Compare commits

...

8 Commits

22 changed files with 1358 additions and 107 deletions

View File

@ -1,24 +1,22 @@
steps: steps:
# aarch64 + CUDA builds. PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9 # aarch64 + CUDA builds. PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
- label: "Build arm64 wheel - CUDA 12.9" - label: "Build arm64 wheel - CUDA 12.9"
depends_on: ~
id: build-wheel-arm64-cuda-12-9 id: build-wheel-arm64-cuda-12-9
agents: agents:
queue: arm64_cpu_queue_postmerge queue: arm64_cpu_queue_postmerge
commands: commands:
# #NOTE: torch_cuda_arch_list is derived from upstream PyTorch build files here: # #NOTE: torch_cuda_arch_list is derived from upstream PyTorch build files here:
# https://github.com/pytorch/pytorch/blob/main/.ci/aarch64_linux/aarch64_ci_build.sh#L7 # https://github.com/pytorch/pytorch/blob/main/.ci/aarch64_linux/aarch64_ci_build.sh#L7
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ." - "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg VLLM_MAIN_CUDA_VERSION=12.9 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts" - "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'" - "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh" - "bash .buildkite/scripts/upload-wheels.sh"
env: env:
DOCKER_BUILDKIT: "1" DOCKER_BUILDKIT: "1"
- block: "Build CUDA 12.8 wheel"
key: block-build-cu128-wheel
- label: "Build wheel - CUDA 12.8" - label: "Build wheel - CUDA 12.8"
depends_on: block-build-cu128-wheel depends_on: ~
id: build-wheel-cuda-12-8 id: build-wheel-cuda-12-8
agents: agents:
queue: cpu_queue_postmerge queue: cpu_queue_postmerge
@ -30,12 +28,8 @@ steps:
env: env:
DOCKER_BUILDKIT: "1" DOCKER_BUILDKIT: "1"
- block: "Build CUDA 12.6 wheel"
key: block-build-cu126-wheel
depends_on: ~
- label: "Build wheel - CUDA 12.6" - label: "Build wheel - CUDA 12.6"
depends_on: block-build-cu126-wheel depends_on: ~
id: build-wheel-cuda-12-6 id: build-wheel-cuda-12-6
agents: agents:
queue: cpu_queue_postmerge queue: cpu_queue_postmerge
@ -102,8 +96,6 @@ steps:
depends_on: depends_on:
- create-multi-arch-manifest - create-multi-arch-manifest
- build-wheel-cuda-12-8 - build-wheel-cuda-12-8
- build-wheel-cuda-12-6
- build-wheel-cuda-12-9
id: annotate-release-workflow id: annotate-release-workflow
agents: agents:
queue: cpu_queue_postmerge queue: cpu_queue_postmerge

View File

@ -14,18 +14,33 @@ buildkite-agent annotate --style 'info' --context 'release-workflow' << EOF
To download the wheel: To download the wheel:
\`\`\` \`\`\`
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux1_x86_64.whl . aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux2014_aarch64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu126/vllm-${RELEASE_VERSION}+cu126-cp38-abi3-manylinux1_x86_64.whl . aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu126/vllm-${RELEASE_VERSION}+cu126-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu118/vllm-${RELEASE_VERSION}+cu118-cp38-abi3-manylinux1_x86_64.whl . aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu129/vllm-${RELEASE_VERSION}+cu129-cp38-abi3-manylinux1_x86_64.whl .
\`\`\` \`\`\`
To download and upload the image: To download and upload the image:
\`\`\` \`\`\`
docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT} docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}-x86_64
docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT} vllm/vllm-openai docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}-aarch64
docker tag vllm/vllm-openai vllm/vllm-openai:latest
docker tag vllm/vllm-openai vllm/vllm-openai:v${RELEASE_VERSION} docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}-x86_64 vllm/vllm-openai:x86_64
docker push vllm/vllm-openai:latest docker tag vllm/vllm-openai:x86_64 vllm/vllm-openai:latest-x86_64
docker push vllm/vllm-openai:v${RELEASE_VERSION} docker tag vllm/vllm-openai:x86_64 vllm/vllm-openai:v${RELEASE_VERSION}-x86_64
docker push vllm/vllm-openai:latest-x86_64
docker push vllm/vllm-openai:v${RELEASE_VERSION}-x86_64
docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}-aarch64 vllm/vllm-openai:aarch64
docker tag vllm/vllm-openai:aarch64 vllm/vllm-openai:latest-aarch64
docker tag vllm/vllm-openai:aarch64 vllm/vllm-openai:v${RELEASE_VERSION}-aarch64
docker push vllm/vllm-openai:latest-aarch64
docker push vllm/vllm-openai:v${RELEASE_VERSION}-aarch64
docker manifest create vllm/vllm-openai:latest vllm/vllm-openai:latest-x86_64 vllm/vllm-openai:latest-aarch64 --amend
docker manifest create vllm/vllm-openai:v${RELEASE_VERSION} vllm/vllm-openai:v${RELEASE_VERSION}-x86_64 vllm/vllm-openai:v${RELEASE_VERSION}-aarch64 --amend
docker manifest push vllm/vllm-openai:latest
docker manifest push vllm/vllm-openai:v${RELEASE_VERSION}
\`\`\` \`\`\`
EOF EOF

View File

@ -43,6 +43,7 @@ void sm100_cutlass_mla_decode(
torch::Tensor const& seq_lens, torch::Tensor const& seq_lens,
torch::Tensor const& page_table, torch::Tensor const& page_table,
torch::Tensor const& workspace, torch::Tensor const& workspace,
double sm_scale,
int64_t num_kv_splits) { int64_t num_kv_splits) {
TORCH_CHECK(false, "CUDA version must be >= 12.4 for cutlass_mla_decode"); TORCH_CHECK(false, "CUDA version must be >= 12.4 for cutlass_mla_decode");
} }

View File

@ -196,6 +196,7 @@ ARG SCCACHE_S3_NO_CREDENTIALS=0
# Flag to control whether to use pre-built vLLM wheels # Flag to control whether to use pre-built vLLM wheels
ARG VLLM_USE_PRECOMPILED="" ARG VLLM_USE_PRECOMPILED=""
ARG VLLM_MAIN_CUDA_VERSION=""
# if USE_SCCACHE is set, use sccache to speed up compilation # if USE_SCCACHE is set, use sccache to speed up compilation
RUN --mount=type=cache,target=/root/.cache/uv \ RUN --mount=type=cache,target=/root/.cache/uv \
@ -213,6 +214,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
&& export SCCACHE_IDLE_TIMEOUT=0 \ && export SCCACHE_IDLE_TIMEOUT=0 \
&& export CMAKE_BUILD_TYPE=Release \ && export CMAKE_BUILD_TYPE=Release \
&& export VLLM_USE_PRECOMPILED="${VLLM_USE_PRECOMPILED}" \ && export VLLM_USE_PRECOMPILED="${VLLM_USE_PRECOMPILED}" \
&& export VLLM_MAIN_CUDA_VERSION="${VLLM_MAIN_CUDA_VERSION}" \
&& export VLLM_DOCKER_BUILD_CONTEXT=1 \ && export VLLM_DOCKER_BUILD_CONTEXT=1 \
&& sccache --show-stats \ && sccache --show-stats \
&& python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38 \ && python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38 \

View File

@ -56,8 +56,6 @@ elif (sys.platform.startswith("linux") and torch.version.cuda is None
# fallback to cpu # fallback to cpu
VLLM_TARGET_DEVICE = "cpu" VLLM_TARGET_DEVICE = "cpu"
MAIN_CUDA_VERSION = "12.8"
def is_sccache_available() -> bool: def is_sccache_available() -> bool:
return which("sccache") is not None and \ return which("sccache") is not None and \
@ -507,7 +505,7 @@ def get_vllm_version() -> str:
version += f"{sep}precompiled" version += f"{sep}precompiled"
else: else:
cuda_version = str(get_nvcc_cuda_version()) cuda_version = str(get_nvcc_cuda_version())
if cuda_version != MAIN_CUDA_VERSION: if cuda_version != envs.VLLM_MAIN_CUDA_VERSION:
cuda_version_str = cuda_version.replace(".", "")[:3] cuda_version_str = cuda_version.replace(".", "")[:3]
# skip this for source tarball, required for pypi # skip this for source tarball, required for pypi
if "sdist" not in sys.argv: if "sdist" not in sys.argv:
@ -515,7 +513,7 @@ def get_vllm_version() -> str:
elif _is_hip(): elif _is_hip():
# Get the Rocm Version # Get the Rocm Version
rocm_version = get_rocm_version() or torch.version.hip rocm_version = get_rocm_version() or torch.version.hip
if rocm_version and rocm_version != MAIN_CUDA_VERSION: if rocm_version and rocm_version != envs.VLLM_MAIN_CUDA_VERSION:
version += f"{sep}rocm{rocm_version.replace('.', '')[:3]}" version += f"{sep}rocm{rocm_version.replace('.', '')[:3]}"
elif _is_tpu(): elif _is_tpu():
version += f"{sep}tpu" version += f"{sep}tpu"

View File

@ -771,11 +771,11 @@ def test_flashinfer_cutlass_mxfp4_mxfp8_fused_moe(
w13_ref = dequant_mxfp4_batches( w13_ref = dequant_mxfp4_batches(
w13_q.view(torch.uint8), w13_q.view(torch.uint8),
w13_scale.view(torch.uint8).reshape(-1)).to(torch.float32).reshape( w13_scale.view(torch.uint8).reshape(-1)).to(torch.float32).reshape(
num_experts, 2 * intermediate_size, hidden_size) num_experts, 2 * intermediate_size, hidden_size).to(device)
w2_ref = dequant_mxfp4_batches( w2_ref = dequant_mxfp4_batches(
w2_q.view(torch.uint8), w2_q.view(torch.uint8),
w2_scale.view(torch.uint8).reshape(-1)).to(torch.float32).reshape( w2_scale.view(torch.uint8).reshape(-1)).to(torch.float32).reshape(
num_experts, hidden_size, intermediate_size) num_experts, hidden_size, intermediate_size).to(device)
# Quantize activations for SM100 path and dequantize for reference # Quantize activations for SM100 path and dequantize for reference
hidden_states_q, hidden_states_sf = mxfp8_quantize(hidden_states, True, 32) hidden_states_q, hidden_states_sf = mxfp8_quantize(hidden_states, True, 32)

View File

@ -0,0 +1,114 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm.platforms import current_platform
def test_idefics_multimodal(
vllm_runner,
monkeypatch,
) -> None:
if current_platform.is_rocm():
# ROCm Triton FA does not currently support sliding window attention
# switch to use ROCm CK FA backend
monkeypatch.setenv("VLLM_USE_TRITON_FLASH_ATTN", "False")
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
with vllm_runner(model_name="HuggingFaceM4/Idefics3-8B-Llama3",
runner="pooling",
task="classify",
convert="classify",
load_format="dummy",
max_model_len=512,
enforce_eager=True,
tensor_parallel_size=1,
disable_log_stats=True,
dtype="bfloat16") as vllm_model:
llm = vllm_model.get_llm()
outputs = llm.classify(prompts)
for output in outputs:
assert len(output.outputs.probs) == 2
def update_config(config):
config.text_config.update({
"architectures": ["Gemma3ForSequenceClassification"],
"classifier_from_token": ["A", "B", "C", "D", "E"],
"method":
"no_post_processing",
"id2label": {
"A": "Chair",
"B": "Couch",
"C": "Table",
"D": "Bed",
"E": "Cupboard"
},
})
return config
def test_gemma_multimodal(
vllm_runner,
monkeypatch,
) -> None:
if current_platform.is_rocm():
# ROCm Triton FA does not currently support sliding window attention
# switch to use ROCm CK FA backend
monkeypatch.setenv("VLLM_USE_TRITON_FLASH_ATTN", "False")
messages = [{
"role":
"system",
"content":
"""
You are a helpful assistant. You will be given a product description
which may also include an image. Classify the following product into
one of the categories:
A = chair
B = couch
C = table
D = bed
E = cupboard
You'll answer with exactly one letter (A, B, C, D, or E)."""
}, {
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url":
"https://upload.wikimedia.org/wikipedia/commons/c/c6/Set_of_fourteen_side_chairs_MET_DP110780.jpg"
}
}, {
"type": "text",
"text": "A fine 19th century piece of furniture."
}]
}]
with vllm_runner(model_name="google/gemma-3-4b-it",
runner="pooling",
task="classify",
convert="classify",
load_format="auto",
hf_overrides=update_config,
override_pooler_config={"pooling_type": "LAST"},
max_model_len=512,
enforce_eager=True,
tensor_parallel_size=1,
disable_log_stats=True,
dtype="bfloat16") as vllm_model:
llm = vllm_model.get_llm()
prompts = llm.preprocess_chat(messages)
result = llm.classify(prompts)
assert result[0].outputs.probs[0] > 0.95
assert all(c < 0.05 for c in result[0].outputs.probs[1:])

View File

@ -703,6 +703,106 @@ class LLM:
return outputs return outputs
def preprocess_chat(
self,
messages: Union[list[ChatCompletionMessageParam],
list[list[ChatCompletionMessageParam]]],
lora_request: Optional[LoRARequest] = None,
chat_template: Optional[str] = None,
chat_template_content_format: ChatTemplateContentFormatOption = "auto",
add_generation_prompt: bool = True,
continue_final_message: bool = False,
tools: Optional[list[dict[str, Any]]] = None,
chat_template_kwargs: Optional[dict[str, Any]] = None,
mm_processor_kwargs: Optional[dict[str, Any]] = None,
) -> list[TokensPrompt]:
"""
Generate prompt for a chat conversation. The pre-processed
prompt can then be used as input for the other LLM methods.
Refer to `chat` for a complete description of the arguments.
Returns:
A list of `TokensPrompts` objects containing the tokenized
prompt after chat template interpolation, and the
pre-processed multi-modal inputs.
"""
list_of_messages: list[list[ChatCompletionMessageParam]]
# Handle multi and single conversations
if is_list_of(messages, list):
# messages is list[list[...]]
list_of_messages = cast(list[list[ChatCompletionMessageParam]],
messages)
else:
# messages is list[...]
list_of_messages = [
cast(list[ChatCompletionMessageParam], messages)
]
tokenizer = self.get_tokenizer(lora_request)
model_config = self.llm_engine.get_model_config()
resolved_content_format = resolve_chat_template_content_format(
chat_template,
tools,
chat_template_content_format,
tokenizer,
model_config=model_config,
)
_chat_template_kwargs: dict[str, Any] = dict(
chat_template=chat_template,
add_generation_prompt=add_generation_prompt,
continue_final_message=continue_final_message,
tools=tools,
)
_chat_template_kwargs.update(chat_template_kwargs or {})
prompts: list[TokensPrompt] = []
for msgs in list_of_messages:
# NOTE: _parse_chat_message_content_parts() currently doesn't
# handle mm_processor_kwargs, since there is no implementation in
# the chat message parsing for it.
conversation, mm_data, mm_uuids = parse_chat_messages(
msgs,
model_config,
tokenizer,
content_format=resolved_content_format,
)
if isinstance(tokenizer, MistralTokenizer):
prompt_token_ids = apply_mistral_chat_template(
tokenizer,
messages=msgs,
**_chat_template_kwargs,
)
else:
prompt_str = apply_hf_chat_template(
tokenizer=tokenizer,
conversation=conversation,
model_config=model_config,
**_chat_template_kwargs,
)
# Special tokens are already included in chat templates so
# should not be added by the tokenizer in this case.
prompt_token_ids = tokenizer.encode(prompt_str,
add_special_tokens=False)
prompt = TokensPrompt(prompt_token_ids=prompt_token_ids)
if mm_data is not None:
prompt["multi_modal_data"] = mm_data
if mm_uuids is not None:
prompt["multi_modal_uuids"] = mm_uuids
if mm_processor_kwargs is not None:
prompt["mm_processor_kwargs"] = mm_processor_kwargs
prompts.append(prompt)
return prompts
def chat( def chat(
self, self,
messages: Union[list[ChatCompletionMessageParam], messages: Union[list[ChatCompletionMessageParam],
@ -769,80 +869,18 @@ class LLM:
A list of `RequestOutput` objects containing the generated A list of `RequestOutput` objects containing the generated
responses in the same order as the input messages. responses in the same order as the input messages.
""" """
list_of_messages: list[list[ChatCompletionMessageParam]]
# Handle multi and single conversations prompts = self.preprocess_chat(
if is_list_of(messages, list): messages=messages,
# messages is list[list[...]] lora_request=lora_request,
list_of_messages = cast(list[list[ChatCompletionMessageParam]],
messages)
else:
# messages is list[...]
list_of_messages = [
cast(list[ChatCompletionMessageParam], messages)
]
tokenizer = self.get_tokenizer(lora_request)
model_config = self.llm_engine.get_model_config()
resolved_content_format = resolve_chat_template_content_format(
chat_template,
tools,
chat_template_content_format,
tokenizer,
model_config=model_config,
)
_chat_template_kwargs: dict[str, Any] = dict(
chat_template=chat_template, chat_template=chat_template,
chat_template_content_format=chat_template_content_format,
add_generation_prompt=add_generation_prompt, add_generation_prompt=add_generation_prompt,
continue_final_message=continue_final_message, continue_final_message=continue_final_message,
tools=tools, tools=tools,
chat_template_kwargs=chat_template_kwargs,
mm_processor_kwargs=mm_processor_kwargs,
) )
_chat_template_kwargs.update(chat_template_kwargs or {})
prompts: list[Union[TokensPrompt, TextPrompt]] = []
for msgs in list_of_messages:
# NOTE: _parse_chat_message_content_parts() currently doesn't
# handle mm_processor_kwargs, since there is no implementation in
# the chat message parsing for it.
conversation, mm_data, mm_uuids = parse_chat_messages(
msgs,
model_config,
tokenizer,
content_format=resolved_content_format,
)
if isinstance(tokenizer, MistralTokenizer):
prompt_token_ids = apply_mistral_chat_template(
tokenizer,
messages=msgs,
**_chat_template_kwargs,
)
else:
prompt_str = apply_hf_chat_template(
tokenizer=tokenizer,
conversation=conversation,
model_config=model_config,
**_chat_template_kwargs,
)
# Special tokens are already included in chat templates so
# should not be added by the tokenizer in this case.
prompt_token_ids = tokenizer.encode(prompt_str,
add_special_tokens=False)
prompt = TokensPrompt(prompt_token_ids=prompt_token_ids)
if mm_data is not None:
prompt["multi_modal_data"] = mm_data
if mm_uuids is not None:
prompt["multi_modal_uuids"] = mm_uuids
if mm_processor_kwargs is not None:
prompt["mm_processor_kwargs"] = mm_processor_kwargs
prompts.append(prompt)
return self.generate( return self.generate(
prompts, prompts,

View File

@ -70,6 +70,7 @@ if TYPE_CHECKING:
VLLM_VIDEO_LOADER_BACKEND: str = "opencv" VLLM_VIDEO_LOADER_BACKEND: str = "opencv"
VLLM_MM_INPUT_CACHE_GIB: int = 4 VLLM_MM_INPUT_CACHE_GIB: int = 4
VLLM_TARGET_DEVICE: str = "cuda" VLLM_TARGET_DEVICE: str = "cuda"
VLLM_MAIN_CUDA_VERSION: str = "12.8"
MAX_JOBS: Optional[str] = None MAX_JOBS: Optional[str] = None
NVCC_THREADS: Optional[str] = None NVCC_THREADS: Optional[str] = None
VLLM_USE_PRECOMPILED: bool = False VLLM_USE_PRECOMPILED: bool = False
@ -246,6 +247,11 @@ environment_variables: dict[str, Callable[[], Any]] = {
"VLLM_TARGET_DEVICE": "VLLM_TARGET_DEVICE":
lambda: os.getenv("VLLM_TARGET_DEVICE", "cuda").lower(), lambda: os.getenv("VLLM_TARGET_DEVICE", "cuda").lower(),
# Main CUDA version of vLLM, supporting [12.6, 12.8, 12.9],
# 12.8 is the default. This follows PyTorch but can be overridden.
"VLLM_MAIN_CUDA_VERSION":
lambda: os.getenv("VLLM_MAIN_CUDA_VERSION", "").lower() or "12.8",
# Maximum number of compilation jobs to run in parallel. # Maximum number of compilation jobs to run in parallel.
# By default this is the number of CPUs # By default this is the number of CPUs
"MAX_JOBS": "MAX_JOBS":

View File

@ -0,0 +1,146 @@
{
"1": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"2": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"4": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"8": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 3
},
"16": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 5
},
"24": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 2
},
"32": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 2
},
"48": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 2
},
"64": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 2
},
"96": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 3
},
"128": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 2
},
"256": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 2
},
"512": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 3
},
"1024": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"1536": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"2048": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 8,
"num_stages": 3
},
"3072": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 4
},
"4096": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 8,
"num_stages": 4
}
}

View File

@ -0,0 +1,146 @@
{
"1": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"2": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"4": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"8": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"16": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"24": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"32": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"48": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 3
},
"64": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"96": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"128": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"256": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"512": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"1024": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"1536": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 2
},
"2048": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 2
},
"3072": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 2
},
"4096": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 2
}
}

View File

@ -0,0 +1,146 @@
{
"1": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"2": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"4": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"8": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"16": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 3
},
"24": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 3
},
"32": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 2
},
"48": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 3
},
"64": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 2
},
"96": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 3
},
"128": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 2
},
"256": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 3
},
"512": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 2
},
"1024": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"1536": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 3
},
"2048": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 3
},
"3072": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 2
},
"4096": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 8,
"num_stages": 3
}
}

View File

@ -0,0 +1,146 @@
{
"1": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"2": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"4": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"8": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"16": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"24": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"32": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"48": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"64": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"96": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"128": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"256": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"512": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"1024": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 3
},
"1536": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"2048": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 2
},
"3072": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"4096": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 3
}
}

View File

@ -0,0 +1,146 @@
{
"1": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"2": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 3
},
"4": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 3
},
"8": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"16": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 64,
"num_warps": 8,
"num_stages": 2
},
"24": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 64,
"num_warps": 8,
"num_stages": 2
},
"32": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 16,
"num_warps": 8,
"num_stages": 2
},
"48": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 3
},
"64": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 3
},
"96": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 16,
"num_warps": 8,
"num_stages": 2
},
"128": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 3
},
"256": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 2
},
"512": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 2
},
"1024": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 3
},
"1536": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"2048": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"3072": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"4096": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 8,
"num_stages": 3
}
}

View File

@ -0,0 +1,146 @@
{
"1": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"2": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"4": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"8": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"16": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"24": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 3
},
"32": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"48": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 3
},
"64": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"96": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"128": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"256": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"512": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"1024": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"1536": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 3
},
"2048": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"3072": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 3
},
"4096": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 3
}
}

View File

@ -0,0 +1,146 @@
{
"1": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"2": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"4": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"8": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"16": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"24": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"32": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"48": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"64": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"96": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 2
},
"128": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"256": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"512": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"1024": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"1536": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 3
},
"2048": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 2
},
"3072": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 2
},
"4096": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 2
}
}

View File

@ -19,10 +19,11 @@ from vllm.logger import init_logger
from vllm.model_executor.layers.linear import QKVCrossParallelLinear from vllm.model_executor.layers.linear import QKVCrossParallelLinear
from vllm.model_executor.layers.quantization.base_config import ( from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase) QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.models.adapters import (as_embedding_model, from vllm.model_executor.models.adapters import (
as_reward_model, as_embedding_model, as_reward_model, as_seq_cls_model,
as_seq_cls_model) try_create_mm_pooling_model_cls)
from vllm.model_executor.models.interfaces import SupportsQuant from vllm.model_executor.models.interfaces import (SupportsQuant,
supports_multimodal)
from vllm.utils import is_pin_memory_available from vllm.utils import is_pin_memory_available
logger = init_logger(__name__) logger = init_logger(__name__)
@ -183,6 +184,15 @@ def get_model_architecture(
"performance may not be optimal.", arch) "performance may not be optimal.", arch)
convert_type = model_config.convert_type convert_type = model_config.convert_type
if convert_type != "none" and supports_multimodal(model_cls):
logger.debug_once("Detected conversion of Multi Modal model.")
converted = try_create_mm_pooling_model_cls(model_cls)
if converted is not None:
logger.debug_once("Creating wrapper class to forward pooler.")
return converted, arch
else:
logger.debug_once("Attempting direct conversion.")
if convert_type == "none": if convert_type == "none":
pass pass
elif convert_type == "embed": elif convert_type == "embed":

View File

@ -1,12 +1,15 @@
# SPDX-License-Identifier: Apache-2.0 # SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import ast
import inspect
from collections.abc import Iterable from collections.abc import Iterable
from typing import TYPE_CHECKING, Any, Optional, TypeVar, cast from typing import TYPE_CHECKING, Any, Optional, TypeVar, cast
import torch import torch
import torch.nn as nn import torch.nn as nn
from vllm.config import VllmConfig
from vllm.logger import init_logger from vllm.logger import init_logger
from vllm.model_executor.layers.activation import get_act_fn from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.models.config import VerifyAndUpdateConfig from vllm.model_executor.models.config import VerifyAndUpdateConfig
@ -129,6 +132,41 @@ def _get_pooling_model_name(orig_model_name: str, pooling_suffix: str) -> str:
return model_name + pooling_suffix return model_name + pooling_suffix
def try_create_mm_pooling_model_cls(orig_cls: _T) -> _T:
class CallVisitor(ast.NodeVisitor):
def __init__(self):
self.calls = []
def visit_Call(self, node):
if isinstance(node.func, ast.Name):
self.calls.append(node.func.id)
self.generic_visit(node)
visitor = CallVisitor()
visitor.visit(ast.parse(inspect.getsource(orig_cls)))
if "init_vllm_registered_model" not in visitor.calls:
return None
class ModelForPooling(orig_cls, VllmModelForPooling):
is_pooling_model = True
def __init__(
self,
*,
vllm_config: "VllmConfig",
prefix: str = "",
**kwargs: Any,
) -> None:
super().__init__(vllm_config=vllm_config, prefix=prefix, **kwargs)
self.pooler = self.get_language_model().pooler
return ModelForPooling # type: ignore
def _create_pooling_model_cls(orig_cls: _T) -> _T: def _create_pooling_model_cls(orig_cls: _T) -> _T:
# Lazy import # Lazy import
from .utils import AutoWeightsLoader, WeightsMapper from .utils import AutoWeightsLoader, WeightsMapper
@ -399,6 +437,7 @@ def load_weights_using_from_2_way_softmax(
from vllm.model_executor.models.utils import AutoWeightsLoader from vllm.model_executor.models.utils import AutoWeightsLoader
model_config = model.vllm_config.model_config model_config = model.vllm_config.model_config
tokens = getattr(model.config, "classifier_from_token", []) tokens = getattr(model.config, "classifier_from_token", [])
tokens = cast(list[int], tokens) tokens = cast(list[int], tokens)
assert len(tokens) == 2 assert len(tokens) == 2
@ -406,9 +445,10 @@ def load_weights_using_from_2_way_softmax(
if model.config.tie_word_embeddings: if model.config.tie_word_embeddings:
model.lm_head = model.model.embed_tokens model.lm_head = model.model.embed_tokens
else: else:
quant_config = model.vllm_config.quant_config
model.lm_head = ParallelLMHead(model.config.vocab_size, model.lm_head = ParallelLMHead(model.config.vocab_size,
model.config.hidden_size, model.config.hidden_size,
quant_config=model.quant_config) quant_config=quant_config)
loader = AutoWeightsLoader(model) loader = AutoWeightsLoader(model)
loaded_weights = loader.load_weights(weights) loaded_weights = loader.load_weights(weights)
@ -452,9 +492,10 @@ def load_weights_no_post_processing(model,
if model.config.tie_word_embeddings: if model.config.tie_word_embeddings:
model.lm_head = model.model.embed_tokens model.lm_head = model.model.embed_tokens
else: else:
quant_config = model.vllm_config.quant_config
model.lm_head = ParallelLMHead(model.config.vocab_size, model.lm_head = ParallelLMHead(model.config.vocab_size,
model.config.hidden_size, model.config.hidden_size,
quant_config=model.quant_config) quant_config=quant_config)
loader = AutoWeightsLoader(model) loader = AutoWeightsLoader(model)
loaded_weights = loader.load_weights(weights) loaded_weights = loader.load_weights(weights)

View File

@ -512,7 +512,11 @@ class Gemma3ForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP,
architectures=["Gemma3ForCausalLM"], architectures=["Gemma3ForCausalLM"],
) )
logit_scale = getattr(config, "logit_scale", 1.0) logit_scale = getattr(config, "logit_scale", 1.0)
self.language_model.logits_processor.scale *= logit_scale
if hasattr(self.language_model, "logits_processor"):
# The logits processor can be unset if we're using
# automatic conversion to pooling model.
self.language_model.logits_processor.scale *= logit_scale
self.make_empty_intermediate_tensors = ( self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors) self.language_model.make_empty_intermediate_tensors)

View File

@ -170,8 +170,9 @@ class Qwen3MoeSparseMoeBlock(nn.Module):
return quant_config return quant_config
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# NOTE: hidden_states can have either 1D or 2D shape. assert hidden_states.dim(
orig_shape = hidden_states.shape ) <= 2, "Qwen3MoeSparseMoeBlock only supports 1D or 2D inputs"
is_input_1d = hidden_states.dim() == 1
hidden_dim = hidden_states.shape[-1] hidden_dim = hidden_states.shape[-1]
hidden_states = hidden_states.view(-1, hidden_dim) hidden_states = hidden_states.view(-1, hidden_dim)
@ -180,7 +181,9 @@ class Qwen3MoeSparseMoeBlock(nn.Module):
final_hidden_states = self.experts(hidden_states=hidden_states, final_hidden_states = self.experts(hidden_states=hidden_states,
router_logits=router_logits) router_logits=router_logits)
return final_hidden_states.view(orig_shape) # return to 1d if input is 1d
return final_hidden_states.squeeze(0) if is_input_1d else \
final_hidden_states
class Qwen3MoeAttention(nn.Module): class Qwen3MoeAttention(nn.Module):

View File

@ -2,6 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Inference-only Qwen3Next model.""" """Inference-only Qwen3Next model."""
from collections.abc import Iterable from collections.abc import Iterable
from itertools import islice
from typing import Optional from typing import Optional
import torch import torch
@ -917,8 +918,11 @@ class Qwen3NextModel(nn.Module):
make_empty_intermediate_tensors_factory( make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size)) ["hidden_states", "residual"], config.hidden_size))
self.norm = Qwen3NextRMSNorm(config.hidden_size, if get_pp_group().is_last_rank:
eps=config.rms_norm_eps) self.norm = Qwen3NextRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer()
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids) return self.embed_tokens(input_ids)
@ -941,7 +945,7 @@ class Qwen3NextModel(nn.Module):
hidden_states = intermediate_tensors["hidden_states"] hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"] residual = intermediate_tensors["residual"]
for layer in self.layers: for layer in islice(self.layers, self.start_layer, self.end_layer):
hidden_states, residual = layer( hidden_states, residual = layer(
positions=positions, positions=positions,
hidden_states=hidden_states, hidden_states=hidden_states,

View File

@ -209,7 +209,8 @@ class GDNAttentionMetadataBuilder(
# prepare tensors for cudagraph # prepare tensors for cudagraph
if (self.use_full_cuda_graph and num_prefills == 0 and num_decodes == 0 if (self.use_full_cuda_graph and num_prefills == 0 and num_decodes == 0
and num_spec_decodes <= self.decode_cudagraph_max_bs): and num_spec_decodes <= self.decode_cudagraph_max_bs
and m.num_actual_tokens <= self.decode_cudagraph_max_bs):
num_total_tokens = self.vllm_config.pad_for_cudagraph( num_total_tokens = self.vllm_config.pad_for_cudagraph(
m.num_actual_tokens) m.num_actual_tokens)
batch_size = num_total_tokens // (self.num_spec + 1) batch_size = num_total_tokens // (self.num_spec + 1)