mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
Compare commits
2 Commits
v0.11.0rc3
...
gemma3n-mm
Author | SHA1 | Date | |
---|---|---|---|
b801bf30d7 | |||
bfd63b1b10 |
@ -730,29 +730,7 @@ class Gemma3nTextModel(nn.Module):
|
||||
return loaded_params
|
||||
|
||||
|
||||
class Gemma3nModel(nn.Module):
|
||||
|
||||
def __init__(self, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
self.language_model = Gemma3nTextModel(vllm_config=vllm_config,
|
||||
prefix=maybe_prefix(
|
||||
prefix, "language_model"))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.Tensor],
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
return self.language_model(input_ids=input_ids,
|
||||
positions=positions,
|
||||
inputs_embeds=inputs_embeds,
|
||||
**kwargs)
|
||||
|
||||
|
||||
class Gemma3nForConditionalGeneration(nn.Module):
|
||||
class Gemma3nForCausalLM(nn.Module):
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": [
|
||||
"q_proj",
|
||||
@ -771,7 +749,7 @@ class Gemma3nForConditionalGeneration(nn.Module):
|
||||
del lora_config # Unused.
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.model = Gemma3nModel(vllm_config=vllm_config,
|
||||
self.model = Gemma3nTextModel(vllm_config=vllm_config,
|
||||
prefix=maybe_prefix(prefix, "model"))
|
||||
self.logits_processor = LogitsProcessor(
|
||||
config.text_config.vocab_size,
|
||||
|
499
vllm/model_executor/models/gemma3n_mm.py
Normal file
499
vllm/model_executor/models/gemma3n_mm.py
Normal file
@ -0,0 +1,499 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
from collections.abc import Iterable, Mapping, Sequence
|
||||
from typing import Any, Optional, TypedDict, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import AutoModel, BatchFeature
|
||||
from transformers.models.gemma3n import (Gemma3nAudioConfig,
|
||||
Gemma3nAudioFeatureExtractor,
|
||||
Gemma3nConfig, Gemma3nProcessor,
|
||||
Gemma3nTextConfig,
|
||||
Gemma3nVisionConfig)
|
||||
from transformers.models.siglip import SiglipImageProcessorFast
|
||||
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import RowParallelLinear
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding)
|
||||
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargs)
|
||||
from vllm.multimodal.parse import ImageProcessorItems, MultiModalDataItems
|
||||
# yapf: disable
|
||||
from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
||||
BaseProcessingInfo, BoundPromptUpdate,
|
||||
PlaceholderFeaturesInfo,
|
||||
PromptReplacement, PromptTargetMatch,
|
||||
PromptUpdate, find_mm_placeholders,
|
||||
replace_token_matches)
|
||||
# yapf: enable
|
||||
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import MultiModalEmbeddings, SupportsMultiModal
|
||||
from .utils import (AutoWeightsLoader, WeightsMapper,
|
||||
init_vllm_registered_model, maybe_prefix,
|
||||
merge_multimodal_embeddings)
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
# This should be based on model config but we hardcode them for now.
|
||||
TOKENS_PER_IMAGE = 256
|
||||
TOKENS_PER_AUDIO = 188
|
||||
|
||||
|
||||
class Gemma3nImagePixelInputs(TypedDict):
|
||||
pixel_values: torch.Tensor
|
||||
"""Shape: `(batch_size * num_images, num_channels, height, width)`"""
|
||||
|
||||
|
||||
class Gemma3nAudioInputs(TypedDict):
|
||||
input_features: torch.Tensor
|
||||
"""Shape: `(batch_size * num_audio, seq_length, num_features)`"""
|
||||
input_features_mask: torch.Tensor
|
||||
"""Shape: `(batch_size * num_audio, seq_length)`"""
|
||||
|
||||
|
||||
Gemma3nImageInputs = Gemma3nImagePixelInputs
|
||||
|
||||
|
||||
class Gemma3nProcessingInfo(BaseProcessingInfo):
|
||||
|
||||
def get_hf_config(self):
|
||||
return self.ctx.get_hf_config(Gemma3nConfig)
|
||||
|
||||
def get_hf_processor(self, **kwargs: object):
|
||||
return self.ctx.get_hf_processor(Gemma3nProcessor, **kwargs)
|
||||
|
||||
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
|
||||
return {"image": None, "audio": None}
|
||||
|
||||
def get_max_tokens_per_item(
|
||||
self, seq_len: int,
|
||||
mm_counts: Mapping[str, int]) -> Optional[Mapping[str, int]]:
|
||||
|
||||
return {"image": TOKENS_PER_IMAGE, "audio": TOKENS_PER_AUDIO}
|
||||
|
||||
|
||||
class Gemma3nDummyInputsBuilder(BaseDummyInputsBuilder[Gemma3nProcessingInfo]):
|
||||
|
||||
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
||||
num_images = mm_counts.get("image", 0)
|
||||
num_audios = mm_counts.get("audio", 0)
|
||||
|
||||
processor = self.info.get_hf_processor()
|
||||
image_token = processor.image_token
|
||||
audio_token = processor.audio_token
|
||||
|
||||
return image_token * num_images + audio_token * num_audios
|
||||
|
||||
def get_dummy_mm_data(
|
||||
self,
|
||||
seq_len: int,
|
||||
mm_counts: Mapping[str, int],
|
||||
) -> MultiModalDataDict:
|
||||
num_images = mm_counts.get("image", 0)
|
||||
num_audios = mm_counts.get("audio", 0)
|
||||
processor = self.info.get_hf_processor()
|
||||
feature_extractor: Gemma3nAudioFeatureExtractor = processor.feature_extractor # noqa: E501
|
||||
audio_len = feature_extractor.max_length
|
||||
image_processor: SiglipImageProcessorFast = processor.image_processor
|
||||
img_width = image_processor.size.get("width", 224)
|
||||
img_height = image_processor.size.get("width", 224)
|
||||
|
||||
return {
|
||||
"image":
|
||||
self._get_dummy_images(width=img_width,
|
||||
height=img_height,
|
||||
num_images=num_images),
|
||||
"audio":
|
||||
self._get_dummy_audios(length=audio_len, num_audios=num_audios)
|
||||
}
|
||||
|
||||
|
||||
class Gemma3MultiModalProcessor(BaseMultiModalProcessor[Gemma3nProcessingInfo]
|
||||
):
|
||||
|
||||
def _call_hf_processor(
|
||||
self,
|
||||
prompt: str,
|
||||
mm_data: Mapping[str, object],
|
||||
mm_kwargs: Mapping[str, object],
|
||||
) -> BatchFeature:
|
||||
processed_outputs = super()._call_hf_processor(
|
||||
prompt,
|
||||
mm_data,
|
||||
mm_kwargs,
|
||||
)
|
||||
return processed_outputs
|
||||
|
||||
def _get_mm_fields_config(
|
||||
self,
|
||||
hf_inputs: BatchFeature,
|
||||
hf_processor_mm_kwargs: Mapping[str, object],
|
||||
) -> Mapping[str, MultiModalFieldConfig]:
|
||||
|
||||
return dict(
|
||||
pixel_values=MultiModalFieldConfig.batched("image"),
|
||||
input_features=MultiModalFieldConfig.batched("audio"),
|
||||
input_features_mask=MultiModalFieldConfig.batched("audio"),
|
||||
)
|
||||
|
||||
def _get_prompt_updates(
|
||||
self,
|
||||
mm_items: MultiModalDataItems,
|
||||
hf_processor_mm_kwargs: Mapping[str, Any],
|
||||
out_mm_kwargs: MultiModalKwargs,
|
||||
) -> Sequence[PromptUpdate]:
|
||||
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
||||
image_token = hf_processor.boi_token
|
||||
|
||||
def get_replacement_gemma3(item_idx: int):
|
||||
images = mm_items.get_items("image", ImageProcessorItems)
|
||||
|
||||
image_size = images.get_image_size(item_idx)
|
||||
return self.info.get_image_repl(
|
||||
image_width=image_size.width,
|
||||
image_height=image_size.height,
|
||||
processor=hf_processor,
|
||||
)
|
||||
|
||||
return [
|
||||
PromptReplacement(
|
||||
modality="image",
|
||||
target=image_token,
|
||||
replacement=get_replacement_gemma3,
|
||||
)
|
||||
]
|
||||
|
||||
def _apply_token_matches(
|
||||
self,
|
||||
prompt: list[int],
|
||||
mm_matches: Mapping[str, Sequence[PromptTargetMatch]],
|
||||
mm_item_counts: Mapping[str, int],
|
||||
) -> list[int]:
|
||||
token_ids = super()._apply_token_matches(
|
||||
prompt,
|
||||
mm_matches,
|
||||
mm_item_counts,
|
||||
)
|
||||
|
||||
# "\n\n\n" and "\n\n\n\n" are single tokens
|
||||
# Since our replacement can insert "\n\n" next to "\n"
|
||||
# tokens, we have to combine them to be consistent with
|
||||
# the output of the tokenizer
|
||||
tokenizer = self.info.get_tokenizer()
|
||||
vocab = tokenizer.get_vocab()
|
||||
newline_1 = vocab["\n"]
|
||||
newline_2 = vocab["\n\n"]
|
||||
newline_3 = vocab["\n\n\n"]
|
||||
newline_4 = vocab["\n\n\n\n"]
|
||||
|
||||
token_ids = replace_token_matches(
|
||||
token_ids,
|
||||
[newline_1, newline_2],
|
||||
[newline_3],
|
||||
)
|
||||
token_ids = replace_token_matches(
|
||||
token_ids,
|
||||
[newline_2, newline_1],
|
||||
[newline_3],
|
||||
)
|
||||
token_ids = replace_token_matches(
|
||||
token_ids,
|
||||
[newline_2, newline_2],
|
||||
[newline_4],
|
||||
)
|
||||
|
||||
return token_ids
|
||||
|
||||
def _find_mm_placeholders(
|
||||
self,
|
||||
mm_prompt_updates: Mapping[str, Sequence[BoundPromptUpdate]],
|
||||
new_token_ids: list[int],
|
||||
mm_item_counts: Mapping[str, int],
|
||||
) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
|
||||
# We need to detect "\n\n" inside "\n\n\n" and "\n\n\n\n"
|
||||
tokenizer = self.info.get_tokenizer()
|
||||
vocab = tokenizer.get_vocab()
|
||||
newline_1 = vocab["\n"]
|
||||
newline_2 = vocab["\n\n"]
|
||||
newline_3 = vocab["\n\n\n"]
|
||||
newline_4 = vocab["\n\n\n\n"]
|
||||
|
||||
def get_repl_toks(tok: int) -> list[int]:
|
||||
if tok == newline_3:
|
||||
return [newline_1, newline_2]
|
||||
if tok == newline_4:
|
||||
return [newline_2, newline_2]
|
||||
|
||||
return [tok]
|
||||
|
||||
repl_token_ids = list[int]()
|
||||
repl_orig_idxs = list[int]()
|
||||
for orig_idx, orig_tok in enumerate(new_token_ids):
|
||||
repl_toks = get_repl_toks(orig_tok)
|
||||
repl_token_ids.extend(repl_toks)
|
||||
repl_orig_idxs.extend(orig_idx for _ in range(len(repl_toks)))
|
||||
|
||||
repls = find_mm_placeholders(mm_prompt_updates, repl_token_ids,
|
||||
mm_item_counts)
|
||||
|
||||
return {
|
||||
modality: [
|
||||
PlaceholderFeaturesInfo(
|
||||
modality=p.modality,
|
||||
item_idx=p.item_idx,
|
||||
start_idx=repl_orig_idxs[p.start_idx],
|
||||
tokens=p.tokens,
|
||||
is_embed=p.is_embed,
|
||||
) for p in placeholders
|
||||
]
|
||||
for modality, placeholders in repls.items()
|
||||
}
|
||||
|
||||
|
||||
class Gemma3nMultimodalEmbedder(nn.Module):
|
||||
"""Embeds token ids or soft tokens for multimodal content into language
|
||||
model space."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
multimodal_config: Union[Gemma3nAudioConfig, Gemma3nVisionConfig],
|
||||
text_config: Gemma3nTextConfig,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.multimodal_hidden_size = multimodal_config.hidden_size
|
||||
self.eps = multimodal_config.rms_norm_eps
|
||||
self.vocab_offset = multimodal_config.vocab_offset
|
||||
self.vocab_size = multimodal_config.vocab_size
|
||||
self.text_hidden_size = text_config.hidden_size
|
||||
|
||||
self.embedding = VocabParallelEmbedding(
|
||||
self.vocab_size,
|
||||
self.multimodal_hidden_size,
|
||||
)
|
||||
|
||||
self.hard_embedding_norm = RMSNorm(
|
||||
self.multimodal_hidden_size,
|
||||
eps=self.eps,
|
||||
)
|
||||
|
||||
self.soft_embedding_norm = RMSNorm(
|
||||
self.multimodal_hidden_size,
|
||||
eps=self.eps,
|
||||
)
|
||||
|
||||
self.embedding_projection = RowParallelLinear(
|
||||
self.multimodal_hidden_size,
|
||||
self.text_hidden_size,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
self.embedding_post_projection_norm = RMSNorm(
|
||||
self.text_hidden_size,
|
||||
eps=self.eps,
|
||||
has_weight=False,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""Embeds token ids or soft tokens for multimodal content into language model space.
|
||||
|
||||
Args:
|
||||
input_ids: A torch.LongTensor containing the token ids to embed. Values should be in the range
|
||||
`[vocab_offset, vocab_offset + vocab_size)`.
|
||||
inputs_embeds: A torch.Tensor containing the soft tokens to embed.
|
||||
|
||||
Returns:
|
||||
A torch.Tensor of embeddings with shape `[batch_size, seq_len, self.config.text_config.hidden_size]`.
|
||||
""" # noqa: E501
|
||||
if (input_ids is None) ^ (inputs_embeds is not None):
|
||||
raise ValueError(
|
||||
"You must specify exactly one of input_ids or inputs_embeds")
|
||||
|
||||
if inputs_embeds is not None:
|
||||
emb_norm = self.soft_embedding_norm(inputs_embeds)
|
||||
else:
|
||||
hard_emb = self.embedding(input_ids - self.vocab_offset)
|
||||
emb_norm = self.hard_embedding_norm(hard_emb)
|
||||
|
||||
emb_norm_proj, _ = self.embedding_projection(emb_norm)
|
||||
return self.embedding_post_projection_norm(emb_norm_proj)
|
||||
|
||||
|
||||
@MULTIMODAL_REGISTRY.register_processor(Gemma3MultiModalProcessor,
|
||||
info=Gemma3nProcessingInfo,
|
||||
dummy_inputs=Gemma3nDummyInputsBuilder)
|
||||
class Gemma3nForConditionalGeneration(nn.Module, SupportsMultiModal):
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": [
|
||||
"q_proj",
|
||||
"k_proj",
|
||||
"v_proj",
|
||||
],
|
||||
"gate_up_proj": [
|
||||
"gate_proj",
|
||||
"up_proj",
|
||||
],
|
||||
}
|
||||
|
||||
hf_to_vllm_mapper = WeightsMapper(
|
||||
orig_to_new_prefix={
|
||||
# mapping for new names in checkpoint saved after transformers v4.52
|
||||
"model.language_model.": "language_model.model.",
|
||||
"model.vision_tower.": "vision_tower.",
|
||||
"model.multi_modal_projector.": "multi_modal_projector.",
|
||||
"lm_head.": "language_model.lm_head.",
|
||||
})
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
multimodal_config = vllm_config.model_config.multimodal_config
|
||||
self.config = config
|
||||
self.quant_config = quant_config
|
||||
self.multimodal_config = multimodal_config
|
||||
self.sliding_window = getattr(config.text_config,
|
||||
"interleaved_sliding_window", None)
|
||||
|
||||
self.vision_tower = AutoModel.from_config(config=config.vision_config)
|
||||
self.audio_tower = AutoModel.from_config(config=config.audio_config)
|
||||
self.embed_vision = Gemma3nMultimodalEmbedder(config.vision_config,
|
||||
config.text_config)
|
||||
self.embed_audio = Gemma3nMultimodalEmbedder(config.audio_config,
|
||||
config.text_config)
|
||||
|
||||
self.language_model = init_vllm_registered_model(
|
||||
vllm_config=vllm_config,
|
||||
hf_config=config.text_config,
|
||||
prefix=maybe_prefix(prefix, "language_model"),
|
||||
architectures=["Gemma3nForCausalLM"],
|
||||
)
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return next(self.parameters()).dtype
|
||||
|
||||
def _process_image_input(
|
||||
self,
|
||||
image_input: Gemma3nImageInputs,
|
||||
) -> list[torch.Tensor]:
|
||||
assert self.vision_tower is not None
|
||||
|
||||
pixel_values = image_input["pixel_values"]
|
||||
vision_outputs = self.vision_tower(pixel_values=pixel_values,
|
||||
do_pooling=False,
|
||||
return_dict=True).last_hidden_state
|
||||
vision_outputs = vision_outputs.reshape(
|
||||
vision_outputs.shape[0],
|
||||
self.config.vision_config.hidden_size,
|
||||
self.config.vision_soft_tokens_per_image,
|
||||
).permute(0, 2, 1)
|
||||
# Normalize and embed the soft tokens into language model space.
|
||||
vision_outputs *= self.config.vision_config.hidden_size**0.5
|
||||
return self.embed_vision(inputs_embeds=vision_outputs)
|
||||
|
||||
def _process_audio_input(
|
||||
self,
|
||||
audio_input: Gemma3nAudioInputs,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
assert self.audio_tower is not None
|
||||
input_features = audio_input["input_features"]
|
||||
input_features_mask = audio_input["input_features_mask"]
|
||||
audio_outputs, audio_mask = self.audio_tower(input_features,
|
||||
input_features_mask)
|
||||
return self.embed_audio(inputs_embeds=audio_outputs), audio_mask
|
||||
|
||||
def get_language_model(self) -> torch.nn.Module:
|
||||
return self.language_model
|
||||
|
||||
def get_multimodal_embeddings(self,
|
||||
**kwargs: object) -> MultiModalEmbeddings:
|
||||
image_input = self._parse_and_validate_image_input(**kwargs)
|
||||
if image_input is None:
|
||||
return []
|
||||
|
||||
return self._process_image_input(image_input)
|
||||
|
||||
def get_input_embeddings(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
|
||||
) -> torch.Tensor:
|
||||
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
||||
if multimodal_embeddings is not None \
|
||||
and len(multimodal_embeddings) != 0:
|
||||
inputs_embeds = merge_multimodal_embeddings(
|
||||
input_ids,
|
||||
inputs_embeds,
|
||||
multimodal_embeddings,
|
||||
self.config.image_token_index,
|
||||
)
|
||||
return inputs_embeds
|
||||
|
||||
def forward(self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
**kwargs: object) -> IntermediateTensors:
|
||||
if intermediate_tensors is not None:
|
||||
inputs_embeds = None
|
||||
|
||||
# NOTE: In v1, inputs_embeds is always generated at model runner, this
|
||||
# condition is for v0 compatibility.
|
||||
elif inputs_embeds is None:
|
||||
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
|
||||
|
||||
inputs_embeds = self.get_input_embeddings(input_ids,
|
||||
vision_embeddings)
|
||||
if vision_embeddings is not None:
|
||||
kwargs = self.prepare_attn_masks(
|
||||
input_ids,
|
||||
positions,
|
||||
mask_dtype=self.dtype,
|
||||
**kwargs,
|
||||
)
|
||||
input_ids = None
|
||||
|
||||
hidden_states = self.language_model.model(input_ids,
|
||||
positions,
|
||||
intermediate_tensors,
|
||||
inputs_embeds=inputs_embeds,
|
||||
**kwargs)
|
||||
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
loader = AutoWeightsLoader(self)
|
||||
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|
||||
|
||||
def get_mm_mapping(self) -> MultiModelKeys:
|
||||
"""
|
||||
Get the module prefix in multimodal models
|
||||
"""
|
||||
return MultiModelKeys.from_string_field(
|
||||
language_model="language_model",
|
||||
connector="multi_modal_projector",
|
||||
tower_model="vision_tower")
|
@ -617,7 +617,8 @@ class QwenVLMultiModalProcessor(BaseMultiModalProcessor[QwenVLProcessingInfo]):
|
||||
) -> Mapping[str, MultiModalFieldConfig]:
|
||||
return dict(
|
||||
pixel_values=MultiModalFieldConfig.batched("image"),
|
||||
image_embeds=MultiModalFieldConfig.batched("image"),
|
||||
input_features=MultiModalFieldConfig.batched("audio"),
|
||||
input_features_mask=MultiModalFieldConfig.batched("audio"),
|
||||
)
|
||||
|
||||
def _get_prompt_updates(
|
||||
|
Reference in New Issue
Block a user