Compare commits

..

542 Commits

Author SHA1 Message Date
f4331d1b8b updated
Signed-off-by: Robert Shaw <robshaw@redhat.com>
2025-09-09 03:02:08 +00:00
7742eb6c59 updated
Signed-off-by: Robert Shaw <robshaw@redhat.com>
2025-09-09 02:59:39 +00:00
22a0070530 Bump actions/setup-python from 5.4.0 to 6.0.0 (#24414)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-09-09 02:54:58 +00:00
170129eb28 [gpt-oss] Harmony changes with container tool support (#23386)
Signed-off-by: zhiweiz <zhiweiz@fb.com>
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Signed-off-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
Co-authored-by: zhiweiz <zhiweiz@fb.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
2025-09-08 19:03:50 -07:00
955c624915 [Bugfix][Wide EP] Fix redundant work when using DeepEP, TP Attn, and EP MoE (#24134)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-08 19:01:51 -07:00
4f87abdcc6 Update reviewers for modelopt related files (#24468) 2025-09-09 01:53:13 +00:00
6910b56da2 [CI] Add nightly multiarch manifests to dockerhub (#24102)
Signed-off-by: Sahithi Chigurupati <chigurupati.sahithi@gmail.com>
Signed-off-by: Simon Mo <simon.mo@hey.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-09 01:18:09 +00:00
e10fef0883 [Hardware][IBM Z] Fix Outlines Core issue for s390x (#24034)
Signed-off-by: Rehan Khan <Rehan.Khan7@ibm.com>
2025-09-08 16:50:34 -07:00
e680723eba [Bugfix] Disable the statslogger if the api_server_count is greater than 1 (#22227)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-09-08 15:28:03 -07:00
620db1fc58 [Attention] FlashAttention MLA cudagraph support (#23958)
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
2025-09-08 22:05:26 +00:00
41183c1fe0 [Spec Decode] Fix offline spec_decode.py (#24257)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-08 20:44:13 +00:00
43d9ad03ba [Model loader]: support multi-thread model weight loading (#23928)
Signed-off-by: Yang Kaiyong <yangkaiyong.yky@antgroup.com>
Signed-off-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-08 18:49:39 +00:00
7be141b2c5 [CI] Enable encoder model compilation test (#24442)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-08 11:48:06 -07:00
8d7f39b48c [Model] Remove quantized mixtral (#24437)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-08 11:02:14 -07:00
cd08636926 [Spec Decode][Benchmark] Add Blitzedit dataset (#23605)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-08 10:32:52 -07:00
3feeeb9fea [Spec Decode][Benchmark] Add Spec Bench Dataset for benchmarking (#23563)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
2025-09-08 10:32:42 -07:00
6f4a82f8b5 [Model] Enable BNB support for qwen2_5_omni_thinker (#24420)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-08 09:37:08 -07:00
c44797a4d6 [Docs]add eplb_config param use docs (#24213)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-09-08 09:36:57 -07:00
55be93baf5 [Doc]: fix 2 hyperlinks leading to Ray site after they changed Ray's doc structure (#24438)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-08 09:36:54 -07:00
717fc00e98 [Docs] Move feature compatibility tables to README (#24431)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-08 06:45:14 -07:00
01dfb5e982 [Frontend] User-provided uuids for medias in chat. (RFC #22044) (#23449)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: Roger Wang <hey@rogerw.me>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.me>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-09-08 06:42:20 -07:00
03dd652c16 Move KVEventsConfig from config/__init__.py to config/kv_events.py (#24433)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-08 06:41:27 -07:00
9cd76b71ab [Misc] Terratorch related fixes (#24337)
Signed-off-by: Christian Pinto <christian.pinto@ibm.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-08 06:40:26 -07:00
e041314184 [Bugfix] Fix mamba2 prefill chunking (#23279)
Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com>
Signed-off-by: tomeras91 <57313761+tomeras91@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-08 11:42:41 +00:00
5e537f45b4 [Bugfix] Fix get_quant_config when using modelscope (#24421)
Signed-off-by: wangli <wangli858794774@gmail.com>
2025-09-08 11:03:02 +00:00
c2a8b08fcd [Doc] Fix issues in integrations/llamastack.md (#24428)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-08 02:28:32 -07:00
f4962a6d55 [Doc]: fix typos in Python comments (#24417)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-08 00:22:16 -07:00
2f0b833a05 [Docs] Fix a tip indentation and typo (#24419)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-08 00:19:40 -07:00
425b04b8f4 [gpt-oss][Responses API] Fix the function call id format (#24409)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-08 06:49:52 +00:00
60f0843ef8 [Model] Remove unnecessary CUDA sync of Qwen2VL image and video preprocess (#24334)
Signed-off-by: Win <chatcharinsang@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-07 23:11:12 -07:00
8a46602606 [Model] Remove unnecessary CUDA sync of GLM-4.1V image and video preprocess (#24332)
Signed-off-by: Win <chatcharinsang@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-07 23:10:54 -07:00
61aa4b2901 [P/D] Add a shutdown method to the Connector API (#22699)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-07 23:07:00 -07:00
8c892b1831 [Doc] Fix UTF-8 encoding issues in documentation generation on Windows (#24361)
Signed-off-by: alekramelaheehridoy <aliqramalaheehridoy@gmail.com>
Signed-off-by: alekramelaheehridoy <alekramelaheehridoy@gmail.com>
Co-authored-by: alekramelaheehridoy <alekramelaheehridoy@gmail.com>
2025-09-07 22:33:52 -07:00
3bca396f79 [CI/Build] Fix local image inputs in test_pixtral.py (#24401)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-08 03:31:35 +00:00
3a3e91bdfe [CI/Build] Disable flaky test_structured_output tests (#24404)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-09-08 02:51:59 +00:00
b3d7e3c845 [Sampler] Support returning all prompt logprobs (#23868)
Signed-off-by: Xingyu Liu <charlotteliu12x@gmail.com>
Co-authored-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-07 19:34:31 -07:00
67841317d1 [xpu] upgrade ipex/python3.12 for xpu (#23830)
Signed-off-by: Yan Ma <yan.ma@intel.com>
2025-09-08 02:07:16 +00:00
86173ad593 [Kernel] Support decode context parallelism on Blackwell with CUTLASS MLA (#24385)
Signed-off-by: Ming Yang <minos.future@gmail.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-09-08 09:27:12 +08:00
795b6951cd Add @luccafong to codeowner for spec decode (#24397)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-09-08 08:30:27 +08:00
2e5d21378d Skip MM Encoder for non-first PP ranks (#24387)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-07 09:38:35 -07:00
0661cb9df3 Add renderer-based prompt processing for embedding and classification endpoints (#24356)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-09-07 08:26:48 +00:00
105d3d62ef [TPU] Remove TopKTopPSampler dependency for TPU sampler (#24391)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-07 01:12:36 -07:00
62f66be1f7 [Bugfix] Fix Qwen3-coder moe tuned config (#24072)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-07 05:19:46 +00:00
81c53ef55c [Misc] collect flashinfer version in collect_env.py (#24378)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-07 03:30:41 +00:00
75334956c2 QWEN3 Thinking Fused MoE kernels Optimization configs (#24330)
Signed-off-by: Saman Keon <samanamp@outlook.com>
2025-09-07 03:18:54 +00:00
77aec83b8c [Benchmark] add benchmark for custom activation op (#23908)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-06 20:12:05 -07:00
e67597545b [CI][Fix] deterministic seed for flaky CI runs on structured outputs (#24380)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-09-07 11:10:40 +08:00
37a6fa95fd Migrate Qwen2 inputs to TensorSchema (#23475)
Signed-off-by: Benji Beck <benjibeck@meta.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-06 20:07:31 -07:00
558f0907dc [attention][DCP] use AttentionImpl.need_to_return_lse_for_decode (#24372)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-07 01:18:59 +00:00
4172235ab7 [V0 deprecation] Deprecate V0 Neuron backend (#21159)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-06 16:15:18 -07:00
848562bd49 break execute_model in gpu_model_runner into sub-functions for custom scopes (#24265)
Co-authored-by: Bangsheng Tang <bangsheng@meta.com>
2025-09-06 14:02:47 -07:00
e68dc2f014 [Bugfix] Fix unstable silu_mul+nvfp4 quant fusion test (#24370)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-09-06 20:39:34 +00:00
a3645ed94d [Frontend][Responses API] Support reporting tool output tokens and fix reasoning token count (#24285)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-06 13:27:15 -07:00
fb691ee4e7 [Fix] [gpt-oss] fix non-tool calling path for chat completion (#24324) 2025-09-06 19:10:32 +00:00
6024d115cd Lora bias(enable_lora_bias) deprecate warning (#24339)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-07 00:42:19 +08:00
7555d6b34a [Bugfix] Fix test_mixtral_moe (#24371) 2025-09-06 09:32:03 -07:00
00a4e56d8d [Bugfix] Fix broken deepseek fp8 TP weights loading (#24367)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-06 09:23:12 -07:00
0eadaeff7e [Bugfix] Avoid uninitialized usage of azp_val when AZP is false. (#24335)
Signed-off-by: Mohan Kumar Kumar <mohan.cbein@gmail.com>
Signed-off-by: mohankku <mohan.cbein@gmail.com>
2025-09-06 08:17:03 -07:00
0077c8634e Add @benchislett to codeowner for spec decode and structured outputs (#24362)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
2025-09-06 22:03:35 +08:00
b121ca22ad [CI] Disable flaky structured output test from CI (#24366)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-06 13:31:56 +00:00
eddaafc1c7 [Multimodal] Improve max video embedding length estimation in V1 (#24312)
Signed-off-by: Roger Wang <hey@rogerw.me>
Co-authored-by: Roger Wang <hey@rogerw.me>
2025-09-06 02:33:19 -07:00
305a1cc0d2 refactor: Turn GPUModelRunner.inputs_embeds to a CpuGpuBuffer (#24345)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-05 23:01:23 -07:00
6d6c6b05d3 [New Model]: google/embeddinggemma-300m (#24318)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-05 22:58:36 -07:00
53b19ccdd5 [Core] Allow disabling TP sharding for parallel Linear layer (#23024)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-05 22:53:58 -07:00
6432739ef1 [Bugfix] Catch and log invalid token ids in detokenizer (#24351)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-05 22:30:22 -07:00
ac201a0eaf [Feature] Support Decode Context Parallel (DCP) for MLA (#23734)
Signed-off-by: hongchao <hongchao@msh.team>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: hongchao <hongchao@msh.team>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-09-06 13:24:05 +08:00
3c529fc994 [KV Sharing] Raise error if using eagle with fast prefill (#24350)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-09-05 20:22:40 -07:00
35bf193864 [Doc]: fix typos in Python comments (#24294)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-05 19:41:12 -07:00
35efa70297 Add @22quinn as code reviewer for RL related components (#24346) 2025-09-06 01:56:15 +00:00
cee182b297 [Perf][V1] Fully overlap model execution (#23569)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
2025-09-05 18:20:17 -07:00
c954c6629c [CI] Add timeouts to tests (#24260)
Signed-off-by: Rafael Vasquez <rafvasq21@gmail.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-09-05 17:26:22 -07:00
9dfbeb41e5 [RFC] allow cancelation after shutdown in blocking collective_rpc (#23390)
Signed-off-by: Shiyan Deng <dsy842974287@meta.com>
2025-09-05 14:14:18 -07:00
eedb2a2a10 [Bugfix] Fix silu_mul+quant fusion test (#24341)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-09-05 20:13:42 +00:00
23a6c5280e [gpt-oss][Bugfix]Fix streamableparser for missing handling of certain token_ids (#24306)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-05 10:26:00 -07:00
7812bcf278 [docs] add shenzhen meetup (#24326)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-05 22:48:42 +08:00
006e7a34ae Adding int4 and int8 models for CPU benchmarking (#23709)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2025-09-05 20:08:50 +08:00
e599e2c65e [XPU][P/D] Add XPU support in NixlConnector (#22436)
Signed-off-by: zhenwei <zhenwei.liu@intel.com>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-04 21:03:12 -07:00
c29fb540ff [gpt-oss] tool parser supports for /chat/completions [1/n] (#22386)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-04 20:39:12 -07:00
65e038931d [Frontend] Skip unnecessary detokenization when token_id is requested (#24236)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-04 23:04:12 +00:00
886ccbe5ba [CI/Build] Reduce the number of redundant cases to test for LoRA (#24276)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-09-04 21:58:44 +00:00
adc3ddb430 [Bugfix][Misc] Fix silu_and_mul_nvfp4_quant issue and extract common utils for nvfp4 kernel source files (#23727)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-04 14:25:45 -07:00
60b755cbcb [Misc] Have AsyncLLM custom_stat_loggers extend default logger list (#20952)
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
Signed-off-by: Seiji Eicher <58963096+eicherseiji@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-09-04 14:25:30 -07:00
482e52f56c QWEN3 Coder Fused MoE kernels Optimization configs (#24266)
Signed-off-by: Saman Keon <samanamp@outlook.com>
2025-09-04 20:33:43 +00:00
78336a0c3e Upgrade FlashInfer to v0.3.0 (#24086)
Signed-off-by: Po-Han Huang <pohanh@nvidia.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-04 09:49:20 -07:00
94866d7c93 [Misc] Slight improve deepgemm print (#24085)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-04 16:06:51 +00:00
83609ca91d [Doc]: fix typos in Python comments (#24173)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-04 08:52:17 -07:00
e41a0fa377 [Perf] Freeze core engine proc heap after init (#24008)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-04 22:55:23 +08:00
37241077d5 [Misc] Removed force_fp8_e4m3fnuz from FP8LinearOp (#23725)
Signed-off-by: Julien Lin <jullin@nvidia.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-04 09:25:40 -04:00
c9f7081f9c [LoRA]: Add lora support to qwen-2.5-omni (#24231) 2025-09-04 05:50:50 -07:00
16ded21eeb [XPU] support Triton Attention backend on Intel GPU (#24149)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-04 20:41:08 +08:00
2b30afa442 Use hidden_size_per_head as head_size fallback (#24221)
Signed-off-by: nopperl <54780682+nopperl@users.noreply.github.com>
2025-09-04 12:59:16 +01:00
eafa8dcde6 [Model] Add pp support for hunyuan (#24212)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-04 03:58:26 -07:00
6c7af8110a [Doc] Update vLLM Singapore Meetup info (#24234)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-09-04 02:58:18 -07:00
8f423e5f43 [Feature][Response API] Add streaming support for non-harmony (#23741)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-09-04 17:49:06 +08:00
369a079568 [Hardware][Apple-CPU] Disable OneDNN build for Apple Silicon (#24200)
Signed-off-by: ignaciosica <mignacio.sica@gmail.com>
Co-authored-by: Li, Jiang <jiang1.li@intel.com>
2025-09-04 02:48:25 -07:00
402759d472 [Attention] FlashAttn MLA (#14258)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
Co-authored-by: Matthew Bonanni <mbonanni001@gmail.com>
Co-authored-by: Matthew Bonanni <mbonanni@redhat.com>
2025-09-04 02:47:59 -07:00
2c301ee2eb [Bugfix] Fix Incremental Detokenization with tokenizers == 0.22.0 (#24159)
Signed-off-by: Fanli Lin <fanli.lin@intel.com>
Signed-off-by: Fanli Lin <fanli0116@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-04 02:47:08 -07:00
whx
3efb9f4d95 [Attention][Platform] Refactor MLA to support Custom Op (#23332)
Signed-off-by: whx-sjtu <2952154980@qq.com>
2025-09-04 02:46:37 -07:00
04f3c35cff Improve flexibility of auto_tune.sh execution. (#23766)
Signed-off-by: Anthony Su <50185138+anthonsu@users.noreply.github.com>
Signed-off-by: anthonsu <50185138+anthonsu@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-04 09:41:41 +00:00
51d5e9be7d [Core][Model] Terratorch backend integration (#23513)
Signed-off-by: Michele Gazzetti <michele.gazzetti1@ibm.com>
Signed-off-by: Christian Pinto <christian.pinto@ibm.com>
Co-authored-by: Christian Pinto <christian.pinto@ibm.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-04 00:22:41 -07:00
e7fc70016f [Model] Add MiDashengLM model support (#23652)
Signed-off-by: chenbing8 <chenbing8@xiaomi.com>
Signed-off-by: bingchen-mi <chenbing8@xiaomi.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-04 00:08:09 -07:00
12e1e63cc5 [Misc] Enhance output readability of helper script (#24214)
Signed-off-by: Weida Hong <wdhongtw@google.com>
2025-09-04 06:38:26 +00:00
57b1ce94f7 [CPU] Refactor CPU unquantized linear (#24150)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-04 14:28:45 +08:00
cb55ad86fe Migrate ultravox inputs to TensorSchema (#23503)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-09-04 06:09:11 +00:00
712b273f65 [Refactor] Introduce basic Renderer for completion-style request (#24010)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-09-04 05:21:12 +00:00
e919d6f549 [Kernel][Bugfix] Fix grouped topk cu (#24146)
Signed-off-by: mayuyuace <qiming1.zhang@intel.com>
2025-09-04 12:37:37 +08:00
a38f8bd54c [Feature][Responses API]Support MCP tools with streaming mode + background mode (#23927)
Signed-off-by: wuhang <wuhang6@huawei.com>
2025-09-04 04:05:10 +00:00
b5ee1e3261 Remove deprecated PyNcclConnector (#24151)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
2025-09-03 22:49:16 +00:00
36c260dad6 [Feature][gpt-oss] Add support for num_cached_tokens and num_reasoning_tokens tracking (#23460)
Signed-off-by: George Nagy II <george.nagy0969@gmail.com>
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-09-03 21:08:47 +00:00
a43a3f1770 [Bugfix][DP] DP distribution does not require ray[default] (#23822)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-09-03 13:21:36 -07:00
6adaed42f4 [Feature][P/D]: Optimize NIXL Connector xfer Launch (#23887)
Signed-off-by: ycyaw66 <497410282@qq.com>
Co-authored-by: ycyaw66 <497410282@qq.com>
2025-09-03 19:14:30 +00:00
a742322092 [Attention] Blackwell FP8 MLA support with CUTLASS_MLA backend (#23289)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-09-03 14:05:24 -04:00
731a6940e3 Migrate whisper inputs to TensorSchema (#23505)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-09-03 18:04:00 +00:00
e9b92dcd89 [Kernels] Overlap shared experts with send/recv (#23273)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-09-03 12:35:18 -04:00
fa4311d85f [V1] v1 engine + full CUDA graph support for PLaMo2 (#23998)
Signed-off-by: Hemmi Shinichi <shemmi@preferred.jp>
Signed-off-by: nopperl <54780682+nopperl@users.noreply.github.com>
Co-authored-by: Hemmi Shinichi <shemmi@preferred.jp>
Co-authored-by: Thomas Parnell <tom.parnell@gmail.com>
2025-09-03 08:24:02 -07:00
6d80ae83e1 [Bugfix] Fixing division by zero in triton_attn if query_heads/kv_heads > 16 (#23424)
Signed-off-by: Burkhard Ringlein <ngl@zurich.ibm.com>
2025-09-03 15:01:09 +00:00
4ba0c587ba FIX: Add libnuma-dev to Dockerfile for dev stage (#20388)
Signed-off-by: dongbo910220 <1275604947@qq.com>
2025-09-03 07:17:20 -07:00
6997a25ac6 [Model] Remove useless code from MiniMax implementation (#23982)
Signed-off-by: QscQ <qscqesze@gmail.com>
Signed-off-by: qingjun <qingjun@minimaxi.com>
2025-09-03 11:27:04 +00:00
28f350e147 Support add_generation_prompt in embeddings endpoint with chat request (#23931)
Signed-off-by: biba10 <jaksmid@seznam.cz>
2025-09-03 10:47:55 +00:00
51383bd472 [CI] Accelerate mteb test by setting SentenceTransformers mteb score to a constant (#24088)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-03 17:23:56 +08:00
9c99e4871f [Misc] Clean up deadcode for legacy processing pipeline (#24153)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-03 08:34:29 +00:00
70549c1245 [CI/Build] Serve images used by multimodal tests through local HTTP Server (#23907)
Signed-off-by: Divyansh Singhvi <divyanshsinghvi@gmail.com>
Signed-off-by: dsinghvi <divyanshsinghvi@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-09-03 16:13:11 +08:00
f0c503f66e [Nixl] Heterogeneous TP support FlashInfer (#20189)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-03 15:19:54 +08:00
f38035c123 [distributed][rl] remove nccl cumem env var override (#24141)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-03 06:45:25 +00:00
426cc8629f [BugFix] Fix routed_scaling_factor double mul for dots1 and glm4 MoE models (#24132)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-09-03 04:57:59 +00:00
e81d4e69c1 [Misc] Add check for dual_chunk_attention (#24070)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-03 04:19:14 +00:00
02d411fdb2 [Doc]: fix typos in Python comments (#24115)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-02 21:14:07 -07:00
d7e1e59972 [Doc]: fix typos in Python comments (#24093)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-02 21:05:45 -07:00
c4ed78b14f [Compile] Fix Compile Warning for w4a8_mm_entry.cu (#23660)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-02 20:45:52 -07:00
1bd007f234 fix some typos (#24071)
Signed-off-by: co63oc <co63oc@users.noreply.github.com>
2025-09-02 20:44:50 -07:00
136d853e65 [V1] Wrapper which plumbs request-level logits processors into vLLM batch-level logits processing (#23656)
Signed-off-by: Andrew Feldman <afeldman@redhat.com>
2025-09-03 02:52:51 +00:00
e32a0e8678 Upgrade xgrammar to 0.1.23 (#22988)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-03 02:32:59 +00:00
42dc59dbac Update release pipeline post PyTorch 2.8.0 update (#24073)
Signed-off-by: Huy Do <huydhn@gmail.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Huy Do <huydhn@gmail.com>
2025-09-03 10:09:19 +08:00
862f2ef893 [XPU] Fix the bug of LoRA logits on the XPU platform (#24081)
Signed-off-by: chzhang <chaojun.zhang@intel.com>
2025-09-03 08:21:18 +08:00
2fd1a40a54 [CI/Build] Disable SiluMul NVFP4 quant fusion tests (#24121)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-09-02 16:50:28 -07:00
930a24144c [Bug] R1 Accuracy: Fix routed_scaling_factor Double Mul Issue (#24119)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-02 22:22:30 +00:00
457e471971 [AMD][Kernel][Bugfix] Cast offsets tensor bn to tl.int64 to avoid GPU segfault (#23692)
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
2025-09-02 22:13:57 +00:00
d328f7894f [CI] Enable all hf transformers baselines in test_hybrid (#23936)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-09-02 20:15:06 +00:00
98aee612aa [Log] Only Print Profiler Results on Rank 0 (#23370)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-02 18:53:34 +00:00
598bd74cf8 Fix weights loading for Apertus (#24100)
Signed-off-by: Nathan Ranchin <nranchin@student.ethz.ch>
2025-09-02 18:34:28 +00:00
2417798471 [Metrics] Deprecate TPOT in favor of ITL (#24110)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-09-02 18:10:10 +00:00
9480ae24e3 [Bugfix] Fix packed_factor missing attribute error (#23902)
Signed-off-by: Kyuyeun Kim <kyuyeunk@google.com>
2025-09-02 10:56:31 -07:00
f399182e8c Run ruff format on a few files. (#24075)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-09-02 17:55:32 +00:00
1c41310584 [Bugfix] Fix transform_config parsing in Compressed Tensors (#23945)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-09-02 13:54:10 -04:00
c83c4ff815 [Benchmark] Add support for local hf dataset path in benchmark (#23999)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-02 17:49:16 +00:00
0e1759cd54 [docs] add SYS_NICE cap & security-opt for docker/k8s (#24017)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
Signed-off-by: Peter Pan <peter.pan@daocloud.io>
Co-authored-by: Li, Jiang <bigpyj64@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-02 17:27:20 +00:00
e66ed3e675 [CI Failure] Skip failing nvfp4 silu test (#23959)
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-02 13:18:15 -04:00
e0653f6c0b [Model] Classification models support logit_bias / sigmoid_normalize (#24031)
Signed-off-by: wang.yuqi <noooop@126.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-02 16:48:57 +00:00
38ba061f6f [BugFix] Fix EXAONE4 rotary embeddings (#23918)
Signed-off-by: lkm2835 <lkm2835@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-02 14:40:55 +00:00
0a74e9d0f2 [Gemma3n] Fix audio batching (#24052)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-02 22:23:35 +08:00
8bd5844989 correct LWS deployment yaml (#23104)
Signed-off-by: cberge908 <42270330+cberge908@users.noreply.github.com>
2025-09-02 12:04:59 +00:00
ce30dca5c4 [CI]: reduce HTTP calls inside entrypoints openai tests (#23646)
Signed-off-by: AzizCode92 <azizbenothman76@gmail.com>
Signed-off-by: Aziz <azizbenothman76@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-02 10:49:32 +00:00
2f0bab3f26 [Model] Support dp on ViT on GLM-4.5V (#23168)
Signed-off-by: David Chen <530634352@qq.com>
2025-09-02 10:48:18 +00:00
fad73be1a5 [Doc]: fix typos in Python comments (#24077)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-02 02:38:55 -07:00
56d04089ef Migrate Interns1 inputs to TensorSchema (#23510)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-09-02 04:35:45 +00:00
7be0cb8e9e [XPU][Feature] fp8 online quantization support for XPU (#23148)
Signed-off-by: Yan Ma <yan.ma@intel.com>
Co-authored-by: Qiming Zhang <qiming1.zhang@intel.com>
2025-09-02 04:06:53 +00:00
1fa1d6a9a0 Migrate OvisImagePatchInputs to TensorSchema (#22024)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-09-02 12:01:36 +08:00
d59c986444 Remove runtime checks based on pooling params (#24051)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2025-09-02 11:54:37 +08:00
04d0c60770 [Bugfix] Fix the issue that Blip2ForConditionalGeneration' object has… (#24028)
Signed-off-by: Dazhi Jiang <dazhi_jiang@163.com>
2025-09-02 11:54:20 +08:00
2b41cbbf03 [V1][Mamba1] - FP32 SSM Kernel Support (#23506)
Signed-off-by: asafg <39553475+Josephasafg@users.noreply.github.com>
2025-09-01 20:53:00 -07:00
0235103cbb [Doc]: fix typos in Python comments (#24042)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-01 19:07:45 -07:00
a344a5aa0a [bugfix]fix MTP hidden states (#24056)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-09-01 21:09:37 +00:00
5685370271 [Chore][V0 Deprecation] Move LogProb to a separate file (#24055)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-01 12:07:53 -07:00
a0e0efd6bd [Model] Support DP for ViT on Kimi-VL-A3B-Thinking-2506 (#23817)
Signed-off-by: Junhong <liujunhong11@huawei.com>
Signed-off-by: LJH-LBJ <98734602+LJH-LBJ@users.noreply.github.com>
Co-authored-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: LJH-LBJ <98734602+LJH-LBJ@users.noreply.github.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-09-01 16:56:56 +00:00
cf91a89dd2 [docs][misc] IOProcessor plugins fixes (#24046)
Signed-off-by: Christian Pinto <christian.pinto@ibm.com>
2025-09-01 09:17:41 -07:00
39a22dcaac [Misc] Minor code simplification for spec decode (#24053)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-01 08:54:01 -07:00
41c80698b3 Document multi-proc method selection for profiling (#23802)
Signed-off-by: jdebache <jdebache@nvidia.com>
2025-09-01 06:28:26 -07:00
7c8271cd1e [Model]: support KeyeVL-1_5-8B (#23838)
Signed-off-by: wangruitao <wangruitao@kuaishou.com>
Co-authored-by: wangruitao <wangruitao@kuaishou.com>
2025-09-01 03:50:27 -07:00
3e330fcb21 [Doc]: Fix CPU install docs: force torch-backend=cpu to avoid GPU torchvision errors (#24033)
Signed-off-by: Kay Yan <kay.yan@daocloud.io>
2025-09-01 03:34:52 -07:00
d46934b229 [Frontend] Gemma3n audio transcriptions/translations endpoint (#23735)
Signed-off-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-01 18:07:46 +08:00
107284959a [Doc]: fix typos in Python comments (#24026)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-01 09:38:20 +00:00
dc1a53186d [Kernel] Update DeepGEMM to latest commit (#23915)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-01 02:38:04 -07:00
55602bb2e6 [Frontend] Update the warning log when using VLLM_ALLOW_LONG_MAX_MODEL_LEN (#20904)
Signed-off-by: wang.yuqi <noooop@126.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-01 08:50:25 +00:00
d7fbc6ddac [Misc] Enable V1 FP16 inference on pre-Ampere GPUs (#24022)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-01 08:12:22 +00:00
5438967fbc [Misc] add hash_function doc string (#24014)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-08-31 23:11:20 -07:00
422e793fa6 [Bugfix] Add support for <tool_call> format in streaming mode for XLAM Tool Parser (#22769)
Signed-off-by: Devon Peroutky <devon@kindo.ai>
2025-09-01 14:07:54 +08:00
1cb39dbcdd [Misc] IO Processor plugins for pooling models (#22820)
Signed-off-by: Christian Pinto <christian.pinto@ibm.com>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Max de Bayser <mbayser@br.ibm.com>
2025-08-31 23:07:12 -07:00
437c3ce026 Migrate Phi4 inputs to TensorSchema (#23471)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-09-01 14:05:59 +08:00
499b074bfd [Misc] refactor code by import as for torch._inductor.config (#23677)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-09-01 14:05:42 +08:00
ff0e59d83a [CI/Build] Improve Tensor Schema tests speed by avoid engine core initialization (#23357)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-31 22:52:20 -07:00
b55713683c [Misc] Move fast prefill logic to separate method (#24013)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-01 05:40:38 +00:00
acc1a6e10a Fix the bug related to loading GPTP INT3 weights. (#23328)
Signed-off-by: JunHowie <JunHowie@aliyun.com>
Co-authored-by: JunHowie <JunHowie@aliyun.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-01 05:39:57 +00:00
8c742a66d1 [Misc] Avoid redundant copy for encoder-only models (#24012)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-01 04:02:43 +00:00
183a70967a [BUGFIX] GPTQ quantization compatibility for Qwen3 MOE models (AutoGPTQ and AutoRound-GPTQ) (#23994)
Signed-off-by: JartX <sagformas@epdcenter.es>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-01 03:33:40 +00:00
14b4326b94 v1: Support KV events from connectors (#19737)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-01 01:13:21 +00:00
752d2e1c36 [Minor] Fix some random typos in comments (#24009)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-31 16:42:17 -07:00
81eea3d348 vllm fix check on max vocab size (#22471)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Roger Wang <hey@rogerw.me>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.me>
2025-08-31 20:57:05 +08:00
9701352e4b [Doc]: fix typos in Python comments (#24001)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-08-31 08:21:59 +00:00
749be00a98 [Core][Multimodal] Allow passing multi_modal_uuids as multimodal identifiers. (#23394)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-08-30 18:01:22 -07:00
5b8077b8ac Fix wrong truncate_prompt_tokens type hint (#22761)
Signed-off-by: Gabriel Marinho <gmarinho@ibm.com>
Signed-off-by: Gabriel Marinho <104592062+gmarinho2@users.noreply.github.com>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Max de Bayser <mbayser@br.ibm.com>
2025-08-30 20:39:38 +00:00
038e9be4eb [LoRA] Much faster startup when LoRA is enabled (#23777)
Signed-off-by: Andy Lo <andy@mistral.ai>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-30 15:37:39 +00:00
68a349114f [Misc] enhance type hint for rearrange return value (#23519)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-08-30 06:43:33 -07:00
e80bca309e [Refactor] refactor freezing_value/cuda_event initialize outside try finally (#23758)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-08-30 06:42:25 -07:00
fb4983e112 [Misc] add reorder_batch AttentionMetadataBuilder (#23798)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-08-30 06:41:45 -07:00
379ea2823a Add LoRA support for DeepSeek models (V2, V3, R1-0528) (#23971)
Signed-off-by: sadeghja1070 <sadegh.ja1070@gmail.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-30 06:40:02 -07:00
3a6acad431 [Model] Enable encoder DP for MiniCPM-V (#23948)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-08-30 06:31:26 -07:00
5490d633ce [UT] fix unify_kv_cache_configs when kv cache config needs sort (#23843) 2025-08-30 11:22:14 +00:00
628d00cd7b [Bugfix] Fix test_lora_resolvers.py (#23984)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-30 11:16:11 +00:00
4071c76cf3 [V1] [Hybrid] Move MiniMaxLinearAttention into layers/mamba (#23831)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-30 00:16:15 -07:00
f1bddbd852 [Core] Cleanup TPU model runner for MM (#23894)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-30 00:14:58 -07:00
9748c5198b [CI] Fix broken compile tests due to unsupported SiluMul+Nvfp4Quant fusion (#23973)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-08-30 00:14:43 -07:00
ee52a32705 [CI] Move testing image from remote URL to S3 (#23980)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-08-29 21:41:25 -07:00
8fb85b7bb6 Add routed_scaling_factor to MoE grouped topk (#23123)
Signed-off-by: Xin Yang <xyangx@amazon.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-29 21:36:48 -07:00
5b31cb1781 [Bugfix] Fix --config arg expansion called from api_server.py (#23944)
Signed-off-by: Jean-Francois Dube <dubejf+gh@gmail.com>
Co-authored-by: Jean-Francois Dube <dubejf+gh@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-29 21:36:39 -07:00
d660c98c1b [CI] Fix unavailable image remote URL (#23966)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-08-29 15:40:04 -07:00
5674a40366 [Misc] Make download_weights_from_hf more reliable (#23863)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-29 12:37:24 -07:00
8c3e199998 Revert gemma3n fast prefill changes (#23897)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-08-29 12:16:57 -07:00
1c26b42296 [Docs] [V1] [Hybrid] Add new documentation re: contributing mamba-based models (#23824)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-08-29 18:47:58 +00:00
b7adf94c4a Tuned H100/H200 triton fp8 block configs for fused_qkv_a_proj (#23939)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-29 10:28:35 -07:00
4d7fe40fc0 [RL][BugFix] Fix missing tokenizer error for token-in-token-out (#23904)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-08-30 01:09:55 +08:00
0dc9532065 [BUGFIX ] fix undefined silu_and_mul_nvfp4_quant (#23929)
Signed-off-by: hongchao <hongchao@msh.team>
Signed-off-by: Richard Zou <zou3519@gmail.com>
Co-authored-by: hongchao <hongchao@msh.team>
Co-authored-by: Richard Zou <zou3519@gmail.com>
Co-authored-by: Richard Zou <zou3519@users.noreply.github.com>
2025-08-29 09:36:39 -07:00
72a69132dc [CI] Add aiter to matching list of issue auto labeller for rocm tag (#23942)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-08-29 15:29:21 +00:00
d90d8eb674 [BugFix] Async scheduling and PP compatibility with DP (#23770)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-29 08:17:27 -07:00
0a2f4c0793 [Models] Use in-place adds in Idefics2Vision (#23932)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-08-29 07:42:57 -07:00
1cf3753b90 [MODEL] Apertus and XIELU (#23068)
Signed-off-by: EduardDurech <39579228+EduardDurech@users.noreply.github.com>
Co-authored-by: AllenHaoHuang <allenhuangdd@gmail.com>
2025-08-29 20:29:18 +08:00
4f7cde7272 Adds json_count_leaves utility function (#23899)
Signed-off-by: aditchawdhary <aditxy@hotmail.com>
2025-08-29 05:28:13 -07:00
67c14906aa Update PyTorch to 2.8.0 (#20358)
Signed-off-by: Huy Do <huydhn@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-29 18:57:35 +08:00
69f46359dd [Multimodal] Consolidate mm inputs into MultiModalFeatureSpec (#23779)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-08-29 18:36:57 +08:00
d9e00dbd1f [Performance] V1 Classify Models E2E Performance Optimization (#23541)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-08-29 03:12:32 -07:00
ad39106b16 [CPU] Enable data parallel for CPU backend (#23903)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-08-29 02:19:58 -07:00
2554b27baa [V0 Deprecation] Remove pooling model support in V0 (#23434)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-29 00:04:02 -07:00
934bebf192 Better errors for Transformers backend missing features (#23759)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-29 07:01:40 +00:00
885ca6d31d [Misc] Fix warnings for mistral model (#23552)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2025-08-29 06:58:48 +00:00
2d0afcc9dc [mrope][Qwen2-VL] Fix edge case where getting index of image/video token can potentially throw in default vl mrope implementation. (#23895)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-08-28 23:29:13 -07:00
b4f9e9631c [CI/Build] Clean up LoRA test (#23890)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-28 23:28:35 -07:00
05d839c19e Fix(async): Add support for truncate_prompt_tokens in AsyncLLM (#23800) 2025-08-28 22:55:06 -07:00
6597d7a456 [Platform] import activation_quant_fusion for CUDA only (#23882)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-08-28 22:54:16 -07:00
5264015d74 [BugFix][AMD][Deepseek] fix a dtype mismatch error for deepseek running on AMD (#23864)
Signed-off-by: Jinghui Zhang <jinghuizhang0804@gmail.com>
2025-08-28 22:54:12 -07:00
98ac0cb32d [Bugfix] Use ReplicatedLinear for SequenceClassification head (#23836)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-29 04:41:20 +00:00
c8b3b299c9 [tests] Improve speed and reliability of test_transcription_api_correctness (#23854)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-08-29 04:25:33 +00:00
006477e60b [ROCm][Fix] Fix rocm build caused by #23791 (#23847)
Signed-off-by: charlifu <charlifu@amd.com>
2025-08-28 19:52:27 -07:00
de533ab2a1 [Models] Improve iteration over layers (#19497)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-08-29 09:26:34 +08:00
235c9db8a7 [XPU] support data parallel for MoE models on XPU (#22887)
Signed-off-by: chzhang <chaojun.zhang@intel.com>
2025-08-29 09:23:04 +08:00
b668055a11 [V0 Deprecation] Remove V0 Samplers test (#23862) 2025-08-28 18:05:52 -07:00
d3d2aad5a2 [Log] Use Debug Once for DeepGEMM E8M0 When not Enabled (#23858) 2025-08-28 22:18:10 +00:00
cb293f6a79 [V1] Enable prefill optimization for Gemma3n (#22628)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-08-28 14:54:30 -07:00
7ffbf27239 [BugFix][FlashInfer] Fix potential race condition for paged_kv_indptr_cpu (#23737)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-28 14:22:46 -07:00
27e88cee74 chore: build release image by default (#23852)
Signed-off-by: Codex <codex@openai.com>
2025-08-28 13:17:15 -07:00
16a45b3a28 [NVIDIA] Support SiluMul + NVFP4 quant fusion (#23671)
Signed-off-by: jindih <jindih@nvidia.com>
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
Co-authored-by: jindih <jindih@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Luka Govedic <lgovedic@redhat.com>
2025-08-28 19:36:50 +00:00
57d4ede520 [bugfix] [spec-decoding] fix data race in sample_recovered_tokens_kernel (vLLM v1) (#23829)
Signed-off-by: He-Jingkai <he-jingkai@outlook.com>
2025-08-28 19:05:20 +00:00
04d1dd7f4a [ROCm][Aiter] Add triton fp8 bmm kernel for mla (#23264)
Signed-off-by: Divakar Verma <divakar.verma@amd.com>
Co-authored-by: ShaoChunLee <Shao-Chun.Lee@amd.com>
2025-08-28 18:18:08 +00:00
f32a5bc505 Migrate Llama4ImagePatchInputs to TensorSchema (#22021)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-28 17:29:37 +00:00
8805ad9fa9 Add scale_config.yml file for Meta autoscalers for GH Actions (#23840)
Signed-off-by: Jean Schmidt <contato@jschmidt.me>
2025-08-28 09:31:20 -07:00
0583578f42 [ci] breaks down V1 Test into 3 groups of approx 30 minutes runtime (#23757)
Signed-off-by: Jean Schmidt <contato@jschmidt.me>
2025-08-28 08:59:19 -07:00
db74d60490 [Bugfix] Add fake mode around passes (#23349)
Signed-off-by: angelayi <yiangela7@gmail.com>
2025-08-28 11:25:56 -04:00
95089607fa [Model][gpt-oss] Support DP+EP for GPT-OSS with FlashInfer trtllm-gen MoE (#23819)
Signed-off-by: Po-Han Huang <pohanh@nvidia.com>
2025-08-28 06:56:20 -07:00
1f096f9b95 [CI] Fix linting error on main (#23835)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-08-28 06:52:01 -07:00
66548f6603 [Bugfix] Fix benchmark_moe.py for blockwise fp8. (#23823)
Signed-off-by: crischeng <420985011@qq.com>
Co-authored-by: cris <grace@guisenbindeMacBook-Pro.local>
2025-08-28 21:44:09 +08:00
d3da2eea54 [Doc]: fix typos in Python scripts (#23828)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-08-28 05:37:38 -07:00
bfab219648 [Model] [gpt-oss] fix gpt-oss pp support (#23815)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-08-28 05:36:55 -07:00
a3432f18fd [BugFix][Spec Decode] Use float64 for uniform_probs (#23803)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-28 12:26:45 +00:00
67cee40da0 [CI/Build][Bugfix] Fix Qwen VL tests on CPU (#23818)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-08-28 11:57:05 +00:00
d99c3a4f7b [Doc]: fix typos in .md files (including those of #23751) (#23825)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-08-28 04:38:19 -07:00
3462c1c522 [FIXBUG] Add return_success parameter to moe_wna16_weight_loader function (#22797)
Signed-off-by: JartX <sagformas@epdcenter.es>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-28 09:03:22 +00:00
c5d004aaaf [Model] Add PP support and VLM backbone compatability for GPT-OSS (#23680)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-28 16:03:28 +08:00
11a7fafaa8 [New Model]: Support GteNewModelForSequenceClassification (#23524)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-08-28 15:36:42 +08:00
186aced5ff [Kernel] cuda kernels for upcoming decode context parallel feature (#23791)
Co-authored-by: hongchao <hongchao@msh.team>
2025-08-28 15:29:11 +08:00
daa1273b14 [Bugfix] when set offline model running error (#23711)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-08-28 07:27:45 +00:00
c07a73317d [CI] enable idefics3 and fuyu-8b test in multimodal test (#23790)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-08-28 14:51:24 +08:00
22feac8e95 [Transform] [Quantization] Add transforms to compressed tensors (#22486) 2025-08-28 02:43:48 -04:00
c8851a4723 Add deprecation warning for lora_extra_vocab_size (#23635)
Signed-off-by: Jinheng Li <ahengljh@gmail.com>
2025-08-27 22:34:29 -07:00
f48a9af892 [CI] make all multi-gpu weight loading tests run nightly (#23792)
Signed-off-by: Alex Yun <alexyun04@gmail.com>
2025-08-27 21:27:36 -07:00
a11adafdca Gracefully handle edge cases in harmony utils (#23155)
Signed-off-by: Jan Kessler <jakessle@uni-mainz.de>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-27 20:14:00 -07:00
a781e84ec2 [Perf] Tune configs for triton block fp8 gemm H100/H200 (#23748)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-28 11:12:53 +08:00
1b7b161a09 [Feature] models: pass layer prefix to replace_linear_class for per-layer quantization routing. Addresses #23239 (#23556)
Signed-off-by: Shrey Gupta <shreyg1303@gmail.com>
2025-08-27 20:12:44 -07:00
a69693e38f Migrate Qwen inputs to TensorSchema (#23473)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-28 10:43:26 +08:00
5da4f5d857 [Bugfix] Fix for V1 priority scheduling crashes at preemption (#23713)
Signed-off-by: Hanchenli <lihanc2002@gmail.com>
2025-08-28 00:44:52 +00:00
321938e9ac [Feature] Add VLLM_DISABLE_PAD_FOR_CUDAGRAPH to Avoid Hang Issue (#23595)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-27 21:52:24 +00:00
f9ca2b40a0 [Bugfix] Fix Marlin NVFP4 for modelopt (#23659)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-27 17:48:16 -04:00
082cc07ef8 DP/EP Support for gpt-oss with deepep-ht comm kernel on SM100 (#23608) 2025-08-27 17:33:21 -04:00
853c371fc3 [V1][Mamba] - Enable V1 by default for Mamba Models (#23650)
Signed-off-by: asafg <39553475+Josephasafg@users.noreply.github.com>
2025-08-27 20:53:30 +00:00
8bf6266a17 [Multimodal] Generate mm_hash based on request metadata when caching is turned off (#23690)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-08-27 20:24:31 +00:00
0585a9e73c Disable torch.compile for dynamic rope models in Transformers backend (#23738)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-27 19:03:05 +00:00
3c0ef769ba ci: Add arm64 docker build to release pipeline (#23210)
Signed-off-by: Eli Uriegas <eliuriegas@meta.com>
Signed-off-by: Eli Uriegas <1700823+seemethere@users.noreply.github.com>
2025-08-27 10:41:48 -07:00
4e4d017b6f [Docs] Fix warnings in mkdocs build (continued) (#23743)
Signed-off-by: Zerohertz <ohg3417@gmail.com>
Signed-off-by: Hyogeun Oh (오효근) <ohg3417@gmail.com>
2025-08-27 17:17:29 +00:00
dd58932280 [V1] [Hybrid] Enable compile and piecewise CUDA graph for MiniMax-Text models (#22589)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-08-27 10:05:16 -07:00
52883ed084 [Model] Merge SupportsMultiModalWithRawInput with SupportsMultiModal (#23749)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-27 10:01:50 -07:00
4f35be10a9 [BugFix] Fix topk_softmax assert (#19764)
Signed-off-by: Luka Govedic <lgovedic@redhat.com>
2025-08-27 09:47:28 -07:00
2b61d2e22f [Docs] Remove in-tree Gaudi install instructions (#23628)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-27 09:22:21 -07:00
3ce8285d6d [LogitsProcs] Deduplicate built-in LP implementation logic (#23362)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-27 23:11:33 +08:00
83f555f637 [Doc]: upgrade version of crate-ci tool for improved typo detection (#23755)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-08-27 07:59:34 -07:00
841490434a [Model] Enable native HF format InternVL support (#23742)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-27 14:45:17 +00:00
3af47c3cc6 [Feature] Add Hopper DeepGEMM E8M0 for DeepSeekV3.1 scale_fmt (#23666)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-08-27 14:09:08 +00:00
513c1fe255 Only run get_attr_docs if generating help text (#23723)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-27 13:55:12 +00:00
fe8d7b6f03 [Model] Interface to enable batch-level DP support (#23733)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-27 06:41:22 -07:00
16dc4052b0 Fix pre-commit on main (#23747)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-27 06:39:48 -07:00
8dd2baa597 Add vLLM Korea Meetup in the README.md and meetups.md (#23746)
Signed-off-by: rebel-hongseok <hongseok@rebellions.ai>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-27 06:25:49 -07:00
5eeef1b908 [Model] Explicit default_pooling_type interface (#23736)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-27 13:24:09 +00:00
704432af3c [V1] [Hybrid] Disable prefix caching by default for hybrid or mamba-based models (#23716)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-08-27 12:51:54 +00:00
a403d0fa41 [Misc] Remove unnecessary _send_reconfig_message() in core_client.py (#23127)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-27 05:50:47 -07:00
8c13820f0b [Bugfix] Fix task field initialization when PYTHONOPTIMIZE is enabled (#23718)
Signed-off-by: cndoit18 <cndoit18@outlook.com>
2025-08-27 12:42:20 +00:00
9d30de4469 [model] Support MiniCPM-V 4.5 (#23586)
Signed-off-by: tc-mb <caitianchi@modelbest.cn>
Signed-off-by: Xin Yang <xyangx@amazon.com>
Signed-off-by: Abatom <abzhonghua@gmail.com>
Signed-off-by: chzhang <chaojun.zhang@intel.com>
Signed-off-by: Pate Motter <patemotter@google.com>
Signed-off-by: Terrencezzj <terrence@cohere.ai>
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: simon-mo <simon.mo@hey.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Siyuan Fu <siyuanf@nvidia.com>
Signed-off-by: siyuanf <siyuanf@nvidia.com>
Signed-off-by: Weiliang Liu <weiliangl@nvidia.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Signed-off-by: Zijing Liu <liuzijing2014@gmail.com>
Signed-off-by: Zijing Liu <liuzijing2014@users.noreply.github.com>
Signed-off-by: jiabin.00 <jiabin.00@bytedance.com>
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: tc-mb <157115220+tc-mb@users.noreply.github.com>
Signed-off-by: Roger Wang <hey@rogerw.me>
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Huy Do <huydhn@gmail.com>
Signed-off-by: Matúš Námešný <matus.namesny@ameria.com>
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: oye93 <en.ouyang93@outlook.com>
Signed-off-by: Julien Lin <jullin@nvidia.com>
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Signed-off-by: Tianyu Li <tianyu.li@arm.com>
Signed-off-by: Hongxia Yang <hongxia.yang@amd.com>
Signed-off-by: Yuekai Zhang <zhangyuekai@foxmail.com>
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Signed-off-by: jiang1.li <jiang1.li@intel.com>
Signed-off-by: Zerohertz <ohg3417@gmail.com>
Signed-off-by: Hyogeun Oh (오효근) <ohg3417@gmail.com>
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Huzaifa Sidhpurwala <huzaifas@redhat.com>
Signed-off-by: Federico <65908512+coval3nte@users.noreply.github.com>
Signed-off-by: Zixuan Zhang <zixuanzhang@bytedance.com>
Signed-off-by: wuhang <wuhang6@huawei.com>
Signed-off-by: czhu-cohere <conway.zhu@cohere.com>
Signed-off-by: Wei Wei <wwei6@meta.com>
Signed-off-by: Yiheng Xu <charlesyihengxu@gmail.com>
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: wangyafeng <wangyafeng@baidu.com>
Co-authored-by: Xin Yang <105740670+xyang16@users.noreply.github.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Zhonghua Deng <abzhonghua@gmail.com>
Co-authored-by: Chaojun Zhang <chaojun.zhang@intel.com>
Co-authored-by: Pate Motter <p@temotter.com>
Co-authored-by: Terrence Zhao <32208165+Terrencezzj@users.noreply.github.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: weiliang <weiliangl@nvidia.com>
Co-authored-by: Siyuan Fu <siyuanf@nvidia.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Copilot <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ProExpertProg <11367180+ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Zijing Liu <liuzijing2014@users.noreply.github.com>
Co-authored-by: Bin Jia <45593998+FoolPlayer@users.noreply.github.com>
Co-authored-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Raghavan <oneraghavan@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.me>
Co-authored-by: knlnguyen1802 <knlnguyen1802@gmail.com>
Co-authored-by: Huy Do <huydhn@gmail.com>
Co-authored-by: Matúš Námešný <matus@namesny.com>
Co-authored-by: Guillaume Calmettes <gcalmettes@scaleway.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: En Ouyang <en.ouyang93@outlook.com>
Co-authored-by: Li, Jiang <jiang1.li@intel.com>
Co-authored-by: nvjullin <jullin@nvidia.com>
Co-authored-by: Didier Durand <2927957+didier-durand@users.noreply.github.com>
Co-authored-by: TianyuLi0 <116711075+TianyuLi0@users.noreply.github.com>
Co-authored-by: Hongxia Yang <62075498+hongxiayang@users.noreply.github.com>
Co-authored-by: Yuekai Zhang <zhangyuekai@foxmail.com>
Co-authored-by: vllmellm <vllm.ellm@embeddedllm.com>
Co-authored-by: Hyogeun Oh (오효근) <ohg3417@gmail.com>
Co-authored-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Lukas Geiger <lukas.geiger94@gmail.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Huzaifa Sidhpurwala <huzaifas@redhat.com>
Co-authored-by: Federico <65908512+coval3nte@users.noreply.github.com>
Co-authored-by: zixuanzhang226 <zixuanzhang@bytedance.com>
Co-authored-by: wuhang <wuhang6@huawei.com>
Co-authored-by: yzds <41983536+youzhedian@users.noreply.github.com>
Co-authored-by: hongchao <hongchao@msh.team>
Co-authored-by: czhu-cohere <conway.zhu@cohere.com>
Co-authored-by: Wei <weiweinpu@gmail.com>
Co-authored-by: Yiheng Xu <charlesyihengxu@gmail.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Chenheli Hua <huachenheli@outlook.com>
Co-authored-by: CSWYF3634076 <58356743+CSWYF3634076@users.noreply.github.com>
2025-08-27 05:38:00 -07:00
1f7a9c95e4 [Docs] Fix a 1-2-3 list and style issues in tpu.md (#23729)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-08-27 05:37:52 -07:00
8f0d7eaea8 [XPU] Fix OOM issue for data parallel with Ray backend (#22500)
Signed-off-by: Fanli Lin <fanli.lin@intel.com>
Signed-off-by: Fanli Lin <fanli0116@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-08-27 19:57:38 +08:00
e03940762b [CI/Build] Reduce LoRA layer test cases (#23721)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-27 10:59:35 +00:00
11eddf02f0 [FlashInfer] Cache hyper params in metadata builder (#23732)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-27 03:45:04 -07:00
04ff1e43fb [Misc] Move CpuGpuBuffer to vllm/v1/utils.py (#23728)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-27 03:25:00 -07:00
6578e87365 Optimize input preparation for FlashInfer [2/N] (#23174)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-27 02:52:45 -07:00
5bd9f84158 [Docs] Fix an admonition important (#23726)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-08-27 02:50:09 -07:00
91e382c935 [CI/Build] Remove redundant register in model init tests (#23715)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-27 08:11:15 +00:00
6446677839 [XPU]fix cuda event used in XPU model runner (#23708)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-08-27 07:27:14 +00:00
69244e67e6 [Core] Use key-only cache for BaseMultiModalProcessor (#23018)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-27 14:19:13 +08:00
8dbf6ed7be [Bugfix] fix when config.yaml config value is list parse error (#23528)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-08-27 05:54:39 +00:00
9de25c294b [CI/Build] Remove redundant LoRA model tests (#23706)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-27 05:51:50 +00:00
fce10dbed5 [XPU] Add xpu torch.compile support (#22609)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-08-27 05:33:27 +00:00
d272415e57 [Quantization] Expand compressed-tensors MoE matching logic to support NFP4 + FP8 MoEs (#22674)
Signed-off-by: Dipika Sikka <dipikasikka1@gmail.com>
Signed-off-by: Dipika <dipikasikka1@gmail.com>
2025-08-27 05:00:21 +00:00
142ac08030 [Frontend] Optimize beam search performance by limiting concurrency (#23599)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-08-27 04:59:14 +00:00
3210264421 [Frontend] Add --log-error-stack to print stack trace for error response (#22960)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-08-27 04:58:59 +00:00
644d57d531 [Model] Add Ernie4.5 VL Model Support (#22514)
Signed-off-by: wangyafeng <wangyafeng@baidu.com>
2025-08-26 21:02:55 -07:00
c905684cfe [Core] Asynchronous h2d in merge_multimodal_embeddings via pinned memory. (#23686)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-08-26 20:05:34 -07:00
786835807b [Bugfix]: Qwen3 Coder Tool Parser (#23099)
Signed-off-by: Yiheng Xu <charlesyihengxu@gmail.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
2025-08-26 19:58:32 -07:00
Wei
fecbb7c782 [Bugfix][gpt-oss] passing the cache config in gpt-oss (#23613)
Signed-off-by: Wei Wei <wwei6@meta.com>
2025-08-27 02:54:23 +00:00
6dab89b8ec [Docs] Fix math rendering in docs (#23676)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 18:47:08 -07:00
de02b07db4 [Bugfix] Lazy import gpt_oss_triton_kernels_moe for mxfp4 (#23678)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-27 09:34:57 +08:00
eb1995167e [gpt-oss] Enable unit test for response API harmony integration (#23533)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-08-26 18:23:26 -07:00
2c2b140ae8 [quantization] use channel scales for w4a8 + misc fixes (#23570)
Signed-off-by: czhu-cohere <conway.zhu@cohere.com>
2025-08-26 18:23:23 -07:00
c7c80af084 fix pynccl reduce_scatter (#23648)
Co-authored-by: hongchao <hongchao@msh.team>
2025-08-26 18:21:11 -07:00
6891205b16 [Feature][Responses API] Support MCP tool in background mode (#23494)
Signed-off-by: wuhang <wuhang6@huawei.com>
2025-08-27 01:06:58 +00:00
b1625dbe9c feat: add triton fused moe config for GLM-4.5-Air-FP8 on B200 (#23695)
Signed-off-by: Zixuan Zhang <zixuanzhang@bytedance.com>
2025-08-26 18:06:10 -07:00
585e0bde36 [Bugfix] UnboundLocalError when GptOss reasoning specified (#23054)
Signed-off-by: Federico <65908512+coval3nte@users.noreply.github.com>
2025-08-27 00:29:52 +00:00
714872f1a9 [Compile] Fix Cmake Warning (#23689)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-08-26 23:48:32 +00:00
5f1af97f86 [V1] [Hybrid] Enable Full CUDA graph by default for hybrid models in V1 (#22594)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-08-26 23:28:55 +00:00
c3b0fd1ee6 [V1][P/D]P2pNcclConnector supports flashinfer (#23536)
Signed-off-by: Abatom <abzhonghua@gmail.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-08-26 22:56:16 +00:00
6421b66bf4 [Docs] Move quant supported hardware table to README (#23663)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 22:26:46 +00:00
2f13319f47 Enhance the pre-notification policy (#23532)
Signed-off-by: Huzaifa Sidhpurwala <huzaifas@redhat.com>
2025-08-26 20:41:36 +00:00
d696f86e7b [doc] Hybrid KV Cache Manager design doc (#22688)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 20:19:05 +00:00
9816b81f5f [Model] Enable video support for InternVL3.5 models (#23658)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-26 19:46:52 +00:00
c37c0af990 [Misc] Fix comments in tests/kernels/quantization (#23675)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-08-26 19:31:20 +00:00
9715f7bb0f [Bugfix] Fix incorrect original shape in hashing (#23672)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-08-26 19:01:25 +00:00
98aa16ff41 [v1] Add cross-attention KV cache support for encoder-decoder models (#23664)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-08-26 18:49:06 +00:00
227e231b55 [Docs] [V1] [Hybrid] Update docs to remove FlashInfer constraint for hybrid models (#23665)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-08-26 18:33:16 +00:00
730d0ac8b9 [Docs] Fix warnings in mkdocs build (#23649)
Signed-off-by: Zerohertz <ohg3417@gmail.com>
Signed-off-by: Hyogeun Oh (오효근) <ohg3417@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 18:19:23 +00:00
9b0187003e [Bugfix] Fix cuda event usage with CPU model runner (#23643)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-08-26 17:10:42 +00:00
44ac25eae2 [CI] [Doc]: Add GH Action for auto labeling issues with rocm tag (#20988)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-26 16:20:13 +00:00
7ea22e42d5 [Misc] Add override for allreduce fusion thresholds (#23639)
Signed-off-by: Julien Lin <jullin@nvidia.com>
2025-08-26 15:53:04 +00:00
9d4183dd2e [model] support qwen2audio embedding input (#23625)
Signed-off-by: Yuekai Zhang <zhangyuekai@foxmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-26 23:48:08 +08:00
513298f1b4 [Bugfix] fix bf16 multimodal model hash (#23623)
Signed-off-by: Yuekai Zhang <zhangyuekai@foxmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-26 23:47:50 +08:00
379f828fba [Docs] Reduce requirements for docs build (#23651)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 15:43:28 +00:00
1fdc732419 [ROCm] Starting to add AMD code reviewers for ROCm components (#23496)
Signed-off-by: Hongxia Yang <hongxia.yang@amd.com>
2025-08-26 07:32:37 -07:00
f58675bfb3 [CPU] add cpu fused moe pytorch native implementation (#23146)
Signed-off-by: Tianyu Li <tianyu.li@arm.com>
Co-authored-by: Li, Jiang <jiang1.li@intel.com>
2025-08-26 14:09:17 +00:00
7c04779afa [Doc]: fix various spelling issues in multiple files (#23636)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-08-26 14:05:29 +00:00
f66673a39d [Kernel] Added flashinfer fp8 per-tensor gemms (#22895)
Signed-off-by: Julien Lin <jullin@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-26 06:54:04 -07:00
b78bed1bc5 [Hardware][Mac] Fix the installation fail for Apple Silicon (CPU) (#23565)
Signed-off-by: oye93 <en.ouyang93@outlook.com>
Co-authored-by: Li, Jiang <jiang1.li@intel.com>
2025-08-26 13:04:25 +00:00
164b2273c8 [Docs] Fix broken links to docs/api/summary.md (#23637)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 13:00:18 +00:00
2b4fc9bd9b Support FlashAttention Backend for Hybrid SSM Models (#23299)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-08-26 12:41:52 +00:00
ebd5a77bb5 feat: add usage to TranscriptionResponse (text and json response_format) (#23576)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-08-26 05:26:26 -07:00
384dd1b0a8 [Bugfix] Add missing enable_log_outputs parameter to init_app_state function (#23634)
Signed-off-by: Matúš Námešný <matus.namesny@ameria.com>
2025-08-26 12:13:15 +00:00
fdeb3dac13 [Model] fix DeepSeek e_score_correction_bias dtype to fp32 (#23640)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-26 20:09:47 +08:00
d52358c1e0 [Perf] Remove duplicated NVFP4 blockscales to save memory (#23379)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-26 19:16:33 +08:00
6ace2f72b0 Fix writing benchmark results with tuple keys (#23633)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-08-26 19:16:09 +08:00
b00e69f8ca Fix nits from #20059 (#23548)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 03:27:20 -07:00
50fede6634 [V1] Enable V1 for compute capability < 8.0 + FP32 (#23614)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-26 03:00:18 -07:00
b5d34af328 [Bugfix] Fix scheduling when repeated images in one request (#23544)
Signed-off-by: Roger Wang <hey@rogerw.me>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.me>
Co-authored-by: knlnguyen1802 <knlnguyen1802@gmail.com>
2025-08-26 09:46:28 +00:00
9b5f64238f [Bugfix] Fix Qwen25VL packed_modules_mapping (#23604)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-26 01:09:14 -07:00
ff77764f86 Fix CLI parameter documentation inconsistency in pooling_models.md (#23630) 2025-08-26 01:05:37 -07:00
bfc1edc9f5 [Docs] Fix titles for multi-file examples that are rendered in the docs (#23573)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-26 00:16:44 -07:00
3ecbb14b81 [Benchmarks] add benchmark for embedding models (#23000)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-08-25 23:57:08 -07:00
7d67a9d9f9 [mypy] Fix incorrect type hint for EAGLE3 support (#23617)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-25 23:50:17 -07:00
959783fb99 [fix] fix seed-oss-parser (#23560)
Signed-off-by: jiabin.00 <jiabin.00@bytedance.com>
2025-08-25 23:16:36 -07:00
ce0e9dbd43 [CI/Build] Fix typo in #23561 (#23616)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-25 23:13:03 -07:00
b395b3b0a3 [Disagg][Perf] Use CUDA event sync instead of blocking tolist to avoid unintentional copy ops blocking across different CUDA streams, improving disagg TTIT/TTFT (#22760)
Signed-off-by: Zijing Liu <liuzijing2014@gmail.com>
Signed-off-by: Zijing Liu <liuzijing2014@users.noreply.github.com>
2025-08-25 21:06:00 -07:00
6fad29b11b Remove graph_pool as member of VllmBackend and argument to CUDAGraphWrapper (#23385)
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ProExpertProg <11367180+ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-08-25 19:34:15 -07:00
6fd45e7b8a [CI/Build] Use vLLM client's user agent to fetch images (#23561)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-25 19:34:12 -07:00
56dcf4e7e9 [Bug] Fix DeepGEMM Env Control (#23591)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-08-25 18:41:21 -07:00
ae067888d6 Update Flashinfer to 0.2.14.post1 (#23537)
Signed-off-by: Siyuan Fu <siyuanf@nvidia.com>
Signed-off-by: siyuanf <siyuanf@nvidia.com>
Signed-off-by: Weiliang Liu <weiliangl@nvidia.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Siyuan Fu <siyuanf@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-25 18:30:44 -07:00
906e461ed6 [CI Fix] Pin deepep and pplx tags in tools/ep_kernels/, gate multigpu tests (#23568)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-25 18:29:00 -07:00
2a97ffc33d [Misc] Add release note draft to PR template (#23598)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-08-25 16:44:51 -07:00
efc88cf64a [Misc] Simplify FlashInfer attention metadata (#23585)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-08-25 15:42:29 -07:00
7b6a837275 [Docs] Update Documentation of Cohere Command-A Models (#23584)
Signed-off-by: Terrencezzj <terrence@cohere.ai>
Signed-off-by: Abatom <abzhonghua@gmail.com>
Co-authored-by: Zhonghua Deng <abzhonghua@gmail.com>
2025-08-25 21:53:52 +00:00
c34c82b7fe [TPU][Bugfix] Fixes prompt_token_ids error in tpu tests. (#23574)
Signed-off-by: Pate Motter <patemotter@google.com>
2025-08-25 14:29:16 -07:00
8a044754bd [XPU] Delay BF16 check to worker init for spawn compatibility (#22979)
Signed-off-by: chzhang <chaojun.zhang@intel.com>
2025-08-25 13:09:26 -07:00
9188ae7cb5 [Bugfix][V1][P/D]Fix the issue where repeated requests for the same input produce abnormal outputs for P2pNcclConnector (#23403)
Signed-off-by: Abatom <abzhonghua@gmail.com>
2025-08-25 12:57:08 -07:00
8a3cd90af5 [Kernel] Add fused grouped_topk kernel for MoE (#23274)
Signed-off-by: Xin Yang <xyangx@amazon.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-08-25 11:47:52 -07:00
2a167b2eeb [test][RL] Add sleep level 2 test and fix reload with sleep mode (#23521)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-08-26 00:25:52 +08:00
0ff902f3b4 [Refactor] Refactor persistent buffers with CpuGpuBuffer (#23515)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-25 08:44:48 -07:00
a9082a4d14 [Bugfix] Fix Qwen3 MoE GPTQ inference (#23490)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-25 06:40:20 -07:00
e0329ed4b4 Updates to Flex + VLLm integration (#21416)
Signed-off-by: drisspg <drisspguessous@gmail.com>
2025-08-25 09:32:42 -04:00
6879cd80ae [Refactor] Pass tokenizer explicitly instead of binding to prompt update (#23542)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-25 06:31:57 -07:00
e269be2ba2 [Doc] Add caution for API server scale-out (#23550)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-25 06:14:15 -07:00
5c4b6e66fe [Attention] Unify mamba and attention backend selection (#23171)
Signed-off-by: Ayush Satyam <ayushsatyam146@gmail.com>
2025-08-25 09:09:36 +00:00
d0a4a3f645 [misc] add shanghai meetup (#23535)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-08-25 17:00:03 +08:00
ebafb0936d [Bugfix] Allow dynamic number of patches for llava_onevision (#23525)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-25 08:34:54 +00:00
0cb7b065c3 Feature/benchmark/random mm data/images (#23119)
Signed-off-by: breno.skuk <breno.skuk@hcompany.ai>
2025-08-25 01:28:35 -07:00
2da02dd0d8 [Fix] DeepSeek V3.1 tool parser error message (#23492)
Signed-off-by: zitian.zhao <zitian.zhao@tencentmusic.com>
2025-08-25 00:56:39 -07:00
d765cf01fe [Core][Multimodal] Track encode cache entries by mm_hash and enable embedding sharing between requests (#22711)
Signed-off-by: knlnguyen1802 <knlnguyen1802@gmail.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: knlnguyen1802 <knlnguyen1802@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-08-25 00:41:17 -07:00
712d0f88d8 [Refactor] Dynamic target and content for prompt updates (#23411)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-24 23:39:58 -07:00
49ab23b3cc [gpt-oss] use reasoning channel for reasoning text in serving_chat (#22920)
Signed-off-by: Yu Guo <yuguo@meta.com>
2025-08-25 06:29:34 +00:00
c9abb10489 [Bugfix] Fix Dense module loading for sentence-transformers embedding models (simplified V2) (#23408)
Signed-off-by: FFFfff1FFFfff <yifanli0919@gmail.com>
2025-08-25 05:39:24 +00:00
787cdb3829 Migrate DonutImagePixelInputs to TensorSchema (#23509)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-25 05:02:15 +00:00
a5203d04df Migrate skyworkr1v inputs to TensorSchema (#23499)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-25 04:43:21 +00:00
99f8094400 Migrate tarsier inputs to TensorSchema (#23500)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-25 04:42:36 +00:00
170e8ea9ea [Misc] Unified linear print info (#23516)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-24 20:13:51 -07:00
a71e4765cc [Bugfix] Fix Qwen2.5-VL quantized model weights loading (#23512)
Signed-off-by: Zifei Tong <zifeitong@gmail.com>
2025-08-25 10:40:22 +08:00
39971db3aa Frontend: Adding LM Format Enforcer support to V1 engine (#22564)
Signed-off-by: Noam Gat <noamgat@gmail.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-24 19:31:22 -07:00
504d914314 [Perf] Add Triton config for DeepSeek V3 FP8 EP32 H200 (#23504)
Signed-off-by: Ming Yang <minos.future@gmail.com>
2025-08-24 18:06:35 -07:00
47455c424f [Doc: ]fix various typos in multiple files (#23487)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-25 00:04:04 +00:00
c7fc6b1354 fix incompatibililty with non cuda platform for nvfp4 (#23478)
Signed-off-by: Lu Fang <fanglu@fb.com>
Co-authored-by: Lucia (Lu) Fang <fanglu@meta.com>
2025-08-24 15:35:41 -07:00
ad78868450 [Misc] Remove unused slot_mapping buffer (#23502)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-24 14:03:36 -07:00
e2db1164a1 [Model] Enable BLOOM on V1 (#23488)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-24 13:30:47 +00:00
416f05929a [New Model]Donut model (#23229)
Signed-off-by: 汪志鹏 <wangzhipeng628@gmail.com>
2025-08-24 12:52:24 +00:00
5e021b4981 (Misc): add missing test for zero truncation size. (#23457)
Signed-off-by: teekenl <teekenlau@gmail.com>
2025-08-24 18:12:47 +08:00
1b9b16649c [Misc] update dict parse to EPLBConfig from json dumps to dict unpacking (#23305)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-08-24 08:06:34 +00:00
e76e233540 [kernel] Support W4A8 on Hopper (#23198)
Signed-off-by: czhu-cohere <conway.zhu@cohere.com>
2025-08-24 06:18:04 +00:00
a75277285b Migrate Paligemma inputs to TensorSchema (#23470)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-24 04:56:56 +00:00
9dc30b7068 [Bugfix] Add strong reference to CUDA pluggable allocator callbacks (#23477)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Eric Marcus <eric.marcus@kaiko.ai>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-08-24 12:56:17 +08:00
053278a5dc Migrate Pixtral inputs to TensorSchema (#23472)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-24 04:55:53 +00:00
c55c028998 [gpt-oss] Streaming Output for Python Tool (#23409)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-08-24 04:42:38 +00:00
65197a5fb3 [Misc] Modify CacheConfig import (#23459)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-23 06:05:27 +00:00
b8f17f5d98 Support DeepSeek-V3.1 tool call (#23454)
Signed-off-by: Xu Wenqing <xuwq1993@qq.com>
2025-08-23 05:50:16 +00:00
d9a55204ba fix(tests): Correct unreachable assertion in truncation test (#23425)
Signed-off-by: AzizCode92 <azizbenothman76@gmail.com>
2025-08-23 05:23:54 +00:00
b4e9fd811f Revert "[PERF] Use faster way of decode in tokenizer: avoid useless list-to-list conversion (#20000)" (#23396)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-23 04:16:48 +00:00
308fa287a8 Add glm4.5v tp2,4 fp8 config on H100_80GB (#23443)
Co-authored-by: Chenxi Yang <cxyang@meta.com>
2025-08-23 02:54:19 +00:00
fa78de9dc3 Quantization: support FP4 quantized models on AMD CDNA2/CDNA3 GPUs (#22527)
Signed-off-by: feng <fengli1702@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-22 20:53:21 -06:00
f6818a92cb [UX] Move Dockerfile DeepGEMM install to tools/install_deepgemm.sh (#23360)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-22 20:52:50 -06:00
23c939fd30 [Model] Support DP for ViT on MiniCPM-V-4 (#23327)
Signed-off-by: ycyaw66 <497410282@qq.com>
Co-authored-by: ycyaw66 <497410282@qq.com>
2025-08-23 02:14:41 +00:00
add1adfec7 [BugFix] Fix MinPLogitsProcessor.update_states() (#23401)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-23 08:22:11 +08:00
c80c53a30f [BugFix] Fix batch updates for pooling models (#23398)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-23 08:20:41 +08:00
24d0c9e6ed [NVIDIA][torch.compile] Support Flashinfer TRTLLM FP8-q/kv NVFP4-out Attention Kernel (#22703)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-08-22 22:09:05 +00:00
cc7ae5e7ca [BugFix][AMD][Quantization] Fix torch.compile issue where wvSplitKQ not being called when it should when using quantized FP8 model (#22281)
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
2025-08-22 21:47:57 +00:00
0313cf854d [PERF] PyTorch Symmetric Memory All-Reduce (#20759)
Signed-off-by: ilmarkov <imarkov@redhat.com>
Signed-off-by: ilmarkov <markovilya197@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: ilmarkov <imarkov@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-22 15:39:08 -06:00
0483fabc74 [CI/Build] add EP dependencies to docker (#21976)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-08-22 13:34:40 -07:00
da65bec309 add an env var for path to pre-downloaded flashinfer cubin files (#22675) 2025-08-22 19:25:45 +00:00
4645024d3a [Quantization] Allow GGUF quantization to skip unquantized layer (#23188)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-22 13:04:22 -06:00
cd7a3df26f [Bugfix] Fix broken Florence-2 model (#23426)
Signed-off-by: 汪志鹏 <wangzhipeng628@gmail.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: 汪志鹏 <wangzhipeng628@gmail.com>
2025-08-22 17:50:52 +00:00
32d2b4064f [Model] Add Ovis2.5 PP support (#23405)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-22 17:46:34 +00:00
22cf679aad [Doc]: fix various typos in multiple files (#23179)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-08-22 10:38:46 -07:00
b6d7d34fc6 Add unit tests for batched guided and non-guided requests (#23389)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-08-22 10:31:24 -07:00
341923b982 fix(tests): Ensure reliable CUDA cache clearing in MoE test (#23416)
Signed-off-by: AzizCode92 <azizbenothman76@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-22 17:20:59 +00:00
424fb7a5d2 [BugFix] Fix the issue where image embeddings were incorrectly split.… (#23366)
Signed-off-by: bppps <bpppsaka@gmail.com>
Co-authored-by: zouyu.zzx <zouyu.zzx@alibaba-inc.com>
Co-authored-by: bppps <bpppsaka@gmail.com>
2025-08-22 16:56:46 +00:00
88491c1b6b [Speculators][Speculative Decoding] Fix Qwen 2 Eagle3 Support (#23337) 2025-08-22 16:39:19 +00:00
613a23b57f [Bugfix]: Installing dev environment due to pydantic incompatible version (#23353)
Signed-off-by: Martin Hickey <martin.hickey@ie.ibm.com>
2025-08-22 16:22:29 +00:00
51a215300b [Fix] Bump triton version in rocm-build requirements (#21630)
Signed-off-by: Burkhard Ringlein <ngl@zurich.ibm.com>
2025-08-22 15:13:39 +00:00
ebe14621e3 [Bug fix] Dynamically setting the backend variable for genai_perf_tests in the run-nightly-benchmark script (#23375)
Signed-off-by: Naman Lalit <nl2688@nyu.edu>
2025-08-22 15:12:28 +00:00
325aa3dee9 [Misc] local import code clean (#23420)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-08-22 14:01:35 +00:00
a073be6d87 [Doc] Update the doc for log probs + prefix caching (#23399)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-22 13:20:39 +00:00
695e7adcd2 [misc] Remove outdate comment about runai_model_streamer (#23421)
Signed-off-by: carlory <baofa.fan@daocloud.io>
2025-08-22 13:08:53 +00:00
281710ef9a [Attention] Allow V1 flash_attn to support cross-attention (#23297)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-08-22 12:10:16 +00:00
808d2e9aa0 [Misc] Move M-RoPE init logic to _init_mrope_positions (#23422)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-22 03:07:22 -07:00
285178b3b8 [V0 Deprecation] Remove V0 LoRA test (#23418)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-22 09:56:51 +00:00
88016c372a [Bugfix] Fix pooling models on CPU backend (#23392)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-08-22 09:47:17 +00:00
998720859c Migrate MiniCPMOAudioInputs to TensorSchema (#21847)
Signed-off-by: Benji Beck <benjibeck@meta.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-22 16:43:29 +08:00
0ba1b54ac6 [gpt-oss] add input/output usage in responses api when harmony context is leveraged (#22667)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-08-22 08:32:24 +00:00
53415653ff [P/D][Nixl] Make kv cache register compatible with hybrid memory allocator (#23079)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-08-21 22:30:48 -07:00
17373dcd93 [Attention] Refactor AttentionMetadata Preparation for Encoder-only Models (#23154)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-08-22 05:05:59 +00:00
5964069367 [New Model] Add Seed-Oss model (#23241)
Signed-off-by: jiabin.00 <jiabin.00@bytedance.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-22 04:58:10 +00:00
de9c085e17 [Misc] Add gemma3 chat template with pythonic-style function calling (#17149)
Signed-off-by: Philip Chung <philip.f.chung@gmail.com>
2025-08-21 21:06:50 -07:00
111692bb8c [CI] Add end-to-end V1 min_tokens test coverage (#22495)
Signed-off-by: Arjun Reddy <189282188+arjunbreddy22@users.noreply.github.com>
Co-authored-by: Arjun Reddy <189282188+arjunbreddy22@users.noreply.github.com>
2025-08-21 22:04:07 -06:00
394591e343 [Feature] Enable DeepGEMM Linear on B200; 1.5% E2E throughput improvement (#23351)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-08-21 21:01:08 -07:00
3ac849665d [CI/Build] Skip Idefics3 and SmolVLM generation test again (#23356)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-22 03:39:46 +00:00
0b9cc56fac Migrate MllamaImagePixelInputs to TensorSchema (#22020)
Signed-off-by: Benji Beck <benjibeck@meta.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-22 11:28:49 +08:00
8896eb72eb [Deprecation] Remove prompt_token_ids arg fallback in LLM.generate and LLM.embed (#18800)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-22 10:56:57 +08:00
19fe1a0510 [Kernel] Add FP8 support with FlashMLA backend (#22668)
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
2025-08-22 02:26:32 +00:00
480bdf5a7b [Core] Support custom executor qualname (#23314)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-08-22 09:40:54 +08:00
5368f76855 [Feature][Responses API] Support logprobs(non-stream) (#23319)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-08-21 23:09:16 +00:00
8ef6b8a38c Always use cache mounts when installing vllm to avoid populating pip cache in the image. Also remove apt cache. (#23270)
Signed-off-by: Valentyn Tymofieiev <valentyn@google.com>
2025-08-21 18:01:03 -04:00
3bbe11cc13 [Perf] Small optimizations for silu_mul_fp8_quant_deep_gemm (#23265)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-21 17:56:15 -04:00
c5041f899f [CI] improve pr comments bot (#23380) 2025-08-21 14:49:03 -07:00
8b5fe6eb51 [CI] Clean up actions: remove helm, publish workflows and improve pr … (#23377) 2025-08-21 14:29:04 -07:00
800349c2a5 [Structured Outputs] Refactor bitmask construction into get_grammar_bitmask (#23361)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-21 20:53:33 +00:00
044931f97b Make sure that vectorize_with_alignment produced vectorized global loads (#23182) 2025-08-21 20:06:54 +00:00
1d353b6352 [Core] Always use tensor cores for Flashinfer Decode Wrapper (#23214)
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
2025-08-21 16:02:11 -04:00
3496274663 [Misc] Convert VLLM_TORCH_PROFILER_DIR path to absolute (#23191)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-08-21 15:49:09 -04:00
8a19303173 [BugFix][gpt-oss] Fix Chat Completion with Multiple Output Message (#23318)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-08-21 10:31:11 -07:00
603fbbbce0 [Misc] Misc code cleanup/simplification (#23304)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-21 17:22:55 +00:00
10f535c086 [Bugfix] Fix port conflict by obtaining a list of open ports upfront (#21894)
Signed-off-by: Ming Yang <minos.future@gmail.com>
2025-08-21 10:22:18 -07:00
48bfb0c9b7 [Bug] Fix R1 Accuracy 0 Bug (#23294)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-21 13:11:28 -04:00
f8ce022948 add tg-mxfp4-moe-test (#22540)
Signed-off-by: siyuanf <siyuanf@nvidia.com>
Signed-off-by: Siyuan Fu <siyuanf@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-21 17:05:47 +00:00
0278f1ac3a Fix nvfp4 swizzling (#23140)
Signed-off-by: yiliu30 <yi4.liu@intel.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-08-21 16:54:50 +00:00
a482e4e769 Migrate MolmoImageInputs to TensorSchema (#22022)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-08-21 16:54:08 +00:00
e0b056e443 [ci/build] Fix abi tag for aarch64 (#23329)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-08-21 23:32:55 +08:00
79f05e4436 [Multimodal] Always enable hashing mm data (#23308)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-21 07:23:28 -07:00
f8daddcc4c [Bugfix] set system_message in phi4mini chat template (#23309)
Signed-off-by: zhuangqh <zhuangqhc@gmail.com>
2025-08-21 14:22:39 +00:00
c8e33c72c6 [V1] Remove unnecessary check for main thread (#23298)
Signed-off-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
2025-08-21 14:08:35 +00:00
d70a16625d [Performance] V1 Pooling Models E2E Performance Optimization (#23162)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-08-21 13:26:09 +00:00
5cc54f7c5b [Doc] Fix batch-level DP example (#23325)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-08-21 06:16:38 -07:00
0c6e40bbaa [Refactor] Simplify code for MM budget (#23310)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-21 08:00:16 +00:00
2e2000f352 [Model] Add LFM2 architecture (#22845)
Signed-off-by: Paul Pak <paulpak58@gmail.com>
2025-08-21 09:35:07 +02:00
31282401b6 [BugFix] Fix Python 3.9 Support (#23306)
Signed-off-by: Jared O'Connell <46976761+jaredoconnell@users.noreply.github.com>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-08-20 23:23:56 -07:00
0c31e28e95 [Bugfix] Fix extra whitespace in strings caused by newline (#23272)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-20 22:03:00 -07:00
f571ff8eb6 [Sampler] Support returning final logprobs (#22387)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-20 21:28:32 -07:00
f64ee61d9e [CI] Block the cu126 wheel build while broken (#23285)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-21 04:21:05 +00:00
8993073dc1 [CI] Delete images older than 24h. (#23291)
Signed-off-by: Qiliang Cui <derrhein@gmail.com>
2025-08-20 21:15:20 -07:00
655a09f653 [Model][VLM] Support R-4B Model (#23246)
Signed-off-by: yannqi <yannqi@qq.com>
Signed-off-by: 杨奇(yann qi) <51905299+yannqi@users.noreply.github.com>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: yannqiyang <yannqiyang@tencent.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-08-21 04:08:52 +00:00
f94bf9b924 [Compile] Fix Compile Warning SM100 Cutlass MLA (#23287)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-08-21 03:09:39 +00:00
3663870c72 [V1][Mamba1] - Full CUDA and Piecewise CUDA Graphs Support (#23035)
Signed-off-by: asafg <asafg@ai21.com>
Signed-off-by: asafg <39553475+Josephasafg@users.noreply.github.com>
Co-authored-by: asafg <asafg@ai21.com>
2025-08-20 20:08:51 -07:00
2461d9e562 [CI/Build] Split out mm processor tests (#23260)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-20 20:05:20 -07:00
7be5d113d8 [CPU] Refactor CPU W8A8 scaled_mm (#23071)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-08-21 09:34:24 +08:00
b029de9902 [Optimization] Make new_block_ids None if empty (#23262)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-08-20 18:25:56 -07:00
bbea1cefdd [CI Bugfix] Fix CI by fully removing --enable-prompt-adapter (#23284)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-20 17:18:12 -07:00
f5aa307d77 Remove duplicate entry in vllm.attention.__all__ (#23296)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-08-20 17:14:59 -07:00
4b795020ed [EP] Add logging for experts map (#22685)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-08-20 23:46:06 +00:00
c86af22f31 [Fix] remove is_marlin param in benchmark_moe (#23286) 2025-08-20 22:04:21 +00:00
10cc12ba66 Feature/mla tests (#23195)
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-08-20 21:46:47 +00:00
a4fbb32fab Remove chunked_prefill_enabled flag in V1 MLA (#23183)
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
2025-08-20 21:43:17 +00:00
1b125004be [misc] fix multiple arch wheels for the nightly index (#23110)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-08-20 14:15:34 -07:00
4fbda0b20c [Feature] use --eplb_config to set eplb param (#20562)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: rongfu.leng <lenronfu@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-08-20 14:07:28 -07:00
4e51fa8cba Do not use eval() to convert unknown types (#23266)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-08-20 13:28:30 -07:00
bf7c99dfc4 [Perf] Speed up function _convert_tokens_to_string_with_added_encoders by 13.7x (#20413)
Signed-off-by: Saurabh Misra <misra.saurabh1@gmail.com>
Signed-off-by: Aseem Saxena <aseem.bits@gmail.com>
Co-authored-by: codeflash-ai[bot] <148906541+codeflash-ai[bot]@users.noreply.github.com>
Co-authored-by: Aseem Saxena <aseem.bits@gmail.com>
2025-08-20 13:17:11 -07:00
b95697d731 [Frontend] improve error logging of chat completion (#22957)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-08-20 13:03:37 -07:00
582bbe6bd7 [Fix] correct tool_id for kimi-k2 when use tool_choice=required (#21259)
Co-authored-by: wangzhengtao <wangzhengtao@msh.team>
2025-08-20 12:59:54 -07:00
0cdbf5e61c [Kernel/Quant] Remove the original marlin format and qqq (#23204)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-20 15:13:36 -04:00
ebe56a0064 Small fix for Command-A-Vision (#23268)
Signed-off-by: donglu <donglu@cohere.com>
2025-08-20 18:15:18 +00:00
f77a0802b7 Limit HTTP header count and size (#23267)
Signed-off-by: Taneem Ibrahim <taneem.ibrahim@gmail.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Taneem Ibrahim <taneem.ibrahim@gmail.com>
2025-08-20 17:57:37 +00:00
c4477f55e5 Migrate Mistral3ImagePixelInputs to TensorSchema (#21945)
Signed-off-by: Benji Beck <benjibeck@meta.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-20 17:37:29 +00:00
dfd2382039 [torch.compile] Support conditional torch.compile per module (#22269)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-08-20 16:52:59 +00:00
3b11b26b50 [FIXBUG ] Allow disabling rocm_aiter_fa backend for ROCm GPUs not compatible with AITER (#22795)
Signed-off-by: JartX <sagformas@epdcenter.es>
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-08-20 09:08:29 -07:00
d6d13bd49e [Misc] Add max_seq_len to CommonAttentionMetadata (#23216)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-20 09:05:29 -07:00
5efd6905bc [CLI][Doc] Formalize --mm-encoder-tp-mode (#23190)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-20 23:42:28 +08:00
b17109beea [Kernel] CUTLASS MoE FP8: Integrate cuda moe permute/unpermute (#23045)
Signed-off-by: Shixian Cui <shixian@amazon.com>
2025-08-20 10:35:26 -04:00
4449235843 [Bugfix] Ensure correctness of HCXVision processing (#23254)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-20 14:19:30 +00:00
38217877aa [Fix] fix offline env use local mode path (#22526)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-08-20 13:34:49 +00:00
c6d80a7a96 [Model] Improve olmo and olmo2 (#23228)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-08-20 12:47:05 +00:00
7cd17e22d7 [Model][V1] Support Ernie MTP (#22169)
Signed-off-by: zhouchong <zhouchong03@baidu.com>
Co-authored-by: zhouchong <zhouchong03@baidu.com>
2025-08-20 20:41:55 +08:00
50df09fe13 Update to flashinfer-python==0.2.12 and disable AOT compile for non-release image (#23129)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-20 08:05:54 -04:00
68fcd3fa73 [Bugfix] Ensure correctness of Cohere2Vision processing (#23245)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-20 11:09:18 +00:00
83e69a09d6 [Model] Support deepseek with eagle (#21086)
Signed-off-by: Xin Yang <xyangx@amazon.com>
2025-08-20 19:01:31 +08:00
3aa8c10038 Fix missing quotes (#23242)
Signed-off-by: Shiming Zhang <wzshiming@hotmail.com>
2025-08-20 10:46:59 +00:00
103f1ec8d3 [Model] use autoWeightsLoader for gptoss (#22446)
Signed-off-by: calvin chen <wen.chen@dynamia.ai>
2025-08-20 10:16:27 +00:00
d983769c41 fix cuda graph (#22721)
Signed-off-by: fsx950223 <fsx950223@outlook.com>
2025-08-20 06:24:37 +00:00
8fd920924c [BugFix] Fix stuck stats/metrics after requests are aborted (#22995)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-08-20 13:50:29 +08:00
de7b67a023 [CI/Build] Sync multimodal tests (#23181)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-20 05:06:42 +00:00
f729023272 [CI/Build] Also check DP in benchmarks throughput script (#23038)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-08-20 04:09:27 +00:00
1a3079a15e chore: support pytorch format in lora (#22790)
Signed-off-by: jaeeun.kil <rha3122@naver.com>
Signed-off-by: 길재은 <rha3122@naver.com>
2025-08-20 04:02:50 +00:00
941f56858a Fix a performance comparison issue in Benchmark Suite (#23047)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
Signed-off-by: Louie Tsai <louie.tsai@intel.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Li, Jiang <bigpyj64@gmail.com>
2025-08-20 03:14:32 +00:00
a634733f67 [Attention] Optimize make_local_attention_virtual_batches for Flash Attention (#23185)
Signed-off-by: linzebing <linzebing1995@gmail.com>
2025-08-20 02:57:47 +00:00
64ab3c7253 [Doc] Update V1 status of various pooling models (#23189)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-08-20 10:33:41 +08:00
e58c5a9768 [Core] Add torch profiler CPU traces for AsyncLLM. (#21794)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-08-20 02:32:47 +00:00
d46d417b58 [CI Perf] Only test bfloat16 for tests/compile/test_fusion_all_reduce.py (#23132)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-19 20:18:52 -06:00
0167efe20d [Core] Optimize scheduler request removal for single completions (#21917)
Signed-off-by: chiliu <chiliu@paypal.com>
Signed-off-by: chiliu <cliu_whu@yeah.net>
Co-authored-by: chiliu <chiliu@paypal.com>
2025-08-19 18:25:59 -07:00
c32e6ad1f6 [Quantization] Bump Compressed Tensors Version (#23202)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
Co-authored-by: Dipika Sikka <dipikasikka1@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-20 00:39:28 +00:00
1630cc8d0f [Benchmarks] Add video inputs to ShareGPTDataset. (#23199)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-08-19 23:42:31 +00:00
14e2b0730b [BugFix] fix CUTLASS MLA full cudagraph (#23200)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-08-19 22:17:08 +00:00
0f4f0191d8 [CI/Build] Replace lm-eval gsm8k tests with faster implementation (#23002)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-19 15:07:30 -07:00
a38b8af4c3 [NVIDIA] Add SM100 Flashinfer Cutlass MoE fp8 backend (#22357)
Signed-off-by: Amir Klein <203507526+amirkl94@users.noreply.github.com>
2025-08-19 18:01:53 -04:00
21dce80ea9 [CI/Build] Add support for Python 3.13 (#13164)
Signed-off-by: mgoin <michael@neuralmagic.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-19 13:49:34 -07:00
e61bac87ee [Misc] Minor refactoring for FlashInfer backend (#23147)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-19 13:11:51 -07:00
80141bbf2f fix: use cache_salt for gpt-oss (#23186)
Signed-off-by: Marko Rosenmueller <5467316+dr75@users.noreply.github.com>
2025-08-19 18:12:25 +00:00
b94faf9d50 [Bugfix] Fix accuracy issue when using flashinfer cutlass moe, TP=1 and modelopt. (#23125)
Signed-off-by: Bill Nell <bnell@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-19 14:00:51 -04:00
5b5f350d67 [Misc] Enable yapf for FlashInfer backend (#23193)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-19 10:33:47 -07:00
f7cf5b512e [Frontend] Add /collective_rpc API endpoint (#23075)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-08-19 17:29:32 +00:00
03d4235fd2 [Misc] Fix the benchmark's README and improve the error messages for the benchmark's argument checks (#22654)
Signed-off-by: tanruixiang <tanruixiang0104@gmail.com>
2025-08-19 10:18:51 -07:00
d6a1a20973 [CI/Build] Update transformers to v4.55.2 (#23093)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-19 10:06:17 -07:00
1036 changed files with 58561 additions and 28090 deletions

View File

@ -5,11 +5,11 @@ import os
import sys
import zipfile
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 400 MiB
# Note that we have 400 MiB quota, please use it wisely.
# See https://github.com/pypi/support/issues/3792 .
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 450 MiB
# Note that we have 800 MiB quota, please use it wisely.
# See https://github.com/pypi/support/issues/6326 .
# Please also sync the value with the one in Dockerfile.
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 400))
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 450))
def print_top_10_largest_files(zip_file):

View File

@ -8,7 +8,8 @@ template = """<!DOCTYPE html>
<html>
<body>
<h1>Links for vLLM</h1/>
<a href="../{wheel_html_escaped}">{wheel}</a><br/>
<a href="../{x86_wheel_html_escaped}">{x86_wheel}</a><br/>
<a href="../{arm_wheel_html_escaped}">{arm_wheel}</a><br/>
</body>
</html>
"""
@ -21,7 +22,25 @@ filename = os.path.basename(args.wheel)
with open("index.html", "w") as f:
print(f"Generated index.html for {args.wheel}")
# sync the abi tag with .buildkite/scripts/upload-wheels.sh
if "x86_64" in filename:
x86_wheel = filename
arm_wheel = filename.replace("x86_64", "aarch64").replace(
"manylinux1", "manylinux2014"
)
elif "aarch64" in filename:
x86_wheel = filename.replace("aarch64", "x86_64").replace(
"manylinux2014", "manylinux1"
)
arm_wheel = filename
else:
raise ValueError(f"Unsupported wheel: {filename}")
# cloudfront requires escaping the '+' character
f.write(
template.format(wheel=filename, wheel_html_escaped=filename.replace("+", "%2B"))
template.format(
x86_wheel=x86_wheel,
x86_wheel_html_escaped=x86_wheel.replace("+", "%2B"),
arm_wheel=arm_wheel,
arm_wheel_html_escaped=arm_wheel.replace("+", "%2B"),
)
)

View File

@ -1,12 +0,0 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m HandH1998/QQQ-Llama-3-8b-g128 -b 32 -l 1000 -f 5 -t 1
model_name: "HandH1998/QQQ-Llama-3-8b-g128"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.419
- name: "exact_match,flexible-extract"
value: 0.416
limit: 1000
num_fewshot: 5

View File

@ -3,4 +3,3 @@ Meta-Llama-3-70B-Instruct.yaml
Mixtral-8x7B-Instruct-v0.1.yaml
Qwen2-57B-A14-Instruct.yaml
DeepSeek-V2-Lite-Chat.yaml
Meta-Llama-3-8B-QQQ.yaml

View File

@ -2,7 +2,7 @@
# We can use this script to compute baseline accuracy on GSM for transformers.
#
# Make sure you have lm-eval-harness installed:
# pip install lm-eval==0.4.4
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d#egg=lm-eval[api]
usage() {
echo``

View File

@ -3,7 +3,7 @@
# We use this for fp8, which HF does not support.
#
# Make sure you have lm-eval-harness installed:
# pip install lm-eval==0.4.4
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d#egg=lm-eval[api]
usage() {
echo``

View File

@ -141,7 +141,7 @@ When run, benchmark script generates results under `benchmark/results` folder, a
`compare-json-results.py` compares two `benchmark_results.json` files and provides performance ratio e.g. for Output Tput, Median TTFT and Median TPOT.
If only one benchmark_results.json is passed, `compare-json-results.py` compares different TP and PP configurations in the benchmark_results.json instead.
Here is an example using the script to compare result_a and result_b with Model, Dataset name, input/output lenght, max concurrency and qps.
Here is an example using the script to compare result_a and result_b with Model, Dataset name, input/output length, max concurrency and qps.
`python3 compare-json-results.py -f results_a/benchmark_results.json -f results_b/benchmark_results.json`
| | Model | Dataset Name | Input Len | Output Len | # of max concurrency | qps | results_a/benchmark_results.json | results_b/benchmark_results.json | perf_ratio |

View File

@ -17,7 +17,7 @@ Latest reproduction guilde: [github issue link](https://github.com/vllm-project/
- SGLang: `lmsysorg/sglang:v0.3.2-cu121`
- LMDeploy: `openmmlab/lmdeploy:v0.6.1-cu12`
- TensorRT-LLM: `nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3`
- *NOTE: we uses r24.07 as the current implementation only works for this version. We are going to bump this up.*
- *NOTE: we use r24.07 as the current implementation only works for this version. We are going to bump this up.*
- Check [nightly-pipeline.yaml](nightly-pipeline.yaml) for the concrete docker images, specs and commands we use for the benchmark.
- Hardware
- 8x Nvidia A100 GPUs

View File

@ -3,44 +3,129 @@
import argparse
import json
import os
from importlib import util
import pandas as pd
plotly_found = util.find_spec("plotly.express") is not None
def compare_data_columns(
files, name_column, data_column, info_cols, drop_column, debug=False
):
print("\ncompare_data_column: " + data_column)
"""
Align concatenation by keys derived from info_cols instead of row order.
- Pick one canonical key list: subset of info_cols present in ALL files.
- For each file: set index to those keys, aggregate duplicates
- (mean for metric, first for names).
- Concat along axis=1 (indexes align), then reset_index so callers can
- group by columns.
- If --debug, add a <file_label>_name column per file.
"""
print("\ncompare_data_column:", data_column)
frames = []
raw_data_cols = []
compare_frames = []
# 1) choose a canonical key list from info_cols that exists in ALL files
cols_per_file = []
for f in files:
try:
df_tmp = pd.read_json(f, orient="records")
except Exception as err:
raise ValueError(f"Failed to read {f}") from err
cols_per_file.append(set(df_tmp.columns))
key_cols = [c for c in info_cols if all(c in cset for cset in cols_per_file)]
if not key_cols:
# soft fallback: use any info_cols present in the first file
key_cols = [c for c in info_cols if c in list(cols_per_file[0])]
if not key_cols:
raise ValueError(
"No common key columns found from info_cols across the input files."
)
# 2) build a single "meta" block (keys as columns) once, aligned by the key index
meta_added = False
for file in files:
data_df = pd.read_json(file)
serving_df = data_df.dropna(subset=[drop_column], ignore_index=True)
# Show all info columns in the first couple columns
if not frames:
for col in info_cols:
if col not in serving_df.columns:
print(f"Skipping missing column: {col}")
continue
frames.append(serving_df[col])
# only show test name under debug mode
if debug is True:
serving_df = serving_df.rename(columns={name_column: file + "_name"})
frames.append(serving_df[file + "_name"])
df = pd.read_json(file, orient="records")
file = "/".join(file.split("/")[:-1])
serving_df = serving_df.rename(columns={data_column: file})
frames.append(serving_df[file])
raw_data_cols.append(file)
compare_frames.append(serving_df[file])
# Keep rows that actually have the compared metric (same as original behavior)
if drop_column in df.columns:
df = df.dropna(subset=[drop_column], ignore_index=True)
# Stabilize numeric key columns (harmless if missing)
for c in (
"Input Len",
"Output Len",
"TP Size",
"PP Size",
"# of max concurrency.",
"qps",
):
if c in df.columns:
df[c] = pd.to_numeric(df[c], errors="coerce")
# Ensure all key columns exist
for c in key_cols:
if c not in df.columns:
df[c] = pd.NA
# Set index = key_cols and aggregate duplicates → unique MultiIndex
df_idx = df.set_index(key_cols, drop=False)
# meta (key columns), unique per key
meta = df_idx[key_cols]
if not meta.index.is_unique:
meta = meta.groupby(level=key_cols, dropna=False).first()
# metric series for this file, aggregated to one row per key
file_label = "/".join(file.split("/")[:-1]) or os.path.basename(file)
s = df_idx[data_column]
if not s.index.is_unique:
s = s.groupby(level=key_cols, dropna=False).mean()
s.name = file_label # column label like original
# add meta once (from first file) so keys are the leftmost columns
if not meta_added:
frames.append(meta)
meta_added = True
# (NEW) debug: aligned test-name column per file
if debug and name_column in df_idx.columns:
name_s = df_idx[name_column]
if not name_s.index.is_unique:
name_s = name_s.groupby(level=key_cols, dropna=False).first()
name_s.name = f"{file_label}_name"
frames.append(name_s)
frames.append(s)
raw_data_cols.append(file_label)
compare_frames.append(s)
# Generalize ratio: for any file N>=2, add ratio (fileN / file1)
if len(compare_frames) >= 2:
# Compare numbers among two files
ratio_df = compare_frames[1] / compare_frames[0]
frames.append(ratio_df)
compare_frames.pop(1)
base = compare_frames[0]
current = compare_frames[-1]
ratio = current / base
ratio = ratio.mask(base == 0) # avoid inf when baseline is 0
ratio.name = f"Ratio 1 vs {len(compare_frames)}"
frames.append(ratio)
# 4) concat on columns with aligned MultiIndex;
# then reset_index to return keys as columns
concat_df = pd.concat(frames, axis=1)
concat_df = concat_df.reset_index(drop=True).reset_index()
if "index" in concat_df.columns:
concat_df = concat_df.drop(columns=["index"])
# Ensure key/info columns appear first (in your info_cols order)
front = [c for c in info_cols if c in concat_df.columns]
rest = [c for c in concat_df.columns if c not in front]
concat_df = concat_df[front + rest]
print(raw_data_cols)
return concat_df, raw_data_cols
@ -67,6 +152,15 @@ def split_json_by_tp_pp(
df = pd.DataFrame(data)
# Keep only "serving" tests
name_col = next(
(c for c in ["Test name", "test_name", "Test Name"] if c in df.columns), None
)
if name_col:
df = df[
df[name_col].astype(str).str.contains(r"serving", case=False, na=False)
].copy()
# Handle alias column names
rename_map = {
"tp_size": "TP Size",
@ -124,7 +218,7 @@ if __name__ == "__main__":
"--xaxis",
type=str,
default="# of max concurrency.",
help="column name to use as X Axis in comparision graph",
help="column name to use as X Axis in comparison graph",
)
args = parser.parse_args()
@ -181,7 +275,6 @@ if __name__ == "__main__":
f"Expected subset: {filtered_info_cols}, "
f"but DataFrame has: {list(output_df.columns)}"
)
output_df_sorted = output_df.sort_values(by=existing_group_cols)
output_groups = output_df_sorted.groupby(existing_group_cols, dropna=False)
for name, group in output_groups:
@ -189,8 +282,7 @@ if __name__ == "__main__":
text_file.write(html_msgs_for_data_cols[i])
text_file.write(html)
if plot is True:
import pandas as pd
if plot and plotly_found:
import plotly.express as px
df = group[raw_data_cols]

View File

@ -382,7 +382,7 @@ run_genai_perf_tests() {
client_command="genai-perf profile \
-m $model \
--service-kind openai \
--backend vllm \
--backend "$backend" \
--endpoint-type chat \
--streaming \
--url localhost:$port \

View File

@ -1,6 +1,6 @@
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"test_name": "serving_llama8B_bf16_tp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -32,7 +32,7 @@
}
},
{
"test_name": "serving_llama8B_tp2_sharegpt",
"test_name": "serving_llama8B_bf16_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -64,7 +64,7 @@
}
},
{
"test_name": "serving_llama8B_tp4_sharegpt",
"test_name": "serving_llama8B_bf16_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -96,7 +96,7 @@
}
},
{
"test_name": "serving_llama8B_tp1_random_128_128",
"test_name": "serving_llama8B_bf16_tp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -131,7 +131,7 @@
}
},
{
"test_name": "serving_llama8B_tp2_random_128_128",
"test_name": "serving_llama8B_bf16_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -166,7 +166,7 @@
}
},
{
"test_name": "serving_llama8B_tp4_random_128_128",
"test_name": "serving_llama8B_bf16_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -198,5 +198,413 @@
"random-output-len": 128,
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
}
]

View File

@ -1,6 +1,6 @@
[
{
"test_name": "serving_llama8B_pp1_sharegpt",
"test_name": "serving_llama8B_bf16_pp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -32,7 +32,39 @@
}
},
{
"test_name": "serving_llama8B_pp3_sharegpt",
"test_name": "serving_llama8B_bf16_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_bf16_pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -64,7 +96,7 @@
}
},
{
"test_name": "serving_llama8B_tp2pp3_sharegpt",
"test_name": "serving_llama8B_bf16_tp2pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -97,7 +129,7 @@
}
},
{
"test_name": "serving_llama8B_pp1_random_128_128",
"test_name": "serving_llama8B_bf16_pp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -132,7 +164,42 @@
}
},
{
"test_name": "serving_llama8B_pp3_random_128_128",
"test_name": "serving_llama8B_bf16_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_bf16_pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -167,7 +234,7 @@
}
},
{
"test_name": "serving_llama8B_tp2pp3_random_128_128",
"test_name": "serving_llama8B_bf16_tp2pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -201,5 +268,553 @@
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_pp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp2pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_pp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp2pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_pp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp2pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_pp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp2pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
}
]

View File

@ -1,21 +1,24 @@
steps:
# aarch64 + CUDA builds
- label: "Build arm64 wheel - CUDA 12.8"
id: build-wheel-arm64-cuda-12-8
# aarch64 + CUDA builds. PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
- label: "Build arm64 wheel - CUDA 12.9"
id: build-wheel-arm64-cuda-12-9
agents:
queue: arm64_cpu_queue_postmerge
commands:
# #NOTE: torch_cuda_arch_list is derived from upstream PyTorch build files here:
# https://github.com/pytorch/pytorch/blob/main/.ci/aarch64_linux/aarch64_ci_build.sh#L7
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
# x86 + CUDA builds
- block: "Build CUDA 12.8 wheel"
key: block-build-cu128-wheel
- label: "Build wheel - CUDA 12.8"
depends_on: block-build-cu128-wheel
id: build-wheel-cuda-12-8
agents:
queue: cpu_queue_postmerge
@ -27,7 +30,12 @@ steps:
env:
DOCKER_BUILDKIT: "1"
- block: "Build CUDA 12.6 wheel"
key: block-build-cu126-wheel
depends_on: ~
- label: "Build wheel - CUDA 12.6"
depends_on: block-build-cu126-wheel
id: build-wheel-cuda-12-6
agents:
queue: cpu_queue_postmerge
@ -39,44 +47,63 @@ steps:
env:
DOCKER_BUILDKIT: "1"
# Note(simon): We can always build CUDA 11.8 wheel to ensure the build is working.
# However, this block can be uncommented to save some compute hours.
# - block: "Build CUDA 11.8 wheel"
# key: block-build-cu118-wheel
- label: "Build wheel - CUDA 11.8"
# depends_on: block-build-cu118-wheel
id: build-wheel-cuda-11-8
# x86 + CUDA builds
- label: "Build wheel - CUDA 12.9"
depends_on: ~
id: build-wheel-cuda-12-9
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
- block: "Build release image"
- label: "Build release image (x86)"
depends_on: ~
key: block-release-image-build
- label: "Build release image"
depends_on: block-release-image-build
id: build-release-image
id: build-release-image-x86
agents:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
# re-tag to default image tag and push, just in case arm64 build fails
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
# PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
- label: "Build release image (arm64)"
depends_on: ~
id: build-release-image-arm64
agents:
queue: arm64_cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
# Add job to create multi-arch manifest
- label: "Create multi-arch manifest"
depends_on:
- build-release-image-x86
- build-release-image-arm64
id: create-multi-arch-manifest
agents:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "docker manifest create public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-x86_64 public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-aarch64 --amend"
- "docker manifest push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- label: "Annotate release workflow"
depends_on:
- build-release-image
- create-multi-arch-manifest
- build-wheel-cuda-12-8
- build-wheel-cuda-12-6
- build-wheel-cuda-11-8
- build-wheel-cuda-12-9
id: annotate-release-workflow
agents:
queue: cpu_queue_postmerge
@ -123,18 +150,24 @@ steps:
env:
DOCKER_BUILDKIT: "1"
- block: "Build Neuron release image"
key: block-neuron-release-image-build
depends_on: ~
- label: "Build and publish Neuron release image"
depends_on: block-neuron-release-image-build
- label: "Build and publish nightly multi-arch image to DockerHub"
depends_on:
- create-multi-arch-manifest
if: build.env("NIGHTLY") == "1"
agents:
queue: neuron-postmerge
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest --progress plain -f docker/Dockerfile.neuron ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest"
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version)"
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly"
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
- "docker push vllm/vllm-openai:nightly"
- "docker push vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
# Clean up old nightly builds (keep only last 14)
- "bash .buildkite/scripts/cleanup-nightly-builds.sh"
plugins:
- docker-login#v3.0.0:
username: vllmbot
password-env: DOCKERHUB_TOKEN
env:
DOCKER_BUILDKIT: "1"

View File

@ -0,0 +1,97 @@
#!/bin/bash
set -ex
# Clean up old nightly builds from DockerHub, keeping only the last 14 builds
# This script uses DockerHub API to list and delete old tags with "nightly-" prefix
# DockerHub API endpoint for vllm/vllm-openai repository
REPO_API_URL="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags"
# Get DockerHub token from environment
if [ -z "$DOCKERHUB_TOKEN" ]; then
echo "Error: DOCKERHUB_TOKEN environment variable is not set"
exit 1
fi
# Function to get all tags from DockerHub
get_all_tags() {
local page=1
local all_tags=""
while true; do
local response=$(curl -s -H "Authorization: Bearer $DOCKERHUB_TOKEN" \
"$REPO_API_URL?page=$page&page_size=100")
# Get both last_updated timestamp and tag name, separated by |
local tags=$(echo "$response" | jq -r '.results[] | select(.name | startswith("nightly-")) | "\(.last_updated)|\(.name)"')
if [ -z "$tags" ]; then
break
fi
all_tags="$all_tags$tags"$'\n'
page=$((page + 1))
done
# Sort by timestamp (newest first) and extract just the tag names
echo "$all_tags" | sort -r | cut -d'|' -f2
}
delete_tag() {
local tag_name="$1"
echo "Deleting tag: $tag_name"
local delete_url="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags/$tag_name"
local response=$(curl -s -X DELETE -H "Authorization: Bearer $DOCKERHUB_TOKEN" "$delete_url")
if echo "$response" | jq -e '.detail' > /dev/null 2>&1; then
echo "Warning: Failed to delete tag $tag_name: $(echo "$response" | jq -r '.detail')"
else
echo "Successfully deleted tag: $tag_name"
fi
}
# Get all nightly- prefixed tags, sorted by last_updated timestamp (newest first)
echo "Fetching all tags from DockerHub..."
all_tags=$(get_all_tags)
if [ -z "$all_tags" ]; then
echo "No tags found to clean up"
exit 0
fi
# Count total tags
total_tags=$(echo "$all_tags" | wc -l)
echo "Found $total_tags tags"
# Keep only the last 14 builds (including the current one)
tags_to_keep=14
tags_to_delete=$((total_tags - tags_to_keep))
if [ $tags_to_delete -le 0 ]; then
echo "No tags need to be deleted (only $total_tags tags found, keeping $tags_to_keep)"
exit 0
fi
echo "Will delete $tags_to_delete old tags, keeping the newest $tags_to_keep"
# Get tags to delete (skip the first $tags_to_keep tags)
tags_to_delete_list=$(echo "$all_tags" | tail -n +$((tags_to_keep + 1)))
if [ -z "$tags_to_delete_list" ]; then
echo "No tags to delete"
exit 0
fi
# Delete old tags
echo "Deleting old tags..."
while IFS= read -r tag; do
if [ -n "$tag" ]; then
delete_tag "$tag"
# Add a small delay to avoid rate limiting
sleep 1
fi
done <<< "$tags_to_delete_list"
echo "Cleanup completed successfully"

View File

@ -164,7 +164,6 @@ if [[ $commands == *" entrypoints/llm "* ]]; then
--ignore=entrypoints/llm/test_chat.py \
--ignore=entrypoints/llm/test_accuracy.py \
--ignore=entrypoints/llm/test_init.py \
--ignore=entrypoints/llm/test_generate_multiple_loras.py \
--ignore=entrypoints/llm/test_prompt_validation.py "}
fi

View File

@ -25,8 +25,8 @@ numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$NUMA_NODE
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$NUMA_NODE"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
# Run the image, setting --shm-size=4g for tensor parallel.
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE"-avx2 cpu-test-"$NUMA_NODE"-avx2
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=16 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=16 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE"-avx2 cpu-test-"$NUMA_NODE"-avx2
function cpu_tests() {
set -e
@ -46,21 +46,26 @@ function cpu_tests() {
set -e
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
# Run kernel tests
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -x -v -s tests/kernels/test_onednn.py"
# Run basic model test
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
# Note: disable until supports V1
# pytest -v -s tests/kernels/attention/test_cache.py -m cpu_model
# pytest -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
# pytest -x -v -s tests/kernels/attention/test_cache.py -m cpu_model
# pytest -x -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
# Note: disable Bart until supports V1
pytest -v -s tests/models/language/generation -m cpu_model \
pytest -x -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
VLLM_CPU_SGL_KERNEL=1 pytest -v -s tests/models/language/generation -m cpu_model \
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
pytest -v -s tests/models/language/pooling -m cpu_model
pytest -v -s tests/models/multimodal/generation \
pytest -x -v -s tests/models/language/pooling -m cpu_model
pytest -x -v -s tests/models/multimodal/generation \
--ignore=tests/models/multimodal/generation/test_mllama.py \
--ignore=tests/models/multimodal/generation/test_pixtral.py \
-m cpu_model"
@ -68,35 +73,51 @@ function cpu_tests() {
# Run compressed-tensor test
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
pytest -x -s -v \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
# Note: disable it until supports V1
# Run AWQ test
# docker exec cpu-test-"$NUMA_NODE" bash -c "
# set -e
# VLLM_USE_V1=0 pytest -s -v \
# VLLM_USE_V1=0 pytest -x -s -v \
# tests/quantization/test_ipex_quant.py"
# Run multi-lora tests
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
pytest -x -s -v \
tests/lora/test_qwen2vl.py"
# online serving
# online serving: tp+pp
docker exec cpu-test-"$NUMA_NODE" bash -c '
set -e
VLLM_CPU_OMP_THREADS_BIND=$E2E_OMP_THREADS VLLM_CPU_SGL_KERNEL=1 vllm serve meta-llama/Llama-3.2-3B-Instruct -tp=2 -pp=2 &
server_pid=$!
timeout 600 bash -c "until curl localhost:8000/v1/models; do sleep 1; done" || exit 1
vllm bench serve \
--backend vllm \
--dataset-name random \
--model meta-llama/Llama-3.2-3B-Instruct \
--num-prompts 20 \
--endpoint /v1/completions'
--endpoint /v1/completions
kill -s SIGTERM $server_pid &'
# online serving: tp+dp
docker exec cpu-test-"$NUMA_NODE" bash -c '
set -e
VLLM_CPU_OMP_THREADS_BIND=$E2E_OMP_THREADS VLLM_CPU_SGL_KERNEL=1 vllm serve meta-llama/Llama-3.2-3B-Instruct -tp=2 -dp=2 &
server_pid=$!
timeout 600 bash -c "until curl localhost:8000/v1/models; do sleep 1; done" || exit 1
vllm bench serve \
--backend vllm \
--dataset-name random \
--model meta-llama/Llama-3.2-3B-Instruct \
--num-prompts 20 \
--endpoint /v1/completions
kill -s SIGTERM $server_pid &'
}
# All of CPU tests are expected to be finished less than 40 mins.
export -f cpu_tests
timeout 1.5h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
timeout 2h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"

View File

@ -1,64 +0,0 @@
#!/bin/bash
# This script build the Neuron docker image and run the API server inside the container.
# It serves a sanity check for compilation and basic model usage.
set -e
set -v
image_name="neuron/vllm-ci"
container_name="neuron_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
HF_CACHE="$(realpath ~)/huggingface"
mkdir -p "${HF_CACHE}"
HF_MOUNT="/root/.cache/huggingface"
HF_TOKEN=$(aws secretsmanager get-secret-value --secret-id "ci/vllm-neuron/hf-token" --region us-west-2 --query 'SecretString' --output text | jq -r .VLLM_NEURON_CI_HF_TOKEN)
NEURON_COMPILE_CACHE_URL="$(realpath ~)/neuron_compile_cache"
mkdir -p "${NEURON_COMPILE_CACHE_URL}"
NEURON_COMPILE_CACHE_MOUNT="/root/.cache/neuron_compile_cache"
# Try building the docker image
aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws
# prune old image and containers to save disk space, and only once a day
# by using a timestamp file in tmp.
if [ -f /tmp/neuron-docker-build-timestamp ]; then
last_build=$(cat /tmp/neuron-docker-build-timestamp)
current_time=$(date +%s)
if [ $((current_time - last_build)) -gt 86400 ]; then
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes / force the system prune for old images as well.
docker volume prune -f && docker system prune -f
echo "$current_time" > /tmp/neuron-docker-build-timestamp
fi
else
date "+%s" > /tmp/neuron-docker-build-timestamp
fi
docker build -t "${image_name}" -f docker/Dockerfile.neuron .
# Setup cleanup
remove_docker_container() {
docker image rm -f "${image_name}" || true;
}
trap remove_docker_container EXIT
# Run the image
docker run --rm -it --device=/dev/neuron0 --network bridge \
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
-e "HF_TOKEN=${HF_TOKEN}" \
-v "${NEURON_COMPILE_CACHE_URL}:${NEURON_COMPILE_CACHE_MOUNT}" \
-e "NEURON_COMPILE_CACHE_URL=${NEURON_COMPILE_CACHE_MOUNT}" \
--name "${container_name}" \
${image_name} \
/bin/bash -c "
set -e; # Exit on first error
python3 /workspace/vllm/examples/offline_inference/neuron.py;
python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys;
for f in /workspace/vllm/tests/neuron/2_core/*.py; do
echo \"Running test file: \$f\";
python3 -m pytest \$f -v --capture=tee-sys;
done
"

View File

@ -61,7 +61,7 @@ echo "Results will be stored in: $RESULTS_DIR"
echo "--- Installing Python dependencies ---"
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
&& python3 -m pip install --progress-bar off hf-transfer
echo "--- Python dependencies installed ---"
export VLLM_USE_V1=1

View File

@ -61,7 +61,7 @@ echo "Results will be stored in: $RESULTS_DIR"
echo "--- Installing Python dependencies ---"
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
&& python3 -m pip install --progress-bar off hf-transfer
echo "--- Python dependencies installed ---"
export VLLM_USE_V1=1

View File

@ -30,9 +30,11 @@ docker run \
bash -c '
set -e
echo $ZE_AFFINITY_MASK
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
VLLM_ATTENTION_BACKEND=TRITON_ATTN_VLLM_V1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
cd tests
pytest -v -s v1/core
pytest -v -s v1/engine

View File

@ -17,7 +17,7 @@ if [ "$disk_usage" -gt "$threshold" ]; then
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes / force the system prune for old images as well.
docker volume prune -f && docker system prune --force --filter "until=72h" --all
docker volume prune -f && docker system prune --force --filter "until=24h" --all
echo "Docker images and volumes cleanup completed."
else
echo "Disk usage is below $threshold%. No cleanup needed."

View File

@ -14,8 +14,19 @@ fi
# Get the single wheel file
wheel="${wheel_files[0]}"
# Rename 'linux' to 'manylinux1' in the wheel filename
new_wheel="${wheel/linux/manylinux1}"
# Detect architecture and rename 'linux' to appropriate manylinux version
arch=$(uname -m)
if [[ $arch == "x86_64" ]]; then
manylinux_version="manylinux1"
elif [[ $arch == "aarch64" ]]; then
manylinux_version="manylinux2014"
else
echo "Warning: Unknown architecture $arch, using manylinux1 as default"
manylinux_version="manylinux1"
fi
# Rename 'linux' to the appropriate manylinux version in the wheel filename
new_wheel="${wheel/linux/$manylinux_version}"
mv -- "$wheel" "$new_wheel"
wheel="$new_wheel"
@ -47,14 +58,15 @@ python3 .buildkite/generate_index.py --wheel "$normal_wheel"
aws s3 cp "$wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu126"* ]]; then
if [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
elif [[ $normal_wheel == *"cu128"* ]]; then
# if $normal_wheel matches cu128, do not upload the index.html
echo "Skipping index files for cu128 wheels"
else
# only upload index.html for cu128 wheels (default wheels)
# only upload index.html for cu129 wheels (default wheels) as it
# is available on both x86 and arm64
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
fi
@ -63,14 +75,15 @@ fi
aws s3 cp "$wheel" "s3://vllm-wheels/nightly/"
aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu126"* ]]; then
if [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
elif [[ $normal_wheel == *"cu128"* ]]; then
# if $normal_wheel matches cu128, do not upload the index.html
echo "Skipping index files for cu128 wheels"
else
# only upload index.html for cu128 wheels (default wheels)
# only upload index.html for cu129 wheels (default wheels) as it
# is available on both x86 and arm64
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
fi

View File

@ -41,7 +41,8 @@ steps:
commands:
- bash standalone_tests/pytorch_nightly_dependency.sh
- label: Async Engine, Inputs, Utils, Worker Test # 24min
- label: Async Engine, Inputs, Utils, Worker Test # 36min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -63,7 +64,8 @@ steps:
- pytest -v -s utils_ # Utils
- pytest -v -s worker # Worker
- label: Python-only Installation Test
- label: Python-only Installation Test # 10min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- tests/standalone_tests/python_only_compile.sh
@ -71,7 +73,8 @@ steps:
commands:
- bash standalone_tests/python_only_compile.sh
- label: Basic Correctness Test # 30min
- label: Basic Correctness Test # 20min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
fast_check: true
torch_nightly: true
@ -88,7 +91,8 @@ steps:
- pytest -v -s basic_correctness/test_cpu_offload.py
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Core Test # 10min
- label: Core Test # 22min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental]
fast_check: true
source_file_dependencies:
@ -98,7 +102,8 @@ steps:
commands:
- pytest -v -s core
- label: Entrypoints Test (LLM) # 40min
- label: Entrypoints Test (LLM) # 30min
timeout_in_minutes: 40
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
fast_check: true
@ -109,13 +114,13 @@ steps:
- tests/entrypoints/offline_mode
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_collective_rpc.py
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Entrypoints Test (API Server) # 40min
- label: Entrypoints Test (API Server) # 100min
timeout_in_minutes: 130
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
fast_check: true
@ -126,10 +131,12 @@ steps:
- tests/entrypoints/test_chat_utils
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_tensorizer_entrypoint.py --ignore=entrypoints/openai/correctness/
- PYTHONPATH=/vllm-workspace pytest -v -s entrypoints/openai/test_collective_rpc.py # PYTHONPATH is needed to import custom Worker extension
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_tensorizer_entrypoint.py --ignore=entrypoints/openai/correctness/ --ignore=entrypoints/openai/test_collective_rpc.py
- pytest -v -s entrypoints/test_chat_utils.py
- label: Distributed Tests (4 GPUs) # 10min
- label: Distributed Tests (4 GPUs) # 35min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
@ -172,7 +179,8 @@ steps:
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
- popd
- label: EPLB Algorithm Test
- label: EPLB Algorithm Test # 5min
timeout_in_minutes: 15
working_dir: "/vllm-workspace/tests"
source_file_dependencies:
- vllm/distributed/eplb
@ -181,6 +189,7 @@ steps:
- pytest -v -s distributed/test_eplb_algo.py
- label: EPLB Execution Test # 5min
timeout_in_minutes: 15
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
@ -189,7 +198,8 @@ steps:
commands:
- pytest -v -s distributed/test_eplb_execute.py
- label: Metrics, Tracing Test # 10min
- label: Metrics, Tracing Test # 12min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
num_gpus: 2
source_file_dependencies:
@ -208,7 +218,8 @@ steps:
##### fast check tests #####
##### 1 GPU test #####
- label: Regression Test # 5min
- label: Regression Test # 7min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -218,7 +229,8 @@ steps:
- pytest -v -s test_regression.py
working_dir: "/vllm-workspace/tests" # optional
- label: Engine Test # 10min
- label: Engine Test # 25min
timeout_in_minutes: 40
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -233,7 +245,29 @@ steps:
# OOM in the CI unless we run this separately
- pytest -v -s tokenization
- label: V1 Test
- label: V1 Test e2e + engine # 30min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/v1
commands:
# TODO: accuracy does not match, whether setting
# VLLM_USE_FLASHINFER_SAMPLER or not on H100.
- pytest -v -s v1/e2e
- pytest -v -s v1/engine
- label: V1 Test entrypoints # 35min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/v1
commands:
- pytest -v -s v1/entrypoints
- label: V1 Test others # 42min
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -241,8 +275,7 @@ steps:
commands:
# split the test to avoid interference
- pytest -v -s v1/core
- pytest -v -s v1/engine
- pytest -v -s v1/entrypoints
- pytest -v -s v1/executor
- pytest -v -s v1/sample
- pytest -v -s v1/logits_processors
- pytest -v -s v1/worker
@ -254,14 +287,12 @@ steps:
- pytest -v -s v1/test_utils.py
- pytest -v -s v1/test_oracle.py
- pytest -v -s v1/test_metrics_reader.py
# TODO: accuracy does not match, whether setting
# VLLM_USE_FLASHINFER_SAMPLER or not on H100.
- pytest -v -s v1/e2e
# Integration test for streaming correctness (requires special branch).
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
- label: Examples Test # 25min
- label: Examples Test # 30min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/examples"
source_file_dependencies:
@ -286,7 +317,8 @@ steps:
- python3 offline_inference/basic/score.py
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
- label: Platform Tests (CUDA)
- label: Platform Tests (CUDA) # 4min
timeout_in_minutes: 15
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -294,7 +326,8 @@ steps:
commands:
- pytest -v -s cuda/test_cuda_context.py
- label: Samplers Test # 36min
- label: Samplers Test # 56min
timeout_in_minutes: 75
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor/layers
@ -305,15 +338,23 @@ steps:
- pytest -v -s samplers
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
- label: LoRA Test %N # 15min each
- label: LoRA Test %N # 20min each
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/lora
- tests/lora
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py
commands:
- pytest -v -s lora \
--shard-id=$$BUILDKITE_PARALLEL_JOB \
--num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT \
--ignore=lora/test_chatglm3_tp.py \
--ignore=lora/test_llama_tp.py \
--ignore=lora/test_llm_with_multi_loras.py
parallelism: 4
- label: PyTorch Compilation Unit Tests
- label: PyTorch Compilation Unit Tests # 15min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -327,8 +368,10 @@ steps:
- pytest -v -s compile/test_sequence_parallelism.py
- pytest -v -s compile/test_async_tp.py
- pytest -v -s compile/test_fusion_all_reduce.py
- pytest -v -s compile/test_decorator.py
- label: PyTorch Fullgraph Smoke Test # 9min
- label: PyTorch Fullgraph Smoke Test # 15min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -340,8 +383,10 @@ steps:
- pytest -v -s compile/piecewise/test_simple.py
- pytest -v -s compile/piecewise/test_toy_llama.py
- pytest -v -s compile/piecewise/test_full_cudagraph.py
- pytest -v -s compile/piecewise/test_multiple_graphs.py
- label: PyTorch Fullgraph Test # 18min
- label: PyTorch Fullgraph Test # 20min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -350,7 +395,8 @@ steps:
commands:
- pytest -v -s compile/test_full_graph.py
- label: Kernels Core Operation Test
- label: Kernels Core Operation Test # 48min
timeout_in_minutes: 75
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/
@ -358,7 +404,8 @@ steps:
commands:
- pytest -v -s kernels/core
- label: Kernels Attention Test %N
- label: Kernels Attention Test %N # 23min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/attention/
@ -369,7 +416,8 @@ steps:
- pytest -v -s kernels/attention --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels Quantization Test %N
- label: Kernels Quantization Test %N # 64min
timeout_in_minutes: 90
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/quantization/
@ -379,18 +427,21 @@ steps:
- pytest -v -s kernels/quantization --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels MoE Test %N
- label: Kernels MoE Test %N # 40min
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/quantization/cutlass_w8a8/moe/
- csrc/moe/
- tests/kernels/moe
- vllm/model_executor/layers/fused_moe/
- vllm/distributed/device_communicators/
commands:
- pytest -v -s kernels/moe --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels Mamba Test
- label: Kernels Mamba Test # 31min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/mamba/
@ -398,7 +449,8 @@ steps:
commands:
- pytest -v -s kernels/mamba
- label: Tensorizer Test # 11min
- label: Tensorizer Test # 14min
timeout_in_minutes: 25
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor/model_loader
@ -410,7 +462,8 @@ steps:
- pytest -v -s tensorizer_loader
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
- label: Model Executor Test
- label: Model Executor Test # 7min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor
@ -420,7 +473,8 @@ steps:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s model_executor
- label: Benchmarks # 9min
- label: Benchmarks # 11min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/.buildkite"
source_file_dependencies:
@ -428,7 +482,8 @@ steps:
commands:
- bash scripts/run-benchmarks.sh
- label: Benchmarks CLI Test # 10min
- label: Benchmarks CLI Test # 7min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -436,7 +491,8 @@ steps:
commands:
- pytest -v -s benchmarks/
- label: Quantization Test
- label: Quantization Test # 70min
timeout_in_minutes: 90
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/
@ -444,21 +500,21 @@ steps:
- tests/quantization
commands:
# temporary install here since we need nightly, will move to requirements/test.in
# after torchao 0.12 release
- pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
# after torchao 0.12 release, and pin a working version of torchao nightly here
- pip install --pre torchao==0.13.0.dev20250814 --index-url https://download.pytorch.org/whl/nightly/cu128
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
- label: LM Eval Small Models # 53min
timeout_in_minutes: 75
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
- label: OpenAI API correctness
- label: OpenAI API correctness # 22min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/
@ -467,7 +523,8 @@ steps:
commands: # LMEval+Transcription WER check
- pytest -s entrypoints/openai/correctness/
- label: Encoder Decoder tests # 5min
- label: Encoder Decoder tests # 12min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -475,7 +532,8 @@ steps:
commands:
- pytest -v -s encoder_decoder
- label: OpenAI-Compatible Tool Use # 20 min
- label: OpenAI-Compatible Tool Use # 23 min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental]
fast_check: false
source_file_dependencies:
@ -488,7 +546,8 @@ steps:
##### models test #####
- label: Basic Models Test # 24min
- label: Basic Models Test # 57min
timeout_in_minutes: 75
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -501,7 +560,8 @@ steps:
- pytest -v -s models/test_vision.py
- pytest -v -s models/test_initialization.py
- label: Language Models Test (Standard)
- label: Language Models Test (Standard) # 35min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -512,6 +572,7 @@ steps:
- pytest -v -s models/language -m core_model
- label: Language Models Test (Hybrid) # 35 min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -524,7 +585,8 @@ steps:
- uv pip install --system --no-build-isolation 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.2'
- pytest -v -s models/language/generation -m hybrid_model
- label: Language Models Test (Extended Generation) # 1hr20min
- label: Language Models Test (Extended Generation) # 80min
timeout_in_minutes: 110
mirror_hardwares: [amdexperimental]
optional: true
source_file_dependencies:
@ -536,6 +598,7 @@ steps:
- pytest -v -s models/language/generation -m '(not core_model) and (not hybrid_model)'
- label: Language Models Test (Extended Pooling) # 36min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
optional: true
source_file_dependencies:
@ -544,7 +607,17 @@ steps:
commands:
- pytest -v -s models/language/pooling -m 'not core_model'
- label: Multi-Modal Models Test (Standard)
- label: Multi-Modal Processor Test # 44min
timeout_in_minutes: 60
source_file_dependencies:
- vllm/
- tests/models/multimodal
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal/processing
- label: Multi-Modal Models Test (Standard) # 60min
timeout_in_minutes: 80
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -553,9 +626,7 @@ steps:
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pip freeze | grep -E 'torch'
- pytest -v -s models/multimodal/processing
- pytest -v -s --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/test_tensor_schema.py models/multimodal -m core_model
- pytest -v -s models/multimodal/test_tensor_schema.py -m core_model # Needs mp_method="spawn"
- pytest -v -s models/multimodal -m core_model --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/processing
- cd .. && pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
- label: Multi-Modal Models Test (Extended) 1
@ -566,7 +637,7 @@ steps:
- tests/models/multimodal
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s --ignore models/multimodal/generation/test_common.py --ignore models/multimodal/processing models/multimodal -m 'not core_model'
- pytest -v -s models/multimodal -m 'not core_model' --ignore models/multimodal/generation/test_common.py --ignore models/multimodal/processing
- label: Multi-Modal Models Test (Extended) 2
mirror_hardwares: [amdexperimental]
@ -588,7 +659,8 @@ steps:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=1) and not core_model'
- label: Quantized Models Test
- label: Quantized Models Test # 45 min
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor/layers/quantization
@ -618,7 +690,8 @@ steps:
- python3 examples/offline_inference/audio_language.py --model-type whisper
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
- label: Blackwell Test
- label: Blackwell Test # 38 min
timeout_in_minutes: 60
working_dir: "/vllm-workspace/"
gpu: b200
# optional: true
@ -629,6 +702,7 @@ steps:
- vllm/model_executor/layers/fused_moe/cutlass_moe.py
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/compilation/fusion.py
- vllm/compilation/fusion_attn.py
@ -643,17 +717,23 @@ steps:
# Quantization
- pytest -v -s tests/kernels/quantization/test_cutlass_scaled_mm.py -k 'fp8'
- pytest -v -s tests/kernels/quantization/test_nvfp4_quant.py
- pytest -v -s tests/kernels/quantization/test_silu_nvfp4_quant_fusion.py
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/quantization/test_flashinfer_scaled_mm.py
- pytest -v -s tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
- pytest -v -s tests/kernels/moe/test_mxfp4_moe.py
# Fusion
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusion_attn.py::test_attention_quant_pattern
- pytest -v -s tests/kernels/moe/test_flashinfer.py
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
##### 1 GPU test #####
##### multi gpus test #####
- label: Distributed Comm Ops Test # 7min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
@ -665,6 +745,7 @@ steps:
- pytest -v -s distributed/test_shm_broadcast.py
- label: 2 Node Tests (4 GPUs in total) # 16min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
@ -688,7 +769,8 @@ steps:
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
- label: Distributed Tests (2 GPUs) # 40min
- label: Distributed Tests (2 GPUs) # 110min
timeout_in_minutes: 150
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
@ -729,6 +811,7 @@ steps:
- pytest -v -s models/multimodal/generation/test_maverick.py
- label: Plugin Tests (2 GPUs) # 40min
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
@ -741,6 +824,11 @@ steps:
- pytest -v -s plugins_tests/test_platform_plugins.py
- pip uninstall vllm_add_dummy_platform -y
# end platform plugin tests
# begin io_processor plugins test, all the code in between uses the prithvi_io_processor plugin
- pip install -e ./plugins/prithvi_io_processor_plugin
- pytest -v -s plugins_tests/test_io_processor_plugins.py
- pip uninstall prithvi_io_processor_plugin -y
# end io_processor plugins test
# other tests continue here:
- pytest -v -s plugins_tests/test_scheduler_plugins.py
- pip install -e ./plugins/vllm_add_dummy_model
@ -749,7 +837,8 @@ steps:
- pytest -v -s models/test_oot_registration.py # it needs a clean process
- pytest -v -s plugins/lora_resolvers # unit tests for in-tree lora resolver plugins
- label: Pipeline Parallelism Test # 45min
- label: Pipeline + Context Parallelism Test # 45min
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
@ -762,8 +851,10 @@ steps:
commands:
- pytest -v -s distributed/test_pp_cudagraph.py
- pytest -v -s distributed/test_pipeline_parallel.py
# - pytest -v -s distributed/test_context_parallel.py # TODO: enable it on Hopper runners or add triton MLA support
- label: LoRA TP Test (Distributed)
- label: LoRA TP Test (Distributed) # 17 min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
num_gpus: 4
source_file_dependencies:
@ -777,13 +868,15 @@ steps:
# requires multi-GPU testing for validation.
- pytest -v -s -x lora/test_chatglm3_tp.py
- pytest -v -s -x lora/test_llama_tp.py
- pytest -v -s -x lora/test_multi_loras_with_tp.py
- pytest -v -s -x lora/test_llm_with_multi_loras.py
- label: Weight Loading Multiple GPU Test # 33min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
num_gpus: 2
optional: true
source_file_dependencies:
- vllm/
- tests/weight_loading
@ -831,3 +924,10 @@ steps:
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
- label: Qwen MoE EP Test # optional
gpu: h200
optional: true
num_gpus: 2
commands:
- CUDA_VISIBLE_DEVICES=1,2 VLLM_ALL2ALL_BACKEND=deepep_high_throughput VLLM_USE_DEEP_GEMM=1 VLLM_LOGGING_LEVEL=DEBUG python3 /vllm-workspace/examples/offline_inference/data_parallel.py --model Qwen/Qwen1.5-MoE-A2.7B --tp-size=1 --dp-size=2 --max-model-len 2048

19
.github/CODEOWNERS vendored
View File

@ -5,13 +5,15 @@
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/core @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/engine/llm_engine.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
/vllm/model_executor/layers/mamba @tdoublep
/vllm/model_executor/model_loader @22quinn
/vllm/multimodal @DarkLight1337 @ywang96
/vllm/v1/sample @22quinn @houseroad
/vllm/vllm_flash_attn @LucasWilkinson
/vllm/lora @jeejeelee
/vllm/reasoning @aarnphm
@ -25,7 +27,8 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
/vllm/v1/structured_output @mgoin @russellb @aarnphm
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
/vllm/v1/spec_decode @benchislett @luccafong
/vllm/v1/attention/backends/triton_attn.py @tdoublep
# Test ownership
@ -67,6 +70,9 @@ mkdocs.yaml @hmellor
/vllm/attention/backends/dual_chunk_flash_attn.py @sighingnow
/vllm/model_executor/models/qwen* @sighingnow
# MTP-specific files
/vllm/model_executor/models/deepseek_mtp.py @luccafong
# Mistral-specific files
/vllm/model_executor/models/mistral*.py @patrickvonplaten
/vllm/model_executor/models/mixtral*.py @patrickvonplaten
@ -79,4 +85,9 @@ mkdocs.yaml @hmellor
/vllm/attention/ops/chunked_prefill_paged_decode.py @tdoublep
/vllm/attention/ops/triton_unified_attention.py @tdoublep
# ROCm related: specify owner with write access to notify AMD folks for careful code review
/docker/Dockerfile.rocm* @gshtras
/vllm/v1/attention/backends/rocm*.py @gshtras
/vllm/v1/attention/backends/mla/rocm*.py @gshtras
/vllm/attention/ops/rocm*.py @gshtras
/vllm/model_executor/layers/fused_moe/rocm*.py @gshtras

View File

@ -7,8 +7,6 @@ PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS (AT THE BOTT
## Test Result
## (Optional) Documentation Update
---
<details>
<summary> Essential Elements of an Effective PR Description Checklist </summary>
@ -17,6 +15,7 @@ PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS (AT THE BOTT
- [ ] The test plan, such as providing test command.
- [ ] The test results, such as pasting the results comparison before and after, or e2e results
- [ ] (Optional) The necessary documentation update, such as updating `supported_models.md` and `examples` for a new model.
- [ ] (Optional) Release notes update. If your change is user facing, please update the release notes draft in the [Google Doc](https://docs.google.com/document/d/1YyVqrgX4gHTtrstbq8oWUImOyPCKSGnJ7xtTpmXzlRs/edit?tab=t.0).
</details>
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing>** (anything written below this line will be removed by GitHub Actions)

14
.github/mergify.yml vendored
View File

@ -273,6 +273,20 @@ pull_request_rules:
users:
- "sangstar"
- name: assign reviewer for modelopt changes
conditions:
- or:
- files~=^vllm/model_executor/layers/quantization/modelopt\.py$
- files~=^vllm/model_executor/layers/quantization/__init__\.py$
- files~=^tests/models/quantization/test_modelopt\.py$
- files~=^tests/quantization/test_modelopt\.py$
- files~=^tests/models/quantization/test_nvfp4\.py$
- files~=^docs/features/quantization/modelopt\.md$
actions:
assign:
users:
- "Edwardf0t1"
- name: remove 'needs-rebase' label when conflict is resolved
conditions:
- -conflict

21
.github/scale-config.yml vendored Normal file
View File

@ -0,0 +1,21 @@
# scale-config.yml:
# Powers what instance types are available for GHA auto-scaled
# runners. Runners listed here will be available as self hosted
# runners, configuration is directly pulled from the main branch.
# runner_types:
# runner_label:
# instance_type: m4.large
# os: linux
# # min_available defaults to the global cfg in the ALI Terraform
# min_available: undefined
# # when max_available value is not defined, no max runners is enforced
# max_available: undefined
# disk_size: 50
# is_ephemeral: true
runner_types:
linux.2xlarge:
disk_size: 150
instance_type: c5.2xlarge
is_ephemeral: true
os: linux

View File

@ -16,7 +16,7 @@ jobs:
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Set up Python
uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0
with:
python-version: '3.12'

309
.github/workflows/issue_autolabel.yml vendored Normal file
View File

@ -0,0 +1,309 @@
name: Label issues based on keywords
on:
issues:
types: [opened, edited, reopened]
permissions:
issues: write # needed so the workflow can add labels
contents: read
concurrency:
group: issue-labeler-${{ github.event.issue.number }}
cancel-in-progress: true
jobs:
add-labels:
runs-on: ubuntu-latest
steps:
- name: Label issues based on keywords
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
with:
script: |
// Configuration: Add new labels and keywords here
const labelConfig = {
rocm: {
// Keyword search - matches whole words only (with word boundaries)
keywords: [
{
term: "composable kernel",
searchIn: "both"
},
{
term: "rccl",
searchIn: "body" // only search in body
},
{
term: "migraphx",
searchIn: "title" // only search in title
},
{
term: "hipgraph",
searchIn: "both"
},
{
term: "ROCm System Management Interface",
searchIn: "body"
},
],
// Substring search - matches anywhere in text (partial matches)
substrings: [
{
term: "VLLM_ROCM_",
searchIn: "both"
},
{
term: "aiter",
searchIn: "title"
},
{
term: "rocm",
searchIn: "title"
},
{
term: "amd",
searchIn: "title"
},
{
term: "hip-",
searchIn: "both"
},
{
term: "gfx",
searchIn: "both"
},
{
term: "cdna",
searchIn: "both"
},
{
term: "rdna",
searchIn: "both"
},
{
term: "torch_hip",
searchIn: "body" // only in body
},
{
term: "_hip",
searchIn: "both"
},
{
term: "hip_",
searchIn: "both"
},
// ROCm tools and libraries
{
term: "hipify",
searchIn: "both"
},
],
// Regex patterns - for complex pattern matching
regexPatterns: [
{
pattern: "\\bmi\\d{3}[a-z]*\\b",
description: "AMD GPU names (mi + 3 digits + optional letters)",
flags: "gi",
searchIn: "both" // "title", "body", or "both"
}
],
},
};
// Helper function to create regex based on search type
function createSearchRegex(term, type) {
// Escape special regex characters in the term
const escapedTerm = term.replace(/[.*+?^${}()|[\]\\]/g, '\\$&');
switch (type) {
case 'keyword':
// Word boundary search - matches whole words only
return new RegExp(`\\b${escapedTerm}\\b`, "gi");
case 'substring':
// Substring search - matches anywhere in the text
return new RegExp(escapedTerm, "gi");
default:
throw new Error(`Unknown search type: ${type}`);
}
}
// Helper function to find matching terms in text with line information
function findMatchingTermsWithLines(text, searchTerms = [], searchType = 'keyword', searchLocation = '') {
const matches = [];
const lines = text.split('\n');
for (const termConfig of searchTerms) {
let regex;
let term, searchIn, pattern, description, flags;
// Handle different input formats (string or object)
if (typeof termConfig === 'string') {
term = termConfig;
searchIn = 'both'; // default
} else {
term = termConfig.term;
searchIn = termConfig.searchIn || 'both';
pattern = termConfig.pattern;
description = termConfig.description;
flags = termConfig.flags;
}
// Skip if this term shouldn't be searched in the current location
if (searchIn !== 'both' && searchIn !== searchLocation) {
continue;
}
// Create appropriate regex
if (searchType === 'regex') {
regex = new RegExp(pattern, flags || "gi");
} else {
regex = createSearchRegex(term, searchType);
}
const termMatches = [];
// Check each line for matches
lines.forEach((line, lineIndex) => {
const lineMatches = line.match(regex);
if (lineMatches) {
lineMatches.forEach(match => {
termMatches.push({
match: match,
lineNumber: lineIndex + 1,
lineContent: line.trim(),
searchType: searchType,
searchLocation: searchLocation,
originalTerm: term || pattern,
description: description,
// Show context around the match in the line
context: line.length > 100 ?
line.substring(Math.max(0, line.toLowerCase().indexOf(match.toLowerCase()) - 30),
line.toLowerCase().indexOf(match.toLowerCase()) + match.length + 30) + '...'
: line.trim()
});
});
}
});
if (termMatches.length > 0) {
matches.push({
term: term || (description || pattern),
searchType: searchType,
searchLocation: searchLocation,
searchIn: searchIn,
pattern: pattern,
matches: termMatches,
count: termMatches.length
});
}
}
return matches;
}
// Helper function to check if label should be added
async function processLabel(labelName, config) {
const body = context.payload.issue.body || "";
const title = context.payload.issue.title || "";
core.notice(`Processing label: ${labelName}`);
core.notice(`Issue Title: "${title}"`);
core.notice(`Issue Body length: ${body.length} characters`);
let shouldAddLabel = false;
let allMatches = [];
let reason = '';
const keywords = config.keywords || [];
const substrings = config.substrings || [];
const regexPatterns = config.regexPatterns || [];
core.notice(`Searching with ${keywords.length} keywords, ${substrings.length} substrings, and ${regexPatterns.length} regex patterns`);
// Search in title
if (title.trim()) {
core.notice(`Searching in title: "${title}"`);
const titleKeywordMatches = findMatchingTermsWithLines(title, keywords, 'keyword', 'title');
const titleSubstringMatches = findMatchingTermsWithLines(title, substrings, 'substring', 'title');
const titleRegexMatches = findMatchingTermsWithLines(title, regexPatterns, 'regex', 'title');
allMatches.push(...titleKeywordMatches, ...titleSubstringMatches, ...titleRegexMatches);
}
// Search in body
if (body.trim()) {
core.notice(`Searching in body (${body.length} characters)`);
const bodyKeywordMatches = findMatchingTermsWithLines(body, keywords, 'keyword', 'body');
const bodySubstringMatches = findMatchingTermsWithLines(body, substrings, 'substring', 'body');
const bodyRegexMatches = findMatchingTermsWithLines(body, regexPatterns, 'regex', 'body');
allMatches.push(...bodyKeywordMatches, ...bodySubstringMatches, ...bodyRegexMatches);
}
if (allMatches.length > 0) {
core.notice(`Found ${allMatches.length} matching term(s):`);
for (const termMatch of allMatches) {
const locationText = termMatch.searchLocation === 'title' ? 'title' : 'body';
const searchInText = termMatch.searchIn === 'both' ? 'both' : termMatch.searchIn;
if (termMatch.searchType === 'regex') {
core.notice(` 📍 Regex: "${termMatch.term}" (pattern: ${termMatch.pattern}) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
} else {
core.notice(` 📍 Term: "${termMatch.term}" (${termMatch.searchType} search) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
}
// Show details for each match
termMatch.matches.forEach((match, index) => {
core.notice(` ${index + 1}. Line ${match.lineNumber} in ${match.searchLocation}: "${match.match}" [${match.searchType}]`);
if (match.description) {
core.notice(` Description: ${match.description}`);
}
core.notice(` Context: ${match.context}`);
if (match.lineContent !== match.context) {
core.notice(` Full line: ${match.lineContent}`);
}
});
}
shouldAddLabel = true;
const totalMatches = allMatches.reduce((sum, t) => sum + t.count, 0);
const titleMatches = allMatches.filter(t => t.searchLocation === 'title').reduce((sum, t) => sum + t.count, 0);
const bodyMatches = allMatches.filter(t => t.searchLocation === 'body').reduce((sum, t) => sum + t.count, 0);
const keywordMatches = allMatches.filter(t => t.searchType === 'keyword').reduce((sum, t) => sum + t.count, 0);
const substringMatches = allMatches.filter(t => t.searchType === 'substring').reduce((sum, t) => sum + t.count, 0);
const regexMatches = allMatches.filter(t => t.searchType === 'regex').reduce((sum, t) => sum + t.count, 0);
reason = `Found ${totalMatches} total matches (${titleMatches} in title, ${bodyMatches} in body) - ${keywordMatches} keyword matches, ${substringMatches} substring matches, ${regexMatches} regex matches`;
}
core.notice(`Final decision: ${shouldAddLabel ? 'ADD LABEL' : 'DO NOT ADD LABEL'}`);
core.notice(`Reason: ${reason || 'No matching terms found'}`);
if (shouldAddLabel) {
const existingLabels = context.payload.issue.labels.map(l => l.name);
if (!existingLabels.includes(labelName)) {
await github.rest.issues.addLabels({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
labels: [labelName],
});
core.notice(`Label "${labelName}" added. ${reason}`);
return true;
}
core.notice(`Label "${labelName}" already present.`);
return false;
}
core.notice(`No matching terms found for label "${labelName}".`);
return false;
}
// Process all configured labels
const processLabels = Object.entries(labelConfig)
.map(([labelName, config]) => processLabel(labelName, config));
const labelsAdded = await Promise.all(processLabels);
const numLabelsAdded = labelsAdded.reduce((x, y) => x + y, 0);
core.notice(`Processing complete. ${numLabelsAdded} label(s) added.`);

View File

@ -1,89 +0,0 @@
name: Lint and Deploy Charts
on: pull_request
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
permissions:
contents: read
jobs:
lint-and-deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
fetch-depth: 0
- name: Set up Helm
uses: azure/setup-helm@b9e51907a09c216f16ebe8536097933489208112 # v4.3.0
with:
version: v3.14.4
#Python is required because ct lint runs Yamale and yamllint which require Python.
- uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
with:
python-version: '3.13'
- name: Set up chart-testing
uses: helm/chart-testing-action@0d28d3144d3a25ea2cc349d6e59901c4ff469b3b # v2.7.0
with:
version: v3.10.1
- name: Run chart-testing (lint)
run: ct lint --target-branch ${{ github.event.repository.default_branch }} --chart-dirs examples/online_serving/chart-helm --charts examples/online_serving/chart-helm
- name: Setup minio
run: |
docker network create vllm-net
docker run -d -p 9000:9000 --name minio --net vllm-net \
-e "MINIO_ACCESS_KEY=minioadmin" \
-e "MINIO_SECRET_KEY=minioadmin" \
-v /tmp/data:/data \
-v /tmp/config:/root/.minio \
minio/minio server /data
export AWS_ACCESS_KEY_ID=minioadmin
export AWS_SECRET_ACCESS_KEY=minioadmin
export AWS_EC2_METADATA_DISABLED=true
mkdir opt-125m
cd opt-125m && curl -O -Ls "https://huggingface.co/facebook/opt-125m/resolve/main/{pytorch_model.bin,config.json,generation_config.json,merges.txt,special_tokens_map.json,tokenizer_config.json,vocab.json}" && cd ..
aws --endpoint-url http://127.0.0.1:9000/ s3 mb s3://testbucket
aws --endpoint-url http://127.0.0.1:9000/ s3 cp opt-125m/ s3://testbucket/opt-125m --recursive
- name: Create kind cluster
uses: helm/kind-action@a1b0e391336a6ee6713a0583f8c6240d70863de3 # v1.12.0
- name: Build the Docker image vllm cpu
run: docker buildx build -f docker/Dockerfile.cpu -t vllm-cpu-env .
- name: Configuration of docker images, network and namespace for the kind cluster
run: |
docker pull amazon/aws-cli:2.6.4
kind load docker-image amazon/aws-cli:2.6.4 --name chart-testing
kind load docker-image vllm-cpu-env:latest --name chart-testing
docker network connect vllm-net "$(docker ps -aqf "name=chart-testing-control-plane")"
kubectl create ns ns-vllm
- name: Run chart-testing (install)
run: |
export AWS_ACCESS_KEY_ID=minioadmin
export AWS_SECRET_ACCESS_KEY=minioadmin
sleep 30 && kubectl -n ns-vllm logs -f "$(kubectl -n ns-vllm get pods | awk '/deployment/ {print $1;exit}')" &
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set image.env[2].name=VLLM_CPU_CI_ENV --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string image.env[2].value="1" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
- name: curl test
run: |
kubectl -n ns-vllm port-forward service/test-vllm-service 8001:80 &
sleep 10
CODE="$(curl -v -f --location http://localhost:8001/v1/completions \
--header "Content-Type: application/json" \
--data '{
"model": "opt-125m",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'):$CODE"
echo "$CODE"

View File

@ -17,7 +17,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
- uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0
with:
python-version: "3.12"
- run: echo "::add-matcher::.github/workflows/matchers/actionlint.json"

View File

@ -1,111 +0,0 @@
# This workflow will upload a Python Package to Release asset
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions
name: Create Release
on:
push:
tags:
- v*
# Needed to create release and upload assets
permissions:
contents: write
jobs:
release:
# Retrieve tag and create release
name: Create Release
runs-on: ubuntu-latest
outputs:
upload_url: ${{ steps.create_release.outputs.upload_url }}
steps:
- name: Checkout
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Extract branch info
shell: bash
run: |
echo "release_tag=${GITHUB_REF#refs/*/}" >> "$GITHUB_ENV"
- name: Create Release
id: create_release
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
env:
RELEASE_TAG: ${{ env.release_tag }}
with:
github-token: "${{ secrets.GITHUB_TOKEN }}"
script: |
const script = require('.github/workflows/scripts/create_release.js')
await script(github, context, core)
# NOTE(simon): No longer build wheel using GitHub Actions. See buildkite's release workflow.
# wheel:
# name: Build Wheel
# runs-on: ${{ matrix.os }}
# needs: release
# strategy:
# fail-fast: false
# matrix:
# os: ['ubuntu-20.04']
# python-version: ['3.9', '3.10', '3.11', '3.12']
# pytorch-version: ['2.4.0'] # Must be the most recent version that meets requirements/cuda.txt.
# cuda-version: ['11.8', '12.1']
# steps:
# - name: Checkout
# uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
# - name: Setup ccache
# uses: hendrikmuhs/ccache-action@ed74d11c0b343532753ecead8a951bb09bb34bc9 # v1.2.14
# with:
# create-symlink: true
# key: ${{ github.job }}-${{ matrix.python-version }}-${{ matrix.cuda-version }}
# - name: Set up Linux Env
# if: ${{ runner.os == 'Linux' }}
# run: |
# bash -x .github/workflows/scripts/env.sh
# - name: Set up Python
# uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
# with:
# python-version: ${{ matrix.python-version }}
# - name: Install CUDA ${{ matrix.cuda-version }}
# run: |
# bash -x .github/workflows/scripts/cuda-install.sh ${{ matrix.cuda-version }} ${{ matrix.os }}
# - name: Install PyTorch ${{ matrix.pytorch-version }} with CUDA ${{ matrix.cuda-version }}
# run: |
# bash -x .github/workflows/scripts/pytorch-install.sh ${{ matrix.python-version }} ${{ matrix.pytorch-version }} ${{ matrix.cuda-version }}
# - name: Build wheel
# shell: bash
# env:
# CMAKE_BUILD_TYPE: Release # do not compile with debug symbol to reduce wheel size
# run: |
# bash -x .github/workflows/scripts/build.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }}
# wheel_name=$(find dist -name "*whl" -print0 | xargs -0 -n 1 basename)
# asset_name=${wheel_name//"linux"/"manylinux1"}
# echo "wheel_name=${wheel_name}" >> "$GITHUB_ENV"
# echo "asset_name=${asset_name}" >> "$GITHUB_ENV"
# - name: Upload Release Asset
# uses: actions/upload-release-asset@e8f9f06c4b078e705bd2ea027f0926603fc9b4d5 # v1.0.2
# env:
# GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# with:
# upload_url: ${{ needs.release.outputs.upload_url }}
# asset_path: ./dist/${{ env.wheel_name }}
# asset_name: ${{ env.asset_name }}
# asset_content_type: application/*
# (Danielkinz): This last step will publish the .whl to pypi. Warning: untested
# - name: Publish package
# uses: pypa/gh-action-pypi-publish@release/v1.8
# with:
# repository-url: https://test.pypi.org/legacy/
# password: ${{ secrets.PYPI_API_TOKEN }}
# skip-existing: true

View File

@ -12,16 +12,43 @@ jobs:
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
with:
script: |
github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: '👋 Hi! Thank you for contributing to the vLLM project.\n\n' +
'💬 Join our developer Slack at https://slack.vllm.ai to discuss your PR in #pr-reviews, coordinate on features in #feat- channels, or join special interest groups in #sig- channels.\n\n' +
'Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which starts running only a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of those by going to your `fastcheck` build on Buildkite UI (linked in the PR checks section) and unblock them. If you do not have permission to unblock, ping `simon-mo` or `khluu` to add you in our Buildkite org.\n\n' +
'Once the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.\n\n' +
'To run CI, PR reviewers can either: Add `ready` label to the PR or enable auto-merge.\n\n' +
'🚀'
})
try {
// Get the PR author
const prAuthor = context.payload.pull_request.user.login;
// Check if this is the author's first PR in this repository
// Use GitHub's search API to find all PRs by this author
const { data: searchResults } = await github.rest.search.issuesAndPullRequests({
q: `repo:${context.repo.owner}/${context.repo.repo} type:pr author:${prAuthor}`,
per_page: 100
});
const authorPRCount = searchResults.total_count;
console.log(`Found ${authorPRCount} PRs by ${prAuthor}`);
// Only post comment if this is the first PR (only one PR by this author)
if (authorPRCount === 1) {
console.log(`Posting welcome comment for first-time contributor: ${prAuthor}`);
await github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: '👋 Hi! Thank you for contributing to the vLLM project.\n\n' +
'💬 Join our developer Slack at https://slack.vllm.ai to discuss your PR in #pr-reviews, coordinate on features in #feat- channels, or join special interest groups in #sig- channels.\n\n' +
'Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which starts running only a small and essential subset of CI tests to quickly catch errors. \n\n' +
'You ask your reviewers to trigger select CI tests on top of `fastcheck` CI. \n\n' +
'Once the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.\n\n' +
'To run CI, PR reviewers can either: Add `ready` label to the PR or enable auto-merge.\n\n' +
'If you have any questions, please reach out to us on Slack at https://slack.vllm.ai.\n\n' +
'🚀'
});
} else {
console.log(`Skipping comment for ${prAuthor} - not their first PR (${authorPRCount} PRs found)`);
}
} catch (error) {
console.error('Error checking PR history or posting comment:', error);
// Don't fail the workflow, just log the error
}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@ -21,7 +21,7 @@ repos:
- id: ruff-format
files: ^(.buildkite|benchmarks|examples)/.*
- repo: https://github.com/crate-ci/typos
rev: v1.34.0
rev: v1.35.5
hooks:
- id: typos
- repo: https://github.com/PyCQA/isort

View File

@ -30,7 +30,7 @@ install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
# Supported python versions. These versions will be searched in order, the
# first match will be selected. These should be kept in sync with setup.py.
#
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12")
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12" "3.13")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
@ -45,8 +45,8 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from docker/Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.7.1")
set(TORCH_SUPPORTED_VERSION_ROCM "2.7.0")
set(TORCH_SUPPORTED_VERSION_CUDA "2.8.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.8.0")
#
# Try to find python package with an executable that exactly matches
@ -357,9 +357,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_EXT_SRC ${MARLIN_TEMPLATE_KERNEL_SRC})
set(MARLIN_SRCS
"csrc/quantization/marlin/dense/marlin_cuda_kernel.cu"
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
"csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu"
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
"csrc/quantization/gptq_marlin/awq_marlin_repack.cu")
@ -543,6 +541,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
"csrc/quantization/fp4/activation_nvfp4_quant_fusion_kernels.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_sm120_kernels.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
@ -561,6 +560,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
"csrc/quantization/fp4/activation_nvfp4_quant_fusion_kernels.cu"
"csrc/quantization/fp4/nvfp4_experts_quant.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_kernels.cu"
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu")
@ -752,6 +752,33 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"found in CUDA target architectures")
endif()
endif()
# Only build W4A8 kernels if we are building for something compatible with sm90a
cuda_archs_loose_intersection(W4A8_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND W4A8_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w4a8/w4a8_mm_entry.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${W4A8_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
message(STATUS "Building W4A8 kernels for archs: ${W4A8_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0
AND W4A8_ARCHS)
message(STATUS "Not building W4A8 kernels as CUDA Compiler version is "
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "
"later if you intend on running w4a16 quantized models on "
"Hopper.")
else()
message(STATUS "Not building W4A8 kernels as no compatible archs "
"found in CUDA target architectures")
endif()
endif()
# if CUDA endif
endif()
@ -792,7 +819,9 @@ set(VLLM_MOE_EXT_SRC
"csrc/moe/topk_softmax_kernels.cu")
if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_MOE_EXT_SRC "csrc/moe/moe_wna16.cu")
list(APPEND VLLM_MOE_EXT_SRC
"csrc/moe/moe_wna16.cu"
"csrc/moe/grouped_topk_kernels.cu")
endif()
if(VLLM_GPU_LANG STREQUAL "CUDA")

View File

@ -2,7 +2,6 @@ include LICENSE
include requirements/common.txt
include requirements/cuda.txt
include requirements/rocm.txt
include requirements/neuron.txt
include requirements/cpu.txt
include CMakeLists.txt

View File

@ -18,14 +18,18 @@ Easy, fast, and cheap LLM serving for everyone
*Latest News* 🔥
- [2025/08] We hosted [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/dgkWg1WFpWGO2jCdTqQHxA) focusing on large-scale LLM deployment! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Pid6NSFLU43DZRi0EaTcPgXsAzDvbBqF) and the recording [here](https://www.chaspark.com/#/live/1166916873711665152).
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).
- [2025/05] vLLM is now a hosted project under PyTorch Foundation! Please find the announcement [here](https://pytorch.org/blog/pytorch-foundation-welcomes-vllm/).
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
<details>
<summary>Previous News</summary>
- [2025/08] We hosted [vLLM Korea Meetup](https://luma.com/cgcgprmh) with Red Hat and Rebellions! We shared the latest advancements in vLLM along with project spotlights from the vLLM Korea community. Please find the meetup slides [here](https://drive.google.com/file/d/1bcrrAE1rxUgx0mjIeOWT6hNe2RefC5Hm/view).
- [2025/08] We hosted [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/dgkWg1WFpWGO2jCdTqQHxA) focusing on large-scale LLM deployment! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Pid6NSFLU43DZRi0EaTcPgXsAzDvbBqF) and the recording [here](https://www.chaspark.com/#/live/1166916873711665152).
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).

View File

@ -42,4 +42,9 @@ For certain security issues of CRITICAL, HIGH, or MODERATE severity level, we ma
* If you wish to be added to the prenotification group, please send an email copying all the members of the [vulnerability management team](https://docs.vllm.ai/en/latest/contributing/vulnerability_management.html). Each vendor contact will be analyzed on a case-by-case basis.
* Organizations and vendors who either ship or use vLLM, are eligible to join the prenotification group if they meet at least one of the following qualifications
* Substantial internal deployment leveraging the upstream vLLM project.
* Established internal security teams and comprehensive compliance measures.
* Active and consistent contributions to the upstream vLLM project.
* We may withdraw organizations from receiving future prenotifications if they release fixes or any other information about issues before they are public. Group membership may also change based on policy refinements for who may be included.

View File

@ -32,6 +32,14 @@ become available.
<div>Note that the images need to be downloaded separately. For example, to download COCO's 2017 Train images:</div>
<code>wget http://images.cocodataset.org/zips/train2017.zip</code>
</td>
</tr>
<tr>
<td><strong>ShareGPT4Video (Video)</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td>
<code>git clone https://huggingface.co/datasets/ShareGPT4Video/ShareGPT4Video</code>
</td>
</tr>
<tr>
<td><strong>BurstGPT</strong></td>
@ -51,6 +59,12 @@ become available.
<td style="text-align: center;"></td>
<td><code>synthetic</code></td>
</tr>
<tr>
<td><strong>RandomMultiModal (Image/Video)</strong></td>
<td style="text-align: center;">🟡</td>
<td style="text-align: center;">🚧</td>
<td><code>synthetic</code> </td>
</tr>
<tr>
<td><strong>Prefix Repetition</strong></td>
<td style="text-align: center;"></td>
@ -96,7 +110,12 @@ become available.
🚧: to be supported
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`.
For local `dataset-path`, please set `hf-name` to its Hugging Face ID like
```bash
--dataset-path /datasets/VisionArena-Chat/ --hf-name lmarena-ai/VisionArena-Chat
```
## 🚀 Example - Online Benchmark
@ -194,6 +213,7 @@ vllm serve Qwen/Qwen2-VL-7B-Instruct
```bash
vllm bench serve \
--backend openai-chat \
--endpoint-type openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
--dataset-name hf \
@ -230,6 +250,7 @@ vllm serve Qwen/Qwen2-VL-7B-Instruct
```bash
vllm bench serve \
--backend openai-chat \
--endpoint-type openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
--dataset-name hf \
@ -244,6 +265,7 @@ vllm bench serve \
```bash
vllm bench serve \
--backend openai-chat \
--endpoint-type openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
--dataset-name hf \
@ -609,7 +631,7 @@ vllm bench serve \
--prefix-repetition-prefix-len 512 \
--prefix-repetition-suffix-len 128 \
--prefix-repetition-num-prefixes 5 \
--prefix-repetition-output-len 128
--prefix-repetition-output-len 128
```
</details>
@ -684,4 +706,102 @@ python benchmarks/benchmark_serving.py \
--endpoint /v1/chat/completion
```
### Videos (ShareGPT4Video)
Start vLLM:
```bash
python -m vllm.entrypoints.openai.api_server \
--model Qwen/Qwen2.5-VL-7B-Instruct \
--dtype bfloat16 \
--limit-mm-per-prompt '{"video": 1}' \
--allowed-local-media-path /path/to/sharegpt4video/videos
```
Send requests with videos:
```bash
python benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2.5-VL-7B-Instruct \
--dataset-name sharegpt \
--dataset-path /path/to/ShareGPT4Video/llava_v1_5_mix665k_with_video_chatgpt72k_share4video28k.json \
--num-prompts 100 \
--save-result \
--result-dir ~/vllm_benchmark_results \
--save-detailed \
--endpoint /v1/chat/completion
```
### Synthetic Random Images (random-mm)
Generate synthetic image inputs alongside random text prompts to stress-test vision models without external datasets.
Notes:
- Works only with online benchmark via the OpenAI backend (`--backend openai-chat`) and endpoint `/v1/chat/completions`.
- Video sampling is not yet implemented.
Start the server (example):
```bash
vllm serve Qwen/Qwen2.5-VL-3B-Instruct \
--dtype bfloat16 \
--max-model-len 16384 \
--limit-mm-per-prompt '{"image": 3, "video": 0}' \
--mm-processor-kwargs max_pixels=1003520
```
Benchmark. It is recommended to use the flag `--ignore-eos` to simulate real responses. You can set the size of the output via the arg `random-output-len`.
Ex.1: Fixed number of items and a single image resolution, enforcing generation of approx 40 tokens:
```bash
vllm bench serve \
--backend openai-chat \
--model Qwen/Qwen2.5-VL-3B-Instruct \
--endpoint /v1/chat/completions \
--dataset-name random-mm \
--num-prompts 100 \
--max-concurrency 10 \
--random-prefix-len 25 \
--random-input-len 300 \
--random-output-len 40 \
--random-range-ratio 0.2 \
--random-mm-base-items-per-request 2 \
--random-mm-limit-mm-per-prompt '{"image": 3, "video": 0}' \
--random-mm-bucket-config '{(224, 224, 1): 1.0}' \
--request-rate inf \
--ignore-eos \
--seed 42
```
The number of items per request can be controlled by passing multiple image buckets:
```bash
--random-mm-base-items-per-request 2 \
--random-mm-num-mm-items-range-ratio 0.5 \
--random-mm-limit-mm-per-prompt '{"image": 4, "video": 0}' \
--random-mm-bucket-config '{(256, 256, 1): 0.7, (720, 1280, 1): 0.3}' \
```
Flags specific to `random-mm`:
- `--random-mm-base-items-per-request`: base number of multimodal items per request.
- `--random-mm-num-mm-items-range-ratio`: vary item count uniformly in the closed integer range [floor(n·(1r)), ceil(n·(1+r))]. Set r=0 to keep it fixed; r=1 allows 0 items.
- `--random-mm-limit-mm-per-prompt`: per-modality hard caps, e.g. '{"image": 3, "video": 0}'.
- `--random-mm-bucket-config`: dict mapping (H, W, T) → probability. Entries with probability 0 are removed; remaining probabilities are renormalized to sum to 1. Use T=1 for images. Set any T>1 for videos (video sampling not yet supported).
Behavioral notes:
- If the requested base item count cannot be satisfied under the provided per-prompt limits, the tool raises an error rather than silently clamping.
How sampling works:
- Determine per-request item count k by sampling uniformly from the integer range defined by `--random-mm-base-items-per-request` and `--random-mm-num-mm-items-range-ratio`, then clamp k to at most the sum of per-modality limits.
- For each of the k items, sample a bucket (H, W, T) according to the normalized probabilities in `--random-mm-bucket-config`, while tracking how many items of each modality have been added.
- If a modality (e.g., image) reaches its limit from `--random-mm-limit-mm-per-prompt`, all buckets of that modality are excluded and the remaining bucket probabilities are renormalized before continuing.
This should be seen as an edge case, and if this behavior can be avoided by setting `--random-mm-limit-mm-per-prompt` to a large number. Note that this might result in errors due to engine config `--limit-mm-per-prompt`.
- The resulting request contains synthetic image data in `multi_modal_data` (OpenAI Chat format). When `random-mm` is used with the OpenAI Chat backend, prompts remain text and MM content is attached via `multi_modal_data`.
</details>

View File

@ -31,6 +31,12 @@ cd vllm
You must set the following variables at the top of the script before execution.
Note: You can also override the default values below via environment variables when running the script.
```bash
MODEL=meta-llama/Llama-3.3-70B-Instruct SYSTEM=TPU TP=8 DOWNLOAD_DIR='' INPUT_LEN=128 OUTPUT_LEN=2048 MAX_MODEL_LEN=2300 MIN_CACHE_HIT_PCT=0 MAX_LATENCY_ALLOWED_MS=100000000000 NUM_SEQS_LIST="128 256" NUM_BATCHED_TOKENS_LIST="1024 2048 4096" VLLM_LOGGING_LEVEL=DEBUG bash auto_tune.sh
```
| Variable | Description | Example Value |
| --- | --- | --- |
| `BASE` | **Required.** The absolute path to the parent directory of your vLLM repository directory. | `"$HOME"` |

View File

@ -5,25 +5,41 @@
TAG=$(date +"%Y_%m_%d_%H_%M")
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
BASE="$SCRIPT_DIR/../../.."
MODEL="meta-llama/Llama-3.1-8B-Instruct"
SYSTEM="TPU"
TP=1
DOWNLOAD_DIR=""
INPUT_LEN=4000
OUTPUT_LEN=16
MAX_MODEL_LEN=4096
MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000
NUM_SEQS_LIST="128 256"
NUM_BATCHED_TOKENS_LIST="512 1024 2048 4096"
VLLM_LOGGING_LEVEL=${VLLM_LOGGING_LEVEL:-INFO}
BASE=${BASE:-"$SCRIPT_DIR/../../.."}
MODEL=${MODEL:-"meta-llama/Llama-3.1-8B-Instruct"}
SYSTEM=${SYSTEM:-"TPU"}
TP=${TP:-1}
DOWNLOAD_DIR=${DOWNLOAD_DIR:-""}
INPUT_LEN=${INPUT_LEN:-4000}
OUTPUT_LEN=${OUTPUT_LEN:-16}
MAX_MODEL_LEN=${MAX_MODEL_LEN:-4096}
MIN_CACHE_HIT_PCT=${MIN_CACHE_HIT_PCT:-0}
MAX_LATENCY_ALLOWED_MS=${MAX_LATENCY_ALLOWED_MS:-100000000000}
NUM_SEQS_LIST=${NUM_SEQS_LIST:-"128 256"}
NUM_BATCHED_TOKENS_LIST=${NUM_BATCHED_TOKENS_LIST:-"512 1024 2048 4096"}
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
RESULT="$LOG_FOLDER/result.txt"
PROFILE_PATH="$LOG_FOLDER/profile"
echo "result file: $RESULT"
echo "model: $MODEL"
echo "====================== AUTO TUNE PARAMETERS ===================="
echo "SCRIPT_DIR=$SCRIPT_DIR"
echo "BASE=$BASE"
echo "MODEL=$MODEL"
echo "SYSTEM=$SYSTEM"
echo "TP=$TP"
echo "DOWNLOAD_DIR=$DOWNLOAD_DIR"
echo "INPUT_LEN=$INPUT_LEN"
echo "OUTPUT_LEN=$OUTPUT_LEN"
echo "MAX_MODEL_LEN=$MAX_MODEL_LEN"
echo "MIN_CACHE_HIT_PCT=$MIN_CACHE_HIT_PCT"
echo "MAX_LATENCY_ALLOWED_MS=$MAX_LATENCY_ALLOWED_MS"
echo "NUM_SEQS_LIST=$NUM_SEQS_LIST"
echo "NUM_BATCHED_TOKENS_LIST=$NUM_BATCHED_TOKENS_LIST"
echo "VLLM_LOGGING_LEVEL=$VLLM_LOGGING_LEVEL"
echo "RESULT_FILE=$RESULT"
echo "====================== AUTO TUNEPARAMETERS ===================="
rm -rf $LOG_FOLDER
rm -rf $PROFILE_PATH
@ -213,7 +229,7 @@ run_benchmark() {
pkill -if vllm
sleep 10
printf '=%.0s' $(seq 1 20)
echo "===================="
return 0
}

View File

@ -57,7 +57,7 @@ def invoke_main() -> None:
"--num-iteration",
type=int,
default=1000,
help="Number of iterations to run to stablize final data readings",
help="Number of iterations to run to stabilize final data readings",
)
parser.add_argument(
"--allocate-blocks",

View File

@ -293,6 +293,41 @@ def process_image(image: Any) -> Mapping[str, Any]:
)
def process_video(video: Any) -> Mapping[str, Any]:
"""
Process a single video input and return a multimedia content dictionary.
Supports the following input types:
1. Dictionary with raw video bytes: - Expects a dict with a 'bytes' key
containing raw video data.
2. String input: - Treats the string as a URL or local file path. -
Prepends "file://" if the string doesn't start with "http://" or
"file://". - Returns a dictionary with the image URL.
Raises:
ValueError: If the input is not a supported type.
"""
if isinstance(video, dict) and "bytes" in video:
video_bytes = video["bytes"]
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
return {
"type": "video_url",
"video_url": {"url": f"data:video/mp4;base64,{video_base64}"},
}
if isinstance(video, str):
video_url = (
video if video.startswith(("http://", "file://")) else f"file://{video}"
)
return {"type": "video_url", "video_url": {"url": video_url}}
raise ValueError(
f"Invalid video input {video}. Must be a string of local path/remote url, or a dictionary with raw video bytes in the form of `{{'bytes': raw_video_bytes}}`." # noqa: E501
)
# -----------------------------------------------------------------------------
# Random Dataset Implementation (Synthetic Data)
# -----------------------------------------------------------------------------
@ -368,7 +403,7 @@ class RandomDataset(BenchmarkDataset):
# [6880, 6881] -> ['Ġcalls', 'here'] ->
# [1650, 939, 486] -> ['Ġcall', 'sh', 'ere']
# To avoid uncontrolled change of the prompt length,
# the encoded sequence is truncated before being decode again.
# the encoded sequence is truncated before being decoded again.
total_input_len = prefix_len + int(input_lens[i])
re_encoded_sequence = tokenizer.encode(prompt, add_special_tokens=False)[
:total_input_len
@ -451,9 +486,10 @@ class ShareGPTDataset(BenchmarkDataset):
skip_min_output_len_check=output_len is not None,
):
continue
# TODO: Also support ShareGPT4Video.
if image_path := entry.get("image"):
mm_content = process_image(image_path)
elif video_path := entry.get("video"):
mm_content = process_video(video_path)
else:
mm_content = None
if enable_multimodal_chat:
@ -922,8 +958,10 @@ class InstructCoderDataset(HuggingFaceDataset):
for i, item in enumerate(self.data):
if len(sampled_requests) >= num_requests:
break
prompt = f"{item['input']}\n\n{item['instruction']} Just output \
the code, do not include any explanation."
prompt = (
f"{item['input']}\n\n{item['instruction']} Just output "
"the code, do not include any explanation."
)
# apply template
prompt = tokenizer.apply_chat_template(

View File

@ -77,7 +77,7 @@ def invoke_main() -> None:
"--num-iteration",
type=int,
default=100,
help="Number of iterations to run to stablize final data readings",
help="Number of iterations to run to stabilize final data readings",
)
parser.add_argument(
"--num-req", type=int, default=128, help="Number of requests in the batch"

View File

@ -1104,7 +1104,7 @@ def create_argument_parser():
"--percentile-metrics",
type=str,
default="ttft,tpot,itl",
help="Comma-separated list of selected metrics to report percentils. "
help="Comma-separated list of selected metrics to report percentiles. "
"This argument specifies the metrics to report percentiles. "
'Allowed metric names are "ttft", "tpot", "itl", "e2el". '
'Default value is "ttft,tpot,itl".',

View File

@ -998,7 +998,7 @@ def create_argument_parser():
"--percentile-metrics",
type=str,
default="ttft,tpot,itl",
help="Comma-separated list of selected metrics to report percentils. "
help="Comma-separated list of selected metrics to report percentiles. "
"This argument specifies the metrics to report percentiles. "
'Allowed metric names are "ttft", "tpot", "itl", "e2el". '
'Default value is "ttft,tpot,itl".',

View File

@ -96,7 +96,6 @@ def run_vllm(
end = time.perf_counter()
else:
assert lora_requests is None, "BeamSearch API does not support LoRA"
prompts = [request.prompt for request in requests]
# output_len should be the same for all requests.
output_len = requests[0].expected_output_len
for request in requests:
@ -597,8 +596,8 @@ def validate_args(args):
# https://github.com/vllm-project/vllm/issues/16222
if args.data_parallel_size > 1:
raise ValueError(
"Data parallel is not supported in offline benchmark, \
please use benchmark serving instead"
"Data parallel is not supported in offline benchmark, "
"please use benchmark serving instead"
)
@ -720,7 +719,7 @@ def create_argument_parser():
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
)
# hf dtaset
# hf dataset
parser.add_argument(
"--hf-subset", type=str, default=None, help="Subset of the HF dataset."
)

View File

@ -62,7 +62,7 @@ benchmark() {
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
@ -72,7 +72,7 @@ benchmark() {
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
wait_for_server 8100
wait_for_server 8200

View File

@ -69,7 +69,7 @@ launch_disagg_prefill() {
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
@ -78,7 +78,7 @@ launch_disagg_prefill() {
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
wait_for_server 8100
wait_for_server 8200

View File

@ -0,0 +1,114 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
w8a8_block_fp8_matmul,
)
from vllm.platforms import current_platform
from vllm.triton_utils import triton as vllm_triton
assert current_platform.is_cuda(), (
"Only support benchmarking w8a8 block fp8 kernel on CUDA device."
)
# DeepSeek-V3 weight shapes
DEEPSEEK_V3_SHAPES = [
(512 + 64, 7168),
(2112, 7168),
((128 + 64) * 128, 7168),
(128 * (128 + 128), 512),
(7168, 16384),
(7168, 18432),
(18432 * 2, 7168),
(24576, 1536),
(12288, 7168),
(4096, 7168),
(7168, 2048),
]
def build_w8a8_block_fp8_runner(M, N, K, block_size, device):
"""Build runner function for w8a8 block fp8 matmul."""
factor_for_scale = 1e-2
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
# Create random FP8 tensors
A_fp32 = (torch.rand(M, K, dtype=torch.float32, device=device) - 0.5) * 2 * fp8_max
A = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
B_fp32 = (torch.rand(N, K, dtype=torch.float32, device=device) - 0.5) * 2 * fp8_max
B = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
# Create scales
block_n, block_k = block_size[0], block_size[1]
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
As = torch.rand(M, k_tiles, dtype=torch.float32, device=device) * factor_for_scale
Bs = (
torch.rand(n_tiles, k_tiles, dtype=torch.float32, device=device)
* factor_for_scale
)
def run():
return w8a8_block_fp8_matmul(A, B, As, Bs, block_size, torch.bfloat16)
return run
@vllm_triton.testing.perf_report(
vllm_triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
x_log=False,
line_arg="provider",
line_vals=["torch-bf16", "w8a8-block-fp8"],
line_names=["torch-bf16", "w8a8-block-fp8"],
ylabel="TFLOP/s (larger is better)",
plot_name="BF16 vs W8A8 Block FP8 GEMMs",
args={},
)
)
def benchmark_tflops(batch_size, provider, N, K, block_size=(128, 128)):
M = batch_size
device = "cuda"
quantiles = [0.5, 0.2, 0.8]
if provider == "torch-bf16":
a = torch.randn((M, K), device=device, dtype=torch.bfloat16)
b = torch.randn((N, K), device=device, dtype=torch.bfloat16)
ms, min_ms, max_ms = vllm_triton.testing.do_bench_cudagraph(
lambda: torch.nn.functional.linear(a, b), quantiles=quantiles
)
else: # w8a8-block-fp8
run_w8a8 = build_w8a8_block_fp8_runner(M, N, K, block_size, device)
ms, min_ms, max_ms = vllm_triton.testing.do_bench_cudagraph(
lambda: run_w8a8(), quantiles=quantiles
)
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
if __name__ == "__main__":
block_size = (128, 128)
for N, K in DEEPSEEK_V3_SHAPES:
print(f"\nBenchmarking DeepSeek-V3, N={N} K={K}")
print(f"TFLOP/s comparison (block_size={block_size}):")
benchmark_tflops.run(
print_data=True,
# show_plots=False,
# save_path=f"bench_w8a8_block_fp8_tflops_n{N}_k{K}",
N=N,
K=K,
block_size=block_size,
)
print("\nBenchmark finished!")

View File

@ -0,0 +1,104 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# benchmark custom activation op performance
import itertools
import torch
import vllm.model_executor.layers.activation # noqa F401
from vllm.model_executor.custom_op import CustomOp
from vllm.platforms import current_platform
from vllm.triton_utils import triton
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
batch_size_range = [1, 16, 32, 64, 128]
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
intermediate_size = [3072, 9728, 12288]
configs = list(itertools.product(batch_size_range, seq_len_range, intermediate_size))
def benchmark_activation(
batch_size: int,
seq_len: int,
intermediate_size: int,
provider: str,
func_name: str,
dtype: torch.dtype,
):
device = "cuda"
num_tokens = batch_size * seq_len
dim = intermediate_size
current_platform.seed_everything(42)
torch.set_default_device(device)
if func_name == "gelu_and_mul":
layer = CustomOp.op_registry[func_name](approximate="none")
elif func_name == "gelu_and_mul_tanh":
layer = CustomOp.op_registry["gelu_and_mul"](approximate="tanh")
elif func_name == "fatrelu_and_mul":
threshold = 0.5
layer = CustomOp.op_registry[func_name](threshold)
else:
layer = CustomOp.op_registry[func_name]()
x = torch.randn(num_tokens, dim, dtype=dtype, device=device)
compiled_layer = torch.compile(layer.forward_native)
if provider == "custom":
fn = lambda: layer(x)
elif provider == "compiled":
fn = lambda: compiled_layer(x)
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
fn, quantiles=[0.5, 0.2, 0.8]
)
return ms, max_ms, min_ms
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the custom activation op.")
parser.add_argument(
"--func-name",
type=str,
choices=[
"mul_and_silu",
"silu_and_mul",
"gelu_and_mul",
"gelu_and_mul_tanh",
"fatrelu_and_mul",
"swigluoai_and_mul",
"gelu_new",
"gelu_fast",
"quick_gelu",
],
default="silu_and_mul",
)
parser.add_argument(
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="bfloat16"
)
args = parser.parse_args()
assert args
func_name = args.func_name
dtype = STR_DTYPE_TO_TORCH_DTYPE[args.dtype]
perf_report = triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size", "seq_len", "intermediate_size"],
x_vals=configs,
line_arg="provider",
line_vals=["custom", "compiled"],
line_names=["Custom OP", "Compiled"],
styles=[("blue", "-"), ("green", "-")],
ylabel="ms",
plot_name=f"{func_name}-op-performance",
args={},
)
)
perf_report(
lambda batch_size, seq_len, intermediate_size, provider: benchmark_activation(
batch_size, seq_len, intermediate_size, provider, func_name, dtype
)
).run(print_data=True)

View File

@ -80,6 +80,11 @@ def bench_run(
a, score, topk, renormalize=False
)
ab_strides1 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
ab_strides2 = torch.full((num_experts,), n, device="cuda", dtype=torch.int64)
c_strides1 = torch.full((num_experts,), 2 * n, device="cuda", dtype=torch.int64)
c_strides2 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
def run_triton_moe(
a: torch.Tensor,
w1: torch.Tensor,
@ -111,6 +116,10 @@ def bench_run(
w2: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
ab_strides1: torch.Tensor,
ab_strides2: torch.Tensor,
c_strides1: torch.Tensor,
c_strides2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
per_act_token: bool,
@ -125,6 +134,10 @@ def bench_run(
topk_ids,
w1_scale,
w2_scale,
ab_strides1,
ab_strides2,
c_strides1,
c_strides2,
per_act_token,
a1_scale=None,
)
@ -136,6 +149,10 @@ def bench_run(
w2_q: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
ab_strides1: torch.Tensor,
ab_strides2: torch.Tensor,
c_strides1: torch.Tensor,
c_strides2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
):
@ -150,6 +167,10 @@ def bench_run(
topk_ids,
w1_scale,
w2_scale,
ab_strides1,
ab_strides2,
c_strides1,
c_strides2,
per_act_token,
a1_scale=None,
)
@ -194,6 +215,10 @@ def bench_run(
w2_q,
w1_scale,
w2_scale,
ab_strides1,
ab_strides2,
c_strides1,
c_strides2,
topk_weights,
topk_ids,
)
@ -231,6 +256,10 @@ def bench_run(
"w1_scale": w1_scale,
"w2_scale": w2_scale,
"per_act_token": per_act_token,
"ab_strides1": ab_strides1,
"ab_strides2": ab_strides2,
"c_strides1": c_strides1,
"c_strides2": c_strides2,
# cuda graph params
"cutlass_graph": cutlass_graph,
"triton_graph": triton_graph,
@ -289,6 +318,10 @@ def bench_run(
w2_q,
w1_scale,
w2_scale,
ab_strides1,
ab_strides2,
c_strides1,
c_strides2,
topk_weights,
topk_ids,
per_act_token,
@ -297,7 +330,7 @@ def bench_run(
results.append(
benchmark.Timer(
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, per_act_token, num_runs)", # noqa: E501
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, ab_strides1, ab_strides2, c_strides1, c_strides2, topk_weights, topk_ids, per_act_token, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,

View File

@ -637,7 +637,7 @@ def bench_optype(
# Clear LoRA optimization hash-maps.
_LORA_A_PTR_DICT.clear()
_LORA_B_PTR_DICT.clear()
# Run bench function so that _LORA_A_PTR_DICT and _LORA_B_PTR_DICT are setup
# Run bench function so that _LORA_A_PTR_DICT and _LORA_B_PTR_DICT are set up
for kwargs in kwargs_list:
op_type.bench_fn()(**kwargs)
torch.cuda.synchronize()

View File

@ -253,28 +253,7 @@ def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
else:
assert bt.a.dtype == torch.int8
assert bt.wtype == scalar_types.uint4b8
if bt.w_ch_s is not None:
s_ch = bt.w_ch_s.to(torch.float32)
else:
s_ch = torch.ones(bt.w_ref.shape[1], dtype=torch.float32, device=device)
if bt.w_tok_s is not None:
s_tok = bt.w_tok_s.to(torch.float32)
else:
s_tok = torch.ones(bt.a.shape[0], dtype=torch.float32, device=device)
fn = lambda: ops.marlin_qqq_gemm(
a=bt.a,
b_q_weight=w_q,
s_group=w_s,
s_tok=s_tok,
s_ch=s_ch,
workspace=workspace.scratch,
size_m=bt.a.shape[0],
size_n=bt.w_ref.shape[1],
size_k=bt.w_ref.shape[0],
)
raise NotImplementedError("QQQ is not supported anymore")
return fn
@ -305,6 +284,25 @@ def machete_create_bench_fn(
)
def cutlass_w4a8_create_bench_fn(
bt: BenchmarkTensors, out_type=torch.dtype, schedule=None
) -> Callable:
w_q = bt.w_q.t().contiguous().t() # make col major
w_q = ops.cutlass_encode_and_reorder_int4b(w_q)
# expects fp8 scales
w_s = ops.cutlass_pack_scale_fp8(bt.w_g_s.to(torch.float8_e4m3fn))
return lambda: ops.cutlass_w4a8_mm(
a=bt.a,
b_q=w_q,
b_group_scales=w_s,
b_group_size=bt.group_size,
b_channel_scales=bt.w_ch_s,
a_token_scales=bt.w_tok_s,
maybe_schedule=schedule,
)
# impl
# bench
@ -406,6 +404,20 @@ def bench(
)
)
# cutlass w4a8
if types.act_type == torch.float8_e4m3fn and group_size == 128:
timers.append(
bench_fns(
label,
sub_label,
f"cutlass w4a8 ({name_type_string})",
[
cutlass_w4a8_create_bench_fn(bt, out_type=types.output_type)
for bt in benchmark_tensors
],
)
)
if sweep_schedules:
global _SWEEP_SCHEDULES_RESULTS

View File

@ -419,8 +419,10 @@ class BenchmarkWorker:
)
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# is the intermediate size after silu_and_mul.
block_n = block_quant_shape[0] if block_quant_shape else None
block_k = block_quant_shape[1] if block_quant_shape else None
op_config = get_moe_configs(
num_experts, shard_intermediate_size // 2, dtype_str
num_experts, shard_intermediate_size // 2, dtype_str, block_n, block_k
)
if op_config is None:
config = get_default_config(
@ -430,6 +432,7 @@ class BenchmarkWorker:
hidden_size,
topk,
dtype_str,
block_quant_shape,
)
else:
config = op_config[min(op_config.keys(), key=lambda x: abs(x - num_tokens))]
@ -675,7 +678,11 @@ def main(args: argparse.Namespace):
is_fp16 = not (use_fp8_w8a8 or use_int8_w8a16)
search_space = get_configs_compute_bound(is_fp16, block_quant_shape)
print(f"Start tuning over {len(search_space)} configurations...")
if use_deep_gemm:
raise ValueError(
"Tuning with --use-deep-gemm is not supported as it only tunes Triton "
"kernels. Please remove the flag."
)
start = time.time()
configs = _distribute(
"tune",

View File

@ -0,0 +1,77 @@
#!/usr/bin/env python3
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import time
import torch
from vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe import (
silu_mul_fp8_quant_deep_gemm,
)
from vllm.platforms import current_platform
def benchmark(E, T, H, G=128, runs=50):
current_platform.seed_everything(42)
y = torch.randn((E, T, 2 * H), dtype=torch.bfloat16, device="cuda")
tokens_per_expert = torch.randint(
T // 2, T, size=(E,), dtype=torch.int32, device="cuda"
)
# Warmup
for _ in range(10):
silu_mul_fp8_quant_deep_gemm(y, tokens_per_expert, group_size=G)
torch.cuda.synchronize()
# Benchmark
torch.cuda.synchronize()
start = time.perf_counter()
for _ in range(runs):
silu_mul_fp8_quant_deep_gemm(y, tokens_per_expert, group_size=G)
torch.cuda.synchronize()
avg_time = (time.perf_counter() - start) / runs * 1000
# Calculate actual work done (only count valid tokens)
actual_tokens = tokens_per_expert.sum().item()
actual_elements = actual_tokens * H
# GFLOPS: operations per element = exp + 3 muls + 1 div + quantization ops ≈ 8 ops
ops_per_element = 8
total_ops = actual_elements * ops_per_element
gflops = total_ops / (avg_time / 1000) / 1e9
# Memory bandwidth: bfloat16 inputs (2 bytes), fp8 output (1 byte), scales (4 bytes)
input_bytes = actual_tokens * 2 * H * 2 # 2*H bfloat16 inputs
output_bytes = actual_tokens * H * 1 # H fp8 outputs
scale_bytes = actual_tokens * (H // G) * 4 # scales in float32
total_bytes = input_bytes + output_bytes + scale_bytes
memory_bw = total_bytes / (avg_time / 1000) / 1e9
return avg_time, gflops, memory_bw
configs = [
(8, 32, 1024),
(16, 64, 2048),
(32, 128, 4096),
# DeepSeekV3 Configs
(256, 16, 7168),
(256, 32, 7168),
(256, 64, 7168),
(256, 128, 7168),
(256, 256, 7168),
(256, 512, 7168),
(256, 1024, 7168),
]
print(f"GPU: {torch.cuda.get_device_name()}")
print(f"{'Config':<20} {'Time(ms)':<10} {'GFLOPS':<10} {'GB/s':<10}")
print("-" * 50)
for E, T, H in configs:
try:
time_ms, gflops, gbps = benchmark(E, T, H)
print(f"E={E:3d},T={T:4d},H={H:4d} {time_ms:8.3f} {gflops:8.1f} {gbps:8.1f}")
except Exception:
print(f"E={E:3d},T={T:4d},H={H:4d} FAILED")

View File

@ -9,8 +9,11 @@ from typing import Optional
import flashinfer
import torch
from vllm.utils import round_up
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
FP8_DTYPE = torch.float8_e4m3fn
FP4_DTYPE = torch.uint8
def to_float8(x, dtype=torch.float8_e4m3fn):
@ -61,13 +64,13 @@ def benchmark_decode(
else:
raise ValueError(f"Invalid kv_layout: {kv_layout}")
query = torch.randn(batch_size, num_qo_heads, head_size, dtype=dtype)
# Always using 1.0 scale to reflect the real perf in benchmarking
q_scale = 1.0
ref_query = torch.randn(batch_size, num_qo_heads, head_size, dtype=dtype)
if q_quant_dtype == FP8_DTYPE:
query, q_scale = to_float8(query)
ref_query = query.to(dtype) * q_scale
query, _ = to_float8(ref_query)
else:
q_scale = 1.0
ref_query = query
query = ref_query
kv_lens = torch.randint(1, max_seq_len, (batch_size,), dtype=torch.int32)
kv_lens[-1] = max_seq_len
@ -75,14 +78,13 @@ def benchmark_decode(
seq_lens = kv_lens
max_seq_len = torch.max(seq_lens).item()
kv_cache = torch.randn(kv_cache_shape, dtype=dtype)
# Always using 1.0 scale to reflect the real perf in benchmarking
k_scale = v_scale = 1.0
ref_kv_cache = torch.randn(kv_cache_shape, dtype=dtype)
if kv_quant_dtype == FP8_DTYPE:
kv_cache, kv_scale = to_float8(kv_cache)
ref_kv_cache = kv_cache.to(dtype) * kv_scale
kv_cache, _ = to_float8(ref_kv_cache)
else:
kv_scale = 1.0
ref_kv_cache = kv_cache
k_scale = v_scale = kv_scale
kv_cache = ref_kv_cache
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
block_tables = torch.randint(
@ -110,7 +112,7 @@ def benchmark_decode(
wrapper = flashinfer.BatchDecodeWithPagedKVCacheWrapper(
workspace_buffer,
kv_layout,
use_tensor_cores=((num_qo_heads // num_kv_heads) > 4),
use_tensor_cores=True,
)
wrapper.plan(
kv_indptr,
@ -142,11 +144,31 @@ def benchmark_decode(
return sum(times) / len(times), torch.std(torch.tensor(times))
o_scale = 1.0
o_sf_scale = None
output_baseline = torch.empty(ref_query.shape, dtype=dtype)
output_trtllm = torch.empty(query.shape, dtype=o_quant_dtype)
if o_quant_dtype == FP4_DTYPE:
o_sf_scale = 500.0
output_trtllm = flashinfer.utils.FP4Tensor(
torch.empty(query.shape[:-1] + (query.shape[-1] // 2,), dtype=torch.uint8),
torch.empty(
(
round_up(query.shape[0], 128),
round_up(query.shape[1] * query.shape[2] // 16, 4),
),
dtype=torch.float8_e4m3fn,
),
)
else:
output_trtllm = torch.empty(query.shape, dtype=o_quant_dtype)
def baseline_decode():
return wrapper.run(ref_query, ref_kv_cache, out=output_baseline)
return wrapper.run(
ref_query,
ref_kv_cache,
k_scale=k_scale,
v_scale=v_scale,
out=output_baseline,
)
def trtllm_decode():
return flashinfer.decode.trtllm_batch_decode_with_kv_cache(
@ -158,6 +180,7 @@ def benchmark_decode(
max_seq_len=max_seq_len,
bmm1_scale=q_scale * k_scale * sm_scale,
bmm2_scale=v_scale / o_scale,
o_sf_scale=o_sf_scale,
out=output_trtllm,
)
@ -237,6 +260,7 @@ if __name__ == "__main__":
(None, None, None),
(None, FP8_DTYPE, None),
(FP8_DTYPE, FP8_DTYPE, FP8_DTYPE),
(FP8_DTYPE, FP8_DTYPE, FP4_DTYPE),
]
for quant_dtype in quant_dtypes:

View File

@ -9,8 +9,11 @@ from typing import Optional
import flashinfer
import torch
from vllm.utils import round_up
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
FP8_DTYPE = torch.float8_e4m3fn
FP4_DTYPE = torch.uint8
def to_float8(x, dtype=torch.float8_e4m3fn):
@ -72,13 +75,15 @@ def benchmark_prefill(
]
)
query = torch.randn(torch.sum(q_lens).item(), num_qo_heads, head_size, dtype=dtype)
# Always using 1.0 scale to reflect the real perf in benchmarking
q_scale = 1.0
ref_query = torch.randn(
torch.sum(q_lens).item(), num_qo_heads, head_size, dtype=dtype
)
if q_quant_dtype == FP8_DTYPE:
query, q_scale = to_float8(query)
ref_query = query.to(dtype) * q_scale
query, _ = to_float8(ref_query)
else:
q_scale = 1.0
ref_query = query
query = ref_query
kv_lens = torch.randint(0, max_kv_len, (batch_size,), dtype=torch.int32)
kv_lens[-1] = max_kv_len
@ -86,14 +91,13 @@ def benchmark_prefill(
seq_lens = kv_lens + q_lens
max_seq_len = torch.max(seq_lens).item()
kv_cache = torch.randn(kv_cache_shape, dtype=dtype)
# Always using 1.0 scale to reflect the real perf in benchmarking
k_scale = v_scale = 1.0
ref_kv_cache = torch.randn(kv_cache_shape, dtype=dtype)
if kv_quant_dtype == FP8_DTYPE:
kv_cache, kv_scale = to_float8(kv_cache)
ref_kv_cache = kv_cache.to(dtype) * kv_scale
kv_cache, _ = to_float8(ref_kv_cache)
else:
kv_scale = 1.0
ref_kv_cache = kv_cache
k_scale = v_scale = kv_scale
kv_cache = ref_kv_cache
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
block_tables = torch.randint(
@ -152,11 +156,31 @@ def benchmark_prefill(
return sum(times) / len(times), torch.std(torch.tensor(times))
o_scale = 1.0
o_sf_scale = None
output_baseline = torch.empty(ref_query.shape, dtype=dtype)
output_trtllm = torch.empty(query.shape, dtype=o_quant_dtype)
if o_quant_dtype == FP4_DTYPE:
o_sf_scale = 500.0
output_trtllm = flashinfer.utils.FP4Tensor(
torch.empty(query.shape[:-1] + (query.shape[-1] // 2,), dtype=torch.uint8),
torch.empty(
(
round_up(query.shape[0], 128),
round_up(query.shape[1] * query.shape[2] // 16, 4),
),
dtype=torch.float8_e4m3fn,
),
)
else:
output_trtllm = torch.empty(query.shape, dtype=o_quant_dtype)
def baseline_prefill():
return wrapper.run(ref_query, ref_kv_cache, out=output_baseline)
return wrapper.run(
ref_query,
ref_kv_cache,
k_scale=k_scale,
v_scale=v_scale,
out=output_baseline,
)
def trtllm_prefill():
return flashinfer.prefill.trtllm_batch_context_with_kv_cache(
@ -172,6 +196,7 @@ def benchmark_prefill(
batch_size=batch_size,
cum_seq_lens_q=q_indptr,
cum_seq_lens_kv=kv_indptr,
o_sf_scale=o_sf_scale,
out=output_trtllm,
)
@ -250,6 +275,7 @@ if __name__ == "__main__":
# (q_quant_dtype, kv_quant_dtype, o_quant_dtype)
(None, None, None),
(FP8_DTYPE, FP8_DTYPE, FP8_DTYPE),
(FP8_DTYPE, FP8_DTYPE, FP4_DTYPE),
]
for quant_dtype in quant_dtypes:

View File

@ -11,8 +11,8 @@ from datetime import datetime
from typing import Any
import torch
import tqdm
import triton
from tqdm import tqdm
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
_w8a8_block_fp8_matmul,
@ -141,6 +141,7 @@ def get_weight_shapes(tp_size):
# cannot TP
total = [
(512 + 64, 7168),
(2112, 7168),
((128 + 64) * 128, 7168),
(128 * (128 + 128), 512),
(7168, 16384),

View File

@ -95,4 +95,10 @@ WEIGHT_SHAPES = {
([2048, 2816], 1),
([1408, 2048], 0),
],
"CohereLabs/c4ai-command-a-03-2025": [
([12288, 14336], 1),
([12288, 12288], 0),
([12288, 73728], 1),
([36864, 12288], 0),
],
}

View File

@ -962,7 +962,7 @@ async def main_mp(
# At this point all the clients finished,
# collect results (TTFT, TPOT, etc.) from all the clients.
# This needs to happens before calling join on the clients
# This needs to happen before calling join on the clients
# (result_queue should be emptied).
while not result_queue.empty():
client_metrics.append(result_queue.get())

View File

@ -1,6 +1,7 @@
include(FetchContent)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_EXTENSIONS ON)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
@ -87,6 +88,7 @@ is_avx512_disabled(AVX512_DISABLED)
if (MACOSX_FOUND AND CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64")
message(STATUS "Apple Silicon Detected")
set(APPLE_SILICON_FOUND TRUE)
set(ENABLE_NUMA OFF)
check_sysctl(hw.optional.neon ASIMD_FOUND)
check_sysctl(hw.optional.arm.FEAT_BF16 ARM_BF16_FOUND)
@ -182,17 +184,17 @@ endif()
#
# Build oneDNN for W8A8 GEMM kernels (only for x86-AVX512 /ARM platforms)
# Flag to enable ACL kernels for AARCH64 platforms
if ( VLLM_BUILD_ACL STREQUAL "ON")
if (VLLM_BUILD_ACL STREQUAL "ON")
set(USE_ACL ON)
else()
set(USE_ACL OFF)
endif()
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR ASIMD_FOUND)
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON_FOUND) OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
FetchContent_Declare(
oneDNN
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
GIT_TAG v3.8.1
GIT_TAG v3.9
GIT_PROGRESS TRUE
GIT_SHALLOW TRUE
)
@ -204,7 +206,7 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR ASIMD_FOUND)
endif()
set(ONEDNN_AARCH64_USE_ACL "ON")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
endif()
endif()
set(ONEDNN_LIBRARY_TYPE "STATIC")
set(ONEDNN_BUILD_DOC "OFF")
@ -217,38 +219,23 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR ASIMD_FOUND)
set(ONEDNN_ENABLE_ITT_TASKS "OFF")
set(ONEDNN_ENABLE_MAX_CPU_ISA "OFF")
set(ONEDNN_ENABLE_CPU_ISA_HINTS "OFF")
set(ONEDNN_VERBOSE "OFF")
set(CMAKE_POLICY_DEFAULT_CMP0077 NEW)
FetchContent_MakeAvailable(oneDNN)
list(APPEND LIBS dnnl)
elseif(POWER10_FOUND)
FetchContent_Declare(
oneDNN
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
GIT_TAG v3.7.2
GIT_PROGRESS TRUE
GIT_SHALLOW TRUE
add_library(dnnl_ext OBJECT "csrc/cpu/dnnl_helper.cpp")
target_include_directories(
dnnl_ext
PUBLIC ${oneDNN_SOURCE_DIR}/include
PUBLIC ${oneDNN_BINARY_DIR}/include
PRIVATE ${oneDNN_SOURCE_DIR}/src
)
set(ONEDNN_LIBRARY_TYPE "STATIC")
set(ONEDNN_BUILD_DOC "OFF")
set(ONEDNN_BUILD_EXAMPLES "OFF")
set(ONEDNN_BUILD_TESTS "OFF")
set(ONEDNN_ENABLE_WORKLOAD "INFERENCE")
set(ONEDNN_ENABLE_PRIMITIVE "MATMUL;REORDER")
set(ONEDNN_BUILD_GRAPH "OFF")
set(ONEDNN_ENABLE_JIT_PROFILING "OFF")
set(ONEDNN_ENABLE_ITT_TASKS "OFF")
set(ONEDNN_ENABLE_MAX_CPU_ISA "OFF")
set(ONEDNN_ENABLE_CPU_ISA_HINTS "OFF")
set(CMAKE_POLICY_DEFAULT_CMP0077 NEW)
set(DNNL_CPU_RUNTIME "OMP")
FetchContent_MakeAvailable(oneDNN)
list(APPEND LIBS dnnl)
target_link_libraries(dnnl_ext dnnl)
target_compile_options(dnnl_ext PRIVATE ${CXX_COMPILE_FLAGS} -fPIC)
list(APPEND LIBS dnnl_ext)
set(USE_ONEDNN ON)
else()
set(USE_ONEDNN OFF)
endif()
message(STATUS "CPU extension compile flags: ${CXX_COMPILE_FLAGS}")
@ -275,7 +262,6 @@ set(VLLM_EXT_SRC
if (AVX512_FOUND AND NOT AVX512_DISABLED)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
"csrc/cpu/shm.cpp"
${VLLM_EXT_SRC})
if (ENABLE_AVX512BF16 AND ENABLE_AVX512VNNI)
@ -289,14 +275,11 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED)
${VLLM_EXT_SRC})
add_compile_definitions(-DCPU_CAPABILITY_AVX512)
endif()
elseif(POWER10_FOUND)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
${VLLM_EXT_SRC})
endif()
if (ASIMD_FOUND)
if(USE_ONEDNN)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
"csrc/cpu/dnnl_kernels.cpp"
${VLLM_EXT_SRC})
endif()

View File

@ -19,7 +19,7 @@ else()
FetchContent_Declare(
flashmla
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA.git
GIT_TAG 0e43e774597682284358ff2c54530757b654b8d1
GIT_TAG a757314c04eedd166e329e846c820eb1bdd702de
GIT_PROGRESS TRUE
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
@ -37,13 +37,14 @@ cuda_archs_loose_intersection(FLASH_MLA_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
set(FlashMLA_SOURCES
${flashmla_SOURCE_DIR}/csrc/flash_api.cpp
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu
${flashmla_SOURCE_DIR}/csrc/kernels/mla_combine.cu
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu)
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/kernels_fp8/flash_fwd_mla_fp8_sm90.cu)
set(FlashMLA_INCLUDES
${flashmla_SOURCE_DIR}/csrc/cutlass/include
${flashmla_SOURCE_DIR}/csrc/include)
${flashmla_SOURCE_DIR}/csrc)
set_gencode_flags_for_srcs(
SRCS "${FlashMLA_SOURCES}"

View File

@ -38,7 +38,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 57b4e68b9f9d94750b46de8f8dbd2bfcc86edd4f
GIT_TAG ee4d25bd84e0cbc7e0b9b9685085fd5db2dcb62a
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -36,6 +36,7 @@ limitations under the License.
#if !defined(CUDA_VERSION) || CUDA_VERSION < 12040
void sm100_cutlass_mla_decode(
torch::Tensor const& out,
torch::Tensor const& lse,
torch::Tensor const& q_nope,
torch::Tensor const& q_pe,
torch::Tensor const& kv_c_and_k_pe_cache,
@ -64,11 +65,11 @@ struct IsPersistent {
static const bool value = v;
};
template <typename T, bool IsPaged128, typename PersistenceOption = IsPersistent<true>>
template <typename T, typename TOut, bool IsPaged128, typename PersistenceOption = IsPersistent<true>>
struct MlaSm100 {
using Element = T;
using ElementAcc = float;
using ElementOut = T;
using ElementOut = TOut;
using TileShape = Shape<_128, _128, Shape<_512, _64>>;
using TileShapeH = cute::tuple_element_t<0, TileShape>;
@ -99,6 +100,7 @@ struct MlaSm100 {
template <typename T>
typename T::Fmha::Arguments args_from_options(
at::Tensor const& out,
at::Tensor const& lse,
at::Tensor const& q_nope,
at::Tensor const& q_pe,
at::Tensor const& kv_c_and_k_pe_cache,
@ -162,12 +164,15 @@ typename T::Fmha::Arguments args_from_options(
stride_PT,
page_count_total,
page_size},
{static_cast<ElementOut*>(out.data_ptr()), stride_O, static_cast<ElementAcc*>(nullptr), stride_LSE},
{static_cast<ElementOut*>(out.data_ptr()),
stride_O,
static_cast<ElementAcc*>(lse.defined() ? lse.data_ptr() : nullptr),
stride_LSE},
hw_info,
// TODO(trevor-m): Change split_kv back to -1 when
// https://github.com/NVIDIA/cutlass/issues/2274 is fixed. Split_kv=1 will
// perform worse with larger context length and smaller batch sizes.
num_kv_splits, // split_kv
static_cast<int>(num_kv_splits), // split_kv
nullptr, // is_var_split_kv
};
// TODO(kaixih@nvidia): When split_kv=-1 and is_var_split_kv=false, we compute
@ -178,9 +183,10 @@ typename T::Fmha::Arguments args_from_options(
return arguments;
}
template <typename Element, bool IsPaged128, typename PersistenceOption>
template <typename Element, typename ElementOut, bool IsPaged128, typename PersistenceOption>
void runMla(
at::Tensor const& out,
at::Tensor const& lse,
at::Tensor const& q_nope,
at::Tensor const& q_pe,
at::Tensor const& kv_c_and_k_pe_cache,
@ -190,9 +196,9 @@ void runMla(
double sm_scale,
int64_t num_kv_splits,
cudaStream_t stream) {
using MlaSm100Type = MlaSm100<Element, IsPaged128, PersistenceOption>;
using MlaSm100Type = MlaSm100<Element, ElementOut, IsPaged128, PersistenceOption>;
typename MlaSm100Type::Fmha fmha;
auto arguments = args_from_options<MlaSm100Type>(out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, sm_scale, num_kv_splits);
auto arguments = args_from_options<MlaSm100Type>(out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, sm_scale, num_kv_splits);
CUTLASS_CHECK(fmha.can_implement(arguments));
@ -214,6 +220,7 @@ void runMla(
void sm100_cutlass_mla_decode(
torch::Tensor const& out,
torch::Tensor const& lse,
torch::Tensor const& q_nope,
torch::Tensor const& q_pe,
torch::Tensor const& kv_c_and_k_pe_cache,
@ -233,14 +240,14 @@ void sm100_cutlass_mla_decode(
DISPATCH_BOOL(page_size == 128, IsPaged128, [&] {
DISPATCH_BOOL(num_kv_splits <= 1, NotManualSplitKV, [&] {
if (in_dtype == at::ScalarType::Half) {
runMla<cutlass::half_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
runMla<cutlass::half_t, cutlass::half_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
} else if (in_dtype == at::ScalarType::BFloat16) {
runMla<cutlass::bfloat16_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
runMla<cutlass::bfloat16_t, cutlass::bfloat16_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
} else if (in_dtype == at::ScalarType::Float8_e4m3fn) {
runMla<cutlass::float_e4m3_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
runMla<cutlass::float_e4m3_t, cutlass::bfloat16_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
} else {
TORCH_CHECK(false, "Unsupported input data type of MLA");
}
@ -253,7 +260,7 @@ void sm100_cutlass_mla_decode(
int64_t sm100_cutlass_mla_get_workspace_size(int64_t max_seq_len, int64_t num_batches, int64_t sm_count, int64_t num_kv_splits) {
// Workspace size depends on ElementAcc and ElementLSE (same as ElementAcc)
// which are float, so Element type here doesn't matter.
using MlaSm100Type = MlaSm100<cutlass::half_t, true>;
using MlaSm100Type = MlaSm100<cutlass::half_t, cutlass::half_t, true>;
// Get split kv. Requires problem shape and sm_count only.
typename MlaSm100Type::Fmha::Arguments arguments;
@ -264,7 +271,7 @@ int64_t sm100_cutlass_mla_get_workspace_size(int64_t max_seq_len, int64_t num_ba
// Assumes device 0 when getting sm_count.
arguments.hw_info.sm_count =
sm_count <= 0 ? cutlass::KernelHardwareInfo::query_device_multiprocessor_count(/*device_id=*/0) : sm_count;
arguments.split_kv = num_kv_splits;
arguments.split_kv = static_cast<int>(num_kv_splits);
MlaSm100Type::Fmha::set_split_kv(arguments);
return MlaSm100Type::Fmha::get_workspace_size(arguments);

View File

@ -40,9 +40,19 @@ void concat_and_cache_mla(torch::Tensor& kv_c, torch::Tensor& k_pe,
void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
const double scale, const std::string& kv_cache_dtype);
void gather_cache(
void gather_and_maybe_dequant_cache(
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
torch::Tensor const& cu_seq_lens, // [BATCH+1]
int64_t batch_size, std::optional<torch::Tensor> seq_starts = std::nullopt);
int64_t batch_size, const std::string& kv_cache_dtype,
torch::Tensor const& scale,
std::optional<torch::Tensor> seq_starts = std::nullopt);
// TODO(hc): cp_gather_cache need support scaled kvcahe in the future.
void cp_gather_cache(
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
torch::Tensor const& cu_seq_lens, // [BATCH+1]
int64_t batch_size, std::optional<torch::Tensor> seq_starts = std::nullopt);

View File

@ -1,6 +1,7 @@
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAException.h>
#include "cuda_utils.h"
#include "cuda_compat.h"
@ -624,9 +625,9 @@ void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
namespace vllm {
// grid is launched with dimensions (batch, num_splits)
template <typename scalar_t>
__global__ void gather_cache(
const scalar_t* __restrict__ src_cache, // [NUM_BLOCKS, BLOCK_SIZE,
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void gather_and_maybe_dequant_cache(
const cache_t* __restrict__ src_cache, // [NUM_BLOCKS, BLOCK_SIZE,
// ENTRIES...]
scalar_t* __restrict__ dst, // [TOT_TOKENS, ENTRIES...]
const int32_t* __restrict__ block_table, // [BATCH, BLOCK_INDICES]
@ -634,6 +635,7 @@ __global__ void gather_cache(
const int32_t block_size, const int32_t entry_size,
const int64_t block_table_stride, const int64_t cache_block_stride,
const int64_t cache_entry_stride, const int64_t dst_entry_stride,
const float* __restrict__ scale,
const int32_t* __restrict__ seq_starts) { // Optional: starting offsets per
// batch
@ -675,10 +677,16 @@ __global__ void gather_cache(
if (partial_block_size) full_blocks_end -= 1;
}
auto copy_entry = [&](const scalar_t* __restrict__ _src,
auto copy_entry = [&](const cache_t* __restrict__ _src,
scalar_t* __restrict__ _dst) {
for (int i = threadIdx.x; i < entry_size; i += blockDim.x)
_dst[i] = _src[i];
for (int i = threadIdx.x; i < entry_size; i += blockDim.x) {
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
_dst[i] = static_cast<scalar_t>(_src[i]);
} else {
_dst[i] =
fp8::scaled_convert<scalar_t, cache_t, kv_dt>(_src[i], *scale);
}
}
};
for (int pid = split_start; pid < full_blocks_end; ++pid) {
@ -705,8 +713,144 @@ __global__ void gather_cache(
} // namespace vllm
// Macro to dispatch the kernel based on the data type.
#define CALL_GATHER_CACHE(CPY_DTYPE) \
vllm::gather_cache<CPY_DTYPE><<<grid, block, 0, stream>>>( \
// SCALAR_T is the data type of the destination tensor.
// CACHE_T is the stored data type of kv-cache.
// KV_DTYPE is the real data type of kv-cache.
#define CALL_GATHER_CACHE(SCALAR_T, CACHE_T, KV_DTYPE) \
vllm::gather_and_maybe_dequant_cache<SCALAR_T, CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<CACHE_T*>(src_cache.data_ptr()), \
reinterpret_cast<SCALAR_T*>(dst.data_ptr()), \
block_table.data_ptr<int32_t>(), cu_seq_lens.data_ptr<int32_t>(), \
block_size, entry_size, block_table_stride, cache_block_stride, \
cache_entry_stride, dst_entry_stride, \
reinterpret_cast<const float*>(scale.data_ptr()), seq_starts_ptr);
// Gather sequences from the cache into the destination tensor.
// - cu_seq_lens contains the cumulative sequence lengths for each batch
// - block_table contains the cache block indices for each sequence
// - Optionally, seq_starts (if provided) offsets the starting block index by
// (seq_starts[bid] / page_size)
void gather_and_maybe_dequant_cache(
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
torch::Tensor const& cu_seq_lens, // [BATCH+1]
int64_t batch_size, const std::string& kv_cache_dtype,
torch::Tensor const& scale,
std::optional<torch::Tensor> seq_starts = std::nullopt) {
at::cuda::OptionalCUDAGuard device_guard(src_cache.device());
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
int32_t block_size = src_cache.size(1);
int32_t entry_size = src_cache.flatten(2, -1).size(2);
TORCH_CHECK(block_table.dtype() == torch::kInt32,
"block_table must be int32");
TORCH_CHECK(cu_seq_lens.dtype() == torch::kInt32,
"cu_seq_lens must be int32");
if (seq_starts.has_value()) {
TORCH_CHECK(seq_starts.value().dtype() == torch::kInt32,
"seq_starts must be int32");
}
TORCH_CHECK(src_cache.device() == dst.device(),
"src_cache and dst must be on the same device");
TORCH_CHECK(src_cache.device() == block_table.device(),
"src_cache and block_table must be on the same device");
TORCH_CHECK(src_cache.device() == cu_seq_lens.device(),
"src_cache and cu_seq_lens must be on the same device");
if (seq_starts.has_value()) {
TORCH_CHECK(src_cache.device() == seq_starts.value().device(),
"src_cache and seq_starts must be on the same device");
}
int64_t block_table_stride = block_table.stride(0);
int64_t cache_block_stride = src_cache.stride(0);
int64_t cache_entry_stride = src_cache.stride(1);
int64_t dst_entry_stride = dst.stride(0);
// Decide on the number of splits based on the batch size.
int num_splits = batch_size > 128 ? 2 : batch_size > 64 ? 4 : 16;
dim3 grid(batch_size, num_splits);
dim3 block(1024);
const int32_t* seq_starts_ptr =
seq_starts.has_value() ? seq_starts.value().data_ptr<int32_t>() : nullptr;
DISPATCH_BY_KV_CACHE_DTYPE(dst.dtype(), kv_cache_dtype, CALL_GATHER_CACHE);
}
namespace vllm {
template <typename scalar_t>
// Note(hc): The cp_gather_cache allows seq_starts to no longer be divisible by
// block_size.
__global__ void cp_gather_cache(
const scalar_t* __restrict__ src_cache, // [NUM_BLOCKS, BLOCK_SIZE,
// ENTRY_SIZE]
scalar_t* __restrict__ dst, // [TOT_TOKENS, ENTRY_SIZE]
const int32_t* __restrict__ block_table, // [BATCH, BLOCK_INDICES]
const int32_t* __restrict__ cu_seq_lens, // [BATCH+1]
const int32_t block_size, const int32_t entry_size,
const int64_t block_table_stride, const int64_t cache_block_stride,
const int64_t cache_entry_stride, const int64_t dst_entry_stride,
const int32_t* __restrict__ seq_starts // Optional: starting offsets per
// batch
) {
const int64_t bid = blockIdx.x; // Batch ID
const int32_t num_splits = gridDim.y;
const int32_t split = blockIdx.y;
const int32_t seq_start = cu_seq_lens[bid];
const int32_t seq_end = cu_seq_lens[bid + 1];
const int32_t seq_len = seq_end - seq_start;
const int32_t tot_slots = seq_len;
const int32_t split_slots = cuda_utils::ceil_div(tot_slots, num_splits);
const int32_t split_start = split * split_slots;
const int32_t split_end = min((split + 1) * split_slots, tot_slots);
const bool is_active_split = (split_start < tot_slots);
if (!is_active_split) return;
// Adjust the pointer for the block_table for this batch.
// If seq_starts is provided, compute an offset based on it
const int32_t batch_offset = bid * block_table_stride;
int32_t offset = split_start;
if (seq_starts != nullptr) {
offset += seq_starts[bid];
}
int32_t offset_div = offset / block_size;
offset = offset % block_size;
const int32_t* batch_block_table = block_table + batch_offset;
// Adjust dst pointer based on the cumulative sequence lengths.
dst += seq_start * dst_entry_stride;
auto copy_entry = [&](const scalar_t* __restrict__ _src,
scalar_t* __restrict__ _dst) {
for (int i = threadIdx.x; i < entry_size; i += blockDim.x)
_dst[i] = _src[i];
};
for (int pid = split_start; pid < split_end; ++pid) {
auto block_id = batch_block_table[offset_div];
auto block_start_ptr = src_cache + block_id * cache_block_stride;
auto block_dst_ptr = dst + pid * dst_entry_stride;
copy_entry(block_start_ptr + offset * cache_entry_stride, block_dst_ptr);
offset += 1;
// bump to next block
if (offset == block_size) {
offset_div += 1;
offset = 0;
}
}
}
} // namespace vllm
// Macro to dispatch the kernel based on the data type.
#define CALL_CP_GATHER_CACHE(CPY_DTYPE) \
vllm::cp_gather_cache<CPY_DTYPE><<<grid, block, 0, stream>>>( \
reinterpret_cast<CPY_DTYPE*>(src_cache.data_ptr()), \
reinterpret_cast<CPY_DTYPE*>(dst.data_ptr()), \
block_table.data_ptr<int32_t>(), cu_seq_lens.data_ptr<int32_t>(), \
@ -716,9 +860,9 @@ __global__ void gather_cache(
// Gather sequences from the cache into the destination tensor.
// - cu_seq_lens contains the cumulative sequence lengths for each batch
// - block_table contains the cache block indices for each sequence
// - Optionally, seq_starts (if provided) offsets the starting block index by
// (seq_starts[bid] / page_size)
void gather_cache(
// - Optionally, seq_starts (if provided) offsets the starting slot index by
// seq_starts[bid]
void cp_gather_cache(
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
@ -769,11 +913,11 @@ void gather_cache(
seq_starts.has_value() ? seq_starts.value().data_ptr<int32_t>() : nullptr;
if (dtype_bits == 32) {
CALL_GATHER_CACHE(uint32_t);
CALL_CP_GATHER_CACHE(uint32_t);
} else if (dtype_bits == 16) {
CALL_GATHER_CACHE(uint16_t);
CALL_CP_GATHER_CACHE(uint16_t);
} else if (dtype_bits == 8) {
CALL_GATHER_CACHE(uint8_t);
CALL_CP_GATHER_CACHE(uint8_t);
} else {
TORCH_CHECK(false, "Unsupported data type width: ", dtype_bits);
}

View File

@ -89,7 +89,7 @@ struct FP16Vec16 : public Vec<FP16Vec16> {
explicit FP16Vec16(const FP32Vec16&);
void save(void* ptr) const { *reinterpret_cast<__m256i*>(ptr) = reg; }
void save(void* ptr) const { _mm256_storeu_si256((__m256i*)ptr, reg); }
void save(void* ptr, const int elem_num) const {
constexpr uint32_t M = 0xFFFFFFFF;
@ -126,7 +126,7 @@ struct BF16Vec16 : public Vec<BF16Vec16> {
explicit BF16Vec16(const FP32Vec16&);
void save(void* ptr) const { *reinterpret_cast<__m256i*>(ptr) = reg; }
void save(void* ptr) const { _mm256_storeu_si256((__m256i*)ptr, reg); }
void save(void* ptr, const int elem_num) const {
constexpr uint32_t M = 0xFFFFFFFF;
@ -180,8 +180,8 @@ struct BF16Vec32 : public Vec<BF16Vec32> {
(__m128i)vec8_data.reg, 1)) {}
void save(void* ptr) const {
*reinterpret_cast<__m256i*>(ptr) = reg_low;
*reinterpret_cast<__m256i*>((__m256i*)ptr + 1) = reg_high;
_mm256_storeu_si256((__m256i*)ptr, reg_low);
_mm256_storeu_si256((__m256i*)ptr + 1, reg_high);
}
};
#endif

523
csrc/cpu/dnnl_helper.cpp Normal file
View File

@ -0,0 +1,523 @@
#include <list>
#include <optional>
#include "common/memory_desc.hpp"
#include "common/memory.hpp"
#include "dnnl_helper.h"
static dnnl::engine& default_engine() {
static dnnl::engine engine(dnnl::engine::kind::cpu, 0);
return engine;
}
static dnnl::stream& default_stream() {
static dnnl::stream stream(default_engine());
return stream;
}
void release_dnnl_matmul_handler(int64_t handler) {
DNNLMatMulPrimitiveHandler* ptr =
reinterpret_cast<DNNLMatMulPrimitiveHandler*>(handler);
delete ptr;
}
DNNLScratchPadManager::DNNLScratchPadManager() : size_(0), ptr_(nullptr) {
this->realloc(allocation_unit * 128);
}
void DNNLScratchPadManager::realloc(size_t new_size) {
new_size = round(new_size);
if (new_size > size_) {
ptr_ = std::aligned_alloc(64, new_size);
size_ = new_size;
}
}
DNNLScratchPadManager* DNNLScratchPadManager::get_dnnl_scratchpad_manager() {
static DNNLScratchPadManager manager;
return &manager;
}
template <typename KT, typename VT>
class DNNLPrimitiveCache {
public:
using cache_value_t = std::pair<KT, VT>;
using result_value_t = VT;
using container_t = std::list<cache_value_t>;
using value_iterator_t = typename container_t::iterator;
using map_t = std::unordered_map<KT, value_iterator_t>;
using creator_t = VT (*)();
public:
DNNLPrimitiveCache(size_t capacity)
: capacity_(capacity),
values_(),
key_to_value_(std::min(256lu, capacity)) {
assert(capacity > 0);
}
template <typename F>
result_value_t get_or_create(const KT& key, F&& creator) {
std::optional<value_iterator_t> value = get_value(key);
if (value.has_value()) {
return value.value()->second;
} else {
return add_value({key, creator()})->second;
}
}
size_t size() const { return values_.size(); }
private:
void dump_data() {
std::stringstream ss;
ss << "table_id: " << std::hex << reinterpret_cast<size_t>(this) << std::dec
<< "\n";
ss << "container: [";
for (auto&& iter : values_) {
ss << "(" << iter.first << ", " << std::hex
<< reinterpret_cast<size_t>(iter.second.get()) << "), " << std::dec;
}
ss << "]\n";
ss << "map: [";
for (auto&& iter : key_to_value_) {
ss << "(" << iter.first << ", " << iter.second->first << ", " << std::hex
<< reinterpret_cast<size_t>(iter.second->second.get()) << std::dec
<< "), ";
}
ss << "]\n";
std::printf("%s\n", ss.str().c_str());
}
value_iterator_t add_value(cache_value_t&& new_value) {
if (size() == capacity_) {
cache_value_t& last_item = values_.back();
key_to_value_.erase(last_item.first);
values_.pop_back();
}
auto& added_value_ = values_.emplace_front(std::move(new_value));
key_to_value_.emplace(added_value_.first, values_.begin());
return values_.begin();
}
std::optional<value_iterator_t> get_value(const KT& key) {
if (key_to_value_.size() > 0 && key == values_.begin()->first) {
return values_.begin();
}
auto value_map_iterator = key_to_value_.find(key);
if (value_map_iterator != key_to_value_.end()) {
values_.splice(values_.begin(), values_, value_map_iterator->second);
return value_map_iterator->second;
} else {
return {};
}
}
private:
const size_t capacity_;
container_t values_;
map_t key_to_value_;
};
DNNLMatMulPrimitiveHandler::DNNLMatMulPrimitiveHandler(
const Args& args, dnnl::memory::data_type b_type)
: b_n_size_(args.b_n_size),
b_n_stride_(args.b_n_stride),
b_k_size_(args.b_k_size),
b_k_stride_(args.b_k_stride),
b_type_(b_type),
c_type_(args.c_type),
runtime_memory_ptrs_(8),
primitive_cache_size_(args.primitive_cache_size) {
assert(primitive_cache_size_ > 0);
}
void DNNLMatMulPrimitiveHandler::prepack_weight(
void* original_b_ptr, dnnl::memory::desc b_target_mem_desc) {
dnnl::memory::desc original_b_md({b_k_size_, b_n_size_}, b_type_,
{b_k_stride_, b_n_stride_});
dnnl::memory original_weight(original_b_md, default_engine(), original_b_ptr);
dnnl::memory packed_weight(b_target_mem_desc, default_engine());
{
dnnl::reorder(original_weight, packed_weight)
.execute(default_stream(), original_weight, packed_weight);
default_stream().wait();
}
memory_cache_[DNNL_ARG_WEIGHTS] = packed_weight;
b_target_mem_desc_ = b_target_mem_desc;
}
void DNNLMatMulPrimitiveHandler::set_runtime_memory_ptr(
size_t index, dnnl_memory* memory_ptr) {
dnnl::impl::memory_storage_t* mem_storage_ptr = memory_ptr->memory_storage();
dnnl_memory_desc* mem_desc = const_cast<dnnl_memory_desc*>(memory_ptr->md());
runtime_memory_ptrs_[index] = {mem_storage_ptr, mem_desc};
}
std::pair<dnnl::impl::memory_storage_t*, dnnl_memory_desc*>
DNNLMatMulPrimitiveHandler::get_runtime_memory_ptr(size_t index) {
return runtime_memory_ptrs_[index];
}
namespace std {
template <>
struct hash<W8A8MatMulPrimitiveHandler::ClassMatmulCacheKey> {
size_t operator()(
const W8A8MatMulPrimitiveHandler::ClassMatmulCacheKey& val) const {
return hash<dnnl_dim_t>()(val.b_n_size) ^ hash<dnnl_dim_t>()(val.b_k_size) ^
hash<int>()(static_cast<int>(val.a_qs)) ^
hash<int>()(static_cast<int>(val.b_qs)) ^ hash<bool>()(val.use_azp) ^
hash<int>()(static_cast<int>(val.c_type));
}
};
template <>
struct hash<W8A8MatMulPrimitiveHandler::MSizeCacheKey> {
size_t operator()(
const W8A8MatMulPrimitiveHandler::MSizeCacheKey& val) const {
return hash<dnnl_dim_t>()(val.a_m_size) ^ hash<bool>()(val.use_bias) ^
hash<int>()(static_cast<int>(val.bias_type));
}
};
template <>
struct hash<MatMulPrimitiveHandler::ClassMatmulCacheKey> {
size_t operator()(
const MatMulPrimitiveHandler::ClassMatmulCacheKey& val) const {
return hash<dnnl_dim_t>()(val.b_n_size) ^ hash<dnnl_dim_t>()(val.b_k_size);
}
};
template <>
struct hash<MatMulPrimitiveHandler::MSizeCacheKey> {
size_t operator()(const MatMulPrimitiveHandler::MSizeCacheKey& val) const {
return hash<dnnl_dim_t>()(val.a_m_size) ^
hash<dnnl_dim_t>()(val.a_m_stride) ^ hash<bool>()(val.use_bias) ^
hash<int>()(static_cast<int>(val.bias_type));
}
};
} // namespace std
bool operator==(const W8A8MatMulPrimitiveHandler::ClassMatmulCacheKey& l,
const W8A8MatMulPrimitiveHandler::ClassMatmulCacheKey& r) {
return l.b_n_size == r.b_n_size && l.b_k_size == r.b_k_size &&
l.a_qs == r.a_qs && l.b_qs == r.b_qs && l.use_azp == r.use_azp &&
l.c_type == r.c_type;
}
bool operator==(const W8A8MatMulPrimitiveHandler::MSizeCacheKey& l,
const W8A8MatMulPrimitiveHandler::MSizeCacheKey& r) {
return l.use_bias == r.use_bias && l.a_m_size == r.a_m_size &&
l.bias_type == r.bias_type;
}
bool operator==(const MatMulPrimitiveHandler::ClassMatmulCacheKey& l,
const MatMulPrimitiveHandler::ClassMatmulCacheKey& r) {
return l.b_n_size == r.b_n_size && l.b_k_size == r.b_k_size;
}
bool operator==(const MatMulPrimitiveHandler::MSizeCacheKey& l,
const MatMulPrimitiveHandler::MSizeCacheKey& r) {
return l.a_m_size == r.a_m_size && l.a_m_stride == r.a_m_stride &&
l.use_bias == r.use_bias && l.bias_type == r.bias_type;
}
static std::shared_ptr<W8A8MatMulPrimitiveHandler::MSizeCache>
get_w8a8_class_primitive_cache(
const W8A8MatMulPrimitiveHandler::ClassMatmulCacheKey& key,
int64_t cache_size) {
static W8A8MatMulPrimitiveHandler::ClassMatmulCache cache(128);
assert(cache_size > 0);
return cache.get_or_create(key, [&]() {
return std::make_shared<W8A8MatMulPrimitiveHandler::MSizeCache>(cache_size);
});
}
W8A8MatMulPrimitiveHandler::W8A8MatMulPrimitiveHandler(const Args& args)
: DNNLMatMulPrimitiveHandler(
static_cast<const DNNLMatMulPrimitiveHandler::Args&>(args),
dnnl::memory::data_type::s8),
use_azp_(args.use_a_zero_point),
a_qs_(args.a_quantization_strategy),
b_qs_(args.b_quantization_strategy),
m_size_cache_(nullptr) {
assert(a_qs_ != QuantizationStrategy::PER_OUTPUT_CHANNEL);
assert(b_qs_ != QuantizationStrategy::PER_TOKEN);
if (a_qs_ == QuantizationStrategy::PER_TOKEN) {
assert(!use_azp_);
};
prepack_weight(args.b_ptr,
create_primitive_desc(
MSizeCacheKey{.a_m_size = DNNL_RUNTIME_DIM_VAL,
.use_bias = false,
.bias_type = dnnl::memory::data_type::undef},
true)
.weights_desc());
init_runtime_memory_cache(args);
}
void W8A8MatMulPrimitiveHandler::execute(ExecArgs& args) {
auto&& [a_storage, a_mem_desc] = get_runtime_memory_ptr(0);
auto&& [c_storage, c_mem_desc] = get_runtime_memory_ptr(1);
a_storage->set_data_handle((void*)args.a_ptr);
a_mem_desc->dims[0] = args.a_m_size;
c_storage->set_data_handle((void*)args.c_ptr);
c_mem_desc->dims[0] = args.a_m_size;
if (a_qs_ == QuantizationStrategy::PER_TENSOR) {
auto&& [a_scale_storage, a_scale_mem_desc] = get_runtime_memory_ptr(2);
a_scale_storage->set_data_handle((void*)args.a_scales_ptr);
}
if (use_azp_) {
auto&& [a_zero_point_storage, a_zero_point_mem_desc] =
get_runtime_memory_ptr(3);
a_zero_point_storage->set_data_handle((void*)args.a_zero_points_ptr);
}
if (args.use_bias) {
auto&& [bias_storage, bias_mem_desc] = get_runtime_memory_ptr(4);
bias_storage->set_data_handle((void*)args.bias_ptr);
}
dnnl::matmul matmul = get_matmul_cache(args);
auto&& [scratchpad_storage, scratchpad_mem_desc] = get_runtime_memory_ptr(5);
scratchpad_storage->set_data_handle(
DNNLScratchPadManager::get_dnnl_scratchpad_manager()->get_data<void>());
matmul.execute(default_stream(), memory_cache_);
default_stream().wait();
}
dnnl::matmul W8A8MatMulPrimitiveHandler::get_matmul_cache(
const MSizeCacheKey& key) {
if (m_size_cache_.get() == nullptr) {
ClassMatmulCacheKey key = {.b_n_size = b_n_size_,
.b_k_size = b_k_size_,
.a_qs = a_qs_,
.b_qs = b_qs_,
.use_azp = use_azp_,
.c_type = c_type_};
m_size_cache_ = get_w8a8_class_primitive_cache(key, primitive_cache_size_);
}
return m_size_cache_->get_or_create(key, [&]() {
dnnl::matmul::primitive_desc desc = this->create_primitive_desc(key, false);
auto manager = DNNLScratchPadManager::get_dnnl_scratchpad_manager();
manager->realloc(desc.scratchpad_desc().get_size());
return dnnl::matmul(desc);
});
}
void W8A8MatMulPrimitiveHandler::init_runtime_memory_cache(const Args& args) {
memory_cache_[DNNL_ARG_SRC] = dnnl::memory({{1, b_k_size_},
dnnl::memory::data_type::s8,
dnnl::memory::format_tag::ab},
default_engine(), nullptr);
set_runtime_memory_ptr(0, memory_cache_[DNNL_ARG_SRC].get());
memory_cache_[DNNL_ARG_DST] =
dnnl::memory({{1, b_n_size_}, c_type_, dnnl::memory::format_tag::ab},
default_engine(), nullptr);
set_runtime_memory_ptr(1, memory_cache_[DNNL_ARG_DST].get());
// For PER_TOKEN, scales will be applied in outside epilogue
if (a_qs_ == QuantizationStrategy::PER_TENSOR) {
memory_cache_[DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC] = dnnl::memory(
{{1}, dnnl::memory::data_type::f32, {1}}, default_engine(), nullptr);
set_runtime_memory_ptr(
2, memory_cache_[DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC].get());
if (use_azp_) {
memory_cache_[DNNL_ARG_ATTR_ZERO_POINTS | DNNL_ARG_SRC] = dnnl::memory(
{{1}, dnnl::memory::data_type::s32, {1}}, default_engine(), nullptr);
set_runtime_memory_ptr(
3, memory_cache_[DNNL_ARG_ATTR_ZERO_POINTS | DNNL_ARG_SRC].get());
}
}
if (b_qs_ == QuantizationStrategy::PER_TENSOR) {
memory_cache_[DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS] =
dnnl::memory({{1}, dnnl::memory::data_type::f32, {1}}, default_engine(),
(void*)args.b_scales_ptr);
} else if (b_qs_ == QuantizationStrategy::PER_OUTPUT_CHANNEL) {
memory_cache_[DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS] =
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
default_engine(), (void*)args.b_scales_ptr);
}
memory_cache_[DNNL_ARG_BIAS] =
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
default_engine(), nullptr);
set_runtime_memory_ptr(4, memory_cache_[DNNL_ARG_BIAS].get());
memory_cache_[DNNL_ARG_SCRATCHPAD] =
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
default_engine(), nullptr);
set_runtime_memory_ptr(5, memory_cache_[DNNL_ARG_SCRATCHPAD].get());
}
dnnl::matmul::primitive_desc W8A8MatMulPrimitiveHandler::create_primitive_desc(
const MSizeCacheKey& key, bool first_time) {
dnnl::memory::desc a_md({key.a_m_size, b_k_size_},
dnnl::memory::data_type::s8,
dnnl::memory::format_tag::ab);
dnnl::memory::desc b_md;
if (first_time) {
b_md =
dnnl::memory::desc({b_k_size_, b_n_size_}, dnnl::memory::data_type::s8,
dnnl::memory::format_tag::any);
} else {
b_md = b_target_mem_desc_;
}
dnnl::memory::desc c_md({key.a_m_size, b_n_size_}, c_type_,
dnnl::memory::format_tag::ab);
dnnl::primitive_attr attr;
attr.set_scratchpad_mode(dnnl::scratchpad_mode::user);
// For PER_TOKEN, scales will be applied in outside epilogue
if (a_qs_ == QuantizationStrategy::PER_TENSOR) {
attr.set_scales_mask(DNNL_ARG_SRC, 0);
if (use_azp_) {
attr.set_zero_points_mask(DNNL_ARG_SRC, 0);
}
}
if (b_qs_ == QuantizationStrategy::PER_TENSOR) {
attr.set_scales_mask(DNNL_ARG_WEIGHTS, 0);
} else if (b_qs_ == QuantizationStrategy::PER_OUTPUT_CHANNEL) {
attr.set_scales_mask(DNNL_ARG_WEIGHTS, 2);
}
if (key.use_bias) {
// For PER_TOKEN, bias will be applied in epilogue
assert(a_qs_ == QuantizationStrategy::PER_TENSOR);
dnnl::memory::desc bias_md({1, b_n_size_}, key.bias_type, {b_n_size_, 1});
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, bias_md,
c_md, attr);
} else {
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, c_md,
attr);
}
}
MatMulPrimitiveHandler::MatMulPrimitiveHandler(const Args& args)
: DNNLMatMulPrimitiveHandler(
static_cast<DNNLMatMulPrimitiveHandler::Args>(args), args.ab_type),
m_size_cache_(nullptr) {
assert(ab_type_ == dnnl::memory::data_type::f32 ||
ab_type_ == dnnl::memory::data_type::bf16 ||
ab_type_ == dnnl::memory::data_type::f16);
prepack_weight(args.b_ptr,
create_primitive_desc(
MSizeCacheKey{.a_m_size = DNNL_RUNTIME_DIM_VAL,
.a_m_stride = DNNL_RUNTIME_DIM_VAL,
.use_bias = false,
.bias_type = dnnl::memory::data_type::undef},
true)
.weights_desc());
init_runtime_memory_cache(args);
}
static std::shared_ptr<MatMulPrimitiveHandler::MSizeCache>
get_matul_class_primitive_cache(
const MatMulPrimitiveHandler::ClassMatmulCacheKey& key,
int64_t cache_size) {
static MatMulPrimitiveHandler::ClassMatmulCache cache(128);
assert(cache_size > 0);
return cache.get_or_create(key, [&]() {
return std::make_shared<MatMulPrimitiveHandler::MSizeCache>(cache_size);
});
}
void MatMulPrimitiveHandler::execute(ExecArgs& args) {
auto&& [a_storage, a_mem_desc] = get_runtime_memory_ptr(0);
auto&& [c_storage, c_mem_desc] = get_runtime_memory_ptr(1);
a_storage->set_data_handle((void*)args.a_ptr);
a_mem_desc->dims[0] = args.a_m_size;
a_mem_desc->format_desc.blocking.strides[0] = args.a_m_stride;
c_storage->set_data_handle((void*)args.c_ptr);
c_mem_desc->dims[0] = args.a_m_size;
if (args.use_bias) {
auto&& [bias_storage, bias_mem_desc] = get_runtime_memory_ptr(2);
bias_storage->set_data_handle((void*)args.bias_ptr);
}
dnnl::matmul matmul = get_matmul_cache(args);
auto&& [scratchpad_storage, scratchpad_mem_desc] = get_runtime_memory_ptr(3);
scratchpad_storage->set_data_handle(
DNNLScratchPadManager::get_dnnl_scratchpad_manager()->get_data<void>());
matmul.execute(default_stream(), memory_cache_);
default_stream().wait();
}
dnnl::matmul MatMulPrimitiveHandler::get_matmul_cache(
const MSizeCacheKey& key) {
if (m_size_cache_.get() == nullptr) {
ClassMatmulCacheKey key = {.b_n_size = b_n_size_, .b_k_size = b_k_size_};
m_size_cache_ = get_matul_class_primitive_cache(key, primitive_cache_size_);
}
return m_size_cache_->get_or_create(key, [&]() {
dnnl::matmul::primitive_desc desc = this->create_primitive_desc(key, false);
auto manager = DNNLScratchPadManager::get_dnnl_scratchpad_manager();
manager->realloc(desc.scratchpad_desc().get_size());
return dnnl::matmul(desc);
});
}
dnnl::matmul::primitive_desc MatMulPrimitiveHandler::create_primitive_desc(
const MSizeCacheKey& key, bool first_time) {
dnnl::memory::desc a_md;
dnnl::memory::desc b_md;
if (first_time) {
a_md = dnnl::memory::desc({key.a_m_size, b_k_size_}, b_type_,
dnnl::memory::format_tag::ab);
b_md = dnnl::memory::desc({b_k_size_, b_n_size_}, b_type_,
dnnl::memory::format_tag::any);
} else {
a_md = dnnl::memory::desc({key.a_m_size, b_k_size_}, b_type_,
{key.a_m_stride, 1});
b_md = b_target_mem_desc_;
}
dnnl::memory::desc c_md({key.a_m_size, b_n_size_}, c_type_,
dnnl::memory::format_tag::ab);
dnnl::primitive_attr attr;
attr.set_scratchpad_mode(dnnl::scratchpad_mode::user);
if (key.use_bias) {
dnnl::memory::desc bias_md({1, b_n_size_}, key.bias_type, {b_n_size_, 1});
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, bias_md,
c_md, attr);
} else {
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, c_md,
attr);
}
}
void MatMulPrimitiveHandler::init_runtime_memory_cache(const Args& args) {
memory_cache_[DNNL_ARG_SRC] = dnnl::memory(
{{1, b_k_size_}, b_type_, {b_k_size_, 1}}, default_engine(), nullptr);
set_runtime_memory_ptr(0, memory_cache_[DNNL_ARG_SRC].get());
memory_cache_[DNNL_ARG_DST] =
dnnl::memory({{1, b_n_size_}, c_type_, dnnl::memory::format_tag::ab},
default_engine(), nullptr);
set_runtime_memory_ptr(1, memory_cache_[DNNL_ARG_DST].get());
memory_cache_[DNNL_ARG_BIAS] =
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
default_engine(), nullptr);
set_runtime_memory_ptr(2, memory_cache_[DNNL_ARG_BIAS].get());
memory_cache_[DNNL_ARG_SCRATCHPAD] =
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
default_engine(), nullptr);
set_runtime_memory_ptr(3, memory_cache_[DNNL_ARG_SCRATCHPAD].get());
}

243
csrc/cpu/dnnl_helper.h Normal file
View File

@ -0,0 +1,243 @@
#ifndef DNNL_HELPER_H
#define DNNL_HELPER_H
#include <optional>
#include <cassert>
#include "oneapi/dnnl/dnnl.hpp"
namespace c10 {
struct BFloat16;
struct Half;
} // namespace c10
namespace dnnl {
namespace impl {
struct memory_storage_t;
struct matmul_pd_t;
struct matmul_desc_t;
} // namespace impl
} // namespace dnnl
struct dnnl_memory_desc;
template <typename KT, typename VT>
class DNNLPrimitiveCache;
template <typename T>
struct DNNLType {
static constexpr dnnl::memory::data_type type =
dnnl::memory::data_type::undef;
};
template <>
struct DNNLType<int8_t> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::s8;
};
template <>
struct DNNLType<int32_t> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::s32;
};
template <>
struct DNNLType<float> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::f32;
};
template <>
struct DNNLType<c10::BFloat16> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::bf16;
};
template <>
struct DNNLType<c10::Half> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::f16;
};
template <typename T>
constexpr inline dnnl::memory::data_type get_dnnl_type() {
return DNNLType<std::decay_t<T>>::type;
}
class DNNLScratchPadManager {
public:
static constexpr size_t allocation_unit = 4 * 1024 * 1024; // 4KB
static DNNLScratchPadManager* get_dnnl_scratchpad_manager();
DNNLScratchPadManager();
template <typename T>
T* get_data() {
return reinterpret_cast<T*>(ptr_);
}
static size_t round(size_t size) {
return ((size + allocation_unit - 1) / allocation_unit) * allocation_unit;
}
void realloc(size_t new_size);
private:
size_t size_;
void* ptr_;
};
class DNNLMatMulPrimitiveHandler {
public:
virtual ~DNNLMatMulPrimitiveHandler() = default;
protected:
struct Args {
dnnl_dim_t b_n_size;
dnnl_dim_t b_n_stride;
dnnl_dim_t b_k_size;
dnnl_dim_t b_k_stride;
void* b_ptr;
dnnl::memory::data_type c_type;
size_t primitive_cache_size;
};
protected:
DNNLMatMulPrimitiveHandler(const Args& args, dnnl::memory::data_type b_type);
void prepack_weight(void* original_b_ptr,
dnnl::memory::desc b_target_mem_desc);
void set_runtime_memory_ptr(size_t index, dnnl_memory* memory_ptr);
std::pair<dnnl::impl::memory_storage_t*, dnnl_memory_desc*>
get_runtime_memory_ptr(size_t index);
protected:
const dnnl_dim_t b_n_size_;
const dnnl_dim_t b_n_stride_;
const dnnl_dim_t b_k_size_;
const dnnl_dim_t b_k_stride_;
dnnl::memory::data_type b_type_;
dnnl::memory::data_type c_type_;
std::unordered_map<int, dnnl::memory> memory_cache_;
std::vector<std::pair<dnnl::impl::memory_storage_t*, dnnl_memory_desc*>>
runtime_memory_ptrs_;
dnnl::memory::desc b_target_mem_desc_;
int64_t primitive_cache_size_;
};
class W8A8MatMulPrimitiveHandler : public DNNLMatMulPrimitiveHandler {
public:
enum class QuantizationStrategy { PER_TOKEN, PER_TENSOR, PER_OUTPUT_CHANNEL };
struct Args : public DNNLMatMulPrimitiveHandler::Args {
bool use_a_zero_point;
QuantizationStrategy a_quantization_strategy;
QuantizationStrategy b_quantization_strategy;
float* b_scales_ptr;
};
struct ClassMatmulCacheKey {
dnnl_dim_t b_n_size;
dnnl_dim_t b_k_size;
QuantizationStrategy a_qs;
QuantizationStrategy b_qs;
bool use_azp;
dnnl::memory::data_type c_type;
friend bool operator==(const ClassMatmulCacheKey& l,
const ClassMatmulCacheKey& r);
};
struct MSizeCacheKey {
dnnl_dim_t a_m_size;
bool use_bias;
dnnl::memory::data_type bias_type;
friend bool operator==(const MSizeCacheKey& l, const MSizeCacheKey& r);
};
using MSizeCache = DNNLPrimitiveCache<MSizeCacheKey, dnnl::matmul>;
using ClassMatmulCache =
DNNLPrimitiveCache<ClassMatmulCacheKey, std::shared_ptr<MSizeCache>>;
struct ExecArgs : public MSizeCacheKey {
const int8_t* a_ptr;
const float* a_scales_ptr;
const int32_t* a_zero_points_ptr;
const void* bias_ptr;
void* c_ptr;
};
public:
W8A8MatMulPrimitiveHandler(const Args& args);
QuantizationStrategy get_input_scale_strategy() const { return a_qs_; }
bool get_input_use_zero_point() const { return use_azp_; }
void execute(ExecArgs& args);
private:
dnnl::matmul::primitive_desc create_primitive_desc(const MSizeCacheKey& key,
bool first_time);
void init_runtime_memory_cache(const Args& args);
dnnl::matmul get_matmul_cache(const MSizeCacheKey& key);
private:
const bool use_azp_;
const QuantizationStrategy a_qs_;
const QuantizationStrategy b_qs_;
std::shared_ptr<MSizeCache> m_size_cache_;
};
class MatMulPrimitiveHandler : public DNNLMatMulPrimitiveHandler {
public:
struct Args : public DNNLMatMulPrimitiveHandler::Args {
dnnl::memory::data_type ab_type;
};
struct ClassMatmulCacheKey {
dnnl_dim_t b_n_size;
dnnl_dim_t b_k_size;
friend bool operator==(const ClassMatmulCacheKey& l,
const ClassMatmulCacheKey& r);
};
struct MSizeCacheKey {
dnnl_dim_t a_m_size;
dnnl_dim_t a_m_stride;
bool use_bias;
dnnl::memory::data_type bias_type;
friend bool operator==(const MSizeCacheKey& l, const MSizeCacheKey& r);
};
using MSizeCache = DNNLPrimitiveCache<MSizeCacheKey, dnnl::matmul>;
using ClassMatmulCache =
DNNLPrimitiveCache<ClassMatmulCacheKey, std::shared_ptr<MSizeCache>>;
struct ExecArgs : public MSizeCacheKey {
const void* a_ptr;
const void* bias_ptr;
void* c_ptr;
};
public:
MatMulPrimitiveHandler(const Args& args);
void execute(ExecArgs& args);
private:
dnnl::matmul::primitive_desc create_primitive_desc(const MSizeCacheKey& key,
bool first_time);
void init_runtime_memory_cache(const Args& args);
dnnl::matmul get_matmul_cache(const MSizeCacheKey& key);
private:
std::shared_ptr<MSizeCache> m_size_cache_;
};
#endif

View File

@ -1,206 +0,0 @@
#ifndef DNNL_HELPER_HPP
#define DNNL_HELPER_HPP
#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include "oneapi/dnnl/dnnl.hpp"
namespace {
template <typename T>
struct DNNLType {
static constexpr dnnl::memory::data_type type =
dnnl::memory::data_type::undef;
};
template <>
struct DNNLType<int8_t> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::s8;
};
template <>
struct DNNLType<int32_t> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::s32;
};
template <>
struct DNNLType<float> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::f32;
};
template <>
struct DNNLType<c10::BFloat16> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::bf16;
};
template <>
struct DNNLType<c10::Half> {
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::f16;
};
template <typename T>
constexpr inline dnnl::memory::data_type get_dnnl_type() {
return DNNLType<std::decay_t<T>>::type;
}
}; // namespace
template <bool InputNoScale>
class DNNLPrimitiveHelper {
public:
// I8 input GEMM kernel (C = a_scales * A @ (b_scales * B^T) + bias)
// A: [M, K], row-major
// B: [K, N], column-major
// C: [M, N], row-major
// bias: [N], row-major, optional
// a_scales: [MS]
// b_scales: [NS]
// Note: Due to the limitation of oneDNN
// (https://github.com/oneapi-src/oneDNN/issues/1636), the quantized bias is
// not supported.
template <typename OutputT, typename BiasT>
static void gemm_s8s8_jit(const int8_t* a, const int8_t* b, OutputT* c,
const BiasT* bias, dnnl_dim_t M, dnnl_dim_t N,
dnnl_dim_t K, const float* a_scales,
const float* b_scales, dnnl_dim_t MS,
dnnl_dim_t NS) {
auto&& OutputType = get_dnnl_type<OutputT>();
auto&& BiasType = get_dnnl_type<BiasT>();
dnnl::memory::desc a_md({M, K}, dnnl::memory::data_type::s8, {K, 1});
dnnl::memory::desc b_md({K, N}, dnnl::memory::data_type::s8, {1, K});
dnnl::memory::desc c_md({M, N}, OutputType, {N, 1});
dnnl::primitive_attr attr;
if constexpr (!InputNoScale) {
if (MS == 1) {
// per-tensor
attr.set_scales_mask(DNNL_ARG_SRC, 0);
} else {
// per-token
TORCH_CHECK(false, "per-token quantization is unsupported.");
}
}
if (NS == 1) {
// per-tensor
attr.set_scales_mask(DNNL_ARG_WEIGHTS, 0);
} else {
// per-channel
attr.set_scales_mask(DNNL_ARG_WEIGHTS, 2);
}
dnnl::matmul::primitive_desc matmul_pd;
// Create memory descriptors with format_tag::any for the primitive. This
// enables the matmul primitive to choose memory layouts for an
// optimized primitive implementation, and these layouts may differ from the
// ones provided by the user.
#ifdef __aarch64__
auto mat_src_md = dnnl::memory::desc({M, K}, dnnl::memory::data_type::s8,
dnnl::memory::format_tag::any);
auto mat_weights_md = dnnl::memory::desc(
{K, N}, dnnl::memory::data_type::s8, dnnl::memory::format_tag::any);
auto mat_dst_md =
dnnl::memory::desc({M, N}, OutputType, dnnl::memory::format_tag::any);
if (bias) {
dnnl::memory::desc bias_md({1, N}, BiasType, {N, 1});
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), mat_src_md,
mat_weights_md, bias_md,
mat_dst_md, attr);
} else {
matmul_pd = dnnl::matmul::primitive_desc(
default_engine(), mat_src_md, mat_weights_md, mat_dst_md, attr);
}
#else
if (bias) {
dnnl::memory::desc bias_md({1, N}, BiasType, {N, 1});
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), a_md, b_md,
bias_md, c_md, attr);
} else {
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), a_md, b_md,
c_md, attr);
}
#endif
dnnl::matmul matmul(matmul_pd);
auto& engine = default_engine();
dnnl::memory a_m(a_md, engine, (void*)a);
dnnl::memory b_m(b_md, engine, (void*)b);
dnnl::memory c_m(c_md, engine, (void*)c);
dnnl::memory a_scales_m({{MS}, dnnl::memory::data_type::f32, {1}}, engine,
(void*)a_scales);
dnnl::memory b_scales_m({{NS}, dnnl::memory::data_type::f32, {1}}, engine,
(void*)b_scales);
auto& stream = default_stream();
auto mat_src_mem = a_m;
auto mat_weights_mem = b_m;
auto mat_dst_mem = c_m;
#ifdef __aarch64__
if (matmul_pd.weights_desc() != b_m.get_desc()) {
mat_weights_mem = dnnl::memory(matmul_pd.weights_desc(), engine);
dnnl::reorder(b_m, mat_weights_mem).execute(stream, b_m, mat_weights_mem);
}
#endif
if constexpr (InputNoScale) {
if (bias) {
dnnl::memory::desc bias_md({N}, BiasType, {1});
dnnl::memory bias_m(bias_md, engine, (void*)bias);
matmul.execute(
stream, {
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_BIAS, bias_m},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
} else {
matmul.execute(
stream, {
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
}
} else {
if (bias) {
dnnl::memory::desc bias_md({N}, BiasType, {1});
dnnl::memory bias_m(bias_md, engine, (void*)bias);
matmul.execute(
stream, {
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_BIAS, bias_m},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, a_scales_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
} else {
matmul.execute(
stream, {
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, a_scales_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
}
}
stream.wait();
}
private:
static dnnl::engine& default_engine() {
static dnnl::engine engine(dnnl::engine::kind::cpu, 0);
return engine;
}
static dnnl::stream& default_stream() {
static dnnl::stream stream(default_engine());
return stream;
}
};
#endif

549
csrc/cpu/dnnl_kernels.cpp Normal file
View File

@ -0,0 +1,549 @@
#include "cpu_types.hpp"
#include "dnnl_helper.h"
namespace {
template <typename scalar_t>
struct KernelVecType {
using load_vec_type = void;
using cvt_vec_type = void;
};
template <>
struct KernelVecType<float> {
using load_vec_type = vec_op::FP32Vec16;
using cvt_vec_type = vec_op::FP32Vec16;
};
#if !defined(__aarch64__) || defined(ARM_BF16_SUPPORT)
template <>
struct KernelVecType<c10::BFloat16> {
using load_vec_type = vec_op::BF16Vec16;
using cvt_vec_type = vec_op::FP32Vec16;
};
#endif
template <>
struct KernelVecType<c10::Half> {
#if defined(__powerpc64__) || defined(__s390x__)
// Power architecture-specific vector type
using load_vec_type = vec_op::FP32Vec16;
#else
// Fallback for other architectures
using load_vec_type = vec_op::FP16Vec16;
#endif
using cvt_vec_type = vec_op::FP32Vec16;
};
template <bool AZP, typename scalar_t>
void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
const float* scale, const int32_t* azp,
const int64_t num_tokens,
const int64_t input_stride,
const int64_t hidden_size) {
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int64_t vec_elem_num = load_vec_t::VEC_ELEM_NUM;
constexpr float i8_min =
static_cast<float>(std::numeric_limits<int8_t>::min());
constexpr float i8_max =
static_cast<float>(std::numeric_limits<int8_t>::max());
const cvt_vec_t inv_scale(1.0 / *scale);
const cvt_vec_t i8_min_vec(i8_min);
const cvt_vec_t i8_max_vec(i8_max);
cvt_vec_t zp_vec;
if constexpr (AZP) {
zp_vec = cvt_vec_t(static_cast<float>(*azp));
}
#pragma omp parallel for
for (int64_t i = 0; i < num_tokens; ++i) {
int64_t j = 0;
const scalar_t* input_ptr = input + i * input_stride;
int8_t* output_ptr = output + i * hidden_size;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input_ptr + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = elems_fp32 * inv_scale;
if constexpr (AZP) {
elems_fp32 = elems_fp32 + zp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output_ptr + j);
}
load_vec_t elems(input_ptr + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = elems_fp32 * inv_scale;
if constexpr (AZP) {
elems_fp32 = elems_fp32 + zp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output_ptr + j, hidden_size - j);
}
}
template <bool AZP, typename scalar_t>
void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
float* scale, int32_t* azp,
const int64_t num_tokens,
const int64_t input_stride,
const int64_t hidden_size) {
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
constexpr float i8_min =
static_cast<float>(std::numeric_limits<int8_t>::min());
constexpr float i8_max =
static_cast<float>(std::numeric_limits<int8_t>::max());
const cvt_vec_t i8_min_vec(i8_min);
const cvt_vec_t i8_max_vec(i8_max);
#pragma omp parallel for
for (int64_t i = 0; i < num_tokens; ++i) {
cvt_vec_t max_value(std::numeric_limits<float>::lowest());
cvt_vec_t min_value(std::numeric_limits<float>::max());
{
int64_t j = 0;
const scalar_t* input_ptr = input + i * input_stride;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input_ptr + j);
cvt_vec_t elems_fp32(elems);
if constexpr (AZP) {
max_value = max_value.max(elems_fp32);
min_value = min_value.min(elems_fp32);
} else {
max_value = max_value.max(elems_fp32.abs());
}
}
load_vec_t elems(input_ptr + j);
cvt_vec_t elems_fp32(elems);
if (j + vec_elem_num == hidden_size) {
if constexpr (AZP) {
max_value = max_value.max(elems_fp32);
min_value = min_value.min(elems_fp32);
} else {
max_value = max_value.max(elems_fp32.abs());
}
} else {
if constexpr (AZP) {
max_value = max_value.max(elems_fp32, hidden_size - j);
min_value = min_value.min(elems_fp32, hidden_size - j);
} else {
max_value = max_value.max(elems_fp32.abs(), hidden_size - j);
}
}
}
float scale_val;
float azp_val = 0.0f;
if constexpr (AZP) {
float max_scalar = max_value.reduce_max();
float min_scalar = min_value.reduce_min();
scale_val = (max_scalar - min_scalar) / 255.0f;
azp_val = std::nearbyint(-128.0f - min_scalar / scale_val);
azp[i] = azp_val;
scale[i] = scale_val;
} else {
scale_val = max_value.reduce_max() / 127.0f;
scale[i] = scale_val;
}
const cvt_vec_t inv_scale(1.0 / scale_val);
const cvt_vec_t azp_vec(azp_val);
{
int64_t j = 0;
const scalar_t* input_ptr = input + i * input_stride;
int8_t* output_ptr = output + i * hidden_size;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input_ptr + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = (elems_fp32 * inv_scale);
if constexpr (AZP) {
elems_fp32 = elems_fp32 + azp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output_ptr + j);
}
load_vec_t elems(input_ptr + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = (elems_fp32 * inv_scale);
if constexpr (AZP) {
elems_fp32 = elems_fp32 + azp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output_ptr + j, hidden_size - j);
}
}
}
template <bool AZP, bool Bias, typename scalar_t>
void dynamic_quant_epilogue(const float* input, scalar_t* output,
const float* a_scale, const int32_t* azp,
const float* azp_adj, const scalar_t* bias,
const int64_t num_tokens,
const int64_t hidden_size) {
CPU_KERNEL_GUARD_IN(dynamic_quant_epilogue)
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
const int64_t thread_num = omp_get_max_threads();
if (num_tokens > thread_num) {
#pragma omp parallel for
for (int64_t i = 0; i < num_tokens; ++i) {
const float* input_ptr = input + i * hidden_size;
scalar_t* output_ptr = output + i * hidden_size;
int64_t j = 0;
cvt_vec_t token_scale_vec(a_scale[i]);
cvt_vec_t token_zp_scale_vec;
if constexpr (AZP) {
float zp_scale_val = a_scale[i] * static_cast<float>(azp[i]);
token_zp_scale_vec = cvt_vec_t(zp_scale_val);
}
for (; j < hidden_size - vec_elem_num; ++j) {
cvt_vec_t elems_fp32(input_ptr + j);
elems_fp32 = elems_fp32 * token_scale_vec;
if constexpr (AZP) {
cvt_vec_t azp_adj_fp32(azp_adj + j);
elems_fp32 = elems_fp32 - azp_adj_fp32 * token_zp_scale_vec;
}
if constexpr (Bias) {
load_vec_t bias_vec(bias + j);
cvt_vec_t bias_vec_fp32(bias_vec);
elems_fp32 = elems_fp32 + bias_vec_fp32;
}
load_vec_t elems_out(elems_fp32);
elems_out.save(output_ptr + j);
}
cvt_vec_t elems_fp32(input_ptr + j);
elems_fp32 = elems_fp32 * token_scale_vec;
if constexpr (AZP) {
cvt_vec_t azp_adj_fp32(azp_adj + j);
elems_fp32 = elems_fp32 - azp_adj_fp32 * token_zp_scale_vec;
}
if constexpr (Bias) {
load_vec_t bias_vec(bias + j);
cvt_vec_t bias_vec_fp32(bias_vec);
elems_fp32 = elems_fp32 + bias_vec_fp32;
}
load_vec_t elems_out(elems_fp32);
elems_out.save(output_ptr + j, hidden_size - j);
}
} else {
const int64_t vec_iteration =
(hidden_size + vec_elem_num - 1) / vec_elem_num;
const int64_t vec_iteration_per_thread =
(vec_iteration + thread_num - 1) / thread_num;
const int64_t elem_num_per_thread = vec_iteration_per_thread * vec_elem_num;
#pragma omp parallel for schedule(static, 1)
for (int64_t i = 0; i < thread_num; ++i) {
const int64_t start = elem_num_per_thread * i;
const int64_t end = std::min(hidden_size, elem_num_per_thread + start);
for (int64_t j = 0; j < num_tokens; ++j) {
cvt_vec_t token_scale_vec(a_scale[j]);
cvt_vec_t token_zp_scale_vec;
if constexpr (AZP) {
float zp_scale_val = a_scale[j] * static_cast<float>(azp[j]);
token_zp_scale_vec = cvt_vec_t(zp_scale_val);
}
int64_t k = start;
const float* input_ptr = input + j * hidden_size;
scalar_t* output_ptr = output + j * hidden_size;
for (; k < end - vec_elem_num; k += vec_elem_num) {
cvt_vec_t elems_fp32(input_ptr + k);
elems_fp32 = elems_fp32 * token_scale_vec;
if constexpr (AZP) {
cvt_vec_t azp_adj_fp32(azp_adj + k);
elems_fp32 = elems_fp32 - azp_adj_fp32 * token_zp_scale_vec;
}
if constexpr (Bias) {
load_vec_t bias_vec(bias + k);
cvt_vec_t bias_vec_fp32(bias_vec);
elems_fp32 = elems_fp32 + bias_vec_fp32;
}
load_vec_t elems_out(elems_fp32);
elems_out.save(output_ptr + k);
}
if (k < end) {
cvt_vec_t elems_fp32(input_ptr + k);
elems_fp32 = elems_fp32 * token_scale_vec;
if constexpr (AZP) {
cvt_vec_t azp_adj_fp32(azp_adj + k);
elems_fp32 = elems_fp32 - azp_adj_fp32 * token_zp_scale_vec;
}
if constexpr (Bias) {
load_vec_t bias_vec(bias + k);
cvt_vec_t bias_vec_fp32(bias_vec);
elems_fp32 = elems_fp32 + bias_vec_fp32;
}
load_vec_t elems_out(elems_fp32);
elems_out.save(output_ptr + k, end - k);
}
}
}
}
}
} // namespace
int64_t create_onednn_scaled_mm_handler(
const torch::Tensor& b, // [IC, OC], column-major
const torch::Tensor& b_scales, // [1] or [OC]
at::ScalarType output_type, bool dynamic_act_quant, bool use_azp,
int64_t primitive_cache_size) {
TORCH_CHECK(b.dim() == 2);
TORCH_CHECK(b.stride(0) == 1); // Column-major
TORCH_CHECK(b_scales.is_contiguous());
W8A8MatMulPrimitiveHandler::Args args;
args.primitive_cache_size = primitive_cache_size;
if (b_scales.numel() == 1) {
args.b_quantization_strategy =
W8A8MatMulPrimitiveHandler::QuantizationStrategy::PER_TENSOR;
} else {
TORCH_CHECK_EQ(b_scales.numel(), b.size(1));
args.b_quantization_strategy =
W8A8MatMulPrimitiveHandler::QuantizationStrategy::PER_OUTPUT_CHANNEL;
}
args.b_scales_ptr = b_scales.data_ptr<float>();
args.b_k_size = b.size(0);
args.b_k_stride = b.stride(0);
args.b_n_size = b.size(1);
args.b_n_stride = b.stride(1);
args.b_ptr = b.data_ptr<int8_t>();
if (dynamic_act_quant) {
// dynamic per-token, bias, A scales and A zps will be applied in outside.
args.a_quantization_strategy =
W8A8MatMulPrimitiveHandler::QuantizationStrategy::PER_TOKEN;
args.use_a_zero_point = false;
} else {
// static per-tensor
args.a_quantization_strategy =
W8A8MatMulPrimitiveHandler::QuantizationStrategy::PER_TENSOR;
args.use_a_zero_point = use_azp;
}
VLLM_DISPATCH_FLOATING_TYPES(output_type, "create_onednn_scaled_mm_handler",
[&] {
if (dynamic_act_quant) {
args.c_type = get_dnnl_type<float>();
} else {
args.c_type = get_dnnl_type<scalar_t>();
}
});
return reinterpret_cast<int64_t>(new W8A8MatMulPrimitiveHandler(args));
}
void onednn_scaled_mm(
torch::Tensor& c, // [M, OC], row-major
const torch::Tensor& a, // [M, IC], row-major
const torch::Tensor& a_scales, // [M] or [1]
const std::optional<torch::Tensor>& azp, // [M] or [1]
const std::optional<torch::Tensor>& azp_adj, // [M] or [1]
const std::optional<torch::Tensor>& bias, // [N]
int64_t handler) {
CPU_KERNEL_GUARD_IN(onednn_scaled_mm)
TORCH_CHECK(a.dim() == 2);
TORCH_CHECK(a.is_contiguous());
TORCH_CHECK(c.is_contiguous());
W8A8MatMulPrimitiveHandler* ptr =
reinterpret_cast<W8A8MatMulPrimitiveHandler*>(handler);
const int32_t* azp_ptr = nullptr;
if (azp.has_value()) {
azp_ptr = azp->data_ptr<int32_t>();
}
if (ptr->get_input_scale_strategy() ==
W8A8MatMulPrimitiveHandler::QuantizationStrategy::PER_TENSOR) {
TORCH_CHECK_EQ(a_scales.numel(), 1);
}
W8A8MatMulPrimitiveHandler::ExecArgs exec_args;
exec_args.a_ptr = a.data_ptr<int8_t>();
exec_args.a_m_size = a.size(0);
exec_args.bias_ptr = nullptr;
exec_args.bias_type = get_dnnl_type<void>();
exec_args.use_bias = false;
exec_args.a_scales_ptr = nullptr;
exec_args.a_zero_points_ptr = nullptr;
VLLM_DISPATCH_FLOATING_TYPES(c.scalar_type(), "onednn_scaled_mm", [&] {
if (ptr->get_input_scale_strategy() ==
W8A8MatMulPrimitiveHandler::QuantizationStrategy::PER_TENSOR) {
if (bias.has_value()) {
exec_args.bias_ptr = bias->data_ptr<scalar_t>();
exec_args.bias_type = get_dnnl_type<scalar_t>();
exec_args.use_bias = true;
}
exec_args.a_scales_ptr = a_scales.data_ptr<float>();
exec_args.a_zero_points_ptr = azp_ptr;
exec_args.c_ptr = c.data_ptr<scalar_t>();
ptr->execute(exec_args);
} else if (ptr->get_input_scale_strategy() ==
W8A8MatMulPrimitiveHandler::QuantizationStrategy::PER_TOKEN) {
torch::Tensor tmp_fp32_out =
torch::empty_like(c, ::at::ScalarType::Float);
exec_args.c_ptr = tmp_fp32_out.data_ptr<float>();
ptr->execute(exec_args);
if (bias.has_value()) {
if (azp.has_value()) {
dynamic_quant_epilogue<true, true>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), azp_ptr, azp_adj->data_ptr<float>(),
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
} else {
dynamic_quant_epilogue<false, true>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), azp_ptr, nullptr,
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
}
} else {
if (azp.has_value()) {
dynamic_quant_epilogue<true, false>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), azp_ptr, azp_adj->data_ptr<float>(),
(scalar_t*)nullptr, c.size(0), c.size(1));
} else {
dynamic_quant_epilogue<false, false>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), azp_ptr, nullptr, (scalar_t*)nullptr,
c.size(0), c.size(1));
}
}
} else {
TORCH_CHECK(false, "invalid act quant type.");
}
});
}
// static-per-tensor quantization.
void static_scaled_int8_quant(
torch::Tensor& out, // [batch, hidden_size]
const torch::Tensor& input, // [batch, hidden_size]
const torch::Tensor& scale, std::optional<torch::Tensor> const& azp) {
CPU_KERNEL_GUARD_IN(static_scaled_int8_quant)
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK_EQ(input.dim(), 2);
TORCH_CHECK_EQ(input.stride(1), 1);
TORCH_CHECK(scale.numel() == 1);
TORCH_CHECK(!azp.has_value() || azp->numel() == 1);
const int64_t stride = input.stride(0);
const int64_t hidden_size = input.size(1);
const int64_t num_tokens = input.size(0);
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "static_scaled_int8_quant_impl", [&] {
if (azp.has_value()) {
static_scaled_int8_quant_impl<true>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scale.data_ptr<float>(), azp->data_ptr<int32_t>(), num_tokens,
stride, hidden_size);
} else {
static_scaled_int8_quant_impl<false>(input.data_ptr<scalar_t>(),
out.data_ptr<int8_t>(),
scale.data_ptr<float>(), nullptr,
num_tokens, stride, hidden_size);
}
});
}
// dynamic-per-token quantization.
void dynamic_scaled_int8_quant(
torch::Tensor& out, // [batch, hidden_size]
const torch::Tensor& input, // [batch, hidden_size]
torch::Tensor& scale, // [batch, 1]
std::optional<torch::Tensor> const& azp) {
CPU_KERNEL_GUARD_IN(dynamic_scaled_int8_quant)
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK_EQ(input.dim(), 2);
TORCH_CHECK_EQ(input.stride(1), 1);
const int64_t hidden_size = input.size(1);
const int64_t num_tokens = input.size(0);
const int64_t stride = input.stride(0);
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "dynamic_scaled_int8_quant_impl", [&] {
if (azp.has_value()) {
dynamic_scaled_int8_quant_impl<true>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scale.data_ptr<float>(), azp->data_ptr<int32_t>(), num_tokens,
stride, hidden_size);
} else {
dynamic_scaled_int8_quant_impl<false>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scale.data_ptr<float>(), nullptr, num_tokens, stride,
hidden_size);
}
});
}
int64_t create_onednn_mm_handler(const torch::Tensor& b,
int64_t primitive_cache_size) {
TORCH_CHECK(b.dim() == 2);
MatMulPrimitiveHandler::Args args;
args.primitive_cache_size = primitive_cache_size;
args.b_k_size = b.size(0);
args.b_k_stride = b.stride(0);
args.b_n_size = b.size(1);
args.b_n_stride = b.stride(1);
args.b_ptr = b.data_ptr();
VLLM_DISPATCH_FLOATING_TYPES(b.scalar_type(), "create_onednn_mm_handler",
[&] {
args.c_type = get_dnnl_type<scalar_t>();
args.ab_type = get_dnnl_type<scalar_t>();
});
return reinterpret_cast<int64_t>(new MatMulPrimitiveHandler(args));
}
void onednn_mm(torch::Tensor& c, // [M, OC], row-major
const torch::Tensor& a, // [M, IC], row-major
const std::optional<torch::Tensor>& bias, int64_t handler) {
CPU_KERNEL_GUARD_IN(onednn_mm)
TORCH_CHECK(a.dim() == 2);
TORCH_CHECK(a.stride(-1) == 1);
TORCH_CHECK(c.is_contiguous());
MatMulPrimitiveHandler* ptr =
reinterpret_cast<MatMulPrimitiveHandler*>(handler);
MatMulPrimitiveHandler::ExecArgs exec_args;
exec_args.a_m_size = a.size(0);
exec_args.a_m_stride = a.stride(0);
VLLM_DISPATCH_FLOATING_TYPES(a.scalar_type(), "onednn_mm", [&] {
if (bias.has_value()) {
exec_args.use_bias = true;
exec_args.bias_type = get_dnnl_type<scalar_t>();
exec_args.bias_ptr = bias->data_ptr<scalar_t>();
} else {
exec_args.use_bias = false;
exec_args.bias_type = get_dnnl_type<void>();
exec_args.bias_ptr = nullptr;
}
exec_args.a_ptr = a.data_ptr<scalar_t>();
exec_args.c_ptr = c.data_ptr<scalar_t>();
ptr->execute(exec_args);
});
}

View File

@ -1,951 +0,0 @@
#include "cpu_types.hpp"
#include "dnnl_helper.hpp"
namespace {
template <typename scalar_t>
struct KernelVecType {
using load_vec_type = void;
using azp_adj_load_vec_type = void;
using cvt_vec_type = void;
};
template <>
struct KernelVecType<float> {
using load_vec_type = vec_op::FP32Vec16;
using azp_adj_load_vec_type = vec_op::INT32Vec16;
using cvt_vec_type = vec_op::FP32Vec16;
};
#if !defined(__aarch64__) || defined(ARM_BF16_SUPPORT)
template <>
struct KernelVecType<c10::BFloat16> {
using load_vec_type = vec_op::BF16Vec16;
using azp_adj_load_vec_type = vec_op::INT32Vec16;
using cvt_vec_type = vec_op::FP32Vec16;
};
#endif
template <>
struct KernelVecType<c10::Half> {
#if defined(__powerpc64__) || defined(__s390x__)
// Power architecture-specific vector type
using load_vec_type = vec_op::FP32Vec16;
#else
// Fallback for other architectures
using load_vec_type = vec_op::FP16Vec16;
#endif
using azp_adj_load_vec_type = vec_op::INT32Vec16;
using cvt_vec_type = vec_op::FP32Vec16;
};
#if defined(__AVX512F__) || defined(__aarch64__)
template <bool AZP, typename scalar_t>
void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
const float* scale, const int32_t* azp,
const int num_tokens,
const int hidden_size) {
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
constexpr float i8_min =
static_cast<float>(std::numeric_limits<int8_t>::min());
constexpr float i8_max =
static_cast<float>(std::numeric_limits<int8_t>::max());
const cvt_vec_t inv_scale(1.0 / *scale);
const cvt_vec_t i8_min_vec(i8_min);
const cvt_vec_t i8_max_vec(i8_max);
cvt_vec_t zp_vec;
if constexpr (AZP) {
zp_vec = cvt_vec_t(static_cast<float>(*azp));
}
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = elems_fp32 * inv_scale;
if constexpr (AZP) {
elems_fp32 = elems_fp32 + zp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j);
}
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = elems_fp32 * inv_scale;
if constexpr (AZP) {
elems_fp32 = elems_fp32 + zp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j, hidden_size - j);
}
}
template <bool AZP, typename scalar_t>
void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
float* scale, int32_t* azp,
const int num_tokens,
const int hidden_size) {
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
constexpr float i8_min =
static_cast<float>(std::numeric_limits<int8_t>::min());
constexpr float i8_max =
static_cast<float>(std::numeric_limits<int8_t>::max());
const cvt_vec_t i8_min_vec(i8_min);
const cvt_vec_t i8_max_vec(i8_max);
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
cvt_vec_t max_value(std::numeric_limits<float>::lowest());
cvt_vec_t min_value(std::numeric_limits<float>::max());
{
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
if constexpr (AZP) {
max_value = max_value.max(elems_fp32);
min_value = min_value.min(elems_fp32);
} else {
max_value = max_value.max(elems_fp32.abs());
}
}
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
if (j + vec_elem_num == hidden_size) {
if constexpr (AZP) {
max_value = max_value.max(elems_fp32);
min_value = min_value.min(elems_fp32);
} else {
max_value = max_value.max(elems_fp32.abs());
}
} else {
if constexpr (AZP) {
max_value = max_value.max(elems_fp32, hidden_size - j);
min_value = min_value.min(elems_fp32, hidden_size - j);
} else {
max_value = max_value.max(elems_fp32.abs(), hidden_size - j);
}
}
}
float scale_val, azp_val;
if constexpr (AZP) {
float max_scalar = max_value.reduce_max();
float min_scalar = min_value.reduce_min();
scale_val = (max_scalar - min_scalar) / 255.0f;
azp_val = std::nearbyint(-128.0f - min_scalar / scale_val);
azp[i] = static_cast<int32_t>(azp_val);
scale[i] = scale_val;
} else {
scale_val = max_value.reduce_max() / 127.0f;
scale[i] = scale_val;
}
const cvt_vec_t inv_scale(1.0 / scale_val);
const cvt_vec_t azp_vec(azp_val);
{
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = (elems_fp32 * inv_scale);
if constexpr (AZP) {
elems_fp32 = elems_fp32 + azp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j);
}
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = (elems_fp32 * inv_scale);
if constexpr (AZP) {
elems_fp32 = elems_fp32 + azp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j, hidden_size - j);
}
}
}
template <bool PerChannel, typename scalar_t>
void static_quant_epilogue(const float* input, scalar_t* output,
const float a_scale, const float* b_scale,
const int32_t* azp_with_adj, const int num_tokens,
const int hidden_size) {
CPU_KERNEL_GUARD_IN(dynamic_output_scale_impl)
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using azp_adj_load_vec_t =
typename KernelVecType<scalar_t>::azp_adj_load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
cvt_vec_t a_scale_vec(a_scale);
cvt_vec_t b_scale_vec(*b_scale);
cvt_vec_t scale_vec = a_scale_vec * b_scale_vec;
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
cvt_vec_t elems_fp32(input + i * hidden_size + j);
azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
if constexpr (PerChannel) {
b_scale_vec = cvt_vec_t(b_scale + j);
scale_vec = b_scale_vec * a_scale_vec;
}
elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32;
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j);
}
cvt_vec_t elems_fp32(input + i * hidden_size + j);
azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
if constexpr (PerChannel) {
b_scale_vec = cvt_vec_t(b_scale + j);
scale_vec = b_scale_vec * a_scale_vec;
}
elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32;
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j, hidden_size - j);
}
}
template <bool AZP, bool PerChannel, bool Bias, typename scalar_t>
void dynamic_quant_epilogue(const float* input, scalar_t* output,
const float* a_scale, const float* b_scale,
const int32_t* azp, const int32_t* azp_adj,
const scalar_t* bias, const int num_tokens,
const int hidden_size) {
CPU_KERNEL_GUARD_IN(dynamic_quant_epilogue)
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using azp_adj_load_vec_t =
typename KernelVecType<scalar_t>::azp_adj_load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
int j = 0;
cvt_vec_t token_scale_vec(a_scale[i]);
cvt_vec_t token_zp_scale_vec;
if constexpr (AZP) {
float zp_scale_val = a_scale[i] * static_cast<float>(azp[i]);
if constexpr (!PerChannel) {
zp_scale_val *= *b_scale;
}
token_zp_scale_vec = cvt_vec_t(zp_scale_val);
}
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
cvt_vec_t elems_fp32(input + i * hidden_size + j);
elems_fp32 = elems_fp32 * token_scale_vec;
if constexpr (AZP) {
azp_adj_load_vec_t azp_adj_vec(azp_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec;
if constexpr (PerChannel) {
cvt_vec_t b_scale_vec(b_scale + j);
azp_adj_fp32 = azp_adj_fp32 * b_scale_vec;
}
elems_fp32 = elems_fp32 - azp_adj_fp32;
}
if constexpr (Bias) {
load_vec_t bias_vec(bias + j);
cvt_vec_t bias_vec_fp32(bias_vec);
elems_fp32 = elems_fp32 + bias_vec_fp32;
}
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j);
}
cvt_vec_t elems_fp32(input + i * hidden_size + j);
elems_fp32 = elems_fp32 * token_scale_vec;
if constexpr (AZP) {
azp_adj_load_vec_t azp_adj_vec(azp_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec;
if constexpr (PerChannel) {
cvt_vec_t b_scale_vec(b_scale + j);
azp_adj_fp32 = azp_adj_fp32 * b_scale_vec;
}
elems_fp32 = elems_fp32 - azp_adj_fp32;
}
if constexpr (Bias) {
load_vec_t bias_vec(bias + j);
cvt_vec_t bias_vec_fp32(bias_vec);
elems_fp32 = elems_fp32 + bias_vec_fp32;
}
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j, hidden_size - j);
}
}
#elif defined(__powerpc64__)
template <bool AZP, typename scalar_t>
void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
const float* scale, const int32_t* azp,
const int num_tokens,
const int hidden_size) {
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
constexpr float i8_min =
static_cast<float>(std::numeric_limits<int8_t>::min());
constexpr float i8_max =
static_cast<float>(std::numeric_limits<int8_t>::max());
const cvt_vec_t inv_scale(1.0 / *scale);
const cvt_vec_t i8_min_vec(i8_min);
const cvt_vec_t i8_max_vec(i8_max);
cvt_vec_t zp_vec;
if constexpr (AZP) {
zp_vec = cvt_vec_t(static_cast<float>(*azp));
}
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = elems_fp32 * inv_scale;
if constexpr (AZP) {
elems_fp32 = elems_fp32 + zp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j);
}
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = elems_fp32 * inv_scale;
if constexpr (AZP) {
elems_fp32 = elems_fp32 + zp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j, hidden_size - j);
}
}
template <bool AZP, typename scalar_t>
void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
float* scale, int32_t* azp,
const int num_tokens,
const int hidden_size) {
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
constexpr float i8_min =
static_cast<float>(std::numeric_limits<int8_t>::min());
constexpr float i8_max =
static_cast<float>(std::numeric_limits<int8_t>::max());
const cvt_vec_t i8_min_vec(i8_min);
const cvt_vec_t i8_max_vec(i8_max);
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
cvt_vec_t max_value(std::numeric_limits<float>::lowest());
cvt_vec_t min_value(std::numeric_limits<float>::max());
{
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
if constexpr (AZP) {
max_value = max_value.max(elems_fp32);
min_value = min_value.min(elems_fp32);
} else {
max_value = max_value.max(elems_fp32.abs());
}
}
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
if (j + vec_elem_num == hidden_size) {
if constexpr (AZP) {
max_value = max_value.max(elems_fp32);
min_value = min_value.min(elems_fp32);
} else {
max_value = max_value.max(elems_fp32.abs());
}
} else {
if constexpr (AZP) {
max_value = max_value.max(elems_fp32, hidden_size - j);
min_value = min_value.min(elems_fp32, hidden_size - j);
} else {
max_value = max_value.max(elems_fp32.abs(), hidden_size - j);
}
}
}
float scale_val, azp_val;
if constexpr (AZP) {
float max_scalar = max_value.reduce_max();
float min_scalar = min_value.reduce_min();
scale_val = (max_scalar - min_scalar) / 255.0f;
azp_val = std::nearbyint(-128.0f - min_scalar / scale_val);
azp[i] = static_cast<int32_t>(azp_val);
scale[i] = scale_val;
} else {
scale_val = max_value.reduce_max() / 127.0f;
scale[i] = scale_val;
}
const cvt_vec_t inv_scale(1.0 / scale_val);
const cvt_vec_t azp_vec(azp_val);
{
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = (elems_fp32 * inv_scale);
if constexpr (AZP) {
elems_fp32 = elems_fp32 + azp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j);
}
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = (elems_fp32 * inv_scale);
if constexpr (AZP) {
elems_fp32 = elems_fp32 + azp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j, hidden_size - j);
}
}
}
template <bool PerChannel, typename scalar_t>
void static_quant_epilogue(const float* input, scalar_t* output,
const float a_scale, const float* b_scale,
const int32_t* azp_with_adj, const int num_tokens,
const int hidden_size) {
CPU_KERNEL_GUARD_IN(dynamic_output_scale_impl)
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using azp_adj_load_vec_t =
typename KernelVecType<scalar_t>::azp_adj_load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
cvt_vec_t a_scale_vec(a_scale);
cvt_vec_t b_scale_vec(*b_scale);
cvt_vec_t scale_vec = a_scale_vec * b_scale_vec;
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
cvt_vec_t elems_fp32(input + i * hidden_size + j);
azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
if constexpr (PerChannel) {
b_scale_vec = cvt_vec_t(b_scale + j);
scale_vec = b_scale_vec * a_scale_vec;
}
elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32;
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j);
}
cvt_vec_t elems_fp32(input + i * hidden_size + j);
azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
if constexpr (PerChannel) {
b_scale_vec = cvt_vec_t(b_scale + j);
scale_vec = b_scale_vec * a_scale_vec;
}
elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32;
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j, hidden_size - j);
}
}
template <bool AZP, bool PerChannel, bool Bias, typename scalar_t>
void dynamic_quant_epilogue(const float* input, scalar_t* output,
const float* a_scale, const float* b_scale,
const int32_t* azp, const int32_t* azp_adj,
const scalar_t* bias, const int num_tokens,
const int hidden_size) {
CPU_KERNEL_GUARD_IN(dynamic_quant_epilogue)
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using azp_adj_load_vec_t =
typename KernelVecType<scalar_t>::azp_adj_load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
int j = 0;
cvt_vec_t token_scale_vec(a_scale[i]);
cvt_vec_t token_zp_scale_vec;
if constexpr (AZP) {
float zp_scale_val = a_scale[i] * static_cast<float>(azp[i]);
if constexpr (!PerChannel) {
zp_scale_val *= *b_scale;
}
token_zp_scale_vec = cvt_vec_t(zp_scale_val);
}
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
cvt_vec_t elems_fp32(input + i * hidden_size + j);
elems_fp32 = elems_fp32 * token_scale_vec;
if constexpr (AZP) {
azp_adj_load_vec_t azp_adj_vec(azp_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec;
if constexpr (PerChannel) {
cvt_vec_t b_scale_vec(b_scale + j);
azp_adj_fp32 = azp_adj_fp32 * b_scale_vec;
}
elems_fp32 = elems_fp32 - azp_adj_fp32;
}
if constexpr (Bias) {
load_vec_t bias_vec(bias + j);
cvt_vec_t bias_vec_fp32(bias_vec);
elems_fp32 = elems_fp32 + bias_vec_fp32;
}
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j);
}
cvt_vec_t elems_fp32(input + i * hidden_size + j);
elems_fp32 = elems_fp32 * token_scale_vec;
if constexpr (AZP) {
azp_adj_load_vec_t azp_adj_vec(azp_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec;
if constexpr (PerChannel) {
cvt_vec_t b_scale_vec(b_scale + j);
azp_adj_fp32 = azp_adj_fp32 * b_scale_vec;
}
elems_fp32 = elems_fp32 - azp_adj_fp32;
}
if constexpr (Bias) {
load_vec_t bias_vec(bias + j);
cvt_vec_t bias_vec_fp32(bias_vec);
elems_fp32 = elems_fp32 + bias_vec_fp32;
}
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j, hidden_size - j);
}
}
#else
template <typename scalar_t>
void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
const float* scale, const int32_t* azp,
const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false,
"static_scaled_int8_quant_impl requires AVX512/powerpc64/AArch64 "
"support.")
}
template <typename scalar_t>
void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
float* scale, int32_t* azp,
const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false,
"dynamic_scaled_int8_quant_impl requires "
"AVX512/powerpc64/AArch64 support.")
}
template <bool PerChannel, typename scalar_t>
void static_quant_epilogue(const float* input, scalar_t* output,
const float a_scale, const float* b_scale,
const int32_t* azp_with_adj, const int num_tokens,
const int hidden_size) {
TORCH_CHECK(
false, "static_quant_epilogue requires AVX512/powerpc64/AArch64 support.")
}
template <typename scalar_t>
void dynamic_quant_epilogue(const float* input, scalar_t* output,
const float* a_scale, const float* b_scale,
const int32_t* azp, const int32_t* azp_with_adj,
const scalar_t* bias, const int num_tokens,
const int hidden_size) {
TORCH_CHECK(
false,
"dynamic_quant_epilogue requires AVX512/powerpc64/AArch64 support.")
}
#endif
} // namespace
void int8_scaled_mm(torch::Tensor& c, // [M, OC], row-major
const torch::Tensor& a, // [M, IC], row-major
const torch::Tensor& b, // [IC, OC], column-major
const torch::Tensor& a_scales, // [1] or [M]
const torch::Tensor& b_scales, // [1] or [OC]
const std::optional<torch::Tensor>& bias // [OC]
) {
CPU_KERNEL_GUARD_IN(cutlass_scaled_mm)
// Checks for conformality
TORCH_CHECK(a.dtype() == torch::kInt8 && b.dtype() == torch::kInt8,
"int8_scaled_mm only supports INT8 inputs.")
TORCH_CHECK(a.dim() == 2 && b.dim() == 2 && c.dim() == 2);
TORCH_CHECK(c.size(0) == a.size(0) && a.size(1) == b.size(0) &&
b.size(1) == c.size(1));
TORCH_CHECK(a_scales.numel() == 1 || a_scales.numel() == a.size(0));
TORCH_CHECK(b_scales.numel() == 1 || b_scales.numel() == b.size(1));
// Check for strides and alignment
TORCH_CHECK(a.stride(1) == 1 && c.stride(1) == 1); // Row-major
TORCH_CHECK(b.stride(0) == 1); // Column-major
TORCH_CHECK(c.stride(0) % 16 == 0 &&
b.stride(1) % 16 == 0); // 16 Byte Alignment
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
if (bias) {
TORCH_CHECK(bias->numel() == b.size(1) && bias->is_contiguous() &&
bias->dim() == 1);
}
VLLM_DISPATCH_FLOATING_TYPES(c.scalar_type(), "int8_scaled_mm", [&] {
if (a_scales.numel() != 1) {
// per-token
// Note: oneDNN doesn't support per-token activation quantization
// Ideally we want to fuse the GEMM and the scale procedure with oneDNN
// JIT, the intermediate data is cached in registers or L1. But for now
// the oneDNN GEMM code generation only supports two quantization
// patterns: per-tensor or per-output-channel of weight.
// So we have to apply the per-token scale with a 'epilogue'. In C=s_a *
// s_b * (A@B) + bias, the C_inter = s_b * (A@B) is computed by oneDNN
// GEMM, then the per-token scale (and bias) is applied with the epilogue
// C=s_a * C_inter + bias.
torch::Tensor tmp_fp32_out =
torch::empty_like(c, ::at::ScalarType::Float);
// Compute C_inter=s_b * (A@B)
DNNLPrimitiveHelper<true>::gemm_s8s8_jit<float, void>(
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
tmp_fp32_out.data_ptr<float>(), nullptr, a.size(0), b.size(1),
a.size(1), nullptr, b_scales.data_ptr<float>(), 0, b_scales.numel());
if (bias.has_value()) {
// Compute C=s_a * C_inter + bias
dynamic_quant_epilogue<false, true, true>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), nullptr, nullptr, nullptr,
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
} else {
// Compute C=s_a * C_inter
dynamic_quant_epilogue<false, true, false, scalar_t>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), nullptr, nullptr, nullptr, nullptr,
c.size(0), c.size(1));
}
} else {
// per-tensor
if (bias.has_value()) {
// Compute C=s_a * s_b * (A@B) + bias
DNNLPrimitiveHelper<false>::gemm_s8s8_jit(
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(), c.data_ptr<scalar_t>(),
bias->data_ptr<scalar_t>(), a.size(0), b.size(1), a.size(1),
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
a_scales.numel(), b_scales.numel());
} else {
// Compute C=s_a * s_b * (A@B)
DNNLPrimitiveHelper<false>::gemm_s8s8_jit<scalar_t, void>(
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(), c.data_ptr<scalar_t>(),
nullptr, a.size(0), b.size(1), a.size(1),
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
a_scales.numel(), b_scales.numel());
}
}
});
}
void int8_scaled_mm_azp(torch::Tensor& c, // [M, OC], row-major
const torch::Tensor& a, // [M, IC], row-major
const torch::Tensor& b, // [IC, OC], column-major
const torch::Tensor& a_scales, // [1] or [M]
const torch::Tensor& b_scales, // [1] or [OC]
const torch::Tensor& azp_adj, // [OC]
const std::optional<torch::Tensor>& azp, // [1] or [M]
const std::optional<torch::Tensor>& bias // [OC]
) {
CPU_KERNEL_GUARD_IN(cutlass_scaled_mm_azp)
// Checks for conformality
TORCH_CHECK(a.dtype() == torch::kInt8 && b.dtype() == torch::kInt8,
"int8_scaled_mm_azp only supports INT8 inputs.")
TORCH_CHECK(a.dim() == 2 && b.dim() == 2 && c.dim() == 2);
TORCH_CHECK(c.size(0) == a.size(0) && a.size(1) == b.size(0) &&
b.size(1) == c.size(1));
TORCH_CHECK(a_scales.numel() == 1 || a_scales.numel() == a.size(0));
TORCH_CHECK(b_scales.numel() == 1 || b_scales.numel() == b.size(1));
// Check for strides and alignment
TORCH_CHECK(a.stride(1) == 1 && c.stride(1) == 1); // Row-major
TORCH_CHECK(b.stride(0) == 1); // Column-major
TORCH_CHECK(c.stride(0) % 16 == 0 &&
b.stride(1) % 16 == 0); // 16 Byte Alignment
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
if (bias) {
TORCH_CHECK(bias->numel() == b.size(1) && bias->is_contiguous());
}
if (azp) {
TORCH_CHECK(azp->numel() == a.size(0) && azp->is_contiguous());
}
TORCH_CHECK(azp_adj.numel() == b.size(1) && azp_adj.is_contiguous());
// azp & bias types
TORCH_CHECK(azp_adj.dtype() == torch::kInt32);
TORCH_CHECK(!azp || azp->dtype() == torch::kInt32);
TORCH_CHECK(!bias || bias->dtype() == c.dtype(),
"currently bias dtype must match output dtype ", c.dtype());
VLLM_DISPATCH_FLOATING_TYPES(c.scalar_type(), "int8_scaled_mm_azp", [&] {
torch::Tensor tmp_fp32_out = torch::empty_like(c, ::at::ScalarType::Float);
if (a_scales.numel() != 1) {
// per-token
// Note: oneDNN doesn't support per-token activation quantization
// Compute C_inter=s_b * (A@B)
DNNLPrimitiveHelper<true>::gemm_s8s8_jit<float, void>(
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
tmp_fp32_out.data_ptr<float>(), nullptr, a.size(0), b.size(1),
a.size(1), nullptr, b_scales.data_ptr<float>(), 0, b_scales.numel());
if (bias.has_value()) {
// Compute C=s_a * C_inter - s_a * s_b * azp * azp_adj + bias
if (b_scales.numel() != 1) {
// Per-Channel
dynamic_quant_epilogue<true, true, true>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
azp->data_ptr<int32_t>(), azp_adj.data_ptr<int32_t>(),
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
} else {
// Per-Tensor
dynamic_quant_epilogue<true, false, true>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
azp->data_ptr<int32_t>(), azp_adj.data_ptr<int32_t>(),
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
}
} else {
// Compute C=s_a * C_inter - s_a * s_b * azp * azp_adj
if (b_scales.numel() != 1) {
// Per-Channel
dynamic_quant_epilogue<true, true, false, scalar_t>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
azp->data_ptr<int32_t>(), azp_adj.data_ptr<int32_t>(), nullptr,
c.size(0), c.size(1));
} else {
// Per-Tensor
dynamic_quant_epilogue<true, false, false, scalar_t>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
azp->data_ptr<int32_t>(), azp_adj.data_ptr<int32_t>(), nullptr,
c.size(0), c.size(1));
}
}
} else {
// per-tensor
if (bias.has_value()) {
// Compute C_inter=s_a * s_b * (A@B) + bias
DNNLPrimitiveHelper<false>::gemm_s8s8_jit(
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
tmp_fp32_out.data_ptr<float>(), bias->data_ptr<scalar_t>(),
a.size(0), b.size(1), a.size(1), a_scales.data_ptr<float>(),
b_scales.data_ptr<float>(), a_scales.numel(), b_scales.numel());
} else {
// Compute C_inter=s_a * s_b * (A@B)
DNNLPrimitiveHelper<false>::gemm_s8s8_jit<float, void>(
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
tmp_fp32_out.data_ptr<float>(), nullptr, a.size(0), b.size(1),
a.size(1), a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
a_scales.numel(), b_scales.numel());
}
// Compute C=C_inter - s_a * s_b * azp_adj
if (b_scales.numel() != 1) {
// Per-Channel
static_quant_epilogue<true>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
*a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
azp_adj.data_ptr<int32_t>(), a.size(0), b.size(1));
} else {
// Per-Tensor
static_quant_epilogue<false>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
*a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
azp_adj.data_ptr<int32_t>(), a.size(0), b.size(1));
}
}
});
}
// static-per-tensor quantization.
void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size]
const torch::Tensor& input, // [..., hidden_size]
const torch::Tensor& scale,
std::optional<torch::Tensor> const& azp) {
CPU_KERNEL_GUARD_IN(static_scaled_int8_quant)
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK(scale.numel() == 1);
TORCH_CHECK(!azp.has_value() || azp->numel() == 1);
const int hidden_size = input.size(-1);
const int num_tokens = input.numel() / hidden_size;
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "static_scaled_int8_quant_impl", [&] {
if (azp.has_value()) {
static_scaled_int8_quant_impl<true>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scale.data_ptr<float>(), azp->data_ptr<int32_t>(), num_tokens,
hidden_size);
} else {
static_scaled_int8_quant_impl<false>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scale.data_ptr<float>(), nullptr, num_tokens, hidden_size);
}
});
}
// dynamic-per-token quantization.
void dynamic_scaled_int8_quant(
torch::Tensor& out, // [..., hidden_size]
const torch::Tensor& input, // [..., hidden_size]
torch::Tensor& scale, // [..., 1]
std::optional<torch::Tensor> const& azp) {
CPU_KERNEL_GUARD_IN(dynamic_scaled_int8_quant)
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());
int const hidden_size = input.size(-1);
int const num_tokens = input.numel() / hidden_size;
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "dynamic_scaled_int8_quant_impl", [&] {
if (azp.has_value()) {
dynamic_scaled_int8_quant_impl<true>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scale.data_ptr<float>(), azp->data_ptr<int32_t>(), num_tokens,
hidden_size);
} else {
dynamic_scaled_int8_quant_impl<false>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scale.data_ptr<float>(), nullptr, num_tokens, hidden_size);
}
});
}
#if defined(__powerpc64__)
void int8_scaled_mm_ppc64le(torch::Tensor& c, // [M, OC], row-major
const torch::Tensor& a, // [M, IC], row-major
const torch::Tensor& b, // [IC, OC], column-major
const torch::Tensor& a_scales,
const torch::Tensor& b_scales,
const std::optional<torch::Tensor>& bias // [OC]
) {
CPU_KERNEL_GUARD_IN(cutlass_scaled_mm)
// Checks for conformality
TORCH_CHECK(a.dtype() == torch::kInt8 && b.dtype() == torch::kInt8,
"int8_scaled_mm_ppc64le only supports INT8 inputs.");
TORCH_CHECK(a.dim() == 2 && b.dim() == 2 && c.dim() == 2);
TORCH_CHECK(c.size(0) == a.size(0) && a.size(1) == b.size(0) &&
b.size(1) == c.size(1));
// We dont need this
TORCH_CHECK(a_scales.numel() == 1 || a_scales.numel() == a.size(0));
TORCH_CHECK(b_scales.numel() == 1 || b_scales.numel() == b.size(1));
// Check for strides and alignment
TORCH_CHECK(a.stride(1) == 1 && c.stride(1) == 1); // Row-major
TORCH_CHECK(b.stride(0) == 1); // Column-major
TORCH_CHECK(c.stride(0) % 16 == 0 &&
b.stride(1) % 16 == 0); // 16 Byte Alignment
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
if (bias) {
TORCH_CHECK(bias->numel() == b.size(1) && bias->is_contiguous() &&
bias->dim() == 1);
}
VLLM_DISPATCH_FLOATING_TYPES(c.scalar_type(), "int8_scaled_mm_ppc64le", [&] {
torch::Tensor tmp_fp32_out = torch::empty_like(c, ::at::ScalarType::Float);
// Compute C_inter=s_b * (A@B)
DNNLPrimitiveHelper<true>::gemm_s8s8_jit<float, void>(
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
tmp_fp32_out.data_ptr<float>(), nullptr, a.size(0), b.size(1),
a.size(1), nullptr, b_scales.data_ptr<float>(), 0, b_scales.numel());
if (bias.has_value()) {
// Compute C=s_a * C_inter + bias
dynamic_quant_epilogue<false, true, true>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), nullptr, nullptr, nullptr,
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
} else {
// Compute C=s_a * C_inter
dynamic_quant_epilogue<false, true, false, scalar_t>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), nullptr, nullptr, nullptr, nullptr,
c.size(0), c.size(1));
}
});
}
#endif

View File

@ -6,25 +6,26 @@
std::string init_cpu_threads_env(const std::string& cpu_ids);
void int8_scaled_mm(torch::Tensor& c, const torch::Tensor& a,
const torch::Tensor& b, const torch::Tensor& a_scales,
const torch::Tensor& b_scales,
const std::optional<torch::Tensor>& bias);
void release_dnnl_matmul_handler(int64_t handler);
void int8_scaled_mm_azp(torch::Tensor& c, const torch::Tensor& a,
const torch::Tensor& b, const torch::Tensor& a_scales,
const torch::Tensor& b_scales,
const torch::Tensor& azp_adj,
const std::optional<torch::Tensor>& azp,
const std::optional<torch::Tensor>& bias);
int64_t create_onednn_scaled_mm_handler(const torch::Tensor& b,
const torch::Tensor& b_scales,
at::ScalarType output_type,
bool dynamic_act_quant, bool use_azp,
int64_t primitive_cache_size);
#if defined(__powerpc64__)
void int8_scaled_mm_ppc64le(torch::Tensor& c, const torch::Tensor& a,
const torch::Tensor& b,
const torch::Tensor& a_scales,
const torch::Tensor& b_scales,
const std::optional<torch::Tensor>& bias);
#endif
void onednn_scaled_mm(torch::Tensor& c, const torch::Tensor& a,
const torch::Tensor& a_scales,
const std::optional<torch::Tensor>& azp,
const std::optional<torch::Tensor>& azp_adj,
const std::optional<torch::Tensor>& bias,
int64_t handler);
int64_t create_onednn_mm_handler(const torch::Tensor& b,
int64_t primitive_cache_size);
void onednn_mm(torch::Tensor& c, const torch::Tensor& a,
const std::optional<torch::Tensor>& bias, int64_t handler);
void mla_decode_kvcache(torch::Tensor& out, torch::Tensor& query,
torch::Tensor& kv_cache, double scale,
@ -151,8 +152,37 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.impl("rotary_embedding", torch::kCPU, &rotary_embedding);
// Quantization
#if defined(__AVX512F__) || (defined(__aarch64__) && !defined(__APPLE__))
#if defined(__AVX512F__) || (defined(__aarch64__) && !defined(__APPLE__)) || \
defined(__powerpc64__)
at::Tag stride_tag = at::Tag::needs_fixed_stride_order;
// Helper function to release oneDNN handlers
ops.def("release_dnnl_matmul_handler(int handler) -> ()",
&release_dnnl_matmul_handler);
// Create oneDNN GEMM handler
ops.def(
"create_onednn_mm_handler(Tensor b, int "
"primitive_cache_size) -> int",
&create_onednn_mm_handler);
// oneDNN GEMM
ops.def(
"onednn_mm(Tensor! c, Tensor a, Tensor? bias, "
"int handler) -> ()");
ops.impl("onednn_mm", torch::kCPU, &onednn_mm);
// Create oneDNN W8A8 handler
ops.def(
"create_onednn_scaled_mm_handler(Tensor b, Tensor b_scales, ScalarType "
"output_type, bool dynamic_act_quant, bool use_azp, int "
"primitive_cache_size) -> int",
&create_onednn_scaled_mm_handler);
// oneDNN scaled_mm for W8A8 with static per-tensor activation quantization
ops.def(
"onednn_scaled_mm(Tensor! c, Tensor a, Tensor a_scales, Tensor? azp, "
"Tensor? azp_adj, Tensor? bias, int handler) -> ()");
ops.impl("onednn_scaled_mm", torch::kCPU, &onednn_scaled_mm);
// Compute int8 quantized tensor for given scaling factor.
ops.def(
@ -168,50 +198,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
{stride_tag});
ops.impl("dynamic_scaled_int8_quant", torch::kCPU,
&dynamic_scaled_int8_quant);
// W8A8 GEMM, supporting symmetric per-tensor or per-row/column
// quantization.
ops.def(
"cutlass_scaled_mm(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor? bias) -> ()",
{stride_tag});
ops.impl("cutlass_scaled_mm", torch::kCPU, &int8_scaled_mm);
// w8a8 GEMM, supporting asymmetric per-tensor or per-row/column
// quantization.
ops.def(
"cutlass_scaled_mm_azp(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor azp_adj,"
" Tensor? azp, Tensor? bias) -> ()",
{stride_tag});
ops.impl("cutlass_scaled_mm_azp", torch::kCPU, &int8_scaled_mm_azp);
#elif defined(__powerpc64__)
// Compute int8 quantized tensor for given scaling factor.
ops.def(
"static_scaled_int8_quant(Tensor! out, Tensor input, Tensor scale,"
"Tensor? azp) -> ()");
ops.impl("static_scaled_int8_quant", torch::kCPU, &static_scaled_int8_quant);
// Compute int8 quantized tensor and scaling factor
ops.def(
"dynamic_scaled_int8_quant(Tensor! out, Tensor input, Tensor! scale, "
"Tensor!? azp) -> ()");
ops.impl("dynamic_scaled_int8_quant", torch::kCPU,
&dynamic_scaled_int8_quant);
// W8A8 GEMM, supporting symmetric quantization.
ops.def(
"cutlass_scaled_mm(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm", torch::kCPU, &int8_scaled_mm_ppc64le);
// w8a8 GEMM, supporting asymmetric per-tensor or per-row/column
// quantization.
ops.def(
"cutlass_scaled_mm_azp(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor azp_adj,"
" Tensor? azp, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm_azp", torch::kCPU, &int8_scaled_mm_azp);
#endif
// SHM CCL

View File

@ -19,6 +19,13 @@
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
#define VLLM_DISPATCH_CASE_HALF_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
#define VLLM_DISPATCH_HALF_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_HALF_TYPES(__VA_ARGS__))
// ROCm devices might use either fn or fnuz, so set up dispatch table for both.
// A host-based check at runtime will create a preferred FP8 type for ROCm
// such that the correct kernel is dispatched.

View File

@ -27,11 +27,12 @@
template<int kNThreads_, int kNItems_, int kNRows_, bool kIsEvenLen_,
bool kIsVariableB_, bool kIsVariableC_,
bool kHasZ_, bool kVarlen_, typename input_t_, typename weight_t_>
bool kHasZ_, bool kVarlen_, typename input_t_, typename weight_t_, typename state_t_>
struct Selective_Scan_fwd_kernel_traits {
static_assert(kNItems_ % 4 == 0);
using input_t = input_t_;
using weight_t = weight_t_;
using state_t = state_t_;
static constexpr int kNThreads = kNThreads_;
// Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads improves occupancy.
static constexpr int kMinBlocks = kNThreads < 128 ? 5 : 3;
@ -132,7 +133,7 @@ void selective_scan_fwd_kernel(SSMParamsBase params) {
input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + sequence_start_index * params.B_batch_stride + group_id * params.B_group_stride;
weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * kNRows * params.C_d_stride;
input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + sequence_start_index * params.C_batch_stride + group_id * params.C_group_stride;
input_t *ssm_states = reinterpret_cast<input_t *>(params.ssm_states_ptr) +
typename Ktraits::state_t *ssm_states = reinterpret_cast<typename Ktraits::state_t *>(params.ssm_states_ptr) +
cache_index * params.ssm_states_batch_stride +
dim_id * kNRows * params.ssm_states_dim_stride;
@ -261,7 +262,7 @@ void selective_scan_fwd_kernel(SSMParamsBase params) {
if (threadIdx.x == 0) {
smem_running_prefix[state_idx] = prefix_op.running_prefix;
if (chunk == n_chunks - 1) {
ssm_states[state_idx * params.ssm_states_dstate_stride] = input_t(prefix_op.running_prefix.y);
ssm_states[state_idx * params.ssm_states_dstate_stride] = typename Ktraits::state_t(prefix_op.running_prefix.y);
}
}
#pragma unroll
@ -310,7 +311,7 @@ void selective_scan_fwd_kernel(SSMParamsBase params) {
}
}
template<int kNThreads, int kNItems, typename input_t, typename weight_t>
template<int kNThreads, int kNItems, typename input_t, typename weight_t, typename state_t>
void selective_scan_fwd_launch(SSMParamsBase &params, cudaStream_t stream) {
// Only kNRows == 1 is tested for now, which ofc doesn't differ from previously when we had each block
// processing 1 row.
@ -321,7 +322,7 @@ void selective_scan_fwd_launch(SSMParamsBase &params, cudaStream_t stream) {
BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
BOOL_SWITCH(params.query_start_loc_ptr != nullptr , kVarlen, [&] {
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, kVarlen, input_t, weight_t>;
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, kVarlen, input_t, weight_t, state_t>;
constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
dim3 grid(params.batch, params.dim / kNRows);
auto kernel = &selective_scan_fwd_kernel<Ktraits>;
@ -341,59 +342,78 @@ void selective_scan_fwd_launch(SSMParamsBase &params, cudaStream_t stream) {
});
}
template<typename input_t, typename weight_t>
template<typename input_t, typename weight_t, typename state_t>
void selective_scan_fwd_cuda(SSMParamsBase &params, cudaStream_t stream) {
#ifndef USE_ROCM
if (params.seqlen <= 128) {
selective_scan_fwd_launch<32, 4, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<32, 4, input_t, weight_t, state_t>(params, stream);
} else if (params.seqlen <= 256) {
selective_scan_fwd_launch<32, 8, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<32, 8, input_t, weight_t, state_t>(params, stream);
} else if (params.seqlen <= 512) {
selective_scan_fwd_launch<32, 16, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<32, 16, input_t, weight_t, state_t>(params, stream);
} else if (params.seqlen <= 1024) {
selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<64, 16, input_t, weight_t, state_t>(params, stream);
} else {
selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<128, 16, input_t, weight_t, state_t>(params, stream);
}
#else
if (params.seqlen <= 256) {
selective_scan_fwd_launch<64, 4, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<64, 4, input_t, weight_t, state_t>(params, stream);
} else if (params.seqlen <= 512) {
selective_scan_fwd_launch<64, 8, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<64, 8, input_t, weight_t, state_t>(params, stream);
} else if (params.seqlen <= 1024) {
selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<64, 16, input_t, weight_t, state_t>(params, stream);
} else {
selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<128, 16, input_t, weight_t, state_t>(params, stream);
}
#endif
}
template void selective_scan_fwd_cuda<at::BFloat16, float>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<at::Half, float>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<float, float>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<at::BFloat16, float, at::BFloat16>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<at::BFloat16, float, float>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<at::Half, float, at::Half>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<at::Half, float, float>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<float, float, float>(SSMParamsBase &params, cudaStream_t stream);
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
#define DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
#define DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, STYPE, NAME, ...) \
if (ITYPE == at::ScalarType::Half) { \
using input_t = at::Half; \
using weight_t = float; \
__VA_ARGS__(); \
if (STYPE == at::ScalarType::Half) { \
using state_t = at::Half; \
__VA_ARGS__(); \
} else if (STYPE == at::ScalarType::Float) { \
using state_t = float; \
__VA_ARGS__(); \
} else { \
AT_ERROR(#NAME, " not implemented for state type '", toString(STYPE), "'"); \
} \
} else if (ITYPE == at::ScalarType::BFloat16) { \
using input_t = at::BFloat16; \
using weight_t = float; \
__VA_ARGS__(); \
if (STYPE == at::ScalarType::BFloat16) { \
using state_t = at::BFloat16; \
__VA_ARGS__(); \
} else if (STYPE == at::ScalarType::Float) { \
using state_t = float; \
__VA_ARGS__(); \
} else { \
AT_ERROR(#NAME, " not implemented for state type '", toString(STYPE), "'"); \
} \
} else if (ITYPE == at::ScalarType::Float) { \
using input_t = float; \
using weight_t = float; \
using state_t = float; \
__VA_ARGS__(); \
} else { \
AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
}
template<typename input_t, typename weight_t>
template<typename input_t, typename weight_t, typename state_t>
void selective_scan_fwd_cuda(SSMParamsBase &params, cudaStream_t stream);
void set_ssm_params_fwd(SSMParamsBase &params,
@ -648,7 +668,9 @@ void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta,
// Right now u has BHL layout and delta has HBL layout, and we want out to have HBL layout
at::Tensor out = delta;
TORCH_CHECK(ssm_states.scalar_type() == input_type);
// ssm_states can now be either the same as input_type or float32
auto state_type = ssm_states.scalar_type();
TORCH_CHECK(state_type == input_type || state_type == at::ScalarType::Float);
TORCH_CHECK(ssm_states.is_cuda());
TORCH_CHECK(ssm_states.stride(-1) == 1);
@ -670,7 +692,7 @@ void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta,
const at::cuda::OptionalCUDAGuard device_guard(device_of(u));
auto stream = at::cuda::getCurrentCUDAStream().stream();
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_fwd", [&] {
selective_scan_fwd_cuda<input_t, weight_t>(params, stream);
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), ssm_states.scalar_type(), "selective_scan_fwd", [&] {
selective_scan_fwd_cuda<input_t, weight_t, state_t>(params, stream);
});
}

View File

@ -0,0 +1,758 @@
/*
* Adapted from
* https://github.com/NVIDIA/TensorRT-LLM/blob/v0.21.0/cpp/tensorrt_llm/kernels/noAuxTcKernels.cu
* Copyright (c) 2025, The vLLM team.
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <c10/cuda/CUDAStream.h>
#include <torch/all.h>
#include <cuda_fp16.h>
#include <cuda_bf16.h>
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;
namespace vllm {
namespace moe {
constexpr float kNegInfinity = INFINITY * -1;
constexpr unsigned FULL_WARP_MASK = 0xffffffff;
constexpr int32_t WARP_SIZE = 32;
constexpr int32_t BLOCK_SIZE = 512;
constexpr int32_t NUM_WARPS_PER_BLOCK = BLOCK_SIZE / WARP_SIZE;
namespace warp_topk {
template <int size, typename T>
__host__ __device__ constexpr T round_up_to_multiple_of(T len) {
if (len == 0) {
return 0;
}
return ((len - 1) / size + 1) * size;
}
template <typename T>
constexpr __host__ __device__ bool isPowerOf2(T v) {
return (v && !(v & (v - 1)));
}
template <bool greater, typename T>
__forceinline__ __device__ bool is_better_than(T val, T baseline) {
return (val > baseline && greater) || (val < baseline && !greater);
}
template <bool greater, typename T, typename idxT>
__forceinline__ __device__ bool is_better_than(T val, T baseline, idxT index,
idxT baseline_index) {
bool res = (val > baseline && greater) || (val < baseline && !greater);
if (val == baseline) {
res = (index < baseline_index && greater) ||
(index < baseline_index && !greater);
}
return res;
}
template <typename T, typename idxT>
int calc_smem_size_for_block_wide(int num_of_warp, int64_t k) {
int64_t cache_topk = (sizeof(T) + sizeof(idxT)) * num_of_warp * k;
int64_t n = std::max<int>(num_of_warp / 2 * k, num_of_warp * WARP_SIZE);
return max(cache_topk,
round_up_to_multiple_of<256>(n * sizeof(T)) + n * sizeof(idxT));
}
template <int size, bool ascending, bool reverse, typename T, typename idxT,
bool is_stable>
struct BitonicMerge {
// input should be a bitonic sequence, and sort it to be a monotonic sequence
__device__ static void merge(T* __restrict__ val_arr,
idxT* __restrict__ idx_arr) {
static_assert(isPowerOf2(size));
static_assert(size >= 2 * WARP_SIZE);
constexpr int arr_len = size / WARP_SIZE;
constexpr int stride = arr_len / 2;
for (int i = 0; i < stride; ++i) {
int const other_i = i + stride;
T& val = val_arr[i];
T& other_val = val_arr[other_i];
bool is_better;
if constexpr (is_stable) {
is_better = is_better_than<ascending>(val, other_val, idx_arr[i],
idx_arr[other_i]);
} else {
is_better = is_better_than<ascending>(val, other_val);
}
if (is_better) {
T tmp = val;
val = other_val;
other_val = tmp;
idxT tmp2 = idx_arr[i];
idx_arr[i] = idx_arr[other_i];
idx_arr[other_i] = tmp2;
}
}
BitonicMerge<size / 2, ascending, reverse, T, idxT, is_stable>::merge(
val_arr, idx_arr);
BitonicMerge<size / 2, ascending, reverse, T, idxT, is_stable>::merge(
val_arr + arr_len / 2, idx_arr + arr_len / 2);
}
};
template <int size, bool ascending, typename T, typename idxT, bool is_stable>
struct BitonicSort {
__device__ static void sort(T* __restrict__ val_arr,
idxT* __restrict__ idx_arr) {
static_assert(isPowerOf2(size));
static_assert(size >= 2 * WARP_SIZE);
constexpr int arr_len = size / WARP_SIZE;
BitonicSort<size / 2, true, T, idxT, is_stable>::sort(val_arr, idx_arr);
BitonicSort<size / 2, false, T, idxT, is_stable>::sort(
val_arr + arr_len / 2, idx_arr + arr_len / 2);
BitonicMerge<size, ascending, ascending, T, idxT, is_stable>::merge(
val_arr, idx_arr);
}
};
template <bool ascending, typename T, typename idxT, bool is_stable>
struct BitonicSort<32, ascending, T, idxT, is_stable> {
__device__ static void sort(T* __restrict__ val_arr,
idxT* __restrict__ idx_arr) {
int const lane = threadIdx.x % WARP_SIZE;
// ascending doesn't matter before merging since all we need is a bitonic
// sequence
for (int stage = 0; stage < 4; ++stage) {
for (int stride = (1 << stage); stride > 0; stride /= 2) {
bool reverse = (lane >> stage) & 2;
bool is_second = lane & stride;
T other = __shfl_xor_sync(FULL_WARP_MASK, *val_arr, stride);
idxT other_idx = __shfl_xor_sync(FULL_WARP_MASK, *idx_arr, stride);
bool is_better;
if constexpr (is_stable) {
if constexpr (ascending) {
is_better = ((*val_arr > other) ||
((*val_arr == other) && (*idx_arr < other_idx))) !=
(reverse != is_second);
} else {
is_better = ((*val_arr > other) ||
((*val_arr == other) && (*idx_arr > other_idx))) !=
(reverse != is_second);
}
} else {
is_better = (*val_arr != other &&
(*val_arr > other) != (reverse != is_second));
}
if (is_better) {
*val_arr = other;
*idx_arr = other_idx;
}
}
}
BitonicMerge<32, ascending, ascending, T, idxT, is_stable>::merge(val_arr,
idx_arr);
}
};
template <bool ascending, bool reverse, typename T, typename idxT,
bool is_stable>
struct BitonicMerge<32, ascending, reverse, T, idxT, is_stable> {
__device__ static void merge(T* __restrict__ val_arr,
idxT* __restrict__ idx_arr) {
int const lane = threadIdx.x % WARP_SIZE;
for (int stride = WARP_SIZE / 2; stride > 0; stride /= 2) {
bool is_second = lane & stride;
T& val = *val_arr;
T other = __shfl_xor_sync(FULL_WARP_MASK, val, stride);
idxT& idx = *idx_arr;
idxT other_idx = __shfl_xor_sync(FULL_WARP_MASK, idx, stride);
bool is_better;
if constexpr (is_stable) {
if constexpr (ascending) {
is_better = ((*val_arr > other) ||
((*val_arr == other) && (*idx_arr < other_idx))) ==
(reverse != is_second); // for min
} else {
is_better = ((*val_arr > other) ||
((*val_arr == other) && (*idx_arr > other_idx))) ==
(reverse != is_second); // for max
}
} else {
is_better =
(val != other && ((val > other) == (ascending != is_second)));
}
if (is_better) {
val = other;
idx = other_idx;
}
}
}
};
template <int capacity, bool greater, typename T, typename idxT, bool is_stable>
class WarpSort {
public:
__device__ WarpSort(idxT k, T dummy)
: lane_(threadIdx.x % WARP_SIZE), k_(k), dummy_(dummy) {
static_assert(capacity >= WARP_SIZE && isPowerOf2(capacity));
for (int i = 0; i < max_arr_len_; ++i) {
val_arr_[i] = dummy_;
idx_arr_[i] = 0;
}
}
// load and merge k sorted values
__device__ void load_sorted(T const* __restrict__ in,
idxT const* __restrict__ in_idx, idxT start) {
idxT idx = start + WARP_SIZE - 1 - lane_;
for (int i = max_arr_len_ - 1; i >= 0; --i, idx += WARP_SIZE) {
if (idx < start + k_) {
T t = in[idx];
bool is_better;
if constexpr (is_stable) {
is_better =
is_better_than<greater>(t, val_arr_[i], in_idx[idx], idx_arr_[i]);
} else {
is_better = is_better_than<greater>(t, val_arr_[i]);
}
if (is_better) {
val_arr_[i] = t;
idx_arr_[i] = in_idx[idx];
}
}
}
BitonicMerge<capacity, greater, !greater, T, idxT, is_stable>::merge(
val_arr_, idx_arr_);
}
__device__ void dump(T* __restrict__ out, idxT* __restrict__ out_idx) const {
for (int i = 0; i < max_arr_len_; ++i) {
idxT out_i = i * WARP_SIZE + lane_;
if (out_i < k_) {
out[out_i] = val_arr_[i];
out_idx[out_i] = idx_arr_[i];
}
}
}
__device__ void dumpIdx(idxT* __restrict__ out_idx) const {
for (int i = 0; i < max_arr_len_; ++i) {
idxT out_i = i * WARP_SIZE + lane_;
if (out_i < k_) {
out_idx[out_i] = idx_arr_[i];
}
}
}
protected:
static constexpr int max_arr_len_ = capacity / WARP_SIZE;
T val_arr_[max_arr_len_];
idxT idx_arr_[max_arr_len_];
int const lane_;
idxT const k_;
T const dummy_;
}; // end class WarpSort
template <int capacity, bool greater, typename T, typename idxT, bool is_stable>
class WarpSelect : public WarpSort<capacity, greater, T, idxT, is_stable> {
public:
__device__ WarpSelect(idxT k, T dummy)
: WarpSort<capacity, greater, T, idxT, is_stable>(k, dummy),
k_th_(dummy),
k_th_lane_((k - 1) % WARP_SIZE) {
extern __shared__ char smem_buf[]; // extern __shared__ T smem_buf[];
int const num_of_warp = blockDim.x / WARP_SIZE;
int const warp_id = threadIdx.x / WARP_SIZE;
val_smem_ = reinterpret_cast<T*>(smem_buf);
val_smem_ += warp_id * WARP_SIZE;
idx_smem_ = reinterpret_cast<idxT*>(
smem_buf +
round_up_to_multiple_of<256>(num_of_warp * sizeof(T) * WARP_SIZE));
idx_smem_ += warp_id * WARP_SIZE;
}
__device__ void add(T const* in, idxT start, idxT end) {
idxT const end_for_fullwarp =
round_up_to_multiple_of<WARP_SIZE>(end - start) + start;
for (idxT i = start + lane_; i < end_for_fullwarp; i += WARP_SIZE) {
T val = (i < end) ? in[i] : dummy_;
add(val, i);
}
}
__device__ void add(T val, idxT idx) {
bool do_add;
if constexpr (is_stable) {
do_add = is_better_than<greater>(val, k_th_, idx, k_th_idx_);
} else {
do_add = is_better_than<greater>(val, k_th_);
}
uint32_t mask = __ballot_sync(FULL_WARP_MASK, do_add);
if (mask == 0) {
return;
}
int pos = smem_buf_len_ + __popc(mask & ((0x1u << lane_) - 1));
if (do_add && pos < WARP_SIZE) {
val_smem_[pos] = val;
idx_smem_[pos] = idx;
do_add = false;
}
smem_buf_len_ += __popc(mask);
if (smem_buf_len_ >= WARP_SIZE) {
__syncwarp();
merge_buf_(val_smem_[lane_], idx_smem_[lane_]);
smem_buf_len_ -= WARP_SIZE;
}
if (do_add) {
pos -= WARP_SIZE;
val_smem_[pos] = val;
idx_smem_[pos] = idx;
}
__syncwarp();
}
__device__ void done() {
if (smem_buf_len_) {
T val = (lane_ < smem_buf_len_) ? val_smem_[lane_] : dummy_;
idxT idx = (lane_ < smem_buf_len_) ? idx_smem_[lane_] : 0;
merge_buf_(val, idx);
}
// after done(), smem is used for merging results among warps
__syncthreads();
}
private:
__device__ void set_k_th_() {
k_th_ = __shfl_sync(FULL_WARP_MASK, val_arr_[max_arr_len_ - 1], k_th_lane_);
if constexpr (is_stable) {
k_th_idx_ =
__shfl_sync(FULL_WARP_MASK, idx_arr_[max_arr_len_ - 1], k_th_lane_);
}
}
__device__ void merge_buf_(T val, idxT idx) {
BitonicSort<WARP_SIZE, greater, T, idxT, is_stable>::sort(&val, &idx);
T& old = val_arr_[max_arr_len_ - 1];
bool is_better;
if constexpr (is_stable) {
is_better =
is_better_than<greater>(val, old, idx, idx_arr_[max_arr_len_ - 1]);
} else {
is_better = is_better_than<greater>(val, old);
}
if (is_better) {
old = val;
idx_arr_[max_arr_len_ - 1] = idx;
}
BitonicMerge<capacity, greater, !greater, T, idxT, is_stable>::merge(
val_arr_, idx_arr_);
set_k_th_();
}
using WarpSort<capacity, greater, T, idxT, is_stable>::max_arr_len_;
using WarpSort<capacity, greater, T, idxT, is_stable>::val_arr_;
using WarpSort<capacity, greater, T, idxT, is_stable>::idx_arr_;
using WarpSort<capacity, greater, T, idxT, is_stable>::lane_;
using WarpSort<capacity, greater, T, idxT, is_stable>::k_;
using WarpSort<capacity, greater, T, idxT, is_stable>::dummy_;
T* val_smem_;
idxT* idx_smem_;
int smem_buf_len_ = 0;
T k_th_;
idxT k_th_idx_;
int const k_th_lane_;
}; // end class WarpSelect
} // namespace warp_topk
template <typename T_OUT, typename T_IN>
__device__ inline T_OUT cuda_cast(T_IN val) {
return val;
}
template <>
__device__ inline float cuda_cast<float, __nv_bfloat16>(__nv_bfloat16 val) {
return __bfloat162float(val);
}
template <typename T>
__device__ void topk_with_k2(T* output, T const* input,
cg::thread_block_tile<32> const& tile,
int32_t const lane_id,
int const num_experts_per_group) {
// Get the top2 per thread
T largest = -INFINITY;
T second_largest = -INFINITY;
if (num_experts_per_group > WARP_SIZE) {
for (int i = lane_id; i < num_experts_per_group; i += WARP_SIZE) {
T value = input[i];
if (value > largest) {
second_largest = largest;
largest = value;
} else if (value > second_largest) {
second_largest = value;
}
}
} else {
for (int i = lane_id; i < num_experts_per_group; i += WARP_SIZE) {
largest = input[i];
}
}
__syncwarp(); // Ensure all threads have valid data before reduction
// Get the top2 warpwise
T max1 = cg::reduce(tile, largest, cg::greater<T>());
T max2 = max1;
bool equal_to_max1 = (max1 == largest);
int count_max1 = __popc(__ballot_sync(FULL_WARP_MASK, equal_to_max1));
if (count_max1 == 1) {
largest = (largest == max1) ? second_largest : largest;
max2 = cg::reduce(tile, largest, cg::greater<T>());
}
if (lane_id == 0) {
*output = max1 + max2;
}
}
template <typename T>
__global__ void topk_with_k2_kernel(T* output, T* input,
int64_t const num_tokens,
int64_t const num_cases,
int64_t const n_group,
int64_t const num_experts_per_group) {
int32_t warp_id = threadIdx.x / WARP_SIZE;
int32_t lane_id = threadIdx.x % WARP_SIZE;
int32_t case_id = blockIdx.x * NUM_WARPS_PER_BLOCK + warp_id;
if (case_id < num_cases) {
input += case_id * num_experts_per_group;
output += case_id;
cg::thread_block block = cg::this_thread_block();
cg::thread_block_tile<32> tile = cg::tiled_partition<32>(block);
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.wait;");
#endif
topk_with_k2(output, input, tile, lane_id, num_experts_per_group);
}
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.launch_dependents;");
#endif
}
template <typename T, typename IdxT>
__global__ void group_idx_and_topk_idx_kernel(
T* scores, T const* group_scores, T* topk_values, IdxT* topk_indices,
T* scores_with_bias, int64_t const num_tokens, int64_t const n_group,
int64_t const topk_group, int64_t const topk, int64_t const num_experts,
int64_t const num_experts_per_group, bool renormalize,
double routed_scaling_factor) {
int32_t warp_id = threadIdx.x / WARP_SIZE;
int32_t lane_id = threadIdx.x % WARP_SIZE;
int32_t case_id =
blockIdx.x * NUM_WARPS_PER_BLOCK + warp_id; // one per token
scores_with_bias += case_id * num_experts;
scores += case_id * num_experts;
group_scores += case_id * n_group;
topk_values += case_id * topk;
topk_indices += case_id * topk;
int32_t align_num_experts_per_group =
warp_topk::round_up_to_multiple_of<WARP_SIZE>(num_experts_per_group);
cg::thread_block block = cg::this_thread_block();
cg::thread_block_tile<32> tile = cg::tiled_partition<32>(block);
extern __shared__ char smem_buf[]; // NOTE: reuse the shared memory here to
// store the target topk idx
int32_t* s_topk_idx = reinterpret_cast<int32_t*>(smem_buf);
T* s_topk_value =
reinterpret_cast<T*>(s_topk_idx + NUM_WARPS_PER_BLOCK * topk) +
warp_id * topk;
s_topk_idx += warp_id * topk;
T value = kNegInfinity;
T topk_group_value = kNegInfinity;
int32_t num_equalto_topkth_group;
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.wait;"); // I think all prolog can be put before
// acqbulk because it's ptr arithmetic
#endif
if (case_id < num_tokens) {
// calculate group_idx
int32_t target_num_min = WARP_SIZE - n_group + topk_group;
if (lane_id < n_group &&
(isfinite(cuda_cast<float, T>(
group_scores[lane_id])))) // The check is necessary to avoid
// abnormal input
{
value = group_scores[lane_id];
}
int count_equal_to_top_value = WARP_SIZE - n_group;
int pre_count_equal_to_top_value = 0;
// Use loop to find the largset top_group
while (count_equal_to_top_value < target_num_min) {
__syncwarp(); // Ensure all threads have valid data before reduction
topk_group_value = cg::reduce(tile, value, cg::greater<T>());
if (value == topk_group_value) {
value = kNegInfinity;
}
pre_count_equal_to_top_value = count_equal_to_top_value;
count_equal_to_top_value = __popc(__ballot_sync(
FULL_WARP_MASK, (value == cuda_cast<T, float>(kNegInfinity))));
}
num_equalto_topkth_group = target_num_min - pre_count_equal_to_top_value;
}
__syncthreads();
warp_topk::WarpSelect</*capability*/ WARP_SIZE, /*greater*/ true, T, int32_t,
/* is_stable */ true>
queue((int32_t)topk, -INFINITY);
int count_equalto_topkth_group = 0;
bool if_proceed_next_topk =
(topk_group_value != cuda_cast<T, float>(kNegInfinity));
if (case_id < num_tokens && if_proceed_next_topk) {
for (int i_group = 0; i_group < n_group; i_group++) {
if ((group_scores[i_group] > topk_group_value) ||
((group_scores[i_group] == topk_group_value) &&
(count_equalto_topkth_group < num_equalto_topkth_group))) {
int32_t offset = i_group * num_experts_per_group;
for (int32_t i = lane_id; i < align_num_experts_per_group;
i += WARP_SIZE) {
T candidates =
(i < num_experts_per_group) && isfinite(cuda_cast<float, T>(
scores_with_bias[offset + i]))
? scores_with_bias[offset + i]
: cuda_cast<T, float>(kNegInfinity);
queue.add(candidates, offset + i);
}
if (group_scores[i_group] == topk_group_value) {
count_equalto_topkth_group++;
}
}
}
queue.done();
__syncwarp();
// Get the topk_idx
queue.dumpIdx(s_topk_idx);
__syncwarp();
}
// Load the valid score value
// Calculate the summation
float topk_sum = 1e-20;
if (case_id < num_tokens && if_proceed_next_topk) {
for (int i = lane_id;
i < warp_topk::round_up_to_multiple_of<WARP_SIZE>(topk);
i += WARP_SIZE) {
T value =
i < topk
? scores[s_topk_idx[i]]
: cuda_cast<T, float>(0.0f); // Load the valid value of expert
if (i < topk) {
s_topk_value[i] = value;
}
topk_sum += reduce(tile, cuda_cast<float, T>(value), cg::plus<float>());
}
}
__syncthreads();
if (case_id < num_tokens) {
if (if_proceed_next_topk) {
for (int i = lane_id; i < topk; i += WARP_SIZE) {
float value;
if (renormalize) {
value = cuda_cast<float, T>(s_topk_value[i]) / topk_sum *
routed_scaling_factor;
} else {
value = cuda_cast<float, T>(s_topk_value[i]) * routed_scaling_factor;
}
topk_indices[i] = s_topk_idx[i];
topk_values[i] = cuda_cast<T, float>(value);
}
} else {
for (int i = lane_id; i < topk; i += WARP_SIZE) {
topk_indices[i] = i;
topk_values[i] = cuda_cast<T, float>(1.0f / topk);
}
}
// Note: when if_proceed_next_topk==false, choose the first 8 experts as the
// default result.
}
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.launch_dependents;");
#endif
}
template <typename T, typename IdxT>
void invokeNoAuxTc(T* scores, T* group_scores, T* topk_values,
IdxT* topk_indices, T* scores_with_bias,
int64_t const num_tokens, int64_t const num_experts,
int64_t const n_group, int64_t const topk_group,
int64_t const topk, bool const renormalize,
double const routed_scaling_factor, bool enable_pdl = false,
cudaStream_t const stream = 0) {
int64_t num_cases = num_tokens * n_group;
int64_t topk_with_k2_num_blocks = (num_cases - 1) / NUM_WARPS_PER_BLOCK + 1;
auto* kernel_instance1 = &topk_with_k2_kernel<T>;
cudaLaunchConfig_t config;
config.gridDim = topk_with_k2_num_blocks;
config.blockDim = BLOCK_SIZE;
config.dynamicSmemBytes = 0;
config.stream = stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = enable_pdl;
config.numAttrs = 1;
config.attrs = attrs;
cudaLaunchKernelEx(&config, kernel_instance1, group_scores, scores_with_bias,
num_tokens, num_cases, n_group, num_experts / n_group);
int64_t topk_with_k_group_num_blocks =
(num_tokens - 1) / NUM_WARPS_PER_BLOCK + 1;
size_t dynamic_smem_in_bytes =
warp_topk::calc_smem_size_for_block_wide<T, int32_t>(NUM_WARPS_PER_BLOCK,
topk);
auto* kernel_instance2 = &group_idx_and_topk_idx_kernel<T, IdxT>;
config.gridDim = topk_with_k_group_num_blocks;
config.blockDim = BLOCK_SIZE;
config.dynamicSmemBytes = dynamic_smem_in_bytes;
config.stream = stream;
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = enable_pdl;
config.numAttrs = 1;
config.attrs = attrs;
cudaLaunchKernelEx(&config, kernel_instance2, scores, group_scores,
topk_values, topk_indices, scores_with_bias, num_tokens,
n_group, topk_group, topk, num_experts,
num_experts / n_group, renormalize, routed_scaling_factor);
}
#define INSTANTIATE_NOAUX_TC(T, IdxT) \
template void invokeNoAuxTc<T, IdxT>( \
T * scores, T * group_scores, T * topk_values, IdxT * topk_indices, \
T * scores_with_bias, int64_t const num_tokens, \
int64_t const num_experts, int64_t const n_group, \
int64_t const topk_group, int64_t const topk, bool const renormalize, \
double const routed_scaling_factor, bool enable_pdl, \
cudaStream_t const stream);
INSTANTIATE_NOAUX_TC(float, int32_t);
INSTANTIATE_NOAUX_TC(half, int32_t);
INSTANTIATE_NOAUX_TC(__nv_bfloat16, int32_t);
} // end namespace moe
} // namespace vllm
std::tuple<torch::Tensor, torch::Tensor> grouped_topk(
torch::Tensor const& scores, torch::Tensor const& scores_with_bias,
int64_t n_group, int64_t topk_group, int64_t topk, bool renormalize,
double routed_scaling_factor) {
auto data_type = scores_with_bias.scalar_type();
auto input_size = scores_with_bias.sizes();
int64_t num_tokens = input_size[0];
int64_t num_experts = input_size[1];
TORCH_CHECK(input_size.size() == 2, "scores_with_bias must be a 2D Tensor");
TORCH_CHECK(num_experts % n_group == 0,
"num_experts should be divisible by n_group");
TORCH_CHECK(n_group <= 32,
"n_group should be smaller than or equal to 32 for now");
TORCH_CHECK(topk <= 32, "topk should be smaller than or equal to 32 for now");
torch::Tensor group_scores = torch::empty(
{num_tokens, n_group}, torch::dtype(data_type).device(torch::kCUDA));
torch::Tensor topk_values = torch::empty(
{num_tokens, topk}, torch::dtype(data_type).device(torch::kCUDA));
torch::Tensor topk_indices = torch::empty(
{num_tokens, topk}, torch::dtype(torch::kInt32).device(torch::kCUDA));
auto stream = c10::cuda::getCurrentCUDAStream(scores_with_bias.get_device());
switch (data_type) {
case torch::kFloat16:
// Handle Float16
vllm::moe::invokeNoAuxTc<half, int32_t>(
reinterpret_cast<half*>(scores.mutable_data_ptr()),
reinterpret_cast<half*>(group_scores.mutable_data_ptr()),
reinterpret_cast<half*>(topk_values.mutable_data_ptr()),
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()),
reinterpret_cast<half*>(scores_with_bias.data_ptr()), num_tokens,
num_experts, n_group, topk_group, topk, renormalize,
routed_scaling_factor, false, stream);
break;
case torch::kFloat32:
// Handle Float32
vllm::moe::invokeNoAuxTc<float, int32_t>(
reinterpret_cast<float*>(scores.mutable_data_ptr()),
reinterpret_cast<float*>(group_scores.mutable_data_ptr()),
reinterpret_cast<float*>(topk_values.mutable_data_ptr()),
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()),
reinterpret_cast<float*>(scores_with_bias.data_ptr()), num_tokens,
num_experts, n_group, topk_group, topk, renormalize,
routed_scaling_factor, false, stream);
break;
case torch::kBFloat16:
// Handle BFloat16
vllm::moe::invokeNoAuxTc<__nv_bfloat16, int32_t>(
reinterpret_cast<__nv_bfloat16*>(scores.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16*>(group_scores.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16*>(topk_values.mutable_data_ptr()),
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16*>(scores_with_bias.data_ptr()),
num_tokens, num_experts, n_group, topk_group, topk, renormalize,
routed_scaling_factor, false, stream);
break;
default:
// Handle other data types
throw std::invalid_argument(
"Invalid dtype, only supports float16, float32, and bfloat16");
break;
}
return {topk_values, topk_indices};
}

View File

@ -22,6 +22,11 @@ torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
torch::Tensor num_tokens_post_pad, int64_t top_k,
int64_t BLOCK_SIZE_M, int64_t BLOCK_SIZE_N,
int64_t BLOCK_SIZE_K, int64_t bit);
std::tuple<torch::Tensor, torch::Tensor> grouped_topk(
torch::Tensor const& scores, torch::Tensor const& scores_with_bias,
int64_t n_group, int64_t topk_group, int64_t topk, bool renormalize,
double routed_scaling_factor);
#endif
bool moe_permute_unpermute_supported();

View File

@ -45,8 +45,6 @@ void moe_permute(
auto copy_topk_ids = topk_ids.clone(); // copy topk_ids for preprocess
auto permuted_experts_id = torch::empty_like(topk_ids);
auto sorted_row_idx = torch::empty_like(inv_permuted_idx);
auto align_expert_first_token_offset =
torch::zeros_like(expert_first_token_offset);
CubKeyValueSorter sorter{};
int64_t* valid_num_ptr = nullptr;
@ -85,12 +83,14 @@ void moe_permute(
});
// get m_indices and update expert_first_token_offset with align block
getMIndices(get_ptr<int64_t>(expert_first_token_offset),
get_ptr<int64_t>(align_expert_first_token_offset),
get_ptr<int>(m_indices), n_local_expert, align_block_size_value,
stream);
// this is only required for DeepGemm and not required for CUTLASS group gemm
if (align_block_size.has_value()) {
// update align_expert_first_token_offset
auto align_expert_first_token_offset =
torch::zeros_like(expert_first_token_offset);
getMIndices(get_ptr<int64_t>(expert_first_token_offset),
get_ptr<int64_t>(align_expert_first_token_offset),
get_ptr<int>(m_indices), n_local_expert, align_block_size_value,
stream);
expert_first_token_offset.copy_(align_expert_first_token_offset);
}
}
@ -195,19 +195,14 @@ void moe_permute(const torch::Tensor& input, const torch::Tensor& topk_weights,
torch::Tensor& expert_first_token_offset,
torch::Tensor& src_row_id2dst_row_id_map,
torch::Tensor& m_indices) {
TORCH_CHECK(false, "moe_unpermute is not supported on CUDA < 12.0");
TORCH_CHECK(false, "moe_permute is not supported on CUDA < 12.0");
}
void moe_unpermute(const torch::Tensor& input,
const torch::Tensor& topk_weights, torch::Tensor& topk_ids,
const torch::Tensor& token_expert_indices,
const std::optional<torch::Tensor>& expert_map,
int64_t n_expert, int64_t n_local_expert, int64_t topk,
const std::optional<int64_t>& align_block_size,
torch::Tensor& permuted_input,
torch::Tensor& expert_first_token_offset,
torch::Tensor& src_row_id2dst_row_id_map,
torch::Tensor& m_indices) {
void moe_unpermute(
const torch::Tensor& permuted_hidden_states,
const torch::Tensor& topk_weights, const torch::Tensor& inv_permuted_idx,
const std::optional<torch::Tensor>& expert_first_token_offset, int64_t topk,
torch::Tensor& hidden_states) {
TORCH_CHECK(false, "moe_unpermute is not supported on CUDA < 12.0");
}
@ -224,4 +219,4 @@ bool moe_permute_unpermute_supported() {
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
m.impl("moe_permute", &moe_permute);
m.impl("moe_unpermute", &moe_unpermute);
}
}

View File

@ -573,7 +573,7 @@ void topk_softmax(
stream);
}
else {
assert(topk_indices.scalar_type() == at::ScalarType::Int64);
TORCH_CHECK(topk_indices.scalar_type() == at::ScalarType::Long);
vllm::moe::topkGatingSoftmaxKernelLauncher(
gating_output.data_ptr<float>(),
topk_weights.data_ptr<float>(),

View File

@ -78,6 +78,12 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
"output_tensor) -> ()");
m.impl("shuffle_rows", torch::kCUDA, &shuffle_rows);
// Apply grouped topk routing to select experts.
m.def(
"grouped_topk(Tensor scores, Tensor scores_with_bias, int n_group, int "
"topk_group, int topk, bool renormalize, float "
"routed_scaling_factor) -> (Tensor, Tensor)");
m.impl("grouped_topk", torch::kCUDA, &grouped_topk);
#endif
}

View File

@ -130,6 +130,13 @@ void silu_and_mul(torch::Tensor& out, torch::Tensor& input);
void silu_and_mul_quant(torch::Tensor& out, torch::Tensor& input,
torch::Tensor& scale);
#ifndef USE_ROCM
void silu_and_mul_nvfp4_quant(torch::Tensor& out,
torch::Tensor& output_block_scale,
torch::Tensor& input,
torch::Tensor& input_global_scale);
#endif
void mul_and_silu(torch::Tensor& out, torch::Tensor& input);
void gelu_and_mul(torch::Tensor& out, torch::Tensor& input);
@ -229,6 +236,11 @@ void get_cutlass_moe_mm_data(
const int64_t num_experts, const int64_t n, const int64_t k,
const std::optional<torch::Tensor>& blockscale_offsets);
void get_cutlass_moe_mm_problem_sizes(
const torch::Tensor& topk_ids, torch::Tensor& problem_sizes1,
torch::Tensor& problem_sizes2, const int64_t num_experts, const int64_t n,
const int64_t k, const std::optional<torch::Tensor>& blockscale_offsets);
void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
torch::Tensor& problem_sizes1,
torch::Tensor& problem_sizes2,

View File

@ -0,0 +1,424 @@
//
// Based off of:
// https://github.com/NVIDIA/cutlass/blob/main/examples/55_hopper_mixed_dtype_gemm/55_hopper_int4_fp8_gemm.cu
//
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <torch/all.h>
#include "cutlass_extensions/torch_utils.hpp"
#include "core/registration.h"
#include "cutlass/cutlass.h"
#include <limits>
#include "cute/tensor.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/mixed_dtype_utils.hpp"
#include "cutlass_extensions/common.hpp"
#include "cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp"
namespace vllm::cutlass_w4a8 {
using namespace cute;
// -------------------------------------------------------------------------------------
// Static configuration shared across all instantiations
// -------------------------------------------------------------------------------------
using MmaType = cutlass::float_e4m3_t; // A/scale element type
using QuantType = cutlass::int4b_t; // B element type (packed int4)
static int constexpr TileShapeK = 128 * 8 / sizeof_bits<MmaType>::value;
static int constexpr ScalePackSize = 8; // pack 8 scale elements together
static int constexpr PackFactor = 8; // 8 4-bit packed into int32
// A matrix configuration
using ElementA = MmaType; // Element type for A matrix operand
using LayoutA = cutlass::layout::RowMajor; // Layout type for A matrix operand
using LayoutA_Transpose =
typename cutlass::layout::LayoutTranspose<LayoutA>::type;
constexpr int AlignmentA =
128 / cutlass::sizeof_bits<
ElementA>::value; // Memory access granularity/alignment of A
// matrix in units of elements (up to 16 bytes)
using StrideA = cutlass::detail::TagToStrideA_t<LayoutA>;
// B matrix configuration
using ElementB = QuantType; // Element type for B matrix operand
using LayoutB =
cutlass::layout::ColumnMajor; // Layout type for B matrix operand
using LayoutB_Transpose =
typename cutlass::layout::LayoutTranspose<LayoutB>::type;
constexpr int AlignmentB =
128 / cutlass::sizeof_bits<
ElementB>::value; // Memory access granularity/alignment of B
// matrix in units of elements (up to 16 bytes)
using StrideB = cutlass::detail::TagToStrideB_t<LayoutB>;
// Define the CuTe layout for reordered quantized tensor B
// LayoutAtomQuant places values that will be read by the same thread in
// contiguous locations in global memory. It specifies the reordering within a
// single warp's fragment
using LayoutAtomQuant =
decltype(cutlass::compute_memory_reordering_atom<MmaType>());
using LayoutB_Reordered = decltype(cute::tile_to_shape(
LayoutAtomQuant{}, Layout<Shape<int, int, int>, StrideB>{}));
// Group-wise scales
using ElementScale = MmaType;
using LayoutScale = cutlass::layout::RowMajor;
// Per-tok, per-chan scales
using ElementSChannel = float;
// C/D matrix configuration
using ElementC =
cutlass::bfloat16_t; // Element type for C and D matrix operands
using LayoutC =
cutlass::layout::RowMajor; // Layout type for C and D matrix operands
constexpr int AlignmentC =
128 / cutlass::sizeof_bits<
ElementC>::value; // Memory access granularity/alignment of C
// matrix in units of elements (up to 16 bytes)
using ElementD = ElementC;
using LayoutD = LayoutC;
constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
// Core kernel configurations
using ElementAccumulator = float; // Element type for internal accumulation
using ElementCompute = float; // Element type for epilogue computation
using ArchTag = cutlass::arch::Sm90; // Tag indicating the minimum SM that
// supports the intended feature
using OperatorClass = cutlass::arch::OpClassTensorOp; // Operator class tag
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedCooperative; // Kernel to launch
// based on the default
// setting in the
// Collective Builder
using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecializedCooperative;
using EpilogueTileType = cutlass::epilogue::collective::EpilogueTileAuto;
// ----------------------------------------------------------------------------
// Kernel template — Tile/Cluster shapes
// ----------------------------------------------------------------------------
template <class TileShape_MN, class ClusterShape_MNK>
struct W4A8GemmKernel {
using TileShape =
decltype(cute::append(TileShape_MN{}, cute::Int<TileShapeK>{}));
using ClusterShape = ClusterShape_MNK;
// Epilogue per-tok, per-chan scales
using ChTokScalesEpilogue =
typename vllm::c3x::ScaledEpilogue<ElementAccumulator, ElementD,
TileShape>;
using EVTCompute = typename ChTokScalesEpilogue::EVTCompute;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
ArchTag, OperatorClass, TileShape, ClusterShape, EpilogueTileType,
ElementAccumulator, ElementSChannel,
// Transpose layout of D here since we use explicit swap + transpose
// the void type for C tells the builder to allocate 0 smem for the C
// matrix. We can enable this if beta == 0 by changing ElementC to
// void below.
ElementC, typename cutlass::layout::LayoutTranspose<LayoutC>::type,
AlignmentC, ElementD,
typename cutlass::layout::LayoutTranspose<LayoutD>::type, AlignmentD,
EpilogueSchedule, // This is the only epi supporting the required
// swap + transpose.
EVTCompute>::CollectiveOp;
// The Scale information must get paired with the operand that will be scaled.
// In this example, B is scaled so we make a tuple of B's information and the
// scale information.
using CollectiveMainloopShuffled =
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag, OperatorClass,
cute::tuple<ElementB, cutlass::Array<ElementScale, ScalePackSize>>,
LayoutB_Reordered, AlignmentB, ElementA, LayoutA_Transpose,
AlignmentA, ElementAccumulator, TileShape, ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
sizeof(typename CollectiveEpilogue::SharedStorage))>,
KernelSchedule>::CollectiveOp;
using GemmKernelShuffled = cutlass::gemm::kernel::GemmUniversal<
Shape<int, int, int, int>, // Indicates ProblemShape
CollectiveMainloopShuffled, CollectiveEpilogue>;
using GemmShuffled =
cutlass::gemm::device::GemmUniversalAdapter<GemmKernelShuffled>;
using StrideC = typename GemmKernelShuffled::StrideC;
using StrideD = typename GemmKernelShuffled::StrideD;
using StrideS = typename CollectiveMainloopShuffled::StrideScale;
static torch::Tensor mm(torch::Tensor const& A,
torch::Tensor const& B, // already packed
torch::Tensor const& group_scales, // already packed
int64_t group_size,
torch::Tensor const& channel_scales,
torch::Tensor const& token_scales,
std::optional<at::ScalarType> const& maybe_out_type) {
// TODO: param validation
int m = A.size(0);
int k = A.size(1);
int n = B.size(1);
// safely cast group_size to int
TORCH_CHECK(group_size > 0 && group_size <= std::numeric_limits<int>::max(),
"group_size out of supported range for int: ", group_size);
int const group_size_int = static_cast<int>(group_size);
// Allocate output
const at::cuda::OptionalCUDAGuard device_guard(device_of(A));
auto device = A.device();
auto stream = at::cuda::getCurrentCUDAStream(device.index());
torch::Tensor D =
torch::empty({m, n}, torch::TensorOptions()
.dtype(equivalent_scalar_type_v<ElementD>)
.device(device));
// prepare arg pointers
auto A_ptr = static_cast<MmaType const*>(A.const_data_ptr());
auto B_ptr = static_cast<QuantType const*>(B.const_data_ptr());
auto D_ptr = static_cast<ElementD*>(D.data_ptr());
// can we avoid hardcode the 8 here
auto S_ptr =
static_cast<cutlass::Array<ElementScale, ScalePackSize> const*>(
group_scales.const_data_ptr());
// runtime layout for B
auto shape_B = cute::make_shape(n, k, 1);
LayoutB_Reordered layout_B_reordered =
cute::tile_to_shape(LayoutAtomQuant{}, shape_B);
// strides
int const scale_k = cutlass::ceil_div(k, group_size_int);
StrideA stride_A =
cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(m, k, 1));
// Reverse stride here due to swap and transpose
StrideD stride_D =
cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(n, m, 1));
StrideS stride_S = cutlass::make_cute_packed_stride(
StrideS{}, cute::make_shape(n, scale_k, 1));
// Create a structure of gemm kernel arguments suitable for invoking an
// instance of Gemm auto arguments =
// args_from_options<GemmShuffled>(options);
/// Populates a Gemm::Arguments structure from the given arguments
/// Swap the A and B tensors, as well as problem shapes here.
using Args = typename GemmShuffled::Arguments;
using MainloopArguments = typename GemmKernelShuffled::MainloopArguments;
using EpilogueArguments = typename GemmKernelShuffled::EpilogueArguments;
MainloopArguments mainloop_arguments{
B_ptr, layout_B_reordered, A_ptr, stride_A,
S_ptr, stride_S, group_size_int};
EpilogueArguments epilogue_arguments{
ChTokScalesEpilogue::prepare_args(channel_scales, token_scales),
nullptr,
{}, // no C
D_ptr,
stride_D};
Args arguments{cutlass::gemm::GemmUniversalMode::kGemm,
{n, m, k, 1}, // shape
mainloop_arguments,
epilogue_arguments};
// Workspace
size_t workspace_size = GemmShuffled::get_workspace_size(arguments);
torch::Tensor workspace =
torch::empty(workspace_size,
torch::TensorOptions().dtype(torch::kU8).device(device));
// Run GEMM
GemmShuffled gemm;
CUTLASS_CHECK(gemm.can_implement(arguments));
CUTLASS_CHECK(gemm.initialize(arguments, workspace.data_ptr(), stream));
CUTLASS_CHECK(gemm.run(stream));
return D;
}
};
// ----------------------------------------------------------------------------
// Kernel instantiations and dispatch logic
// ----------------------------------------------------------------------------
using Kernel_256x128_1x1x1 =
W4A8GemmKernel<Shape<_256, _128>, Shape<_1, _1, _1>>;
using Kernel_256x64_1x1x1 = W4A8GemmKernel<Shape<_256, _64>, Shape<_1, _1, _1>>;
using Kernel_256x32_1x1x1 = W4A8GemmKernel<Shape<_256, _32>, Shape<_1, _1, _1>>;
using Kernel_256x16_1x1x1 = W4A8GemmKernel<Shape<_256, _16>, Shape<_1, _1, _1>>;
using Kernel_128x256_2x1x1 =
W4A8GemmKernel<Shape<_128, _256>, Shape<_2, _1, _1>>;
using Kernel_128x256_1x1x1 =
W4A8GemmKernel<Shape<_128, _256>, Shape<_1, _1, _1>>;
using Kernel_128x128_1x1x1 =
W4A8GemmKernel<Shape<_128, _128>, Shape<_1, _1, _1>>;
using Kernel_128x64_1x1x1 = W4A8GemmKernel<Shape<_128, _64>, Shape<_1, _1, _1>>;
using Kernel_128x32_1x1x1 = W4A8GemmKernel<Shape<_128, _32>, Shape<_1, _1, _1>>;
using Kernel_128x16_1x1x1 = W4A8GemmKernel<Shape<_128, _16>, Shape<_1, _1, _1>>;
torch::Tensor mm_dispatch(torch::Tensor const& A,
torch::Tensor const& B, // already packed
torch::Tensor const& group_scales, // already packed
int64_t group_size,
torch::Tensor const& channel_scales,
torch::Tensor const& token_scales,
std::optional<at::ScalarType> const& maybe_out_type,
const std::string& schedule) {
if (schedule == "256x128_1x1x1") {
return Kernel_256x128_1x1x1::mm(A, B, group_scales, group_size,
channel_scales, token_scales,
maybe_out_type);
} else if (schedule == "256x64_1x1x1") {
return Kernel_256x64_1x1x1::mm(A, B, group_scales, group_size,
channel_scales, token_scales,
maybe_out_type);
} else if (schedule == "256x32_1x1x1") {
return Kernel_256x32_1x1x1::mm(A, B, group_scales, group_size,
channel_scales, token_scales,
maybe_out_type);
} else if (schedule == "256x16_1x1x1") {
return Kernel_256x16_1x1x1::mm(A, B, group_scales, group_size,
channel_scales, token_scales,
maybe_out_type);
} else if (schedule == "128x256_2x1x1") {
return Kernel_128x256_2x1x1::mm(A, B, group_scales, group_size,
channel_scales, token_scales,
maybe_out_type);
} else if (schedule == "128x256_1x1x1") {
return Kernel_128x256_1x1x1::mm(A, B, group_scales, group_size,
channel_scales, token_scales,
maybe_out_type);
} else if (schedule == "128x128_1x1x1") {
return Kernel_128x128_1x1x1::mm(A, B, group_scales, group_size,
channel_scales, token_scales,
maybe_out_type);
} else if (schedule == "128x64_1x1x1") {
return Kernel_128x64_1x1x1::mm(A, B, group_scales, group_size,
channel_scales, token_scales,
maybe_out_type);
} else if (schedule == "128x32_1x1x1") {
return Kernel_128x32_1x1x1::mm(A, B, group_scales, group_size,
channel_scales, token_scales,
maybe_out_type);
} else if (schedule == "128x16_1x1x1") {
return Kernel_128x16_1x1x1::mm(A, B, group_scales, group_size,
channel_scales, token_scales,
maybe_out_type);
}
TORCH_CHECK(false, "Unknown W4A8 schedule: ", schedule);
return {};
}
torch::Tensor mm(torch::Tensor const& A,
torch::Tensor const& B, // already packed
torch::Tensor const& group_scales, // already packed
int64_t group_size, torch::Tensor const& channel_scales,
torch::Tensor const& token_scales,
std::optional<at::ScalarType> const& maybe_out_type,
std::optional<std::string> maybe_schedule) {
// requested a specific schedule
if (maybe_schedule) {
return mm_dispatch(A, B, group_scales, group_size, channel_scales,
token_scales, maybe_out_type, *maybe_schedule);
}
std::string schedule;
int M = A.size(0);
int K = A.size(1);
int N = B.size(1);
// heuristic
if (M <= 16) {
schedule = (K == 16384 && N == 18432) ? "256x16_1x1x1" : "128x16_1x1x1";
} else if (M <= 32) {
schedule = (K == 16384 && N == 18432) ? "256x32_1x1x1" : "128x32_1x1x1";
} else if (M <= 64) {
if (K == 16384 && N == 18432)
schedule = "256x64_1x1x1";
else if (N <= 8192 && K <= 8192)
schedule = "128x32_1x1x1";
else
schedule = "128x64_1x1x1";
} else if (M <= 128) {
if (K == 16384 && N == 18432)
schedule = "256x128_1x1x1";
else if (N <= 8192)
schedule = "128x64_1x1x1";
else
schedule = "128x128_1x1x1";
} else if (M <= 256) {
if (N <= 4096)
schedule = "128x64_1x1x1";
else if (N <= 8192)
schedule = "128x128_1x1x1";
else
schedule = "128x256_1x1x1";
} else if (M <= 512 && N <= 4096) {
schedule = "128x128_1x1x1";
} else if (M <= 1024) {
schedule = "128x256_1x1x1";
} else {
schedule = "128x256_2x1x1";
}
return mm_dispatch(A, B, group_scales, group_size, channel_scales,
token_scales, maybe_out_type, schedule);
}
// ----------------------------------------------------------------------------
// Pre-processing utils
// ----------------------------------------------------------------------------
torch::Tensor pack_scale_fp8(torch::Tensor const& scales) {
TORCH_CHECK(scales.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(scales.is_contiguous());
TORCH_CHECK(scales.is_cuda());
auto packed_scales = torch::empty(
{scales.numel() * ScalePackSize},
torch::TensorOptions().dtype(scales.dtype()).device(scales.device()));
auto scales_ptr = static_cast<MmaType const*>(scales.const_data_ptr());
auto packed_scales_ptr =
static_cast<cutlass::Array<ElementScale, ScalePackSize>*>(
packed_scales.data_ptr());
cutlass::pack_scale_fp8(scales_ptr, packed_scales_ptr, scales.numel());
return packed_scales;
}
torch::Tensor encode_and_reorder_int4b(torch::Tensor const& B) {
TORCH_CHECK(B.dtype() == torch::kInt32);
TORCH_CHECK(B.dim() == 2);
torch::Tensor B_packed = torch::empty_like(B);
int k = B.size(0) * PackFactor; // logical k
int n = B.size(1);
auto B_ptr = static_cast<QuantType const*>(B.const_data_ptr());
auto B_packed_ptr = static_cast<QuantType*>(B_packed.data_ptr());
auto shape_B = cute::make_shape(n, k, 1);
auto layout_B = make_layout(shape_B, LayoutRight{}); // row major
LayoutB_Reordered layout_B_reordered =
cute::tile_to_shape(LayoutAtomQuant{}, shape_B);
cutlass::unified_encode_int4b(B_ptr, B_packed_ptr, n * k);
cutlass::reorder_tensor(B_packed_ptr, layout_B, layout_B_reordered);
return B_packed;
}
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
m.impl("cutlass_w4a8_mm", &mm);
m.impl("cutlass_pack_scale_fp8", &pack_scale_fp8);
m.impl("cutlass_encode_and_reorder_int4b", &encode_and_reorder_int4b);
}
} // namespace vllm::cutlass_w4a8

View File

@ -10,7 +10,7 @@
template <typename ElementAB, typename ElementC, typename ElementAccumulator>
__global__ void get_group_gemm_starts(
int32_t* expert_offsets, ElementAB** a_offsets, ElementAB** b_offsets,
int64_t* expert_offsets, ElementAB** a_offsets, ElementAB** b_offsets,
ElementC** out_offsets, ElementAccumulator** a_scales_offsets,
ElementAccumulator** b_scales_offsets, ElementAB* a_base_as_int,
ElementAB* b_base_as_int, ElementC* out_base_as_int,
@ -34,7 +34,7 @@ __global__ void get_group_gemm_starts(
else if (out_tensors.dtype() == TENSOR_C_TYPE) { \
get_group_gemm_starts<cutlass::float_e4m3_t, C_TYPE, float> \
<<<1, num_experts, 0, stream>>>( \
static_cast<int32_t*>(expert_offsets.data_ptr()), \
static_cast<int64_t*>(expert_offsets.data_ptr()), \
static_cast<cutlass::float_e4m3_t**>(a_ptrs.data_ptr()), \
static_cast<cutlass::float_e4m3_t**>(b_ptrs.data_ptr()), \
static_cast<C_TYPE**>(out_ptrs.data_ptr()), \
@ -61,6 +61,8 @@ void run_get_group_gemm_starts(
TORCH_CHECK(b_tensors.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
// expect int64_t to avoid overflow during offset calculations
TORCH_CHECK(expert_offsets.dtype() == torch::kInt64);
int num_experts = static_cast<int>(expert_offsets.size(0));
bool per_act_token = a_scales.numel() != 1;

View File

@ -104,6 +104,53 @@ __global__ void compute_arg_sorts(const int32_t* __restrict__ topk_ids,
}
}
namespace {
inline void launch_compute_problem_sizes(const torch::Tensor& topk_ids,
torch::Tensor& problem_sizes1,
torch::Tensor& problem_sizes2,
torch::Tensor& atomic_buffer,
int64_t num_experts, int64_t n,
int64_t k, cudaStream_t stream,
const bool swap_ab) {
int num_threads = min(THREADS_PER_EXPERT, topk_ids.numel());
const int32_t* topk_ptr = static_cast<const int32_t*>(topk_ids.data_ptr());
int32_t* ps1_ptr = static_cast<int32_t*>(problem_sizes1.data_ptr());
int32_t* ps2_ptr = static_cast<int32_t*>(problem_sizes2.data_ptr());
int32_t* atomic_ptr = static_cast<int32_t*>(atomic_buffer.data_ptr());
if (swap_ab) {
compute_problem_sizes<true><<<num_experts, num_threads, 0, stream>>>(
topk_ptr, ps1_ptr, ps2_ptr, atomic_ptr,
static_cast<int>(topk_ids.numel()), static_cast<int>(n),
static_cast<int>(k));
} else {
compute_problem_sizes<false><<<num_experts, num_threads, 0, stream>>>(
topk_ptr, ps1_ptr, ps2_ptr, atomic_ptr,
static_cast<int>(topk_ids.numel()), static_cast<int>(n),
static_cast<int>(k));
}
}
} // namespace
void get_cutlass_moe_mm_problem_sizes_caller(
const torch::Tensor& topk_ids, torch::Tensor& problem_sizes1,
torch::Tensor& problem_sizes2, const int64_t num_experts, const int64_t n,
const int64_t k, const std::optional<torch::Tensor>& blockscale_offsets) {
auto stream = at::cuda::getCurrentCUDAStream(topk_ids.device().index());
auto options_int32 =
torch::TensorOptions().dtype(torch::kInt32).device(topk_ids.device());
torch::Tensor atomic_buffer = torch::zeros(num_experts, options_int32);
// Swap-AB should be disabled for FP4 path
bool may_swap_ab = (!blockscale_offsets.has_value()) &&
(topk_ids.numel() <= SWAP_AB_THRESHOLD);
launch_compute_problem_sizes(topk_ids, problem_sizes1, problem_sizes2,
atomic_buffer, num_experts, n, k, stream,
may_swap_ab);
}
void get_cutlass_moe_mm_data_caller(
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
@ -121,21 +168,9 @@ void get_cutlass_moe_mm_data_caller(
bool may_swap_ab = (!blockscale_offsets.has_value()) &&
(topk_ids.numel() <= SWAP_AB_THRESHOLD);
if (may_swap_ab) {
compute_problem_sizes<true><<<num_experts, num_threads, 0, stream>>>(
static_cast<const int32_t*>(topk_ids.data_ptr()),
static_cast<int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(problem_sizes2.data_ptr()),
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(), n,
k);
} else {
compute_problem_sizes<false><<<num_experts, num_threads, 0, stream>>>(
static_cast<const int32_t*>(topk_ids.data_ptr()),
static_cast<int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(problem_sizes2.data_ptr()),
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(), n,
k);
}
launch_compute_problem_sizes(topk_ids, problem_sizes1, problem_sizes2,
atomic_buffer, num_experts, n, k, stream,
may_swap_ab);
if (blockscale_offsets.has_value()) {
// fp4 path

View File

@ -76,6 +76,11 @@ void get_cutlass_moe_mm_data_caller(
const int64_t num_experts, const int64_t n, const int64_t k,
const std::optional<torch::Tensor>& blockscale_offsets);
void get_cutlass_moe_mm_problem_sizes_caller(
const torch::Tensor& topk_ids, torch::Tensor& problem_sizes1,
torch::Tensor& problem_sizes2, const int64_t num_experts, const int64_t n,
const int64_t k, const std::optional<torch::Tensor>& blockscale_offsets);
void get_cutlass_pplx_moe_mm_data_caller(torch::Tensor& expert_offsets,
torch::Tensor& problem_sizes1,
torch::Tensor& problem_sizes2,
@ -293,6 +298,25 @@ void get_cutlass_moe_mm_data(
version_num, ". Required capability: 90 or 100");
}
void get_cutlass_moe_mm_problem_sizes(
const torch::Tensor& topk_ids, torch::Tensor& problem_sizes1,
torch::Tensor& problem_sizes2, const int64_t num_experts, const int64_t n,
const int64_t k, const std::optional<torch::Tensor>& blockscale_offsets) {
int32_t version_num = get_sm_version_num();
#if (defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90) || \
(defined ENABLE_CUTLASS_MOE_SM100 && ENABLE_CUTLASS_MOE_SM100)
get_cutlass_moe_mm_problem_sizes_caller(topk_ids, problem_sizes1,
problem_sizes2, num_experts, n, k,
blockscale_offsets);
return;
#endif
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"No compiled get_cutlass_moe_mm_problem_sizes: no cutlass_scaled_mm "
"kernel for CUDA device capability: ",
version_num, ". Required capability: 90 or 100");
}
void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
torch::Tensor& problem_sizes1,
torch::Tensor& problem_sizes2,

View File

@ -0,0 +1,212 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <cuda_runtime_api.h>
#include <cuda_runtime.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda_fp8.h>
#include "dispatch_utils.h"
#include "cuda_utils.h"
#include "nvfp4_utils.cuh"
namespace vllm {
template <class Type>
__inline__ __device__ PackedVec<Type> compute_silu(PackedVec<Type>& vec,
PackedVec<Type>& vec2) {
PackedVec<Type> result;
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; ++i) {
if constexpr (std::is_same_v<Type, half>) {
half2 val(0.5f, 0.5f);
half2 t0 = __hmul2(vec.elts[i], val);
half2 t1 = __hfma2(h2tanh(t0), val, val);
half2 t2 = __hmul2(vec.elts[i], t1);
result.elts[i] = __hmul2(t2, vec2.elts[i]);
} else {
__nv_bfloat162 val(0.5f, 0.5f);
__nv_bfloat162 t0 = __hmul2(vec.elts[i], val);
__nv_bfloat162 t1 = __hfma2(h2tanh(t0), val, val);
__nv_bfloat162 t2 = __hmul2(vec.elts[i], t1);
result.elts[i] = __hmul2(t2, vec2.elts[i]);
}
}
return result;
}
// Quantizes the provided PackedVec into the uint32_t output
template <class Type, bool UE8M0_SF = false>
__device__ uint32_t silu_and_cvt_warp_fp16_to_fp4(PackedVec<Type>& vec,
PackedVec<Type>& vec2,
float SFScaleVal,
uint8_t* SFout) {
PackedVec<Type> out_silu = compute_silu(vec, vec2);
// Get absolute maximum values among the local 8 values.
auto localMax = __habs2(out_silu.elts[0]);
// Local maximum value.
#pragma unroll
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
localMax = __hmax2(localMax, __habs2(out_silu.elts[i]));
}
// Get the absolute maximum among all 16 values (two threads).
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
// Get the final absolute maximum values.
float vecMax = float(__hmax(localMax.x, localMax.y));
// Get the SF (max value of the vector / max value of e2m1).
// maximum value of e2m1 = 6.0.
// TODO: use half as compute data type.
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
// 8 bits representation of the SF.
uint8_t fp8SFVal;
// Write the SF to global memory (STG.8).
if constexpr (UE8M0_SF) {
// Extract the 8 exponent bits from float32.
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
fp8SFVal = tmp & 0xff;
// Convert back to fp32.
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
} else {
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
// Convert back to fp32.
SFValue = float(tmp);
}
// Get the output scale.
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
// reciprocal(SFScaleVal))
float outputScale =
SFValue != 0 ? reciprocal_approximate_ftz(
SFValue * reciprocal_approximate_ftz(SFScaleVal))
: 0.0f;
if (SFout) {
// Write the SF to global memory (STG.8).
*SFout = fp8SFVal;
}
// Convert the input to float.
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
if constexpr (std::is_same_v<Type, half>) {
fp2Vals[i] = __half22float2(out_silu.elts[i]);
} else {
fp2Vals[i] = __bfloat1622float2(out_silu.elts[i]);
}
fp2Vals[i].x *= outputScale;
fp2Vals[i].y *= outputScale;
}
// Convert to e2m1 values.
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
// Write the e2m1 values to global memory.
return e2m1Vec;
}
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false>
__global__ void __launch_bounds__(1024, 4)
silu_and_cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out,
uint32_t* SFout) {
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
static_assert(sizeof(PackedVec) == sizeof(Type) * CVT_FP4_ELTS_PER_THREAD,
"Vec size is not matched.");
// Get the global scaling factor, which will be applied to the SF.
// Note SFScale is the same as next GEMM's alpha, which is
// (448.f / (Alpha_A / 6.f)).
float const SFScaleVal = SFScale == nullptr ? 1.0f : SFScale[0];
// Input tensor row/col loops.
for (int rowIdx = blockIdx.x; rowIdx < numRows; rowIdx += gridDim.x) {
for (int colIdx = threadIdx.x; colIdx < numCols / CVT_FP4_ELTS_PER_THREAD;
colIdx += blockDim.x) {
int64_t inOffset =
rowIdx * (numCols * 2 / CVT_FP4_ELTS_PER_THREAD) + colIdx;
int64_t inOffset2 = rowIdx * (numCols * 2 / CVT_FP4_ELTS_PER_THREAD) +
numCols / CVT_FP4_ELTS_PER_THREAD + colIdx;
PackedVec in_vec = reinterpret_cast<PackedVec const*>(in)[inOffset];
PackedVec in_vec2 = reinterpret_cast<PackedVec const*>(in)[inOffset2];
// Get the output tensor offset.
// Same as inOffset because 8 elements are packed into one uint32_t.
int64_t outOffset = rowIdx * (numCols / CVT_FP4_ELTS_PER_THREAD) + colIdx;
;
auto& out_pos = out[outOffset];
auto sf_out =
cvt_quant_to_fp4_get_sf_out_offset<uint32_t,
CVT_FP4_NUM_THREADS_PER_SF>(
rowIdx, colIdx, numCols, SFout);
out_pos = silu_and_cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(
in_vec, in_vec2, SFScaleVal, sf_out);
}
}
}
} // namespace vllm
void silu_and_mul_nvfp4_quant_sm1xxa(torch::Tensor& output, // [..., d]
torch::Tensor& output_sf,
torch::Tensor& input, // [..., 2 * d]
torch::Tensor& input_sf) {
int32_t m = input.size(0);
int32_t n = input.size(1) / 2;
TORCH_CHECK(n % 16 == 0, "The N dimension must be multiple of 16.");
TORCH_CHECK(input.scalar_type() == at::ScalarType::Half ||
input.scalar_type() == at::ScalarType::BFloat16,
"Unsupported input data type for quantize_to_fp4.");
int multiProcessorCount =
get_device_attribute(cudaDevAttrMultiProcessorCount, -1);
auto input_sf_ptr = static_cast<float const*>(input_sf.data_ptr());
auto sf_out = static_cast<int32_t*>(output_sf.data_ptr());
auto output_ptr = static_cast<int64_t*>(output.data_ptr());
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
auto stream = at::cuda::getCurrentCUDAStream(input.get_device());
dim3 block(std::min(int(n / ELTS_PER_THREAD), 1024));
int const numBlocksPerSM = 2048 / block.x;
dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM));
VLLM_DISPATCH_HALF_TYPES(
input.scalar_type(), "silu_and_mul_nvfp4_quant_kernel", [&] {
using cuda_type = vllm::CUDATypeConverter<scalar_t>::Type;
auto input_ptr = static_cast<cuda_type const*>(input.data_ptr());
vllm::silu_and_cvt_fp16_to_fp4<cuda_type><<<grid, block, 0, stream>>>(
m, n, input_ptr, input_sf_ptr,
reinterpret_cast<uint32_t*>(output_ptr),
reinterpret_cast<uint32_t*>(sf_out));
});
}

View File

@ -1,3 +1,19 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <cutlass/arch/arch.h>

View File

@ -1,247 +1,42 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <cuda_runtime_api.h>
#include <cuda_runtime.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda_runtime.h>
#include <cuda_fp8.h>
#include "dispatch_utils.h"
template <typename T>
struct TypeConverter {
using Type = half2;
}; // keep for generality
#include "nvfp4_utils.cuh"
template <>
struct TypeConverter<half2> {
using Type = half;
};
template <>
struct TypeConverter<half> {
using Type = half2;
};
template <>
struct TypeConverter<__nv_bfloat162> {
using Type = __nv_bfloat16;
};
template <>
struct TypeConverter<__nv_bfloat16> {
using Type = __nv_bfloat162;
};
#define ELTS_PER_THREAD 8
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
return val;
#else
return 0;
#endif
}
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
return val;
#else
return 0;
#endif
}
// Fast reciprocal.
inline __device__ float reciprocal_approximate_ftz(float a) {
float b;
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
return b;
}
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
int numCols,
SFType* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
CVT_FP4_NUM_THREADS_PER_SF == 2);
// One pair of threads write one SF to global memory.
// TODO: stage through smem for packed STG.32
// is it better than STG.8 from 4 threads ?
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
// SF vector index (16 elements share one SF in the K dimension).
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
int32_t mIdx = rowIdx;
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
int32_t mTileIdx = mIdx / (32 * 4);
// SF vector size 16.
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numKTiles = (numCols + factor - 1) / factor;
int64_t mTileStride = numKTiles * 32 * 4 * 4;
int32_t kTileIdx = (kIdx / 4);
int64_t kTileStride = 32 * 4 * 4;
// M tile layout [32, 4] is column-major.
int32_t outerMIdx = (mIdx % 32);
int64_t outerMStride = 4 * 4;
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
int64_t innerMStride = 4;
int32_t innerKIdx = (kIdx % 4);
int64_t innerKStride = 1;
// Compute the global offset.
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
outerMIdx * outerMStride + innerMIdx * innerMStride +
innerKIdx * innerKStride;
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
}
#endif
return nullptr;
}
// Define a 16 bytes packed data type.
template <class Type>
struct PackedVec {
typename TypeConverter<Type>::Type elts[4];
};
template <>
struct PackedVec<__nv_fp8_e4m3> {
__nv_fp8x2_e4m3 elts[8];
};
// Quantizes the provided PackedVec into the uint32_t output
template <class Type, bool UE8M0_SF = false>
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal,
uint8_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
// Get absolute maximum values among the local 8 values.
auto localMax = __habs2(vec.elts[0]);
// Local maximum value.
#pragma unroll
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
localMax = __hmax2(localMax, __habs2(vec.elts[i]));
}
// Get the absolute maximum among all 16 values (two threads).
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
// Get the final absolute maximum values.
float vecMax = float(__hmax(localMax.x, localMax.y));
// Get the SF (max value of the vector / max value of e2m1).
// maximum value of e2m1 = 6.0.
// TODO: use half as compute data type.
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
// 8 bits representation of the SF.
uint8_t fp8SFVal;
// Write the SF to global memory (STG.8).
if constexpr (UE8M0_SF) {
// Extract the 8 exponent bits from float32.
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
fp8SFVal = tmp & 0xff;
// Convert back to fp32.
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
} else {
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
// Convert back to fp32.
SFValue = float(tmp);
}
// Get the output scale.
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
// reciprocal(SFScaleVal))
float outputScale =
SFValue != 0 ? reciprocal_approximate_ftz(
SFValue * reciprocal_approximate_ftz(SFScaleVal))
: 0.0f;
if (SFout) {
// Write the SF to global memory (STG.8).
*SFout = fp8SFVal;
}
// Convert the input to float.
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
if constexpr (std::is_same_v<Type, half>) {
fp2Vals[i] = __half22float2(vec.elts[i]);
} else {
fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
}
fp2Vals[i].x *= outputScale;
fp2Vals[i].y *= outputScale;
}
// Convert to e2m1 values.
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
// Write the e2m1 values to global memory.
return e2m1Vec;
#else
return 0;
#endif
}
namespace vllm {
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(512, 4) cvt_fp16_to_fp4(
#else
cvt_fp16_to_fp4(
#endif
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
uint32_t* out, uint32_t* SFout, uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts, bool low_latency) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__global__ void __launch_bounds__(512, 4)
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout,
uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts,
bool low_latency) {
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
@ -299,8 +94,8 @@ cvt_fp16_to_fp4(
&input_offset_by_experts[chunk_start + 12]));
local_offsets[16] = __ldca(&input_offset_by_experts[chunk_start + 16]);
// Check against the 16 loaded offsets
#pragma unroll
// Check against the 16 loaded offsets
#pragma unroll
for (int i = 0; i < 16; i++) {
if (rowIdx >= local_offsets[i] && rowIdx < local_offsets[i + 1]) {
rowIdx_in_expert = rowIdx - local_offsets[i];
@ -330,21 +125,15 @@ cvt_fp16_to_fp4(
out_pos = cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
}
#endif
}
// Kernel for LARGE_M_TOPK = true (large m_topk optimized version)
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(1024, 4) cvt_fp16_to_fp4(
#else
cvt_fp16_to_fp4(
#endif
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
uint32_t* out, uint32_t* SFout, uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__global__ void __launch_bounds__(1024, 4)
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout,
uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts) {
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
@ -425,7 +214,6 @@ cvt_fp16_to_fp4(
out_pos = cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
}
#endif
}
template <typename T>
@ -501,6 +289,8 @@ void quant_impl(void* output, void* output_scale, void* input,
}
}
} // namespace vllm
/*Quantization entry for fp4 experts quantization*/
#define CHECK_TH_CUDA(x, m) TORCH_CHECK(x.is_cuda(), m, "must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x, m) \
@ -560,23 +350,17 @@ void scaled_fp4_experts_quant_sm100a(
// 4 means 4 fp8 values are packed into one int32
TORCH_CHECK(output_scale.size(1) * 4 == padded_k);
auto in_dtype = input.dtype();
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream =
at::cuda::getCurrentCUDAStream(input.get_device());
if (in_dtype == at::ScalarType::Half) {
quant_impl<half>(output.data_ptr(), output_scale.data_ptr(),
input.data_ptr(), input_global_scale.data_ptr(),
input_offset_by_experts.data_ptr(),
output_scale_offset_by_experts.data_ptr(), m_topk, k,
n_experts, stream);
} else if (in_dtype == at::ScalarType::BFloat16) {
quant_impl<__nv_bfloat16>(output.data_ptr(), output_scale.data_ptr(),
input.data_ptr(), input_global_scale.data_ptr(),
input_offset_by_experts.data_ptr(),
output_scale_offset_by_experts.data_ptr(), m_topk,
k, n_experts, stream);
} else {
TORCH_CHECK(false, "Expected input data type to be half or bfloat16");
}
VLLM_DISPATCH_HALF_TYPES(
input.scalar_type(), "nvfp4_experts_quant_kernel", [&] {
using cuda_type = vllm::CUDATypeConverter<scalar_t>::Type;
vllm::quant_impl<cuda_type>(
output.data_ptr(), output_scale.data_ptr(), input.data_ptr(),
input_global_scale.data_ptr(), input_offset_by_experts.data_ptr(),
output_scale_offset_by_experts.data_ptr(), m_topk, k, n_experts,
stream);
});
}

View File

@ -32,6 +32,14 @@ void scaled_fp4_experts_quant_sm100a(
torch::Tensor const& output_scale_offset_by_experts);
#endif
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
void silu_and_mul_nvfp4_quant_sm1xxa(torch::Tensor& output,
torch::Tensor& output_sf,
torch::Tensor& input,
torch::Tensor& input_sf);
#endif
void scaled_fp4_quant(torch::Tensor& output, torch::Tensor const& input,
torch::Tensor& output_sf, torch::Tensor const& input_sf) {
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
@ -54,3 +62,13 @@ void scaled_fp4_experts_quant(
TORCH_CHECK_NOT_IMPLEMENTED(false,
"No compiled nvfp4 experts quantization kernel");
}
void silu_and_mul_nvfp4_quant(torch::Tensor& output, torch::Tensor& output_sf,
torch::Tensor& input, torch::Tensor& input_sf) {
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
return silu_and_mul_nvfp4_quant_sm1xxa(output, output_sf, input, input_sf);
#endif
TORCH_CHECK_NOT_IMPLEMENTED(
false, "No compiled silu_and_mul nvfp4 quantization kernel");
}

View File

@ -23,245 +23,18 @@
#include <c10/cuda/CUDAGuard.h>
#include <cuda_fp8.h>
#include "dispatch_utils.h"
#include "cuda_utils.h"
#include "nvfp4_utils.cuh"
// Get type2 from type or vice versa (applied to half and bfloat16)
template <typename T>
struct TypeConverter {
using Type = half2;
}; // keep for generality
template <>
struct TypeConverter<half2> {
using Type = half;
};
template <>
struct TypeConverter<half> {
using Type = half2;
};
template <>
struct TypeConverter<__nv_bfloat162> {
using Type = __nv_bfloat16;
};
template <>
struct TypeConverter<__nv_bfloat16> {
using Type = __nv_bfloat162;
};
#define ELTS_PER_THREAD 8
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
return val;
#else
return 0;
#endif
}
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
return val;
#else
return 0;
#endif
}
// Fast reciprocal.
inline __device__ float reciprocal_approximate_ftz(float a) {
float b;
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
return b;
}
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
int numCols,
SFType* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
CVT_FP4_NUM_THREADS_PER_SF == 2);
// One pair of threads write one SF to global memory.
// TODO: stage through smem for packed STG.32
// is it better than STG.8 from 4 threads ?
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
// SF vector index (16 elements share one SF in the K dimension).
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
int32_t mIdx = rowIdx;
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
int32_t mTileIdx = mIdx / (32 * 4);
// SF vector size 16.
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numKTiles = (numCols + factor - 1) / factor;
int64_t mTileStride = numKTiles * 32 * 4 * 4;
int32_t kTileIdx = (kIdx / 4);
int64_t kTileStride = 32 * 4 * 4;
// M tile layout [32, 4] is column-major.
int32_t outerMIdx = (mIdx % 32);
int64_t outerMStride = 4 * 4;
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
int64_t innerMStride = 4;
int32_t innerKIdx = (kIdx % 4);
int64_t innerKStride = 1;
// Compute the global offset.
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
outerMIdx * outerMStride + innerMIdx * innerMStride +
innerKIdx * innerKStride;
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
}
#endif
return nullptr;
}
// Define a 16 bytes packed data type.
template <class Type>
struct PackedVec {
typename TypeConverter<Type>::Type elts[4];
};
template <>
struct PackedVec<__nv_fp8_e4m3> {
__nv_fp8x2_e4m3 elts[8];
};
// Quantizes the provided PackedVec into the uint32_t output
template <class Type, bool UE8M0_SF = false>
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal,
uint8_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
// Get absolute maximum values among the local 8 values.
auto localMax = __habs2(vec.elts[0]);
// Local maximum value.
#pragma unroll
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
localMax = __hmax2(localMax, __habs2(vec.elts[i]));
}
// Get the absolute maximum among all 16 values (two threads).
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
// Get the final absolute maximum values.
float vecMax = float(__hmax(localMax.x, localMax.y));
// Get the SF (max value of the vector / max value of e2m1).
// maximum value of e2m1 = 6.0.
// TODO: use half as compute data type.
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
// 8 bits representation of the SF.
uint8_t fp8SFVal;
// Write the SF to global memory (STG.8).
if constexpr (UE8M0_SF) {
// Extract the 8 exponent bits from float32.
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
fp8SFVal = tmp & 0xff;
// Convert back to fp32.
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
} else {
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
// Convert back to fp32.
SFValue = float(tmp);
}
// Get the output scale.
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
// reciprocal(SFScaleVal))
float outputScale =
SFValue != 0 ? reciprocal_approximate_ftz(
SFValue * reciprocal_approximate_ftz(SFScaleVal))
: 0.0f;
if (SFout) {
// Write the SF to global memory (STG.8).
*SFout = fp8SFVal;
}
// Convert the input to float.
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
if constexpr (std::is_same_v<Type, half>) {
fp2Vals[i] = __half22float2(vec.elts[i]);
} else {
fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
}
fp2Vals[i].x *= outputScale;
fp2Vals[i].y *= outputScale;
}
// Convert to e2m1 values.
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
// Write the e2m1 values to global memory.
return e2m1Vec;
#else
return 0;
#endif
}
namespace vllm {
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(512, 4) cvt_fp16_to_fp4(
#else
cvt_fp16_to_fp4(
#endif
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
uint32_t* out, uint32_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__global__ void __launch_bounds__(512, 4)
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout) {
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
@ -293,7 +66,6 @@ cvt_fp16_to_fp4(
cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
}
}
#endif
}
template <typename T>
@ -332,6 +104,8 @@ template void invokeFP4Quantization(int m, int n, __nv_bfloat16 const* input,
int multiProcessorCount,
cudaStream_t stream);
} // namespace vllm
void scaled_fp4_quant_sm1xxa(torch::Tensor const& output,
torch::Tensor const& input,
torch::Tensor const& output_sf,
@ -340,6 +114,9 @@ void scaled_fp4_quant_sm1xxa(torch::Tensor const& output,
int32_t n = input.size(1);
TORCH_CHECK(n % 16 == 0, "The N dimension must be multiple of 16.");
TORCH_CHECK(input.scalar_type() == at::ScalarType::Half ||
input.scalar_type() == at::ScalarType::BFloat16,
"Unsupported input data type for quantize_to_fp4.");
int multiProcessorCount =
get_device_attribute(cudaDevAttrMultiProcessorCount, -1);
@ -353,24 +130,10 @@ void scaled_fp4_quant_sm1xxa(torch::Tensor const& output,
// We don't support e8m0 scales at this moment.
bool useUE8M0 = false;
switch (input.scalar_type()) {
case torch::kHalf: {
auto input_ptr = reinterpret_cast<half const*>(input.data_ptr());
invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr, sf_out,
useUE8M0, multiProcessorCount, stream);
break;
}
case torch::kBFloat16: {
auto input_ptr = reinterpret_cast<__nv_bfloat16 const*>(input.data_ptr());
invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr, sf_out,
useUE8M0, multiProcessorCount, stream);
break;
}
default: {
std::cerr << "Observing: " << input.scalar_type()
<< " for the input datatype which is invalid";
throw std::runtime_error(
"Unsupported input data type for quantize_to_fp4.");
}
}
VLLM_DISPATCH_HALF_TYPES(input.scalar_type(), "nvfp4_quant_kernel", [&] {
using cuda_type = vllm::CUDATypeConverter<scalar_t>::Type;
auto input_ptr = static_cast<cuda_type const*>(input.data_ptr());
vllm::invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr,
sf_out, useUE8M0, multiProcessorCount, stream);
});
}

View File

@ -0,0 +1,251 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cuda_runtime.h>
#include <cuda_fp8.h>
#define ELTS_PER_THREAD 8
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
namespace vllm {
// Convert PyTorch cpp type to CUDA type
template <typename T>
struct CUDATypeConverter {
using Type = T;
};
template <>
struct CUDATypeConverter<at::Half> {
using Type = half;
};
template <>
struct CUDATypeConverter<at::BFloat16> {
using Type = __nv_bfloat16;
};
// Get type2 from type or vice versa (applied to half and bfloat16)
template <typename T>
struct TypeConverter {
using Type = half2;
}; // keep for generality
template <>
struct TypeConverter<half2> {
using Type = half;
};
template <>
struct TypeConverter<half> {
using Type = half2;
};
template <>
struct TypeConverter<__nv_bfloat162> {
using Type = __nv_bfloat16;
};
template <>
struct TypeConverter<__nv_bfloat16> {
using Type = __nv_bfloat162;
};
// Define a 16 bytes packed data type.
template <class Type>
struct PackedVec {
typename TypeConverter<Type>::Type elts[4];
};
template <>
struct PackedVec<__nv_fp8_e4m3> {
__nv_fp8x2_e4m3 elts[8];
};
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
return val;
}
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
return val;
}
// Fast reciprocal.
inline __device__ float reciprocal_approximate_ftz(float a) {
float b;
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
return b;
}
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
int numCols,
SFType* SFout) {
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
CVT_FP4_NUM_THREADS_PER_SF == 2);
// One pair of threads write one SF to global memory.
// TODO: stage through smem for packed STG.32
// is it better than STG.8 from 4 threads ?
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
// SF vector index (16 elements share one SF in the K dimension).
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
int32_t mIdx = rowIdx;
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
int32_t mTileIdx = mIdx / (32 * 4);
// SF vector size 16.
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numKTiles = (numCols + factor - 1) / factor;
int64_t mTileStride = numKTiles * 32 * 4 * 4;
int32_t kTileIdx = (kIdx / 4);
int64_t kTileStride = 32 * 4 * 4;
// M tile layout [32, 4] is column-major.
int32_t outerMIdx = (mIdx % 32);
int64_t outerMStride = 4 * 4;
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
int64_t innerMStride = 4;
int32_t innerKIdx = (kIdx % 4);
int64_t innerKStride = 1;
// Compute the global offset.
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
outerMIdx * outerMStride + innerMIdx * innerMStride +
innerKIdx * innerKStride;
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
}
return nullptr;
}
// Quantizes the provided PackedVec into the uint32_t output
template <class Type, bool UE8M0_SF = false>
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal,
uint8_t* SFout) {
// Get absolute maximum values among the local 8 values.
auto localMax = __habs2(vec.elts[0]);
// Local maximum value.
#pragma unroll
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
localMax = __hmax2(localMax, __habs2(vec.elts[i]));
}
// Get the absolute maximum among all 16 values (two threads).
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
// Get the final absolute maximum values.
float vecMax = float(__hmax(localMax.x, localMax.y));
// Get the SF (max value of the vector / max value of e2m1).
// maximum value of e2m1 = 6.0.
// TODO: use half as compute data type.
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
// 8 bits representation of the SF.
uint8_t fp8SFVal;
// Write the SF to global memory (STG.8).
if constexpr (UE8M0_SF) {
// Extract the 8 exponent bits from float32.
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
fp8SFVal = tmp & 0xff;
// Convert back to fp32.
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
} else {
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
// Convert back to fp32.
SFValue = float(tmp);
}
// Get the output scale.
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
// reciprocal(SFScaleVal))
float outputScale =
SFValue != 0 ? reciprocal_approximate_ftz(
SFValue * reciprocal_approximate_ftz(SFScaleVal))
: 0.0f;
if (SFout) {
// Write the SF to global memory (STG.8).
*SFout = fp8SFVal;
}
// Convert the input to float.
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
if constexpr (std::is_same_v<Type, half>) {
fp2Vals[i] = __half22float2(vec.elts[i]);
} else {
fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
}
fp2Vals[i].x *= outputScale;
fp2Vals[i].y *= outputScale;
}
// Convert to e2m1 values.
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
// Write the e2m1 values to global memory.
return e2m1Vec;
}
} // namespace vllm

View File

@ -417,7 +417,7 @@ def create_sources(impl_configs: list[ImplConfig], num_impl_files=8):
))
def prepacked_type_key(prepack_type: PrepackTypeConfig):
# For now we we can just use the first accumulator type seen since
# For now, we can just use the first accumulator type seen since
# the tensor core shapes/layouts don't vary based on accumulator
# type so we can generate less code this way
return (prepack_type.a, prepack_type.b_num_bits, prepack_type.convert)
@ -571,78 +571,79 @@ def generate():
itertools.repeat(default_heuristic))
]
# Stored as "condition": ((tile_shape_mn), (cluster_shape_mnk))
# TODO (LucasWilkinson): Further tuning required
qqq_tile_heuristic_config = {
#### M = 257+
# ((128, 256), (2, 1, 1)) Broken for QQQ types
# TODO (LucasWilkinson): Investigate further
# "M > 256 && K <= 16384 && N <= 4096": ((128, 128), (2, 1, 1)),
# "M > 256": ((128, 256), (2, 1, 1)),
"M > 256": ((128, 128), (2, 1, 1)),
#### M = 129-256
"M > 128 && K <= 4096 && N <= 4096": ((128, 64), (2, 1, 1)),
"M > 128 && K <= 8192 && N <= 8192": ((128, 128), (2, 1, 1)),
# ((128, 256), (2, 1, 1)) Broken for QQQ types
# TODO (LucasWilkinson): Investigate further
# "M > 128": ((128, 256), (2, 1, 1)),
"M > 128": ((128, 128), (2, 1, 1)),
#### M = 65-128
"M > 64 && K <= 4069 && N <= 4069": ((128, 32), (2, 1, 1)),
"M > 64 && K <= 4069 && N <= 8192": ((128, 64), (2, 1, 1)),
"M > 64 && K >= 8192 && N >= 12288": ((256, 128), (2, 1, 1)),
"M > 64": ((128, 128), (2, 1, 1)),
#### M = 33-64
"M > 32 && K <= 6144 && N <= 6144": ((128, 16), (1, 1, 1)),
# Broken for QQQ types
# TODO (LucasWilkinson): Investigate further
#"M > 32 && K >= 16384 && N >= 12288": ((256, 64), (2, 1, 1)),
"M > 32": ((128, 64), (2, 1, 1)),
#### M = 17-32
"M > 16 && K <= 12288 && N <= 8192": ((128, 32), (2, 1, 1)),
"M > 16": ((256, 32), (2, 1, 1)),
#### M = 1-16
"N >= 26624": ((256, 16), (1, 1, 1)),
None: ((128, 16), (1, 1, 1)),
}
# TODO: Support W4A8 when ready
# # Stored as "condition": ((tile_shape_mn), (cluster_shape_mnk))
# # TODO (LucasWilkinson): Further tuning required
# qqq_tile_heuristic_config = {
# #### M = 257+
# # ((128, 256), (2, 1, 1)) Broken for QQQ types
# # TODO (LucasWilkinson): Investigate further
# # "M > 256 && K <= 16384 && N <= 4096": ((128, 128), (2, 1, 1)),
# # "M > 256": ((128, 256), (2, 1, 1)),
# "M > 256": ((128, 128), (2, 1, 1)),
# #### M = 129-256
# "M > 128 && K <= 4096 && N <= 4096": ((128, 64), (2, 1, 1)),
# "M > 128 && K <= 8192 && N <= 8192": ((128, 128), (2, 1, 1)),
# # ((128, 256), (2, 1, 1)) Broken for QQQ types
# # TODO (LucasWilkinson): Investigate further
# # "M > 128": ((128, 256), (2, 1, 1)),
# "M > 128": ((128, 128), (2, 1, 1)),
# #### M = 65-128
# "M > 64 && K <= 4069 && N <= 4069": ((128, 32), (2, 1, 1)),
# "M > 64 && K <= 4069 && N <= 8192": ((128, 64), (2, 1, 1)),
# "M > 64 && K >= 8192 && N >= 12288": ((256, 128), (2, 1, 1)),
# "M > 64": ((128, 128), (2, 1, 1)),
# #### M = 33-64
# "M > 32 && K <= 6144 && N <= 6144": ((128, 16), (1, 1, 1)),
# # Broken for QQQ types
# # TODO (LucasWilkinson): Investigate further
# #"M > 32 && K >= 16384 && N >= 12288": ((256, 64), (2, 1, 1)),
# "M > 32": ((128, 64), (2, 1, 1)),
# #### M = 17-32
# "M > 16 && K <= 12288 && N <= 8192": ((128, 32), (2, 1, 1)),
# "M > 16": ((256, 32), (2, 1, 1)),
# #### M = 1-16
# "N >= 26624": ((256, 16), (1, 1, 1)),
# None: ((128, 16), (1, 1, 1)),
# }
# For now we use the same heuristic for all types
# Heuristic is currently tuned for H100s
qqq_heuristic = [
(cond, ScheduleConfig(*tile_config,
**sch_common_params)) # type: ignore
for cond, tile_config in qqq_tile_heuristic_config.items()
]
# # For now we use the same heuristic for all types
# # Heuristic is currently tuned for H100s
# qqq_heuristic = [
# (cond, ScheduleConfig(*tile_config,
# **sch_common_params)) # type: ignore
# for cond, tile_config in qqq_tile_heuristic_config.items()
# ]
QQQ_kernel_types = [
*(TypeConfig(
a=DataType.s8,
b=VLLMDataType.u4b8,
b_group_scale=b_group_scale,
b_group_zeropoint=DataType.void,
b_channel_scale=DataType.f32,
a_token_scale=DataType.f32,
out=DataType.f16,
accumulator=DataType.s32,
) for b_group_scale in (DataType.f16, DataType.void)),
*(TypeConfig(
a=DataType.e4m3,
b=VLLMDataType.u4b8,
b_group_scale=b_group_scale,
b_group_zeropoint=DataType.void,
b_channel_scale=DataType.f32,
a_token_scale=DataType.f32,
out=DataType.f16,
accumulator=DataType.f32,
) for b_group_scale in (DataType.f16, DataType.void)),
]
# QQQ_kernel_types = [
# *(TypeConfig(
# a=DataType.s8,
# b=VLLMDataType.u4b8,
# b_group_scale=b_group_scale,
# b_group_zeropoint=DataType.void,
# b_channel_scale=DataType.f32,
# a_token_scale=DataType.f32,
# out=DataType.f16,
# accumulator=DataType.s32,
# ) for b_group_scale in (DataType.f16, DataType.void)),
# *(TypeConfig(
# a=DataType.e4m3,
# b=VLLMDataType.u4b8,
# b_group_scale=b_group_scale,
# b_group_zeropoint=DataType.void,
# b_channel_scale=DataType.f32,
# a_token_scale=DataType.f32,
# out=DataType.f16,
# accumulator=DataType.f32,
# ) for b_group_scale in (DataType.f16, DataType.void)),
# ]
impl_configs += [
ImplConfig(x[0], x[1], x[2])
for x in zip(QQQ_kernel_types,
itertools.repeat(get_unique_schedules(qqq_heuristic)),
itertools.repeat(qqq_heuristic))
]
# impl_configs += [
# ImplConfig(x[0], x[1], x[2])
# for x in zip(QQQ_kernel_types,
# itertools.repeat(get_unique_schedules(qqq_heuristic)),
# itertools.repeat(qqq_heuristic))
# ]
output_dir = os.path.join(SCRIPT_DIR, "generated")

View File

@ -1,209 +0,0 @@
Contains code from https://github.com/IST-DASLab/marlin
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
------------------------------------------------------------------------------------
This product bundles various third-party components under other open source licenses.
This section summarizes those components and their licenses. See licenses/
for text of these licenses.

View File

@ -1,32 +0,0 @@
/*
* Modified by HandH1998
* Modified by Neural Magic
* Copyright (C) Marlin.2024 Elias Frantar
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
constexpr int ceildiv(int a, int b) { return (a + b - 1) / b; }
// Instances of `Vec` are used to organize groups of >>registers<<, as needed
// for instance as inputs to tensor core operations. Consequently, all
// corresponding index accesses must be compile-time constants, which is why we
// extensively use `#pragma unroll` throughout the kernel code to guarantee
// this.
template <typename T, int n>
struct Vec {
T elems[n];
__device__ T& operator[](int i) { return elems[i]; }
};

View File

@ -1,89 +0,0 @@
/*
* Modified by HandH1998
* Modified by Neural Magic
* Copyright (C) Marlin.2024 Elias Frantar
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
// Predicated asynchronous global->shared copy; used for inputs A where we apply
// predication to handle batchsizes that are not multiples of 16.
__device__ inline void cp_async4_pred(void* smem_ptr, const void* glob_ptr,
bool pred = true) {
const int BYTES = 16;
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
asm volatile(
"{\n"
" .reg .pred p;\n"
" setp.ne.b32 p, %0, 0;\n"
" @p cp.async.cg.shared.global [%1], [%2], %3;\n"
"}\n" ::"r"((int)pred),
"r"(smem), "l"(glob_ptr), "n"(BYTES));
}
// Asynchronous global->shared copy
__device__ inline void cp_async4(void* smem_ptr, const void* glob_ptr) {
const int BYTES = 16;
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
asm volatile(
"{\n"
" cp.async.cg.shared.global [%0], [%1], %2;\n"
"}\n" ::"r"(smem),
"l"(glob_ptr), "n"(BYTES));
}
// Async copy fence.
__device__ inline void cp_async_fence() {
asm volatile("cp.async.commit_group;\n" ::);
}
// Wait until at most `n` async copy stages are still pending.
template <int n>
__device__ inline void cp_async_wait() {
asm volatile("cp.async.wait_group %0;\n" ::"n"(n));
}
// Wait until barrier reaches `count`, then lock for current threadblock.
__device__ inline void barrier_acquire(int* lock, int count) {
if (threadIdx.x == 0) {
int state = -1;
do
// Guarantee that subsequent writes by this threadblock will be visible
// globally.
asm volatile("ld.global.acquire.gpu.b32 %0, [%1];\n"
: "=r"(state)
: "l"(lock));
while (state != count);
}
__syncthreads();
}
// Release barrier and increment visitation count.
__device__ inline void barrier_release(int* lock, bool reset = false) {
__syncthreads();
if (threadIdx.x == 0) {
if (reset) {
lock[0] = 0;
return;
}
int val = 1;
// Make sure that all writes since acquiring this barrier are visible
// globally, while releasing the barrier.
asm volatile("fence.acq_rel.gpu;\n");
asm volatile("red.relaxed.gpu.global.add.s32 [%0], %1;\n"
:
: "l"(lock), "r"(val));
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -41,8 +41,10 @@ __device__ inline void vectorize_with_alignment(
for (int i = tid; i < num_vec; i += stride) {
vout_t tmp;
vec_op(tmp, v_in[i]);
v_out[i] = tmp;
// Make a local copy of the entire pack
vin_t src = v_in[i]; // <- encourages a single vector ld
vec_op(tmp, src);
v_out[i] = tmp; // <- encourages a single vector st
}
return;
}
@ -71,8 +73,10 @@ __device__ inline void vectorize_with_alignment(
// 2. vectorize the main part
for (int i = tid; i < num_vec; i += stride) {
vout_t tmp;
vec_op(tmp, v_in[i]);
v_out[i] = tmp;
// Make a local copy of the entire pack
vin_t src = v_in[i]; // <- encourages a single vector ld
vec_op(tmp, src);
v_out[i] = tmp; // <- encourages a single vector st
}
// 3. handle the tail
@ -125,7 +129,8 @@ __device__ inline void vectorize_read_with_alignment(const InT* in, int len,
auto* v_in = reinterpret_cast<const vin_t*>(in);
for (int i = tid; i < num_vec; i += stride) {
vec_op(v_in[i]);
vin_t tmp = v_in[i];
vec_op(tmp);
}
return;
}

View File

@ -115,6 +115,13 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
"silu_and_mul_quant(Tensor! result, Tensor input, Tensor scale) -> ()");
ops.impl("silu_and_mul_quant", torch::kCUDA, &silu_and_mul_quant);
#ifndef USE_ROCM
ops.def(
"silu_and_mul_nvfp4_quant(Tensor! result, Tensor! result_block_scale, "
"Tensor input, Tensor input_global_scale) -> ()");
ops.impl("silu_and_mul_nvfp4_quant", torch::kCUDA, &silu_and_mul_nvfp4_quant);
#endif
ops.def("mul_and_silu(Tensor! out, Tensor input) -> ()");
ops.impl("mul_and_silu", torch::kCUDA, &mul_and_silu);
@ -241,14 +248,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// custom types:
// https://docs.google.com/document/d/18fBMPuOJ0fY5ZQ6YyrHUppw9FA332CpNtgB6SOIgyuA
// Marlin (Dense) Optimized Quantized GEMM for GPTQ.
ops.def(
"marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, "
"Tensor! workspace, SymInt size_m, SymInt size_n, SymInt size_k) -> "
"Tensor",
{stride_tag});
// conditionally compiled so impl in source file
// Marlin_24 (Sparse) Optimized Quantized GEMM for GPTQ.
ops.def(
"gptq_marlin_24_gemm(Tensor a, Tensor b_q_weight, Tensor b_meta, "
@ -317,6 +316,26 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
"awq_marlin_repack(Tensor b_q_weight, SymInt size_k, "
"SymInt size_n, int num_bits) -> Tensor");
// conditionally compiled so impl registrations are in source file
// CUTLASS w4a8 GEMM
ops.def(
"cutlass_w4a8_mm("
" Tensor A,"
" Tensor B,"
" Tensor group_scales,"
" int group_size,"
" Tensor channel_scales,"
" Tensor token_scales,"
" ScalarType? out_type,"
" str? maybe_schedule"
") -> Tensor",
{stride_tag});
// pack scales
ops.def("cutlass_pack_scale_fp8(Tensor scales) -> Tensor");
// encode and reorder weight matrix
ops.def("cutlass_encode_and_reorder_int4b(Tensor B) -> Tensor");
// conditionally compiled so impl registration is in source file
#endif
// Dequantization for GGML.
@ -353,15 +372,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.def("ggml_moe_get_block_size", &ggml_moe_get_block_size);
#ifndef USE_ROCM
// marlin_qqq_gemm for QQQ.
ops.def(
"marlin_qqq_gemm(Tensor a, Tensor b_q_weight, "
"Tensor s_tok, Tensor s_ch, Tensor s_group, "
"Tensor! workspace, SymInt size_m, SymInt size_n, "
"SymInt size_k) -> Tensor",
{stride_tag});
// conditionally compiled so impl registration is in source file
// CUTLASS nvfp4 block scaled GEMM
ops.def(
"cutlass_scaled_fp4_mm(Tensor! out, Tensor a, Tensor b,"
@ -440,6 +450,19 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
{stride_tag});
ops.impl("get_cutlass_moe_mm_data", torch::kCUDA, &get_cutlass_moe_mm_data);
// A function that computes problem sizes for each expert's multiplication
// used by the two mms called from fused MoE operation. It takes topk_ids as
// an input, and computes problem_sizes1 and problem_sizes2 only.
ops.def(
"get_cutlass_moe_mm_problem_sizes(Tensor topk_ids, "
" Tensor! problem_sizes1, "
" Tensor! problem_sizes2, "
" int num_experts, int n, int k, "
" Tensor? blockscale_offsets) -> ()",
{stride_tag});
ops.impl("get_cutlass_moe_mm_problem_sizes", torch::kCUDA,
&get_cutlass_moe_mm_problem_sizes);
// A function that computes data required to run fused MoE with w8a8 grouped
// GEMM and PPLX. It takes expert_num_tokens and non_zero_expert_idxs
// as an input, and computes expert_offsets (token start indices of each
@ -493,10 +516,10 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// SM100 CUTLASS MLA decode
ops.def(
"sm100_cutlass_mla_decode(Tensor! out, Tensor q_nope, Tensor q_pe,"
" Tensor kv_c_and_k_pe_cache, Tensor seq_lens,"
" Tensor page_table, Tensor workspace, float "
"scale,"
"sm100_cutlass_mla_decode(Tensor! out, Tensor! lse, Tensor q_nope,"
" Tensor q_pe, Tensor kv_c_and_k_pe_cache,"
" Tensor seq_lens, Tensor page_table,"
" Tensor workspace, float scale,"
" int num_kv_splits) -> ()");
// conditionally compiled so impl in source file
@ -676,11 +699,21 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
"str kv_cache_dtype) -> ()");
cache_ops.impl("convert_fp8", torch::kCUDA, &convert_fp8);
// Gather cache blocks from src_cache to dst.
// Gather cache blocks from src_cache to dst, dequantizing from
// src_cache's dtype to dst's dtype if necessary.
cache_ops.def(
"gather_cache(Tensor src_cache, Tensor! dst, Tensor block_table, "
"gather_and_maybe_dequant_cache(Tensor src_cache, Tensor! dst, "
" Tensor block_table, Tensor cu_seq_lens, "
" int batch_size, "
" str kv_cache_dtype, "
" Tensor scale, Tensor? seq_starts) -> ()");
cache_ops.impl("gather_and_maybe_dequant_cache", torch::kCUDA,
&gather_and_maybe_dequant_cache);
cache_ops.def(
"cp_gather_cache(Tensor src_cache, Tensor! dst, Tensor block_table, "
"Tensor cu_seq_lens, int batch_size, Tensor? seq_starts) -> ()");
cache_ops.impl("gather_cache", torch::kCUDA, &gather_cache);
cache_ops.impl("cp_gather_cache", torch::kCUDA, &cp_gather_cache);
}
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cuda_utils), cuda_utils) {

Some files were not shown because too many files have changed in this diff Show More