Compare commits

..

1 Commits

Author SHA1 Message Date
0470cac520 updaed
Signed-off-by: Robert Shaw <robshaw@redhat.com>
2025-08-14 02:14:03 +00:00
467 changed files with 10200 additions and 17994 deletions

View File

@ -7,7 +7,7 @@ This directory contains two sets of benchmark for vllm.
- Performance benchmark: benchmark vllm's performance under various workload, for **developers** to gain clarity on whether their PR improves/degrades vllm's performance
- Nightly benchmark: compare vllm's performance against alternatives (tgi, trt-llm and lmdeploy), for **the public** to know when to choose vllm.
See [vLLM performance dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
## Performance benchmark quick overview
@ -139,19 +139,27 @@ The raw benchmarking results (in the format of json files) are in the `Artifacts
The `compare-json-results.py` helps to compare benchmark results JSON files converted using `convert-results-json-to-markdown.py`.
When run, benchmark script generates results under `benchmark/results` folder, along with the `benchmark_results.md` and `benchmark_results.json`.
`compare-json-results.py` compares two `benchmark_results.json` files and provides performance ratio e.g. for Output Tput, Median TTFT and Median TPOT.
If only one benchmark_results.json is passed, `compare-json-results.py` compares different TP and PP configurations in the benchmark_results.json instead.
Here is an example using the script to compare result_a and result_b with Model, Dataset name, input/output lenght, max concurrency and qps.
Here is an example using the script to compare result_a and result_b without detail test name.
`python3 compare-json-results.py -f results_a/benchmark_results.json -f results_b/benchmark_results.json --ignore_test_name`
| | results_a/benchmark_results.json | results_b/benchmark_results.json | perf_ratio |
|----|----------------------------------------|----------------------------------------|----------|
| 0 | 142.633982 | 156.526018 | 1.097396 |
| 1 | 241.620334 | 294.018783 | 1.216863 |
| 2 | 218.298905 | 262.664916 | 1.203235 |
| 3 | 242.743860 | 299.816190 | 1.235113 |
Here is an example using the script to compare result_a and result_b with detail test name.
`python3 compare-json-results.py -f results_a/benchmark_results.json -f results_b/benchmark_results.json`
| | Model | Dataset Name | Input Len | Output Len | # of max concurrency | qps | results_a/benchmark_results.json | results_b/benchmark_results.json | perf_ratio |
|----|---------------------------------------|--------|-----|-----|------|-----|-----------|----------|----------|
| 0 | meta-llama/Meta-Llama-3.1-8B-Instruct | random | 128 | 128 | 1000 | 1 | 142.633982 | 156.526018 | 1.097396 |
| 1 | meta-llama/Meta-Llama-3.1-8B-Instruct | random | 128 | 128 | 1000 | inf| 241.620334 | 294.018783 | 1.216863 |
A comparison diagram will be generated below the table.
Here is an example to compare between 96c/results_gnr_96c_091_tp2pp3 and 128c/results_gnr_128c_091_tp2pp3
<img width="1886" height="828" alt="image" src="https://github.com/user-attachments/assets/c02a43ef-25d0-4fd6-90e5-2169a28682dd" />
| | results_a/benchmark_results.json_name | results_a/benchmark_results.json | results_b/benchmark_results.json_name | results_b/benchmark_results.json | perf_ratio |
|---|---------------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------|----------|
| 0 | serving_llama8B_tp1_sharegpt_qps_1 | 142.633982 | serving_llama8B_tp1_sharegpt_qps_1 | 156.526018 | 1.097396 |
| 1 | serving_llama8B_tp1_sharegpt_qps_16 | 241.620334 | serving_llama8B_tp1_sharegpt_qps_16 | 294.018783 | 1.216863 |
| 2 | serving_llama8B_tp1_sharegpt_qps_4 | 218.298905 | serving_llama8B_tp1_sharegpt_qps_4 | 262.664916 | 1.203235 |
| 3 | serving_llama8B_tp1_sharegpt_qps_inf | 242.743860 | serving_llama8B_tp1_sharegpt_qps_inf | 299.816190 | 1.235113 |
| 4 | serving_llama8B_tp2_random_1024_128_qps_1 | 96.613390 | serving_llama8B_tp4_random_1024_128_qps_1 | 108.404853 | 1.122048 |
## Nightly test details

View File

@ -1,38 +1,24 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import json
import os
import pandas as pd
def compare_data_columns(
files, name_column, data_column, info_cols, drop_column, debug=False
files, name_column, data_column, drop_column, ignore_test_name=False
):
print("\ncompare_data_column: " + data_column)
frames = []
raw_data_cols = []
compare_frames = []
for file in files:
data_df = pd.read_json(file)
serving_df = data_df.dropna(subset=[drop_column], ignore_index=True)
# Show all info columns in the first couple columns
if not frames:
for col in info_cols:
if col not in serving_df.columns:
print(f"Skipping missing column: {col}")
continue
frames.append(serving_df[col])
# only show test name under debug mode
if debug is True:
if ignore_test_name is False:
serving_df = serving_df.rename(columns={name_column: file + "_name"})
frames.append(serving_df[file + "_name"])
file = "/".join(file.split("/")[:-1])
serving_df = serving_df.rename(columns={data_column: file})
frames.append(serving_df[file])
raw_data_cols.append(file)
compare_frames.append(serving_df[file])
if len(compare_frames) >= 2:
# Compare numbers among two files
@ -41,68 +27,7 @@ def compare_data_columns(
compare_frames.pop(1)
concat_df = pd.concat(frames, axis=1)
print(raw_data_cols)
return concat_df, raw_data_cols
def split_json_by_tp_pp(
input_file: str = "benchmark_results.json", output_root: str = "."
) -> list[str]:
"""
Split a benchmark JSON into separate folders by (TP Size, PP Size).
Creates: <output_root>/tp{TP}_pp{PP}/benchmark_results.json
Returns: list of file paths written.
"""
# Load JSON data into DataFrame
with open(input_file, encoding="utf-8") as f:
data = json.load(f)
# If the JSON is a dict with a list under common keys, use that list
if isinstance(data, dict):
for key in ("results", "serving_results", "benchmarks", "data"):
if isinstance(data.get(key), list):
data = data[key]
break
df = pd.DataFrame(data)
# Handle alias column names
rename_map = {
"tp_size": "TP Size",
"tensor_parallel_size": "TP Size",
"pp_size": "PP Size",
"pipeline_parallel_size": "PP Size",
}
df.rename(
columns={k: v for k, v in rename_map.items() if k in df.columns}, inplace=True
)
# Ensure TP/PP columns exist (default to 1 if missing)
if "TP Size" not in df.columns:
df["TP Size"] = 1
if "PP Size" not in df.columns:
df["PP Size"] = 1
# make sure TP/PP are numeric ints with no NaN
df["TP Size"] = (
pd.to_numeric(df.get("TP Size", 1), errors="coerce").fillna(1).astype(int)
)
df["PP Size"] = (
pd.to_numeric(df.get("PP Size", 1), errors="coerce").fillna(1).astype(int)
)
# Split into separate folders
saved_paths: list[str] = []
for (tp, pp), group_df in df.groupby(["TP Size", "PP Size"], dropna=False):
folder_name = os.path.join(output_root, f"tp{int(tp)}_pp{int(pp)}")
os.makedirs(folder_name, exist_ok=True)
filepath = os.path.join(folder_name, "benchmark_results.json")
group_df.to_json(filepath, orient="records", indent=2, force_ascii=False)
print(f"Saved: {filepath}")
saved_paths.append(filepath)
return saved_paths
return concat_df
if __name__ == "__main__":
@ -111,105 +36,31 @@ if __name__ == "__main__":
"-f", "--file", action="append", type=str, help="input file name"
)
parser.add_argument(
"--debug", action="store_true", help="show all information for debugging"
)
parser.add_argument(
"--plot",
action=argparse.BooleanOptionalAction,
default=True,
help="plot perf diagrams or not --no-plot --plot",
)
parser.add_argument(
"-x",
"--xaxis",
type=str,
default="# of max concurrency.",
help="column name to use as X Axis in comparision graph",
"--ignore_test_name", action="store_true", help="ignore_test_name or not"
)
args = parser.parse_args()
files = args.file
print("comparing : " + ", ".join(files))
drop_column = "P99"
name_column = "Test name"
info_cols = [
"Model",
"Dataset Name",
"Input Len",
"Output Len",
"TP Size",
"PP Size",
"# of max concurrency.",
"qps",
]
data_cols_to_compare = ["Output Tput (tok/s)", "Median TTFT (ms)", "Median"]
html_msgs_for_data_cols = [
"Compare Output Tokens /n",
"Median TTFT /n",
"Median TPOT /n",
]
if len(args.file) == 1:
files = split_json_by_tp_pp(args.file[0], output_root="splits")
info_cols = [c for c in info_cols if c not in ("TP Size", "PP Size")]
else:
files = args.file
print("comparing : " + ", ".join(files))
debug = args.debug
plot = args.plot
# For Plot feature, assign y axis from one of info_cols
y_axis_index = info_cols.index(args.xaxis) if args.xaxis in info_cols else 6
ignore_test_name = args.ignore_test_name
with open("perf_comparison.html", "w") as text_file:
for i in range(len(data_cols_to_compare)):
output_df, raw_data_cols = compare_data_columns(
output_df = compare_data_columns(
files,
name_column,
data_cols_to_compare[i],
info_cols,
drop_column,
debug=debug,
ignore_test_name=ignore_test_name,
)
# For Plot feature, insert y axis from one of info_cols
raw_data_cols.insert(0, info_cols[y_axis_index])
filtered_info_cols = info_cols[:-2]
existing_group_cols = [
c for c in filtered_info_cols if c in output_df.columns
]
if not existing_group_cols:
raise ValueError(
f"No valid group-by columns "
f"Expected subset: {filtered_info_cols}, "
f"but DataFrame has: {list(output_df.columns)}"
)
output_df_sorted = output_df.sort_values(by=existing_group_cols)
output_groups = output_df_sorted.groupby(existing_group_cols, dropna=False)
for name, group in output_groups:
html = group.to_html()
print(output_df)
html = output_df.to_html()
text_file.write(html_msgs_for_data_cols[i])
text_file.write(html)
if plot is True:
import pandas as pd
import plotly.express as px
df = group[raw_data_cols]
df_sorted = df.sort_values(by=info_cols[y_axis_index])
# Melt DataFrame for plotting
df_melted = df_sorted.melt(
id_vars=info_cols[y_axis_index],
var_name="Configuration",
value_name=data_cols_to_compare[i],
)
title = data_cols_to_compare[i] + " vs " + info_cols[y_axis_index]
# Create Plotly line chart
fig = px.line(
df_melted,
x=info_cols[y_axis_index],
y=data_cols_to_compare[i],
color="Configuration",
title=title,
markers=True,
)
# Export to HTML
text_file.write(fig.to_html(full_html=True, include_plotlyjs="cdn"))

View File

@ -1,19 +1,17 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import json
import os
import shlex
from importlib import util
from pathlib import Path
from typing import Any
import pandas as pd
import psutil
import regex as re
from tabulate import tabulate
results_folder = Path("results/")
# latency results and the keys that will be printed into markdown
latency_results = []
latency_column_mapping = {
@ -44,22 +42,14 @@ throughput_results_column_mapping = {
serving_results = []
serving_column_mapping = {
"test_name": "Test name",
"model_id": "Model",
"dataset_name": "Dataset Name",
"input_len": "Input Len",
"output_len": "Output Len",
"tp_size": "TP Size",
"pp_size": "PP Size",
"dtype": "dtype",
"gpu_type": "GPU",
"completed": "# of req.",
"qps": "qps",
"max_concurrency": "# of max concurrency.",
"request_throughput": "Tput (req/s)",
"total_token_throughput": "Total Token Tput (tok/s)",
"output_throughput": "Output Tput (tok/s)",
# "total_input_tokens": "Total input tokens",
# "total_output_tokens": "Total output tokens",
"total_input_tokens": "Total input tokens",
"total_output_tokens": "Total output tokens",
"mean_ttft_ms": "Mean TTFT (ms)",
"median_ttft_ms": "Median TTFT (ms)",
"p99_ttft_ms": "P99 TTFT (ms)",
@ -104,104 +94,7 @@ def get_size_with_unit(bytes, suffix="B"):
bytes /= factor
def _coerce(val: str) -> Any:
"""Best-effort type coercion from string to Python types."""
low = val.lower()
if low == "null":
return None
if low == "true":
return True
if low == "false":
return False
# integers
if re.fullmatch(r"[+-]?\d+", val):
try:
return int(val)
except ValueError:
pass
# floats (keep 'inf'/'-inf'/'nan' as strings)
if re.fullmatch(r"[+-]?\d*\.\d+", val):
try:
return float(val)
except ValueError:
pass
return val
def parse_client_command(cmd: str) -> dict[str, Any]:
"""Parse the client_command shell string into {executable, script, args}."""
toks = shlex.split(cmd)
if len(toks) < 2:
raise ValueError("client_command must include an executable and a script")
executable, script = toks[0], toks[1]
args: dict[str, Any] = {}
i = 2
while i < len(toks):
t = toks[i]
if t.startswith("--"):
# --key=value or --key (value) or boolean flag
if "=" in t:
key, val = t.split("=", 1)
if key == "--metadata":
md = {}
if val:
if "=" in val:
k, v = val.split("=", 1)
md[k] = _coerce(v)
else:
md[val] = True
args[key] = md
else:
args[key] = _coerce(val)
i += 1
continue
key = t
# Special: consume metadata k=v pairs until next --flag
if key == "--metadata":
i += 1
md = {}
while i < len(toks) and not toks[i].startswith("--"):
pair = toks[i]
if "=" in pair:
k, v = pair.split("=", 1)
md[k] = _coerce(v)
else:
md[pair] = True
i += 1
args[key] = md
continue
# Standard: check if next token is a value (not a flag)
if i + 1 < len(toks) and not toks[i + 1].startswith("--"):
args[key] = _coerce(toks[i + 1])
i += 2
else:
# lone flag -> True
args[key] = True
i += 1
else:
# unexpected positional; skip
i += 1
return {"executable": executable, "script": script, "args": args}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-r",
"--result",
type=str,
default="results",
help="Folder name for benchmark output results.",
)
args = parser.parse_args()
results_folder = Path(args.result)
if not results_folder.exists():
raise FileNotFoundError(f"results folder does not exist: {results_folder}")
# collect results
for test_file in results_folder.glob("*.json"):
with open(test_file) as f:
@ -209,6 +102,7 @@ if __name__ == "__main__":
if "serving" in str(test_file):
# this result is generated via `vllm bench serve` command
# attach the benchmarking command to raw_result
try:
with open(test_file.with_suffix(".commands")) as f:
@ -216,44 +110,12 @@ if __name__ == "__main__":
except OSError as e:
print(e)
continue
# Parse Server Command Arg
out: dict[str, Any] = {
"server_command": parse_client_command(command["server_command"])
}
parse_args = [
"--tensor-parallel-size",
"--pipeline-parallel-size",
"--dtype",
]
col_mapping = ["tp_size", "pp_size", "dtype"]
for index, arg in enumerate(parse_args):
if arg in out["server_command"]["args"]:
raw_result.update(
{col_mapping[index]: out["server_command"]["args"][arg]}
)
# Parse Client Command Arg
out: dict[str, Any] = {
"client_command": parse_client_command(command["client_command"])
}
parse_args = [
"--dataset-name",
"--random-input-len",
"--random-output-len",
"--request-rate",
]
col_mapping = ["dataset_name", "input_len", "output_len", "qps"]
for index, arg in enumerate(parse_args):
if arg in out["client_command"]["args"]:
raw_result.update(
{col_mapping[index]: out["client_command"]["args"][arg]}
)
# Add Server, Client command
raw_result.update(command)
# update the test name of this result
raw_result.update({"test_name": test_file.stem})
# add the result to raw_result
serving_results.append(raw_result)
continue
@ -343,10 +205,7 @@ if __name__ == "__main__":
columns=latency_column_mapping
)
if not serving_results.empty:
valid_columns = [
col for col in serving_column_mapping if col in serving_results.columns
]
serving_results = serving_results[valid_columns].rename(
serving_results = serving_results[list(serving_column_mapping.keys())].rename(
columns=serving_column_mapping
)
if not throughput_results.empty:
@ -386,9 +245,7 @@ if __name__ == "__main__":
)
# document the result
md_file = "benchmark_results.md"
json_file = "benchmark_results.json"
with open(results_folder / md_file, "w") as f:
with open(results_folder / "benchmark_results.md", "w") as f:
results = read_markdown(
"../.buildkite/nightly-benchmarks/"
+ "performance-benchmarks-descriptions.md"
@ -403,7 +260,7 @@ if __name__ == "__main__":
f.write(results)
# document benchmarking results in json
with open(results_folder / json_file, "w") as f:
with open(results_folder / "benchmark_results.json", "w") as f:
results = (
latency_results.to_dict(orient="records")
+ throughput_results.to_dict(orient="records")

View File

@ -194,11 +194,9 @@ run_latency_tests() {
# check if there is enough GPU to run the test
tp=$(echo "$latency_params" | jq -r '.tensor_parallel_size')
if [ "$ON_CPU" == "1" ]; then
pp=$(echo "$latency_params" | jq -r '.pipeline_parallel_size')
world_size=$(($tp*$pp))
if [[ $numa_count -lt $world_size && -z "${REMOTE_HOST}" ]]; then
echo "Required world-size $world_size but only $numa_count NUMA nodes found. Skip testcase $test_name."
if [ "$ON_CPU" == "1" ];then
if [[ $numa_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
continue
fi
else
@ -263,11 +261,9 @@ run_throughput_tests() {
# check if there is enough GPU to run the test
tp=$(echo "$throughput_params" | jq -r '.tensor_parallel_size')
if [ "$ON_CPU" == "1" ]; then
pp=$(echo "$throughput_params" | jq -r '.pipeline_parallel_size')
world_size=$(($tp*$pp))
if [[ $numa_count -lt $world_size && -z "${REMOTE_HOST}" ]]; then
echo "Required world-size $world_size but only $numa_count NUMA nodes found. Skip testcase $test_name."
if [ "$ON_CPU" == "1" ];then
if [[ $numa_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
continue
fi
else
@ -333,21 +329,12 @@ run_serving_tests() {
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
max_concurrency_list=$(echo "$params" | jq -r '.max_concurrency_list')
if [[ -z "$max_concurrency_list" || "$max_concurrency_list" == "null" ]]; then
num_prompts=$(echo "$client_params" | jq -r '.num_prompts')
max_concurrency_list="[$num_prompts]"
fi
max_concurrency_list=$(echo "$max_concurrency_list" | jq -r '.[] | @sh')
echo "Running over max concurrency list $max_concurrency_list"
# check if there is enough resources to run the test
tp=$(echo "$server_params" | jq -r '.tensor_parallel_size')
if [ "$ON_CPU" == "1" ]; then
pp=$(echo "$server_params" | jq -r '.pipeline_parallel_size')
world_size=$(($tp*$pp))
if [[ $numa_count -lt $world_size && -z "${REMOTE_HOST}" ]]; then
echo "Required world-size $world_size but only $numa_count NUMA nodes found. Skip testcase $test_name."
if [ "$ON_CPU" == "1" ];then
if [[ $numa_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
continue
fi
else
@ -403,10 +390,8 @@ run_serving_tests() {
echo "now qps is $qps"
fi
# iterate over different max_concurrency
for max_concurrency in $max_concurrency_list; do
new_test_name=$test_name"_qps_"$qps"_concurrency_"$max_concurrency
echo " new test name $new_test_name"
new_test_name=$test_name"_qps_"$qps
# pass the tensor parallel size to the client so that it can be displayed
# on the benchmark dashboard
client_command="vllm bench serve \
@ -414,7 +399,6 @@ run_serving_tests() {
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--max-concurrency $max_concurrency \
--metadata "tensor_parallel_size=$tp" \
$client_args $client_remote_args "
@ -436,7 +420,6 @@ run_serving_tests() {
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
done
# clean up
kill -9 $server_pid

View File

@ -6,7 +6,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"num_iters_warmup": 5,
@ -20,7 +20,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"num_iters_warmup": 5,

View File

@ -1,8 +1,7 @@
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -11,7 +10,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -24,17 +23,17 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -43,7 +42,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -56,17 +55,17 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -75,7 +74,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -88,17 +87,17 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -107,7 +106,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -121,19 +120,19 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 1000,
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -142,7 +141,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -156,19 +155,19 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 1000,
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -177,7 +176,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -191,11 +190,13 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 1000,
"num_prompts": 1000
}
}

View File

@ -1,8 +1,7 @@
[
{
"test_name": "serving_llama8B_pp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -11,7 +10,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -24,17 +23,17 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -43,7 +42,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -56,17 +55,17 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp2pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"test_name": "serving_llama8B_tp2pp6_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -75,7 +74,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
@ -89,17 +88,17 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_pp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -108,7 +107,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -122,28 +121,28 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 1000,
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_SGL_KERNEL:": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -157,19 +156,19 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 1000,
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_tp2pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -178,7 +177,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
@ -193,12 +192,13 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 1000,
"num_prompts": 1000
}
}

View File

@ -2,7 +2,6 @@
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -11,7 +10,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -24,17 +23,17 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp2_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -43,7 +42,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -56,17 +55,17 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp4_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -75,7 +74,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -88,17 +87,17 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp4_random_1024_128",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -107,7 +106,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -121,19 +120,19 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 1024,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 100,
"num_prompts": 100
}
},
{
"test_name": "serving_llama8B_pp6_random_1024_128",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -142,7 +141,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 6,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
@ -156,12 +155,13 @@
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 1024,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 100,
"num_prompts": 100
}
}

View File

@ -6,7 +6,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
@ -21,7 +21,7 @@
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",

View File

@ -1,20 +1,4 @@
steps:
# aarch64 + CUDA builds
- label: "Build arm64 wheel - CUDA 12.8"
id: build-wheel-arm64-cuda-12-8
agents:
queue: arm64_cpu_queue_postmerge
commands:
# #NOTE: torch_cuda_arch_list is derived from upstream PyTorch build files here:
# https://github.com/pytorch/pytorch/blob/main/.ci/aarch64_linux/aarch64_ci_build.sh#L7
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
# x86 + CUDA builds
- label: "Build wheel - CUDA 12.8"
id: build-wheel-cuda-12-8
agents:

View File

@ -121,6 +121,7 @@ fi
if [[ $commands == *" kernels/quantization"* ]]; then
commands="${commands} \
--ignore=kernels/quantization/test_int8_quant.py \
--ignore=kernels/quantization/test_aqlm.py \
--ignore=kernels/quantization/test_machete_mm.py \
--ignore=kernels/quantization/test_block_fp8.py \
--ignore=kernels/quantization/test_block_int8.py \

View File

@ -23,13 +23,9 @@ docker run \
--device /dev/dri \
-v /dev/dri/by-path:/dev/dri/by-path \
--entrypoint="" \
-e "HF_TOKEN=${HF_TOKEN}" \
-e "ZE_AFFINITY_MASK=${ZE_AFFINITY_MASK}" \
--name "${container_name}" \
"${image_name}" \
bash -c '
set -e
echo $ZE_AFFINITY_MASK
sh -c '
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
@ -39,8 +35,8 @@ docker run \
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
pytest -v -s v1/structured_output
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py --ignore=v1/spec_decode/test_tree_attention.py
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py
pytest -v -s v1/test_serial_utils.py
pytest -v -s v1/test_utils.py
pytest -v -s v1/test_metrics_reader.py

View File

@ -31,6 +31,16 @@
steps:
##### fast check tests #####
- label: Documentation Build # 2min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/test_docs"
fast_check: true
no_gpu: True
commands:
- pip install -r ../requirements/docs.txt
# TODO: add `--strict` once warnings in docstrings are fixed
- mkdocs build
- label: Pytorch Nightly Dependency Override Check # 2min
# if this test fails, it means the nightly torch version is not compatible with some
# of the dependencies. Please check the error message and add the package to whitelist
@ -46,7 +56,6 @@ steps:
source_file_dependencies:
- vllm/
- tests/mq_llm_engine
- tests/async_engine
- tests/test_inputs.py
- tests/test_outputs.py
- tests/multimodal
@ -56,7 +65,6 @@ steps:
commands:
- python3 standalone_tests/lazy_imports.py
- pytest -v -s mq_llm_engine # MQLLMEngine
- pytest -v -s async_engine # AsyncLLMEngine
- pytest -v -s test_inputs.py
- pytest -v -s test_outputs.py
- pytest -v -s multimodal
@ -88,6 +96,15 @@ steps:
- pytest -v -s basic_correctness/test_cpu_offload.py
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Chunked Prefill Test
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/basic_correctness/test_chunked_prefill
commands:
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
- label: Core Test # 10min
mirror_hardwares: [amdexperimental]
fast_check: true
@ -244,7 +261,6 @@ steps:
- pytest -v -s v1/engine
- pytest -v -s v1/entrypoints
- pytest -v -s v1/sample
- pytest -v -s v1/logits_processors
- pytest -v -s v1/worker
- pytest -v -s v1/structured_output
- pytest -v -s v1/spec_decode
@ -286,6 +302,15 @@ steps:
- python3 offline_inference/basic/score.py
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
- label: Prefix Caching Test # 9min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/prefix_caching
commands:
- pytest -v -s prefix_caching
- label: Platform Tests (CUDA)
mirror_hardwares: [amdexperimental]
source_file_dependencies:
@ -382,7 +407,6 @@ steps:
- label: Kernels MoE Test %N
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/quantization/cutlass_w8a8/moe/
- csrc/moe/
- tests/kernels/moe
- vllm/model_executor/layers/fused_moe/
@ -631,7 +655,6 @@ steps:
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/compilation/fusion.py
- vllm/compilation/fusion_attn.py
commands:
- nvidia-smi
- python3 examples/offline_inference/basic/chat.py
@ -644,11 +667,9 @@ steps:
- pytest -v -s tests/kernels/quantization/test_cutlass_scaled_mm.py -k 'fp8'
- pytest -v -s tests/kernels/quantization/test_nvfp4_quant.py
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
# Fusion
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusion_attn.py::test_attention_quant_pattern
##### 1 GPU test #####
##### multi gpus test #####

10
.github/CODEOWNERS vendored
View File

@ -10,7 +10,6 @@
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
/vllm/model_executor/layers/mamba @tdoublep
/vllm/multimodal @DarkLight1337 @ywang96
/vllm/vllm_flash_attn @LucasWilkinson
/vllm/lora @jeejeelee
@ -26,11 +25,11 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
/vllm/v1/structured_output @mgoin @russellb @aarnphm
/vllm/v1/attention/backends/triton_attn.py @tdoublep
# Test ownership
/.buildkite/lm-eval-harness @mgoin @simon-mo
/tests/async_engine @njhill @robertgshaw2-redhat @simon-mo
/tests/basic_correctness/test_chunked_prefill @rkooo567 @comaniac
/tests/distributed/test_multi_node_assignment.py @youkaichao
/tests/distributed/test_pipeline_parallel.py @youkaichao
/tests/distributed/test_same_node.py @youkaichao
@ -45,7 +44,6 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/v1/structured_output @mgoin @russellb @aarnphm
/tests/weight_loading @mgoin @youkaichao @yewentao256
/tests/lora @jeejeelee
/tests/models/language/generation/test_hybrid.py @tdoublep
# Docs
/docs @hmellor
@ -74,9 +72,3 @@ mkdocs.yaml @hmellor
/vllm/model_executor/models/pixtral*.py @patrickvonplaten
/vllm/transformers_utils/configs/mistral.py @patrickvonplaten
/vllm/transformers_utils/tokenizers/mistral.py @patrickvonplaten
# Kernels
/vllm/attention/ops/chunked_prefill_paged_decode.py @tdoublep
/vllm/attention/ops/triton_unified_attention.py @tdoublep

3
.gitignore vendored
View File

@ -207,6 +207,3 @@ shellcheck*/
# Ignore moe/marlin_moe gen code
csrc/moe/marlin_moe_wna16/kernel_*
# Ignore ep_kernels_workspace folder
ep_kernels_workspace/

View File

@ -249,6 +249,7 @@ set(VLLM_EXT_SRC
"csrc/quantization/gguf/gguf_kernel.cu"
"csrc/quantization/activation_kernels.cu"
"csrc/cuda_utils_kernels.cu"
"csrc/prepare_inputs/advance_step.cu"
"csrc/custom_all_reduce.cu"
"csrc/torch_bindings.cpp")
@ -286,6 +287,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
FetchContent_MakeAvailable(cutlass)
list(APPEND VLLM_EXT_SRC
"csrc/quantization/aqlm/gemm_kernels.cu"
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/permute_cols.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
@ -349,10 +351,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_TEMPLATE_KERNEL_SRC}"
CUDA_ARCHS "${MARLIN_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8)
set_source_files_properties(${MARLIN_TEMPLATE_KERNEL_SRC}
PROPERTIES COMPILE_FLAGS "-static-global-template-stub=false")
endif()
list(APPEND VLLM_EXT_SRC ${MARLIN_TEMPLATE_KERNEL_SRC})
@ -366,12 +364,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_SRCS}"
CUDA_ARCHS "${MARLIN_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8)
set_source_files_properties("csrc/quantization/gptq_marlin/gptq_marlin.cu"
PROPERTIES COMPILE_FLAGS "-static-global-template-stub=false")
endif()
list(APPEND VLLM_EXT_SRC "${MARLIN_SRCS}")
message(STATUS "Building Marlin kernels for archs: ${MARLIN_ARCHS}")
else()
message(STATUS "Not building Marlin kernels as no compatible archs found"
@ -861,10 +854,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set_gencode_flags_for_srcs(
SRCS "${MOE_WNAA16_MARLIN_SRC}"
CUDA_ARCHS "${MARLIN_MOE_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8)
set_source_files_properties(${MOE_WNAA16_MARLIN_SRC}
PROPERTIES COMPILE_FLAGS "-static-global-template-stub=false")
endif()
list(APPEND VLLM_MOE_EXT_SRC ${MOE_WNAA16_MARLIN_SRC})

View File

@ -22,17 +22,6 @@ become available.
<td style="text-align: center;"></td>
<td><code>wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json</code></td>
</tr>
<tr>
<td><strong>ShareGPT4V (Image)</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td>
<code>wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json</code>
<br>
<div>Note that the images need to be downloaded separately. For example, to download COCO's 2017 Train images:</div>
<code>wget http://images.cocodataset.org/zips/train2017.zip</code>
</td>
</tr>
<tr>
<td><strong>BurstGPT</strong></td>
<td style="text-align: center;"></td>
@ -40,7 +29,7 @@ become available.
<td><code>wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv</code></td>
</tr>
<tr>
<td><strong>Sonnet (deprecated)</strong></td>
<td><strong>Sonnet</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td>Local file: <code>benchmarks/sonnet.txt</code></td>
@ -51,12 +40,6 @@ become available.
<td style="text-align: center;"></td>
<td><code>synthetic</code></td>
</tr>
<tr>
<td><strong>Prefix Repetition</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>synthetic</code></td>
</tr>
<tr>
<td><strong>HuggingFace-VisionArena</strong></td>
<td style="text-align: center;"></td>
@ -598,20 +581,6 @@ python3 benchmarks/benchmark_prefix_caching.py \
--input-length-range 128:256
```
### Prefix Repetition Dataset
```bash
vllm bench serve \
--backend openai \
--model meta-llama/Llama-2-7b-chat-hf \
--dataset-name prefix_repetition \
--num-prompts 100 \
--prefix-repetition-prefix-len 512 \
--prefix-repetition-suffix-len 128 \
--prefix-repetition-num-prefixes 5 \
--prefix-repetition-output-len 128
```
</details>
## ⚡ Example - Request Prioritization Benchmark
@ -647,41 +616,3 @@ python3 benchmarks/benchmark_prioritization.py \
```
</details>
## 👁️ Example - Multi-Modal Benchmark
<details>
<summary>Show more</summary>
<br/>
Benchmark the performance of multi-modal requests in vLLM.
### Images (ShareGPT4V)
Start vLLM:
```bash
python -m vllm.entrypoints.openai.api_server \
--model Qwen/Qwen2.5-VL-7B-Instruct \
--dtype bfloat16 \
--limit-mm-per-prompt '{"image": 1}' \
--allowed-local-media-path /path/to/sharegpt4v/images
```
Send requests with images:
```bash
python benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2.5-VL-7B-Instruct \
--dataset-name sharegpt \
--dataset-path /path/to/ShareGPT4V/sharegpt4v_instruct_gpt4-vision_cap100k.json \
--num-prompts 100 \
--save-result \
--result-dir ~/vllm_benchmark_results \
--save-detailed \
--endpoint /v1/chat/completion
```
</details>

View File

@ -34,7 +34,6 @@ class RequestFuncInput:
multi_modal_content: Optional[dict | list[dict]] = None
ignore_eos: bool = False
language: Optional[str] = None
request_id: Optional[str] = None
@dataclass
@ -72,9 +71,6 @@ async def async_request_tgi(
"inputs": request_func_input.prompt,
"parameters": params,
}
headers = None
if request_func_input.request_id:
headers = {"x-request-id": request_func_input.request_id}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
if request_func_input.ignore_eos:
@ -86,9 +82,7 @@ async def async_request_tgi(
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(
url=api_url, json=payload, headers=headers
) as response:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
@ -151,9 +145,6 @@ async def async_request_trt_llm(
}
if request_func_input.ignore_eos:
payload["min_length"] = request_func_input.output_len
headers = None
if request_func_input.request_id:
headers = {"x-request-id": request_func_input.request_id}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
@ -161,9 +152,7 @@ async def async_request_trt_llm(
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(
url=api_url, json=payload, headers=headers
) as response:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
@ -222,8 +211,6 @@ async def async_request_deepspeed_mii(
"top_p": 1.0,
}
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
if request_func_input.request_id:
headers["x-request-id"] = request_func_input.request_id
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
@ -296,8 +283,6 @@ async def async_request_openai_completions(
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
if request_func_input.request_id:
headers["x-request-id"] = request_func_input.request_id
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
@ -410,8 +395,6 @@ async def async_request_openai_chat_completions(
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
if request_func_input.request_id:
headers["x-request-id"] = request_func_input.request_id
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
@ -508,8 +491,6 @@ async def async_request_openai_audio(
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
if request_func_input.request_id:
headers["x-request-id"] = request_func_input.request_id
# Send audio file
def to_bytes(y, sr):

View File

@ -19,7 +19,6 @@ import logging
import random
from abc import ABC, abstractmethod
from collections.abc import Mapping
from copy import deepcopy
from dataclasses import dataclass
from functools import cache
from io import BytesIO
@ -55,7 +54,6 @@ class SampleRequest:
expected_output_len: int
multi_modal_data: Optional[Union[MultiModalDataDict, dict, list[dict]]] = None
lora_request: Optional[LoRARequest] = None
request_id: Optional[str] = None
# -----------------------------------------------------------------------------
@ -157,10 +155,7 @@ class BenchmarkDataset(ABC):
@abstractmethod
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
request_id_prefix: str = "",
self, tokenizer: PreTrainedTokenizerBase, num_requests: int
) -> list[SampleRequest]:
"""
Abstract method to generate sample requests from the dataset.
@ -172,7 +167,6 @@ class BenchmarkDataset(ABC):
tokenizer (PreTrainedTokenizerBase): The tokenizer to be used
for processing the dataset's text.
num_requests (int): The number of sample requests to generate.
request_id_prefix (str) The prefix of request_id.
Returns:
list[SampleRequest]: A list of sample requests generated from the
@ -181,10 +175,7 @@ class BenchmarkDataset(ABC):
raise NotImplementedError("sample must be implemented in subclasses.")
def maybe_oversample_requests(
self,
requests: list[SampleRequest],
num_requests: int,
request_id_prefix: str = "",
self, requests: list[SampleRequest], num_requests: int
) -> None:
"""
Oversamples the list of requests if its size is less than the desired
@ -192,18 +183,11 @@ class BenchmarkDataset(ABC):
Args:
requests (List[SampleRequest]): The current list of sampled
requests.
num_requests (int): The target number of requests.
request_id_prefix (str) The prefix of the request ids.
requests. num_requests (int): The target number of requests.
"""
if len(requests) < num_requests:
random.seed(self.random_seed)
additional = deepcopy(
random.choices(requests, k=num_requests - len(requests))
)
for i in range(len(additional)):
req = additional[i]
req.request_id = request_id_prefix + str(len(requests) + i)
additional = random.choices(requests, k=num_requests - len(requests))
requests.extend(additional)
logger.info("Oversampled requests to reach %d total samples.", num_requests)
@ -319,7 +303,6 @@ class RandomDataset(BenchmarkDataset):
range_ratio: float = DEFAULT_RANGE_RATIO,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
request_id_prefix: str = "",
**kwargs,
) -> list[SampleRequest]:
# Enforce range_ratio < 1
@ -380,10 +363,8 @@ class RandomDataset(BenchmarkDataset):
prompt=prompt,
prompt_len=total_input_len,
expected_output_len=int(output_lens[i]),
request_id=request_id_prefix + str(i),
)
)
return requests
@ -425,11 +406,9 @@ class ShareGPTDataset(BenchmarkDataset):
max_loras: Optional[int] = None,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list:
samples: list = []
ind = 0
for entry in self.data:
if len(samples) >= num_requests:
break
@ -451,25 +430,17 @@ class ShareGPTDataset(BenchmarkDataset):
skip_min_output_len_check=output_len is not None,
):
continue
# TODO: Also support ShareGPT4Video.
if image_path := entry.get("image"):
mm_content = process_image(image_path)
else:
mm_content = None
if enable_multimodal_chat:
prompt = self.apply_multimodal_chat_transformation(prompt, mm_content)
prompt = self.apply_multimodal_chat_transformation(prompt, None)
samples.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=new_output_len,
lora_request=lora_request,
multi_modal_data=mm_content,
request_id=request_id_prefix + str(ind),
)
)
ind += 1
self.maybe_oversample_requests(samples, num_requests, request_id_prefix)
self.maybe_oversample_requests(samples, num_requests)
return samples
@ -535,11 +506,10 @@ class CustomDataset(BenchmarkDataset):
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
skip_chat_template: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list:
sampled_requests = []
for i, item in enumerate(self.data):
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt = item["prompt"]
@ -558,12 +528,9 @@ class CustomDataset(BenchmarkDataset):
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
request_id=request_id_prefix + str(i),
)
)
self.maybe_oversample_requests(
sampled_requests, num_requests, request_id_prefix
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
@ -605,7 +572,6 @@ class SonnetDataset(BenchmarkDataset):
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
return_prompt_formatted: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list:
# Calculate average token length for a poem line.
@ -631,7 +597,6 @@ class SonnetDataset(BenchmarkDataset):
prefix_lines = self.data[:num_prefix_lines]
samples = []
ind = 0
while len(samples) < num_requests:
extra_lines = random.choices(
self.data, k=num_input_lines - num_prefix_lines
@ -642,17 +607,14 @@ class SonnetDataset(BenchmarkDataset):
msg, add_generation_prompt=True, tokenize=False
)
prompt_len = len(tokenizer(prompt_formatted).input_ids)
if prompt_len <= input_len:
samples.append(
SampleRequest(
prompt=prompt_formatted if return_prompt_formatted else prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
request_id=request_id_prefix + str(ind),
)
)
ind += 1
return samples
@ -704,7 +666,6 @@ class BurstGPTDataset(BenchmarkDataset):
num_requests: int,
max_loras: Optional[int] = None,
lora_path: Optional[str] = None,
request_id_prefix: str = "",
**kwargs,
) -> list[SampleRequest]:
samples = []
@ -726,7 +687,6 @@ class BurstGPTDataset(BenchmarkDataset):
prompt_len=input_len,
expected_output_len=output_len,
lora_request=lora_req,
request_id=request_id_prefix + str(i),
)
)
return samples
@ -786,14 +746,12 @@ class ConversationDataset(HuggingFaceDataset):
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list:
# Filter examples with at least 2 conversations
filtered_data = self.data.filter(lambda x: len(x["conversations"]) >= 2)
sampled_requests = []
dynamic_output = output_len is None
ind = 0
for item in filtered_data:
if len(sampled_requests) >= num_requests:
@ -821,13 +779,9 @@ class ConversationDataset(HuggingFaceDataset):
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
request_id=request_id_prefix + str(ind),
)
)
ind += 1
self.maybe_oversample_requests(
sampled_requests, num_requests, request_id_prefix
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
@ -854,12 +808,11 @@ class VisionArenaDataset(HuggingFaceDataset):
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list:
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
sampled_requests = []
for i, item in enumerate(self.data):
for item in self.data:
if len(sampled_requests) >= num_requests:
break
parser_fn = self.SUPPORTED_DATASET_PATHS.get(self.dataset_path)
@ -879,12 +832,9 @@ class VisionArenaDataset(HuggingFaceDataset):
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
request_id=request_id_prefix + str(i),
)
)
self.maybe_oversample_requests(
sampled_requests, num_requests, request_id_prefix
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
@ -914,12 +864,11 @@ class InstructCoderDataset(HuggingFaceDataset):
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list:
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
sampled_requests = []
for i, item in enumerate(self.data):
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt = f"{item['input']}\n\n{item['instruction']} Just output \
@ -937,12 +886,9 @@ class InstructCoderDataset(HuggingFaceDataset):
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
request_id=request_id_prefix + str(i),
)
)
self.maybe_oversample_requests(
sampled_requests, num_requests, request_id_prefix
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
@ -972,13 +918,12 @@ class MTBenchDataset(HuggingFaceDataset):
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list:
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
sampled_requests = []
for i, item in enumerate(self.data):
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt = item["turns"][0]
@ -996,12 +941,9 @@ class MTBenchDataset(HuggingFaceDataset):
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
request_id=request_id_prefix + str(i),
)
)
self.maybe_oversample_requests(
sampled_requests, num_requests, request_id_prefix
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
@ -1026,12 +968,10 @@ class AIMODataset(HuggingFaceDataset):
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
request_id_prefix: str = "",
**kwargs,
) -> list:
sampled_requests = []
dynamic_output = output_len is None
ind = 0
for item in self.data:
if len(sampled_requests) >= num_requests:
@ -1054,13 +994,9 @@ class AIMODataset(HuggingFaceDataset):
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=None,
request_id=request_id_prefix + str(ind),
)
)
ind += 1
self.maybe_oversample_requests(
sampled_requests, num_requests, request_id_prefix
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
@ -1130,18 +1066,12 @@ class NextEditPredictionDataset(HuggingFaceDataset):
"zed-industries/zeta": _format_zeta_prompt,
}
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
request_id_prefix: str = "",
**kwargs,
):
def sample(self, tokenizer: PreTrainedTokenizerBase, num_requests: int, **kwargs):
formatting_prompt_func = self.MAPPING_PROMPT_FUNCS.get(self.dataset_path)
if formatting_prompt_func is None:
raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
samples = []
for i, sample in enumerate(self.data):
for sample in self.data:
sample = formatting_prompt_func(sample)
samples.append(
SampleRequest(
@ -1150,12 +1080,11 @@ class NextEditPredictionDataset(HuggingFaceDataset):
expected_output_len=len(
tokenizer(sample["expected_output"]).input_ids
),
request_id=request_id_prefix + str(i),
)
)
if len(samples) >= num_requests:
break
self.maybe_oversample_requests(samples, num_requests, request_id_prefix)
self.maybe_oversample_requests(samples, num_requests)
return samples
@ -1204,7 +1133,6 @@ class ASRDataset(HuggingFaceDataset):
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
request_id_prefix: str = "",
**kwargs,
) -> list:
import librosa
@ -1214,7 +1142,6 @@ class ASRDataset(HuggingFaceDataset):
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests = []
skipped = 0
ind = 0
for item in self.data:
if len(sampled_requests) >= num_requests:
break
@ -1233,10 +1160,8 @@ class ASRDataset(HuggingFaceDataset):
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
request_id=request_id_prefix + str(ind),
)
)
ind += 1
if skipped:
logger.warning(
"%d samples discarded from dataset due to"
@ -1244,7 +1169,5 @@ class ASRDataset(HuggingFaceDataset):
" what Whisper supports.",
skipped,
)
self.maybe_oversample_requests(
sampled_requests, num_requests, request_id_prefix
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests

View File

@ -375,12 +375,11 @@ async def benchmark(
rps_change_events.append({"rps": rps_val, "timestamp": timestamp})
last_int_rps = current_int_rps
prompt, prompt_len, output_len, mm_content, request_id = (
prompt, prompt_len, output_len, mm_content = (
request.prompt,
request.prompt_len,
request.expected_output_len,
request.multi_modal_data,
request.request_id,
)
req_model_id, req_model_name = model_id, model_name
if lora_modules:
@ -398,7 +397,6 @@ async def benchmark(
multi_modal_content=mm_content,
ignore_eos=ignore_eos,
extra_body=extra_body,
request_id=request_id,
)
task = limited_request_func(request_func_input=request_func_input, pbar=pbar)
tasks.append(asyncio.create_task(task))
@ -667,7 +665,6 @@ def main(args: argparse.Namespace):
tokenizer=tokenizer,
output_len=args.custom_output_len,
skip_chat_template=args.custom_skip_chat_template,
request_id_prefix=args.request_id_prefix,
)
elif args.dataset_name == "sonnet":
@ -681,7 +678,6 @@ def main(args: argparse.Namespace):
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
return_prompt_formatted=False,
request_id_prefix=args.request_id_prefix,
)
else:
assert tokenizer.chat_template or tokenizer.default_chat_template, (
@ -694,7 +690,6 @@ def main(args: argparse.Namespace):
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
return_prompt_formatted=True,
request_id_prefix=args.request_id_prefix,
)
elif args.dataset_name == "hf":
@ -756,7 +751,6 @@ def main(args: argparse.Namespace):
num_requests=args.num_prompts,
tokenizer=tokenizer,
output_len=args.hf_output_len,
request_id_prefix=args.request_id_prefix,
)
else:
@ -768,15 +762,10 @@ def main(args: argparse.Namespace):
tokenizer=tokenizer,
num_requests=args.num_prompts,
output_len=args.sharegpt_output_len,
request_id_prefix=args.request_id_prefix,
),
"burstgpt": lambda: BurstGPTDataset(
random_seed=args.seed, dataset_path=args.dataset_path
).sample(
tokenizer=tokenizer,
num_requests=args.num_prompts,
request_id_prefix=args.request_id_prefix,
),
).sample(tokenizer=tokenizer, num_requests=args.num_prompts),
"random": lambda: RandomDataset(dataset_path=args.dataset_path).sample(
tokenizer=tokenizer,
num_requests=args.num_prompts,
@ -784,7 +773,6 @@ def main(args: argparse.Namespace):
input_len=args.random_input_len,
output_len=args.random_output_len,
range_ratio=args.random_range_ratio,
request_id_prefix=args.request_id_prefix,
),
}
@ -1130,13 +1118,6 @@ def create_argument_parser():
"goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 "
"and the blog: https://hao-ai-lab.github.io/blogs/distserve",
)
parser.add_argument(
"--request-id-prefix",
type=str,
required=False,
default="benchmark-serving",
help="Specify the prefix of request id.",
)
# group for dataset specific arguments
custom_group = parser.add_argument_group("custom dataset options")

View File

@ -1,199 +1,63 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import asyncio
import logging
import os
import aiohttp
from quart import Quart, Response, make_response, request
from rate_limiter import RateLimiter
from request_queue import RequestQueue
from quart import Quart, make_response, request
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
app = Quart(__name__)
def parse_args():
"""parse command line arguments"""
parser = argparse.ArgumentParser(description="vLLM P/D disaggregation proxy server")
# Add args
parser.add_argument(
"--timeout",
type=float,
default=300,
help="Timeout for backend service requests in seconds (default: 300)",
)
parser.add_argument(
"--max-concurrent",
type=int,
default=100,
help="Maximum concurrent requests to backend services (default: 100)",
)
parser.add_argument(
"--queue-size",
type=int,
default=500,
help="Maximum number of requests in the queue (default: 500)",
)
parser.add_argument(
"--rate-limit",
type=int,
default=40,
help="Maximum requests per second (default: 40)",
)
parser.add_argument(
"--port",
type=int,
default=8000,
help="Port to run the server on (default: 8000)",
)
parser.add_argument(
"--prefill-url",
type=str,
default="http://localhost:8100/v1/completions",
help="Prefill service endpoint URL",
)
parser.add_argument(
"--decode-url",
type=str,
default="http://localhost:8200/v1/completions",
help="Decode service endpoint URL",
)
return parser.parse_args()
def main():
"""parse command line arguments"""
args = parse_args()
# Initialize configuration using command line parameters
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=args.timeout)
MAX_CONCURRENT_REQUESTS = args.max_concurrent
REQUEST_QUEUE_SIZE = args.queue_size
RATE_LIMIT = args.rate_limit
PREFILL_SERVICE_URL = args.prefill_url
DECODE_SERVICE_URL = args.decode_url
PORT = args.port
app = Quart(__name__)
# Initialize the rate limiter and request queue
rate_limiter = RateLimiter(RATE_LIMIT)
request_queue = RequestQueue(MAX_CONCURRENT_REQUESTS, REQUEST_QUEUE_SIZE)
# Attach the configuration object to the application instance
app.config.update(
{
"AIOHTTP_TIMEOUT": AIOHTTP_TIMEOUT,
"rate_limiter": rate_limiter,
"request_queue": request_queue,
"PREFILL_SERVICE_URL": PREFILL_SERVICE_URL,
"DECODE_SERVICE_URL": DECODE_SERVICE_URL,
}
)
# Start queue processing on app startup
@app.before_serving
async def startup():
"""Start request processing task when app starts serving"""
asyncio.create_task(request_queue.process())
async def forward_request(url, data):
"""Forward request to backend service with rate limiting and error handling"""
async def forward_request(url, data):
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
# Use rate limiter as context manager
async with (
rate_limiter,
aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session,
):
try:
async with session.post(
url=url, json=data, headers=headers
) as response:
async with session.post(url=url, json=data, headers=headers) as response:
if response.status == 200:
# Stream response chunks
# if response.headers.get('Transfer-Encoding') == 'chunked':
if True:
async for chunk_bytes in response.content.iter_chunked(1024):
yield chunk_bytes
else:
# Handle backend service errors
error_text = await response.text()
logger.error(
"Backend service error: %s - %s",
response.status,
error_text,
)
yield b'{"error": "Backend service error"}'
except aiohttp.ClientError as e:
# Handle connection errors
logger.error("Connection error to %s: %s", url, str(e))
yield b'{"error": "Service unavailable"}'
except asyncio.TimeoutError:
# Handle timeout errors
logger.error("Timeout connecting to %s", url)
yield b'{"error": "Service timeout"}'
content = await response.read()
yield content
async def process_request():
"""Process a single request through prefill and decode stages"""
@app.route("/v1/completions", methods=["POST"])
async def handle_request():
try:
original_request_data = await request.get_json()
# Create prefill request (max_tokens=1)
prefill_request = original_request_data.copy()
# change max_tokens = 1 to let it only do prefill
prefill_request["max_tokens"] = 1
# Execute prefill stage
async for _ in forward_request(PREFILL_SERVICE_URL, prefill_request):
# finish prefill
async for _ in forward_request(
"http://localhost:8100/v1/completions", prefill_request
):
continue
# Execute decode stage and stream response
generator = forward_request(DECODE_SERVICE_URL, original_request_data)
# return decode
generator = forward_request(
"http://localhost:8200/v1/completions", original_request_data
)
response = await make_response(generator)
response.timeout = None # Disable timeout for streaming response
response.timeout = None
return response
except Exception:
logger.exception("Error processing request")
return Response(
response=b'{"error": "Internal server error"}',
status=500,
content_type="application/json",
)
except Exception as e:
import sys
import traceback
@app.route("/v1/completions", methods=["POST"])
async def handle_request():
"""Handle incoming API requests with concurrency and rate limiting"""
# Create task for request processing
task = asyncio.create_task(process_request())
# Enqueue request or reject if queue is full
if not await request_queue.enqueue(task):
return Response(
response=b'{"error": "Server busy, try again later"}',
status=503,
content_type="application/json",
)
try:
# Return the response from the processing task
return await task
except asyncio.CancelledError:
# Handle task cancellation (timeout or queue full)
logger.warning("Request cancelled due to timeout or queue full")
return Response(
response=b'{"error": "Request cancelled"}',
status=503,
content_type="application/json",
)
# Start the Quart server with host can be set to 0.0.0.0
app.run(port=PORT)
exc_info = sys.exc_info()
print("Error occurred in disagg prefill proxy server")
print(e)
print("".join(traceback.format_exception(*exc_info)))
if __name__ == "__main__":
main()
app.run(port=8000)

View File

@ -1,45 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
import time
class RateLimiter:
"""Token bucket rate limiter implementation"""
def __init__(self, rate_limit):
self.rate_limit = rate_limit # Requests per second
self.num_available_tokens = rate_limit # Available tokens
self.last_refill = time.monotonic() # Last token refill time
self.lock = asyncio.Lock() # Synchronization lock
async def acquire(self):
"""Acquire a token from the rate limiter"""
while True:
async with self.lock:
current_time = time.monotonic()
elapsed = current_time - self.last_refill
# Refill num_available_tokens if more than 1 second has passed
if elapsed > 1.0:
self.num_available_tokens = self.rate_limit
self.last_refill = current_time
# Check if num_available_tokens are available
if self.num_available_tokens > 0:
self.num_available_tokens -= 1
return True
# Calculate wait time if no num_available_tokens available
wait_time = 1.0 - elapsed
await asyncio.sleep(wait_time)
async def __aenter__(self):
"""Enter async context manager - acquire token"""
await self.acquire()
return self
async def __aexit__(self, exc_type, exc_value, traceback):
"""Exit async context manager - no cleanup needed"""
pass

View File

@ -1,39 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
from collections import deque
class RequestQueue:
"""Request queue manager with concurrency control"""
def __init__(self, max_concurrent, max_queue_size):
# Maximum concurrent requests
self.max_concurrent = max_concurrent
self.max_queue_size = max_queue_size # Maximum queue size
# Concurrency control
self.semaphore = asyncio.Semaphore(max_concurrent)
self.queue = deque() # Request queue
self.queue_size = 0 # Current queue size
self.lock = asyncio.Lock() # Sync queue Lock
async def enqueue(self, task):
"""Add a request task to the queue"""
async with self.lock:
if self.queue_size >= self.max_queue_size:
return False
self.queue.append(task)
self.queue_size += 1
return True
async def process(self):
"""Process queued requests using semaphore for concurrency control"""
while True:
if self.queue:
async with self.semaphore, self.lock:
task = self.queue.popleft()
self.queue_size -= 1
await task
await asyncio.sleep(0.01) # Yield control to event loop

View File

@ -0,0 +1,345 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
import sys
from typing import Optional
import torch
import torch.nn.functional as F
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.aqlm import (
dequantize_weight,
generic_dequantize_gemm,
get_int_dtype,
optimized_dequantize_gemm,
)
from vllm.utils import FlexibleArgumentParser
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def torch_mult(
# [..., in_features]
input: torch.Tensor,
weights: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
) -> torch.Tensor:
output = F.linear(input, weights)
return output
def dequant_out_scale(
# [..., in_features]
input: torch.Tensor,
# [num_out_groups, num_in_groups, num_codebooks]
codes: torch.IntTensor,
# [num_codebooks, codebook_size, out_group_size, in_group_size]
codebooks: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
if bias is None:
output = F.linear(input, weights, bias)
orig_shape = output.shape
flattened_output = output.view(-1, output.size(-1))
f_scales = scales.view(-1, scales.shape[0])
b_scales = f_scales.expand(flattened_output.shape[0], -1)
flattened_output *= b_scales
return flattened_output.view(orig_shape)
else:
b_scales = scales.view(scales.shape[:-3] + (-1,)).expand(-1, weights.shape[1])
weights *= b_scales
return F.linear(input, weights, bias)
def dequant_weight_scale(
# [..., in_features]
input: torch.Tensor,
# [num_out_groups, num_in_groups, num_codebooks]
codes: torch.IntTensor,
# [num_codebooks, codebook_size, out_group_size, in_group_size]
codebooks: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
b_scales = scales.view(scales.shape[:-3] + (-1,)).expand(-1, weights.shape[1])
weights *= b_scales
return F.linear(input, weights, bias)
def dequant_no_scale(
# [..., in_features]
input: torch.Tensor,
# [num_out_groups, num_in_groups, num_codebooks]
codes: torch.IntTensor,
# [num_codebooks, codebook_size, out_group_size, in_group_size]
codebooks: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
return F.linear(input, weights, bias)
# Compare the optimized 1x16 and 2x8 cuda decompression/dequant kernels against
# the generic pytorch version.
# Just visual comparison.
def dequant_test(k: int, parts: torch.Tensor, nbooks: int, bits: int) -> None:
n = int(parts.sum().item())
device = torch.device("cuda:0")
code_range = (1 << bits) // 2
ingroups = 8
codes = torch.randint(
-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device,
)
codebooks = torch.randn(
size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device,
)
count = 0
for index in range(16):
for i in range(8):
for book in range(nbooks):
codebooks[book, index, 0, i] = count * (10**book)
count += 1
print("codes shape", codes.shape)
for i in range(16):
for book in range(nbooks):
codes[0, i, book] = i
codes[0, -i, book] = i
weights = dequantize_weight(codes, codebooks, None)
weights2 = ops.aqlm_dequant(codes, codebooks, parts)
print("weights shape:", weights.shape)
print("weights2 shape:", weights2.shape)
print("weights are:", weights)
print("weights2 are:", weights2)
print("first 128 weights are", weights[0, 0:128].to(torch.int32))
print("first 128 weights2 are:", weights2[0, 0:128].to(torch.int32))
print("last 128 weights are", weights[0, -128:])
print("last 128 weights2 are:", weights2[0, -128:])
def main():
parser = FlexibleArgumentParser(description="Benchmark aqlm performance.")
# Add arguments
parser.add_argument(
"--nbooks", type=int, default=1, help="Number of codebooks (default: 1)"
)
parser.add_argument(
"--bits",
type=int,
default=16,
help="Number of bits per code element (default: 16)",
)
parser.add_argument(
"--test",
type=bool,
default=False,
help="Run the decompression/dequant tester rather than benchmarking "
"(default: False)",
)
# Parse the arguments
args = parser.parse_args()
# Extract values
nbooks = args.nbooks
bits = args.bits
if args.test:
dequant_test(4096, torch.tensor((4096,)), nbooks, bits)
return
# Otherwise, benchmark.
methods = [
ops.aqlm_gemm,
dequant_out_scale,
generic_dequantize_gemm,
optimized_dequantize_gemm,
dequant_weight_scale,
torch_mult,
dequant_no_scale,
]
filename = f"./aqlm_benchmark_{nbooks}x{bits}.csv"
print(f"writing benchmarks to file {filename}")
with open(filename, "w") as f:
sys.stdout = f
print("m | k | n | n parts", end="")
for method in methods:
print(f" | {method.__name__.replace('_', ' ')} (µs)", end="")
print("")
# These are reasonable prefill sizes.
ksandpartions = (
(4096, (4096, 4096, 4096)),
(4096, (4096,)),
(4096, (11008, 11008)),
(11008, (4096,)),
)
# reasonable ranges for m.
for m in [
1,
2,
4,
8,
10,
12,
14,
16,
24,
32,
48,
52,
56,
64,
96,
112,
128,
256,
512,
1024,
1536,
2048,
3072,
4096,
]:
print(f"{m}", file=sys.__stdout__)
for ksp in ksandpartions:
run_grid(m, ksp[0], torch.tensor(ksp[1]), nbooks, bits, methods)
sys.stdout = sys.__stdout__
def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, methods):
# I didn't see visible improvements from increasing these, but feel free :)
num_warmup_trials = 1
num_trials = 1
num_calls = 100
# warmup.
for method in methods:
for _ in range(num_warmup_trials):
run_timing(
num_calls=num_calls,
m=m,
k=k,
parts=parts,
nbooks=nbooks,
bits=bits,
method=method,
)
n = parts.sum().item()
print(f"{m} | {k} | {n} | {parts.tolist()}", end="")
for method in methods:
best_time_us = 1e20
for _ in range(num_trials):
kernel_dur_ms = run_timing(
num_calls=num_calls,
m=m,
k=k,
parts=parts,
nbooks=nbooks,
bits=bits,
method=method,
)
kernel_dur_us = 1000 * kernel_dur_ms
if kernel_dur_us < best_time_us:
best_time_us = kernel_dur_us
print(f" | {kernel_dur_us:.0f}", end="")
print("")
def run_timing(
num_calls: int, m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, method
) -> float:
n = int(parts.sum().item())
device = torch.device("cuda:0")
input = torch.randn((1, m, k), dtype=torch.float16, device=device)
code_range = (1 << bits) // 2
ingroups = 8
codes = torch.randint(
-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device,
)
codebooks = torch.randn(
size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device,
)
scales = torch.randn(size=(n, 1, 1, 1), dtype=torch.float16, device=device)
# for comparison to just a pytorch mult.
weights = torch.randn((n, k), dtype=torch.float16, device=device)
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
if method is torch_mult:
for i in range(num_calls):
torch_mult(input, weights, scales)
else:
for i in range(num_calls):
method(input, codes, codebooks, scales, parts, None)
end_event.record()
end_event.synchronize()
dur_ms = start_event.elapsed_time(end_event) / num_calls
return dur_ms
if __name__ == "__main__":
sys.exit(main())

View File

@ -236,7 +236,6 @@ def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
a=bt.a,
c=None,
b_q_weight=w_q,
b_bias=None,
b_scales=w_s,
global_scale=None,
b_zeros=w_zp,

View File

@ -3,7 +3,6 @@
import argparse
import json
import os
import time
from contextlib import nullcontext
from datetime import datetime
@ -430,6 +429,7 @@ class BenchmarkWorker:
hidden_size,
topk,
dtype_str,
is_marlin=False,
)
else:
config = op_config[min(op_config.keys(), key=lambda x: abs(x - num_tokens))]
@ -542,7 +542,6 @@ def save_configs(
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
block_quant_shape: list[int],
save_dir: str,
) -> None:
dtype_str = get_config_dtype_str(
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
@ -553,8 +552,7 @@ def save_configs(
filename = get_config_file_name(
num_experts, shard_intermediate_size // 2, dtype_str, block_quant_shape
)
os.makedirs(save_dir, exist_ok=True)
filename = os.path.join(save_dir, filename)
print(f"Writing best config to {filename}...")
with open(filename, "w") as f:
json.dump(configs, f, indent=4)
@ -709,7 +707,6 @@ def main(args: argparse.Namespace):
use_fp8_w8a8,
use_int8_w8a16,
block_quant_shape,
args.save_dir,
)
end = time.time()
print(f"Tuning took {end - start:.2f} seconds")
@ -751,9 +748,6 @@ if __name__ == "__main__":
"--dtype", type=str, choices=["auto", "fp8_w8a8", "int8_w8a16"], default="auto"
)
parser.add_argument("--use-deep-gemm", action="store_true")
parser.add_argument(
"--save-dir", type=str, default="./", help="Directory to save tuned results"
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--batch-size", type=int, nargs="+", required=False)
parser.add_argument("--tune", action="store_true")

View File

@ -3,14 +3,16 @@
import csv
import os
import random
from datetime import datetime
from typing import Optional
import flashinfer
import torch
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
FP8_DTYPE = torch.float8_e4m3fn
# KV Cache Layout for TRT-LLM
# kv_cache_shape = (num_blocks, 2, num_kv_heads, page_size, head_dim)
def to_float8(x, dtype=torch.float8_e4m3fn):
@ -24,106 +26,64 @@ def to_float8(x, dtype=torch.float8_e4m3fn):
@torch.no_grad()
def benchmark_decode(
dtype: torch.dtype,
quant_dtypes: tuple[
Optional[torch.dtype], Optional[torch.dtype], Optional[torch.dtype]
],
batch_size: int,
max_seq_len: int,
num_heads: tuple[int, int] = (64, 8),
head_size: int = 128,
kv_layout: str = "HND",
block_size: int = 16,
warmup: int = 10,
trials: int = 20,
num_seqs,
max_seq_len,
page_size=16,
dtype=torch.bfloat16,
kv_layout="HND",
num_kv_heads=8,
kv_cache_dtype="auto",
head_dim=128,
warmup=10,
trials=20,
):
torch.set_default_device("cuda")
device = "cuda"
torch.manual_seed(0)
q_quant_dtype, kv_quant_dtype, o_quant_dtype = quant_dtypes
q_quant_dtype = q_quant_dtype or dtype
kv_quant_dtype = kv_quant_dtype or dtype
o_quant_dtype = o_quant_dtype or dtype
num_qo_heads, num_kv_heads = num_heads
assert num_qo_heads % num_kv_heads == 0
sm_scale = float(1.0 / (head_size**0.5))
HEAD_GRP_SIZE = 8
MAX_SEQ_LEN = max_seq_len
# large number to reduce kv_cache reuse
NUM_BLOCKS = int(256000 / block_size)
NUM_BLOCKS = int(256000 / page_size)
kv_cache_shape = None
if kv_layout == "NHD":
kv_cache_shape = (NUM_BLOCKS, 2, block_size, num_kv_heads, head_size)
elif kv_layout == "HND":
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, block_size, head_size)
else:
raise ValueError(f"Invalid kv_layout: {kv_layout}")
workspace_buffer = torch.empty(1024 * 1024 * 1024, dtype=torch.int8, device=device)
query = torch.randn(batch_size, num_qo_heads, head_size, dtype=dtype)
if q_quant_dtype == FP8_DTYPE:
query, q_scale = to_float8(query)
ref_query = query.to(dtype) * q_scale
else:
q_scale = 1.0
ref_query = query
# For decode, batch_size is num_decode_token
num_qo_heads = num_kv_heads * HEAD_GRP_SIZE
sm_scale = float(1.0 / (head_dim**0.5))
q = torch.randn(num_seqs, num_qo_heads, head_dim, device=device, dtype=dtype)
kv_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
kv_lens = torch.randint(1, max_seq_len, (batch_size,), dtype=torch.int32)
kv_lens[-1] = max_seq_len
max_kv_len = max(kv_lens)
kv_lens_tensor = torch.tensor(kv_lens, dtype=torch.int, device=device)
max_num_blocks_per_seq = (max_kv_len + page_size - 1) // page_size
seq_lens = kv_lens
max_seq_len = torch.max(seq_lens).item()
kv_cache = torch.randn(kv_cache_shape, dtype=dtype)
if kv_quant_dtype == FP8_DTYPE:
kv_cache, kv_scale = to_float8(kv_cache)
ref_kv_cache = kv_cache.to(dtype) * kv_scale
else:
kv_scale = 1.0
ref_kv_cache = kv_cache
k_scale = v_scale = kv_scale
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
block_tables = torch.randint(
0, NUM_BLOCKS, (batch_size, max_num_blocks_per_seq), dtype=torch.int32
0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32
)
kv_indptr = [0]
kv_indices = []
kv_last_page_lens = []
for i in range(batch_size):
seq_len = seq_lens[i]
assert seq_len > 0
num_blocks = (seq_len + block_size - 1) // block_size
kv_indices.extend(block_tables[i, :num_blocks])
kv_indptr.append(kv_indptr[-1] + num_blocks)
kv_last_page_len = seq_len % block_size
if kv_last_page_len == 0:
kv_last_page_len = block_size
kv_last_page_lens.append(kv_last_page_len)
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
workspace_buffer = torch.zeros(1024 * 1024 * 1024, dtype=torch.int8)
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, page_size, head_dim)
kv_cache = torch.randn(size=kv_cache_shape, device=device, dtype=dtype)
k_scale = v_scale = 1.0
wrapper = flashinfer.BatchDecodeWithPagedKVCacheWrapper(
if kv_cache_dtype.startswith("fp8"):
kv_cache, _ = to_float8(kv_cache)
output_trtllm = torch.empty(q.shape, dtype=dtype)
# Benchmark TRT decode
def trt_decode():
return flashinfer.decode.trtllm_batch_decode_with_kv_cache(
q,
kv_cache,
workspace_buffer,
kv_layout,
use_tensor_cores=((num_qo_heads // num_kv_heads) > 4),
)
wrapper.plan(
kv_indptr,
kv_indices,
kv_last_page_lens,
num_qo_heads,
num_kv_heads,
head_size,
block_size,
"NONE",
sm_scale=sm_scale,
q_data_type=dtype,
kv_data_type=dtype,
block_tables,
kv_lens_tensor,
max_kv_len,
bmm1_scale=k_scale * sm_scale,
bmm2_scale=v_scale,
out=output_trtllm,
)
def time_fn(fn, warmup=10, trials=20):
@ -141,51 +101,74 @@ def benchmark_decode(
times.append(start.elapsed_time(end)) # ms
return sum(times) / len(times), torch.std(torch.tensor(times))
o_scale = 1.0
output_baseline = torch.empty(ref_query.shape, dtype=dtype)
output_trtllm = torch.empty(query.shape, dtype=o_quant_dtype)
# TRT Decode
trt_mean, trt_std = time_fn(trt_decode)
def baseline_decode():
return wrapper.run(ref_query, ref_kv_cache, out=output_baseline)
kv_indptr = [0]
kv_indices = []
kv_last_page_lens = []
for i in range(num_seqs):
seq_len = kv_lens[i]
assert seq_len > 0
num_blocks = (seq_len + page_size - 1) // page_size
kv_indices.extend(block_tables[i, :num_blocks])
kv_indptr.append(kv_indptr[-1] + num_blocks)
kv_last_page_len = seq_len % page_size
if kv_last_page_len == 0:
kv_last_page_len = page_size
kv_last_page_lens.append(kv_last_page_len)
def trtllm_decode():
return flashinfer.decode.trtllm_batch_decode_with_kv_cache(
query=query,
kv_cache=kv_cache,
workspace_buffer=workspace_buffer,
block_tables=block_tables,
seq_lens=seq_lens,
max_seq_len=max_seq_len,
bmm1_scale=q_scale * k_scale * sm_scale,
bmm2_scale=v_scale / o_scale,
out=output_trtllm,
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
output_baseline = torch.empty(q.shape, dtype=dtype)
wrapper = flashinfer.BatchDecodeWithPagedKVCacheWrapper(
workspace_buffer,
kv_layout,
use_tensor_cores=((num_qo_heads // num_kv_heads) > 4),
)
wrapper.plan(
kv_indptr,
kv_indices,
kv_last_page_lens,
num_qo_heads,
num_kv_heads,
head_dim,
page_size,
"NONE",
q_data_type=dtype,
kv_data_type=torch.float8_e4m3fn if kv_cache_dtype.startswith("fp8") else dtype,
)
def baseline_decode():
return wrapper.run(q, kv_cache, sm_scale, k_scale, v_scale, output_baseline)
baseline_mean, baseline_std = time_fn(baseline_decode)
trtllm_mean, trtllm_std = time_fn(trtllm_decode)
# Calculate percentage speedup (positive means TRT is faster)
speedup_percent = (baseline_mean - trtllm_mean) / baseline_mean
speedup_percent = (baseline_mean - trt_mean) / baseline_mean
print(
f"\t{batch_size}\t{max_seq_len}\t{trtllm_mean:.3f}\t{trtllm_std.item():.3f}"
f"\t{num_seqs}\t{max_seq_len}\t{trt_mean:.3f}\t{trt_std.item():.3f}"
f"\t{baseline_mean:.3f}\t{baseline_std.item():.3f}\t{speedup_percent:.3f}"
)
# Return results for CSV writing
return {
"batch_size": batch_size,
"trtllm_mean": trtllm_mean,
"trtllm_std": trtllm_std.item(),
"num_seqs": num_seqs,
"trt_mean": trt_mean,
"trt_std": trt_std.item(),
"baseline_mean": baseline_mean,
"baseline_std": baseline_std.item(),
"speedup_percent": speedup_percent,
"q_dtype": str(q_quant_dtype),
"kv_cache_dtype": str(kv_quant_dtype),
"output_dtype": str(o_quant_dtype),
"block_size": block_size,
"q_dtype": str(dtype),
"kv_cache_dtype": kv_cache_dtype,
"page_size": page_size,
"num_kv_heads": num_kv_heads,
"head_size": head_size,
"head_dim": head_dim,
"max_seq_len": max_seq_len,
}
@ -197,18 +180,17 @@ def write_results_to_csv(results, filename=None):
filename = f"flashinfer_trtllm_benchmark_{timestamp}.csv"
fieldnames = [
"batch_size",
"trtllm_mean",
"trtllm_std",
"num_seqs",
"trt_mean",
"trt_std",
"baseline_mean",
"baseline_std",
"speedup_percent",
"q_dtype",
"kv_cache_dtype",
"output_dtype",
"block_size",
"page_size",
"num_kv_heads",
"head_size",
"head_dim",
"max_seq_len",
]
@ -227,40 +209,43 @@ def write_results_to_csv(results, filename=None):
if __name__ == "__main__":
batch_sizes = [1, 4, 8, 16, 32, 64, 128, 256]
num_seqs = [1, 4, 8, 16, 32, 64, 128, 256]
max_seq_lens = [1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072]
all_results = []
dtype = torch.bfloat16
quant_dtypes = [
# (q_quant_dtype, kv_quant_dtype, o_quant_dtype)
(None, None, None),
(None, FP8_DTYPE, None),
(FP8_DTYPE, FP8_DTYPE, FP8_DTYPE),
]
for quant_dtype in quant_dtypes:
q_quant_dtype, kv_quant_dtype, o_quant_dtype = quant_dtype
q_quant_dtype = q_quant_dtype or dtype
kv_quant_dtype = kv_quant_dtype or dtype
o_quant_dtype = o_quant_dtype or dtype
print(
f"Running benchmark for q_dtype = {q_quant_dtype}, "
f"kv_cache_dtype: {kv_quant_dtype}, "
f"output_dtype: {o_quant_dtype}"
"Running benchmark for q_dtype = bfloat16, kv_cache_dtype: bfloat16, "
"output_dtype: bfloat16"
)
print(
"\tbatch_size\tmax_seq_len\ttrtllm_mean\ttrtllm_std\tbaseline_mean\t"
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\t"
"baseline_std\tspeedup_percent"
)
for max_seq_len in max_seq_lens:
for bs in batch_sizes:
for bs in num_seqs:
result = benchmark_decode(
dtype=dtype,
quant_dtypes=quant_dtype,
batch_size=bs,
max_seq_len=max_seq_len,
bs,
max_seq_len,
dtype=torch.bfloat16,
kv_cache_dtype="auto",
)
all_results.append(result)
print(
"Running benchmark for q_dtype = bfloat16, kv_cache_dtype: fp8, "
"output_dtype: bfloat16"
)
print(
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\t"
"baseline_std\tspeedup_percent"
)
for max_seq_len in max_seq_lens:
for bs in num_seqs:
result = benchmark_decode(
bs,
max_seq_len,
dtype=torch.bfloat16,
kv_cache_dtype="fp8",
)
all_results.append(result)

View File

@ -3,14 +3,16 @@
import csv
import os
import random
from datetime import datetime
from typing import Optional
import flashinfer
import torch
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
FP8_DTYPE = torch.float8_e4m3fn
# KV Cache Layout for TRT-LLM
# kv_cache_shape = (num_blocks, 2, num_kv_heads, page_size, head_dim)
def to_float8(x, dtype=torch.float8_e4m3fn):
@ -24,99 +26,84 @@ def to_float8(x, dtype=torch.float8_e4m3fn):
@torch.no_grad()
def benchmark_prefill(
dtype: torch.dtype,
quant_dtypes: tuple[
Optional[torch.dtype], Optional[torch.dtype], Optional[torch.dtype]
],
batch_size: int,
max_seq_len: int,
num_heads: tuple[int, int] = (64, 8),
head_size: int = 128,
kv_layout: str = "HND",
block_size: int = 16,
warmup: int = 10,
trials: int = 20,
num_seqs,
max_seq_len,
page_size=16,
dtype=torch.bfloat16,
kv_layout="HND",
num_kv_heads=8,
kv_cache_dtype="auto",
head_dim=128,
warmup=10,
trials=20,
):
torch.set_default_device("cuda")
torch.manual_seed(0)
q_quant_dtype, kv_quant_dtype, o_quant_dtype = quant_dtypes
q_quant_dtype = q_quant_dtype or dtype
kv_quant_dtype = kv_quant_dtype or dtype
o_quant_dtype = o_quant_dtype or dtype
max_q_len = max_kv_len = max_seq_len
num_qo_heads, num_kv_heads = num_heads
assert num_qo_heads % num_kv_heads == 0
sm_scale = float(1.0 / (head_size**0.5))
HEAD_GRP_SIZE = 8
MAX_SEQ_LEN = max_seq_len
# large number to reduce kv_cache reuse
NUM_BLOCKS = int(256000 / block_size)
NUM_BLOCKS = int(256000 / page_size)
kv_cache_shape = None
if kv_layout == "NHD":
kv_cache_shape = (NUM_BLOCKS, 2, block_size, num_kv_heads, head_size)
elif kv_layout == "HND":
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, block_size, head_size)
else:
raise ValueError(f"Invalid kv_layout: {kv_layout}")
workspace_buffer = torch.empty(1024 * 1024 * 1024, dtype=torch.int8)
q_lens = torch.randint(1, max_q_len, (batch_size,), dtype=torch.int32)
q_lens[-1] = max_q_len
num_qo_heads = num_kv_heads * HEAD_GRP_SIZE
sm_scale = float(1.0 / (head_dim**0.5))
q_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
q_lens[-1] = MAX_SEQ_LEN
max_q_len = max(q_lens)
q_indptr = torch.cat(
[
torch.tensor([0], dtype=torch.int32),
torch.cumsum(q_lens, dim=0, dtype=torch.int32),
torch.cumsum(
torch.tensor(q_lens, dtype=torch.int32), dim=0, dtype=torch.int32
),
]
)
q = torch.randn(sum(q_lens), num_qo_heads, head_dim, dtype=dtype)
query = torch.randn(torch.sum(q_lens).item(), num_qo_heads, head_size, dtype=dtype)
if q_quant_dtype == FP8_DTYPE:
query, q_scale = to_float8(query)
ref_query = query.to(dtype) * q_scale
else:
q_scale = 1.0
ref_query = query
kv_lens = [random.randint(0, MAX_SEQ_LEN) for _ in range(num_seqs)]
kv_lens[-1] = MAX_SEQ_LEN
kv_lens = torch.randint(0, max_kv_len, (batch_size,), dtype=torch.int32)
kv_lens[-1] = max_kv_len
seq_lens = [q_len + kv_len for q_len, kv_len in zip(q_lens, kv_lens)]
max_seq_len = max(seq_lens)
seq_lens_tensor = torch.tensor(seq_lens, dtype=torch.int32)
seq_lens = kv_lens + q_lens
max_seq_len = torch.max(seq_lens).item()
kv_cache = torch.randn(kv_cache_shape, dtype=dtype)
if kv_quant_dtype == FP8_DTYPE:
kv_cache, kv_scale = to_float8(kv_cache)
ref_kv_cache = kv_cache.to(dtype) * kv_scale
else:
kv_scale = 1.0
ref_kv_cache = kv_cache
k_scale = v_scale = kv_scale
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
max_num_blocks_per_seq = (max_seq_len + page_size - 1) // page_size
block_tables = torch.randint(
0, NUM_BLOCKS, (batch_size, max_num_blocks_per_seq), dtype=torch.int32
0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32
)
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, page_size, head_dim)
kv_cache = torch.randn(size=kv_cache_shape, dtype=dtype)
k_scale = v_scale = 1.0
if kv_cache_dtype.startswith("fp8"):
kv_cache, _ = to_float8(kv_cache)
output_trtllm = torch.empty(q.shape, dtype=dtype)
kv_indptr = [0]
kv_indices = []
kv_last_page_lens = []
for i in range(batch_size):
for i in range(num_seqs):
seq_len = seq_lens[i]
assert seq_len > 0
num_blocks = (seq_len + block_size - 1) // block_size
num_blocks = (seq_len + page_size - 1) // page_size
kv_indices.extend(block_tables[i, :num_blocks])
kv_indptr.append(kv_indptr[-1] + num_blocks)
kv_last_page_len = seq_len % block_size
kv_last_page_len = seq_len % page_size
if kv_last_page_len == 0:
kv_last_page_len = block_size
kv_last_page_len = page_size
kv_last_page_lens.append(kv_last_page_len)
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
workspace_buffer = torch.zeros(1024 * 1024 * 1024, dtype=torch.int8)
output_baseline = torch.empty(q.shape, dtype=dtype)
wrapper = flashinfer.BatchPrefillWithPagedKVCacheWrapper(
workspace_buffer, kv_layout
@ -128,12 +115,12 @@ def benchmark_prefill(
kv_last_page_lens,
num_qo_heads,
num_kv_heads,
head_size,
block_size,
head_dim,
page_size,
causal=True,
sm_scale=sm_scale,
q_data_type=dtype,
kv_data_type=dtype,
kv_data_type=kv_cache.dtype,
)
def time_fn(fn, warmup=10, trials=20):
@ -151,55 +138,52 @@ def benchmark_prefill(
times.append(start.elapsed_time(end)) # ms
return sum(times) / len(times), torch.std(torch.tensor(times))
o_scale = 1.0
output_baseline = torch.empty(ref_query.shape, dtype=dtype)
output_trtllm = torch.empty(query.shape, dtype=o_quant_dtype)
def baseline_prefill():
return wrapper.run(ref_query, ref_kv_cache, out=output_baseline)
return wrapper.run(
q, kv_cache, k_scale=k_scale, v_scale=v_scale, out=output_baseline
)
def trtllm_prefill():
def trt_prefill():
return flashinfer.prefill.trtllm_batch_context_with_kv_cache(
query=query,
query=q,
kv_cache=kv_cache,
workspace_buffer=workspace_buffer,
block_tables=block_tables,
seq_lens=seq_lens,
seq_lens=seq_lens_tensor,
max_q_len=max_q_len,
max_kv_len=max_seq_len,
bmm1_scale=q_scale * k_scale * sm_scale,
bmm2_scale=v_scale / o_scale,
batch_size=batch_size,
bmm1_scale=k_scale * sm_scale,
bmm2_scale=v_scale,
batch_size=num_seqs,
cum_seq_lens_q=q_indptr,
cum_seq_lens_kv=kv_indptr,
out=output_trtllm,
)
trt_mean, trt_std = time_fn(trt_prefill)
baseline_mean, baseline_std = time_fn(baseline_prefill)
trtllm_mean, trtllm_std = time_fn(trtllm_prefill)
# Calculate percentage speedup (positive means TRT is faster)
speedup_percent = (baseline_mean - trtllm_mean) / baseline_mean
speedup_percent = (baseline_mean - trt_mean) / baseline_mean
print(
f"\t{batch_size}\t{max_seq_len}\t{trtllm_mean:8.3f}\t{trtllm_std.item():8.3f}"
f"\t{baseline_mean:8.3f}\t{baseline_std.item():8.3f}\t{speedup_percent:8.3f}"
f"\t{num_seqs}\t{max_seq_len}\t{trt_mean:.5f}\t{trt_std.item():.5f}"
f"\t{baseline_mean:.5f}\t{baseline_std.item():.5f}\t{speedup_percent:.5f}"
)
# Return results for CSV writing
return {
"batch_size": batch_size,
"trtllm_mean": trtllm_mean,
"trtllm_std": trtllm_std.item(),
"num_seqs": num_seqs,
"trt_mean": trt_mean,
"trt_std": trt_std.item(),
"baseline_mean": baseline_mean,
"baseline_std": baseline_std.item(),
"speedup_percent": speedup_percent,
"q_dtype": str(q_quant_dtype),
"kv_cache_dtype": str(kv_quant_dtype),
"output_dtype": str(o_quant_dtype),
"block_size": block_size,
"q_dtype": str(dtype),
"kv_cache_dtype": kv_cache_dtype,
"page_size": page_size,
"num_kv_heads": num_kv_heads,
"head_size": head_size,
"head_dim": head_dim,
"max_seq_len": max_seq_len,
}
@ -211,18 +195,17 @@ def write_results_to_csv(results, filename=None):
filename = f"flashinfer_trtllm_benchmark_{timestamp}.csv"
fieldnames = [
"batch_size",
"trtllm_mean",
"trtllm_std",
"num_seqs",
"trt_mean",
"trt_std",
"baseline_mean",
"baseline_std",
"speedup_percent",
"q_dtype",
"kv_cache_dtype",
"output_dtype",
"block_size",
"page_size",
"num_kv_heads",
"head_size",
"head_dim",
"max_seq_len",
]
@ -241,39 +224,25 @@ def write_results_to_csv(results, filename=None):
if __name__ == "__main__":
batch_sizes = [1, 4, 8, 16, 32, 64, 128, 256]
num_seqs = [1, 4, 8, 16, 32, 64, 128, 256]
max_seq_lens = [1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072]
all_results = []
dtype = torch.bfloat16
quant_dtypes = [
# (q_quant_dtype, kv_quant_dtype, o_quant_dtype)
(None, None, None),
(FP8_DTYPE, FP8_DTYPE, FP8_DTYPE),
]
for quant_dtype in quant_dtypes:
q_quant_dtype, kv_quant_dtype, o_quant_dtype = quant_dtype
q_quant_dtype = q_quant_dtype or dtype
kv_quant_dtype = kv_quant_dtype or dtype
o_quant_dtype = o_quant_dtype or dtype
print(
f"Running benchmark for q_dtype = {q_quant_dtype}, "
f"kv_cache_dtype: {kv_quant_dtype}, "
f"output_dtype: {o_quant_dtype}"
"Running benchmark for q_dtype = bfloat16, kv_cache_dtype: bfloat16, "
"output_dtype: bfloat16"
)
print(
"\tbatch_size\tmax_seq_len\ttrtllm_mean\ttrtllm_std\tbaseline_mean\t"
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\t"
"baseline_std\tspeedup_percent"
)
for max_seq_len in max_seq_lens:
for bs in batch_sizes:
for bs in num_seqs:
result = benchmark_prefill(
dtype=dtype,
quant_dtypes=quant_dtype,
batch_size=bs,
max_seq_len=max_seq_len,
bs,
max_seq_len,
dtype=torch.bfloat16,
kv_cache_dtype="auto",
)
all_results.append(result)

View File

@ -5,13 +5,11 @@ The requirements (pip) for `benchmark_serving_multi_turn.py` can be found in `re
First start serving your model
```bash
export MODEL_PATH=/models/meta-llama/Meta-Llama-3.1-8B-Instruct/
export MODEL_NAME=/models/meta-llama/Meta-Llama-3.1-8B-Instruct/
vllm serve $MODEL_PATH --served-model-name Llama --disable-log-requests
vllm serve $MODEL_NAME --disable-log-requests
```
The variable `MODEL_PATH` should be a path to the model files (e.g. downloaded from huggingface).
## Synthetic Multi-Turn Conversations
Download the following text file (used for generation of synthetic conversations)
@ -28,10 +26,10 @@ But you may use other text files if you prefer (using this specific file is not
Then run the benchmarking script
```bash
export MODEL_PATH=/models/meta-llama/Meta-Llama-3.1-8B-Instruct/
export MODEL_NAME=/models/meta-llama/Meta-Llama-3.1-8B-Instruct/
python benchmark_serving_multi_turn.py --model $MODEL_PATH --served-model-name Llama \
--input-file generate_multi_turn.json --num-clients 2 --max-active-conversations 6
python benchmark_serving_multi_turn.py --model $MODEL_NAME --input-file generate_multi_turn.json \
--num-clients 2 --max-active-conversations 6
```
You can edit the file `generate_multi_turn.json` to change the conversation parameters (number of turns, etc.).

View File

@ -825,11 +825,9 @@ def get_client_config(
# Arguments for API requests
chat_url = f"{args.url}/v1/chat/completions"
model_name = args.served_model_name if args.served_model_name else args.model
req_args = RequestArgs(
chat_url=chat_url,
model=model_name,
model=args.model,
stream=not args.no_stream,
limit_min_tokens=args.limit_min_tokens,
limit_max_tokens=args.limit_max_tokens,
@ -1249,19 +1247,9 @@ async def main() -> None:
default=0,
help="Seed for random number generators (default: 0)",
)
parser.add_argument(
"-m", "--model", type=str, required=True, help="Path of the LLM model"
)
parser.add_argument(
"--served-model-name",
type=str,
default=None,
help="The model name used in the API. "
"If not specified, the model name will be the "
"same as the ``--model`` argument. ",
)
parser.add_argument(
"-u",
"--url",

View File

@ -38,7 +38,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 57b4e68b9f9d94750b46de8f8dbd2bfcc86edd4f
GIT_TAG 93cf5a08f421a3efd0c4a7e005ef8f742b578ce0
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -128,45 +128,6 @@ __global__ void act_and_mul_kernel_with_param(
}
}
template <typename T>
__device__ __forceinline__ T swigluoai_and_mul(const T& gate, const T& up,
float alpha, float limit) {
// clamp gate: min=None, max=limit
const float gate_f = (float)gate;
const float clamped_gate = gate_f > limit ? limit : gate_f;
// clamp up: min=-limit, max=limit
const float up_f = (float)up;
const float clamped_up =
up_f > limit ? limit : (up_f < -limit ? -limit : up_f);
// glu = gate * sigmoid(gate * alpha)
const float sigmoid_val = 1.0f / (1.0f + expf(-clamped_gate * alpha));
const float glu = clamped_gate * sigmoid_val;
// (up + 1) * glu
return (T)((clamped_up + 1.0f) * glu);
}
template <typename scalar_t,
scalar_t (*ACT_FN)(const scalar_t&, const scalar_t&, const float,
const float)>
__global__ void swigluoai_and_mul_kernel(
scalar_t* __restrict__ out, // [..., d]
const scalar_t* __restrict__ input, // [..., 2, d]
const int d, const float alpha, const float limit) {
const int64_t token_idx = blockIdx.x;
// TODO: Vectorize loads and stores.
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
// gate = x[..., ::2] (even indices)
const scalar_t gate = VLLM_LDG(&input[token_idx * 2 * d + 2 * idx]);
// up = x[..., 1::2] (odd indices)
const scalar_t up = VLLM_LDG(&input[token_idx * 2 * d + 2 * idx + 1]);
out[token_idx * d + idx] = ACT_FN(gate, up, alpha, limit);
}
}
} // namespace vllm
#define LAUNCH_ACTIVATION_GATE_KERNEL_WITH_PARAM(KERNEL, PARAM) \
@ -184,31 +145,11 @@ __global__ void swigluoai_and_mul_kernel(
PARAM); \
});
#define LAUNCH_SIGLUOAI_AND_MUL(KERNEL, ALPHA, LIMIT) \
int d = input.size(-1) / 2; \
int64_t num_tokens = input.numel() / input.size(-1); \
dim3 grid(num_tokens); \
dim3 block(std::min(d, 1024)); \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), "clamp_swiglu_kernel_with_params", [&] { \
vllm::swigluoai_and_mul_kernel<scalar_t, KERNEL<scalar_t>> \
<<<grid, block, 0, stream>>>(out.data_ptr<scalar_t>(), \
input.data_ptr<scalar_t>(), d, ALPHA, \
LIMIT); \
});
void fatrelu_and_mul(torch::Tensor& out, // [..., d],
torch::Tensor& input, // [..., 2 * d]
double threshold) {
LAUNCH_ACTIVATION_GATE_KERNEL_WITH_PARAM(vllm::fatrelu_kernel, threshold);
}
void swigluoai_and_mul(torch::Tensor& out, // [..., d]
torch::Tensor& input, // [..., 2 * d]
double alpha, double limit) {
LAUNCH_SIGLUOAI_AND_MUL(vllm::swigluoai_and_mul, alpha, limit);
}
namespace vllm {
// Element-wise activation kernel template.

View File

@ -321,8 +321,6 @@ static inline constexpr auto kFE3M2f =
ScalarType::float_(3, 2, true, ScalarType::NAN_NONE);
static inline constexpr auto kFE4M3fn =
ScalarType::float_(4, 3, true, ScalarType::NAN_EXTD_RANGE_MAX_MIN);
static inline constexpr auto kFE8M0fnu =
ScalarType(8, 0, false, 0, true, ScalarType::NAN_EXTD_RANGE_MAX_MIN);
static inline constexpr auto kFE5M2 = ScalarType::float_IEEE754(5, 2);
static inline constexpr auto kFE8M7 = ScalarType::float_IEEE754(8, 7);
static inline constexpr auto kFE5M10 = ScalarType::float_IEEE754(5, 10);

View File

@ -20,7 +20,6 @@ namespace MARLIN_NAMESPACE_NAME {
TEMPLATE = ("template __global__ void Marlin<"
"{{scalar_t}}, "
"{{w_type_id}}, "
"{{s_type_id}}, "
"{{threads}}, "
"{{thread_m_blocks}}, "
"{{thread_n_blocks}}, "
@ -78,7 +77,6 @@ def generate_new_kernels():
if scalar_type == "vllm::kFE4M3fn" and group_blocks not in [-1, 8]:
continue
# nvfp4 only supports group_size == 16
# mxfp4 only supports group_size == 32
if scalar_type == "vllm::kFE2M1f" and group_blocks not in [1, 2]:
continue
# other quantization methods don't support group_size = 16
@ -91,22 +89,9 @@ def generate_new_kernels():
c_dtype = "half" if dtype == "fp16" else "nv_bfloat16"
if scalar_type == "vllm::kFE2M1f" and group_blocks == 1:
s_type = "vllm::kFE4M3fn"
elif scalar_type == "vllm::kFE2M1f" and group_blocks == 2:
s_type = "vllm::kFE8M0fnu"
if dtype == "fp16":
# we cannot safely dequantize e8m0 to fp16, so skip this
continue
elif dtype == "fp16":
s_type = "vllm::kFloat16"
elif dtype == "bf16":
s_type = "vllm::kBFloat16"
template_str = jinja2.Template(TEMPLATE).render(
scalar_t=c_dtype,
w_type_id=scalar_type + ".id()",
s_type_id=s_type + ".id()",
threads=threads,
thread_m_blocks=max(m_blocks, 1),
thread_n_blocks=n_blocks,

View File

@ -10,7 +10,6 @@
#define MARLIN_KERNEL_PARAMS \
const int4 *__restrict__ A, const int4 *__restrict__ B, \
int4 *__restrict__ C, int4 *__restrict__ C_tmp, \
const int4 *__restrict__ b_bias_ptr, \
const int4 *__restrict__ scales_ptr, \
const uint16_t *__restrict__ scale2_ptr, \
const int4 *__restrict__ zp_ptr, const int *__restrict__ g_idx, \
@ -19,13 +18,12 @@
const int32_t *__restrict__ num_tokens_past_padded_ptr, \
const float *__restrict__ topk_weights_ptr, int top_k, \
bool mul_topk_weights, bool is_ep, int num_groups, int prob_m, \
int prob_n, int prob_k, int *locks, bool has_bias, bool use_atomic_add, \
int prob_n, int prob_k, int *locks, bool use_atomic_add, \
bool use_fp32_reduce, int max_shared_mem
namespace MARLIN_NAMESPACE_NAME {
template <typename scalar_t, // compute dtype, half or nv_float16
const vllm::ScalarTypeId w_type_id, // weight ScalarType id
const vllm::ScalarTypeId s_type_id, // weight scale ScalarType id
const int threads, // number of threads in a threadblock
const int thread_m_blocks, // number of 16x16 blocks in the m
// dimension (batchsize) of the

View File

@ -280,7 +280,6 @@ __device__ inline void wait_negative_and_add(int* lock) {
template <typename scalar_t, // compute dtype, half or nv_float16
const vllm::ScalarTypeId w_type_id, // weight ScalarType id
const vllm::ScalarTypeId s_type_id, // weight scale ScalarType id
const int threads, // number of threads in a threadblock
const int thread_m_blocks, // number of 16x16 blocks in the m
// dimension (batchsize) of the
@ -300,7 +299,6 @@ __global__ void Marlin(
const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn
int4* __restrict__ C, // fp16 output buffer of shape mxn
int4* __restrict__ C_tmp, // fp32 tmp output buffer (for reduce)
const int4* __restrict__ b_bias_ptr,
const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape
// (k/groupsize)xn
const uint16_t* __restrict__ scale2_ptr, // fp16 global scale (for nvfp4
@ -320,7 +318,6 @@ __global__ void Marlin(
int prob_n, // output dimension n
int prob_k, // reduction dimension k
int* locks, // extra global storage for barrier synchronization
bool has_bias,
bool use_atomic_add, // whether to use atomic add to reduce
bool use_fp32_reduce, // whether to use fp32 global reduce
int max_shared_mem) {
@ -345,23 +342,12 @@ __global__ void Marlin(
extern __shared__ int4 sh[];
static constexpr auto w_type = vllm::ScalarType::from_id(w_type_id);
static constexpr auto s_type = vllm::ScalarType::from_id(s_type_id);
if constexpr (w_type == vllm::kFE2M1f) {
static_assert(s_type == vllm::kFE4M3fn && group_blocks == 1 ||
s_type == vllm::kFE8M0fnu && group_blocks == 2);
} else if constexpr (std::is_same<scalar_t, nv_bfloat16>::value) {
static_assert(s_type == vllm::kBFloat16);
} else if constexpr (std::is_same<scalar_t, half>::value) {
static_assert(s_type == vllm::kFloat16);
}
constexpr bool has_zp = w_type == vllm::kU4 || w_type == vllm::kU8;
constexpr bool is_int_type = w_type == vllm::kU4 || w_type == vllm::kU8 ||
w_type == vllm::kU4B8 || w_type == vllm::kU8B128;
// see comments of dequant.h for more details
constexpr bool dequant_skip_flop =
w_type == vllm::kFE4M3fn ||
w_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn ||
!is_int_type ||
has_zp && !is_zp_float && !std::is_same<scalar_t, nv_bfloat16>::value ||
has_zp && !is_zp_float && !(w_type == vllm::kU8);
@ -379,7 +365,6 @@ __global__ void Marlin(
const int zp_expert_stride =
is_zp_float ? prob_n * prob_k / group_size / 8
: prob_n * prob_k / group_size / (pack_factor * 4);
const int b_bias_expert_stride = prob_n / 8;
// parallel: num valid moe blocks
int num_tokens_past_padded = num_tokens_past_padded_ptr[0];
@ -490,7 +475,7 @@ __global__ void Marlin(
for (int i = 0; i < 4; i++) {
int idx = tid4 * 4 + i;
idx = idx < block_num_valid_tokens ? idx : 0;
if constexpr (w_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn) {
if constexpr (w_type == vllm::kFE2M1f) {
sh_block_topk_weights[idx] = __hmul2(
global_scale, Dtype::num2num2(Dtype::float2num(
topk_weights_ptr[sh_block_sorted_ids[idx]])));
@ -528,7 +513,7 @@ __global__ void Marlin(
expert_id = expert_ids_ptr[block_id];
}
if constexpr (w_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn) {
if constexpr (w_type == vllm::kFE2M1f) {
uint16_t val = scale2_ptr[expert_id];
global_scale = Dtype::num2num2(*reinterpret_cast<scalar_t*>(&val));
}
@ -541,9 +526,6 @@ __global__ void Marlin(
if constexpr (has_act_order) {
g_idx += (expert_id - old_expert_id) * prob_k;
}
if (has_bias) {
b_bias_ptr += (expert_id - old_expert_id) * b_bias_expert_stride;
}
read_moe_block_data(block_id);
};
@ -739,7 +721,7 @@ __global__ void Marlin(
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
(threadIdx.x % 32) / 4;
s_sh_rd = s_sh_rd * 2 + (warp_row / group_blocks) % 2;
s_sh_rd = s_sh_rd * 2 + warp_row % 2;
} else if constexpr (group_blocks != -1)
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
@ -752,18 +734,6 @@ __global__ void Marlin(
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
(threadIdx.x % 32) % 4;
int bias_sh_rd;
if constexpr (m_block_size_8) {
bias_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
(threadIdx.x % 32) / 8;
} else {
bias_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
(threadIdx.x % 32) % 4;
}
int bias_sh_wr = threadIdx.x;
int bias_gl_rd = (thread_n_blocks * 16 / 8) * slice_col + threadIdx.x;
// Zero-points have the same read layout as the scales
// (without column-wise case)
constexpr int num_col_threads = 8;
@ -823,19 +793,7 @@ __global__ void Marlin(
constexpr int sh_b_size = stages * b_sh_stage;
int4* sh_b = sh_new;
int4* sh_red = sh_new;
constexpr int sh_size_b_red_min =
(sh_red_size < sh_b_size ? sh_red_size : sh_b_size);
constexpr int sh_size_b_red_max =
(sh_red_size > sh_b_size ? sh_red_size : sh_b_size);
constexpr int sh_bias_size = (thread_n_blocks * 16 / 8);
constexpr int sh_b_red_bias_size =
sh_size_b_red_max > (sh_size_b_red_min + sh_bias_size)
? sh_size_b_red_max
: (sh_size_b_red_min + sh_bias_size);
int4* sh_bias = sh_new + sh_size_b_red_min;
int4* sh_g_idx = sh_new + sh_b_red_bias_size;
int4* sh_g_idx = sh_b + (sh_red_size > sh_b_size ? sh_red_size : sh_b_size);
int4* sh_zp = sh_g_idx + (stages * g_idx_stage);
constexpr int sh_s_size = has_act_order ? (act_s_max_num_groups * s_sh_stride)
: (stages * s_sh_stage);
@ -845,9 +803,9 @@ __global__ void Marlin(
static_assert(thread_m_blocks * 16 * thread_n_blocks * 16 / 8 <=
stages * b_sh_stage);
int4* sh_a = sh_s + sh_s_size;
constexpr int shm_size_used = moe_block_size +
stages * (g_idx_stage + zp_sh_stage) +
sh_s_size + sh_b_red_bias_size;
constexpr int shm_size_used =
moe_block_size + stages * (g_idx_stage + zp_sh_stage) + sh_s_size +
(sh_red_size > sh_b_size ? sh_red_size : sh_b_size);
// all remaining shared memory is used to cache A (input)
// sh_a_max_row is at least ` stages * 16 * thread_m_blocks `
@ -859,7 +817,6 @@ __global__ void Marlin(
I4 frag_b_quant[2][b_thread_vecs];
FragC frag_c[thread_m_blocks][4][2];
FragS frag_s[2][4]; // No act-order
FragS frag_bias[2][4];
FragS act_frag_s[2][4][4]; // For act-order
int frag_qzp[2][num_ints_per_thread]; // Zero-points
FragZP frag_zp; // Zero-points in fp16
@ -1108,15 +1065,10 @@ __global__ void Marlin(
if constexpr (w_type_id != vllm::kFE2M1f.id()) {
reinterpret_cast<int4*>(&frag_s[k % 2])[0] =
sh_s_stage[s_sh_rd + cur_group_id * s_sh_stride];
} else if constexpr (group_blocks == 1 || thread_k_blocks > 4) {
reinterpret_cast<int2*>(&frag_s[k % 2])[0] =
reinterpret_cast<int2*>(
sh_s_stage)[s_sh_rd + cur_group_id * (2 * s_sh_stride)];
} else {
reinterpret_cast<int2*>(&frag_s[k % 2])[0] =
reinterpret_cast<int2*>(
sh_s_stage)[s_sh_rd + cur_group_id * (2 * s_sh_stride) +
k % 2];
sh_s_stage)[s_sh_rd + cur_group_id * (2 * s_sh_stride)];
}
}
}
@ -1329,9 +1281,9 @@ __global__ void Marlin(
int s_quant_0 = reinterpret_cast<int*>(frag_s[k2])[0];
int s_quant_1 = reinterpret_cast<int*>(frag_s[k2])[1];
dequant_fp8_scales<scalar_t2, s_type_id>(
s_quant_0, reinterpret_cast<scalar_t2*>(&frag_s[k2]));
dequant_fp8_scales<scalar_t2, s_type_id>(
dequant_fp8_scales<scalar_t2>(s_quant_0,
reinterpret_cast<scalar_t2*>(&frag_s[k2]));
dequant_fp8_scales<scalar_t2>(
s_quant_1, reinterpret_cast<scalar_t2*>(&frag_s[k2]) + 2);
}
@ -1614,7 +1566,7 @@ __global__ void Marlin(
// Write out the reduce final result in the correct layout. We only actually
// reshuffle matrix fragments in this step, the reduction above is performed
// in fragment layout.
auto write_result = [&](bool last) {
auto write_result = [&]() {
int c_gl_stride = prob_n / 8;
constexpr int c_sh_stride = 2 * thread_n_blocks + 1;
int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks));
@ -1640,7 +1592,7 @@ __global__ void Marlin(
// We first reorder in shared memory to guarantee the most efficient final
// global write patterns
auto write = [&](int idx, float c0, float c1, FragS& s, FragS& b_bias) {
auto write = [&](int idx, float c0, float c1, FragS& s) {
scalar_t2 res =
Dtype::nums2num2(Dtype::float2num(c0), Dtype::float2num(c1));
@ -1649,27 +1601,14 @@ __global__ void Marlin(
if constexpr (!has_act_order && group_blocks == -1 &&
w_type.size_bits() == 4 &&
(has_zp && dequant_skip_flop || !has_zp)) {
scalar_t2 tmp_scale = s[0];
if constexpr (m_block_size_8) {
tmp_scale = Dtype::num2num2(
reinterpret_cast<scalar_t*>(&s[0])[(threadIdx.x % 8) / 4]);
}
res = __hmul2(res, tmp_scale);
res = __hmul2(res, s[0]);
}
if constexpr (w_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn) {
if constexpr (w_type == vllm::kFE2M1f) {
if (!mul_topk_weights) {
res = __hmul2(res, global_scale);
}
}
if (has_bias && last) {
scalar_t2 tmp_bias = b_bias[0];
if constexpr (m_block_size_8) {
tmp_bias = Dtype::num2num2(
reinterpret_cast<scalar_t*>(&b_bias[0])[(threadIdx.x % 8) / 4]);
}
res = __hadd2(res, tmp_bias);
}
if constexpr (m_block_size_8) {
((scalar_t*)sh_red)[idx] = res.x;
@ -1687,25 +1626,19 @@ __global__ void Marlin(
if constexpr (m_block_size_8) {
int wr = c_sh_wr + 16 * j;
write(wr, frag_c[i][j][0][0], frag_c[i][j][0][1],
frag_s[j / 2][2 * (j % 2) + 0],
frag_bias[j / 2][2 * (j % 2) + 0]);
frag_s[j / 2][2 * (j % 2) + 0]);
write(wr + 8, frag_c[i][j][0][2], frag_c[i][j][0][3],
frag_s[j / 2][2 * (j % 2) + 1],
frag_bias[j / 2][2 * (j % 2) + 1]);
frag_s[j / 2][2 * (j % 2) + 1]);
} else {
int wr = c_sh_wr + 8 * j;
write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0],
frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0],
frag_bias[j / 2][2 * (j % 2) + 0]);
frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]);
write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2],
frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0],
frag_bias[j / 2][2 * (j % 2) + 0]);
frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]);
write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0],
frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1],
frag_bias[j / 2][2 * (j % 2) + 1]);
frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]);
write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2],
frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1],
frag_bias[j / 2][2 * (j % 2) + 1]);
frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]);
}
}
c_sh_wr += 16 * (4 * c_sh_stride);
@ -1872,14 +1805,6 @@ __global__ void Marlin(
}
thread_block_reduce();
if (has_bias && last) {
__syncthreads();
cp_async4_pred(&sh_bias[bias_sh_wr], &b_bias_ptr[bias_gl_rd],
threadIdx.x < 16 * thread_n_blocks / 8);
cp_async_fence();
}
if constexpr (!has_act_order && group_blocks == -1 &&
(has_zp && dequant_skip_flop || !has_zp)) {
if (w_type.size_bits() == 8 || (last || use_atomic_add)) {
@ -1942,20 +1867,11 @@ __global__ void Marlin(
}
barrier_release(&locks[locks_off], last);
}
if (has_bias && last) {
cp_async_wait<0>();
__syncthreads();
reinterpret_cast<int4*>(&frag_bias)[0] = sh_bias[bias_sh_rd];
reinterpret_cast<int4*>(&frag_bias)[1] = sh_bias[bias_sh_rd + 4];
__syncthreads();
}
if (use_atomic_add && slice_count > 1 && slice_idx != 0)
wait_negative_and_add(&locks[locks_off]);
if (last || use_atomic_add)
// only the last block in a slice actually writes the result
write_result(last);
write_result();
int old_slice_row = slice_row;
slice_row = 0;
slice_col_par++;
@ -1988,7 +1904,6 @@ __global__ void Marlin(
for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride;
}
bias_gl_rd = (thread_n_blocks * 16 / 8) * slice_col + threadIdx.x;
// Update slice k/n for scales loading
if constexpr (has_act_order) {
slice_k_start = tb_k * slice_row;

View File

@ -51,9 +51,8 @@ __global__ void permute_cols_kernel(
} // namespace marlin
torch::Tensor moe_wna16_marlin_gemm(
torch::Tensor& a, std::optional<torch::Tensor> c_or_none,
torch::Tensor& b_q_weight,
std::optional<torch::Tensor> const& b_bias_or_none, torch::Tensor& b_scales,
torch::Tensor& a, std::optional<torch::Tensor> const& c_or_none,
torch::Tensor& b_q_weight, torch::Tensor& b_scales,
std::optional<torch::Tensor> const& b_zeros_or_none,
std::optional<torch::Tensor> const& g_idx_or_none,
std::optional<torch::Tensor> const& perm_or_none, torch::Tensor& workspace,
@ -213,7 +212,7 @@ int get_kernel_cache_size(thread_config_t const& th_config, bool m_block_size_8,
// Get B size
int tb_k = th_config.thread_k;
int tb_n = th_config.thread_n;
int tb_m = thread_m_blocks * 16;
int tb_m = thread_m_blocks * (m_block_size_8 ? 8 : 16);
// shm size for block_sorted_ids/rd_block_sorted_ids/block_topk_weights
// both of them requires tb_m * 4 bytes (tb_m * int32 or tb_m * float32)
@ -221,11 +220,6 @@ int get_kernel_cache_size(thread_config_t const& th_config, bool m_block_size_8,
int sh_a_size = pipe_stages * (tb_m * tb_k) * 2;
int sh_b_size = pipe_stages * (tb_k * tb_n / pack_factor) * 4;
int sh_red_size = tb_m * (tb_n + 8) * 2;
int sh_bias_size = tb_n * 2;
int tmp_size =
(sh_b_size > sh_red_size ? sh_red_size : sh_b_size) + sh_bias_size;
tmp_size = max(max(sh_b_size, sh_red_size), tmp_size);
int sh_s_size =
get_scales_cache_size(th_config, prob_m, prob_n, prob_k, num_bits,
group_size, has_act_order, is_k_full);
@ -240,8 +234,8 @@ int get_kernel_cache_size(thread_config_t const& th_config, bool m_block_size_8,
sh_zp_size = sh_s_size / 2;
}
int total_size = tmp_size + sh_a_size + sh_s_size + sh_zp_size +
sh_g_idx_size + sh_block_meta_size;
int total_size = max(sh_b_size, sh_red_size) + sh_a_size + sh_s_size +
sh_zp_size + sh_g_idx_size + sh_block_meta_size;
return total_size;
}
@ -276,7 +270,7 @@ bool is_valid_config(thread_config_t const& th_config, bool m_block_size_8,
int cache_size = get_kernel_cache_size(
th_config, m_block_size_8, thread_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, has_act_order, is_k_full, has_zp, is_zp_float);
return cache_size + 512 <= max_shared_mem;
return cache_size <= max_shared_mem;
}
#define _GET_IF(W_TYPE, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
@ -287,14 +281,9 @@ bool is_valid_config(thread_config_t const& th_config, bool m_block_size_8,
m_block_size_8 == M_BLOCK_SIZE_8 && \
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS && \
is_zp_float == IS_ZP_FLOAT) { \
constexpr auto S_TYPE = \
W_TYPE == vllm::kFE2M1f \
? (GROUP_BLOCKS == 1 ? vllm::kFE4M3fn : vllm::kFE8M0fnu) \
: (std::is_same<scalar_t, half>::value ? vllm::kFloat16 \
: vllm::kBFloat16); \
kernel = Marlin<scalar_t, W_TYPE.id(), S_TYPE.id(), NUM_THREADS, \
THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
M_BLOCK_SIZE_8, pipe_stages, GROUP_BLOCKS, IS_ZP_FLOAT>; \
kernel = Marlin<scalar_t, W_TYPE.id(), NUM_THREADS, THREAD_M_BLOCKS, \
THREAD_N_BLOCKS, THREAD_K_BLOCKS, M_BLOCK_SIZE_8, \
pipe_stages, GROUP_BLOCKS, IS_ZP_FLOAT>; \
}
// COMMON: cases for (group_blocks in [-1, 2, 4, 8] and is_zp_float == false)
@ -346,45 +335,31 @@ bool is_valid_config(thread_config_t const& th_config, bool m_block_size_8,
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
\
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)
#define FP4_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)
#define FP4_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)
#define FP4_GET_IF(W_TYPE) \
FP4_GET_IF_M1(W_TYPE, 8, 8, 256) \
FP4_GET_IF_M1(W_TYPE, 8, 4, 128) \
FP4_GET_IF_M234(W_TYPE, 16, 4, 256) \
FP4_GET_IF_M234(W_TYPE, 8, 4, 128)
#define BIGGROUP_GET_IF(W_TYPE) \
BIGGROUP_GET_IF_M1(W_TYPE, 8, 8, 256) \
BIGGROUP_GET_IF_M1(W_TYPE, 8, 4, 128) \
BIGGROUP_GET_IF_M234(W_TYPE, 16, 4, 256) \
BIGGROUP_GET_IF_M234(W_TYPE, 8, 4, 128)
#define NVFP4_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)
#define NVFP4_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)
#define NVFP4_GET_IF(W_TYPE) \
NVFP4_GET_IF_M1(W_TYPE, 8, 8, 256) \
NVFP4_GET_IF_M1(W_TYPE, 8, 4, 128) \
NVFP4_GET_IF_M234(W_TYPE, 16, 4, 256) \
NVFP4_GET_IF_M234(W_TYPE, 8, 4, 128)
#define MXFP4_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false)
#define MXFP4_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false)
#define MXFP4_GET_IF(W_TYPE) \
MXFP4_GET_IF_M1(W_TYPE, 8, 8, 256) \
MXFP4_GET_IF_M1(W_TYPE, 8, 4, 128) \
MXFP4_GET_IF_M234(W_TYPE, 16, 4, 256) \
MXFP4_GET_IF_M234(W_TYPE, 8, 4, 128)
// We currently have 4-bit models only with group_blocks == 4
#define FZP_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 4, NUM_THREADS, true) \
@ -433,17 +408,12 @@ MarlinFuncPtr get_marlin_kernel(const vllm::ScalarType q_type,
COMMON_GET_IF(vllm::kU4B8)
COMMON_GET_IF(vllm::kU8B128)
NVFP4_GET_IF(vllm::kFE2M1f)
BIGGROUP_GET_IF(vllm::kFE4M3fn)
FP4_GET_IF(vllm::kFE2M1f)
ACT_GET_IF(vllm::kU4B8)
ACT_GET_IF(vllm::kU8B128)
if (std::is_same<scalar_t, nv_bfloat16>::value) {
if (false) {
}
MXFP4_GET_IF(vllm::kFE2M1f)
}
return kernel;
}
@ -512,16 +482,16 @@ exec_config_t determine_exec_config(const vllm::ScalarType& q_type, int prob_m,
}
template <typename scalar_t>
void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* b_bias,
void* s, void* s2, void* zp, void* g_idx, void* perm,
void* a_tmp, void* sorted_token_ids, void* expert_ids,
void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
void* s2, void* zp, void* g_idx, void* perm, void* a_tmp,
void* sorted_token_ids, void* expert_ids,
void* num_tokens_past_padded, void* topk_weights,
int moe_block_size, int top_k, bool mul_topk_weights, bool is_ep,
int prob_m, int prob_n, int prob_k, void* workspace,
vllm::ScalarType const& q_type, bool has_bias,
bool has_act_order, bool is_k_full, bool has_zp, int num_groups,
int group_size, int dev, cudaStream_t stream, int thread_k,
int thread_n, int sms, bool use_atomic_add, bool use_fp32_reduce,
vllm::ScalarType const& q_type, bool has_act_order,
bool is_k_full, bool has_zp, int num_groups, int group_size,
int dev, cudaStream_t stream, int thread_k, int thread_n,
int sms, bool use_atomic_add, bool use_fp32_reduce,
bool is_zp_float) {
int thread_m_blocks = div_ceil(moe_block_size, 16);
bool m_block_size_8 = moe_block_size == 8;
@ -568,7 +538,6 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* b_bias,
const int4* B_ptr = (const int4*)B;
int4* C_ptr = (int4*)C;
int4* C_tmp_ptr = (int4*)C_tmp;
const int4* bias_ptr = (const int4*)b_bias;
const int4* s_ptr = (const int4*)s;
const uint16_t* s2_ptr = (const uint16_t*)s2;
const int4* zp_ptr = (const int4*)zp;
@ -679,10 +648,10 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* b_bias,
// avoid ">>>" being formatted to "> > >"
// clang-format off
kernel<<<blocks, num_threads, max_shared_mem, stream>>>(
A_ptr, B_ptr, C_ptr, C_tmp_ptr, bias_ptr, s_ptr, s2_ptr, zp_ptr, g_idx_ptr,
A_ptr, B_ptr, C_ptr, C_tmp_ptr, s_ptr, s2_ptr, zp_ptr, g_idx_ptr,
sorted_token_ids_ptr, expert_ids_ptr, num_tokens_past_padded_ptr,
topk_weights_ptr, top_k, mul_topk_weights, is_ep, num_groups, prob_m,
prob_n, prob_k, locks, has_bias, use_atomic_add, use_fp32_reduce, max_shared_mem);
prob_n, prob_k, locks, use_atomic_add, use_fp32_reduce, max_shared_mem);
// clang-format on
}
@ -690,8 +659,7 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* b_bias,
torch::Tensor moe_wna16_marlin_gemm(
torch::Tensor& a, std::optional<torch::Tensor> const& c_or_none,
torch::Tensor& b_q_weight,
std::optional<torch::Tensor> const& b_bias_or_none, torch::Tensor& b_scales,
torch::Tensor& b_q_weight, torch::Tensor& b_scales,
std::optional<torch::Tensor> const& global_scale_or_none,
std::optional<torch::Tensor> const& b_zeros_or_none,
std::optional<torch::Tensor> const& g_idx_or_none,
@ -798,6 +766,7 @@ torch::Tensor moe_wna16_marlin_gemm(
num_groups = b_scales.size(1);
torch::Tensor g_idx, perm, a_tmp;
;
if (g_idx_or_none.has_value() && perm_or_none.has_value()) {
g_idx = g_idx_or_none.value();
perm = perm_or_none.value();
@ -846,24 +815,12 @@ torch::Tensor moe_wna16_marlin_gemm(
torch::Tensor global_scale;
if (global_scale_or_none.has_value()) {
global_scale = global_scale_or_none.value();
TORCH_CHECK(b_q_type == vllm::kFE2M1f && group_size == 16,
"global_scale can only be used for nvfp4 format.");
TORCH_CHECK(b_q_type == vllm::kFE2M1f,
"global_scale can only be used for float4_e2m1f.");
} else {
global_scale = torch::empty({0}, options);
TORCH_CHECK(!(b_q_type == vllm::kFE2M1f && group_size == 16),
"the global_scale parameter must be passed for nvfp4 format.");
}
bool has_bias = b_bias_or_none.has_value();
torch::Tensor b_bias;
if (has_bias) {
b_bias = b_bias_or_none.value();
TORCH_CHECK(b_bias.device().is_cuda(), "b_bias is not on GPU");
TORCH_CHECK(b_bias.is_contiguous(), "b_bias is not contiguous");
TORCH_CHECK(b_bias.size(1) == size_n, "b_bias.size(0) != size_n");
TORCH_CHECK(b_bias.stride(1) == 1, "b_bias.stride(1) != 1");
} else {
b_bias = torch::empty({0}, options);
TORCH_CHECK(!(b_q_type == vllm::kFE2M1f),
"the global_scale parameter must be passed for float4_e2m1f.");
}
torch::Tensor b_zeros;
@ -875,6 +832,7 @@ torch::Tensor moe_wna16_marlin_gemm(
b_zeros = torch::empty({0}, options);
}
bool has_zp = b_zeros.size(-1) > 0;
if (has_zp) {
TORCH_CHECK(
b_q_type == vllm::kU4 || b_q_type == vllm::kU8,
@ -932,58 +890,41 @@ torch::Tensor moe_wna16_marlin_gemm(
if (a.scalar_type() == at::ScalarType::Half) {
void* scales_ptr;
if (b_q_type == vllm::kFE2M1f) {
if (group_size == 16)
scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
else if (group_size == 32)
scales_ptr = b_scales.data_ptr<at::Float8_e8m0fnu>();
else
TORCH_CHECK(false,
"float4_e2m1f only supports group_size == 16 (NVFP4) ",
"and group_size == 32 (MXFP4)");
} else {
scales_ptr = b_scales.data_ptr<at::Half>();
}
MARLIN_NAMESPACE_NAME::marlin_mm<half>(
a.data_ptr<at::Half>(), b_q_weight.data_ptr(), c.data_ptr<at::Half>(),
c_tmp.data_ptr<float>(), b_bias.data_ptr<at::Half>(), scales_ptr,
global_scale.data_ptr<at::Half>(), b_zeros.data_ptr(), g_idx.data_ptr(),
perm.data_ptr(), a_tmp.data_ptr<at::Half>(),
sorted_token_ids.data_ptr(), expert_ids.data_ptr(),
num_tokens_past_padded.data_ptr(), topk_weights.data_ptr(),
moe_block_size, top_k, mul_topk_weights, is_ep, size_m, size_n, size_k,
workspace.data_ptr(), b_q_type, has_bias, has_act_order, is_k_full,
has_zp, num_groups, group_size, dev,
c_tmp.data_ptr<float>(), scales_ptr, global_scale.data_ptr<at::Half>(),
b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(),
a_tmp.data_ptr<at::Half>(), sorted_token_ids.data_ptr(),
expert_ids.data_ptr(), num_tokens_past_padded.data_ptr(),
topk_weights.data_ptr(), moe_block_size, top_k, mul_topk_weights, is_ep,
size_m, size_n, size_k, workspace.data_ptr(), b_q_type, has_act_order,
is_k_full, has_zp, num_groups, group_size, dev,
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
use_atomic_add, use_fp32_reduce, is_zp_float);
} else if (a.scalar_type() == at::ScalarType::BFloat16) {
void* scales_ptr;
if (b_q_type == vllm::kFE2M1f) {
if (group_size == 16)
scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
else if (group_size == 32)
scales_ptr = b_scales.data_ptr<at::Float8_e8m0fnu>();
else
TORCH_CHECK(false,
"float4_e2m1f only supports group_size == 16 (NVFP4) ",
"and group_size == 32 (MXFP4)");
} else {
scales_ptr = b_scales.data_ptr<at::BFloat16>();
}
MARLIN_NAMESPACE_NAME::marlin_mm<nv_bfloat16>(
a.data_ptr<at::BFloat16>(), b_q_weight.data_ptr(),
c.data_ptr<at::BFloat16>(), c_tmp.data_ptr<float>(),
b_bias.data_ptr<at::BFloat16>(), scales_ptr,
c.data_ptr<at::BFloat16>(), c_tmp.data_ptr<float>(), scales_ptr,
global_scale.data_ptr<at::BFloat16>(), b_zeros.data_ptr(),
g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr<at::BFloat16>(),
sorted_token_ids.data_ptr(), expert_ids.data_ptr(),
num_tokens_past_padded.data_ptr(), topk_weights.data_ptr(),
moe_block_size, top_k, mul_topk_weights, is_ep, size_m, size_n, size_k,
workspace.data_ptr(), b_q_type, has_bias, has_act_order, is_k_full,
has_zp, num_groups, group_size, dev,
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
use_atomic_add, use_fp32_reduce, is_zp_float);
workspace.data_ptr(), b_q_type, has_act_order, is_k_full, has_zp,
num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev),
thread_k, thread_n, sms, use_atomic_add, use_fp32_reduce, is_zp_float);
} else {
TORCH_CHECK(false,
"moe_wna16_marlin_gemm only supports bfloat16 and float16");

View File

@ -35,8 +35,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
m.def(
"moe_wna16_marlin_gemm(Tensor! a, Tensor? c_or_none,"
"Tensor! b_q_weight, Tensor? b_bias_or_none,"
"Tensor! b_scales, Tensor? global_scale, Tensor? "
"Tensor! b_q_weight, Tensor! b_scales, Tensor? global_scale, Tensor? "
"b_zeros_or_none,"
"Tensor? g_idx_or_none, Tensor? perm_or_none, Tensor! workspace,"
"Tensor sorted_token_ids,"

View File

@ -138,8 +138,6 @@ void gelu_tanh_and_mul(torch::Tensor& out, torch::Tensor& input);
void fatrelu_and_mul(torch::Tensor& out, torch::Tensor& input,
double threshold);
void swigluoai_and_mul(torch::Tensor& out, torch::Tensor& input,
double alpha = 1.702, double limit = 7.0);
void gelu_new(torch::Tensor& out, torch::Tensor& input);
@ -147,6 +145,22 @@ void gelu_fast(torch::Tensor& out, torch::Tensor& input);
void gelu_quick(torch::Tensor& out, torch::Tensor& input);
void advance_step_flashattn(int64_t num_seqs, int64_t num_queries,
int64_t block_size, torch::Tensor& input_tokens,
torch::Tensor& sampled_token_ids,
torch::Tensor& input_positions,
torch::Tensor& seq_lens,
torch::Tensor& slot_mapping,
torch::Tensor& block_tables);
void advance_step_flashinfer(
int64_t num_seqs, int64_t num_queries, int64_t block_size,
torch::Tensor& input_tokens, torch::Tensor& sampled_token_ids,
torch::Tensor& input_positions, torch::Tensor& seq_lens,
torch::Tensor& slot_mapping, torch::Tensor& block_tables,
torch::Tensor& paged_kv_indices, torch::Tensor& paged_kv_indptr,
torch::Tensor& paged_kv_last_page_len, torch::Tensor& block_table_bounds);
void cutlass_mla_decode(torch::Tensor const& out, torch::Tensor const& q_nope,
torch::Tensor const& q_pe,
torch::Tensor const& kv_c_and_k_pe_cache,
@ -156,6 +170,15 @@ void cutlass_mla_decode(torch::Tensor const& out, torch::Tensor const& q_nope,
torch::Tensor get_cuda_view_from_cpu_tensor(torch::Tensor& cpu_tensor);
#ifndef USE_ROCM
torch::Tensor aqlm_gemm(const torch::Tensor& input, const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& scales,
const std::vector<int64_t>& codebook_partition_sizes,
const std::optional<torch::Tensor>& bias);
torch::Tensor aqlm_dequant(
const torch::Tensor& codes, const torch::Tensor& codebooks,
const std::vector<int64_t>& codebook_partition_sizes);
torch::Tensor awq_gemm(torch::Tensor _in_feats, torch::Tensor _kernel,
torch::Tensor _scaling_factors, torch::Tensor _zeros,

View File

@ -0,0 +1,336 @@
/*
* The goal of this GPU kernel is to advance input tensors on the GPU directly
* PR: https://github.com/vllm-project/vllm/pull/6338
* Current restrictions:
* 1. Specialized for DraftModelRunner
* 2. Supports flash_attn only
*/
#include "advance_step.cuh"
namespace prepare_inputs {
//
template <int const num_threads>
__global__ void advance_step_flashattn_kernel(
int num_seqs, int num_queries, int block_size, long* input_tokens_ptr,
long const* sampled_token_ids_ptr, long* input_positions_ptr,
int* seq_lens_ptr, long* slot_mapping_ptr, int const* block_tables_ptr,
int64_t const block_tables_stride) {
int const n_pad = num_seqs - num_queries;
if (n_pad && blockIdx.x == 0) {
// Handle cuda graph padding
int const offset = num_queries;
for (int i = threadIdx.x; i < n_pad; i += blockDim.x) {
input_tokens_ptr[offset + i] = 0;
input_positions_ptr[offset + i] = 0;
slot_mapping_ptr[offset + i] = -1;
}
}
int num_query_blocks = div_ceil(num_queries, num_threads);
if (blockIdx.x >= num_query_blocks) {
return;
}
int cur_query_id = blockIdx.x * num_threads + threadIdx.x;
if (cur_query_id >= num_queries) {
return;
}
// Update input_tokens
input_tokens_ptr[cur_query_id] = sampled_token_ids_ptr[cur_query_id];
int seq_len = seq_lens_ptr[cur_query_id];
int next_seq_len = seq_len + 1;
int next_input_pos = next_seq_len - 1;
// Update seq_lens
seq_lens_ptr[cur_query_id] = next_seq_len;
// Update input_positions
input_positions_ptr[cur_query_id] = next_input_pos;
int const* seq_block_tables_ptr =
block_tables_ptr + block_tables_stride * cur_query_id;
int block_index = next_input_pos / block_size;
int block_offset = next_input_pos % block_size;
int slot_num = seq_block_tables_ptr[block_index] * block_size + block_offset;
// Update slot_mapping
slot_mapping_ptr[cur_query_id] = slot_num;
}
inline void verify_tensor(std::string const& name, torch::Tensor const& t,
int64_t const size_0, int64_t const size_1,
c10::ScalarType const type) {
bool size_0_cond = true;
if (size_0 != -1) {
size_0_cond = t.size(0) == size_0;
}
bool size_1_cond = true;
if (size_1 != -1) {
size_1_cond = t.size(1) == size_1;
}
bool is_contiguous = t.is_contiguous();
bool same_type = t.dtype() == type;
bool pass = size_0_cond && size_1_cond && is_contiguous && same_type;
if (!pass) {
TORCH_CHECK(false, "tensor: name = ", name, ", shape = ", t.sizes(),
" is_cont = ", t.is_contiguous(), ", type = ", t.dtype(),
" is not as expected: shape = [", size_0, ", ", size_1,
"], type = ", type);
}
}
/// each thread processes a block per query
__global__ void advance_step_flashinfer_kernel(
int num_threads, int num_seqs, int num_queries, int block_size,
long* input_tokens_ptr, long const* sampled_token_ids_ptr,
long* input_positions_ptr, int* seq_lens_ptr, long* slot_mapping_ptr,
int const* block_tables_ptr, int64_t const block_tables_stride,
int* paged_kv_last_page_len_ptr, int* block_table_bound_ptr) {
int const n_pad = num_seqs - num_queries;
if (n_pad && blockIdx.x == 0) {
// Handle cuda graph padding
int const offset = num_queries;
for (int i = threadIdx.x; i < n_pad; i += blockDim.x) {
input_tokens_ptr[offset + i] = 0;
input_positions_ptr[offset + i] = 0;
slot_mapping_ptr[offset + i] = -1;
}
}
int num_query_blocks = div_ceil(num_queries, num_threads);
if (blockIdx.x < num_query_blocks) {
int cur_query_id = blockIdx.x * num_threads + threadIdx.x;
if (cur_query_id < num_queries) {
// Update input_tokens
input_tokens_ptr[cur_query_id] = sampled_token_ids_ptr[cur_query_id];
int seq_len = seq_lens_ptr[cur_query_id];
int next_seq_len = seq_len + 1;
int next_input_pos = next_seq_len - 1;
// Update seq_lens
seq_lens_ptr[cur_query_id] = next_seq_len;
// Update input_positions
input_positions_ptr[cur_query_id] = next_input_pos;
int const* seq_block_tables_ptr =
block_tables_ptr + block_tables_stride * cur_query_id;
int block_index = next_input_pos / block_size;
int block_offset = next_input_pos % block_size;
// Update paged_kv_last_page_len
paged_kv_last_page_len_ptr[cur_query_id] = block_offset + 1;
int slot_num =
seq_block_tables_ptr[block_index] * block_size + block_offset;
// Update slot_mapping
slot_mapping_ptr[cur_query_id] = slot_num;
block_table_bound_ptr[cur_query_id] = div_ceil(next_seq_len, block_size);
}
}
}
__global__ void advance_step_flashinfer_indptr_kernel(
int num_threads, int num_seqs, int num_queries, int* paged_kv_indptr_ptr,
int* block_table_bound_ptr) {
int idx = blockIdx.x * num_threads + threadIdx.x;
// Update paged_kv_indptr
if (idx == 0) {
paged_kv_indptr_ptr[idx] = 0;
}
if (idx < num_queries) {
int sum = 0;
for (int i = 0; i <= idx; ++i) {
sum += block_table_bound_ptr[i];
}
paged_kv_indptr_ptr[idx + 1] = sum;
}
}
__global__ void advance_step_flashinfer_indices_kernel(
int num_seqs, int num_queries, int const* block_tables_ptr,
int64_t const max_num_blocks_per_seq, int* paged_kv_indices_ptr,
int* paged_kv_indptr_ptr, int* block_table_bound_ptr) {
// note: max_num_blocks_per_seq = block_tables.stride(0)
int tid = blockIdx.x * blockDim.x + threadIdx.x;
// when cuda graphs are enabled, paged_kv_indptr tensor
// has to be updated for the padded queries
// tid represents a query# for paged_kv_indptr tensor
if (num_queries < tid && tid <= num_seqs) {
paged_kv_indptr_ptr[tid] = paged_kv_indptr_ptr[num_queries];
}
// each thread processes a block_ptr in block_tables
// block_tables shape: [num_queries, max_num_blocks_per_seq]
// paged_kv_indices is flattened block_tables.
for (int idx = tid; idx < (num_seqs * max_num_blocks_per_seq);
idx += (gridDim.x * blockDim.x)) {
// block_tables-row = paged_kv_indptr[queryNum]
int queryNum = idx / max_num_blocks_per_seq;
int col = idx % max_num_blocks_per_seq;
if (queryNum < num_queries && col < block_table_bound_ptr[queryNum]) {
int indices_arr_idx = paged_kv_indptr_ptr[queryNum] + col;
int block_tables_idx = queryNum * max_num_blocks_per_seq + col;
paged_kv_indices_ptr[indices_arr_idx] =
block_tables_ptr[block_tables_idx];
}
}
}
void advance_step_flashattn(int num_seqs, int num_queries, int block_size,
torch::Tensor& input_tokens, // type: long
torch::Tensor& sampled_token_ids, // type: long
torch::Tensor& input_positions, // type: long
torch::Tensor& seq_lens, // type: int
torch::Tensor& slot_mapping, // type: long
torch::Tensor& block_tables) { // type: int
if (logging) {
printf("advance_step_flashattn:\n");
printf(" num_seqs = %d\n", num_seqs);
printf(" num_queries = %d\n", num_queries);
printf(" block_size = %d\n", block_size);
}
// Verify all tensors
verify_tensor("input_tokens", input_tokens, num_seqs, -1, at::kLong);
verify_tensor("sampled_token_ids", sampled_token_ids, num_queries, 1,
at::kLong);
verify_tensor("input_positions", input_positions, num_seqs, -1, at::kLong);
verify_tensor("seq_lens", seq_lens, num_seqs, -1, at::kInt);
verify_tensor("slot_mapping", slot_mapping, num_seqs, -1, at::kLong);
verify_tensor("block_tables", block_tables, num_seqs, -1, at::kInt);
int dev = sampled_token_ids.get_device();
cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev);
int blocks;
cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev);
advance_step_flashattn_kernel<max_threads>
<<<blocks, max_threads, 0, stream>>>(
num_seqs, num_queries, block_size,
reinterpret_cast<long*>(input_tokens.data_ptr()),
reinterpret_cast<long const*>(sampled_token_ids.data_ptr()),
reinterpret_cast<long*>(input_positions.data_ptr()),
reinterpret_cast<int*>(seq_lens.data_ptr()),
reinterpret_cast<long*>(slot_mapping.data_ptr()),
reinterpret_cast<int const*>(block_tables.data_ptr()),
block_tables.stride(0));
}
void advance_step_flashinfer(
int num_seqs, int num_queries, int block_size,
torch::Tensor& input_tokens, // type: long
torch::Tensor& sampled_token_ids, // type: long
torch::Tensor& input_positions, // type: long
torch::Tensor& seq_lens, // type: int
torch::Tensor& slot_mapping, // type: long
torch::Tensor& block_tables, // type: int
torch::Tensor& paged_kv_indices, // type: int
torch::Tensor& paged_kv_indptr, // type: int
torch::Tensor& paged_kv_last_page_len, // type: int
torch::Tensor& block_table_bound) { // type: int
if (logging) {
printf("advance_step_flashinfer:\n");
printf(" num_seqs = %d\n", num_seqs);
printf(" num_queries = %d\n", num_queries);
printf(" block_size = %d\n", block_size);
printf(" block_tables.stride(0) = %zu\n", block_tables.stride(0));
}
// Verify all tensors
verify_tensor("input_tokens", input_tokens, num_seqs, -1, at::kLong);
// verify_tensor("sampled_token_ids", sampled_token_ids, num_queries, 1,
// at::kLong);
verify_tensor("input_positions", input_positions, num_seqs, -1, at::kLong);
verify_tensor("seq_lens", seq_lens, num_seqs, -1, at::kInt);
verify_tensor("slot_mapping", slot_mapping, num_seqs, -1, at::kLong);
verify_tensor("block_tables", block_tables, num_seqs, -1, at::kInt);
verify_tensor("paged_kv_indices", paged_kv_indices, -1, -1, at::kInt);
verify_tensor("paged_kv_indptr", paged_kv_indptr, num_seqs + 1, -1, at::kInt);
verify_tensor("paged_kv_last_page_len", paged_kv_last_page_len, num_seqs, -1,
at::kInt);
verify_tensor("block_table_bound", block_table_bound, num_seqs, -1, at::kInt);
int dev = sampled_token_ids.get_device();
cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev);
int blocks;
int threads;
cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev);
cudaDeviceGetAttribute(&threads, cudaDevAttrMaxThreadsPerBlock, dev);
TORCH_CHECK((blocks * threads > num_queries),
"multi-step: not enough threads to map to num_queries = ",
num_queries, " block_tables.stride(0) = ", block_tables.stride(0),
" blocks = ", blocks, " max_threads = ", threads);
if (logging) {
printf("launching kernels with %d blocks and %d threads\n", blocks,
threads);
}
advance_step_flashinfer_kernel<<<blocks, threads, 0, stream>>>(
threads, num_seqs, num_queries, block_size,
reinterpret_cast<long*>(input_tokens.data_ptr()),
reinterpret_cast<long const*>(sampled_token_ids.data_ptr()),
reinterpret_cast<long*>(input_positions.data_ptr()),
reinterpret_cast<int*>(seq_lens.data_ptr()),
reinterpret_cast<long*>(slot_mapping.data_ptr()),
reinterpret_cast<int const*>(block_tables.data_ptr()),
block_tables.stride(0),
reinterpret_cast<int*>(paged_kv_last_page_len.data_ptr()),
reinterpret_cast<int*>(block_table_bound.data_ptr()));
advance_step_flashinfer_indptr_kernel<<<blocks, threads, 0, stream>>>(
threads, num_seqs, num_queries,
reinterpret_cast<int*>(paged_kv_indptr.data_ptr()),
reinterpret_cast<int*>(block_table_bound.data_ptr()));
advance_step_flashinfer_indices_kernel<<<blocks, threads, 0, stream>>>(
num_seqs, num_queries,
reinterpret_cast<int const*>(block_tables.data_ptr()),
block_tables.stride(0),
reinterpret_cast<int*>(paged_kv_indices.data_ptr()),
reinterpret_cast<int*>(paged_kv_indptr.data_ptr()),
reinterpret_cast<int*>(block_table_bound.data_ptr()));
}
} // namespace prepare_inputs
void advance_step_flashattn(int64_t num_seqs, int64_t num_queries,
int64_t block_size, torch::Tensor& input_tokens,
torch::Tensor& sampled_token_ids,
torch::Tensor& input_positions,
torch::Tensor& seq_lens,
torch::Tensor& slot_mapping,
torch::Tensor& block_tables) {
prepare_inputs::advance_step_flashattn(
num_seqs, num_queries, block_size, input_tokens, sampled_token_ids,
input_positions, seq_lens, slot_mapping, block_tables);
}
void advance_step_flashinfer(
int64_t num_seqs, int64_t num_queries, int64_t block_size,
torch::Tensor& input_tokens, torch::Tensor& sampled_token_ids,
torch::Tensor& input_positions, torch::Tensor& seq_lens,
torch::Tensor& slot_mapping, torch::Tensor& block_tables,
torch::Tensor& paged_kv_indices, torch::Tensor& paged_kv_indptr,
torch::Tensor& paged_kv_last_page_len, torch::Tensor& block_table_bound) {
prepare_inputs::advance_step_flashinfer(
num_seqs, num_queries, block_size, input_tokens, sampled_token_ids,
input_positions, seq_lens, slot_mapping, block_tables, paged_kv_indices,
paged_kv_indptr, paged_kv_last_page_len, block_table_bound);
}

View File

@ -0,0 +1,19 @@
#pragma once
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <iostream>
namespace prepare_inputs {
static constexpr int max_threads = 256;
static constexpr bool logging = false;
constexpr int div_ceil(int a, int b) { return (a + b - 1) / b; }
} // namespace prepare_inputs

View File

@ -0,0 +1,597 @@
/*
* Modified by Neural Magic
* Adapted from https://github.com/Vahe1994/AQLM
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cuda.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/all.h>
#include <c10/cuda/CUDAStream.h>
#include <c10/cuda/CUDAGuard.h>
#include <iostream>
#include <cstdlib>
namespace vllm {
namespace aqlm {
__global__ void Code1x16MatVec(
const int4* __restrict__ A, const int4* __restrict__ B,
int4* __restrict__ C, const int4* __restrict__ codebook, const int prob_m,
const int prob_k,
const int4 codebook_a_sizes, // cumulative sizes of A spanning each
// codebook, at most 3 long.
const int codebook_stride // as int4.
) {
int a_gl_stride = prob_k / 8 / 8;
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
bool pred = a_gl_rd < prob_m;
if (pred) {
// advance to the correct codebook, this easy because we only multiply one
// column of the codebook.
auto codebook_size = &codebook_a_sizes.x;
while (a_gl_rd >= *codebook_size) {
codebook += codebook_stride;
++codebook_size;
}
}
int b_gl_rd = 0;
int c_gl_wr = a_gl_rd;
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
__shared__ int4 sh_b[32 * 9];
float res = 0;
int iters = (prob_k / 8 + 8 * 32 - 1) / (8 * 32);
while (iters--) {
// We pad shared memory to avoid bank conflicts during reads
__syncthreads();
for (int i = threadIdx.x; i < 32 * 8; i += blockDim.x) {
if (b_gl_rd + i < prob_k / 8) sh_b[9 * (i / 8) + i % 8] = B[b_gl_rd + i];
}
__syncthreads();
b_gl_rd += 32 * 8;
int b_sh_rd = 9 * (threadIdx.x % 32);
if (pred && a_gl_rd < a_gl_end) {
const uint16_t* enc = reinterpret_cast<const uint16_t*>(&A[a_gl_rd]);
#pragma unroll
for (int i = 0; i < 8; i++) {
uint32_t dec[4];
// We bypass the L1 cache to avoid massive amounts of memory streaming
// that doesn't actually help us; this brings > 2x speedup.
asm volatile("ld.cg.global.v4.u32 {%0, %1, %2, %3}, [%4];"
: "=r"(dec[0]), "=r"(dec[1]), "=r"(dec[2]), "=r"(dec[3])
: "l"((void*)&codebook[enc[i]]));
half2* a = reinterpret_cast<half2*>(&dec);
half2* b = reinterpret_cast<half2*>(&sh_b[b_sh_rd]);
half2 res2 = {};
#pragma unroll
for (int j = 0; j < 4; j++) res2 = __hfma2(a[j], b[j], res2);
res += __half2float(res2.x) + __half2float(res2.y);
b_sh_rd++;
}
a_gl_rd += 32;
}
}
if (pred) {
#pragma unroll
for (int i = 16; i > 0; i /= 2) res += __shfl_down_sync(0xffffffff, res, i);
if (threadIdx.x % 32 == 0)
reinterpret_cast<__half*>(C)[c_gl_wr] = __float2half(res);
}
}
__global__ void Code2x8MatVec(
const int4* __restrict__ A, const int4* __restrict__ B,
int4* __restrict__ C, const int4* __restrict__ codebook, int prob_m,
int prob_k,
const int4 codebook_a_sizes, // cumulative sizes of A spanning each
// codebook, at most 3 long.
const int codebook_stride // as int4.
) {
int a_gl_stride = prob_k / 8 / 8;
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
bool pred = a_gl_rd < prob_m;
if (pred) {
// advance to the correct codebook, this easy because we only multiply one
// column of the codebook.
auto codebook_size = &codebook_a_sizes.x;
while (a_gl_rd >= *codebook_size) {
codebook += codebook_stride;
++codebook_size;
}
}
int b_gl_rd = 0;
int c_gl_wr = a_gl_rd;
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
int lane = threadIdx.x % 8;
extern __shared__ int4 sh[];
int4* sh_b = sh;
int4* sh_code = sh_b + 32 * 9;
int4* sh_code0 = sh_code;
int4* sh_code1 = sh_code + 256 * 8;
for (int i = threadIdx.x; i < 2 * 256; i += blockDim.x) {
int4 dec = codebook[i];
#pragma unroll
for (int j = 0; j < 8; j++) sh_code[8 * i + (j + lane) % 8] = dec;
}
__syncthreads();
float res = 0;
int iters = (prob_k / 8 + 8 * 32 - 1) / (8 * 32);
while (iters--) {
// We pad shared memory to avoid bank conflicts during reads
__syncthreads();
for (int i = threadIdx.x; i < 32 * 8; i += blockDim.x) {
if (b_gl_rd + i < prob_k / 8) sh_b[9 * (i / 8) + i % 8] = B[b_gl_rd + i];
}
__syncthreads();
b_gl_rd += 32 * 8;
int b_sh_rd = 9 * (threadIdx.x % 32);
if (pred && a_gl_rd < a_gl_end) {
const uint8_t* enc = reinterpret_cast<const uint8_t*>(&A[a_gl_rd]);
#pragma unroll
for (int i = 0; i < 8; i++) {
half2* a0 =
reinterpret_cast<half2*>(&sh_code0[8 * enc[2 * i + 0] + lane]);
half2* a1 =
reinterpret_cast<half2*>(&sh_code1[8 * enc[2 * i + 1] + lane]);
half2* b = reinterpret_cast<half2*>(&sh_b[b_sh_rd]);
half2 res2 = {};
#pragma unroll
for (int j = 0; j < 4; j++)
res2 = __hfma2(__hadd2(a0[j], a1[j]), b[j], res2);
res += __half2float(res2.x) + __half2float(res2.y);
b_sh_rd++;
}
a_gl_rd += 32;
}
}
if (pred) {
#pragma unroll
for (int i = 16; i > 0; i /= 2) res += __shfl_down_sync(0xffffffff, res, i);
if (threadIdx.x % 32 == 0)
reinterpret_cast<__half*>(C)[c_gl_wr] = __float2half(res);
}
}
__global__ void Code1x16Dequant(
const int4* __restrict__ A, int4* __restrict__ C,
const int4* __restrict__ codebook, int prob_m, int prob_k,
const int4 codebook_a_sizes, // cumulative sizes of A spanning each
// codebook, at most 3 long, sums to m.
const int codebook_stride // as int4
) {
int a_gl_stride = prob_k / 8 / 8;
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
bool pred = a_gl_rd < prob_m;
if (pred) {
// advance to the correct codebook, this easy because we only multiply one
// column of the codebook.
auto codebook_size = &codebook_a_sizes.x;
while (a_gl_rd >= *codebook_size) {
codebook += codebook_stride;
++codebook_size;
}
}
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
int c_gl_stride = prob_k / 8;
int c_gl_wr = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
c_gl_wr = c_gl_stride * c_gl_wr + (threadIdx.x % 32) * 8;
int iters = (prob_k / 8 - 1) / (8 * 32) + 1;
while (iters--) {
if (pred && a_gl_rd < a_gl_end) {
const uint16_t* enc = reinterpret_cast<const uint16_t*>(&A[a_gl_rd]);
#pragma unroll
for (int i = 0; i < 8; i++) {
int4 chunk;
auto dec = reinterpret_cast<uint32_t*>(&chunk);
// We bypass the L1 cache to avoid massive amounts of memory streaming
// that doesn't actually help us; this brings > 2x speedup.
asm volatile("ld.cg.global.v4.u32 {%0, %1, %2, %3}, [%4];"
: "=r"(dec[0]), "=r"(dec[1]), "=r"(dec[2]), "=r"(dec[3])
: "l"((void*)&codebook[enc[i]]));
C[a_gl_rd * 8 + i] = chunk;
}
}
a_gl_rd += 32;
}
}
__global__ void Code2x8Dequant(
const int4* __restrict__ A, int4* __restrict__ C,
const int4* __restrict__ codebook, int prob_m, int prob_k,
const int4
codebook_a_sizes, // cumulative sizes of A spanning each codebook, at
// most 3 long, corresponds to cols.
const int codebook_stride // as int4
) {
int a_gl_stride = prob_k / 8 / 8;
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
bool pred = a_gl_rd < prob_m;
if (pred) {
// advance to the correct codebook, this easy because we only multiply one
// column of the codebook.
auto codebook_size = &codebook_a_sizes.x;
while (a_gl_rd >= *codebook_size) {
codebook += codebook_stride;
++codebook_size;
}
}
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
int lane = threadIdx.x % 8;
int c_gl_stride = prob_k / 8;
int c_gl_wr = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
c_gl_wr = c_gl_stride * c_gl_wr + (threadIdx.x % 32) * 8;
extern __shared__ int4 sh[];
int4* sh_code = sh;
int4* sh_code0 = sh_code;
int4* sh_code1 = sh_code + 256 * 8;
for (int i = threadIdx.x; i < 2 * 256; i += blockDim.x) {
int4 dec = codebook[i];
#pragma unroll
for (int j = 0; j < 8; j++) sh_code[8 * i + (j + lane) % 8] = dec;
}
__syncthreads();
int iters = (prob_k / 8 - 1) / (8 * 32) + 1;
while (iters--) {
if (pred && a_gl_rd < a_gl_end) {
const uint8_t* enc = reinterpret_cast<const uint8_t*>(&A[a_gl_rd]);
#pragma unroll
for (int i = 0; i < 8; i++) {
int4 chunk;
half2* a0 =
reinterpret_cast<half2*>(&sh_code0[8 * enc[2 * i + 0] + lane]);
half2* a1 =
reinterpret_cast<half2*>(&sh_code1[8 * enc[2 * i + 1] + lane]);
#pragma unroll
for (int j = 0; j < 4; j++)
reinterpret_cast<half2*>(&chunk)[j] = __hadd2(a0[j], a1[j]);
C[a_gl_rd * 8 + i] = chunk;
}
}
a_gl_rd += 32;
}
}
inline int ceildiv(int a, int b) { return (a + b - 1) / b; }
const int THREAD_M = 16;
void code1x16_matvec_cuda(const void* __restrict__ A,
const void* __restrict__ B, void* __restrict__ C,
const void* __restrict__ codebook, int prob_m,
int prob_k, const int4 codebook_a_sizes,
const int codebook_stride) {
int sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
int waves = 0;
int thread_m;
do {
waves++;
thread_m = ceildiv(prob_m, waves * sms);
} while (thread_m > THREAD_M);
int blocks = ceildiv(prob_m, thread_m);
int threads = 32 * thread_m;
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
Code1x16MatVec<<<blocks, threads, 16 * 32 * 9, stream>>>(
(const int4*)A, (const int4*)B, (int4*)C, (const int4*)codebook, prob_m,
prob_k, codebook_a_sizes, codebook_stride);
}
void code2x8_matvec_cuda(const void* __restrict__ A, const void* __restrict__ B,
void* __restrict__ C,
const void* __restrict__ codebook, int prob_m,
int prob_k, const int4 codebook_a_sizes,
const int codebook_stride) {
int sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
int waves = 0;
int thread_m;
do {
waves++;
thread_m = ceildiv(prob_m, waves * sms);
} while (thread_m > THREAD_M);
int blocks = ceildiv(prob_m, thread_m);
int threads = 32 * thread_m;
int shared = 16 * (2 * 256 * 8 + 32 * 9);
cudaFuncSetAttribute(Code2x8MatVec,
cudaFuncAttributeMaxDynamicSharedMemorySize, shared);
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
Code2x8MatVec<<<blocks, threads, shared, stream>>>(
(const int4*)A, (const int4*)B, (int4*)C, (const int4*)codebook, prob_m,
prob_k, codebook_a_sizes, codebook_stride);
}
void code1x16_dequant_cuda(
const void* __restrict__ A, void* __restrict__ C,
const void* __restrict__ codebook, int prob_m, int prob_k,
const int4 codebook_a_sizes, // cumulative sizes of A spanning each
// codebook, at most 3 long.
const int codebook_stride // as int4.
) {
int sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
int waves = 0;
int thread_m;
do {
waves++;
thread_m = ceildiv(prob_m, waves * sms);
} while (thread_m > THREAD_M);
int blocks = ceildiv(prob_m, thread_m);
int threads = 32 * thread_m;
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
Code1x16Dequant<<<blocks, threads, 0, stream>>>(
(const int4*)A, (int4*)C, (const int4*)codebook, prob_m, prob_k,
codebook_a_sizes, // cumulative sizes of A spanning each codebook, at
// most 3 long.
codebook_stride // as int4.
);
}
// Dequantizes the code and codebook into weights.
void code2x8_dequant_cuda(
const void* __restrict__ A, void* __restrict__ C,
const void* __restrict__ codebook, int prob_m, int prob_k,
const int4
codebook_a_sizes, // cumulative sizes of A spanning each codebook, at
// most 3 long, corresponds to cols.
const int codebook_stride // as int4
) {
int sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
int waves = 0;
int thread_m;
do {
waves++;
thread_m = ceildiv(prob_m, waves * sms);
} while (thread_m > THREAD_M);
int blocks = ceildiv(prob_m, thread_m);
int threads = 32 * thread_m;
int shared = 16 * (2 * 256 * 8 + 32 * 9);
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
cudaFuncSetAttribute(Code2x8Dequant,
cudaFuncAttributeMaxDynamicSharedMemorySize, shared);
Code2x8Dequant<<<blocks, threads, shared, stream>>>(
(const int4*)A, (int4*)C, (const int4*)codebook, prob_m, prob_k,
codebook_a_sizes, codebook_stride);
}
int codebook_stride(const torch::Tensor& codebooks) {
return codebooks.stride(0) * codebooks.element_size() / sizeof(int4);
}
void code1x16_matvec(
const torch::Tensor& A, const torch::Tensor& B, torch::Tensor& C,
const torch::Tensor& codebook,
const int4 codebook_a_sizes // cumulative sizes of A spanning each
// codebook, at most 3 long.
) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(A));
int prob_m = C.size(0);
int prob_k = B.size(0);
code1x16_matvec_cuda(A.data_ptr(), B.data_ptr(), C.data_ptr(),
codebook.data_ptr(), prob_m, prob_k, codebook_a_sizes,
codebook_stride(codebook));
}
torch::Tensor code1x16_matmat(const torch::Tensor& input,
const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& scales,
const int4 codebook_a_sizes,
const std::optional<torch::Tensor>& bias) {
auto input_sizes = input.sizes();
auto out_features = codes.size(0) * codebooks.size(2);
auto flat_input = input.reshape({-1, input.size(-1)});
auto flat_output = torch::empty(
{flat_input.size(0), out_features},
torch::TensorOptions().dtype(input.dtype()).device(input.device()));
for (int i = 0; i < flat_input.size(0); ++i) {
auto input_vec = flat_input.index({i});
auto output_vec = flat_output.index({i});
code1x16_matvec(codes.squeeze(2), input_vec, output_vec, codebooks,
codebook_a_sizes);
}
flat_output *= scales.flatten().unsqueeze(0);
if (bias.has_value()) {
flat_output += bias->unsqueeze(0);
}
auto output_sizes = input_sizes.vec();
output_sizes.pop_back();
output_sizes.push_back(-1);
auto output = flat_output.reshape(output_sizes);
return output;
}
void code2x8_matvec(const torch::Tensor& A, const torch::Tensor& B,
torch::Tensor& C, const torch::Tensor& codebook,
const int4 codebook_a_sizes) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(A));
int prob_m = C.size(0);
int prob_k = B.size(0);
code2x8_matvec_cuda(A.data_ptr(), B.data_ptr(), C.data_ptr(),
codebook.data_ptr(), prob_m, prob_k, codebook_a_sizes,
2 * codebook_stride(codebook));
}
torch::Tensor code2x8_matmat(const torch::Tensor& input,
const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& scales,
const int4 codebook_a_sizes,
const std::optional<torch::Tensor>& bias) {
auto input_sizes = input.sizes();
auto out_features = codes.size(0) * codebooks.size(2);
auto flat_input = input.reshape({-1, input.size(-1)});
auto flat_output = torch::empty(
{flat_input.size(0), out_features},
torch::TensorOptions().dtype(input.dtype()).device(input.device()));
for (int i = 0; i < flat_input.size(0); ++i) {
auto input_vec = flat_input.index({i});
auto output_vec = flat_output.index({i});
code2x8_matvec(codes.squeeze(2), input_vec, output_vec, codebooks,
codebook_a_sizes);
}
flat_output *= scales.flatten().unsqueeze(0);
if (bias.has_value()) {
flat_output += bias->unsqueeze(0);
}
auto output_sizes = input_sizes.vec();
output_sizes.pop_back();
output_sizes.push_back(-1);
auto output = flat_output.reshape(output_sizes);
return output;
}
// Accumulate the partition sizes.
int4 accumulate_sizes(const std::vector<int64_t>& codebook_partition_sizes) {
int4 cumulative_sizes;
auto cumulative_size = &cumulative_sizes.x;
size_t i = 0;
int last = 0;
assert(codebook_partition_sizes.size() <= 4);
for (; i < codebook_partition_sizes.size(); ++i, ++cumulative_size) {
*cumulative_size = codebook_partition_sizes[i] + last;
last = *cumulative_size;
}
// fill in the rest with unreachable.
for (; i < 4; ++i, ++cumulative_size) {
*cumulative_size = last * 10;
}
return cumulative_sizes;
}
} // namespace aqlm
} // namespace vllm
torch::Tensor aqlm_gemm(const torch::Tensor& input, const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& scales,
const std::vector<int64_t>& codebook_partition_sizes,
const std::optional<torch::Tensor>& bias) {
int4 cumulative_sizes =
vllm::aqlm::accumulate_sizes(codebook_partition_sizes);
int const nbooks = codebooks.size(0) / codebook_partition_sizes.size();
int const entries = codebooks.size(1);
if (nbooks == 1 && entries == (1 << 16)) {
return vllm::aqlm::code1x16_matmat(input, codes, codebooks, scales,
cumulative_sizes, bias);
}
if (nbooks == 2 && entries == (1 << 8)) {
return vllm::aqlm::code2x8_matmat(input, codes, codebooks, scales,
cumulative_sizes, bias);
}
TORCH_CHECK(false, "AQLM with ", nbooks, " codebooks and ", entries,
" entries is not currently supported.")
return {};
}
torch::Tensor aqlm_dequant(
const torch::Tensor& codes, const torch::Tensor& codebooks,
const std::vector<int64_t>& codebook_partition_sizes) {
int4 cumulative_sizes =
vllm::aqlm::accumulate_sizes(codebook_partition_sizes);
int const nbooks = codebooks.size(0) / codebook_partition_sizes.size();
int const entries = codebooks.size(1);
const at::cuda::OptionalCUDAGuard device_guard(device_of(codes));
int rows = codes.size(1);
int cols = codes.size(0);
auto in_features = codes.size(1) * 8;
auto out_features = codes.size(0);
assert(out_features == std::accumulate(codebook_partition_sizes.begin(),
codebook_partition_sizes.end(), 0));
auto weights = torch::empty({out_features, in_features},
torch::TensorOptions()
.dtype(codebooks.dtype())
.device(codebooks.device()));
if (nbooks == 1 && entries == (1 << 16)) {
vllm::aqlm::code1x16_dequant_cuda(codes.data_ptr(), weights.data_ptr(),
codebooks.data_ptr(), out_features,
in_features, cumulative_sizes,
vllm::aqlm::codebook_stride(codebooks));
// if you wanted to flip to scaling the weights, (though it's 30%-ish slower
// and not consistent with gemv implementation.) weights *=
// scales.index({"...", 0, 0});
return weights;
}
if (nbooks == 2 && entries == (1 << 8)) {
vllm::aqlm::code2x8_dequant_cuda(codes.data_ptr(), weights.data_ptr(),
codebooks.data_ptr(), out_features,
in_features, cumulative_sizes,
vllm::aqlm::codebook_stride(codebooks));
// if you wanted to flip to scaling the weights, (though it's 30%-ish slower
// and not consistent with gemv implementation) weights *=
// scales.index({"...", 0, 0});
return weights;
}
TORCH_CHECK(false, "AQLM with ", nbooks, " codebooks and ", entries,
" entries is not currently supported.")
return {};
}

View File

@ -161,7 +161,6 @@ void get_cutlass_moe_mm_data_caller(
topk_ids.size(1));
}
template <bool SWAP_AB>
__global__ void compute_pplx_data(int32_t* expert_offsets,
int32_t* problem_sizes1,
int32_t* problem_sizes2,
@ -169,23 +168,14 @@ __global__ void compute_pplx_data(int32_t* expert_offsets,
const int padded_m, const int n,
const int k) {
int expert_idx = threadIdx.x;
expert_offsets[expert_idx] = expert_idx * padded_m;
if constexpr (!SWAP_AB) {
expert_offsets[expert_idx] = expert_idx * padded_m;
problem_sizes1[expert_idx * 3] = expert_num_tokens[expert_idx];
problem_sizes1[expert_idx * 3 + 1] = 2 * n;
problem_sizes1[expert_idx * 3 + 2] = k;
problem_sizes2[expert_idx * 3] = expert_num_tokens[expert_idx];
problem_sizes2[expert_idx * 3 + 1] = k;
problem_sizes2[expert_idx * 3 + 2] = n;
} else {
problem_sizes1[expert_idx * 3] = 2 * n;
problem_sizes1[expert_idx * 3 + 1] = expert_num_tokens[expert_idx];
problem_sizes1[expert_idx * 3 + 2] = k;
problem_sizes2[expert_idx * 3] = k;
problem_sizes2[expert_idx * 3 + 1] = expert_num_tokens[expert_idx];
problem_sizes2[expert_idx * 3 + 2] = n;
}
}
void get_cutlass_pplx_moe_mm_data_caller(torch::Tensor& expert_offsets,
@ -197,19 +187,10 @@ void get_cutlass_pplx_moe_mm_data_caller(torch::Tensor& expert_offsets,
const int64_t n, const int64_t k) {
auto stream = at::cuda::getCurrentCUDAStream(expert_offsets.device().index());
if (num_local_experts * padded_m > SWAP_AB_THRESHOLD) {
compute_pplx_data<false><<<1, num_local_experts, 0, stream>>>(
compute_pplx_data<<<1, num_local_experts, 0, stream>>>(
static_cast<int32_t*>(expert_offsets.data_ptr()),
static_cast<int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(problem_sizes2.data_ptr()),
static_cast<const int32_t*>(expert_num_tokens.data_ptr()), padded_m, n,
k);
} else {
compute_pplx_data<true><<<1, num_local_experts, 0, stream>>>(
static_cast<int32_t*>(expert_offsets.data_ptr()),
static_cast<int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(problem_sizes2.data_ptr()),
static_cast<const int32_t*>(expert_num_tokens.data_ptr()), padded_m, n,
k);
}
}

View File

@ -470,12 +470,11 @@ __device__ inline void dequant<nv_bfloat162, vllm::kFE2M1f.id(), false>(
frag_b[0] = __hmul2(frag_b[0], bias_reg);
}
template <typename scalar_t2, vllm::ScalarTypeId s_type_id>
template <typename scalar_t2>
__device__ inline void dequant_fp8_scales(int q, scalar_t2* frag_b);
template <>
__device__ inline void dequant_fp8_scales<half2, vllm::kFE4M3fn.id()>(
int q, half2* frag_b) {
__device__ inline void dequant_fp8_scales<half2>(int q, half2* frag_b) {
int Out1 = (q & 0xFF00FF00) >> 1;
;
q <<= 8;
@ -487,8 +486,8 @@ __device__ inline void dequant_fp8_scales<half2, vllm::kFE4M3fn.id()>(
};
template <>
__device__ inline void dequant_fp8_scales<nv_bfloat162, vllm::kFE4M3fn.id()>(
int q, nv_bfloat162* frag_b) {
__device__ inline void dequant_fp8_scales<nv_bfloat162>(int q,
nv_bfloat162* frag_b) {
constexpr int FP8_EXPONENT = 4, BF16_EXPONENT = 8;
constexpr int RIGHT_SHIFT = BF16_EXPONENT - FP8_EXPONENT;
constexpr int MASK = 0x7F007F00;
@ -503,20 +502,6 @@ __device__ inline void dequant_fp8_scales<nv_bfloat162, vllm::kFE4M3fn.id()>(
frag_b[0] = *reinterpret_cast<const nv_bfloat162*>(&Out2);
}
template <>
__device__ inline void dequant_fp8_scales<nv_bfloat162, vllm::kFE8M0fnu.id()>(
int q, nv_bfloat162* frag_b) {
// In this conversion, 2 ** -127 in FP8E8M0 would become 0 in BF16,
// but we assume that such a extreme value would not occur in real models.
int Out1 = (q & 0xFF00FF00) >> 1;
q <<= 7;
int Out2 = q & 0x7F807F80;
// Note: reverse indexing is intentional because weights are permuted
frag_b[1] = *reinterpret_cast<const nv_bfloat162*>(&Out1);
frag_b[0] = *reinterpret_cast<const nv_bfloat162*>(&Out2);
}
#endif
} // namespace MARLIN_NAMESPACE_NAME

View File

@ -20,7 +20,6 @@ namespace MARLIN_NAMESPACE_NAME {
TEMPLATE = ("template __global__ void Marlin<"
"{{scalar_t}}, "
"{{w_type_id}}, "
"{{s_type_id}}, "
"{{threads}}, "
"{{thread_m_blocks}}, "
"{{thread_n_blocks}}, "
@ -79,8 +78,7 @@ def generate_new_kernels():
if scalar_type == "vllm::kFE4M3fn" and group_blocks not in [-1, 8]:
continue
# nvfp4 only supports group_size == 16
# mxfp4 only supports group_size == 32
if scalar_type == "vllm::kFE2M1f" and group_blocks not in [1, 2]:
if scalar_type == "vllm::kFE2M1f" and group_blocks != 1:
continue
# other quantization methods don't support group_size = 16
if scalar_type != "vllm::kFE2M1f" and group_blocks == 1:
@ -99,23 +97,10 @@ def generate_new_kernels():
# 4bit quantization and fp16
is_zp_float_list.append(True)
if scalar_type == "vllm::kFE2M1f" and group_blocks == 1:
s_type = "vllm::kFE4M3fn"
elif scalar_type == "vllm::kFE2M1f" and group_blocks == 2:
s_type = "vllm::kFE8M0fnu"
if dtype == "fp16":
# we cannot safely dequantize e8m0 to fp16, so skip this
continue
elif dtype == "fp16":
s_type = "vllm::kFloat16"
elif dtype == "bf16":
s_type = "vllm::kBFloat16"
for is_zp_float in is_zp_float_list:
template_str = jinja2.Template(TEMPLATE).render(
scalar_t=c_dtype,
w_type_id=scalar_type + ".id()",
s_type_id=s_type + ".id()",
threads=threads,
thread_m_blocks=max(m_blocks, 1),
thread_n_blocks=n_blocks,

View File

@ -48,8 +48,7 @@ __global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
torch::Tensor gptq_marlin_gemm(
torch::Tensor& a, std::optional<torch::Tensor> c_or_none,
torch::Tensor& b_q_weight,
std::optional<torch::Tensor> const& b_bias_or_none, torch::Tensor& b_scales,
torch::Tensor& b_q_weight, torch::Tensor& b_scales,
std::optional<torch::Tensor> const& b_zeros_or_none,
std::optional<torch::Tensor> const& g_idx_or_none,
std::optional<torch::Tensor> const& perm_or_none, torch::Tensor& workspace,
@ -188,12 +187,7 @@ int get_kernel_cache_size(thread_config_t const& th_config, int thread_m_blocks,
int tb_m = thread_m_blocks * 16;
int sh_a_size = pipe_stages * (tb_m * tb_k) * 2;
int sh_b_size = pipe_stages * (tb_k * tb_n / pack_factor) * 4;
int sh_red_size = tb_m * (tb_n + 8) * 2;
int sh_bias_size = tb_n * 2;
int tmp_size =
(sh_b_size > sh_red_size ? sh_red_size : sh_b_size) + sh_bias_size;
tmp_size = max(max(sh_b_size, sh_red_size), tmp_size);
int sh_red_size = tb_m * (tb_n + 8);
int sh_s_size =
get_scales_cache_size(th_config, prob_m, prob_n, prob_k, num_bits,
group_size, has_act_order, is_k_full);
@ -208,8 +202,8 @@ int get_kernel_cache_size(thread_config_t const& th_config, int thread_m_blocks,
sh_zp_size = sh_s_size / 2;
}
int total_size =
tmp_size + sh_a_size + sh_s_size + sh_zp_size + sh_g_idx_size;
int total_size = max(sh_b_size, sh_red_size) + sh_a_size + sh_s_size +
sh_zp_size + sh_g_idx_size;
return total_size;
}
@ -243,7 +237,7 @@ bool is_valid_config(thread_config_t const& th_config, int thread_m_blocks,
int cache_size = get_kernel_cache_size(
th_config, thread_m_blocks, prob_m, prob_n, prob_k, num_bits, group_size,
has_act_order, is_k_full, has_zp, is_zp_float);
return cache_size + 512 <= max_shared_mem;
return cache_size <= max_shared_mem;
}
#define _GET_IF(W_TYPE, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
@ -254,14 +248,9 @@ bool is_valid_config(thread_config_t const& th_config, int thread_m_blocks,
m_block_size_8 == M_BLOCK_SIZE_8 && \
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS && \
is_zp_float == IS_ZP_FLOAT) { \
constexpr auto S_TYPE = \
W_TYPE == vllm::kFE2M1f \
? (GROUP_BLOCKS == 1 ? vllm::kFE4M3fn : vllm::kFE8M0fnu) \
: (std::is_same<scalar_t, half>::value ? vllm::kFloat16 \
: vllm::kBFloat16); \
kernel = Marlin<scalar_t, W_TYPE.id(), S_TYPE.id(), NUM_THREADS, \
THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
M_BLOCK_SIZE_8, pipe_stages, GROUP_BLOCKS, IS_ZP_FLOAT>; \
kernel = Marlin<scalar_t, W_TYPE.id(), NUM_THREADS, THREAD_M_BLOCKS, \
THREAD_N_BLOCKS, THREAD_K_BLOCKS, M_BLOCK_SIZE_8, \
pipe_stages, GROUP_BLOCKS, IS_ZP_FLOAT>; \
}
// COMMON: cases for (group_blocks in [-1, 2, 4, 8] and is_zp_float == false)
@ -326,39 +315,22 @@ bool is_valid_config(thread_config_t const& th_config, int thread_m_blocks,
BIGGROUP_GET_IF_M234(W_TYPE, 8, 4, 128) \
BIGGROUP_GET_IF_M234(W_TYPE, 4, 8, 128)
#define NVFP4_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
#define FP4_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)
#define NVFP4_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
#define FP4_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)
#define NVFP4_GET_IF(W_TYPE) \
NVFP4_GET_IF_M1(W_TYPE, 8, 8, 256) \
NVFP4_GET_IF_M1(W_TYPE, 8, 4, 128) \
NVFP4_GET_IF_M1(W_TYPE, 4, 8, 128) \
NVFP4_GET_IF_M234(W_TYPE, 16, 4, 256) \
NVFP4_GET_IF_M234(W_TYPE, 8, 4, 128) \
NVFP4_GET_IF_M234(W_TYPE, 4, 8, 128)
#define MXFP4_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false)
#define MXFP4_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false)
#define MXFP4_GET_IF(W_TYPE) \
MXFP4_GET_IF_M1(W_TYPE, 8, 8, 256) \
MXFP4_GET_IF_M1(W_TYPE, 8, 4, 128) \
MXFP4_GET_IF_M1(W_TYPE, 4, 8, 128) \
MXFP4_GET_IF_M234(W_TYPE, 16, 4, 256) \
MXFP4_GET_IF_M234(W_TYPE, 8, 4, 128) \
MXFP4_GET_IF_M234(W_TYPE, 4, 8, 128)
#define FP4_GET_IF(W_TYPE) \
FP4_GET_IF_M1(W_TYPE, 8, 8, 256) \
FP4_GET_IF_M1(W_TYPE, 8, 4, 128) \
FP4_GET_IF_M1(W_TYPE, 4, 8, 128) \
FP4_GET_IF_M234(W_TYPE, 16, 4, 256) \
FP4_GET_IF_M234(W_TYPE, 8, 4, 128) \
FP4_GET_IF_M234(W_TYPE, 4, 8, 128)
// We currently have 4-bit models only with group_blocks == 4
#define FZP_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
@ -412,7 +384,7 @@ MarlinFuncPtr get_marlin_kernel(const vllm::ScalarType q_type,
COMMON_GET_IF(vllm::kU4B8)
COMMON_GET_IF(vllm::kU8B128)
NVFP4_GET_IF(vllm::kFE2M1f)
FP4_GET_IF(vllm::kFE2M1f)
BIGGROUP_GET_IF(vllm::kFE4M3fn)
@ -424,11 +396,6 @@ MarlinFuncPtr get_marlin_kernel(const vllm::ScalarType q_type,
}
FZP_GET_IF(vllm::kU4)
}
if (std::is_same<scalar_t, nv_bfloat16>::value) {
if (false) {
}
MXFP4_GET_IF(vllm::kFE2M1f)
}
return kernel;
}
@ -486,12 +453,12 @@ exec_config_t determine_exec_config(const vllm::ScalarType& q_type, int prob_m,
}
template <typename scalar_t>
void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* b_bias,
void* s, void* s2, void* zp, void* g_idx, void* perm,
void* a_tmp, int prob_m, int prob_n, int prob_k, int lda,
void* workspace, vllm::ScalarType const& q_type, bool has_bias,
bool has_act_order, bool is_k_full, bool has_zp, int num_groups,
int group_size, int dev, cudaStream_t stream, int thread_k_init,
void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
void* s2, void* zp, void* g_idx, void* perm, void* a_tmp,
int prob_m, int prob_n, int prob_k, int lda, void* workspace,
vllm::ScalarType const& q_type, bool has_act_order,
bool is_k_full, bool has_zp, int num_groups, int group_size,
int dev, cudaStream_t stream, int thread_k_init,
int thread_n_init, int sms, bool use_atomic_add,
bool use_fp32_reduce, bool is_zp_float) {
if (has_zp) {
@ -536,7 +503,6 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* b_bias,
const int4* B_ptr = (const int4*)B;
int4* C_ptr = (int4*)C;
int4* C_tmp_ptr = (int4*)C_tmp;
const int4* bias_ptr = (const int4*)b_bias;
const int4* s_ptr = (const int4*)s;
const uint16_t* s2_ptr = (const uint16_t*)s2;
const int4* zp_ptr = (const int4*)zp;
@ -657,9 +623,8 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* b_bias,
// avoid ">>>" being formatted to "> > >"
// clang-format off
kernel<<<blocks, num_threads, max_shared_mem_new, stream>>>(
A_ptr, B_ptr, C_ptr, C_tmp_ptr, bias_ptr, s_ptr, s2_ptr, zp_ptr,
g_idx_ptr, num_groups,
prob_m_split, prob_n, prob_k, lda, locks, has_bias, part_use_atomic_add,
A_ptr, B_ptr, C_ptr, C_tmp_ptr, s_ptr, s2_ptr, zp_ptr, g_idx_ptr, num_groups,
prob_m_split, prob_n, prob_k, lda, locks, part_use_atomic_add,
use_fp32_reduce, max_shared_mem_new);
// clang-format on
@ -673,8 +638,7 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* b_bias,
torch::Tensor gptq_marlin_gemm(
torch::Tensor& a, std::optional<torch::Tensor> c_or_none,
torch::Tensor& b_q_weight,
std::optional<torch::Tensor> const& b_bias_or_none, torch::Tensor& b_scales,
torch::Tensor& b_q_weight, torch::Tensor& b_scales,
std::optional<torch::Tensor> const& global_scale_or_none,
std::optional<torch::Tensor> const& b_zeros_or_none,
std::optional<torch::Tensor> const& g_idx_or_none,
@ -821,24 +785,12 @@ torch::Tensor gptq_marlin_gemm(
torch::Tensor global_scale;
if (global_scale_or_none.has_value()) {
global_scale = global_scale_or_none.value();
TORCH_CHECK(b_q_type == vllm::kFE2M1f && group_size == 16,
"global_scale can only be used for nvfp4 format.");
TORCH_CHECK(b_q_type == vllm::kFE2M1f,
"global_scale can only be used for float4_e2m1f.");
} else {
global_scale = torch::empty({0}, options);
TORCH_CHECK(!(b_q_type == vllm::kFE2M1f && group_size == 16),
"the global_scale parameter must be passed for nvfp4 format.");
}
bool has_bias = b_bias_or_none.has_value();
torch::Tensor b_bias;
if (has_bias) {
b_bias = b_bias_or_none.value();
TORCH_CHECK(b_bias.device().is_cuda(), "b_bias is not on GPU");
TORCH_CHECK(b_bias.is_contiguous(), "b_bias is not contiguous");
TORCH_CHECK(b_bias.size(0) == size_n, "b_bias.size(0) != size_n");
TORCH_CHECK(b_bias.stride(0) == 1, "b_bias.stride(0) != 1");
} else {
b_bias = torch::empty({0}, options);
TORCH_CHECK(!(b_q_type == vllm::kFE2M1f),
"the global_scale parameter must be passed for float4_e2m1f.");
}
torch::Tensor b_zeros;
@ -905,50 +857,34 @@ torch::Tensor gptq_marlin_gemm(
if (a.scalar_type() == at::ScalarType::Half) {
void* scales_ptr;
if (b_q_type == vllm::kFE2M1f) {
if (group_size == 16)
scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
else if (group_size == 32)
scales_ptr = b_scales.data_ptr<at::Float8_e8m0fnu>();
else
TORCH_CHECK(false,
"float4_e2m1f only supports group_size == 16 (NVFP4) ",
"and group_size == 32 (MXFP4)");
} else {
scales_ptr = b_scales.data_ptr<at::Half>();
}
marlin::marlin_mm<half>(
a.data_ptr<at::Half>(), b_q_weight.data_ptr(), c.data_ptr<at::Half>(),
c_tmp.data_ptr<float>(), b_bias.data_ptr<at::Half>(), scales_ptr,
global_scale.data_ptr<at::Half>(), b_zeros.data_ptr(), g_idx.data_ptr(),
perm.data_ptr(), a_tmp.data_ptr<at::Half>(), size_m, size_n, size_k,
a.stride(0), workspace.data_ptr(), b_q_type, has_bias, has_act_order,
is_k_full, has_zp, num_groups, group_size, dev,
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
use_atomic_add, use_fp32_reduce, is_zp_float);
c_tmp.data_ptr<float>(), scales_ptr, global_scale.data_ptr<at::Half>(),
b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(),
a_tmp.data_ptr<at::Half>(), size_m, size_n, size_k, a.stride(0),
workspace.data_ptr(), b_q_type, has_act_order, is_k_full, has_zp,
num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev),
thread_k, thread_n, sms, use_atomic_add, use_fp32_reduce, is_zp_float);
} else if (a.scalar_type() == at::ScalarType::BFloat16) {
void* scales_ptr;
if (b_q_type == vllm::kFE2M1f) {
if (group_size == 16)
scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
else if (group_size == 32)
scales_ptr = b_scales.data_ptr<at::Float8_e8m0fnu>();
else
TORCH_CHECK(false,
"float4_e2m1f only supports group_size == 16 (NVFP4) ",
"and group_size == 32 (MXFP4)");
} else {
scales_ptr = b_scales.data_ptr<at::BFloat16>();
}
marlin::marlin_mm<nv_bfloat16>(
a.data_ptr<at::BFloat16>(), b_q_weight.data_ptr(),
c.data_ptr<at::BFloat16>(), c_tmp.data_ptr<float>(),
b_bias.data_ptr<at::BFloat16>(), scales_ptr,
c.data_ptr<at::BFloat16>(), c_tmp.data_ptr<float>(), scales_ptr,
global_scale.data_ptr<at::BFloat16>(), b_zeros.data_ptr(),
g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr<at::BFloat16>(),
size_m, size_n, size_k, a.stride(0), workspace.data_ptr(), b_q_type,
has_bias, has_act_order, is_k_full, has_zp, num_groups, group_size, dev,
has_act_order, is_k_full, has_zp, num_groups, group_size, dev,
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
use_atomic_add, use_fp32_reduce, is_zp_float);
} else {

View File

@ -10,18 +10,15 @@
#define MARLIN_KERNEL_PARAMS \
const int4 *__restrict__ A, const int4 *__restrict__ B, \
int4 *__restrict__ C, int4 *__restrict__ C_tmp, \
const int4 *__restrict__ b_bias_ptr, \
const int4 *__restrict__ scales_ptr, \
const uint16_t *__restrict__ scale2_ptr, \
const int4 *__restrict__ zp_ptr, const int *__restrict__ g_idx, \
int num_groups, int prob_m, int prob_n, int prob_k, int lda, int *locks, \
bool has_bias, bool use_atomic_add, bool use_fp32_reduce, \
int max_shared_mem
bool use_atomic_add, bool use_fp32_reduce, int max_shared_mem
namespace MARLIN_NAMESPACE_NAME {
template <typename scalar_t, // compute dtype, half or nv_float16
const vllm::ScalarTypeId w_type_id, // weight ScalarType id
const vllm::ScalarTypeId s_type_id, // weight ScalarType id
const int threads, // number of threads in a threadblock
const int thread_m_blocks, // number of 16x16 blocks in the m
// dimension (batchsize) of the

View File

@ -39,7 +39,6 @@ namespace MARLIN_NAMESPACE_NAME {
template <typename scalar_t, // compute dtype, half or nv_float16
const vllm::ScalarTypeId w_type_id, // weight ScalarType id
const vllm::ScalarTypeId s_type_id, // weight scale ScalarType id
const int threads, // number of threads in a threadblock
const int thread_m_blocks, // number of 16x16 blocks in the m
// dimension (batchsize) of the
@ -272,7 +271,6 @@ __device__ inline void wait_negative_and_add(int* lock) {
template <typename scalar_t, // compute dtype, half or nv_float16
const vllm::ScalarTypeId w_type_id, // weight ScalarType id
const vllm::ScalarTypeId s_type_id, // weight scale ScalarType id
const int threads, // number of threads in a threadblock
const int thread_m_blocks, // number of 16x16 blocks in the m
// dimension (batchsize) of the
@ -292,7 +290,6 @@ __global__ void Marlin(
const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn
int4* __restrict__ C, // fp16 output buffer of shape mxn
int4* __restrict__ C_tmp, // fp32 tmp output buffer (for reduce)
const int4* __restrict__ b_bias_ptr,
const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape
// (k/groupsize)xn
const uint16_t* __restrict__ scale2_ptr, // fp16 global scale (for nvfp4
@ -306,7 +303,6 @@ __global__ void Marlin(
int prob_k, // reduction dimension k
int lda, // A.stride(0), equal to prob_k is A is contiguous
int* locks, // extra global storage for barrier synchronization
bool has_bias,
bool use_atomic_add, // whether to use atomic add to reduce
bool use_fp32_reduce, // whether to use fp32 global reduce
int max_shared_mem) {
@ -330,29 +326,18 @@ __global__ void Marlin(
using FragZP = typename ScalarType<scalar_t>::FragZP;
static constexpr auto w_type = vllm::ScalarType::from_id(w_type_id);
static constexpr auto s_type = vllm::ScalarType::from_id(s_type_id);
if constexpr (w_type == vllm::kFE2M1f) {
static_assert(s_type == vllm::kFE4M3fn && group_blocks == 1 ||
s_type == vllm::kFE8M0fnu && group_blocks == 2);
} else if constexpr (std::is_same<scalar_t, nv_bfloat16>::value) {
static_assert(s_type == vllm::kBFloat16);
} else if constexpr (std::is_same<scalar_t, half>::value) {
static_assert(s_type == vllm::kFloat16);
}
constexpr bool has_zp = w_type == vllm::kU4 || w_type == vllm::kU8;
constexpr bool is_int_type = w_type == vllm::kU4 || w_type == vllm::kU8 ||
w_type == vllm::kU4B8 || w_type == vllm::kU8B128;
// see comments of dequant.h for more details
constexpr bool dequant_skip_flop =
w_type == vllm::kFE4M3fn ||
w_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn ||
!is_int_type ||
has_zp && !is_zp_float && !std::is_same<scalar_t, nv_bfloat16>::value ||
has_zp && !is_zp_float && !(w_type == vllm::kU8);
scalar_t2 global_scale;
if constexpr (w_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn) {
// NVFP4 format requires global scale
if constexpr (w_type == vllm::kFE2M1f) {
uint16_t val = scale2_ptr[0];
global_scale = Dtype::num2num2(*reinterpret_cast<scalar_t*>(&val));
}
@ -604,7 +589,7 @@ __global__ void Marlin(
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
(threadIdx.x % 32) / 4;
s_sh_rd = s_sh_rd * 2 + (warp_row / group_blocks) % 2;
s_sh_rd = s_sh_rd * 2 + warp_row % 2;
} else if constexpr (group_blocks != -1)
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
@ -617,18 +602,6 @@ __global__ void Marlin(
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
(threadIdx.x % 32) % 4;
int bias_sh_rd;
if constexpr (m_block_size_8) {
bias_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
(threadIdx.x % 32) / 8;
} else {
bias_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
(threadIdx.x % 32) % 4;
}
int bias_sh_wr = threadIdx.x;
int bias_gl_rd = (thread_n_blocks * 16 / 8) * slice_col + threadIdx.x;
// Zero-points have the same read layout as the scales
// (without column-wise case)
constexpr int num_col_threads = 8;
@ -697,19 +670,7 @@ __global__ void Marlin(
constexpr int sh_b_size = stages * b_sh_stage;
int4* sh_b = sh;
int4* sh_red = sh;
constexpr int sh_size_b_red_min =
(sh_red_size < sh_b_size ? sh_red_size : sh_b_size);
constexpr int sh_size_b_red_max =
(sh_red_size > sh_b_size ? sh_red_size : sh_b_size);
constexpr int sh_bias_size = (thread_n_blocks * 16 / 8);
constexpr int sh_b_red_bias_size =
sh_size_b_red_max > (sh_size_b_red_min + sh_bias_size)
? sh_size_b_red_max
: (sh_size_b_red_min + sh_bias_size);
int4* sh_bias = sh + sh_size_b_red_min;
int4* sh_g_idx = sh + sh_b_red_bias_size;
int4* sh_g_idx = sh_b + (sh_red_size > sh_b_size ? sh_red_size : sh_b_size);
int4* sh_zp = sh_g_idx + (stages * g_idx_stage);
constexpr int sh_s_size = has_act_order ? (act_s_max_num_groups * s_sh_stride)
: (stages * s_sh_stage);
@ -719,13 +680,15 @@ __global__ void Marlin(
static_assert(thread_m_blocks * 16 * thread_n_blocks * 16 / 8 <=
stages * b_sh_stage);
int4* sh_a = sh_s + sh_s_size;
// constexpr int shm_size_used =
// stages * (g_idx_stage + zp_sh_stage) + sh_s_size +
// (sh_red_size > sh_b_size ? sh_red_size : sh_b_size);
// Register storage for double buffer of shared memory reads.
FragA frag_a[2][thread_m_blocks];
I4 frag_b_quant[2][b_thread_vecs];
FragC frag_c[thread_m_blocks][4][2];
FragS frag_s[2][4]; // No act-order
FragS frag_bias[2][4];
FragS act_frag_s[2][4][4]; // For act-order
int frag_qzp[2][num_ints_per_thread]; // Zero-points
FragZP frag_zp; // Zero-points in fp16
@ -960,15 +923,10 @@ __global__ void Marlin(
if constexpr (w_type_id != vllm::kFE2M1f.id()) {
reinterpret_cast<int4*>(&frag_s[k % 2])[0] =
sh_s_stage[s_sh_rd + cur_group_id * s_sh_stride];
} else if constexpr (group_blocks == 1 || thread_k_blocks > 4) {
reinterpret_cast<int2*>(&frag_s[k % 2])[0] =
reinterpret_cast<int2*>(
sh_s_stage)[s_sh_rd + cur_group_id * (2 * s_sh_stride)];
} else {
reinterpret_cast<int2*>(&frag_s[k % 2])[0] =
reinterpret_cast<int2*>(
sh_s_stage)[s_sh_rd + cur_group_id * (2 * s_sh_stride) +
k % 2];
sh_s_stage)[s_sh_rd + cur_group_id * (2 * s_sh_stride)];
}
}
}
@ -1181,9 +1139,9 @@ __global__ void Marlin(
int s_quant_0 = reinterpret_cast<int*>(frag_s[k2])[0];
int s_quant_1 = reinterpret_cast<int*>(frag_s[k2])[1];
dequant_fp8_scales<scalar_t2, s_type_id>(
s_quant_0, reinterpret_cast<scalar_t2*>(&frag_s[k2]));
dequant_fp8_scales<scalar_t2, s_type_id>(
dequant_fp8_scales<scalar_t2>(s_quant_0,
reinterpret_cast<scalar_t2*>(&frag_s[k2]));
dequant_fp8_scales<scalar_t2>(
s_quant_1, reinterpret_cast<scalar_t2*>(&frag_s[k2]) + 2);
}
@ -1453,7 +1411,7 @@ __global__ void Marlin(
// Write out the reduce final result in the correct layout. We only actually
// reshuffle matrix fragments in this step, the reduction above is performed
// in fragment layout.
auto write_result = [&](bool last) {
auto write_result = [&]() {
int c_gl_stride = prob_n / 8;
constexpr int c_sh_stride = 2 * thread_n_blocks + 1;
int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks));
@ -1480,7 +1438,7 @@ __global__ void Marlin(
int c_gl_wr_end = c_gl_stride * prob_m;
// We first reorder in shared memory to guarantee the most efficient final
// global write patterns
auto write = [&](int idx, float c0, float c1, FragS& s, FragS& b_bias) {
auto write = [&](int idx, float c0, float c1, FragS& s) {
scalar_t2 res =
Dtype::nums2num2(Dtype::float2num(c0), Dtype::float2num(c1));
@ -1489,25 +1447,12 @@ __global__ void Marlin(
if constexpr (!has_act_order && group_blocks == -1 &&
w_type.size_bits() == 4 &&
(has_zp && dequant_skip_flop || !has_zp)) {
scalar_t2 tmp_scale = s[0];
if constexpr (m_block_size_8) {
tmp_scale = Dtype::num2num2(
reinterpret_cast<scalar_t*>(&s[0])[(threadIdx.x % 8) / 4]);
}
res = __hmul2(res, tmp_scale);
res = __hmul2(res, s[0]);
}
if constexpr (w_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn) {
if constexpr (w_type == vllm::kFE2M1f) {
res = __hmul2(res, global_scale);
}
if (has_bias && last) {
scalar_t2 tmp_bias = b_bias[0];
if constexpr (m_block_size_8) {
tmp_bias = Dtype::num2num2(
reinterpret_cast<scalar_t*>(&b_bias[0])[(threadIdx.x % 8) / 4]);
}
res = __hadd2(res, tmp_bias);
}
if constexpr (m_block_size_8) {
((scalar_t*)sh_red)[idx] = res.x;
@ -1525,25 +1470,19 @@ __global__ void Marlin(
if constexpr (m_block_size_8) {
int wr = c_sh_wr + 16 * j;
write(wr, frag_c[i][j][0][0], frag_c[i][j][0][1],
frag_s[j / 2][2 * (j % 2) + 0],
frag_bias[j / 2][2 * (j % 2) + 0]);
frag_s[j / 2][2 * (j % 2) + 0]);
write(wr + 8, frag_c[i][j][0][2], frag_c[i][j][0][3],
frag_s[j / 2][2 * (j % 2) + 1],
frag_bias[j / 2][2 * (j % 2) + 1]);
frag_s[j / 2][2 * (j % 2) + 1]);
} else {
int wr = c_sh_wr + 8 * j;
write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0],
frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0],
frag_bias[j / 2][2 * (j % 2) + 0]);
frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]);
write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2],
frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0],
frag_bias[j / 2][2 * (j % 2) + 0]);
frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]);
write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0],
frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1],
frag_bias[j / 2][2 * (j % 2) + 1]);
frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]);
write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2],
frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1],
frag_bias[j / 2][2 * (j % 2) + 1]);
frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]);
}
}
c_sh_wr += 16 * (4 * c_sh_stride);
@ -1683,14 +1622,6 @@ __global__ void Marlin(
}
thread_block_reduce();
if (has_bias && last) {
__syncthreads();
cp_async4_pred(&sh_bias[bias_sh_wr], &b_bias_ptr[bias_gl_rd],
threadIdx.x < 16 * thread_n_blocks / 8);
cp_async_fence();
}
if constexpr (!has_act_order && group_blocks == -1 &&
(has_zp && dequant_skip_flop || !has_zp)) {
if (w_type.size_bits() == 8 || (last || use_atomic_add)) {
@ -1753,20 +1684,11 @@ __global__ void Marlin(
}
barrier_release(&locks[locks_off], last);
}
if (has_bias && last) {
cp_async_wait<0>();
__syncthreads();
reinterpret_cast<int4*>(&frag_bias)[0] = sh_bias[bias_sh_rd];
reinterpret_cast<int4*>(&frag_bias)[1] = sh_bias[bias_sh_rd + 4];
__syncthreads();
}
if (use_atomic_add && slice_count > 1 && slice_idx != 0)
wait_negative_and_add(&locks[locks_off]);
if (last || use_atomic_add)
// only the last block in a slice actually writes the result
write_result(last);
write_result();
slice_row = 0;
slice_col_par++;
slice_col++;
@ -1784,7 +1706,6 @@ __global__ void Marlin(
for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride;
}
bias_gl_rd = (thread_n_blocks * 16 / 8) * slice_col + threadIdx.x;
// Update slice k/n for scales loading
if constexpr (has_act_order) {
slice_k_start = tb_k * slice_row;

View File

@ -349,12 +349,9 @@ def to_cute_constant(value: list[int]):
def unique_schedules(impl_configs: list[ImplConfig]):
# Use dict over set for deterministic ordering
return list({
sch: None
for impl_config in impl_configs
for sch in impl_config.schedules
}.keys())
return list(
set(sch for impl_config in impl_configs
for sch in impl_config.schedules))
def unsigned_type_with_bitwidth(num_bits):

View File

@ -130,12 +130,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.def("fatrelu_and_mul(Tensor! out, Tensor input, float threshold) -> ()");
ops.impl("fatrelu_and_mul", torch::kCUDA, &fatrelu_and_mul);
ops.def(
"swigluoai_and_mul(Tensor! out, Tensor input, float alpha=1.702, float "
"limit=7.0) "
"-> ()");
ops.impl("swigluoai_and_mul", torch::kCUDA, &swigluoai_and_mul);
// GELU implementation used in GPT-2.
ops.def("gelu_new(Tensor! out, Tensor input) -> ()");
ops.impl("gelu_new", torch::kCUDA, &gelu_new);
@ -148,6 +142,25 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.def("gelu_quick(Tensor! out, Tensor input) -> ()");
ops.impl("gelu_quick", torch::kCUDA, &gelu_quick);
// prepare_inputs advance_step
ops.def(
"advance_step_flashattn(int num_seqs, int num_queries, int block_size, "
"Tensor! input_tokens, Tensor sampled_token_ids, "
"Tensor! input_positions, Tensor! seq_lens, Tensor! slot_mapping, "
"Tensor block_tables) -> ()");
ops.impl("advance_step_flashattn", torch::kCUDA, &advance_step_flashattn);
ops.def(
"advance_step_flashinfer("
" int num_seqs, int num_queries, int block_size,"
" Tensor! input_tokens, Tensor sampled_token_ids,"
" Tensor! input_positions, Tensor! seq_lens, Tensor! slot_mapping,"
" Tensor block_tables, Tensor! paged_kv_indices,"
" Tensor! paged_kv_indptr, Tensor! paged_kv_last_page_len,"
" Tensor! block_table_bounds"
") -> ()");
ops.impl("advance_step_flashinfer", torch::kCUDA, &advance_step_flashinfer);
// Layernorm
// Apply Root Mean Square (RMS) Normalization to the input tensor.
ops.def(
@ -213,6 +226,21 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// Quantization ops
#ifndef USE_ROCM
// Quantized GEMM for AQLM.
ops.def(
"aqlm_gemm(Tensor input, Tensor codes, Tensor codebooks, "
"Tensor scales, int[] codebook_partition_sizes, Tensor? bias) "
"-> Tensor",
{stride_tag});
ops.impl("aqlm_gemm", torch::kCUDA, &aqlm_gemm);
// Decompression method for AQLM.
ops.def(
"aqlm_dequant(Tensor codes, Tensor codebooks, "
"int[] codebook_partition_sizes) -> Tensor",
{stride_tag});
ops.impl("aqlm_dequant", torch::kCUDA, &aqlm_dequant);
// Quantized GEMM for AWQ.
ops.def(
"awq_gemm(Tensor _in_feats, Tensor _kernel, Tensor _scaling_factors, "
@ -298,7 +326,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// gptq_marlin Optimized Quantized GEMM for GPTQ.
ops.def(
"gptq_marlin_gemm(Tensor a, Tensor? c_or_none, Tensor b_q_weight, "
"Tensor? b_bias_or_none,"
"Tensor b_scales, Tensor? global_scale, Tensor? b_zeros_or_none, Tensor? "
"g_idx_or_none, Tensor? perm_or_none, Tensor workspace, int b_q_type, "
"SymInt size_m, SymInt size_n, SymInt size_k, bool is_k_full, "

View File

@ -139,6 +139,21 @@ RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
WORKDIR /workspace
# install build and runtime dependencies
# arm64 (GH200) build follows the practice of "use existing pytorch" build,
# we need to install torch and torchvision from the nightly builds first,
# pytorch will not appear as a vLLM dependency in all of the following steps
# after this step
RUN --mount=type=cache,target=/root/.cache/uv \
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
uv pip install --system \
--index-url ${PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.') \
"torch==2.8.0.dev20250318+cu128" "torchvision==0.22.0.dev20250319"; \
uv pip install --system \
--index-url ${PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.') \
--pre pytorch_triton==3.3.0+gitab727c40; \
fi
COPY requirements/common.txt requirements/common.txt
COPY requirements/cuda.txt requirements/cuda.txt
RUN --mount=type=cache,target=/root/.cache/uv \
@ -219,8 +234,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
&& sccache --show-stats; \
fi
ARG vllm_target_device="cuda"
ENV VLLM_TARGET_DEVICE=${vllm_target_device}
ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/ccache \
--mount=type=cache,target=/root/.cache/uv \
@ -484,11 +497,14 @@ ENV HF_HUB_ENABLE_HF_TRANSFER 1
# Copy in the v1 package for testing (it isn't distributed yet)
COPY vllm/v1 /usr/local/lib/python${PYTHON_VERSION}/dist-packages/vllm/v1
# Source code is used in the `python_only_compile.sh` test
# We hide it inside `src/` so that this source code
# doc requires source code
# we hide them inside `test_docs/` , so that this source code
# will not be imported by other tests
RUN mkdir src
RUN mv vllm src/vllm
RUN mkdir test_docs
RUN mv docs test_docs/
RUN cp -r examples test_docs/
RUN mv vllm test_docs/
RUN mv mkdocs.yaml test_docs/
#################### TEST IMAGE ####################
#################### OPENAI API SERVER ####################

View File

@ -16,7 +16,7 @@ ENV LANG=C.UTF-8 \
RUN microdnf install -y \
which procps findutils tar vim git gcc gcc-gfortran g++ make patch zlib-devel \
libjpeg-turbo-devel libtiff-devel libpng-devel libwebp-devel freetype-devel harfbuzz-devel \
openssl-devel openblas openblas-devel autoconf automake libtool cmake numpy libsndfile && \
openssl-devel openblas openblas-devel autoconf automake libtool cmake numpy && \
microdnf clean all
# Python Installation
@ -136,71 +136,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
mkdir -p /tmp/hf-xet/dist && \
cp dist/*.whl /tmp/hf-xet/dist/
# Build numba
FROM python-install AS numba-builder
ARG MAX_JOBS
ARG NUMBA_VERSION=0.61.2
WORKDIR /tmp
# Clone all required dependencies
RUN --mount=type=cache,target=/root/.cache/uv \
microdnf install ninja-build gcc gcc-c++ -y && \
git clone --recursive https://github.com/llvm/llvm-project.git -b llvmorg-15.0.7 && \
git clone --recursive https://github.com/numba/llvmlite.git -b v0.44.0 && \
git clone --recursive https://github.com/numba/numba.git -b ${NUMBA_VERSION} && \
cd llvm-project && mkdir build && cd build && \
uv pip install 'cmake<4' setuptools numpy && \
export PREFIX=/usr/local && CMAKE_ARGS="${CMAKE_ARGS} -DLLVM_ENABLE_PROJECTS=lld;libunwind;compiler-rt" \
CFLAGS="$(echo $CFLAGS | sed 's/-fno-plt //g')" \
CXXFLAGS="$(echo $CXXFLAGS | sed 's/-fno-plt //g')" \
CMAKE_ARGS="${CMAKE_ARGS} -DFFI_INCLUDE_DIR=$PREFIX/include" \
CMAKE_ARGS="${CMAKE_ARGS} -DFFI_LIBRARY_DIR=$PREFIX/lib" \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_LIBRARY_PATH="${PREFIX}" \
-DLLVM_ENABLE_LIBEDIT=OFF \
-DLLVM_ENABLE_LIBXML2=OFF \
-DLLVM_ENABLE_RTTI=ON \
-DLLVM_ENABLE_TERMINFO=OFF \
-DLLVM_INCLUDE_BENCHMARKS=OFF \
-DLLVM_INCLUDE_DOCS=OFF \
-DLLVM_INCLUDE_EXAMPLES=OFF \
-DLLVM_INCLUDE_GO_TESTS=OFF \
-DLLVM_INCLUDE_TESTS=OFF \
-DLLVM_INCLUDE_UTILS=ON \
-DLLVM_INSTALL_UTILS=ON \
-DLLVM_UTILS_INSTALL_DIR=libexec/llvm \
-DLLVM_BUILD_LLVM_DYLIB=OFF \
-DLLVM_LINK_LLVM_DYLIB=OFF \
-DLLVM_EXPERIMENTAL_TARGETS_TO_BUILD=WebAssembly \
-DLLVM_ENABLE_FFI=ON \
-DLLVM_ENABLE_Z3_SOLVER=OFF \
-DLLVM_OPTIMIZED_TABLEGEN=ON \
-DCMAKE_POLICY_DEFAULT_CMP0111=NEW \
-DCOMPILER_RT_BUILD_BUILTINS=ON \
-DCOMPILER_RT_BUILTINS_HIDE_SYMBOLS=OFF \
-DCOMPILER_RT_BUILD_LIBFUZZER=OFF \
-DCOMPILER_RT_BUILD_CRT=OFF \
-DCOMPILER_RT_BUILD_MEMPROF=OFF \
-DCOMPILER_RT_BUILD_PROFILE=OFF \
-DCOMPILER_RT_BUILD_SANITIZERS=OFF \
-DCOMPILER_RT_BUILD_XRAY=OFF \
-DCOMPILER_RT_BUILD_GWP_ASAN=OFF \
-DCOMPILER_RT_BUILD_ORC=OFF \
-DCOMPILER_RT_INCLUDE_TESTS=OFF \
${CMAKE_ARGS} -GNinja ../llvm \
&& ninja install . && \
# build llvmlite
cd ../../llvmlite && python setup.py bdist_wheel && \
cd ../numba && \
if ! grep '#include "dynamic_annotations.h"' numba/_dispatcher.cpp; then \
sed -i '/#include "internal\/pycore_atomic.h"/i\#include "dynamic_annotations.h"' numba/_dispatcher.cpp; \
fi && python setup.py bdist_wheel
# Final build stage
FROM python-install AS vllm-cpu
ARG PYTHON_VERSION
@ -228,30 +163,23 @@ RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=torch-vision,source=/tmp/vision/dist,target=/tmp/vision-wheels/ \
--mount=type=bind,from=hf-xet-builder,source=/tmp/hf-xet/dist,target=/tmp/hf-xet-wheels/ \
--mount=type=bind,from=torch,source=/tmp/pytorch/dist,target=/tmp/torch-wheels/ \
--mount=type=bind,from=numba-builder,source=/tmp/llvmlite/dist,target=/tmp/llvmlite-wheels/ \
--mount=type=bind,from=numba-builder,source=/tmp/numba/dist,target=/tmp/numba-wheels/ \
sed -i '/^torch/d' requirements/build.txt && \
ARROW_WHL_FILE=$(ls /tmp/arrow-wheels/pyarrow-*.whl) && \
VISION_WHL_FILE=$(ls /tmp/vision-wheels/*.whl) && \
HF_XET_WHL_FILE=$(ls /tmp/hf-xet-wheels/*.whl) && \
TORCH_WHL_FILE=$(ls /tmp/torch-wheels/*.whl) && \
LLVM_WHL_FILE=$(ls /tmp/llvmlite-wheels/*.whl) && \
NUMBA_WHL_FILE=$(ls /tmp/numba-wheels/*.whl) && \
ARROW_WHL_FILE=$(ls /tmp/arrow-wheels/pyarrow-*.whl | head -n 1) && \
VISION_WHL_FILE=$(ls /tmp/vision-wheels/*.whl | head -n 1) && \
HF_XET_WHL_FILE=$(ls /tmp/hf-xet-wheels/*.whl | head -n 1) && \
TORCH_WHL_FILE=$(ls /tmp/torch-wheels/*.whl | head -n 1) && \
uv pip install -v \
$ARROW_WHL_FILE \
$VISION_WHL_FILE \
$HF_XET_WHL_FILE \
$TORCH_WHL_FILE \
$LLVM_WHL_FILE \
$NUMBA_WHL_FILE \
--index-strategy unsafe-best-match \
-r requirements/build.txt \
-r requirements/cpu.txt
# Build and install vllm
RUN --mount=type=cache,target=/root/.cache/uv \
VLLM_TARGET_DEVICE=cpu VLLM_CPU_MOE_PREPACK=0 python setup.py bdist_wheel && \
VLLM_TARGET_DEVICE=cpu python setup.py bdist_wheel && \
uv pip install "$(echo dist/*.whl)[tensorizer]"
# setup non-root user for vllm
@ -268,3 +196,4 @@ WORKDIR /home/vllm
# Set the default entrypoint
ENTRYPOINT ["python", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -77,7 +77,6 @@ Internal data structures.
- [vllm.multimodal.inputs.MultiModalFieldElem][]
- [vllm.multimodal.inputs.MultiModalFieldConfig][]
- [vllm.multimodal.inputs.MultiModalKwargsItem][]
- [vllm.multimodal.inputs.MultiModalKwargsItems][]
- [vllm.multimodal.inputs.MultiModalKwargs][]
- [vllm.multimodal.inputs.MultiModalInputs][]

View File

@ -48,7 +48,7 @@ You can tune the performance by adjusting `max_num_batched_tokens`:
- Smaller values (e.g., 2048) achieve better inter-token latency (ITL) because there are fewer prefills slowing down decodes.
- Higher values achieve better time to first token (TTFT) as you can process more prefill tokens in a batch.
- For optimal throughput, we recommend setting `max_num_batched_tokens > 8192` especially for smaller models on large GPUs.
- For optimal throughput, we recommend setting `max_num_batched_tokens > 8096` especially for smaller models on large GPUs.
- If `max_num_batched_tokens` is the same as `max_model_len`, that's almost the equivalent to the V0 default scheduling policy (except that it still prioritizes decodes).
```python

View File

@ -11,7 +11,7 @@ vLLM contains two sets of benchmarks:
The performance benchmarks are used for development to confirm whether new changes improve performance under various workloads. They are triggered on every commit with both the `perf-benchmarks` and `ready` labels, and when a PR is merged into vLLM.
The latest performance results are hosted on the public [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm).
The latest performance results are hosted on the public [vLLM Performance Dashboard](https://perf.vllm.ai).
More information on the performance benchmarks and their parameters can be found [here](gh-file:.buildkite/nightly-benchmarks/performance-benchmarks-descriptions.md).

View File

@ -629,7 +629,7 @@ Each [PromptUpdate][vllm.multimodal.processing.PromptUpdate] instance specifies
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargsItems,
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
hf_config = self.info.get_hf_config()
image_token_id = hf_config.image_token_index
@ -778,7 +778,7 @@ Each [PromptUpdate][vllm.multimodal.processing.PromptUpdate] instance specifies
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargsItems,
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
hf_config = self.info.get_hf_config()
bos_token_id = hf_config.bos_token_id

View File

@ -175,19 +175,11 @@ implementations that input `FusedMoEActivationFormat.Standard` support chunking
### FusedMoEModularKernel Initialization
`FusedMoEMethodBase` class has 3 methods that are collectively responsible in creating the `FusedMoEModularKernel` object. They are,
`FusedMoEMethodBase` class has 2 methods that are collectively responsible in creating the `FusedMoEModularKernel` object. They are,
* maybe_make_prepare_finalize,
* select_gemm_impl, and
* init_prepare_finalize
#### maybe_make_prepare_finalize
The `maybe_make_prepare_finalize` method is responsbile for constructing an instance of `FusedMoEPrepareAndFinalize` when appropriate based on the current all2all backend, e.g. when EP + DP is enabled. The base class method currently constructs all the `FusedMoEPrepareAndFinalize` objects for the EP+DP case. Derived classes can override this method to construct prepare/finalize objects for different scenarios, e.g. `ModelOptNvFp4FusedMoE` can construct a `FlashInferCutlassMoEPrepareAndFinalize` for the EP+TP case.
Please refer to the implementations in,
* `ModelOptNvFp4FusedMoE`
#### select_gemm_impl
The `select_gemm_impl` method is undefined in the base class. It is the responsibility of the derived class to implement a method that constructs a valid/appropriate `FusedMoEPermuteExpertsUnpermute` object.

View File

@ -216,7 +216,7 @@ Instead of NumPy arrays, you can also pass `'torch.Tensor'` instances, as shown
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info
model_path = "Qwen/Qwen2.5-VL-3B-Instruct"
model_path = "Qwen/Qwen2.5-VL-3B-Instruct/"
video_path = "https://content.pexels.com/videos/free-videos.mp4"
llm = LLM(

View File

@ -17,6 +17,7 @@ th {
| INT8 (W8A8) | ❌ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ✅︎ | ✅︎ | ✅︎ |
| FP8 (W8A8) | ❌ | ❌ | ❌ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ✅︎ | ❌ |
| BitBLAS (GPTQ) | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| AQLM | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| bitsandbytes | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| DeepSpeedFP | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| GGUF | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ |

View File

@ -18,7 +18,7 @@ vLLM supports the following hardware platforms:
## Hardware Plugins
The backends below live **outside** the main `vllm` repository and follow the
[Hardware-Pluggable RFC](../../design/plugin_system.md).
[Hardware-Pluggable RFC](../design/plugin_system.md).
| Accelerator | PyPI / package | Repository |
|-------------|----------------|------------|

View File

@ -24,6 +24,7 @@ def fix_case(text: str) -> str:
"llm": "LLM",
"mae": "MAE",
"tpu": "TPU",
"aqlm": "AQLM",
"gguf": "GGUF",
"lora": "LoRA",
"rlhf": "RLHF",

View File

@ -2,5 +2,4 @@ Loading Model weights with fastsafetensors
===================================================================
Using fastsafetensors library enables loading model weights to GPU memory by leveraging GPU direct storage. See [their GitHub repository](https://github.com/foundation-model-stack/fastsafetensors) for more details.
To enable this feature, use the ``--load-format fastsafetensors`` command-line argument
For enabling this feature, set the environment variable ``USE_FASTSAFETENSOR`` to ``true``

View File

@ -330,7 +330,6 @@ th {
| `BambaForCausalLM` | Bamba | `ibm-ai-platform/Bamba-9B-fp8`, `ibm-ai-platform/Bamba-9B` | ✅︎ | ✅︎ | ✅︎ |
| `BloomForCausalLM` | BLOOM, BLOOMZ, BLOOMChat | `bigscience/bloom`, `bigscience/bloomz`, etc. | | ✅︎ | |
| `BartForConditionalGeneration` | BART | `facebook/bart-base`, `facebook/bart-large-cnn`, etc. | | | |
| `MBartForConditionalGeneration` | mBART | `facebook/mbart-large-en-ro`, `facebook/mbart-large-50`, etc. | | | |
| `ChatGLMModel`, `ChatGLMForConditionalGeneration` | ChatGLM | `zai-org/chatglm2-6b`, `zai-org/chatglm3-6b`, `ShieldLM-6B-chatglm3`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `CohereForCausalLM`, `Cohere2ForCausalLM` | Command-R | `CohereLabs/c4ai-command-r-v01`, `CohereLabs/c4ai-command-r7b-12-2024`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `DbrxForCausalLM` | DBRX | `databricks/dbrx-base`, `databricks/dbrx-instruct`, etc. | | ✅︎ | ✅︎ |
@ -419,9 +418,6 @@ Some models are supported only via the [Transformers backend](#transformers). Th
!!! note
Currently, the ROCm version of vLLM supports Mistral and Mixtral only for context lengths up to 4096.
!!! note
Some mBART models' config files do not have an `architecture` defined. Therefore, you need to use `--hf-overrides '{"architectures": ["MBartForConditionalGeneration"]}'` to explicitly specify the use of the `MBartForConditionalGeneration` architecture.
### Pooling Models
See [this page](./pooling_models.md) for more information on how to use pooling models.
@ -619,14 +615,14 @@ These models primarily accept the [`LLM.generate`](./generative_models.md#llmgen
| `Gemma3nForConditionalGeneration` | Gemma 3n | T + I + A | `google/gemma-3n-E2B-it`, `google/gemma-3n-E4B-it`, etc. | | | ✅︎ |
| `GLM4VForCausalLM`<sup>^</sup> | GLM-4V | T + I | `zai-org/glm-4v-9b`, `zai-org/cogagent-9b-20241220`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Glm4vForConditionalGeneration` | GLM-4.1V-Thinking | T + I<sup>E+</sup> + V<sup>E+</sup> | `zai-org/GLM-4.1V-9B-Thinking`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Glm4vMoeForConditionalGeneration` | GLM-4.5V | T + I<sup>E+</sup> + V<sup>E+</sup> | `zai-org/GLM-4.5V`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Glm4vMoeForConditionalGeneration` | GLM-4.5V | T + I<sup>E+</sup> + V<sup>E+</sup> | `zai-org/GLM-4.5V`, etc. | | ✅︎ | ✅︎ |
| `GraniteSpeechForConditionalGeneration` | Granite Speech | T + A | `ibm-granite/granite-speech-3.3-8b` | ✅︎ | ✅︎ | ✅︎ |
| `H2OVLChatModel` | H2OVL | T + I<sup>E+</sup> | `h2oai/h2ovl-mississippi-800m`, `h2oai/h2ovl-mississippi-2b`, etc. | | ✅︎ | ✅︎ |
| `Idefics3ForConditionalGeneration` | Idefics3 | T + I | `HuggingFaceM4/Idefics3-8B-Llama3`, etc. | ✅︎ | | ✅︎ |
| `InternS1ForConditionalGeneration` | Intern-S1 | T + I<sup>E+</sup> + V<sup>E+</sup> | `internlm/Intern-S1`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `InternVLChatModel` | InternVL 3.0, InternVideo 2.5, InternVL 2.5, Mono-InternVL, InternVL 2.0 | T + I<sup>E+</sup> + (V<sup>E+</sup>) | `OpenGVLab/InternVL3-9B`, `OpenGVLab/InternVideo2_5_Chat_8B`, `OpenGVLab/InternVL2_5-4B`, `OpenGVLab/Mono-InternVL-2B`, `OpenGVLab/InternVL2-4B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `KeyeForConditionalGeneration` | Keye-VL-8B-Preview | T + I<sup>E+</sup> + V<sup>E+</sup> | `Kwai-Keye/Keye-VL-8B-Preview` | | | ✅︎ |
| `KimiVLForConditionalGeneration` | Kimi-VL-A3B-Instruct, Kimi-VL-A3B-Thinking | T + I<sup>+</sup> | `moonshotai/Kimi-VL-A3B-Instruct`, `moonshotai/Kimi-VL-A3B-Thinking` | | ✅︎ | ✅︎ |
| `KimiVLForConditionalGeneration` | Kimi-VL-A3B-Instruct, Kimi-VL-A3B-Thinking | T + I<sup>+</sup> | `moonshotai/Kimi-VL-A3B-Instruct`, `moonshotai/Kimi-VL-A3B-Thinking` | | | ✅︎ |
| `Llama4ForConditionalGeneration` | Llama 4 | T + I<sup>+</sup> | `meta-llama/Llama-4-Scout-17B-16E-Instruct`, `meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8`, `meta-llama/Llama-4-Maverick-17B-128E-Instruct`, etc. | | ✅︎ | ✅︎ |
| `Llama_Nemotron_Nano_VL` | Llama Nemotron Nano VL | T + I<sup>E+</sup> | `nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1` | ✅︎ | ✅︎ | ✅︎ |
| `LlavaForConditionalGeneration` | LLaVA-1.5, Pixtral (HF Transformers) | T + I<sup>E+</sup> | `llava-hf/llava-1.5-7b-hf`, `TIGER-Lab/Mantis-8B-siglip-llama3` (see note), `mistral-community/pixtral-12b`, etc. | | ✅︎ | ✅︎ |
@ -641,7 +637,6 @@ These models primarily accept the [`LLM.generate`](./generative_models.md#llmgen
| `MolmoForCausalLM` | Molmo | T + I<sup>+</sup> | `allenai/Molmo-7B-D-0924`, `allenai/Molmo-7B-O-0924`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `NVLM_D_Model` | NVLM-D 1.0 | T + I<sup>+</sup> | `nvidia/NVLM-D-72B`, etc. | | ✅︎ | ✅︎ |
| `Ovis` | Ovis2, Ovis1.6 | T + I<sup>+</sup> | `AIDC-AI/Ovis2-1B`, `AIDC-AI/Ovis1.6-Llama3.2-3B`, etc. | | ✅︎ | ✅︎ |
| `Ovis2_5` | Ovis2.5 | T + I<sup>+</sup> + V | `AIDC-AI/Ovis2.5-9B`, etc. | | | ✅︎ |
| `PaliGemmaForConditionalGeneration` | PaliGemma, PaliGemma 2 | T + I<sup>E</sup> | `google/paligemma-3b-pt-224`, `google/paligemma-3b-mix-224`, `google/paligemma2-3b-ft-docci-448`, etc. | | ✅︎ | ⚠️ |
| `Phi3VForCausalLM` | Phi-3-Vision, Phi-3.5-Vision | T + I<sup>E+</sup> | `microsoft/Phi-3-vision-128k-instruct`, `microsoft/Phi-3.5-vision-instruct`, etc. | | ✅︎ | ✅︎ |
| `Phi4MMForCausalLM` | Phi-4-multimodal | T + I<sup>+</sup> / T + A<sup>+</sup> / I<sup>+</sup> + A<sup>+</sup> | `microsoft/Phi-4-multimodal-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |

View File

@ -840,8 +840,3 @@ Key capabilities:
The following example shows how to deploy a large model like DeepSeek R1 with Ray Serve LLM: <gh-file:examples/online_serving/ray_serve_deepseek.py>.
Learn more about Ray Serve LLM with the official [Ray Serve LLM documentation](https://docs.ray.io/en/latest/serve/llm/serving-llms.html).
curl http://localhost:8002/v1/rerank -H "Content-Type: application/json" -d '{
"query": "What is the capital of France?",
"documents": ["The capital of France is Paris.", "The capital of Germany is Berlin."]
}'

View File

@ -35,7 +35,6 @@ You can check if this is happening by trying the old defaults with `--generation
If other strategies don't solve the problem, it's likely that the vLLM instance is stuck somewhere. You can use the following environment variables to help debug the issue:
- `export VLLM_LOGGING_LEVEL=DEBUG` to turn on more logging.
- `export VLLM_LOG_STATS_INTERVAL=1.` to get log statistics more frequently for tracking running queue, waiting queue and cache hit states.
- `export CUDA_LAUNCH_BLOCKING=1` to identify which CUDA kernel is causing the problem.
- `export NCCL_DEBUG=TRACE` to turn on more logging for NCCL.
- `export VLLM_TRACE_FUNCTION=1` to record all function calls for inspection in the log files to tell which function crashes or hangs. Do not use this flag unless absolutely needed for debugging, it will cause significant delays in startup time.

View File

@ -52,6 +52,20 @@ Try it yourself with the following argument:
### Quantization
#### AQLM
vLLM supports models that are quantized using AQLM.
Try one yourself by passing one of the following models to the `--model` argument:
- `ISTA-DASLab/Llama-2-7b-AQLM-2Bit-1x16-hf`
- `ISTA-DASLab/Llama-2-7b-AQLM-2Bit-2x8-hf`
- `ISTA-DASLab/Llama-2-13b-AQLM-2Bit-1x16-hf`
- `ISTA-DASLab/Mixtral-8x7b-AQLM-2Bit-1x16-hf`
- `BlackSamorez/TinyLlama-1_1B-Chat-v1_0-AQLM-2Bit-1x16-hf`
> Some of these models are likely to be too large for a single GPU. You can split them across multiple GPUs by setting `--tensor-parallel-size` to the number of required GPUs.
#### GGUF
vLLM supports models that are quantized using GGUF.

View File

@ -70,27 +70,12 @@ def parse_args():
default=64,
help=("Maximum number of sequences to be processed in a single iteration."),
)
parser.add_argument(
"--max-model-len",
type=int,
help=("Maximum number of tokens to be processed in a single iteration."),
)
parser.add_argument(
"--timeout",
type=int,
default=300,
help=("Number of seconds before unresponsive process is killed."),
)
parser.add_argument(
"--gpu-memory-utilization",
type=float,
default=0.8,
help=("Fraction of GPU memory vLLM is allowed to allocate (0.0, 1.0]."),
)
parser.add_argument(
"--quantization",
type=str,
)
return parser.parse_args()
@ -105,9 +90,7 @@ def main(
enforce_eager,
trust_remote_code,
max_num_seqs,
max_model_len,
gpu_memory_utilization,
quantization,
):
os.environ["VLLM_DP_RANK"] = str(global_dp_rank)
os.environ["VLLM_DP_RANK_LOCAL"] = str(local_dp_rank)
@ -159,9 +142,7 @@ def main(
enable_expert_parallel=True,
trust_remote_code=trust_remote_code,
max_num_seqs=max_num_seqs,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
quantization=quantization,
)
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
@ -217,16 +198,14 @@ if __name__ == "__main__":
args.enforce_eager,
args.trust_remote_code,
args.max_num_seqs,
args.max_model_len,
args.gpu_memory_utilization,
args.quantization,
),
)
proc.start()
procs.append(proc)
exit_code = 0
for proc in procs:
proc.join(timeout=args.timeout)
proc.join(timeout=300)
if proc.exitcode is None:
print(f"Killing process {proc.pid} that didn't stop within 5 minutes.")
proc.kill()

View File

@ -2,14 +2,9 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Demonstrate prompting of text-to-text
encoder/decoder models, specifically BART and mBART.
This script is refactored to allow model selection via command-line arguments.
encoder/decoder models, specifically BART
"""
import argparse
from typing import NamedTuple, Optional
from vllm import LLM, SamplingParams
from vllm.inputs import (
ExplicitEncoderDecoderPrompt,
@ -19,175 +14,119 @@ from vllm.inputs import (
)
class ModelRequestData(NamedTuple):
"""
Holds the configuration for a specific model, including its
HuggingFace ID and the prompts to use for the demo.
"""
model_id: str
encoder_prompts: list
decoder_prompts: list
hf_overrides: Optional[dict] = None
def get_bart_config() -> ModelRequestData:
"""
Returns the configuration for facebook/bart-large-cnn.
This uses the exact test cases from the original script.
"""
encoder_prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"An encoder prompt",
]
decoder_prompts = [
"A decoder prompt",
"Another decoder prompt",
]
return ModelRequestData(
model_id="facebook/bart-large-cnn",
encoder_prompts=encoder_prompts,
decoder_prompts=decoder_prompts,
)
def get_mbart_config() -> ModelRequestData:
"""
Returns the configuration for facebook/mbart-large-en-ro.
This uses prompts suitable for an English-to-Romanian translation task.
"""
encoder_prompts = [
"The quick brown fox jumps over the lazy dog.",
"How are you today?",
]
decoder_prompts = ["", ""]
hf_overrides = {"architectures": ["MBartForConditionalGeneration"]}
return ModelRequestData(
model_id="facebook/mbart-large-en-ro",
encoder_prompts=encoder_prompts,
decoder_prompts=decoder_prompts,
hf_overrides=hf_overrides,
)
MODEL_GETTERS = {
"bart": get_bart_config,
"mbart": get_mbart_config,
}
def create_all_prompt_types(
encoder_prompts_raw: list,
decoder_prompts_raw: list,
tokenizer,
) -> list:
"""
Generates a list of diverse prompt types for demonstration.
This function is generic and uses the provided raw prompts
to create various vLLM input objects.
"""
text_prompt_raw = encoder_prompts_raw[0]
text_prompt = TextPrompt(prompt=encoder_prompts_raw[1 % len(encoder_prompts_raw)])
def create_prompts(tokenizer):
# Test prompts
#
# This section shows all of the valid ways to prompt an
# encoder/decoder model.
#
# - Helpers for building prompts
text_prompt_raw = "Hello, my name is"
text_prompt = TextPrompt(prompt="The president of the United States is")
tokens_prompt = TokensPrompt(
prompt_token_ids=tokenizer.encode(
encoder_prompts_raw[2 % len(encoder_prompts_raw)]
prompt_token_ids=tokenizer.encode(prompt="The capital of France is")
)
# - Pass a single prompt to encoder/decoder model
# (implicitly encoder input prompt);
# decoder input prompt is assumed to be None
single_text_prompt_raw = text_prompt_raw # Pass a string directly
single_text_prompt = text_prompt # Pass a TextPrompt
single_tokens_prompt = tokens_prompt # Pass a TokensPrompt
# ruff: noqa: E501
# - Pass explicit encoder and decoder input prompts within one data structure.
# Encoder and decoder prompts can both independently be text or tokens, with
# no requirement that they be the same prompt type. Some example prompt-type
# combinations are shown below, note that these are not exhaustive.
enc_dec_prompt1 = ExplicitEncoderDecoderPrompt(
# Pass encoder prompt string directly, &
# pass decoder prompt tokens
encoder_prompt=single_text_prompt_raw,
decoder_prompt=single_tokens_prompt,
)
enc_dec_prompt2 = ExplicitEncoderDecoderPrompt(
# Pass TextPrompt to encoder, and
# pass decoder prompt string directly
encoder_prompt=single_text_prompt,
decoder_prompt=single_text_prompt_raw,
)
enc_dec_prompt3 = ExplicitEncoderDecoderPrompt(
# Pass encoder prompt tokens directly, and
# pass TextPrompt to decoder
encoder_prompt=single_tokens_prompt,
decoder_prompt=single_text_prompt,
)
decoder_tokens_prompt = TokensPrompt(
prompt_token_ids=tokenizer.encode(decoder_prompts_raw[0])
)
single_prompt_examples = [
text_prompt_raw,
text_prompt,
tokens_prompt,
]
explicit_pair_examples = [
ExplicitEncoderDecoderPrompt(
encoder_prompt=text_prompt_raw,
decoder_prompt=decoder_tokens_prompt,
),
ExplicitEncoderDecoderPrompt(
encoder_prompt=text_prompt,
decoder_prompt=decoder_prompts_raw[1 % len(decoder_prompts_raw)],
),
ExplicitEncoderDecoderPrompt(
encoder_prompt=tokens_prompt,
decoder_prompt=text_prompt,
),
]
# - Finally, here's a useful helper function for zipping encoder and
# decoder prompts together into a list of ExplicitEncoderDecoderPrompt
# instances
zipped_prompt_list = zip_enc_dec_prompts(
encoder_prompts_raw,
decoder_prompts_raw,
["An encoder prompt", "Another encoder prompt"],
["A decoder prompt", "Another decoder prompt"],
)
return single_prompt_examples + explicit_pair_examples + zipped_prompt_list
# - Let's put all of the above example prompts together into one list
# which we will pass to the encoder/decoder LLM.
return [
single_text_prompt_raw,
single_text_prompt,
single_tokens_prompt,
enc_dec_prompt1,
enc_dec_prompt2,
enc_dec_prompt3,
] + zipped_prompt_list
def create_sampling_params() -> SamplingParams:
"""Create a sampling params object."""
# Create a sampling params object.
def create_sampling_params():
return SamplingParams(
temperature=0,
top_p=1.0,
min_tokens=0,
max_tokens=30,
max_tokens=20,
)
def print_outputs(outputs: list):
"""Formats and prints the generation outputs."""
print("-" * 80)
# Print the outputs.
def print_outputs(outputs):
print("-" * 50)
for i, output in enumerate(outputs):
prompt = output.prompt
encoder_prompt = output.encoder_prompt
generated_text = output.outputs[0].text
print(f"Output {i + 1}:")
print(f"Encoder Prompt: {encoder_prompt!r}")
print(f"Decoder Prompt: {prompt!r}")
print(f"Generated Text: {generated_text!r}")
print("-" * 80)
def main(args):
"""Main execution function."""
model_key = args.model
if model_key not in MODEL_GETTERS:
raise ValueError(
f"Unknown model: {model_key}. "
f"Available models: {list(MODEL_GETTERS.keys())}"
print(
f"Encoder prompt: {encoder_prompt!r}\n"
f"Decoder prompt: {prompt!r}\n"
f"Generated text: {generated_text!r}"
)
config_getter = MODEL_GETTERS[model_key]
model_config = config_getter()
print("-" * 50)
print(f"🚀 Running demo for model: {model_config.model_id}")
def main():
dtype = "float"
# Create a BART encoder/decoder model instance
llm = LLM(
model=model_config.model_id,
dtype="float",
hf_overrides=model_config.hf_overrides,
model="facebook/bart-large-cnn",
dtype=dtype,
)
# Get BART tokenizer
tokenizer = llm.llm_engine.get_tokenizer_group()
prompts = create_all_prompt_types(
encoder_prompts_raw=model_config.encoder_prompts,
decoder_prompts_raw=model_config.decoder_prompts,
tokenizer=tokenizer,
)
prompts = create_prompts(tokenizer)
sampling_params = create_sampling_params()
# Generate output tokens from the prompts. The output is a list of
# RequestOutput objects that contain the prompt, generated
# text, and other information.
outputs = llm.generate(prompts, sampling_params)
print_outputs(outputs)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="A flexible demo for vLLM encoder-decoder models."
)
parser.add_argument(
"--model",
"-m",
type=str,
default="bart",
choices=MODEL_GETTERS.keys(),
help="The short name of the model to run.",
)
args = parser.parse_args()
main(args)
main()

View File

@ -1,147 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""This example demonstrates instantiating vLLM with a custom logits processor
class object.
For a basic example of implementing a custom logits processor, see
the `DummyLogitsProcessor` implementation in `vllm/test_utils.py`.
For testing purposes, a dummy logits processor is employed which, if
`target_token` is passed as a keyword argument to `SamplingParams.extra_args`,
will mask out all tokens except `target_token`.
A batch is constructed with `temperature=0.0` and 50% of requests specifying
`target_token`, and for these requests - and *only* these requests - we
expect the `target_token` to be decoded in each step, yielding an output
similar to that shown below:
Generated Outputs:
------------------------------------------------------------
Prompt: 'Hello, my name is'
Output: " ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '"
------------------------------------------------------------
Prompt: 'The president of the United States is'
Output: " not a racist. He is a racist.\nHe's a racist because he"
------------------------------------------------------------
Prompt: 'The capital of France is'
Output: ' also also also also also also also also also also also also also
also also also'
------------------------------------------------------------
Prompt: 'The future of AI is'
Output: ' in the hands of the people.\n\nThe future of AI is in the'
------------------------------------------------------------
"""
from typing import Optional
import torch
from vllm import LLM, SamplingParams
from vllm.config import VllmConfig
from vllm.v1.sample.logits_processor import (
BatchUpdate,
LogitsProcessor,
MoveDirectionality,
)
# Hypothetical custom logits processor
class DummyLogitsProcessor(LogitsProcessor):
"""Fake logit processor to support unit testing and examples"""
def __init__(
self, vllm_config: VllmConfig, device: torch.device, is_pin_memory: bool
):
self.req_info: dict[int, SamplingParams] = {}
def is_argmax_invariant(self) -> bool:
"""Never impacts greedy sampling"""
return False
def update_state(self, batch_update: Optional[BatchUpdate]):
if not batch_update:
return
# Process added requests.
for index, params, _, _ in batch_update.added:
assert params is not None
if params.extra_args and (
target_token := params.extra_args.get("target_token")
):
self.req_info[index] = target_token
if self.req_info:
# Process removed requests.
for index in batch_update.removed:
self.req_info.pop(index, None)
# Process moved requests, unidirectional move (a->b) and swap
# (a<->b)
for adx, bdx, direct in batch_update.moved:
a_val = self.req_info.pop(adx, None)
b_val = self.req_info.pop(bdx, None)
if a_val is not None:
self.req_info[bdx] = a_val
if direct == MoveDirectionality.SWAP and b_val is not None:
self.req_info[adx] = b_val
def apply(self, logits: torch.Tensor) -> torch.Tensor:
if not self.req_info:
return logits
# Save target values before modification
rows_list = list(self.req_info.keys())
cols = torch.tensor(
[self.req_info[i] for i in rows_list],
dtype=torch.long,
device=logits.device,
)
rows = torch.tensor(rows_list, dtype=torch.long, device=logits.device)
values_to_keep = logits[rows, cols].clone()
# Mask all but target tokens
logits[rows] = float("-inf")
logits[rows, cols] = values_to_keep
return logits
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a mixture of requests which do and don't utilize the dummy logitproc
sampling_params_list = [
SamplingParams(temperature=0.0, extra_args={"target_token": 128}),
SamplingParams(temperature=0.0),
SamplingParams(temperature=0.0, extra_args={"target_token": 67}),
SamplingParams(temperature=0.0),
]
def main():
# Create an LLM.
llm = LLM(
model="facebook/opt-125m",
logits_processors=[DummyLogitsProcessor],
)
# Generate texts from the prompts.
# The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params_list)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}")
print(f"Output: {generated_text!r}")
print("-" * 60)
if __name__ == "__main__":
main()

View File

@ -15,8 +15,6 @@ from pydantic import BaseModel
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams
MAX_TOKENS = 50
# Guided decoding by Choice (list of possible options)
guided_decoding_params_choice = GuidedDecodingParams(choice=["Positive", "Negative"])
sampling_params_choice = SamplingParams(guided_decoding=guided_decoding_params_choice)
@ -25,9 +23,7 @@ prompt_choice = "Classify this sentiment: vLLM is wonderful!"
# Guided decoding by Regex
guided_decoding_params_regex = GuidedDecodingParams(regex=r"\w+@\w+\.com\n")
sampling_params_regex = SamplingParams(
guided_decoding=guided_decoding_params_regex,
stop=["\n"],
max_tokens=MAX_TOKENS,
guided_decoding=guided_decoding_params_regex, stop=["\n"]
)
prompt_regex = (
"Generate an email address for Alan Turing, who works in Enigma."
@ -52,10 +48,7 @@ class CarDescription(BaseModel):
json_schema = CarDescription.model_json_schema()
guided_decoding_params_json = GuidedDecodingParams(json=json_schema)
sampling_params_json = SamplingParams(
guided_decoding=guided_decoding_params_json,
max_tokens=MAX_TOKENS,
)
sampling_params_json = SamplingParams(guided_decoding=guided_decoding_params_json)
prompt_json = (
"Generate a JSON with the brand, model and car_type of"
"the most iconic car from the 90's"
@ -71,10 +64,7 @@ condition ::= column "= " number
number ::= "1 " | "2 "
"""
guided_decoding_params_grammar = GuidedDecodingParams(grammar=simplified_sql_grammar)
sampling_params_grammar = SamplingParams(
guided_decoding=guided_decoding_params_grammar,
max_tokens=MAX_TOKENS,
)
sampling_params_grammar = SamplingParams(guided_decoding=guided_decoding_params_grammar)
prompt_grammar = (
"Generate an SQL query to show the 'username' and 'email'from the 'users' table."
)

View File

@ -333,80 +333,6 @@ def run_glm4_1v(questions: list[str], modality: str) -> ModelRequestData:
)
# GLM-4.5V
def run_glm4_5v(questions: list[str], modality: str) -> ModelRequestData:
model_name = "zai-org/GLM-4.5V"
engine_args = EngineArgs(
model=model_name,
max_model_len=4096,
max_num_seqs=2,
mm_processor_kwargs={
"size": {"shortest_edge": 12544, "longest_edge": 47040000},
"fps": 1,
},
limit_mm_per_prompt={modality: 1},
enforce_eager=True,
tensor_parallel_size=4,
)
if modality == "image":
placeholder = "<|begin_of_image|><|image|><|end_of_image|>"
elif modality == "video":
placeholder = "<|begin_of_video|><|video|><|end_of_video|>"
prompts = [
(
"[gMASK]<sop><|system|>\nYou are a helpful assistant.<|user|>\n"
f"{placeholder}"
f"{question}<|assistant|>assistant\n"
)
for question in questions
]
return ModelRequestData(
engine_args=engine_args,
prompts=prompts,
)
# GLM-4.5V-FP8
def run_glm4_5v_fp8(questions: list[str], modality: str) -> ModelRequestData:
model_name = "zai-org/GLM-4.5V-FP8"
engine_args = EngineArgs(
model=model_name,
max_model_len=4096,
max_num_seqs=2,
mm_processor_kwargs={
"size": {"shortest_edge": 12544, "longest_edge": 47040000},
"fps": 1,
},
limit_mm_per_prompt={modality: 1},
enforce_eager=True,
tensor_parallel_size=4,
)
if modality == "image":
placeholder = "<|begin_of_image|><|image|><|end_of_image|>"
elif modality == "video":
placeholder = "<|begin_of_video|><|video|><|end_of_video|>"
prompts = [
(
"[gMASK]<sop><|system|>\nYou are a helpful assistant.<|user|>\n"
f"{placeholder}"
f"{question}<|assistant|>assistant\n"
)
for question in questions
]
return ModelRequestData(
engine_args=engine_args,
prompts=prompts,
)
# H2OVL-Mississippi
def run_h2ovl(questions: list[str], modality: str) -> ModelRequestData:
assert modality == "image"
@ -889,39 +815,6 @@ def run_minicpmv(questions: list[str], modality: str) -> ModelRequestData:
return run_minicpmv_base(questions, modality, "openbmb/MiniCPM-V-2_6")
def run_minimax_vl_01(questions: list[str], modality: str) -> ModelRequestData:
assert modality == "image"
model_name = "MiniMaxAI/MiniMax-VL-01"
engine_args = EngineArgs(
model=model_name,
max_num_seqs=2,
limit_mm_per_prompt={modality: 1},
trust_remote_code=True,
tensor_parallel_size=8,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [
[
{
"role": "user",
"content": [{"type": "image"}, {"type": "text", "text": question}],
}
]
for question in questions
]
prompts = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, tokenize=False
)
return ModelRequestData(
engine_args=engine_args,
prompts=prompts,
)
# Mistral-3 HF-format
def run_mistral3(questions: list[str], modality: str) -> ModelRequestData:
assert modality == "image"
@ -1105,38 +998,6 @@ def run_ovis(questions: list[str], modality: str) -> ModelRequestData:
)
# Ovis2_5
def run_ovis2_5(questions: list[str], modality: str) -> ModelRequestData:
model_name = "AIDC-AI/Ovis2.5-2B"
engine_args = EngineArgs(
model=model_name,
max_model_len=4096,
max_num_seqs=2,
trust_remote_code=True,
dtype="half",
limit_mm_per_prompt={modality: 1},
)
if modality == "image":
placeholder = "<image>"
elif modality == "video":
placeholder = "<video>"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
messages = [
[{"role": "user", "content": f"{placeholder}\n{question}"}]
for question in questions
]
prompts = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
return ModelRequestData(
engine_args=engine_args,
prompts=prompts,
)
# PaliGemma
def run_paligemma(questions: list[str], modality: str) -> ModelRequestData:
assert modality == "image"
@ -1587,8 +1448,6 @@ model_example_map = {
"gemma3n": run_gemma3n,
"glm4v": run_glm4v,
"glm4_1v": run_glm4_1v,
"glm4_5v": run_glm4_5v,
"glm4_5v_fp8": run_glm4_5v_fp8,
"h2ovl_chat": run_h2ovl,
"hyperclovax_seed_vision": run_hyperclovax_seed_vision,
"idefics3": run_idefics3,
@ -1604,14 +1463,12 @@ model_example_map = {
"mantis": run_mantis,
"minicpmo": run_minicpmo,
"minicpmv": run_minicpmv,
"minimax_vl_01": run_minimax_vl_01,
"mistral3": run_mistral3,
"mllama": run_mllama,
"molmo": run_molmo,
"nemotron_vl": run_nemotron_vl,
"NVLM_D": run_nvlm_d,
"ovis": run_ovis,
"ovis2_5": run_ovis2_5,
"paligemma": run_paligemma,
"paligemma2": run_paligemma2,
"phi3_v": run_phi3v,

View File

@ -680,36 +680,6 @@ def load_ovis(question: str, image_urls: list[str]) -> ModelRequestData:
)
# ovis2_5
def load_ovis2_5(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "AIDC-AI/Ovis2.5-2B"
engine_args = EngineArgs(
model=model_name,
max_model_len=8192,
max_num_seqs=2,
trust_remote_code=True,
dtype="half",
limit_mm_per_prompt={"image": len(image_urls)},
)
placeholders = "\n".join(
f"Image-{i}: <image>\n" for i, _ in enumerate(image_urls, start=1)
)
messages = [{"role": "user", "content": f"{placeholders}\n{question}"}]
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
)
def load_pixtral_hf(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "mistral-community/pixtral-12b"
@ -1094,76 +1064,6 @@ def load_tarsier2(question: str, image_urls: list[str]) -> ModelRequestData:
)
# GLM-4.5V
def load_glm4_5v(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "zai-org/GLM-4.5V"
engine_args = EngineArgs(
model=model_name,
max_model_len=32768,
max_num_seqs=2,
limit_mm_per_prompt={"image": len(image_urls)},
enforce_eager=True,
tensor_parallel_size=4,
)
placeholders = [{"type": "image", "image": url} for url in image_urls]
messages = [
{
"role": "user",
"content": [
*placeholders,
{"type": "text", "text": question},
],
}
]
processor = AutoProcessor.from_pretrained(model_name)
prompt = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_data = [fetch_image(url) for url in image_urls]
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=image_data,
)
# GLM-4.5V-FP8
def load_glm4_5v_fp8(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "zai-org/GLM-4.5V-FP8"
engine_args = EngineArgs(
model=model_name,
max_model_len=32768,
max_num_seqs=2,
limit_mm_per_prompt={"image": len(image_urls)},
enforce_eager=True,
tensor_parallel_size=4,
)
placeholders = [{"type": "image", "image": url} for url in image_urls]
messages = [
{
"role": "user",
"content": [
*placeholders,
{"type": "text", "text": question},
],
}
]
processor = AutoProcessor.from_pretrained(model_name)
prompt = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_data = [fetch_image(url) for url in image_urls]
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=image_data,
)
model_example_map = {
"aria": load_aria,
"aya_vision": load_aya_vision,
@ -1185,7 +1085,6 @@ model_example_map = {
"mllama": load_mllama,
"NVLM_D": load_nvlm_d,
"ovis": load_ovis,
"ovis2_5": load_ovis2_5,
"phi3_v": load_phi3v,
"phi4_mm": load_phi4mm,
"phi4_multimodal": load_phi4_multimodal,
@ -1197,8 +1096,6 @@ model_example_map = {
"step3": load_step3,
"tarsier": load_tarsier,
"tarsier2": load_tarsier2,
"glm4_5v": load_glm4_5v,
"glm4_5v_fp8": load_glm4_5v_fp8,
}

View File

@ -20,8 +20,7 @@ prometheus-fastapi-instrumentator >= 7.0.0
tiktoken >= 0.6.0 # Required for DBRX tokenizer
lm-format-enforcer >= 0.10.11, < 0.11
llguidance >= 0.7.11, < 0.8.0; platform_machine == "x86_64" or platform_machine == "arm64" or platform_machine == "aarch64"
outlines_core == 0.2.10 ; platform_machine != "s390x"
outlines == 0.1.11 ; platform_machine == "s390x"
outlines_core == 0.2.10
# required for outlines backend disk cache
diskcache == 5.6.3
lark == 1.2.2

View File

@ -1,8 +1,8 @@
# Common dependencies
-r common.txt
numba == 0.60.0; python_version == '3.9' and platform_machine != "s390x" # v0.61 doesn't support Python 3.9. Required for N-gram speculative decoding
numba == 0.61.2; python_version > '3.9' and platform_machine != "s390x"
numba == 0.60.0; python_version == '3.9' # v0.61 doesn't support Python 3.9. Required for N-gram speculative decoding
numba == 0.61.2; python_version > '3.9'
# Dependencies for CPUs
packaging>=24.2

View File

@ -5,4 +5,10 @@ numba == 0.60.0; python_version == '3.9' # v0.61 doesn't support Python 3.9. Req
numba == 0.61.2; python_version > '3.9'
# Dependencies for NVIDIA GPUs
torch==2.8.0
ray[cgraph]>=2.48.0 # Ray Compiled Graph, required for pipeline parallelism in V1.
torch==2.7.1
torchaudio==2.7.1
# These must be updated alongside torch
torchvision==0.22.1 # Required for phi3v processor. See https://github.com/pytorch/vision?tab=readme-ov-file#installation for corresponding version
# https://github.com/facebookresearch/xformers/releases/tag/v0.0.31
xformers==0.0.31; platform_system == 'Linux' and platform_machine == 'x86_64' # Requires PyTorch >= 2.7

View File

@ -11,7 +11,6 @@ ray[default]
ray[data]
setuptools==78.1.0
nixl==0.3.0
tpu_info==0.4.0
# Install torch_xla
--pre

View File

@ -60,8 +60,7 @@ MAIN_CUDA_VERSION = "12.8"
def is_sccache_available() -> bool:
return which("sccache") is not None and \
not bool(int(os.getenv("VLLM_DISABLE_SCCACHE", "0")))
return which("sccache") is not None
def is_ccache_available() -> bool:

View File

@ -1,54 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""vllm.entrypoints.api_server with some extra logging for testing."""
from collections.abc import Iterable
from typing import Any
import uvicorn
from fastapi.responses import JSONResponse, Response
import vllm.entrypoints.api_server
import vllm.envs as envs
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.utils import FlexibleArgumentParser
app = vllm.entrypoints.api_server.app
class AsyncLLMEngineWithStats(AsyncLLMEngine):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._num_aborts = 0
async def _engine_abort(self, request_ids: Iterable[str]):
ids = list(request_ids)
self._num_aborts += len(ids)
await super()._engine_abort(ids)
def testing_stats(self) -> dict[str, Any]:
return {"num_aborted_requests": self._num_aborts}
@app.get("/stats")
def stats() -> Response:
"""Get the statistics of the engine."""
return JSONResponse(engine.testing_stats())
if __name__ == "__main__":
parser = FlexibleArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngineWithStats.from_engine_args(engine_args)
vllm.entrypoints.api_server.engine = engine
uvicorn.run(app,
host=args.host,
port=args.port,
log_level="debug",
timeout_keep_alive=envs.VLLM_HTTP_TIMEOUT_KEEP_ALIVE)

View File

@ -1,12 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
@pytest.fixture(scope="function", autouse=True)
def use_v0_only(monkeypatch):
"""
Since this module is V0 only, set VLLM_USE_V1=0 for
all tests in the module.
"""
monkeypatch.setenv('VLLM_USE_V1', '0')

View File

@ -1,113 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
import subprocess
import sys
import time
from multiprocessing import Pool
from pathlib import Path
import pytest
import requests
def _query_server(prompt: str, max_tokens: int = 5) -> dict:
response = requests.post("http://localhost:8000/generate",
json={
"prompt": prompt,
"max_tokens": max_tokens,
"temperature": 0,
"ignore_eos": True
})
response.raise_for_status()
return response.json()
def _query_server_long(prompt: str) -> dict:
return _query_server(prompt, max_tokens=500)
@pytest.fixture
def api_server(distributed_executor_backend: str):
script_path = Path(__file__).parent.joinpath(
"api_server_async_engine.py").absolute()
commands = [
sys.executable,
"-u",
str(script_path),
"--model",
"facebook/opt-125m",
"--host",
"127.0.0.1",
"--distributed-executor-backend",
distributed_executor_backend,
]
# API Server Test Requires V0.
my_env = os.environ.copy()
my_env["VLLM_USE_V1"] = "0"
uvicorn_process = subprocess.Popen(commands, env=my_env)
yield
uvicorn_process.terminate()
@pytest.mark.parametrize("distributed_executor_backend", ["mp", "ray"])
def test_api_server(api_server, distributed_executor_backend: str):
"""
Run the API server and test it.
We run both the server and requests in separate processes.
We test that the server can handle incoming requests, including
multiple requests at the same time, and that it can handle requests
being cancelled without crashing.
"""
with Pool(32) as pool:
# Wait until the server is ready
prompts = ["warm up"] * 1
result = None
while not result:
try:
for r in pool.map(_query_server, prompts):
result = r
break
except requests.exceptions.ConnectionError:
time.sleep(1)
# Actual tests start here
# Try with 1 prompt
for result in pool.map(_query_server, prompts):
assert result
num_aborted_requests = requests.get(
"http://localhost:8000/stats").json()["num_aborted_requests"]
assert num_aborted_requests == 0
# Try with 100 prompts
prompts = ["test prompt"] * 100
for result in pool.map(_query_server, prompts):
assert result
with Pool(32) as pool:
# Cancel requests
prompts = ["canceled requests"] * 100
pool.map_async(_query_server_long, prompts)
time.sleep(0.01)
pool.terminate()
pool.join()
# check cancellation stats
# give it some times to update the stats
time.sleep(1)
num_aborted_requests = requests.get(
"http://localhost:8000/stats").json()["num_aborted_requests"]
assert num_aborted_requests > 0
# check that server still runs after cancellations
with Pool(32) as pool:
# Try with 100 prompts
prompts = ["test prompt after canceled"] * 100
for result in pool.map(_query_server, prompts):
assert result

View File

@ -1,71 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from vllm.engine.async_llm_engine import RequestTracker
from vllm.outputs import RequestOutput
@pytest.mark.asyncio
async def test_request_tracker():
tracker = RequestTracker()
stream_1 = tracker.add_request("1")
assert tracker.new_requests_event.is_set()
await tracker.wait_for_new_requests()
new, aborted = tracker.get_new_and_aborted_requests()
assert not tracker.new_requests_event.is_set()
assert len(new) == 1
assert new[0]["request_id"] == "1"
assert not aborted
assert not stream_1.finished
stream_2 = tracker.add_request("2")
stream_3 = tracker.add_request("3")
assert tracker.new_requests_event.is_set()
await tracker.wait_for_new_requests()
new, aborted = tracker.get_new_and_aborted_requests()
assert not tracker.new_requests_event.is_set()
assert len(new) == 2
assert new[0]["request_id"] == "2"
assert new[1]["request_id"] == "3"
assert not aborted
assert not stream_2.finished
assert not stream_3.finished
# request_ids must be unique
with pytest.raises(KeyError):
tracker.add_request("1")
assert not tracker.new_requests_event.is_set()
tracker.abort_request("1")
new, aborted = tracker.get_new_and_aborted_requests()
assert len(aborted) == 1
assert "1" in aborted
assert not new
assert stream_1.finished
stream_4 = tracker.add_request("4")
tracker.abort_request("4")
assert tracker.new_requests_event.is_set()
await tracker.wait_for_new_requests()
new, aborted = tracker.get_new_and_aborted_requests()
# aborted new requests will cancel each other out -
# there's no need for them to propagate into the
# engine
assert not aborted
assert not new
assert stream_4.finished
stream_5 = tracker.add_request("5")
assert tracker.new_requests_event.is_set()
tracker.process_request_output(
RequestOutput("2", "output", [], [], [], finished=True))
await tracker.wait_for_new_requests()
new, aborted = tracker.get_new_and_aborted_requests()
assert not tracker.new_requests_event.is_set()
assert not aborted
assert len(new) == 1
assert new[0]["request_id"] == "5"
assert stream_2.finished
assert not stream_5.finished

View File

@ -12,6 +12,7 @@ import pytest
import torch
from vllm import LLM, envs
from vllm.platforms import current_platform
from vllm.v1.engine.llm_engine import LLMEngine as LLMEngineV1
from ..conftest import HfRunner, VllmRunner
@ -77,7 +78,11 @@ def test_models(
"VLLM_USE_V1") and envs.VLLM_USE_V1:
pytest.skip("enable_prompt_embeds is not supported in v1.")
if backend == "XFORMERS" and model == "google/gemma-2-2b-it":
if backend == "FLASHINFER" and current_platform.is_rocm():
pytest.skip("Flashinfer does not support ROCm/HIP.")
if backend in ("XFORMERS",
"FLASHINFER") and model == "google/gemma-2-2b-it":
pytest.skip(
f"{backend} does not support gemma2 with full context length.")
@ -136,6 +141,8 @@ def test_models(
("meta-llama/Llama-3.2-1B-Instruct", "mp", "", "L4", {}),
("distilbert/distilgpt2", "ray", "", "A100", {}),
("distilbert/distilgpt2", "mp", "", "A100", {}),
("distilbert/distilgpt2", "mp", "FLASHINFER", "A100", {}),
("meta-llama/Meta-Llama-3-8B", "ray", "FLASHINFER", "A100", {}),
])
@pytest.mark.parametrize("enable_prompt_embeds", [True, False])
def test_models_distributed(

View File

@ -0,0 +1,296 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Compare the outputs of HF and vLLM when using greedy sampling.
It tests chunked prefill. Chunked prefill can be enabled by
enable_chunked_prefill=True. If prefill size exceeds max_num_batched_tokens,
prefill requests are chunked.
Run `pytest tests/models/test_chunked_prefill.py`.
"""
from __future__ import annotations
from typing import TYPE_CHECKING
import pytest
from vllm.platforms import current_platform
from vllm.utils import STR_BACKEND_ENV_VAR
from ..models.utils import check_logprobs_close, check_outputs_equal
from ..utils import multi_gpu_test
if TYPE_CHECKING:
from .conftest import HfRunner, VllmRunner
MODELS = [
"facebook/opt-125m",
"meta-llama/Llama-3.2-1B-Instruct",
]
@pytest.fixture(scope="function", autouse=True)
def use_v0_only(monkeypatch: pytest.MonkeyPatch):
"""
Since this module is V0 only, set VLLM_USE_V1=0 for
all tests in the file.
"""
with monkeypatch.context() as m:
m.setenv('VLLM_USE_V1', '0')
yield
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16])
@pytest.mark.parametrize("enforce_eager", [False, True])
# NOTE: Increasing this in this suite will fail CI because we currently cannot
# reset distributed env properly. Use a value > 1 just when you test.
@pytest.mark.parametrize("tensor_parallel_size", [1])
@pytest.mark.parametrize("attention_backend", [
pytest.param("FLASHINFER",
marks=pytest.mark.skipif(
current_platform.is_rocm(),
reason="FLASHINFER isn't supported on ROCm")),
"FLASH_ATTN"
])
def test_models(
hf_runner: HfRunner,
vllm_runner: VllmRunner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
chunked_prefill_token_size: int,
enforce_eager: bool,
tensor_parallel_size: int,
attention_backend: str,
monkeypatch: pytest.MonkeyPatch,
) -> None:
"""
Checks exact match decode between huggingface model and vllm runner with
chunked prefill.
"""
with monkeypatch.context() as m:
m.setenv(STR_BACKEND_ENV_VAR, attention_backend)
max_num_seqs = chunked_prefill_token_size
max_num_batched_tokens = chunked_prefill_token_size
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
with vllm_runner(
model,
dtype=dtype,
max_num_batched_tokens=max_num_batched_tokens,
enable_chunked_prefill=True,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
max_num_seqs=max_num_seqs,
) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(example_prompts,
max_tokens)
check_outputs_equal(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize("distributed_executor_backend", ["ray", "mp"])
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("attention_backend", [
pytest.param("FLASHINFER",
marks=pytest.mark.skipif(
current_platform.is_rocm(),
reason="FLASHINFER isn't supported on ROCm")),
"FLASH_ATTN"
])
def test_models_distributed(
hf_runner: HfRunner,
vllm_runner: VllmRunner,
example_prompts,
model: str,
distributed_executor_backend: str,
attention_backend: str,
monkeypatch: pytest.MonkeyPatch,
) -> None:
with monkeypatch.context() as m:
m.setenv(STR_BACKEND_ENV_VAR, attention_backend)
if (model == "meta-llama/Llama-3.2-1B-Instruct"
and distributed_executor_backend == "ray"):
# test Ray Compiled Graph
m.setenv("VLLM_USE_RAY_SPMD_WORKER", "1")
m.setenv("VLLM_USE_RAY_COMPILED_DAG", "1")
dtype = "half"
max_tokens = 5
chunked_prefill_token_size = 16
# Add a chunked prefill config.
max_num_seqs = min(chunked_prefill_token_size, 256)
assert chunked_prefill_token_size != -1
enable_chunked_prefill = True
max_num_batched_tokens = chunked_prefill_token_size
# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with
# fork method (the default method).
with vllm_runner(
model,
dtype=dtype,
tensor_parallel_size=2,
max_num_seqs=max_num_seqs,
enable_chunked_prefill=enable_chunked_prefill,
max_num_batched_tokens=max_num_batched_tokens,
distributed_executor_backend=distributed_executor_backend,
) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(
example_prompts,
max_tokens,
)
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
check_outputs_equal(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
@pytest.mark.parametrize(
"kv_cache_dtype,model",
[("fp8_e4m3",
"nm-testing/TinyLlama-1.1B-compressed-tensors-kv-cache-scheme")])
# Due to low-precision numerical divergence, we only test logprob of 4 tokens
@pytest.mark.parametrize("max_tokens", [4])
@pytest.mark.parametrize("chunked_prefill_token_size", [4, 16])
@pytest.mark.parametrize("enforce_eager", [False, True])
# NOTE: Increasing this in this suite will fail CI because we currently cannot
# reset distributed env properly. Use a value > 1 just when you test.
@pytest.mark.parametrize("tensor_parallel_size", [1])
# Due to low-precision numerical divergence, this test is too sensitive to
# the async postprocessor
@pytest.mark.parametrize("disable_async_output_proc", [True])
@pytest.mark.skipif(current_platform.is_rocm(),
reason="machete_prepack_B isn't supported on ROCm")
def test_models_with_fp8_kv_cache(
vllm_runner: VllmRunner,
example_prompts,
kv_cache_dtype: str,
model: str,
max_tokens: int,
chunked_prefill_token_size: int,
enforce_eager: bool,
tensor_parallel_size: int,
disable_async_output_proc: bool,
) -> None:
"""
Check output logprobs match between no_chunked_prefill and chunked_prefill
with fp8 kv cache. General fp8 kv-cache tests are covered in test_fp8.py,
so here we only check chunked prefill.
"""
NUM_LOG_PROBS = 8
max_num_seqs = chunked_prefill_token_size
max_num_batched_tokens = chunked_prefill_token_size
with vllm_runner(
model,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
max_num_seqs=max_num_seqs,
kv_cache_dtype=kv_cache_dtype,
disable_async_output_proc=disable_async_output_proc,
) as vllm_model:
no_chunked_prefill_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS)
with vllm_runner(
model,
max_num_batched_tokens=max_num_batched_tokens,
enable_chunked_prefill=True,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
max_num_seqs=max_num_seqs,
kv_cache_dtype=kv_cache_dtype,
disable_async_output_proc=disable_async_output_proc,
) as vllm_model:
chunked_prefill_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS)
check_logprobs_close(
outputs_0_lst=no_chunked_prefill_outputs,
outputs_1_lst=chunked_prefill_outputs,
name_0="no_chunked_prefill",
name_1="chunked_prefill",
)
@pytest.mark.parametrize("max_tokens", [16])
@pytest.mark.parametrize("enforce_eager", [False])
@pytest.mark.parametrize("chunk_size", [30, 32])
# NOTE: Increasing this in this suite will fail CI because we currently cannot
# reset distributed env properly. Use a value > 1 just when you test.
@pytest.mark.parametrize("tensor_parallel_size", [1])
@pytest.mark.parametrize("dtype", ["half"])
def test_with_prefix_caching(
vllm_runner: VllmRunner,
max_tokens: int,
enforce_eager: bool,
chunk_size: int,
tensor_parallel_size: int,
dtype: str,
) -> None:
"""
Checks exact match decode with and without prefix caching
with chunked prefill enabled.
"""
model = "meta-llama/Llama-3.2-1B-Instruct"
# The common prompt has 142 tokens with Llama-2 tokenizer.
common_prompt = "You are a helpful AI assistant " * 20
unique_prompts = [
"Question", # Warmup
"Question", # Fully cached
"Another question", # Partial cached
]
full_prompts = [f"{common_prompt}\n{p}" for p in unique_prompts]
max_num_batched_tokens = max_num_seqs = chunk_size
outputs = {} # type: ignore
for enable in (True, False):
with vllm_runner(
model,
dtype=dtype,
max_num_batched_tokens=max_num_batched_tokens,
enable_chunked_prefill=True,
enable_prefix_caching=enable,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
max_num_seqs=max_num_seqs,
) as vllm_model:
outputs[enable] = []
for prompt in full_prompts:
outputs[enable] += vllm_model.generate_greedy(
[prompt],
max_tokens,
)
check_outputs_equal(
outputs_0_lst=outputs[False],
outputs_1_lst=outputs[True],
name_0="w/o prefix caching",
name_1="with prefix caching",
)

View File

@ -3,8 +3,7 @@
import contextlib
import os
import weakref
from dataclasses import dataclass
from typing import Optional
from contextlib import ExitStack
import pytest
@ -33,130 +32,27 @@ def temporary_environ(env_vars):
os.environ[k] = v
@dataclass
class BackendConfig:
name: str
env_vars: dict
comp_config: dict
specific_gpu_arch: Optional[tuple] = None
# Define all backend configurations of full cudagraph to be tested
backend_configs = {
# FA3 on Hopper
"FA3":
BackendConfig(name="FA3",
env_vars={"VLLM_FLASH_ATTN_VERSION": "3"},
comp_config={
"cudagraph_mode": "FULL",
},
specific_gpu_arch=(9, 0)),
# FlashMLA on Hopper
"FlashMLA":
BackendConfig(name="FlashMLA",
env_vars={
"VLLM_ATTENTION_BACKEND": "FLASHMLA",
},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
},
specific_gpu_arch=(9, 0)),
# Cutlass MLA on Blackwell
"CutlassMLA":
BackendConfig(
name="CutlassMLA",
env_vars={
"VLLM_USE_V1": "1",
"VLLM_ATTENTION_BACKEND": "CUTLASS_MLA",
"FORCE_NUM_KV_SPLITS":
"1", # TODO: remove this when hang issue is fixed
},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
"cudagraph_capture_sizes": [16, 32, 64, 128, 256, 512],
},
specific_gpu_arch=(10, 0)),
# FA2
"FA2":
BackendConfig(name="FA2",
env_vars={"VLLM_FLASH_ATTN_VERSION": "2"},
comp_config={
"cudagraph_mode": "FULL",
}),
# Triton Attention
"TritonAttn":
BackendConfig(name="TritonAttn",
env_vars={"VLLM_ATTENTION_BACKEND": "TRITON_ATTN_VLLM_V1"},
comp_config={
"cudagraph_mode": "FULL",
}),
# FlashInfer
"FlashInfer":
BackendConfig(name="FlashInfer",
env_vars={"VLLM_ATTENTION_BACKEND": "FLASHINFER"},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
}),
}
test_params_full_cudagraph = []
# deepseek-ai/DeepSeek-V2-Lite with MLA
MLA_backends = ["FlashMLA", "CutlassMLA"]
for mla_backend in MLA_backends:
test_params_full_cudagraph.append(
pytest.param(
("deepseek-ai/DeepSeek-V2-Lite", backend_configs[mla_backend])))
# Qwen/Qwen2-1.5B-Instruct with other backends
other_backend_configs = [
backend_configs[c] for c in backend_configs if c not in MLA_backends
]
for backend_config in other_backend_configs:
test_params_full_cudagraph.append(
pytest.param(("Qwen/Qwen2-1.5B-Instruct", backend_config)))
@pytest.fixture(scope="class")
def llm_pair(request):
model, backend_config = request.param
model = request.param
# Dynamically skip test if GPU capability is not met
if backend_config.specific_gpu_arch and backend_config.specific_gpu_arch\
!= current_platform.get_device_capability():
if backend_config.specific_gpu_arch == (9, 0):
pytest.skip("Only Hopper GPUs support FA3 and FlashMLA")
elif backend_config.specific_gpu_arch == (10, 0):
pytest.skip("Only Blackwell GPUs support Cutlass MLA")
env_vars = {
with temporary_environ({
"VLLM_USE_V1": "1",
# Force native sampler to avoid potential nondeterminism in FlashInfer
# when per-request generators are not used in V1.
"VLLM_USE_FLASHINFER_SAMPLER": "0",
**backend_config.env_vars,
}
with temporary_environ(env_vars):
"VLLM_FLASH_ATTN_VERSION": "3"
}):
full = LLM(
model=model,
gpu_memory_utilization=0.43,
gpu_memory_utilization=0.45,
trust_remote_code=True,
max_model_len=1024,
max_num_seqs=128,
compilation_config=\
CompilationConfig(**backend_config.comp_config),
generation_config="vllm",
seed=42,
compilation_config=CompilationConfig(full_cuda_graph=True),
)
piecewise = LLM(
model=model,
gpu_memory_utilization=0.43,
gpu_memory_utilization=0.45,
trust_remote_code=True,
max_model_len=1024,
max_num_seqs=128,
compilation_config=CompilationConfig(cudagraph_mode="PIECEWISE"),
generation_config="vllm",
seed=42,
compilation_config=CompilationConfig(),
)
# PyTest caches the fixture values so we use weakref.proxy to enable GC
@ -170,7 +66,16 @@ def llm_pair(request):
)
@pytest.mark.parametrize("llm_pair", test_params_full_cudagraph, indirect=True)
@pytest.mark.parametrize(
"llm_pair",
[
# Model names for the llm_pair fixture
"deepseek-ai/DeepSeek-V2-Lite",
"Qwen/Qwen2-1.5B-Instruct"
],
indirect=True)
@pytest.mark.skipif(current_platform.get_device_capability() != (9, 0),
reason="Only Hopper GPUs support FA3 and FlashMLA")
class TestFullCUDAGraph:
"""
Use a class such that an llm pair is constructed once for all
@ -199,14 +104,12 @@ class TestFullCUDAGraph:
full cudagraph compilation works for padded cases too.
"""
full_cudagraph_llm, piecewise_llm = llm_pair
piecewise_llm, full_cudagraph_llm = llm_pair
prompts = ["the quick brown fox"] * batch_size
# Use purely greedy decoding to avoid top-p truncation sensitivity
# that can amplify tiny numeric differences across runtimes.
prompts = ["Hello, my name is"] * batch_size
sampling_params = SamplingParams(temperature=0.0,
max_tokens=max_tokens,
top_p=1.0)
top_p=0.95)
piecewise_responses = piecewise_llm.generate(prompts, sampling_params)
full_responses = full_cudagraph_llm.generate(prompts, sampling_params)
@ -214,16 +117,42 @@ class TestFullCUDAGraph:
# Check that all responses are the same
for piecewise_res, full_res in zip(piecewise_responses,
full_responses):
assert piecewise_res.outputs[0].text.lower() == \
full_res.outputs[0].text.lower()
assert piecewise_res.outputs[0].text == full_res.outputs[0].text
@pytest.mark.parametrize(
"model, supported",
[
("Qwen/Qwen2-1.5B-Instruct", True),
# MLA does not support capturing CUDA Graphs with size > max_num_seqs
("deepseek-ai/DeepSeek-V2-Lite", False),
])
@pytest.mark.skipif(current_platform.get_device_capability() != (9, 0),
reason="Only Hopper GPUs support FA3 and FlashMLA")
def test_lower_max_num_seqs(model, supported):
with temporary_environ({
"VLLM_USE_V1": "1",
"VLLM_FLASH_ATTN_VERSION": "3"
}), ExitStack() as stack:
if not supported:
stack.enter_context(pytest.raises(RuntimeError))
llm = LLM(model=model,
max_num_seqs=256,
trust_remote_code=True,
max_model_len=1024,
compilation_config=CompilationConfig(
full_cuda_graph=True,
cudagraph_capture_sizes=[64, 256, 512]))
llm.generate(["Hello, my name is"] * 10)
@pytest.mark.skipif(not current_platform.is_cuda(), reason="Skip if not cuda")
def test_full_cudagraph_with_invalid_backend():
with temporary_environ({
"VLLM_USE_V1": "1",
"VLLM_ATTENTION_BACKEND": "FLEX_ATTENTION"
# Flex_Attention is not supported with full cuda graph
"VLLM_FLASH_ATTN_VERSION":
"2" #FA2 not supported with full_cuda_graph
}), pytest.raises(RuntimeError):
LLM(model="Qwen/Qwen2-1.5B-Instruct",
compilation_config=CompilationConfig(cudagraph_mode="FULL"))
compilation_config=CompilationConfig(full_cuda_graph=True))

View File

@ -11,10 +11,10 @@ from torch.library import Library
from vllm.compilation.counter import compilation_counter
from vllm.compilation.decorators import support_torch_compile
from vllm.config import (CompilationConfig, CompilationLevel, CUDAGraphMode,
VllmConfig, set_current_vllm_config)
from vllm.config import (CompilationConfig, CompilationLevel, VllmConfig,
set_current_vllm_config)
from vllm.envs import VLLM_USE_V1
from vllm.forward_context import BatchDescriptor, set_forward_context
from vllm.forward_context import set_forward_context
from vllm.utils import direct_register_custom_op
global_counter = 0
@ -101,33 +101,16 @@ def test_simple_piecewise_compile(use_inductor):
num_backend_compilations=3, # num_piecewise_capturable_graphs_seen
num_cudagraph_captured=
6, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
), set_forward_context(None,
vllm_config=vllm_config): # background context
# warm up with background context
), set_forward_context({}, vllm_config=vllm_config):
model(inputs)
# capturing/replaying should under context of cudagraph dispatching
with set_forward_context(
None,
vllm_config=vllm_config,
cudagraph_runtime_mode=CUDAGraphMode.PIECEWISE,
batch_descriptor=BatchDescriptor(num_tokens=2, )):
model(torch.randn(2).cuda())
with set_forward_context(
None,
vllm_config=vllm_config,
cudagraph_runtime_mode=CUDAGraphMode.PIECEWISE,
batch_descriptor=BatchDescriptor(num_tokens=1, )):
model(torch.randn(1).cuda())
input = torch.zeros(2).cuda()
global global_counter
global_counter = 0
with set_forward_context(
None,
vllm_config=vllm_config,
cudagraph_runtime_mode=CUDAGraphMode.PIECEWISE,
batch_descriptor=BatchDescriptor(num_tokens=2, )):
output = model(input)
assert global_counter == 2
assert torch.allclose(output.cpu(), torch.tensor([3., 1.]))

View File

@ -18,9 +18,9 @@ from torch.library import Library
from vllm.compilation.counter import compilation_counter
from vllm.compilation.decorators import support_torch_compile
from vllm.config import (CompilationConfig, CompilationLevel, CUDAGraphMode,
VllmConfig, set_current_vllm_config)
from vllm.forward_context import BatchDescriptor, set_forward_context
from vllm.config import (CompilationConfig, CompilationLevel, VllmConfig,
set_current_vllm_config)
from vllm.forward_context import set_forward_context
from vllm.utils import direct_register_custom_op
# create a library to hold the custom op
@ -276,11 +276,9 @@ def run_model(llama_config,
)
if split_attn:
compilation_config.splitting_ops = ["silly.attention"]
cudagraph_runtime_mode = CUDAGraphMode.PIECEWISE
else:
compilation_config = CompilationConfig(
level=CompilationLevel.NO_COMPILATION, )
cudagraph_runtime_mode = CUDAGraphMode.NONE
vllm_config = VllmConfig(compilation_config=compilation_config,
additional_config=llama_config)
@ -289,36 +287,16 @@ def run_model(llama_config,
vllm_config=vllm_config,
prefix="").eval().cuda()
with set_forward_context({},
vllm_config=vllm_config): # background context
with set_forward_context({}, vllm_config=vllm_config):
B = 16 # max batch size
input_ids = torch.randint(0, llama_config.vocab_size, (B, )).cuda()
positions = torch.arange(B).cuda()
# warmup for the model with cudagraph_mode NONE
model(input_ids, positions)
# simulate cudagraphs capturing
with set_forward_context({},
vllm_config=vllm_config,
cudagraph_runtime_mode=cudagraph_runtime_mode,
batch_descriptor=BatchDescriptor(
num_tokens=2, )):
model(input_ids[:2], positions[:2])
with set_forward_context({},
vllm_config=vllm_config,
cudagraph_runtime_mode=cudagraph_runtime_mode,
batch_descriptor=BatchDescriptor(
num_tokens=1, )):
model(input_ids[:1], positions[:1])
input_ids[:2].zero_()
# simulate cudagraphs replay
with set_forward_context({},
vllm_config=vllm_config,
cudagraph_runtime_mode=cudagraph_runtime_mode,
batch_descriptor=BatchDescriptor(
num_tokens=2, )):
output = model(input_ids[:2], positions[:2])
output = output.cpu()

View File

@ -34,7 +34,7 @@ class TestSetting:
model_args=["--max-model-len", "2048"],
pp_size=2,
tp_size=2,
attn_backend="FLASH_ATTN",
attn_backend="FLASHINFER",
method="generate",
fullgraph=True,
),

View File

@ -31,6 +31,10 @@ def models_list(*, all: bool = True, keywords: Optional[list[str]] = None):
]
if all:
if is_quant_method_supported("aqlm"):
TEST_MODELS.append(("ISTA-DASLab/Llama-2-7b-AQLM-2Bit-1x16-hf", {
"quantization": "aqlm"
}))
# TODO: figure out why this fails.
if False and is_quant_method_supported("gguf"): # noqa: SIM223

View File

@ -1,6 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import copy
from typing import Optional
import pytest
@ -8,27 +7,13 @@ import torch._dynamo
from tests.compile.backend import TestBackend
from tests.models.utils import check_outputs_equal
from tests.v1.attention.utils import (BatchSpec, _Backend,
create_common_attn_metadata)
from vllm import LLM, SamplingParams
from vllm.attention import Attention
from vllm.attention.selector import global_force_attn_backend_context_manager
from vllm.compilation.fusion import QUANT_OPS, QuantKey, kFp8StaticTensorSym
from vllm.compilation.fusion_attn import ATTN_OP, AttnFusionPass
from vllm.compilation.fx_utils import find_op_nodes
from vllm.compilation.noop_elimination import NoOpEliminationPass
from vllm.config import (CacheConfig, CompilationConfig, CompilationLevel,
ModelConfig, PassConfig, SchedulerConfig, VllmConfig,
set_current_vllm_config)
from vllm.forward_context import get_forward_context, set_forward_context
from vllm.model_executor.layers.quantization.utils.quant_utils import (
GroupShape)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
Fp8LinearOp)
from vllm.config import CompilationConfig, CompilationLevel, VllmConfig
from vllm.platforms import current_platform
from vllm.v1.kv_cache_interface import AttentionSpec
FP8_DTYPE = current_platform.fp8_dtype()
# globals needed for string-import custom Dynamo backend field
backend: Optional[TestBackend] = None
@ -147,235 +132,3 @@ def test_attention_fusion(example_prompts, monkeypatch, model: str,
# Reset backend to make sure llm2 gets released
backend = None
class TestAttentionStaticQuantPatternModel(torch.nn.Module):
"""Test model for AttentionStaticQuantPattern fusion."""
def __init__(self, num_qo_heads: int, num_kv_heads: int, head_size: int,
kv_cache_dtype: torch.dtype, device: torch.device,
vllm_config: VllmConfig):
super().__init__()
self.num_qo_heads = num_qo_heads
self.num_kv_heads = num_kv_heads
self.head_size = head_size
self.kv_cache_dtype = kv_cache_dtype
self.device = device
self.vllm_config = vllm_config
self.attn = Attention(
num_heads=self.num_qo_heads,
head_size=self.head_size,
scale=1.0 / (self.head_size**0.5),
num_kv_heads=self.num_kv_heads,
cache_config=vllm_config.cache_config,
prefix="model.layers.0.self_attn.attn",
)
self.fp8_linear = Fp8LinearOp(
act_quant_static=True, act_quant_group_shape=GroupShape.PER_TENSOR)
self.wscale = torch.tensor([1.0], dtype=torch.float32)
self.scale = torch.tensor([1.0], dtype=torch.float32)
self.block_size = 16
# Initialize attn MetadataBuilder
self.builder = self.attn.attn_backend.get_builder_cls()(
kv_cache_spec=AttentionSpec(
block_size=self.block_size,
num_kv_heads=self.num_kv_heads,
head_size=self.head_size,
dtype=self.kv_cache_dtype,
use_mla=False,
),
layer_names=[self.attn.layer_name],
vllm_config=self.vllm_config,
device=self.device,
)
def build_attn_metadata(self, batch_size: int):
"""Initialize attention metadata."""
# Create common attn metadata
batch_spec = BatchSpec(seq_lens=[1] * batch_size,
query_lens=[1] * batch_size)
common_attn_metadata = create_common_attn_metadata(
batch_spec,
self.block_size,
self.device,
arange_block_indices=True)
max_blocks = (max(batch_spec.seq_lens) + self.block_size -
1) // self.block_size
num_blocks = batch_size * max_blocks
# Create dummy KV cache for FlashInfer TRTLLM
# - NHD: [num_blocks, 2, block_size, num_kv_heads, head_size]
# - HND: [num_blocks, 2, num_kv_heads, block_size, head_size]
# Create kv_cache in HND layout and permute to NHD layout
# (later will be permuted back to HND layout in forward pass)
kv_cache = torch.zeros(num_blocks,
2,
self.num_kv_heads,
self.block_size,
self.head_size,
dtype=self.kv_cache_dtype,
device=self.device)
kv_cache = kv_cache.permute(0, 1, 3, 2, 4)
self.attn.kv_cache = [kv_cache]
# Build attn metadata
self.attn_metadata = self.builder.build(
common_prefix_len=0, common_attn_metadata=common_attn_metadata)
return self.attn_metadata
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
w: torch.Tensor):
"""Forward pass that creates the pattern to be fused."""
attn_output = self.attn(q, k, v)
return self.fp8_linear.apply(input=attn_output,
weight=w,
weight_scale=self.wscale,
input_scale=self.scale)
@pytest.mark.parametrize("num_qo_heads, num_kv_heads", [(64, 8), (40, 8)])
@pytest.mark.parametrize("head_size", [128])
@pytest.mark.parametrize("batch_size", [7, 256, 533])
@pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize(
"model_name, quant_key",
[("nvidia/Llama-4-Scout-17B-16E-Instruct-FP8", kFp8StaticTensorSym)])
@pytest.mark.parametrize("backend", [_Backend.FLASHINFER])
@pytest.mark.skipif(not current_platform.is_cuda(), reason="Only test CUDA")
@pytest.mark.skipif(not current_platform.supports_fp8(), reason="Need FP8")
@pytest.mark.skipif(not current_platform.is_device_capability((10, 0)),
reason="Only test on SM100(Blackwell)")
def test_attention_quant_pattern(num_qo_heads: int, num_kv_heads: int,
head_size: int, batch_size: int,
dtype: torch.dtype, model_name: str,
quant_key: QuantKey, backend: _Backend,
monkeypatch, dist_init):
"""Test AttentionStaticQuantPattern fusion pass"""
monkeypatch.setenv("VLLM_USE_V1", "1")
device = torch.device("cuda:0")
torch.manual_seed(42)
vllm_config = VllmConfig(
model_config=ModelConfig(
model=model_name,
max_model_len=2048,
),
scheduler_config=SchedulerConfig(max_num_seqs=1024),
compilation_config=CompilationConfig(
level=CompilationLevel.PIECEWISE,
custom_ops=["+quant_fp8"],
),
cache_config=CacheConfig(cache_dtype="fp8"))
# Create test inputs
hidden_size = num_qo_heads * head_size
q = torch.randn(batch_size, hidden_size, dtype=dtype, device=device)
k = torch.randn(batch_size,
num_kv_heads * head_size,
dtype=dtype,
device=device)
v = torch.randn(batch_size,
num_kv_heads * head_size,
dtype=dtype,
device=device)
linear_w = torch.randn(hidden_size, hidden_size).to(FP8_DTYPE).t()
# Mark first dimension as dynamic for realistic testing
torch._dynamo.mark_dynamic(q, 0)
torch._dynamo.mark_dynamic(k, 0)
torch._dynamo.mark_dynamic(v, 0)
# Run model directly without compilation and fusion
vllm_config_unfused = copy.deepcopy(vllm_config)
with set_current_vllm_config(vllm_config_unfused), set_forward_context(
attn_metadata=None, vllm_config=vllm_config_unfused
), global_force_attn_backend_context_manager(backend):
model_unfused = TestAttentionStaticQuantPatternModel(
num_qo_heads, num_kv_heads, head_size, FP8_DTYPE, device,
vllm_config_unfused)
model_unfused = model_unfused.to(device)
forward_ctx = get_forward_context()
forward_ctx.attn_metadata = model_unfused.build_attn_metadata(
batch_size)
# Run model directly without compilation and fusion
result_unfused = model_unfused(q, k, v, linear_w)
# Run model with attn fusion enabled
vllm_config.compilation_config.pass_config = PassConfig(
enable_attn_fusion=True, enable_noop=True)
with set_current_vllm_config(vllm_config), set_forward_context(
attn_metadata=None, vllm_config=vllm_config
), global_force_attn_backend_context_manager(backend):
model_fused = TestAttentionStaticQuantPatternModel(
num_qo_heads, num_kv_heads, head_size, FP8_DTYPE, device,
vllm_config)
model_fused = model_fused.to(device)
forward_ctx = get_forward_context()
forward_ctx.attn_metadata = model_fused.build_attn_metadata(batch_size)
# Create test backend with fusion passes enabled
noop_pass = NoOpEliminationPass(vllm_config)
attn_pass = lambda *args, **kw: AttnFusionPass(vllm_config)(*args, **kw
)
test_backend = TestBackend(noop_pass, attn_pass)
# Compile model with fusion enabled
model_compiled = torch.compile(model_fused,
backend=test_backend,
fullgraph=True)
assert model_compiled.attn._o_scale_float is None
result_fused_1 = model_compiled(q, k, v, linear_w)
# After the 1st round of the forward pass, output quant scale should be
# loaded into the attn layer's _o_scale_float, the 2nd round should
# reuse the loaded _o_scale_float
assert model_compiled.attn._o_scale_float is not None
result_fused_2 = model_compiled(q, k, v, linear_w)
assert model_compiled.attn._o_scale_float is not None
# Check attn fusion support
attn_fusion_supported = [
layer.impl.fused_output_quant_supported(quant_key.dtype,
quant_key.static,
quant_key.group_shape) for key,
layer in vllm_config.compilation_config.static_forward_context.items()
]
if any(attn_fusion_supported):
# Check quantization ops in the graph before and after fusion
test_backend.check_before_ops([QUANT_OPS[quant_key]],
fully_replaced=True)
# Check attention ops in the graph before and after fusion
attn_nodes_pre = list(find_op_nodes(ATTN_OP, test_backend.graph_pre_pass))
attn_nodes_post = list(find_op_nodes(ATTN_OP,
test_backend.graph_post_pass))
assert len(attn_nodes_pre) > 0, "Should have attention nodes before fusion"
assert len(attn_nodes_pre) == len(attn_nodes_post), \
"Should have same number of attention nodes before and after fusion"
assert attn_nodes_pre[0].kwargs.get("output_scale") is None, \
"Attention should not have output_scale before fusion"
assert attn_nodes_post[0].kwargs.get("output_scale") is not None, \
"Attention should have output_scale after fusion"
# Check that results are closed
torch.testing.assert_close(result_unfused,
result_fused_1,
atol=1e-2,
rtol=1e-2)
torch.testing.assert_close(result_unfused,
result_fused_2,
atol=1e-2,
rtol=1e-2)

View File

@ -456,14 +456,6 @@ class HfRunner:
outputs = []
for inputs in all_inputs:
output = self.model(**self.wrap_device(inputs))
problem_type = getattr(self.config, "problem_type", "")
if problem_type == "regression":
logits = output.logits[0].tolist()
elif problem_type == "multi_label_classification":
logits = output.logits.sigmoid()[0].tolist()
else:
logits = output.logits.softmax(dim=-1)[0].tolist()
outputs.append(logits)

View File

@ -32,7 +32,7 @@ BLOCK_SIZE = 16
@pytest.mark.parametrize("test_llm_kwargs", [{}])
@pytest.mark.parametrize("batch_size", [5])
@pytest.mark.parametrize("seed", [1])
@pytest.mark.parametrize("backend", ["FLASH_ATTN", "XFORMERS"])
@pytest.mark.parametrize("backend", ["FLASH_ATTN", "FLASHINFER", "XFORMERS"])
def test_sliding_window_retrieval(baseline_llm_generator, test_llm_generator,
batch_size, seed, backend, monkeypatch):
"""
@ -43,6 +43,8 @@ def test_sliding_window_retrieval(baseline_llm_generator, test_llm_generator,
Additionally, we compare the results of the v1 and v2 managers.
"""
if backend == "FLASHINFER" and current_platform.is_rocm():
pytest.skip("Flashinfer does not support ROCm/HIP.")
if backend == "XFORMERS" and current_platform.is_rocm():
pytest.skip("Xformers does not support ROCm/HIP.")
@ -94,7 +96,7 @@ def test_sliding_window_retrieval(baseline_llm_generator, test_llm_generator,
@pytest.mark.parametrize("test_llm_kwargs", [{"enable_chunked_prefill": True}])
@pytest.mark.parametrize("batch_size", [5])
@pytest.mark.parametrize("seed", [1])
@pytest.mark.parametrize("backend", ["FLASH_ATTN", "XFORMERS"])
@pytest.mark.parametrize("backend", ["FLASH_ATTN", "FLASHINFER", "XFORMERS"])
def test_sliding_window_chunked_prefill(test_llm_generator, batch_size, seed,
backend, monkeypatch):
"""
@ -105,6 +107,8 @@ def test_sliding_window_chunked_prefill(test_llm_generator, batch_size, seed,
The results with and without chunked prefill are not the same due to
numerical instabilities.
"""
if backend == "FLASHINFER" and current_platform.is_rocm():
pytest.skip("Flashinfer does not support ROCm/HIP.")
if backend == "XFORMERS" and current_platform.is_rocm():
pytest.skip("Xformers does not support ROCm/HIP.")
override_backend_env_variable(monkeypatch, backend)

View File

@ -1,50 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from transformers import AutoTokenizer
from vllm import SamplingParams
from vllm.v1.engine import EngineCoreRequest
from vllm.v1.engine.detokenizer import FastIncrementalDetokenizer
PROMPT = "Hello, my name is Lee, and I'm a student in the " + \
"college of engineering"
@pytest.mark.parametrize("min_tokens,stop,truth", [
(0, None, " is Lee, and I'm a student in the college of engineering"),
(0, "e", " is L"),
(5, "e", " is Lee, and I'm a stud"),
])
def test_min_tokens_with_stop(min_tokens: int, stop: str, truth: str):
"""Test for a specific min_tokens and stop.
See https://github.com/vllm-project/vllm/pull/22014
"""
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m")
all_prompt_ids = tokenizer(PROMPT, add_special_tokens=False).input_ids
# The prompt is "Hello, my name is"
prompt_token_ids = all_prompt_ids[:4]
params = SamplingParams(
stop=stop,
min_tokens=min_tokens,
)
request = EngineCoreRequest("",
prompt_token_ids,
None,
None,
None,
params,
None,
None,
0.0,
None,
cache_salt=None,
data_parallel_rank=None)
detokenizer = FastIncrementalDetokenizer(tokenizer, request)
detokenizer.update(all_prompt_ids[4:], False)
assert detokenizer.output_text == truth

View File

@ -17,6 +17,7 @@ if TYPE_CHECKING:
])
@pytest.mark.parametrize("ATTN_BACKEND", [
"FLASH_ATTN",
"FLASHINFER",
])
@create_new_process_for_each_test()
def test_pp_cudagraph(

View File

@ -24,7 +24,18 @@ ACTIVE_MM_LORA_RESPONSE = "Spoken text: The first words I spoke in the original
@pytest.fixture(scope="module")
def multimodal_server(): # noqa: F811
def monkeypatch_module():
from _pytest.monkeypatch import MonkeyPatch
mpatch = MonkeyPatch()
yield mpatch
mpatch.undo()
@pytest.fixture(scope="module", params=[False, True])
def multimodal_server(request, monkeypatch_module): # noqa: F811
use_v1 = request.param
monkeypatch_module.setenv('VLLM_USE_V1', '1' if use_v1 else '0')
args = [
# use half precision for speed and memory savings in CI environment
@ -48,8 +59,7 @@ def multimodal_server(): # noqa: F811
f"{{\"audio\": \"{AUDIO_LORA_PATH}\"}}",
]
with RemoteOpenAIServer(MULTIMODAL_MODEL_NAME, args,
max_wait_seconds=480) as remote_server:
with RemoteOpenAIServer(MULTIMODAL_MODEL_NAME, args) as remote_server:
yield remote_server

View File

@ -54,67 +54,38 @@ def before_generate_case(context: schemathesis.hooks.HookContext, strategy):
op = context.operation
assert op is not None
def no_invalid_types(case: schemathesis.models.Case):
def no_file_type(case: schemathesis.models.Case):
"""
This filter skips test cases with invalid data that schemathesis
incorrectly generates due to permissive schema configurations.
1. Skips `POST /tokenize` endpoint cases with `"type": "file"` in
message content, which isn't implemented.
2. Skips tool_calls with `"type": "custom"` which schemathesis
incorrectly generates instead of the valid `"type": "function"`.
This filter skips test cases for the `POST /tokenize` endpoint where the
HTTP request body uses `"type": "file"` in any message's content.
We expect these cases to fail because that type isn't implemented here
https://github.com/vllm-project/vllm/blob/0b34593017953051b3225b1483ce0f4670e3eb0e/vllm/entrypoints/chat_utils.py#L1038-L1095
Example test cases that are skipped:
curl -X POST -H 'Content-Type: application/json' \
-d '{"messages": [{"content": [{"file": {}, "type": "file"}], "role": "user"}]}' \
-d '{"messages": [{"role": "assistant"}, {"content": [{"file": {}, "type": "file"}], "role": "user"}]}' \
http://localhost:8000/tokenize
curl -X POST -H 'Content-Type: application/json' \
-d '{"messages": [{"role": "assistant", "tool_calls": [{"custom": {"input": "", "name": ""}, "id": "", "type": "custom"}]}]}' \
http://localhost:8000/v1/chat/completions
-d '{"messages": [{"content": [{"file": {}, "type": "file"}], "role": "user"}]}' \
http://localhost:8000/tokenize
""" # noqa: E501
if hasattr(case, "body") and isinstance(case.body, dict):
if ("messages" in case.body
if (op.method.lower() == "post" and op.path == "/tokenize"
and hasattr(case, "body") and isinstance(case.body, dict)
and "messages" in case.body
and isinstance(case.body["messages"], list)
and len(case.body["messages"]) > 0):
for message in case.body["messages"]:
if not isinstance(message, dict):
continue
# Check for invalid file type in tokenize endpoint
if op.method.lower() == "post" and op.path == "/tokenize":
content = message.get("content", [])
if (isinstance(content, list) and len(content) > 0
and any(
item.get("type") == "file"
for item in content)):
if not isinstance(content, list) or len(content) == 0:
continue
if any(item.get("type") == "file" for item in content):
return False
# Check for invalid tool_calls with non-function types
tool_calls = message.get("tool_calls", [])
if isinstance(tool_calls, list):
for tool_call in tool_calls:
if isinstance(tool_call, dict):
if tool_call.get("type") != "function":
return False
if "custom" in tool_call:
return False
# Sometimes guided_grammar is generated to be empty
# Causing a server error in EBNF grammar parsing
# https://github.com/vllm-project/vllm/pull/22587#issuecomment-3195253421
guided_grammar = case.body.get("guided_grammar")
if guided_grammar == '':
# Allow None (will be handled as no grammar)
# But skip empty strings
return False
return True
return strategy.filter(no_invalid_types)
return strategy.filter(no_file_type)
@schema.parametrize()

View File

@ -1,16 +1,10 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import io
# imports for guided decoding tests
import openai
import pybase64
import pytest
import regex as re
import torch
from vllm.entrypoints.openai.serving_engine import OpenAIServing
from ...utils import RemoteOpenAIServer
@ -48,46 +42,3 @@ async def test_out_of_vocab_token_ids():
prompt=[999999],
max_tokens=5,
temperature=0.0)
@pytest.mark.parametrize("dtype",
[torch.float32, torch.bfloat16, torch.float16])
@pytest.mark.parametrize(
"layout",
[torch.strided, torch.sparse_coo, torch.sparse_csc, torch.sparse_csr])
@pytest.mark.parametrize("seq_len", [2, 10])
@pytest.mark.parametrize("hidden_size", [2, 10])
def test_load_prompt_embeds(dtype: torch.dtype, layout: torch.layout,
seq_len: int, hidden_size: int):
# construct arbitrary tensors of various dtypes, layouts, and sizes.
# We need to check against different layouts to make sure that if a user
# uses sparse tensors to reduce the transmission size of prompt embeddings,
# we must cast them to dense/strided before passing them into the engine.
# We don't use non-CPU tensors in this test to avoid preemptively
# initializing cuda and break other tests in the suite that fork processes.
# We also need to make sure that we only use devices that are actually
# available in the environment the test is running on. For simplicity,
# we just test against CPU.
tensor = torch.randn((seq_len, hidden_size), dtype=dtype)
if layout == torch.strided:
tensor = tensor.contiguous()
elif layout == torch.sparse_coo:
tensor = tensor.to_sparse_coo()
elif layout == torch.sparse_csc:
tensor = tensor.to_sparse_csc()
elif layout == torch.sparse_csr:
tensor = tensor.to_sparse_csr()
buffer = io.BytesIO()
torch.save(tensor, buffer)
buffer.seek(0)
encoded_tensor = pybase64.b64encode(buffer.getvalue())
loaded_prompt_embeds = OpenAIServing._load_prompt_embeds(encoded_tensor)
assert len(loaded_prompt_embeds) == 1
loaded_tensor = loaded_prompt_embeds[0]["prompt_embeds"]
assert loaded_tensor.device.type == "cpu"
assert loaded_tensor.layout == torch.strided
torch.testing.assert_close(loaded_tensor,
tensor.to("cpu").to_dense(),
equal_nan=True)

View File

@ -1,374 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from vllm.transformers_utils.tokenizer import get_tokenizer
from ...utils import RemoteOpenAIServer
MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
@pytest.fixture(scope="module")
def server():
args = [
"--max-model-len",
"2048",
"--max-num-seqs",
"128",
"--enable-auto-tool-choice",
"--tool-call-parser",
"hermes",
"--enforce-eager",
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest.mark.asyncio
async def test_basic_completion_with_emoji(server):
"""Test basic completion with emoji to verify token_ids field."""
async with server.get_async_client() as client:
# Test with return_token_ids enabled
completion = await client.completions.create(
model=MODEL_NAME,
prompt="Complete this sentence with emojis: I love coding 🚀",
max_tokens=10,
temperature=0,
logprobs=1,
extra_body={"return_token_ids": True},
)
# Check the raw response to see the structure
completion_dict = completion.model_dump()
# Verify prompt_token_ids field is present in the completion response
assert "prompt_token_ids" in completion_dict["choices"][0]
assert isinstance(completion.choices[0].prompt_token_ids, list)
# Check against the expected prompt token IDs
tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)
encoded_tokens = tokenizer.encode(
"Complete this sentence with emojis: I love coding 🚀")
# Check that encoded_tokens is a subsequence of prompt_token_ids
assert any(completion.choices[0].prompt_token_ids[i:i +
len(encoded_tokens)]
== encoded_tokens for i in range(
len(completion.choices[0].prompt_token_ids) -
len(encoded_tokens) + 1))
# Verify token_ids field is present in the choice
assert completion.choices[0].token_ids is not None
assert isinstance(completion.choices[0].token_ids, list)
assert len(completion.choices[0].token_ids) > 0
# Verify decoding works correctly
decoded_text = tokenizer.decode(completion.choices[0].token_ids)
# The decoded text should contain a <|im_end|> at the end
assert decoded_text.startswith(completion.choices[0].text)
# Test without return_token_ids (should be None)
completion_without = await client.completions.create(
model=MODEL_NAME,
prompt="Complete this sentence with emojis: I love coding 🚀",
max_tokens=10,
temperature=0,
logprobs=1,
extra_body={"return_token_ids": False},
)
completion_without_dict = completion_without.model_dump()
assert completion_without_dict["choices"][0].get("token_ids") is None
assert completion_without_dict.get("prompt_token_ids") is None
@pytest.mark.asyncio
async def test_chat_completion_with_tool_use(server):
"""Test chat completion with tool use (get_weather function)."""
tools = [{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type":
"string",
"description":
"The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature",
},
},
"required": ["location"],
},
},
}]
async with server.get_async_client() as client:
# Test with return_token_ids enabled
response = await client.chat.completions.create(
model=MODEL_NAME,
messages=[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What's the weather like in Paris?"
},
],
tools=tools,
tool_choice="auto",
max_tokens=100,
temperature=0,
logprobs=True,
extra_body={"return_token_ids": True},
)
# Verify token_ids field is present in choices
assert response.choices[0].token_ids is not None
assert isinstance(response.choices[0].token_ids, list)
# Verify prompt_token_ids field is present
assert response.prompt_token_ids is not None
assert isinstance(response.prompt_token_ids, list)
# Verify the prompt texts and response texts
tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)
prompt_text = tokenizer.decode(response.prompt_token_ids)
assert prompt_text.startswith(
"<|im_start|>system\nYou are a helpful assistant.")
assert prompt_text.endswith(
"What's the weather like in Paris?<|im_end|>\n"
"<|im_start|>assistant\n")
response_text = tokenizer.decode(response.choices[0].token_ids)
assert response_text.startswith('<tool_call>\n{"name": "get_weather"')
assert response_text.endswith("</tool_call><|im_end|>")
# If tool call was made, verify the response structure
if response.choices[0].message.tool_calls:
assert len(response.choices[0].message.tool_calls) > 0
tool_call = response.choices[0].message.tool_calls[0]
assert tool_call.function.name == "get_weather"
# Test without return_token_ids
response_without = await client.chat.completions.create(
model=MODEL_NAME,
messages=[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What's the weather like in Paris?"
},
],
tools=tools,
tool_choice="auto",
max_tokens=100,
temperature=0,
logprobs=True,
extra_body={"return_token_ids": False},
)
assert response_without.choices[0].token_ids is None
assert response_without.prompt_token_ids is None
@pytest.mark.asyncio
async def test_comparison_with_prompt_logprobs_and_logprobs(server):
"""
Test that token_ids align with prompt_logprobs and
logprobs when return_tokens_as_token_ids is enabled.
"""
async with server.get_async_client() as client:
# Test with both return_token_ids and return_tokens_as_token_ids enabled
completion = await client.completions.create(
model=MODEL_NAME,
prompt="Hello, world! How are you today?",
max_tokens=20,
temperature=0,
echo=True,
logprobs=1,
extra_body={
"return_token_ids": True,
"return_tokens_as_token_ids": True,
"prompt_logprobs": 1
},
)
# Verify all fields are present
assert completion.choices[0].token_ids is not None
assert completion.choices[0].prompt_token_ids is not None
assert completion.choices[0].prompt_logprobs is not None
assert completion.choices[0].logprobs is not None
# Extract token IDs from logprobs
# (when return_tokens_as_token_ids is True)
logprobs_token_ids = []
for token_str in completion.choices[0].logprobs.tokens:
# Token format is "token_id:12345" when
# return_tokens_as_token_ids is True
if token_str.startswith("token_id:"):
token_id = int(token_str.removeprefix("token_id:"))
logprobs_token_ids.append(token_id)
# When echo=True, the logprobs include both prompt and response tokens
# The token_ids field should match the the suffix of response portion
# The prompt_token_ids should match the prompt portion
assert len(completion.choices[0].token_ids) < len(logprobs_token_ids)
response_token_ids_length = len(completion.choices[0].token_ids)
assert logprobs_token_ids[-response_token_ids_length:] == \
completion.choices[0].token_ids
# Verify tokenizer consistency
tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)
# Decode prompt tokens
if completion.choices[0].prompt_token_ids:
prompt_text = tokenizer.decode(
completion.choices[0].prompt_token_ids)
# The decoded prompt should match or close to original prompt
assert "Hello, world" in prompt_text
# Decode response tokens
if completion.choices[0].token_ids:
response_text = tokenizer.decode(completion.choices[0].token_ids)
assert completion.choices[0].text.endswith(response_text)
# Test streaming mode
stream = await client.completions.create(
model=MODEL_NAME,
prompt="Tell me a short fact about Python:",
max_tokens=30,
temperature=0,
stream=True,
echo=False,
logprobs=1,
extra_body={
"return_token_ids": True,
"return_tokens_as_token_ids": True
},
)
# Collect streamed tokens
streamed_prompt_token_ids = []
streamed_token_ids = []
streamed_logprob_token_ids = []
first_chunk = True
async for chunk in stream:
for token_str in chunk.choices[0].logprobs.tokens:
# Token format is "token_id:12345" when
# return_tokens_as_token_ids is True
if token_str.startswith("token_id:"):
token_id = int(token_str.removeprefix("token_id:"))
streamed_logprob_token_ids.append(token_id)
if first_chunk:
streamed_prompt_token_ids = chunk.choices[0].prompt_token_ids
first_chunk = False
streamed_token_ids += chunk.choices[0].token_ids
# Verify we collected some tokens and first chunk had prompt_token_ids
assert len(streamed_prompt_token_ids) > 0
assert streamed_token_ids == streamed_logprob_token_ids
@pytest.mark.asyncio
async def test_chat_completion_with_emoji_and_token_ids(server):
"""Test chat completion with emojis to verify token_ids handling."""
chat_messages = [
{
"role": "system",
"content": "You like to use emojis in your responses."
},
{
"role": "user",
"content": "Repeat after me: I love cats 🐱"
},
]
async with server.get_async_client() as client:
response = await client.chat.completions.create(
model=MODEL_NAME,
messages=chat_messages,
max_tokens=50,
temperature=0,
logprobs=True,
extra_body={"return_token_ids": True},
)
# Verify token_ids are present
response_dict = response.model_dump()
assert response.choices[0].token_ids is not None
assert "prompt_token_ids" in response_dict
# Verify the response contains the expected fields
assert response.choices[0].message.content is not None
# Decode token_ids and verify consistency
tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)
decoded_prompt = tokenizer.decode(response.prompt_token_ids)
assert decoded_prompt.startswith(
"<|im_start|>system\nYou like to use emojis in your responses.")
assert decoded_prompt.endswith(
"I love cats 🐱<|im_end|>\n<|im_start|>assistant\n")
decoded_response = tokenizer.decode(response.choices[0].token_ids)
# The content should match the response text
# except the ending <|im_end|>
assert decoded_response == response.choices[
0].message.content + "<|im_end|>"
# Test with streaming
stream = await client.chat.completions.create(
model=MODEL_NAME,
messages=chat_messages,
max_tokens=50,
temperature=0,
stream=True,
extra_body={"return_token_ids": True},
)
collected_content = ""
collected_token_ids = []
first_chunk = True
async for chunk in stream:
if first_chunk:
assert chunk.prompt_token_ids is not None
assert isinstance(chunk.prompt_token_ids, list)
# Check the prompt_token_ids match the initial prompt
decoded_prompt_stream = tokenizer.decode(
chunk.prompt_token_ids)
assert decoded_prompt_stream == decoded_prompt
first_chunk = False
else:
chunk_dump = chunk.model_dump()
assert "prompt_token_ids" not in chunk_dump, \
"Subsequent chunks should not have prompt_token_ids"
if chunk.choices:
if chunk.choices[0].delta.content:
collected_content += chunk.choices[0].delta.content
# token_ids may not present in all chunks
choice_dump = chunk.choices[0].model_dump()
if "token_ids" in choice_dump:
collected_token_ids.extend(chunk.choices[0].token_ids)
# Verify we got response and token_ids
assert len(collected_content) > 0
assert len(collected_token_ids) > 0
# Verify token_ids decode properly
decoded_response = tokenizer.decode(collected_token_ids)
assert decoded_response == collected_content + "<|im_end|>"

View File

@ -4,20 +4,19 @@
# imports for guided decoding tests
import io
import json
from unittest.mock import patch
import librosa
import numpy as np
import openai
import pytest
import pytest_asyncio
import soundfile as sf
from openai._base_client import AsyncAPIClient
from vllm.assets.audio import AudioAsset
from ...utils import RemoteOpenAIServer
MODEL_NAME = "openai/whisper-large-v3-turbo"
SERVER_ARGS = ["--enforce-eager"]
MISTRAL_FORMAT_ARGS = [
"--tokenizer_mode", "mistral", "--config_format", "mistral",
"--load_format", "mistral"
@ -38,18 +37,6 @@ def winning_call():
yield f
@pytest.fixture(scope="module")
def server():
with RemoteOpenAIServer(MODEL_NAME, SERVER_ARGS) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
@ -73,11 +60,57 @@ async def test_basic_audio(mary_had_lamb, model_name):
assert "Mary had a little lamb," in out
@pytest.mark.asyncio
async def test_bad_requests(mary_had_lamb):
model_name = "openai/whisper-small"
server_args = ["--enforce-eager"]
with RemoteOpenAIServer(model_name, server_args) as remote_server:
client = remote_server.get_async_client()
# invalid language
with pytest.raises(openai.BadRequestError):
await client.audio.transcriptions.create(model=model_name,
file=mary_had_lamb,
language="hh",
temperature=0.0)
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", ["openai/whisper-large-v3-turbo"])
async def test_long_audio_request(mary_had_lamb, model_name):
server_args = ["--enforce-eager"]
if model_name.startswith("openai"):
return
mary_had_lamb.seek(0)
audio, sr = librosa.load(mary_had_lamb)
# Add small silence after each audio for repeatability in the split process
audio = np.pad(audio, (0, 1600))
repeated_audio = np.tile(audio, 10)
# Repeated audio to buffer
buffer = io.BytesIO()
sf.write(buffer, repeated_audio, sr, format='WAV')
buffer.seek(0)
with RemoteOpenAIServer(model_name, server_args) as remote_server:
client = remote_server.get_async_client()
transcription = await client.audio.transcriptions.create(
model=model_name,
file=buffer,
language="en",
response_format="text",
temperature=0.0)
out = json.loads(transcription)['text']
counts = out.count("Mary had a little lamb")
assert counts == 10, counts
@pytest.mark.asyncio
async def test_non_asr_model(winning_call):
# text to text model
model_name = "JackFram/llama-68m"
with RemoteOpenAIServer(model_name, SERVER_ARGS) as remote_server:
server_args = ["--enforce-eager"]
with RemoteOpenAIServer(model_name, server_args) as remote_server:
client = remote_server.get_async_client()
res = await client.audio.transcriptions.create(model=model_name,
file=winning_call,
@ -90,73 +123,62 @@ async def test_non_asr_model(winning_call):
@pytest.mark.asyncio
async def test_bad_requests(mary_had_lamb, client):
# invalid language
with pytest.raises(openai.BadRequestError):
await client.audio.transcriptions.create(model=MODEL_NAME,
file=mary_had_lamb,
language="hh",
temperature=0.0)
@pytest.mark.asyncio
async def test_long_audio_request(mary_had_lamb, client):
mary_had_lamb.seek(0)
audio, sr = librosa.load(mary_had_lamb)
# Add small silence after each audio for repeatability in the split process
audio = np.pad(audio, (0, 1600))
repeated_audio = np.tile(audio, 10)
# Repeated audio to buffer
buffer = io.BytesIO()
sf.write(buffer, repeated_audio, sr, format='WAV')
buffer.seek(0)
transcription = await client.audio.transcriptions.create(
model=MODEL_NAME,
file=buffer,
language="en",
response_format="text",
temperature=0.0)
out = json.loads(transcription)['text']
counts = out.count("Mary had a little lamb")
assert counts == 10, counts
@pytest.mark.asyncio
async def test_completion_endpoints(client):
async def test_completion_endpoints():
# text to text model
model_name = "openai/whisper-small"
server_args = ["--enforce-eager"]
with RemoteOpenAIServer(model_name, server_args) as remote_server:
client = remote_server.get_async_client()
res = await client.chat.completions.create(
model=MODEL_NAME,
model=model_name,
messages=[{
"role": "system",
"content": "You are a helpful assistant."
}])
err = res.error
assert err["code"] == 400
assert err["message"] == "The model does not support Chat Completions API"
assert err[
"message"] == "The model does not support Chat Completions API"
res = await client.completions.create(model=MODEL_NAME, prompt="Hello")
res = await client.completions.create(model=model_name, prompt="Hello")
err = res.error
assert err["code"] == 400
assert err["message"] == "The model does not support Completions API"
@pytest.mark.asyncio
async def test_streaming_response(winning_call, client):
async def test_streaming_response(winning_call):
model_name = "openai/whisper-small"
server_args = ["--enforce-eager"]
transcription = ""
with RemoteOpenAIServer(model_name, server_args) as remote_server:
client = remote_server.get_async_client()
res_no_stream = await client.audio.transcriptions.create(
model=MODEL_NAME,
model=model_name,
file=winning_call,
response_format="json",
language="en",
temperature=0.0)
res = await client.audio.transcriptions.create(model=MODEL_NAME,
# Unfortunately this only works when the openai client is patched
# to use streaming mode, not exposed in the transcription api.
original_post = AsyncAPIClient.post
async def post_with_stream(*args, **kwargs):
kwargs['stream'] = True
return await original_post(*args, **kwargs)
with patch.object(AsyncAPIClient, "post", new=post_with_stream):
client = remote_server.get_async_client()
res = await client.audio.transcriptions.create(
model=model_name,
file=winning_call,
language="en",
temperature=0.0,
stream=True,
extra_body=dict(stream=True),
timeout=30)
# Reconstruct from chunks and validate
async for chunk in res:
# just a chunk
text = chunk.choices[0]['delta']['content']
transcription += text
@ -164,14 +186,25 @@ async def test_streaming_response(winning_call, client):
@pytest.mark.asyncio
async def test_stream_options(winning_call, client):
async def test_stream_options(winning_call):
model_name = "openai/whisper-small"
server_args = ["--enforce-eager"]
with RemoteOpenAIServer(model_name, server_args) as remote_server:
original_post = AsyncAPIClient.post
async def post_with_stream(*args, **kwargs):
kwargs['stream'] = True
return await original_post(*args, **kwargs)
with patch.object(AsyncAPIClient, "post", new=post_with_stream):
client = remote_server.get_async_client()
res = await client.audio.transcriptions.create(
model=MODEL_NAME,
model=model_name,
file=winning_call,
language="en",
temperature=0.0,
stream=True,
extra_body=dict(stream_include_usage=True,
extra_body=dict(stream=True,
stream_include_usage=True,
stream_continuous_usage_stats=True),
timeout=30)
final = False
@ -186,13 +219,17 @@ async def test_stream_options(winning_call, client):
@pytest.mark.asyncio
async def test_sampling_params(mary_had_lamb, client):
async def test_sampling_params(mary_had_lamb):
"""
Compare sampling with params and greedy sampling to assert results
are different when extreme sampling parameters values are picked.
"""
model_name = "openai/whisper-small"
server_args = ["--enforce-eager"]
with RemoteOpenAIServer(model_name, server_args) as remote_server:
client = remote_server.get_async_client()
transcription = await client.audio.transcriptions.create(
model=MODEL_NAME,
model=model_name,
file=mary_had_lamb,
language="en",
temperature=0.8,
@ -205,7 +242,7 @@ async def test_sampling_params(mary_had_lamb, client):
presence_penalty=2.0))
greedy_transcription = await client.audio.transcriptions.create(
model=MODEL_NAME,
model=model_name,
file=mary_had_lamb,
language="en",
temperature=0.0,
@ -215,12 +252,16 @@ async def test_sampling_params(mary_had_lamb, client):
@pytest.mark.asyncio
async def test_audio_prompt(mary_had_lamb, client):
async def test_audio_prompt(mary_had_lamb):
model_name = "openai/whisper-large-v3-turbo"
server_args = ["--enforce-eager"]
prompt = "This is a speech, recorded in a phonograph."
with RemoteOpenAIServer(model_name, server_args) as remote_server:
#Prompts should not omit the part of original prompt while transcribing.
prefix = "The first words I spoke in the original phonograph"
client = remote_server.get_async_client()
transcription = await client.audio.transcriptions.create(
model=MODEL_NAME,
model=model_name,
file=mary_had_lamb,
language="en",
response_format="text",
@ -228,7 +269,7 @@ async def test_audio_prompt(mary_had_lamb, client):
out = json.loads(transcription)['text']
assert prefix in out
transcription_wprompt = await client.audio.transcriptions.create(
model=MODEL_NAME,
model=model_name,
file=mary_had_lamb,
language="en",
response_format="text",

View File

@ -4,21 +4,18 @@
import io
# imports for guided decoding tests
import json
from unittest.mock import patch
import httpx
import librosa
import numpy as np
import pytest
import pytest_asyncio
import soundfile as sf
from openai._base_client import AsyncAPIClient
from vllm.assets.audio import AudioAsset
from ...utils import RemoteOpenAIServer
MODEL_NAME = "openai/whisper-small"
SERVER_ARGS = ["--enforce-eager"]
@pytest.fixture
def foscolo():
@ -28,37 +25,15 @@ def foscolo():
yield f
@pytest.fixture(scope="module")
def server():
with RemoteOpenAIServer(MODEL_NAME, SERVER_ARGS) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.mark.asyncio
async def test_non_asr_model(foscolo):
# text to text model
model_name = "JackFram/llama-68m"
with RemoteOpenAIServer(model_name, SERVER_ARGS) as remote_server:
client = remote_server.get_async_client()
res = await client.audio.translations.create(model=model_name,
file=foscolo,
temperature=0.0)
err = res.error
assert err["code"] == 400 and not res.text
assert err["message"] == "The model does not support Translations API"
# NOTE: (NickLucche) the large-v3-turbo model was not trained on translation!
@pytest.mark.asyncio
async def test_basic_audio(foscolo, client):
async def test_basic_audio(foscolo):
model_name = "openai/whisper-small"
server_args = ["--enforce-eager"]
with RemoteOpenAIServer(model_name, server_args) as remote_server:
client = remote_server.get_async_client()
translation = await client.audio.translations.create(
model=MODEL_NAME,
model=model_name,
file=foscolo,
response_format="text",
# TODO remove once language detection is implemented
@ -69,11 +44,15 @@ async def test_basic_audio(foscolo, client):
@pytest.mark.asyncio
async def test_audio_prompt(foscolo, client):
async def test_audio_prompt(foscolo):
model_name = "openai/whisper-small"
server_args = ["--enforce-eager"]
# Condition whisper on starting text
prompt = "Nor have I ever"
with RemoteOpenAIServer(model_name, server_args) as remote_server:
client = remote_server.get_async_client()
transcription = await client.audio.translations.create(
model=MODEL_NAME,
model=model_name,
file=foscolo,
prompt=prompt,
extra_body=dict(language="it"),
@ -85,86 +64,95 @@ async def test_audio_prompt(foscolo, client):
@pytest.mark.asyncio
async def test_streaming_response(foscolo, client, server):
async def test_non_asr_model(foscolo):
# text to text model
model_name = "JackFram/llama-68m"
server_args = ["--enforce-eager"]
with RemoteOpenAIServer(model_name, server_args) as remote_server:
client = remote_server.get_async_client()
res = await client.audio.translations.create(model=model_name,
file=foscolo,
temperature=0.0)
err = res.error
assert err["code"] == 400 and not res.text
assert err["message"] == "The model does not support Translations API"
@pytest.mark.asyncio
async def test_streaming_response(foscolo):
model_name = "openai/whisper-small"
server_args = ["--enforce-eager"]
translation = ""
with RemoteOpenAIServer(model_name, server_args) as remote_server:
client = remote_server.get_async_client()
res_no_stream = await client.audio.translations.create(
model=MODEL_NAME,
model=model_name,
file=foscolo,
response_format="json",
extra_body=dict(language="it"),
temperature=0.0)
# Stream via HTTPX since OpenAI translation client doesn't expose streaming
url = server.url_for("v1/audio/translations")
headers = {"Authorization": f"Bearer {server.DUMMY_API_KEY}"}
data = {
"model": MODEL_NAME,
"language": "it",
"stream": True,
"temperature": 0.0,
}
foscolo.seek(0)
async with httpx.AsyncClient() as http_client:
files = {"file": foscolo}
async with http_client.stream("POST",
url,
headers=headers,
data=data,
files=files) as response:
async for line in response.aiter_lines():
if not line:
continue
if line.startswith("data: "):
line = line[len("data: "):]
if line.strip() == "[DONE]":
break
chunk = json.loads(line)
text = chunk["choices"][0].get("delta", {}).get("content")
translation += text or ""
# Unfortunately this only works when the openai client is patched
# to use streaming mode, not exposed in the translation api.
original_post = AsyncAPIClient.post
async def post_with_stream(*args, **kwargs):
kwargs['stream'] = True
return await original_post(*args, **kwargs)
with patch.object(AsyncAPIClient, "post", new=post_with_stream):
client = remote_server.get_async_client()
res = await client.audio.translations.create(model=model_name,
file=foscolo,
temperature=0.0,
extra_body=dict(
stream=True,
language="it"))
# Reconstruct from chunks and validate
async for chunk in res:
# just a chunk
text = chunk.choices[0]['delta']['content']
translation += text
assert translation == res_no_stream.text
@pytest.mark.asyncio
async def test_stream_options(foscolo, client, server):
url = server.url_for("v1/audio/translations")
headers = {"Authorization": f"Bearer {server.DUMMY_API_KEY}"}
data = {
"model": MODEL_NAME,
"language": "it",
"stream": True,
"stream_include_usage": True,
"stream_continuous_usage_stats": True,
"temperature": 0.0,
}
foscolo.seek(0)
async def test_stream_options(foscolo):
model_name = "openai/whisper-small"
server_args = ["--enforce-eager"]
with RemoteOpenAIServer(model_name, server_args) as remote_server:
original_post = AsyncAPIClient.post
async def post_with_stream(*args, **kwargs):
kwargs['stream'] = True
return await original_post(*args, **kwargs)
with patch.object(AsyncAPIClient, "post", new=post_with_stream):
client = remote_server.get_async_client()
res = await client.audio.translations.create(
model=model_name,
file=foscolo,
temperature=0.0,
extra_body=dict(language="it",
stream=True,
stream_include_usage=True,
stream_continuous_usage_stats=True))
final = False
continuous = True
async with httpx.AsyncClient() as http_client:
files = {"file": foscolo}
async with http_client.stream("POST",
url,
headers=headers,
data=data,
files=files) as response:
async for line in response.aiter_lines():
if not line:
continue
if line.startswith("data: "):
line = line[len("data: "):]
if line.strip() == "[DONE]":
break
chunk = json.loads(line)
choices = chunk.get("choices", [])
if not choices:
async for chunk in res:
if not len(chunk.choices):
# final usage sent
final = True
else:
continuous = continuous and ("usage" in chunk)
continuous = continuous and hasattr(chunk, 'usage')
assert final and continuous
@pytest.mark.asyncio
async def test_long_audio_request(foscolo, client):
async def test_long_audio_request(foscolo):
model_name = "openai/whisper-small"
server_args = ["--enforce-eager"]
foscolo.seek(0)
audio, sr = librosa.load(foscolo)
repeated_audio = np.tile(audio, 2)
@ -172,8 +160,10 @@ async def test_long_audio_request(foscolo, client):
buffer = io.BytesIO()
sf.write(buffer, repeated_audio, sr, format='WAV')
buffer.seek(0)
with RemoteOpenAIServer(model_name, server_args) as remote_server:
client = remote_server.get_async_client()
translation = await client.audio.translations.create(
model=MODEL_NAME,
model=model_name,
file=buffer,
extra_body=dict(language="it"),
response_format="text",

View File

@ -1,127 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
import pytest
from ....utils import RemoteOpenAIServer
MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct"
LORA_MODEL = "minpeter/LoRA-Llama-3.2-1B-tool-vllm-ci"
SERVER_ARGS = [
"--enforce-eager",
"--enable-auto-tool-choice",
"--tool-call-parser",
"hermes",
"--enable-lora",
"--lora-modules",
f"{LORA_MODEL}={LORA_MODEL}",
]
TOOLS = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description":
"The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
},
},
"required": ["location"],
},
},
}]
MESSAGES = [{"role": "user", "content": "What's the weather like in Boston?"}]
@pytest.mark.asyncio
async def test_non_streaming_tool_call():
"""Test tool call in non-streaming mode."""
with RemoteOpenAIServer(MODEL_NAME, SERVER_ARGS) as server:
client = server.get_async_client()
response = await client.chat.completions.create(
model=LORA_MODEL,
messages=MESSAGES,
tools=TOOLS,
tool_choice="auto",
temperature=0.0,
)
assert response.choices
choice = response.choices[0]
message = choice.message
assert choice.finish_reason == "tool_calls"
assert message.tool_calls is not None
tool_call = message.tool_calls[0]
assert tool_call.type == "function"
assert tool_call.function.name == "get_current_weather"
arguments = json.loads(tool_call.function.arguments)
assert "location" in arguments
assert "Boston" in arguments["location"]
print("\n[Non-Streaming Test Passed]")
print(f"Tool Call: {tool_call.function.name}")
print(f"Arguments: {arguments}")
@pytest.mark.asyncio
async def test_streaming_tool_call():
"""Test tool call in streaming mode."""
with RemoteOpenAIServer(MODEL_NAME, SERVER_ARGS) as server:
client = server.get_async_client()
stream = await client.chat.completions.create(
model=LORA_MODEL,
messages=MESSAGES,
tools=TOOLS,
tool_choice="auto",
temperature=0.0,
stream=True,
)
tool_call_chunks = {}
async for chunk in stream:
if not chunk.choices:
continue
delta = chunk.choices[0].delta
if not delta or not delta.tool_calls:
continue
for tool_chunk in delta.tool_calls:
index = tool_chunk.index
if index not in tool_call_chunks:
tool_call_chunks[index] = {"name": "", "arguments": ""}
if tool_chunk.function.name:
tool_call_chunks[index]["name"] += tool_chunk.function.name
if tool_chunk.function.arguments:
tool_call_chunks[index][
"arguments"] += tool_chunk.function.arguments
assert len(tool_call_chunks) == 1
reconstructed_tool_call = tool_call_chunks[0]
assert reconstructed_tool_call["name"] == "get_current_weather"
arguments = json.loads(reconstructed_tool_call["arguments"])
assert "location" in arguments
assert "Boston" in arguments["location"]
print("\n[Streaming Test Passed]")
print(f"Reconstructed Tool Call: {reconstructed_tool_call['name']}")
print(f"Reconstructed Arguments: {arguments}")

Some files were not shown because too many files have changed in this diff Show More