Compare commits

...

9 Commits

Author SHA1 Message Date
b8b302cde4 Update CUDA architecture list in build pipeline for 12.9.1 wheels (#26592)
Signed-off-by: Will Eaton <wseaton@users.noreply.github.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-10-10 11:15:45 -07:00
f71952c1c4 [Build/CI] Revert back to Ubuntu 20.04, install python 3.12 with uv (#26103)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-10-02 22:22:31 -07:00
d1007767c5 [Bugfix] Disable cascade attention with FlashInfer (#26130)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-10-02 22:22:22 -07:00
c75c2e70d6 [Deepseek v3.2] Support indexer prefill chunking (#25999)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-10-02 10:35:51 -07:00
9d9a2b77f1 [Small] Prevent bypassing media domain restriction via HTTP redirects (#26035)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-10-02 10:35:51 -07:00
6040e0b6c0 [BugFix] Fix FI accuracy issue when used for MLA prefill (#26063)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-10-02 10:35:51 -07:00
05bf0c52a1 Update base image to 22.04 (jammy) (#26065)
Signed-off-by: Huy Do <huydhn@gmail.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-10-02 10:35:51 -07:00
c536881a7c [BugFix] ChunkedLocalAttention is currently not CG compatible (#26034)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-10-02 10:35:51 -07:00
ebce361c07 [BugFix][DP/EP] Fix CUTLASS MLA hang under load (#26026)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-10-02 10:35:50 -07:00
15 changed files with 258 additions and 156 deletions

View File

@ -48,7 +48,7 @@ steps:
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"

View File

@ -580,22 +580,22 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
auto local_split_kv = params.split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
if (local_split_kv <= get<3>(blk_coord))
continue;
if (local_split_kv <= get<3>(blk_coord))
continue;
load_page_table(
blk_coord,
problem_shape,
params.mainloop,
shared_storage.tensors,
pipeline_page_table, pipeline_pt_producer_state,
local_split_kv
local_split_kv
);
}
}
@ -604,15 +604,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
CUTLASS_PRAGMA_NO_UNROLL
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
if (local_split_kv <= get<3>(blk_coord))
if (local_split_kv <= get<3>(blk_coord))
continue;
load_cpasync(
blk_coord,
@ -621,7 +621,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
params.mainloop_params,
shared_storage.tensors,
pipeline_load_qk, pipeline_load_qk_producer_state,
local_split_kv,
local_split_kv,
/* must be shared pipe */
pipeline_page_table, pipeline_pt_consumer_state
);
@ -633,15 +633,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
CUTLASS_PRAGMA_NO_UNROLL
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
if (local_split_kv <= get<3>(blk_coord))
if (local_split_kv <= get<3>(blk_coord))
continue;
load_tma</* paged= */ true>(
blk_coord,
@ -651,7 +651,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
shared_storage.tensors,
pipeline_load_qk, pipeline_load_qk_producer_state,
pipeline_load_qk, pipeline_load_qk_producer_state,
local_split_kv
local_split_kv
);
cutlass::arch::NamedBarrier((kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp, kNamedBarrierEpilogue).arrive_and_wait();
}
@ -660,15 +660,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
CUTLASS_PRAGMA_NO_UNROLL
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
}
if (local_split_kv <= get<3>(blk_coord))
if (local_split_kv <= get<3>(blk_coord))
continue;
load_tma<false>(
blk_coord,
@ -678,7 +678,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
shared_storage.tensors,
pipeline_load_qk, pipeline_load_qk_producer_state,
pipeline_load_qk, pipeline_load_qk_producer_state,
local_split_kv
local_split_kv
);
cutlass::arch::NamedBarrier((kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp, kNamedBarrierEpilogue).arrive_and_wait();
}
@ -694,14 +694,14 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
auto local_split_kv = params.split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
if (local_split_kv <= get<3>(blk_coord))
if (local_split_kv <= get<3>(blk_coord))
continue;
mma(blk_coord,
problem_shape,
@ -711,7 +711,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
pipeline_mma_s, pipeline_mma_s_producer_state,
pipeline_p_mma, pipeline_p_mma_consumer_state,
pipeline_mma_o, pipeline_mma_o_producer_state,
local_split_kv
local_split_kv
);
}
}
@ -726,15 +726,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto split_kv = params.split_kv;
auto local_split_kv = split_kv;
auto split_kv = params.split_kv;
auto local_split_kv = split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
if (local_split_kv <= get<3>(blk_coord))
if (local_split_kv <= get<3>(blk_coord))
continue;
compute(
blk_coord,
@ -745,7 +745,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
pipeline_mma_s, pipeline_mma_s_consumer_state,
pipeline_p_mma, pipeline_p_mma_producer_state,
pipeline_mma_o, pipeline_mma_o_consumer_state,
local_split_kv
local_split_kv
);
}
@ -1900,7 +1900,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
cutlass::arch::NamedBarrier(
(kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp,
kNamedBarrierEpilogue
).arrive();
).arrive_and_wait();
return;
}

View File

@ -14,6 +14,11 @@ ARG PYTHON_VERSION=3.12
#
# Example:
# docker build --build-arg BUILD_BASE_IMAGE=registry.acme.org/mirror/nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04
# Important: We build with an old version of Ubuntu to maintain broad
# compatibility with other Linux OSes. The main reason for this is that the
# glibc version is baked into the distro, and binaries built with one glibc
# version are not backwards compatible with OSes that use an earlier version.
ARG BUILD_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04
# TODO: Restore to base image after FlashInfer AOT wheel fixed
ARG FINAL_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04
@ -75,34 +80,19 @@ ARG TARGETPLATFORM
ARG INSTALL_KV_CONNECTORS=false
ENV DEBIAN_FRONTEND=noninteractive
ARG DEADSNAKES_MIRROR_URL
ARG DEADSNAKES_GPGKEY_URL
ARG GET_PIP_URL
# Install Python and other dependencies
# Install system dependencies and uv, then create Python virtual environment
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
&& apt-get update -y \
&& apt-get install -y ccache software-properties-common git curl sudo \
&& if [ ! -z ${DEADSNAKES_MIRROR_URL} ] ; then \
if [ ! -z "${DEADSNAKES_GPGKEY_URL}" ] ; then \
mkdir -p -m 0755 /etc/apt/keyrings ; \
curl -L ${DEADSNAKES_GPGKEY_URL} | gpg --dearmor > /etc/apt/keyrings/deadsnakes.gpg ; \
sudo chmod 644 /etc/apt/keyrings/deadsnakes.gpg ; \
echo "deb [signed-by=/etc/apt/keyrings/deadsnakes.gpg] ${DEADSNAKES_MIRROR_URL} $(lsb_release -cs) main" > /etc/apt/sources.list.d/deadsnakes.list ; \
fi ; \
else \
for i in 1 2 3; do \
add-apt-repository -y ppa:deadsnakes/ppa && break || \
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
done ; \
fi \
&& apt-get update -y \
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION} \
&& apt-get install -y ccache software-properties-common git curl sudo python3-pip \
&& curl -LsSf https://astral.sh/uv/install.sh | sh \
&& $HOME/.local/bin/uv venv /opt/venv --python ${PYTHON_VERSION} \
&& rm -f /usr/bin/python3 /usr/bin/python3-config /usr/bin/pip \
&& ln -s /opt/venv/bin/python3 /usr/bin/python3 \
&& ln -s /opt/venv/bin/python3-config /usr/bin/python3-config \
&& ln -s /opt/venv/bin/pip /usr/bin/pip \
&& python3 --version && python3 -m pip --version
ARG PIP_INDEX_URL UV_INDEX_URL
@ -111,9 +101,9 @@ ARG PYTORCH_CUDA_INDEX_BASE_URL
ARG PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL
ARG PIP_KEYRING_PROVIDER UV_KEYRING_PROVIDER
# Install uv for faster pip installs
RUN --mount=type=cache,target=/root/.cache/uv \
python3 -m pip install uv
# Activate virtual environment and add uv to PATH
ENV PATH="/opt/venv/bin:/root/.local/bin:$PATH"
ENV VIRTUAL_ENV="/opt/venv"
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
# Reference: https://github.com/astral-sh/uv/pull/1694
@ -142,7 +132,7 @@ WORKDIR /workspace
COPY requirements/common.txt requirements/common.txt
COPY requirements/cuda.txt requirements/cuda.txt
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/cuda.txt \
uv pip install --python /opt/venv/bin/python3 -r requirements/cuda.txt \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
# cuda arch list used by torch
@ -172,7 +162,7 @@ ENV UV_INDEX_STRATEGY="unsafe-best-match"
ENV UV_LINK_MODE=copy
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/build.txt \
uv pip install --python /opt/venv/bin/python3 -r requirements/build.txt \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
COPY . .
@ -269,7 +259,7 @@ COPY requirements/lint.txt requirements/lint.txt
COPY requirements/test.txt requirements/test.txt
COPY requirements/dev.txt requirements/dev.txt
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/dev.txt \
uv pip install --python /opt/venv/bin/python3 -r requirements/dev.txt \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
#################### DEV IMAGE ####################

View File

@ -6,7 +6,7 @@ ARG CUDA_VERSION=12.8.0
#
#################### BASE BUILD IMAGE ####################
# prepare basic build environment
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 AS base
ARG CUDA_VERSION=12.8.0
ARG PYTHON_VERSION=3.12
ARG TARGETPLATFORM

View File

@ -8,6 +8,9 @@ This page teaches you how to pass multi-modal inputs to [multi-modal models][sup
!!! tip
When serving multi-modal models, consider setting `--allowed-media-domains` to restrict domain that vLLM can access to prevent it from accessing arbitrary endpoints that can potentially be vulnerable to Server-Side Request Forgery (SSRF) attacks. You can provide a list of domains for this arg. For example: `--allowed-media-domains upload.wikimedia.org github.com www.bogotobogo.com`
Also, consider setting `VLLM_MEDIA_URL_ALLOW_REDIRECTS=0` to prevent HTTP redirects from being followed to bypass domain restrictions.
This restriction is especially important if you run vLLM in a containerized environment where the vLLM pods may have unrestricted access to internal networks.
## Offline Inference

View File

@ -66,6 +66,9 @@ Restrict domains that vLLM can access for media URLs by setting
`--allowed-media-domains` to prevent Server-Side Request Forgery (SSRF) attacks.
(e.g. `--allowed-media-domains upload.wikimedia.org github.com www.bogotobogo.com`)
Also, consider setting `VLLM_MEDIA_URL_ALLOW_REDIRECTS=0` to prevent HTTP
redirects from being followed to bypass domain restrictions.
## Security and Firewalls: Protecting Exposed vLLM Systems
While vLLM is designed to allow unsafe network services to be isolated to

View File

@ -22,6 +22,7 @@ from vllm.utils import cdiv
from vllm.v1.attention.backends.mla.flashmla_sparse import (
FlashMLASparseBackend, FlashMLASparseDecodeAndContextMetadata,
FlashMLASparseImpl, FlashMLASparseMetadata)
from vllm.v1.attention.backends.mla.indexer import split_prefill_chunks
SPARSE_BACKEND_BATCH_SPECS = {
name: BATCH_SPECS[name]
@ -424,3 +425,24 @@ def test_sparse_backend_decode_correctness(dist_init, batch_name,
sdpa_reference,
rtol=0.5,
atol=0.5)
@pytest.mark.parametrize(
"seq_lens,max_buf,start,expected",
[
# Basic split: totals per chunk ≤ max_buf
(torch.tensor([2, 3, 4, 2]), 5, 0, [(0, 2), (2, 3), (3, 4)]),
# Non-zero start index
(torch.tensor([2, 3, 4, 2]), 5, 1, [(1, 2), (2, 3), (3, 4)]),
# Exact fits should split between items when adding the next would
# overflow
(torch.tensor([5, 5, 5]), 5, 0, [(0, 1), (1, 2), (2, 3)]),
# All requests fit in a single chunk
(torch.tensor([1, 1, 1]), 10, 0, [(0, 3)]),
# Large buffer with non-zero start
(torch.tensor([4, 4, 4]), 100, 1, [(1, 3)]),
],
)
def test_split_prefill_chunks(seq_lens, max_buf, start, expected):
out = split_prefill_chunks(seq_lens, max_buf, start)
assert out == expected

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import functools
from typing import List, Optional
from typing import ClassVar, List, Optional
import torch
@ -11,8 +11,8 @@ from vllm.attention.backends.abstract import (AttentionBackend,
from vllm.attention.selector import get_attn_backend
from vllm.config import CacheConfig, QuantizationConfig
from vllm.v1.attention.backends.utils import (
CommonAttentionMetadata, make_local_attention_virtual_batches,
subclass_attention_backend)
AttentionCGSupport, CommonAttentionMetadata,
make_local_attention_virtual_batches, subclass_attention_backend)
from ..layer import Attention
@ -28,6 +28,8 @@ def create_chunked_local_attention_backend(
underlying_builder = underlying_attn_backend.get_builder_cls()
class ChunkedLocalAttentionBuilder(underlying_builder): # type: ignore
cudagraph_support: ClassVar[AttentionCGSupport] = \
AttentionCGSupport.NEVER
def build(self,
common_prefix_len: int,

View File

@ -54,6 +54,7 @@ class HTTPConnection:
stream: bool = False,
timeout: Optional[float] = None,
extra_headers: Optional[Mapping[str, str]] = None,
allow_redirects: bool = True,
):
self._validate_http_url(url)
@ -63,7 +64,8 @@ class HTTPConnection:
return client.get(url,
headers=self._headers(**extra_headers),
stream=stream,
timeout=timeout)
timeout=timeout,
allow_redirects=allow_redirects)
async def get_async_response(
self,
@ -71,6 +73,7 @@ class HTTPConnection:
*,
timeout: Optional[float] = None,
extra_headers: Optional[Mapping[str, str]] = None,
allow_redirects: bool = True,
):
self._validate_http_url(url)
@ -79,10 +82,17 @@ class HTTPConnection:
return client.get(url,
headers=self._headers(**extra_headers),
timeout=timeout)
timeout=timeout,
allow_redirects=allow_redirects)
def get_bytes(self, url: str, *, timeout: Optional[float] = None) -> bytes:
with self.get_response(url, timeout=timeout) as r:
def get_bytes(self,
url: str,
*,
timeout: Optional[float] = None,
allow_redirects: bool = True) -> bytes:
with self.get_response(url,
timeout=timeout,
allow_redirects=allow_redirects) as r:
r.raise_for_status()
return r.content
@ -92,8 +102,10 @@ class HTTPConnection:
url: str,
*,
timeout: Optional[float] = None,
allow_redirects: bool = True,
) -> bytes:
async with await self.get_async_response(url, timeout=timeout) as r:
async with await self.get_async_response(
url, timeout=timeout, allow_redirects=allow_redirects) as r:
r.raise_for_status()
return await r.read()

View File

@ -68,6 +68,7 @@ if TYPE_CHECKING:
VLLM_IMAGE_FETCH_TIMEOUT: int = 5
VLLM_VIDEO_FETCH_TIMEOUT: int = 30
VLLM_AUDIO_FETCH_TIMEOUT: int = 10
VLLM_MEDIA_URL_ALLOW_REDIRECTS: bool = True
VLLM_MEDIA_LOADING_THREAD_COUNT: int = 8
VLLM_MAX_AUDIO_CLIP_FILESIZE_MB: int = 25
VLLM_VIDEO_LOADER_BACKEND: str = "opencv"
@ -725,6 +726,11 @@ environment_variables: dict[str, Callable[[], Any]] = {
"VLLM_AUDIO_FETCH_TIMEOUT":
lambda: int(os.getenv("VLLM_AUDIO_FETCH_TIMEOUT", "10")),
# Whether to allow HTTP redirects when fetching from media URLs.
# Default to True
"VLLM_MEDIA_URL_ALLOW_REDIRECTS":
lambda: bool(int(os.getenv("VLLM_MEDIA_URL_ALLOW_REDIRECTS", "1"))),
# Max number of workers for the thread pool handling
# media bytes loading. Set to 1 to disable parallel processing.
# Default is 8

View File

@ -583,44 +583,43 @@ def sparse_attn_indexer(
topk_indices_buffer[:hidden_states.shape[0]] = -1
if has_prefill:
prefill_metadata = attn_metadata.prefill
num_prefills = attn_metadata.num_prefills
k_fp8 = torch.empty([prefill_metadata.total_seq_lens, head_dim],
device=k.device,
dtype=torch.float8_e4m3fn)
k_scale = torch.empty([prefill_metadata.total_seq_lens, 1],
device=k.device,
dtype=torch.float32)
cp_gather_indexer_k_quant_cache(
kv_cache,
k_fp8,
k_scale,
prefill_metadata.block_table,
prefill_metadata.cu_seq_lens,
num_prefills,
)
cu_seqlen_ks = prefill_metadata.cu_seqlen_ks
cu_seqlen_ke = prefill_metadata.cu_seqlen_ke
num_tokens = attn_metadata.num_actual_tokens
logits = fp8_mqa_logits(
q_fp8[num_decode_tokens:num_tokens],
(k_fp8, k_scale),
weights[num_decode_tokens:num_tokens],
cu_seqlen_ks,
cu_seqlen_ke,
)
topk_indices = logits.topk(min(topk_tokens, logits.shape[-1]),
dim=-1)[1]
topk_indices -= cu_seqlen_ks[:, None]
mask_lo = topk_indices >= 0
mask_hi = topk_indices - (cu_seqlen_ke - cu_seqlen_ks)[:, None] < 0
mask = torch.full_like(topk_indices,
False,
dtype=torch.bool,
device=topk_indices.device)
mask = mask_lo & mask_hi
topk_indices = topk_indices.masked_fill(~mask, -1)
topk_indices_buffer[num_decode_tokens:num_tokens, :topk_indices.
shape[-1]] = topk_indices.to(dtype=torch.int32)
for chunk in prefill_metadata.chunks:
k_fp8 = torch.empty([chunk.total_seq_lens, head_dim],
device=k.device,
dtype=torch.float8_e4m3fn)
k_scale = torch.empty([chunk.total_seq_lens, 1],
device=k.device,
dtype=torch.float32)
cp_gather_indexer_k_quant_cache(
kv_cache,
k_fp8,
k_scale,
chunk.block_table,
chunk.cu_seq_lens,
chunk.num_reqs,
)
logits = fp8_mqa_logits(
q_fp8[chunk.token_start:chunk.token_end],
(k_fp8, k_scale),
weights[chunk.token_start:chunk.token_end],
chunk.cu_seqlen_ks,
chunk.cu_seqlen_ke,
)
topk_indices = logits.topk(min(topk_tokens, logits.shape[-1]),
dim=-1)[1]
topk_indices -= chunk.cu_seqlen_ks[:, None]
mask_lo = topk_indices >= 0
mask_hi = topk_indices - (chunk.cu_seqlen_ke -
chunk.cu_seqlen_ks)[:, None] < 0
mask = torch.full_like(topk_indices,
False,
dtype=torch.bool,
device=topk_indices.device)
mask = mask_lo & mask_hi
topk_indices = topk_indices.masked_fill(~mask, -1)
topk_indices_buffer[
chunk.token_start:chunk.token_end, :topk_indices.
shape[-1]] = topk_indices.to(dtype=torch.int32)
if has_decode:
decode_metadata = attn_metadata.decode

View File

@ -140,7 +140,11 @@ class MediaConnector:
self._assert_url_in_allowed_media_domains(url_spec)
connection = self.connection
data = connection.get_bytes(url, timeout=fetch_timeout)
data = connection.get_bytes(
url,
timeout=fetch_timeout,
allow_redirects=envs.VLLM_MEDIA_URL_ALLOW_REDIRECTS,
)
return media_io.load_bytes(data)
@ -167,7 +171,11 @@ class MediaConnector:
self._assert_url_in_allowed_media_domains(url_spec)
connection = self.connection
data = await connection.async_get_bytes(url, timeout=fetch_timeout)
data = await connection.async_get_bytes(
url,
timeout=fetch_timeout,
allow_redirects=envs.VLLM_MEDIA_URL_ALLOW_REDIRECTS,
)
future = loop.run_in_executor(global_thread_pool,
media_io.load_bytes, data)
return await future

View File

@ -29,7 +29,6 @@ from vllm.utils.flashinfer import (can_use_trtllm_attention,
flashinfer_disable_q_quantization,
supports_trtllm_attention,
use_trtllm_attention)
from vllm.v1.attention.backends.flash_attn import use_cascade_attention
# yapf conflicts with isort for this block
# yapf: disable
from vllm.v1.attention.backends.utils import (AttentionCGSupport,
@ -677,7 +676,9 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
# TODO: The cascade wrapper currently does not support setting
# kv cache dtype to something different from query dtype.
return False
return use_cascade_attention(*args, **kwargs)
# TODO: Cascade attention doesn't work, disable it for now
# return use_cascade_attention(*args, **kwargs)
return False
class FlashInferImpl(AttentionImpl):

View File

@ -1211,13 +1211,18 @@ class MLACommonImpl(MLACommonBaseImpl[M], Generic[M]):
k, v, return_softmax_lse):
assert isinstance(prefill, FlashInferPrefillMetadata)
assert prefill.prefill_main is not None
return prefill.prefill_main.run(
ret = prefill.prefill_main.run(
q=q,
k=k,
v=v,
return_lse=return_softmax_lse,
)
if isinstance(ret, tuple):
# Convert from (q_len, num_heads) to (num_heads, q_len)
return ret[0], ret[1].transpose(0, 1).contiguous()
return ret
def _run_prefill_new_tokens_cudnn(self, prefill: MLACommonPrefillMetadata,
q, k, v, return_softmax_lse):
assert isinstance(prefill, CudnnPrefillMetadata)
@ -1260,12 +1265,14 @@ class MLACommonImpl(MLACommonBaseImpl[M], Generic[M]):
def _run_prefill_context_chunk_fi(self, prefill: MLACommonPrefillMetadata,
chunk_idx: int, q, k, v):
assert isinstance(prefill, FlashInferPrefillMetadata)
return prefill.prefill_chunks[chunk_idx].run(
attn_out, lse = prefill.prefill_chunks[chunk_idx].run(
q=q,
k=k,
v=v,
return_lse=True,
)
# Convert from (q_len, num_heads) to (num_heads, q_len)
return attn_out, lse.transpose(0, 1).contiguous()
def _run_prefill_context_chunk_cudnn(self,
prefill: MLACommonPrefillMetadata,

View File

@ -49,14 +49,20 @@ class DeepseekV32IndexerBackend(AttentionBackend):
@dataclass
class DeepseekV32IndexerPrefillMetadata:
class DeepseekV32IndexerPrefillChunkMetadata:
block_table: torch.Tensor
query_start_loc: torch.Tensor
max_query_len: int
cu_seqlen_ks: torch.Tensor
cu_seqlen_ke: torch.Tensor
cu_seq_lens: torch.Tensor
total_seq_lens: int
token_start: int
token_end: int
num_reqs: int
@dataclass
class DeepseekV32IndexerPrefillMetadata:
chunks: list[DeepseekV32IndexerPrefillChunkMetadata]
@dataclass
@ -98,8 +104,8 @@ class DeepseekV32IndexerMetadata:
# TODO (zyongye) optimize this, this is now vibe coded
def kv_spans_from_batches(
start_seq_loc: torch.Tensor,
seq_len_per_batch: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
start_seq_loc: torch.Tensor, seq_len_per_batch: torch.Tensor,
device: torch.device) -> tuple[torch.Tensor, torch.Tensor]:
"""
Args:
start_seq_loc: 1D long tensor [B+1], cumulative counts of
@ -122,7 +128,7 @@ def kv_spans_from_batches(
are the **last** `counts[i]` positions of that sequence.
"""
q = start_seq_loc.to(dtype=torch.long)
L = seq_len_per_batch.to(dtype=torch.long, device=q.device)
L = seq_len_per_batch.to(dtype=torch.long)
assert q.dim() == 1 and L.dim() == 1
assert q.numel() == L.numel() + 1, "start_seq_loc must have length B+1"
@ -130,7 +136,6 @@ def kv_spans_from_batches(
counts = q[1:] - q[:-1] # [B]
N = int(q[-1].item()) # total selected tokens
B = L.numel()
device = L.device
if N == 0:
return (torch.empty(0, dtype=torch.long, device=device),
@ -140,8 +145,7 @@ def kv_spans_from_batches(
kv_starts_per_batch = torch.cumsum(L, dim=0) - L # [B]
# For each selected token, which batch does it belong to?
batch_id = torch.repeat_interleave(torch.arange(B, device=device),
counts) # [N]
batch_id = torch.repeat_interleave(torch.arange(B), counts) # [N]
# Map batch KV start to each token
start_tensor = kv_starts_per_batch[batch_id] # [N]
@ -151,22 +155,51 @@ def kv_spans_from_batches(
L_expand = torch.repeat_interleave(L, counts) # [N]
m_expand = torch.repeat_interleave(counts, counts) # [N]
# position within the selected block: 1..counts[b]
pos_within = (torch.arange(N, device=device, dtype=torch.long) -
pos_within = (torch.arange(N, dtype=torch.long) -
torch.repeat_interleave(q[:-1], counts) + 1)
local_pos = L_expand - m_expand + pos_within # [N], 1-based
end_location = start_tensor + local_pos # exclusive end
return start_tensor.int(), end_location.int()
return start_tensor.int().to(device), end_location.int().to(device)
def get_max_prefill_buffer_size(vllm_config: VllmConfig):
max_model_len = vllm_config.model_config.max_model_len
# max_num_batched_tokens = \
# vllm_config.scheduler_config.max_num_batched_tokens
max_num_seq = vllm_config.scheduler_config.max_num_seqs
# NOTE(Chen): an estimated max size of flattened_kv. Need to double check.
return max_model_len * max_num_seq
# NOTE(Chen): 2 is a magic number for controlling the prefill buffer size.
# May be tuned later.
return max_model_len * 2
def split_prefill_chunks(seq_lens_cpu: torch.Tensor,
max_prefill_buffer_size: int,
reqs_start: int) -> list[tuple[int, int]]:
"""
Split the prefill chunks into a list of tuples of (reqs_start, reqs_end)
such that the total sequence length of each chunk is less than the
maximum prefill buffer size.
Args:
seq_lens_cpu: The sequence lengths of the prefill requests.
max_prefill_buffer_size: The maximum prefill buffer size.
reqs_start: The start index of the prefill requests.
Returns:
A list of tuples of (reqs_start, reqs_end).
"""
chunk_seq_ids = []
total_seq_lens = 0
for i in range(reqs_start, len(seq_lens_cpu)):
cur_seq_len = seq_lens_cpu[i].item()
assert cur_seq_len <= max_prefill_buffer_size
total_seq_lens += cur_seq_len
if total_seq_lens > max_prefill_buffer_size:
chunk_seq_ids.append((reqs_start, i))
reqs_start = i
total_seq_lens = cur_seq_len
if total_seq_lens > 0:
chunk_seq_ids.append((reqs_start, len(seq_lens_cpu)))
return chunk_seq_ids
class DeepseekV32IndexerMetadataBuilder(AttentionMetadataBuilder):
@ -201,6 +234,33 @@ class DeepseekV32IndexerMetadataBuilder(AttentionMetadataBuilder):
dtype=torch.int32,
device=self.device)
def build_one_prefill_chunk(self, reqs_start, reqs_end,
query_start_loc_cpu, seq_lens_cpu,
block_table):
prefill_query_start_loc = query_start_loc_cpu[
reqs_start:reqs_end + 1] - query_start_loc_cpu[reqs_start]
cu_seqlen_ks, cu_seqlen_ke = kv_spans_from_batches(
prefill_query_start_loc, seq_lens_cpu[reqs_start:reqs_end],
self.device)
token_start = query_start_loc_cpu[reqs_start].item()
token_end = query_start_loc_cpu[reqs_end].item()
total_seq_lens = seq_lens_cpu[reqs_start:reqs_end].sum()
assert total_seq_lens <= self.max_prefill_buffer_size
cu_seq_lens = torch.cat([
torch.zeros(1, dtype=torch.int32),
seq_lens_cpu[reqs_start:reqs_end].cumsum(dim=0)
]).to(torch.int32).to(self.device)
return DeepseekV32IndexerPrefillChunkMetadata(
cu_seqlen_ks=cu_seqlen_ks,
cu_seqlen_ke=cu_seqlen_ke,
cu_seq_lens=cu_seq_lens,
total_seq_lens=total_seq_lens,
block_table=block_table[reqs_start:reqs_end],
token_start=token_start,
token_end=token_end,
num_reqs=reqs_end - reqs_start,
)
def build(self,
common_prefix_len: int,
common_attn_metadata: CommonAttentionMetadata,
@ -209,11 +269,7 @@ class DeepseekV32IndexerMetadataBuilder(AttentionMetadataBuilder):
num_reqs = common_attn_metadata.num_reqs
num_tokens = common_attn_metadata.num_actual_tokens
device = self.device
block_table_tensor = common_attn_metadata.block_table_tensor
query_start_loc = common_attn_metadata.query_start_loc
query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu
num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens = \
split_decodes_and_prefills(
common_attn_metadata,
@ -224,27 +280,20 @@ class DeepseekV32IndexerMetadataBuilder(AttentionMetadataBuilder):
prefill_metadata = None
if num_prefills > 0:
reqs_start = num_decodes
prefill_query_start_loc = query_start_loc[
reqs_start:] - query_start_loc[reqs_start]
cu_seqlen_ks, cu_seqlen_ke = kv_spans_from_batches(
prefill_query_start_loc,
common_attn_metadata.seq_lens[reqs_start:])
total_seq_lens = common_attn_metadata.seq_lens[reqs_start:].sum()
assert total_seq_lens < self.max_prefill_buffer_size
cu_seq_lens = torch.cat([
torch.zeros(1, dtype=torch.int32, device=device),
common_attn_metadata.seq_lens[reqs_start:].cumsum(dim=0)
]).to(torch.int32).cuda()
prefill_metadata = DeepseekV32IndexerPrefillMetadata(
block_table=block_table_tensor[reqs_start:, ...],
query_start_loc=prefill_query_start_loc,
max_query_len=common_attn_metadata.max_query_len,
cu_seqlen_ks=cu_seqlen_ks,
cu_seqlen_ke=cu_seqlen_ke,
cu_seq_lens=cu_seq_lens,
total_seq_lens=total_seq_lens,
chunk_seq_ids = split_prefill_chunks(
common_attn_metadata.seq_lens_cpu,
self.max_prefill_buffer_size,
num_decodes,
)
chunks = [
self.build_one_prefill_chunk(
reqs_start, reqs_end, query_start_loc_cpu,
common_attn_metadata.seq_lens_cpu,
common_attn_metadata.block_table_tensor)
for reqs_start, reqs_end in chunk_seq_ids
]
prefill_metadata = DeepseekV32IndexerPrefillMetadata(
chunks=chunks, )
decode_metadata = None
if num_decodes > 0: