mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
Compare commits
2 Commits
v0.10.1.1
...
moondream2
Author | SHA1 | Date | |
---|---|---|---|
a7ca0cc47f | |||
d789ce06a7 |
246
vllm/model_executor/models/moondream2.py
Normal file
246
vllm/model_executor/models/moondream2.py
Normal file
@ -0,0 +1,246 @@
|
|||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Optional, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from vllm.attention import Attention, AttentionMetadata
|
||||||
|
from vllm.config import CacheConfig, VllmConfig
|
||||||
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
||||||
|
from vllm.model_executor.layers.activation import get_act_fn
|
||||||
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||||
|
QKVParallelLinear,
|
||||||
|
RowParallelLinear)
|
||||||
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||||
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||||
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||||
|
VocabParallelEmbedding)
|
||||||
|
from vllm.sequence import IntermediateTensors
|
||||||
|
|
||||||
|
from .utils import make_empty_intermediate_tensors_factory, make_layers
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass(frozen=True)
|
||||||
|
class MoondreamTextConfig:
|
||||||
|
dim: int = 2048
|
||||||
|
n_layers: int = 24
|
||||||
|
vocab_size: int = 51200
|
||||||
|
max_context: int = 2048
|
||||||
|
n_heads: int = 32
|
||||||
|
prefix_attn: int = 730
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass(frozen=True)
|
||||||
|
class MoondreamVisionConfig:
|
||||||
|
enc_dim: int = 1152
|
||||||
|
enc_patch_size: int = 14
|
||||||
|
enc_n_layers: int = 27
|
||||||
|
enc_ff_dim: int = 4304
|
||||||
|
enc_n_heads: int = 16
|
||||||
|
proj_out_dim: int = 2048
|
||||||
|
crop_size: int = 378
|
||||||
|
in_channels: int = 3
|
||||||
|
max_crops: int = 12
|
||||||
|
overlap_margin: int = 4
|
||||||
|
proj_inner_dim: int = 8192
|
||||||
|
|
||||||
|
|
||||||
|
class MoondreamAttention(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
config: MoondreamTextConfig,
|
||||||
|
cache_config: Optional[CacheConfig] = None,
|
||||||
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
prefix: str = ""):
|
||||||
|
super().__init__()
|
||||||
|
self.total_num_heads = config.n_heads
|
||||||
|
self.hidden_size = config.dim
|
||||||
|
self.head_size = self.hidden_size // self.total_num_heads
|
||||||
|
|
||||||
|
tensor_model_parallel_world_size = (
|
||||||
|
get_tensor_model_parallel_world_size())
|
||||||
|
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
||||||
|
self.num_heads = (self.total_num_heads //
|
||||||
|
tensor_model_parallel_world_size)
|
||||||
|
|
||||||
|
self.qkv = QKVParallelLinear(
|
||||||
|
hidden_size=self.hidden_size,
|
||||||
|
head_size=self.head_size,
|
||||||
|
total_num_heads=self.total_num_heads,
|
||||||
|
bias=True,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.qkv",
|
||||||
|
)
|
||||||
|
self.proj = RowParallelLinear(
|
||||||
|
input_size=self.hidden_size,
|
||||||
|
output_size=self.hidden_size,
|
||||||
|
bias=True,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.proj",
|
||||||
|
)
|
||||||
|
|
||||||
|
scaling = self.head_size**-0.5
|
||||||
|
rotary_dim = int(config.partial_rotary_factor *
|
||||||
|
(config.hidden_size // config.num_attention_heads))
|
||||||
|
assert rotary_dim % 2 == 0
|
||||||
|
|
||||||
|
rope_theta = getattr(config, "rope_theta", 10000.0)
|
||||||
|
max_position_embeddings = getattr(config, "max_context", 2048)
|
||||||
|
self.rotary_emb = get_rope(
|
||||||
|
self.head_size,
|
||||||
|
rotary_dim=rotary_dim,
|
||||||
|
max_position=max_position_embeddings,
|
||||||
|
base=rope_theta,
|
||||||
|
)
|
||||||
|
self.attn = Attention(self.num_heads,
|
||||||
|
self.head_size,
|
||||||
|
scaling,
|
||||||
|
cache_config=cache_config,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.attn")
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
position_ids: torch.Tensor,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
kv_cache: torch.Tensor,
|
||||||
|
attn_metadata: AttentionMetadata,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
qkv, _ = self.qkv(hidden_states)
|
||||||
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
||||||
|
q, k = self.rotary_emb(position_ids, q, k)
|
||||||
|
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||||||
|
output, _ = self.proj(attn_output)
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class MoondreamDecoderLayer(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config: MoondreamTextConfig,
|
||||||
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
prefix: str = "",
|
||||||
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
config = config.text
|
||||||
|
self.ln = nn.LayerNorm(config.dim)
|
||||||
|
self.attn = MoondreamAttention(
|
||||||
|
config=config,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.attn",
|
||||||
|
)
|
||||||
|
self.mlp = MoondreamMLP(config, quant_config, prefix=f"{prefix}.mlp")
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
kv_cache: torch.Tensor,
|
||||||
|
attn_metadata: AttentionMetadata,
|
||||||
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
|
||||||
|
residual = hidden_states
|
||||||
|
hidden_states = self.ln(hidden_states)
|
||||||
|
attn_outputs = self.attn(
|
||||||
|
position_ids=positions,
|
||||||
|
hidden_states=hidden_states,
|
||||||
|
kv_cache=kv_cache,
|
||||||
|
attn_metadata=attn_metadata,
|
||||||
|
)
|
||||||
|
feed_forward_hidden_states = self.mlp(hidden_states)
|
||||||
|
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
class MoondreamMLP(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config: MoondreamTextConfig,
|
||||||
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
bias: bool = True,
|
||||||
|
prefix: str = "",
|
||||||
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.fc1 = ColumnParallelLinear(
|
||||||
|
input_size=config.dim,
|
||||||
|
output_size=config.dim * 4,
|
||||||
|
bias=bias,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.fc1",
|
||||||
|
)
|
||||||
|
self.fc2 = RowParallelLinear(
|
||||||
|
input_size=config.dim * 4,
|
||||||
|
output_size=config.dim,
|
||||||
|
bias=bias,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.fc2",
|
||||||
|
)
|
||||||
|
|
||||||
|
self.act_fn = get_act_fn("gelu_pytorch_tanh")
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x, _ = self.fc1(x)
|
||||||
|
x = self.act_fn(x)
|
||||||
|
x, _ = self.fc2(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class MoondreamTextModel(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
config: MoondreamTextConfig = vllm_config.model_config.hf_config.text
|
||||||
|
cache_config = vllm_config.cache_config
|
||||||
|
quant_config = vllm_config.quant_config
|
||||||
|
|
||||||
|
self.config = config
|
||||||
|
self.quant_config = quant_config
|
||||||
|
self.wte = VocabParallelEmbedding(config.vocab_size, config.dim)
|
||||||
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||||
|
config.n_layers,
|
||||||
|
lambda prefix: MoondreamDecoderLayer(
|
||||||
|
config, cache_config, quant_config, prefix=prefix),
|
||||||
|
prefix=f"{prefix}.layers")
|
||||||
|
self.post_ln = nn.LayerNorm(config.dim)
|
||||||
|
self.make_empty_intermediate_tensors = (
|
||||||
|
make_empty_intermediate_tensors_factory(["hidden_states"],
|
||||||
|
config.dim))
|
||||||
|
|
||||||
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||||
|
return self.wte(input_ids)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.Tensor,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
kv_caches: list[torch.Tensor],
|
||||||
|
attn_metadata: AttentionMetadata,
|
||||||
|
intermediate_tensors: Optional[IntermediateTensors],
|
||||||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||||||
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||||
|
if get_pp_group().is_first_rank:
|
||||||
|
if inputs_embeds is not None:
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
else:
|
||||||
|
hidden_states = self.get_input_embeddings(input_ids)
|
||||||
|
else:
|
||||||
|
assert intermediate_tensors is not None
|
||||||
|
hidden_states = intermediate_tensors["hidden_states"]
|
||||||
|
for i in range(self.start_layer, self.end_layer):
|
||||||
|
layer = self.layers[i]
|
||||||
|
hidden_states = layer(
|
||||||
|
positions,
|
||||||
|
hidden_states,
|
||||||
|
kv_caches[i - self.start_layer],
|
||||||
|
attn_metadata,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not get_pp_group().is_last_rank:
|
||||||
|
return IntermediateTensors({"hidden_states": hidden_states})
|
||||||
|
|
||||||
|
hidden_states = self.post_ln(hidden_states)
|
||||||
|
return hidden_states
|
Reference in New Issue
Block a user