err = run_lambda("sysctl -n machdep.cpu.brand_string")
cpu_info = 'None'
if rc == 0:
cpu_info = out
else:
cpu_info = err
return cpu_info
def get_platform():
if sys.platform.startswith('linux'):
return 'linux'
elif sys.platform.startswith('win32'):
return 'win32'
elif sys.platform.startswith('cygwin'):
return 'cygwin'
elif sys.platform.startswith('darwin'):
return 'darwin'
else:
return sys.platform
def get_mac_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'sw_vers -productVersion',
r'(.*)')
def get_windows_version(run_lambda):
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
wmic_cmd = os.path.join(system_root, 'System32', 'Wbem', 'wmic')
findstr_cmd = os.path.join(system_root, 'System32', 'findstr')
return run_and_read_all(
run_lambda,
'{} os get Caption | {} /v Caption'.format(wmic_cmd, findstr_cmd))
def get_lsb_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'lsb_release -a',
r'Description:\t(.*)')
def check_release_file(run_lambda):
return run_and_parse_first_match(run_lambda, 'cat /etc/*-release',
r'PRETTY_NAME="(.*)"')
def get_os(run_lambda):
from platform import machine
platform = get_platform()
if platform == 'win32' or platform == 'cygwin':
return get_windows_version(run_lambda)
if platform == 'darwin':
version = get_mac_version(run_lambda)
if version is None:
return None
return 'macOS {} ({})'.format(version, machine())
if platform == 'linux':
# Ubuntu/Debian based
desc = get_lsb_version(run_lambda)
if desc is not None:
return '{} ({})'.format(desc, machine())
# Try reading /etc/*-release
desc = check_release_file(run_lambda)
if desc is not None:
return '{} ({})'.format(desc, machine())
return '{} ({})'.format(platform, machine())
# Unknown platform
return platform
def get_python_platform():
import platform
return platform.platform()
def get_libc_version():
import platform
if get_platform() != 'linux':
return 'N/A'
return '-'.join(platform.libc_ver())
def get_pip_packages(run_lambda, patterns=None):
"""Return `pip list` output. Note: will also find conda-installed pytorch and numpy packages."""
if patterns is None:
patterns = DEFAULT_PIP_PATTERNS
# People generally have `pip` as `pip` or `pip3`
# But here it is invoked as `python -mpip`
def run_with_pip(pip):
out = run_and_read_all(run_lambda, pip + ["list", "--format=freeze"])
return "\n".join(line for line in out.splitlines()
if any(name in line for name in patterns))
pip_version = 'pip3' if sys.version[0] == '3' else 'pip'
out = run_with_pip([sys.executable, '-mpip'])
return pip_version, out
def get_cachingallocator_config():
ca_config = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', '')
return ca_config
def get_cuda_module_loading_config():
if TORCH_AVAILABLE and torch.cuda.is_available():
torch.cuda.init()
config = os.environ.get('CUDA_MODULE_LOADING', '')
return config
else:
return "N/A"
def is_xnnpack_available():
if TORCH_AVAILABLE:
import torch.backends.xnnpack
return str(
torch.backends.xnnpack.enabled) # type: ignore[attr-defined]
else:
return "N/A"
def get_env_info():
run_lambda = run
pip_version, pip_list_output = get_pip_packages(run_lambda)
if TORCH_AVAILABLE:
version_str = torch.__version__
debug_mode_str = str(torch.version.debug)
cuda_available_str = str(torch.cuda.is_available())
cuda_version_str = torch.version.cuda
if not hasattr(torch.version,
'hip') or torch.version.hip is None: # cuda version
hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
else: # HIP version
def get_version_or_na(cfg, prefix):
_lst = [s.rsplit(None, 1)[-1] for s in cfg if prefix in s]
return _lst[0] if _lst else 'N/A'
cfg = torch._C._show_config().split('\n')
hip_runtime_version = get_version_or_na(cfg, 'HIP Runtime')
miopen_runtime_version = get_version_or_na(cfg, 'MIOpen')
cuda_version_str = 'N/A'
hip_compiled_version = torch.version.hip
else:
version_str = debug_mode_str = cuda_available_str = cuda_version_str = 'N/A'
hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
sys_version = sys.version.replace("\n", " ")
conda_packages = get_conda_packages(run_lambda)
rocm_version = get_rocm_version(run_lambda)
neuron_sdk_version = get_neuron_sdk_version(run_lambda)
vllm_version = get_vllm_version()
vllm_build_flags = summarize_vllm_build_flags()
gpu_topo = get_gpu_topo(run_lambda)
return SystemEnv(
torch_version=version_str,
is_debug_build=debug_mode_str,
python_version='{} ({}-bit runtime)'.format(
sys_version,
sys.maxsize.bit_length() + 1),
python_platform=get_python_platform(),
is_cuda_available=cuda_available_str,
cuda_compiled_version=cuda_version_str,
cuda_runtime_version=get_running_cuda_version(run_lambda),
cuda_module_loading=get_cuda_module_loading_config(),
nvidia_gpu_models=get_gpu_info(run_lambda),
nvidia_driver_version=get_nvidia_driver_version(run_lambda),
cudnn_version=get_cudnn_version(run_lambda),
hip_compiled_version=hip_compiled_version,
hip_runtime_version=hip_runtime_version,
miopen_runtime_version=miopen_runtime_version,
pip_version=pip_version,
pip_packages=pip_list_output,
conda_packages=conda_packages,
os=get_os(run_lambda),
libc_version=get_libc_version(),
gcc_version=get_gcc_version(run_lambda),
clang_version=get_clang_version(run_lambda),
cmake_version=get_cmake_version(run_lambda),
caching_allocator_config=get_cachingallocator_config(),
is_xnnpack_available=is_xnnpack_available(),
cpu_info=get_cpu_info(run_lambda),
rocm_version=rocm_version,
neuron_sdk_version=neuron_sdk_version,
vllm_version=vllm_version,
vllm_build_flags=vllm_build_flags,
gpu_topo=gpu_topo,
)
env_info_fmt = """
PyTorch version: {torch_version}
Is debug build: {is_debug_build}
CUDA used to build PyTorch: {cuda_compiled_version}
ROCM used to build PyTorch: {hip_compiled_version}
OS: {os}
GCC version: {gcc_version}
Clang version: {clang_version}
CMake version: {cmake_version}
Libc version: {libc_version}
Python version: {python_version}
Python platform: {python_platform}
Is CUDA available: {is_cuda_available}
CUDA runtime version: {cuda_runtime_version}
CUDA_MODULE_LOADING set to: {cuda_module_loading}
GPU models and configuration: {nvidia_gpu_models}
Nvidia driver version: {nvidia_driver_version}
cuDNN version: {cudnn_version}
HIP runtime version: {hip_runtime_version}
MIOpen runtime version: {miopen_runtime_version}
Is XNNPACK available: {is_xnnpack_available}
CPU:
{cpu_info}
Versions of relevant libraries:
{pip_packages}
{conda_packages}
""".strip()
env_info_fmt += """
ROCM Version: {rocm_version}
Neuron SDK Version: {neuron_sdk_version}
vLLM Version: {vllm_version}
vLLM Build Flags:
{vllm_build_flags}
GPU Topology:
{gpu_topo}
""".strip()
def pretty_str(envinfo):
def replace_nones(dct, replacement='Could not collect'):
for key in dct.keys():
if dct[key] is not None:
continue
dct[key] = replacement
return dct
def replace_bools(dct, true='Yes', false='No'):
for key in dct.keys():
if dct[key] is True:
dct[key] = true
elif dct[key] is False:
dct[key] = false
return dct
def prepend(text, tag='[prepend]'):
lines = text.split('\n')
updated_lines = [tag + line for line in lines]
return '\n'.join(updated_lines)
def replace_if_empty(text, replacement='No relevant packages'):
if text is not None and len(text) == 0:
return replacement
return text
def maybe_start_on_next_line(string):
# If `string` is multiline, prepend a \n to it.
if string is not None and len(string.split('\n')) > 1:
return '\n{}\n'.format(string)
return string
mutable_dict = envinfo._asdict()
# If nvidia_gpu_models is multiline, start on the next line
mutable_dict['nvidia_gpu_models'] = \
maybe_start_on_next_line(envinfo.nvidia_gpu_models)
# If the machine doesn't have CUDA, report some fields as 'No CUDA'
dynamic_cuda_fields = [
'cuda_runtime_version',
'nvidia_gpu_models',
'nvidia_driver_version',
]
all_cuda_fields = dynamic_cuda_fields + ['cudnn_version']
all_dynamic_cuda_fields_missing = all(mutable_dict[field] is None
for field in dynamic_cuda_fields)
if TORCH_AVAILABLE and not torch.cuda.is_available(
) and all_dynamic_cuda_fields_missing:
for field in all_cuda_fields:
mutable_dict[field] = 'No CUDA'
if envinfo.cuda_compiled_version is None:
mutable_dict['cuda_compiled_version'] = 'None'
# Replace True with Yes, False with No
mutable_dict = replace_bools(mutable_dict)
# Replace all None objects with 'Could not collect'
mutable_dict = replace_nones(mutable_dict)
# If either of these are '', replace with 'No relevant packages'
mutable_dict['pip_packages'] = replace_if_empty(
mutable_dict['pip_packages'])
mutable_dict['conda_packages'] = replace_if_empty(
mutable_dict['conda_packages'])
# Tag conda and pip packages with a prefix
# If they were previously None, they'll show up as ie '[conda] Could not collect'
if mutable_dict['pip_packages']:
mutable_dict['pip_packages'] = prepend(
mutable_dict['pip_packages'], '[{}] '.format(envinfo.pip_version))
if mutable_dict['conda_packages']:
mutable_dict['conda_packages'] = prepend(
mutable_dict['conda_packages'], '[conda] ')
mutable_dict['cpu_info'] = envinfo.cpu_info
return env_info_fmt.format(**mutable_dict)
def get_pretty_env_info():
return pretty_str(get_env_info())
def main():
print("Collecting environment information...")
output = get_pretty_env_info()
print(output)
if TORCH_AVAILABLE and hasattr(torch, 'utils') and hasattr(
torch.utils, '_crash_handler'):
minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR
if sys.platform == "linux" and os.path.exists(minidump_dir):
dumps = [
os.path.join(minidump_dir, dump)
for dump in os.listdir(minidump_dir)
]
latest = max(dumps, key=os.path.getctime)
ctime = os.path.getctime(latest)
creation_time = datetime.datetime.fromtimestamp(ctime).strftime(
'%Y-%m-%d %H:%M:%S')
msg = "\n*** Detected a minidump at {} created on {}, ".format(latest, creation_time) + \
"if this is related to your bug please include it when you file a report ***"
print(msg, file=sys.stderr)
if __name__ == '__main__':
main()

View File

@ -1,28 +0,0 @@
#include <torch/extension.h>
void silu_and_mul(
torch::Tensor& out,
torch::Tensor& input);
void gelu_new(
torch::Tensor& out,
torch::Tensor& input);
void gelu_fast(
torch::Tensor& out,
torch::Tensor& input);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def(
"silu_and_mul",
&silu_and_mul,
"Activation function used in SwiGLU.");
m.def(
"gelu_new",
&gelu_new,
"GELU implementation used in GPT-2.");
m.def(
"gelu_fast",
&gelu_fast,
"Approximate GELU implementation.");
}

View File

@ -1,50 +1,96 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include <cmath>
#include "cuda_compat.h"
#include "dispatch_utils.h"
namespace vllm {
// Activation and gating kernel template.
template<typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&)>
__global__ void act_and_mul_kernel(
scalar_t* __restrict__ out, // [..., d]
const scalar_t* __restrict__ input, // [..., 2, d]
const int d) {
const int64_t token_idx = blockIdx.x;
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
const scalar_t x = VLLM_LDG(&input[token_idx * 2 * d + idx]);
const scalar_t y = VLLM_LDG(&input[token_idx * 2 * d + d + idx]);
out[token_idx * d + idx] = ACT_FN(x) * y;
}
}
template<typename T>
__device__ __forceinline__ T silu(const T& x) {
__device__ __forceinline__ T silu_kernel(const T& x) {
// x * sigmoid(x)
return (T) (((float) x) / (1.0f + expf((float) -x)));
}
template<typename scalar_t>
__global__ void silu_and_mul_kernel(
scalar_t* __restrict__ out, // [num_tokens, d]
const scalar_t* __restrict__ input, // [num_tokens, 2, d]
const int d) {
const int token_idx = blockIdx.x;
for (int idx = threadIdx.x; idx < d; idx += blockDim.x) {
const scalar_t x = __ldg(&input[token_idx * 2 * d + idx]);
const scalar_t y = __ldg(&input[token_idx * 2 * d + d + idx]);
out[token_idx * d + idx] = silu(x) * y;
}
template<typename T>
__device__ __forceinline__ T gelu_kernel(const T& x) {
// Equivalent to PyTorch GELU with 'none' approximation.
// Refer to:
// https://github.com/pytorch/pytorch/blob/8ac9b20d4b090c213799e81acf48a55ea8d437d6/aten/src/ATen/native/cuda/ActivationGeluKernel.cu#L36-L38
const float f = (float) x;
constexpr float ALPHA = M_SQRT1_2;
return (T) (f * 0.5f * (1.0f + ::erf(f * ALPHA)));
}
template<typename T>
__device__ __forceinline__ T gelu_tanh_kernel(const T& x) {
// Equivalent to PyTorch GELU with 'tanh' approximation.
// Refer to:
// https://github.com/pytorch/pytorch/blob/8ac9b20d4b090c213799e81acf48a55ea8d437d6/aten/src/ATen/native/cuda/ActivationGeluKernel.cu#L25-L30
const float f = (float) x;
constexpr float BETA = M_SQRT2 * M_2_SQRTPI * 0.5f;
constexpr float KAPPA = 0.044715;
float x_cube = f * f * f;
float inner = BETA * (f + KAPPA * x_cube);
return (T) (0.5f * f * (1.0f + ::tanhf(inner)));
}
} // namespace vllm
void silu_and_mul(
torch::Tensor& out, // [num_tokens, d]
torch::Tensor& input) // [num_tokens, 2 * d]
{
int num_tokens = input.size(0);
int d = input.size(1) / 2;
dim3 grid(num_tokens);
dim3 block(std::min(d, 1024));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(),
"silu_and_mul_kernel",
[&] {
vllm::silu_and_mul_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
d);
// Launch activation and gating kernel.
#define LAUNCH_ACTIVATION_GATE_KERNEL(KERNEL) \
int d = input.size(-1) / 2; \
int64_t num_tokens = input.numel() / input.size(-1); \
dim3 grid(num_tokens); \
dim3 block(std::min(d, 1024)); \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), \
"act_and_mul_kernel", \
[&] { \
vllm::act_and_mul_kernel<scalar_t, KERNEL<scalar_t>><<<grid, block, 0, stream>>>( \
out.data_ptr<scalar_t>(), \
input.data_ptr<scalar_t>(), \
d); \
});
void silu_and_mul(
torch::Tensor& out, // [..., d]
torch::Tensor& input) // [..., 2 * d]
{
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel);
}
void gelu_and_mul(
torch::Tensor& out, // [..., d]
torch::Tensor& input) // [..., 2 * d]
{
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_kernel);
}
void gelu_tanh_and_mul(
torch::Tensor& out, // [..., d]
torch::Tensor& input) // [..., 2 * d]
{
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_tanh_kernel);
}
namespace vllm {
@ -52,12 +98,12 @@ namespace vllm {
// Element-wise activation kernel template.
template<typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&)>
__global__ void activation_kernel(
scalar_t* __restrict__ out, // [num_tokens, d]
const scalar_t* __restrict__ input, // [num_tokens, d]
scalar_t* __restrict__ out, // [..., d]
const scalar_t* __restrict__ input, // [..., d]
const int d) {
const int token_idx = blockIdx.x;
for (int idx = threadIdx.x; idx < d; idx += blockDim.x) {
const scalar_t x = __ldg(&input[token_idx * d + idx]);
const int64_t token_idx = blockIdx.x;
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
const scalar_t x = VLLM_LDG(&input[token_idx * d + idx]);
out[token_idx * d + idx] = ACT_FN(x);
}
}
@ -66,10 +112,11 @@ __global__ void activation_kernel(
// Launch element-wise activation kernel.
#define LAUNCH_ACTIVATION_KERNEL(KERNEL) \
int num_tokens = input.size(0); \
int d = input.size(1); \
int d = input.size(-1); \
int64_t num_tokens = input.numel() / d; \
dim3 grid(num_tokens); \
dim3 block(std::min(d, 1024)); \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), \
@ -100,15 +147,15 @@ __device__ __forceinline__ T gelu_fast_kernel(const T& x) {
} // namespace vllm
void gelu_new(
torch::Tensor& out, // [num_tokens, d]
torch::Tensor& input) // [num_tokens, d]
torch::Tensor& out, // [..., d]
torch::Tensor& input) // [..., d]
{
LAUNCH_ACTIVATION_KERNEL(vllm::gelu_new_kernel);
}
void gelu_fast(
torch::Tensor& out, // [num_tokens, d]
torch::Tensor& input) // [num_tokens, d]
torch::Tensor& out, // [..., d]
torch::Tensor& input) // [..., d]
{
LAUNCH_ACTIVATION_KERNEL(vllm::gelu_fast_kernel);
}

View File

@ -1,42 +0,0 @@
#include <torch/extension.h>
#include <c10/util/Optional.h>
void paged_attention_v1(
torch::Tensor& out,
torch::Tensor& query,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& head_mapping,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes);
void paged_attention_v2(
torch::Tensor& out,
torch::Tensor& exp_sums,
torch::Tensor& max_logits,
torch::Tensor& tmp_out,
torch::Tensor& query,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& head_mapping,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def(
"paged_attention_v1",
&paged_attention_v1,
"Compute the attention between an input query and the cached keys/values using PagedAttention.");
m.def(
"paged_attention_v2",
&paged_attention_v2,
"PagedAttention V2.");
}

View File

@ -4,3 +4,4 @@
#include "dtype_float16.cuh"
#include "dtype_float32.cuh"
#include "dtype_bfloat16.cuh"
#include "dtype_fp8.cuh"

View File

@ -15,15 +15,33 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "attention_dtypes.h"
#include "attention_utils.cuh"
#if defined(ENABLE_FP8_E5M2)
#include "../quantization/fp8_e5m2_kvcache/quant_utils.cuh"
#elif defined(ENABLE_FP8_E4M3)
#include "../quantization/fp8/amd_detail/quant_utils.cuh"
#endif
#include <algorithm>
#ifdef USE_ROCM
#include <hip/hip_bf16.h>
typedef __hip_bfloat16 __nv_bfloat16;
#endif
#ifndef USE_ROCM
#define WARP_SIZE 32
#else
#define WARP_SIZE warpSize
#endif
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
@ -40,7 +58,7 @@ inline __device__ float block_sum(float* red_smem, float sum) {
// Compute the sum per warp.
#pragma unroll
for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
sum += VLLM_SHFL_XOR_SYNC(sum, mask);
}
// Warp leaders store the data to shared memory.
@ -59,58 +77,61 @@ inline __device__ float block_sum(float* red_smem, float sum) {
// Parallel reduction inside the warp.
#pragma unroll
for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
sum += VLLM_SHFL_XOR_SYNC(sum, mask);
}
// Broadcast to other threads.
return __shfl_sync(uint32_t(-1), sum, 0);
return VLLM_SHFL_SYNC(sum, 0);
}
// TODO(woosuk): Merge the last two dimensions of the grid.
// Grid: (num_heads, num_seqs, max_num_partitions).
template<
typename scalar_t,
typename cache_t,
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS,
bool IS_FP8_KV_CACHE,
int PARTITION_SIZE = 0> // Zero means no partitioning.
__device__ void paged_attention_kernel(
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
float* __restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
scalar_t* __restrict__ out, // [num_seqs, num_heads, max_num_partitions, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const scalar_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int* __restrict__ head_mapping, // [num_heads]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int num_kv_heads, // [num_heads]
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
const int kv_block_stride,
const int kv_head_stride) {
const int kv_head_stride,
const float kv_scale) {
const int seq_idx = blockIdx.y;
const int partition_idx = blockIdx.z;
const int max_num_partitions = gridDim.z;
constexpr bool USE_PARTITIONING = PARTITION_SIZE > 0;
const int context_len = context_lens[seq_idx];
if (USE_PARTITIONING && partition_idx * PARTITION_SIZE >= context_len) {
const int seq_len = seq_lens[seq_idx];
if (USE_PARTITIONING && partition_idx * PARTITION_SIZE >= seq_len) {
// No work to do. Terminate the thread block.
return;
}
const int num_context_blocks = DIVIDE_ROUND_UP(context_len, BLOCK_SIZE);
const int num_blocks_per_partition = USE_PARTITIONING ? PARTITION_SIZE / BLOCK_SIZE : num_context_blocks;
const int num_seq_blocks = DIVIDE_ROUND_UP(seq_len, BLOCK_SIZE);
const int num_blocks_per_partition = USE_PARTITIONING ? PARTITION_SIZE / BLOCK_SIZE : num_seq_blocks;
// [start_block_idx, end_block_idx) is the range of blocks to process.
const int start_block_idx = USE_PARTITIONING ? partition_idx * num_blocks_per_partition : 0;
const int end_block_idx = MIN(start_block_idx + num_blocks_per_partition, num_context_blocks);
const int end_block_idx = MIN(start_block_idx + num_blocks_per_partition, num_seq_blocks);
const int num_blocks = end_block_idx - start_block_idx;
// [start_token_idx, end_token_idx) is the range of tokens to process.
const int start_token_idx = start_block_idx * BLOCK_SIZE;
const int end_token_idx = MIN(start_token_idx + num_blocks * BLOCK_SIZE, context_len);
const int end_token_idx = MIN(start_token_idx + num_blocks * BLOCK_SIZE, seq_len);
const int num_tokens = end_token_idx - start_token_idx;
constexpr int THREAD_GROUP_SIZE = MAX(WARP_SIZE / BLOCK_SIZE, 1);
@ -124,7 +145,8 @@ __device__ void paged_attention_kernel(
const int head_idx = blockIdx.x;
const int num_heads = gridDim.x;
const int kv_head_idx = head_mapping[head_idx];
const int num_queries_per_kv = num_heads / num_kv_heads;
const int kv_head_idx = head_idx / num_queries_per_kv;
const float alibi_slope = alibi_slopes == nullptr ? 0.f : alibi_slopes[head_idx];
// A vector type to store a part of a key or a query.
@ -135,6 +157,9 @@ __device__ void paged_attention_kernel(
constexpr int VEC_SIZE = MAX(16 / (THREAD_GROUP_SIZE * sizeof(scalar_t)), 1);
using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
#if defined(ENABLE_FP8_E5M2) || defined(ENABLE_FP8_E4M3)
using Quant_vec = typename Vec<cache_t, VEC_SIZE>::Type;
#endif
constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;
@ -166,7 +191,7 @@ __device__ void paged_attention_kernel(
// x == THREAD_GROUP_SIZE * VEC_SIZE
// Each thread group fetches x elements from the key at a time.
constexpr int x = 16 / sizeof(scalar_t);
constexpr int x = 16 / sizeof(cache_t);
float qk_max = -FLT_MAX;
// Iterate over the key blocks.
@ -175,7 +200,10 @@ __device__ void paged_attention_kernel(
// dot product with the query.
const int* block_table = block_tables + seq_idx * max_num_blocks_per_seq;
for (int block_idx = start_block_idx + warp_idx; block_idx < end_block_idx; block_idx += NUM_WARPS) {
const int physical_block_number = block_table[block_idx];
// NOTE(woosuk): The block number is stored in int32. However, we cast it to int64
// because int32 can lead to overflow when this variable is multiplied by large numbers
// (e.g., kv_block_stride).
const int64_t physical_block_number = static_cast<int64_t>(block_table[block_idx]);
// Load a key to registers.
// Each thread in a thread group has a different part of the key.
@ -189,25 +217,40 @@ __device__ void paged_attention_kernel(
#pragma unroll
for (int j = 0; j < NUM_VECS_PER_THREAD; j++) {
const scalar_t* k_ptr = k_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride
+ physical_block_offset * x;
const cache_t* k_ptr = k_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride
+ physical_block_offset * x;
const int vec_idx = thread_group_offset + j * THREAD_GROUP_SIZE;
const int offset1 = (vec_idx * VEC_SIZE) / x;
const int offset2 = (vec_idx * VEC_SIZE) % x;
k_vecs[j] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
if constexpr (IS_FP8_KV_CACHE) {
#if defined(ENABLE_FP8_E5M2)
Quant_vec k_vec_quant = *reinterpret_cast<const Quant_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
// Vector conversion from Quant_vec to K_vec.
k_vecs[j] = fp8_e5m2_unscaled::vec_conversion<K_vec, Quant_vec>(k_vec_quant);
#elif defined(ENABLE_FP8_E4M3)
Quant_vec k_vec_quant = *reinterpret_cast<const Quant_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
// Vector conversion from Quant_vec to K_vec. Use scaled_vec_conversion to convert FP8_E4M3 quantized k
// cache vec to k vec in higher precision (FP16, BFloat16, etc.)
k_vecs[j] = fp8_e4m3::scaled_vec_conversion<K_vec, Quant_vec>(k_vec_quant, kv_scale);
#else
assert(false);
#endif
} else {
k_vecs[j] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
}
}
// Compute dot product.
// This includes a reduction across the threads in the same thread group.
float qk = scale * Qk_dot<scalar_t, THREAD_GROUP_SIZE>::dot(q_vecs[thread_group_offset], k_vecs);
// Add the ALiBi bias if slopes are given.
qk += (alibi_slope != 0) ? alibi_slope * (token_idx - context_len + 1) : 0;
qk += (alibi_slope != 0) ? alibi_slope * (token_idx - seq_len + 1) : 0;
if (thread_group_offset == 0) {
// Store the partial reductions to shared memory.
// NOTE(woosuk): It is required to zero out the masked logits.
const bool mask = token_idx >= context_len;
const bool mask = token_idx >= seq_len;
logits[token_idx - start_token_idx] = mask ? 0.f : qk;
// Update the max value.
qk_max = mask ? qk_max : fmaxf(qk_max, qk);
@ -220,7 +263,7 @@ __device__ void paged_attention_kernel(
// The 0-th thread of each thread group already has its max qk value.
#pragma unroll
for (int mask = WARP_SIZE / 2; mask >= THREAD_GROUP_SIZE; mask /= 2) {
qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
qk_max = fmaxf(qk_max, VLLM_SHFL_XOR_SYNC(qk_max, mask));
}
if (lane == 0) {
red_smem[warp_idx] = qk_max;
@ -232,10 +275,10 @@ __device__ void paged_attention_kernel(
qk_max = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
#pragma unroll
for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
qk_max = fmaxf(qk_max, VLLM_SHFL_XOR_SYNC(qk_max, mask));
}
// Broadcast the max qk value to all threads.
qk_max = __shfl_sync(uint32_t(-1), qk_max, 0);
qk_max = VLLM_SHFL_SYNC(qk_max, 0);
// Get the sum of the exp values.
float exp_sum = 0.f;
@ -269,6 +312,9 @@ __device__ void paged_attention_kernel(
constexpr int V_VEC_SIZE = MIN(16 / sizeof(scalar_t), BLOCK_SIZE);
using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
using L_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
#if defined(ENABLE_FP8_E5M2) || defined(ENABLE_FP8_E4M3)
using V_quant_vec = typename Vec<cache_t, V_VEC_SIZE>::Type;
#endif
using Float_L_vec = typename FloatVec<L_vec>::Type;
constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
@ -285,28 +331,47 @@ __device__ void paged_attention_kernel(
scalar_t zero_value;
zero(zero_value);
for (int block_idx = start_block_idx + warp_idx; block_idx < end_block_idx; block_idx += NUM_WARPS) {
const int physical_block_number = block_table[block_idx];
// NOTE(woosuk): The block number is stored in int32. However, we cast it to int64
// because int32 can lead to overflow when this variable is multiplied by large numbers
// (e.g., kv_block_stride).
const int64_t physical_block_number = static_cast<int64_t>(block_table[block_idx]);
const int physical_block_offset = (lane % NUM_V_VECS_PER_ROW) * V_VEC_SIZE;
const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
L_vec logits_vec;
from_float(logits_vec, *reinterpret_cast<Float_L_vec*>(logits + token_idx - start_token_idx));
const scalar_t* v_ptr = v_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride;
const cache_t* v_ptr = v_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride;
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
if (row_idx < HEAD_SIZE) {
const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
V_vec v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
if (block_idx == num_context_blocks - 1) {
V_vec v_vec;
if constexpr (IS_FP8_KV_CACHE) {
#if defined(ENABLE_FP8_E5M2)
V_quant_vec v_quant_vec = *reinterpret_cast<const V_quant_vec*>(v_ptr + offset);
// Vector conversion from V_quant_vec to V_vec.
v_vec = fp8_e5m2_unscaled::vec_conversion<V_vec, V_quant_vec>(v_quant_vec);
#elif defined(ENABLE_FP8_E4M3)
V_quant_vec v_quant_vec = *reinterpret_cast<const V_quant_vec*>(v_ptr + offset);
// Vector conversion from V_quant_vec to V_vec. Use scaled_vec_conversion to convert
// FP8_E4M3 quantized v cache vec to v vec in higher precision (FP16, BFloat16, etc.)
v_vec = fp8_e4m3::scaled_vec_conversion<V_vec, V_quant_vec>(v_quant_vec, kv_scale);
#else
assert(false);
#endif
} else {
v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
}
if (block_idx == num_seq_blocks - 1) {
// NOTE(woosuk): When v_vec contains the tokens that are out of the context,
// we should explicitly zero out the values since they may contain NaNs.
// See https://github.com/vllm-project/vllm/issues/641#issuecomment-1682544472
scalar_t* v_vec_ptr = reinterpret_cast<scalar_t*>(&v_vec);
#pragma unroll
for (int j = 0; j < V_VEC_SIZE; j++) {
v_vec_ptr[j] = token_idx + j < context_len ? v_vec_ptr[j] : zero_value;
v_vec_ptr[j] = token_idx + j < seq_len ? v_vec_ptr[j] : zero_value;
}
}
accs[i] += dot(logits_vec, v_vec);
@ -320,7 +385,7 @@ __device__ void paged_attention_kernel(
float acc = accs[i];
#pragma unroll
for (int mask = NUM_V_VECS_PER_ROW / 2; mask >= 1; mask /= 2) {
acc += __shfl_xor_sync(uint32_t(-1), acc, mask);
acc += VLLM_SHFL_XOR_SYNC(acc, mask);
}
accs[i] = acc;
}
@ -379,56 +444,62 @@ __device__ void paged_attention_kernel(
// Grid: (num_heads, num_seqs, 1).
template<
typename scalar_t,
typename cache_t,
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS>
int NUM_THREADS,
bool IS_FP8_KV_CACHE>
__global__ void paged_attention_v1_kernel(
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const scalar_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int* __restrict__ head_mapping, // [num_heads]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int num_kv_heads, // [num_heads]
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
const int kv_block_stride,
const int kv_head_stride) {
paged_attention_kernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>(
const int kv_head_stride,
const float kv_scale) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, IS_FP8_KV_CACHE>(
/* exp_sums */ nullptr, /* max_logits */ nullptr,
out, q, k_cache, v_cache, head_mapping, scale, block_tables, context_lens,
max_num_blocks_per_seq, alibi_slopes, q_stride, kv_block_stride, kv_head_stride);
out, q, k_cache, v_cache, num_kv_heads, scale, block_tables, seq_lens,
max_num_blocks_per_seq, alibi_slopes, q_stride, kv_block_stride, kv_head_stride, kv_scale);
}
// Grid: (num_heads, num_seqs, max_num_partitions).
template<
typename scalar_t,
typename cache_t,
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS,
bool IS_FP8_KV_CACHE,
int PARTITION_SIZE>
__global__ void paged_attention_v2_kernel(
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
float* __restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads, max_num_partitions, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const scalar_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int* __restrict__ head_mapping, // [num_heads]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int num_kv_heads, // [num_heads]
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
const int kv_block_stride,
const int kv_head_stride) {
paged_attention_kernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, PARTITION_SIZE>(
exp_sums, max_logits, tmp_out, q, k_cache, v_cache, head_mapping, scale,
block_tables, context_lens, max_num_blocks_per_seq, alibi_slopes,
q_stride, kv_block_stride, kv_head_stride);
const int kv_head_stride,
const float kv_scale) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, IS_FP8_KV_CACHE, PARTITION_SIZE>(
exp_sums, max_logits, tmp_out, q, k_cache, v_cache, num_kv_heads, scale,
block_tables, seq_lens, max_num_blocks_per_seq, alibi_slopes,
q_stride, kv_block_stride, kv_head_stride, kv_scale);
}
// Grid: (num_heads, num_seqs).
@ -442,13 +513,13 @@ __global__ void paged_attention_v2_reduce_kernel(
const float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
const float* __restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
const scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads, max_num_partitions, head_size]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ seq_lens, // [num_seqs]
const int max_num_partitions) {
const int num_heads = gridDim.x;
const int head_idx = blockIdx.x;
const int seq_idx = blockIdx.y;
const int context_len = context_lens[seq_idx];
const int num_partitions = DIVIDE_ROUND_UP(context_len, PARTITION_SIZE);
const int seq_len = seq_lens[seq_idx];
const int num_partitions = DIVIDE_ROUND_UP(seq_len, PARTITION_SIZE);
if (num_partitions == 1) {
// No need to reduce. Only copy tmp_out to out.
scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
@ -486,7 +557,7 @@ __global__ void paged_attention_v2_reduce_kernel(
// Reduce within the warp.
#pragma unroll
for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
max_logit = fmaxf(max_logit, __shfl_xor_sync(uint32_t(-1), max_logit, mask));
max_logit = fmaxf(max_logit, VLLM_SHFL_XOR_SYNC(max_logit, mask));
}
if (lane == 0) {
red_smem[warp_idx] = max_logit;
@ -496,10 +567,10 @@ __global__ void paged_attention_v2_reduce_kernel(
max_logit = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
#pragma unroll
for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
max_logit = fmaxf(max_logit, __shfl_xor_sync(uint32_t(-1), max_logit, mask));
max_logit = fmaxf(max_logit, VLLM_SHFL_XOR_SYNC(max_logit, mask));
}
// Broadcast the max value to all threads.
max_logit = __shfl_sync(uint32_t(-1), max_logit, 0);
max_logit = VLLM_SHFL_SYNC(max_logit, 0);
// Load rescaled exp sums to shared memory.
float* shared_exp_sums = reinterpret_cast<float*>(shared_mem + sizeof(float) * num_partitions);
@ -533,41 +604,45 @@ __global__ void paged_attention_v2_reduce_kernel(
} // namespace vllm
#define LAUNCH_PAGED_ATTENTION_V1(HEAD_SIZE) \
cudaFuncSetAttribute( \
vllm::paged_attention_v1_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>, \
cudaFuncAttributeMaxDynamicSharedMemorySize, shared_mem_size); \
vllm::paged_attention_v1_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS> \
<<<grid, block, shared_mem_size, stream>>>( \
VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize( \
((void*)vllm::paged_attention_v1_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, \
IS_FP8_KV_CACHE>), shared_mem_size); \
vllm::paged_attention_v1_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, \
IS_FP8_KV_CACHE><<<grid, block, shared_mem_size, stream>>>( \
out_ptr, \
query_ptr, \
key_cache_ptr, \
value_cache_ptr, \
head_mapping_ptr, \
num_kv_heads, \
scale, \
block_tables_ptr, \
context_lens_ptr, \
seq_lens_ptr, \
max_num_blocks_per_seq, \
alibi_slopes_ptr, \
q_stride, \
kv_block_stride, \
kv_head_stride);
kv_head_stride, \
kv_scale);
// TODO(woosuk): Tune NUM_THREADS.
template<
typename T,
typename CACHE_T,
int BLOCK_SIZE,
bool IS_FP8_KV_CACHE,
int NUM_THREADS = 128>
void paged_attention_v1_launcher(
torch::Tensor& out,
torch::Tensor& query,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& head_mapping,
int num_kv_heads,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes) {
torch::Tensor& seq_lens,
int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
float kv_scale) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
@ -586,15 +661,14 @@ void paged_attention_v1_launcher(
T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
int* head_mapping_ptr = reinterpret_cast<int*>(head_mapping.data_ptr());
CACHE_T* key_cache_ptr = reinterpret_cast<CACHE_T*>(key_cache.data_ptr());
CACHE_T* value_cache_ptr = reinterpret_cast<CACHE_T*>(value_cache.data_ptr());
int* block_tables_ptr = block_tables.data_ptr<int>();
int* context_lens_ptr = context_lens.data_ptr<int>();
int* seq_lens_ptr = seq_lens.data_ptr<int>();
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
int padded_max_context_len = DIVIDE_ROUND_UP(max_context_len, BLOCK_SIZE) * BLOCK_SIZE;
int logits_size = padded_max_context_len * sizeof(float);
int padded_max_seq_len = DIVIDE_ROUND_UP(max_seq_len, BLOCK_SIZE) * BLOCK_SIZE;
int logits_size = padded_max_seq_len * sizeof(float);
int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
// Python-side check in vllm.worker.worker._check_if_can_support_max_seq_len
// Keep that in sync with the logic here!
@ -602,6 +676,7 @@ void paged_attention_v1_launcher(
dim3 grid(num_heads, num_seqs, 1);
dim3 block(NUM_THREADS);
const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
switch (head_size) {
// NOTE(woosuk): To reduce the compilation time, we only compile for the
@ -631,35 +706,36 @@ void paged_attention_v1_launcher(
}
}
#define CALL_V1_LAUNCHER(T, BLOCK_SIZE) \
paged_attention_v1_launcher<T, BLOCK_SIZE>( \
out, \
query, \
key_cache, \
value_cache, \
head_mapping, \
scale, \
block_tables, \
context_lens, \
max_context_len, \
alibi_slopes);
#define CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE) \
paged_attention_v1_launcher<T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE>( \
out, \
query, \
key_cache, \
value_cache, \
num_kv_heads, \
scale, \
block_tables, \
seq_lens, \
max_seq_len, \
alibi_slopes, \
kv_scale);
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
// 1, 2, 4, 64, 128, 256.
#define CALL_V1_LAUNCHER_BLOCK_SIZE(T) \
switch (block_size) { \
case 8: \
CALL_V1_LAUNCHER(T, 8); \
break; \
case 16: \
CALL_V1_LAUNCHER(T, 16); \
break; \
case 32: \
CALL_V1_LAUNCHER(T, 32); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
#define CALL_V1_LAUNCHER_BLOCK_SIZE(T, CACHE_T, IS_FP8_KV_CACHE) \
switch (block_size) { \
case 8: \
CALL_V1_LAUNCHER(T, CACHE_T, 8, IS_FP8_KV_CACHE); \
break; \
case 16: \
CALL_V1_LAUNCHER(T, CACHE_T, 16, IS_FP8_KV_CACHE); \
break; \
case 32: \
CALL_V1_LAUNCHER(T, CACHE_T, 32, IS_FP8_KV_CACHE); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
}
void paged_attention_v1(
@ -667,26 +743,43 @@ void paged_attention_v1(
torch::Tensor& query, // [num_seqs, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size]
torch::Tensor& head_mapping, // [num_heads]
int num_kv_heads, // [num_heads]
float scale,
torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
torch::Tensor& context_lens, // [num_seqs]
torch::Tensor& seq_lens, // [num_seqs]
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes) {
if (query.dtype() == at::ScalarType::Float) {
CALL_V1_LAUNCHER_BLOCK_SIZE(float);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V1_LAUNCHER_BLOCK_SIZE(uint16_t);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V1_LAUNCHER_BLOCK_SIZE(__nv_bfloat16);
int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype,
float kv_scale) {
if (kv_cache_dtype == "auto") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V1_LAUNCHER_BLOCK_SIZE(float, float, false);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V1_LAUNCHER_BLOCK_SIZE(uint16_t, uint16_t, false);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V1_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, __nv_bfloat16, false);
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else if (kv_cache_dtype == "fp8") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V1_LAUNCHER_BLOCK_SIZE(float, uint8_t, true);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V1_LAUNCHER_BLOCK_SIZE(uint16_t, uint8_t, true);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V1_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, uint8_t, true);
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
}
}
#define LAUNCH_PAGED_ATTENTION_V2(HEAD_SIZE) \
vllm::paged_attention_v2_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, PARTITION_SIZE> \
vllm::paged_attention_v2_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, \
IS_FP8_KV_CACHE, PARTITION_SIZE> \
<<<grid, block, shared_mem_size, stream>>>( \
exp_sums_ptr, \
max_logits_ptr, \
@ -694,27 +787,30 @@ void paged_attention_v1(
query_ptr, \
key_cache_ptr, \
value_cache_ptr, \
head_mapping_ptr, \
num_kv_heads, \
scale, \
block_tables_ptr, \
context_lens_ptr, \
seq_lens_ptr, \
max_num_blocks_per_seq, \
alibi_slopes_ptr, \
q_stride, \
kv_block_stride, \
kv_head_stride); \
kv_head_stride, \
kv_scale); \
vllm::paged_attention_v2_reduce_kernel<T, HEAD_SIZE, NUM_THREADS, PARTITION_SIZE> \
<<<reduce_grid, block, reduce_shared_mem_size, stream>>>( \
out_ptr, \
exp_sums_ptr, \
max_logits_ptr, \
tmp_out_ptr, \
context_lens_ptr, \
seq_lens_ptr, \
max_num_partitions);
template<
typename T,
typename CACHE_T,
int BLOCK_SIZE,
bool IS_FP8_KV_CACHE,
int NUM_THREADS = 128,
int PARTITION_SIZE = 512>
void paged_attention_v2_launcher(
@ -725,12 +821,13 @@ void paged_attention_v2_launcher(
torch::Tensor& query,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& head_mapping,
int num_kv_heads,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes) {
torch::Tensor& seq_lens,
int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
float kv_scale) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
@ -752,14 +849,13 @@ void paged_attention_v2_launcher(
float* max_logits_ptr = reinterpret_cast<float*>(max_logits.data_ptr());
T* tmp_out_ptr = reinterpret_cast<T*>(tmp_out.data_ptr());
T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
int* head_mapping_ptr = reinterpret_cast<int*>(head_mapping.data_ptr());
CACHE_T* key_cache_ptr = reinterpret_cast<CACHE_T*>(key_cache.data_ptr());
CACHE_T* value_cache_ptr = reinterpret_cast<CACHE_T*>(value_cache.data_ptr());
int* block_tables_ptr = block_tables.data_ptr<int>();
int* context_lens_ptr = context_lens.data_ptr<int>();
int* seq_lens_ptr = seq_lens.data_ptr<int>();
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
int max_num_partitions = DIVIDE_ROUND_UP(max_context_len, PARTITION_SIZE);
int max_num_partitions = DIVIDE_ROUND_UP(max_seq_len, PARTITION_SIZE);
int logits_size = PARTITION_SIZE * sizeof(float);
int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
@ -771,6 +867,7 @@ void paged_attention_v2_launcher(
int reduce_shared_mem_size = 2 * max_num_partitions * sizeof(float);
dim3 block(NUM_THREADS);
const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
switch (head_size) {
// NOTE(woosuk): To reduce the compilation time, we only compile for the
@ -800,38 +897,39 @@ void paged_attention_v2_launcher(
}
}
#define CALL_V2_LAUNCHER(T, BLOCK_SIZE) \
paged_attention_v2_launcher<T, BLOCK_SIZE>( \
out, \
exp_sums, \
max_logits, \
tmp_out, \
query, \
key_cache, \
value_cache, \
head_mapping, \
scale, \
block_tables, \
context_lens, \
max_context_len, \
alibi_slopes);
#define CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE) \
paged_attention_v2_launcher<T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE>( \
out, \
exp_sums, \
max_logits, \
tmp_out, \
query, \
key_cache, \
value_cache, \
num_kv_heads, \
scale, \
block_tables, \
seq_lens, \
max_seq_len, \
alibi_slopes, \
kv_scale);
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
// 1, 2, 4, 64, 128, 256.
#define CALL_V2_LAUNCHER_BLOCK_SIZE(T) \
switch (block_size) { \
case 8: \
CALL_V2_LAUNCHER(T, 8); \
break; \
case 16: \
CALL_V2_LAUNCHER(T, 16); \
break; \
case 32: \
CALL_V2_LAUNCHER(T, 32); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
#define CALL_V2_LAUNCHER_BLOCK_SIZE(T, CACHE_T, IS_FP8_KV_CACHE) \
switch (block_size) { \
case 8: \
CALL_V2_LAUNCHER(T, CACHE_T, 8, IS_FP8_KV_CACHE); \
break; \
case 16: \
CALL_V2_LAUNCHER(T, CACHE_T, 16, IS_FP8_KV_CACHE); \
break; \
case 32: \
CALL_V2_LAUNCHER(T, CACHE_T, 32, IS_FP8_KV_CACHE); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
}
void paged_attention_v2(
@ -842,21 +940,37 @@ void paged_attention_v2(
torch::Tensor& query, // [num_seqs, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size]
torch::Tensor& head_mapping, // [num_heads]
int num_kv_heads, // [num_heads]
float scale,
torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
torch::Tensor& context_lens, // [num_seqs]
torch::Tensor& seq_lens, // [num_seqs]
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes) {
if (query.dtype() == at::ScalarType::Float) {
CALL_V2_LAUNCHER_BLOCK_SIZE(float);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V2_LAUNCHER_BLOCK_SIZE(uint16_t);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V2_LAUNCHER_BLOCK_SIZE(__nv_bfloat16);
int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype,
float kv_scale) {
if (kv_cache_dtype == "auto") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V2_LAUNCHER_BLOCK_SIZE(float, float, false);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V2_LAUNCHER_BLOCK_SIZE(uint16_t, uint16_t, false);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V2_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, __nv_bfloat16, false);
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else if (kv_cache_dtype == "fp8") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V2_LAUNCHER_BLOCK_SIZE(float, uint8_t, true);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V2_LAUNCHER_BLOCK_SIZE(uint16_t, uint8_t, true);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V2_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, uint8_t, true);
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
}
}

View File

@ -17,6 +17,7 @@
*/
#pragma once
#include "../cuda_compat.h"
#include "attention_dtypes.h"
#include <float.h>
@ -39,7 +40,7 @@ inline __device__ float qk_dot_(const Vec (&q)[N], const Vec (&k)[N]) {
float qk = sum(qk_vec);
#pragma unroll
for (int mask = THREAD_GROUP_SIZE / 2; mask >= 1; mask /= 2) {
qk += __shfl_xor_sync(uint32_t(-1), qk, mask);
qk += VLLM_SHFL_XOR_SYNC(qk, mask);
}
return qk;
}

View File

@ -21,8 +21,17 @@
#include "attention_generic.cuh"
#include "dtype_float32.cuh"
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#ifndef USE_ROCM
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#else
#include <hip/hip_bf16.h>
#include <hip/hip_fp16.h>
typedef __hip_bfloat162 __nv_bfloat162;
typedef __hip_bfloat16 __nv_bfloat16;
#endif
#include <stdint.h>
namespace vllm {
@ -98,7 +107,11 @@ inline __device__ __nv_bfloat16 add(__nv_bfloat16 a, __nv_bfloat16 b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return a + b;
#ifndef USE_ROCM
return a + b;
#else
return __hadd(a, b);
#endif
#endif
}

View File

@ -21,6 +21,10 @@
#include "attention_generic.cuh"
#include "dtype_float32.cuh"
#ifdef USE_ROCM
#include <hip/hip_fp16.h>
#endif
#include <stdint.h>
namespace vllm {
@ -63,21 +67,47 @@ struct FloatVec<uint4> {
// Utility functions for type conversions.
inline __device__ uint32_t h0_h0(uint16_t a) {
#ifndef USE_ROCM
uint32_t b;
asm volatile("mov.b32 %0, {%1, %1};" : "=r"(b) : "h"(a));
return b;
#else
union {
uint32_t u32;
uint16_t u16[2];
} tmp;
tmp.u16[0] = a;
tmp.u16[1] = a;
return tmp.u32;
#endif
}
inline __device__ float half_to_float(uint16_t h) {
float f;
#ifndef USE_ROCM
asm volatile("cvt.f32.f16 %0, %1;\n" : "=f"(f) : "h"(h));
#else
asm volatile("v_cvt_f32_f16 %0, %1;" : "=v"(f) : "v"(h));
#endif
return f;
}
inline __device__ float2 half2_to_float2(uint32_t v) {
#ifndef USE_ROCM
uint16_t lo, hi;
asm volatile("mov.b32 {%0, %1}, %2;\n" : "=h"(lo), "=h"(hi) : "r"(v));
return make_float2(half_to_float(lo), half_to_float(hi));
#else
union {
uint32_t u32;
uint16_t u16[2];
} tmp;
tmp.u32 = v;
float2 ret;
ret.x = half_to_float(tmp.u16[0]);
ret.y = half_to_float(tmp.u16[1]);
return ret;
#endif
}
inline __device__ uint16_t float_to_half(float f) {
@ -85,7 +115,11 @@ inline __device__ uint16_t float_to_half(float f) {
uint32_t u32;
uint16_t u16[2];
} tmp;
#ifndef USE_ROCM
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f));
#else
asm volatile("v_cvt_f16_f32 %0, %1;\n" : "=v"(tmp.u32) : "v"(f));
#endif
return tmp.u16[0];
}
@ -94,12 +128,16 @@ inline __device__ uint32_t float2_to_half2(float2 f) {
uint32_t u32;
uint16_t u16[2];
} tmp;
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n" : "=r"(tmp.u32) : "f"(f.y), "f"(f.x));
#ifndef USE_ROCM
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n" : "=r"(tmp.u32) : "f"(f.y), "f"(f.x));
#else
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f.x));
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[1]) : "f"(f.y));
#endif
#else
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f.x));
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[1]) : "f"(f.y));
tmp.u16[0] = float_to_half(f.x);
tmp.u16[1] = float_to_half(f.y);
#endif
return tmp.u32;
}
@ -107,13 +145,21 @@ inline __device__ uint32_t float2_to_half2(float2 f) {
// Vector addition.
inline __device__ uint16_t add(uint16_t a, uint16_t b) {
uint16_t c;
#ifndef USE_ROCM
asm volatile("add.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b));
#else
asm volatile("v_add_f16 %0, %1, %2;\n" : "=v"(c) : "v"(a), "v"(b));
#endif
return c;
}
inline __device__ uint32_t add(uint32_t a, uint32_t b) {
uint32_t c;
#ifndef USE_ROCM
asm volatile("add.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
#else
asm volatile("v_pk_add_f16 %0, %1, %2;\n" : "=v"(c) : "v"(a), "v"(b));
#endif
return c;
}
@ -158,14 +204,22 @@ inline __device__ Float8_ add(uint4 a, Float8_ fb) {
template<>
inline __device__ uint16_t mul(uint16_t a, uint16_t b) {
uint16_t c;
#ifndef USE_ROCM
asm volatile("mul.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b));
#else
asm volatile("v_mul_f16 %0, %1, %2;\n" : "=v"(c) : "v"(a), "v"(b));
#endif
return c;
}
template<>
inline __device__ uint32_t mul(uint32_t a, uint32_t b) {
uint32_t c;
#ifndef USE_ROCM
asm volatile("mul.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
#else
asm volatile("v_pk_mul_f16 %0, %1, %2;\n" : "=v"(c) : "v"(a), "v"(b));
#endif
return c;
}
@ -272,7 +326,11 @@ inline __device__ Float8_ mul(uint16_t a, uint4 b) {
// Vector fused multiply-add.
inline __device__ uint32_t fma(uint32_t a, uint32_t b, uint32_t c) {
uint32_t d;
#ifndef USE_ROCM
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(d) : "r"(a), "r"(b), "r"(c));
#else
asm volatile("v_pk_fma_f16 %0, %1, %2, %3;\n" : "=v"(d) : "v"(a), "v"(b), "v"(c));
#endif
return d;
}

View File

@ -0,0 +1,35 @@
#pragma once
#include "attention_generic.cuh"
#include <stdint.h>
#ifdef ENABLE_FP8_E5M2
#include <cuda_fp8.h>
#endif
namespace vllm {
#if defined(ENABLE_FP8_E5M2) || defined(ENABLE_FP8_E4M3)
// fp8 vector types for quantization of kv cache
template<>
struct Vec<uint8_t, 1> {
using Type = uint8_t;
};
template<>
struct Vec<uint8_t, 2> {
using Type = uint16_t;
};
template<>
struct Vec<uint8_t, 4> {
using Type = uint32_t;
};
template<>
struct Vec<uint8_t, 8> {
using Type = uint2;
};
#endif // ENABLE_FP8_E5M2
} // namespace vllm

View File

@ -1,3 +1,5 @@
#pragma once
#include <torch/extension.h>
#include <map>
@ -18,30 +20,19 @@ void reshape_and_cache(
torch::Tensor& value,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& slot_mapping);
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype,
const float kv_scale);
void gather_cached_kv(
void reshape_and_cache_flash(
torch::Tensor& key,
torch::Tensor& value,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& slot_mapping);
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def(
"swap_blocks",
&swap_blocks,
"Swap in (out) the cache blocks from src to dst");
m.def(
"copy_blocks",
&copy_blocks,
"Copy the cache blocks from src to dst");
m.def(
"reshape_and_cache",
&reshape_and_cache,
"Reshape the key and value tensors and cache them");
m.def(
"gather_cached_kv",
&gather_cached_kv,
"Gather key and value from the cache into contiguous QKV tensors");
}
// Just for unittest
void convert_fp8(
torch::Tensor& src_cache,
torch::Tensor& dst_cache);

View File

@ -1,13 +1,25 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "cuda_compat.h"
#include "dispatch_utils.h"
#if defined(ENABLE_FP8_E5M2)
#include "quantization/fp8_e5m2_kvcache/quant_utils.cuh"
#elif defined(ENABLE_FP8_E4M3)
#include "quantization/fp8/amd_detail/quant_utils.cuh"
#endif
#include <algorithm>
#include <cassert>
#include <map>
#include <vector>
#ifdef USE_ROCM
#include <hip/hip_bf16.h>
typedef __hip_bfloat16 __nv_bfloat16;
#endif
void swap_blocks(
torch::Tensor& src,
torch::Tensor& dst,
@ -28,10 +40,11 @@ void swap_blocks(
TORCH_CHECK(false, "Invalid device combination");
}
void *src_ptr = src.data_ptr();
void *dst_ptr = dst.data_ptr();
char *src_ptr = static_cast<char*>(src.data_ptr());
char *dst_ptr = static_cast<char*>(dst.data_ptr());
const int64_t block_size_in_bytes = src.element_size() * src[0].numel();
const at::cuda::OptionalCUDAGuard device_guard(src_device.is_cuda() ? src_device : dst_device);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// NOTE(woosuk): This can be slow if the number of blocks is large.
for (const auto& pair : block_mapping) {
@ -55,26 +68,26 @@ template<typename scalar_t>
__global__ void copy_blocks_kernel(
int64_t* key_cache_ptrs,
int64_t* value_cache_ptrs,
const int* __restrict__ block_mapping,
const int64_t* __restrict__ block_mapping,
const int numel_per_block) {
const int layer_idx = blockIdx.x;
const int pair_idx = blockIdx.y;
scalar_t* key_cache = reinterpret_cast<scalar_t*>(key_cache_ptrs[layer_idx]);
scalar_t* value_cache = reinterpret_cast<scalar_t*>(value_cache_ptrs[layer_idx]);
int src_block_number = block_mapping[2 * pair_idx];
int dst_block_number = block_mapping[2 * pair_idx + 1];
int64_t src_block_number = block_mapping[2 * pair_idx];
int64_t dst_block_number = block_mapping[2 * pair_idx + 1];
const int src_block_offset = src_block_number * numel_per_block;
const int dst_block_offset = dst_block_number * numel_per_block;
const int64_t src_block_offset = src_block_number * numel_per_block;
const int64_t dst_block_offset = dst_block_number * numel_per_block;
for (int i = threadIdx.x; i < numel_per_block; i += blockDim.x) {
int src_offset = src_block_offset + i;
int dst_offset = dst_block_offset + i;
int64_t src_offset = src_block_offset + i;
int64_t dst_offset = dst_block_offset + i;
key_cache[dst_offset] = key_cache[src_offset];
}
for (int i = threadIdx.x; i < numel_per_block; i += blockDim.x) {
int src_offset = src_block_offset + i;
int dst_offset = dst_block_offset + i;
int64_t src_offset = src_block_offset + i;
int64_t dst_offset = dst_block_offset + i;
value_cache[dst_offset] = value_cache[src_offset];
}
}
@ -102,15 +115,15 @@ void copy_blocks(
value_cache_ptrs[layer_idx] = reinterpret_cast<int64_t>(value_caches[layer_idx].data_ptr());
}
// Create block mapping array.
std::vector<int> block_mapping_vec;
std::vector<int64_t> block_mapping_vec;
for (const auto& pair : block_mapping) {
int src_block_number = pair.first;
for (int dst_block_number : pair.second) {
int64_t src_block_number = pair.first;
for (int64_t dst_block_number : pair.second) {
block_mapping_vec.push_back(src_block_number);
block_mapping_vec.push_back(dst_block_number);
}
}
int* block_mapping_array = block_mapping_vec.data();
int64_t* block_mapping_array = block_mapping_vec.data();
int num_pairs = block_mapping_vec.size() / 2;
// Move the data structures to the GPU.
@ -120,75 +133,148 @@ void copy_blocks(
torch::Tensor value_cache_ptrs_tensor = torch::from_blob(
value_cache_ptrs, {num_layers}, torch::kInt64).to(cache_device);
torch::Tensor block_mapping_tensor = torch::from_blob(
block_mapping_array, {2 * num_pairs}, torch::kInt).to(cache_device);
block_mapping_array, {2 * num_pairs}, torch::kInt64).to(cache_device);
// Launch the kernel.
const int numel_per_block = key_caches[0][0].numel();
dim3 grid(num_layers, num_pairs);
dim3 block(std::min(1024, numel_per_block));
const at::cuda::OptionalCUDAGuard device_guard(cache_device);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(
key_caches[0].scalar_type(), "copy_blocks_kernel", ([&] {
vllm::copy_blocks_kernel<scalar_t><<<grid, block, 0, stream>>>(
key_cache_ptrs_tensor.data_ptr<int64_t>(),
value_cache_ptrs_tensor.data_ptr<int64_t>(),
block_mapping_tensor.data_ptr<int>(),
block_mapping_tensor.data_ptr<int64_t>(),
numel_per_block);
}));
}
namespace vllm {
template<typename scalar_t>
template<typename scalar_t, typename cache_t, bool is_fp8_kv_cache>
__global__ void reshape_and_cache_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
scalar_t* __restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
scalar_t* __restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
const int* __restrict__ slot_mapping, // [num_tokens]
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
cache_t* __restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
cache_t* __restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int key_stride,
const int value_stride,
const int num_heads,
const int head_size,
const int block_size,
const int x) {
const int token_idx = blockIdx.x;
const int slot_idx = slot_mapping[token_idx];
const int block_idx = slot_idx / block_size;
const int block_offset = slot_idx % block_size;
const int x,
const float kv_scale) {
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
if (slot_idx < 0) {
// Padding token that should be ignored.
return;
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
const int n = num_heads * head_size;
for (int i = threadIdx.x; i < n; i += blockDim.x) {
const int src_key_idx = token_idx * key_stride + i;
const int src_value_idx = token_idx * value_stride + i;
const int64_t src_key_idx = token_idx * key_stride + i;
const int64_t src_value_idx = token_idx * value_stride + i;
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int x_idx = head_offset / x;
const int x_offset = head_offset % x;
const int tgt_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
+ head_idx * (head_size / x) * block_size * x
+ x_idx * block_size * x
+ block_offset * x
+ x_offset;
const int tgt_value_idx = block_idx * num_heads * head_size * block_size
+ head_idx * head_size * block_size
+ head_offset * block_size
+ block_offset;
key_cache[tgt_key_idx] = __ldg(&key[src_key_idx]);
value_cache[tgt_value_idx] = __ldg(&value[src_value_idx]);
const int64_t tgt_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
+ head_idx * (head_size / x) * block_size * x
+ x_idx * block_size * x
+ block_offset * x
+ x_offset;
const int64_t tgt_value_idx = block_idx * num_heads * head_size * block_size
+ head_idx * head_size * block_size
+ head_offset * block_size
+ block_offset;
scalar_t tgt_key = key[src_key_idx];
scalar_t tgt_value = value[src_value_idx];
if constexpr (is_fp8_kv_cache) {
#if defined(ENABLE_FP8_E5M2)
key_cache[tgt_key_idx] = fp8_e5m2_unscaled::vec_conversion<uint8_t, scalar_t>(tgt_key);
value_cache[tgt_value_idx] = fp8_e5m2_unscaled::vec_conversion<uint8_t, scalar_t>(tgt_value);
#elif defined(ENABLE_FP8_E4M3)
key_cache[tgt_key_idx] = fp8_e4m3::scaled_vec_conversion<uint8_t, scalar_t>(tgt_key, kv_scale);
value_cache[tgt_value_idx] = fp8_e4m3::scaled_vec_conversion<uint8_t, scalar_t>(tgt_value, kv_scale);
#else
assert(false);
#endif
} else {
key_cache[tgt_key_idx] = tgt_key;
value_cache[tgt_value_idx] = tgt_value;
}
}
}
template<typename scalar_t>
__global__ void reshape_and_cache_flash_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
scalar_t* __restrict__ k_cache, // [num_blocks, block_size, num_heads, head_size]
scalar_t* __restrict__ v_cache, // [num_blocks, block_size, num_heads, head_size]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int block_stride,
const int key_stride,
const int value_stride,
const int num_heads,
const int head_size,
const int block_size) {
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
// NOTE: slot_idx can be -1 if the token is padded
if (slot_idx < 0) {
return;
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
const int n = num_heads * head_size;
for (int i = threadIdx.x; i < n; i += blockDim.x) {
const int64_t src_key_idx = token_idx * key_stride + i;
const int64_t src_value_idx = token_idx * value_stride + i;
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int64_t tgt_value_idx = block_idx * block_stride
+ block_offset * num_heads * head_size
+ head_idx * head_size
+ head_offset;
k_cache[tgt_value_idx] = key[src_key_idx];
v_cache[tgt_value_idx] = value[src_value_idx];
}
}
} // namespace vllm
#define CALL_RESHAPE_AND_CACHE(KV_T, CACHE_T, IS_FP8_KV_CACHE) \
vllm::reshape_and_cache_kernel<KV_T, CACHE_T, IS_FP8_KV_CACHE><<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(key.data_ptr()), \
reinterpret_cast<KV_T*>(value.data_ptr()), \
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), \
key_stride, \
value_stride, \
num_heads, \
head_size, \
block_size, \
x, \
kv_scale);
void reshape_and_cache(
torch::Tensor& key, // [num_tokens, num_heads, head_size]
torch::Tensor& value, // [num_tokens, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size]
torch::Tensor& slot_mapping) // [num_tokens]
torch::Tensor& slot_mapping, // [num_tokens]
const std::string& kv_cache_dtype,
const float kv_scale)
{
int num_tokens = key.size(0);
int num_heads = key.size(1);
@ -201,182 +287,133 @@ void reshape_and_cache(
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (kv_cache_dtype == "auto") {
if (key.dtype() == at::ScalarType::Float) {
CALL_RESHAPE_AND_CACHE(float, float, false);
} else if (key.dtype() == at::ScalarType::Half) {
CALL_RESHAPE_AND_CACHE(uint16_t, uint16_t, false);
} else if (key.dtype() == at::ScalarType::BFloat16) {
CALL_RESHAPE_AND_CACHE(__nv_bfloat16, __nv_bfloat16, false);
}
} else if (kv_cache_dtype == "fp8") {
if (key.dtype() == at::ScalarType::Float) {
CALL_RESHAPE_AND_CACHE(float, uint8_t, true);
} else if (key.dtype() == at::ScalarType::Half) {
CALL_RESHAPE_AND_CACHE(uint16_t, uint8_t, true);
} else if (key.dtype() == at::ScalarType::BFloat16) {
CALL_RESHAPE_AND_CACHE(__nv_bfloat16, uint8_t, true);
}
} else {
TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
}
}
void reshape_and_cache_flash(
torch::Tensor& key, // [num_tokens, num_heads, head_size]
torch::Tensor& value, // [num_tokens, num_heads, head_size]
torch::Tensor& k_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor& v_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor& slot_mapping, // [num_tokens]
const std::string& kv_cache_dtype)
{
// FIXME: only support auto datatype, does not support fp8
if (kv_cache_dtype != "auto") {
TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
}
int num_tokens = key.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);
int block_size = k_cache.size(1);
int key_stride = key.stride(0);
int value_stride = value.stride(0);
int block_stride = k_cache.stride(0);
TORCH_CHECK(k_cache.stride(0) == v_cache.stride(0));
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
key.scalar_type(),
"reshape_and_cache_kernel",
"reshape_and_cache_flash",
[&] {
vllm::reshape_and_cache_kernel<scalar_t><<<grid, block, 0, stream>>>(
vllm::reshape_and_cache_flash_kernel<scalar_t><<<grid, block, 0, stream>>>(
key.data_ptr<scalar_t>(),
value.data_ptr<scalar_t>(),
key_cache.data_ptr<scalar_t>(),
value_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int>(),
k_cache.data_ptr<scalar_t>(),
v_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int64_t>(),
block_stride,
key_stride,
value_stride,
num_heads,
head_size,
block_size,
x);
block_size);
});
}
namespace vllm {
// Grid: (num_blocks, block_size).
template<typename scalar_t>
__global__ void gather_cached_kv_kernel(
scalar_t* __restrict__ key, // [num_tokens, [stride], num_heads, head_size]
scalar_t* __restrict__ value, // [num_tokens, [stride], num_heads, head_size]
const scalar_t* __restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
const scalar_t* __restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
const int* __restrict__ slot_mapping, // [num_tokens]
const int key_stride,
const int value_stride,
const int num_heads,
const int head_size,
const int block_size,
const int x) {
const int token_idx = blockIdx.x;
const int slot_idx = slot_mapping[token_idx];
const int block_idx = slot_idx / block_size;
const int block_offset = slot_idx % block_size;
const int num_tokens = num_heads * head_size;
for (int i = threadIdx.x; i < num_tokens; i += blockDim.x) {
const int tgt_key_idx = token_idx * key_stride + i;
const int tgt_value_idx = token_idx * value_stride + i;
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int x_idx = head_offset / x; // the offset of the [head_size/x] dimension
const int x_offset = head_offset % x;
const int src_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
+ head_idx * (head_size / x) * block_size * x
+ x_idx * block_size * x
+ block_offset * x
+ x_offset;
const int src_value_idx = block_idx * num_heads * head_size * block_size
+ head_idx * head_size * block_size
+ head_offset * block_size
+ block_offset;
key[tgt_key_idx] = __ldg(&key_cache[src_key_idx]);
value[tgt_value_idx] = __ldg(&value_cache[src_value_idx]);
}
}
template <typename scalar_t>
__global__ void gather_cached_kv_kernel_optimized(
scalar_t *__restrict__ key, // [num_tokens, [stride], num_heads, head_size]
scalar_t *__restrict__ value, // [num_tokens, [stride], num_heads, head_size]
const scalar_t *__restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
const scalar_t *__restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
const int *__restrict__ slot_mapping, // [num_tokens]
const int key_stride,
const int value_stride,
const int num_heads,
const int head_size,
const int block_size,
const int x)
{
const int token_idx = blockIdx.x;
const int slot_idx = slot_mapping[token_idx];
const int block_idx = slot_idx / block_size;
const int block_offset = slot_idx % block_size;
const int dim = num_heads * head_size;
assert(dim % 4 == 0); // this is true for known use cases
const int unroll_factor = 4;
const int unrolled_dim = dim / unroll_factor;
for (int i = threadIdx.x; i < unrolled_dim; i += blockDim.x)
{
int tgt_key_indices[unroll_factor];
int tgt_value_indices[unroll_factor];
int src_key_indices[unroll_factor];
int src_value_indices[unroll_factor];
scalar_t keys_to_store[unroll_factor];
scalar_t values_to_store[unroll_factor];
#pragma unroll
for (int j = 0; j < unroll_factor; ++j)
{
int index = i + j * unrolled_dim;
const int tgt_key_idx = token_idx * key_stride + index;
const int tgt_value_idx = token_idx * value_stride + index;
const int head_idx = index / head_size;
const int head_offset = index % head_size;
const int x_idx = head_offset / x;
const int x_offset = head_offset % x;
const int src_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
+ head_idx * (head_size / x) * block_size * x
+ x_idx * block_size * x
+ block_offset * x
+ x_offset;
const int src_value_idx = block_idx * num_heads * head_size * block_size
+ head_idx * head_size * block_size
+ head_offset * block_size
+ block_offset;
tgt_key_indices[j] = tgt_key_idx;
tgt_value_indices[j] = tgt_value_idx;
src_key_indices[j] = src_key_idx;
src_value_indices[j] = src_value_idx;
keys_to_store[j] = __ldg(&key_cache[src_key_idx]);
values_to_store[j] = __ldg(&value_cache[src_value_idx]);
}
#pragma unroll
for (int j = 0; j < unroll_factor; ++j)
{
key[tgt_key_indices[j]] = keys_to_store[j];
value[tgt_value_indices[j]] = values_to_store[j];
}
}
template<typename Tout, typename Tin>
__global__ void convert_fp8_kernel(
const Tin* __restrict__ src_cache,
Tout* __restrict__ dst_cache,
const int64_t block_stride) {
const int64_t block_idx = blockIdx.x;
for (int i = threadIdx.x; i < block_stride; i += blockDim.x) {
int64_t idx = block_idx * block_stride + i;
#if defined(ENABLE_FP8_E5M2)
dst_cache[idx] = fp8_e5m2_unscaled::vec_conversion<Tout, Tin>(src_cache[idx]);
#elif defined(ENABLE_FP8_E4M3)
dst_cache[idx] = fp8_e4m3::vec_conversion<Tout, Tin>(src_cache[idx]);
#else
assert(false);
#endif
}
}
} // namespace vllm
void gather_cached_kv(
torch::Tensor& key, // [out] [num_tokens, num_heads, head_size]
torch::Tensor& value, // [out] [num_tokens, num_heads, head_size]
torch::Tensor& key_cache, // [in] [num_blocks, num_heads, head_size/x, block_size, x]
torch::Tensor& value_cache, // [in] [num_blocks, num_heads, head_size, block_size]
torch::Tensor& slot_mapping) // [in] [num_tokens]
#define CALL_CONVERT_FP8(Tout, Tin) \
vllm::convert_fp8_kernel<Tout, Tin><<<grid, block, 0, stream>>>( \
reinterpret_cast<Tin*>(src_cache.data_ptr()), \
reinterpret_cast<Tout*>(dst_cache.data_ptr()), \
block_stride);
void convert_fp8(
torch::Tensor& src_cache,
torch::Tensor& dst_cache)
{
int num_tokens = key.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);
int block_size = key_cache.size(3);
int x = key_cache.size(4);
torch::Device src_device = src_cache.device();
torch::Device dst_device = dst_cache.device();
TORCH_CHECK(src_device.is_cuda(), "src must be on a GPU")
TORCH_CHECK(dst_device.is_cuda(), "dst must be on a GPU")
TORCH_CHECK(
src_device.index() == dst_device.index(),
"src and dst must be on the same GPU");
at::cuda::OptionalCUDAGuard device_guard(src_device);
int key_stride = key.stride(0);
int value_stride = value.stride(0);
int64_t num_blocks = src_cache.size(0);
int64_t block_stride = src_cache.stride(0);
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
dim3 grid(num_blocks);
dim3 block(std::min(block_stride, int64_t(512)));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
key.scalar_type(),
"gather_cached_kv_kernel_optimized",
[&] {
vllm::gather_cached_kv_kernel_optimized<scalar_t><<<grid, block, 0, stream>>>(
key.data_ptr<scalar_t>(),
value.data_ptr<scalar_t>(),
key_cache.data_ptr<scalar_t>(),
value_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int>(),
key_stride,
value_stride,
num_heads,
head_size,
block_size,
x);
});
if (src_cache.dtype() == at::ScalarType::Float) {
CALL_CONVERT_FP8(uint8_t, float);
} else if (src_cache.dtype() == at::ScalarType::Half) {
CALL_CONVERT_FP8(uint8_t, uint16_t);
} else if (src_cache.dtype() == at::ScalarType::BFloat16) {
CALL_CONVERT_FP8(uint8_t, __nv_bfloat16);
} else if (dst_cache.dtype() == at::ScalarType::Float) {
CALL_CONVERT_FP8(float, uint8_t);
} else if (dst_cache.dtype() == at::ScalarType::Half) {
CALL_CONVERT_FP8(uint16_t, uint8_t);
} else if (dst_cache.dtype() == at::ScalarType::BFloat16) {
CALL_CONVERT_FP8(__nv_bfloat16, uint8_t);
}
}

148
csrc/cpu/activation.cpp Normal file
View File

@ -0,0 +1,148 @@
#include "cpu_types.hpp"
namespace {
template <typename scalar_t, vec_op::FP32Vec8 (*func)(const vec_op::FP32Vec8 &),
bool is_gated>
void activation_kernel(int num_tokens, int d, scalar_t *__restrict__ input,
scalar_t *__restrict__ output) {
using scalar_vec_t = vec_op::vec_t<scalar_t>;
constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num();
TORCH_CHECK(d % VEC_ELEM_NUM == 0);
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
for (int j = 0; j < d; j += VEC_ELEM_NUM) {
int start = i * d;
if constexpr (is_gated) {
start *= 2;
}
const scalar_vec_t x(input + start + j);
const vec_op::FP32Vec8 f32_x(x);
vec_op::FP32Vec8 f32_ans = func(f32_x);
if constexpr (is_gated) {
const scalar_vec_t y(input + start + d + j);
const vec_op::FP32Vec8 f32_y(y);
f32_ans = f32_y * f32_ans;
}
const scalar_vec_t result(f32_ans);
result.save(output + i * d + j);
}
}
}
FORCE_INLINE vec_op::FP32Vec8 silu_act(const vec_op::FP32Vec8 &x) {
const vec_op::FP32Vec8 zeros(0.0);
const vec_op::FP32Vec8 ones(1.0);
return x / (ones + (zeros - x).exp());
}
FORCE_INLINE vec_op::FP32Vec8 gelu_new_act(const vec_op::FP32Vec8 &x) {
const vec_op::FP32Vec8 ones(1.0);
const vec_op::FP32Vec8 w1(0.79788456f);
const vec_op::FP32Vec8 w2(0.044715f);
const vec_op::FP32Vec8 w3(0.5);
const vec_op::FP32Vec8 x3 = x * x * x;
const vec_op::FP32Vec8 t = (w1 * (x + w2 * x3)).tanh();
return w3 * x * (ones + t);
}
FORCE_INLINE vec_op::FP32Vec8 gelu_fast_act(const vec_op::FP32Vec8 &x) {
const vec_op::FP32Vec8 ones(1.0);
const vec_op::FP32Vec8 w1(0.79788456f);
const vec_op::FP32Vec8 w2(0.044715f);
const vec_op::FP32Vec8 w3(0.5);
const vec_op::FP32Vec8 t = (x * w1 * (ones + x * w2 * x)).tanh();
return w3 * x * (ones + t);
}
FORCE_INLINE vec_op::FP32Vec8 gelu_act(const vec_op::FP32Vec8 &x) {
const vec_op::FP32Vec8 ones(1.0);
const vec_op::FP32Vec8 w1(M_SQRT1_2);
const vec_op::FP32Vec8 w2(0.5);
return x * w2 * (ones + (x * w1).er());
}
FORCE_INLINE vec_op::FP32Vec8 gelu_tanh_act(const vec_op::FP32Vec8 &x) {
const vec_op::FP32Vec8 ones(1.0);
const vec_op::FP32Vec8 w1(M_SQRT2 * M_2_SQRTPI * 0.5);
const vec_op::FP32Vec8 w2(0.5);
const vec_op::FP32Vec8 w3(0.044715);
const vec_op::FP32Vec8 x_3 = x * x * x;
const vec_op::FP32Vec8 inner = w1 * (x + x_3 * w3);
return x * w2 * (ones + inner.tanh());
}
}; // namespace
void silu_and_mul(torch::Tensor &out, torch::Tensor &input) {
int num_tokens = input.numel() / input.size(-1);
int d = input.size(-1) / 2;
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "silu_and_mul_impl", [&] {
CPU_KERNEL_GUARD_IN(silu_and_mul_impl)
activation_kernel<scalar_t, silu_act, true>(num_tokens, d,
input.data_ptr<scalar_t>(),
out.data_ptr<scalar_t>());
CPU_KERNEL_GUARD_OUT(silu_and_mul_impl)
});
}
void gelu_and_mul(torch::Tensor &out, // [..., d]
torch::Tensor &input) // [..., 2 * d]
{
int num_tokens = input.numel() / input.size(-1);
int d = input.size(-1) / 2;
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "gelu_and_mul_impl", [&] {
CPU_KERNEL_GUARD_IN(gelu_and_mul_impl)
activation_kernel<scalar_t, gelu_act, true>(num_tokens, d,
input.data_ptr<scalar_t>(),
out.data_ptr<scalar_t>());
CPU_KERNEL_GUARD_OUT(gelu_and_mul_impl)
});
}
void gelu_tanh_and_mul(torch::Tensor &out, // [..., d]
torch::Tensor &input) // [..., 2 * d]
{
int num_tokens = input.numel() / input.size(-1);
int d = input.size(-1) / 2;
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "gelu_tanh_and_mul_impl", [&] {
CPU_KERNEL_GUARD_IN(gelu_tanh_and_mul_impl)
activation_kernel<scalar_t, gelu_tanh_act, true>(
num_tokens, d, input.data_ptr<scalar_t>(),
out.data_ptr<scalar_t>());
CPU_KERNEL_GUARD_OUT(gelu_tanh_and_mul_impl)
});
}
void gelu_new(torch::Tensor &out, torch::Tensor &input) {
int num_tokens = input.numel() / input.size(-1);
int d = input.size(-1);
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "gelu_new_impl", [&] {
CPU_KERNEL_GUARD_IN(gelu_new_impl)
activation_kernel<scalar_t, gelu_new_act, false>(
num_tokens, d, input.data_ptr<scalar_t>(), out.data_ptr<scalar_t>());
CPU_KERNEL_GUARD_OUT(gelu_new_impl)
});
}
void gelu_fast(torch::Tensor &out, torch::Tensor &input) {
int num_tokens = input.numel() / input.size(-1);
int d = input.size(-1);
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "gelu_fast_impl", [&] {
CPU_KERNEL_GUARD_IN(gelu_fast_impl)
activation_kernel<scalar_t, gelu_fast_act, false>(
num_tokens, d, input.data_ptr<scalar_t>(), out.data_ptr<scalar_t>());
CPU_KERNEL_GUARD_OUT(gelu_fast_impl)
});
}

746
csrc/cpu/attention.cpp Normal file
View File

@ -0,0 +1,746 @@
#include "cpu_types.hpp"
namespace {
template <typename scalar_t> struct KernelVecType {
using q_load_vec_type = void;
using q_vec_type = void;
using k_load_vec_type = void;
using k_vec_type = void;
using qk_acc_vec_type = void;
using v_load_vec_type = void;
};
template <> struct KernelVecType<float> {
using q_load_vec_type = vec_op::FP32Vec4;
using q_vec_type = vec_op::FP32Vec16;
using k_load_vec_type = vec_op::FP32Vec16;
using k_vec_type = vec_op::FP32Vec16;
using qk_acc_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::FP32Vec16;
};
#ifdef __AVX512BF16__
template <> struct KernelVecType<c10::BFloat16> {
using q_load_vec_type = vec_op::BF16Vec8;
using q_vec_type = vec_op::BF16Vec32;
using k_load_vec_type = vec_op::BF16Vec32;
using k_vec_type = vec_op::BF16Vec32;
using qk_acc_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::BF16Vec16;
};
#else
template <> struct KernelVecType<c10::BFloat16> {
using q_load_vec_type = vec_op::BF16Vec8;
using q_vec_type = vec_op::FP32Vec16;
using k_load_vec_type = vec_op::BF16Vec16;
using k_vec_type = vec_op::FP32Vec16;
using qk_acc_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::BF16Vec16;
};
#endif
template <typename T>
FORCE_INLINE std::pair<T, T> reduceSoftmax(T *data, const int size,
const int capacity) {
T max = data[0];
for (int i = 1; i < size; ++i) {
max = max >= data[i] ? max : data[i];
}
T sum = 0;
for (int i = 0; i < size; ++i) {
data[i] = std::exp(data[i] - max);
sum += data[i];
}
int i = 0;
for (; i < size; ++i) {
data[i] /= sum;
}
for (; i < capacity; ++i) {
data[i] = 0;
}
return {max, sum};
}
template <typename T>
FORCE_INLINE std::pair<T, T>
reduceSoftmaxAlibi(T *data, const int size, const int capacity,
const float alibi_slope, const int start_index,
const int seq_len) {
data[0] += alibi_slope * (start_index - seq_len + 1);
T max = data[0];
for (int i = 1; i < size; ++i) {
T qk = data[i] + alibi_slope * (start_index + i - seq_len + 1);
data[i] = qk;
max = max >= qk ? max : qk;
}
T sum = 0;
for (int i = 0; i < size; ++i) {
data[i] = std::exp(data[i] - max);
sum += data[i];
}
int i = 0;
for (; i < size; ++i) {
data[i] /= sum;
}
for (; i < capacity; ++i) {
data[i] = 0;
}
return {max, sum};
}
template <typename T>
FORCE_INLINE void reducePartitonSoftmax(const T *max_data, T *sum_data,
const int size) {
T max = max_data[0];
for (int i = 1; i < size; ++i) {
max = max >= max_data[i] ? max : max_data[i];
}
T rescaled_sum = 0;
for (int i = 0; i < size; ++i) {
T rescale_factor = std::exp(max_data[i] - max);
rescaled_sum += rescale_factor * sum_data[i];
sum_data[i] *= rescale_factor;
}
for (int i = 0; i < size; ++i) {
sum_data[i] /= rescaled_sum + 1e-8;
}
}
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE, int x>
struct reduceQKBlockKernel {
using q_load_vec_type = typename KernelVecType<scalar_t>::q_load_vec_type;
using q_vec_type = typename KernelVecType<scalar_t>::q_vec_type;
using k_load_vec_type = typename KernelVecType<scalar_t>::k_load_vec_type;
using k_vec_type = typename KernelVecType<scalar_t>::k_vec_type;
using qk_acc_vec_type = typename KernelVecType<scalar_t>::qk_acc_vec_type;
constexpr static int TOKEN_PER_GROUP = k_load_vec_type::get_elem_num() / x;
constexpr static int MAX_GROUP_NUM = 16 / TOKEN_PER_GROUP;
constexpr static int UNROLL_GROUP_NUM = MAX_GROUP_NUM / 4;
static_assert(MAX_GROUP_NUM == 8 || MAX_GROUP_NUM == 4);
static_assert(k_load_vec_type::get_elem_num() % x == 0);
static_assert(q_load_vec_type::get_elem_num() * sizeof(scalar_t) == 16);
FORCE_INLINE static void call(const scalar_t *__restrict__ q,
const scalar_t *__restrict__ k_block,
float *__restrict__ logits, float scale,
const int token_num) {
const int group_num = (token_num + TOKEN_PER_GROUP - 1) / TOKEN_PER_GROUP;
qk_acc_vec_type group_accums[MAX_GROUP_NUM];
if (token_num == BLOCK_SIZE) {
for (int q_offset = 0; q_offset < HEAD_SIZE;
q_offset += x, k_block += x * BLOCK_SIZE) {
q_load_vec_type q_load_group_vec(q + q_offset);
q_vec_type q_group_vec(q_load_group_vec);
vec_op::unroll_loop<int, MAX_GROUP_NUM>(
[k_block, &q_group_vec, &group_accums](int token_group_idx) {
k_load_vec_type k_load_group_vec(k_block + token_group_idx * x *
TOKEN_PER_GROUP);
k_vec_type k_group_vec(k_load_group_vec);
vec_op::fma(group_accums[token_group_idx], q_group_vec,
k_group_vec);
vec_op::prefetch(k_block + x * BLOCK_SIZE +
token_group_idx * x * TOKEN_PER_GROUP);
});
}
} else {
for (int q_offset = 0; q_offset < HEAD_SIZE;
q_offset += x, k_block += x * BLOCK_SIZE) {
q_load_vec_type q_load_group_vec(q + q_offset);
q_vec_type q_group_vec(q_load_group_vec);
for (int token_group_start = 0; token_group_start < group_num;
token_group_start += UNROLL_GROUP_NUM) {
vec_op::unroll_loop<int, UNROLL_GROUP_NUM>(
[token_group_start, k_block, &q_group_vec,
&group_accums](int token_group_idx) {
token_group_idx += token_group_start;
k_load_vec_type k_load_group_vec(k_block + token_group_idx * x *
TOKEN_PER_GROUP);
k_vec_type k_group_vec(k_load_group_vec);
vec_op::fma(group_accums[token_group_idx], q_group_vec,
k_group_vec);
vec_op::prefetch(k_block + x * BLOCK_SIZE +
token_group_idx * x * TOKEN_PER_GROUP);
});
}
}
}
for (int token_group_idx = 0; token_group_idx < group_num;
++token_group_idx) {
vec_op::unroll_loop<int, TOKEN_PER_GROUP>(
[&group_accums, logits, scale, token_group_idx](int token_idx) {
float dot_v =
group_accums[token_group_idx]
.template reduce_sub_sum<qk_acc_vec_type::get_elem_num() /
TOKEN_PER_GROUP>(token_idx);
logits[token_group_idx * TOKEN_PER_GROUP + token_idx] =
dot_v * scale;
});
}
}
};
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE,
int HEAD_PARTITION_SIZE, typename acc_t>
FORCE_INLINE void reduceValueBlock(const float *prob, const scalar_t *v_block,
acc_t &&acc) {
using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
constexpr int ELEM_NUM = v_load_vec_type::get_elem_num();
static_assert(BLOCK_SIZE == ELEM_NUM);
vec_op::FP32Vec16 prob_vec(prob);
vec_op::unroll_loop<int, HEAD_PARTITION_SIZE>([&](int head_elem_idx) {
v_load_vec_type v_vec(v_block + BLOCK_SIZE * head_elem_idx);
vec_op::FP32Vec16 fp32_v_vec(v_vec);
acc[head_elem_idx] = acc[head_elem_idx] + prob_vec * fp32_v_vec;
});
}
}; // namespace
// Paged attention v1
namespace {
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE>
struct paged_attention_v1_impl {
static void
call(scalar_t *__restrict__ out, // [num_seqs, num_heads, head_size]
const scalar_t *__restrict__ q, // [num_seqs, num_heads, head_size]
const scalar_t *__restrict__ k_cache, // [num_blocks, num_kv_heads,
// head_size/x, block_size, x]
const scalar_t *__restrict__ v_cache, // [num_blocks, num_kv_heads,
// head_size, block_size]
const int num_kv_heads, const float scale,
const int
*__restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int *__restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float *__restrict__ alibi_slopes, // [num_heads]
const int q_stride, const int kv_block_stride, const int kv_head_stride,
const int num_seqs, const int num_heads) {
constexpr int x = 16 / sizeof(scalar_t);
const int num_queries_per_kv = num_heads / num_kv_heads;
static_assert(BLOCK_SIZE == 16);
int max_seq_len = max_num_blocks_per_seq * BLOCK_SIZE;
int max_seq_len_padded = (max_seq_len + 15) & 0xFFFFFFF0;
TORCH_CHECK((max_seq_len_padded * sizeof(float)) % 64 == 0);
const int parallel_work_item_num = omp_get_max_threads();
size_t logits_bytes =
parallel_work_item_num * max_seq_len_padded * sizeof(float);
float *logits = (float *)std::aligned_alloc(
64, logits_bytes); // Cacheline alignment for each context token.
// [parallel_work_item_num, max_seq_len_padded]
#pragma omp parallel for collapse(2) schedule(dynamic, 1)
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
int seq_len = seq_lens[seq_idx];
const int *seq_block_table =
block_tables + max_num_blocks_per_seq * seq_idx;
const int block_num = (seq_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
const int64_t kv_head_idx = head_idx / num_queries_per_kv;
const scalar_t *__restrict__ q_vec_ptr =
q + seq_idx * q_stride + head_idx * HEAD_SIZE;
const int last_block_token_num =
seq_len - (block_num - 1) * BLOCK_SIZE;
float *__restrict__ thread_block_logits =
logits + omp_get_thread_num() * max_seq_len_padded;
// Compute logits
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
const int64_t physical_block_idx = seq_block_table[block_idx];
const scalar_t *__restrict__ k_block_cache_ptr =
k_cache + physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride;
float *__restrict__ head_block_logits =
thread_block_logits + block_idx * BLOCK_SIZE;
reduceQKBlockKernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, x>::call(
q_vec_ptr, k_block_cache_ptr, head_block_logits, scale,
block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE);
}
// Compute softmax
if (alibi_slopes) {
reduceSoftmaxAlibi(thread_block_logits, seq_len,
block_num * BLOCK_SIZE, alibi_slopes[head_idx], 0,
seq_len);
} else {
reduceSoftmax(thread_block_logits, seq_len,
block_num * BLOCK_SIZE);
}
// Compute value
constexpr int head_elem_num_per_partition = 16;
constexpr int head_partition_num =
HEAD_SIZE / head_elem_num_per_partition;
for (int head_part_idx = 0; head_part_idx < head_partition_num;
++head_part_idx) {
vec_op::FP32Vec16 accums[head_elem_num_per_partition];
scalar_t *__restrict__ out_ptr =
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE +
head_part_idx * head_elem_num_per_partition;
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
const int64_t physical_block_idx = seq_block_table[block_idx];
const float *__restrict__ prob_vec_ptr =
thread_block_logits + block_idx * BLOCK_SIZE;
const scalar_t *__restrict__ v_block_cache_ptr =
v_cache + physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride +
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
reduceValueBlock<scalar_t, HEAD_SIZE, BLOCK_SIZE,
head_elem_num_per_partition>(
prob_vec_ptr, v_block_cache_ptr, accums);
if (block_idx != block_num - 1) {
const int64_t next_physical_block_idx =
seq_block_table[block_idx + 1];
const scalar_t *__restrict__ next_v_block_cache_ptr =
v_cache + next_physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride +
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
vec_op::unroll_loop<int, head_elem_num_per_partition>(
[&](int head_elem_idx) {
if (head_elem_idx % 2 == 0) {
vec_op::prefetch(next_v_block_cache_ptr +
BLOCK_SIZE * head_elem_idx);
}
});
}
}
vec_op::unroll_loop<int, head_elem_num_per_partition>(
[&](int head_elem_idx) {
float value = accums[head_elem_idx].reduce_sum();
vec_op::storeFP32(value, out_ptr + head_elem_idx);
});
}
}
}
std::free(logits);
}
};
#define LAUNCH_V1_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE) \
paged_attention_v1_impl<T, HEAD_SIZE, BLOCK_SIZE>::call( \
out_ptr, query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, scale, \
block_tables_ptr, seq_lens_ptr, max_num_blocks_per_seq, \
alibi_slopes_ptr, q_stride, kv_block_stride, kv_head_stride, num_seqs, \
num_heads);
template <typename T, int BLOCK_SIZE>
void paged_attention_v1_impl_launcher(
torch::Tensor &out, torch::Tensor &query, torch::Tensor &key_cache,
torch::Tensor &value_cache, int num_kv_heads, float scale,
torch::Tensor &block_tables, torch::Tensor &seq_lens,
int max_seq_len, const c10::optional<torch::Tensor> &alibi_slopes) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
int max_num_blocks_per_seq = block_tables.size(1);
int q_stride = query.stride(0);
int kv_block_stride = key_cache.stride(0);
int kv_head_stride = key_cache.stride(1);
// NOTE: alibi_slopes is optional.
const float *alibi_slopes_ptr =
alibi_slopes
? reinterpret_cast<const float *>(alibi_slopes.value().data_ptr())
: nullptr;
T *out_ptr = reinterpret_cast<T *>(out.data_ptr());
T *query_ptr = reinterpret_cast<T *>(query.data_ptr());
T *key_cache_ptr = reinterpret_cast<T *>(key_cache.data_ptr());
T *value_cache_ptr = reinterpret_cast<T *>(value_cache.data_ptr());
int *block_tables_ptr = block_tables.data_ptr<int>();
int *seq_lens_ptr = seq_lens.data_ptr<int>();
switch (head_size) {
case 64:
LAUNCH_V1_ATTENTION_KERNEL(T, 64, BLOCK_SIZE);
break;
case 80:
LAUNCH_V1_ATTENTION_KERNEL(T, 80, BLOCK_SIZE);
break;
case 96:
LAUNCH_V1_ATTENTION_KERNEL(T, 96, BLOCK_SIZE);
break;
case 112:
LAUNCH_V1_ATTENTION_KERNEL(T, 112, BLOCK_SIZE);
break;
case 128:
LAUNCH_V1_ATTENTION_KERNEL(T, 128, BLOCK_SIZE);
break;
case 256:
LAUNCH_V1_ATTENTION_KERNEL(T, 256, BLOCK_SIZE);
break;
default:
TORCH_CHECK(false, "Unsupported head size: ", head_size);
break;
}
}
#define CALL_V1_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
paged_attention_v1_impl_launcher<T, BLOCK_SIZE>( \
out, query, key_cache, value_cache, num_kv_heads, scale, block_tables, \
seq_lens, max_seq_len, alibi_slopes);
#define CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(T) \
switch (block_size) { \
case 16: \
CALL_V1_KERNEL_LAUNCHER(T, 16); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
}
} // namespace
void paged_attention_v1(torch::Tensor &out, torch::Tensor &query,
torch::Tensor &key_cache, torch::Tensor &value_cache,
int num_kv_heads, float scale,
torch::Tensor &block_tables,
torch::Tensor &seq_lens, int block_size,
int max_seq_len,
const c10::optional<torch::Tensor> &alibi_slopes,
const std::string &kv_cache_dtype, float kv_scale) {
TORCH_CHECK(kv_scale == 1.0f);
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v1_impl",
[&] {
CPU_KERNEL_GUARD_IN(paged_attention_v1_impl)
CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t);
CPU_KERNEL_GUARD_OUT(paged_attention_v1_impl)
});
}
// Paged attention v2
namespace {
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE, int PARTITION_SIZE>
struct paged_attention_v2_impl {
static void call(
scalar_t *__restrict__ out, // [num_seqs, num_heads, head_size]
float *__restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
float
*__restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
scalar_t *__restrict__ tmp_out, // [num_seqs, num_heads,
// max_num_partitions, head_size]
const scalar_t *__restrict__ q, // [num_seqs, num_heads, head_size]
const scalar_t *__restrict__ k_cache, // [num_blocks, num_kv_heads,
// head_size/x, block_size, x]
const scalar_t *__restrict__ v_cache, // [num_blocks, num_kv_heads,
// head_size, block_size]
const int num_kv_heads, const float scale,
const int
*__restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int *__restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float *__restrict__ alibi_slopes, // [num_heads]
const int q_stride, const int kv_block_stride, const int kv_head_stride,
const int num_seqs, const int num_heads, const int max_num_partitions) {
constexpr int x = 16 / sizeof(scalar_t);
const int num_queries_per_kv = num_heads / num_kv_heads;
static_assert(BLOCK_SIZE == 16);
static_assert(PARTITION_SIZE * sizeof(float) % 64 == 0);
static_assert(PARTITION_SIZE % BLOCK_SIZE == 0);
#pragma omp parallel for collapse(3) schedule(static, 1)
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
for (int partition_idx = 0; partition_idx < max_num_partitions;
++partition_idx) {
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
const int seq_len = seq_lens[seq_idx];
const int start_token_idx = partition_idx * PARTITION_SIZE;
if (start_token_idx >= seq_len)
continue;
const int partition_num =
(seq_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
const bool no_reduce = (partition_num == 1);
const int token_num =
(std::min(seq_len, start_token_idx + PARTITION_SIZE) -
start_token_idx);
const int block_num =
(token_num + BLOCK_SIZE - 1) / BLOCK_SIZE;
const int last_block_token_num =
token_num - (block_num - 1) * BLOCK_SIZE;
const int *seq_block_table = block_tables +
max_num_blocks_per_seq * seq_idx +
start_token_idx / BLOCK_SIZE;
const int64_t kv_head_idx = head_idx / num_queries_per_kv;
const scalar_t *__restrict__ q_vec_ptr =
q + seq_idx * q_stride + head_idx * HEAD_SIZE;
float logits[PARTITION_SIZE] __attribute__((aligned(64))) = {0};
// Compute logits
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
const int64_t physical_block_idx = seq_block_table[block_idx];
const scalar_t *__restrict__ k_block_cache_ptr =
k_cache + physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride;
float *__restrict__ head_block_logits =
logits + block_idx * BLOCK_SIZE;
reduceQKBlockKernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, x>::call(
q_vec_ptr, k_block_cache_ptr, head_block_logits, scale,
block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE);
}
std::pair<float, float> max_and_sum;
if (alibi_slopes) {
max_and_sum = reduceSoftmaxAlibi(
logits, token_num, block_num * BLOCK_SIZE,
alibi_slopes[head_idx], start_token_idx, seq_len);
} else {
max_and_sum = reduceSoftmax(logits, token_num,
block_num * BLOCK_SIZE);
}
auto &&[max_logit, exp_sum] = max_and_sum;
scalar_t *__restrict__ output_buffer = nullptr;
if (!no_reduce) {
auto idx = seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions + partition_idx;
max_logits[idx] = max_logit;
exp_sums[idx] = exp_sum;
output_buffer =
tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
head_idx * max_num_partitions * HEAD_SIZE +
partition_idx * HEAD_SIZE;
} else {
output_buffer =
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
}
// Compute value
constexpr int head_elem_num_per_partition = 16;
constexpr int head_partition_num =
HEAD_SIZE / head_elem_num_per_partition;
for (int head_part_idx = 0; head_part_idx < head_partition_num;
++head_part_idx) {
vec_op::FP32Vec16 accums[head_elem_num_per_partition];
scalar_t *__restrict__ out_ptr =
output_buffer + head_part_idx * head_elem_num_per_partition;
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
const int64_t physical_block_idx = seq_block_table[block_idx];
const float *__restrict__ prob_vec_ptr =
logits + block_idx * BLOCK_SIZE;
const scalar_t *__restrict__ v_block_cache_ptr =
v_cache + physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride +
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
reduceValueBlock<scalar_t, HEAD_SIZE, BLOCK_SIZE,
head_elem_num_per_partition>(
prob_vec_ptr, v_block_cache_ptr, accums);
if (block_idx != block_num - 1) {
const int64_t next_physical_block_idx =
seq_block_table[block_idx + 1];
const scalar_t *__restrict__ next_v_block_cache_ptr =
v_cache + next_physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride +
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
vec_op::unroll_loop<int, head_elem_num_per_partition>(
[&](int head_elem_idx) {
if (head_elem_idx % 2 == 0) {
vec_op::prefetch(next_v_block_cache_ptr +
BLOCK_SIZE * head_elem_idx);
}
});
}
}
vec_op::unroll_loop<int, head_elem_num_per_partition>(
[&](int head_elem_idx) {
float value = accums[head_elem_idx].reduce_sum();
vec_op::storeFP32(value, out_ptr + head_elem_idx);
});
}
}
}
}
// Rescale partition softmax and store the factors to exp_sums
#pragma omp parallel for collapse(2) schedule(static, 1)
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
const int seq_len = seq_lens[seq_idx];
const int partition_num =
(seq_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
if (partition_num == 1)
continue;
reducePartitonSoftmax(
max_logits + seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions,
exp_sums + seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions,
partition_num);
}
}
// Reduce values
using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
static_assert(v_load_vec_type::get_elem_num() == BLOCK_SIZE);
constexpr int head_elem_num_per_group =
16; // Note: didn't align with the cacheline size, due to some HEAD_SIZE
// didn't align with 64 bytes
static_assert(HEAD_SIZE % head_elem_num_per_group == 0);
constexpr int head_group_num = HEAD_SIZE / head_elem_num_per_group;
const float *__restrict__ rescale_factors = exp_sums;
#pragma omp parallel for collapse(3) schedule(static, 1)
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
for (int group_idx = 0; group_idx < head_group_num; ++group_idx) {
const int seq_len = seq_lens[seq_idx];
const int partition_num =
(seq_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
if (partition_num == 1)
continue;
const float *__restrict__ seq_head_rescale_factors =
rescale_factors + seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions;
const scalar_t *__restrict__ seq_head_tmp_out =
tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
head_idx * max_num_partitions * HEAD_SIZE +
group_idx * head_elem_num_per_group;
scalar_t *__restrict__ seq_head_output =
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE +
group_idx * head_elem_num_per_group;
vec_op::FP32Vec16 acc;
for (int i = 0; i < partition_num; ++i) {
vec_op::FP32Vec16 rescale_factor(seq_head_rescale_factors[i]);
v_load_vec_type value(seq_head_tmp_out + i * HEAD_SIZE);
vec_op::FP32Vec16 fp32_value(value);
acc = acc + fp32_value * rescale_factor;
}
v_load_vec_type cast_acc(acc);
cast_acc.save(seq_head_output);
}
}
}
}
};
#define LAUNCH_V2_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE) \
paged_attention_v2_impl<T, HEAD_SIZE, BLOCK_SIZE, PARTITION_SIZE>::call( \
out_ptr, exp_sums_ptr, max_logits_ptr, tmp_out_ptr, query_ptr, \
key_cache_ptr, value_cache_ptr, num_kv_heads, scale, block_tables_ptr, \
seq_lens_ptr, max_num_blocks_per_seq, alibi_slopes_ptr, q_stride, \
kv_block_stride, kv_head_stride, num_seqs, num_heads, \
max_num_partitions);
template <typename T, int BLOCK_SIZE, int PARTITION_SIZE = 512>
void paged_attention_v2_impl_launcher(
torch::Tensor &out, torch::Tensor &exp_sums, torch::Tensor &max_logits,
torch::Tensor &tmp_out, torch::Tensor &query, torch::Tensor &key_cache,
torch::Tensor &value_cache, int num_kv_heads, float scale,
torch::Tensor &block_tables, torch::Tensor &seq_lens, int block_size,
int max_seq_len, const c10::optional<torch::Tensor> &alibi_slopes) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
int max_num_blocks_per_seq = block_tables.size(1);
int q_stride = query.stride(0);
int kv_block_stride = key_cache.stride(0);
int kv_head_stride = key_cache.stride(1);
int max_num_partitions = exp_sums.size(-1);
// NOTE: alibi_slopes is optional.
const float *alibi_slopes_ptr =
alibi_slopes
? reinterpret_cast<const float *>(alibi_slopes.value().data_ptr())
: nullptr;
T *out_ptr = reinterpret_cast<T *>(out.data_ptr());
float *exp_sums_ptr = reinterpret_cast<float *>(exp_sums.data_ptr());
float *max_logits_ptr = reinterpret_cast<float *>(max_logits.data_ptr());
T *tmp_out_ptr = reinterpret_cast<T *>(tmp_out.data_ptr());
T *query_ptr = reinterpret_cast<T *>(query.data_ptr());
T *key_cache_ptr = reinterpret_cast<T *>(key_cache.data_ptr());
T *value_cache_ptr = reinterpret_cast<T *>(value_cache.data_ptr());
int *block_tables_ptr = block_tables.data_ptr<int>();
int *seq_lens_ptr = seq_lens.data_ptr<int>();
switch (head_size) {
case 64:
LAUNCH_V2_ATTENTION_KERNEL(T, 64, BLOCK_SIZE);
break;
case 80:
LAUNCH_V2_ATTENTION_KERNEL(T, 80, BLOCK_SIZE);
break;
case 96:
LAUNCH_V2_ATTENTION_KERNEL(T, 96, BLOCK_SIZE);
break;
case 112:
LAUNCH_V2_ATTENTION_KERNEL(T, 112, BLOCK_SIZE);
break;
case 128:
LAUNCH_V2_ATTENTION_KERNEL(T, 128, BLOCK_SIZE);
break;
case 256:
LAUNCH_V2_ATTENTION_KERNEL(T, 256, BLOCK_SIZE);
break;
default:
TORCH_CHECK(false, "Unsupported head size: ", head_size);
break;
}
}
#define CALL_V2_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
paged_attention_v2_impl_launcher<T, BLOCK_SIZE>( \
out, exp_sums, max_logits, tmp_out, query, key_cache, value_cache, \
num_kv_heads, scale, block_tables, seq_lens, block_size, \
max_seq_len, alibi_slopes);
#define CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(T) \
switch (block_size) { \
case 16: \
CALL_V2_KERNEL_LAUNCHER(T, 16); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
}
} // namespace
void paged_attention_v2(torch::Tensor &out, torch::Tensor &exp_sums,
torch::Tensor &max_logits, torch::Tensor &tmp_out,
torch::Tensor &query, torch::Tensor &key_cache,
torch::Tensor &value_cache, int num_kv_heads,
float scale, torch::Tensor &block_tables,
torch::Tensor &seq_lens, int block_size,
int max_seq_len,
const c10::optional<torch::Tensor> &alibi_slopes,
const std::string &kv_cache_dtype, float kv_scale) {
TORCH_CHECK(kv_scale == 1.0f);
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v2_impl",
[&] {
CPU_KERNEL_GUARD_IN(paged_attention_v2_impl)
CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t);
CPU_KERNEL_GUARD_OUT(paged_attention_v2_impl)
});
}

141
csrc/cpu/cache.cpp Normal file
View File

@ -0,0 +1,141 @@
#include <map>
#include <vector>
#include "cpu_types.hpp"
namespace {
template <typename scalar_t>
void copy_blocks_cpu_impl(
std::vector<torch::Tensor> &key_caches,
std::vector<torch::Tensor> &value_caches,
const std::vector<std::pair<int64_t, int64_t>> mapping_pairs,
const int element_num_per_block, const int layer_num) {
const size_t pair_num = mapping_pairs.size();
const size_t block_bytes = sizeof(scalar_t) * element_num_per_block;
#pragma omp parallel for collapse(2)
for (int layer = 0; layer < layer_num; ++layer) {
for (size_t pair = 0; pair < pair_num; ++pair) {
int64_t source_offset = element_num_per_block * mapping_pairs[pair].first;
int64_t target_offset =
element_num_per_block * mapping_pairs[pair].second;
scalar_t *key_cache_ptr = key_caches[layer].data_ptr<scalar_t>();
scalar_t *source_ptr = key_cache_ptr + source_offset;
scalar_t *target_ptr = key_cache_ptr + target_offset;
std::memcpy(target_ptr, source_ptr, block_bytes);
scalar_t *value_cache_ptr = value_caches[layer].data_ptr<scalar_t>();
source_ptr = value_cache_ptr + source_offset;
target_ptr = value_cache_ptr + target_offset;
std::memcpy(target_ptr, source_ptr, block_bytes);
}
}
}
template <typename scalar_t>
void reshape_and_cache_cpu_impl(
const scalar_t *__restrict__ key, const scalar_t *__restrict__ value,
scalar_t *__restrict__ key_cache, scalar_t *__restrict__ value_cache,
const int64_t *__restrict__ slot_mapping, const int num_tokens,
const int key_stride, const int value_stride, const int num_heads,
const int head_size, const int block_size, const int x) {
const int block_elem_num = num_heads * head_size * block_size;
#pragma omp parallel for collapse(2)
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
const int64_t slot_idx = slot_mapping[token_idx];
if (slot_idx >= 0) {
int src_key_head_idx = token_idx * key_stride + head_idx * head_size;
int src_value_head_idx =
token_idx * value_stride + head_idx * head_size;
const scalar_t *src_key_head_ptr = key + src_key_head_idx;
const scalar_t *src_value_head_ptr = value + src_value_head_idx;
const int64_t block_index = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
scalar_t *target_key_head_ptr = key_cache +
block_elem_num * block_index +
head_idx * block_size * head_size;
scalar_t *target_value_head_ptr = value_cache +
block_elem_num * block_index +
head_idx * block_size * head_size;
for (int src_key_idx = 0; src_key_idx < head_size; src_key_idx += x) {
const int64_t target_offset =
src_key_idx * block_size + block_offset * x;
for (int i = 0; i < x; ++i) {
target_key_head_ptr[target_offset + i] =
src_key_head_ptr[src_key_idx + i];
}
}
for (int src_value_idx = 0; src_value_idx < head_size;
++src_value_idx) {
const int64_t target_offset =
src_value_idx * block_size + block_offset;
target_value_head_ptr[target_offset] =
src_value_head_ptr[src_value_idx];
}
}
}
}
}
}; // namespace
void copy_blocks(std::vector<torch::Tensor> &key_caches,
std::vector<torch::Tensor> &value_caches,
const std::map<int64_t, std::vector<int64_t>> &block_mapping) {
int num_layers = key_caches.size();
TORCH_CHECK(num_layers == value_caches.size());
if (num_layers == 0) {
return;
}
std::vector<std::pair<int64_t, int64_t>> mapping_pairs;
mapping_pairs.reserve(block_mapping.size());
for (const auto &pair : block_mapping) {
for (const auto &dst : pair.second) {
mapping_pairs.emplace_back(pair.first, dst);
}
}
const int element_num_per_block = key_caches[0][0].numel();
VLLM_DISPATCH_FLOATING_TYPES(
key_caches[0].scalar_type(), "copy_blocks_cpu_impl", [&] {
CPU_KERNEL_GUARD_IN(copy_blocks_cpu_impl)
copy_blocks_cpu_impl<scalar_t>(key_caches, value_caches, mapping_pairs,
element_num_per_block, num_layers);
CPU_KERNEL_GUARD_OUT(copy_blocks_cpu_impl)
});
}
void reshape_and_cache(torch::Tensor &key, torch::Tensor &value,
torch::Tensor &key_cache, torch::Tensor &value_cache,
torch::Tensor &slot_mapping,
const std::string &kv_cache_dtype, float kv_scale) {
TORCH_CHECK(kv_scale == 1.0f);
int num_tokens = key.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);
int block_size = key_cache.size(3);
int x = key_cache.size(4);
int key_stride = key.stride(0);
int value_stride = value.stride(0);
VLLM_DISPATCH_FLOATING_TYPES(
key.scalar_type(), "reshape_and_cache_cpu_impl", [&] {
CPU_KERNEL_GUARD_IN(reshape_and_cache_cpu_impl)
reshape_and_cache_cpu_impl<scalar_t>(
key.data_ptr<scalar_t>(), value.data_ptr<scalar_t>(),
key_cache.data_ptr<scalar_t>(), value_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int64_t>(), num_tokens, key_stride,
value_stride, num_heads, head_size, block_size, x);
CPU_KERNEL_GUARD_OUT(reshape_and_cache_cpu_impl)
});
}
void swap_blocks(torch::Tensor &src, torch::Tensor &dst,
const std::map<int64_t, int64_t> &block_mapping) {
TORCH_CHECK(false, "swap_blocks is unsupported on CPU.")
}

352
csrc/cpu/cpu_types.hpp Normal file
View File

@ -0,0 +1,352 @@
#ifndef CPU_TYPES_HPP
#define CPU_TYPES_HPP
#include <immintrin.h>
#include <torch/extension.h>
namespace vec_op {
// FIXME: FP16 is not fully supported in Torch-CPU
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
#ifndef CPU_OP_GUARD
#define CPU_KERNEL_GUARD_IN(NAME)
#define CPU_KERNEL_GUARD_OUT(NAME)
#else
#define CPU_KERNEL_GUARD_IN(NAME) \
std::cout << #NAME << " invoked." << std::endl;
#define CPU_KERNEL_GUARD_OUT(NAME) std::cout << #NAME << " exit." << std::endl;
#endif
#define FORCE_INLINE __attribute__((always_inline)) inline
namespace {
template <typename T, T... indexes, typename F>
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F &&f) {
(f(std::integral_constant<T, indexes>{}), ...);
}
}; // namespace
template <typename T, T count, typename F,
typename = std::enable_if_t<std::is_invocable_v<F, T>>>
constexpr void unroll_loop(F &&f) {
unroll_loop_item(std::make_integer_sequence<T, count>{}, std::forward<F>(f));
}
template <typename T> struct Vec {
constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; }
};
struct FP32Vec8;
struct FP32Vec16;
#ifdef __AVX512FP16__
struct FP16Vec8 : public Vec<FP16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
__m128h reg;
explicit FP16Vec8(_Float16 v) : reg(_mm_set1_ph(v)) {}
explicit FP16Vec8(const void *ptr) : reg(_mm_loadu_ph(ptr)) {}
explicit FP16Vec8(__m128h data) : reg(data) {}
FP16Vec8 operator*(const FP16Vec8 &b) const {
return FP16Vec8(_mm_mul_ph(reg, b.reg));
}
FP16Vec8 operator+(const FP16Vec8 &b) const {
return FP16Vec8(_mm_add_ph(reg, b.reg));
}
FP16Vec8 operator-(const FP16Vec8 &b) const {
return FP16Vec8(_mm_sub_ph(reg, b.reg));
}
FP16Vec8 operator/(const FP16Vec8 &b) const {
return FP16Vec8(_mm_div_ph(reg, b.reg));
}
void save(void *ptr) const { _mm_storeu_ph(ptr, reg); }
};
#endif
struct BF16Vec8 : public Vec<BF16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
__m128i reg;
explicit BF16Vec8(const void *ptr)
: reg((__m128i)_mm_loadu_si128((__m128i *)ptr)) {}
explicit BF16Vec8(const FP32Vec8 &);
void save(void *ptr) const { *reinterpret_cast<__m128i *>(ptr) = reg; }
};
struct BF16Vec16 : public Vec<BF16Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
__m256i reg;
explicit BF16Vec16(const void *ptr)
: reg((__m256i)_mm256_loadu_si256((__m256i *)ptr)) {}
explicit BF16Vec16(const FP32Vec16 &);
void save(void *ptr) const { *reinterpret_cast<__m256i *>(ptr) = reg; }
};
struct BF16Vec32 : public Vec<BF16Vec32> {
constexpr static int VEC_ELEM_NUM = 32;
__m512i reg;
explicit BF16Vec32(const void *ptr) : reg((__m512i)_mm512_loadu_si512(ptr)) {}
explicit BF16Vec32(__m512i data) : reg(data) {}
explicit BF16Vec32(BF16Vec8 &vec8_data)
: reg((__m512i)_mm512_inserti32x4(
_mm512_inserti32x4(_mm512_inserti32x4(_mm512_castsi128_si512(
(__m128i)vec8_data.reg),
(__m128i)vec8_data.reg, 1),
(__m128i)vec8_data.reg, 2),
(__m128i)vec8_data.reg, 3)) {}
void save(void *ptr) const { *reinterpret_cast<__m512i *>(ptr) = reg; }
};
struct FP32Vec4 : public Vec<FP32Vec4> {
constexpr static int VEC_ELEM_NUM = 4;
union AliasReg {
__m128 reg;
float values[VEC_ELEM_NUM];
};
__m128 reg;
explicit FP32Vec4(float v) : reg(_mm_set1_ps(v)) {}
explicit FP32Vec4() : reg(_mm_set1_ps(0.0)) {}
explicit FP32Vec4(const float *ptr) : reg(_mm_loadu_ps(ptr)) {}
explicit FP32Vec4(__m128 data) : reg(data) {}
explicit FP32Vec4(const FP32Vec4 &data) : reg(data.reg) {}
};
struct FP32Vec8 : public Vec<FP32Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
union AliasReg {
__m256 reg;
float values[VEC_ELEM_NUM];
};
__m256 reg;
explicit FP32Vec8(float v) : reg(_mm256_set1_ps(v)) {}
explicit FP32Vec8() : reg(_mm256_set1_ps(0.0)) {}
explicit FP32Vec8(const float *ptr) : reg(_mm256_loadu_ps(ptr)) {}
explicit FP32Vec8(__m256 data) : reg(data) {}
explicit FP32Vec8(const FP32Vec8 &data) : reg(data.reg) {}
#ifdef __AVX512FP16__
explicit FP32Vec8(__m128h v) : reg(_mm256_cvtph_ps(_mm_castph_si128(v))) {}
#endif
explicit FP32Vec8(const BF16Vec8 &v)
: reg(_mm256_castsi256_ps(
_mm256_bslli_epi128(_mm256_cvtepu16_epi32(v.reg), 2))) {}
float reduce_sum() const {
AliasReg ar;
ar.reg = reg;
float result = 0;
unroll_loop<int, VEC_ELEM_NUM>([&result, &ar](int i) { result += ar.values[i]; });
return result;
}
FP32Vec8 exp() const {
AliasReg ar;
ar.reg = reg;
return FP32Vec8(_mm256_set_ps(expf(ar.values[7]), expf(ar.values[6]),
expf(ar.values[5]), expf(ar.values[4]),
expf(ar.values[3]), expf(ar.values[2]),
expf(ar.values[1]), expf(ar.values[0])));
}
FP32Vec8 tanh() const {
AliasReg ar;
ar.reg = reg;
return FP32Vec8(_mm256_set_ps(tanhf(ar.values[7]), tanhf(ar.values[6]),
tanhf(ar.values[5]), tanhf(ar.values[4]),
tanhf(ar.values[3]), tanhf(ar.values[2]),
tanhf(ar.values[1]), tanhf(ar.values[0])));
}
FP32Vec8 er() const {
AliasReg ar;
ar.reg = reg;
return FP32Vec8(_mm256_set_ps(erf(ar.values[7]), erf(ar.values[6]),
erf(ar.values[5]), erf(ar.values[4]),
erf(ar.values[3]), erf(ar.values[2]),
erf(ar.values[1]), erf(ar.values[0])));
}
FP32Vec8 operator*(const FP32Vec8 &b) const {
return FP32Vec8(_mm256_mul_ps(reg, b.reg));
}
FP32Vec8 operator+(const FP32Vec8 &b) const {
return FP32Vec8(_mm256_add_ps(reg, b.reg));
}
FP32Vec8 operator-(const FP32Vec8 &b) const {
return FP32Vec8(_mm256_sub_ps(reg, b.reg));
}
FP32Vec8 operator/(const FP32Vec8 &b) const {
return FP32Vec8(_mm256_div_ps(reg, b.reg));
}
void save(float *ptr) const { _mm256_storeu_ps(ptr, reg); }
};
struct FP32Vec16 : public Vec<FP32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
__m512 reg;
float values[VEC_ELEM_NUM];
};
__m512 reg;
explicit FP32Vec16(float v) : reg(_mm512_set1_ps(v)) {}
explicit FP32Vec16() : reg(_mm512_set1_ps(0.0)) {}
explicit FP32Vec16(const float *ptr) : reg(_mm512_loadu_ps(ptr)) {}
explicit FP32Vec16(__m512 data) : reg(data) {}
explicit FP32Vec16(const FP32Vec16 &data) : reg(data.reg) {}
explicit FP32Vec16(const FP32Vec4 &data)
: reg((__m512)_mm512_inserti32x4(
_mm512_inserti32x4(
_mm512_inserti32x4(_mm512_castsi128_si512((__m128i)data.reg),
(__m128i)data.reg, 1),
(__m128i)data.reg, 2),
(__m128i)data.reg, 3)) {}
explicit FP32Vec16(const FP32Vec8 &data)
: reg((__m512)_mm512_inserti32x8(
_mm512_castsi256_si512((__m256i)data.reg), (__m256i)data.reg, 1)) {}
explicit FP32Vec16(const BF16Vec16 &v)
: reg(_mm512_castsi512_ps(
_mm512_bslli_epi128(_mm512_cvtepu16_epi32(v.reg), 2))) {}
explicit FP32Vec16(const BF16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {}
FP32Vec16 operator*(const FP32Vec16 &b) const {
return FP32Vec16(_mm512_mul_ps(reg, b.reg));
}
FP32Vec16 operator+(const FP32Vec16 &b) const {
return FP32Vec16(_mm512_add_ps(reg, b.reg));
}
FP32Vec16 operator-(const FP32Vec16 &b) const {
return FP32Vec16(_mm512_sub_ps(reg, b.reg));
}
FP32Vec16 operator/(const FP32Vec16 &b) const {
return FP32Vec16(_mm512_div_ps(reg, b.reg));
}
float reduce_sum() const { return _mm512_reduce_add_ps(reg); }
template <int group_size> float reduce_sub_sum(int idx) {
static_assert(VEC_ELEM_NUM % group_size == 0);
constexpr uint32_t base_mask = (0xFFFF >> (16 - group_size));
__mmask16 mask = _cvtu32_mask16(base_mask << (idx * group_size));
return _mm512_mask_reduce_add_ps(mask, reg);
}
void save(float *ptr) const { _mm512_storeu_ps(ptr, reg); }
};
template <typename T> struct VecType { using vec_type = void; };
template <typename T> using vec_t = typename VecType<T>::vec_type;
template <> struct VecType<float> { using vec_type = FP32Vec8; };
#ifdef __AVX512FP16__
template <> struct VecType<c10::Half> { using vec_type = FP16Vec16; };
#endif
template <> struct VecType<c10::BFloat16> { using vec_type = BF16Vec8; };
template <typename T> void storeFP32(float v, T *ptr) { *ptr = v; }
#ifdef __AVX512FP16__
template <> inline void storeFP32<c10::Half>(float v, c10::Half *ptr) {
*reinterpret_cast<_Float16 *>(ptr) = v;
}
#endif
inline void fma(FP32Vec16 &acc, FP32Vec16 &a, FP32Vec16 &b) {
acc = acc + a * b;
}
#ifdef __AVX512BF16__
template <> inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16 *ptr) {
*reinterpret_cast<__bfloat16 *>(ptr) = _mm_cvtness_sbh(v);
}
inline BF16Vec8::BF16Vec8(const FP32Vec8 &v)
: reg((__m128i)_mm256_cvtneps_pbh(v.reg)) {}
inline BF16Vec16::BF16Vec16(const FP32Vec16 &v)
: reg((__m256i)_mm512_cvtneps_pbh(v.reg)) {}
inline void fma(FP32Vec16 &acc, BF16Vec32 &a, BF16Vec32 &b) {
acc.reg = _mm512_dpbf16_ps(acc.reg, (__m512bh)a.reg, (__m512bh)b.reg);
}
#else
template <> inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16 *ptr) {
c10::BFloat16 __attribute__((__may_alias__)) *v_ptr =
reinterpret_cast<c10::BFloat16 *>(&v);
*ptr = *(v_ptr + 1);
}
inline BF16Vec8::BF16Vec8(const FP32Vec8 &v)
: reg(_mm256_cvtepi32_epi16(
_mm256_bsrli_epi128(_mm256_castps_si256(v.reg), 2))) {}
inline BF16Vec16::BF16Vec16(const FP32Vec16 &v)
: reg(_mm512_cvtepi32_epi16(
_mm512_bsrli_epi128(_mm512_castps_si512(v.reg), 2))) {}
#endif
inline void prefetch(const void *addr) { _mm_prefetch(addr, _MM_HINT_T1); }
}; // namespace vec_op
#endif

117
csrc/cpu/layernorm.cpp Normal file
View File

@ -0,0 +1,117 @@
#include "cpu_types.hpp"
namespace {
template <typename scalar_t>
void rms_norm_impl(scalar_t *__restrict__ out,
const scalar_t *__restrict__ input,
const scalar_t *__restrict__ weight, const float epsilon,
const int num_tokens, const int hidden_size) {
using scalar_vec_t = vec_op::vec_t<scalar_t>;
constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num();
TORCH_CHECK(hidden_size % VEC_ELEM_NUM == 0);
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
vec_op::FP32Vec8 variance(0.0);
auto input_p = input + i * hidden_size;
auto output_p = out + i * hidden_size;
for (int j = 0; j < hidden_size; j += VEC_ELEM_NUM) {
scalar_vec_t x(input_p + j);
vec_op::FP32Vec8 fp32_x(x);
variance = variance + fp32_x * fp32_x;
}
float s_variance =
1.0f / sqrtf(variance.reduce_sum() / (float)hidden_size + epsilon);
vec_op::FP32Vec8 fp32_s_variance(s_variance);
for (int j = 0; j < hidden_size; j += VEC_ELEM_NUM) {
scalar_vec_t x(input_p + j);
scalar_vec_t w(weight + j);
vec_op::FP32Vec8 fp32_x(x);
vec_op::FP32Vec8 fp32_w(w);
vec_op::FP32Vec8 fp32_out = fp32_x * fp32_s_variance * fp32_w;
scalar_vec_t out(fp32_out);
out.save(output_p + j);
}
}
}
template <typename scalar_t>
void fused_add_rms_norm_impl(scalar_t *__restrict__ input,
scalar_t *__restrict__ residual,
const scalar_t *__restrict__ weight,
const float epsilon, const int num_tokens,
const int hidden_size) {
using scalar_vec_t = vec_op::vec_t<scalar_t>;
constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num();
TORCH_CHECK(hidden_size % VEC_ELEM_NUM == 0);
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
vec_op::FP32Vec8 variance(0.0);
auto input_p = input + i * hidden_size;
auto residual_p = residual + i * hidden_size;
for (int j = 0; j < hidden_size; j += VEC_ELEM_NUM) {
scalar_vec_t x(input_p + j);
scalar_vec_t res(residual_p + j);
vec_op::FP32Vec8 fp32_x(x);
vec_op::FP32Vec8 fp32_res(res);
fp32_x = fp32_x + fp32_res;
variance = variance + fp32_x * fp32_x;
scalar_vec_t out(fp32_x);
out.save(residual_p + j);
}
float s_variance =
1.0f / sqrtf(variance.reduce_sum() / (float)hidden_size + epsilon);
vec_op::FP32Vec8 fp32_s_variance(s_variance);
for (int j = 0; j < hidden_size; j += VEC_ELEM_NUM) {
scalar_vec_t w(weight + j);
scalar_vec_t res(residual_p + j);
vec_op::FP32Vec8 fp32_w(w);
vec_op::FP32Vec8 fp32_res(res);
vec_op::FP32Vec8 fp32_out = fp32_res * fp32_s_variance * fp32_w;
scalar_vec_t out(fp32_out);
out.save(input_p + j);
}
}
}
} // namespace
void rms_norm(torch::Tensor &out, torch::Tensor &input,
torch::Tensor &weight, float epsilon) {
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rms_norm_impl", [&] {
CPU_KERNEL_GUARD_IN(rms_norm_impl)
rms_norm_impl(out.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(), epsilon, num_tokens,
hidden_size);
CPU_KERNEL_GUARD_OUT(rms_norm_impl)
});
}
void fused_add_rms_norm(torch::Tensor &input, torch::Tensor &residual,
torch::Tensor &weight, float epsilon) {
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "fused_add_rms_norm_impl", [&] {
CPU_KERNEL_GUARD_IN(fused_add_rms_norm_impl)
fused_add_rms_norm_impl(
input.data_ptr<scalar_t>(), residual.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(), epsilon, num_tokens, hidden_size);
CPU_KERNEL_GUARD_OUT(fused_add_rms_norm_impl)
});
}

199
csrc/cpu/pos_encoding.cpp Normal file
View File

@ -0,0 +1,199 @@
#include "cpu_types.hpp"
namespace {
template <typename scalar_t>
void rotary_embedding_impl(
const int64_t
*__restrict__ positions, // [batch_size, seq_len] or [num_tokens]
scalar_t
*__restrict__ query, /// [batch_size, seq_len, num_heads, head_size] or
/// [num_tokens, num_heads, head_size]
scalar_t
*__restrict__ key, // [batch_size, seq_len, num_kv_heads, head_size] or
// [num_tokens, num_kv_heads, head_size]
const scalar_t
*__restrict__ cos_sin_cache, // [max_position, 2, rot_dim // 2]
const int rot_dim, const int64_t query_stride, const int64_t key_stride,
const int num_heads, const int num_kv_heads, const int head_size,
const int num_tokens) {
using scalar_vec_t = vec_op::vec_t<scalar_t>;
constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num();
constexpr int ELEM_SIZE = sizeof(scalar_t);
const int embed_dim = rot_dim / 2;
TORCH_CHECK(embed_dim % VEC_ELEM_NUM == 0);
#pragma omp parallel for
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
int64_t pos = positions[token_idx];
const scalar_t *cache_ptr = cos_sin_cache + pos * rot_dim;
for (int i = 0; i < num_heads; ++i) {
const int head_idx = i;
const int64_t token_head =
token_idx * query_stride + head_idx * head_size;
for (int j = 0; j < embed_dim; j += VEC_ELEM_NUM) {
const int rot_offset = j;
const int x_index = rot_offset;
const int y_index = embed_dim + rot_offset;
const int64_t out_x = token_head + x_index;
const int64_t out_y = token_head + y_index;
const scalar_vec_t cos(cache_ptr + x_index);
const scalar_vec_t sin(cache_ptr + y_index);
const scalar_vec_t q_x(query + out_x);
const scalar_vec_t q_y(query + out_y);
vec_op::FP32Vec8 fp32_cos(cos);
vec_op::FP32Vec8 fp32_sin(sin);
vec_op::FP32Vec8 fp32_q_x(q_x);
vec_op::FP32Vec8 fp32_q_y(q_y);
auto out1 = fp32_q_x * fp32_cos - fp32_q_y * fp32_sin;
scalar_vec_t(out1).save(query + out_x);
auto out2 = fp32_q_y * fp32_cos + fp32_q_x * fp32_sin;
scalar_vec_t(out2).save(query + out_y);
}
}
for (int i = 0; i < num_kv_heads; ++i) {
const int head_idx = i;
const int64_t token_head = token_idx * key_stride + head_idx * head_size;
for (int j = 0; j < embed_dim; j += VEC_ELEM_NUM) {
const int rot_offset = j;
const int x_index = rot_offset;
const int y_index = embed_dim + rot_offset;
const int64_t out_x = token_head + x_index;
const int64_t out_y = token_head + y_index;
const scalar_vec_t cos(cache_ptr + x_index);
const scalar_vec_t sin(cache_ptr + y_index);
const scalar_vec_t k_x(key + out_x);
const scalar_vec_t k_y(key + out_y);
vec_op::FP32Vec8 fp32_cos(cos);
vec_op::FP32Vec8 fp32_sin(sin);
vec_op::FP32Vec8 fp32_k_x(k_x);
vec_op::FP32Vec8 fp32_k_y(k_y);
auto out1 = fp32_k_x * fp32_cos - fp32_k_y * fp32_sin;
scalar_vec_t(out1).save(key + out_x);
auto out2 = fp32_k_y * fp32_cos + fp32_k_x * fp32_sin;
scalar_vec_t(out2).save(key + out_y);
}
}
}
}
template <typename scalar_t>
void rotary_embedding_gptj_impl(
const int64_t
*__restrict__ positions, // [batch_size, seq_len] or [num_tokens]
scalar_t
*__restrict__ query, /// [batch_size, seq_len, num_heads, head_size] or
/// [num_tokens, num_heads, head_size]
scalar_t
*__restrict__ key, // [batch_size, seq_len, num_kv_heads, head_size] or
// [num_tokens, num_kv_heads, head_size]
const scalar_t
*__restrict__ cos_sin_cache, // [max_position, 2, rot_dim // 2]
const int rot_dim, const int64_t query_stride, const int64_t key_stride,
const int num_heads, const int num_kv_heads, const int head_size,
const int num_tokens) {
const int embed_dim = rot_dim / 2;
#pragma omp parallel for collapse(2)
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
for (int i = 0; i < num_heads; ++i) {
int64_t pos = positions[token_idx];
const scalar_t *cache_ptr = cos_sin_cache + pos * rot_dim;
const scalar_t *cos_cache_ptr = cache_ptr;
const scalar_t *sin_cache_ptr = cache_ptr + embed_dim;
const int head_idx = i;
const int64_t token_head =
token_idx * query_stride + head_idx * head_size;
scalar_t *head_query = token_head + query;
for (int j = 0; j < embed_dim; j += 1) {
const int rot_offset = j;
const int x_index = 2 * rot_offset;
const int y_index = 2 * rot_offset + 1;
const float cos = cos_cache_ptr[rot_offset];
const float sin = sin_cache_ptr[rot_offset];
const float x = head_query[x_index];
const float y = head_query[y_index];
head_query[x_index] = x * cos - y * sin;
head_query[y_index] = y * cos + x * sin;
}
}
}
#pragma omp parallel for collapse(2)
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
for (int i = 0; i < num_kv_heads; ++i) {
int64_t pos = positions[token_idx];
const scalar_t *cache_ptr = cos_sin_cache + pos * rot_dim;
const scalar_t *cos_cache_ptr = cache_ptr;
const scalar_t *sin_cache_ptr = cache_ptr + embed_dim;
const int head_idx = i;
const int64_t token_head = token_idx * key_stride + head_idx * head_size;
scalar_t *head_key = key + token_head;
for (int j = 0; j < embed_dim; j += 1) {
const int rot_offset = j;
const int x_index = 2 * rot_offset;
const int y_index = 2 * rot_offset + 1;
const float cos = cos_cache_ptr[rot_offset];
const float sin = sin_cache_ptr[rot_offset];
const float x = head_key[x_index];
const float y = head_key[y_index];
head_key[x_index] = x * cos - y * sin;
head_key[y_index] = y * cos + x * sin;
}
}
}
}
}; // namespace
void rotary_embedding(torch::Tensor &positions, torch::Tensor &query,
torch::Tensor &key, int head_size,
torch::Tensor &cos_sin_cache, bool is_neox) {
int num_tokens = query.numel() / query.size(-1);
int rot_dim = cos_sin_cache.size(1);
int num_heads = query.size(-1) / head_size;
int num_kv_heads = key.size(-1) / head_size;
int64_t key_stride = key.stride(-2);
int64_t query_stride = query.stride(-2);
VLLM_DISPATCH_FLOATING_TYPES(
query.scalar_type(), "rotary_embedding_impl", [&] {
CPU_KERNEL_GUARD_IN(rotary_embedding_impl)
if (is_neox) {
rotary_embedding_impl(
positions.data_ptr<int64_t>(), query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(), cos_sin_cache.data_ptr<scalar_t>(),
rot_dim, query_stride, key_stride, num_heads, num_kv_heads,
head_size, num_tokens);
} else {
rotary_embedding_gptj_impl(
positions.data_ptr<int64_t>(), query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(), cos_sin_cache.data_ptr<scalar_t>(),
rot_dim, query_stride, key_stride, num_heads, num_kv_heads,
head_size, num_tokens);
}
CPU_KERNEL_GUARD_OUT(rotary_embedding_impl)
});
}

73
csrc/cpu/pybind.cpp Normal file
View File

@ -0,0 +1,73 @@
#include "cache.h"
#include "cuda_utils.h"
#include "ops.h"
#include <torch/extension.h>
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
// vLLM custom ops
pybind11::module ops = m.def_submodule("ops", "vLLM custom operators");
// Attention ops
ops.def(
"paged_attention_v1",
&paged_attention_v1,
"Compute the attention between an input query and the cached keys/values using PagedAttention.");
ops.def(
"paged_attention_v2",
&paged_attention_v2,
"PagedAttention V2.");
// Activation ops
ops.def(
"silu_and_mul",
&silu_and_mul,
"Activation function used in SwiGLU.");
ops.def(
"gelu_and_mul",
&gelu_and_mul,
"Activation function used in GeGLU with `none` approximation.");
ops.def(
"gelu_tanh_and_mul",
&gelu_tanh_and_mul,
"Activation function used in GeGLU with `tanh` approximation.");
ops.def(
"gelu_new",
&gelu_new,
"GELU implementation used in GPT-2.");
ops.def(
"gelu_fast",
&gelu_fast,
"Approximate GELU implementation.");
// Layernorm
ops.def(
"rms_norm",
&rms_norm,
"Apply Root Mean Square (RMS) Normalization to the input tensor.");
ops.def(
"fused_add_rms_norm",
&fused_add_rms_norm,
"In-place fused Add and RMS Normalization");
// Rotary embedding
ops.def(
"rotary_embedding",
&rotary_embedding,
"Apply GPT-NeoX or GPT-J style rotary embedding to query and key");
// Cache ops
pybind11::module cache_ops = m.def_submodule("cache_ops", "vLLM cache ops");
cache_ops.def(
"swap_blocks",
&swap_blocks,
"Swap in (out) the cache blocks from src to dst");
cache_ops.def(
"copy_blocks",
&copy_blocks,
"Copy the cache blocks from src to dst");
cache_ops.def(
"reshape_and_cache",
&reshape_and_cache,
"Reshape the key and value tensors and cache them");
}

38
csrc/cuda_compat.h Normal file
View File

@ -0,0 +1,38 @@
#pragma once
#ifdef USE_ROCM
#include <hip/hip_runtime.h>
#endif
#ifndef USE_ROCM
#define WARP_SIZE 32
#else
#define WARP_SIZE warpSize
#endif
#ifndef USE_ROCM
#define VLLM_LDG(arg) __ldg(arg)
#else
#define VLLM_LDG(arg) *(arg)
#endif
#ifndef USE_ROCM
#define VLLM_SHFL_XOR_SYNC(var, lane_mask) __shfl_xor_sync(uint32_t(-1), var, lane_mask)
#else
#define VLLM_SHFL_XOR_SYNC(var, lane_mask) __shfl_xor(var, lane_mask)
#endif
#ifndef USE_ROCM
#define VLLM_SHFL_SYNC(var, src_lane) __shfl_sync(uint32_t(-1), var, src_lane)
#else
#define VLLM_SHFL_SYNC(var, src_lane) __shfl(var, src_lane)
#endif
#ifndef USE_ROCM
#define VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(FUNC, VAL) \
cudaFuncSetAttribute(FUNC, cudaFuncAttributeMaxDynamicSharedMemorySize, VAL)
#else
#define VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(FUNC, VAL) \
hipFuncSetAttribute(FUNC, hipFuncAttributeMaxDynamicSharedMemorySize, VAL)
#endif

View File

@ -1,13 +0,0 @@
#include <torch/extension.h>
int get_device_attribute(
int attribute,
int device_id);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def(
"get_device_attribute",
&get_device_attribute,
"Gets the specified device attribute.");
}

10
csrc/cuda_utils.h Normal file
View File

@ -0,0 +1,10 @@
#pragma once
#include <torch/extension.h>
int get_device_attribute(
int attribute,
int device_id);
int get_max_shared_memory_per_block_device_attribute(
int device_id);

View File

@ -1,3 +1,7 @@
#ifdef USE_ROCM
#include <hip/hip_runtime.h>
#include <hip/hip_runtime_api.h>
#endif
int get_device_attribute(
int attribute,
int device_id)
@ -12,3 +16,20 @@ int get_device_attribute(
cudaDeviceGetAttribute(&value, static_cast<cudaDeviceAttr>(attribute), device);
return value;
}
int get_max_shared_memory_per_block_device_attribute(
int device_id)
{
int attribute;
// https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html
// cudaDevAttrMaxSharedMemoryPerBlockOptin = 97 if not is_hip() else 74
#ifdef USE_ROCM
attribute = hipDeviceAttributeMaxSharedMemoryPerBlock;
#else
attribute = cudaDevAttrMaxSharedMemoryPerBlockOptin;
#endif
return get_device_attribute(attribute, device_id);
}

148
csrc/custom_all_reduce.cu Normal file
View File

@ -0,0 +1,148 @@
#include <ATen/cuda/Exceptions.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include <torch/extension.h>
#include "custom_all_reduce.cuh"
// fake pointer type
using fptr_t = uint64_t;
static_assert(sizeof(void *) == sizeof(fptr_t));
fptr_t init_custom_ar(torch::Tensor &meta, torch::Tensor &rank_data,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets, int rank,
bool full_nvlink) {
int world_size = offsets.size();
if (world_size > 8)
throw std::invalid_argument("world size > 8 is not supported");
if (world_size % 2 != 0)
throw std::invalid_argument("Odd num gpus is not supported for now");
if (world_size != handles.size())
throw std::invalid_argument(
"handles length should equal to offsets length");
if (rank < 0 || rank >= world_size)
throw std::invalid_argument("invalid rank passed in");
cudaIpcMemHandle_t ipc_handles[8];
for (int i = 0; i < world_size; i++) {
std::memcpy(&ipc_handles[i], handles[i].data(), sizeof(cudaIpcMemHandle_t));
}
return (fptr_t) new vllm::CustomAllreduce(
reinterpret_cast<vllm::Signal *>(meta.data_ptr()), rank_data.data_ptr(),
rank_data.numel(), ipc_handles, offsets, rank, full_nvlink);
}
/**
* Make sure tensor t's data lies completely within ((char)t.data_ptr()) +
* t.numel() * t.element_size(). This is slightly weaker than t.is_contiguous()
* because it allows transpose of contiguous slice (i.e. slicing the first
* dimension). Currently, we require this because stride information is not
* passed into the kernels and we treat input tensors as flat.
*
* Examples
* A = torch.zeros(3, 3, 3)
* 1. A: OK
* 2. A[1:]: OK
* 3. A.permute(2, 0, 1): OK
* 4. A[1:].permute(2, 0, 1): OK
* 5. A[None].expand(2, -1, -1, -1): Not OK
* 6. A[:, 1:, 1:]: Not OK
*/
bool _is_weak_contiguous(torch::Tensor &t) {
return t.is_contiguous() ||
(t.storage().nbytes() - t.storage_offset() * t.element_size() ==
t.numel() * t.element_size());
}
bool should_custom_ar(torch::Tensor &inp, int max_size, int world_size,
bool full_nvlink) {
auto inp_size = inp.numel() * inp.element_size();
// custom allreduce requires input byte size to be multiples of 16
if (inp_size % 16 != 0) return false;
if (!_is_weak_contiguous(inp)) return false;
if (world_size == 2 || full_nvlink) return inp_size <= max_size;
// for 4 or more non NVLink-capable GPUs, custom allreduce provides little
// performance improvement over NCCL.
return false;
}
void _all_reduce(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out,
cudaStream_t stream) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
TORCH_CHECK(_is_weak_contiguous(out));
switch (out.scalar_type()) {
case at::ScalarType::Float: {
fa->allreduce<float>(stream, reinterpret_cast<float *>(inp.data_ptr()),
reinterpret_cast<float *>(out.data_ptr()),
out.numel());
break;
}
case at::ScalarType::Half: {
fa->allreduce<half>(stream, reinterpret_cast<half *>(inp.data_ptr()),
reinterpret_cast<half *>(out.data_ptr()),
out.numel());
break;
}
#if (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__))
case at::ScalarType::BFloat16: {
fa->allreduce<nv_bfloat16>(
stream, reinterpret_cast<nv_bfloat16 *>(inp.data_ptr()),
reinterpret_cast<nv_bfloat16 *>(out.data_ptr()), out.numel());
break;
}
#endif
default:
throw std::runtime_error(
"custom allreduce only supports float32, float16 and bfloat16");
}
}
void all_reduce_reg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(inp));
auto stream = c10::cuda::getCurrentCUDAStream().stream();
TORCH_CHECK_EQ(inp.scalar_type(), out.scalar_type());
TORCH_CHECK_EQ(inp.numel(), out.numel());
_all_reduce(_fa, inp, out, stream);
}
void all_reduce_unreg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &reg_buffer,
torch::Tensor &out) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(inp));
auto stream = c10::cuda::getCurrentCUDAStream().stream();
auto input_size = inp.numel() * inp.element_size();
TORCH_CHECK_EQ(inp.scalar_type(), out.scalar_type());
TORCH_CHECK_EQ(inp.numel(), out.numel());
TORCH_CHECK(input_size <= reg_buffer.numel() * reg_buffer.element_size(),
"registered buffer is too small to contain the input");
AT_CUDA_CHECK(cudaMemcpyAsync(reg_buffer.data_ptr(), inp.data_ptr(),
input_size, cudaMemcpyDeviceToDevice, stream));
_all_reduce(_fa, reg_buffer, out, stream);
}
void dispose(fptr_t _fa) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
delete fa;
}
int meta_size() { return sizeof(vllm::Signal); }
void register_buffer(fptr_t _fa, torch::Tensor &t,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
fa->register_buffer(handles, offsets, t.data_ptr());
}
std::pair<std::vector<uint8_t>, std::vector<int64_t>> get_graph_buffer_ipc_meta(
fptr_t _fa) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
return fa->get_graph_buffer_ipc_meta();
}
void register_graph_buffers(fptr_t _fa, const std::vector<std::string> &handles,
const std::vector<std::vector<int64_t>> &offsets) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
fa->register_graph_buffers(handles, offsets);
}

485
csrc/custom_all_reduce.cuh Normal file
View File

@ -0,0 +1,485 @@
#pragma once
#include <cuda.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <iostream>
#include <limits>
#include <map>
#include <unordered_map>
#include <vector>
#define CUDACHECK(cmd) \
do { \
cudaError_t e = cmd; \
if (e != cudaSuccess) { \
printf("Failed: Cuda error %s:%d '%s'\n", __FILE__, __LINE__, \
cudaGetErrorString(e)); \
exit(EXIT_FAILURE); \
} \
} while (0)
namespace vllm {
constexpr int kMaxBlocks = 64;
// note: we don't want to use atomics for signals because peer atomics are no
// supported on PCIe links
struct Signal {
alignas(128) uint32_t start[kMaxBlocks][8];
alignas(128) uint32_t end[kMaxBlocks][8];
};
struct __align__(16) RankData { const void *__restrict__ ptrs[8]; };
struct __align__(16) RankSignals { volatile Signal *signals[8]; };
// like std::array, but aligned
template <typename T, int sz>
struct __align__(alignof(T) * sz) array_t {
T data[sz];
using type = T;
static constexpr int size = sz;
};
// use packed type to maximize memory efficiency
// goal: generate ld.128 and st.128 instructions
template <typename T>
struct packed_t {
// the (P)acked type for load/store
using P = array_t<T, 16 / sizeof(T)>;
// the (A)ccumulator type for reduction
using A = array_t<float, 16 / sizeof(T)>;
};
#define DINLINE __device__ __forceinline__
// scalar cast functions
DINLINE float upcast_s(half val) { return __half2float(val); }
template <typename T>
DINLINE T downcast_s(float val);
template <>
DINLINE half downcast_s(float val) {
return __float2half(val);
}
// scalar add functions
// for some reason when compiling with Pytorch, the + operator for half and
// bfloat is disabled so we call the intrinsics directly
DINLINE half &assign_add(half &a, half b) {
a = __hadd(a, b);
return a;
}
DINLINE float &assign_add(float &a, float b) { return a += b; }
#if (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__))
DINLINE float upcast_s(nv_bfloat16 val) { return __bfloat162float(val); }
template <>
DINLINE nv_bfloat16 downcast_s(float val) {
return __float2bfloat16(val);
}
DINLINE nv_bfloat16 &assign_add(nv_bfloat16 &a, nv_bfloat16 b) {
a = __hadd(a, b);
return a;
}
#endif
template <typename T, int N>
DINLINE array_t<T, N> &packed_assign_add(array_t<T, N> &a, array_t<T, N> b) {
#pragma unroll
for (int i = 0; i < N; i++) {
assign_add(a.data[i], b.data[i]);
}
return a;
}
template <typename T, int N>
DINLINE array_t<float, N> upcast(array_t<T, N> val) {
if constexpr (std::is_same<T, float>::value) {
return val;
} else {
array_t<float, N> out;
#pragma unroll
for (int i = 0; i < N; i++) {
out.data[i] = upcast_s(val.data[i]);
}
return out;
}
}
template <typename O>
DINLINE O downcast(array_t<float, O::size> val) {
if constexpr (std::is_same<typename O::type, float>::value) {
return val;
} else {
O out;
#pragma unroll
for (int i = 0; i < O::size; i++) {
out.data[i] = downcast_s<typename O::type>(val.data[i]);
}
return out;
}
}
// This function is meant to be used as the first synchronization in the all
// reduce kernel. Thus, it doesn't need to make any visibility guarantees for
// prior memory accesses. Note: volatile writes will not be reordered against
// other volatile writes.
template <int ngpus>
DINLINE void start_sync(const RankSignals &sg, volatile Signal *self_sg,
int rank) {
if (threadIdx.x < ngpus) {
// reset flag for next time
self_sg->end[blockIdx.x][threadIdx.x] = 0;
// simultaneously write to the corresponding flag of all ranks.
// Latency = 1 p2p write
sg.signals[threadIdx.x]->start[blockIdx.x][rank] = 1;
// wait until we got true from all ranks
while (!self_sg->start[blockIdx.x][threadIdx.x])
;
}
__syncthreads();
}
// This function is meant to be used as the second or the final synchronization
// barrier in the all reduce kernel. If it's the final synchronization barrier,
// we don't need to make any visibility guarantees for prior memory accesses.
template <int ngpus, bool final_sync = false>
DINLINE void end_sync(const RankSignals &sg, volatile Signal *self_sg,
int rank) {
__syncthreads();
// eliminate the case that prior writes are not visible after signals become
// visible. Note that I did not managed to make this happen through a lot of
// testing. Might be the case that hardware provides stronger guarantee than
// the memory model.
if constexpr (!final_sync) __threadfence_system();
if (threadIdx.x < ngpus) {
// reset flag for next time
self_sg->start[blockIdx.x][threadIdx.x] = 0;
// simultaneously write to the corresponding flag of all ranks.
// Latency = 1 p2p write
sg.signals[threadIdx.x]->end[blockIdx.x][rank] = 1;
// wait until we got true from all ranks
while (!self_sg->end[blockIdx.x][threadIdx.x])
;
}
if constexpr (!final_sync) __syncthreads();
}
template <typename P, int ngpus, typename A>
DINLINE P packed_reduce(const P *ptrs[], int idx) {
A tmp = upcast(ptrs[0][idx]);
#pragma unroll
for (int i = 1; i < ngpus; i++) {
packed_assign_add(tmp, upcast(ptrs[i][idx]));
}
return downcast<P>(tmp);
}
template <typename T, int ngpus>
__global__ void __launch_bounds__(512, 1)
cross_device_reduce_1stage(RankData *_dp, RankSignals sg,
volatile Signal *self_sg, T *__restrict__ result,
int rank, int size) {
using P = typename packed_t<T>::P;
using A = typename packed_t<T>::A;
// note: we don't reorder the address so the accumulation order is the same
// for all ranks, ensuring bitwise identical results
auto dp = *_dp;
start_sync<ngpus>(sg, self_sg, rank);
// do the actual reduction
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
((P *)result)[idx] =
packed_reduce<P, ngpus, A>((const P **)&dp.ptrs[0], idx);
}
end_sync<ngpus, true>(sg, self_sg, rank);
}
template <typename P>
DINLINE P *get_tmp_buf(volatile Signal *sg) {
return (P *)(((Signal *)sg) + 1);
}
template <typename T, int ngpus>
__global__ void __launch_bounds__(512, 1)
cross_device_reduce_2stage(RankData *_dp, RankSignals sg,
volatile Signal *self_sg, T *__restrict__ result,
int rank, int size) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = gridDim.x * blockDim.x;
using P = typename packed_t<T>::P;
using A = typename packed_t<T>::A;
int part = size / ngpus;
int start = rank * part;
int end = rank == ngpus - 1 ? size : start + part;
int largest_part = part + size % ngpus;
const P *ptrs[ngpus];
P *tmps[ngpus];
#pragma unroll
for (int i = 0; i < ngpus; i++) {
int target = (rank + i) % ngpus;
ptrs[i] = (const P *)_dp->ptrs[target];
tmps[i] = get_tmp_buf<P>(sg.signals[target]);
}
auto tmp_out = tmps[0];
start_sync<ngpus>(sg, self_sg, rank);
// stage 1: reduce scatter
for (int idx = start + tid; idx < end; idx += stride) {
tmp_out[idx - start] = packed_reduce<P, ngpus, A>(ptrs, idx);
}
end_sync<ngpus>(sg, self_sg, rank);
// stage 2: allgather. Note: it's important to match the tid between
// the two stages, because visibility across devices is only guaranteed
// between threads that have the same tid. If thread i computes the sum of
// start + i in the first stage, then thread i also gathers start + i from all
// ranks.
for (int idx = tid; idx < largest_part; idx += stride) {
#pragma unroll
for (int i = 0; i < ngpus; i++) {
int gather_from_rank = ((rank + i) % ngpus);
if (gather_from_rank == ngpus - 1 || idx < part) {
int dst_idx = gather_from_rank * part + idx;
((P *)result)[dst_idx] = tmps[i][idx];
}
}
}
}
using IPC_KEY = std::array<uint8_t, sizeof(cudaIpcMemHandle_t)>;
static_assert(sizeof(IPC_KEY) == sizeof(cudaIpcMemHandle_t));
static_assert(alignof(IPC_KEY) == alignof(cudaIpcMemHandle_t));
class CustomAllreduce {
public:
int rank_;
int world_size_;
bool full_nvlink_;
// below are device pointers
RankSignals sg_;
std::unordered_map<void *, RankData *> buffers_;
Signal *self_sg_;
// stores the registered device pointers from all ranks
RankData *d_rank_data_base_, *d_rank_data_end_;
std::vector<void *> graph_unreg_buffers_;
// a map from IPC handles to opened IPC pointers
std::map<IPC_KEY, char *> ipc_handles_;
/**
* meta is a pointer to device metadata and temporary buffer for allreduce.
*
* There's a total of sizeof(Signal) of prefix before the actual data,
* so meta + 1 points to actual temporary buffer.
*
* note: this class does not own any device memory. Any required buffers
* are passed in from the constructor
*/
CustomAllreduce(Signal *meta, void *rank_data, size_t rank_data_sz,
const cudaIpcMemHandle_t *handles,
const std::vector<int64_t> &offsets, int rank,
bool full_nvlink = true)
: rank_(rank),
world_size_(offsets.size()),
full_nvlink_(full_nvlink),
self_sg_(meta),
d_rank_data_base_(reinterpret_cast<RankData *>(rank_data)),
d_rank_data_end_(d_rank_data_base_ + rank_data_sz / sizeof(RankData)) {
for (int i = 0; i < world_size_; i++) {
Signal *rank_sg;
if (i != rank_) {
char *handle = open_ipc_handle(&handles[i]);
handle += offsets[i];
rank_sg = (Signal *)handle;
} else {
rank_sg = self_sg_;
}
sg_.signals[i] = rank_sg;
}
}
char *open_ipc_handle(const void *ipc_handle) {
auto [it, new_handle] =
ipc_handles_.insert({*((IPC_KEY *)ipc_handle), nullptr});
if (new_handle) {
char *ipc_ptr;
CUDACHECK(cudaIpcOpenMemHandle((void **)&ipc_ptr,
*((const cudaIpcMemHandle_t *)ipc_handle),
cudaIpcMemLazyEnablePeerAccess));
it->second = ipc_ptr;
}
return it->second;
}
std::pair<std::vector<uint8_t>, std::vector<int64_t>>
get_graph_buffer_ipc_meta() {
auto num_buffers = graph_unreg_buffers_.size();
auto handle_sz = sizeof(cudaIpcMemHandle_t);
std::vector<uint8_t> handles(handle_sz * num_buffers, 0);
std::vector<int64_t> offsets(num_buffers);
for (int i = 0; i < num_buffers; i++) {
auto ptr = graph_unreg_buffers_[i];
void *base_ptr;
// note: must share the base address of each allocation, or we get wrong
// address
if (cuPointerGetAttribute(&base_ptr,
CU_POINTER_ATTRIBUTE_RANGE_START_ADDR,
(CUdeviceptr)ptr) != CUDA_SUCCESS)
throw std::runtime_error("failed to get pointer attr");
CUDACHECK(cudaIpcGetMemHandle(
(cudaIpcMemHandle_t *)&handles[i * handle_sz], base_ptr));
offsets[i] = ((char *)ptr) - ((char *)base_ptr);
}
return std::make_pair(handles, offsets);
}
void check_rank_data_capacity(size_t num = 1) {
if (d_rank_data_base_ + num > d_rank_data_end_)
throw std::runtime_error(
"Rank data buffer is overflowed by " +
std::to_string(d_rank_data_base_ + num - d_rank_data_end_));
}
void register_buffer(const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets, void *self) {
check_rank_data_capacity();
RankData data;
for (int i = 0; i < world_size_; i++) {
if (i != rank_) {
char *handle = open_ipc_handle(handles[i].data());
handle += offsets[i];
data.ptrs[i] = handle;
} else {
data.ptrs[i] = self;
}
}
auto d_data = d_rank_data_base_++;
CUDACHECK(
cudaMemcpy(d_data, &data, sizeof(RankData), cudaMemcpyHostToDevice));
buffers_[self] = d_data;
}
// note: when registering graph buffers, we intentionally choose to not
// deduplicate the addresses. That means if the allocator reuses some
// addresses, they will be registered again. This is to account for the remote
// possibility of different allocation patterns between ranks. For example,
// rank 1 may get the same input address for the second allreduce, but rank 2
// got a different address. IPC handles have internal reference counting
// mechanism so overhead should be small.
void register_graph_buffers(
const std::vector<std::string> &handles,
const std::vector<std::vector<int64_t>> &offsets) {
auto num_buffers = graph_unreg_buffers_.size();
check_rank_data_capacity(num_buffers);
std::vector<RankData> rank_data(num_buffers);
for (int i = 0; i < num_buffers; i++) {
auto self_ptr = graph_unreg_buffers_[i];
auto &rd = rank_data[i];
for (int j = 0; j < world_size_; j++) {
if (j != rank_) {
char *handle =
open_ipc_handle(&handles[j][i * sizeof(cudaIpcMemHandle_t)]);
handle += offsets[j][i];
rd.ptrs[j] = handle;
} else {
rd.ptrs[j] = self_ptr;
}
}
}
CUDACHECK(cudaMemcpy(d_rank_data_base_, rank_data.data(),
sizeof(RankData) * num_buffers,
cudaMemcpyHostToDevice));
d_rank_data_base_ += num_buffers;
graph_unreg_buffers_.clear();
}
/**
* This is the result after careful grid search. Using 36 blocks give the best
* or close to the best runtime on the devices I tried: A100, A10, A30, T4,
* V100. You'll notice that NCCL kernels also only take a small amount of SMs.
* Not quite sure the underlying reason, but my guess is that too many SMs
* will cause contention on NVLink bus.
*/
template <typename T>
void allreduce(cudaStream_t stream, T *input, T *output, int size,
int threads = 512, int block_limit = 36) {
auto d = packed_t<T>::P::size;
if (size % d != 0)
throw std::runtime_error(
"custom allreduce currently requires input length to be multiple "
"of " +
std::to_string(d));
if (block_limit > kMaxBlocks)
throw std::runtime_error("max supported block limit is " +
std::to_string(kMaxBlocks) + ". Got " +
std::to_string(block_limit));
RankData *ptrs;
cudaStreamCaptureStatus status;
CUDACHECK(cudaStreamIsCapturing(stream, &status));
if (status == cudaStreamCaptureStatusActive) {
ptrs = d_rank_data_base_ + graph_unreg_buffers_.size();
graph_unreg_buffers_.push_back(input);
} else {
auto it = buffers_.find(input);
if (it == buffers_.end())
throw std::runtime_error(
"buffer address " +
std::to_string(reinterpret_cast<uint64_t>(input)) +
" is not registered!");
ptrs = it->second;
}
size /= d;
auto bytes = size * sizeof(typename packed_t<T>::P);
int blocks = std::min(block_limit, (size + threads - 1) / threads);
#define KL(ngpus, name) \
name<T, ngpus><<<blocks, threads, 0, stream>>>(ptrs, sg_, self_sg_, output, \
rank_, size);
#define REDUCE_CASE(ngpus) \
case ngpus: { \
if (world_size_ == 2) { \
KL(ngpus, cross_device_reduce_1stage); \
} else if (full_nvlink_) { \
if ((world_size_ <= 4 && bytes < 512 * 1024) || \
(world_size_ <= 8 && bytes < 256 * 1024)) { \
KL(ngpus, cross_device_reduce_1stage); \
} else { \
KL(ngpus, cross_device_reduce_2stage); \
} \
} \
break; \
}
switch (world_size_) {
REDUCE_CASE(2)
REDUCE_CASE(4)
REDUCE_CASE(6)
REDUCE_CASE(8)
default:
throw std::runtime_error(
"custom allreduce only supports num gpus in (2,4,6,8). Actual num "
"gpus = " +
std::to_string(world_size_));
}
#undef REDUCE_CASE
#undef KL
}
~CustomAllreduce() {
for (auto [_, ptr] : ipc_handles_) {
CUDACHECK(cudaIpcCloseMemHandle(ptr));
}
}
};
/**
* To inspect PTX/SASS, copy paste this header file to compiler explorer and add
a template instantiation:
* template void vllm::CustomAllreduce::allreduce<half>(cudaStream_t, half *,
half *, int, int, int);
*/
} // namespace vllm

View File

@ -0,0 +1,316 @@
/**
* This is a standalone test for custom allreduce.
* To compile, make sure you have MPI and NCCL installed in your system.
* export MPI_HOME=XXX
* nvcc -O2 -arch=native -std=c++17 custom_all_reduce_test.cu -o
* custom_all_reduce_test -lnccl -I${MPI_HOME}/include -lmpi
*
* Warning: this C++ test is not designed to be very readable and was used
* during the rapid prototyping process.
*
* To run:
* mpirun -np 8 ./custom_all_reduce_test
*/
#include <cuda.h>
#include <curand_kernel.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits>
#include <vector>
#include "cuda_profiler_api.h"
#include "custom_all_reduce.cuh"
#include "mpi.h"
#include "nccl.h"
#define MPICHECK(cmd) \
do { \
int e = cmd; \
if (e != MPI_SUCCESS) { \
printf("Failed: MPI error %s:%d '%d'\n", __FILE__, __LINE__, e); \
exit(EXIT_FAILURE); \
} \
} while (0)
#define NCCLCHECK(cmd) \
do { \
ncclResult_t r = cmd; \
if (r != ncclSuccess) { \
printf("Failed, NCCL error %s:%d '%s'\n", __FILE__, __LINE__, \
ncclGetErrorString(r)); \
exit(EXIT_FAILURE); \
} \
} while (0)
__global__ void dummy_kernel() {
for (int i = 0; i < 100; i++) __nanosleep(1000000); // 100ms
}
template <typename T>
__global__ void set_data(T *data, int size, int myRank) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
data[idx] = myRank * 0.11f;
}
}
template <typename T>
__global__ void convert_data(const T *data1, const T *data2, double *fdata1,
double *fdata2, int size) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
fdata1[idx] = data1[idx];
fdata2[idx] = data2[idx];
}
}
__global__ void init_rand(curandState_t *state, int size, int nRanks) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
for (int i = 0; i < nRanks; i++) {
curand_init(i + 1, idx, 0, &state[idx * nRanks + i]);
}
}
}
template <typename T>
__global__ void gen_data(curandState_t *state, T *data, double *ground_truth,
int myRank, int nRanks, int size) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
double sum = 0.0;
for (int i = 0; i < nRanks; i++) {
double val = curand_uniform_double(&state[idx * nRanks + i]) * 4;
T hval = val; // downcast first
sum += static_cast<double>(hval);
if (i == myRank) data[idx] = hval;
}
ground_truth[idx] = sum;
}
}
template <typename T>
void run(int myRank, int nRanks, ncclComm_t &comm, int threads, int block_limit,
int data_size, bool performance_test) {
T *result;
cudaStream_t stream;
CUDACHECK(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
CUDACHECK(cudaMalloc(&result, data_size * sizeof(T)));
CUDACHECK(cudaMemset(result, 0, data_size * sizeof(T)));
cudaIpcMemHandle_t self_data_handle;
cudaIpcMemHandle_t data_handles[8];
vllm::Signal *buffer;
T *self_data_copy;
/**
* Allocate IPC buffer
*
* The first section is a temporary buffer for storing intermediate allreduce
* results, if a particular algorithm requires it. The second section is for
* the input to the allreduce. The actual API takes the input pointer as an
* argument (that is, they can and usually should be allocated separately).
* But since the input pointers and the temporary buffer all require IPC
* registration, they are allocated and registered together in the test for
* convenience.
*/
CUDACHECK(
cudaMalloc(&buffer, 2 * data_size * sizeof(T) + sizeof(vllm::Signal)));
CUDACHECK(
cudaMemset(buffer, 0, 2 * data_size * sizeof(T) + sizeof(vllm::Signal)));
CUDACHECK(cudaMalloc(&self_data_copy, data_size * sizeof(T)));
CUDACHECK(cudaIpcGetMemHandle(&self_data_handle, buffer));
MPICHECK(MPI_Allgather(&self_data_handle, sizeof(cudaIpcMemHandle_t),
MPI_BYTE, data_handles, sizeof(cudaIpcMemHandle_t),
MPI_BYTE, MPI_COMM_WORLD));
void *rank_data;
size_t rank_data_sz = 16 * 1024 * 1024;
CUDACHECK(cudaMalloc(&rank_data, rank_data_sz));
std::vector<int64_t> offsets(nRanks, 0);
vllm::CustomAllreduce fa(buffer, rank_data, rank_data_sz, data_handles,
offsets, myRank);
auto *self_data =
reinterpret_cast<T *>(reinterpret_cast<char *>(buffer) +
sizeof(vllm::Signal) + data_size * sizeof(T));
// hack buffer registration
{
std::vector<std::string> handles;
handles.reserve(nRanks);
for (int i = 0; i < nRanks; i++) {
char *begin = (char *)&data_handles[i];
char *end = (char *)&data_handles[i + 1];
handles.emplace_back(begin, end);
}
std::vector<int64_t> offsets(nRanks,
sizeof(vllm::Signal) + data_size * sizeof(T));
fa.register_buffer(handles, offsets, self_data);
}
double *ground_truth;
CUDACHECK(cudaMallocHost(&ground_truth, data_size * sizeof(double)));
curandState_t *states;
CUDACHECK(cudaMalloc(&states, sizeof(curandState_t) * nRanks * data_size));
init_rand<<<108, 1024, 0, stream>>>(states, data_size, nRanks);
gen_data<T><<<108, 1024, 0, stream>>>(states, self_data, ground_truth, myRank,
nRanks, data_size);
CUDACHECK(cudaMemcpyAsync(self_data_copy, self_data, data_size * sizeof(T),
cudaMemcpyDeviceToDevice, stream));
cudaEvent_t start, stop;
CUDACHECK(cudaEventCreate(&start));
CUDACHECK(cudaEventCreate(&stop));
ncclDataType_t ncclDtype;
if (std::is_same<T, half>::value) {
ncclDtype = ncclFloat16;
} else if (std::is_same<T, nv_bfloat16>::value) {
ncclDtype = ncclBfloat16;
} else {
ncclDtype = ncclFloat;
}
double *nccl_result, *my_result;
CUDACHECK(cudaMallocHost(&nccl_result, data_size * sizeof(double)));
CUDACHECK(cudaMallocHost(&my_result, data_size * sizeof(double)));
if (performance_test) {
dummy_kernel<<<1, 1, 0, stream>>>();
constexpr int warmup_iters = 5;
constexpr int num_iters = 100;
// warmup
for (int i = 0; i < warmup_iters; i++) {
NCCLCHECK(ncclAllReduce(result, result, data_size, ncclDtype, ncclSum,
comm, stream));
}
CUDACHECK(cudaEventRecord(start, stream));
for (int i = 0; i < num_iters; i++) {
NCCLCHECK(ncclAllReduce(result, result, data_size, ncclDtype, ncclSum,
comm, stream));
}
CUDACHECK(cudaEventRecord(stop, stream));
CUDACHECK(cudaStreamSynchronize(stream));
float allreduce_ms = 0;
cudaEventElapsedTime(&allreduce_ms, start, stop);
dummy_kernel<<<1, 1, 0, stream>>>();
// warm up
for (int i = 0; i < warmup_iters; i++) {
fa.allreduce<T>(stream, self_data, result, data_size, threads,
block_limit);
}
CUDACHECK(cudaEventRecord(start, stream));
for (int i = 0; i < num_iters; i++) {
fa.allreduce<T>(stream, self_data, result, data_size, threads,
block_limit);
}
CUDACHECK(cudaEventRecord(stop, stream));
CUDACHECK(cudaStreamSynchronize(stream));
float duration_ms = 0;
cudaEventElapsedTime(&duration_ms, start, stop);
if (myRank == 0)
printf(
"Rank %d done, nGPUs:%d, sz (kb): %d, %d, %d, my time:%.2fus, nccl "
"time:%.2fus\n",
myRank, nRanks, data_size * sizeof(T) / 1024, threads, block_limit,
duration_ms * 1e3 / num_iters, allreduce_ms * 1e3 / num_iters);
// And wait for all the queued up work to complete
CUDACHECK(cudaStreamSynchronize(stream));
NCCLCHECK(ncclAllReduce(self_data_copy, self_data, data_size, ncclDtype,
ncclSum, comm, stream));
convert_data<T><<<108, 1024, 0, stream>>>(self_data, result, nccl_result,
my_result, data_size);
CUDACHECK(cudaStreamSynchronize(stream));
for (unsigned long j = 0; j < data_size; j++) {
auto diff = abs(nccl_result[j] - my_result[j]);
if (diff >= 4e-2) {
printf("Rank %d: Verification mismatch at %lld: %f != (my) %f, gt=%f\n",
myRank, j, nccl_result[j], my_result[j], ground_truth[j]);
break;
}
}
long double nccl_diffs = 0.0;
long double my_diffs = 0.0;
for (int j = 0; j < data_size; j++) {
nccl_diffs += abs(nccl_result[j] - ground_truth[j]);
my_diffs += abs(my_result[j] - ground_truth[j]);
}
if (myRank == 0)
std::cout << "average abs diffs: nccl: " << nccl_diffs / data_size
<< " me: " << my_diffs / data_size << std::endl;
} else {
for (int i = 0; i < 100; i++) {
fa.allreduce<T>(stream, self_data, result, data_size, threads,
block_limit);
CUDACHECK(cudaStreamSynchronize(stream));
NCCLCHECK(ncclAllReduce(self_data, self_data_copy, data_size, ncclDtype,
ncclSum, comm, stream));
convert_data<T><<<108, 1024, 0, stream>>>(
self_data_copy, result, nccl_result, my_result, data_size);
CUDACHECK(cudaStreamSynchronize(stream));
for (unsigned long j = 0; j < data_size; j++) {
auto diff = abs(nccl_result[j] - my_result[j]);
if (diff >= 4e-2) {
printf(
"Rank %d: Verification mismatch at %lld: %f != (my) %f, gt=%f\n",
myRank, j, nccl_result[j], my_result[j], ground_truth[j]);
break;
}
}
}
if (myRank == 0)
printf("Test passed: nGPUs:%d, sz (kb): %d, %d, %d\n", nRanks,
data_size * sizeof(T) / 1024, threads, block_limit);
// long double nccl_diffs = 0.0;
// long double my_diffs = 0.0;
// for (int j = 0; j < data_size; j++) {
// nccl_diffs += abs(nccl_result[j] - ground_truth[j]);
// my_diffs += abs(my_result[j] - ground_truth[j]);
// }
// if (myRank == 0)
// std::cout << "average abs diffs: nccl: " << nccl_diffs / data_size
// << " me: " << my_diffs / data_size << std::endl;
}
CUDACHECK(cudaFree(result));
CUDACHECK(cudaFree(self_data_copy));
CUDACHECK(cudaFree(rank_data));
CUDACHECK(cudaFree(buffer));
CUDACHECK(cudaFree(states));
CUDACHECK(cudaFreeHost(ground_truth));
CUDACHECK(cudaFreeHost(nccl_result));
CUDACHECK(cudaFreeHost(my_result));
CUDACHECK(cudaStreamDestroy(stream));
}
int main(int argc, char **argv) {
int nRanks, myRank;
MPICHECK(MPI_Init(&argc, &argv));
MPICHECK(MPI_Comm_rank(MPI_COMM_WORLD, &myRank));
MPICHECK(MPI_Comm_size(MPI_COMM_WORLD, &nRanks));
CUDACHECK(cudaSetDevice(myRank));
ncclUniqueId id;
ncclComm_t comm;
if (myRank == 0) ncclGetUniqueId(&id);
MPICHECK(MPI_Bcast(static_cast<void *>(&id), sizeof(id), MPI_BYTE, 0,
MPI_COMM_WORLD));
NCCLCHECK(ncclCommInitRank(&comm, nRanks, id, myRank));
bool performance_test = true;
cudaProfilerStart();
// for (int threads : {256, 512}) {
// for (int block_limit = 16; block_limit < 112; block_limit += 4) {
// run<half>(myRank, nRanks, comm, threads, block_limit, 4096 * 1024);
// }
// }
for (int sz = 512; sz <= (8 << 20); sz *= 2) {
run<half>(myRank, nRanks, comm, 512, 36, sz + 8 * 47, performance_test);
}
cudaProfilerStop();
return EXIT_SUCCESS;
}

View File

@ -2,6 +2,8 @@
* Adapted from
* https://github.com/pytorch/pytorch/blob/v2.0.1/aten/src/ATen/Dispatch.h
*/
#pragma once
#include <torch/extension.h>
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
@ -12,3 +14,24 @@
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH( \
TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
#define VLLM_DISPATCH_CASE_FLOATING_AND_BYTE_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__)
#define VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH( \
TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_AND_BYTE_TYPES(__VA_ARGS__))
#define VLLM_DISPATCH_CASE_INTEGRAL_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Short, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Int, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Long, __VA_ARGS__)
#define VLLM_DISPATCH_INTEGRAL_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH( \
TYPE, NAME, VLLM_DISPATCH_CASE_INTEGRAL_TYPES(__VA_ARGS__))

View File

@ -1,14 +0,0 @@
#include <torch/extension.h>
void rms_norm(
torch::Tensor& out,
torch::Tensor& input,
torch::Tensor& weight,
float epsilon);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def(
"rms_norm",
&rms_norm,
"Apply Root Mean Square (RMS) Normalization to the input tensor.");
}

View File

@ -1,16 +1,27 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "dispatch_utils.h"
#include "reduction_utils.cuh"
#ifndef USE_ROCM
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#else
#include <hip/hip_bf16.h>
#include <hip/hip_fp16.h>
using __nv_bfloat16 = __hip_bfloat16;
using __nv_bfloat162 = __hip_bfloat162;
#endif
namespace vllm {
// TODO(woosuk): Further optimize this kernel.
template<typename scalar_t>
__global__ void rms_norm_kernel(
scalar_t* __restrict__ out, // [num_tokens, hidden_size]
const scalar_t* __restrict__ input, // [num_tokens, hidden_size]
scalar_t* __restrict__ out, // [..., hidden_size]
const scalar_t* __restrict__ input, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float epsilon,
const int num_tokens,
@ -34,18 +45,246 @@ __global__ void rms_norm_kernel(
}
}
/* Converter structs for the conversion from torch types to HIP/CUDA types,
and the associated type conversions within HIP/CUDA. These helpers need
to be implemented for now because the relevant type conversion
operators/constructors are not consistently implemented by HIP/CUDA, so
a generic conversion via type casts cannot be implemented.
Each struct should have the member static constexpr bool `exists`:
If false, the optimized kernel is not used for the corresponding torch type.
If true, the struct should be fully defined as shown in the examples below.
*/
template<typename torch_type>
struct _typeConvert { static constexpr bool exists = false; };
#if defined(USE_ROCM) || (defined(CUDA_VERSION) && (CUDA_VERSION >= 12000))
// CUDA < 12.0 runs into issues with packed type conversion
template<>
struct _typeConvert<c10::Half> {
static constexpr bool exists = true;
using hip_type = __half;
using packed_hip_type = __half2;
__device__ static inline float convert(hip_type x) { return __half2float(x); }
__device__ static inline float2 convert(packed_hip_type x) { return __half22float2(x); }
__device__ static inline hip_type convert(float x) { return __float2half_rn(x); }
__device__ static inline packed_hip_type convert(float2 x) { return __float22half2_rn(x); }
};
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
// CUDA_ARCH < 800 does not have BF16 support
// TODO: Add in ROCm support once public headers handle bf16 maturely
template<>
struct _typeConvert<c10::BFloat16> {
static constexpr bool exists = true;
using hip_type = __nv_bfloat16;
using packed_hip_type = __nv_bfloat162;
__device__ static inline float convert(hip_type x) { return __bfloat162float(x); }
__device__ static inline float2 convert(packed_hip_type x) { return __bfloat1622float2(x); }
__device__ static inline hip_type convert(float x) { return __float2bfloat16(x); }
__device__ static inline packed_hip_type convert(float2 x) { return __float22bfloat162_rn(x); }
};
#endif // defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#endif // defined(USE_ROCM) || (defined(CUDA_VERSION) && (CUDA_VERSION >= 12000))
/* Vector POD struct to generate vectorized and packed FP16/BF16 ops
for appropriate specializations of fused_add_rms_norm_kernel.
Only functions that are necessary in that kernel are implemented.
Alignment to 16 bytes is required to use 128-bit global memory ops.
*/
template<typename scalar_t, int width>
struct alignas(16) _f16Vec {
/* Not theoretically necessary that width is a power of 2 but should
almost always be the case for optimization purposes */
static_assert(width > 0 && (width & (width - 1)) == 0,
"Width is not a positive power of 2!");
using Converter = _typeConvert<scalar_t>;
using T1 = typename Converter::hip_type;
using T2 = typename Converter::packed_hip_type;
T1 data[width];
__device__ _f16Vec& operator+=(const _f16Vec<scalar_t, width>& other) {
if constexpr (width % 2 == 0) {
#pragma unroll
for (int i = 0; i < width; i += 2) {
T2 temp{data[i], data[i+1]};
temp += T2{other.data[i], other.data[i+1]};
data[i] = temp.x;
data[i+1] = temp.y;
}
} else {
#pragma unroll
for (int i = 0; i < width; ++i)
data[i] += other.data[i];
}
return *this;
}
__device__ _f16Vec& operator*=(const _f16Vec<scalar_t, width>& other) {
if constexpr (width % 2 == 0) {
#pragma unroll
for (int i = 0; i < width; i += 2) {
T2 temp{data[i], data[i+1]};
temp *= T2{other.data[i], other.data[i+1]};
data[i] = temp.x;
data[i+1] = temp.y;
}
} else {
#pragma unroll
for (int i = 0; i < width; ++i)
data[i] *= other.data[i];
}
return *this;
}
__device__ _f16Vec& operator*=(const float scale) {
if constexpr (width % 2 == 0) {
#pragma unroll
for (int i = 0; i < width; i += 2) {
float2 temp_f = Converter::convert(T2{data[i], data[i+1]});
temp_f.x *= scale;
temp_f.y *= scale;
T2 temp = Converter::convert(temp_f);
data[i] = temp.x;
data[i+1] = temp.y;
}
} else {
#pragma unroll
for (int i = 0; i < width; ++i) {
float temp = Converter::convert(data[i]) * scale;
data[i] = Converter::convert(temp);
}
}
return *this;
}
__device__ float sum_squares() const {
float result = 0.0f;
if constexpr (width % 2 == 0) {
#pragma unroll
for (int i = 0; i < width; i += 2) {
float2 z = Converter::convert(T2{data[i], data[i+1]});
result += z.x * z.x + z.y * z.y;
}
} else {
#pragma unroll
for (int i = 0; i < width; ++i) {
float x = Converter::convert(data[i]);
result += x * x;
}
}
return result;
}
};
/* Function specialization in the case of FP16/BF16 tensors.
Additional optimizations we can make in this case are
packed and vectorized operations, which help with the
memory latency bottleneck. */
template<typename scalar_t, int width>
__global__ std::enable_if_t<
(width > 0) && _typeConvert<scalar_t>::exists> fused_add_rms_norm_kernel(
scalar_t* __restrict__ input, // [..., hidden_size]
scalar_t* __restrict__ residual, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float epsilon,
const int num_tokens,
const int hidden_size) {
// Sanity checks on our vector struct and type-punned pointer arithmetic
static_assert(std::is_pod_v<_f16Vec<scalar_t, width>>);
static_assert(sizeof(_f16Vec<scalar_t, width>) == sizeof(scalar_t) * width);
const int vec_hidden_size = hidden_size / width;
__shared__ float s_variance;
float variance = 0.0f;
/* These and the argument pointers are all declared `restrict` as they are
not aliased in practice. Argument pointers should not be dereferenced
in this kernel as that would be undefined behavior */
auto* __restrict__ input_v = reinterpret_cast<_f16Vec<scalar_t, width>*>(input);
auto* __restrict__ residual_v = reinterpret_cast<_f16Vec<scalar_t, width>*>(residual);
auto* __restrict__ weight_v = reinterpret_cast<const _f16Vec<scalar_t, width>*>(weight);
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
int id = blockIdx.x * vec_hidden_size + idx;
_f16Vec<scalar_t, width> temp = input_v[id];
temp += residual_v[id];
variance += temp.sum_squares();
residual_v[id] = temp;
}
/* Keep the following if-else block in sync with the
calculation of max_block_size in fused_add_rms_norm */
if (num_tokens < 256) {
variance = blockReduceSum<float, 1024>(variance);
} else variance = blockReduceSum<float, 256>(variance);
if (threadIdx.x == 0) {
s_variance = rsqrtf(variance / hidden_size + epsilon);
}
__syncthreads();
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
int id = blockIdx.x * vec_hidden_size + idx;
_f16Vec<scalar_t, width> temp = residual_v[id];
temp *= s_variance;
temp *= weight_v[idx];
input_v[id] = temp;
}
}
/* Generic fused_add_rms_norm_kernel
The width field is not used here but necessary for other specializations.
*/
template<typename scalar_t, int width>
__global__ std::enable_if_t<
(width == 0) || !_typeConvert<scalar_t>::exists> fused_add_rms_norm_kernel(
scalar_t* __restrict__ input, // [..., hidden_size]
scalar_t* __restrict__ residual, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float epsilon,
const int num_tokens,
const int hidden_size) {
__shared__ float s_variance;
float variance = 0.0f;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
scalar_t z = input[blockIdx.x * hidden_size + idx];
z += residual[blockIdx.x * hidden_size + idx];
float x = (float) z;
variance += x * x;
residual[blockIdx.x * hidden_size + idx] = z;
}
/* Keep the following if-else block in sync with the
calculation of max_block_size in fused_add_rms_norm */
if (num_tokens < 256) {
variance = blockReduceSum<float, 1024>(variance);
} else variance = blockReduceSum<float, 256>(variance);
if (threadIdx.x == 0) {
s_variance = rsqrtf(variance / hidden_size + epsilon);
}
__syncthreads();
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float) residual[blockIdx.x * hidden_size + idx];
input[blockIdx.x * hidden_size + idx] = ((scalar_t) (x * s_variance)) * weight[idx];
}
}
} // namespace vllm
void rms_norm(
torch::Tensor& out, // [num_tokens, hidden_size]
torch::Tensor& input, // [num_tokens, hidden_size]
torch::Tensor& out, // [..., hidden_size]
torch::Tensor& input, // [..., hidden_size]
torch::Tensor& weight, // [hidden_size]
float epsilon) {
int num_tokens = input.size(0);
int hidden_size = input.size(1);
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
dim3 grid(num_tokens);
dim3 block(std::min(hidden_size, 1024));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(),
@ -60,3 +299,54 @@ void rms_norm(
hidden_size);
});
}
#define LAUNCH_FUSED_ADD_RMS_NORM(width) \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), \
"fused_add_rms_norm_kernel", \
[&] { \
vllm::fused_add_rms_norm_kernel \
<scalar_t, width><<<grid, block, 0, stream>>>( \
input.data_ptr<scalar_t>(), \
residual.data_ptr<scalar_t>(), \
weight.data_ptr<scalar_t>(), \
epsilon, \
num_tokens, \
hidden_size); \
});
void fused_add_rms_norm(
torch::Tensor& input, // [..., hidden_size]
torch::Tensor& residual, // [..., hidden_size]
torch::Tensor& weight, // [hidden_size]
float epsilon) {
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
dim3 grid(num_tokens);
/* This kernel is memory-latency bound in many scenarios.
When num_tokens is large, a smaller block size allows
for increased block occupancy on CUs and better latency
hiding on global mem ops. */
const int max_block_size = (num_tokens < 256) ? 1024 : 256;
dim3 block(std::min(hidden_size, max_block_size));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
/*If the tensor types are FP16/BF16, try to use the optimized kernel
with packed + vectorized ops.
Max optimization is achieved with a width-8 vector of FP16/BF16s
since we can load at most 128 bits at once in a global memory op.
However, this requires each tensor's data to be aligned to 16
bytes.
*/
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
auto res_ptr = reinterpret_cast<std::uintptr_t>(residual.data_ptr());
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
bool ptrs_are_aligned = inp_ptr % 16 == 0 && res_ptr % 16 == 0 \
&& wt_ptr % 16 == 0;
if (ptrs_are_aligned && hidden_size % 8 == 0) {
LAUNCH_FUSED_ADD_RMS_NORM(8);
} else {
LAUNCH_FUSED_ADD_RMS_NORM(0);
}
}

7
csrc/moe/moe_ops.cpp Normal file
View File

@ -0,0 +1,7 @@
#include "moe_ops.h"
#include <torch/extension.h>
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("topk_softmax", &topk_softmax, "Apply topk softmax to the gating outputs.");
}

9
csrc/moe/moe_ops.h Normal file
View File

@ -0,0 +1,9 @@
#pragma once
#include <torch/extension.h>
void topk_softmax(
torch::Tensor& topk_weights,
torch::Tensor& topk_indices,
torch::Tensor& token_expert_indices,
torch::Tensor& gating_output);

View File

@ -0,0 +1,499 @@
/*
* Adapted from https://github.com/NVIDIA/TensorRT-LLM/blob/v0.7.1/cpp/tensorrt_llm/kernels/mixtureOfExperts/moe_kernels.cu
* Copyright (c) 2024, The vLLM team.
* SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cub/cub.cuh>
#include <cub/util_type.cuh>
namespace vllm {
namespace moe {
static constexpr int WARP_SIZE = 32;
/// Aligned array type
template <
typename T,
/// Number of elements in the array
int N,
/// Alignment requirement in bytes
int Alignment = sizeof(T) * N
>
class alignas(Alignment) AlignedArray {
float data[N];
};
// ====================== Softmax things ===============================
// We have our own implementation of softmax here so we can support transposing the output
// in the softmax kernel when we extend this module to support expert-choice routing.
template <int TPB>
__launch_bounds__(TPB) __global__
void moeSoftmax(const float* input, const bool* finished, float* output, const int num_cols)
{
using BlockReduce = cub::BlockReduce<float, TPB>;
__shared__ typename BlockReduce::TempStorage tmpStorage;
__shared__ float normalizing_factor;
__shared__ float float_max;
const int thread_row_offset = blockIdx.x * num_cols;
cub::Sum sum;
float threadData(-FLT_MAX);
// Don't touch finished rows.
if ((finished != nullptr) && finished[blockIdx.x])
{
return;
}
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
{
const int idx = thread_row_offset + ii;
threadData = max(static_cast<float>(input[idx]), threadData);
}
const float maxElem = BlockReduce(tmpStorage).Reduce(threadData, cub::Max());
if (threadIdx.x == 0)
{
float_max = maxElem;
}
__syncthreads();
threadData = 0;
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
{
const int idx = thread_row_offset + ii;
threadData += exp((static_cast<float>(input[idx]) - float_max));
}
const auto Z = BlockReduce(tmpStorage).Reduce(threadData, sum);
if (threadIdx.x == 0)
{
normalizing_factor = 1.f / Z;
}
__syncthreads();
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
{
const int idx = thread_row_offset + ii;
const float val = exp((static_cast<float>(input[idx]) - float_max)) * normalizing_factor;
output[idx] = val;
}
}
template <int TPB>
__launch_bounds__(TPB) __global__ void moeTopK(const float* inputs_after_softmax, const bool* finished, float* output,
int* indices, int* source_rows, const int num_experts, const int k, const int start_expert, const int end_expert)
{
using cub_kvp = cub::KeyValuePair<int, float>;
using BlockReduce = cub::BlockReduce<cub_kvp, TPB>;
__shared__ typename BlockReduce::TempStorage tmpStorage;
cub_kvp thread_kvp;
cub::ArgMax arg_max;
const int num_rows = gridDim.x;
const int block_row = blockIdx.x;
const bool row_is_active = finished ? !finished[block_row] : true;
const int thread_read_offset = blockIdx.x * num_experts;
for (int k_idx = 0; k_idx < k; ++k_idx)
{
thread_kvp.key = 0;
thread_kvp.value = -1.f; // This is OK because inputs are probabilities
cub_kvp inp_kvp;
for (int expert = threadIdx.x; expert < num_experts; expert += TPB)
{
const int idx = thread_read_offset + expert;
inp_kvp.key = expert;
inp_kvp.value = inputs_after_softmax[idx];
for (int prior_k = 0; prior_k < k_idx; ++prior_k)
{
const int prior_winning_expert = indices[k * block_row + prior_k];
if (prior_winning_expert == expert)
{
inp_kvp = thread_kvp;
}
}
thread_kvp = arg_max(inp_kvp, thread_kvp);
}
const cub_kvp result_kvp = BlockReduce(tmpStorage).Reduce(thread_kvp, arg_max);
if (threadIdx.x == 0)
{
// Ignore experts the node isn't responsible for with expert parallelism
const int expert = result_kvp.key;
const bool node_uses_expert = expert >= start_expert && expert < end_expert;
const bool should_process_row = row_is_active && node_uses_expert;
const int idx = k * block_row + k_idx;
output[idx] = result_kvp.value;
indices[idx] = should_process_row ? (expert - start_expert) : num_experts;
assert(indices[idx] >= 0);
source_rows[idx] = k_idx * num_rows + block_row;
}
__syncthreads();
}
}
// ====================== TopK softmax things ===============================
/*
A Top-K gating softmax written to exploit when the number of experts in the MoE layers
are a small power of 2. This allows us to cleanly share the rows among the threads in
a single warp and eliminate communication between warps (so no need to use shared mem).
It fuses the softmax, max and argmax into a single kernel.
Limitations:
1) This implementation is intended for when the number of experts is a small power of 2.
2) This implementation assumes k is small, but will work for any k.
*/
template <int VPT, int NUM_EXPERTS, int WARPS_PER_CTA, int BYTES_PER_LDG>
__launch_bounds__(WARPS_PER_CTA* WARP_SIZE) __global__
void topkGatingSoftmax(const float* input, const bool* finished, float* output, const int num_rows, int* indices,
int* source_rows, const int k, const int start_expert, const int end_expert)
{
// We begin by enforcing compile time assertions and setting up compile time constants.
static_assert(VPT == (VPT & -VPT), "VPT must be power of 2");
static_assert(NUM_EXPERTS == (NUM_EXPERTS & -NUM_EXPERTS), "NUM_EXPERTS must be power of 2");
static_assert(BYTES_PER_LDG == (BYTES_PER_LDG & -BYTES_PER_LDG), "BYTES_PER_LDG must be power of 2");
static_assert(BYTES_PER_LDG <= 16, "BYTES_PER_LDG must be leq 16");
// Number of bytes each thread pulls in per load
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
static constexpr int ELTS_PER_ROW = NUM_EXPERTS;
static constexpr int THREADS_PER_ROW = ELTS_PER_ROW / VPT;
static constexpr int LDG_PER_THREAD = VPT / ELTS_PER_LDG;
// Restrictions based on previous section.
static_assert(VPT % ELTS_PER_LDG == 0, "The elements per thread must be a multiple of the elements per ldg");
static_assert(WARP_SIZE % THREADS_PER_ROW == 0, "The threads per row must cleanly divide the threads per warp");
static_assert(THREADS_PER_ROW == (THREADS_PER_ROW & -THREADS_PER_ROW), "THREADS_PER_ROW must be power of 2");
static_assert(THREADS_PER_ROW <= WARP_SIZE, "THREADS_PER_ROW can be at most warp size");
// We have NUM_EXPERTS elements per row. We specialize for small #experts
static constexpr int ELTS_PER_WARP = WARP_SIZE * VPT;
static constexpr int ROWS_PER_WARP = ELTS_PER_WARP / ELTS_PER_ROW;
static constexpr int ROWS_PER_CTA = WARPS_PER_CTA * ROWS_PER_WARP;
// Restrictions for previous section.
static_assert(ELTS_PER_WARP % ELTS_PER_ROW == 0, "The elts per row must cleanly divide the total elt per warp");
// ===================== From this point, we finally start computing run-time variables. ========================
// Compute CTA and warp rows. We pack multiple rows into a single warp, and a block contains WARPS_PER_CTA warps.
// This, each block processes a chunk of rows. We start by computing the start row for each block.
const int cta_base_row = blockIdx.x * ROWS_PER_CTA;
// Now, using the base row per thread block, we compute the base row per warp.
const int warp_base_row = cta_base_row + threadIdx.y * ROWS_PER_WARP;
// The threads in a warp are split into sub-groups that will work on a row.
// We compute row offset for each thread sub-group
const int thread_row_in_warp = threadIdx.x / THREADS_PER_ROW;
const int thread_row = warp_base_row + thread_row_in_warp;
// Threads with indices out of bounds should early exit here.
if (thread_row >= num_rows)
{
return;
}
const bool row_is_active = finished ? !finished[thread_row] : true;
// We finally start setting up the read pointers for each thread. First, each thread jumps to the start of the
// row it will read.
const float* thread_row_ptr = input + thread_row * ELTS_PER_ROW;
// Now, we compute the group each thread belong to in order to determine the first column to start loads.
const int thread_group_idx = threadIdx.x % THREADS_PER_ROW;
const int first_elt_read_by_thread = thread_group_idx * ELTS_PER_LDG;
const float* thread_read_ptr = thread_row_ptr + first_elt_read_by_thread;
// Determine the pointer type to use to read in the data depending on the BYTES_PER_LDG template param. In theory,
// this can support all powers of 2 up to 16.
// NOTE(woosuk): The original implementation uses CUTLASS aligned array here.
// We defined our own aligned array and use it here to avoid the dependency on CUTLASS.
using AccessType = AlignedArray<float, ELTS_PER_LDG>;
// Finally, we pull in the data from global mem
float row_chunk[VPT];
AccessType* row_chunk_vec_ptr = reinterpret_cast<AccessType*>(&row_chunk);
const AccessType* vec_thread_read_ptr = reinterpret_cast<const AccessType*>(thread_read_ptr);
#pragma unroll
for (int ii = 0; ii < LDG_PER_THREAD; ++ii)
{
row_chunk_vec_ptr[ii] = vec_thread_read_ptr[ii * THREADS_PER_ROW];
}
// First, we perform a max reduce within the thread. We can do the max in fp16 safely (I think) and just
// convert to float afterwards for the exp + sum reduction.
float thread_max = row_chunk[0];
#pragma unroll
for (int ii = 1; ii < VPT; ++ii)
{
thread_max = max(thread_max, row_chunk[ii]);
}
// Now, we find the max within the thread group and distribute among the threads. We use a butterfly reduce.
#pragma unroll
for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2)
{
thread_max = max(thread_max, __shfl_xor_sync(0xFFFFFFFF, thread_max, mask, THREADS_PER_ROW));
}
// From this point, thread max in all the threads have the max within the row.
// Now, we subtract the max from each element in the thread and take the exp. We also compute the thread local sum.
float row_sum = 0;
#pragma unroll
for (int ii = 0; ii < VPT; ++ii)
{
row_chunk[ii] = expf(row_chunk[ii] - thread_max);
row_sum += row_chunk[ii];
}
// Now, we perform the sum reduce within each thread group. Similar to the max reduce, we use a bufferfly pattern.
#pragma unroll
for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2)
{
row_sum += __shfl_xor_sync(0xFFFFFFFF, row_sum, mask, THREADS_PER_ROW);
}
// From this point, all threads have the max and the sum for their rows in the thread_max and thread_sum variables
// respectively. Finally, we can scale the rows for the softmax. Technically, for top-k gating we don't need to
// compute the entire softmax row. We can likely look at the maxes and only compute for the top-k values in the row.
// However, this kernel will likely not be a bottle neck and it seems better to closer match torch and find the
// argmax after computing the softmax.
const float reciprocal_row_sum = 1.f / row_sum;
#pragma unroll
for (int ii = 0; ii < VPT; ++ii)
{
row_chunk[ii] = row_chunk[ii] * reciprocal_row_sum;
}
// Now, softmax_res contains the softmax of the row chunk. Now, I want to find the topk elements in each row, along
// with the max index.
int start_col = first_elt_read_by_thread;
static constexpr int COLS_PER_GROUP_LDG = ELTS_PER_LDG * THREADS_PER_ROW;
for (int k_idx = 0; k_idx < k; ++k_idx)
{
// First, each thread does the local argmax
float max_val = row_chunk[0];
int expert = start_col;
#pragma unroll
for (int ldg = 0, col = start_col; ldg < LDG_PER_THREAD; ++ldg, col += COLS_PER_GROUP_LDG)
{
#pragma unroll
for (int ii = 0; ii < ELTS_PER_LDG; ++ii)
{
float val = row_chunk[ldg * ELTS_PER_LDG + ii];
// No check on the experts here since columns with the smallest index are processed first and only
// updated if > (not >=)
if (val > max_val)
{
max_val = val;
expert = col + ii;
}
}
}
// Now, we perform the argmax reduce. We use the butterfly pattern so threads reach consensus about the max.
// This will be useful for K > 1 so that the threads can agree on "who" had the max value. That thread can
// then blank out their max with -inf and the warp can run more iterations...
#pragma unroll
for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2)
{
float other_max = __shfl_xor_sync(0xFFFFFFFF, max_val, mask, THREADS_PER_ROW);
int other_expert = __shfl_xor_sync(0xFFFFFFFF, expert, mask, THREADS_PER_ROW);
// We want lower indices to "win" in every thread so we break ties this way
if (other_max > max_val || (other_max == max_val && other_expert < expert))
{
max_val = other_max;
expert = other_expert;
}
}
// Write the max for this k iteration to global memory.
if (thread_group_idx == 0)
{
// Add a guard to ignore experts not included by this node
const bool node_uses_expert = expert >= start_expert && expert < end_expert;
const bool should_process_row = row_is_active && node_uses_expert;
// The lead thread from each sub-group will write out the final results to global memory. (This will be a
// single) thread per row of the input/output matrices.
const int idx = k * thread_row + k_idx;
output[idx] = max_val;
indices[idx] = should_process_row ? (expert - start_expert) : NUM_EXPERTS;
source_rows[idx] = k_idx * num_rows + thread_row;
}
// Finally, we clear the value in the thread with the current max if there is another iteration to run.
if (k_idx + 1 < k)
{
const int ldg_group_for_expert = expert / COLS_PER_GROUP_LDG;
const int thread_to_clear_in_group = (expert / ELTS_PER_LDG) % THREADS_PER_ROW;
// Only the thread in the group which produced the max will reset the "winning" value to -inf.
if (thread_group_idx == thread_to_clear_in_group)
{
const int offset_for_expert = expert % ELTS_PER_LDG;
// Safe to set to any negative value since row_chunk values must be between 0 and 1.
row_chunk[ldg_group_for_expert * ELTS_PER_LDG + offset_for_expert] = -10000.f;
}
}
}
}
namespace detail
{
// Constructs some constants needed to partition the work across threads at compile time.
template <int EXPERTS, int BYTES_PER_LDG>
struct TopkConstants
{
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
static_assert(EXPERTS / (ELTS_PER_LDG * WARP_SIZE) == 0 || EXPERTS % (ELTS_PER_LDG * WARP_SIZE) == 0, "");
static constexpr int VECs_PER_THREAD = std::max(1, EXPERTS / (ELTS_PER_LDG * WARP_SIZE));
static constexpr int VPT = VECs_PER_THREAD * ELTS_PER_LDG;
static constexpr int THREADS_PER_ROW = EXPERTS / VPT;
static constexpr int ROWS_PER_WARP = WARP_SIZE / THREADS_PER_ROW;
};
} // namespace detail
template <int EXPERTS, int WARPS_PER_TB>
void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, float* output, int* indices,
int* source_row, const int num_rows, const int k, const int start_expert, const int end_expert, cudaStream_t stream)
{
static constexpr std::size_t MAX_BYTES_PER_LDG = 16;
static constexpr int BYTES_PER_LDG = std::min(MAX_BYTES_PER_LDG, sizeof(float) * EXPERTS);
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG>;
static constexpr int VPT = Constants::VPT;
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
dim3 block_dim(WARP_SIZE, WARPS_PER_TB);
topkGatingSoftmax<VPT, EXPERTS, WARPS_PER_TB, BYTES_PER_LDG><<<num_blocks, block_dim, 0, stream>>>(
input, finished, output, num_rows, indices, source_row, k, start_expert, end_expert);
}
#define LAUNCH_SOFTMAX(NUM_EXPERTS, WARPS_PER_TB) \
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB>( \
gating_output, nullptr, topk_weights, topk_indicies, \
token_expert_indices, num_tokens, topk, 0, num_experts, \
stream);
void topkGatingSoftmaxKernelLauncher(
const float* gating_output,
float* topk_weights,
int* topk_indicies,
int* token_expert_indices,
float* softmax_workspace,
const int num_tokens,
const int num_experts,
const int topk,
cudaStream_t stream) {
static constexpr int WARPS_PER_TB = 4;
switch (num_experts) {
case 1:
LAUNCH_SOFTMAX(1, WARPS_PER_TB);
break;
case 2:
LAUNCH_SOFTMAX(2, WARPS_PER_TB);
break;
case 4:
LAUNCH_SOFTMAX(4, WARPS_PER_TB);
break;
case 8:
LAUNCH_SOFTMAX(8, WARPS_PER_TB);
break;
case 16:
LAUNCH_SOFTMAX(16, WARPS_PER_TB);
break;
case 32:
LAUNCH_SOFTMAX(32, WARPS_PER_TB);
break;
case 64:
LAUNCH_SOFTMAX(64, WARPS_PER_TB);
break;
case 128:
LAUNCH_SOFTMAX(128, WARPS_PER_TB);
break;
case 256:
LAUNCH_SOFTMAX(256, WARPS_PER_TB);
break;
default: {
TORCH_CHECK(softmax_workspace != nullptr,
"softmax_workspace must be provided for num_experts that are not a power of 2.");
static constexpr int TPB = 256;
moeSoftmax<TPB><<<num_tokens, TPB, 0, stream>>>(
gating_output, nullptr, softmax_workspace, num_experts);
moeTopK<TPB><<<num_tokens, TPB, 0, stream>>>(
softmax_workspace, nullptr, topk_weights, topk_indicies, token_expert_indices,
num_experts, topk, 0, num_experts);
}
}
}
} // namespace moe
} // namespace vllm
void topk_softmax(
torch::Tensor& topk_weights, // [num_tokens, topk]
torch::Tensor& topk_indices, // [num_tokens, topk]
torch::Tensor& token_expert_indices, // [num_tokens, topk]
torch::Tensor& gating_output) // [num_tokens, num_experts]
{
const int num_experts = gating_output.size(-1);
const int num_tokens = gating_output.numel() / num_experts;
const int topk = topk_weights.size(-1);
const bool is_pow_2 = (num_experts != 0) && ((num_experts & (num_experts - 1)) == 0);
const bool needs_workspace = !is_pow_2 || num_experts > 256;
const int64_t workspace_size = needs_workspace ? num_tokens * num_experts : 0;
const at::cuda::OptionalCUDAGuard device_guard(device_of(gating_output));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
torch::Tensor softmax_workspace = torch::empty({workspace_size}, gating_output.options());
vllm::moe::topkGatingSoftmaxKernelLauncher(
gating_output.data_ptr<float>(),
topk_weights.data_ptr<float>(),
topk_indices.data_ptr<int>(),
token_expert_indices.data_ptr<int>(),
softmax_workspace.data_ptr<float>(),
num_tokens,
num_experts,
topk,
stream);
}

View File

@ -0,0 +1,125 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/ATen.h>
#include <THC/THCAtomics.cuh>
#include "cuda_compat.h"
#include "dispatch_utils.h"
#define CEILDIV(x,y) (((x) + (y) - 1) / (y))
namespace vllm {
namespace {
__device__ __forceinline__ int32_t index(int32_t total_col, int32_t row, int32_t col) {
// don't worry about overflow because num_experts is relatively small
return row * total_col + col;
}
}
template <typename scalar_t>
__global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
int32_t *sorted_token_ids,
int32_t *expert_ids,
int32_t *total_tokens_post_pad,
int32_t num_experts,
int32_t block_size,
size_t numel) {
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread;
extern __shared__ int32_t shared_mem[];
int32_t* tokens_cnts = shared_mem; // 2d tensor with shape (num_experts + 1, num_experts)
int32_t* cumsum = shared_mem + (num_experts + 1) * num_experts; // 1d tensor with shape (num_experts + 1)
for (int i = 0; i < num_experts; ++i) {
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
}
/**
* In the first step we compute token_cnts[thread_index + 1][expert_index],
* which counts how many tokens in the token shard of thread_index are assigned
* to expert expert_index.
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
++tokens_cnts[index(num_experts, threadIdx.x + 1, topk_ids[i])];
}
__syncthreads();
// For each expert we accumulate the token counts from the different threads.
tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
for (int i = 1; i <= blockDim.x; ++i) {
tokens_cnts[index(num_experts, i, threadIdx.x)] += tokens_cnts[index(num_experts, i-1, threadIdx.x)];
}
__syncthreads();
// We accumulate the token counts of all experts in thread 0.
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
cumsum[i] = cumsum[i-1] + CEILDIV(tokens_cnts[index(num_experts, blockDim.x, i - 1)], block_size) * block_size;
}
*total_tokens_post_pad = cumsum[num_experts];
}
__syncthreads();
/**
* For each expert, each thread processes the tokens of the corresponding blocks
* and stores the corresponding expert_id for each block.
*/
for (int i = cumsum[threadIdx.x];i < cumsum[threadIdx.x + 1];i += block_size) {
expert_ids[i / block_size] = threadIdx.x;
}
/**
* Each thread processes a token shard, calculating the index of each token after
* sorting by expert number. Given the example topk_ids = [0,1,2,1,2,3,0,3,4] and
* block_size = 4, then the output would be [0, 6, *, *, 1, 3, *, *, 2, 4, *, *, 5, 7, *, *, 8, *, *, *],
* where * represents a padding value(preset in python).
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int32_t expert_id = topk_ids[i];
/** The cumsum[expert_id] stores the starting index of the tokens that the
* expert with expert_id needs to process, and tokens_cnts[threadIdx.x][expert_id]
* stores the indices of the tokens processed by the expert with expert_id within
* the current thread's token shard.
*/
int32_t rank_post_pad = tokens_cnts[index(num_experts, threadIdx.x, expert_id)] + cumsum[expert_id];
sorted_token_ids[rank_post_pad] = i;
++tokens_cnts[index(num_experts, threadIdx.x, expert_id)];
}
}
}
void moe_align_block_size(
torch::Tensor topk_ids,
int num_experts,
int block_size,
torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad) {
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
// calc needed amount of shared mem for `tokens_cnts` and `cumsum` tensors
const int32_t shared_mem = ((num_experts + 1) * num_experts + (num_experts + 1)) * sizeof(int32_t);
// set dynamic shared mem
auto kernel = vllm::moe_align_block_size_kernel<scalar_t>;
AT_CUDA_CHECK(
VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize((void *)kernel, shared_mem));
kernel<<<1, num_experts, shared_mem, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(),
num_experts,
block_size,
topk_ids.numel());
});
}

206
csrc/ops.h Normal file
View File

@ -0,0 +1,206 @@
#pragma once
#include <torch/extension.h>
void paged_attention_v1(
torch::Tensor& out,
torch::Tensor& query,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
int num_kv_heads,
float scale,
torch::Tensor& block_tables,
torch::Tensor& seq_lens,
int block_size,
int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype,
float kv_scale);
void paged_attention_v2(
torch::Tensor& out,
torch::Tensor& exp_sums,
torch::Tensor& max_logits,
torch::Tensor& tmp_out,
torch::Tensor& query,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
int num_kv_heads,
float scale,
torch::Tensor& block_tables,
torch::Tensor& seq_lens,
int block_size,
int max_seq_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype,
float kv_scale);
void rms_norm(
torch::Tensor& out,
torch::Tensor& input,
torch::Tensor& weight,
float epsilon);
void fused_add_rms_norm(
torch::Tensor& input,
torch::Tensor& residual,
torch::Tensor& weight,
float epsilon);
void rotary_embedding(
torch::Tensor& positions,
torch::Tensor& query,
torch::Tensor& key,
int head_size,
torch::Tensor& cos_sin_cache,
bool is_neox);
void batched_rotary_embedding(
torch::Tensor& positions,
torch::Tensor& query,
torch::Tensor& key,
int head_size,
torch::Tensor& cos_sin_cache,
bool is_neox,
int rot_dim,
torch::Tensor& cos_sin_cache_offsets);
void silu_and_mul(
torch::Tensor& out,
torch::Tensor& input);
void gelu_and_mul(
torch::Tensor& out,
torch::Tensor& input);
void gelu_tanh_and_mul(
torch::Tensor& out,
torch::Tensor& input);
void gelu_new(
torch::Tensor& out,
torch::Tensor& input);
void gelu_fast(
torch::Tensor& out,
torch::Tensor& input);
#ifndef USE_ROCM
torch::Tensor aqlm_gemm(
const torch::Tensor& input,
const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& scales,
const torch::Tensor& codebook_partition_sizes,
const std::optional<torch::Tensor>& bias
);
torch::Tensor aqlm_dequant(
const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& codebook_partition_sizes
);
torch::Tensor awq_gemm(
torch::Tensor _in_feats,
torch::Tensor _kernel,
torch::Tensor _scaling_factors,
torch::Tensor _zeros,
int split_k_iters);
torch::Tensor awq_dequantize(
torch::Tensor _kernel,
torch::Tensor _scaling_factors,
torch::Tensor _zeros,
int split_k_iters,
int thx,
int thy);
torch::Tensor marlin_gemm(
torch::Tensor& a,
torch::Tensor& b_q_weight,
torch::Tensor& b_scales,
torch::Tensor& workspace,
int64_t size_m,
int64_t size_n,
int64_t size_k);
torch::Tensor gptq_marlin_gemm(
torch::Tensor &a,
torch::Tensor &b_q_weight,
torch::Tensor &b_scales,
torch::Tensor &g_idx,
torch::Tensor &perm,
torch::Tensor &workspace,
int64_t num_bits,
int64_t size_m,
int64_t size_n,
int64_t size_k,
bool is_k_full);
torch::Tensor gptq_marlin_repack(
torch::Tensor &b_q_weight,
torch::Tensor &perm,
int64_t size_k,
int64_t size_n,
int64_t num_bits);
#endif
void squeezellm_gemm(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor lookup_table);
torch::Tensor gptq_gemm(
torch::Tensor a,
torch::Tensor b_q_weight,
torch::Tensor b_gptq_qzeros,
torch::Tensor b_gptq_scales,
torch::Tensor b_g_idx,
bool use_exllama,
int bit);
void gptq_shuffle(
torch::Tensor q_weight,
torch::Tensor q_perm,
int bit);
void static_scaled_fp8_quant(
torch::Tensor& out,
torch::Tensor& input,
torch::Tensor& scale);
void dynamic_scaled_fp8_quant(
torch::Tensor& out,
torch::Tensor& input,
torch::Tensor& scale);
void moe_align_block_size(
torch::Tensor topk_ids,
int num_experts,
int block_size,
torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad);
#ifndef USE_ROCM
using fptr_t = uint64_t;
fptr_t init_custom_ar(torch::Tensor &meta, torch::Tensor &rank_data,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets, int rank,
bool full_nvlink);
bool should_custom_ar(torch::Tensor &inp, int max_size, int world_size,
bool full_nvlink);
void all_reduce_reg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out);
void all_reduce_unreg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &reg_buffer,
torch::Tensor &out);
void dispose(fptr_t _fa);
int meta_size();
void register_buffer(fptr_t _fa, torch::Tensor &t,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets);
std::pair<std::vector<uint8_t>, std::vector<int64_t>> get_graph_buffer_ipc_meta(fptr_t _fa);
void register_graph_buffers(fptr_t _fa, const std::vector<std::string> &handles,
const std::vector<std::vector<int64_t>> &offsets);
#endif

View File

@ -1,16 +0,0 @@
#include <torch/extension.h>
void rotary_embedding(
torch::Tensor& positions,
torch::Tensor& query,
torch::Tensor& key,
int head_size,
torch::Tensor& cos_sin_cache,
bool is_neox);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def(
"rotary_embedding",
&rotary_embedding,
"Apply GPT-NeoX or GPT-J style rotary embedding to query and key");
}

View File

@ -1,12 +1,14 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "cuda_compat.h"
#include "dispatch_utils.h"
namespace vllm {
template<typename scalar_t, bool IS_NEOX>
inline __device__ void apply_rotary_embedding(
inline __device__ void apply_token_rotary_embedding(
scalar_t* __restrict__ arr,
const scalar_t* __restrict__ cos_ptr,
const scalar_t* __restrict__ sin_ptr,
@ -19,14 +21,14 @@ inline __device__ void apply_rotary_embedding(
// GPT-NeoX style rotary embedding.
x_index = rot_offset;
y_index = embed_dim + rot_offset;
cos = __ldg(cos_ptr + x_index);
sin = __ldg(sin_ptr + x_index);
cos = VLLM_LDG(cos_ptr + x_index);
sin = VLLM_LDG(sin_ptr + x_index);
} else {
// GPT-J style rotary embedding.
x_index = 2 * rot_offset;
y_index = 2 * rot_offset + 1;
cos = __ldg(cos_ptr + x_index / 2);
sin = __ldg(sin_ptr + x_index / 2);
cos = VLLM_LDG(cos_ptr + x_index / 2);
sin = VLLM_LDG(sin_ptr + x_index / 2);
}
const scalar_t x = arr[x_index];
@ -35,15 +37,51 @@ inline __device__ void apply_rotary_embedding(
arr[y_index] = y * cos + x * sin;
}
template<typename scalar_t, bool IS_NEOX>
inline __device__ void apply_rotary_embedding(
scalar_t* __restrict__ query, // [batch_size, seq_len, num_heads, head_size] or [num_tokens, num_heads, head_size]
scalar_t* __restrict__ key, // [batch_size, seq_len, num_kv_heads, head_size] or [num_tokens, num_kv_heads, head_size]
const scalar_t* cache_ptr,
const int head_size,
const int num_heads,
const int num_kv_heads,
const int rot_dim,
const int token_idx,
const int64_t query_stride,
const int64_t key_stride)
{
const int embed_dim = rot_dim / 2;
const scalar_t* cos_ptr = cache_ptr;
const scalar_t* sin_ptr = cache_ptr + embed_dim;
const int nq = num_heads * embed_dim;
for (int i = threadIdx.x; i < nq; i += blockDim.x) {
const int head_idx = i / embed_dim;
const int64_t token_head = token_idx * query_stride + head_idx * head_size;
const int rot_offset = i % embed_dim;
apply_token_rotary_embedding<scalar_t, IS_NEOX>(query + token_head, cos_ptr,
sin_ptr, rot_offset, embed_dim);
}
const int nk = num_kv_heads * embed_dim;
for (int i = threadIdx.x; i < nk; i += blockDim.x) {
const int head_idx = i / embed_dim;
const int64_t token_head = token_idx * key_stride + head_idx * head_size;
const int rot_offset = i % embed_dim;
apply_token_rotary_embedding<scalar_t, IS_NEOX>(key + token_head, cos_ptr,
sin_ptr, rot_offset, embed_dim);
}
}
template<typename scalar_t, bool IS_NEOX>
__global__ void rotary_embedding_kernel(
const int64_t* __restrict__ positions, // [num_tokens]
scalar_t* __restrict__ query, // [num_tokens, num_heads, head_size]
scalar_t* __restrict__ key, // [num_tokens, num_kv_heads, head_size]
const int64_t* __restrict__ positions, // [batch_size, seq_len] or [num_tokens]
scalar_t* __restrict__ query, // [batch_size, seq_len, num_heads, head_size] or [num_tokens, num_heads, head_size]
scalar_t* __restrict__ key, // [batch_size, seq_len, num_kv_heads, head_size] or [num_tokens, num_kv_heads, head_size]
const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, rot_dim // 2]
const int rot_dim,
const int query_stride,
const int key_stride,
const int64_t query_stride,
const int64_t key_stride,
const int num_heads,
const int num_kv_heads,
const int head_size) {
@ -52,47 +90,50 @@ __global__ void rotary_embedding_kernel(
int64_t pos = positions[token_idx];
const scalar_t* cache_ptr = cos_sin_cache + pos * rot_dim;
const int embed_dim = rot_dim / 2;
const scalar_t* cos_ptr = cache_ptr;
const scalar_t* sin_ptr = cache_ptr + embed_dim;
apply_rotary_embedding<scalar_t, IS_NEOX>(query, key, cache_ptr, head_size, num_heads, num_kv_heads, rot_dim, token_idx, query_stride, key_stride);
}
const int nq = num_heads * embed_dim;
for (int i = threadIdx.x; i < nq; i += blockDim.x) {
const int head_idx = i / embed_dim;
const int token_head = token_idx * query_stride + head_idx * head_size;
const int rot_offset = i % embed_dim;
apply_rotary_embedding<scalar_t, IS_NEOX>(query + token_head, cos_ptr,
sin_ptr, rot_offset, embed_dim);
}
template<typename scalar_t, bool IS_NEOX>
__global__ void batched_rotary_embedding_kernel(
const int64_t* __restrict__ positions, // [batch_size, seq_len] or [num_tokens]
scalar_t* __restrict__ query, // [batch_size, seq_len, num_heads, head_size] or [num_tokens, num_heads, head_size]
scalar_t* __restrict__ key, // [batch_size, seq_len, num_kv_heads, head_size] or [num_tokens, num_kv_heads, head_size]
const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, rot_dim // 2]
const int64_t* __restrict__ cos_sin_cache_offsets, // [batch_size, seq_len] or [num_tokens]
const int rot_dim,
const int64_t query_stride,
const int64_t key_stride,
const int num_heads,
const int num_kv_heads,
const int head_size) {
// Each thread block is responsible for one token.
const int token_idx = blockIdx.x;
int64_t pos = positions[token_idx];
int64_t cos_sin_cache_offset = cos_sin_cache_offsets[token_idx];
const scalar_t* cache_ptr = cos_sin_cache + (cos_sin_cache_offset + pos) * rot_dim;
const int nk = num_kv_heads * embed_dim;
for (int i = threadIdx.x; i < nk; i += blockDim.x) {
const int head_idx = i / embed_dim;
const int token_head = token_idx * key_stride + head_idx * head_size;
const int rot_offset = i % embed_dim;
apply_rotary_embedding<scalar_t, IS_NEOX>(key + token_head, cos_ptr,
sin_ptr, rot_offset, embed_dim);
}
apply_rotary_embedding<scalar_t, IS_NEOX>(query, key, cache_ptr, head_size, num_heads, num_kv_heads, rot_dim, token_idx, query_stride, key_stride);
}
} // namespace vllm
void rotary_embedding(
torch::Tensor& positions, // [num_tokens]
torch::Tensor& query, // [num_tokens, num_heads * head_size]
torch::Tensor& key, // [num_tokens, num_kv_heads * head_size]
torch::Tensor& positions, // [batch_size, seq_len] or [num_tokens]
torch::Tensor& query, // [batch_size, seq_len, num_heads * head_size] or [num_tokens, num_heads * head_size]
torch::Tensor& key, // [batch_size, seq_len, num_kv_heads * head_size] or [num_tokens, num_kv_heads * head_size]
int head_size,
torch::Tensor& cos_sin_cache, // [max_position, rot_dim]
bool is_neox) {
int num_tokens = query.size(0);
int64_t num_tokens = query.numel() / query.size(-1);
int rot_dim = cos_sin_cache.size(1);
int num_heads = query.size(1) / head_size;
int num_kv_heads = key.size(1) / head_size;
int query_stride = query.stride(0);
int key_stride = key.stride(0);
int num_heads = query.size(-1) / head_size;
int num_kv_heads = key.size(-1) / head_size;
int64_t query_stride = query.stride(-2);
int64_t key_stride = key.stride(-2);
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * rot_dim / 2, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
query.scalar_type(),
@ -125,3 +166,61 @@ void rotary_embedding(
}
});
}
/*
Batched version of rotary embedding, pack multiple LoRAs together
and process in batched manner.
*/
void batched_rotary_embedding(
torch::Tensor& positions, // [batch_size, seq_len] or [num_tokens]
torch::Tensor& query, // [batch_size, seq_len, num_heads * head_size] or [num_tokens, num_heads * head_size]
torch::Tensor& key, // [batch_size, seq_len, num_kv_heads * head_size] or [num_tokens, num_kv_heads * head_size]
int head_size,
torch::Tensor& cos_sin_cache, // [max_position, rot_dim]
bool is_neox,
int rot_dim,
torch::Tensor& cos_sin_cache_offsets // [num_tokens]
) {
int64_t num_tokens = cos_sin_cache_offsets.size(0);
int num_heads = query.size(-1) / head_size;
int num_kv_heads = key.size(-1) / head_size;
int64_t query_stride = query.stride(-2);
int64_t key_stride = key.stride(-2);
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * rot_dim / 2, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
query.scalar_type(),
"rotary_embedding",
[&] {
if (is_neox) {
vllm::batched_rotary_embedding_kernel<scalar_t, true><<<grid, block, 0, stream>>>(
positions.data_ptr<int64_t>(),
query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(),
cos_sin_cache.data_ptr<scalar_t>(),
cos_sin_cache_offsets.data_ptr<int64_t>(),
rot_dim,
query_stride,
key_stride,
num_heads,
num_kv_heads,
head_size);
} else {
vllm::batched_rotary_embedding_kernel<scalar_t, false><<<grid, block, 0, stream>>>(
positions.data_ptr<int64_t>(),
query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(),
cos_sin_cache.data_ptr<scalar_t>(),
cos_sin_cache_offsets.data_ptr<int64_t>(),
rot_dim,
query_stride,
key_stride,
num_heads,
num_kv_heads,
head_size);
}
});
}

217
csrc/punica/LICENSE Normal file
View File

@ -0,0 +1,217 @@
Contains code from https://github.com/punica-ai/punica
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
------------------------------------------------------------------------------------
This product bundles various third-party components under other open source licenses.
This section summarizes those components and their licenses. See licenses/
for text of these licenses.
Apache-2.0
* third_party/nvbench (with LLVM exception)
* third_party/flashinfer
BSD-3-Clause:
* third_party/cutlass

View File

@ -0,0 +1,5 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_bfloat16, nv_bfloat16)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, nv_bfloat16, nv_bfloat16, nv_bfloat16)

View File

@ -0,0 +1,5 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, float, nv_bfloat16)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, nv_bfloat16, float, nv_bfloat16)

View File

@ -0,0 +1,162 @@
#pragma once
template <int feat_in, int feat_out, typename in_T, typename out_T,
typename W_T>
void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t batch_size, int64_t num_layers,
int64_t layer_idx, float scale);
// clang-format off
#define FOR_BGMV_WIDE(f, in_T, out_T, W_T, narrow) \
f(in_T, out_T, W_T, narrow, 128) \
f(in_T, out_T, W_T, narrow, 256) \
f(in_T, out_T, W_T, narrow, 512) \
f(in_T, out_T, W_T, narrow, 640) \
f(in_T, out_T, W_T, narrow, 768) \
f(in_T, out_T, W_T, narrow, 1024) \
f(in_T, out_T, W_T, narrow, 1152) \
f(in_T, out_T, W_T, narrow, 1280) \
f(in_T, out_T, W_T, narrow, 1536) \
f(in_T, out_T, W_T, narrow, 1728) \
f(in_T, out_T, W_T, narrow, 1792) \
f(in_T, out_T, W_T, narrow, 2048) \
f(in_T, out_T, W_T, narrow, 2304) \
f(in_T, out_T, W_T, narrow, 2560) \
f(in_T, out_T, W_T, narrow, 2752) \
f(in_T, out_T, W_T, narrow, 2816) \
f(in_T, out_T, W_T, narrow, 3072) \
f(in_T, out_T, W_T, narrow, 3456) \
f(in_T, out_T, W_T, narrow, 3584) \
f(in_T, out_T, W_T, narrow, 4096) \
f(in_T, out_T, W_T, narrow, 4608) \
f(in_T, out_T, W_T, narrow, 5120) \
f(in_T, out_T, W_T, narrow, 5504) \
f(in_T, out_T, W_T, narrow, 5632) \
f(in_T, out_T, W_T, narrow, 6144) \
f(in_T, out_T, W_T, narrow, 6848) \
f(in_T, out_T, W_T, narrow, 6912) \
f(in_T, out_T, W_T, narrow, 7168) \
f(in_T, out_T, W_T, narrow, 8192) \
f(in_T, out_T, W_T, narrow, 9216) \
f(in_T, out_T, W_T, narrow, 10240) \
f(in_T, out_T, W_T, narrow, 11008) \
f(in_T, out_T, W_T, narrow, 12288) \
f(in_T, out_T, W_T, narrow, 13696) \
f(in_T, out_T, W_T, narrow, 13824) \
f(in_T, out_T, W_T, narrow, 14336) \
f(in_T, out_T, W_T, narrow, 15360) \
f(in_T, out_T, W_T, narrow, 16384) \
f(in_T, out_T, W_T, narrow, 20480) \
f(in_T, out_T, W_T, narrow, 22016) \
f(in_T, out_T, W_T, narrow, 24576) \
f(in_T, out_T, W_T, narrow, 27392) \
f(in_T, out_T, W_T, narrow, 28672) \
f(in_T, out_T, W_T, narrow, 32000) \
f(in_T, out_T, W_T, narrow, 32256) \
f(in_T, out_T, W_T, narrow, 32512) \
f(in_T, out_T, W_T, narrow, 32768) \
f(in_T, out_T, W_T, narrow, 33024) \
f(in_T, out_T, W_T, narrow, 36864) \
f(in_T, out_T, W_T, narrow, 43264) \
f(in_T, out_T, W_T, narrow, 49152) \
f(in_T, out_T, W_T, narrow, 64000) \
f(in_T, out_T, W_T, narrow, 64256) \
f(in_T, out_T, W_T, narrow, 64512) \
f(in_T, out_T, W_T, narrow, 102400) \
f(in_T, out_T, W_T, narrow, 102656) \
f(in_T, out_T, W_T, narrow, 102912) \
f(in_T, out_T, W_T, narrow, 128000) \
f(in_T, out_T, W_T, narrow, 128256) \
f(in_T, out_T, W_T, narrow, 128512) \
// Keep above in sync with vllm/lora/layers::LogitsProcessorWithLoRA
// and vllm/tests/lora/test_punica.py
// Used for defining kernels going from the variety of
// dim in to the narrow dim out
// Using it for the fully sharded column
// parallel LoRA A which splits the rank dim
#define FOR_INST_BGMV_NARROW(f, in_T, out_T, W_T, narrow) \
f(in_T, out_T, W_T, 128, narrow) \
f(in_T, out_T, W_T, 256, narrow) \
f(in_T, out_T, W_T, 512, narrow) \
f(in_T, out_T, W_T, 640, narrow) \
f(in_T, out_T, W_T, 768, narrow) \
f(in_T, out_T, W_T, 1024, narrow) \
f(in_T, out_T, W_T, 1152, narrow) \
f(in_T, out_T, W_T, 1280, narrow) \
f(in_T, out_T, W_T, 1536, narrow) \
f(in_T, out_T, W_T, 1728, narrow) \
f(in_T, out_T, W_T, 1792, narrow) \
f(in_T, out_T, W_T, 2048, narrow) \
f(in_T, out_T, W_T, 2304, narrow) \
f(in_T, out_T, W_T, 2560, narrow) \
f(in_T, out_T, W_T, 2752, narrow) \
f(in_T, out_T, W_T, 2816, narrow) \
f(in_T, out_T, W_T, 3072, narrow) \
f(in_T, out_T, W_T, 3456, narrow) \
f(in_T, out_T, W_T, 3584, narrow) \
f(in_T, out_T, W_T, 4096, narrow) \
f(in_T, out_T, W_T, 4608, narrow) \
f(in_T, out_T, W_T, 5120, narrow) \
f(in_T, out_T, W_T, 5504, narrow) \
f(in_T, out_T, W_T, 5632, narrow) \
f(in_T, out_T, W_T, 6144, narrow) \
f(in_T, out_T, W_T, 6848, narrow) \
f(in_T, out_T, W_T, 6912, narrow) \
f(in_T, out_T, W_T, 7168, narrow) \
f(in_T, out_T, W_T, 8192, narrow) \
f(in_T, out_T, W_T, 9216, narrow) \
f(in_T, out_T, W_T, 10240, narrow) \
f(in_T, out_T, W_T, 11008, narrow) \
f(in_T, out_T, W_T, 12288, narrow) \
f(in_T, out_T, W_T, 13696, narrow) \
f(in_T, out_T, W_T, 13824, narrow) \
f(in_T, out_T, W_T, 14336, narrow) \
f(in_T, out_T, W_T, 15360, narrow) \
f(in_T, out_T, W_T, 16384, narrow) \
f(in_T, out_T, W_T, 20480, narrow) \
f(in_T, out_T, W_T, 22016, narrow) \
f(in_T, out_T, W_T, 24576, narrow) \
f(in_T, out_T, W_T, 27392, narrow) \
f(in_T, out_T, W_T, 28672, narrow) \
f(in_T, out_T, W_T, 32000, narrow) \
f(in_T, out_T, W_T, 32256, narrow) \
f(in_T, out_T, W_T, 32512, narrow) \
f(in_T, out_T, W_T, 32768, narrow) \
f(in_T, out_T, W_T, 33024, narrow) \
f(in_T, out_T, W_T, 36864, narrow) \
f(in_T, out_T, W_T, 43264, narrow) \
f(in_T, out_T, W_T, 49152, narrow) \
f(in_T, out_T, W_T, 64000, narrow) \
f(in_T, out_T, W_T, 64256, narrow) \
f(in_T, out_T, W_T, 64512, narrow) \
f(in_T, out_T, W_T, 102400, narrow) \
f(in_T, out_T, W_T, 102656, narrow) \
f(in_T, out_T, W_T, 102912, narrow) \
f(in_T, out_T, W_T, 128000, narrow) \
f(in_T, out_T, W_T, 128256, narrow) \
f(in_T, out_T, W_T, 128512, narrow) \
// Keep above in sync with vllm/lora/layers::SamplerWithLoRA
// Keep this in sync with vllm/config::LoRAConfig
#define FOR_BGMV_WIDE_NARROW(f, in_T, out_T, W_T) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 8) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 16) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 32) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 64)
#define FOR_INST_BGMV_WIDE_NARROW(f, in_T, out_T, W_T) \
FOR_INST_BGMV_NARROW(f, in_T, out_T, W_T, 1) \
FOR_INST_BGMV_NARROW(f, in_T, out_T, W_T, 2) \
FOR_INST_BGMV_NARROW(f, in_T, out_T, W_T, 4) \
f(in_T, out_T, W_T, 8, 64) \
f(in_T, out_T, W_T, 16, 64) \
f(in_T, out_T, W_T, 32, 64) \
f(in_T, out_T, W_T, 64, 64)
// clang-format on

View File

@ -0,0 +1,5 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_half, nv_half)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, nv_half, nv_half, nv_half)

View File

@ -0,0 +1,5 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, float, nv_half)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, nv_half, float, nv_half)

View File

@ -0,0 +1,5 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_bfloat16, nv_bfloat16)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, float, nv_bfloat16, nv_bfloat16)

View File

@ -0,0 +1,5 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_half, nv_half)
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, float, nv_half, nv_half)

View File

@ -0,0 +1,297 @@
#pragma once
#include <ATen/cuda/CUDAContext.h>
#include <cooperative_groups.h>
#include <cuda/pipeline>
#include <cuda_runtime.h>
#include <iostream>
#include <stdio.h>
#include "vec_dtypes.cuh"
namespace cg = cooperative_groups;
// nthrs = (32, 4)
template <int feat_in, int feat_out, size_t vec_size, size_t X_copy_size,
size_t W_copy_size, int tx, int ty, int tz, typename in_T,
typename out_T, typename W_T>
__global__ void
bgmv_shrink_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t num_layers, int64_t layer_idx,
float scale) {
size_t batch_idx = blockIdx.y;
int64_t idx = indicies[batch_idx] * num_layers + layer_idx;
if (idx < 0) {
return;
}
auto block = cg::this_thread_block();
size_t j = blockIdx.x;
constexpr size_t num_pipeline_stages = 2;
constexpr size_t tile_size = tx * ty * vec_size;
__shared__ W_T W_shared[num_pipeline_stages * tile_size];
__shared__ in_T X_shared[num_pipeline_stages * tile_size];
__shared__ float y_warpwise[ty];
size_t W_shared_offset[num_pipeline_stages] = {0U, 1U * tile_size};
size_t X_shared_offset[num_pipeline_stages] = {0U, 1U * tile_size};
auto pipe = cuda::make_pipeline();
// pipeline load W/X and compute WX;
pipe.producer_acquire();
cuda::memcpy_async(W_shared + (threadIdx.y * tx + threadIdx.x) * vec_size,
W + (idx * feat_out + j) * feat_in +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<W_copy_size>(W_copy_size), pipe);
cuda::memcpy_async(X_shared + (threadIdx.y * tx + threadIdx.x) * vec_size,
X + (batch_idx * feat_in) +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<X_copy_size>(X_copy_size), pipe);
pipe.producer_commit();
size_t copy_idx, compute_idx;
float y = 0.f;
vec_t<in_T, vec_size> x_vec;
vec_t<W_T, vec_size> w_vec;
size_t tile_idx;
#pragma unroll
for (tile_idx = 1; tile_idx < (feat_in + tile_size - 1) / tile_size;
++tile_idx) {
copy_idx = tile_idx % num_pipeline_stages;
// pipeline stage: async copy W fragment
pipe.producer_acquire();
if (tile_idx * tile_size + threadIdx.y * tx * vec_size < feat_in) {
cuda::memcpy_async(W_shared + W_shared_offset[copy_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size,
W + (idx * feat_out + j) * feat_in +
tile_idx * tile_size +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<W_copy_size>(W_copy_size), pipe);
cuda::memcpy_async(X_shared + X_shared_offset[copy_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size,
X + (batch_idx * feat_in) + tile_idx * tile_size +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<X_copy_size>(X_copy_size), pipe);
}
pipe.producer_commit();
compute_idx = (tile_idx - 1) % num_pipeline_stages;
// pipeline stage: compute WX
pipe.consumer_wait();
block.sync();
x_vec.load(X_shared + X_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
w_vec.load(W_shared + W_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
float sum = 0.f;
#pragma unroll
for (size_t i = 0; i < vec_size; ++i) {
sum += float(w_vec[i]) * float(x_vec[i]) * scale;
}
#pragma unroll
for (size_t offset = tx / 2; offset > 0; offset /= 2) {
sum += __shfl_down_sync(0xffffffff, sum, offset);
}
y_warpwise[threadIdx.y] = sum;
block.sync();
#pragma unroll
for (size_t i = 0; i < ty; ++i) {
y += y_warpwise[i];
}
block.sync();
pipe.consumer_release();
}
compute_idx = (tile_idx - 1) % num_pipeline_stages;
// final pipeline stage
pipe.consumer_wait();
block.sync();
x_vec.load(X_shared + X_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
w_vec.load(W_shared + W_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
float sum = 0.f;
#pragma unroll
for (size_t i = 0; i < vec_size; ++i) {
sum += float(w_vec[i]) * float(x_vec[i]) * scale;
}
#pragma unroll
for (size_t offset = tx / 2; offset > 0; offset /= 2) {
sum += __shfl_down_sync(0xffffffff, sum, offset);
}
y_warpwise[threadIdx.y] =
((tile_idx - 1) * tile_size + threadIdx.y * tx * vec_size < feat_in)
? sum
: 0.f;
block.sync();
#pragma unroll
for (size_t i = 0; i < ty; ++i) {
y += y_warpwise[i];
}
block.sync();
pipe.consumer_release();
// write Y;
if (block.thread_rank() == 0) {
Y[batch_idx * full_y_size + y_offset + j] += static_cast<out_T>(y);
}
}
// nthrs = (2, 16, 4)
template <int feat_in, int feat_out, size_t vec_size, int tx, int ty, int tz,
typename in_T, typename out_T, typename W_T>
__global__ void
bgmv_expand_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t num_layers, int64_t layer_idx,
float scale) {
size_t batch_idx = blockIdx.y;
int64_t idx = indicies[batch_idx] * num_layers + layer_idx;
if (idx < 0) {
return;
}
auto block = cg::this_thread_block();
size_t tile_idx = blockIdx.x;
// load X;
vec_t<in_T, vec_size> x_vec;
x_vec.load(X + batch_idx * feat_in + threadIdx.x * vec_size);
// load W;
vec_t<W_T, vec_size> w_vec;
w_vec.load(W + (idx * feat_out + tile_idx * tz * ty) * feat_in +
block.thread_rank() * vec_size);
float sum = 0.f;
#pragma unroll
for (size_t i = 0; i < vec_size; ++i) {
sum += float(w_vec[i]) * float(x_vec[i]) * scale;
}
cg::thread_block_tile g = cg::tiled_partition<tx>(block);
#pragma unroll
for (size_t offset = tx / 2; offset > 0; offset /= 2) {
sum += g.shfl_down(sum, offset);
}
sum = g.shfl(sum, 0);
if (threadIdx.x == 0) {
Y[batch_idx * full_y_size + y_offset + tile_idx * (tz * ty) +
threadIdx.z * ty + threadIdx.y] += static_cast<out_T>(sum);
}
}
template <int feat_in, int feat_out, typename in_T, typename out_T,
typename W_T>
void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t batch_size, int64_t num_layers,
int64_t layer_idx, float scale) {
constexpr size_t vec_size = 8;
constexpr int tz = 4;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if constexpr (feat_in <= feat_out) {
static_assert(feat_in % vec_size == 0);
constexpr int tx = feat_in / vec_size;
static_assert((32 % tx == 0 && feat_out % (32 / tx * tz) == 0) ||
(16 % tx == 0 && feat_out % (16 / tx * tz) == 0) ||
(8 % tx == 0 && feat_out % (8 / tx * tz) == 0));
if constexpr (32 % tx == 0 && feat_out % (32 / tx * tz) == 0) {
constexpr int ty = 32 / tx;
dim3 nblks(feat_out / (ty * tz), batch_size);
dim3 nthrs(tx, ty, tz);
bgmv_expand_kernel<feat_in, feat_out, vec_size, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else if (16 % tx == 0 && feat_out % (16 / tx * tz) == 0) {
constexpr int ty = 16 / tx;
dim3 nblks(feat_out / (ty * tz), batch_size);
dim3 nthrs(tx, ty, tz);
bgmv_expand_kernel<feat_in, feat_out, vec_size, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else {
constexpr int ty = 8 / tx;
dim3 nblks(feat_out / (ty * tz), batch_size);
dim3 nthrs(tx, ty, tz);
bgmv_expand_kernel<feat_in, feat_out, vec_size, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
}
} else {
static_assert(feat_in % (vec_size * 32) == 0 ||
feat_in % (vec_size * 16) == 0 ||
feat_in % (vec_size * 8) == 0);
if constexpr (feat_in % (vec_size * 32) == 0) {
constexpr int tx = 32;
constexpr int ty = 4;
dim3 nblks(feat_out, batch_size);
dim3 nthrs(tx, ty);
bgmv_shrink_kernel<feat_in, feat_out, vec_size, vec_size * sizeof(in_T),
vec_size * sizeof(W_T), tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else if constexpr (feat_in % (vec_size / 2 * 32) == 0) {
constexpr int tx = 32;
constexpr int ty = 4;
dim3 nblks(feat_out, batch_size);
dim3 nthrs(tx, ty);
bgmv_shrink_kernel<feat_in, feat_out, vec_size / 2,
vec_size * sizeof(in_T) / 2,
vec_size * sizeof(W_T) / 2, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else if constexpr (feat_in % (vec_size / 2 * 16) == 0) {
constexpr int tx = 16;
constexpr int ty = 4;
dim3 nblks(feat_out, batch_size);
dim3 nthrs(tx, ty);
bgmv_shrink_kernel<feat_in, feat_out, vec_size / 2,
vec_size * sizeof(in_T) / 2,
vec_size * sizeof(W_T) / 2, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
}
}
}
#define INST_BGMV(feat_in, feat_out, in_T, out_T, W_T) \
template void bgmv_kernel<feat_in, feat_out>( \
out_T * __restrict__ Y, const in_T *__restrict__ X, \
const W_T *__restrict__ W, const int64_t *__restrict__ indicies, \
int64_t y_offset, int64_t full_y_size, int64_t batch_size, \
int64_t num_layers, int64_t layer_idx, float scale);
#define INST_BGMV_ONESIDE(in_T, out_T, W_T, feat_in, feat_out) \
INST_BGMV(feat_in, feat_out, in_T, out_T, W_T)
#define INST_BGMV_TWOSIDE(in_T, out_T, W_T, narrow, wide) \
INST_BGMV(narrow, wide, in_T, out_T, W_T) \
INST_BGMV(wide, narrow, in_T, out_T, W_T)

View File

@ -0,0 +1,48 @@
DTYPES = ["fp16", "bf16", "fp32"]
DTYPE_MAP = {
"fp16": "nv_half",
"bf16": "nv_bfloat16",
"fp32": "float",
}
TEMPLATE = """
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, {input_dtype}, {output_dtype}, {weight_dtype})
FOR_INST_BGMV_WIDE_NARROW(INST_BGMV_ONESIDE, {input_dtype}, {output_dtype}, {weight_dtype})
""".lstrip() # noqa: E501
for input_dtype in DTYPES:
for output_dtype in DTYPES:
for weight_dtype in DTYPES:
if weight_dtype == "fp32":
# FP32 weights are not supported.
continue
if output_dtype == "fp32":
# LoRA A matrix.
if input_dtype != weight_dtype:
# NOTE(woosuk): While Punica supports the case where the
# input and weight dtypes are different, we only generate
# the kernels the same dtypes to reduce the binary size.
continue
elif input_dtype == "fp32":
# LoRA B matrix.
if output_dtype != weight_dtype:
# NOTE(woosuk): While Punica supports the case where the
# output and weight dtypes are different, we only generate
# the kernels the same dtypes to reduce the binary size.
continue
elif not (input_dtype == output_dtype == weight_dtype):
# NOTE(woosuk): While Punica supports mixed data types for
# input, output, and weight, we only generate the kernels with
# the same data types to reduce the binary size.
continue
kernel_definition = TEMPLATE.format(
input_dtype=DTYPE_MAP[input_dtype],
output_dtype=DTYPE_MAP[output_dtype],
weight_dtype=DTYPE_MAP[weight_dtype])
filename = f"bgmv_{input_dtype}_{output_dtype}_{weight_dtype}.cu"
with open(filename, "w") as f:
f.write(kernel_definition)

File diff suppressed because it is too large Load Diff

582
csrc/punica/punica_ops.cc Normal file
View File

@ -0,0 +1,582 @@
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include <cstdint>
#include "bgmv/bgmv_config.h"
namespace {
//====== utils ======
inline void check_shape(const torch::Tensor &a, const torch::Tensor &b,
const char *a_name, const char *b_name) {
TORCH_CHECK(a.dim() == b.dim(), a_name, ".dim() != ", b_name, ".dim(). ",
a.dim(), " vs ", b.dim());
for (int i = 0; i < a.dim(); ++i) {
TORCH_CHECK(a.size(i) == b.size(i), a_name, ".size(", i, ") != ", b_name,
".size(", i, ")");
}
}
inline constexpr uint64_t pack_u32(uint32_t a, uint32_t b) {
return (uint64_t(a) << 32) | uint64_t(b);
}
#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) \
TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) \
CHECK_CUDA(x); \
CHECK_CONTIGUOUS(x)
#define CHECK_DIM(d, x) \
TORCH_CHECK(x.dim() == d, #x " must be a " #d "D tensor")
#define CHECK_SHAPE(a, b) check_shape(a, b, #a, #b)
#define CHECK_EQ(a, b) \
TORCH_CHECK(a == b, "CHECK_EQ(" #a ", " #b ") failed. ", a, " vs ", b)
//====== bgmv ======
template <typename in_T, typename out_T, typename W_T>
inline bool launch_bgmv_kernel(out_T *Y, const in_T *X, const W_T *W,
const int64_t *lora_indices,
uint32_t in_features, uint32_t out_features,
int64_t y_offset, int64_t full_y_size,
int64_t batch_size, int64_t num_layers,
int64_t layer_idx, float scale) {
// NOTE(woosuk): While Punica supports various combinations of input/output
// data types, we limit the supported data types to reduce the binary size.
constexpr bool is_input_float = std::is_same<in_T, float>::value;
constexpr bool is_output_float = std::is_same<out_T, float>::value;
if (is_input_float) {
if (!std::is_same<out_T, W_T>::value) {
return false;
}
} else if (is_output_float) {
if (!std::is_same<in_T, W_T>::value) {
return false;
}
} else if (!(std::is_same<in_T, W_T>::value &&
std::is_same<out_T, W_T>::value)) {
return false;
}
switch (pack_u32(in_features, out_features)) {
#define CASE_ONESIDE(_in_T, _out_T, _W_T, feat_in, feat_out) \
case pack_u32(feat_in, feat_out): \
bgmv_kernel<feat_in, feat_out>(Y, X, W, lora_indices, y_offset, \
full_y_size, batch_size, num_layers, \
layer_idx, scale); \
break;
#define CASE(_in_T, _out_T, _W_T, narrow, wide) \
CASE_ONESIDE(in_T, out_T, W_T, narrow, wide) \
CASE_ONESIDE(in_T, out_T, W_T, wide, narrow)
FOR_BGMV_WIDE_NARROW(CASE, _, _, _)
FOR_INST_BGMV_WIDE_NARROW(CASE_ONESIDE, _, _, _)
#undef CASE
#undef CASE_ONESIDE
default:
return false;
}
return true;
}
void dispatch_bgmv(torch::Tensor y, torch::Tensor x, torch::Tensor w,
torch::Tensor indicies, int64_t layer_idx, float scale) {
CHECK_INPUT(y);
CHECK_INPUT(x);
CHECK_INPUT(w);
CHECK_INPUT(indicies);
CHECK_DIM(2, y);
CHECK_DIM(2, x);
CHECK_DIM(4, w);
CHECK_DIM(1, indicies);
int64_t B = x.size(0);
int64_t h_in = x.size(1);
int64_t h_out = y.size(1);
int64_t num_layers = w.size(1);
CHECK_EQ(w.size(3), h_in);
CHECK_EQ(w.size(2), h_out);
CHECK_EQ(indicies.size(0), x.size(0));
CHECK_EQ(y.size(0), x.size(0));
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
bool ok = false;
if (h_in <= 128512 && h_out <= 128512) {
// TODO: See if we can get rid of this massive nested switch
switch (x.scalar_type()) {
case at::ScalarType::Half:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
default:
break;
}
}
TORCH_CHECK(ok, "No suitable kernel.", " h_in=", h_in, " h_out=", h_out,
" dtype=", x.scalar_type(), " out_dtype=", y.scalar_type());
}
void dispatch_bgmv_low_level(torch::Tensor y, torch::Tensor x, torch::Tensor w,
torch::Tensor indicies, int64_t layer_idx,
float scale, int64_t h_in, int64_t h_out,
int64_t y_offset) {
CHECK_INPUT(y);
CHECK_INPUT(x);
CHECK_INPUT(w);
CHECK_INPUT(indicies);
CHECK_DIM(2, y);
CHECK_DIM(2, x);
CHECK_DIM(4, w);
CHECK_DIM(1, indicies);
int64_t B = x.size(0);
int64_t num_layers = w.size(1);
int64_t full_y_size = y.size(1);
CHECK_EQ(w.size(3), h_in);
CHECK_EQ(w.size(2), h_out);
CHECK_EQ(indicies.size(0), x.size(0));
CHECK_EQ(y.size(0), x.size(0));
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
bool ok = false;
if (h_in <= 128512 && h_out <= 128512) {
// TODO: See if we can get rid of this massive nested switch
switch (x.scalar_type()) {
case at::ScalarType::Half:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
default:
break;
}
}
TORCH_CHECK(ok, "No suitable kernel.", " h_in=", h_in, " h_out=", h_out,
" dtype=", x.scalar_type(), " out_dtype=", y.scalar_type());
}
} // namespace
//====== pybind ======
#define DEFINE_pybind(name) m.def(#name, &name, #name);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("dispatch_bgmv", &dispatch_bgmv, "dispatch_bgmv");
m.def("dispatch_bgmv_low_level", &dispatch_bgmv_low_level,
"dispatch_bgmv_low_level");
}

Some files were not shown because too many files have changed in this diff Show More