Compare commits

..

492 Commits

Author SHA1 Message Date
82091b864a Bump up to v0.3.3 (#3129) 2024-03-01 12:58:06 -08:00
c0c2335ce0 Integrate Marlin Kernels for Int4 GPTQ inference (#2497)
Co-authored-by: Robert Shaw <114415538+rib-2@users.noreply.github.com>
Co-authored-by: alexm <alexm@neuralmagic.com>
2024-03-01 12:47:51 -08:00
90fbf12540 fix relative import path of protocol.py (#3134)
Co-authored-by: huohuarong <huohuarong@zuoshouyisheng.com>
2024-03-01 19:42:06 +00:00
49d849b3ab docs: Add tutorial on deploying vLLM model with KServe (#2586)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2024-03-01 11:04:14 -08:00
27ca23dc00 Remove exclude_unset in streaming response (#3143) 2024-03-01 09:59:06 -08:00
54d3544784 Fix: Output text is always truncated in some models (#3016) 2024-03-01 07:52:22 +00:00
703e42ee4b Add guided decoding for OpenAI API server (#2819)
Co-authored-by: br3no <breno@veltefaria.de>
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-02-29 22:13:08 +00:00
29a8d6a554 [Fix] Don't deep-copy LogitsProcessors when copying SamplingParams (#3099) 2024-02-29 19:20:42 +00:00
2c08ff23c0 Fix building from source on WSL (#3112) 2024-02-29 11:13:58 -08:00
bfdcfa6a05 Support starcoder2 architecture (#3089) 2024-02-29 00:51:48 -08:00
9289e577ec add cache_config's info to prometheus metrics. (#3100) 2024-02-29 06:15:18 +00:00
a6d471c759 Fix: AttributeError in OpenAI-compatible server (#3018) 2024-02-28 22:04:07 -08:00
01a5d18a53 Add Support for 2/3/8-bit GPTQ Quantization Models (#2330) 2024-02-28 21:52:23 -08:00
929b4f2973 Add LoRA support for Gemma (#3050) 2024-02-28 13:03:28 -08:00
3b7178cfa4 [Neuron] Support inference with transformers-neuronx (#2569) 2024-02-28 09:34:34 -08:00
e46fa5d52e Restrict prometheus_client >= 0.18.0 to prevent errors when importing pkgs (#3070) 2024-02-28 05:38:26 +00:00
a8683102cc multi-lora documentation fix (#3064) 2024-02-27 21:26:15 -08:00
71bcaf99e2 Enable GQA support in the prefix prefill kernels (#3007)
Signed-off-by: Tao He <sighingnow@gmail.com>
2024-02-27 01:14:31 -08:00
8b430d7dea [Minor] Fix StableLMEpochForCausalLM -> StableLmForCausalLM (#3046) 2024-02-26 20:23:50 -08:00
e0ade06d63 Support logit bias for OpenAI API (#3027) 2024-02-27 11:51:53 +08:00
4bd18ec0c7 [Minor] Fix type annotation in fused moe (#3045) 2024-02-26 19:44:29 -08:00
2410e320b3 fix get_ip error in pure ipv6 environment (#2931) 2024-02-26 19:22:16 -08:00
48a8f4a7fd Support Orion model (#2539)
Co-authored-by: zhangdacheng <zhangdacheng@ainirobot.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-02-26 19:17:06 -08:00
Roy
4dd6416faf Fix stablelm (#3038) 2024-02-26 18:31:10 -08:00
Roy
c1c0d00b88 Don't use cupy when enforce_eager=True (#3037) 2024-02-26 17:33:38 -08:00
Roy
d9f726c4d0 [Minor] Remove unused config files (#3039) 2024-02-26 17:25:22 -08:00
d6e4a130b0 [Minor] Remove gather_cached_kv kernel (#3043) 2024-02-26 15:00:54 -08:00
cfc15a1031 Optimize Triton MoE Kernel (#2979)
Co-authored-by: Cade Daniel <edacih@gmail.com>
2024-02-26 13:48:56 -08:00
70f3e8e3a1 Add LogProbs for Chat Completions in OpenAI (#2918) 2024-02-26 10:39:34 +08:00
ef978fe411 Port metrics from aioprometheus to prometheus_client (#2730) 2024-02-25 11:54:00 -08:00
f7c1234990 [Fix] Fissertion on YaRN model len (#2984) 2024-02-23 12:57:48 -08:00
57f044945f Fix nvcc not found in vlm-openai image (#2781) 2024-02-22 14:25:07 -08:00
4caf7044e0 Include tokens from prompt phase in counter_generation_tokens (#2802) 2024-02-22 14:00:12 -08:00
6f32cddf1c Remove Flash Attention in test env (#2982) 2024-02-22 09:58:29 -08:00
c530e2cfe3 [FIX] Fix a bug in initializing Yarn RoPE (#2983) 2024-02-22 01:40:05 -08:00
fd5dcc5c81 Optimize GeGLU layer in Gemma (#2975) 2024-02-21 20:17:52 -08:00
93dc5a2870 chore(vllm): codespell for spell checking (#2820) 2024-02-21 18:56:01 -08:00
95529e3253 Use Llama RMSNorm custom op for Gemma (#2974) 2024-02-21 18:28:23 -08:00
Roy
344020c926 Migrate MistralForCausalLM to LlamaForCausalLM (#2868) 2024-02-21 18:25:05 -08:00
5574081c49 Added early stopping to completion APIs (#2939) 2024-02-21 18:24:01 -08:00
d7f396486e Update comment (#2934) 2024-02-21 18:18:37 -08:00
8fbd84bf78 Bump up version to v0.3.2 (#2968)
This version is for more model support. Add support for Gemma models (#2964) and OLMo models (#2832).
2024-02-21 11:47:25 -08:00
7d2dcce175 Support per-request seed (#2514) 2024-02-21 11:47:00 -08:00
dc903e70ac [ROCm] Upgrade transformers to v4.38.0 (#2967) 2024-02-21 09:46:57 -08:00
a9c8212895 [FIX] Add Gemma model to the doc (#2966) 2024-02-21 09:46:15 -08:00
c20ecb6a51 Upgrade transformers to v4.38.0 (#2965) 2024-02-21 09:38:03 -08:00
5253edaacb Add Gemma model (#2964) 2024-02-21 09:34:30 -08:00
017d9f1515 Add metrics to RequestOutput (#2876) 2024-02-20 21:55:57 -08:00
181b27d881 Make vLLM logging formatting optional (#2877) 2024-02-20 14:38:55 -08:00
63e2a6419d [FIX] Fix beam search test (#2930) 2024-02-20 14:37:39 -08:00
264017a2bf [ROCm] include gfx908 as supported (#2792) 2024-02-19 17:58:59 -08:00
e433c115bc Fix vllm:prompt_tokens_total metric calculation (#2869) 2024-02-18 23:55:41 -08:00
86fd8bb0ac Add warning to prevent changes to benchmark api server (#2858) 2024-02-18 21:36:19 -08:00
ab3a5a8259 Support OLMo models. (#2832) 2024-02-18 21:05:15 -08:00
a61f0521b8 [Test] Add basic correctness test (#2908) 2024-02-18 16:44:50 -08:00
537c9755a7 [Minor] Small fix to make distributed init logic in worker looks cleaner (#2905) 2024-02-18 14:39:00 -08:00
786b7f18a5 Add code-revision config argument for Hugging Face Hub (#2892) 2024-02-17 22:36:53 -08:00
8f36444c4f multi-LoRA as extra models in OpenAI server (#2775)
how to serve the loras (mimicking the [multilora inference example](https://github.com/vllm-project/vllm/blob/main/examples/multilora_inference.py)):
```terminal
$ export LORA_PATH=~/.cache/huggingface/hub/models--yard1--llama-2-7b-sql-lora-test/
$ python -m vllm.entrypoints.api_server \
 --model meta-llama/Llama-2-7b-hf \
 --enable-lora \
 --lora-modules sql-lora=$LORA_PATH sql-lora2=$LORA_PATH
```
the above server will list 3 separate values if the user queries `/models`: one for the base served model, and one each for the specified lora modules. in this case sql-lora and sql-lora2 point to the same underlying lora, but this need not be the case. lora config values take the same values they do in EngineArgs

no work has been done here to scope client permissions to specific models
2024-02-17 12:00:48 -08:00
185b2c29e2 Defensively copy sampling_params (#2881)
If the SamplingParams object passed to LLMEngine.add_request() is mutated after it returns, it could affect the async sampling process for that request.

Suggested by @Yard1 https://github.com/vllm-project/vllm/pull/2514#discussion_r1490106059
2024-02-17 11:18:04 -08:00
5f08050d8d Bump up to v0.3.1 (#2887) 2024-02-16 15:05:18 -08:00
64da65b322 Prefix Caching- fix t4 triton error (#2517) 2024-02-16 14:17:55 -08:00
5255d99dc5 [ROCm] Dockerfile fix for flash-attention build (#2885) 2024-02-15 10:22:39 -08:00
4f2ad11135 Fix DeciLM (#2883) 2024-02-14 22:29:57 -08:00
d7afab6d3a [BugFix] Fix GC bug for LLM class (#2882) 2024-02-14 22:17:44 -08:00
31348dff03 Align LoRA code between Mistral and Mixtral (fixes #2875) (#2880)
* Fix AttributeError: MixtralModel object has no attribute org_vocab_size.

* Make LoRA logic for Mistral and Mixtral the same

---------

Co-authored-by: Pernekhan Utemuratov <pernekhan@deepinfra.com>
2024-02-15 01:00:43 +01:00
25e86b6a61 Don't use cupy NCCL for AMD backends (#2855) 2024-02-14 12:30:44 -08:00
Roy
4efbac6d35 Migrate AquilaForCausalLM to LlamaForCausalLM (#2867) 2024-02-14 12:30:24 -08:00
87069ccf68 Fix docker python version (#2845) 2024-02-14 10:17:57 -08:00
7e45107f51 [Fix] Fix memory profiling when GPU is used by multiple processes (#2863) 2024-02-13 19:52:34 -08:00
0c48b37c31 Fix internlm after https://github.com/vllm-project/vllm/pull/2860 (#2861) 2024-02-13 18:01:15 -08:00
7eacffd951 Migrate InternLMForCausalLM to LlamaForCausalLM (#2860)
Co-authored-by: Roy <jasonailu87@gmail.com>
2024-02-13 17:12:05 -08:00
2a543d6efe Add LoRA support for Mixtral (#2831)
* add mixtral lora support

* formatting

* fix incorrectly ported logic

* polish tests

* minor fixes and refactoring

* minor fixes

* formatting

* rename and remove redundant logic

* refactoring

* refactoring

* minor fix

* minor refactoring

* fix code smell
2024-02-14 00:55:45 +01:00
317b29de0f Remove Yi model definition, please use LlamaForCausalLM instead (#2854)
Co-authored-by: Roy <jasonailu87@gmail.com>
2024-02-13 14:22:22 -08:00
a463c333dd Use CuPy for CUDA graphs (#2811) 2024-02-13 11:32:06 -08:00
ea356004d4 Revert "Refactor llama family models (#2637)" (#2851)
This reverts commit 5c976a7e1a1bec875bf6474824b7dff39e38de18.
2024-02-13 09:24:59 -08:00
Roy
5c976a7e1a Refactor llama family models (#2637) 2024-02-13 00:09:23 -08:00
f964493274 [CI] Ensure documentation build is checked in CI (#2842) 2024-02-12 22:53:07 -08:00
a4211a4dc3 Serving Benchmark Refactoring (#2433) 2024-02-12 22:53:00 -08:00
Rex
563836496a Refactor 2 awq gemm kernels into m16nXk32 (#2723)
Co-authored-by: Chunan Zeng <chunanzeng@Chunans-Air.attlocal.net>
2024-02-12 11:02:17 -08:00
4ca2c358b1 Add documentation section about LoRA (#2834) 2024-02-12 17:24:45 +01:00
0580aab02f [ROCm] support Radeon™ 7900 series (gfx1100) without using flash-attention (#2768) 2024-02-10 23:14:37 -08:00
3711811b1d Disable custom all reduce by default (#2808) 2024-02-08 09:58:03 -08:00
65b89d16ee [Ray] Integration compiled DAG off by default (#2471) 2024-02-08 09:57:25 -08:00
931746bc6d Add documentation on how to do incremental builds (#2796) 2024-02-07 14:42:02 -08:00
c81dddb45c [ROCm] Fix build problem resulted from previous commit related to FP8 kv-cache support (#2790) 2024-02-06 22:36:59 -08:00
fe6d09ae61 [Minor] More fix of test_cache.py CI test failure (#2750) 2024-02-06 11:38:38 -08:00
ed70c70ea3 modelscope: fix issue when model parameter is not a model id but path of the model. (#2489) 2024-02-06 09:57:15 -08:00
f0d4e14557 Add fused top-K softmax kernel for MoE (#2769) 2024-02-05 17:38:02 -08:00
2ccee3def6 [ROCm] Fixup arch checks for ROCM (#2627) 2024-02-05 14:59:09 -08:00
b92adec8e8 Set local logging level via env variable (#2774) 2024-02-05 14:26:50 -08:00
56f738ae9b [ROCm] Fix some kernels failed unit tests (#2498) 2024-02-05 14:25:36 -08:00
72d3a30c63 [Minor] Fix benchmark_latency script (#2765) 2024-02-05 12:45:37 -08:00
c9b45adeeb Require triton >= 2.1.0 (#2746)
Co-authored-by: yangrui1 <yangrui@lanjingren.com>
2024-02-04 23:07:36 -08:00
Rex
5a6c81b051 Remove eos tokens from output by default (#2611) 2024-02-04 14:32:42 -08:00
51cd22ce56 set&get llm internal tokenizer instead of the TokenizerGroup (#2741)
Co-authored-by: shujunhua1 <shujunhua1@jd.com>
2024-02-04 14:25:36 -08:00
5ed704ec8c docs: fix langchain (#2736) 2024-02-03 18:17:55 -08:00
4abf6336ec Add one example to run batch inference distributed on Ray (#2696) 2024-02-02 15:41:42 -08:00
0e163fce18 Fix default length_penalty to 1.0 (#2667) 2024-02-01 15:59:39 -08:00
96b6f475dd Remove hardcoded device="cuda" to support more devices (#2503)
Co-authored-by: Jiang Li <jiang1.li@intel.com>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
2024-02-01 15:46:39 -08:00
c410f5d020 Use revision when downloading the quantization config file (#2697)
Co-authored-by: Pernekhan Utemuratov <pernekhan@deepinfra.com>
2024-02-01 15:41:58 -08:00
bb8c697ee0 Update README for meetup slides (#2718) 2024-02-01 14:56:53 -08:00
b9e96b17de fix python 3.8 syntax (#2716) 2024-02-01 14:00:58 -08:00
923797fea4 Fix compile error when using rocm (#2648) 2024-02-01 09:35:09 -08:00
cd9e60c76c Add Internlm2 (#2666) 2024-02-01 09:27:40 -08:00
93b38bea5d Refactor Prometheus and Add Request Level Metrics (#2316) 2024-01-31 14:58:07 -08:00
d0d93b92b1 Add unit test for Mixtral MoE layer (#2677) 2024-01-31 14:34:17 -08:00
89efcf1ce5 [Minor] Fix test_cache.py CI test failure (#2684) 2024-01-31 10:12:11 -08:00
c664b0e683 fix some bugs (#2689) 2024-01-31 10:09:23 -08:00
d69ff0cbbb Fixes assertion failure in prefix caching: the lora index mapping should respect prefix_len (#2688)
Signed-off-by: Tao He <sighingnow@gmail.com>
2024-01-31 18:00:13 +01:00
1af090b57d Bump up version to v0.3.0 (#2656) 2024-01-31 00:07:07 -08:00
3dad944485 Add quantized mixtral support (#2673) 2024-01-30 16:34:10 -08:00
105a40f53a [Minor] Fix false warning when TP=1 (#2674) 2024-01-30 14:39:40 -08:00
bbe9bd9684 [Minor] Fix a small typo (#2672) 2024-01-30 13:40:37 -08:00
4f65af0e25 Add swap_blocks unit tests (#2616) 2024-01-30 09:30:50 -08:00
d79ced3292 Fix 'Actor methods cannot be called directly' when using --engine-use-ray (#2664)
* fix: engine-useray complain

* fix: typo
2024-01-30 17:17:05 +01:00
ab40644669 Fused MOE for Mixtral (#2542)
Co-authored-by: chen shen <scv119@gmail.com>
2024-01-29 22:43:37 -08:00
5d60def02c DeepseekMoE support with Fused MoE kernel (#2453)
Co-authored-by: roy <jasonailu87@gmail.com>
2024-01-29 21:19:48 -08:00
ea8489fce2 ROCm: Allow setting compilation target (#2581) 2024-01-29 10:52:31 -08:00
1b20639a43 No repeated IPC open (#2642) 2024-01-29 10:46:29 -08:00
b72af8f1ed Fix error when tp > 1 (#2644)
Co-authored-by: zhaoyang-star <zhao.yang16@zte.com.cn>
2024-01-28 22:47:39 -08:00
9090bf02e7 Support FP8-E5M2 KV Cache (#2279)
Co-authored-by: zhaoyang <zhao.yang16@zte.com.cn>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-01-28 16:43:54 -08:00
7d648418b8 Update Ray version requirements (#2636) 2024-01-28 14:27:22 -08:00
89be30fa7d Small async_llm_engine refactor (#2618) 2024-01-27 23:28:37 -08:00
f8ecb84c02 Speed up Punica compilation (#2632) 2024-01-27 17:46:56 -08:00
5f036d2bcc [Minor] Fix warning on Ray dependencies (#2630) 2024-01-27 15:43:40 -08:00
380170038e Implement custom all reduce kernels (#2192) 2024-01-27 12:46:35 -08:00
220a47627b Use head_dim in config if exists (#2622) 2024-01-27 10:30:49 -08:00
beb89f68b4 AWQ: Up to 2.66x higher throughput (#2566) 2024-01-26 23:53:17 -08:00
390b495ff3 Don't build punica kernels by default (#2605) 2024-01-26 15:19:19 -08:00
3a0e1fc070 Support for Stable LM 2 (#2598)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-01-26 12:45:19 -08:00
6b7de1a030 [ROCm] add support to ROCm 6.0 and MI300 (#2274) 2024-01-26 12:41:10 -08:00
5265631d15 use a correct device when creating OptionalCUDAGuard (#2583) 2024-01-25 23:48:17 -08:00
2832e7b9f9 fix names and license for Qwen2 (#2589) 2024-01-24 22:37:51 -08:00
3a7dd7e367 Support Batch Completion in Server (#2529) 2024-01-24 17:11:07 -08:00
223c19224b Fix the syntax error in the doc of supported_models (#2584) 2024-01-24 11:22:51 -08:00
f1f6cc10c7 Added include_stop_str_in_output and length_penalty parameters to OpenAI API (#2562) 2024-01-24 10:21:56 -08:00
3209b49033 [Bugfix] fix crash if max_tokens=None (#2570) 2024-01-23 22:38:55 -08:00
1e4277d2d1 lint: format all python file instead of just source code (#2567) 2024-01-23 15:53:06 -08:00
9b945daaf1 [Experimental] Add multi-LoRA support (#1804)
Co-authored-by: Chen Shen <scv119@gmail.com>
Co-authored-by: Shreyas Krishnaswamy <shrekris@anyscale.com>
Co-authored-by: Avnish Narayan <avnish@anyscale.com>
2024-01-23 15:26:37 -08:00
9c1352eb57 [Feature] Simple API token authentication and pluggable middlewares (#1106) 2024-01-23 15:13:00 -08:00
7a0b011dd5 Add a 1-line docstring to explain why calling context_attention_fwd twice in test_prefix_prefill.py (#2553) 2024-01-22 14:47:25 -08:00
63e835cbcc Fix progress bar and allow HTTPS in benchmark_serving.py (#2552) 2024-01-22 14:40:31 -08:00
94b5edeb53 Add qwen2 (#2495) 2024-01-22 14:34:21 -08:00
ab7e6006d6 Fix https://github.com/vllm-project/vllm/issues/2540 (#2545) 2024-01-22 19:02:38 +01:00
18bfcdd05c [Speculative decoding 2/9] Multi-step worker for draft model (#2424) 2024-01-21 16:31:47 -08:00
71d63ed72e migrate pydantic from v1 to v2 (#2531) 2024-01-21 16:05:56 -08:00
d75c40734a [Fix] Keep scheduler.running as deque (#2523) 2024-01-20 22:36:09 -08:00
5b23c3f26f Add group as an argument in broadcast ops (#2522) 2024-01-20 16:00:26 -08:00
00efdc84ba Add benchmark serving to CI (#2505) 2024-01-19 20:20:19 -08:00
Roy
91a61da9b1 [Bugfix] fix load local safetensors model (#2512) 2024-01-19 16:26:16 -08:00
ef9b636e2d Simplify broadcast logic for control messages (#2501) 2024-01-19 11:23:30 -08:00
2709c0009a Support OpenAI API server in benchmark_serving.py (#2172) 2024-01-18 20:34:08 -08:00
dd7e8f5f64 refactor complemention api for readability (#2499) 2024-01-18 16:45:14 -08:00
d2a68364c4 [BugFix] Fix abort_seq_group (#2463) 2024-01-18 15:10:42 -08:00
7e1081139d Don't download both safetensor and bin files. (#2480) 2024-01-18 11:05:53 -08:00
18473cf498 [Neuron] Add an option to build with neuron (#2065) 2024-01-18 10:58:50 -08:00
4df417d059 fix: fix some args desc (#2487) 2024-01-18 09:41:44 -08:00
5d80a9178b Minor fix in prefill cache example (#2494) 2024-01-18 09:40:34 -08:00
8a25d3a71a fix stablelm.py tensor-parallel-size bug (#2482) 2024-01-18 09:39:46 -08:00
d10f8e1d43 [Experimental] Prefix Caching Support (#1669)
Co-authored-by: DouHappy <2278958187@qq.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-01-17 16:32:10 -08:00
14cc317ba4 OpenAI Server refactoring (#2360) 2024-01-16 21:33:14 -08:00
e1957c6ebd Add StableLM3B model (#2372) 2024-01-16 20:32:40 -08:00
8cd5a992bf ci: retry on build failure as well (#2457) 2024-01-16 12:51:04 -08:00
947f0b23cc CI: make sure benchmark script exit on error (#2449) 2024-01-16 09:50:13 -08:00
f780504d12 fix weigit loading for GQA with TP (#2379) 2024-01-15 15:43:59 -08:00
bfc072addf Allow buildkite to retry build on agent lost (#2446) 2024-01-15 15:43:15 -08:00
2a18da257c Announce the second vLLM meetup (#2444) 2024-01-15 14:11:59 -08:00
6e01e8c1c8 [CI] Add Buildkite (#2355) 2024-01-14 12:37:58 -08:00
Roy
9f659bf07f [Minor] Optimize cuda graph memory usage (#2437) 2024-01-14 18:40:51 +01:00
35c4bc20d9 [Minor] Fix err msg (#2431) 2024-01-12 14:02:52 -08:00
218dc2ccda Aligning top_p and top_k Sampling (#1885)
* Align top_p and top_k with huggingface

* remove _get_prompt_and_output_tokens

* rename _apply_top_p_top_k

* compare top_p top_k with hf

* fix test errors
2024-01-12 22:51:03 +01:00
827cbcd37c Update quickstart.rst (#2369) 2024-01-12 12:56:18 -08:00
Ben
cb7a1c1cbf Suggest using dtype=half when OOM. 2024-01-12 12:33:29 -08:00
7878958c0d Address Phi modeling update 2 (#2428) 2024-01-12 12:16:49 -08:00
ce036244c9 Allow setting fastapi root_path argument (#2341) 2024-01-12 10:59:59 -08:00
48cf1e413c fix: deque mutated during iteration in abort_seq_group (#2371) 2024-01-12 17:44:18 +01:00
97460585d9 Add gradio chatbot for openai webserver (#2307) 2024-01-11 19:45:56 -08:00
f745847ef7 [Minor] Fix the format in quick start guide related to Model Scope (#2425) 2024-01-11 19:44:01 -08:00
6549aef245 [DOC] Add additional comments for LLMEngine and AsyncLLMEngine (#1011) 2024-01-11 19:26:49 -08:00
50376faa7b Rename phi_1_5 -> phi (#2385) 2024-01-11 16:23:43 -08:00
4b61c6b669 get_ip(): Fix ipv4 ipv6 dualstack (#2408) 2024-01-10 11:39:58 -08:00
79d64c4954 [Speculative decoding 1/9] Optimized rejection sampler (#2336) 2024-01-09 15:38:41 -08:00
KKY
74cd5abdd1 Add baichuan chat template jinjia file (#2390) 2024-01-09 09:13:02 -08:00
28c3f12104 [Minor] Remove unused code in attention (#2384) 2024-01-08 13:13:08 -08:00
c884819135 Fix eager mode performance (#2377) 2024-01-08 10:11:06 -08:00
05921a9a7a Changed scheduler to use deques instead of lists (#2290)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-01-07 09:48:07 -08:00
d0215a58e7 Ensure metrics are logged regardless of requests (#2347) 2024-01-05 05:24:42 -08:00
937e7b7d7c Build docker image with shared objects from "build" step (#2237) 2024-01-04 09:35:18 -08:00
aee8ef661a Miner fix of type hint (#2340) 2024-01-03 21:27:56 -08:00
2e0b6e7757 Bump up to v0.2.7 (#2337) 2024-01-03 17:35:56 -08:00
941767127c Revert the changes in test_cache (#2335) 2024-01-03 17:32:05 -08:00
74d8d77626 Remove unused const TIMEOUT_TO_PREVENT_DEADLOCK (#2321) 2024-01-03 15:49:07 -08:00
fd4ea8ef5c Use NCCL instead of ray for control-plane communication to remove serialization overhead (#2221) 2024-01-03 11:30:22 -08:00
1066cbd152 Remove deprecated parameter: concurrency_count (#2315) 2024-01-03 09:56:21 -08:00
6ef00b03a2 Enable CUDA graph for GPTQ & SqueezeLLM (#2318) 2024-01-03 09:52:29 -08:00
Roy
9140561059 [Minor] Fix typo and remove unused code (#2305) 2024-01-02 19:23:15 -08:00
77af974b40 [FIX] Support non-zero CUDA devices in custom kernels (#1959) 2024-01-02 19:09:59 -08:00
4934d49274 Support GPT-NeoX Models without attention biases (#2301) 2023-12-30 11:42:04 -05:00
358c328d69 [BUGFIX] Fix communication test (#2285) 2023-12-27 17:18:11 -05:00
4aaafdd289 [BUGFIX] Fix the path of test prompts (#2273) 2023-12-26 10:37:21 -08:00
66b108d142 [BUGFIX] Fix API server test (#2270) 2023-12-26 10:37:06 -08:00
e0ff920001 [BUGFIX] Do not return ignored sentences twice in async llm engine (#2258) 2023-12-26 13:41:09 +08:00
face83c7ec [Docs] Add "About" Heading to README.md (#2260) 2023-12-25 16:37:07 -08:00
1db83e31a2 [Docs] Update installation instructions to include CUDA 11.8 xFormers (#2246) 2023-12-22 23:20:02 -08:00
a1b9cb2a34 [BugFix] Fix recovery logic for sequence group (#2186) 2023-12-20 21:52:37 -08:00
3a4fd5ca59 Disable Ray usage stats collection (#2206) 2023-12-20 21:52:08 -08:00
c17daa9f89 [Docs] Fix broken links (#2222) 2023-12-20 12:43:42 -08:00
bd29cf3d3a Remove Sampler copy stream (#2209) 2023-12-20 00:04:33 -08:00
31bff69151 Make _prepare_sample non-blocking and use pinned memory for input buffers (#2207) 2023-12-19 16:52:46 -08:00
ba4f826738 [BugFix] Fix weight loading for Mixtral with TP (#2208) 2023-12-19 16:16:11 -08:00
de60a3fb93 Added DeciLM-7b and DeciLM-7b-instruct (#2062) 2023-12-19 02:29:33 -08:00
21d5daa4ac Add warning on CUDA graph memory usage (#2182) 2023-12-18 18:16:17 -08:00
290e015c6c Update Help Text for --gpu-memory-utilization Argument (#2183) 2023-12-18 11:33:24 -08:00
1b7c791d60 [ROCm] Fixes for GPTQ on ROCm (#2180) 2023-12-18 10:41:04 -08:00
bbe4466fd9 [Minor] Fix typo (#2166)
Co-authored-by: John-Saxon <zhang.xiangxuan@oushu.com>
2023-12-17 23:28:49 -08:00
08133c4d1a Add SSL arguments to API servers (#2109) 2023-12-18 10:56:23 +08:00
76a7983b23 [BugFix] Fix RoPE kernel on long sequences(#2164) 2023-12-17 17:09:10 -08:00
8041b7305e [BugFix] Raise error when max_model_len is larger than KV cache (#2163) 2023-12-17 17:08:23 -08:00
3ec8c25cd0 [Docs] Update documentation for gpu-memory-utilization option (#2162) 2023-12-17 10:51:57 -08:00
671af2b1c0 Bump up to v0.2.6 (#2157) 2023-12-17 10:34:56 -08:00
6f41f0e377 Disable CUDA graph for SqueezeLLM (#2161) 2023-12-17 10:24:25 -08:00
2c9b638065 [Minor] Fix a typo in .pt weight support (#2160) 2023-12-17 10:12:44 -08:00
a7347d9a6d Make sampler less blocking (#1889) 2023-12-17 23:03:49 +08:00
f8c688d746 [Minor] Add Phi 2 to supported models (#2159) 2023-12-17 02:54:57 -08:00
c9fadda543 [Minor] Fix xformers version (#2158) 2023-12-17 02:28:02 -08:00
30fb0956df [Minor] Add more detailed explanation on quantization argument (#2145) 2023-12-17 01:56:16 -08:00
3a765bd5e1 Temporarily enforce eager mode for GPTQ models (#2154) 2023-12-17 01:51:12 -08:00
26c52a5ea6 [Docs] Add CUDA graph support to docs (#2148) 2023-12-17 01:49:20 -08:00
c3372e87be Remove dependency on CuPy (#2152) 2023-12-17 01:49:07 -08:00
b0a1d667b0 Pin PyTorch & xformers versions (#2155) 2023-12-17 01:46:54 -08:00
e1d5402238 Fix all-reduce memory usage (#2151) 2023-12-17 01:44:45 -08:00
3d1cfbfc74 [Minor] Delete Llama tokenizer warnings (#2146) 2023-12-16 22:05:18 -08:00
37ca558103 Optimize model execution with CUDA graph (#1926)
Co-authored-by: Chen Shen <scv119@gmail.com>
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2023-12-16 21:12:08 -08:00
Roy
eed74a558f Simplify weight loading logic (#2133) 2023-12-16 12:41:23 -08:00
2acd76f346 [ROCm] Temporarily remove GPTQ ROCm support (#2138) 2023-12-15 17:13:58 -08:00
b81a6a6bb3 [Docs] Add supported quantization methods to docs (#2135) 2023-12-15 13:29:22 -08:00
0fbfc4b81b Add GPTQ support (#916) 2023-12-15 03:04:22 -08:00
c06170cc8e Add a flag to include stop string in output text (#1976) 2023-12-15 00:45:58 -08:00
614856da25 Avoid multiple redefinition (#1817) 2023-12-14 09:35:58 -08:00
05bdf4eaf3 Fix Dockerfile.rocm (#2101)
Co-authored-by: miloice <jeffaw99@hotmail.com>
2023-12-14 00:45:58 -08:00
6774bd50b0 Fix typing in AsyncLLMEngine & add toml to requirements-dev (#2100) 2023-12-14 00:19:41 -08:00
31c1f3255e Bump up to v0.2.5 (#2095) 2023-12-13 23:56:15 -08:00
21d93c140d Optimize Mixtral with expert parallelism (#2090) 2023-12-13 23:55:07 -08:00
f1c8520146 [BugFix] Fix input positions for long context with sliding window (#2088) 2023-12-13 12:28:13 -08:00
096827c284 [Docs] Add notes on ROCm-supported models (#2087) 2023-12-13 09:45:34 -08:00
6565d9e33e Update installation instruction for vLLM + CUDA 11.8 (#2086) 2023-12-13 09:25:59 -08:00
f375ec8440 [ROCm] Upgrade xformers version for ROCm & update doc (#2079)
Co-authored-by: miloice <jeffaw99@hotmail.com>
2023-12-13 00:56:05 -08:00
518369d78c Implement lazy model loader (#2044) 2023-12-12 22:21:45 -08:00
30bad5c492 Fix peak memory profiling (#2031) 2023-12-12 22:01:53 -08:00
3fefe271ec Update Dockerfile to build Megablocks (#2042) 2023-12-12 17:34:17 -08:00
6428f1d051 Support MPT with GQA (#1938)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2023-12-12 10:16:05 -08:00
7e1b21daac Remove einops from requirements (#2049) 2023-12-12 09:34:09 -08:00
cb3f30c600 Upgrade transformers version to 4.36.0 (#2046) 2023-12-11 18:39:14 -08:00
f3e024bece [CI/CD] Upgrade PyTorch version to v2.1.1 (#2045) 2023-12-11 17:48:11 -08:00
31d2ab4aff Remove python 3.10 requirement (#2040) 2023-12-11 12:26:42 -08:00
eb17212858 Update Dockerfile to support Mixtral (#2027) 2023-12-11 11:59:08 -08:00
4dd4b5c538 Bump up to v0.2.4 (#2034) 2023-12-11 11:49:39 -08:00
6120e5aaea Fix import error msg for megablocks (#2038) 2023-12-11 11:40:56 -08:00
Ram
2eaa81b236 Update README.md to add megablocks requirement for mixtral (#2033) 2023-12-11 11:37:34 -08:00
81ce2a4b26 [Minor] Fix type annotation in Mixtral (#2036) 2023-12-11 11:32:39 -08:00
5dd80d3777 Fix latency benchmark script (#2035) 2023-12-11 11:19:08 -08:00
beeee69bc9 Revert adding Megablocks (#2030) 2023-12-11 10:49:00 -08:00
Ram
9bf28d0b69 Update requirements.txt for mixtral (#2029) 2023-12-11 10:39:29 -08:00
c0ce15dfb2 Update run_on_sky.rst (#2025)
sharable -> shareable
2023-12-11 10:32:58 -08:00
b9bcdc7158 Change the load format to pt for Mixtral (#2028) 2023-12-11 10:32:17 -08:00
4ff0203987 Minor fixes for Mixtral (#2015) 2023-12-11 09:16:15 -08:00
b5f882cc98 Mixtral 8x7B support (#2011)
Co-authored-by: Pierre Stock <p@mistral.ai>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-12-11 01:09:15 -08:00
2e8fc0d4c3 Fix completion API echo and logprob combo (#1992) 2023-12-10 13:20:30 -08:00
wbn
dacaf5a400 Replace head_mapping params with num_kv_heads to attention kernel. (#1997)
Co-authored-by: wangguoya <wangguoya@baidu.com>
Co-authored-by: Yang Zhao <zhaoyangstar@foxmail.com>
2023-12-10 10:12:53 -08:00
24cde76a15 [Minor] Add comment on skipping rope caches (#2004) 2023-12-10 10:04:12 -08:00
1aa1361510 Fix OpenAI server completion_tokens referenced before assignment (#1996) 2023-12-09 21:01:21 -08:00
fe470ae5ad [Minor] Fix code style for baichuan (#2003) 2023-12-09 19:24:29 -08:00
3a8c2381f7 Fix for KeyError on Loading LLaMA (#1978) 2023-12-09 15:59:57 -08:00
c85b80c2b6 [Docker] Add cuda arch list as build option (#1950) 2023-12-08 09:53:47 -08:00
2b981012a6 Fix Baichuan2-7B-Chat (#1987) 2023-12-08 09:38:36 -08:00
6ccc0bfffb Merge EmbeddedLLM/vllm-rocm into vLLM main (#1836)
Co-authored-by: Philipp Moritz <pcmoritz@gmail.com>
Co-authored-by: Amir Balwel <amoooori04@gmail.com>
Co-authored-by: root <kuanfu.liu@akirakan.com>
Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: kuanfu <kuanfu.liu@embeddedllm.com>
Co-authored-by: miloice <17350011+kliuae@users.noreply.github.com>
2023-12-07 23:16:52 -08:00
c8e7eb1eb3 fix typo in getenv call (#1972) 2023-12-07 16:04:41 -08:00
24f60a54f4 [Docker] Adding number of nvcc_threads during build as envar (#1893) 2023-12-07 11:00:32 -08:00
42c02f5892 Fix quickstart.rst typo jinja (#1964) 2023-12-07 08:34:44 -08:00
ebede26ebf Make InternLM follow rope_scaling in config.json (#1956)
Co-authored-by: lijie8 <lijie8@sensetime.com>
2023-12-07 08:32:08 -08:00
d940ce497e Fix typo in adding_model.rst (#1947)
adpated -> adapted
2023-12-06 10:04:26 -08:00
05ff90b692 Save pytorch profiler output for latency benchmark (#1871)
* Save profiler output

* Apply feedback from code review
2023-12-05 20:55:55 -08:00
1d9b737e05 Support ChatGLMForConditionalGeneration (#1932)
Co-authored-by: shujunhua1 <shujunhua1@jd.com>
2023-12-05 10:52:48 -08:00
Roy
60dc62dc9e add custom server params (#1868) 2023-12-03 12:59:18 -08:00
0f90effc66 Bump up to v0.2.3 (#1903) 2023-12-03 12:27:47 -08:00
464dd985e3 Fix num_gpus when TP > 1 (#1852) 2023-12-03 12:24:30 -08:00
c07a442854 chore(examples-docs): upgrade to OpenAI V1 (#1785) 2023-12-03 01:11:22 -08:00
cd3aa153a4 Fix broken worker test (#1900) 2023-12-02 22:17:33 -08:00
9b294976a2 Add PyTorch-native implementation of custom layers (#1898) 2023-12-02 21:18:40 -08:00
5313c2cb8b Add Production Metrics in Prometheus format (#1890) 2023-12-02 16:37:44 -08:00
5f09cbdb63 Fix broken sampler tests (#1896)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2023-12-02 16:06:17 -08:00
4cefa9b49b [Docs] Update the AWQ documentation to highlight performance issue (#1883) 2023-12-02 15:52:47 -08:00
f86bd6190a Fix the typo in SamplingParams' docstring (#1886) 2023-12-01 02:06:36 -08:00
e5452ddfd6 Normalize head weights for Baichuan 2 (#1876) 2023-11-30 20:03:58 -08:00
d06980dfa7 Fix Baichuan tokenizer error (#1874) 2023-11-30 18:35:50 -08:00
66785cc05c Support chat template and echo for chat API (#1756) 2023-11-30 16:43:13 -08:00
05a38612b0 docs: add instruction for langchain (#1162) 2023-11-30 10:57:44 -08:00
Roy
d27f4bae39 Fix rope cache key error (#1867) 2023-11-30 08:29:28 -08:00
8d8c2f6ffe Support max-model-len argument for throughput benchmark (#1858) 2023-11-30 08:10:24 -08:00
51d3cb951d Remove max_num_seqs in latency benchmark script (#1855) 2023-11-30 00:00:32 -08:00
e74b1736a1 Add profile option to latency benchmark script (#1839) 2023-11-29 23:42:52 -08:00
f07c1ceaa5 [FIX] Fix docker build error (#1831) (#1832)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2023-11-29 23:06:50 -08:00
63b2206ad0 Avoid multiple instantiations of the RoPE class (#1828) 2023-11-29 23:06:27 -08:00
27feead2f8 Refactor Worker & InputMetadata (#1843) 2023-11-29 22:16:37 -08:00
c782195662 Disable Logs Requests should Disable Logging of requests. (#1779)
Co-authored-by: Michael McCulloch <mjm.gitlab@fastmail.com>
2023-11-29 21:50:02 -08:00
0f621c2c7d [Docs] Add information about using shared memory in docker (#1845) 2023-11-29 18:33:56 -08:00
a9e4574261 Refactor Attention (#1840) 2023-11-29 15:37:31 -08:00
0229c386c5 Better integration with Ray Serve (#1821)
Co-authored-by: FlorianJoncour <florian@zetta-sys.com>
2023-11-29 13:25:43 -08:00
a7b3e33078 [Fix] Fix RoPE in ChatGLM-32K (#1841) 2023-11-29 13:01:19 -08:00
e19a64c7ef [FIX] Fix formatting error in main branch (#1822) 2023-11-28 16:56:43 -08:00
1cb4ad8de9 [FIX] Fix formatting error 2023-11-29 00:40:19 +00:00
6ed068a71a Use the type BlockTable (#1791) 2023-11-28 16:34:05 -08:00
708e6c18b0 [FIX] Fix class naming (#1803) 2023-11-28 14:08:01 -08:00
b943890484 Fix OPT param names (#1819) 2023-11-28 11:22:44 -08:00
a1125ad4df Correct comments in parallel_state.py (#1818) 2023-11-28 10:19:35 -08:00
a8b150c595 Init model on GPU to reduce CPU memory footprint (#1796) 2023-11-27 11:18:26 -08:00
665cbcec4b Added echo function to OpenAI API server. (#1504) 2023-11-26 21:29:17 -08:00
7c600440f7 Fix model docstrings (#1764) 2023-11-23 23:04:44 -08:00
e0c6f556e8 [Build] Avoid building too many extensions (#1624) 2023-11-23 16:31:19 -08:00
de23687d16 Fix repetition penalty aligned with huggingface (#1577) 2023-11-22 14:41:44 -08:00
4cea74c73b Set top_p=0 and top_k=-1 in greedy sampling (#1748) 2023-11-22 12:51:09 -08:00
a921d8be9d [DOCS] Add engine args documentation (#1741) 2023-11-22 12:31:27 -08:00
094f716bf2 Add stop_token_ids in SamplingParams.__repr__ (#1745) 2023-11-21 20:13:53 -08:00
7d761fe3c1 [FIX] Fix the case when input_is_parallel=False for ScaledActivation (#1737) 2023-11-20 23:56:48 -08:00
cf35d8f3d7 [BugFix] Fix TP support for AWQ (#1731) 2023-11-20 21:42:45 -08:00
4bb6b67188 fix RAM OOM when load large models in tensor parallel mode. (#1395)
Co-authored-by: ran_lin <rlin@thoughtworks.com>
2023-11-20 19:02:42 -08:00
819b18e7ba Rewrite torch.repeat_interleave to remove cpu synchronization (#1599) 2023-11-20 17:46:32 -08:00
19849db573 [Fix] Fix bugs in scheduler (#1727) 2023-11-20 16:10:50 -08:00
3d4ceb292c Fix hanging in the scheduler caused by long prompts (#1534) 2023-11-20 16:06:49 -08:00
f5a37c6c6c [BugFix] Fix a bug in loading safetensors (#1732) 2023-11-20 15:51:18 -08:00
32c927b53f [FIX] Update the doc link in README.md (#1730) 2023-11-20 12:46:24 -08:00
5ffc0d13a2 Migrate linter from pylint to ruff (#1665) 2023-11-20 11:58:01 -08:00
112627e8b2 [Docs] Fix the code block's format in deploying_with_docker page (#1722) 2023-11-20 01:22:39 -08:00
37c1e3c218 Documentation about official docker image (#1709) 2023-11-19 20:56:26 -08:00
06e9ebebd5 Add instructions to install vLLM+cu118 (#1717) 2023-11-18 23:48:58 -08:00
c5f7740d89 Bump up to v0.2.2 (#1689) 2023-11-18 21:57:07 -08:00
be66d9b125 Fix warning msg on quantization (#1715) 2023-11-18 21:49:55 -08:00
e1054247ba [Optimization] Implement fused add rmsnorm (#1667) 2023-11-18 18:18:02 -08:00
8d17774f92 Add AWQ support for all models (#1714) 2023-11-18 17:56:47 -08:00
e946260cf3 use get_tensor in safe_open (#1696) 2023-11-18 16:45:18 -08:00
edb305584b Support download models from www.modelscope.cn (#1588) 2023-11-17 20:38:31 -08:00
bb00f66e19 Use quantization_config in hf config (#1695) 2023-11-17 16:23:49 -08:00
Roy
e87557b069 Support Min P Sampler (#1642) 2023-11-17 16:20:49 -08:00
dcc543a298 [Minor] Fix comment (#1704) 2023-11-17 09:42:49 -08:00
0fc280b06c Update the adding-model doc according to the new refactor (#1692) 2023-11-16 18:46:26 -08:00
20d0699d49 [Fix] Fix comm test (#1691) 2023-11-16 16:28:39 -08:00
686f5e3210 Return usage for openai streaming requests (#1663) 2023-11-16 15:28:36 -08:00
415d109527 [Fix] Update Supported Models List (#1690) 2023-11-16 14:47:26 -08:00
521b35f799 Support Microsoft Phi 1.5 (#1664) 2023-11-16 14:28:39 -08:00
cb08cd0d75 [Minor] Fix duplication of ignored seq group in engine step (#1666) 2023-11-16 13:11:41 -08:00
2a2c135b41 Fix loading error when safetensors contains empty tensor (#1687) 2023-11-16 10:38:10 -08:00
65ea2ddf17 feat(config): support parsing torch.dtype (#1641)
Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
2023-11-16 01:31:06 -08:00
b514d3c496 Revert MptConfig to MPTConfig (#1668) 2023-11-16 01:19:39 -08:00
7076fa1c9f TP/quantization/weight loading refactor part 2 - Refactor quantized linear logic and extend quantization support to all models (#1622)
Refactor the tensor parallelism, quantization, and weight-loading codes.

Summary of the new features enabled by this PR:
- **All models** are able to be quantized with AWQ and SqueezeLLM, and [soon GPTQ](https://github.com/vllm-project/vllm/pull/1580).
- Model loading code became much simpler.
- Support model parallelism for all MQA/GQA models when the number of key/value heads is smaller than the tensor parallel size.
2023-11-15 22:50:41 -08:00
660a7fcfa4 Add DeepSpeed MII backend to benchmark script (#1649) 2023-11-14 12:35:30 -08:00
054072bee5 [Minor] Move RoPE selection logic to get_rope (#1633) 2023-11-12 16:04:50 -08:00
eb825c1e74 Fix #1474 - AssertionError:assert param_slice.shape == loaded_weight.shape (#1631) 2023-11-12 15:53:12 -08:00
1b290ace4f Run default _AsyncLLMEngine._run_workers_async in threadpool (#1628) 2023-11-11 14:50:44 -08:00
Sin
0d578228ca config parser: add ChatGLM2 seq_length to _get_and_verify_max_len (#1617) 2023-11-09 19:29:51 -08:00
aebfcb262a Dockerfile: Upgrade Cuda to 12.1 (#1609) 2023-11-09 11:49:02 -08:00
ab9e8488d5 Add Yi model to quantization support (#1600) 2023-11-09 11:47:14 -08:00
fd58b73a40 Build CUDA11.8 wheels for release (#1596) 2023-11-09 03:52:29 -08:00
8efe23f150 Fix input_metadata.selected_token_indices in worker prepare_inputs (#1546) 2023-11-08 14:19:12 -08:00
06458a0b42 Upgrade to CUDA 12 (#1527)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2023-11-08 14:17:49 -08:00
1a2bbc9301 ChatGLM Support (#1261) 2023-11-06 16:09:33 -08:00
Roy
e7f579eb97 Support Yi model (#1567) 2023-11-06 15:26:03 -08:00
8516999495 Add Quantization and AutoAWQ to docs (#1235) 2023-11-04 22:43:39 -07:00
9f669a9a7c Support YaRN models (#1264)
Signed-off-by: Antoni Baum <antoni.baum@protonmail.com>
Co-authored-by: Viktor Ferenczi <viktor@ferenczi.eu>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2023-11-03 14:12:48 -07:00
555bdcc5a3 Added logits processor API to sampling params (#1469) 2023-11-03 14:12:15 -07:00
54ca1ba71d docs: add description (#1553) 2023-11-03 09:14:52 -07:00
9738b84a08 Force paged attention v2 for long contexts (#1510) 2023-11-01 16:24:32 -07:00
1fe0990023 Remove MPTConfig (#1529) 2023-11-01 15:29:05 -07:00
7e90a2d117 Add /health Endpoint for both Servers (#1540) 2023-11-01 10:29:44 -07:00
5687d584fe [BugFix] Set engine_use_ray=True when TP>1 (#1531) 2023-11-01 02:14:18 -07:00
cf8849f2d6 Add MptForCausalLM key in model_loader (#1526) 2023-10-31 15:46:53 -07:00
e575df33b1 [Small] Formatter only checks lints in changed files (#1528) 2023-10-31 15:39:38 -07:00
0ce8647dc5 Fix integer overflows in attention & cache ops (#1514) 2023-10-31 15:19:30 -07:00
9cabcb7645 Add Dockerfile (#1350) 2023-10-31 12:36:47 -07:00
7b895c5976 [Fix] Fix duplicated logging messages (#1524) 2023-10-31 09:04:47 -07:00
7013a80170 Add support for spaces_between_special_tokens 2023-10-30 16:52:56 -07:00
79a30912b8 Add py.typed so consumers of vLLM can get type checking (#1509)
* Add py.typed so consumers of vLLM can get type checking

* Update py.typed

---------
Co-authored-by: aarnphm <29749331+aarnphm@users.noreply.github.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-10-30 14:50:47 -07:00
2f3d36a8a1 Fix logging so we actually get info level entries in the log. (#1494) 2023-10-30 10:02:21 -07:00
ac8d36f3e5 Refactor LLMEngine demo script for clarity and modularity (#1413)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-10-30 09:14:37 -07:00
15f5632365 Delay GPU->CPU sync in sampling (#1337) 2023-10-30 09:01:34 -07:00
aa9af07cac Fix bias in InternLM (#1501) 2023-10-29 16:24:18 -07:00
69be658bba Support repetition_penalty (#1424) 2023-10-29 10:02:41 -07:00
beac8dd461 fix: don't skip first special token. (#1497) 2023-10-29 04:26:36 -07:00
28b47d1e49 Add rope_scaling to Aquila model (#1457) 2023-10-29 04:25:21 -07:00
1f24755bf8 Support SqueezeLLM (#1326)
Co-authored-by: squeeze-ai-lab <squeezeailab.bair@gmail.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2023-10-21 23:14:59 -07:00
bf31d3606a Pin pydantic dependency versions (#1429) 2023-10-21 11:18:58 -07:00
d189170b6c remove useless statements (#1408) 2023-10-20 08:52:07 -07:00
f61dc8072f Fix type hints (#1427) 2023-10-20 08:50:47 -07:00
f8a1e39fae [BugFix] Define __eq__ in SequenceGroupOutputs (#1389) 2023-10-17 01:09:44 -07:00
a132435204 Fix typo (#1383) 2023-10-16 21:53:37 -07:00
9524867701 Add Mistral 7B to test_models (#1366) 2023-10-16 17:49:54 -07:00
c1376e0f82 Change scheduler & input tensor shape (#1381) 2023-10-16 17:48:42 -07:00
651c614aa4 Bump up the version to v0.2.1 (#1355) 2023-10-16 12:58:57 -07:00
d3a5bd9fb7 Fix sampler test (#1379) 2023-10-16 12:57:26 -07:00
e8ef4c0820 Fix PyTorch index URL in workflow (#1378) 2023-10-16 12:37:56 -07:00
348897af31 Fix PyTorch version to 2.0.1 in workflow (#1377) 2023-10-16 11:27:17 -07:00
9d9072a069 Implement prompt logprobs & Batched topk for computing logprobs (#1328)
Co-authored-by: Yunmo Chen <16273544+wanmok@users.noreply.github.com>
2023-10-16 10:56:50 -07:00
928de46888 Implement PagedAttention V2 (#1348) 2023-10-16 00:59:57 -07:00
29678cd213 Minor fix on AWQ kernel launch (#1356) 2023-10-15 21:53:56 -07:00
d0740dff1b Fix error message on TORCH_CUDA_ARCH_LIST (#1239)
Co-authored-by: Yunfeng Bai <yunfeng.bai@scale.com>
2023-10-14 14:47:43 -07:00
de89472897 Fix the issue for AquilaChat2-* models (#1339) 2023-10-13 11:51:29 -07:00
e7c8555d06 Bump up transformers version & Remove MistralConfig (#1254) 2023-10-13 10:05:26 -07:00
ec3b5ce9cc Improve detokenization performance (#1338) 2023-10-13 09:59:07 -07:00
6368e777a8 Add Aquila2 to README (#1331)
Signed-off-by: ldwang <ftgreat@gmail.com>
Co-authored-by: ldwang <ftgreat@gmail.com>
2023-10-12 12:11:16 -07:00
875afe38ab Add blacklist in model checkpoint (#1325) 2023-10-12 01:05:37 -07:00
ee8217e5be Add Mistral to quantization model list (#1278) 2023-10-11 00:26:24 -07:00
980dd4a2c4 Fix overflow in awq kernel (#1295)
Co-authored-by: 楚天翔 <tianxiang.ctx@alibaba-inc.com>
2023-10-11 00:19:53 -07:00
8285736840 workaround of AWQ for Turing GPUs (#1252) 2023-10-10 19:48:16 -07:00
91fce82c6f change the timing of sorting logits (#1309) 2023-10-10 19:37:42 -07:00
ac5cf86aa6 Fix __repr__ of SequenceOutputs (#1311) 2023-10-10 09:58:28 -07:00
6a6119554c lock torch version to 2.0.1 (#1290) 2023-10-10 09:21:57 -07:00
b95ee898fe [Minor] Fix comment in mistral.py (#1303) 2023-10-09 19:44:37 -07:00
9eed4d1f3e Update README.md (#1292) 2023-10-08 23:15:50 -07:00
6b5296aa3a [FIX] Explain why the finished_reason of ignored sequences are length (#1289) 2023-10-08 15:22:38 -07:00
ee92b58b3a Move bfloat16 check to worker (#1259) 2023-10-07 22:10:44 -07:00
09ff7f106a API server support ipv4 / ipv6 dualstack (#1288)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-10-07 15:15:54 -07:00
acbed3ef40 Use monotonic time where appropriate (#1249) 2023-10-02 19:22:05 -07:00
66d18a7fb0 add support for tokenizer revision (#1163)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-10-02 19:19:46 -07:00
ba0bfd40e2 TP/quantization/weight loading refactor part 1 - Simplify parallel linear logic (#1181) 2023-10-02 15:36:09 -07:00
84e4e37d14 [Minor] Fix type annotations (#1238) 2023-10-02 15:28:31 -07:00
a60b353005 support sharding llama2-70b on more than 8 GPUs (#1209)
Co-authored-by: JiCheng <247153481@qq.com>
2023-10-02 15:26:33 -07:00
ebe4d1db3a Fix boundary check in paged attention kernel (#1241) 2023-10-01 11:35:06 -07:00
b5a10eb0ef Added dtype arg to benchmarks (#1228) 2023-09-30 21:04:03 -07:00
0967102c6d fixing typo in tiiuae/falcon-rw-7b model name (#1226) 2023-09-29 13:40:25 -07:00
e2fb71ec9f Bump up the version to v0.2.0 (#1212) 2023-09-28 15:30:38 -07:00
f936657eb6 Provide default max model length (#1224) 2023-09-28 14:44:02 -07:00
6f88f762bf Fix OOM in attention kernel test (#1223) 2023-09-28 14:33:24 -07:00
202351d5bf Add Mistral to supported model list (#1221) 2023-09-28 14:33:04 -07:00
2e8e49fce3 [Fix] Remove false assertion (#1222) 2023-09-28 10:52:38 -07:00
a8e98aee0c Fix Mistral model (#1220) 2023-09-28 10:44:05 -07:00
bb1ba58f06 [Mistral] Mistral-7B-v0.1 support (#1196)
Co-authored-by: timlacroix <t@mistral.ai>
2023-09-28 10:41:03 -07:00
7bedab5748 Add rope_scaling to Qwen (#1210) 2023-09-28 00:49:23 -07:00
20f7cc4cde Add skip_special_tokens sampling params (#1186) 2023-09-27 19:21:42 -07:00
649aa730c5 Use standard extras for uvicorn (#1166) 2023-09-27 17:41:36 -07:00
a19bc5c628 Automatically configure max_num_batched_tokens (#1198) 2023-09-27 16:34:00 -07:00
28e616c4e3 fix qwen-14b model (#1173) 2023-09-27 16:33:16 -07:00
30e775281d fix typo (#1184)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-09-27 16:22:45 -07:00
21877b0d75 Support Longchat and RoPE scaling (#555)
Co-authored-by: Wing Lian <wing.lian@gmail.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2023-09-27 03:36:02 -07:00
cf5cb1e33e Allocate more shared memory to attention kernel (#1154) 2023-09-26 22:27:13 -07:00
03ffd0a022 Add comments on RoPE initialization (#1176) 2023-09-26 10:48:33 -07:00
a425bd9a9a [Setup] Enable TORCH_CUDA_ARCH_LIST for selecting target GPUs (#1074) 2023-09-26 10:21:08 -07:00
bbbf86565f Align max_tokens behavior with openai (#852) 2023-09-23 18:10:13 -07:00
9f6be8692e Fix config for Falcon (#1164) 2023-09-23 17:38:43 -07:00
f187877945 [FIX] Simplify sampler logic (#1156) 2023-09-23 17:21:56 -07:00
947b794146 [Sampler] Vectorized sampling (simplified) (#1048)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2023-09-22 17:48:04 -07:00
8d926e91f1 Announce the First vLLM Meetup (#1148) 2023-09-22 11:37:14 -07:00
4ee52bb169 Docs: Fix broken link to openai example (#1145)
Link to `openai_client.py` is no longer valid - updated to `openai_completion_client.py`
2023-09-22 11:36:09 -07:00
7d7e3b78a3 Use --ipc=host in docker run for distributed inference (#1125) 2023-09-21 18:26:47 -07:00
f98b745a81 feat: support stop_token_ids parameter. (#1097) 2023-09-21 15:34:02 -07:00
Roy
2d1e86f1b1 clean api code, remove redundant background task. (#1102) 2023-09-21 13:25:05 -07:00
1ac4ccf73c Add float16 and float32 (#1115) 2023-09-21 00:52:47 -07:00
2ac4d5e2bf Replace DtypeTensor (#1123) 2023-09-21 00:51:47 -07:00
3302f0aef3 rope_theta and max_position_embeddings from config (#1096)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: wnma3mz <wnma3mz@gmail.com>
2023-09-20 13:35:11 -07:00
6f2dd6c37e Add documentation to Triton server tutorial (#983) 2023-09-20 10:32:40 -07:00
bc0644574c Add gpu_memory_utilization and swap_space to LLM (#1090) 2023-09-19 22:16:04 -07:00
400b8289f7 Add pyarrow to dependencies & Print warning on Ray import error (#1094) 2023-09-18 22:36:17 -07:00
c1026311b5 [Community] Add vLLM Discord server (#1086) 2023-09-18 12:23:35 -07:00
2b1c116b5a Add minimum capability requirement for AWQ (#1064) 2023-09-18 12:02:01 -07:00
cc796b1358 Convert before transpose (#1073) 2023-09-18 11:51:48 -07:00
f029ef94d7 Fix get_max_num_running_seqs for waiting and swapped seq groups (#1068) 2023-09-18 11:49:40 -07:00
Roy
95592fa00a align llm_engine and async_engine. (#1081) 2023-09-18 11:49:10 -07:00
fbe66e1d0b added support for quantize on LLM module (#1080) 2023-09-18 11:04:21 -07:00
90979c38f8 [FIX] Don't initialize parameter by default (#1067) 2023-09-17 17:15:38 -07:00
e21d7687a9 Fix hanging when prompt exceeds limit (#1029) 2023-09-17 01:48:56 -07:00
ff36139ffc Remove AsyncLLMEngine busy loop, shield background task (#1059) 2023-09-17 00:29:08 -07:00
e3e79e9e8a Implement AWQ quantization support for LLaMA (#1032)
Co-authored-by: Robert Irvine <robert@seamlessml.com>
Co-authored-by: root <rirv938@gmail.com>
Co-authored-by: Casper <casperbh.96@gmail.com>
Co-authored-by: julian-q <julianhquevedo@gmail.com>
2023-09-16 00:03:37 -07:00
b9fe4616f9 Abort when coroutine is cancelled (#1020) 2023-09-14 17:40:18 -07:00
64ca424e75 Fix warning message on LLaMA FastTokenizer (#1037) 2023-09-14 17:33:32 -07:00
b5f93d0631 Only fail if logit_bias has actual values (#1045) 2023-09-14 17:33:01 -07:00
a58936966f Add pandas to requirements.txt (#1047)
* Add pandas to requirements.txt

* Minor
2023-09-14 17:31:38 -07:00
dd54a4b026 Fix detokenization leaving special tokens (#1044)
Signed-off-by: Antoni Baum <antoni.baum@protonmail.com>
2023-09-14 16:37:03 -07:00
eda1a7cad3 Announce paper release (#1036) 2023-09-13 17:38:13 -07:00
f04908cae7 [FIX] Minor bug fixes (#1035)
* [FIX] Minor bug fixes

* Address review comments
2023-09-13 16:38:12 -07:00
ab019eea75 Add Model Revision Support (#1014)
Co-authored-by: Jasmond Loh <Jasmond.Loh@hotmail.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-09-13 15:20:02 -07:00
9841d48a10 Use TGI-like incremental detokenization (#984) 2023-09-13 13:38:01 -07:00
3272d7a0b7 Fix typo in README.md (#1033) 2023-09-13 12:55:23 -07:00
0bb1e885a0 Make max_model_len configurable (#972) 2023-09-12 16:29:19 -07:00
d6545ad22e add option to shorten prompt print in log (#991)
Signed-off-by: Lei Wen <wenlei03@qiyi.com>
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-09-12 15:10:14 -07:00
90eb3f43ca Bump up the version to v0.1.7 (#1013) 2023-09-11 00:54:30 -07:00
e67b4f2c2a Use FP32 in RoPE initialization (#1004)
Co-authored-by: One <imone@tuta.io>
2023-09-11 00:26:35 -07:00
d6770d1f23 Update setup.py (#1006) 2023-09-10 23:42:45 -07:00
b9cecc2635 [Docs] Update installation page (#1005) 2023-09-10 14:23:31 -07:00
898285c9bf fix: CUDA error when inferencing with Falcon-40B base model (#992) 2023-09-10 01:39:02 -07:00
a62de9ecfd Fix wrong dtype in PagedAttentionWithALiBi bias (#996)
---------

Signed-off-by: Antoni Baum <antoni.baum@protonmail.com>
2023-09-09 14:58:35 -07:00
4042d192f5 fix "tansformers_module" ModuleNotFoundError when load model with trust_remote_code=True (#871) 2023-09-08 17:21:30 -07:00
1117aa1411 Bump up the version to v0.1.6 (#989) 2023-09-08 00:07:46 -07:00
080438477f Start background task in AsyncLLMEngine.generate (#988)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-09-08 00:03:39 -07:00
4b5bcf8906 faster startup of vLLM (#982)
* update

---------

Co-authored-by: Robert Irvine <robert@seamlessml.com>
2023-09-08 14:48:54 +09:00
321 changed files with 42303 additions and 7801 deletions

View File

@ -0,0 +1,69 @@
# This script is run by buildkite to run the benchmarks and upload the results to buildkite
set -ex
set -o pipefail
# cd into parent directory of this file
cd "$(dirname "${BASH_SOURCE[0]}")/.."
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
# run python-based benchmarks and upload the result to buildkite
python3 benchmarks/benchmark_latency.py 2>&1 | tee benchmark_latency.txt
bench_latency_exit_code=$?
python3 benchmarks/benchmark_throughput.py --input-len 256 --output-len 256 2>&1 | tee benchmark_throughput.txt
bench_throughput_exit_code=$?
# run server-based benchmarks and upload the result to buildkite
python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-chat-hf &
server_pid=$!
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
# wait for server to start, timeout after 600 seconds
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend openai \
--dataset ./ShareGPT_V3_unfiltered_cleaned_split.json \
--model meta-llama/Llama-2-7b-chat-hf \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer meta-llama/Llama-2-7b-chat-hf \
--save-result \
2>&1 | tee benchmark_serving.txt
bench_serving_exit_code=$?
kill $server_pid
# write the results into a markdown file
echo "### Latency Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_latency.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
sed -n '$p' benchmark_latency.txt >> benchmark_results.md # last line
echo "### Throughput Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_throughput.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
sed -n '$p' benchmark_throughput.txt >> benchmark_results.md # last line
echo "### Serving Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_serving.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
tail -n 13 benchmark_serving.txt >> benchmark_results.md # last 13 lines
# upload the results to buildkite
/workspace/buildkite-agent annotate --style "info" --context "benchmark-results" < benchmark_results.md
# exit with the exit code of the benchmarks
if [ $bench_latency_exit_code -ne 0 ]; then
exit $bench_latency_exit_code
fi
if [ $bench_throughput_exit_code -ne 0 ]; then
exit $bench_throughput_exit_code
fi
if [ $bench_serving_exit_code -ne 0 ]; then
exit $bench_serving_exit_code
fi
/workspace/buildkite-agent artifact upload openai-*.json

View File

@ -0,0 +1,69 @@
# In this file, you can add more tests to run either by adding a new step or
# adding a new command to an existing step. See different options here for examples.
# This script will be feed into Jinja template in `test-template.j2` to generate
# the final pipeline yaml file.
steps:
- label: Regression Test
command: pytest -v -s test_regression.py
working_dir: "/vllm-workspace/tests" # optional
- label: AsyncEngine Test
command: pytest -v -s async_engine
- label: Basic Correctness Test
command: pytest -v -s --forked basic_correctness
- label: Distributed Comm Ops Test
command: pytest -v -s --forked test_comm_ops.py
working_dir: "/vllm-workspace/tests/distributed"
num_gpus: 2 # only support 1 or 2 for now.
- label: Distributed Correctness Test
command: pytest -v -s --forked test_basic_distributed_correctness.py
working_dir: "/vllm-workspace/tests/distributed"
num_gpus: 2 # only support 1 or 2 for now.
- label: Engine Test
command: pytest -v -s engine
- label: Entrypoints Test
command: pytest -v -s entrypoints
- label: Kernels Test
command: pytest -v -s kernels
soft_fail: true
- label: Models Test
commands:
- pytest -v -s models --forked
soft_fail: true
- label: Prefix Caching Test
commands:
- pytest -v -s prefix_caching
- label: Samplers Test
command: pytest -v -s samplers --forked
- label: Worker Test
command: pytest -v -s worker
- label: LoRA Test
command: pytest -v -s lora --forked
- label: Metrics Test
command: pytest -v -s metrics
- label: Benchmarks
working_dir: "/vllm-workspace/.buildkite"
commands:
- pip install aiohttp
- bash run-benchmarks.sh
- label: Documentation Build
working_dir: "/vllm-workspace/docs"
no_gpu: True
commands:
- pip install -r requirements-docs.txt
- SPHINXOPTS=\"-W\" make html

View File

@ -0,0 +1,56 @@
{% set docker_image = "us-central1-docker.pkg.dev/vllm-405802/vllm-ci-test-repo/vllm-test:$BUILDKITE_COMMIT" %}
{% set default_num_gpu = 1 %}
{% set default_working_dir = "/vllm-workspace/tests" %}
steps:
- label: ":docker: build image"
commands:
- "docker build --build-arg max_jobs=16 --tag {{ docker_image }} --target test --progress plain ."
- "docker push {{ docker_image }}"
env:
DOCKER_BUILDKIT: "1"
retry:
automatic:
- exit_status: -1 # Agent was lost
limit: 5
- wait
{% for step in steps %}
- label: "{{ step.label }}"
agents:
queue: kubernetes
soft_fail: {{ step.soft_fail or false }}
retry:
automatic:
- exit_status: -1 # Agent was lost
limit: 5
plugins:
- kubernetes:
podSpec:
volumes:
- name: dshm
emptyDir:
medium: Memory
containers:
- image: "{{ docker_image }}"
command: ["bash"]
args:
- '-c'
- "'cd {{ (step.working_dir or default_working_dir) | safe }} && {{ step.command or (step.commands | join(' && ')) | safe }}'"
{% if not step.no_gpu %}
resources:
requests:
nvidia.com/gpu: "{{ step.num_gpus or default_num_gpu }}"
limits:
nvidia.com/gpu: "{{ step.num_gpus or default_num_gpu }}"
{% endif %}
env:
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
volumeMounts:
- mountPath: /dev/shm
name: dshm
{% endfor %}

1
.dockerignore Normal file
View File

@ -0,0 +1 @@
vllm/*.so

View File

@ -43,13 +43,14 @@ jobs:
name: Build Wheel
runs-on: ${{ matrix.os }}
needs: release
strategy:
fail-fast: false
matrix:
os: ['ubuntu-20.04']
python-version: ['3.8', '3.9', '3.10', '3.11']
cuda-version: ['11.8'] # Github runner can't build anything older than 11.8
pytorch-version: ['2.1.2'] # Must be the most recent version that meets requirements.txt.
cuda-version: ['11.8', '12.1']
steps:
- name: Checkout
@ -69,9 +70,9 @@ jobs:
run: |
bash -x .github/workflows/scripts/cuda-install.sh ${{ matrix.cuda-version }} ${{ matrix.os }}
- name: Install PyTorch-cu${{ matrix.cuda-version }}
- name: Install PyTorch ${{ matrix.pytorch-version }} with CUDA ${{ matrix.cuda-version }}
run: |
bash -x .github/workflows/scripts/pytorch-install.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }}
bash -x .github/workflows/scripts/pytorch-install.sh ${{ matrix.python-version }} ${{ matrix.pytorch-version }} ${{ matrix.cuda-version }}
- name: Build wheel
shell: bash
@ -81,7 +82,7 @@ jobs:
asset_name=${wheel_name//"linux"/"manylinux1"}
echo "wheel_name=${wheel_name}" >> $GITHUB_ENV
echo "asset_name=${asset_name}" >> $GITHUB_ENV
- name: Upload Release Asset
uses: actions/upload-release-asset@v1
env:

View File

@ -1,4 +1,4 @@
name: pylint
name: ruff
on:
# Trigger the workflow on push or pull request,
@ -11,7 +11,7 @@ on:
- main
jobs:
pylint:
ruff:
runs-on: ubuntu-latest
strategy:
matrix:
@ -25,7 +25,10 @@ jobs:
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pylint==2.8.2
- name: Analysing the code with pylint
pip install ruff==0.1.5 codespell==2.2.6 tomli==2.0.1
- name: Analysing the code with ruff
run: |
pylint vllm
ruff vllm tests
- name: Spelling check with codespell
run: |
codespell --toml pyproject.toml

View File

@ -11,5 +11,10 @@ LD_LIBRARY_PATH=${cuda_home}/lib64:$LD_LIBRARY_PATH
$python_executable -m pip install wheel packaging
$python_executable -m pip install -r requirements.txt
# Limit the number of parallel jobs to avoid OOM
export MAX_JOBS=1
# Make sure punica is built for the release (for LoRA)
export VLLM_INSTALL_PUNICA_KERNELS=1
# Build
$python_executable setup.py bdist_wheel --dist-dir=dist

View File

@ -16,3 +16,8 @@ sudo apt clean
# Test nvcc
PATH=/usr/local/cuda-$1/bin:${PATH}
nvcc --version
# Log gcc, g++, c++ versions
gcc --version
g++ --version
c++ --version

View File

@ -1,11 +1,12 @@
#!/bin/bash
python_executable=python$1
cuda_version=$2
pytorch_version=$2
cuda_version=$3
# Install torch
$python_executable -m pip install numpy pyyaml scipy ipython mkl mkl-include ninja cython typing pandas typing-extensions dataclasses setuptools && conda clean -ya
$python_executable -m pip install torch -f https://download.pytorch.org/whl/cu${cuda_version//./}/torch_stable.html
$python_executable -m pip install torch==${pytorch_version}+cu${cuda_version//./} --extra-index-url https://download.pytorch.org/whl/cu${cuda_version//./}
# Print version information
$python_executable --version

View File

@ -28,4 +28,4 @@ jobs:
pip install toml==0.10.2
- name: Running yapf
run: |
yapf --diff --recursive vllm --exclude 'vllm/model_executor/parallel_utils/**'
yapf --diff --recursive .

11
.gitignore vendored
View File

@ -173,3 +173,14 @@ cython_debug/
# Sphinx documentation
_build/
# vim swap files
*.swo
*.swp
# hip files generated by PyTorch
*.hip
*_hip*
# Benchmark dataset
*.json

434
.pylintrc
View File

@ -1,434 +0,0 @@
# This Pylint rcfile contains a best-effort configuration to uphold the
# best-practices and style described in the Google Python style guide:
# https://google.github.io/styleguide/pyguide.html
#
# Its canonical open-source location is:
# https://google.github.io/styleguide/pylintrc
[MASTER]
# Files or directories to be skipped. They should be base names, not paths.
ignore=docs,parallel_utils
# Files or directories matching the regex patterns are skipped. The regex
# matches against base names, not paths.
ignore-patterns=
# Pickle collected data for later comparisons.
persistent=no
# List of plugins (as comma separated values of python modules names) to load,
# usually to register additional checkers.
load-plugins=
# Use multiple processes to speed up Pylint.
jobs=4
# Allow loading of arbitrary C extensions. Extensions are imported into the
# active Python interpreter and may run arbitrary code.
unsafe-load-any-extension=no
[MESSAGES CONTROL]
# Only show warnings with the listed confidence levels. Leave empty to show
# all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED
confidence=
# Enable the message, report, category or checker with the given id(s). You can
# either give multiple identifier separated by comma (,) or put this option
# multiple time (only on the command line, not in the configuration file where
# it should appear only once). See also the "--disable" option for examples.
#enable=
# Disable the message, report, category or checker with the given id(s). You
# can either give multiple identifiers separated by comma (,) or put this
# option multiple times (only on the command line, not in the configuration
# file where it should appear only once).You can also use "--disable=all" to
# disable everything first and then reenable specific checks. For example, if
# you want to run only the similarities checker, you can use "--disable=all
# --enable=similarities". If you want to run only the classes checker, but have
# no Warning level messages displayed, use"--disable=all --enable=classes
# --disable=W"
disable=abstract-method,
apply-builtin,
arguments-differ,
attribute-defined-outside-init,
backtick,
bad-option-value,
basestring-builtin,
buffer-builtin,
c-extension-no-member,
consider-using-enumerate,
cmp-builtin,
cmp-method,
coerce-builtin,
coerce-method,
delslice-method,
div-method,
duplicate-code,
eq-without-hash,
execfile-builtin,
file-builtin,
filter-builtin-not-iterating,
fixme,
getslice-method,
global-statement,
hex-method,
idiv-method,
implicit-str-concat-in-sequence,
import-error,
import-self,
import-star-module-level,
inconsistent-return-statements,
input-builtin,
intern-builtin,
invalid-str-codec,
locally-disabled,
logging-fstring-interpolation, # added by vLLM
logging-not-lazy, # added by vLLM
long-builtin,
long-suffix,
map-builtin-not-iterating,
misplaced-comparison-constant,
missing-class-docstring, # TODO (vLLM): enable
missing-function-docstring,
missing-module-docstring, # TODO (vLLM): enable
metaclass-assignment,
next-method-called,
next-method-defined,
no-absolute-import,
no-else-break,
no-else-continue,
no-else-raise,
no-else-return,
no-init, # added
no-member,
no-name-in-module,
no-self-use,
nonzero-method,
oct-method,
old-division,
old-ne-operator,
old-octal-literal,
old-raise-syntax,
parameter-unpacking,
print-statement,
raising-string,
range-builtin-not-iterating,
raw_input-builtin,
rdiv-method,
reduce-builtin,
relative-import,
reload-builtin,
round-builtin,
setslice-method,
signature-differs,
standarderror-builtin,
suppressed-message,
sys-max-int,
too-few-public-methods,
too-many-ancestors,
too-many-arguments,
too-many-boolean-expressions,
too-many-branches,
too-many-instance-attributes,
too-many-locals,
too-many-nested-blocks,
too-many-public-methods,
too-many-return-statements,
too-many-statements,
trailing-newlines,
unichr-builtin,
unicode-builtin,
unnecessary-pass,
unpacking-in-except,
unspecified-encoding,
useless-else-on-loop,
useless-object-inheritance,
useless-suppression,
using-cmp-argument,
wrong-import-order,
xrange-builtin,
zip-builtin-not-iterating,
[REPORTS]
# Set the output format. Available formats are text, parseable, colorized, msvs
# (visual studio) and html. You can also give a reporter class, eg
# mypackage.mymodule.MyReporterClass.
output-format=text
# Tells whether to display a full report or only the messages
reports=no
# Python expression which should return a note less than 10 (10 is the highest
# note). You have access to the variables errors warning, statement which
# respectively contain the number of errors / warnings messages and the total
# number of statements analyzed. This is used by the global evaluation report
# (RP0004).
evaluation=10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)
# Template used to display messages. This is a python new-style format string
# used to format the message information. See doc for all details
#msg-template=
[BASIC]
# Good variable names which should always be accepted, separated by a comma
good-names=main,_
# Bad variable names which should always be refused, separated by a comma
bad-names=
# Colon-delimited sets of names that determine each other's naming style when
# the name regexes allow several styles.
name-group=
# Include a hint for the correct naming format with invalid-name
include-naming-hint=no
# List of decorators that produce properties, such as abc.abstractproperty. Add
# to this list to register other decorators that produce valid properties.
property-classes=abc.abstractproperty,cached_property.cached_property,cached_property.threaded_cached_property,cached_property.cached_property_with_ttl,cached_property.threaded_cached_property_with_ttl
# Regular expression matching correct function names
function-rgx=^(?:(?P<exempt>setUp|tearDown|setUpModule|tearDownModule)|(?P<camel_case>_?[A-Z][a-zA-Z0-9]*)|(?P<snake_case>_?[a-z][a-z0-9_]*))$
# Regular expression matching correct variable names
variable-rgx=^[a-z][a-z0-9_]*$
# Regular expression matching correct constant names
const-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
# Regular expression matching correct attribute names
attr-rgx=^_{0,2}[a-z][a-z0-9_]*$
# Regular expression matching correct argument names
argument-rgx=^[a-z][a-z0-9_]*$
# Regular expression matching correct class attribute names
class-attribute-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
# Regular expression matching correct inline iteration names
inlinevar-rgx=^[a-z][a-z0-9_]*$
# Regular expression matching correct class names
class-rgx=^_?[A-Z][a-zA-Z0-9]*$
# Regular expression matching correct module names
module-rgx=^(_?[a-z][a-z0-9_]*|__init__)$
# Regular expression matching correct method names
method-rgx=(?x)^(?:(?P<exempt>_[a-z0-9_]+__|runTest|setUp|tearDown|setUpTestCase|tearDownTestCase|setupSelf|tearDownClass|setUpClass|(test|assert)_*[A-Z0-9][a-zA-Z0-9_]*|next)|(?P<camel_case>_{0,2}[A-Z][a-zA-Z0-9_]*)|(?P<snake_case>_{0,2}[a-z][a-z0-9_]*))$
# Regular expression which should only match function or class names that do
# not require a docstring.
no-docstring-rgx=(__.*__|main|test.*|.*test|.*Test)$
# Minimum line length for functions/classes that require docstrings, shorter
# ones are exempt.
docstring-min-length=10
[TYPECHECK]
# List of decorators that produce context managers, such as
# contextlib.contextmanager. Add to this list to register other decorators that
# produce valid context managers.
contextmanager-decorators=contextlib.contextmanager,contextlib2.contextmanager
# Tells whether missing members accessed in mixin class should be ignored. A
# mixin class is detected if its name ends with "mixin" (case insensitive).
ignore-mixin-members=yes
# List of module names for which member attributes should not be checked
# (useful for modules/projects where namespaces are manipulated during runtime
# and thus existing member attributes cannot be deduced by static analysis. It
# supports qualified module names, as well as Unix pattern matching.
ignored-modules=
# List of class names for which member attributes should not be checked (useful
# for classes with dynamically set attributes). This supports the use of
# qualified names.
ignored-classes=optparse.Values,thread._local,_thread._local
# List of members which are set dynamically and missed by pylint inference
# system, and so shouldn't trigger E1101 when accessed. Python regular
# expressions are accepted.
generated-members=
[FORMAT]
# Maximum number of characters on a single line.
max-line-length=80
# TODO(https://github.com/PyCQA/pylint/issues/3352): Direct pylint to exempt
# lines made too long by directives to pytype.
# Regexp for a line that is allowed to be longer than the limit.
ignore-long-lines=(?x)(
^\s*(\#\ )?<?https?://\S+>?$|
^\s*(from\s+\S+\s+)?import\s+.+$)
# Allow the body of an if to be on the same line as the test if there is no
# else.
single-line-if-stmt=yes
# Maximum number of lines in a module
max-module-lines=99999
# String used as indentation unit. The internal Google style guide mandates 2
# spaces. Google's externaly-published style guide says 4, consistent with
# PEP 8. Here, we use 2 spaces, for conformity with many open-sourced Google
# projects (like TensorFlow).
indent-string=' '
# Number of spaces of indent required inside a hanging or continued line.
indent-after-paren=4
# Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
expected-line-ending-format=
[MISCELLANEOUS]
# List of note tags to take in consideration, separated by a comma.
notes=TODO
[STRING]
# This flag controls whether inconsistent-quotes generates a warning when the
# character used as a quote delimiter is used inconsistently within a module.
check-quote-consistency=yes
[VARIABLES]
# Tells whether we should check for unused import in __init__ files.
init-import=no
# A regular expression matching the name of dummy variables (i.e. expectedly
# not used).
dummy-variables-rgx=^\*{0,2}(_$|unused_|dummy_)
# List of additional names supposed to be defined in builtins. Remember that
# you should avoid to define new builtins when possible.
additional-builtins=
# List of strings which can identify a callback function by name. A callback
# name must start or end with one of those strings.
callbacks=cb_,_cb
# List of qualified module names which can have objects that can redefine
# builtins.
redefining-builtins-modules=six,six.moves,past.builtins,future.builtins,functools
[LOGGING]
# Logging modules to check that the string format arguments are in logging
# function parameter format
logging-modules=logging,absl.logging,tensorflow.io.logging
[SIMILARITIES]
# Minimum lines number of a similarity.
min-similarity-lines=4
# Ignore comments when computing similarities.
ignore-comments=yes
# Ignore docstrings when computing similarities.
ignore-docstrings=yes
# Ignore imports when computing similarities.
ignore-imports=no
[SPELLING]
# Spelling dictionary name. Available dictionaries: none. To make it working
# install python-enchant package.
spelling-dict=
# List of comma separated words that should not be checked.
spelling-ignore-words=
# A path to a file that contains private dictionary; one word per line.
spelling-private-dict-file=
# Tells whether to store unknown words to indicated private dictionary in
# --spelling-private-dict-file option instead of raising a message.
spelling-store-unknown-words=no
[IMPORTS]
# Deprecated modules which should not be used, separated by a comma
deprecated-modules=regsub,
TERMIOS,
Bastion,
rexec,
sets
# Create a graph of every (i.e. internal and external) dependencies in the
# given file (report RP0402 must not be disabled)
import-graph=
# Create a graph of external dependencies in the given file (report RP0402 must
# not be disabled)
ext-import-graph=
# Create a graph of internal dependencies in the given file (report RP0402 must
# not be disabled)
int-import-graph=
# Force import order to recognize a module as part of the standard
# compatibility libraries.
known-standard-library=
# Force import order to recognize a module as part of a third party library.
known-third-party=enchant, absl
# Analyse import fallback blocks. This can be used to support both Python 2 and
# 3 compatible code, which means that the block might have code that exists
# only in one or another interpreter, leading to false positives when analysed.
analyse-fallback-blocks=no
[CLASSES]
# List of method names used to declare (i.e. assign) instance attributes.
defining-attr-methods=__init__,
__new__,
setUp
# List of member names, which should be excluded from the protected access
# warning.
exclude-protected=_asdict,
_fields,
_replace,
_source,
_make
# List of valid names for the first argument in a class method.
valid-classmethod-first-arg=cls,
class_
# List of valid names for the first argument in a metaclass class method.
valid-metaclass-classmethod-first-arg=mcs
[EXCEPTIONS]
# Exceptions that will emit a warning when being caught. Defaults to
# "Exception"
overgeneral-exceptions=StandardError,
Exception,
BaseException

105
Dockerfile Normal file
View File

@ -0,0 +1,105 @@
# The vLLM Dockerfile is used to construct vLLM image that can be directly used
# to run the OpenAI compatible server.
#################### BASE BUILD IMAGE ####################
FROM nvidia/cuda:12.1.0-devel-ubuntu22.04 AS dev
RUN apt-get update -y \
&& apt-get install -y python3-pip git
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-12.1/compat/
WORKDIR /workspace
# install build and runtime dependencies
COPY requirements.txt requirements.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements.txt
# install development dependencies
COPY requirements-dev.txt requirements-dev.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-dev.txt
#################### BASE BUILD IMAGE ####################
#################### EXTENSION BUILD IMAGE ####################
FROM dev AS build
# install build dependencies
COPY requirements-build.txt requirements-build.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-build.txt
# copy input files
COPY csrc csrc
COPY setup.py setup.py
COPY requirements.txt requirements.txt
COPY pyproject.toml pyproject.toml
COPY vllm/__init__.py vllm/__init__.py
# cuda arch list used by torch
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.6 8.9 9.0+PTX'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
# max jobs used by Ninja to build extensions
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
# number of threads used by nvcc
ARG nvcc_threads=8
ENV NVCC_THREADS=$nvcc_threads
# make sure punica kernels are built (for LoRA)
ENV VLLM_INSTALL_PUNICA_KERNELS=1
RUN python3 setup.py build_ext --inplace
#################### EXTENSION Build IMAGE ####################
#################### TEST IMAGE ####################
# image to run unit testing suite
FROM dev AS test
# copy pytorch extensions separately to avoid having to rebuild
# when python code changes
WORKDIR /vllm-workspace
# ADD is used to preserve directory structure
ADD . /vllm-workspace/
COPY --from=build /workspace/vllm/*.so /vllm-workspace/vllm/
# ignore build dependencies installation because we are using pre-complied extensions
RUN rm pyproject.toml
RUN --mount=type=cache,target=/root/.cache/pip VLLM_USE_PRECOMPILED=1 pip install . --verbose
#################### TEST IMAGE ####################
#################### RUNTIME BASE IMAGE ####################
# We used base cuda image because pytorch installs its own cuda libraries.
# However cupy depends on cuda libraries so we had to switch to the runtime image
# In the future it would be nice to get a container with pytorch and cuda without duplicating cuda
FROM nvidia/cuda:12.1.0-runtime-ubuntu22.04 AS vllm-base
# libnccl required for ray
RUN apt-get update -y \
&& apt-get install -y python3-pip
WORKDIR /workspace
COPY requirements.txt requirements.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements.txt
#################### RUNTIME BASE IMAGE ####################
#################### OPENAI API SERVER ####################
# openai api server alternative
FROM vllm-base AS vllm-openai
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate
COPY --from=build /workspace/vllm/*.so /workspace/vllm/
COPY vllm vllm
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
#################### OPENAI API SERVER ####################

95
Dockerfile.rocm Normal file
View File

@ -0,0 +1,95 @@
# default base image
ARG BASE_IMAGE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
FROM $BASE_IMAGE
ARG BASE_IMAGE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
RUN echo "Base image is $BASE_IMAGE"
# BASE_IMAGE for ROCm_5.7: "rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1"
# BASE_IMAGE for ROCm_6.0: "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
ARG FA_GFX_ARCHS="gfx90a;gfx942"
RUN echo "FA_GFX_ARCHS is $FA_GFX_ARCHS"
ARG FA_BRANCH="3d2b6f5"
RUN echo "FA_BRANCH is $FA_BRANCH"
# whether to build flash-attention
# if 0, will not build flash attention
# this is useful for gfx target where flash-attention is not supported
# In that case, we need to use the python reference attention implementation in vllm
ARG BUILD_FA="1"
# Install some basic utilities
RUN apt-get update && apt-get install python3 python3-pip -y
# Install some basic utilities
RUN apt-get update && apt-get install -y \
curl \
ca-certificates \
sudo \
git \
bzip2 \
libx11-6 \
build-essential \
wget \
unzip \
nvidia-cuda-toolkit \
tmux \
&& rm -rf /var/lib/apt/lists/*
### Mount Point ###
# When launching the container, mount the code directory to /app
ARG APP_MOUNT=/app
VOLUME [ ${APP_MOUNT} ]
WORKDIR ${APP_MOUNT}
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas
ENV LLVM_SYMBOLIZER_PATH=/opt/rocm/llvm/bin/llvm-symbolizer
ENV PATH=$PATH:/opt/rocm/bin:/libtorch/bin:
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib/:/libtorch/lib:
ENV CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/libtorch/include:/libtorch/include/torch/csrc/api/include/:/opt/rocm/include/:
# Install ROCm flash-attention
RUN if [ "$BUILD_FA" = "1" ]; then \
mkdir libs \
&& cd libs \
&& git clone https://github.com/ROCm/flash-attention.git \
&& cd flash-attention \
&& git checkout ${FA_BRANCH} \
&& git submodule update --init \
&& export GPU_ARCHS=${FA_GFX_ARCHS} \
&& if [ "$BASE_IMAGE" = "rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1" ]; then \
patch /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/hipify/hipify_python.py hipify_patch.patch; fi \
&& python3 setup.py install \
&& cd ..; \
fi
COPY ./ /app/vllm
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install xformers==0.0.23 --no-deps
# Error related to odd state for numpy 1.20.3 where there is no METADATA etc, but an extra LICENSES_bundled.txt.
# Manually removed it so that later steps of numpy upgrade can continue
RUN if [ "$BASE_IMAGE" = "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" ]; then \
rm -rf /opt/conda/envs/py_3.9/lib/python3.9/site-packages/numpy-1.20.3.dist-info/; fi
RUN cd /app \
&& cd vllm \
&& pip install -U -r requirements-rocm.txt \
&& if [ "$BUILD_FA" = "1" ]; then \
bash patch_xformers.rocm.sh; fi \
&& patch /opt/rocm/include/hip/amd_detail/amd_hip_bf16.h /app/vllm/rocm_patch/rocm_bf16.patch \
&& python3 setup.py install \
&& cd ..
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --no-cache-dir ray[all]
CMD ["/bin/bash"]

View File

@ -10,20 +10,26 @@ Easy, fast, and cheap LLM serving for everyone
</h3>
<p align="center">
| <a href="https://vllm.readthedocs.io/en/latest/"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://github.com/vllm-project/vllm/discussions"><b>Discussions</b></a> |
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> |
</p>
---
*Latest News* 🔥
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2024/01] Added ROCm 6.0 support to vLLM.
- [2023/12] Added ROCm 5.7 support to vLLM.
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
- [2023/09] We created our [Discord server](https://discord.gg/jz7wjKhh6g)! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
- [2023/09] We released our [PagedAttention paper](https://arxiv.org/abs/2309.06180) on arXiv!
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
- [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!
- [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click [example](https://github.com/skypilot-org/skypilot/blob/master/llm/vllm) to start the vLLM demo, and the [blog post](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/) for the story behind vLLM development on the clouds.
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
---
## About
vLLM is a fast and easy-to-use library for LLM inference and serving.
vLLM is fast with:
@ -31,31 +37,49 @@ vLLM is fast with:
- State-of-the-art serving throughput
- Efficient management of attention key and value memory with **PagedAttention**
- Continuous batching of incoming requests
- Fast model execution with CUDA/HIP graph
- Quantization: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [SqueezeLLM](https://arxiv.org/abs/2306.07629), FP8 KV Cache
- Optimized CUDA kernels
vLLM is flexible and easy to use with:
- Seamless integration with popular HuggingFace models
- Seamless integration with popular Hugging Face models
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
- Support NVIDIA GPUs and AMD GPUs
- (Experimental) Prefix caching support
- (Experimental) Multi-lora support
vLLM seamlessly supports many Huggingface models, including the following architectures:
vLLM seamlessly supports many Hugging Face models, including the following architectures:
- Aquila (`BAAI/Aquila-7B`, `BAAI/AquilaChat-7B`, etc.)
- Baichuan (`baichuan-inc/Baichuan-7B`, `baichuan-inc/Baichuan-13B-Chat`, etc.)
- Aquila & Aquila2 (`BAAI/AquilaChat2-7B`, `BAAI/AquilaChat2-34B`, `BAAI/Aquila-7B`, `BAAI/AquilaChat-7B`, etc.)
- Baichuan & Baichuan2 (`baichuan-inc/Baichuan2-13B-Chat`, `baichuan-inc/Baichuan-7B`, etc.)
- BLOOM (`bigscience/bloom`, `bigscience/bloomz`, etc.)
- ChatGLM (`THUDM/chatglm2-6b`, `THUDM/chatglm3-6b`, etc.)
- DeciLM (`Deci/DeciLM-7B`, `Deci/DeciLM-7B-instruct`, etc.)
- Falcon (`tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc.)
- Gemma (`google/gemma-2b`, `google/gemma-7b`, etc.)
- GPT-2 (`gpt2`, `gpt2-xl`, etc.)
- GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, etc.)
- GPT-J (`EleutherAI/gpt-j-6b`, `nomic-ai/gpt4all-j`, etc.)
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
- InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.)
- InternLM2 (`internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc.)
- LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, etc.)
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
- OLMo (`allenai/OLMo-1B`, `allenai/OLMo-7B`, etc.)
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
- Orion (`OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc.)
- Phi (`microsoft/phi-1_5`, `microsoft/phi-2`, etc.)
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)
- Qwen2 (`Qwen/Qwen2-7B-beta`, `Qwen/Qwen-7B-Chat-beta`, etc.)
- StableLM(`stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc.)
- Starcoder2(`bigcode/starcoder2-3b`, `bigcode/starcoder2-7b`, `bigcode/starcoder2-15b`, etc.)
- Yi (`01-ai/Yi-6B`, `01-ai/Yi-34B`, etc.)
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
@ -70,37 +94,19 @@ Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to get started
- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)
- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)
## Performance
vLLM outperforms HuggingFace Transformers (HF) by up to 24x and Text Generation Inference (TGI) by up to 3.5x, in terms of throughput.
For details, check out our [blog post](https://vllm.ai).
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n1_dark.png">
<img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n1_light.png" width="45%">
</picture>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n1_dark.png">
<img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n1_light.png" width="45%">
</picture>
<br>
<em> Serving throughput when each request asks for 1 output completion. </em>
</p>
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n3_dark.png">
<img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n3_light.png" width="45%">
</picture>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n3_dark.png">
<img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n3_light.png" width="45%">
</picture> <br>
<em> Serving throughput when each request asks for 3 output completions. </em>
</p>
## Contributing
We welcome and value any contributions and collaborations.
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.
## Citation
If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs/2309.06180):
```bibtex
@inproceedings{kwon2023efficient,
title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},
booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},
year={2023}
}
```

View File

@ -0,0 +1,284 @@
import json
import os
import time
from dataclasses import dataclass
from typing import Optional
import aiohttp
from tqdm.asyncio import tqdm
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
@dataclass
class RequestFuncInput:
prompt: str
api_url: str
prompt_len: int
output_len: int
model: str
best_of: int = 1
use_beam_search: bool = False
@dataclass
class RequestFuncOutput:
generated_text: str = ""
success: bool = False
latency: float = 0
ttft: float = 0
prompt_len: int = 0
async def async_request_tgi(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
params = {
"best_of": request_func_input.best_of,
"max_new_tokens": request_func_input.output_len,
"do_sample": True,
"temperature": 0.01, # TGI does not accept 0.0 temperature.
"top_p": 0.99, # TGI does not accept 1.0 top_p.
}
payload = {
"inputs": request_func_input.prompt,
"parameters": params,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0
st = time.perf_counter()
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for data in response.content.iter_any():
if ttft == 0:
ttft = time.perf_counter() - st
output.ttft = ttft
output.latency = time.perf_counter() - st
body = data.decode("utf-8").lstrip("data:")
output.generated_text = json.loads(body)["generated_text"]
output.success = True
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
async def async_request_vllm(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("generate")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"prompt": request_func_input.prompt,
"n": 1,
"best_of": request_func_input.best_of,
"use_beam_search": request_func_input.use_beam_search,
"temperature": 0.0 if request_func_input.use_beam_search else 1.0,
"top_p": 1.0,
"max_tokens": request_func_input.output_len,
"ignore_eos": True,
"stream": True,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0
st = time.perf_counter()
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for data in response.content.iter_any():
if ttft == 0:
ttft = time.perf_counter() - st
output.ttft = ttft
output.latency = time.perf_counter() - st
# When streaming, '\0' is appended to the end of the response.
body = data.decode("utf-8").strip("\0")
output.generated_text = json.loads(
body)["text"][0][len(request_func_input.prompt):]
output.success = True
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
async def async_request_trt_llm(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
assert request_func_input.best_of == 1
payload = {
"accumulate_tokens": True,
"text_input": request_func_input.prompt,
"temperature": 0.0,
"top_p": 1.0,
"max_tokens": request_func_input.output_len,
"stream": True,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0
st = time.perf_counter()
try:
async with session.post(url=api_url, json=payload) as resp:
if resp.status == 200:
async for data in resp.content.iter_any():
if ttft == 0:
ttft = time.perf_counter() - st
output.ttft = ttft
output.latency = time.perf_counter() - st
body = data.decode("utf-8").lstrip("data:")
output.generated_text = json.loads(body)["text_output"]
output.success = True
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
async def async_request_deepspeed_mii(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert request_func_input.best_of == 1
assert not request_func_input.use_beam_search
payload = {
"prompts": request_func_input.prompt,
"max_new_tokens": request_func_input.output_len,
"ignore_eos": True,
"do_sample": True,
"temperature":
0.01, # deepspeed-mii does not accept 0.0 temperature.
"top_p": 1.0,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
# DeepSpeed-MII doesn't support streaming as of Jan 28 2024, will use 0 as placeholder.
# https://github.com/microsoft/DeepSpeed-MII/pull/311
output.ttft = 0
st = time.perf_counter()
try:
async with session.post(url=request_func_input.api_url,
json=payload) as resp:
if resp.status == 200:
parsed_resp = await resp.json()
output.latency = time.perf_counter() - st
output.generated_text = parsed_resp[0]["generated_text"]
output.success = True
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
async def async_request_openai_completions(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("v1/completions")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
payload = {
"model": request_func_input.model,
"prompt": request_func_input.prompt,
"temperature": 0.0,
"best_of": request_func_input.best_of,
"max_tokens": request_func_input.output_len,
"stream": True,
}
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0
st = time.perf_counter()
try:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
if response.status == 200:
async for chunk in response.content:
if ttft == 0:
ttft = time.perf_counter() - st
output.ttft = ttft
chunk = chunk.strip()
if not chunk:
continue
chunk = chunk.decode("utf-8").lstrip("data: ")
if chunk == "[DONE]":
latency = time.perf_counter() - st
else:
body = json.loads(chunk)
generated_text += body["choices"][0]["text"]
output.generated_text = generated_text
output.success = True
output.latency = latency
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
ASYNC_REQUEST_FUNCS = {
"tgi": async_request_tgi,
"vllm": async_request_vllm,
"deepspeed-mii": async_request_deepspeed_mii,
"openai": async_request_openai_completions,
"tensorrt-llm": async_request_trt_llm,
}

View File

@ -1,6 +1,8 @@
"""Benchmark the latency of processing a single batch of requests."""
import argparse
import time
from pathlib import Path
from typing import Optional
import numpy as np
import torch
@ -12,16 +14,18 @@ from vllm import LLM, SamplingParams
def main(args: argparse.Namespace):
print(args)
# Process all the requests in a single batch if possible.
# NOTE(woosuk): If the request cannot be processed in a single batch,
# the engine will automatically process the request in multiple batches.
llm = LLM(
model=args.model,
tokenizer=args.tokenizer,
quantization=args.quantization,
tensor_parallel_size=args.tensor_parallel_size,
max_num_seqs=args.batch_size,
max_num_batched_tokens=args.batch_size * args.input_len,
trust_remote_code=args.trust_remote_code,
dtype=args.dtype,
enforce_eager=args.enforce_eager,
kv_cache_dtype=args.kv_cache_dtype,
device=args.device,
)
sampling_params = SamplingParams(
@ -33,49 +37,113 @@ def main(args: argparse.Namespace):
max_tokens=args.output_len,
)
print(sampling_params)
dummy_prompt_token_ids = [[0] * args.input_len] * args.batch_size
dummy_prompt_token_ids = np.random.randint(10000,
size=(args.batch_size,
args.input_len))
dummy_prompt_token_ids = dummy_prompt_token_ids.tolist()
def run_to_completion(profile: bool = False):
if profile:
torch.cuda.cudart().cudaProfilerStart()
start_time = time.time()
llm.generate(prompt_token_ids=dummy_prompt_token_ids,
sampling_params=sampling_params,
use_tqdm=False)
end_time = time.time()
latency = end_time - start_time
if profile:
torch.cuda.cudart().cudaProfilerStop()
return latency
def run_to_completion(profile_dir: Optional[str] = None):
if profile_dir:
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
on_trace_ready=torch.profiler.tensorboard_trace_handler(
str(profile_dir))) as p:
llm.generate(prompt_token_ids=dummy_prompt_token_ids,
sampling_params=sampling_params,
use_tqdm=False)
print(p.key_averages())
else:
start_time = time.perf_counter()
llm.generate(prompt_token_ids=dummy_prompt_token_ids,
sampling_params=sampling_params,
use_tqdm=False)
end_time = time.perf_counter()
latency = end_time - start_time
return latency
print("Warming up...")
run_to_completion(profile=False)
run_to_completion(profile_dir=None)
if args.profile:
profile_dir = args.profile_result_dir
if not profile_dir:
profile_dir = Path(
"."
) / "vllm_benchmark_result" / f"latency_result_{time.time()}"
print(f"Profiling (results will be saved to '{profile_dir}')...")
run_to_completion(profile_dir=profile_dir)
return
# Benchmark.
latencies = []
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
latencies.append(run_to_completion(profile=False))
latencies.append(run_to_completion(profile_dir=None))
print(f'Avg latency: {np.mean(latencies)} seconds')
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Benchmark the latency of processing a single batch of '
'requests till completion.')
'requests till completion.')
parser.add_argument('--model', type=str, default='facebook/opt-125m')
parser.add_argument('--tokenizer', type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=['awq', 'gptq', 'squeezellm', None],
default=None)
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--input-len', type=int, default=32)
parser.add_argument('--output-len', type=int, default=128)
parser.add_argument('--batch-size', type=int, default=8)
parser.add_argument('--n', type=int, default=1,
parser.add_argument('--n',
type=int,
default=1,
help='Number of generated sequences per prompt.')
parser.add_argument('--use-beam-search', action='store_true')
parser.add_argument('--num-iters', type=int, default=3,
parser.add_argument('--num-iters',
type=int,
default=3,
help='Number of iterations to run.')
parser.add_argument('--trust-remote-code', action='store_true',
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument('--enforce-eager',
action='store_true',
help='enforce eager mode and disable CUDA graph')
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=['auto', 'fp8_e5m2'],
default='auto',
help=
'Data type for kv cache storage. If "auto", will use model data type.')
parser.add_argument(
'--profile',
action='store_true',
help='profile the generation process of a single batch')
parser.add_argument(
'--profile-result-dir',
type=str,
default=None,
help=('path to save the pytorch profiler output. Can be visualized '
'with ui.perfetto.dev or Tensorboard.'))
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda"],
help='device type for vLLM execution, supporting CUDA only currently.')
args = parser.parse_args()
main(args)

View File

@ -7,7 +7,7 @@ On the server side, run one of the following commands:
--disable-log-requests
(TGI backend)
./launch_hf_server.sh <your_model>
./launch_tgi_server.sh <your_model> <max_batch_total_tokens>
On the client side, run:
python benchmarks/benchmark_serving.py \
@ -20,15 +20,36 @@ import asyncio
import json
import random
import time
from dataclasses import dataclass
from datetime import datetime
from typing import AsyncGenerator, List, Tuple
import aiohttp
import numpy as np
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from vllm.transformers_utils.tokenizer import get_tokenizer
# (prompt len, output len, latency)
REQUEST_LATENCY: List[Tuple[int, int, float]] = []
from backend_request_func import (
ASYNC_REQUEST_FUNCS,
RequestFuncInput,
RequestFuncOutput,
)
@dataclass
class BenchmarkMetrics:
completed: int
total_input: int
total_output: int
request_throughput: float
input_throughput: float
output_throughput: float
mean_ttft_ms: float
median_ttft_ms: float
p99_ttft_ms: float
mean_tpot_ms: float
median_tpot_ms: float
p99_tpot_ms: float
def sample_requests(
@ -40,15 +61,15 @@ def sample_requests(
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [
data for data in dataset
if len(data["conversations"]) >= 2
]
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [
(data["conversations"][0]["value"], data["conversations"][1]["value"])
for data in dataset
]
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# some of these will be filtered out, so sample more than we need
sampled_indices = random.sample(range(len(dataset)),
int(num_requests * 1.2))
dataset = [dataset[i] for i in sampled_indices]
# Tokenize the prompts and completions.
prompts = [prompt for prompt, _ in dataset]
@ -96,79 +117,125 @@ async def get_request(
await asyncio.sleep(interval)
async def send_request(
backend: str,
api_url: str,
prompt: str,
prompt_len: int,
output_len: int,
best_of: int,
use_beam_search: bool,
) -> None:
request_start_time = time.time()
def calculate_metrics(
input_requests: List[Tuple[str, int, int]],
outputs: List[RequestFuncOutput],
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
) -> BenchmarkMetrics:
total_output = 0
total_input = 0
completed = 0
per_token_latencies = []
ttfts = []
for i in range(len(outputs)):
if outputs[i].success:
output_len = len(tokenizer.encode(outputs[i].generated_text))
total_output += output_len
total_input += input_requests[i][1]
per_token_latencies.append(outputs[i].latency / output_len)
ttfts.append(outputs[i].ttft)
completed += 1
headers = {"User-Agent": "Benchmark Client"}
if backend == "vllm":
pload = {
"prompt": prompt,
"n": 1,
"best_of": best_of,
"use_beam_search": use_beam_search,
"temperature": 0.0 if use_beam_search else 1.0,
"top_p": 1.0,
"max_tokens": output_len,
"ignore_eos": True,
"stream": False,
}
elif backend == "tgi":
assert not use_beam_search
params = {
"best_of": best_of,
"max_new_tokens": output_len,
"do_sample": True,
}
pload = {
"inputs": prompt,
"parameters": params,
}
else:
raise ValueError(f"Unknown backend: {backend}")
metrics = BenchmarkMetrics(
completed=completed,
total_input=total_input,
total_output=total_output,
request_throughput=completed / dur_s,
input_throughput=total_input / dur_s,
output_throughput=total_output / dur_s,
mean_ttft_ms=np.mean(ttfts) * 1000,
median_ttft_ms=np.median(ttfts) * 1000,
p99_ttft_ms=np.percentile(ttfts, 99) * 1000,
mean_tpot_ms=np.mean(per_token_latencies) * 1000,
median_tpot_ms=np.median(per_token_latencies) * 1000,
p99_tpot_ms=np.percentile(per_token_latencies, 99) * 1000,
)
timeout = aiohttp.ClientTimeout(total=3 * 3600)
async with aiohttp.ClientSession(timeout=timeout) as session:
while True:
async with session.post(api_url, headers=headers, json=pload) as response:
chunks = []
async for chunk, _ in response.content.iter_chunks():
chunks.append(chunk)
output = b"".join(chunks).decode("utf-8")
output = json.loads(output)
# Re-send the request if it failed.
if "error" not in output:
break
request_end_time = time.time()
request_latency = request_end_time - request_start_time
REQUEST_LATENCY.append((prompt_len, output_len, request_latency))
return metrics
async def benchmark(
backend: str,
api_url: str,
model_id: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: List[Tuple[str, int, int]],
best_of: int,
use_beam_search: bool,
request_rate: float,
) -> None:
tasks: List[asyncio.Task] = []
disable_tqdm: bool,
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS.get(backend)
else:
raise ValueError(f"Unknown backend: {backend}")
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
print(f"Traffic request rate: {request_rate}")
benchmark_start_time = time.perf_counter()
tasks = []
async for request in get_request(input_requests, request_rate):
prompt, prompt_len, output_len = request
task = asyncio.create_task(send_request(backend, api_url, prompt,
prompt_len, output_len,
best_of, use_beam_search))
tasks.append(task)
await asyncio.gather(*tasks)
request_func_input = RequestFuncInput(
model=model_id,
prompt=prompt,
api_url=api_url,
prompt_len=prompt_len,
output_len=output_len,
best_of=best_of,
use_beam_search=use_beam_search,
)
tasks.append(
asyncio.create_task(
request_func(request_func_input=request_func_input,
pbar=pbar)))
outputs = await asyncio.gather(*tasks)
if not disable_tqdm:
pbar.close()
benchmark_duration = time.perf_counter() - benchmark_start_time
metrics = calculate_metrics(
input_requests=input_requests,
outputs=outputs,
dur_s=benchmark_duration,
tokenizer=tokenizer,
)
print(f"Successful requests: {metrics.completed}")
print(f"Benchmark duration: {benchmark_duration:2f} s")
print(f"Total input tokens: {metrics.total_input}")
print(f"Total generated tokens: {metrics.total_output}")
print(f"Request throughput: {metrics.request_throughput:.2f} requests/s")
print(f"Input token throughput: {metrics.input_throughput:.2f} tokens/s")
print(f"Output token throughput: {metrics.output_throughput:.2f} tokens/s")
print(f"Mean TTFT: {metrics.mean_ttft_ms:.2f} ms")
print(f"Median TTFT: {metrics.median_ttft_ms:.2f} ms")
print(f"P99 TTFT: {metrics.p99_ttft_ms:.2f} ms")
print(f"Mean TPOT: {metrics.mean_tpot_ms:.2f} ms")
print(f"Median TPOT: {metrics.median_tpot_ms:.2f} ms")
print(f"P99 TPOT: {metrics.p99_tpot_ms:.2f} ms")
result = {
"duration": benchmark_duration,
"completed": metrics.completed,
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"request_inthroughput": metrics.request_throughput,
"input_throughput": metrics.input_throughput,
"output_throughput": metrics.output_throughput,
"mean_ttft_ms": metrics.mean_ttft_ms,
"median_ttft_ms": metrics.median_ttft_ms,
"p99_ttft_ms": metrics.p99_ttft_ms,
"mean_tpot_ms": metrics.mean_tpot_ms,
"median_tpot_ms": metrics.median_tpot_ms,
"p99_tpot_ms": metrics.p99_tpot_ms
}
return result
def main(args: argparse.Namespace):
@ -176,58 +243,145 @@ def main(args: argparse.Namespace):
random.seed(args.seed)
np.random.seed(args.seed)
api_url = f"http://{args.host}:{args.port}/generate"
tokenizer = get_tokenizer(args.tokenizer, trust_remote_code=args.trust_remote_code)
backend = args.backend
model_id = args.model
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
if args.base_url is not None:
api_url = f"{args.base_url}{args.endpoint}"
else:
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
tokenizer = get_tokenizer(tokenizer_id,
trust_remote_code=args.trust_remote_code)
input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
benchmark_start_time = time.time()
asyncio.run(benchmark(args.backend, api_url, input_requests, args.best_of,
args.use_beam_search, args.request_rate))
benchmark_end_time = time.time()
benchmark_time = benchmark_end_time - benchmark_start_time
print(f"Total time: {benchmark_time:.2f} s")
print(f"Throughput: {args.num_prompts / benchmark_time:.2f} requests/s")
benchmark_result = asyncio.run(
benchmark(
backend=backend,
api_url=api_url,
model_id=model_id,
tokenizer=tokenizer,
input_requests=input_requests,
best_of=args.best_of,
use_beam_search=args.use_beam_search,
request_rate=args.request_rate,
disable_tqdm=args.disable_tqdm,
))
# Compute the latency statistics.
avg_latency = np.mean([latency for _, _, latency in REQUEST_LATENCY])
print(f"Average latency: {avg_latency:.2f} s")
avg_per_token_latency = np.mean([
latency / (prompt_len + output_len)
for prompt_len, output_len, latency in REQUEST_LATENCY
])
print(f"Average latency per token: {avg_per_token_latency:.2f} s")
avg_per_output_token_latency = np.mean([
latency / output_len
for _, output_len, latency in REQUEST_LATENCY
])
print("Average latency per output token: "
f"{avg_per_output_token_latency:.2f} s")
# Save config and results to json
if args.save_result:
result_json = {}
# Setup
current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
result_json["date"] = current_dt
result_json["backend"] = backend
result_json["version"] = args.version
result_json["model_id"] = model_id
result_json["tokenizer_id"] = tokenizer_id
result_json["best_of"] = args.best_of
result_json["use_beam_search"] = args.use_beam_search
result_json["num_prompts"] = args.num_prompts
# Traffic
result_json["request_rate"] = (
args.request_rate if args.request_rate < float("inf") else "inf")
# Merge with benchmark result
result_json = {**result_json, **benchmark_result}
# Save to file
base_model_id = model_id.split("/")[-1]
file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"
with open(file_name, "w") as outfile:
json.dump(result_json, outfile)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Benchmark the online serving throughput.")
parser.add_argument("--backend", type=str, default="vllm",
choices=["vllm", "tgi"])
parser.add_argument(
"--backend",
type=str,
default="vllm",
choices=list(ASYNC_REQUEST_FUNCS.keys()),
)
parser.add_argument(
"--version",
type=str,
default="N/A",
help="Version of the serving backend/engine.",
)
parser.add_argument(
"--base-url",
type=str,
default=None,
help="Server or API base url if not using http host and port.",
)
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--dataset", type=str, required=True,
parser.add_argument(
"--endpoint",
type=str,
default="/generate",
help="API endpoint.",
)
parser.add_argument("--dataset",
type=str,
required=True,
help="Path to the dataset.")
parser.add_argument("--tokenizer", type=str, required=True,
help="Name or path of the tokenizer.")
parser.add_argument("--best-of", type=int, default=1,
help="Generates `best_of` sequences per prompt and "
"returns the best one.")
parser.add_argument(
"--model",
type=str,
required=True,
help="Name of the model.",
)
parser.add_argument(
"--tokenizer",
type=str,
help=
"Name or path of the tokenizer, if not using the default model tokenizer.",
)
parser.add_argument(
"--best-of",
type=int,
default=1,
help="Generates `best_of` sequences per prompt and "
"returns the best one.",
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument("--num-prompts", type=int, default=1000,
help="Number of prompts to process.")
parser.add_argument("--request-rate", type=float, default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.")
parser.add_argument(
"--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.",
)
parser.add_argument(
"--request-rate",
type=float,
default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.",
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument('--trust-remote-code', action='store_true',
help='trust remote code from huggingface')
parser.add_argument(
"--trust-remote-code",
action="store_true",
help="Trust remote code from huggingface",
)
parser.add_argument(
"--disable-tqdm",
action="store_true",
help="Specify to disable tqdm progress bar.",
)
parser.add_argument(
"--save-result",
action="store_true",
help="Specify to save benchmark results to a json file",
)
args = parser.parse_args()
main(args)

View File

@ -3,34 +3,31 @@ import argparse
import json
import random
import time
from typing import List, Tuple
from typing import List, Optional, Tuple
import torch
from transformers import AutoModelForCausalLM, PreTrainedTokenizerBase
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizerBase)
from tqdm import tqdm
from vllm import LLM, SamplingParams
from vllm.transformers_utils.tokenizer import get_tokenizer
def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [
data for data in dataset
if len(data["conversations"]) >= 2
]
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [
(data["conversations"][0]["value"], data["conversations"][1]["value"])
for data in dataset
]
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Tokenize the prompts and completions.
prompts = [prompt for prompt, _ in dataset]
@ -40,6 +37,8 @@ def sample_requests(
tokenized_dataset = []
for i in range(len(dataset)):
output_len = len(completion_token_ids[i])
if fixed_output_len is not None:
output_len = fixed_output_len
tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))
# Filter out too long sequences.
@ -63,18 +62,31 @@ def run_vllm(
requests: List[Tuple[str, int, int]],
model: str,
tokenizer: str,
quantization: Optional[str],
tensor_parallel_size: int,
seed: int,
n: int,
use_beam_search: bool,
trust_remote_code: bool,
dtype: str,
max_model_len: Optional[int],
enforce_eager: bool,
kv_cache_dtype: str,
device: str,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(
model=model,
tokenizer=tokenizer,
quantization=quantization,
tensor_parallel_size=tensor_parallel_size,
seed=seed,
trust_remote_code=trust_remote_code,
dtype=dtype,
max_model_len=max_model_len,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
device=device,
)
# Add the requests to the engine.
@ -94,10 +106,10 @@ def run_vllm(
sampling_params=sampling_params,
)
start = time.time()
# FIXME(woosuk): Do use internal method.
start = time.perf_counter()
# FIXME(woosuk): Do not use internal method.
llm._run_engine(use_tqdm=True)
end = time.time()
end = time.perf_counter()
return end - start
@ -111,15 +123,15 @@ def run_hf(
trust_remote_code: bool,
) -> float:
assert not use_beam_search
llm = AutoModelForCausalLM.from_pretrained(model,
torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
llm = AutoModelForCausalLM.from_pretrained(
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
if llm.config.model_type == "llama":
# To enable padding in the HF backend.
tokenizer.pad_token = tokenizer.eos_token
llm = llm.cuda()
pbar = tqdm(total=len(requests))
start = time.time()
start = time.perf_counter()
batch: List[str] = []
max_prompt_len = 0
max_output_len = 0
@ -132,13 +144,14 @@ def run_hf(
if len(batch) < max_batch_size and i != len(requests) - 1:
# Check if we can add more requests to the batch.
_, next_prompt_len, next_output_len = requests[i + 1]
if (max(max_prompt_len, next_prompt_len) + max(
max_output_len, next_output_len)) <= 2048:
if (max(max_prompt_len, next_prompt_len) +
max(max_output_len, next_output_len)) <= 2048:
# We can add more requests to the batch.
continue
# Generate the sequences.
input_ids = tokenizer(batch, return_tensors="pt", padding=True).input_ids
input_ids = tokenizer(batch, return_tensors="pt",
padding=True).input_ids
llm_outputs = llm.generate(
input_ids=input_ids.cuda(),
do_sample=not use_beam_search,
@ -156,7 +169,23 @@ def run_hf(
batch = []
max_prompt_len = 0
max_output_len = 0
end = time.time()
end = time.perf_counter()
return end - start
def run_mii(
requests: List[Tuple[str, int, int]],
model: str,
tensor_parallel_size: int,
output_len: int,
) -> float:
from mii import pipeline
llm = pipeline(model, tensor_parallel=tensor_parallel_size)
prompts = [prompt for prompt, _, _ in requests]
start = time.perf_counter()
llm(prompts, max_new_tokens=output_len)
end = time.perf_counter()
return end - start
@ -165,49 +194,122 @@ def main(args: argparse.Namespace):
random.seed(args.seed)
# Sample the requests.
tokenizer = get_tokenizer(args.tokenizer, trust_remote_code=args.trust_remote_code)
requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
if args.dataset is None:
# Synthesize a prompt with the given input length.
prompt = "hi" * (args.input_len - 1)
requests = [(prompt, args.input_len, args.output_len)
for _ in range(args.num_prompts)]
else:
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
args.output_len)
if args.backend == "vllm":
elapsed_time = run_vllm(
requests, args.model, args.tokenizer, args.tensor_parallel_size,
args.seed, args.n, args.use_beam_search, args.trust_remote_code)
elapsed_time = run_vllm(requests, args.model, args.tokenizer,
args.quantization, args.tensor_parallel_size,
args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype,
args.max_model_len, args.enforce_eager,
args.kv_cache_dtype, args.device)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(
requests, args.model, tokenizer, args.n, args.use_beam_search,
args.hf_max_batch_size, args.trust_remote_code)
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
args.use_beam_search, args.hf_max_batch_size,
args.trust_remote_code)
elif args.backend == "mii":
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
args.output_len)
else:
raise ValueError(f"Unknown backend: {args.backend}")
total_num_tokens = sum(
prompt_len + output_len
for _, prompt_len, output_len in requests
)
total_num_tokens = sum(prompt_len + output_len
for _, prompt_len, output_len in requests)
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} tokens/s")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--backend", type=str, choices=["vllm", "hf"],
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf", "mii"],
default="vllm")
parser.add_argument("--dataset", type=str, required=True,
parser.add_argument("--dataset",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument("--input-len",
type=int,
default=None,
help="Input prompt length for each request")
parser.add_argument("--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--model", type=str, default="facebook/opt-125m")
parser.add_argument("--tokenizer", type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=['awq', 'gptq', 'squeezellm', None],
default=None)
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
parser.add_argument("--n", type=int, default=1,
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument("--num-prompts", type=int, default=1000,
parser.add_argument("--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--hf-max-batch-size", type=int, default=None,
parser.add_argument("--hf-max-batch-size",
type=int,
default=None,
help="Maximum batch size for HF backend.")
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
parser.add_argument(
'--max-model-len',
type=int,
default=None,
help='Maximum length of a sequence (including prompt and output). '
'If None, will be derived from the model.')
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument("--enforce-eager",
action="store_true",
help="enforce eager execution")
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=["auto", "fp8_e5m2"],
default="auto",
help=
'Data type for kv cache storage. If "auto", will use model data type.')
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda"],
help='device type for vLLM execution, supporting CUDA only currently.')
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
if args.dataset is None:
assert args.input_len is not None
assert args.output_len is not None
else:
assert args.input_len is None
if args.backend == "vllm":
if args.hf_max_batch_size is not None:
@ -215,7 +317,20 @@ if __name__ == "__main__":
elif args.backend == "hf":
if args.hf_max_batch_size is None:
raise ValueError("HF max batch size is required for HF backend.")
if args.tokenizer is None:
args.tokenizer = args.model
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
elif args.backend == "mii":
if args.dtype != "auto":
raise ValueError("dtype must be auto for MII backend.")
if args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.use_beam_search:
raise ValueError("Beam search is not supported for MII backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
if args.tokenizer != args.model:
raise ValueError("Tokenizer must be the same as the model for MII "
"backend.")
main(args)

View File

@ -0,0 +1,172 @@
import json
import os
import sys
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from vllm.model_executor.layers.fused_moe import fused_moe
import torch
import torch.nn.functional as F
import triton
def main():
method = fused_moe
for bs in [
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
2048, 3072, 4096
]:
run_grid(bs, method=method)
def run_grid(bs, method):
d_model = 4096
num_total_experts = 8
top_k = 2
tp_size = 2
model_intermediate_size = 14336
num_layers = 32
num_calls = 100
num_warmup_trials = 1
num_trials = 1
configs = []
if bs <= 16:
BLOCK_SIZES_M = [16]
elif bs <= 32:
BLOCK_SIZES_M = [16, 32]
elif bs <= 64:
BLOCK_SIZES_M = [16, 32, 64]
elif bs <= 128:
BLOCK_SIZES_M = [16, 32, 64, 128]
else:
BLOCK_SIZES_M = [16, 32, 64, 128, 256]
for block_size_n in [32, 64, 128, 256]:
for block_size_m in BLOCK_SIZES_M:
for block_size_k in [64, 128, 256]:
for group_size_m in [1, 16, 32, 64]:
for num_warps in [4, 8]:
configs.append({
"BLOCK_SIZE_M": block_size_m,
"BLOCK_SIZE_N": block_size_n,
"BLOCK_SIZE_K": block_size_k,
"GROUP_SIZE_M": group_size_m,
"num_warps": num_warps,
"num_stages": 4,
})
best_config = None
best_time_us = 1e20
for config in configs:
print(f'{tp_size=} {bs=}')
print(f'{config}')
# warmup
print(f'warming up')
try:
for _ in range(num_warmup_trials):
run_timing(
num_calls=num_calls,
bs=bs,
d_model=d_model,
num_total_experts=num_total_experts,
top_k=top_k,
tp_size=tp_size,
model_intermediate_size=model_intermediate_size,
method=method,
config=config,
)
except triton.runtime.autotuner.OutOfResources:
continue
# trial
print(f'benchmarking')
for _ in range(num_trials):
kernel_dur_ms = run_timing(
num_calls=num_calls,
bs=bs,
d_model=d_model,
num_total_experts=num_total_experts,
top_k=top_k,
tp_size=tp_size,
model_intermediate_size=model_intermediate_size,
method=method,
config=config,
)
kernel_dur_us = 1000 * kernel_dur_ms
model_dur_ms = kernel_dur_ms * num_layers
if kernel_dur_us < best_time_us:
best_config = config
best_time_us = kernel_dur_us
print(
f'{kernel_dur_us=:.1f} {model_dur_ms=:.1f} {bs=} {tp_size=} {top_k=} {num_total_experts=} {d_model=} {model_intermediate_size=} {num_layers=}'
)
print("best_time_us", best_time_us)
print("best_config", best_config)
filename = "/tmp/config.jsonl"
print(f"writing config to file {filename}")
with open(filename, "a") as f:
f.write(json.dumps({str(bs): best_config}) + "\n")
def run_timing(num_calls: int, bs: int, d_model: int, num_total_experts: int,
top_k: int, tp_size: int, model_intermediate_size: int, method,
config) -> float:
shard_intermediate_size = model_intermediate_size // tp_size
hidden_states = torch.rand(
(bs, d_model),
device="cuda:0",
dtype=torch.bfloat16,
)
ws = torch.rand(
(num_total_experts, 2 * shard_intermediate_size, d_model),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
w2s = torch.rand(
(num_total_experts, d_model, shard_intermediate_size),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
gating_output = F.softmax(torch.rand(
(num_calls, bs, num_total_experts),
device=hidden_states.device,
dtype=torch.float32,
),
dim=-1)
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for i in range(num_calls):
hidden_states = method(
hidden_states=hidden_states,
w1=ws,
w2=w2s,
gating_output=gating_output[i],
topk=2,
renormalize=True,
inplace=True,
override_config=config,
)
end_event.record()
end_event.synchronize()
dur_ms = start_event.elapsed_time(end_event) / num_calls
return dur_ms
if __name__ == "__main__":
sys.exit(main())

View File

@ -0,0 +1,205 @@
from typing import Optional
import argparse
import random
import time
import torch
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, create_kv_caches_with_random
from vllm._C import ops
NUM_BLOCKS = 1024
PARTITION_SIZE = 512
@torch.inference_mode()
def main(
version: str,
num_seqs: int,
context_len: int,
num_query_heads: int,
num_kv_heads: int,
head_size: int,
use_alibi: bool,
block_size: int,
dtype: torch.dtype,
seed: int,
do_profile: bool,
device: str = "cuda",
kv_cache_dtype: Optional[str] = None,
) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
scale = float(1.0 / (head_size**0.5))
query = torch.empty(num_seqs,
num_query_heads,
head_size,
dtype=dtype,
device=device)
query.uniform_(-scale, scale)
assert num_query_heads % num_kv_heads == 0
alibi_slopes = None
if use_alibi:
alibi_slopes = torch.randn(num_query_heads,
dtype=torch.float,
device=device)
context_lens = [context_len for _ in range(num_seqs)]
max_context_len = max(context_lens)
context_lens = torch.tensor(context_lens, dtype=torch.int, device=device)
# Create the block tables.
max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
block_tables = []
for _ in range(num_seqs):
block_table = [
random.randint(0, NUM_BLOCKS - 1)
for _ in range(max_num_blocks_per_seq)
]
block_tables.append(block_table)
block_tables = torch.tensor(block_tables, dtype=torch.int, device=device)
# Create the KV cache.
key_caches, value_caches = create_kv_caches_with_random(NUM_BLOCKS,
block_size,
1,
num_kv_heads,
head_size,
kv_cache_dtype,
dtype,
device=device)
key_cache, value_cache = key_caches[0], value_caches[0]
# Prepare for the paged attention kernel.
output = torch.empty_like(query)
if version == "v2":
num_partitions = ((max_context_len + PARTITION_SIZE - 1) //
PARTITION_SIZE)
tmp_output = torch.empty(
size=(num_seqs, num_query_heads, num_partitions, head_size),
dtype=output.dtype,
device=output.device,
)
exp_sums = torch.empty(
size=(num_seqs, num_query_heads, num_partitions),
dtype=torch.float32,
device=output.device,
)
max_logits = torch.empty_like(exp_sums)
def run_cuda_benchmark(num_iters: int, profile: bool = False) -> float:
torch.cuda.synchronize()
if profile:
torch.cuda.cudart().cudaProfilerStart()
start_time = time.perf_counter()
for _ in range(num_iters):
if version == "v1":
ops.paged_attention_v1(
output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
context_lens,
block_size,
max_context_len,
alibi_slopes,
kv_cache_dtype,
)
elif version == "v2":
ops.paged_attention_v2(
output,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
context_lens,
block_size,
max_context_len,
alibi_slopes,
kv_cache_dtype,
)
else:
raise ValueError(f"Invalid version: {version}")
torch.cuda.synchronize()
end_time = time.perf_counter()
if profile:
torch.cuda.cudart().cudaProfilerStart()
return (end_time - start_time) / num_iters
# Warmup.
print("Warming up...")
run_benchmark = run_cuda_benchmark
run_benchmark(num_iters=3, profile=False)
# Benchmark.
if do_profile:
latency = run_benchmark(num_iters=1, profile=True)
else:
latency = run_benchmark(num_iters=100, profile=False)
print(f"Kernel running time: {latency * 1000000:.3f} us")
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="Benchmark the paged attention kernel.")
parser.add_argument("--version",
type=str,
choices=["v1", "v2"],
default="v2")
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument("--context-len", type=int, default=4096)
parser.add_argument("--num-query-heads", type=int, default=64)
parser.add_argument("--num-kv-heads", type=int, default=8)
parser.add_argument("--head-size",
type=int,
choices=[64, 80, 96, 112, 128, 256],
default=128)
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
parser.add_argument("--use-alibi", action="store_true")
parser.add_argument("--dtype",
type=str,
choices=["half", "bfloat16", "float"],
default="half")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--profile", action="store_true")
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=["auto", "fp8_e5m2"],
default="auto",
help=
'Data type for kv cache storage. If "auto", will use model data type.')
parser.add_argument("--device", type=str, choices=["cuda"], default="cuda")
args = parser.parse_args()
print(args)
if args.num_query_heads % args.num_kv_heads != 0:
raise ValueError("num_query_heads must be divisible by num_kv_heads")
main(
version=args.version,
num_seqs=args.batch_size,
context_len=args.context_len,
num_query_heads=args.num_query_heads,
num_kv_heads=args.num_kv_heads,
head_size=args.head_size,
block_size=args.block_size,
use_alibi=args.use_alibi,
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
seed=args.seed,
do_profile=args.profile,
kv_cache_dtype=args.kv_cache_dtype,
)

View File

@ -6,7 +6,7 @@ TOKENS=$2
docker run --gpus all --shm-size 1g -p $PORT:80 \
-v $PWD/data:/data \
ghcr.io/huggingface/text-generation-inference:0.8 \
ghcr.io/huggingface/text-generation-inference:1.4.0 \
--model-id $MODEL \
--sharded false \
--max-input-length 1024 \

View File

@ -1,28 +0,0 @@
#include <torch/extension.h>
void silu_and_mul(
torch::Tensor& out,
torch::Tensor& input);
void gelu_new(
torch::Tensor& out,
torch::Tensor& input);
void gelu_fast(
torch::Tensor& out,
torch::Tensor& input);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def(
"silu_and_mul",
&silu_and_mul,
"Activation function used in SwiGLU.");
m.def(
"gelu_new",
&gelu_new,
"GELU implementation used in GPT-2.");
m.def(
"gelu_fast",
&gelu_fast,
"Approximate GELU implementation.");
}

View File

@ -1,50 +1,76 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include <cmath>
#include "cuda_compat.h"
#include "dispatch_utils.h"
namespace vllm {
// Activation and gating kernel template.
template<typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&)>
__global__ void act_and_mul_kernel(
scalar_t* __restrict__ out, // [..., d]
const scalar_t* __restrict__ input, // [..., 2, d]
const int d) {
const int64_t token_idx = blockIdx.x;
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
const scalar_t x = VLLM_LDG(&input[token_idx * 2 * d + idx]);
const scalar_t y = VLLM_LDG(&input[token_idx * 2 * d + d + idx]);
out[token_idx * d + idx] = ACT_FN(x) * y;
}
}
template<typename T>
__device__ __forceinline__ T silu(const T& x) {
__device__ __forceinline__ T silu_kernel(const T& x) {
// x * sigmoid(x)
return (T) (((float) x) / (1.0f + expf((float) -x)));
}
template<typename scalar_t>
__global__ void silu_and_mul_kernel(
scalar_t* __restrict__ out, // [num_tokens, d]
const scalar_t* __restrict__ input, // [num_tokens, 2, d]
const int d) {
const int token_idx = blockIdx.x;
for (int idx = threadIdx.x; idx < d; idx += blockDim.x) {
const scalar_t x = __ldg(&input[token_idx * 2 * d + idx]);
const scalar_t y = __ldg(&input[token_idx * 2 * d + d + idx]);
out[token_idx * d + idx] = silu(x) * y;
}
template<typename T>
__device__ __forceinline__ T gelu_kernel(const T& x) {
// Equivalent to PyTorch GELU with 'none' approximation.
// Refer to:
// https://github.com/pytorch/pytorch/blob/8ac9b20d4b090c213799e81acf48a55ea8d437d6/aten/src/ATen/native/cuda/ActivationGeluKernel.cu#L38
const float f = (float) x;
constexpr float ALPHA = M_SQRT1_2;
return (T) (f * 0.5f * (1.0f + ::erf(f * ALPHA)));
}
} // namespace vllm
void silu_and_mul(
torch::Tensor& out, // [num_tokens, d]
torch::Tensor& input) // [num_tokens, 2 * d]
{
int num_tokens = input.size(0);
int d = input.size(1) / 2;
dim3 grid(num_tokens);
dim3 block(std::min(d, 1024));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(),
"silu_and_mul_kernel",
[&] {
vllm::silu_and_mul_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
d);
// Launch activation and gating kernel.
#define LAUNCH_ACTIVATION_GATE_KERNEL(KERNEL) \
int d = input.size(-1) / 2; \
int64_t num_tokens = input.numel() / input.size(-1); \
dim3 grid(num_tokens); \
dim3 block(std::min(d, 1024)); \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), \
"act_and_mul_kernel", \
[&] { \
vllm::act_and_mul_kernel<scalar_t, KERNEL<scalar_t>><<<grid, block, 0, stream>>>( \
out.data_ptr<scalar_t>(), \
input.data_ptr<scalar_t>(), \
d); \
});
void silu_and_mul(
torch::Tensor& out, // [..., d]
torch::Tensor& input) // [..., 2 * d]
{
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel);
}
void gelu_and_mul(
torch::Tensor& out, // [..., d]
torch::Tensor& input) // [..., 2 * d]
{
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_kernel);
}
namespace vllm {
@ -52,12 +78,12 @@ namespace vllm {
// Element-wise activation kernel template.
template<typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&)>
__global__ void activation_kernel(
scalar_t* __restrict__ out, // [num_tokens, d]
const scalar_t* __restrict__ input, // [num_tokens, d]
scalar_t* __restrict__ out, // [..., d]
const scalar_t* __restrict__ input, // [..., d]
const int d) {
const int token_idx = blockIdx.x;
for (int idx = threadIdx.x; idx < d; idx += blockDim.x) {
const scalar_t x = __ldg(&input[token_idx * d + idx]);
const int64_t token_idx = blockIdx.x;
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
const scalar_t x = VLLM_LDG(&input[token_idx * d + idx]);
out[token_idx * d + idx] = ACT_FN(x);
}
}
@ -66,10 +92,11 @@ __global__ void activation_kernel(
// Launch element-wise activation kernel.
#define LAUNCH_ACTIVATION_KERNEL(KERNEL) \
int num_tokens = input.size(0); \
int d = input.size(1); \
int d = input.size(-1); \
int64_t num_tokens = input.numel() / d; \
dim3 grid(num_tokens); \
dim3 block(std::min(d, 1024)); \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), \
@ -100,15 +127,15 @@ __device__ __forceinline__ T gelu_fast_kernel(const T& x) {
} // namespace vllm
void gelu_new(
torch::Tensor& out, // [num_tokens, d]
torch::Tensor& input) // [num_tokens, d]
torch::Tensor& out, // [..., d]
torch::Tensor& input) // [..., d]
{
LAUNCH_ACTIVATION_KERNEL(vllm::gelu_new_kernel);
}
void gelu_fast(
torch::Tensor& out, // [num_tokens, d]
torch::Tensor& input) // [num_tokens, d]
torch::Tensor& out, // [..., d]
torch::Tensor& input) // [..., d]
{
LAUNCH_ACTIVATION_KERNEL(vllm::gelu_fast_kernel);
}

View File

@ -1,22 +0,0 @@
#include <torch/extension.h>
#include <c10/util/Optional.h>
void single_query_cached_kv_attention(
torch::Tensor& out,
torch::Tensor& query,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& head_mapping,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def(
"single_query_cached_kv_attention",
&single_query_cached_kv_attention,
"Compute the attention between an input query and the cached key/value tensors");
}

View File

@ -4,3 +4,4 @@
#include "dtype_float16.cuh"
#include "dtype_float32.cuh"
#include "dtype_bfloat16.cuh"
#include "dtype_fp8_e5m2.cuh"

View File

@ -15,17 +15,30 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef USE_ROCM
#include <hip/hip_runtime.h>
#endif
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "attention_dtypes.h"
#include "attention_utils.cuh"
#ifdef ENABLE_FP8_E5M2
#include "../quantization/fp8_e5m2_kvcache/quant_utils.cuh"
#endif
#include <algorithm>
#ifndef USE_ROCM
#define WARP_SIZE 32
#else
#define WARP_SIZE warpSize
#endif
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
namespace vllm {
@ -39,7 +52,7 @@ inline __device__ float block_sum(float* red_smem, float sum) {
// Compute the sum per warp.
#pragma unroll
for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
sum += VLLM_SHFL_XOR_SYNC(sum, mask);
}
// Warp leaders store the data to shared memory.
@ -58,25 +71,31 @@ inline __device__ float block_sum(float* red_smem, float sum) {
// Parallel reduction inside the warp.
#pragma unroll
for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
sum += VLLM_SHFL_XOR_SYNC(sum, mask);
}
// Broadcast to other threads.
return __shfl_sync(uint32_t(-1), sum, 0);
return VLLM_SHFL_SYNC(sum, 0);
}
// Grid: (num_heads, num_seqs).
// TODO(woosuk): Merge the last two dimensions of the grid.
// Grid: (num_heads, num_seqs, max_num_partitions).
template<
typename scalar_t,
typename cache_t,
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS>
__global__ void single_query_cached_kv_attention_kernel(
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
int NUM_THREADS,
bool IS_FP8_E5M2_KV_CACHE,
int PARTITION_SIZE = 0> // Zero means no partitioning.
__device__ void paged_attention_kernel(
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
float* __restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
scalar_t* __restrict__ out, // [num_seqs, num_heads, max_num_partitions, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const scalar_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int* __restrict__ head_mapping, // [num_heads]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int num_kv_heads, // [num_heads]
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
@ -85,10 +104,33 @@ __global__ void single_query_cached_kv_attention_kernel(
const int q_stride,
const int kv_block_stride,
const int kv_head_stride) {
const int seq_idx = blockIdx.y;
const int partition_idx = blockIdx.z;
const int max_num_partitions = gridDim.z;
constexpr bool USE_PARTITIONING = PARTITION_SIZE > 0;
const int context_len = context_lens[seq_idx];
if (USE_PARTITIONING && partition_idx * PARTITION_SIZE >= context_len) {
// No work to do. Terminate the thread block.
return;
}
const int num_context_blocks = DIVIDE_ROUND_UP(context_len, BLOCK_SIZE);
const int num_blocks_per_partition = USE_PARTITIONING ? PARTITION_SIZE / BLOCK_SIZE : num_context_blocks;
// [start_block_idx, end_block_idx) is the range of blocks to process.
const int start_block_idx = USE_PARTITIONING ? partition_idx * num_blocks_per_partition : 0;
const int end_block_idx = MIN(start_block_idx + num_blocks_per_partition, num_context_blocks);
const int num_blocks = end_block_idx - start_block_idx;
// [start_token_idx, end_token_idx) is the range of tokens to process.
const int start_token_idx = start_block_idx * BLOCK_SIZE;
const int end_token_idx = MIN(start_token_idx + num_blocks * BLOCK_SIZE, context_len);
const int num_tokens = end_token_idx - start_token_idx;
constexpr int THREAD_GROUP_SIZE = MAX(WARP_SIZE / BLOCK_SIZE, 1);
constexpr int NUM_THREAD_GROUPS = NUM_THREADS / THREAD_GROUP_SIZE; // Note: This assumes THREAD_GROUP_SIZE divides NUM_THREADS
assert(NUM_THREADS % THREAD_GROUP_SIZE == 0);
constexpr int NUM_TOKENS_PER_THREAD_GROUP = (BLOCK_SIZE + WARP_SIZE - 1) / WARP_SIZE;
constexpr int NUM_TOKENS_PER_THREAD_GROUP = DIVIDE_ROUND_UP(BLOCK_SIZE, WARP_SIZE);
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
const int thread_idx = threadIdx.x;
const int warp_idx = thread_idx / WARP_SIZE;
@ -96,8 +138,8 @@ __global__ void single_query_cached_kv_attention_kernel(
const int head_idx = blockIdx.x;
const int num_heads = gridDim.x;
const int kv_head_idx = head_mapping[head_idx];
const int seq_idx = blockIdx.y;
const int num_queries_per_kv = num_heads / num_kv_heads;
const int kv_head_idx = head_idx / num_queries_per_kv;
const float alibi_slope = alibi_slopes == nullptr ? 0.f : alibi_slopes[head_idx];
// A vector type to store a part of a key or a query.
@ -108,6 +150,9 @@ __global__ void single_query_cached_kv_attention_kernel(
constexpr int VEC_SIZE = MAX(16 / (THREAD_GROUP_SIZE * sizeof(scalar_t)), 1);
using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
#ifdef ENABLE_FP8_E5M2
using Quant_vec = typename Vec<cache_t, VEC_SIZE>::Type;
#endif
constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;
@ -139,19 +184,19 @@ __global__ void single_query_cached_kv_attention_kernel(
// x == THREAD_GROUP_SIZE * VEC_SIZE
// Each thread group fetches x elements from the key at a time.
constexpr int x = 16 / sizeof(scalar_t);
constexpr int x = 16 / sizeof(cache_t);
float qk_max = -FLT_MAX;
const int* block_table = block_tables + seq_idx * max_num_blocks_per_seq;
const int context_len = context_lens[seq_idx];
const int num_blocks = (context_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
// Iterate over the key blocks.
// Each warp fetches a block of keys for each iteration.
// Each thread group in a warp fetches a key from the block, and computes
// dot product with the query.
for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
const int physical_block_number = block_table[block_idx];
const int* block_table = block_tables + seq_idx * max_num_blocks_per_seq;
for (int block_idx = start_block_idx + warp_idx; block_idx < end_block_idx; block_idx += NUM_WARPS) {
// NOTE(woosuk): The block number is stored in int32. However, we cast it to int64
// because int32 can lead to overflow when this variable is multiplied by large numbers
// (e.g., kv_block_stride).
const int64_t physical_block_number = static_cast<int64_t>(block_table[block_idx]);
// Load a key to registers.
// Each thread in a thread group has a different part of the key.
@ -165,13 +210,23 @@ __global__ void single_query_cached_kv_attention_kernel(
#pragma unroll
for (int j = 0; j < NUM_VECS_PER_THREAD; j++) {
const scalar_t* k_ptr = k_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride
+ physical_block_offset * x;
const cache_t* k_ptr = k_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride
+ physical_block_offset * x;
const int vec_idx = thread_group_offset + j * THREAD_GROUP_SIZE;
const int offset1 = (vec_idx * VEC_SIZE) / x;
const int offset2 = (vec_idx * VEC_SIZE) % x;
k_vecs[j] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
if constexpr (IS_FP8_E5M2_KV_CACHE) {
#ifdef ENABLE_FP8_E5M2
Quant_vec k_vec_quant = *reinterpret_cast<const Quant_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
// Vector conversion from Quant_vec to K_vec.
k_vecs[j] = fp8_e5m2_unscaled::vec_conversion<K_vec, Quant_vec>(k_vec_quant);
#else
assert(false);
#endif
} else {
k_vecs[j] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
}
}
// Compute dot product.
@ -184,7 +239,7 @@ __global__ void single_query_cached_kv_attention_kernel(
// Store the partial reductions to shared memory.
// NOTE(woosuk): It is required to zero out the masked logits.
const bool mask = token_idx >= context_len;
logits[token_idx] = mask ? 0.f : qk;
logits[token_idx - start_token_idx] = mask ? 0.f : qk;
// Update the max value.
qk_max = mask ? qk_max : fmaxf(qk_max, qk);
}
@ -196,7 +251,7 @@ __global__ void single_query_cached_kv_attention_kernel(
// The 0-th thread of each thread group already has its max qk value.
#pragma unroll
for (int mask = WARP_SIZE / 2; mask >= THREAD_GROUP_SIZE; mask /= 2) {
qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
qk_max = fmaxf(qk_max, VLLM_SHFL_XOR_SYNC(qk_max, mask));
}
if (lane == 0) {
red_smem[warp_idx] = qk_max;
@ -208,14 +263,14 @@ __global__ void single_query_cached_kv_attention_kernel(
qk_max = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
#pragma unroll
for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
qk_max = fmaxf(qk_max, VLLM_SHFL_XOR_SYNC(qk_max, mask));
}
// Broadcast the max qk value to all threads.
qk_max = __shfl_sync(uint32_t(-1), qk_max, 0);
qk_max = VLLM_SHFL_SYNC(qk_max, 0);
// Get the sum of the exp values.
float exp_sum = 0.f;
for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
for (int i = thread_idx; i < num_tokens; i += NUM_THREADS) {
float val = __expf(logits[i] - qk_max);
logits[i] = val;
exp_sum += val;
@ -224,20 +279,35 @@ __global__ void single_query_cached_kv_attention_kernel(
// Compute softmax.
const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
for (int i = thread_idx; i < num_tokens; i += NUM_THREADS) {
logits[i] *= inv_sum;
}
__syncthreads();
// If partitioning is enabled, store the max logit and exp_sum.
if (USE_PARTITIONING && thread_idx == 0) {
float* max_logits_ptr = max_logits + seq_idx * num_heads * max_num_partitions
+ head_idx * max_num_partitions
+ partition_idx;
*max_logits_ptr = qk_max;
float* exp_sums_ptr = exp_sums + seq_idx * num_heads * max_num_partitions
+ head_idx * max_num_partitions
+ partition_idx;
*exp_sums_ptr = exp_sum;
}
// Each thread will fetch 16 bytes from the value cache at a time.
constexpr int V_VEC_SIZE = MIN(16 / sizeof(scalar_t), BLOCK_SIZE);
using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
using L_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
#ifdef ENABLE_FP8_E5M2
using V_quant_vec = typename Vec<cache_t, V_VEC_SIZE>::Type;
#endif
using Float_L_vec = typename FloatVec<L_vec>::Type;
constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
constexpr int NUM_ROWS_PER_ITER = WARP_SIZE / NUM_V_VECS_PER_ROW;
constexpr int NUM_ROWS_PER_THREAD = (HEAD_SIZE + NUM_ROWS_PER_ITER - 1) / NUM_ROWS_PER_ITER;
constexpr int NUM_ROWS_PER_THREAD = DIVIDE_ROUND_UP(HEAD_SIZE, NUM_ROWS_PER_ITER);
// NOTE(woosuk): We use FP32 for the accumulator for better accuracy.
float accs[NUM_ROWS_PER_THREAD];
@ -248,28 +318,42 @@ __global__ void single_query_cached_kv_attention_kernel(
scalar_t zero_value;
zero(zero_value);
for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
const int physical_block_number = block_table[block_idx];
for (int block_idx = start_block_idx + warp_idx; block_idx < end_block_idx; block_idx += NUM_WARPS) {
// NOTE(woosuk): The block number is stored in int32. However, we cast it to int64
// because int32 can lead to overflow when this variable is multiplied by large numbers
// (e.g., kv_block_stride).
const int64_t physical_block_number = static_cast<int64_t>(block_table[block_idx]);
const int physical_block_offset = (lane % NUM_V_VECS_PER_ROW) * V_VEC_SIZE;
const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
L_vec logits_vec;
from_float(logits_vec, *reinterpret_cast<Float_L_vec*>(logits + token_idx));
from_float(logits_vec, *reinterpret_cast<Float_L_vec*>(logits + token_idx - start_token_idx));
const scalar_t* v_ptr = v_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride;
const cache_t* v_ptr = v_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride;
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
if (row_idx < HEAD_SIZE) {
const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
V_vec v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
if (block_idx == num_blocks - 1) {
V_vec v_vec;
if constexpr (IS_FP8_E5M2_KV_CACHE) {
#ifdef ENABLE_FP8_E5M2
V_quant_vec v_quant_vec = *reinterpret_cast<const V_quant_vec*>(v_ptr + offset);
// Vector conversion from V_quant_vec to V_vec.
v_vec = fp8_e5m2_unscaled::vec_conversion<V_vec, V_quant_vec>(v_quant_vec);
#else
assert(false);
#endif
} else {
v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
}
if (block_idx == num_context_blocks - 1) {
// NOTE(woosuk): When v_vec contains the tokens that are out of the context,
// we should explicitly zero out the values since they may contain NaNs.
// See https://github.com/vllm-project/vllm/issues/641#issuecomment-1682544472
scalar_t* v_vec_ptr = reinterpret_cast<scalar_t*>(&v_vec);
#pragma unroll
for (int j = 0; j <= V_VEC_SIZE; j++) {
for (int j = 0; j < V_VEC_SIZE; j++) {
v_vec_ptr[j] = token_idx + j < context_len ? v_vec_ptr[j] : zero_value;
}
}
@ -284,7 +368,7 @@ __global__ void single_query_cached_kv_attention_kernel(
float acc = accs[i];
#pragma unroll
for (int mask = NUM_V_VECS_PER_ROW / 2; mask >= 1; mask /= 2) {
acc += __shfl_xor_sync(uint32_t(-1), acc, mask);
acc += VLLM_SHFL_XOR_SYNC(acc, mask);
}
accs[i] = acc;
}
@ -327,7 +411,9 @@ __global__ void single_query_cached_kv_attention_kernel(
// Write the final output.
if (warp_idx == 0) {
scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
scalar_t* out_ptr = out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE
+ head_idx * max_num_partitions * HEAD_SIZE
+ partition_idx * HEAD_SIZE;
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
@ -338,16 +424,177 @@ __global__ void single_query_cached_kv_attention_kernel(
}
}
// Grid: (num_heads, num_seqs, 1).
template<
typename scalar_t,
typename cache_t,
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS,
bool IS_FP8_E5M2_KV_CACHE>
__global__ void paged_attention_v1_kernel(
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int num_kv_heads, // [num_heads]
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
const int kv_block_stride,
const int kv_head_stride) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, IS_FP8_E5M2_KV_CACHE>(
/* exp_sums */ nullptr, /* max_logits */ nullptr,
out, q, k_cache, v_cache, num_kv_heads, scale, block_tables, context_lens,
max_num_blocks_per_seq, alibi_slopes, q_stride, kv_block_stride, kv_head_stride);
}
// Grid: (num_heads, num_seqs, max_num_partitions).
template<
typename scalar_t,
typename cache_t,
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS,
bool IS_FP8_E5M2_KV_CACHE,
int PARTITION_SIZE>
__global__ void paged_attention_v2_kernel(
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
float* __restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads, max_num_partitions, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int num_kv_heads, // [num_heads]
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
const int kv_block_stride,
const int kv_head_stride) {
paged_attention_kernel<scalar_t, cache_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, IS_FP8_E5M2_KV_CACHE, PARTITION_SIZE>(
exp_sums, max_logits, tmp_out, q, k_cache, v_cache, num_kv_heads, scale,
block_tables, context_lens, max_num_blocks_per_seq, alibi_slopes,
q_stride, kv_block_stride, kv_head_stride);
}
// Grid: (num_heads, num_seqs).
template<
typename scalar_t,
int HEAD_SIZE,
int NUM_THREADS,
int PARTITION_SIZE>
__global__ void paged_attention_v2_reduce_kernel(
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
const float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
const float* __restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
const scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads, max_num_partitions, head_size]
const int* __restrict__ context_lens, // [num_seqs]
const int max_num_partitions) {
const int num_heads = gridDim.x;
const int head_idx = blockIdx.x;
const int seq_idx = blockIdx.y;
const int context_len = context_lens[seq_idx];
const int num_partitions = DIVIDE_ROUND_UP(context_len, PARTITION_SIZE);
if (num_partitions == 1) {
// No need to reduce. Only copy tmp_out to out.
scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
const scalar_t* tmp_out_ptr = tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE
+ head_idx * max_num_partitions * HEAD_SIZE;
for (int i = threadIdx.x; i < HEAD_SIZE; i += blockDim.x) {
out_ptr[i] = tmp_out_ptr[i];
}
// Terminate the thread block.
return;
}
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
const int warp_idx = threadIdx.x / WARP_SIZE;
const int lane = threadIdx.x % WARP_SIZE;
// Size: 2 * num_partitions.
extern __shared__ char shared_mem[];
// Workspace for reduction.
__shared__ float red_smem[2 * NUM_WARPS];
// Load max logits to shared memory.
float* shared_max_logits = reinterpret_cast<float*>(shared_mem);
const float* max_logits_ptr = max_logits + seq_idx * num_heads * max_num_partitions
+ head_idx * max_num_partitions;
float max_logit = -FLT_MAX;
for (int i = threadIdx.x; i < num_partitions; i += blockDim.x) {
const float l = max_logits_ptr[i];
shared_max_logits[i] = l;
max_logit = fmaxf(max_logit, l);
}
__syncthreads();
// Get the global max logit.
// Reduce within the warp.
#pragma unroll
for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
max_logit = fmaxf(max_logit, VLLM_SHFL_XOR_SYNC(max_logit, mask));
}
if (lane == 0) {
red_smem[warp_idx] = max_logit;
}
__syncthreads();
// Reduce across warps.
max_logit = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
#pragma unroll
for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
max_logit = fmaxf(max_logit, VLLM_SHFL_XOR_SYNC(max_logit, mask));
}
// Broadcast the max value to all threads.
max_logit = VLLM_SHFL_SYNC(max_logit, 0);
// Load rescaled exp sums to shared memory.
float* shared_exp_sums = reinterpret_cast<float*>(shared_mem + sizeof(float) * num_partitions);
const float* exp_sums_ptr = exp_sums + seq_idx * num_heads * max_num_partitions
+ head_idx * max_num_partitions;
float global_exp_sum = 0.0f;
for (int i = threadIdx.x; i < num_partitions; i += blockDim.x) {
float l = shared_max_logits[i];
float rescaled_exp_sum = exp_sums_ptr[i] * expf(l - max_logit);
global_exp_sum += rescaled_exp_sum;
shared_exp_sums[i] = rescaled_exp_sum;
}
__syncthreads();
global_exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], global_exp_sum);
const float inv_global_exp_sum = __fdividef(1.0f, global_exp_sum + 1e-6f);
// Aggregate tmp_out to out.
const scalar_t* tmp_out_ptr = tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE
+ head_idx * max_num_partitions * HEAD_SIZE;
scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
#pragma unroll
for (int i = threadIdx.x; i < HEAD_SIZE; i += NUM_THREADS) {
float acc = 0.0f;
for (int j = 0; j < num_partitions; ++j) {
acc += to_float(tmp_out_ptr[j * HEAD_SIZE + i]) * shared_exp_sums[j] * inv_global_exp_sum;
}
from_float(out_ptr[i], acc);
}
}
} // namespace vllm
#define LAUNCH_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS) \
vllm::single_query_cached_kv_attention_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS> \
<<<grid, block, shared_mem_size, stream>>>( \
#define LAUNCH_PAGED_ATTENTION_V1(HEAD_SIZE) \
VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize( \
((void*)vllm::paged_attention_v1_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, \
IS_FP8_E5M2_KV_CACHE>), shared_mem_size); \
vllm::paged_attention_v1_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, \
IS_FP8_E5M2_KV_CACHE><<<grid, block, shared_mem_size, stream>>>( \
out_ptr, \
query_ptr, \
key_cache_ptr, \
value_cache_ptr, \
head_mapping_ptr, \
num_kv_heads, \
scale, \
block_tables_ptr, \
context_lens_ptr, \
@ -360,14 +607,16 @@ __global__ void single_query_cached_kv_attention_kernel(
// TODO(woosuk): Tune NUM_THREADS.
template<
typename T,
typename CACHE_T,
int BLOCK_SIZE,
bool IS_FP8_E5M2_KV_CACHE,
int NUM_THREADS = 128>
void single_query_cached_kv_attention_launcher(
void paged_attention_v1_launcher(
torch::Tensor& out,
torch::Tensor& query,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& head_mapping,
int num_kv_heads,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
@ -391,50 +640,44 @@ void single_query_cached_kv_attention_launcher(
T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
int* head_mapping_ptr = reinterpret_cast<int*>(head_mapping.data_ptr());
CACHE_T* key_cache_ptr = reinterpret_cast<CACHE_T*>(key_cache.data_ptr());
CACHE_T* value_cache_ptr = reinterpret_cast<CACHE_T*>(value_cache.data_ptr());
int* block_tables_ptr = block_tables.data_ptr<int>();
int* context_lens_ptr = context_lens.data_ptr<int>();
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
int padded_max_context_len = ((max_context_len + BLOCK_SIZE - 1) / BLOCK_SIZE) * BLOCK_SIZE;
int padded_max_context_len = DIVIDE_ROUND_UP(max_context_len, BLOCK_SIZE) * BLOCK_SIZE;
int logits_size = padded_max_context_len * sizeof(float);
int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
// Python-side check in vllm.worker.worker._check_if_can_support_max_seq_len
// Keep that in sync with the logic here!
int shared_mem_size = std::max(logits_size, outputs_size);
dim3 grid(num_heads, num_seqs);
dim3 grid(num_heads, num_seqs, 1);
dim3 block(NUM_THREADS);
const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
switch (head_size) {
// NOTE(woosuk): To reduce the compilation time, we omitted head sizes
// 32, 160, 192.
// case 32:
// LAUNCH_ATTENTION_KERNEL(T, 32, BLOCK_SIZE, NUM_THREADS);
// break;
// NOTE(woosuk): To reduce the compilation time, we only compile for the
// head sizes that we use in the model. However, we can easily extend this
// to support any head size which is a multiple of 16.
case 64:
LAUNCH_ATTENTION_KERNEL(T, 64, BLOCK_SIZE, NUM_THREADS);
LAUNCH_PAGED_ATTENTION_V1(64);
break;
case 80:
LAUNCH_ATTENTION_KERNEL(T, 80, BLOCK_SIZE, NUM_THREADS);
LAUNCH_PAGED_ATTENTION_V1(80);
break;
case 96:
LAUNCH_ATTENTION_KERNEL(T, 96, BLOCK_SIZE, NUM_THREADS);
LAUNCH_PAGED_ATTENTION_V1(96);
break;
case 112:
LAUNCH_ATTENTION_KERNEL(T, 112, BLOCK_SIZE, NUM_THREADS);
LAUNCH_PAGED_ATTENTION_V1(112);
break;
case 128:
LAUNCH_ATTENTION_KERNEL(T, 128, BLOCK_SIZE, NUM_THREADS);
LAUNCH_PAGED_ATTENTION_V1(128);
break;
// case 160:
// LAUNCH_ATTENTION_KERNEL(T, 160, BLOCK_SIZE, NUM_THREADS);
// break;
// case 192:
// LAUNCH_ATTENTION_KERNEL(T, 192, BLOCK_SIZE, NUM_THREADS);
// break;
case 256:
LAUNCH_ATTENTION_KERNEL(T, 256, BLOCK_SIZE, NUM_THREADS);
LAUNCH_PAGED_ATTENTION_V1(256);
break;
default:
TORCH_CHECK(false, "Unsupported head size: ", head_size);
@ -442,78 +685,269 @@ void single_query_cached_kv_attention_launcher(
}
}
#define CALL_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
single_query_cached_kv_attention_launcher<T, BLOCK_SIZE>( \
out, \
query, \
key_cache, \
value_cache, \
head_mapping, \
scale, \
block_tables, \
context_lens, \
max_context_len, \
#define CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE) \
paged_attention_v1_launcher<T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE>( \
out, \
query, \
key_cache, \
value_cache, \
num_kv_heads, \
scale, \
block_tables, \
context_lens, \
max_context_len, \
alibi_slopes);
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
// 1, 2, 4, 64, 128, 256.
#define CALL_KERNEL_LAUNCHER_BLOCK_SIZE(T) \
switch (block_size) { \
/* case 1: */ \
/* CALL_KERNEL_LAUNCHER(T, 1); */ \
/* break; */ \
/* case 2: */ \
/* CALL_KERNEL_LAUNCHER(T, 2); */ \
/* break; */ \
/* case 4: */ \
/* CALL_KERNEL_LAUNCHER(T, 4); */ \
/* break; */ \
case 8: \
CALL_KERNEL_LAUNCHER(T, 8); \
break; \
case 16: \
CALL_KERNEL_LAUNCHER(T, 16); \
break; \
case 32: \
CALL_KERNEL_LAUNCHER(T, 32); \
break; \
/* case 64: */ \
/* CALL_KERNEL_LAUNCHER(T, 64); */ \
/* break; */ \
/* case 128: */ \
/* CALL_KERNEL_LAUNCHER(T, 128); */ \
/* break; */ \
/* case 256: */ \
/* CALL_KERNEL_LAUNCHER(T, 256); */ \
/* break; */ \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
#define CALL_V1_LAUNCHER_BLOCK_SIZE(T, CACHE_T, IS_FP8_E5M2_KV_CACHE) \
switch (block_size) { \
case 8: \
CALL_V1_LAUNCHER(T, CACHE_T, 8, IS_FP8_E5M2_KV_CACHE); \
break; \
case 16: \
CALL_V1_LAUNCHER(T, CACHE_T, 16, IS_FP8_E5M2_KV_CACHE); \
break; \
case 32: \
CALL_V1_LAUNCHER(T, CACHE_T, 32, IS_FP8_E5M2_KV_CACHE); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
}
void single_query_cached_kv_attention(
void paged_attention_v1(
torch::Tensor& out, // [num_seqs, num_heads, head_size]
torch::Tensor& query, // [num_seqs, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size]
torch::Tensor& head_mapping, // [num_heads]
int num_kv_heads, // [num_heads]
float scale,
torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
torch::Tensor& context_lens, // [num_seqs]
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes) {
if (query.dtype() == at::ScalarType::Float) {
CALL_KERNEL_LAUNCHER_BLOCK_SIZE(float);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_KERNEL_LAUNCHER_BLOCK_SIZE(uint16_t);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_KERNEL_LAUNCHER_BLOCK_SIZE(__nv_bfloat16);
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype) {
if (kv_cache_dtype == "auto") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V1_LAUNCHER_BLOCK_SIZE(float, float, false);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V1_LAUNCHER_BLOCK_SIZE(uint16_t, uint16_t, false);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V1_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, __nv_bfloat16, false);
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else if (kv_cache_dtype == "fp8_e5m2") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V1_LAUNCHER_BLOCK_SIZE(float, uint8_t, true);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V1_LAUNCHER_BLOCK_SIZE(uint16_t, uint8_t, true);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V1_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, uint8_t, true);
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
}
}
#define LAUNCH_PAGED_ATTENTION_V2(HEAD_SIZE) \
vllm::paged_attention_v2_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, \
IS_FP8_E5M2_KV_CACHE, PARTITION_SIZE> \
<<<grid, block, shared_mem_size, stream>>>( \
exp_sums_ptr, \
max_logits_ptr, \
tmp_out_ptr, \
query_ptr, \
key_cache_ptr, \
value_cache_ptr, \
num_kv_heads, \
scale, \
block_tables_ptr, \
context_lens_ptr, \
max_num_blocks_per_seq, \
alibi_slopes_ptr, \
q_stride, \
kv_block_stride, \
kv_head_stride); \
vllm::paged_attention_v2_reduce_kernel<T, HEAD_SIZE, NUM_THREADS, PARTITION_SIZE> \
<<<reduce_grid, block, reduce_shared_mem_size, stream>>>( \
out_ptr, \
exp_sums_ptr, \
max_logits_ptr, \
tmp_out_ptr, \
context_lens_ptr, \
max_num_partitions);
template<
typename T,
typename CACHE_T,
int BLOCK_SIZE,
bool IS_FP8_E5M2_KV_CACHE,
int NUM_THREADS = 128,
int PARTITION_SIZE = 512>
void paged_attention_v2_launcher(
torch::Tensor& out,
torch::Tensor& exp_sums,
torch::Tensor& max_logits,
torch::Tensor& tmp_out,
torch::Tensor& query,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
int num_kv_heads,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
int max_num_blocks_per_seq = block_tables.size(1);
int q_stride = query.stride(0);
int kv_block_stride = key_cache.stride(0);
int kv_head_stride = key_cache.stride(1);
int thread_group_size = MAX(WARP_SIZE / BLOCK_SIZE, 1);
assert(head_size % thread_group_size == 0);
// NOTE: alibi_slopes is optional.
const float* alibi_slopes_ptr = alibi_slopes ?
reinterpret_cast<const float*>(alibi_slopes.value().data_ptr())
: nullptr;
T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
float* exp_sums_ptr = reinterpret_cast<float*>(exp_sums.data_ptr());
float* max_logits_ptr = reinterpret_cast<float*>(max_logits.data_ptr());
T* tmp_out_ptr = reinterpret_cast<T*>(tmp_out.data_ptr());
T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
CACHE_T* key_cache_ptr = reinterpret_cast<CACHE_T*>(key_cache.data_ptr());
CACHE_T* value_cache_ptr = reinterpret_cast<CACHE_T*>(value_cache.data_ptr());
int* block_tables_ptr = block_tables.data_ptr<int>();
int* context_lens_ptr = context_lens.data_ptr<int>();
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
int max_num_partitions = DIVIDE_ROUND_UP(max_context_len, PARTITION_SIZE);
int logits_size = PARTITION_SIZE * sizeof(float);
int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
// For paged attention v2 kernel.
dim3 grid(num_heads, num_seqs, max_num_partitions);
int shared_mem_size = std::max(logits_size, outputs_size);
// For paged attention v2 reduce kernel.
dim3 reduce_grid(num_heads, num_seqs);
int reduce_shared_mem_size = 2 * max_num_partitions * sizeof(float);
dim3 block(NUM_THREADS);
const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
switch (head_size) {
// NOTE(woosuk): To reduce the compilation time, we only compile for the
// head sizes that we use in the model. However, we can easily extend this
// to support any head size which is a multiple of 16.
case 64:
LAUNCH_PAGED_ATTENTION_V2(64);
break;
case 80:
LAUNCH_PAGED_ATTENTION_V2(80);
break;
case 96:
LAUNCH_PAGED_ATTENTION_V2(96);
break;
case 112:
LAUNCH_PAGED_ATTENTION_V2(112);
break;
case 128:
LAUNCH_PAGED_ATTENTION_V2(128);
break;
case 256:
LAUNCH_PAGED_ATTENTION_V2(256);
break;
default:
TORCH_CHECK(false, "Unsupported head size: ", head_size);
break;
}
}
#define CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE) \
paged_attention_v2_launcher<T, CACHE_T, BLOCK_SIZE, IS_FP8_E5M2_KV_CACHE>( \
out, \
exp_sums, \
max_logits, \
tmp_out, \
query, \
key_cache, \
value_cache, \
num_kv_heads, \
scale, \
block_tables, \
context_lens, \
max_context_len, \
alibi_slopes);
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
// 1, 2, 4, 64, 128, 256.
#define CALL_V2_LAUNCHER_BLOCK_SIZE(T, CACHE_T, IS_FP8_E5M2_KV_CACHE) \
switch (block_size) { \
case 8: \
CALL_V2_LAUNCHER(T, CACHE_T, 8, IS_FP8_E5M2_KV_CACHE); \
break; \
case 16: \
CALL_V2_LAUNCHER(T, CACHE_T, 16, IS_FP8_E5M2_KV_CACHE); \
break; \
case 32: \
CALL_V2_LAUNCHER(T, CACHE_T, 32, IS_FP8_E5M2_KV_CACHE); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
}
void paged_attention_v2(
torch::Tensor& out, // [num_seqs, num_heads, head_size]
torch::Tensor& exp_sums, // [num_seqs, num_heads, max_num_partitions]
torch::Tensor& max_logits, // [num_seqs, num_heads, max_num_partitions]
torch::Tensor& tmp_out, // [num_seqs, num_heads, max_num_partitions, head_size]
torch::Tensor& query, // [num_seqs, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size]
int num_kv_heads, // [num_heads]
float scale,
torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
torch::Tensor& context_lens, // [num_seqs]
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype) {
if (kv_cache_dtype == "auto") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V2_LAUNCHER_BLOCK_SIZE(float, float, false);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V2_LAUNCHER_BLOCK_SIZE(uint16_t, uint16_t, false);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V2_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, __nv_bfloat16, false);
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else if (kv_cache_dtype == "fp8_e5m2") {
if (query.dtype() == at::ScalarType::Float) {
CALL_V2_LAUNCHER_BLOCK_SIZE(float, uint8_t, true);
} else if (query.dtype() == at::ScalarType::Half) {
CALL_V2_LAUNCHER_BLOCK_SIZE(uint16_t, uint8_t, true);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_V2_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, uint8_t, true);
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else {
TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
}
}
#undef WARP_SIZE
#undef MAX
#undef MIN
#undef DIVIDE_ROUND_UP

View File

@ -17,6 +17,7 @@
*/
#pragma once
#include "../cuda_compat.h"
#include "attention_dtypes.h"
#include <float.h>
@ -39,7 +40,7 @@ inline __device__ float qk_dot_(const Vec (&q)[N], const Vec (&k)[N]) {
float qk = sum(qk_vec);
#pragma unroll
for (int mask = THREAD_GROUP_SIZE / 2; mask >= 1; mask /= 2) {
qk += __shfl_xor_sync(uint32_t(-1), qk, mask);
qk += VLLM_SHFL_XOR_SYNC(qk, mask);
}
return qk;
}

View File

@ -21,8 +21,17 @@
#include "attention_generic.cuh"
#include "dtype_float32.cuh"
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#ifndef USE_ROCM
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#else
#include <hip/hip_bf16.h>
#include <hip/hip_fp16.h>
typedef __hip_bfloat162 __nv_bfloat162;
typedef __hip_bfloat16 __nv_bfloat16;
#endif
#include <stdint.h>
namespace vllm {
@ -98,7 +107,11 @@ inline __device__ __nv_bfloat16 add(__nv_bfloat16 a, __nv_bfloat16 b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return a + b;
#ifndef USE_ROCM
return a + b;
#else
return __hadd(a, b);
#endif
#endif
}
@ -420,6 +433,11 @@ inline __device__ void from_float(bf16_8_t& dst, Float8_ src) {
#endif
}
// From bfloat16 to float32.
inline __device__ float to_float(__nv_bfloat16 u) {
return __bfloat162float(u);
}
// Zero-out a variable.
inline __device__ void zero(__nv_bfloat16& dst) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800

View File

@ -21,6 +21,10 @@
#include "attention_generic.cuh"
#include "dtype_float32.cuh"
#ifdef USE_ROCM
#include <hip/hip_fp16.h>
#endif
#include <stdint.h>
namespace vllm {
@ -63,21 +67,47 @@ struct FloatVec<uint4> {
// Utility functions for type conversions.
inline __device__ uint32_t h0_h0(uint16_t a) {
#ifndef USE_ROCM
uint32_t b;
asm volatile("mov.b32 %0, {%1, %1};" : "=r"(b) : "h"(a));
return b;
#else
union {
uint32_t u32;
uint16_t u16[2];
} tmp;
tmp.u16[0] = a;
tmp.u16[1] = a;
return tmp.u32;
#endif
}
inline __device__ float half_to_float(uint16_t h) {
float f;
#ifndef USE_ROCM
asm volatile("cvt.f32.f16 %0, %1;\n" : "=f"(f) : "h"(h));
#else
asm volatile("v_cvt_f32_f16 %0, %1;" : "=v"(f) : "v"(h));
#endif
return f;
}
inline __device__ float2 half2_to_float2(uint32_t v) {
#ifndef USE_ROCM
uint16_t lo, hi;
asm volatile("mov.b32 {%0, %1}, %2;\n" : "=h"(lo), "=h"(hi) : "r"(v));
return make_float2(half_to_float(lo), half_to_float(hi));
#else
union {
uint32_t u32;
uint16_t u16[2];
} tmp;
tmp.u32 = v;
float2 ret;
ret.x = half_to_float(tmp.u16[0]);
ret.y = half_to_float(tmp.u16[1]);
return ret;
#endif
}
inline __device__ uint16_t float_to_half(float f) {
@ -85,7 +115,11 @@ inline __device__ uint16_t float_to_half(float f) {
uint32_t u32;
uint16_t u16[2];
} tmp;
#ifndef USE_ROCM
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f));
#else
asm volatile("v_cvt_f16_f32 %0, %1;\n" : "=v"(tmp.u32) : "v"(f));
#endif
return tmp.u16[0];
}
@ -94,12 +128,16 @@ inline __device__ uint32_t float2_to_half2(float2 f) {
uint32_t u32;
uint16_t u16[2];
} tmp;
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n" : "=r"(tmp.u32) : "f"(f.y), "f"(f.x));
#ifndef USE_ROCM
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n" : "=r"(tmp.u32) : "f"(f.y), "f"(f.x));
#else
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f.x));
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[1]) : "f"(f.y));
#endif
#else
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f.x));
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[1]) : "f"(f.y));
tmp.u16[0] = float_to_half(f.x);
tmp.u16[1] = float_to_half(f.y);
#endif
return tmp.u32;
}
@ -107,13 +145,21 @@ inline __device__ uint32_t float2_to_half2(float2 f) {
// Vector addition.
inline __device__ uint16_t add(uint16_t a, uint16_t b) {
uint16_t c;
#ifndef USE_ROCM
asm volatile("add.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b));
#else
asm volatile("v_add_f16 %0, %1, %2;\n" : "=v"(c) : "v"(a), "v"(b));
#endif
return c;
}
inline __device__ uint32_t add(uint32_t a, uint32_t b) {
uint32_t c;
#ifndef USE_ROCM
asm volatile("add.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
#else
asm volatile("v_pk_add_f16 %0, %1, %2;\n" : "=v"(c) : "v"(a), "v"(b));
#endif
return c;
}
@ -158,14 +204,22 @@ inline __device__ Float8_ add(uint4 a, Float8_ fb) {
template<>
inline __device__ uint16_t mul(uint16_t a, uint16_t b) {
uint16_t c;
#ifndef USE_ROCM
asm volatile("mul.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b));
#else
asm volatile("v_mul_f16 %0, %1, %2;\n" : "=v"(c) : "v"(a), "v"(b));
#endif
return c;
}
template<>
inline __device__ uint32_t mul(uint32_t a, uint32_t b) {
uint32_t c;
#ifndef USE_ROCM
asm volatile("mul.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
#else
asm volatile("v_pk_mul_f16 %0, %1, %2;\n" : "=v"(c) : "v"(a), "v"(b));
#endif
return c;
}
@ -272,7 +326,11 @@ inline __device__ Float8_ mul(uint16_t a, uint4 b) {
// Vector fused multiply-add.
inline __device__ uint32_t fma(uint32_t a, uint32_t b, uint32_t c) {
uint32_t d;
#ifndef USE_ROCM
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(d) : "r"(a), "r"(b), "r"(c));
#else
asm volatile("v_pk_fma_f16 %0, %1, %2, %3;\n" : "=v"(d) : "v"(a), "v"(b), "v"(c));
#endif
return d;
}

View File

@ -0,0 +1,35 @@
#pragma once
#include "attention_generic.cuh"
#include <stdint.h>
#ifdef ENABLE_FP8_E5M2
#include <cuda_fp8.h>
#endif
namespace vllm {
#ifdef ENABLE_FP8_E5M2
// fp8 vector types for quantization of kv cache
template<>
struct Vec<uint8_t, 1> {
using Type = uint8_t;
};
template<>
struct Vec<uint8_t, 2> {
using Type = uint16_t;
};
template<>
struct Vec<uint8_t, 4> {
using Type = uint32_t;
};
template<>
struct Vec<uint8_t, 8> {
using Type = uint2;
};
#endif // ENABLE_FP8_E5M2
} // namespace vllm

View File

@ -1,47 +0,0 @@
#include <torch/extension.h>
#include <map>
#include <vector>
void swap_blocks(
torch::Tensor& src,
torch::Tensor& dst,
const std::map<int64_t, int64_t>& block_mapping);
void copy_blocks(
std::vector<torch::Tensor>& key_caches,
std::vector<torch::Tensor>& value_caches,
const std::map<int64_t, std::vector<int64_t>>& block_mapping);
void reshape_and_cache(
torch::Tensor& key,
torch::Tensor& value,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& slot_mapping);
void gather_cached_kv(
torch::Tensor& key,
torch::Tensor& value,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& slot_mapping);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def(
"swap_blocks",
&swap_blocks,
"Swap in (out) the cache blocks from src to dst");
m.def(
"copy_blocks",
&copy_blocks,
"Copy the cache blocks from src to dst");
m.def(
"reshape_and_cache",
&reshape_and_cache,
"Reshape the key and value tensors and cache them");
m.def(
"gather_cached_kv",
&gather_cached_kv,
"Gather key and value from the cache into contiguous QKV tensors");
}

29
csrc/cache.h Normal file
View File

@ -0,0 +1,29 @@
#pragma once
#include <torch/extension.h>
#include <map>
#include <vector>
void swap_blocks(
torch::Tensor& src,
torch::Tensor& dst,
const std::map<int64_t, int64_t>& block_mapping);
void copy_blocks(
std::vector<torch::Tensor>& key_caches,
std::vector<torch::Tensor>& value_caches,
const std::map<int64_t, std::vector<int64_t>>& block_mapping);
void reshape_and_cache(
torch::Tensor& key,
torch::Tensor& value,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype);
// Just for unittest
void convert_fp8_e5m2(
torch::Tensor& src_cache,
torch::Tensor& dst_cache);

View File

@ -1,13 +1,23 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "cuda_compat.h"
#include "dispatch_utils.h"
#ifdef ENABLE_FP8_E5M2
#include "quantization/fp8_e5m2_kvcache/quant_utils.cuh"
#endif
#include <algorithm>
#include <cassert>
#include <map>
#include <vector>
#ifdef USE_ROCM
#include <hip/hip_bf16.h>
typedef __hip_bfloat16 __nv_bfloat16;
#endif
void swap_blocks(
torch::Tensor& src,
torch::Tensor& dst,
@ -28,10 +38,11 @@ void swap_blocks(
TORCH_CHECK(false, "Invalid device combination");
}
void *src_ptr = src.data_ptr();
void *dst_ptr = dst.data_ptr();
char *src_ptr = static_cast<char*>(src.data_ptr());
char *dst_ptr = static_cast<char*>(dst.data_ptr());
const int64_t block_size_in_bytes = src.element_size() * src[0].numel();
const at::cuda::OptionalCUDAGuard device_guard(src_device.is_cuda() ? src_device : dst_device);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// NOTE(woosuk): This can be slow if the number of blocks is large.
for (const auto& pair : block_mapping) {
@ -55,26 +66,26 @@ template<typename scalar_t>
__global__ void copy_blocks_kernel(
int64_t* key_cache_ptrs,
int64_t* value_cache_ptrs,
const int* __restrict__ block_mapping,
const int64_t* __restrict__ block_mapping,
const int numel_per_block) {
const int layer_idx = blockIdx.x;
const int pair_idx = blockIdx.y;
scalar_t* key_cache = reinterpret_cast<scalar_t*>(key_cache_ptrs[layer_idx]);
scalar_t* value_cache = reinterpret_cast<scalar_t*>(value_cache_ptrs[layer_idx]);
int src_block_number = block_mapping[2 * pair_idx];
int dst_block_number = block_mapping[2 * pair_idx + 1];
int64_t src_block_number = block_mapping[2 * pair_idx];
int64_t dst_block_number = block_mapping[2 * pair_idx + 1];
const int src_block_offset = src_block_number * numel_per_block;
const int dst_block_offset = dst_block_number * numel_per_block;
const int64_t src_block_offset = src_block_number * numel_per_block;
const int64_t dst_block_offset = dst_block_number * numel_per_block;
for (int i = threadIdx.x; i < numel_per_block; i += blockDim.x) {
int src_offset = src_block_offset + i;
int dst_offset = dst_block_offset + i;
int64_t src_offset = src_block_offset + i;
int64_t dst_offset = dst_block_offset + i;
key_cache[dst_offset] = key_cache[src_offset];
}
for (int i = threadIdx.x; i < numel_per_block; i += blockDim.x) {
int src_offset = src_block_offset + i;
int dst_offset = dst_block_offset + i;
int64_t src_offset = src_block_offset + i;
int64_t dst_offset = dst_block_offset + i;
value_cache[dst_offset] = value_cache[src_offset];
}
}
@ -102,15 +113,15 @@ void copy_blocks(
value_cache_ptrs[layer_idx] = reinterpret_cast<int64_t>(value_caches[layer_idx].data_ptr());
}
// Create block mapping array.
std::vector<int> block_mapping_vec;
std::vector<int64_t> block_mapping_vec;
for (const auto& pair : block_mapping) {
int src_block_number = pair.first;
for (int dst_block_number : pair.second) {
int64_t src_block_number = pair.first;
for (int64_t dst_block_number : pair.second) {
block_mapping_vec.push_back(src_block_number);
block_mapping_vec.push_back(dst_block_number);
}
}
int* block_mapping_array = block_mapping_vec.data();
int64_t* block_mapping_array = block_mapping_vec.data();
int num_pairs = block_mapping_vec.size() / 2;
// Move the data structures to the GPU.
@ -120,75 +131,107 @@ void copy_blocks(
torch::Tensor value_cache_ptrs_tensor = torch::from_blob(
value_cache_ptrs, {num_layers}, torch::kInt64).to(cache_device);
torch::Tensor block_mapping_tensor = torch::from_blob(
block_mapping_array, {2 * num_pairs}, torch::kInt).to(cache_device);
block_mapping_array, {2 * num_pairs}, torch::kInt64).to(cache_device);
// Launch the kernel.
const int numel_per_block = key_caches[0][0].numel();
dim3 grid(num_layers, num_pairs);
dim3 block(std::min(1024, numel_per_block));
const at::cuda::OptionalCUDAGuard device_guard(cache_device);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(
key_caches[0].scalar_type(), "copy_blocks_kernel", ([&] {
vllm::copy_blocks_kernel<scalar_t><<<grid, block, 0, stream>>>(
key_cache_ptrs_tensor.data_ptr<int64_t>(),
value_cache_ptrs_tensor.data_ptr<int64_t>(),
block_mapping_tensor.data_ptr<int>(),
block_mapping_tensor.data_ptr<int64_t>(),
numel_per_block);
}));
}
namespace vllm {
template<typename scalar_t>
template<typename scalar_t, typename cache_t, bool is_fp8_e5m2_kv_cache>
__global__ void reshape_and_cache_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
scalar_t* __restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
scalar_t* __restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
const int* __restrict__ slot_mapping, // [num_tokens]
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
cache_t* __restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
cache_t* __restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int key_stride,
const int value_stride,
const int num_heads,
const int head_size,
const int block_size,
const int x) {
const int token_idx = blockIdx.x;
const int slot_idx = slot_mapping[token_idx];
const int block_idx = slot_idx / block_size;
const int block_offset = slot_idx % block_size;
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
if (slot_idx < 0) {
// Padding token that should be ignored.
return;
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
const int n = num_heads * head_size;
for (int i = threadIdx.x; i < n; i += blockDim.x) {
const int src_key_idx = token_idx * key_stride + i;
const int src_value_idx = token_idx * value_stride + i;
const int64_t src_key_idx = token_idx * key_stride + i;
const int64_t src_value_idx = token_idx * value_stride + i;
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int x_idx = head_offset / x;
const int x_offset = head_offset % x;
const int tgt_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
+ head_idx * (head_size / x) * block_size * x
+ x_idx * block_size * x
+ block_offset * x
+ x_offset;
const int tgt_value_idx = block_idx * num_heads * head_size * block_size
+ head_idx * head_size * block_size
+ head_offset * block_size
+ block_offset;
key_cache[tgt_key_idx] = __ldg(&key[src_key_idx]);
value_cache[tgt_value_idx] = __ldg(&value[src_value_idx]);
const int64_t tgt_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
+ head_idx * (head_size / x) * block_size * x
+ x_idx * block_size * x
+ block_offset * x
+ x_offset;
const int64_t tgt_value_idx = block_idx * num_heads * head_size * block_size
+ head_idx * head_size * block_size
+ head_offset * block_size
+ block_offset;
scalar_t tgt_key = key[src_key_idx];
scalar_t tgt_value = value[src_value_idx];
if constexpr (is_fp8_e5m2_kv_cache) {
#ifdef ENABLE_FP8_E5M2
key_cache[tgt_key_idx] = fp8_e5m2_unscaled::vec_conversion<uint8_t, scalar_t>(tgt_key);
value_cache[tgt_value_idx] = fp8_e5m2_unscaled::vec_conversion<uint8_t, scalar_t>(tgt_value);
#else
assert(false);
#endif
} else {
key_cache[tgt_key_idx] = tgt_key;
value_cache[tgt_value_idx] = tgt_value;
}
}
}
} // namespace vllm
#define CALL_RESHAPE_AND_CACHE(KV_T, CACHE_T, IS_FP8_E5M2_KV_CACHE) \
vllm::reshape_and_cache_kernel<KV_T, CACHE_T, IS_FP8_E5M2_KV_CACHE><<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(key.data_ptr()), \
reinterpret_cast<KV_T*>(value.data_ptr()), \
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), \
key_stride, \
value_stride, \
num_heads, \
head_size, \
block_size, \
x);
void reshape_and_cache(
torch::Tensor& key, // [num_tokens, num_heads, head_size]
torch::Tensor& value, // [num_tokens, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size]
torch::Tensor& slot_mapping) // [num_tokens]
torch::Tensor& slot_mapping, // [num_tokens]
const std::string& kv_cache_dtype)
{
int num_tokens = key.size(0);
int num_heads = key.size(1);
@ -201,182 +244,77 @@ void reshape_and_cache(
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
key.scalar_type(),
"reshape_and_cache_kernel",
[&] {
vllm::reshape_and_cache_kernel<scalar_t><<<grid, block, 0, stream>>>(
key.data_ptr<scalar_t>(),
value.data_ptr<scalar_t>(),
key_cache.data_ptr<scalar_t>(),
value_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int>(),
key_stride,
value_stride,
num_heads,
head_size,
block_size,
x);
});
if (kv_cache_dtype == "auto") {
if (key.dtype() == at::ScalarType::Float) {
CALL_RESHAPE_AND_CACHE(float, float, false);
} else if (key.dtype() == at::ScalarType::Half) {
CALL_RESHAPE_AND_CACHE(uint16_t, uint16_t, false);
} else if (key.dtype() == at::ScalarType::BFloat16) {
CALL_RESHAPE_AND_CACHE(__nv_bfloat16, __nv_bfloat16, false);
}
} else if (kv_cache_dtype == "fp8_e5m2") {
if (key.dtype() == at::ScalarType::Float) {
CALL_RESHAPE_AND_CACHE(float, uint8_t, true);
} else if (key.dtype() == at::ScalarType::Half) {
CALL_RESHAPE_AND_CACHE(uint16_t, uint8_t, true);
} else if (key.dtype() == at::ScalarType::BFloat16) {
CALL_RESHAPE_AND_CACHE(__nv_bfloat16, uint8_t, true);
}
} else {
TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
}
}
namespace vllm {
// Grid: (num_blocks, block_size).
template<typename scalar_t>
__global__ void gather_cached_kv_kernel(
scalar_t* __restrict__ key, // [num_tokens, [stride], num_heads, head_size]
scalar_t* __restrict__ value, // [num_tokens, [stride], num_heads, head_size]
const scalar_t* __restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
const scalar_t* __restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
const int* __restrict__ slot_mapping, // [num_tokens]
const int key_stride,
const int value_stride,
const int num_heads,
const int head_size,
const int block_size,
const int x) {
const int token_idx = blockIdx.x;
const int slot_idx = slot_mapping[token_idx];
const int block_idx = slot_idx / block_size;
const int block_offset = slot_idx % block_size;
const int num_tokens = num_heads * head_size;
for (int i = threadIdx.x; i < num_tokens; i += blockDim.x) {
const int tgt_key_idx = token_idx * key_stride + i;
const int tgt_value_idx = token_idx * value_stride + i;
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int x_idx = head_offset / x; // the offset of the [head_size/x] dimension
const int x_offset = head_offset % x;
const int src_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
+ head_idx * (head_size / x) * block_size * x
+ x_idx * block_size * x
+ block_offset * x
+ x_offset;
const int src_value_idx = block_idx * num_heads * head_size * block_size
+ head_idx * head_size * block_size
+ head_offset * block_size
+ block_offset;
key[tgt_key_idx] = __ldg(&key_cache[src_key_idx]);
value[tgt_value_idx] = __ldg(&value_cache[src_value_idx]);
}
}
template <typename scalar_t>
__global__ void gather_cached_kv_kernel_optimized(
scalar_t *__restrict__ key, // [num_tokens, [stride], num_heads, head_size]
scalar_t *__restrict__ value, // [num_tokens, [stride], num_heads, head_size]
const scalar_t *__restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
const scalar_t *__restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
const int *__restrict__ slot_mapping, // [num_tokens]
const int key_stride,
const int value_stride,
const int num_heads,
const int head_size,
const int block_size,
const int x)
{
const int token_idx = blockIdx.x;
const int slot_idx = slot_mapping[token_idx];
const int block_idx = slot_idx / block_size;
const int block_offset = slot_idx % block_size;
const int dim = num_heads * head_size;
assert(dim % 4 == 0); // this is true for known use cases
const int unroll_factor = 4;
const int unrolled_dim = dim / unroll_factor;
for (int i = threadIdx.x; i < unrolled_dim; i += blockDim.x)
{
int tgt_key_indices[unroll_factor];
int tgt_value_indices[unroll_factor];
int src_key_indices[unroll_factor];
int src_value_indices[unroll_factor];
scalar_t keys_to_store[unroll_factor];
scalar_t values_to_store[unroll_factor];
#pragma unroll
for (int j = 0; j < unroll_factor; ++j)
{
int index = i + j * unrolled_dim;
const int tgt_key_idx = token_idx * key_stride + index;
const int tgt_value_idx = token_idx * value_stride + index;
const int head_idx = index / head_size;
const int head_offset = index % head_size;
const int x_idx = head_offset / x;
const int x_offset = head_offset % x;
const int src_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
+ head_idx * (head_size / x) * block_size * x
+ x_idx * block_size * x
+ block_offset * x
+ x_offset;
const int src_value_idx = block_idx * num_heads * head_size * block_size
+ head_idx * head_size * block_size
+ head_offset * block_size
+ block_offset;
tgt_key_indices[j] = tgt_key_idx;
tgt_value_indices[j] = tgt_value_idx;
src_key_indices[j] = src_key_idx;
src_value_indices[j] = src_value_idx;
keys_to_store[j] = __ldg(&key_cache[src_key_idx]);
values_to_store[j] = __ldg(&value_cache[src_value_idx]);
}
#pragma unroll
for (int j = 0; j < unroll_factor; ++j)
{
key[tgt_key_indices[j]] = keys_to_store[j];
value[tgt_value_indices[j]] = values_to_store[j];
}
}
template<typename Tout, typename Tin>
__global__ void convert_fp8_e5m2_kernel(
const Tin* __restrict__ src_cache,
Tout* __restrict__ dst_cache,
const int64_t block_stride) {
const int64_t block_idx = blockIdx.x;
for (int i = threadIdx.x; i < block_stride; i += blockDim.x) {
int64_t idx = block_idx * block_stride + i;
#ifdef ENABLE_FP8_E5M2
dst_cache[idx] = fp8_e5m2_unscaled::vec_conversion<Tout, Tin>(src_cache[idx]);
#else
assert(false);
#endif
}
}
} // namespace vllm
void gather_cached_kv(
torch::Tensor& key, // [out] [num_tokens, num_heads, head_size]
torch::Tensor& value, // [out] [num_tokens, num_heads, head_size]
torch::Tensor& key_cache, // [in] [num_blocks, num_heads, head_size/x, block_size, x]
torch::Tensor& value_cache, // [in] [num_blocks, num_heads, head_size, block_size]
torch::Tensor& slot_mapping) // [in] [num_tokens]
#define CALL_CONVERT_FP8_E5M2(Tout, Tin) \
vllm::convert_fp8_e5m2_kernel<Tout, Tin><<<grid, block, 0, stream>>>( \
reinterpret_cast<Tin*>(src_cache.data_ptr()), \
reinterpret_cast<Tout*>(dst_cache.data_ptr()), \
block_stride);
void convert_fp8_e5m2(
torch::Tensor& src_cache,
torch::Tensor& dst_cache)
{
int num_tokens = key.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);
int block_size = key_cache.size(3);
int x = key_cache.size(4);
int64_t num_blocks = src_cache.size(0);
int64_t block_stride = src_cache.stride(0);
int key_stride = key.stride(0);
int value_stride = value.stride(0);
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
dim3 grid(num_blocks);
dim3 block(std::min(block_stride, int64_t(512)));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
key.scalar_type(),
"gather_cached_kv_kernel_optimized",
[&] {
vllm::gather_cached_kv_kernel_optimized<scalar_t><<<grid, block, 0, stream>>>(
key.data_ptr<scalar_t>(),
value.data_ptr<scalar_t>(),
key_cache.data_ptr<scalar_t>(),
value_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int>(),
key_stride,
value_stride,
num_heads,
head_size,
block_size,
x);
});
if (src_cache.dtype() == at::ScalarType::Float) {
CALL_CONVERT_FP8_E5M2(uint8_t, float);
} else if (src_cache.dtype() == at::ScalarType::Half) {
CALL_CONVERT_FP8_E5M2(uint8_t, uint16_t);
} else if (src_cache.dtype() == at::ScalarType::BFloat16) {
CALL_CONVERT_FP8_E5M2(uint8_t, __nv_bfloat16);
} else if (dst_cache.dtype() == at::ScalarType::Float) {
CALL_CONVERT_FP8_E5M2(float, uint8_t);
} else if (dst_cache.dtype() == at::ScalarType::Half) {
CALL_CONVERT_FP8_E5M2(uint16_t, uint8_t);
} else if (dst_cache.dtype() == at::ScalarType::BFloat16) {
CALL_CONVERT_FP8_E5M2(__nv_bfloat16, uint8_t);
}
}

28
csrc/cuda_compat.h Normal file
View File

@ -0,0 +1,28 @@
#pragma once
#ifndef USE_ROCM
#define VLLM_LDG(arg) __ldg(arg)
#else
#define VLLM_LDG(arg) *(arg)
#endif
#ifndef USE_ROCM
#define VLLM_SHFL_XOR_SYNC(var, lane_mask) __shfl_xor_sync(uint32_t(-1), var, lane_mask)
#else
#define VLLM_SHFL_XOR_SYNC(var, lane_mask) __shfl_xor(var, lane_mask)
#endif
#ifndef USE_ROCM
#define VLLM_SHFL_SYNC(var, src_lane) __shfl_sync(uint32_t(-1), var, src_lane)
#else
#define VLLM_SHFL_SYNC(var, src_lane) __shfl(var, src_lane)
#endif
#ifndef USE_ROCM
#define VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(FUNC, VAL) \
cudaFuncSetAttribute(FUNC, cudaFuncAttributeMaxDynamicSharedMemorySize, VAL)
#else
#define VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(FUNC, VAL) \
hipFuncSetAttribute(FUNC, hipFuncAttributeMaxDynamicSharedMemorySize, VAL)
#endif

10
csrc/cuda_utils.h Normal file
View File

@ -0,0 +1,10 @@
#pragma once
#include <torch/extension.h>
int get_device_attribute(
int attribute,
int device_id);
int get_max_shared_memory_per_block_device_attribute(
int device_id);

View File

@ -0,0 +1,35 @@
#ifdef USE_ROCM
#include <hip/hip_runtime.h>
#include <hip/hip_runtime_api.h>
#endif
int get_device_attribute(
int attribute,
int device_id)
{
int device, value;
if (device_id < 0) {
cudaGetDevice(&device);
}
else {
device = device_id;
}
cudaDeviceGetAttribute(&value, static_cast<cudaDeviceAttr>(attribute), device);
return value;
}
int get_max_shared_memory_per_block_device_attribute(
int device_id)
{
int attribute;
// https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html
// cudaDevAttrMaxSharedMemoryPerBlockOptin = 97 if not is_hip() else 74
#ifdef USE_ROCM
attribute = hipDeviceAttributeMaxSharedMemoryPerBlock;
#else
attribute = cudaDevAttrMaxSharedMemoryPerBlockOptin;
#endif
return get_device_attribute(attribute, device_id);
}

148
csrc/custom_all_reduce.cu Normal file
View File

@ -0,0 +1,148 @@
#include <ATen/cuda/Exceptions.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include <torch/extension.h>
#include "custom_all_reduce.cuh"
// fake pointer type
using fptr_t = uint64_t;
static_assert(sizeof(void *) == sizeof(fptr_t));
fptr_t init_custom_ar(torch::Tensor &meta, torch::Tensor &rank_data,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets, int rank,
bool full_nvlink) {
int world_size = offsets.size();
if (world_size > 8)
throw std::invalid_argument("world size > 8 is not supported");
if (world_size % 2 != 0)
throw std::invalid_argument("Odd num gpus is not supported for now");
if (world_size != handles.size())
throw std::invalid_argument(
"handles length should equal to offsets length");
if (rank < 0 || rank >= world_size)
throw std::invalid_argument("invalid rank passed in");
cudaIpcMemHandle_t ipc_handles[8];
for (int i = 0; i < world_size; i++) {
std::memcpy(&ipc_handles[i], handles[i].data(), sizeof(cudaIpcMemHandle_t));
}
return (fptr_t) new vllm::CustomAllreduce(
reinterpret_cast<vllm::Metadata *>(meta.data_ptr()), rank_data.data_ptr(),
rank_data.numel(), ipc_handles, offsets, rank, full_nvlink);
}
/**
* Make sure tensor t's data lies completely within ((char)t.data_ptr()) +
* t.numel() * t.element_size(). This is slightly weaker than t.is_contiguous()
* because it allows transpose of contiguous slice (i.e. slicing the first
* dimension). Currently, we require this because stride information is not
* passed into the kernels and we treat input tensors as flat.
*
* Examples
* A = torch.zeros(3, 3, 3)
* 1. A: OK
* 2. A[1:]: OK
* 3. A.permute(2, 0, 1): OK
* 4. A[1:].permute(2, 0, 1): OK
* 5. A[None].expand(2, -1, -1, -1): Not OK
* 6. A[:, 1:, 1:]: Not OK
*/
bool _is_weak_contiguous(torch::Tensor &t) {
return t.is_contiguous() ||
(t.storage().nbytes() - t.storage_offset() * t.element_size() ==
t.numel() * t.element_size());
}
bool should_custom_ar(torch::Tensor &inp, int max_size, int world_size,
bool full_nvlink) {
auto inp_size = inp.numel() * inp.element_size();
// custom allreduce requires input byte size to be multiples of 16
if (inp_size % 16 != 0) return false;
if (!_is_weak_contiguous(inp)) return false;
if (world_size == 2 || full_nvlink) return inp_size <= max_size;
// 4 PCIE GPUs use 2 stage allreduce, and is only faster than NCCL when size
// <= 512k
return world_size <= 4 && inp_size <= 512 * 1024;
}
void _all_reduce(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out,
cudaStream_t stream) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
TORCH_CHECK(_is_weak_contiguous(out));
switch (out.scalar_type()) {
case at::ScalarType::Float: {
fa->allreduce<float>(stream, reinterpret_cast<float *>(inp.data_ptr()),
reinterpret_cast<float *>(out.data_ptr()),
out.numel());
break;
}
case at::ScalarType::Half: {
fa->allreduce<half>(stream, reinterpret_cast<half *>(inp.data_ptr()),
reinterpret_cast<half *>(out.data_ptr()),
out.numel());
break;
}
#if (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__))
case at::ScalarType::BFloat16: {
fa->allreduce<nv_bfloat16>(
stream, reinterpret_cast<nv_bfloat16 *>(inp.data_ptr()),
reinterpret_cast<nv_bfloat16 *>(out.data_ptr()), out.numel());
break;
}
#endif
default:
throw std::runtime_error(
"custom allreduce only supports float32, float16 and bfloat16");
}
}
void all_reduce_reg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(inp));
auto stream = c10::cuda::getCurrentCUDAStream().stream();
TORCH_CHECK_EQ(inp.scalar_type(), out.scalar_type());
TORCH_CHECK_EQ(inp.numel(), out.numel());
_all_reduce(_fa, inp, out, stream);
}
void all_reduce_unreg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &reg_buffer,
torch::Tensor &out) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(inp));
auto stream = c10::cuda::getCurrentCUDAStream().stream();
auto input_size = inp.numel() * inp.element_size();
TORCH_CHECK_EQ(inp.scalar_type(), out.scalar_type());
TORCH_CHECK_EQ(inp.numel(), out.numel());
TORCH_CHECK(input_size <= reg_buffer.numel() * reg_buffer.element_size(),
"registered buffer is too small to contain the input");
AT_CUDA_CHECK(cudaMemcpyAsync(reg_buffer.data_ptr(), inp.data_ptr(),
input_size, cudaMemcpyDeviceToDevice, stream));
_all_reduce(_fa, reg_buffer, out, stream);
}
void dispose(fptr_t _fa) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
delete fa;
}
int meta_size() { return sizeof(vllm::Metadata); }
void register_buffer(fptr_t _fa, torch::Tensor &t,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
fa->register_buffer(handles, offsets, t.data_ptr());
}
std::pair<std::vector<uint8_t>, std::vector<int64_t>> get_graph_buffer_ipc_meta(
fptr_t _fa) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
return fa->get_graph_buffer_ipc_meta();
}
void register_graph_buffers(fptr_t _fa, const std::vector<std::string> &handles,
const std::vector<std::vector<int64_t>> &offsets) {
auto fa = reinterpret_cast<vllm::CustomAllreduce *>(_fa);
fa->register_graph_buffers(handles, offsets);
}

562
csrc/custom_all_reduce.cuh Normal file
View File

@ -0,0 +1,562 @@
#pragma once
#include <cuda.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <iostream>
#include <limits>
#include <map>
#include <unordered_map>
#include <vector>
#define CUDACHECK(cmd) \
do { \
cudaError_t e = cmd; \
if (e != cudaSuccess) { \
printf("Failed: Cuda error %s:%d '%s'\n", __FILE__, __LINE__, \
cudaGetErrorString(e)); \
exit(EXIT_FAILURE); \
} \
} while (0)
namespace vllm {
struct Signal {
alignas(64) union {
uint64_t flag;
unsigned char data[8];
} start;
alignas(64) union {
uint64_t flag;
unsigned char data[8];
} end;
};
struct Metadata {
alignas(128) Signal sg;
alignas(128) int counter;
};
static_assert(offsetof(Metadata, counter) == 128);
static_assert(sizeof(Metadata) == 256);
struct __align__(16) RankData { const void *__restrict__ ptrs[8]; };
struct RankSignals {
volatile Signal *signals[8];
};
// like std::array, but aligned
template <typename T, int sz>
struct __align__(alignof(T) * sz) array_t {
T data[sz];
using type = T;
static constexpr int size = sz;
};
// use packed type to maximize memory efficiency
// goal: generate ld.128 and st.128 instructions
template <typename T>
struct packed_t {
// the (P)acked type for load/store
using P = array_t<T, 16 / sizeof(T)>;
// the (A)ccumulator type for reduction
using A = array_t<float, 16 / sizeof(T)>;
};
#define DINLINE __device__ __forceinline__
// scalar cast functions
DINLINE float upcast_s(half val) { return __half2float(val); }
template <typename T>
DINLINE T downcast_s(float val);
template <>
DINLINE half downcast_s(float val) {
return __float2half(val);
}
// scalar add functions
// for some reason when compiling with Pytorch, the + operator for half and
// bfloat is disabled so we call the intrinsics directly
DINLINE half &assign_add(half &a, half b) {
a = __hadd(a, b);
return a;
}
DINLINE float &assign_add(float &a, float b) { return a += b; }
#if (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__))
DINLINE float upcast_s(nv_bfloat16 val) { return __bfloat162float(val); }
template <>
DINLINE nv_bfloat16 downcast_s(float val) {
return __float2bfloat16(val);
}
DINLINE nv_bfloat16 &assign_add(nv_bfloat16 &a, nv_bfloat16 b) {
a = __hadd(a, b);
return a;
}
#endif
template <typename T, int N>
DINLINE array_t<T, N> &packed_assign_add(array_t<T, N> &a, array_t<T, N> b) {
#pragma unroll
for (int i = 0; i < N; i++) {
assign_add(a.data[i], b.data[i]);
}
return a;
}
template <typename T, int N>
DINLINE array_t<float, N> upcast(array_t<T, N> val) {
if constexpr (std::is_same<T, float>::value) {
return val;
} else {
array_t<float, N> out;
#pragma unroll
for (int i = 0; i < N; i++) {
out.data[i] = upcast_s(val.data[i]);
}
return out;
}
}
template <typename O>
DINLINE O downcast(array_t<float, O::size> val) {
if constexpr (std::is_same<typename O::type, float>::value) {
return val;
} else {
O out;
#pragma unroll
for (int i = 0; i < O::size; i++) {
out.data[i] = downcast_s<typename O::type>(val.data[i]);
}
return out;
}
}
// compute flag at compile time
__host__ __device__ constexpr uint64_t compute_flag(int ngpus) {
auto m = std::numeric_limits<uint64_t>::max();
return m >> ((8 - ngpus) * 8);
}
template <int ngpus>
DINLINE void start_sync(const RankSignals &sg, volatile Metadata *meta,
int rank) {
constexpr auto FLAG = compute_flag(ngpus);
if (blockIdx.x == 0) {
if (threadIdx.x < ngpus)
// simultaneously write to the corresponding byte to all other ranks.
// Latency = 1 p2p write
sg.signals[threadIdx.x]->start.data[rank] = 255;
else if (threadIdx.x == 32)
// reset
meta->sg.end.flag = 0;
}
if (threadIdx.x == 0) {
while (meta->sg.start.flag != FLAG)
;
}
__syncthreads();
}
template <int ngpus, bool final_sync = false>
DINLINE void end_sync(const RankSignals &sg, volatile Metadata *meta,
int rank) {
constexpr auto FLAG = compute_flag(ngpus);
__syncthreads();
__shared__ int num;
if (threadIdx.x == 0) num = atomicAdd((int *)&meta->counter, 1);
__syncthreads();
// Only the last completing block can perform the end synchronization
// This can ensures when the final busy wait ends, all ranks must have
// finished reading each other's buffer.
if (num == gridDim.x - 1) {
if (threadIdx.x == 32) {
// reset in a different warp
meta->counter = 0;
meta->sg.start.flag = 0;
} else if (threadIdx.x < ngpus) {
// simultaneously write to the corresponding byte to all other ranks.
// Latency = 1 p2p write
sg.signals[threadIdx.x]->end.data[rank] = 255;
}
// if this is the final sync, only one block needs it
// because kernel exit can serve as sync
if constexpr (final_sync) {
if (threadIdx.x == 0) {
while (meta->sg.end.flag != FLAG)
;
}
}
}
if constexpr (!final_sync) {
if (threadIdx.x == 0) {
while (meta->sg.end.flag != FLAG)
;
}
__syncthreads();
}
}
template <typename P, int ngpus, typename A>
DINLINE P packed_reduce(const P *ptrs[], int idx) {
A tmp = upcast(ptrs[0][idx]);
#pragma unroll
for (int i = 1; i < ngpus; i++) {
packed_assign_add(tmp, upcast(ptrs[i][idx]));
}
return downcast<P>(tmp);
}
template <typename T, int ngpus>
__global__ void __launch_bounds__(512, 1)
cross_device_reduce_1stage(RankData *_dp, RankSignals sg,
volatile Metadata *meta, T *__restrict__ result,
int rank, int size) {
using P = typename packed_t<T>::P;
using A = typename packed_t<T>::A;
// note: we don't reorder the address so the accumulation order is the same
// for all ranks, ensuring bitwise identical results
auto dp = *_dp;
start_sync<ngpus>(sg, meta, rank);
// do the actual reduction
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
((P *)result)[idx] =
packed_reduce<P, ngpus, A>((const P **)&dp.ptrs[0], idx);
}
end_sync<ngpus, true>(sg, meta, rank);
}
template <typename P>
DINLINE P *get_tmp_buf(volatile Signal *sg) {
return (P *)(((Metadata *)sg) + 1);
}
template <typename T, int ngpus>
__global__ void __launch_bounds__(512, 1)
cross_device_reduce_2stage(RankData *_dp, RankSignals sg,
volatile Metadata *meta, T *__restrict__ result,
int rank, int size) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = gridDim.x * blockDim.x;
using P = typename packed_t<T>::P;
using A = typename packed_t<T>::A;
int part = size / ngpus;
int start = rank * part;
int end = rank == ngpus - 1 ? size : start + part;
const P *ptrs[ngpus];
P *tmps[ngpus];
#pragma unroll
for (int i = 0; i < ngpus; i++) {
int target = (rank + i) % ngpus;
ptrs[i] = (const P *)_dp->ptrs[target];
tmps[i] = get_tmp_buf<P>(sg.signals[target]);
}
auto tmp_out = tmps[0];
start_sync<ngpus>(sg, meta, rank);
// stage 1: reduce scatter
for (int idx = start + tid; idx < end; idx += stride) {
tmp_out[idx - start] = packed_reduce<P, ngpus, A>(ptrs, idx);
}
// Maybe TODO: replace this with per-block release-acquire
// can save about 1-2us (not a lot though)
end_sync<ngpus>(sg, meta, rank);
// stage 2: allgather
for (int idx = tid; idx < part; idx += stride) {
#pragma unroll
for (int i = 0; i < ngpus; i++) {
int dst_idx = ((rank + i) % ngpus) * part + idx;
((P *)result)[dst_idx] = tmps[i][idx];
}
}
// process the last larger partition
int remaining = size - part * ngpus;
if (tid < remaining) {
int dst_idx = tid + part * ngpus;
((P *)result)[dst_idx] = get_tmp_buf<P>(sg.signals[ngpus - 1])[part + tid];
}
// faster than this
// for (int idx = tid; idx < size; idx += stride) {
// int target_rank = idx / part;
// if (target_rank == ngpus) target_rank -= 1;
// ((P *)result)[idx] = tmps[target_rank][idx - target_rank * part];
// }
}
template <typename T, int ngpus>
__global__ void __launch_bounds__(512, 1)
cross_device_reduce_half_butterfly(RankData *_dp, RankSignals sg,
volatile Metadata *meta,
T *__restrict__ result, int rank,
int size) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = gridDim.x * blockDim.x;
using P = typename packed_t<T>::P;
using A = typename packed_t<T>::A;
auto tmp_out = get_tmp_buf<P>(sg.signals[rank]);
constexpr int hg = ngpus / 2;
// Actually not quite half butterfly.
// This is an all-to-all within each group containing half of the ranks
// followed by cross-group add. Equivalent to half butterfly when there
// are 4 GPUs, a common case for PCIe cards like T4 and A10.
const P *ptrs[hg];
{
int start = rank - rank % hg;
#pragma unroll
for (int i = 0; i < hg; i++) {
ptrs[i] = (const P *)_dp->ptrs[i + start];
}
}
start_sync<ngpus>(sg, meta, rank);
for (int idx = tid; idx < size; idx += stride) {
tmp_out[idx] = packed_reduce<P, hg, A>(ptrs, idx);
}
end_sync<ngpus>(sg, meta, rank);
auto src = get_tmp_buf<P>(sg.signals[(ngpus - 1) - rank % ngpus]);
// do the cross group reduction
for (int idx = tid; idx < size; idx += stride) {
auto tmp = tmp_out[idx];
packed_assign_add(tmp, src[idx]);
((P *)result)[idx] = tmp;
}
}
using IPC_KEY = std::array<uint8_t, sizeof(cudaIpcMemHandle_t)>;
static_assert(sizeof(IPC_KEY) == sizeof(cudaIpcMemHandle_t));
static_assert(alignof(IPC_KEY) == alignof(cudaIpcMemHandle_t));
class CustomAllreduce {
public:
int rank_;
int world_size_;
bool full_nvlink_;
// below are device pointers
RankSignals sg_;
std::unordered_map<void *, RankData *> buffers_;
Metadata *meta_;
// stores the registered device pointers from all ranks
RankData *d_rank_data_base_, *d_rank_data_end_;
std::vector<void *> graph_unreg_buffers_;
// a map from IPC handles to opened IPC pointers
std::map<IPC_KEY, char *> ipc_handles_;
/**
* meta is a pointer to device metadata and temporary buffer for allreduce.
*
* There's a total of sizeof(Metadata) of prefix before the actual data,
* so meta + 1 points to actual temporary buffer.
*
* note: this class does not own any device memory. Any required buffers
* are passed in from the constructor
*/
CustomAllreduce(Metadata *meta, void *rank_data, size_t rank_data_sz,
const cudaIpcMemHandle_t *handles,
const std::vector<int64_t> &offsets, int rank,
bool full_nvlink = true)
: rank_(rank),
world_size_(offsets.size()),
full_nvlink_(full_nvlink),
meta_(meta),
d_rank_data_base_(reinterpret_cast<RankData *>(rank_data)),
d_rank_data_end_(d_rank_data_base_ + rank_data_sz / sizeof(RankData)) {
for (int i = 0; i < world_size_; i++) {
Metadata *rank_meta;
if (i != rank_) {
char *handle = open_ipc_handle(&handles[i]);
handle += offsets[i];
rank_meta = (Metadata *)handle;
} else {
rank_meta = meta_;
}
sg_.signals[i] = &rank_meta->sg;
}
}
char *open_ipc_handle(const void *ipc_handle) {
auto [it, new_handle] =
ipc_handles_.insert({*((IPC_KEY *)ipc_handle), nullptr});
if (new_handle) {
char *ipc_ptr;
CUDACHECK(cudaIpcOpenMemHandle((void **)&ipc_ptr,
*((const cudaIpcMemHandle_t *)ipc_handle),
cudaIpcMemLazyEnablePeerAccess));
it->second = ipc_ptr;
}
return it->second;
}
std::pair<std::vector<uint8_t>, std::vector<int64_t>>
get_graph_buffer_ipc_meta() {
auto num_buffers = graph_unreg_buffers_.size();
auto handle_sz = sizeof(cudaIpcMemHandle_t);
std::vector<uint8_t> handles(handle_sz * num_buffers, 0);
std::vector<int64_t> offsets(num_buffers);
for (int i = 0; i < num_buffers; i++) {
auto ptr = graph_unreg_buffers_[i];
void *base_ptr;
// note: must share the base address of each allocation, or we get wrong
// address
if (cuPointerGetAttribute(&base_ptr,
CU_POINTER_ATTRIBUTE_RANGE_START_ADDR,
(CUdeviceptr)ptr) != CUDA_SUCCESS)
throw std::runtime_error("failed to get pointer attr");
CUDACHECK(cudaIpcGetMemHandle(
(cudaIpcMemHandle_t *)&handles[i * handle_sz], base_ptr));
offsets[i] = ((char *)ptr) - ((char *)base_ptr);
}
return std::make_pair(handles, offsets);
}
void check_rank_data_capacity(size_t num = 1) {
if (d_rank_data_base_ + num > d_rank_data_end_)
throw std::runtime_error(
"Rank data buffer is overflowed by " +
std::to_string(d_rank_data_base_ + num - d_rank_data_end_));
}
void register_buffer(const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets, void *self) {
check_rank_data_capacity();
RankData data;
for (int i = 0; i < world_size_; i++) {
if (i != rank_) {
char *handle = open_ipc_handle(handles[i].data());
handle += offsets[i];
data.ptrs[i] = handle;
} else {
data.ptrs[i] = self;
}
}
auto d_data = d_rank_data_base_++;
CUDACHECK(
cudaMemcpy(d_data, &data, sizeof(RankData), cudaMemcpyHostToDevice));
buffers_[self] = d_data;
}
// note: when registering graph buffers, we intentionally choose to not
// deduplicate the addresses. That means if the allocator reuses some
// addresses, they will be registered again. This is to account for the remote
// possibility of different allocation patterns between ranks. For example,
// rank 1 may get the same input address for the second allreduce, but rank 2
// got a different address. IPC handles have internal reference counting
// mechanism so overhead should be small.
void register_graph_buffers(
const std::vector<std::string> &handles,
const std::vector<std::vector<int64_t>> &offsets) {
auto num_buffers = graph_unreg_buffers_.size();
check_rank_data_capacity(num_buffers);
std::vector<RankData> rank_data(num_buffers);
for (int i = 0; i < num_buffers; i++) {
auto self_ptr = graph_unreg_buffers_[i];
auto &rd = rank_data[i];
for (int j = 0; j < world_size_; j++) {
if (j != rank_) {
char *handle =
open_ipc_handle(&handles[j][i * sizeof(cudaIpcMemHandle_t)]);
handle += offsets[j][i];
rd.ptrs[j] = handle;
} else {
rd.ptrs[j] = self_ptr;
}
}
}
CUDACHECK(cudaMemcpy(d_rank_data_base_, rank_data.data(),
sizeof(RankData) * num_buffers,
cudaMemcpyHostToDevice));
d_rank_data_base_ += num_buffers;
graph_unreg_buffers_.clear();
}
/**
* This is the result after careful grid search. Using 36 blocks give the best
* or close to the best runtime on the devices I tried: A100, A10, A30, T4,
* V100. You'll notice that NCCL kernels also only take a small amount of SMs.
* Not quite sure the underlying reason, but my guess is that too many SMs
* will cause contention on NVLink bus.
*/
template <typename T>
void allreduce(cudaStream_t stream, T *input, T *output, int size,
int threads = 512, int block_limit = 36) {
auto d = packed_t<T>::P::size;
if (size % d != 0)
throw std::runtime_error(
"custom allreduce currently requires input length to be multiple "
"of " +
std::to_string(d));
RankData *ptrs;
cudaStreamCaptureStatus status;
CUDACHECK(cudaStreamIsCapturing(stream, &status));
if (status == cudaStreamCaptureStatusActive) {
ptrs = d_rank_data_base_ + graph_unreg_buffers_.size();
graph_unreg_buffers_.push_back(input);
} else {
auto it = buffers_.find(input);
if (it == buffers_.end())
throw std::runtime_error(
"buffer address " +
std::to_string(reinterpret_cast<uint64_t>(input)) +
" is not registered!");
ptrs = it->second;
}
size /= d;
auto bytes = size * sizeof(typename packed_t<T>::P);
int blocks = std::min(block_limit, (size + threads - 1) / threads);
#define KL(ngpus, name) \
name<T, ngpus> \
<<<blocks, threads, 0, stream>>>(ptrs, sg_, meta_, output, rank_, size);
#define REDUCE_CASE(ngpus) \
case ngpus: { \
if (world_size_ == 2) { \
KL(ngpus, cross_device_reduce_1stage); \
} else if (full_nvlink_) { \
if ((world_size_ <= 4 && bytes < 512 * 1024) || \
(world_size_ <= 8 && bytes < 256 * 1024)) { \
KL(ngpus, cross_device_reduce_1stage); \
} else { \
KL(ngpus, cross_device_reduce_2stage); \
} \
} else { \
KL(ngpus, cross_device_reduce_half_butterfly); \
} \
break; \
}
switch (world_size_) {
REDUCE_CASE(2)
REDUCE_CASE(4)
REDUCE_CASE(6)
REDUCE_CASE(8)
default:
throw std::runtime_error(
"custom allreduce only supports num gpus in (2,4,6,8). Actual num "
"gpus = " +
std::to_string(world_size_));
}
#undef REDUCE_CASE
#undef KL
}
~CustomAllreduce() {
for (auto [_, ptr] : ipc_handles_) {
CUDACHECK(cudaIpcCloseMemHandle(ptr));
}
}
};
/**
* To inspect PTX/SASS, copy paste this header file to compiler explorer and add
a template instantiation:
* template void CustomAllreduce::allreduce<half>(cudaStream_t, half *, half *,
int, int, int);
*/
} // namespace vllm

View File

@ -0,0 +1,284 @@
/**
* This is a standalone test for custom allreduce.
* To compile, make sure you have MPI and NCCL installed in your system.
* export MPI_HOME=XXX
* nvcc -O2 -arch=native -std=c++17 custom_all_reduce_test.cu -o
* custom_all_reduce_test -lnccl -I${MPI_HOME}/include -lmpi
*
* Warning: this C++ test is not designed to be very readable and was used
* during the rapid prototyping process.
*
* To run:
* mpirun -np 8 ./custom_all_reduce_test
*/
#include <cuda.h>
#include <curand_kernel.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits>
#include <vector>
#include "cuda_profiler_api.h"
#include "custom_all_reduce.cuh"
#include "mpi.h"
#include "nccl.h"
#define MPICHECK(cmd) \
do { \
int e = cmd; \
if (e != MPI_SUCCESS) { \
printf("Failed: MPI error %s:%d '%d'\n", __FILE__, __LINE__, e); \
exit(EXIT_FAILURE); \
} \
} while (0)
#define NCCLCHECK(cmd) \
do { \
ncclResult_t r = cmd; \
if (r != ncclSuccess) { \
printf("Failed, NCCL error %s:%d '%s'\n", __FILE__, __LINE__, \
ncclGetErrorString(r)); \
exit(EXIT_FAILURE); \
} \
} while (0)
__global__ void dummy_kernel() {
for (int i = 0; i < 100; i++) __nanosleep(1000000); // 100ms
}
template <typename T>
__global__ void set_data(T *data, int size, int myRank) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
data[idx] = myRank * 0.11f;
}
}
template <typename T>
__global__ void convert_data(const T *data1, const T *data2, double *fdata1,
double *fdata2, int size) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
fdata1[idx] = data1[idx];
fdata2[idx] = data2[idx];
}
}
__global__ void init_rand(curandState_t *state, int size, int nRanks) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
for (int i = 0; i < nRanks; i++) {
curand_init(i + 1, idx, 0, &state[idx * nRanks + i]);
}
}
}
template <typename T>
__global__ void gen_data(curandState_t *state, T *data, double *ground_truth,
int myRank, int nRanks, int size) {
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
double sum = 0.0;
for (int i = 0; i < nRanks; i++) {
double val = curand_uniform_double(&state[idx * nRanks + i]) * 4;
T hval = val; // downcast first
sum += static_cast<double>(hval);
if (i == myRank) data[idx] = hval;
}
ground_truth[idx] = sum;
}
}
template <typename T>
void run(int myRank, int nRanks, ncclComm_t &comm, int threads, int block_limit,
int data_size) {
T *result;
cudaStream_t stream;
CUDACHECK(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
CUDACHECK(cudaMalloc(&result, data_size * sizeof(T)));
CUDACHECK(cudaMemset(result, 0, data_size * sizeof(T)));
cudaIpcMemHandle_t self_data_handle;
cudaIpcMemHandle_t data_handles[8];
vllm::Metadata *buffer;
T *self_data_copy;
/**
* Allocate IPC buffer
*
* The first section is a temporary buffer for storing intermediate allreduce
* results, if a particular algorithm requires it. The second section is for
* the input to the allreduce. The actual API takes the input pointer as an
* argument (that is, they can and usually should be allocated separately).
* But since the input pointers and the temporary buffer all require IPC
* registration, they are allocated and registered together in the test for
* convenience.
*/
CUDACHECK(
cudaMalloc(&buffer, 2 * data_size * sizeof(T) + sizeof(vllm::Metadata)));
CUDACHECK(cudaMemset(buffer, 0,
2 * data_size * sizeof(T) + sizeof(vllm::Metadata)));
CUDACHECK(cudaMalloc(&self_data_copy, data_size * sizeof(T)));
CUDACHECK(cudaIpcGetMemHandle(&self_data_handle, buffer));
MPICHECK(MPI_Allgather(&self_data_handle, sizeof(cudaIpcMemHandle_t),
MPI_BYTE, data_handles, sizeof(cudaIpcMemHandle_t),
MPI_BYTE, MPI_COMM_WORLD));
void *rank_data;
size_t rank_data_sz = 16 * 1024 * 1024;
CUDACHECK(cudaMalloc(&rank_data, rank_data_sz));
std::vector<int64_t> offsets(nRanks, 0);
vllm::CustomAllreduce fa(buffer, rank_data, rank_data_sz, data_handles,
offsets, myRank);
auto *self_data =
reinterpret_cast<T *>(reinterpret_cast<char *>(buffer) +
sizeof(vllm::Metadata) + data_size * sizeof(T));
// hack buffer registration
{
std::vector<std::string> handles;
handles.reserve(nRanks);
for (int i = 0; i < nRanks; i++) {
char *begin = (char *)&data_handles[i];
char *end = (char *)&data_handles[i + 1];
handles.emplace_back(begin, end);
}
std::vector<int64_t> offsets(
nRanks, sizeof(vllm::Metadata) + data_size * sizeof(T));
fa.register_buffer(handles, offsets, self_data);
}
double *ground_truth;
CUDACHECK(cudaMallocHost(&ground_truth, data_size * sizeof(double)));
curandState_t *states;
CUDACHECK(cudaMalloc(&states, sizeof(curandState_t) * nRanks * data_size));
init_rand<<<108, 1024, 0, stream>>>(states, data_size, nRanks);
gen_data<T><<<108, 1024, 0, stream>>>(states, self_data, ground_truth, myRank,
nRanks, data_size);
CUDACHECK(cudaMemcpyAsync(self_data_copy, self_data, data_size * sizeof(T),
cudaMemcpyDeviceToDevice, stream));
cudaEvent_t start, stop;
CUDACHECK(cudaEventCreate(&start));
CUDACHECK(cudaEventCreate(&stop));
ncclDataType_t ncclDtype;
if (std::is_same<T, half>::value) {
ncclDtype = ncclFloat16;
} else if (std::is_same<T, nv_bfloat16>::value) {
ncclDtype = ncclBfloat16;
} else {
ncclDtype = ncclFloat;
}
dummy_kernel<<<1, 1, 0, stream>>>();
constexpr int warmup_iters = 5;
constexpr int num_iters = 25;
// warmup
for (int i = 0; i < warmup_iters; i++) {
NCCLCHECK(ncclAllReduce(result, result, data_size, ncclDtype, ncclSum, comm,
stream));
}
CUDACHECK(cudaEventRecord(start, stream));
for (int i = 0; i < num_iters; i++) {
NCCLCHECK(ncclAllReduce(result, result, data_size, ncclDtype, ncclSum, comm,
stream));
}
CUDACHECK(cudaEventRecord(stop, stream));
CUDACHECK(cudaStreamSynchronize(stream));
float allreduce_ms = 0;
cudaEventElapsedTime(&allreduce_ms, start, stop);
// if (myRank == 1) dummy_kernel<<<1, 1, 0, stream>>>();
// set_data<T><<<16, 1024, 0, stream>>>(self_data, data_size, myRank);
dummy_kernel<<<1, 1, 0, stream>>>();
// warm up
for (int i = 0; i < warmup_iters; i++) {
fa.allreduce<T>(stream, self_data, result, data_size, threads, block_limit);
}
CUDACHECK(cudaEventRecord(start, stream));
for (int i = 0; i < num_iters; i++) {
fa.allreduce<T>(stream, self_data, result, data_size, threads, block_limit);
}
CUDACHECK(cudaEventRecord(stop, stream));
CUDACHECK(cudaStreamSynchronize(stream));
float duration_ms = 0;
cudaEventElapsedTime(&duration_ms, start, stop);
if (myRank == 0)
printf(
"Rank %d done, nGPUs:%d, sz (kb): %d, %d, %d, my time:%.2fus, nccl "
"time:%.2fus\n",
myRank, nRanks, data_size * sizeof(T) / 1024, threads, block_limit,
duration_ms * 1e3 / num_iters, allreduce_ms * 1e3 / num_iters);
// And wait for all the queued up work to complete
CUDACHECK(cudaStreamSynchronize(stream));
NCCLCHECK(ncclAllReduce(self_data_copy, self_data, data_size, ncclDtype,
ncclSum, comm, stream));
double *nccl_result, *my_result;
CUDACHECK(cudaMallocHost(&nccl_result, data_size * sizeof(double)));
CUDACHECK(cudaMallocHost(&my_result, data_size * sizeof(double)));
convert_data<T><<<108, 1024, 0, stream>>>(self_data, result, nccl_result,
my_result, data_size);
CUDACHECK(cudaStreamSynchronize(stream));
for (unsigned long j = 0; j < data_size; j++) {
auto diff = abs(nccl_result[j] - my_result[j]);
if (diff >= 1e-2) {
printf("Rank %d: Verification mismatch at %lld: %f != (my) %f, gt=%f\n",
myRank, j, nccl_result[j], my_result[j], ground_truth[j]);
break;
}
}
long double nccl_diffs = 0.0;
long double my_diffs = 0.0;
for (int j = 0; j < data_size; j++) {
nccl_diffs += abs(nccl_result[j] - ground_truth[j]);
my_diffs += abs(my_result[j] - ground_truth[j]);
}
if (myRank == 0)
std::cout << "average abs diffs: nccl: " << nccl_diffs / data_size
<< " me: " << my_diffs / data_size << std::endl;
CUDACHECK(cudaFree(result));
CUDACHECK(cudaFree(self_data_copy));
CUDACHECK(cudaFree(rank_data));
CUDACHECK(cudaFree(buffer));
CUDACHECK(cudaFree(states));
CUDACHECK(cudaFreeHost(ground_truth));
CUDACHECK(cudaFreeHost(nccl_result));
CUDACHECK(cudaFreeHost(my_result));
CUDACHECK(cudaStreamDestroy(stream));
}
int main(int argc, char **argv) {
int nRanks, myRank;
MPICHECK(MPI_Init(&argc, &argv));
MPICHECK(MPI_Comm_rank(MPI_COMM_WORLD, &myRank));
MPICHECK(MPI_Comm_size(MPI_COMM_WORLD, &nRanks));
CUDACHECK(cudaSetDevice(myRank));
ncclUniqueId id;
ncclComm_t comm;
if (myRank == 0) ncclGetUniqueId(&id);
MPICHECK(MPI_Bcast(static_cast<void *>(&id), sizeof(id), MPI_BYTE, 0,
MPI_COMM_WORLD));
NCCLCHECK(ncclCommInitRank(&comm, nRanks, id, myRank));
cudaProfilerStart();
// for (int threads : {256, 512}) {
// for (int block_limit = 16; block_limit < 112; block_limit += 4) {
// run<half>(myRank, nRanks, comm, threads, block_limit, 4096 * 1024);
// }
// }
for (int sz = 512; sz <= (32 << 20); sz *= 2) {
run<half>(myRank, nRanks, comm, 512, 36, sz + 8 * 50);
}
cudaProfilerStop();
return EXIT_SUCCESS;
}

View File

@ -2,6 +2,8 @@
* Adapted from
* https://github.com/pytorch/pytorch/blob/v2.0.1/aten/src/ATen/Dispatch.h
*/
#pragma once
#include <torch/extension.h>
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
@ -12,3 +14,24 @@
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH( \
TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
#define VLLM_DISPATCH_CASE_FLOATING_AND_BYTE_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__)
#define VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH( \
TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_AND_BYTE_TYPES(__VA_ARGS__))
#define VLLM_DISPATCH_CASE_INTEGRAL_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Short, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Int, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Long, __VA_ARGS__)
#define VLLM_DISPATCH_INTEGRAL_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH( \
TYPE, NAME, VLLM_DISPATCH_CASE_INTEGRAL_TYPES(__VA_ARGS__))

View File

@ -1,14 +0,0 @@
#include <torch/extension.h>
void rms_norm(
torch::Tensor& out,
torch::Tensor& input,
torch::Tensor& weight,
float epsilon);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def(
"rms_norm",
&rms_norm,
"Apply Root Mean Square (RMS) Normalization to the input tensor.");
}

View File

@ -1,5 +1,6 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "dispatch_utils.h"
#include "reduction_utils.cuh"
@ -9,8 +10,8 @@ namespace vllm {
// TODO(woosuk): Further optimize this kernel.
template<typename scalar_t>
__global__ void rms_norm_kernel(
scalar_t* __restrict__ out, // [num_tokens, hidden_size]
const scalar_t* __restrict__ input, // [num_tokens, hidden_size]
scalar_t* __restrict__ out, // [..., hidden_size]
const scalar_t* __restrict__ input, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float epsilon,
const int num_tokens,
@ -34,18 +35,49 @@ __global__ void rms_norm_kernel(
}
}
// TODO: Further optimize this kernel.
template<typename scalar_t>
__global__ void fused_add_rms_norm_kernel(
scalar_t* __restrict__ input, // [..., hidden_size]
scalar_t* __restrict__ residual, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float epsilon,
const int num_tokens,
const int hidden_size) {
__shared__ float s_variance;
float variance = 0.0f;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float) input[blockIdx.x * hidden_size + idx];
x += (float) residual[blockIdx.x * hidden_size + idx];
variance += x * x;
residual[blockIdx.x * hidden_size + idx] = (scalar_t) x;
}
variance = blockReduceSum<float>(variance);
if (threadIdx.x == 0) {
s_variance = rsqrtf(variance / hidden_size + epsilon);
}
__syncthreads();
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float) residual[blockIdx.x * hidden_size + idx];
input[blockIdx.x * hidden_size + idx] = ((scalar_t) (x * s_variance)) * weight[idx];
}
}
} // namespace vllm
void rms_norm(
torch::Tensor& out, // [num_tokens, hidden_size]
torch::Tensor& input, // [num_tokens, hidden_size]
torch::Tensor& out, // [..., hidden_size]
torch::Tensor& input, // [..., hidden_size]
torch::Tensor& weight, // [hidden_size]
float epsilon) {
int num_tokens = input.size(0);
int hidden_size = input.size(1);
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
dim3 grid(num_tokens);
dim3 block(std::min(hidden_size, 1024));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(),
@ -60,3 +92,29 @@ void rms_norm(
hidden_size);
});
}
void fused_add_rms_norm(
torch::Tensor& input, // [..., hidden_size]
torch::Tensor& residual, // [..., hidden_size]
torch::Tensor& weight, // [hidden_size]
float epsilon) {
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
dim3 grid(num_tokens);
dim3 block(std::min(hidden_size, 1024));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(),
"fused_add_rms_norm_kernel",
[&] {
vllm::fused_add_rms_norm_kernel<scalar_t><<<grid, block, 0, stream>>>(
input.data_ptr<scalar_t>(),
residual.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(),
epsilon,
num_tokens,
hidden_size);
});
}

7
csrc/moe/moe_ops.cpp Normal file
View File

@ -0,0 +1,7 @@
#include "moe_ops.h"
#include <torch/extension.h>
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("topk_softmax", &topk_softmax, "Apply topk softmax to the gating outputs.");
}

9
csrc/moe/moe_ops.h Normal file
View File

@ -0,0 +1,9 @@
#pragma once
#include <torch/extension.h>
void topk_softmax(
torch::Tensor& topk_weights,
torch::Tensor& topk_indices,
torch::Tensor& token_expert_indices,
torch::Tensor& gating_output);

View File

@ -0,0 +1,499 @@
/*
* Adapted from https://github.com/NVIDIA/TensorRT-LLM/blob/v0.7.1/cpp/tensorrt_llm/kernels/mixtureOfExperts/moe_kernels.cu
* Copyright (c) 2024, The vLLM team.
* SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cub/cub.cuh>
#include <cub/util_type.cuh>
namespace vllm {
namespace moe {
static constexpr int WARP_SIZE = 32;
/// Aligned array type
template <
typename T,
/// Number of elements in the array
int N,
/// Alignment requirement in bytes
int Alignment = sizeof(T) * N
>
class alignas(Alignment) AlignedArray {
float data[N];
};
// ====================== Softmax things ===============================
// We have our own implementation of softmax here so we can support transposing the output
// in the softmax kernel when we extend this module to support expert-choice routing.
template <int TPB>
__launch_bounds__(TPB) __global__
void moeSoftmax(const float* input, const bool* finished, float* output, const int num_cols)
{
using BlockReduce = cub::BlockReduce<float, TPB>;
__shared__ typename BlockReduce::TempStorage tmpStorage;
__shared__ float normalizing_factor;
__shared__ float float_max;
const int thread_row_offset = blockIdx.x * num_cols;
cub::Sum sum;
float threadData(-FLT_MAX);
// Don't touch finished rows.
if ((finished != nullptr) && finished[blockIdx.x])
{
return;
}
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
{
const int idx = thread_row_offset + ii;
threadData = max(static_cast<float>(input[idx]), threadData);
}
const float maxElem = BlockReduce(tmpStorage).Reduce(threadData, cub::Max());
if (threadIdx.x == 0)
{
float_max = maxElem;
}
__syncthreads();
threadData = 0;
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
{
const int idx = thread_row_offset + ii;
threadData += exp((static_cast<float>(input[idx]) - float_max));
}
const auto Z = BlockReduce(tmpStorage).Reduce(threadData, sum);
if (threadIdx.x == 0)
{
normalizing_factor = 1.f / Z;
}
__syncthreads();
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
{
const int idx = thread_row_offset + ii;
const float val = exp((static_cast<float>(input[idx]) - float_max)) * normalizing_factor;
output[idx] = val;
}
}
template <int TPB>
__launch_bounds__(TPB) __global__ void moeTopK(const float* inputs_after_softmax, const bool* finished, float* output,
int* indices, int* source_rows, const int num_experts, const int k, const int start_expert, const int end_expert)
{
using cub_kvp = cub::KeyValuePair<int, float>;
using BlockReduce = cub::BlockReduce<cub_kvp, TPB>;
__shared__ typename BlockReduce::TempStorage tmpStorage;
cub_kvp thread_kvp;
cub::ArgMax arg_max;
const int num_rows = gridDim.x;
const int block_row = blockIdx.x;
const bool row_is_active = finished ? !finished[block_row] : true;
const int thread_read_offset = blockIdx.x * num_experts;
for (int k_idx = 0; k_idx < k; ++k_idx)
{
thread_kvp.key = 0;
thread_kvp.value = -1.f; // This is OK because inputs are probabilities
cub_kvp inp_kvp;
for (int expert = threadIdx.x; expert < num_experts; expert += TPB)
{
const int idx = thread_read_offset + expert;
inp_kvp.key = expert;
inp_kvp.value = inputs_after_softmax[idx];
for (int prior_k = 0; prior_k < k_idx; ++prior_k)
{
const int prior_winning_expert = indices[k * block_row + prior_k];
if (prior_winning_expert == expert)
{
inp_kvp = thread_kvp;
}
}
thread_kvp = arg_max(inp_kvp, thread_kvp);
}
const cub_kvp result_kvp = BlockReduce(tmpStorage).Reduce(thread_kvp, arg_max);
if (threadIdx.x == 0)
{
// Ignore experts the node isn't responsible for with expert parallelism
const int expert = result_kvp.key;
const bool node_uses_expert = expert >= start_expert && expert < end_expert;
const bool should_process_row = row_is_active && node_uses_expert;
const int idx = k * block_row + k_idx;
output[idx] = result_kvp.value;
indices[idx] = should_process_row ? (expert - start_expert) : num_experts;
assert(indices[idx] >= 0);
source_rows[idx] = k_idx * num_rows + block_row;
}
__syncthreads();
}
}
// ====================== TopK softmax things ===============================
/*
A Top-K gating softmax written to exploit when the number of experts in the MoE layers
are a small power of 2. This allows us to cleanly share the rows among the threads in
a single warp and eliminate communication between warps (so no need to use shared mem).
It fuses the softmax, max and argmax into a single kernel.
Limitations:
1) This implementation is intended for when the number of experts is a small power of 2.
2) This implementation assumes k is small, but will work for any k.
*/
template <int VPT, int NUM_EXPERTS, int WARPS_PER_CTA, int BYTES_PER_LDG>
__launch_bounds__(WARPS_PER_CTA* WARP_SIZE) __global__
void topkGatingSoftmax(const float* input, const bool* finished, float* output, const int num_rows, int* indices,
int* source_rows, const int k, const int start_expert, const int end_expert)
{
// We begin by enforcing compile time assertions and setting up compile time constants.
static_assert(VPT == (VPT & -VPT), "VPT must be power of 2");
static_assert(NUM_EXPERTS == (NUM_EXPERTS & -NUM_EXPERTS), "NUM_EXPERTS must be power of 2");
static_assert(BYTES_PER_LDG == (BYTES_PER_LDG & -BYTES_PER_LDG), "BYTES_PER_LDG must be power of 2");
static_assert(BYTES_PER_LDG <= 16, "BYTES_PER_LDG must be leq 16");
// Number of bytes each thread pulls in per load
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
static constexpr int ELTS_PER_ROW = NUM_EXPERTS;
static constexpr int THREADS_PER_ROW = ELTS_PER_ROW / VPT;
static constexpr int LDG_PER_THREAD = VPT / ELTS_PER_LDG;
// Restrictions based on previous section.
static_assert(VPT % ELTS_PER_LDG == 0, "The elements per thread must be a multiple of the elements per ldg");
static_assert(WARP_SIZE % THREADS_PER_ROW == 0, "The threads per row must cleanly divide the threads per warp");
static_assert(THREADS_PER_ROW == (THREADS_PER_ROW & -THREADS_PER_ROW), "THREADS_PER_ROW must be power of 2");
static_assert(THREADS_PER_ROW <= WARP_SIZE, "THREADS_PER_ROW can be at most warp size");
// We have NUM_EXPERTS elements per row. We specialize for small #experts
static constexpr int ELTS_PER_WARP = WARP_SIZE * VPT;
static constexpr int ROWS_PER_WARP = ELTS_PER_WARP / ELTS_PER_ROW;
static constexpr int ROWS_PER_CTA = WARPS_PER_CTA * ROWS_PER_WARP;
// Restrictions for previous section.
static_assert(ELTS_PER_WARP % ELTS_PER_ROW == 0, "The elts per row must cleanly divide the total elt per warp");
// ===================== From this point, we finally start computing run-time variables. ========================
// Compute CTA and warp rows. We pack multiple rows into a single warp, and a block contains WARPS_PER_CTA warps.
// This, each block processes a chunk of rows. We start by computing the start row for each block.
const int cta_base_row = blockIdx.x * ROWS_PER_CTA;
// Now, using the base row per thread block, we compute the base row per warp.
const int warp_base_row = cta_base_row + threadIdx.y * ROWS_PER_WARP;
// The threads in a warp are split into sub-groups that will work on a row.
// We compute row offset for each thread sub-group
const int thread_row_in_warp = threadIdx.x / THREADS_PER_ROW;
const int thread_row = warp_base_row + thread_row_in_warp;
// Threads with indices out of bounds should early exit here.
if (thread_row >= num_rows)
{
return;
}
const bool row_is_active = finished ? !finished[thread_row] : true;
// We finally start setting up the read pointers for each thread. First, each thread jumps to the start of the
// row it will read.
const float* thread_row_ptr = input + thread_row * ELTS_PER_ROW;
// Now, we compute the group each thread belong to in order to determine the first column to start loads.
const int thread_group_idx = threadIdx.x % THREADS_PER_ROW;
const int first_elt_read_by_thread = thread_group_idx * ELTS_PER_LDG;
const float* thread_read_ptr = thread_row_ptr + first_elt_read_by_thread;
// Determine the pointer type to use to read in the data depending on the BYTES_PER_LDG template param. In theory,
// this can support all powers of 2 up to 16.
// NOTE(woosuk): The original implementation uses CUTLASS aligned array here.
// We defined our own aligned array and use it here to avoid the dependency on CUTLASS.
using AccessType = AlignedArray<float, ELTS_PER_LDG>;
// Finally, we pull in the data from global mem
float row_chunk[VPT];
AccessType* row_chunk_vec_ptr = reinterpret_cast<AccessType*>(&row_chunk);
const AccessType* vec_thread_read_ptr = reinterpret_cast<const AccessType*>(thread_read_ptr);
#pragma unroll
for (int ii = 0; ii < LDG_PER_THREAD; ++ii)
{
row_chunk_vec_ptr[ii] = vec_thread_read_ptr[ii * THREADS_PER_ROW];
}
// First, we perform a max reduce within the thread. We can do the max in fp16 safely (I think) and just
// convert to float afterwards for the exp + sum reduction.
float thread_max = row_chunk[0];
#pragma unroll
for (int ii = 1; ii < VPT; ++ii)
{
thread_max = max(thread_max, row_chunk[ii]);
}
// Now, we find the max within the thread group and distribute among the threads. We use a butterfly reduce.
#pragma unroll
for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2)
{
thread_max = max(thread_max, __shfl_xor_sync(0xFFFFFFFF, thread_max, mask, THREADS_PER_ROW));
}
// From this point, thread max in all the threads have the max within the row.
// Now, we subtract the max from each element in the thread and take the exp. We also compute the thread local sum.
float row_sum = 0;
#pragma unroll
for (int ii = 0; ii < VPT; ++ii)
{
row_chunk[ii] = expf(row_chunk[ii] - thread_max);
row_sum += row_chunk[ii];
}
// Now, we perform the sum reduce within each thread group. Similar to the max reduce, we use a bufferfly pattern.
#pragma unroll
for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2)
{
row_sum += __shfl_xor_sync(0xFFFFFFFF, row_sum, mask, THREADS_PER_ROW);
}
// From this point, all threads have the max and the sum for their rows in the thread_max and thread_sum variables
// respectively. Finally, we can scale the rows for the softmax. Technically, for top-k gating we don't need to
// compute the entire softmax row. We can likely look at the maxes and only compute for the top-k values in the row.
// However, this kernel will likely not be a bottle neck and it seems better to closer match torch and find the
// argmax after computing the softmax.
const float reciprocal_row_sum = 1.f / row_sum;
#pragma unroll
for (int ii = 0; ii < VPT; ++ii)
{
row_chunk[ii] = row_chunk[ii] * reciprocal_row_sum;
}
// Now, softmax_res contains the softmax of the row chunk. Now, I want to find the topk elements in each row, along
// with the max index.
int start_col = first_elt_read_by_thread;
static constexpr int COLS_PER_GROUP_LDG = ELTS_PER_LDG * THREADS_PER_ROW;
for (int k_idx = 0; k_idx < k; ++k_idx)
{
// First, each thread does the local argmax
float max_val = row_chunk[0];
int expert = start_col;
#pragma unroll
for (int ldg = 0, col = start_col; ldg < LDG_PER_THREAD; ++ldg, col += COLS_PER_GROUP_LDG)
{
#pragma unroll
for (int ii = 0; ii < ELTS_PER_LDG; ++ii)
{
float val = row_chunk[ldg * ELTS_PER_LDG + ii];
// No check on the experts here since columns with the smallest index are processed first and only
// updated if > (not >=)
if (val > max_val)
{
max_val = val;
expert = col + ii;
}
}
}
// Now, we perform the argmax reduce. We use the butterfly pattern so threads reach consensus about the max.
// This will be useful for K > 1 so that the threads can agree on "who" had the max value. That thread can
// then blank out their max with -inf and the warp can run more iterations...
#pragma unroll
for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2)
{
float other_max = __shfl_xor_sync(0xFFFFFFFF, max_val, mask, THREADS_PER_ROW);
int other_expert = __shfl_xor_sync(0xFFFFFFFF, expert, mask, THREADS_PER_ROW);
// We want lower indices to "win" in every thread so we break ties this way
if (other_max > max_val || (other_max == max_val && other_expert < expert))
{
max_val = other_max;
expert = other_expert;
}
}
// Write the max for this k iteration to global memory.
if (thread_group_idx == 0)
{
// Add a guard to ignore experts not included by this node
const bool node_uses_expert = expert >= start_expert && expert < end_expert;
const bool should_process_row = row_is_active && node_uses_expert;
// The lead thread from each sub-group will write out the final results to global memory. (This will be a
// single) thread per row of the input/output matrices.
const int idx = k * thread_row + k_idx;
output[idx] = max_val;
indices[idx] = should_process_row ? (expert - start_expert) : NUM_EXPERTS;
source_rows[idx] = k_idx * num_rows + thread_row;
}
// Finally, we clear the value in the thread with the current max if there is another iteration to run.
if (k_idx + 1 < k)
{
const int ldg_group_for_expert = expert / COLS_PER_GROUP_LDG;
const int thread_to_clear_in_group = (expert / ELTS_PER_LDG) % THREADS_PER_ROW;
// Only the thread in the group which produced the max will reset the "winning" value to -inf.
if (thread_group_idx == thread_to_clear_in_group)
{
const int offset_for_expert = expert % ELTS_PER_LDG;
// Safe to set to any negative value since row_chunk values must be between 0 and 1.
row_chunk[ldg_group_for_expert * ELTS_PER_LDG + offset_for_expert] = -10000.f;
}
}
}
}
namespace detail
{
// Constructs some constants needed to partition the work across threads at compile time.
template <int EXPERTS, int BYTES_PER_LDG>
struct TopkConstants
{
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
static_assert(EXPERTS / (ELTS_PER_LDG * WARP_SIZE) == 0 || EXPERTS % (ELTS_PER_LDG * WARP_SIZE) == 0, "");
static constexpr int VECs_PER_THREAD = std::max(1, EXPERTS / (ELTS_PER_LDG * WARP_SIZE));
static constexpr int VPT = VECs_PER_THREAD * ELTS_PER_LDG;
static constexpr int THREADS_PER_ROW = EXPERTS / VPT;
static constexpr int ROWS_PER_WARP = WARP_SIZE / THREADS_PER_ROW;
};
} // namespace detail
template <int EXPERTS, int WARPS_PER_TB>
void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, float* output, int* indices,
int* source_row, const int num_rows, const int k, const int start_expert, const int end_expert, cudaStream_t stream)
{
static constexpr std::size_t MAX_BYTES_PER_LDG = 16;
static constexpr int BYTES_PER_LDG = std::min(MAX_BYTES_PER_LDG, sizeof(float) * EXPERTS);
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG>;
static constexpr int VPT = Constants::VPT;
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
dim3 block_dim(WARP_SIZE, WARPS_PER_TB);
topkGatingSoftmax<VPT, EXPERTS, WARPS_PER_TB, BYTES_PER_LDG><<<num_blocks, block_dim, 0, stream>>>(
input, finished, output, num_rows, indices, source_row, k, start_expert, end_expert);
}
#define LAUNCH_SOFTMAX(NUM_EXPERTS, WARPS_PER_TB) \
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB>( \
gating_output, nullptr, topk_weights, topk_indicies, \
token_expert_indices, num_tokens, topk, 0, num_experts, \
stream);
void topkGatingSoftmaxKernelLauncher(
const float* gating_output,
float* topk_weights,
int* topk_indicies,
int* token_expert_indices,
float* softmax_workspace,
const int num_tokens,
const int num_experts,
const int topk,
cudaStream_t stream) {
static constexpr int WARPS_PER_TB = 4;
switch (num_experts) {
case 1:
LAUNCH_SOFTMAX(1, WARPS_PER_TB);
break;
case 2:
LAUNCH_SOFTMAX(2, WARPS_PER_TB);
break;
case 4:
LAUNCH_SOFTMAX(4, WARPS_PER_TB);
break;
case 8:
LAUNCH_SOFTMAX(8, WARPS_PER_TB);
break;
case 16:
LAUNCH_SOFTMAX(16, WARPS_PER_TB);
break;
case 32:
LAUNCH_SOFTMAX(32, WARPS_PER_TB);
break;
case 64:
LAUNCH_SOFTMAX(64, WARPS_PER_TB);
break;
case 128:
LAUNCH_SOFTMAX(128, WARPS_PER_TB);
break;
case 256:
LAUNCH_SOFTMAX(256, WARPS_PER_TB);
break;
default: {
TORCH_CHECK(softmax_workspace != nullptr,
"softmax_workspace must be provided for num_experts that are not a power of 2.");
static constexpr int TPB = 256;
moeSoftmax<TPB><<<num_tokens, TPB, 0, stream>>>(
gating_output, nullptr, softmax_workspace, num_experts);
moeTopK<TPB><<<num_tokens, TPB, 0, stream>>>(
softmax_workspace, nullptr, topk_weights, topk_indicies, token_expert_indices,
num_experts, topk, 0, num_experts);
}
}
}
} // namespace moe
} // namespace vllm
void topk_softmax(
torch::Tensor& topk_weights, // [num_tokens, topk]
torch::Tensor& topk_indices, // [num_tokens, topk]
torch::Tensor& token_expert_indices, // [num_tokens, topk]
torch::Tensor& gating_output) // [num_tokens, num_experts]
{
const int num_experts = gating_output.size(-1);
const int num_tokens = gating_output.numel() / num_experts;
const int topk = topk_weights.size(-1);
const bool is_pow_2 = (num_experts != 0) && ((num_experts & (num_experts - 1)) == 0);
const bool needs_workspace = !is_pow_2 || num_experts > 256;
const int64_t workspace_size = needs_workspace ? num_tokens * num_experts : 0;
const at::cuda::OptionalCUDAGuard device_guard(device_of(gating_output));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
torch::Tensor softmax_workspace = torch::empty({workspace_size}, gating_output.options());
vllm::moe::topkGatingSoftmaxKernelLauncher(
gating_output.data_ptr<float>(),
topk_weights.data_ptr<float>(),
topk_indices.data_ptr<int>(),
token_expert_indices.data_ptr<int>(),
softmax_workspace.data_ptr<float>(),
num_tokens,
num_experts,
topk,
stream);
}

View File

@ -0,0 +1,108 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/ATen.h>
#include <THC/THCAtomics.cuh>
#include "cuda_compat.h"
#include "dispatch_utils.h"
const static size_t NUM_MAX_EXPERTS = 64;
#define CEILDIV(x,y) (((x) + (y) - 1) / (y))
namespace vllm {
template <typename scalar_t>
__global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
int32_t *sorted_token_ids,
int32_t *expert_ids,
int32_t *total_tokens_post_pad,
int32_t num_experts,
int32_t block_size,
size_t numel) {
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread;
__shared__ int32_t tokens_cnts[NUM_MAX_EXPERTS + 1][NUM_MAX_EXPERTS];
__shared__ int32_t cumsum[NUM_MAX_EXPERTS + 1];
for (int i = 0; i < num_experts; ++i) {
tokens_cnts[threadIdx.x + 1][i] = 0;
}
/**
* In the first step we compute token_cnts[thread_index + 1][expert_index],
* which counts how many tokens in the token shard of thread_index are assigned
* to expert expert_index.
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
++tokens_cnts[threadIdx.x + 1][topk_ids[i]];
}
__syncthreads();
// For each expert we accumulate the token counts from the different threads.
tokens_cnts[0][threadIdx.x] = 0;
for (int i = 1; i <= blockDim.x; ++i) {
tokens_cnts[i][threadIdx.x] += tokens_cnts[i-1][threadIdx.x];
}
__syncthreads();
// We accumulate the token counts of all experts in thread 0.
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
cumsum[i] = cumsum[i-1] + CEILDIV(tokens_cnts[blockDim.x][i - 1], block_size) * block_size;
}
*total_tokens_post_pad = cumsum[num_experts];
}
__syncthreads();
/**
* For each expert, each thread processes the tokens of the corresponding blocks
* and stores the corresponding expert_id for each block.
*/
for (int i = cumsum[threadIdx.x];i < cumsum[threadIdx.x + 1];i += block_size) {
expert_ids[i / block_size] = threadIdx.x;
}
/**
* Each thread processes a token shard, calculating the index of each token after
* sorting by expert number. Given the example topk_ids = [0,1,2,1,2,3,0,3,4] and
* block_size = 4, then the output would be [0, 6, *, *, 1, 3, *, *, 2, 4, *, *, 5, 7, *, *, 8, *, *, *],
* where * represents a padding value(preset in python).
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int32_t expert_id = topk_ids[i];
/** The cumsum[expert_id] stores the starting index of the tokens that the
* expert with expert_id needs to process, and tokens_cnts[threadIdx.x][expert_id]
* stores the indices of the tokens processed by the expert with expert_id within
* the current thread's token shard.
*/
int32_t rank_post_pad = tokens_cnts[threadIdx.x][expert_id] + cumsum[expert_id];
sorted_token_ids[rank_post_pad] = i;
++tokens_cnts[threadIdx.x][expert_id];
}
}
}
void moe_align_block_size(
torch::Tensor topk_ids,
int num_experts,
int block_size,
torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad) {
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
assert(num_experts <= NUM_MAX_EXPERTS);
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
vllm::moe_align_block_size_kernel<scalar_t><<<1, num_experts, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(),
num_experts,
block_size,
topk_ids.numel());
});
}

145
csrc/ops.h Normal file
View File

@ -0,0 +1,145 @@
#pragma once
#include <torch/extension.h>
void paged_attention_v1(
torch::Tensor& out,
torch::Tensor& query,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
int num_kv_heads,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype);
void paged_attention_v2(
torch::Tensor& out,
torch::Tensor& exp_sums,
torch::Tensor& max_logits,
torch::Tensor& tmp_out,
torch::Tensor& query,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
int num_kv_heads,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
int block_size,
int max_context_len,
const c10::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype);
void rms_norm(
torch::Tensor& out,
torch::Tensor& input,
torch::Tensor& weight,
float epsilon);
void fused_add_rms_norm(
torch::Tensor& input,
torch::Tensor& residual,
torch::Tensor& weight,
float epsilon);
void rotary_embedding(
torch::Tensor& positions,
torch::Tensor& query,
torch::Tensor& key,
int head_size,
torch::Tensor& cos_sin_cache,
bool is_neox);
void silu_and_mul(
torch::Tensor& out,
torch::Tensor& input);
void gelu_and_mul(
torch::Tensor& out,
torch::Tensor& input);
void gelu_new(
torch::Tensor& out,
torch::Tensor& input);
void gelu_fast(
torch::Tensor& out,
torch::Tensor& input);
#ifndef USE_ROCM
torch::Tensor awq_gemm(
torch::Tensor _in_feats,
torch::Tensor _kernel,
torch::Tensor _scaling_factors,
torch::Tensor _zeros,
int split_k_iters);
torch::Tensor awq_dequantize(
torch::Tensor _kernel,
torch::Tensor _scaling_factors,
torch::Tensor _zeros,
int split_k_iters,
int thx,
int thy);
torch::Tensor marlin_gemm(
torch::Tensor& a,
torch::Tensor& b_q_weight,
torch::Tensor& b_scales,
torch::Tensor& workspace,
int64_t size_m,
int64_t size_n,
int64_t size_k);
#endif
void squeezellm_gemm(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor lookup_table);
torch::Tensor gptq_gemm(
torch::Tensor a,
torch::Tensor b_q_weight,
torch::Tensor b_gptq_qzeros,
torch::Tensor b_gptq_scales,
torch::Tensor b_g_idx,
bool use_exllama,
int bit);
void gptq_shuffle(
torch::Tensor q_weight,
torch::Tensor q_perm,
int bit);
void moe_align_block_size(
torch::Tensor topk_ids,
int num_experts,
int block_size,
torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad);
#ifndef USE_ROCM
using fptr_t = uint64_t;
fptr_t init_custom_ar(torch::Tensor &meta, torch::Tensor &rank_data,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets, int rank,
bool full_nvlink);
bool should_custom_ar(torch::Tensor &inp, int max_size, int world_size,
bool full_nvlink);
void all_reduce_reg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out);
void all_reduce_unreg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &reg_buffer,
torch::Tensor &out);
void dispose(fptr_t _fa);
int meta_size();
void register_buffer(fptr_t _fa, torch::Tensor &t,
const std::vector<std::string> &handles,
const std::vector<int64_t> &offsets);
std::pair<std::vector<uint8_t>, std::vector<int64_t>> get_graph_buffer_ipc_meta(fptr_t _fa);
void register_graph_buffers(fptr_t _fa, const std::vector<std::string> &handles,
const std::vector<std::vector<int64_t>> &offsets);
#endif

View File

@ -1,16 +0,0 @@
#include <torch/extension.h>
void rotary_embedding(
torch::Tensor& positions,
torch::Tensor& query,
torch::Tensor& key,
int head_size,
torch::Tensor& cos_sin_cache,
bool is_neox);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def(
"rotary_embedding",
&rotary_embedding,
"Apply GPT-NeoX or GPT-J style rotary embedding to query and key");
}

View File

@ -1,6 +1,8 @@
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "cuda_compat.h"
#include "dispatch_utils.h"
namespace vllm {
@ -19,14 +21,14 @@ inline __device__ void apply_rotary_embedding(
// GPT-NeoX style rotary embedding.
x_index = rot_offset;
y_index = embed_dim + rot_offset;
cos = __ldg(cos_ptr + x_index);
sin = __ldg(sin_ptr + x_index);
cos = VLLM_LDG(cos_ptr + x_index);
sin = VLLM_LDG(sin_ptr + x_index);
} else {
// GPT-J style rotary embedding.
x_index = 2 * rot_offset;
y_index = 2 * rot_offset + 1;
cos = __ldg(cos_ptr + x_index / 2);
sin = __ldg(sin_ptr + x_index / 2);
cos = VLLM_LDG(cos_ptr + x_index / 2);
sin = VLLM_LDG(sin_ptr + x_index / 2);
}
const scalar_t x = arr[x_index];
@ -37,13 +39,13 @@ inline __device__ void apply_rotary_embedding(
template<typename scalar_t, bool IS_NEOX>
__global__ void rotary_embedding_kernel(
const int64_t* __restrict__ positions, // [num_tokens]
scalar_t* __restrict__ query, // [num_tokens, num_heads, head_size]
scalar_t* __restrict__ key, // [num_tokens, num_kv_heads, head_size]
const int64_t* __restrict__ positions, // [batch_size, seq_len] or [num_tokens]
scalar_t* __restrict__ query, // [batch_size, seq_len, num_heads, head_size] or [num_tokens, num_heads, head_size]
scalar_t* __restrict__ key, // [batch_size, seq_len, num_kv_heads, head_size] or [num_tokens, num_kv_heads, head_size]
const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, rot_dim // 2]
const int rot_dim,
const int query_stride,
const int key_stride,
const int64_t query_stride,
const int64_t key_stride,
const int num_heads,
const int num_kv_heads,
const int head_size) {
@ -59,7 +61,7 @@ __global__ void rotary_embedding_kernel(
const int nq = num_heads * embed_dim;
for (int i = threadIdx.x; i < nq; i += blockDim.x) {
const int head_idx = i / embed_dim;
const int token_head = token_idx * query_stride + head_idx * head_size;
const int64_t token_head = token_idx * query_stride + head_idx * head_size;
const int rot_offset = i % embed_dim;
apply_rotary_embedding<scalar_t, IS_NEOX>(query + token_head, cos_ptr,
sin_ptr, rot_offset, embed_dim);
@ -68,7 +70,7 @@ __global__ void rotary_embedding_kernel(
const int nk = num_kv_heads * embed_dim;
for (int i = threadIdx.x; i < nk; i += blockDim.x) {
const int head_idx = i / embed_dim;
const int token_head = token_idx * key_stride + head_idx * head_size;
const int64_t token_head = token_idx * key_stride + head_idx * head_size;
const int rot_offset = i % embed_dim;
apply_rotary_embedding<scalar_t, IS_NEOX>(key + token_head, cos_ptr,
sin_ptr, rot_offset, embed_dim);
@ -78,21 +80,22 @@ __global__ void rotary_embedding_kernel(
} // namespace vllm
void rotary_embedding(
torch::Tensor& positions, // [num_tokens]
torch::Tensor& query, // [num_tokens, num_heads * head_size]
torch::Tensor& key, // [num_tokens, num_kv_heads * head_size]
torch::Tensor& positions, // [batch_size, seq_len] or [num_tokens]
torch::Tensor& query, // [batch_size, seq_len, num_heads * head_size] or [num_tokens, num_heads * head_size]
torch::Tensor& key, // [batch_size, seq_len, num_kv_heads * head_size] or [num_tokens, num_kv_heads * head_size]
int head_size,
torch::Tensor& cos_sin_cache, // [max_position, rot_dim]
bool is_neox) {
int num_tokens = query.size(0);
int64_t num_tokens = query.numel() / query.size(-1);
int rot_dim = cos_sin_cache.size(1);
int num_heads = query.size(1) / head_size;
int num_kv_heads = key.size(1) / head_size;
int query_stride = query.stride(0);
int key_stride = key.stride(0);
int num_heads = query.size(-1) / head_size;
int num_kv_heads = key.size(-1) / head_size;
int64_t query_stride = query.stride(-2);
int64_t key_stride = key.stride(-2);
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * rot_dim / 2, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
query.scalar_type(),

217
csrc/punica/LICENSE Normal file
View File

@ -0,0 +1,217 @@
Contains code from https://github.com/punica-ai/punica
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
------------------------------------------------------------------------------------
This product bundles various third-party components under other open source licenses.
This section summarizes those components and their licenses. See licenses/
for text of these licenses.
Apache-2.0
* third_party/nvbench (with LLVM exception)
* third_party/flashinfer
BSD-3-Clause:
* third_party/cutlass

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_bfloat16, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_bfloat16, nv_half)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_half, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, nv_half, nv_half)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, float, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_bfloat16, float, nv_half)

View File

@ -0,0 +1,61 @@
#pragma once
template <int feat_in, int feat_out, typename in_T, typename out_T,
typename W_T>
void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t batch_size, int64_t num_layers,
int64_t layer_idx, float scale);
// clang-format off
#define FOR_BGMV_WIDE(f, in_T, out_T, W_T, narrow) \
f(in_T, out_T, W_T, narrow, 128) \
f(in_T, out_T, W_T, narrow, 256) \
f(in_T, out_T, W_T, narrow, 512) \
f(in_T, out_T, W_T, narrow, 1024) \
f(in_T, out_T, W_T, narrow, 1280) \
f(in_T, out_T, W_T, narrow, 1728) \
f(in_T, out_T, W_T, narrow, 1792) \
f(in_T, out_T, W_T, narrow, 2048) \
f(in_T, out_T, W_T, narrow, 2560) \
f(in_T, out_T, W_T, narrow, 2752) \
f(in_T, out_T, W_T, narrow, 3072) \
f(in_T, out_T, W_T, narrow, 3456) \
f(in_T, out_T, W_T, narrow, 3584) \
f(in_T, out_T, W_T, narrow, 4096) \
f(in_T, out_T, W_T, narrow, 5120) \
f(in_T, out_T, W_T, narrow, 5504) \
f(in_T, out_T, W_T, narrow, 5632) \
f(in_T, out_T, W_T, narrow, 6144) \
f(in_T, out_T, W_T, narrow, 6912) \
f(in_T, out_T, W_T, narrow, 7168) \
f(in_T, out_T, W_T, narrow, 8192) \
f(in_T, out_T, W_T, narrow, 9216) \
f(in_T, out_T, W_T, narrow, 10240) \
f(in_T, out_T, W_T, narrow, 11008) \
f(in_T, out_T, W_T, narrow, 12288) \
f(in_T, out_T, W_T, narrow, 13824) \
f(in_T, out_T, W_T, narrow, 14336) \
f(in_T, out_T, W_T, narrow, 16384) \
f(in_T, out_T, W_T, narrow, 20480) \
f(in_T, out_T, W_T, narrow, 24576) \
f(in_T, out_T, W_T, narrow, 28672) \
f(in_T, out_T, W_T, narrow, 32000) \
f(in_T, out_T, W_T, narrow, 32256) \
f(in_T, out_T, W_T, narrow, 32512) \
f(in_T, out_T, W_T, narrow, 32768) \
f(in_T, out_T, W_T, narrow, 33024) \
f(in_T, out_T, W_T, narrow, 36864) \
f(in_T, out_T, W_T, narrow, 49152) \
// Keep above in sync with vllm/lora/layers::SamplerWithLoRA
// Keep this in sync with vllm/config::LoRAConfig
#define FOR_BGMV_WIDE_NARROW(f, in_T, out_T, W_T) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 8) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 16) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 32) \
FOR_BGMV_WIDE(f, in_T, out_T, W_T, 64)
// clang-format on

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_bfloat16, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_bfloat16, nv_half)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_half, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, nv_half, nv_half)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, float, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, nv_half, float, nv_half)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_bfloat16, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_bfloat16, nv_half)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_half, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, nv_half, nv_half)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, float, nv_bfloat16)

View File

@ -0,0 +1,4 @@
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, float, float, nv_half)

View File

@ -0,0 +1,294 @@
#pragma once
#include <ATen/cuda/CUDAContext.h>
#include <cooperative_groups.h>
#include <cuda/pipeline>
#include <cuda_runtime.h>
#include <iostream>
#include <stdio.h>
#include "vec_dtypes.cuh"
namespace cg = cooperative_groups;
// nthrs = (32, 4)
template <int feat_in, int feat_out, size_t vec_size, size_t X_copy_size,
size_t W_copy_size, int tx, int ty, int tz, typename in_T,
typename out_T, typename W_T>
__global__ void
bgmv_shrink_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t num_layers, int64_t layer_idx,
float scale) {
size_t batch_idx = blockIdx.y;
int64_t idx = indicies[batch_idx] * num_layers + layer_idx;
if (idx < 0) {
return;
}
auto block = cg::this_thread_block();
size_t j = blockIdx.x;
constexpr size_t num_pipeline_stages = 2;
constexpr size_t tile_size = tx * ty * vec_size;
__shared__ W_T W_shared[num_pipeline_stages * tile_size];
__shared__ in_T X_shared[num_pipeline_stages * tile_size];
__shared__ float y_warpwise[ty];
size_t W_shared_offset[num_pipeline_stages] = {0U, 1U * tile_size};
size_t X_shared_offset[num_pipeline_stages] = {0U, 1U * tile_size};
auto pipe = cuda::make_pipeline();
// pipeline load W/X and compute WX;
pipe.producer_acquire();
cuda::memcpy_async(W_shared + (threadIdx.y * tx + threadIdx.x) * vec_size,
W + (idx * feat_out + j) * feat_in +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<W_copy_size>(W_copy_size), pipe);
cuda::memcpy_async(X_shared + (threadIdx.y * tx + threadIdx.x) * vec_size,
X + (batch_idx * feat_in) +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<X_copy_size>(X_copy_size), pipe);
pipe.producer_commit();
size_t copy_idx, compute_idx;
float y = 0.f;
vec_t<in_T, vec_size> x_vec;
vec_t<W_T, vec_size> w_vec;
size_t tile_idx;
#pragma unroll
for (tile_idx = 1; tile_idx < (feat_in + tile_size - 1) / tile_size;
++tile_idx) {
copy_idx = tile_idx % num_pipeline_stages;
// pipeline stage: async copy W fragment
pipe.producer_acquire();
if (tile_idx * tile_size + threadIdx.y * tx * vec_size < feat_in) {
cuda::memcpy_async(W_shared + W_shared_offset[copy_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size,
W + (idx * feat_out + j) * feat_in +
tile_idx * tile_size +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<W_copy_size>(W_copy_size), pipe);
cuda::memcpy_async(X_shared + X_shared_offset[copy_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size,
X + (batch_idx * feat_in) + tile_idx * tile_size +
(threadIdx.y * tx + threadIdx.x) * vec_size,
cuda::aligned_size_t<X_copy_size>(X_copy_size), pipe);
}
pipe.producer_commit();
compute_idx = (tile_idx - 1) % num_pipeline_stages;
// pipeline stage: compute WX
pipe.consumer_wait();
block.sync();
x_vec.load(X_shared + X_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
w_vec.load(W_shared + W_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
float sum = 0.f;
#pragma unroll
for (size_t i = 0; i < vec_size; ++i) {
sum += float(w_vec[i]) * float(x_vec[i]) * scale;
}
#pragma unroll
for (size_t offset = tx / 2; offset > 0; offset /= 2) {
sum += __shfl_down_sync(0xffffffff, sum, offset);
}
y_warpwise[threadIdx.y] = sum;
block.sync();
#pragma unroll
for (size_t i = 0; i < ty; ++i) {
y += y_warpwise[i];
}
block.sync();
pipe.consumer_release();
}
compute_idx = (tile_idx - 1) % num_pipeline_stages;
// final pipeline stage
pipe.consumer_wait();
block.sync();
x_vec.load(X_shared + X_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
w_vec.load(W_shared + W_shared_offset[compute_idx] +
(threadIdx.y * tx + threadIdx.x) * vec_size);
float sum = 0.f;
#pragma unroll
for (size_t i = 0; i < vec_size; ++i) {
sum += float(w_vec[i]) * float(x_vec[i]) * scale;
}
#pragma unroll
for (size_t offset = tx / 2; offset > 0; offset /= 2) {
sum += __shfl_down_sync(0xffffffff, sum, offset);
}
y_warpwise[threadIdx.y] =
((tile_idx - 1) * tile_size + threadIdx.y * tx * vec_size < feat_in)
? sum
: 0.f;
block.sync();
#pragma unroll
for (size_t i = 0; i < ty; ++i) {
y += y_warpwise[i];
}
block.sync();
pipe.consumer_release();
// write Y;
if (block.thread_rank() == 0) {
Y[batch_idx * full_y_size + y_offset + j] += static_cast<out_T>(y);
}
}
// nthrs = (2, 16, 4)
template <int feat_in, int feat_out, size_t vec_size, int tx, int ty, int tz,
typename in_T, typename out_T, typename W_T>
__global__ void
bgmv_expand_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t num_layers, int64_t layer_idx,
float scale) {
size_t batch_idx = blockIdx.y;
int64_t idx = indicies[batch_idx] * num_layers + layer_idx;
if (idx < 0) {
return;
}
auto block = cg::this_thread_block();
size_t tile_idx = blockIdx.x;
// load X;
vec_t<in_T, vec_size> x_vec;
x_vec.load(X + batch_idx * feat_in + threadIdx.x * vec_size);
// load W;
vec_t<W_T, vec_size> w_vec;
w_vec.load(W + (idx * feat_out + tile_idx * tz * ty) * feat_in +
block.thread_rank() * vec_size);
float sum = 0.f;
#pragma unroll
for (size_t i = 0; i < vec_size; ++i) {
sum += float(w_vec[i]) * float(x_vec[i]) * scale;
}
cg::thread_block_tile g = cg::tiled_partition<tx>(block);
#pragma unroll
for (size_t offset = tx / 2; offset > 0; offset /= 2) {
sum += g.shfl_down(sum, offset);
}
sum = g.shfl(sum, 0);
if (threadIdx.x == 0) {
Y[batch_idx * full_y_size + y_offset + tile_idx * (tz * ty) +
threadIdx.z * ty + threadIdx.y] += static_cast<out_T>(sum);
}
}
template <int feat_in, int feat_out, typename in_T, typename out_T,
typename W_T>
void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
const W_T *__restrict__ W,
const int64_t *__restrict__ indicies, int64_t y_offset,
int64_t full_y_size, int64_t batch_size, int64_t num_layers,
int64_t layer_idx, float scale) {
constexpr size_t vec_size = 8;
constexpr int tz = 4;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if constexpr (feat_in < feat_out) {
static_assert(feat_in % vec_size == 0);
constexpr int tx = feat_in / vec_size;
static_assert((32 % tx == 0 && feat_out % (32 / tx * tz) == 0) ||
(16 % tx == 0 && feat_out % (16 / tx * tz) == 0) ||
(8 % tx == 0 && feat_out % (8 / tx * tz) == 0));
if constexpr (32 % tx == 0 && feat_out % (32 / tx * tz) == 0) {
constexpr int ty = 32 / tx;
dim3 nblks(feat_out / (ty * tz), batch_size);
dim3 nthrs(tx, ty, tz);
bgmv_expand_kernel<feat_in, feat_out, vec_size, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else if (16 % tx == 0 && feat_out % (16 / tx * tz) == 0) {
constexpr int ty = 16 / tx;
dim3 nblks(feat_out / (ty * tz), batch_size);
dim3 nthrs(tx, ty, tz);
bgmv_expand_kernel<feat_in, feat_out, vec_size, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else {
constexpr int ty = 8 / tx;
dim3 nblks(feat_out / (ty * tz), batch_size);
dim3 nthrs(tx, ty, tz);
bgmv_expand_kernel<feat_in, feat_out, vec_size, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
}
} else {
static_assert(feat_in % (vec_size * 32) == 0 ||
feat_in % (vec_size * 16) == 0 ||
feat_in % (vec_size * 8) == 0);
if constexpr (feat_in % (vec_size * 32) == 0) {
constexpr int tx = 32;
constexpr int ty = 4;
dim3 nblks(feat_out, batch_size);
dim3 nthrs(tx, ty);
bgmv_shrink_kernel<feat_in, feat_out, vec_size, vec_size * sizeof(in_T),
vec_size * sizeof(W_T), tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else if constexpr (feat_in % (vec_size / 2 * 32) == 0) {
constexpr int tx = 32;
constexpr int ty = 4;
dim3 nblks(feat_out, batch_size);
dim3 nthrs(tx, ty);
bgmv_shrink_kernel<feat_in, feat_out, vec_size / 2,
vec_size * sizeof(in_T) / 2,
vec_size * sizeof(W_T) / 2, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
} else if constexpr (feat_in % (vec_size / 2 * 16) == 0) {
constexpr int tx = 16;
constexpr int ty = 4;
dim3 nblks(feat_out, batch_size);
dim3 nthrs(tx, ty);
bgmv_shrink_kernel<feat_in, feat_out, vec_size / 2,
vec_size * sizeof(in_T) / 2,
vec_size * sizeof(W_T) / 2, tx, ty, tz>
<<<nblks, nthrs, 0, stream>>>(Y, X, W, indicies, y_offset,
full_y_size, num_layers, layer_idx,
scale);
}
}
}
#define INST_BGMV(feat_in, feat_out, in_T, out_T, W_T) \
template void bgmv_kernel<feat_in, feat_out>( \
out_T * __restrict__ Y, const in_T *__restrict__ X, \
const W_T *__restrict__ W, const int64_t *__restrict__ indicies, \
int64_t y_offset, int64_t full_y_size, int64_t batch_size, \
int64_t num_layers, int64_t layer_idx, float scale);
#define INST_BGMV_TWOSIDE(in_T, out_T, W_T, narrow, wide) \
INST_BGMV(narrow, wide, in_T, out_T, W_T) \
INST_BGMV(wide, narrow, in_T, out_T, W_T)

View File

@ -0,0 +1,27 @@
DTYPES = ["fp16", "bf16", "fp32"]
DTYPE_MAP = {
"fp16": "nv_half",
"bf16": "nv_bfloat16",
"fp32": "float",
}
TEMPLATE = """
#include "bgmv_config.h"
#include "bgmv_impl.cuh"
FOR_BGMV_WIDE_NARROW(INST_BGMV_TWOSIDE, {input_dtype}, {output_dtype}, {weight_dtype})
""".lstrip()
for input_dtype in DTYPES:
for output_dtype in DTYPES:
for weight_dtype in DTYPES:
if weight_dtype == "fp32":
# FP32 weights are not supported.
continue
kernel_definition = TEMPLATE.format(
input_dtype=DTYPE_MAP[input_dtype],
output_dtype=DTYPE_MAP[output_dtype],
weight_dtype=DTYPE_MAP[weight_dtype])
filename = f"bgmv_{input_dtype}_{output_dtype}_{weight_dtype}.cu"
with open(filename, "w") as f:
f.write(kernel_definition)

File diff suppressed because it is too large Load Diff

563
csrc/punica/punica_ops.cc Normal file
View File

@ -0,0 +1,563 @@
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <torch/extension.h>
#include <cstdint>
#include "bgmv/bgmv_config.h"
namespace {
//====== utils ======
inline void check_shape(const torch::Tensor &a, const torch::Tensor &b,
const char *a_name, const char *b_name) {
TORCH_CHECK(a.dim() == b.dim(), a_name, ".dim() != ", b_name, ".dim(). ",
a.dim(), " vs ", b.dim());
for (int i = 0; i < a.dim(); ++i) {
TORCH_CHECK(a.size(i) == b.size(i), a_name, ".size(", i, ") != ", b_name,
".size(", i, ")");
}
}
inline constexpr uint32_t pack_u16(uint16_t a, uint16_t b) {
return (uint32_t(a) << 16) | uint32_t(b);
}
#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) \
TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) \
CHECK_CUDA(x); \
CHECK_CONTIGUOUS(x)
#define CHECK_DIM(d, x) \
TORCH_CHECK(x.dim() == d, #x " must be a " #d "D tensor")
#define CHECK_SHAPE(a, b) check_shape(a, b, #a, #b)
#define CHECK_EQ(a, b) \
TORCH_CHECK(a == b, "CHECK_EQ(" #a ", " #b ") failed. ", a, " vs ", b)
//====== bgmv ======
template <typename in_T, typename out_T, typename W_T>
inline bool launch_bgmv_kernel(out_T *Y, const in_T *X, const W_T *W,
const int64_t *lora_indices,
uint16_t in_features, uint16_t out_features,
int64_t y_offset, int64_t full_y_size,
int64_t batch_size, int64_t num_layers,
int64_t layer_idx, float scale) {
switch (pack_u16(in_features, out_features)) {
#define CASE_ONESIDE(_in_T, _out_T, _W_T, feat_in, feat_out) \
case pack_u16(feat_in, feat_out): \
bgmv_kernel<feat_in, feat_out>(Y, X, W, lora_indices, y_offset, \
full_y_size, batch_size, num_layers, \
layer_idx, scale); \
break;
#define CASE(_in_T, _out_T, _W_T, narrow, wide) \
CASE_ONESIDE(in_T, out_T, W_T, narrow, wide) \
CASE_ONESIDE(in_T, out_T, W_T, wide, narrow)
FOR_BGMV_WIDE_NARROW(CASE, _, _, _)
#undef CASE
#undef CASE_ONESIDE
default:
return false;
}
return true;
}
void dispatch_bgmv(torch::Tensor y, torch::Tensor x, torch::Tensor w,
torch::Tensor indicies, int64_t layer_idx, float scale) {
CHECK_INPUT(y);
CHECK_INPUT(x);
CHECK_INPUT(w);
CHECK_INPUT(indicies);
CHECK_DIM(2, y);
CHECK_DIM(2, x);
CHECK_DIM(4, w);
CHECK_DIM(1, indicies);
int64_t B = x.size(0);
int64_t h_in = x.size(1);
int64_t h_out = y.size(1);
int64_t num_layers = w.size(1);
CHECK_EQ(w.size(3), h_in);
CHECK_EQ(w.size(2), h_out);
CHECK_EQ(indicies.size(0), x.size(0));
CHECK_EQ(y.size(0), x.size(0));
bool ok = false;
if (h_in < 65536 && h_out < 65536) {
// TODO: See if we can get rid of this massive nested switch
switch (x.scalar_type()) {
case at::ScalarType::Half:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out, 0,
h_out, B, num_layers, layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
default:
break;
}
}
TORCH_CHECK(ok, "No suitable kernel.", " h_in=", h_in, " h_out=", h_out,
" dtype=", x.scalar_type(), " out_dtype=", y.scalar_type());
}
void dispatch_bgmv_low_level(torch::Tensor y, torch::Tensor x, torch::Tensor w,
torch::Tensor indicies, int64_t layer_idx,
float scale, int64_t h_in, int64_t h_out,
int64_t y_offset) {
CHECK_INPUT(y);
CHECK_INPUT(x);
CHECK_INPUT(w);
CHECK_INPUT(indicies);
CHECK_DIM(2, y);
CHECK_DIM(2, x);
CHECK_DIM(4, w);
CHECK_DIM(1, indicies);
int64_t B = x.size(0);
int64_t num_layers = w.size(1);
int64_t full_y_size = y.size(1);
CHECK_EQ(w.size(3), h_in);
CHECK_EQ(w.size(2), h_out);
CHECK_EQ(indicies.size(0), x.size(0));
CHECK_EQ(y.size(0), x.size(0));
bool ok = false;
if (h_in < 65536 && h_out < 65536) {
// TODO: See if we can get rid of this massive nested switch
switch (x.scalar_type()) {
case at::ScalarType::Half:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_half *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<nv_bfloat16 *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (y.scalar_type()) {
case at::ScalarType::Half:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_half *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::BFloat16:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<nv_bfloat16 *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
case at::ScalarType::Float:
switch (w.scalar_type()) {
case at::ScalarType::Half:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_half *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
case at::ScalarType::BFloat16:
ok = launch_bgmv_kernel(static_cast<float *>(y.data_ptr()),
static_cast<float *>(x.data_ptr()),
static_cast<nv_bfloat16 *>(w.data_ptr()),
indicies.data_ptr<int64_t>(), h_in, h_out,
y_offset, full_y_size, B, num_layers,
layer_idx, scale);
break;
default:
break;
}
break;
default:
break;
}
break;
default:
break;
}
}
TORCH_CHECK(ok, "No suitable kernel.", " h_in=", h_in, " h_out=", h_out,
" dtype=", x.scalar_type(), " out_dtype=", y.scalar_type());
}
} // namespace
//====== pybind ======
#define DEFINE_pybind(name) m.def(#name, &name, #name);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("dispatch_bgmv", &dispatch_bgmv, "dispatch_bgmv");
m.def("dispatch_bgmv_low_level", &dispatch_bgmv_low_level,
"dispatch_bgmv_low_level");
}

117
csrc/pybind.cpp Normal file
View File

@ -0,0 +1,117 @@
#include "cache.h"
#include "cuda_utils.h"
#include "ops.h"
#include <torch/extension.h>
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
// vLLM custom ops
pybind11::module ops = m.def_submodule("ops", "vLLM custom operators");
// Attention ops
ops.def(
"paged_attention_v1",
&paged_attention_v1,
"Compute the attention between an input query and the cached keys/values using PagedAttention.");
ops.def(
"paged_attention_v2",
&paged_attention_v2,
"PagedAttention V2.");
// Activation ops
ops.def(
"silu_and_mul",
&silu_and_mul,
"Activation function used in SwiGLU.");
ops.def(
"gelu_and_mul",
&gelu_and_mul,
"Activation function used in GeGLU.");
ops.def(
"gelu_new",
&gelu_new,
"GELU implementation used in GPT-2.");
ops.def(
"gelu_fast",
&gelu_fast,
"Approximate GELU implementation.");
// Layernorm
ops.def(
"rms_norm",
&rms_norm,
"Apply Root Mean Square (RMS) Normalization to the input tensor.");
ops.def(
"fused_add_rms_norm",
&fused_add_rms_norm,
"In-place fused Add and RMS Normalization");
// Rotary embedding
ops.def(
"rotary_embedding",
&rotary_embedding,
"Apply GPT-NeoX or GPT-J style rotary embedding to query and key");
// Quantization ops
#ifndef USE_ROCM
ops.def("awq_gemm", &awq_gemm, "Quantized GEMM for AWQ");
ops.def("marlin_gemm", &marlin_gemm, "Marlin Optimized Quantized GEMM for GPTQ");
ops.def("awq_dequantize", &awq_dequantize, "Dequantization for AWQ");
#endif
ops.def("gptq_gemm", &gptq_gemm, "Quantized GEMM for GPTQ");
ops.def("gptq_shuffle", &gptq_shuffle, "Post processing for GPTQ");
ops.def("squeezellm_gemm", &squeezellm_gemm, "Quantized GEMM for SqueezeLLM");
ops.def(
"moe_align_block_size",
&moe_align_block_size,
"Aligning the number of tokens to be processed by each expert such that it is divisible by the block size.");
// Cache ops
pybind11::module cache_ops = m.def_submodule("cache_ops", "vLLM cache ops");
cache_ops.def(
"swap_blocks",
&swap_blocks,
"Swap in (out) the cache blocks from src to dst");
cache_ops.def(
"copy_blocks",
&copy_blocks,
"Copy the cache blocks from src to dst");
cache_ops.def(
"reshape_and_cache",
&reshape_and_cache,
"Reshape the key and value tensors and cache them");
cache_ops.def(
"convert_fp8_e5m2",
&convert_fp8_e5m2,
"Convert the key and value cache to fp8_e5m2 data type");
// Cuda utils
pybind11::module cuda_utils = m.def_submodule("cuda_utils", "vLLM cuda utils");
cuda_utils.def(
"get_device_attribute",
&get_device_attribute,
"Gets the specified device attribute.");
cuda_utils.def(
"get_max_shared_memory_per_block_device_attribute",
&get_max_shared_memory_per_block_device_attribute,
"Gets the maximum shared memory per block device attribute.");
#ifndef USE_ROCM
// Custom all-reduce kernels
pybind11::module custom_ar = m.def_submodule("custom_ar", "custom allreduce");
custom_ar.def("init_custom_ar", &init_custom_ar, "init_custom_ar");
custom_ar.def("should_custom_ar", &should_custom_ar, "should_custom_ar");
custom_ar.def("all_reduce_reg", &all_reduce_reg, "all_reduce_reg");
custom_ar.def("all_reduce_unreg", &all_reduce_unreg, "all_reduce_unreg");
custom_ar.def("dispose", &dispose, "dispose");
custom_ar.def("meta_size", &meta_size, "meta_size");
custom_ar.def("register_buffer", &register_buffer, "register_buffer");
custom_ar.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta,
"get_graph_buffer_ipc_meta");
custom_ar.def("register_graph_buffers", &register_graph_buffers,
"register_graph_buffers");
#endif
}

View File

@ -0,0 +1,87 @@
/*
Adapted from https://github.com/mit-han-lab/llm-awq
Modified from NVIDIA FasterTransformer: https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
@article{lin2023awq,
title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
journal={arXiv},
year={2023}
}
*/
#pragma once
namespace vllm {
namespace awq {
__device__ uint4 dequantize_s4_to_fp16x2(uint32_t const& source)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 750
assert(false);
#else
uint4 result;
uint32_t* h = reinterpret_cast<uint32_t*>(&result);
uint32_t const i4s = reinterpret_cast<uint32_t const&>(source);
// First, we extract the i4s and construct an intermediate fp16 number.
static constexpr uint32_t immLut = (0xf0 & 0xcc) | 0xaa;
static constexpr uint32_t BOTTOM_MASK = 0x000f000f;
static constexpr uint32_t TOP_MASK = 0x00f000f0;
static constexpr uint32_t I4s_TO_F16s_MAGIC_NUM = 0x64006400;
// Note that the entire sequence only requires 1 shift instruction. This is thanks to the register packing
// format and the fact that we force our integers to be unsigned, and account for this in the fp16 subtractions.
// In addition, I exploit the fact that sub and fma have the same throughput in order to convert elt_23 and
// elt_67 to fp16 without having to shift them to the bottom bits before hand.
// Shift right by 8 to now consider elt_45 and elt_67. Issue first to hide RAW dependency if we issue
// immediately before required.
const uint32_t top_i4s = i4s >> 8;
// Extract elt_01 - (i4s & 0x000f000f) | 0x64006400
asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
: "=r"(h[0])
: "r"(i4s), "n"(BOTTOM_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut));
// Extract elt_23 (i4s & 0x00f000f0) | 0x64006400
asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
: "=r"(h[1])
: "r"(i4s), "n"(TOP_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut));
// Extract elt_45 (top_i4s & 0x000f000f) | 0x64006400
asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
: "=r"(h[2])
: "r"(top_i4s), "n"(BOTTOM_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut));
// Extract elt_67 (top_i4s & 0x00f000f0) | 0x64006400
asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
: "=r"(h[3])
: "r"(top_i4s), "n"(TOP_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut));
// I use inline PTX below because I am not sure if the compiler will emit float2half instructions if I use the
// half2 ctor. In this case, I chose performance reliability over code readability.
// This is the half2 {1032, 1032} represented as an integer.
// static constexpr uint32_t FP16_TOP_MAGIC_NUM = 0x64086408;
// Haotian: subtract {1024, 1024} instead, we do not need to map to [-8, 7]
static constexpr uint32_t FP16_TOP_MAGIC_NUM = 0x64006400;
// This is the half2 {1 / 16, 1 / 16} represented as an integer.
static constexpr uint32_t ONE_SIXTEENTH = 0x2c002c00;
// This is the half2 {-72, -72} represented as an integer.
// static constexpr uint32_t NEG_72 = 0xd480d480;
// Haotian: Let's use {-64, -64}.
static constexpr uint32_t NEG_64 = 0xd400d400;
// Finally, we construct the output numbers.
// Convert elt_01
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[0]) : "r"(h[0]), "r"(FP16_TOP_MAGIC_NUM));
// Convert elt_23
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[1]) : "r"(h[1]), "r"(ONE_SIXTEENTH), "r"(NEG_64));
// Convert elt_45
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[2]) : "r"(h[2]), "r"(FP16_TOP_MAGIC_NUM));
// Convert elt_67
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[3]) : "r"(h[3]), "r"(ONE_SIXTEENTH), "r"(NEG_64));
return result;
#endif
}
} // namespace awq
} // namespace vllm

View File

@ -0,0 +1,446 @@
/*
Adapted from https://github.com/mit-han-lab/llm-awq
@article{lin2023awq,
title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
journal={arXiv},
year={2023}
}
*/
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include "dequantize.cuh"
#include <cuda_fp16.h>
namespace vllm {
namespace awq {
// Pack two half values.
static inline __device__ __host__ unsigned
__pack_half2(const half x, const half y) {
unsigned v0 = *((unsigned short *)&x);
unsigned v1 = *((unsigned short *)&y);
return (v1 << 16) | v0;
}
template<int N>
__global__ void __launch_bounds__(64) gemm_forward_4bit_cuda_m16nXk32(
int G,
int split_k_iters,
half* __restrict__ A,
int* __restrict__ B,
half* __restrict__ scaling_factors,
int* __restrict__ zeros,
int M,
int IC,
int OC,
half* __restrict__ C)
{
// Only support matrix n = 64 or 128
assert(N == 64 || N == 128);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 750
assert(false);
#else
static constexpr uint32_t ZERO = 0x0;
float C_warp[32];
__shared__ half A_shared[16 * (32 + 8)];
__shared__ half B_shared[32 * (N + 8)];
__shared__ half scaling_factors_shared[N];
__shared__ half zeros_shared[N];
int j_factors1 = ((OC + N - 1) / N);
int blockIdx_x = 0;
int blockIdx_y = blockIdx.x % ((M + 16 - 1) / 16 * j_factors1);
int blockIdx_z = blockIdx.x / ((M + 16 - 1) / 16 * j_factors1);
half A_shared_warp[8];
half B_shared_warp[N / 4];
for (int j_0_4_init = 0; j_0_4_init < N / 32; ++j_0_4_init) {
for (int i = 0; i < 8; ++i) {
C_warp[(j_0_4_init * 8) + i] = 0.0;
}
}
static constexpr int row_stride_warp = 32 * 8 / 32;
static constexpr int row_stride = 2 * 32 * 8 / N;
bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < N;
// TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
bool ld_A_flag = (blockIdx_y / j_factors1 * 16 + threadIdx.y * row_stride_warp + threadIdx.x * 8 / 32) < M; // threadIdx.y is warp_id
// bool wb_C_flag = (threadIdx.x / 4) < M;
half* A_ptr = A
+ (((int)blockIdx_y) / j_factors1 * 16 + (((int)threadIdx.y) * row_stride_warp) + ((int)threadIdx.x) / (32 / 8)) * IC
+ (((int)threadIdx.x) % (32 / 8)) * 8;
int* B_ptr = B
+ ((int)threadIdx.y) * (OC / 8) * (256 / N)
+ (((int)threadIdx.x) / (N / 8)) * (OC / 8)
+ (((int)blockIdx_y) % j_factors1) * (N / 8)
+ (((int)threadIdx.x) % (N / 8)) * 1;
// Why * 1 in the above line?
half* A_shared_ptr = A_shared
+ ((int)threadIdx.y) * row_stride_warp * (32 + 8)
+ (((int)threadIdx.x) / (32 / 8)) * (32 + 8)
+ (((int)threadIdx.x) % (32 / 8) ) * 8;
half* B_shared_ptr = B_shared
+ ((int)threadIdx.y) * (row_stride / 2) * (N + 8)
+ (((int)threadIdx.x) / (N / 8)) * (N + 8)
+ (((int)threadIdx.x) % (N / 8)) * 8;
int* zeros_ptr = zeros
+ (((int)blockIdx_y) % j_factors1) * (N / 8)
+ ((int)threadIdx.x) % (N / 8);
half* scaling_factors_ptr = scaling_factors
+ (((int)blockIdx_y) % j_factors1) * N
+ (((int)threadIdx.x) % (N / 8)) * 8;
half* C_ptr = C
+ static_cast<long long>(blockIdx_z) * M * OC // blockIdz.x -> split_k dim
+ (((int)blockIdx_y) % j_factors1) * N
+ ((int)threadIdx.y) * (N / 2)
+ (((int)threadIdx.x) % 4) * 2;
// preload s.f. and zeros
int k_bound = (IC / 32 + split_k_iters - 1) / split_k_iters;
if ((k_bound - 1) * split_k_iters * 32 + blockIdx_z * 32 >= IC) k_bound -= 1;
for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
__syncthreads();
// TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
if (ld_A_flag)
{
*(uint4*)(A_shared_ptr) = *(uint4*)(A_ptr + (k_0_0 * 32));
}
else
{
*(uint4*)(A_shared_ptr) = make_uint4(0, 0, 0, 0);
}
// for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 2; ++ax0_ax1_fused_0) {
uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr + k_0_0 * 32 / G * (OC / 8));
uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr + k_0_0 * 32 / G * (OC));
/*
if (blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 0 && threadIdx.y == 0){
printf("%x %x %x %x %x %x %x %x\n", B_loaded_scale.x, B_loaded_scale.y, B_loaded_scale.z, B_loaded_scale.w, B_loaded_zero.x, B_loaded_zero.y, B_loaded_zero.z, B_loaded_zero.w);
}
*/
// uint4 B_loaded_scale = make_uint4(0, 0, 0, 0);
int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);
for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < N / 16; ++ax0_ax1_fused_0) {
// B: 32 x 136 (128+8) float16
// each warp: 32 x 4
// each thr: read 32 bit -> convert to 8xFP16 (a UINT4) -> scale and minus zero -> WB UINT4
// *(uint4*)(B_shared + ((((ax0_ax1_fused_0 * 544) + (((int)threadIdx.y) * 272)) + ((((int)threadIdx.x) >> 4) * 136)) + ((((int)threadIdx.x) & 15) * 8))) = *(uint4*)(B + ((((((k_0_0 * 163840) + (ax0_ax1_fused_0 * 20480)) + (((int)threadIdx.y) * 10240)) + ((((int)threadIdx.x) >> 4) * 5120)) + (((int)blockIdx_y) * 128)) + ((((int)threadIdx.x) & 15) * 8)));
// row stride in shared memory: (NWARPS * 32 * 8 / cta_N)
uint32_t B_loaded = *(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
//uint4 B_loaded_zero = *(uint4*)(zeros_shared + (threadIdx.x % (cta_N / 8)) * 8);
// uint4 B_loaded_scale = *(uint4*)(scaling_factors_shared + (threadIdx.x % (cta_N / 8)) * 8);
// - zero and * scale
// TODO (Haotian): can save 4 assembly instructions if sormulate as deq = q * scale - zero * scale.
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
/*
if (ax0_ax1_fused_0 == 0 && blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 17 && threadIdx.y == 0){
printf("[x] %X %X %X %X\n", B_loaded_fp16.x, B_loaded_fp16.y, B_loaded_fp16.z, B_loaded_fp16.w);
}
*/
// write back
*(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (N + 8)) = B_loaded_fp16;
}
__syncthreads();
for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1) {
{
unsigned int addr;
__asm__ __volatile__(
"{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
: "=r"(addr)
: "l"((void *)((&(A_shared[(k_0_1 * 16)])) + (((((int)threadIdx.x) & 15) * 40) + ((((int)threadIdx.x) >> 4) * 8))))
);
__asm__ __volatile__(
"ldmatrix.sync.aligned.m8n8.x4.shared.b16"
"{%0, %1, %2, %3}, [%4];\n"
: "=r"(((unsigned *)(A_shared_warp + 0))[0]), "=r"(((unsigned *)(A_shared_warp + 0))[1]), "=r"(((unsigned *)(A_shared_warp + 0))[2]), "=r"(((unsigned *)(A_shared_warp + 0))[3])
: "r"(addr)
);
}
for (int ax1_0 = 0; ax1_0 < N / 32; ++ax1_0) {
{
unsigned int addr;
__asm__ __volatile__(
"{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
: "=r"(addr)
: "l"((void *)((&(B_shared[(((k_0_1 * (N * 16 + 128)) + (((int)threadIdx.y) * (N / 2))) + (ax1_0 * 16))])) + (((((int)threadIdx.x) & 15) * (N + 8)) + ((((int)threadIdx.x) >> 4) * 8))))
);
__asm__ __volatile__(
"ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
"{%0, %1, %2, %3}, [%4];\n"
: "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[0]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[1]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[2]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[3])
: "r"(addr)
);
}
}
for (int j_0_4 = 0; j_0_4 < N / 32; ++j_0_4) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ == 750
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
: "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
: "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
}
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
: "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
: "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
}
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
: "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
: "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
}
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
: "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
: "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
}
#else
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
: "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
: "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
}
{
__asm__ __volatile__(
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
"{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
: "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
: "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
}
#endif
}
}
}
// TODO: Shang: Hoist loop invariance.
for (int ax1_0_1 = 0; ax1_0_1 < 4; ++ax1_0_1) {
for (int local_id = 0; local_id < 8; ++local_id) {
int row_offset = (((int)blockIdx_y) / j_factors1) * 16 + ((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;
if (row_offset < M)
{
*(C_ptr + ax1_0_1 * 16 + row_offset * OC + (local_id / 4) * 8 + local_id % 2) = __float2half(C_warp[(ax1_0_1 * 8) + local_id]);
}
}
}
#endif
}
__global__ void __launch_bounds__(64) dequantize_weights(
int* __restrict__ B,
half* __restrict__ scaling_factors,
int* __restrict__ zeros,
half* __restrict__ C,
int G
)
{
int j_factors1 = 4;
int row_stride2 = 4;
int split_k_iters = 1;
static constexpr uint32_t ZERO = 0x0;
half B_shared[32 * (128 + 8)];
half* B_shared_ptr2 = B_shared;
half B_shared_warp[32];
int OC = 512;
int N = blockDim.x * gridDim.x; // 2
int col = (blockIdx.x * blockDim.x + threadIdx.x);
int row = blockIdx.y * blockDim.y + threadIdx.y;
int index1 = 8 * col + 8 * row * N;
half* C_ptr2 = C + index1;
int index2 = col + row * N;
int* B_ptr2 = B + index2;
int index3 = col + (int)(row / G) * N;
int* zeros_ptr2 = zeros + index3;
int index4 = 8 * col + (int)(row / G) * N * 8;
half* scaling_factors_ptr2 = scaling_factors + index4;
uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr2);
uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr2);
uint32_t B_loaded = *(uint32_t*)B_ptr2;
uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
*(uint4*)B_shared_ptr2 = B_loaded_fp16;
for (int i = 0; i < 8; ++i) {
*(C_ptr2 + i) = B_shared[i];
}
}
} // namespace awq
} // namespace vllm
torch::Tensor awq_dequantize(
torch::Tensor _kernel,
torch::Tensor _scaling_factors,
torch::Tensor _zeros,
int split_k_iters,
int thx,
int thy)
{
int in_c = _kernel.size(0);
int qout_c = _kernel.size(1);
int out_c = qout_c * 8;
int G = in_c / _scaling_factors.size(0);
int x_thread = thx;
int y_thread = thy;
int x_blocks = 1;
int y_blocks = 1;
if (thx==0) {
x_thread = qout_c;
}
if (thy==0) {
y_thread = in_c;
}
if (thx==0 && thy==0) {
x_thread = 8;
y_thread = 8;
x_blocks = (int)(qout_c / 8);
y_blocks = (int)(in_c / 8);
}
const at::cuda::OptionalCUDAGuard device_guard(device_of(_scaling_factors));
auto options = torch::TensorOptions().dtype(_scaling_factors.dtype()).device(_scaling_factors.device());
at::Tensor _de_kernel = torch::empty({in_c, out_c}, options);
auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
auto de_kernel = reinterpret_cast<half*>(_de_kernel.data_ptr<at::Half>());
auto scaling_factors = reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
dim3 num_blocks(x_blocks, y_blocks);
dim3 threads_per_block(x_thread, y_thread);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
vllm::awq::dequantize_weights<<<num_blocks, threads_per_block, 0, stream>>>(
kernel, scaling_factors, zeros, de_kernel, G);
return _de_kernel;
}
// in_feats: M, IC [float16]
// kernel: IC, OC // 8 [int32] -> cast to IC, OC [uint4b]
// scaling_factors: IC // G, OC [float16]
// zeros: IC // G, OC // 8 [int32] -> cast to IC // G, OC [uint4b]
// assume that batch_size < 16 for now
torch::Tensor awq_gemm(
torch::Tensor _in_feats,
torch::Tensor _kernel,
torch::Tensor _scaling_factors,
torch::Tensor _zeros,
int split_k_iters)
{
int num_in_feats = _in_feats.size(0);
int num_in_channels = _in_feats.size(1);
const at::cuda::OptionalCUDAGuard device_guard(device_of(_in_feats));
auto options = torch::TensorOptions().dtype(_in_feats.dtype()).device(_in_feats.device());
at::Tensor _out_feats = torch::empty({split_k_iters, num_in_feats, _kernel.size(1) * 8}, options);
int num_out_feats = _out_feats.size(-2);
int num_out_channels = _out_feats.size(-1);
auto in_feats = reinterpret_cast<half*>(_in_feats.data_ptr<at::Half>());
auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
auto out_feats = reinterpret_cast<half*>(_out_feats.data_ptr<at::Half>());
auto scaling_factors = reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
int group_size = num_in_channels / _scaling_factors.size(0);
if (num_out_channels % 64 != 0)
throw std::invalid_argument("OC is not multiple of cta_N = 64");
if (num_out_channels % 8 != 0)
throw std::invalid_argument("OC is not multiple of pack_num = 8");
if (group_size % 32 != 0)
throw std::invalid_argument("Group size should be a multiple of 32");
if (num_out_channels % group_size != 0)
throw std::invalid_argument("OC is not multiple of Group size");
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (num_out_channels % 128 == 0)
{
int j_factors1 = num_out_channels / 128 / 1;
dim3 num_blocks((num_out_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
// threadIdx.x: 32
// threadIdx.y: i_factors[2] * j_factors[2]
dim3 threads_per_block(32, 2);
vllm::awq::gemm_forward_4bit_cuda_m16nXk32<128><<<num_blocks, threads_per_block, 0, stream>>>(
group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros, num_in_feats, num_in_channels,
num_out_channels, out_feats);
}
else if (num_out_channels % 64 == 0)
{
int j_factors1 = num_out_channels / 64 / 1;
dim3 num_blocks(1 * (num_out_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
// threadIdx.x: 32
// threadIdx.y: i_factors[2] * j_factors[2]
dim3 threads_per_block(32, 2);
vllm::awq::gemm_forward_4bit_cuda_m16nXk32<64><<<num_blocks, threads_per_block, 0, stream>>>(
group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros, num_in_feats, num_in_channels,
num_out_channels, out_feats);
}
return _out_feats.sum(0);
}

View File

@ -0,0 +1,277 @@
#pragma once
#include <assert.h>
#include <stdint.h>
#include <float.h>
#include <type_traits>
#include "../../attention/attention_dtypes.h"
#include "../../attention/dtype_float32.cuh"
#include "../../attention/dtype_float16.cuh"
#include "../../attention/dtype_bfloat16.cuh"
namespace vllm {
#ifdef ENABLE_FP8_E5M2
namespace fp8_e5m2_unscaled {
template<typename Tout, typename Tin>
__inline__ __device__ Tout vec_conversion(const Tin& x)
{
return x;
}
// fp8 -> half
template<>
__inline__ __device__ uint16_t vec_conversion<uint16_t, uint8_t>(const uint8_t& a)
{
__half_raw res = __nv_cvt_fp8_to_halfraw(a, __NV_E5M2);
return res.x;
}
// fp8x2 -> half2
template<>
__inline__ __device__ uint32_t vec_conversion<uint32_t, uint16_t>(const uint16_t& a)
{
union {
uint16_t u16[2];
uint32_t u32;
} tmp;
__half2_raw res = __nv_cvt_fp8x2_to_halfraw2(a, __NV_E5M2);
tmp.u16[0] = res.x;
tmp.u16[1] = res.y;
return tmp.u32;
}
// fp8x4 -> half2x2
template<>
__inline__ __device__ uint2 vec_conversion<uint2, uint32_t>(const uint32_t& a)
{
union {
uint2 u32x2;
uint32_t u32[2];
} tmp;
tmp.u32[0] = vec_conversion<uint32_t, uint16_t>((uint16_t)a);
tmp.u32[1] = vec_conversion<uint32_t, uint16_t>((uint16_t)(a >> 16U));
return tmp.u32x2;
}
// fp8x8 -> half2x4
template<>
__inline__ __device__ uint4 vec_conversion<uint4, uint2>(const uint2& a)
{
union {
uint4 u64x2;
uint2 u64[2];
} tmp;
tmp.u64[0] = vec_conversion<uint2, uint32_t>(a.x);
tmp.u64[1] = vec_conversion<uint2, uint32_t>(a.y);
return tmp.u64x2;
}
// fp8 -> __nv_bfloat16
template<>
__inline__ __device__ __nv_bfloat16 vec_conversion<__nv_bfloat16, uint8_t>(const uint8_t& a)
{
// Note there is no direct convert function from fp8 to bf16.
// fp8 -> half
__half_raw res = __nv_cvt_fp8_to_halfraw(a, __NV_E5M2);
// half -> float -> bf16
float tmp = half_to_float(res.x);
return __float2bfloat16(tmp);
}
// fp8x2 -> __nv_bfloat162
template<>
__inline__ __device__ __nv_bfloat162 vec_conversion<__nv_bfloat162, uint16_t>(const uint16_t& a)
{
__nv_bfloat162 res;
res.x = vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)a);
res.y = vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)(a >> 8U));
return res;
}
// fp8x4 -> bf16_4_t
template<>
__inline__ __device__ bf16_4_t vec_conversion<bf16_4_t, uint32_t>(const uint32_t& a)
{
bf16_4_t res;
res.x = vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)a);
res.y = vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)(a >> 16U));
return res;
}
// fp8x8 -> bf16_8_t
template<>
__inline__ __device__ bf16_8_t vec_conversion<bf16_8_t, uint2>(const uint2& a)
{
bf16_4_t tmp1, tmp2;
tmp1 = vec_conversion<bf16_4_t, uint32_t>(a.x);
tmp2 = vec_conversion<bf16_4_t, uint32_t>(a.y);
bf16_8_t res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// fp8 -> float
template<>
__inline__ __device__ float vec_conversion<float, uint8_t>(const uint8_t& a)
{
// fp8 -> half
uint16_t tmp = vec_conversion<uint16_t, uint8_t>(a);
// half -> float
return half_to_float(tmp);
}
// fp8x2 -> float2
template<>
__inline__ __device__ float2 vec_conversion<float2, uint16_t>(const uint16_t& a)
{
// fp8x2 -> half2
uint32_t tmp = vec_conversion<uint32_t, uint16_t>(a);
// half2 -> float2
return half2_to_float2(tmp);
}
// fp8x4 -> float4
template<>
__inline__ __device__ Float4_ vec_conversion<Float4_, uint32_t>(const uint32_t& a)
{
Float4_ res;
res.x = vec_conversion<float2, uint16_t>((uint16_t)a);
res.y = vec_conversion<float2, uint16_t>((uint16_t)(a >> 16U));
return res;
}
// fp8x8 -> float8
template<>
__inline__ __device__ Float8_ vec_conversion<Float8_, uint2>(const uint2& a)
{
Float4_ tmp1, tmp2;
tmp1 = vec_conversion<Float4_, uint32_t>(a.x);
tmp2 = vec_conversion<Float4_, uint32_t>(a.y);
Float8_ res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// half -> fp8
template<>
__inline__ __device__ uint8_t vec_conversion<uint8_t, uint16_t>(const uint16_t& a)
{
__half_raw tmp;
tmp.x = a;
__nv_fp8_storage_t res = __nv_cvt_halfraw_to_fp8(tmp, __NV_SATFINITE, __NV_E5M2);
return (uint8_t)res;
}
// bf16 -> fp8
template<>
__inline__ __device__ uint8_t vec_conversion<uint8_t, __nv_bfloat16>(const __nv_bfloat16& a)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
__nv_fp8_storage_t res = __nv_cvt_bfloat16raw_to_fp8(__nv_bfloat16_raw(a), __NV_SATFINITE, __NV_E5M2);
return (uint8_t)res;
#endif
}
// float -> fp8
template<>
__inline__ __device__ uint8_t vec_conversion<uint8_t, float>(const float& a)
{
__nv_fp8_storage_t res = __nv_cvt_float_to_fp8(a, __NV_SATFINITE, __NV_E5M2);
return (uint8_t)res;
}
// fp8x4 -> float4
template<>
__inline__ __device__ float4 vec_conversion<float4, uint32_t>(const uint32_t& a)
{
Float4_ tmp = vec_conversion<Float4_, uint32_t>(a);
float4 res = make_float4(tmp.x.x, tmp.x.y, tmp.y.x, tmp.y.y);
return res;
}
template<>
__inline__ __device__ uint32_t vec_conversion<uint32_t, float2>(const float2& a)
{
union {
half2 float16;
uint32_t uint32;
};
float16 = __float22half2_rn(a);
return uint32;
}
template<>
__inline__ __device__ uint2 vec_conversion<uint2, Float4_>(const Float4_& a)
{
uint2 b;
float2 val;
val.x = a.x.x;
val.y = a.x.y;
b.x = vec_conversion<uint32_t, float2>(val);
val.x = a.y.x;
val.y = a.y.y;
b.y = vec_conversion<uint32_t, float2>(val);
return b;
}
template<>
__inline__ __device__ float4 vec_conversion<float4, Float4_>(const Float4_& a)
{
float4 b;
b.x = a.x.x;
b.y = a.x.y;
b.z = a.y.x;
b.w = a.y.y;
return b;
}
template<>
__inline__ __device__ uint4 vec_conversion<uint4, Float8_>(const Float8_& a)
{
uint4 b;
b.x = vec_conversion<uint32_t, float2>(a.x);
b.y = vec_conversion<uint32_t, float2>(a.y);
b.z = vec_conversion<uint32_t, float2>(a.z);
b.w = vec_conversion<uint32_t, float2>(a.w);
return b;
}
template<>
__inline__ __device__ __nv_bfloat162 vec_conversion<__nv_bfloat162, float2>(const float2 &a) {
__nv_bfloat162 b;
from_float(b, a);
return b;
}
template<>
__inline__ __device__ bf16_4_t vec_conversion<bf16_4_t, Float4_>(const Float4_ &a) {
bf16_4_t b;
from_float(b, a);
return b;
}
template<>
__inline__ __device__ bf16_8_t vec_conversion<bf16_8_t, Float8_>(const Float8_ &a) {
bf16_8_t b;
from_float(b, a);
return b;
}
} // namespace fp8_e5m2_unscaled
#endif // ENABLE_FP8_E5M2
} // namespace vllm

View File

@ -0,0 +1,64 @@
/*
Copied from https://github.com/turboderp/exllamav2
*/
#ifndef _compat_cuh
#define _compat_cuh
namespace vllm {
namespace gptq {
// atomicAdd for half types, to support CC < 7.x
__device__ __forceinline__ void atomicAdd_half(half* address, half val)
{
unsigned int * address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2));
unsigned int old = *address_as_ui;
unsigned int assumed;
do
{
assumed = old;
__half_raw hsum;
hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
half tmpres = __hadd(hsum, val);
hsum = __half_raw(tmpres);
old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16) : (old & 0xffff0000) | hsum.x;
old = atomicCAS(address_as_ui, assumed, old);
}
while (assumed != old);
}
// atomicAdd for half2 types
__device__ __forceinline__ void atomicAdd_half2(half2* address, half2 val)
{
unsigned int* address_as_ui = (unsigned int*)address;
unsigned int old = *address_as_ui;
unsigned int assumed;
do
{
assumed = old;
half2 old_val = *((half2*)&old);
half2 new_val = __hadd2(old_val, val);
old = atomicCAS(address_as_ui, assumed, *((unsigned int*)&new_val));
}
while (assumed != old);
}
//
#if defined(__CUDA_ARCH__) || defined(USE_ROCM)
#if __CUDA_ARCH__ < 700 || defined(USE_ROCM)
__device__ __forceinline__ void atomicAdd(half* address, half val) { atomicAdd_half(address, val); }
#if __CUDA_ARCH__ < 600 || defined(USE_ROCM)
__device__ __forceinline__ void atomicAdd(half2* address, half2 val) { atomicAdd_half2(address, val); }
#endif
#endif
#endif
} // namespace gptq
} // namespace vllm
#endif

View File

@ -0,0 +1,274 @@
/*
Adapted from https://github.com/turboderp/exllamav2 and https://github.com/turboderp/exllama
*/
#ifndef _matrix_view_cuh
#define _matrix_view_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include "qdq_util.cuh"
namespace vllm {
namespace gptq {
class MatrixView_half
{
public:
const half* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_half(const half* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ half item(int row, int column) const { return data[row * width + column]; }
__device__ __forceinline__ half2 item_half2(int row, int column) const { return ((half2*)data)[(row * width + column) / 2]; }
__device__ __forceinline__ half2 item_half2half2(int row, int column) const { return __half2half2(data[row * width + column]); }
__device__ __forceinline__ const half* item_ptr(int row, int column) const { return &data[row * width + column]; }
__device__ __forceinline__ void item4(half (&items)[4], int row, int column) const
{
half2* ptr = (half2*) item_ptr(row, column);
half2 i01 = ptr[0];
half2 i23 = ptr[1];
items[0] = __low2half(i01);
items[1] = __high2half(i01);
items[2] = __low2half(i23);
items[3] = __high2half(i23);
}
__device__ __forceinline__ void item4_f(float (&items)[4], int row, int column) const
{
half2* ptr = (half2*)item_ptr(row, column);
half2 i01 = ptr[0];
half2 i23 = ptr[1];
items[0] = __half2float(__low2half(i01));
items[1] = __half2float(__high2half(i01));
items[2] = __half2float(__low2half(i23));
items[3] = __half2float(__high2half(i23));
}
__device__ __forceinline__ void item4_h2(half2 (&items)[4], int row, int column) const
{
half2* ptr = (half2*)item_ptr(row, column);
half2 i01 = ptr[0];
half2 i23 = ptr[1];
items[0] = __half2half2(__low2half(i01));
items[1] = __half2half2(__high2half(i01));
items[2] = __half2half2(__low2half(i23));
items[3] = __half2half2(__high2half(i23));
}
};
class MatrixView_half_rw
{
public:
half* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_half_rw(half* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ half item(int row, int column) const { return data[row * width + column]; }
__device__ __forceinline__ half2 item_half2(int row, int column) const { return ((half2*)data)[(row * width + column) / 2]; }
__device__ __forceinline__ half* item_ptr(int row, int column) { return &data[row * width + column]; }
__device__ __forceinline__ void set(int row, int column, half value) { data[row * width + column] = value; }
__device__ __forceinline__ void set_half2(int row, int column, half2 value) { ((half2*)data)[(row * width + column) / 2] = value; }
__device__ __forceinline__ void set4(int row, int column, half v0, half v1, half v2, half v3)
{
half2 v01 = __halves2half2(v0, v1);
half2 v23 = __halves2half2(v2, v3);
half2* ptr = (half2*) item_ptr(row, column);
ptr[0] = v01;
ptr[1] = v23;
}
};
class MatrixView_q4_row
{
public:
const uint32_t* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_q4_row(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ int item(int row, int column) const
{
int shift = (column & 0x07) * 4;
return (data[row * width / 8 + column / 8] >> shift) & 0x0f;
}
__device__ __forceinline__ void item2(int (&items)[2], int row, int column) const
{
int shift = (column & 0x07) * 4;
uint32_t d = data[row * width / 8 + column / 8] >> shift;
items[0] = d & 0x0f;
items[1] = (d >> 4) & 0x0f;
}
__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
{
int shift = (column & 0x07) * 4;
uint32_t d = data[row * width / 8 + column / 8] >> shift;
items[0] = d & 0x0f;
items[1] = (d >> 4) & 0x0f;
items[2] = (d >> 8) & 0x0f;
items[3] = (d >> 12) & 0x0f;
}
};
class MatrixView_q4_column
{
public:
const uint32_t* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_q4_column(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ int item(int row, int column) const
{
int shift = (row & 0x07) * 4;
return (data[row / 8 * width + column] >> shift) & 0x0f;
}
__device__ __forceinline__ uint32_t item_uint32_t(int row, int column) { return data[row / 8 * width + column]; }
__device__ __forceinline__ const uint32_t* item_uint32_ptr(int row, int column) { return &data[row / 8 * width + column]; }
};
class MatrixView_q2_row
{
public:
const uint32_t* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_q2_row(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ int item(int row, int column) const
{
int shift = (column & 0x0f) * 2;
return (data[row * width / 16 + column / 16] >> shift) & 0x03;
}
__device__ __forceinline__ void item2(int (&items)[2], int row, int column) const
{
int shift = (column & 0x0f) * 2;
uint32_t d = data[row * width / 16 + column / 16] >> shift;
items[0] = d & 0x03;
items[1] = (d >> 2) & 0x03;
}
__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
{
int shift = (column & 0x0f) * 2;
uint32_t d = data[row * width / 16 + column / 16] >> shift;
items[0] = d & 0x03;
items[1] = (d >> 2) & 0x03;
items[2] = (d >> 4) & 0x03;
items[3] = (d >> 6) & 0x03;
}
};
class MatrixView_q3_row
{
public:
const uint32_t* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_q3_row(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ int item(int row, int column) const
{
int z_w = column * 3 / 32;
int z_mod = column & 0x1f;
if (z_mod == 10) {
return (data[row * width * 3 / 32 + z_w] >> 30) | ((data[row * width * 3 / 32 + (z_w + 1)] << 2) & 0x4);
} else if (z_mod == 21) {
return (data[row * width * 3 / 32 + z_w] >> 31) | ((data[row * width * 3 / 32 + (z_w + 1)] << 1) & 0x6);
} else if (z_mod < 10) {
return (data[row * width * 3 / 32 + z_w] >> (z_mod * 3)) & 0x07;
} else if (z_mod < 21) {
return (data[row * width * 3 / 32 + z_w] >> (z_mod * 3 - 32)) & 0x07;
} else {
return (data[row * width * 3 / 32 + z_w] >> (z_mod * 3 - 64)) & 0x07;
}
}
__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
{
int shift = (column & 0x1f);
uint32_t d;
if (shift <= 4) {
d = data[row * width / 32 * 3 + column * 3 / 32] >> (shift * 3);
} else if (shift == 8) {
d = (data[row * width / 32 * 3 + column * 3 / 32] >> 24) | ((data[row * width / 32 * 3 + column * 3 / 32 + 1] & 0x0f) << 8);
} else if (shift <= 16) {
d = data[row * width / 32 * 3 + column * 3 / 32] >> (shift * 3 - 32);
} else if (shift == 20) {
d = (data[row * width / 32 * 3 + column * 3 / 32] >> 28) | ((data[row * width / 32 * 3 + column * 3 / 32 + 1] & 0xff) << 4);
} else {
d = data[row * width / 32 * 3 + column * 3 / 32] >> (shift * 3 - 64);
}
items[0] = d & 0x07;
items[1] = (d >> 3) & 0x07;
items[2] = (d >> 6) & 0x07;
items[3] = (d >> 9) & 0x07;
}
};
class MatrixView_q8_row
{
public:
const uint32_t* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_q8_row(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ int item(int row, int column) const
{
int shift = (column & 0x03) * 8;
return (data[row * width / 4 + column / 4] >> shift) & 0xff;
}
__device__ __forceinline__ void item2(int (&items)[2], int row, int column) const
{
int shift = (column & 0x03) * 8;
uint32_t d = data[row * width / 4 + column / 4] >> shift;
items[0] = d & 0xff;
items[1] = (d >> 8) & 0xff;
}
__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
{
int shift = (column & 0x03) * 2;
uint32_t d = data[row * width / 4 + column / 4] >> shift;
items[0] = d & 0xff;
items[1] = (d >> 8) & 0xff;
items[2] = (d >> 16) & 0xff;
items[3] = (d >> 24) & 0xff;
}
};
} // namespace gptq
} // namespace vllm
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,87 @@
/*
Copied from https://github.com/turboderp/exllamav2
*/
#ifndef _qdq_2_cuh
#define _qdq_2_cuh
#include "qdq_util.cuh"
namespace vllm {
namespace gptq {
// Permutation:
//
// ffddbb99 77553311 eeccaa88 66442200
__forceinline__ __device__ void shuffle_2bit_16
(
uint32_t* q,
int stride
)
{
uint32_t qa = q[0];
uint32_t qb = 0;
#pragma unroll
for (int i = 0; i < 8; i++)
{
uint32_t qa0 = qa & 0x03;
uint32_t qa1 = (qa & 0x0c) >> 2;
qa >>= 4;
qb |= (qa1 << (i * 2 + 16));
qb |= (qa0 << (i * 2));
}
q[0] = qb;
}
__forceinline__ __device__ void dequant_2bit_16
(
const uint32_t q_0,
half2 (&dq)[8],
int stride,
const uint32_t zero
)
{
const uint32_t c0 = 0x64006400;
const half y4_ = __float2half_rn(1.0f / 4.0f);
const half y16_ = __float2half_rn(1.0f / 16.0f);
const half y64_ = __float2half_rn(1.0f / 64.0f);
const half2 y4 = __halves2half2(y4_, y4_);
const half2 y16 = __halves2half2(y16_, y16_);
const half2 y64 = __halves2half2(y64_, y64_);
const half_uint16 z1_(0xe400 | zero); // half(-1024.0f - zero);
const half z4_ = __hsub(__int2half_rn(-256), __int2half_rn(zero));
const half z16_ = __hsub(__int2half_rn(-64), __int2half_rn(zero));
const half z64_ = __hsub(__int2half_rn(-16), __int2half_rn(zero));
const half2 z1 = __half2half2(z1_.as_half);
const half2 z4 = __half2half2(z4_);
const half2 z16 = __half2half2(z16_);
const half2 z64 = __half2half2(z64_);
uint32_t qa = q_0;
half2_uint32 q0((qa & 0x00030003) | c0); // half2(q[ 0], q[ 1]) + 1024
half2_uint32 q1((qa & 0x000c000c) | c0); // half2(q[ 2], q[ 3]) * 4 + 1024
half2_uint32 q2((qa & 0x00300030) | c0); // half2(q[ 4], q[ 5]) * 16 + 1024
half2_uint32 q3((qa & 0x00c000c0) | c0); // half2(q[ 6], q[ 7]) * 64 + 1024
qa >>= 8;
half2_uint32 q4((qa & 0x00030003) | c0); // half2(q[ 8], q[ 8]) + 1024
half2_uint32 q5((qa & 0x000c000c) | c0); // half2(q[10], q[11]) * 4 + 1024
half2_uint32 q6((qa & 0x00300030) | c0); // half2(q[12], q[13]) * 16 + 1024
half2_uint32 q7((qa & 0x00c000c0) | c0); // half2(q[14], q[15]) * 64 + 1024
dq[0] = __hadd2(q0.as_half2, z1);
dq[1] = __hfma2(q1.as_half2, y4, z4);
dq[2] = __hfma2(q2.as_half2, y16, z16);
dq[3] = __hfma2(q3.as_half2, y64, z64);
dq[4] = __hadd2(q4.as_half2, z1);
dq[5] = __hfma2(q5.as_half2, y4, z4);
dq[6] = __hfma2(q6.as_half2, y16, z16);
dq[7] = __hfma2(q7.as_half2, y64, z64);
}
} // namespace gptq
} // namespace vllm
#endif

View File

@ -0,0 +1,141 @@
#ifndef _qdq_3_cuh
#define _qdq_3_cuh
#include "qdq_util.cuh"
namespace vllm {
namespace gptq {
// Permutation:
//
// v9997775 55333111 u8886664 44222000 (u, v lsb)
// vjjjhhhf ffdddbbb uiiiggge eecccaaa
// vtttrrrp ppnnnlll usssqqqo oommmkkk
__forceinline__ __device__ void shuffle_3bit_32
(
uint32_t* q,
int stride
)
{
uint32_t qa = q[0 * stride];
uint32_t qb = q[1 * stride];
uint32_t qc = q[2 * stride];
// qa: aa999888 77766655 54443332 22111000
// qb: lkkkjjji iihhhggg fffeeedd dcccbbba
// qc: vvvuuutt tsssrrrq qqpppooo nnnmmmll
uint32_t qd = qc >> 26;
qc <<= 4;
qc |= qb >> 28;
qb <<= 2;
qb |= qa >> 30;
// qa: ..999888 77766655 54443332 22111000
// qb: ..jjjiii hhhgggff feeedddc ccbbbaaa
// qc: ..tttsss rrrqqqpp pooonnnm mmlllkkk
// qd: vvvuuu
uint32_t za = 0;
uint32_t zb = 0;
uint32_t zc = 0;
for (int i = 0; i < 5; i++) { uint32_t t0 = qa & 0x07; uint32_t t1 = (qa & 0x38) >> 3; qa >>= 6; za |= (t0 << (i * 3)); za |= (t1 << (i * 3 + 16)); }
for (int i = 0; i < 5; i++) { uint32_t t0 = qb & 0x07; uint32_t t1 = (qb & 0x38) >> 3; qb >>= 6; zb |= (t0 << (i * 3)); zb |= (t1 << (i * 3 + 16)); }
for (int i = 0; i < 5; i++) { uint32_t t0 = qc & 0x07; uint32_t t1 = (qc & 0x38) >> 3; qc >>= 6; zc |= (t0 << (i * 3)); zc |= (t1 << (i * 3 + 16)); }
// za: 9997775 55333111 8886664 44222000
// zb: jjjhhhf ffdddbbb iiiggge eecccaaa
// zc: tttrrrp ppnnnlll sssqqqo oommmkkk
// qd: vvvuuu
za |= ((qd & 0x01) >> 0) << 15;
zb |= ((qd & 0x02) >> 1) << 15;
zc |= ((qd & 0x04) >> 2) << 15;
za |= ((qd & 0x08) >> 3) << 31;
zb |= ((qd & 0x10) >> 4) << 31;
zc |= ((qd & 0x20) >> 5) << 31;
// za: v9997775 55333111 u8886664 44222000 (u, v lsb)
// zb: vjjjhhhf ffdddbbb uiiiggge eecccaaa
// zc: vtttrrrp ppnnnlll usssqqqo oommmkkk
q[0 * stride] = za;
q[1 * stride] = zb;
q[2 * stride] = zc;
}
__forceinline__ __device__ void dequant_3bit_32
(
const uint32_t q_0,
const uint32_t q_1,
const uint32_t q_2,
half2 (&dq)[16],
int stride,
const uint32_t zero
)
{
const uint32_t c0 = 0x64006400;
const half y8_ = __float2half_rn(1.0f / 8.0f);
const half y64_ = __float2half_rn(1.0f / 64.0f);
const half2 y8 = __halves2half2(y8_, y8_);
const half2 y64 = __halves2half2(y64_, y64_);
const half_uint16 z1_(0xe400 | zero); // half(-1024.0f - zero);
const half z8_ = __hsub(__int2half_rn(-128), __int2half_rn(zero));
const half z64_ = __hsub(__int2half_rn(-16), __int2half_rn(zero));
const half2 z1 = __halves2half2(z1_.as_half, z1_.as_half);
const half2 z8 = __halves2half2(z8_, z8_);
const half2 z64 = __halves2half2(z64_, z64_);
uint32_t qa = q_0;
uint32_t qb = q_1;
uint32_t qc = q_2;
half2_uint32 q0((qa & 0x00070007) | c0); // half2(q[ 0], q[ 1]) + 1024
half2_uint32 q1((qa & 0x00380038) | c0); // half2(q[ 2], q[ 3]) * 8 + 1024
qa >>= 6;
half2_uint32 q2((qa & 0x00070007) | c0); // half2(q[ 4], q[ 5]) + 1024
half2_uint32 q3((qa & 0x00380038) | c0); // half2(q[ 6], q[ 7]) * 8 + 1024
half2_uint32 q4((qa & 0x01c001c0) | c0); // half2(q[ 8], q[ 9]) * 64 + 1024
qa >>= 9;
qa &= 0x00010001;
half2_uint32 q5((qb & 0x00070007) | c0); // half2(q[10], q[11]) + 1024
half2_uint32 q6((qb & 0x00380038) | c0); // half2(q[12], q[13]) * 8 + 1024
qb >>= 6;
half2_uint32 q7((qb & 0x00070007) | c0); // half2(q[14], q[15]) + 1024
half2_uint32 q8((qb & 0x00380038) | c0); // half2(q[16], q[17]) * 8 + 1024
half2_uint32 q9((qb & 0x01c001c0) | c0); // half2(q[18], q[19]) * 64 + 1024
qb >>= 8;
qb &= 0x00020002;
half2_uint32 q10((qc & 0x00070007) | c0); // half2(q[20], q[21]) + 1024
half2_uint32 q11((qc & 0x00380038) | c0); // half2(q[22], q[23]) * 8 + 1024
qc >>= 6;
half2_uint32 q12((qc & 0x00070007) | c0); // half2(q[24], q[25]) + 1024
half2_uint32 q13((qc & 0x00380038) | c0); // half2(q[26], q[27]) * 8 + 1024
half2_uint32 q14((qc & 0x01c001c0) | c0); // half2(q[28], q[29]) * 64 + 1024
qc >>= 7;
qc &= 0x00040004;
half2_uint32 q15((qa | qb | qc) | c0);
dq[ 0] = __hadd2( q0.as_half2, z1);
dq[ 1] = __hfma2( q1.as_half2, y8, z8);
dq[ 2] = __hadd2( q2.as_half2, z1);
dq[ 3] = __hfma2( q3.as_half2, y8, z8);
dq[ 4] = __hfma2( q4.as_half2, y64, z64);
dq[ 5] = __hadd2( q5.as_half2, z1);
dq[ 6] = __hfma2( q6.as_half2, y8, z8);
dq[ 7] = __hadd2( q7.as_half2, z1);
dq[ 8] = __hfma2( q8.as_half2, y8, z8);
dq[ 9] = __hfma2( q9.as_half2, y64, z64);
dq[10] = __hadd2(q10.as_half2, z1);
dq[11] = __hfma2(q11.as_half2, y8, z8);
dq[12] = __hadd2(q12.as_half2, z1);
dq[13] = __hfma2(q13.as_half2, y8, z8);
dq[14] = __hfma2(q14.as_half2, y64, z64);
dq[15] = __hadd2(q15.as_half2, z1);
}
} // namespace gptq
} // namespace vllm
#endif

View File

@ -0,0 +1,147 @@
/*
Copied from https://github.com/turboderp/exllamav2
*/
#ifndef _qdq_4_cuh
#define _qdq_4_cuh
#include "qdq_util.cuh"
namespace vllm {
namespace gptq {
// Permutation:
//
// 77775555 33331111 66664444 22220000
__forceinline__ __device__ void shuffle_4bit_8
(
uint32_t* q,
int stride
)
{
uint32_t qa = q[0];
uint32_t qb = 0;
#pragma unroll
for (int i = 0; i < 4; i++)
{
uint32_t qa0 = qa & 0x0f;
uint32_t qa1 = (qa & 0xf0) >> 4;
qa >>= 8;
qb |= (qa1 << (i * 4 + 16));
qb |= (qa0 << (i * 4));
}
q[0] = qb;
}
__forceinline__ __device__ void dequant_4bit_8
(
const uint32_t q_0,
half2 (&dq)[4],
int stride,
const uint32_t zero
)
{
const uint32_t c0 = 0x64006400;
const half y16_ = __float2half_rn(1.0f / 16.0f);
const half2 y16 = __halves2half2(y16_, y16_);
const half_uint16 z1_(0xe400 | zero); // half(-1024.0f - zero);
const half z16_ = __hsub(__int2half_rn(-64), __int2half_rn(zero));
const half2 z1 = __half2half2(z1_.as_half);
const half2 z16 = __half2half2(z16_);
uint32_t qa = q_0;
half2_uint32 q0((qa & 0x000f000f) | c0); // half2(q[ 0], q[ 1]) + 1024
half2_uint32 q1((qa & 0x00f000f0) | c0); // half2(q[ 2], q[ 3]) * 16 + 1024
qa >>= 8;
half2_uint32 q2((qa & 0x000f000f) | c0); // half2(q[ 4], q[ 5]) + 1024
half2_uint32 q3((qa & 0x00f000f0) | c0); // half2(q[ 6], q[ 7]) * 16 + 1024
dq[0] = __hadd2(q0.as_half2, z1);
dq[1] = __hfma2(q1.as_half2, y16, z16);
dq[2] = __hadd2(q2.as_half2, z1);
dq[3] = __hfma2(q3.as_half2, y16, z16);
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero_scale
(
const uint32_t zero,
const half scale,
half2 (&z1z16)[2],
half2 (&y1y16)[2]
)
{
half_uint16 z1(0xe400 | zero); // half(-1024.0f - zero);
half z16 = __hsub(__int2half_rn(-64), __int2half_rn(zero));
half2 scale2 = __half2half2(scale);
z1z16[0] = __hmul2(scale2, __half2half2(z1.as_half));
z1z16[1] = __hmul2(scale2, __half2half2(z16));
const half y1 = __float2half_rn(1.0f);
const half y16 = __float2half_rn(1.0f / 16.0f);
y1y16[0] = __hmul2(scale2, __half2half2(y1));
y1y16[1] = __hmul2(scale2, __half2half2(y16));
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero
(
const uint32_t zero,
half2(&z1z16)[2],
half2(&y1y16)[2]
)
{
half_uint16 z1(0xe400 | zero); // half(-1024.0f - zero);
half z16 = __hsub(__int2half_rn(-64), __int2half_rn(zero));
z1z16[0] = __half2half2(z1.as_half);
z1z16[1] = __half2half2(z16);
const half y1 = __float2half_rn(1.0f);
const half y16 = __float2half_rn(1.0f / 16.0f);
y1y16[0] = __half2half2(y1);
y1y16[1] = __half2half2(y16);
}
__forceinline__ __device__ void dequant_4bit_8_gptq
(
const uint32_t q_0,
half2 (&dq)[4],
half2 (&z1z16)[2],
half2 (&y1y16)[2],
int stride,
bool scaled
)
{
const uint32_t c0 = 0x64006400;
uint32_t qa = q_0;
half2_uint32 q0((qa & 0x000f000f) | c0); // half2( q[0] + 1024, q[1] + 1024 )
half2_uint32 q1((qa & 0x00f000f0) | c0); // half2( q[2] * 16 + 1024, q[3] * 16 + 1024 )
qa >>= 8;
half2_uint32 q2((qa & 0x000f000f) | c0); // half2( q[4] + 1024, q[5] + 1024 )
half2_uint32 q3((qa & 0x00f000f0) | c0); // half2( q[6] * 16 + 1024, q[7] * 16 + 1024 )
if (scaled)
{
dq[0] = __hfma2(q0.as_half2, y1y16[0], z1z16[0]); // half2( q[0] * s - z * s, q[1] * s - z * s)
dq[1] = __hfma2(q1.as_half2, y1y16[1], z1z16[1]); // half2( q[2] * s - z * s, q[3] * s - z * s)
dq[2] = __hfma2(q2.as_half2, y1y16[0], z1z16[0]);
dq[3] = __hfma2(q3.as_half2, y1y16[1], z1z16[1]);
}
else
{
dq[0] = __hadd2(q0.as_half2, z1z16[0]); // half2( q[0] - z, q[1] - z )
dq[1] = __hfma2(q1.as_half2, y1y16[1], z1z16[1]); // half2( q[2] - z, q[3] - z )
dq[2] = __hadd2(q2.as_half2, z1z16[0]); // half2( q[4] - z, q[5] - z )
dq[3] = __hfma2(q3.as_half2, y1y16[1], z1z16[1]); // half2( q[6] - z, q[7] - z )
}
}
} // namespace gptq
} // namespace vllm
#endif

View File

@ -0,0 +1,40 @@
/*
Copied from https://github.com/turboderp/exllamav2
*/
#ifndef _qdq_8_cuh
#define _qdq_8_cuh
#include "qdq_util.cuh"
namespace vllm {
namespace gptq {
__forceinline__ __device__ void shuffle_8bit_4
(
uint32_t* q,
int stride
)
{
}
__forceinline__ __device__ void dequant_8bit_8
(
const uint32_t q_0,
const uint32_t q_1,
half2 (&dq)[4],
int stride,
const uint32_t zero
)
{
half dqh[8];
for (int i = 0; i < 4; i++) dqh[i ] = dq_ns(exb(q_0, i * 8, 0xff), zero);
for (int i = 0; i < 4; i++) dqh[i + 4] = dq_ns(exb(q_1, i * 8, 0xff), zero);
for (int i = 0; i < 4; i++) dq[i] = __halves2half2(dqh[i * 2], dqh[i * 2 + 1]);
}
} // namespace gptq
} // namespace vllm
#endif

View File

@ -0,0 +1,60 @@
/*
Copied from https://github.com/turboderp/exllamav2
*/
#ifndef _qdq_util_cuh
#define _qdq_util_cuh
namespace vllm {
namespace gptq {
union half2_uint32
{
uint32_t as_uint32;
half2 as_half2;
__device__ half2_uint32(uint32_t val) : as_uint32(val) {}
__device__ half2_uint32(half2 val) : as_half2(val) {}
};
union half_uint16
{
uint16_t as_uint16;
half as_half;
__device__ half_uint16(uint16_t val) : as_uint16(val) {}
__device__ half_uint16(half val) : as_half(val) {}
};
// Max_scale premultiplied by 1/256
__forceinline__ __device__ half dq_scale(const int qs, const half max_scale)
{
int qs_i = qs + 1;
half qs_h = __int2half_rn(qs_i * qs_i);
qs_h = __hmul(qs_h, max_scale);
return qs_h;
}
__forceinline__ __device__ half dq(const int q, const int qzero, const half scale)
{
return __hmul(__int2half_rn(q - qzero), scale);
}
__forceinline__ __device__ half dq_ns(const int q, const int qzero)
{
//return __hsub(__int2half_rn(q), __int2half_rn(qzero));
return __int2half_rn(q - qzero);
}
__forceinline__ __device__ int exb(const uint32_t q, const int shift, const int mask)
{
return (int)((q >> shift) & mask);
}
__forceinline__ __device__ int exb(const uint32_t q1, const uint32_t q0, const int shift, const int mask)
{
return (int)(__funnelshift_rc(q0, q1, shift) & mask);
}
} // namespace gptq
} // namespace vllm
#endif

View File

@ -0,0 +1,209 @@
Contains code from https://github.com/IST-DASLab/marlin
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
------------------------------------------------------------------------------------
This product bundles various third-party components under other open source licenses.
This section summarizes those components and their licenses. See licenses/
for text of these licenses.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,225 @@
#include <torch/all.h>
#include <torch/python.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
// half-tensor
#include <c10/cuda/CUDAStream.h>
#include <ATen/cuda/CUDATensorMethods.cuh>
#include <c10/cuda/CUDAGuard.h>
#define BLOCKWIDTH 128
#define BLOCKHEIGHT4 16
namespace vllm {
namespace squeezellm {
__device__ inline unsigned int as_unsigned(int i) {
return *reinterpret_cast<unsigned int*>(&i);
}
// 4-bit matvec kernel (LUT-based)
__global__ void NUQ4MatMulKernel(
#ifndef USE_ROCM
const half2* __restrict__ vec,
#else
const __half2* __restrict__ vec,
#endif
const int* __restrict__ mat,
#ifndef USE_ROCM
half2* __restrict__ mul,
#else
float2* __restrict__ mul,
#endif
const __half* __restrict__ lookup_table,
int height,
int width,
int batch,
int vec_height
) {
const int blockwidth2 = BLOCKWIDTH / 2;
int row = BLOCKHEIGHT4 * blockIdx.x;
int col = BLOCKWIDTH * blockIdx.y + threadIdx.x;
#ifndef USE_ROCM
__shared__ half2 blockvec[blockwidth2];
#else
__shared__ __half2 blockvec[blockwidth2];
#endif
__shared__ __half deq2[16][BLOCKWIDTH];
int off = threadIdx.x;
int column_offset = col * 16;
for (int val = 0; val < 16; val += 1) {
int lut_index = column_offset + val;
deq2[val][off] = lookup_table[lut_index];
}
__half res;
#ifndef USE_ROCM
half2 res2;
half2 tmp2;
#else
__half2 res2;
__half2 tmp2;
#endif
int i;
int k;
unsigned int tmp1;
unsigned int lut_index1, lut_index2;
for (int b = 0; b < batch; ++b){
i = width * row + col;
res = __int2half_rd(0);
k = 0;
__syncthreads();
if (threadIdx.x < blockwidth2)
blockvec[threadIdx.x] = vec[b * vec_height / 2 + (row / BLOCKHEIGHT4) * blockwidth2 + threadIdx.x];
__syncthreads();
while (k < blockwidth2) {
tmp1 = as_unsigned(mat[i]);
#ifndef USE_ROCM
res2 = {};
tmp2 = {};
#else
res2.x = __half_as_ushort(__float2half(0));
res2.y = __half_as_ushort(__float2half(0));
tmp2.x = __half_as_ushort(__float2half(0));
tmp2.y = __half_as_ushort(__float2half(0));
#endif
lut_index1 = tmp1 & 0xF;
lut_index2 = (tmp1 >> 4) & 0xF;
#ifndef USE_ROCM
tmp2.x = deq2[lut_index1][off];
tmp2.y = deq2[lut_index2][off];
#else
tmp2.x = __half_as_ushort(deq2[lut_index1][off]);
tmp2.y = __half_as_ushort(deq2[lut_index2][off]);
#endif
res2 = __hfma2(tmp2, blockvec[k + 0], res2);
lut_index1 = (tmp1 >> 8) & 0xF;
lut_index2 = (tmp1 >> 12) & 0xF;
#ifndef USE_ROCM
tmp2.x = deq2[lut_index1][off];
tmp2.y = deq2[lut_index2][off];
#else
tmp2.x = __half_as_ushort(deq2[lut_index1][off]);
tmp2.y = __half_as_ushort(deq2[lut_index2][off]);
#endif
res2 = __hfma2(tmp2, blockvec[k + 1], res2);
lut_index1 = (tmp1 >> 16) & 0xF;
lut_index2 = (tmp1 >> 20) & 0xF;
#ifndef USE_ROCM
tmp2.x = deq2[lut_index1][off];
tmp2.y = deq2[lut_index2][off];
#else
tmp2.x = __half_as_ushort(deq2[lut_index1][off]);
tmp2.y = __half_as_ushort(deq2[lut_index2][off]);
#endif
res2 = __hfma2(tmp2, blockvec[k + 2], res2);
lut_index1 = (tmp1 >> 24) & 0xF;
lut_index2 = (tmp1 >> 28) & 0xF;
#ifndef USE_ROCM
tmp2.x = deq2[lut_index1][off];
tmp2.y = deq2[lut_index2][off];
#else
tmp2.x = __half_as_ushort(deq2[lut_index1][off]);
tmp2.y = __half_as_ushort(deq2[lut_index2][off]);
#endif
res2 = __hfma2(tmp2, blockvec[k + 3], res2);
#ifndef USE_ROCM
res = __hadd(__hadd(res2.x, res2.y), res);
#else
res = __hadd(__hadd(__ushort_as_half(res2.x), __ushort_as_half(res2.y)), res);
#endif
i += width;
k += 4;
}
// col%2 -> only set one of the two values
#ifndef USE_ROCM
half2 res3 = {};
if (col % 2 == 0) {
res3.x = res;
} else {
res3.y = res;
}
#else
__half2 res3;
res3.x = __half_as_ushort(__float2half(0));
res3.y = __half_as_ushort(__float2half(0));
if (col % 2 == 0) {
res3.x = __half_as_ushort(res);
} else {
res3.y = __half_as_ushort(res);
}
#endif
#ifndef USE_ROCM
atomicAdd(&mul[b * width / 2 + col / 2], res3);
#else
int tmp_addr = b * width / 2 + col / 2;
atomicAdd(&(mul[tmp_addr].x), __half2float(__ushort_as_half(res3.x)));
atomicAdd(&(mul[tmp_addr].y), __half2float(__ushort_as_half(res3.y)));
#endif
}
}
} // namespace squeezellm
} // namespace vllm
// 4-bit matvec kernel (LUT-based)
void squeezellm_gemm(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor lookup_table
) {
int height = mat.size(0);
int width = mat.size(1);
int batch = vec.size(0);
int vec_height = vec.size(1);
dim3 blocks(
(height + BLOCKHEIGHT4 - 1) / BLOCKHEIGHT4,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
vllm::squeezellm::NUQ4MatMulKernel<<<blocks, threads, 0, stream>>>(
#ifndef USE_ROCM
(half2*) vec.data<at::Half>(),
#else
(__half2*) vec.data_ptr<at::Half>(),
#endif
mat.data_ptr<int>(),
#ifndef USE_ROCM
(half2*) mul.data<at::Half>(),
(__half*) lookup_table.data<at::Half>(),
#else
(float2*) mul.data_ptr<float>(),
(__half*) lookup_table.data_ptr<at::Half>(),
#endif
height, width, batch, vec_height
);
}
#undef BLOCKWIDTH
#undef BLOCKHEIGHT4

View File

@ -17,13 +17,15 @@
*/
#pragma once
#include "cuda_compat.h"
namespace vllm {
template<typename T>
__inline__ __device__ T warpReduceSum(T val) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1)
val += __shfl_xor_sync(0xffffffff, val, mask, 32);
val += VLLM_SHFL_XOR_SYNC(val, mask);
return val;
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 267 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 285 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 259 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 276 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 244 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 260 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 255 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 272 KiB

View File

@ -9,11 +9,15 @@
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
import os
import sys
from sphinx.ext import autodoc
import logging
sys.path.insert(0, os.path.abspath(os.path.join('..', '..')))
logger = logging.getLogger(__name__)
# -- Project information -----------------------------------------------------
@ -21,7 +25,6 @@ project = 'vLLM'
copyright = '2023, vLLM Team'
author = 'the vLLM Team'
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
@ -32,6 +35,8 @@ extensions = [
"sphinx.ext.viewcode",
"sphinx.ext.intersphinx",
"sphinx_copybutton",
"sphinx.ext.autodoc",
"sphinx.ext.autosummary",
]
# Add any paths that contain templates here, relative to this directory.
@ -55,7 +60,6 @@ html_title = project
html_theme = 'sphinx_book_theme'
html_logo = 'assets/logos/vllm-logo-text-light.png'
html_theme_options = {
'logo_only': True,
'path_to_docs': 'docs/source',
'repository_url': 'https://github.com/vllm-project/vllm',
'use_repository_button': True,
@ -64,4 +68,31 @@ html_theme_options = {
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
# html_static_path = ['_static']
# Mock out external dependencies here.
autodoc_mock_imports = [
"torch", "transformers", "psutil", "prometheus_client", "sentencepiece",
"vllm.cuda_utils", "vllm._C"
]
for mock_target in autodoc_mock_imports:
if mock_target in sys.modules:
logger.info(
f"Potentially problematic mock target ({mock_target}) found; "
"autodoc_mock_imports cannot mock modules that have already "
"been loaded into sys.modules when the sphinx build starts.")
class MockedClassDocumenter(autodoc.ClassDocumenter):
"""Remove note about base class when a class is derived from object."""
def add_line(self, line: str, source: str, *lineno: int) -> None:
if line == " Bases: :py:class:`object`":
return
super().add_line(line, source, *lineno)
autodoc.ClassDocumenter = MockedClassDocumenter
navigation_with_keys = False

View File

@ -0,0 +1,7 @@
AsyncLLMEngine
=================================
.. autoclass:: vllm.engine.async_llm_engine.AsyncLLMEngine
:members: generate, abort
:show-inheritance:

Some files were not shown because too many files have changed in this diff Show More