Compare commits

...

80 Commits

Author SHA1 Message Date
9ffb182ba3 Fix config passed to deepseek_eagle
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-30 13:03:27 +00:00
80608ba5af [NIXL] Add support for MLA caches with different latent dim (#25902)
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
2025-09-30 12:18:29 +00:00
e184c9c510 [perf] Use CPU tensor to reduce GPU->CPU sync (#25884)
Signed-off-by: Lehua Ding <lehuading@tencent.com>
2025-09-30 19:51:16 +08:00
d7e34b4210 [Model] Move vision_feature_select_strategy into resolve_visual_encoder_outputs (#25938)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-30 11:24:57 +00:00
ef6e0e7132 [Bugfix][Model]fix ernie45 moe gate&bias dtype to float32 (#25936)
Signed-off-by: wangyafeng <wangyafeng@baidu.com>
2025-09-30 19:11:21 +08:00
1ad3aca682 Updated TRL integration docs (#25684)
Signed-off-by: sergiopaniego <sergiopaniegoblanco@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Sergio Paniego Blanco <sergiopaniegoblanco@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-30 03:10:55 -07:00
8d0afa9b42 [Doc] Add Cambricon MLU support (#25942)
Signed-off-by: a120092009 <zhaoty0121@gmail.com>
2025-09-30 17:59:47 +08:00
fa7e254a7f [New Model] DeepSeek-V3.2 (Rebased to Main) (#25896)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Yongye Zhu <zyy1102000@gmail.com>
Signed-off-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
Signed-off-by: Lucia Fang <fanglu@meta.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
Co-authored-by: Lucia Fang <fanglu@meta.com>
Co-authored-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Siyuan Fu <siyuanf@nvidia.com>
Co-authored-by: Matthew Bonanni <mbonanni@redhat.com>
Co-authored-by: Xiaozhu Meng <mxz297@gmail.com>
Co-authored-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
2025-09-30 17:14:41 +08:00
e23cacda35 [Bugfix]: Clean up chunked prefill logging when using whisper (#25075)
Signed-off-by: simondanielsson <simon.danielsson99@hotmail.com>
2025-09-30 08:17:49 +00:00
2e1b8bc2b6 [Model][Bugfix] Fix MiDashengLM audio encoder mask by removing incorrect logical_not (#25925)
Signed-off-by: zhoukz <me@zhoukz.com>
2025-09-30 08:15:23 +00:00
e47433b3c1 [BugFix] Pass config_format via try_get_generation_config (#25912) 2025-09-30 05:09:50 +00:00
23194d83e8 [BugFix] Fix DP/EP hang (#25906)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-30 04:18:59 +00:00
61aedb5ffe MoveVllmConfig from config/__init__.py to config/vllm.py (#25271)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-29 19:49:49 -07:00
d3bd171123 [Benchmark] Support benchmark throughput for external launcher DP (#25913)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-09-30 01:43:57 +00:00
89e4050af4 [Bug] Fix Weight Loading for Block FP8 Cutlass SM90 (#25909)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-30 09:15:19 +08:00
78a47f87ce Test Prompt Embeds/LoRA compatibility and Enable LoRA Support for OPT Models (#25717)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-30 08:10:58 +08:00
6a113d9aed [V0 Deprecation] Remove vllm.worker and update according imports (#25901) 2025-09-29 23:26:11 +00:00
2e4fe48c37 [NIXL] Increase default KV block eviction timeout on P (#25897)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-29 21:35:14 +00:00
8eb0a1d906 [Doc] Polish example for torchrun dp (#25899) 2025-09-29 21:31:34 +00:00
fea3e476aa [Kernel] Chunk-aligned mamba2 (#24683) 2025-09-29 23:18:25 +02:00
61a3431613 [Bugfix][ROCm] Fixing trying to import non-existent symbols from libnccl.so (#25605)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-29 17:01:50 -04:00
9bedac9623 [Doc] Add documentation for vLLM continuous benchmarking and profiling (#25819)
Signed-off-by: Naman Lalit <nl2688@nyu.edu>
2025-09-29 20:49:49 +00:00
c42ff4f4fd [BugFix][torch.compile] KV scale calculation issues with FP8 quantization (#25513)
Signed-off-by: adabeyta <aabeyta@redhat.com>
2025-09-29 15:52:04 -04:00
d5ab28511c [Bugfix] Use correct key "ignore" for config.json non-quantized layers (#25706)
Signed-off-by: Lee Nau <lnau@nvidia.com>
2025-09-29 15:07:29 -04:00
e61eb5e09d [Model] Remove MotifForCausalLM (#25866)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-30 00:36:30 +08:00
0899ba5b42 [CI/Build] Include Transformers backend test in nightly transformers test (#25885)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-29 09:33:39 -07:00
145ac73317 [Bugfix][Speculative Decoding] Fix Eagle3 quantization config issue (#25883)
Signed-off-by: Rahul Tuli <rtuli@redhat.com>
2025-09-29 11:37:20 -04:00
d0d138bc55 [Nixl][P/D] Add cuda2cpu support (HD->DH transfer) (#24690)
Signed-off-by: Chenxi Yang <cxyang@fb.com>
Co-authored-by: Chenxi Yang <cxyang@fb.com>
2025-09-29 14:31:51 +00:00
43227236ec [torch.compile] serialize cudagraph_mode as its enum name instead of value (#25868)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-29 13:54:52 +00:00
8616300ae2 [Model][Bugfix] Fix issues in MiDashengLM implementation for quantized models (#25854)
Signed-off-by: zhoukz <me@zhoukz.com>
2025-09-29 10:59:04 +00:00
edbaadd91f [Bugfix] Fix requirements paths in install instructions (#25827)
Signed-off-by: yingjun-mou <renzomou@gmail.com>
2025-09-29 03:49:35 -07:00
9360d34fa1 update to latest deepgemm for dsv3.2 (#25871)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-29 17:51:43 +08:00
1b67b04656 [Misc] Remove more get_input_embeddings_v0 (#25857)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-29 08:03:37 +00:00
bd51f78e39 [V0 Deprecation][Models] Remove all V0 condition for mm embeddings merge (#25331)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: isotr0py <2037008807@qq.com>
2025-09-29 14:09:18 +08:00
65ecb4f134 [Bugfix] Fallback ViT attn backend to SDPA for blackwell (#25851)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-29 06:03:51 +00:00
143844fa43 [XPU]Fix xpu spec decoding UTs, avoid using cuda graph (#25847)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-29 05:15:10 +00:00
219cfbe7f6 Add Phi4FlashForCausalLM to _PREVIOUSLY_SUPPORTED_MODELS (#25832)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-09-29 05:08:17 +00:00
9b44a7d926 [P/D] NIXL Updates (#25844)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
Signed-off-by: rentianyue-jk <rentianyue-jk@360shuke.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: Sage Moore <sage@neuralmagic.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: rentianyue-jk <rentianyue-jk@360shuke.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Chenheli Hua <huachenheli@outlook.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
2025-09-29 04:46:30 +00:00
a3ae45a38c [Misc] fix tests failure by using current_platform (#25825)
Signed-off-by: Juechen Liu <jueliu@meta.com>
2025-09-29 04:18:57 +00:00
0307428d65 Remove redundant cudagraph dispatcher warning (#25841) 2025-09-28 17:12:42 -04:00
471997adf6 [Bugfix] fix Qwen3VLMoe load when pp > 1 (#25838)
Signed-off-by: liuye.hj <liuye.hj@alibaba-inc.com>
Co-authored-by: liuye.hj <liuye.hj@alibaba-inc.com>
2025-09-28 17:56:12 +00:00
b1ded114b9 Update GLM-4.5 Doc transformers version (#25830)
Signed-off-by: zRzRzRzRzRzRzR <2448370773@qq.com>
2025-09-28 12:05:51 +00:00
f4e4088c99 Fix random dataset mismatched token length with config. (#24937)
Signed-off-by: Weiliang Liu <weiliangl@nvidia.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-28 08:23:44 +00:00
0efd540dbc [VLM] Update Qwen3-VL max_num_video_tokens calculation for configurable video profiling (#25557)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-28 04:21:01 +00:00
6144754014 [Bugfix] Fix Qwen3-VL regression from #24982 (#25814)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-28 03:21:09 +00:00
69311446ba [MM] Optimize memory profiling for scattered multimodal embeddings (#25810)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-28 02:17:58 +00:00
da63274d9f [Bugfix][NIXL] Fix Async Scheduler timeout issue (#25808)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-27 15:17:35 -04:00
c216119d64 [Core] GC Debug callback (#24829)
Signed-off-by: Jialin Ouyang <jialino@meta.com>
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
Co-authored-by: Jialin Ouyang <jialino@meta.com>
2025-09-27 17:53:31 +00:00
5546acb463 [Bug]: Set LD_LIBRARY_PATH to include the 'standard' CUDA location (#25766)
Signed-off-by: Clayton Coleman <smarterclayton@gmail.com>
2025-09-27 13:36:28 -04:00
c0ec81836f [torch.compile]: Add VLLM_DEBUG_DUMP_PATH environment variable (#25651)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-27 16:09:00 +00:00
b65e56babe [Core] Refactor self.model() to call a helper for subclassing. (#25084)
Signed-off-by: Patrick Toulme <ptoulme@meta.com>
Signed-off-by: Patrick Toulme <pctoulme+1@gmail.com>
2025-09-27 08:40:59 -07:00
49996cd597 [env] default nixl side port conflicts with kv-event zmq port (#25056)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
2025-09-27 15:02:40 +00:00
ecb37e276a [docs] transcriptions API audio upload (#25446)
Signed-off-by: zxw <1020938856@qq.com>
2025-09-27 15:00:35 +00:00
a5354b3ed2 [Bugfix][WideEP] Apply TP Attn + EP MoE fix to other models (#24982)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-27 14:22:28 +00:00
f9df8b4ad7 [Bugfix] Fix triton import precommit failure (#25803)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-27 07:13:11 -07:00
ec152c8748 Fix GPTQ model loading in Transformers backend (#25770)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-27 12:18:20 +00:00
7977e5027c Add filtering for chat template kwargs (#25794)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-27 10:46:49 +00:00
3f5d902d2a Validate API tokens in constant time (#25781)
Signed-off-by: rentianyue-jk <rentianyue-jk@360shuke.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: rentianyue-jk <rentianyue-jk@360shuke.com>
2025-09-27 18:09:26 +08:00
27d7638b94 [Bugfix] Merge MM embeddings by index instead of token IDs (#16229)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-27 08:15:12 +00:00
176173989a [Bugfix] Add missing image_size for phi4_multimodal (#25796) 2025-09-27 07:59:22 +00:00
23b8ee672d [Misc] Update openai client example file for multimodal (#25795)
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-27 07:57:07 +00:00
3939152069 [Misc] Fix codeowners override for v1 sample and attention (#25037)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-09-27 07:47:29 +00:00
cd87bfbf37 [CI/Build] Reorganize root-level V1 tests (#25767)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-27 13:51:15 +08:00
b3613e3ace [CI/Build] Add timing to Model Executor Test (#25799)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-09-26 21:57:27 -07:00
d346ec695e [CI/Build] Consolidate model loader tests and requirements (#25765)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-26 21:45:20 -07:00
c242c98031 [Bugfix] Allow Only SDPA Backend for ViT on B200 for Qwen3-VL (#25788) 2025-09-26 20:44:52 -07:00
f1d53d150c [Multimodal][Speculative Decoding]Eagle Eagle3 mm support, enablement on qwen2.5vl (#22872)
Signed-off-by: Junhong <liujunhong11@huawei.com>
Signed-off-by: Junhong Liu <98734602+LJH-LBJ@users.noreply.github.com>
Co-authored-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: LJH-LBJ <98734602+LJH-LBJ@users.noreply.github.com>
2025-09-27 03:35:47 +00:00
92da847cf5 Add flashinfer-build.sh and register precompiled cu128 wheel in Dockerfile (#25782)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-26 18:54:09 -07:00
3958b96bf5 Add option to restrict media domains (#25783)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Chenheli Hua <huachenheli@outlook.com>
2025-09-27 01:23:52 +00:00
8bf8f45822 [Core] Don't count preempted tokens in prefix cache hit rate (#25787)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-09-27 00:16:40 +00:00
6f5c0931c1 [Spec decode] automatically disable mm for text-only draft models (#25667)
Signed-off-by: Jonas Kuebler <kuebj@amazon.com>
2025-09-27 08:10:21 +08:00
4e33a7ea85 [Bugfix] Optimize CpuGpuBuffer initialization (#25447)
Signed-off-by: Naman Lalit <nl2688@nyu.edu>
2025-09-27 08:07:36 +08:00
dc48ba0c75 Kernel-override Determinism [1/n] (#25603)
Signed-off-by: Bram Wasti <bwasti@meta.com>
2025-09-26 16:59:09 -07:00
4778b42660 Reduce the Cuda Graph memory footprint when running with DBO (#25779)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-09-26 22:29:56 +00:00
c70ac4b8ff [spec decode] Consolidate speculative decode method name for MTP (#25232)
Signed-off-by: zixi-qi <qizixi@meta.com>
2025-09-26 22:27:05 +00:00
cf89202855 [CI] Fix FlashInfer AOT in release docker image (#25730)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-26 14:11:40 -07:00
f075693da7 [V1] address post issues related to #20059 (part 1) (#23046)
Signed-off-by: fhl2000 <63384265+fhl2000@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-26 15:58:19 -04:00
f708bd4904 [CI] Add E2E Blackwell Quantized MoE Test (#25723)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-26 12:23:00 -07:00
0002b7f0d1 [Docs] Add Toronto Meetup (#25773)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-26 12:00:46 -07:00
11aafd9886 [Bugfix] Improve GLM4 MoE Reasoning Parser's is_reasoning_end Condition (#25355)
Signed-off-by: frankwang28 <frank.wbb@hotmail.com>
Signed-off-by: Frank Wang <41319051+frankwang28@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
2025-09-26 11:54:00 -07:00
327 changed files with 11047 additions and 5631 deletions

View File

@ -76,7 +76,7 @@ steps:
queue: arm64_cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
# Add job to create multi-arch manifest

View File

@ -42,9 +42,8 @@ docker run \
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
pytest -v -s v1/structured_output
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py --ignore=v1/spec_decode/test_tree_attention.py
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_tree_attention.py
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
pytest -v -s v1/test_metrics
pytest -v -s v1/test_serial_utils.py
pytest -v -s v1/test_utils.py
pytest -v -s v1/test_metrics_reader.py
'

View File

@ -159,10 +159,7 @@ steps:
- examples/offline_inference/rlhf.py
- examples/offline_inference/rlhf_colocate.py
- tests/examples/offline_inference/data_parallel.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/test_internal_lb_dp.py
- tests/v1/test_hybrid_lb_dp.py
- tests/v1/distributed
- tests/v1/engine/test_engine_core_client.py
- tests/distributed/test_symm_mem_allreduce.py
commands:
@ -180,10 +177,10 @@ steps:
- TP_SIZE=2 DP_SIZE=2 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
# test with internal dp
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_internal_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_hybrid_lb_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_internal_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_hybrid_lb_dp.py
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
@ -300,12 +297,9 @@ steps:
- pytest -v -s v1/spec_decode
- pytest -v -s v1/kv_connector/unit
- pytest -v -s v1/metrics
- pytest -v -s v1/test_kv_sharing.py
- pytest -v -s v1/test_metrics_reader.py
- pytest -v -s v1/test_oracle.py
- pytest -v -s v1/test_request.py
- pytest -v -s v1/test_serial_utils.py
- pytest -v -s v1/test_utils.py
# Integration test for streaming correctness (requires special branch).
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
@ -465,29 +459,18 @@ steps:
commands:
- pytest -v -s kernels/mamba
- label: Tensorizer Test # 14min
timeout_in_minutes: 25
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor/model_loader
- tests/tensorizer_loader
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
commands:
- apt-get update && apt-get install -y curl libsodium23
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s tensorizer_loader
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
- label: Model Executor Test # 7min
timeout_in_minutes: 20
- label: Model Executor Test # 23min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor
- tests/model_executor
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
commands:
- apt-get update && apt-get install -y curl libsodium23
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s model_executor
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
- label: Benchmarks # 11min
timeout_in_minutes: 20
@ -522,7 +505,7 @@ steps:
# https://github.com/pytorch/ao/issues/2919, we'll have to skip new torchao tests for now
# we can only upgrade after this is resolved
- pip install --pre torchao==0.13.0.dev20250814 --index-url https://download.pytorch.org/whl/nightly/cu128
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/
- label: LM Eval Small Models # 53min
timeout_in_minutes: 75
@ -769,6 +752,7 @@ steps:
commands:
- pip install --upgrade git+https://github.com/huggingface/transformers
- pytest -v -s tests/models/test_initialization.py
- pytest -v -s tests/models/test_transformers.py
- pytest -v -s tests/models/multimodal/processing/
- pytest -v -s tests/models/multimodal/test_mapping.py
- python3 examples/offline_inference/basic/chat.py
@ -830,6 +814,23 @@ steps:
- uv pip install --system 'gpt-oss[eval]==0.0.5'
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58 --server-args '--tensor-parallel-size 2'
- label: Blackwell Quantized MoE Test
timeout_in_minutes: 60
working_dir: "/vllm-workspace/"
gpu: b200
source_file_dependencies:
- tests/quantization/test_blackwell_moe.py
- vllm/model_executor/models/deepseek_v2.py
- vllm/model_executor/models/gpt_oss.py
- vllm/model_executor/models/llama4.py
- vllm/model_executor/layers/fused_moe
- vllm/model_executor/layers/quantization/compressed_tensors
- vllm/model_executor/layers/quantization/modelopt.py
- vllm/model_executor/layers/quantization/mxfp4.py
- vllm/v1/attention/backends/flashinfer.py
commands:
- pytest -s -v tests/quantization/test_blackwell_moe.py
##### 1 GPU test #####
##### multi gpus test #####
@ -889,14 +890,13 @@ steps:
- tests/compile/test_wrapper.py
- tests/distributed/
- tests/entrypoints/llm/test_collective_rpc.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/distributed
- tests/v1/entrypoints/openai/test_multi_api_servers.py
- tests/v1/shutdown
- tests/v1/worker/test_worker_memory_snapshot.py
commands:
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
- pytest -v -s entrypoints/llm/test_collective_rpc.py
- pytest -v -s ./compile/test_basic_correctness.py

10
.github/CODEOWNERS vendored
View File

@ -12,8 +12,6 @@
/vllm/model_executor/layers/mamba @tdoublep
/vllm/model_executor/model_loader @22quinn
/vllm/multimodal @DarkLight1337 @ywang96 @NickLucche
/vllm/v1/attention @LucasWilkinson
/vllm/v1/sample @22quinn @houseroad
/vllm/vllm_flash_attn @LucasWilkinson
/vllm/lora @jeejeelee
/vllm/reasoning @aarnphm @chaunceyjiang
@ -28,11 +26,13 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
/vllm/v1/spec_decode @benchislett @luccafong
/vllm/v1/attention @LucasWilkinson
/vllm/v1/attention/backends/flashinfer.py @mgoin
/vllm/v1/attention/backends/triton_attn.py @tdoublep
/vllm/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
/vllm/v1/sample @22quinn @houseroad @njhill
/vllm/v1/spec_decode @benchislett @luccafong
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
/vllm/v1/kv_cache_interface.py @heheda12345
/vllm/v1/offloading @ApostaC
@ -54,7 +54,7 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/weight_loading @mgoin @youkaichao @yewentao256
/tests/lora @jeejeelee
/tests/models/language/generation/test_hybrid.py @tdoublep
/tests/v1/kv_connector/nixl_integration @NickLucche
/tests/v1/kv_connector/nixl_integration @NickLucche
/tests/v1/kv_connector @ApostaC
/tests/v1/offloading @ApostaC

2
.github/mergify.yml vendored
View File

@ -274,7 +274,7 @@ pull_request_rules:
- files~=^vllm/model_executor/model_loader/tensorizer.py
- files~=^vllm/model_executor/model_loader/tensorizer_loader.py
- files~=^tests/entrypoints/openai/test_tensorizer_entrypoint.py
- files~=^tests/tensorizer_loader/
- files~=^tests/model_executor/model_loader/tensorizer_loader/
actions:
assign:
users:

View File

@ -21,6 +21,7 @@ Join us at the [PyTorch Conference, October 22-23](https://events.linuxfoundatio
*Latest News* 🔥
- [2025/09] We hosted [vLLM Toronto Meetup](https://luma.com/e80e0ymm) focused on tackling inference at scale and speculative decoding with speakers from NVIDIA and Red Hat! Please find the meetup slides [here](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing).
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).

View File

@ -18,8 +18,8 @@ if(FLASH_MLA_SRC_DIR)
else()
FetchContent_Declare(
flashmla
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA.git
GIT_TAG a757314c04eedd166e329e846c820eb1bdd702de
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA
GIT_TAG 5f65b85703c7ed75fda01e06495077caad207c3f
GIT_PROGRESS TRUE
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
@ -33,23 +33,64 @@ message(STATUS "FlashMLA is available at ${flashmla_SOURCE_DIR}")
# The FlashMLA kernels only work on hopper and require CUDA 12.3 or later.
# Only build FlashMLA kernels if we are building for something compatible with
# sm90a
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
set(SUPPORT_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3)
list(APPEND SUPPORT_ARCHS 9.0a)
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8)
list(APPEND SUPPORT_ARCHS 10.0a)
endif()
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "${SUPPORT_ARCHS}" "${CUDA_ARCHS}")
if(FLASH_MLA_ARCHS)
set(VLLM_FLASHMLA_GPU_FLAGS ${VLLM_GPU_FLAGS})
list(APPEND VLLM_FLASHMLA_GPU_FLAGS "--expt-relaxed-constexpr" "--expt-extended-lambda" "--use_fast_math")
set(FlashMLA_SOURCES
${flashmla_SOURCE_DIR}/csrc/flash_api.cpp
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu
${flashmla_SOURCE_DIR}/csrc/kernels/mla_combine.cu
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/kernels_fp8/flash_fwd_mla_fp8_sm90.cu)
${flashmla_SOURCE_DIR}/csrc/torch_api.cpp
${flashmla_SOURCE_DIR}/csrc/pybind.cpp
${flashmla_SOURCE_DIR}/csrc/smxx/get_mla_metadata.cu
${flashmla_SOURCE_DIR}/csrc/smxx/mla_combine.cu
${flashmla_SOURCE_DIR}/csrc/sm90/decode/dense/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/sm90/decode/sparse_fp8/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/sm90/prefill/sparse/fwd.cu
${flashmla_SOURCE_DIR}/csrc/sm100/decode/sparse_fp8/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_fwd_sm100.cu
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_bwd_sm100.cu
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/sparse/fwd.cu
)
set(FlashMLA_Extension_SOURCES
${flashmla_SOURCE_DIR}/csrc/extension/torch_api.cpp
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/pybind.cpp
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/flash_fwd_mla_fp8_sm90.cu
)
set(FlashMLA_INCLUDES
${flashmla_SOURCE_DIR}/csrc
${flashmla_SOURCE_DIR}/csrc/sm90
${flashmla_SOURCE_DIR}/csrc/cutlass/include
${flashmla_SOURCE_DIR}/csrc)
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
)
set(FlashMLA_Extension_INCLUDES
${flashmla_SOURCE_DIR}/csrc
${flashmla_SOURCE_DIR}/csrc/sm90
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/
${flashmla_SOURCE_DIR}/csrc/cutlass/include
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
)
set_gencode_flags_for_srcs(
SRCS "${FlashMLA_SOURCES}"
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
set_gencode_flags_for_srcs(
SRCS "${FlashMLA_Extension_SOURCES}"
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
define_gpu_extension_target(
_flashmla_C
DESTINATION vllm
@ -60,8 +101,32 @@ if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
INCLUDE_DIRECTORIES ${FlashMLA_INCLUDES}
USE_SABI 3
WITH_SOABI)
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
target_compile_options(_flashmla_C PRIVATE
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
define_gpu_extension_target(
_flashmla_extension_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${FlashMLA_Extension_SOURCES}
COMPILE_FLAGS ${VLLM_FLASHMLA_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
INCLUDE_DIRECTORIES ${FlashMLA_Extension_INCLUDES}
USE_SABI 3
WITH_SOABI)
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
target_compile_options(_flashmla_extension_C PRIVATE
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
else()
# Create an empty target for setup.py when not targeting sm90a systems
# Create empty targets for setup.py when not targeting sm90a systems
add_custom_target(_flashmla_C)
add_custom_target(_flashmla_extension_C)
endif()

View File

@ -56,3 +56,11 @@ void cp_gather_cache(
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
torch::Tensor const& cu_seq_lens, // [BATCH+1]
int64_t batch_size, std::optional<torch::Tensor> seq_starts = std::nullopt);
// Indexer K quantization and cache function
void indexer_k_quant_and_cache(
torch::Tensor& k, // [num_tokens, head_dim]
torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
torch::Tensor& slot_mapping, // [num_tokens]
int64_t quant_block_size, // quantization block size
const std::string& scale_fmt);

View File

@ -16,6 +16,7 @@
#include <algorithm>
#include <cassert>
#include <cfloat> // FLT_MIN
#include <map>
#include <vector>
@ -396,6 +397,176 @@ __global__ void concat_and_cache_mla_kernel(
copy(k_pe, kv_cache, k_pe_stride, block_stride, pe_dim, kv_lora_rank);
}
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void concat_and_cache_ds_mla_kernel(
const scalar_t* __restrict__ kv_c, // [num_tokens, kv_lora_rank]
const scalar_t* __restrict__ k_pe, // [num_tokens, pe_dim]
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, (kv_lora_rank
// + pe_dim)]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int block_stride, //
const int entry_stride, //
const int kv_c_stride, //
const int k_pe_stride, //
const int kv_lora_rank, //
const int pe_dim, //
const int block_size, //
const float* scale //
) {
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
// NOTE: slot_idx can be -1 if the token is padded
if (slot_idx < 0) {
return;
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
const int64_t dst_idx_start =
block_idx * block_stride + block_offset * entry_stride;
// Create 4 tile scales in shared memory
__shared__ float smem[20];
float* shard_abs_max = smem;
float* tile_scales = smem + 16;
// For the NoPE part, each tile of 128 elements is handled by 4 warps
// (128 threads). There are 4 total tiles, so 16 warps (512 threads).
// The first thread of the first warp in each tile writes the scale
// value for the tile. The RoPE part (last 64 elements) is handled
// by another 2 warps (64 threads).
// So in total, we use 18 warps (576 threads) per block.
// Cast kv_cache to 16_bit for RoPE values
scalar_t* kv_cache_16bit =
reinterpret_cast<scalar_t*>(&kv_cache[dst_idx_start]);
// The last 64 threads handle the RoPE part
if (threadIdx.x >= kv_lora_rank) {
const int8_t pe_idx = threadIdx.x - kv_lora_rank;
const int64_t src_idx = token_idx * k_pe_stride + pe_idx;
// RoPE values start after the packed 8-bit NoPE values and the
// 32-bit scales
const int64_t dst_idx = kv_lora_rank / 2 + 8 + pe_idx;
kv_cache_16bit[dst_idx] = k_pe[src_idx];
return;
}
// Determine the scale for each chunk of NoPE
const int16_t tile_idx = threadIdx.x >> 7;
const int16_t warp_idx = (threadIdx.x & 127) >> 5;
const int16_t lane_idx = threadIdx.x & 31;
// Load the NoPE element for this thread into registers
const int64_t src_idx = token_idx * kv_c_stride + threadIdx.x;
const scalar_t src_val = kv_c[src_idx];
// Warp-level reduction to find the max absolute value in the warp
float max_abs = fabsf(src_val);
#pragma unroll
for (int offset = 16; offset > 0; offset /= 2) {
#ifdef USE_ROCM
max_abs = fmaxf(max_abs, __shfl_down_sync(UINT64_MAX, max_abs, offset));
#else
max_abs = fmaxf(max_abs, __shfl_down_sync(0xFFFFFFFF, max_abs, offset));
#endif
}
// The first lane of each warp in each tile writes the max_abs of this part
// of the tile to shared memory
if (lane_idx == 0) {
shard_abs_max[tile_idx * 4 + warp_idx] = max_abs;
}
__syncthreads();
// The first lane of the first warp in each tile computes the scale for the
// tile and writes it to shared memory and to kv_cache
if (warp_idx == 0 && lane_idx == 0) {
float4 shard_abs_max_vec =
reinterpret_cast<float4*>(shard_abs_max)[tile_idx];
float tile_scale = fmaxf(fmaxf(shard_abs_max_vec.x, shard_abs_max_vec.y),
fmaxf(shard_abs_max_vec.z, shard_abs_max_vec.w)) /
448.f;
// Avoid division by zero in `scaled_convert`
tile_scales[tile_idx] = fmaxf(tile_scale, FLT_MIN);
float* kv_cache_32bit = reinterpret_cast<float*>(&kv_cache[dst_idx_start]);
const uint64_t dst_idx = kv_lora_rank / 4 + tile_idx;
kv_cache_32bit[dst_idx] = tile_scales[tile_idx];
}
__syncthreads();
// Now all threads in the block scale and write their element
const float scale_val = tile_scales[tile_idx];
const int64_t dst_idx = dst_idx_start + threadIdx.x;
kv_cache[dst_idx] =
fp8::scaled_convert<uint8_t, scalar_t, Fp8KVCacheDataType::kFp8E4M3>(
src_val, scale_val);
}
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void indexer_k_quant_and_cache_kernel(
const scalar_t* __restrict__ k, // [num_tokens, head_dim]
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, cache_stride]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int head_dim, // dimension of each head
const int quant_block_size, // quantization block size
const int cache_block_size, // cache block size
const int cache_stride, // stride for each token in kv_cache
const bool use_ue8m0 // use ue8m0 scale format
) {
constexpr int VEC_SIZE = 4;
const int64_t token_idx = blockIdx.x;
const int64_t head_dim_idx = (blockIdx.y * blockDim.y * blockDim.x +
threadIdx.y * blockDim.x + threadIdx.x) *
VEC_SIZE;
const int64_t slot_idx = slot_mapping[token_idx];
const int64_t block_idx = slot_idx / cache_block_size;
const int64_t block_offset = slot_idx % cache_block_size;
// NOTE: slot_idx can be -1 if the token is padded
if (slot_idx < 0 || (head_dim_idx >= head_dim)) {
return;
}
float2 k_val = (reinterpret_cast<const float2*>(
k))[(token_idx * head_dim + head_dim_idx) / VEC_SIZE];
scalar_t* k_val_ptr = reinterpret_cast<scalar_t*>(&k_val);
float amax = 0.0f;
for (int i = 0; i < VEC_SIZE; i++) {
amax = fmaxf(amax, fabsf(float(k_val_ptr[i])));
}
__syncwarp();
// Reduced amax
for (int mask = 16; mask > 0; mask /= 2) {
#ifdef USE_ROCM
amax = fmaxf(amax, __shfl_xor_sync(uint64_t(-1), amax, mask));
#else
amax = fmaxf(amax, __shfl_xor_sync(unsigned(-1), amax, mask));
#endif
}
__syncwarp();
float scale = fmaxf(amax, 1e-4) / 448.0f;
if (use_ue8m0) {
scale = exp2f(ceilf(log2f(scale)));
}
const int64_t dst_offset = block_idx * cache_block_size * cache_stride +
block_offset * head_dim + head_dim_idx;
for (int i = 0; i < VEC_SIZE; i++) {
kv_cache[dst_offset + i] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(k_val_ptr[i], scale);
}
if (threadIdx.x == 0) {
const int64_t dst_scale_idx =
block_idx * cache_block_size * cache_stride +
cache_block_size * head_dim +
(block_offset * head_dim + head_dim_idx) * 4 / quant_block_size;
reinterpret_cast<float*>(kv_cache)[dst_scale_idx / 4] = scale;
}
}
} // namespace vllm
// KV_T is the data type of key and value tensors.
@ -438,7 +609,7 @@ void reshape_and_cache(
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
DISPATCH_BY_KV_CACHE_DTYPE(key.dtype(), kv_cache_dtype,
CALL_RESHAPE_AND_CACHE)
CALL_RESHAPE_AND_CACHE);
}
// KV_T is the data type of key and value tensors.
@ -509,6 +680,18 @@ void reshape_and_cache_flash(
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
reinterpret_cast<const float*>(scale.data_ptr()));
// KV_T is the data type of key and value tensors.
// CACHE_T is the stored data type of kv-cache.
#define CALL_CONCAT_AND_CACHE_DS_MLA(KV_T, CACHE_T, KV_DTYPE) \
vllm::concat_and_cache_ds_mla_kernel<KV_T, CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(kv_c.data_ptr()), \
reinterpret_cast<KV_T*>(k_pe.data_ptr()), \
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), block_stride, entry_stride, \
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
reinterpret_cast<const float*>(scale.data_ptr()));
void concat_and_cache_mla(
torch::Tensor& kv_c, // [num_tokens, kv_lora_rank]
torch::Tensor& k_pe, // [num_tokens, pe_dim]
@ -531,20 +714,44 @@ void concat_and_cache_mla(
int pe_dim = k_pe.size(1);
int block_size = kv_cache.size(1);
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
if (kv_cache_dtype == "fp8_ds_mla") {
TORCH_CHECK(kv_lora_rank == 512, "kv_lora_rank must be 512 for fp8_ds_mla");
TORCH_CHECK(pe_dim == 64, "pe_dim must be 64 for fp8_ds_mla");
TORCH_CHECK(kv_cache.size(2) == 656 / kv_cache.itemsize(),
"kv_cache.size(2) must be 656 bytes for fp8_ds_mla");
TORCH_CHECK(kv_c.itemsize() == 2,
"kv_c.itemsize() must be 2 for fp8_ds_mla");
TORCH_CHECK(k_pe.itemsize() == 2,
"k_pe.itemsize() must be 2 for fp8_ds_mla");
} else {
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
}
int kv_c_stride = kv_c.stride(0);
int k_pe_stride = k_pe.stride(0);
int block_stride = kv_cache.stride(0);
int entry_stride = kv_cache.stride(1);
dim3 grid(num_tokens);
dim3 block(std::min(kv_lora_rank, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(kv_c));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
CALL_CONCAT_AND_CACHE_MLA);
if (kv_cache_dtype == "fp8_ds_mla") {
dim3 grid(num_tokens);
// For the NoPE part, each tile of 128 elements is handled by 4 warps
// (128 threads). There are 4 total tiles, so 16 warps (512 threads).
// The first thread of the first warp in each tile writes the scale
// value for the tile. The RoPE part (last 64 elements) is handled
// by another 2 warps (64 threads).
// So in total, we use 18 warps (576 threads) per block.
dim3 block(576);
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
CALL_CONCAT_AND_CACHE_DS_MLA);
} else {
dim3 grid(num_tokens);
dim3 block(std::min(kv_lora_rank, 512));
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
CALL_CONCAT_AND_CACHE_MLA);
}
}
namespace vllm {
@ -922,3 +1129,42 @@ void cp_gather_cache(
TORCH_CHECK(false, "Unsupported data type width: ", dtype_bits);
}
}
// Macro to dispatch the kernel based on the data type.
#define CALL_INDEXER_K_QUANT_AND_CACHE(KV_T, CACHE_T, KV_DTYPE) \
vllm::indexer_k_quant_and_cache_kernel<KV_T, CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(k.data_ptr()), \
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), head_dim, quant_block_size, \
cache_block_size, cache_stride, use_ue8m0);
void indexer_k_quant_and_cache(
torch::Tensor& k, // [num_tokens, head_dim]
torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
torch::Tensor& slot_mapping, // [num_tokens]
int64_t quant_block_size, // quantization block size
const std::string& scale_fmt) {
int num_tokens = k.size(0);
int head_dim = k.size(1);
int cache_block_size = kv_cache.size(1);
int cache_stride = kv_cache.size(2);
bool use_ue8m0 = scale_fmt == "ue8m0";
TORCH_CHECK(k.device() == kv_cache.device(),
"k and kv_cache must be on the same device");
TORCH_CHECK(k.device() == slot_mapping.device(),
"k and slot_mapping must be on the same device");
TORCH_CHECK(head_dim % quant_block_size == 0,
"head_dim must be divisible by quant_block_size");
constexpr int vec_size = 4;
dim3 grid(num_tokens, (head_dim + quant_block_size * vec_size - 1) /
(quant_block_size * vec_size));
dim3 block(32, vec_size);
const at::cuda::OptionalCUDAGuard device_guard(device_of(k));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
DISPATCH_BY_KV_CACHE_DTYPE(k.dtype(), "fp8_e4m3",
CALL_INDEXER_K_QUANT_AND_CACHE);
}

View File

@ -0,0 +1,16 @@
#pragma once
#include <cstdlib>
#include <string>
#include <cctype>
namespace vllm {
// vllm_kernel_override_batch_invariant(); returns true
// if env VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT=1
inline bool vllm_kernel_override_batch_invariant() {
std::string env_key = "VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT";
const char* val = std::getenv(env_key.c_str());
return (val && std::atoi(val) != 0) ? 1 : 0;
}
} // namespace vllm

View File

@ -1,6 +1,7 @@
#include "type_convert.cuh"
#include "dispatch_utils.h"
#include "cub_helpers.h"
#include "core/batch_invariant.hpp"
#include <torch/cuda.h>
#include <c10/cuda/CUDAGuard.h>
@ -413,7 +414,9 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
wt_ptr % req_alignment_bytes == 0;
bool offsets_are_multiple_of_vector_width =
hidden_size % vector_width == 0 && input_stride % vector_width == 0;
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width) {
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width &&
!batch_invariant_launch) {
LAUNCH_FUSED_ADD_RMS_NORM(8);
} else {
LAUNCH_FUSED_ADD_RMS_NORM(0);
@ -459,7 +462,8 @@ void poly_norm(torch::Tensor& out, // [..., hidden_size]
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
auto out_ptr = reinterpret_cast<std::uintptr_t>(out.data_ptr());
bool ptrs_are_aligned = inp_ptr % 16 == 0 && out_ptr % 16 == 0;
if (ptrs_are_aligned && hidden_size % 8 == 0) {
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
if (ptrs_are_aligned && hidden_size % 8 == 0 && !batch_invariant_launch) {
LAUNCH_FUSED_POLY_NORM(8);
} else {
LAUNCH_FUSED_POLY_NORM(0);

View File

@ -9,6 +9,7 @@
#include "quantization/fp8/common.cuh"
#include "dispatch_utils.h"
#include "cub_helpers.h"
#include "core/batch_invariant.hpp"
#include <torch/cuda.h>
#include <c10/cuda/CUDAGuard.h>
@ -240,7 +241,9 @@ void fused_add_rms_norm_static_fp8_quant(
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
bool ptrs_are_aligned =
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0) {
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0 &&
!batch_invariant_launch) {
LAUNCH_FUSED_ADD_RMS_NORM(8);
} else {
LAUNCH_FUSED_ADD_RMS_NORM(0);

View File

@ -21,6 +21,7 @@
#include <c10/cuda/CUDAGuard.h>
#include "../cuda_compat.h"
#include "../cub_helpers.h"
#include "../core/batch_invariant.hpp"
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
@ -405,7 +406,8 @@ void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, f
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG, WARP_SIZE_PARAM>;
static constexpr int VPT = Constants::VPT;
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
const bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
const int num_warps = batch_invariant_launch ? 32 : (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
dim3 block_dim(WARP_SIZE_PARAM, WARPS_PER_TB);

View File

@ -576,6 +576,17 @@ __inline__ __device__ Tout scaled_convert(const Tin& x, const float scale) {
TORCH_CHECK(false, \
"Unsupported input type of kv cache: ", SRC_DTYPE); \
} \
} else if (KV_DTYPE == "fp8_ds_mla") { \
if (SRC_DTYPE == at::ScalarType::Float) { \
FN(float, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
} else if (SRC_DTYPE == at::ScalarType::Half) { \
FN(uint16_t, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
} else if (SRC_DTYPE == at::ScalarType::BFloat16) { \
FN(__nv_bfloat16, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
} else { \
TORCH_CHECK(false, \
"Unsupported input type of kv cache: ", SRC_DTYPE); \
} \
} else { \
TORCH_CHECK(false, "Unsupported data type of kv cache: ", KV_DTYPE); \
} \

View File

@ -713,6 +713,13 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
"cp_gather_cache(Tensor src_cache, Tensor! dst, Tensor block_table, "
"Tensor cu_seq_lens, int batch_size, Tensor? seq_starts) -> ()");
cache_ops.impl("cp_gather_cache", torch::kCUDA, &cp_gather_cache);
cache_ops.def(
"indexer_k_quant_and_cache(Tensor k, Tensor! kv_cache, Tensor "
"slot_mapping, "
"int quant_block_size, str kv_cache_dtype) -> ()");
cache_ops.impl("indexer_k_quant_and_cache", torch::kCUDA,
&indexer_k_quant_and_cache);
}
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cuda_utils), cuda_utils) {

View File

@ -391,19 +391,32 @@ RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
git clone --depth 1 --recursive --shallow-submodules \
--branch ${FLASHINFER_GIT_REF} \
${FLASHINFER_GIT_REPO} flashinfer
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
if [[ "${CUDA_VERSION}" == 11.* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
else
# CUDA 12.8+ supports 10.0a and 12.0
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
fi
pushd flashinfer
if [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
if [[ "${CUDA_VERSION}" == 11.* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
else
# CUDA 12.8+ supports 10.0a and 12.0
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
if [[ "${CUDA_VERSION}" == 12.8.* ]] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then
# NOTE: To make new precompiled wheels, see tools/flashinfer-build.sh
echo "🏗️ Installing FlashInfer from pre-compiled wheel"
uv pip install --system https://wheels.vllm.ai/flashinfer-python/flashinfer_python-0.3.1-cp39-abi3-manylinux1_x86_64.whl \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
if [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
# Download pre-compiled cubins
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
python3 -m flashinfer --download-cubin || echo "WARNING: Failed to download flashinfer cubins."
fi
elif [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
echo "🏗️ Installing FlashInfer with AOT compilation for arches: ${FI_TORCH_CUDA_ARCH_LIST}"
export FLASHINFER_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}"
# HACK: We need these to run flashinfer.aot before installing flashinfer, get from the package in the future
uv pip install --system cuda-python==$(echo $CUDA_VERSION | cut -d. -f1,2) pynvml==$(echo $CUDA_VERSION | cut -d. -f1) nvidia-nvshmem-cu$(echo $CUDA_VERSION | cut -d. -f1)
# Build AOT kernels
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
python3 -m flashinfer.aot
@ -443,7 +456,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
ARG DEEPGEMM_GIT_REF
COPY tools/install_deepgemm.sh /tmp/install_deepgemm.sh
RUN --mount=type=cache,target=/root/.cache/uv \
VLLM_DOCKER_BUILD_CONTEXT=1 /tmp/install_deepgemm.sh --cuda-version "${CUDA_VERSION}" ${DEEPGEMM_GIT_REF:+--ref "$DEEPGEMM_GIT_REF"}
VLLM_DOCKER_BUILD_CONTEXT=1 TORCH_CUDA_ARCH_LIST="9.0a 10.0a" /tmp/install_deepgemm.sh --cuda-version "${CUDA_VERSION}" ${DEEPGEMM_GIT_REF:+--ref "$DEEPGEMM_GIT_REF"}
COPY tools/install_gdrcopy.sh install_gdrcopy.sh
RUN set -eux; \
@ -461,6 +474,12 @@ ENV CUDA_HOME=/usr/local/cuda
RUN export TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST:-9.0a+PTX}" \
&& bash install_python_libraries.sh
# CUDA image changed from /usr/local/nvidia to /usr/local/cuda in 12.8 but will
# return to /usr/local/nvidia in 13.0 to allow container providers to mount drivers
# consistently from the host (see https://github.com/vllm-project/vllm/issues/18859).
# Until then, add /usr/local/nvidia/lib64 before the image cuda path to allow override.
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib64:${LD_LIBRARY_PATH}
#################### vLLM installation IMAGE ####################
#################### TEST IMAGE ####################
@ -533,7 +552,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
else \
BITSANDBYTES_VERSION="0.46.1"; \
fi; \
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' boto3 runai-model-streamer runai-model-streamer[s3]
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' 'runai-model-streamer[s3]>=0.14.0'
ENV VLLM_USAGE_SOURCE production-docker-image

View File

@ -2,6 +2,7 @@
We host regular meetups in San Francisco Bay Area every 2 months. We will share the project updates from the vLLM team and have guest speakers from the industry to share their experience and insights. Please find the materials of our previous meetups below:
- [vLLM Toronto Meetup](https://luma.com/e80e0ymm), September 25th 2025. [[Slides]](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing)
- [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ), August 30th 2025. [[Slides]](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA)
- [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet), August 27th 2025. [[Slides]](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing)
- [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg), August 23rd 2025. [[Slides]](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH)

View File

@ -823,6 +823,30 @@ The latest performance results are hosted on the public [vLLM Performance Dashbo
More information on the performance benchmarks and their parameters can be found in [Benchmark README](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md) and [performance benchmark description](gh-file:.buildkite/nightly-benchmarks/performance-benchmarks-descriptions.md).
### Continuous Benchmarking
The continuous benchmarking provides automated performance monitoring for vLLM across different models and GPU devices. This helps track vLLM's performance characteristics over time and identify any performance regressions or improvements.
#### How It Works
The continuous benchmarking is triggered via a [GitHub workflow CI](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-benchmark.yml) in the PyTorch infrastructure repository, which runs automatically every 4 hours. The workflow executes three types of performance tests:
- **Serving tests**: Measure request handling and API performance
- **Throughput tests**: Evaluate token generation rates
- **Latency tests**: Assess response time characteristics
#### Benchmark Configuration
The benchmarking currently runs on a predefined set of models configured in the [vllm-benchmarks directory](https://github.com/pytorch/pytorch-integration-testing/tree/main/vllm-benchmarks/benchmarks). To add new models for benchmarking:
1. Navigate to the appropriate GPU directory in the benchmarks configuration
2. Add your model specifications to the corresponding configuration files
3. The new models will be included in the next scheduled benchmark run
#### Viewing Results
All continuous benchmarking results are automatically published to the public [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm).
[](){ #nightly-benchmarks }
## Nightly Benchmarks

View File

@ -66,35 +66,12 @@ Further update the model as follows:
!!! important
The returned `multimodal_embeddings` must be either a **3D [torch.Tensor][]** of shape `(num_items, feature_size, hidden_size)`, or a **list / tuple of 2D [torch.Tensor][]'s** of shape `(feature_size, hidden_size)`, so that `multimodal_embeddings[i]` retrieves the embeddings generated from the `i`-th multimodal data item (e.g, image) of the request.
- Implement [get_input_embeddings][vllm.model_executor.models.interfaces.SupportsMultiModal.get_input_embeddings] to merge `multimodal_embeddings` with text embeddings from the `input_ids`. If input processing for the model is implemented correctly (see sections below), then you can leverage the utility function we provide to easily merge the embeddings.
!!! note
By default, vLLM merges the multimodal embeddings into text embeddings depending on the information of their locations defined in
[PlaceholderRange][vllm.multimodal.inputs.PlaceholderRange] from input processing.
This logic can be found at [get_input_embeddings][vllm.model_executor.models.interfaces.SupportsMultiModal.get_input_embeddings].
??? code
```python
from .utils import merge_multimodal_embeddings
class YourModelForImage2Seq(nn.Module):
...
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
# `get_input_embeddings` should already be implemented for the language
# model as one of the requirements of basic vLLM model implementation.
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None:
inputs_embeds = merge_multimodal_embeddings(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
multimodal_embeddings=multimodal_embeddings,
placeholder_token_id=self.config.image_token_index)
return inputs_embeds
```
You may override this method if additional logic is required for your model when merging embeddings.
- Implement [get_language_model][vllm.model_executor.models.interfaces.SupportsMultiModal.get_language_model] getter to provide stable access to the underlying language model.

View File

@ -160,6 +160,22 @@ GUI example:
<img width="1799" alt="Screenshot 2025-03-05 at 11 48 42AM" src="https://github.com/user-attachments/assets/c7cff1ae-6d6f-477d-a342-bd13c4fc424c" />
## Continuous Profiling
There is a [GitHub CI workflow](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-profiling.yml) in the PyTorch infrastructure repository that provides continuous profiling for different models on vLLM. This automated profiling helps track performance characteristics over time and across different model configurations.
### How It Works
The workflow currently runs weekly profiling sessions for selected models, generating detailed performance traces that can be analyzed using different tools to identify performance regressions or optimization opportunities. But, it can be triggered manually as well, using the Github Action tool.
### Adding New Models
To extend the continuous profiling to additional models, you can modify the [profiling-tests.json](https://github.com/pytorch/pytorch-integration-testing/blob/main/vllm-profiling/cuda/profiling-tests.json) configuration file in the PyTorch integration testing repository. Simply add your model specifications to this file to include them in the automated profiling runs.
### Viewing Profiling Results
The profiling traces generated by the continuous profiling workflow are publicly available on the [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm). Look for the **Profiling traces** table to access and download the traces for different models and runs.
## Profiling vLLM Python Code
The Python standard library includes
@ -208,3 +224,11 @@ One example is [snakeviz](https://jiffyclub.github.io/snakeviz/).
pip install snakeviz
snakeviz expensive_function.prof
```
### Analyzing Garbage Collection Costs
Leverage VLLM_GC_DEBUG environment variable to debug GC costs.
- VLLM_GC_DEBUG=1: enable GC debugger with gc.collect elpased times
- VLLM_GC_DEBUG='{"top_objects":5}': enable GC debugger to log top 5
collected objects for each gc.collect

View File

@ -52,7 +52,7 @@ th:not(:first-child) {
| [mm](multimodal_inputs.md) | ✅ | ✅ | [🟠](gh-pr:4194)<sup>^</sup> | ❔ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | | | |
| best-of | ✅ | ✅ | ✅ | [](gh-issue:6137) | ✅ | ❌ | ✅ | ✅ | ✅ | ❔ | [](gh-issue:7968) | ✅ | ✅ | | |
| beam-search | ✅ | ✅ | ✅ | [](gh-issue:6137) | ✅ | ❌ | ✅ | ✅ | ✅ | ❔ | [](gh-issue:7968) | ❔ | ✅ | ✅ | |
| [prompt-embeds](prompt_embeds.md) | ✅ | [](gh-issue:25096) | ? | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ? | ? | ❌ | ? | ? | ✅ |
| [prompt-embeds](prompt_embeds.md) | ✅ | [](gh-issue:25096) | | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | | | ❌ | | | ✅ |
\* Chunked prefill and prefix caching are only applicable to last-token pooling.
<sup>^</sup> LoRA is only applicable to the language backbone of multimodal models.

View File

@ -6,6 +6,10 @@ This page teaches you how to pass multi-modal inputs to [multi-modal models][sup
We are actively iterating on multi-modal support. See [this RFC](gh-issue:4194) for upcoming changes,
and [open an issue on GitHub](https://github.com/vllm-project/vllm/issues/new/choose) if you have any feedback or feature requests.
!!! tip
When serving multi-modal models, consider setting `--allowed-media-domains` to restrict domain that vLLM can access to prevent it from accessing arbitrary endpoints that can potentially be vulnerable to Server-Side Request Forgery (SSRF) attacks. You can provide a list of domains for this arg. For example: `--allowed-media-domains upload.wikimedia.org github.com www.bogotobogo.com`
This restriction is especially important if you run vLLM in a containerized environment where the vLLM pods may have unrestricted access to internal networks.
## Offline Inference
To input multi-modal data, follow this schema in [vllm.inputs.PromptType][]:

View File

@ -84,7 +84,7 @@ python tests/v1/kv_connector/nixl_integration/toy_proxy_server.py \
- Connection info is passed via KVTransferParams from prefiller to decoder for handshake
- `VLLM_NIXL_ABORT_REQUEST_TIMEOUT`: Timeout (in seconds) for automatically releasing the prefillers KV cache for a particular request. (Optional)
- Default: 120
- Default: 480
- If a request is aborted and the decoder has not yet read the KV-cache blocks through the nixl channel, the prefill instance will release its KV-cache blocks after this timeout to avoid holding them indefinitely.
## Multi-Instance Setup

View File

@ -323,8 +323,10 @@ Flags: `--tool-call-parser longcat`
Supported models:
* `ZhipuAI/GLM-4.5`
* `ZhipuAI/GLM-4.5-Air`
* `zai-org/GLM-4.5`
* `zai-org/GLM-4.5-Air`
* `zai-org/GLM-4.6`
* `zai-org/GLM-4.6-Air`
Flags: `--tool-call-parser glm45`

View File

@ -25,3 +25,4 @@ The backends below live **outside** the main `vllm` repository and follow the
| MetaX MACA GPU | N/A, install from source | <https://github.com/MetaX-MACA/vLLM-metax> |
| Rebellions ATOM / REBEL NPU | `vllm-rbln` | <https://github.com/rebellions-sw/vllm-rbln> |
| IBM Spyre AIU | `vllm-spyre` | <https://github.com/vllm-project/vllm-spyre> |
| Cambricon MLU | `vllm-mlu` | <https://github.com/Cambricon/vllm-mlu> |

View File

@ -46,22 +46,22 @@ Execute the following commands to build and install vLLM from source.
Please build the following dependencies, `torchvision`, `pyarrow` from source before building vLLM.
```bash
sed -i '/^torch/d' requirements-build.txt # remove torch from requirements-build.txt since we use nightly builds
sed -i '/^torch/d' requirements/build.txt # remove torch from requirements/build.txt since we use nightly builds
uv pip install -v \
--torch-backend auto \
-r requirements-build.txt \
-r requirements-cpu.txt \
-r requirements/build.txt \
-r requirements/cpu.txt \
VLLM_TARGET_DEVICE=cpu python setup.py bdist_wheel && \
uv pip install dist/*.whl
```
??? console "pip"
```bash
sed -i '/^torch/d' requirements-build.txt # remove torch from requirements-build.txt since we use nightly builds
sed -i '/^torch/d' requirements/build.txt # remove torch from requirements/build.txt since we use nightly builds
pip install -v \
--extra-index-url https://download.pytorch.org/whl/nightly/cpu \
-r requirements-build.txt \
-r requirements-cpu.txt \
-r requirements/build.txt \
-r requirements/cpu.txt \
VLLM_TARGET_DEVICE=cpu python setup.py bdist_wheel && \
pip install dist/*.whl
```

View File

@ -367,7 +367,7 @@ th {
| `Gemma3nForCausalLM` | Gemma 3n | `google/gemma-3n-E2B-it`, `google/gemma-3n-E4B-it`, etc. | | | ✅︎ |
| `GlmForCausalLM` | GLM-4 | `zai-org/glm-4-9b-chat-hf`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Glm4ForCausalLM` | GLM-4-0414 | `zai-org/GLM-4-32B-0414`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Glm4MoeForCausalLM` | GLM-4.5 | `zai-org/GLM-4.5`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Glm4MoeForCausalLM` | GLM-4.5, GLM-4.6 | `zai-org/GLM-4.5`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `GPT2LMHeadModel` | GPT-2 | `gpt2`, `gpt2-xl`, etc. | | ✅︎ | ✅︎ |
| `GPTBigCodeForCausalLM` | StarCoder, SantaCoder, WizardCoder | `bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, `WizardLM/WizardCoder-15B-V1.0`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `GPTJForCausalLM` | GPT-J | `EleutherAI/gpt-j-6b`, `nomic-ai/gpt4all-j`, etc. | | ✅︎ | ✅︎ |
@ -396,7 +396,6 @@ th {
| `MiniCPM3ForCausalLM` | MiniCPM3 | `openbmb/MiniCPM3-4B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `MistralForCausalLM` | Mistral, Mistral-Instruct | `mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `MixtralForCausalLM` | Mixtral-8x7B, Mixtral-8x7B-Instruct | `mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, `mistral-community/Mixtral-8x22B-v0.1`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `MotifForCausalLM` | Motif-1-Tiny | `Motif-Technologies/Motif-2.6B`, `Motif-Technologies/Motif-2.6b-v1.1-LC`, etc. | ✅︎ | ✅︎ | |
| `MPTForCausalLM` | MPT, MPT-Instruct, MPT-Chat, MPT-StoryWriter | `mosaicml/mpt-7b`, `mosaicml/mpt-7b-storywriter`, `mosaicml/mpt-30b`, etc. | | ✅︎ | ✅︎ |
| `NemotronForCausalLM` | Nemotron-3, Nemotron-4, Minitron | `nvidia/Minitron-8B-Base`, `mgoin/Nemotron-4-340B-Base-hf-FP8`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `NemotronHForCausalLM` | Nemotron-H | `nvidia/Nemotron-H-8B-Base-8K`, `nvidia/Nemotron-H-47B-Base-8K`, `nvidia/Nemotron-H-56B-Base-8K`, etc. | ✅︎ | ✅︎ | ✅︎ |
@ -404,12 +403,11 @@ th {
| `OLMo2ForCausalLM` | OLMo2 | `allenai/OLMo-2-0425-1B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `OLMo3ForCausalLM` | OLMo3 | TBA | ✅︎ | ✅︎ | ✅︎ |
| `OLMoEForCausalLM` | OLMoE | `allenai/OLMoE-1B-7B-0924`, `allenai/OLMoE-1B-7B-0924-Instruct`, etc. | | ✅︎ | ✅︎ |
| `OPTForCausalLM` | OPT, OPT-IML | `facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc. | | ✅︎ | ✅︎ |
| `OPTForCausalLM` | OPT, OPT-IML | `facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `OrionForCausalLM` | Orion | `OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc. | | ✅︎ | ✅︎ |
| `PhiForCausalLM` | Phi | `microsoft/phi-1_5`, `microsoft/phi-2`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Phi3ForCausalLM` | Phi-4, Phi-3 | `microsoft/Phi-4-mini-instruct`, `microsoft/Phi-4`, `microsoft/Phi-3-mini-4k-instruct`, `microsoft/Phi-3-mini-128k-instruct`, `microsoft/Phi-3-medium-128k-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `PhiMoEForCausalLM` | Phi-3.5-MoE | `microsoft/Phi-3.5-MoE-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Phi4FlashForCausalLM` | Phi-4-mini-flash-reasoning | `microsoft/microsoft/Phi-4-mini-instruct`, etc. | | | |
| `PersimmonForCausalLM` | Persimmon | `adept/persimmon-8b-base`, `adept/persimmon-8b-chat`, etc. | | ✅︎ | ✅︎ |
| `Plamo2ForCausalLM` | PLaMo2 | `pfnet/plamo-2-1b`, `pfnet/plamo-2-8b`, etc. | | ✅︎ | ✅︎ |
| `QWenLMHeadModel` | Qwen | `Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc. | ✅︎ | ✅︎ | ✅︎ |

View File

@ -351,13 +351,92 @@ you can use the [official OpenAI Python client](https://github.com/openai/openai
To use the Transcriptions API, please install with extra audio dependencies using `pip install vllm[audio]`.
Code example: <gh-file:examples/online_serving/openai_transcription_client.py>
<!-- TODO: api enforced limits + uploading audios -->
#### API Enforced Limits
Set the maximum audio file size (in MB) that VLLM will accept, via the
`VLLM_MAX_AUDIO_CLIP_FILESIZE_MB` environment variable. Default is 25 MB.
#### Uploading Audio Files
The Transcriptions API supports uploading audio files in various formats including FLAC, MP3, MP4, MPEG, MPGA, M4A, OGG, WAV, and WEBM.
**Using OpenAI Python Client:**
??? code
```python
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="token-abc123",
)
# Upload audio file from disk
with open("audio.mp3", "rb") as audio_file:
transcription = client.audio.transcriptions.create(
model="openai/whisper-large-v3-turbo",
file=audio_file,
language="en",
response_format="verbose_json"
)
print(transcription.text)
```
**Using curl with multipart/form-data:**
??? code
```bash
curl -X POST "http://localhost:8000/v1/audio/transcriptions" \
-H "Authorization: Bearer token-abc123" \
-F "file=@audio.mp3" \
-F "model=openai/whisper-large-v3-turbo" \
-F "language=en" \
-F "response_format=verbose_json"
```
**Supported Parameters:**
- `file`: The audio file to transcribe (required)
- `model`: The model to use for transcription (required)
- `language`: The language code (e.g., "en", "zh") (optional)
- `prompt`: Optional text to guide the transcription style (optional)
- `response_format`: Format of the response ("json", "text") (optional)
- `temperature`: Sampling temperature between 0 and 1 (optional)
For the complete list of supported parameters including sampling parameters and vLLM extensions, see the [protocol definitions](https://github.com/vllm-project/vllm/blob/main/vllm/entrypoints/openai/protocol.py#L2182).
**Response Format:**
For `verbose_json` response format:
??? code
```json
{
"text": "Hello, this is a transcription of the audio file.",
"language": "en",
"duration": 5.42,
"segments": [
{
"id": 0,
"seek": 0,
"start": 0.0,
"end": 2.5,
"text": "Hello, this is a transcription",
"tokens": [50364, 938, 428, 307, 275, 28347],
"temperature": 0.0,
"avg_logprob": -0.245,
"compression_ratio": 1.235,
"no_speech_prob": 0.012
}
]
}
```
#### Extra Parameters
The following [sampling parameters][sampling-params] are supported.

View File

@ -1,12 +1,54 @@
# Transformers Reinforcement Learning
Transformers Reinforcement Learning (TRL) is a full stack library that provides a set of tools to train transformer language models with methods like Supervised Fine-Tuning (SFT), Group Relative Policy Optimization (GRPO), Direct Preference Optimization (DPO), Reward Modeling, and more. The library is integrated with 🤗 transformers.
[Transformers Reinforcement Learning](https://huggingface.co/docs/trl) (TRL) is a full stack library that provides a set of tools to train transformer language models with methods like Supervised Fine-Tuning (SFT), Group Relative Policy Optimization (GRPO), Direct Preference Optimization (DPO), Reward Modeling, and more. The library is integrated with 🤗 transformers.
Online methods such as GRPO or Online DPO require the model to generate completions. vLLM can be used to generate these completions!
See the guide [vLLM for fast generation in online methods](https://huggingface.co/docs/trl/main/en/speeding_up_training#vllm-for-fast-generation-in-online-methods) in the TRL documentation for more information.
See the [vLLM integration guide](https://huggingface.co/docs/trl/main/en/vllm_integration) in the TRL documentation for more information.
TRL currently supports the following online trainers with vLLM:
- [GRPO](https://huggingface.co/docs/trl/main/en/grpo_trainer)
- [Online DPO](https://huggingface.co/docs/trl/main/en/online_dpo_trainer)
- [RLOO](https://huggingface.co/docs/trl/main/en/rloo_trainer)
- [Nash-MD](https://huggingface.co/docs/trl/main/en/nash_md_trainer)
- [XPO](https://huggingface.co/docs/trl/main/en/xpo_trainer)
To enable vLLM in TRL, set the `use_vllm` flag in the trainer configuration to `True`.
## Modes of Using vLLM During Training
TRL supports **two modes** for integrating vLLM during training: **server mode** and **colocate mode**. You can control how vLLM operates during training with the `vllm_mode` parameter.
### Server mode
In **server mode**, vLLM runs as an independent process on dedicated GPUs and communicates with the trainer through HTTP requests. This configuration is ideal when you have separate GPUs for inference, as it isolates generation workloads from training, ensuring stable performance and easier scaling.
```python
from trl import GRPOConfig
training_args = GRPOConfig(
...,
use_vllm=True,
vllm_mode="server", # default value, can be omitted
)
```
### Colocate mode
In **colocate mode**, vLLM runs inside the trainer process and shares GPU memory with the training model. This avoids launching a separate server and can improve GPU utilization, but may lead to memory contention on the training GPUs.
```python
from trl import GRPOConfig
training_args = GRPOConfig(
...,
use_vllm=True,
vllm_mode="colocate",
)
```
Some trainers also support **vLLM sleep mode**, which offloads parameters and caches to GPU RAM during training, helping reduce memory usage. Learn more in the [memory optimization docs](https://huggingface.co/docs/trl/main/en/reducing_memory_usage#vllm-sleep-mode).
!!! info
For more information on the `use_vllm` flag you can provide to the configs of these online methods, see:
- [`trl.GRPOConfig.use_vllm`](https://huggingface.co/docs/trl/main/en/grpo_trainer#trl.GRPOConfig.use_vllm)
- [`trl.OnlineDPOConfig.use_vllm`](https://huggingface.co/docs/trl/main/en/online_dpo_trainer#trl.OnlineDPOConfig.use_vllm)
For detailed configuration options and flags, refer to the documentation of the specific trainer you are using.

View File

@ -60,6 +60,12 @@ Key points from the PyTorch security guide:
- Implement proper authentication and authorization for management interfaces
- Follow the principle of least privilege for all system components
### 4. **Restrict Domains Access for Media URLs:**
Restrict domains that vLLM can access for media URLs by setting
`--allowed-media-domains` to prevent Server-Side Request Forgery (SSRF) attacks.
(e.g. `--allowed-media-domains upload.wikimedia.org github.com www.bogotobogo.com`)
## Security and Firewalls: Protecting Exposed vLLM Systems
While vLLM is designed to allow unsafe network services to be isolated to

View File

@ -54,6 +54,7 @@ def parse_args():
"--method",
type=str,
default="eagle",
choices=["ngram", "eagle", "eagle3", "mtp"],
)
parser.add_argument("--num-spec-tokens", type=int, default=2)
parser.add_argument("--prompt-lookup-max", type=int, default=5)
@ -118,9 +119,9 @@ def main(args):
"prompt_lookup_max": args.prompt_lookup_max,
"prompt_lookup_min": args.prompt_lookup_min,
}
elif args.method.endswith("mtp"):
elif args.method == "mtp":
speculative_config = {
"method": args.method,
"method": "mtp",
"num_speculative_tokens": args.num_spec_tokens,
}
else:

View File

@ -4,6 +4,11 @@
experimental support for data-parallel inference with torchrun
Note the data load balancing and distribution is done out of the vllm engine,
no internal lb supported in external_launcher mode.
To run this example:
```bash
$ torchrun --nproc-per-node=2 examples/offline_inference/torchrun_dp_example.py
```
"""
from vllm import LLM, SamplingParams
@ -14,7 +19,7 @@ prompts = [
"The president of the United States is",
"The capital of France is",
"The future of AI is",
] * 50
]
# Create sampling parameters, the same across all ranks
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
@ -45,14 +50,13 @@ prompts = [
outputs = llm.generate(prompts, sampling_params)
# all ranks will have the same outputs
print("-" * 50)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}\n")
print("-" * 50)
print(
f"DP Rank: {dp_rank} Prompt: {prompt!r}\nGenerated text: {generated_text!r}\n"
)
"""
Further tips:

View File

@ -38,11 +38,13 @@ client = OpenAI(
base_url=openai_api_base,
)
headers = {"User-Agent": "vLLM Example Client"}
def encode_base64_content_from_url(content_url: str) -> str:
"""Encode a content retrieved from a remote url to base64 format."""
with requests.get(content_url) as response:
with requests.get(content_url, headers=headers) as response:
response.raise_for_status()
result = base64.b64encode(response.content).decode("utf-8")
@ -50,19 +52,19 @@ def encode_base64_content_from_url(content_url: str) -> str:
# Text-only inference
def run_text_only(model: str) -> None:
def run_text_only(model: str, max_completion_tokens: int) -> None:
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": "What's the capital of France?"}],
model=model,
max_completion_tokens=64,
max_completion_tokens=max_completion_tokens,
)
result = chat_completion.choices[0].message.content
print("Chat completion output:", result)
print("Chat completion output:\n", result)
# Single-image input inference
def run_single_image(model: str) -> None:
def run_single_image(model: str, max_completion_tokens: int) -> None:
## Use image url in the payload
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
chat_completion_from_url = client.chat.completions.create(
@ -79,11 +81,11 @@ def run_single_image(model: str) -> None:
}
],
model=model,
max_completion_tokens=64,
max_completion_tokens=max_completion_tokens,
)
result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from image url:", result)
print("Chat completion output from image url:\n", result)
## Use base64 encoded image in the payload
image_base64 = encode_base64_content_from_url(image_url)
@ -101,7 +103,7 @@ def run_single_image(model: str) -> None:
}
],
model=model,
max_completion_tokens=64,
max_completion_tokens=max_completion_tokens,
)
result = chat_completion_from_base64.choices[0].message.content
@ -109,7 +111,7 @@ def run_single_image(model: str) -> None:
# Multi-image input inference
def run_multi_image(model: str) -> None:
def run_multi_image(model: str, max_completion_tokens: int) -> None:
image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg"
image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg"
chat_completion_from_url = client.chat.completions.create(
@ -130,15 +132,15 @@ def run_multi_image(model: str) -> None:
}
],
model=model,
max_completion_tokens=64,
max_completion_tokens=max_completion_tokens,
)
result = chat_completion_from_url.choices[0].message.content
print("Chat completion output:", result)
print("Chat completion output:\n", result)
# Video input inference
def run_video(model: str) -> None:
def run_video(model: str, max_completion_tokens: int) -> None:
video_url = "http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerFun.mp4"
video_base64 = encode_base64_content_from_url(video_url)
@ -157,11 +159,11 @@ def run_video(model: str) -> None:
}
],
model=model,
max_completion_tokens=64,
max_completion_tokens=max_completion_tokens,
)
result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from image url:", result)
print("Chat completion output from video url:\n", result)
## Use base64 encoded video in the payload
chat_completion_from_base64 = client.chat.completions.create(
@ -178,15 +180,15 @@ def run_video(model: str) -> None:
}
],
model=model,
max_completion_tokens=64,
max_completion_tokens=max_completion_tokens,
)
result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from base64 encoded image:", result)
print("Chat completion output from base64 encoded video:\n", result)
# Audio input inference
def run_audio(model: str) -> None:
def run_audio(model: str, max_completion_tokens: int) -> None:
from vllm.assets.audio import AudioAsset
audio_url = AudioAsset("winning_call").url
@ -211,11 +213,11 @@ def run_audio(model: str) -> None:
}
],
model=model,
max_completion_tokens=64,
max_completion_tokens=max_completion_tokens,
)
result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from input audio:", result)
print("Chat completion output from input audio:\n", result)
# HTTP URL
chat_completion_from_url = client.chat.completions.create(
@ -235,11 +237,11 @@ def run_audio(model: str) -> None:
}
],
model=model,
max_completion_tokens=64,
max_completion_tokens=max_completion_tokens,
)
result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from audio url:", result)
print("Chat completion output from audio url:\n", result)
# base64 URL
chat_completion_from_base64 = client.chat.completions.create(
@ -259,14 +261,14 @@ def run_audio(model: str) -> None:
}
],
model=model,
max_completion_tokens=64,
max_completion_tokens=max_completion_tokens,
)
result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from base64 encoded audio:", result)
print("Chat completion output from base64 encoded audio:\n", result)
def run_multi_audio(model: str) -> None:
def run_multi_audio(model: str, max_completion_tokens: int) -> None:
from vllm.assets.audio import AudioAsset
# Two different audios to showcase batched inference.
@ -300,11 +302,11 @@ def run_multi_audio(model: str) -> None:
}
],
model=model,
max_completion_tokens=64,
max_completion_tokens=max_completion_tokens,
)
result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from input audio:", result)
print("Chat completion output from input audio:\n", result)
example_function_map = {
@ -330,13 +332,20 @@ def parse_args():
choices=list(example_function_map.keys()),
help="Conversation type with multimodal data.",
)
parser.add_argument(
"--max-completion-tokens",
"-n",
type=int,
default=128,
help="Maximum number of tokens to generate for each completion.",
)
return parser.parse_args()
def main(args) -> None:
chat_type = args.chat_type
model = get_first_model(client)
example_function_map[chat_type](model)
example_function_map[chat_type](model, args.max_completion_tokens)
if __name__ == "__main__":

View File

@ -102,7 +102,6 @@ plugins:
- https://numpy.org/doc/stable/objects.inv
- https://pytorch.org/docs/stable/objects.inv
- https://psutil.readthedocs.io/en/stable/objects.inv
- https://huggingface.co/docs/transformers/main/en/objects.inv
markdown_extensions:
- attr_list

View File

@ -43,7 +43,6 @@ tritonclient==2.51.0
numba == 0.60.0; python_version == '3.9' # v0.61 doesn't support Python 3.9. Required for N-gram speculative decoding
numba == 0.61.2; python_version > '3.9'
numpy
runai-model-streamer==0.11.0
runai-model-streamer-s3==0.11.0
runai-model-streamer[s3]==0.14.0
fastsafetensors>=0.1.10
pydantic>=2.10 # 2.9 leads to error on python 3.10

View File

@ -5,8 +5,6 @@ numba == 0.60.0; python_version == '3.9' # v0.61 doesn't support Python 3.9. Req
numba == 0.61.2; python_version > '3.9'
# Dependencies for AMD GPUs
boto3
botocore
datasets
ray[cgraph]>=2.48.0 # Ray Compiled Graph, required for pipeline parallelism in V1.
peft
@ -15,7 +13,6 @@ tensorizer==2.10.1
packaging>=24.2
setuptools>=77.0.3,<80.0.0
setuptools-scm>=8
runai-model-streamer==0.11.0
runai-model-streamer-s3==0.11.0
runai-model-streamer[s3]==0.14.0
conch-triton-kernels==1.2.1
timm>=1.0.17

View File

@ -51,8 +51,7 @@ tritonclient==2.51.0
numba == 0.60.0; python_version == '3.9' # v0.61 doesn't support Python 3.9. Required for N-gram speculative decoding
numba == 0.61.2; python_version > '3.9'
numpy
runai-model-streamer==0.11.0
runai-model-streamer-s3==0.11.0
runai-model-streamer[s3]==0.14.0
fastsafetensors>=0.1.10
pydantic>=2.10 # 2.9 leads to error on python 3.10
decord==0.6.0

View File

@ -72,7 +72,9 @@ blobfile==3.0.0
bm25s==0.2.13
# via mteb
boto3==1.35.57
# via tensorizer
# via
# runai-model-streamer-s3
# tensorizer
botocore==1.35.57
# via
# boto3
@ -925,10 +927,10 @@ rsa==4.9.1
# via google-auth
rtree==1.4.0
# via torchgeo
runai-model-streamer==0.11.0
# via -r requirements/test.in
runai-model-streamer-s3==0.11.0
runai-model-streamer==0.14.0
# via -r requirements/test.in
runai-model-streamer-s3==0.14.0
# via runai-model-streamer
s3transfer==0.10.3
# via boto3
sacrebleu==2.4.3

View File

@ -322,6 +322,8 @@ class precompiled_wheel_utils:
"vllm/_C.abi3.so",
"vllm/_moe_C.abi3.so",
"vllm/_flashmla_C.abi3.so",
"vllm/_flashmla_extension_C.abi3.so",
"vllm/_sparse_flashmla_C.abi3.so",
"vllm/vllm_flash_attn/_vllm_fa2_C.abi3.so",
"vllm/vllm_flash_attn/_vllm_fa3_C.abi3.so",
"vllm/cumem_allocator.abi3.so",
@ -589,6 +591,8 @@ if _is_cuda():
# not targeting a hopper system
ext_modules.append(
CMakeExtension(name="vllm._flashmla_C", optional=True))
ext_modules.append(
CMakeExtension(name="vllm._flashmla_extension_C", optional=True))
ext_modules.append(CMakeExtension(name="vllm.cumem_allocator"))
if _build_custom_ops():
@ -654,10 +658,7 @@ setup(
"bench": ["pandas", "datasets"],
"tensorizer": ["tensorizer==2.10.1"],
"fastsafetensors": ["fastsafetensors >= 0.1.10"],
"runai": [
"runai-model-streamer >= 0.14.0", "runai-model-streamer-gcs",
"google-cloud-storage", "runai-model-streamer-s3", "boto3"
],
"runai": ["runai-model-streamer[s3,gcs] >= 0.14.0"],
"audio": ["librosa", "soundfile",
"mistral_common[audio]"], # Required for audio processing
"video": [], # Kept for backwards compatibility

View File

@ -3,12 +3,11 @@
import contextlib
import os
import weakref
from dataclasses import dataclass
from typing import Optional
import pytest
from tests.utils import wait_for_gpu_memory_to_clear
from tests.v1.attention.utils import full_cg_backend_configs as backend_configs
from vllm import LLM, SamplingParams
from vllm.config import CompilationConfig
from vllm.platforms import current_platform
@ -33,89 +32,6 @@ def temporary_environ(env_vars):
os.environ[k] = v
@dataclass
class BackendConfig:
name: str
env_vars: dict
comp_config: dict
specific_gpu_arch: Optional[tuple] = None
# Define all backend configurations of full cudagraph to be tested
backend_configs = {
# FA3 on Hopper
"FA3":
BackendConfig(name="FA3",
env_vars={
"VLLM_FLASH_ATTN_VERSION": "3",
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
},
comp_config={
"cudagraph_mode": "FULL",
},
specific_gpu_arch=(9, 0)),
# FlashMLA on Hopper
"FlashMLA":
BackendConfig(name="FlashMLA",
env_vars={
"VLLM_ATTENTION_BACKEND": "FLASHMLA",
},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
},
specific_gpu_arch=(9, 0)),
# FlashAttention MLA on Hopper
"FlashAttentionMLA":
BackendConfig(name="FlashAttentionMLA",
env_vars={
"VLLM_ATTENTION_BACKEND": "FLASH_ATTN_MLA",
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
},
comp_config={
"cudagraph_mode": "FULL_DECODE_ONLY",
},
specific_gpu_arch=(9, 0)),
# Cutlass MLA on Blackwell
"CutlassMLA":
BackendConfig(
name="CutlassMLA",
env_vars={
"VLLM_USE_V1": "1",
"VLLM_ATTENTION_BACKEND": "CUTLASS_MLA",
"FORCE_NUM_KV_SPLITS":
"1", # TODO: remove this when hang issue is fixed
},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
"cudagraph_capture_sizes": [16, 32, 64, 128, 256, 512],
},
specific_gpu_arch=(10, 0)),
# FA2
"FA2":
BackendConfig(name="FA2",
env_vars={
"VLLM_FLASH_ATTN_VERSION": "2",
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
},
comp_config={
"cudagraph_mode": "FULL",
}),
# Triton Attention
"TritonAttn":
BackendConfig(name="TritonAttn",
env_vars={"VLLM_ATTENTION_BACKEND": "TRITON_ATTN"},
comp_config={
"cudagraph_mode": "FULL",
}),
# FlashInfer
"FlashInfer":
BackendConfig(name="FlashInfer",
env_vars={"VLLM_ATTENTION_BACKEND": "FLASHINFER"},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
}),
}
test_params_full_cudagraph = []
# deepseek-ai/DeepSeek-V2-Lite with MLA

View File

@ -4,7 +4,7 @@ import pytest
import vllm
from vllm.compilation.counter import compilation_counter
from vllm.config import CompilationConfig, VllmConfig
from vllm.config import CompilationConfig, CUDAGraphMode, VllmConfig
from vllm.utils import _is_torch_equal_or_newer
@ -106,7 +106,6 @@ def test_dynamo_as_is(vllm_runner, monkeypatch):
def test_no_compilation(vllm_runner, monkeypatch):
# Disable multiprocessing so that the counter is in the same process
monkeypatch.setenv('VLLM_ENABLE_V1_MULTIPROCESSING', '0')
with (
compilation_counter.expect(num_graphs_seen=0,
dynamo_as_is_count=0),
@ -131,3 +130,67 @@ def test_enforce_eager(vllm_runner, monkeypatch):
enforce_eager=True,
gpu_memory_utilization=0.4) as _):
pass
def test_splitting_ops_dynamic():
# Default config
config = VllmConfig()
assert config.compilation_config.cudagraph_mode == \
CUDAGraphMode.FULL_AND_PIECEWISE
assert config.compilation_config.splitting_ops_contain_attention()
# When use_inductor_graph_partition=True
if _is_torch_equal_or_newer('2.9.0.dev'):
# inductor graph partition is only available in PyTorch 2.9+.
# this is a fast config check so we are not using pytest.skip.
config = VllmConfig(compilation_config=CompilationConfig(
use_inductor_graph_partition=True,
splitting_ops=["silly_attention"]))
# should ignore splitting_ops
assert config.compilation_config.splitting_ops == []
# When attn_fusion pass enabled.
config = VllmConfig(compilation_config=CompilationConfig(
pass_config={
"enable_attn_fusion": True,
"enable_noop": True
},
custom_ops=["+quant_fp8"],
cudagraph_mode=CUDAGraphMode.PIECEWISE,
))
assert config.compilation_config.splitting_ops == []
# cudagraph mode also fall back to FULL
assert config.compilation_config.cudagraph_mode == \
CUDAGraphMode.FULL
# splitting_ops can not contain attention ops when attn_fusion
# pass enabled.
with pytest.raises(AssertionError):
config = VllmConfig(compilation_config=CompilationConfig(
pass_config={
"enable_attn_fusion": True,
"enable_noop": True
},
custom_ops=["+quant_fp8"],
cudagraph_mode=CUDAGraphMode.PIECEWISE,
# work around for accessing all attntion ops
splitting_ops=CompilationConfig()._attention_ops,
))
# When both use_inductor_graph_partition and attn_fusion pass enabled.
if _is_torch_equal_or_newer('2.9.0.dev'):
config = VllmConfig(compilation_config=CompilationConfig(
use_inductor_graph_partition=True,
pass_config={
"enable_attn_fusion": True,
"enable_noop": True
},
custom_ops=["+quant_fp8"],
cudagraph_mode=CUDAGraphMode.PIECEWISE,
))
assert config.compilation_config.splitting_ops == []
# enable_attn_fusion is directly support under
# use_inductor_graph_partition=True, and cudagraph_mode
# is unchanged.
assert config.compilation_config.cudagraph_mode == \
CUDAGraphMode.PIECEWISE

View File

@ -139,6 +139,21 @@ def test_custom_compile_config(
run_model(compilation_config, model, model_kwargs)
@pytest.mark.parametrize(
"optimization_level",
[CompilationLevel.NO_COMPILATION, CompilationLevel.PIECEWISE],
)
def test_fp8_kv_scale_compile(optimization_level: int):
model = "Qwen/Qwen2-0.5B"
model_kwargs = {
"quantization": "fp8",
"kv_cache_dtype": "fp8_e4m3",
"calculate_kv_scales": True,
"max_model_len": 512,
}
run_model(optimization_level, model, model_kwargs)
def test_inductor_graph_partition_attn_fusion(caplog_vllm):
if not is_torch_equal_or_newer("2.9.0.dev"):
pytest.skip("inductor graph partition is only available "

View File

@ -191,7 +191,6 @@ class AttentionQuantPatternModel(torch.nn.Module):
num_kv_heads=self.num_kv_heads,
head_size=self.head_size,
dtype=self.kv_cache_dtype,
use_mla=False,
),
layer_names=[self.attn.layer_name],
vllm_config=self.vllm_config,

View File

@ -208,3 +208,11 @@ def zephyr_lora_files():
"""Download zephyr LoRA files once per test session."""
from huggingface_hub import snapshot_download
return snapshot_download(repo_id="typeof/zephyr-7b-beta-lora")
@pytest.fixture(scope="session")
def opt125_lora_files() -> str:
"""Download opt-125m LoRA files once per test session."""
from huggingface_hub import snapshot_download
return snapshot_download(
repo_id="peft-internal-testing/opt-125m-dummy-lora")

View File

@ -3,6 +3,7 @@
import base64
import io
import json
import openai # use the official client for correctness check
import pytest
@ -16,13 +17,15 @@ from ...utils import RemoteOpenAIServer
# any model with a chat template should work here
MODEL_NAME = "facebook/opt-125m"
LORA_SERVING_MODEL_NAME = "opt125m-lora"
CONFIG = AutoConfig.from_pretrained(MODEL_NAME)
@pytest.fixture(scope="module")
def default_server_args() -> list[str]:
return [
@pytest.fixture(scope="module", params=["use-lora"])
def default_server_args(request: pytest.FixtureRequest,
opt125_lora_files: str) -> list[str]:
args = [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
@ -35,6 +38,25 @@ def default_server_args() -> list[str]:
"--enable-prompt-embeds",
]
if request.param == "use-lora":
lora_module_1 = {
"name": LORA_SERVING_MODEL_NAME,
"path": opt125_lora_files,
"base_model_name": MODEL_NAME
}
args.extend([
"--enable-lora",
"--lora-module",
json.dumps(lora_module_1),
"--max-lora-rank",
"64",
"--max-cpu-loras",
"2",
])
return args
EXAMPLE_PROMPTS = [
"Hello, my name is",
@ -74,7 +96,7 @@ async def client_with_prompt_embeds(server_with_prompt_embeds):
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("model_name", [MODEL_NAME, LORA_SERVING_MODEL_NAME])
async def test_completions_with_prompt_embeds(
example_prompt_embeds,
client_with_prompt_embeds: openai.AsyncOpenAI,
@ -179,7 +201,7 @@ async def test_completions_with_prompt_embeds(
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("model_name", [MODEL_NAME, LORA_SERVING_MODEL_NAME])
async def test_completions_errors_with_prompt_embeds(
client_with_prompt_embeds: openai.AsyncOpenAI, model_name: str):
# Test error case: invalid prompt_embeds
@ -194,7 +216,7 @@ async def test_completions_errors_with_prompt_embeds(
@pytest.mark.asyncio
@pytest.mark.parametrize("logprobs_arg", [1, 0])
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("model_name", [MODEL_NAME, LORA_SERVING_MODEL_NAME])
async def test_completions_with_logprobs_and_prompt_embeds(
example_prompt_embeds,
client_with_prompt_embeds: openai.AsyncOpenAI,

View File

@ -45,6 +45,7 @@ class MockModelConfig:
logits_processor_pattern: Optional[str] = None
diff_sampling_param: Optional[dict] = None
allowed_local_media_path: str = ""
allowed_media_domains: Optional[list[str]] = None
encoder_config = None
generation_config: str = "auto"
skip_tokenizer_init: bool = False

View File

@ -240,6 +240,7 @@ class MockModelConfig:
logits_processor_pattern = None
diff_sampling_param: Optional[dict] = None
allowed_local_media_path: str = ""
allowed_media_domains: Optional[list[str]] = None
encoder_config = None
generation_config: str = "auto"
media_io_kwargs: dict[str, dict[str, Any]] = field(default_factory=dict)

View File

@ -19,6 +19,7 @@ from vllm.entrypoints.chat_utils import (_try_extract_ast, load_chat_template,
parse_chat_messages,
parse_chat_messages_futures,
resolve_chat_template_content_format,
resolve_chat_template_kwargs,
resolve_hf_chat_template)
from vllm.multimodal import MultiModalDataDict, MultiModalUUIDDict
from vllm.multimodal.utils import (encode_audio_base64, encode_image_base64,
@ -37,6 +38,7 @@ QWEN2AUDIO_MODEL_ID = "Qwen/Qwen2-Audio-7B-Instruct"
QWEN2VL_MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
QWEN25VL_MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct"
QWEN25OMNI_MODEL_ID = "Qwen/Qwen2.5-Omni-7B"
QWEN3_MODEL_ID = "Qwen/Qwen3-8B"
LLAMA_GUARD_MODEL_ID = "meta-llama/Llama-Guard-3-1B"
HERMES_MODEL_ID = "NousResearch/Hermes-3-Llama-3.1-8B"
MISTRAL_MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
@ -2255,6 +2257,89 @@ def test_resolve_hf_chat_template(sample_json_schema, model, use_tools):
assert isinstance(chat_template, str)
@pytest.mark.parametrize(
"model, expected_kwargs",
[
(
QWEN2VL_MODEL_ID,
{
"add_vision_id", "add_generation_prompt",
"continue_final_message", "tools"
},
),
(
QWEN3_MODEL_ID,
{
"enable_thinking", "add_generation_prompt",
"continue_final_message", "tools"
},
),
],
)
def test_resolve_hf_chat_template_kwargs(sample_json_schema, model,
expected_kwargs):
"""checks that chat_template is a dict type for HF models."""
model_info = HF_EXAMPLE_MODELS.find_hf_info(model)
model_info.check_available_online(on_fail="skip")
tools = ([{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": sample_json_schema,
},
}])
chat_template_kwargs = {
# both unused
"unsed_kwargs_1": 123,
"unsed_kwargs_2": "abc",
# should not appear
"chat_template": "{% Hello world! %}",
# used by tokenizer
"continue_final_message": True,
"tools": tools,
# both used by Qwen2-VL and Qwen3
"add_generation_prompt": True,
# only used by Qwen2-VL
"add_vision_id": True,
# only used by Qwen3
"enable_thinking": True,
}
model_config = ModelConfig(
model,
tokenizer=model_info.tokenizer or model,
tokenizer_mode=model_info.tokenizer_mode,
revision=model_info.revision,
trust_remote_code=model_info.trust_remote_code,
hf_overrides=model_info.hf_overrides,
skip_tokenizer_init=model_info.skip_tokenizer_init,
enforce_eager=model_info.enforce_eager,
dtype=model_info.dtype)
# Build the tokenizer
tokenizer = get_tokenizer(
model,
trust_remote_code=model_config.trust_remote_code,
)
# Test detecting the tokenizer's chat_template
chat_template = resolve_hf_chat_template(
tokenizer,
chat_template=None,
tools=tools,
model_config=model_config,
)
resolved_chat_template_kwargs = resolve_chat_template_kwargs(
tokenizer,
chat_template=chat_template,
chat_template_kwargs=chat_template_kwargs,
)
assert set(resolved_chat_template_kwargs.keys()) == expected_kwargs
# NOTE: Qwen2-Audio default chat template is specially defined inside
# processor class instead of using `tokenizer_config.json`
# yapf: disable

View File

@ -593,6 +593,119 @@ def test_concat_and_cache_mla(
torch.testing.assert_close(kv_cache, ref_kv_cache)
@pytest.mark.parametrize("kv_lora_rank", KV_LORA_RANKS)
@pytest.mark.parametrize("qk_rope_head_dim", QK_ROPE_HEAD_DIMS)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS_MLA)
@pytest.mark.parametrize("block_size", BLOCK_SIZES_MLA)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS_MLA)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_concat_and_cache_ds_mla(
kv_lora_rank: int,
qk_rope_head_dim: int,
num_tokens: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
device: str,
) -> None:
if dtype.itemsize != 2:
pytest.skip("ds_mla only supports 16-bit input")
kv_cache_dtype = "fp8_ds_mla"
current_platform.seed_everything(seed)
torch.set_default_device(device)
total_slots = num_blocks * block_size
slot_mapping_lst = random.sample(range(total_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping_lst,
dtype=torch.long,
device=device)
kv_c = torch.randn(num_tokens, kv_lora_rank, dtype=dtype, device=device)
k_pe = torch.randn(num_tokens,
qk_rope_head_dim,
dtype=dtype,
device=device)
entry_size = kv_lora_rank + (4 * 4) + (2 * qk_rope_head_dim)
scale = torch.tensor(1.0, dtype=torch.float32, device=device)
kv_cache = _create_mla_cache(num_blocks,
block_size,
entry_size,
dtype=torch.uint8,
kv_cache_dtype=kv_cache_dtype,
device=device)
ref_cache = torch.zeros_like(kv_cache, dtype=kv_cache.dtype)
tile_data = torch.zeros(128, dtype=dtype, device=device)
for i in range(num_tokens):
slot = slot_mapping[i].item()
block_idx = slot // block_size
block_offset = slot % block_size
ref_cache_slice = ref_cache[block_idx, block_offset]
ref_cache_16bit = ref_cache_slice.view(dtype)
ref_cache_32bit = ref_cache_slice.view(torch.float32)
kv_c_data = kv_c[i]
for tile_idx in range(4):
tile_start = tile_idx * 128
tile_end = (tile_idx + 1) * 128
tile_data[:] = kv_c_data[tile_start:tile_end]
# tile_scale = tile_data.amax().to(torch.float32) / 448.
# NOTE: Using torch's amax() gives different results,
# so this must be manually computed.
tile_data_float = tile_data.to(torch.float32)
manual_max = abs(tile_data_float[0])
for j in range(1, 128):
manual_max = max(manual_max, abs(tile_data_float[j]))
tile_scale = manual_max / 448.
ref_cache_32bit[kv_lora_rank // 4 + tile_idx] = tile_scale
ops.convert_fp8(ref_cache_slice[tile_start:tile_end],
tile_data,
tile_scale.item(),
kv_dtype="fp8")
for j in range(qk_rope_head_dim):
ref_cache_16bit[kv_lora_rank // 2 + 8 + j] = k_pe[i, j]
opcheck(
torch.ops._C_cache_ops.concat_and_cache_mla,
(kv_c, k_pe, kv_cache, slot_mapping, kv_cache_dtype, scale),
test_utils=DEFAULT_OPCHECK_TEST_UTILS,
)
ops.concat_and_cache_mla(kv_c, k_pe, kv_cache, slot_mapping,
kv_cache_dtype, scale)
for i in range(num_tokens):
slot = slot_mapping[i].item()
block_idx = slot // block_size
block_offset = slot % block_size
kv_cache_slice = kv_cache[block_idx, block_offset]
ref_cache_slice = ref_cache[block_idx, block_offset]
kv_nope = kv_cache_slice[:kv_lora_rank]
ref_nope = ref_cache_slice[:kv_lora_rank]
kv_scales = kv_cache_slice.view(torch.float32)[kv_lora_rank //
4:kv_lora_rank // 4 + 4]
ref_scales = ref_cache_slice.view(
torch.float32)[kv_lora_rank // 4:kv_lora_rank // 4 + 4]
kv_rope = kv_cache_slice.view(dtype)[kv_lora_rank // 2 + 8:]
ref_rope = ref_cache_slice.view(dtype)[kv_lora_rank // 2 + 8:]
torch.testing.assert_close(kv_nope, ref_nope, atol=0.001, rtol=0.1)
torch.testing.assert_close(kv_scales, ref_scales, atol=0.001, rtol=0.1)
torch.testing.assert_close(kv_rope, ref_rope, atol=0.001, rtol=0.1)
@pytest.mark.parametrize("kv_lora_rank", KV_LORA_RANKS)
@pytest.mark.parametrize("qk_rope_head_dim", QK_ROPE_HEAD_DIMS)
@pytest.mark.parametrize("block_size", BLOCK_SIZES_MLA)

View File

@ -0,0 +1,279 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import random
import pytest
import torch
from vllm.platforms import current_platform
from vllm.utils import cdiv, has_deep_gemm
from vllm.utils.deep_gemm import (_ceil_to_ue8m0, calc_diff, fp8_mqa_logits,
fp8_paged_mqa_logits, get_num_sms,
get_paged_mqa_logits_metadata)
def kv_cache_cast_to_fp8(x: torch.Tensor) -> torch.Tensor:
# x: (num_blocks, block_size, 1, head_dim)
num_blocks, block_size, num_heads, head_dim = x.shape
assert num_heads == 1
x_amax = x.abs().float().amax(dim=3, keepdim=True).clamp(1e-4)
sf = x_amax / 448.0
x_scaled = (x * (1.0 / sf)).to(torch.float8_e4m3fn)
x_fp8 = torch.empty(
(num_blocks, block_size * (head_dim + 4)),
device=x.device,
dtype=torch.uint8,
)
x_fp8[:, :block_size * head_dim] = x_scaled.view(
num_blocks, block_size * head_dim).view(dtype=torch.uint8)
x_fp8[:,
block_size * head_dim:] = sf.view(num_blocks,
block_size).view(dtype=torch.uint8)
return x_fp8.view(num_blocks, block_size, num_heads, head_dim + 4)
def per_custom_dims_cast_to_fp8(
x: torch.Tensor, dims: tuple,
use_ue8m0: bool) -> tuple[torch.Tensor, torch.Tensor]:
excluded_dims = tuple([i for i in range(x.dim()) if i not in set(dims)])
x_amax = x.abs().float().amax(dim=excluded_dims, keepdim=True).clamp(1e-4)
sf = x_amax / 448.0
sf = _ceil_to_ue8m0(sf) if use_ue8m0 else sf
x_scaled = (x * (1.0 / sf)).to(torch.float8_e4m3fn)
return x_scaled, sf.squeeze()
def _generate_cp_test_data(seq_len: int, seq_len_kv: int):
assert seq_len_kv % seq_len == 0 and seq_len % 2 == 0
chunk_size = seq_len // 2
cp_size = seq_len_kv // seq_len
cp_id = cp_size // 3
ks = torch.zeros(seq_len, dtype=torch.int, device="cuda")
ke = torch.zeros(seq_len, dtype=torch.int, device="cuda")
for i in range(chunk_size):
ke[i] = cp_id * chunk_size + i
ke[i + chunk_size] = (cp_size * 2 - 1 - cp_id) * chunk_size + i
return ks, ke
def _ref_fp8_mqa_logits(
q: torch.Tensor,
kv: torch.Tensor,
weights: torch.Tensor,
cu_seqlen_ks: torch.Tensor,
cu_seqlen_ke: torch.Tensor,
):
seq_len_kv = kv.shape[0]
k = kv
q = q.float()
k = k.float()
mask_lo = (torch.arange(0, seq_len_kv, device="cuda")[None, :]
>= cu_seqlen_ks[:, None])
mask_hi = (torch.arange(0, seq_len_kv, device="cuda")[None, :]
< cu_seqlen_ke[:, None])
mask = mask_lo & mask_hi
score = torch.einsum("mhd,and->hmn", q, k)
logits = (score.relu() * weights.unsqueeze(-1).transpose(0, 1)).sum(dim=0)
logits = logits.masked_fill(~mask, float("-inf"))
return logits
@pytest.mark.skipif(not current_platform.is_cuda(), reason="CUDA only")
@pytest.mark.skipif(not has_deep_gemm(), reason="DeepGEMM not available")
@pytest.mark.skipif(not current_platform.has_device_capability(90),
reason="SM90 and SM100 only")
def test_deepgemm_fp8_mqa_logits():
torch.manual_seed(0)
random.seed(0)
num_heads, head_dim = 32, 128
for seq_len in (512, ):
for seq_len_kv in (1024, ):
for disable_cp in (False, True):
q = torch.randn(
seq_len,
num_heads,
head_dim,
device="cuda",
dtype=torch.bfloat16,
)
kv = torch.randn(seq_len_kv,
head_dim,
device="cuda",
dtype=torch.bfloat16)
weights = torch.randn(seq_len,
num_heads,
device="cuda",
dtype=torch.float32)
if disable_cp:
ks = torch.zeros(seq_len, dtype=torch.int, device="cuda")
ke = torch.arange(seq_len, dtype=torch.int,
device="cuda") + (seq_len_kv - seq_len)
else:
ks, ke = _generate_cp_test_data(seq_len, seq_len_kv)
q_fp8 = q.to(torch.float8_e4m3fn)
kv_fp8 = per_custom_dims_cast_to_fp8(kv, (0, ), False)
logits = fp8_mqa_logits(q_fp8, kv_fp8, weights, ks, ke)
ref_logits = _ref_fp8_mqa_logits(
q=q,
kv=kv,
weights=weights,
cu_seqlen_ks=ks,
cu_seqlen_ke=ke,
)
ref_neginf_mask = ref_logits == float("-inf")
neginf_mask = logits == float("-inf")
assert torch.equal(neginf_mask, ref_neginf_mask)
ref_logits = ref_logits.masked_fill(ref_neginf_mask, 0)
logits = logits.masked_fill(neginf_mask, 0)
diff = calc_diff(logits, ref_logits)
assert diff < 1e-3, f"{diff=}"
def _ref_fp8_paged_mqa_logits(
q: torch.Tensor,
kv_cache: torch.Tensor,
weights: torch.Tensor,
context_lens: torch.Tensor,
block_tables: torch.Tensor,
max_model_len: int,
):
batch_size, next_n, _, _ = q.size()
_, block_size, _, _ = kv_cache.size()
logits = torch.full(
[batch_size * next_n, max_model_len],
float("-inf"),
device=q.device,
dtype=torch.float32,
)
context_lens_list = context_lens.tolist()
for i in range(batch_size):
context_len = context_lens_list[i]
q_offsets = torch.arange(context_len - next_n,
context_len,
device="cuda")
weight_slice = (weights[i * next_n:(i + 1) * next_n, :].transpose(
0, 1).contiguous())
for block_rk in range(cdiv(context_len, block_size)):
block_idx = block_tables[i][block_rk]
qx, kx = q[i], kv_cache[block_idx]
k_offsets = torch.arange(
block_rk * block_size,
(block_rk + 1) * block_size,
device="cuda",
)
mask = (k_offsets[None, :] < context_len) & (k_offsets[None, :]
<= q_offsets[:, None])
s = torch.where(
mask[None, :, :],
(qx.transpose(0, 1) @ kx.transpose(0, 1).transpose(1, 2)).to(
logits.dtype),
float("-inf"),
)
s = torch.relu(s) * weight_slice[..., None]
s = s.sum(dim=0)
logits[
i * next_n:(i + 1) * next_n,
block_rk * block_size:(block_rk + 1) * block_size,
] = torch.where(k_offsets[None, :] <= q_offsets[:, None], s,
float("-inf"))
return logits
@pytest.mark.skipif(not current_platform.is_cuda(), reason="CUDA only")
@pytest.mark.skipif(not has_deep_gemm(), reason="DeepGEMM not available")
@pytest.mark.skipif(not current_platform.has_device_capability(90),
reason="SM90 and SM100 only")
def test_deepgemm_fp8_paged_mqa_logits():
torch.manual_seed(0)
random.seed(0)
max_model_len = 4096
for batch_size, next_n in [(4, 1), (2, 2)]:
for heads, index_dim in [(32, 128)]:
for avg_kv in (2048, ):
num_blocks, blocksize = max_model_len * 2, 64
q = torch.randn(
(batch_size, next_n, heads, index_dim),
device="cuda",
dtype=torch.bfloat16,
)
kv_cache = torch.randn(
(num_blocks, blocksize, 1, index_dim),
device="cuda",
dtype=torch.bfloat16,
)
weights = torch.randn(
(batch_size * next_n, heads),
device="cuda",
dtype=torch.float32,
)
context_lens = (torch.randint(int(0.8 * avg_kv),
int(1.2 * avg_kv),
(batch_size, )).cuda().to(
torch.int32))
max_block_len = ((context_lens.max().item() + blocksize - 1) //
blocksize * blocksize)
block_tables = torch.zeros(
(batch_size, max_block_len),
device="cuda",
dtype=torch.int32,
)
counter = 0
block_idx_pool = list(range(num_blocks))
random.shuffle(block_idx_pool)
for i in range(batch_size):
ctx_len = int(context_lens[i].item())
for j in range((ctx_len + blocksize - 1) // blocksize):
block_tables[i][j] = block_idx_pool[counter]
counter += 1
q_fp8 = q.to(torch.float8_e4m3fn)
kv_cache_fp8 = kv_cache_cast_to_fp8(kv_cache)
schedule_metadata = get_paged_mqa_logits_metadata(
context_lens, blocksize, get_num_sms())
logits = fp8_paged_mqa_logits(
q_fp8,
kv_cache_fp8,
weights,
context_lens,
block_tables,
schedule_metadata,
max_model_len,
)
ref_logits = _ref_fp8_paged_mqa_logits(
q,
kv_cache,
weights,
context_lens,
block_tables,
max_model_len,
)
positions = (torch.arange(max_model_len,
device="cuda").unsqueeze(0).expand(
batch_size * next_n, -1))
row_indices = (
torch.arange(batch_size * next_n, device="cuda") // next_n)
next_n_offset = (
torch.arange(batch_size * next_n, device="cuda") % next_n)
mask = positions <= (context_lens[row_indices] - next_n +
next_n_offset).unsqueeze(1)
logits = logits.masked_fill(~mask, 0)
ref_logits = ref_logits.masked_fill(~mask, 0)
diff = calc_diff(logits, ref_logits)
assert diff < 1e-3, f"{diff=}"

View File

@ -97,18 +97,16 @@ def test_flash_mla(b, s_q, mean_sk, h_q, h_kv, d, dv, block_size, causal,
descale_k = None
def flash_mla():
return flash_mla_with_kvcache(
q,
blocked_k,
block_table,
cache_seqlens,
dv,
tile_scheduler_metadata,
num_splits,
causal=causal,
descale_q=descale_q,
descale_k=descale_k,
)
return flash_mla_with_kvcache(q,
blocked_k,
block_table,
cache_seqlens,
dv,
tile_scheduler_metadata,
num_splits,
causal=causal,
descale_q=descale_q,
descale_k=descale_k)
def scaled_dot_product_attention(query, key, value, is_causal=False):
query = query.float()

View File

@ -0,0 +1,119 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
def _cuda_sm90_available() -> bool:
if not torch.cuda.is_available():
return False
major, _ = torch.cuda.get_device_capability()
return major == 9
def test_sparse_flashmla_metadata_smoke():
import vllm.attention.ops.flashmla as fm
ok, reason = fm.is_flashmla_supported()
if not ok or not _cuda_sm90_available():
pytest.skip(reason or "SM90 not available")
device = torch.device("cuda")
batch_size = 1
seqlen_q = 1
num_heads_q = 128
num_heads_k = 1
q_seq_per_hk = seqlen_q * num_heads_q // num_heads_k
topk = 128
cache_seqlens = torch.zeros(batch_size, dtype=torch.int32, device=device)
tile_md, num_splits = fm.get_mla_metadata(cache_seqlens,
q_seq_per_hk,
num_heads_k,
num_heads_q=num_heads_q,
topk=topk,
is_fp8_kvcache=True)
assert tile_md.dtype == torch.int32
assert num_splits.dtype == torch.int32
def test_sparse_flashmla_decode_smoke():
import vllm.attention.ops.flashmla as fm
ok, reason = fm.is_flashmla_supported()
if not ok or not _cuda_sm90_available():
pytest.skip(reason or "SM90 not available")
device = torch.device("cuda")
batch_size = 1
seqlen_q = 1
num_heads_q = 1
head_dim_k = 576
head_dim_v = 512
num_heads_k = 1
page_block_size = 64
bytes_per_token = 656
topk = 128
# Metadata
q_seq_per_hk = seqlen_q * num_heads_q // num_heads_k
# q_heads_per_hk = num_heads_q // num_heads_k
cache_seqlens = torch.zeros(batch_size, dtype=torch.int32, device=device)
tile_md, num_splits = fm.get_mla_metadata(cache_seqlens,
q_seq_per_hk,
num_heads_k,
num_heads_q=num_heads_q,
topk=topk,
is_fp8_kvcache=True)
# Inputs
q = torch.zeros((batch_size, seqlen_q, num_heads_q, head_dim_k),
dtype=torch.bfloat16,
device=device)
k_cache = torch.zeros((1, page_block_size, num_heads_k, bytes_per_token),
dtype=torch.uint8,
device=device)
indices = torch.zeros((batch_size, seqlen_q, topk),
dtype=torch.int32,
device=device)
block_table = torch.zeros((batch_size, 128),
dtype=torch.int32,
device=device)
out, lse = fm.flash_mla_with_kvcache(q,
k_cache,
block_table,
cache_seqlens,
head_dim_v,
tile_md,
num_splits,
indices=indices,
is_fp8_kvcache=True)
assert out.shape[0] == batch_size
assert out.shape[-1] == head_dim_v
assert lse.shape[0] == batch_size
def test_sparse_flashmla_prefill_smoke():
import vllm.attention.ops.flashmla as fm
ok, reason = fm.is_flashmla_supported()
if not ok or not _cuda_sm90_available():
pytest.skip(reason or "SM90 not available")
device = torch.device("cuda")
s_q = 1
s_kv = 1
h_q = 64 # kernel expects multiple of 64
h_kv = 1
d_qk = 576
d_v = 512
topk = 128
q = torch.zeros((s_q, h_q, d_qk), dtype=torch.bfloat16, device=device)
kv = torch.zeros((s_kv, h_kv, d_qk), dtype=torch.bfloat16, device=device)
indices = torch.zeros((s_q, h_kv, topk), dtype=torch.int32, device=device)
out, max_logits, lse = fm.flash_mla_sparse_prefill(q, kv, indices, 1.0,
d_v)
assert out.shape == (s_q, h_q, d_v)
assert max_logits.shape == (s_q, h_q)
assert lse.shape == (s_q, h_q)

View File

@ -0,0 +1,245 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
from torch.testing import assert_close
from vllm.attention.ops.common import pack_seq_triton, unpack_seq_triton
def test_pack_seq_basic_fp8():
"""Test basic functionality of pack_seq_triton with fp8 and 3D tensors."""
device = "cuda"
dtype = torch.float8_e4m3fn
# Test cases with 3D tensors (N, H, D)
test_cases = [
(6, 8, 4, 2, [3, 3]), # (6, 8, 4) -> (2, 3, 8, 4)
(10, 4, 8, 3, [2, 4, 4]), # (10, 4, 8) -> (3, 4, 4, 8)
(20, 16, 32, 4, [5, 5, 5, 5]), # (20, 16, 32) -> (4, 5, 16, 32)
]
for N, H, D, B, lengths_list in test_cases:
# Create input tensor with small values for fp8
x = torch.randn(N, H, D, dtype=torch.float32, device=device) * 0.1
x = x.to(dtype=dtype)
lengths = torch.tensor(lengths_list, device=device)
# Pack the data
packed = pack_seq_triton(x, lengths)
# Check output shape and properties
expected_shape = (B, max(lengths_list), H, D)
assert packed.shape == expected_shape
assert packed.dtype == dtype
assert packed.device == x.device
# Check that valid data is preserved (within fp8 precision)
for b in range(B):
start_idx = sum(lengths_list[:b])
seq_len = lengths_list[b]
expected_data = x[start_idx:start_idx + seq_len].to(torch.float32)
actual_data = packed[b, :seq_len].to(torch.float32)
assert_close(actual_data, expected_data, rtol=1e-1, atol=1e-2)
def test_pack_seq_custom_padding_fp8():
"""Test pack_seq_triton with custom padding values for fp8."""
device = "cuda"
dtype = torch.float8_e4m3fn
N, H, D, B = 20, 8, 16, 2
lengths = torch.tensor([10, 10], device=device)
x = torch.randn(N, H, D, dtype=torch.float32, device=device) * 0.1
x = x.to(dtype=dtype)
# Test with different padding values
for pad_value in [-100.0, -10.0, 0.0, 10.0, 100.0]:
result = pack_seq_triton(x, lengths, pad_value=pad_value)
# Check valid data
for b in range(B):
start_idx = b * 10
expected_data = x[start_idx:start_idx + 10].to(torch.float32)
actual_data = result[b, :10].to(torch.float32)
assert_close(actual_data, expected_data, rtol=1e-1, atol=1e-2)
# Check padding (fp8 has limited range, so check for large values)
padded_data = result[:, 10:].to(torch.float32)
if pad_value < 0:
assert torch.all(padded_data < -50) # Large negative values
elif pad_value > 0:
assert torch.all(padded_data > 50) # Large positive values
else:
assert torch.allclose(padded_data,
torch.zeros_like(padded_data),
atol=1e-2)
def test_pack_seq_default_negative_inf_padding_fp8():
"""Test that pack_seq_triton uses -inf padding by default for fp8."""
device = "cuda"
dtype = torch.float8_e4m3fn
# B = 2
N, H, D = 20, 8, 16
lengths = torch.tensor([10, 10], device=device)
x = torch.randn(N, H, D, dtype=torch.float32, device=device) * 0.1
x = x.to(dtype=dtype)
result = pack_seq_triton(x, lengths)
# Check that padding is large negative values (fp8 representation of -inf)
padded_data = result[:, 10:].to(torch.float32)
assert torch.all(
padded_data < -100) # fp8 -inf is represented as large negative number
def test_pack_seq_edge_cases_fp8():
"""Test pack_seq_triton with edge cases for fp8."""
device = "cuda"
dtype = torch.float8_e4m3fn
# Test with single batch element
x = torch.randn(10, 8, 16, dtype=torch.float32, device=device) * 0.1
x = x.to(dtype=dtype)
lengths = torch.tensor([10], device=device)
result = pack_seq_triton(x, lengths)
assert result.shape == (1, 10, 8, 16)
# Test with very short sequences
x = torch.randn(20, 4, 8, dtype=torch.float32, device=device) * 0.1
x = x.to(dtype=dtype)
lengths = torch.tensor([1, 1, 1], device=device)
result = pack_seq_triton(x, lengths)
assert result.shape == (3, 1, 4, 8)
# Test with different sequence lengths
x = torch.randn(15, 8, 16, dtype=torch.float32, device=device) * 0.1
x = x.to(dtype=dtype)
lengths = torch.tensor([5, 7, 3], device=device)
result = pack_seq_triton(x, lengths)
assert result.shape == (3, 7, 8, 16)
def test_pack_seq_different_block_sizes_fp8():
"""Test pack_seq_triton with different block sizes for fp8."""
device = "cuda"
dtype = torch.float8_e4m3fn
N, H, D, B = 100, 16, 32, 4
lengths = torch.tensor([25, 25, 25, 25], device=device)
x = torch.randn(N, H, D, dtype=torch.float32, device=device) * 0.1
x = x.to(dtype=dtype)
# Test different block sizes
for block_t, block_d in [(32, 32), (64, 64), (128, 128)]:
result = pack_seq_triton(x, lengths, block_t=block_t, block_d=block_d)
assert result.shape == (B, 25, H, D)
# Check that valid data is preserved (within fp8 precision)
for b in range(B):
start_idx = b * 25
expected_data = x[start_idx:start_idx + 25].to(torch.float32)
actual_data = result[b, :25].to(torch.float32)
assert_close(actual_data, expected_data, rtol=1e-1, atol=1e-2)
def test_pack_seq_shape_consistency():
"""Test that pack_seq_triton maintains shape consistency."""
device = "cuda"
dtype = torch.float8_e4m3fn
N, H, D, B = 20, 8, 16, 2
lengths = torch.tensor([10, 10], device=device)
x = torch.randn(N, H, D, dtype=torch.float32, device=device) * 0.1
x = x.to(dtype=dtype)
result = pack_seq_triton(x, lengths)
# Check shape consistency
assert result.shape[0] == B # Batch dimension
assert result.shape[1] == lengths.max().item() # Max sequence length
assert result.shape[2:] == x.shape[1:] # Feature dimensions preserved
def test_pack_unpack_roundtrip_fp8():
"""Test that pack -> unpack gives us back the original data for fp8."""
device = "cuda"
dtype = torch.float8_e4m3fn
# Test cases with 3D tensors
test_cases = [
(6, 8, 4, 2, [3, 3]),
(10, 4, 8, 3, [2, 4, 4]),
(20, 16, 32, 4, [5, 5, 5, 5]),
(15, 8, 16, 3, [7, 5, 3]),
]
for N, H, D, B, lengths_list in test_cases:
# Create input tensor with small values for fp8
x = torch.randn(N, H, D, dtype=torch.float32, device=device) * 0.1
x = x.to(dtype=dtype)
lengths = torch.tensor(lengths_list, device=device)
# Pack the data
packed = pack_seq_triton(x, lengths)
# Unpack the data
unpacked = unpack_seq_triton(packed, lengths)
# Check that we get back the original data (within fp8 precision)
assert unpacked.shape == x.shape
x_f32 = x.to(torch.float32)
unpacked_f32 = unpacked.to(torch.float32)
assert_close(x_f32, unpacked_f32, rtol=1e-3, atol=1e-3)
# Unpack without explicit start locations (computed in kernel)
unpacked_with_loc = unpack_seq_triton(packed, lengths)
assert_close(x_f32,
unpacked_with_loc.to(torch.float32),
rtol=1e-3,
atol=1e-2)
def test_unpack_seq_triton_edge_cases_fp8():
"""Test unpack function with edge cases for fp8."""
device = "cuda"
dtype = torch.float8_e4m3fn
# Test with single batch element
x = torch.randn(10, 8, 16, dtype=torch.float32, device=device) * 0.1
x = x.to(dtype=dtype)
lengths = torch.tensor([10], device=device)
packed = pack_seq_triton(x, lengths)
unpacked = unpack_seq_triton(packed, lengths)
assert unpacked.shape == x.shape
assert_close(x.to(torch.float32),
unpacked.to(torch.float32),
rtol=1e-1,
atol=1e-2)
# Test with very short sequences
x = torch.randn(20, 4, 8, dtype=torch.float32, device=device) * 0.1
x = x.to(dtype=dtype)
lengths = torch.tensor([1, 1, 1], device=device)
packed = pack_seq_triton(x, lengths)
unpacked = unpack_seq_triton(packed, lengths)
# Only compare the first 3 elements that were actually packed
assert_close(x[:3].to(torch.float32),
unpacked.to(torch.float32),
rtol=1e-1,
atol=1e-2)
x = torch.randn(15, 8, 16, dtype=torch.float32, device=device) * 0.1
x = x.to(dtype=dtype)
lengths = torch.tensor([5, 7, 3], device=device)
packed = pack_seq_triton(x, lengths)
unpacked = unpack_seq_triton(packed, lengths)
assert unpacked.shape == x.shape
assert_close(x.to(torch.float32),
unpacked.to(torch.float32),
rtol=1e-1,
atol=1e-2)

View File

@ -1,52 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
@pytest.fixture
def sample_regex():
return (r"((25[0-5]|(2[0-4]|1\d|[1-9]|)\d)\.){3}"
r"(25[0-5]|(2[0-4]|1\d|[1-9]|)\d)")
@pytest.fixture
def sample_json_schema():
return {
"type": "object",
"properties": {
"name": {
"type": "string"
},
"age": {
"type": "integer"
},
"skills": {
"type": "array",
"items": {
"type": "string",
"maxLength": 10
},
"minItems": 3
},
"work_history": {
"type": "array",
"items": {
"type": "object",
"properties": {
"company": {
"type": "string"
},
"duration": {
"type": "number"
},
"position": {
"type": "string"
}
},
"required": ["company", "position"]
}
}
},
"required": ["name", "age", "skills", "work_history"]
}

View File

@ -10,7 +10,7 @@ from vllm.model_executor.model_loader import tensorizer as tensorizer_mod
from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
from vllm.v1.executor.abstract import UniProcExecutor
from vllm.worker.worker_base import WorkerWrapperBase
from vllm.v1.worker.worker_base import WorkerWrapperBase
MODEL_REF = "facebook/opt-125m"

View File

@ -14,6 +14,7 @@ import pytest
import torch
import vllm.model_executor.model_loader.tensorizer
from tests.utils import VLLM_PATH, RemoteOpenAIServer
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
# yapf: disable
@ -27,7 +28,6 @@ from vllm.model_executor.model_loader.tensorizer_loader import (
# yapf: enable
from vllm.utils import PlaceholderModule
from ..utils import VLLM_PATH, RemoteOpenAIServer
from .conftest import DummyExecutor, assert_from_collective_rpc
try:

View File

@ -207,6 +207,7 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
trust_remote_code=True),
"DeepseekV3ForCausalLM": _HfExamplesInfo("deepseek-ai/DeepSeek-V3", # noqa: E501
trust_remote_code=True),
"DeepseekV32ForCausalLM": _HfExamplesInfo("deepseek-ai/DeepSeek-V3.2-Exp"),
"Ernie4_5ForCausalLM": _HfExamplesInfo("baidu/ERNIE-4.5-0.3B-PT",
min_transformers_version="4.54"),
"Ernie4_5_MoeForCausalLM": _HfExamplesInfo("baidu/ERNIE-4.5-21B-A3B-PT",
@ -298,9 +299,6 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
"MistralForCausalLM": _HfExamplesInfo("mistralai/Mistral-7B-Instruct-v0.1"),
"MixtralForCausalLM": _HfExamplesInfo("mistralai/Mixtral-8x7B-Instruct-v0.1", # noqa: E501
{"tiny": "TitanML/tiny-mixtral"}), # noqa: E501
"MotifForCausalLM": _HfExamplesInfo("Motif-Technologies/Motif-2.6B",
trust_remote_code=True,
v0_only=True),
"MptForCausalLM": _HfExamplesInfo("mpt", is_available_online=False),
"MPTForCausalLM": _HfExamplesInfo("mosaicml/mpt-7b"),
"NemotronForCausalLM": _HfExamplesInfo("nvidia/Minitron-8B-Base"),
@ -642,7 +640,7 @@ _SPECULATIVE_DECODING_EXAMPLE_MODELS = {
speculative_model="baidu/ERNIE-4.5-21B-A3B-PT"),
"Glm4MoeMTPModel": _HfExamplesInfo("zai-org/GLM-4.5",
speculative_model="zai-org/GLM-4.5",
min_transformers_version="4.54",
min_transformers_version="4.56",
is_available_online=False),
"LongCatFlashMTPModel": _HfExamplesInfo(
"meituan-longcat/LongCat-Flash-Chat",
@ -651,6 +649,9 @@ _SPECULATIVE_DECODING_EXAMPLE_MODELS = {
"MiMoMTPModel": _HfExamplesInfo("XiaomiMiMo/MiMo-7B-RL",
trust_remote_code=True,
speculative_model="XiaomiMiMo/MiMo-7B-RL"),
"Eagle3Qwen2_5vlForCausalLM": _HfExamplesInfo(
"Qwen/Qwen2.5-VL-7B-Instruct",
speculative_model="Rayzl/qwen2.5-vl-7b-eagle3-sgl"),
"Qwen3NextMTP": _HfExamplesInfo("Qwen/Qwen3-Next-80B-A3B-Instruct",
min_transformers_version="4.56.3"),
}

View File

@ -8,7 +8,8 @@ import pytest
from vllm import LLM
from vllm.utils import GiB_bytes
from vllm.v1.core.kv_cache_utils import get_kv_cache_configs
from vllm.v1.core.kv_cache_utils import (generate_scheduler_kv_cache_config,
get_kv_cache_configs)
from vllm.v1.engine.core import EngineCore as V1EngineCore
from ..utils import create_new_process_for_each_test
@ -62,11 +63,13 @@ def can_initialize(model_arch: str, monkeypatch: pytest.MonkeyPatch,
# Avoid calling model.forward()
def _initialize_kv_caches_v1(self, vllm_config):
kv_cache_specs = self.model_executor.get_kv_cache_specs()
scheduler_kv_cache_config = get_kv_cache_configs(
kv_cache_configs = get_kv_cache_configs(
vllm_config,
kv_cache_specs,
[10 * GiB_bytes],
)[0]
)
scheduler_kv_cache_config = generate_scheduler_kv_cache_config(
kv_cache_configs)
# gpu_blocks (> 0), cpu_blocks, scheduler_kv_cache_config
return 1, 0, scheduler_kv_cache_config
@ -76,10 +79,6 @@ def can_initialize(model_arch: str, monkeypatch: pytest.MonkeyPatch,
if model_info.v0_only:
# NOTE(woosuk): skip the test for V0-only models
return
if model_arch in ("Phi4FlashForCausalLM", "MotifForCausalLM"):
pytest.skip(
"Differential Flash Attention backend has been removed.")
if model_arch == "GptOssForCausalLM":
# FIXME: A hack to bypass FA3 assertion because our CI's L4 GPU
# has cc==8.9 which hasn't supported FA3 yet. Remove this hack when

View File

@ -100,10 +100,9 @@ def test_distributed(
kwargs_test=kwargs)
@pytest.mark.skipif(
current_platform.is_rocm(),
reason="bitsandbytes quantization is currently not supported in rocm.")
@pytest.mark.parametrize("model, quantization_kwargs", [
("TheBloke/TinyLlama-1.1B-Chat-v0.3-AWQ", {}),
("TheBloke/TinyLlama-1.1B-Chat-v0.3-GPTQ", {}),
(
"meta-llama/Llama-3.2-1B-Instruct",
{
@ -121,6 +120,11 @@ def test_quantization(
max_tokens: int,
num_logprobs: int,
) -> None:
if (current_platform.is_rocm()
and quantization_kwargs.get("quantization", "") == "bitsandbytes"):
pytest.skip(
"bitsandbytes quantization is currently not supported in rocm.")
with vllm_runner(
model, model_impl="auto", enforce_eager=True,
**quantization_kwargs) as vllm_model: # type: ignore[arg-type]

View File

@ -18,7 +18,7 @@ from vllm.utils import get_open_port, update_environment_variables
@pytest.mark.parametrize(
("feature_sample_layers", "num_layers_loaded", "max_possible_layers",
("select_layers", "num_layers_loaded", "max_possible_layers",
"expected_features"),
[
# All layers loaded
@ -28,8 +28,8 @@ from vllm.utils import get_open_port, update_environment_variables
([1, 10], 10, 20, [1, 10]),
([-20, -11], 10, 20, [1, 10]),
])
def test_resolve_visual_encoder_outputs(feature_sample_layers,
num_layers_loaded, max_possible_layers,
def test_resolve_visual_encoder_outputs(select_layers, num_layers_loaded,
max_possible_layers,
expected_features):
"""
Test that offsets are correctly handled for vision feature layers.
@ -39,9 +39,10 @@ def test_resolve_visual_encoder_outputs(feature_sample_layers,
]
output_tensor = resolve_visual_encoder_outputs(
encoder_outputs=encoder_outputs,
feature_sample_layers=feature_sample_layers,
post_layer_norm=None,
max_possible_layers=max_possible_layers)
select_layers=select_layers,
max_possible_layers=max_possible_layers,
)
assert torch.equal(torch.tensor(expected_features), output_tensor)

View File

@ -66,7 +66,12 @@ async def test_fetch_image_http(image_url: str):
@pytest.mark.parametrize("suffix", get_supported_suffixes())
async def test_fetch_image_base64(url_images: dict[str, Image.Image],
raw_image_url: str, suffix: str):
connector = MediaConnector()
connector = MediaConnector(
# Domain restriction should not apply to data URLs.
allowed_media_domains=[
"www.bogotobogo.com",
"github.com",
])
url_image = url_images[raw_image_url]
try:
@ -387,3 +392,29 @@ def test_argsort_mm_positions(case):
modality_idxs = argsort_mm_positions(mm_positions)
assert modality_idxs == expected_modality_idxs
@pytest.mark.asyncio
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
@pytest.mark.parametrize("num_frames", [-1, 32, 1800])
async def test_allowed_media_domains(video_url: str, num_frames: int):
connector = MediaConnector(
media_io_kwargs={"video": {
"num_frames": num_frames,
}},
allowed_media_domains=[
"www.bogotobogo.com",
"github.com",
])
video_sync, metadata_sync = connector.fetch_video(video_url)
video_async, metadata_async = await connector.fetch_video_async(video_url)
assert np.array_equal(video_sync, video_async)
assert metadata_sync == metadata_async
disallowed_url = "https://upload.wikimedia.org/wikipedia/commons/4/47/PNG_transparency_demonstration_1.png"
with pytest.raises(ValueError):
_, _ = connector.fetch_video(disallowed_url)
with pytest.raises(ValueError):
_, _ = await connector.fetch_video_async(disallowed_url)

View File

@ -26,5 +26,5 @@ class DummyPlatform(Platform):
def get_attn_backend_cls(self, backend_name, head_size, dtype,
kv_cache_dtype, block_size, use_v1, use_mla,
has_sink):
has_sink, use_sparse):
return "vllm_add_dummy_platform.dummy_attention_backend.DummyAttentionBackend" # noqa E501

View File

@ -0,0 +1,132 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
import os
import pytest
from tests.utils import RemoteOpenAIServer
from vllm.platforms import current_platform
if not current_platform.is_device_capability(100):
pytest.skip("This test only runs on Blackwell GPUs (SM100).",
allow_module_level=True)
os.environ["FLASHINFER_NVCC_THREADS"] = "16"
# dummy_hf_overrides = {"num_layers": 4, "num_hidden_layers": 4,
# "text_config": {"num_layers": 4, "num_hidden_layers": 4}}
dummy_hf_overrides = {"num_layers": 4, "num_hidden_layers": 4}
def can_initialize(model: str, extra_args: list[str]):
# Server arguments
server_args = [
"--max-model-len",
"2048",
"--max-num-batched-tokens",
"256",
"--load-format",
"dummy",
"--trust-remote-code",
"--limit-mm-per-prompt",
json.dumps({"image": 0}),
*extra_args,
]
# Launch server and make a simple request
with RemoteOpenAIServer(
model,
server_args,
max_wait_seconds=1000, # Due to FlashInfer compile
override_hf_configs=dummy_hf_overrides) as server:
client = server.get_client()
# Make a simple request to verify the server works
completion = client.completions.create(
model=model,
prompt=["Hello, World!"],
temperature=0,
max_tokens=2,
)
print(completion)
assert completion.choices[0].text is not None
## Llama4 ##
@pytest.mark.skip(reason=(
"RuntimeError: run_moe() Expected a value of type "
"'Optional[List[Tensor]]' for argument '_9' but instead found type "
"'list'."))
def test_llama4_fp8_tensor_moe_flashinfer_cutlass(
monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_FP8", "1")
monkeypatch.setenv("VLLM_FLASHINFER_MOE_BACKEND", "throughput")
can_initialize("nvidia/Llama-4-Scout-17B-16E-Instruct-FP8", [])
@pytest.mark.skip(reason="Works, but takes too long to run")
def test_llama4_fp8_tensor_moe_flashinfer_trtllm(
monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_FP8", "1")
monkeypatch.setenv("VLLM_FLASHINFER_MOE_BACKEND", "latency")
can_initialize("nvidia/Llama-4-Scout-17B-16E-Instruct-FP8", [])
@pytest.mark.skip(reason="Works, but takes too long to run")
def test_llama4_nvfp4_moe_flashinfer_cutlass(monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_FP4", "1")
monkeypatch.setenv("VLLM_FLASHINFER_MOE_BACKEND", "throughput")
can_initialize("nvidia/Llama-4-Scout-17B-16E-Instruct-FP4", [])
@pytest.mark.skip(reason="RuntimeError: No kernel found for the given options")
def test_llama4_nvfp4_moe_flashinfer_trtllm(monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_FP4", "1")
monkeypatch.setenv("VLLM_FLASHINFER_MOE_BACKEND", "latency")
can_initialize("nvidia/Llama-4-Scout-17B-16E-Instruct-FP4", [])
## DeepSeekV3 ##
def test_deepseek_fp8_block_moe_deep_gemm(monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_DEEP_GEMM", "1")
can_initialize("deepseek-ai/DeepSeek-V3.1", [])
def test_deepseek_nvfp4_moe_flashinfer_cutlass(
monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_FP4", "1")
monkeypatch.setenv("VLLM_FLASHINFER_MOE_BACKEND", "throughput")
can_initialize("nvidia/DeepSeek-R1-0528-FP4-v2", [])
@pytest.mark.skip(reason="RuntimeError: No kernel found for the given options")
def test_deepseek_nvfp4_moe_flashinfer_trtllm(monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_FP4", "1")
monkeypatch.setenv("VLLM_FLASHINFER_MOE_BACKEND", "latency")
can_initialize("nvidia/DeepSeek-R1-0528-FP4-v2", [])
## GPT-OSS ##
def test_gptoss_mxfp4bf16_moe_flashinfer(monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_MXFP4_BF16", "1")
can_initialize("openai/gpt-oss-20b", [])
def test_gptoss_mxfp4mxfp8_moe_flashinfer_cutlass(
monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS", "1")
can_initialize("openai/gpt-oss-20b", [])
def test_gptoss_mxfp4mxfp8_moe_flashinfer_trtllm(
monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8", "1")
can_initialize("openai/gpt-oss-20b", [])

View File

@ -0,0 +1,203 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from transformers import AutoTokenizer
from tests.reasoning.utils import run_reasoning_extraction
from vllm.reasoning import ReasoningParser, ReasoningParserManager
parser_name = "glm45"
start_token = "<think>"
end_token = "</think>"
REASONING_MODEL_NAME = "zai-org/GLM-4.5"
@pytest.fixture(scope="module")
def glm45_tokenizer():
return AutoTokenizer.from_pretrained(REASONING_MODEL_NAME)
WITH_THINK = {
"output": "<think>This is a reasoning section</think>This is the rest",
"reasoning_content": "This is a reasoning section",
"content": "This is the rest",
"is_reasoning_end": True,
}
WITH_THINK_STREAM = {
"output": "<think>This is a reasoning section</think>This is the rest",
"reasoning_content": "This is a reasoning section",
"content": "This is the rest",
"is_reasoning_end": True,
}
WITHOUT_THINK = {
"output": "This is the rest",
"reasoning_content": None,
"content": "This is the rest",
"is_reasoning_end": False,
}
WITHOUT_THINK_STREAM = {
"output": "This is the rest",
"reasoning_content": None,
"content": "This is the rest",
"is_reasoning_end": False,
}
COMPLETE_REASONING = {
"output": "<think>This is a reasoning section</think>",
"reasoning_content": "This is a reasoning section",
"content": None,
"is_reasoning_end": True,
}
MULTILINE_REASONING = {
"output":
"<think>This is a reasoning\nsection</think>This is the rest\nThat",
"reasoning_content": "This is a reasoning\nsection",
"content": "This is the rest\nThat",
"is_reasoning_end": True,
}
ONLY_OPEN_TAG = {
"output": "<think>This is a reasoning section",
"reasoning_content": None,
"content": "<think>This is a reasoning section",
"is_reasoning_end": False,
}
ONLY_OPEN_TAG_STREAM = {
"output": "<think>This is a reasoning section",
"reasoning_content": "This is a reasoning section",
"content": None,
"is_reasoning_end": False,
}
TEST_CASES = [
pytest.param(
False,
WITH_THINK,
id="with_think",
),
pytest.param(
True,
WITH_THINK_STREAM,
id="with_think_stream",
),
pytest.param(
False,
WITHOUT_THINK,
id="without_think",
),
pytest.param(
True,
WITHOUT_THINK_STREAM,
id="without_think_stream",
),
pytest.param(
False,
COMPLETE_REASONING,
id="complete_reasoning",
),
pytest.param(
True,
COMPLETE_REASONING,
id="complete_reasoning_stream",
),
pytest.param(
False,
MULTILINE_REASONING,
id="multiline_reasoning",
),
pytest.param(
True,
MULTILINE_REASONING,
id="multiline_reasoning_stream",
),
pytest.param(
False,
ONLY_OPEN_TAG,
id="only_open_tag",
),
pytest.param(
True,
ONLY_OPEN_TAG_STREAM,
id="only_open_tag_stream",
),
]
STILL_REASONING_PROMPT = """[gMASK]<sop><|system|>
You are a helpful assistant.<|user|>
What is the capital of France?<|assistant|>
<think>The user is asking for the capital of"""
DONE_REASONING_PROMPT = """[gMASK]<sop><|system|>
You are a helpful assistant.<|user|>
What is the capital of France?<|assistant|>
<think>The user is asking for the capital of France.</think>
The capital of France is Paris."""
MULTI_TURN_STILL_REASONING_PROMPT = """[gMASK]<sop><|system|>
You are a helpful assistant.<|user|>
What is the capital of France?<|assistant|>
<think></think>
The capital of France is Paris.<|user|>
What about Chile?<|assistant|>
<think>The user is asking for the capital of"""
MULTI_TURN_DONE_REASONING_PROMPT = """[gMASK]<sop><|system|>
You are a helpful assistant.<|user|>
What is the capital of France?<|assistant|>
<think></think>
The capital of France is Paris.<|user|>
What about Chile?<|assistant|>
<think>The user is asking for the capital of Chile.</think>
The capital of Chile is Santiago."""
REASONING_END_TEST_CASES = [
pytest.param(STILL_REASONING_PROMPT, False, id="still_reasoning"),
pytest.param(DONE_REASONING_PROMPT, True, id="done_reasoning"),
pytest.param(MULTI_TURN_STILL_REASONING_PROMPT,
False,
id="multi_turn_still_reasoning"),
pytest.param(MULTI_TURN_DONE_REASONING_PROMPT,
True,
id="multi_turn_done_reasoning")
]
@pytest.mark.parametrize("streaming, param_dict", TEST_CASES)
def test_reasoning(
streaming: bool,
param_dict: dict,
glm45_tokenizer,
):
output = glm45_tokenizer.tokenize(param_dict["output"])
output_tokens: list[str] = [
glm45_tokenizer.convert_tokens_to_string([token]) for token in output
]
parser: ReasoningParser = ReasoningParserManager.get_reasoning_parser(
parser_name)(glm45_tokenizer)
reasoning, content = run_reasoning_extraction(parser,
output_tokens,
streaming=streaming)
assert reasoning == param_dict["reasoning_content"]
assert content == param_dict["content"]
output_ids = glm45_tokenizer.convert_tokens_to_ids(output)
is_reasoning_end = parser.is_reasoning_end(output_ids)
assert is_reasoning_end == param_dict["is_reasoning_end"]
@pytest.mark.parametrize("prompt, is_reasoning_end", REASONING_END_TEST_CASES)
def test_is_reasoning_end_full_prompt(prompt: str, is_reasoning_end: bool,
glm45_tokenizer):
parser: ReasoningParser = ReasoningParserManager.get_reasoning_parser(
parser_name)(glm45_tokenizer)
tokens = glm45_tokenizer.tokenize(prompt)
token_ids = glm45_tokenizer.convert_tokens_to_ids(tokens)
check_is_reasoning_end = parser.is_reasoning_end(token_ids)
assert check_is_reasoning_end == is_reasoning_end

View File

@ -14,6 +14,9 @@ from vllm.model_executor.models.interfaces import supports_eagle3
pytest.param(
"nm-testing/Speculator-Qwen3-8B-Eagle3-converted-071-quantized",
id="qwen3-eagle3-speculator"),
pytest.param(
"nm-testing/Speculator-Qwen3-8B-Eagle3-converted-071-quantized-w4a16",
id="qwen3-eagle3-speculator-w4a16-verifier"),
])
def test_eagle3_speculators_model(vllm_runner, example_prompts, model_path,
monkeypatch):

View File

@ -91,8 +91,10 @@ class RemoteOpenAIServer:
env['VLLM_WORKER_MULTIPROC_METHOD'] = 'spawn'
if env_dict is not None:
env.update(env_dict)
serve_cmd = ["vllm", "serve", model, *vllm_serve_args]
print(f"Launching RemoteOpenAIServer with: {' '.join(serve_cmd)}")
self.proc: subprocess.Popen = subprocess.Popen(
["vllm", "serve", model, *vllm_serve_args],
serve_cmd,
env=env,
stdout=sys.stdout,
stderr=sys.stderr,
@ -1141,6 +1143,8 @@ def get_attn_backend_list_based_on_platform() -> list[str]:
print("Skip FLASH_ATTN on ROCm as aiter is not installed")
return attn_backend_list
elif current_platform.is_xpu():
return ["FLASH_ATTN", "TRITON_ATTN"]
else:
raise ValueError("Unsupported platform")

View File

@ -0,0 +1,69 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
from typing import Any
from vllm.utils.gc_utils import (GCDebugConfig, _compute_detailed_type,
_compute_top_gc_collected_objects)
@dataclass
class Normal:
v: int
@dataclass
class ListWrapper:
vs: list[int]
def __len__(self) -> int:
return len(self.vs)
def test_compute_detailed_type():
assert _compute_detailed_type(
Normal(v=8)) == "<class 'tests.utils_.test_gc_utils.Normal'>"
assert _compute_detailed_type([1, 2, 3]) == "<class 'list'>(size:3)"
assert _compute_detailed_type({4, 5}) == "<class 'set'>(size:2)"
assert _compute_detailed_type({6: 7}) == "<class 'dict'>(size:1)"
assert _compute_detailed_type(ListWrapper(
vs=[])) == "<class 'tests.utils_.test_gc_utils.ListWrapper'>(size:0)"
def test_compute_top_gc_collected_objects():
objects: list[Any] = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12],
{13, 14}, {
15: 16,
17: 18
},
Normal(v=19),
Normal(v=20),
Normal(v=21)]
assert _compute_top_gc_collected_objects(objects, top=-1) == ""
assert _compute_top_gc_collected_objects(objects, top=0) == ""
assert _compute_top_gc_collected_objects(
objects, top=1) == " 4:<class 'list'>(size:3)"
assert _compute_top_gc_collected_objects(objects, top=2) == "\n".join([
" 4:<class 'list'>(size:3)",
" 3:<class 'tests.utils_.test_gc_utils.Normal'>"
])
assert _compute_top_gc_collected_objects(objects, top=3) == "\n".join([
" 4:<class 'list'>(size:3)",
" 3:<class 'tests.utils_.test_gc_utils.Normal'>",
" 1:<class 'set'>(size:2)"
])
def test_gc_debug_config():
assert not GCDebugConfig(None).enabled
assert not GCDebugConfig("").enabled
assert not GCDebugConfig("0").enabled
config = GCDebugConfig("1")
assert config.enabled
assert config.top_objects == -1
config = GCDebugConfig("{\"top_objects\":5}")
assert config.enabled
assert config.top_objects == 5

View File

@ -1,6 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Tests for v1 MLA backends without GPUModelRunner dependency."""
from typing import Optional, Union
import pytest
import torch
@ -10,6 +11,7 @@ from tests.v1.attention.utils import (BatchSpec, _Backend,
create_standard_kv_cache_spec,
create_vllm_config,
get_attention_backend)
from vllm import _custom_ops as ops
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, cdiv
from vllm.v1.attention.backends.utils import CommonAttentionMetadata
from vllm.v1.kv_cache_interface import FullAttentionSpec
@ -78,7 +80,9 @@ def create_and_prepopulate_kv_cache(
device: torch.device,
num_blocks: int,
common_attn_metadata: CommonAttentionMetadata,
randomize_blocks: bool = True) -> torch.Tensor:
randomize_blocks: bool = True,
kv_cache_dtype: Optional[str] = None,
scale: Union[float, torch.Tensor] = 1.0) -> torch.Tensor:
"""Create and prepopulate an MLA KV cache with context data.
Args:
@ -93,6 +97,11 @@ def create_and_prepopulate_kv_cache(
common_attn_metadata: Common attention metadata
randomize_blocks: Whether to randomly permute blocks
or use sequential order
kv_cache_dtype: Optional kv cache dtype string. When set to
"fp8_ds_mla" the cache is populated using the
fp8 DeepSeek MLA layout via concat_and_cache_mla.
scale: Scaling factor forwarded to concat_and_cache_mla when the
fp8 cache layout is requested.
Returns:
MLA KV cache tensor
@ -105,23 +114,61 @@ def create_and_prepopulate_kv_cache(
block_table = common_attn_metadata.block_table_tensor
slot_mapping = common_attn_metadata.slot_mapping
# Create MLA KV cache: (num_blocks, block_size, head_size)
kv_cache = torch.empty(num_blocks,
block_size,
head_size,
dtype=dtype,
device=device)
kv_cache_flat = kv_cache.view(-1, head_size)
use_fp8_ds_mla = kv_cache_dtype == "fp8_ds_mla"
if use_fp8_ds_mla:
if not kv_c_contexts:
raise ValueError("kv_c_contexts cannot be empty when using"
" fp8_ds_mla cache dtype")
kv_lora_rank = kv_c_contexts[0].shape[-1]
rope_dim = k_pe_contexts[0].shape[-1]
entry_size = kv_lora_rank + 4 * 4 + 2 * rope_dim
kv_cache = torch.zeros(num_blocks,
block_size,
entry_size,
dtype=torch.uint8,
device=device)
scale_tensor = (scale
if isinstance(scale, torch.Tensor) else torch.tensor(
scale, dtype=torch.float32, device=device))
scale_tensor = scale_tensor.to(device=device, dtype=torch.float32)
else:
# Create MLA KV cache: (num_blocks, block_size, head_size)
kv_cache = torch.empty(num_blocks,
block_size,
head_size,
dtype=dtype,
device=device)
kv_cache_flat = kv_cache.view(-1, head_size)
# Populate the cache with the context tokens
# Start from block_id=1 since block_id=0 is considered the null block
start_block_idx = 1
for i in range(batch_size):
kv_c_context, k_pe_context = kv_c_contexts[i], k_pe_contexts[i]
kv_context = torch.cat([kv_c_context, k_pe_context.squeeze(1)], dim=-1)
context_len = kv_c_context.shape[0]
if context_len == 0:
start_block_idx += cdiv(int(seq_lens[i]), block_size)
continue
start = start_block_idx * block_size
end = start + kv_context.shape[0]
kv_cache_flat[start:end, ...] = kv_context
if use_fp8_ds_mla:
slots = torch.arange(context_len, device=device,
dtype=torch.long) + start
ops.concat_and_cache_mla(
kv_c_context,
k_pe_context.squeeze(1),
kv_cache,
slots,
kv_cache_dtype="fp8_ds_mla",
scale=scale_tensor,
)
else:
kv_context = torch.cat(
[kv_c_context, k_pe_context.squeeze(1)], dim=-1)
end = start + kv_context.shape[0]
kv_cache_flat[start:end, ...] = kv_context
# Stay block aligned and allocate enough blocks for the new tokens
start_block_idx += cdiv(int(seq_lens[i]), block_size)

View File

@ -0,0 +1,426 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Unit tests for the FlashMLA sparse backend utilities."""
import math
from types import MethodType, SimpleNamespace
import numpy as np
import pytest
import torch
from tests.v1.attention.test_mla_backends import (
BATCH_SPECS, BatchSpec, MockAttentionLayer,
create_and_prepopulate_kv_cache)
from tests.v1.attention.utils import (create_common_attn_metadata,
create_standard_kv_cache_spec,
create_vllm_config)
from vllm import _custom_ops as ops
from vllm.attention.ops import flashmla
from vllm.model_executor.layers.linear import ColumnParallelLinear
from vllm.utils import cdiv
from vllm.v1.attention.backends.mla.flashmla_sparse import (
FlashMLASparseBackend, FlashMLASparseDecodeAndContextMetadata,
FlashMLASparseImpl, FlashMLASparseMetadata)
SPARSE_BACKEND_BATCH_SPECS = {
name: BATCH_SPECS[name]
for name in [
"mixed_small",
"mixed_medium",
"small_prefill",
"medium_prefill",
"single_prefill",
]
}
SPARSE_BACKEND_BATCH_SPECS["large_q_prefill"] = BatchSpec(seq_lens=[1024] * 2,
query_lens=[256] * 2)
SPARSE_BACKEND_BATCH_SPECS["large_q_pure_prefill"] = BatchSpec(
seq_lens=[256] * 2, query_lens=[256] * 2)
def _dequantize_fp8_ds_mla_entry(
cache_slice: torch.Tensor, kv_lora_rank: int, rope_dim: int,
dtype: torch.dtype) -> tuple[torch.Tensor, torch.Tensor]:
"""Dequantize a single fp8_ds_mla cache entry back to latent + rope."""
# The first kv_lora_rank bytes store FP8 latent values with one scale per
# 128 element tile written as float32 right after the latent payload.
scales = cache_slice.view(torch.float32)[kv_lora_rank //
4:kv_lora_rank // 4 + 4]
latent = torch.empty(kv_lora_rank,
dtype=torch.float16,
device=cache_slice.device)
for tile_idx in range(4):
tile_start = tile_idx * 128
tile_end = tile_start + 128
ops.convert_fp8(latent[tile_start:tile_end],
cache_slice[tile_start:tile_end],
float(scales[tile_idx].item()),
kv_dtype="fp8")
latent = latent.to(dtype)
rope_offset = kv_lora_rank // 2 + 8
rope_vals = cache_slice.view(dtype)[rope_offset:rope_offset + rope_dim]
return latent, rope_vals.clone()
def _quantize_dequantize_fp8_ds_mla(
kv_c: torch.Tensor, k_pe: torch.Tensor, block_size: int,
scale: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""Round-trip kv_c/k_pe though the fp8_ds_mla cache layout."""
if kv_c.numel() == 0:
return kv_c.clone(), k_pe.clone()
kv_lora_rank = kv_c.shape[-1]
rope_dim = k_pe.shape[-1]
num_tokens = kv_c.shape[0]
num_blocks = max(1, math.ceil(num_tokens / block_size))
entry_size = kv_lora_rank + 4 * 4 + 2 * rope_dim
tmp_cache = torch.zeros(num_blocks,
block_size,
entry_size,
dtype=torch.uint8,
device=kv_c.device)
slot_mapping = torch.arange(num_tokens,
dtype=torch.long,
device=kv_c.device)
ops.concat_and_cache_mla(kv_c,
k_pe,
tmp_cache,
slot_mapping,
kv_cache_dtype="fp8_ds_mla",
scale=scale)
dequant_kv_c = torch.empty_like(kv_c)
dequant_k_pe = torch.empty_like(k_pe)
for token_idx in range(num_tokens):
slot = slot_mapping[token_idx].item()
block_idx = slot // block_size
block_offset = slot % block_size
cache_slice = tmp_cache[block_idx, block_offset]
latent, rope_vals = _dequantize_fp8_ds_mla_entry(
cache_slice, kv_lora_rank, rope_dim, kv_c.dtype)
dequant_kv_c[token_idx] = latent
dequant_k_pe[token_idx] = rope_vals
return dequant_kv_c, dequant_k_pe
def test_sparse_backend_metadata_registration():
backend = FlashMLASparseBackend
assert backend.get_name() == "FLASHMLA_SPARSE_VLLM_V1"
assert backend.get_metadata_cls() is FlashMLASparseMetadata
assert backend.get_impl_cls() is FlashMLASparseImpl
dtype_list = backend.get_supported_dtypes()
assert torch.bfloat16 in dtype_list
shape = backend.get_kv_cache_shape(num_blocks=2,
block_size=64,
num_kv_heads=1,
head_size=576)
assert shape == (2, 64, 576)
def test_sparse_decode_metadata_filters_prefill_indices():
prefill_context_lengths = torch.tensor([4, 2], dtype=torch.int32)
metadata = FlashMLASparseDecodeAndContextMetadata(
scheduler_metadata=torch.tensor([[0]], dtype=torch.int32),
num_splits=torch.tensor([1, 1], dtype=torch.int32),
cache_lens=torch.tensor([10, 12], dtype=torch.int32),
prefill_context_lengths=prefill_context_lengths,
)
indices = torch.tensor([[0, 3, 5], [1, 2, 4]], dtype=torch.int32)
context_indices, new_token_indices = metadata.filter_prefill_indices(
indices)
expected_context = torch.tensor([[-1, -1, 5], [-1, -1, 4]],
dtype=torch.int32)
expected_new_tokens = torch.tensor([[-1, -1, 1], [-1, 0, 2]],
dtype=torch.int32)
assert torch.equal(context_indices, expected_context)
assert torch.equal(new_token_indices, expected_new_tokens)
def test_sparse_impl_zero_fills_when_metadata_missing():
impl = FlashMLASparseImpl.__new__(FlashMLASparseImpl)
dummy_layer = object()
q = torch.zeros((2, 1, 3))
k_c = torch.zeros((2, 3))
k_pe = torch.zeros((2, 1, 1))
kv_cache = torch.zeros((1, 1, 1))
output = torch.ones((2, 4))
result = FlashMLASparseImpl.forward(impl,
dummy_layer,
q,
k_c,
k_pe,
kv_cache,
attn_metadata=None,
output=output)
assert result is output
assert torch.all(result == 0)
@pytest.mark.parametrize("batch_name", list(SPARSE_BACKEND_BATCH_SPECS.keys()))
@pytest.mark.parametrize("kv_cache_dtype", ["fp8_ds_mla", "auto"])
def test_sparse_backend_decode_correctness(dist_init, batch_name,
kv_cache_dtype):
if not torch.cuda.is_available():
pytest.skip("CUDA is required for sparse MLA decode test")
device = torch.device("cuda")
dtype = torch.bfloat16
batch_spec = SPARSE_BACKEND_BATCH_SPECS[batch_name]
# Model hyper-parameters (kept intentionally small for the unit test)
num_heads = 128
kv_lora_rank = 512
qk_nope_head_dim = 128
qk_rope_head_dim = 64
v_head_dim = 128
head_size = kv_lora_rank + qk_rope_head_dim
topk_tokens = 2048
max_seqlen = max(batch_spec.seq_lens)
total_cache_tokens = sum(batch_spec.seq_lens)
block_size = 64
vllm_config = create_vllm_config(
model_name="deepseek-ai/DeepSeek-V2-Lite-Chat",
max_model_len=max_seqlen,
num_gpu_blocks=max(2048,
cdiv(total_cache_tokens, block_size) + 1),
block_size=block_size)
model_config = vllm_config.model_config
model_config.hf_config = SimpleNamespace(
attn_module_list_cfg=[{
"topk_tokens": topk_tokens
}])
model_config.hf_text_config = SimpleNamespace(
q_lora_rank=None,
kv_lora_rank=kv_lora_rank,
qk_nope_head_dim=qk_nope_head_dim,
qk_rope_head_dim=qk_rope_head_dim,
v_head_dim=v_head_dim,
model_type="deepseek_v2",
)
model_config.dtype = dtype
model_config.get_num_attention_heads = MethodType(
lambda self, parallel_config: num_heads, model_config)
model_config.get_num_kv_heads = MethodType(lambda self, parallel_config: 1,
model_config)
model_config.get_head_size = MethodType(lambda self: head_size,
model_config)
model_config.get_sliding_window = MethodType(lambda self: None,
model_config)
kv_cache_spec = create_standard_kv_cache_spec(vllm_config)
torch.manual_seed(0)
scale = 1.0 / math.sqrt(head_size)
# Shared MLA projection weights to keep reference and backend in sync
W_UK = torch.randn(kv_lora_rank,
num_heads,
qk_nope_head_dim,
dtype=dtype,
device=device)
W_UV = torch.randn(kv_lora_rank,
num_heads,
v_head_dim,
dtype=dtype,
device=device)
# Build synthetic decode-only workload
seq_lens = batch_spec.seq_lens
query_lens = batch_spec.query_lens
all_q_vllm, all_kv_c_vllm, all_k_pe_vllm = [], [], []
kv_c_contexts, k_pe_contexts = [], []
reference_outputs = []
kv_cache_scale = torch.tensor(1.0, dtype=torch.float32, device=device)
for i in range(batch_spec.batch_size):
s_len = seq_lens[i]
q_len = query_lens[i]
ctx_len = s_len - q_len
q_c = torch.rand(q_len,
num_heads,
qk_nope_head_dim + qk_rope_head_dim,
dtype=dtype,
device=device)
kv_c_full = torch.rand(s_len, kv_lora_rank, dtype=dtype, device=device)
k_pe_full = torch.rand(s_len,
1,
qk_rope_head_dim,
dtype=dtype,
device=device)
kv_c_full, k_pe_full = _quantize_dequantize_fp8_ds_mla(
kv_c_full,
k_pe_full.squeeze(1),
block_size=vllm_config.cache_config.block_size,
scale=kv_cache_scale,
)
q_nope, q_pe = q_c.split([qk_nope_head_dim, qk_rope_head_dim], dim=-1)
ql_nope = torch.einsum("qnh,lnh->qnl", q_nope, W_UK)
q_mqa = torch.cat([ql_nope, q_pe], dim=-1)
k_mqa = torch.cat([kv_c_full, k_pe_full], dim=-1)
k_mqa = k_mqa.unsqueeze(1).expand(-1, num_heads, -1)
v_mqa = kv_c_full.unsqueeze(1).expand(-1, num_heads, -1)
attn_mask = torch.ones(q_len, s_len, dtype=torch.bool, device=device)
causal_mask = torch.tril(torch.ones(q_len, q_len, device=device))
attn_mask[:, ctx_len:] = causal_mask
q_sdpa_in = q_mqa.unsqueeze(0).transpose(1, 2)
k_sdpa_in = k_mqa.unsqueeze(0).transpose(1, 2)
v_sdpa_in = v_mqa.unsqueeze(0).transpose(1, 2)
sdpa_out = torch.nn.functional.scaled_dot_product_attention(
q_sdpa_in, k_sdpa_in, v_sdpa_in, attn_mask=attn_mask, scale=scale)
sdpa_out = sdpa_out.transpose(1, 2).squeeze(0)
sdpa_out = torch.einsum("qnl,lnv->qnv", sdpa_out, W_UV)
reference_outputs.append(sdpa_out.flatten(start_dim=-2))
all_q_vllm.append(q_c)
all_kv_c_vllm.append(kv_c_full[ctx_len:])
all_k_pe_vllm.append(k_pe_full[ctx_len:])
kv_c_contexts.append(kv_c_full[:ctx_len + 1])
k_pe_contexts.append(k_pe_full[:ctx_len + 1])
query_vllm = torch.cat(all_q_vllm, dim=0)
kv_c_vllm = torch.cat(all_kv_c_vllm, dim=0)
k_pe_vllm = torch.cat(all_k_pe_vllm, dim=0)
sdpa_reference = torch.cat(reference_outputs, dim=0)
vllm_config.cache_config.cache_dtype = kv_cache_dtype
common_attn_metadata = create_common_attn_metadata(
batch_spec,
vllm_config.cache_config.block_size,
device,
arange_block_indices=True)
kv_cache = create_and_prepopulate_kv_cache(
kv_c_contexts=kv_c_contexts,
k_pe_contexts=k_pe_contexts,
block_size=vllm_config.cache_config.block_size,
head_size=head_size,
dtype=dtype,
device=device,
num_blocks=vllm_config.cache_config.num_gpu_blocks,
common_attn_metadata=common_attn_metadata,
randomize_blocks=False,
kv_cache_dtype=vllm_config.cache_config.cache_dtype,
scale=kv_cache_scale,
)
builder_cls = FlashMLASparseBackend.get_builder_cls()
builder = builder_cls(kv_cache_spec, ["placeholder"], vllm_config, device)
metadata = builder.build(common_prefix_len=0,
common_attn_metadata=common_attn_metadata)
starts = np.asarray(common_attn_metadata.query_start_loc_cpu,
dtype=np.int32)
seg_lengths = np.diff(starts)
positions = np.arange(starts[-1], dtype=np.int32) - np.repeat(
starts[:-1], seg_lengths)
seq_lengths = np.asarray(common_attn_metadata.seq_lens_cpu, dtype=np.int32)
prefix_lengths = seq_lengths - seg_lengths
positions += np.repeat(prefix_lengths, seg_lengths)
pos_gpu = torch.as_tensor(positions, device=device, dtype=torch.int32)
topk = metadata.topk_tokens
debug_indices = torch.arange(topk, device=device,
dtype=torch.int32).unsqueeze(0)
token_positions = pos_gpu.unsqueeze(1)
causal_mask = (debug_indices <= token_positions)
debug_indices = torch.where(causal_mask, debug_indices,
torch.full_like(debug_indices, -1))
# FlashMLASparseImpl now reads top-k indices from the indexer-provided
# buffer, so emulate that contract with a simple namespace mock.
debug_indices = debug_indices.expand(metadata.num_actual_tokens,
-1).clone()
mock_indexer = SimpleNamespace(topk_indices_buffer=debug_indices)
ok, reason = flashmla.is_flashmla_supported()
if not ok:
pytest.skip(reason)
kv_b_proj_weight = torch.cat([W_UK, W_UV], dim=-1)
kv_b_proj_weight = kv_b_proj_weight.view(
kv_lora_rank, num_heads * (qk_nope_head_dim + v_head_dim))
mock_kv_b_proj = ColumnParallelLinear(input_size=kv_lora_rank,
output_size=num_heads *
(qk_nope_head_dim + v_head_dim),
bias=False).to(device=device,
dtype=dtype)
mock_kv_b_proj.weight = torch.nn.Parameter(kv_b_proj_weight.T.contiguous())
impl_cls = FlashMLASparseBackend.get_impl_cls()
impl = impl_cls(num_heads=num_heads,
head_size=head_size,
scale=scale,
num_kv_heads=1,
alibi_slopes=None,
sliding_window=None,
kv_cache_dtype=vllm_config.cache_config.cache_dtype,
logits_soft_cap=None,
attn_type="decoder",
kv_sharing_target_layer_name=None,
q_lora_rank=None,
kv_lora_rank=kv_lora_rank,
qk_nope_head_dim=qk_nope_head_dim,
qk_rope_head_dim=qk_rope_head_dim,
qk_head_dim=qk_nope_head_dim + qk_rope_head_dim,
v_head_dim=v_head_dim,
kv_b_proj=mock_kv_b_proj,
indexer=mock_indexer)
impl.process_weights_after_loading(dtype)
layer = MockAttentionLayer(device)
out_buffer = torch.empty(metadata.num_actual_tokens,
num_heads * v_head_dim,
dtype=dtype,
device=device)
backend_output = impl.forward(layer,
query_vllm,
kv_c_vllm,
k_pe_vllm,
kv_cache,
metadata,
output=out_buffer)
assert backend_output.shape == sdpa_reference.shape
assert backend_output.dtype == sdpa_reference.dtype
assert torch.isfinite(backend_output).all()
torch.testing.assert_close(backend_output,
sdpa_reference,
rtol=0.5,
atol=0.5)

View File

@ -3,7 +3,7 @@
"""Utility functions for attention-related v1 tests."""
from dataclasses import dataclass
from typing import Union
from typing import Optional, Union
import pytest
import torch
@ -168,7 +168,6 @@ def create_standard_kv_cache_spec(
vllm_config.parallel_config),
head_size=vllm_config.model_config.get_head_size(),
dtype=vllm_config.model_config.dtype,
use_mla=vllm_config.model_config.use_mla,
sliding_window=vllm_config.model_config.get_sliding_window(),
)
@ -260,3 +259,88 @@ def create_dummy_kv_cache(block_size: int,
dtype=dtype,
device=device)
return kv_cache
@dataclass
class BackendConfig:
name: str
env_vars: dict
comp_config: dict # compilation config
specific_gpu_arch: Optional[tuple] = None
# Define all backend configurations of full cudagraph to be tested
full_cg_backend_configs = {
# FA3 on Hopper
"FA3":
BackendConfig(name="FA3",
env_vars={
"VLLM_ATTENTION_BACKEND": "FLASH_ATTN",
"VLLM_FLASH_ATTN_VERSION": "3",
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
},
comp_config={
"cudagraph_mode": "FULL",
},
specific_gpu_arch=(9, 0)),
# FlashMLA on Hopper
"FlashMLA":
BackendConfig(name="FlashMLA",
env_vars={
"VLLM_ATTENTION_BACKEND": "FLASHMLA",
},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
},
specific_gpu_arch=(9, 0)),
# Cutlass MLA on Blackwell
"CutlassMLA":
BackendConfig(
name="CutlassMLA",
env_vars={
"VLLM_USE_V1": "1",
"VLLM_ATTENTION_BACKEND": "CUTLASS_MLA",
"FORCE_NUM_KV_SPLITS":
"1", # TODO: remove this when hang issue is fixed
},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
},
specific_gpu_arch=(10, 0)),
# FlashAttention MLA on Hopper
"FlashAttentionMLA":
BackendConfig(name="FlashAttentionMLA",
env_vars={
"VLLM_ATTENTION_BACKEND": "FLASH_ATTN_MLA",
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
},
comp_config={
"cudagraph_mode": "FULL_DECODE_ONLY",
},
specific_gpu_arch=(9, 0)),
# FA2
"FA2":
BackendConfig(name="FA2",
env_vars={
"VLLM_ATTENTION_BACKEND": "FLASH_ATTN",
"VLLM_FLASH_ATTN_VERSION": "2",
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
}),
# Triton Attention
"TritonAttn":
BackendConfig(name="TritonAttn",
env_vars={"VLLM_ATTENTION_BACKEND": "TRITON_ATTN"},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
}),
# FlashInfer
"FlashInfer":
BackendConfig(name="FlashInfer",
env_vars={"VLLM_ATTENTION_BACKEND": "FLASHINFER"},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
}),
}

View File

@ -24,7 +24,8 @@ from vllm.v1.core.kv_cache_utils import (
make_block_hash_with_group_id)
from vllm.v1.kv_cache_interface import (FullAttentionSpec, KVCacheConfig,
KVCacheGroupSpec, KVCacheSpec,
KVCacheTensor, SlidingWindowSpec,
KVCacheTensor, MLAAttentionSpec,
SlidingWindowSpec,
UniformTypeKVCacheSpecs)
from vllm.v1.metrics.stats import PrefixCacheStats
from vllm.v1.request import Request
@ -77,13 +78,11 @@ def new_kv_cache_spec(block_size=16,
num_kv_heads=2,
head_size=64,
dtype=torch.float32,
use_mla=False,
sliding_window=None):
return FullAttentionSpec(block_size=block_size,
num_kv_heads=num_kv_heads,
head_size=head_size,
dtype=dtype,
use_mla=use_mla,
sliding_window=sliding_window)
@ -91,13 +90,11 @@ def new_sliding_window_spec(block_size=16,
num_kv_heads=2,
head_size=64,
dtype=torch.float32,
use_mla=False,
sliding_window=1):
return SlidingWindowSpec(block_size=block_size,
num_kv_heads=num_kv_heads,
head_size=head_size,
dtype=dtype,
use_mla=use_mla,
sliding_window=sliding_window)
@ -894,7 +891,6 @@ def test_merge_kv_cache_spec():
num_kv_heads=full_spec.num_kv_heads,
head_size=full_spec.head_size,
dtype=full_spec.dtype,
use_mla=full_spec.use_mla,
sliding_window=1,
),
]
@ -991,7 +987,6 @@ def test_estimate_max_model_len(model_id, max_model_len,
num_kv_heads=32,
head_size=128,
dtype=torch.float16,
use_mla=False,
)
# Estimate the maximum model length, 16384 model_len need 8GB
estimated_max_len = estimate_max_model_len(vllm_config, kv_cache_spec,
@ -1022,7 +1017,6 @@ def test_get_max_concurrency_for_kv_cache_config():
num_kv_heads=32,
head_size=128,
dtype=torch.float16,
use_mla=False,
)
sliding_window_spec = SlidingWindowSpec(
@ -1030,7 +1024,6 @@ def test_get_max_concurrency_for_kv_cache_config():
num_kv_heads=32,
head_size=128,
dtype=torch.float16,
use_mla=False,
sliding_window=1024,
)
@ -1412,3 +1405,48 @@ def test_generate_scheduler_kv_cache_config():
KVCacheGroupSpec(['layer_1', 'layer_2'], new_kv_cache_spec())
],
)
def new_mla_spec(cache_dtype_str=None):
return MLAAttentionSpec(block_size=16,
num_kv_heads=16,
head_size=64,
dtype=torch.float32,
cache_dtype_str=cache_dtype_str)
def test_merge_mla_spec():
kv_cache_specs = [
new_mla_spec(),
new_mla_spec(),
]
mla_spec = kv_cache_specs[0].merge(kv_cache_specs)
assert mla_spec == new_mla_spec()
kv_cache_specs = [
new_mla_spec(cache_dtype_str="fp8_ds_mla"),
new_mla_spec(cache_dtype_str="fp8_ds_mla"),
]
mla_spec = kv_cache_specs[0].merge(kv_cache_specs)
assert mla_spec == new_mla_spec(cache_dtype_str="fp8_ds_mla")
kv_cache_specs = [
new_mla_spec(cache_dtype_str="fp8_ds_mla"),
new_mla_spec(cache_dtype_str=None),
]
with pytest.raises(AssertionError):
kv_cache_specs[0].merge(kv_cache_specs)
kv_cache_specs = [
new_kv_cache_spec(),
new_mla_spec(),
]
with pytest.raises(AssertionError):
kv_cache_specs[0].merge(kv_cache_specs)
kv_cache_specs = [
new_mla_spec(cache_dtype_str="fp8_ds_mla"),
new_kv_cache_spec(),
]
with pytest.raises(AssertionError):
kv_cache_specs[0].merge(kv_cache_specs)

View File

@ -76,7 +76,7 @@ def make_kv_cache_config(block_size: int, num_blocks: int) -> KVCacheConfig:
kv_cache_groups=[
KVCacheGroupSpec(
["layer"],
FullAttentionSpec(block_size, 1, 1, torch.float32, False),
FullAttentionSpec(block_size, 1, 1, torch.float32),
)
],
)
@ -90,7 +90,7 @@ def make_kv_cache_config_hybrid_model(block_size: int,
kv_cache_groups=[
KVCacheGroupSpec(
["layer1"],
FullAttentionSpec(block_size, 1, 1, torch.float32, False),
FullAttentionSpec(block_size, 1, 1, torch.float32),
),
KVCacheGroupSpec(
["layer2"],
@ -98,7 +98,6 @@ def make_kv_cache_config_hybrid_model(block_size: int,
1,
1,
torch.float32,
False,
sliding_window=2 * block_size),
),
KVCacheGroupSpec(
@ -107,7 +106,6 @@ def make_kv_cache_config_hybrid_model(block_size: int,
1,
1,
torch.float32,
False,
sliding_window=2 * block_size),
),
],
@ -1338,7 +1336,6 @@ def test_eagle_with_sliding_window():
head_size=1,
dtype=torch.float32,
sliding_window=block_size,
use_mla=False,
)
manager = KVCacheManager(
KVCacheConfig(

View File

@ -1,5 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import dataclasses
from typing import Optional
from unittest.mock import Mock
@ -1899,4 +1900,53 @@ def test_priority_scheduling_preemption_when_out_of_kv():
assert output.scheduled_cached_reqs.num_reqs == 1
assert output.scheduled_cached_reqs.req_ids[0] == request_high.request_id
assert len(scheduler.waiting) == 1
assert len(scheduler.running) == 1
assert len(scheduler.running) == 1
@pytest.mark.parametrize(
("enable_chunked_prefill", "is_encoder_decoder", "expect_enabled"),
[
(True, False, True),
(False, False, False),
# Encoder-decoder models should always have it disabled
(False, True, False),
(True, True, False),
])
def test_chunked_prefill_disabled_for_encoder_decoder(
enable_chunked_prefill: bool, is_encoder_decoder: bool,
expect_enabled: bool) -> None:
"""Validate that chunked prefill is appropriately disabled for
encoder-decoder models."""
scheduler_config = SchedulerConfig(
enable_chunked_prefill=enable_chunked_prefill,
is_encoder_decoder=is_encoder_decoder,
)
# `is_encoder_decoder` should only be used during construction
# of the config, and otherwise stored in the model config.
assert "is_encoder_decoder" not in vars(scheduler_config)
assert "is_encoder_decoder" not in [
f.name for f in dataclasses.fields(scheduler_config)
]
_validate_chunked_prefill_settings_for_encoder_decoder(
scheduler_config, is_encoder_decoder, expect_enabled)
# Ensure it is retained in VllmConfig, even after its post-init.
vllm_config = VllmConfig(scheduler_config=scheduler_config)
_validate_chunked_prefill_settings_for_encoder_decoder(
vllm_config.scheduler_config, is_encoder_decoder, expect_enabled)
def _validate_chunked_prefill_settings_for_encoder_decoder(
scheduler_config: SchedulerConfig, is_encoder_decoder: bool,
expect_enabled: bool) -> None:
"""Validate chunked prefill settings in the scheduler config for
encoder-decoder models."""
assert scheduler_config.chunked_prefill_enabled is expect_enabled
assert scheduler_config.enable_chunked_prefill is expect_enabled
if is_encoder_decoder:
# Encoder-decoder models should automatically disable chunked multimodal
# inputs as well
assert scheduler_config.disable_chunked_mm_input is not expect_enabled
if is_encoder_decoder and not expect_enabled:
assert scheduler_config.long_prefill_token_threshold == 0

View File

@ -35,7 +35,6 @@ def test_chunked_local_attention_possible_cached_prefix():
head_size=1,
dtype=torch.float32,
attention_chunk_size=4,
use_mla=False,
)
block_pool = BlockPool(num_gpu_blocks=100, enable_caching=True)
@ -100,7 +99,6 @@ def test_sliding_window_possible_cached_prefix():
head_size=1,
dtype=torch.float32,
sliding_window=4,
use_mla=False,
)
block_pool = BlockPool(num_gpu_blocks=100, enable_caching=True)
@ -165,7 +163,6 @@ def test_chunked_local_attention_remove_skipped_blocks():
head_size=1,
dtype=torch.float32,
attention_chunk_size=4,
use_mla=False,
)
block_pool = BlockPool(num_gpu_blocks=2000, enable_caching=True)
@ -217,7 +214,6 @@ def test_sliding_window_remove_skipped_blocks():
head_size=1,
dtype=torch.float32,
sliding_window=4,
use_mla=False,
)
block_pool = BlockPool(num_gpu_blocks=2000, enable_caching=True)
@ -285,7 +281,6 @@ def test_get_num_blocks_to_allocate():
head_size=1,
dtype=torch.float32,
sliding_window=4, # Placeholder value, not related to test result
use_mla=False,
)
block_pool = BlockPool(num_gpu_blocks=100, enable_caching=True)
@ -308,7 +303,6 @@ def test_chunked_local_attention_get_num_blocks_to_allocate():
head_size=1,
dtype=torch.float32,
attention_chunk_size=4, # Placeholder value, not related to test result
use_mla=False,
)
block_pool = BlockPool(num_gpu_blocks=100, enable_caching=True)

View File

@ -45,39 +45,22 @@ def _create_vllm_config(compilation_config: CompilationConfig,
class TestCudagraphDispatcher:
@pytest.mark.parametrize(
"params",
"case_id,cudagraph_mode_str,compilation_level",
[
# Test case 0: Full CG for mixed batches, no separate routine
{
"case_id": 0,
"cudagraph_mode": "FULL",
"compilation_level": CompilationLevel.NO_COMPILATION,
},
(0, "FULL", CompilationLevel.NO_COMPILATION),
# Test case 1: Full CG for uniform batches, piecewise for mixed
{
"case_id": 1,
"cudagraph_mode": "FULL_AND_PIECEWISE",
"compilation_level": CompilationLevel.PIECEWISE,
},
(1, "FULL_AND_PIECEWISE", CompilationLevel.NO_COMPILATION),
# Test case 2: Full CG for uniform batches, no CG for mixed
{
"case_id": 2,
"cudagraph_mode": "FULL_DECODE_ONLY",
"compilation_level": CompilationLevel.NO_COMPILATION,
},
(2, "FULL_DECODE_ONLY", CompilationLevel.NO_COMPILATION),
# Test case 3: Piecewise for all
{
"case_id": 3,
"cudagraph_mode": "PIECEWISE",
"compilation_level": CompilationLevel.PIECEWISE,
},
(3, "PIECEWISE", CompilationLevel.PIECEWISE),
])
def test_dispatcher(self, params):
def test_dispatcher(self, cudagraph_mode_str, compilation_level):
# Setup dispatcher
comp_config = CompilationConfig(
cudagraph_mode=params["cudagraph_mode"],
level=params["compilation_level"],
cudagraph_capture_sizes=[1, 8])
comp_config = CompilationConfig(cudagraph_mode=cudagraph_mode_str,
level=compilation_level,
cudagraph_capture_sizes=[1, 8])
config = _create_vllm_config(comp_config, max_num_seqs=8)
dispatcher = CudagraphDispatcher(config)
@ -86,11 +69,11 @@ class TestCudagraphDispatcher:
uniform_decode_query_len=1)
# Verify the key is initialized correctly
if params["cudagraph_mode"] in ["FULL_AND_PIECEWISE", "PIECEWISE"]:
if cudagraph_mode_str in ["FULL_AND_PIECEWISE", "PIECEWISE"]:
assert len(dispatcher.cudagraph_keys[CUDAGraphMode.PIECEWISE]) == 2
else:
assert len(dispatcher.cudagraph_keys[CUDAGraphMode.PIECEWISE]) == 0
if params["cudagraph_mode"] not in ["NONE", "PIECEWISE"]:
if cudagraph_mode_str not in ["NONE", "PIECEWISE"]:
assert len(dispatcher.cudagraph_keys[CUDAGraphMode.FULL]) == 2
else:
assert len(dispatcher.cudagraph_keys[CUDAGraphMode.FULL]) == 0
@ -99,10 +82,10 @@ class TestCudagraphDispatcher:
# 1. non-uniform batch, size in cudagraph size list
desc_full_exact = BatchDescriptor(num_tokens=8, uniform_decode=False)
rt_mode, key = dispatcher.dispatch(desc_full_exact)
if params["cudagraph_mode"] == "FULL":
if cudagraph_mode_str == "FULL":
assert rt_mode == CUDAGraphMode.FULL
assert key == desc_full_exact
elif params["cudagraph_mode"] in ["FULL_AND_PIECEWISE", "PIECEWISE"]:
elif cudagraph_mode_str in ["FULL_AND_PIECEWISE", "PIECEWISE"]:
assert rt_mode == CUDAGraphMode.PIECEWISE
assert key == desc_full_exact
else:
@ -111,15 +94,13 @@ class TestCudagraphDispatcher:
# 2. uniform decode batch, size in cudagraph size list
desc_uniform_exact = BatchDescriptor(num_tokens=8, uniform_decode=True)
rt_mode, key = dispatcher.dispatch(desc_uniform_exact)
if params["cudagraph_mode"] == "FULL":
if cudagraph_mode_str == "FULL":
assert rt_mode == CUDAGraphMode.FULL
assert key == desc_uniform_exact.non_uniform
elif params["cudagraph_mode"] in [
"FULL_DECODE_ONLY", "FULL_AND_PIECEWISE"
]:
elif cudagraph_mode_str in ["FULL_DECODE_ONLY", "FULL_AND_PIECEWISE"]:
assert rt_mode == CUDAGraphMode.FULL
assert key == desc_uniform_exact
elif params["cudagraph_mode"] == "PIECEWISE":
elif cudagraph_mode_str == "PIECEWISE":
assert rt_mode == CUDAGraphMode.PIECEWISE
assert key == desc_uniform_exact.non_uniform
else:
@ -131,6 +112,16 @@ class TestCudagraphDispatcher:
assert rt_mode == CUDAGraphMode.NONE
assert key is None
# 4. Cascade attention should have a fall back mode
desc_full_exact = BatchDescriptor(num_tokens=8, uniform_decode=False)
rt_mode, key = dispatcher.dispatch(desc_full_exact,
use_cascade_attn=True)
if "PIECEWISE" in cudagraph_mode_str: # string contains check
assert rt_mode == CUDAGraphMode.PIECEWISE
assert key == desc_full_exact.non_uniform
else:
assert rt_mode == CUDAGraphMode.NONE
@pytest.mark.skipif(not current_platform.is_cuda(), reason="Skip if not cuda")
class TestCUDAGraphWrapper:

View File

@ -4,12 +4,11 @@ import contextlib
import os
import weakref
from contextlib import ExitStack
from dataclasses import dataclass
from typing import Optional
import pytest
from tests.utils import wait_for_gpu_memory_to_clear
from tests.v1.attention.utils import full_cg_backend_configs as backend_configs
from vllm import LLM
from vllm.config import CompilationConfig
from vllm.platforms import current_platform
@ -34,74 +33,6 @@ def temporary_environ(env_vars):
os.environ[k] = v
@dataclass
class BackendConfig:
name: str
env_vars: dict
comp_config: dict
specific_gpu_arch: Optional[tuple] = None
# Define all backend configurations of full cudagraph to be tested
backend_configs = {
# FA3 on Hopper
"FA3":
BackendConfig(name="FA3",
env_vars={
"VLLM_FLASH_ATTN_VERSION": "3",
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
},
comp_config={
"cudagraph_mode": "FULL",
},
specific_gpu_arch=(9, 0)),
# FlashMLA on Hopper
"FlashMLA":
BackendConfig(name="FlashMLA",
env_vars={
"VLLM_ATTENTION_BACKEND": "FLASHMLA",
},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
},
specific_gpu_arch=(9, 0)),
# FlashAttention MLA on Hopper
"FlashAttentionMLA":
BackendConfig(name="FlashAttentionMLA",
env_vars={
"VLLM_ATTENTION_BACKEND": "FLASH_ATTN_MLA",
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
},
comp_config={
"cudagraph_mode": "FULL_DECODE_ONLY",
},
specific_gpu_arch=(9, 0)),
# FA2
"FA2":
BackendConfig(name="FA2",
env_vars={
"VLLM_FLASH_ATTN_VERSION": "2",
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
}),
# Triton Attention
"TritonAttn":
BackendConfig(name="TritonAttn",
env_vars={"VLLM_ATTENTION_BACKEND": "TRITON_ATTN"},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
}),
# FlashInfer
"FlashInfer":
BackendConfig(name="FlashInfer",
env_vars={"VLLM_ATTENTION_BACKEND": "FLASHINFER"},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
}),
}
# test attention backend and cudagraph_mode combo
# (backend_name, cudagraph_mode, supported)
combo_cases_1 = [
@ -114,9 +45,10 @@ combo_cases_1 = [
]
@pytest.mark.parametrize("combo_case", combo_cases_1)
def test_backend_and_cudagraph_mode_combo(combo_case):
backend_name, cudagraph_mode, supported = combo_case
@pytest.mark.parametrize("backend_name, cudagraph_mode, supported",
combo_cases_1)
def test_backend_and_cudagraph_mode_combo(backend_name, cudagraph_mode,
supported):
if backend_name == "FlashInfer":
try:
import flashinfer # noqa: F401
@ -142,7 +74,7 @@ def test_backend_and_cudagraph_mode_combo(combo_case):
compilation_config=CompilationConfig(
level=3, cudagraph_mode=cudagraph_mode))
llm.generate(["Hello, my name is"] * 10)
# when above code raises, `llm` may be undefined, so we need to catch that
try:
llm = weakref.proxy(llm)
del llm
@ -173,7 +105,8 @@ combo_cases_2 = [
]
@pytest.mark.parametrize("combo_case", combo_cases_2)
@pytest.mark.parametrize("backend_name,cudagraph_mode,compilation_level,"\
"supported", combo_cases_2)
def test_cudagraph_compilation_combo(combo_case):
backend_name, cudagraph_mode, compilation_level, supported\
= combo_case
@ -192,6 +125,7 @@ def test_cudagraph_compilation_combo(combo_case):
compilation_config=CompilationConfig(
level=compilation_level, cudagraph_mode=cudagraph_mode))
llm.generate(["Hello, my name is"] * 10)
# when above code raises, `llm` may be undefined, so we need to catch that
try:
llm = weakref.proxy(llm)
del llm

View File

@ -12,7 +12,7 @@ import pytest_asyncio
import requests
from tests.utils import RemoteOpenAIServer
from tests.v1.test_utils import check_request_balancing
from tests.v1.utils import check_request_balancing
from vllm.platforms import current_platform
MODEL_NAME = "ibm-research/PowerMoE-3b"

View File

@ -13,7 +13,7 @@ import pytest_asyncio
import requests
from tests.utils import RemoteOpenAIServer
from tests.v1.test_utils import check_request_balancing
from tests.v1.utils import check_request_balancing
from vllm.platforms import current_platform
MODEL_NAME = "ibm-research/PowerMoE-3b"

View File

@ -8,13 +8,15 @@ from typing import Any, Union
import pytest
import torch
from tests.utils import get_attn_backend_list_based_on_platform
from tests.utils import get_attn_backend_list_based_on_platform, large_gpu_mark
from vllm import LLM, SamplingParams
from vllm.assets.base import VLLM_S3_BUCKET_URL
from vllm.assets.image import VLM_IMAGES_DIR
from vllm.distributed import cleanup_dist_env_and_memory
from vllm.platforms import current_platform
MTP_SIMILARITY_RATE = 0.8
def get_test_prompts(mm_enabled: bool):
prompt_types = ["repeat", "sentence"]
@ -86,69 +88,71 @@ def test_ngram_correctness(
Compare the outputs of an original LLM and a speculative LLM
should be the same when using ngram speculative decoding.
'''
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
test_prompts = get_test_prompts(mm_enabled=False)
test_prompts = get_test_prompts(mm_enabled=False)
ref_llm = LLM(model=model_name, max_model_len=1024)
ref_outputs = ref_llm.chat(test_prompts, sampling_config)
del ref_llm
torch.cuda.empty_cache()
cleanup_dist_env_and_memory()
ref_llm = LLM(model=model_name, max_model_len=1024)
ref_outputs = ref_llm.chat(test_prompts, sampling_config)
del ref_llm
torch.cuda.empty_cache()
cleanup_dist_env_and_memory()
spec_llm = LLM(
model=model_name,
speculative_config={
"method": "ngram",
"prompt_lookup_max": 5,
"prompt_lookup_min": 3,
"num_speculative_tokens": 3,
},
max_model_len=1024,
)
spec_outputs = spec_llm.chat(test_prompts, sampling_config)
matches = 0
misses = 0
for ref_output, spec_output in zip(ref_outputs, spec_outputs):
if ref_output.outputs[0].text == spec_output.outputs[0].text:
matches += 1
else:
misses += 1
print(f"ref_output: {ref_output.outputs[0].text}")
print(f"spec_output: {spec_output.outputs[0].text}")
spec_llm = LLM(
model=model_name,
speculative_config={
"method": "ngram",
"prompt_lookup_max": 5,
"prompt_lookup_min": 3,
"num_speculative_tokens": 3,
},
max_model_len=1024,
)
spec_outputs = spec_llm.chat(test_prompts, sampling_config)
matches = 0
misses = 0
for ref_output, spec_output in zip(ref_outputs, spec_outputs):
if ref_output.outputs[0].text == spec_output.outputs[0].text:
matches += 1
else:
misses += 1
print(f"ref_output: {ref_output.outputs[0].text}")
print(f"spec_output: {spec_output.outputs[0].text}")
# Heuristic: expect at least 66% of the prompts to match exactly
# Upon failure, inspect the outputs to check for inaccuracy.
assert matches >= int(0.66 * len(ref_outputs))
del spec_llm
torch.cuda.empty_cache()
cleanup_dist_env_and_memory()
# Heuristic: expect at least 66% of the prompts to match exactly
# Upon failure, inspect the outputs to check for inaccuracy.
assert matches >= int(0.66 * len(ref_outputs))
del spec_llm
torch.cuda.empty_cache()
cleanup_dist_env_and_memory()
@pytest.mark.parametrize(["model_setup", "mm_enabled"], [
(("eagle3", "Qwen/Qwen3-8B", "AngelSlim/Qwen3-8B_eagle3", 1), False),
(("eagle", "meta-llama/Llama-3.1-8B-Instruct",
"yuhuili/EAGLE-LLaMA3.1-Instruct-8B", 1), False),
(("eagle3", "meta-llama/Llama-3.1-8B-Instruct",
"yuhuili/EAGLE3-LLaMA3.1-Instruct-8B", 1), False),
pytest.param(
("eagle", "meta-llama/Llama-4-Scout-17B-16E-Instruct",
"morgendave/EAGLE-Llama-4-Scout-17B-16E-Instruct", 4),
False,
marks=pytest.mark.skip(reason="Skipping due to CI OOM issues")),
pytest.param(
("eagle", "meta-llama/Llama-4-Scout-17B-16E-Instruct",
"morgendave/EAGLE-Llama-4-Scout-17B-16E-Instruct", 4),
True,
marks=pytest.mark.skip(reason="Skipping due to CI OOM issues")),
(("eagle", "eagle618/deepseek-v3-random",
"eagle618/eagle-deepseek-v3-random", 1), False),
],
ids=[
"qwen3_eagle3", "llama3_eagle", "llama3_eagle3",
"llama4_eagle", "llama4_eagle_mm",
"deepseek_eagle"
])
@pytest.mark.parametrize(
["model_setup", "mm_enabled"],
[
(("eagle3", "Qwen/Qwen3-8B", "AngelSlim/Qwen3-8B_eagle3", 1), False),
pytest.param(("eagle3", "Qwen/Qwen2.5-VL-7B-Instruct",
"Rayzl/qwen2.5-vl-7b-eagle3-sgl", 1),
False,
marks=pytest.mark.skip(reason="Skipping due to its " \
"head_dim not being a a multiple of 32")),
(("eagle", "meta-llama/Llama-3.1-8B-Instruct",
"yuhuili/EAGLE-LLaMA3.1-Instruct-8B", 1), False),
(("eagle3", "meta-llama/Llama-3.1-8B-Instruct",
"yuhuili/EAGLE3-LLaMA3.1-Instruct-8B", 1), False),
pytest.param(("eagle", "meta-llama/Llama-4-Scout-17B-16E-Instruct",
"morgendave/EAGLE-Llama-4-Scout-17B-16E-Instruct", 4),
False,
marks=large_gpu_mark(min_gb=80)), # works on 4x H100
pytest.param(("eagle", "meta-llama/Llama-4-Scout-17B-16E-Instruct",
"morgendave/EAGLE-Llama-4-Scout-17B-16E-Instruct", 4),
True,
marks=large_gpu_mark(min_gb=80)), # works on 4x H100
(("eagle", "eagle618/deepseek-v3-random",
"eagle618/eagle-deepseek-v3-random", 1), False),
],
ids=[
"qwen3_eagle3", "qwen2_5_vl_eagle3", "llama3_eagle", "llama3_eagle3",
"llama4_eagle", "llama4_eagle_mm", "deepseek_eagle"
])
@pytest.mark.parametrize("attn_backend",
get_attn_backend_list_based_on_platform())
def test_eagle_correctness(
@ -172,9 +176,14 @@ def test_eagle_correctness(
model_setup: (method, model_name, eagle_model_name, tp_size)
'''
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
m.setenv("VLLM_MLA_DISABLE", "1")
m.setenv("VLLM_ATTENTION_BACKEND", attn_backend)
if "Llama-4-Scout" in model_setup[1] and attn_backend == "FLASH_ATTN":
# Scout requires default backend selection
# because vision encoder has head_dim 88 being incompatible
# with FLASH_ATTN and needs to fall back to Flex Attn
pass
else:
m.setenv("VLLM_MLA_DISABLE", "1")
m.setenv("VLLM_ATTENTION_BACKEND", attn_backend)
if (attn_backend == "TRITON_ATTN" and not current_platform.is_rocm()):
pytest.skip("TRITON_ATTN does not support "
@ -222,3 +231,66 @@ def test_eagle_correctness(
del spec_llm
torch.cuda.empty_cache()
cleanup_dist_env_and_memory()
@pytest.mark.parametrize(["model_setup", "mm_enabled"], [
(("mtp", "XiaomiMiMo/MiMo-7B-Base", 1), False),
(("mtp", "ZixiQi/DeepSeek-V3-4layers-MTP-FP8", 1), False),
],
ids=["mimo", "deepseek"])
def test_mtp_correctness(
monkeypatch: pytest.MonkeyPatch,
sampling_config: SamplingParams,
model_setup: tuple[str, str, int],
mm_enabled: bool,
):
# Generate test prompts inside the function instead of using fixture
test_prompts = get_test_prompts(mm_enabled)
'''
Compare the outputs of a original LLM and a speculative LLM
should be the same when using MTP speculative decoding.
model_setup: (method, model_name, tp_size)
'''
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
m.setenv("VLLM_MLA_DISABLE", "1")
method, model_name, tp_size = model_setup
ref_llm = LLM(model=model_name,
max_model_len=2048,
tensor_parallel_size=tp_size,
trust_remote_code=True)
ref_outputs = ref_llm.chat(test_prompts, sampling_config)
del ref_llm
torch.cuda.empty_cache()
cleanup_dist_env_and_memory()
spec_llm = LLM(
model=model_name,
trust_remote_code=True,
tensor_parallel_size=tp_size,
speculative_config={
"method": method,
"num_speculative_tokens": 1,
"max_model_len": 2048,
},
max_model_len=2048,
)
spec_outputs = spec_llm.chat(test_prompts, sampling_config)
matches = 0
misses = 0
for ref_output, spec_output in zip(ref_outputs, spec_outputs):
if ref_output.outputs[0].text == spec_output.outputs[0].text:
matches += 1
else:
misses += 1
print(f"ref_output: {ref_output.outputs[0].text}")
print(f"spec_output: {spec_output.outputs[0].text}")
# Heuristic: expect at least 80% of the prompts to match exactly
# Upon failure, inspect the outputs to check for inaccuracy.
assert matches > int(MTP_SIMILARITY_RATE * len(ref_outputs))
del spec_llm
torch.cuda.empty_cache()
cleanup_dist_env_and_memory()

View File

@ -836,8 +836,7 @@ def test_engine_core_proc_instantiation_cuda_empty(
mock_spec = FullAttentionSpec(block_size=16,
num_kv_heads=1,
head_size=64,
dtype=torch.float16,
use_mla=False)
dtype=torch.float16)
mock_executor.get_kv_cache_specs.return_value = [{
"default": mock_spec

View File

@ -8,7 +8,7 @@ import pytest
import pytest_asyncio
from tests.utils import RemoteOpenAIServer
from tests.v1.test_utils import check_request_balancing
from tests.v1.utils import check_request_balancing
MODEL_NAME = "ibm-research/PowerMoE-3b"

View File

@ -0,0 +1,290 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import contextlib
import os
import random
import string
import pytest
import torch
from vllm import LLM, SamplingParams
def _random_prompt(min_words: int = 1024, max_words: int = 1024 * 2) -> str:
# Lightweight random prompt generator to vary prompt lengths and content.
vocab = [
"alpha",
"bravo",
"charlie",
"delta",
"echo",
"foxtrot",
"golf",
"hotel",
"india",
"juliet",
"kilo",
"lima",
"mike",
"november",
"oscar",
"papa",
"quebec",
"romeo",
"sierra",
"tango",
"uniform",
"victor",
"whiskey",
"xray",
"yankee",
"zulu",
]
n = random.randint(min_words, max_words)
words = random.choices(vocab, k=n)
# Add some noise and punctuation variability
if random.random() < 0.5:
words[0] = words[0].capitalize()
if random.random() < 0.2:
words.append("".join(random.choices(string.ascii_lowercase, k=5)))
punct = random.choice([".", "?", "!", "...", ""])
return " ".join(words) + punct
@pytest.mark.timeout(1000)
def test_v1_generation_is_deterministic_across_batch_sizes_with_needle():
"""
Ensures that the same request (the 'needle' prompt) yields identical output
whether run alone (bs=1) or mixed into a larger batch (e.g., bs=64),
using the high-level v1 LLM() API only (no manual batching).
Strategy:
- Create two LLM engines with identical config except max_num_seqs: 1 vs N.
- Compute a baseline output for the needle prompt with the bs=1 engine.
- For many trials, generate a batch (size N) where the needle appears at a
random position among random filler prompts using the bs=N engine.
- Track how many trials match vs mismatch, and report totals at the end.
The test fails if any mismatches occur, but we still dump pass/fail
counts.
Notes:
- Use seeded stochastic sampling with a fixed seed to test determinism.
- Outputs are intentionally longer and sampled at higher temperature/top_p
to produce a more random-sounding phrase, yet remain deterministic by
seed.
- Keep max_tokens and max_model_len bounded for speed and memory use.
"""
random.seed(12345)
# Allow overrides from environment (useful for CI tuning)
# "facebook/opt-125m" is too small, doesn't reliably test determinism
model = os.getenv("VLLM_TEST_MODEL", "Qwen/Qwen3-1.7B")
num_trials = int(os.getenv("VLLM_NEEDLE_TRIALS", "5"))
batch_size = int(os.getenv("VLLM_NEEDLE_BATCH_SIZE", "64"))
assert batch_size >= 2, "Batch size should be >= 2 to mix needle."
# Keep GPU memory usage low to avoid startup allocation failures.
gpu_mem_util = float(os.getenv("VLLM_GPU_MEMORY_UTILIZATION", "0.3"))
max_model_len = int(os.getenv("VLLM_MAX_MODEL_LEN", "4096"))
swap_space_gb = int(os.getenv("VLLM_SWAP_SPACE_GB", "4"))
# Sampling parameters: longer outputs with a more random-sounding
# continuation,but still deterministic due to fixed seed.
temperature = float(os.getenv("VLLM_NEEDLE_TEMPERATURE", "0.0"))
top_p = float(os.getenv("VLLM_NEEDLE_TOP_P", "0.95"))
max_tokens = int(os.getenv("VLLM_NEEDLE_MAX_TOKENS", "128"))
sampling = SamplingParams(
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
seed=20240919,
)
needle_prompt = ("There once was a ")
llm_bs1 = None
llm_bsN = None
try:
# Engine with bs=1 behavior
llm_bs1 = LLM_with_max_seqs(
model=model,
max_num_seqs=1,
gpu_memory_utilization=gpu_mem_util,
max_model_len=max_model_len,
swap_space=swap_space_gb,
)
# Baseline generation for the needle prompt alone.
baseline_out = llm_bs1.generate([needle_prompt], sampling)
assert len(baseline_out) == 1
assert len(baseline_out[0].outputs) >= 1
baseline_text = baseline_out[0].outputs[0].text
# Engine with larger batch limit (e.g., 64)
llm_bsN = LLM_with_max_seqs(
model=model,
max_num_seqs=batch_size,
gpu_memory_utilization=gpu_mem_util,
max_model_len=max_model_len,
swap_space=swap_space_gb,
)
mismatches = 0
for trial in range(num_trials):
# Create a batch of size `batch_size` and insert the needle at
# a random index
prompts: list[str] = []
needle_pos = random.randint(0, batch_size - 1)
for i in range(batch_size):
if i == needle_pos:
prompts.append(needle_prompt)
else:
prompts.append(_random_prompt())
# Generate with the larger-batch engine
outputs = llm_bsN.generate(prompts, sampling)
# Find the needle output by position
needle_output = outputs[needle_pos]
assert needle_output.prompt == needle_prompt
assert len(needle_output.outputs) >= 1
text = needle_output.outputs[0].text
if text != baseline_text:
mismatches += 1
passes = num_trials - mismatches
# Dump how many passed vs failed
print(f"[determinism] total={num_trials}, passed={passes}, "
f"failed={mismatches}, batch_size={batch_size}")
if mismatches > 0:
pytest.fail(
f"Nondeterministic outputs detected: {mismatches} failed out "
f"of {num_trials} trials (batch_size={batch_size}).")
finally:
# Ensure engines are shutdown to free GPU/VRAM across test sessions
if llm_bs1 is not None:
with contextlib.suppress(Exception):
llm_bs1.shutdown()
if llm_bsN is not None:
with contextlib.suppress(Exception):
llm_bsN.shutdown()
def _extract_step_logprobs(request_output):
if getattr(request_output, "outputs", None):
inner = request_output.outputs[0]
if hasattr(inner, "logprobs") and inner.logprobs is not None:
t = torch.tensor(
[
inner.logprobs[i][tid].logprob
for i, tid in enumerate(inner.token_ids)
],
dtype=torch.float32,
)
return t
return None
@pytest.mark.skipif(
not torch.cuda.is_available(),
reason="Requires CUDA to match production inference path.",
)
def test_logprobs_bitwise_batch_invariance_bs1_vs_bs2():
#model_name = os.getenv("VLLM_TEST_MODEL", "facebook/opt-125m")
model_name = os.getenv("VLLM_TEST_MODEL", "Qwen/Qwen3-1.7B")
tp_size = int(os.getenv("VLLM_TEST_TP_SIZE", "1"))
# Force float32 to avoid precision-induced differences.
llm = LLM(
model=model_name,
tensor_parallel_size=tp_size,
enforce_eager=True, # helps reduce nondeterminism from some backends
)
prompts = [
"The capital of France is",
"The capital of Germany is",
]
sp = SamplingParams(
temperature=0.0,
top_p=1.0,
max_tokens=8,
# Seed shouldn't matter at temperature=0, but keeping it stable anyway.
seed=1234,
logprobs=5,
)
# BS=1: run prompts individually and collect logprobs per step.
bs1_logprobs_per_prompt = []
for p in prompts:
outs = llm.generate([p], sp, use_tqdm=False)
assert len(outs) == 1
step_logprobs = _extract_step_logprobs(outs[0])
if step_logprobs is None:
pytest.skip("Logits are not available on RequestOutput; "
"enable logprobs return to run this test.")
bs1_logprobs_per_prompt.append(step_logprobs)
# BS=2: run prompts in a batch and collect logprobs per step for each
# prompt.
outs_batched = llm.generate(prompts, sp, use_tqdm=False)
assert len(outs_batched) == len(prompts)
bs2_logprobs_per_prompt = []
for o in outs_batched:
step_logprobs = _extract_step_logprobs(o)
if step_logprobs is None:
pytest.skip("Logits are not available on RequestOutput; "
"enable logprobs return to run this test.")
bs2_logprobs_per_prompt.append(step_logprobs)
# Compare step-by-step logprobs for each prompt between BS=1 and BS=2 runs.
for i, (logprobs_bs1, logprobs_bs2) in enumerate(
zip(bs1_logprobs_per_prompt, bs2_logprobs_per_prompt)):
assert len(logprobs_bs1) == len(logprobs_bs2), (
f"Different number of generation steps for prompt index {i}: "
f"{len(logprobs_bs1)} (BS=1) vs {len(logprobs_bs2)} (BS=2)")
for t, (a, b) in enumerate(zip(logprobs_bs1, logprobs_bs2)):
assert a.shape == b.shape, (
f"Logits shape mismatch at prompt {i}, step {t}: "
f"{a.shape} vs {b.shape}")
# Bitwise exact equality.
assert torch.equal(
a, b), (f"Bitwise logprobs mismatch at prompt {i}, step {t} "
f"(dtype={a.dtype}, shape={a.shape}).")
def LLM_with_max_seqs(
model: str,
max_num_seqs: int,
gpu_memory_utilization: float,
max_model_len: int,
swap_space: int,
) -> LLM:
"""
Helper to construct an LLM with a specific max_num_seqs (batch-size limit)
using the high-level v1 LLM API, while constraining memory usage.
"""
return LLM(
model=model,
max_num_seqs=max_num_seqs,
# Constrain GPU memory pool so test can run even on busy GPUs.
gpu_memory_utilization=gpu_memory_utilization,
# Keep KV cache footprint small while allowing longer outputs.
max_model_len=max_model_len,
# Allow some CPU offload if needed.
swap_space=swap_space,
# Keep things lean and CI-friendly.
dtype="float16",
# Single-GPU by default; override externally if desired.
tensor_parallel_size=int(os.getenv("VLLM_TP_SIZE", "1")),
trust_remote_code=os.getenv("VLLM_TRUST_REMOTE_CODE", "0") == "1",
)

View File

@ -1,6 +1,31 @@
#!/bin/bash
set -xe
# Parse command line arguments
KV_BUFFER_DEVICE="cuda" # Default to cuda
while [[ $# -gt 0 ]]; do
case $1 in
--kv_buffer_device)
KV_BUFFER_DEVICE="$2"
shift 2
;;
*)
echo "Unknown option $1"
echo "Usage: $0 [--kv_buffer_device <cuda|cpu>]"
exit 1
;;
esac
done
echo "Running accuracy tests with kv_buffer_device=$KV_BUFFER_DEVICE"
# Build the kv-transfer-config once
if [[ "$KV_BUFFER_DEVICE" == "cuda" ]]; then
KV_CONFIG='{"kv_connector":"NixlConnector","kv_role":"kv_both"}'
else
KV_CONFIG="{\"kv_connector\":\"NixlConnector\",\"kv_role\":\"kv_both\",\"kv_buffer_device\":\"$KV_BUFFER_DEVICE\"}"
fi
# Models to run
MODELS=(
"Qwen/Qwen3-0.6B"
@ -79,7 +104,7 @@ run_tests_for_model() {
# Calculate port number (base port + instance number)
PORT=$((8100 + i))
# Calculate side channel port. Avoid clash with with TP workers.
# Calculate side channel port. Avoid clash with with TP workers.
SIDE_CHANNEL_PORT=$((5559 + i))
echo "Starting prefill instance $i on GPU $GPU_ID, port $PORT"
@ -93,7 +118,7 @@ run_tests_for_model() {
--enforce-eager \
--gpu-memory-utilization 0.2 \
--tensor-parallel-size $PREFILLER_TP_SIZE \
--kv-transfer-config '{\"kv_connector\":\"NixlConnector\",\"kv_role\":\"kv_both\"}'"
--kv-transfer-config '$KV_CONFIG'"
if [ -n "$model_args" ]; then
FULL_CMD="$BASE_CMD $model_args"
@ -128,7 +153,7 @@ run_tests_for_model() {
--enforce-eager \
--gpu-memory-utilization 0.2 \
--tensor-parallel-size $DECODER_TP_SIZE \
--kv-transfer-config '{\"kv_connector\":\"NixlConnector\",\"kv_role\":\"kv_both\"}'"
--kv-transfer-config '$KV_CONFIG'"
if [ -n "$model_args" ]; then
FULL_CMD="$BASE_CMD $model_args"

View File

@ -1,6 +1,33 @@
#!/bin/bash
set -xe
# Parse command line arguments
KV_BUFFER_DEVICE="cuda" # Default to cuda
PREFILL_GPU_ID=4 # Default GPU IDs
DECODE_GPU_ID=5
while [[ $# -gt 0 ]]; do
case $1 in
--kv_buffer_device)
KV_BUFFER_DEVICE="$2"
shift 2
;;
*)
echo "Unknown option $1"
echo "Usage: $0 [--kv_buffer_device <cuda|cpu>]"
exit 1
;;
esac
done
echo "Running edge case tests with kv_buffer_device=$KV_BUFFER_DEVICE (GPUs: $PREFILL_GPU_ID, $DECODE_GPU_ID)"
# Build the kv-transfer-config once
if [[ "$KV_BUFFER_DEVICE" == "cuda" ]]; then
KV_CONFIG='{"kv_connector":"NixlConnector","kv_role":"kv_both"}'
else
KV_CONFIG="{\"kv_connector\":\"NixlConnector\",\"kv_role\":\"kv_both\",\"kv_buffer_device\":\"$KV_BUFFER_DEVICE\"}"
fi
# Models to run
MODELS=(
"Qwen/Qwen3-0.6B"
@ -50,15 +77,15 @@ run_tests_for_model() {
# Get model-specific arguments
local model_args=$(get_model_args "$model_name")
# Start prefill instance
PREFILL_PORT=8001
BASE_CMD="CUDA_VISIBLE_DEVICES=0 VLLM_NIXL_SIDE_CHANNEL_PORT=5559 vllm serve $model_name \
BASE_CMD="CUDA_VISIBLE_DEVICES=$PREFILL_GPU_ID VLLM_NIXL_SIDE_CHANNEL_PORT=5559 vllm serve $model_name \
--port $PREFILL_PORT \
--enforce-eager \
--gpu-memory-utilization 0.2 \
--kv-transfer-config '{\"kv_connector\":\"NixlConnector\",\"kv_role\":\"kv_both\"}'"
--kv-transfer-config '$KV_CONFIG'"
if [ -n "$model_args" ]; then
FULL_CMD="$BASE_CMD $model_args"
@ -72,11 +99,11 @@ run_tests_for_model() {
DECODE_PORT=8002
# Build the command with or without model-specific args
BASE_CMD="CUDA_VISIBLE_DEVICES=1 VLLM_NIXL_SIDE_CHANNEL_PORT=6000 vllm serve $model_name \
BASE_CMD="CUDA_VISIBLE_DEVICES=$DECODE_GPU_ID VLLM_NIXL_SIDE_CHANNEL_PORT=6000 vllm serve $model_name \
--port $DECODE_PORT \
--enforce-eager \
--gpu-memory-utilization 0.2 \
--kv-transfer-config '{\"kv_connector\":\"NixlConnector\",\"kv_role\":\"kv_both\"}'"
--kv-transfer-config '$KV_CONFIG'"
if [ -n "$model_args" ]; then
FULL_CMD="$BASE_CMD $model_args"

View File

@ -255,8 +255,9 @@ class FakeNixlConnectorWorker(NixlConnectorWorker):
time.sleep(self._hand_shake_latency)
# These should've been done in register_kv_caches(), called by
# gpu_model_runner. Here we just hardcode some dummy values.
self.slot_size_bytes = 4096
self.block_len = self.slot_size_bytes * self.block_size
slot_size_bytes = 4096
self.slot_size_per_layer = [slot_size_bytes]
self.block_len_per_layer = [slot_size_bytes * self.block_size]
self.num_blocks = 1
self.dst_num_blocks[self.engine_id] = self.num_blocks
@ -268,7 +269,7 @@ class FakeNixlConnectorWorker(NixlConnectorWorker):
agent_metadata=FakeNixlWrapper.AGENT_METADATA,
kv_caches_base_addr=[0],
num_blocks=1,
block_len=self.block_len,
block_lens=self.block_len_per_layer,
attn_backend_name=self.backend_name,
# `self.kv_cache_layout` is only forced to HND when vllm engine
# is started. We mock HND here.
@ -485,8 +486,8 @@ class TestNixlHandshake:
worker = connector.connector_worker
# Minimal local registration params used by add_remote_agent
worker.slot_size_bytes = 4096
worker.block_len = worker.slot_size_bytes * worker.block_size
worker.slot_size_per_layer = [4096]
worker.block_len_per_layer = [4096 * worker.block_size]
worker.num_blocks = 1
worker.dst_num_blocks[worker.engine_id] = worker.num_blocks
@ -498,7 +499,7 @@ class TestNixlHandshake:
agent_metadata=FakeNixlWrapper.AGENT_METADATA,
kv_caches_base_addr=[0],
num_blocks=1,
block_len=worker.block_len,
block_lens=worker.block_len_per_layer,
attn_backend_name=worker.backend_name,
kv_cache_layout=mismatched_layout,
)

View File

@ -0,0 +1,195 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from unittest import mock
import pytest
import torch
from tests.v1.attention.utils import (BatchSpec, _Backend,
create_common_attn_metadata,
create_standard_kv_cache_spec,
get_attention_backend)
from vllm.config import (CacheConfig, DeviceConfig, ModelConfig,
ParallelConfig, SchedulerConfig, SpeculativeConfig,
VllmConfig)
from vllm.config.load import LoadConfig
from vllm.model_executor.models.llama import LlamaForCausalLM
from vllm.platforms import current_platform
from vllm.v1.spec_decode.eagle import EagleProposer
mimo_7b_dir = "XiaomiMiMo/MiMo-7B-Base"
def _create_mtp_proposer(num_speculative_tokens: int) -> EagleProposer:
"""Create an MTP proposer with unified model configuration."""
model_config = ModelConfig(model=mimo_7b_dir,
runner="generate",
max_model_len=100,
trust_remote_code=True)
speculative_config = SpeculativeConfig(
target_model_config=model_config,
target_parallel_config=ParallelConfig(),
model=mimo_7b_dir,
method="mtp",
num_speculative_tokens=num_speculative_tokens,
)
vllm_config = VllmConfig(
model_config=model_config,
cache_config=CacheConfig(),
speculative_config=speculative_config,
device_config=DeviceConfig(device=current_platform.device_type),
parallel_config=ParallelConfig(),
load_config=LoadConfig(),
scheduler_config=SchedulerConfig())
return EagleProposer(vllm_config=vllm_config,
device=current_platform.device_type)
@mock.patch('vllm.v1.spec_decode.eagle.get_pp_group')
@mock.patch('vllm.v1.spec_decode.eagle.get_layers_from_vllm_config')
@mock.patch('vllm.v1.spec_decode.eagle.get_model')
def test_mtp_load_model_unified(mock_get_model, mock_get_layers,
mock_get_pp_group):
"""Test MTP-specific model loading with unified model approach."""
# Setup mocks
mock_model = mock.MagicMock()
mock_model.model.embed_tokens.weight.shape = (131072, 4096)
mock_get_model.return_value = mock_model
target_attn_layers = {"target_attn_1": mock.MagicMock()}
all_attn_layers = {**target_attn_layers, "draft_attn_1": mock.MagicMock()}
mock_get_layers.side_effect = [target_attn_layers, all_attn_layers]
mock_pp_group = mock.MagicMock()
mock_pp_group.world_size = 1
mock_get_pp_group.return_value = mock_pp_group
# Create target model
class _TargetModelStub(LlamaForCausalLM):
model: mock.MagicMock
lm_head: mock.MagicMock
target_model = mock.create_autospec(_TargetModelStub, instance=True)
target_model.model = mock.MagicMock()
target_model.model.embed_tokens.weight.shape = (131072, 4096)
target_model.lm_head = mock.MagicMock()
# Create MTP proposer
proposer = _create_mtp_proposer(num_speculative_tokens=4)
proposer.load_model(target_model)
# Verify MTP-specific behavior:
# Model is loaded
mock_get_model.assert_called_once()
# MTP shares lm_head with target model
assert proposer.model.lm_head == target_model.lm_head
# MTP shares embed_tokens with target model
assert proposer.model.model.embed_tokens == target_model.model.embed_tokens
@pytest.mark.parametrize("num_speculative_tokens", [1])
def test_mtp_propose(num_speculative_tokens, monkeypatch):
"""Test that MTP's forward method returns hidden states directly"""
device = torch.device(current_platform.device_type)
batch_size = 2
seq_lens = [5, 3]
total_tokens = sum(seq_lens)
vocab_size = 100
proposer = _create_mtp_proposer(num_speculative_tokens)
hidden_size = proposer.hidden_size
# Mock the MTP model to verify it returns hidden states directly
model_mock = mock.MagicMock()
# MTP returns hidden states directly
if num_speculative_tokens == 1:
model_mock.return_value = torch.zeros(total_tokens,
hidden_size,
device=device)
else:
# Multiple forward passes for multi-token speculation
forward_returns = []
for i in range(num_speculative_tokens):
if i == 0:
h_states = torch.zeros(total_tokens,
hidden_size,
device=device)
else:
h_states = torch.zeros(batch_size, hidden_size, device=device)
forward_returns.append(h_states)
model_mock.side_effect = forward_returns
# Mock compute_logits
def create_deterministic_logits(batch_size, vocab_size, token_offset):
logits = torch.full((batch_size, vocab_size), -100.0, device=device)
logits[:, token_offset] = 100.0
return logits
if num_speculative_tokens == 1:
model_mock.compute_logits.return_value = create_deterministic_logits(
batch_size, vocab_size, 42)
else:
logits_returns = [
create_deterministic_logits(batch_size, vocab_size, 42 + i)
for i in range(num_speculative_tokens)
]
model_mock.compute_logits.side_effect = logits_returns
proposer.model = model_mock
proposer.attn_layer_names = ["layer.0"]
# Prepare inputs
batch_spec = BatchSpec(seq_lens=seq_lens, query_lens=seq_lens)
common_attn_metadata = create_common_attn_metadata(batch_spec,
block_size=16,
device=device)
target_token_ids = torch.randint(0,
vocab_size, (total_tokens, ),
device=device)
target_positions = torch.cat([
torch.arange(seq_lens[0], device=device),
torch.arange(seq_lens[1], device=device)
])
target_hidden_states = torch.randn(total_tokens,
hidden_size,
device=device)
next_token_ids = torch.randint(0,
vocab_size, (batch_size, ),
dtype=torch.int32,
device=device)
sampling_metadata = mock.MagicMock()
# Setup attention metadata
attn_metadata_builder_cls, _ = get_attention_backend(_Backend.FLASH_ATTN)
attn_metadata_builder = attn_metadata_builder_cls(
kv_cache_spec=create_standard_kv_cache_spec(proposer.vllm_config),
layer_names=proposer.attn_layer_names,
vllm_config=proposer.vllm_config,
device=device,
)
proposer.runner = mock.MagicMock()
proposer.attn_metadata_builder = attn_metadata_builder
# Run propose
result = proposer.propose(target_token_ids=target_token_ids,
target_positions=target_positions,
target_hidden_states=target_hidden_states,
next_token_ids=next_token_ids,
last_token_indices=None,
common_attn_metadata=common_attn_metadata,
sampling_metadata=sampling_metadata)
# Verify the model was called correctly
assert model_mock.called
# Verify output shape
assert result.shape == (batch_size, num_speculative_tokens)

View File

@ -1,71 +1,10 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import regex as re
import requests
import torch
from tests.utils import RemoteOpenAIServer
from vllm.v1.worker.utils import bind_kv_cache
def test_bind_kv_cache():
from vllm.attention import Attention
ctx = {
'layers.0.self_attn': Attention(32, 128, 0.1),
'layers.1.self_attn': Attention(32, 128, 0.1),
'layers.2.self_attn': Attention(32, 128, 0.1),
'layers.3.self_attn': Attention(32, 128, 0.1),
}
kv_cache = {
'layers.0.self_attn': torch.zeros((1, )),
'layers.1.self_attn': torch.zeros((1, )),
'layers.2.self_attn': torch.zeros((1, )),
'layers.3.self_attn': torch.zeros((1, )),
}
runner_kv_caches: list[torch.Tensor] = []
bind_kv_cache(kv_cache, ctx, runner_kv_caches)
assert ctx['layers.0.self_attn'].kv_cache[0] is kv_cache[
'layers.0.self_attn']
assert ctx['layers.1.self_attn'].kv_cache[0] is kv_cache[
'layers.1.self_attn']
assert ctx['layers.2.self_attn'].kv_cache[0] is kv_cache[
'layers.2.self_attn']
assert ctx['layers.3.self_attn'].kv_cache[0] is kv_cache[
'layers.3.self_attn']
assert runner_kv_caches[0] is kv_cache['layers.0.self_attn']
assert runner_kv_caches[1] is kv_cache['layers.1.self_attn']
assert runner_kv_caches[2] is kv_cache['layers.2.self_attn']
assert runner_kv_caches[3] is kv_cache['layers.3.self_attn']
def test_bind_kv_cache_non_attention():
from vllm.attention import Attention
# example from Jamba PP=2
ctx = {
'model.layers.20.attn': Attention(32, 128, 0.1),
'model.layers.28.attn': Attention(32, 128, 0.1),
}
kv_cache = {
'model.layers.20.attn': torch.zeros((1, )),
'model.layers.28.attn': torch.zeros((1, )),
}
runner_kv_caches: list[torch.Tensor] = []
bind_kv_cache(kv_cache, ctx, runner_kv_caches)
assert ctx['model.layers.20.attn'].kv_cache[0] is kv_cache[
'model.layers.20.attn']
assert ctx['model.layers.28.attn'].kv_cache[0] is kv_cache[
'model.layers.28.attn']
assert runner_kv_caches[0] is kv_cache['model.layers.20.attn']
assert runner_kv_caches[1] is kv_cache['model.layers.28.attn']
# Prometheus metrics utilities for testing

Some files were not shown because too many files have changed in this diff Show More