Compare commits

...

1463 Commits

Author SHA1 Message Date
920db41128 [Quantization/NVFP4] Speed up TRTLLM NVFP4 MOE weight loading and fix K/V scale loading for MLA Attn (#25968)
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
9ea82ecd25 Fix V1 engine serialization error with Ray distributed executor (#26148)
Signed-off-by: Nikhil Ghosh <nikhil@anyscale.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
13e211bbbc Avoid division by zero in cache DS MLA kernel (#26174)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
2d68bba3cd Stop mergify from keeping stale PRs alive (#26169)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
e45271b09c [BugFix][QWEN-VL]fix wrong apply_rotary_emb_torch selection introduced by #24642 (#26123)
Signed-off-by: Chendi Xue <Chendi.Xue@intel.com>
Signed-off-by: Chendi.Xue <chendi.xue@intel.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
84135b1489 Fix undefined symbol: cutlass_moe_mm_sm100 (#26098)
Signed-off-by: Jun Jiang <jasl9187@hotmail.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
611c23b68f [Renderer] Move Processor out of LLMEngine (#26165)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
c40c0d9c82 [Model] Fixed stream generator for gpt-oss + spec-decoding (#26027)
Signed-off-by: Aleksandr Samarin <astrlrd@nebius.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
d8b1f9ccc3 [CI/Build] do not enforce precompilation on tpu ci tests (#25992)
Signed-off-by: Xiang Si <sixiang@google.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
whx
fac9b430ec [Model] Supplement to PR 24862: Pass param prefix to LLMHead (#25805)
Signed-off-by: whx-sjtu <2952154980@qq.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
c6f384dafd [backends][short_conv] CUDA graph piecewise edits (#24215)
Signed-off-by: Paul Pak <paulpak58@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
7faf51f1cc [Bugfix] Re-enable prefill of max model length (#24446)
Signed-off-by: Yannick Schnider <yannick.schnider1@ibm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
ff1daf6c8a [Renderer] Move Processor out of AsyncLLM (#24138)
Signed-off-by: Yang <lymailforjob@gmail.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
f376868620 Quick fix for IMA with the Prefix Prefill kernel during graph capture (#25983)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
564233d550 [Doc] Fixed shape description for fused_batched_moe.py (#25668)
Signed-off-by: Egor <e.a.krivov@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
2bcc745042 [Multi Modal] Configurable MM Profiling (#25631)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
kyt
fa29d31f0d [openai] Fix missing tool usage check (system message) (#24768)
Signed-off-by: kyt <eluban4532@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
2168fc8fae [NIXL][Misc] Expose metrics from NIXL for logging to CLI (#25388)
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
8d332b3cf6 [CI] Fix distributed hybrid tests in CI (#26155)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
c634415273 [test utils] correct wrong typing (#26159)
Signed-off-by: Yannick Schnider <yannick.schnider1@ibm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
c81dc099a3 [Model] Use merge_by_field_config for MM models (InternVL family) (#26153)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
edaae1825f add(v1): RequestStatesStats to RequestOutput (#24947)
Signed-off-by: huijjj <huijong.jeong@squeezebits.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
5b80f22087 [Perf] Optimize reshape_and_cache CUDA Kernel (#25955)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Co-authored-by: Liu-congo <1502632128@qq.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
ae03f4c010 [Input] Remove unused prompt field (#26097)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
7e4b1861c3 [Misc] Remove typing.List (#26150)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
d628fa1e56 [BUG] Reorder model config creation (#26124)
Signed-off-by: ahao-anyscale <ahao@anyscale.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
6b12b2ee38 FusedMoE support for the Transformers backend (#22650)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
bbeace233b [Model] Use merge_by_field_config for MM models (G) (#26117)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
09b1a5676d [Bugfix] Fix import gemm_afp4wfp4 failure on AMD (#26068)
Signed-off-by: zhewenli <zhewenli@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
f35f896e3a [ROCm] [VL] [Bugfix] Fix vit flash attn dispatcher logic for ROCm (#26104)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
218349d760 [Build/CI] Revert back to Ubuntu 20.04, install python 3.12 with uv (#26103)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
79b2fe7f19 [gpt-oss] disable tool server initialization if no tool in request (#25790)
Signed-off-by: Andrew Xia <axia@meta.com>
Signed-off-by: Andrew Xia <axia@fb.com>
Co-authored-by: Andrew Xia <axia@fb.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
56d0073f2a [Bug]: Limit num_reqs in dummy_run when max_num_seqs is small (#26144)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
a06bb9bf36 [DeepSeek] Improve performance of DS MLA cache kernel (#26132)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
173c8a9520 [CI/Build] Conditionally register cutlass_fp4_group_mm to fix building on Hopper (#26138)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
2ea7d48656 [Attention] Move Backend enum into registry (#25893)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
8db7b7f39c [Bug][Benchmark] Fix duplicate req in oversampling (#26140)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
587b30c571 [Log] Optimize DeepGEMM Missing Log (#26106)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
0c76bb2de1 [Bugfix] Disable cascade attention with FlashInfer (#26130)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
72c5dd0310 Fix MTP with deepep_low_latency (#25904)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
abc55b1fe5 [Perf] Fix and reapply move apply w8a8 block fp8 linear to class (#25696)
Signed-off-by: ElizaWszola <ewszola@redhat.com>
Signed-off-by: ElizaWszola <elizaw.9289@gmail.com>
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Luka Govedič <lgovedic@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
d737c66b95 [Mamba][KVCacheManager] Simplify kv cache manage logic for mamba + MTP (#25119)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
da3a188bdb EAGLE 3: Fix preamble so that measured speedup over Eagle 1 becomes 32% instead of 5% on MTBench (#25916)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:58 -07:00
77e958752b [Deepseek v3.2] Support indexer prefill chunking (#25999)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
c5880cfa4c [Small] Prevent bypassing media domain restriction via HTTP redirects (#26035)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
01888b5cbf [BugFix] Fix FI accuracy issue when used for MLA prefill (#26063)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
fa179abde3 [CI/Build] Replace vllm.entrypoints.openai.api_server entrypoint with vllm serve command (#25967)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
5c8a4a2208 [CI] Add Blackwell DeepSeek FP8 FlashInfer MoE tests (#26040)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
06d102ecc8 [Qwen][ROCm] Flash Attention Rotary Embeddings (#24642)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
422f2cca4b [Platform][CI] Added OOT platform interface e2e test that running on Ascend NPU (#25470)
Signed-off-by: leo-pony <nengjunma@outlook.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
3884dce376 [Model] Use merge_by_field_config for MM models (D-F) (#26076)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
00c0b25e82 [Model] Use merge_by_field_config for MM models (A-C) (#26073)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
0655b90d80 [FA/Chore] Bump vllm-flash-attention (#25537)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
83fa298682 Change size of single CUDA graph for CI to 4 (#26089)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
5a083ce2ea Update base image to 22.04 (jammy) (#26065)
Signed-off-by: Huy Do <huydhn@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
115019045d Run:ai model streamer add GCS package support (#24909)
Signed-off-by: Peter Schuurman <psch@google.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
93d2be10b6 [Misc] Make handling of SamplingParams clearer in n>1 case (#26032)
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
91e10c725c [ROCm][Bugfix] Add missing parameter to ROCm backend (#26029)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
2ae74a80af Support RL online quantization with torchao (#23014)
Signed-off-by: Jerry Zhang <jerryzh168@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
ac1598d166 [BugFix] ChunkedLocalAttention is currently not CG compatible (#26034)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
ce8ee3d9e7 [Bug] Fix Negative Cuda Memory Usage (#25683)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
d4a83e01bb [ROCm][Build] Add support for AMD Ryzen AI MAX / AI 300 Series (#25908)
Signed-off-by: Hosang Yoon <hosang.yoon@amd.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
90529cec41 [BugFix][DP/EP] Fix CUTLASS MLA hang under load (#26026)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
bba7623426 [CI] Tweaks to GPT-OSS Eval (Blackwell) for stability (#26030)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
d2f544018f Fix test_mamba_ssm_ssd.py due to missing _query_start_loc_to_chunk_indices_offsets (#25995)
Signed-off-by: Huamin Li <3ericli@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
ed7eb771a3 [NVIDIA] Blackwell Family (#24673)
Signed-off-by: Johnny <johnnynuca14@gmail.com>
Signed-off-by: johnnynunez <johnnynuca14@gmail.com>
Signed-off-by: Johnny <johnnync13@gmail.com>
Signed-off-by: Salvatore Cena <cena@cenas.it>
Co-authored-by: Aidyn-A <31858918+Aidyn-A@users.noreply.github.com>
Co-authored-by: Salvatore Cena <cena@cenas.it>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
0944358a90 [Bugfix] Apply same sampling parameters for both n=1 and n>1 (#26005)
Signed-off-by: Kenichi Maehashi <maehashi@preferred.jp>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
aeff0604bb [Benchmark] Finish documented v0.11.0 deprecation of --endpoint-type (#26007)
Signed-off-by: Nathan Scott <nathans@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
a561b9832d [MISC] Fix misleading batch_size_capture_list when cuda_graph_sizes < 4 (#25829)
Signed-off-by: billishyahao <bill.he@amd.com>
Co-authored-by: Luka Govedic <ProExpertProg@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
e8773e620f [CI] Only capture a single CUDA graph size in CI by default (#25951)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
63c56cbb25 [Misc] Factor out common _apply_feature_select_strategy (#26003)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
25e5b9ccec [BugFix][MM] Fix Nonetype error when video is cache in qwen2.5-omni-thinker (#26004)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
b9ed8c9679 [Doc] updating torch.compile doc link (#25989)
Signed-off-by: nadathurv <work.vnadathur@gmail.com>
Signed-off-by: WorldExplored <srreyansh.sethi@gmail.com>
Co-authored-by: Srreyansh Sethi <107075589+WorldExplored@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
9506409fc6 [Misc]allow disable pynccl (#25421)
Signed-off-by: Lu Fang <fanglu@fb.com>
Co-authored-by: Lucia (Lu) Fang <fanglu@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
fda819837e Update to Transformers v4.56.2 (#24638)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
7c795fdf41 [BugFix] Fix default kv-cache-dtype default for DeepseekV3.2 (#25988)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
6444f65a2b [Bugfix] Fix __syncwarp on ROCM (#25996)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
4c094b339e [MM] Add text-only mode for Qwen3-VL (#26000)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
cd0bbf5de2 Fix INT8 quantization error on Blackwell GPUs (SM100+) (#25935)
Signed-off-by: padg9912 <phone.and.desktop@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
2b6b859916 [Log] Optimize Log for FP8MOE (#25709)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
04cb503fda Update launch_bounds_utils.h for correct compile on Multiple Cuda Arch - PTXAS out of range Warning (#25843)
Signed-off-by: Salvatore Cena <cena@cenas.it>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
d437ba32fd [Model] MTP fallback to eager for DeepSeek v32 (#25982)
Signed-off-by: Lu Fang <fanglu@fb.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
e734a2a085 [Misc] Make EP kernels install script support uv (#25785)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
fd56f2e644 [gpt-oss] use vLLM instead of openai types for streaming (#25186)
Signed-off-by: Andrew Xia <axia@meta.com>
Signed-off-by: Andrew Xia <axia@fb.com>
Co-authored-by: Andrew Xia <axia@fb.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
1690954497 [Docs] Remove API Reference from search index (#25949)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
b3e1846da6 Add explicit pooling classes for the Transformers backend (#25322)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
8328d39d40 [V1] [P/D] Add Support for KV Load Failure Recovery (#19330)
Signed-off-by: David Ben-David <davidb@pliops.com>
Co-authored-by: David Ben-David <davidb@pliops.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
ef318228e7 [Bench] Add DeepSeekV32 to MoE benchmark (#25962)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
8ecccdd15f [Llama4] [multimodal] Fix misplaced dtype cast of cos_sin_cache in Llama4VisionRotaryEmbedding (#25889)
Signed-off-by: cjackal <44624812+cjackal@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
bb2e04e41e OffloadingConnector: Fix GPU block tracking bug (#25856)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
6083b4d926 [Docs] Add moe kernel features doc (#25297)
Signed-off-by: Bill Nell <bnell@redhat.com>
Signed-off-by: bnellnm <49004751+bnellnm@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
493acdb7e2 [Doc] Improve MM Pooling model documentation (#25966)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
3c75d3b00c [Bug] Fix AttributeError: 'QKVParallelLinear' object has no attribute 'orig_dtype' (#25958)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
206ab1f0df [bugfix][deepseek] fix flashmla kernel selection (#25956)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
e33579cd96 [Bugfix] Token type and position embeddings fail to be applied to inputs_embeds (#25922)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
8c52fccb1a [Bugfix] Fix accuracy issue of TRTLLM FP8 MOE and improve logging (#25895)
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
ea6144a019 [Bugfix][Model] Fix inference for Hunyuan dense models (#25354)
Signed-off-by: anion <1005128408@qq.com>
Signed-off-by: Anion <123177548+Anionex@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
b6ea29b721 Add Hugging Face Inference Endpoints guide to Deployment docs (#25886)
Signed-off-by: sergiopaniego <sergiopaniegoblanco@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
d9f8ded136 [Kernel][Moe Configs] Add more tuned triton configs for ExpertsInt8 and FP8 (#25858)
Signed-off-by: asafg <39553475+Josephasafg@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
02776c0386 [Fix] Improve CPU backend compatibility for RISC-V (#25816)
Signed-off-by: lyd1992 <liuyudong@iscas.ac.cn>
Signed-off-by: ihb2032 <1355790728@qq.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
8914d52869 [CI] Move applicable tests to CPU (#24080)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
bf8bb7e250 [NIXL] Add support for MLA caches with different latent dim (#25902)
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
eea2536a35 [perf] Use CPU tensor to reduce GPU->CPU sync (#25884)
Signed-off-by: Lehua Ding <lehuading@tencent.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
a1898466a6 [Model] Move vision_feature_select_strategy into resolve_visual_encoder_outputs (#25938)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:57 -07:00
9dce93e07c [Bugfix][Model]fix ernie45 moe gate&bias dtype to float32 (#25936)
Signed-off-by: wangyafeng <wangyafeng@baidu.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
c0734fc51a Updated TRL integration docs (#25684)
Signed-off-by: sergiopaniego <sergiopaniegoblanco@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Sergio Paniego Blanco <sergiopaniegoblanco@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
034f3a4980 [Doc] Add Cambricon MLU support (#25942)
Signed-off-by: a120092009 <zhaoty0121@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
0230cd0afb [New Model] DeepSeek-V3.2 (Rebased to Main) (#25896)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Yongye Zhu <zyy1102000@gmail.com>
Signed-off-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
Signed-off-by: Lucia Fang <fanglu@meta.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
Co-authored-by: Lucia Fang <fanglu@meta.com>
Co-authored-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Siyuan Fu <siyuanf@nvidia.com>
Co-authored-by: Matthew Bonanni <mbonanni@redhat.com>
Co-authored-by: Xiaozhu Meng <mxz297@gmail.com>
Co-authored-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
da71651386 [Bugfix]: Clean up chunked prefill logging when using whisper (#25075)
Signed-off-by: simondanielsson <simon.danielsson99@hotmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
0da98ff2eb [Model][Bugfix] Fix MiDashengLM audio encoder mask by removing incorrect logical_not (#25925)
Signed-off-by: zhoukz <me@zhoukz.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
db4a03e2e2 [BugFix] Pass config_format via try_get_generation_config (#25912)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
e165f980d9 [BugFix] Fix DP/EP hang (#25906)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
ea7cf8db35 MoveVllmConfig from config/__init__.py to config/vllm.py (#25271)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
1108ffb3e6 [Benchmark] Support benchmark throughput for external launcher DP (#25913)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
0c7cc69e29 [Bug] Fix Weight Loading for Block FP8 Cutlass SM90 (#25909)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
6941d53c0c Test Prompt Embeds/LoRA compatibility and Enable LoRA Support for OPT Models (#25717)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
97f1312f8c [V0 Deprecation] Remove vllm.worker and update according imports (#25901)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
09b01cd395 [NIXL] Increase default KV block eviction timeout on P (#25897)
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
4deb9c88ca [Doc] Polish example for torchrun dp (#25899)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
b7973eabe5 [Kernel] Chunk-aligned mamba2 (#24683)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
e7203c2338 [Bugfix][ROCm] Fixing trying to import non-existent symbols from libnccl.so (#25605)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
ae0c35923f [Doc] Add documentation for vLLM continuous benchmarking and profiling (#25819)
Signed-off-by: Naman Lalit <nl2688@nyu.edu>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
c692506e10 [BugFix][torch.compile] KV scale calculation issues with FP8 quantization (#25513)
Signed-off-by: adabeyta <aabeyta@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
9555929e13 [Bugfix] Use correct key "ignore" for config.json non-quantized layers (#25706)
Signed-off-by: Lee Nau <lnau@nvidia.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
2405817748 [Model] Remove MotifForCausalLM (#25866)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
616bce15ce [CI/Build] Include Transformers backend test in nightly transformers test (#25885)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
c33992154a [Bugfix][Speculative Decoding] Fix Eagle3 quantization config issue (#25883)
Signed-off-by: Rahul Tuli <rtuli@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
f84b2a0dd0 [Nixl][P/D] Add cuda2cpu support (HD->DH transfer) (#24690)
Signed-off-by: Chenxi Yang <cxyang@fb.com>
Co-authored-by: Chenxi Yang <cxyang@fb.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
9f78b9ca84 [torch.compile] serialize cudagraph_mode as its enum name instead of value (#25868)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
4e2774f5c3 [Model][Bugfix] Fix issues in MiDashengLM implementation for quantized models (#25854)
Signed-off-by: zhoukz <me@zhoukz.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
85d4306047 [Bugfix] Fix requirements paths in install instructions (#25827)
Signed-off-by: yingjun-mou <renzomou@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
770a2cf7ae update to latest deepgemm for dsv3.2 (#25871)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
ea55445b8d [Misc] Remove more get_input_embeddings_v0 (#25857)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
b765adccd7 [V0 Deprecation][Models] Remove all V0 condition for mm embeddings merge (#25331)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: isotr0py <2037008807@qq.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
4079a63a86 [Bugfix] Fallback ViT attn backend to SDPA for blackwell (#25851)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
00eba10dd1 [XPU]Fix xpu spec decoding UTs, avoid using cuda graph (#25847)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
20d1d0e38b Add Phi4FlashForCausalLM to _PREVIOUSLY_SUPPORTED_MODELS (#25832)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
70ba2d1ec9 [P/D] NIXL Updates (#25844)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
Signed-off-by: rentianyue-jk <rentianyue-jk@360shuke.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: Sage Moore <sage@neuralmagic.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: rentianyue-jk <rentianyue-jk@360shuke.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Chenheli Hua <huachenheli@outlook.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
eb447aff56 [Misc] fix tests failure by using current_platform (#25825)
Signed-off-by: Juechen Liu <jueliu@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
cf0a7912ca Remove redundant cudagraph dispatcher warning (#25841)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
0b343e3218 [Bugfix] fix Qwen3VLMoe load when pp > 1 (#25838)
Signed-off-by: liuye.hj <liuye.hj@alibaba-inc.com>
Co-authored-by: liuye.hj <liuye.hj@alibaba-inc.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
e40c12696a Update GLM-4.5 Doc transformers version (#25830)
Signed-off-by: zRzRzRzRzRzRzR <2448370773@qq.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
02ab3860a6 Fix random dataset mismatched token length with config. (#24937)
Signed-off-by: Weiliang Liu <weiliangl@nvidia.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
6dee906d2c [VLM] Update Qwen3-VL max_num_video_tokens calculation for configurable video profiling (#25557)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
495f368238 [Bugfix] Fix Qwen3-VL regression from #24982 (#25814)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
02e87f1893 [MM] Optimize memory profiling for scattered multimodal embeddings (#25810)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
32cb65b2b6 [Bugfix][NIXL] Fix Async Scheduler timeout issue (#25808)
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
04384cb9da [Core] GC Debug callback (#24829)
Signed-off-by: Jialin Ouyang <jialino@meta.com>
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
Co-authored-by: Jialin Ouyang <jialino@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
942fba3823 [Bug]: Set LD_LIBRARY_PATH to include the 'standard' CUDA location (#25766)
Signed-off-by: Clayton Coleman <smarterclayton@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
d8fc00d623 [torch.compile]: Add VLLM_DEBUG_DUMP_PATH environment variable (#25651)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
7b28ef2bc1 [Core] Refactor self.model() to call a helper for subclassing. (#25084)
Signed-off-by: Patrick Toulme <ptoulme@meta.com>
Signed-off-by: Patrick Toulme <pctoulme+1@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
9b4c752106 [env] default nixl side port conflicts with kv-event zmq port (#25056)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
7d92e508b4 [docs] transcriptions API audio upload (#25446)
Signed-off-by: zxw <1020938856@qq.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
e94aabe03d [Bugfix][WideEP] Apply TP Attn + EP MoE fix to other models (#24982)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
1e5e5d757e [Bugfix] Fix triton import precommit failure (#25803)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
c7ae7edb33 Fix GPTQ model loading in Transformers backend (#25770)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
1cb6005627 Add filtering for chat template kwargs (#25794)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
3e7f33c801 Validate API tokens in constant time (#25781)
Signed-off-by: rentianyue-jk <rentianyue-jk@360shuke.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: rentianyue-jk <rentianyue-jk@360shuke.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
0b8166aa8f [Bugfix] Merge MM embeddings by index instead of token IDs (#16229)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
6970fa9937 [Bugfix] Add missing image_size for phi4_multimodal (#25796)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
d7cf378359 [Misc] Update openai client example file for multimodal (#25795)
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
1171480d88 [Misc] Fix codeowners override for v1 sample and attention (#25037)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
0f97a2e1db [CI/Build] Reorganize root-level V1 tests (#25767)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
a8913725a1 [CI/Build] Add timing to Model Executor Test (#25799)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
0a4674c871 [CI/Build] Consolidate model loader tests and requirements (#25765)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
1a893d188c [Bugfix] Allow Only SDPA Backend for ViT on B200 for Qwen3-VL (#25788)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
38c2df831a [Multimodal][Speculative Decoding]Eagle Eagle3 mm support, enablement on qwen2.5vl (#22872)
Signed-off-by: Junhong <liujunhong11@huawei.com>
Signed-off-by: Junhong Liu <98734602+LJH-LBJ@users.noreply.github.com>
Co-authored-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: LJH-LBJ <98734602+LJH-LBJ@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
55971f85c9 Add flashinfer-build.sh and register precompiled cu128 wheel in Dockerfile (#25782)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
dbb7782d5b Add option to restrict media domains (#25783)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
806b292c0e [Core] Don't count preempted tokens in prefix cache hit rate (#25787)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
93ba7648d0 [Spec decode] automatically disable mm for text-only draft models (#25667)
Signed-off-by: Jonas Kuebler <kuebj@amazon.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
e7cba8f6b1 [Bugfix] Optimize CpuGpuBuffer initialization (#25447)
Signed-off-by: Naman Lalit <nl2688@nyu.edu>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
c4b9864e22 Kernel-override Determinism [1/n] (#25603)
Signed-off-by: Bram Wasti <bwasti@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
dbdea93f46 Reduce the Cuda Graph memory footprint when running with DBO (#25779)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
1356ae0aa8 [spec decode] Consolidate speculative decode method name for MTP (#25232)
Signed-off-by: zixi-qi <qizixi@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
dc191cc5d9 [CI] Fix FlashInfer AOT in release docker image (#25730)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
ceb346015c [V1] address post issues related to #20059 (part 1) (#23046)
Signed-off-by: fhl2000 <63384265+fhl2000@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
b6f16d37b0 [CI] Add E2E Blackwell Quantized MoE Test (#25723)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
5157781987 [Docs] Add Toronto Meetup (#25773)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
f16c440c9f [Bugfix] Improve GLM4 MoE Reasoning Parser's is_reasoning_end Condition (#25355)
Signed-off-by: frankwang28 <frank.wbb@hotmail.com>
Signed-off-by: Frank Wang <41319051+frankwang28@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:56 -07:00
8c1b61bd77 [Doc]: improve CPU(x86) build-wheel-from-source section (#25617)
Signed-off-by: Kosseila (CloudThrill) <klouddude@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
e0175fbf01 Eagle3 that supports the Minicpm3 model (#24243)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: liudan <adan@minicpm.com>
Co-authored-by: liudan <liudan@qq.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
c72298213d [Misc] fix unique_filepath (#25732)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
41174e2803 [ray][metrics] Replace ':' with '_' for OpenTelemetry compatibility in Ray (#25439)
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
Signed-off-by: Seiji Eicher <58963096+eicherseiji@users.noreply.github.com>
Co-authored-by: Rui Qiao <161574667+ruisearch42@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
6ca8d9753c [BugFix] Fix using dbo_decode_token_threshold always (and ignoring dbo_prefill_token_threshold) (#25622)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
d70c154975 [Quantization] Add field to skip unquantized modules for GPTQ config (#25455)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
129a643b4c [CI/Build] Fix some V1 tests not being run (#25569)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
d3c732e985 [CI/Build] Split up Distributed Tests (#25572)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
fb0eece290 [Bugfix] Properly abort pooling request. (#25734)
Signed-off-by: wang.yuqi <noooop@126.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
515e30b023 [CI] Fix test_shared_storage_connector_hashes (#25748)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
62ae26c870 [Model] Mamba2 varlen refactor (#21467)
Signed-off-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
Co-authored-by: RishiAstra <40644327+RishiAstra@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
87ee8535a6 [Doc] Update Batch-level DP docs (#25757)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
ced693e845 Support LongCat-Flash-Chat tool call (#24083)
Signed-off-by: 许文卿 <xwq391974@alibaba-inc.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
fa55373af1 [Bugfix] Fix Shared Expert/Zero expert code in FusedMoE.process_chunk (#25698)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
c761b84d5f [misc] refactor speculative config (#25657)
Signed-off-by: zxw <1020938856@qq.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
bc37468b3c Remove cuda hard-code in compute_causal_conv1d_metadata (#25555)
Signed-off-by: Icey <1790571317@qq.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
067fe8b10e [Qwen3-Next][GDN] fixes cuda graph capturing bug in GDN metadata and a stride bug in causal_conv_1d. (#25743)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
0aea9348cc fix: print outputt offline_inference/base/chat.py example (#25744)
Signed-off-by: Iceber Gu <caiwei95@hotmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
79586c5449 [Harware][AMD][Model] Triton MoE tuning configs for GLM-4.5 for MI300X (#25703)
Signed-off-by: xaguilar <Xavier.AguilarFruto@amd.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
b2d5d42337 perf: Avoid copying inputs_embeds tensors to GPU unless prompt_embeds is enabled (#25739)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
74ea69f413 fix: revert cast to cpu in MsgpackEncoder._encode_tensor to avoid hidden performance regressions (#25738)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
e82e3b55f6 [CI/Build] fix doc build warning: Failed to get 'name: description' pair (#25733)
Signed-off-by: yiting.jiang <yiting.jiang@daocloud.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
9e6628ccfc EVS Support (Video tokens pruning) (#22980)
Signed-off-by: Eugene Khvedchenia <ekhvedchenia@nvidia.com>
Signed-off-by: Eugene Khvedchenya <ekhvedchenya@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
6ada221271 [Misc] Remove unnecessary memoryviews in shm_broadcast.py (#25721)
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
ef160aa08e [Core] Force PIECEWISE CUDAGraph mode for encoder-decoder (#25701)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
c064c82674 Llamas 3.1 405B fp4 changes upstreaming from 355_wip (#25135)
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Doug Lehr <douglehr@amd.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
6f97de4e47 [Misc] Don't log shm dequeue delay warning on worker side (#25720)
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
3a32aa8a6b [Refactor] Remove DeepGEMM OP Register (#25710)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
1d21080118 Fix routing_bias dtype (#25711)
Signed-off-by: Shu Wang. <shuw@nvidia.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
1d1436c3f7 [Model] rename NemotronH_Nano_VL -> NemotronH_Nano_VL_V2 (#25708)
Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
37d836081a [Core] Enable command line logging for LLMEngine (#25610)
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
f3a478b55e [Spec Decode] Add Batch Parallel Ngram. Upto 8x lower overhead. (#24986)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
b558c3a8b7 [Optimization] Use a cheaper cache key in get_model_architecture (#25682)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
745b204ddc [Optimization] Streamline InputPreprocessor (#25702)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
b0e9f04bbd [Misc] Simplify test_argsort_mm_positions (#25690)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
80385959af [V0 deprecation] Clean up LoRA (#25686)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
a355561291 [V0 deprecation] Remove _VLLM_V1 suffixes from attention backend names (#25489)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
9659b7e78f [V0 deprecation] Clean up V0 fallback in compilation config (#25675)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
34e6a31e40 [Model] Define merge_by_field_config MM interface (#25676)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
c7ca3c5d2f [Model] Add optional parameter to reasoning parser constructor (#25554)
Signed-off-by: taohui <taohui3@gmail.com>
Signed-off-by: Tao Hui <taohui3@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
fe6357a780 [BugFix] Fix DBO hang (#25625)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
0cee734ab4 Revert "[Bug] Dynamo Unsupported due to BasevLLMParameter.torch_function calling disabled super()" (#25681)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
252a0ff8c3 [BUGFIX] Fix crash in Eagle Speculative Decoding models when exceedin… (#24662)
Signed-off-by: AlonKejzman <alonkeizman@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
2655d7ab83 [Logging] Remove TORCH_NCCL_AVOID_RECORD_STREAMS to squash a warning (#25532)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
91d4299774 [Misc] Remove cruft file in repo (#25678)
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
f7f76a8668 [Bugfix] Fix InternS1 video processing after Transformers v4.56 (#25644)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
054c8b526f [ux] Switch a warning to debug about a pytorch fallback (#23750)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
2469b8291b [CPU] update torch 2.8 and fix missing fields in TorchSDPAMetadata (#25652)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
18c20257bf [torch.compile] Make Query Quantization Fusable (#24914)
Signed-off-by: Jonas Kuebler <kuebj@amazon.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
a5fa821b96 [misc] log info messages by default for hanging / busy / idle (#25627)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
af10a37c6c [mypy] Fix wrong type annotations related to tuple (#25660)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
a88371f84e [Hardware][RISC-V] Add riscv64 support for vLLM with scalar (#22112)
Signed-off-by: chenlang <chen.lang5@zte.com.cn>
Co-authored-by: chenlang <10346245@zte.com.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
d7f6489f50 [XPU][Triton]add xpu config in triton_reshape_and_cache_flash (#25643)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
222411313d [CI/Build] Fix flaky entrypoints test (#25663)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
22114ffebb Add backward compatibility for guided_... API (#25615)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
f3d9099b44 [V0 deprecation] Remove unreachable model_config.supported_tasks (#25642)
Signed-off-by: wang.yuqi <noooop@126.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
3d940e2c3f [Bugfix] Parse SpeculativeConfig Error (#25142)
Signed-off-by: zxw <1020938856@qq.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
686cfd91e3 [mypy] Further improve MM type annotations (#25654)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
f17d37b006 [Bugfix] Fix Qwen3-VL max_num_video_tokens calculation for video profiling (#25648)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
034c0152db [Bugfix] Add triton.language.tensor placeholder (#25649)
Signed-off-by: Agata Dobrzyniewicz <adobrzyniewicz@habana.ai>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
fd28c58825 [Misc] Fix Qwen3-VL video_grid_thw typing (#25646)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
5e16b8c552 [fix] Update torch version in cpu-build.txt for AArch64/ppc64le and Darwin (#25579)
Signed-off-by: Fadi Arafeh <fadi.arafeh@arm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
6c6e553644 Revert "[Performance] Move apply_w8a8_block_fp8_linear to an op class… (#25607)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
6a437a4178 typo: remove duplicate is (#25641)
Signed-off-by: nicole-lihui <nicole.li@daocloud.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
004eed39ff Map CwmForCausalLM to llama and LlamaForCausalLM (#25611)
Signed-off-by: Jacob Kahn <jacobkahn1@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
8b17d2554c [Misc] Simplify PoolerOutput and move to v1/outputs (#25629)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
94b78f576c [Bugfix] fix apply_temperature to avoid nan in probs (#24734)
Signed-off-by: courage17340 <courage17340@163.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
d8ffa3c5f4 optimize: eliminate duplicate split_enc_dec_inputs calls (#25573)
Signed-off-by: nicole-lihui <nicole.li@daocloud.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
c26e7b14d7 [Model] Add LongCat-Flash (#23991)
Signed-off-by: yangxurui <yangxurui@meituan.com>
Co-authored-by: yangxurui <yangxurui@meituan.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
12c21d28c1 Enable Fbgemm NVFP4 on Dense models (#25609)
Signed-off-by: Saman Keon <samanamp@outlook.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
517a857166 [Bug] Dynamo Unsupported due to BasevLLMParameter.torch_function calling disabled super() (#25613)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
b839194931 [Kernel] Support DCP for Triton backend (#25132)
Signed-off-by: Wei Wei <wwei6@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
1d6f767dc4 [Model] Improve DotsOCRForCausalLM (#25466)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
b95429c920 [MISC] replace c10::optional with std::optional (#25602)
Signed-off-by: Shiyan Deng <dsy842974287@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
7319686692 Improve --help for enhanced user experience (#24903)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
b3fd4ed80c [Refactor] Use DeepGEMM Col Major TMA Aligned Tensor (#25517)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
461aa1463b feat: BF16 FlashInfer Fused Cutlass MOE for Hopper and Blackwell Expert Parallel (#25503)
Signed-off-by: Duncan Moss <djm.moss@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
b4a80dad98 [Logging] Improve log for when DeepEP HT disables CUDA Graphs (#25531)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
61a6443bc3 [V0 Deprecation] Remove unused classes in attention (#25541)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
c8071faa5d fix compile error
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
46ed215d6b [Docs] Enable fail_on_warning for the docs build in CI (#25580)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
0e0d51c9c6 Suppress benign cuBLAS warning when capturing cudagraphs with DBO (#25596)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
72a5101c7a Support mnnvl all2allv from Flashinfer (#21003)
Signed-off-by: Shu Wang <shuw@nvidia.com>
Signed-off-by: Shu Wang. <shuw@nvidia.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
7d9f44ad2a [Bugfix] add cache model when from object storage get model (#24764)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
984bfb4ba7 Fixes and updates to bench_per_token_quant_fp8 (#25591)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
b1f9a1f46a [ROCm][Build][Bugfix] Fix ROCm base docker whls installation order (#25415)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
3331ced61b [ROCm][Bugfix] Only enable +rms_norm based on aiter if not explicitly disabled (#25275)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
b614e0f82b [Misc] Improve type annotations for jsontree (#25577)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
44d6701f70 Move DeviceConfig, ObservabilityConfig, SpeechToTextConfig to their own files (#25564)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
71566e8afc [Bugfix] Fix DeepSeekV31ToolParser to correctly parse multiple tools in non-streaming output (#25405)
Signed-off-by: taohui <taohui3@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
88d8c72d5f [docs] fix nixl kv_connector_extra_config.backends key (#25565)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
Signed-off-by: Peter Pan <peter.pan@daocloud.io>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:55 -07:00
0cb913b0a2 [Benchmark] Fix regression in structured output benchmark (#25500)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
f98d4d38c0 [Bug] fix import and unit test (#25558)
Signed-off-by: Jonas M. Kübler <44084297+jmkuebler@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
d5c0f43b86 [Bugfix] Fix dummy video number of frames calculation (#25553)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
54174c67f8 [misc] update the warning message (#25566)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
d1e2d17b57 [BugFix] Potential Fix for FA3 full-cudagraph IMA (#25490)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
9914857f2b [V0 Deprecation] Remove max_seq_len_to_capture (#25543)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
7441d07360 [CI/Build] add nightly prime-rl integration tests (#25207)
Signed-off-by: Jackmin801 <ongjackm@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
4ca175ea0b [Misc]] Move processing context to multimodal directory (#25548)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
c39befcead [CI/Build] Fix v1 OOT registration test (#25547)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
c8ef8a50d2 [Bugfix][CPU] Skip unsupported custom op register on CPU (#25534)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
fc90ce79f0 [Misc] Retry HF processing if "Already borrowed" error occurs (#25535)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
5b4ba2e1e1 [TPU][Bugfix] fix the missing apply_model in tpu worker (#25526)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
d7fb5a4ae8 [Bugfix] [Frontend] Cleanup gpt-oss non-streaming chat tool calls (#25514)
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
f52b991db6 [Perf] Fix jit compiles at runtime of fla gated delta rule (#25432)
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
177c37e960 [Spec Decode] Enable FlashInfer Spec Decoding (#25196)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
Co-authored-by: lhsjohn <huashuoli@tencent.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
0e54bbe108 [KV sharing] Re-land Gemma3n model changes from #22628 (#24357)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
6b87ce2ecd [fix]: add Arm 4bit fused moe support (#23809)
Signed-off-by: Nikhil Gupta <nikhil.gupta2@arm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
a986f17028 [BugFix] Fix MLA assert with CUTLASS MLA (#25478)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
faa58fa791 [Compile] Fix AMD Compile Error (#25518)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
4ed6b67da3 [Core] Support weight_loader_v2 for UnquantizedLinearMethod (#23036)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
cb825af948 [Bugfix] Use a separate FlashInfer workspace buffer for trtllm-gen (#25520)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
342d17fb7f [V1][Metrics] Add per-request TPOT histogram (#24015)
Signed-off-by: baxingpiaochong <771405853@qq.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
3c62d28bb9 [Model] Support SeedOss Reason Parser (#24263)
Signed-off-by: Yan Lu <luyan@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
9596fbd6e5 [BUG] Allows for RunAI Streamer and Torch.compile cache to be used together (#24922)
Signed-off-by: ahao-anyscale <ahao@anyscale.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
03585bc79d [Bug] Fix AttributeError: 'FusedMoE' object has no attribute 'w13_weight_scale'. Did you mean: 'w13_weight_scale_inv' (#25519)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
770cb2e1f8 Add CUTLASS FP8 MOE benchmark scripts and kernel config (#25302)
Signed-off-by: Chenxi Yang <cxyang@fb.com>
Co-authored-by: Chenxi Yang <cxyang@fb.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
b50fa00537 Improve output when failing json.loads() on structured output test (#25483)
Signed-off-by: dougbtv <dosmith@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
8e6a5e7dd4 [BugFix] AssertionError: Do not capture num_reqs > max_num_reqs for uniform batch (#25505)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
faae7a7eab [Bugfix] [B200] cutlass_mla - ensure kv_split == 1 for batch size > 1 (#25509)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
d562c2ea09 [Perf] Increase default max splits for FA3 full cudagraphs (#25495)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
81ee45298d [ROCm] Small functional changes for gptoss (#25201)
Signed-off-by: jpvillam <jpvillam@amd.com>
Co-authored-by: jpvillam <jpvillam@amd.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
d12433adfc [Kernel] [Mamba] Remove BLOCK_H=1 from list of tuneable configurations for _chunk_cumsum_fwd_kernel (#25197)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Chih-Chieh-Yang <chih.chieh.yang@ibm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
4ebc513fc1 Add VLLM_NVTX_SCOPES_FOR_PROFILING=1 to enable nvtx.annotate scopes (#25501)
Signed-off-by: Corey Lowman <clowman1993@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
7a8f0a3548 [BugFix] Fix OOM in vLLM replicas by ensuring consistent NCCL memory accounting (#25359)
Signed-off-by: Kourosh Hakhamaneshi <kourosh@anyscale.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
907bbca7b7 Remove redundant mutates_args and dispatch_key for direct_register_custom_op (#25512)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
eb1f43bc82 [gpt-oss][bugfix] remove logic to require resp_ in ResponseAPI (#25428)
Signed-off-by: Andrew Xia <axia@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
99eaeebe66 Fix triton_reshape_and_cache_flash.py triton import (#25522)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
715e24e1b3 Add VLLM_ENABLE_INDUCTOR_MAX_AUTOTUNE & VLLM_ENABLE_INDUCTOR_COORDINA… (#25493)
Signed-off-by: rouchenzi <ruochenwen@gmail.com>
Signed-off-by: rouchenzi <40842833+rouchenzi@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
cf0e250200 [V0 Deprecation] Remove placeholder attn (#25510)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
0c11617ff1 [Core] Use KVCacheBlock as much as possible instead of dict[block_id, KVCacheBlock] (#24830)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
930e691c65 [CI/Build] Fix and re-enable v1 PP test on CI (#25496)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
c0f11557e1 [Bugfix] Fix for the import error from #24588 (#25481)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
0438c65376 [Build] Update Xgrammar to 0.1.25 (#25467)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
d8fda7420a [Bugfix] gpt-oss container tool output bug (#25485)
Signed-off-by: Alec Solder <alecs@fb.com>
Co-authored-by: Alec Solder <alecs@fb.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
86e5b73d71 [CI] Fix Pre-commit Issue (#25497)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
e49561cd91 Enable symmetric memory all reduce by default only enabling for TP (#25070)
Signed-off-by: ilmarkov <markovilya197@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
0e30643147 [Bugfix] Lower gpt-oss max cudagraph size to 992 to be compatible with FA3 (#25508)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
8ba3b17cc1 [Speculators][Speculative Decoding] Fix gpt-oss eagle3 accuracy issue (#25406)
Signed-off-by: jiahanc <173873397+jiahanc@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
8222e2651d [Perf] Change default CUDAGraphMode from PIECEWISE to FULL_AND_PIECEWISE (#25444)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
b672b8c3b8 [Performance] Move apply_w8a8_block_fp8_linear to an op class (#24666)
Signed-off-by: ElizaWszola <ewszola@redhat.com>
Signed-off-by: ElizaWszola <elizaw.9289@gmail.com>
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Luka Govedič <lgovedic@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
56201cfb01 [core] add nccl symmetric memory for all reduce (#24532)
Signed-off-by: Amir Samani <asamani@nvidia.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
9689be1e8e [ROCm] Add skinny gemm bias support for dtypes fp16,bf16,fp8 (#24988)
Signed-off-by: Hashem Hashemi <hashem.hashemi@amd.com>
Signed-off-by: Hashem Hashemi <159079214+amd-hhashemi@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
65c4513ad8 [Core] Ensure LoRA linear respect the base_layer's tp_size and tp_rank (#25487)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
5acda4cc71 [Spec Decode][CI] Add e2e test for examples/spec_decode.py and prevent breaking Acceptance Length (#24531)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
78f892c373 [Misc] Reduce initialization time of auto_tune (#23682)
Signed-off-by: Weida Hong <wdhongtw@google.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
26da2c6244 [V1][Kernel] Add triton implementation for reshape_and_cache_flash (#24503)
Signed-off-by: Burkhard Ringlein <ngl@zurich.ibm.com>
Co-authored-by: Chih-Chieh Yang <chih.chieh.yang@ibm.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
0081c6956a Use macro guard CUDA functions for back compatibility in grouped_topk_kernel.cu (#25346)
Signed-off-by: Ming Yang <minos.future@gmail.com>
Signed-off-by: Rahul Tuli <rtuli@redhat.com>
Co-authored-by: Rahul Tuli <rtuli@redhat.com>
Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
6462feef65 [Log] Optimize kv cache memory log from Bytes to GiB (#25204)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
e9a74500e5 [BugFix] Fix UB in per_token_group_quant.cu (#24913)
Signed-off-by: Shreeasish Kumar <shreeasish@rivosinc.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
02a3ce2230 [Kernels] Support blocked fp8 quantization for compressed tensors MoE (#25219)
Signed-off-by: Bill Nell <bnell@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
9cae377a16 Add backward compatibility for GuidedDecodingParams (#25422)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
8c5c35c027 [Core/DBO][2/N] Dual-Batch Overlap add DeepEP High Throughput support and Prefill support (#24845)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Sage Moore <sage@neuralmagic.com>
Co-authored-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
f97da2c732 [V1] Remove V0 code paths for Hybrid models (#25400)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
02134245a9 [UX] Change kv-cache-memory log level to debug (#25479)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
2ab27b70f5 [XPU] Fix MOE DP accuracy issue on XPU (#25465)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
a500f7cc09 [Docs] NixlConnector quickstart guide (#24249)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
Signed-off-by: Peter Pan <peter.pan@daocloud.io>
Signed-off-by: Nicolò Lucchesi<nicolo.lucchesi@gmail.com>
Co-authored-by: Nicolò Lucchesi <nicolo.lucchesi@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
1b75f784b8 [P/D] Support NIXL connector to disconnect during a clean shutdown (#24423)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Co-authored-by: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
0eddd2b528 [BugFix] Register expert_map as named buffer for wake_up and sleep (#25458)
Signed-off-by: wuxibin <wuxibin@bytedance.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
030774abcf [CI/Build] Fix disabled v1 attention backend selection test (#25471)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
77389d87b2 [docs] Benchmark Serving Incorrect Arg (#25474)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
59659b74c4 [Core] Optimize LoRA weight loading (#25403)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
3b96eafdb0 [Bugfix] Fix idefics3 tie_word_embeddings (#25454)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
fb64e67533 [Test]: Hermes tool parser stream output error in Qwen3 case (#25203)
Signed-off-by: Andreas Hartel <andreas.hartel@aleph-alpha.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
215da8510d [Misc] Move DP for ViT code inside model executor dir (#25459)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
c4a15ee240 [Frontend] Add a new xml-based tool parser for qwen3-coder (#25028)
Signed-off-by: Zhikaiiii <1658973216@qq.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
3a640b8f74 Handle triton kernel import exception (#25319)
Signed-off-by: Ming Yang <minos.future@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
0a1397c7df [Model] Enable DP for ViT in Qwen2-VL (#25445)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
921945c81e [NIXL][OOT platform] support nixl_connector with oot platform and other nixl_backend (#25121)
Signed-off-by: Chendi Xue <Chendi.Xue@intel.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
675fc471bf [DP/EP][GPTOSS] Use triton matmul-ogs kernels for GPTOSS DP/EP (#24588)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
b0ae0ad935 [Docs] Fix griffe warnings in vllm/lora/ops (#25369)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
e99b286f01 [Bugfix] Remove contiguous output req for context parallel MLA (#25414)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
23a7805022 [benchmarks]allow skip ready check for bench serve (#25420)
Signed-off-by: Lu Fang <fanglu@fb.com>
Signed-off-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
Co-authored-by: Lucia (Lu) Fang <fanglu@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
e3a3c738b0 [XPU] Fix compile_size is None case. (#25433)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
e41946ecdb [feat] Support MRoPE + YaRN (#25384)
Signed-off-by: liuye.hj <liuye.hj@alibaba-inc.com>
Co-authored-by: liuye.hj <liuye.hj@alibaba-inc.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
f071a31ede [Bug] Fix Long Context OOM Issue (#25290)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
1b30043f0d [V0 deprecation] Remove _set_default_args_v0 function (#25409)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
a0b5617263 [V0 deprecation] Remove platform v1 controling interface (#25410)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
e6c22d2b2f [Perf] Apply torch.compile for per_block_cast_to_fp8 (#24611)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
dbb029cfe1 [Performance] Remove input pads in cutlass_mla and optimize v_proj output handling (#25184)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
25dd155e60 [BugFix] [DP/EP] Fix slow execution when BS <= DP (#25407)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Chris Bamford <chrisbam4d@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
864bbe36f0 [Bugfix] Fix missing clear_connector_metadata (#25397)
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
e97cf2e32b [Core] Drop overly aggressive whisper assertion (#25408)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
d96a3fc653 [Bugfix] fix custom op test (#25429)
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00
aac85cc6d6 [Frontend] Responses API MCP tools for built in tools and to pass through headers (#24628)
Signed-off-by: Alec Solder <alecs@fb.com>
Signed-off-by: Alec S <10566873+alecsolder@users.noreply.github.com>
Co-authored-by: Alec Solder <alecs@fb.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
f1e3d031e4 [TPU] update torch_xla dependency for PyPI compatibility (#25278)
Signed-off-by: Johnny Yang <johnnyyang@google.com>
Co-authored-by: Chengji Yao <chengjiyao@google.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
6e9229e919 [CI/Build] Skip Qwen3-VL initialization tests until models are actually released (#25394)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
ff54b6bfe3 [KV offload][5/N] Add CPUOffloadingSpec (#24251)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
6dbbecd5b2 [torch.compile] Cleanup compilation tests and custom passes, add debug utils, fix DCE bug (#23091), fix test (#24376), and prep for custom op matching (#24604) (#24542)
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Signed-off-by: luka <lgovedic@redhat.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
6850bfe15c [misc] Remove RFC review hours reference (#25416)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
d988b84e8e [DP] support torchrun external launcher with Data Parallelism (#24899)
Signed-off-by: Lu Fang <fanglu@fb.com>
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
7337ec6c9f [CI Failure] Fix fp8 kv cache on <SM90 (#25396)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
90ba32a0bf [Compiler] Disable Inductor standalone compile by default (#25391)
Signed-off-by: ElizaWszola <ewszola@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
2a8bd2b93b [CLI env var] Add VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH in env variables (#25274)
Signed-off-by: qqma <qqma@amazon.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: qqma <qqma@amazon.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
3968ae72ed [EPLB] Reduce EPLB Inference Overhead (#24573)
Signed-off-by: Bowen Wang <abmfy@icloud.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
e55ffe3595 [V1][Attention] Split triton_attn in triton-only and rocm specific backends (#24648)
Signed-off-by: Burkhard Ringlein <ngl@zurich.ibm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
4057e2b162 [Bugfix] Fix several issues with p2p xPyD in GET type (#23993)
Signed-off-by: Csrayz <jover@cmbchina.com>
Signed-off-by: ivyilike <pww123@cmbchina.com>
Co-authored-by: ivyilike <pww123@cmbchina.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
cc494282a9 [Kernel] MI-300X triton moe configs (#23445)
Signed-off-by: Sara Kokkila Schumacher <saraks@ibm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
44be2b7349 Make mypy behave like a proper pre-commit hook (#25313)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
104e62fbc8 Make pickle import check fast (#25379)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
ddf4e1f56f [Misc] Remove unused encoder-decoder error strings (#25374)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
cbba9bd0b0 refactor: abstract graph mode support into platform interface (#25161)
Signed-off-by: Yizhou Liu <liu_yizhou@outlook.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
4bc6b5d2c3 [TPU] Deprecate xm.mark_step in favor of `torch_xla.sync (#25254)
Signed-off-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
8d8de42790 [TPU][Bugfix][CI] Fix broken tests/build dependency (#25255)
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
ef85a438da Enable Eagle3 speculative decoding for GPT-OSS model (#25246)
Signed-off-by: Eldar Kurtic <8884008+eldarkurtic@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
2f237d3df4 [V0 Deprecation] Remove MultiModalPlaceholderMap (#25366)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
243c358fa8 [V0 Deprecation] Remove V0-only methods in multi-modal registry (#25362)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
1b3aa0f297 [Bugfix] Fix hermes tool parser handling of non-string argument types (#22002)
Signed-off-by: wangzi <3220100013@zju.edu.cn>
Signed-off-by: David Chen <530634352@qq.com>
Co-authored-by: wangzi <3220100013@zju.edu.cn>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
dba6db9937 [Docs] GSM8K Accuracy Evaluation doc update (#25360)
Signed-off-by: David Chen <530634352@qq.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
5322390f1d [Model] Support Dots OCR (#24645)
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: yinz-aizip <yinz@aizip.ai>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
5f6a36054a Multimodal - audio tests (#25285)
Signed-off-by: Debolina Roy <debroy@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
e348e1027c [Bugfix][V0 Deprecation][CI] use async mock and await for async method (#25325)
Signed-off-by: Yang <lymailforjob@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
a815d820ee Remove V0 attention backends (#25351)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
319966a678 [Perf] Further optimization for Qwen3-VL fast_pos_embed_interpolate (#25347)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
b81364a7cd [V0 Deprecation] Remove V0 sampling metadata (#25345)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
791089df20 feat: Enable engine-level arguments with speculators models (#25250)
Signed-off-by: Rahul Tuli <rtuli@redhat.com>
Co-authored-by: Claude <noreply@anthropic.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
71f2b5ddea [V0 Deprecation] Remove async_output_proc, preemption mode, delay factor (#25334)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
81e17a1e26 [V0 Deprecation] Remove V0 Sequence class & Sampler (#25332)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
ed84bda7a5 fix cub helpers
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
c7b1c0cf8b fix cub_helpers
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
a31d353b71 [Optimization] Cache chat template result when processor fails to be loaded (#25341)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
80cad257da [Bugfix] Typos in error message for missing model config file (#25339)
Signed-off-by: simondanielsson <simon.danielsson99@hotmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
5fd95c77af [MM][Perf] Minor Optimization on Qwen3-VL fast_pos_embed_interpolate (#25337)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
f6278e3065 [V1] Add sliding window support to Flex Attention backend (#24089)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
9e9b3b4ff9 [V0 Deprecation] Remove V0 MP executor (#25329)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
20235c1822 [V0 Deprecation] Remove from_seq_group methods (#25330)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
059a13a3bc [Multi Modal][Performance] Fused Q,K's apply_rope in more models (#25005)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
a6cf307fa8 [V0 Deprecation] Remove V0 model runner base & simplify worker base (#25328)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
b18dde7478 [Doc] improve test-pipeline.yaml documentation (#25305)
Signed-off-by: Huamin Li <3ericli@gmail.com>
Co-authored-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
7cdd90211b [V0 Deprecation] Remove V0 core (#25321)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
86fdd686be [CI] Skip tests failing on main (#25326)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
171592330b [Chore] Remove unused sampler in models (#25324)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
4bb2eb42d4 [V0 Deprecation] Remove V0 Output Processor (#25320)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
32d43a5a9e [V0 Deprecation] Remove LLMEngine (#25033)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
d9ba479eee [Docs] Fix warnings in vllm/profiler and vllm/transformers_utils (#25220)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
9cfa7697c1 [V0 Deprecation] Enable the remaining multimodal tests in V1 (#25307)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
9fc86d2802 [Core] Enable sharded state loader for V1 engine and enhance test coverage (#25308)
Signed-off-by: pengdrumli <pengdrumli@tencent.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
bc76128565 [Model] Cleanup InternViT's data parallel implementation (#25306)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
af4dedf6d3 Generate _ModelInfo properties file when loading to improve loading speed (#23558)
Signed-off-by: Manoel Marques <manoel.marques@ibm.com>
Signed-off-by: Manoel Marques <manoelmrqs@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
dad5f4d16d [Docs] Fix warnings in mkdocs build (continued) (#25042)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
c2fdc71c91 [CI Failure] Disable FlashInfer RoPE to unblock CI (#25299)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
e33af1e0c2 [V1] Support LLM.apply_model (#18465)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
0ac65d171b [Bugfix] Fix Qwen3-VL-MoE weight loading for EP (#25300)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
267b4421b7 [Hybrid Allocator] Support full attention with different hidden size (#25101)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
8f3edbd93f [Optimization] Avoid repeated model architecture conversion for pooling models (#25261)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
239aef5c9f [Bugfix] fix tool call arguments is empty (#25223)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Co-authored-by: xin.li <xin.li@daocloud.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
9d70c103aa [BUG FIX][NON-CUDA]quick fix to avoid call cudagraph_unsafe in attention (#25298)
Signed-off-by: Chendi Xue <Chendi.Xue@intel.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
d897924b45 [BugFix] Exclude self when checking for port collision (#25286)
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
b7c986673d [BUGFIX] GPTQ quantization compatibility for Qwen3 Next MOE models (AutoGPTQ and AutoRound-GPTQ) (#25268)
Signed-off-by: JartX <sagformas@epdcenter.es>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
14e1e9b09a Improve weight loading for encoder models in Transformers backend (#25289)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
ea01b17b6f [Misc] Support more collective_rpc return types (#25294)
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
123e7ad492 [BugFix] Ensure appropriate guards in destructors (#25284)
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
ce65ce2d61 [torch.compile] CUDAGraph Inductor partition integration (#24281)
Signed-off-by: Boyuan Feng <boyuan@meta.com>
Signed-off-by: Boyuan Feng <fby.1994@gmail.com>
Signed-off-by: boyuanfeng <boyuan@meta.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
d4006bd84d [docs] Prompt Embedding feature support (#25288)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
7493472a9b test: Remove vestigial skip for prompt embeds tests after landing v1 Prompt Embeds support (#25291)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
937ab7e85e Don't skip special tokens with hermes-style tool calling (#25281)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
bc997c18ca [Bugfix] Remove VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE #2969 (#25090)
Signed-off-by: Lucas Kabela <lucaskabela@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
d55c6010ac [BugFix] Fix async scheduling CPU tensor race take 2 (#25279)
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
5051270200 allow disable flashinfer prefill (#25276)
Signed-off-by: Lu Fang <fanglu@fb.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
6e94161f94 Enable modelopt gemma3 nvfp4/fp8, make workflow more robust (#22771)
Signed-off-by: Zhiyu Cheng <zhiyuc@nvidia.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
e54a476058 [Compile] Fix Compile Warning for Ignoring MIN_BLOCK_PER_SM (#25193)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
8da7b98366 [Frontend] Responses API messages out, just harmony for now (#24985)
Signed-off-by: Alec Solder <alecs@fb.com>
Co-authored-by: Alec Solder <alecs@fb.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
9da51c77a9 Fix: Correct FusedMoE layer reference in auto_round quantization (#24818)
Signed-off-by: David-Wen <18927700430@163.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
d0a1364188 [BugFix] Make FlashInferMetadataBuilder non-blocking (#25040)
Signed-off-by: Julien Lin <jullin@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
2c3ba7362f [Perf] Use FlashInfer RoPE for RotaryEmbedding.forward_cuda when available (#21126)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:53 -07:00
bfd32678e6 Specify platform in pip-compile pre-commit hook so it runs on MacOS (#25273)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:52 -07:00
e29f599d30 [Bugfix] Fix chunked a2_scales in modular kernels (#25264)
Signed-off-by: Bill Nell <bnell@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:52 -07:00
b6724e95f8 [Bugfix] GPT OSS Attritbute error on H100 (#25228)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:52 -07:00
17b9f3a83d Optimize triton unified attention performance for sliding window attention (#24390)
Signed-off-by: zixi-qi <qizixi@meta.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:52 -07:00
378c68bead [KV offload][4/N] Offloading KV connector (#22595)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:52 -07:00
67f0418b1d [bugfix] fix structured outputs key missing issue from #24929 (#25195)
Signed-off-by: Lu Fang <fanglu@fb.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:52 -07:00
779ed75310 [Docs] add __init__.py to vllm/model_executor/layers/quantization/compressed_tensors/transform (#24974)
Signed-off-by: samzong <samzong.lu@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:52 -07:00
abb448b457 Update vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:52 -07:00
ae36150ec2 test
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:52 -07:00
2506ce5189 [Core][Prefix Hash] Fix prefix hash metrics sliding window maintainance (#24990)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
2025-09-19 12:22:53 -06:00
47fd08aaf9 [CI/Build] fix test function_calling (#25072)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-19 12:16:32 -06:00
12aed7e453 Encoder model support for the Transformers backend (#25174)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-19 19:15:22 +01:00
d90e212a3a Remove Redundant Assignment in Qwen3_VisionPatchMerger (#25224)
Signed-off-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-19 12:15:13 -06:00
2821986450 [Core] Modify the initialization parameters of the lora manager (#25249)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-19 18:01:28 +00:00
6c117cff7d [Frontend] Pass API server count to each process (#23717)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-20 01:15:19 +08:00
7ac67ea525 [KV offload][3/N] Add worker-side CPU support (#21448)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-19 09:53:45 -07:00
ce75e15373 refactor(benchmarks): add type annotations to wait_for_endpoint parameters (#25218)
Signed-off-by: samzong <samzong.lu@gmail.com>
2025-09-19 16:36:52 +00:00
aed16879a9 Move ModelConfig from config/__init__.py to config/model.py (#25252)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-19 16:22:33 +00:00
cf278ff3b2 Update CODEOWNERS (#25269)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-19 09:12:55 -07:00
838d7116ba [Qwen] Remove cuda hard-code in qwen3 next (#25243)
Signed-off-by: Icey <1790571317@qq.com>
2025-09-19 12:25:12 +00:00
5089fd749c [V0 Deprecation] Remove V0 logic from get_input_embeddings interface (#25242)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-19 11:10:52 +00:00
a3d087adec [P/D][Nixl] Introduce KVTransferMetrics and aggregation strategy (#22188)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-19 11:09:14 +00:00
058525b997 Move PoolerConfig from config/__init__.py to config/pooler.py (#25181)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-19 11:02:55 +00:00
1dfea5f4a9 [Bugfix][Perf] Misc fixes for Qwen3 VL (#25238)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-19 10:46:16 +00:00
cea91a32f2 [Kernel][Performance] Add Triton kernel for Qwen3-VL interleaved MRoPE (#25055)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-19 10:27:49 +00:00
a684c0124c [bugfix] fix MHA for models like OpenGVLab/InternVL3_5-38B (#25146)
Signed-off-by: Yan Ma <yan.ma@intel.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-19 08:45:06 +00:00
f2718d2948 [Misc] Cleanup test conftest for deprecated encoder-decoder models (#25231)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-19 07:44:56 +00:00
825fdb11ad [Bugfix][CPU] Add placeholder to avoid import errors when using fused_moe ops on platforms without triton (#25137)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-19 07:41:12 +00:00
8c1d4acbfe [CPU] Disable oneDNN linear on non-x86 platforms (#25166)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-19 07:27:22 +00:00
486c5599e3 [Build] Update Xgrammar to 0.1.24 to get a CVE fix (#25188)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-19 14:27:17 +08:00
a6149aa587 [OOT] Support sync_model_loading for OOT (#25126)
Signed-off-by: Chendi Xue <Chendi.Xue@intel.com>
2025-09-19 05:41:53 +00:00
6c8a3c099b [Docs] Fix griffe warnings in vllm/multimodal (#25216)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-18 22:10:44 -07:00
31a8a2a7bc [Misc] Clean up MM profiling warnings (#25222)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-19 04:46:57 +00:00
1a0a04dae9 [Perf] Optimize memory peak during EAGLE model loading. (#24585)
Signed-off-by: Chen Ding <candy.dc@alibaba-inc.com>
2025-09-19 03:31:16 +00:00
6d8246aaff [gpt-oss] Add ResponseReasoningPartAddedEvent, ResponseReasoningPartDoneEvent for streaming (#24938)
Signed-off-by: Andrew Xia <axia@meta.com>
2025-09-18 19:11:59 -07:00
9d1c50a5ac [KV offload][2/N] Introduce LRU-based CPU offloading management (#20075)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-19 00:20:51 +00:00
9a4600e4dc [CORE] Prompt Embeddings Support for v1 Engine (#24278)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
Signed-off-by: Andrew Sansom <qthequartermasterman@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-09-19 08:03:09 +08:00
9fac6aa30b [BugFix] Fix DeepGEMM warmup, no m.weight_scale_inv (#25206)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-18 14:26:28 -07:00
a53ad626d6 [KV offload][1b/N] rename offloading to kv_offload (#25191)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-18 20:53:52 +00:00
1c3dad22ff [V0 Deprecation] Remove unused async_timeout.py (#25190)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-18 20:35:21 +00:00
d2a30a2d93 [Bug] Fix torch Compilation Cache Hit Error (#25093)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-18 12:38:37 -07:00
75fb112d80 [Bug] Fix returned_lse not Defined issue (#25106)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-09-18 19:32:24 +00:00
38db529f66 [feat]: Create interface for model-specific M-RoPE (#24194)
Signed-off-by: AzizCode92 <azizbenothman76@gmail.com>
Signed-off-by: Aziz <azizbenothman76@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-18 19:18:56 +00:00
064cac7bb7 [fix]: remove data type hardcoding from gptoss model implementation (#23807)
Signed-off-by: Nikhil Gupta <nikhil.gupta2@arm.com>
2025-09-18 18:15:23 +00:00
e19bce40a1 [V0 Deprecation] Remove AsyncLLMEngine (#25025)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-18 11:07:42 -07:00
505805b645 [KV offload][1/N] Introduce an offloading component (#19848)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-18 10:57:07 -07:00
bbdc0f2366 [ROCm][AITER][Bugfix] Switch AITER to use PIECEWISE_AND_FULL compilation (#25104)
Signed-off-by: Rohan138 <rohanpotdar138@gmail.com>
2025-09-18 17:46:47 +00:00
dc34059360 [ROCm][CI/Build] Use ROCm7.0 as the base (#25178)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-18 09:36:55 -07:00
c4cb0af98a [spec decode] Fix MTP inference path for MiMo-7B model (#25136)
Signed-off-by: zixi-qi <qizixi@meta.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-18 09:12:19 -07:00
1c3b1634aa [Misc] Add codeowner for Transformers backend (#25180)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-18 09:01:50 -07:00
2ea50e977a Enable Allgather/ReduceScatter backend for NaiveAllToAll (#23964)
Signed-off-by: Shu Wang. <shuw@nvidia.com>
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Signed-off-by: Shu Wang <shuw@nvidia.com>
Co-authored-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-18 15:52:58 +00:00
b419937c78 [Docs] Fix warnings in mkdocs build (continued) (#25163)
Signed-off-by: Zerohertz <ohg3417@gmail.com>
2025-09-18 08:23:26 -07:00
5f696c33b1 [New Model] Support BertForTokenClassification / Named Entity Recognition (NER) task (#24872)
Signed-off-by: wang.yuqi <noooop@126.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-18 23:22:01 +08:00
67244c86f0 feat(api): Return 503 on /health when engine is dead (#24897)
Signed-off-by: dongbo910220 <1275604947@qq.com>
Co-authored-by: Claude <noreply@anthropic.com>
2025-09-18 14:29:40 +00:00
072d7e53e5 [PERF] Add conv1d metadata to GDN attn (#25105)
Signed-off-by: Vadim Gimpelson <vadim.gimpelson@gmail.com>
2025-09-18 14:27:49 +00:00
01a583fea4 [Kernel] Decouple Tile Size from Block Size in Triton Unified Attention Kernel (#21197)
Signed-off-by: Jan van Lunteren <jvl@zurich.ibm.com>
2025-09-18 14:27:01 +00:00
bc19d75985 [Misc] Add kv-connector label (#25156)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-18 13:56:07 +00:00
fbd6523ac0 Refactor dense FP8 tensor/channel/block utils and add CT FP8 block (#21404) 2025-09-18 08:53:45 -04:00
470484a4f5 [Structured Output][Refactor] Move apply_grammar_bitmask() method from ModelRunner to structured output utils (#21999)
Signed-off-by: shen-shanshan <467638484@qq.com>
2025-09-18 20:44:31 +08:00
21da73343a [Misc] Clean up flags in vllm bench serve (#25138)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-18 12:43:33 +00:00
66072b36db [Bugfix][Mamba] - Fix Conv State Kernel FP32 Support (#24883)
Signed-off-by: asafg <39553475+Josephasafg@users.noreply.github.com>
2025-09-18 12:21:17 +00:00
3ed1ec4af2 Fix validate-config pre-commit check (#25157)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-18 12:06:28 +00:00
5a33ae9a3f Fix forward reference warning in documentation (#25150)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-18 11:41:41 +00:00
c9ff9e6f0c [Docs] add the parallel sampling usage in LLMEngine and AsyncLLM (#24222) 2025-09-18 04:37:08 -07:00
eaffe4486c [Docs] Fix pooling-params doc references in openai_compatible_server.md (#24939) 2025-09-18 04:36:47 -07:00
8ed039d527 Move StructuredOutputsConfig from config/__init__.py to config/structured_outputs.py (#25153)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-18 11:24:27 +00:00
37970105fe [Model] Improve Pooling Model (#25149)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-18 11:04:21 +00:00
cc935fdd7e [Frontend] Support setting logprobs to -1 (#25031)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-18 10:34:42 +00:00
abdfcd4f3d silu-v1: Fix EPS not being used during max-reduction (#25069)
Signed-off-by: elvircrn <elvircrn@gmail.com>
2025-09-18 10:25:12 +00:00
4f02b77de4 Fix: Add explicit #include <omp.h> for OpenMP compatibility on certain toolchains (#24951)
Signed-off-by: lyd1992 <liuyudong@iscas.ac.cn>
Signed-off-by: ihb2032 <1355790728@qq.com>
2025-09-18 17:43:23 +08:00
29283e8976 [Chore] Cleanup guided namespace, move to structured outputs config (#22772)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-18 09:20:27 +00:00
05b044e698 [Doc] Fix cross-reference warnings (#25058)
Signed-off-by: Punit Vara <punitvara@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-18 02:05:16 -07:00
aa3f105c59 Add 'path' option to ImagePrompt data_format (#25081)
Signed-off-by: Gerard Finol <gerard.finol@urv.cat>
2025-09-18 02:02:14 -07:00
ef7eefe17a [Qwen] Add fp8 checkpoint support for qwen3-next. (#25079)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
2025-09-18 08:16:04 +00:00
350c94deb3 [Bugfix] when use s3 model cannot use default load_format (#24435)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
Co-authored-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-09-18 07:47:43 +00:00
f4cd80f944 Retrieve sliding_window from text config in Gemma3 MM (#25085)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-18 06:29:05 +00:00
349e0e3462 [Docs] Fix API Reference (#25140)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-17 23:23:29 -07:00
81b16a2bc9 [Kernel] Better inf handling for grouped topk cu (#24886)
Signed-off-by: lumina37 <starry.qvq@gmail.com>
2025-09-18 05:53:55 +00:00
e111d5b0ae [CLI] Use streaming in CLI chat and completion commands (#23769)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-09-17 22:30:26 -07:00
a904ea78ea [benchmark] add peak throughput metrics and plot (#23867)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-09-17 22:30:02 -07:00
b7433ca1a4 [Spec Decode] Efficient padded speculation (#24539)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
2025-09-18 01:07:24 -04:00
5c65a72bb1 [V0 Deprecation] Remove more V0 tests (#25117)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-17 22:05:25 -07:00
9d8a2d86d2 [EPLB] Add EPLB support for hunyuan_v1 (#23078) 2025-09-18 04:51:35 +00:00
3bc18127ff [XPU] Whisper model support on XPU Platform (#25123)
Signed-off-by: chzhang <chaojun.zhang@intel.com>
2025-09-18 04:30:10 +00:00
bec060fd99 Mark prompt logprobs as incompatible with prompt embeds at API level (#25077)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-17 21:25:07 -07:00
52bc9d5b3e [Model] enable data parallel for InternVL vision encoder (#23909)
Signed-off-by: Yiwen Chen <yiwen66@berkeley.edu>
Signed-off-by: YiwenC <54658925+666even666@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-17 21:11:46 -07:00
dc2979c585 [Kernels] Overlap shared experts with combine instead of dispatch (#24254)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-09-18 12:10:21 +08:00
027d37df38 [Bugfix][Qwen3-Next] add prefixes to shared_expert in qwen3-next and mlp in qwen2moe to successfully load ignored params in quantized models (#24960)
Signed-off-by: toncao <cpatonn@gmail.com>
Co-authored-by: toncao <cpatonn@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-18 12:08:50 +08:00
b98219670f [Core][MM] Cleanup MultiModalCache (#25006)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-09-17 21:08:41 -07:00
32baf1d036 [Docs] Clean up the contributing README (#25099)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-17 21:05:18 -07:00
3127274d02 [MM Encoder] Apply DP ViT for Qwen3-VL model series (#24955)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Huang Jie <92386084+JJJYmmm@users.noreply.github.com>
Co-authored-by: 松灵 <26085463+wulipc@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-17 21:04:21 -07:00
4ac510f484 [Kernels] Enable DeepGEMM by default (#24462)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-09-17 20:19:52 -07:00
7fb2a5be28 [V0 Deprecation] Skip PP test (#25128)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-17 20:18:36 -07:00
6c036615dc [V0 Deprecation] Remove misc V0 tests (#25118)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-17 19:41:55 -07:00
2fc24e94f9 [V0 Deprecation] Remove V0 Tracing & Metrics tests (#25115)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-17 19:40:44 -07:00
2c3c1bd07a [V0 Deprecation] Remove V0 Engine tests (#25114)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-17 19:38:09 -07:00
5963b98b46 [Kernel] Delegate construction of FusedMoEQuantConfig to FusedMoEMethodBase subclasses (#22537)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-09-17 17:43:31 -06:00
e6585ddb45 [Bugfix] Fix accuracy issue for silu_mul + nvfp4 quant fusion kernel (#24833)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-17 16:37:23 -07:00
2a4d6412e6 Add a batched auto tune script (#25076)
Signed-off-by: Karan Goel <karangoel@google.com>
Signed-off-by: Karan Goel <3261985+karan@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-17 22:41:18 +00:00
e67a79db03 [Bugfix] Refactor Flashinfer TRTLLM attention kernel selection logic (#24600)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-17 15:36:29 -07:00
9f882d8791 Disable failing GPT-OSS Eval (Blackwell) for now (#25107)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-17 15:36:00 -07:00
1a456c7c90 Aiter mha fp8 fix (#24991)
Signed-off-by: Doug Lehr <douglehr@amd.com>
Co-authored-by: Doug Lehr <douglehr@amd.com>
2025-09-17 22:29:14 +00:00
fedb75fa27 [Bugfix][B200] Fix cutlass_mla hang (#24966)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-17 18:06:38 -04:00
bff2e5f1d6 [gpt-oss][2] fix types for streaming (#24556)
Signed-off-by: Andrew Xia <axia@meta.com>
2025-09-17 22:04:28 +00:00
3c068c637b [Kernel] Faster pre-processing time for W4A8 (#23972)
Signed-off-by: czhu-cohere <conway.zhu@cohere.com>
2025-09-17 14:35:32 -07:00
f20c3b0951 [BUG] Exclude .pth files when pulling remote files (#25092)
Signed-off-by: ahao-anyscale <ahao@anyscale.com>
2025-09-17 20:42:09 +00:00
883131544f [Bugfix] Update import path for bc_linter_include (#24766)
Signed-off-by: Mohammad Miadh Angkad <mangkad.bsdsba2027@aim.edu>
2025-09-17 20:33:11 +00:00
ee5fd49150 [Misc] Update owners for KV connector and V1 offloading (#25041)
Signed-off-by: ApostaC <yihua98@uchicago.edu>
2025-09-17 12:37:29 -07:00
7ae9887542 [V1] Logits processor docs (#22919)
Signed-off-by: Andrew Feldman <afeldman@redhat.com>
Signed-off-by: afeldman-nm <156691304+afeldman-nm@users.noreply.github.com>
Co-authored-by: Joseph Marinier <Joseph.Marinier@gmail.com>
2025-09-17 11:53:12 -07:00
e3db5ebb66 [CI Bugfix] Fix failing test_model_load_with_params tests due to tokenizer refactor (#25086)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-17 11:15:05 -07:00
9d442b7c48 [V0 Deprecation] Remove V0 tests in test_sequence.py (#25088)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-17 11:08:45 -07:00
eb68c2dcd9 [CI] Revert back prepare_prompts and check_answers (#25087)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-17 11:03:16 -07:00
8b32464ac1 Change log level from info to debug for IOProcessor (#24999)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-09-17 10:21:28 -07:00
99cc41ad50 [V0 Deprecation] Remove unused output processor util (#25023)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-09-17 09:50:07 -07:00
d6a518fdde Remove unused find_cuda_init helper script (#25044) 2025-09-17 09:47:40 -07:00
4aa8c7b047 cleanup: remove adapter commons (#25045)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-17 16:46:29 +00:00
4b946d693e [V0 Deprecation] Remove V0 Core tests (#25082)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-17 09:32:42 -07:00
087c6ffc92 [CI Bugfix] Fix failing test_invalid_env (#25078)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-17 08:28:58 -07:00
4a2d33e371 [Docs] vllm/benchmarks/datasets.py fix docstring param format. (#24970)
Signed-off-by: samzong <samzong.lu@gmail.com>
2025-09-17 08:11:51 -07:00
8f3616f422 Remove old cutlass mla (#23961)
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-09-17 14:31:43 +00:00
47f670b03b [Docs] improve code formatting and comments for eliminate griffe build warning. (#25010)
Signed-off-by: samzong <samzong.lu@gmail.com>
2025-09-17 07:31:20 -07:00
dd6a910aac [Bugfix][Qwen3-Next] fixes the varlen issue in qwen3-next's MTP implementation. (#24957)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
2025-09-17 21:59:09 +08:00
1b962e2457 [fix] lora benchmarks pass no_lora_flag_cpu (#23774)
Signed-off-by: Dylan Maloy <34420038+dolpm@users.noreply.github.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-17 21:22:25 +08:00
bfe9380161 Apply fixes for CUDA 13 (#24599)
Signed-off-by: Aidyn-A <aidyn.b.aitzhan@gmail.com>
2025-09-17 09:15:42 -04:00
9fccd04e30 [Bugfix] Fix Stream usage in CPU model runner and OneDNN kernel check (#25046)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-17 05:54:02 -07:00
252ada5559 Add RADIO Vision Encoder Support to vLLM (#24595)
Signed-off-by: Daniel Afrimi <danielafrimi8@gmail.com>
Co-authored-by: root <root@cw-dfw-h100-001-305-026.cm.cluster>
2025-09-17 05:53:30 -07:00
e120533d7a [Misc] Avoid use of deprecated AutoModelForVision2Seq (#25065)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-17 12:19:15 +00:00
2b85697031 [BugFix] enable DOTALL to match multi-line tool_call parameters in extract_tool_call_required_streaming (#24668)
Signed-off-by: Shijun Yin <shijun.yin@outlook.com>
2025-09-17 09:21:18 +00:00
544fe76b95 [Frontend] Support returning all prompt logprobs (#24956)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-17 09:03:52 +00:00
bb58dc8c20 [DP] Create placement groups by ray_device_key (#25026)
Signed-off-by: Xinyu Chen <xinyu1.chen@intel.com>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-17 08:57:25 +00:00
0fb2551c23 [Docs] Fix griffe warning in base_static_graph.py (#25018)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-17 08:49:19 +00:00
6c47f6bfa4 [Core] Remove tokenizer group in vLLM (#24078)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-09-17 08:42:59 +00:00
whx
c15309a730 [Model] Apply SharedFusedMoE to glm4_moe. (#24849)
Signed-off-by: whx-sjtu <2952154980@qq.com>
2025-09-17 16:02:31 +08:00
whx
4a9375fe9d [Model] Pass param prefix to LLMHead (#24862)
Signed-off-by: whx-sjtu <2952154980@qq.com>
2025-09-17 16:01:27 +08:00
03191cd8f0 [Core][MultiModalHasher] Hash images without converting image mode (#24969)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-09-17 00:57:34 -07:00
b77bf34e53 [EPLB] Support EPLB for Mixtral Model (#22842)
Signed-off-by: rouchenzi <ruochenwen@gmail.com>
Signed-off-by: rouchenzi <40842833+rouchenzi@users.noreply.github.com>
Co-authored-by: Bowen Wang <abmfy@icloud.com>
2025-09-17 07:27:34 +00:00
dd39baf717 [XPU] Fix xpu model runner call torch.cuda APIs (#25011)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-17 06:45:25 +00:00
43a62c51be Add more documentation and improve usability of lognormal dist (benchmark_serving_multi_turn) (#23255)
Signed-off-by: daniels <daniels@pliops.com>
2025-09-17 05:53:17 +00:00
ca2d1925ef [Rocm] [quantization] Fix quark ptpc moe and add test case (#24649)
Signed-off-by: Haoyang Li <lihaoyang0109@gmail.com>
Co-authored-by: Haoyang Li <haoyang.li@amd.com>
2025-09-16 22:15:13 -07:00
0f7acdd73c [Model] Support Qwen3-VL Model Series (#24727)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Huang Jie <92386084+JJJYmmm@users.noreply.github.com>
Co-authored-by: 松灵 <26085463+wulipc@users.noreply.github.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-17 05:01:04 +00:00
5801e49776 [V0 Deprecation] Remove MQLLMEngine (#25019)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-09-16 21:29:27 -07:00
58d4c705a8 [Core] Get num_encoder_tokens from scheduler config (#24989)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-16 20:59:07 -07:00
ea3de5ef0d [misc] fix typo in value error (#24995)
Signed-off-by: Prashant Gupta <prashantgupta@us.ibm.com>
2025-09-16 20:58:38 -07:00
67532a1a68 [UX] Remove "quantization is not fully optimized yet" log (#25012)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-16 20:57:51 -07:00
5672ba90bd [Docs] fix invalid doc link (#25017)
Signed-off-by: zxw <1020938856@qq.com>
2025-09-16 20:53:23 -07:00
dd83a157f1 [UX] Enforce valid choices for envs like VLLM_ATTENTION_BACKEND, etc (#24761)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-09-16 20:42:23 -07:00
5a411ef6c4 [Benchmarks] Add MMVU video dataset support and clean up deprecated datasets (#24719)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-17 03:29:43 +00:00
eeb135eb87 [Core] Use CpuGpuBuffer for block table tensors (#24795)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-16 19:18:06 -07:00
3059b9cc6b [Doc] Add --force-overwrite option to generate_cmake_presets.py (#24375)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-09-16 18:45:29 -07:00
64ad551878 Removes source compilation of nixl dependency (#24874)
Signed-off-by: bbartels <benjamin@bartels.dev>
Signed-off-by: Benjamin Bartels <benjamin@bartels.dev>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Daniele <36171005+dtrifiro@users.noreply.github.com>
2025-09-17 01:33:18 +00:00
cef32104b4 [FP8] Extend per-token-group quantization support to QuantFP8 (#24342)
Signed-off-by: Tahsin Tunan <tahsintunan@gmail.com>
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Luka Govedič <lgovedic@redhat.com>
2025-09-16 18:31:06 -07:00
493b10f8bf [CI] GPT-OSS GPQA eval test for Blackwell (#24920)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-16 18:13:21 -07:00
d119fc8614 [CI][Bugfix] Fix failing Blackwell test (#24993)
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
2025-09-16 15:55:02 -07:00
dbebb7f812 [Perf] Reuse workspace for FP8+FP4 Marlin MoE (#20500)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-16 15:45:10 -06:00
3053a22b33 fp8 kv cache support fix for torch.compile (#22758)
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: Gregory Shtrasberg <156009573+gshtras@users.noreply.github.com>
2025-09-16 21:27:11 +00:00
02d4b85454 Use kwargs for long lists of EngineCoreRequest arguments in tests and fix extra kwargs (#24987)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-16 14:06:56 -07:00
86daa875fe [gpt-oss][1][bugfix] fix streaming final output (#24466)
Signed-off-by: Andrew Xia <axia@meta.com>
2025-09-16 13:56:16 -06:00
dcf2f3ec06 [ROCm] Add dependencies for ROCm (#24900)
Signed-off-by: Yida Wu <yida.wu@amd.com>
2025-09-16 19:49:06 +00:00
218454b9b2 [MISC] Add code owners of vllm/v1 to vllm/v1/core (#24928)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-09-16 19:07:34 +00:00
f4d6eb95cf [gpt-oss][1b] streaming add item id, content id (#24788)
Signed-off-by: Andrew Xia <axia@meta.com>
2025-09-16 18:41:12 +00:00
cd1f885bcf Directly get max encoder len from VLLM config in V1 (#24866)
Signed-off-by: Sugar-zsg <952242923@qq.com>
2025-09-16 17:52:31 +00:00
d593cf28fa [Misc] Add removed encoder-decoder models to previously supported models list (#24961)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-16 10:46:46 -07:00
faa7a5daac [Bugfix] Fix unable to run encoder model when disable_hybrid_kv_cache_manager is true (#24571)
Signed-off-by: lianyibo <lianyibo1@kunlunit.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
2025-09-16 17:36:58 +00:00
567939953b [Core/DBO][1/N] Add Dual-Batch Overlap mechanism to VLLM (#23693)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Co-authored-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
2025-09-16 12:21:48 -04:00
08369289af [Core][MultiModalHasher] Don't convert memoryviews to bytes during hashing (#24925)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-09-16 15:32:47 +00:00
73cfb3c5ee [Model] Clean up and simplify Mamba2 Metadata Usage in both V0 and V1 (#24331)
Signed-off-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
2025-09-16 14:53:43 +00:00
4e5affeaa1 [CI] Add Decode Context Parallelism (DCP) test to CI (#24487)
Signed-off-by: Ming Yang <minos.future@gmail.com>
2025-09-16 21:21:28 +08:00
e4f0b4cd96 (doc): set cmake c++ compatible standard when building on MacOS CPU. (#23483)
Signed-off-by: teekenl <teekenlau@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-16 06:08:46 -07:00
de3e53a75b feat: Add Grafana and Perces monitoring dashboards for vLLM (#23498) 2025-09-16 05:53:40 -07:00
85e0df1392 [Docs] move benchmarks README to contributing guides (#24820) 2025-09-16 05:52:57 -07:00
0faf3cc3e8 Move SpeculativeConfig from config/__init__.py to config/speculative.py (#24904)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-16 12:51:35 +01:00
7ea5c73ad7 [Feat][EPLB] A novel static EPLB placement strategy for MoE models. (#23745)
Signed-off-by: bruceszchen <bruceszchen@tencent.com>
Signed-off-by: Chen Bruce <bruceszchen@tencent.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Chen Bruce <cszwwdz@vip.qq.com>
Co-authored-by: lemon412 <lemon412@foxmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-16 10:55:16 +00:00
27fcfe7bcf [Mamba] Support TP>1 with quantization for mamba2 mixer in case n_groups % tp_size == 0 (#24593)
Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com>
Signed-off-by: tomeras91 <57313761+tomeras91@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-16 10:51:01 +00:00
68dbde5dbb [Bugfix] remove duplicate tokens streamed in required tool choice streaming (#23312)
Signed-off-by: Jason Cheng <jasoncky96@gmail.com>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
2025-09-16 15:16:32 +08:00
04ad0dc275 [benchmark] Add triton version in the moe tuned config (#24769)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-16 14:10:54 +08:00
238c4c1705 [QWEN NEXT] Fused MoE kernels Optimization configs (#24924)
Signed-off-by: Saman Keon <samanamp@outlook.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-16 13:06:03 +08:00
8c54610265 [Bug] [Spec Dec]: Fix kv_cache dtype mismatch for Eagle3 drafter on FP8 target (#24505)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-09-16 04:45:38 +00:00
17871983a2 [Bugfix] Fix sequence parallelism bug when enable pipeline parallelism (#24021)
Signed-off-by: cascade812 <cascade812@outlook.com>
2025-09-16 04:32:32 +00:00
759ef49b15 Remove V0 Encoder-Decoder Support (#24907)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-09-15 21:17:14 -07:00
5206ab20ba [XPU] Fix circular import error. (#24927)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-16 03:35:36 +00:00
0af3ce1355 Upgrade flashinfer to 0.3.1 (#24470)
Signed-off-by: Lu Fang <lufang@fb.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-16 02:36:09 +00:00
e1279ef00f [Docs] Update instructions for how to using existing torch binary (#24892)
Signed-off-by: Richard Zou <zou3519@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-16 02:25:50 +00:00
2942970d44 [Metrics] Hide deprecated metrics with gpu_ prefix (#24245)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-09-15 20:15:57 -06:00
3c96e7b8a1 [CI] Small Accuracy Eval Test for Deepseek Model (#24259)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-15 20:14:50 -06:00
b42566f440 [Bug] Fix is_flashmla_supported Check Error (#24774)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-15 20:10:55 -06:00
d96e11167d Add pytest-cov and .coveragerc (#24778)
Signed-off-by: Reza Barazesh <rezabarazesh@meta.com>
2025-09-15 20:08:46 -06:00
2891603efd [ROCm][Bugfix] Fix the case where there's bias (#24895)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-15 20:05:12 -06:00
de2cc3d867 [Deprecation] Remove DeepGEMM Old Symbol Wrapper (#24902)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-15 20:03:29 -06:00
e95084308b Updated CODEOWNERS for flashinfer, mla, fused_moe (#24906)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-16 02:01:28 +00:00
7f6f2c1182 HuggingFace -> Hugging Face in Integration with Hugging Face docs (#24889) 2025-09-15 17:28:35 -07:00
5bcc153d7b [Compile] Fix noop_elimination pass and add tests for noop_elimination (#24880)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-15 23:33:18 +00:00
45bfa49cb8 [Tests] fix initialization of kv hash in tests (#24273)
Signed-off-by: Mickael Seznec <mickael@mistral.ai>
2025-09-15 21:48:27 +00:00
fd2f10546c [ci] fix wheel names for arm wheels (#24898)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-09-15 14:39:08 -07:00
e757a629e7 [Bug] Fix Cutlass Scaled MM Compilation Error (#24887)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-15 17:21:17 -04:00
aae725af7c [Performance] Remove redundant clone() calls in cutlass_mla (#24891) 2025-09-15 20:21:53 +00:00
73df49ef3a [gpt-oss][1a] create_responses stream outputs BaseModel type, api server is SSE still (#24759)
Signed-off-by: Andrew Xia <axia@meta.com>
2025-09-15 13:08:08 -07:00
25aba2b6a3 [gpt-oss] Add IncompleteDetails to ResponsesRepsonse (#24561)
Signed-off-by: Andrew Xia <axia@meta.com>
2025-09-15 13:07:55 -07:00
94b03f88dd Bump Flashinfer to 0.3.1 (#24868)
Signed-off-by: bbartels <benjamin@bartels.dev>
2025-09-15 12:45:55 -07:00
49bfc538e4 Update num_tokens_across_dp to use nccl instead of gloo (#24105)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-09-15 19:05:48 +00:00
a0b26701c9 [Transform] Deterministic Hadacore Transforms (#24106)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-09-15 12:59:31 -06:00
c4afdb69cc Move MultiModalConfig from config/__init__.py to config/multimodal.py (#24659)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-15 17:43:16 +00:00
b834b4cbf1 [USAGE] Improve error handling for weight initialization in Unquantized… (#20321)
Signed-off-by: Rafael Marcelino Koike <rafael.koike@oracle.com>
Signed-off-by: Rafael Koike <koike.rafael@gmail.com>
2025-09-15 16:45:49 +00:00
740f0647b1 Reinstate existing torch script (#24729)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-15 09:43:40 -07:00
01413e0cf5 Fp8 paged attention update (#22222)
Signed-off-by: Xiao Yu <xiao.yu@amd.com>
Signed-off-by: xiao-llm <xiao.yu.dc@outlook.com>
Co-authored-by: Xiao Yu <xiao.yu@metamaterial.com>
Co-authored-by: Xiao Yu <xiao.yu@amd.com>
Co-authored-by: Bowen Bao <bowenbao@amd.com>
2025-09-15 10:43:26 -04:00
0e219cd50b [Bugfix] Fix GLM4.1V multimodal processor with compatability for Transformers v4.56 (#24822)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-15 20:45:06 +08:00
72c99f2a75 [Model]: support Ling2.0 (#24627)
Signed-off-by: vito.yy <vito.yy@antgroup.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-15 05:09:30 -07:00
bf214ca226 [Misc] Fix examples openai_pooling_client.py (#24853)
Signed-off-by: wang.yuqi <noooop@126.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-15 11:57:30 +00:00
2e41f5abca [XPU] Set consistent default KV cache layout (#24745)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-15 18:09:34 +08:00
bc0f6059a2 [UT] enhance free kv cache block queue popleft_n (#24220)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-09-15 10:04:37 +00:00
8de261b04a [P/D]kv_output_aggregator support P TP > D TP (#23917)
Signed-off-by: LCAIZJ <leichao139636@163.com>
Co-authored-by: leichao.lc <leichao.lc@antgroup.com>
2025-09-15 11:36:06 +02:00
a0d8b9738d [Misc] Own KVConnectors installation (#24867)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-15 02:21:09 -07:00
59e17dd4a0 [Misc] rename interval to max_recent_requests (#24229)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-09-15 09:18:42 +00:00
4979eb79da [Doc]: fix typos in various files (#24821)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-15 01:08:52 -07:00
a8c0f59973 [Bugfix] MiDashengLM model contact error under concurrent testing (#24738)
Signed-off-by: chenbing8 <chenbing8@xiaomi.com>
Signed-off-by: bingchen-mi <chenbing8@xiaomi.com>
2025-09-15 06:38:12 +00:00
f4a948f33f [Frontend] Skip stop in reasoning content (#14550)
Signed-off-by: Ce Gao <cegao@tensorchord.ai>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
2025-09-15 06:04:55 +00:00
3f3313981c [kv cache] update num_free_blocks in the end (#24228)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-09-15 05:15:12 +00:00
78818dd1b0 [Docs] Have a try to improve frameworks/streamlit.md (#24841)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-14 21:50:36 -07:00
8e5cdcda4e [Hybrid Allocator] Support Pipeline Parallel (#23974)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-09-14 15:55:17 -07:00
90f3f7d73e [Spec Decoding]Support Spec Decoding Metrics in DP Mode (#24049)
Signed-off-by: wuhang <wuhang6@huawei.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
2025-09-14 21:11:09 +00:00
6dc8da5dc1 [Chore] Remove ipex_ops warning (#24835)
Signed-off-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
2025-09-14 19:41:53 +00:00
79cbcab871 Force use C++17 globally to avoid compilation error (#24823)
Signed-off-by: chenfengjin <1871653365@qq.com>
2025-09-14 19:30:10 +00:00
ff68035932 [Benchmarks] Throw usage error when using dataset-name random and dataset-path together (#24819)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-14 17:50:01 +00:00
1177dd53e9 fix type of sampling rate for encode_base64 (#24826)
Signed-off-by: co63oc <co63oc@users.noreply.github.com>
2025-09-14 16:17:16 +00:00
fc2dbcda8b [Perf] Fix DeepGEMM Contiguous Layout Issue, 5.5% Throughput Improvement (#24783)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
2025-09-14 11:20:17 -04:00
fec347dee1 [Misc] Improve s3_utils type hints with BaseClient (#24825)
Signed-off-by: Zerohertz <ohg3417@gmail.com>
2025-09-14 12:11:14 +00:00
cc3173ae98 [Multi Modal][Performance] Fused Q,K's apply_rope into one (#24511)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-14 08:10:21 +00:00
3e903b6cb4 [Chore] Minor simplification for non-PP path (#24810)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-09-13 17:41:36 -07:00
973c9d01da [Minor] Simplify duplicative device check for cuda (#24793)
Signed-off-by: Ziliang Peng <ziliangdotme@gmail.com>
2025-09-13 18:28:38 +00:00
15b8fef453 Remove redundant assignment in xfer_buffers, This is a little fix (#24732)
Signed-off-by: ChenTaoyu-SJTU <ctynb@qq.com>
2025-09-13 08:11:59 +00:00
cfa3234a5b [CI][Spec Decode] Adjust threshold for flaky ngram spec decoding test again (#24771)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-09-13 15:45:11 +08:00
41ae4a1eab [Doc]: fix typos in various files (#24798)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-13 00:43:33 -07:00
4dad72f0d9 [Misc] Correct an outdated comment. (#24765)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-13 00:34:53 -07:00
59d7ffc17f [CI Failure] Fix test_flashinfer_cutlass_mxfp4_mxfp8_fused_moe (#24750)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-13 07:29:19 +00:00
1da0f1441d [Core][Multimodal] Cache supports_kw (#24773)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-09-13 07:27:04 +00:00
98229db244 [Kernels][DP/EP] Optimize Silu Kernel for R1 (#24054)
Signed-off-by: elvircrn <elvircrn@gmail.com>
2025-09-13 00:17:27 -07:00
dbeee3844c [Perf] Use NVIDIA hardware-accelerated instruction for float to fp8_e4m3 quantization (#24757)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-09-13 00:16:24 -07:00
30498f2a65 [Doc]: Remove 404 hyperlinks (#24785)
Signed-off-by: Rakesh Asapanna  <45640029+rozeappletree@users.noreply.github.com>
2025-09-13 00:15:41 -07:00
abc7989adc [Docs] Remove Neuron install doc as backend no longer exists (#24396)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-13 00:15:03 -07:00
9a8966bcc2 [Docs] Fix warnings in mkdocs build (continued) (#24791)
Signed-off-by: Zerohertz <ohg3417@gmail.com>
2025-09-13 00:13:44 -07:00
5febdc8750 [Chore] Remove unused batched RoPE op & kernel (#24789)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-13 00:08:20 -07:00
99bfef841f [Bugfix] Fix GPUModelRunner has no attribute lora_manager (#24762)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-12 23:55:14 -07:00
89e08d6d18 [Model] Add Olmo3 model implementation (#24534)
Signed-off-by: Shane A <shanea@allenai.org>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-13 03:26:21 +00:00
7f2ea7074e [Frontend][Multimodal] Allow skipping media data when UUIDs are provided. (#23950)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: Roger Wang <hey@rogerw.me>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.me>
2025-09-13 02:16:06 +00:00
4fdd6f5cbf [Core] Support async scheduling with uniproc executor (#24219)
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: Ronald1995 <ronaldautomobile@163.com>
Co-authored-by: Ronald1995 <ronaldautomobile@163.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
2025-09-12 16:34:28 -07:00
8226dd56bf [Qwen3Next] Fixes the cuda graph capture conditions under large batch sizes (#24660) (#24667)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
2025-09-12 22:31:32 +00:00
5fe643fc26 Add FLASHINFER_MLA to backend selector test (#24753)
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
2025-09-12 22:30:07 +00:00
7ba32aa60b [Attention][FlashInfer] Enable FP8 FlashInfer (TRTLLM) MLA decode (#24705)
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
2025-09-12 15:45:53 -06:00
c89ed8de43 Invert pattern order to make sure that out_proj layers are identified (#24781)
Signed-off-by: Alexandre Marques <almarque@redhat.com>
2025-09-12 14:45:29 -07:00
3beadc2f25 [Compilation Bug] Fix Inductor Graph Output with Shape Issue (#24772)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-12 21:23:05 +00:00
bc636f21a6 [Benchmark] Allow arbitrary headers to be passed to benchmarked endpoints (#23937)
Signed-off-by: Clayton Coleman <smarterclayton@gmail.com>
2025-09-12 13:57:53 -07:00
017354c0ef [CI] Trigger BC Linter when labels are added/removed (#24767) 2025-09-12 11:44:36 -07:00
010acc6e1e [Bugfix] Fix incompatibility between #20452 and #24548 (#24754)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-12 11:17:29 -07:00
c8c42597ab [CI] Speed up model unit tests in CI (#24253)
Signed-off-by: Andrew Feldman <afeldman@redhat.com>
2025-09-12 10:36:50 -07:00
9d2a44606d [UX] Remove AsyncLLM torch profiler disabled log (#24609)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-12 10:08:44 -07:00
f17c075884 [Model] Switch to Fused RMSNorm in GLM-4.1V model (#24733)
Signed-off-by: SamitHuang <285365963@qq.com>
2025-09-12 09:12:23 -07:00
b0d1213ac3 [Models] Prevent CUDA sync in Qwen2.5-VL (#24741)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-09-12 16:03:55 +00:00
57f94e88ea [Models] Optimise and simplify _validate_and_reshape_mm_tensor (#24742)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-09-12 15:37:37 +00:00
684b6870e1 [Bugfix][Frontend] Fix --enable-log-outputs does not match the documentation (#24626)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-09-12 08:01:24 -07:00
a5b84f1cbf [Core] Shared memory based object store for Multimodal data caching and IPC (#20452)
Signed-off-by: donglu <donglu@cohere.com>
2025-09-12 07:54:17 -07:00
9f04d9d55f [Qwen3-Next] MoE configs for H100 TP=1,2 and TP2/EP (#24739)
Signed-off-by: elvircrn <elvircrn@gmail.com>
2025-09-12 07:54:04 -07:00
4d7c1d531b [Bugfix] Fix MRoPE dispatch on XPU (#24724)
Signed-off-by: Yan Ma <yan.ma@intel.com>
2025-09-12 21:43:56 +08:00
41f17bf290 [Docs] Fix warnings in mkdocs build (continued) (#24740)
Signed-off-by: Zerohertz <ohg3417@gmail.com>
2025-09-12 06:43:15 -07:00
bcb06d7baf [Doc]: fix typos in various files (#24726)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-12 06:43:12 -07:00
0377802c20 [Multimodal] Remove legacy multimodal fields in favor of MultiModalFeatureSpec (#24548)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-09-12 21:42:23 +08:00
72fc8aa412 [Multi Modal] Add FA3 in VIT (#24347)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-09-12 21:27:24 +08:00
fdb09c77d6 [sleep mode] save memory for on-the-fly quantization (#24731)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-12 11:25:19 +00:00
7a1c4025f1 [Kernel] [CPU] refactor cpu_attn.py:_run_sdpa_forward for better memory access (#24701)
Signed-off-by: ignaciosica <mignacio.sica@gmail.com>
2025-09-12 19:23:07 +08:00
60a0951924 [Bugfix] Fix BNB name match (#24735)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-12 11:12:01 +00:00
64d90c3e4f [Misc][gpt-oss] Add gpt-oss label to PRs that mention harmony or related to builtin tool call (#24717)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-09-12 18:57:07 +08:00
59d5d2c736 [CI/Build] Skip prompt embeddings tests on V1-only CPU backend (#24721)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-12 18:51:01 +08:00
d21a36f5f9 [CI] Add ci_envs for convenient local testing (#24630)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-12 08:52:25 +00:00
561a0baee0 [CI] Fix flaky test v1/worker/test_gpu_model_runner.py::test_kv_cache_stride_order (#24640)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-09-12 07:49:09 +00:00
f592b3174b [BugFix] Fix Qwen3-Next PP (#24709)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-11 23:35:04 -07:00
7920de0a2a [Bugfix] Fix MRoPE dispatch on CPU (#24712)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-12 04:56:31 +00:00
ddcec289c7 Fix implementation divergence for BLOOM models between vLLM and HuggingFace when using prompt embeds (#24686)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-12 04:35:48 +00:00
e090b7b45b Enable conversion of multimodal models to pooling tasks (#24451)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2025-09-12 03:30:41 +00:00
6a50eaa0d3 [DOCs] Update ROCm installation docs section (#24691)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-11 20:02:53 -07:00
12a8414d81 [Qwen3-Next] MoE configs for H20 TP=1,2,4,8 (#24707)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-12 10:06:26 +08:00
880c741bb6 [Bugfix] fixes the causal_conv1d_update kernel update non-speculative decoding cases (#24680)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-11 18:16:43 -07:00
40b6c9122b [V1] feat:add engine v1 tracing (#20372)
Signed-off-by: Mu Huai <tianbowen.tbw@antgroup.com>
Signed-off-by: Ye Zhang <zhysishu@gmail.com>
Signed-off-by: RichardoMu <44485717+RichardoMrMu@users.noreply.github.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Co-authored-by: Mu Huai <tianbowen.tbw@antgroup.com>
Co-authored-by: Ye Zhang <zhysishu@gmail.com>
Co-authored-by: Benjamin Bartels <benjamin@bartels.dev>
Co-authored-by: simon-mo <simon.mo@hey.com>
Co-authored-by: 瑜琮 <ly186375@antfin.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-09-11 17:10:39 -07:00
2e6bc46821 [Startup] Make DeepGEMM warmup scale with max-num-batched-tokens (#24693)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-11 20:10:19 -04:00
fcba05c435 [Bug] Fix Layer weight_block_size Assertion Issue (#24674)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-11 19:47:59 -04:00
7a30fa8708 [Doc] Clarify cudagraph capture size logic and default behavior in scheduler (#18698)
Signed-off-by: Zazzle516 <2405677060@qq.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-11 23:18:09 +00:00
f82f7a8990 [Qwen3-Next] MOE configs for H100 TP4 (#24699)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-09-11 15:45:52 -07:00
c3aea10dc8 [Perf] Use upstream CUTLASS for SM90 Block FP8 kernel (#23280)
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-11 15:43:14 -07:00
d4fd2768ef [Bugfix][Attention] Fix FlashInfer MLA block size logic (#24692)
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
2025-09-11 22:39:42 +00:00
7a70a71892 [Qwen3-Next] Add B200 MoE configs for Qwen3-next (#24698)
Signed-off-by: Vadim Gimpelson <vadim.gimpelson@gmail.com>
2025-09-11 15:34:58 -07:00
7d4651997a [CI/Build] Add bc-linter to vLLM CI (#21234)
Signed-off-by: zhewenli <zhewenli@meta.com>
2025-09-11 15:34:36 -07:00
569bf1c9c0 [Qwen3-Next] MoE configs for H200 TP=1,2,4 (#24695)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-09-11 14:38:16 -07:00
1ec20355f5 [Bugfix] Set VLLM_ALLREDUCE_USE_SYMM_MEM default to False (#24696)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-11 14:32:27 -07:00
e42af78b18 [flashinfer] [kernel] support for fp8 kv cache for trtllm prefill attention (#24197)
Signed-off-by: Xiaozhu <mxz297@gmail.com>
2025-09-11 14:20:09 -07:00
074854b24f [Kernel][B200] mxfp4 fused cutlass moe (#23696)
Signed-off-by: Duncan Moss <djm.moss@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-11 17:04:56 -04:00
79ac59f32e Update Spec Decode metrics to include drafted and accepted token throughput (#24127)
Signed-off-by: Andrew Xia <axia@meta.com>
2025-09-11 19:58:43 +00:00
b971f91504 [BugFix] Fix tokenize asyncio task leak (#24677)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-11 19:44:04 +00:00
c733bd5e87 [Qwen3-Next] Add MoE Config for H200 (#24688)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-09-11 12:40:15 -07:00
a892b259b4 [Doc] Remove Useless Comments (#24687)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-11 12:25:47 -07:00
127ded0a9e [Ultravox] Use wrapped_model_config to instantiate inner model (#24679)
Signed-off-by: Peter Salas <peter@fixie.ai>
2025-09-11 18:52:24 +00:00
bb2b5126da [VLM] Migrate remain DP-supported ViT models to use disable_tp (#24363)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-11 18:30:41 +00:00
361ae27f8a [Docs] Fix formatting of transcription doc (#24676)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-11 11:18:06 -07:00
e26fef8397 fix some typos (#24616)
Signed-off-by: co63oc <co63oc@users.noreply.github.com>
2025-09-11 10:48:46 -07:00
c1eda615ba Fix model name included in responses (#24663)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-11 10:47:51 -07:00
4aa23892d6 [Bugfix] Fix platform-specific routing in CustomOp implementations (#24444)
Signed-off-by: Konrad Zawora <kzawora@habana.ai>
2025-09-11 17:15:01 +00:00
1fdd5c42d7 [Kernels] Enable Torch Symmetric Memory All-Reduce By Default (#24111)
Signed-off-by: ilmarkov <markovilya197@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-11 09:45:31 -07:00
bcbe2a4d9e [VLM] Optimize GLM4.5-V-style video processing to only decode necessary frames (#24161)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-11 09:44:34 -07:00
51d41265ad [Docs] Fix typos in EP deployment doc (#24669)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-11 09:07:23 -07:00
4984a291d5 [Doc] Fix Markdown Pre-commit Error (#24670)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-11 09:05:59 -07:00
404c85ca72 [Docs] Add transcription support to model (#24664)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-11 07:39:01 -07:00
817beef7f3 [Bugifx] Fix qwen-next packed_modules_mapping (#24656)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-11 22:26:17 +08:00
4f6593b058 [HybridKVCache][Platform] Add support_hybrid_kv_cache for platform (#24646)
Signed-off-by: MengqingCao <cmq0113@163.com>
2025-09-11 21:47:58 +08:00
94e6b2d55f Allow users to specify kv cache memory size (#21489)
Signed-off-by: Boyuan Feng <boyuan@meta.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-11 13:41:07 +00:00
fd1ce98cdd [CI] Split mteb test from Language Models Test (#24634)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-11 06:37:51 -07:00
d11ec124a0 [Bench] Add qwen-next in benchmark_moe.py (#24661)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-11 21:29:43 +08:00
f510715882 [build] add torch to tool.uv no-build-isolation-package (#24303)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-11 13:19:44 +00:00
f946197473 [Docs] Fixes a typo in the qwen3next model name. (#24654)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
2025-09-11 19:35:14 +08:00
0cd72a7b72 [XPU] add missing dependency tblib for XPU CI (#24639)
Signed-off-by: Fanli Lin <fanli.lin@intel.com>
2025-09-11 11:22:33 +00:00
5f5271f1ee Move LoRAConfig from config/__init__.py to config/lora.py (#24644)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-11 11:01:38 +00:00
d6249d0699 Fix typing for safetensors_load_strategy (#24641)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-11 10:41:39 +00:00
25bb9e8c65 [CI Failure] fix models/language/pooling/test_auto_prefix_cache_support.py (#24636)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-11 03:31:23 -07:00
a1213fae5f [Misc] Add @NickLucche to codeowners (#24647)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-11 17:18:09 +08:00
a8b0361c92 [CI] Split pooling from entrypoints Test (#24632)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-11 01:53:09 -07:00
ed5ae4aace [Bugfix] Fix _synced_weight_loader (#24565)
Signed-off-by: Kyuyeun Kim <kyuyeunk@google.com>
2025-09-11 16:52:33 +08:00
0fc36463e0 [CI]Add transformers_utils to Async Engine, Inputs, Utils, Worker Test (#24615)
Signed-off-by: Xingyu Liu <charlotteliu12x@gmail.com>
2025-09-11 01:52:10 -07:00
d14c4ebf08 [Docs] Use 1-2-3 list for deploy steps in deployment/frameworks/ (#24633)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-11 01:50:12 -07:00
ba6011027d [Docs] Update V1 doc to reflect whisper support (#24606)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-11 01:50:08 -07:00
85df8afdae [Docs] Revise frameworks/anything-llm.md (#24489)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-11 01:50:05 -07:00
6aeb1dab4a [Bugfix] Fix incorrect import of CacheConfig (#24631)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-11 01:48:25 -07:00
e93f4cc9e3 Add the support for the qwen3 next model (a hybrid attention model). (#24526)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-11 15:32:09 +08:00
2048c4e379 [torchao] Support quantization configs using module swap (#21982)
Signed-off-by: Jerry Zhang <jerryzh168@gmail.com>
2025-09-10 23:53:24 -07:00
d13360183a Remove redundant all gather + split (#23441)
Co-authored-by: Chenxi Yang <cxyang@meta.com>
Co-authored-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
2025-09-10 23:45:07 -07:00
9bd831f501 [Model] New model support for Motif-1-Tiny (#23414)
Signed-off-by: ca1207 <ca1207zzz@gmail.com>
Signed-off-by: TaehyunKim <73943231+ca1207@users.noreply.github.com>
Co-authored-by: WyldeCat <skan1543@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-10 23:29:40 -07:00
e2b1f863aa [Doc]: fixing doc typos (#24635)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-10 23:19:28 -07:00
41329a0ff9 [Core] feat: Add --safetensors-load-strategy flag for faster safetensors loading from Lustre (#24469)
Signed-off-by: Shiqi Sheng <shengshiqi@google.com>
Signed-off-by: shengshiqi-google <160179165+shengshiqi-google@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-10 23:10:01 -07:00
ee0bc5e1b4 Enable --profile in 'vllm bench throughput' (#24575)
Signed-off-by: Tomas Ruiz <tomas.ruiz.te@gmail.com>
2025-09-10 23:06:19 -07:00
3d1393f6fc Kimi K2 Fused MoE kernels Optimization configs (#24597)
Signed-off-by: Saman Keon <samanamp@outlook.com>
2025-09-10 23:06:16 -07:00
8a894084d2 [Engine][Chore] use local variable and remove output var assignment (#24554)
Signed-off-by: Guy Stone <guys@spotify.com>
2025-09-10 23:05:42 -07:00
e2d8c27f68 [BugFix] Fix pipeline parallel (#24621)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-10 23:05:30 -07:00
29799ddacc [Bugfix] Add missing VIT backend dispatch on CPU (#24623)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-10 22:28:41 -07:00
f17a6aa4ec [Ultravox] Fix Gemma instantiation, support quantization via --hf-overrides (#24131)
Signed-off-by: Peter Salas <peter@fixie.ai>
2025-09-10 22:25:34 -07:00
6c8deacd72 [Bug] [Spec Decode] Fix model_initialization test and mismatch in aux_hidden_layers (#24613)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-09-10 21:23:18 -07:00
55b823ba0f Add @chaunceyjiang to codeowner for reasoning Reasoning and Tool parser (#24406)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-11 04:23:04 +00:00
8c5a747246 [distributed] update known issues (#24624)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-11 11:09:38 +08:00
5931b7e5d9 [Models][Quantization] Add quantization configuration update in Voxtral model (#24122)
Signed-off-by: Alexandre Marques <almarque@redhat.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-10 19:13:56 -07:00
cc99baf14d [Misc] Make timeout passable in init_distributed_environment (#24522)
Signed-off-by: jberkhahn <jaberkha@us.ibm.com>
2025-09-10 15:41:12 -07:00
dcb28a332b [Kernel] Flashinfer MLA (trtllm-gen) decode kernel integration (#21078)
Signed-off-by: hjjq <hanjieq@nvidia.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-10 15:31:10 -07:00
fba7856581 [Perf] Warmup FlashInfer attention during startup (#23439)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Co-authored-by: Luka Govedič <lgovedic@redhat.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Matthew Bonanni <mbonanni001@gmail.com>
2025-09-10 15:03:17 -07:00
b5e383cd8b [gpt-oss] raise error for flashinfer backend without trtllm (#24482)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-09-10 14:33:13 -07:00
9a161307f5 [torch.compile][ROCm][V1] Enable attention output FP8 fusion for V1 attention backends (#19767)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Co-authored-by: Luka Govedič <lgovedic@redhat.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-10 13:59:55 -07:00
37e8182bfe [v1] Add Whisper model support (encoder-decoder) (#21088)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: NickLucche <nlucches@redhat.com>
2025-09-10 13:53:35 -07:00
4db4426404 [CI] Fail subprocess tests with root-cause error (#23795)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-10 13:53:21 -07:00
a0933c3bd6 [Bugfix] Enable FP8 KV cache for FlashInfer and Triton backend on non-sm100 GPUs (#24577)
Signed-off-by: Thien Tran <gau.nernst@yahoo.com.sg>
2025-09-10 12:33:41 -07:00
09e68bce34 [Misc] update log level debug to warning when process port is used by (#24226)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-10 11:32:57 -07:00
9fb74c27a7 [Core] Support configuration parsing plugin (#24277)
Signed-off-by: Xingyu Liu <charlotteliu12x@gmail.com>
Signed-off-by: Xingyu Liu <38244988+charlotte12l@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-10 11:32:43 -07:00
4032949630 [Bugfix] Fix DeepEP config for DP4TP4 (#23619)
Signed-off-by: Ming Yang <minos.future@gmail.com>
2025-09-10 10:37:56 -07:00
08abfa78ec [Bugfix] fix modelopt exclude_modules name mapping (#24178)
Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-10 10:20:46 -07:00
2bef2d1405 [Logging] allow config logging stream (#24336)
Signed-off-by: Shiyan Deng <dsy842974287@meta.com>
2025-09-10 15:02:01 +00:00
36cacd0958 [Doc] Add documentation for GLM-4.5 series models: tool-calling and reasoning parser (#24589)
Signed-off-by: WangErXiao <863579016@qq.com>
2025-09-10 07:50:55 -07:00
bb3eb80d92 [Core] Split LoRA layers (#24574)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-10 07:47:51 -07:00
fcc0a3130a [CI] Fix tensorizer test assertion (#24545)
Signed-off-by: Peter Schuurman <psch@google.com>
2025-09-10 06:57:36 -07:00
736569da8d [Platform] Custom ops support for LMhead and LogitsProcessor (#23564)
Signed-off-by: zzhx1 <zzh_201018@outlook.com>
2025-09-10 06:26:31 -07:00
2eb9986a2d [BugFix] python collect_env.py and vllm collect-env compatibility with uv venv (#24066)
Signed-off-by: Kay Yan <kay.yan@daocloud.io>
2025-09-10 21:25:33 +08:00
ccee371e86 [Docs] Fix warnings in mkdocs build (continued) (#24092)
Signed-off-by: Zerohertz <ohg3417@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-10 06:23:28 -07:00
c0bd6a684a Fix Auto_Round Quatization Loading on SM75 and Lower GPUs (#24217)
Signed-off-by: RoadToNowhereX <37441177+RoadToNowhereX@users.noreply.github.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-10 06:22:31 -07:00
3144d90217 fix some typos (#24167)
Signed-off-by: co63oc <co63oc@users.noreply.github.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-09-10 06:21:23 -07:00
2f5e5c18de [CI/Build] bump timm dependency (#24189)
Signed-off-by: Daniele Trifirò <dtrifiro@redhat.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-09-10 06:20:59 -07:00
bd98842c8a [CI] Add PPL test for generation models (#24485)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-10 06:16:39 -07:00
d6069887c6 [rocm] enable torchao quantization for rocm (#24400)
Signed-off-by: Lifan Shen <lifans@meta.com>
2025-09-10 06:16:21 -07:00
492196ed0e [CI/Build] split true unit tests to Entrypoints Unit Tests (#24418)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-10 06:16:07 -07:00
f4f1a8df22 [BugFix] Ensure integrity of reused CPU tensors during async scheduling (#24527)
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: guoze.lin <guozelin@tencent.com>
2025-09-10 21:15:14 +08:00
0b9a612fa3 [BugFix][easy] Fix flaky test test_gpt_oss_multi_turn_chat (#24549)
Signed-off-by: lacora2017 <yehu@meta.com>
Co-authored-by: lacora2017 <yehu@meta.com>
2025-09-10 21:14:55 +08:00
4c04eef706 [BugFix][Multi Modal] Fix TensorSchema shape mismatch in Molmo (#24559)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-09-10 06:14:27 -07:00
f36355abfd Move LoadConfig from config/__init__.py to config/load.py (#24566)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-10 06:14:18 -07:00
9e3c3a7df2 [LoRA]: Add LoRA support to Mistral's Voxtral models (#24517)
Signed-off-by: Yash Pratap Singh <yashsingh20001@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-10 06:12:03 -07:00
6cbd41909e Feature/vit attention unification# 23880 (#23978)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-10 06:10:14 -07:00
72d30108a0 Support for NemotronH Nano VLM (#23644)
Signed-off-by: Daniel Afrimi <danielafrimi8@gmail.com>
2025-09-10 06:10:06 -07:00
8b83b93739 [Docs] Document the extra memory footprint overhead when using EPLB (#24537)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-09-10 06:09:49 -07:00
9dbefd88e9 [Docs] Improve organisation of API Reference nav (#24569)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-10 06:08:21 -07:00
7c195d43da [ROCm][Bugfix] Fix Aiter RMSNorm (#23412)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-09-10 21:08:03 +08:00
0ae43dbf8c [Attention] add DCP support for FLASH_ATTN_MLA backend (#24453)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
Co-authored-by: Matthew Bonanni <mbonanni@redhat.com>
2025-09-10 17:19:26 +08:00
267c80d31f [Model] Limit CPU threads for image transformations in InternVL to reduce cpu contention. (#24519)
Signed-off-by: li-jinpeng <3332126450@qq.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-10 16:45:44 +08:00
77f62613f9 Consolidate rendering parameters into RenderConfig dataclass (#24543)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-09-10 08:44:47 +00:00
feaf202e93 [Bugfix] Guard _may_reorder_batch for encoder-only models on CPU (#24319) (#24348)
Signed-off-by: Remy <eunhwan.shin@dtonic.io>
Co-authored-by: Li, Jiang <jiang1.li@intel.com>
2025-09-10 14:24:42 +08:00
91130ae376 [docs] promo pytorch conf and ray summit (#24562)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-09-09 23:24:20 -07:00
e40827280b [Docs] Enable relative links in examples to function when rendered in the docs (#24041)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-09 21:40:45 -07:00
4377b1ae3b [Bugfix] Update Run:AI Model Streamer Loading Integration (#23845)
Signed-off-by: Omer Dayan (SW-GPU) <omer@run.ai>
Signed-off-by: Peter Schuurman <psch@google.com>
Co-authored-by: Omer Dayan (SW-GPU) <omer@run.ai>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-09 21:37:17 -07:00
009d689b0c [Core] Simplify and unify mm uuid handling & auto-generated mm hash overrides processing. (#24271)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-09-09 21:36:09 -07:00
Wei
0efdb5c3ba [gpt-oss] Cache permute indices for faster MXFP4 MoE layer loading (#24154)
Signed-off-by: Wei Wei <wwei6@meta.com>
2025-09-10 04:27:53 +00:00
53b42f4102 [BugFix][Spec Decode] Fix out-of-range index triggered by eagle3; re-enable test for LlamaForCausalLMEagle3 (#24392)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-09-09 21:24:23 -07:00
309d7aa401 [P/D] MultiConnector supports shutdown (#24425)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-09 21:24:11 -07:00
b4a01aaf95 [KV Connector] More async support for get_num_new_matched_tokens (#23620)
Signed-off-by: ApostaC <yihua98@uchicago.edu>
2025-09-09 21:23:37 -07:00
83dd28aae4 [CI] Adjust threshold for flaky ngram spec decoding test (#24528)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-09 21:07:33 -07:00
f88e84016f [BugFix] Fix async core engine client finalizer (#24540)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-09 21:07:13 -07:00
3c2156b3af [Hardware][Apple-CPU] Enable native bfloat16 on Apple Silicon (M2 and later) (#24129)
Signed-off-by: ignaciosica <mignacio.sica@gmail.com>
2025-09-10 03:50:21 +00:00
7e7db04310 [CI] Retry flaky fp8 cutlass mla tests (#24536)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-09 20:33:10 -07:00
41f160b974 Add @heheda12345 to CODEOWNERS of KVCacheManager related code (#24546)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-09-10 03:30:32 +00:00
dc625ea6b8 [Perf] Convert np array to torch tensor to index into block table for attn chunking (#24474)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-09-09 20:01:06 -07:00
b23fb78623 [Bugfix] Fix for 24530. Fix naive all2all shared expert overlap. (#24538) 2025-09-09 17:53:53 -07:00
561f38dc3c [Bugfix] Improve EPLB config validation error message (#24524)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-09-10 00:32:36 +00:00
73e688cb79 [ROCm][Feature] Enable Pipeline Parallelism with Ray Compiled Graph on ROCm (#24275)
Signed-off-by: charlifu <charlifu@amd.com>
2025-09-09 23:27:35 +00:00
fb1a8f932a [Benchmark] Add option to skip oversampling in benchmark (#24457)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
2025-09-09 22:00:17 +00:00
0dc9cbb527 [Benchmark] Update bench doc with mtbench, blazedit, spec bench (#24450)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
2025-09-09 21:15:41 +00:00
b5fb3005a8 [Log] Use a relative path in debug-level logs to distinguish files with identical names (#23846)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-09 16:46:35 -04:00
15de5ff9ea [Feature] Disallow FlashMLA on Blackwell (#24521)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-09 14:59:34 -04:00
b8a93076d3 [CI] execute all piecewise compilation tests together (#24502)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-09 11:05:25 -07:00
c3f9773b2c [TPU] Fix tpu structured decoding in mixed batches (#24458)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-09-09 11:04:25 -07:00
3707cb2505 [Docs] Gemma3n transcriptions endpoint support (#24512)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-09 11:03:32 -07:00
920ed46b09 [Misc] bump outlines_core to fix the version conflicts with outlines >= 1.2.0 (#24368)
Signed-off-by: Kazuhiro Serizawa <nserihiro@gmail.com>
Signed-off-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-09 10:59:46 -07:00
15cb047e25 Extend renderer with embedding support and integrate completion endpoint (#24405)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-09-10 01:46:46 +08:00
9ad0688e43 [Bugfix] Fix hidden_size for multimodal classification model (#24501)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-09 10:37:25 -07:00
b9a1c4c8a2 [ROCm][CI/Build] Sync ROCm dockerfiles with the ROCm fork (#24279)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-09 12:21:56 -04:00
1aa427fdc1 [Kernels] Add Flash Linear Attention Kernels (#24518)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-10 00:04:41 +08:00
1c63a16b65 [Core] Run garbage collector after CUDA graph capture to fix throughput regression (#24128)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-09 10:38:10 -04:00
922d3b401b [Bugfix] Handle the edge case in detokenizer where processed tokens contain both stop str and eos token (#23938)
Signed-off-by: dtransposed <damian.bogunowicz@gmail.com>
2025-09-09 07:30:24 -07:00
19332c0479 [Model] Systematic support for fp32 head, pooling models part (#23810)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-09 07:29:50 -07:00
a55cf41a09 [Compilation][WideEP] Enable Piecewise CUDAGraph for DeepEPHT (#24123) 2025-09-09 10:21:10 -04:00
6fb2788163 [CI/Build][Doc] Fully deprecate old bench scripts for serving / throughput / latency (#24411)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-09 10:02:35 +00:00
3d2a2de8f7 [RL] fast weight update with zmq + ipc handles (#24295)
Signed-off-by: huangweixiao <huangweixiao@msh.team>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-09-09 16:57:46 +08:00
1116590b16 [gpt-oss] Validate gpt-oss python tool during initialization (#23856)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-09-09 08:37:48 +00:00
ccb97338af [Misc] Add Codex settings to gitignore (#24493)
Signed-off-by: Roger Wang <hey@rogerw.me>
Co-authored-by: Roger Wang <hey@rogerw.me>
2025-09-09 01:25:44 -07:00
45c9cb5835 [Misc] Add claude settings to gitignore (#24492)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-09 01:14:45 -07:00
e283976f3a [Performance][MM] Building the inverse permutation in O(n) time in Qwen2_5_VisionTransformer (#24443)
Signed-off-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: Junhong <liujunhong11@huawei.com>
2025-09-09 00:24:11 -07:00
46876dff32 [Doc]: fixing typos to improve docs (#24480)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-08 23:06:04 -07:00
1823a00d67 [Misc] Support bench serve long context (#24373)
Signed-off-by: Ming Yang <minos.future@gmail.com>
2025-09-08 22:53:10 -07:00
ed16d0f26f [Doc] mention fpdb for multiprocess breakpoints (#24452)
Signed-off-by: Mickael Seznec <mickael@mistral.ai>
2025-09-08 21:46:45 -07:00
0cdd213641 [Misc] Improve Worker process title and logging prefix (#22205)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-09-08 21:43:48 -07:00
948dd3443b [Bugfix] Fix Apertus HF repo name (#24447)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-08 21:40:29 -07:00
b2f7745774 Add data_parallel_size to VllmConfig string representation (#24298)
Co-authored-by: Cong Chen <congc@meta.com>
2025-09-08 21:35:18 -07:00
82dfb12e52 [Core] Use sha256 bytes instead of BlockHash to reduce GC overhead (#23673)
Signed-off-by: linzebing <linzebing1995@gmail.com>
2025-09-08 21:34:37 -07:00
bba1042c6f [Flashinfer] Support Flashinfer TRTLLM FP8-qkv BF16/FP16-out Attention Kernel (#23647)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-09-08 20:53:07 -07:00
b6fbc15634 [BugFix][Model] Fix Ernie4.5-VL hanging on long inputs (#24074)
Signed-off-by: wangyafeng <wangyafeng@baidu.com>
2025-09-09 11:37:16 +08:00
3e0d4a3475 Move KVTransferConfig from config/__init__.py to config/kv_transfer.py (#24434)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-08 20:30:32 -07:00
562663a044 Bump actions/github-script from 7.0.1 to 8.0.0 (#24413)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-09-09 03:12:44 +00:00
ed1623a88a Bump actions/stale from 9.1.0 to 10.0.0 (#24412)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-09-09 03:11:20 +00:00
13b89bd823 [doc] update vllm serve cli args documentation (#24329)
Signed-off-by: cjackal <44624812+cjackal@users.noreply.github.com>
2025-09-09 03:07:58 +00:00
22a0070530 Bump actions/setup-python from 5.4.0 to 6.0.0 (#24414)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-09-09 02:54:58 +00:00
170129eb28 [gpt-oss] Harmony changes with container tool support (#23386)
Signed-off-by: zhiweiz <zhiweiz@fb.com>
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Signed-off-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
Co-authored-by: zhiweiz <zhiweiz@fb.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
2025-09-08 19:03:50 -07:00
955c624915 [Bugfix][Wide EP] Fix redundant work when using DeepEP, TP Attn, and EP MoE (#24134)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-08 19:01:51 -07:00
4f87abdcc6 Update reviewers for modelopt related files (#24468) 2025-09-09 01:53:13 +00:00
6910b56da2 [CI] Add nightly multiarch manifests to dockerhub (#24102)
Signed-off-by: Sahithi Chigurupati <chigurupati.sahithi@gmail.com>
Signed-off-by: Simon Mo <simon.mo@hey.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-09 01:18:09 +00:00
e10fef0883 [Hardware][IBM Z] Fix Outlines Core issue for s390x (#24034)
Signed-off-by: Rehan Khan <Rehan.Khan7@ibm.com>
2025-09-08 16:50:34 -07:00
e680723eba [Bugfix] Disable the statslogger if the api_server_count is greater than 1 (#22227)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-09-08 15:28:03 -07:00
620db1fc58 [Attention] FlashAttention MLA cudagraph support (#23958)
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
2025-09-08 22:05:26 +00:00
41183c1fe0 [Spec Decode] Fix offline spec_decode.py (#24257)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-08 20:44:13 +00:00
43d9ad03ba [Model loader]: support multi-thread model weight loading (#23928)
Signed-off-by: Yang Kaiyong <yangkaiyong.yky@antgroup.com>
Signed-off-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-08 18:49:39 +00:00
7be141b2c5 [CI] Enable encoder model compilation test (#24442)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-08 11:48:06 -07:00
8d7f39b48c [Model] Remove quantized mixtral (#24437)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-08 11:02:14 -07:00
cd08636926 [Spec Decode][Benchmark] Add Blitzedit dataset (#23605)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-08 10:32:52 -07:00
3feeeb9fea [Spec Decode][Benchmark] Add Spec Bench Dataset for benchmarking (#23563)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
2025-09-08 10:32:42 -07:00
6f4a82f8b5 [Model] Enable BNB support for qwen2_5_omni_thinker (#24420)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-08 09:37:08 -07:00
c44797a4d6 [Docs]add eplb_config param use docs (#24213)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-09-08 09:36:57 -07:00
55be93baf5 [Doc]: fix 2 hyperlinks leading to Ray site after they changed Ray's doc structure (#24438)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-08 09:36:54 -07:00
717fc00e98 [Docs] Move feature compatibility tables to README (#24431)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-08 06:45:14 -07:00
01dfb5e982 [Frontend] User-provided uuids for medias in chat. (RFC #22044) (#23449)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: Roger Wang <hey@rogerw.me>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.me>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-09-08 06:42:20 -07:00
03dd652c16 Move KVEventsConfig from config/__init__.py to config/kv_events.py (#24433)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-08 06:41:27 -07:00
9cd76b71ab [Misc] Terratorch related fixes (#24337)
Signed-off-by: Christian Pinto <christian.pinto@ibm.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-08 06:40:26 -07:00
e041314184 [Bugfix] Fix mamba2 prefill chunking (#23279)
Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com>
Signed-off-by: tomeras91 <57313761+tomeras91@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-08 11:42:41 +00:00
5e537f45b4 [Bugfix] Fix get_quant_config when using modelscope (#24421)
Signed-off-by: wangli <wangli858794774@gmail.com>
2025-09-08 11:03:02 +00:00
c2a8b08fcd [Doc] Fix issues in integrations/llamastack.md (#24428)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-08 02:28:32 -07:00
f4962a6d55 [Doc]: fix typos in Python comments (#24417)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-08 00:22:16 -07:00
2f0b833a05 [Docs] Fix a tip indentation and typo (#24419)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-08 00:19:40 -07:00
425b04b8f4 [gpt-oss][Responses API] Fix the function call id format (#24409)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-08 06:49:52 +00:00
60f0843ef8 [Model] Remove unnecessary CUDA sync of Qwen2VL image and video preprocess (#24334)
Signed-off-by: Win <chatcharinsang@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-07 23:11:12 -07:00
8a46602606 [Model] Remove unnecessary CUDA sync of GLM-4.1V image and video preprocess (#24332)
Signed-off-by: Win <chatcharinsang@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-07 23:10:54 -07:00
61aa4b2901 [P/D] Add a shutdown method to the Connector API (#22699)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-07 23:07:00 -07:00
8c892b1831 [Doc] Fix UTF-8 encoding issues in documentation generation on Windows (#24361)
Signed-off-by: alekramelaheehridoy <aliqramalaheehridoy@gmail.com>
Signed-off-by: alekramelaheehridoy <alekramelaheehridoy@gmail.com>
Co-authored-by: alekramelaheehridoy <alekramelaheehridoy@gmail.com>
2025-09-07 22:33:52 -07:00
3bca396f79 [CI/Build] Fix local image inputs in test_pixtral.py (#24401)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-08 03:31:35 +00:00
3a3e91bdfe [CI/Build] Disable flaky test_structured_output tests (#24404)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-09-08 02:51:59 +00:00
b3d7e3c845 [Sampler] Support returning all prompt logprobs (#23868)
Signed-off-by: Xingyu Liu <charlotteliu12x@gmail.com>
Co-authored-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-07 19:34:31 -07:00
67841317d1 [xpu] upgrade ipex/python3.12 for xpu (#23830)
Signed-off-by: Yan Ma <yan.ma@intel.com>
2025-09-08 02:07:16 +00:00
86173ad593 [Kernel] Support decode context parallelism on Blackwell with CUTLASS MLA (#24385)
Signed-off-by: Ming Yang <minos.future@gmail.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-09-08 09:27:12 +08:00
795b6951cd Add @luccafong to codeowner for spec decode (#24397)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-09-08 08:30:27 +08:00
2e5d21378d Skip MM Encoder for non-first PP ranks (#24387)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-07 09:38:35 -07:00
0661cb9df3 Add renderer-based prompt processing for embedding and classification endpoints (#24356)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-09-07 08:26:48 +00:00
105d3d62ef [TPU] Remove TopKTopPSampler dependency for TPU sampler (#24391)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-07 01:12:36 -07:00
62f66be1f7 [Bugfix] Fix Qwen3-coder moe tuned config (#24072)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-07 05:19:46 +00:00
81c53ef55c [Misc] collect flashinfer version in collect_env.py (#24378)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-07 03:30:41 +00:00
75334956c2 QWEN3 Thinking Fused MoE kernels Optimization configs (#24330)
Signed-off-by: Saman Keon <samanamp@outlook.com>
2025-09-07 03:18:54 +00:00
77aec83b8c [Benchmark] add benchmark for custom activation op (#23908)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-06 20:12:05 -07:00
e67597545b [CI][Fix] deterministic seed for flaky CI runs on structured outputs (#24380)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-09-07 11:10:40 +08:00
37a6fa95fd Migrate Qwen2 inputs to TensorSchema (#23475)
Signed-off-by: Benji Beck <benjibeck@meta.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-06 20:07:31 -07:00
558f0907dc [attention][DCP] use AttentionImpl.need_to_return_lse_for_decode (#24372)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-07 01:18:59 +00:00
4172235ab7 [V0 deprecation] Deprecate V0 Neuron backend (#21159)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-06 16:15:18 -07:00
848562bd49 break execute_model in gpu_model_runner into sub-functions for custom scopes (#24265)
Co-authored-by: Bangsheng Tang <bangsheng@meta.com>
2025-09-06 14:02:47 -07:00
e68dc2f014 [Bugfix] Fix unstable silu_mul+nvfp4 quant fusion test (#24370)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-09-06 20:39:34 +00:00
a3645ed94d [Frontend][Responses API] Support reporting tool output tokens and fix reasoning token count (#24285)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-06 13:27:15 -07:00
fb691ee4e7 [Fix] [gpt-oss] fix non-tool calling path for chat completion (#24324) 2025-09-06 19:10:32 +00:00
6024d115cd Lora bias(enable_lora_bias) deprecate warning (#24339)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-07 00:42:19 +08:00
7555d6b34a [Bugfix] Fix test_mixtral_moe (#24371) 2025-09-06 09:32:03 -07:00
00a4e56d8d [Bugfix] Fix broken deepseek fp8 TP weights loading (#24367)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-06 09:23:12 -07:00
0eadaeff7e [Bugfix] Avoid uninitialized usage of azp_val when AZP is false. (#24335)
Signed-off-by: Mohan Kumar Kumar <mohan.cbein@gmail.com>
Signed-off-by: mohankku <mohan.cbein@gmail.com>
2025-09-06 08:17:03 -07:00
0077c8634e Add @benchislett to codeowner for spec decode and structured outputs (#24362)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
2025-09-06 22:03:35 +08:00
b121ca22ad [CI] Disable flaky structured output test from CI (#24366)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-06 13:31:56 +00:00
eddaafc1c7 [Multimodal] Improve max video embedding length estimation in V1 (#24312)
Signed-off-by: Roger Wang <hey@rogerw.me>
Co-authored-by: Roger Wang <hey@rogerw.me>
2025-09-06 02:33:19 -07:00
305a1cc0d2 refactor: Turn GPUModelRunner.inputs_embeds to a CpuGpuBuffer (#24345)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-05 23:01:23 -07:00
6d6c6b05d3 [New Model]: google/embeddinggemma-300m (#24318)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-05 22:58:36 -07:00
53b19ccdd5 [Core] Allow disabling TP sharding for parallel Linear layer (#23024)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-05 22:53:58 -07:00
6432739ef1 [Bugfix] Catch and log invalid token ids in detokenizer (#24351)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-05 22:30:22 -07:00
ac201a0eaf [Feature] Support Decode Context Parallel (DCP) for MLA (#23734)
Signed-off-by: hongchao <hongchao@msh.team>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: hongchao <hongchao@msh.team>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-09-06 13:24:05 +08:00
3c529fc994 [KV Sharing] Raise error if using eagle with fast prefill (#24350)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-09-05 20:22:40 -07:00
35bf193864 [Doc]: fix typos in Python comments (#24294)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-05 19:41:12 -07:00
35efa70297 Add @22quinn as code reviewer for RL related components (#24346) 2025-09-06 01:56:15 +00:00
cee182b297 [Perf][V1] Fully overlap model execution (#23569)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
2025-09-05 18:20:17 -07:00
c954c6629c [CI] Add timeouts to tests (#24260)
Signed-off-by: Rafael Vasquez <rafvasq21@gmail.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-09-05 17:26:22 -07:00
9dfbeb41e5 [RFC] allow cancelation after shutdown in blocking collective_rpc (#23390)
Signed-off-by: Shiyan Deng <dsy842974287@meta.com>
2025-09-05 14:14:18 -07:00
eedb2a2a10 [Bugfix] Fix silu_mul+quant fusion test (#24341)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-09-05 20:13:42 +00:00
23a6c5280e [gpt-oss][Bugfix]Fix streamableparser for missing handling of certain token_ids (#24306)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-05 10:26:00 -07:00
7812bcf278 [docs] add shenzhen meetup (#24326)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-05 22:48:42 +08:00
006e7a34ae Adding int4 and int8 models for CPU benchmarking (#23709)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2025-09-05 20:08:50 +08:00
e599e2c65e [XPU][P/D] Add XPU support in NixlConnector (#22436)
Signed-off-by: zhenwei <zhenwei.liu@intel.com>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-04 21:03:12 -07:00
c29fb540ff [gpt-oss] tool parser supports for /chat/completions [1/n] (#22386)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-04 20:39:12 -07:00
65e038931d [Frontend] Skip unnecessary detokenization when token_id is requested (#24236)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-04 23:04:12 +00:00
886ccbe5ba [CI/Build] Reduce the number of redundant cases to test for LoRA (#24276)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-09-04 21:58:44 +00:00
adc3ddb430 [Bugfix][Misc] Fix silu_and_mul_nvfp4_quant issue and extract common utils for nvfp4 kernel source files (#23727)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-04 14:25:45 -07:00
60b755cbcb [Misc] Have AsyncLLM custom_stat_loggers extend default logger list (#20952)
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
Signed-off-by: Seiji Eicher <58963096+eicherseiji@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-09-04 14:25:30 -07:00
482e52f56c QWEN3 Coder Fused MoE kernels Optimization configs (#24266)
Signed-off-by: Saman Keon <samanamp@outlook.com>
2025-09-04 20:33:43 +00:00
78336a0c3e Upgrade FlashInfer to v0.3.0 (#24086)
Signed-off-by: Po-Han Huang <pohanh@nvidia.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-04 09:49:20 -07:00
94866d7c93 [Misc] Slight improve deepgemm print (#24085)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-04 16:06:51 +00:00
83609ca91d [Doc]: fix typos in Python comments (#24173)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-04 08:52:17 -07:00
e41a0fa377 [Perf] Freeze core engine proc heap after init (#24008)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-04 22:55:23 +08:00
37241077d5 [Misc] Removed force_fp8_e4m3fnuz from FP8LinearOp (#23725)
Signed-off-by: Julien Lin <jullin@nvidia.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-04 09:25:40 -04:00
c9f7081f9c [LoRA]: Add lora support to qwen-2.5-omni (#24231) 2025-09-04 05:50:50 -07:00
16ded21eeb [XPU] support Triton Attention backend on Intel GPU (#24149)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-04 20:41:08 +08:00
2b30afa442 Use hidden_size_per_head as head_size fallback (#24221)
Signed-off-by: nopperl <54780682+nopperl@users.noreply.github.com>
2025-09-04 12:59:16 +01:00
eafa8dcde6 [Model] Add pp support for hunyuan (#24212)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-04 03:58:26 -07:00
6c7af8110a [Doc] Update vLLM Singapore Meetup info (#24234)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-09-04 02:58:18 -07:00
8f423e5f43 [Feature][Response API] Add streaming support for non-harmony (#23741)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-09-04 17:49:06 +08:00
369a079568 [Hardware][Apple-CPU] Disable OneDNN build for Apple Silicon (#24200)
Signed-off-by: ignaciosica <mignacio.sica@gmail.com>
Co-authored-by: Li, Jiang <jiang1.li@intel.com>
2025-09-04 02:48:25 -07:00
402759d472 [Attention] FlashAttn MLA (#14258)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
Co-authored-by: Matthew Bonanni <mbonanni001@gmail.com>
Co-authored-by: Matthew Bonanni <mbonanni@redhat.com>
2025-09-04 02:47:59 -07:00
2c301ee2eb [Bugfix] Fix Incremental Detokenization with tokenizers == 0.22.0 (#24159)
Signed-off-by: Fanli Lin <fanli.lin@intel.com>
Signed-off-by: Fanli Lin <fanli0116@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-04 02:47:08 -07:00
whx
3efb9f4d95 [Attention][Platform] Refactor MLA to support Custom Op (#23332)
Signed-off-by: whx-sjtu <2952154980@qq.com>
2025-09-04 02:46:37 -07:00
04f3c35cff Improve flexibility of auto_tune.sh execution. (#23766)
Signed-off-by: Anthony Su <50185138+anthonsu@users.noreply.github.com>
Signed-off-by: anthonsu <50185138+anthonsu@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-04 09:41:41 +00:00
51d5e9be7d [Core][Model] Terratorch backend integration (#23513)
Signed-off-by: Michele Gazzetti <michele.gazzetti1@ibm.com>
Signed-off-by: Christian Pinto <christian.pinto@ibm.com>
Co-authored-by: Christian Pinto <christian.pinto@ibm.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-04 00:22:41 -07:00
e7fc70016f [Model] Add MiDashengLM model support (#23652)
Signed-off-by: chenbing8 <chenbing8@xiaomi.com>
Signed-off-by: bingchen-mi <chenbing8@xiaomi.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-04 00:08:09 -07:00
12e1e63cc5 [Misc] Enhance output readability of helper script (#24214)
Signed-off-by: Weida Hong <wdhongtw@google.com>
2025-09-04 06:38:26 +00:00
57b1ce94f7 [CPU] Refactor CPU unquantized linear (#24150)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-04 14:28:45 +08:00
cb55ad86fe Migrate ultravox inputs to TensorSchema (#23503)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-09-04 06:09:11 +00:00
712b273f65 [Refactor] Introduce basic Renderer for completion-style request (#24010)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-09-04 05:21:12 +00:00
e919d6f549 [Kernel][Bugfix] Fix grouped topk cu (#24146)
Signed-off-by: mayuyuace <qiming1.zhang@intel.com>
2025-09-04 12:37:37 +08:00
a38f8bd54c [Feature][Responses API]Support MCP tools with streaming mode + background mode (#23927)
Signed-off-by: wuhang <wuhang6@huawei.com>
2025-09-04 04:05:10 +00:00
b5ee1e3261 Remove deprecated PyNcclConnector (#24151)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
2025-09-03 22:49:16 +00:00
36c260dad6 [Feature][gpt-oss] Add support for num_cached_tokens and num_reasoning_tokens tracking (#23460)
Signed-off-by: George Nagy II <george.nagy0969@gmail.com>
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-09-03 21:08:47 +00:00
a43a3f1770 [Bugfix][DP] DP distribution does not require ray[default] (#23822)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-09-03 13:21:36 -07:00
6adaed42f4 [Feature][P/D]: Optimize NIXL Connector xfer Launch (#23887)
Signed-off-by: ycyaw66 <497410282@qq.com>
Co-authored-by: ycyaw66 <497410282@qq.com>
2025-09-03 19:14:30 +00:00
a742322092 [Attention] Blackwell FP8 MLA support with CUTLASS_MLA backend (#23289)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-09-03 14:05:24 -04:00
731a6940e3 Migrate whisper inputs to TensorSchema (#23505)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-09-03 18:04:00 +00:00
e9b92dcd89 [Kernels] Overlap shared experts with send/recv (#23273)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-09-03 12:35:18 -04:00
fa4311d85f [V1] v1 engine + full CUDA graph support for PLaMo2 (#23998)
Signed-off-by: Hemmi Shinichi <shemmi@preferred.jp>
Signed-off-by: nopperl <54780682+nopperl@users.noreply.github.com>
Co-authored-by: Hemmi Shinichi <shemmi@preferred.jp>
Co-authored-by: Thomas Parnell <tom.parnell@gmail.com>
2025-09-03 08:24:02 -07:00
6d80ae83e1 [Bugfix] Fixing division by zero in triton_attn if query_heads/kv_heads > 16 (#23424)
Signed-off-by: Burkhard Ringlein <ngl@zurich.ibm.com>
2025-09-03 15:01:09 +00:00
4ba0c587ba FIX: Add libnuma-dev to Dockerfile for dev stage (#20388)
Signed-off-by: dongbo910220 <1275604947@qq.com>
2025-09-03 07:17:20 -07:00
6997a25ac6 [Model] Remove useless code from MiniMax implementation (#23982)
Signed-off-by: QscQ <qscqesze@gmail.com>
Signed-off-by: qingjun <qingjun@minimaxi.com>
2025-09-03 11:27:04 +00:00
28f350e147 Support add_generation_prompt in embeddings endpoint with chat request (#23931)
Signed-off-by: biba10 <jaksmid@seznam.cz>
2025-09-03 10:47:55 +00:00
51383bd472 [CI] Accelerate mteb test by setting SentenceTransformers mteb score to a constant (#24088)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-03 17:23:56 +08:00
9c99e4871f [Misc] Clean up deadcode for legacy processing pipeline (#24153)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-03 08:34:29 +00:00
70549c1245 [CI/Build] Serve images used by multimodal tests through local HTTP Server (#23907)
Signed-off-by: Divyansh Singhvi <divyanshsinghvi@gmail.com>
Signed-off-by: dsinghvi <divyanshsinghvi@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-09-03 16:13:11 +08:00
f0c503f66e [Nixl] Heterogeneous TP support FlashInfer (#20189)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-03 15:19:54 +08:00
f38035c123 [distributed][rl] remove nccl cumem env var override (#24141)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-03 06:45:25 +00:00
426cc8629f [BugFix] Fix routed_scaling_factor double mul for dots1 and glm4 MoE models (#24132)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-09-03 04:57:59 +00:00
e81d4e69c1 [Misc] Add check for dual_chunk_attention (#24070)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-03 04:19:14 +00:00
02d411fdb2 [Doc]: fix typos in Python comments (#24115)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-02 21:14:07 -07:00
d7e1e59972 [Doc]: fix typos in Python comments (#24093)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-02 21:05:45 -07:00
c4ed78b14f [Compile] Fix Compile Warning for w4a8_mm_entry.cu (#23660)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-02 20:45:52 -07:00
1bd007f234 fix some typos (#24071)
Signed-off-by: co63oc <co63oc@users.noreply.github.com>
2025-09-02 20:44:50 -07:00
136d853e65 [V1] Wrapper which plumbs request-level logits processors into vLLM batch-level logits processing (#23656)
Signed-off-by: Andrew Feldman <afeldman@redhat.com>
2025-09-03 02:52:51 +00:00
e32a0e8678 Upgrade xgrammar to 0.1.23 (#22988)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-03 02:32:59 +00:00
42dc59dbac Update release pipeline post PyTorch 2.8.0 update (#24073)
Signed-off-by: Huy Do <huydhn@gmail.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Huy Do <huydhn@gmail.com>
2025-09-03 10:09:19 +08:00
862f2ef893 [XPU] Fix the bug of LoRA logits on the XPU platform (#24081)
Signed-off-by: chzhang <chaojun.zhang@intel.com>
2025-09-03 08:21:18 +08:00
2fd1a40a54 [CI/Build] Disable SiluMul NVFP4 quant fusion tests (#24121)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-09-02 16:50:28 -07:00
930a24144c [Bug] R1 Accuracy: Fix routed_scaling_factor Double Mul Issue (#24119)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-02 22:22:30 +00:00
457e471971 [AMD][Kernel][Bugfix] Cast offsets tensor bn to tl.int64 to avoid GPU segfault (#23692)
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
2025-09-02 22:13:57 +00:00
d328f7894f [CI] Enable all hf transformers baselines in test_hybrid (#23936)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-09-02 20:15:06 +00:00
98aee612aa [Log] Only Print Profiler Results on Rank 0 (#23370)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-02 18:53:34 +00:00
598bd74cf8 Fix weights loading for Apertus (#24100)
Signed-off-by: Nathan Ranchin <nranchin@student.ethz.ch>
2025-09-02 18:34:28 +00:00
2417798471 [Metrics] Deprecate TPOT in favor of ITL (#24110)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-09-02 18:10:10 +00:00
9480ae24e3 [Bugfix] Fix packed_factor missing attribute error (#23902)
Signed-off-by: Kyuyeun Kim <kyuyeunk@google.com>
2025-09-02 10:56:31 -07:00
f399182e8c Run ruff format on a few files. (#24075)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-09-02 17:55:32 +00:00
1c41310584 [Bugfix] Fix transform_config parsing in Compressed Tensors (#23945)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-09-02 13:54:10 -04:00
c83c4ff815 [Benchmark] Add support for local hf dataset path in benchmark (#23999)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-02 17:49:16 +00:00
0e1759cd54 [docs] add SYS_NICE cap & security-opt for docker/k8s (#24017)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
Signed-off-by: Peter Pan <peter.pan@daocloud.io>
Co-authored-by: Li, Jiang <bigpyj64@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-02 17:27:20 +00:00
e66ed3e675 [CI Failure] Skip failing nvfp4 silu test (#23959)
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-02 13:18:15 -04:00
e0653f6c0b [Model] Classification models support logit_bias / sigmoid_normalize (#24031)
Signed-off-by: wang.yuqi <noooop@126.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-02 16:48:57 +00:00
38ba061f6f [BugFix] Fix EXAONE4 rotary embeddings (#23918)
Signed-off-by: lkm2835 <lkm2835@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-02 14:40:55 +00:00
0a74e9d0f2 [Gemma3n] Fix audio batching (#24052)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-02 22:23:35 +08:00
8bd5844989 correct LWS deployment yaml (#23104)
Signed-off-by: cberge908 <42270330+cberge908@users.noreply.github.com>
2025-09-02 12:04:59 +00:00
ce30dca5c4 [CI]: reduce HTTP calls inside entrypoints openai tests (#23646)
Signed-off-by: AzizCode92 <azizbenothman76@gmail.com>
Signed-off-by: Aziz <azizbenothman76@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-02 10:49:32 +00:00
2f0bab3f26 [Model] Support dp on ViT on GLM-4.5V (#23168)
Signed-off-by: David Chen <530634352@qq.com>
2025-09-02 10:48:18 +00:00
fad73be1a5 [Doc]: fix typos in Python comments (#24077)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-02 02:38:55 -07:00
56d04089ef Migrate Interns1 inputs to TensorSchema (#23510)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-09-02 04:35:45 +00:00
7be0cb8e9e [XPU][Feature] fp8 online quantization support for XPU (#23148)
Signed-off-by: Yan Ma <yan.ma@intel.com>
Co-authored-by: Qiming Zhang <qiming1.zhang@intel.com>
2025-09-02 04:06:53 +00:00
1fa1d6a9a0 Migrate OvisImagePatchInputs to TensorSchema (#22024)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-09-02 12:01:36 +08:00
d59c986444 Remove runtime checks based on pooling params (#24051)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2025-09-02 11:54:37 +08:00
04d0c60770 [Bugfix] Fix the issue that Blip2ForConditionalGeneration' object has… (#24028)
Signed-off-by: Dazhi Jiang <dazhi_jiang@163.com>
2025-09-02 11:54:20 +08:00
2b41cbbf03 [V1][Mamba1] - FP32 SSM Kernel Support (#23506)
Signed-off-by: asafg <39553475+Josephasafg@users.noreply.github.com>
2025-09-01 20:53:00 -07:00
0235103cbb [Doc]: fix typos in Python comments (#24042)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-01 19:07:45 -07:00
a344a5aa0a [bugfix]fix MTP hidden states (#24056)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-09-01 21:09:37 +00:00
5685370271 [Chore][V0 Deprecation] Move LogProb to a separate file (#24055)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-01 12:07:53 -07:00
a0e0efd6bd [Model] Support DP for ViT on Kimi-VL-A3B-Thinking-2506 (#23817)
Signed-off-by: Junhong <liujunhong11@huawei.com>
Signed-off-by: LJH-LBJ <98734602+LJH-LBJ@users.noreply.github.com>
Co-authored-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: LJH-LBJ <98734602+LJH-LBJ@users.noreply.github.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-09-01 16:56:56 +00:00
cf91a89dd2 [docs][misc] IOProcessor plugins fixes (#24046)
Signed-off-by: Christian Pinto <christian.pinto@ibm.com>
2025-09-01 09:17:41 -07:00
39a22dcaac [Misc] Minor code simplification for spec decode (#24053)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-01 08:54:01 -07:00
41c80698b3 Document multi-proc method selection for profiling (#23802)
Signed-off-by: jdebache <jdebache@nvidia.com>
2025-09-01 06:28:26 -07:00
7c8271cd1e [Model]: support KeyeVL-1_5-8B (#23838)
Signed-off-by: wangruitao <wangruitao@kuaishou.com>
Co-authored-by: wangruitao <wangruitao@kuaishou.com>
2025-09-01 03:50:27 -07:00
3e330fcb21 [Doc]: Fix CPU install docs: force torch-backend=cpu to avoid GPU torchvision errors (#24033)
Signed-off-by: Kay Yan <kay.yan@daocloud.io>
2025-09-01 03:34:52 -07:00
d46934b229 [Frontend] Gemma3n audio transcriptions/translations endpoint (#23735)
Signed-off-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-01 18:07:46 +08:00
107284959a [Doc]: fix typos in Python comments (#24026)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-01 09:38:20 +00:00
dc1a53186d [Kernel] Update DeepGEMM to latest commit (#23915)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-01 02:38:04 -07:00
55602bb2e6 [Frontend] Update the warning log when using VLLM_ALLOW_LONG_MAX_MODEL_LEN (#20904)
Signed-off-by: wang.yuqi <noooop@126.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-01 08:50:25 +00:00
d7fbc6ddac [Misc] Enable V1 FP16 inference on pre-Ampere GPUs (#24022)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-01 08:12:22 +00:00
5438967fbc [Misc] add hash_function doc string (#24014)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-08-31 23:11:20 -07:00
422e793fa6 [Bugfix] Add support for <tool_call> format in streaming mode for XLAM Tool Parser (#22769)
Signed-off-by: Devon Peroutky <devon@kindo.ai>
2025-09-01 14:07:54 +08:00
1cb39dbcdd [Misc] IO Processor plugins for pooling models (#22820)
Signed-off-by: Christian Pinto <christian.pinto@ibm.com>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Max de Bayser <mbayser@br.ibm.com>
2025-08-31 23:07:12 -07:00
437c3ce026 Migrate Phi4 inputs to TensorSchema (#23471)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-09-01 14:05:59 +08:00
499b074bfd [Misc] refactor code by import as for torch._inductor.config (#23677)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-09-01 14:05:42 +08:00
ff0e59d83a [CI/Build] Improve Tensor Schema tests speed by avoid engine core initialization (#23357)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-31 22:52:20 -07:00
b55713683c [Misc] Move fast prefill logic to separate method (#24013)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-01 05:40:38 +00:00
acc1a6e10a Fix the bug related to loading GPTP INT3 weights. (#23328)
Signed-off-by: JunHowie <JunHowie@aliyun.com>
Co-authored-by: JunHowie <JunHowie@aliyun.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-01 05:39:57 +00:00
8c742a66d1 [Misc] Avoid redundant copy for encoder-only models (#24012)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-01 04:02:43 +00:00
183a70967a [BUGFIX] GPTQ quantization compatibility for Qwen3 MOE models (AutoGPTQ and AutoRound-GPTQ) (#23994)
Signed-off-by: JartX <sagformas@epdcenter.es>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-01 03:33:40 +00:00
14b4326b94 v1: Support KV events from connectors (#19737)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-01 01:13:21 +00:00
752d2e1c36 [Minor] Fix some random typos in comments (#24009)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-31 16:42:17 -07:00
81eea3d348 vllm fix check on max vocab size (#22471)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Roger Wang <hey@rogerw.me>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.me>
2025-08-31 20:57:05 +08:00
9701352e4b [Doc]: fix typos in Python comments (#24001)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-08-31 08:21:59 +00:00
749be00a98 [Core][Multimodal] Allow passing multi_modal_uuids as multimodal identifiers. (#23394)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-08-30 18:01:22 -07:00
5b8077b8ac Fix wrong truncate_prompt_tokens type hint (#22761)
Signed-off-by: Gabriel Marinho <gmarinho@ibm.com>
Signed-off-by: Gabriel Marinho <104592062+gmarinho2@users.noreply.github.com>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Max de Bayser <mbayser@br.ibm.com>
2025-08-30 20:39:38 +00:00
038e9be4eb [LoRA] Much faster startup when LoRA is enabled (#23777)
Signed-off-by: Andy Lo <andy@mistral.ai>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-30 15:37:39 +00:00
68a349114f [Misc] enhance type hint for rearrange return value (#23519)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-08-30 06:43:33 -07:00
e80bca309e [Refactor] refactor freezing_value/cuda_event initialize outside try finally (#23758)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-08-30 06:42:25 -07:00
fb4983e112 [Misc] add reorder_batch AttentionMetadataBuilder (#23798)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-08-30 06:41:45 -07:00
379ea2823a Add LoRA support for DeepSeek models (V2, V3, R1-0528) (#23971)
Signed-off-by: sadeghja1070 <sadegh.ja1070@gmail.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-30 06:40:02 -07:00
3a6acad431 [Model] Enable encoder DP for MiniCPM-V (#23948)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-08-30 06:31:26 -07:00
5490d633ce [UT] fix unify_kv_cache_configs when kv cache config needs sort (#23843) 2025-08-30 11:22:14 +00:00
628d00cd7b [Bugfix] Fix test_lora_resolvers.py (#23984)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-30 11:16:11 +00:00
4071c76cf3 [V1] [Hybrid] Move MiniMaxLinearAttention into layers/mamba (#23831)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-30 00:16:15 -07:00
f1bddbd852 [Core] Cleanup TPU model runner for MM (#23894)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-30 00:14:58 -07:00
9748c5198b [CI] Fix broken compile tests due to unsupported SiluMul+Nvfp4Quant fusion (#23973)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-08-30 00:14:43 -07:00
ee52a32705 [CI] Move testing image from remote URL to S3 (#23980)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-08-29 21:41:25 -07:00
8fb85b7bb6 Add routed_scaling_factor to MoE grouped topk (#23123)
Signed-off-by: Xin Yang <xyangx@amazon.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-29 21:36:48 -07:00
5b31cb1781 [Bugfix] Fix --config arg expansion called from api_server.py (#23944)
Signed-off-by: Jean-Francois Dube <dubejf+gh@gmail.com>
Co-authored-by: Jean-Francois Dube <dubejf+gh@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-29 21:36:39 -07:00
d660c98c1b [CI] Fix unavailable image remote URL (#23966)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-08-29 15:40:04 -07:00
5674a40366 [Misc] Make download_weights_from_hf more reliable (#23863)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-29 12:37:24 -07:00
8c3e199998 Revert gemma3n fast prefill changes (#23897)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-08-29 12:16:57 -07:00
1c26b42296 [Docs] [V1] [Hybrid] Add new documentation re: contributing mamba-based models (#23824)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-08-29 18:47:58 +00:00
b7adf94c4a Tuned H100/H200 triton fp8 block configs for fused_qkv_a_proj (#23939)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-29 10:28:35 -07:00
4d7fe40fc0 [RL][BugFix] Fix missing tokenizer error for token-in-token-out (#23904)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-08-30 01:09:55 +08:00
0dc9532065 [BUGFIX ] fix undefined silu_and_mul_nvfp4_quant (#23929)
Signed-off-by: hongchao <hongchao@msh.team>
Signed-off-by: Richard Zou <zou3519@gmail.com>
Co-authored-by: hongchao <hongchao@msh.team>
Co-authored-by: Richard Zou <zou3519@gmail.com>
Co-authored-by: Richard Zou <zou3519@users.noreply.github.com>
2025-08-29 09:36:39 -07:00
72a69132dc [CI] Add aiter to matching list of issue auto labeller for rocm tag (#23942)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-08-29 15:29:21 +00:00
d90d8eb674 [BugFix] Async scheduling and PP compatibility with DP (#23770)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-29 08:17:27 -07:00
0a2f4c0793 [Models] Use in-place adds in Idefics2Vision (#23932)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-08-29 07:42:57 -07:00
1cf3753b90 [MODEL] Apertus and XIELU (#23068)
Signed-off-by: EduardDurech <39579228+EduardDurech@users.noreply.github.com>
Co-authored-by: AllenHaoHuang <allenhuangdd@gmail.com>
2025-08-29 20:29:18 +08:00
4f7cde7272 Adds json_count_leaves utility function (#23899)
Signed-off-by: aditchawdhary <aditxy@hotmail.com>
2025-08-29 05:28:13 -07:00
67c14906aa Update PyTorch to 2.8.0 (#20358)
Signed-off-by: Huy Do <huydhn@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-29 18:57:35 +08:00
69f46359dd [Multimodal] Consolidate mm inputs into MultiModalFeatureSpec (#23779)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-08-29 18:36:57 +08:00
d9e00dbd1f [Performance] V1 Classify Models E2E Performance Optimization (#23541)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-08-29 03:12:32 -07:00
ad39106b16 [CPU] Enable data parallel for CPU backend (#23903)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-08-29 02:19:58 -07:00
2554b27baa [V0 Deprecation] Remove pooling model support in V0 (#23434)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-29 00:04:02 -07:00
934bebf192 Better errors for Transformers backend missing features (#23759)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-29 07:01:40 +00:00
885ca6d31d [Misc] Fix warnings for mistral model (#23552)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2025-08-29 06:58:48 +00:00
2d0afcc9dc [mrope][Qwen2-VL] Fix edge case where getting index of image/video token can potentially throw in default vl mrope implementation. (#23895)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-08-28 23:29:13 -07:00
b4f9e9631c [CI/Build] Clean up LoRA test (#23890)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-28 23:28:35 -07:00
05d839c19e Fix(async): Add support for truncate_prompt_tokens in AsyncLLM (#23800) 2025-08-28 22:55:06 -07:00
6597d7a456 [Platform] import activation_quant_fusion for CUDA only (#23882)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-08-28 22:54:16 -07:00
5264015d74 [BugFix][AMD][Deepseek] fix a dtype mismatch error for deepseek running on AMD (#23864)
Signed-off-by: Jinghui Zhang <jinghuizhang0804@gmail.com>
2025-08-28 22:54:12 -07:00
98ac0cb32d [Bugfix] Use ReplicatedLinear for SequenceClassification head (#23836)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-29 04:41:20 +00:00
c8b3b299c9 [tests] Improve speed and reliability of test_transcription_api_correctness (#23854)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-08-29 04:25:33 +00:00
006477e60b [ROCm][Fix] Fix rocm build caused by #23791 (#23847)
Signed-off-by: charlifu <charlifu@amd.com>
2025-08-28 19:52:27 -07:00
de533ab2a1 [Models] Improve iteration over layers (#19497)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-08-29 09:26:34 +08:00
235c9db8a7 [XPU] support data parallel for MoE models on XPU (#22887)
Signed-off-by: chzhang <chaojun.zhang@intel.com>
2025-08-29 09:23:04 +08:00
b668055a11 [V0 Deprecation] Remove V0 Samplers test (#23862) 2025-08-28 18:05:52 -07:00
d3d2aad5a2 [Log] Use Debug Once for DeepGEMM E8M0 When not Enabled (#23858) 2025-08-28 22:18:10 +00:00
cb293f6a79 [V1] Enable prefill optimization for Gemma3n (#22628)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-08-28 14:54:30 -07:00
7ffbf27239 [BugFix][FlashInfer] Fix potential race condition for paged_kv_indptr_cpu (#23737)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-28 14:22:46 -07:00
27e88cee74 chore: build release image by default (#23852)
Signed-off-by: Codex <codex@openai.com>
2025-08-28 13:17:15 -07:00
16a45b3a28 [NVIDIA] Support SiluMul + NVFP4 quant fusion (#23671)
Signed-off-by: jindih <jindih@nvidia.com>
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
Co-authored-by: jindih <jindih@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Luka Govedic <lgovedic@redhat.com>
2025-08-28 19:36:50 +00:00
57d4ede520 [bugfix] [spec-decoding] fix data race in sample_recovered_tokens_kernel (vLLM v1) (#23829)
Signed-off-by: He-Jingkai <he-jingkai@outlook.com>
2025-08-28 19:05:20 +00:00
04d1dd7f4a [ROCm][Aiter] Add triton fp8 bmm kernel for mla (#23264)
Signed-off-by: Divakar Verma <divakar.verma@amd.com>
Co-authored-by: ShaoChunLee <Shao-Chun.Lee@amd.com>
2025-08-28 18:18:08 +00:00
f32a5bc505 Migrate Llama4ImagePatchInputs to TensorSchema (#22021)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-28 17:29:37 +00:00
8805ad9fa9 Add scale_config.yml file for Meta autoscalers for GH Actions (#23840)
Signed-off-by: Jean Schmidt <contato@jschmidt.me>
2025-08-28 09:31:20 -07:00
0583578f42 [ci] breaks down V1 Test into 3 groups of approx 30 minutes runtime (#23757)
Signed-off-by: Jean Schmidt <contato@jschmidt.me>
2025-08-28 08:59:19 -07:00
db74d60490 [Bugfix] Add fake mode around passes (#23349)
Signed-off-by: angelayi <yiangela7@gmail.com>
2025-08-28 11:25:56 -04:00
95089607fa [Model][gpt-oss] Support DP+EP for GPT-OSS with FlashInfer trtllm-gen MoE (#23819)
Signed-off-by: Po-Han Huang <pohanh@nvidia.com>
2025-08-28 06:56:20 -07:00
1f096f9b95 [CI] Fix linting error on main (#23835)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-08-28 06:52:01 -07:00
66548f6603 [Bugfix] Fix benchmark_moe.py for blockwise fp8. (#23823)
Signed-off-by: crischeng <420985011@qq.com>
Co-authored-by: cris <grace@guisenbindeMacBook-Pro.local>
2025-08-28 21:44:09 +08:00
d3da2eea54 [Doc]: fix typos in Python scripts (#23828)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-08-28 05:37:38 -07:00
bfab219648 [Model] [gpt-oss] fix gpt-oss pp support (#23815)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-08-28 05:36:55 -07:00
a3432f18fd [BugFix][Spec Decode] Use float64 for uniform_probs (#23803)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-28 12:26:45 +00:00
67cee40da0 [CI/Build][Bugfix] Fix Qwen VL tests on CPU (#23818)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-08-28 11:57:05 +00:00
d99c3a4f7b [Doc]: fix typos in .md files (including those of #23751) (#23825)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-08-28 04:38:19 -07:00
3462c1c522 [FIXBUG] Add return_success parameter to moe_wna16_weight_loader function (#22797)
Signed-off-by: JartX <sagformas@epdcenter.es>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-28 09:03:22 +00:00
c5d004aaaf [Model] Add PP support and VLM backbone compatability for GPT-OSS (#23680)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-28 16:03:28 +08:00
11a7fafaa8 [New Model]: Support GteNewModelForSequenceClassification (#23524)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-08-28 15:36:42 +08:00
186aced5ff [Kernel] cuda kernels for upcoming decode context parallel feature (#23791)
Co-authored-by: hongchao <hongchao@msh.team>
2025-08-28 15:29:11 +08:00
daa1273b14 [Bugfix] when set offline model running error (#23711)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-08-28 07:27:45 +00:00
c07a73317d [CI] enable idefics3 and fuyu-8b test in multimodal test (#23790)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-08-28 14:51:24 +08:00
22feac8e95 [Transform] [Quantization] Add transforms to compressed tensors (#22486) 2025-08-28 02:43:48 -04:00
c8851a4723 Add deprecation warning for lora_extra_vocab_size (#23635)
Signed-off-by: Jinheng Li <ahengljh@gmail.com>
2025-08-27 22:34:29 -07:00
f48a9af892 [CI] make all multi-gpu weight loading tests run nightly (#23792)
Signed-off-by: Alex Yun <alexyun04@gmail.com>
2025-08-27 21:27:36 -07:00
a11adafdca Gracefully handle edge cases in harmony utils (#23155)
Signed-off-by: Jan Kessler <jakessle@uni-mainz.de>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-27 20:14:00 -07:00
a781e84ec2 [Perf] Tune configs for triton block fp8 gemm H100/H200 (#23748)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-28 11:12:53 +08:00
1b7b161a09 [Feature] models: pass layer prefix to replace_linear_class for per-layer quantization routing. Addresses #23239 (#23556)
Signed-off-by: Shrey Gupta <shreyg1303@gmail.com>
2025-08-27 20:12:44 -07:00
a69693e38f Migrate Qwen inputs to TensorSchema (#23473)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-28 10:43:26 +08:00
5da4f5d857 [Bugfix] Fix for V1 priority scheduling crashes at preemption (#23713)
Signed-off-by: Hanchenli <lihanc2002@gmail.com>
2025-08-28 00:44:52 +00:00
321938e9ac [Feature] Add VLLM_DISABLE_PAD_FOR_CUDAGRAPH to Avoid Hang Issue (#23595)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-27 21:52:24 +00:00
f9ca2b40a0 [Bugfix] Fix Marlin NVFP4 for modelopt (#23659)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-27 17:48:16 -04:00
082cc07ef8 DP/EP Support for gpt-oss with deepep-ht comm kernel on SM100 (#23608) 2025-08-27 17:33:21 -04:00
853c371fc3 [V1][Mamba] - Enable V1 by default for Mamba Models (#23650)
Signed-off-by: asafg <39553475+Josephasafg@users.noreply.github.com>
2025-08-27 20:53:30 +00:00
8bf6266a17 [Multimodal] Generate mm_hash based on request metadata when caching is turned off (#23690)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-08-27 20:24:31 +00:00
0585a9e73c Disable torch.compile for dynamic rope models in Transformers backend (#23738)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-27 19:03:05 +00:00
3c0ef769ba ci: Add arm64 docker build to release pipeline (#23210)
Signed-off-by: Eli Uriegas <eliuriegas@meta.com>
Signed-off-by: Eli Uriegas <1700823+seemethere@users.noreply.github.com>
2025-08-27 10:41:48 -07:00
4e4d017b6f [Docs] Fix warnings in mkdocs build (continued) (#23743)
Signed-off-by: Zerohertz <ohg3417@gmail.com>
Signed-off-by: Hyogeun Oh (오효근) <ohg3417@gmail.com>
2025-08-27 17:17:29 +00:00
dd58932280 [V1] [Hybrid] Enable compile and piecewise CUDA graph for MiniMax-Text models (#22589)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-08-27 10:05:16 -07:00
52883ed084 [Model] Merge SupportsMultiModalWithRawInput with SupportsMultiModal (#23749)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-27 10:01:50 -07:00
4f35be10a9 [BugFix] Fix topk_softmax assert (#19764)
Signed-off-by: Luka Govedic <lgovedic@redhat.com>
2025-08-27 09:47:28 -07:00
2b61d2e22f [Docs] Remove in-tree Gaudi install instructions (#23628)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-27 09:22:21 -07:00
3ce8285d6d [LogitsProcs] Deduplicate built-in LP implementation logic (#23362)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-27 23:11:33 +08:00
83f555f637 [Doc]: upgrade version of crate-ci tool for improved typo detection (#23755)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-08-27 07:59:34 -07:00
841490434a [Model] Enable native HF format InternVL support (#23742)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-27 14:45:17 +00:00
3af47c3cc6 [Feature] Add Hopper DeepGEMM E8M0 for DeepSeekV3.1 scale_fmt (#23666)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-08-27 14:09:08 +00:00
513c1fe255 Only run get_attr_docs if generating help text (#23723)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-27 13:55:12 +00:00
fe8d7b6f03 [Model] Interface to enable batch-level DP support (#23733)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-27 06:41:22 -07:00
16dc4052b0 Fix pre-commit on main (#23747)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-27 06:39:48 -07:00
8dd2baa597 Add vLLM Korea Meetup in the README.md and meetups.md (#23746)
Signed-off-by: rebel-hongseok <hongseok@rebellions.ai>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-27 06:25:49 -07:00
5eeef1b908 [Model] Explicit default_pooling_type interface (#23736)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-27 13:24:09 +00:00
704432af3c [V1] [Hybrid] Disable prefix caching by default for hybrid or mamba-based models (#23716)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-08-27 12:51:54 +00:00
a403d0fa41 [Misc] Remove unnecessary _send_reconfig_message() in core_client.py (#23127)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-27 05:50:47 -07:00
8c13820f0b [Bugfix] Fix task field initialization when PYTHONOPTIMIZE is enabled (#23718)
Signed-off-by: cndoit18 <cndoit18@outlook.com>
2025-08-27 12:42:20 +00:00
9d30de4469 [model] Support MiniCPM-V 4.5 (#23586)
Signed-off-by: tc-mb <caitianchi@modelbest.cn>
Signed-off-by: Xin Yang <xyangx@amazon.com>
Signed-off-by: Abatom <abzhonghua@gmail.com>
Signed-off-by: chzhang <chaojun.zhang@intel.com>
Signed-off-by: Pate Motter <patemotter@google.com>
Signed-off-by: Terrencezzj <terrence@cohere.ai>
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: simon-mo <simon.mo@hey.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Siyuan Fu <siyuanf@nvidia.com>
Signed-off-by: siyuanf <siyuanf@nvidia.com>
Signed-off-by: Weiliang Liu <weiliangl@nvidia.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Signed-off-by: Zijing Liu <liuzijing2014@gmail.com>
Signed-off-by: Zijing Liu <liuzijing2014@users.noreply.github.com>
Signed-off-by: jiabin.00 <jiabin.00@bytedance.com>
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: tc-mb <157115220+tc-mb@users.noreply.github.com>
Signed-off-by: Roger Wang <hey@rogerw.me>
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Huy Do <huydhn@gmail.com>
Signed-off-by: Matúš Námešný <matus.namesny@ameria.com>
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: oye93 <en.ouyang93@outlook.com>
Signed-off-by: Julien Lin <jullin@nvidia.com>
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Signed-off-by: Tianyu Li <tianyu.li@arm.com>
Signed-off-by: Hongxia Yang <hongxia.yang@amd.com>
Signed-off-by: Yuekai Zhang <zhangyuekai@foxmail.com>
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Signed-off-by: jiang1.li <jiang1.li@intel.com>
Signed-off-by: Zerohertz <ohg3417@gmail.com>
Signed-off-by: Hyogeun Oh (오효근) <ohg3417@gmail.com>
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Huzaifa Sidhpurwala <huzaifas@redhat.com>
Signed-off-by: Federico <65908512+coval3nte@users.noreply.github.com>
Signed-off-by: Zixuan Zhang <zixuanzhang@bytedance.com>
Signed-off-by: wuhang <wuhang6@huawei.com>
Signed-off-by: czhu-cohere <conway.zhu@cohere.com>
Signed-off-by: Wei Wei <wwei6@meta.com>
Signed-off-by: Yiheng Xu <charlesyihengxu@gmail.com>
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: wangyafeng <wangyafeng@baidu.com>
Co-authored-by: Xin Yang <105740670+xyang16@users.noreply.github.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Zhonghua Deng <abzhonghua@gmail.com>
Co-authored-by: Chaojun Zhang <chaojun.zhang@intel.com>
Co-authored-by: Pate Motter <p@temotter.com>
Co-authored-by: Terrence Zhao <32208165+Terrencezzj@users.noreply.github.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: weiliang <weiliangl@nvidia.com>
Co-authored-by: Siyuan Fu <siyuanf@nvidia.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Copilot <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ProExpertProg <11367180+ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Zijing Liu <liuzijing2014@users.noreply.github.com>
Co-authored-by: Bin Jia <45593998+FoolPlayer@users.noreply.github.com>
Co-authored-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Raghavan <oneraghavan@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.me>
Co-authored-by: knlnguyen1802 <knlnguyen1802@gmail.com>
Co-authored-by: Huy Do <huydhn@gmail.com>
Co-authored-by: Matúš Námešný <matus@namesny.com>
Co-authored-by: Guillaume Calmettes <gcalmettes@scaleway.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: En Ouyang <en.ouyang93@outlook.com>
Co-authored-by: Li, Jiang <jiang1.li@intel.com>
Co-authored-by: nvjullin <jullin@nvidia.com>
Co-authored-by: Didier Durand <2927957+didier-durand@users.noreply.github.com>
Co-authored-by: TianyuLi0 <116711075+TianyuLi0@users.noreply.github.com>
Co-authored-by: Hongxia Yang <62075498+hongxiayang@users.noreply.github.com>
Co-authored-by: Yuekai Zhang <zhangyuekai@foxmail.com>
Co-authored-by: vllmellm <vllm.ellm@embeddedllm.com>
Co-authored-by: Hyogeun Oh (오효근) <ohg3417@gmail.com>
Co-authored-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Lukas Geiger <lukas.geiger94@gmail.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Huzaifa Sidhpurwala <huzaifas@redhat.com>
Co-authored-by: Federico <65908512+coval3nte@users.noreply.github.com>
Co-authored-by: zixuanzhang226 <zixuanzhang@bytedance.com>
Co-authored-by: wuhang <wuhang6@huawei.com>
Co-authored-by: yzds <41983536+youzhedian@users.noreply.github.com>
Co-authored-by: hongchao <hongchao@msh.team>
Co-authored-by: czhu-cohere <conway.zhu@cohere.com>
Co-authored-by: Wei <weiweinpu@gmail.com>
Co-authored-by: Yiheng Xu <charlesyihengxu@gmail.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Chenheli Hua <huachenheli@outlook.com>
Co-authored-by: CSWYF3634076 <58356743+CSWYF3634076@users.noreply.github.com>
2025-08-27 05:38:00 -07:00
1f7a9c95e4 [Docs] Fix a 1-2-3 list and style issues in tpu.md (#23729)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-08-27 05:37:52 -07:00
8f0d7eaea8 [XPU] Fix OOM issue for data parallel with Ray backend (#22500)
Signed-off-by: Fanli Lin <fanli.lin@intel.com>
Signed-off-by: Fanli Lin <fanli0116@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-08-27 19:57:38 +08:00
e03940762b [CI/Build] Reduce LoRA layer test cases (#23721)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-27 10:59:35 +00:00
11eddf02f0 [FlashInfer] Cache hyper params in metadata builder (#23732)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-27 03:45:04 -07:00
04ff1e43fb [Misc] Move CpuGpuBuffer to vllm/v1/utils.py (#23728)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-27 03:25:00 -07:00
6578e87365 Optimize input preparation for FlashInfer [2/N] (#23174)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-27 02:52:45 -07:00
5bd9f84158 [Docs] Fix an admonition important (#23726)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-08-27 02:50:09 -07:00
91e382c935 [CI/Build] Remove redundant register in model init tests (#23715)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-27 08:11:15 +00:00
6446677839 [XPU]fix cuda event used in XPU model runner (#23708)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-08-27 07:27:14 +00:00
69244e67e6 [Core] Use key-only cache for BaseMultiModalProcessor (#23018)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-27 14:19:13 +08:00
8dbf6ed7be [Bugfix] fix when config.yaml config value is list parse error (#23528)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-08-27 05:54:39 +00:00
9de25c294b [CI/Build] Remove redundant LoRA model tests (#23706)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-27 05:51:50 +00:00
fce10dbed5 [XPU] Add xpu torch.compile support (#22609)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-08-27 05:33:27 +00:00
d272415e57 [Quantization] Expand compressed-tensors MoE matching logic to support NFP4 + FP8 MoEs (#22674)
Signed-off-by: Dipika Sikka <dipikasikka1@gmail.com>
Signed-off-by: Dipika <dipikasikka1@gmail.com>
2025-08-27 05:00:21 +00:00
142ac08030 [Frontend] Optimize beam search performance by limiting concurrency (#23599)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-08-27 04:59:14 +00:00
3210264421 [Frontend] Add --log-error-stack to print stack trace for error response (#22960)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-08-27 04:58:59 +00:00
644d57d531 [Model] Add Ernie4.5 VL Model Support (#22514)
Signed-off-by: wangyafeng <wangyafeng@baidu.com>
2025-08-26 21:02:55 -07:00
c905684cfe [Core] Asynchronous h2d in merge_multimodal_embeddings via pinned memory. (#23686)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-08-26 20:05:34 -07:00
786835807b [Bugfix]: Qwen3 Coder Tool Parser (#23099)
Signed-off-by: Yiheng Xu <charlesyihengxu@gmail.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
2025-08-26 19:58:32 -07:00
Wei
fecbb7c782 [Bugfix][gpt-oss] passing the cache config in gpt-oss (#23613)
Signed-off-by: Wei Wei <wwei6@meta.com>
2025-08-27 02:54:23 +00:00
6dab89b8ec [Docs] Fix math rendering in docs (#23676)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 18:47:08 -07:00
de02b07db4 [Bugfix] Lazy import gpt_oss_triton_kernels_moe for mxfp4 (#23678)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-27 09:34:57 +08:00
eb1995167e [gpt-oss] Enable unit test for response API harmony integration (#23533)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-08-26 18:23:26 -07:00
2c2b140ae8 [quantization] use channel scales for w4a8 + misc fixes (#23570)
Signed-off-by: czhu-cohere <conway.zhu@cohere.com>
2025-08-26 18:23:23 -07:00
c7c80af084 fix pynccl reduce_scatter (#23648)
Co-authored-by: hongchao <hongchao@msh.team>
2025-08-26 18:21:11 -07:00
6891205b16 [Feature][Responses API] Support MCP tool in background mode (#23494)
Signed-off-by: wuhang <wuhang6@huawei.com>
2025-08-27 01:06:58 +00:00
b1625dbe9c feat: add triton fused moe config for GLM-4.5-Air-FP8 on B200 (#23695)
Signed-off-by: Zixuan Zhang <zixuanzhang@bytedance.com>
2025-08-26 18:06:10 -07:00
585e0bde36 [Bugfix] UnboundLocalError when GptOss reasoning specified (#23054)
Signed-off-by: Federico <65908512+coval3nte@users.noreply.github.com>
2025-08-27 00:29:52 +00:00
714872f1a9 [Compile] Fix Cmake Warning (#23689)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-08-26 23:48:32 +00:00
5f1af97f86 [V1] [Hybrid] Enable Full CUDA graph by default for hybrid models in V1 (#22594)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-08-26 23:28:55 +00:00
c3b0fd1ee6 [V1][P/D]P2pNcclConnector supports flashinfer (#23536)
Signed-off-by: Abatom <abzhonghua@gmail.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-08-26 22:56:16 +00:00
6421b66bf4 [Docs] Move quant supported hardware table to README (#23663)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 22:26:46 +00:00
2f13319f47 Enhance the pre-notification policy (#23532)
Signed-off-by: Huzaifa Sidhpurwala <huzaifas@redhat.com>
2025-08-26 20:41:36 +00:00
d696f86e7b [doc] Hybrid KV Cache Manager design doc (#22688)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 20:19:05 +00:00
9816b81f5f [Model] Enable video support for InternVL3.5 models (#23658)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-26 19:46:52 +00:00
c37c0af990 [Misc] Fix comments in tests/kernels/quantization (#23675)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-08-26 19:31:20 +00:00
9715f7bb0f [Bugfix] Fix incorrect original shape in hashing (#23672)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-08-26 19:01:25 +00:00
98aa16ff41 [v1] Add cross-attention KV cache support for encoder-decoder models (#23664)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-08-26 18:49:06 +00:00
227e231b55 [Docs] [V1] [Hybrid] Update docs to remove FlashInfer constraint for hybrid models (#23665)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-08-26 18:33:16 +00:00
730d0ac8b9 [Docs] Fix warnings in mkdocs build (#23649)
Signed-off-by: Zerohertz <ohg3417@gmail.com>
Signed-off-by: Hyogeun Oh (오효근) <ohg3417@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 18:19:23 +00:00
9b0187003e [Bugfix] Fix cuda event usage with CPU model runner (#23643)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-08-26 17:10:42 +00:00
44ac25eae2 [CI] [Doc]: Add GH Action for auto labeling issues with rocm tag (#20988)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-26 16:20:13 +00:00
7ea22e42d5 [Misc] Add override for allreduce fusion thresholds (#23639)
Signed-off-by: Julien Lin <jullin@nvidia.com>
2025-08-26 15:53:04 +00:00
9d4183dd2e [model] support qwen2audio embedding input (#23625)
Signed-off-by: Yuekai Zhang <zhangyuekai@foxmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-26 23:48:08 +08:00
513298f1b4 [Bugfix] fix bf16 multimodal model hash (#23623)
Signed-off-by: Yuekai Zhang <zhangyuekai@foxmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-26 23:47:50 +08:00
379f828fba [Docs] Reduce requirements for docs build (#23651)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 15:43:28 +00:00
1fdc732419 [ROCm] Starting to add AMD code reviewers for ROCm components (#23496)
Signed-off-by: Hongxia Yang <hongxia.yang@amd.com>
2025-08-26 07:32:37 -07:00
f58675bfb3 [CPU] add cpu fused moe pytorch native implementation (#23146)
Signed-off-by: Tianyu Li <tianyu.li@arm.com>
Co-authored-by: Li, Jiang <jiang1.li@intel.com>
2025-08-26 14:09:17 +00:00
7c04779afa [Doc]: fix various spelling issues in multiple files (#23636)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-08-26 14:05:29 +00:00
f66673a39d [Kernel] Added flashinfer fp8 per-tensor gemms (#22895)
Signed-off-by: Julien Lin <jullin@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-26 06:54:04 -07:00
b78bed1bc5 [Hardware][Mac] Fix the installation fail for Apple Silicon (CPU) (#23565)
Signed-off-by: oye93 <en.ouyang93@outlook.com>
Co-authored-by: Li, Jiang <jiang1.li@intel.com>
2025-08-26 13:04:25 +00:00
164b2273c8 [Docs] Fix broken links to docs/api/summary.md (#23637)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 13:00:18 +00:00
2b4fc9bd9b Support FlashAttention Backend for Hybrid SSM Models (#23299)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-08-26 12:41:52 +00:00
ebd5a77bb5 feat: add usage to TranscriptionResponse (text and json response_format) (#23576)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-08-26 05:26:26 -07:00
384dd1b0a8 [Bugfix] Add missing enable_log_outputs parameter to init_app_state function (#23634)
Signed-off-by: Matúš Námešný <matus.namesny@ameria.com>
2025-08-26 12:13:15 +00:00
fdeb3dac13 [Model] fix DeepSeek e_score_correction_bias dtype to fp32 (#23640)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-26 20:09:47 +08:00
d52358c1e0 [Perf] Remove duplicated NVFP4 blockscales to save memory (#23379)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-26 19:16:33 +08:00
6ace2f72b0 Fix writing benchmark results with tuple keys (#23633)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-08-26 19:16:09 +08:00
b00e69f8ca Fix nits from #20059 (#23548)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 03:27:20 -07:00
50fede6634 [V1] Enable V1 for compute capability < 8.0 + FP32 (#23614)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-26 03:00:18 -07:00
b5d34af328 [Bugfix] Fix scheduling when repeated images in one request (#23544)
Signed-off-by: Roger Wang <hey@rogerw.me>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.me>
Co-authored-by: knlnguyen1802 <knlnguyen1802@gmail.com>
2025-08-26 09:46:28 +00:00
9b5f64238f [Bugfix] Fix Qwen25VL packed_modules_mapping (#23604)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-26 01:09:14 -07:00
ff77764f86 Fix CLI parameter documentation inconsistency in pooling_models.md (#23630) 2025-08-26 01:05:37 -07:00
bfc1edc9f5 [Docs] Fix titles for multi-file examples that are rendered in the docs (#23573)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 00:16:44 -07:00
3ecbb14b81 [Benchmarks] add benchmark for embedding models (#23000)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-08-25 23:57:08 -07:00
7d67a9d9f9 [mypy] Fix incorrect type hint for EAGLE3 support (#23617)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-25 23:50:17 -07:00
959783fb99 [fix] fix seed-oss-parser (#23560)
Signed-off-by: jiabin.00 <jiabin.00@bytedance.com>
2025-08-25 23:16:36 -07:00
ce0e9dbd43 [CI/Build] Fix typo in #23561 (#23616)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-25 23:13:03 -07:00
b395b3b0a3 [Disagg][Perf] Use CUDA event sync instead of blocking tolist to avoid unintentional copy ops blocking across different CUDA streams, improving disagg TTIT/TTFT (#22760)
Signed-off-by: Zijing Liu <liuzijing2014@gmail.com>
Signed-off-by: Zijing Liu <liuzijing2014@users.noreply.github.com>
2025-08-25 21:06:00 -07:00
6fad29b11b Remove graph_pool as member of VllmBackend and argument to CUDAGraphWrapper (#23385)
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ProExpertProg <11367180+ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-08-25 19:34:15 -07:00
6fd45e7b8a [CI/Build] Use vLLM client's user agent to fetch images (#23561)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-25 19:34:12 -07:00
56dcf4e7e9 [Bug] Fix DeepGEMM Env Control (#23591)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-08-25 18:41:21 -07:00
ae067888d6 Update Flashinfer to 0.2.14.post1 (#23537)
Signed-off-by: Siyuan Fu <siyuanf@nvidia.com>
Signed-off-by: siyuanf <siyuanf@nvidia.com>
Signed-off-by: Weiliang Liu <weiliangl@nvidia.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Siyuan Fu <siyuanf@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-25 18:30:44 -07:00
906e461ed6 [CI Fix] Pin deepep and pplx tags in tools/ep_kernels/, gate multigpu tests (#23568)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-25 18:29:00 -07:00
2a97ffc33d [Misc] Add release note draft to PR template (#23598)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-08-25 16:44:51 -07:00
efc88cf64a [Misc] Simplify FlashInfer attention metadata (#23585)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-08-25 15:42:29 -07:00
7b6a837275 [Docs] Update Documentation of Cohere Command-A Models (#23584)
Signed-off-by: Terrencezzj <terrence@cohere.ai>
Signed-off-by: Abatom <abzhonghua@gmail.com>
Co-authored-by: Zhonghua Deng <abzhonghua@gmail.com>
2025-08-25 21:53:52 +00:00
c34c82b7fe [TPU][Bugfix] Fixes prompt_token_ids error in tpu tests. (#23574)
Signed-off-by: Pate Motter <patemotter@google.com>
2025-08-25 14:29:16 -07:00
8a044754bd [XPU] Delay BF16 check to worker init for spawn compatibility (#22979)
Signed-off-by: chzhang <chaojun.zhang@intel.com>
2025-08-25 13:09:26 -07:00
9188ae7cb5 [Bugfix][V1][P/D]Fix the issue where repeated requests for the same input produce abnormal outputs for P2pNcclConnector (#23403)
Signed-off-by: Abatom <abzhonghua@gmail.com>
2025-08-25 12:57:08 -07:00
8a3cd90af5 [Kernel] Add fused grouped_topk kernel for MoE (#23274)
Signed-off-by: Xin Yang <xyangx@amazon.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-08-25 11:47:52 -07:00
2a167b2eeb [test][RL] Add sleep level 2 test and fix reload with sleep mode (#23521)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-08-26 00:25:52 +08:00
0ff902f3b4 [Refactor] Refactor persistent buffers with CpuGpuBuffer (#23515)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-25 08:44:48 -07:00
a9082a4d14 [Bugfix] Fix Qwen3 MoE GPTQ inference (#23490)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-25 06:40:20 -07:00
e0329ed4b4 Updates to Flex + VLLm integration (#21416)
Signed-off-by: drisspg <drisspguessous@gmail.com>
2025-08-25 09:32:42 -04:00
6879cd80ae [Refactor] Pass tokenizer explicitly instead of binding to prompt update (#23542)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-25 06:31:57 -07:00
e269be2ba2 [Doc] Add caution for API server scale-out (#23550)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-25 06:14:15 -07:00
5c4b6e66fe [Attention] Unify mamba and attention backend selection (#23171)
Signed-off-by: Ayush Satyam <ayushsatyam146@gmail.com>
2025-08-25 09:09:36 +00:00
d0a4a3f645 [misc] add shanghai meetup (#23535)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-08-25 17:00:03 +08:00
ebafb0936d [Bugfix] Allow dynamic number of patches for llava_onevision (#23525)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-25 08:34:54 +00:00
0cb7b065c3 Feature/benchmark/random mm data/images (#23119)
Signed-off-by: breno.skuk <breno.skuk@hcompany.ai>
2025-08-25 01:28:35 -07:00
2da02dd0d8 [Fix] DeepSeek V3.1 tool parser error message (#23492)
Signed-off-by: zitian.zhao <zitian.zhao@tencentmusic.com>
2025-08-25 00:56:39 -07:00
d765cf01fe [Core][Multimodal] Track encode cache entries by mm_hash and enable embedding sharing between requests (#22711)
Signed-off-by: knlnguyen1802 <knlnguyen1802@gmail.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: knlnguyen1802 <knlnguyen1802@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-08-25 00:41:17 -07:00
712d0f88d8 [Refactor] Dynamic target and content for prompt updates (#23411)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-24 23:39:58 -07:00
49ab23b3cc [gpt-oss] use reasoning channel for reasoning text in serving_chat (#22920)
Signed-off-by: Yu Guo <yuguo@meta.com>
2025-08-25 06:29:34 +00:00
c9abb10489 [Bugfix] Fix Dense module loading for sentence-transformers embedding models (simplified V2) (#23408)
Signed-off-by: FFFfff1FFFfff <yifanli0919@gmail.com>
2025-08-25 05:39:24 +00:00
787cdb3829 Migrate DonutImagePixelInputs to TensorSchema (#23509)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-25 05:02:15 +00:00
a5203d04df Migrate skyworkr1v inputs to TensorSchema (#23499)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-25 04:43:21 +00:00
99f8094400 Migrate tarsier inputs to TensorSchema (#23500)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-25 04:42:36 +00:00
170e8ea9ea [Misc] Unified linear print info (#23516)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-24 20:13:51 -07:00
a71e4765cc [Bugfix] Fix Qwen2.5-VL quantized model weights loading (#23512)
Signed-off-by: Zifei Tong <zifeitong@gmail.com>
2025-08-25 10:40:22 +08:00
39971db3aa Frontend: Adding LM Format Enforcer support to V1 engine (#22564)
Signed-off-by: Noam Gat <noamgat@gmail.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-24 19:31:22 -07:00
504d914314 [Perf] Add Triton config for DeepSeek V3 FP8 EP32 H200 (#23504)
Signed-off-by: Ming Yang <minos.future@gmail.com>
2025-08-24 18:06:35 -07:00
47455c424f [Doc: ]fix various typos in multiple files (#23487)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-25 00:04:04 +00:00
c7fc6b1354 fix incompatibililty with non cuda platform for nvfp4 (#23478)
Signed-off-by: Lu Fang <fanglu@fb.com>
Co-authored-by: Lucia (Lu) Fang <fanglu@meta.com>
2025-08-24 15:35:41 -07:00
ad78868450 [Misc] Remove unused slot_mapping buffer (#23502)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-24 14:03:36 -07:00
e2db1164a1 [Model] Enable BLOOM on V1 (#23488)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-24 13:30:47 +00:00
416f05929a [New Model]Donut model (#23229)
Signed-off-by: 汪志鹏 <wangzhipeng628@gmail.com>
2025-08-24 12:52:24 +00:00
5e021b4981 (Misc): add missing test for zero truncation size. (#23457)
Signed-off-by: teekenl <teekenlau@gmail.com>
2025-08-24 18:12:47 +08:00
1b9b16649c [Misc] update dict parse to EPLBConfig from json dumps to dict unpacking (#23305)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-08-24 08:06:34 +00:00
e76e233540 [kernel] Support W4A8 on Hopper (#23198)
Signed-off-by: czhu-cohere <conway.zhu@cohere.com>
2025-08-24 06:18:04 +00:00
a75277285b Migrate Paligemma inputs to TensorSchema (#23470)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-24 04:56:56 +00:00
9dc30b7068 [Bugfix] Add strong reference to CUDA pluggable allocator callbacks (#23477)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Eric Marcus <eric.marcus@kaiko.ai>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-08-24 12:56:17 +08:00
053278a5dc Migrate Pixtral inputs to TensorSchema (#23472)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-24 04:55:53 +00:00
c55c028998 [gpt-oss] Streaming Output for Python Tool (#23409)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-08-24 04:42:38 +00:00
65197a5fb3 [Misc] Modify CacheConfig import (#23459)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-23 06:05:27 +00:00
b8f17f5d98 Support DeepSeek-V3.1 tool call (#23454)
Signed-off-by: Xu Wenqing <xuwq1993@qq.com>
2025-08-23 05:50:16 +00:00
d9a55204ba fix(tests): Correct unreachable assertion in truncation test (#23425)
Signed-off-by: AzizCode92 <azizbenothman76@gmail.com>
2025-08-23 05:23:54 +00:00
b4e9fd811f Revert "[PERF] Use faster way of decode in tokenizer: avoid useless list-to-list conversion (#20000)" (#23396)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-23 04:16:48 +00:00
308fa287a8 Add glm4.5v tp2,4 fp8 config on H100_80GB (#23443)
Co-authored-by: Chenxi Yang <cxyang@meta.com>
2025-08-23 02:54:19 +00:00
fa78de9dc3 Quantization: support FP4 quantized models on AMD CDNA2/CDNA3 GPUs (#22527)
Signed-off-by: feng <fengli1702@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-22 20:53:21 -06:00
f6818a92cb [UX] Move Dockerfile DeepGEMM install to tools/install_deepgemm.sh (#23360)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-22 20:52:50 -06:00
23c939fd30 [Model] Support DP for ViT on MiniCPM-V-4 (#23327)
Signed-off-by: ycyaw66 <497410282@qq.com>
Co-authored-by: ycyaw66 <497410282@qq.com>
2025-08-23 02:14:41 +00:00
add1adfec7 [BugFix] Fix MinPLogitsProcessor.update_states() (#23401)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-23 08:22:11 +08:00
c80c53a30f [BugFix] Fix batch updates for pooling models (#23398)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-23 08:20:41 +08:00
24d0c9e6ed [NVIDIA][torch.compile] Support Flashinfer TRTLLM FP8-q/kv NVFP4-out Attention Kernel (#22703)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-08-22 22:09:05 +00:00
cc7ae5e7ca [BugFix][AMD][Quantization] Fix torch.compile issue where wvSplitKQ not being called when it should when using quantized FP8 model (#22281)
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
2025-08-22 21:47:57 +00:00
0313cf854d [PERF] PyTorch Symmetric Memory All-Reduce (#20759)
Signed-off-by: ilmarkov <imarkov@redhat.com>
Signed-off-by: ilmarkov <markovilya197@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: ilmarkov <imarkov@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-22 15:39:08 -06:00
0483fabc74 [CI/Build] add EP dependencies to docker (#21976)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-08-22 13:34:40 -07:00
da65bec309 add an env var for path to pre-downloaded flashinfer cubin files (#22675) 2025-08-22 19:25:45 +00:00
4645024d3a [Quantization] Allow GGUF quantization to skip unquantized layer (#23188)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-22 13:04:22 -06:00
cd7a3df26f [Bugfix] Fix broken Florence-2 model (#23426)
Signed-off-by: 汪志鹏 <wangzhipeng628@gmail.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: 汪志鹏 <wangzhipeng628@gmail.com>
2025-08-22 17:50:52 +00:00
32d2b4064f [Model] Add Ovis2.5 PP support (#23405)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-22 17:46:34 +00:00
22cf679aad [Doc]: fix various typos in multiple files (#23179)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-08-22 10:38:46 -07:00
b6d7d34fc6 Add unit tests for batched guided and non-guided requests (#23389)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-08-22 10:31:24 -07:00
341923b982 fix(tests): Ensure reliable CUDA cache clearing in MoE test (#23416)
Signed-off-by: AzizCode92 <azizbenothman76@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-22 17:20:59 +00:00
424fb7a5d2 [BugFix] Fix the issue where image embeddings were incorrectly split.… (#23366)
Signed-off-by: bppps <bpppsaka@gmail.com>
Co-authored-by: zouyu.zzx <zouyu.zzx@alibaba-inc.com>
Co-authored-by: bppps <bpppsaka@gmail.com>
2025-08-22 16:56:46 +00:00
88491c1b6b [Speculators][Speculative Decoding] Fix Qwen 2 Eagle3 Support (#23337) 2025-08-22 16:39:19 +00:00
613a23b57f [Bugfix]: Installing dev environment due to pydantic incompatible version (#23353)
Signed-off-by: Martin Hickey <martin.hickey@ie.ibm.com>
2025-08-22 16:22:29 +00:00
51a215300b [Fix] Bump triton version in rocm-build requirements (#21630)
Signed-off-by: Burkhard Ringlein <ngl@zurich.ibm.com>
2025-08-22 15:13:39 +00:00
ebe14621e3 [Bug fix] Dynamically setting the backend variable for genai_perf_tests in the run-nightly-benchmark script (#23375)
Signed-off-by: Naman Lalit <nl2688@nyu.edu>
2025-08-22 15:12:28 +00:00
325aa3dee9 [Misc] local import code clean (#23420)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-08-22 14:01:35 +00:00
a073be6d87 [Doc] Update the doc for log probs + prefix caching (#23399)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-22 13:20:39 +00:00
695e7adcd2 [misc] Remove outdate comment about runai_model_streamer (#23421)
Signed-off-by: carlory <baofa.fan@daocloud.io>
2025-08-22 13:08:53 +00:00
281710ef9a [Attention] Allow V1 flash_attn to support cross-attention (#23297)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-08-22 12:10:16 +00:00
808d2e9aa0 [Misc] Move M-RoPE init logic to _init_mrope_positions (#23422)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-22 03:07:22 -07:00
285178b3b8 [V0 Deprecation] Remove V0 LoRA test (#23418)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-22 09:56:51 +00:00
88016c372a [Bugfix] Fix pooling models on CPU backend (#23392)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-08-22 09:47:17 +00:00
998720859c Migrate MiniCPMOAudioInputs to TensorSchema (#21847)
Signed-off-by: Benji Beck <benjibeck@meta.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-22 16:43:29 +08:00
0ba1b54ac6 [gpt-oss] add input/output usage in responses api when harmony context is leveraged (#22667)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-08-22 08:32:24 +00:00
53415653ff [P/D][Nixl] Make kv cache register compatible with hybrid memory allocator (#23079)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-08-21 22:30:48 -07:00
17373dcd93 [Attention] Refactor AttentionMetadata Preparation for Encoder-only Models (#23154)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-08-22 05:05:59 +00:00
5964069367 [New Model] Add Seed-Oss model (#23241)
Signed-off-by: jiabin.00 <jiabin.00@bytedance.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-22 04:58:10 +00:00
de9c085e17 [Misc] Add gemma3 chat template with pythonic-style function calling (#17149)
Signed-off-by: Philip Chung <philip.f.chung@gmail.com>
2025-08-21 21:06:50 -07:00
111692bb8c [CI] Add end-to-end V1 min_tokens test coverage (#22495)
Signed-off-by: Arjun Reddy <189282188+arjunbreddy22@users.noreply.github.com>
Co-authored-by: Arjun Reddy <189282188+arjunbreddy22@users.noreply.github.com>
2025-08-21 22:04:07 -06:00
394591e343 [Feature] Enable DeepGEMM Linear on B200; 1.5% E2E throughput improvement (#23351)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-08-21 21:01:08 -07:00
3ac849665d [CI/Build] Skip Idefics3 and SmolVLM generation test again (#23356)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-22 03:39:46 +00:00
0b9cc56fac Migrate MllamaImagePixelInputs to TensorSchema (#22020)
Signed-off-by: Benji Beck <benjibeck@meta.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-22 11:28:49 +08:00
8896eb72eb [Deprecation] Remove prompt_token_ids arg fallback in LLM.generate and LLM.embed (#18800)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-22 10:56:57 +08:00
19fe1a0510 [Kernel] Add FP8 support with FlashMLA backend (#22668)
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
2025-08-22 02:26:32 +00:00
480bdf5a7b [Core] Support custom executor qualname (#23314)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-08-22 09:40:54 +08:00
5368f76855 [Feature][Responses API] Support logprobs(non-stream) (#23319)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-08-21 23:09:16 +00:00
8ef6b8a38c Always use cache mounts when installing vllm to avoid populating pip cache in the image. Also remove apt cache. (#23270)
Signed-off-by: Valentyn Tymofieiev <valentyn@google.com>
2025-08-21 18:01:03 -04:00
3bbe11cc13 [Perf] Small optimizations for silu_mul_fp8_quant_deep_gemm (#23265)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-21 17:56:15 -04:00
c5041f899f [CI] improve pr comments bot (#23380) 2025-08-21 14:49:03 -07:00
8b5fe6eb51 [CI] Clean up actions: remove helm, publish workflows and improve pr … (#23377) 2025-08-21 14:29:04 -07:00
800349c2a5 [Structured Outputs] Refactor bitmask construction into get_grammar_bitmask (#23361)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-21 20:53:33 +00:00
044931f97b Make sure that vectorize_with_alignment produced vectorized global loads (#23182) 2025-08-21 20:06:54 +00:00
1d353b6352 [Core] Always use tensor cores for Flashinfer Decode Wrapper (#23214)
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
2025-08-21 16:02:11 -04:00
3496274663 [Misc] Convert VLLM_TORCH_PROFILER_DIR path to absolute (#23191)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-08-21 15:49:09 -04:00
8a19303173 [BugFix][gpt-oss] Fix Chat Completion with Multiple Output Message (#23318)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-08-21 10:31:11 -07:00
603fbbbce0 [Misc] Misc code cleanup/simplification (#23304)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-21 17:22:55 +00:00
10f535c086 [Bugfix] Fix port conflict by obtaining a list of open ports upfront (#21894)
Signed-off-by: Ming Yang <minos.future@gmail.com>
2025-08-21 10:22:18 -07:00
48bfb0c9b7 [Bug] Fix R1 Accuracy 0 Bug (#23294)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-21 13:11:28 -04:00
f8ce022948 add tg-mxfp4-moe-test (#22540)
Signed-off-by: siyuanf <siyuanf@nvidia.com>
Signed-off-by: Siyuan Fu <siyuanf@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-21 17:05:47 +00:00
0278f1ac3a Fix nvfp4 swizzling (#23140)
Signed-off-by: yiliu30 <yi4.liu@intel.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-08-21 16:54:50 +00:00
a482e4e769 Migrate MolmoImageInputs to TensorSchema (#22022)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-21 16:54:08 +00:00
e0b056e443 [ci/build] Fix abi tag for aarch64 (#23329)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-08-21 23:32:55 +08:00
79f05e4436 [Multimodal] Always enable hashing mm data (#23308)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-21 07:23:28 -07:00
f8daddcc4c [Bugfix] set system_message in phi4mini chat template (#23309)
Signed-off-by: zhuangqh <zhuangqhc@gmail.com>
2025-08-21 14:22:39 +00:00
c8e33c72c6 [V1] Remove unnecessary check for main thread (#23298)
Signed-off-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
2025-08-21 14:08:35 +00:00
d70a16625d [Performance] V1 Pooling Models E2E Performance Optimization (#23162)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-08-21 13:26:09 +00:00
5cc54f7c5b [Doc] Fix batch-level DP example (#23325)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-08-21 06:16:38 -07:00
0c6e40bbaa [Refactor] Simplify code for MM budget (#23310)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-21 08:00:16 +00:00
2e2000f352 [Model] Add LFM2 architecture (#22845)
Signed-off-by: Paul Pak <paulpak58@gmail.com>
2025-08-21 09:35:07 +02:00
31282401b6 [BugFix] Fix Python 3.9 Support (#23306)
Signed-off-by: Jared O'Connell <46976761+jaredoconnell@users.noreply.github.com>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-08-20 23:23:56 -07:00
0c31e28e95 [Bugfix] Fix extra whitespace in strings caused by newline (#23272)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-20 22:03:00 -07:00
f571ff8eb6 [Sampler] Support returning final logprobs (#22387)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-20 21:28:32 -07:00
f64ee61d9e [CI] Block the cu126 wheel build while broken (#23285)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-21 04:21:05 +00:00
8993073dc1 [CI] Delete images older than 24h. (#23291)
Signed-off-by: Qiliang Cui <derrhein@gmail.com>
2025-08-20 21:15:20 -07:00
655a09f653 [Model][VLM] Support R-4B Model (#23246)
Signed-off-by: yannqi <yannqi@qq.com>
Signed-off-by: 杨奇(yann qi) <51905299+yannqi@users.noreply.github.com>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: yannqiyang <yannqiyang@tencent.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-08-21 04:08:52 +00:00
f94bf9b924 [Compile] Fix Compile Warning SM100 Cutlass MLA (#23287)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-08-21 03:09:39 +00:00
3663870c72 [V1][Mamba1] - Full CUDA and Piecewise CUDA Graphs Support (#23035)
Signed-off-by: asafg <asafg@ai21.com>
Signed-off-by: asafg <39553475+Josephasafg@users.noreply.github.com>
Co-authored-by: asafg <asafg@ai21.com>
2025-08-20 20:08:51 -07:00
2461d9e562 [CI/Build] Split out mm processor tests (#23260)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-20 20:05:20 -07:00
7be5d113d8 [CPU] Refactor CPU W8A8 scaled_mm (#23071)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-08-21 09:34:24 +08:00
b029de9902 [Optimization] Make new_block_ids None if empty (#23262)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-08-20 18:25:56 -07:00
bbea1cefdd [CI Bugfix] Fix CI by fully removing --enable-prompt-adapter (#23284)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-20 17:18:12 -07:00
f5aa307d77 Remove duplicate entry in vllm.attention.__all__ (#23296)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-08-20 17:14:59 -07:00
4b795020ed [EP] Add logging for experts map (#22685)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-08-20 23:46:06 +00:00
c86af22f31 [Fix] remove is_marlin param in benchmark_moe (#23286) 2025-08-20 22:04:21 +00:00
10cc12ba66 Feature/mla tests (#23195)
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-08-20 21:46:47 +00:00
a4fbb32fab Remove chunked_prefill_enabled flag in V1 MLA (#23183)
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
2025-08-20 21:43:17 +00:00
1b125004be [misc] fix multiple arch wheels for the nightly index (#23110)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-08-20 14:15:34 -07:00
4fbda0b20c [Feature] use --eplb_config to set eplb param (#20562)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: rongfu.leng <lenronfu@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-20 14:07:28 -07:00
4e51fa8cba Do not use eval() to convert unknown types (#23266)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-08-20 13:28:30 -07:00
bf7c99dfc4 [Perf] Speed up function _convert_tokens_to_string_with_added_encoders by 13.7x (#20413)
Signed-off-by: Saurabh Misra <misra.saurabh1@gmail.com>
Signed-off-by: Aseem Saxena <aseem.bits@gmail.com>
Co-authored-by: codeflash-ai[bot] <148906541+codeflash-ai[bot]@users.noreply.github.com>
Co-authored-by: Aseem Saxena <aseem.bits@gmail.com>
2025-08-20 13:17:11 -07:00
b95697d731 [Frontend] improve error logging of chat completion (#22957)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-08-20 13:03:37 -07:00
582bbe6bd7 [Fix] correct tool_id for kimi-k2 when use tool_choice=required (#21259)
Co-authored-by: wangzhengtao <wangzhengtao@msh.team>
2025-08-20 12:59:54 -07:00
0cdbf5e61c [Kernel/Quant] Remove the original marlin format and qqq (#23204)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-20 15:13:36 -04:00
ebe56a0064 Small fix for Command-A-Vision (#23268)
Signed-off-by: donglu <donglu@cohere.com>
2025-08-20 18:15:18 +00:00
f77a0802b7 Limit HTTP header count and size (#23267)
Signed-off-by: Taneem Ibrahim <taneem.ibrahim@gmail.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Taneem Ibrahim <taneem.ibrahim@gmail.com>
2025-08-20 17:57:37 +00:00
c4477f55e5 Migrate Mistral3ImagePixelInputs to TensorSchema (#21945)
Signed-off-by: Benji Beck <benjibeck@meta.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-20 17:37:29 +00:00
dfd2382039 [torch.compile] Support conditional torch.compile per module (#22269)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-08-20 16:52:59 +00:00
3b11b26b50 [FIXBUG ] Allow disabling rocm_aiter_fa backend for ROCm GPUs not compatible with AITER (#22795)
Signed-off-by: JartX <sagformas@epdcenter.es>
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-08-20 09:08:29 -07:00
d6d13bd49e [Misc] Add max_seq_len to CommonAttentionMetadata (#23216)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-20 09:05:29 -07:00
5efd6905bc [CLI][Doc] Formalize --mm-encoder-tp-mode (#23190)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-20 23:42:28 +08:00
b17109beea [Kernel] CUTLASS MoE FP8: Integrate cuda moe permute/unpermute (#23045)
Signed-off-by: Shixian Cui <shixian@amazon.com>
2025-08-20 10:35:26 -04:00
4449235843 [Bugfix] Ensure correctness of HCXVision processing (#23254)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-20 14:19:30 +00:00
38217877aa [Fix] fix offline env use local mode path (#22526)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-08-20 13:34:49 +00:00
c6d80a7a96 [Model] Improve olmo and olmo2 (#23228)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-20 12:47:05 +00:00
7cd17e22d7 [Model][V1] Support Ernie MTP (#22169)
Signed-off-by: zhouchong <zhouchong03@baidu.com>
Co-authored-by: zhouchong <zhouchong03@baidu.com>
2025-08-20 20:41:55 +08:00
50df09fe13 Update to flashinfer-python==0.2.12 and disable AOT compile for non-release image (#23129)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-20 08:05:54 -04:00
68fcd3fa73 [Bugfix] Ensure correctness of Cohere2Vision processing (#23245)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-20 11:09:18 +00:00
83e69a09d6 [Model] Support deepseek with eagle (#21086)
Signed-off-by: Xin Yang <xyangx@amazon.com>
2025-08-20 19:01:31 +08:00
3aa8c10038 Fix missing quotes (#23242)
Signed-off-by: Shiming Zhang <wzshiming@hotmail.com>
2025-08-20 10:46:59 +00:00
103f1ec8d3 [Model] use autoWeightsLoader for gptoss (#22446)
Signed-off-by: calvin chen <wen.chen@dynamia.ai>
2025-08-20 10:16:27 +00:00
d983769c41 fix cuda graph (#22721)
Signed-off-by: fsx950223 <fsx950223@outlook.com>
2025-08-20 06:24:37 +00:00
8fd920924c [BugFix] Fix stuck stats/metrics after requests are aborted (#22995)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-20 13:50:29 +08:00
de7b67a023 [CI/Build] Sync multimodal tests (#23181)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-20 05:06:42 +00:00
f729023272 [CI/Build] Also check DP in benchmarks throughput script (#23038)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-08-20 04:09:27 +00:00
1a3079a15e chore: support pytorch format in lora (#22790)
Signed-off-by: jaeeun.kil <rha3122@naver.com>
Signed-off-by: 길재은 <rha3122@naver.com>
2025-08-20 04:02:50 +00:00
941f56858a Fix a performance comparison issue in Benchmark Suite (#23047)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
Signed-off-by: Louie Tsai <louie.tsai@intel.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Li, Jiang <bigpyj64@gmail.com>
2025-08-20 03:14:32 +00:00
a634733f67 [Attention] Optimize make_local_attention_virtual_batches for Flash Attention (#23185)
Signed-off-by: linzebing <linzebing1995@gmail.com>
2025-08-20 02:57:47 +00:00
64ab3c7253 [Doc] Update V1 status of various pooling models (#23189)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-20 10:33:41 +08:00
e58c5a9768 [Core] Add torch profiler CPU traces for AsyncLLM. (#21794)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-08-20 02:32:47 +00:00
d46d417b58 [CI Perf] Only test bfloat16 for tests/compile/test_fusion_all_reduce.py (#23132)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-19 20:18:52 -06:00
0167efe20d [Core] Optimize scheduler request removal for single completions (#21917)
Signed-off-by: chiliu <chiliu@paypal.com>
Signed-off-by: chiliu <cliu_whu@yeah.net>
Co-authored-by: chiliu <chiliu@paypal.com>
2025-08-19 18:25:59 -07:00
c32e6ad1f6 [Quantization] Bump Compressed Tensors Version (#23202)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
Co-authored-by: Dipika Sikka <dipikasikka1@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-20 00:39:28 +00:00
1630cc8d0f [Benchmarks] Add video inputs to ShareGPTDataset. (#23199)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-08-19 23:42:31 +00:00
14e2b0730b [BugFix] fix CUTLASS MLA full cudagraph (#23200)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-08-19 22:17:08 +00:00
0f4f0191d8 [CI/Build] Replace lm-eval gsm8k tests with faster implementation (#23002)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-19 15:07:30 -07:00
a38b8af4c3 [NVIDIA] Add SM100 Flashinfer Cutlass MoE fp8 backend (#22357)
Signed-off-by: Amir Klein <203507526+amirkl94@users.noreply.github.com>
2025-08-19 18:01:53 -04:00
21dce80ea9 [CI/Build] Add support for Python 3.13 (#13164)
Signed-off-by: mgoin <michael@neuralmagic.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-19 13:49:34 -07:00
e61bac87ee [Misc] Minor refactoring for FlashInfer backend (#23147)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-19 13:11:51 -07:00
80141bbf2f fix: use cache_salt for gpt-oss (#23186)
Signed-off-by: Marko Rosenmueller <5467316+dr75@users.noreply.github.com>
2025-08-19 18:12:25 +00:00
b94faf9d50 [Bugfix] Fix accuracy issue when using flashinfer cutlass moe, TP=1 and modelopt. (#23125)
Signed-off-by: Bill Nell <bnell@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-19 14:00:51 -04:00
5b5f350d67 [Misc] Enable yapf for FlashInfer backend (#23193)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-19 10:33:47 -07:00
f7cf5b512e [Frontend] Add /collective_rpc API endpoint (#23075)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-08-19 17:29:32 +00:00
03d4235fd2 [Misc] Fix the benchmark's README and improve the error messages for the benchmark's argument checks (#22654)
Signed-off-by: tanruixiang <tanruixiang0104@gmail.com>
2025-08-19 10:18:51 -07:00
d6a1a20973 [CI/Build] Update transformers to v4.55.2 (#23093)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-19 10:06:17 -07:00
a70d0bd0a3 Migrate LlavaOnevisionMultiInputs to TensorSchema (#21844)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-19 17:02:02 +00:00
24f4d1a224 Add return_token_ids parameter to OpenAI API endpoints (#22587)
Signed-off-by: Yuge Zhang <scottyugochang@gmail.com>
Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-08-19 09:48:31 -07:00
4f510bc2a1 [Model] Removes redundant all-reduce operation in Qwen3MoeSparseMoeBlock (#23169)
Signed-off-by: Yizhou Liu <liu_yizhou@outlook.com>
2025-08-19 16:18:41 +00:00
1298c67795 [FEAT] [Performance] Enable DP for ViT in Qwen2.5VL (#22742)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-08-19 15:25:57 +00:00
4d9c61993a [Bugfix] Fix benchmark_moe.py (#23177)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-19 13:39:40 +00:00
b87cb97a53 [Model] support new model ovis2.5 (#23084)
Signed-off-by: myselvess <244285088@qq.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-19 13:12:59 +00:00
f856c33ce9 [Model] Add multi_label_classification support (#23173)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-08-19 12:54:30 +00:00
03752dba8f [NVIDIA] Support Flashinfer TRTLLM FP8-q/kv/out Attention Kernel (#21716)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-08-19 08:22:15 -04:00
40f26734b9 [Misc] Fix seq_lens for graph capture (#23175)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-19 03:58:16 -07:00
2c3f557f08 [Doc] use power of 2 (#23172) 2025-08-19 03:16:23 -07:00
21bcc8263f [Misc] Avoid accessing req_ids inside a loop (#23159)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-19 09:39:38 +00:00
5bfe0dea7a [bug fix] Fix llama4 spec decoding (#22691)
Signed-off-by: qizixi <qizixi@meta.com>
Co-authored-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
2025-08-19 08:53:24 +00:00
31fd3265c8 [Bugfix] Fix broken Minimax-01-VL model (#22116)
Signed-off-by: Isotr0py <2037008807@qq.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-19 08:49:29 +00:00
31436e8b4f [Misc] Add request_id into benchmark_serve.py (#23065)
Signed-off-by: yangxia <yangxiast@gmail.com>
2025-08-19 08:32:18 +00:00
4efd43e9b4 Fix GLM-4.5V-FP8 numerical issue (#22949)
Signed-off-by: qizixi <qizixi@meta.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-19 07:56:31 +00:00
3c8a787247 [Benchmark] Add flag --served-model-name to benchmark_serving_multi_turn (#22889)
Signed-off-by: daniels <daniels@pliops.com>
2025-08-19 07:48:07 +00:00
01a08739e0 [misc] split engine_model into json file for nsys profile tool (#23117)
Signed-off-by: Grace Ho <grho@nvidia.com>
Signed-off-by: Grace Ho <146482179+gracehonv@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-19 15:44:53 +08:00
fda9537c5e [Model] Support Pipeline Parallelism for moonshotai/Kimi-VL-A3B-Thinking-2506 (#23114)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-19 14:24:31 +08:00
90bbe0a5ad [Log] Warning Once for Cutlass MLA (#23137)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-08-18 23:24:16 -07:00
e75f342261 Migrate InternVLImagePixelInputs (in nemotron_vl.py) to TensorSchema (#22023)
Signed-off-by: Benji Beck <benjibeck@meta.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-19 13:48:26 +08:00
78dba404ad [Hardware][IBM Z]Enable v1 for s390x and s390x dockerfile fixes (#22725)
Signed-off-by: Nikhil Suryawanshi <suryawanshin74@gmail.com>
2025-08-19 04:40:37 +00:00
e9d6a3db69 [TPU] make ptxla not imported when using tpu_commons (#23081)
Signed-off-by: Chengji Yao <chengjiyao@gmail.com>
Signed-off-by: Chengji Yao <chengjiyao@google.com>
Co-authored-by: Chengji Yao <chengjiyao@gmail.com>
2025-08-19 11:46:42 +08:00
a4454e9401 chore: disable enable_cpp_symbolic_shape_guards (#23048)
Signed-off-by: Xiao Liu <xiszishu@gmail.com>
2025-08-18 23:08:05 -04:00
14006840ea [V0 Deprecation] Remove V0 FlashInfer attention backend (#22776)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-18 19:54:16 -07:00
6603288736 [CI][V0 Deprecation] Removed V0 Only Chunked Prefill and Prefix Caching Tests (#22871)
Signed-off-by: Robert Shaw <robshaw@redhat.com>
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-18 17:39:01 -07:00
95e3095136 [Misc] Add @tdoublep as a maintainer of hybrid model and Triton-attention related code (#23122)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-08-19 08:31:38 +08:00
c9b38be8aa [Spec Decode] Make propose_draft_token_ids non-blocking for lower TTFT (#23041)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-18 17:20:38 -07:00
0dd3f4f5ab [Misc] Minor refactoring for prepare_inputs (#23116)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-18 16:58:05 -07:00
498259ccce Install tpu_info==0.4.0 to fix core dump for TPU (#23135) 2025-08-18 16:23:33 -07:00
6d25e3fd6e Use Blackwell FlashInfer MXFP4 MoE by default if available (#23008)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-18 15:25:49 -07:00
ac6eb49de3 fix: OpenAI SDK compat (ResponseTextConfig) (#23126)
Signed-off-by: breno.skuk <breno.skuk@hcompany.ai>
Signed-off-by: Breno Baldas Skuk <breno.skuk@hcompany.ai>
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-18 15:22:59 -07:00
bf756321c7 [CI Bugfix] Pin openai<1.100 to unblock CI (#23118)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-18 12:14:01 -07:00
0e3bb543f0 [Bugfix] Support compile for Transformers multimodal (#23095)
Signed-off-by: raushan <raushan@huggingface.co>
2025-08-18 13:35:48 +00:00
569aefd134 chore: remove unnecessary patch_padding_side for the chatglm model (#23090)
Signed-off-by: carlory <baofa.fan@daocloud.io>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-18 12:32:13 +00:00
d3f71f1224 [Refactor] Get prompt updates earlier (#23097)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-18 12:31:53 +00:00
5a30bd10d8 [Bugfix] fix IntermediateTensors equal method (#23027)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-08-18 02:58:11 -07:00
27e8d1ea3e [Refactor] Define MultiModalKwargsItems separate from MultiModalKwargs (#23053)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-18 09:52:00 +00:00
5c79b0d648 [XPU][CI]add xpu env vars in CI scripts (#22946)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-08-18 09:47:03 +00:00
5f5664b3e4 [XPU] Fix compile size for xpu (#23069)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-08-18 00:04:08 -07:00
89657a557c [Misc] Fix backward compatibility from #23030 (#23070)
Signed-off-by: Roger Wang <hey@rogerw.me>
Co-authored-by: Roger Wang <hey@rogerw.me>
2025-08-17 23:33:29 -07:00
08d5f7113a [Misc] refactor function name (#23029)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-08-17 22:16:21 -07:00
b2fd0b81e0 [Bugfix][CI] Machete kernels: deterministic ordering for more cache hits (#23055)
Signed-off-by: Andy Lo <andy@mistral.ai>
2025-08-17 22:10:26 -07:00
9f1c642254 [Bugfix] fix Qwen2.5-Omni processor output mapping (#23058)
Signed-off-by: double7 <33449816+DoubleVII@users.noreply.github.com>
Co-authored-by: 杨森 <yangsen.double7@bytedance.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-17 22:09:11 -07:00
7be3a59d8e [Misc] enhance static type hint (#23059)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-08-17 22:09:08 -07:00
8ea0c2753a [Misc] Minor code cleanup for _get_prompt_logprobs_dict (#23064)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-17 18:16:03 -07:00
1863 changed files with 154008 additions and 113042 deletions

View File

@ -5,11 +5,11 @@ import os
import sys
import zipfile
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 400 MiB
# Note that we have 400 MiB quota, please use it wisely.
# See https://github.com/pypi/support/issues/3792 .
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 450 MiB
# Note that we have 800 MiB quota, please use it wisely.
# See https://github.com/pypi/support/issues/6326 .
# Please also sync the value with the one in Dockerfile.
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 400))
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 450))
def print_top_10_largest_files(zip_file):

View File

@ -8,7 +8,8 @@ template = """<!DOCTYPE html>
<html>
<body>
<h1>Links for vLLM</h1/>
<a href="../{wheel_html_escaped}">{wheel}</a><br/>
<a href="../{x86_wheel_html_escaped}">{x86_wheel}</a><br/>
<a href="../{arm_wheel_html_escaped}">{arm_wheel}</a><br/>
</body>
</html>
"""
@ -21,7 +22,25 @@ filename = os.path.basename(args.wheel)
with open("index.html", "w") as f:
print(f"Generated index.html for {args.wheel}")
# sync the abi tag with .buildkite/scripts/upload-wheels.sh
if "x86_64" in filename:
x86_wheel = filename
arm_wheel = filename.replace("x86_64", "aarch64").replace(
"manylinux1", "manylinux2014"
)
elif "aarch64" in filename:
x86_wheel = filename.replace("aarch64", "x86_64").replace(
"manylinux2014", "manylinux1"
)
arm_wheel = filename
else:
raise ValueError(f"Unsupported wheel: {filename}")
# cloudfront requires escaping the '+' character
f.write(
template.format(wheel=filename, wheel_html_escaped=filename.replace("+", "%2B"))
template.format(
x86_wheel=x86_wheel,
x86_wheel_html_escaped=x86_wheel.replace("+", "%2B"),
arm_wheel=arm_wheel,
arm_wheel_html_escaped=arm_wheel.replace("+", "%2B"),
)
)

View File

@ -1,12 +0,0 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m HandH1998/QQQ-Llama-3-8b-g128 -b 32 -l 1000 -f 5 -t 1
model_name: "HandH1998/QQQ-Llama-3-8b-g128"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.419
- name: "exact_match,flexible-extract"
value: 0.416
limit: 1000
num_fewshot: 5

View File

@ -3,4 +3,3 @@ Meta-Llama-3-70B-Instruct.yaml
Mixtral-8x7B-Instruct-v0.1.yaml
Qwen2-57B-A14-Instruct.yaml
DeepSeek-V2-Lite-Chat.yaml
Meta-Llama-3-8B-QQQ.yaml

View File

@ -2,7 +2,7 @@
# We can use this script to compute baseline accuracy on GSM for transformers.
#
# Make sure you have lm-eval-harness installed:
# pip install lm-eval==0.4.4
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d#egg=lm-eval[api]
usage() {
echo``

View File

@ -3,7 +3,7 @@
# We use this for fp8, which HF does not support.
#
# Make sure you have lm-eval-harness installed:
# pip install lm-eval==0.4.4
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d#egg=lm-eval[api]
usage() {
echo``

View File

@ -141,7 +141,7 @@ When run, benchmark script generates results under `benchmark/results` folder, a
`compare-json-results.py` compares two `benchmark_results.json` files and provides performance ratio e.g. for Output Tput, Median TTFT and Median TPOT.
If only one benchmark_results.json is passed, `compare-json-results.py` compares different TP and PP configurations in the benchmark_results.json instead.
Here is an example using the script to compare result_a and result_b with Model, Dataset name, input/output lenght, max concurrency and qps.
Here is an example using the script to compare result_a and result_b with Model, Dataset name, input/output length, max concurrency and qps.
`python3 compare-json-results.py -f results_a/benchmark_results.json -f results_b/benchmark_results.json`
| | Model | Dataset Name | Input Len | Output Len | # of max concurrency | qps | results_a/benchmark_results.json | results_b/benchmark_results.json | perf_ratio |

View File

@ -8,7 +8,7 @@ This benchmark aims to:
Latest results: [results link](https://blog.vllm.ai/2024/09/05/perf-update.html), scroll to the end.
Latest reproduction guilde: [github issue link](https://github.com/vllm-project/vllm/issues/8176)
Latest reproduction guide: [github issue link](https://github.com/vllm-project/vllm/issues/8176)
## Setup
@ -17,7 +17,7 @@ Latest reproduction guilde: [github issue link](https://github.com/vllm-project/
- SGLang: `lmsysorg/sglang:v0.3.2-cu121`
- LMDeploy: `openmmlab/lmdeploy:v0.6.1-cu12`
- TensorRT-LLM: `nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3`
- *NOTE: we uses r24.07 as the current implementation only works for this version. We are going to bump this up.*
- *NOTE: we use r24.07 as the current implementation only works for this version. We are going to bump this up.*
- Check [nightly-pipeline.yaml](nightly-pipeline.yaml) for the concrete docker images, specs and commands we use for the benchmark.
- Hardware
- 8x Nvidia A100 GPUs

View File

@ -3,44 +3,129 @@
import argparse
import json
import os
from importlib import util
import pandas as pd
plotly_found = util.find_spec("plotly.express") is not None
def compare_data_columns(
files, name_column, data_column, info_cols, drop_column, debug=False
):
print("\ncompare_data_column: " + data_column)
"""
Align concatenation by keys derived from info_cols instead of row order.
- Pick one canonical key list: subset of info_cols present in ALL files.
- For each file: set index to those keys, aggregate duplicates
- (mean for metric, first for names).
- Concat along axis=1 (indexes align), then reset_index so callers can
- group by columns.
- If --debug, add a <file_label>_name column per file.
"""
print("\ncompare_data_column:", data_column)
frames = []
raw_data_cols = []
compare_frames = []
# 1) choose a canonical key list from info_cols that exists in ALL files
cols_per_file = []
for f in files:
try:
df_tmp = pd.read_json(f, orient="records")
except Exception as err:
raise ValueError(f"Failed to read {f}") from err
cols_per_file.append(set(df_tmp.columns))
key_cols = [c for c in info_cols if all(c in cset for cset in cols_per_file)]
if not key_cols:
# soft fallback: use any info_cols present in the first file
key_cols = [c for c in info_cols if c in list(cols_per_file[0])]
if not key_cols:
raise ValueError(
"No common key columns found from info_cols across the input files."
)
# 2) build a single "meta" block (keys as columns) once, aligned by the key index
meta_added = False
for file in files:
data_df = pd.read_json(file)
serving_df = data_df.dropna(subset=[drop_column], ignore_index=True)
# Show all info columns in the first couple columns
if not frames:
for col in info_cols:
if col not in serving_df.columns:
print(f"Skipping missing column: {col}")
continue
frames.append(serving_df[col])
# only show test name under debug mode
if debug is True:
serving_df = serving_df.rename(columns={name_column: file + "_name"})
frames.append(serving_df[file + "_name"])
df = pd.read_json(file, orient="records")
file = "/".join(file.split("/")[:-1])
serving_df = serving_df.rename(columns={data_column: file})
frames.append(serving_df[file])
raw_data_cols.append(file)
compare_frames.append(serving_df[file])
# Keep rows that actually have the compared metric (same as original behavior)
if drop_column in df.columns:
df = df.dropna(subset=[drop_column], ignore_index=True)
# Stabilize numeric key columns (harmless if missing)
for c in (
"Input Len",
"Output Len",
"TP Size",
"PP Size",
"# of max concurrency.",
"qps",
):
if c in df.columns:
df[c] = pd.to_numeric(df[c], errors="coerce")
# Ensure all key columns exist
for c in key_cols:
if c not in df.columns:
df[c] = pd.NA
# Set index = key_cols and aggregate duplicates → unique MultiIndex
df_idx = df.set_index(key_cols, drop=False)
# meta (key columns), unique per key
meta = df_idx[key_cols]
if not meta.index.is_unique:
meta = meta.groupby(level=key_cols, dropna=False).first()
# metric series for this file, aggregated to one row per key
file_label = "/".join(file.split("/")[:-1]) or os.path.basename(file)
s = df_idx[data_column]
if not s.index.is_unique:
s = s.groupby(level=key_cols, dropna=False).mean()
s.name = file_label # column label like original
# add meta once (from first file) so keys are the leftmost columns
if not meta_added:
frames.append(meta)
meta_added = True
# (NEW) debug: aligned test-name column per file
if debug and name_column in df_idx.columns:
name_s = df_idx[name_column]
if not name_s.index.is_unique:
name_s = name_s.groupby(level=key_cols, dropna=False).first()
name_s.name = f"{file_label}_name"
frames.append(name_s)
frames.append(s)
raw_data_cols.append(file_label)
compare_frames.append(s)
# Generalize ratio: for any file N>=2, add ratio (fileN / file1)
if len(compare_frames) >= 2:
# Compare numbers among two files
ratio_df = compare_frames[1] / compare_frames[0]
frames.append(ratio_df)
compare_frames.pop(1)
base = compare_frames[0]
current = compare_frames[-1]
ratio = current / base
ratio = ratio.mask(base == 0) # avoid inf when baseline is 0
ratio.name = f"Ratio 1 vs {len(compare_frames)}"
frames.append(ratio)
# 4) concat on columns with aligned MultiIndex;
# then reset_index to return keys as columns
concat_df = pd.concat(frames, axis=1)
concat_df = concat_df.reset_index(drop=True).reset_index()
if "index" in concat_df.columns:
concat_df = concat_df.drop(columns=["index"])
# Ensure key/info columns appear first (in your info_cols order)
front = [c for c in info_cols if c in concat_df.columns]
rest = [c for c in concat_df.columns if c not in front]
concat_df = concat_df[front + rest]
print(raw_data_cols)
return concat_df, raw_data_cols
@ -67,6 +152,15 @@ def split_json_by_tp_pp(
df = pd.DataFrame(data)
# Keep only "serving" tests
name_col = next(
(c for c in ["Test name", "test_name", "Test Name"] if c in df.columns), None
)
if name_col:
df = df[
df[name_col].astype(str).str.contains(r"serving", case=False, na=False)
].copy()
# Handle alias column names
rename_map = {
"tp_size": "TP Size",
@ -124,7 +218,7 @@ if __name__ == "__main__":
"--xaxis",
type=str,
default="# of max concurrency.",
help="column name to use as X Axis in comparision graph",
help="column name to use as X Axis in comparison graph",
)
args = parser.parse_args()
@ -181,7 +275,6 @@ if __name__ == "__main__":
f"Expected subset: {filtered_info_cols}, "
f"but DataFrame has: {list(output_df.columns)}"
)
output_df_sorted = output_df.sort_values(by=existing_group_cols)
output_groups = output_df_sorted.groupby(existing_group_cols, dropna=False)
for name, group in output_groups:
@ -189,8 +282,7 @@ if __name__ == "__main__":
text_file.write(html_msgs_for_data_cols[i])
text_file.write(html)
if plot is True:
import pandas as pd
if plot and plotly_found:
import plotly.express as px
df = group[raw_data_cols]

View File

@ -181,18 +181,14 @@ launch_vllm_server() {
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
server_command="vllm serve $model \
-tp $tp \
--model $model \
--port $port \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
server_command="vllm serve $model \
-tp $tp \
--model $model \
--port $port \
$server_args"
fi

View File

@ -382,7 +382,7 @@ run_genai_perf_tests() {
client_command="genai-perf profile \
-m $model \
--service-kind openai \
--backend vllm \
--backend "$backend" \
--endpoint-type chat \
--streaming \
--url localhost:$port \

View File

@ -365,8 +365,7 @@ run_serving_tests() {
continue
fi
server_command="$server_envs python3 \
-m vllm.entrypoints.openai.api_server \
server_command="$server_envs vllm serve \
$server_args"
# run the server

View File

@ -1,6 +1,6 @@
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"test_name": "serving_llama8B_bf16_tp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -32,7 +32,7 @@
}
},
{
"test_name": "serving_llama8B_tp2_sharegpt",
"test_name": "serving_llama8B_bf16_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -64,7 +64,7 @@
}
},
{
"test_name": "serving_llama8B_tp4_sharegpt",
"test_name": "serving_llama8B_bf16_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -96,7 +96,7 @@
}
},
{
"test_name": "serving_llama8B_tp1_random_128_128",
"test_name": "serving_llama8B_bf16_tp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -131,7 +131,7 @@
}
},
{
"test_name": "serving_llama8B_tp2_random_128_128",
"test_name": "serving_llama8B_bf16_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -166,7 +166,7 @@
}
},
{
"test_name": "serving_llama8B_tp4_random_128_128",
"test_name": "serving_llama8B_bf16_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -198,5 +198,413 @@
"random-output-len": 128,
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
}
]

View File

@ -1,6 +1,6 @@
[
{
"test_name": "serving_llama8B_pp1_sharegpt",
"test_name": "serving_llama8B_bf16_pp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -32,7 +32,39 @@
}
},
{
"test_name": "serving_llama8B_pp3_sharegpt",
"test_name": "serving_llama8B_bf16_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_bf16_pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -64,7 +96,7 @@
}
},
{
"test_name": "serving_llama8B_tp2pp3_sharegpt",
"test_name": "serving_llama8B_bf16_tp2pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -97,7 +129,7 @@
}
},
{
"test_name": "serving_llama8B_pp1_random_128_128",
"test_name": "serving_llama8B_bf16_pp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -132,7 +164,42 @@
}
},
{
"test_name": "serving_llama8B_pp3_random_128_128",
"test_name": "serving_llama8B_bf16_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_bf16_pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -167,7 +234,7 @@
}
},
{
"test_name": "serving_llama8B_tp2pp3_random_128_128",
"test_name": "serving_llama8B_bf16_tp2pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -201,5 +268,553 @@
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_pp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp2pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_pp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp2pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_pp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp2pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_pp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp2pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
}
]

View File

@ -1,21 +1,22 @@
steps:
# aarch64 + CUDA builds
- label: "Build arm64 wheel - CUDA 12.8"
id: build-wheel-arm64-cuda-12-8
# aarch64 + CUDA builds. PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
- label: "Build arm64 wheel - CUDA 12.9"
depends_on: ~
id: build-wheel-arm64-cuda-12-9
agents:
queue: arm64_cpu_queue_postmerge
commands:
# #NOTE: torch_cuda_arch_list is derived from upstream PyTorch build files here:
# https://github.com/pytorch/pytorch/blob/main/.ci/aarch64_linux/aarch64_ci_build.sh#L7
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg VLLM_MAIN_CUDA_VERSION=12.9 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
# x86 + CUDA builds
- label: "Build wheel - CUDA 12.8"
depends_on: ~
id: build-wheel-cuda-12-8
agents:
queue: cpu_queue_postmerge
@ -28,6 +29,7 @@ steps:
DOCKER_BUILDKIT: "1"
- label: "Build wheel - CUDA 12.6"
depends_on: ~
id: build-wheel-cuda-12-6
agents:
queue: cpu_queue_postmerge
@ -39,44 +41,61 @@ steps:
env:
DOCKER_BUILDKIT: "1"
# Note(simon): We can always build CUDA 11.8 wheel to ensure the build is working.
# However, this block can be uncommented to save some compute hours.
# - block: "Build CUDA 11.8 wheel"
# key: block-build-cu118-wheel
- label: "Build wheel - CUDA 11.8"
# depends_on: block-build-cu118-wheel
id: build-wheel-cuda-11-8
# x86 + CUDA builds
- label: "Build wheel - CUDA 12.9"
depends_on: ~
id: build-wheel-cuda-12-9
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
- block: "Build release image"
- label: "Build release image (x86)"
depends_on: ~
key: block-release-image-build
- label: "Build release image"
depends_on: block-release-image-build
id: build-release-image
id: build-release-image-x86
agents:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
# re-tag to default image tag and push, just in case arm64 build fails
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
# PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
- label: "Build release image (arm64)"
depends_on: ~
id: build-release-image-arm64
agents:
queue: arm64_cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
# Add job to create multi-arch manifest
- label: "Create multi-arch manifest"
depends_on:
- build-release-image-x86
- build-release-image-arm64
id: create-multi-arch-manifest
agents:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "docker manifest create public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-x86_64 public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-aarch64 --amend"
- "docker manifest push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- label: "Annotate release workflow"
depends_on:
- build-release-image
- create-multi-arch-manifest
- build-wheel-cuda-12-8
- build-wheel-cuda-12-6
- build-wheel-cuda-11-8
id: annotate-release-workflow
agents:
queue: cpu_queue_postmerge
@ -123,18 +142,24 @@ steps:
env:
DOCKER_BUILDKIT: "1"
- block: "Build Neuron release image"
key: block-neuron-release-image-build
depends_on: ~
- label: "Build and publish Neuron release image"
depends_on: block-neuron-release-image-build
- label: "Build and publish nightly multi-arch image to DockerHub"
depends_on:
- create-multi-arch-manifest
if: build.env("NIGHTLY") == "1"
agents:
queue: neuron-postmerge
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest --progress plain -f docker/Dockerfile.neuron ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest"
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version)"
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly"
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
- "docker push vllm/vllm-openai:nightly"
- "docker push vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
# Clean up old nightly builds (keep only last 14)
- "bash .buildkite/scripts/cleanup-nightly-builds.sh"
plugins:
- docker-login#v3.0.0:
username: vllmbot
password-env: DOCKERHUB_TOKEN
env:
DOCKER_BUILDKIT: "1"

View File

@ -14,18 +14,33 @@ buildkite-agent annotate --style 'info' --context 'release-workflow' << EOF
To download the wheel:
\`\`\`
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux2014_aarch64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu126/vllm-${RELEASE_VERSION}+cu126-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu118/vllm-${RELEASE_VERSION}+cu118-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu129/vllm-${RELEASE_VERSION}+cu129-cp38-abi3-manylinux1_x86_64.whl .
\`\`\`
To download and upload the image:
\`\`\`
docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}
docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT} vllm/vllm-openai
docker tag vllm/vllm-openai vllm/vllm-openai:latest
docker tag vllm/vllm-openai vllm/vllm-openai:v${RELEASE_VERSION}
docker push vllm/vllm-openai:latest
docker push vllm/vllm-openai:v${RELEASE_VERSION}
docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}-x86_64
docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}-aarch64
docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}-x86_64 vllm/vllm-openai:x86_64
docker tag vllm/vllm-openai:x86_64 vllm/vllm-openai:latest-x86_64
docker tag vllm/vllm-openai:x86_64 vllm/vllm-openai:v${RELEASE_VERSION}-x86_64
docker push vllm/vllm-openai:latest-x86_64
docker push vllm/vllm-openai:v${RELEASE_VERSION}-x86_64
docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}-aarch64 vllm/vllm-openai:aarch64
docker tag vllm/vllm-openai:aarch64 vllm/vllm-openai:latest-aarch64
docker tag vllm/vllm-openai:aarch64 vllm/vllm-openai:v${RELEASE_VERSION}-aarch64
docker push vllm/vllm-openai:latest-aarch64
docker push vllm/vllm-openai:v${RELEASE_VERSION}-aarch64
docker manifest create vllm/vllm-openai:latest vllm/vllm-openai:latest-x86_64 vllm/vllm-openai:latest-aarch64 --amend
docker manifest create vllm/vllm-openai:v${RELEASE_VERSION} vllm/vllm-openai:v${RELEASE_VERSION}-x86_64 vllm/vllm-openai:v${RELEASE_VERSION}-aarch64 --amend
docker manifest push vllm/vllm-openai:latest
docker manifest push vllm/vllm-openai:v${RELEASE_VERSION}
\`\`\`
EOF

View File

@ -0,0 +1,97 @@
#!/bin/bash
set -ex
# Clean up old nightly builds from DockerHub, keeping only the last 14 builds
# This script uses DockerHub API to list and delete old tags with "nightly-" prefix
# DockerHub API endpoint for vllm/vllm-openai repository
REPO_API_URL="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags"
# Get DockerHub token from environment
if [ -z "$DOCKERHUB_TOKEN" ]; then
echo "Error: DOCKERHUB_TOKEN environment variable is not set"
exit 1
fi
# Function to get all tags from DockerHub
get_all_tags() {
local page=1
local all_tags=""
while true; do
local response=$(curl -s -H "Authorization: Bearer $DOCKERHUB_TOKEN" \
"$REPO_API_URL?page=$page&page_size=100")
# Get both last_updated timestamp and tag name, separated by |
local tags=$(echo "$response" | jq -r '.results[] | select(.name | startswith("nightly-")) | "\(.last_updated)|\(.name)"')
if [ -z "$tags" ]; then
break
fi
all_tags="$all_tags$tags"$'\n'
page=$((page + 1))
done
# Sort by timestamp (newest first) and extract just the tag names
echo "$all_tags" | sort -r | cut -d'|' -f2
}
delete_tag() {
local tag_name="$1"
echo "Deleting tag: $tag_name"
local delete_url="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags/$tag_name"
local response=$(curl -s -X DELETE -H "Authorization: Bearer $DOCKERHUB_TOKEN" "$delete_url")
if echo "$response" | jq -e '.detail' > /dev/null 2>&1; then
echo "Warning: Failed to delete tag $tag_name: $(echo "$response" | jq -r '.detail')"
else
echo "Successfully deleted tag: $tag_name"
fi
}
# Get all nightly- prefixed tags, sorted by last_updated timestamp (newest first)
echo "Fetching all tags from DockerHub..."
all_tags=$(get_all_tags)
if [ -z "$all_tags" ]; then
echo "No tags found to clean up"
exit 0
fi
# Count total tags
total_tags=$(echo "$all_tags" | wc -l)
echo "Found $total_tags tags"
# Keep only the last 14 builds (including the current one)
tags_to_keep=14
tags_to_delete=$((total_tags - tags_to_keep))
if [ $tags_to_delete -le 0 ]; then
echo "No tags need to be deleted (only $total_tags tags found, keeping $tags_to_keep)"
exit 0
fi
echo "Will delete $tags_to_delete old tags, keeping the newest $tags_to_keep"
# Get tags to delete (skip the first $tags_to_keep tags)
tags_to_delete_list=$(echo "$all_tags" | tail -n +$((tags_to_keep + 1)))
if [ -z "$tags_to_delete_list" ]; then
echo "No tags to delete"
exit 0
fi
# Delete old tags
echo "Deleting old tags..."
while IFS= read -r tag; do
if [ -n "$tag" ]; then
delete_tag "$tag"
# Add a small delay to avoid rate limiting
sleep 1
fi
done <<< "$tags_to_delete_list"
echo "Cleanup completed successfully"

View File

@ -86,10 +86,6 @@ if [[ $commands == *"pytest -v -s models/test_registry.py"* ]]; then
commands=${commands//"pytest -v -s models/test_registry.py"/"pytest -v -s models/test_registry.py -k 'not BambaForCausalLM and not GritLM and not Mamba2ForCausalLM and not Zamba2ForCausalLM'"}
fi
if [[ $commands == *"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"* ]]; then
commands=${commands//"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"/"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2 and not BambaForCausalLM and not Gemma2ForCausalLM and not Grok1ModelForCausalLM and not Zamba2ForCausalLM and not Gemma2Model and not GritLM'"}
fi
if [[ $commands == *"pytest -v -s compile/test_basic_correctness.py"* ]]; then
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s compile/test_basic_correctness.py"}
fi
@ -164,16 +160,9 @@ if [[ $commands == *" entrypoints/llm "* ]]; then
--ignore=entrypoints/llm/test_chat.py \
--ignore=entrypoints/llm/test_accuracy.py \
--ignore=entrypoints/llm/test_init.py \
--ignore=entrypoints/llm/test_generate_multiple_loras.py \
--ignore=entrypoints/llm/test_prompt_validation.py "}
fi
#Obsolete currently
##ignore certain Entrypoints/llm tests
#if [[ $commands == *" && pytest -v -s entrypoints/llm/test_guided_generate.py"* ]]; then
# commands=${commands//" && pytest -v -s entrypoints/llm/test_guided_generate.py"/" "}
#fi
# --ignore=entrypoints/openai/test_encoder_decoder.py \
# --ignore=entrypoints/openai/test_embedding.py \
# --ignore=entrypoints/openai/test_oot_registration.py

View File

@ -25,8 +25,8 @@ numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$NUMA_NODE
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$NUMA_NODE"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
# Run the image, setting --shm-size=4g for tensor parallel.
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE"-avx2 cpu-test-"$NUMA_NODE"-avx2
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=16 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=16 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE"-avx2 cpu-test-"$NUMA_NODE"-avx2
function cpu_tests() {
set -e
@ -46,57 +46,74 @@ function cpu_tests() {
set -e
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
# Run kernel tests
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -x -v -s tests/kernels/test_onednn.py"
# Run basic model test
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
# Note: disable until supports V1
# pytest -v -s tests/kernels/attention/test_cache.py -m cpu_model
# pytest -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
# pytest -x -v -s tests/kernels/attention/test_cache.py -m cpu_model
# pytest -x -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
# Note: disable Bart until supports V1
pytest -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
VLLM_CPU_SGL_KERNEL=1 pytest -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
pytest -x -v -s tests/models/language/generation -m cpu_model
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model
pytest -v -s tests/models/language/pooling -m cpu_model
pytest -v -s tests/models/multimodal/generation \
--ignore=tests/models/multimodal/generation/test_mllama.py \
pytest -x -v -s tests/models/language/pooling -m cpu_model
pytest -x -v -s tests/models/multimodal/generation \
--ignore=tests/models/multimodal/generation/test_pixtral.py \
-m cpu_model"
# Run compressed-tensor test
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
pytest -x -s -v \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
# Note: disable it until supports V1
# Run AWQ test
# docker exec cpu-test-"$NUMA_NODE" bash -c "
# set -e
# VLLM_USE_V1=0 pytest -s -v \
# VLLM_USE_V1=0 pytest -x -s -v \
# tests/quantization/test_ipex_quant.py"
# Run multi-lora tests
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
pytest -x -s -v \
tests/lora/test_qwen2vl.py"
# online serving
# online serving: tp+pp
docker exec cpu-test-"$NUMA_NODE" bash -c '
set -e
VLLM_CPU_OMP_THREADS_BIND=$E2E_OMP_THREADS VLLM_CPU_SGL_KERNEL=1 vllm serve meta-llama/Llama-3.2-3B-Instruct -tp=2 -pp=2 &
server_pid=$!
timeout 600 bash -c "until curl localhost:8000/v1/models; do sleep 1; done" || exit 1
vllm bench serve \
--backend vllm \
--dataset-name random \
--model meta-llama/Llama-3.2-3B-Instruct \
--num-prompts 20 \
--endpoint /v1/completions'
--endpoint /v1/completions
kill -s SIGTERM $server_pid &'
# online serving: tp+dp
docker exec cpu-test-"$NUMA_NODE" bash -c '
set -e
VLLM_CPU_OMP_THREADS_BIND=$E2E_OMP_THREADS VLLM_CPU_SGL_KERNEL=1 vllm serve meta-llama/Llama-3.2-3B-Instruct -tp=2 -dp=2 &
server_pid=$!
timeout 600 bash -c "until curl localhost:8000/v1/models; do sleep 1; done" || exit 1
vllm bench serve \
--backend vllm \
--dataset-name random \
--model meta-llama/Llama-3.2-3B-Instruct \
--num-prompts 20 \
--endpoint /v1/completions
kill -s SIGTERM $server_pid &'
}
# All of CPU tests are expected to be finished less than 40 mins.
export -f cpu_tests
timeout 1.5h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
timeout 2h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"

View File

@ -1,64 +0,0 @@
#!/bin/bash
# This script build the Neuron docker image and run the API server inside the container.
# It serves a sanity check for compilation and basic model usage.
set -e
set -v
image_name="neuron/vllm-ci"
container_name="neuron_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
HF_CACHE="$(realpath ~)/huggingface"
mkdir -p "${HF_CACHE}"
HF_MOUNT="/root/.cache/huggingface"
HF_TOKEN=$(aws secretsmanager get-secret-value --secret-id "ci/vllm-neuron/hf-token" --region us-west-2 --query 'SecretString' --output text | jq -r .VLLM_NEURON_CI_HF_TOKEN)
NEURON_COMPILE_CACHE_URL="$(realpath ~)/neuron_compile_cache"
mkdir -p "${NEURON_COMPILE_CACHE_URL}"
NEURON_COMPILE_CACHE_MOUNT="/root/.cache/neuron_compile_cache"
# Try building the docker image
aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws
# prune old image and containers to save disk space, and only once a day
# by using a timestamp file in tmp.
if [ -f /tmp/neuron-docker-build-timestamp ]; then
last_build=$(cat /tmp/neuron-docker-build-timestamp)
current_time=$(date +%s)
if [ $((current_time - last_build)) -gt 86400 ]; then
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes / force the system prune for old images as well.
docker volume prune -f && docker system prune -f
echo "$current_time" > /tmp/neuron-docker-build-timestamp
fi
else
date "+%s" > /tmp/neuron-docker-build-timestamp
fi
docker build -t "${image_name}" -f docker/Dockerfile.neuron .
# Setup cleanup
remove_docker_container() {
docker image rm -f "${image_name}" || true;
}
trap remove_docker_container EXIT
# Run the image
docker run --rm -it --device=/dev/neuron0 --network bridge \
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
-e "HF_TOKEN=${HF_TOKEN}" \
-v "${NEURON_COMPILE_CACHE_URL}:${NEURON_COMPILE_CACHE_MOUNT}" \
-e "NEURON_COMPILE_CACHE_URL=${NEURON_COMPILE_CACHE_MOUNT}" \
--name "${container_name}" \
${image_name} \
/bin/bash -c "
set -e; # Exit on first error
python3 /workspace/vllm/examples/offline_inference/neuron.py;
python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys;
for f in /workspace/vllm/tests/neuron/2_core/*.py; do
echo \"Running test file: \$f\";
python3 -m pytest \$f -v --capture=tee-sys;
done
"

View File

@ -0,0 +1,191 @@
#!/bin/bash
# This script build the Ascend NPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Base ubuntu image with basic ascend development libraries and python installed
VLLM_ASCEND_REPO="https://github.com/vllm-project/vllm-ascend.git"
CONFIG_FILE_REMOTE_PATH="tests/e2e/vllm_interface/vllm_test.cfg"
TEST_RUN_CONFIG_FILE="vllm_test.cfg"
VLLM_ASCEND_TMP_DIR=
# Get the test run configuration file from the vllm-ascend repository
fetch_vllm_test_cfg() {
VLLM_ASCEND_TMP_DIR=$(mktemp -d)
# Ensure that the temporary directory is cleaned up when an exception occurs during configuration file retrieval
cleanup() {
rm -rf "${VLLM_ASCEND_TMP_DIR}"
}
trap cleanup EXIT
GIT_TRACE=1 git clone -v --depth 1 "${VLLM_ASCEND_REPO}" "${VLLM_ASCEND_TMP_DIR}"
if [ ! -f "${VLLM_ASCEND_TMP_DIR}/${CONFIG_FILE_REMOTE_PATH}" ]; then
echo "Error: file '${CONFIG_FILE_REMOTE_PATH}' does not exist in the warehouse" >&2
exit 1
fi
# If the file already exists locally, just overwrite it
cp "${VLLM_ASCEND_TMP_DIR}/${CONFIG_FILE_REMOTE_PATH}" "${TEST_RUN_CONFIG_FILE}"
echo "Copied ${CONFIG_FILE_REMOTE_PATH} to ${TEST_RUN_CONFIG_FILE}"
# Since the trap will be overwritten later, and when it is executed here, the task of cleaning up resources
# when the trap is abnormal has been completed, so the temporary resources are manually deleted here.
rm -rf "${VLLM_ASCEND_TMP_DIR}"
trap - EXIT
}
# Downloads test run configuration file from a remote URL.
# Loads the configuration into the current script environment.
get_config() {
if [ ! -f "${TEST_RUN_CONFIG_FILE}" ]; then
echo "Error: file '${TEST_RUN_CONFIG_FILE}' does not exist in the warehouse" >&2
exit 1
fi
source "${TEST_RUN_CONFIG_FILE}"
echo "Base docker image name that get from configuration: ${BASE_IMAGE_NAME}"
return 0
}
# get test running configuration.
fetch_vllm_test_cfg
get_config
# Check if the function call was successful. If not, exit the script.
if [ $? -ne 0 ]; then
exit 1
fi
image_name="npu/vllm-ci:${BUILDKITE_COMMIT}_${EPOCHSECONDS}"
container_name="npu_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
# BUILDKITE_AGENT_NAME format is {hostname}-{agent_idx}-{npu_card_num}cards
agent_idx=$(echo "${BUILDKITE_AGENT_NAME}" | awk -F'-' '{print $(NF-1)}')
echo "agent_idx: ${agent_idx}"
builder_name="cachebuilder${agent_idx}"
builder_cache_dir="/mnt/docker-cache${agent_idx}"
mkdir -p ${builder_cache_dir}
# Try building the docker image
cat <<EOF | DOCKER_BUILDKIT=1 docker build \
--add-host cache-service-vllm.nginx-pypi-cache.svc.cluster.local:${PYPI_CACHE_HOST} \
--builder ${builder_name} --cache-from type=local,src=${builder_cache_dir} \
--cache-to type=local,dest=${builder_cache_dir},mode=max \
--progress=plain --load -t ${image_name} -f - .
FROM ${BASE_IMAGE_NAME}
# Define environments
ENV DEBIAN_FRONTEND=noninteractive
RUN pip config set global.index-url http://cache-service-vllm.nginx-pypi-cache.svc.cluster.local:${PYPI_CACHE_PORT}/pypi/simple && \
pip config set global.trusted-host cache-service-vllm.nginx-pypi-cache.svc.cluster.local && \
apt-get update -y && \
apt-get install -y python3-pip git vim wget net-tools gcc g++ cmake libnuma-dev && \
rm -rf /var/cache/apt/* && \
rm -rf /var/lib/apt/lists/*
# Install for pytest to make the docker build cache layer always valid
RUN --mount=type=cache,target=/root/.cache/pip \
pip install pytest>=6.0 modelscope
WORKDIR /workspace/vllm
# Install vLLM dependencies in advance. Effect: As long as common.txt remains unchanged, the docker cache layer will be valid.
COPY requirements/common.txt /workspace/vllm/requirements/common.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements/common.txt
COPY . .
# Install vLLM
RUN --mount=type=cache,target=/root/.cache/pip \
VLLM_TARGET_DEVICE="empty" python3 -m pip install -v -e /workspace/vllm/ --extra-index https://download.pytorch.org/whl/cpu/ && \
python3 -m pip uninstall -y triton
# Install vllm-ascend
WORKDIR /workspace
ARG VLLM_ASCEND_REPO=https://github.com/vllm-project/vllm-ascend.git
ARG VLLM_ASCEND_TAG=main
RUN git config --global url."https://gh-proxy.test.osinfra.cn/https://github.com/".insteadOf "https://github.com/" && \
git clone --depth 1 \$VLLM_ASCEND_REPO --branch \$VLLM_ASCEND_TAG /workspace/vllm-ascend
# Install vllm dependencies in advance. Effect: As long as common.txt remains unchanged, the docker cache layer will be valid.
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r /workspace/vllm-ascend/requirements.txt
RUN --mount=type=cache,target=/root/.cache/pip \
export PIP_EXTRA_INDEX_URL=https://mirrors.huaweicloud.com/ascend/repos/pypi && \
source /usr/local/Ascend/ascend-toolkit/set_env.sh && \
source /usr/local/Ascend/nnal/atb/set_env.sh && \
export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/usr/local/Ascend/ascend-toolkit/latest/`uname -i`-linux/devlib && \
python3 -m pip install -v -e /workspace/vllm-ascend/ --extra-index https://download.pytorch.org/whl/cpu/
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
ENV VLLM_USE_MODELSCOPE=True
WORKDIR /workspace/vllm-ascend
CMD ["/bin/bash"]
EOF
# Setup cleanup
remove_docker_container() {
docker rm -f "${container_name}" || true;
docker image rm -f "${image_name}" || true;
docker system prune -f || true;
}
trap remove_docker_container EXIT
# Generate corresponding --device args based on BUILDKITE_AGENT_NAME
# Ascend NPU BUILDKITE_AGENT_NAME format is {hostname}-{agent_idx}-{npu_card_num}cards, and agent_idx starts from 1.
# e.g. atlas-a2-001-1-2cards means this is the 1-th agent on atlas-a2-001 host, and it has 2 NPU cards.
# returns --device /dev/davinci0 --device /dev/davinci1
parse_and_gen_devices() {
local input="$1"
local index cards_num
if [[ "$input" =~ ([0-9]+)-([0-9]+)cards$ ]]; then
index="${BASH_REMATCH[1]}"
cards_num="${BASH_REMATCH[2]}"
else
echo "parse error" >&2
return 1
fi
local devices=""
local i=0
while (( i < cards_num )); do
local dev_idx=$(((index - 1)*cards_num + i ))
devices="$devices --device /dev/davinci${dev_idx}"
((i++))
done
# trim leading space
devices="${devices#"${devices%%[![:space:]]*}"}"
# Output devices: assigned to the caller variable
printf '%s' "$devices"
}
devices=$(parse_and_gen_devices "${BUILDKITE_AGENT_NAME}") || exit 1
# Run the image and execute the Out-Of-Tree (OOT) platform interface test case on Ascend NPU hardware.
# This test checks whether the OOT platform interface is functioning properly in conjunction with
# the hardware plugin vllm-ascend.
model_cache_dir=/mnt/modelscope${agent_idx}
mkdir -p ${model_cache_dir}
docker run \
${devices} \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v ${model_cache_dir}:/root/.cache/modelscope \
--entrypoint="" \
--name "${container_name}" \
"${image_name}" \
bash -c '
set -e
pytest -v -s tests/e2e/vllm_interface/
'

View File

@ -61,8 +61,8 @@ echo "Results will be stored in: $RESULTS_DIR"
echo "--- Installing Python dependencies ---"
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
&& python3 -m pip install --progress-bar off hf-transfer
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
echo "--- Python dependencies installed ---"
export VLLM_USE_V1=1
export VLLM_XLA_CHECK_RECOMPILATION=1

View File

@ -61,8 +61,8 @@ echo "Results will be stored in: $RESULTS_DIR"
echo "--- Installing Python dependencies ---"
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
&& python3 -m pip install --progress-bar off hf-transfer
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
echo "--- Python dependencies installed ---"
export VLLM_USE_V1=1
export VLLM_XLA_CHECK_RECOMPILATION=1

View File

@ -23,21 +23,27 @@ docker run \
--device /dev/dri \
-v /dev/dri/by-path:/dev/dri/by-path \
--entrypoint="" \
-e "HF_TOKEN=${HF_TOKEN}" \
-e "ZE_AFFINITY_MASK=${ZE_AFFINITY_MASK}" \
--name "${container_name}" \
"${image_name}" \
sh -c '
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
bash -c '
set -e
echo $ZE_AFFINITY_MASK
pip install tblib==3.1.0
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
VLLM_ATTENTION_BACKEND=TRITON_ATTN python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
cd tests
pytest -v -s v1/core
pytest -v -s v1/engine
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
pytest -v -s v1/structured_output
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_tree_attention.py
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
pytest -v -s v1/test_metrics
pytest -v -s v1/test_serial_utils.py
pytest -v -s v1/test_utils.py
pytest -v -s v1/test_metrics_reader.py
'

View File

@ -18,7 +18,7 @@ vllm bench throughput --input-len 256 --output-len 256 --output-json throughput_
bench_throughput_exit_code=$?
# run server-based benchmarks and upload the result to buildkite
python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-chat-hf &
vllm serve meta-llama/Llama-2-7b-chat-hf &
server_pid=$!
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

View File

@ -0,0 +1,59 @@
#!/bin/bash
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Setup script for Prime-RL integration tests
# This script prepares the environment for running Prime-RL tests with nightly vLLM
set -euo pipefail
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
REPO_ROOT="$(cd "${SCRIPT_DIR}/../.." && pwd)"
PRIME_RL_REPO="https://github.com/PrimeIntellect-ai/prime-rl.git"
PRIME_RL_DIR="${REPO_ROOT}/prime-rl"
echo "Setting up Prime-RL integration test environment..."
# Clean up any existing Prime-RL directory
if [ -d "${PRIME_RL_DIR}" ]; then
echo "Removing existing Prime-RL directory..."
rm -rf "${PRIME_RL_DIR}"
fi
# Install UV if not available
if ! command -v uv &> /dev/null; then
echo "Installing UV package manager..."
curl -LsSf https://astral.sh/uv/install.sh | sh
source $HOME/.local/bin/env
fi
# Clone Prime-RL repository at specific branch for reproducible tests
PRIME_RL_BRANCH="integ-vllm-main"
echo "Cloning Prime-RL repository at branch: ${PRIME_RL_BRANCH}..."
git clone --branch "${PRIME_RL_BRANCH}" --single-branch "${PRIME_RL_REPO}" "${PRIME_RL_DIR}"
cd "${PRIME_RL_DIR}"
echo "Setting up UV project environment..."
export UV_PROJECT_ENVIRONMENT=/usr/local
ln -s /usr/bin/python3 /usr/local/bin/python
# Remove vllm pin from pyproject.toml
echo "Removing vllm pin from pyproject.toml..."
sed -i '/vllm==/d' pyproject.toml
# Sync Prime-RL dependencies
echo "Installing Prime-RL dependencies..."
uv sync --inexact && uv sync --inexact --all-extras
# Verify installation
echo "Verifying installations..."
uv run python -c "import vllm; print(f'vLLM version: {vllm.__version__}')"
uv run python -c "import prime_rl; print('Prime-RL imported successfully')"
echo "Prime-RL integration test environment setup complete!"
echo "Running Prime-RL integration tests..."
export WANDB_MODE=offline # this makes this test not require a WANDB_API_KEY
uv run pytest -vs tests/integration/test_rl.py -m gpu
echo "Prime-RL integration tests completed!"

View File

@ -17,7 +17,7 @@ if [ "$disk_usage" -gt "$threshold" ]; then
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes / force the system prune for old images as well.
docker volume prune -f && docker system prune --force --filter "until=72h" --all
docker volume prune -f && docker system prune --force --filter "until=24h" --all
echo "Docker images and volumes cleanup completed."
else
echo "Disk usage is below $threshold%. No cleanup needed."

View File

@ -14,8 +14,19 @@ fi
# Get the single wheel file
wheel="${wheel_files[0]}"
# Rename 'linux' to 'manylinux1' in the wheel filename
new_wheel="${wheel/linux/manylinux1}"
# Detect architecture and rename 'linux' to appropriate manylinux version
arch=$(uname -m)
if [[ $arch == "x86_64" ]]; then
manylinux_version="manylinux1"
elif [[ $arch == "aarch64" ]]; then
manylinux_version="manylinux2014"
else
echo "Warning: Unknown architecture $arch, using manylinux1 as default"
manylinux_version="manylinux1"
fi
# Rename 'linux' to the appropriate manylinux version in the wheel filename
new_wheel="${wheel/linux/$manylinux_version}"
mv -- "$wheel" "$new_wheel"
wheel="$new_wheel"
@ -47,14 +58,15 @@ python3 .buildkite/generate_index.py --wheel "$normal_wheel"
aws s3 cp "$wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu126"* ]]; then
if [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
elif [[ $normal_wheel == *"cu128"* ]]; then
# if $normal_wheel matches cu128, do not upload the index.html
echo "Skipping index files for cu128 wheels"
else
# only upload index.html for cu128 wheels (default wheels)
# only upload index.html for cu129 wheels (default wheels) as it
# is available on both x86 and arm64
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
fi
@ -63,14 +75,15 @@ fi
aws s3 cp "$wheel" "s3://vllm-wheels/nightly/"
aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu126"* ]]; then
if [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
elif [[ $normal_wheel == *"cu128"* ]]; then
# if $normal_wheel matches cu128, do not upload the index.html
echo "Skipping index files for cu128 wheels"
else
# only upload index.html for cu128 wheels (default wheels)
# only upload index.html for cu129 wheels (default wheels) as it
# is available on both x86 and arm64
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
fi

File diff suppressed because it is too large Load Diff

32
.coveragerc Normal file
View File

@ -0,0 +1,32 @@
[run]
source = vllm
omit =
*/tests/*
*/test_*
*/__pycache__/*
*/build/*
*/dist/*
*/vllm.egg-info/*
*/third_party/*
*/examples/*
*/benchmarks/*
*/docs/*
[report]
exclude_lines =
pragma: no cover
def __repr__
if self.debug:
if settings.DEBUG
raise AssertionError
raise NotImplementedError
if 0:
if __name__ == .__main__.:
class .*\bProtocol\):
@(abc\.)?abstractmethod
[html]
directory = htmlcov
[xml]
output = coverage.xml

24
.github/.bc-linter.yml vendored Normal file
View File

@ -0,0 +1,24 @@
# doc: https://github.com/pytorch/test-infra/blob/main/tools/stronghold/docs/bc_linter_config.md
version: 1
paths:
# We temporarily disable globally, and will only enable with `annotations.include`
# include:
# - "vllm/v1/attetion/*.py"
# - "vllm/v1/core/*.py"
exclude:
- "**/*.py"
scan:
functions: true # check free functions and methods
classes: true # check classes/dataclasses
public_only: true # ignore names starting with "_" at any level
annotations:
include: # decorators that forceinclude a symbol
- name: "bc_linter_include" # matched by simple name or dotted suffix
propagate_to_members: false # for classes, include methods/inner classes
exclude: # decorators that forceexclude a symbol
- name: "bc_linter_skip" # matched by simple name or dotted suffix
propagate_to_members: true # for classes, exclude methods/inner classes
excluded_violations: [] # e.g. ["ParameterRenamed", "FieldTypeChanged"]

86
.github/CODEOWNERS vendored
View File

@ -2,20 +2,22 @@
# for more info about CODEOWNERS file
# This lists cover the "core" components of vLLM that require careful review
/vllm/attention @LucasWilkinson
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/core @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/engine/llm_engine.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/model_executor/layers/fused_moe @mgoin
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @NickLucche
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
/vllm/multimodal @DarkLight1337 @ywang96
/vllm/model_executor/layers/mamba @tdoublep
/vllm/model_executor/model_loader @22quinn
/vllm/multimodal @DarkLight1337 @ywang96 @NickLucche
/vllm/vllm_flash_attn @LucasWilkinson
/vllm/lora @jeejeelee
/vllm/reasoning @aarnphm
/vllm/entrypoints @aarnphm
/vllm/reasoning @aarnphm @chaunceyjiang
/vllm/entrypoints @aarnphm @chaunceyjiang
/vllm/compilation @zou3519 @youkaichao @ProExpertProg
/vllm/distributed/kv_transfer @NickLucche @ApostaC
CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# Any change to the VllmConfig changes can have a large user-facing impact,
@ -24,40 +26,63 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
/vllm/v1/structured_output @mgoin @russellb @aarnphm
/vllm/v1/attention @LucasWilkinson
/vllm/v1/attention/backends/flashinfer.py @mgoin
/vllm/v1/attention/backends/triton_attn.py @tdoublep
/vllm/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
/vllm/v1/sample @22quinn @houseroad @njhill
/vllm/v1/spec_decode @benchislett @luccafong
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
/vllm/v1/kv_cache_interface.py @heheda12345
/vllm/v1/offloading @ApostaC
# Test ownership
/.buildkite/lm-eval-harness @mgoin @simon-mo
/tests/async_engine @njhill @robertgshaw2-redhat @simon-mo
/tests/basic_correctness/test_chunked_prefill @rkooo567 @comaniac
/tests/distributed/test_multi_node_assignment.py @youkaichao
/tests/distributed/test_pipeline_parallel.py @youkaichao
/tests/distributed/test_same_node.py @youkaichao
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo @aarnphm
/tests/kernels @tlrmchlsmth @WoosukKwon @yewentao256
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo @aarnphm @NickLucche
/tests/evals @mgoin
/tests/kernels @mgoin @tlrmchlsmth @WoosukKwon @yewentao256
/tests/models @DarkLight1337 @ywang96
/tests/multimodal @DarkLight1337 @ywang96
/tests/prefix_caching @comaniac @KuntaiDu
/tests/multimodal @DarkLight1337 @ywang96 @NickLucche
/tests/quantization @mgoin @robertgshaw2-redhat @yewentao256
/tests/test_inputs.py @DarkLight1337 @ywang96
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
/tests/v1/structured_output @mgoin @russellb @aarnphm
/tests/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
/tests/weight_loading @mgoin @youkaichao @yewentao256
/tests/lora @jeejeelee
/tests/models/language/generation/test_hybrid.py @tdoublep
/tests/v1/kv_connector/nixl_integration @NickLucche
/tests/v1/kv_connector @ApostaC
/tests/v1/offloading @ApostaC
# Transformers backend
/vllm/model_executor/models/transformers.py @hmellor
/tests/models/test_transformers.py @hmellor
# Docs
/docs @hmellor
/docs/mkdocs @hmellor
/docs/**/*.yml @hmellor
/requirements/docs.txt @hmellor
.readthedocs.yaml @hmellor
mkdocs.yaml @hmellor
# Linting
.markdownlint.yaml @hmellor
.pre-commit-config.yaml @hmellor
/tools/pre_commit @hmellor
# CPU
/vllm/v1/worker/^cpu @bigPYJ1151
/vllm/v1/worker/cpu* @bigPYJ1151
/csrc/cpu @bigPYJ1151
/vllm/platforms/cpu.py @bigPYJ1151
/cmake/cpu_extension.cmake @bigPYJ1151
/docker/Dockerfile.cpu @bigPYJ1151
# Intel GPU
/vllm/v1/worker/^xpu @jikunshang
/vllm/v1/worker/xpu* @jikunshang
/vllm/platforms/xpu.py @jikunshang
/docker/Dockerfile.xpu @jikunshang
@ -65,6 +90,9 @@ mkdocs.yaml @hmellor
/vllm/attention/backends/dual_chunk_flash_attn.py @sighingnow
/vllm/model_executor/models/qwen* @sighingnow
# MTP-specific files
/vllm/model_executor/models/deepseek_mtp.py @luccafong
# Mistral-specific files
/vllm/model_executor/models/mistral*.py @patrickvonplaten
/vllm/model_executor/models/mixtral*.py @patrickvonplaten
@ -72,3 +100,23 @@ mkdocs.yaml @hmellor
/vllm/model_executor/models/pixtral*.py @patrickvonplaten
/vllm/transformers_utils/configs/mistral.py @patrickvonplaten
/vllm/transformers_utils/tokenizers/mistral.py @patrickvonplaten
# Kernels
/vllm/attention/ops/chunked_prefill_paged_decode.py @tdoublep
/vllm/attention/ops/triton_unified_attention.py @tdoublep
# ROCm related: specify owner with write access to notify AMD folks for careful code review
/docker/Dockerfile.rocm* @gshtras
/vllm/v1/attention/backends/rocm*.py @gshtras
/vllm/v1/attention/backends/mla/rocm*.py @gshtras
/vllm/attention/ops/rocm*.py @gshtras
/vllm/model_executor/layers/fused_moe/rocm*.py @gshtras
# TPU
/vllm/v1/worker/tpu* @NickLucche
/vllm/platforms/tpu.py @NickLucche
/vllm/v1/sample/tpu @NickLucche
/vllm/tests/v1/tpu @NickLucche
# KVConnector installation files
/requirements/kv_connectors.txt @NickLucche

View File

@ -43,10 +43,6 @@ body:
Any other things you would like to mention.
validations:
required: false
- type: markdown
attributes:
value: >
Thanks for contributing 🎉! The vLLM core team hosts a biweekly RFC review session at 9:30AM Pacific Time, while most RFCs can be discussed online, you can optionally sign up for a slot to discuss your RFC online [here](https://docs.google.com/document/d/1CiLVBZeIVfR7_PNAKVSusxpceywkoOOB78qoWqHvSZc/edit).
- type: checkboxes
id: askllm
attributes:

View File

@ -7,8 +7,6 @@ PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS (AT THE BOTT
## Test Result
## (Optional) Documentation Update
---
<details>
<summary> Essential Elements of an Effective PR Description Checklist </summary>
@ -17,6 +15,7 @@ PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS (AT THE BOTT
- [ ] The test plan, such as providing test command.
- [ ] The test results, such as pasting the results comparison before and after, or e2e results
- [ ] (Optional) The necessary documentation update, such as updating `supported_models.md` and `examples` for a new model.
- [ ] (Optional) Release notes update. If your change is user facing, please update the release notes draft in the [Google Doc](https://docs.google.com/document/d/1YyVqrgX4gHTtrstbq8oWUImOyPCKSGnJ7xtTpmXzlRs/edit?tab=t.0).
</details>
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing>** (anything written below this line will be removed by GitHub Actions)

73
.github/mergify.yml vendored
View File

@ -2,6 +2,7 @@ pull_request_rules:
- name: label-documentation
description: Automatically apply documentation label
conditions:
- label != stale
- or:
- files~=^[^/]+\.md$
- files~=^docs/
@ -14,6 +15,7 @@ pull_request_rules:
- name: label-ci-build
description: Automatically apply ci/build label
conditions:
- label != stale
- or:
- files~=^\.github/
- files~=\.buildkite/
@ -30,6 +32,7 @@ pull_request_rules:
- name: label-deepseek
description: Automatically apply deepseek label
conditions:
- label != stale
- or:
- files~=^examples/.*deepseek.*\.py
- files~=^tests/.*deepseek.*\.py
@ -46,6 +49,7 @@ pull_request_rules:
- name: label-frontend
description: Automatically apply frontend label
conditions:
- label != stale
- files~=^vllm/entrypoints/
actions:
label:
@ -55,6 +59,7 @@ pull_request_rules:
- name: label-llama
description: Automatically apply llama label
conditions:
- label != stale
- or:
- files~=^examples/.*llama.*\.py
- files~=^tests/.*llama.*\.py
@ -70,6 +75,7 @@ pull_request_rules:
- name: label-multi-modality
description: Automatically apply multi-modality label
conditions:
- label != stale
- or:
- files~=^vllm/multimodal/
- files~=^tests/multimodal/
@ -83,6 +89,7 @@ pull_request_rules:
- name: label-new-model
description: Automatically apply new-model label
conditions:
- label != stale
- and:
- files~=^vllm/model_executor/models/
- files=vllm/model_executor/models/registry.py
@ -94,6 +101,7 @@ pull_request_rules:
- name: label-performance
description: Automatically apply performance label
conditions:
- label != stale
- or:
- files~=^benchmarks/
- files~=^vllm/benchmarks/
@ -107,6 +115,7 @@ pull_request_rules:
- name: label-qwen
description: Automatically apply qwen label
conditions:
- label != stale
- or:
- files~=^examples/.*qwen.*\.py
- files~=^tests/.*qwen.*\.py
@ -121,12 +130,20 @@ pull_request_rules:
- name: label-gpt-oss
description: Automatically apply gpt-oss label
conditions:
- label != stale
- or:
- files~=^examples/.*gpt[-_]?oss.*\.py
- files~=^tests/.*gpt[-_]?oss.*\.py
- files~=^tests/entrypoints/openai/test_response_api_with_harmony.py
- files~=^tests/entrypoints/test_context.py
- files~=^vllm/model_executor/models/.*gpt[-_]?oss.*\.py
- files~=^vllm/model_executor/layers/.*gpt[-_]?oss.*\.py
- files~=^vllm/entrypoints/harmony_utils.py
- files~=^vllm/entrypoints/tool_server.py
- files~=^vllm/entrypoints/tool.py
- files~=^vllm/entrypoints/context.py
- title~=(?i)gpt[-_]?oss
- title~=(?i)harmony
actions:
label:
add:
@ -135,6 +152,7 @@ pull_request_rules:
- name: label-rocm
description: Automatically apply rocm label
conditions:
- label != stale
- or:
- files~=^csrc/rocm/
- files~=^docker/Dockerfile.rocm
@ -155,6 +173,7 @@ pull_request_rules:
- name: label-structured-output
description: Automatically apply structured-output label
conditions:
- label != stale
- or:
- files~=^benchmarks/structured_schemas/
- files=benchmarks/benchmark_serving_structured_output.py
@ -164,7 +183,7 @@ pull_request_rules:
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
- files~=^tests/v1/structured_output/
- files=tests/v1/entrypoints/llm/test_guided_generate.py
- files=tests/v1/entrypoints/llm/test_struct_output_generate.py
- files~=^vllm/v1/structured_output/
actions:
label:
@ -174,6 +193,7 @@ pull_request_rules:
- name: label-speculative-decoding
description: Automatically apply speculative-decoding label
conditions:
- label != stale
- or:
- files~=^vllm/v1/spec_decode/
- files~=^tests/v1/spec_decode/
@ -189,6 +209,7 @@ pull_request_rules:
- name: label-v1
description: Automatically apply v1 label
conditions:
- label != stale
- or:
- files~=^vllm/v1/
- files~=^tests/v1/
@ -201,6 +222,7 @@ pull_request_rules:
description: Automatically apply tpu label
# Keep this list in sync with `label-tpu-remove` conditions
conditions:
- label != stale
- or:
- files~=tpu.py
- files~=_tpu
@ -216,6 +238,7 @@ pull_request_rules:
description: Automatically remove tpu label
# Keep this list in sync with `label-tpu` conditions
conditions:
- label != stale
- and:
- -files~=tpu.py
- -files~=_tpu
@ -230,9 +253,9 @@ pull_request_rules:
- name: label-tool-calling
description: Automatically add tool-calling label
conditions:
- label != stale
- or:
- files~=^tests/tool_use/
- files~=^tests/mistral_tool_use/
- files~=^tests/entrypoints/openai/tool_parsers/
- files=tests/entrypoints/openai/test_chat_with_tool_reasoning.py
- files~=^vllm/entrypoints/openai/tool_parsers/
@ -249,8 +272,9 @@ pull_request_rules:
- name: ping author on conflicts and add 'needs-rebase' label
conditions:
- conflict
- -closed
- label != stale
- conflict
- -closed
actions:
label:
add:
@ -264,20 +288,55 @@ pull_request_rules:
- name: assign reviewer for tensorizer changes
conditions:
- label != stale
- or:
- files~=^vllm/model_executor/model_loader/tensorizer.py
- files~=^vllm/model_executor/model_loader/tensorizer_loader.py
- files~=^tests/entrypoints/openai/test_tensorizer_entrypoint.py
- files~=^tests/tensorizer_loader/
- files~=^tests/model_executor/model_loader/tensorizer_loader/
actions:
assign:
users:
- "sangstar"
- name: assign reviewer for modelopt changes
conditions:
- label != stale
- or:
- files~=^vllm/model_executor/layers/quantization/modelopt\.py$
- files~=^vllm/model_executor/layers/quantization/__init__\.py$
- files~=^tests/models/quantization/test_modelopt\.py$
- files~=^tests/quantization/test_modelopt\.py$
- files~=^tests/models/quantization/test_nvfp4\.py$
- files~=^docs/features/quantization/modelopt\.md$
actions:
assign:
users:
- "Edwardf0t1"
- name: remove 'needs-rebase' label when conflict is resolved
conditions:
- -conflict
- -closed
- -conflict
- -closed
actions:
label:
remove:
- needs-rebase
- name: label-kv-connector
description: Automatically apply kv-connector label
conditions:
- label != stale
- or:
- files~=^examples/online_serving/disaggregated[^/]*/.*
- files~=^examples/offline_inference/disaggregated[^/]*/.*
- files~=^examples/others/lmcache/
- files~=^tests/v1/kv_connector/
- files~=^vllm/distributed/kv_transfer/
- title~=(?i)\bP/?D\b
- title~=(?i)NIXL
- title~=(?i)LMCache
actions:
label:
add:
- kv-connector

21
.github/scale-config.yml vendored Normal file
View File

@ -0,0 +1,21 @@
# scale-config.yml:
# Powers what instance types are available for GHA auto-scaled
# runners. Runners listed here will be available as self hosted
# runners, configuration is directly pulled from the main branch.
# runner_types:
# runner_label:
# instance_type: m4.large
# os: linux
# # min_available defaults to the global cfg in the ALI Terraform
# min_available: undefined
# # when max_available value is not defined, no max runners is enforced
# max_available: undefined
# disk_size: 50
# is_ephemeral: true
runner_types:
linux.2xlarge:
disk_size: 150
instance_type: c5.2xlarge
is_ephemeral: true
os: linux

View File

@ -10,7 +10,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Add label
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
with:
script: |
github.rest.issues.addLabels({

29
.github/workflows/bc-lint.yml vendored Normal file
View File

@ -0,0 +1,29 @@
name: BC Lint
on:
pull_request:
types:
- opened
- synchronize
- reopened
- labeled
- unlabeled
jobs:
bc_lint:
if: github.repository_owner == 'vllm-project'
runs-on: ubuntu-latest
steps:
- name: Run BC Lint Action
uses: pytorch/test-infra/.github/actions/bc-lint@main
with:
repo: ${{ github.event.pull_request.head.repo.full_name }}
base_sha: ${{ github.event.pull_request.base.sha }}
head_sha: ${{ github.event.pull_request.head.sha }}
suppression: ${{ contains(github.event.pull_request.labels.*.name, 'suppress-bc-linter') }}
docs_link: 'https://github.com/pytorch/test-infra/wiki/BC-Linter'
config_dir: .github
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}
cancel-in-progress: true

View File

@ -16,7 +16,7 @@ jobs:
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Set up Python
uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0
with:
python-version: '3.12'

309
.github/workflows/issue_autolabel.yml vendored Normal file
View File

@ -0,0 +1,309 @@
name: Label issues based on keywords
on:
issues:
types: [opened, edited, reopened]
permissions:
issues: write # needed so the workflow can add labels
contents: read
concurrency:
group: issue-labeler-${{ github.event.issue.number }}
cancel-in-progress: true
jobs:
add-labels:
runs-on: ubuntu-latest
steps:
- name: Label issues based on keywords
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
with:
script: |
// Configuration: Add new labels and keywords here
const labelConfig = {
rocm: {
// Keyword search - matches whole words only (with word boundaries)
keywords: [
{
term: "composable kernel",
searchIn: "both"
},
{
term: "rccl",
searchIn: "body" // only search in body
},
{
term: "migraphx",
searchIn: "title" // only search in title
},
{
term: "hipgraph",
searchIn: "both"
},
{
term: "ROCm System Management Interface",
searchIn: "body"
},
],
// Substring search - matches anywhere in text (partial matches)
substrings: [
{
term: "VLLM_ROCM_",
searchIn: "both"
},
{
term: "aiter",
searchIn: "title"
},
{
term: "rocm",
searchIn: "title"
},
{
term: "amd",
searchIn: "title"
},
{
term: "hip-",
searchIn: "both"
},
{
term: "gfx",
searchIn: "both"
},
{
term: "cdna",
searchIn: "both"
},
{
term: "rdna",
searchIn: "both"
},
{
term: "torch_hip",
searchIn: "body" // only in body
},
{
term: "_hip",
searchIn: "both"
},
{
term: "hip_",
searchIn: "both"
},
// ROCm tools and libraries
{
term: "hipify",
searchIn: "both"
},
],
// Regex patterns - for complex pattern matching
regexPatterns: [
{
pattern: "\\bmi\\d{3}[a-z]*\\b",
description: "AMD GPU names (mi + 3 digits + optional letters)",
flags: "gi",
searchIn: "both" // "title", "body", or "both"
}
],
},
};
// Helper function to create regex based on search type
function createSearchRegex(term, type) {
// Escape special regex characters in the term
const escapedTerm = term.replace(/[.*+?^${}()|[\]\\]/g, '\\$&');
switch (type) {
case 'keyword':
// Word boundary search - matches whole words only
return new RegExp(`\\b${escapedTerm}\\b`, "gi");
case 'substring':
// Substring search - matches anywhere in the text
return new RegExp(escapedTerm, "gi");
default:
throw new Error(`Unknown search type: ${type}`);
}
}
// Helper function to find matching terms in text with line information
function findMatchingTermsWithLines(text, searchTerms = [], searchType = 'keyword', searchLocation = '') {
const matches = [];
const lines = text.split('\n');
for (const termConfig of searchTerms) {
let regex;
let term, searchIn, pattern, description, flags;
// Handle different input formats (string or object)
if (typeof termConfig === 'string') {
term = termConfig;
searchIn = 'both'; // default
} else {
term = termConfig.term;
searchIn = termConfig.searchIn || 'both';
pattern = termConfig.pattern;
description = termConfig.description;
flags = termConfig.flags;
}
// Skip if this term shouldn't be searched in the current location
if (searchIn !== 'both' && searchIn !== searchLocation) {
continue;
}
// Create appropriate regex
if (searchType === 'regex') {
regex = new RegExp(pattern, flags || "gi");
} else {
regex = createSearchRegex(term, searchType);
}
const termMatches = [];
// Check each line for matches
lines.forEach((line, lineIndex) => {
const lineMatches = line.match(regex);
if (lineMatches) {
lineMatches.forEach(match => {
termMatches.push({
match: match,
lineNumber: lineIndex + 1,
lineContent: line.trim(),
searchType: searchType,
searchLocation: searchLocation,
originalTerm: term || pattern,
description: description,
// Show context around the match in the line
context: line.length > 100 ?
line.substring(Math.max(0, line.toLowerCase().indexOf(match.toLowerCase()) - 30),
line.toLowerCase().indexOf(match.toLowerCase()) + match.length + 30) + '...'
: line.trim()
});
});
}
});
if (termMatches.length > 0) {
matches.push({
term: term || (description || pattern),
searchType: searchType,
searchLocation: searchLocation,
searchIn: searchIn,
pattern: pattern,
matches: termMatches,
count: termMatches.length
});
}
}
return matches;
}
// Helper function to check if label should be added
async function processLabel(labelName, config) {
const body = context.payload.issue.body || "";
const title = context.payload.issue.title || "";
core.notice(`Processing label: ${labelName}`);
core.notice(`Issue Title: "${title}"`);
core.notice(`Issue Body length: ${body.length} characters`);
let shouldAddLabel = false;
let allMatches = [];
let reason = '';
const keywords = config.keywords || [];
const substrings = config.substrings || [];
const regexPatterns = config.regexPatterns || [];
core.notice(`Searching with ${keywords.length} keywords, ${substrings.length} substrings, and ${regexPatterns.length} regex patterns`);
// Search in title
if (title.trim()) {
core.notice(`Searching in title: "${title}"`);
const titleKeywordMatches = findMatchingTermsWithLines(title, keywords, 'keyword', 'title');
const titleSubstringMatches = findMatchingTermsWithLines(title, substrings, 'substring', 'title');
const titleRegexMatches = findMatchingTermsWithLines(title, regexPatterns, 'regex', 'title');
allMatches.push(...titleKeywordMatches, ...titleSubstringMatches, ...titleRegexMatches);
}
// Search in body
if (body.trim()) {
core.notice(`Searching in body (${body.length} characters)`);
const bodyKeywordMatches = findMatchingTermsWithLines(body, keywords, 'keyword', 'body');
const bodySubstringMatches = findMatchingTermsWithLines(body, substrings, 'substring', 'body');
const bodyRegexMatches = findMatchingTermsWithLines(body, regexPatterns, 'regex', 'body');
allMatches.push(...bodyKeywordMatches, ...bodySubstringMatches, ...bodyRegexMatches);
}
if (allMatches.length > 0) {
core.notice(`Found ${allMatches.length} matching term(s):`);
for (const termMatch of allMatches) {
const locationText = termMatch.searchLocation === 'title' ? 'title' : 'body';
const searchInText = termMatch.searchIn === 'both' ? 'both' : termMatch.searchIn;
if (termMatch.searchType === 'regex') {
core.notice(` 📍 Regex: "${termMatch.term}" (pattern: ${termMatch.pattern}) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
} else {
core.notice(` 📍 Term: "${termMatch.term}" (${termMatch.searchType} search) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
}
// Show details for each match
termMatch.matches.forEach((match, index) => {
core.notice(` ${index + 1}. Line ${match.lineNumber} in ${match.searchLocation}: "${match.match}" [${match.searchType}]`);
if (match.description) {
core.notice(` Description: ${match.description}`);
}
core.notice(` Context: ${match.context}`);
if (match.lineContent !== match.context) {
core.notice(` Full line: ${match.lineContent}`);
}
});
}
shouldAddLabel = true;
const totalMatches = allMatches.reduce((sum, t) => sum + t.count, 0);
const titleMatches = allMatches.filter(t => t.searchLocation === 'title').reduce((sum, t) => sum + t.count, 0);
const bodyMatches = allMatches.filter(t => t.searchLocation === 'body').reduce((sum, t) => sum + t.count, 0);
const keywordMatches = allMatches.filter(t => t.searchType === 'keyword').reduce((sum, t) => sum + t.count, 0);
const substringMatches = allMatches.filter(t => t.searchType === 'substring').reduce((sum, t) => sum + t.count, 0);
const regexMatches = allMatches.filter(t => t.searchType === 'regex').reduce((sum, t) => sum + t.count, 0);
reason = `Found ${totalMatches} total matches (${titleMatches} in title, ${bodyMatches} in body) - ${keywordMatches} keyword matches, ${substringMatches} substring matches, ${regexMatches} regex matches`;
}
core.notice(`Final decision: ${shouldAddLabel ? 'ADD LABEL' : 'DO NOT ADD LABEL'}`);
core.notice(`Reason: ${reason || 'No matching terms found'}`);
if (shouldAddLabel) {
const existingLabels = context.payload.issue.labels.map(l => l.name);
if (!existingLabels.includes(labelName)) {
await github.rest.issues.addLabels({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
labels: [labelName],
});
core.notice(`Label "${labelName}" added. ${reason}`);
return true;
}
core.notice(`Label "${labelName}" already present.`);
return false;
}
core.notice(`No matching terms found for label "${labelName}".`);
return false;
}
// Process all configured labels
const processLabels = Object.entries(labelConfig)
.map(([labelName, config]) => processLabel(labelName, config));
const labelsAdded = await Promise.all(processLabels);
const numLabelsAdded = labelsAdded.reduce((x, y) => x + y, 0);
core.notice(`Processing complete. ${numLabelsAdded} label(s) added.`);

View File

@ -1,89 +0,0 @@
name: Lint and Deploy Charts
on: pull_request
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
permissions:
contents: read
jobs:
lint-and-deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
fetch-depth: 0
- name: Set up Helm
uses: azure/setup-helm@b9e51907a09c216f16ebe8536097933489208112 # v4.3.0
with:
version: v3.14.4
#Python is required because ct lint runs Yamale and yamllint which require Python.
- uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
with:
python-version: '3.13'
- name: Set up chart-testing
uses: helm/chart-testing-action@0d28d3144d3a25ea2cc349d6e59901c4ff469b3b # v2.7.0
with:
version: v3.10.1
- name: Run chart-testing (lint)
run: ct lint --target-branch ${{ github.event.repository.default_branch }} --chart-dirs examples/online_serving/chart-helm --charts examples/online_serving/chart-helm
- name: Setup minio
run: |
docker network create vllm-net
docker run -d -p 9000:9000 --name minio --net vllm-net \
-e "MINIO_ACCESS_KEY=minioadmin" \
-e "MINIO_SECRET_KEY=minioadmin" \
-v /tmp/data:/data \
-v /tmp/config:/root/.minio \
minio/minio server /data
export AWS_ACCESS_KEY_ID=minioadmin
export AWS_SECRET_ACCESS_KEY=minioadmin
export AWS_EC2_METADATA_DISABLED=true
mkdir opt-125m
cd opt-125m && curl -O -Ls "https://huggingface.co/facebook/opt-125m/resolve/main/{pytorch_model.bin,config.json,generation_config.json,merges.txt,special_tokens_map.json,tokenizer_config.json,vocab.json}" && cd ..
aws --endpoint-url http://127.0.0.1:9000/ s3 mb s3://testbucket
aws --endpoint-url http://127.0.0.1:9000/ s3 cp opt-125m/ s3://testbucket/opt-125m --recursive
- name: Create kind cluster
uses: helm/kind-action@a1b0e391336a6ee6713a0583f8c6240d70863de3 # v1.12.0
- name: Build the Docker image vllm cpu
run: docker buildx build -f docker/Dockerfile.cpu -t vllm-cpu-env .
- name: Configuration of docker images, network and namespace for the kind cluster
run: |
docker pull amazon/aws-cli:2.6.4
kind load docker-image amazon/aws-cli:2.6.4 --name chart-testing
kind load docker-image vllm-cpu-env:latest --name chart-testing
docker network connect vllm-net "$(docker ps -aqf "name=chart-testing-control-plane")"
kubectl create ns ns-vllm
- name: Run chart-testing (install)
run: |
export AWS_ACCESS_KEY_ID=minioadmin
export AWS_SECRET_ACCESS_KEY=minioadmin
sleep 30 && kubectl -n ns-vllm logs -f "$(kubectl -n ns-vllm get pods | awk '/deployment/ {print $1;exit}')" &
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set image.env[2].name=VLLM_CPU_CI_ENV --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string image.env[2].value="1" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
- name: curl test
run: |
kubectl -n ns-vllm port-forward service/test-vllm-service 8001:80 &
sleep 10
CODE="$(curl -v -f --location http://localhost:8001/v1/completions \
--header "Content-Type: application/json" \
--data '{
"model": "opt-125m",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'):$CODE"
echo "$CODE"

View File

@ -17,7 +17,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
- uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0
with:
python-version: "3.12"
- run: echo "::add-matcher::.github/workflows/matchers/actionlint.json"

View File

@ -1,111 +0,0 @@
# This workflow will upload a Python Package to Release asset
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions
name: Create Release
on:
push:
tags:
- v*
# Needed to create release and upload assets
permissions:
contents: write
jobs:
release:
# Retrieve tag and create release
name: Create Release
runs-on: ubuntu-latest
outputs:
upload_url: ${{ steps.create_release.outputs.upload_url }}
steps:
- name: Checkout
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Extract branch info
shell: bash
run: |
echo "release_tag=${GITHUB_REF#refs/*/}" >> "$GITHUB_ENV"
- name: Create Release
id: create_release
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
env:
RELEASE_TAG: ${{ env.release_tag }}
with:
github-token: "${{ secrets.GITHUB_TOKEN }}"
script: |
const script = require('.github/workflows/scripts/create_release.js')
await script(github, context, core)
# NOTE(simon): No longer build wheel using GitHub Actions. See buildkite's release workflow.
# wheel:
# name: Build Wheel
# runs-on: ${{ matrix.os }}
# needs: release
# strategy:
# fail-fast: false
# matrix:
# os: ['ubuntu-20.04']
# python-version: ['3.9', '3.10', '3.11', '3.12']
# pytorch-version: ['2.4.0'] # Must be the most recent version that meets requirements/cuda.txt.
# cuda-version: ['11.8', '12.1']
# steps:
# - name: Checkout
# uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
# - name: Setup ccache
# uses: hendrikmuhs/ccache-action@ed74d11c0b343532753ecead8a951bb09bb34bc9 # v1.2.14
# with:
# create-symlink: true
# key: ${{ github.job }}-${{ matrix.python-version }}-${{ matrix.cuda-version }}
# - name: Set up Linux Env
# if: ${{ runner.os == 'Linux' }}
# run: |
# bash -x .github/workflows/scripts/env.sh
# - name: Set up Python
# uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
# with:
# python-version: ${{ matrix.python-version }}
# - name: Install CUDA ${{ matrix.cuda-version }}
# run: |
# bash -x .github/workflows/scripts/cuda-install.sh ${{ matrix.cuda-version }} ${{ matrix.os }}
# - name: Install PyTorch ${{ matrix.pytorch-version }} with CUDA ${{ matrix.cuda-version }}
# run: |
# bash -x .github/workflows/scripts/pytorch-install.sh ${{ matrix.python-version }} ${{ matrix.pytorch-version }} ${{ matrix.cuda-version }}
# - name: Build wheel
# shell: bash
# env:
# CMAKE_BUILD_TYPE: Release # do not compile with debug symbol to reduce wheel size
# run: |
# bash -x .github/workflows/scripts/build.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }}
# wheel_name=$(find dist -name "*whl" -print0 | xargs -0 -n 1 basename)
# asset_name=${wheel_name//"linux"/"manylinux1"}
# echo "wheel_name=${wheel_name}" >> "$GITHUB_ENV"
# echo "asset_name=${asset_name}" >> "$GITHUB_ENV"
# - name: Upload Release Asset
# uses: actions/upload-release-asset@e8f9f06c4b078e705bd2ea027f0926603fc9b4d5 # v1.0.2
# env:
# GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# with:
# upload_url: ${{ needs.release.outputs.upload_url }}
# asset_path: ./dist/${{ env.wheel_name }}
# asset_name: ${{ env.asset_name }}
# asset_content_type: application/*
# (Danielkinz): This last step will publish the .whl to pypi. Warning: untested
# - name: Publish package
# uses: pypa/gh-action-pypi-publish@release/v1.8
# with:
# repository-url: https://test.pypi.org/legacy/
# password: ${{ secrets.PYPI_API_TOKEN }}
# skip-existing: true

View File

@ -9,19 +9,46 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Remind to run full CI on PR
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
with:
script: |
github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: '👋 Hi! Thank you for contributing to the vLLM project.\n\n' +
'💬 Join our developer Slack at https://slack.vllm.ai to discuss your PR in #pr-reviews, coordinate on features in #feat- channels, or join special interest groups in #sig- channels.\n\n' +
'Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which starts running only a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of those by going to your `fastcheck` build on Buildkite UI (linked in the PR checks section) and unblock them. If you do not have permission to unblock, ping `simon-mo` or `khluu` to add you in our Buildkite org.\n\n' +
'Once the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.\n\n' +
'To run CI, PR reviewers can either: Add `ready` label to the PR or enable auto-merge.\n\n' +
'🚀'
})
try {
// Get the PR author
const prAuthor = context.payload.pull_request.user.login;
// Check if this is the author's first PR in this repository
// Use GitHub's search API to find all PRs by this author
const { data: searchResults } = await github.rest.search.issuesAndPullRequests({
q: `repo:${context.repo.owner}/${context.repo.repo} type:pr author:${prAuthor}`,
per_page: 100
});
const authorPRCount = searchResults.total_count;
console.log(`Found ${authorPRCount} PRs by ${prAuthor}`);
// Only post comment if this is the first PR (only one PR by this author)
if (authorPRCount === 1) {
console.log(`Posting welcome comment for first-time contributor: ${prAuthor}`);
await github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: '👋 Hi! Thank you for contributing to the vLLM project.\n\n' +
'💬 Join our developer Slack at https://slack.vllm.ai to discuss your PR in #pr-reviews, coordinate on features in #feat- channels, or join special interest groups in #sig- channels.\n\n' +
'Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which starts running only a small and essential subset of CI tests to quickly catch errors. \n\n' +
'You ask your reviewers to trigger select CI tests on top of `fastcheck` CI. \n\n' +
'Once the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.\n\n' +
'To run CI, PR reviewers can either: Add `ready` label to the PR or enable auto-merge.\n\n' +
'If you have any questions, please reach out to us on Slack at https://slack.vllm.ai.\n\n' +
'🚀'
});
} else {
console.log(`Skipping comment for ${prAuthor} - not their first PR (${authorPRCount} PRs found)`);
}
} catch (error) {
console.error('Error checking PR history or posting comment:', error);
// Don't fail the workflow, just log the error
}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@ -13,7 +13,7 @@ jobs:
actions: write
runs-on: ubuntu-latest
steps:
- uses: actions/stale@5bef64f19d7facfb25b37b414482c7164d639639 # v9.1.0
- uses: actions/stale@3a9db7e6a41a89f618792c92c0e97cc736e1b13f # v10.0.0
with:
# Increasing this value ensures that changes to this workflow
# propagate to all issues and PRs in days rather than months

12
.gitignore vendored
View File

@ -4,7 +4,7 @@
# vllm-flash-attn built from source
vllm/vllm_flash_attn/*
# triton jit
# triton jit
.triton
# Byte-compiled / optimized / DLL files
@ -177,6 +177,14 @@ cython_debug/
# VSCode
.vscode/
# Claude
CLAUDE.md
.claude/
# Codex
AGENTS.md
.codex/
# DS Store
.DS_Store
@ -209,4 +217,4 @@ shellcheck*/
csrc/moe/marlin_moe_wna16/kernel_*
# Ignore ep_kernels_workspace folder
ep_kernels_workspace/
ep_kernels_workspace/

View File

@ -21,7 +21,7 @@ repos:
- id: ruff-format
files: ^(.buildkite|benchmarks|examples)/.*
- repo: https://github.com/crate-ci/typos
rev: v1.34.0
rev: v1.35.5
hooks:
- id: typos
- repo: https://github.com/PyCQA/isort
@ -49,7 +49,7 @@ repos:
rev: 0.6.17
hooks:
- id: pip-compile
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128]
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128, --python-platform, x86_64-manylinux_2_28]
files: ^requirements/test\.(in|txt)$
- repo: local
hooks:
@ -60,38 +60,32 @@ repos:
files: ^requirements/test\.(in|txt)$
- id: mypy-local
name: Run mypy for local Python installation
entry: tools/mypy.sh 0 "local"
language: python
types: [python]
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests, pydantic]
entry: python tools/pre_commit/mypy.py 0 "local"
stages: [pre-commit] # Don't run in CI
<<: &mypy_common
language: python
types_or: [python, pyi]
require_serial: true
additional_dependencies: [mypy==1.11.1, regex, types-cachetools, types-setuptools, types-PyYAML, types-requests, types-torch, pydantic]
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.9
entry: tools/mypy.sh 1 "3.9"
language: python
types: [python]
additional_dependencies: *mypy_deps
entry: python tools/pre_commit/mypy.py 1 "3.9"
<<: *mypy_common
stages: [manual] # Only run in CI
- id: mypy-3.10 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.10
entry: tools/mypy.sh 1 "3.10"
language: python
types: [python]
additional_dependencies: *mypy_deps
entry: python tools/pre_commit/mypy.py 1 "3.10"
<<: *mypy_common
stages: [manual] # Only run in CI
- id: mypy-3.11 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.11
entry: tools/mypy.sh 1 "3.11"
language: python
types: [python]
additional_dependencies: *mypy_deps
entry: python tools/pre_commit/mypy.py 1 "3.11"
<<: *mypy_common
stages: [manual] # Only run in CI
- id: mypy-3.12 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.12
entry: tools/mypy.sh 1 "3.12"
language: python
types: [python]
additional_dependencies: *mypy_deps
entry: python tools/pre_commit/mypy.py 1 "3.12"
<<: *mypy_common
stages: [manual] # Only run in CI
- id: shellcheck
name: Lint shell scripts
@ -155,18 +149,15 @@ repos:
additional_dependencies: [regex]
- id: check-pickle-imports
name: Prevent new pickle/cloudpickle imports
entry: python tools/check_pickle_imports.py
entry: python tools/pre_commit/check_pickle_imports.py
language: python
types: [python]
pass_filenames: false
additional_dependencies: [pathspec, regex]
additional_dependencies: [regex]
- id: validate-config
name: Validate configuration has default values and that each field has a docstring
entry: python tools/validate_config.py
language: python
types: [python]
pass_filenames: true
files: vllm/config.py|tests/test_config.py|vllm/entrypoints/openai/cli_args.py
additional_dependencies: [regex]
# Keep `suggestion` last
- id: suggestion
name: Suggestion

View File

@ -13,6 +13,7 @@ build:
mkdocs:
configuration: mkdocs.yaml
fail_on_warning: true
# Optionally declare the Python requirements required to build your docs
python:

View File

@ -1 +1,2 @@
collect_env.py
vllm/model_executor/layers/fla/ops/*.py

View File

@ -13,6 +13,10 @@ cmake_minimum_required(VERSION 3.26)
# cmake --install . --component _C
project(vllm_extensions LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
# CUDA by default, can be overridden by using -DVLLM_TARGET_DEVICE=... (used by setup.py)
set(VLLM_TARGET_DEVICE "cuda" CACHE STRING "Target device backend for vLLM")
message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")
@ -30,10 +34,10 @@ install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
# Supported python versions. These versions will be searched in order, the
# first match will be selected. These should be kept in sync with setup.py.
#
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12")
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12" "3.13")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201;gfx1150;gfx1151")
#
# Supported/expected torch versions for CUDA/ROCm.
@ -45,8 +49,8 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from docker/Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.7.1")
set(TORCH_SUPPORTED_VERSION_ROCM "2.7.0")
set(TORCH_SUPPORTED_VERSION_CUDA "2.8.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.8.0")
#
# Try to find python package with an executable that exactly matches
@ -82,6 +86,9 @@ find_package(Torch REQUIRED)
# Supported NVIDIA architectures.
# This check must happen after find_package(Torch) because that's when CMAKE_CUDA_COMPILER_VERSION gets defined
if(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 13.0)
set(CUDA_SUPPORTED_ARCHS "7.5;8.0;8.6;8.7;8.9;9.0;10.0;11.0;12.0")
elseif(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8)
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
else()
@ -171,6 +178,25 @@ if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
endif()
#
# Set compression mode for CUDA >=13.x.
#
if(VLLM_GPU_LANG STREQUAL "CUDA" AND
DEFINED CMAKE_CUDA_COMPILER_VERSION AND
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 13.0)
list(APPEND VLLM_GPU_FLAGS "--compress-mode=size")
endif()
#
# Set CUDA include flags for CXX compiler.
#
if(VLLM_GPU_LANG STREQUAL "CUDA")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -I${CUDA_TOOLKIT_ROOT_DIR}/include")
if(CUDA_VERSION VERSION_GREATER_EQUAL 13.0)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -I${CUDA_TOOLKIT_ROOT_DIR}/include/cccl")
endif()
endif()
#
# Use FetchContent for C++ dependencies that are compiled as part of vLLM's build process.
# setup.py will override FETCHCONTENT_BASE_DIR to play nicely with sccache.
@ -243,8 +269,8 @@ set(VLLM_EXT_SRC
"csrc/sampler.cu"
"csrc/cuda_view.cu"
"csrc/quantization/gptq/q_gemm.cu"
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
"csrc/quantization/fp8/common.cu"
"csrc/quantization/w8a8/int8/scaled_quant.cu"
"csrc/quantization/w8a8/fp8/common.cu"
"csrc/quantization/fused_kernels/fused_layernorm_dynamic_per_token_quant.cu"
"csrc/quantization/gguf/gguf_kernel.cu"
"csrc/quantization/activation_kernels.cu"
@ -256,7 +282,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
set(CUTLASS_REVISION "v4.0.0" CACHE STRING "CUTLASS revision to use")
set(CUTLASS_REVISION "v4.2.1" CACHE STRING "CUTLASS revision to use")
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
@ -288,14 +314,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_EXT_SRC
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/permute_cols.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
"csrc/quantization/w8a8/cutlass/scaled_mm_entry.cu"
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu"
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
"csrc/cutlass_extensions/common.cpp"
"csrc/attention/mla/cutlass_mla_entry.cu"
"csrc/quantization/fp8/per_token_group_quant.cu")
"csrc/quantization/w8a8/fp8/per_token_group_quant.cu"
"csrc/quantization/w8a8/int8/per_token_group_quant.cu")
set_gencode_flags_for_srcs(
SRCS "${VLLM_EXT_SRC}"
@ -357,9 +382,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_EXT_SRC ${MARLIN_TEMPLATE_KERNEL_SRC})
set(MARLIN_SRCS
"csrc/quantization/marlin/dense/marlin_cuda_kernel.cu"
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
"csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu"
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
"csrc/quantization/gptq_marlin/awq_marlin_repack.cu")
@ -401,11 +424,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm90.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_fp8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_int8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_azp_sm90_int8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm90_fp8.cu")
"csrc/quantization/w8a8/cutlass/scaled_mm_c3x_sm90.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm90_fp8.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm90_int8.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_azp_sm90_int8.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_blockwise_sm90_fp8.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
@ -429,12 +452,16 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The cutlass_scaled_mm kernels for Geforce Blackwell SM120 (c3x, i.e. CUTLASS 3.x) require
# CUDA 12.8 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm120.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm120_fp8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm120_fp8.cu"
"csrc/quantization/w8a8/cutlass/scaled_mm_c3x_sm120.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm120_fp8.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_blockwise_sm120_fp8.cu"
)
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
@ -459,12 +486,16 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The cutlass_scaled_mm kernels for Blackwell SM100 (c3x, i.e. CUTLASS 3.x)
# require CUDA 12.8 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm100_fp8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm100_fp8.cu"
"csrc/quantization/w8a8/cutlass/scaled_mm_c3x_sm100.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm100_fp8.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_blockwise_sm100_fp8.cu"
)
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
@ -495,7 +526,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# subtract out the archs that are already built for 3x
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
if (SCALED_MM_2X_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu")
set(SRCS "csrc/quantization/w8a8/cutlass/scaled_mm_c2x.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_2X_ARCHS}")
@ -539,10 +570,15 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The nvfp4_scaled_mm_sm120 kernels for Geforce Blackwell SM120 require
# CUDA 12.8 or later
cuda_archs_loose_intersection(FP4_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(FP4_ARCHS "12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(FP4_ARCHS "12.0a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
"csrc/quantization/fp4/activation_nvfp4_quant_fusion_kernels.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_sm120_kernels.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
@ -557,10 +593,15 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
# FP4 Archs and flags
cuda_archs_loose_intersection(FP4_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(FP4_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(FP4_ARCHS "10.0a;10.1a;12.0a;12.1a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
"csrc/quantization/fp4/activation_nvfp4_quant_fusion_kernels.cu"
"csrc/quantization/fp4/nvfp4_experts_quant.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_kernels.cu"
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu")
@ -578,10 +619,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
# CUTLASS MLA Archs and flags
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(MLA_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(MLA_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND MLA_ARCHS)
set(SRCS
"csrc/attention/mla/cutlass_mla_kernels.cu"
"csrc/attention/mla/sm100_cutlass_mla_kernel.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
@ -605,7 +649,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# if it's possible to compile MoE kernels that use its output.
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm90.cu")
set(SRCS "csrc/quantization/w8a8/cutlass/moe/grouped_mm_c3x_sm90.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
@ -623,9 +667,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm100.cu")
set(SRCS "csrc/quantization/w8a8/cutlass/moe/grouped_mm_c3x_sm100.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
@ -644,9 +692,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
# moe_data.cu is used by all CUTLASS MoE kernels.
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
set(SRCS "csrc/quantization/w8a8/cutlass/moe/moe_data.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${CUTLASS_MOE_DATA_ARCHS}")
@ -663,9 +715,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/blockwise_scaled_group_mm_sm100.cu")
set(SRCS "csrc/quantization/w8a8/cutlass/moe/blockwise_scaled_group_mm_sm100.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
@ -752,6 +808,44 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"found in CUDA target architectures")
endif()
endif()
# Only build W4A8 kernels if we are building for something compatible with sm90a
cuda_archs_loose_intersection(W4A8_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND W4A8_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w4a8/w4a8_mm_entry.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${W4A8_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
message(STATUS "Building W4A8 kernels for archs: ${W4A8_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0
AND W4A8_ARCHS)
message(STATUS "Not building W4A8 kernels as CUDA Compiler version is "
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "
"later if you intend on running w4a16 quantized models on "
"Hopper.")
else()
message(STATUS "Not building W4A8 kernels as no compatible archs "
"found in CUDA target architectures")
endif()
endif()
# Hadacore kernels
cuda_archs_loose_intersection(HADACORE_ARCHS "8.0;8.9;9.0" "${CUDA_ARCHS}")
if(HADACORE_ARCHS)
set(SRCS "csrc/quantization/hadamard/hadacore/hadamard_transform_cuda.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${HADACORE_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
message(STATUS "Building hadacore")
endif()
# if CUDA endif
endif()
@ -792,7 +886,9 @@ set(VLLM_MOE_EXT_SRC
"csrc/moe/topk_softmax_kernels.cu")
if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_MOE_EXT_SRC "csrc/moe/moe_wna16.cu")
list(APPEND VLLM_MOE_EXT_SRC
"csrc/moe/moe_wna16.cu"
"csrc/moe/grouped_topk_kernels.cu")
endif()
if(VLLM_GPU_LANG STREQUAL "CUDA")

View File

@ -2,7 +2,6 @@ include LICENSE
include requirements/common.txt
include requirements/cuda.txt
include requirements/rocm.txt
include requirements/neuron.txt
include requirements/cpu.txt
include CMakeLists.txt

View File

@ -14,18 +14,26 @@ Easy, fast, and cheap LLM serving for everyone
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://blog.vllm.ai/"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://discuss.vllm.ai"><b>User Forum</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
</p>
---
Join us at the [PyTorch Conference, October 22-23](https://events.linuxfoundation.org/pytorch-conference/) and [Ray Summit, November 3-5](https://www.anyscale.com/ray-summit/2025) in San Francisco for our latest updates on vLLM and to meet the vLLM team! Register now for the largest vLLM community events of the year!
---
*Latest News* 🔥
- [2025/08] We hosted [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/dgkWg1WFpWGO2jCdTqQHxA) focusing on large-scale LLM deployment! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Pid6NSFLU43DZRi0EaTcPgXsAzDvbBqF) and the recording [here](https://www.chaspark.com/#/live/1166916873711665152).
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
- [2025/09] We hosted [vLLM Toronto Meetup](https://luma.com/e80e0ymm) focused on tackling inference at scale and speculative decoding with speakers from NVIDIA and Red Hat! Please find the meetup slides [here](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing).
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).
- [2025/05] vLLM is now a hosted project under PyTorch Foundation! Please find the announcement [here](https://pytorch.org/blog/pytorch-foundation-welcomes-vllm/).
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
<details>
<summary>Previous News</summary>
- [2025/08] We hosted [vLLM Korea Meetup](https://luma.com/cgcgprmh) with Red Hat and Rebellions! We shared the latest advancements in vLLM along with project spotlights from the vLLM Korea community. Please find the meetup slides [here](https://drive.google.com/file/d/1bcrrAE1rxUgx0mjIeOWT6hNe2RefC5Hm/view).
- [2025/08] We hosted [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/dgkWg1WFpWGO2jCdTqQHxA) focusing on large-scale LLM deployment! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Pid6NSFLU43DZRi0EaTcPgXsAzDvbBqF) and the recording [here](https://www.chaspark.com/#/live/1166916873711665152).
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).
@ -74,7 +82,7 @@ vLLM is flexible and easy to use with:
- Tensor, pipeline, data and expert parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron
- Support for NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, and TPU. Additionally, support for diverse hardware plugins such as Intel Gaudi, IBM Spyre and Huawei Ascend.
- Prefix caching support
- Multi-LoRA support

View File

@ -42,4 +42,9 @@ For certain security issues of CRITICAL, HIGH, or MODERATE severity level, we ma
* If you wish to be added to the prenotification group, please send an email copying all the members of the [vulnerability management team](https://docs.vllm.ai/en/latest/contributing/vulnerability_management.html). Each vendor contact will be analyzed on a case-by-case basis.
* Organizations and vendors who either ship or use vLLM, are eligible to join the prenotification group if they meet at least one of the following qualifications
* Substantial internal deployment leveraging the upstream vLLM project.
* Established internal security teams and comprehensive compliance measures.
* Active and consistent contributions to the upstream vLLM project.
* We may withdraw organizations from receiving future prenotifications if they release fixes or any other information about issues before they are public. Group membership may also change based on policy refinements for who may be included.

View File

@ -1,687 +1,20 @@
# Benchmarking vLLM
# Benchmarks
This README guides you through running benchmark tests with the extensive
datasets supported on vLLM. Its a living document, updated as new features and datasets
become available.
This directory used to contain vLLM's benchmark scripts and utilities for performance testing and evaluation.
## Dataset Overview
## Contents
<table style="width:100%; border-collapse: collapse;">
<thead>
<tr>
<th style="width:15%; text-align: left;">Dataset</th>
<th style="width:10%; text-align: center;">Online</th>
<th style="width:10%; text-align: center;">Offline</th>
<th style="width:65%; text-align: left;">Data Path</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ShareGPT</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json</code></td>
</tr>
<tr>
<td><strong>ShareGPT4V (Image)</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td>
<code>wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json</code>
<br>
<div>Note that the images need to be downloaded separately. For example, to download COCO's 2017 Train images:</div>
<code>wget http://images.cocodataset.org/zips/train2017.zip</code>
</td>
</tr>
<tr>
<td><strong>BurstGPT</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv</code></td>
</tr>
<tr>
<td><strong>Sonnet (deprecated)</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td>Local file: <code>benchmarks/sonnet.txt</code></td>
</tr>
<tr>
<td><strong>Random</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>synthetic</code></td>
</tr>
<tr>
<td><strong>Prefix Repetition</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>synthetic</code></td>
</tr>
<tr>
<td><strong>HuggingFace-VisionArena</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>lmarena-ai/VisionArena-Chat</code></td>
</tr>
<tr>
<td><strong>HuggingFace-InstructCoder</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>likaixin/InstructCoder</code></td>
</tr>
<tr>
<td><strong>HuggingFace-AIMO</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>AI-MO/aimo-validation-aime</code> , <code>AI-MO/NuminaMath-1.5</code>, <code>AI-MO/NuminaMath-CoT</code></td>
</tr>
<tr>
<td><strong>HuggingFace-Other</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>lmms-lab/LLaVA-OneVision-Data</code>, <code>Aeala/ShareGPT_Vicuna_unfiltered</code></td>
</tr>
<tr>
<td><strong>Custom</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td>Local file: <code>data.jsonl</code></td>
</tr>
</tbody>
</table>
- **Serving benchmarks**: Scripts for testing online inference performance (latency, throughput)
- **Throughput benchmarks**: Scripts for testing offline batch inference performance
- **Specialized benchmarks**: Tools for testing specific features like structured output, prefix caching, long document QA, request prioritization, and multi-modal inference
- **Dataset utilities**: Framework for loading and sampling from various benchmark datasets (ShareGPT, HuggingFace datasets, synthetic data, etc.)
✅: supported
## Usage
🟡: Partial support
For detailed usage instructions, examples, and dataset information, see the [Benchmark CLI documentation](https://docs.vllm.ai/en/latest/contributing/benchmarks.html#benchmark-cli).
🚧: to be supported
For full CLI reference see:
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`
## 🚀 Example - Online Benchmark
<details>
<summary>Show more</summary>
<br/>
First start serving your model
```bash
vllm serve NousResearch/Hermes-3-Llama-3.1-8B
```
Then run the benchmarking script
```bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
vllm bench serve \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--endpoint /v1/completions \
--dataset-name sharegpt \
--dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
--num-prompts 10
```
If successful, you will see the following output
```text
============ Serving Benchmark Result ============
Successful requests: 10
Benchmark duration (s): 5.78
Total input tokens: 1369
Total generated tokens: 2212
Request throughput (req/s): 1.73
Output token throughput (tok/s): 382.89
Total Token throughput (tok/s): 619.85
---------------Time to First Token----------------
Mean TTFT (ms): 71.54
Median TTFT (ms): 73.88
P99 TTFT (ms): 79.49
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms): 7.91
Median TPOT (ms): 7.96
P99 TPOT (ms): 8.03
---------------Inter-token Latency----------------
Mean ITL (ms): 7.74
Median ITL (ms): 7.70
P99 ITL (ms): 8.39
==================================================
```
### Custom Dataset
If the dataset you want to benchmark is not supported yet in vLLM, even then you can benchmark on it using `CustomDataset`. Your data needs to be in `.jsonl` format and needs to have "prompt" field per entry, e.g., data.jsonl
```json
{"prompt": "What is the capital of India?"}
{"prompt": "What is the capital of Iran?"}
{"prompt": "What is the capital of China?"}
```
```bash
# start server
VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.1-8B-Instruct
```
```bash
# run benchmarking script
vllm bench serve --port 9001 --save-result --save-detailed \
--backend vllm \
--model meta-llama/Llama-3.1-8B-Instruct \
--endpoint /v1/completions \
--dataset-name custom \
--dataset-path <path-to-your-data-jsonl> \
--custom-skip-chat-template \
--num-prompts 80 \
--max-concurrency 1 \
--temperature=0.3 \
--top-p=0.75 \
--result-dir "./log/"
```
You can skip applying chat template if your data already has it by using `--custom-skip-chat-template`.
### VisionArena Benchmark for Vision Language Models
```bash
# need a model with vision capability here
vllm serve Qwen/Qwen2-VL-7B-Instruct
```
```bash
vllm bench serve \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
--dataset-name hf \
--dataset-path lmarena-ai/VisionArena-Chat \
--hf-split train \
--num-prompts 1000
```
### InstructCoder Benchmark with Speculative Decoding
``` bash
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
--speculative-config $'{"method": "ngram",
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
"prompt_lookup_min": 2}'
```
``` bash
vllm bench serve \
--model meta-llama/Meta-Llama-3-8B-Instruct \
--dataset-name hf \
--dataset-path likaixin/InstructCoder \
--num-prompts 2048
```
### Other HuggingFaceDataset Examples
```bash
vllm serve Qwen/Qwen2-VL-7B-Instruct
```
`lmms-lab/LLaVA-OneVision-Data`:
```bash
vllm bench serve \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
--dataset-name hf \
--dataset-path lmms-lab/LLaVA-OneVision-Data \
--hf-split train \
--hf-subset "chart2text(cauldron)" \
--num-prompts 10
```
`Aeala/ShareGPT_Vicuna_unfiltered`:
```bash
vllm bench serve \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
--dataset-name hf \
--dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
--hf-split train \
--num-prompts 10
```
`AI-MO/aimo-validation-aime`:
``` bash
vllm bench serve \
--model Qwen/QwQ-32B \
--dataset-name hf \
--dataset-path AI-MO/aimo-validation-aime \
--num-prompts 10 \
--seed 42
```
`philschmid/mt-bench`:
``` bash
vllm bench serve \
--model Qwen/QwQ-32B \
--dataset-name hf \
--dataset-path philschmid/mt-bench \
--num-prompts 80
```
### Running With Sampling Parameters
When using OpenAI-compatible backends such as `vllm`, optional sampling
parameters can be specified. Example client command:
```bash
vllm bench serve \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--endpoint /v1/completions \
--dataset-name sharegpt \
--dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
--top-k 10 \
--top-p 0.9 \
--temperature 0.5 \
--num-prompts 10
```
### Running With Ramp-Up Request Rate
The benchmark tool also supports ramping up the request rate over the
duration of the benchmark run. This can be useful for stress testing the
server or finding the maximum throughput that it can handle, given some latency budget.
Two ramp-up strategies are supported:
- `linear`: Increases the request rate linearly from a start value to an end value.
- `exponential`: Increases the request rate exponentially.
The following arguments can be used to control the ramp-up:
- `--ramp-up-strategy`: The ramp-up strategy to use (`linear` or `exponential`).
- `--ramp-up-start-rps`: The request rate at the beginning of the benchmark.
- `--ramp-up-end-rps`: The request rate at the end of the benchmark.
</details>
## 📈 Example - Offline Throughput Benchmark
<details>
<summary>Show more</summary>
<br/>
```bash
vllm bench throughput \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset-name sonnet \
--dataset-path vllm/benchmarks/sonnet.txt \
--num-prompts 10
```
If successful, you will see the following output
```text
Throughput: 7.15 requests/s, 4656.00 total tokens/s, 1072.15 output tokens/s
Total num prompt tokens: 5014
Total num output tokens: 1500
```
### VisionArena Benchmark for Vision Language Models
```bash
vllm bench throughput \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
--dataset-path lmarena-ai/VisionArena-Chat \
--num-prompts 1000 \
--hf-split train
```
The `num prompt tokens` now includes image token counts
```text
Throughput: 2.55 requests/s, 4036.92 total tokens/s, 326.90 output tokens/s
Total num prompt tokens: 14527
Total num output tokens: 1280
```
### InstructCoder Benchmark with Speculative Decoding
``` bash
VLLM_WORKER_MULTIPROC_METHOD=spawn \
VLLM_USE_V1=1 \
vllm bench throughput \
--dataset-name=hf \
--dataset-path=likaixin/InstructCoder \
--model=meta-llama/Meta-Llama-3-8B-Instruct \
--input-len=1000 \
--output-len=100 \
--num-prompts=2048 \
--async-engine \
--speculative-config $'{"method": "ngram",
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
"prompt_lookup_min": 2}'
```
```text
Throughput: 104.77 requests/s, 23836.22 total tokens/s, 10477.10 output tokens/s
Total num prompt tokens: 261136
Total num output tokens: 204800
```
### Other HuggingFaceDataset Examples
`lmms-lab/LLaVA-OneVision-Data`:
```bash
vllm bench throughput \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
--dataset-path lmms-lab/LLaVA-OneVision-Data \
--hf-split train \
--hf-subset "chart2text(cauldron)" \
--num-prompts 10
```
`Aeala/ShareGPT_Vicuna_unfiltered`:
```bash
vllm bench throughput \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
--dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
--hf-split train \
--num-prompts 10
```
`AI-MO/aimo-validation-aime`:
```bash
vllm bench throughput \
--model Qwen/QwQ-32B \
--backend vllm \
--dataset-name hf \
--dataset-path AI-MO/aimo-validation-aime \
--hf-split train \
--num-prompts 10
```
Benchmark with LoRA adapters:
``` bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
vllm bench throughput \
--model meta-llama/Llama-2-7b-hf \
--backend vllm \
--dataset_path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
--dataset_name sharegpt \
--num-prompts 10 \
--max-loras 2 \
--max-lora-rank 8 \
--enable-lora \
--lora-path yard1/llama-2-7b-sql-lora-test
```
</details>
## 🛠️ Example - Structured Output Benchmark
<details>
<summary>Show more</summary>
<br/>
Benchmark the performance of structured output generation (JSON, grammar, regex).
### Server Setup
```bash
vllm serve NousResearch/Hermes-3-Llama-3.1-8B
```
### JSON Schema Benchmark
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset json \
--structured-output-ratio 1.0 \
--request-rate 10 \
--num-prompts 1000
```
### Grammar-based Generation Benchmark
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset grammar \
--structure-type grammar \
--request-rate 10 \
--num-prompts 1000
```
### Regex-based Generation Benchmark
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset regex \
--request-rate 10 \
--num-prompts 1000
```
### Choice-based Generation Benchmark
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset choice \
--request-rate 10 \
--num-prompts 1000
```
### XGrammar Benchmark Dataset
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset xgrammar_bench \
--request-rate 10 \
--num-prompts 1000
```
</details>
## 📚 Example - Long Document QA Benchmark
<details>
<summary>Show more</summary>
<br/>
Benchmark the performance of long document question-answering with prefix caching.
### Basic Long Document QA Test
```bash
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 16 \
--document-length 2000 \
--output-len 50 \
--repeat-count 5
```
### Different Repeat Modes
```bash
# Random mode (default) - shuffle prompts randomly
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 8 \
--document-length 3000 \
--repeat-count 3 \
--repeat-mode random
# Tile mode - repeat entire prompt list in sequence
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 8 \
--document-length 3000 \
--repeat-count 3 \
--repeat-mode tile
# Interleave mode - repeat each prompt consecutively
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 8 \
--document-length 3000 \
--repeat-count 3 \
--repeat-mode interleave
```
</details>
## 🗂️ Example - Prefix Caching Benchmark
<details>
<summary>Show more</summary>
<br/>
Benchmark the efficiency of automatic prefix caching.
### Fixed Prompt with Prefix Caching
```bash
python3 benchmarks/benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-prompts 1 \
--repeat-count 100 \
--input-length-range 128:256
```
### ShareGPT Dataset with Prefix Caching
```bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python3 benchmarks/benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--dataset-path /path/ShareGPT_V3_unfiltered_cleaned_split.json \
--enable-prefix-caching \
--num-prompts 20 \
--repeat-count 5 \
--input-length-range 128:256
```
### Prefix Repetition Dataset
```bash
vllm bench serve \
--backend openai \
--model meta-llama/Llama-2-7b-chat-hf \
--dataset-name prefix_repetition \
--num-prompts 100 \
--prefix-repetition-prefix-len 512 \
--prefix-repetition-suffix-len 128 \
--prefix-repetition-num-prefixes 5 \
--prefix-repetition-output-len 128
```
</details>
## ⚡ Example - Request Prioritization Benchmark
<details>
<summary>Show more</summary>
<br/>
Benchmark the performance of request prioritization in vLLM.
### Basic Prioritization Test
```bash
python3 benchmarks/benchmark_prioritization.py \
--model meta-llama/Llama-2-7b-chat-hf \
--input-len 128 \
--output-len 64 \
--num-prompts 100 \
--scheduling-policy priority
```
### Multiple Sequences per Prompt
```bash
python3 benchmarks/benchmark_prioritization.py \
--model meta-llama/Llama-2-7b-chat-hf \
--input-len 128 \
--output-len 64 \
--num-prompts 100 \
--scheduling-policy priority \
--n 2
```
</details>
## 👁️ Example - Multi-Modal Benchmark
<details>
<summary>Show more</summary>
<br/>
Benchmark the performance of multi-modal requests in vLLM.
### Images (ShareGPT4V)
Start vLLM:
```bash
python -m vllm.entrypoints.openai.api_server \
--model Qwen/Qwen2.5-VL-7B-Instruct \
--dtype bfloat16 \
--limit-mm-per-prompt '{"image": 1}' \
--allowed-local-media-path /path/to/sharegpt4v/images
```
Send requests with images:
```bash
python benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2.5-VL-7B-Instruct \
--dataset-name sharegpt \
--dataset-path /path/to/ShareGPT4V/sharegpt4v_instruct_gpt4-vision_cap100k.json \
--num-prompts 100 \
--save-result \
--result-dir ~/vllm_benchmark_results \
--save-detailed \
--endpoint /v1/chat/completion
```
</details>
- <https://docs.vllm.ai/en/latest/cli/bench/latency.html>
- <https://docs.vllm.ai/en/latest/cli/bench/serve.html>
- <https://docs.vllm.ai/en/latest/cli/bench/throughput.html>

View File

@ -31,6 +31,12 @@ cd vllm
You must set the following variables at the top of the script before execution.
Note: You can also override the default values below via environment variables when running the script.
```bash
MODEL=meta-llama/Llama-3.3-70B-Instruct SYSTEM=TPU TP=8 DOWNLOAD_DIR='' INPUT_LEN=128 OUTPUT_LEN=2048 MAX_MODEL_LEN=2300 MIN_CACHE_HIT_PCT=0 MAX_LATENCY_ALLOWED_MS=100000000000 NUM_SEQS_LIST="128 256" NUM_BATCHED_TOKENS_LIST="1024 2048 4096" VLLM_LOGGING_LEVEL=DEBUG bash auto_tune.sh
```
| Variable | Description | Example Value |
| --- | --- | --- |
| `BASE` | **Required.** The absolute path to the parent directory of your vLLM repository directory. | `"$HOME"` |
@ -143,3 +149,70 @@ The script follows a systematic process to find the optimal parameters:
4. **Track Best Result**: Throughout the process, the script tracks the parameter combination that has yielded the highest valid throughput so far.
5. **Profile Collection**: For the best-performing run, the script saves the vLLM profiler output, which can be used for deep-dive performance analysis with tools like TensorBoard.
## Batched `auto_tune`
The `batch_auto_tune.sh` script allows you to run multiple `auto_tune.sh` experiments sequentially from a single configuration file. It iterates through a list of parameter sets, executes `auto_tune.sh` for each, and records the results back into the input file.
### Prerequisites
- **jq**: This script requires `jq` to parse the JSON configuration file.
- **gcloud**: If you plan to upload results to Google Cloud Storage, the `gcloud` CLI must be installed and authenticated.
### How to Run
1. **Create a JSON configuration file**: Create a file (e.g., `runs_config.json`) containing an array of JSON objects. Each object defines the parameters for a single `auto_tune.sh` run.
2. **Execute the script**:
```bash
bash batch_auto_tune.sh <path_to_json_file> [gcs_upload_path]
```
- `<path_to_json_file>`: **Required.** Path to your JSON configuration file.
- `[gcs_upload_path]`: **Optional.** A GCS path (e.g., `gs://my-bucket/benchmark-results`) where the detailed results and profiles for each run will be uploaded. If this is empty, the results will be available on the local filesystem (see the log for `RESULT_FILE=/path/to/results/file.txt`).
### Configuration File
The JSON configuration file should contain an array of objects. Each object's keys correspond to the configuration variables for `auto_tune.sh` (see the [Configuration table above](#configuration)). These keys will be converted to uppercase environment variables for each run.
Here is an example `runs_config.json` with two benchmark configurations:
```json
[
{
"base": "/home/user",
"model": "meta-llama/Llama-3.1-8B-Instruct",
"system": "TPU", # OR GPU
"tp": 8,
"input_len": 128,
"output_len": 2048,
"max_model_len": 2300,
"num_seqs_list": "128 256",
"num_batched_tokens_list": "8192 16384"
},
{
"base": "/home/user",
"model": "meta-llama/Llama-3.1-70B-Instruct",
"system": "TPU", # OR GPU
"tp": 8,
"input_len": 4000,
"output_len": 16,
"max_model_len": 4096,
"num_seqs_list": "64 128",
"num_batched_tokens_list": "4096 8192",
"max_latency_allowed_ms": 500
}
]
```
### Output
The script modifies the input JSON file in place, adding the results of each run to the corresponding object. The following fields are added:
- `run_id`: A unique identifier for the run, derived from the timestamp.
- `status`: The outcome of the run (`SUCCESS`, `FAILURE`, or `WARNING_NO_RESULT_FILE`).
- `results`: The content of the `result.txt` file from the `auto_tune.sh` run.
- `gcs_results`: The GCS URL where the run's artifacts are stored (if a GCS path was provided).
A summary of successful and failed runs is also printed to the console upon completion.

View File

@ -5,25 +5,41 @@
TAG=$(date +"%Y_%m_%d_%H_%M")
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
BASE="$SCRIPT_DIR/../../.."
MODEL="meta-llama/Llama-3.1-8B-Instruct"
SYSTEM="TPU"
TP=1
DOWNLOAD_DIR=""
INPUT_LEN=4000
OUTPUT_LEN=16
MAX_MODEL_LEN=4096
MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000
NUM_SEQS_LIST="128 256"
NUM_BATCHED_TOKENS_LIST="512 1024 2048 4096"
VLLM_LOGGING_LEVEL=${VLLM_LOGGING_LEVEL:-INFO}
BASE=${BASE:-"$SCRIPT_DIR/../../.."}
MODEL=${MODEL:-"meta-llama/Llama-3.1-8B-Instruct"}
SYSTEM=${SYSTEM:-"TPU"}
TP=${TP:-1}
DOWNLOAD_DIR=${DOWNLOAD_DIR:-""}
INPUT_LEN=${INPUT_LEN:-4000}
OUTPUT_LEN=${OUTPUT_LEN:-16}
MAX_MODEL_LEN=${MAX_MODEL_LEN:-4096}
MIN_CACHE_HIT_PCT=${MIN_CACHE_HIT_PCT:-0}
MAX_LATENCY_ALLOWED_MS=${MAX_LATENCY_ALLOWED_MS:-100000000000}
NUM_SEQS_LIST=${NUM_SEQS_LIST:-"128 256"}
NUM_BATCHED_TOKENS_LIST=${NUM_BATCHED_TOKENS_LIST:-"512 1024 2048 4096"}
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
RESULT="$LOG_FOLDER/result.txt"
PROFILE_PATH="$LOG_FOLDER/profile"
echo "result file: $RESULT"
echo "model: $MODEL"
echo "====================== AUTO TUNE PARAMETERS ===================="
echo "SCRIPT_DIR=$SCRIPT_DIR"
echo "BASE=$BASE"
echo "MODEL=$MODEL"
echo "SYSTEM=$SYSTEM"
echo "TP=$TP"
echo "DOWNLOAD_DIR=$DOWNLOAD_DIR"
echo "INPUT_LEN=$INPUT_LEN"
echo "OUTPUT_LEN=$OUTPUT_LEN"
echo "MAX_MODEL_LEN=$MAX_MODEL_LEN"
echo "MIN_CACHE_HIT_PCT=$MIN_CACHE_HIT_PCT"
echo "MAX_LATENCY_ALLOWED_MS=$MAX_LATENCY_ALLOWED_MS"
echo "NUM_SEQS_LIST=$NUM_SEQS_LIST"
echo "NUM_BATCHED_TOKENS_LIST=$NUM_BATCHED_TOKENS_LIST"
echo "VLLM_LOGGING_LEVEL=$VLLM_LOGGING_LEVEL"
echo "RESULT_FILE=$RESULT"
echo "====================== AUTO TUNEPARAMETERS ===================="
rm -rf $LOG_FOLDER
rm -rf $PROFILE_PATH
@ -87,10 +103,15 @@ start_server() {
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 \
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
fi
local server_pid=$!
# wait for 10 minutes...
server_started=0
for i in {1..60}; do
# This line checks whether the server is still alive or not,
# since that we should always have permission to send signal to the server process.
kill -0 $server_pid 2> /dev/null || break
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
if [[ "$STATUS_CODE" -eq 200 ]]; then
@ -102,7 +123,7 @@ start_server() {
done
if (( ! server_started )); then
echo "server did not start within 10 minutes. Please check server log at $vllm_log".
echo "server did not start within 10 minutes or crashed. Please check server log at $vllm_log".
return 1
else
return 0
@ -213,7 +234,7 @@ run_benchmark() {
pkill -if vllm
sleep 10
printf '=%.0s' $(seq 1 20)
echo "===================="
return 0
}

View File

@ -0,0 +1,128 @@
#!/bin/bash
INPUT_JSON="$1"
GCS_PATH="$2" # Optional GCS path for uploading results for each run
SCRIPT_DIR=$(cd -- "$(dirname -- "${BASH_SOURCE[0]}")" &>/dev/null && pwd)
AUTOTUNE_SCRIPT="$SCRIPT_DIR/auto_tune.sh"
if [[ -z "$INPUT_JSON" ]]; then
echo "Error: Input JSON file not provided."
echo "Usage: $0 <path_to_json_file> [gcs_upload_path]"
exit 1
fi
if [[ ! -f "$INPUT_JSON" ]]; then
echo "Error: File not found at '$INPUT_JSON'"
exit 1
fi
if ! command -v jq &> /dev/null; then
echo "Error: 'jq' command not found. Please install jq to process the JSON input."
exit 1
fi
if [[ -n "$GCS_PATH" ]] && ! command -v gcloud &> /dev/null; then
echo "Error: 'gcloud' command not found, but a GCS_PATH was provided."
exit 1
fi
SUCCESS_COUNT=0
FAILURE_COUNT=0
FAILED_RUNS=()
SCRIPT_START_TIME=$(date +%s)
json_content=$(cat "$INPUT_JSON")
if ! num_runs=$(echo "$json_content" | jq 'length'); then
echo "Error: Invalid JSON in $INPUT_JSON. 'jq' failed to get array length." >&2
exit 1
fi
echo "Found $num_runs benchmark configurations in $INPUT_JSON."
echo "Starting benchmark runs..."
echo "--------------------------------------------------"
for i in $(seq 0 $(($num_runs - 1))); do
run_object=$(echo "$json_content" | jq ".[$i]")
RUN_START_TIME=$(date +%s)
ENV_VARS_ARRAY=()
# Dynamically create env vars from the JSON object's keys
for key in $(echo "$run_object" | jq -r 'keys_unsorted[]'); do
value=$(echo "$run_object" | jq -r ".$key")
var_name=$(echo "$key" | tr '[:lower:]' '[:upper:]' | tr -cd 'A-Z0-9_')
ENV_VARS_ARRAY+=("${var_name}=${value}")
done
echo "Executing run #$((i+1))/$num_runs with parameters: ${ENV_VARS_ARRAY[*]}"
# Execute auto_tune.sh and capture output
RUN_OUTPUT_FILE=$(mktemp)
if env "${ENV_VARS_ARRAY[@]}" bash "$AUTOTUNE_SCRIPT" > >(tee -a "$RUN_OUTPUT_FILE") 2>&1; then
STATUS="SUCCESS"
((SUCCESS_COUNT++))
else
STATUS="FAILURE"
((FAILURE_COUNT++))
FAILED_RUNS+=("Run #$((i+1)): $(echo $run_object | jq -c .)")
fi
RUN_OUTPUT=$(<"$RUN_OUTPUT_FILE")
rm "$RUN_OUTPUT_FILE"
# Parse results and optionally upload them to GCS
RUN_ID=""
RESULTS=""
GCS_RESULTS_URL=""
if [[ "$STATUS" == "SUCCESS" ]]; then
RESULT_FILE_PATH=$(echo "$RUN_OUTPUT" | grep 'RESULT_FILE=' | tail -n 1 | cut -d'=' -f2 | tr -s '/' || true)
if [[ -n "$RESULT_FILE_PATH" && -f "$RESULT_FILE_PATH" ]]; then
RUN_ID=$(basename "$(dirname "$RESULT_FILE_PATH")")
RESULT_DIR=$(dirname "$RESULT_FILE_PATH")
RESULTS=$(cat "$RESULT_FILE_PATH")
if [[ -n "$GCS_PATH" ]]; then
GCS_RESULTS_URL="${GCS_PATH}/${RUN_ID}"
echo "Uploading results to GCS..."
if gcloud storage rsync --recursive "$RESULT_DIR/" "$GCS_RESULTS_URL"; then
echo "GCS upload successful."
else
echo "Warning: GCS upload failed for RUN_ID $RUN_ID."
fi
fi
else
echo "Warning: Could not find result file for a successful run."
STATUS="WARNING_NO_RESULT_FILE"
fi
fi
# Add the results back into the JSON object for this run
json_content=$(echo "$json_content" | jq --argjson i "$i" --arg run_id "$RUN_ID" --arg status "$STATUS" --arg results "$RESULTS" --arg gcs_results "$GCS_RESULTS_URL" \
'.[$i] += {run_id: $run_id, status: $status, results: $results, gcs_results: $gcs_results}')
RUN_END_TIME=$(date +%s)
echo "Run finished in $((RUN_END_TIME - RUN_START_TIME)) seconds. Status: $STATUS"
echo "--------------------------------------------------"
# Save intermediate progress back to the file
echo "$json_content" > "$INPUT_JSON.tmp" && mv "$INPUT_JSON.tmp" "$INPUT_JSON"
done
SCRIPT_END_TIME=$(date +%s)
echo "All benchmark runs completed in $((SCRIPT_END_TIME - SCRIPT_START_TIME)) seconds."
echo
echo "====================== SUMMARY ======================"
echo "Successful runs: $SUCCESS_COUNT"
echo "Failed runs: $FAILURE_COUNT"
echo "==================================================="
if [[ $FAILURE_COUNT -gt 0 ]]; then
echo "Details of failed runs (see JSON file for full parameters):"
for failed in "${FAILED_RUNS[@]}"; do
echo " - $failed"
done
fi
echo "Updated results have been saved to '$INPUT_JSON'."

View File

@ -34,6 +34,7 @@ class RequestFuncInput:
multi_modal_content: Optional[dict | list[dict]] = None
ignore_eos: bool = False
language: Optional[str] = None
request_id: Optional[str] = None
@dataclass
@ -71,6 +72,9 @@ async def async_request_tgi(
"inputs": request_func_input.prompt,
"parameters": params,
}
headers = None
if request_func_input.request_id:
headers = {"x-request-id": request_func_input.request_id}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
if request_func_input.ignore_eos:
@ -82,7 +86,9 @@ async def async_request_tgi(
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
async with session.post(
url=api_url, json=payload, headers=headers
) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
@ -145,6 +151,9 @@ async def async_request_trt_llm(
}
if request_func_input.ignore_eos:
payload["min_length"] = request_func_input.output_len
headers = None
if request_func_input.request_id:
headers = {"x-request-id": request_func_input.request_id}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
@ -152,7 +161,9 @@ async def async_request_trt_llm(
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
async with session.post(
url=api_url, json=payload, headers=headers
) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
@ -211,6 +222,8 @@ async def async_request_deepspeed_mii(
"top_p": 1.0,
}
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
if request_func_input.request_id:
headers["x-request-id"] = request_func_input.request_id
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
@ -283,6 +296,8 @@ async def async_request_openai_completions(
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
if request_func_input.request_id:
headers["x-request-id"] = request_func_input.request_id
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
@ -395,6 +410,8 @@ async def async_request_openai_chat_completions(
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
if request_func_input.request_id:
headers["x-request-id"] = request_func_input.request_id
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
@ -491,6 +508,8 @@ async def async_request_openai_audio(
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
if request_func_input.request_id:
headers["x-request-id"] = request_func_input.request_id
# Send audio file
def to_bytes(y, sr):

View File

@ -57,7 +57,7 @@ def invoke_main() -> None:
"--num-iteration",
type=int,
default=1000,
help="Number of iterations to run to stablize final data readings",
help="Number of iterations to run to stabilize final data readings",
)
parser.add_argument(
"--allocate-blocks",

File diff suppressed because it is too large Load Diff

View File

@ -1,191 +1,17 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Benchmark the latency of processing a single batch of requests."""
import argparse
import dataclasses
import json
import os
import time
from typing import Any, Optional
import numpy as np
from tqdm import tqdm
from typing_extensions import deprecated
import vllm.envs as envs
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.inputs import PromptType
from vllm.sampling_params import BeamSearchParams
from vllm.utils import FlexibleArgumentParser
def save_to_pytorch_benchmark_format(
args: argparse.Namespace, results: dict[str, Any]
) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={"latency": results["latencies"]},
extra_info={k: results[k] for k in ["avg_latency", "percentiles"]},
)
if pt_records:
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
write_to_json(pt_file, pt_records)
@deprecated(
"benchmark_latency.py is deprecated and will be removed in a "
"future version. Please use 'vllm bench latency' instead.",
)
def main(args: argparse.Namespace):
print(args)
engine_args = EngineArgs.from_cli_args(args)
# NOTE(woosuk): If the request cannot be processed in a single batch,
# the engine will automatically process the request in multiple batches.
llm = LLM(**dataclasses.asdict(engine_args))
assert llm.llm_engine.model_config.max_model_len >= (
args.input_len + args.output_len
), (
"Please ensure that max_model_len is greater than"
" the sum of input_len and output_len."
)
sampling_params = SamplingParams(
n=args.n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=args.output_len,
detokenize=not args.disable_detokenize,
)
print(sampling_params)
dummy_prompt_token_ids = np.random.randint(
10000, size=(args.batch_size, args.input_len)
)
dummy_prompts: list[PromptType] = [
{"prompt_token_ids": batch} for batch in dummy_prompt_token_ids.tolist()
]
def llm_generate():
if not args.use_beam_search:
llm.generate(dummy_prompts, sampling_params=sampling_params, use_tqdm=False)
else:
llm.beam_search(
dummy_prompts,
BeamSearchParams(
beam_width=args.n,
max_tokens=args.output_len,
ignore_eos=True,
),
)
def run_to_completion(profile_dir: Optional[str] = None):
if profile_dir:
llm.start_profile()
llm_generate()
llm.stop_profile()
else:
start_time = time.perf_counter()
llm_generate()
end_time = time.perf_counter()
latency = end_time - start_time
return latency
print("Warming up...")
for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
run_to_completion(profile_dir=None)
if args.profile:
profile_dir = envs.VLLM_TORCH_PROFILER_DIR
print(f"Profiling (results will be saved to '{profile_dir}')...")
run_to_completion(profile_dir=profile_dir)
return
# Benchmark.
latencies = []
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
latencies.append(run_to_completion(profile_dir=None))
latencies = np.array(latencies)
percentages = [10, 25, 50, 75, 90, 99]
percentiles = np.percentile(latencies, percentages)
print(f"Avg latency: {np.mean(latencies)} seconds")
for percentage, percentile in zip(percentages, percentiles):
print(f"{percentage}% percentile latency: {percentile} seconds")
# Output JSON results if specified
if args.output_json:
results = {
"avg_latency": np.mean(latencies),
"latencies": latencies.tolist(),
"percentiles": dict(zip(percentages, percentiles.tolist())),
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
save_to_pytorch_benchmark_format(args, results)
def create_argument_parser():
parser = FlexibleArgumentParser(
description="Benchmark the latency of processing a single batch of "
"requests till completion."
)
parser.add_argument("--input-len", type=int, default=32)
parser.add_argument("--output-len", type=int, default=128)
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument(
"--n",
type=int,
default=1,
help="Number of generated sequences per prompt.",
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument(
"--num-iters-warmup",
type=int,
default=10,
help="Number of iterations to run for warmup.",
)
parser.add_argument(
"--num-iters", type=int, default=30, help="Number of iterations to run."
)
parser.add_argument(
"--profile",
action="store_true",
help="profile the generation process of a single batch",
)
parser.add_argument(
"--output-json",
type=str,
default=None,
help="Path to save the latency results in JSON format.",
)
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=(
"Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"
),
)
parser = EngineArgs.add_cli_args(parser)
# V1 enables prefix caching by default which skews the latency
# numbers. We need to disable prefix caching by default.
parser.set_defaults(enable_prefix_caching=False)
return parser
import sys
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
if args.profile and not envs.VLLM_TORCH_PROFILER_DIR:
raise OSError(
"The environment variable 'VLLM_TORCH_PROFILER_DIR' is not set. "
"Please set it to a valid path to use torch profiler."
)
main(args)
print("""DEPRECATED: This script has been moved to the vLLM CLI.
Please use the following command instead:
vllm bench latency
For help with the new command, run:
vllm bench latency --help
Alternatively, you can run the new command directly with:
python -m vllm.entrypoints.cli.main bench latency --help
""")
sys.exit(1)

View File

@ -1,17 +1,31 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import gc
import time
from unittest import mock
import numpy as np
from tabulate import tabulate
from benchmark_utils import TimeCollector
from vllm.config import ModelConfig, SpeculativeConfig, VllmConfig
from vllm.config import (
CacheConfig,
DeviceConfig,
LoadConfig,
ModelConfig,
ParallelConfig,
SchedulerConfig,
SpeculativeConfig,
VllmConfig,
)
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
from vllm.v1.spec_decode.ngram_proposer import NgramProposer
from vllm.v1.worker.gpu_input_batch import InputBatch
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
def main(args):
def benchmark_propose(args):
rows = []
for max_ngram in args.max_ngram:
collector = TimeCollector(TimeCollector.US)
@ -69,15 +83,93 @@ def main(args):
)
def benchmark_batched_propose(args):
NUM_SPECULATIVE_TOKENS_NGRAM = 10
PROMPT_LOOKUP_MIN = 5
PROMPT_LOOKUP_MAX = 15
MAX_MODEL_LEN = int(1e7)
DEVICE = current_platform.device_type
model_config = ModelConfig(model="facebook/opt-125m", runner="generate")
speculative_config = SpeculativeConfig(
target_model_config=model_config,
target_parallel_config=ParallelConfig(),
method="ngram",
num_speculative_tokens=NUM_SPECULATIVE_TOKENS_NGRAM,
prompt_lookup_max=PROMPT_LOOKUP_MAX,
prompt_lookup_min=PROMPT_LOOKUP_MIN,
)
vllm_config = VllmConfig(
model_config=model_config,
cache_config=CacheConfig(),
speculative_config=speculative_config,
device_config=DeviceConfig(device=current_platform.device_type),
parallel_config=ParallelConfig(),
load_config=LoadConfig(),
scheduler_config=SchedulerConfig(),
)
# monkey patch vllm.v1.worker.gpu_model_runner.get_pp_group
mock_pp_group = mock.MagicMock()
mock_pp_group.world_size = 1
with mock.patch(
"vllm.v1.worker.gpu_model_runner.get_pp_group", return_value=mock_pp_group
):
runner = GPUModelRunner(vllm_config, DEVICE)
# hack max model len
runner.max_model_len = MAX_MODEL_LEN
runner.drafter.max_model_len = MAX_MODEL_LEN
dummy_input_batch = InputBatch(
max_num_reqs=args.num_req,
max_model_len=MAX_MODEL_LEN,
max_num_batched_tokens=args.num_req * args.num_token,
device=DEVICE,
pin_memory=False,
vocab_size=256000,
block_sizes=[16],
)
dummy_input_batch._req_ids = list(str(id) for id in range(args.num_req))
dummy_input_batch.spec_decode_unsupported_reqs = ()
dummy_input_batch.num_tokens_no_spec = [args.num_token] * args.num_req
dummy_input_batch.token_ids_cpu = np.random.randint(
0, 20, (args.num_req, args.num_token)
)
runner.input_batch = dummy_input_batch
sampled_token_ids = [[0]] * args.num_req
print("Starting benchmark")
# first run is warmup so ignore it
for _ in range(args.num_iteration):
start = time.time()
runner.drafter.propose(
sampled_token_ids,
dummy_input_batch.req_ids,
dummy_input_batch.num_tokens_no_spec,
dummy_input_batch.token_ids_cpu,
dummy_input_batch.spec_decode_unsupported_reqs,
)
end = time.time()
print(f"Iteration time (s): {end - start}")
def invoke_main() -> None:
parser = FlexibleArgumentParser(
description="Benchmark the performance of N-gram speculative decode drafting"
)
parser.add_argument(
"--batched", action="store_true", help="consider time to prepare batch"
) # noqa: E501
parser.add_argument(
"--num-iteration",
type=int,
default=100,
help="Number of iterations to run to stablize final data readings",
help="Number of iterations to run to stabilize final data readings",
)
parser.add_argument(
"--num-req", type=int, default=128, help="Number of requests in the batch"
@ -105,8 +197,17 @@ def invoke_main() -> None:
help="Number of speculative tokens to generate",
)
args = parser.parse_args()
main(args)
if not args.batched:
benchmark_propose(args)
else:
benchmark_batched_propose(args)
"""
# Example command lines:
# time python3 benchmarks/benchmark_ngram_proposer.py
# time python3 benchmarks/benchmark_ngram_proposer.py --batched --num-iteration 4 --num-token 1000000 --num-req 128
""" # noqa: E501
if __name__ == "__main__":
invoke_main() # pragma: no cover

File diff suppressed because it is too large Load Diff

View File

@ -449,7 +449,8 @@ async def benchmark(
def prepare_extra_body(request) -> dict:
extra_body = {}
# Add the schema to the extra_body
extra_body[request.structure_type] = request.schema
extra_body["structured_outputs"] = {}
extra_body["structured_outputs"][request.structure_type] = request.schema
return extra_body
print("Starting initial single prompt test run...")
@ -696,11 +697,11 @@ def evaluate(ret, args):
return re.match(args.regex, actual) is not None
def _eval_correctness(expected, actual):
if args.structure_type == "guided_json":
if args.structure_type == "json":
return _eval_correctness_json(expected, actual)
elif args.structure_type == "guided_regex":
elif args.structure_type == "regex":
return _eval_correctness_regex(expected, actual)
elif args.structure_type == "guided_choice":
elif args.structure_type == "choice":
return _eval_correctness_choice(expected, actual)
else:
return None
@ -780,18 +781,18 @@ def main(args: argparse.Namespace):
)
if args.dataset == "grammar":
args.structure_type = "guided_grammar"
args.structure_type = "grammar"
elif args.dataset == "regex":
args.structure_type = "guided_regex"
args.structure_type = "regex"
elif args.dataset == "choice":
args.structure_type = "guided_choice"
args.structure_type = "choice"
else:
args.structure_type = "guided_json"
args.structure_type = "json"
if args.no_structured_output:
args.structured_output_ratio = 0
if args.save_results:
result_file_name = f"{args.structured_output_ratio}guided"
result_file_name = f"{args.structured_output_ratio}so"
result_file_name += f"_{backend}"
result_file_name += f"_{args.request_rate}qps"
result_file_name += f"_{args.model.split('/')[-1]}"
@ -998,7 +999,7 @@ def create_argument_parser():
"--percentile-metrics",
type=str,
default="ttft,tpot,itl",
help="Comma-separated list of selected metrics to report percentils. "
help="Comma-separated list of selected metrics to report percentiles. "
"This argument specifies the metrics to report percentiles. "
'Allowed metric names are "ttft", "tpot", "itl", "e2el". '
'Default value is "ttft,tpot,itl".',

View File

@ -1,742 +1,17 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Benchmark offline inference throughput."""
import argparse
import dataclasses
import json
import os
import random
import time
import warnings
from typing import Any, Optional, Union
import torch
import uvloop
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerBase
from typing_extensions import deprecated
from benchmark_dataset import (
AIMODataset,
BurstGPTDataset,
ConversationDataset,
InstructCoderDataset,
RandomDataset,
SampleRequest,
ShareGPTDataset,
SonnetDataset,
VisionArenaDataset,
)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
build_async_engine_client_from_engine_args,
)
from vllm.inputs import TextPrompt, TokensPrompt
from vllm.lora.request import LoRARequest
from vllm.outputs import RequestOutput
from vllm.sampling_params import BeamSearchParams
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
def run_vllm(
requests: list[SampleRequest],
n: int,
engine_args: EngineArgs,
disable_detokenize: bool = False,
) -> tuple[float, Optional[list[RequestOutput]]]:
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len
>= (request.prompt_len + request.expected_output_len)
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests."
)
# Add the requests to the engine.
prompts: list[Union[TextPrompt, TokensPrompt]] = []
sampling_params: list[SamplingParams] = []
for request in requests:
prompts.append(
TokensPrompt(
prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data,
)
if "prompt_token_ids" in request.prompt
else TextPrompt(
prompt=request.prompt, multi_modal_data=request.multi_modal_data
)
)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
)
)
lora_requests: Optional[list[LoRARequest]] = None
if engine_args.enable_lora:
lora_requests = [request.lora_request for request in requests]
use_beam_search = False
outputs = None
if not use_beam_search:
start = time.perf_counter()
outputs = llm.generate(
prompts, sampling_params, lora_request=lora_requests, use_tqdm=True
)
end = time.perf_counter()
else:
assert lora_requests is None, "BeamSearch API does not support LoRA"
prompts = [request.prompt for request in requests]
# output_len should be the same for all requests.
output_len = requests[0].expected_output_len
for request in requests:
assert request.expected_output_len == output_len
start = time.perf_counter()
llm.beam_search(
prompts,
BeamSearchParams(
beam_width=n,
max_tokens=output_len,
ignore_eos=True,
),
)
end = time.perf_counter()
return end - start, outputs
def run_vllm_chat(
requests: list[SampleRequest],
n: int,
engine_args: EngineArgs,
disable_detokenize: bool = False,
) -> tuple[float, list[RequestOutput]]:
"""
Run vLLM chat benchmark. This function is recommended ONLY for benchmarking
multimodal models as it properly handles multimodal inputs and chat
formatting. For non-multimodal models, use run_vllm() instead.
"""
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len
>= (request.prompt_len + request.expected_output_len)
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of "
"prompt_len and expected_output_len for all requests."
)
prompts = []
sampling_params: list[SamplingParams] = []
for request in requests:
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
)
)
start = time.perf_counter()
outputs = llm.chat(prompts, sampling_params, use_tqdm=True)
end = time.perf_counter()
return end - start, outputs
async def run_vllm_async(
requests: list[SampleRequest],
n: int,
engine_args: AsyncEngineArgs,
disable_frontend_multiprocessing: bool = False,
disable_detokenize: bool = False,
) -> float:
from vllm import SamplingParams
async with build_async_engine_client_from_engine_args(
engine_args,
disable_frontend_multiprocessing=disable_frontend_multiprocessing,
) as llm:
model_config = await llm.get_model_config()
assert all(
model_config.max_model_len
>= (request.prompt_len + request.expected_output_len)
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests."
)
# Add the requests to the engine.
prompts: list[Union[TextPrompt, TokensPrompt]] = []
sampling_params: list[SamplingParams] = []
lora_requests: list[Optional[LoRARequest]] = []
for request in requests:
prompts.append(
TokensPrompt(
prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data,
)
if "prompt_token_ids" in request.prompt
else TextPrompt(
prompt=request.prompt, multi_modal_data=request.multi_modal_data
)
)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
)
)
lora_requests.append(request.lora_request)
generators = []
start = time.perf_counter()
for i, (prompt, sp, lr) in enumerate(
zip(prompts, sampling_params, lora_requests)
):
generator = llm.generate(prompt, sp, lora_request=lr, request_id=f"test{i}")
generators.append(generator)
all_gens = merge_async_iterators(*generators)
async for i, res in all_gens:
pass
end = time.perf_counter()
return end - start
def run_hf(
requests: list[SampleRequest],
model: str,
tokenizer: PreTrainedTokenizerBase,
n: int,
max_batch_size: int,
trust_remote_code: bool,
disable_detokenize: bool = False,
) -> float:
llm = AutoModelForCausalLM.from_pretrained(
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code
)
if llm.config.model_type == "llama":
# To enable padding in the HF backend.
tokenizer.pad_token = tokenizer.eos_token
llm = llm.cuda()
pbar = tqdm(total=len(requests))
start = time.perf_counter()
batch: list[str] = []
max_prompt_len = 0
max_output_len = 0
for i in range(len(requests)):
prompt = requests[i].prompt
prompt_len = requests[i].prompt_len
output_len = requests[i].expected_output_len
# Add the prompt to the batch.
batch.append(prompt)
max_prompt_len = max(max_prompt_len, prompt_len)
max_output_len = max(max_output_len, output_len)
if len(batch) < max_batch_size and i != len(requests) - 1:
# Check if we can add more requests to the batch.
next_prompt_len = requests[i + 1].prompt_len
next_output_len = requests[i + 1].expected_output_len
if (
max(max_prompt_len, next_prompt_len)
+ max(max_output_len, next_output_len)
) <= 2048:
# We can add more requests to the batch.
continue
# Generate the sequences.
input_ids = tokenizer(batch, return_tensors="pt", padding=True).input_ids
llm_outputs = llm.generate(
input_ids=input_ids.cuda(),
do_sample=True,
num_return_sequences=n,
temperature=1.0,
top_p=1.0,
use_cache=True,
max_new_tokens=max_output_len,
)
if not disable_detokenize:
# Include the decoding time.
tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
pbar.update(len(batch))
# Clear the batch.
batch = []
max_prompt_len = 0
max_output_len = 0
end = time.perf_counter()
return end - start
def run_mii(
requests: list[SampleRequest],
model: str,
tensor_parallel_size: int,
output_len: int,
) -> float:
from mii import client, serve
llm = serve(model, tensor_parallel=tensor_parallel_size)
prompts = [request.prompt for request in requests]
start = time.perf_counter()
llm.generate(prompts, max_new_tokens=output_len)
end = time.perf_counter()
client = client(model)
client.terminate_server()
return end - start
def save_to_pytorch_benchmark_format(
args: argparse.Namespace, results: dict[str, Any]
) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={
"requests_per_second": [results["requests_per_second"]],
"tokens_per_second": [results["tokens_per_second"]],
},
extra_info={
k: results[k] for k in ["elapsed_time", "num_requests", "total_num_tokens"]
},
)
if pt_records:
# Don't use json suffix here as we don't want CI to pick it up
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
write_to_json(pt_file, pt_records)
def get_requests(args, tokenizer):
# Common parameters for all dataset types.
common_kwargs = {
"dataset_path": args.dataset_path,
"random_seed": args.seed,
}
sample_kwargs = {
"tokenizer": tokenizer,
"lora_path": args.lora_path,
"max_loras": args.max_loras,
"num_requests": args.num_prompts,
"input_len": args.input_len,
"output_len": args.output_len,
}
if args.dataset_path is None or args.dataset_name == "random":
sample_kwargs["range_ratio"] = args.random_range_ratio
sample_kwargs["prefix_len"] = args.prefix_len
dataset_cls = RandomDataset
elif args.dataset_name == "sharegpt":
dataset_cls = ShareGPTDataset
if args.backend == "vllm-chat":
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_name == "sonnet":
assert tokenizer.chat_template or tokenizer.default_chat_template, (
"Tokenizer/model must have chat template for sonnet dataset."
)
dataset_cls = SonnetDataset
sample_kwargs["prefix_len"] = args.prefix_len
sample_kwargs["return_prompt_formatted"] = True
elif args.dataset_name == "burstgpt":
dataset_cls = BurstGPTDataset
elif args.dataset_name == "hf":
common_kwargs["no_stream"] = args.no_stream
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = VisionArenaDataset
common_kwargs["dataset_subset"] = None
common_kwargs["dataset_split"] = "train"
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = InstructCoderDataset
common_kwargs["dataset_split"] = "train"
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = ConversationDataset
common_kwargs["dataset_subset"] = args.hf_subset
common_kwargs["dataset_split"] = args.hf_split
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
dataset_cls = AIMODataset
common_kwargs["dataset_subset"] = None
common_kwargs["dataset_split"] = "train"
else:
raise ValueError(f"Unknown dataset name: {args.dataset_name}")
# Remove None values
sample_kwargs = {k: v for k, v in sample_kwargs.items() if v is not None}
return dataset_cls(**common_kwargs).sample(**sample_kwargs)
@deprecated(
"benchmark_throughput.py is deprecated and will be removed in a "
"future version. Please use 'vllm bench throughput' instead.",
)
def main(args: argparse.Namespace):
if args.seed is None:
args.seed = 0
print(args)
random.seed(args.seed)
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code
)
requests = get_requests(args, tokenizer)
is_multi_modal = any(request.multi_modal_data is not None for request in requests)
request_outputs: Optional[list[RequestOutput]] = None
if args.backend == "vllm":
if args.async_engine:
elapsed_time = uvloop.run(
run_vllm_async(
requests,
args.n,
AsyncEngineArgs.from_cli_args(args),
args.disable_frontend_multiprocessing,
args.disable_detokenize,
)
)
else:
elapsed_time, request_outputs = run_vllm(
requests,
args.n,
EngineArgs.from_cli_args(args),
args.disable_detokenize,
)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(
requests,
args.model,
tokenizer,
args.n,
args.hf_max_batch_size,
args.trust_remote_code,
args.disable_detokenize,
)
elif args.backend == "mii":
elapsed_time = run_mii(
requests, args.model, args.tensor_parallel_size, args.output_len
)
elif args.backend == "vllm-chat":
elapsed_time, request_outputs = run_vllm_chat(
requests, args.n, EngineArgs.from_cli_args(args), args.disable_detokenize
)
else:
raise ValueError(f"Unknown backend: {args.backend}")
if request_outputs:
# Note: with the vllm and vllm-chat backends,
# we have request_outputs, which we use to count tokens.
total_prompt_tokens = 0
total_output_tokens = 0
for ro in request_outputs:
if not isinstance(ro, RequestOutput):
continue
total_prompt_tokens += (
len(ro.prompt_token_ids) if ro.prompt_token_ids else 0
)
total_output_tokens += sum(len(o.token_ids) for o in ro.outputs if o)
total_num_tokens = total_prompt_tokens + total_output_tokens
else:
total_num_tokens = sum(r.prompt_len + r.expected_output_len for r in requests)
total_output_tokens = sum(r.expected_output_len for r in requests)
total_prompt_tokens = total_num_tokens - total_output_tokens
if is_multi_modal and args.backend != "vllm-chat":
print(
"\033[91mWARNING\033[0m: Multi-modal request with "
f"{args.backend} backend detected. The "
"following metrics are not accurate because image tokens are not"
" counted. See vllm-project/vllm/issues/9778 for details."
)
# TODO(vllm-project/vllm/issues/9778): Count multi-modal token length.
# vllm-chat backend counts the image tokens now
print(
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
f"{total_output_tokens / elapsed_time:.2f} output tokens/s"
)
print(f"Total num prompt tokens: {total_prompt_tokens}")
print(f"Total num output tokens: {total_output_tokens}")
# Output JSON results if specified
if args.output_json:
results = {
"elapsed_time": elapsed_time,
"num_requests": len(requests),
"total_num_tokens": total_num_tokens,
"requests_per_second": len(requests) / elapsed_time,
"tokens_per_second": total_num_tokens / elapsed_time,
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
save_to_pytorch_benchmark_format(args, results)
def validate_args(args):
"""
Validate command-line arguments.
"""
# === Deprecation and Defaulting ===
if args.dataset is not None:
warnings.warn(
"The '--dataset' argument will be deprecated in the next release. "
"Please use '--dataset-name' and '--dataset-path' instead.",
stacklevel=2,
)
args.dataset_path = args.dataset
if not getattr(args, "tokenizer", None):
args.tokenizer = args.model
# === Backend Validation ===
valid_backends = {"vllm", "hf", "mii", "vllm-chat"}
if args.backend not in valid_backends:
raise ValueError(f"Unsupported backend: {args.backend}")
# === Dataset Configuration ===
if not args.dataset and not args.dataset_path:
print("When dataset path is not set, it will default to random dataset")
args.dataset_name = "random"
if args.input_len is None:
raise ValueError("input_len must be provided for a random dataset")
# === Dataset Name Specific Checks ===
# --hf-subset and --hf-split: only used
# when dataset_name is 'hf'
if args.dataset_name != "hf" and (
getattr(args, "hf_subset", None) is not None
or getattr(args, "hf_split", None) is not None
):
warnings.warn(
"--hf-subset and --hf-split will be ignored \
since --dataset-name is not 'hf'.",
stacklevel=2,
)
elif args.dataset_name == "hf":
if args.dataset_path in (
VisionArenaDataset.SUPPORTED_DATASET_PATHS.keys()
| ConversationDataset.SUPPORTED_DATASET_PATHS
):
assert args.backend == "vllm-chat", (
f"{args.dataset_path} needs to use vllm-chat as the backend."
) # noqa: E501
elif args.dataset_path in (
InstructCoderDataset.SUPPORTED_DATASET_PATHS
| AIMODataset.SUPPORTED_DATASET_PATHS
):
assert args.backend == "vllm", (
f"{args.dataset_path} needs to use vllm as the backend."
) # noqa: E501
else:
raise ValueError(f"{args.dataset_path} is not supported by hf dataset.")
# --random-range-ratio: only used when dataset_name is 'random'
if args.dataset_name != "random" and args.random_range_ratio is not None:
warnings.warn(
"--random-range-ratio will be ignored since \
--dataset-name is not 'random'.",
stacklevel=2,
)
# --prefix-len: only used when dataset_name is 'random', 'sonnet', or not
# set.
if (
args.dataset_name not in {"random", "sonnet", None}
and args.prefix_len is not None
):
warnings.warn(
"--prefix-len will be ignored since --dataset-name\
is not 'random', 'sonnet', or not set.",
stacklevel=2,
)
# === LoRA Settings ===
if getattr(args, "enable_lora", False) and args.backend != "vllm":
raise ValueError("LoRA benchmarking is only supported for vLLM backend")
if getattr(args, "enable_lora", False) and args.lora_path is None:
raise ValueError("LoRA path must be provided when enable_lora is True")
# === Backend-specific Validations ===
if args.backend == "hf" and args.hf_max_batch_size is None:
raise ValueError("HF max batch size is required for HF backend")
if args.backend != "hf" and args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
if (
args.backend in {"hf", "mii"}
and getattr(args, "quantization", None) is not None
):
raise ValueError("Quantization is only for vLLM backend.")
if args.backend == "mii" and args.dtype != "auto":
raise ValueError("dtype must be auto for MII backend.")
if args.backend == "mii" and args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.backend == "mii" and args.tokenizer != args.model:
raise ValueError("Tokenizer must be the same as the model for MII backend.")
# --data-parallel is not supported currently.
# https://github.com/vllm-project/vllm/issues/16222
if args.data_parallel_size > 1:
raise ValueError(
"Data parallel is not supported in offline benchmark, \
please use benchmark serving instead"
)
def create_argument_parser():
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument(
"--backend",
type=str,
choices=["vllm", "hf", "mii", "vllm-chat"],
default="vllm",
)
parser.add_argument(
"--dataset-name",
type=str,
choices=["sharegpt", "random", "sonnet", "burstgpt", "hf"],
help="Name of the dataset to benchmark on.",
default="sharegpt",
)
parser.add_argument(
"--no-stream",
action="store_true",
help="Do not load the dataset in streaming mode.",
)
parser.add_argument(
"--dataset",
type=str,
default=None,
help="Path to the ShareGPT dataset, will be deprecated in\
the next release. The dataset is expected to "
"be a json in form of list[dict[..., conversations: "
"list[dict[..., value: <prompt_or_response>]]]]",
)
parser.add_argument(
"--dataset-path", type=str, default=None, help="Path to the dataset"
)
parser.add_argument(
"--input-len",
type=int,
default=None,
help="Input prompt length for each request",
)
parser.add_argument(
"--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.",
)
parser.add_argument(
"--n", type=int, default=1, help="Number of generated sequences per prompt."
)
parser.add_argument(
"--num-prompts", type=int, default=1000, help="Number of prompts to process."
)
parser.add_argument(
"--hf-max-batch-size",
type=int,
default=None,
help="Maximum batch size for HF backend.",
)
parser.add_argument(
"--output-json",
type=str,
default=None,
help="Path to save the throughput results in JSON format.",
)
parser.add_argument(
"--async-engine",
action="store_true",
default=False,
help="Use vLLM async engine rather than LLM class.",
)
parser.add_argument(
"--disable-frontend-multiprocessing",
action="store_true",
default=False,
help="Disable decoupled async engine frontend.",
)
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=(
"Do not detokenize the response (i.e. do not include "
"detokenization time in the measurement)"
),
)
# LoRA
parser.add_argument(
"--lora-path",
type=str,
default=None,
help="Path to the LoRA adapters to use. This can be an absolute path, "
"a relative path, or a Hugging Face model identifier.",
)
parser.add_argument(
"--prefix-len",
type=int,
default=None,
help=f"Number of prefix tokens to be used in RandomDataset "
"and SonnetDataset. For RandomDataset, the total input "
"length is the sum of prefix-len (default: "
f"{RandomDataset.DEFAULT_PREFIX_LEN}) and a random context length "
"sampled from [input_len * (1 - range_ratio), "
"input_len * (1 + range_ratio)]. For SonnetDataset, "
f"prefix_len (default: {SonnetDataset.DEFAULT_PREFIX_LEN}) "
"controls how much of the input is fixed lines versus "
"random lines, but the total input length remains approximately "
"input_len tokens.",
)
# random dataset
parser.add_argument(
"--random-range-ratio",
type=float,
default=None,
help=f"Range ratio (default : {RandomDataset.DEFAULT_RANGE_RATIO}) "
"for sampling input/output length, "
"used only for RandomDataset. Must be in the range [0, 1) to "
"define a symmetric sampling range "
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
)
# hf dtaset
parser.add_argument(
"--hf-subset", type=str, default=None, help="Subset of the HF dataset."
)
parser.add_argument(
"--hf-split", type=str, default=None, help="Split of the HF dataset."
)
parser = AsyncEngineArgs.add_cli_args(parser)
return parser
import sys
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
validate_args(args)
main(args)
print("""DEPRECATED: This script has been moved to the vLLM CLI.
Please use the following command instead:
vllm bench throughput
For help with the new command, run:
vllm bench throughput --help
Alternatively, you can run the new command directly with:
python -m vllm.entrypoints.cli.main bench throughput --help
""")
sys.exit(1)

View File

@ -17,7 +17,7 @@ from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
w8a8_block_fp8_matmul,
w8a8_triton_block_scaled_mm,
)
from vllm.utils import FlexibleArgumentParser, cdiv
@ -158,7 +158,7 @@ def bench_fp8(
"cutlass_fp8_fp8_fp16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.float16, bias.to(dtype=torch.float16)
),
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_block_fp8_matmul(
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_triton_block_scaled_mm(
a_cont, b.t(), block_scale_a, block_scale_b.t(), (128, 128)
),
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise": lambda: ops.cutlass_scaled_mm(

View File

@ -55,24 +55,20 @@ benchmark() {
output_len=$2
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
--port 8100 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
--port 8200 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
wait_for_server 8100
wait_for_server 8200

View File

@ -38,16 +38,12 @@ wait_for_server() {
launch_chunked_prefill() {
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
# disagg prefill
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
--port 8100 \
--max-model-len 10000 \
--enable-chunked-prefill \
--gpu-memory-utilization 0.6 &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
--port 8200 \
--max-model-len 10000 \
--enable-chunked-prefill \
@ -62,23 +58,19 @@ launch_chunked_prefill() {
launch_disagg_prefill() {
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
# disagg prefill
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
--port 8100 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
--port 8200 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
wait_for_server 8100
wait_for_server 8200

View File

@ -0,0 +1,145 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
apply_w8a8_block_fp8_linear,
)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
CUTLASS_BLOCK_FP8_SUPPORTED,
)
from vllm.platforms import current_platform
from vllm.triton_utils import triton as vllm_triton
assert current_platform.is_cuda(), (
"Only support benchmarking w8a8 block fp8 kernel on CUDA device."
)
# DeepSeek-V3 weight shapes
DEEPSEEK_V3_SHAPES = [
(512 + 64, 7168),
(2112, 7168),
((128 + 64) * 128, 7168),
(128 * (128 + 128), 512),
(7168, 16384),
(7168, 18432),
(18432 * 2, 7168),
(24576, 1536),
(12288, 7168),
(4096, 7168),
(7168, 2048),
]
def build_w8a8_block_fp8_runner(M, N, K, block_size, device, use_cutlass):
"""Build runner function for w8a8 block fp8 matmul."""
factor_for_scale = 1e-2
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
# Create random FP8 tensors
A_ref = (torch.rand(M, K, dtype=torch.bfloat16, device=device) - 0.5) * 2 * fp8_max
B_ref = (torch.rand(N, K, dtype=torch.bfloat16, device=device) - 0.5) * 2 * fp8_max
B = B_ref.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
# Create scales
block_n, block_k = block_size[0], block_size[1]
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
Bs = (
torch.rand(n_tiles, k_tiles, dtype=torch.float32, device=device)
* factor_for_scale
)
# SM90 CUTLASS requires row-major format for scales
if use_cutlass and current_platform.is_device_capability(90):
Bs = Bs.T.contiguous()
def run():
if use_cutlass:
return apply_w8a8_block_fp8_linear(
A_ref, B, block_size, Bs, cutlass_block_fp8_supported=True
)
else:
return apply_w8a8_block_fp8_linear(
A_ref, B, block_size, Bs, cutlass_block_fp8_supported=False
)
return run
# Determine available providers
available_providers = ["torch-bf16", "w8a8-block-fp8-triton"]
plot_title = "BF16 vs W8A8 Block FP8 GEMMs"
if CUTLASS_BLOCK_FP8_SUPPORTED:
available_providers.append("w8a8-block-fp8-cutlass")
@vllm_triton.testing.perf_report(
vllm_triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
x_log=False,
line_arg="provider",
line_vals=available_providers,
line_names=available_providers,
ylabel="TFLOP/s (larger is better)",
plot_name="BF16 vs W8A8 Block FP8 GEMMs",
args={},
)
)
def benchmark_tflops(batch_size, provider, N, K, block_size=(128, 128)):
M = batch_size
device = "cuda"
quantiles = [0.5, 0.2, 0.8]
if provider == "torch-bf16":
a = torch.randn((M, K), device=device, dtype=torch.bfloat16)
b = torch.randn((N, K), device=device, dtype=torch.bfloat16)
ms, min_ms, max_ms = vllm_triton.testing.do_bench_cudagraph(
lambda: torch.nn.functional.linear(a, b), quantiles=quantiles
)
elif provider == "w8a8-block-fp8-triton":
run_w8a8_triton = build_w8a8_block_fp8_runner(
M, N, K, block_size, device, use_cutlass=False
)
ms, min_ms, max_ms = vllm_triton.testing.do_bench_cudagraph(
lambda: run_w8a8_triton(), quantiles=quantiles
)
elif provider == "w8a8-block-fp8-cutlass":
run_w8a8_cutlass = build_w8a8_block_fp8_runner(
M, N, K, block_size, device, use_cutlass=True
)
ms, min_ms, max_ms = vllm_triton.testing.do_bench_cudagraph(
lambda: run_w8a8_cutlass(), quantiles=quantiles
)
else:
raise ValueError(f"Unknown provider: {provider}")
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
if __name__ == "__main__":
block_size = (128, 128)
for N, K in DEEPSEEK_V3_SHAPES:
print(f"\nBenchmarking DeepSeek-V3, N={N} K={K}")
print(f"TFLOP/s comparison (block_size={block_size}):")
benchmark_tflops.run(
print_data=True,
# show_plots=False,
# save_path=f"bench_w8a8_block_fp8_tflops_n{N}_k{K}",
N=N,
K=K,
block_size=block_size,
)
print("\nBenchmark finished!")

View File

@ -3,6 +3,7 @@
import argparse
import copy
import itertools
import os
import torch
from weight_shapes import WEIGHT_SHAPES
@ -23,21 +24,45 @@ PROVIDER_CFGS = {
"torch-bf16": dict(enabled=True),
"nvfp4": dict(no_a_quant=False, enabled=True),
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
"fbgemm-nvfp4": dict(fbgemm=True, no_a_quant=False, enabled=True),
"fbgemm-nvfp4-noquant": dict(fbgemm=True, no_a_quant=True, enabled=True),
}
_needs_fbgemm = any(
v.get("fbgemm", False) for v in PROVIDER_CFGS.values() if v.get("enabled", False)
)
if _needs_fbgemm:
try:
from fbgemm_gpu.experimental.gemm.triton_gemm.fp4_quantize import (
triton_scale_nvfp4_quant,
)
except ImportError:
print(
"WARNING: FBGEMM providers are enabled but fbgemm_gpu is not installed. "
"These providers will be skipped. Please install fbgemm_gpu with: "
"'pip install fbgemm-gpu-genai' to run them."
)
# Disable FBGEMM providers so the benchmark can run.
for cfg in PROVIDER_CFGS.values():
if cfg.get("fbgemm"):
cfg["enabled"] = False
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
def _quant_weight_nvfp4(b: torch.Tensor, device: str):
def _quant_weight_nvfp4(b: torch.Tensor, device: str, cfg):
# Compute global scale for weight
b_amax = torch.abs(b).max().to(torch.float32)
b_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
if "fbgemm" in cfg and cfg["fbgemm"]:
b_fp4, scale_b_fp4 = triton_scale_nvfp4_quant(b, b_global_scale)
else:
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
return b_fp4, scale_b_fp4, b_global_scale
def build_nvfp4_runner(cfg, a, b, dtype, device):
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device)
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device, cfg)
# Compute global scale for activation
# NOTE: This is generally provided ahead-of-time by the model checkpoint.
@ -46,6 +71,35 @@ def build_nvfp4_runner(cfg, a, b, dtype, device):
# Alpha for the GEMM operation
alpha = 1.0 / (a_global_scale * b_global_scale)
if "fbgemm" in cfg and cfg["fbgemm"]:
if cfg["no_a_quant"]:
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
def run():
return torch.ops.fbgemm.f4f4bf16(
a_fp4,
b_fp4,
scale_a_fp4,
scale_b_fp4,
global_scale=alpha,
use_mx=False,
)
return run
else:
def run():
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
return torch.ops.fbgemm.f4f4bf16(
a_fp4,
b_fp4,
scale_a_fp4,
scale_b_fp4,
global_scale=alpha,
use_mx=False,
)
return run
if cfg["no_a_quant"]:
# Pre-quantize activation
@ -130,10 +184,13 @@ if __name__ == "__main__":
for K, N, model in prepare_shapes(args):
print(f"{model}, N={N} K={K}, BF16 vs NVFP4 GEMMs TFLOP/s:")
save_dir = f"bench_nvfp4_res_n{N}_k{K}"
os.makedirs(save_dir, exist_ok=True)
benchmark.run(
print_data=True,
show_plots=True,
save_path=f"bench_nvfp4_res_n{N}_k{K}",
save_path=save_dir,
N=N,
K=K,
)

View File

@ -2,14 +2,25 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import itertools
from typing import Callable
from unittest.mock import patch
import pandas as pd
import torch
from vllm import _custom_ops as ops
from vllm.config import CompilationConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
from vllm.model_executor.layers.quantization.utils.quant_utils import GroupShape
from vllm.triton_utils import triton
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
def with_triton_mode(fn):
"""Temporarily force the Triton fallback path"""
def wrapped(*args, **kwargs):
with patch("vllm.platforms.current_platform.is_cuda", return_value=False):
return fn(*args, **kwargs)
return wrapped
# TODO(luka): use standalone_compile utility
@ -21,78 +32,238 @@ def with_dyn_arg(fn: Callable, arg_index: int, dim_index: int):
return inner
torch._dynamo.config.recompile_limit = 8888
compilation_config = CompilationConfig(custom_ops=["none"])
with set_current_vllm_config(VllmConfig(compilation_config=compilation_config)):
torch_per_token_quant_fp8 = torch.compile(
QuantFP8(False, GroupShape.PER_TOKEN),
fullgraph=True,
dynamic=False, # recompile for different shapes
)
def bench_compile(fn: Callable):
# recompile for different shapes
fwd = torch.compile(fn, fullgraph=True, dynamic=False)
# First dim is explicitly dynamic to simulate vLLM usage
torch_per_token_quant_fp8 = with_dyn_arg(torch_per_token_quant_fp8, 0, 0)
return with_dyn_arg(fwd, 0, 0)
def cuda_per_token_quant_fp8(
input: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
return ops.scaled_fp8_quant(input)
torch._dynamo.config.recompile_limit = 8888
def calculate_diff(batch_size: int, seq_len: int):
"""Calculate difference between Triton and CUDA implementations."""
def calculate_diff(
batch_size: int,
hidden_size: int,
group_shape: GroupShape,
dtype: torch.dtype,
):
"""Calculate the difference between Inductor and CUDA implementations."""
device = torch.device("cuda")
x = torch.rand((batch_size * seq_len, 4096), dtype=torch.float16, device=device)
x = torch.randn((batch_size, hidden_size), dtype=dtype, device=device)
torch_out, torch_scale = torch_per_token_quant_fp8(x)
cuda_out, cuda_scale = cuda_per_token_quant_fp8(x)
quant_fp8 = QuantFP8(False, group_shape, column_major_scales=False)
if torch.allclose(
cuda_out.to(torch.float32), torch_out.to(torch.float32), rtol=1e-3, atol=1e-5
) and torch.allclose(cuda_scale, torch_scale, rtol=1e-3, atol=1e-5):
torch_out, torch_scale = bench_compile(quant_fp8.forward_native)(x)
torch_eager_out, torch_eager_scale = quant_fp8.forward_native(x)
cuda_out, cuda_scale = quant_fp8.forward_cuda(x)
try:
torch.testing.assert_close(
cuda_out.to(torch.float32),
torch_out.to(torch.float32),
rtol=1e-3,
atol=1e-5,
)
torch.testing.assert_close(cuda_scale, torch_scale, rtol=1e-3, atol=1e-5)
torch.testing.assert_close(
cuda_out.to(torch.float32),
torch_eager_out.to(torch.float32),
rtol=1e-3,
atol=1e-5,
)
torch.testing.assert_close(cuda_scale, torch_eager_scale, rtol=1e-3, atol=1e-5)
print("✅ All implementations match")
else:
except AssertionError as e:
print("❌ Implementations differ")
print(e)
batch_size_range = [1, 16, 32, 64, 128]
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
configs = list(itertools.product(batch_size_range, seq_len_range))
configs = []
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size", "seq_len"],
x_vals=configs,
line_arg="provider",
line_vals=["torch", "cuda"],
line_names=["Torch", "CUDA"],
styles=[("blue", "-"), ("green", "-")],
ylabel="us",
plot_name="per-token-dynamic-quant-fp8-performance",
args={},
)
)
def benchmark_quantization(batch_size, seq_len, provider):
dtype = torch.float16
def benchmark_quantization(
batch_size,
hidden_size,
provider,
group_shape: GroupShape,
col_major: bool,
dtype: torch.dtype,
):
device = torch.device("cuda")
x = torch.randn(batch_size * seq_len, 4096, device=device, dtype=dtype)
x = torch.randn(batch_size, hidden_size, device=device, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
quant_fp8 = QuantFP8(False, group_shape, column_major_scales=col_major)
if provider == "torch":
fn = lambda: torch_per_token_quant_fp8(x.clone())
fn = lambda: bench_compile(quant_fp8.forward_native)(x.clone())
elif provider == "cuda":
fn = lambda: cuda_per_token_quant_fp8(x.clone())
fn = lambda: quant_fp8.forward_cuda(x.clone())
elif provider == "triton":
if not group_shape.is_per_group():
# Triton only supported for per-group
return 0, 0, 0
fn = lambda: with_triton_mode(quant_fp8.forward_cuda)(x.clone())
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(fn, quantiles=quantiles)
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
# TODO(luka) extract to utils
def compute_geomean_speedups(
df: pd.DataFrame,
baseline_col: str,
speedup_cols: list[str],
groupby_cols: list[str] | None = None,
) -> pd.DataFrame:
"""
Compute geometric mean speedups over a baseline column.
Args:
df: Input dataframe
baseline_col: Column to use as baseline
speedup_cols: Columns to compute speedups for
groupby_cols: Columns to group by. If None, compute over entire df.
Returns:
pd.DataFrame with geometric mean speedups
"""
from scipy.stats import gmean
def geo_speedup(group: pd.DataFrame) -> pd.Series:
ratios = {
col: (group[baseline_col] / group[col]).values for col in speedup_cols
}
return pd.Series({col: gmean(vals) for col, vals in ratios.items()})
if groupby_cols is None:
result = geo_speedup(df).to_frame().T
else:
result = (
df.groupby(groupby_cols)
.apply(geo_speedup, include_groups=False)
.reset_index()
)
return result
if __name__ == "__main__":
calculate_diff(batch_size=4, seq_len=4096)
benchmark_quantization.run(print_data=True)
parser = FlexibleArgumentParser(
description="Benchmark the various implementations of QuantFP8 (dynamic-only)"
)
parser.add_argument("-c", "--check", action="store_true")
parser.add_argument(
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="bfloat16"
)
parser.add_argument(
"--hidden-sizes",
type=int,
nargs="+",
default=[896, 1024, 2048, 4096, 7168],
help="Hidden sizes to benchmark",
)
parser.add_argument(
"--batch-sizes",
type=int,
nargs="+",
default=[1, 16, 128, 512, 1024],
help="Batch sizes to benchmark",
)
parser.add_argument(
"--group-sizes",
type=int,
nargs="+",
default=None,
help="Group sizes for GroupShape(1,N) to benchmark. "
"Use 0 for PER_TENSOR, -1 for PER_TOKEN (default: 0,-1,64,128)",
)
parser.add_argument(
"--no-column-major",
action="store_true",
help="Disable column-major scales testing",
)
args = parser.parse_args()
assert args
dtype = STR_DTYPE_TO_TORCH_DTYPE[args.dtype]
hidden_sizes = args.hidden_sizes
batch_sizes = args.batch_sizes
if args.group_sizes is not None:
group_shapes = []
for size in args.group_sizes:
if size == 0:
group_shapes.append(GroupShape.PER_TENSOR)
elif size == -1:
group_shapes.append(GroupShape.PER_TOKEN)
else:
group_shapes.append(GroupShape(1, size))
else:
group_shapes = [
GroupShape.PER_TENSOR,
GroupShape.PER_TOKEN,
GroupShape(1, 64),
GroupShape(1, 128),
]
column_major_scales = [False] if args.no_column_major else [True, False]
config_gen = itertools.product(
group_shapes,
column_major_scales,
batch_sizes,
hidden_sizes,
)
# filter out column-major scales for non-group, reverse order
configs.extend(c[::-1] for c in config_gen if (c[0].is_per_group() or not c[1]))
print(f"Running {len(configs)} configurations:")
print(f" Hidden sizes: {hidden_sizes}")
print(f" Batch sizes: {batch_sizes}")
print(f" Group shapes: {[str(g) for g in group_shapes]}")
print(f" Column major scales: {column_major_scales}")
print()
if args.check:
for group_shape in group_shapes:
group_size = group_shape[1]
print(f"{group_size=}")
calculate_diff(
batch_size=4, hidden_size=4096, group_shape=group_shape, dtype=dtype
)
benchmark = triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["hidden_size", "batch_size", "col_major", "group_shape"],
x_vals=configs,
line_arg="provider",
line_vals=["torch", "cuda", "triton"],
line_names=["Torch (Compiled)", "CUDA", "Triton"],
styles=[("blue", "-"), ("green", "-"), ("black", "-")],
ylabel="us",
plot_name="QuantFP8 performance",
args={},
)
)(benchmark_quantization)
df = benchmark.run(print_data=True, dtype=dtype, return_df=True)
# Print geomean speedups
geo_table_grouped = compute_geomean_speedups(
df,
baseline_col="Torch (Compiled)",
speedup_cols=["CUDA", "Triton"],
groupby_cols=["col_major", "group_shape"],
)
print("Speedup over Torch (Compiled)")
print(geo_table_grouped.to_string(index=False))

View File

@ -0,0 +1,104 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# benchmark custom activation op performance
import itertools
import torch
import vllm.model_executor.layers.activation # noqa F401
from vllm.model_executor.custom_op import CustomOp
from vllm.platforms import current_platform
from vllm.triton_utils import triton
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
batch_size_range = [1, 16, 32, 64, 128]
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
intermediate_size = [3072, 9728, 12288]
configs = list(itertools.product(batch_size_range, seq_len_range, intermediate_size))
def benchmark_activation(
batch_size: int,
seq_len: int,
intermediate_size: int,
provider: str,
func_name: str,
dtype: torch.dtype,
):
device = "cuda"
num_tokens = batch_size * seq_len
dim = intermediate_size
current_platform.seed_everything(42)
torch.set_default_device(device)
if func_name == "gelu_and_mul":
layer = CustomOp.op_registry[func_name](approximate="none")
elif func_name == "gelu_and_mul_tanh":
layer = CustomOp.op_registry["gelu_and_mul"](approximate="tanh")
elif func_name == "fatrelu_and_mul":
threshold = 0.5
layer = CustomOp.op_registry[func_name](threshold)
else:
layer = CustomOp.op_registry[func_name]()
x = torch.randn(num_tokens, dim, dtype=dtype, device=device)
compiled_layer = torch.compile(layer.forward_native)
if provider == "custom":
fn = lambda: layer(x)
elif provider == "compiled":
fn = lambda: compiled_layer(x)
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
fn, quantiles=[0.5, 0.2, 0.8]
)
return ms, max_ms, min_ms
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the custom activation op.")
parser.add_argument(
"--func-name",
type=str,
choices=[
"mul_and_silu",
"silu_and_mul",
"gelu_and_mul",
"gelu_and_mul_tanh",
"fatrelu_and_mul",
"swigluoai_and_mul",
"gelu_new",
"gelu_fast",
"quick_gelu",
],
default="silu_and_mul",
)
parser.add_argument(
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="bfloat16"
)
args = parser.parse_args()
assert args
func_name = args.func_name
dtype = STR_DTYPE_TO_TORCH_DTYPE[args.dtype]
perf_report = triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size", "seq_len", "intermediate_size"],
x_vals=configs,
line_arg="provider",
line_vals=["custom", "compiled"],
line_names=["Custom OP", "Compiled"],
styles=[("blue", "-"), ("green", "-")],
ylabel="ms",
plot_name=f"{func_name}-op-performance",
args={},
)
)
perf_report(
lambda batch_size, seq_len, intermediate_size, provider: benchmark_activation(
batch_size, seq_len, intermediate_size, provider, func_name, dtype
)
).run(print_data=True)

View File

@ -13,6 +13,10 @@ import torch.utils.benchmark as benchmark
from vllm import _custom_ops as ops
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.config import (
fp8_w8a8_moe_quant_config,
nvfp4_moe_quant_config,
)
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp4
from vllm.model_executor.layers.fused_moe.fused_moe import fused_experts, fused_topk
from vllm.scalar_type import scalar_types
@ -140,6 +144,12 @@ def bench_run(
a_fp8_scale: torch.Tensor,
num_repeats: int,
):
quant_config = fp8_w8a8_moe_quant_config(
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_fp8_scale,
)
for _ in range(num_repeats):
fused_experts(
a,
@ -147,10 +157,7 @@ def bench_run(
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_fp8_scale,
quant_config=quant_config,
)
def run_cutlass_moe_fp4(
@ -172,25 +179,27 @@ def bench_run(
device: torch.device,
num_repeats: int,
):
quant_config = nvfp4_moe_quant_config(
a1_gscale=a1_gs,
a2_gscale=a2_gs,
w1_scale=w1_blockscale,
w2_scale=w2_blockscale,
g1_alphas=w1_gs,
g2_alphas=w2_gs,
)
for _ in range(num_repeats):
with nvtx.annotate("cutlass_moe_fp4", color="green"):
cutlass_moe_fp4(
a=a,
a1_gscale=a1_gs,
a2_gscale=a2_gs,
w1_fp4=w1_fp4,
w1_blockscale=w1_blockscale,
w1_alphas=w1_gs,
w2_fp4=w2_fp4,
w2_blockscale=w2_blockscale,
w2_alphas=w2_gs,
topk_weights=topk_weights,
topk_ids=topk_ids,
m=m,
n=n,
k=k,
e=num_experts,
device=device,
quant_config=quant_config,
)
def run_cutlass_from_graph(
@ -211,26 +220,29 @@ def bench_run(
e: int,
device: torch.device,
):
quant_config = nvfp4_moe_quant_config(
a1_gscale=a1_gs,
a2_gscale=a2_gs,
w1_scale=w1_blockscale,
w2_scale=w2_blockscale,
g1_alphas=w1_gs,
g2_alphas=w2_gs,
)
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
):
return cutlass_moe_fp4(
a=a,
a1_gscale=a1_gs,
w1_fp4=w1_fp4,
w1_blockscale=w1_blockscale,
w1_alphas=w1_alphas,
a2_gscale=a2_gs,
w2_fp4=w2_fp4,
w2_blockscale=w2_blockscale,
w2_alphas=w2_alphas,
topk_weights=topk_weights,
topk_ids=topk_ids,
m=m,
n=n,
k=k,
e=num_experts,
device=device,
quant_config=quant_config,
)
def run_triton_from_graph(
@ -246,16 +258,18 @@ def bench_run(
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
):
quant_config = fp8_w8a8_moe_quant_config(
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_fp8_scale,
)
return fused_experts(
a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_fp8_scale,
quant_config=quant_config,
)
def replay_graph(graph, num_repeats):

View File

@ -0,0 +1,406 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Benchmark the performance of the cutlass_moe_fp8 kernel vs the triton_moe
kernel. Both kernels take in fp8 quantized weights and 16-bit activations,
but use different quantization strategies and backends.
"""
import nvtx
import torch
from vllm import _custom_ops as ops
from vllm.model_executor.layers.fused_moe.config import fp8_w8a8_moe_quant_config
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp8
from vllm.model_executor.layers.fused_moe.fused_moe import fused_experts, fused_topk
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
# Weight shapes for different models: [num_experts, topk, hidden_size,
# intermediate_size]
WEIGHT_SHAPES_MOE = {
"mixtral-8x7b": [
[8, 2, 4096, 14336],
],
"deepseek-v2": [
[160, 6, 5120, 12288],
],
"custom-small": [
[8, 2, 2048, 7168],
],
"glm45-fp8": [
[128, 8, 4096, 1408],
],
"Llama-4-Maverick-17B-128E-Instruct-FP8": [
[128, 1, 5120, 8192],
],
}
DEFAULT_MODELS = [
"mixtral-8x7b",
]
DEFAULT_BATCH_SIZES = [4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
DEFAULT_TP_SIZES = [1]
PER_ACT_TOKEN_OPTS = [False, True]
PER_OUT_CH_OPTS = [False, True]
FP8_DTYPE = current_platform.fp8_dtype()
def bench_run(
results: list,
model: str,
num_experts: int,
topk: int,
per_act_token: bool,
per_out_ch: bool,
mkn: tuple[int, int, int],
):
(m, k, n) = mkn
dtype = torch.half
device = "cuda"
# Create input activations
a = torch.randn((m, k), device=device, dtype=dtype) / 10
# Create weights
w1 = torch.randn((num_experts, 2 * n, k), device=device, dtype=dtype) / 10
w2 = torch.randn((num_experts, k, n), device=device, dtype=dtype) / 10
# Create FP8 quantized weights and scales for both kernels
w1_fp8q = torch.empty((num_experts, 2 * n, k), device=device, dtype=FP8_DTYPE)
w2_fp8q = torch.empty((num_experts, k, n), device=device, dtype=FP8_DTYPE)
# Create scales based on quantization strategy
if per_out_ch:
# Per-channel quantization
w1_scale = torch.empty(
(num_experts, 2 * n, 1), device=device, dtype=torch.float32
)
w2_scale = torch.empty((num_experts, k, 1), device=device, dtype=torch.float32)
else:
# Per-tensor quantization
w1_scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
w2_scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
# Quantize weights
for expert in range(num_experts):
if per_out_ch:
# Per-channel quantization - not yet implemented properly
# For now, fall back to per-tensor quantization
w1_fp8q[expert], w1_scale_temp = ops.scaled_fp8_quant(w1[expert])
w2_fp8q[expert], w2_scale_temp = ops.scaled_fp8_quant(w2[expert])
# Expand scalar scales to the expected per-channel shape
w1_scale[expert] = w1_scale_temp.expand(2 * n, 1)
w2_scale[expert] = w2_scale_temp.expand(k, 1)
else:
# Per-tensor quantization
w1_fp8q[expert], w1_scale_temp = ops.scaled_fp8_quant(w1[expert])
w2_fp8q[expert], w2_scale_temp = ops.scaled_fp8_quant(w2[expert])
# Store scalar scales in [1, 1] tensors
w1_scale[expert, 0, 0] = w1_scale_temp
w2_scale[expert, 0, 0] = w2_scale_temp
# Prepare weights for CUTLASS (no transpose needed)
w1_fp8q_cutlass = w1_fp8q # Keep original [E, 2N, K]
w2_fp8q_cutlass = w2_fp8q # Keep original [E, K, N]
# Create router scores and get topk
score = torch.randn((m, num_experts), device=device, dtype=dtype)
topk_weights, topk_ids, _ = fused_topk(a, score, topk, renormalize=False)
# WORKAROUND: CUTLASS MoE FP8 has issues with per-token quantization
# Force per-tensor quantization for all cases to match working e2e setup
a1_scale = torch.full((), 1e-2, device=device, dtype=torch.float32)
a2_scale = torch.full((), 1e-2, device=device, dtype=torch.float32)
# Force per-tensor quantization for all cases
per_act_token = False
# Create stride tensors for CUTLASS
ab_strides1 = torch.full((num_experts,), k, dtype=torch.int64, device=device)
ab_strides2 = torch.full((num_experts,), n, dtype=torch.int64, device=device)
c_strides1 = torch.full((num_experts,), 2 * n, dtype=torch.int64, device=device)
c_strides2 = torch.full((num_experts,), k, dtype=torch.int64, device=device)
def run_triton_moe(
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
a1_scale: torch.Tensor,
a2_scale: torch.Tensor,
num_repeats: int,
):
quant_config = fp8_w8a8_moe_quant_config(
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
per_act_token_quant=per_act_token,
per_out_ch_quant=per_out_ch,
)
for _ in range(num_repeats):
fused_experts(
a,
w1,
w2,
topk_weights,
topk_ids,
quant_config=quant_config,
)
def run_cutlass_moe_fp8(
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
ab_strides1: torch.Tensor,
ab_strides2: torch.Tensor,
c_strides1: torch.Tensor,
c_strides2: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
a1_scale: torch.Tensor,
a2_scale: torch.Tensor,
num_repeats: int,
):
quant_config = fp8_w8a8_moe_quant_config(
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
per_act_token_quant=per_act_token,
per_out_ch_quant=per_out_ch,
)
for _ in range(num_repeats):
with nvtx.annotate("cutlass_moe_fp8", color="blue"):
cutlass_moe_fp8(
a=a,
w1_q=w1,
w2_q=w2,
topk_weights=topk_weights,
topk_ids=topk_ids,
ab_strides1=ab_strides1,
ab_strides2=ab_strides2,
c_strides1=c_strides1,
c_strides2=c_strides2,
quant_config=quant_config,
activation="silu",
global_num_experts=num_experts,
)
# Pre-create quantization config to avoid creating it inside CUDA graph
quant_config = fp8_w8a8_moe_quant_config(
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
per_act_token_quant=per_act_token,
per_out_ch_quant=per_out_ch,
)
# Create CUDA graphs for CUTLASS (match benchmark_moe.py pattern exactly)
cutlass_stream = torch.cuda.Stream()
cutlass_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(cutlass_graph, stream=cutlass_stream):
# Capture 10 invocations like benchmark_moe.py
for _ in range(10):
cutlass_moe_fp8(
a=a,
w1_q=w1_fp8q_cutlass,
w2_q=w2_fp8q_cutlass,
topk_weights=topk_weights,
topk_ids=topk_ids,
ab_strides1=ab_strides1,
ab_strides2=ab_strides2,
c_strides1=c_strides1,
c_strides2=c_strides2,
quant_config=quant_config,
activation="silu",
global_num_experts=num_experts,
)
torch.cuda.synchronize()
# Create CUDA graphs for Triton (match benchmark_moe.py pattern exactly)
triton_stream = torch.cuda.Stream()
triton_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(triton_graph, stream=triton_stream):
# Capture 10 invocations like benchmark_moe.py
for _ in range(10):
fused_experts(
a,
w1_fp8q,
w2_fp8q,
topk_weights,
topk_ids,
quant_config=quant_config,
)
torch.cuda.synchronize()
def bench_cuda_graph(graph, num_warmup=5, num_iters=100):
"""Benchmark CUDA graph using events like benchmark_moe.py"""
# Warmup
for _ in range(num_warmup):
graph.replay()
torch.cuda.synchronize()
# Timing
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
latencies = []
for _ in range(num_iters):
torch.cuda.synchronize()
start_event.record()
graph.replay()
end_event.record()
end_event.synchronize()
latencies.append(start_event.elapsed_time(end_event))
# Divide by 10 since graph contains 10 calls
return sum(latencies) / (num_iters * 10)
# Benchmark parameters
num_warmup = 5
num_iters = 100
# Benchmark only CUDA graphs (more reliable and faster)
# Benchmark Triton MoE with CUDA graphs
triton_graph_time = bench_cuda_graph(
triton_graph, num_warmup=num_warmup, num_iters=num_iters
)
# Benchmark CUTLASS MoE with CUDA graphs
cutlass_graph_time = bench_cuda_graph(
cutlass_graph, num_warmup=num_warmup, num_iters=num_iters
)
# Convert ms to us and return results
triton_time_us = triton_graph_time * 1000
cutlass_time_us = cutlass_graph_time * 1000
return {
"batch_size": m,
"triton_time_us": triton_time_us,
"cutlass_time_us": cutlass_time_us,
}
def main(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
all_results = []
for model in args.models:
for tp in args.tp_sizes:
for layer in WEIGHT_SHAPES_MOE[model]:
num_experts = layer[0]
topk = layer[1]
size_k = layer[2]
size_n = layer[3] // tp
if len(args.limit_k) > 0 and size_k not in args.limit_k:
continue
if len(args.limit_n) > 0 and size_n not in args.limit_n:
continue
for per_act_token in args.per_act_token_opts:
for per_out_ch in args.per_out_ch_opts:
print(
f"\n=== {model}, experts={num_experts}, topk={topk},"
f"per_act={per_act_token}, per_out_ch={per_out_ch} ==="
)
config_results = []
for size_m in args.batch_sizes:
mkn = (size_m, size_k, size_n)
result = bench_run(
[], # Not used anymore
model,
num_experts,
topk,
per_act_token,
per_out_ch,
mkn,
)
if result:
config_results.append(result)
# Print results table for this configuration
if config_results:
print(
f"\n{'Batch Size':<12}"
f"{'Triton (us)':<15}"
f"{'CUTLASS (us)':<15}"
)
print("-" * 45)
for result in config_results:
print(
f"{result['batch_size']:<12}"
f"{result['triton_time_us']:<15.2f}"
f"{result['cutlass_time_us']:<15.2f}"
)
all_results.extend(config_results)
print(f"\nTotal benchmarks completed: {len(all_results)}")
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="""Benchmark CUTLASS FP8 MOE vs Triton FP8 FUSED MOE
across specified models/shapes/batches
Example usage:
python benchmark_cutlass_moe_fp8.py \
--model "Llama-4-Maverick-17B-128E-Instruct-FP8" \
--tp-sizes 8 \
--batch-size 2 4 8 \
--per-act-token-opts false \
--per-out-ch-opts false
"""
)
parser.add_argument(
"--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES_MOE.keys(),
)
parser.add_argument("--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES)
parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
parser.add_argument(
"--per-act-token-opts",
nargs="+",
type=lambda x: x.lower() == "true",
default=[False, True],
help="Per-activation token quantization options (true/false)",
)
parser.add_argument(
"--per-out-ch-opts",
nargs="+",
type=lambda x: x.lower() == "true",
default=[False, True],
help="Per-output channel quantization options (true/false)",
)
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,508 @@
#!/usr/bin/env python3
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Benchmark script for device communicators:
CustomAllreduce (oneshot, twoshot), PyNcclCommunicator,
and SymmMemCommunicator (multimem, two-shot).
for NCCL symmetric memory you need to set the environment variables
NCCL_NVLS_ENABLE=1 NCCL_CUMEM_ENABLE=1 VLLM_USE_NCCL_SYMM_MEM=1, otherwise NCCL does
not use fast NVLS implementation for all reduce.
Usage:
torchrun --nproc_per_node=<N> benchmark_device_communicators.py [options]
Example:
torchrun --nproc_per_node=2 benchmark_device_communicators.py
--sequence-lengths 512 1024 2048 --num-warmup 10 --num-trials 100
"""
import json
import os
import time
from contextlib import nullcontext
from typing import Callable, Optional
import torch
import torch.distributed as dist
from torch.distributed import ProcessGroup
from vllm.distributed.device_communicators.custom_all_reduce import CustomAllreduce
from vllm.distributed.device_communicators.pynccl import (
PyNcclCommunicator,
register_nccl_symmetric_ops,
)
from vllm.distributed.device_communicators.pynccl_allocator import (
set_graph_pool_id,
)
from vllm.distributed.device_communicators.symm_mem import SymmMemCommunicator
from vllm.logger import init_logger
from vllm.utils import FlexibleArgumentParser
logger = init_logger(__name__)
# Default sequence lengths to benchmark
DEFAULT_SEQUENCE_LENGTHS = [128, 512, 1024, 2048, 4096, 8192]
# Fixed hidden size and dtype for all benchmarks
HIDDEN_SIZE = 8192
BENCHMARK_DTYPE = torch.bfloat16
# CUDA graph settings
CUDA_GRAPH_CAPTURE_CYCLES = 10
class CommunicatorBenchmark:
"""Benchmark class for testing device communicators."""
def __init__(
self,
rank: int,
world_size: int,
device: torch.device,
cpu_group: ProcessGroup,
sequence_lengths: list[int],
):
self.rank = rank
self.world_size = world_size
self.device = device
self.cpu_group = cpu_group
# Calculate max_size_override based on largest sequence length
max_seq_len = max(sequence_lengths)
max_tensor_elements = max_seq_len * HIDDEN_SIZE
self.max_size_override = max_tensor_elements * BENCHMARK_DTYPE.itemsize + 1
# Initialize communicators
self.custom_allreduce = None
self.pynccl_comm = None
self.symm_mem_comm = None
self.symm_mem_comm_multimem = None
self.symm_mem_comm_two_shot = None
self._init_communicators()
def _init_communicators(self):
"""Initialize all available communicators."""
try:
self.custom_allreduce = CustomAllreduce(
group=self.cpu_group,
device=self.device,
max_size=self.max_size_override,
)
if not self.custom_allreduce.disabled:
logger.info("Rank %s: CustomAllreduce initialized", self.rank)
else:
logger.info("Rank %s: CustomAllreduce disabled", self.rank)
except Exception as e:
logger.warning(
"Rank %s: Failed to initialize CustomAllreduce: %s", self.rank, e
)
self.custom_allreduce = None
try:
self.pynccl_comm = PyNcclCommunicator(
group=self.cpu_group, device=self.device
)
if not self.pynccl_comm.disabled:
logger.info("Rank %s: PyNcclCommunicator initialized", self.rank)
register_nccl_symmetric_ops(self.pynccl_comm)
else:
logger.info("Rank %s: PyNcclCommunicator disabled", self.rank)
self.pynccl_comm = None
except Exception as e:
logger.warning(
"Rank %s: Failed to initialize PyNcclCommunicator: %s", self.rank, e
)
self.pynccl_comm = None
# Initialize variants for SymmMemCommunicator
try:
self.symm_mem_comm_multimem = SymmMemCommunicator(
group=self.cpu_group,
device=self.device,
force_multimem=True,
max_size_override=self.max_size_override,
)
if not self.symm_mem_comm_multimem.disabled:
logger.info(
"Rank %s: SymmMemCommunicator (multimem) initialized", self.rank
)
else:
self.symm_mem_comm_multimem = None
except Exception as e:
logger.warning(
"Rank %s: Failed to initialize SymmMemCommunicator (multimem): %s",
self.rank,
e,
)
self.symm_mem_comm_multimem = None
try:
self.symm_mem_comm_two_shot = SymmMemCommunicator(
group=self.cpu_group,
device=self.device,
force_multimem=False,
max_size_override=self.max_size_override,
)
if not self.symm_mem_comm_two_shot.disabled:
logger.info(
"Rank %s: SymmMemCommunicator (two_shot) initialized", self.rank
)
else:
self.symm_mem_comm_two_shot = None
except Exception as e:
logger.warning(
"Rank %s: Failed to initialize SymmMemCommunicator (two_shot): %s",
self.rank,
e,
)
self.symm_mem_comm_two_shot = None
def benchmark_allreduce(
self, sequence_length: int, num_warmup: int, num_trials: int
) -> dict[str, float]:
"""Benchmark allreduce operations for all available communicators."""
results = {}
# Define communicators with their benchmark functions
communicators = []
if self.custom_allreduce is not None:
comm = self.custom_allreduce
# CustomAllreduce one-shot
communicators.append(
(
"ca_1stage",
lambda t, c=comm: c.custom_all_reduce(t),
lambda t, c=comm: c.should_custom_ar(t),
comm.capture(),
"1stage", # env variable value
)
)
# CustomAllreduce two-shot
communicators.append(
(
"ca_2stage",
lambda t, c=comm: c.custom_all_reduce(t),
lambda t, c=comm: c.should_custom_ar(t),
comm.capture(),
"2stage", # env variable value
)
)
if self.pynccl_comm is not None:
comm = self.pynccl_comm
communicators.append(
(
"pynccl",
lambda t, c=comm: c.all_reduce(t),
lambda t: True, # Always available if initialized
nullcontext(),
None, # no env variable needed
)
)
communicators.append(
(
"pynccl-symm",
lambda t: torch.ops.vllm.all_reduce_symmetric_with_copy(t),
lambda t: True, # Always available if initialized
nullcontext(),
None, # no env variable needed
)
)
if self.symm_mem_comm_multimem is not None:
comm = self.symm_mem_comm_multimem
communicators.append(
(
"symm_mem_multimem",
lambda t, c=comm: c.all_reduce(t),
lambda t, c=comm: c.should_use_symm_mem(t),
nullcontext(),
None, # no env variable needed
)
)
if self.symm_mem_comm_two_shot is not None:
comm = self.symm_mem_comm_two_shot
communicators.append(
(
"symm_mem_two_shot",
lambda t, c=comm: c.all_reduce(t),
lambda t, c=comm: c.should_use_symm_mem(t),
nullcontext(),
None, # no env variable needed
)
)
# Benchmark each communicator
for name, allreduce_fn, should_use_fn, context, env_var in communicators:
# Set environment variable if needed
if env_var is not None:
os.environ["VLLM_CUSTOM_ALLREDUCE_ALGO"] = env_var
else:
# Clear the environment variable to avoid interference
os.environ.pop("VLLM_CUSTOM_ALLREDUCE_ALGO", None)
latency = self.benchmark_allreduce_single(
sequence_length,
allreduce_fn,
should_use_fn,
context,
num_warmup,
num_trials,
)
if latency is not None:
results[name] = latency
return results
def benchmark_allreduce_single(
self,
sequence_length: int,
allreduce_fn: Callable[[torch.Tensor], Optional[torch.Tensor]],
should_use_fn: Callable[[torch.Tensor], bool],
context,
num_warmup: int,
num_trials: int,
) -> Optional[float]:
"""Benchmark method with CUDA graph optimization."""
try:
# Create test tensor (2D: sequence_length x hidden_size)
tensor = torch.randn(
sequence_length, HIDDEN_SIZE, dtype=BENCHMARK_DTYPE, device=self.device
)
if not should_use_fn(tensor):
return None
torch.cuda.synchronize()
stream = torch.cuda.Stream()
with torch.cuda.stream(stream):
graph_input = tensor.clone()
# Warmup before capture
for _ in range(3):
allreduce_fn(graph_input)
# Capture the graph using context manager
with context:
graph = torch.cuda.CUDAGraph()
graph_pool = torch.cuda.graph_pool_handle()
set_graph_pool_id(graph_pool)
with torch.cuda.graph(graph, pool=graph_pool):
for _ in range(CUDA_GRAPH_CAPTURE_CYCLES):
allreduce_fn(graph_input)
torch.cuda.synchronize()
for _ in range(num_warmup):
graph.replay()
torch.cuda.synchronize()
torch.cuda.synchronize()
start_time = time.perf_counter()
for _ in range(num_trials):
graph.replay()
torch.cuda.synchronize()
end_time = time.perf_counter()
# Convert to ms and divide by CUDA_GRAPH_CAPTURE_CYCLES
return (
(end_time - start_time) / num_trials / CUDA_GRAPH_CAPTURE_CYCLES * 1000
)
except Exception as e:
logger.error("CUDA graph benchmark failed: %s", e)
raise RuntimeError(
f"CUDA graph benchmark failed for communicator: {e}"
) from e
def _calculate_speedup_info(comm_results: dict[str, float]) -> str:
"""Calculate speedup information for a single tensor size."""
if not comm_results:
return "N/A"
# Find the fastest communicator
fastest_comm = min(comm_results.keys(), key=lambda k: comm_results[k])
fastest_time = comm_results[fastest_comm]
# Calculate speedup vs PyNccl if available
if "pynccl" in comm_results:
pynccl_time = comm_results["pynccl"]
speedup = pynccl_time / fastest_time
return f"{fastest_comm} ({speedup:.2f}x)"
else:
return f"{fastest_comm} (N/A)"
def print_results(
results: dict[str, dict[str, float]], sequence_lengths: list[int], world_size: int
):
"""Print benchmark results in a formatted table."""
print(f"\n{'=' * 130}")
print("Device Communicator Benchmark Results")
print(
f"World Size: {world_size}, Data Type: {BENCHMARK_DTYPE}, "
f"Hidden Size: {HIDDEN_SIZE}"
)
print(f"{'=' * 130}")
# Get all communicator names
all_comms = set()
for size_results in results.values():
all_comms.update(size_results.keys())
all_comms = sorted(list(all_comms))
# Print header
header = f"{'Tensor Shape':<20}{'Tensor Size':<15}"
for comm in all_comms:
header += f"{comm:<20}"
header += f"{'Best (Speedup vs PyNccl)':<30}"
print(header)
print("-" * len(header))
# Print results for each sequence length
for seq_len in sequence_lengths:
if seq_len in results:
# Calculate tensor size in elements and bytes
tensor_elements = seq_len * HIDDEN_SIZE
tensor_bytes = tensor_elements * BENCHMARK_DTYPE.itemsize
# Format tensor size (MB)
tensor_size_mb = tensor_bytes / (1024 * 1024)
tensor_size_str = f"{tensor_size_mb:.2f} MB"
# Format tensor shape
tensor_shape = f"({seq_len}, {HIDDEN_SIZE})"
row = f"{tensor_shape:<20}{tensor_size_str:<15}"
for comm in all_comms:
if comm in results[seq_len]:
row += f"{results[seq_len][comm]:<20.3f}"
else:
row += f"{'N/A':<20}"
# Calculate speedup information
speedup_info = _calculate_speedup_info(results[seq_len])
row += f"{speedup_info:<30}"
print(row)
print(f"{'=' * 130}")
print("All times are in milliseconds (ms) per allreduce operation")
print("Speedup column shows: fastest_algorithm (speedup_vs_pynccl)")
def main():
parser = FlexibleArgumentParser(description="Benchmark device communicators")
parser.add_argument(
"--sequence-lengths",
type=int,
nargs="+",
default=DEFAULT_SEQUENCE_LENGTHS,
help="Sequence lengths to benchmark (tensor shape: seq_len x hidden_size)",
)
parser.add_argument(
"--num-warmup", type=int, default=5, help="Number of warmup iterations"
)
parser.add_argument(
"--num-trials", type=int, default=50, help="Number of benchmark trials"
)
parser.add_argument("--output-json", type=str, help="Output results to JSON file")
args = parser.parse_args()
# Initialize distributed
if not dist.is_initialized():
dist.init_process_group(backend="gloo")
rank = dist.get_rank()
world_size = dist.get_world_size()
# Set device
device = torch.device(f"cuda:{rank}")
torch.cuda.set_device(device)
# Get CPU process group
cpu_group = dist.new_group(backend="gloo")
# Disable USE_SYMM_MEM to avoid affecting the max_sizes
# in symm_mem and custom_all_reduce for benchmark
os.environ["VLLM_ALLREDUCE_USE_SYMM_MEM"] = "0"
# Initialize benchmark
benchmark = CommunicatorBenchmark(
rank, world_size, device, cpu_group, args.sequence_lengths
)
# Run benchmarks
all_results = {}
for seq_len in args.sequence_lengths:
if rank == 0:
logger.info(
"Benchmarking sequence length: %s (tensor shape: %s x %s)",
seq_len,
seq_len,
HIDDEN_SIZE,
)
results = benchmark.benchmark_allreduce(
sequence_length=seq_len,
num_warmup=args.num_warmup,
num_trials=args.num_trials,
)
all_results[seq_len] = results
# Synchronize between ranks
dist.barrier()
# Print results (only rank 0)
if rank == 0:
print_results(all_results, args.sequence_lengths, world_size)
# Save to JSON if requested
if args.output_json:
# Add speedup information to results
enhanced_results = {}
for seq_len, comm_results in all_results.items():
enhanced_results[seq_len] = {
"timings": comm_results,
"speedup_info": _calculate_speedup_info(comm_results),
}
output_data = {
"world_size": world_size,
"dtype": str(BENCHMARK_DTYPE),
"hidden_size": HIDDEN_SIZE,
"sequence_lengths": args.sequence_lengths,
"num_warmup": args.num_warmup,
"num_trials": args.num_trials,
"cuda_graph_capture_cycles": CUDA_GRAPH_CAPTURE_CYCLES,
"results": enhanced_results,
}
with open(args.output_json, "w") as f:
json.dump(output_data, f, indent=2)
logger.info("Results saved to %s", args.output_json)
# Cleanup
if cpu_group != dist.group.WORLD:
dist.destroy_process_group(cpu_group)
if __name__ == "__main__":
main()

View File

@ -7,6 +7,7 @@ from benchmark_shapes import WEIGHT_SHAPES_MOE
from vllm import _custom_ops as ops
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.config import fp8_w8a8_moe_quant_config
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp8
from vllm.model_executor.layers.fused_moe.fused_moe import (
fused_experts,
@ -80,6 +81,11 @@ def bench_run(
a, score, topk, renormalize=False
)
ab_strides1 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
ab_strides2 = torch.full((num_experts,), n, device="cuda", dtype=torch.int64)
c_strides1 = torch.full((num_experts,), 2 * n, device="cuda", dtype=torch.int64)
c_strides2 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
def run_triton_moe(
a: torch.Tensor,
w1: torch.Tensor,
@ -91,6 +97,11 @@ def bench_run(
a_scale: torch.Tensor,
num_repeats: int,
):
quant_config = fp8_w8a8_moe_quant_config(
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_scale,
)
for _ in range(num_repeats):
fused_experts(
a,
@ -98,10 +109,7 @@ def bench_run(
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_scale,
quant_config=quant_config,
)
def run_cutlass_moe(
@ -111,11 +119,21 @@ def bench_run(
w2: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
ab_strides1: torch.Tensor,
ab_strides2: torch.Tensor,
c_strides1: torch.Tensor,
c_strides2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
per_act_token: bool,
num_repeats: int,
):
quant_config = fp8_w8a8_moe_quant_config(
w1_scale=w1_scale,
w2_scale=w2_scale,
per_act_token_quant=per_act_token,
)
for _ in range(num_repeats):
cutlass_moe_fp8(
a,
@ -123,10 +141,11 @@ def bench_run(
w2,
topk_weights,
topk_ids,
w1_scale,
w2_scale,
per_act_token,
a1_scale=None,
ab_strides1,
ab_strides2,
c_strides1,
c_strides2,
quant_config=quant_config,
)
def run_cutlass_from_graph(
@ -136,9 +155,19 @@ def bench_run(
w2_q: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
ab_strides1: torch.Tensor,
ab_strides2: torch.Tensor,
c_strides1: torch.Tensor,
c_strides2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
):
quant_config = fp8_w8a8_moe_quant_config(
w1_scale=w1_scale,
w2_scale=w2_scale,
per_act_token_quant=per_act_token,
)
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
):
@ -148,10 +177,11 @@ def bench_run(
w2_q,
topk_weights,
topk_ids,
w1_scale,
w2_scale,
per_act_token,
a1_scale=None,
ab_strides1,
ab_strides2,
c_strides1,
c_strides2,
quant_config=quant_config,
)
def run_triton_from_graph(
@ -164,6 +194,11 @@ def bench_run(
w2_scale: torch.Tensor,
a_scale: torch.Tensor,
):
quant_config = fp8_w8a8_moe_quant_config(
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_scale,
)
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
):
@ -173,10 +208,7 @@ def bench_run(
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_scale,
quant_config=quant_config,
)
def replay_graph(graph, num_repeats):
@ -194,6 +226,10 @@ def bench_run(
w2_q,
w1_scale,
w2_scale,
ab_strides1,
ab_strides2,
c_strides1,
c_strides2,
topk_weights,
topk_ids,
)
@ -231,6 +267,10 @@ def bench_run(
"w1_scale": w1_scale,
"w2_scale": w2_scale,
"per_act_token": per_act_token,
"ab_strides1": ab_strides1,
"ab_strides2": ab_strides2,
"c_strides1": c_strides1,
"c_strides2": c_strides2,
# cuda graph params
"cutlass_graph": cutlass_graph,
"triton_graph": triton_graph,
@ -289,6 +329,10 @@ def bench_run(
w2_q,
w1_scale,
w2_scale,
ab_strides1,
ab_strides2,
c_strides1,
c_strides2,
topk_weights,
topk_ids,
per_act_token,
@ -297,7 +341,7 @@ def bench_run(
results.append(
benchmark.Timer(
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, per_act_token, num_runs)", # noqa: E501
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, ab_strides1, ab_strides2, c_strides1, c_strides2, topk_weights, topk_ids, per_act_token, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,

View File

@ -79,9 +79,9 @@ def make_rand_lora_weight_tensor(
def make_rand_tensors(
a_shape: tuple[int],
b_shape: tuple[int],
c_shape: tuple[int],
a_shape: tuple[int, ...],
b_shape: tuple[int, ...],
c_shape: tuple[int, ...],
a_dtype: torch.dtype,
b_dtype: torch.dtype,
c_dtype: torch.dtype,
@ -243,7 +243,7 @@ class OpType(Enum):
lora_rank: int,
num_loras: int,
num_slices: int,
) -> tuple[tuple[int], tuple[int], tuple[int]]:
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
"""
Given num_slices, return the shapes of the A, B, and C matrices
in A x B = C, for the op_type
@ -464,7 +464,11 @@ class BenchmarkTensors:
for field_name in LoRAKernelMeta.__dataclass_fields__:
field = getattr(self.lora_kernel_meta, field_name)
assert isinstance(field, torch.Tensor)
setattr(self.lora_kernel_meta, field_name, to_device(field))
setattr(
self.lora_kernel_meta,
field_name,
to_device(field) if field_name != "no_lora_flag_cpu" else field,
)
def metadata(self) -> tuple[int, int, int]:
"""
@ -512,6 +516,7 @@ class BenchmarkTensors:
"lora_token_start_loc": self.lora_kernel_meta.lora_token_start_loc,
"lora_ids": self.lora_kernel_meta.active_lora_ids,
"scaling": 1.0,
"no_lora_flag_cpu": self.lora_kernel_meta.no_lora_flag_cpu,
}
def as_lora_expand_kwargs(self, add_inputs: bool) -> dict[str, Any]:
@ -552,6 +557,7 @@ class BenchmarkTensors:
"lora_ids": self.lora_kernel_meta.active_lora_ids,
"offset_start": 0,
"add_inputs": add_inputs,
"no_lora_flag_cpu": self.lora_kernel_meta.no_lora_flag_cpu,
}
def bench_fn_kwargs(
@ -637,7 +643,7 @@ def bench_optype(
# Clear LoRA optimization hash-maps.
_LORA_A_PTR_DICT.clear()
_LORA_B_PTR_DICT.clear()
# Run bench function so that _LORA_A_PTR_DICT and _LORA_B_PTR_DICT are setup
# Run bench function so that _LORA_A_PTR_DICT and _LORA_B_PTR_DICT are set up
for kwargs in kwargs_list:
op_type.bench_fn()(**kwargs)
torch.cuda.synchronize()

View File

@ -253,28 +253,7 @@ def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
else:
assert bt.a.dtype == torch.int8
assert bt.wtype == scalar_types.uint4b8
if bt.w_ch_s is not None:
s_ch = bt.w_ch_s.to(torch.float32)
else:
s_ch = torch.ones(bt.w_ref.shape[1], dtype=torch.float32, device=device)
if bt.w_tok_s is not None:
s_tok = bt.w_tok_s.to(torch.float32)
else:
s_tok = torch.ones(bt.a.shape[0], dtype=torch.float32, device=device)
fn = lambda: ops.marlin_qqq_gemm(
a=bt.a,
b_q_weight=w_q,
s_group=w_s,
s_tok=s_tok,
s_ch=s_ch,
workspace=workspace.scratch,
size_m=bt.a.shape[0],
size_n=bt.w_ref.shape[1],
size_k=bt.w_ref.shape[0],
)
raise NotImplementedError("QQQ is not supported anymore")
return fn
@ -305,6 +284,25 @@ def machete_create_bench_fn(
)
def cutlass_w4a8_create_bench_fn(
bt: BenchmarkTensors, out_type=torch.dtype, schedule=None
) -> Callable:
w_q = bt.w_q.t().contiguous().t() # make col major
w_q = ops.cutlass_encode_and_reorder_int4b(w_q)
# expects fp8 scales
w_s = ops.cutlass_pack_scale_fp8(bt.w_g_s.to(torch.float8_e4m3fn))
return lambda: ops.cutlass_w4a8_mm(
a=bt.a,
b_q=w_q,
b_group_scales=w_s,
b_group_size=bt.group_size,
b_channel_scales=bt.w_ch_s,
a_token_scales=bt.w_tok_s,
maybe_schedule=schedule,
)
# impl
# bench
@ -406,6 +404,20 @@ def bench(
)
)
# cutlass w4a8
if types.act_type == torch.float8_e4m3fn and group_size == 128:
timers.append(
bench_fns(
label,
sub_label,
f"cutlass w4a8 ({name_type_string})",
[
cutlass_w4a8_create_bench_fn(bt, out_type=types.output_type)
for bt in benchmark_tensors
],
)
)
if sweep_schedules:
global _SWEEP_SCHEDULES_RESULTS

View File

@ -14,6 +14,10 @@ import ray
import torch
from ray.experimental.tqdm_ray import tqdm
from vllm.model_executor.layers.fused_moe.config import (
FusedMoEQuantConfig,
_get_config_dtype_str,
)
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.platforms import current_platform
from vllm.transformers_utils.config import get_config
@ -134,43 +138,36 @@ def benchmark_config(
def run():
from vllm.model_executor.layers.fused_moe import override_config
if use_fp8_w8a8:
quant_dtype = torch.float8_e4m3fn
elif use_int8_w8a16:
quant_dtype = torch.int8
else:
quant_dtype = None
quant_config = FusedMoEQuantConfig.make(
quant_dtype=quant_dtype,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
block_shape=block_quant_shape,
)
with override_config(config):
if use_deep_gemm:
topk_weights, topk_ids, token_expert_indices = fused_topk(
x, input_gating, topk, False
)
return fused_experts(
x,
w1,
w2,
topk_weights,
topk_ids,
inplace=True,
use_fp8_w8a8=use_fp8_w8a8,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
block_shape=block_quant_shape,
allow_deep_gemm=True,
)
else:
fused_moe(
x,
w1,
w2,
input_gating,
topk,
renormalize=True,
inplace=True,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a16=use_int8_w8a16,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
block_shape=block_quant_shape,
)
topk_weights, topk_ids, token_expert_indices = fused_topk(
x, input_gating, topk, renormalize=not use_deep_gemm
)
return fused_experts(
x,
w1,
w2,
topk_weights,
topk_ids,
inplace=True,
quant_config=quant_config,
allow_deep_gemm=use_deep_gemm,
)
# JIT compilation & warmup
run()
@ -414,13 +411,15 @@ class BenchmarkWorker:
use_deep_gemm: bool = False,
) -> tuple[dict[str, int], float]:
current_platform.seed_everything(self.seed)
dtype_str = get_config_dtype_str(
dtype_str = _get_config_dtype_str(
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
)
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# is the intermediate size after silu_and_mul.
block_n = block_quant_shape[0] if block_quant_shape else None
block_k = block_quant_shape[1] if block_quant_shape else None
op_config = get_moe_configs(
num_experts, shard_intermediate_size // 2, dtype_str
num_experts, shard_intermediate_size // 2, dtype_str, block_n, block_k
)
if op_config is None:
config = get_default_config(
@ -430,7 +429,7 @@ class BenchmarkWorker:
hidden_size,
topk,
dtype_str,
is_marlin=False,
block_quant_shape,
)
else:
config = op_config[min(op_config.keys(), key=lambda x: abs(x - num_tokens))]
@ -545,7 +544,7 @@ def save_configs(
block_quant_shape: list[int],
save_dir: str,
) -> None:
dtype_str = get_config_dtype_str(
dtype_str = _get_config_dtype_str(
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
)
@ -558,7 +557,7 @@ def save_configs(
filename = os.path.join(save_dir, filename)
print(f"Writing best config to {filename}...")
with open(filename, "w") as f:
json.dump(configs, f, indent=4)
json.dump({"triton_version": triton.__version__, **configs}, f, indent=4)
f.write("\n")
@ -585,14 +584,19 @@ def main(args: argparse.Namespace):
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
elif config.architectures[0] in (
"DeepseekV3ForCausalLM",
"DeepseekV2ForCausalLM",
"DeepseekV3ForCausalLM",
"DeepseekV32ForCausalLM",
"Glm4MoeForCausalLM",
):
E = config.n_routed_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
elif config.architectures[0] in ("Qwen2MoeForCausalLM", "Qwen3MoeForCausalLM"):
elif config.architectures[0] in (
"Qwen2MoeForCausalLM",
"Qwen3MoeForCausalLM",
"Qwen3NextForCausalLM",
):
E = config.num_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
@ -676,7 +680,11 @@ def main(args: argparse.Namespace):
is_fp16 = not (use_fp8_w8a8 or use_int8_w8a16)
search_space = get_configs_compute_bound(is_fp16, block_quant_shape)
print(f"Start tuning over {len(search_space)} configurations...")
if use_deep_gemm:
raise ValueError(
"Tuning with --use-deep-gemm is not supported as it only tunes Triton "
"kernels. Please remove the flag."
)
start = time.time()
configs = _distribute(
"tune",

View File

@ -0,0 +1,155 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import itertools
import torch
from vllm import _custom_ops as vllm_ops
from vllm.triton_utils import triton
def polynorm_naive(
x: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
eps: float = 1e-6,
):
orig_shape = x.shape
x = x.view(-1, x.shape[-1])
def norm(x, eps: float):
return x / torch.sqrt(x.pow(2).mean(-1, keepdim=True) + eps)
x = x.float()
return (
(
weight[0] * norm(x**3, eps)
+ weight[1] * norm(x**2, eps)
+ weight[2] * norm(x, eps)
+ bias
)
.to(weight.dtype)
.view(orig_shape)
)
def polynorm_vllm(
x: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
eps: float = 1e-6,
):
orig_shape = x.shape
x = x.view(-1, x.shape[-1])
out = torch.empty_like(x)
vllm_ops.poly_norm(out, x, weight, bias, eps)
output = out
output = output.view(orig_shape)
return output
def calculate_diff(batch_size, seq_len, hidden_dim):
dtype = torch.bfloat16
x = torch.randn(batch_size, seq_len, hidden_dim, dtype=dtype, device="cuda")
weight = torch.ones(3, dtype=dtype, device="cuda")
bias = torch.ones(1, dtype=dtype, device="cuda")
output_naive = polynorm_naive(x, weight, bias)
output_vllm = polynorm_vllm(x, weight, bias)
if torch.allclose(output_naive, output_vllm, atol=1e-2, rtol=1e-2):
print("✅ All implementations match")
else:
print("❌ Implementations differ")
batch_size_range = [2**i for i in range(0, 7, 2)]
seq_length_range = [2**i for i in range(6, 11, 1)]
dim_range = [2048, 4096]
configs = list(itertools.product(dim_range, batch_size_range, seq_length_range))
def get_benchmark():
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["dim", "batch_size", "seq_len"],
x_vals=[list(_) for _ in configs],
line_arg="provider",
line_vals=["naive", "vllm"],
line_names=["Naive", "vLLM"],
styles=[("blue", "-"), ("red", "-")],
ylabel="us",
plot_name="polynorm-perf",
args={},
)
)
def benchmark(dim, batch_size, seq_len, provider):
dtype = torch.bfloat16
hidden_dim = dim * 4
x = torch.randn(batch_size, seq_len, hidden_dim, dtype=dtype, device="cuda")
weight = torch.ones(3, dtype=dtype, device="cuda")
bias = torch.ones(1, dtype=dtype, device="cuda")
quantiles = [0.5, 0.2, 0.8]
if provider == "naive":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: polynorm_naive(x, weight, bias),
quantiles=quantiles,
)
else:
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: polynorm_vllm(x, weight, bias),
quantiles=quantiles,
)
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
return benchmark
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--batch-size",
type=int,
default=4,
help="Batch size",
)
parser.add_argument(
"--seq-len",
type=int,
default=128,
help="Sequence length",
)
parser.add_argument(
"--hidden-dim",
type=int,
default=8192,
help="Intermediate size of MLP",
)
parser.add_argument(
"--save-path",
type=str,
default="./configs/polnorm/",
help="Path to save polnorm benchmark results",
)
args = parser.parse_args()
# Run correctness test
calculate_diff(
batch_size=args.batch_size,
seq_len=args.seq_len,
hidden_dim=args.hidden_dim,
)
benchmark = get_benchmark()
# Run performance benchmark
benchmark.run(print_data=True, save_path=args.save_path)

View File

@ -0,0 +1,174 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from __future__ import annotations
import random
import time
import torch
from tabulate import tabulate
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import (
STR_DTYPE_TO_TORCH_DTYPE,
FlexibleArgumentParser,
create_kv_caches_with_random,
)
logger = init_logger(__name__)
@torch.inference_mode()
def run_benchmark(
num_tokens: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
kv_cache_dtype: str,
num_iters: int,
benchmark_mode: str,
device: str = "cuda",
) -> float:
"""Return latency (seconds) for given num_tokens."""
if kv_cache_dtype == "fp8" and head_size % 16:
raise ValueError("fp8 kv-cache requires head_size to be a multiple of 16.")
current_platform.seed_everything(42)
torch.set_default_device(device)
# create random key / value tensors [T, H, D].
key = torch.randn(num_tokens, num_heads, head_size, dtype=dtype, device=device)
value = torch.randn_like(key)
# prepare the slot mapping.
# each token is assigned a unique slot in the KV-cache.
num_slots = block_size * num_blocks
if num_tokens > num_slots:
raise ValueError("num_tokens cannot exceed the total number of cache slots")
slot_mapping_lst = random.sample(range(num_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping_lst, dtype=torch.long, device=device)
key_caches, value_caches = create_kv_caches_with_random(
num_blocks,
block_size,
1, # num_layers
num_heads,
head_size,
kv_cache_dtype,
dtype,
device=device,
)
key_cache, value_cache = key_caches[0], value_caches[0]
# to free unused memory
del key_caches, value_caches
# compute per-kernel scaling factors for fp8 conversion (if used).
k_scale = (key.amax() / 64.0).to(torch.float32)
v_scale = (value.amax() / 64.0).to(torch.float32)
function_under_test = lambda: ops.reshape_and_cache(
key, # noqa: F821
value, # noqa: F821
key_cache, # noqa: F821
value_cache, # noqa: F821
slot_mapping, # noqa: F821
kv_cache_dtype,
k_scale,
v_scale,
)
if benchmark_mode == "cudagraph":
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
function_under_test()
torch.cuda.synchronize()
function_under_test = lambda: g.replay()
def run_cuda_benchmark(n_iters: int) -> float:
nonlocal key, value, key_cache, value_cache, slot_mapping
torch.cuda.synchronize()
start = time.perf_counter()
for _ in range(n_iters):
function_under_test()
torch.cuda.synchronize()
end = time.perf_counter()
return (end - start) / n_iters
# warm-up
run_cuda_benchmark(3)
lat = run_cuda_benchmark(num_iters)
# free tensors to mitigate OOM when sweeping
del key, value, key_cache, value_cache, slot_mapping
torch.cuda.empty_cache()
return lat
def main(args):
rows = []
for exp in range(1, 17):
n_tok = 2**exp
lat = run_benchmark(
num_tokens=n_tok,
num_heads=args.num_heads,
head_size=args.head_size,
block_size=args.block_size,
num_blocks=args.num_blocks,
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
kv_cache_dtype=args.kv_cache_dtype,
num_iters=args.iters,
benchmark_mode=args.mode,
device="cuda",
)
rows.append([n_tok, lat * 1e6]) # convert to microseconds
print(f"Benchmark results for implementation cuda (measuring with {args.mode}):")
print(tabulate(rows, headers=["num_tokens", "latency (µs)"], floatfmt=".3f"))
if __name__ == "__main__":
parser = FlexibleArgumentParser()
parser.add_argument("--num-heads", type=int, default=128)
parser.add_argument(
"--head-size",
type=int,
choices=[64, 80, 96, 112, 120, 128, 192, 256],
default=128,
)
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
parser.add_argument("--num-blocks", type=int, default=128 * 128)
parser.add_argument(
"--dtype",
type=str,
choices=["half", "bfloat16", "float"],
default="bfloat16",
)
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=["auto", "fp8"],
default="auto",
)
parser.add_argument("--iters", type=int, default=200)
parser.add_argument(
"--mode",
type=str,
choices=["cudagraph", "no_graph"],
default="cudagraph",
)
args = parser.parse_args()
main(args)

View File

@ -9,6 +9,9 @@ import torch
from tabulate import tabulate
from vllm import _custom_ops as ops
from vllm.attention.ops.triton_reshape_and_cache_flash import (
triton_reshape_and_cache_flash,
)
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import (
@ -31,6 +34,8 @@ def run_benchmark(
kv_cache_dtype: str,
kv_cache_layout: str,
num_iters: int,
implementation: str,
benchmark_mode: str,
device: str = "cuda",
) -> float:
"""Return latency (seconds) for given num_tokens."""
@ -38,6 +43,14 @@ def run_benchmark(
if kv_cache_dtype == "fp8" and head_size % 16:
raise ValueError("fp8 kv-cache requires head_size to be a multiple of 16.")
if implementation not in ("cuda", "triton"):
raise ValueError(
f"Unsupported implementation: {implementation}. "
"Only 'cuda' and 'triton' are supported."
)
if implementation == "triton" and kv_cache_layout == "HND":
return float("nan") # Triton does not support HND layout yet.
current_platform.seed_everything(42)
torch.set_default_device(device)
@ -65,27 +78,49 @@ def run_benchmark(
cache_layout=kv_cache_layout,
)
key_cache, value_cache = key_caches[0], value_caches[0]
# to free unused memory
del key_caches, value_caches
# compute per-kernel scaling factors for fp8 conversion (if used).
k_scale = (key.amax() / 64.0).to(torch.float32)
v_scale = (value.amax() / 64.0).to(torch.float32)
if implementation == "cuda":
function_under_test = lambda: ops.reshape_and_cache_flash(
key, # noqa: F821
value, # noqa: F821
key_cache, # noqa: F821
value_cache, # noqa: F821
slot_mapping, # noqa: F821
kv_cache_dtype,
k_scale,
v_scale,
)
else:
function_under_test = lambda: triton_reshape_and_cache_flash(
key, # noqa: F821
value, # noqa: F821
key_cache, # noqa: F821
value_cache, # noqa: F821
slot_mapping, # noqa: F821
kv_cache_dtype,
k_scale,
v_scale,
)
if benchmark_mode == "cudagraph":
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
function_under_test()
torch.cuda.synchronize()
function_under_test = lambda: g.replay()
def run_cuda_benchmark(n_iters: int) -> float:
nonlocal key, value, key_cache, value_cache, slot_mapping
torch.cuda.synchronize()
start = time.perf_counter()
for _ in range(n_iters):
ops.reshape_and_cache_flash(
key,
value,
key_cache,
value_cache,
slot_mapping,
kv_cache_dtype,
k_scale,
v_scale,
)
torch.cuda.synchronize()
function_under_test()
torch.cuda.synchronize()
end = time.perf_counter()
return (end - start) / n_iters
@ -116,10 +151,16 @@ def main(args):
kv_cache_dtype=args.kv_cache_dtype,
kv_cache_layout=layout,
num_iters=args.iters,
implementation=args.implementation,
benchmark_mode=args.mode,
device="cuda",
)
rows.append([n_tok, layout, f"{lat * 1e6:.3f}"])
print(
f"Benchmark results for implementation {args.implementation}"
f" (measuring with {args.mode}):"
)
print(tabulate(rows, headers=["num_tokens", "layout", "latency (µs)"]))
@ -151,6 +192,21 @@ if __name__ == "__main__":
)
parser.add_argument("--iters", type=int, default=100)
parser.add_argument(
"--implementation",
type=str,
choices=["cuda", "triton"],
default="cuda",
)
parser.add_argument(
"--mode",
type=str,
choices=["cudagraph", "no_graph"],
default="cudagraph",
)
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,675 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Callable
import matplotlib.pyplot as plt
import numpy as np
import torch
from vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe import (
silu_mul_fp8_quant_deep_gemm_cuda,
)
from vllm.platforms import current_platform
from vllm.triton_utils import tl, triton
from vllm.utils.deep_gemm import is_deep_gemm_e8m0_used
@triton.jit
def _silu_mul_fp8_quant_deep_gemm(
# Pointers ------------------------------------------------------------
input_ptr, # 16-bit activations (E, T, 2*H)
y_q_ptr, # fp8 quantized activations (E, T, H)
y_s_ptr, # 16-bit scales (E, T, G)
counts_ptr, # int32 num tokens per expert (E)
# Sizes ---------------------------------------------------------------
H: tl.constexpr, # hidden dimension (per output)
GROUP_SIZE: tl.constexpr, # elements per group (usually 128)
# Strides for input (elements) ---------------------------------------
stride_i_e,
stride_i_t,
stride_i_h,
# Strides for y_q (elements) -----------------------------------------
stride_yq_e,
stride_yq_t,
stride_yq_h,
# Strides for y_s (elements) -----------------------------------------
stride_ys_e,
stride_ys_t,
stride_ys_g,
# Stride for counts (elements)
stride_counts_e,
# Numeric params ------------------------------------------------------
eps: tl.constexpr,
fp8_min: tl.constexpr,
fp8_max: tl.constexpr,
use_ue8m0: tl.constexpr,
# Meta ---------------------------------------------------------------
BLOCK: tl.constexpr,
NUM_STAGES: tl.constexpr,
):
G = H // GROUP_SIZE
# map program id -> (e, g)
pid = tl.program_id(0)
e = pid // G
g = pid % G
e = e.to(tl.int64)
g = g.to(tl.int64)
# number of valid tokens for this expert
n_tokens = tl.load(counts_ptr + e * stride_counts_e).to(tl.int64)
cols = tl.arange(0, BLOCK).to(tl.int64)
mask = cols < BLOCK
base_input_offset = e * stride_i_e + g * GROUP_SIZE * stride_i_h
base_gate_offset = base_input_offset + cols * stride_i_h
base_up_offset = base_input_offset + H * stride_i_h + cols * stride_i_h
base_yq_offset = e * stride_yq_e + g * GROUP_SIZE * stride_yq_h + cols * stride_yq_h
base_ys_offset = e * stride_ys_e + g * stride_ys_g
for t in tl.range(0, n_tokens, num_stages=NUM_STAGES):
gate = tl.load(
input_ptr + base_gate_offset + t * stride_i_t, mask=mask, other=0.0
).to(tl.float32)
up = tl.load(input_ptr + base_up_offset + t * stride_i_t, mask=mask, other=0.0)
gate = gate * (1.0 / (1.0 + tl.exp(-gate)))
y = gate * up
y_s = tl.maximum(tl.max(tl.abs(y)), eps) / fp8_max
if use_ue8m0:
y_s = tl.exp2(tl.ceil(tl.log2(y_s)))
y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)
tl.store(y_q_ptr + base_yq_offset + t * stride_yq_t, y_q, mask=mask)
tl.store(y_s_ptr + base_ys_offset + t * stride_ys_t, y_s)
def silu_mul_fp8_quant_deep_gemm_triton(
y: torch.Tensor, # (E, T, 2*H)
tokens_per_expert: torch.Tensor, # (E,) number of valid tokens per expert
num_parallel_tokens,
group_size: int = 128,
eps: float = 1e-10,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Quantize silu(y[..., :H]) * y[..., H:] to FP8 with group per-token scales
y has shape (E, T, 2*H). The first half of the last dimension is
silu-activated, multiplied by the second half, then quantized into FP8.
Returns `(y_q, y_s)` where
* `y_q`: FP8 tensor, shape (E, T, H), same layout as y[..., :H]
* `y_s`: FP32 tensor, shape (E, T, H // group_size), strides (T*G, 1, T)
"""
assert y.ndim == 3, "y must be (E, T, 2*H)"
E, T, H2 = y.shape
assert H2 % 2 == 0, "last dim of y must be even (2*H)"
H = H2 // 2
G = (H + group_size - 1) // group_size
assert H % group_size == 0, "H must be divisible by group_size"
assert tokens_per_expert.ndim == 1 and tokens_per_expert.shape[0] == E, (
"tokens_per_expert must be shape (E,)"
)
tokens_per_expert = tokens_per_expert.to(device=y.device, dtype=torch.int32)
# allocate outputs
fp8_dtype = torch.float8_e4m3fn
y_q = torch.empty((E, T, H), dtype=fp8_dtype, device=y.device)
# strides (elements)
stride_i_e, stride_i_t, stride_i_h = y.stride()
stride_yq_e, stride_yq_t, stride_yq_h = y_q.stride()
# desired scale strides (elements): (T*G, 1, T)
stride_ys_e = T * G
stride_ys_t = 1
stride_ys_g = T
y_s = torch.empty_strided(
(E, T, G),
(stride_ys_e, stride_ys_t, stride_ys_g),
dtype=torch.float32,
device=y.device,
)
stride_cnt_e = tokens_per_expert.stride()[0]
# Static grid over experts and H-groups.
# A loop inside the kernel handles the token dim
grid = (E * G,)
f_info = torch.finfo(fp8_dtype)
fp8_max = f_info.max
fp8_min = f_info.min
_silu_mul_fp8_quant_deep_gemm[grid](
y,
y_q,
y_s,
tokens_per_expert,
H,
group_size,
stride_i_e,
stride_i_t,
stride_i_h,
stride_yq_e,
stride_yq_t,
stride_yq_h,
stride_ys_e,
stride_ys_t,
stride_ys_g,
stride_cnt_e,
eps,
fp8_min,
fp8_max,
is_deep_gemm_e8m0_used(),
BLOCK=group_size,
NUM_STAGES=4,
num_warps=1,
)
return y_q, y_s
# Parse generation strategies
strategies = ["uniform", "max_t", "first_t"]
def benchmark(
kernel: Callable,
E: int,
T: int,
H: int,
total_tokens: int,
num_parallel_tokens: int = 64,
G: int = 128,
runs: int = 200,
num_warmups: int = 20,
gen_strategy: str = "default",
iterations_per_run: int = 20,
):
def generate_data(seed_offset=0):
"""Generate input data with given seed offset"""
current_platform.seed_everything(42 + seed_offset)
y = torch.rand((E, T, 2 * H), dtype=torch.bfloat16, device="cuda").contiguous()
if gen_strategy == "uniform":
r = torch.rand(size=(E,), device="cuda")
r /= r.sum()
r *= total_tokens
tokens_per_expert = r.int()
tokens_per_expert = torch.minimum(
tokens_per_expert,
torch.ones((E,), device=r.device, dtype=torch.int) * T,
)
elif gen_strategy == "max_t":
tokens_per_expert = torch.empty(size=(E,), dtype=torch.int32, device="cuda")
tokens_per_expert.fill_(total_tokens / E)
elif gen_strategy == "first_t":
tokens_per_expert = torch.zeros(size=(E,), dtype=torch.int32, device="cuda")
tokens_per_expert[0] = min(T, total_tokens)
else:
raise ValueError(f"Unknown generation strategy: {gen_strategy}")
return y, tokens_per_expert
dataset_count = 4
# Pre-generate different input matrices for each iteration to avoid cache effects
data_sets = [generate_data(i) for i in range(dataset_count)]
# Warmup
y, tokens_per_expert = data_sets[0]
for _ in range(num_warmups):
kernel(
y, tokens_per_expert, num_parallel_tokens=num_parallel_tokens, group_size=G
)
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
# Benchmark
latencies: list[float] = []
for _ in range(runs):
torch.cuda.synchronize()
start_event.record()
for i in range(iterations_per_run):
y, tokens_per_expert = data_sets[i % dataset_count]
kernel(
y,
tokens_per_expert,
num_parallel_tokens=num_parallel_tokens,
group_size=G,
)
end_event.record()
end_event.synchronize()
total_time_ms = start_event.elapsed_time(end_event)
per_iter_time_ms = total_time_ms / iterations_per_run
latencies.append(per_iter_time_ms)
# Use median instead of average for better outlier handling
median_time_ms = np.median(latencies)
median_time_s = median_time_ms / 1000
# Calculate actual work done (using first dataset for consistency)
_, tokens_per_expert = data_sets[0]
actual_tokens = tokens_per_expert.sum().item()
actual_elements = actual_tokens * H
# GFLOPS: operations per element = exp + 3 muls + 1 div + quantization ops ≈ 8 ops
ops_per_element = 8
total_ops = actual_elements * ops_per_element
gflops = total_ops / median_time_s / 1e9
# Memory bandwidth: bfloat16 inputs (2 bytes), fp8 output (1 byte), scales (4 bytes)
input_bytes = actual_tokens * 2 * H * 2 # 2*H bfloat16 inputs
output_bytes = actual_tokens * H * 1 # H fp8 outputs
scale_bytes = actual_tokens * (H // G) * 4 # scales in float32
total_bytes = input_bytes + output_bytes + scale_bytes
memory_bw = total_bytes / median_time_s / 1e9
HOPPER_BANDWIDTH_TBPS = 3.35
return (
median_time_ms,
gflops,
memory_bw,
(memory_bw / (HOPPER_BANDWIDTH_TBPS * 1024)) * 100,
)
def create_comparison_plot(
ratio, cuda_times, baseline_times, config_labels, strategy_name, id
):
"""Create a comparison plot for a specific generation strategy"""
fig, ax = plt.subplots(1, 1, figsize=(16, 6))
# Configure x-axis positions
x = np.arange(len(config_labels))
width = 0.35
# Execution Time plot (lower is better)
ax.bar(
x - width / 2, cuda_times, width, label="CUDA Kernel", alpha=0.8, color="blue"
)
ax.bar(
x + width / 2,
baseline_times,
width,
label="Baseline",
alpha=0.8,
color="orange",
)
# Add speedup labels over each bar pair
for i in range(len(x)):
speedup = ratio[i]
max_height = max(cuda_times[i], baseline_times[i])
ax.text(
x[i],
max_height + max_height * 0.02,
f"{speedup:.2f}x",
ha="center",
va="bottom",
fontweight="bold",
fontsize=9,
)
ax.set_xlabel("Configuration")
ax.set_ylabel("% Utilization")
ax.set_title(
f"Memory Bandwidth Utilization (%) - {strategy_name}\n(Higher is Better)"
)
ax.set_xticks(x)
ax.set_xticklabels(config_labels, rotation=45, ha="right")
ax.legend()
ax.grid(True, alpha=0.3)
plt.tight_layout()
return fig, ax
def create_combined_plot(all_results):
"""Create a combined plot with all strategies in one PNG"""
num_strategies = len(all_results)
fig, axes = plt.subplots(num_strategies, 1, figsize=(20, 6 * num_strategies))
if num_strategies == 1:
axes = [axes]
for idx, (
strategy_name,
ratio,
cuda_times,
baseline_times,
config_labels,
) in enumerate(all_results):
ax = axes[idx]
# Configure x-axis positions
x = np.arange(len(config_labels))
width = 0.35
# Execution Time plot (lower is better)
ax.bar(
x - width / 2,
cuda_times,
width,
label="CUDA Kernel",
alpha=0.8,
color="blue",
)
ax.bar(
x + width / 2,
baseline_times,
width,
label="Baseline",
alpha=0.8,
color="orange",
)
# Add speedup labels over each bar pair
for i in range(len(x)):
speedup = ratio[i]
max_height = max(cuda_times[i], baseline_times[i])
ax.text(
x[i],
max_height + max_height * 0.02,
f"{speedup:.2f}x",
ha="center",
va="bottom",
fontweight="bold",
fontsize=9,
)
ax.set_xlabel("Configuration")
ax.set_ylabel("% Utilization")
ax.set_title(
f"Memory Bandwidth Utilization (%) - {strategy_name}\n(Higher is Better)"
)
ax.set_xticks(x)
ax.set_xticklabels(config_labels, rotation=45, ha="right")
ax.legend()
ax.grid(True, alpha=0.3)
plt.tight_layout()
filename = "../../silu_bench/silu_benchmark_combined.png"
plt.savefig(filename, dpi=300, bbox_inches="tight")
plt.show()
return filename
outer_dim = 7168
configs = [
# DeepSeekV3 Configs
(8, 1024, 7168),
# DeepSeekV3 Configs
(32, 1024, 7168),
# DeepSeekV3 Configs
(256, 1024, 7168),
]
runs = 100
num_warmups = 20
strategy_descriptions = {
"uniform": "Uniform Random",
"max_t": "Even Assignment",
"first_t": "experts[0] = T, experts[1:] = 0",
}
print(f"GPU: {torch.cuda.get_device_name()}")
print(f"Testing strategies: {', '.join(strategies)}")
print(f"Configurations: {len(configs)} configs")
all_results = []
# Run benchmarks for each strategy
for id, strategy in enumerate(strategies):
print(f"\n{'=' * 60}")
print(f"Testing strategy: {strategy_descriptions[strategy]}")
print(f"{'=' * 60}")
# Collect benchmark data for both algorithms
config_labels = []
config_x_axis = []
all_cuda_results = []
all_baseline_results = []
all_ratios = []
for E, T, H in configs:
total_tokens_config = [8 * E, 16 * E, 32 * E, 64 * E, 128 * E, 256 * E]
config_x_axis.append(total_tokens_config)
cuda_results = []
baseline_results = []
ratios = []
for total_tokens in total_tokens_config:
config_label = f"E={E},T={T},H={H},TT={total_tokens}"
config_labels.append(config_label)
# CUDA kernel results
time_ms_cuda, gflops, gbps, perc = benchmark(
silu_mul_fp8_quant_deep_gemm_cuda,
E,
T,
H,
total_tokens,
runs=runs,
num_warmups=num_warmups,
gen_strategy=strategy,
)
cuda_results.append((time_ms_cuda, gflops, gbps, perc))
# Baseline results
time_ms_triton, gflops, gbps, perc = benchmark(
silu_mul_fp8_quant_deep_gemm_triton,
E,
T,
H,
total_tokens,
runs=runs,
num_warmups=num_warmups,
gen_strategy=strategy,
)
baseline_results.append((time_ms_triton, gflops, gbps, perc))
ratios.append(time_ms_triton / time_ms_cuda)
print(f"Completed: {config_label}")
all_cuda_results.append(cuda_results)
all_baseline_results.append(baseline_results)
all_ratios.append(ratios)
# Store results for combined plotting
all_results.append(
(
strategy_descriptions[strategy],
all_ratios,
all_cuda_results,
all_baseline_results,
config_labels,
config_x_axis,
)
)
# Print summary table for this strategy
print(f"\nSummary Table - {strategy_descriptions[strategy]}:")
print(f"{'Config':<20} {'CUDA Time(ms)':<12} {'Base Time(ms)':<12} {'Speedup':<8}")
print("-" * 60)
for i, (E, T, H) in enumerate(configs):
speedup = baseline_results[i][0] / cuda_results[i][0]
config_label = f"E={E:3d},T={T:4d},H={H:4d}"
print(
f"{config_label:<20} {cuda_results[i][0]:8.5f} "
f"{baseline_results[i][0]:8.5f} {speedup:6.2f}x"
)
def create_total_tokens_plot(all_results):
num_strategies = len(all_results)
num_configs = len(configs)
# Create side-by-side subplots: 2 columns for speedup and bandwidth percentage
fig, axs = plt.subplots(
num_strategies, num_configs * 2, figsize=(28, 6 * num_strategies)
)
# Add main title to the entire figure
fig.suptitle(
"Performance Analysis: Speedup vs Bandwidth Utilization (Triton & CUDA)",
fontsize=16,
fontweight="bold",
y=0.98,
)
# Handle single strategy case
if num_strategies == 1:
axs = axs.reshape(1, -1)
# Handle single config case
if num_configs == 1:
axs = axs.reshape(-1, 2)
for strategy_idx, result in enumerate(all_results):
(
strategy_name,
all_ratios,
all_cuda_results,
all_baseline_results,
config_labels,
config_x_axis,
) = result
for config_idx in range(num_configs):
# Speedup plot (left column)
ax_speedup = axs[strategy_idx, config_idx * 2]
# Bandwidth plot (right column)
ax_bandwidth = axs[strategy_idx, config_idx * 2 + 1]
E, T, H = configs[config_idx]
ratios = all_ratios[config_idx]
total_tokens_values = config_x_axis[config_idx]
# Extract CUDA and Triton bandwidth percentages
cuda_bandwidth_percentages = [
result[3] for result in all_cuda_results[config_idx]
]
triton_bandwidth_percentages = [
result[3] for result in all_baseline_results[config_idx]
]
# Plot speedup ratios vs total tokens (left plot)
ax_speedup.plot(
total_tokens_values, ratios, "bo-", linewidth=3, markersize=8
)
ax_speedup.set_title(
f"{strategy_name}\nSpeedup (CUDA/Triton)\nE={E}, T={T}, H={H}",
fontsize=12,
fontweight="bold",
)
ax_speedup.set_xlabel("Total Tokens", fontweight="bold", fontsize=11)
ax_speedup.set_ylabel("Speedup Ratio", fontweight="bold", fontsize=11)
ax_speedup.grid(True, alpha=0.3)
ax_bandwidth.plot(
total_tokens_values,
cuda_bandwidth_percentages,
"ro-",
linewidth=3,
markersize=8,
label="CUDA",
)
ax_bandwidth.plot(
total_tokens_values,
triton_bandwidth_percentages,
"go-",
linewidth=3,
markersize=8,
label="Triton",
)
ax_bandwidth.set_title(
f"{strategy_name}\nBandwidth Utilization (Hopper)\nE={E}, T={T}, H={H}",
fontsize=12,
fontweight="bold",
)
ax_bandwidth.set_xlabel("Total Tokens", fontweight="bold", fontsize=11)
ax_bandwidth.set_ylabel(
"% of Peak Bandwidth", fontweight="bold", fontsize=11
)
ax_bandwidth.legend(prop={"weight": "bold"})
ax_bandwidth.grid(True, alpha=0.3)
# Format x-axis labels for both plots
for ax in [ax_speedup, ax_bandwidth]:
ax.set_xticks(total_tokens_values)
ax.set_xticklabels(
[
f"{tt // 1000}K" if tt >= 1000 else str(tt)
for tt in total_tokens_values
],
fontweight="bold",
)
# Make tick labels bold
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontweight("bold")
# Add value labels on speedup points
for x, y in zip(total_tokens_values, ratios):
ax_speedup.annotate(
f"{y:.2f}x",
(x, y),
textcoords="offset points",
xytext=(0, 12),
ha="center",
fontsize=10,
fontweight="bold",
bbox=dict(boxstyle="round,pad=0.3", facecolor="white", alpha=0.7),
)
# Add value labels on CUDA bandwidth points
for x, y in zip(total_tokens_values, cuda_bandwidth_percentages):
ax_bandwidth.annotate(
f"{y:.1f}%",
(x, y),
textcoords="offset points",
xytext=(0, 12),
ha="center",
fontsize=9,
fontweight="bold",
bbox=dict(boxstyle="round,pad=0.2", facecolor="red", alpha=0.3),
)
# Add value labels on Triton bandwidth points
for x, y in zip(total_tokens_values, triton_bandwidth_percentages):
ax_bandwidth.annotate(
f"{y:.1f}%",
(x, y),
textcoords="offset points",
xytext=(0, -15),
ha="center",
fontsize=9,
fontweight="bold",
bbox=dict(boxstyle="round,pad=0.2", facecolor="green", alpha=0.3),
)
plt.tight_layout()
plt.subplots_adjust(top=0.93) # Make room for main title
filename = "silu_benchmark_total_tokens.png"
plt.savefig(filename, dpi=300, bbox_inches="tight")
plt.show()
return filename
# Create combined plot with all strategies
combined_plot_filename = create_total_tokens_plot(all_results)
print(f"\n{'=' * 60}")
print("Benchmark Complete!")
print(f"Generated combined plot: {combined_plot_filename}")
print(f"{'=' * 60}")

View File

@ -3,16 +3,17 @@
import csv
import os
import random
from datetime import datetime
from typing import Optional
import flashinfer
import torch
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
from vllm.utils import round_up
# KV Cache Layout for TRT-LLM
# kv_cache_shape = (num_blocks, 2, num_kv_heads, page_size, head_dim)
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
FP8_DTYPE = torch.float8_e4m3fn
FP4_DTYPE = torch.uint8
def to_float8(x, dtype=torch.float8_e4m3fn):
@ -26,65 +27,106 @@ def to_float8(x, dtype=torch.float8_e4m3fn):
@torch.no_grad()
def benchmark_decode(
num_seqs,
max_seq_len,
page_size=16,
dtype=torch.bfloat16,
kv_layout="HND",
num_kv_heads=8,
kv_cache_dtype="auto",
head_dim=128,
warmup=10,
trials=20,
dtype: torch.dtype,
quant_dtypes: tuple[
Optional[torch.dtype], Optional[torch.dtype], Optional[torch.dtype]
],
batch_size: int,
max_seq_len: int,
num_heads: tuple[int, int] = (64, 8),
head_size: int = 128,
kv_layout: str = "HND",
block_size: int = 16,
warmup: int = 10,
trials: int = 20,
):
torch.set_default_device("cuda")
device = "cuda"
torch.manual_seed(0)
HEAD_GRP_SIZE = 8
MAX_SEQ_LEN = max_seq_len
q_quant_dtype, kv_quant_dtype, o_quant_dtype = quant_dtypes
q_quant_dtype = q_quant_dtype or dtype
kv_quant_dtype = kv_quant_dtype or dtype
o_quant_dtype = o_quant_dtype or dtype
num_qo_heads, num_kv_heads = num_heads
assert num_qo_heads % num_kv_heads == 0
sm_scale = float(1.0 / (head_size**0.5))
# large number to reduce kv_cache reuse
NUM_BLOCKS = int(256000 / page_size)
NUM_BLOCKS = int(256000 / block_size)
workspace_buffer = torch.empty(1024 * 1024 * 1024, dtype=torch.int8, device=device)
kv_cache_shape = None
if kv_layout == "NHD":
kv_cache_shape = (NUM_BLOCKS, 2, block_size, num_kv_heads, head_size)
elif kv_layout == "HND":
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, block_size, head_size)
else:
raise ValueError(f"Invalid kv_layout: {kv_layout}")
# For decode, batch_size is num_decode_token
num_qo_heads = num_kv_heads * HEAD_GRP_SIZE
sm_scale = float(1.0 / (head_dim**0.5))
q = torch.randn(num_seqs, num_qo_heads, head_dim, device=device, dtype=dtype)
kv_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
# Always using 1.0 scale to reflect the real perf in benchmarking
q_scale = 1.0
ref_query = torch.randn(batch_size, num_qo_heads, head_size, dtype=dtype)
if q_quant_dtype == FP8_DTYPE:
query, _ = to_float8(ref_query)
else:
query = ref_query
max_kv_len = max(kv_lens)
kv_lens_tensor = torch.tensor(kv_lens, dtype=torch.int, device=device)
max_num_blocks_per_seq = (max_kv_len + page_size - 1) // page_size
kv_lens = torch.randint(1, max_seq_len, (batch_size,), dtype=torch.int32)
kv_lens[-1] = max_seq_len
block_tables = torch.randint(
0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32
)
seq_lens = kv_lens
max_seq_len = torch.max(seq_lens).item()
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, page_size, head_dim)
kv_cache = torch.randn(size=kv_cache_shape, device=device, dtype=dtype)
# Always using 1.0 scale to reflect the real perf in benchmarking
k_scale = v_scale = 1.0
ref_kv_cache = torch.randn(kv_cache_shape, dtype=dtype)
if kv_quant_dtype == FP8_DTYPE:
kv_cache, _ = to_float8(ref_kv_cache)
else:
kv_cache = ref_kv_cache
if kv_cache_dtype.startswith("fp8"):
kv_cache, _ = to_float8(kv_cache)
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
block_tables = torch.randint(
0, NUM_BLOCKS, (batch_size, max_num_blocks_per_seq), dtype=torch.int32
)
kv_indptr = [0]
kv_indices = []
kv_last_page_lens = []
for i in range(batch_size):
seq_len = seq_lens[i]
assert seq_len > 0
num_blocks = (seq_len + block_size - 1) // block_size
kv_indices.extend(block_tables[i, :num_blocks])
kv_indptr.append(kv_indptr[-1] + num_blocks)
kv_last_page_len = seq_len % block_size
if kv_last_page_len == 0:
kv_last_page_len = block_size
kv_last_page_lens.append(kv_last_page_len)
output_trtllm = torch.empty(q.shape, dtype=dtype)
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
workspace_buffer = torch.zeros(1024 * 1024 * 1024, dtype=torch.int8)
# Benchmark TRT decode
def trt_decode():
return flashinfer.decode.trtllm_batch_decode_with_kv_cache(
q,
kv_cache,
workspace_buffer,
block_tables,
kv_lens_tensor,
max_kv_len,
bmm1_scale=k_scale * sm_scale,
bmm2_scale=v_scale,
out=output_trtllm,
)
wrapper = flashinfer.BatchDecodeWithPagedKVCacheWrapper(
workspace_buffer,
kv_layout,
use_tensor_cores=True,
)
wrapper.plan(
kv_indptr,
kv_indices,
kv_last_page_lens,
num_qo_heads,
num_kv_heads,
head_size,
block_size,
"NONE",
sm_scale=sm_scale,
q_data_type=dtype,
kv_data_type=dtype,
)
def time_fn(fn, warmup=10, trials=20):
torch.cuda.synchronize()
@ -101,74 +143,72 @@ def benchmark_decode(
times.append(start.elapsed_time(end)) # ms
return sum(times) / len(times), torch.std(torch.tensor(times))
# TRT Decode
trt_mean, trt_std = time_fn(trt_decode)
kv_indptr = [0]
kv_indices = []
kv_last_page_lens = []
for i in range(num_seqs):
seq_len = kv_lens[i]
assert seq_len > 0
num_blocks = (seq_len + page_size - 1) // page_size
kv_indices.extend(block_tables[i, :num_blocks])
kv_indptr.append(kv_indptr[-1] + num_blocks)
kv_last_page_len = seq_len % page_size
if kv_last_page_len == 0:
kv_last_page_len = page_size
kv_last_page_lens.append(kv_last_page_len)
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
output_baseline = torch.empty(q.shape, dtype=dtype)
wrapper = flashinfer.BatchDecodeWithPagedKVCacheWrapper(
workspace_buffer,
kv_layout,
use_tensor_cores=((num_qo_heads // num_kv_heads) > 4),
)
wrapper.plan(
kv_indptr,
kv_indices,
kv_last_page_lens,
num_qo_heads,
num_kv_heads,
head_dim,
page_size,
"NONE",
q_data_type=dtype,
kv_data_type=torch.float8_e4m3fn if kv_cache_dtype.startswith("fp8") else dtype,
)
o_scale = 1.0
o_sf_scale = None
output_baseline = torch.empty(ref_query.shape, dtype=dtype)
if o_quant_dtype == FP4_DTYPE:
o_sf_scale = 500.0
output_trtllm = flashinfer.utils.FP4Tensor(
torch.empty(query.shape[:-1] + (query.shape[-1] // 2,), dtype=torch.uint8),
torch.empty(
(
round_up(query.shape[0], 128),
round_up(query.shape[1] * query.shape[2] // 16, 4),
),
dtype=torch.float8_e4m3fn,
),
)
else:
output_trtllm = torch.empty(query.shape, dtype=o_quant_dtype)
def baseline_decode():
return wrapper.run(q, kv_cache, sm_scale, k_scale, v_scale, output_baseline)
return wrapper.run(
ref_query,
ref_kv_cache,
k_scale=k_scale,
v_scale=v_scale,
out=output_baseline,
)
def trtllm_decode():
return flashinfer.decode.trtllm_batch_decode_with_kv_cache(
query=query,
kv_cache=kv_cache,
workspace_buffer=workspace_buffer,
block_tables=block_tables,
seq_lens=seq_lens,
max_seq_len=max_seq_len,
bmm1_scale=q_scale * k_scale * sm_scale,
bmm2_scale=v_scale / o_scale,
o_sf_scale=o_sf_scale,
out=output_trtllm,
)
baseline_mean, baseline_std = time_fn(baseline_decode)
trtllm_mean, trtllm_std = time_fn(trtllm_decode)
# Calculate percentage speedup (positive means TRT is faster)
speedup_percent = (baseline_mean - trt_mean) / baseline_mean
speedup_percent = (baseline_mean - trtllm_mean) / baseline_mean
print(
f"\t{num_seqs}\t{max_seq_len}\t{trt_mean:.3f}\t{trt_std.item():.3f}"
f"\t{batch_size}\t{max_seq_len}\t{trtllm_mean:.3f}\t{trtllm_std.item():.3f}"
f"\t{baseline_mean:.3f}\t{baseline_std.item():.3f}\t{speedup_percent:.3f}"
)
# Return results for CSV writing
return {
"num_seqs": num_seqs,
"trt_mean": trt_mean,
"trt_std": trt_std.item(),
"batch_size": batch_size,
"trtllm_mean": trtllm_mean,
"trtllm_std": trtllm_std.item(),
"baseline_mean": baseline_mean,
"baseline_std": baseline_std.item(),
"speedup_percent": speedup_percent,
"q_dtype": str(dtype),
"kv_cache_dtype": kv_cache_dtype,
"page_size": page_size,
"q_dtype": str(q_quant_dtype),
"kv_cache_dtype": str(kv_quant_dtype),
"output_dtype": str(o_quant_dtype),
"block_size": block_size,
"num_kv_heads": num_kv_heads,
"head_dim": head_dim,
"head_size": head_size,
"max_seq_len": max_seq_len,
}
@ -180,17 +220,18 @@ def write_results_to_csv(results, filename=None):
filename = f"flashinfer_trtllm_benchmark_{timestamp}.csv"
fieldnames = [
"num_seqs",
"trt_mean",
"trt_std",
"batch_size",
"trtllm_mean",
"trtllm_std",
"baseline_mean",
"baseline_std",
"speedup_percent",
"q_dtype",
"kv_cache_dtype",
"page_size",
"output_dtype",
"block_size",
"num_kv_heads",
"head_dim",
"head_size",
"max_seq_len",
]
@ -209,45 +250,44 @@ def write_results_to_csv(results, filename=None):
if __name__ == "__main__":
num_seqs = [1, 4, 8, 16, 32, 64, 128, 256]
batch_sizes = [1, 4, 8, 16, 32, 64, 128, 256]
max_seq_lens = [1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072]
all_results = []
print(
"Running benchmark for q_dtype = bfloat16, kv_cache_dtype: bfloat16, "
"output_dtype: bfloat16"
)
print(
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\t"
"baseline_std\tspeedup_percent"
)
for max_seq_len in max_seq_lens:
for bs in num_seqs:
result = benchmark_decode(
bs,
max_seq_len,
dtype=torch.bfloat16,
kv_cache_dtype="auto",
)
all_results.append(result)
dtype = torch.bfloat16
quant_dtypes = [
# (q_quant_dtype, kv_quant_dtype, o_quant_dtype)
(None, None, None),
(None, FP8_DTYPE, None),
(FP8_DTYPE, FP8_DTYPE, None),
(FP8_DTYPE, FP8_DTYPE, FP8_DTYPE),
(FP8_DTYPE, FP8_DTYPE, FP4_DTYPE),
]
print(
"Running benchmark for q_dtype = bfloat16, kv_cache_dtype: fp8, "
"output_dtype: bfloat16"
)
print(
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\t"
"baseline_std\tspeedup_percent"
)
for max_seq_len in max_seq_lens:
for bs in num_seqs:
result = benchmark_decode(
bs,
max_seq_len,
dtype=torch.bfloat16,
kv_cache_dtype="fp8",
)
all_results.append(result)
for quant_dtype in quant_dtypes:
q_quant_dtype, kv_quant_dtype, o_quant_dtype = quant_dtype
q_quant_dtype = q_quant_dtype or dtype
kv_quant_dtype = kv_quant_dtype or dtype
o_quant_dtype = o_quant_dtype or dtype
print(
f"Running benchmark for q_dtype = {q_quant_dtype}, "
f"kv_cache_dtype: {kv_quant_dtype}, "
f"output_dtype: {o_quant_dtype}"
)
print(
"\tbatch_size\tmax_seq_len\ttrtllm_mean\ttrtllm_std\tbaseline_mean\t"
"baseline_std\tspeedup_percent"
)
for max_seq_len in max_seq_lens:
for bs in batch_sizes:
result = benchmark_decode(
dtype=dtype,
quant_dtypes=quant_dtype,
batch_size=bs,
max_seq_len=max_seq_len,
)
all_results.append(result)
# Write all results to CSV
write_results_to_csv(all_results)

View File

@ -3,16 +3,17 @@
import csv
import os
import random
from datetime import datetime
from typing import Optional
import flashinfer
import torch
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
from vllm.utils import round_up
# KV Cache Layout for TRT-LLM
# kv_cache_shape = (num_blocks, 2, num_kv_heads, page_size, head_dim)
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
FP8_DTYPE = torch.float8_e4m3fn
FP4_DTYPE = torch.uint8
def to_float8(x, dtype=torch.float8_e4m3fn):
@ -26,84 +27,100 @@ def to_float8(x, dtype=torch.float8_e4m3fn):
@torch.no_grad()
def benchmark_prefill(
num_seqs,
max_seq_len,
page_size=16,
dtype=torch.bfloat16,
kv_layout="HND",
num_kv_heads=8,
kv_cache_dtype="auto",
head_dim=128,
warmup=10,
trials=20,
dtype: torch.dtype,
quant_dtypes: tuple[
Optional[torch.dtype], Optional[torch.dtype], Optional[torch.dtype]
],
batch_size: int,
max_seq_len: int,
num_heads: tuple[int, int] = (64, 8),
head_size: int = 128,
kv_layout: str = "HND",
block_size: int = 16,
warmup: int = 10,
trials: int = 20,
):
torch.set_default_device("cuda")
torch.manual_seed(0)
HEAD_GRP_SIZE = 8
MAX_SEQ_LEN = max_seq_len
q_quant_dtype, kv_quant_dtype, o_quant_dtype = quant_dtypes
q_quant_dtype = q_quant_dtype or dtype
kv_quant_dtype = kv_quant_dtype or dtype
o_quant_dtype = o_quant_dtype or dtype
max_q_len = max_kv_len = max_seq_len
num_qo_heads, num_kv_heads = num_heads
assert num_qo_heads % num_kv_heads == 0
sm_scale = float(1.0 / (head_size**0.5))
# large number to reduce kv_cache reuse
NUM_BLOCKS = int(256000 / page_size)
NUM_BLOCKS = int(256000 / block_size)
workspace_buffer = torch.empty(1024 * 1024 * 1024, dtype=torch.int8)
kv_cache_shape = None
if kv_layout == "NHD":
kv_cache_shape = (NUM_BLOCKS, 2, block_size, num_kv_heads, head_size)
elif kv_layout == "HND":
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, block_size, head_size)
else:
raise ValueError(f"Invalid kv_layout: {kv_layout}")
num_qo_heads = num_kv_heads * HEAD_GRP_SIZE
sm_scale = float(1.0 / (head_dim**0.5))
q_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
q_lens[-1] = MAX_SEQ_LEN
max_q_len = max(q_lens)
q_lens = torch.randint(1, max_q_len, (batch_size,), dtype=torch.int32)
q_lens[-1] = max_q_len
q_indptr = torch.cat(
[
torch.tensor([0], dtype=torch.int32),
torch.cumsum(
torch.tensor(q_lens, dtype=torch.int32), dim=0, dtype=torch.int32
),
torch.cumsum(q_lens, dim=0, dtype=torch.int32),
]
)
q = torch.randn(sum(q_lens), num_qo_heads, head_dim, dtype=dtype)
kv_lens = [random.randint(0, MAX_SEQ_LEN) for _ in range(num_seqs)]
kv_lens[-1] = MAX_SEQ_LEN
seq_lens = [q_len + kv_len for q_len, kv_len in zip(q_lens, kv_lens)]
max_seq_len = max(seq_lens)
seq_lens_tensor = torch.tensor(seq_lens, dtype=torch.int32)
max_num_blocks_per_seq = (max_seq_len + page_size - 1) // page_size
block_tables = torch.randint(
0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32
# Always using 1.0 scale to reflect the real perf in benchmarking
q_scale = 1.0
ref_query = torch.randn(
torch.sum(q_lens).item(), num_qo_heads, head_size, dtype=dtype
)
if q_quant_dtype == FP8_DTYPE:
query, _ = to_float8(ref_query)
else:
query = ref_query
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, page_size, head_dim)
kv_cache = torch.randn(size=kv_cache_shape, dtype=dtype)
kv_lens = torch.randint(0, max_kv_len, (batch_size,), dtype=torch.int32)
kv_lens[-1] = max_kv_len
seq_lens = kv_lens + q_lens
max_seq_len = torch.max(seq_lens).item()
# Always using 1.0 scale to reflect the real perf in benchmarking
k_scale = v_scale = 1.0
ref_kv_cache = torch.randn(kv_cache_shape, dtype=dtype)
if kv_quant_dtype == FP8_DTYPE:
kv_cache, _ = to_float8(ref_kv_cache)
else:
kv_cache = ref_kv_cache
if kv_cache_dtype.startswith("fp8"):
kv_cache, _ = to_float8(kv_cache)
output_trtllm = torch.empty(q.shape, dtype=dtype)
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
block_tables = torch.randint(
0, NUM_BLOCKS, (batch_size, max_num_blocks_per_seq), dtype=torch.int32
)
kv_indptr = [0]
kv_indices = []
kv_last_page_lens = []
for i in range(num_seqs):
for i in range(batch_size):
seq_len = seq_lens[i]
assert seq_len > 0
num_blocks = (seq_len + page_size - 1) // page_size
num_blocks = (seq_len + block_size - 1) // block_size
kv_indices.extend(block_tables[i, :num_blocks])
kv_indptr.append(kv_indptr[-1] + num_blocks)
kv_last_page_len = seq_len % page_size
kv_last_page_len = seq_len % block_size
if kv_last_page_len == 0:
kv_last_page_len = page_size
kv_last_page_len = block_size
kv_last_page_lens.append(kv_last_page_len)
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
output_baseline = torch.empty(q.shape, dtype=dtype)
workspace_buffer = torch.zeros(1024 * 1024 * 1024, dtype=torch.int8)
wrapper = flashinfer.BatchPrefillWithPagedKVCacheWrapper(
workspace_buffer, kv_layout
@ -115,12 +132,12 @@ def benchmark_prefill(
kv_last_page_lens,
num_qo_heads,
num_kv_heads,
head_dim,
page_size,
head_size,
block_size,
causal=True,
sm_scale=sm_scale,
q_data_type=dtype,
kv_data_type=kv_cache.dtype,
kv_data_type=dtype,
)
def time_fn(fn, warmup=10, trials=20):
@ -138,52 +155,76 @@ def benchmark_prefill(
times.append(start.elapsed_time(end)) # ms
return sum(times) / len(times), torch.std(torch.tensor(times))
o_scale = 1.0
o_sf_scale = None
output_baseline = torch.empty(ref_query.shape, dtype=dtype)
if o_quant_dtype == FP4_DTYPE:
o_sf_scale = 500.0
output_trtllm = flashinfer.utils.FP4Tensor(
torch.empty(query.shape[:-1] + (query.shape[-1] // 2,), dtype=torch.uint8),
torch.empty(
(
round_up(query.shape[0], 128),
round_up(query.shape[1] * query.shape[2] // 16, 4),
),
dtype=torch.float8_e4m3fn,
),
)
else:
output_trtllm = torch.empty(query.shape, dtype=o_quant_dtype)
def baseline_prefill():
return wrapper.run(
q, kv_cache, k_scale=k_scale, v_scale=v_scale, out=output_baseline
ref_query,
ref_kv_cache,
k_scale=k_scale,
v_scale=v_scale,
out=output_baseline,
)
def trt_prefill():
def trtllm_prefill():
return flashinfer.prefill.trtllm_batch_context_with_kv_cache(
query=q,
query=query,
kv_cache=kv_cache,
workspace_buffer=workspace_buffer,
block_tables=block_tables,
seq_lens=seq_lens_tensor,
seq_lens=seq_lens,
max_q_len=max_q_len,
max_kv_len=max_seq_len,
bmm1_scale=k_scale * sm_scale,
bmm2_scale=v_scale,
batch_size=num_seqs,
bmm1_scale=q_scale * k_scale * sm_scale,
bmm2_scale=v_scale / o_scale,
batch_size=batch_size,
cum_seq_lens_q=q_indptr,
cum_seq_lens_kv=kv_indptr,
o_sf_scale=o_sf_scale,
out=output_trtllm,
)
trt_mean, trt_std = time_fn(trt_prefill)
baseline_mean, baseline_std = time_fn(baseline_prefill)
trtllm_mean, trtllm_std = time_fn(trtllm_prefill)
# Calculate percentage speedup (positive means TRT is faster)
speedup_percent = (baseline_mean - trt_mean) / baseline_mean
speedup_percent = (baseline_mean - trtllm_mean) / baseline_mean
print(
f"\t{num_seqs}\t{max_seq_len}\t{trt_mean:.5f}\t{trt_std.item():.5f}"
f"\t{baseline_mean:.5f}\t{baseline_std.item():.5f}\t{speedup_percent:.5f}"
f"\t{batch_size}\t{max_seq_len}\t{trtllm_mean:8.3f}\t{trtllm_std.item():8.3f}"
f"\t{baseline_mean:8.3f}\t{baseline_std.item():8.3f}\t{speedup_percent:8.3f}"
)
# Return results for CSV writing
return {
"num_seqs": num_seqs,
"trt_mean": trt_mean,
"trt_std": trt_std.item(),
"batch_size": batch_size,
"trtllm_mean": trtllm_mean,
"trtllm_std": trtllm_std.item(),
"baseline_mean": baseline_mean,
"baseline_std": baseline_std.item(),
"speedup_percent": speedup_percent,
"q_dtype": str(dtype),
"kv_cache_dtype": kv_cache_dtype,
"page_size": page_size,
"q_dtype": str(q_quant_dtype),
"kv_cache_dtype": str(kv_quant_dtype),
"output_dtype": str(o_quant_dtype),
"block_size": block_size,
"num_kv_heads": num_kv_heads,
"head_dim": head_dim,
"head_size": head_size,
"max_seq_len": max_seq_len,
}
@ -195,17 +236,18 @@ def write_results_to_csv(results, filename=None):
filename = f"flashinfer_trtllm_benchmark_{timestamp}.csv"
fieldnames = [
"num_seqs",
"trt_mean",
"trt_std",
"batch_size",
"trtllm_mean",
"trtllm_std",
"baseline_mean",
"baseline_std",
"speedup_percent",
"q_dtype",
"kv_cache_dtype",
"page_size",
"output_dtype",
"block_size",
"num_kv_heads",
"head_dim",
"head_size",
"max_seq_len",
]
@ -224,27 +266,43 @@ def write_results_to_csv(results, filename=None):
if __name__ == "__main__":
num_seqs = [1, 4, 8, 16, 32, 64, 128, 256]
batch_sizes = [1, 4, 8, 16, 32, 64, 128, 256]
max_seq_lens = [1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072]
all_results = []
print(
"Running benchmark for q_dtype = bfloat16, kv_cache_dtype: bfloat16, "
"output_dtype: bfloat16"
)
print(
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\t"
"baseline_std\tspeedup_percent"
)
for max_seq_len in max_seq_lens:
for bs in num_seqs:
result = benchmark_prefill(
bs,
max_seq_len,
dtype=torch.bfloat16,
kv_cache_dtype="auto",
)
all_results.append(result)
dtype = torch.bfloat16
quant_dtypes = [
# (q_quant_dtype, kv_quant_dtype, o_quant_dtype)
(None, None, None),
(FP8_DTYPE, FP8_DTYPE, None),
(FP8_DTYPE, FP8_DTYPE, FP8_DTYPE),
(FP8_DTYPE, FP8_DTYPE, FP4_DTYPE),
]
for quant_dtype in quant_dtypes:
q_quant_dtype, kv_quant_dtype, o_quant_dtype = quant_dtype
q_quant_dtype = q_quant_dtype or dtype
kv_quant_dtype = kv_quant_dtype or dtype
o_quant_dtype = o_quant_dtype or dtype
print(
f"Running benchmark for q_dtype = {q_quant_dtype}, "
f"kv_cache_dtype: {kv_quant_dtype}, "
f"output_dtype: {o_quant_dtype}"
)
print(
"\tbatch_size\tmax_seq_len\ttrtllm_mean\ttrtllm_std\tbaseline_mean\t"
"baseline_std\tspeedup_percent"
)
for max_seq_len in max_seq_lens:
for bs in batch_sizes:
result = benchmark_prefill(
dtype=dtype,
quant_dtypes=quant_dtype,
batch_size=bs,
max_seq_len=max_seq_len,
)
all_results.append(result)
# Write all results to CSV
write_results_to_csv(all_results)

View File

@ -11,13 +11,13 @@ from datetime import datetime
from typing import Any
import torch
import tqdm
import triton
from tqdm import tqdm
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
_w8a8_block_fp8_matmul,
)
from vllm.platforms import current_platform
from vllm.triton_utils import triton
from vllm.utils import FlexibleArgumentParser
mp.set_start_method("spawn", force=True)
@ -56,7 +56,7 @@ def w8a8_block_matmul(
Bs: The per-block quantization scale for `B`.
block_size: The block size for per-block quantization.
It should be 2-dim, e.g., [128, 128].
output_dytpe: The dtype of the returned tensor.
output_dtype: The dtype of the returned tensor.
Returns:
torch.Tensor: The result of matmul.
@ -141,6 +141,7 @@ def get_weight_shapes(tp_size):
# cannot TP
total = [
(512 + 64, 7168),
(2112, 7168),
((128 + 64) * 128, 7168),
(128 * (128 + 128), 512),
(7168, 16384),

View File

@ -8,12 +8,16 @@ import torch
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
get_col_major_tma_aligned_tensor,
per_token_group_quant_fp8,
w8a8_block_fp8_matmul,
w8a8_triton_block_scaled_mm,
)
from vllm.triton_utils import triton
from vllm.utils.deep_gemm import calc_diff, fp8_gemm_nt, per_block_cast_to_fp8
from vllm.utils.deep_gemm import (
calc_diff,
fp8_gemm_nt,
get_col_major_tma_aligned_tensor,
per_block_cast_to_fp8,
)
def benchmark_shape(m: int,
@ -59,7 +63,7 @@ def benchmark_shape(m: int,
# === vLLM Triton Implementation ===
def vllm_triton_gemm():
return w8a8_block_fp8_matmul(A_vllm,
return w8a8_triton_block_scaled_mm(A_vllm,
B_vllm,
A_scale_vllm,
B_scale_vllm,

View File

@ -95,4 +95,10 @@ WEIGHT_SHAPES = {
([2048, 2816], 1),
([1408, 2048], 0),
],
"CohereLabs/c4ai-command-a-03-2025": [
([12288, 14336], 1),
([12288, 12288], 0),
([12288, 73728], 1),
([36864, 12288], 0),
],
}

View File

@ -5,11 +5,13 @@ The requirements (pip) for `benchmark_serving_multi_turn.py` can be found in `re
First start serving your model
```bash
export MODEL_NAME=/models/meta-llama/Meta-Llama-3.1-8B-Instruct/
export MODEL_PATH=/models/meta-llama/Meta-Llama-3.1-8B-Instruct/
vllm serve $MODEL_NAME --disable-log-requests
vllm serve $MODEL_PATH --served-model-name Llama --disable-log-requests
```
The variable `MODEL_PATH` should be a path to the model files (e.g. downloaded from huggingface).
## Synthetic Multi-Turn Conversations
Download the following text file (used for generation of synthetic conversations)
@ -26,10 +28,10 @@ But you may use other text files if you prefer (using this specific file is not
Then run the benchmarking script
```bash
export MODEL_NAME=/models/meta-llama/Meta-Llama-3.1-8B-Instruct/
export MODEL_PATH=/models/meta-llama/Meta-Llama-3.1-8B-Instruct/
python benchmark_serving_multi_turn.py --model $MODEL_NAME --input-file generate_multi_turn.json \
--num-clients 2 --max-active-conversations 6
python benchmark_serving_multi_turn.py --model $MODEL_PATH --served-model-name Llama \
--input-file generate_multi_turn.json --num-clients 2 --max-active-conversations 6
```
You can edit the file `generate_multi_turn.json` to change the conversation parameters (number of turns, etc.).
@ -53,6 +55,107 @@ output_num_chunks 166.0 99.01 11.80 79.00 90.00 98.00 108.75
----------------------------------------------------------------------------------------------------
```
### JSON configuration file for synthetic conversations generation
The input flag `--input-file` is used to determine the input conversations for the benchmark.<br/>
When the input is a JSON file with the field `"filetype": "generate_conversations"` the tool will generate synthetic multi-turn (questions and answers) conversations.
The file `generate_multi_turn.json` is an example file.
The file must contain the sections `prompt_input` and `prompt_output`.
The `prompt_input` section must contain `num_turns`, `prefix_num_tokens` and `num_tokens`:
* `num_turns` - Number of total turns in the conversation (both user & assistant).<br/>
The final value will always be rounded to an even number so each user turn has a reply.
* `prefix_num_tokens` - Tokens added at the start of only the **first user turn** in a conversation (unique per conversation).
* `num_tokens` - Total token length of each **user** message (one turn).
The `prompt_output` section must contain `num_tokens`:
* `num_tokens` - Total token length of each **assistant** message (one turn).
### Random distributions for synthetic conversations generation
When creating an input JSON file (such as `generate_multi_turn.json`),<br/>
every numeric field (such as `num_turns` or `num_tokens`) requires a distribution.<br/>
The distribution determines how to randomly sample values for the field.
The available distributions are listed below.
**Note:** The optional `max` field (for lognormal, zipf, and poisson) can be used to cap sampled values at an upper bound.</br>
Can be used to make sure that the total number of tokens in every request does not exceed `--max-model-len`.
#### constant
```json
{
"distribution": "constant",
"value": 500
}
```
* `value` - the fixed integer value (always returns the same number).
#### uniform
```json
{
"distribution": "uniform",
"min": 12,
"max": 18
}
```
* `min` - minimum value (inclusive).
* `max` - maximum value (inclusive), should be equal or larger than min.
#### lognormal
```json
{
"distribution": "lognormal",
"average": 1000,
"max": 5000
}
```
You can parameterize the lognormal distribution in one of two ways:
Using the average and optional median ratio:
* `average` - target average value of the distribution.
* `median_ratio` - the ratio of the median to the average; controls the skewness. Must be in the range (0, 1).
Using the parameters of the underlying normal distribution:
* `mean` - mean of the underlying normal distribution.
* `sigma` - standard deviation of the underlying normal distribution.
#### zipf
```json
{
"distribution": "zipf",
"alpha": 1.2,
"max": 100
}
```
* `alpha` - skew parameter (> 1). Larger values produce stronger skew toward smaller integers.
#### poisson
```json
{
"distribution": "poisson",
"alpha": 10,
"max": 50
}
```
* `alpha` - expected value (λ). Also the variance of the distribution.
## ShareGPT Conversations
To run with the ShareGPT data, download the following ShareGPT dataset:

View File

@ -99,21 +99,105 @@ class PoissonDistribution(Distribution):
class LognormalDistribution(Distribution):
def __init__(
self, mean: float, sigma: float, max_val: Optional[int] = None
self,
mean: Optional[float] = None,
sigma: Optional[float] = None,
average: Optional[int] = None,
median_ratio: Optional[float] = None,
max_val: Optional[int] = None,
) -> None:
self.average = average
self.median_ratio = median_ratio
self.max_val = max_val
if average is not None:
if average < 1:
raise ValueError("Lognormal average must be positive")
if mean or sigma:
raise ValueError(
"When using lognormal average, you can't provide mean/sigma"
)
if self.median_ratio is None:
# Default value that provides relatively wide range of values
self.median_ratio = 0.85
# Calculate mean/sigma of np.random.lognormal based on the average
mean, sigma = self._generate_lognormal_by_median(
target_average=self.average, median_ratio=self.median_ratio
)
else:
if mean is None or sigma is None:
raise ValueError(
"Must provide both mean and sigma if average is not used"
)
if mean <= 0 or sigma < 0:
raise ValueError(
"Lognormal mean must be positive and sigma must be non-negative"
)
# Mean and standard deviation of the underlying normal distribution
# Based on numpy.random.lognormal
self.mean = mean
self.sigma = sigma
self.max_val = max_val
@staticmethod
def _generate_lognormal_by_median(
target_average: int, median_ratio: float
) -> tuple[float, float]:
"""
Compute (mu, sigma) for a lognormal distribution given:
- a target average (mean of the distribution)
- a ratio of median / mean (controls skewness), assume mean > median
Background:
If Z ~ Normal(mu, sigma^2), then X = exp(Z) ~ LogNormal(mu, sigma).
* mean(X) = exp(mu + sigma^2 / 2)
* median(X) = exp(mu)
So:
median / mean = exp(mu) / exp(mu + sigma^2 / 2)
= exp(-sigma^2 / 2)
Rearranging:
sigma^2 = 2 * ln(mean / median)
mu = ln(median)
This gives a unique (mu, sigma) for any valid mean and median.
"""
# Check input validity: median must be smaller than mean
if median_ratio <= 0 or median_ratio >= 1:
raise ValueError("median_ratio must be in range (0, 1)")
target_median = target_average * median_ratio
# Solve sigma^2 = 2 * ln(mean / median)
sigma = np.sqrt(2 * np.log(target_average / target_median))
mu = np.log(target_median)
return mu, sigma
def sample(self, size: int = 1) -> np.ndarray:
samples = np.random.lognormal(mean=self.mean, sigma=self.sigma, size=size)
if self.average is not None:
# Scale to average
samples *= self.average / samples.mean()
if self.max_val:
samples = np.minimum(samples, self.max_val)
return np.round(samples).astype(int)
def __repr__(self) -> str:
return f"LognormalDistribution[{self.mean}, {self.sigma}]"
if self.average:
return (
f"LognormalDistribution[{self.average}, "
f"{self.median_ratio}, {self.max_val}]"
)
return f"LognormalDistribution[{self.mean}, {self.sigma}, {self.max_val}]"
class GenConvArgs(NamedTuple):
@ -173,10 +257,21 @@ def get_random_distribution(
return PoissonDistribution(conf["alpha"], max_val=max_val)
elif distribution == "lognormal":
max_val = conf.get("max", None)
if "average" in conf:
# Infer lognormal mean/sigma (numpy) from input average
median_ratio = conf.get("median_ratio", None)
return LognormalDistribution(
average=conf["average"], median_ratio=median_ratio, max_val=max_val
)
# Use mean/sigma directly (for full control over the distribution)
verify_field_exists(conf, "mean", section, subsection)
verify_field_exists(conf, "sigma", section, subsection)
max_val = conf.get("max", None)
return LognormalDistribution(conf["mean"], conf["sigma"], max_val=max_val)
return LognormalDistribution(
mean=conf["mean"], sigma=conf["sigma"], max_val=max_val
)
elif distribution == "uniform":
verify_field_exists(conf, "min", section, subsection)

View File

@ -825,9 +825,11 @@ def get_client_config(
# Arguments for API requests
chat_url = f"{args.url}/v1/chat/completions"
model_name = args.served_model_name if args.served_model_name else args.model
req_args = RequestArgs(
chat_url=chat_url,
model=args.model,
model=model_name,
stream=not args.no_stream,
limit_min_tokens=args.limit_min_tokens,
limit_max_tokens=args.limit_max_tokens,
@ -960,7 +962,7 @@ async def main_mp(
# At this point all the clients finished,
# collect results (TTFT, TPOT, etc.) from all the clients.
# This needs to happens before calling join on the clients
# This needs to happen before calling join on the clients
# (result_queue should be emptied).
while not result_queue.empty():
client_metrics.append(result_queue.get())
@ -1247,9 +1249,19 @@ async def main() -> None:
default=0,
help="Seed for random number generators (default: 0)",
)
parser.add_argument(
"-m", "--model", type=str, required=True, help="Path of the LLM model"
)
parser.add_argument(
"--served-model-name",
type=str,
default=None,
help="The model name used in the API. "
"If not specified, the model name will be the "
"same as the ``--model`` argument. ",
)
parser.add_argument(
"-u",
"--url",

View File

@ -15,9 +15,8 @@
},
"prefix_num_tokens": {
"distribution": "lognormal",
"mean": 6,
"sigma": 4,
"max": 1500
"average": 1000,
"max": 5000
},
"num_tokens": {
"distribution": "uniform",

View File

@ -1,6 +1,7 @@
include(FetchContent)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_EXTENSIONS ON)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
@ -87,6 +88,7 @@ is_avx512_disabled(AVX512_DISABLED)
if (MACOSX_FOUND AND CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64")
message(STATUS "Apple Silicon Detected")
set(APPLE_SILICON_FOUND TRUE)
set(ENABLE_NUMA OFF)
check_sysctl(hw.optional.neon ASIMD_FOUND)
check_sysctl(hw.optional.arm.FEAT_BF16 ARM_BF16_FOUND)
@ -99,6 +101,7 @@ else()
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
find_isa(${CPUINFO} "bf16" ARM_BF16_FOUND) # Check for ARM BF16 support
find_isa(${CPUINFO} "S390" S390_FOUND)
find_isa(${CPUINFO} "v" RVV_FOUND) # Check for RISC-V RVV support
endif()
if (AVX512_FOUND AND NOT AVX512_DISABLED)
@ -175,24 +178,30 @@ elseif (S390_FOUND)
"-mzvector"
"-march=native"
"-mtune=native")
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "riscv64")
if(RVV_FOUND)
message(FAIL_ERROR "Can't support rvv now.")
else()
list(APPEND CXX_COMPILE_FLAGS "-march=rv64gc")
endif()
else()
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA or ARMv8 support.")
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA, ARMv8 or RISC-V support.")
endif()
#
# Build oneDNN for W8A8 GEMM kernels (only for x86-AVX512 /ARM platforms)
# Flag to enable ACL kernels for AARCH64 platforms
if ( VLLM_BUILD_ACL STREQUAL "ON")
if (VLLM_BUILD_ACL STREQUAL "ON")
set(USE_ACL ON)
else()
set(USE_ACL OFF)
endif()
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR ASIMD_FOUND)
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON_FOUND) OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
FetchContent_Declare(
oneDNN
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
GIT_TAG v3.8.1
GIT_TAG v3.9
GIT_PROGRESS TRUE
GIT_SHALLOW TRUE
)
@ -204,7 +213,7 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR ASIMD_FOUND)
endif()
set(ONEDNN_AARCH64_USE_ACL "ON")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
endif()
endif()
set(ONEDNN_LIBRARY_TYPE "STATIC")
set(ONEDNN_BUILD_DOC "OFF")
@ -217,38 +226,23 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR ASIMD_FOUND)
set(ONEDNN_ENABLE_ITT_TASKS "OFF")
set(ONEDNN_ENABLE_MAX_CPU_ISA "OFF")
set(ONEDNN_ENABLE_CPU_ISA_HINTS "OFF")
set(ONEDNN_VERBOSE "OFF")
set(CMAKE_POLICY_DEFAULT_CMP0077 NEW)
FetchContent_MakeAvailable(oneDNN)
list(APPEND LIBS dnnl)
elseif(POWER10_FOUND)
FetchContent_Declare(
oneDNN
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
GIT_TAG v3.7.2
GIT_PROGRESS TRUE
GIT_SHALLOW TRUE
add_library(dnnl_ext OBJECT "csrc/cpu/dnnl_helper.cpp")
target_include_directories(
dnnl_ext
PUBLIC ${oneDNN_SOURCE_DIR}/include
PUBLIC ${oneDNN_BINARY_DIR}/include
PRIVATE ${oneDNN_SOURCE_DIR}/src
)
set(ONEDNN_LIBRARY_TYPE "STATIC")
set(ONEDNN_BUILD_DOC "OFF")
set(ONEDNN_BUILD_EXAMPLES "OFF")
set(ONEDNN_BUILD_TESTS "OFF")
set(ONEDNN_ENABLE_WORKLOAD "INFERENCE")
set(ONEDNN_ENABLE_PRIMITIVE "MATMUL;REORDER")
set(ONEDNN_BUILD_GRAPH "OFF")
set(ONEDNN_ENABLE_JIT_PROFILING "OFF")
set(ONEDNN_ENABLE_ITT_TASKS "OFF")
set(ONEDNN_ENABLE_MAX_CPU_ISA "OFF")
set(ONEDNN_ENABLE_CPU_ISA_HINTS "OFF")
set(CMAKE_POLICY_DEFAULT_CMP0077 NEW)
set(DNNL_CPU_RUNTIME "OMP")
FetchContent_MakeAvailable(oneDNN)
list(APPEND LIBS dnnl)
target_link_libraries(dnnl_ext dnnl)
target_compile_options(dnnl_ext PRIVATE ${CXX_COMPILE_FLAGS} -fPIC)
list(APPEND LIBS dnnl_ext)
set(USE_ONEDNN ON)
else()
set(USE_ONEDNN OFF)
endif()
message(STATUS "CPU extension compile flags: ${CXX_COMPILE_FLAGS}")
@ -271,11 +265,11 @@ set(VLLM_EXT_SRC
"csrc/cpu/layernorm.cpp"
"csrc/cpu/mla_decode.cpp"
"csrc/cpu/pos_encoding.cpp"
"csrc/cpu/torch_bindings.cpp")
"csrc/cpu/torch_bindings.cpp"
"csrc/moe/dynamic_4bit_int_moe_cpu.cpp")
if (AVX512_FOUND AND NOT AVX512_DISABLED)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
"csrc/cpu/shm.cpp"
${VLLM_EXT_SRC})
if (ENABLE_AVX512BF16 AND ENABLE_AVX512VNNI)
@ -289,14 +283,11 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED)
${VLLM_EXT_SRC})
add_compile_definitions(-DCPU_CAPABILITY_AVX512)
endif()
elseif(POWER10_FOUND)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
${VLLM_EXT_SRC})
endif()
if (ASIMD_FOUND)
if(USE_ONEDNN)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
"csrc/cpu/dnnl_kernels.cpp"
${VLLM_EXT_SRC})
endif()

View File

@ -18,8 +18,8 @@ if(FLASH_MLA_SRC_DIR)
else()
FetchContent_Declare(
flashmla
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA.git
GIT_TAG 0e43e774597682284358ff2c54530757b654b8d1
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA
GIT_TAG 5f65b85703c7ed75fda01e06495077caad207c3f
GIT_PROGRESS TRUE
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
@ -33,22 +33,64 @@ message(STATUS "FlashMLA is available at ${flashmla_SOURCE_DIR}")
# The FlashMLA kernels only work on hopper and require CUDA 12.3 or later.
# Only build FlashMLA kernels if we are building for something compatible with
# sm90a
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
set(SUPPORT_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3)
list(APPEND SUPPORT_ARCHS 9.0a)
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8)
list(APPEND SUPPORT_ARCHS 10.0a)
endif()
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "${SUPPORT_ARCHS}" "${CUDA_ARCHS}")
if(FLASH_MLA_ARCHS)
set(VLLM_FLASHMLA_GPU_FLAGS ${VLLM_GPU_FLAGS})
list(APPEND VLLM_FLASHMLA_GPU_FLAGS "--expt-relaxed-constexpr" "--expt-extended-lambda" "--use_fast_math")
set(FlashMLA_SOURCES
${flashmla_SOURCE_DIR}/csrc/flash_api.cpp
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/kernels/mla_combine.cu
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu)
${flashmla_SOURCE_DIR}/csrc/torch_api.cpp
${flashmla_SOURCE_DIR}/csrc/pybind.cpp
${flashmla_SOURCE_DIR}/csrc/smxx/get_mla_metadata.cu
${flashmla_SOURCE_DIR}/csrc/smxx/mla_combine.cu
${flashmla_SOURCE_DIR}/csrc/sm90/decode/dense/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/sm90/decode/sparse_fp8/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/sm90/prefill/sparse/fwd.cu
${flashmla_SOURCE_DIR}/csrc/sm100/decode/sparse_fp8/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_fwd_sm100.cu
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_bwd_sm100.cu
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/sparse/fwd.cu
)
set(FlashMLA_Extension_SOURCES
${flashmla_SOURCE_DIR}/csrc/extension/torch_api.cpp
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/pybind.cpp
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/flash_fwd_mla_fp8_sm90.cu
)
set(FlashMLA_INCLUDES
${flashmla_SOURCE_DIR}/csrc
${flashmla_SOURCE_DIR}/csrc/sm90
${flashmla_SOURCE_DIR}/csrc/cutlass/include
${flashmla_SOURCE_DIR}/csrc/include)
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
)
set(FlashMLA_Extension_INCLUDES
${flashmla_SOURCE_DIR}/csrc
${flashmla_SOURCE_DIR}/csrc/sm90
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/
${flashmla_SOURCE_DIR}/csrc/cutlass/include
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
)
set_gencode_flags_for_srcs(
SRCS "${FlashMLA_SOURCES}"
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
set_gencode_flags_for_srcs(
SRCS "${FlashMLA_Extension_SOURCES}"
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
define_gpu_extension_target(
_flashmla_C
DESTINATION vllm
@ -59,8 +101,32 @@ if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
INCLUDE_DIRECTORIES ${FlashMLA_INCLUDES}
USE_SABI 3
WITH_SOABI)
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
target_compile_options(_flashmla_C PRIVATE
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
define_gpu_extension_target(
_flashmla_extension_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${FlashMLA_Extension_SOURCES}
COMPILE_FLAGS ${VLLM_FLASHMLA_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
INCLUDE_DIRECTORIES ${FlashMLA_Extension_INCLUDES}
USE_SABI 3
WITH_SOABI)
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
target_compile_options(_flashmla_extension_C PRIVATE
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
else()
# Create an empty target for setup.py when not targeting sm90a systems
# Create empty targets for setup.py when not targeting sm90a systems
add_custom_target(_flashmla_C)
add_custom_target(_flashmla_extension_C)
endif()

View File

@ -38,7 +38,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 57b4e68b9f9d94750b46de8f8dbd2bfcc86edd4f
GIT_TAG 4695e6bed5366c41e28c06cd86170166e4f43d00
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -310,13 +310,13 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
list(REMOVE_DUPLICATES _PTX_ARCHS)
list(REMOVE_DUPLICATES _SRC_CUDA_ARCHS)
# if x.0a is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
# remove x.0a from SRC_CUDA_ARCHS and add x.0a to _CUDA_ARCHS
# If x.0a or x.0f is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
# remove x.0a or x.0f from SRC_CUDA_ARCHS and add x.0a or x.0f to _CUDA_ARCHS
set(_CUDA_ARCHS)
foreach(_arch ${_SRC_CUDA_ARCHS})
if(_arch MATCHES "\\a$")
if(_arch MATCHES "[af]$")
list(REMOVE_ITEM _SRC_CUDA_ARCHS "${_arch}")
string(REPLACE "a" "" _base "${_arch}")
string(REGEX REPLACE "[af]$" "" _base "${_arch}")
if ("${_base}" IN_LIST TGT_CUDA_ARCHS)
list(REMOVE_ITEM _TGT_CUDA_ARCHS "${_base}")
list(APPEND _CUDA_ARCHS "${_arch}")
@ -480,7 +480,6 @@ function (define_gpu_extension_target GPU_MOD_NAME)
${GPU_LANGUAGE}_ARCHITECTURES "${GPU_ARCHITECTURES}")
endif()
set_property(TARGET ${GPU_MOD_NAME} PROPERTY CXX_STANDARD 17)
target_compile_options(${GPU_MOD_NAME} PRIVATE
$<$<COMPILE_LANGUAGE:${GPU_LANGUAGE}>:${GPU_COMPILE_FLAGS}>)

View File

@ -28,10 +28,10 @@
#ifdef USE_ROCM
#include <hip/hip_bf16.h>
#include "../quantization/fp8/amd/quant_utils.cuh"
#include "../quantization/w8a8/fp8/amd/quant_utils.cuh"
typedef __hip_bfloat16 __nv_bfloat16;
#else
#include "../quantization/fp8/nvidia/quant_utils.cuh"
#include "../quantization/w8a8/fp8/nvidia/quant_utils.cuh"
#endif
#define MAX(a, b) ((a) > (b) ? (a) : (b))

View File

@ -1,38 +0,0 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#if defined ENABLE_CUTLASS_MLA && ENABLE_CUTLASS_MLA
void cutlass_mla_decode_sm100a(torch::Tensor const& out,
torch::Tensor const& q_nope,
torch::Tensor const& q_pe,
torch::Tensor const& kv_c_and_k_pe_cache,
torch::Tensor const& seq_lens,
torch::Tensor const& page_table, double scale);
#endif
void cutlass_mla_decode(torch::Tensor const& out, torch::Tensor const& q_nope,
torch::Tensor const& q_pe,
torch::Tensor const& kv_c_and_k_pe_cache,
torch::Tensor const& seq_lens,
torch::Tensor const& page_table, double scale) {
#if defined ENABLE_CUTLASS_MLA && ENABLE_CUTLASS_MLA
return cutlass_mla_decode_sm100a(out, q_nope, q_pe, kv_c_and_k_pe_cache,
seq_lens, page_table, scale);
#endif
TORCH_CHECK_NOT_IMPLEMENTED(false, "No compiled cutlass MLA");
}

View File

@ -1,225 +0,0 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "cute/tensor.hpp"
#include "cutlass/cutlass.h"
#include "cutlass/kernel_hardware_info.h"
#include "cutlass_extensions/common.hpp"
#include "device/sm100_mla.hpp"
#include "kernel/sm100_mla_tile_scheduler.hpp"
using namespace cute;
using namespace cutlass::fmha::kernel;
template <typename T, bool PersistenceOption = true>
struct MlaSm100 {
using Element = T;
using ElementAcc = float;
using ElementOut = T;
using TileShape = Shape<_128, _128, Shape<_512, _64>>;
using TileShapeH = cute::tuple_element_t<0, TileShape>;
using TileShapeD = cute::tuple_element_t<2, TileShape>;
// H K (D_latent D_rope) B
using ProblemShape = cute::tuple<TileShapeH, int, TileShapeD, int>;
using StrideQ = cute::tuple<int64_t, _1, int64_t>; // H D B
using StrideK = cute::tuple<int64_t, _1, int64_t>; // K D B
using StrideO = StrideK; // H D B
using StrideLSE = cute::tuple<_1, int>; // H B
using TileScheduler =
std::conditional_t<PersistenceOption, Sm100MlaPersistentTileScheduler,
Sm100MlaIndividualTileScheduler>;
using FmhaKernel =
cutlass::fmha::kernel::Sm100FmhaMlaKernelTmaWarpspecialized<
TileShape, Element, ElementAcc, ElementOut, ElementAcc, TileScheduler,
/*kIsCpAsync=*/true>;
using Fmha = cutlass::fmha::device::MLA<FmhaKernel>;
};
template <typename T>
typename T::Fmha::Arguments args_from_options(
at::Tensor const& out, at::Tensor const& q_nope, at::Tensor const& q_pe,
at::Tensor const& kv_c_and_k_pe_cache, at::Tensor const& seq_lens,
at::Tensor const& page_table, double scale) {
cutlass::KernelHardwareInfo hw_info;
hw_info.device_id = q_nope.device().index();
hw_info.sm_count =
cutlass::KernelHardwareInfo::query_device_multiprocessor_count(
hw_info.device_id);
int batches = q_nope.sizes()[0];
int page_count_per_seq = page_table.sizes()[1];
int page_count_total = kv_c_and_k_pe_cache.sizes()[0];
int page_size = kv_c_and_k_pe_cache.sizes()[1];
int max_seq_len = page_size * page_count_per_seq;
using TileShapeH = typename T::TileShapeH;
using TileShapeD = typename T::TileShapeD;
auto problem_shape =
cute::make_tuple(TileShapeH{}, max_seq_len, TileShapeD{}, batches);
auto [H, K, D, B] = problem_shape;
auto [D_latent, D_rope] = D;
using StrideQ = typename T::StrideQ;
using StrideK = typename T::StrideK;
using StrideO = typename T::StrideO;
using StrideLSE = typename T::StrideLSE;
StrideQ stride_Q_latent = cute::make_tuple(
static_cast<int64_t>(D_latent), _1{}, static_cast<int64_t>(H * D_latent));
StrideQ stride_Q_rope = cute::make_tuple(static_cast<int64_t>(D_rope), _1{},
static_cast<int64_t>(H * D_rope));
StrideK stride_C =
cute::make_tuple(static_cast<int64_t>(D_latent + D_rope), _1{},
static_cast<int64_t>(page_size * (D_latent + D_rope)));
StrideLSE stride_PT = cute::make_stride(_1{}, page_count_per_seq);
StrideLSE stride_LSE = cute::make_tuple(_1{}, static_cast<int>(H));
StrideO stride_O = cute::make_tuple(static_cast<int64_t>(D_latent), _1{},
static_cast<int64_t>(H * D_latent));
using Element = typename T::Element;
using ElementOut = typename T::ElementOut;
using ElementAcc = typename T::ElementAcc;
auto Q_latent_ptr = static_cast<Element*>(q_nope.data_ptr());
auto Q_rope_ptr = static_cast<Element*>(q_pe.data_ptr());
auto C_ptr = static_cast<Element*>(kv_c_and_k_pe_cache.data_ptr());
auto scale_f = static_cast<float>(scale);
typename T::Fmha::Arguments arguments{
problem_shape,
{scale_f, Q_latent_ptr, stride_Q_latent, Q_rope_ptr, stride_Q_rope, C_ptr,
stride_C, C_ptr + D_latent, stride_C,
static_cast<int*>(seq_lens.data_ptr()),
static_cast<int*>(page_table.data_ptr()), stride_PT, page_count_total,
page_size},
{static_cast<ElementOut*>(out.data_ptr()), stride_O,
static_cast<ElementAcc*>(nullptr), stride_LSE},
hw_info,
1, // split_kv
nullptr, // is_var_split_kv
};
// TODO(kaixih@nvidia): When split_kv=-1 and is_var_split_kv=false, we compute
// split_kv automatically based on batch size and sequence length to balance
// workload across available SMs. Consider using var_split_kv for manual
// control if needed.
T::Fmha::set_split_kv(arguments);
return arguments;
}
template <typename Element>
void runMla(at::Tensor const& out, at::Tensor const& q_nope,
at::Tensor const& q_pe, at::Tensor const& kv_c_and_k_pe_cache,
at::Tensor const& seq_lens, at::Tensor const& page_table,
float scale, cudaStream_t stream) {
using MlaSm100Type = MlaSm100<Element>;
typename MlaSm100Type::Fmha fmha;
auto arguments = args_from_options<MlaSm100Type>(
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, scale);
size_t workspace_size = MlaSm100Type::Fmha::get_workspace_size(arguments);
auto const workspace_options =
torch::TensorOptions().dtype(torch::kUInt8).device(q_nope.device());
auto workspace = torch::empty(workspace_size, workspace_options);
CUTLASS_CHECK(fmha.can_implement(arguments));
CUTLASS_CHECK(fmha.initialize(arguments, workspace.data_ptr(), stream));
CUTLASS_CHECK(fmha.run(arguments, workspace.data_ptr(), stream));
}
void cutlass_mla_decode_sm100a(torch::Tensor const& out,
torch::Tensor const& q_nope,
torch::Tensor const& q_pe,
torch::Tensor const& kv_c_and_k_pe_cache,
torch::Tensor const& seq_lens,
torch::Tensor const& page_table, double scale) {
TORCH_CHECK(q_nope.device().is_cuda(), "q_nope must be on CUDA");
TORCH_CHECK(q_nope.dim() == 3, "q_nope must be a 3D tensor");
TORCH_CHECK(q_pe.dim() == 3, "q_pe must be a 3D tensor");
TORCH_CHECK(kv_c_and_k_pe_cache.dim() == 3,
"kv_c_and_k_pe_cache must be a 3D tensor");
TORCH_CHECK(seq_lens.dim() == 1, "seq_lens must be a 1D tensor");
TORCH_CHECK(page_table.dim() == 2, "page_table must be a 2D tensor");
TORCH_CHECK(out.dim() == 3, "out must be a 3D tensor");
auto B_q_nope = q_nope.size(0);
auto H_q_nope = q_nope.size(1);
auto D_q_nope = q_nope.size(2);
auto B_q_pe = q_pe.size(0);
auto H_q_pe = q_pe.size(1);
auto D_q_pe = q_pe.size(2);
auto B_pt = page_table.size(0);
auto PAGE_NUM = page_table.size(1);
auto PAGE_SIZE = kv_c_and_k_pe_cache.size(1);
auto D_ckv = kv_c_and_k_pe_cache.size(2);
auto B_o = out.size(0);
auto H_o = out.size(1);
auto D_o = out.size(2);
TORCH_CHECK(D_q_nope == 512, "D_q_nope must be equal to 512");
TORCH_CHECK(D_q_pe == 64, "D_q_pe must be equal to 64");
TORCH_CHECK(D_ckv == 576, "D_ckv must be equal to 576");
TORCH_CHECK(H_q_nope == H_q_pe && H_q_nope == H_o && H_o == 128,
"H_q_nope, H_q_pe, and H_o must be equal to 128");
TORCH_CHECK(PAGE_SIZE > 0 && (PAGE_SIZE & (PAGE_SIZE - 1)) == 0,
"PAGE_SIZE must be a power of 2");
TORCH_CHECK(
B_q_nope == B_q_pe && B_q_nope == B_pt && B_q_nope == B_o,
"Batch dims must be same for page_table, q_nope and q_pe, and out");
TORCH_CHECK(PAGE_NUM % (128 / PAGE_SIZE) == 0,
"PAGE_NUM must be divisible by 128 / PAGE_SIZE");
TORCH_CHECK(D_o == 512, "D_o must be equal to 512");
TORCH_CHECK(q_nope.dtype() == at::ScalarType::Half ||
q_nope.dtype() == at::ScalarType::BFloat16 ||
q_nope.dtype() == at::ScalarType::Float8_e4m3fn,
"q_nope must be a half, bfloat16, or float8_e4m3fn tensor");
TORCH_CHECK(kv_c_and_k_pe_cache.dtype() == q_nope.dtype() &&
q_nope.dtype() == q_pe.dtype(),
"kv_c_and_k_pe_cache, q_nope, and q_pe must be the same type");
TORCH_CHECK(seq_lens.dtype() == torch::kInt32,
"seq_lens must be a 32-bit integer tensor");
TORCH_CHECK(page_table.dtype() == torch::kInt32,
"page_table must be a 32-bit integer tensor");
auto in_dtype = q_nope.dtype();
const at::cuda::OptionalCUDAGuard device_guard(device_of(q_nope));
const cudaStream_t stream =
at::cuda::getCurrentCUDAStream(q_nope.get_device());
if (in_dtype == at::ScalarType::Half) {
runMla<cutlass::half_t>(out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens,
page_table, scale, stream);
} else if (in_dtype == at::ScalarType::BFloat16) {
runMla<cutlass::bfloat16_t>(out, q_nope, q_pe, kv_c_and_k_pe_cache,
seq_lens, page_table, scale, stream);
} else if (in_dtype == at::ScalarType::Float8_e4m3fn) {
runMla<cutlass::float_e4m3_t>(out, q_nope, q_pe, kv_c_and_k_pe_cache,
seq_lens, page_table, scale, stream);
} else {
TORCH_CHECK(false, "Unsupported input data type of MLA");
}
}

View File

@ -133,6 +133,14 @@ public:
// printf(" sm_count = %d\n", sm_count);
int max_splits = ceil_div(K, 128);
max_splits = min(16, max_splits);
// TODO: This avoids a hang when the batch size larger than 1 and
// there is more than 1 kv_splits.
// Discuss with NVIDIA how this can be fixed.
if (B > 1) {
max_splits = min(1, max_splits);
}
// printf(" max_splits = %d\n", max_splits);
int sms_per_batch = max(1, sm_count / B);
// printf(" sms_per_batch = %d\n", sms_per_batch);

Some files were not shown because too many files have changed in this diff Show More