Compare commits

..

7 Commits

Author SHA1 Message Date
f0945e311d stash
Signed-off-by: Robert Shaw <robshaw@redhat.com>
2025-07-24 00:33:37 +00:00
4ec76caafa updated
Signed-off-by: Robert Shaw <robshaw@redhat.com>
2025-07-23 20:02:41 +00:00
1588294a88 updated
Signed-off-by: Robert Shaw <robshaw@redhat.com>
2025-07-23 18:58:49 +00:00
e82e9afeb7 updated
Signed-off-by: Robert Shaw <robshaw@redhat.com>
2025-07-23 18:43:20 +00:00
10abfaf309 Merge branch 'fix-connector-agg' into debug-logging 2025-07-23 18:20:39 +00:00
9ff1a2b537 [BugFix] Fix KVConnector TP worker aggregation
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-07-23 18:29:06 +01:00
0abe10e4a7 updated
Signed-off-by: Robert Shaw <robshaw@redhat.com>
2025-07-23 15:21:46 +00:00
1166 changed files with 35155 additions and 72344 deletions

View File

@ -7,7 +7,7 @@ This directory contains two sets of benchmark for vllm.
- Performance benchmark: benchmark vllm's performance under various workload, for **developers** to gain clarity on whether their PR improves/degrades vllm's performance
- Nightly benchmark: compare vllm's performance against alternatives (tgi, trt-llm and lmdeploy), for **the public** to know when to choose vllm.
See [vLLM performance dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
## Performance benchmark quick overview
@ -28,7 +28,6 @@ See [vLLM performance dashboard](https://hud.pytorch.org/benchmark/llms?repoName
## Trigger the benchmark
Performance benchmark will be triggered when:
- A PR being merged into vllm.
- Every commit for those PRs with `perf-benchmarks` label AND `ready` label.
@ -39,7 +38,6 @@ bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
```
Runtime environment variables:
- `ON_CPU`: set the value to '1' on Intel® Xeon® Processors. Default value is 0.
- `SERVING_JSON`: JSON file to use for the serving tests. Default value is empty string (use default file).
- `LATENCY_JSON`: JSON file to use for the latency tests. Default value is empty string (use default file).
@ -48,14 +46,12 @@ Runtime environment variables:
- `REMOTE_PORT`: Port for the remote vLLM service to benchmark. Default value is empty string.
Nightly benchmark will be triggered when:
- Every commit for those PRs with `perf-benchmarks` label and `nightly-benchmarks` label.
## Performance benchmark details
See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
> NOTE: For Intel® Xeon® Processors, use `tests/latency-tests-cpu.json`, `tests/throughput-tests-cpu.json`, `tests/serving-tests-cpu.json` instead.
>
### Latency test
Here is an example of one test inside `latency-tests.json`:
@ -78,7 +74,7 @@ Here is an example of one test inside `latency-tests.json`:
In this example:
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
- The `parameters` attribute control the command line arguments to be used for `vllm bench latency`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `vllm bench latency`. For example, the corresponding command line arguments for `vllm bench latency` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
Note that the performance numbers are highly sensitive to the value of the parameters. Please make sure the parameters are set correctly.
@ -86,13 +82,13 @@ WARNING: The benchmarking script will save json results by itself, so please do
### Throughput test
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `vllm bench throughput`.
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `benchmark_throughput.py`.
The number of this test is also stable -- a slight change on the value of this number might vary the performance numbers by a lot.
### Serving test
We test the throughput by using `vllm bench serve` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:
We test the throughput by using `benchmark_serving.py` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:
```json
[
@ -104,6 +100,7 @@ We test the throughput by using `vllm bench serve` with request rate = inf to co
"tensor_parallel_size": 1,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
@ -121,8 +118,8 @@ Inside this example:
- The `test_name` attribute is also a unique identifier for the test. It must start with `serving_`.
- The `server-parameters` includes the command line arguments for vLLM server.
- The `client-parameters` includes the command line arguments for `vllm bench serve`.
- The `qps_list` controls the list of qps for test. It will be used to configure the `--request-rate` parameter in `vllm bench serve`
- The `client-parameters` includes the command line arguments for `benchmark_serving.py`.
- The `qps_list` controls the list of qps for test. It will be used to configure the `--request-rate` parameter in `benchmark_serving.py`
The number of this test is less stable compared to the delay and latency benchmarks (due to randomized sharegpt dataset sampling inside `benchmark_serving.py`), but a large change on this number (e.g. 5% change) still vary the output greatly.
@ -138,20 +135,27 @@ The raw benchmarking results (in the format of json files) are in the `Artifacts
The `compare-json-results.py` helps to compare benchmark results JSON files converted using `convert-results-json-to-markdown.py`.
When run, benchmark script generates results under `benchmark/results` folder, along with the `benchmark_results.md` and `benchmark_results.json`.
`compare-json-results.py` compares two `benchmark_results.json` files and provides performance ratio e.g. for Output Tput, Median TTFT and Median TPOT.
If only one benchmark_results.json is passed, `compare-json-results.py` compares different TP and PP configurations in the benchmark_results.json instead.
`compare-json-results.py` compares two `benchmark_results.json` files and provides performance ratio e.g. for Output Tput, Median TTFT and Median TPOT.
Here is an example using the script to compare result_a and result_b with Model, Dataset name, input/output lenght, max concurrency and qps.
Here is an example using the script to compare result_a and result_b without detail test name.
`python3 compare-json-results.py -f results_a/benchmark_results.json -f results_b/benchmark_results.json --ignore_test_name`
| | results_a/benchmark_results.json | results_b/benchmark_results.json | perf_ratio |
|----|----------------------------------------|----------------------------------------|----------|
| 0 | 142.633982 | 156.526018 | 1.097396 |
| 1 | 241.620334 | 294.018783 | 1.216863 |
| 2 | 218.298905 | 262.664916 | 1.203235 |
| 3 | 242.743860 | 299.816190 | 1.235113 |
Here is an example using the script to compare result_a and result_b with detail test name.
`python3 compare-json-results.py -f results_a/benchmark_results.json -f results_b/benchmark_results.json`
| | Model | Dataset Name | Input Len | Output Len | # of max concurrency | qps | results_a/benchmark_results.json | results_b/benchmark_results.json | perf_ratio |
|----|---------------------------------------|--------|-----|-----|------|-----|-----------|----------|----------|
| 0 | meta-llama/Meta-Llama-3.1-8B-Instruct | random | 128 | 128 | 1000 | 1 | 142.633982 | 156.526018 | 1.097396 |
| 1 | meta-llama/Meta-Llama-3.1-8B-Instruct | random | 128 | 128 | 1000 | inf| 241.620334 | 294.018783 | 1.216863 |
A comparison diagram will be generated below the table.
Here is an example to compare between 96c/results_gnr_96c_091_tp2pp3 and 128c/results_gnr_128c_091_tp2pp3
<img width="1886" height="828" alt="image" src="https://github.com/user-attachments/assets/c02a43ef-25d0-4fd6-90e5-2169a28682dd" />
| | results_a/benchmark_results.json_name | results_a/benchmark_results.json | results_b/benchmark_results.json_name | results_b/benchmark_results.json | perf_ratio |
|---|---------------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------|----------|
| 0 | serving_llama8B_tp1_sharegpt_qps_1 | 142.633982 | serving_llama8B_tp1_sharegpt_qps_1 | 156.526018 | 1.097396 |
| 1 | serving_llama8B_tp1_sharegpt_qps_16 | 241.620334 | serving_llama8B_tp1_sharegpt_qps_16 | 294.018783 | 1.216863 |
| 2 | serving_llama8B_tp1_sharegpt_qps_4 | 218.298905 | serving_llama8B_tp1_sharegpt_qps_4 | 262.664916 | 1.203235 |
| 3 | serving_llama8B_tp1_sharegpt_qps_inf | 242.743860 | serving_llama8B_tp1_sharegpt_qps_inf | 299.816190 | 1.235113 |
| 4 | serving_llama8B_tp2_random_1024_128_qps_1 | 96.613390 | serving_llama8B_tp4_random_1024_128_qps_1 | 108.404853 | 1.122048 |
## Nightly test details
@ -160,9 +164,9 @@ See [nightly-descriptions.md](nightly-descriptions.md) for the detailed descript
### Workflow
- The [nightly-pipeline.yaml](nightly-pipeline.yaml) specifies the docker containers for different LLM serving engines.
- Inside each container, we run [scripts/run-nightly-benchmarks.sh](scripts/run-nightly-benchmarks.sh), which will probe the serving engine of the current container.
- The `scripts/run-nightly-benchmarks.sh` will parse the workload described in [nightly-tests.json](tests/nightly-tests.json) and launch the right benchmark for the specified serving engine via `scripts/launch-server.sh`.
- At last, we run [scripts/summary-nightly-results.py](scripts/summary-nightly-results.py) to collect and plot the final benchmarking results, and update the results to buildkite.
- Inside each container, we run [run-nightly-suite.sh](run-nightly-suite.sh), which will probe the serving engine of the current container.
- The `run-nightly-suite.sh` will redirect the request to `tests/run-[llm serving engine name]-nightly.sh`, which parses the workload described in [nightly-tests.json](tests/nightly-tests.json) and performs the benchmark.
- At last, we run [scripts/plot-nightly-results.py](scripts/plot-nightly-results.py) to collect and plot the final benchmarking results, and update the results to buildkite.
### Nightly tests
@ -172,6 +176,6 @@ In [nightly-tests.json](tests/nightly-tests.json), we include the command line a
The docker containers for benchmarking are specified in `nightly-pipeline.yaml`.
WARNING: the docker versions are HARD-CODED and SHOULD BE ALIGNED WITH `nightly-descriptions.md`. The docker versions need to be hard-coded as there are several version-specific bug fixes inside `scripts/run-nightly-benchmarks.sh` and `scripts/launch-server.sh`.
WARNING: the docker versions are HARD-CODED and SHOULD BE ALIGNED WITH `nightly-descriptions.md`. The docker versions need to be hard-coded as there are several version-specific bug fixes inside `tests/run-[llm serving engine name]-nightly.sh`.
WARNING: populating `trt-llm` to latest version is not easy, as it requires updating several protobuf files in [tensorrt-demo](https://github.com/neuralmagic/tensorrt-demo.git).

View File

@ -1,4 +1,3 @@
# Nightly benchmark annotation
## Description
@ -14,15 +13,15 @@ Please download the visualization scripts in the post
- Find the docker we use in `benchmarking pipeline`
- Deploy the docker, and inside the docker:
- Download `nightly-benchmarks.zip`.
- In the same folder, run the following code:
- Download `nightly-benchmarks.zip`.
- In the same folder, run the following code:
```bash
export HF_TOKEN=<your HF token>
apt update
apt install -y git
unzip nightly-benchmarks.zip
VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
```
```bash
export HF_TOKEN=<your HF token>
apt update
apt install -y git
unzip nightly-benchmarks.zip
VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
```
And the results will be inside `./benchmarks/results`.

View File

@ -13,25 +13,25 @@ Latest reproduction guilde: [github issue link](https://github.com/vllm-project/
## Setup
- Docker images:
- vLLM: `vllm/vllm-openai:v0.6.2`
- SGLang: `lmsysorg/sglang:v0.3.2-cu121`
- LMDeploy: `openmmlab/lmdeploy:v0.6.1-cu12`
- TensorRT-LLM: `nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3`
- *NOTE: we uses r24.07 as the current implementation only works for this version. We are going to bump this up.*
- Check [nightly-pipeline.yaml](nightly-pipeline.yaml) for the concrete docker images, specs and commands we use for the benchmark.
- vLLM: `vllm/vllm-openai:v0.6.2`
- SGLang: `lmsysorg/sglang:v0.3.2-cu121`
- LMDeploy: `openmmlab/lmdeploy:v0.6.1-cu12`
- TensorRT-LLM: `nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3`
- *NOTE: we uses r24.07 as the current implementation only works for this version. We are going to bump this up.*
- Check [nightly-pipeline.yaml](nightly-pipeline.yaml) for the concrete docker images, specs and commands we use for the benchmark.
- Hardware
- 8x Nvidia A100 GPUs
- 8x Nvidia A100 GPUs
- Workload:
- Dataset
- ShareGPT dataset
- Prefill-heavy dataset (in average 462 input tokens, 16 tokens as output)
- Decode-heavy dataset (in average 462 input tokens, 256 output tokens)
- Check [nightly-tests.json](tests/nightly-tests.json) for the concrete configuration of datasets we use.
- Models: llama-3 8B, llama-3 70B.
- We do not use llama 3.1 as it is incompatible with trt-llm r24.07. ([issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105)).
- Average QPS (query per second): 2, 4, 8, 16, 32 and inf.
- Queries are randomly sampled, and arrival patterns are determined via Poisson process, but all with fixed random seed.
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
- Dataset
- ShareGPT dataset
- Prefill-heavy dataset (in average 462 input tokens, 16 tokens as output)
- Decode-heavy dataset (in average 462 input tokens, 256 output tokens)
- Check [nightly-tests.json](tests/nightly-tests.json) for the concrete configuration of datasets we use.
- Models: llama-3 8B, llama-3 70B.
- We do not use llama 3.1 as it is incompatible with trt-llm r24.07. ([issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105)).
- Average QPS (query per second): 2, 4, 8, 16, 32 and inf.
- Queries are randomly sampled, and arrival patterns are determined via Poisson process, but all with fixed random seed.
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
## Known issues

View File

@ -1,4 +1,3 @@
# Performance benchmarks descriptions
## Latency tests

View File

@ -1,38 +1,24 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import json
import os
import pandas as pd
def compare_data_columns(
files, name_column, data_column, info_cols, drop_column, debug=False
files, name_column, data_column, drop_column, ignore_test_name=False
):
print("\ncompare_data_column: " + data_column)
frames = []
raw_data_cols = []
compare_frames = []
for file in files:
data_df = pd.read_json(file)
serving_df = data_df.dropna(subset=[drop_column], ignore_index=True)
# Show all info columns in the first couple columns
if not frames:
for col in info_cols:
if col not in serving_df.columns:
print(f"Skipping missing column: {col}")
continue
frames.append(serving_df[col])
# only show test name under debug mode
if debug is True:
if ignore_test_name is False:
serving_df = serving_df.rename(columns={name_column: file + "_name"})
frames.append(serving_df[file + "_name"])
file = "/".join(file.split("/")[:-1])
serving_df = serving_df.rename(columns={data_column: file})
frames.append(serving_df[file])
raw_data_cols.append(file)
compare_frames.append(serving_df[file])
if len(compare_frames) >= 2:
# Compare numbers among two files
@ -41,68 +27,7 @@ def compare_data_columns(
compare_frames.pop(1)
concat_df = pd.concat(frames, axis=1)
print(raw_data_cols)
return concat_df, raw_data_cols
def split_json_by_tp_pp(
input_file: str = "benchmark_results.json", output_root: str = "."
) -> list[str]:
"""
Split a benchmark JSON into separate folders by (TP Size, PP Size).
Creates: <output_root>/tp{TP}_pp{PP}/benchmark_results.json
Returns: list of file paths written.
"""
# Load JSON data into DataFrame
with open(input_file, encoding="utf-8") as f:
data = json.load(f)
# If the JSON is a dict with a list under common keys, use that list
if isinstance(data, dict):
for key in ("results", "serving_results", "benchmarks", "data"):
if isinstance(data.get(key), list):
data = data[key]
break
df = pd.DataFrame(data)
# Handle alias column names
rename_map = {
"tp_size": "TP Size",
"tensor_parallel_size": "TP Size",
"pp_size": "PP Size",
"pipeline_parallel_size": "PP Size",
}
df.rename(
columns={k: v for k, v in rename_map.items() if k in df.columns}, inplace=True
)
# Ensure TP/PP columns exist (default to 1 if missing)
if "TP Size" not in df.columns:
df["TP Size"] = 1
if "PP Size" not in df.columns:
df["PP Size"] = 1
# make sure TP/PP are numeric ints with no NaN
df["TP Size"] = (
pd.to_numeric(df.get("TP Size", 1), errors="coerce").fillna(1).astype(int)
)
df["PP Size"] = (
pd.to_numeric(df.get("PP Size", 1), errors="coerce").fillna(1).astype(int)
)
# Split into separate folders
saved_paths: list[str] = []
for (tp, pp), group_df in df.groupby(["TP Size", "PP Size"], dropna=False):
folder_name = os.path.join(output_root, f"tp{int(tp)}_pp{int(pp)}")
os.makedirs(folder_name, exist_ok=True)
filepath = os.path.join(folder_name, "benchmark_results.json")
group_df.to_json(filepath, orient="records", indent=2, force_ascii=False)
print(f"Saved: {filepath}")
saved_paths.append(filepath)
return saved_paths
return concat_df
if __name__ == "__main__":
@ -111,105 +36,31 @@ if __name__ == "__main__":
"-f", "--file", action="append", type=str, help="input file name"
)
parser.add_argument(
"--debug", action="store_true", help="show all information for debugging"
)
parser.add_argument(
"--plot",
action=argparse.BooleanOptionalAction,
default=True,
help="plot perf diagrams or not --no-plot --plot",
)
parser.add_argument(
"-x",
"--xaxis",
type=str,
default="# of max concurrency.",
help="column name to use as X Axis in comparision graph",
"--ignore_test_name", action="store_true", help="ignore_test_name or not"
)
args = parser.parse_args()
files = args.file
print("comparing : " + ", ".join(files))
drop_column = "P99"
name_column = "Test name"
info_cols = [
"Model",
"Dataset Name",
"Input Len",
"Output Len",
"TP Size",
"PP Size",
"# of max concurrency.",
"qps",
]
data_cols_to_compare = ["Output Tput (tok/s)", "Median TTFT (ms)", "Median"]
html_msgs_for_data_cols = [
"Compare Output Tokens /n",
"Median TTFT /n",
"Median TPOT /n",
]
if len(args.file) == 1:
files = split_json_by_tp_pp(args.file[0], output_root="splits")
info_cols = [c for c in info_cols if c not in ("TP Size", "PP Size")]
else:
files = args.file
print("comparing : " + ", ".join(files))
debug = args.debug
plot = args.plot
# For Plot feature, assign y axis from one of info_cols
y_axis_index = info_cols.index(args.xaxis) if args.xaxis in info_cols else 6
ignore_test_name = args.ignore_test_name
with open("perf_comparison.html", "w") as text_file:
for i in range(len(data_cols_to_compare)):
output_df, raw_data_cols = compare_data_columns(
output_df = compare_data_columns(
files,
name_column,
data_cols_to_compare[i],
info_cols,
drop_column,
debug=debug,
ignore_test_name=ignore_test_name,
)
# For Plot feature, insert y axis from one of info_cols
raw_data_cols.insert(0, info_cols[y_axis_index])
filtered_info_cols = info_cols[:-2]
existing_group_cols = [
c for c in filtered_info_cols if c in output_df.columns
]
if not existing_group_cols:
raise ValueError(
f"No valid group-by columns "
f"Expected subset: {filtered_info_cols}, "
f"but DataFrame has: {list(output_df.columns)}"
)
output_df_sorted = output_df.sort_values(by=existing_group_cols)
output_groups = output_df_sorted.groupby(existing_group_cols, dropna=False)
for name, group in output_groups:
html = group.to_html()
text_file.write(html_msgs_for_data_cols[i])
text_file.write(html)
if plot is True:
import pandas as pd
import plotly.express as px
df = group[raw_data_cols]
df_sorted = df.sort_values(by=info_cols[y_axis_index])
# Melt DataFrame for plotting
df_melted = df_sorted.melt(
id_vars=info_cols[y_axis_index],
var_name="Configuration",
value_name=data_cols_to_compare[i],
)
title = data_cols_to_compare[i] + " vs " + info_cols[y_axis_index]
# Create Plotly line chart
fig = px.line(
df_melted,
x=info_cols[y_axis_index],
y=data_cols_to_compare[i],
color="Configuration",
title=title,
markers=True,
)
# Export to HTML
text_file.write(fig.to_html(full_html=True, include_plotlyjs="cdn"))
print(output_df)
html = output_df.to_html()
text_file.write(html_msgs_for_data_cols[i])
text_file.write(html)

View File

@ -1,19 +1,17 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import json
import os
import shlex
from importlib import util
from pathlib import Path
from typing import Any
import pandas as pd
import psutil
import regex as re
from tabulate import tabulate
results_folder = Path("results/")
# latency results and the keys that will be printed into markdown
latency_results = []
latency_column_mapping = {
@ -44,22 +42,13 @@ throughput_results_column_mapping = {
serving_results = []
serving_column_mapping = {
"test_name": "Test name",
"model_id": "Model",
"dataset_name": "Dataset Name",
"input_len": "Input Len",
"output_len": "Output Len",
"tp_size": "TP Size",
"pp_size": "PP Size",
"dtype": "dtype",
"gpu_type": "GPU",
"completed": "# of req.",
"qps": "qps",
"max_concurrency": "# of max concurrency.",
"request_throughput": "Tput (req/s)",
"total_token_throughput": "Total Token Tput (tok/s)",
"output_throughput": "Output Tput (tok/s)",
# "total_input_tokens": "Total input tokens",
# "total_output_tokens": "Total output tokens",
"total_input_tokens": "Total input tokens",
"total_output_tokens": "Total output tokens",
"mean_ttft_ms": "Mean TTFT (ms)",
"median_ttft_ms": "Median TTFT (ms)",
"p99_ttft_ms": "P99 TTFT (ms)",
@ -104,111 +93,15 @@ def get_size_with_unit(bytes, suffix="B"):
bytes /= factor
def _coerce(val: str) -> Any:
"""Best-effort type coercion from string to Python types."""
low = val.lower()
if low == "null":
return None
if low == "true":
return True
if low == "false":
return False
# integers
if re.fullmatch(r"[+-]?\d+", val):
try:
return int(val)
except ValueError:
pass
# floats (keep 'inf'/'-inf'/'nan' as strings)
if re.fullmatch(r"[+-]?\d*\.\d+", val):
try:
return float(val)
except ValueError:
pass
return val
def parse_client_command(cmd: str) -> dict[str, Any]:
"""Parse the client_command shell string into {executable, script, args}."""
toks = shlex.split(cmd)
if len(toks) < 2:
raise ValueError("client_command must include an executable and a script")
executable, script = toks[0], toks[1]
args: dict[str, Any] = {}
i = 2
while i < len(toks):
t = toks[i]
if t.startswith("--"):
# --key=value or --key (value) or boolean flag
if "=" in t:
key, val = t.split("=", 1)
if key == "--metadata":
md = {}
if val:
if "=" in val:
k, v = val.split("=", 1)
md[k] = _coerce(v)
else:
md[val] = True
args[key] = md
else:
args[key] = _coerce(val)
i += 1
continue
key = t
# Special: consume metadata k=v pairs until next --flag
if key == "--metadata":
i += 1
md = {}
while i < len(toks) and not toks[i].startswith("--"):
pair = toks[i]
if "=" in pair:
k, v = pair.split("=", 1)
md[k] = _coerce(v)
else:
md[pair] = True
i += 1
args[key] = md
continue
# Standard: check if next token is a value (not a flag)
if i + 1 < len(toks) and not toks[i + 1].startswith("--"):
args[key] = _coerce(toks[i + 1])
i += 2
else:
# lone flag -> True
args[key] = True
i += 1
else:
# unexpected positional; skip
i += 1
return {"executable": executable, "script": script, "args": args}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-r",
"--result",
type=str,
default="results",
help="Folder name for benchmark output results.",
)
args = parser.parse_args()
results_folder = Path(args.result)
if not results_folder.exists():
raise FileNotFoundError(f"results folder does not exist: {results_folder}")
# collect results
for test_file in results_folder.glob("*.json"):
with open(test_file) as f:
raw_result = json.loads(f.read())
if "serving" in str(test_file):
# this result is generated via `vllm bench serve` command
# this result is generated via `benchmark_serving.py`
# attach the benchmarking command to raw_result
try:
with open(test_file.with_suffix(".commands")) as f:
@ -216,50 +109,18 @@ if __name__ == "__main__":
except OSError as e:
print(e)
continue
# Parse Server Command Arg
out: dict[str, Any] = {
"server_command": parse_client_command(command["server_command"])
}
parse_args = [
"--tensor-parallel-size",
"--pipeline-parallel-size",
"--dtype",
]
col_mapping = ["tp_size", "pp_size", "dtype"]
for index, arg in enumerate(parse_args):
if arg in out["server_command"]["args"]:
raw_result.update(
{col_mapping[index]: out["server_command"]["args"][arg]}
)
# Parse Client Command Arg
out: dict[str, Any] = {
"client_command": parse_client_command(command["client_command"])
}
parse_args = [
"--dataset-name",
"--random-input-len",
"--random-output-len",
"--request-rate",
]
col_mapping = ["dataset_name", "input_len", "output_len", "qps"]
for index, arg in enumerate(parse_args):
if arg in out["client_command"]["args"]:
raw_result.update(
{col_mapping[index]: out["client_command"]["args"][arg]}
)
# Add Server, Client command
raw_result.update(command)
# update the test name of this result
raw_result.update({"test_name": test_file.stem})
# add the result to raw_result
serving_results.append(raw_result)
continue
elif "latency" in f.name:
# this result is generated via `vllm bench latency` command
# this result is generated via `benchmark_latency.py`
# attach the benchmarking command to raw_result
try:
@ -287,7 +148,7 @@ if __name__ == "__main__":
continue
elif "throughput" in f.name:
# this result is generated via `vllm bench throughput` command
# this result is generated via `benchmark_throughput.py`
# attach the benchmarking command to raw_result
try:
@ -343,10 +204,7 @@ if __name__ == "__main__":
columns=latency_column_mapping
)
if not serving_results.empty:
valid_columns = [
col for col in serving_column_mapping if col in serving_results.columns
]
serving_results = serving_results[valid_columns].rename(
serving_results = serving_results[list(serving_column_mapping.keys())].rename(
columns=serving_column_mapping
)
if not throughput_results.empty:
@ -386,9 +244,7 @@ if __name__ == "__main__":
)
# document the result
md_file = "benchmark_results.md"
json_file = "benchmark_results.json"
with open(results_folder / md_file, "w") as f:
with open(results_folder / "benchmark_results.md", "w") as f:
results = read_markdown(
"../.buildkite/nightly-benchmarks/"
+ "performance-benchmarks-descriptions.md"
@ -403,7 +259,7 @@ if __name__ == "__main__":
f.write(results)
# document benchmarking results in json
with open(results_folder / json_file, "w") as f:
with open(results_folder / "benchmark_results.json", "w") as f:
results = (
latency_results.to_dict(orient="records")
+ throughput_results.to_dict(orient="records")

View File

@ -73,7 +73,7 @@ get_current_llm_serving_engine() {
echo "Container: vllm"
# move to a completely irrelevant directory, to avoid import vllm from current folder
export CURRENT_LLM_SERVING_ENGINE=vllm
return
fi
}
@ -95,14 +95,12 @@ json2args() {
}
kill_gpu_processes() {
pkill -f '[p]ython'
pkill -f '[p]ython3'
pkill -f '[t]ritonserver'
pkill -f '[p]t_main_thread'
pkill -f '[t]ext-generation'
pkill -f '[l]mdeploy'
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
pkill -f '[V]LLM'
pkill -f python
pkill -f python3
pkill -f tritonserver
pkill -f pt_main_thread
pkill -f text-generation
pkill -f lmdeploy
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
sleep 1
@ -127,7 +125,7 @@ ensure_installed() {
}
run_serving_tests() {
# run serving tests using `vllm bench serve` command
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
@ -227,7 +225,7 @@ run_serving_tests() {
if [[ "$dataset_name" = "sharegpt" ]]; then
client_command="vllm bench serve \
client_command="python3 benchmark_serving.py \
--backend $backend \
--tokenizer /tokenizer_cache \
--model $model \
@ -248,7 +246,7 @@ run_serving_tests() {
sonnet_output_len=$(echo "$common_params" | jq -r '.sonnet_output_len')
sonnet_prefix_len=$(echo "$common_params" | jq -r '.sonnet_prefix_len')
client_command="vllm bench serve \
client_command="python3 benchmark_serving.py \
--backend $backend \
--tokenizer /tokenizer_cache \
--model $model \
@ -267,13 +265,13 @@ run_serving_tests() {
$client_args"
else
echo "The dataset name must be either 'sharegpt' or 'sonnet'. Got $dataset_name."
exit 1
fi
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
@ -304,7 +302,7 @@ run_serving_tests() {
}
run_genai_perf_tests() {
# run genai-perf tests
# run genai-perf tests
# $1: a json file specifying genai-perf test cases
local genai_perf_test_file
@ -313,14 +311,14 @@ run_genai_perf_tests() {
# Iterate over genai-perf tests
jq -c '.[]' "$genai_perf_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# prepend the current serving engine to the test name
test_name=${CURRENT_LLM_SERVING_ENGINE}_${test_name}
@ -371,10 +369,10 @@ run_genai_perf_tests() {
qps=$num_prompts
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
backend=$CURRENT_LLM_SERVING_ENGINE
if [[ "$backend" == *"vllm"* ]]; then
backend="vllm"
fi
@ -415,7 +413,7 @@ prepare_dataset() {
do
cat sonnet.txt >> sonnet_4x.txt
done
}
main() {

View File

@ -33,7 +33,7 @@ check_gpus() {
check_cpus() {
# check the number of CPUs and NUMA Node and GPU type.
declare -g numa_count=$(lscpu | grep "NUMA node(s):" | awk '{print $3}')
declare -g numa_count=$(python3 -c "from numa import info;numa_size = info.get_num_configured_nodes(); print(numa_size)")
if [[ $numa_count -gt 0 ]]; then
echo "NUMA found."
echo $numa_count
@ -126,8 +126,7 @@ kill_gpu_processes() {
ps -aux
lsof -t -i:8000 | xargs -r kill -9
pgrep python3 | xargs -r kill -9
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
pgrep VLLM | xargs -r kill -9
# wait until GPU memory usage smaller than 1GB
if command -v nvidia-smi; then
@ -165,7 +164,7 @@ upload_to_buildkite() {
}
run_latency_tests() {
# run latency tests using `vllm bench latency` command
# run latency tests using `benchmark_latency.py`
# $1: a json file specifying latency test cases
local latency_test_file
@ -194,11 +193,9 @@ run_latency_tests() {
# check if there is enough GPU to run the test
tp=$(echo "$latency_params" | jq -r '.tensor_parallel_size')
if [ "$ON_CPU" == "1" ]; then
pp=$(echo "$latency_params" | jq -r '.pipeline_parallel_size')
world_size=$(($tp*$pp))
if [[ $numa_count -lt $world_size && -z "${REMOTE_HOST}" ]]; then
echo "Required world-size $world_size but only $numa_count NUMA nodes found. Skip testcase $test_name."
if [ "$ON_CPU" == "1" ];then
if [[ $numa_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
continue
fi
else
@ -208,7 +205,7 @@ run_latency_tests() {
fi
fi
latency_command=" $latency_envs vllm bench latency \
latency_command=" $latency_envs python3 benchmark_latency.py \
--output-json $RESULTS_FOLDER/${test_name}.json \
$latency_args"
@ -234,7 +231,7 @@ run_latency_tests() {
}
run_throughput_tests() {
# run throughput tests using `vllm bench throughput`
# run throughput tests using `benchmark_throughput.py`
# $1: a json file specifying throughput test cases
local throughput_test_file
@ -263,11 +260,9 @@ run_throughput_tests() {
# check if there is enough GPU to run the test
tp=$(echo "$throughput_params" | jq -r '.tensor_parallel_size')
if [ "$ON_CPU" == "1" ]; then
pp=$(echo "$throughput_params" | jq -r '.pipeline_parallel_size')
world_size=$(($tp*$pp))
if [[ $numa_count -lt $world_size && -z "${REMOTE_HOST}" ]]; then
echo "Required world-size $world_size but only $numa_count NUMA nodes found. Skip testcase $test_name."
if [ "$ON_CPU" == "1" ];then
if [[ $numa_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
continue
fi
else
@ -277,7 +272,7 @@ run_throughput_tests() {
fi
fi
throughput_command=" $throughput_envs vllm bench throughput \
throughput_command=" $throughput_envs python3 benchmark_throughput.py \
--output-json $RESULTS_FOLDER/${test_name}.json \
$throughput_args"
@ -302,7 +297,7 @@ run_throughput_tests() {
}
run_serving_tests() {
# run serving tests using `vllm bench serve` command
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
@ -333,21 +328,12 @@ run_serving_tests() {
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
max_concurrency_list=$(echo "$params" | jq -r '.max_concurrency_list')
if [[ -z "$max_concurrency_list" || "$max_concurrency_list" == "null" ]]; then
num_prompts=$(echo "$client_params" | jq -r '.num_prompts')
max_concurrency_list="[$num_prompts]"
fi
max_concurrency_list=$(echo "$max_concurrency_list" | jq -r '.[] | @sh')
echo "Running over max concurrency list $max_concurrency_list"
# check if there is enough resources to run the test
tp=$(echo "$server_params" | jq -r '.tensor_parallel_size')
if [ "$ON_CPU" == "1" ]; then
pp=$(echo "$server_params" | jq -r '.pipeline_parallel_size')
world_size=$(($tp*$pp))
if [[ $numa_count -lt $world_size && -z "${REMOTE_HOST}" ]]; then
echo "Required world-size $world_size but only $numa_count NUMA nodes found. Skip testcase $test_name."
if [ "$ON_CPU" == "1" ];then
if [[ $numa_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
continue
fi
else
@ -403,39 +389,35 @@ run_serving_tests() {
echo "now qps is $qps"
fi
# iterate over different max_concurrency
for max_concurrency in $max_concurrency_list; do
new_test_name=$test_name"_qps_"$qps"_concurrency_"$max_concurrency
echo " new test name $new_test_name"
# pass the tensor parallel size to the client so that it can be displayed
# on the benchmark dashboard
client_command="vllm bench serve \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--max-concurrency $max_concurrency \
--metadata "tensor_parallel_size=$tp" \
$client_args $client_remote_args "
new_test_name=$test_name"_qps_"$qps
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
# pass the tensor parallel size to the client so that it can be displayed
# on the benchmark dashboard
client_command="python3 benchmark_serving.py \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--metadata "tensor_parallel_size=$tp" \
$client_args $client_remote_args "
bash -c "$client_command"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
bash -c "$client_command"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
done
# clean up
@ -465,7 +447,7 @@ main() {
(which jq) || (apt-get update && apt-get -y install jq)
(which lsof) || (apt-get update && apt-get install -y lsof)
# get the current IP address, required by `vllm bench serve` command
# get the current IP address, required by benchmark_serving.py
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
# turn of the reporting of the status of each request, to clean up the terminal output
export VLLM_LOGGING_LEVEL="WARNING"

View File

@ -11,7 +11,9 @@
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},

View File

@ -6,7 +6,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"num_iters_warmup": 5,
@ -20,7 +20,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"num_iters_warmup": 5,

View File

@ -35,7 +35,9 @@
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
@ -88,7 +90,9 @@
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
@ -141,7 +145,9 @@
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
@ -191,7 +197,9 @@
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
@ -243,7 +251,9 @@
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
@ -295,7 +305,9 @@
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},

View File

@ -1,202 +0,0 @@
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"num_prompts": 1000
}
}
]

View File

@ -1,205 +0,0 @@
[
{
"test_name": "serving_llama8B_pp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp2pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_pp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_tp2pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
}
]

View File

@ -2,112 +2,104 @@
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"disable_log_requests": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp2_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"disable_log_requests": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp4_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"disable_log_requests": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp4_random_1024_128",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -115,34 +107,32 @@
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"disable_log_requests": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 1024,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 100,
"num_prompts": 100
}
},
{
"test_name": "serving_llama8B_pp6_random_1024_128",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 6,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -150,18 +140,18 @@
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"disable_log_requests": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 1024,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 100,
"num_prompts": 100
}
}

View File

@ -7,6 +7,7 @@
"tensor_parallel_size": 1,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
@ -25,6 +26,7 @@
"tensor_parallel_size": 4,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
@ -43,6 +45,7 @@
"tensor_parallel_size": 2,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
@ -57,7 +60,8 @@
"test_name": "serving_llama70B_tp4_sharegpt_specdecode",
"qps_list": [2],
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"disable_log_requests": "",
"tensor_parallel_size": 4,
"swap_space": 16,
"speculative_config": {

View File

@ -6,7 +6,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
@ -21,7 +21,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",

View File

@ -1,20 +1,4 @@
steps:
# aarch64 + CUDA builds
- label: "Build arm64 wheel - CUDA 12.8"
id: build-wheel-arm64-cuda-12-8
agents:
queue: arm64_cpu_queue_postmerge
commands:
# #NOTE: torch_cuda_arch_list is derived from upstream PyTorch build files here:
# https://github.com/pytorch/pytorch/blob/main/.ci/aarch64_linux/aarch64_ci_build.sh#L7
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
# x86 + CUDA builds
- label: "Build wheel - CUDA 12.8"
id: build-wheel-cuda-12-8
agents:

View File

@ -121,6 +121,7 @@ fi
if [[ $commands == *" kernels/quantization"* ]]; then
commands="${commands} \
--ignore=kernels/quantization/test_int8_quant.py \
--ignore=kernels/quantization/test_aqlm.py \
--ignore=kernels/quantization/test_machete_mm.py \
--ignore=kernels/quantization/test_block_fp8.py \
--ignore=kernels/quantization/test_block_int8.py \

View File

@ -13,9 +13,9 @@ NUMA_NODE=${NUMA_NODE:-1}
export CMAKE_BUILD_PARALLEL_LEVEL=32
# Setup cleanup
remove_docker_container() {
set -e;
docker rm -f cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"-avx2 || true;
remove_docker_container() {
set -e;
docker rm -f cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"-avx2 || true;
}
trap remove_docker_container EXIT
remove_docker_container
@ -69,7 +69,7 @@ function cpu_tests() {
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
# Note: disable it until supports V1
# Run AWQ test
@ -78,23 +78,23 @@ function cpu_tests() {
# VLLM_USE_V1=0 pytest -s -v \
# tests/quantization/test_ipex_quant.py"
# Run multi-lora tests
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
tests/lora/test_qwen2vl.py"
# online serving
docker exec cpu-test-"$NUMA_NODE" bash -c '
set -e
VLLM_CPU_OMP_THREADS_BIND=$E2E_OMP_THREADS VLLM_CPU_SGL_KERNEL=1 vllm serve meta-llama/Llama-3.2-3B-Instruct -tp=2 -pp=2 &
timeout 600 bash -c "until curl localhost:8000/v1/models; do sleep 1; done" || exit 1
vllm bench serve \
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name random \
--model meta-llama/Llama-3.2-3B-Instruct \
--num-prompts 20 \
--endpoint /v1/completions'
# Run multi-lora tests
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
tests/lora/test_qwen2vl.py"
}
# All of CPU tests are expected to be finished less than 40 mins.

View File

@ -16,7 +16,8 @@ DOCKER_BUILDKIT=1 docker build . \
--build-arg max_jobs=66 \
--build-arg nvcc_threads=2 \
--build-arg RUN_WHEEL_CHECK=false \
--build-arg torch_cuda_arch_list="9.0+PTX"
--build-arg torch_cuda_arch_list="9.0+PTX" \
--build-arg vllm_fa_cmake_gpu_arches="90-real"
# Setup cleanup
remove_docker_container() { docker rm -f gh200-test || true; }

View File

@ -1,167 +0,0 @@
#!/bin/bash
set -xu
remove_docker_container() {
docker rm -f tpu-test || true;
}
trap remove_docker_container EXIT
# Remove the container that might not be cleaned up in the previous run.
remove_docker_container
# Build the docker image.
docker build -f docker/Dockerfile.tpu -t vllm-tpu .
# Set up cleanup.
cleanup_docker() {
# Get Docker's root directory
docker_root=$(docker info -f '{{.DockerRootDir}}')
if [ -z "$docker_root" ]; then
echo "Failed to determine Docker root directory."
exit 1
fi
echo "Docker root directory: $docker_root"
# Check disk usage of the filesystem where Docker's root directory is located
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
# Define the threshold
threshold=70
if [ "$disk_usage" -gt "$threshold" ]; then
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes / force the system prune for old images as well.
docker volume prune -f && docker system prune --force --filter "until=72h" --all
echo "Docker images and volumes cleanup completed."
else
echo "Disk usage is below $threshold%. No cleanup needed."
fi
}
cleanup_docker
# For HF_TOKEN.
source /etc/environment
docker run --privileged --net host --shm-size=16G -it \
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
vllm-tpu /bin/bash -c '
set -e # Exit immediately if a command exits with a non-zero status.
set -u # Treat unset variables as an error.
echo "--- Starting script inside Docker container ---"
# Create results directory
RESULTS_DIR=$(mktemp -d)
# If mktemp fails, set -e will cause the script to exit.
echo "Results will be stored in: $RESULTS_DIR"
# Install dependencies
echo "--- Installing Python dependencies ---"
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
&& python3 -m pip install --progress-bar off hf-transfer
echo "--- Python dependencies installed ---"
export VLLM_USE_V1=1
export VLLM_XLA_CHECK_RECOMPILATION=1
export VLLM_XLA_CACHE_PATH=
echo "Using VLLM V1"
echo "--- Hardware Information ---"
# tpu-info
echo "--- Starting Tests ---"
set +e
overall_script_exit_code=0
# --- Test Definitions ---
# If a test fails, this function will print logs and will not cause the main script to exit.
run_test() {
local test_num=$1
local test_name=$2
local test_command=$3
local log_file="$RESULTS_DIR/test_${test_num}.log"
local actual_exit_code
echo "--- TEST_$test_num: Running $test_name ---"
# Execute the test command.
eval "$test_command" > >(tee -a "$log_file") 2> >(tee -a "$log_file" >&2)
actual_exit_code=$?
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" # This goes to main log
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" >> "$log_file" # Also to per-test log
if [ "$actual_exit_code" -ne 0 ]; then
echo "TEST_$test_num ($test_name) FAILED with exit code $actual_exit_code." >&2
echo "--- Log for failed TEST_$test_num ($test_name) ---" >&2
if [ -f "$log_file" ]; then
cat "$log_file" >&2
else
echo "Log file $log_file not found for TEST_$test_num ($test_name)." >&2
fi
echo "--- End of log for TEST_$test_num ($test_name) ---" >&2
return "$actual_exit_code" # Return the failure code
else
echo "TEST_$test_num ($test_name) PASSED."
return 0 # Return success
fi
}
# Helper function to call run_test and update the overall script exit code
run_and_track_test() {
local test_num_arg="$1"
local test_name_arg="$2"
local test_command_arg="$3"
# Run the test
run_test "$test_num_arg" "$test_name_arg" "$test_command_arg"
local test_specific_exit_code=$?
# If the test failed, set the overall script exit code to 1
if [ "$test_specific_exit_code" -ne 0 ]; then
# No need for extra echo here, run_test already logged the failure.
overall_script_exit_code=1
fi
}
# --- Actual Test Execution ---
run_and_track_test 1 "test_struct_output_generate.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py -k \"not test_structured_output_with_reasoning_matrices\""
run_and_track_test 2 "test_moe_pallas.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py"
run_and_track_test 3 "test_lora.py" \
"VLLM_XLA_CHECK_RECOMPILATION=0 python3 -m pytest -s -v /workspace/vllm/tests/tpu/lora/test_lora.py"
run_and_track_test 4 "test_tpu_qkv_linear.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_tpu_qkv_linear.py"
run_and_track_test 5 "test_spmd_model_weight_loading.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_spmd_model_weight_loading.py"
run_and_track_test 6 "test_kv_cache_update_kernel.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_kv_cache_update_kernel.py"
run_and_track_test 7 "test_tpu_int8.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_tpu_int8.py"
# After all tests have been attempted, exit with the overall status.
if [ "$overall_script_exit_code" -ne 0 ]; then
echo "--- One or more tests FAILED. Overall script exiting with failure code 1. ---"
else
echo "--- All tests have completed and PASSED. Overall script exiting with success code 0. ---"
fi
exit "$overall_script_exit_code"
' # IMPORTANT: This is the closing single quote for the bash -c "..." command. Ensure it is present and correct.
# Capture the exit code of the docker run command
DOCKER_RUN_EXIT_CODE=$?
# The trap will run for cleanup.
# Exit the main script with the Docker run command's exit code.
if [ "$DOCKER_RUN_EXIT_CODE" -ne 0 ]; then
echo "Docker run command failed with exit code $DOCKER_RUN_EXIT_CODE."
exit "$DOCKER_RUN_EXIT_CODE"
else
echo "Docker run command completed successfully."
exit 0
fi
# TODO: This test fails because it uses RANDOM_SEED sampling
# pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \

View File

@ -5,6 +5,7 @@ set -xu
remove_docker_container() {
docker rm -f tpu-test || true;
docker rm -f vllm-tpu || true;
}
trap remove_docker_container EXIT
@ -61,8 +62,7 @@ echo "Results will be stored in: $RESULTS_DIR"
echo "--- Installing Python dependencies ---"
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
&& python3 -m pip install --progress-bar off hf-transfer
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4
echo "--- Python dependencies installed ---"
export VLLM_USE_V1=1
export VLLM_XLA_CHECK_RECOMPILATION=1
@ -149,6 +149,18 @@ run_and_track_test 9 "test_multimodal.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py"
run_and_track_test 10 "test_pallas.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py"
run_and_track_test 11 "test_struct_output_generate.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py -k \"not test_structured_output_with_reasoning_matrices\""
run_and_track_test 12 "test_moe_pallas.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py"
run_and_track_test 13 "test_lora.py" \
"VLLM_XLA_CHECK_RECOMPILATION=0 python3 -m pytest -s -v /workspace/vllm/tests/tpu/lora/test_lora.py"
run_and_track_test 14 "test_tpu_qkv_linear.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_tpu_qkv_linear.py"
run_and_track_test 15 "test_spmd_model_weight_loading.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_spmd_model_weight_loading.py"
run_and_track_test 16 "test_kv_cache_update_kernel.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_kv_cache_update_kernel.py"
# After all tests have been attempted, exit with the overall status.
if [ "$overall_script_exit_code" -ne 0 ]; then

View File

@ -31,13 +31,4 @@ docker run \
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
cd tests
pytest -v -s v1/core
pytest -v -s v1/engine
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
pytest -v -s v1/structured_output
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py
pytest -v -s v1/test_serial_utils.py
pytest -v -s v1/test_utils.py
pytest -v -s v1/test_metrics_reader.py
'

View File

@ -11,10 +11,10 @@ cd "$(dirname "${BASH_SOURCE[0]}")/../.."
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
# run python-based benchmarks and upload the result to buildkite
vllm bench latency --output-json latency_results.json 2>&1 | tee benchmark_latency.txt
python3 benchmarks/benchmark_latency.py --output-json latency_results.json 2>&1 | tee benchmark_latency.txt
bench_latency_exit_code=$?
vllm bench throughput --input-len 256 --output-len 256 --output-json throughput_results.json 2>&1 | tee benchmark_throughput.txt
python3 benchmarks/benchmark_throughput.py --input-len 256 --output-len 256 --output-json throughput_results.json 2>&1 | tee benchmark_throughput.txt
bench_throughput_exit_code=$?
# run server-based benchmarks and upload the result to buildkite
@ -24,7 +24,7 @@ wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/r
# wait for server to start, timeout after 600 seconds
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
vllm bench serve \
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name sharegpt \
--dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json \

View File

@ -1,6 +1,6 @@
# Environment config
TEST_NAME=llama8b
CONTAINER_NAME=tpu-test
CONTAINER_NAME=vllm-tpu
# vllm config
MODEL=meta-llama/Llama-3.1-8B-Instruct

View File

@ -12,6 +12,8 @@ source /etc/environment
source $ENV_FILE
remove_docker_container() {
docker rm -f tpu-test || true;
docker rm -f vllm-tpu || true;
docker rm -f $CONTAINER_NAME || true;
}

View File

@ -1,6 +1,6 @@
# Environment config
TEST_NAME=llama8bw8a8
CONTAINER_NAME=tpu-test
CONTAINER_NAME=vllm-tpu
# vllm config
MODEL=RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8

View File

@ -44,6 +44,7 @@ echo
VLLM_USE_V1=1 vllm serve $MODEL \
--seed 42 \
--disable-log-requests \
--max-num-seqs $MAX_NUM_SEQS \
--max-num-batched-tokens $MAX_NUM_BATCHED_TOKENS \
--tensor-parallel-size $TENSOR_PARALLEL_SIZE \
@ -76,7 +77,7 @@ done
echo "run benchmark test..."
echo "logging to $BM_LOG"
echo
vllm bench serve \
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name sonnet \

View File

@ -31,6 +31,16 @@
steps:
##### fast check tests #####
- label: Documentation Build # 2min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/test_docs"
fast_check: true
no_gpu: True
commands:
- pip install -r ../requirements/docs.txt
# TODO: add `--strict` once warnings in docstrings are fixed
- mkdocs build
- label: Pytorch Nightly Dependency Override Check # 2min
# if this test fails, it means the nightly torch version is not compatible with some
# of the dependencies. Please check the error message and add the package to whitelist
@ -47,20 +57,20 @@ steps:
- vllm/
- tests/mq_llm_engine
- tests/async_engine
- tests/test_inputs.py
- tests/test_outputs.py
- tests/test_inputs
- tests/multimodal
- tests/utils_
- tests/test_utils
- tests/worker
- tests/standalone_tests/lazy_imports.py
commands:
- python3 standalone_tests/lazy_imports.py
- pytest -v -s mq_llm_engine # MQLLMEngine
- pytest -v -s async_engine # AsyncLLMEngine
- NUM_SCHEDULER_STEPS=4 pytest -v -s async_engine/test_async_llm_engine.py
- pytest -v -s test_inputs.py
- pytest -v -s test_outputs.py
- pytest -v -s multimodal
- pytest -v -s utils_ # Utils
- pytest -v -s test_utils.py # Utils
- pytest -v -s worker # Worker
- label: Python-only Installation Test
@ -72,7 +82,7 @@ steps:
- bash standalone_tests/python_only_compile.sh
- label: Basic Correctness Test # 30min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
fast_check: true
torch_nightly: true
source_file_dependencies:
@ -89,7 +99,7 @@ steps:
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Chunked Prefill Test
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/basic_correctness/test_chunked_prefill
@ -98,7 +108,7 @@ steps:
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
- label: Core Test # 10min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
fast_check: true
source_file_dependencies:
- vllm/core
@ -118,10 +128,11 @@ steps:
- tests/entrypoints/offline_mode
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_collective_rpc.py
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_guided_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
- VLLM_USE_V1=0 pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Entrypoints Test (API Server) # 40min
@ -155,7 +166,6 @@ steps:
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/test_internal_lb_dp.py
- tests/v1/test_hybrid_lb_dp.py
- tests/v1/engine/test_engine_core_client.py
commands:
# test with tp=2 and external_dp=2
@ -168,7 +178,6 @@ steps:
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_internal_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_hybrid_lb_dp.py
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
@ -199,7 +208,7 @@ steps:
- pytest -v -s distributed/test_eplb_execute.py
- label: Metrics, Tracing Test # 10min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
num_gpus: 2
source_file_dependencies:
- vllm/
@ -218,7 +227,7 @@ steps:
##### 1 GPU test #####
- label: Regression Test # 5min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/test_regression
@ -253,7 +262,6 @@ steps:
- pytest -v -s v1/engine
- pytest -v -s v1/entrypoints
- pytest -v -s v1/sample
- pytest -v -s v1/logits_processors
- pytest -v -s v1/worker
- pytest -v -s v1/structured_output
- pytest -v -s v1/spec_decode
@ -271,7 +279,7 @@ steps:
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
- label: Examples Test # 25min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
working_dir: "/vllm-workspace/examples"
source_file_dependencies:
- vllm/entrypoints
@ -296,7 +304,7 @@ steps:
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
- label: Prefix Caching Test # 9min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/prefix_caching
@ -305,7 +313,7 @@ steps:
- label: Platform Tests (CUDA)
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/cuda
@ -344,10 +352,9 @@ steps:
- pytest -v -s compile/test_silu_mul_quant_fusion.py
- pytest -v -s compile/test_sequence_parallelism.py
- pytest -v -s compile/test_async_tp.py
- pytest -v -s compile/test_fusion_all_reduce.py
- label: PyTorch Fullgraph Smoke Test # 9min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
@ -360,7 +367,7 @@ steps:
- pytest -v -s compile/piecewise/test_full_cudagraph.py
- label: PyTorch Fullgraph Test # 18min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
@ -369,7 +376,7 @@ steps:
- pytest -v -s compile/test_full_graph.py
- label: Kernels Core Operation Test
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- csrc/
- tests/kernels/core
@ -394,22 +401,20 @@ steps:
- vllm/model_executor/layers/quantization
- tests/kernels/quantization
commands:
- pytest -v -s kernels/quantization --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
- pytest -v -s kernels/quantization --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels MoE Test %N
- label: Kernels MoE Test
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/quantization/cutlass_w8a8/moe/
- csrc/moe/
- tests/kernels/moe
- vllm/model_executor/layers/fused_moe/
commands:
- pytest -v -s kernels/moe --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- pytest -v -s kernels/moe
- label: Kernels Mamba Test
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- csrc/mamba/
- tests/kernels/mamba
@ -417,7 +422,8 @@ steps:
- pytest -v -s kernels/mamba
- label: Tensorizer Test # 11min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
soft_fail: true
source_file_dependencies:
- vllm/model_executor/model_loader
- tests/tensorizer_loader
@ -429,7 +435,7 @@ steps:
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
- label: Model Executor Test
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/model_executor
- tests/model_executor
@ -439,7 +445,7 @@ steps:
- pytest -v -s model_executor
- label: Benchmarks # 9min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
working_dir: "/vllm-workspace/.buildkite"
source_file_dependencies:
- benchmarks/
@ -447,7 +453,7 @@ steps:
- bash scripts/run-benchmarks.sh
- label: Benchmarks CLI Test # 10min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/benchmarks/
@ -486,7 +492,7 @@ steps:
- pytest -s entrypoints/openai/correctness/
- label: Encoder Decoder tests # 5min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/encoder_decoder
@ -494,7 +500,7 @@ steps:
- pytest -v -s encoder_decoder
- label: OpenAI-Compatible Tool Use # 20 min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
fast_check: false
source_file_dependencies:
- vllm/
@ -526,6 +532,8 @@ steps:
- vllm/
- tests/models/language
commands:
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
- pip freeze | grep -E 'torch'
- pytest -v -s models/language -m core_model
@ -536,10 +544,8 @@ steps:
- vllm/
- tests/models/language/generation
commands:
# Install fast path packages for testing against transformers
# Note: also needed to run plamo2 model in vLLM
- uv pip install --system --no-build-isolation 'git+https://github.com/state-spaces/mamba@v2.2.5'
- uv pip install --system --no-build-isolation 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.2'
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
- pytest -v -s models/language/generation -m hybrid_model
- label: Language Models Test (Extended Generation) # 1hr20min
@ -572,8 +578,7 @@ steps:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pip freeze | grep -E 'torch'
- pytest -v -s models/multimodal/processing
- pytest -v -s --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/test_tensor_schema.py models/multimodal -m core_model
- pytest -v -s models/multimodal/test_tensor_schema.py -m core_model # Needs mp_method="spawn"
- pytest -v -s --ignore models/multimodal/generation/test_whisper.py models/multimodal -m core_model
- cd .. && pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
- label: Multi-Modal Models Test (Extended) 1
@ -616,7 +621,7 @@ steps:
# This test is used only in PR development phase to test individual models and should never run on main
- label: Custom Models Test
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
optional: true
commands:
- echo 'Testing custom models...'
@ -636,41 +641,11 @@ steps:
- python3 examples/offline_inference/audio_language.py --model-type whisper
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
- label: Blackwell Test
working_dir: "/vllm-workspace/"
gpu: b200
# optional: true
source_file_dependencies:
- csrc/quantization/fp4/
- csrc/attention/mla/
- csrc/quantization/cutlass_w8a8/moe/
- vllm/model_executor/layers/fused_moe/cutlass_moe.py
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/compilation/fusion.py
commands:
- nvidia-smi
- python3 examples/offline_inference/basic/chat.py
# Attention
# num_heads2 broken by https://github.com/flashinfer-ai/flashinfer/issues/1353
- pytest -v -s tests/kernels/attention/test_flashinfer.py -k 'not num_heads2'
- pytest -v -s tests/kernels/attention/test_flashinfer_trtllm_attention.py
- pytest -v -s tests/kernels/test_cutlass_mla_decode.py
# Quantization
- pytest -v -s tests/kernels/quantization/test_cutlass_scaled_mm.py -k 'fp8'
- pytest -v -s tests/kernels/quantization/test_nvfp4_quant.py
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
# Fusion
- pytest -v -s tests/compile/test_fusion_all_reduce.py
##### 1 GPU test #####
##### multi gpus test #####
- label: Distributed Comm Ops Test # 7min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
@ -741,8 +716,8 @@ steps:
# this test fails consistently.
# TODO: investigate and fix
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/test_disagg.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s models/multimodal/generation/test_maverick.py
- label: Plugin Tests (2 GPUs) # 40min
mirror_hardwares: [amdexperimental]
@ -765,8 +740,29 @@ steps:
- pytest -v -s models/test_oot_registration.py # it needs a clean process
- pytest -v -s plugins/lora_resolvers # unit tests for in-tree lora resolver plugins
- label: Multi-step Tests (4 GPUs) # 36min
mirror_hardwares: [amdexperimental, amdproduction]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
- vllm/model_executor/layers/sampler.py
- vllm/sequence.py
- vllm/worker/worker_base.py
- vllm/worker/worker.py
- vllm/worker/multi_step_worker.py
- vllm/worker/model_runner_base.py
- vllm/worker/model_runner.py
- vllm/worker/multi_step_model_runner.py
- vllm/engine
- tests/multi_step
commands:
# this test is quite flaky
# TODO: investigate and fix.
# - pytest -v -s multi_step/test_correctness_async_llm.py
- pytest -v -s multi_step/test_correctness_llm.py
- label: Pipeline Parallelism Test # 45min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
@ -780,7 +776,7 @@ steps:
- pytest -v -s distributed/test_pipeline_parallel.py
- label: LoRA TP Test (Distributed)
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
num_gpus: 4
source_file_dependencies:
- vllm/lora
@ -793,7 +789,6 @@ steps:
# requires multi-GPU testing for validation.
- pytest -v -s -x lora/test_chatglm3_tp.py
- pytest -v -s -x lora/test_llama_tp.py
- pytest -v -s -x lora/test_multi_loras_with_tp.py
- label: Weight Loading Multiple GPU Test # 33min

38
.github/CODEOWNERS vendored
View File

@ -9,7 +9,8 @@
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth
/vllm/model_executor/guided_decoding @mgoin @russellb @aarnphm
/vllm/multimodal @DarkLight1337 @ywang96
/vllm/vllm_flash_attn @LucasWilkinson
/vllm/lora @jeejeelee
@ -20,7 +21,7 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# Any change to the VllmConfig changes can have a large user-facing impact,
# so spam a lot of people
/vllm/config @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg
/vllm/config.py @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
@ -34,41 +35,20 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/distributed/test_pipeline_parallel.py @youkaichao
/tests/distributed/test_same_node.py @youkaichao
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo @aarnphm
/tests/kernels @tlrmchlsmth @WoosukKwon @yewentao256
/tests/entrypoints/llm/test_guided_generate.py @mgoin @russellb @aarnphm
/tests/kernels @tlrmchlsmth @WoosukKwon
/tests/model_executor/test_guided_processors.py @mgoin @russellb
/tests/models @DarkLight1337 @ywang96
/tests/multi_step @alexm-redhat @comaniac
/tests/multimodal @DarkLight1337 @ywang96
/tests/prefix_caching @comaniac @KuntaiDu
/tests/quantization @mgoin @robertgshaw2-redhat @yewentao256
/tests/quantization @mgoin @robertgshaw2-redhat
/tests/test_inputs.py @DarkLight1337 @ywang96
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
/tests/v1/structured_output @mgoin @russellb @aarnphm
/tests/weight_loading @mgoin @youkaichao @yewentao256
/tests/weight_loading @mgoin @youkaichao
/tests/lora @jeejeelee
# Docs
/docs @hmellor
mkdocs.yaml @hmellor
# CPU
/vllm/v1/worker/^cpu @bigPYJ1151
/csrc/cpu @bigPYJ1151
/vllm/platforms/cpu.py @bigPYJ1151
/cmake/cpu_extension.cmake @bigPYJ1151
/docker/Dockerfile.cpu @bigPYJ1151
# Intel GPU
/vllm/v1/worker/^xpu @jikunshang
/vllm/platforms/xpu.py @jikunshang
/docker/Dockerfile.xpu @jikunshang
# Qwen-specific files
/vllm/attention/backends/dual_chunk_flash_attn.py @sighingnow
/vllm/model_executor/models/qwen* @sighingnow
# Mistral-specific files
/vllm/model_executor/models/mistral*.py @patrickvonplaten
/vllm/model_executor/models/mixtral*.py @patrickvonplaten
/vllm/model_executor/models/voxtral*.py @patrickvonplaten
/vllm/model_executor/models/pixtral*.py @patrickvonplaten
/vllm/transformers_utils/configs/mistral.py @patrickvonplaten
/vllm/transformers_utils/tokenizers/mistral.py @patrickvonplaten

View File

@ -1,5 +1,10 @@
<!-- markdownlint-disable -->
PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS (AT THE BOTTOM) HAVE BEEN CONSIDERED.
## Essential Elements of an Effective PR Description Checklist
- [ ] The purpose of the PR, such as "Fix some issue (link existing issues this PR will resolve)".
- [ ] The test plan, such as providing test command.
- [ ] The test results, such as pasting the results comparison before and after, or e2e results
- [ ] (Optional) The necessary documentation update, such as updating `supported_models.md` and `examples` for a new model.
PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS ABOVE HAVE BEEN CONSIDERED.
## Purpose
@ -9,14 +14,5 @@ PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS (AT THE BOTT
## (Optional) Documentation Update
---
<details>
<summary> Essential Elements of an Effective PR Description Checklist </summary>
- [ ] The purpose of the PR, such as "Fix some issue (link existing issues this PR will resolve)".
- [ ] The test plan, such as providing test command.
- [ ] The test results, such as pasting the results comparison before and after, or e2e results
- [ ] (Optional) The necessary documentation update, such as updating `supported_models.md` and `examples` for a new model.
</details>
<!--- pyml disable-next-line no-emphasis-as-heading -->
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing>** (anything written below this line will be removed by GitHub Actions)

17
.github/mergify.yml vendored
View File

@ -118,20 +118,6 @@ pull_request_rules:
add:
- qwen
- name: label-gpt-oss
description: Automatically apply gpt-oss label
conditions:
- or:
- files~=^examples/.*gpt[-_]?oss.*\.py
- files~=^tests/.*gpt[-_]?oss.*\.py
- files~=^vllm/model_executor/models/.*gpt[-_]?oss.*\.py
- files~=^vllm/model_executor/layers/.*gpt[-_]?oss.*\.py
- title~=(?i)gpt[-_]?oss
actions:
label:
add:
- gpt-oss
- name: label-rocm
description: Automatically apply rocm label
conditions:
@ -163,6 +149,9 @@ pull_request_rules:
- files=examples/offline_inference/structured_outputs.py
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
- files~=^vllm/model_executor/guided_decoding/
- files=tests/model_executor/test_guided_processors.py
- files=tests/entrypoints/llm/test_guided_generate.py
- files~=^tests/v1/structured_output/
- files=tests/v1/entrypoints/llm/test_guided_generate.py
- files~=^vllm/v1/structured_output/

View File

@ -15,11 +15,11 @@ NEW=/tmp/new_pr_body.txt
gh pr view --json body --template "{{.body}}" "${PR_NUMBER}" > "${OLD}"
cp "${OLD}" "${NEW}"
# Remove markdown comments (like the <!-- markdownlint-disable --> at the start)
sed -i '/<!--.*-->$/d' "${NEW}"
# Remove "FIX #xxxx (*link existing issues this PR will resolve*)"
sed -i '/FIX #xxxx.*$/d' "${NEW}"
# Remove "PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS (AT THE BOTTOM) HAVE BEEN CONSIDERED."
sed -i '/PLEASE FILL IN THE PR DESCRIPTION HERE.*$/d' "${NEW}"
# Remove "FILL IN THE PR DESCRIPTION HERE"
sed -i '/FILL IN THE PR DESCRIPTION HERE/d' "${NEW}"
# Remove all lines after and including "**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**"
sed -i '/\*\*BEFORE SUBMITTING, PLEASE READ.*\*\*/,$d' "${NEW}"

View File

@ -2,10 +2,6 @@ name: Lint and Deploy Charts
on: pull_request
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
permissions:
contents: read

View File

@ -1,17 +0,0 @@
{
"problemMatcher": [
{
"owner": "markdownlint",
"pattern": [
{
"regexp": "^([^:]*):(\\d+):?(\\d+)?\\s([\\w-\\/]*)\\s(.*)$",
"file": 1,
"line": 2,
"column": 3,
"code": 4,
"message": 5
}
]
}
]
}

View File

@ -5,10 +5,6 @@ on:
push:
branches: [main]
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: ${{ github.event_name == 'pull_request' }}
permissions:
contents: read
@ -21,7 +17,6 @@ jobs:
with:
python-version: "3.12"
- run: echo "::add-matcher::.github/workflows/matchers/actionlint.json"
- run: echo "::add-matcher::.github/workflows/matchers/markdownlint.json"
- run: echo "::add-matcher::.github/workflows/matchers/mypy.json"
- uses: pre-commit/action@2c7b3805fd2a0fd8c1884dcaebf91fc102a13ecd # v3.0.1
with:

View File

@ -15,6 +15,7 @@ $python_executable -m pip install -r requirements/build.txt -r requirements/cuda
export MAX_JOBS=1
# Make sure release wheels are built for the following architectures
export TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX"
export VLLM_FA_CMAKE_GPU_ARCHES="80-real;90-real"
bash tools/check_repo.sh

9
.gitignore vendored
View File

@ -4,9 +4,6 @@
# vllm-flash-attn built from source
vllm/vllm_flash_attn/*
# triton jit
.triton
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
@ -150,8 +147,7 @@ venv.bak/
# mkdocs documentation
/site
docs/argparse
docs/examples/*
!docs/examples/README.md
docs/examples
# mypy
.mypy_cache/
@ -207,6 +203,3 @@ shellcheck*/
# Ignore moe/marlin_moe gen code
csrc/moe/marlin_moe_wna16/kernel_*
# Ignore ep_kernels_workspace folder
ep_kernels_workspace/

View File

@ -1,13 +0,0 @@
MD007:
indent: 4
MD013: false
MD024:
siblings_only: true
MD033: false
MD042: false
MD045: false
MD046: false
MD051: false
MD052: false
MD053: false
MD059: false

View File

@ -35,12 +35,12 @@ repos:
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))|vllm/third_party/.*'
types_or: [c++, cuda]
args: [--style=file, --verbose]
- repo: https://github.com/igorshubovych/markdownlint-cli
rev: v0.45.0
- repo: https://github.com/jackdewinter/pymarkdown
rev: v0.9.29
hooks:
- id: markdownlint
- id: pymarkdown
exclude: '.*\.inc\.md'
stages: [manual] # Only run in CI
args: [fix]
- repo: https://github.com/rhysd/actionlint
rev: v1.7.7
hooks:

View File

@ -7,9 +7,6 @@ build:
os: ubuntu-22.04
tools:
python: "3.12"
jobs:
post_checkout:
- git fetch --unshallow || true
mkdocs:
configuration: mkdocs.yaml

View File

@ -249,6 +249,7 @@ set(VLLM_EXT_SRC
"csrc/quantization/gguf/gguf_kernel.cu"
"csrc/quantization/activation_kernels.cu"
"csrc/cuda_utils_kernels.cu"
"csrc/prepare_inputs/advance_step.cu"
"csrc/custom_all_reduce.cu"
"csrc/torch_bindings.cpp")
@ -286,6 +287,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
FetchContent_MakeAvailable(cutlass)
list(APPEND VLLM_EXT_SRC
"csrc/quantization/aqlm/gemm_kernels.cu"
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/permute_cols.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
@ -349,10 +351,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_TEMPLATE_KERNEL_SRC}"
CUDA_ARCHS "${MARLIN_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8)
set_source_files_properties(${MARLIN_TEMPLATE_KERNEL_SRC}
PROPERTIES COMPILE_FLAGS "-static-global-template-stub=false")
endif()
list(APPEND VLLM_EXT_SRC ${MARLIN_TEMPLATE_KERNEL_SRC})
@ -366,12 +364,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_SRCS}"
CUDA_ARCHS "${MARLIN_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8)
set_source_files_properties("csrc/quantization/gptq_marlin/gptq_marlin.cu"
PROPERTIES COMPILE_FLAGS "-static-global-template-stub=false")
endif()
list(APPEND VLLM_EXT_SRC "${MARLIN_SRCS}")
message(STATUS "Building Marlin kernels for archs: ${MARLIN_ARCHS}")
else()
message(STATUS "Not building Marlin kernels as no compatible archs found"
@ -434,7 +427,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm120.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm120_fp8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm120_fp8.cu"
)
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
@ -537,25 +529,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
# The nvfp4_scaled_mm_sm120 kernels for Geforce Blackwell SM120 require
# CUDA 12.8 or later
cuda_archs_loose_intersection(FP4_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_sm120_kernels.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${FP4_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_NVFP4_SM120=1")
message(STATUS "Building NVFP4 for archs: ${FP4_ARCHS}")
else()
message(STATUS "Not building NVFP4 as no compatible archs were found.")
# clear FP4_ARCHS
set(FP4_ARCHS)
endif()
# FP4 Archs and flags
cuda_archs_loose_intersection(FP4_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
@ -568,7 +541,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
SRCS "${SRCS}"
CUDA_ARCHS "${FP4_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_NVFP4_SM100=1")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_NVFP4=1")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MOE_SM100=1")
message(STATUS "Building NVFP4 for archs: ${FP4_ARCHS}")
else()
@ -662,7 +635,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"in CUDA target architectures.")
endif()
endif()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/blockwise_scaled_group_mm_sm100.cu")
@ -795,14 +768,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_MOE_EXT_SRC "csrc/moe/moe_wna16.cu")
endif()
if(VLLM_GPU_LANG STREQUAL "CUDA")
set(MOE_PERMUTE_SRC
"csrc/moe/permute_unpermute_kernels/moe_permute_unpermute_kernel.cu"
"csrc/moe/moe_permute_unpermute_op.cu")
list(APPEND VLLM_MOE_EXT_SRC "${MOE_PERMUTE_SRC}")
endif()
set_gencode_flags_for_srcs(
SRCS "${VLLM_MOE_EXT_SRC}"
CUDA_ARCHS "${CUDA_ARCHS}")
@ -861,10 +826,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set_gencode_flags_for_srcs(
SRCS "${MOE_WNAA16_MARLIN_SRC}"
CUDA_ARCHS "${MARLIN_MOE_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8)
set_source_files_properties(${MOE_WNAA16_MARLIN_SRC}
PROPERTIES COMPILE_FLAGS "-static-global-template-stub=false")
endif()
list(APPEND VLLM_MOE_EXT_SRC ${MOE_WNAA16_MARLIN_SRC})
@ -875,6 +836,17 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
if(VLLM_GPU_LANG STREQUAL "CUDA")
set(MOE_PERMUTE_SRC
"csrc/moe/permute_unpermute_kernels/moe_permute_unpermute_kernel.cu"
"csrc/moe/moe_permute_unpermute_op.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_PERMUTE_SRC}"
CUDA_ARCHS "${MOE_PERMUTE_ARCHS}")
list(APPEND VLLM_MOE_EXT_SRC "${MOE_PERMUTE_SRC}")
endif()
message(STATUS "Enabling moe extension.")
define_gpu_extension_target(
_moe_C

View File

@ -1,4 +1,3 @@
<!-- markdownlint-disable MD001 MD041 -->
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/assets/logos/vllm-logo-text-dark.png">
@ -17,16 +16,14 @@ Easy, fast, and cheap LLM serving for everyone
---
*Latest News* 🔥
- [2025/08] We hosted [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/dgkWg1WFpWGO2jCdTqQHxA) focusing on large-scale LLM deployment! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Pid6NSFLU43DZRi0EaTcPgXsAzDvbBqF) and the recording [here](https://www.chaspark.com/#/live/1166916873711665152).
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
- [2025/05] vLLM is now a hosted project under PyTorch Foundation! Please find the announcement [here](https://pytorch.org/blog/pytorch-foundation-welcomes-vllm/).
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
<details>
<summary>Previous News</summary>
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).
- [2025/03] We hosted [the East Coast vLLM Meetup](https://lu.ma/7mu4k4xx)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1NHiv8EUFF1NLd3fEYODm56nDmL26lEeXCaDgyDlTsRs/edit#slide=id.g31441846c39_0_0).
@ -49,7 +46,6 @@ Easy, fast, and cheap LLM serving for everyone
</details>
---
## About
vLLM is a fast and easy-to-use library for LLM inference and serving.
@ -79,7 +75,6 @@ vLLM is flexible and easy to use with:
- Multi-LoRA support
vLLM seamlessly supports most popular open-source models on HuggingFace, including:
- Transformer-like LLMs (e.g., Llama)
- Mixture-of-Expert LLMs (e.g., Mixtral, Deepseek-V2 and V3)
- Embedding Models (e.g., E5-Mistral)
@ -96,7 +91,6 @@ pip install vllm
```
Visit our [documentation](https://docs.vllm.ai/en/latest/) to learn more.
- [Installation](https://docs.vllm.ai/en/latest/getting_started/installation.html)
- [Quickstart](https://docs.vllm.ai/en/latest/getting_started/quickstart.html)
- [List of Supported Models](https://docs.vllm.ai/en/latest/models/supported_models.html)
@ -113,7 +107,6 @@ vLLM is a community project. Our compute resources for development and testing a
<!-- Note: Please sort them in alphabetical order. -->
<!-- Note: Please keep these consistent with docs/community/sponsors.md -->
Cash Donations:
- a16z
- Dropbox
- Sequoia Capital
@ -121,8 +114,6 @@ Cash Donations:
- ZhenFund
Compute Resources:
- Alibaba Cloud
- AMD
- Anyscale
- AWS
@ -162,7 +153,7 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
## Contact Us
<!-- --8<-- [start:contact-us] -->
- For technical questions and feature requests, please use GitHub [Issues](https://github.com/vllm-project/vllm/issues)
- For technical questions and feature requests, please use GitHub [Issues](https://github.com/vllm-project/vllm/issues) or [Discussions](https://github.com/vllm-project/vllm/discussions)
- For discussing with fellow users, please use the [vLLM Forum](https://discuss.vllm.ai)
- For coordinating contributions and development, please use [Slack](https://slack.vllm.ai)
- For security disclosures, please use GitHub's [Security Advisories](https://github.com/vllm-project/vllm/security/advisories) feature

View File

@ -60,10 +60,9 @@ Please note: **No feature work allowed for cherry picks**. All PRs that are cons
Before each release, we perform end-to-end performance validation to ensure no regressions are introduced. This validation uses the [vllm-benchmark workflow](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-benchmark.yml) on PyTorch CI.
**Current Coverage:**
* Models: Llama3, Llama4, and Mixtral
* Hardware: NVIDIA H100 and AMD MI300x
* _Note: Coverage may change based on new model releases and hardware availability_
* *Note: Coverage may change based on new model releases and hardware availability*
**Performance Validation Process:**
@ -72,13 +71,11 @@ Request write access to the [pytorch/pytorch-integration-testing](https://github
**Step 2: Review Benchmark Setup**
Familiarize yourself with the benchmark configurations:
* [CUDA setup](https://github.com/pytorch/pytorch-integration-testing/tree/main/vllm-benchmarks/benchmarks/cuda)
* [ROCm setup](https://github.com/pytorch/pytorch-integration-testing/tree/main/vllm-benchmarks/benchmarks/rocm)
**Step 3: Run the Benchmark**
Navigate to the [vllm-benchmark workflow](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-benchmark.yml) and configure:
* **vLLM branch**: Set to the release branch (e.g., `releases/v0.9.2`)
* **vLLM commit**: Set to the RC commit hash

View File

@ -1,45 +1,13 @@
# Security Policy
## Reporting security issues
## Reporting a Vulnerability
Please report security issues privately using [the vulnerability submission form](https://github.com/vllm-project/vllm/security/advisories/new).
If you believe you have found a security vulnerability in vLLM, we encourage you to let us know right away. We will investigate all legitimate reports and do our best to quickly fix the problem.
## Issue triage
Please report security issues privately using [the vulnerability submission form](https://github.com/vllm-project/vllm/security/advisories/new). Reports will then be triaged by the [vulnerability management team](https://docs.vllm.ai/en/latest/contributing/vulnerability_management.html).
Reports will then be triaged by the [vulnerability management team](https://docs.vllm.ai/en/latest/contributing/vulnerability_management.html).
## Threat model
---
Please see the [Security Guide in the vLLM documentation](https://docs.vllm.ai/en/latest/usage/security.html) for more information on vLLM's security assumptions and recommendations.
Please see [PyTorch's Security Policy](https://github.com/pytorch/pytorch/blob/main/SECURITY.md) for more information and recommendations on how to securely interact with models.
## Issue severity
We will determine the risk of each issue, taking into account our experience dealing with past issues, versions affected, common defaults, and use cases. We use the following severity categories:
### CRITICAL Severity
Vulnerabilities that allow remote attackers to execute arbitrary code, take full control of the system, or significantly compromise confidentiality, integrity, or availability without any interaction or privileges needed, examples include remote code execution via network, deserialization issues that allow exploit chains. Generally those issues which are rated as CVSS ≥9.0.
### HIGH Severity
Serious security flaws that allow elevated impact—like RCE in specific, limited contexts or significant data loss—but require advanced conditions or some trust, examples include RCE in advanced deployment modes (e.g. multi-node), or high impact issues where some sort of privileged network access is required. These issues typically have CVSS scores between 7.0 and 8.9
### MODERATE Severity
Vulnerabilities that cause denial of service or partial disruption, but do not allow arbitrary code execution or data breach and have limited impact. These issues have a CVSS rating between 4.0 and 6.9
### LOW Severity
Minor issues such as informational disclosures, logging errors, non-exploitable flaws, or weaknesses that require local or high-privilege access and offer negligible impact. Examples include side channel attacks or hash collisions. These issues often have CVSS scores less than 4.0
## Prenotification policy
For certain security issues of CRITICAL, HIGH, or MODERATE severity level, we may prenotify certain organizations or vendors that ship vLLM. The purpose of this prenotification is to allow for a coordinated release of fixes for severe issues.
* This prenotification will be in the form of a private email notification. It may also include adding security contacts to the GitHub security advisory, typically a few days before release.
* If you wish to be added to the prenotification group, please send an email copying all the members of the [vulnerability management team](https://docs.vllm.ai/en/latest/contributing/vulnerability_management.html). Each vendor contact will be analyzed on a case-by-case basis.
* We may withdraw organizations from receiving future prenotifications if they release fixes or any other information about issues before they are public. Group membership may also change based on policy refinements for who may be included.

View File

@ -4,7 +4,7 @@ This README guides you through running benchmark tests with the extensive
datasets supported on vLLM. Its a living document, updated as new features and datasets
become available.
## Dataset Overview
**Dataset Overview**
<table style="width:100%; border-collapse: collapse;">
<thead>
@ -22,17 +22,6 @@ become available.
<td style="text-align: center;"></td>
<td><code>wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json</code></td>
</tr>
<tr>
<td><strong>ShareGPT4V (Image)</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td>
<code>wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json</code>
<br>
<div>Note that the images need to be downloaded separately. For example, to download COCO's 2017 Train images:</div>
<code>wget http://images.cocodataset.org/zips/train2017.zip</code>
</td>
</tr>
<tr>
<td><strong>BurstGPT</strong></td>
<td style="text-align: center;"></td>
@ -40,7 +29,7 @@ become available.
<td><code>wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv</code></td>
</tr>
<tr>
<td><strong>Sonnet (deprecated)</strong></td>
<td><strong>Sonnet</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td>Local file: <code>benchmarks/sonnet.txt</code></td>
@ -51,12 +40,6 @@ become available.
<td style="text-align: center;"></td>
<td><code>synthetic</code></td>
</tr>
<tr>
<td><strong>Prefix Repetition</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>synthetic</code></td>
</tr>
<tr>
<td><strong>HuggingFace-VisionArena</strong></td>
<td style="text-align: center;"></td>
@ -98,17 +81,16 @@ become available.
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`
## 🚀 Example - Online Benchmark
---
<details>
<summary>Show more</summary>
<summary><b>🚀 Example - Online Benchmark</b></summary>
<br/>
First start serving your model
```bash
vllm serve NousResearch/Hermes-3-Llama-3.1-8B
vllm serve NousResearch/Hermes-3-Llama-3.1-8B --disable-log-requests
```
Then run the benchmarking script
@ -116,7 +98,7 @@ Then run the benchmarking script
```bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
vllm bench serve \
python3 vllm/benchmarks/benchmark_serving.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--endpoint /v1/completions \
@ -127,48 +109,48 @@ vllm bench serve \
If successful, you will see the following output
```text
```
============ Serving Benchmark Result ============
Successful requests: 10
Benchmark duration (s): 5.78
Total input tokens: 1369
Total generated tokens: 2212
Request throughput (req/s): 1.73
Output token throughput (tok/s): 382.89
Total Token throughput (tok/s): 619.85
Successful requests: 10
Benchmark duration (s): 5.78
Total input tokens: 1369
Total generated tokens: 2212
Request throughput (req/s): 1.73
Output token throughput (tok/s): 382.89
Total Token throughput (tok/s): 619.85
---------------Time to First Token----------------
Mean TTFT (ms): 71.54
Median TTFT (ms): 73.88
P99 TTFT (ms): 79.49
Mean TTFT (ms): 71.54
Median TTFT (ms): 73.88
P99 TTFT (ms): 79.49
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms): 7.91
Median TPOT (ms): 7.96
P99 TPOT (ms): 8.03
Mean TPOT (ms): 7.91
Median TPOT (ms): 7.96
P99 TPOT (ms): 8.03
---------------Inter-token Latency----------------
Mean ITL (ms): 7.74
Median ITL (ms): 7.70
P99 ITL (ms): 8.39
Mean ITL (ms): 7.74
Median ITL (ms): 7.70
P99 ITL (ms): 8.39
==================================================
```
### Custom Dataset
**Custom Dataset**
If the dataset you want to benchmark is not supported yet in vLLM, even then you can benchmark on it using `CustomDataset`. Your data needs to be in `.jsonl` format and needs to have "prompt" field per entry, e.g., data.jsonl
```json
```
{"prompt": "What is the capital of India?"}
{"prompt": "What is the capital of Iran?"}
{"prompt": "What is the capital of China?"}
```
```
```bash
# start server
VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.1-8B-Instruct
VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.1-8B-Instruct --disable-log-requests
```
```bash
# run benchmarking script
vllm bench serve --port 9001 --save-result --save-detailed \
python3 benchmarks/benchmark_serving.py --port 9001 --save-result --save-detailed \
--backend vllm \
--model meta-llama/Llama-3.1-8B-Instruct \
--endpoint /v1/completions \
@ -184,15 +166,15 @@ vllm bench serve --port 9001 --save-result --save-detailed \
You can skip applying chat template if your data already has it by using `--custom-skip-chat-template`.
### VisionArena Benchmark for Vision Language Models
**VisionArena Benchmark for Vision Language Models**
```bash
# need a model with vision capability here
vllm serve Qwen/Qwen2-VL-7B-Instruct
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
```
```bash
vllm bench serve \
python3 vllm/benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
@ -202,7 +184,7 @@ vllm bench serve \
--num-prompts 1000
```
### InstructCoder Benchmark with Speculative Decoding
**InstructCoder Benchmark with Speculative Decoding**
``` bash
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
@ -212,23 +194,23 @@ VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
```
``` bash
vllm bench serve \
python3 benchmarks/benchmark_serving.py \
--model meta-llama/Meta-Llama-3-8B-Instruct \
--dataset-name hf \
--dataset-path likaixin/InstructCoder \
--num-prompts 2048
```
### Other HuggingFaceDataset Examples
**Other HuggingFaceDataset Examples**
```bash
vllm serve Qwen/Qwen2-VL-7B-Instruct
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
```
`lmms-lab/LLaVA-OneVision-Data`:
**`lmms-lab/LLaVA-OneVision-Data`**
```bash
vllm bench serve \
python3 vllm/benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
@ -239,10 +221,10 @@ vllm bench serve \
--num-prompts 10
```
`Aeala/ShareGPT_Vicuna_unfiltered`:
**`Aeala/ShareGPT_Vicuna_unfiltered`**
```bash
vllm bench serve \
python3 vllm/benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
@ -252,10 +234,10 @@ vllm bench serve \
--num-prompts 10
```
`AI-MO/aimo-validation-aime`:
**`AI-MO/aimo-validation-aime`**
``` bash
vllm bench serve \
python3 vllm/benchmarks/benchmark_serving.py \
--model Qwen/QwQ-32B \
--dataset-name hf \
--dataset-path AI-MO/aimo-validation-aime \
@ -263,23 +245,23 @@ vllm bench serve \
--seed 42
```
`philschmid/mt-bench`:
**`philschmid/mt-bench`**
``` bash
vllm bench serve \
python3 vllm/benchmarks/benchmark_serving.py \
--model Qwen/QwQ-32B \
--dataset-name hf \
--dataset-path philschmid/mt-bench \
--num-prompts 80
```
### Running With Sampling Parameters
**Running With Sampling Parameters**
When using OpenAI-compatible backends such as `vllm`, optional sampling
parameters can be specified. Example client command:
```bash
vllm bench serve \
python3 vllm/benchmarks/benchmark_serving.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--endpoint /v1/completions \
@ -291,34 +273,30 @@ vllm bench serve \
--num-prompts 10
```
### Running With Ramp-Up Request Rate
**Running With Ramp-Up Request Rate**
The benchmark tool also supports ramping up the request rate over the
duration of the benchmark run. This can be useful for stress testing the
server or finding the maximum throughput that it can handle, given some latency budget.
Two ramp-up strategies are supported:
- `linear`: Increases the request rate linearly from a start value to an end value.
- `exponential`: Increases the request rate exponentially.
The following arguments can be used to control the ramp-up:
- `--ramp-up-strategy`: The ramp-up strategy to use (`linear` or `exponential`).
- `--ramp-up-start-rps`: The request rate at the beginning of the benchmark.
- `--ramp-up-end-rps`: The request rate at the end of the benchmark.
</details>
## 📈 Example - Offline Throughput Benchmark
<details>
<summary>Show more</summary>
<summary><b>📈 Example - Offline Throughput Benchmark</b></summary>
<br/>
```bash
vllm bench throughput \
python3 vllm/benchmarks/benchmark_throughput.py \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset-name sonnet \
--dataset-path vllm/benchmarks/sonnet.txt \
@ -327,16 +305,16 @@ vllm bench throughput \
If successful, you will see the following output
```text
```
Throughput: 7.15 requests/s, 4656.00 total tokens/s, 1072.15 output tokens/s
Total num prompt tokens: 5014
Total num output tokens: 1500
```
### VisionArena Benchmark for Vision Language Models
**VisionArena Benchmark for Vision Language Models**
```bash
vllm bench throughput \
``` bash
python3 vllm/benchmarks/benchmark_throughput.py \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
@ -347,18 +325,18 @@ vllm bench throughput \
The `num prompt tokens` now includes image token counts
```text
```
Throughput: 2.55 requests/s, 4036.92 total tokens/s, 326.90 output tokens/s
Total num prompt tokens: 14527
Total num output tokens: 1280
```
### InstructCoder Benchmark with Speculative Decoding
**InstructCoder Benchmark with Speculative Decoding**
``` bash
VLLM_WORKER_MULTIPROC_METHOD=spawn \
VLLM_USE_V1=1 \
vllm bench throughput \
python3 vllm/benchmarks/benchmark_throughput.py \
--dataset-name=hf \
--dataset-path=likaixin/InstructCoder \
--model=meta-llama/Meta-Llama-3-8B-Instruct \
@ -371,18 +349,18 @@ vllm bench throughput \
"prompt_lookup_min": 2}'
```
```text
```
Throughput: 104.77 requests/s, 23836.22 total tokens/s, 10477.10 output tokens/s
Total num prompt tokens: 261136
Total num output tokens: 204800
```
### Other HuggingFaceDataset Examples
**Other HuggingFaceDataset Examples**
`lmms-lab/LLaVA-OneVision-Data`:
**`lmms-lab/LLaVA-OneVision-Data`**
```bash
vllm bench throughput \
python3 vllm/benchmarks/benchmark_throughput.py \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
@ -392,10 +370,10 @@ vllm bench throughput \
--num-prompts 10
```
`Aeala/ShareGPT_Vicuna_unfiltered`:
**`Aeala/ShareGPT_Vicuna_unfiltered`**
```bash
vllm bench throughput \
python3 vllm/benchmarks/benchmark_throughput.py \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
@ -404,10 +382,10 @@ vllm bench throughput \
--num-prompts 10
```
`AI-MO/aimo-validation-aime`:
**`AI-MO/aimo-validation-aime`**
```bash
vllm bench throughput \
python3 benchmarks/benchmark_throughput.py \
--model Qwen/QwQ-32B \
--backend vllm \
--dataset-name hf \
@ -416,12 +394,12 @@ vllm bench throughput \
--num-prompts 10
```
Benchmark with LoRA adapters:
**Benchmark with LoRA Adapters**
``` bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
vllm bench throughput \
python3 vllm/benchmarks/benchmark_throughput.py \
--model meta-llama/Llama-2-7b-hf \
--backend vllm \
--dataset_path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
@ -435,22 +413,20 @@ vllm bench throughput \
</details>
## 🛠️ Example - Structured Output Benchmark
<details>
<summary>Show more</summary>
<summary><b>🛠️ Example - Structured Output Benchmark</b></summary>
<br/>
Benchmark the performance of structured output generation (JSON, grammar, regex).
### Server Setup
**Server Setup**
```bash
vllm serve NousResearch/Hermes-3-Llama-3.1-8B
vllm serve NousResearch/Hermes-3-Llama-3.1-8B --disable-log-requests
```
### JSON Schema Benchmark
**JSON Schema Benchmark**
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
@ -462,7 +438,7 @@ python3 benchmarks/benchmark_serving_structured_output.py \
--num-prompts 1000
```
### Grammar-based Generation Benchmark
**Grammar-based Generation Benchmark**
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
@ -474,7 +450,7 @@ python3 benchmarks/benchmark_serving_structured_output.py \
--num-prompts 1000
```
### Regex-based Generation Benchmark
**Regex-based Generation Benchmark**
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
@ -485,7 +461,7 @@ python3 benchmarks/benchmark_serving_structured_output.py \
--num-prompts 1000
```
### Choice-based Generation Benchmark
**Choice-based Generation Benchmark**
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
@ -496,7 +472,7 @@ python3 benchmarks/benchmark_serving_structured_output.py \
--num-prompts 1000
```
### XGrammar Benchmark Dataset
**XGrammar Benchmark Dataset**
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
@ -509,16 +485,14 @@ python3 benchmarks/benchmark_serving_structured_output.py \
</details>
## 📚 Example - Long Document QA Benchmark
<details>
<summary>Show more</summary>
<summary><b>📚 Example - Long Document QA Benchmark</b></summary>
<br/>
Benchmark the performance of long document question-answering with prefix caching.
### Basic Long Document QA Test
**Basic Long Document QA Test**
```bash
python3 benchmarks/benchmark_long_document_qa_throughput.py \
@ -530,7 +504,7 @@ python3 benchmarks/benchmark_long_document_qa_throughput.py \
--repeat-count 5
```
### Different Repeat Modes
**Different Repeat Modes**
```bash
# Random mode (default) - shuffle prompts randomly
@ -563,16 +537,14 @@ python3 benchmarks/benchmark_long_document_qa_throughput.py \
</details>
## 🗂️ Example - Prefix Caching Benchmark
<details>
<summary>Show more</summary>
<summary><b>🗂️ Example - Prefix Caching Benchmark</b></summary>
<br/>
Benchmark the efficiency of automatic prefix caching.
### Fixed Prompt with Prefix Caching
**Fixed Prompt with Prefix Caching**
```bash
python3 benchmarks/benchmark_prefix_caching.py \
@ -583,7 +555,7 @@ python3 benchmarks/benchmark_prefix_caching.py \
--input-length-range 128:256
```
### ShareGPT Dataset with Prefix Caching
**ShareGPT Dataset with Prefix Caching**
```bash
# download dataset
@ -598,32 +570,16 @@ python3 benchmarks/benchmark_prefix_caching.py \
--input-length-range 128:256
```
### Prefix Repetition Dataset
```bash
vllm bench serve \
--backend openai \
--model meta-llama/Llama-2-7b-chat-hf \
--dataset-name prefix_repetition \
--num-prompts 100 \
--prefix-repetition-prefix-len 512 \
--prefix-repetition-suffix-len 128 \
--prefix-repetition-num-prefixes 5 \
--prefix-repetition-output-len 128
```
</details>
## ⚡ Example - Request Prioritization Benchmark
<details>
<summary>Show more</summary>
<summary><b>⚡ Example - Request Prioritization Benchmark</b></summary>
<br/>
Benchmark the performance of request prioritization in vLLM.
### Basic Prioritization Test
**Basic Prioritization Test**
```bash
python3 benchmarks/benchmark_prioritization.py \
@ -634,7 +590,7 @@ python3 benchmarks/benchmark_prioritization.py \
--scheduling-policy priority
```
### Multiple Sequences per Prompt
**Multiple Sequences per Prompt**
```bash
python3 benchmarks/benchmark_prioritization.py \
@ -647,41 +603,3 @@ python3 benchmarks/benchmark_prioritization.py \
```
</details>
## 👁️ Example - Multi-Modal Benchmark
<details>
<summary>Show more</summary>
<br/>
Benchmark the performance of multi-modal requests in vLLM.
### Images (ShareGPT4V)
Start vLLM:
```bash
python -m vllm.entrypoints.openai.api_server \
--model Qwen/Qwen2.5-VL-7B-Instruct \
--dtype bfloat16 \
--limit-mm-per-prompt '{"image": 1}' \
--allowed-local-media-path /path/to/sharegpt4v/images
```
Send requests with images:
```bash
python benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2.5-VL-7B-Instruct \
--dataset-name sharegpt \
--dataset-path /path/to/ShareGPT4V/sharegpt4v_instruct_gpt4-vision_cap100k.json \
--num-prompts 100 \
--save-result \
--result-dir ~/vllm_benchmark_results \
--save-detailed \
--endpoint /v1/chat/completion
```
</details>

View File

@ -3,7 +3,6 @@
This script automates the process of finding the optimal server parameter combination (`max-num-seqs` and `max-num-batched-tokens`) to maximize throughput for a vLLM server. It also supports additional constraints such as E2E latency and prefix cache hit rate.
## Table of Contents
- [Prerequisites](#prerequisites)
- [Configuration](#configuration)
- [How to Run](#how-to-run)
@ -40,7 +39,6 @@ You must set the following variables at the top of the script before execution.
| `DOWNLOAD_DIR` | **Required.** Directory to download and load model weights from. | `""` (default download path) |
| `INPUT_LEN` | **Required.** Request input length. | `4000` |
| `OUTPUT_LEN` | **Required.** Request output length. | `16` |
| `MAX_MODEL_LEN` | **Required.** Max model length. | `4096` |
| `MIN_CACHE_HIT_PCT` | Prefix cache hit rate in percentage (0-100). Set to `0` to disable. | `60` |
| `MAX_LATENCY_ALLOWED_MS` | The maximum allowed P99 end-to-end latency in milliseconds. Set to a very large number (e.g., `100000000000`) to effectively ignore the latency constraint. | `500` |
| `NUM_SEQS_LIST` | A space-separated string of `max-num-seqs` values to test. | `"128 256"` |
@ -53,7 +51,7 @@ You must set the following variables at the top of the script before execution.
1. **Configure**: Edit the script and set the variables in the [Configuration](#configuration) section.
2. **Execute**: Run the script. Since the process can take a long time, it is highly recommended to use a terminal multiplexer like `tmux` or `screen` to prevent the script from stopping if your connection is lost.
```bash
```
cd <FOLDER_OF_THIS_SCRIPT>
bash auto_tune.sh
```
@ -65,40 +63,34 @@ bash auto_tune.sh
Here are a few examples of how to configure the script for different goals:
### 1. Maximize Throughput (No Latency Constraint)
- **Goal**: Find the best `max-num-seqs` and `max-num-batched-tokens` to get the highest possible throughput for 1800 input tokens and 20 output tokens.
- **Configuration**:
```bash
INPUT_LEN=1800
OUTPUT_LEN=20
MAX_MODEL_LEN=2048
MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000 # A very large number
```
#### 2. Maximize Throughput with a Latency Requirement
- **Goal**: Find the best server parameters when P99 end-to-end latency must be below 500ms.
- **Configuration**:
```bash
INPUT_LEN=1800
OUTPUT_LEN=20
MAX_MODEL_LEN=2048
MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=500
```
#### 3. Maximize Throughput with Prefix Caching and Latency Requirements
- **Goal**: Find the best server parameters assuming a 60% prefix cache hit rate and a latency requirement of 500ms.
- **Configuration**:
```bash
INPUT_LEN=1800
OUTPUT_LEN=20
MAX_MODEL_LEN=2048
MIN_CACHE_HIT_PCT=60
MAX_LATENCY_ALLOWED_MS=500
```
@ -109,11 +101,11 @@ After the script finishes, you will find the results in a new, timestamped direc
- **Log Files**: The directory (`$BASE/auto-benchmark/YYYY_MM_DD_HH_MM/`) contains detailed logs for each run:
- `vllm_log_...txt`: The log output from the vLLM server for each parameter combination.
- `bm_log_...txt`: The log output from the `vllm bench serve` command for each benchmark run.
- `bm_log_...txt`: The log output from the `benchmark_serving.py` script for each benchmark run.
- **Final Result Summary**: A file named `result.txt` is created in the log directory. It contains a summary of each tested combination and concludes with the overall best parameters found.
```text
```
# Example result.txt content
hash:a1b2c3d4...
max_num_seqs: 128, max_num_batched_tokens: 2048, request_rate: 10.0, e2el: 450.5, throughput: 9.8, goodput: 9.8

View File

@ -1,18 +1,16 @@
#!/bin/bash
# This script aims to tune the best server parameter combinations to maximize throughput for given requirement.
# This script aims to tune the best server parameter combinations to maximize throughput for given requirement.
# See details in README (benchmarks/auto_tune/README.md).
TAG=$(date +"%Y_%m_%d_%H_%M")
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
BASE="$SCRIPT_DIR/../../.."
BASE=""
MODEL="meta-llama/Llama-3.1-8B-Instruct"
SYSTEM="TPU"
TP=1
DOWNLOAD_DIR=""
INPUT_LEN=4000
OUTPUT_LEN=16
MAX_MODEL_LEN=4096
MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000
NUM_SEQS_LIST="128 256"
@ -38,18 +36,10 @@ current_hash=$(git rev-parse HEAD)
echo "hash:$current_hash" >> "$RESULT"
echo "current_hash: $current_hash"
TOTAL_LEN=$((INPUT_LEN + OUTPUT_LEN))
RED='\033[0;31m'
if (( TOTAL_LEN > MAX_MODEL_LEN )); then
echo -e "${RED}FAILED: INPUT_LEN($INPUT_LEN) + OUTPUT_LEN($OUTPUT_LEN) = $TOTAL_LEN, which is > MAX_MODEL_LEN = $MAX_MODEL_LEN.\033[0m" >&2
exit 1
fi
best_throughput=0
best_max_num_seqs=0
best_num_batched_tokens=0
best_goodput=0
best_request_rate=0
start_server() {
local gpu_memory_utilization=$1
@ -57,42 +47,26 @@ start_server() {
local max_num_batched_tokens=$3
local vllm_log=$4
local profile_dir=$5
pkill -f vllm
pkill -if vllm
# Define the common arguments as a bash array.
# Each argument and its value are separate elements.
local common_args_array=(
"$MODEL"
"--disable-log-requests"
"--port" "8004"
"--gpu-memory-utilization" "$gpu_memory_utilization"
"--max-num-seqs" "$max_num_seqs"
"--max-num-batched-tokens" "$max_num_batched_tokens"
"--tensor-parallel-size" "$TP"
"--enable-prefix-caching"
"--load-format" "dummy"
"--download-dir" "$DOWNLOAD_DIR"
"--max-model-len" "$MAX_MODEL_LEN"
)
# Use the array expansion "${common_args_array[@]}"
# This correctly passes each element as a separate argument.
if [[ -n "$profile_dir" ]]; then
# Start server with profiling enabled
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir \
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
else
# Start server without profiling
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 \
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
fi
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir vllm serve $MODEL \
--disable-log-requests \
--port 8004 \
--gpu-memory-utilization $gpu_memory_utilization \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--tensor-parallel-size $TP \
--enable-prefix-caching \
--load-format dummy \
--download-dir "$DOWNLOAD_DIR" \
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
# wait for 10 minutes...
server_started=0
for i in {1..60}; do
for i in {1..60}; do
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
if [[ "$STATUS_CODE" -eq 200 ]]; then
server_started=1
break
@ -100,7 +74,6 @@ start_server() {
sleep 10
fi
done
if (( ! server_started )); then
echo "server did not start within 10 minutes. Please check server log at $vllm_log".
return 1
@ -109,20 +82,37 @@ start_server() {
fi
}
update_best_profile() {
local profile_dir=$1
local profile_index=$2
sorted_paths=($(find "$profile_dir" -maxdepth 1 -not -path "$profile_dir" | sort))
selected_profile_file=
if [[ "$SYSTEM" == "TPU" ]]; then
selected_profile_file="${sorted_paths[$profile_index]}/*.xplane.pb"
fi
if [[ "$SYSTEM" == "GPU" ]]; then
selected_profile_file="${sorted_paths[$profile_index]}"
fi
rm -f $PROFILE_PATH/*
cp $selected_profile_file $PROFILE_PATH
}
run_benchmark() {
local max_num_seqs=$1
local max_num_batched_tokens=$2
local gpu_memory_utilization=$3
echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
local profile_dir="$LOG_FOLDER/profile_${max_num_seqs}_${max_num_batched_tokens}"
echo "vllm_log: $vllm_log"
echo
rm -f $vllm_log
pkill -if vllm
mkdir -p $profile_dir
pkill -f vllm
local profile_index=0
echo "starting server..."
# Call start_server without a profile_dir to avoid profiling overhead
start_server $gpu_memory_utilization $max_num_seqs $max_num_batched_tokens $vllm_log ""
start_server $gpu_memory_utilization $max_num_seqs $max_num_batched_tokens $vllm_log $profile_dir
result=$?
if [[ "$result" -eq 1 ]]; then
echo "server failed to start. gpu_memory_utilization:$gpu_memory_utilization, max_num_seqs:$max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
@ -130,15 +120,14 @@ run_benchmark() {
echo "server started."
fi
echo
echo "run benchmark test..."
meet_latency_requirement=0
# get a basic qps by using request-rate inf
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
prefix_len=$(( INPUT_LEN * MIN_CACHE_HIT_PCT / 100 ))
adjusted_input_len=$(( INPUT_LEN - prefix_len ))
# --profile flag is removed from this call
vllm bench serve \
adjusted_input_len=$(( INPUT_LEN - prefix_len ))
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name random \
@ -151,7 +140,8 @@ run_benchmark() {
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 1000 \
--random-prefix-len $prefix_len \
--port 8004 &> "$bm_log"
--port 8004 \
--profile &> "$bm_log"
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
@ -165,11 +155,12 @@ run_benchmark() {
# start from request-rate as int(throughput) + 1
request_rate=$((${throughput%.*} + 1))
while ((request_rate > 0)); do
profile_index=$((profile_index+1))
# clear prefix cache
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
sleep 5
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_${request_rate}.txt"
vllm bench serve \
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name random \
@ -202,7 +193,12 @@ run_benchmark() {
best_max_num_seqs=$max_num_seqs
best_num_batched_tokens=$max_num_batched_tokens
best_goodput=$goodput
best_request_rate=$request_rate
if [[ "$SYSTEM" == "TPU" ]]; then
update_best_profile "$profile_dir/plugins/profile" $profile_index
fi
if [[ "$SYSTEM" == "GPU" ]]; then
update_best_profile "$profile_dir" $profile_index
fi
fi
else
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}"
@ -211,7 +207,7 @@ run_benchmark() {
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
pkill -if vllm
pkill vllm
sleep 10
printf '=%.0s' $(seq 1 20)
return 0
@ -224,8 +220,7 @@ read -r -a num_batched_tokens_list <<< "$NUM_BATCHED_TOKENS_LIST"
gpu_memory_utilization=0.98
find_gpu_memory_utilization=0
while (( $(echo "$gpu_memory_utilization >= 0.9" | bc -l) )); do
# Pass empty string for profile_dir argument
start_server $gpu_memory_utilization "${num_seqs_list[-1]}" "${num_batched_tokens_list[-1]}" "$LOG_FOLDER/vllm_log_gpu_memory_utilization_$gpu_memory_utilization.log" ""
start_server $gpu_memory_utilization "${num_seqs_list[-1]}" "${num_batched_tokens_list[-1]}" "$LOG_FOLDER/vllm_log_gpu_memory_utilization_$gpu_memory_utilization.log"
result=$?
if [[ "$result" -eq 0 ]]; then
find_gpu_memory_utilization=1
@ -248,45 +243,6 @@ for num_seqs in "${num_seqs_list[@]}"; do
done
done
echo "finish permutations"
# =================================================================================
# FINAL PROFILING RUN FOR THE BEST CONFIGURATION
# =================================================================================
if (( $(echo "$best_throughput > 0" | bc -l) )); then
echo
echo "Benchmark tuning finished. Now running profiling on the best configuration found..."
echo "Best config: max_num_seqs: $best_max_num_seqs, max_num_batched_tokens: $best_num_batched_tokens, throughput: $best_throughput"
echo
vllm_log="$LOG_FOLDER/vllm_log_BEST_PROFILE.txt"
bm_log="$LOG_FOLDER/bm_log_BEST_PROFILE.txt"
# Start server with the best params and profiling ENABLED
echo "Starting server for profiling..."
start_server $gpu_memory_utilization $best_max_num_seqs $best_num_batched_tokens "$vllm_log" "$PROFILE_PATH"
# Run benchmark with the best params and the --profile flag
echo "Running benchmark with profiling..."
prefix_len=$(( INPUT_LEN * MIN_CACHE_HIT_PCT / 100 ))
adjusted_input_len=$(( INPUT_LEN - prefix_len ))
vllm bench serve \
--backend vllm \
--model $MODEL \
--dataset-name random \
--random-input-len $adjusted_input_len \
--random-output-len $OUTPUT_LEN \
--ignore-eos \
--disable-tqdm \
--request-rate $best_request_rate \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 100 \
--random-prefix-len $prefix_len \
--port 8004 \
--profile &> "$bm_log"
else
echo "No configuration met the latency requirements. Skipping final profiling run."
fi
pkill -if vllm
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH" >> "$RESULT"

View File

@ -31,7 +31,7 @@ class RequestFuncInput:
model_name: Optional[str] = None
logprobs: Optional[int] = None
extra_body: Optional[dict] = None
multi_modal_content: Optional[dict | list[dict]] = None
multi_modal_content: Optional[dict] = None
ignore_eos: bool = False
language: Optional[str] = None
@ -364,15 +364,7 @@ async def async_request_openai_chat_completions(
) as session:
content = [{"type": "text", "text": request_func_input.prompt}]
if request_func_input.multi_modal_content:
mm_content = request_func_input.multi_modal_content
if isinstance(mm_content, list):
content.extend(mm_content)
elif isinstance(mm_content, dict):
content.append(mm_content)
else:
raise TypeError(
"multi_modal_content must be a dict or list[dict] for openai-chat"
)
content.append(request_func_input.multi_modal_content)
payload = {
"model": request_func_input.model_name
if request_func_input.model_name
@ -499,10 +491,7 @@ async def async_request_openai_audio(
buffer.seek(0)
return buffer
mm_audio = request_func_input.multi_modal_content
if not isinstance(mm_audio, dict) or "audio" not in mm_audio:
raise TypeError("multi_modal_content must be a dict containing 'audio'")
with to_bytes(*mm_audio["audio"]) as f:
with to_bytes(*request_func_input.multi_modal_content["audio"]) as f:
form = aiohttp.FormData()
form.add_field("file", f, content_type="audio/wav")
for key, value in payload.items():

View File

@ -1,74 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import gc
from tabulate import tabulate
from benchmark_utils import TimeCollector
from vllm.utils import FlexibleArgumentParser
from vllm.v1.core.block_pool import BlockPool
def main(args):
rows = []
for allocate_block in args.allocate_blocks:
# Enforce a GC collect ahead to minimize the impact among runs
gc.collect()
block_pool = BlockPool(num_gpu_blocks=args.num_gpu_blocks, enable_caching=True)
get_blocks_times = TimeCollector(TimeCollector.US)
free_blocks_times = TimeCollector(TimeCollector.US)
for _ in range(args.num_iteration):
with get_blocks_times:
blocks = block_pool.get_new_blocks(allocate_block)
with free_blocks_times:
block_pool.free_blocks(blocks)
rows.append(
[get_blocks_times.cnt, args.num_gpu_blocks, allocate_block]
+ get_blocks_times.dump_avg_max()
+ free_blocks_times.dump_avg_max()
)
print(
tabulate(
rows,
headers=[
"Iterations",
"Total\nBlocks",
"Allocated\nBlocks",
"Get Blocks\nAvg (us)",
"Get Blocks\nMax (us)",
"Free Blocks\nAvg (us)",
"Free Blocks\nMax (us)",
],
tablefmt="grid",
floatfmt=".3f",
)
)
def invoke_main() -> None:
parser = FlexibleArgumentParser(
description="Benchmark the performance of BlockPool for KV Cache."
)
parser.add_argument("--num-gpu-blocks", type=int, default=100000)
parser.add_argument(
"--num-iteration",
type=int,
default=1000,
help="Number of iterations to run to stablize final data readings",
)
parser.add_argument(
"--allocate-blocks",
type=int,
nargs="*",
default=[10, 50, 100, 500, 1000],
help="Number of blocks to allocate",
)
args = parser.parse_args()
main(args)
if __name__ == "__main__":
invoke_main() # pragma: no cover

View File

@ -52,7 +52,7 @@ class SampleRequest:
prompt: Union[str, Any]
prompt_len: int
expected_output_len: int
multi_modal_data: Optional[Union[MultiModalDataDict, dict, list[dict]]] = None
multi_modal_data: Optional[Union[MultiModalDataDict, dict]] = None
lora_request: Optional[LoRARequest] = None
@ -430,20 +430,14 @@ class ShareGPTDataset(BenchmarkDataset):
skip_min_output_len_check=output_len is not None,
):
continue
# TODO: Also support ShareGPT4Video.
if image_path := entry.get("image"):
mm_content = process_image(image_path)
else:
mm_content = None
if enable_multimodal_chat:
prompt = self.apply_multimodal_chat_transformation(prompt, mm_content)
prompt = self.apply_multimodal_chat_transformation(prompt, None)
samples.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=new_output_len,
lora_request=lora_request,
multi_modal_data=mm_content,
)
)
self.maybe_oversample_requests(samples, num_requests)

View File

@ -11,7 +11,6 @@ from typing import Any, Optional
import numpy as np
from tqdm import tqdm
from typing_extensions import deprecated
import vllm.envs as envs
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
@ -35,10 +34,6 @@ def save_to_pytorch_benchmark_format(
write_to_json(pt_file, pt_records)
@deprecated(
"benchmark_latency.py is deprecated and will be removed in a "
"future version. Please use 'vllm bench latency' instead.",
)
def main(args: argparse.Namespace):
print(args)

View File

@ -1,112 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import gc
import numpy as np
from tabulate import tabulate
from benchmark_utils import TimeCollector
from vllm.config import ModelConfig, SpeculativeConfig, VllmConfig
from vllm.utils import FlexibleArgumentParser
from vllm.v1.spec_decode.ngram_proposer import NgramProposer
def main(args):
rows = []
for max_ngram in args.max_ngram:
collector = TimeCollector(TimeCollector.US)
model_config = ModelConfig(
model="facebook/opt-125m",
task="generate",
max_model_len=args.num_token + args.num_spec_token,
tokenizer="facebook/opt-125m",
tokenizer_mode="auto",
dtype="auto",
seed=None,
trust_remote_code=False,
)
proposer = NgramProposer(
vllm_config=VllmConfig(
model_config=model_config,
speculative_config=SpeculativeConfig(
prompt_lookup_min=args.min_ngram,
prompt_lookup_max=max_ngram,
num_speculative_tokens=args.num_spec_token,
method="ngram",
),
)
)
# Warm up
proposer.propose(np.random.randint(0, 20, (args.num_token,)))
gc.collect()
for _ in range(args.num_iteration):
tokens = np.random.randint(0, 20, (args.num_req, args.num_token))
with collector:
for i in range(args.num_req):
proposer.propose(tokens[i, :])
rows.append(
[args.num_req, args.num_token, args.min_ngram, max_ngram]
+ collector.dump_avg_max()
)
print(
tabulate(
rows,
headers=[
"# Request",
"# Token",
"Min Ngram",
"Max Ngram",
"Avg (us)",
"Max (us)",
],
tablefmt="grid",
floatfmt=".3f",
)
)
def invoke_main() -> None:
parser = FlexibleArgumentParser(
description="Benchmark the performance of N-gram speculative decode drafting"
)
parser.add_argument(
"--num-iteration",
type=int,
default=100,
help="Number of iterations to run to stablize final data readings",
)
parser.add_argument(
"--num-req", type=int, default=128, help="Number of requests in the batch"
)
parser.add_argument(
"--num-token", type=int, default=1500, help="Number of tokens for each request"
)
parser.add_argument(
"--min-ngram",
type=int,
default=3,
help="Minimum n-gram to match",
)
parser.add_argument(
"--max-ngram",
type=int,
nargs="*",
default=[5, 7, 10, 15, 20],
help="Maximum n-gram to match",
)
parser.add_argument(
"--num-spec-token",
type=int,
default=3,
help="Number of speculative tokens to generate",
)
args = parser.parse_args()
main(args)
if __name__ == "__main__":
invoke_main() # pragma: no cover

View File

@ -5,7 +5,8 @@ r"""Benchmark online serving throughput.
On the server side, run one of the following commands:
vLLM OpenAI API server
vllm serve <your_model> \
--swap-space 16
--swap-space 16 \
--disable-log-requests
On the client side, run:
python benchmarks/benchmark_serving.py \
@ -37,7 +38,6 @@ from typing import Any, Literal, Optional
import numpy as np
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from typing_extensions import deprecated
from backend_request_func import (
ASYNC_REQUEST_FUNCS,
@ -263,14 +263,7 @@ async def benchmark(
input_requests[0].multi_modal_data,
)
assert (
test_mm_content is None
or isinstance(test_mm_content, dict)
or (
isinstance(test_mm_content, list)
and all(isinstance(item, dict) for item in test_mm_content)
)
), "multi_modal_data must be a dict or list[dict]"
assert test_mm_content is None or isinstance(test_mm_content, dict)
test_input = RequestFuncInput(
model=model_id,
model_name=model_name,
@ -402,6 +395,20 @@ async def benchmark(
tasks.append(asyncio.create_task(task))
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
if profile:
print("Stopping profiler...")
profile_input = RequestFuncInput(
model=model_id,
prompt=test_prompt,
api_url=base_url + "/stop_profile",
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler stopped")
if pbar is not None:
pbar.close()
@ -419,10 +426,6 @@ async def benchmark(
print("{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
if max_concurrency is not None:
print("{:<40} {:<10}".format("Maximum request concurrency:", max_concurrency))
if request_rate != float("inf"):
print("{:<40} {:<10.2f}".format("Request rate configured (RPS):", request_rate))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
@ -514,20 +517,6 @@ async def benchmark(
print("=" * 50)
if profile:
print("Stopping profiler...")
profile_input = RequestFuncInput(
model=model_id,
prompt=test_prompt,
api_url=base_url + "/stop_profile",
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler stopped")
return result
@ -604,10 +593,6 @@ def save_to_pytorch_benchmark_format(
write_to_json(pt_file, pt_records)
@deprecated(
"benchmark_serving.py is deprecated and will be removed in a future "
"version. Please use 'vllm bench serve' instead.",
)
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)

View File

@ -4,7 +4,7 @@ r"""Benchmark online serving throughput with structured outputs.
On the server side, run one of the following commands:
(vLLM OpenAI API server)
vllm serve <your_model>
vllm serve <your_model> --disable-log-requests
On the client side, run:
python benchmarks/benchmark_serving_structured_output.py \
@ -538,6 +538,20 @@ async def benchmark(
)
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
if profile:
print("Stopping profiler...")
profile_input = RequestFuncInput(
model=model_id,
prompt=test_request.prompt,
api_url=base_url + "/stop_profile",
prompt_len=test_request.prompt_len,
output_len=test_request.expected_output_len,
extra_body={test_request.structure_type: test_request.schema},
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler stopped")
if pbar is not None:
pbar.close()
@ -555,10 +569,6 @@ async def benchmark(
print("{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
if max_concurrency is not None:
print("{:<40} {:<10}".format("Maximum request concurrency:", max_concurrency))
if request_rate != float("inf"):
print("{:<40} {:<10.2f}".format("Request rate configured (RPS):", request_rate))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
@ -656,20 +666,6 @@ async def benchmark(
print("=" * 50)
if profile:
print("Stopping profiler...")
profile_input = RequestFuncInput(
model=model_id,
prompt=test_request.prompt,
api_url=base_url + "/stop_profile",
prompt_len=test_request.prompt_len,
output_len=test_request.expected_output_len,
extra_body={test_request.structure_type: test_request.schema},
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler stopped")
return result, ret

View File

@ -15,7 +15,6 @@ import torch
import uvloop
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerBase
from typing_extensions import deprecated
from benchmark_dataset import (
AIMODataset,
@ -168,8 +167,7 @@ async def run_vllm_async(
from vllm import SamplingParams
async with build_async_engine_client_from_engine_args(
engine_args,
disable_frontend_multiprocessing=disable_frontend_multiprocessing,
engine_args, disable_frontend_multiprocessing
) as llm:
model_config = await llm.get_model_config()
assert all(
@ -383,10 +381,6 @@ def get_requests(args, tokenizer):
return dataset_cls(**common_kwargs).sample(**sample_kwargs)
@deprecated(
"benchmark_throughput.py is deprecated and will be removed in a "
"future version. Please use 'vllm bench throughput' instead.",
)
def main(args: argparse.Namespace):
if args.seed is None:
args.seed = 0

View File

@ -1,12 +1,11 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import json
import math
import os
import time
from types import TracebackType
from typing import Any, Optional, Union
from typing import Any
def convert_to_pytorch_benchmark_format(
@ -73,53 +72,3 @@ def write_to_json(filename: str, records: list) -> None:
cls=InfEncoder,
default=lambda o: f"<{type(o).__name__} object is not JSON serializable>",
)
# Collect time and generate time metrics
#
# Example Usage:
# collector = TimeCollector(TimeCollector.US)
# for _ in range(total_iteration):
# with collector:
# ...
# collector.dump_avg_max()
class TimeCollector:
NS: int = 1
US: int = NS * 1000
MS: int = US * 1000
S: int = MS * 1000
def __init__(self, scale: int) -> None:
self.cnt: int = 0
self._sum: int = 0
self._max: Optional[int] = None
self.scale = scale
self.start_time: int = time.monotonic_ns()
def collect(self, v: int) -> None:
self.cnt += 1
self._sum += v
if self._max is None:
self._max = v
else:
self._max = max(self._max, v)
def avg(self) -> Union[float, str]:
return self._sum * 1.0 / self.cnt / self.scale if self.cnt > 0 else "N/A"
def max(self) -> Union[float, str]:
return self._max / self.scale if self._max else "N/A"
def dump_avg_max(self) -> list[Union[float, str]]:
return [self.avg(), self.max()]
def __enter__(self) -> None:
self.start_time = time.monotonic_ns()
def __exit__(
self,
exc_type: Optional[type[BaseException]],
exc_value: Optional[BaseException],
exc_traceback: Optional[TracebackType],
) -> None:
self.collect(time.monotonic_ns() - self.start_time)

View File

@ -3,7 +3,7 @@
# benchmark the overhead of disaggregated prefill.
# methodology:
# - send all request to prefill vLLM instance. It will buffer KV cache.
# - then send all request to decode instance.
# - then send all request to decode instance.
# - The TTFT of decode instance is the overhead.
set -ex
@ -12,8 +12,6 @@ kill_gpu_processes() {
# kill all processes on GPU.
pgrep pt_main_thread | xargs -r kill -9
pgrep python3 | xargs -r kill -9
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
pgrep VLLM | xargs -r kill -9
sleep 10
# remove vllm config file
@ -63,7 +61,7 @@ benchmark() {
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
@ -78,38 +76,38 @@ benchmark() {
wait_for_server 8200
# let the prefill instance finish prefill
vllm bench serve \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8100 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1.json \
--request-rate "inf"
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8100 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1.json \
--request-rate "inf"
# send the request to decode.
# The TTFT of this command will be the overhead of disagg prefill impl.
vllm bench serve \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8200 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1_overhead.json \
--request-rate "$qps"
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8200 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1_overhead.json \
--request-rate "$qps"
kill_gpu_processes
}

View File

@ -18,8 +18,6 @@ kill_gpu_processes() {
# kill all processes on GPU.
pgrep pt_main_thread | xargs -r kill -9
pgrep python3 | xargs -r kill -9
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
pgrep VLLM | xargs -r kill -9
for port in 8000 8100 8200; do lsof -t -i:$port | xargs -r kill -9; done
sleep 1
}
@ -60,7 +58,7 @@ launch_chunked_prefill() {
launch_disagg_prefill() {
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
# disagg prefill
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
@ -99,20 +97,20 @@ benchmark() {
output_len=$2
tag=$3
vllm bench serve \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8000 \
--save-result \
--result-dir $results_folder \
--result-filename "$tag"-qps-"$qps".json \
--request-rate "$qps"
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8000 \
--save-result \
--result-dir $results_folder \
--result-filename "$tag"-qps-"$qps".json \
--request-rate "$qps"
sleep 2
}

View File

@ -1,199 +1,63 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import asyncio
import logging
import os
import aiohttp
from quart import Quart, Response, make_response, request
from rate_limiter import RateLimiter
from request_queue import RequestQueue
from quart import Quart, make_response, request
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
app = Quart(__name__)
def parse_args():
"""parse command line arguments"""
parser = argparse.ArgumentParser(description="vLLM P/D disaggregation proxy server")
# Add args
parser.add_argument(
"--timeout",
type=float,
default=300,
help="Timeout for backend service requests in seconds (default: 300)",
)
parser.add_argument(
"--max-concurrent",
type=int,
default=100,
help="Maximum concurrent requests to backend services (default: 100)",
)
parser.add_argument(
"--queue-size",
type=int,
default=500,
help="Maximum number of requests in the queue (default: 500)",
)
parser.add_argument(
"--rate-limit",
type=int,
default=40,
help="Maximum requests per second (default: 40)",
)
parser.add_argument(
"--port",
type=int,
default=8000,
help="Port to run the server on (default: 8000)",
)
parser.add_argument(
"--prefill-url",
type=str,
default="http://localhost:8100/v1/completions",
help="Prefill service endpoint URL",
)
parser.add_argument(
"--decode-url",
type=str,
default="http://localhost:8200/v1/completions",
help="Decode service endpoint URL",
)
return parser.parse_args()
def main():
"""parse command line arguments"""
args = parse_args()
# Initialize configuration using command line parameters
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=args.timeout)
MAX_CONCURRENT_REQUESTS = args.max_concurrent
REQUEST_QUEUE_SIZE = args.queue_size
RATE_LIMIT = args.rate_limit
PREFILL_SERVICE_URL = args.prefill_url
DECODE_SERVICE_URL = args.decode_url
PORT = args.port
app = Quart(__name__)
# Initialize the rate limiter and request queue
rate_limiter = RateLimiter(RATE_LIMIT)
request_queue = RequestQueue(MAX_CONCURRENT_REQUESTS, REQUEST_QUEUE_SIZE)
# Attach the configuration object to the application instance
app.config.update(
{
"AIOHTTP_TIMEOUT": AIOHTTP_TIMEOUT,
"rate_limiter": rate_limiter,
"request_queue": request_queue,
"PREFILL_SERVICE_URL": PREFILL_SERVICE_URL,
"DECODE_SERVICE_URL": DECODE_SERVICE_URL,
}
)
# Start queue processing on app startup
@app.before_serving
async def startup():
"""Start request processing task when app starts serving"""
asyncio.create_task(request_queue.process())
async def forward_request(url, data):
"""Forward request to backend service with rate limiting and error handling"""
async def forward_request(url, data):
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
async with session.post(url=url, json=data, headers=headers) as response:
if response.status == 200:
# if response.headers.get('Transfer-Encoding') == 'chunked':
if True:
async for chunk_bytes in response.content.iter_chunked(1024):
yield chunk_bytes
else:
content = await response.read()
yield content
# Use rate limiter as context manager
async with (
rate_limiter,
aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session,
@app.route("/v1/completions", methods=["POST"])
async def handle_request():
try:
original_request_data = await request.get_json()
prefill_request = original_request_data.copy()
# change max_tokens = 1 to let it only do prefill
prefill_request["max_tokens"] = 1
# finish prefill
async for _ in forward_request(
"http://localhost:8100/v1/completions", prefill_request
):
try:
async with session.post(
url=url, json=data, headers=headers
) as response:
if response.status == 200:
# Stream response chunks
async for chunk_bytes in response.content.iter_chunked(1024):
yield chunk_bytes
else:
# Handle backend service errors
error_text = await response.text()
logger.error(
"Backend service error: %s - %s",
response.status,
error_text,
)
yield b'{"error": "Backend service error"}'
except aiohttp.ClientError as e:
# Handle connection errors
logger.error("Connection error to %s: %s", url, str(e))
yield b'{"error": "Service unavailable"}'
except asyncio.TimeoutError:
# Handle timeout errors
logger.error("Timeout connecting to %s", url)
yield b'{"error": "Service timeout"}'
continue
async def process_request():
"""Process a single request through prefill and decode stages"""
try:
original_request_data = await request.get_json()
# return decode
generator = forward_request(
"http://localhost:8200/v1/completions", original_request_data
)
response = await make_response(generator)
response.timeout = None
# Create prefill request (max_tokens=1)
prefill_request = original_request_data.copy()
prefill_request["max_tokens"] = 1
return response
# Execute prefill stage
async for _ in forward_request(PREFILL_SERVICE_URL, prefill_request):
continue
except Exception as e:
import sys
import traceback
# Execute decode stage and stream response
generator = forward_request(DECODE_SERVICE_URL, original_request_data)
response = await make_response(generator)
response.timeout = None # Disable timeout for streaming response
return response
except Exception:
logger.exception("Error processing request")
return Response(
response=b'{"error": "Internal server error"}',
status=500,
content_type="application/json",
)
@app.route("/v1/completions", methods=["POST"])
async def handle_request():
"""Handle incoming API requests with concurrency and rate limiting"""
# Create task for request processing
task = asyncio.create_task(process_request())
# Enqueue request or reject if queue is full
if not await request_queue.enqueue(task):
return Response(
response=b'{"error": "Server busy, try again later"}',
status=503,
content_type="application/json",
)
try:
# Return the response from the processing task
return await task
except asyncio.CancelledError:
# Handle task cancellation (timeout or queue full)
logger.warning("Request cancelled due to timeout or queue full")
return Response(
response=b'{"error": "Request cancelled"}',
status=503,
content_type="application/json",
)
# Start the Quart server with host can be set to 0.0.0.0
app.run(port=PORT)
exc_info = sys.exc_info()
print("Error occurred in disagg prefill proxy server")
print(e)
print("".join(traceback.format_exception(*exc_info)))
if __name__ == "__main__":
main()
app.run(port=8000)

View File

@ -1,45 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
import time
class RateLimiter:
"""Token bucket rate limiter implementation"""
def __init__(self, rate_limit):
self.rate_limit = rate_limit # Requests per second
self.num_available_tokens = rate_limit # Available tokens
self.last_refill = time.monotonic() # Last token refill time
self.lock = asyncio.Lock() # Synchronization lock
async def acquire(self):
"""Acquire a token from the rate limiter"""
while True:
async with self.lock:
current_time = time.monotonic()
elapsed = current_time - self.last_refill
# Refill num_available_tokens if more than 1 second has passed
if elapsed > 1.0:
self.num_available_tokens = self.rate_limit
self.last_refill = current_time
# Check if num_available_tokens are available
if self.num_available_tokens > 0:
self.num_available_tokens -= 1
return True
# Calculate wait time if no num_available_tokens available
wait_time = 1.0 - elapsed
await asyncio.sleep(wait_time)
async def __aenter__(self):
"""Enter async context manager - acquire token"""
await self.acquire()
return self
async def __aexit__(self, exc_type, exc_value, traceback):
"""Exit async context manager - no cleanup needed"""
pass

View File

@ -1,39 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
from collections import deque
class RequestQueue:
"""Request queue manager with concurrency control"""
def __init__(self, max_concurrent, max_queue_size):
# Maximum concurrent requests
self.max_concurrent = max_concurrent
self.max_queue_size = max_queue_size # Maximum queue size
# Concurrency control
self.semaphore = asyncio.Semaphore(max_concurrent)
self.queue = deque() # Request queue
self.queue_size = 0 # Current queue size
self.lock = asyncio.Lock() # Sync queue Lock
async def enqueue(self, task):
"""Add a request task to the queue"""
async with self.lock:
if self.queue_size >= self.max_queue_size:
return False
self.queue.append(task)
self.queue_size += 1
return True
async def process(self):
"""Process queued requests using semaphore for concurrency control"""
while True:
if self.queue:
async with self.semaphore, self.lock:
task = self.queue.popleft()
self.queue_size -= 1
await task
await asyncio.sleep(0.01) # Yield control to event loop

View File

@ -0,0 +1,345 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
import sys
from typing import Optional
import torch
import torch.nn.functional as F
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.aqlm import (
dequantize_weight,
generic_dequantize_gemm,
get_int_dtype,
optimized_dequantize_gemm,
)
from vllm.utils import FlexibleArgumentParser
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def torch_mult(
# [..., in_features]
input: torch.Tensor,
weights: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
) -> torch.Tensor:
output = F.linear(input, weights)
return output
def dequant_out_scale(
# [..., in_features]
input: torch.Tensor,
# [num_out_groups, num_in_groups, num_codebooks]
codes: torch.IntTensor,
# [num_codebooks, codebook_size, out_group_size, in_group_size]
codebooks: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
if bias is None:
output = F.linear(input, weights, bias)
orig_shape = output.shape
flattened_output = output.view(-1, output.size(-1))
f_scales = scales.view(-1, scales.shape[0])
b_scales = f_scales.expand(flattened_output.shape[0], -1)
flattened_output *= b_scales
return flattened_output.view(orig_shape)
else:
b_scales = scales.view(scales.shape[:-3] + (-1,)).expand(-1, weights.shape[1])
weights *= b_scales
return F.linear(input, weights, bias)
def dequant_weight_scale(
# [..., in_features]
input: torch.Tensor,
# [num_out_groups, num_in_groups, num_codebooks]
codes: torch.IntTensor,
# [num_codebooks, codebook_size, out_group_size, in_group_size]
codebooks: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
b_scales = scales.view(scales.shape[:-3] + (-1,)).expand(-1, weights.shape[1])
weights *= b_scales
return F.linear(input, weights, bias)
def dequant_no_scale(
# [..., in_features]
input: torch.Tensor,
# [num_out_groups, num_in_groups, num_codebooks]
codes: torch.IntTensor,
# [num_codebooks, codebook_size, out_group_size, in_group_size]
codebooks: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
return F.linear(input, weights, bias)
# Compare the optimized 1x16 and 2x8 cuda decompression/dequant kernels against
# the generic pytorch version.
# Just visual comparison.
def dequant_test(k: int, parts: torch.Tensor, nbooks: int, bits: int) -> None:
n = int(parts.sum().item())
device = torch.device("cuda:0")
code_range = (1 << bits) // 2
ingroups = 8
codes = torch.randint(
-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device,
)
codebooks = torch.randn(
size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device,
)
count = 0
for index in range(16):
for i in range(8):
for book in range(nbooks):
codebooks[book, index, 0, i] = count * (10**book)
count += 1
print("codes shape", codes.shape)
for i in range(16):
for book in range(nbooks):
codes[0, i, book] = i
codes[0, -i, book] = i
weights = dequantize_weight(codes, codebooks, None)
weights2 = ops.aqlm_dequant(codes, codebooks, parts)
print("weights shape:", weights.shape)
print("weights2 shape:", weights2.shape)
print("weights are:", weights)
print("weights2 are:", weights2)
print("first 128 weights are", weights[0, 0:128].to(torch.int32))
print("first 128 weights2 are:", weights2[0, 0:128].to(torch.int32))
print("last 128 weights are", weights[0, -128:])
print("last 128 weights2 are:", weights2[0, -128:])
def main():
parser = FlexibleArgumentParser(description="Benchmark aqlm performance.")
# Add arguments
parser.add_argument(
"--nbooks", type=int, default=1, help="Number of codebooks (default: 1)"
)
parser.add_argument(
"--bits",
type=int,
default=16,
help="Number of bits per code element (default: 16)",
)
parser.add_argument(
"--test",
type=bool,
default=False,
help="Run the decompression/dequant tester rather than benchmarking "
"(default: False)",
)
# Parse the arguments
args = parser.parse_args()
# Extract values
nbooks = args.nbooks
bits = args.bits
if args.test:
dequant_test(4096, torch.tensor((4096,)), nbooks, bits)
return
# Otherwise, benchmark.
methods = [
ops.aqlm_gemm,
dequant_out_scale,
generic_dequantize_gemm,
optimized_dequantize_gemm,
dequant_weight_scale,
torch_mult,
dequant_no_scale,
]
filename = f"./aqlm_benchmark_{nbooks}x{bits}.csv"
print(f"writing benchmarks to file {filename}")
with open(filename, "w") as f:
sys.stdout = f
print("m | k | n | n parts", end="")
for method in methods:
print(f" | {method.__name__.replace('_', ' ')} (µs)", end="")
print("")
# These are reasonable prefill sizes.
ksandpartions = (
(4096, (4096, 4096, 4096)),
(4096, (4096,)),
(4096, (11008, 11008)),
(11008, (4096,)),
)
# reasonable ranges for m.
for m in [
1,
2,
4,
8,
10,
12,
14,
16,
24,
32,
48,
52,
56,
64,
96,
112,
128,
256,
512,
1024,
1536,
2048,
3072,
4096,
]:
print(f"{m}", file=sys.__stdout__)
for ksp in ksandpartions:
run_grid(m, ksp[0], torch.tensor(ksp[1]), nbooks, bits, methods)
sys.stdout = sys.__stdout__
def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, methods):
# I didn't see visible improvements from increasing these, but feel free :)
num_warmup_trials = 1
num_trials = 1
num_calls = 100
# warmup.
for method in methods:
for _ in range(num_warmup_trials):
run_timing(
num_calls=num_calls,
m=m,
k=k,
parts=parts,
nbooks=nbooks,
bits=bits,
method=method,
)
n = parts.sum().item()
print(f"{m} | {k} | {n} | {parts.tolist()}", end="")
for method in methods:
best_time_us = 1e20
for _ in range(num_trials):
kernel_dur_ms = run_timing(
num_calls=num_calls,
m=m,
k=k,
parts=parts,
nbooks=nbooks,
bits=bits,
method=method,
)
kernel_dur_us = 1000 * kernel_dur_ms
if kernel_dur_us < best_time_us:
best_time_us = kernel_dur_us
print(f" | {kernel_dur_us:.0f}", end="")
print("")
def run_timing(
num_calls: int, m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, method
) -> float:
n = int(parts.sum().item())
device = torch.device("cuda:0")
input = torch.randn((1, m, k), dtype=torch.float16, device=device)
code_range = (1 << bits) // 2
ingroups = 8
codes = torch.randint(
-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device,
)
codebooks = torch.randn(
size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device,
)
scales = torch.randn(size=(n, 1, 1, 1), dtype=torch.float16, device=device)
# for comparison to just a pytorch mult.
weights = torch.randn((n, k), dtype=torch.float16, device=device)
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
if method is torch_mult:
for i in range(num_calls):
torch_mult(input, weights, scales)
else:
for i in range(num_calls):
method(input, codes, codebooks, scales, parts, None)
end_event.record()
end_event.synchronize()
dur_ms = start_event.elapsed_time(end_event) / num_calls
return dur_ms
if __name__ == "__main__":
sys.exit(main())

View File

@ -3,8 +3,6 @@
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from packaging import version
from vllm.model_executor.layers.quantization.utils.bitblas_utils import (
MINIMUM_BITBLAS_VERSION,
)
@ -12,7 +10,7 @@ from vllm.model_executor.layers.quantization.utils.bitblas_utils import (
try:
import bitblas
if version.parse(bitblas.__version__) < version.parse(MINIMUM_BITBLAS_VERSION):
if bitblas.__version__ < MINIMUM_BITBLAS_VERSION:
raise ImportError(
"bitblas version is wrong. Please "
f"install bitblas>={MINIMUM_BITBLAS_VERSION}"

View File

@ -236,7 +236,6 @@ def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
a=bt.a,
c=None,
b_q_weight=w_q,
b_bias=None,
b_scales=w_s,
global_scale=None,
b_zeros=w_zp,

View File

@ -3,7 +3,6 @@
import argparse
import json
import os
import time
from contextlib import nullcontext
from datetime import datetime
@ -23,13 +22,6 @@ from vllm.utils import FlexibleArgumentParser
FP8_DTYPE = current_platform.fp8_dtype()
def ensure_divisibility(numerator, denominator, text):
"""Ensure that numerator is divisible by the denominator."""
assert numerator % denominator == 0, "{} {} is not divisible by tp {}.".format(
text, numerator, denominator
)
class BenchmarkConfig(TypedDict):
BLOCK_SIZE_M: int
BLOCK_SIZE_N: int
@ -543,7 +535,6 @@ def save_configs(
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
block_quant_shape: list[int],
save_dir: str,
) -> None:
dtype_str = get_config_dtype_str(
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
@ -554,8 +545,7 @@ def save_configs(
filename = get_config_file_name(
num_experts, shard_intermediate_size // 2, dtype_str, block_quant_shape
)
os.makedirs(save_dir, exist_ok=True)
filename = os.path.join(save_dir, filename)
print(f"Writing best config to {filename}...")
with open(filename, "w") as f:
json.dump(configs, f, indent=4)
@ -580,10 +570,12 @@ def main(args: argparse.Namespace):
E = config.ffn_config.moe_num_experts
topk = config.ffn_config.moe_top_k
intermediate_size = config.ffn_config.ffn_hidden_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] == "JambaForCausalLM":
E = config.num_experts
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] in (
"DeepseekV3ForCausalLM",
"DeepseekV2ForCausalLM",
@ -592,14 +584,17 @@ def main(args: argparse.Namespace):
E = config.n_routed_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] in ("Qwen2MoeForCausalLM", "Qwen3MoeForCausalLM"):
E = config.num_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] in ("HunYuanMoEV1ForCausalLM"):
E = config.num_experts
topk = config.moe_topk[0]
intermediate_size = config.moe_intermediate_size[0]
shard_intermediate_size = 2 * intermediate_size // args.tp_size
else:
# Support for llama4
config = config.get_text_config()
@ -607,14 +602,8 @@ def main(args: argparse.Namespace):
E = config.num_local_experts
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
enable_ep = bool(args.enable_expert_parallel)
if enable_ep:
ensure_divisibility(E, args.tp_size, "Number of experts")
E = E // args.tp_size
shard_intermediate_size = 2 * intermediate_size
else:
ensure_divisibility(intermediate_size, args.tp_size, "intermediate_size")
shard_intermediate_size = 2 * intermediate_size // args.tp_size
hidden_size = config.hidden_size
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
@ -710,7 +699,6 @@ def main(args: argparse.Namespace):
use_fp8_w8a8,
use_int8_w8a16,
block_quant_shape,
args.save_dir,
)
end = time.time()
print(f"Tuning took {end - start:.2f} seconds")
@ -747,14 +735,10 @@ if __name__ == "__main__":
parser.add_argument(
"--tp-size", "-tp", "--tensor-parallel-size", type=int, default=2
)
parser.add_argument("--enable-expert-parallel", "-enable-ep", action="store_true")
parser.add_argument(
"--dtype", type=str, choices=["auto", "fp8_w8a8", "int8_w8a16"], default="auto"
)
parser.add_argument("--use-deep-gemm", action="store_true")
parser.add_argument(
"--save-dir", type=str, default="./", help="Directory to save tuned results"
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--batch-size", type=int, nargs="+", required=False)
parser.add_argument("--tune", action="store_true")

View File

@ -5,8 +5,9 @@ import itertools
import torch
from vllm import _custom_ops as ops
from vllm.model_executor.layers.fused_moe.moe_align_block_size import (
moe_align_block_size,
moe_align_block_size_triton,
)
from vllm.triton_utils import triton
@ -20,6 +21,60 @@ def get_topk_ids(num_tokens: int, num_experts: int, topk: int) -> torch.Tensor:
)
def check_correctness(num_tokens, num_experts=256, block_size=256, topk=8):
"""
Verifies vllm vs. Triton
"""
topk_ids = get_topk_ids(num_tokens, num_experts, topk)
# 1. malloc space for triton and vllm
# malloc enough space (max_num_tokens_padded) for the sorted ids
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
sorted_ids_triton = torch.empty(
(max_num_tokens_padded,), dtype=torch.int32, device="cuda"
)
expert_ids_triton = torch.empty(
(max_num_tokens_padded // block_size,), dtype=torch.int32, device="cuda"
)
num_tokens_post_pad_triton = torch.empty((1,), dtype=torch.int32, device="cuda")
sorted_ids_vllm = torch.empty_like(sorted_ids_triton)
expert_ids_vllm = torch.empty_like(expert_ids_triton)
num_tokens_post_pad_vllm = torch.empty_like(num_tokens_post_pad_triton)
# 2. run implementations
moe_align_block_size_triton(
topk_ids,
num_experts,
block_size,
sorted_ids_triton,
expert_ids_triton,
num_tokens_post_pad_triton,
)
ops.moe_align_block_size(
topk_ids,
num_experts,
block_size,
sorted_ids_vllm,
expert_ids_vllm,
num_tokens_post_pad_vllm,
)
print(f"✅ VLLM implementation works with {num_experts} experts!")
# 3. compare results
if torch.allclose(expert_ids_triton, expert_ids_vllm) and torch.allclose(
num_tokens_post_pad_triton, num_tokens_post_pad_vllm
):
print("✅ Triton and VLLM implementations match.")
else:
print("❌ Triton and VLLM implementations DO NOT match.")
print("Triton expert_ids:", expert_ids_triton)
print("VLLM expert_ids:", expert_ids_vllm)
print("Triton num_tokens_post_pad:", num_tokens_post_pad_triton)
print("VLLM num_tokens_post_pad:", num_tokens_post_pad_vllm)
# test configurations
num_tokens_range = [1, 16, 256, 4096]
num_experts_range = [16, 64, 224, 256, 280, 512]
@ -32,8 +87,8 @@ configs = list(itertools.product(num_tokens_range, num_experts_range, topk_range
x_names=["num_tokens", "num_experts", "topk"],
x_vals=configs,
line_arg="provider",
line_vals=["vllm"],
line_names=["vLLM"],
line_vals=["vllm", "triton"], # "triton"
line_names=["VLLM", "Triton"], # "Triton"
plot_name="moe-align-block-size-performance",
args={},
)
@ -43,11 +98,36 @@ def benchmark(num_tokens, num_experts, topk, provider):
block_size = 256
topk_ids = get_topk_ids(num_tokens, num_experts, topk)
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
sorted_ids = torch.empty((max_num_tokens_padded,), dtype=torch.int32, device="cuda")
max_num_m_blocks = max_num_tokens_padded // block_size
expert_ids = torch.empty((max_num_m_blocks,), dtype=torch.int32, device="cuda")
num_tokens_post_pad = torch.empty((1,), dtype=torch.int32, device="cuda")
quantiles = [0.5, 0.2, 0.8]
if provider == "vllm":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: moe_align_block_size(topk_ids, block_size, num_experts),
lambda: ops.moe_align_block_size(
topk_ids,
num_experts,
block_size,
sorted_ids.clone(),
expert_ids.clone(),
num_tokens_post_pad.clone(),
),
quantiles=quantiles,
)
elif provider == "triton":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: moe_align_block_size_triton(
topk_ids,
num_experts,
block_size,
sorted_ids.clone(),
expert_ids.clone(),
num_tokens_post_pad.clone(),
),
quantiles=quantiles,
)
@ -71,4 +151,6 @@ if __name__ == "__main__":
)
args = parser.parse_args()
print("Running correctness check...")
check_correctness(num_tokens=1024, num_experts=args.num_experts, topk=args.topk)
benchmark.run(print_data=True, show_plots=True)

View File

@ -8,13 +8,12 @@ import ray
import torch
from transformers import AutoConfig
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.model_executor.layers.fused_moe.moe_permute_unpermute import (
from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
_moe_permute,
_moe_unpermute_and_reduce,
moe_permute,
moe_unpermute,
)
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.model_executor.layers.fused_moe.moe_permute_unpermute import *
from vllm.model_executor.layers.fused_moe.utils import _fp8_quantize
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
@ -64,19 +63,18 @@ def benchmark_permute(
def run():
if use_customized_permute:
(
permuted_hidden_states,
a1q_scale,
first_token_off,
inv_perm_idx,
m_indices,
) = moe_permute(
qhidden_states,
a1q_scale=None,
topk_ids=topk_ids,
n_expert=num_experts,
expert_map=None,
align_block_size=align_block_size,
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = (
moe_permute(
qhidden_states,
topk_weights=topk_weights,
topk_ids=topk_ids,
token_expert_indices=token_expert_indices,
topk=topk,
n_expert=num_experts,
n_local_expert=num_experts,
expert_map=None,
align_block_size=align_block_size,
)
)
else:
(
@ -152,19 +150,18 @@ def benchmark_unpermute(
def prepare():
if use_customized_permute:
(
permuted_hidden_states,
a1q_scale,
first_token_off,
inv_perm_idx,
m_indices,
) = moe_permute(
qhidden_states,
a1q_scale=None,
topk_ids=topk_ids,
n_expert=num_experts,
expert_map=None,
align_block_size=align_block_size,
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = (
moe_permute(
qhidden_states,
topk_weights=topk_weights,
topk_ids=topk_ids,
token_expert_indices=token_expert_indices,
topk=topk,
n_expert=num_experts,
n_local_expert=num_experts,
expert_map=None,
align_block_size=align_block_size,
)
)
# convert to fp16/bf16 as gemm output
return (
@ -194,19 +191,16 @@ def benchmark_unpermute(
def run(input: tuple):
if use_customized_permute:
(
permuted_hidden_states,
first_token_off,
inv_perm_idx,
m_indices,
) = input
output = torch.empty_like(hidden_states)
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = input
moe_unpermute(
output,
permuted_hidden_states,
topk_weights,
topk_ids,
inv_perm_idx,
first_token_off,
topk,
num_experts,
num_experts,
)
else:
(
@ -217,11 +211,7 @@ def benchmark_unpermute(
inv_perm,
) = input
_moe_unpermute_and_reduce(
output_hidden_states,
permuted_hidden_states,
inv_perm,
topk_weights,
True,
output_hidden_states, permuted_hidden_states, inv_perm, topk_weights
)
# JIT compilation & warmup

View File

@ -1,328 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# This script benchmarks the mrope kernel (mainly for Qwen2VL and Qwen2.5VL models).
# It generates test data, runs benchmarks, and saves results to a CSV file.
#
# The CSV file (named with current date/time) contains these columns:
# model_name, tp_size, num_tokens, num_heads, num_kv_heads, head_dim, max_position,
# rope_theta, is_neox_style, rope_scaling, dtype, torch_mean, torch_median, torch_p99,
# torch_min, torch_max, triton_mean, triton_median, triton_p99, triton_min, triton_max,
# speedup
#
# == Usage Examples ==
#
# Single model benchmark:
# python3 benchmark_mrope.py --model-name Qwen/Qwen2-VL-7B-Instruct --tp-size 1 \
# --warmup-iter 10 --benchmark-iter 100 --dtype bfloat16 --seed 0 --num-tokens 1024
#
# All models benchmark:
# python3 benchmark_mrope.py --model-name "" --tp-size 1 --warmup-iter 10 \
# --benchmark-iter 100 --dtype bfloat16 --seed 0 --num-tokens 1024
#
# All models with different TP sizes:
# python3 benchmark_mrope.py --model-name "" --tp-size 1 2 4 8 --warmup-iter 10 \
# --benchmark-iter 100 --dtype bfloat16 --seed 0 --num-tokens 1024
#
# All models with different token counts:
# python3 benchmark_mrope.py --model-name "" --tp-size 1 --warmup-iter 10 \
# --benchmark-iter 100 --dtype bfloat16 --seed 0 --num-tokens 1024 4096 16384
import csv
import os
import time
from datetime import datetime
from typing import Any
import numpy as np
import torch
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.platforms import current_platform
from vllm.transformers_utils.config import get_config
from vllm.utils import FlexibleArgumentParser
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def generate_test_data(
num_tokens: int,
num_q_heads: int,
num_kv_heads: int,
head_size: int,
max_position_embeddings: int,
dtype: torch.dtype,
device: torch.device,
):
"""Generate test data for given configuration."""
# Create 2D positions (3, num_tokens) for multimodal case
positions = torch.randint(
0, max_position_embeddings // 4, (3, num_tokens), device=device
)
# Create query and key tensors
query = torch.randn(num_tokens, num_q_heads * head_size, dtype=dtype, device=device)
key = torch.randn(num_tokens, num_kv_heads * head_size, dtype=dtype, device=device)
return positions, query, key
def calculate_stats(times: list[float]) -> dict[str, float]:
"""Calculate statistics from a list of times."""
times_array = np.array(times)
return {
"mean": np.mean(times_array),
"median": np.median(times_array),
"p99": np.percentile(times_array, 99),
"min": np.min(times_array),
"max": np.max(times_array),
}
def benchmark_mrope(
model_name: str,
num_tokens: int,
head_dim: int,
tp_size: int,
num_heads: int,
num_kv_heads: int,
max_position: int = 8192,
rope_theta: float = 10000,
is_neox_style: bool = True,
rope_scaling: dict[str, Any] = None,
dtype: torch.dtype = torch.bfloat16,
seed: int = 0,
warmup_iter: int = 10,
benchmark_iter: int = 100,
csv_writer=None,
):
current_platform.seed_everything(seed)
torch.set_default_device(device)
# the parameters to compute the q k v size based on tp_size
mrope_helper_class = get_rope(
head_size=head_dim,
rotary_dim=head_dim,
max_position=max_position,
base=rope_theta,
is_neox_style=is_neox_style,
rope_scaling=rope_scaling,
dtype=dtype,
).to(device=device)
print(80 * "=")
print(
f"Evaluating model: {model_name} "
f"with tp_size: {tp_size} "
f"and num_tokens: {num_tokens}, "
f"dtype: {dtype}"
)
# create q k v input tensors
# create rotary pos emb input tensors
positions, query, key = generate_test_data(
num_tokens, num_heads, num_kv_heads, head_dim, max_position, dtype, device
)
# Warm up
for _ in range(warmup_iter):
mrope_helper_class.forward_native(
positions,
query.clone(),
key.clone(),
)
mrope_helper_class.forward_cuda(
positions,
query.clone(),
key.clone(),
)
torch.cuda.synchronize()
# Time reference implementation
torch_times = []
for _ in range(benchmark_iter):
query_clone = query.clone()
key_clone = key.clone()
torch.cuda.synchronize()
start_time = time.time()
mrope_helper_class.forward_native(
positions,
query_clone,
key_clone,
)
torch.cuda.synchronize()
torch_times.append(time.time() - start_time)
# Time triton kernel implementation
triton_times = []
for _ in range(benchmark_iter):
query_clone = query.clone()
key_clone = key.clone()
torch.cuda.synchronize()
start_time = time.time()
mrope_helper_class.forward_cuda(
positions,
query_clone,
key_clone,
)
torch.cuda.synchronize()
triton_times.append(time.time() - start_time)
# Calculate statistics
torch_stats = calculate_stats(torch_times)
triton_stats = calculate_stats(triton_times)
print(f"\nPerformance for config ({num_tokens}, {num_heads}, {num_kv_heads}):")
print(
f"Torch implementation: "
f"mean={torch_stats['mean']:.8f}s, "
f"median={torch_stats['median']:.8f}s, "
f"p99={torch_stats['p99']:.8f}s"
)
print(
f"Triton implementation: "
f"mean={triton_stats['mean']:.8f}s, "
f"median={triton_stats['median']:.8f}s, "
f"p99={triton_stats['p99']:.8f}s"
)
print(
f"Triton Speedup over Torch: {torch_stats['mean'] / triton_stats['mean']:.8f}x"
)
# Write to CSV
if csv_writer:
row = [
model_name,
tp_size,
num_tokens,
num_heads,
num_kv_heads,
head_dim,
max_position,
rope_theta,
is_neox_style,
str(rope_scaling),
str(dtype).split(".")[-1],
torch_stats["mean"],
torch_stats["median"],
torch_stats["p99"],
torch_stats["min"],
torch_stats["max"],
triton_stats["mean"],
triton_stats["median"],
triton_stats["p99"],
triton_stats["min"],
triton_stats["max"],
torch_stats["mean"] / triton_stats["mean"], # speedup
]
csv_writer.writerow(row)
return torch_stats, triton_stats
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the rotary embedding kernels."
)
parser.add_argument("--model-name", type=str, default="")
parser.add_argument("--tp-size", type=int, default=1)
parser.add_argument("--warmup-iter", type=int, default=10)
parser.add_argument("--benchmark-iter", type=int, default=100)
parser.add_argument("--dtype", type=str, choices=["bfloat16"], default="bfloat16")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--num-tokens", type=int, nargs="+", required=False)
parser.add_argument("--trust-remote-code", action="store_true")
parser.add_argument("--output-csv", type=str, default="mrope_benchmark_results.csv")
args = parser.parse_args()
print(args)
# Create CSV file for results
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
csv_filename = f"{os.path.splitext(args.output_csv)[0]}_{timestamp}.csv"
with open(csv_filename, "w", newline="") as csvfile:
csv_writer = csv.writer(csvfile)
# Write header
header = [
"model_name",
"tp_size",
"num_tokens",
"num_heads",
"num_kv_heads",
"head_dim",
"max_position",
"rope_theta",
"is_neox_style",
"rope_scaling",
"dtype",
"torch_mean",
"torch_median",
"torch_p99",
"torch_min",
"torch_max",
"triton_mean",
"triton_median",
"triton_p99",
"triton_min",
"triton_max",
"speedup",
]
csv_writer.writerow(header)
model_tp_dict = {}
if args.model_name == "":
model_tp_dict = {
"Qwen/Qwen2-VL-2B-Instruct": [1],
"Qwen/Qwen2-VL-7B-Instruct": [1],
"Qwen/Qwen2-VL-72B-Instruct": [2, 4, 8],
"Qwen/Qwen2.5-VL-3B-Instruct": [1, 2, 4, 8],
"Qwen/Qwen2.5-VL-7B-Instruct": [1, 2, 4, 8],
"Qwen/Qwen2.5-VL-72B-Instruct": [2, 4, 8],
}
else:
model_tp_dict[args.model_name] = [args.tp_size]
if args.num_tokens is None:
num_tokens_list = [2**i for i in range(0, 18)]
else:
num_tokens_list = args.num_tokens
for model_name, tp_list in model_tp_dict.items():
config = get_config(model_name, trust_remote_code=args.trust_remote_code)
for tp_size in tp_list:
# get the model config
total_num_kv_heads = config.num_key_value_heads
total_num_heads = config.num_attention_heads
num_heads = total_num_heads // tp_size
num_kv_heads = max(1, total_num_kv_heads // tp_size)
head_dim = config.hidden_size // total_num_heads
q_size = num_heads * head_dim
kv_size = num_kv_heads * head_dim
is_neox_style = True
rope_theta = config.rope_theta
max_position = config.max_position_embeddings
for num_tokens in num_tokens_list:
benchmark_mrope(
model_name=model_name,
num_tokens=num_tokens,
head_dim=head_dim,
tp_size=tp_size,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
max_position=max_position,
rope_theta=rope_theta,
is_neox_style=is_neox_style,
rope_scaling=config.rope_scaling,
dtype=getattr(torch, args.dtype),
seed=args.seed,
warmup_iter=args.warmup_iter,
benchmark_iter=args.benchmark_iter,
csv_writer=csv_writer,
)
print(f"Benchmark results saved to {csv_filename}")

View File

@ -1,159 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import math
from contextlib import contextmanager
from typing import Callable
from unittest.mock import patch
import torch
from vllm.model_executor.layers.quantization.utils import fp8_utils, int8_utils
from vllm.platforms import current_platform
@contextmanager
def _triton_mode():
"""Temporarily force the Triton fallback path"""
with patch("vllm.platforms.current_platform.is_cuda", return_value=False):
yield
def _time_cuda(
fn: Callable[[], tuple[torch.Tensor, torch.Tensor]],
warmup_iters: int,
bench_iters: int,
) -> float:
# warmup
for _ in range(warmup_iters):
fn()
torch.cuda.synchronize()
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
for _ in range(bench_iters):
fn()
end.record()
torch.cuda.synchronize()
return start.elapsed_time(end) / bench_iters # ms/iter
def _run_single(
shape: tuple[int, int],
group_size: int,
dtype: str,
*,
column_major: bool = False,
scale_ue8m0: bool = False,
warmup_iters: int,
bench_iters: int,
) -> None:
num_tokens, hidden_dim = shape
device = torch.device("cuda")
torch.manual_seed(42)
x = torch.randn(num_tokens, hidden_dim, device=device, dtype=torch.bfloat16) * 8
if dtype == "fp8":
def cuda_impl():
return fp8_utils.per_token_group_quant_fp8(
x,
group_size,
column_major_scales=column_major,
use_ue8m0=scale_ue8m0,
)
def triton_impl():
with _triton_mode():
return fp8_utils.per_token_group_quant_fp8(
x,
group_size,
column_major_scales=column_major,
use_ue8m0=scale_ue8m0,
)
elif dtype == "int8":
def cuda_impl():
return int8_utils.per_token_group_quant_int8(x, group_size)
def triton_impl():
with _triton_mode():
return int8_utils.per_token_group_quant_int8(x, group_size)
else:
raise ValueError("dtype must be 'fp8' or 'int8'")
cuda_ms = _time_cuda(cuda_impl, warmup_iters, bench_iters)
triton_ms = _time_cuda(triton_impl, warmup_iters, bench_iters)
speedup = triton_ms / cuda_ms if cuda_ms else math.inf
cfg_desc = (
f"shape={shape} gs={group_size:<3} col_major={column_major:<5} "
f"ue8m0={scale_ue8m0:<5} dtype={dtype}"
)
print(
f"{cfg_desc:55} | CUDA {cuda_ms:7.3f} ms | Triton {triton_ms:7.3f} ms | "
f"speed-up ×{speedup:5.2f}"
)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--warmup-iters", type=int, default=10)
parser.add_argument("--bench-iters", type=int, default=100)
parser.add_argument("--dtype", choices=["fp8", "int8", "both"], default="both")
return parser.parse_args()
if __name__ == "__main__":
if not current_platform.is_cuda():
raise RuntimeError("CUDA device is required to run this benchmark.")
args = parse_args()
warmup_iters, bench_iters = args.warmup_iters, args.bench_iters
shapes = [(32, 128), (64, 256), (16, 512)]
group_sizes = [64, 128]
dtypes = ["fp8", "int8"] if args.dtype == "both" else [args.dtype]
header = (
"Configuration".ljust(55)
+ " | "
+ "CUDA (ms)".center(12)
+ " | "
+ "Triton (ms)".center(13)
+ " | "
+ "Speed-up"
)
print(header)
print("-" * len(header))
for dtype in dtypes:
for shape in shapes:
for gs in group_sizes:
if dtype == "fp8":
for col_major in (False, True):
for ue8m0 in (False, True):
_run_single(
shape,
gs,
dtype,
column_major=col_major,
scale_ue8m0=ue8m0,
warmup_iters=warmup_iters,
bench_iters=bench_iters,
)
else: # INT8 has no col-major / ue8m0 switches
_run_single(
shape,
gs,
dtype,
warmup_iters=warmup_iters,
bench_iters=bench_iters,
)

View File

@ -1,156 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from __future__ import annotations
import random
import time
import torch
from tabulate import tabulate
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import (
STR_DTYPE_TO_TORCH_DTYPE,
FlexibleArgumentParser,
create_kv_caches_with_random_flash,
)
logger = init_logger(__name__)
@torch.inference_mode()
def run_benchmark(
num_tokens: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
kv_cache_dtype: str,
kv_cache_layout: str,
num_iters: int,
device: str = "cuda",
) -> float:
"""Return latency (seconds) for given num_tokens."""
if kv_cache_dtype == "fp8" and head_size % 16:
raise ValueError("fp8 kv-cache requires head_size to be a multiple of 16.")
current_platform.seed_everything(42)
torch.set_default_device(device)
# create random key / value tensors [T, H, D].
key = torch.randn(num_tokens, num_heads, head_size, dtype=dtype, device=device)
value = torch.randn_like(key)
# prepare the slot mapping.
# each token is assigned a unique slot in the KV-cache.
num_slots = block_size * num_blocks
if num_tokens > num_slots:
raise ValueError("num_tokens cannot exceed the total number of cache slots")
slot_mapping_lst = random.sample(range(num_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping_lst, dtype=torch.long, device=device)
key_caches, value_caches = create_kv_caches_with_random_flash(
num_blocks,
block_size,
1, # num_layers
num_heads,
head_size,
kv_cache_dtype,
dtype,
device=device,
cache_layout=kv_cache_layout,
)
key_cache, value_cache = key_caches[0], value_caches[0]
# compute per-kernel scaling factors for fp8 conversion (if used).
k_scale = (key.amax() / 64.0).to(torch.float32)
v_scale = (value.amax() / 64.0).to(torch.float32)
def run_cuda_benchmark(n_iters: int) -> float:
nonlocal key, value, key_cache, value_cache, slot_mapping
torch.cuda.synchronize()
start = time.perf_counter()
for _ in range(n_iters):
ops.reshape_and_cache_flash(
key,
value,
key_cache,
value_cache,
slot_mapping,
kv_cache_dtype,
k_scale,
v_scale,
)
torch.cuda.synchronize()
end = time.perf_counter()
return (end - start) / n_iters
# warm-up
run_cuda_benchmark(3)
lat = run_cuda_benchmark(num_iters)
# free tensors to mitigate OOM when sweeping
del key, value, key_cache, value_cache, slot_mapping
torch.cuda.empty_cache()
return lat
def main(args):
rows = []
for layout in ["NHD", "HND"]:
for exp in range(1, 17):
n_tok = 2**exp
lat = run_benchmark(
num_tokens=n_tok,
num_heads=args.num_heads,
head_size=args.head_size,
block_size=args.block_size,
num_blocks=args.num_blocks,
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
kv_cache_dtype=args.kv_cache_dtype,
kv_cache_layout=layout,
num_iters=args.iters,
device="cuda",
)
rows.append([n_tok, layout, f"{lat * 1e6:.3f}"])
print(tabulate(rows, headers=["num_tokens", "layout", "latency (µs)"]))
if __name__ == "__main__":
parser = FlexibleArgumentParser()
parser.add_argument("--num-heads", type=int, default=128)
parser.add_argument(
"--head-size",
type=int,
choices=[64, 80, 96, 112, 120, 128, 192, 256],
default=128,
)
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
parser.add_argument("--num-blocks", type=int, default=128 * 512)
parser.add_argument(
"--dtype",
type=str,
choices=["half", "bfloat16", "float"],
default="bfloat16",
)
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=["auto", "fp8"],
default="auto",
)
parser.add_argument("--iters", type=int, default=100)
args = parser.parse_args()
main(args)

View File

@ -41,6 +41,7 @@ def benchmark_decode(
device = "cuda"
torch.manual_seed(0)
# Currently only HEAD_GRP_SIZE == 8 is supported
HEAD_GRP_SIZE = 8
MAX_SEQ_LEN = max_seq_len
@ -70,20 +71,22 @@ def benchmark_decode(
if kv_cache_dtype.startswith("fp8"):
kv_cache, _ = to_float8(kv_cache)
output_trtllm = torch.empty(q.shape, dtype=dtype)
# Benchmark TRT decode
def trt_decode():
return flashinfer.decode.trtllm_batch_decode_with_kv_cache(
q,
kv_cache,
workspace_buffer,
num_qo_heads,
num_kv_heads,
sm_scale,
block_tables,
kv_lens_tensor,
page_size,
max_kv_len,
bmm1_scale=k_scale * sm_scale,
bmm2_scale=v_scale,
out=output_trtllm,
kv_cache_dtype,
k_scale,
v_scale,
)
def time_fn(fn, warmup=10, trials=20):
@ -122,8 +125,6 @@ def benchmark_decode(
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
output_baseline = torch.empty(q.shape, dtype=dtype)
wrapper = flashinfer.BatchDecodeWithPagedKVCacheWrapper(
workspace_buffer,
kv_layout,
@ -144,7 +145,7 @@ def benchmark_decode(
)
def baseline_decode():
return wrapper.run(q, kv_cache, sm_scale, k_scale, v_scale, output_baseline)
return wrapper.run(q, kv_cache, sm_scale, k_scale, v_scale)
baseline_mean, baseline_std = time_fn(baseline_decode)
@ -213,39 +214,25 @@ if __name__ == "__main__":
max_seq_lens = [1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072]
all_results = []
print("Running benchmark for kv_cache_dtype: bfloat16")
print(
"Running benchmark for q_dtype = bfloat16, kv_cache_dtype: bfloat16, "
"output_dtype: bfloat16"
)
print(
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\t"
"baseline_std\tspeedup_percent"
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\tbaseline_std\tspeedup_percent"
)
for max_seq_len in max_seq_lens:
for bs in num_seqs:
result = benchmark_decode(
bs,
max_seq_len,
dtype=torch.bfloat16,
kv_cache_dtype="auto",
bs, max_seq_len, dtype=torch.bfloat16, kv_cache_dtype="auto"
)
all_results.append(result)
print("Running benchmark for q_dtype = bfloat16, kv_cache_dtype: fp8")
print(
"Running benchmark for q_dtype = bfloat16, kv_cache_dtype: fp8, "
"output_dtype: bfloat16"
)
print(
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\t"
"baseline_std\tspeedup_percent"
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\tbaseline_std\tspeedup_percent"
)
for max_seq_len in max_seq_lens:
for bs in num_seqs:
result = benchmark_decode(
bs,
max_seq_len,
dtype=torch.bfloat16,
kv_cache_dtype="fp8",
bs, max_seq_len, dtype=torch.bfloat16, kv_cache_dtype="fp8"
)
all_results.append(result)

View File

@ -1,250 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import csv
import os
import random
from datetime import datetime
import flashinfer
import torch
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
# KV Cache Layout for TRT-LLM
# kv_cache_shape = (num_blocks, 2, num_kv_heads, page_size, head_dim)
def to_float8(x, dtype=torch.float8_e4m3fn):
finfo = torch.finfo(dtype)
min_val, max_val = x.aminmax()
amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
scale = finfo.max / amax * 0.1
x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max)
return x_scl_sat.to(dtype), scale.float().reciprocal()
@torch.no_grad()
def benchmark_prefill(
num_seqs,
max_seq_len,
page_size=16,
dtype=torch.bfloat16,
kv_layout="HND",
num_kv_heads=8,
kv_cache_dtype="auto",
head_dim=128,
warmup=10,
trials=20,
):
torch.set_default_device("cuda")
torch.manual_seed(0)
HEAD_GRP_SIZE = 8
MAX_SEQ_LEN = max_seq_len
# large number to reduce kv_cache reuse
NUM_BLOCKS = int(256000 / page_size)
workspace_buffer = torch.empty(1024 * 1024 * 1024, dtype=torch.int8)
num_qo_heads = num_kv_heads * HEAD_GRP_SIZE
sm_scale = float(1.0 / (head_dim**0.5))
q_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
q_lens[-1] = MAX_SEQ_LEN
max_q_len = max(q_lens)
q_indptr = torch.cat(
[
torch.tensor([0], dtype=torch.int32),
torch.cumsum(
torch.tensor(q_lens, dtype=torch.int32), dim=0, dtype=torch.int32
),
]
)
q = torch.randn(sum(q_lens), num_qo_heads, head_dim, dtype=dtype)
kv_lens = [random.randint(0, MAX_SEQ_LEN) for _ in range(num_seqs)]
kv_lens[-1] = MAX_SEQ_LEN
seq_lens = [q_len + kv_len for q_len, kv_len in zip(q_lens, kv_lens)]
max_seq_len = max(seq_lens)
seq_lens_tensor = torch.tensor(seq_lens, dtype=torch.int32)
max_num_blocks_per_seq = (max_seq_len + page_size - 1) // page_size
block_tables = torch.randint(
0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32
)
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, page_size, head_dim)
kv_cache = torch.randn(size=kv_cache_shape, dtype=dtype)
k_scale = v_scale = 1.0
if kv_cache_dtype.startswith("fp8"):
kv_cache, _ = to_float8(kv_cache)
output_trtllm = torch.empty(q.shape, dtype=dtype)
kv_indptr = [0]
kv_indices = []
kv_last_page_lens = []
for i in range(num_seqs):
seq_len = seq_lens[i]
assert seq_len > 0
num_blocks = (seq_len + page_size - 1) // page_size
kv_indices.extend(block_tables[i, :num_blocks])
kv_indptr.append(kv_indptr[-1] + num_blocks)
kv_last_page_len = seq_len % page_size
if kv_last_page_len == 0:
kv_last_page_len = page_size
kv_last_page_lens.append(kv_last_page_len)
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
output_baseline = torch.empty(q.shape, dtype=dtype)
wrapper = flashinfer.BatchPrefillWithPagedKVCacheWrapper(
workspace_buffer, kv_layout
)
wrapper.plan(
q_indptr,
kv_indptr,
kv_indices,
kv_last_page_lens,
num_qo_heads,
num_kv_heads,
head_dim,
page_size,
causal=True,
sm_scale=sm_scale,
q_data_type=dtype,
kv_data_type=kv_cache.dtype,
)
def time_fn(fn, warmup=10, trials=20):
torch.cuda.synchronize()
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
times = []
for i in range(warmup):
fn()
for i in range(trials):
start.record()
fn()
end.record()
torch.cuda.synchronize()
times.append(start.elapsed_time(end)) # ms
return sum(times) / len(times), torch.std(torch.tensor(times))
def baseline_prefill():
return wrapper.run(
q, kv_cache, k_scale=k_scale, v_scale=v_scale, out=output_baseline
)
def trt_prefill():
return flashinfer.prefill.trtllm_batch_context_with_kv_cache(
query=q,
kv_cache=kv_cache,
workspace_buffer=workspace_buffer,
block_tables=block_tables,
seq_lens=seq_lens_tensor,
max_q_len=max_q_len,
max_kv_len=max_seq_len,
bmm1_scale=k_scale * sm_scale,
bmm2_scale=v_scale,
batch_size=num_seqs,
cum_seq_lens_q=q_indptr,
cum_seq_lens_kv=kv_indptr,
out=output_trtllm,
)
trt_mean, trt_std = time_fn(trt_prefill)
baseline_mean, baseline_std = time_fn(baseline_prefill)
# Calculate percentage speedup (positive means TRT is faster)
speedup_percent = (baseline_mean - trt_mean) / baseline_mean
print(
f"\t{num_seqs}\t{max_seq_len}\t{trt_mean:.5f}\t{trt_std.item():.5f}"
f"\t{baseline_mean:.5f}\t{baseline_std.item():.5f}\t{speedup_percent:.5f}"
)
# Return results for CSV writing
return {
"num_seqs": num_seqs,
"trt_mean": trt_mean,
"trt_std": trt_std.item(),
"baseline_mean": baseline_mean,
"baseline_std": baseline_std.item(),
"speedup_percent": speedup_percent,
"q_dtype": str(dtype),
"kv_cache_dtype": kv_cache_dtype,
"page_size": page_size,
"num_kv_heads": num_kv_heads,
"head_dim": head_dim,
"max_seq_len": max_seq_len,
}
def write_results_to_csv(results, filename=None):
"""Write benchmark results to CSV file."""
if filename is None:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"flashinfer_trtllm_benchmark_{timestamp}.csv"
fieldnames = [
"num_seqs",
"trt_mean",
"trt_std",
"baseline_mean",
"baseline_std",
"speedup_percent",
"q_dtype",
"kv_cache_dtype",
"page_size",
"num_kv_heads",
"head_dim",
"max_seq_len",
]
file_exists = os.path.exists(filename)
with open(filename, "a", newline="") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if not file_exists:
writer.writeheader()
for result in results:
writer.writerow(result)
print(f"Results written to {filename}")
if __name__ == "__main__":
num_seqs = [1, 4, 8, 16, 32, 64, 128, 256]
max_seq_lens = [1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072]
all_results = []
print(
"Running benchmark for q_dtype = bfloat16, kv_cache_dtype: bfloat16, "
"output_dtype: bfloat16"
)
print(
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\t"
"baseline_std\tspeedup_percent"
)
for max_seq_len in max_seq_lens:
for bs in num_seqs:
result = benchmark_prefill(
bs,
max_seq_len,
dtype=torch.bfloat16,
kv_cache_dtype="auto",
)
all_results.append(result)
# Write all results to CSV
write_results_to_csv(all_results)

View File

@ -8,7 +8,7 @@ Currently this just includes dense GEMMs and only works on Hopper GPUs.
You need to install vLLM in your usual fashion, then install DeepGEMM from source in its own directory:
```bash
```
git clone --recursive https://github.com/deepseek-ai/DeepGEMM
cd DeepGEMM
python setup.py install
@ -17,7 +17,7 @@ uv pip install -e .
## Usage
```console
```
python benchmark_fp8_block_dense_gemm.py
INFO 02-26 21:55:13 [__init__.py:207] Automatically detected platform cuda.
===== STARTING FP8 GEMM BENCHMARK =====

View File

@ -4,16 +4,49 @@
# ruff: noqa: E501
import time
# Import DeepGEMM functions
import deep_gemm
import torch
from deep_gemm import calc_diff, ceil_div, get_col_major_tma_aligned_tensor
# Import vLLM functions
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
get_col_major_tma_aligned_tensor,
per_token_group_quant_fp8,
w8a8_block_fp8_matmul,
)
from vllm.triton_utils import triton
from vllm.utils.deep_gemm import calc_diff, fp8_gemm_nt, per_block_cast_to_fp8
# Copied from
# https://github.com/deepseek-ai/DeepGEMM/blob/78cacf70d41d15d688bd493ebc85845f7f2a3d5d/tests/test_core.py#L9
def per_token_cast_to_fp8(
x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""Convert tensor to FP8 format with per-token scaling."""
assert x.dim() == 2 and x.size(1) % 128 == 0
m, n = x.shape
x_view = x.view(m, -1, 128)
x_amax = x_view.abs().float().amax(dim=2).view(m, -1).clamp(1e-4)
return (x_view * (448.0 / x_amax.unsqueeze(2))).to(
torch.float8_e4m3fn).view(m, n), (x_amax / 448.0).view(m, -1)
# Copied from
# https://github.com/deepseek-ai/DeepGEMM/blob/78cacf70d41d15d688bd493ebc85845f7f2a3d5d/tests/test_core.py#L17
def per_block_cast_to_fp8(
x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""Convert tensor to FP8 format with per-block scaling."""
assert x.dim() == 2
m, n = x.shape
x_padded = torch.zeros((ceil_div(m, 128) * 128, ceil_div(n, 128) * 128),
dtype=x.dtype,
device=x.device)
x_padded[:m, :n] = x
x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128)
x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4)
x_scaled = (x_view * (448.0 / x_amax)).to(torch.float8_e4m3fn)
return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (
x_amax / 448.0).view(x_view.size(0), x_view.size(2))
def benchmark_shape(m: int,
@ -36,14 +69,14 @@ def benchmark_shape(m: int,
# Pre-quantize B for all implementations
# (weights can be pre-quantized offline)
B_deepgemm, B_scale_deepgemm = per_block_cast_to_fp8(B, [128, 128], use_ue8m0=True)
B_vllm, B_scale_vllm = per_block_cast_to_fp8(B, [128, 128], use_ue8m0=True)
B_deepgemm, B_scale_deepgemm = per_block_cast_to_fp8(B)
B_vllm, B_scale_vllm = per_block_cast_to_fp8(B)
# Block size configuration
block_size = [128, 128]
# Pre-quantize A for all implementations
A_deepgemm, A_scale_deepgemm = per_token_group_quant_fp8(A, block_size[1])
A_deepgemm, A_scale_deepgemm = per_token_cast_to_fp8(A)
A_scale_deepgemm = get_col_major_tma_aligned_tensor(A_scale_deepgemm)
C_deepgemm = torch.empty((m, n), device='cuda', dtype=torch.bfloat16)
A_vllm, A_scale_vllm = per_token_group_quant_fp8(A, block_size[1])
@ -52,7 +85,7 @@ def benchmark_shape(m: int,
# === DeepGEMM Implementation ===
def deepgemm_gemm():
fp8_gemm_nt((A_deepgemm, A_scale_deepgemm),
deep_gemm.gemm_fp8_fp8_bf16_nt((A_deepgemm, A_scale_deepgemm),
(B_deepgemm, B_scale_deepgemm),
C_deepgemm)
return C_deepgemm

View File

@ -0,0 +1,108 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import gc
import time
from typing import Optional
from tabulate import tabulate
from vllm.utils import FlexibleArgumentParser
from vllm.v1.core.block_pool import BlockPool
class Metric:
def __init__(self) -> None:
self.cnt: int = 0
self.sum_v: int = 0
self.max_v: Optional[int] = None
def update(self, v: int) -> None:
self.cnt += 1
self.sum_v += v
if self.max_v is None:
self.max_v = v
else:
self.max_v = max(self.max_v, v)
def avg_v(self) -> float:
return self.sum_v * 1.0 / self.cnt
def main(args):
rows = []
for allocate_block in args.allocate_blocks:
# Enforce a GC collect ahead to minimize the impact among runs
gc.collect()
block_pool = BlockPool(num_gpu_blocks=args.num_gpu_blocks, enable_caching=True)
get_blocks_metric: Metric = Metric()
free_blocks_metric: Metric = Metric()
for _ in range(args.num_iteration):
t1 = time.monotonic_ns()
blocks = block_pool.get_new_blocks(allocate_block)
t2 = time.monotonic_ns()
block_pool.free_blocks(blocks)
t3 = time.monotonic_ns()
get_blocks_metric.update(t2 - t1)
free_blocks_metric.update(t3 - t2)
if get_blocks_metric.max_v is not None and free_blocks_metric.max_v is not None:
rows.append(
[
get_blocks_metric.cnt,
args.num_gpu_blocks,
allocate_block,
get_blocks_metric.avg_v() / 1000000,
get_blocks_metric.max_v / 1000000.0,
free_blocks_metric.avg_v() / 1000000,
free_blocks_metric.max_v / 1000000.0,
]
)
else:
print(
"No valid metrics found."
f" {get_blocks_metric.max_v=} {free_blocks_metric.max_v=}"
)
print(
tabulate(
rows,
headers=[
"Iterations",
"Total\nBlocks",
"Allocated\nBlocks",
"Get Blocks\nAvg (ms)",
"Get Blocks\nMax (ms)",
"Free Blocks\nAvg (ms)",
"Free Blocks\nMax (ms)",
],
tablefmt="grid",
floatfmt=".6f",
)
)
def invoke_main() -> None:
parser = FlexibleArgumentParser(
description="Benchmark the performance of BlockPool for KV Cache."
)
parser.add_argument("--num-gpu-blocks", type=int, default=100000)
parser.add_argument(
"--num-iteration",
type=int,
default=1000,
help="Number of iterations to run to stablize final data readings",
)
parser.add_argument(
"--allocate-blocks",
type=int,
nargs="*",
default=[10, 50, 100, 500, 1000],
help="Number of blocks to allocate",
)
args = parser.parse_args()
main(args)
if __name__ == "__main__":
invoke_main() # pragma: no cover

View File

@ -1,71 +0,0 @@
# Benchmark KV Cache Offloading with Multi-Turn Conversations
The requirements (pip) for `benchmark_serving_multi_turn.py` can be found in `requirements.txt`
First start serving your model
```bash
export MODEL_NAME=/models/meta-llama/Meta-Llama-3.1-8B-Instruct/
vllm serve $MODEL_NAME --disable-log-requests
```
## Synthetic Multi-Turn Conversations
Download the following text file (used for generation of synthetic conversations)
```bash
wget https://www.gutenberg.org/ebooks/1184.txt.utf-8
mv 1184.txt.utf-8 pg1184.txt
```
The filename `pg1184.txt` is used in `generate_multi_turn.json` (see `"text_files"`).
But you may use other text files if you prefer (using this specific file is not required).
Then run the benchmarking script
```bash
export MODEL_NAME=/models/meta-llama/Meta-Llama-3.1-8B-Instruct/
python benchmark_serving_multi_turn.py --model $MODEL_NAME --input-file generate_multi_turn.json \
--num-clients 2 --max-active-conversations 6
```
You can edit the file `generate_multi_turn.json` to change the conversation parameters (number of turns, etc.).
If successful, you will see the following output
```bash
----------------------------------------------------------------------------------------------------
Statistics summary:
runtime_sec = 215.810
requests_per_sec = 0.769
----------------------------------------------------------------------------------------------------
count mean std min 25% 50% 75% 90% 99% max
ttft_ms 166.0 78.22 67.63 45.91 59.94 62.26 64.43 69.66 353.18 567.54
tpot_ms 166.0 25.37 0.57 24.40 25.07 25.31 25.50 25.84 27.50 28.05
latency_ms 166.0 2591.07 326.90 1998.53 2341.62 2573.01 2860.10 3003.50 3268.46 3862.94
input_num_turns 166.0 7.43 4.57 1.00 3.00 7.00 11.00 13.00 17.00 17.00
input_num_tokens 166.0 2006.20 893.56 522.00 1247.75 2019.00 2718.00 3233.00 3736.45 3899.00
output_num_tokens 166.0 100.01 11.80 80.00 91.00 99.00 109.75 116.00 120.00 120.00
output_num_chunks 166.0 99.01 11.80 79.00 90.00 98.00 108.75 115.00 119.00 119.00
----------------------------------------------------------------------------------------------------
```
## ShareGPT Conversations
To run with the ShareGPT data, download the following ShareGPT dataset:
`https://huggingface.co/datasets/philschmid/sharegpt-raw/blob/main/sharegpt_20230401_clean_lang_split.json`
Use the `convert_sharegpt_to_openai.py` script to convert the dataset to a format supported by `benchmark_serving_multi_turn.py`
```bash
python convert_sharegpt_to_openai.py sharegpt_20230401_clean_lang_split.json sharegpt_conv_128.json --seed=99 --max-items=128
```
The script will convert the ShareGPT dataset to a dataset with the standard user/assistant roles.
The flag `--max-items=128` is used to sample 128 conversations from the original dataset (change as needed).
Use the output JSON file `sharegpt_conv_128.json` as the `--input-file` for `benchmark_serving_multi_turn.py`.

View File

@ -1,493 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from abc import ABC, abstractmethod
from statistics import mean
from typing import Any, NamedTuple, Optional, Union
import numpy as np # type: ignore
import pandas as pd # type: ignore
from bench_utils import (
TEXT_SEPARATOR,
Color,
logger,
)
from transformers import AutoTokenizer # type: ignore
# Conversation ID is a string (e.g: "UzTK34D")
ConvId = str
# A list of dicts (dicts with keys "id" and "messages")
ShareGptConversations = list[dict[str, Any]]
# A list of dicts (dicts with keys "role" and "content")
MessagesList = list[dict[str, str]]
# Map conversation ID to conversation messages
ConversationsMap = list[ConvId, MessagesList]
class Distribution(ABC):
@abstractmethod
def sample(self, size: int = 1) -> np.ndarray:
pass
class UniformDistribution(Distribution):
def __init__(
self,
min_val: Union[int, float],
max_val: Union[int, float],
is_integer: bool = True,
) -> None:
self.min_val = min_val
self.max_val = max_val
self.is_integer = is_integer
def sample(self, size: int = 1) -> np.ndarray:
if self.is_integer:
return np.random.randint(
int(self.min_val), int(self.max_val + 1), size=size
)
else:
return np.random.uniform(self.min_val, self.max_val, size=size)
def __repr__(self) -> str:
return f"UniformDistribution[{self.min_val}, {self.max_val}]"
class ConstantDistribution(Distribution):
def __init__(self, value: Union[int, float]) -> None:
self.value = value
self.max_val = value
def sample(self, size: int = 1) -> np.ndarray:
return np.full(shape=size, fill_value=self.value)
def __repr__(self) -> str:
return f"Constant[{self.value}]"
class ZipfDistribution(Distribution):
def __init__(self, alpha: float, max_val: Optional[int] = None) -> None:
self.alpha = alpha
self.max_val = max_val
def sample(self, size: int = 1) -> np.ndarray:
samples = np.random.zipf(self.alpha, size=size)
if self.max_val:
samples = np.minimum(samples, self.max_val)
return samples
def __repr__(self) -> str:
return f"ZipfDistribution[{self.alpha}]"
class PoissonDistribution(Distribution):
def __init__(self, alpha: float, max_val: Optional[int] = None) -> None:
self.alpha = alpha
self.max_val = max_val
def sample(self, size: int = 1) -> np.ndarray:
samples = np.random.poisson(self.alpha, size=size)
if self.max_val:
samples = np.minimum(samples, self.max_val)
return samples
def __repr__(self) -> str:
return f"PoissonDistribution[{self.alpha}]"
class LognormalDistribution(Distribution):
def __init__(
self, mean: float, sigma: float, max_val: Optional[int] = None
) -> None:
self.mean = mean
self.sigma = sigma
self.max_val = max_val
def sample(self, size: int = 1) -> np.ndarray:
samples = np.random.lognormal(mean=self.mean, sigma=self.sigma, size=size)
if self.max_val:
samples = np.minimum(samples, self.max_val)
return np.round(samples).astype(int)
def __repr__(self) -> str:
return f"LognormalDistribution[{self.mean}, {self.sigma}]"
class GenConvArgs(NamedTuple):
num_conversations: int
text_files: list[str]
input_num_turns: Distribution
input_common_prefix_num_tokens: Distribution
input_prefix_num_tokens: Distribution
input_num_tokens: Distribution
output_num_tokens: Distribution
print_stats: bool
def verify_field_exists(
conf: dict, field_name: str, section: str, subsection: str
) -> None:
if field_name not in conf:
raise ValueError(
f"Missing field '{field_name}' in {section=} and {subsection=}"
)
def get_random_distribution(
conf: dict, section: str, subsection: str, optional: bool = False
) -> Distribution:
# section can be "prompt_input" or "prompt_output" (both required)
conf = conf[section]
if optional and subsection not in conf:
# Optional subsection, if not found assume the value is always 0
return ConstantDistribution(0)
# subsection can be "num_turns", "num_tokens" or "prefix_num_tokens"
if subsection not in conf:
raise ValueError(f"Missing subsection {subsection} in section {section}")
conf = conf[subsection]
distribution = conf.get("distribution")
if distribution is None:
raise ValueError(
f"Missing field 'distribution' in {section=} and {subsection=}"
)
if distribution == "constant":
verify_field_exists(conf, "value", section, subsection)
return ConstantDistribution(conf["value"])
elif distribution == "zipf":
verify_field_exists(conf, "alpha", section, subsection)
max_val = conf.get("max", None)
return ZipfDistribution(conf["alpha"], max_val=max_val)
elif distribution == "poisson":
verify_field_exists(conf, "alpha", section, subsection)
max_val = conf.get("max", None)
return PoissonDistribution(conf["alpha"], max_val=max_val)
elif distribution == "lognormal":
verify_field_exists(conf, "mean", section, subsection)
verify_field_exists(conf, "sigma", section, subsection)
max_val = conf.get("max", None)
return LognormalDistribution(conf["mean"], conf["sigma"], max_val=max_val)
elif distribution == "uniform":
verify_field_exists(conf, "min", section, subsection)
verify_field_exists(conf, "max", section, subsection)
min_value = conf["min"]
max_value = conf["max"]
assert min_value > 0
assert min_value <= max_value
is_integer = isinstance(min_value, int) and isinstance(max_value, int)
return UniformDistribution(min_value, max_value, is_integer)
else:
raise ValueError(f"Unknown distribution: {distribution}")
def parse_input_json_file(conf: dict) -> GenConvArgs:
# Validate the input file
assert isinstance(conf, dict)
required_fields = [
"filetype",
"num_conversations",
"text_files",
"prompt_input",
"prompt_output",
]
for field in required_fields:
assert field in conf, f"Missing field {field} in input {conf}"
assert conf["filetype"] == "generate_conversations"
assert conf["num_conversations"] > 0, "num_conversations should be larger than zero"
text_files = conf["text_files"]
assert isinstance(text_files, list), "Field 'text_files' should be a list"
assert len(text_files) > 0, (
"Field 'text_files' should be a list with at least one file"
)
# Parse the parameters for the prompt input/output workload
input_num_turns = get_random_distribution(conf, "prompt_input", "num_turns")
input_num_tokens = get_random_distribution(conf, "prompt_input", "num_tokens")
input_common_prefix_num_tokens = get_random_distribution(
conf, "prompt_input", "common_prefix_num_tokens", optional=True
)
input_prefix_num_tokens = get_random_distribution(
conf, "prompt_input", "prefix_num_tokens"
)
output_num_tokens = get_random_distribution(conf, "prompt_output", "num_tokens")
print_stats: bool = conf.get("print_stats", False)
assert isinstance(print_stats, bool), (
"Field 'print_stats' should be either 'true' or 'false'"
)
args = GenConvArgs(
num_conversations=conf["num_conversations"],
text_files=text_files,
input_num_turns=input_num_turns,
input_common_prefix_num_tokens=input_common_prefix_num_tokens,
input_prefix_num_tokens=input_prefix_num_tokens,
input_num_tokens=input_num_tokens,
output_num_tokens=output_num_tokens,
print_stats=print_stats,
)
return args
def print_conv_stats(conversations: ConversationsMap, tokenizer: AutoTokenizer) -> None:
# Collect statistics
conv_stats: list[dict[Any, Any]] = []
req_stats: list[int] = []
print("\nCollecting statistics...")
for messages in conversations.values():
# messages is a list of dicts
user_tokens: list[int] = []
assistant_tokens: list[int] = []
request_tokens: list[int] = []
req_tokens = 0
for m in messages:
content = m["content"]
num_tokens = len(tokenizer(content).input_ids)
if m["role"] == "user":
user_tokens.append(num_tokens)
# New user prompt including all chat history
req_tokens += num_tokens
request_tokens.append(req_tokens)
elif m["role"] == "assistant":
assistant_tokens.append(num_tokens)
# Update assistant answer
# (will be part of chat history for the next user prompt)
req_tokens += num_tokens
item_stats = {
"conversation_turns": len(messages),
"user_tokens": mean(user_tokens),
"assistant_tokens": mean(assistant_tokens),
}
conv_stats.append(item_stats)
req_stats.extend(request_tokens)
# Print statistics
percentiles = [0.25, 0.5, 0.75, 0.9, 0.99]
print(TEXT_SEPARATOR)
print(f"{Color.YELLOW}Conversations statistics:{Color.RESET}")
print(TEXT_SEPARATOR)
df = pd.DataFrame(conv_stats)
print(df.describe(percentiles=percentiles).transpose())
print(TEXT_SEPARATOR)
print(f"{Color.YELLOW}Request statistics:{Color.RESET}")
print(TEXT_SEPARATOR)
df = pd.DataFrame(req_stats, columns=["request_tokens"])
print(df.describe(percentiles=percentiles).transpose())
print(TEXT_SEPARATOR)
def generate_conversations(
args: GenConvArgs, tokenizer: AutoTokenizer
) -> ConversationsMap:
# Text for all user prompts
# (text from the input text files will be appended to this line)
base_prompt_text = "Please rewrite the following text and add more content: "
base_prompt_token_count = len(
tokenizer.encode(base_prompt_text, add_special_tokens=False)
)
logger.info(f"{Color.PURPLE}Generating conversations...{Color.RESET}")
logger.info(args)
list_of_tokens = []
for filename in args.text_files:
# Load text file that will be used to generate prompts
with open(filename) as file:
data = file.read()
tokens_in_file = tokenizer.encode(data, add_special_tokens=False)
list_of_tokens.extend(tokens_in_file)
conversations: ConversationsMap = {}
conv_id = 0
# Generate number of turns for every conversation
turn_count: np.ndarray = args.input_num_turns.sample(args.num_conversations)
# Turn count should be at least 2 (one user prompt and one assistant answer)
turn_count = np.maximum(turn_count, 2)
# Round up to an even number (every user prompt should have an answer)
turn_count = turn_count + (turn_count % 2)
# Generate number of prefix tokens for every conversation
conv_prefix_tokens: np.ndarray = args.input_prefix_num_tokens.sample(
args.num_conversations
)
# Used to reduce shared text between conversations
# (jump/skip over text sections between conversations)
base_offset = 0
# Common prefix size for all conversations (only 1 sample required)
common_prefix_text = ""
common_prefix_tokens: int = args.input_common_prefix_num_tokens.sample(1)[0]
if common_prefix_tokens > 0:
# Using "." at the end to separate sentences
common_prefix_text = (
tokenizer.decode(list_of_tokens[: common_prefix_tokens - 2]) + "."
)
base_offset += common_prefix_tokens
for conv_id in range(args.num_conversations):
# Generate a single conversation
messages: MessagesList = []
nturns = turn_count[conv_id]
# User prompt token count per turn (with lower limit)
input_token_count: np.ndarray = args.input_num_tokens.sample(nturns)
input_token_count = np.maximum(input_token_count, base_prompt_token_count)
# Assistant answer token count per turn (with lower limit)
output_token_count: np.ndarray = args.output_num_tokens.sample(nturns)
output_token_count = np.maximum(output_token_count, 1)
user_turn = True
for turn_id in range(nturns):
if user_turn:
role = "user"
num_tokens = input_token_count[turn_id]
# Generate the user prompt,
# use a unique prefix (the conv_id) for each conversation
# (to avoid shared prefix between conversations)
content = f"{conv_id} is a nice number... "
if len(common_prefix_text) > 0 and turn_id == 0:
content = common_prefix_text + content
# Update the number of tokens left for the content
num_tokens -= len(tokenizer.encode(content, add_special_tokens=False))
if turn_id == 0:
prefix_num_tokens = conv_prefix_tokens[conv_id]
if prefix_num_tokens > 0:
# Add prefix text (context) to the first turn
start_offset = base_offset
end_offset = start_offset + prefix_num_tokens
assert len(list_of_tokens) > end_offset, (
"Not enough input text to generate "
f"{prefix_num_tokens} tokens for the "
f"prefix text ({start_offset=}, {end_offset=})"
)
content += f"{conv_id}, " + tokenizer.decode(
list_of_tokens[start_offset:end_offset]
)
base_offset += prefix_num_tokens
# Add the actual user prompt/question after the prefix text
content += base_prompt_text
num_tokens -= base_prompt_token_count
if num_tokens > 0:
# Add text from the input file (to reach the desired token count)
start_offset = base_offset + turn_id * input_token_count.max()
end_offset = start_offset + num_tokens
assert len(list_of_tokens) > end_offset, (
f"Not enough input text to generate {num_tokens} tokens "
f"for the prompt ({start_offset=}, {end_offset=})"
)
# Convert tokens back to text
content += tokenizer.decode(list_of_tokens[start_offset:end_offset])
else:
role = "assistant"
# This content will not be used as input to the LLM server
# (actual answers will be used instead).
# Content is only required to determine the min_tokens/max_tokens
# (inputs to the LLM server).
num_tokens = output_token_count[turn_id]
assert len(list_of_tokens) > num_tokens, (
f"Not enough input text to generate {num_tokens} "
"tokens for assistant content"
)
content = tokenizer.decode(list_of_tokens[:num_tokens])
# Append the user/assistant message to the list of messages
messages.append({"role": role, "content": content})
user_turn = not user_turn
# Add the new conversation
conversations[f"CONV_ID_{conv_id}"] = messages
# Increase base offset for the next conversation
base_offset += nturns
if args.print_stats:
print_conv_stats(conversations, tokenizer)
return conversations
def conversations_list_to_dict(input_list: ShareGptConversations) -> ConversationsMap:
conversations: ConversationsMap = {}
for item in input_list:
conv_id: str = item["id"]
assert isinstance(conv_id, str)
assert conv_id not in conversations, (
f"Conversation ID {conv_id} found more than once in the input"
)
messages: MessagesList = item["messages"]
assert isinstance(messages, list), (
f"Conversation messages should be a list (ID: {conv_id})"
)
assert len(messages) > 0, f"Conversation with no messages (ID: {conv_id})"
conversations[conv_id] = messages
logger.info(f"Using {len(conversations)} unique conversations (IDs)")
assert len(conversations) == len(input_list)
# Print statistics about the selected conversations
stats: list[dict[str, Any]] = []
for conv_data in conversations.values():
stats.append({"num_turns": len(conv_data)})
print(TEXT_SEPARATOR)
print(f"{Color.YELLOW}Conversations statistics:{Color.RESET}")
print(TEXT_SEPARATOR)
percentiles = [0.25, 0.5, 0.75, 0.9, 0.99, 0.999, 0.9999]
conv_stats = pd.DataFrame(stats).describe(percentiles=percentiles)
print(conv_stats.transpose())
print(TEXT_SEPARATOR)
return conversations
def conversations_dict_to_list(input_dict: ConversationsMap) -> ShareGptConversations:
output: ShareGptConversations = []
for conv_id, conv_data in input_dict.items():
new_item = {"id": conv_id, "messages": conv_data}
output.append(new_item)
return output

View File

@ -1,28 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import logging
from enum import Enum
class Color(Enum):
RED = "\033[91m"
GREEN = "\033[92m"
BLUE = "\033[94m"
PURPLE = "\033[95m"
CYAN = "\033[96m"
YELLOW = "\033[93m"
RESET = "\033[0m"
def __str__(self):
return self.value
TEXT_SEPARATOR = "-" * 100
# Configure the logger
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] - %(message)s",
datefmt="%d-%m-%Y %H:%M:%S",
)
logger = logging.getLogger(__name__)

File diff suppressed because it is too large Load Diff

View File

@ -1,354 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Download dataset from:
https://huggingface.co/datasets/philschmid/sharegpt-raw/blob/main/sharegpt_20230401_clean_lang_split.json
Convert to OpenAI API:
export INPUT_FILE=sharegpt_20230401_clean_lang_split.json
python convert_sharegpt_to_openai.py $INPUT_FILE sharegpt_conv_128.json --max-items=128
"""
import argparse
import json
import random
from statistics import mean
from typing import Any, Optional
import pandas as pd # type: ignore
import tqdm # type: ignore
from transformers import AutoTokenizer # type: ignore
def has_non_english_chars(text: str) -> bool:
return not text.isascii()
def content_is_valid(
content: str, min_content_len: Optional[int], max_content_len: Optional[int]
) -> bool:
if min_content_len and len(content) < min_content_len:
return False
if max_content_len and len(content) > max_content_len:
return False
return has_non_english_chars(content)
def print_stats(
conversations: "list[dict[Any, Any]]", tokenizer: Optional[AutoTokenizer] = None
) -> None:
# Collect statistics
stats = []
print("\nCollecting statistics...")
for item in tqdm.tqdm(conversations):
# item has "id" and "messages"
messages = item["messages"]
user_turns = 0
assistant_turns = 0
user_words = 0
assistant_words = 0
conv_chars = 0
user_tokens: list[int] = []
assistant_tokens: list[int] = []
for m in messages:
content = m["content"]
conv_chars += len(content)
content_num_words = content.count(" ") + 1
num_tokens = 0
if tokenizer:
num_tokens = len(tokenizer(m["content"]).input_ids)
if m["role"] == "user":
user_turns += 1
user_words += content_num_words
if tokenizer:
user_tokens.append(num_tokens)
elif m["role"] == "assistant":
assistant_turns += 1
assistant_words += content_num_words
if tokenizer:
assistant_tokens.append(num_tokens)
# assert user_turns == assistant_turns, \
# f"Invalid conversation ID {item['id']}"
conv_words = user_words + assistant_words
item_stats = {
"user_turns": user_turns,
"assistant_turns": assistant_turns,
"user_words": user_words,
"assistant_words": assistant_words,
"conv_turns": len(messages),
"conv_words": conv_words,
"conv_characters": conv_chars,
}
if len(user_tokens) > 0:
item_stats["user_tokens"] = int(mean(user_tokens))
if len(assistant_tokens) > 0:
item_stats["assistant_tokens"] = int(mean(assistant_tokens))
stats.append(item_stats)
print("\nStatistics:")
percentiles = [0.25, 0.5, 0.75, 0.9, 0.99, 0.999, 0.9999]
df = pd.DataFrame(stats)
print(df.describe(percentiles=percentiles).transpose())
def convert_sharegpt_to_openai(
seed: int,
input_file: str,
output_file: str,
max_items: Optional[int],
min_content_len: Optional[int] = None,
max_content_len: Optional[int] = None,
min_turns: Optional[int] = None,
max_turns: Optional[int] = None,
model: Optional[str] = None,
) -> None:
if min_turns and max_turns:
assert min_turns <= max_turns
if min_content_len and max_content_len:
# Verify that min is not larger than max if both were given
assert min_content_len <= max_content_len
print(
f"Input parameters:\n{seed=}, {max_items=}, {min_content_len=},"
f" {max_content_len=}, {min_turns=}, {max_turns=}\n"
)
random.seed(seed)
tokenizer = None
if model is not None:
print(f"Loading tokenizer from: {model}")
tokenizer = AutoTokenizer.from_pretrained(model)
# Read the ShareGPT JSON file
print(f"Reading file: {input_file}")
with open(input_file, encoding="utf-8") as f:
# Should be a list of dicts
# Each dict should have "id" (string) and "conversations" (list of dicts)
sharegpt_data = json.load(f)
assert isinstance(sharegpt_data, list), "Input file should contain a list of dicts"
print(f"Total items in input file: {len(sharegpt_data):,}")
print(f"Shuffling dataset with seed {seed}")
random.shuffle(sharegpt_data)
# Map conversation ID to the all the messages
conversation_parts: dict[str, list[Any]] = {}
for item in tqdm.tqdm(sharegpt_data):
assert "id" in item, "Missing key 'id'"
assert "conversations" in item, "Missing key 'conversations'"
# Conversation ID (e.g: "hiWPlMD") and part/session (0, 1, 2, etc.)
conv_id, _ = item["id"].split("_")
new_turns = item["conversations"]
if conv_id not in conversation_parts:
# Start new conversation
conversation_parts[conv_id] = []
elif len(conversation_parts[conv_id]) > 0 and len(new_turns) > 0:
prev_turns = conversation_parts[conv_id][-1]
if prev_turns[-1]["from"] == new_turns[0]["from"]:
new_turns = new_turns[1:]
if len(new_turns) > 0:
# We assume that parts are in order in the ShareGPT dataset
conversation_parts[conv_id].append(new_turns)
dataset: list[dict[str, Any]] = []
for conv_id, conv_parts in conversation_parts.items():
new_item = {"id": conv_id}
conversations: list[dict[str, str]] = []
# Merge all parts
for conv_part in conv_parts:
conversations.extend(conv_part)
if len(conversations) > 0:
new_item["conversations"] = conversations
dataset.append(new_item)
print(f"Total unique conversations (IDs) in input file: {len(dataset):,}")
# Final output data
final_openai_dataset: list[dict] = []
# Filter conversations from the ShareGPT dataset and convert to OpenAI format
for item in tqdm.tqdm(dataset):
messages: list[dict] = []
assert "id" in item, "Missing key 'id'"
assert "conversations" in item, "Missing key 'conversations'"
conv_id = item["id"]
conversations = item["conversations"]
if min_turns is not None and len(conversations) < min_turns:
# Skip short conversations
continue
# Convert each message in the conversation, up to max_turns if specified
for i, turn in enumerate(conversations):
assert "from" in turn and "value" in turn, (
f"Invalid conversation ID {conv_id} - missing 'from' or 'value'"
)
role = None
turn_from = turn["from"]
if turn_from in {"human", "user"}:
role = "user"
elif turn_from in {"gpt", "bing", "chatgpt", "bard"}:
role = "assistant"
elif turn_from == "system":
role = "system"
assert role is not None, (
f"Invalid conversation ID {conv_id} - 'from'='{turn_from}' is invalid"
)
if i == 0 and role != "user":
# If the first message is from assistant (gpt), skip it.
# this happens when the conversation is a follow-up
# to a previous conversation (from the same user).
continue
if max_turns is not None and i >= max_turns:
break
# Convert message to OpenAI format (with "role" and "content")
content = turn["value"]
messages.append({"role": role, "content": content})
# Add the converted conversation to the OpenAI format
if len(messages) > 0:
valid_messages = True
# First turn should always be from the user
user_turn = True
for m in messages:
# Make sure that turns alternate between user and assistant
if (user_turn and m["role"] != "user") or (
not user_turn and m["role"] != "assistant"
):
valid_messages = False
break
user_turn = not user_turn
content = m["content"]
valid_messages = content_is_valid(
content, min_content_len, max_content_len
)
if not valid_messages:
break
if valid_messages is True:
final_openai_dataset.append({"id": conv_id, "messages": messages})
assert len(final_openai_dataset) > 0, "Final number of conversations is zero"
print_stats(final_openai_dataset)
print_stats_again = False
if max_items is not None and len(final_openai_dataset) > max_items:
print(f"\n\nSampling {max_items} items from the dataset...")
print_stats_again = True
final_openai_dataset = random.sample(final_openai_dataset, max_items)
if print_stats_again:
# Print stats after the dataset changed
print_stats(final_openai_dataset, tokenizer)
# Write the converted data to a new JSON file
final_size = len(final_openai_dataset)
print(f"\nTotal conversations converted (after filtering): {final_size:,}")
print(f"\nWriting file: {output_file}")
with open(output_file, "w", encoding="utf-8") as f:
json.dump(final_openai_dataset, f, ensure_ascii=False, indent=2)
def main() -> None:
parser = argparse.ArgumentParser(
description="Convert ShareGPT dataset to OpenAI API format"
)
parser.add_argument("input_file", help="Path to the input ShareGPT JSON file")
parser.add_argument(
"output_file", help="Path to the output OpenAI format JSON file"
)
parser.add_argument(
"--seed", type=int, default=0, help="Seed for random number generators"
)
parser.add_argument(
"--max-items",
type=int,
default=None,
help="Maximum number of items in the output file",
)
parser.add_argument(
"--min-turns",
type=int,
default=None,
help="Minimum number of turns per conversation",
)
parser.add_argument(
"--max-turns",
type=int,
default=None,
help="Maximum number of turns per conversation",
)
parser.add_argument(
"--min-content-len",
type=int,
default=None,
help="Min number of characters in the messages' content",
)
parser.add_argument(
"--max-content-len",
type=int,
default=None,
help="Max number of characters in the messages' content",
)
parser.add_argument(
"--model",
type=str,
default=None,
help="LLM model, only the tokenizer will be used",
)
args = parser.parse_args()
convert_sharegpt_to_openai(
args.seed,
args.input_file,
args.output_file,
args.max_items,
args.min_content_len,
args.max_content_len,
args.min_turns,
args.max_turns,
args.model,
)
if __name__ == "__main__":
main()

View File

@ -1,35 +0,0 @@
{
"filetype": "generate_conversations",
"num_conversations": 24,
"text_files": ["pg1184.txt"],
"print_stats": false,
"prompt_input": {
"num_turns": {
"distribution": "uniform",
"min": 12,
"max": 18
},
"common_prefix_num_tokens": {
"distribution": "constant",
"value": 500
},
"prefix_num_tokens": {
"distribution": "lognormal",
"mean": 6,
"sigma": 4,
"max": 1500
},
"num_tokens": {
"distribution": "uniform",
"min": 120,
"max": 160
}
},
"prompt_output": {
"num_tokens": {
"distribution": "uniform",
"min": 80,
"max": 120
}
}
}

View File

@ -1,5 +0,0 @@
numpy>=1.24
pandas>=2.0.0
aiohttp>=3.10
transformers>=4.46
xlsxwriter>=3.2.1

View File

@ -58,22 +58,6 @@ function (find_isa CPUINFO TARGET OUT)
endif()
endfunction()
function(check_sysctl TARGET OUT)
execute_process(COMMAND sysctl -n "${TARGET}"
RESULT_VARIABLE SYSCTL_RET
OUTPUT_VARIABLE SYSCTL_INFO
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE)
if(SYSCTL_RET EQUAL 0 AND
(SYSCTL_INFO STREQUAL "1" OR SYSCTL_INFO GREATER 0))
set(${OUT} ON PARENT_SCOPE)
else()
set(${OUT} OFF PARENT_SCOPE)
endif()
endfunction()
function (is_avx512_disabled OUT)
set(DISABLE_AVX512 $ENV{VLLM_CPU_DISABLE_AVX512})
if(DISABLE_AVX512 AND DISABLE_AVX512 STREQUAL "true")
@ -86,10 +70,7 @@ endfunction()
is_avx512_disabled(AVX512_DISABLED)
if (MACOSX_FOUND AND CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64")
message(STATUS "Apple Silicon Detected")
set(ENABLE_NUMA OFF)
check_sysctl(hw.optional.neon ASIMD_FOUND)
check_sysctl(hw.optional.arm.FEAT_BF16 ARM_BF16_FOUND)
set(APPLE_SILICON_FOUND TRUE)
else()
find_isa(${CPUINFO} "avx2" AVX2_FOUND)
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
@ -101,6 +82,7 @@ else()
find_isa(${CPUINFO} "S390" S390_FOUND)
endif()
if (AVX512_FOUND AND NOT AVX512_DISABLED)
list(APPEND CXX_COMPILE_FLAGS
"-mavx512f"
@ -167,6 +149,9 @@ elseif (ASIMD_FOUND)
set(MARCH_FLAGS "-march=armv8.2-a+dotprod+fp16")
endif()
list(APPEND CXX_COMPILE_FLAGS ${MARCH_FLAGS})
elseif(APPLE_SILICON_FOUND)
message(STATUS "Apple Silicon Detected")
set(ENABLE_NUMA OFF)
elseif (S390_FOUND)
message(STATUS "S390 detected")
# Check for S390 VXE support

View File

@ -19,7 +19,7 @@ else()
FetchContent_Declare(
flashmla
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA.git
GIT_TAG 0e43e774597682284358ff2c54530757b654b8d1
GIT_TAG 575f7724b9762f265bbee5889df9c7d630801845
GIT_PROGRESS TRUE
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
@ -37,9 +37,9 @@ cuda_archs_loose_intersection(FLASH_MLA_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
set(FlashMLA_SOURCES
${flashmla_SOURCE_DIR}/csrc/flash_api.cpp
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/kernels/mla_combine.cu
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu)
${flashmla_SOURCE_DIR}/csrc/flash_fwd_mla_bf16_sm90.cu
${flashmla_SOURCE_DIR}/csrc/flash_fwd_mla_fp16_sm90.cu
${flashmla_SOURCE_DIR}/csrc/flash_fwd_mla_metadata.cu)
set(FlashMLA_INCLUDES
${flashmla_SOURCE_DIR}/csrc/cutlass/include

View File

@ -38,7 +38,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 57b4e68b9f9d94750b46de8f8dbd2bfcc86edd4f
GIT_TAG 1c2624e53c078854e0637ee566c72fe2107e75f4
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -467,12 +467,6 @@ function (define_gpu_extension_target GPU_MOD_NAME)
if (GPU_LANGUAGE STREQUAL "HIP")
# Make this target dependent on the hipify preprocessor step.
add_dependencies(${GPU_MOD_NAME} hipify${GPU_MOD_NAME})
# Make sure we include the hipified versions of the headers, and avoid conflicts with the ones in the original source folder
target_include_directories(${GPU_MOD_NAME} PRIVATE ${CMAKE_CURRENT_BINARY_DIR}/csrc
${GPU_INCLUDE_DIRECTORIES})
else()
target_include_directories(${GPU_MOD_NAME} PRIVATE csrc
${GPU_INCLUDE_DIRECTORIES})
endif()
if (GPU_ARCHITECTURES)
@ -488,6 +482,8 @@ function (define_gpu_extension_target GPU_MOD_NAME)
target_compile_definitions(${GPU_MOD_NAME} PRIVATE
"-DTORCH_EXTENSION_NAME=${GPU_MOD_NAME}")
target_include_directories(${GPU_MOD_NAME} PRIVATE csrc
${GPU_INCLUDE_DIRECTORIES})
target_link_libraries(${GPU_MOD_NAME} PRIVATE torch ${GPU_LIBRARIES})

View File

@ -128,45 +128,6 @@ __global__ void act_and_mul_kernel_with_param(
}
}
template <typename T>
__device__ __forceinline__ T swigluoai_and_mul(const T& gate, const T& up,
float alpha, float limit) {
// clamp gate: min=None, max=limit
const float gate_f = (float)gate;
const float clamped_gate = gate_f > limit ? limit : gate_f;
// clamp up: min=-limit, max=limit
const float up_f = (float)up;
const float clamped_up =
up_f > limit ? limit : (up_f < -limit ? -limit : up_f);
// glu = gate * sigmoid(gate * alpha)
const float sigmoid_val = 1.0f / (1.0f + expf(-clamped_gate * alpha));
const float glu = clamped_gate * sigmoid_val;
// (up + 1) * glu
return (T)((clamped_up + 1.0f) * glu);
}
template <typename scalar_t,
scalar_t (*ACT_FN)(const scalar_t&, const scalar_t&, const float,
const float)>
__global__ void swigluoai_and_mul_kernel(
scalar_t* __restrict__ out, // [..., d]
const scalar_t* __restrict__ input, // [..., 2, d]
const int d, const float alpha, const float limit) {
const int64_t token_idx = blockIdx.x;
// TODO: Vectorize loads and stores.
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
// gate = x[..., ::2] (even indices)
const scalar_t gate = VLLM_LDG(&input[token_idx * 2 * d + 2 * idx]);
// up = x[..., 1::2] (odd indices)
const scalar_t up = VLLM_LDG(&input[token_idx * 2 * d + 2 * idx + 1]);
out[token_idx * d + idx] = ACT_FN(gate, up, alpha, limit);
}
}
} // namespace vllm
#define LAUNCH_ACTIVATION_GATE_KERNEL_WITH_PARAM(KERNEL, PARAM) \
@ -184,31 +145,11 @@ __global__ void swigluoai_and_mul_kernel(
PARAM); \
});
#define LAUNCH_SIGLUOAI_AND_MUL(KERNEL, ALPHA, LIMIT) \
int d = input.size(-1) / 2; \
int64_t num_tokens = input.numel() / input.size(-1); \
dim3 grid(num_tokens); \
dim3 block(std::min(d, 1024)); \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), "clamp_swiglu_kernel_with_params", [&] { \
vllm::swigluoai_and_mul_kernel<scalar_t, KERNEL<scalar_t>> \
<<<grid, block, 0, stream>>>(out.data_ptr<scalar_t>(), \
input.data_ptr<scalar_t>(), d, ALPHA, \
LIMIT); \
});
void fatrelu_and_mul(torch::Tensor& out, // [..., d],
torch::Tensor& input, // [..., 2 * d]
double threshold) {
LAUNCH_ACTIVATION_GATE_KERNEL_WITH_PARAM(vllm::fatrelu_kernel, threshold);
}
void swigluoai_and_mul(torch::Tensor& out, // [..., d]
torch::Tensor& input, // [..., 2 * d]
double alpha, double limit) {
LAUNCH_SIGLUOAI_AND_MUL(vllm::swigluoai_and_mul, alpha, limit);
}
namespace vllm {
// Element-wise activation kernel template.

View File

@ -24,7 +24,7 @@
#include "attention_dtypes.h"
#include "attention_utils.cuh"
#include "../cuda_compat.h"
#include "cuda_compat.h"
#ifdef USE_ROCM
#include <hip/hip_bf16.h>

View File

@ -16,8 +16,9 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "attention_kernels.cuh"
#include "../cuda_compat.h"
#include "cuda_compat.h"
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
@ -74,7 +75,7 @@ void paged_attention_v1_launcher(
const float* k_scale_ptr = reinterpret_cast<const float*>(k_scale.data_ptr());
const float* v_scale_ptr = reinterpret_cast<const float*>(v_scale.data_ptr());
const int NUM_WARPS = NUM_THREADS / WARP_SIZE;
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
int padded_max_seq_len =
DIVIDE_ROUND_UP(max_seq_len, BLOCK_SIZE) * BLOCK_SIZE;
int logits_size = padded_max_seq_len * sizeof(float);

View File

@ -16,8 +16,9 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "attention_kernels.cuh"
#include "../cuda_compat.h"
#include "cuda_compat.h"
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
@ -78,7 +79,7 @@ void paged_attention_v2_launcher(
const float* k_scale_ptr = reinterpret_cast<const float*>(k_scale.data_ptr());
const float* v_scale_ptr = reinterpret_cast<const float*>(v_scale.data_ptr());
const int NUM_WARPS = NUM_THREADS / WARP_SIZE;
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
int max_num_partitions = DIVIDE_ROUND_UP(max_seq_len, PARTITION_SIZE);
int logits_size = PARTITION_SIZE * sizeof(float);
int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);

View File

@ -5,7 +5,6 @@
#include "cuda_utils.h"
#include "cuda_compat.h"
#include "dispatch_utils.h"
#include "quantization/vectorization_utils.cuh"
#ifdef USE_ROCM
#include "quantization/fp8/amd/quant_utils.cuh"
@ -262,26 +261,14 @@ __global__ void reshape_and_cache_kernel(
}
}
// Used by vectorization_utils to copy/convert one element
template <typename OutT, typename InT, Fp8KVCacheDataType kv_dt>
struct CopyWithScaleOp {
float scale;
__device__ __forceinline__ void operator()(OutT& dst, const InT src) const {
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
dst = static_cast<OutT>(src);
} else {
dst = fp8::scaled_convert<OutT, InT, kv_dt>(src, scale);
}
}
};
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void reshape_and_cache_flash_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
cache_t* __restrict__ key_cache, // NHD or HND, shape see comments below
cache_t* __restrict__ value_cache, // same above
cache_t* __restrict__ key_cache, // [num_blocks, block_size, num_heads,
// head_size]
cache_t* __restrict__ value_cache, // [num_blocks, block_size, num_heads,
// head_size]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int64_t block_stride, const int64_t page_stride,
const int64_t head_stride, const int64_t key_stride,
@ -295,58 +282,25 @@ __global__ void reshape_and_cache_flash_kernel(
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
const int n_elems = num_heads * head_size;
// pointers to the beginning of the source row for this token.
const scalar_t* __restrict__ key_src = key + token_idx * key_stride;
const scalar_t* __restrict__ value_src = value + token_idx * value_stride;
// find the start position inside the kv-cache for this token.
cache_t* __restrict__ key_dst =
key_cache + block_idx * block_stride + block_offset * page_stride;
cache_t* __restrict__ value_dst =
value_cache + block_idx * block_stride + block_offset * page_stride;
// this is true for the NHD layout where `head_stride == head_size`
const bool is_contiguous_heads = (head_stride == head_size);
float k_scale_val = (kv_dt == Fp8KVCacheDataType::kAuto) ? 0.f : *k_scale;
float v_scale_val = (kv_dt == Fp8KVCacheDataType::kAuto) ? 0.f : *v_scale;
constexpr int VEC_SIZE = (sizeof(scalar_t) == 2) ? 8 : 4;
CopyWithScaleOp<cache_t, scalar_t, kv_dt> k_op{k_scale_val};
CopyWithScaleOp<cache_t, scalar_t, kv_dt> v_op{v_scale_val};
if (is_contiguous_heads) {
// NHD layout
// kv cache: [num_blocks, block_size, num_heads, head_size]
vectorize_with_alignment<VEC_SIZE>(key_src, key_dst, n_elems, threadIdx.x,
blockDim.x, k_op);
vectorize_with_alignment<VEC_SIZE>(value_src, value_dst, n_elems,
threadIdx.x, blockDim.x, v_op);
} else {
// HND layout: heads are strided, but each head_size segment is contiguous
// kv cache: [num_blocks, num_heads, block_size, head_size]
const int lane = threadIdx.x & 31; // 0..31 within warp
const int warp_id = threadIdx.x >> 5; // warp index within block
const int warps_per_block = blockDim.x >> 5;
for (int head = warp_id; head < num_heads; head += warps_per_block) {
const scalar_t* __restrict__ k_src_h = key_src + head * head_size;
const scalar_t* __restrict__ v_src_h = value_src + head * head_size;
cache_t* __restrict__ k_dst_h =
key_dst + static_cast<int64_t>(head) * head_stride;
cache_t* __restrict__ v_dst_h =
value_dst + static_cast<int64_t>(head) * head_stride;
// within each head, let the 32 threads of the warp perform the vector
// copy
vectorize_with_alignment<VEC_SIZE>(k_src_h, k_dst_h, head_size, lane, 32,
k_op);
vectorize_with_alignment<VEC_SIZE>(v_src_h, v_dst_h, head_size, lane, 32,
v_op);
const int n = num_heads * head_size;
for (int i = threadIdx.x; i < n; i += blockDim.x) {
const int64_t src_key_idx = token_idx * key_stride + i;
const int64_t src_value_idx = token_idx * value_stride + i;
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int64_t tgt_key_value_idx = block_idx * block_stride +
block_offset * page_stride +
head_idx * head_stride + head_offset;
scalar_t tgt_key = key[src_key_idx];
scalar_t tgt_value = value[src_value_idx];
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
key_cache[tgt_key_value_idx] = tgt_key;
value_cache[tgt_key_value_idx] = tgt_value;
} else {
key_cache[tgt_key_value_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_key, *k_scale);
value_cache[tgt_key_value_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_value, *v_scale);
}
}
}

View File

@ -321,8 +321,6 @@ static inline constexpr auto kFE3M2f =
ScalarType::float_(3, 2, true, ScalarType::NAN_NONE);
static inline constexpr auto kFE4M3fn =
ScalarType::float_(4, 3, true, ScalarType::NAN_EXTD_RANGE_MAX_MIN);
static inline constexpr auto kFE8M0fnu =
ScalarType(8, 0, false, 0, true, ScalarType::NAN_EXTD_RANGE_MAX_MIN);
static inline constexpr auto kFE5M2 = ScalarType::float_IEEE754(5, 2);
static inline constexpr auto kFE8M7 = ScalarType::float_IEEE754(8, 7);
static inline constexpr auto kFE5M10 = ScalarType::float_IEEE754(5, 10);

View File

@ -16,14 +16,12 @@ struct KernelVecType<float> {
using cvt_vec_type = vec_op::FP32Vec16;
};
#if !defined(__aarch64__) || defined(ARM_BF16_SUPPORT)
template <>
struct KernelVecType<c10::BFloat16> {
using load_vec_type = vec_op::BF16Vec16;
using azp_adj_load_vec_type = vec_op::INT32Vec16;
using cvt_vec_type = vec_op::FP32Vec16;
};
#endif
template <>
struct KernelVecType<c10::Half> {

View File

@ -151,7 +151,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.impl("rotary_embedding", torch::kCPU, &rotary_embedding);
// Quantization
#if defined(__AVX512F__) || (defined(__aarch64__) && !defined(__APPLE__))
#if defined(__AVX512F__) || defined(__aarch64__)
at::Tag stride_tag = at::Tag::needs_fixed_stride_order;
// Compute int8 quantized tensor for given scaling factor.

View File

@ -4,35 +4,8 @@
#include <hip/hip_runtime.h>
#endif
#ifdef USE_ROCM
struct Utils {
static __host__ int get_warp_size() {
static bool is_cached = false;
static int result;
if (!is_cached) {
int device_id;
cudaDeviceProp deviceProp;
cudaGetDevice(&device_id);
cudaGetDeviceProperties(&deviceProp, device_id);
result = deviceProp.warpSize;
is_cached = true;
}
return result;
}
static __device__ constexpr int get_warp_size() {
#ifdef __GFX9__
return 64;
#else
return 32;
#endif
}
};
#define WARP_SIZE Utils::get_warp_size()
#if defined(USE_ROCM) && defined(__GFX9__)
#define WARP_SIZE 64
#else
#define WARP_SIZE 32
#endif

View File

@ -60,13 +60,3 @@ struct enable_sm100_only : Kernel {
#endif
}
};
template <typename Kernel>
struct enable_sm120_only : Kernel {
template <typename... Args>
CUTLASS_DEVICE void operator()(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ == 1200
Kernel::operator()(std::forward<Args>(args)...);
#endif
}
};

View File

@ -45,9 +45,6 @@ struct SSMParamsBase {
index_t out_d_stride;
index_t out_z_batch_stride;
index_t out_z_d_stride;
index_t ssm_states_batch_stride;
index_t ssm_states_dim_stride;
index_t ssm_states_dstate_stride;
// Common data pointers.
void *__restrict__ A_ptr;

View File

@ -132,10 +132,8 @@ void selective_scan_fwd_kernel(SSMParamsBase params) {
input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + sequence_start_index * params.B_batch_stride + group_id * params.B_group_stride;
weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * kNRows * params.C_d_stride;
input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + sequence_start_index * params.C_batch_stride + group_id * params.C_group_stride;
input_t *ssm_states = reinterpret_cast<input_t *>(params.ssm_states_ptr) +
cache_index * params.ssm_states_batch_stride +
dim_id * kNRows * params.ssm_states_dim_stride;
input_t *ssm_states = reinterpret_cast<input_t *>(params.ssm_states_ptr) + (cache_index * params.dim + dim_id * kNRows) * params.dstate;
float D_val[kNRows] = {0};
if (params.D_ptr != nullptr) {
#pragma unroll
@ -250,7 +248,7 @@ void selective_scan_fwd_kernel(SSMParamsBase params) {
}
// Initialize running total
scan_t running_prefix = chunk > 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float2(1.0, has_initial_state ? float(ssm_states[state_idx * params.ssm_states_dstate_stride]): 0.0);
scan_t running_prefix = chunk > 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float2(1.0, has_initial_state ? float(ssm_states[state_idx]): 0.0);
SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
typename Ktraits::BlockScanT(smem_scan).InclusiveScan(
@ -261,7 +259,7 @@ void selective_scan_fwd_kernel(SSMParamsBase params) {
if (threadIdx.x == 0) {
smem_running_prefix[state_idx] = prefix_op.running_prefix;
if (chunk == n_chunks - 1) {
ssm_states[state_idx * params.ssm_states_dstate_stride] = input_t(prefix_op.running_prefix.y);
ssm_states[state_idx] = input_t(prefix_op.running_prefix.y);
}
}
#pragma unroll
@ -483,10 +481,6 @@ void set_ssm_params_fwd(SSMParamsBase &params,
params.out_batch_stride = out.stride(1);
params.out_d_stride = out.stride(0);
params.ssm_states_batch_stride = ssm_states.stride(0);
params.ssm_states_dim_stride = ssm_states.stride(1);
params.ssm_states_dstate_stride = ssm_states.stride(2);
}
else{
if (!is_variable_B) {
@ -515,10 +509,6 @@ void set_ssm_params_fwd(SSMParamsBase &params,
}
params.out_batch_stride = out.stride(0);
params.out_d_stride = out.stride(1);
params.ssm_states_batch_stride = ssm_states.stride(0);
params.ssm_states_dim_stride = ssm_states.stride(1);
params.ssm_states_dstate_stride = ssm_states.stride(2);
}
}

View File

@ -20,7 +20,6 @@ namespace MARLIN_NAMESPACE_NAME {
TEMPLATE = ("template __global__ void Marlin<"
"{{scalar_t}}, "
"{{w_type_id}}, "
"{{s_type_id}}, "
"{{threads}}, "
"{{thread_m_blocks}}, "
"{{thread_n_blocks}}, "
@ -78,7 +77,6 @@ def generate_new_kernels():
if scalar_type == "vllm::kFE4M3fn" and group_blocks not in [-1, 8]:
continue
# nvfp4 only supports group_size == 16
# mxfp4 only supports group_size == 32
if scalar_type == "vllm::kFE2M1f" and group_blocks not in [1, 2]:
continue
# other quantization methods don't support group_size = 16
@ -91,22 +89,9 @@ def generate_new_kernels():
c_dtype = "half" if dtype == "fp16" else "nv_bfloat16"
if scalar_type == "vllm::kFE2M1f" and group_blocks == 1:
s_type = "vllm::kFE4M3fn"
elif scalar_type == "vllm::kFE2M1f" and group_blocks == 2:
s_type = "vllm::kFE8M0fnu"
if dtype == "fp16":
# we cannot safely dequantize e8m0 to fp16, so skip this
continue
elif dtype == "fp16":
s_type = "vllm::kFloat16"
elif dtype == "bf16":
s_type = "vllm::kBFloat16"
template_str = jinja2.Template(TEMPLATE).render(
scalar_t=c_dtype,
w_type_id=scalar_type + ".id()",
s_type_id=s_type + ".id()",
threads=threads,
thread_m_blocks=max(m_blocks, 1),
thread_n_blocks=n_blocks,

Some files were not shown because too many files have changed in this diff Show More