Compare commits
248 Commits
v0.11.0rc6
...
codex/remo
Author | SHA1 | Date | |
---|---|---|---|
944913c0fa | |||
b8f603cebe | |||
fc679696f8 | |||
ab5e7d93f4 | |||
0340f45553 | |||
19a00eb210 | |||
391612e78b | |||
77c95f72f7 | |||
59f30d0448 | |||
43c146ca42 | |||
7c2ec0fe87 | |||
039b6bade3 | |||
6c04638214 | |||
91ac7f764d | |||
4be7d7c1c9 | |||
59b477645c | |||
778f554157 | |||
d3c84297c3 | |||
f509a20846 | |||
60bc25e74c | |||
b893d661b1 | |||
6b6e98775f | |||
9c3c21c519 | |||
512b8affa4 | |||
1c0c68202c | |||
5f317530ec | |||
557b2e961d | |||
4e256cadc2 | |||
d6953beb91 | |||
17edd8a807 | |||
3303cfb4ac | |||
b7e8e4e6be | |||
432e1cbc23 | |||
201c971e96 | |||
e0986ea07b | |||
a964e5e6c3 | |||
78c1d5bfd2 | |||
59a85c366e | |||
119f00630b | |||
a42d2df75f | |||
5c057e068f | |||
ed3aeb25a4 | |||
86ee949128 | |||
4570535ec4 | |||
2a6dc67eb5 | |||
f05fea1f5e | |||
d0df145c2a | |||
1838cd4860 | |||
7d6b03381e | |||
7c2e91c4e0 | |||
736fbf4c89 | |||
44ea85137a | |||
d3d649efec | |||
ea507c3a93 | |||
9705fba7b7 | |||
2f7dbc9b42 | |||
ea25a76c05 | |||
67bc0c003e | |||
5a05f26603 | |||
7ef40bb983 | |||
767cbb011d | |||
7cfa4b24bf | |||
b71fcd4905 | |||
75003f34e8 | |||
78b8015a4d | |||
831b124151 | |||
c1ffcb55da | |||
0879736aab | |||
a26917332f | |||
cd9e5b8340 | |||
300a59c4c3 | |||
d76541a6c5 | |||
dd96465fd7 | |||
4f8f47e87e | |||
d78fda7cda | |||
73a99cc2a5 | |||
adae0c1f43 | |||
cbf9221992 | |||
5f42fc53b6 | |||
8ee846c27c | |||
812b7f54a8 | |||
5f2cacdb1e | |||
aa5053e3fe | |||
79aa244678 | |||
2ed3f20dba | |||
48f309029a | |||
0e93ac0b3a | |||
5446ad1d24 | |||
f9a8084e48 | |||
3e70e3d4d5 | |||
eb0fa43868 | |||
0ad9951c41 | |||
8c9117181d | |||
c4b48d3c0f | |||
10d765482d | |||
39b643dc1a | |||
711f485643 | |||
9c5ee91b2a | |||
27edd2aeb4 | |||
e5017cd6d6 | |||
6a7796e871 | |||
47b9339546 | |||
5d5146eee3 | |||
2aaa423842 | |||
ad2d788016 | |||
36ce76c632 | |||
f1fc2107a3 | |||
13cdc02173 | |||
502640c3f9 | |||
3d5f1c8640 | |||
1cab2f9cad | |||
1e50f1be70 | |||
ad87ba927a | |||
decf7f794b | |||
d00d652998 | |||
3b279a84be | |||
5e4a8223c6 | |||
e51de388a2 | |||
cc253b73d3 | |||
7d6fb905d9 | |||
418d111f8c | |||
be8921fbba | |||
d4e7a1152d | |||
be22bb6f3d | |||
169313b9f8 | |||
0b018d8baf | |||
c31246800c | |||
4134312b35 | |||
da554f932e | |||
aac622e0cd | |||
1726e93ef1 | |||
ee04c0cd04 | |||
c36f0aa300 | |||
5234dc7451 | |||
3b7c20a6b5 | |||
f9e714813a | |||
2518230d3e | |||
a332b84578 | |||
1405f0c7ba | |||
84d57342b6 | |||
57b46d769e | |||
f48b6a03ba | |||
2a69ab4899 | |||
8d7da92fd7 | |||
e952eee698 | |||
66bca9b8bd | |||
99028fda44 | |||
1244948885 | |||
a73f6491c8 | |||
001e50c92c | |||
96ebcaa3ad | |||
5db1870bb9 | |||
2ce26b9b5d | |||
a388252ac4 | |||
9a9f48dff7 | |||
67f3fb0844 | |||
43b752c325 | |||
cfd302db9b | |||
fb610ae684 | |||
2f652e6cdf | |||
e6a226efba | |||
a2e6fa7e03 | |||
9f1c4ecaf2 | |||
ef283548f7 | |||
f4db5e6de1 | |||
099aaee536 | |||
35fe398c7c | |||
bb6d43047e | |||
bc546f76a1 | |||
80608ba5af | |||
e184c9c510 | |||
d7e34b4210 | |||
ef6e0e7132 | |||
1ad3aca682 | |||
8d0afa9b42 | |||
fa7e254a7f | |||
e23cacda35 | |||
2e1b8bc2b6 | |||
e47433b3c1 | |||
23194d83e8 | |||
61aedb5ffe | |||
d3bd171123 | |||
89e4050af4 | |||
78a47f87ce | |||
6a113d9aed | |||
2e4fe48c37 | |||
8eb0a1d906 | |||
fea3e476aa | |||
61a3431613 | |||
9bedac9623 | |||
c42ff4f4fd | |||
d5ab28511c | |||
e61eb5e09d | |||
0899ba5b42 | |||
145ac73317 | |||
d0d138bc55 | |||
43227236ec | |||
8616300ae2 | |||
edbaadd91f | |||
9360d34fa1 | |||
1b67b04656 | |||
bd51f78e39 | |||
65ecb4f134 | |||
143844fa43 | |||
219cfbe7f6 | |||
9b44a7d926 | |||
a3ae45a38c | |||
0307428d65 | |||
471997adf6 | |||
b1ded114b9 | |||
f4e4088c99 | |||
0efd540dbc | |||
6144754014 | |||
69311446ba | |||
da63274d9f | |||
c216119d64 | |||
5546acb463 | |||
c0ec81836f | |||
b65e56babe | |||
49996cd597 | |||
ecb37e276a | |||
a5354b3ed2 | |||
f9df8b4ad7 | |||
ec152c8748 | |||
7977e5027c | |||
3f5d902d2a | |||
27d7638b94 | |||
176173989a | |||
23b8ee672d | |||
3939152069 | |||
cd87bfbf37 | |||
b3613e3ace | |||
d346ec695e | |||
c242c98031 | |||
f1d53d150c | |||
92da847cf5 | |||
3958b96bf5 | |||
8bf8f45822 | |||
6f5c0931c1 | |||
4e33a7ea85 | |||
dc48ba0c75 | |||
4778b42660 | |||
c70ac4b8ff | |||
cf89202855 | |||
f075693da7 | |||
f708bd4904 | |||
0002b7f0d1 | |||
11aafd9886 |
@ -368,7 +368,7 @@ if __name__ == "__main__":
|
||||
# The GPUs sometimes come in format of "GPUTYPE\nGPUTYPE\n...",
|
||||
# we want to turn it into "8xGPUTYPE"
|
||||
df["GPU"] = df["GPU"].apply(
|
||||
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}"
|
||||
lambda x: f"{len(x.splitlines())}x{x.splitlines()[0]}"
|
||||
)
|
||||
|
||||
# get markdown tables
|
||||
|
@ -181,18 +181,14 @@ launch_vllm_server() {
|
||||
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
|
||||
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
|
||||
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
|
||||
server_command="python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
server_command="vllm serve $model \
|
||||
-tp $tp \
|
||||
--model $model \
|
||||
--port $port \
|
||||
$server_args"
|
||||
else
|
||||
echo "Key 'fp8' does not exist in common params."
|
||||
server_command="python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
server_command="vllm serve $model \
|
||||
-tp $tp \
|
||||
--model $model \
|
||||
--port $port \
|
||||
$server_args"
|
||||
fi
|
||||
|
@ -365,8 +365,7 @@ run_serving_tests() {
|
||||
continue
|
||||
fi
|
||||
|
||||
server_command="$server_envs python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
server_command="$server_envs vllm serve \
|
||||
$server_args"
|
||||
|
||||
# run the server
|
||||
|
@ -1,46 +0,0 @@
|
||||
# This local pyproject file is part of the migration from yapf to ruff format.
|
||||
# It uses the same core rules as the main pyproject.toml file, but with the
|
||||
# following differences:
|
||||
# - ruff line length is overridden to 88
|
||||
# - deprecated typing ignores (UP006, UP035) have been removed
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 88
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"vllm/third_party/**" = ["ALL"]
|
||||
"vllm/version.py" = ["F401"]
|
||||
"vllm/_version.py" = ["ALL"]
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = [
|
||||
# pycodestyle
|
||||
"E",
|
||||
# Pyflakes
|
||||
"F",
|
||||
# pyupgrade
|
||||
"UP",
|
||||
# flake8-bugbear
|
||||
"B",
|
||||
# flake8-simplify
|
||||
"SIM",
|
||||
# isort
|
||||
"I",
|
||||
# flake8-logging-format
|
||||
"G",
|
||||
]
|
||||
ignore = [
|
||||
# star imports
|
||||
"F405", "F403",
|
||||
# lambda expression assignment
|
||||
"E731",
|
||||
# Loop control variable not used within loop body
|
||||
"B007",
|
||||
# f-string format
|
||||
"UP032",
|
||||
# Can remove once 3.10+ is the minimum Python version
|
||||
"UP007",
|
||||
]
|
||||
|
||||
[tool.ruff.format]
|
||||
docstring-code-format = true
|
@ -76,7 +76,7 @@ steps:
|
||||
queue: arm64_cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
|
||||
|
||||
# Add job to create multi-arch manifest
|
||||
@ -150,11 +150,16 @@ steps:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly"
|
||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
|
||||
- "docker push vllm/vllm-openai:nightly"
|
||||
- "docker push vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
|
||||
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-x86_64"
|
||||
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-aarch64"
|
||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-x86_64 vllm/vllm-openai:nightly-x86_64"
|
||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-aarch64 vllm/vllm-openai:nightly-aarch64"
|
||||
- "docker push vllm/vllm-openai:nightly-x86_64"
|
||||
- "docker push vllm/vllm-openai:nightly-aarch64"
|
||||
- "docker manifest create vllm/vllm-openai:nightly vllm/vllm-openai:nightly-x86_64 vllm/vllm-openai:nightly-aarch64 --amend"
|
||||
- "docker manifest create vllm/vllm-openai:nightly-$BUILDKITE_COMMIT vllm/vllm-openai:nightly-x86_64 vllm/vllm-openai:nightly-aarch64 --amend"
|
||||
- "docker manifest push vllm/vllm-openai:nightly"
|
||||
- "docker manifest push vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
|
||||
# Clean up old nightly builds (keep only last 14)
|
||||
- "bash .buildkite/scripts/cleanup-nightly-builds.sh"
|
||||
plugins:
|
||||
@ -163,3 +168,4 @@ steps:
|
||||
password-env: DOCKERHUB_TOKEN
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
DOCKERHUB_USERNAME: "vllmbot"
|
||||
|
@ -8,20 +8,41 @@ set -ex
|
||||
# DockerHub API endpoint for vllm/vllm-openai repository
|
||||
REPO_API_URL="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags"
|
||||
|
||||
# Get DockerHub token from environment
|
||||
# Get DockerHub credentials from environment
|
||||
if [ -z "$DOCKERHUB_TOKEN" ]; then
|
||||
echo "Error: DOCKERHUB_TOKEN environment variable is not set"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ -z "$DOCKERHUB_USERNAME" ]; then
|
||||
echo "Error: DOCKERHUB_USERNAME environment variable is not set"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Get DockerHub bearer token
|
||||
echo "Getting DockerHub bearer token..."
|
||||
set +x
|
||||
BEARER_TOKEN=$(curl -s -X POST \
|
||||
-H "Content-Type: application/json" \
|
||||
-d "{\"username\": \"$DOCKERHUB_USERNAME\", \"password\": \"$DOCKERHUB_TOKEN\"}" \
|
||||
"https://hub.docker.com/v2/users/login" | jq -r '.token')
|
||||
set -x
|
||||
|
||||
if [ -z "$BEARER_TOKEN" ] || [ "$BEARER_TOKEN" = "null" ]; then
|
||||
echo "Error: Failed to get DockerHub bearer token"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Function to get all tags from DockerHub
|
||||
get_all_tags() {
|
||||
local page=1
|
||||
local all_tags=""
|
||||
|
||||
while true; do
|
||||
local response=$(curl -s -H "Authorization: Bearer $DOCKERHUB_TOKEN" \
|
||||
set +x
|
||||
local response=$(curl -s -H "Authorization: Bearer $BEARER_TOKEN" \
|
||||
"$REPO_API_URL?page=$page&page_size=100")
|
||||
set -x
|
||||
|
||||
# Get both last_updated timestamp and tag name, separated by |
|
||||
local tags=$(echo "$response" | jq -r '.results[] | select(.name | startswith("nightly-")) | "\(.last_updated)|\(.name)"')
|
||||
@ -43,7 +64,9 @@ delete_tag() {
|
||||
echo "Deleting tag: $tag_name"
|
||||
|
||||
local delete_url="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags/$tag_name"
|
||||
local response=$(curl -s -X DELETE -H "Authorization: Bearer $DOCKERHUB_TOKEN" "$delete_url")
|
||||
set +x
|
||||
local response=$(curl -s -X DELETE -H "Authorization: Bearer $BEARER_TOKEN" "$delete_url")
|
||||
set -x
|
||||
|
||||
if echo "$response" | jq -e '.detail' > /dev/null 2>&1; then
|
||||
echo "Warning: Failed to delete tag $tag_name: $(echo "$response" | jq -r '.detail')"
|
||||
|
191
.buildkite/scripts/hardware_ci/run-npu-test.sh
Normal file
@ -0,0 +1,191 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script build the Ascend NPU docker image and run the offline inference inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
# Base ubuntu image with basic ascend development libraries and python installed
|
||||
VLLM_ASCEND_REPO="https://github.com/vllm-project/vllm-ascend.git"
|
||||
CONFIG_FILE_REMOTE_PATH="tests/e2e/vllm_interface/vllm_test.cfg"
|
||||
TEST_RUN_CONFIG_FILE="vllm_test.cfg"
|
||||
VLLM_ASCEND_TMP_DIR=
|
||||
# Get the test run configuration file from the vllm-ascend repository
|
||||
fetch_vllm_test_cfg() {
|
||||
VLLM_ASCEND_TMP_DIR=$(mktemp -d)
|
||||
# Ensure that the temporary directory is cleaned up when an exception occurs during configuration file retrieval
|
||||
cleanup() {
|
||||
rm -rf "${VLLM_ASCEND_TMP_DIR}"
|
||||
}
|
||||
trap cleanup EXIT
|
||||
|
||||
GIT_TRACE=1 git clone -v --depth 1 "${VLLM_ASCEND_REPO}" "${VLLM_ASCEND_TMP_DIR}"
|
||||
if [ ! -f "${VLLM_ASCEND_TMP_DIR}/${CONFIG_FILE_REMOTE_PATH}" ]; then
|
||||
echo "Error: file '${CONFIG_FILE_REMOTE_PATH}' does not exist in the warehouse" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# If the file already exists locally, just overwrite it
|
||||
cp "${VLLM_ASCEND_TMP_DIR}/${CONFIG_FILE_REMOTE_PATH}" "${TEST_RUN_CONFIG_FILE}"
|
||||
echo "Copied ${CONFIG_FILE_REMOTE_PATH} to ${TEST_RUN_CONFIG_FILE}"
|
||||
|
||||
# Since the trap will be overwritten later, and when it is executed here, the task of cleaning up resources
|
||||
# when the trap is abnormal has been completed, so the temporary resources are manually deleted here.
|
||||
rm -rf "${VLLM_ASCEND_TMP_DIR}"
|
||||
trap - EXIT
|
||||
}
|
||||
|
||||
# Downloads test run configuration file from a remote URL.
|
||||
# Loads the configuration into the current script environment.
|
||||
get_config() {
|
||||
if [ ! -f "${TEST_RUN_CONFIG_FILE}" ]; then
|
||||
echo "Error: file '${TEST_RUN_CONFIG_FILE}' does not exist in the warehouse" >&2
|
||||
exit 1
|
||||
fi
|
||||
source "${TEST_RUN_CONFIG_FILE}"
|
||||
echo "Base docker image name that get from configuration: ${BASE_IMAGE_NAME}"
|
||||
return 0
|
||||
}
|
||||
|
||||
# get test running configuration.
|
||||
fetch_vllm_test_cfg
|
||||
get_config
|
||||
# Check if the function call was successful. If not, exit the script.
|
||||
if [ $? -ne 0 ]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
image_name="npu/vllm-ci:${BUILDKITE_COMMIT}_${EPOCHSECONDS}"
|
||||
container_name="npu_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
|
||||
|
||||
# BUILDKITE_AGENT_NAME format is {hostname}-{agent_idx}-{npu_card_num}cards
|
||||
agent_idx=$(echo "${BUILDKITE_AGENT_NAME}" | awk -F'-' '{print $(NF-1)}')
|
||||
echo "agent_idx: ${agent_idx}"
|
||||
builder_name="cachebuilder${agent_idx}"
|
||||
builder_cache_dir="/mnt/docker-cache${agent_idx}"
|
||||
mkdir -p ${builder_cache_dir}
|
||||
|
||||
# Try building the docker image
|
||||
cat <<EOF | DOCKER_BUILDKIT=1 docker build \
|
||||
--add-host cache-service-vllm.nginx-pypi-cache.svc.cluster.local:${PYPI_CACHE_HOST} \
|
||||
--builder ${builder_name} --cache-from type=local,src=${builder_cache_dir} \
|
||||
--cache-to type=local,dest=${builder_cache_dir},mode=max \
|
||||
--progress=plain --load -t ${image_name} -f - .
|
||||
FROM ${BASE_IMAGE_NAME}
|
||||
|
||||
# Define environments
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN pip config set global.index-url http://cache-service-vllm.nginx-pypi-cache.svc.cluster.local:${PYPI_CACHE_PORT}/pypi/simple && \
|
||||
pip config set global.trusted-host cache-service-vllm.nginx-pypi-cache.svc.cluster.local && \
|
||||
apt-get update -y && \
|
||||
apt-get install -y python3-pip git vim wget net-tools gcc g++ cmake libnuma-dev && \
|
||||
rm -rf /var/cache/apt/* && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install for pytest to make the docker build cache layer always valid
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install pytest>=6.0 modelscope
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
# Install vLLM dependencies in advance. Effect: As long as common.txt remains unchanged, the docker cache layer will be valid.
|
||||
COPY requirements/common.txt /workspace/vllm/requirements/common.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install -r requirements/common.txt
|
||||
|
||||
COPY . .
|
||||
|
||||
# Install vLLM
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
VLLM_TARGET_DEVICE="empty" python3 -m pip install -v -e /workspace/vllm/ --extra-index https://download.pytorch.org/whl/cpu/ && \
|
||||
python3 -m pip uninstall -y triton
|
||||
|
||||
# Install vllm-ascend
|
||||
WORKDIR /workspace
|
||||
ARG VLLM_ASCEND_REPO=https://github.com/vllm-project/vllm-ascend.git
|
||||
ARG VLLM_ASCEND_TAG=main
|
||||
RUN git config --global url."https://gh-proxy.test.osinfra.cn/https://github.com/".insteadOf "https://github.com/" && \
|
||||
git clone --depth 1 \$VLLM_ASCEND_REPO --branch \$VLLM_ASCEND_TAG /workspace/vllm-ascend
|
||||
|
||||
# Install vllm dependencies in advance. Effect: As long as common.txt remains unchanged, the docker cache layer will be valid.
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install -r /workspace/vllm-ascend/requirements.txt
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
export PIP_EXTRA_INDEX_URL=https://mirrors.huaweicloud.com/ascend/repos/pypi && \
|
||||
source /usr/local/Ascend/ascend-toolkit/set_env.sh && \
|
||||
source /usr/local/Ascend/nnal/atb/set_env.sh && \
|
||||
export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/usr/local/Ascend/ascend-toolkit/latest/`uname -i`-linux/devlib && \
|
||||
python3 -m pip install -v -e /workspace/vllm-ascend/ --extra-index https://download.pytorch.org/whl/cpu/
|
||||
|
||||
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
ENV VLLM_USE_MODELSCOPE=True
|
||||
|
||||
WORKDIR /workspace/vllm-ascend
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
EOF
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
docker rm -f "${container_name}" || true;
|
||||
docker image rm -f "${image_name}" || true;
|
||||
docker system prune -f || true;
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
|
||||
# Generate corresponding --device args based on BUILDKITE_AGENT_NAME
|
||||
# Ascend NPU BUILDKITE_AGENT_NAME format is {hostname}-{agent_idx}-{npu_card_num}cards, and agent_idx starts from 1.
|
||||
# e.g. atlas-a2-001-1-2cards means this is the 1-th agent on atlas-a2-001 host, and it has 2 NPU cards.
|
||||
# returns --device /dev/davinci0 --device /dev/davinci1
|
||||
parse_and_gen_devices() {
|
||||
local input="$1"
|
||||
local index cards_num
|
||||
if [[ "$input" =~ ([0-9]+)-([0-9]+)cards$ ]]; then
|
||||
index="${BASH_REMATCH[1]}"
|
||||
cards_num="${BASH_REMATCH[2]}"
|
||||
else
|
||||
echo "parse error" >&2
|
||||
return 1
|
||||
fi
|
||||
|
||||
local devices=""
|
||||
local i=0
|
||||
while (( i < cards_num )); do
|
||||
local dev_idx=$(((index - 1)*cards_num + i ))
|
||||
devices="$devices --device /dev/davinci${dev_idx}"
|
||||
((i++))
|
||||
done
|
||||
|
||||
# trim leading space
|
||||
devices="${devices#"${devices%%[![:space:]]*}"}"
|
||||
# Output devices: assigned to the caller variable
|
||||
printf '%s' "$devices"
|
||||
}
|
||||
|
||||
devices=$(parse_and_gen_devices "${BUILDKITE_AGENT_NAME}") || exit 1
|
||||
|
||||
# Run the image and execute the Out-Of-Tree (OOT) platform interface test case on Ascend NPU hardware.
|
||||
# This test checks whether the OOT platform interface is functioning properly in conjunction with
|
||||
# the hardware plugin vllm-ascend.
|
||||
model_cache_dir=/mnt/modelscope${agent_idx}
|
||||
mkdir -p ${model_cache_dir}
|
||||
docker run \
|
||||
${devices} \
|
||||
--device /dev/davinci_manager \
|
||||
--device /dev/devmm_svm \
|
||||
--device /dev/hisi_hdc \
|
||||
-v /usr/local/dcmi:/usr/local/dcmi \
|
||||
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
|
||||
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
|
||||
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
|
||||
-v /etc/ascend_install.info:/etc/ascend_install.info \
|
||||
-v ${model_cache_dir}:/root/.cache/modelscope \
|
||||
--entrypoint="" \
|
||||
--name "${container_name}" \
|
||||
"${image_name}" \
|
||||
bash -c '
|
||||
set -e
|
||||
pytest -v -s tests/e2e/vllm_interface/
|
||||
'
|
@ -42,9 +42,8 @@ docker run \
|
||||
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
|
||||
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
|
||||
pytest -v -s v1/structured_output
|
||||
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py --ignore=v1/spec_decode/test_tree_attention.py
|
||||
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_tree_attention.py
|
||||
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
|
||||
pytest -v -s v1/test_metrics
|
||||
pytest -v -s v1/test_serial_utils.py
|
||||
pytest -v -s v1/test_utils.py
|
||||
pytest -v -s v1/test_metrics_reader.py
|
||||
'
|
||||
|
@ -18,7 +18,7 @@ vllm bench throughput --input-len 256 --output-len 256 --output-json throughput_
|
||||
bench_throughput_exit_code=$?
|
||||
|
||||
# run server-based benchmarks and upload the result to buildkite
|
||||
python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-chat-hf &
|
||||
vllm serve meta-llama/Llama-2-7b-chat-hf &
|
||||
server_pid=$!
|
||||
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
|
||||
|
@ -50,19 +50,28 @@ steps:
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/multimodal
|
||||
- tests/utils_
|
||||
commands:
|
||||
- pytest -v -s -m 'not cpu_test' multimodal
|
||||
- pytest -v -s utils_
|
||||
|
||||
- label: Async Engine, Inputs, Utils, Worker Test (CPU) # 4 mins
|
||||
timeout_in_minutes: 10
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/test_inputs.py
|
||||
- tests/test_outputs.py
|
||||
- tests/multimodal
|
||||
- tests/utils_
|
||||
- tests/standalone_tests/lazy_imports.py
|
||||
- tests/transformers_utils
|
||||
no_gpu: true
|
||||
commands:
|
||||
- python3 standalone_tests/lazy_imports.py
|
||||
- pytest -v -s test_inputs.py
|
||||
- pytest -v -s test_outputs.py
|
||||
- pytest -v -s multimodal
|
||||
- pytest -v -s utils_ # Utils
|
||||
- pytest -v -s transformers_utils # transformers_utils
|
||||
- pytest -v -s -m 'cpu_test' multimodal
|
||||
- pytest -v -s transformers_utils
|
||||
|
||||
- label: Python-only Installation Test # 10min
|
||||
timeout_in_minutes: 20
|
||||
@ -159,10 +168,7 @@ steps:
|
||||
- examples/offline_inference/rlhf.py
|
||||
- examples/offline_inference/rlhf_colocate.py
|
||||
- tests/examples/offline_inference/data_parallel.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/test_external_lb_dp.py
|
||||
- tests/v1/test_internal_lb_dp.py
|
||||
- tests/v1/test_hybrid_lb_dp.py
|
||||
- tests/v1/distributed
|
||||
- tests/v1/engine/test_engine_core_client.py
|
||||
- tests/distributed/test_symm_mem_allreduce.py
|
||||
commands:
|
||||
@ -180,10 +186,10 @@ steps:
|
||||
- TP_SIZE=2 DP_SIZE=2 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
|
||||
# test with internal dp
|
||||
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_internal_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_hybrid_lb_dp.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_internal_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_hybrid_lb_dp.py
|
||||
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
|
||||
- pytest -v -s distributed/test_utils.py
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
@ -290,26 +296,34 @@ steps:
|
||||
- tests/v1
|
||||
commands:
|
||||
# split the test to avoid interference
|
||||
- pytest -v -s v1/core
|
||||
- pytest -v -s v1/executor
|
||||
- pytest -v -s v1/kv_offload
|
||||
- pytest -v -s v1/sample
|
||||
- pytest -v -s v1/logits_processors
|
||||
- pytest -v -s v1/worker
|
||||
- pytest -v -s v1/structured_output
|
||||
- pytest -v -s v1/spec_decode
|
||||
- pytest -v -s v1/kv_connector/unit
|
||||
- pytest -v -s v1/metrics
|
||||
- pytest -v -s v1/test_kv_sharing.py
|
||||
- pytest -v -s v1/test_metrics_reader.py
|
||||
- pytest -v -s -m 'not cpu_test' v1/kv_connector/unit
|
||||
- pytest -v -s -m 'not cpu_test' v1/metrics
|
||||
- pytest -v -s v1/test_oracle.py
|
||||
- pytest -v -s v1/test_request.py
|
||||
- pytest -v -s v1/test_serial_utils.py
|
||||
- pytest -v -s v1/test_utils.py
|
||||
# Integration test for streaming correctness (requires special branch).
|
||||
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
|
||||
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
|
||||
|
||||
- label: V1 Test others (CPU) # 5 mins
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/v1
|
||||
no_gpu: true
|
||||
commands:
|
||||
# split the test to avoid interference
|
||||
- pytest -v -s v1/core
|
||||
- pytest -v -s v1/structured_output
|
||||
- pytest -v -s v1/test_serial_utils.py
|
||||
- pytest -v -s -m 'cpu_test' v1/kv_connector/unit
|
||||
- pytest -v -s -m 'cpu_test' v1/metrics
|
||||
|
||||
|
||||
- label: Examples Test # 30min
|
||||
timeout_in_minutes: 45
|
||||
mirror_hardwares: [amdexperimental]
|
||||
@ -383,6 +397,7 @@ steps:
|
||||
- pytest -v -s compile/test_pass_manager.py
|
||||
- pytest -v -s compile/test_fusion.py
|
||||
- pytest -v -s compile/test_fusion_attn.py
|
||||
- pytest -v -s compile/test_functionalization.py
|
||||
- pytest -v -s compile/test_silu_mul_quant_fusion.py
|
||||
- pytest -v -s compile/test_sequence_parallelism.py
|
||||
- pytest -v -s compile/test_async_tp.py
|
||||
@ -462,32 +477,22 @@ steps:
|
||||
source_file_dependencies:
|
||||
- csrc/mamba/
|
||||
- tests/kernels/mamba
|
||||
- vllm/model_executor/layers/mamba/ops
|
||||
commands:
|
||||
- pytest -v -s kernels/mamba
|
||||
|
||||
- label: Tensorizer Test # 14min
|
||||
timeout_in_minutes: 25
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/model_loader
|
||||
- tests/tensorizer_loader
|
||||
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
commands:
|
||||
- apt-get update && apt-get install -y curl libsodium23
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s tensorizer_loader
|
||||
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
|
||||
- label: Model Executor Test # 7min
|
||||
timeout_in_minutes: 20
|
||||
- label: Model Executor Test # 23min
|
||||
timeout_in_minutes: 35
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor
|
||||
- tests/model_executor
|
||||
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
commands:
|
||||
- apt-get update && apt-get install -y curl libsodium23
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s model_executor
|
||||
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
|
||||
- label: Benchmarks # 11min
|
||||
timeout_in_minutes: 20
|
||||
@ -522,7 +527,7 @@ steps:
|
||||
# https://github.com/pytorch/ao/issues/2919, we'll have to skip new torchao tests for now
|
||||
# we can only upgrade after this is resolved
|
||||
- pip install --pre torchao==0.13.0.dev20250814 --index-url https://download.pytorch.org/whl/nightly/cu128
|
||||
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
|
||||
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/
|
||||
|
||||
- label: LM Eval Small Models # 53min
|
||||
timeout_in_minutes: 75
|
||||
@ -550,10 +555,17 @@ steps:
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/tool_use
|
||||
- tests/mistral_tool_use
|
||||
commands:
|
||||
- pytest -v -s tool_use
|
||||
- pytest -v -s mistral_tool_use
|
||||
- pytest -v -s -m 'not cpu_test' tool_use
|
||||
|
||||
- label: OpenAI-Compatible Tool Use (CPU) # 5 mins
|
||||
timeout_in_minutes: 10
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/tool_use
|
||||
no_gpu: true
|
||||
commands:
|
||||
- pytest -v -s -m 'cpu_test' tool_use
|
||||
|
||||
##### models test #####
|
||||
|
||||
@ -593,13 +605,19 @@ steps:
|
||||
- vllm/
|
||||
- tests/models/test_transformers.py
|
||||
- tests/models/test_registry.py
|
||||
commands:
|
||||
- pytest -v -s models/test_transformers.py models/test_registry.py
|
||||
|
||||
- label: Basic Models Test (Other CPU) # 5min
|
||||
timeout_in_minutes: 10
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/test_utils.py
|
||||
- tests/models/test_vision.py
|
||||
no_gpu: true
|
||||
commands:
|
||||
- pytest -v -s models/test_transformers.py \
|
||||
models/test_registry.py \
|
||||
models/test_utils.py \
|
||||
models/test_vision.py
|
||||
- pytest -v -s models/test_utils.py models/test_vision.py
|
||||
|
||||
- label: Language Models Tests (Standard)
|
||||
timeout_in_minutes: 25
|
||||
@ -769,6 +787,7 @@ steps:
|
||||
commands:
|
||||
- pip install --upgrade git+https://github.com/huggingface/transformers
|
||||
- pytest -v -s tests/models/test_initialization.py
|
||||
- pytest -v -s tests/models/test_transformers.py
|
||||
- pytest -v -s tests/models/multimodal/processing/
|
||||
- pytest -v -s tests/models/multimodal/test_mapping.py
|
||||
- python3 examples/offline_inference/basic/chat.py
|
||||
@ -816,11 +835,11 @@ steps:
|
||||
- pytest -v -s tests/kernels/moe/test_flashinfer.py
|
||||
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
|
||||
|
||||
- label: GPT-OSS Eval (Blackwell)
|
||||
- label: Blackwell GPT-OSS Eval
|
||||
timeout_in_minutes: 60
|
||||
working_dir: "/vllm-workspace/"
|
||||
gpu: b200
|
||||
optional: true # disable while debugging
|
||||
optional: true # run on nightlies
|
||||
source_file_dependencies:
|
||||
- tests/evals/gpt_oss
|
||||
- vllm/model_executor/models/gpt_oss.py
|
||||
@ -828,7 +847,34 @@ steps:
|
||||
- vllm/v1/attention/backends/flashinfer.py
|
||||
commands:
|
||||
- uv pip install --system 'gpt-oss[eval]==0.0.5'
|
||||
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58 --server-args '--tensor-parallel-size 2'
|
||||
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58
|
||||
|
||||
- label: Blackwell Quantized MoE Test
|
||||
timeout_in_minutes: 60
|
||||
working_dir: "/vllm-workspace/"
|
||||
gpu: b200
|
||||
source_file_dependencies:
|
||||
- tests/quantization/test_blackwell_moe.py
|
||||
- vllm/model_executor/models/deepseek_v2.py
|
||||
- vllm/model_executor/models/gpt_oss.py
|
||||
- vllm/model_executor/models/llama4.py
|
||||
- vllm/model_executor/layers/fused_moe
|
||||
- vllm/model_executor/layers/quantization/compressed_tensors
|
||||
- vllm/model_executor/layers/quantization/modelopt.py
|
||||
- vllm/model_executor/layers/quantization/mxfp4.py
|
||||
- vllm/v1/attention/backends/flashinfer.py
|
||||
commands:
|
||||
- pytest -s -v tests/quantization/test_blackwell_moe.py
|
||||
|
||||
- label: Blackwell LM Eval Small Models
|
||||
timeout_in_minutes: 75
|
||||
gpu: b200
|
||||
optional: true # run on nightlies
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- vllm/model_executor/layers/quantization
|
||||
commands:
|
||||
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-blackwell.txt --tp-size=1
|
||||
|
||||
##### 1 GPU test #####
|
||||
##### multi gpus test #####
|
||||
@ -889,14 +935,13 @@ steps:
|
||||
- tests/compile/test_wrapper.py
|
||||
- tests/distributed/
|
||||
- tests/entrypoints/llm/test_collective_rpc.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/test_external_lb_dp.py
|
||||
- tests/v1/distributed
|
||||
- tests/v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- tests/v1/shutdown
|
||||
- tests/v1/worker/test_worker_memory_snapshot.py
|
||||
commands:
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
|
||||
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- pytest -v -s entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s ./compile/test_basic_correctness.py
|
||||
|
11
.github/CODEOWNERS
vendored
@ -12,8 +12,6 @@
|
||||
/vllm/model_executor/layers/mamba @tdoublep
|
||||
/vllm/model_executor/model_loader @22quinn
|
||||
/vllm/multimodal @DarkLight1337 @ywang96 @NickLucche
|
||||
/vllm/v1/attention @LucasWilkinson
|
||||
/vllm/v1/sample @22quinn @houseroad
|
||||
/vllm/vllm_flash_attn @LucasWilkinson
|
||||
/vllm/lora @jeejeelee
|
||||
/vllm/reasoning @aarnphm @chaunceyjiang
|
||||
@ -25,14 +23,17 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
||||
# Any change to the VllmConfig changes can have a large user-facing impact,
|
||||
# so spam a lot of people
|
||||
/vllm/config @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg
|
||||
/vllm/config/cache.py @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg @heheda12345
|
||||
|
||||
# vLLM V1
|
||||
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
|
||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
|
||||
/vllm/v1/spec_decode @benchislett @luccafong
|
||||
/vllm/v1/attention @LucasWilkinson
|
||||
/vllm/v1/attention/backends/flashinfer.py @mgoin
|
||||
/vllm/v1/attention/backends/triton_attn.py @tdoublep
|
||||
/vllm/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
|
||||
/vllm/v1/sample @22quinn @houseroad @njhill
|
||||
/vllm/v1/spec_decode @benchislett @luccafong
|
||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
|
||||
/vllm/v1/kv_cache_interface.py @heheda12345
|
||||
/vllm/v1/offloading @ApostaC
|
||||
|
||||
@ -54,7 +55,7 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
||||
/tests/weight_loading @mgoin @youkaichao @yewentao256
|
||||
/tests/lora @jeejeelee
|
||||
/tests/models/language/generation/test_hybrid.py @tdoublep
|
||||
/tests/v1/kv_connector/nixl_integration @NickLucche
|
||||
/tests/v1/kv_connector/nixl_integration @NickLucche
|
||||
/tests/v1/kv_connector @ApostaC
|
||||
/tests/v1/offloading @ApostaC
|
||||
|
||||
|
33
.github/mergify.yml
vendored
@ -2,6 +2,7 @@ pull_request_rules:
|
||||
- name: label-documentation
|
||||
description: Automatically apply documentation label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^[^/]+\.md$
|
||||
- files~=^docs/
|
||||
@ -14,6 +15,7 @@ pull_request_rules:
|
||||
- name: label-ci-build
|
||||
description: Automatically apply ci/build label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^\.github/
|
||||
- files~=\.buildkite/
|
||||
@ -30,6 +32,7 @@ pull_request_rules:
|
||||
- name: label-deepseek
|
||||
description: Automatically apply deepseek label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^examples/.*deepseek.*\.py
|
||||
- files~=^tests/.*deepseek.*\.py
|
||||
@ -46,6 +49,7 @@ pull_request_rules:
|
||||
- name: label-frontend
|
||||
description: Automatically apply frontend label
|
||||
conditions:
|
||||
- label != stale
|
||||
- files~=^vllm/entrypoints/
|
||||
actions:
|
||||
label:
|
||||
@ -55,6 +59,7 @@ pull_request_rules:
|
||||
- name: label-llama
|
||||
description: Automatically apply llama label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^examples/.*llama.*\.py
|
||||
- files~=^tests/.*llama.*\.py
|
||||
@ -70,6 +75,7 @@ pull_request_rules:
|
||||
- name: label-multi-modality
|
||||
description: Automatically apply multi-modality label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^vllm/multimodal/
|
||||
- files~=^tests/multimodal/
|
||||
@ -83,6 +89,7 @@ pull_request_rules:
|
||||
- name: label-new-model
|
||||
description: Automatically apply new-model label
|
||||
conditions:
|
||||
- label != stale
|
||||
- and:
|
||||
- files~=^vllm/model_executor/models/
|
||||
- files=vllm/model_executor/models/registry.py
|
||||
@ -94,6 +101,7 @@ pull_request_rules:
|
||||
- name: label-performance
|
||||
description: Automatically apply performance label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^benchmarks/
|
||||
- files~=^vllm/benchmarks/
|
||||
@ -107,6 +115,7 @@ pull_request_rules:
|
||||
- name: label-qwen
|
||||
description: Automatically apply qwen label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^examples/.*qwen.*\.py
|
||||
- files~=^tests/.*qwen.*\.py
|
||||
@ -121,6 +130,7 @@ pull_request_rules:
|
||||
- name: label-gpt-oss
|
||||
description: Automatically apply gpt-oss label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^examples/.*gpt[-_]?oss.*\.py
|
||||
- files~=^tests/.*gpt[-_]?oss.*\.py
|
||||
@ -142,6 +152,7 @@ pull_request_rules:
|
||||
- name: label-rocm
|
||||
description: Automatically apply rocm label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^csrc/rocm/
|
||||
- files~=^docker/Dockerfile.rocm
|
||||
@ -162,6 +173,7 @@ pull_request_rules:
|
||||
- name: label-structured-output
|
||||
description: Automatically apply structured-output label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^benchmarks/structured_schemas/
|
||||
- files=benchmarks/benchmark_serving_structured_output.py
|
||||
@ -181,6 +193,7 @@ pull_request_rules:
|
||||
- name: label-speculative-decoding
|
||||
description: Automatically apply speculative-decoding label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^vllm/v1/spec_decode/
|
||||
- files~=^tests/v1/spec_decode/
|
||||
@ -196,6 +209,7 @@ pull_request_rules:
|
||||
- name: label-v1
|
||||
description: Automatically apply v1 label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^vllm/v1/
|
||||
- files~=^tests/v1/
|
||||
@ -208,6 +222,7 @@ pull_request_rules:
|
||||
description: Automatically apply tpu label
|
||||
# Keep this list in sync with `label-tpu-remove` conditions
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=tpu.py
|
||||
- files~=_tpu
|
||||
@ -223,6 +238,7 @@ pull_request_rules:
|
||||
description: Automatically remove tpu label
|
||||
# Keep this list in sync with `label-tpu` conditions
|
||||
conditions:
|
||||
- label != stale
|
||||
- and:
|
||||
- -files~=tpu.py
|
||||
- -files~=_tpu
|
||||
@ -237,9 +253,9 @@ pull_request_rules:
|
||||
- name: label-tool-calling
|
||||
description: Automatically add tool-calling label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^tests/tool_use/
|
||||
- files~=^tests/mistral_tool_use/
|
||||
- files~=^tests/entrypoints/openai/tool_parsers/
|
||||
- files=tests/entrypoints/openai/test_chat_with_tool_reasoning.py
|
||||
- files~=^vllm/entrypoints/openai/tool_parsers/
|
||||
@ -256,8 +272,9 @@ pull_request_rules:
|
||||
|
||||
- name: ping author on conflicts and add 'needs-rebase' label
|
||||
conditions:
|
||||
- conflict
|
||||
- -closed
|
||||
- label != stale
|
||||
- conflict
|
||||
- -closed
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
@ -271,10 +288,12 @@ pull_request_rules:
|
||||
|
||||
- name: assign reviewer for tensorizer changes
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^vllm/model_executor/model_loader/tensorizer.py
|
||||
- files~=^vllm/model_executor/model_loader/tensorizer_loader.py
|
||||
- files~=^tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
- files~=^tests/tensorizer_loader/
|
||||
- files~=^tests/model_executor/model_loader/tensorizer_loader/
|
||||
actions:
|
||||
assign:
|
||||
users:
|
||||
@ -282,6 +301,7 @@ pull_request_rules:
|
||||
|
||||
- name: assign reviewer for modelopt changes
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^vllm/model_executor/layers/quantization/modelopt\.py$
|
||||
- files~=^vllm/model_executor/layers/quantization/__init__\.py$
|
||||
@ -296,8 +316,8 @@ pull_request_rules:
|
||||
|
||||
- name: remove 'needs-rebase' label when conflict is resolved
|
||||
conditions:
|
||||
- -conflict
|
||||
- -closed
|
||||
- -conflict
|
||||
- -closed
|
||||
actions:
|
||||
label:
|
||||
remove:
|
||||
@ -306,6 +326,7 @@ pull_request_rules:
|
||||
- name: label-kv-connector
|
||||
description: Automatically apply kv-connector label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^examples/online_serving/disaggregated[^/]*/.*
|
||||
- files~=^examples/offline_inference/disaggregated[^/]*/.*
|
||||
|
2
.github/workflows/stale.yml
vendored
@ -13,7 +13,7 @@ jobs:
|
||||
actions: write
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/stale@3a9db7e6a41a89f618792c92c0e97cc736e1b13f # v10.0.0
|
||||
- uses: actions/stale@5f858e3efba33a5ca4407a664cc011ad407f2008 # v10.1.0
|
||||
with:
|
||||
# Increasing this value ensures that changes to this workflow
|
||||
# propagate to all issues and PRs in days rather than months
|
||||
|
@ -6,28 +6,16 @@ default_stages:
|
||||
- manual # Run in CI
|
||||
exclude: 'vllm/third_party/.*'
|
||||
repos:
|
||||
- repo: https://github.com/google/yapf
|
||||
rev: v0.43.0
|
||||
hooks:
|
||||
- id: yapf
|
||||
args: [--in-place, --verbose]
|
||||
# Keep the same list from yapfignore here to avoid yapf failing without any inputs
|
||||
exclude: '(.buildkite|benchmarks|build|examples)/.*'
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.11.7
|
||||
rev: v0.13.3
|
||||
hooks:
|
||||
- id: ruff
|
||||
- id: ruff-check
|
||||
args: [--output-format, github, --fix]
|
||||
- id: ruff-format
|
||||
files: ^(.buildkite|benchmarks|examples)/.*
|
||||
- repo: https://github.com/crate-ci/typos
|
||||
rev: v1.35.5
|
||||
hooks:
|
||||
- id: typos
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 6.0.1
|
||||
hooks:
|
||||
- id: isort
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v20.1.3
|
||||
hooks:
|
||||
|
@ -37,7 +37,7 @@ install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
|
||||
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12" "3.13")
|
||||
|
||||
# Supported AMD GPU architectures.
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201;gfx1150;gfx1151")
|
||||
|
||||
#
|
||||
# Supported/expected torch versions for CUDA/ROCm.
|
||||
@ -86,6 +86,9 @@ find_package(Torch REQUIRED)
|
||||
# Supported NVIDIA architectures.
|
||||
# This check must happen after find_package(Torch) because that's when CMAKE_CUDA_COMPILER_VERSION gets defined
|
||||
if(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
|
||||
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 13.0)
|
||||
set(CUDA_SUPPORTED_ARCHS "7.5;8.0;8.6;8.7;8.9;9.0;10.0;11.0;12.0")
|
||||
elseif(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
|
||||
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8)
|
||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
|
||||
else()
|
||||
@ -175,6 +178,15 @@ if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Set compression mode for CUDA >=13.x.
|
||||
#
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA" AND
|
||||
DEFINED CMAKE_CUDA_COMPILER_VERSION AND
|
||||
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 13.0)
|
||||
list(APPEND VLLM_GPU_FLAGS "--compress-mode=size")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Set CUDA include flags for CXX compiler.
|
||||
#
|
||||
@ -270,7 +282,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
|
||||
|
||||
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
|
||||
set(CUTLASS_REVISION "v4.0.0" CACHE STRING "CUTLASS revision to use")
|
||||
set(CUTLASS_REVISION "v4.2.1" CACHE STRING "CUTLASS revision to use")
|
||||
|
||||
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
|
||||
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
|
||||
@ -305,7 +317,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu"
|
||||
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
|
||||
"csrc/cutlass_extensions/common.cpp"
|
||||
"csrc/quantization/fp8/per_token_group_quant.cu")
|
||||
@ -440,7 +451,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
|
||||
# The cutlass_scaled_mm kernels for Geforce Blackwell SM120 (c3x, i.e. CUTLASS 3.x) require
|
||||
# CUDA 12.8 or later
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm120.cu"
|
||||
@ -470,7 +485,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
|
||||
# The cutlass_scaled_mm kernels for Blackwell SM100 (c3x, i.e. CUTLASS 3.x)
|
||||
# require CUDA 12.8 or later
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
|
||||
@ -550,7 +569,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
|
||||
# The nvfp4_scaled_mm_sm120 kernels for Geforce Blackwell SM120 require
|
||||
# CUDA 12.8 or later
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "12.0a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
||||
@ -569,7 +592,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
|
||||
# FP4 Archs and flags
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "10.0a;10.1a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
||||
@ -591,7 +618,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
|
||||
# CUTLASS MLA Archs and flags
|
||||
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(MLA_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(MLA_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND MLA_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/attention/mla/sm100_cutlass_mla_kernel.cu")
|
||||
@ -635,7 +666,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm100.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
@ -656,7 +691,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
|
||||
# moe_data.cu is used by all CUTLASS MoE kernels.
|
||||
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
@ -675,7 +714,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/blockwise_scaled_group_mm_sm100.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
|
@ -21,6 +21,7 @@ Join us at the [PyTorch Conference, October 22-23](https://events.linuxfoundatio
|
||||
|
||||
*Latest News* 🔥
|
||||
|
||||
- [2025/09] We hosted [vLLM Toronto Meetup](https://luma.com/e80e0ymm) focused on tackling inference at scale and speculative decoding with speakers from NVIDIA and Red Hat! Please find the meetup slides [here](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing).
|
||||
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
|
||||
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
|
||||
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).
|
||||
|
@ -2,9 +2,9 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import gc
|
||||
|
||||
from benchmark_utils import TimeCollector
|
||||
from tabulate import tabulate
|
||||
|
||||
from benchmark_utils import TimeCollector
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
from vllm.v1.core.block_pool import BlockPool
|
||||
|
||||
|
@ -5,9 +5,9 @@ import time
|
||||
from unittest import mock
|
||||
|
||||
import numpy as np
|
||||
from benchmark_utils import TimeCollector
|
||||
from tabulate import tabulate
|
||||
|
||||
from benchmark_utils import TimeCollector
|
||||
from vllm.config import (
|
||||
CacheConfig,
|
||||
DeviceConfig,
|
||||
@ -164,7 +164,7 @@ def invoke_main() -> None:
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batched", action="store_true", help="consider time to prepare batch"
|
||||
) # noqa: E501
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-iteration",
|
||||
type=int,
|
||||
|
@ -37,14 +37,13 @@ from typing import Optional
|
||||
import datasets
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from tqdm.asyncio import tqdm
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
from backend_request_func import (
|
||||
ASYNC_REQUEST_FUNCS,
|
||||
RequestFuncInput,
|
||||
RequestFuncOutput,
|
||||
)
|
||||
from tqdm.asyncio import tqdm
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
try:
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
@ -910,13 +909,13 @@ def create_argument_parser():
|
||||
parser.add_argument(
|
||||
"--tokenizer",
|
||||
type=str,
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer-mode",
|
||||
type=str,
|
||||
default="auto",
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-prompts",
|
||||
|
@ -17,7 +17,7 @@ from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
w8a8_block_fp8_matmul,
|
||||
w8a8_triton_block_scaled_mm,
|
||||
)
|
||||
from vllm.utils import FlexibleArgumentParser, cdiv
|
||||
|
||||
@ -158,7 +158,7 @@ def bench_fp8(
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
|
||||
a, b, scale_a, scale_b, torch.float16, bias.to(dtype=torch.float16)
|
||||
),
|
||||
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_block_fp8_matmul(
|
||||
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_triton_block_scaled_mm(
|
||||
a_cont, b.t(), block_scale_a, block_scale_b.t(), (128, 128)
|
||||
),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise": lambda: ops.cutlass_scaled_mm(
|
||||
|
@ -55,9 +55,7 @@ benchmark() {
|
||||
output_len=$2
|
||||
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
|
||||
--port 8100 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
@ -65,9 +63,7 @@ benchmark() {
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
|
||||
|
||||
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
|
||||
--port 8200 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
|
@ -38,16 +38,12 @@ wait_for_server() {
|
||||
launch_chunked_prefill() {
|
||||
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
||||
# disagg prefill
|
||||
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
|
||||
--port 8100 \
|
||||
--max-model-len 10000 \
|
||||
--enable-chunked-prefill \
|
||||
--gpu-memory-utilization 0.6 &
|
||||
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
|
||||
--port 8200 \
|
||||
--max-model-len 10000 \
|
||||
--enable-chunked-prefill \
|
||||
@ -62,18 +58,14 @@ launch_chunked_prefill() {
|
||||
launch_disagg_prefill() {
|
||||
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
||||
# disagg prefill
|
||||
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
|
||||
--port 8100 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
|
||||
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
|
||||
--port 8200 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
|
@ -584,8 +584,9 @@ def main(args: argparse.Namespace):
|
||||
topk = config.num_experts_per_tok
|
||||
intermediate_size = config.intermediate_size
|
||||
elif config.architectures[0] in (
|
||||
"DeepseekV3ForCausalLM",
|
||||
"DeepseekV2ForCausalLM",
|
||||
"DeepseekV3ForCausalLM",
|
||||
"DeepseekV32ForCausalLM",
|
||||
"Glm4MoeForCausalLM",
|
||||
):
|
||||
E = config.n_routed_experts
|
||||
|
174
benchmarks/kernels/benchmark_reshape_and_cache.py
Normal file
@ -0,0 +1,174 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
from __future__ import annotations
|
||||
|
||||
import random
|
||||
import time
|
||||
|
||||
import torch
|
||||
from tabulate import tabulate
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.logger import init_logger
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import (
|
||||
STR_DTYPE_TO_TORCH_DTYPE,
|
||||
FlexibleArgumentParser,
|
||||
create_kv_caches_with_random,
|
||||
)
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def run_benchmark(
|
||||
num_tokens: int,
|
||||
num_heads: int,
|
||||
head_size: int,
|
||||
block_size: int,
|
||||
num_blocks: int,
|
||||
dtype: torch.dtype,
|
||||
kv_cache_dtype: str,
|
||||
num_iters: int,
|
||||
benchmark_mode: str,
|
||||
device: str = "cuda",
|
||||
) -> float:
|
||||
"""Return latency (seconds) for given num_tokens."""
|
||||
|
||||
if kv_cache_dtype == "fp8" and head_size % 16:
|
||||
raise ValueError("fp8 kv-cache requires head_size to be a multiple of 16.")
|
||||
|
||||
current_platform.seed_everything(42)
|
||||
torch.set_default_device(device)
|
||||
|
||||
# create random key / value tensors [T, H, D].
|
||||
key = torch.randn(num_tokens, num_heads, head_size, dtype=dtype, device=device)
|
||||
value = torch.randn_like(key)
|
||||
|
||||
# prepare the slot mapping.
|
||||
# each token is assigned a unique slot in the KV-cache.
|
||||
num_slots = block_size * num_blocks
|
||||
if num_tokens > num_slots:
|
||||
raise ValueError("num_tokens cannot exceed the total number of cache slots")
|
||||
slot_mapping_lst = random.sample(range(num_slots), num_tokens)
|
||||
slot_mapping = torch.tensor(slot_mapping_lst, dtype=torch.long, device=device)
|
||||
|
||||
key_caches, value_caches = create_kv_caches_with_random(
|
||||
num_blocks,
|
||||
block_size,
|
||||
1, # num_layers
|
||||
num_heads,
|
||||
head_size,
|
||||
kv_cache_dtype,
|
||||
dtype,
|
||||
device=device,
|
||||
)
|
||||
key_cache, value_cache = key_caches[0], value_caches[0]
|
||||
# to free unused memory
|
||||
del key_caches, value_caches
|
||||
|
||||
# compute per-kernel scaling factors for fp8 conversion (if used).
|
||||
k_scale = (key.amax() / 64.0).to(torch.float32)
|
||||
v_scale = (value.amax() / 64.0).to(torch.float32)
|
||||
|
||||
function_under_test = lambda: ops.reshape_and_cache(
|
||||
key, # noqa: F821
|
||||
value, # noqa: F821
|
||||
key_cache, # noqa: F821
|
||||
value_cache, # noqa: F821
|
||||
slot_mapping, # noqa: F821
|
||||
kv_cache_dtype,
|
||||
k_scale,
|
||||
v_scale,
|
||||
)
|
||||
|
||||
if benchmark_mode == "cudagraph":
|
||||
g = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(g):
|
||||
function_under_test()
|
||||
torch.cuda.synchronize()
|
||||
function_under_test = lambda: g.replay()
|
||||
|
||||
def run_cuda_benchmark(n_iters: int) -> float:
|
||||
nonlocal key, value, key_cache, value_cache, slot_mapping
|
||||
torch.cuda.synchronize()
|
||||
start = time.perf_counter()
|
||||
for _ in range(n_iters):
|
||||
function_under_test()
|
||||
torch.cuda.synchronize()
|
||||
end = time.perf_counter()
|
||||
return (end - start) / n_iters
|
||||
|
||||
# warm-up
|
||||
run_cuda_benchmark(3)
|
||||
|
||||
lat = run_cuda_benchmark(num_iters)
|
||||
|
||||
# free tensors to mitigate OOM when sweeping
|
||||
del key, value, key_cache, value_cache, slot_mapping
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
return lat
|
||||
|
||||
|
||||
def main(args):
|
||||
rows = []
|
||||
for exp in range(1, 17):
|
||||
n_tok = 2**exp
|
||||
lat = run_benchmark(
|
||||
num_tokens=n_tok,
|
||||
num_heads=args.num_heads,
|
||||
head_size=args.head_size,
|
||||
block_size=args.block_size,
|
||||
num_blocks=args.num_blocks,
|
||||
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
|
||||
kv_cache_dtype=args.kv_cache_dtype,
|
||||
num_iters=args.iters,
|
||||
benchmark_mode=args.mode,
|
||||
device="cuda",
|
||||
)
|
||||
rows.append([n_tok, lat * 1e6]) # convert to microseconds
|
||||
|
||||
print(f"Benchmark results for implementation cuda (measuring with {args.mode}):")
|
||||
print(tabulate(rows, headers=["num_tokens", "latency (µs)"], floatfmt=".3f"))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser()
|
||||
|
||||
parser.add_argument("--num-heads", type=int, default=128)
|
||||
parser.add_argument(
|
||||
"--head-size",
|
||||
type=int,
|
||||
choices=[64, 80, 96, 112, 120, 128, 192, 256],
|
||||
default=128,
|
||||
)
|
||||
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
|
||||
parser.add_argument("--num-blocks", type=int, default=128 * 128)
|
||||
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
type=str,
|
||||
choices=["half", "bfloat16", "float"],
|
||||
default="bfloat16",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--kv-cache-dtype",
|
||||
type=str,
|
||||
choices=["auto", "fp8"],
|
||||
default="auto",
|
||||
)
|
||||
|
||||
parser.add_argument("--iters", type=int, default=200)
|
||||
|
||||
parser.add_argument(
|
||||
"--mode",
|
||||
type=str,
|
||||
choices=["cudagraph", "no_graph"],
|
||||
default="cudagraph",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
@ -1,6 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
# fmt: off
|
||||
# ruff: noqa: E501
|
||||
import time
|
||||
|
||||
@ -9,7 +8,7 @@ import torch
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
per_token_group_quant_fp8,
|
||||
w8a8_block_fp8_matmul,
|
||||
w8a8_triton_block_scaled_mm,
|
||||
)
|
||||
from vllm.triton_utils import triton
|
||||
from vllm.utils.deep_gemm import (
|
||||
@ -20,19 +19,21 @@ from vllm.utils.deep_gemm import (
|
||||
)
|
||||
|
||||
|
||||
def benchmark_shape(m: int,
|
||||
n: int,
|
||||
k: int,
|
||||
warmup: int = 100,
|
||||
repeat: int = 10000,
|
||||
verbose: bool = False) -> dict:
|
||||
def benchmark_shape(
|
||||
m: int,
|
||||
n: int,
|
||||
k: int,
|
||||
warmup: int = 100,
|
||||
repeat: int = 10000,
|
||||
verbose: bool = False,
|
||||
) -> dict:
|
||||
"""Benchmark all implementations for a specific (m, n, k) shape."""
|
||||
if verbose:
|
||||
print(f"\n=== Benchmarking shape: m={m}, n={n}, k={k} ===")
|
||||
|
||||
# Create test tensors
|
||||
A = torch.randn((m, k), device='cuda', dtype=torch.bfloat16)
|
||||
B = torch.randn((n, k), device='cuda', dtype=torch.bfloat16)
|
||||
A = torch.randn((m, k), device="cuda", dtype=torch.bfloat16)
|
||||
B = torch.randn((n, k), device="cuda", dtype=torch.bfloat16)
|
||||
|
||||
# Reference result in BF16
|
||||
torch.cuda.synchronize()
|
||||
@ -49,34 +50,39 @@ def benchmark_shape(m: int,
|
||||
# Pre-quantize A for all implementations
|
||||
A_deepgemm, A_scale_deepgemm = per_token_group_quant_fp8(A, block_size[1])
|
||||
A_scale_deepgemm = get_col_major_tma_aligned_tensor(A_scale_deepgemm)
|
||||
C_deepgemm = torch.empty((m, n), device='cuda', dtype=torch.bfloat16)
|
||||
C_deepgemm = torch.empty((m, n), device="cuda", dtype=torch.bfloat16)
|
||||
A_vllm, A_scale_vllm = per_token_group_quant_fp8(A, block_size[1])
|
||||
A_vllm_cutlass, A_scale_vllm_cutlass = per_token_group_quant_fp8(
|
||||
A, block_size[1], column_major_scales=True)
|
||||
A, block_size[1], column_major_scales=True
|
||||
)
|
||||
|
||||
# === DeepGEMM Implementation ===
|
||||
def deepgemm_gemm():
|
||||
fp8_gemm_nt((A_deepgemm, A_scale_deepgemm),
|
||||
(B_deepgemm, B_scale_deepgemm),
|
||||
C_deepgemm)
|
||||
fp8_gemm_nt(
|
||||
(A_deepgemm, A_scale_deepgemm), (B_deepgemm, B_scale_deepgemm), C_deepgemm
|
||||
)
|
||||
return C_deepgemm
|
||||
|
||||
# === vLLM Triton Implementation ===
|
||||
def vllm_triton_gemm():
|
||||
return w8a8_block_fp8_matmul(A_vllm,
|
||||
B_vllm,
|
||||
A_scale_vllm,
|
||||
B_scale_vllm,
|
||||
block_size,
|
||||
output_dtype=torch.bfloat16)
|
||||
return w8a8_triton_block_scaled_mm(
|
||||
A_vllm,
|
||||
B_vllm,
|
||||
A_scale_vllm,
|
||||
B_scale_vllm,
|
||||
block_size,
|
||||
output_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
# === vLLM CUTLASS Implementation ===
|
||||
def vllm_cutlass_gemm():
|
||||
return ops.cutlass_scaled_mm(A_vllm_cutlass,
|
||||
B_vllm.T,
|
||||
scale_a=A_scale_vllm_cutlass,
|
||||
scale_b=B_scale_vllm.T,
|
||||
out_dtype=torch.bfloat16)
|
||||
return ops.cutlass_scaled_mm(
|
||||
A_vllm_cutlass,
|
||||
B_vllm.T,
|
||||
scale_a=A_scale_vllm_cutlass,
|
||||
scale_b=B_scale_vllm.T,
|
||||
out_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
# Run correctness check first
|
||||
if verbose:
|
||||
@ -93,26 +99,23 @@ def benchmark_shape(m: int,
|
||||
print(f"DeepGEMM vs Reference difference: {deepgemm_diff:.6f}")
|
||||
print(f"vLLM Triton vs Reference difference: {vllm_triton_diff:.6f}")
|
||||
print(f"vLLM CUTLASS vs Reference difference: {vllm_cutlass_diff:.6f}")
|
||||
print("vLLM Triton vs DeepGEMM difference: "
|
||||
f"{calc_diff(C_vllm_triton, C_deepgemm):.6f}")
|
||||
print("vLLM CUTLASS vs DeepGEMM difference: "
|
||||
f"{calc_diff(C_vllm_cutlass, C_deepgemm):.6f}")
|
||||
print(
|
||||
"vLLM Triton vs DeepGEMM difference: "
|
||||
f"{calc_diff(C_vllm_triton, C_deepgemm):.6f}"
|
||||
)
|
||||
print(
|
||||
"vLLM CUTLASS vs DeepGEMM difference: "
|
||||
f"{calc_diff(C_vllm_cutlass, C_deepgemm):.6f}"
|
||||
)
|
||||
|
||||
# Benchmark implementations
|
||||
implementations = {
|
||||
"DeepGEMM": deepgemm_gemm,
|
||||
"vLLM Triton": vllm_triton_gemm,
|
||||
"vLLM CUTLASS": vllm_cutlass_gemm
|
||||
"vLLM CUTLASS": vllm_cutlass_gemm,
|
||||
}
|
||||
|
||||
benchmark_results = {
|
||||
"shape": {
|
||||
"m": m,
|
||||
"n": n,
|
||||
"k": k
|
||||
},
|
||||
"implementations": {}
|
||||
}
|
||||
benchmark_results = {"shape": {"m": m, "n": n, "k": k}, "implementations": {}}
|
||||
|
||||
for name, func in implementations.items():
|
||||
# Warmup
|
||||
@ -140,38 +143,36 @@ def benchmark_shape(m: int,
|
||||
"tflops": tflops,
|
||||
"gb_s": gb_s,
|
||||
"diff": {
|
||||
"DeepGEMM":
|
||||
0.0 if name == "DeepGEMM" else calc_diff(func(), C_deepgemm),
|
||||
"Reference":
|
||||
deepgemm_diff if name == "DeepGEMM" else
|
||||
(vllm_triton_diff
|
||||
if name == "vLLM Triton" else vllm_cutlass_diff)
|
||||
}
|
||||
"DeepGEMM": 0.0
|
||||
if name == "DeepGEMM"
|
||||
else calc_diff(func(), C_deepgemm),
|
||||
"Reference": deepgemm_diff
|
||||
if name == "DeepGEMM"
|
||||
else (vllm_triton_diff if name == "vLLM Triton" else vllm_cutlass_diff),
|
||||
},
|
||||
}
|
||||
|
||||
if verbose:
|
||||
print(
|
||||
f"{name}: {avg_time_ms:.3f} ms, {tflops:.2f} TFLOPS, {gb_s:.2f} GB/s"
|
||||
)
|
||||
print(f"{name}: {avg_time_ms:.3f} ms, {tflops:.2f} TFLOPS, {gb_s:.2f} GB/s")
|
||||
|
||||
# Calculate speedups
|
||||
baseline = benchmark_results["implementations"]["DeepGEMM"]["time_ms"]
|
||||
for name, data in benchmark_results["implementations"].items():
|
||||
if name != "DeepGEMM":
|
||||
speedup = baseline / data["time_ms"]
|
||||
benchmark_results["implementations"][name][
|
||||
"speedup_vs_deepgemm"] = speedup
|
||||
benchmark_results["implementations"][name]["speedup_vs_deepgemm"] = speedup
|
||||
if verbose:
|
||||
print(f"DeepGEMM is {1/speedup:.2f}x "
|
||||
f"{'faster' if 1/speedup > 1 else 'slower'} than {name}")
|
||||
print(
|
||||
f"DeepGEMM is {1 / speedup:.2f}x "
|
||||
f"{'faster' if 1 / speedup > 1 else 'slower'} than {name}"
|
||||
)
|
||||
|
||||
vllm_triton_time = benchmark_results["implementations"]["vLLM Triton"][
|
||||
"time_ms"]
|
||||
vllm_cutlass_time = benchmark_results["implementations"]["vLLM CUTLASS"][
|
||||
"time_ms"]
|
||||
vllm_triton_time = benchmark_results["implementations"]["vLLM Triton"]["time_ms"]
|
||||
vllm_cutlass_time = benchmark_results["implementations"]["vLLM CUTLASS"]["time_ms"]
|
||||
cutlass_vs_triton = vllm_triton_time / vllm_cutlass_time
|
||||
benchmark_results["implementations"]["vLLM CUTLASS"][
|
||||
"speedup_vs_triton"] = cutlass_vs_triton
|
||||
benchmark_results["implementations"]["vLLM CUTLASS"]["speedup_vs_triton"] = (
|
||||
cutlass_vs_triton
|
||||
)
|
||||
if verbose:
|
||||
print(
|
||||
f"vLLM CUTLASS is {cutlass_vs_triton:.2f}x "
|
||||
@ -183,8 +184,7 @@ def benchmark_shape(m: int,
|
||||
|
||||
def format_table_row(values, widths):
|
||||
"""Format a row with specified column widths."""
|
||||
return "| " + " | ".join(f"{val:{w}}"
|
||||
for val, w in zip(values, widths)) + " |"
|
||||
return "| " + " | ".join(f"{val:{w}}" for val, w in zip(values, widths)) + " |"
|
||||
|
||||
|
||||
def print_table(headers, rows, title=None):
|
||||
@ -292,38 +292,50 @@ def run_benchmarks(verbose: bool = False):
|
||||
for result in all_results:
|
||||
shape = result["shape"]
|
||||
impl_data = result["implementations"]["DeepGEMM"]
|
||||
deepgemm_rows.append([
|
||||
shape["m"], shape["n"], shape["k"], f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}", f"{impl_data['gb_s']:.1f}"
|
||||
])
|
||||
deepgemm_rows.append(
|
||||
[
|
||||
shape["m"],
|
||||
shape["n"],
|
||||
shape["k"],
|
||||
f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}",
|
||||
f"{impl_data['gb_s']:.1f}",
|
||||
]
|
||||
)
|
||||
|
||||
print_table(deepgemm_headers,
|
||||
deepgemm_rows,
|
||||
title="DeepGEMM Implementation:")
|
||||
print_table(deepgemm_headers, deepgemm_rows, title="DeepGEMM Implementation:")
|
||||
|
||||
# Print vLLM Triton table
|
||||
triton_headers = [
|
||||
"m", "n", "k", "Time (μs)", "TFLOPS", "GB/s", "vs DeepGEMM"
|
||||
]
|
||||
triton_headers = ["m", "n", "k", "Time (μs)", "TFLOPS", "GB/s", "vs DeepGEMM"]
|
||||
triton_rows = []
|
||||
for result in all_results:
|
||||
shape = result["shape"]
|
||||
impl_data = result["implementations"]["vLLM Triton"]
|
||||
speedup = impl_data.get("speedup_vs_deepgemm", 1.0)
|
||||
triton_rows.append([
|
||||
shape["m"], shape["n"], shape["k"], f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}", f"{impl_data['gb_s']:.1f}",
|
||||
format_speedup(speedup)
|
||||
])
|
||||
triton_rows.append(
|
||||
[
|
||||
shape["m"],
|
||||
shape["n"],
|
||||
shape["k"],
|
||||
f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}",
|
||||
f"{impl_data['gb_s']:.1f}",
|
||||
format_speedup(speedup),
|
||||
]
|
||||
)
|
||||
|
||||
print_table(triton_headers,
|
||||
triton_rows,
|
||||
title="vLLM Triton Implementation:")
|
||||
print_table(triton_headers, triton_rows, title="vLLM Triton Implementation:")
|
||||
|
||||
# Print vLLM CUTLASS table
|
||||
cutlass_headers = [
|
||||
"m", "n", "k", "Time (μs)", "TFLOPS", "GB/s", "vs DeepGEMM",
|
||||
"vs Triton"
|
||||
"m",
|
||||
"n",
|
||||
"k",
|
||||
"Time (μs)",
|
||||
"TFLOPS",
|
||||
"GB/s",
|
||||
"vs DeepGEMM",
|
||||
"vs Triton",
|
||||
]
|
||||
cutlass_rows = []
|
||||
for result in all_results:
|
||||
@ -331,28 +343,27 @@ def run_benchmarks(verbose: bool = False):
|
||||
impl_data = result["implementations"]["vLLM CUTLASS"]
|
||||
vs_deepgemm = impl_data.get("speedup_vs_deepgemm", 1.0)
|
||||
vs_triton = impl_data.get("speedup_vs_triton", 1.0)
|
||||
cutlass_rows.append([
|
||||
shape["m"], shape["n"], shape["k"], f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}", f"{impl_data['gb_s']:.1f}",
|
||||
format_speedup(vs_deepgemm),
|
||||
format_speedup(vs_triton)
|
||||
])
|
||||
cutlass_rows.append(
|
||||
[
|
||||
shape["m"],
|
||||
shape["n"],
|
||||
shape["k"],
|
||||
f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}",
|
||||
f"{impl_data['gb_s']:.1f}",
|
||||
format_speedup(vs_deepgemm),
|
||||
format_speedup(vs_triton),
|
||||
]
|
||||
)
|
||||
|
||||
print_table(cutlass_headers,
|
||||
cutlass_rows,
|
||||
title="vLLM CUTLASS Implementation:")
|
||||
print_table(cutlass_headers, cutlass_rows, title="vLLM CUTLASS Implementation:")
|
||||
|
||||
# Calculate and print averages
|
||||
print("\n===== AVERAGE PERFORMANCE =====")
|
||||
|
||||
implementations = ["DeepGEMM", "vLLM Triton", "vLLM CUTLASS"]
|
||||
avg_metrics = {
|
||||
impl: {
|
||||
"tflops": 0,
|
||||
"gb_s": 0,
|
||||
"time_ms": 0
|
||||
}
|
||||
for impl in implementations
|
||||
impl: {"tflops": 0, "gb_s": 0, "time_ms": 0} for impl in implementations
|
||||
}
|
||||
|
||||
for result in all_results:
|
||||
@ -370,9 +381,9 @@ def run_benchmarks(verbose: bool = False):
|
||||
avg_tflops = avg_metrics[impl]["tflops"] / num_shapes
|
||||
avg_mem_bw = avg_metrics[impl]["gb_s"] / num_shapes
|
||||
avg_time = avg_metrics[impl]["time_ms"] / num_shapes
|
||||
avg_rows.append([
|
||||
impl, f"{avg_tflops:.2f}", f"{avg_mem_bw:.2f}", f"{avg_time:.2f}"
|
||||
])
|
||||
avg_rows.append(
|
||||
[impl, f"{avg_tflops:.2f}", f"{avg_mem_bw:.2f}", f"{avg_time:.2f}"]
|
||||
)
|
||||
|
||||
print_table(avg_headers, avg_rows)
|
||||
|
||||
@ -380,21 +391,19 @@ def run_benchmarks(verbose: bool = False):
|
||||
avg_speedups = {
|
||||
"DeepGEMM vs vLLM Triton": 0,
|
||||
"DeepGEMM vs vLLM CUTLASS": 0,
|
||||
"vLLM CUTLASS vs vLLM Triton": 0
|
||||
"vLLM CUTLASS vs vLLM Triton": 0,
|
||||
}
|
||||
|
||||
for result in all_results:
|
||||
deepgemm_time = result["implementations"]["DeepGEMM"]["time_ms"]
|
||||
vllm_triton_time = result["implementations"]["vLLM Triton"]["time_ms"]
|
||||
vllm_cutlass_time = result["implementations"]["vLLM CUTLASS"][
|
||||
"time_ms"]
|
||||
vllm_cutlass_time = result["implementations"]["vLLM CUTLASS"]["time_ms"]
|
||||
|
||||
avg_speedups[
|
||||
"DeepGEMM vs vLLM Triton"] += vllm_triton_time / deepgemm_time
|
||||
avg_speedups[
|
||||
"DeepGEMM vs vLLM CUTLASS"] += vllm_cutlass_time / deepgemm_time
|
||||
avg_speedups[
|
||||
"vLLM CUTLASS vs vLLM Triton"] += vllm_triton_time / vllm_cutlass_time
|
||||
avg_speedups["DeepGEMM vs vLLM Triton"] += vllm_triton_time / deepgemm_time
|
||||
avg_speedups["DeepGEMM vs vLLM CUTLASS"] += vllm_cutlass_time / deepgemm_time
|
||||
avg_speedups["vLLM CUTLASS vs vLLM Triton"] += (
|
||||
vllm_triton_time / vllm_cutlass_time
|
||||
)
|
||||
|
||||
print("\n===== AVERAGE SPEEDUPS =====")
|
||||
speedup_headers = ["Comparison", "Speedup"]
|
||||
@ -412,8 +421,7 @@ def run_benchmarks(verbose: bool = False):
|
||||
|
||||
for result in all_results:
|
||||
for impl in implementations:
|
||||
avg_diff[impl] += result["implementations"][impl]["diff"][
|
||||
"Reference"]
|
||||
avg_diff[impl] += result["implementations"][impl]["diff"]["Reference"]
|
||||
|
||||
diff_headers = ["Implementation", "Avg Diff vs Reference"]
|
||||
diff_rows = []
|
||||
|
@ -1,49 +0,0 @@
|
||||
# This local pyproject file is part of the migration from yapf to ruff format.
|
||||
# It uses the same core rules as the main pyproject.toml file, but with the
|
||||
# following differences:
|
||||
# - ruff line length is overridden to 88
|
||||
# - deprecated typing ignores (UP006, UP035) have been removed
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 88
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"vllm/third_party/**" = ["ALL"]
|
||||
"vllm/version.py" = ["F401"]
|
||||
"vllm/_version.py" = ["ALL"]
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = [
|
||||
# pycodestyle
|
||||
"E",
|
||||
# Pyflakes
|
||||
"F",
|
||||
# pyupgrade
|
||||
"UP",
|
||||
# flake8-bugbear
|
||||
"B",
|
||||
# flake8-simplify
|
||||
"SIM",
|
||||
# isort
|
||||
"I",
|
||||
# flake8-logging-format
|
||||
"G",
|
||||
]
|
||||
ignore = [
|
||||
# star imports
|
||||
"F405", "F403",
|
||||
# lambda expression assignment
|
||||
"E731",
|
||||
# Loop control variable not used within loop body
|
||||
"B007",
|
||||
# f-string format
|
||||
"UP032",
|
||||
# Can remove once 3.10+ is the minimum Python version
|
||||
"UP007",
|
||||
]
|
||||
|
||||
[tool.ruff.lint.isort]
|
||||
known-first-party = ["vllm"]
|
||||
|
||||
[tool.ruff.format]
|
||||
docstring-code-format = true
|
@ -213,6 +213,7 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON
|
||||
endif()
|
||||
set(ONEDNN_AARCH64_USE_ACL "ON")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
|
||||
add_compile_definitions(VLLM_USE_ACL)
|
||||
endif()
|
||||
|
||||
set(ONEDNN_LIBRARY_TYPE "STATIC")
|
||||
@ -226,7 +227,7 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON
|
||||
set(ONEDNN_ENABLE_ITT_TASKS "OFF")
|
||||
set(ONEDNN_ENABLE_MAX_CPU_ISA "OFF")
|
||||
set(ONEDNN_ENABLE_CPU_ISA_HINTS "OFF")
|
||||
set(ONEDNN_VERBOSE "OFF")
|
||||
set(ONEDNN_VERBOSE "ON")
|
||||
set(CMAKE_POLICY_DEFAULT_CMP0077 NEW)
|
||||
|
||||
FetchContent_MakeAvailable(oneDNN)
|
||||
|
@ -18,8 +18,8 @@ if(FLASH_MLA_SRC_DIR)
|
||||
else()
|
||||
FetchContent_Declare(
|
||||
flashmla
|
||||
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA.git
|
||||
GIT_TAG a757314c04eedd166e329e846c820eb1bdd702de
|
||||
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA
|
||||
GIT_TAG 5f65b85703c7ed75fda01e06495077caad207c3f
|
||||
GIT_PROGRESS TRUE
|
||||
CONFIGURE_COMMAND ""
|
||||
BUILD_COMMAND ""
|
||||
@ -33,23 +33,64 @@ message(STATUS "FlashMLA is available at ${flashmla_SOURCE_DIR}")
|
||||
# The FlashMLA kernels only work on hopper and require CUDA 12.3 or later.
|
||||
# Only build FlashMLA kernels if we are building for something compatible with
|
||||
# sm90a
|
||||
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "9.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
|
||||
|
||||
set(SUPPORT_ARCHS)
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3)
|
||||
list(APPEND SUPPORT_ARCHS 9.0a)
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8)
|
||||
list(APPEND SUPPORT_ARCHS 10.0a)
|
||||
endif()
|
||||
|
||||
|
||||
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "${SUPPORT_ARCHS}" "${CUDA_ARCHS}")
|
||||
if(FLASH_MLA_ARCHS)
|
||||
set(VLLM_FLASHMLA_GPU_FLAGS ${VLLM_GPU_FLAGS})
|
||||
list(APPEND VLLM_FLASHMLA_GPU_FLAGS "--expt-relaxed-constexpr" "--expt-extended-lambda" "--use_fast_math")
|
||||
|
||||
set(FlashMLA_SOURCES
|
||||
${flashmla_SOURCE_DIR}/csrc/flash_api.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/mla_combine.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels_fp8/flash_fwd_mla_fp8_sm90.cu)
|
||||
${flashmla_SOURCE_DIR}/csrc/torch_api.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/pybind.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/smxx/get_mla_metadata.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/smxx/mla_combine.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90/decode/dense/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90/decode/sparse_fp8/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90/prefill/sparse/fwd.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/decode/sparse_fp8/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_fwd_sm100.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_bwd_sm100.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/sparse/fwd.cu
|
||||
)
|
||||
|
||||
set(FlashMLA_Extension_SOURCES
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/torch_api.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/pybind.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/flash_fwd_mla_fp8_sm90.cu
|
||||
)
|
||||
|
||||
set(FlashMLA_INCLUDES
|
||||
${flashmla_SOURCE_DIR}/csrc
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/include
|
||||
${flashmla_SOURCE_DIR}/csrc)
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
|
||||
)
|
||||
|
||||
set(FlashMLA_Extension_INCLUDES
|
||||
${flashmla_SOURCE_DIR}/csrc
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/include
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
|
||||
)
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${FlashMLA_SOURCES}"
|
||||
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${FlashMLA_Extension_SOURCES}"
|
||||
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
|
||||
|
||||
define_gpu_extension_target(
|
||||
_flashmla_C
|
||||
DESTINATION vllm
|
||||
@ -60,8 +101,32 @@ if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
|
||||
INCLUDE_DIRECTORIES ${FlashMLA_INCLUDES}
|
||||
USE_SABI 3
|
||||
WITH_SOABI)
|
||||
|
||||
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
|
||||
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
|
||||
target_compile_options(_flashmla_C PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
|
||||
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
|
||||
|
||||
define_gpu_extension_target(
|
||||
_flashmla_extension_C
|
||||
DESTINATION vllm
|
||||
LANGUAGE ${VLLM_GPU_LANG}
|
||||
SOURCES ${FlashMLA_Extension_SOURCES}
|
||||
COMPILE_FLAGS ${VLLM_FLASHMLA_GPU_FLAGS}
|
||||
ARCHITECTURES ${VLLM_GPU_ARCHES}
|
||||
INCLUDE_DIRECTORIES ${FlashMLA_Extension_INCLUDES}
|
||||
USE_SABI 3
|
||||
WITH_SOABI)
|
||||
|
||||
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
|
||||
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
|
||||
target_compile_options(_flashmla_extension_C PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
|
||||
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
|
||||
else()
|
||||
# Create an empty target for setup.py when not targeting sm90a systems
|
||||
# Create empty targets for setup.py when not targeting sm90a systems
|
||||
add_custom_target(_flashmla_C)
|
||||
add_custom_target(_flashmla_extension_C)
|
||||
endif()
|
||||
|
||||
|
@ -38,7 +38,7 @@ else()
|
||||
FetchContent_Declare(
|
||||
vllm-flash-attn
|
||||
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
||||
GIT_TAG ee4d25bd84e0cbc7e0b9b9685085fd5db2dcb62a
|
||||
GIT_TAG 4695e6bed5366c41e28c06cd86170166e4f43d00
|
||||
GIT_PROGRESS TRUE
|
||||
# Don't share the vllm-flash-attn build between build types
|
||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||
|
@ -16,7 +16,7 @@ import shutil
|
||||
|
||||
from torch.utils.hipify.hipify_python import hipify
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
# Project directory where all the source + include files live.
|
||||
@ -34,15 +34,14 @@ if __name__ == '__main__':
|
||||
)
|
||||
|
||||
# Source files to convert.
|
||||
parser.add_argument("sources",
|
||||
help="Source files to hipify.",
|
||||
nargs="*",
|
||||
default=[])
|
||||
parser.add_argument(
|
||||
"sources", help="Source files to hipify.", nargs="*", default=[]
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Limit include scope to project_dir only
|
||||
includes = [os.path.join(args.project_dir, '*')]
|
||||
includes = [os.path.join(args.project_dir, "*")]
|
||||
|
||||
# Get absolute path for all source files.
|
||||
extra_files = [os.path.abspath(s) for s in args.sources]
|
||||
@ -51,25 +50,31 @@ if __name__ == '__main__':
|
||||
# The directory might already exist to hold object files so we ignore that.
|
||||
shutil.copytree(args.project_dir, args.output_dir, dirs_exist_ok=True)
|
||||
|
||||
hipify_result = hipify(project_directory=args.project_dir,
|
||||
output_directory=args.output_dir,
|
||||
header_include_dirs=[],
|
||||
includes=includes,
|
||||
extra_files=extra_files,
|
||||
show_detailed=True,
|
||||
is_pytorch_extension=True,
|
||||
hipify_extra_files_only=True)
|
||||
hipify_result = hipify(
|
||||
project_directory=args.project_dir,
|
||||
output_directory=args.output_dir,
|
||||
header_include_dirs=[],
|
||||
includes=includes,
|
||||
extra_files=extra_files,
|
||||
show_detailed=True,
|
||||
is_pytorch_extension=True,
|
||||
hipify_extra_files_only=True,
|
||||
)
|
||||
|
||||
hipified_sources = []
|
||||
for source in args.sources:
|
||||
s_abs = os.path.abspath(source)
|
||||
hipified_s_abs = (hipify_result[s_abs].hipified_path if
|
||||
(s_abs in hipify_result
|
||||
and hipify_result[s_abs].hipified_path is not None)
|
||||
else s_abs)
|
||||
hipified_s_abs = (
|
||||
hipify_result[s_abs].hipified_path
|
||||
if (
|
||||
s_abs in hipify_result
|
||||
and hipify_result[s_abs].hipified_path is not None
|
||||
)
|
||||
else s_abs
|
||||
)
|
||||
hipified_sources.append(hipified_s_abs)
|
||||
|
||||
assert (len(hipified_sources) == len(args.sources))
|
||||
assert len(hipified_sources) == len(args.sources)
|
||||
|
||||
# Print hipified source files.
|
||||
print("\n".join(hipified_sources))
|
||||
|
@ -310,13 +310,13 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
|
||||
list(REMOVE_DUPLICATES _PTX_ARCHS)
|
||||
list(REMOVE_DUPLICATES _SRC_CUDA_ARCHS)
|
||||
|
||||
# if x.0a is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
|
||||
# remove x.0a from SRC_CUDA_ARCHS and add x.0a to _CUDA_ARCHS
|
||||
# If x.0a or x.0f is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
|
||||
# remove x.0a or x.0f from SRC_CUDA_ARCHS and add x.0a or x.0f to _CUDA_ARCHS
|
||||
set(_CUDA_ARCHS)
|
||||
foreach(_arch ${_SRC_CUDA_ARCHS})
|
||||
if(_arch MATCHES "\\a$")
|
||||
if(_arch MATCHES "[af]$")
|
||||
list(REMOVE_ITEM _SRC_CUDA_ARCHS "${_arch}")
|
||||
string(REPLACE "a" "" _base "${_arch}")
|
||||
string(REGEX REPLACE "[af]$" "" _base "${_arch}")
|
||||
if ("${_base}" IN_LIST TGT_CUDA_ARCHS)
|
||||
list(REMOVE_ITEM _TGT_CUDA_ARCHS "${_base}")
|
||||
list(APPEND _CUDA_ARCHS "${_arch}")
|
||||
|
@ -580,22 +580,22 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||
auto blk_coord = tile_scheduler.get_block_coord();
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
auto local_split_kv = params.split_kv;
|
||||
if (params.mainloop.ptr_seq != nullptr) {
|
||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||
}
|
||||
}
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
continue;
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
continue;
|
||||
load_page_table(
|
||||
blk_coord,
|
||||
problem_shape,
|
||||
params.mainloop,
|
||||
shared_storage.tensors,
|
||||
pipeline_page_table, pipeline_pt_producer_state,
|
||||
local_split_kv
|
||||
local_split_kv
|
||||
);
|
||||
}
|
||||
}
|
||||
@ -604,15 +604,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||
auto blk_coord = tile_scheduler.get_block_coord();
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
if (params.mainloop.ptr_seq != nullptr) {
|
||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||
}
|
||||
}
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
continue;
|
||||
load_cpasync(
|
||||
blk_coord,
|
||||
@ -621,7 +621,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
params.mainloop_params,
|
||||
shared_storage.tensors,
|
||||
pipeline_load_qk, pipeline_load_qk_producer_state,
|
||||
local_split_kv,
|
||||
local_split_kv,
|
||||
/* must be shared pipe */
|
||||
pipeline_page_table, pipeline_pt_consumer_state
|
||||
);
|
||||
@ -633,15 +633,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||
auto blk_coord = tile_scheduler.get_block_coord();
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
if (params.mainloop.ptr_seq != nullptr) {
|
||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||
}
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||
}
|
||||
}
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
continue;
|
||||
load_tma</* paged= */ true>(
|
||||
blk_coord,
|
||||
@ -651,7 +651,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
shared_storage.tensors,
|
||||
pipeline_load_qk, pipeline_load_qk_producer_state,
|
||||
pipeline_load_qk, pipeline_load_qk_producer_state,
|
||||
local_split_kv
|
||||
local_split_kv
|
||||
);
|
||||
cutlass::arch::NamedBarrier((kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp, kNamedBarrierEpilogue).arrive_and_wait();
|
||||
}
|
||||
@ -660,15 +660,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||
auto blk_coord = tile_scheduler.get_block_coord();
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
if (params.mainloop.ptr_seq != nullptr) {
|
||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
continue;
|
||||
load_tma<false>(
|
||||
blk_coord,
|
||||
@ -678,7 +678,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
shared_storage.tensors,
|
||||
pipeline_load_qk, pipeline_load_qk_producer_state,
|
||||
pipeline_load_qk, pipeline_load_qk_producer_state,
|
||||
local_split_kv
|
||||
local_split_kv
|
||||
);
|
||||
cutlass::arch::NamedBarrier((kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp, kNamedBarrierEpilogue).arrive_and_wait();
|
||||
}
|
||||
@ -694,14 +694,14 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||
auto blk_coord = tile_scheduler.get_block_coord();
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
auto local_split_kv = params.split_kv;
|
||||
if (params.mainloop.ptr_seq != nullptr) {
|
||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||
}
|
||||
}
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
continue;
|
||||
mma(blk_coord,
|
||||
problem_shape,
|
||||
@ -711,7 +711,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
pipeline_mma_s, pipeline_mma_s_producer_state,
|
||||
pipeline_p_mma, pipeline_p_mma_consumer_state,
|
||||
pipeline_mma_o, pipeline_mma_o_producer_state,
|
||||
local_split_kv
|
||||
local_split_kv
|
||||
);
|
||||
}
|
||||
}
|
||||
@ -726,15 +726,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||
auto blk_coord = tile_scheduler.get_block_coord();
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto split_kv = params.split_kv;
|
||||
auto local_split_kv = split_kv;
|
||||
auto split_kv = params.split_kv;
|
||||
auto local_split_kv = split_kv;
|
||||
if (params.mainloop.ptr_seq != nullptr) {
|
||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||
}
|
||||
}
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
continue;
|
||||
compute(
|
||||
blk_coord,
|
||||
@ -745,7 +745,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
pipeline_mma_s, pipeline_mma_s_consumer_state,
|
||||
pipeline_p_mma, pipeline_p_mma_producer_state,
|
||||
pipeline_mma_o, pipeline_mma_o_consumer_state,
|
||||
local_split_kv
|
||||
local_split_kv
|
||||
);
|
||||
}
|
||||
|
||||
@ -1900,7 +1900,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
cutlass::arch::NamedBarrier(
|
||||
(kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp,
|
||||
kNamedBarrierEpilogue
|
||||
).arrive();
|
||||
).arrive_and_wait();
|
||||
|
||||
return;
|
||||
}
|
||||
|
@ -56,3 +56,11 @@ void cp_gather_cache(
|
||||
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
|
||||
torch::Tensor const& cu_seq_lens, // [BATCH+1]
|
||||
int64_t batch_size, std::optional<torch::Tensor> seq_starts = std::nullopt);
|
||||
|
||||
// Indexer K quantization and cache function
|
||||
void indexer_k_quant_and_cache(
|
||||
torch::Tensor& k, // [num_tokens, head_dim]
|
||||
torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
|
||||
torch::Tensor& slot_mapping, // [num_tokens]
|
||||
int64_t quant_block_size, // quantization block size
|
||||
const std::string& scale_fmt);
|
||||
|
@ -16,8 +16,7 @@
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <cfloat>
|
||||
|
||||
#ifdef USE_ROCM
|
||||
#include <hip/hip_bf16.h>
|
||||
@ -209,6 +208,20 @@ void copy_blocks_mla(std::vector<torch::Tensor> const& kv_caches,
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// Used to copy/convert one element
|
||||
template <typename OutT, typename InT, Fp8KVCacheDataType kv_dt>
|
||||
struct CopyWithScaleOp {
|
||||
float scale;
|
||||
|
||||
__device__ __forceinline__ void operator()(OutT& dst, const InT src) const {
|
||||
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
|
||||
dst = static_cast<OutT>(src);
|
||||
} else {
|
||||
dst = fp8::scaled_convert<OutT, InT, kv_dt>(src, scale);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
||||
__global__ void reshape_and_cache_kernel(
|
||||
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
|
||||
@ -224,59 +237,51 @@ __global__ void reshape_and_cache_kernel(
|
||||
const int64_t token_idx = blockIdx.x;
|
||||
const int64_t slot_idx = slot_mapping[token_idx];
|
||||
if (slot_idx < 0) {
|
||||
// Padding token that should be ignored.
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t block_idx = slot_idx / block_size;
|
||||
const int64_t block_offset = slot_idx % block_size;
|
||||
const int h_block_count = head_size / x; // head_size//x
|
||||
|
||||
const int n = num_heads * head_size;
|
||||
for (int i = threadIdx.x; i < n; i += blockDim.x) {
|
||||
const int64_t src_key_idx = token_idx * key_stride + i;
|
||||
const int64_t src_value_idx = token_idx * value_stride + i;
|
||||
const int h_block_idx = threadIdx.x;
|
||||
if (h_block_idx >= num_heads * h_block_count) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int head_idx = i / head_size;
|
||||
const int head_offset = i % head_size;
|
||||
const int x_idx = head_offset / x;
|
||||
const int x_offset = head_offset % x;
|
||||
const int head_idx = h_block_idx / h_block_count;
|
||||
const int h_block = h_block_idx % h_block_count;
|
||||
|
||||
const int64_t tgt_key_idx =
|
||||
block_idx * num_heads * (head_size / x) * block_size * x +
|
||||
head_idx * (head_size / x) * block_size * x + x_idx * block_size * x +
|
||||
block_offset * x + x_offset;
|
||||
const int64_t tgt_value_idx =
|
||||
block_idx * num_heads * head_size * block_size +
|
||||
head_idx * head_size * block_size + head_offset * block_size +
|
||||
block_offset;
|
||||
scalar_t tgt_key = key[src_key_idx];
|
||||
scalar_t tgt_value = value[src_value_idx];
|
||||
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
|
||||
key_cache[tgt_key_idx] = tgt_key;
|
||||
value_cache[tgt_value_idx] = tgt_value;
|
||||
} else {
|
||||
key_cache[tgt_key_idx] =
|
||||
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_key, *k_scale);
|
||||
value_cache[tgt_value_idx] =
|
||||
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_value, *v_scale);
|
||||
}
|
||||
const scalar_t* __restrict__ key_src =
|
||||
key + token_idx * key_stride + head_idx * head_size + h_block * x;
|
||||
const int64_t src_value_start =
|
||||
token_idx * value_stride + head_idx * head_size + h_block * x;
|
||||
|
||||
cache_t* __restrict__ key_dst =
|
||||
key_cache + block_idx * num_heads * h_block_count * block_size * x +
|
||||
head_idx * h_block_count * block_size * x + h_block * block_size * x +
|
||||
block_offset * x;
|
||||
const int64_t tgt_value_start =
|
||||
block_idx * num_heads * h_block_count * x * block_size +
|
||||
head_idx * h_block_count * x * block_size + h_block * x * block_size +
|
||||
block_offset;
|
||||
|
||||
constexpr int VEC_SIZE = (sizeof(scalar_t) == 2) ? 8 : 4;
|
||||
float k_scale_val = (kv_dt == Fp8KVCacheDataType::kAuto) ? 0.f : *k_scale;
|
||||
CopyWithScaleOp<cache_t, scalar_t, kv_dt> k_op{k_scale_val};
|
||||
float v_scale_val = (kv_dt == Fp8KVCacheDataType::kAuto) ? 0.f : *v_scale;
|
||||
CopyWithScaleOp<cache_t, scalar_t, kv_dt> v_op{v_scale_val};
|
||||
|
||||
vectorize_with_alignment<VEC_SIZE>(key_src, key_dst, x, 0, 1, k_op);
|
||||
|
||||
const scalar_t* __restrict__ value_src = value + src_value_start;
|
||||
cache_t* __restrict__ value_dst = value_cache + tgt_value_start;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < x; i++) {
|
||||
v_op(value_dst[i * block_size], value_src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// Used by vectorization_utils to copy/convert one element
|
||||
template <typename OutT, typename InT, Fp8KVCacheDataType kv_dt>
|
||||
struct CopyWithScaleOp {
|
||||
float scale;
|
||||
|
||||
__device__ __forceinline__ void operator()(OutT& dst, const InT src) const {
|
||||
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
|
||||
dst = static_cast<OutT>(src);
|
||||
} else {
|
||||
dst = fp8::scaled_convert<OutT, InT, kv_dt>(src, scale);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
||||
__global__ void reshape_and_cache_flash_kernel(
|
||||
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
|
||||
@ -396,6 +401,177 @@ __global__ void concat_and_cache_mla_kernel(
|
||||
copy(k_pe, kv_cache, k_pe_stride, block_stride, pe_dim, kv_lora_rank);
|
||||
}
|
||||
|
||||
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
||||
__global__ void concat_and_cache_ds_mla_kernel(
|
||||
const scalar_t* __restrict__ kv_c, // [num_tokens, kv_lora_rank]
|
||||
const scalar_t* __restrict__ k_pe, // [num_tokens, pe_dim]
|
||||
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, (kv_lora_rank
|
||||
// + pe_dim)]
|
||||
const int64_t* __restrict__ slot_mapping, // [num_tokens]
|
||||
const int block_stride, //
|
||||
const int entry_stride, //
|
||||
const int kv_c_stride, //
|
||||
const int k_pe_stride, //
|
||||
const int kv_lora_rank, //
|
||||
const int pe_dim, //
|
||||
const int block_size, //
|
||||
const float* scale //
|
||||
) {
|
||||
const int64_t token_idx = blockIdx.x;
|
||||
const int64_t slot_idx = slot_mapping[token_idx];
|
||||
// NOTE: slot_idx can be -1 if the token is padded
|
||||
if (slot_idx < 0) {
|
||||
return;
|
||||
}
|
||||
const int64_t block_idx = slot_idx / block_size;
|
||||
const int64_t block_offset = slot_idx % block_size;
|
||||
const int64_t dst_idx_start =
|
||||
block_idx * block_stride + block_offset * entry_stride;
|
||||
|
||||
// For the NoPE part, each tile of 128 elements is handled by half of one warp
|
||||
// (16 threads). There are 4 total tiles, so 2 warps (64 threads).
|
||||
// Lanes 0 and 16 of each warp write the scale values for that warp's tiles.
|
||||
// The RoPE part (last 64 elements) is handled by another 1 warp (32 threads).
|
||||
// So in total, we use 3 warps (96 threads) per block.
|
||||
|
||||
// Cast kv_cache to 16_bit for RoPE values
|
||||
scalar_t* kv_cache_16bit =
|
||||
reinterpret_cast<scalar_t*>(&kv_cache[dst_idx_start]);
|
||||
|
||||
// The last warp handles the RoPE part
|
||||
if (threadIdx.x >= 64) {
|
||||
// Each thread handles two elements of RoPE
|
||||
const int8_t pe_idx_start = (threadIdx.x - 64) * 2;
|
||||
const int64_t src_idx = token_idx * k_pe_stride + pe_idx_start;
|
||||
// Vectorized load of two 16-bit values, performed as one 32-bit load
|
||||
const int32_t vals = *reinterpret_cast<const int32_t*>(&k_pe[src_idx]);
|
||||
// RoPE values start after the packed 8-bit NoPE values and the
|
||||
// 32-bit scales
|
||||
const int64_t dst_idx = kv_lora_rank / 2 + 8 + pe_idx_start;
|
||||
// Vectorized store of two 16-bit values, performed as one 32-bit store
|
||||
*reinterpret_cast<int32_t*>(&kv_cache_16bit[dst_idx]) = vals;
|
||||
return;
|
||||
}
|
||||
|
||||
// The first two warps handle the NoPE part
|
||||
const int8_t warp_idx = threadIdx.x >> 5;
|
||||
const int8_t lane_idx = threadIdx.x & 31;
|
||||
const int8_t tile_idx = warp_idx * 2 + (lane_idx >> 4);
|
||||
|
||||
// Each thread handles 8 elements of NoPE
|
||||
// Load the NoPE elements for this thread into registers
|
||||
const int64_t src_idx_start = token_idx * kv_c_stride + (threadIdx.x * 8);
|
||||
// Vectorized load of eight 16-bit values, performed as an int4 load
|
||||
const int4 vals_i4 = *reinterpret_cast<const int4*>(&kv_c[src_idx_start]);
|
||||
const scalar_t* vals = reinterpret_cast<const scalar_t*>(&vals_i4);
|
||||
|
||||
// Max absolute value of this thread's elements
|
||||
float max_abs = fmaxf(fmaxf(fmaxf(fabsf(vals[0]), fabsf(vals[1])),
|
||||
fmaxf(fabsf(vals[2]), fabsf(vals[3]))),
|
||||
fmaxf(fmaxf(fabsf(vals[4]), fabsf(vals[5])),
|
||||
fmaxf(fabsf(vals[6]), fabsf(vals[7]))));
|
||||
|
||||
// Warp-level reduction to find the max absolute value in each half-warp
|
||||
#pragma unroll
|
||||
for (int offset = 8; offset > 0; offset /= 2) {
|
||||
max_abs = fmaxf(max_abs, VLLM_SHFL_XOR_SYNC_WIDTH(max_abs, offset, 16));
|
||||
}
|
||||
|
||||
// Compute the scale for the tile
|
||||
float tile_scale = max_abs / 448.f;
|
||||
tile_scale = fmaxf(tile_scale, FLT_MIN);
|
||||
|
||||
// The first lane of each half-warp writes the scale to kv_cache
|
||||
if ((lane_idx == 0) || (lane_idx == 16)) {
|
||||
float* kv_cache_32bit = reinterpret_cast<float*>(&kv_cache[dst_idx_start]);
|
||||
const uint64_t dst_idx = kv_lora_rank / 4 + tile_idx;
|
||||
kv_cache_32bit[dst_idx] = tile_scale;
|
||||
}
|
||||
|
||||
// Now all threads in the block scale and write their elements
|
||||
// NoPE data is packed in the first kv_lora_rank/2 bytes (first 256 bytes)
|
||||
const int64_t dst_idx_base = dst_idx_start + (threadIdx.x * 8);
|
||||
|
||||
uint8_t result[8];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 8; i++) {
|
||||
result[i] =
|
||||
fp8::scaled_convert<uint8_t, scalar_t, Fp8KVCacheDataType::kFp8E4M3>(
|
||||
vals[i], tile_scale);
|
||||
}
|
||||
|
||||
// Store as aligned 64-bit writes
|
||||
*reinterpret_cast<uint64_t*>(&kv_cache[dst_idx_base]) =
|
||||
*reinterpret_cast<const uint64_t*>(result);
|
||||
}
|
||||
|
||||
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
||||
__global__ void indexer_k_quant_and_cache_kernel(
|
||||
const scalar_t* __restrict__ k, // [num_tokens, head_dim]
|
||||
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, cache_stride]
|
||||
const int64_t* __restrict__ slot_mapping, // [num_tokens]
|
||||
const int head_dim, // dimension of each head
|
||||
const int quant_block_size, // quantization block size
|
||||
const int cache_block_size, // cache block size
|
||||
const int cache_stride, // stride for each token in kv_cache
|
||||
const bool use_ue8m0 // use ue8m0 scale format
|
||||
) {
|
||||
constexpr int VEC_SIZE = 4;
|
||||
const int64_t token_idx = blockIdx.x;
|
||||
const int64_t head_dim_idx = (blockIdx.y * blockDim.y * blockDim.x +
|
||||
threadIdx.y * blockDim.x + threadIdx.x) *
|
||||
VEC_SIZE;
|
||||
const int64_t slot_idx = slot_mapping[token_idx];
|
||||
const int64_t block_idx = slot_idx / cache_block_size;
|
||||
const int64_t block_offset = slot_idx % cache_block_size;
|
||||
|
||||
// NOTE: slot_idx can be -1 if the token is padded
|
||||
if (slot_idx < 0 || (head_dim_idx >= head_dim)) {
|
||||
return;
|
||||
}
|
||||
|
||||
float2 k_val = (reinterpret_cast<const float2*>(
|
||||
k))[(token_idx * head_dim + head_dim_idx) / VEC_SIZE];
|
||||
scalar_t* k_val_ptr = reinterpret_cast<scalar_t*>(&k_val);
|
||||
float amax = 0.0f;
|
||||
for (int i = 0; i < VEC_SIZE; i++) {
|
||||
amax = fmaxf(amax, fabsf(float(k_val_ptr[i])));
|
||||
}
|
||||
#ifndef USE_ROCM
|
||||
__syncwarp();
|
||||
#endif
|
||||
|
||||
// Reduced amax
|
||||
for (int mask = 16; mask > 0; mask /= 2) {
|
||||
#ifdef USE_ROCM
|
||||
amax = fmaxf(amax, __shfl_xor_sync(uint64_t(-1), amax, mask));
|
||||
#else
|
||||
amax = fmaxf(amax, __shfl_xor_sync(unsigned(-1), amax, mask));
|
||||
#endif
|
||||
}
|
||||
#ifndef USE_ROCM
|
||||
__syncwarp();
|
||||
#endif
|
||||
float scale = fmaxf(amax, 1e-4) / 448.0f;
|
||||
if (use_ue8m0) {
|
||||
scale = exp2f(ceilf(log2f(scale)));
|
||||
}
|
||||
|
||||
const int64_t dst_offset = block_idx * cache_block_size * cache_stride +
|
||||
block_offset * head_dim + head_dim_idx;
|
||||
for (int i = 0; i < VEC_SIZE; i++) {
|
||||
kv_cache[dst_offset + i] =
|
||||
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(k_val_ptr[i], scale);
|
||||
}
|
||||
if (threadIdx.x == 0) {
|
||||
const int64_t dst_scale_idx =
|
||||
block_idx * cache_block_size * cache_stride +
|
||||
cache_block_size * head_dim +
|
||||
(block_offset * head_dim + head_dim_idx) * 4 / quant_block_size;
|
||||
reinterpret_cast<float*>(kv_cache)[dst_scale_idx / 4] = scale;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
// KV_T is the data type of key and value tensors.
|
||||
@ -431,14 +607,15 @@ void reshape_and_cache(
|
||||
|
||||
int key_stride = key.stride(0);
|
||||
int value_stride = value.stride(0);
|
||||
int head_div_x = head_size / x;
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(num_heads * head_size, 512));
|
||||
dim3 block(std::min(num_heads * head_div_x, 512));
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(key.dtype(), kv_cache_dtype,
|
||||
CALL_RESHAPE_AND_CACHE)
|
||||
CALL_RESHAPE_AND_CACHE);
|
||||
}
|
||||
|
||||
// KV_T is the data type of key and value tensors.
|
||||
@ -509,6 +686,18 @@ void reshape_and_cache_flash(
|
||||
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
|
||||
reinterpret_cast<const float*>(scale.data_ptr()));
|
||||
|
||||
// KV_T is the data type of key and value tensors.
|
||||
// CACHE_T is the stored data type of kv-cache.
|
||||
#define CALL_CONCAT_AND_CACHE_DS_MLA(KV_T, CACHE_T, KV_DTYPE) \
|
||||
vllm::concat_and_cache_ds_mla_kernel<KV_T, CACHE_T, KV_DTYPE> \
|
||||
<<<grid, block, 0, stream>>>( \
|
||||
reinterpret_cast<KV_T*>(kv_c.data_ptr()), \
|
||||
reinterpret_cast<KV_T*>(k_pe.data_ptr()), \
|
||||
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
|
||||
slot_mapping.data_ptr<int64_t>(), block_stride, entry_stride, \
|
||||
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
|
||||
reinterpret_cast<const float*>(scale.data_ptr()));
|
||||
|
||||
void concat_and_cache_mla(
|
||||
torch::Tensor& kv_c, // [num_tokens, kv_lora_rank]
|
||||
torch::Tensor& k_pe, // [num_tokens, pe_dim]
|
||||
@ -531,20 +720,43 @@ void concat_and_cache_mla(
|
||||
int pe_dim = k_pe.size(1);
|
||||
int block_size = kv_cache.size(1);
|
||||
|
||||
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
|
||||
if (kv_cache_dtype == "fp8_ds_mla") {
|
||||
TORCH_CHECK(kv_lora_rank == 512, "kv_lora_rank must be 512 for fp8_ds_mla");
|
||||
TORCH_CHECK(pe_dim == 64, "pe_dim must be 64 for fp8_ds_mla");
|
||||
TORCH_CHECK(kv_cache.size(2) == 656 / kv_cache.itemsize(),
|
||||
"kv_cache.size(2) must be 656 bytes for fp8_ds_mla");
|
||||
TORCH_CHECK(kv_c.itemsize() == 2,
|
||||
"kv_c.itemsize() must be 2 for fp8_ds_mla");
|
||||
TORCH_CHECK(k_pe.itemsize() == 2,
|
||||
"k_pe.itemsize() must be 2 for fp8_ds_mla");
|
||||
} else {
|
||||
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
|
||||
}
|
||||
|
||||
int kv_c_stride = kv_c.stride(0);
|
||||
int k_pe_stride = k_pe.stride(0);
|
||||
int block_stride = kv_cache.stride(0);
|
||||
int entry_stride = kv_cache.stride(1);
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(kv_lora_rank, 512));
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(kv_c));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
|
||||
CALL_CONCAT_AND_CACHE_MLA);
|
||||
if (kv_cache_dtype == "fp8_ds_mla") {
|
||||
dim3 grid(num_tokens);
|
||||
// For the NoPE part, each tile of 128 elements is handled by half of one
|
||||
// warp (16 threads). There are 4 total tiles, so 2 warps (64 threads).
|
||||
// Lanes 0 and 16 of each warp write the scale values for that warp's tiles.
|
||||
// The RoPE part (last 64 elements) is handled by another 1 warp (32
|
||||
// threads). So in total, we use 3 warps (96 threads) per block.
|
||||
dim3 block(96);
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
|
||||
CALL_CONCAT_AND_CACHE_DS_MLA);
|
||||
} else {
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(kv_lora_rank, 512));
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
|
||||
CALL_CONCAT_AND_CACHE_MLA);
|
||||
}
|
||||
}
|
||||
|
||||
namespace vllm {
|
||||
@ -922,3 +1134,42 @@ void cp_gather_cache(
|
||||
TORCH_CHECK(false, "Unsupported data type width: ", dtype_bits);
|
||||
}
|
||||
}
|
||||
|
||||
// Macro to dispatch the kernel based on the data type.
|
||||
#define CALL_INDEXER_K_QUANT_AND_CACHE(KV_T, CACHE_T, KV_DTYPE) \
|
||||
vllm::indexer_k_quant_and_cache_kernel<KV_T, CACHE_T, KV_DTYPE> \
|
||||
<<<grid, block, 0, stream>>>( \
|
||||
reinterpret_cast<KV_T*>(k.data_ptr()), \
|
||||
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
|
||||
slot_mapping.data_ptr<int64_t>(), head_dim, quant_block_size, \
|
||||
cache_block_size, cache_stride, use_ue8m0);
|
||||
|
||||
void indexer_k_quant_and_cache(
|
||||
torch::Tensor& k, // [num_tokens, head_dim]
|
||||
torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
|
||||
torch::Tensor& slot_mapping, // [num_tokens]
|
||||
int64_t quant_block_size, // quantization block size
|
||||
const std::string& scale_fmt) {
|
||||
int num_tokens = k.size(0);
|
||||
int head_dim = k.size(1);
|
||||
int cache_block_size = kv_cache.size(1);
|
||||
int cache_stride = kv_cache.size(2);
|
||||
bool use_ue8m0 = scale_fmt == "ue8m0";
|
||||
|
||||
TORCH_CHECK(k.device() == kv_cache.device(),
|
||||
"k and kv_cache must be on the same device");
|
||||
TORCH_CHECK(k.device() == slot_mapping.device(),
|
||||
"k and slot_mapping must be on the same device");
|
||||
TORCH_CHECK(head_dim % quant_block_size == 0,
|
||||
"head_dim must be divisible by quant_block_size");
|
||||
|
||||
constexpr int vec_size = 4;
|
||||
dim3 grid(num_tokens, (head_dim + quant_block_size * vec_size - 1) /
|
||||
(quant_block_size * vec_size));
|
||||
dim3 block(32, vec_size);
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(k));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(k.dtype(), "fp8_e4m3",
|
||||
CALL_INDEXER_K_QUANT_AND_CACHE);
|
||||
}
|
||||
|
16
csrc/core/batch_invariant.hpp
Normal file
@ -0,0 +1,16 @@
|
||||
#pragma once
|
||||
#include <cstdlib>
|
||||
#include <string>
|
||||
#include <cctype>
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// vllm_kernel_override_batch_invariant(); returns true
|
||||
// if env VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT=1
|
||||
inline bool vllm_kernel_override_batch_invariant() {
|
||||
std::string env_key = "VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT";
|
||||
const char* val = std::getenv(env_key.c_str());
|
||||
return (val && std::atoi(val) != 0) ? 1 : 0;
|
||||
}
|
||||
|
||||
} // namespace vllm
|
@ -137,9 +137,8 @@ DNNLMatMulPrimitiveHandler::DNNLMatMulPrimitiveHandler(
|
||||
}
|
||||
|
||||
void DNNLMatMulPrimitiveHandler::prepack_weight(
|
||||
void* original_b_ptr, dnnl::memory::desc b_target_mem_desc) {
|
||||
dnnl::memory::desc original_b_md({b_k_size_, b_n_size_}, b_type_,
|
||||
{b_k_stride_, b_n_stride_});
|
||||
void* original_b_ptr, dnnl::memory::desc original_b_md,
|
||||
dnnl::memory::desc b_target_mem_desc) {
|
||||
dnnl::memory original_weight(original_b_md, default_engine(), original_b_ptr);
|
||||
dnnl::memory packed_weight(b_target_mem_desc, default_engine());
|
||||
{
|
||||
@ -250,7 +249,9 @@ W8A8MatMulPrimitiveHandler::W8A8MatMulPrimitiveHandler(const Args& args)
|
||||
if (a_qs_ == QuantizationStrategy::PER_TOKEN) {
|
||||
assert(!use_azp_);
|
||||
};
|
||||
prepack_weight(args.b_ptr,
|
||||
dnnl::memory::desc original_b_md({b_k_size_, b_n_size_}, b_type_,
|
||||
{b_k_stride_, b_n_stride_});
|
||||
prepack_weight(args.b_ptr, original_b_md,
|
||||
create_primitive_desc(
|
||||
MSizeCacheKey{.a_m_size = DNNL_RUNTIME_DIM_VAL,
|
||||
.use_bias = false,
|
||||
@ -412,12 +413,25 @@ MatMulPrimitiveHandler::MatMulPrimitiveHandler(const Args& args)
|
||||
assert(ab_type_ == dnnl::memory::data_type::f32 ||
|
||||
ab_type_ == dnnl::memory::data_type::bf16 ||
|
||||
ab_type_ == dnnl::memory::data_type::f16);
|
||||
prepack_weight(args.b_ptr,
|
||||
|
||||
dnnl::memory::desc original_b_md({b_k_size_, b_n_size_}, b_type_,
|
||||
{b_k_stride_, b_n_stride_});
|
||||
|
||||
prepack_weight(args.b_ptr, original_b_md,
|
||||
create_primitive_desc(
|
||||
MSizeCacheKey{.a_m_size = DNNL_RUNTIME_DIM_VAL,
|
||||
.a_m_stride = DNNL_RUNTIME_DIM_VAL,
|
||||
.use_bias = false,
|
||||
.bias_type = dnnl::memory::data_type::undef},
|
||||
MSizeCacheKey{
|
||||
#ifdef VLLM_USE_ACL
|
||||
// Arm Compute Library (ACL) backend for oneDNN does
|
||||
// not support runtime
|
||||
// dimensions, so we set M to a default value
|
||||
.a_m_size = 128,
|
||||
.a_m_stride = b_k_size_,
|
||||
#else
|
||||
.a_m_size = DNNL_RUNTIME_DIM_VAL,
|
||||
.a_m_stride = DNNL_RUNTIME_DIM_VAL,
|
||||
#endif
|
||||
.use_bias = false,
|
||||
.bias_type = dnnl::memory::data_type::undef},
|
||||
true)
|
||||
.weights_desc());
|
||||
init_runtime_memory_cache(args);
|
||||
@ -443,13 +457,31 @@ void MatMulPrimitiveHandler::execute(ExecArgs& args) {
|
||||
c_storage->set_data_handle((void*)args.c_ptr);
|
||||
c_mem_desc->dims[0] = args.a_m_size;
|
||||
|
||||
#ifndef VLLM_USE_ACL
|
||||
// We do not support in ACL backend of oneDNN, we handle bias by:
|
||||
// 1. copying it into the result tensor
|
||||
// 2. attaching a fused-sum post-op to the matmul primitive
|
||||
if (args.use_bias) {
|
||||
auto&& [bias_storage, bias_mem_desc] = get_runtime_memory_ptr(2);
|
||||
bias_storage->set_data_handle((void*)args.bias_ptr);
|
||||
}
|
||||
|
||||
#endif
|
||||
dnnl::matmul matmul = get_matmul_cache(args);
|
||||
|
||||
// With ACL backend of oneDNN, the required memory format might change when the
|
||||
// source tensor dims change. This does not really happen in practice, so isn't
|
||||
// a performance hit, but we need to support it because the API allows for it.
|
||||
#ifdef VLLM_USE_ACL
|
||||
auto new_expected_wei_desc =
|
||||
dnnl::matmul::primitive_desc(
|
||||
const_cast<dnnl_primitive_desc_t>(matmul.get_primitive_desc()))
|
||||
.weights_desc();
|
||||
if (new_expected_wei_desc != b_target_mem_desc_) {
|
||||
prepack_weight(memory_cache_[DNNL_ARG_WEIGHTS].get_data_handle(),
|
||||
b_target_mem_desc_, new_expected_wei_desc);
|
||||
}
|
||||
#endif
|
||||
|
||||
auto&& [scratchpad_storage, scratchpad_mem_desc] = get_runtime_memory_ptr(3);
|
||||
scratchpad_storage->set_data_handle(
|
||||
DNNLScratchPadManager::get_dnnl_scratchpad_manager()->get_data<void>());
|
||||
@ -484,7 +516,13 @@ dnnl::matmul::primitive_desc MatMulPrimitiveHandler::create_primitive_desc(
|
||||
} else {
|
||||
a_md = dnnl::memory::desc({key.a_m_size, b_k_size_}, b_type_,
|
||||
{key.a_m_stride, 1});
|
||||
#ifdef VLLM_USE_ACL
|
||||
// ACL's backend of oneDNN always expects the weight format to be "any"
|
||||
b_md = dnnl::memory::desc({b_k_size_, b_n_size_}, b_type_,
|
||||
dnnl::memory::format_tag::any);
|
||||
#else
|
||||
b_md = b_target_mem_desc_;
|
||||
#endif
|
||||
}
|
||||
dnnl::memory::desc c_md({key.a_m_size, b_n_size_}, c_type_,
|
||||
dnnl::memory::format_tag::ab);
|
||||
@ -494,8 +532,18 @@ dnnl::matmul::primitive_desc MatMulPrimitiveHandler::create_primitive_desc(
|
||||
|
||||
if (key.use_bias) {
|
||||
dnnl::memory::desc bias_md({1, b_n_size_}, key.bias_type, {b_n_size_, 1});
|
||||
// Since ACL's matmuls don't support passing a bias_md, we apply the bias
|
||||
// through a fused-sum post-op
|
||||
#ifdef VLLM_USE_ACL
|
||||
dnnl::post_ops post_ops;
|
||||
post_ops.append_sum();
|
||||
attr.set_post_ops(post_ops);
|
||||
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, c_md,
|
||||
attr);
|
||||
#else
|
||||
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, bias_md,
|
||||
c_md, attr);
|
||||
#endif
|
||||
} else {
|
||||
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, c_md,
|
||||
attr);
|
||||
@ -511,13 +559,23 @@ void MatMulPrimitiveHandler::init_runtime_memory_cache(const Args& args) {
|
||||
default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(1, memory_cache_[DNNL_ARG_DST].get());
|
||||
|
||||
// ACL matmuls don't support bias_md, so we don't need these
|
||||
#ifndef VLLM_USE_ACL
|
||||
memory_cache_[DNNL_ARG_BIAS] =
|
||||
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
|
||||
default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(2, memory_cache_[DNNL_ARG_BIAS].get());
|
||||
|
||||
#endif
|
||||
memory_cache_[DNNL_ARG_SCRATCHPAD] =
|
||||
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
|
||||
default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(3, memory_cache_[DNNL_ARG_SCRATCHPAD].get());
|
||||
}
|
||||
|
||||
bool is_onednn_acl_supported() {
|
||||
#ifdef VLLM_USE_ACL
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
@ -101,7 +101,7 @@ class DNNLMatMulPrimitiveHandler {
|
||||
protected:
|
||||
DNNLMatMulPrimitiveHandler(const Args& args, dnnl::memory::data_type b_type);
|
||||
|
||||
void prepack_weight(void* original_b_ptr,
|
||||
void prepack_weight(void* original_b_ptr, dnnl::memory::desc original_b_md,
|
||||
dnnl::memory::desc b_target_mem_desc);
|
||||
|
||||
void set_runtime_memory_ptr(size_t index, dnnl_memory* memory_ptr);
|
||||
|
@ -527,21 +527,42 @@ void onednn_mm(torch::Tensor& c, // [M, OC], row-major
|
||||
MatMulPrimitiveHandler* ptr =
|
||||
reinterpret_cast<MatMulPrimitiveHandler*>(handler);
|
||||
|
||||
// ACL matmuls expect contiguous source tensors
|
||||
#ifdef VLLM_USE_ACL
|
||||
torch::Tensor a_contig = a.contiguous();
|
||||
#endif
|
||||
|
||||
MatMulPrimitiveHandler::ExecArgs exec_args;
|
||||
|
||||
#ifdef VLLM_USE_ACL
|
||||
exec_args.a_m_size = a_contig.size(0);
|
||||
exec_args.a_m_stride = a_contig.stride(0);
|
||||
#else
|
||||
exec_args.a_m_size = a.size(0);
|
||||
exec_args.a_m_stride = a.stride(0);
|
||||
|
||||
#endif
|
||||
VLLM_DISPATCH_FLOATING_TYPES(a.scalar_type(), "onednn_mm", [&] {
|
||||
if (bias.has_value()) {
|
||||
exec_args.use_bias = true;
|
||||
exec_args.bias_type = get_dnnl_type<scalar_t>();
|
||||
#ifdef VLLM_USE_ACL
|
||||
// ACL matmuls in oneDNN do not support a bias.
|
||||
// We handle a matmul with bias by doing: c = bias; c += matmul(a, b)
|
||||
c.copy_(bias.value());
|
||||
#else
|
||||
exec_args.bias_ptr = bias->data_ptr<scalar_t>();
|
||||
#endif
|
||||
} else {
|
||||
exec_args.use_bias = false;
|
||||
exec_args.bias_type = get_dnnl_type<void>();
|
||||
exec_args.bias_ptr = nullptr;
|
||||
}
|
||||
#ifdef VLLM_USE_ACL
|
||||
exec_args.a_ptr = a_contig.data_ptr<scalar_t>();
|
||||
#else
|
||||
exec_args.a_ptr = a.data_ptr<scalar_t>();
|
||||
|
||||
#endif
|
||||
exec_args.c_ptr = c.data_ptr<scalar_t>();
|
||||
|
||||
ptr->execute(exec_args);
|
||||
|
@ -27,6 +27,8 @@ int64_t create_onednn_mm_handler(const torch::Tensor& b,
|
||||
void onednn_mm(torch::Tensor& c, const torch::Tensor& a,
|
||||
const std::optional<torch::Tensor>& bias, int64_t handler);
|
||||
|
||||
bool is_onednn_acl_supported();
|
||||
|
||||
void mla_decode_kvcache(torch::Tensor& out, torch::Tensor& query,
|
||||
torch::Tensor& kv_cache, double scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens);
|
||||
@ -181,6 +183,9 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
"int handler) -> ()");
|
||||
ops.impl("onednn_mm", torch::kCPU, &onednn_mm);
|
||||
|
||||
// Check if oneDNN was built with ACL backend
|
||||
ops.def("is_onednn_acl_supported() -> bool", &is_onednn_acl_supported);
|
||||
|
||||
// Create oneDNN W8A8 handler
|
||||
ops.def(
|
||||
"create_onednn_scaled_mm_handler(Tensor b, Tensor b_scales, ScalarType "
|
||||
|
@ -27,7 +27,7 @@ VLLMDataTypeNames: dict[Union[VLLMDataType, DataType], str] = {
|
||||
**{
|
||||
VLLMDataType.u4b8: "u4b8",
|
||||
VLLMDataType.u8b128: "u8b128",
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
VLLMDataTypeTag: dict[Union[VLLMDataType, DataType], str] = {
|
||||
@ -35,7 +35,7 @@ VLLMDataTypeTag: dict[Union[VLLMDataType, DataType], str] = {
|
||||
**{
|
||||
VLLMDataType.u4b8: "cutlass::vllm_uint4b8_t",
|
||||
VLLMDataType.u8b128: "cutlass::vllm_uint8b128_t",
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
VLLMDataTypeSize: dict[Union[VLLMDataType, DataType], int] = {
|
||||
@ -43,7 +43,7 @@ VLLMDataTypeSize: dict[Union[VLLMDataType, DataType], int] = {
|
||||
**{
|
||||
VLLMDataType.u4b8: 4,
|
||||
VLLMDataType.u8b128: 8,
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
VLLMDataTypeVLLMScalarTypeTag: dict[Union[VLLMDataType, DataType], str] = {
|
||||
@ -67,15 +67,13 @@ VLLMDataTypeTorchDataTypeTag: dict[Union[VLLMDataType, DataType], str] = {
|
||||
DataType.f32: "at::ScalarType::Float",
|
||||
}
|
||||
|
||||
VLLMKernelScheduleTag: dict[Union[
|
||||
MixedInputKernelScheduleType, KernelScheduleType], str] = {
|
||||
**KernelScheduleTag, # type: ignore
|
||||
**{
|
||||
MixedInputKernelScheduleType.TmaWarpSpecialized:
|
||||
"cutlass::gemm::KernelTmaWarpSpecialized",
|
||||
MixedInputKernelScheduleType.TmaWarpSpecializedPingpong:
|
||||
"cutlass::gemm::KernelTmaWarpSpecializedPingpong",
|
||||
MixedInputKernelScheduleType.TmaWarpSpecializedCooperative:
|
||||
"cutlass::gemm::KernelTmaWarpSpecializedCooperative",
|
||||
}
|
||||
}
|
||||
VLLMKernelScheduleTag: dict[
|
||||
Union[MixedInputKernelScheduleType, KernelScheduleType], str
|
||||
] = {
|
||||
**KernelScheduleTag, # type: ignore
|
||||
**{
|
||||
MixedInputKernelScheduleType.TmaWarpSpecialized: "cutlass::gemm::KernelTmaWarpSpecialized", # noqa: E501
|
||||
MixedInputKernelScheduleType.TmaWarpSpecializedPingpong: "cutlass::gemm::KernelTmaWarpSpecializedPingpong", # noqa: E501
|
||||
MixedInputKernelScheduleType.TmaWarpSpecializedCooperative: "cutlass::gemm::KernelTmaWarpSpecializedCooperative", # noqa: E501
|
||||
},
|
||||
}
|
||||
|
@ -8,11 +8,37 @@
|
||||
#define VLLM_LAUNCH_BLOCKS_CAP 4
|
||||
#endif
|
||||
|
||||
// compile-time estimate of max threads per SM for launch bounds.
|
||||
// Compile-time estimate of max threads per SM for launch bounds.
|
||||
// Families: 1024, 1536, 2048 threads/SM.
|
||||
#ifndef VLLM_MAX_THREADS_PER_SM
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 300
|
||||
#define VLLM_MAX_THREADS_PER_SM 1536
|
||||
#ifdef __CUDA_ARCH__
|
||||
|
||||
/* 1024 thr/SM: Turing (sm_75) */
|
||||
#if (__CUDA_ARCH__ == 750)
|
||||
#define VLLM_MAX_THREADS_PER_SM 1024
|
||||
|
||||
/* 1536 thr/SM: Ampere GA10x (sm_86/87), Ada (sm_89),
|
||||
GB20x consumer (sm_120/121), Thor (sm_101 or sm_110) */
|
||||
#elif (__CUDA_ARCH__ == 860) || (__CUDA_ARCH__ == 870) || \
|
||||
(__CUDA_ARCH__ == 890) || (__CUDA_ARCH__ == 1010) || \
|
||||
(__CUDA_ARCH__ == 1100) || (__CUDA_ARCH__ == 1200) || \
|
||||
(__CUDA_ARCH__ == 1210)
|
||||
#define VLLM_MAX_THREADS_PER_SM 1536
|
||||
|
||||
/* 2048 thr/SM: Volta (sm_70/72), Ampere GA100 (sm_80),
|
||||
Hopper (sm_90), Blackwell (sm_100/103) */
|
||||
#elif (__CUDA_ARCH__ == 700) || (__CUDA_ARCH__ == 720) || \
|
||||
(__CUDA_ARCH__ == 800) || (__CUDA_ARCH__ == 900) || \
|
||||
(__CUDA_ARCH__ == 1000) || (__CUDA_ARCH__ == 1030)
|
||||
#define VLLM_MAX_THREADS_PER_SM 2048
|
||||
|
||||
/* Fallback: use 2048 for unknown future CCs */
|
||||
#else
|
||||
#define VLLM_MAX_THREADS_PER_SM 2048
|
||||
#endif
|
||||
|
||||
#else
|
||||
/* Host pass (no __CUDA_ARCH__): neutral default */
|
||||
#define VLLM_MAX_THREADS_PER_SM 2048
|
||||
#endif
|
||||
#endif
|
||||
|
@ -1,6 +1,7 @@
|
||||
#include "type_convert.cuh"
|
||||
#include "dispatch_utils.h"
|
||||
#include "cub_helpers.h"
|
||||
#include "core/batch_invariant.hpp"
|
||||
|
||||
#include <torch/cuda.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
@ -413,7 +414,9 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
|
||||
wt_ptr % req_alignment_bytes == 0;
|
||||
bool offsets_are_multiple_of_vector_width =
|
||||
hidden_size % vector_width == 0 && input_stride % vector_width == 0;
|
||||
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width) {
|
||||
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width &&
|
||||
!batch_invariant_launch) {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(8);
|
||||
} else {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(0);
|
||||
@ -459,7 +462,8 @@ void poly_norm(torch::Tensor& out, // [..., hidden_size]
|
||||
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
|
||||
auto out_ptr = reinterpret_cast<std::uintptr_t>(out.data_ptr());
|
||||
bool ptrs_are_aligned = inp_ptr % 16 == 0 && out_ptr % 16 == 0;
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0) {
|
||||
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0 && !batch_invariant_launch) {
|
||||
LAUNCH_FUSED_POLY_NORM(8);
|
||||
} else {
|
||||
LAUNCH_FUSED_POLY_NORM(0);
|
||||
|
@ -9,6 +9,7 @@
|
||||
#include "quantization/fp8/common.cuh"
|
||||
#include "dispatch_utils.h"
|
||||
#include "cub_helpers.h"
|
||||
#include "core/batch_invariant.hpp"
|
||||
|
||||
#include <torch/cuda.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
@ -240,7 +241,9 @@ void fused_add_rms_norm_static_fp8_quant(
|
||||
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
|
||||
bool ptrs_are_aligned =
|
||||
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0) {
|
||||
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0 &&
|
||||
!batch_invariant_launch) {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(8);
|
||||
} else {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(0);
|
||||
|
@ -17,25 +17,30 @@ FILE_HEAD = """
|
||||
namespace MARLIN_NAMESPACE_NAME {
|
||||
""".strip()
|
||||
|
||||
TEMPLATE = ("template __global__ void Marlin<"
|
||||
"{{scalar_t}}, "
|
||||
"{{w_type_id}}, "
|
||||
"{{s_type_id}}, "
|
||||
"{{threads}}, "
|
||||
"{{thread_m_blocks}}, "
|
||||
"{{thread_n_blocks}}, "
|
||||
"{{thread_k_blocks}}, "
|
||||
"{{'true' if m_block_size_8 else 'false'}}, "
|
||||
"{{stages}}, "
|
||||
"{{group_blocks}}, "
|
||||
"{{'true' if is_zp_float else 'false'}}>"
|
||||
"( MARLIN_KERNEL_PARAMS );")
|
||||
TEMPLATE = (
|
||||
"template __global__ void Marlin<"
|
||||
"{{scalar_t}}, "
|
||||
"{{w_type_id}}, "
|
||||
"{{s_type_id}}, "
|
||||
"{{threads}}, "
|
||||
"{{thread_m_blocks}}, "
|
||||
"{{thread_n_blocks}}, "
|
||||
"{{thread_k_blocks}}, "
|
||||
"{{'true' if m_block_size_8 else 'false'}}, "
|
||||
"{{stages}}, "
|
||||
"{{group_blocks}}, "
|
||||
"{{'true' if is_zp_float else 'false'}}>"
|
||||
"( MARLIN_KERNEL_PARAMS );"
|
||||
)
|
||||
|
||||
# int8 with zero point case (vllm::kU8) is also supported,
|
||||
# we don't add it to reduce wheel size.
|
||||
SCALAR_TYPES = [
|
||||
"vllm::kU4", "vllm::kU4B8", "vllm::kU8B128", "vllm::kFE4M3fn",
|
||||
"vllm::kFE2M1f"
|
||||
"vllm::kU4",
|
||||
"vllm::kU4B8",
|
||||
"vllm::kU8B128",
|
||||
"vllm::kFE4M3fn",
|
||||
"vllm::kFE2M1f",
|
||||
]
|
||||
THREAD_CONFIGS = [(128, 128, 256), (64, 256, 256), (64, 128, 128)]
|
||||
|
||||
@ -58,11 +63,12 @@ def generate_new_kernels():
|
||||
all_template_str_list = []
|
||||
|
||||
for group_blocks, m_blocks, thread_configs in itertools.product(
|
||||
GROUP_BLOCKS, THREAD_M_BLOCKS, THREAD_CONFIGS):
|
||||
|
||||
GROUP_BLOCKS, THREAD_M_BLOCKS, THREAD_CONFIGS
|
||||
):
|
||||
# act order case only support gptq-int4 and gptq-int8
|
||||
if group_blocks == 0 and scalar_type not in [
|
||||
"vllm::kU4B8", "vllm::kU8B128"
|
||||
"vllm::kU4B8",
|
||||
"vllm::kU8B128",
|
||||
]:
|
||||
continue
|
||||
if thread_configs[2] == 256:
|
||||
|
@ -21,6 +21,7 @@
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include "../cuda_compat.h"
|
||||
#include "../cub_helpers.h"
|
||||
#include "../core/batch_invariant.hpp"
|
||||
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
@ -405,7 +406,8 @@ void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, f
|
||||
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG, WARP_SIZE_PARAM>;
|
||||
static constexpr int VPT = Constants::VPT;
|
||||
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
|
||||
const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
|
||||
const bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||
const int num_warps = batch_invariant_launch ? 32 : (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
|
||||
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
|
||||
|
||||
dim3 block_dim(WARP_SIZE_PARAM, WARPS_PER_TB);
|
||||
|
@ -231,7 +231,7 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
|
||||
} else {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
@ -245,7 +245,7 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
|
||||
} else {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
@ -259,7 +259,7 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
|
||||
} else {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_2, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized2Sm,
|
||||
Shape<_2, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized2Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
@ -271,10 +271,10 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
|
||||
// TMA epilogue isn't compatible with Swap A/B
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, TILE_M, 1, TILE_K, Shape<Int<TILE_M>, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100, true>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
} // namespace vllm
|
@ -25,7 +25,10 @@ void dispatch_scaled_mm(torch::Tensor& c, torch::Tensor const& a,
|
||||
if constexpr (!std::is_same_v<Int8Func, std::nullptr_t>) {
|
||||
int8_func(c, a, b, a_scales, b_scales, bias);
|
||||
} else {
|
||||
TORCH_CHECK(false, "Int8 not supported for this architecture");
|
||||
int32_t version_num = get_sm_version_num();
|
||||
TORCH_CHECK(
|
||||
false, "Int8 not supported on SM", version_num,
|
||||
". Use FP8 quantization instead, or run on older arch (SM < 100).");
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
@ -133,4 +133,4 @@ void cutlass_scaled_mm_sm100_fp8_epilogue(torch::Tensor& out,
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
} // namespace vllm
|
||||
|
@ -67,8 +67,9 @@ void cutlass_scaled_mm_sm100(torch::Tensor& c, torch::Tensor const& a,
|
||||
std::optional<torch::Tensor> const& bias);
|
||||
#endif
|
||||
|
||||
#if defined(ENABLE_SCALED_MM_SM90) && ENABLE_SCALED_MM_SM90 || \
|
||||
defined(ENABLE_SCALED_MM_SM100) && ENABLE_SCALED_MM_SM100
|
||||
#if defined(ENABLE_SCALED_MM_SM90) && ENABLE_SCALED_MM_SM90 || \
|
||||
defined(ENABLE_SCALED_MM_SM100) && ENABLE_SCALED_MM_SM100 || \
|
||||
defined(ENABLE_SCALED_MM_SM120) && ENABLE_SCALED_MM_SM120
|
||||
void get_cutlass_moe_mm_data_caller(
|
||||
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
|
||||
@ -253,7 +254,7 @@ void cutlass_moe_mm(
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
int32_t version_num = get_sm_version_num();
|
||||
#if defined ENABLE_CUTLASS_MOE_SM100 && ENABLE_CUTLASS_MOE_SM100
|
||||
if (version_num >= 100) {
|
||||
if (version_num >= 100 && version_num < 110) {
|
||||
cutlass_moe_mm_sm100(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
|
||||
expert_offsets, problem_sizes, a_strides, b_strides,
|
||||
c_strides, per_act_token, per_out_ch);
|
||||
@ -261,7 +262,7 @@ void cutlass_moe_mm(
|
||||
}
|
||||
#endif
|
||||
#if defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90
|
||||
if (version_num >= 90) {
|
||||
if (version_num >= 90 && version_num < 100) {
|
||||
cutlass_moe_mm_sm90(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
|
||||
expert_offsets, problem_sizes, a_strides, b_strides,
|
||||
c_strides, per_act_token, per_out_ch);
|
||||
|
@ -14,6 +14,8 @@
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "core/registration.h"
|
||||
|
||||
#include <torch/all.h>
|
||||
#include <cutlass/arch/arch.h>
|
||||
|
||||
@ -418,3 +420,7 @@ void cutlass_fp4_group_mm(
|
||||
"12.8 or above.");
|
||||
#endif
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
|
||||
m.impl("cutlass_fp4_group_mm", &cutlass_fp4_group_mm);
|
||||
}
|
||||
|
@ -576,6 +576,17 @@ __inline__ __device__ Tout scaled_convert(const Tin& x, const float scale) {
|
||||
TORCH_CHECK(false, \
|
||||
"Unsupported input type of kv cache: ", SRC_DTYPE); \
|
||||
} \
|
||||
} else if (KV_DTYPE == "fp8_ds_mla") { \
|
||||
if (SRC_DTYPE == at::ScalarType::Float) { \
|
||||
FN(float, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
|
||||
} else if (SRC_DTYPE == at::ScalarType::Half) { \
|
||||
FN(uint16_t, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
|
||||
} else if (SRC_DTYPE == at::ScalarType::BFloat16) { \
|
||||
FN(__nv_bfloat16, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
|
||||
} else { \
|
||||
TORCH_CHECK(false, \
|
||||
"Unsupported input type of kv cache: ", SRC_DTYPE); \
|
||||
} \
|
||||
} else { \
|
||||
TORCH_CHECK(false, "Unsupported data type of kv cache: ", KV_DTYPE); \
|
||||
} \
|
||||
|
@ -17,28 +17,32 @@ FILE_HEAD = """
|
||||
namespace MARLIN_NAMESPACE_NAME {
|
||||
""".strip()
|
||||
|
||||
TEMPLATE = ("template __global__ void Marlin<"
|
||||
"{{scalar_t}}, "
|
||||
"{{w_type_id}}, "
|
||||
"{{s_type_id}}, "
|
||||
"{{threads}}, "
|
||||
"{{thread_m_blocks}}, "
|
||||
"{{thread_n_blocks}}, "
|
||||
"{{thread_k_blocks}}, "
|
||||
"{{'true' if m_block_size_8 else 'false'}}, "
|
||||
"{{stages}}, "
|
||||
"{{group_blocks}}, "
|
||||
"{{'true' if is_zp_float else 'false'}}>"
|
||||
"( MARLIN_KERNEL_PARAMS );")
|
||||
TEMPLATE = (
|
||||
"template __global__ void Marlin<"
|
||||
"{{scalar_t}}, "
|
||||
"{{w_type_id}}, "
|
||||
"{{s_type_id}}, "
|
||||
"{{threads}}, "
|
||||
"{{thread_m_blocks}}, "
|
||||
"{{thread_n_blocks}}, "
|
||||
"{{thread_k_blocks}}, "
|
||||
"{{'true' if m_block_size_8 else 'false'}}, "
|
||||
"{{stages}}, "
|
||||
"{{group_blocks}}, "
|
||||
"{{'true' if is_zp_float else 'false'}}>"
|
||||
"( MARLIN_KERNEL_PARAMS );"
|
||||
)
|
||||
|
||||
# int8 with zero point case (vllm::kU8) is also supported,
|
||||
# we don't add it to reduce wheel size.
|
||||
SCALAR_TYPES = [
|
||||
"vllm::kU4", "vllm::kU4B8", "vllm::kU8B128", "vllm::kFE4M3fn",
|
||||
"vllm::kFE2M1f"
|
||||
"vllm::kU4",
|
||||
"vllm::kU4B8",
|
||||
"vllm::kU8B128",
|
||||
"vllm::kFE4M3fn",
|
||||
"vllm::kFE2M1f",
|
||||
]
|
||||
THREAD_CONFIGS = [(128, 128, 256), (64, 256, 256), (64, 128, 128),
|
||||
(128, 64, 128)]
|
||||
THREAD_CONFIGS = [(128, 128, 256), (64, 256, 256), (64, 128, 128), (128, 64, 128)]
|
||||
|
||||
THREAD_M_BLOCKS = [0.5, 1, 2, 3, 4]
|
||||
# group_blocks:
|
||||
@ -59,11 +63,12 @@ def generate_new_kernels():
|
||||
all_template_str_list = []
|
||||
|
||||
for group_blocks, m_blocks, thread_configs in itertools.product(
|
||||
GROUP_BLOCKS, THREAD_M_BLOCKS, THREAD_CONFIGS):
|
||||
|
||||
GROUP_BLOCKS, THREAD_M_BLOCKS, THREAD_CONFIGS
|
||||
):
|
||||
# act order case only support gptq-int4 and gptq-int8
|
||||
if group_blocks == 0 and scalar_type not in [
|
||||
"vllm::kU4B8", "vllm::kU8B128"
|
||||
"vllm::kU4B8",
|
||||
"vllm::kU8B128",
|
||||
]:
|
||||
continue
|
||||
if thread_configs[2] == 256:
|
||||
@ -93,8 +98,7 @@ def generate_new_kernels():
|
||||
c_dtype = "half" if dtype == "fp16" else "nv_bfloat16"
|
||||
|
||||
is_zp_float_list = [False]
|
||||
if dtype == "fp16" and scalar_type == "vllm::kU4" and \
|
||||
group_blocks == 4:
|
||||
if dtype == "fp16" and scalar_type == "vllm::kU4" and group_blocks == 4:
|
||||
# HQQ (is_zp_float = true) only supports
|
||||
# 4bit quantization and fp16
|
||||
is_zp_float_list.append(True)
|
||||
|
@ -12,20 +12,21 @@ from functools import reduce
|
||||
from typing import Optional, Union
|
||||
|
||||
import jinja2
|
||||
# yapf conflicts with isort for this block
|
||||
# yapf: disable
|
||||
from vllm_cutlass_library_extension import (DataType, EpilogueScheduleTag,
|
||||
EpilogueScheduleType,
|
||||
MixedInputKernelScheduleType,
|
||||
TileSchedulerTag,
|
||||
TileSchedulerType, VLLMDataType,
|
||||
VLLMDataTypeNames,
|
||||
VLLMDataTypeSize, VLLMDataTypeTag,
|
||||
VLLMDataTypeTorchDataTypeTag,
|
||||
VLLMDataTypeVLLMScalarTypeTag,
|
||||
VLLMKernelScheduleTag)
|
||||
|
||||
# yapf: enable
|
||||
from vllm_cutlass_library_extension import (
|
||||
DataType,
|
||||
EpilogueScheduleTag,
|
||||
EpilogueScheduleType,
|
||||
MixedInputKernelScheduleType,
|
||||
TileSchedulerTag,
|
||||
TileSchedulerType,
|
||||
VLLMDataType,
|
||||
VLLMDataTypeNames,
|
||||
VLLMDataTypeSize,
|
||||
VLLMDataTypeTag,
|
||||
VLLMDataTypeTorchDataTypeTag,
|
||||
VLLMDataTypeVLLMScalarTypeTag,
|
||||
VLLMKernelScheduleTag,
|
||||
)
|
||||
|
||||
#
|
||||
# Generator templating
|
||||
@ -286,18 +287,23 @@ def generate_sch_sig(schedule_config: ScheduleConfig) -> str:
|
||||
tile_shape = (
|
||||
f"{schedule_config.tile_shape_mn[0]}x{schedule_config.tile_shape_mn[1]}"
|
||||
)
|
||||
cluster_shape = (f"{schedule_config.cluster_shape_mnk[0]}" +
|
||||
f"x{schedule_config.cluster_shape_mnk[1]}" +
|
||||
f"x{schedule_config.cluster_shape_mnk[2]}")
|
||||
kernel_schedule = VLLMKernelScheduleTag[schedule_config.kernel_schedule]\
|
||||
.split("::")[-1]
|
||||
epilogue_schedule = EpilogueScheduleTag[
|
||||
schedule_config.epilogue_schedule].split("::")[-1]
|
||||
tile_scheduler = TileSchedulerTag[schedule_config.tile_scheduler]\
|
||||
.split("::")[-1]
|
||||
cluster_shape = (
|
||||
f"{schedule_config.cluster_shape_mnk[0]}"
|
||||
+ f"x{schedule_config.cluster_shape_mnk[1]}"
|
||||
+ f"x{schedule_config.cluster_shape_mnk[2]}"
|
||||
)
|
||||
kernel_schedule = VLLMKernelScheduleTag[schedule_config.kernel_schedule].split(
|
||||
"::"
|
||||
)[-1]
|
||||
epilogue_schedule = EpilogueScheduleTag[schedule_config.epilogue_schedule].split(
|
||||
"::"
|
||||
)[-1]
|
||||
tile_scheduler = TileSchedulerTag[schedule_config.tile_scheduler].split("::")[-1]
|
||||
|
||||
return (f"{tile_shape}_{cluster_shape}_{kernel_schedule}" +
|
||||
f"_{epilogue_schedule}_{tile_scheduler}")
|
||||
return (
|
||||
f"{tile_shape}_{cluster_shape}_{kernel_schedule}"
|
||||
+ f"_{epilogue_schedule}_{tile_scheduler}"
|
||||
)
|
||||
|
||||
|
||||
# mostly unique shorter sch_sig
|
||||
@ -316,18 +322,24 @@ def generate_terse_sch_sig(schedule_config: ScheduleConfig) -> str:
|
||||
|
||||
# unique type_name
|
||||
def generate_type_signature(kernel_types: TypeConfig):
|
||||
return str("".join([
|
||||
VLLMDataTypeNames[getattr(kernel_types, field.name)]
|
||||
for field in fields(TypeConfig)
|
||||
]))
|
||||
return str(
|
||||
"".join(
|
||||
[
|
||||
VLLMDataTypeNames[getattr(kernel_types, field.name)]
|
||||
for field in fields(TypeConfig)
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def generate_type_option_name(kernel_types: TypeConfig):
|
||||
return ", ".join([
|
||||
f"{field.name.replace('b_', 'with_')+'_type'}=" +
|
||||
VLLMDataTypeNames[getattr(kernel_types, field.name)]
|
||||
for field in fields(TypeConfig)
|
||||
])
|
||||
return ", ".join(
|
||||
[
|
||||
f"{field.name.replace('b_', 'with_') + '_type'}="
|
||||
+ VLLMDataTypeNames[getattr(kernel_types, field.name)]
|
||||
for field in fields(TypeConfig)
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def is_power_of_two(n):
|
||||
@ -335,7 +347,6 @@ def is_power_of_two(n):
|
||||
|
||||
|
||||
def to_cute_constant(value: list[int]):
|
||||
|
||||
def _to_cute_constant(value: int):
|
||||
if is_power_of_two(value):
|
||||
return f"_{value}"
|
||||
@ -350,11 +361,11 @@ def to_cute_constant(value: list[int]):
|
||||
|
||||
def unique_schedules(impl_configs: list[ImplConfig]):
|
||||
# Use dict over set for deterministic ordering
|
||||
return list({
|
||||
sch: None
|
||||
for impl_config in impl_configs
|
||||
for sch in impl_config.schedules
|
||||
}.keys())
|
||||
return list(
|
||||
{
|
||||
sch: None for impl_config in impl_configs for sch in impl_config.schedules
|
||||
}.keys()
|
||||
)
|
||||
|
||||
|
||||
def unsigned_type_with_bitwidth(num_bits):
|
||||
@ -380,7 +391,7 @@ template_globals = {
|
||||
"gen_type_sig": generate_type_signature,
|
||||
"unique_schedules": unique_schedules,
|
||||
"unsigned_type_with_bitwidth": unsigned_type_with_bitwidth,
|
||||
"gen_type_option_name": generate_type_option_name
|
||||
"gen_type_option_name": generate_type_option_name,
|
||||
}
|
||||
|
||||
|
||||
@ -398,23 +409,28 @@ prepack_dispatch_template = create_template(PREPACK_TEMPLATE)
|
||||
def create_sources(impl_configs: list[ImplConfig], num_impl_files=8):
|
||||
sources = []
|
||||
|
||||
sources.append((
|
||||
"machete_mm_dispatch",
|
||||
mm_dispatch_template.render(impl_configs=impl_configs),
|
||||
))
|
||||
sources.append(
|
||||
(
|
||||
"machete_mm_dispatch",
|
||||
mm_dispatch_template.render(impl_configs=impl_configs),
|
||||
)
|
||||
)
|
||||
|
||||
prepack_types = []
|
||||
for impl_config in impl_configs:
|
||||
convert_type = impl_config.types.a \
|
||||
if impl_config.types.b_group_scale == DataType.void \
|
||||
else impl_config.types.b_group_scale
|
||||
convert_type = (
|
||||
impl_config.types.a
|
||||
if impl_config.types.b_group_scale == DataType.void
|
||||
else impl_config.types.b_group_scale
|
||||
)
|
||||
prepack_types.append(
|
||||
PrepackTypeConfig(
|
||||
a=impl_config.types.a,
|
||||
b_num_bits=VLLMDataTypeSize[impl_config.types.b],
|
||||
convert=convert_type,
|
||||
accumulator=impl_config.types.accumulator,
|
||||
))
|
||||
)
|
||||
)
|
||||
|
||||
def prepacked_type_key(prepack_type: PrepackTypeConfig):
|
||||
# For now, we can just use the first accumulator type seen since
|
||||
@ -430,10 +446,14 @@ def create_sources(impl_configs: list[ImplConfig], num_impl_files=8):
|
||||
unique_prepack_types.append(prepack_type)
|
||||
prepack_types_seen.add(key)
|
||||
|
||||
sources.append((
|
||||
"machete_prepack",
|
||||
prepack_dispatch_template.render(types=unique_prepack_types, ),
|
||||
))
|
||||
sources.append(
|
||||
(
|
||||
"machete_prepack",
|
||||
prepack_dispatch_template.render(
|
||||
types=unique_prepack_types,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
# Split up impls across files
|
||||
num_impls = reduce(lambda x, y: x + len(y.schedules), impl_configs, 0)
|
||||
@ -466,10 +486,12 @@ def create_sources(impl_configs: list[ImplConfig], num_impl_files=8):
|
||||
curr_impl_in_file += len(files_impls[-1][-1].schedules)
|
||||
|
||||
for part, file_impls in enumerate(files_impls):
|
||||
sources.append((
|
||||
f"machete_mm_impl_part{part+1}",
|
||||
mm_impl_template.render(impl_configs=file_impls),
|
||||
))
|
||||
sources.append(
|
||||
(
|
||||
f"machete_mm_impl_part{part + 1}",
|
||||
mm_impl_template.render(impl_configs=file_impls),
|
||||
)
|
||||
)
|
||||
|
||||
return sources
|
||||
|
||||
@ -514,8 +536,7 @@ def generate():
|
||||
# For now we use the same heuristic for all types
|
||||
# Heuristic is currently tuned for H100s
|
||||
default_heuristic = [
|
||||
(cond, ScheduleConfig(*tile_config,
|
||||
**sch_common_params)) # type: ignore
|
||||
(cond, ScheduleConfig(*tile_config, **sch_common_params)) # type: ignore
|
||||
for cond, tile_config in default_tile_heuristic_config.items()
|
||||
]
|
||||
|
||||
@ -541,14 +562,18 @@ def generate():
|
||||
a_token_scale=DataType.void,
|
||||
out=a,
|
||||
accumulator=DataType.f32,
|
||||
) for b in (VLLMDataType.u4b8, VLLMDataType.u8b128)
|
||||
for a in (DataType.f16, DataType.bf16))
|
||||
)
|
||||
for b in (VLLMDataType.u4b8, VLLMDataType.u8b128)
|
||||
for a in (DataType.f16, DataType.bf16)
|
||||
)
|
||||
|
||||
impl_configs += [
|
||||
ImplConfig(x[0], x[1], x[2])
|
||||
for x in zip(GPTQ_kernel_type_configs,
|
||||
itertools.repeat(get_unique_schedules(default_heuristic)),
|
||||
itertools.repeat(default_heuristic))
|
||||
for x in zip(
|
||||
GPTQ_kernel_type_configs,
|
||||
itertools.repeat(get_unique_schedules(default_heuristic)),
|
||||
itertools.repeat(default_heuristic),
|
||||
)
|
||||
]
|
||||
|
||||
AWQ_kernel_type_configs = list(
|
||||
@ -561,14 +586,18 @@ def generate():
|
||||
a_token_scale=DataType.void,
|
||||
out=a,
|
||||
accumulator=DataType.f32,
|
||||
) for b in (DataType.u4, DataType.u8)
|
||||
for a in (DataType.f16, DataType.bf16))
|
||||
)
|
||||
for b in (DataType.u4, DataType.u8)
|
||||
for a in (DataType.f16, DataType.bf16)
|
||||
)
|
||||
|
||||
impl_configs += [
|
||||
ImplConfig(x[0], x[1], x[2])
|
||||
for x in zip(AWQ_kernel_type_configs,
|
||||
itertools.repeat(get_unique_schedules(default_heuristic)),
|
||||
itertools.repeat(default_heuristic))
|
||||
for x in zip(
|
||||
AWQ_kernel_type_configs,
|
||||
itertools.repeat(get_unique_schedules(default_heuristic)),
|
||||
itertools.repeat(default_heuristic),
|
||||
)
|
||||
]
|
||||
|
||||
# TODO: Support W4A8 when ready
|
||||
|
@ -40,7 +40,8 @@ using __hip_fp8_e5m2 = __hip_fp8_e5m2_fnuz;
|
||||
#define __HIP__FP8MFMA__
|
||||
#endif
|
||||
|
||||
#if defined(__HIPCC__) && (defined(__gfx1100__) || defined(__gfx1101__))
|
||||
#if defined(__HIPCC__) && (defined(__gfx1100__) || defined(__gfx1101__) || \
|
||||
defined(__gfx1150__) || defined(__gfx1151__))
|
||||
#define __HIP__GFX11__
|
||||
#endif
|
||||
|
||||
|
@ -397,7 +397,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
" Tensor a_blockscale, Tensor b_blockscales, Tensor alphas,"
|
||||
" Tensor problem_sizes, Tensor expert_offsets, Tensor sf_offsets) -> ()",
|
||||
{stride_tag});
|
||||
ops.impl("cutlass_fp4_group_mm", torch::kCUDA, &cutlass_fp4_group_mm);
|
||||
// conditionally compiled so impl registration is in source file
|
||||
|
||||
// CUTLASS w8a8 GEMM, supporting symmetric per-tensor or per-row/column
|
||||
// quantization, as well as bias
|
||||
@ -713,6 +713,13 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
|
||||
"cp_gather_cache(Tensor src_cache, Tensor! dst, Tensor block_table, "
|
||||
"Tensor cu_seq_lens, int batch_size, Tensor? seq_starts) -> ()");
|
||||
cache_ops.impl("cp_gather_cache", torch::kCUDA, &cp_gather_cache);
|
||||
|
||||
cache_ops.def(
|
||||
"indexer_k_quant_and_cache(Tensor k, Tensor! kv_cache, Tensor "
|
||||
"slot_mapping, "
|
||||
"int quant_block_size, str kv_cache_dtype) -> ()");
|
||||
cache_ops.impl("indexer_k_quant_and_cache", torch::kCUDA,
|
||||
&indexer_k_quant_and_cache);
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cuda_utils), cuda_utils) {
|
||||
|
@ -14,6 +14,11 @@ ARG PYTHON_VERSION=3.12
|
||||
#
|
||||
# Example:
|
||||
# docker build --build-arg BUILD_BASE_IMAGE=registry.acme.org/mirror/nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04
|
||||
|
||||
# Important: We build with an old version of Ubuntu to maintain broad
|
||||
# compatibility with other Linux OSes. The main reason for this is that the
|
||||
# glibc version is baked into the distro, and binaries built with one glibc
|
||||
# version are not backwards compatible with OSes that use an earlier version.
|
||||
ARG BUILD_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04
|
||||
# TODO: Restore to base image after FlashInfer AOT wheel fixed
|
||||
ARG FINAL_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04
|
||||
@ -75,34 +80,19 @@ ARG TARGETPLATFORM
|
||||
ARG INSTALL_KV_CONNECTORS=false
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
ARG DEADSNAKES_MIRROR_URL
|
||||
ARG DEADSNAKES_GPGKEY_URL
|
||||
ARG GET_PIP_URL
|
||||
|
||||
# Install Python and other dependencies
|
||||
# Install system dependencies and uv, then create Python virtual environment
|
||||
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git curl sudo \
|
||||
&& if [ ! -z ${DEADSNAKES_MIRROR_URL} ] ; then \
|
||||
if [ ! -z "${DEADSNAKES_GPGKEY_URL}" ] ; then \
|
||||
mkdir -p -m 0755 /etc/apt/keyrings ; \
|
||||
curl -L ${DEADSNAKES_GPGKEY_URL} | gpg --dearmor > /etc/apt/keyrings/deadsnakes.gpg ; \
|
||||
sudo chmod 644 /etc/apt/keyrings/deadsnakes.gpg ; \
|
||||
echo "deb [signed-by=/etc/apt/keyrings/deadsnakes.gpg] ${DEADSNAKES_MIRROR_URL} $(lsb_release -cs) main" > /etc/apt/sources.list.d/deadsnakes.list ; \
|
||||
fi ; \
|
||||
else \
|
||||
for i in 1 2 3; do \
|
||||
add-apt-repository -y ppa:deadsnakes/ppa && break || \
|
||||
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
|
||||
done ; \
|
||||
fi \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION} \
|
||||
&& apt-get install -y ccache software-properties-common git curl sudo python3-pip \
|
||||
&& curl -LsSf https://astral.sh/uv/install.sh | sh \
|
||||
&& $HOME/.local/bin/uv venv /opt/venv --python ${PYTHON_VERSION} \
|
||||
&& rm -f /usr/bin/python3 /usr/bin/python3-config /usr/bin/pip \
|
||||
&& ln -s /opt/venv/bin/python3 /usr/bin/python3 \
|
||||
&& ln -s /opt/venv/bin/python3-config /usr/bin/python3-config \
|
||||
&& ln -s /opt/venv/bin/pip /usr/bin/pip \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
ARG PIP_INDEX_URL UV_INDEX_URL
|
||||
@ -111,9 +101,9 @@ ARG PYTORCH_CUDA_INDEX_BASE_URL
|
||||
ARG PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL
|
||||
ARG PIP_KEYRING_PROVIDER UV_KEYRING_PROVIDER
|
||||
|
||||
# Install uv for faster pip installs
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv
|
||||
# Activate virtual environment and add uv to PATH
|
||||
ENV PATH="/opt/venv/bin:/root/.local/bin:$PATH"
|
||||
ENV VIRTUAL_ENV="/opt/venv"
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
@ -142,7 +132,7 @@ WORKDIR /workspace
|
||||
COPY requirements/common.txt requirements/common.txt
|
||||
COPY requirements/cuda.txt requirements/cuda.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/cuda.txt \
|
||||
uv pip install --python /opt/venv/bin/python3 -r requirements/cuda.txt \
|
||||
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
|
||||
# cuda arch list used by torch
|
||||
@ -172,7 +162,7 @@ ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/build.txt \
|
||||
uv pip install --python /opt/venv/bin/python3 -r requirements/build.txt \
|
||||
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
|
||||
COPY . .
|
||||
@ -269,7 +259,7 @@ COPY requirements/lint.txt requirements/lint.txt
|
||||
COPY requirements/test.txt requirements/test.txt
|
||||
COPY requirements/dev.txt requirements/dev.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/dev.txt \
|
||||
uv pip install --python /opt/venv/bin/python3 -r requirements/dev.txt \
|
||||
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
#################### DEV IMAGE ####################
|
||||
|
||||
@ -391,19 +381,32 @@ RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
|
||||
git clone --depth 1 --recursive --shallow-submodules \
|
||||
--branch ${FLASHINFER_GIT_REF} \
|
||||
${FLASHINFER_GIT_REPO} flashinfer
|
||||
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
|
||||
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
|
||||
if [[ "${CUDA_VERSION}" == 11.* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
|
||||
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
|
||||
else
|
||||
# CUDA 12.8+ supports 10.0a and 12.0
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
|
||||
fi
|
||||
pushd flashinfer
|
||||
if [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
|
||||
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
|
||||
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
|
||||
if [[ "${CUDA_VERSION}" == 11.* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
|
||||
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
|
||||
else
|
||||
# CUDA 12.8+ supports 10.0a and 12.0
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
|
||||
if [[ "${CUDA_VERSION}" == 12.8.* ]] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then
|
||||
# NOTE: To make new precompiled wheels, see tools/flashinfer-build.sh
|
||||
echo "🏗️ Installing FlashInfer from pre-compiled wheel"
|
||||
uv pip install --system https://wheels.vllm.ai/flashinfer-python/flashinfer_python-0.3.1-cp39-abi3-manylinux1_x86_64.whl \
|
||||
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
if [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
|
||||
# Download pre-compiled cubins
|
||||
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
|
||||
python3 -m flashinfer --download-cubin || echo "WARNING: Failed to download flashinfer cubins."
|
||||
fi
|
||||
elif [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
|
||||
echo "🏗️ Installing FlashInfer with AOT compilation for arches: ${FI_TORCH_CUDA_ARCH_LIST}"
|
||||
export FLASHINFER_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}"
|
||||
# HACK: We need these to run flashinfer.aot before installing flashinfer, get from the package in the future
|
||||
uv pip install --system cuda-python==$(echo $CUDA_VERSION | cut -d. -f1,2) pynvml==$(echo $CUDA_VERSION | cut -d. -f1) nvidia-nvshmem-cu$(echo $CUDA_VERSION | cut -d. -f1)
|
||||
# Build AOT kernels
|
||||
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
|
||||
python3 -m flashinfer.aot
|
||||
@ -443,7 +446,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
ARG DEEPGEMM_GIT_REF
|
||||
COPY tools/install_deepgemm.sh /tmp/install_deepgemm.sh
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
VLLM_DOCKER_BUILD_CONTEXT=1 /tmp/install_deepgemm.sh --cuda-version "${CUDA_VERSION}" ${DEEPGEMM_GIT_REF:+--ref "$DEEPGEMM_GIT_REF"}
|
||||
VLLM_DOCKER_BUILD_CONTEXT=1 TORCH_CUDA_ARCH_LIST="9.0a 10.0a" /tmp/install_deepgemm.sh --cuda-version "${CUDA_VERSION}" ${DEEPGEMM_GIT_REF:+--ref "$DEEPGEMM_GIT_REF"}
|
||||
|
||||
COPY tools/install_gdrcopy.sh install_gdrcopy.sh
|
||||
RUN set -eux; \
|
||||
@ -461,6 +464,12 @@ ENV CUDA_HOME=/usr/local/cuda
|
||||
RUN export TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST:-9.0a+PTX}" \
|
||||
&& bash install_python_libraries.sh
|
||||
|
||||
# CUDA image changed from /usr/local/nvidia to /usr/local/cuda in 12.8 but will
|
||||
# return to /usr/local/nvidia in 13.0 to allow container providers to mount drivers
|
||||
# consistently from the host (see https://github.com/vllm-project/vllm/issues/18859).
|
||||
# Until then, add /usr/local/nvidia/lib64 before the image cuda path to allow override.
|
||||
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib64:${LD_LIBRARY_PATH}
|
||||
|
||||
#################### vLLM installation IMAGE ####################
|
||||
|
||||
#################### TEST IMAGE ####################
|
||||
@ -533,7 +542,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
else \
|
||||
BITSANDBYTES_VERSION="0.46.1"; \
|
||||
fi; \
|
||||
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' boto3 runai-model-streamer runai-model-streamer[s3]
|
||||
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' 'runai-model-streamer[s3]>=0.14.0'
|
||||
|
||||
ENV VLLM_USAGE_SOURCE production-docker-image
|
||||
|
||||
@ -546,5 +555,5 @@ ENTRYPOINT ["./sagemaker-entrypoint.sh"]
|
||||
|
||||
FROM vllm-openai-base AS vllm-openai
|
||||
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
ENTRYPOINT ["vllm", "serve"]
|
||||
#################### OPENAI API SERVER ####################
|
||||
|
@ -47,7 +47,7 @@ ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
|
||||
# Install Python dependencies
|
||||
# Install Python dependencies
|
||||
ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
|
||||
ENV UV_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
@ -104,7 +104,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=cache,target=/workspace/vllm/.deps,sharing=locked \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel
|
||||
|
||||
######################### TEST DEPS #########################
|
||||
FROM base AS vllm-test-deps
|
||||
@ -117,7 +117,7 @@ RUN --mount=type=bind,src=requirements/test.in,target=requirements/test.in \
|
||||
uv pip compile requirements/cpu-test.in -o requirements/cpu-test.txt --index-strategy unsafe-best-match --torch-backend cpu
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install -r requirements/cpu-test.txt
|
||||
uv pip install -r requirements/cpu-test.txt
|
||||
|
||||
######################### DEV IMAGE #########################
|
||||
FROM vllm-build AS vllm-dev
|
||||
@ -130,12 +130,12 @@ RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install -e tests/vllm_test_utils
|
||||
uv pip install -e tests/vllm_test_utils
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py develop
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py develop
|
||||
|
||||
COPY --from=vllm-test-deps /workspace/vllm/requirements/cpu-test.txt requirements/test.txt
|
||||
|
||||
@ -160,11 +160,12 @@ ADD ./benchmarks/ ./benchmarks/
|
||||
ADD ./vllm/collect_env.py .
|
||||
ADD ./.buildkite/ ./.buildkite/
|
||||
|
||||
# Create symlink for vllm-workspace to maintain CI compatibility
|
||||
RUN ln -sf /workspace /vllm-workspace
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install -e tests/vllm_test_utils
|
||||
|
||||
ENTRYPOINT ["bash"]
|
||||
uv pip install -e tests/vllm_test_utils
|
||||
|
||||
######################### RELEASE IMAGE #########################
|
||||
FROM base AS vllm-openai
|
||||
@ -176,4 +177,4 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=vllm-build,src=/workspace/vllm/dist,target=dist \
|
||||
uv pip install dist/*.whl
|
||||
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
ENTRYPOINT ["vllm", "serve"]
|
||||
|
@ -6,7 +6,7 @@ ARG CUDA_VERSION=12.8.0
|
||||
#
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
# prepare basic build environment
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 AS base
|
||||
ARG CUDA_VERSION=12.8.0
|
||||
ARG PYTHON_VERSION=3.12
|
||||
ARG TARGETPLATFORM
|
||||
|
@ -314,4 +314,4 @@ WORKDIR /workspace/
|
||||
|
||||
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
|
||||
|
||||
ENTRYPOINT ["python", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
ENTRYPOINT ["vllm", "serve"]
|
||||
|
@ -15,7 +15,7 @@ FROM ${BASE_IMAGE} AS base
|
||||
ENV PATH=/opt/rocm/llvm/bin:/opt/rocm/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||
ENV ROCM_PATH=/opt/rocm
|
||||
ENV LD_LIBRARY_PATH=/opt/rocm/lib:/usr/local/lib:
|
||||
ARG PYTORCH_ROCM_ARCH=gfx90a;gfx942;gfx950;gfx1100;gfx1101;gfx1200;gfx1201
|
||||
ARG PYTORCH_ROCM_ARCH=gfx90a;gfx942;gfx950;gfx1100;gfx1101;gfx1200;gfx1201;gfx1150;gfx1151
|
||||
ENV PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}
|
||||
ENV AITER_ROCM_ARCH=gfx942;gfx950
|
||||
|
||||
@ -141,4 +141,4 @@ RUN echo "BASE_IMAGE: ${BASE_IMAGE}" > /app/versions.txt \
|
||||
&& echo "FA_BRANCH: ${FA_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "FA_REPO: ${FA_REPO}" >> /app/versions.txt \
|
||||
&& echo "AITER_BRANCH: ${AITER_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "AITER_REPO: ${AITER_REPO}" >> /app/versions.txt
|
||||
&& echo "AITER_REPO: ${AITER_REPO}" >> /app/versions.txt
|
||||
|
@ -309,4 +309,4 @@ USER 2000
|
||||
WORKDIR /home/vllm
|
||||
|
||||
# Set the default entrypoint
|
||||
ENTRYPOINT ["python", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
ENTRYPOINT ["vllm", "serve"]
|
||||
|
@ -69,4 +69,4 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
ENTRYPOINT ["vllm", "serve"]
|
||||
|
@ -1,2 +1,2 @@
|
||||
search:
|
||||
boost: 0.5
|
||||
exclude: true
|
||||
|
BIN
docs/assets/deployment/hf-inference-endpoints-catalog.png
Normal file
After Width: | Height: | Size: 627 KiB |
BIN
docs/assets/deployment/hf-inference-endpoints-choose-infra.png
Normal file
After Width: | Height: | Size: 350 KiB |
After Width: | Height: | Size: 814 KiB |
After Width: | Height: | Size: 267 KiB |
After Width: | Height: | Size: 354 KiB |
After Width: | Height: | Size: 781 KiB |
BIN
docs/assets/deployment/hf-inference-endpoints-new-endpoint.png
Normal file
After Width: | Height: | Size: 51 KiB |
After Width: | Height: | Size: 359 KiB |
BIN
docs/assets/deployment/hf-inference-endpoints-select-model.png
Normal file
After Width: | Height: | Size: 82 KiB |
@ -2,6 +2,7 @@
|
||||
|
||||
We host regular meetups in San Francisco Bay Area every 2 months. We will share the project updates from the vLLM team and have guest speakers from the industry to share their experience and insights. Please find the materials of our previous meetups below:
|
||||
|
||||
- [vLLM Toronto Meetup](https://luma.com/e80e0ymm), September 25th 2025. [[Slides]](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing)
|
||||
- [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ), August 30th 2025. [[Slides]](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA)
|
||||
- [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet), August 27th 2025. [[Slides]](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing)
|
||||
- [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg), August 23rd 2025. [[Slides]](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH)
|
||||
|
@ -53,7 +53,7 @@ llm = LLM(model="adept/fuyu-8b",
|
||||
By default, we optimize model inference using CUDA graphs which take up extra memory in the GPU.
|
||||
|
||||
!!! warning
|
||||
CUDA graph capture takes up more memory in V1 than in V0.
|
||||
CUDA graph capture increases GPU memory usage. Adjust capture sizes if you need to conserve memory.
|
||||
|
||||
You can adjust `compilation_config` to achieve a better balance between inference speed and memory usage:
|
||||
|
||||
|
@ -33,7 +33,7 @@ In vLLM V1, the default preemption mode is `RECOMPUTE` rather than `SWAP`, as re
|
||||
|
||||
Chunked prefill allows vLLM to process large prefills in smaller chunks and batch them together with decode requests. This feature helps improve both throughput and latency by better balancing compute-bound (prefill) and memory-bound (decode) operations.
|
||||
|
||||
In vLLM V1, **chunked prefill is always enabled by default**. This is different from vLLM V0, where it was conditionally enabled based on model characteristics.
|
||||
In vLLM V1, **chunked prefill is always enabled by default** so that behavior is consistent across supported models.
|
||||
|
||||
With chunked prefill enabled, the scheduling policy prioritizes decode requests. It batches all pending decode requests before scheduling any prefill operations. When there are available tokens in the `max_num_batched_tokens` budget, it schedules pending prefills. If a pending prefill request cannot fit into `max_num_batched_tokens`, it automatically chunks it.
|
||||
|
||||
@ -49,7 +49,7 @@ You can tune the performance by adjusting `max_num_batched_tokens`:
|
||||
- Smaller values (e.g., 2048) achieve better inter-token latency (ITL) because there are fewer prefills slowing down decodes.
|
||||
- Higher values achieve better time to first token (TTFT) as you can process more prefill tokens in a batch.
|
||||
- For optimal throughput, we recommend setting `max_num_batched_tokens > 8192` especially for smaller models on large GPUs.
|
||||
- If `max_num_batched_tokens` is the same as `max_model_len`, that's almost the equivalent to the V0 default scheduling policy (except that it still prioritizes decodes).
|
||||
- If `max_num_batched_tokens` is the same as `max_model_len`, the scheduler behaves similarly to the legacy policy where large prefills ran without chunking (while still prioritizing decodes).
|
||||
|
||||
```python
|
||||
from vllm import LLM
|
||||
|
@ -661,8 +661,7 @@ Benchmark the performance of multi-modal requests in vLLM.
|
||||
Start vLLM:
|
||||
|
||||
```bash
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model Qwen/Qwen2.5-VL-7B-Instruct \
|
||||
vllm serve Qwen/Qwen2.5-VL-7B-Instruct \
|
||||
--dtype bfloat16 \
|
||||
--limit-mm-per-prompt '{"image": 1}' \
|
||||
--allowed-local-media-path /path/to/sharegpt4v/images
|
||||
@ -688,8 +687,7 @@ vllm bench serve \
|
||||
Start vLLM:
|
||||
|
||||
```bash
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model Qwen/Qwen2.5-VL-7B-Instruct \
|
||||
vllm serve Qwen/Qwen2.5-VL-7B-Instruct \
|
||||
--dtype bfloat16 \
|
||||
--limit-mm-per-prompt '{"video": 1}' \
|
||||
--allowed-local-media-path /path/to/sharegpt4video/videos
|
||||
@ -823,6 +821,30 @@ The latest performance results are hosted on the public [vLLM Performance Dashbo
|
||||
|
||||
More information on the performance benchmarks and their parameters can be found in [Benchmark README](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md) and [performance benchmark description](gh-file:.buildkite/nightly-benchmarks/performance-benchmarks-descriptions.md).
|
||||
|
||||
### Continuous Benchmarking
|
||||
|
||||
The continuous benchmarking provides automated performance monitoring for vLLM across different models and GPU devices. This helps track vLLM's performance characteristics over time and identify any performance regressions or improvements.
|
||||
|
||||
#### How It Works
|
||||
|
||||
The continuous benchmarking is triggered via a [GitHub workflow CI](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-benchmark.yml) in the PyTorch infrastructure repository, which runs automatically every 4 hours. The workflow executes three types of performance tests:
|
||||
|
||||
- **Serving tests**: Measure request handling and API performance
|
||||
- **Throughput tests**: Evaluate token generation rates
|
||||
- **Latency tests**: Assess response time characteristics
|
||||
|
||||
#### Benchmark Configuration
|
||||
|
||||
The benchmarking currently runs on a predefined set of models configured in the [vllm-benchmarks directory](https://github.com/pytorch/pytorch-integration-testing/tree/main/vllm-benchmarks/benchmarks). To add new models for benchmarking:
|
||||
|
||||
1. Navigate to the appropriate GPU directory in the benchmarks configuration
|
||||
2. Add your model specifications to the corresponding configuration files
|
||||
3. The new models will be included in the next scheduled benchmark run
|
||||
|
||||
#### Viewing Results
|
||||
|
||||
All continuous benchmarking results are automatically published to the public [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm).
|
||||
|
||||
[](){ #nightly-benchmarks }
|
||||
|
||||
## Nightly Benchmarks
|
||||
|
@ -133,8 +133,7 @@ We consider 3 different scenarios:
|
||||
For case (1), we recommend looking at the implementation of [`MambaForCausalLM`](gh-file:vllm/model_executor/models/mamba.py) (for Mamba-1) or [`Mamba2ForCausalLM`](gh-file:vllm/model_executor/models/mamba2.py) (for Mamba-2) as a reference.
|
||||
The model should inherit protocol `IsAttentionFree` and also implement class methods `get_mamba_state_dtype_from_config` and `get_mamba_state_shape_from_config` to calculate the state shapes and data types from the config.
|
||||
For the mamba layers themselves, please use the [`MambaMixer`](gh-file:vllm/model_executor/layers/mamba/mamba_mixer.py) (for Mamba-1) or [`MambaMixer2`](gh-file:vllm/model_executor/layers/mamba/mamba_mixer2.py) (for Mamba-2) classes.
|
||||
Please *do not* use the `MambaCacheManager` (deprecated in V1) or replicate any of the V0-specific code paths in the existing model implementations.
|
||||
V0-only classes and code will be removed in the very near future.
|
||||
Please avoid reintroducing legacy cache managers such as `MambaCacheManager` or any previously removed code paths from older implementations.
|
||||
The model should also be added to the `MODELS_CONFIG_MAP` dictionary in <gh-file:vllm/model_executor/models/config.py> to ensure that the runtime defaults are optimized.
|
||||
|
||||
For case (2), we recommend using as a reference the implementation of [`JambaForCausalLM`](gh-file:vllm/model_executor/models/jamba.py) (for an example of a model that uses Mamba-1 and attention together) or [`BambaForCausalLM`](gh-file:vllm/model_executor/models/bamba.py) (for an example of a model that uses Mamba-2 and attention together).
|
||||
|
@ -66,35 +66,12 @@ Further update the model as follows:
|
||||
!!! important
|
||||
The returned `multimodal_embeddings` must be either a **3D [torch.Tensor][]** of shape `(num_items, feature_size, hidden_size)`, or a **list / tuple of 2D [torch.Tensor][]'s** of shape `(feature_size, hidden_size)`, so that `multimodal_embeddings[i]` retrieves the embeddings generated from the `i`-th multimodal data item (e.g, image) of the request.
|
||||
|
||||
- Implement [get_input_embeddings][vllm.model_executor.models.interfaces.SupportsMultiModal.get_input_embeddings] to merge `multimodal_embeddings` with text embeddings from the `input_ids`. If input processing for the model is implemented correctly (see sections below), then you can leverage the utility function we provide to easily merge the embeddings.
|
||||
!!! note
|
||||
By default, vLLM merges the multimodal embeddings into text embeddings depending on the information of their locations defined in
|
||||
[PlaceholderRange][vllm.multimodal.inputs.PlaceholderRange] from input processing.
|
||||
This logic can be found at [get_input_embeddings][vllm.model_executor.models.interfaces.SupportsMultiModal.get_input_embeddings].
|
||||
|
||||
??? code
|
||||
|
||||
```python
|
||||
from .utils import merge_multimodal_embeddings
|
||||
|
||||
class YourModelForImage2Seq(nn.Module):
|
||||
...
|
||||
|
||||
def get_input_embeddings(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
|
||||
) -> torch.Tensor:
|
||||
|
||||
# `get_input_embeddings` should already be implemented for the language
|
||||
# model as one of the requirements of basic vLLM model implementation.
|
||||
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
||||
|
||||
if multimodal_embeddings is not None:
|
||||
inputs_embeds = merge_multimodal_embeddings(
|
||||
input_ids=input_ids,
|
||||
inputs_embeds=inputs_embeds,
|
||||
multimodal_embeddings=multimodal_embeddings,
|
||||
placeholder_token_id=self.config.image_token_index)
|
||||
|
||||
return inputs_embeds
|
||||
```
|
||||
You may override this method if additional logic is required for your model when merging embeddings.
|
||||
|
||||
- Implement [get_language_model][vllm.model_executor.models.interfaces.SupportsMultiModal.get_language_model] getter to provide stable access to the underlying language model.
|
||||
|
||||
@ -281,17 +258,21 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
|
||||
self,
|
||||
seq_len: int,
|
||||
mm_counts: Mapping[str, int],
|
||||
mm_options: Optional[Mapping[str, BaseDummyOptions]] = None,
|
||||
) -> MultiModalDataDict:
|
||||
num_images = mm_counts.get("image", 0)
|
||||
|
||||
target_width, target_height = \
|
||||
self.info.get_image_size_with_most_features()
|
||||
|
||||
image_overrides = mm_options.get("image") if mm_options else None
|
||||
|
||||
return {
|
||||
"image":
|
||||
self._get_dummy_images(width=target_width,
|
||||
height=target_height,
|
||||
num_images=num_images)
|
||||
num_images=num_images,
|
||||
overrides=image_overrides)
|
||||
}
|
||||
```
|
||||
|
||||
@ -461,16 +442,20 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
|
||||
self,
|
||||
seq_len: int,
|
||||
mm_counts: Mapping[str, int],
|
||||
mm_options: Optional[Mapping[str, BaseDummyOptions]] = None,
|
||||
) -> MultiModalDataDict:
|
||||
target_width, target_height = \
|
||||
self.info.get_image_size_with_most_features()
|
||||
num_images = mm_counts.get("image", 0)
|
||||
|
||||
image_overrides = mm_options.get("image") if mm_options else None
|
||||
|
||||
return {
|
||||
"image":
|
||||
self._get_dummy_images(width=target_width,
|
||||
height=target_height,
|
||||
num_images=num_images)
|
||||
num_images=num_images,
|
||||
overrides=image_overrides)
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -39,8 +39,7 @@ Refer to <gh-file:examples/offline_inference/simple_profiling.py> for an example
|
||||
|
||||
```bash
|
||||
VLLM_TORCH_PROFILER_DIR=./vllm_profile \
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model meta-llama/Meta-Llama-3-70B
|
||||
vllm serve meta-llama/Meta-Llama-3-70B
|
||||
```
|
||||
|
||||
vllm bench command:
|
||||
@ -160,6 +159,22 @@ GUI example:
|
||||
|
||||
<img width="1799" alt="Screenshot 2025-03-05 at 11 48 42 AM" src="https://github.com/user-attachments/assets/c7cff1ae-6d6f-477d-a342-bd13c4fc424c" />
|
||||
|
||||
## Continuous Profiling
|
||||
|
||||
There is a [GitHub CI workflow](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-profiling.yml) in the PyTorch infrastructure repository that provides continuous profiling for different models on vLLM. This automated profiling helps track performance characteristics over time and across different model configurations.
|
||||
|
||||
### How It Works
|
||||
|
||||
The workflow currently runs weekly profiling sessions for selected models, generating detailed performance traces that can be analyzed using different tools to identify performance regressions or optimization opportunities. But, it can be triggered manually as well, using the Github Action tool.
|
||||
|
||||
### Adding New Models
|
||||
|
||||
To extend the continuous profiling to additional models, you can modify the [profiling-tests.json](https://github.com/pytorch/pytorch-integration-testing/blob/main/vllm-profiling/cuda/profiling-tests.json) configuration file in the PyTorch integration testing repository. Simply add your model specifications to this file to include them in the automated profiling runs.
|
||||
|
||||
### Viewing Profiling Results
|
||||
|
||||
The profiling traces generated by the continuous profiling workflow are publicly available on the [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm). Look for the **Profiling traces** table to access and download the traces for different models and runs.
|
||||
|
||||
## Profiling vLLM Python Code
|
||||
|
||||
The Python standard library includes
|
||||
@ -208,3 +223,11 @@ One example is [snakeviz](https://jiffyclub.github.io/snakeviz/).
|
||||
pip install snakeviz
|
||||
snakeviz expensive_function.prof
|
||||
```
|
||||
|
||||
### Analyzing Garbage Collection Costs
|
||||
|
||||
Leverage VLLM_GC_DEBUG environment variable to debug GC costs.
|
||||
|
||||
- VLLM_GC_DEBUG=1: enable GC debugger with gc.collect elpased times
|
||||
- VLLM_GC_DEBUG='{"top_objects":5}': enable GC debugger to log top 5
|
||||
collected objects for each gc.collect
|
||||
|
@ -19,8 +19,7 @@ pip install -U "autogen-agentchat" "autogen-ext[openai]"
|
||||
1. Start the vLLM server with the supported chat completion model, e.g.
|
||||
|
||||
```bash
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model mistralai/Mistral-7B-Instruct-v0.2
|
||||
vllm serve mistralai/Mistral-7B-Instruct-v0.2
|
||||
```
|
||||
|
||||
1. Call it with AutoGen:
|
||||
|
170
docs/deployment/frameworks/hf_inference_endpoints.md
Normal file
@ -0,0 +1,170 @@
|
||||
# Hugging Face Inference Endpoints
|
||||
|
||||
## Overview
|
||||
|
||||
Models compatible with vLLM can be deployed on Hugging Face Inference Endpoints, either starting from the [Hugging Face Hub](https://huggingface.co) or directly from the [Inference Endpoints](https://endpoints.huggingface.co/) interface. This allows you to serve models in a fully managed environment with GPU acceleration, auto-scaling, and monitoring, without managing the infrastructure manually.
|
||||
|
||||
For advanced details on vLLM integration and deployment options, see [Advanced Deployment Details](#advanced-deployment-details).
|
||||
|
||||
## Deployment Methods
|
||||
|
||||
- [**Method 1: Deploy from the Catalog.**](#method-1-deploy-from-the-catalog) One-click deploy models from the Hugging Face Hub with ready-made optimized configurations.
|
||||
- [**Method 2: Guided Deployment (Transformers Models).**](#method-2-guided-deployment-transformers-models) Instantly deploy models tagged with `transformers` from the Hub UI using the **Deploy** button.
|
||||
- [**Method 3: Manual Deployment (Advanced Models).**](#method-3-manual-deployment-advanced-models) For models that either use custom code with the `transformers` tag, or don’t run with standard `transformers` but are supported by vLLM. This method requires manual configuration.
|
||||
|
||||
### Method 1: Deploy from the Catalog
|
||||
|
||||
This is the easiest way to get started with vLLM on Hugging Face Inference Endpoints. You can browse a catalog of models with verified and optimized deployment configuration at [Inference Endpoints](https://endpoints.huggingface.co/catalog) to maximize performance.
|
||||
|
||||
1. Go to [Endpoints Catalog](https://endpoints.huggingface.co/catalog) and in the **Inference Server** options, select `vLLM`.This will display the current list of models with optimized preconfigured options.
|
||||
|
||||

|
||||
|
||||
1. Select the desired model and click **Create Endpoint**.
|
||||
|
||||

|
||||
|
||||
1. Once the deployment is ready, you can use the endpoint. Update the `DEPLOYMENT_URL` with the URL provided in the console, remembering to append `/v1` as required.
|
||||
|
||||
```python
|
||||
# pip install openai
|
||||
from openai import OpenAI
|
||||
import os
|
||||
|
||||
client = OpenAI(
|
||||
base_url = DEPLOYMENT_URL,
|
||||
api_key = os.environ["HF_TOKEN"] # https://huggingface.co/settings/tokens
|
||||
)
|
||||
|
||||
chat_completion = client.chat.completions.create(
|
||||
model = "HuggingFaceTB/SmolLM3-3B",
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Give me a brief explanation of gravity in simple terms."
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
stream = True
|
||||
)
|
||||
|
||||
for message in chat_completion:
|
||||
print(message.choices[0].delta.content, end = "")
|
||||
```
|
||||
|
||||
!!! note
|
||||
The catalog provides models optimized for vLLM, including GPU settings and inference engine configurations. You can monitor the endpoint and update the **container or its configuration** from the Inference Endpoints UI.
|
||||
|
||||
### Method 2: Guided Deployment (Transformers Models)
|
||||
|
||||
This method applies to models with the [`transformers` library tag](https://huggingface.co/models?library=transformers) in their metadata. It allows you to deploy a model directly from the Hub UI without manual configuration.
|
||||
|
||||
1. Navigate to a model on [Hugging Face Hub](https://huggingface.co/models).
|
||||
For this example we will use the [`ibm-granite/granite-docling-258M`](https://huggingface.co/ibm-granite/granite-docling-258M) model. You can verify that the model is compatible by checking the front matter in the [README](https://huggingface.co/ibm-granite/granite-docling-258M/blob/main/README.md), where the library is tagged as `library: transformers`.
|
||||
|
||||
2. Locate the **Deploy** button. The button appears for models tagged with `transformers` at the top right of the [model card](https://huggingface.co/ibm-granite/granite-docling-258M).
|
||||
|
||||

|
||||
|
||||
3. Click to **Deploy** button > **HF Inference Endpoints**. You will be taken to the Inference Endpoints interface to configure the deployment.
|
||||
|
||||

|
||||
|
||||
4. Select the Hardware (we choose AWS>GPU>T4 for the example) and Container Configuration. Choose `vLLM` as the container type and finalize the deployment pressing **Create Endpoint**.
|
||||
|
||||

|
||||
|
||||
5. Use the deployed endpoint. Update the `DEPLOYMENT_URL` with the URL provided in the console (remember to add `/v1` needed). You can then use your endpoint programmatically or via the SDK.
|
||||
|
||||
```python
|
||||
# pip install openai
|
||||
from openai import OpenAI
|
||||
import os
|
||||
|
||||
client = OpenAI(
|
||||
base_url = DEPLOYMENT_URL,
|
||||
api_key = os.environ["HF_TOKEN"] # https://huggingface.co/settings/tokens
|
||||
)
|
||||
|
||||
chat_completion = client.chat.completions.create(
|
||||
model = "ibm-granite/granite-docling-258M",
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://huggingface.co/ibm-granite/granite-docling-258M/resolve/main/assets/new_arxiv.png"
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Convert this page to docling."
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
stream = True
|
||||
)
|
||||
|
||||
for message in chat_completion:
|
||||
print(message.choices[0].delta.content, end = "")
|
||||
```
|
||||
|
||||
!!! note
|
||||
This method uses best-guess defaults. You may need to adjust the configuration to fit your specific requirements.
|
||||
|
||||
### Method 3: Manual Deployment (Advanced Models)
|
||||
|
||||
Some models require manual deployment because they:
|
||||
|
||||
- Use custom code with the `transformers` tag
|
||||
- Don't run with standard `transformers` but are supported by `vLLM`
|
||||
|
||||
These models cannot be deployed using the **Deploy** button on the model card.
|
||||
|
||||
In this guide, we demonstrate manual deployment using the [`rednote-hilab/dots.ocr`](https://huggingface.co/rednote-hilab/dots.ocr) model, an OCR model integrated with vLLM (see vLLM [PR](https://github.com/vllm-project/vllm/pull/24645)).
|
||||
|
||||
1. Start a new deployment. Go to [Inference Endpoints](https://endpoints.huggingface.co/) and click `New`.
|
||||
|
||||

|
||||
|
||||
2. Search the model in the Hub. In the dialog, switch to **Hub** and search for the desired model.
|
||||
|
||||

|
||||
|
||||
3. Choosing infrastructure. On the configuration page, select the cloud provider and hardware from the available options.
|
||||
For this demo, we choose AWS and L4 GPU. Adjust according to your hardware needs.
|
||||
|
||||

|
||||
|
||||
4. Configure the container. Scroll to the **Container Configuration** and select `vLLM` as the container type.
|
||||
|
||||

|
||||
|
||||
5. Create the endpoint. Click **Create Endpoint** to deploy the model.
|
||||
|
||||
Once the endpoint is ready, you can use it with the OpenAI Completion API, cURL, or other SDKs. Remember to append `/v1` to the deployment URL if needed.
|
||||
|
||||
!!! note
|
||||
You can adjust the **container settings** (Container URI, Container Arguments) from the Inference Endpoints UI and press **Update Endpoint**. This redeploys the endpoint with the updated container configuration. Changes to the model itself require creating a new endpoint or redeploying with a different model. For example, for this demo, you may need to update the Container URI to the nightly image (`vllm/vllm-openai:nightly`) and add the `--trust-remote-code` flag in the container arguments.
|
||||
|
||||
## Advanced Deployment Details
|
||||
|
||||
With the [transformers backend integration](https://blog.vllm.ai/2025/04/11/transformers-backend.html), vLLM now offers Day 0 support for any model compatible with `transformers`. This means you can deploy such models immediately, leveraging vLLM’s optimized inference without additional backend modifications.
|
||||
|
||||
Hugging Face Inference Endpoints provides a fully managed environment for serving models via vLLM. You can deploy models without configuring servers, installing dependencies, or managing clusters. Endpoints also support deployment across multiple cloud providers (AWS, Azure, GCP) without the need for separate accounts.
|
||||
|
||||
The platform integrates seamlessly with the Hugging Face Hub, allowing you to deploy any vLLM- or `transformers`-compatible model, track usage, and update the inference engine directly. The vLLM engine comes preconfigured, enabling optimized inference and easy switching between models or engines without modifying your code. This setup simplifies production deployment: endpoints are ready in minutes, include monitoring and logging, and let you focus on serving models rather than maintaining infrastructure.
|
||||
|
||||
## Next Steps
|
||||
|
||||
- Explore the [Inference Endpoints](https://endpoints.huggingface.co/catalog) model catalog
|
||||
- Read the Inference Endpoints [documentation](https://huggingface.co/docs/inference-endpoints/en/index)
|
||||
- Learn about [Inference Endpoints engines](https://huggingface.co/docs/inference-endpoints/en/engines/vllm)
|
||||
- Understand the [transformers backend integration](https://blog.vllm.ai/2025/04/11/transformers-backend.html)
|
@ -20,7 +20,7 @@ To get started with Open WebUI using vLLM, follow these steps:
|
||||
For example:
|
||||
|
||||
```console
|
||||
python -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 8000
|
||||
vllm serve <model> --host 0.0.0.0 --port 8000
|
||||
```
|
||||
|
||||
3. Start the Open WebUI Docker container:
|
||||
|
@ -32,6 +32,7 @@ See the vLLM SkyPilot YAML for serving, [serving.yaml](https://github.com/skypil
|
||||
ports: 8081 # Expose to internet traffic.
|
||||
|
||||
envs:
|
||||
PYTHONUNBUFFERED: 1
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
|
||||
|
||||
@ -47,9 +48,8 @@ See the vLLM SkyPilot YAML for serving, [serving.yaml](https://github.com/skypil
|
||||
run: |
|
||||
conda activate vllm
|
||||
echo 'Starting vllm api server...'
|
||||
python -u -m vllm.entrypoints.openai.api_server \
|
||||
vllm serve $MODEL_NAME \
|
||||
--port 8081 \
|
||||
--model $MODEL_NAME \
|
||||
--trust-remote-code \
|
||||
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
|
||||
2>&1 | tee api_server.log &
|
||||
@ -131,6 +131,7 @@ SkyPilot can scale up the service to multiple service replicas with built-in aut
|
||||
ports: 8081 # Expose to internet traffic.
|
||||
|
||||
envs:
|
||||
PYTHONUNBUFFERED: 1
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
|
||||
|
||||
@ -146,9 +147,8 @@ SkyPilot can scale up the service to multiple service replicas with built-in aut
|
||||
run: |
|
||||
conda activate vllm
|
||||
echo 'Starting vllm api server...'
|
||||
python -u -m vllm.entrypoints.openai.api_server \
|
||||
vllm serve $MODEL_NAME \
|
||||
--port 8081 \
|
||||
--model $MODEL_NAME \
|
||||
--trust-remote-code \
|
||||
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
|
||||
2>&1 | tee api_server.log
|
||||
@ -243,6 +243,7 @@ This will scale the service up to when the QPS exceeds 2 for each replica.
|
||||
ports: 8081 # Expose to internet traffic.
|
||||
|
||||
envs:
|
||||
PYTHONUNBUFFERED: 1
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
|
||||
|
||||
@ -258,9 +259,8 @@ This will scale the service up to when the QPS exceeds 2 for each replica.
|
||||
run: |
|
||||
conda activate vllm
|
||||
echo 'Starting vllm api server...'
|
||||
python -u -m vllm.entrypoints.openai.api_server \
|
||||
vllm serve $MODEL_NAME \
|
||||
--port 8081 \
|
||||
--model $MODEL_NAME \
|
||||
--trust-remote-code \
|
||||
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
|
||||
2>&1 | tee api_server.log
|
||||
|
5
docs/deployment/integrations/kaito.md
Normal file
@ -0,0 +1,5 @@
|
||||
# KAITO
|
||||
|
||||
[KAITO](https://kaito-project.github.io/kaito/docs/) is a Kubernetes operator that supports deploying and serving LLMs with vLLM. It offers managing large models via container images with built-in OpenAI-compatible inference, auto-provisioning GPU nodes and curated model presets.
|
||||
|
||||
Please refer to [quick start](https://kaito-project.github.io/kaito/docs/quick-start) for more details.
|
@ -55,7 +55,7 @@ sudo kubectl port-forward svc/vllm-router-service 30080:80
|
||||
And then you can send out a query to the OpenAI-compatible API to check the available models:
|
||||
|
||||
```bash
|
||||
curl -o- http://localhost:30080/models
|
||||
curl -o- http://localhost:30080/v1/models
|
||||
```
|
||||
|
||||
??? console "Output"
|
||||
@ -78,7 +78,7 @@ curl -o- http://localhost:30080/models
|
||||
To send an actual chatting request, you can issue a curl request to the OpenAI `/completion` endpoint:
|
||||
|
||||
```bash
|
||||
curl -X POST http://localhost:30080/completions \
|
||||
curl -X POST http://localhost:30080/v1/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "facebook/opt-125m",
|
||||
|
@ -12,6 +12,7 @@ Alternatively, you can deploy vLLM to Kubernetes using any of the following:
|
||||
|
||||
- [Helm](frameworks/helm.md)
|
||||
- [InftyAI/llmaz](integrations/llmaz.md)
|
||||
- [KAITO](integrations/kaito.md)
|
||||
- [KServe](integrations/kserve.md)
|
||||
- [KubeRay](integrations/kuberay.md)
|
||||
- [kubernetes-sigs/lws](frameworks/lws.md)
|
||||
|
@ -69,6 +69,11 @@ Sometimes you may see the API server entrypoint used directly instead of via the
|
||||
python -m vllm.entrypoints.openai.api_server --model <model>
|
||||
```
|
||||
|
||||
!!! warning
|
||||
|
||||
`python -m vllm.entrypoints.openai.api_server` is deprecated
|
||||
and may become unsupported in a future release.
|
||||
|
||||
That code can be found in <gh-file:vllm/entrypoints/openai/api_server.py>.
|
||||
|
||||
More details on the API server can be found in the [OpenAI-Compatible Server](../serving/openai_compatible_server.md) document.
|
||||
|
@ -242,30 +242,8 @@ Example: `python3 -m tests.kernels.moe.modular_kernel_tools.profile_modular_kern
|
||||
|
||||
## FusedMoEPrepareAndFinalize Implementations
|
||||
|
||||
The following table lists the `FusedMoEPrepareAndFinalize` implementations at the time of writing,
|
||||
|
||||
| Implementation | Type | Comments |
|
||||
| :--- | :--- | :--- |
|
||||
| DeepEPHTPrepareAndFinalize | Contiguous / Non-Batched | Uses the DeepEP High-Throughput all2all kernels. |
|
||||
| DeepEPLLPrepareAndFinalize | Batched | Uses the DeepEP Low-Latency all2all kernels. |
|
||||
| PplxPrepareAndFinalize | Batched | Uses the Perplexity all2all kernels. |
|
||||
| FlashInferCutlassMoEPrepareAndFinalize | Contiguous | |
|
||||
| MoEPrepareAndFinalizeNoEP | Contiguous | This implementation is used when there is no EP. i.e. no all2all kernels are invoked. |
|
||||
| BatchedPrepareAndFinalize | Batched | A reference prepare/finalize class that reorganizes the tokens into expert batched format, i.e. E x max_num_tokens x K. (Doesn’t use any all2all kernels. This is primarily used in unit testing) |
|
||||
See [Fused MoE Kernel features](./moe_kernel_features.md#fused-moe-modular-all2all-backends) for a list of all the available modular prepare and finalize subclasses.
|
||||
|
||||
## FusedMoEPermuteExpertsUnpermute
|
||||
|
||||
The following table lists the `FusedMoEPermuteExpertsUnpermute` implementations at the time of writing,
|
||||
|
||||
| Implementation | Type | Comment |
|
||||
| :--- | :--- | :--- |
|
||||
| BatchedDeepGemmExperts | Batched | Uses the DeepGemm’s Masked Grouped Gemm kernels for the fused_moe operation. |
|
||||
| BatchedTritonExperts | Batched | Uses a Triton Kernel for the Batched matmuls. |
|
||||
| BatchedTritonOrDeepGemmExperts | Batched | Chooses either the `BatchedDeepGemmExperts` or `BatchedTritonExperts` based on environment settings. |
|
||||
| DeepGemmExperts | Contiguous / Non-Batched | Uses DeepGemm’s Grouped Gemm kernels for fused_moe operation. |
|
||||
| TritonExperts | Contiguous / Non-Batched | Uses a Triton Kernel for fused_moe matmuls. |
|
||||
| TritonOrDeepGemmExperts | Contiguous / Non-Batched | Chooses either the `DeepGemmExperts` or `TritonExperts` based on fused_moe inputs. |
|
||||
| CutlassExpertsFP8 | Supports both Batched and Contiguous formats | Uses Cutlass Grouped Gemm implementations for the fp8 matmuls. |
|
||||
| CutlassExpertsFP4 | Supports both Batched and Contiguous formats | Uses Cutlass Grouped Gemm implementations for the fp4 matmuls. |
|
||||
| FlashInferExperts | Contiguous | Uses fused_moe operation from FlashInfer |
|
||||
| NaiveBatchedExperts | Batched | Reference Batched Experts implementation. Primarily used in unit tests. |
|
||||
See [Fused MoE Kernel features](./moe_kernel_features.md#fused-moe-experts-kernels) for a list of all the available modular experts.
|
||||
|
@ -1,12 +1,12 @@
|
||||
# Metrics
|
||||
|
||||
Ensure the v1 LLM Engine exposes a superset of the metrics available in v0.
|
||||
vLLM exposes a rich set of metrics to support observability and capacity planning for the V1 engine.
|
||||
|
||||
## Objectives
|
||||
|
||||
- Achieve parity of metrics between v0 and v1.
|
||||
- The priority use case is accessing these metrics via Prometheus, as this is what we expect to be used in production environments.
|
||||
- Logging support (i.e. printing metrics to the info log) is provided for more ad-hoc testing, debugging, development, and exploratory use cases.
|
||||
- Provide comprehensive coverage of engine and request level metrics to aid production monitoring.
|
||||
- Prioritize Prometheus integrations, as this is what we expect to be used in production environments.
|
||||
- Offer logging support (i.e. printing metrics to the info log) for ad-hoc testing, debugging, development, and exploratory use cases.
|
||||
|
||||
## Background
|
||||
|
||||
@ -17,9 +17,9 @@ Metrics in vLLM can be categorized as follows:
|
||||
|
||||
The mental model is that server-level metrics help explain the values of request-level metrics.
|
||||
|
||||
### v0 Metrics
|
||||
### Metrics Overview
|
||||
|
||||
In v0, the following metrics are exposed via a Prometheus-compatible `/metrics` endpoint using the `vllm:` prefix:
|
||||
The following metrics are exposed via a Prometheus-compatible `/metrics` endpoint using the `vllm:` prefix and are documented under [Inferencing and Serving -> Production Metrics](../usage/metrics.md):
|
||||
|
||||
- `vllm:num_requests_running` (Gauge)
|
||||
- `vllm:num_requests_swapped` (Gauge)
|
||||
@ -57,8 +57,6 @@ In v0, the following metrics are exposed via a Prometheus-compatible `/metrics`
|
||||
- `vllm:spec_decode_num_draft_tokens_total` (Counter)
|
||||
- `vllm:spec_decode_num_emitted_tokens_total` (Counter)
|
||||
|
||||
These are documented under [Inferencing and Serving -> Production Metrics](../usage/metrics.md).
|
||||
|
||||
### Grafana Dashboard
|
||||
|
||||
vLLM also provides [a reference example](../examples/online_serving/prometheus_grafana.md) for how to collect and store these metrics using Prometheus and visualize them using a Grafana dashboard.
|
||||
@ -86,7 +84,7 @@ See [the PR which added this Dashboard](gh-pr:2316) for interesting and useful b
|
||||
|
||||
Prometheus support was initially added [using the aioprometheus library](gh-pr:1890), but a switch was made quickly to [prometheus_client](gh-pr:2730). The rationale is discussed in both linked PRs.
|
||||
|
||||
With the switch to `aioprometheus`, we lost a `MetricsMiddleware` to track HTTP metrics, but this was reinstated [using prometheus_fastapi_instrumentator](gh-pr:15657):
|
||||
During those migrations we briefly lost a `MetricsMiddleware` to track HTTP metrics, but this was reinstated [using prometheus_fastapi_instrumentator](gh-pr:15657):
|
||||
|
||||
```bash
|
||||
$ curl http://0.0.0.0:8000/metrics 2>/dev/null | grep -P '^http_(?!.*(_bucket|_created|_sum)).*'
|
||||
@ -97,10 +95,6 @@ http_request_duration_highr_seconds_count 201.0
|
||||
http_request_duration_seconds_count{handler="/v1/completions",method="POST"} 201.0
|
||||
```
|
||||
|
||||
### Multi-process Mode
|
||||
|
||||
In v0, metrics are collected in the engine core process and we use multiprocess mode to make them available in the API server process. See <gh-pr:7279>.
|
||||
|
||||
### Built in Python/Process Metrics
|
||||
|
||||
The following metrics are supported by default by `prometheus_client`, but they are not exposed when multiprocess mode is used:
|
||||
@ -116,22 +110,7 @@ The following metrics are supported by default by `prometheus_client`, but they
|
||||
- `process_open_fds`
|
||||
- `process_max_fds`
|
||||
|
||||
This is relevant because if we move away from multiprocess mode in v1,
|
||||
we get these back. However, it's questionable how relevant these are
|
||||
if they don't aggregate these stats for all processes that make up a
|
||||
vLLM instance.
|
||||
|
||||
### v0 PRs and Issues
|
||||
|
||||
For background, these are some of the relevant PRs which added the v0 metrics:
|
||||
|
||||
- <gh-pr:1890>
|
||||
- <gh-pr:2316>
|
||||
- <gh-pr:2730>
|
||||
- <gh-pr:4464>
|
||||
- <gh-pr:7279>
|
||||
|
||||
Also note the ["Even Better Observability"](gh-issue:3616) feature where e.g. [a detailed roadmap was laid out](gh-issue:3616#issuecomment-2030858781).
|
||||
This is relevant because if we move away from multiprocess mode we get these back. However, it's questionable how relevant these are if they don't aggregate these stats for all processes that make up a vLLM instance.
|
||||
|
||||
## v1 Design
|
||||
|
||||
@ -396,9 +375,8 @@ recent metric is used, but only from currently running processes.
|
||||
|
||||
This was added in <gh-pr:9477> and there is
|
||||
[at least one known user](https://github.com/kubernetes-sigs/gateway-api-inference-extension/pull/54).
|
||||
If we revisit this design and deprecate the old metric, we should reduce
|
||||
the need for a significant deprecation period by making the change in
|
||||
v0 also and asking this project to move to the new metric.
|
||||
If we revisit this design and deprecate the old metric, we should
|
||||
coordinate with downstream users so they can migrate before the removal.
|
||||
|
||||
### Prefix Cache metrics
|
||||
|
||||
@ -491,7 +469,7 @@ if seq_group.is_finished():
|
||||
|
||||
This seems duplicative, and one of them should be removed. The latter
|
||||
is used by the Grafana dashboard, so we should deprecate or remove the
|
||||
former from v0.
|
||||
former.
|
||||
|
||||
### Prefix Cache Hit Rate
|
||||
|
||||
@ -500,7 +478,7 @@ See above - we now expose 'queries' and 'hits' counters rather than a
|
||||
|
||||
### KV Cache Offloading
|
||||
|
||||
Two v0 metrics relate to a "swapped" preemption mode that is no
|
||||
Two legacy metrics relate to a "swapped" preemption mode that is no
|
||||
longer relevant in v1:
|
||||
|
||||
- `vllm:num_requests_swapped`
|
||||
@ -511,7 +489,7 @@ cache to complete other requests), we swap kv cache blocks out to CPU
|
||||
memory. This is also known as "KV cache offloading" and is configured
|
||||
with `--swap-space` and `--preemption-mode`.
|
||||
|
||||
In v0, [vLLM has long supported beam search](gh-issue:6226). The
|
||||
Historically, [vLLM has long supported beam search](gh-issue:6226). The
|
||||
SequenceGroup encapsulated the idea of N Sequences which
|
||||
all shared the same prompt kv blocks. This enabled KV cache block
|
||||
sharing between requests, and copy-on-write to do branching. CPU
|
||||
@ -524,7 +502,7 @@ and the part of the prompt that was evicted can be recomputed.
|
||||
|
||||
SequenceGroup was removed in V1, although a replacement will be
|
||||
required for "parallel sampling" (`n>1`).
|
||||
[Beam search was moved out of the core (in V0)](gh-issue:8306). There was a
|
||||
[Beam search was moved out of the core](gh-issue:8306). There was a
|
||||
lot of complex code for a very uncommon feature.
|
||||
|
||||
In V1, with prefix caching being better (zero over head) and therefore
|
||||
@ -535,7 +513,7 @@ better.
|
||||
|
||||
### Parallel Sampling
|
||||
|
||||
Some v0 metrics are only relevant in the context of "parallel
|
||||
Some legacy metrics are only relevant in the context of "parallel
|
||||
sampling". This is where the `n` parameter in a request is used to
|
||||
request multiple completions from the same prompt.
|
||||
|
||||
@ -554,7 +532,7 @@ also add these metrics.
|
||||
|
||||
### Speculative Decoding
|
||||
|
||||
Some v0 metrics are specific to "speculative decoding". This is where
|
||||
Some legacy metrics are specific to "speculative decoding". This is where
|
||||
we generate candidate tokens using a faster, approximate method or
|
||||
model and then validate those tokens with the larger model.
|
||||
|
||||
@ -566,7 +544,7 @@ model and then validate those tokens with the larger model.
|
||||
|
||||
There is a PR under review (<gh-pr:12193>) to add "prompt lookup (ngram)"
|
||||
speculative decoding to v1. Other techniques will follow. We should
|
||||
revisit the v0 metrics in this context.
|
||||
revisit these metrics in this context.
|
||||
|
||||
!!! note
|
||||
We should probably expose acceptance rate as separate accepted
|
||||
@ -639,7 +617,7 @@ metrics are often relatively straightforward to add:
|
||||
metrics are usually of very limited use unless they can be enabled
|
||||
by default and in production.
|
||||
3. They have an impact on development and maintenance of the
|
||||
project. Every metric added to v0 has made this v1 effort more
|
||||
project. Every metric added over time has made this effort more
|
||||
time-consuming, and perhaps not all metrics justify this ongoing
|
||||
investment in their maintenance.
|
||||
|
||||
@ -650,7 +628,7 @@ performance and health. Tracing, on the other hand, tracks individual
|
||||
requests as they move through different services and components. Both
|
||||
fall under the more general heading of "Observability".
|
||||
|
||||
v0 has support for OpenTelemetry tracing:
|
||||
vLLM has support for OpenTelemetry tracing:
|
||||
|
||||
- Added by <gh-pr:4687>
|
||||
- Configured with `--oltp-traces-endpoint` and `--collect-detailed-traces`
|
||||
@ -663,11 +641,11 @@ OpenTelemetry has a
|
||||
[Gen AI Working Group](https://github.com/open-telemetry/community/blob/main/projects/gen-ai.md).
|
||||
|
||||
Since metrics is a big enough topic on its own, we are going to tackle
|
||||
the topic of tracing in v1 separately.
|
||||
the topic of tracing separately.
|
||||
|
||||
### OpenTelemetry Model Forward vs Execute Time
|
||||
|
||||
In v0, we have the following two metrics:
|
||||
The current implementation exposes the following two metrics:
|
||||
|
||||
- `vllm:model_forward_time_milliseconds` (Histogram) - The time spent
|
||||
in the model forward pass when this request was in the batch.
|
||||
|
121
docs/design/moe_kernel_features.md
Normal file
@ -0,0 +1,121 @@
|
||||
# Fused MoE Kernel features
|
||||
|
||||
The purpose of this document is to provide an overview of the various MoE kernels (both modular and non-modular) so it will be easier to select an appropriate set of kernels for any particular situation. This includes information about the all2all backends used by modular kernels.
|
||||
|
||||
## Fused MoE Modular All2All backends
|
||||
|
||||
There are a number of all2all communication backends that are used to implement expert parallelism (EP) for the `FusedMoE` layer. The different `FusedMoEPrepareAndFinalize` sub-classes provide an interface for each all2all backend.
|
||||
|
||||
The following table describes the relevant features of each backend, i.e. activation format, supported quantization schemes and async support.
|
||||
|
||||
The output activation format (standard or batched) corresponds to the output of the prepare step of the `FusedMoEPrepareAndFinalize` subclass, the finalize step requires the same format. All the backend `prepare` methods expect activations in standard format and all the `finalize methods return activations in standard format. More details on the formats can be found in the [Fused MoE Modular Kernel](./fused_moe_modular_kernel.md) document.
|
||||
|
||||
The quantization types and formats enumerate which quantization schemes are supported by each `FusedMoEPrepareAndFinalize` class. The quantization can happen before or after the dispatch based on the format the all2all backend supports. e.g. deepep_high_throughput supports only block-quantized fp8 format, any other format will result in dispatching in higher precision and quantizing afterwards. The output of the prepare step for each backend is the quantized type. The finalize step generally requires the same input type as the original activations, e.g. if the original input is bfloat16 and the quantization scheme is fp8 w/per-tensor scales, `prepare` will return fp8/per-tensor scale activations and `finalize` will take bfloat16 activations. See the diagrams in [Fused MoE Modular Kernel](./fused_moe_modular_kernel.md) for more details on the types and formats of activations at each step of the MoE process. If no quantization type is specified, the kernel operates on float16 and/or bfloat16.
|
||||
|
||||
Async backends support the use of DBO (Dual Batch Overlap) and shared expert overlap (where shared experts are computed during the combine step).
|
||||
|
||||
Certain models require the topk weights to be applied to the input activations rather than the output activations when topk==1, e.g. llama. For modular kernels, this feature is supported by the `FusedMoEPrepareAndFinalize` subclass, for non-modular kernels, it is up to the experts function to deal with this flag.
|
||||
|
||||
unless otherwise specified, backends are controlled via `VLLM_ALL2ALL_BACKEND`. All backends except `flashinfer` only work with EP+DP or EP+TP. `Flashinfer` can work with EP or DP w/o EP.
|
||||
|
||||
<style>
|
||||
td {
|
||||
padding: 0.5rem !important;
|
||||
white-space: nowrap;
|
||||
}
|
||||
|
||||
th {
|
||||
padding: 0.5rem !important;
|
||||
min-width: 0 !important;
|
||||
}
|
||||
</style>
|
||||
|
||||
| Backend | Output act. format | Quant. types | Quant. format | Async | Apply Weight On Input | Sub-class |
|
||||
|---------------------------------------|--------------------|-----------------|------------------------|-------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| naive | standard | all<sup>1</sup> | G,A,T | N | <sup>6</sup> | [layer.py][vllm.model_executor.layers.fused_moe.layer.FusedMoE.forward_impl] |
|
||||
| pplx | batched | fp8,int8 | G,A,T | Y | Y | [`PplxPrepareAndFinalize`][vllm.model_executor.layers.fused_moe.pplx_prepare_finalize.PplxPrepareAndFinalize] |
|
||||
| deepep_high_throughput | standard | fp8 | G(128),A,T<sup>2</sup> | Y | Y | [`DeepEPLLPrepareAndFinalize`][vllm.model_executor.layers.fused_moe.deepep_ll_prepare_finalize.DeepEPLLPrepareAndFinalize] |
|
||||
| deepep_low_latency | batched | fp8 | G(128),A,T<sup>3</sup> | Y | Y | [`DeepEPHTPrepareAndFinalize`][vllm.model_executor.layers.fused_moe.deepep_ht_prepare_finalize.DeepEPHTPrepareAndFinalize] |
|
||||
| flashinfer_all2allv | standard | nvfp4,fp8 | G,A,T | N | N | [`FlashInferAllToAllMoEPrepareAndFinalize`][vllm.model_executor.layers.fused_moe.flashinfer_cutlass_prepare_finalize.FlashInferAllToAllMoEPrepareAndFinalize] |
|
||||
| flashinfer<sup>4</sup> | standard | nvfp4,fp8 | G,A,T | N | N | [`FlashInferCutlassMoEPrepareAndFinalize`][vllm.model_executor.layers.fused_moe.flashinfer_cutlass_prepare_finalize.FlashInferCutlassMoEPrepareAndFinalize] |
|
||||
| flashinfer<sup>4</sup> | standard | nvfp4,fp8 | G,A,T | N | N | [`FlashInferCutlassMoEPrepareAndFinalize`][vllm.model_executor.layers.fused_moe.flashinfer_cutlass_prepare_finalize.FlashInferCutlassMoEPrepareAndFinalize] |
|
||||
| MoEPrepareAndFinalizeNoEP<sup>5</sup> | standard | fp8,int8 | G,A,T | N | Y | [`MoEPrepareAndFinalizeNoEP`][vllm.model_executor.layers.fused_moe.prepare_finalize.MoEPrepareAndFinalizeNoEP] |
|
||||
| BatchedPrepareAndFinalize<sup>5</sup> | batched | fp8,int8 | G,A,T | N | Y | [`BatchedPrepareAndFinalize`][vllm.model_executor.layers.fused_moe.fused_batched_moe.BatchedPrepareAndFinalize] |
|
||||
|
||||
!!! info "Table key"
|
||||
1. All types: mxfp4, nvfp4, int4, int8, fp8
|
||||
2. A,T quantization occurs after dispatch.
|
||||
3. All quantization happens after dispatch.
|
||||
4. Controlled by different env vars (`VLLM_FLASHINFER_MOE_BACKEND` "throughput" or "latency")
|
||||
5. This is a no-op dispatcher that can be used to pair with any modular experts to produce a modular kernel that runs w/o dispatch or combine. These cannot be selected via environment variable. These are generally use for testing or adapting an expert subclass to the `fused_experts` API.
|
||||
6. This depends on the experts implementation.
|
||||
|
||||
---
|
||||
|
||||
- G - Grouped
|
||||
- G(N) - Grouped w/block size N
|
||||
- A - Per activation token
|
||||
- T - Per tensor
|
||||
|
||||
Modular kernels are supported by the following `FusedMoEMethodBase` classes.
|
||||
|
||||
- [`ModelOptFp8MoEMethod`][vllm.model_executor.layers.quantization.modelopt.ModelOptFp8MoEMethod]
|
||||
- [`Fp8MoEMethod`][vllm.model_executor.layers.quantization.fp8.Fp8MoEMethod]
|
||||
- [`CompressedTensorsW4A4MoeMethod`][vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors_moe.CompressedTensorsW4A4MoeMethod]
|
||||
- [`CompressedTensorsW8A8Fp8MoEMethod`][vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors_moe.CompressedTensorsW8A8Fp8MoEMethod]
|
||||
- [`Mxfp4MoEMethod`][vllm.model_executor.layers.quantization.mxfp4.Mxfp4MoEMethod]
|
||||
- [`UnquantizedFusedMoEMethod`][vllm.model_executor.layers.fused_moe.layer.UnquantizedFusedMoEMethod]
|
||||
|
||||
## Fused MoE Experts Kernels
|
||||
|
||||
The are a number of MoE experts kernel implementations for different quantization types and architectures. Most follow the general API of the base Triton [`fused_experts`][vllm.model_executor.layers.fused_moe.fused_moe.fused_experts] function. Many have modular kernel adatpers so they can be used with compatible all2all backends. This table lists each experts kernel and its particular properties.
|
||||
|
||||
Each kernel must be provided with one of the supported input activation formats. Some flavors of kernels support both standard and batched formats through different entry points, e.g. `TritonExperts` and `BatchedTritonExperts`. Batched format kernels are currently only needed for matching with certain all2all backends, e.g. `pplx`, `DeepEPLLPrepareAndFinalize`.
|
||||
|
||||
Similar to the backend kernels, each experts kernel only supports certain quantization formats. For non-modular experts, the activations will be in the original type and quantized internally by the kernel. Modular experts will expect the activations to already be in the quantized format. Both types of experts will yield outputs in the original activation type.
|
||||
|
||||
Each experts kernel supports one or more activation functions, e.g. silu, gelu that are applied to the intermediate results.
|
||||
|
||||
As with the backends, some experts support applying topk weights on the input activations. The entries in the column in this table only apply to the non-modular experts.
|
||||
|
||||
Most experts flavors include an equivalent modular interface which will be a subclass of `FusedMoEPermuteExpertsUnpermute`.
|
||||
|
||||
To be used with a particular `FusedMoEPrepareAndFinalize` sub-class, MoE kernels must have compatible activation formats, quantization types and quantization formats.
|
||||
|
||||
| Kernel | Input act. format | Quant. types | Quant. format | Activation function | Apply Weight On Input | Modular | Source |
|
||||
|------------------------------|-----------------------|------------------|---------------|-------------------------------------------------------------|-----------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| triton | standard | all<sup>1</sup> | G,A,T | silu, gelu,</br>swigluoai,</br>silu_no_mul,</br>gelu_no_mul | Y | Y | [`fused_experts`][vllm.model_executor.layers.fused_moe.fused_moe.fused_experts],</br>[`TritonExperts`][vllm.model_executor.layers.fused_moe.fused_moe.TritonExperts] |
|
||||
| triton (batched) | batched | all<sup>1</sup> | G,A,T | silu, gelu | <sup>6</sup> | Y | [`BatchedTritonExperts`][vllm.model_executor.layers.fused_moe.fused_batched_moe.BatchedTritonExperts] |
|
||||
| deep gemm | standard,</br>batched | fp8 | G(128),A,T | silu, gelu | <sup>6</sup> | Y | [`deep_gemm_moe_fp8`][vllm.model_executor.layers.fused_moe.deep_gemm_moe.deep_gemm_moe_fp8],</br>[`DeepGemmExperts`][vllm.model_executor.layers.fused_moe.deep_gemm_moe.DeepGemmExperts],</br>[`BatchedDeepGemmExperts`][vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe.BatchedDeepGemmExperts] |
|
||||
| cutlass_fp4 | standard,</br>batched | nvfp4 | A,T | silu | Y | Y | [`cutlass_moe_fp4`][vllm.model_executor.layers.fused_moe.cutlass_moe.cutlass_moe_fp4],</br>[`CutlassExpertsFp4`][vllm.model_executor.layers.fused_moe.cutlass_moe.CutlassExpertsFp4] |
|
||||
| cutlass_fp8 | standard,</br>batched | fp8 | A,T | silu, gelu | Y | Y | [`cutlass_moe_fp8`][vllm.model_executor.layers.fused_moe.cutlass_moe.cutlass_moe_fp8],</br>[`CutlassExpertsFp8`][vllm.model_executor.layers.fused_moe.cutlass_moe.CutlassExpertsFp8],</br>[`CutlasBatchedExpertsFp8`][vllm.model_executor.layers.fused_moe.cutlass_moe.CutlassBatchedExpertsFp8] |
|
||||
| flashinfer | standard | nvfp4,</br>fp8 | T | <sup>5</sup> | N | Y | [`flashinfer_cutlass_moe_fp4`][vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe.flashinfer_cutlass_moe_fp4],</br>[`FlashInferExperts`][vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe.FlashInferExperts] |
|
||||
| gpt oss triton | standard | N/A | N/A | <sup>5</sup> | Y | Y | [`triton_kernel_fused_experts`][vllm.model_executor.layers.fused_moe.gpt_oss_triton_kernels_moe.triton_kernel_fused_experts],</br>[`OAITritonExperts`][vllm.model_executor.layers.fused_moe.gpt_oss_triton_kernels_moe.OAITritonExperts] |
|
||||
| deep gemm+triton<sup>2</sup> | standard,</br>batched | all<sup>1</sup> | G(128),A,T | silu, gelu | <sup>6</sup> | Y | [`TritonOrDeepGemmExperts`][vllm.model_executor.layers.fused_moe.triton_deep_gemm_moe.TritonOrDeepGemmExperts],</br>[`BatchedTritonOrDeepGemmExperts`][vllm.model_executor.layers.fused_moe.batched_triton_or_deep_gemm_moe.BatchedTritonOrDeepGemmExperts] |
|
||||
| marlin | standard | <sup>3</sup> | <sup>3</sup> | silu,</br>swigluoai | Y | N | [`fused_marlin_moe`][vllm.model_executor.layers.fused_moe.fused_marlin_moe.fused_marlin_moe] |
|
||||
|
||||
| marlin experts | standard | N/A | N/A | silu,</br>swigluoai | Y | Y | [`MarlinExperts`][vllm.model_executor.layers.fused_moe.fused_marlin_moe.MarlinExperts] |
|
||||
| trtllm | standard | mxfp4,</br>nvfp4 | G(16),G(32) | <sup>5</sup> | N | Y | [`TrtLlmGenExperts`][vllm.model_executor.layers.fused_moe.trtllm_moe.TrtLlmGenExperts] |
|
||||
| pallas | standard | N/A | N/A | silu | N | N | [`fused_moe`][vllm.model_executor.layers.fused_moe.moe_pallas.fused_moe] |
|
||||
| iterative | standard | N/A | N/A | silu | N | N | [`fused_moe`][vllm.model_executor.layers.fused_moe.moe_torch_iterative.fused_moe] |
|
||||
| rocm aiter moe | standard | fp8 | G(128),A,T | silu, gelu | Y | N | [`rocm_aiter_fused_experts`][vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe.rocm_aiter_fused_moe_impl] |
|
||||
| cpu_fused_moe | standard | N/A | N/A | silu | N | N | [`CPUFusedMOE`][vllm.model_executor.layers.fused_moe.cpu_fused_moe.CPUFusedMOE] |
|
||||
| naive batched<sup>4</sup> | batched | int8,</br>fp8 | G,A,T | silu, gelu | <sup>6</sup> | Y | [`NaiveBatchedExperts`][vllm.model_executor.layers.fused_moe.fused_batched_moe.NaiveBatchedExperts] |
|
||||
|
||||
!!! info "Table key"
|
||||
1. All types: mxfp4, nvfp4, int4, int8, fp8
|
||||
2. A dispatcher wrapper around triton and deep gemm experts. Will select based on type + shape + quantization params
|
||||
3. uint4, uint8, fp8, fp4
|
||||
4. This is a naive implementation of experts that supports batched format. Mainly used for testing.
|
||||
5. The `activation` parameter is ignored and SwiGlu is used by default instead.
|
||||
6. Only handled by or supported when used with modular kernels.
|
||||
|
||||
## Modular Kernel "families"
|
||||
|
||||
The following table shows "families" of modular kernels that are intended to work together. There are some combinations which may work but have not yet been tested, e.g. flashinfer with other fp8 experts. Note that the "naive" backend will work with any non-modular experts.
|
||||
|
||||
| backend | `FusedMoEPrepareAndFinalize` subclasses | `FusedMoEPermuteExpertsUnpermute` subclasses |
|
||||
|----------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|
||||
| deepep_high_throughput | `DeepEPHTPrepareAndFinalize` | `DeepGemmExperts`,</br>`TritonExperts`,</br>`TritonOrDeepGemmExperts`,</br>`CutlassExpertsFp8`, </br>`MarlinExperts` |
|
||||
| deepep_low_latency,</br>pplx | `DeepEPLLPrepareAndFinalize`,</br>`PplxPrepareAndFinalize` | `BatchedDeepGemmExperts`,</br>`BatchedTritonExperts`,</br>`BatchedTritonOrDeepGemmExperts`,</br>`CutlassBatchedExpertsFp8`|
|
||||
| flashinfer | `FlashInferCutlassMoEPrepareAndFinalize` | `FlashInferExperts` |
|
@ -60,30 +60,6 @@ Multiple vLLM dependencies indicate either a preference or requirement for using
|
||||
It is perhaps more accurate to say that there are known problems with using
|
||||
`fork` after initializing these dependencies.
|
||||
|
||||
## Current State (v0)
|
||||
|
||||
The environment variable `VLLM_WORKER_MULTIPROC_METHOD` can be used to control which method is used by vLLM. The current default is `fork`.
|
||||
|
||||
- <https://github.com/vllm-project/vllm/blob/d05f88679bedd73939251a17c3d785a354b2946c/vllm/envs.py#L339-L342>
|
||||
|
||||
When we know we own the process because the `vllm` command was used, we use
|
||||
`spawn` because it's the most widely compatible.
|
||||
|
||||
- <https://github.com/vllm-project/vllm/blob/d05f88679bedd73939251a17c3d785a354b2946c/vllm/scripts.py#L123-L140>
|
||||
|
||||
The `multiproc_xpu_executor` forces the use of `spawn`.
|
||||
|
||||
- <https://github.com/vllm-project/vllm/blob/d05f88679bedd73939251a17c3d785a354b2946c/vllm/executor/multiproc_xpu_executor.py#L14-L18>
|
||||
|
||||
There are other miscellaneous places hard-coding the use of `spawn`:
|
||||
|
||||
- <https://github.com/vllm-project/vllm/blob/d05f88679bedd73939251a17c3d785a354b2946c/vllm/distributed/device_communicators/all_reduce_utils.py#L135>
|
||||
- <https://github.com/vllm-project/vllm/blob/d05f88679bedd73939251a17c3d785a354b2946c/vllm/entrypoints/openai/api_server.py#L184>
|
||||
|
||||
Related PRs:
|
||||
|
||||
- <gh-pr:8823>
|
||||
|
||||
## Prior State in v1
|
||||
|
||||
There was an environment variable to control whether multiprocessing is used in
|
||||
|
@ -49,7 +49,7 @@ Every plugin has three parts:
|
||||
|
||||
- **Platform plugins** (with group name `vllm.platform_plugins`): The primary use case for these plugins is to register custom, out-of-the-tree platforms into vLLM. The plugin function should return `None` when the platform is not supported in the current environment, or the platform class's fully qualified name when the platform is supported.
|
||||
|
||||
- **IO Processor plugins** (with group name `vllm.io_processor_plugins`): The primary use case for these plugins is to register custom pre/post processing of the model prompt and model output for poling models. The plugin function returns the IOProcessor's class fully qualified name.
|
||||
- **IO Processor plugins** (with group name `vllm.io_processor_plugins`): The primary use case for these plugins is to register custom pre/post processing of the model prompt and model output for pooling models. The plugin function returns the IOProcessor's class fully qualified name.
|
||||
|
||||
## Guidelines for Writing Plugins
|
||||
|
||||
|
@ -94,9 +94,6 @@ To improve privacy in shared environments, vLLM supports isolating prefix cache
|
||||
|
||||
With this setup, cache sharing is limited to users or requests that explicitly agree on a common salt, enabling cache reuse within a trust group while isolating others.
|
||||
|
||||
!!! note
|
||||
Cache isolation is not supported in engine V0.
|
||||
|
||||
## Data Structure
|
||||
|
||||
The prefix caching in vLLM v1 is implemented in the KV cache manager. The basic building block is the “Block” data class (simplified):
|
||||
@ -189,7 +186,7 @@ Time 1:
|
||||
Cache Blocks: 0, 1, 3
|
||||
```
|
||||
|
||||
As can be seen, block 3 is a new full block and is cached. However, it is redundant as block 1, meaning that we cached the same block twice. In v0, when detecting block 3 is duplicated, we free block 3 and let Request 2 use block 1 instead, so its block table becomes `[0, 1]` in Time 1. However, the block table in vLLM v1 is append-only, meaning that changing the block table from `[0, 3]` to `[0, 1]` is not allowed. As a result, we will have duplicated blocks for the hash key E-H. This duplication will be eliminated when the request is freed.
|
||||
As can be seen, block 3 is a new full block and is cached. However, it is redundant as block 1, meaning that we cached the same block twice. Because the block table in vLLM v1 is append-only, changing the block table from `[0, 3]` to `[0, 1]` is not allowed. As a result, we will have duplicated blocks for the hash key E-H. This duplication will be eliminated when the request is freed.
|
||||
|
||||
### Free
|
||||
|
||||
|
@ -16,7 +16,7 @@ vLLM will take all the available factors into consideration, and decide a direct
|
||||
|
||||
The factors considered include:
|
||||
|
||||
- All the related configs (see the `compute_hash` functions in the [config.py](gh-file:vllm/config.py))
|
||||
- All the related configs (see the `compute_hash` functions in their respective configs in the [config folder](gh-file:vllm/config))
|
||||
- PyTorch configs (see the `compute_hash` functions in the [compiler_interface.py](gh-file:vllm/compilation/compiler_interface.py))
|
||||
- The model's forward function and the relevant functions called by the forward function (see below)
|
||||
|
||||
|
@ -52,7 +52,7 @@ th:not(:first-child) {
|
||||
| [mm](multimodal_inputs.md) | ✅ | ✅ | [🟠](gh-pr:4194)<sup>^</sup> | ❔ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | | | |
|
||||
| best-of | ✅ | ✅ | ✅ | [❌](gh-issue:6137) | ✅ | ❌ | ✅ | ✅ | ✅ | ❔ | [❌](gh-issue:7968) | ✅ | ✅ | | |
|
||||
| beam-search | ✅ | ✅ | ✅ | [❌](gh-issue:6137) | ✅ | ❌ | ✅ | ✅ | ✅ | ❔ | [❌](gh-issue:7968) | ❔ | ✅ | ✅ | |
|
||||
| [prompt-embeds](prompt_embeds.md) | ✅ | [❌](gh-issue:25096) | ? | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ? | ? | ❌ | ? | ? | ✅ |
|
||||
| [prompt-embeds](prompt_embeds.md) | ✅ | [❌](gh-issue:25096) | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ❔ | ❔ | ❌ | ❔ | ❔ | ✅ |
|
||||
|
||||
\* Chunked prefill and prefix caching are only applicable to last-token pooling.
|
||||
<sup>^</sup> LoRA is only applicable to the language backbone of multimodal models.
|
||||
|
@ -166,7 +166,7 @@ The `DummyLogitsProcessor.update_state()` implementation maintains a "sparse" re
|
||||
|
||||
### Wrapping an Existing Request-Level Logits Processor
|
||||
|
||||
Although the vLLM engine applies logits processors at batch granularity, some users may want to use vLLM with a "request-level" logits processor implementation - an implementation which operates on individual requests. This will be especially true if your logits processor was developed for vLLM version 0, which required it to be a `Callable` (as described [here](https://docs.vllm.ai/en/v0.10.1.1/api/vllm/logits_process.html)) conforming to the following type annotation:
|
||||
Although the vLLM engine applies logits processors at batch granularity, some users may want to use vLLM with a "request-level" logits processor implementation - an implementation which operates on individual requests. Earlier request-level processors were implemented as `Callable` objects conforming to the following type annotation:
|
||||
|
||||
``` python
|
||||
RequestLogitsProcessor = Union[
|
||||
|
@ -6,6 +6,13 @@ This page teaches you how to pass multi-modal inputs to [multi-modal models][sup
|
||||
We are actively iterating on multi-modal support. See [this RFC](gh-issue:4194) for upcoming changes,
|
||||
and [open an issue on GitHub](https://github.com/vllm-project/vllm/issues/new/choose) if you have any feedback or feature requests.
|
||||
|
||||
!!! tip
|
||||
When serving multi-modal models, consider setting `--allowed-media-domains` to restrict domain that vLLM can access to prevent it from accessing arbitrary endpoints that can potentially be vulnerable to Server-Side Request Forgery (SSRF) attacks. You can provide a list of domains for this arg. For example: `--allowed-media-domains upload.wikimedia.org github.com www.bogotobogo.com`
|
||||
|
||||
Also, consider setting `VLLM_MEDIA_URL_ALLOW_REDIRECTS=0` to prevent HTTP redirects from being followed to bypass domain restrictions.
|
||||
|
||||
This restriction is especially important if you run vLLM in a containerized environment where the vLLM pods may have unrestricted access to internal networks.
|
||||
|
||||
## Offline Inference
|
||||
|
||||
To input multi-modal data, follow this schema in [vllm.inputs.PromptType][]:
|
||||
@ -424,7 +431,7 @@ Our OpenAI-compatible server accepts multi-modal data via the [Chat Completions
|
||||
If no fallback is available, an error is raised and you have to provide the chat template manually via the `--chat-template` argument.
|
||||
|
||||
For certain models, we provide alternative chat templates inside <gh-dir:examples>.
|
||||
For example, VLM2Vec uses <gh-file:examples/template_vlm2vec.jinja> which is different from the default one for Phi-3-Vision.
|
||||
For example, VLM2Vec uses <gh-file:examples/template_vlm2vec_phi3v.jinja> which is different from the default one for Phi-3-Vision.
|
||||
|
||||
### Image Inputs
|
||||
|
||||
|
@ -84,7 +84,7 @@ python tests/v1/kv_connector/nixl_integration/toy_proxy_server.py \
|
||||
- Connection info is passed via KVTransferParams from prefiller to decoder for handshake
|
||||
|
||||
- `VLLM_NIXL_ABORT_REQUEST_TIMEOUT`: Timeout (in seconds) for automatically releasing the prefiller’s KV cache for a particular request. (Optional)
|
||||
- Default: 120
|
||||
- Default: 480
|
||||
- If a request is aborted and the decoder has not yet read the KV-cache blocks through the nixl channel, the prefill instance will release its KV-cache blocks after this timeout to avoid holding them indefinitely.
|
||||
|
||||
## Multi-Instance Setup
|
||||
|
@ -6,7 +6,11 @@ This quantization method is particularly useful for reducing model size while ma
|
||||
Please visit the HF collection of [quantized INT8 checkpoints of popular LLMs ready to use with vLLM](https://huggingface.co/collections/neuralmagic/int8-llms-for-vllm-668ec32c049dca0369816415).
|
||||
|
||||
!!! note
|
||||
INT8 computation is supported on NVIDIA GPUs with compute capability > 7.5 (Turing, Ampere, Ada Lovelace, Hopper, Blackwell).
|
||||
INT8 computation is supported on NVIDIA GPUs with compute capability > 7.5 (Turing, Ampere, Ada Lovelace, Hopper).
|
||||
|
||||
!!! warning
|
||||
**Blackwell GPU Limitation**: INT8 is not supported on compute capability >= 100 (e.g., RTX 6000 Blackwell).
|
||||
Use [FP8 quantization](fp8.md) instead, or run on Hopper/Ada/Ampere architectures.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
|
@ -64,8 +64,7 @@ To enable sleep mode in a vLLM server you need to initialize it with the flag `V
|
||||
When using the flag `VLLM_SERVER_DEV_MODE=1` you enable development endpoints, and these endpoints should not be exposed to users.
|
||||
|
||||
```bash
|
||||
VLLM_SERVER_DEV_MODE=1 python -m vllm.entrypoints.openai.api_server \
|
||||
--model Qwen/Qwen3-0.6B \
|
||||
VLLM_SERVER_DEV_MODE=1 vllm serve Qwen/Qwen3-0.6B \
|
||||
--enable-sleep-mode \
|
||||
--port 8000
|
||||
```
|
||||
|