Compare commits

...

1337 Commits

Author SHA1 Message Date
1197e02141 [Build] Guard against older CUDA versions when building CUTLASS 3.x kernels (#5168) 2024-05-31 17:21:38 -07:00
657579113f [Doc] Add checkmark for GPTBigCodeForCausalLM LoRA support (#5171) 2024-05-31 17:20:19 -07:00
e9899fb7a4 [Model] Enable FP8 QKV in MoE and refine kernel tuning script (#5039) 2024-05-31 14:29:19 -07:00
a377f0bd5e [Misc]: optimize eager mode host time (#4196)
Co-authored-by: xuhao <xuhao@cambricon.com>
2024-05-31 13:14:50 +08:00
e9d3aa04f6 Revert "[Kernel] Marlin_24: Ensure the mma.sp instruction is using the ::ordered_metadata modifier (introduced with PTX 8.5)" (#5149) 2024-05-30 22:00:26 -07:00
a22dea54d3 [Model] Support MAP-NEO model (#5081)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-05-30 19:24:41 -07:00
533c217792 Fix cutlass sm_90a vesrion in CMakeList 2024-05-31 02:13:01 +00:00
6d21fa1cad [Kernel] Marlin_24: Ensure the mma.sp instruction is using the ::ordered_metadata modifier (introduced with PTX 8.5) (#5136) 2024-05-30 21:02:11 -05:00
b35be5403f [Bugfix] Avoid Warnings in SparseML Activation Quantization (#5120) 2024-05-30 17:04:37 -07:00
45a1a69b98 [Build] Disable sm_90a in cu11 (#5141) 2024-05-30 14:37:16 -07:00
87a658c812 Bump version to v0.4.3 (#5046) 2024-05-30 11:13:46 -07:00
429d89720e add doc about serving option on dstack (#3074)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-05-30 10:11:07 -07:00
a9bcc7afb2 [Doc] Use intersphinx and update entrypoints docs (#5125) 2024-05-30 09:59:23 -07:00
d79d9eaaff [Misc] remove duplicate definition of seq_lens_tensor in model_runner.py (#5129) 2024-05-30 06:56:19 -07:00
f758505c73 [CI/Build] increase wheel size limit to 200 MB (#5130) 2024-05-30 06:29:48 -07:00
d910816c73 [Bugfix] Automatically Detect SparseML models (#5119) 2024-05-30 12:58:37 +00:00
87d41c849d [BUGFIX] [FRONTEND] Correct chat logprobs (#5029)
Co-authored-by: Breno Faria <breno.faria@intrafind.com>
2024-05-30 02:52:14 -07:00
e07aff9e52 [CI/Build] Docker cleanup functionality for amd servers (#5112)
Co-authored-by: Alexey Kondratiev <alexey.kondratiev@amd.com>
Co-authored-by: Alexei-V-Ivanov-AMD <156011006+Alexei-V-Ivanov-AMD@users.noreply.github.com>
Co-authored-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
Co-authored-by: omkarkakarparthi <okakarpa>
2024-05-30 03:27:39 +00:00
5bf185a1c4 [Bugfix] gptq_marlin: Ensure g_idx_sort_indices is not a Parameter (#5108) 2024-05-30 00:30:18 +00:00
4fbcb0f27e [Doc][Build] update after removing vllm-nccl (#5103)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-05-29 23:51:18 +00:00
7c3604fb68 [Bugfix] logprobs is not compatible with the OpenAI spec #4795 (#5031) 2024-05-29 16:13:22 -07:00
b1c255630d [Core] Avoid the need to pass None values to Sequence.inputs (#5099) 2024-05-29 16:05:01 -07:00
eb6c50cdc2 [Bugfix][CI/Build] Fix codespell failing to skip files in git diff (#5097) 2024-05-29 16:02:54 -07:00
eecd864388 [Bugfix][CI/Build] Fix test and improve code for merge_async_iterators (#5096) 2024-05-29 16:02:25 -07:00
ae495c74ea [Doc]Replace deprecated flag in readme (#4526) 2024-05-29 22:26:33 +00:00
4238bc82f2 [Core] Cross-attention KV caching and memory-management (towards eventual encoder/decoder model support) (#4837) 2024-05-29 16:09:13 +00:00
594392d27a [Core][Distributed] improve p2p access check (#4992) 2024-05-29 11:29:07 +00:00
18c1f16d86 [Bugfix] Fix arguments passed to Sequence in stop checker test (#5092) 2024-05-29 07:16:41 +00:00
5bd3c65072 [Core][Optimization] remove vllm-nccl (#5091) 2024-05-29 05:13:52 +00:00
616e600e0b [Misc] add gpu_memory_utilization arg (#5079)
Signed-off-by: pandyamarut <pandyamarut@gmail.com>
2024-05-28 17:16:18 -07:00
dfba529b40 [Bugfix] Remove the last EOS token unless explicitly specified (#5077) 2024-05-28 17:15:35 -07:00
5ae5ed1e60 [Core] Consolidate prompt arguments to LLM engines (#4328)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-05-28 13:29:31 -07:00
290f4ada2b [Docs] Add Dropbox as sponsors (#5089) 2024-05-28 10:29:09 -07:00
dd8de11f0a [Kernel][ROCm][AMD] Add fused_moe Triton configs for MI300X (#4951)
This PR adds Triton kernel configs for the MoE kernel for MI300X
2024-05-28 16:03:23 +00:00
9ba415588a [BugFix] Fix Embedding Models with TP>1 (#5075) 2024-05-28 08:32:42 -07:00
d4f3985907 [Core] Sliding window for block manager v2 (#4545)
Co-authored-by: Ruth Evans <ruthevans@Ruths-MacBook-Pro.local>
2024-05-28 11:07:07 +09:00
890aa93d27 [Model] Add support for falcon-11B (#5069) 2024-05-27 16:41:43 -07:00
fbdb7b3ee2 [Core] Allow AQLM on Pascal (#5058) 2024-05-27 15:26:14 -07:00
1102bef219 [Bugfix / Core] Prefix Caching Guards (merged with main) (#4846)
Co-authored-by: rsnm2 <rshaw@neuralmagic.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
2024-05-27 15:18:17 -07:00
f17a1a8f96 [Misc] Make Serving Benchmark More User-friendly (#5044) 2024-05-25 17:28:16 +00:00
d5a1697772 [Dynamic Spec Decoding] Minor fix for disabling speculative decoding (#5000) 2024-05-25 10:00:14 -07:00
325c119961 [Misc] add logging level env var (#5045) 2024-05-24 23:49:49 -07:00
8e192ff967 [Kernel][Backend][Model] Blocksparse flash attention kernel and Phi-3-Small model (#4799)
Co-authored-by: beagleski <yunanzhang@microsoft.com>
Co-authored-by: bapatra <bapatra@microsoft.com>
Co-authored-by: Barun Patra <codedecde@users.noreply.github.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-05-24 22:00:52 -07:00
e64fde4b01 [Core][Bugfix]: fix prefix caching for blockv2 (#4764)
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
2024-05-24 10:07:09 -07:00
919770957f [Bugfix] Fix Mistral v0.3 Weight Loading (#5005)
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-05-24 12:28:27 +00:00
6a50f4cafa [Doc] add ccache guide in doc (#5012)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-05-23 23:21:54 +00:00
e3470f8753 [Core]: Option To Use Prompt Token Ids Inside Logits Processor (#4985)
Co-authored-by: Elisei Smirnov <el.smirnov@innopolis.university>
2024-05-23 22:04:24 +00:00
a1242324c9 [Kernel] Initial Activation Quantization Support (#4525)
Co-authored-by: Varun Sundar Rabindranath <varunsundar08@gmail.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-05-23 21:29:18 +00:00
5eda2ea02a [Core][1/N] Support send/recv in PyNCCL Groups (#4988)
Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
2024-05-23 09:54:48 -07:00
2ba80bed27 [Bugfix] Update Dockerfile.cpu to fix NameError: name 'vllm_ops' is not defined (#5009) 2024-05-23 09:08:58 -07:00
6066253296 Marlin 24 prefill performance improvement (about 25% better on average) (#4983) 2024-05-23 02:39:27 -04:00
ee3eea0a1b [Misc] Take user preference in attention selector (#4960) 2024-05-23 07:55:56 +09:00
a36de682d4 [Minor] Fix small typo in llama.py: QKVParallelLinear -> QuantizationConfig (#4991) 2024-05-22 22:26:56 +00:00
eb6d3c264d [Core] Eliminate parallel worker per-step task scheduling overhead (#4894) 2024-05-23 06:17:27 +09:00
97b030005c [Model] LoRA gptbigcode implementation (#3949) 2024-05-22 13:58:59 -07:00
a3a73ab069 [Misc] Load FP8 kv-cache scaling factors from checkpoints (#4893)
The 2nd PR for #4532.

This PR supports loading FP8 kv-cache scaling factors from a FP8 checkpoint (with .kv_scale parameter).
2024-05-22 13:28:20 -07:00
8674f9880e [Kernel] Fixup for CUTLASS kernels in CUDA graphs (#4954)
Pass the CUDA stream into the CUTLASS GEMMs, to avoid future issues with CUDA graphs
2024-05-22 14:10:43 +00:00
c74c913bfb [misc] remove comments that were supposed to be removed (#4977) 2024-05-22 09:02:58 -04:00
5f6d10c14c [CI/Build] Enforce style for C++ and CUDA code with clang-format (#4722) 2024-05-22 07:18:41 +00:00
9b9a10d6cb [Frontend] Dynamic RoPE scaling (#4638) 2024-05-22 01:32:35 -04:00
99eff67ba9 [Bugfix][Kernel] Add head size check for attention backend selection (#4944) 2024-05-21 15:33:25 -04:00
14772eeb8e [Bugfix] Fix flag name for max_seq_len_to_capture (#4935)
Signed-off-by: kerthcet <kerthcet@gmail.com>
2024-05-21 09:30:52 -07:00
757b62c495 [CI/Build] Codespell ignore build/ directory (#4945) 2024-05-21 09:06:10 -07:00
e941f88584 [Docs] Add acknowledgment for sponsors (#4925) 2024-05-21 00:17:25 -07:00
f12c3b5b3d [Model] Add Phi-2 LoRA support (#4886) 2024-05-21 14:24:17 +09:00
d130b573a0 [Model] add rope_scaling support for qwen2 (#4930) 2024-05-21 05:22:22 +00:00
65ae8c2c8f [Core] Fix scheduler considering "no LoRA" as "LoRA" (#4897) 2024-05-20 17:48:32 -07:00
c3af44722c [Doc]Add documentation to benchmarking script when running TGI (#4920) 2024-05-20 20:16:57 +00:00
1937e29848 [Core] Sharded State Loader download from HF (#4889) 2024-05-20 11:46:12 -07:00
f0eecee610 [Bugfix] Fix dummy weight for fp8 (#4916)
Allow dummy load format for fp8,
torch.uniform_ doesn't support FP8 at the moment

Co-authored-by: Mor Zusman <morz@ai21.com>
2024-05-20 18:44:25 +00:00
943e72ca56 [Build/CI] Enabling AMD Entrypoints Test (#4834)
Co-authored-by: Alexey Kondratiev <alexey.kondratiev@amd.com>
2024-05-20 11:29:28 -07:00
546a97ef69 [Misc]: allow user to specify port in distributed setting (#4914) 2024-05-20 17:45:06 +00:00
da5a0b539d Remove marlin warning (#4918) 2024-05-20 14:55:34 +00:00
6287537a0c [Model] LLaVA model refactor (#4910) 2024-05-20 08:11:25 +00:00
b57e6c5949 [Kernel] Add flash-attn back (#4907) 2024-05-19 18:11:30 -07:00
27ce85476e [Kernel] Add marlin_24 unit tests (#4901) 2024-05-19 11:37:34 -04:00
f68470e803 [Bugfix][Model] Add base class for vision-language models (#4809) 2024-05-19 00:13:33 -07:00
2e9a2227ec [Lora] Support long context lora (#4787)
Currently we need to call rotary embedding kernel for each LoRA, which makes it hard to serve multiple long context length LoRA. Add batched rotary embedding kernel and pipe it through.

It replaces the rotary embedding layer to the one that is aware of multiple cos-sin-cache per scaling factors.

Follow up of https://github.com/vllm-project/vllm/pull/3095/files
2024-05-18 16:05:23 +09:00
c0724fc915 [ROCm][Hardware][AMD] Adding Navi21 to fallback to naive attention if Triton is not used (#4658) 2024-05-18 05:09:11 +00:00
86b45ae065 [Bugfix] Relax tiktoken to >= 0.6.0 (#4890) 2024-05-17 12:58:52 -06:00
c5711ef985 [Doc] Update Ray Data distributed offline inference example (#4871) 2024-05-17 10:52:11 -07:00
48d5985a08 Sync huggingface modifications of qwen Moe model (#4774) 2024-05-17 09:43:19 -07:00
33e0823de5 [Bugfix] fix rope error when load models with different dtypes (#4835) 2024-05-17 18:43:34 +09:00
26148120b3 [Build/CI] Extending the set of AMD tests with Regression, Basic Correctness, Distributed, Engine, Llava Tests (#4797) 2024-05-16 20:58:25 -07:00
0150a10630 [Frontend] OpenAI API server: Do not add bos token by default when encoding (#4688) 2024-05-16 18:47:22 -07:00
8e7fb5d43a Support to serve vLLM on Kubernetes with LWS (#4829)
Signed-off-by: kerthcet <kerthcet@gmail.com>
2024-05-16 16:37:29 -07:00
9a31a817a8 [Bugfix] Fix FP8 KV cache support (#4869) 2024-05-16 22:42:29 +00:00
2060e93659 [Kernel] Add w8a8 CUTLASS kernels (#4749) 2024-05-16 18:32:50 -04:00
8435b207af [Kernel] Add punica dimension for Qwen1.5-32B LoRA (#4850)
Co-authored-by: Silencio <silencio@adsl-99-6-187-6.dsl.irvnca.sbcglobal.net>
2024-05-16 11:16:09 -07:00
10fa9eea21 [Misc] remove old comments (#4866) 2024-05-16 11:07:41 -07:00
e08188081b [Core][Distributed] remove graph mode function (#4818) 2024-05-16 10:59:52 -07:00
b5853f9963 [ROCm][AMD][Bugfix] adding a missing triton autotune config (#4845) 2024-05-16 10:46:52 -07:00
f09edd8a25 Add JSON output support for benchmark_latency and benchmark_throughput (#4848) 2024-05-16 10:02:56 -07:00
6979ade384 Add GPTQ Marlin 2:4 sparse structured support (#4790)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-05-16 12:56:15 -04:00
9216b9cc38 [Bugfix] Bypass authorization API token for preflight requests (#4862) 2024-05-16 09:42:21 -07:00
5e0391c040 [Frontend] Separate OpenAI Batch Runner usage from API Server (#4851) 2024-05-17 00:42:41 +09:00
dbc0754ddf [docs] Fix typo in examples filename openi -> openai (#4864) 2024-05-17 00:42:17 +09:00
99caa49106 [Kernel] add bfloat16 support for gptq marlin kernel (#4788) 2024-05-16 09:55:29 -04:00
5c342570d7 Add marlin unit tests and marlin benchmark script (#4815) 2024-05-16 09:36:49 -04:00
973617ae02 [Speculative decoding][Re-take] Enable TP>1 speculative decoding (#4840)
Co-authored-by: Cade Daniel <edacih@gmail.com>
Co-authored-by: Cade Daniel <cade@anyscale.com>
2024-05-16 00:53:51 -07:00
30e754390c [Core] Implement sharded state loader (#4690)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-05-15 22:11:54 -07:00
52f8107cf2 [Frontend] Support OpenAI batch file format (#4794)
Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
2024-05-15 19:13:36 -04:00
fc0d9dfc3a [Frontend] Re-enable custom roles in Chat Completions API (#4758) 2024-05-15 14:58:46 -07:00
361c461a12 [Doc] Highlight the fourth meetup in the README (#4842) 2024-05-15 11:38:49 -07:00
a5675d348b [Bugfix] Properly set distributed_executor_backend in ParallelConfig (#4816) 2024-05-15 07:22:09 -07:00
e9cdd2b1e2 [CI/Build] Further decouple HuggingFace implementation from ours during tests (#4166) 2024-05-14 23:38:40 -07:00
65bf2ac165 [Core][2/N] Model runner refactoring part 2. Combine prepare prefill / decode to a single API (#4681)
This PR combines prepare_prompt and prepare_decode into a single API. This PR also coelsce the attn metadata for prefill/decode to a single class and allow to slice them when running attn backend.

It also refactors subquery_start_loc which was not refactored in the previous PR
2024-05-15 14:00:10 +09:00
8a7cc254a0 Revert "[Kernel] Use flash-attn for decoding (#3648)" (#4820)
Lora 3 & 4 test seems to have illegal memory access failure after this commit;

[2024-05-14 23:51:18,182 E 22 22] logging.cc:101: Unhandled exception: N3c105ErrorE. what(): CUDA error: an illegal memory access was encountered
<br class="Apple-interchange-newline">
Exmaple: https://buildkite.com/vllm/ci/builds/7382#018f793d-1527-4e1c-ab59-c3a34ec55241

This reverts commit 1356df5.

FILL IN THE PR DESCRIPTION HERE

FIX #xxxx (link existing issues this PR will resolve)
2024-05-15 11:52:45 +09:00
29bc01bf3b Add 4th meetup announcement to readme (#4817) 2024-05-14 18:33:06 -04:00
676a99982f [Core] Add MultiprocessingGPUExecutor (#4539)
Co-authored-by: SAHIL SUNEJA <suneja@us.ibm.com>
2024-05-14 10:38:59 -07:00
dc72402b57 [Bugfix][Doc] Fix CI failure in docs (#4804)
This PR fixes the CI failure introduced by #4798.

The failure originates from having duplicate target names in reST, and is fixed by changing the ref targets to anonymous ones. For more information, see this discussion.

I have also changed the format of the links to be more distinct from each other.
2024-05-15 01:57:08 +09:00
ccb63a8245 [Core][Hash][Automatic Prefix caching] Accelerating the hashing function by avoiding deep copies (#4696) 2024-05-14 21:34:33 +09:00
c579b750a0 [Doc] Add meetups to the doc (#4798) 2024-05-13 18:48:00 -07:00
4bfa7e7f75 [Doc] Add API reference for offline inference (#4710) 2024-05-13 17:47:42 -07:00
ac1fbf7fd2 [Doc] Shorten README by removing supported model list (#4796) 2024-05-13 16:23:54 -07:00
33d3914b1e [Bugfix] Fix dynamic FP8 quantization for Mixtral (#4793) 2024-05-13 19:00:27 -04:00
1356df53bd [Kernel] Use flash-attn for decoding (#3648)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: LiuXiaoxuanPKU <lilyliupku@gmail.com>
2024-05-13 15:50:33 -07:00
ce532ff45c [Speculative decoding] Improve n-gram efficiency (#4724) 2024-05-13 15:00:13 -07:00
8bc68e198c [Frontend] [Core] perf: Automatically detect vLLM-tensorized model, update tensorizer to version 2.9.0 (#4208) 2024-05-13 14:57:07 -07:00
0fca3cdcf2 [Misc] Enhance attention selector (#4751) 2024-05-13 10:47:25 -07:00
e7c46b9527 [Scheduler] Warning upon preemption and Swapping (#4647)
Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
2024-05-13 23:50:44 +09:00
350f9e107f [CI/Build] Move test_utils.py to tests/utils.py (#4425)
Since #4335 was merged, I've noticed that the definition of ServerRunner in the tests is the same as in the test for OpenAI API. I have moved the class to the test utilities to avoid code duplication. (Although it only has been repeated twice so far, I will add another similar test suite in #4200 which would duplicate the code a third time)

Also, I have moved the test utilities file (test_utils.py) to under the test directory (tests/utils.py), since none of its code is actually used in the main package. Note that I have added __init__.py to each test subpackage and updated the ray.init() call in the test utilities file in order to relative import tests/utils.py.
2024-05-13 23:50:09 +09:00
702bee461f [Core][Distributed] refactor custom allreduce to support multiple tp groups (#4754) 2024-05-12 17:47:59 -07:00
a7be4d0072 [CORE] Improvement in ranks code (#4718) 2024-05-12 17:47:47 -07:00
a709e87a4f [CI/Build] Tweak Marlin Nondeterminism Issues (#4713) 2024-05-12 17:46:31 -07:00
6eaccb7353 [Model] Add support for IBM Granite Code models (#4636) 2024-05-11 21:27:24 -07:00
e254497b66 [Model][Misc] Add e5-mistral-7b-instruct and Embedding API (#3734) 2024-05-11 11:30:37 -07:00
4e12131089 [Core][Test] fix function name typo in custom allreduce (#4750) 2024-05-10 15:14:40 -07:00
fcc2994be6 [CI] Nits for bad initialization of SeqGroup in testing (#4748) 2024-05-10 18:01:01 -04:00
2e7796f2cf [Speculative decoding] CUDA graph support (#4295)
Co-authored-by: Cade Daniel <edacih@gmail.com>
2024-05-10 17:36:25 +00:00
706588a77d [Bugfix] Fix CLI arguments in OpenAI server docs (#4729) 2024-05-11 00:00:56 +09:00
6a0f617210 [Core] Fix circular reference which leaked llm instance in local dev env (#4737)
Storing exception frame is extremely prone to circular refernece because it contains the reference to objects.

When tensorizer is not installed, it leaks llm instance because error frame has references to various modules which cause circular reference problem.

I also found spec decoding has a circular reference issue, and I solved it using weakref.proxy.
2024-05-10 23:54:32 +09:00
dac6a3f6ed [Misc] Apply a couple g++ cleanups (#4719) 2024-05-10 13:37:05 +00:00
64b77dfd7e [Core]fix type annotation for swap_blocks (#4726) 2024-05-10 21:52:48 +09:00
51d4094fda chunked-prefill-doc-syntax (#4603)
Fix the docs: https://docs.vllm.ai/en/latest/models/performance.html

Co-authored-by: sang <rkooo567@gmail.com>
2024-05-10 14:13:23 +09:00
e965d46184 [Misc] Keep only one implementation of the create_dummy_prompt function. (#4716) 2024-05-09 21:42:38 -07:00
208b71bcc1 [Core][Distributed] refactor pynccl (#4591)
[Core][Distributed] refactor pynccl to hold multiple communicators (#4591)
2024-05-09 19:48:43 -07:00
c833101740 [Kernel] Refactor FP8 kv-cache with NVIDIA float8_e4m3 support (#4535) 2024-05-09 18:04:17 -06:00
379da6dcb5 [Kernel] [FP8] Improve FP8 linear layer performance (#4691)
This PR improves the FP8 performance of linear layers, which had been lacking before (#4118 (comment) and #4118 (comment)).

We noticed that CUBLASLt can find a better algorithm if the first dimension of the matrix is greater than 16. So this PR enlarges matrices appropriately during quantization. This improves FP8 performance and removes the performance regression vs. FP16, in many cases exceeding FP16 performance.

Here are benchmarks on llama3 70b (ITL numbers for 1000 input and 50 output tokens at fixed qps and at TP 4), all FP8 measurements are for dynamic quantization:

qps = 1: 24 ms (FP8, this PR), 32 ms (FP8, previous main), 26 ms (FP16)
qps = 2: 26 ms (FP8, this PR), 34ms (FP8, previous main), 28 ms (FP16) 
qps = 4: 33 ms (FP8, this PR), 44 ms (FP8, previous main), 36 ms (FP16)
qps = 6: 46 ms (FP8, this PR), 56 ms (FP8, previous main), 54 ms (FP16)
qps = 8: 85 ms (FP8, this PR), 85 ms (FP8, previous main), 138 ms (FP16)
2024-05-09 16:38:07 -07:00
ebce310b74 [Model] Snowflake arctic model implementation (#4652)
Co-authored-by: Dash Desai <1723932+iamontheinet@users.noreply.github.com>
Co-authored-by: Aurick Qiao <qiao@aurick.net>
Co-authored-by: Aurick Qiao <aurick.qiao@snowflake.com>
Co-authored-by: Aurick Qiao <aurickq@users.noreply.github.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-05-09 22:37:14 +00:00
be0c5180ac [Bugfix] Add logs for all model dtype casting (#4717) 2024-05-09 18:36:25 +00:00
cea64430f6 [Bugfix] Update grafana.json (#4711) 2024-05-09 10:10:13 -07:00
a3c124570a [Bugfix] Fix CLI arguments in OpenAI server docs (#4709) 2024-05-09 09:53:14 -07:00
ff5abcd746 [ROCm] Add support for Punica kernels on AMD GPUs (#3140)
Co-authored-by: miloice <jeffaw99@hotmail.com>
2024-05-09 09:19:50 -07:00
0ee535b294 [Misc] Set block size at initialization & Fix test_model_runner (#4705) 2024-05-09 09:04:59 -07:00
190bc838e1 [Misc] Remove unnecessary ModelRunner imports (#4703) 2024-05-09 00:17:17 -07:00
f12b20decc [Frontend] Move async logic outside of constructor (#4674) 2024-05-08 22:48:33 -07:00
16bc0a098f [Frontend] add tok/s speed metric to llm class when using tqdm (#4400)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-05-08 22:02:31 -07:00
e288df0632 [Bugfix] Fine-tune gptq_marlin configs to be more similar to marlin (#4626) 2024-05-08 17:14:31 -07:00
8b9241be3a [Speculative decoding] [Bugfix] Fix overallocation in ngram + spec logprobs (#4672) 2024-05-08 23:24:46 +00:00
f942efb5a3 [Dynamic Spec Decoding] Auto-disable by the running queue size (#4592)
Co-authored-by: Cade Daniel <edacih@gmail.com>
2024-05-08 21:44:00 +00:00
89579a201f [Misc] Use vllm-flash-attn instead of flash-attn (#4686) 2024-05-08 13:15:34 -07:00
230c4b38c1 [CI/Test] fix swap test for multi gpu (#4689) 2024-05-08 13:14:02 -07:00
20cfcdec99 [Core][Optimization] change python dict to pytorch tensor for blocks to swap (#4659) 2024-05-08 12:07:05 -07:00
ad932a221d [Core] Faster startup for LoRA enabled models (#4634) 2024-05-08 10:33:18 -07:00
5510cf0e8a [Misc] Add get_name method to attention backends (#4685) 2024-05-08 09:59:31 -07:00
0f9a6e3d22 [Bugfix][Kernel] allow non-power-of-2 for prefix prefill with alibi (#4573) 2024-05-08 09:19:58 -07:00
f6a593093a [CI] Make mistral tests pass (#4596) 2024-05-08 08:44:35 -07:00
d7740ea4dc [Core] Optimize sampler get_logprobs (#4594) 2024-05-08 08:42:28 -07:00
cc466a3290 [Core][Distributed] support cpu&device in broadcast tensor dict (#4660)
[Core][Distributed] support both cpu and device tensor in broadcast tensor dict (#4660)
2024-05-07 19:34:47 -07:00
8344f7742b [Bug fix][Core] fixup ngram not setup correctly (#4551)
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
Co-authored-by: Cade Daniel <edacih@gmail.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-05-07 11:40:18 -07:00
469f85c782 [Core][Optimization] change copy-on-write from dict[int, list] to list (#4648) 2024-05-07 11:06:32 -07:00
10760da800 [Bugfix] Fixed error in slice_lora_b for MergedQKVParallelLinearWithLora (#4609) 2024-05-07 10:59:07 -07:00
478aed5827 [Build/CI] Fixing 'docker run' to re-enable AMD CI tests. (#4642) 2024-05-07 09:23:17 -07:00
63575bc2e1 [Core][Optimization] change python dict to pytorch tensor (#4607) 2024-05-06 21:30:27 -07:00
a98187cf72 [Kernel] Make static FP8 scaling more robust (#4570)
Previously FP8 static scaling works if the scales are overestimating the maxima of all activation tensors during computation. However this will not always be the case even if the scales were calibrated very carefully. For example, with the activations in my checkpoint

https://huggingface.co/pcmoritz/Mixtral-8x7B-v0.1-fp8-act-scale

(which was calibrated on https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k), I'm getting the following mostly random performance on MMLU:

|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.2295|±  |0.0035|
| - humanities     |N/A    |none  |     5|acc   |0.2421|±  |0.0062|
| - other          |N/A    |none  |     5|acc   |0.2398|±  |0.0076|
| - social_sciences|N/A    |none  |     5|acc   |0.2171|±  |0.0074|
| - stem           |N/A    |none  |     5|acc   |0.2125|±  |0.0073|
With the fix in this PR where the scaled activations are clamped between [-std::numeric_limits<c10::Float8_e4m3fn>::max(), std::numeric_limits<c10::Float8_e4m3fn>::max()] to make sure there are no NaNs, the performance is

|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.7008|±  |0.0036|
| - humanities     |N/A    |none  |     5|acc   |0.6453|±  |0.0065|
| - other          |N/A    |none  |     5|acc   |0.7692|±  |0.0072|
| - social_sciences|N/A    |none  |     5|acc   |0.8083|±  |0.0070|
| - stem           |N/A    |none  |     5|acc   |0.6115|±  |0.0083|
This is not perfect yet but is getting very close to the FP16 / dynamic activation scale performance.
2024-05-06 17:39:28 -07:00
bd99d22629 Update lm-format-enforcer to 0.10.1 (#4631) 2024-05-06 23:51:59 +00:00
19cb4716ee [CI] Add retry for agent lost (#4633) 2024-05-06 23:18:57 +00:00
e186d37cb1 [CI] use ccache actions properly in release workflow (#4629) 2024-05-06 22:23:36 +00:00
323f27b904 [Bugfix] Fix asyncio.Task not being subscriptable (#4623) 2024-05-06 09:31:05 -07:00
0650e5935b Disable cuda version check in vllm-openai image (#4530) 2024-05-05 16:58:55 -07:00
c7f2cf2b7f [CI] Reduce wheel size by not shipping debug symbols (#4602) 2024-05-04 21:28:58 -07:00
8d8357c8ed bump version to v0.4.2 (#4600) 2024-05-04 17:09:49 -07:00
4302987069 [Bugfix] Fix inappropriate content of model_name tag in Prometheus metrics (#3937) 2024-05-04 15:39:34 -07:00
021b1a2ab7 [CI] check size of the wheels (#4319) 2024-05-04 20:44:36 +00:00
2a052011ca [Kernel] Support MoE Fp8 Checkpoints for Mixtral (Static Weights with Dynamic/Static Activations) (#4527)
Follow on to #4332 to enable FP8 checkpoint loading for Mixtral and supersedes #4436.

This PR enables the following checkpoint loading features for Mixtral:

Supports loading fp8 checkpoints for Mixtral, such as this "nm-testing/Mixtral-8x7B-Instruct-v0.1-FP8" test model
Supports static or dynamic activation quantization with static weight quantization (all per tensor)
Supports different scales for each expert weight
Supports Fp8 in QKV layer
Notes:

The Expert Gate/Router always runs at half / full precision for now.
If there are different weight scales between QKV layer (for separate QKV weights), they are re-quantized using layer.weight_scale.max() so we can have a single gemm for performance.
2024-05-04 11:45:16 -07:00
36fb68f947 [Doc] Chunked Prefill Documentation (#4580) 2024-05-04 00:18:00 -07:00
bc8ad68455 [Misc][Refactor] Introduce ExecuteModelData (#4540) 2024-05-03 17:47:07 -07:00
344bf7cd2d [Misc] add installation time env vars (#4574) 2024-05-03 15:55:56 -07:00
ab50275111 [Speculative decoding] Support target-model logprobs (#4378) 2024-05-03 15:52:01 -07:00
43c413ec57 [Kernel] Use flashinfer for decoding (#4353)
Co-authored-by: LiuXiaoxuanPKU <llilyliupku@gmail.com>
2024-05-03 15:51:27 -07:00
f8e7adda21 Fix/async chat serving (#2727) 2024-05-03 11:04:14 -07:00
7e65477e5e [Bugfix] Allow "None" or "" to be passed to CLI for string args that default to None (#4586) 2024-05-03 10:32:21 -07:00
3521ba4f25 [Core][Model runner refactoring 1/N] Refactor attn metadata term (#4518) 2024-05-03 10:20:12 -07:00
2d7bce9cd5 [Doc] add env vars to the doc (#4572) 2024-05-03 05:13:49 +00:00
ce3f1eedf8 [Misc] remove chunk detected debug logs (#4571) 2024-05-03 04:48:08 +00:00
808632d3b4 [BugFix] Prevent the task of _force_log from being garbage collected (#4567) 2024-05-03 01:35:18 +00:00
344a5d0c33 [Core][Distributed] enable allreduce for multiple tp groups (#4566) 2024-05-02 17:32:33 -07:00
0f8a91401c [Core] Ignore infeasible swap requests. (#4557) 2024-05-02 14:31:20 -07:00
9b5c9f9484 [CI/Build] AMD CI pipeline with extended set of tests. (#4267)
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-05-02 12:29:07 -07:00
32881f3f31 [kernel] fix sliding window in prefix prefill Triton kernel (#4405)
Co-authored-by: SangBin Cho <rkooo567@gmail.com>
2024-05-02 11:23:37 -07:00
5b8a7c1cb0 [Misc] centralize all usage of environment variables (#4548) 2024-05-02 11:13:25 -07:00
1ff0c73a79 [BugFix] Include target-device specific requirements.txt in sdist (#4559) 2024-05-02 10:52:51 -07:00
5ad60b0cbd [Misc] Exclude the tests directory from being packaged (#4552) 2024-05-02 10:50:25 -07:00
fb087af52e [mypy][7/N] Cover all directories (#4555) 2024-05-02 10:47:41 -07:00
7038e8b803 [Kernel] Support running GPTQ 8-bit models in Marlin (#4533) 2024-05-02 12:56:22 -04:00
2a85f93007 [Core][Distributed] enable multiple tp group (#4512)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-05-02 04:28:21 +00:00
cf8cac8c70 [mypy][6/N] Fix all the core subdirectory typing (#4450)
Co-authored-by: Cade Daniel <edacih@gmail.com>
2024-05-02 03:01:00 +00:00
5e401bce17 [CI]Add regression tests to ensure the async engine generates metrics (#4524) 2024-05-01 19:57:12 -07:00
0d62fe58db [Bug fix][Core] assert num_new_tokens == 1 fails when SamplingParams.n is not 1 and max_tokens is large & Add tests for preemption (#4451) 2024-05-01 19:24:13 -07:00
b8afa8b95a [MISC] Rework logger to enable pythonic custom logging configuration to be provided (#4273) 2024-05-01 17:34:40 -07:00
826b82a260 [Misc] Fix expert_ids shape in MoE (#4517) 2024-05-01 23:47:59 +00:00
c9d852d601 [Misc] Remove Mixtral device="cuda" declarations (#4543)
Remove the device="cuda" declarations in mixtral as promised in #4343
2024-05-01 16:30:52 -07:00
6ef09b08f8 [Core][Distributed] fix pynccl del error (#4508) 2024-05-01 15:23:06 -07:00
Roy
3a922c1e7e [Bugfix][Core] Fix and refactor logging stats (#4336) 2024-05-01 20:08:14 +00:00
c47ba4aaa9 [Bugfix] Add validation for seed (#4529) 2024-05-01 19:31:22 +00:00
24bb4fe432 [Kernel] Update fused_moe tuning script for FP8 (#4457)
This PR updates the tuning script for the fused_moe kernel to support FP8 and also adds configurations for TP4. Note that for the configuration I removed num_warps and num_stages for small batch sizes since that improved performance and brought the benchmarks on par with the numbers before in that regime to make sure this is a strict improvement over the status quo.

All the numbers below are for mistralai/Mixtral-8x7B-Instruct-v0.1, 1000 input and 50 output tokens.

Before this PR (with static activation scaling):

qps = 1: 9.8 ms ITL, 0.49s e2e latency
qps = 2: 9.7 ms ITL, 0.49s e2e latency 
qps = 4: 10.1 ms ITL, 0.52s e2e latency
qps = 6: 11.9 ms ITL, 0.59s e2e latency
qps = 8: 14.0 ms ITL, 0.70s e2e latency
qps = 10: 15.7 ms ITL, 0.79s e2e latency

After this PR (with static activation scaling):

qps = 1: 9.8 ms ITL, 0.49s e2e latency
qps = 2: 9.7 ms ITL, 0.49s e2e latency
qps = 4: 10.2 ms ITL, 0.53s e2e latency
qps = 6: 11.9 ms ITL, 0.59s e2e latency
qps = 8: 11.9 ms ITL, 0.59s e2e latency
qps = 10: 12.1 ms ITL, 0.61s e2e latency
2024-05-01 11:47:38 -07:00
a657bfc48a [Core] Add multiproc_worker_utils for multiprocessing-based workers (#4357) 2024-05-01 18:41:59 +00:00
24750f4cad [Core] Enable prefix caching with block manager v2 enabled (#4142)
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
Co-authored-by: Sage Moore <sagemoore@utexas.edu>
2024-05-01 11:20:32 -07:00
b38e42fbca [Speculative decoding] Add ngram prompt lookup decoding (#4237)
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
2024-05-01 11:13:03 -07:00
8b798eec75 [CI/Build][Bugfix] VLLM_USE_PRECOMPILED should skip compilation (#4534)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-05-01 18:01:50 +00:00
69909126a7 [Bugfix] Use random seed if seed is -1 (#4531) 2024-05-01 10:41:17 -07:00
e491c7e053 [Doc] update(example model): for OpenAI compatible serving (#4503) 2024-05-01 10:14:16 -07:00
4dc8026d86 [Bugfix] Fix 307 Redirect for /metrics (#4523) 2024-05-01 09:14:13 -07:00
a88bb9b032 [Bugfix] Fix the fp8 kv_cache check error that occurs when failing to obtain the CUDA version. (#4173)
Signed-off-by: AnyISalIn <anyisalin@gmail.com>
2024-05-01 09:11:03 -07:00
6f1df80436 [Test] Add ignore_eos test (#4519) 2024-05-01 08:45:42 -04:00
d6f4bd7cdd [Misc]Add customized information for models (#4132) 2024-04-30 21:18:14 -07:00
c3845d82dc Allow user to define whitespace pattern for outlines (#4305) 2024-04-30 20:48:39 -07:00
a822eb3413 [Misc] fix typo in block manager (#4453) 2024-04-30 20:41:32 -07:00
f458112e8a [Misc][Typo] type annotation fix (#4495) 2024-04-30 20:21:39 -07:00
2e240c69a9 [Core] Centralize GPU Worker construction (#4419) 2024-05-01 01:06:34 +00:00
ee37328da0 Unable to find Punica extension issue during source code installation (#4494)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-05-01 00:42:09 +00:00
6ad58f42c5 fix_tokenizer_snapshot_download_bug (#4493) 2024-04-30 16:38:50 -07:00
dd1a50a8bc [Bugfix][Minor] Make ignore_eos effective (#4468) 2024-04-30 16:33:33 -07:00
715c2d854d [Frontend] [Core] Tensorizer: support dynamic num_readers, update version (#4467) 2024-04-30 16:32:13 -07:00
a494140433 [Frontend] Support complex message content for chat completions endpoint (#3467)
Co-authored-by: Lily Liu <lilyliupku@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2024-04-30 16:28:46 -07:00
111815d482 [Kernel] Support Fp8 Checkpoints (Dynamic + Static) (#4332)
Co-authored-by: Philipp Moritz <pcmoritz@gmail.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: mgoin <michael@neuralmagic.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-04-30 21:46:12 +00:00
b31a1fb63c [Doc] add visualization for multi-stage dockerfile (#4456)
Signed-off-by: Prashant Gupta <prashantgupta@us.ibm.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-30 17:41:59 +00:00
4bb53e2dde [BugFix] fix num_lookahead_slots missing in async executor (#4165)
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
2024-04-30 10:12:59 -07:00
26f2fb5113 [Core]Refactor gptq_marlin ops (#4466) 2024-04-30 08:14:47 -04:00
fa32207842 [Bugfix][Kernel] Fix compute_type for MoE kernel (#4463) 2024-04-29 22:05:40 -07:00
d627a3d837 [Misc] Upgrade to torch==2.3.0 (#4454) 2024-04-29 20:05:47 -04:00
f4f921b7f1 [Core][Distributed] use cpu group to broadcast metadata in cpu (#4444) 2024-04-29 13:52:22 -07:00
ac5ccf0156 [CI] hotfix: soft fail neuron test (#4458) 2024-04-29 19:50:01 +00:00
73c8d677e5 [Kernel] Marlin Expansion: Support AutoGPTQ Models with Marlin (#3922)
Co-authored-by: alexm <alexm@neuralmagic.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-04-29 09:35:34 -07:00
df29793dc7 [mypy][5/N] Support all typing on model executor (#4427) 2024-04-28 19:01:26 -07:00
03dd7d52bf [CI] clean docker cache for neuron (#4441) 2024-04-28 23:32:07 +00:00
bf480c5302 Add more Prometheus metrics (#2764)
Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-04-28 15:59:33 -07:00
9c7306ac11 [Misc] fix typo in llm_engine init logging (#4428) 2024-04-28 18:58:30 +08:00
4ea1f9678d [BugFix] Resolved Issues For LinearMethod --> QuantConfig (#4418) 2024-04-27 18:35:33 +00:00
ba4be44c32 [BugFix] Fix return type of executor execute_model methods (#4402) 2024-04-27 11:17:45 -07:00
d6e520e170 [Core] Support offline use of local cache for models (#4374)
Signed-off-by: Prashant Gupta <prashantgupta@us.ibm.com>
Co-authored-by: Travis Johnson <tjohnson31415@gmail.com>
2024-04-27 09:59:55 -07:00
81661da7b2 [BugFix] Fix min_tokens when eos_token_id is None (#4389)
Co-authored-by: DefTruth <31974251+deftruth@users.noreply.github.com>
2024-04-27 09:52:46 -07:00
dfea173148 [Bugfix] Abort requests when the connection to /v1/completions is interrupted (#4363) 2024-04-27 09:48:37 -07:00
Roy
7134303cbb [Bugfix][Core] Fix get decoding config from ray (#4335) 2024-04-27 11:30:08 +00:00
3da24c2df7 [Model] Phi-3 4k sliding window temp. fix (#4380) 2024-04-27 18:08:15 +08:00
eefeb16464 [Kernel] Full Tensor Parallelism for LoRA Layers (#3524)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-04-27 00:03:48 -07:00
18d23f642a [ROCm][Hardware][AMD] Enable group query attention for triton FA (#4406) 2024-04-26 23:37:40 -07:00
Roy
87f545ba6f [Misc] Fix logger format typo (#4396) 2024-04-27 13:45:02 +08:00
8947bc3c15 [Frontend][Bugfix] Disallow extra fields in OpenAI API (#4355) 2024-04-27 05:08:24 +00:00
12628d3c78 [Kernel] Optimize FP8 support for MoE kernel / Mixtral via static scales (#4343)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-27 04:49:59 +00:00
258a2c58d0 [Core] Introduce DistributedGPUExecutor abstract class (#4348) 2024-04-27 04:14:26 +00:00
aba47be3fe [Misc] add RFC issue template (#4401)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-26 15:47:45 -07:00
a62aaf1df5 [Misc][Refactor] Generalize linear_method to be quant_method (#4373) 2024-04-26 16:41:14 -04:00
603ad84815 [Core] Refactoring sampler and support prompt logprob for chunked prefill (#4309) 2024-04-26 13:02:02 +00:00
a88081bf76 [CI] Disable non-lazy string operation on logging (#4326)
Co-authored-by: Danny Guinther <dguinther@neuralmagic.com>
2024-04-26 00:16:58 -07:00
2f30e7c72f [Frontend] Add --log-level option to api server (#4377) 2024-04-26 05:36:01 +00:00
a74dee9b62 [Bugfix] Fix parameter name in get_tokenizer (#4107) 2024-04-25 19:10:48 -07:00
cf29b7eda4 [ROCm][Hardware][AMD][Doc] Documentation update for ROCm (#4376)
Co-authored-by: WoosukKwon <woosuk.kwon@berkeley.edu>
2024-04-25 18:12:25 -07:00
efffb63f58 [Core] Move function tracing setup to util function (#4352) 2024-04-25 16:45:12 -07:00
15e7c675b0 [Core] Add shutdown() method to ExecutorBase (#4349) 2024-04-25 16:32:48 -07:00
Roy
b6dcb4d442 [Misc] Fix flash attention backend log (#4368) 2024-04-25 12:43:32 -07:00
b5b4a398a7 [Mypy] Typing lora folder (#4337) 2024-04-25 19:13:50 +00:00
f4bc4de1b1 [Core]refactor aqlm quant ops (#4351) 2024-04-25 15:03:56 -04:00
bd7a8eef25 [Doc] README Phi-3 name fix. (#4372)
Co-authored-by: Caio Mendes <caiocesart@microsoft.com>
2024-04-25 10:32:00 -07:00
7ee82bef1e [CI/Build] Adding functionality to reset the node's GPUs before processing. (#4213) 2024-04-25 09:37:20 -07:00
fbf152d976 [Bugfix][Model] Refactor OLMo model to support new HF format in transformers 4.40.0 (#4324)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-25 09:35:56 -07:00
479d69fad0 [Core] Move ray_utils.py from engine to executor package (#4347) 2024-04-25 06:52:22 +00:00
96e90fdeb3 [Model] Adds Phi-3 support (#4298) 2024-04-25 03:06:57 +00:00
a395a638c2 [Misc] Use public API in benchmark_throughput (#4300) 2024-04-24 21:10:24 +00:00
2768884ac4 [Doc] Add note for docker user (#4340)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-24 21:09:44 +00:00
aae08249ac [Bugfix] Fix marlin kernel crash on H100 (#4218)
This PR addresses the Marlin kernel H100 crash that was reported here: neuralmagic#187.
The reason for the crash was the inline PTX assembly that introduced the async_copy with streaming behavior. The solution is to use the more standard PTX for async_copy (without the fractional L2 policy for "evict_first"). There is no performance difference between standard async_copy PTX and the previous one.
2024-04-24 10:35:01 -07:00
7923dcad12 [Misc] Update ShareGPT Dataset Sampling in Serving Benchmark (#4279) 2024-04-24 09:49:13 -07:00
3cd9b5bb2d [Core][Distributed] use existing torch.cuda.device (#4318)
[Core][Distributed] use existing torch.cuda.device context manager (#4318)
2024-04-24 09:00:20 -07:00
468d761b32 [Misc] Reduce supported Punica dtypes (#4304) 2024-04-23 18:54:33 -07:00
e4bf860a54 [CI][Build] change pynvml to nvidia-ml-py (#4302) 2024-04-23 18:33:12 -07:00
91f50a6fe2 [Core][Distributed] use cpu/gloo to initialize pynccl (#4248) 2024-04-23 18:32:19 -07:00
79a268c4ab [BUG] fixed fp8 conflict with aqlm (#4307)
Fixes fp8 iterface which broke in AQLM merge.
2024-04-23 18:26:33 -07:00
eace8bf0b9 [Kernel] FP8 support for MoE kernel / Mixtral (#4244)
This PR is the first step towards fixing https://github.com/vllm-project/vllm/pull/3208

It implements dynamic per-tensor scaling (see https://github.com/vllm-project/vllm/pull/4118), so users do not need to compute activation scales on a calibration dataset and they also don't need to convert their model checkpoints. It is enough to specify the `quantization="fp8"` argument. You can try out the PR like this:

```python
from vllm import LLM, SamplingParams

prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="mistralai/Mixtral-8x7B-Instruct-v0.1", tensor_parallel_size=2, quantization="fp8")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```

**Performance**: For this PR, the focus is on making the code clean (while still trying to get reasonable performance), there is a bunch of optimizations that we will submit as a follow up PR that significantly improve the performance (similar to the numbers in https://github.com/vllm-project/vllm/pull/3954). With this PR, the results are as follows:

<img width="725" alt="Screenshot 2024-04-21 at 1 31 50 PM" src="https://github.com/vllm-project/vllm/assets/113316/d8fe1118-07a0-4d4e-8530-37a77d465a03">


**Accuracy**: The accuracy with this PR on MMLU on `mistralai/Mixtral-8x7B-v0.1` is as follows:

```
|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.7018|±  |0.0036|
| - humanities     |N/A    |none  |     5|acc   |0.6472|±  |0.0065|
| - other          |N/A    |none  |     5|acc   |0.7673|±  |0.0072|
| - social_sciences|N/A    |none  |     5|acc   |0.8099|±  |0.0070|
| - stem           |N/A    |none  |     5|acc   |0.6131|±  |0.0083|
```
this compares favorably with the fp16 results which are
```
|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.7020|±  |0.1313|
| - humanities     |N/A    |none  |     5|acc   |0.6425|±  |0.1349|
| - other          |N/A    |none  |     5|acc   |0.7744|±  |0.1038|
| - social_sciences|N/A    |none  |     5|acc   |0.8131|±  |0.0695|
| - stem           |N/A    |none  |     5|acc   |0.6108|±  |0.1383|
```

Happy hacking!
2024-04-24 01:18:23 +00:00
1e8f4252aa [Bugfix][Frontend] Raise exception when file-like chat template fails to be opened (#4292) 2024-04-23 18:19:03 +00:00
2b7949c1c2 AQLM CUDA support (#3287)
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-04-23 13:59:33 -04:00
62b5166bd4 [CI] Add ccache for wheel builds job (#4281) 2024-04-23 09:51:41 -07:00
d86285a4a4 [Core][Logging] Add last frame information for better debugging (#4278) 2024-04-23 09:45:52 -07:00
d87f39e9a9 [Bugfix] Add init_cached_hf_modules to RayWorkerWrapper (#4286) 2024-04-23 09:28:35 -07:00
d3c8180ac4 [Bugfix] Fixing max token error message for openai compatible server (#4016) 2024-04-23 19:06:29 +08:00
62b8aebc6f [Speculative decoding 7/9] Speculative decoding end-to-end correctness tests. (#3951) 2024-04-23 08:02:36 +00:00
050f285ff6 [Core] Scheduling optimization 2 (#4280) 2024-04-23 08:02:11 +00:00
8f2ea22bde [Core] Some simplification of WorkerWrapper changes (#4183) 2024-04-23 07:49:08 +00:00
0ae11f78ab [Mypy] Part 3 fix typing for nested directories for most of directory (#4161) 2024-04-22 21:32:44 -07:00
34128a697e Fix autodoc directives (#4272)
Co-authored-by: Harry Mellor <hmellor@oxts.com>
2024-04-23 01:53:01 +00:00
c1b4e4157c [Core][Distributed] use absolute path for library file (#4271) 2024-04-22 17:21:48 -07:00
ceaf4ed003 [Doc] Update the SkyPilot doc with serving and Llama-3 (#4276) 2024-04-22 15:34:31 -07:00
ad8d696a99 [Core] Scheduler perf fix (#4270) 2024-04-22 21:11:06 +00:00
3d925165f2 Add example scripts to documentation (#4225)
Co-authored-by: Harry Mellor <hmellor@oxts.com>
2024-04-22 16:36:54 +00:00
1543680691 [Bugfix] Ensure download_weights_from_hf(..) inside loader is using the revision parameter (#4217) 2024-04-22 09:10:48 -07:00
077f0a2e8a [Frontend] Enable support for CPU backend in AsyncLLMEngine. (#3993)
Signed-off-by: Tao He <sighingnow@gmail.com>
2024-04-22 09:19:51 +00:00
e73ed0f1c6 [Bugfix] Fix type annotations in CPU model runner (#4256) 2024-04-22 00:54:16 -07:00
296cdf8ac7 [Misc] Add vision language model support to CPU backend (#3968) 2024-04-22 00:44:16 -07:00
747b1a7147 [Core][Distributed] fix _is_full_nvlink detection (#4233) 2024-04-21 23:04:16 -07:00
95e5b087cf [AMD][Hardware][Misc][Bugfix] xformer cleanup and light navi logic and CI fixes and refactoring (#4129) 2024-04-21 21:57:24 -07:00
a37d815b83 Make initialization of tokenizer and detokenizer optional (#3748)
Co-authored-by: Yun Ding <yunding@nvidia.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-21 22:06:46 +00:00
7f2593b164 [Doc]: Update the doc of adding new models (#4236) 2024-04-21 09:57:08 -07:00
fe7d648fe5 Don't show default value for flags in EngineArgs (#4223)
Co-authored-by: Harry Mellor <hmellor@oxts.com>
2024-04-21 09:15:28 -07:00
cc74b2b232 Updating lm-format-enforcer version and adding links to decoding libraries in docs (#4222) 2024-04-20 08:33:16 +00:00
91528575ec [Frontend] multiple sampling params support (#3570) 2024-04-20 00:11:57 -07:00
a22cdea371 [Kernel][FP8] Initial support with dynamic per-tensor scaling (#4118)
Provide an initial support to FP8 computation. This PR is inspired by HuggingFace TGI: huggingface/text-generation-inference#1726

This feature can be enabled with --quantization fp8 or -q fp8 when launching an engine.

Algorithm:
We still load a model checkpoint in FP16/BF16. After the weights are loaded, Fp8LinearMethod calculates the per-tensor scaling factor of weights and quantizes the weights accordingly. The scaling factor will then be stored for future use. Meanwhile, the per-tensor scaling factor for activations is calculated in every forward pass.

Initial Results:
Currently tested Mistral-7B on 1xH100. With prompt length ~5 and decoding length 128:

BF16: 1.47s
FP8: 1.66s
I'll try to use larger models and try to find more performance bottleneck. Meanwhile, you're welcome to try this code.
2024-04-20 04:28:57 +00:00
682789d402 Fix missing docs and out of sync EngineArgs (#4219)
Co-authored-by: Harry Mellor <hmellor@oxts.com>
2024-04-19 20:51:33 -07:00
138485a82d [Bugfix] Add fix for JSON whitespace (#4189)
Co-authored-by: Ubuntu <ubuntu@ip-172-31-13-147.ec2.internal>
2024-04-19 20:49:22 -07:00
bc9df1571b Pass tokenizer_revision when getting tokenizer in openai serving (#4214) 2024-04-19 17:13:56 -07:00
15b86408a8 [Misc] add nccl in collect env (#4211) 2024-04-19 19:44:51 +00:00
7be4f5628f [Bugfix][Core] Restore logging of stats in the async engine (#4150) 2024-04-19 08:08:26 -07:00
8f20fc04bf [Misc] fix docstrings (#4191)
Co-authored-by: Zhong Wang <wangzhong@infini-ai.com>
2024-04-19 08:18:33 +00:00
221d93ecbf Bump version of 0.4.1 (#4177) 2024-04-19 01:00:22 -07:00
d17c8477f1 [Bugfix] Fix LoRA loading check (#4138)
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-04-19 00:59:54 -07:00
a134ef6f5e Support eos_token_id from generation_config.json (#4182) 2024-04-19 04:13:36 +00:00
8a7a3e4436 [Core] add an option to log every function call to for debugging hang/crash in distributed inference (#4079)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-18 16:15:12 -07:00
8f9c28fd40 [Bugfix] Fix CustomAllreduce nvlink topology detection (#3974)
[Bugfix] Fix CustomAllreduce pcie nvlink topology detection (#3974) (#4159)
2024-04-18 15:32:47 -07:00
cd2f63fb36 [CI/CD] add neuron docker and ci test scripts (#3571) 2024-04-18 15:26:01 -07:00
87fa80c91f [Misc] Bump transformers to latest version (#4176) 2024-04-18 14:36:39 -07:00
e1bb2fd52d [Bugfix] Support logprobs when using guided_json and other constrained decoding fields (#4149) 2024-04-18 21:12:55 +00:00
705578ae14 [Docs] document that Meta Llama 3 is supported (#4175) 2024-04-18 10:55:48 -07:00
e8cc7967ff [Bugfix][Kernel] allow non-power-of-two head sizes in prefix prefill (#4128) 2024-04-18 00:51:28 -07:00
53b018edcb [Bugfix] Get available quantization methods from quantization registry (#4098) 2024-04-18 00:21:55 -07:00
66ded03067 Allow model to be served under multiple names (#2894)
Co-authored-by: Alexandre Payot <alexandrep@graphcore.ai>
2024-04-18 00:16:26 -07:00
6dc1fc9cfe [Core] nccl integrity check and test (#4155)
[Core] Add integrity check during initialization; add test for it (#4155)
2024-04-17 22:28:52 -07:00
533d2a1f39 [Typing] Mypy typing part 2 (#4043)
Co-authored-by: SangBin Cho <sangcho@sangcho-LT93GQWG9C.local>
2024-04-17 17:28:43 -07:00
a53222544c [Kernel] Add punica dimension for Swallow-MS-7B LoRA (#4134) 2024-04-17 10:02:45 -07:00
fe3b5bbc23 [Bugfix] fix output parsing error for trtllm backend (#4137)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-17 11:07:23 +00:00
8438e0569e [Core] RayWorkerVllm --> WorkerWrapper to reduce duplication (#4024)
[Core] replace narrow-usage RayWorkerVllm to general WorkerWrapper to reduce code duplication (#4024)
2024-04-17 08:34:33 +00:00
11d652bd4f [CI] Move CPU/AMD tests to after wait (#4123) 2024-04-16 22:53:26 -07:00
d150e4f89f [Misc] [CI] Fix CI failure caught after merge (#4126) 2024-04-16 17:56:01 -07:00
e95cd87959 [Speculative decoding 6/9] Integrate speculative decoding with LLMEngine (#3894) 2024-04-16 13:09:21 -07:00
69e1d2fb69 [Core] Refactor model loading code (#4097) 2024-04-16 11:34:39 -07:00
05434764cd LM Format Enforcer Guided Decoding Support (#3868)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-16 05:54:57 +00:00
4e7ee664e2 [Core] Fix engine-use-ray broken (#4105) 2024-04-16 05:24:53 +00:00
37e84a403d [Typing] Fix Sequence type GenericAlias only available after Python 3.9. (#4092) 2024-04-15 14:47:31 -07:00
4695397dcf [Bugfix] Fix ray workers profiling with nsight (#4095) 2024-04-15 14:24:45 -07:00
d619ae2d19 [Doc] Add better clarity for tensorizer usage (#4090)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-15 13:28:25 -07:00
eb46fbfda2 [Core] Simplifications to executor classes (#4071) 2024-04-15 13:05:09 -07:00
0003e9154b [Misc][Minor] Fix CPU block num log in CPUExecutor. (#4088) 2024-04-15 08:35:55 -07:00
e11e200736 [Bugfix] Fix filelock version requirement (#4075) 2024-04-14 21:50:08 -07:00
Roy
8db1bf32f8 [Misc] Upgrade triton to 2.2.0 (#4061) 2024-04-14 17:43:54 -07:00
aceb17cf2d [Docs] document that mixtral 8x22b is supported (#4073) 2024-04-14 14:35:55 -07:00
563c54f760 [BugFix] Fix tensorizer extra in setup.py (#4072) 2024-04-14 14:12:42 -07:00
2cd6b4f362 [Core] avoid too many cuda context by caching p2p test (#4021) 2024-04-13 23:40:21 -07:00
711a000255 [Frontend] [Core] feat: Add model loading using tensorizer (#3476) 2024-04-13 17:13:01 -07:00
989ae2538d [Kernel] Add punica dimension for Baichuan-13B (#4053) 2024-04-13 07:55:05 -07:00
0a430b4ae2 [Bugfix] fix_small_bug_in_neuron_executor (#4051) 2024-04-13 07:54:03 -07:00
ec8e3c695f [Bugfix] fix_log_time_in_metrics (#4050) 2024-04-13 07:52:36 -07:00
98afde19fc [Core][Distributed] improve logging for init dist (#4042) 2024-04-13 07:12:53 -07:00
5c2e66e487 [Bugfix] More type hint fixes for py 3.8 (#4039) 2024-04-12 21:07:04 -07:00
546e721168 [CI/Test] expand ruff and yapf for all supported python version (#4037) 2024-04-13 01:43:37 +00:00
b8aacac31a [Bugfix] Fix LoRA bug (#4032) 2024-04-12 16:56:37 -07:00
d04973ad54 Fix triton compilation issue (#3984)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-12 16:41:26 -07:00
fbb9d9eef4 [Core] fix custom allreduce default value (#4040) 2024-04-12 16:40:39 -07:00
09473ee41c [mypy] Add mypy type annotation part 1 (#4006) 2024-04-12 14:35:50 -07:00
d4ec9ffb95 [Misc] Fix typo in scheduler.py (#4022) 2024-04-12 13:56:04 -07:00
96b6a6d790 [Bugfix] fix type hint for py 3.8 (#4036) 2024-04-12 19:35:44 +00:00
36729bac13 [Test] Test multiple attn backend for chunked prefill. (#4023) 2024-04-12 09:56:57 -07:00
7fd3949a0b [Frontend][Core] Move merge_async_iterators to utils (#4026) 2024-04-12 05:30:54 +00:00
1096717ae9 [Core] Support LoRA on quantized models (#4012) 2024-04-11 21:02:44 -07:00
c2b4a1bce9 [Doc] Add typing hints / mypy types cleanup (#3816)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-11 17:17:21 -07:00
e46a60aa4c [BugFix] Fix handling of stop strings and stop token ids (#3672) 2024-04-11 15:34:12 -07:00
1e96c3341a Add extra punica sizes to support bigger vocabs (#4015) 2024-04-11 22:18:57 +00:00
95e7d4a97c Fix echo/logprob OpenAI completion bug (#3441)
Co-authored-by: Dylan Hawk <dylanwawk@gmail.com>
2024-04-11 22:15:50 +00:00
559eb852f8 [Core] init_distributed_environment align with init_process_group(#4014)
[Core][Distributed] make init_distributed_environment compatible with init_process_group (#4014)
2024-04-11 14:00:48 -07:00
a10d3056da [Core] Set linear_weights directly on the layer (#3977) 2024-04-11 16:35:51 -04:00
8afca50889 [Hardware][Intel] Isolate CPUModelRunner and ModelRunner for better maintenance (#3824) 2024-04-11 11:56:49 -07:00
08ccee1e83 punica fix-bgmv-kernel-640 (#4007) 2024-04-11 08:59:26 -07:00
c1dc547129 [Kernel] Fused MoE Config for Mixtral 8x22 (#4002) 2024-04-11 07:50:00 -07:00
f3d0bf7589 [Doc][Installation] delete python setup.py develop (#3989) 2024-04-11 03:33:02 +00:00
e9da5a40c6 [Misc] Add indirection layer for custom ops (#3913) 2024-04-10 20:26:07 -07:00
e42df7227d [Test] Add xformer and flash attn tests (#3961)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-11 03:09:50 +00:00
caada5e50a [Core][Model] torch.compile for layernorm in commandr (#3985)
[Core][Model] Use torch.compile to accelerate layernorm in commandr (#3985)
2024-04-11 01:48:26 +00:00
67b4221a61 [Core][5/N] Fully working chunked prefill e2e (#3884) 2024-04-10 17:56:48 -07:00
63e7176f26 [Core][Refactor] move parallel_utils into vllm/distributed (#3950)
[WIP][Core][Refactor] move vllm/model_executor/parallel_utils into vllm/distributed and vllm/device_communicators (#3950)
2024-04-10 15:33:30 -07:00
934d3662f7 [Bugfix] handle hf_config with architectures == None (#3982)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-04-10 22:28:25 +00:00
92cd2e2f21 [Doc] Fix getting stared to use publicly available model (#3963) 2024-04-10 18:05:52 +00:00
e4c4072c94 [Bugfix] Remove key sorting for guided_json parameter in OpenAi compatible Server (#3945) 2024-04-10 10:15:51 -07:00
e35397468f [Doc] Add doc to state our model support policy (#3948)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-10 17:03:02 +00:00
8b317c6dd0 [Model][AMD] ROCm support for 256 head dims for Gemma (#3972) 2024-04-10 08:12:00 -07:00
bd3c144e0b [Bugfix][ROCm] Add numba to Dockerfile.rocm (#3962) 2024-04-10 07:37:17 -07:00
0258b7a94b [Bugfix] handle prompt_logprobs in _apply_min_tokens_penalty (#3876)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2024-04-10 01:39:56 -07:00
b3104b2a10 [Bugfix] Fix logits processor when prompt_logprobs is not None (#3899) 2024-04-10 00:09:36 -07:00
c2e00af523 [Bugfix] fix utils.py/merge_dict func TypeError: 'type' object is not subscriptable (#3955)
Co-authored-by: tianyi_zhao <tianyi.zhao@transwarp.io>
2024-04-10 04:49:11 +00:00
c013d32c75 [Benchmark] Add cpu options to bench scripts (#3915) 2024-04-09 21:30:03 -07:00
11dd6ebb89 [Misc] Avoid loading incorrect LoRA config (#3777) 2024-04-09 19:47:15 -07:00
6c0b04515f [ROCm][Hardware][AMD] Use Triton Kernel for default FA on ROCm (#3643)
Co-authored-by: jpvillam <jpvillam@amd.com>
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-09 15:10:47 -07:00
e23a43aef8 [Bugfix] Fix KeyError on loading GPT-NeoX (#3925) 2024-04-09 12:11:31 -07:00
e7c7067b45 [Misc] [Core] Implement RFC "Augment BaseExecutor interfaces to enable hardware-agnostic speculative decoding" (#3837) 2024-04-09 11:44:15 -07:00
6d592eb430 [Core] separate distributed_init from worker (#3904) 2024-04-09 08:49:02 +00:00
Roy
d036198e23 [BugFix][Model] Fix commandr RoPE max_position_embeddings (#3919) 2024-04-09 06:17:21 +08:00
59a6abf3c9 [Hotfix][CI/Build][Kernel] CUDA 11.8 does not support layernorm optimizations (#3782) 2024-04-08 14:31:02 -07:00
bc0c0192d1 [Bugfix] Enable Proper attention_bias Usage in Llama Model Configuration (#3767)
Co-authored-by: roy <jasonailu87@gmail.com>
2024-04-08 19:42:35 +00:00
f46864d68d [Bugfix] Added Command-R GPTQ support (#3849)
Co-authored-by: Egor Tolmachev <t333ga@gmail.com>
2024-04-08 14:59:38 +00:00
b4543c8f6b [Model] add minicpm (#3893) 2024-04-08 18:28:36 +08:00
0ce0539d47 [Bugfix] Fix Llava inference with Tensor Parallelism. (#3883) 2024-04-07 22:54:13 +08:00
2f19283549 [Core] latency optimization (#3890) 2024-04-06 19:14:06 -07:00
95baec828f [Core] enable out-of-tree model register (#3871) 2024-04-06 17:11:41 -07:00
e4be7d70bb [CI/Benchmark] add more iteration and use median for robust latency benchmark (#3889) 2024-04-06 21:32:30 +00:00
54951ac4bf [Bugfix] Fix incorrect output on OLMo models in Tensor Parallelism (#3869) 2024-04-05 12:02:09 -07:00
18de883489 [Chunked Prefill][4/n] Chunked prefill scheduler. (#3853) 2024-04-05 10:17:58 -07:00
1d7c940d74 Add option to completion API to truncate prompt tokens (#3144) 2024-04-05 10:15:42 -07:00
cfaf49a167 [Misc] Define common requirements (#3841) 2024-04-05 00:39:17 -07:00
9edec652e2 [Bugfix] Fixing requirements.txt (#3865) 2024-04-04 23:46:01 -07:00
e0dd4d3589 [Misc] Fix linter issues in examples/fp8/quantizer/quantize.py (#3864) 2024-04-04 21:57:33 -07:00
e5043a3e75 [Misc] Add pytest marker to opt-out of global test cleanup (#3863) 2024-04-04 21:54:16 -07:00
d03d64fd2e [CI/Build] refactor dockerfile & fix pip cache
[CI/Build] fix pip cache with vllm_nccl & refactor dockerfile to build wheels (#3859)
2024-04-04 21:53:16 -07:00
78107fa091 [Doc]Add asynchronous engine arguments to documentation. (#3810)
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-04-04 21:52:01 -07:00
c391e4b68e [Core] improve robustness of pynccl (#3860) 2024-04-04 16:52:12 -07:00
9117f892f0 [Model] Cohere CommandR+ (#3829) 2024-04-04 13:31:49 -07:00
db2a6a41e2 [Hardware][CPU] Update cpu torch to match default of 2.2.1 (#3854) 2024-04-04 19:49:49 +00:00
ca81ff5196 [Core] manage nccl via a pypi package & upgrade to pt 2.2.1 (#3805) 2024-04-04 10:26:19 -07:00
b7782002e1 [Benchmark] Refactor sample_requests in benchmark_throughput (#3613)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-04 09:56:22 +00:00
819a309c0f [Bugfix] Fix args in benchmark_serving (#3836)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-04-04 07:41:05 +00:00
aabe8f40f2 [Core] [Frontend] Make detokenization optional (#3749)
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-04-03 21:52:18 -07:00
498eb5cfa3 [Bugfix] Add kv_scale input parameter to CPU backend (#3840) 2024-04-04 04:33:08 +00:00
537ee25f43 [Core] Enable hf_transfer by default if available (#3817) 2024-04-04 04:02:43 +00:00
294f8f6665 [BugFix] Pass tokenizer_config to local_tokenizer_group (#3754)
Signed-off-by: Tao He <sighingnow@gmail.com>
2024-04-03 20:31:46 -07:00
b95047f2da [Misc] Publish 3rd meetup slides (#3835) 2024-04-03 15:46:10 -07:00
2ff767b513 Enable scaled FP8 (e4m3fn) KV cache on ROCm (AMD GPU) (#3290)
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: HaiShaw <hixiao@gmail.com>
Co-authored-by: AdrianAbeyta <Adrian.Abeyta@amd.com>
Co-authored-by: Matthew Wong <Matthew.Wong2@amd.com>
Co-authored-by: root <root@gt-pla-u18-08.pla.dcgpu>
Co-authored-by: mawong-amd <156021403+mawong-amd@users.noreply.github.com>
Co-authored-by: ttbachyinsda <ttbachyinsda@outlook.com>
Co-authored-by: guofangze <guofangze@kuaishou.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: jacobthebanana <50071502+jacobthebanana@users.noreply.github.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-03 14:15:55 -07:00
3dcb3e8b98 [3/N] Refactor scheduler for chunked prefill scheduling (#3550) 2024-04-03 14:13:49 -07:00
c64cf38673 [Doc] Update contribution guidelines for better onboarding (#3819) 2024-04-03 07:31:43 +00:00
76b889bf1d [Doc] Update README.md (#3806) 2024-04-02 23:11:10 -07:00
c9b506dad4 [BugFix] Use different mechanism to get vllm version in is_cpu() (#3804) 2024-04-02 23:06:25 -07:00
5757d90e26 [Speculative decoding] Adding configuration object for speculative decoding (#3706)
Co-authored-by: Lily Liu <lilyliupku@gmail.com>
2024-04-03 00:40:57 +00:00
a3c226e7eb [CI/Build] 0.4.0.post1, fix sm 7.0/7.5 binary (#3803) 2024-04-02 12:57:04 -07:00
b321d4881b [Bugfix] Add __init__.py files for vllm/core/block/ and vllm/spec_decode/ (#3798) 2024-04-02 12:35:31 -07:00
ad6eca408b Fix early CUDA init via get_architecture_class_name import (#3770)
Signed-off-by: Lei Wen <wenlei03@qiyi.com>
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
2024-04-02 11:56:26 -07:00
205b94942e [CI/Build] fix TORCH_CUDA_ARCH_LIST in wheel build (#3801) 2024-04-02 11:54:33 -07:00
3bec41f41a [Doc] Fix vLLMEngine Doc Page (#3791) 2024-04-02 09:49:37 -07:00
0739b1947f [Frontend][Bugfix] allow using the default middleware with a root path (#3788)
Co-authored-by: A-Mahla <>
2024-04-02 01:20:28 -07:00
77a6572aa5 [HotFix] [CI/Build] Minor fix for CPU backend CI (#3787) 2024-04-01 22:50:53 -07:00
0e3f06fe9c [Hardware][Intel] Add CPU inference backend (#3634)
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
Co-authored-by: Yuan Zhou <yuan.zhou@intel.com>
2024-04-01 22:07:30 -07:00
eb69d68804 [Misc] [CI/Build] Speed up block manager CPU-only unit tests ~10x by opting-out of GPU cleanup (#3783) 2024-04-02 00:49:51 +00:00
7d4e1b85e7 [Misc] Add support for new autogptq checkpoint_format (#3689)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-04-01 19:32:01 -04:00
93deb0b38f [Speculative decoding 4/9] Lookahead scheduling for speculative decoding (#3250) 2024-04-01 22:55:24 +00:00
ccb58b23e6 [Misc] Fix Benchmark TTFT Calculation for Chat Completions (#3768) 2024-04-01 15:24:30 -07:00
49782fcb76 [Misc] Some minor simplifications to detokenization logic (#3670)
Some simplifications made for clarity.

Also moves detokenization-related functions from tokenizer.py to detokenizer.py.
2024-04-01 13:22:06 -07:00
f03cc667a0 [Misc] Minor fixes in requirements.txt (#3769) 2024-04-01 10:15:48 +00:00
563c1d7ec5 [CI/Build] Make Marlin Tests Green (#3753) 2024-03-30 19:18:34 -07:00
9c82a1bec3 [Doc] Update installation doc (#3746)
[Doc] Update installation doc for build from source and explain the dependency on torch/cuda version (#3746)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-03-30 16:34:38 -07:00
b6d103542c [Kernel] Layernorm performance optimization (#3662) 2024-03-30 14:26:38 -07:00
51c31bc10c CMake build elf without PTX (#3739) 2024-03-30 01:53:08 +00:00
3ad438c66f Fix build when nvtools is missing (#3698) 2024-03-29 18:52:39 -07:00
203d4f82ac [Core][Bugfix] cache len of tokenizer (#3741) 2024-03-29 18:46:39 -07:00
991143cfcd [BugFix] Use consistent logger everywhere (#3738) 2024-03-29 23:26:44 +00:00
8b2d3cbc1b usage lib get version another way (#3735) 2024-03-29 15:57:08 -07:00
9765b5c406 [ROCm][Bugfix] Fixed several bugs related to rccl path and attention selector logic (#3699) 2024-03-29 14:52:36 -07:00
430530fc18 bump version to v0.4.0 (#3712) 2024-03-29 12:28:33 -07:00
97356f3c7e [Bugfix] Command-R Max Model Length (#3727) 2024-03-29 12:27:51 -07:00
Roy
f510395bbf [BugFix][Frontend] Fix completion logprobs=0 error (#3731) 2024-03-29 09:38:21 -07:00
Roy
6110c39dc8 [BugFix] Fix tokenizer out of vocab size (#3685) 2024-03-29 08:18:59 -07:00
d8658c8cc1 Usage Stats Collection (#2852) 2024-03-28 22:16:12 -07:00
7bc94a0fdd add ccache to docker build image (#3704) 2024-03-28 22:14:24 -07:00
756b30a5f3 [Core][Test] move local_rank to the last arg with default value(#3711)
[Core][Test] move local_rank to the last arg with default value to keep api compatible (#3711)
2024-03-28 21:19:45 -07:00
395aa823ea [Misc] Minor type annotation fix (#3716) 2024-03-28 21:12:24 -07:00
26422e477b [Test] Make model tests run again and remove --forked from pytest (#3631)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-03-28 21:06:40 -07:00
f342153b48 Revert "bump version to v0.4.0" (#3708) 2024-03-28 18:49:42 -07:00
27a57cad52 bump version to v0.4.0 (#3705) 2024-03-28 18:26:51 -07:00
98a42e7078 [Benchmark] Change mii to use persistent deployment and support tensor parallel (#3628) 2024-03-28 17:33:52 -07:00
0267fef52a [Core] fix del of communicator (#3702) 2024-03-29 00:24:58 +00:00
4716a32dd4 fix logging msg for block manager (#3701) 2024-03-28 23:29:55 +00:00
c0935c96d3 [Bugfix] Set enable_prefix_caching=True in prefix caching example (#3703) 2024-03-28 16:26:30 -07:00
cb40b3ab6b [Kernel] Add MoE Triton kernel configs for A100 40GB (#3700) 2024-03-28 15:26:24 -07:00
Roy
515386ef3c [Core] Support multi-node inference(eager and cuda graph) (#3686) 2024-03-28 15:01:55 -07:00
a4075cba4d [CI] Add test case to run examples scripts (#3638) 2024-03-28 14:36:10 -07:00
96aa014d1e fix benchmark format reporting in buildkite (#3693) 2024-03-28 14:35:16 -07:00
1715056fef [Bugfix] Update neuron_executor.py to add optional vision_language_config (#3695) 2024-03-28 10:43:34 -07:00
b51c1cc9d2 [2/N] Chunked prefill data update (#3538) 2024-03-28 10:06:01 -07:00
ce567a2926 [Kernel] DBRX Triton MoE kernel H100 (#3692) 2024-03-28 10:05:34 -07:00
d6ea427f04 [Model] Add support for Qwen2MoeModel (#3346) 2024-03-28 15:19:59 +00:00
14ccd94c89 [Core][Bugfix]Refactor block manager for better testability (#3492) 2024-03-27 23:59:28 -07:00
8267b06c30 [Kernel] Add Triton MoE kernel configs for DBRX on A100 (#3679) 2024-03-27 22:22:25 -07:00
3492859b68 [CI/Build] update default number of jobs and nvcc threads to avoid overloading the system (#3675) 2024-03-28 00:18:54 -04:00
098e1776ba [Model] Add support for xverse (#3610)
Co-authored-by: willhe <hexin@xverse.cn>
Co-authored-by: root <root@localhost.localdomain>
2024-03-27 18:12:54 -07:00
Roy
10e6322283 [Model] Fix and clean commandr (#3671) 2024-03-28 00:20:00 +00:00
6d9aa00fc4 [Docs] Add Command-R to supported models (#3669) 2024-03-27 15:20:00 -07:00
1182607e18 Add support for Cohere's Command-R model (#3433)
Co-authored-by: José Maria Pombal <jose.pombal@unbabel.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-03-27 14:19:32 -07:00
45b6ef6513 feat(benchmarks): Add Prefix Caching Benchmark to Serving Benchmark (#3277) 2024-03-27 13:39:26 -07:00
1956931436 [Misc] add the "download-dir" option to the latency/throughput benchmarks (#3621) 2024-03-27 13:39:05 -07:00
e24336b5a7 [Model] Add support for DBRX (#3660) 2024-03-27 13:01:46 -07:00
d18f4e73f3 [Bugfix] [Hotfix] fix nccl library name (#3661) 2024-03-27 17:23:54 +00:00
82c540bebf [Bugfix] More faithful implementation of Gemma (#3653) 2024-03-27 09:37:18 -07:00
8f44facddd [Core] remove cupy dependency (#3625) 2024-03-27 00:33:26 -07:00
e66b629c04 [Misc] Minor fix in KVCache type (#3652) 2024-03-26 23:14:06 -07:00
76879342a3 [Doc]add lora support (#3649) 2024-03-27 02:06:46 +00:00
566b57c5c4 [Kernel] support non-zero cuda devices in punica kernels (#3636) 2024-03-27 00:37:42 +00:00
0dc72273b8 [BugFix] Fix ipv4 address parsing regression (#3645) 2024-03-26 14:39:44 -07:00
a979d9771e [Bugfix] Fix ipv6 address parsing bug (#3641) 2024-03-26 11:58:20 -07:00
8af890a865 Enable more models to inference based on LoRA (#3382)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-03-25 18:09:31 -07:00
dfeb2ecc3a [Misc] Include matched stop string/token in responses (#2976)
Co-authored-by: Sahil Suneja <sahilsuneja@gmail.com>
2024-03-25 17:31:32 -07:00
3a243095e5 Optimize _get_ranks in Sampler (#3623) 2024-03-25 16:03:02 -07:00
64172a976c [Feature] Add vision language model support. (#3042) 2024-03-25 14:16:30 -07:00
f408d05c52 hotfix isort on logprobs ranks pr (#3622) 2024-03-25 11:55:46 -07:00
0b4997e05c [Bugfix] API stream returning two stops (#3450)
Co-authored-by: Dylan Hawk <dylanwawk@gmail.com>
2024-03-25 10:14:34 -07:00
c13ad1b7bd feat: implement the min_tokens sampling parameter (#3124)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-03-25 10:14:26 -07:00
819924e749 [Core] Adding token ranks along with logprobs (#3516)
Co-authored-by: Swapnil Parekh <swapnilp@ibm.com>
2024-03-25 10:13:10 -07:00
01bfb22b41 [CI] Try introducing isort. (#3495) 2024-03-25 07:59:47 -07:00
e67c295b0c [Bugfix] fix automatic prefix args and add log info (#3608) 2024-03-25 05:35:22 -07:00
925f3332ca [Core] Refactor Attention Take 2 (#3462) 2024-03-25 04:39:33 +00:00
b0dfa91dd7 [Model] Add starcoder2 awq support (#3569) 2024-03-24 21:07:36 -07:00
56a8652f33 [Bugfix] store lock file in tmp directory (#3578)" (#3599)
Co-authored-by: youkaichao <youkaichao@126.com>
2024-03-24 20:06:50 -07:00
6d93d35308 [BugFix] tensor.get_device() -> tensor.device (#3604) 2024-03-24 19:01:13 -07:00
837e185142 [CI/Build] fix flaky test (#3602) 2024-03-24 17:43:05 -07:00
42bc386129 [CI/Build] respect the common environment variable MAX_JOBS (#3600) 2024-03-24 17:04:00 -07:00
8b268a46a7 [CI] typo fix: is_hip --> is_hip() (#3595) 2024-03-24 16:03:06 -07:00
41deac4a3d [BugFix] 1D query fix for MoE models (#3597) 2024-03-24 16:00:16 -07:00
af9e53496f [BugFix] Fix Falcon tied embeddings (#3590)
Co-authored-by: 44670 <44670@users.noreply.github.com>
2024-03-24 06:34:01 -07:00
f8a12ecc7f [Misc] Bump transformers version (#3592) 2024-03-24 06:32:45 -07:00
3c5ab9b811 [Misc] Fix BLOOM copyright notice (#3591) 2024-03-23 23:30:56 -07:00
743a0b7402 [Bugfix] use SoftLockFile instead of LockFile (#3578) 2024-03-23 11:43:11 -07:00
bfdb1ba5c3 [Core] Improve detokenization performance for prefill (#3469)
Co-authored-by: MeloYang <meloyang05@gmail.com>
2024-03-22 13:44:12 -07:00
cf2f084d56 Dynamic scheduler delay to improve ITL performance (#3279)
Co-authored-by: Jan van Lunteren <jvl@zurich.ibm.com>
2024-03-22 12:28:14 -07:00
f721096d48 [BugFix] Some fixes for custom allreduce kernels (#2760) 2024-03-21 23:02:58 -07:00
e90fc21f2e [Hardware][Neuron] Refactor neuron support (#3471) 2024-03-22 01:22:17 +00:00
Roy
ea5f14e6ff [Bugfix][Model] Fix Qwen2 (#3554) 2024-03-22 00:18:58 +00:00
b7050ca7df [BugFix] gemma loading after quantization or LoRA. (#3553) 2024-03-21 13:16:57 -07:00
c188ecb080 [Misc] Bump up transformers to v4.39.0 & Remove StarCoder2Config (#3551)
Co-authored-by: Roy <jasonailu87@gmail.com>
Co-authored-by: Roger Meier <r.meier@siemens.com>
2024-03-21 07:58:12 -07:00
Roy
865732342b [Misc][Log] Add log for tokenizer length not equal to vocabulary size (#3500) 2024-03-21 18:07:48 +08:00
4c07dd28c0 [🚀 Ready to be merged] Added support for Jais models (#3183) 2024-03-21 09:45:24 +00:00
3bbff9e5ab Fix 1D query issue from _prune_hidden_states (#3539) 2024-03-21 08:49:06 +00:00
6ebd02bdef [PREFIX CACHING FOLLOW UP] OrderedDict-based evictor (#3431)
Co-authored-by: rsnm2 <rshaw@neuralmagic.com>
Co-authored-by: Luka <luka@paperspace>
2024-03-20 23:20:04 -07:00
523e30ea0c [BugFix] Hot fix in setup.py for neuron build (#3537) 2024-03-20 17:59:52 -07:00
Roy
f1c0fc3919 Migrate logits computation and gather to model_runner (#3233) 2024-03-20 23:25:01 +00:00
6e435de766 [1/n][Chunked Prefill] Refactor input query shapes (#3236) 2024-03-20 14:46:05 -07:00
426ec4ec67 [1/n] Triton sampling kernel (#3186)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-03-20 14:45:08 -07:00
80e254834d [Bugfix] Fix ROCm support in CMakeLists.txt (#3534) 2024-03-20 21:05:03 +00:00
ba8ae1d84f Check for _is_cuda() in compute_num_jobs (#3481) 2024-03-20 10:06:56 -07:00
84eaa68425 Abort when nvcc command is not found in the PATH (#3527) 2024-03-20 09:28:29 -07:00
5ee14494e4 [Misc] Remove cache stream and cache events (#3461) 2024-03-20 00:38:53 -07:00
4ad521d8b5 [Core] Add generic typing to LRUCache (#3511) 2024-03-20 00:36:09 -07:00
9474e89ba4 [PREFIX CACHING FOLLOW UP] A bunch of fixes to block allocator performance when automatic prefix caching is disabled (#3357)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-03-20 00:11:11 -07:00
20478c4d3a Use lru_cache for some environment detection utils (#3508) 2024-03-19 21:34:15 +00:00
63e8b28a99 [Doc] minor fix of spelling in amd-installation.rst (#3506) 2024-03-19 20:32:30 +00:00
cc63d03fbb Revert "[Core] Cache some utils" (#3507) 2024-03-19 13:22:58 -07:00
2a60c9bd17 [Doc] minor fix to neuron-installation.rst (#3505) 2024-03-19 13:21:35 -07:00
c614cfee58 Update dockerfile with ModelScope support (#3429) 2024-03-19 10:54:59 -07:00
7341c77d69 [BugFix] Avoid initializing CUDA too early (#3487) 2024-03-18 23:05:20 -07:00
ef65dcfa6f [Doc] Add docs about OpenAI compatible server (#3288) 2024-03-18 22:05:34 -07:00
6a9c583e73 [Core] print error before deadlock (#3459) 2024-03-19 04:06:23 +00:00
b37cdce2b1 [Core] Cache some utils (#3474) 2024-03-18 17:14:26 -07:00
b30880a762 [Misc] Update README for the Third vLLM Meetup (#3479) 2024-03-18 15:58:38 -07:00
49eedea373 [Core] Zero-copy asdict for InputMetadata (#3475) 2024-03-18 22:56:40 +00:00
9fdf3de346 Cmake based build system (#2830) 2024-03-18 15:38:33 -07:00
c0c17d4896 [Misc] Fix PR Template (#3478) 2024-03-18 15:00:31 -07:00
097aa0ea22 [CI/Build] Fix Bad Import In Test (#3473) 2024-03-18 20:28:00 +00:00
482b0adf1b [Testing] Add test_config.py to CI (#3437) 2024-03-18 12:48:45 -07:00
8c654c045f CI: Add ROCm Docker Build (#2886) 2024-03-18 19:33:47 +00:00
9101d832e6 [Bugfix] Make moe_align_block_size AMD-compatible (#3470) 2024-03-18 11:26:24 -07:00
93348d9458 [CI] Shard tests for LoRA and Kernels to speed up (#3445) 2024-03-17 14:56:30 -07:00
abfc4f3387 [Misc] Use dataclass for InputMetadata (#3452)
Co-authored-by: youkaichao <youkaichao@126.com>
2024-03-17 10:02:46 +00:00
6b78837b29 Fix setup.py neuron-ls issue (#2671) 2024-03-16 16:00:25 -07:00
120157fd2a Support arbitrary json_object in OpenAI and Context Free Grammar (#3211) 2024-03-16 13:35:27 -07:00
8e67598aa6 [Misc] fix line length for entire codebase (#3444) 2024-03-16 00:36:29 -07:00
ad50bf4b25 fix lint 2024-03-15 22:23:38 -07:00
cf6ff18246 Fix Baichuan chat template (#3340) 2024-03-15 21:02:12 -07:00
14e3f9a1b2 Replace lstrip() with removeprefix() to fix Ruff linter warning (#2958) 2024-03-15 21:01:30 -07:00
3123f15138 Fixes the incorrect argument in the prefix-prefill test cases (#3246) 2024-03-15 20:58:10 -07:00
413366e9a2 [Misc] PR templates (#3413)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-03-15 18:25:51 -07:00
10585e035e Removed Extraneous Print Message From OAI Server (#3440) 2024-03-16 00:35:36 +00:00
fb96c1e98c Asynchronous tokenization (#2879) 2024-03-15 23:37:01 +00:00
8fa7357f2d fix document error for value and v_vec illustration (#3421) 2024-03-15 16:06:09 -07:00
a7af4538ca Fix issue templates (#3436) 2024-03-15 21:26:00 +00:00
604f235937 [Misc] add error message in non linux platform (#3438) 2024-03-15 21:21:37 +00:00
14b8ae02e7 Fixes the misuse/mixuse of time.time()/time.monotonic() (#3220)
Signed-off-by: Tao He <sighingnow@gmail.com>
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-03-15 18:25:43 +00:00
03d37f2441 [Fix] Add args for mTLS support (#3430)
Co-authored-by: declark1 <daniel.clark@ibm.com>
2024-03-15 09:56:13 -07:00
a7c871680e Fix tie_word_embeddings for Qwen2. (#3344) 2024-03-15 09:36:53 -07:00
429284dc37 Fix dist.broadcast stall without group argument (#3408) 2024-03-14 23:25:05 -07:00
253a98078a Add chat templates for ChatGLM (#3418) 2024-03-14 23:19:22 -07:00
21539e6856 Add chat templates for Falcon (#3420) 2024-03-14 23:19:02 -07:00
b522c4476f [Misc] add HOST_IP env var (#3419)
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-03-14 21:32:52 -07:00
78b6c4845a Dynamically configure shared memory size for moe_align_block_size_kernel (#3376) 2024-03-14 18:18:07 -07:00
b983ba35bd fix marlin config repr (#3414) 2024-03-14 16:26:19 -07:00
54be8a0be2 Fix assertion failure in Qwen 1.5 with prefix caching enabled (#3373)
Co-authored-by: Cade Daniel <edacih@gmail.com>
2024-03-14 13:56:57 -07:00
dfc77408bd [issue templates] add some issue templates (#3412) 2024-03-14 13:16:00 -07:00
c17ca8ef18 Add args for mTLS support (#3410)
Co-authored-by: Daniel Clark <daniel.clark@ibm.com>
2024-03-14 13:11:45 -07:00
06ec486794 Install flash_attn in Docker image (#3396) 2024-03-14 10:55:54 -07:00
8fe8386591 [Kernel] change benchmark script so that result can be directly used; tune moe kernel in A100/H100 with tp=2,4,8 (#3389) 2024-03-14 08:11:48 +00:00
a37415c31b allow user to chose which vllm's merics to display in grafana (#3393) 2024-03-14 06:35:13 +00:00
81653d9688 [Hotfix] [Debug] test_openai_server.py::test_guided_regex_completion (#3383) 2024-03-13 17:02:21 -07:00
eeab52a4ff [FIX] Simpler fix for async engine running on ray (#3371) 2024-03-13 14:18:40 -07:00
c33afd89f5 Fix lint (#3388) 2024-03-13 13:56:49 -07:00
7e9bd08f60 Add batched RoPE kernel (#3095) 2024-03-13 13:45:26 -07:00
ae0ccb4017 Add missing kernel for CodeLlama-34B on A/H100 (no tensor parallelism) when using Multi-LoRA. (#3350) 2024-03-13 12:18:25 -07:00
739c350c19 [Minor Fix] Use cupy-cuda11x in CUDA 11.8 build (#3256) 2024-03-13 09:43:24 -07:00
ba8dc958a3 [Minor] Fix bias in if to remove ambiguity (#3259) 2024-03-13 09:16:55 -07:00
e221910e77 add hf_transfer to requirements.txt (#3031) 2024-03-12 23:33:43 -07:00
b167109ba1 [Fix] Fix quantization="gptq" when using Marlin (#3319)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-03-12 22:51:42 -07:00
602358f8a8 Add kernel for GeGLU with approximate GELU (#3337) 2024-03-12 22:06:17 -07:00
49a3c8662b Fixes #1556 double free (#3347) 2024-03-13 00:30:08 +00:00
b0925b3878 docs: Add BentoML deployment doc (#3336)
Signed-off-by: Sherlock113 <sherlockxu07@gmail.com>
2024-03-12 10:34:30 -07:00
654865e21d Support Mistral Model Inference with transformers-neuronx (#3153) 2024-03-11 13:19:51 -07:00
c9415c19d3 [ROCm] Fix warp and lane calculation in blockReduceSum (#3321) 2024-03-11 13:14:07 -07:00
4c922709b6 Add distributed model executor abstraction (#3191) 2024-03-11 11:03:45 -07:00
657061fdce [docs] Add LoRA support information for models (#3299) 2024-03-11 00:54:51 -07:00
2f8844ba08 Re-enable the 80 char line width limit (#3305) 2024-03-10 19:49:14 -07:00
4b59f00e91 [Fix] Fix best_of behavior when n=1 (#3298) 2024-03-10 19:17:46 -07:00
Roy
9e8744a545 [BugFix] Fix get tokenizer when using ray (#3301) 2024-03-10 19:17:16 -07:00
e4a28e5316 [ROCM] Fix blockReduceSum to use correct warp counts for ROCm and CUDA (#3262) 2024-03-10 15:27:45 -07:00
0bba88df03 Enhance lora tests with more layer and rank variations (#3243) 2024-03-09 17:14:16 -08:00
8437bae6ef [Speculative decoding 3/9] Worker which speculates, scores, and applies rejection sampling (#3103) 2024-03-08 23:32:46 -08:00
f48c6791b7 [FIX] Fix prefix test error on main (#3286) 2024-03-08 17:16:14 -08:00
c2c5e0909a Move model filelocks from /tmp/ to ~/.cache/vllm/locks/ dir (#3241) 2024-03-08 13:33:10 -08:00
1cb0cc2975 [FIX] Make flash_attn optional (#3269) 2024-03-08 10:52:20 -08:00
99c3cfb83c [Docs] Fix Unmocked Imports (#3275) 2024-03-08 09:58:01 -08:00
1ece1ae829 [Minor Fix] Fix comments in benchmark_serving (#3252) 2024-03-07 22:22:59 -08:00
c59e120c55 Feature add lora support for Qwen2 (#3177) 2024-03-07 21:58:24 -08:00
d2339d6840 Connect engine healthcheck to openai server (#3260) 2024-03-07 16:38:12 -08:00
b35cc93420 Fix auto prefix bug (#3239) 2024-03-07 16:37:28 -08:00
8cbba4622c Possible fix for conflict between Automated Prefix Caching (#2762) and multi-LoRA support (#1804) (#3263) 2024-03-07 23:03:22 +00:00
385da2dae2 Measure model memory usage (#3120) 2024-03-07 11:42:42 -08:00
2daf23ab0c Separate attention backends (#3005) 2024-03-07 01:45:50 -08:00
cbf4c05b15 Update requirements-dev.txt to include package for benchmarking scripts. (#3181)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-03-07 08:39:28 +00:00
d3c04b6a39 Add GPTQ support for Gemma (#3200) 2024-03-07 08:19:14 +08:00
4cb3b924cd Add tqdm dynamic_ncols=True (#3242) 2024-03-06 22:41:42 +00:00
a33ce60c66 [Testing] Fix core tests (#3224) 2024-03-06 01:04:23 -08:00
24aecf421a [Tests] Add block manager and scheduler tests (#3108) 2024-03-05 18:23:34 -08:00
2efce05dc3 [Fix] Avoid pickling entire LLMEngine for Ray workers (#3207)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-03-06 00:17:20 +00:00
8999ec3c16 Store eos_token_id in Sequence for easy access (#3166) 2024-03-05 15:35:43 -08:00
05af6da8d9 [ROCm] enable cupy in order to enable cudagraph mode for AMD GPUs (#3123)
Co-authored-by: lcskrishna <lollachaitanya@gmail.com>
2024-03-04 18:14:53 -08:00
9a4548bae7 Fix the openai benchmarking requests to work with latest OpenAI apis (#2992)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-03-04 15:51:56 -08:00
ff578cae54 Add health check, make async Engine more robust (#3015)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-03-04 22:01:40 +00:00
22de45235c Push logprob generation to LLMEngine (#3065)
Co-authored-by: Avnish Narayan <avnish@anyscale.com>
2024-03-04 19:54:06 +00:00
76e8a70476 [Minor fix] The domain dns.google may cause a socket.gaierror exception (#3176)
Co-authored-by: guofangze <guofangze@kuaishou.com>
2024-03-04 19:17:12 +00:00
9cbc7e5f3b enable --gpu-memory-utilization in benchmark_throughput.py (#3175)
Co-authored-by: zixiao <shunli.dsl@alibaba-inc.com>
2024-03-04 10:37:58 -08:00
27a7b070db Add document for vllm paged attention kernel. (#2978) 2024-03-04 09:23:34 -08:00
901cf4c52b [Minor Fix] Remove unused code in benchmark_prefix_caching.py (#3171) 2024-03-03 22:48:27 -08:00
d0fae88114 [DOC] add setup document to support neuron backend (#2777) 2024-03-04 01:03:51 +00:00
17c3103c56 Make it easy to profile workers with nsight (#3162)
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-03-03 16:19:13 -08:00
996d095c54 [FIX] Fix styles in automatic prefix caching & add a automatic prefix caching benchmark (#3158) 2024-03-03 14:37:18 -08:00
d65fac2738 Add vLLM version info to logs and openai API server (#3161) 2024-03-02 21:00:29 -08:00
ce4f5a29fb Add Automatic Prefix Caching (#2762)
Co-authored-by: ElizaWszola <eliza@neuralmagic.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-03-02 00:50:01 -08:00
baee28c46c Reorder kv dtype check to avoid nvcc not found error on AMD platform (#3104) 2024-03-02 14:34:48 +08:00
29e70e3e88 allow user chose log level by --log-level instead of fixed 'info'. (#3109)
Co-authored-by: zixiao <shunli.dsl@alibaba-inc.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-03-01 23:28:41 +00:00
82091b864a Bump up to v0.3.3 (#3129) 2024-03-01 12:58:06 -08:00
c0c2335ce0 Integrate Marlin Kernels for Int4 GPTQ inference (#2497)
Co-authored-by: Robert Shaw <114415538+rib-2@users.noreply.github.com>
Co-authored-by: alexm <alexm@neuralmagic.com>
2024-03-01 12:47:51 -08:00
90fbf12540 fix relative import path of protocol.py (#3134)
Co-authored-by: huohuarong <huohuarong@zuoshouyisheng.com>
2024-03-01 19:42:06 +00:00
49d849b3ab docs: Add tutorial on deploying vLLM model with KServe (#2586)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2024-03-01 11:04:14 -08:00
27ca23dc00 Remove exclude_unset in streaming response (#3143) 2024-03-01 09:59:06 -08:00
54d3544784 Fix: Output text is always truncated in some models (#3016) 2024-03-01 07:52:22 +00:00
703e42ee4b Add guided decoding for OpenAI API server (#2819)
Co-authored-by: br3no <breno@veltefaria.de>
Co-authored-by: simon-mo <simon.mo@hey.com>
2024-02-29 22:13:08 +00:00
29a8d6a554 [Fix] Don't deep-copy LogitsProcessors when copying SamplingParams (#3099) 2024-02-29 19:20:42 +00:00
2c08ff23c0 Fix building from source on WSL (#3112) 2024-02-29 11:13:58 -08:00
bfdcfa6a05 Support starcoder2 architecture (#3089) 2024-02-29 00:51:48 -08:00
9289e577ec add cache_config's info to prometheus metrics. (#3100) 2024-02-29 06:15:18 +00:00
a6d471c759 Fix: AttributeError in OpenAI-compatible server (#3018) 2024-02-28 22:04:07 -08:00
01a5d18a53 Add Support for 2/3/8-bit GPTQ Quantization Models (#2330) 2024-02-28 21:52:23 -08:00
929b4f2973 Add LoRA support for Gemma (#3050) 2024-02-28 13:03:28 -08:00
3b7178cfa4 [Neuron] Support inference with transformers-neuronx (#2569) 2024-02-28 09:34:34 -08:00
e46fa5d52e Restrict prometheus_client >= 0.18.0 to prevent errors when importing pkgs (#3070) 2024-02-28 05:38:26 +00:00
a8683102cc multi-lora documentation fix (#3064) 2024-02-27 21:26:15 -08:00
71bcaf99e2 Enable GQA support in the prefix prefill kernels (#3007)
Signed-off-by: Tao He <sighingnow@gmail.com>
2024-02-27 01:14:31 -08:00
8b430d7dea [Minor] Fix StableLMEpochForCausalLM -> StableLmForCausalLM (#3046) 2024-02-26 20:23:50 -08:00
e0ade06d63 Support logit bias for OpenAI API (#3027) 2024-02-27 11:51:53 +08:00
4bd18ec0c7 [Minor] Fix type annotation in fused moe (#3045) 2024-02-26 19:44:29 -08:00
2410e320b3 fix get_ip error in pure ipv6 environment (#2931) 2024-02-26 19:22:16 -08:00
48a8f4a7fd Support Orion model (#2539)
Co-authored-by: zhangdacheng <zhangdacheng@ainirobot.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-02-26 19:17:06 -08:00
Roy
4dd6416faf Fix stablelm (#3038) 2024-02-26 18:31:10 -08:00
Roy
c1c0d00b88 Don't use cupy when enforce_eager=True (#3037) 2024-02-26 17:33:38 -08:00
Roy
d9f726c4d0 [Minor] Remove unused config files (#3039) 2024-02-26 17:25:22 -08:00
d6e4a130b0 [Minor] Remove gather_cached_kv kernel (#3043) 2024-02-26 15:00:54 -08:00
cfc15a1031 Optimize Triton MoE Kernel (#2979)
Co-authored-by: Cade Daniel <edacih@gmail.com>
2024-02-26 13:48:56 -08:00
70f3e8e3a1 Add LogProbs for Chat Completions in OpenAI (#2918) 2024-02-26 10:39:34 +08:00
ef978fe411 Port metrics from aioprometheus to prometheus_client (#2730) 2024-02-25 11:54:00 -08:00
f7c1234990 [Fix] Fissertion on YaRN model len (#2984) 2024-02-23 12:57:48 -08:00
57f044945f Fix nvcc not found in vlm-openai image (#2781) 2024-02-22 14:25:07 -08:00
4caf7044e0 Include tokens from prompt phase in counter_generation_tokens (#2802) 2024-02-22 14:00:12 -08:00
6f32cddf1c Remove Flash Attention in test env (#2982) 2024-02-22 09:58:29 -08:00
c530e2cfe3 [FIX] Fix a bug in initializing Yarn RoPE (#2983) 2024-02-22 01:40:05 -08:00
fd5dcc5c81 Optimize GeGLU layer in Gemma (#2975) 2024-02-21 20:17:52 -08:00
93dc5a2870 chore(vllm): codespell for spell checking (#2820) 2024-02-21 18:56:01 -08:00
95529e3253 Use Llama RMSNorm custom op for Gemma (#2974) 2024-02-21 18:28:23 -08:00
Roy
344020c926 Migrate MistralForCausalLM to LlamaForCausalLM (#2868) 2024-02-21 18:25:05 -08:00
5574081c49 Added early stopping to completion APIs (#2939) 2024-02-21 18:24:01 -08:00
d7f396486e Update comment (#2934) 2024-02-21 18:18:37 -08:00
8fbd84bf78 Bump up version to v0.3.2 (#2968)
This version is for more model support. Add support for Gemma models (#2964) and OLMo models (#2832).
2024-02-21 11:47:25 -08:00
7d2dcce175 Support per-request seed (#2514) 2024-02-21 11:47:00 -08:00
dc903e70ac [ROCm] Upgrade transformers to v4.38.0 (#2967) 2024-02-21 09:46:57 -08:00
a9c8212895 [FIX] Add Gemma model to the doc (#2966) 2024-02-21 09:46:15 -08:00
c20ecb6a51 Upgrade transformers to v4.38.0 (#2965) 2024-02-21 09:38:03 -08:00
5253edaacb Add Gemma model (#2964) 2024-02-21 09:34:30 -08:00
017d9f1515 Add metrics to RequestOutput (#2876) 2024-02-20 21:55:57 -08:00
181b27d881 Make vLLM logging formatting optional (#2877) 2024-02-20 14:38:55 -08:00
63e2a6419d [FIX] Fix beam search test (#2930) 2024-02-20 14:37:39 -08:00
264017a2bf [ROCm] include gfx908 as supported (#2792) 2024-02-19 17:58:59 -08:00
e433c115bc Fix vllm:prompt_tokens_total metric calculation (#2869) 2024-02-18 23:55:41 -08:00
86fd8bb0ac Add warning to prevent changes to benchmark api server (#2858) 2024-02-18 21:36:19 -08:00
ab3a5a8259 Support OLMo models. (#2832) 2024-02-18 21:05:15 -08:00
a61f0521b8 [Test] Add basic correctness test (#2908) 2024-02-18 16:44:50 -08:00
537c9755a7 [Minor] Small fix to make distributed init logic in worker looks cleaner (#2905) 2024-02-18 14:39:00 -08:00
786b7f18a5 Add code-revision config argument for Hugging Face Hub (#2892) 2024-02-17 22:36:53 -08:00
8f36444c4f multi-LoRA as extra models in OpenAI server (#2775)
how to serve the loras (mimicking the [multilora inference example](https://github.com/vllm-project/vllm/blob/main/examples/multilora_inference.py)):
```terminal
$ export LORA_PATH=~/.cache/huggingface/hub/models--yard1--llama-2-7b-sql-lora-test/
$ python -m vllm.entrypoints.api_server \
 --model meta-llama/Llama-2-7b-hf \
 --enable-lora \
 --lora-modules sql-lora=$LORA_PATH sql-lora2=$LORA_PATH
```
the above server will list 3 separate values if the user queries `/models`: one for the base served model, and one each for the specified lora modules. in this case sql-lora and sql-lora2 point to the same underlying lora, but this need not be the case. lora config values take the same values they do in EngineArgs

no work has been done here to scope client permissions to specific models
2024-02-17 12:00:48 -08:00
185b2c29e2 Defensively copy sampling_params (#2881)
If the SamplingParams object passed to LLMEngine.add_request() is mutated after it returns, it could affect the async sampling process for that request.

Suggested by @Yard1 https://github.com/vllm-project/vllm/pull/2514#discussion_r1490106059
2024-02-17 11:18:04 -08:00
5f08050d8d Bump up to v0.3.1 (#2887) 2024-02-16 15:05:18 -08:00
64da65b322 Prefix Caching- fix t4 triton error (#2517) 2024-02-16 14:17:55 -08:00
5255d99dc5 [ROCm] Dockerfile fix for flash-attention build (#2885) 2024-02-15 10:22:39 -08:00
4f2ad11135 Fix DeciLM (#2883) 2024-02-14 22:29:57 -08:00
d7afab6d3a [BugFix] Fix GC bug for LLM class (#2882) 2024-02-14 22:17:44 -08:00
31348dff03 Align LoRA code between Mistral and Mixtral (fixes #2875) (#2880)
* Fix AttributeError: MixtralModel object has no attribute org_vocab_size.

* Make LoRA logic for Mistral and Mixtral the same

---------

Co-authored-by: Pernekhan Utemuratov <pernekhan@deepinfra.com>
2024-02-15 01:00:43 +01:00
25e86b6a61 Don't use cupy NCCL for AMD backends (#2855) 2024-02-14 12:30:44 -08:00
Roy
4efbac6d35 Migrate AquilaForCausalLM to LlamaForCausalLM (#2867) 2024-02-14 12:30:24 -08:00
87069ccf68 Fix docker python version (#2845) 2024-02-14 10:17:57 -08:00
7e45107f51 [Fix] Fix memory profiling when GPU is used by multiple processes (#2863) 2024-02-13 19:52:34 -08:00
0c48b37c31 Fix internlm after https://github.com/vllm-project/vllm/pull/2860 (#2861) 2024-02-13 18:01:15 -08:00
7eacffd951 Migrate InternLMForCausalLM to LlamaForCausalLM (#2860)
Co-authored-by: Roy <jasonailu87@gmail.com>
2024-02-13 17:12:05 -08:00
2a543d6efe Add LoRA support for Mixtral (#2831)
* add mixtral lora support

* formatting

* fix incorrectly ported logic

* polish tests

* minor fixes and refactoring

* minor fixes

* formatting

* rename and remove redundant logic

* refactoring

* refactoring

* minor fix

* minor refactoring

* fix code smell
2024-02-14 00:55:45 +01:00
317b29de0f Remove Yi model definition, please use LlamaForCausalLM instead (#2854)
Co-authored-by: Roy <jasonailu87@gmail.com>
2024-02-13 14:22:22 -08:00
a463c333dd Use CuPy for CUDA graphs (#2811) 2024-02-13 11:32:06 -08:00
ea356004d4 Revert "Refactor llama family models (#2637)" (#2851)
This reverts commit 5c976a7e1a1bec875bf6474824b7dff39e38de18.
2024-02-13 09:24:59 -08:00
Roy
5c976a7e1a Refactor llama family models (#2637) 2024-02-13 00:09:23 -08:00
f964493274 [CI] Ensure documentation build is checked in CI (#2842) 2024-02-12 22:53:07 -08:00
a4211a4dc3 Serving Benchmark Refactoring (#2433) 2024-02-12 22:53:00 -08:00
Rex
563836496a Refactor 2 awq gemm kernels into m16nXk32 (#2723)
Co-authored-by: Chunan Zeng <chunanzeng@Chunans-Air.attlocal.net>
2024-02-12 11:02:17 -08:00
4ca2c358b1 Add documentation section about LoRA (#2834) 2024-02-12 17:24:45 +01:00
0580aab02f [ROCm] support Radeon™ 7900 series (gfx1100) without using flash-attention (#2768) 2024-02-10 23:14:37 -08:00
3711811b1d Disable custom all reduce by default (#2808) 2024-02-08 09:58:03 -08:00
65b89d16ee [Ray] Integration compiled DAG off by default (#2471) 2024-02-08 09:57:25 -08:00
931746bc6d Add documentation on how to do incremental builds (#2796) 2024-02-07 14:42:02 -08:00
c81dddb45c [ROCm] Fix build problem resulted from previous commit related to FP8 kv-cache support (#2790) 2024-02-06 22:36:59 -08:00
fe6d09ae61 [Minor] More fix of test_cache.py CI test failure (#2750) 2024-02-06 11:38:38 -08:00
ed70c70ea3 modelscope: fix issue when model parameter is not a model id but path of the model. (#2489) 2024-02-06 09:57:15 -08:00
f0d4e14557 Add fused top-K softmax kernel for MoE (#2769) 2024-02-05 17:38:02 -08:00
2ccee3def6 [ROCm] Fixup arch checks for ROCM (#2627) 2024-02-05 14:59:09 -08:00
b92adec8e8 Set local logging level via env variable (#2774) 2024-02-05 14:26:50 -08:00
56f738ae9b [ROCm] Fix some kernels failed unit tests (#2498) 2024-02-05 14:25:36 -08:00
72d3a30c63 [Minor] Fix benchmark_latency script (#2765) 2024-02-05 12:45:37 -08:00
c9b45adeeb Require triton >= 2.1.0 (#2746)
Co-authored-by: yangrui1 <yangrui@lanjingren.com>
2024-02-04 23:07:36 -08:00
Rex
5a6c81b051 Remove eos tokens from output by default (#2611) 2024-02-04 14:32:42 -08:00
51cd22ce56 set&get llm internal tokenizer instead of the TokenizerGroup (#2741)
Co-authored-by: shujunhua1 <shujunhua1@jd.com>
2024-02-04 14:25:36 -08:00
5ed704ec8c docs: fix langchain (#2736) 2024-02-03 18:17:55 -08:00
4abf6336ec Add one example to run batch inference distributed on Ray (#2696) 2024-02-02 15:41:42 -08:00
0e163fce18 Fix default length_penalty to 1.0 (#2667) 2024-02-01 15:59:39 -08:00
96b6f475dd Remove hardcoded device="cuda" to support more devices (#2503)
Co-authored-by: Jiang Li <jiang1.li@intel.com>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
2024-02-01 15:46:39 -08:00
c410f5d020 Use revision when downloading the quantization config file (#2697)
Co-authored-by: Pernekhan Utemuratov <pernekhan@deepinfra.com>
2024-02-01 15:41:58 -08:00
bb8c697ee0 Update README for meetup slides (#2718) 2024-02-01 14:56:53 -08:00
b9e96b17de fix python 3.8 syntax (#2716) 2024-02-01 14:00:58 -08:00
923797fea4 Fix compile error when using rocm (#2648) 2024-02-01 09:35:09 -08:00
cd9e60c76c Add Internlm2 (#2666) 2024-02-01 09:27:40 -08:00
93b38bea5d Refactor Prometheus and Add Request Level Metrics (#2316) 2024-01-31 14:58:07 -08:00
d0d93b92b1 Add unit test for Mixtral MoE layer (#2677) 2024-01-31 14:34:17 -08:00
89efcf1ce5 [Minor] Fix test_cache.py CI test failure (#2684) 2024-01-31 10:12:11 -08:00
c664b0e683 fix some bugs (#2689) 2024-01-31 10:09:23 -08:00
d69ff0cbbb Fixes assertion failure in prefix caching: the lora index mapping should respect prefix_len (#2688)
Signed-off-by: Tao He <sighingnow@gmail.com>
2024-01-31 18:00:13 +01:00
1af090b57d Bump up version to v0.3.0 (#2656) 2024-01-31 00:07:07 -08:00
3dad944485 Add quantized mixtral support (#2673) 2024-01-30 16:34:10 -08:00
105a40f53a [Minor] Fix false warning when TP=1 (#2674) 2024-01-30 14:39:40 -08:00
bbe9bd9684 [Minor] Fix a small typo (#2672) 2024-01-30 13:40:37 -08:00
4f65af0e25 Add swap_blocks unit tests (#2616) 2024-01-30 09:30:50 -08:00
d79ced3292 Fix 'Actor methods cannot be called directly' when using --engine-use-ray (#2664)
* fix: engine-useray complain

* fix: typo
2024-01-30 17:17:05 +01:00
ab40644669 Fused MOE for Mixtral (#2542)
Co-authored-by: chen shen <scv119@gmail.com>
2024-01-29 22:43:37 -08:00
5d60def02c DeepseekMoE support with Fused MoE kernel (#2453)
Co-authored-by: roy <jasonailu87@gmail.com>
2024-01-29 21:19:48 -08:00
ea8489fce2 ROCm: Allow setting compilation target (#2581) 2024-01-29 10:52:31 -08:00
1b20639a43 No repeated IPC open (#2642) 2024-01-29 10:46:29 -08:00
b72af8f1ed Fix error when tp > 1 (#2644)
Co-authored-by: zhaoyang-star <zhao.yang16@zte.com.cn>
2024-01-28 22:47:39 -08:00
9090bf02e7 Support FP8-E5M2 KV Cache (#2279)
Co-authored-by: zhaoyang <zhao.yang16@zte.com.cn>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-01-28 16:43:54 -08:00
7d648418b8 Update Ray version requirements (#2636) 2024-01-28 14:27:22 -08:00
89be30fa7d Small async_llm_engine refactor (#2618) 2024-01-27 23:28:37 -08:00
f8ecb84c02 Speed up Punica compilation (#2632) 2024-01-27 17:46:56 -08:00
5f036d2bcc [Minor] Fix warning on Ray dependencies (#2630) 2024-01-27 15:43:40 -08:00
380170038e Implement custom all reduce kernels (#2192) 2024-01-27 12:46:35 -08:00
220a47627b Use head_dim in config if exists (#2622) 2024-01-27 10:30:49 -08:00
beb89f68b4 AWQ: Up to 2.66x higher throughput (#2566) 2024-01-26 23:53:17 -08:00
390b495ff3 Don't build punica kernels by default (#2605) 2024-01-26 15:19:19 -08:00
3a0e1fc070 Support for Stable LM 2 (#2598)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-01-26 12:45:19 -08:00
6b7de1a030 [ROCm] add support to ROCm 6.0 and MI300 (#2274) 2024-01-26 12:41:10 -08:00
5265631d15 use a correct device when creating OptionalCUDAGuard (#2583) 2024-01-25 23:48:17 -08:00
2832e7b9f9 fix names and license for Qwen2 (#2589) 2024-01-24 22:37:51 -08:00
3a7dd7e367 Support Batch Completion in Server (#2529) 2024-01-24 17:11:07 -08:00
223c19224b Fix the syntax error in the doc of supported_models (#2584) 2024-01-24 11:22:51 -08:00
f1f6cc10c7 Added include_stop_str_in_output and length_penalty parameters to OpenAI API (#2562) 2024-01-24 10:21:56 -08:00
3209b49033 [Bugfix] fix crash if max_tokens=None (#2570) 2024-01-23 22:38:55 -08:00
1e4277d2d1 lint: format all python file instead of just source code (#2567) 2024-01-23 15:53:06 -08:00
9b945daaf1 [Experimental] Add multi-LoRA support (#1804)
Co-authored-by: Chen Shen <scv119@gmail.com>
Co-authored-by: Shreyas Krishnaswamy <shrekris@anyscale.com>
Co-authored-by: Avnish Narayan <avnish@anyscale.com>
2024-01-23 15:26:37 -08:00
9c1352eb57 [Feature] Simple API token authentication and pluggable middlewares (#1106) 2024-01-23 15:13:00 -08:00
7a0b011dd5 Add a 1-line docstring to explain why calling context_attention_fwd twice in test_prefix_prefill.py (#2553) 2024-01-22 14:47:25 -08:00
63e835cbcc Fix progress bar and allow HTTPS in benchmark_serving.py (#2552) 2024-01-22 14:40:31 -08:00
94b5edeb53 Add qwen2 (#2495) 2024-01-22 14:34:21 -08:00
ab7e6006d6 Fix https://github.com/vllm-project/vllm/issues/2540 (#2545) 2024-01-22 19:02:38 +01:00
18bfcdd05c [Speculative decoding 2/9] Multi-step worker for draft model (#2424) 2024-01-21 16:31:47 -08:00
71d63ed72e migrate pydantic from v1 to v2 (#2531) 2024-01-21 16:05:56 -08:00
d75c40734a [Fix] Keep scheduler.running as deque (#2523) 2024-01-20 22:36:09 -08:00
5b23c3f26f Add group as an argument in broadcast ops (#2522) 2024-01-20 16:00:26 -08:00
00efdc84ba Add benchmark serving to CI (#2505) 2024-01-19 20:20:19 -08:00
Roy
91a61da9b1 [Bugfix] fix load local safetensors model (#2512) 2024-01-19 16:26:16 -08:00
ef9b636e2d Simplify broadcast logic for control messages (#2501) 2024-01-19 11:23:30 -08:00
2709c0009a Support OpenAI API server in benchmark_serving.py (#2172) 2024-01-18 20:34:08 -08:00
dd7e8f5f64 refactor complemention api for readability (#2499) 2024-01-18 16:45:14 -08:00
d2a68364c4 [BugFix] Fix abort_seq_group (#2463) 2024-01-18 15:10:42 -08:00
7e1081139d Don't download both safetensor and bin files. (#2480) 2024-01-18 11:05:53 -08:00
18473cf498 [Neuron] Add an option to build with neuron (#2065) 2024-01-18 10:58:50 -08:00
4df417d059 fix: fix some args desc (#2487) 2024-01-18 09:41:44 -08:00
5d80a9178b Minor fix in prefill cache example (#2494) 2024-01-18 09:40:34 -08:00
8a25d3a71a fix stablelm.py tensor-parallel-size bug (#2482) 2024-01-18 09:39:46 -08:00
d10f8e1d43 [Experimental] Prefix Caching Support (#1669)
Co-authored-by: DouHappy <2278958187@qq.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-01-17 16:32:10 -08:00
14cc317ba4 OpenAI Server refactoring (#2360) 2024-01-16 21:33:14 -08:00
e1957c6ebd Add StableLM3B model (#2372) 2024-01-16 20:32:40 -08:00
8cd5a992bf ci: retry on build failure as well (#2457) 2024-01-16 12:51:04 -08:00
947f0b23cc CI: make sure benchmark script exit on error (#2449) 2024-01-16 09:50:13 -08:00
f780504d12 fix weigit loading for GQA with TP (#2379) 2024-01-15 15:43:59 -08:00
bfc072addf Allow buildkite to retry build on agent lost (#2446) 2024-01-15 15:43:15 -08:00
2a18da257c Announce the second vLLM meetup (#2444) 2024-01-15 14:11:59 -08:00
6e01e8c1c8 [CI] Add Buildkite (#2355) 2024-01-14 12:37:58 -08:00
Roy
9f659bf07f [Minor] Optimize cuda graph memory usage (#2437) 2024-01-14 18:40:51 +01:00
35c4bc20d9 [Minor] Fix err msg (#2431) 2024-01-12 14:02:52 -08:00
218dc2ccda Aligning top_p and top_k Sampling (#1885)
* Align top_p and top_k with huggingface

* remove _get_prompt_and_output_tokens

* rename _apply_top_p_top_k

* compare top_p top_k with hf

* fix test errors
2024-01-12 22:51:03 +01:00
827cbcd37c Update quickstart.rst (#2369) 2024-01-12 12:56:18 -08:00
Ben
cb7a1c1cbf Suggest using dtype=half when OOM. 2024-01-12 12:33:29 -08:00
7878958c0d Address Phi modeling update 2 (#2428) 2024-01-12 12:16:49 -08:00
ce036244c9 Allow setting fastapi root_path argument (#2341) 2024-01-12 10:59:59 -08:00
48cf1e413c fix: deque mutated during iteration in abort_seq_group (#2371) 2024-01-12 17:44:18 +01:00
97460585d9 Add gradio chatbot for openai webserver (#2307) 2024-01-11 19:45:56 -08:00
f745847ef7 [Minor] Fix the format in quick start guide related to Model Scope (#2425) 2024-01-11 19:44:01 -08:00
6549aef245 [DOC] Add additional comments for LLMEngine and AsyncLLMEngine (#1011) 2024-01-11 19:26:49 -08:00
50376faa7b Rename phi_1_5 -> phi (#2385) 2024-01-11 16:23:43 -08:00
4b61c6b669 get_ip(): Fix ipv4 ipv6 dualstack (#2408) 2024-01-10 11:39:58 -08:00
79d64c4954 [Speculative decoding 1/9] Optimized rejection sampler (#2336) 2024-01-09 15:38:41 -08:00
KKY
74cd5abdd1 Add baichuan chat template jinjia file (#2390) 2024-01-09 09:13:02 -08:00
28c3f12104 [Minor] Remove unused code in attention (#2384) 2024-01-08 13:13:08 -08:00
c884819135 Fix eager mode performance (#2377) 2024-01-08 10:11:06 -08:00
05921a9a7a Changed scheduler to use deques instead of lists (#2290)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-01-07 09:48:07 -08:00
d0215a58e7 Ensure metrics are logged regardless of requests (#2347) 2024-01-05 05:24:42 -08:00
937e7b7d7c Build docker image with shared objects from "build" step (#2237) 2024-01-04 09:35:18 -08:00
aee8ef661a Miner fix of type hint (#2340) 2024-01-03 21:27:56 -08:00
2e0b6e7757 Bump up to v0.2.7 (#2337) 2024-01-03 17:35:56 -08:00
941767127c Revert the changes in test_cache (#2335) 2024-01-03 17:32:05 -08:00
74d8d77626 Remove unused const TIMEOUT_TO_PREVENT_DEADLOCK (#2321) 2024-01-03 15:49:07 -08:00
fd4ea8ef5c Use NCCL instead of ray for control-plane communication to remove serialization overhead (#2221) 2024-01-03 11:30:22 -08:00
1066cbd152 Remove deprecated parameter: concurrency_count (#2315) 2024-01-03 09:56:21 -08:00
6ef00b03a2 Enable CUDA graph for GPTQ & SqueezeLLM (#2318) 2024-01-03 09:52:29 -08:00
Roy
9140561059 [Minor] Fix typo and remove unused code (#2305) 2024-01-02 19:23:15 -08:00
77af974b40 [FIX] Support non-zero CUDA devices in custom kernels (#1959) 2024-01-02 19:09:59 -08:00
4934d49274 Support GPT-NeoX Models without attention biases (#2301) 2023-12-30 11:42:04 -05:00
358c328d69 [BUGFIX] Fix communication test (#2285) 2023-12-27 17:18:11 -05:00
4aaafdd289 [BUGFIX] Fix the path of test prompts (#2273) 2023-12-26 10:37:21 -08:00
66b108d142 [BUGFIX] Fix API server test (#2270) 2023-12-26 10:37:06 -08:00
e0ff920001 [BUGFIX] Do not return ignored sentences twice in async llm engine (#2258) 2023-12-26 13:41:09 +08:00
face83c7ec [Docs] Add "About" Heading to README.md (#2260) 2023-12-25 16:37:07 -08:00
1db83e31a2 [Docs] Update installation instructions to include CUDA 11.8 xFormers (#2246) 2023-12-22 23:20:02 -08:00
a1b9cb2a34 [BugFix] Fix recovery logic for sequence group (#2186) 2023-12-20 21:52:37 -08:00
3a4fd5ca59 Disable Ray usage stats collection (#2206) 2023-12-20 21:52:08 -08:00
c17daa9f89 [Docs] Fix broken links (#2222) 2023-12-20 12:43:42 -08:00
bd29cf3d3a Remove Sampler copy stream (#2209) 2023-12-20 00:04:33 -08:00
31bff69151 Make _prepare_sample non-blocking and use pinned memory for input buffers (#2207) 2023-12-19 16:52:46 -08:00
ba4f826738 [BugFix] Fix weight loading for Mixtral with TP (#2208) 2023-12-19 16:16:11 -08:00
de60a3fb93 Added DeciLM-7b and DeciLM-7b-instruct (#2062) 2023-12-19 02:29:33 -08:00
21d5daa4ac Add warning on CUDA graph memory usage (#2182) 2023-12-18 18:16:17 -08:00
290e015c6c Update Help Text for --gpu-memory-utilization Argument (#2183) 2023-12-18 11:33:24 -08:00
1b7c791d60 [ROCm] Fixes for GPTQ on ROCm (#2180) 2023-12-18 10:41:04 -08:00
bbe4466fd9 [Minor] Fix typo (#2166)
Co-authored-by: John-Saxon <zhang.xiangxuan@oushu.com>
2023-12-17 23:28:49 -08:00
08133c4d1a Add SSL arguments to API servers (#2109) 2023-12-18 10:56:23 +08:00
76a7983b23 [BugFix] Fix RoPE kernel on long sequences(#2164) 2023-12-17 17:09:10 -08:00
8041b7305e [BugFix] Raise error when max_model_len is larger than KV cache (#2163) 2023-12-17 17:08:23 -08:00
3ec8c25cd0 [Docs] Update documentation for gpu-memory-utilization option (#2162) 2023-12-17 10:51:57 -08:00
671af2b1c0 Bump up to v0.2.6 (#2157) 2023-12-17 10:34:56 -08:00
6f41f0e377 Disable CUDA graph for SqueezeLLM (#2161) 2023-12-17 10:24:25 -08:00
2c9b638065 [Minor] Fix a typo in .pt weight support (#2160) 2023-12-17 10:12:44 -08:00
a7347d9a6d Make sampler less blocking (#1889) 2023-12-17 23:03:49 +08:00
f8c688d746 [Minor] Add Phi 2 to supported models (#2159) 2023-12-17 02:54:57 -08:00
c9fadda543 [Minor] Fix xformers version (#2158) 2023-12-17 02:28:02 -08:00
30fb0956df [Minor] Add more detailed explanation on quantization argument (#2145) 2023-12-17 01:56:16 -08:00
3a765bd5e1 Temporarily enforce eager mode for GPTQ models (#2154) 2023-12-17 01:51:12 -08:00
26c52a5ea6 [Docs] Add CUDA graph support to docs (#2148) 2023-12-17 01:49:20 -08:00
c3372e87be Remove dependency on CuPy (#2152) 2023-12-17 01:49:07 -08:00
b0a1d667b0 Pin PyTorch & xformers versions (#2155) 2023-12-17 01:46:54 -08:00
e1d5402238 Fix all-reduce memory usage (#2151) 2023-12-17 01:44:45 -08:00
3d1cfbfc74 [Minor] Delete Llama tokenizer warnings (#2146) 2023-12-16 22:05:18 -08:00
37ca558103 Optimize model execution with CUDA graph (#1926)
Co-authored-by: Chen Shen <scv119@gmail.com>
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2023-12-16 21:12:08 -08:00
Roy
eed74a558f Simplify weight loading logic (#2133) 2023-12-16 12:41:23 -08:00
2acd76f346 [ROCm] Temporarily remove GPTQ ROCm support (#2138) 2023-12-15 17:13:58 -08:00
b81a6a6bb3 [Docs] Add supported quantization methods to docs (#2135) 2023-12-15 13:29:22 -08:00
0fbfc4b81b Add GPTQ support (#916) 2023-12-15 03:04:22 -08:00
c06170cc8e Add a flag to include stop string in output text (#1976) 2023-12-15 00:45:58 -08:00
614856da25 Avoid multiple redefinition (#1817) 2023-12-14 09:35:58 -08:00
05bdf4eaf3 Fix Dockerfile.rocm (#2101)
Co-authored-by: miloice <jeffaw99@hotmail.com>
2023-12-14 00:45:58 -08:00
6774bd50b0 Fix typing in AsyncLLMEngine & add toml to requirements-dev (#2100) 2023-12-14 00:19:41 -08:00
31c1f3255e Bump up to v0.2.5 (#2095) 2023-12-13 23:56:15 -08:00
21d93c140d Optimize Mixtral with expert parallelism (#2090) 2023-12-13 23:55:07 -08:00
f1c8520146 [BugFix] Fix input positions for long context with sliding window (#2088) 2023-12-13 12:28:13 -08:00
096827c284 [Docs] Add notes on ROCm-supported models (#2087) 2023-12-13 09:45:34 -08:00
6565d9e33e Update installation instruction for vLLM + CUDA 11.8 (#2086) 2023-12-13 09:25:59 -08:00
f375ec8440 [ROCm] Upgrade xformers version for ROCm & update doc (#2079)
Co-authored-by: miloice <jeffaw99@hotmail.com>
2023-12-13 00:56:05 -08:00
518369d78c Implement lazy model loader (#2044) 2023-12-12 22:21:45 -08:00
30bad5c492 Fix peak memory profiling (#2031) 2023-12-12 22:01:53 -08:00
3fefe271ec Update Dockerfile to build Megablocks (#2042) 2023-12-12 17:34:17 -08:00
6428f1d051 Support MPT with GQA (#1938)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2023-12-12 10:16:05 -08:00
7e1b21daac Remove einops from requirements (#2049) 2023-12-12 09:34:09 -08:00
cb3f30c600 Upgrade transformers version to 4.36.0 (#2046) 2023-12-11 18:39:14 -08:00
f3e024bece [CI/CD] Upgrade PyTorch version to v2.1.1 (#2045) 2023-12-11 17:48:11 -08:00
31d2ab4aff Remove python 3.10 requirement (#2040) 2023-12-11 12:26:42 -08:00
eb17212858 Update Dockerfile to support Mixtral (#2027) 2023-12-11 11:59:08 -08:00
4dd4b5c538 Bump up to v0.2.4 (#2034) 2023-12-11 11:49:39 -08:00
6120e5aaea Fix import error msg for megablocks (#2038) 2023-12-11 11:40:56 -08:00
Ram
2eaa81b236 Update README.md to add megablocks requirement for mixtral (#2033) 2023-12-11 11:37:34 -08:00
81ce2a4b26 [Minor] Fix type annotation in Mixtral (#2036) 2023-12-11 11:32:39 -08:00
5dd80d3777 Fix latency benchmark script (#2035) 2023-12-11 11:19:08 -08:00
beeee69bc9 Revert adding Megablocks (#2030) 2023-12-11 10:49:00 -08:00
Ram
9bf28d0b69 Update requirements.txt for mixtral (#2029) 2023-12-11 10:39:29 -08:00
c0ce15dfb2 Update run_on_sky.rst (#2025)
sharable -> shareable
2023-12-11 10:32:58 -08:00
b9bcdc7158 Change the load format to pt for Mixtral (#2028) 2023-12-11 10:32:17 -08:00
4ff0203987 Minor fixes for Mixtral (#2015) 2023-12-11 09:16:15 -08:00
b5f882cc98 Mixtral 8x7B support (#2011)
Co-authored-by: Pierre Stock <p@mistral.ai>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-12-11 01:09:15 -08:00
2e8fc0d4c3 Fix completion API echo and logprob combo (#1992) 2023-12-10 13:20:30 -08:00
wbn
dacaf5a400 Replace head_mapping params with num_kv_heads to attention kernel. (#1997)
Co-authored-by: wangguoya <wangguoya@baidu.com>
Co-authored-by: Yang Zhao <zhaoyangstar@foxmail.com>
2023-12-10 10:12:53 -08:00
24cde76a15 [Minor] Add comment on skipping rope caches (#2004) 2023-12-10 10:04:12 -08:00
1aa1361510 Fix OpenAI server completion_tokens referenced before assignment (#1996) 2023-12-09 21:01:21 -08:00
fe470ae5ad [Minor] Fix code style for baichuan (#2003) 2023-12-09 19:24:29 -08:00
3a8c2381f7 Fix for KeyError on Loading LLaMA (#1978) 2023-12-09 15:59:57 -08:00
c85b80c2b6 [Docker] Add cuda arch list as build option (#1950) 2023-12-08 09:53:47 -08:00
2b981012a6 Fix Baichuan2-7B-Chat (#1987) 2023-12-08 09:38:36 -08:00
6ccc0bfffb Merge EmbeddedLLM/vllm-rocm into vLLM main (#1836)
Co-authored-by: Philipp Moritz <pcmoritz@gmail.com>
Co-authored-by: Amir Balwel <amoooori04@gmail.com>
Co-authored-by: root <kuanfu.liu@akirakan.com>
Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: kuanfu <kuanfu.liu@embeddedllm.com>
Co-authored-by: miloice <17350011+kliuae@users.noreply.github.com>
2023-12-07 23:16:52 -08:00
c8e7eb1eb3 fix typo in getenv call (#1972) 2023-12-07 16:04:41 -08:00
24f60a54f4 [Docker] Adding number of nvcc_threads during build as envar (#1893) 2023-12-07 11:00:32 -08:00
42c02f5892 Fix quickstart.rst typo jinja (#1964) 2023-12-07 08:34:44 -08:00
ebede26ebf Make InternLM follow rope_scaling in config.json (#1956)
Co-authored-by: lijie8 <lijie8@sensetime.com>
2023-12-07 08:32:08 -08:00
d940ce497e Fix typo in adding_model.rst (#1947)
adpated -> adapted
2023-12-06 10:04:26 -08:00
05ff90b692 Save pytorch profiler output for latency benchmark (#1871)
* Save profiler output

* Apply feedback from code review
2023-12-05 20:55:55 -08:00
1d9b737e05 Support ChatGLMForConditionalGeneration (#1932)
Co-authored-by: shujunhua1 <shujunhua1@jd.com>
2023-12-05 10:52:48 -08:00
Roy
60dc62dc9e add custom server params (#1868) 2023-12-03 12:59:18 -08:00
0f90effc66 Bump up to v0.2.3 (#1903) 2023-12-03 12:27:47 -08:00
464dd985e3 Fix num_gpus when TP > 1 (#1852) 2023-12-03 12:24:30 -08:00
c07a442854 chore(examples-docs): upgrade to OpenAI V1 (#1785) 2023-12-03 01:11:22 -08:00
cd3aa153a4 Fix broken worker test (#1900) 2023-12-02 22:17:33 -08:00
9b294976a2 Add PyTorch-native implementation of custom layers (#1898) 2023-12-02 21:18:40 -08:00
5313c2cb8b Add Production Metrics in Prometheus format (#1890) 2023-12-02 16:37:44 -08:00
5f09cbdb63 Fix broken sampler tests (#1896)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2023-12-02 16:06:17 -08:00
4cefa9b49b [Docs] Update the AWQ documentation to highlight performance issue (#1883) 2023-12-02 15:52:47 -08:00
f86bd6190a Fix the typo in SamplingParams' docstring (#1886) 2023-12-01 02:06:36 -08:00
e5452ddfd6 Normalize head weights for Baichuan 2 (#1876) 2023-11-30 20:03:58 -08:00
d06980dfa7 Fix Baichuan tokenizer error (#1874) 2023-11-30 18:35:50 -08:00
66785cc05c Support chat template and echo for chat API (#1756) 2023-11-30 16:43:13 -08:00
05a38612b0 docs: add instruction for langchain (#1162) 2023-11-30 10:57:44 -08:00
Roy
d27f4bae39 Fix rope cache key error (#1867) 2023-11-30 08:29:28 -08:00
8d8c2f6ffe Support max-model-len argument for throughput benchmark (#1858) 2023-11-30 08:10:24 -08:00
51d3cb951d Remove max_num_seqs in latency benchmark script (#1855) 2023-11-30 00:00:32 -08:00
e74b1736a1 Add profile option to latency benchmark script (#1839) 2023-11-29 23:42:52 -08:00
f07c1ceaa5 [FIX] Fix docker build error (#1831) (#1832)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2023-11-29 23:06:50 -08:00
63b2206ad0 Avoid multiple instantiations of the RoPE class (#1828) 2023-11-29 23:06:27 -08:00
27feead2f8 Refactor Worker & InputMetadata (#1843) 2023-11-29 22:16:37 -08:00
c782195662 Disable Logs Requests should Disable Logging of requests. (#1779)
Co-authored-by: Michael McCulloch <mjm.gitlab@fastmail.com>
2023-11-29 21:50:02 -08:00
0f621c2c7d [Docs] Add information about using shared memory in docker (#1845) 2023-11-29 18:33:56 -08:00
a9e4574261 Refactor Attention (#1840) 2023-11-29 15:37:31 -08:00
0229c386c5 Better integration with Ray Serve (#1821)
Co-authored-by: FlorianJoncour <florian@zetta-sys.com>
2023-11-29 13:25:43 -08:00
a7b3e33078 [Fix] Fix RoPE in ChatGLM-32K (#1841) 2023-11-29 13:01:19 -08:00
e19a64c7ef [FIX] Fix formatting error in main branch (#1822) 2023-11-28 16:56:43 -08:00
1cb4ad8de9 [FIX] Fix formatting error 2023-11-29 00:40:19 +00:00
6ed068a71a Use the type BlockTable (#1791) 2023-11-28 16:34:05 -08:00
708e6c18b0 [FIX] Fix class naming (#1803) 2023-11-28 14:08:01 -08:00
b943890484 Fix OPT param names (#1819) 2023-11-28 11:22:44 -08:00
a1125ad4df Correct comments in parallel_state.py (#1818) 2023-11-28 10:19:35 -08:00
a8b150c595 Init model on GPU to reduce CPU memory footprint (#1796) 2023-11-27 11:18:26 -08:00
665cbcec4b Added echo function to OpenAI API server. (#1504) 2023-11-26 21:29:17 -08:00
7c600440f7 Fix model docstrings (#1764) 2023-11-23 23:04:44 -08:00
e0c6f556e8 [Build] Avoid building too many extensions (#1624) 2023-11-23 16:31:19 -08:00
de23687d16 Fix repetition penalty aligned with huggingface (#1577) 2023-11-22 14:41:44 -08:00
4cea74c73b Set top_p=0 and top_k=-1 in greedy sampling (#1748) 2023-11-22 12:51:09 -08:00
a921d8be9d [DOCS] Add engine args documentation (#1741) 2023-11-22 12:31:27 -08:00
094f716bf2 Add stop_token_ids in SamplingParams.__repr__ (#1745) 2023-11-21 20:13:53 -08:00
7d761fe3c1 [FIX] Fix the case when input_is_parallel=False for ScaledActivation (#1737) 2023-11-20 23:56:48 -08:00
cf35d8f3d7 [BugFix] Fix TP support for AWQ (#1731) 2023-11-20 21:42:45 -08:00
4bb6b67188 fix RAM OOM when load large models in tensor parallel mode. (#1395)
Co-authored-by: ran_lin <rlin@thoughtworks.com>
2023-11-20 19:02:42 -08:00
819b18e7ba Rewrite torch.repeat_interleave to remove cpu synchronization (#1599) 2023-11-20 17:46:32 -08:00
19849db573 [Fix] Fix bugs in scheduler (#1727) 2023-11-20 16:10:50 -08:00
3d4ceb292c Fix hanging in the scheduler caused by long prompts (#1534) 2023-11-20 16:06:49 -08:00
f5a37c6c6c [BugFix] Fix a bug in loading safetensors (#1732) 2023-11-20 15:51:18 -08:00
32c927b53f [FIX] Update the doc link in README.md (#1730) 2023-11-20 12:46:24 -08:00
5ffc0d13a2 Migrate linter from pylint to ruff (#1665) 2023-11-20 11:58:01 -08:00
112627e8b2 [Docs] Fix the code block's format in deploying_with_docker page (#1722) 2023-11-20 01:22:39 -08:00
37c1e3c218 Documentation about official docker image (#1709) 2023-11-19 20:56:26 -08:00
06e9ebebd5 Add instructions to install vLLM+cu118 (#1717) 2023-11-18 23:48:58 -08:00
c5f7740d89 Bump up to v0.2.2 (#1689) 2023-11-18 21:57:07 -08:00
be66d9b125 Fix warning msg on quantization (#1715) 2023-11-18 21:49:55 -08:00
e1054247ba [Optimization] Implement fused add rmsnorm (#1667) 2023-11-18 18:18:02 -08:00
8d17774f92 Add AWQ support for all models (#1714) 2023-11-18 17:56:47 -08:00
e946260cf3 use get_tensor in safe_open (#1696) 2023-11-18 16:45:18 -08:00
edb305584b Support download models from www.modelscope.cn (#1588) 2023-11-17 20:38:31 -08:00
bb00f66e19 Use quantization_config in hf config (#1695) 2023-11-17 16:23:49 -08:00
Roy
e87557b069 Support Min P Sampler (#1642) 2023-11-17 16:20:49 -08:00
dcc543a298 [Minor] Fix comment (#1704) 2023-11-17 09:42:49 -08:00
0fc280b06c Update the adding-model doc according to the new refactor (#1692) 2023-11-16 18:46:26 -08:00
20d0699d49 [Fix] Fix comm test (#1691) 2023-11-16 16:28:39 -08:00
686f5e3210 Return usage for openai streaming requests (#1663) 2023-11-16 15:28:36 -08:00
415d109527 [Fix] Update Supported Models List (#1690) 2023-11-16 14:47:26 -08:00
521b35f799 Support Microsoft Phi 1.5 (#1664) 2023-11-16 14:28:39 -08:00
cb08cd0d75 [Minor] Fix duplication of ignored seq group in engine step (#1666) 2023-11-16 13:11:41 -08:00
2a2c135b41 Fix loading error when safetensors contains empty tensor (#1687) 2023-11-16 10:38:10 -08:00
65ea2ddf17 feat(config): support parsing torch.dtype (#1641)
Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
2023-11-16 01:31:06 -08:00
b514d3c496 Revert MptConfig to MPTConfig (#1668) 2023-11-16 01:19:39 -08:00
7076fa1c9f TP/quantization/weight loading refactor part 2 - Refactor quantized linear logic and extend quantization support to all models (#1622)
Refactor the tensor parallelism, quantization, and weight-loading codes.

Summary of the new features enabled by this PR:
- **All models** are able to be quantized with AWQ and SqueezeLLM, and [soon GPTQ](https://github.com/vllm-project/vllm/pull/1580).
- Model loading code became much simpler.
- Support model parallelism for all MQA/GQA models when the number of key/value heads is smaller than the tensor parallel size.
2023-11-15 22:50:41 -08:00
660a7fcfa4 Add DeepSpeed MII backend to benchmark script (#1649) 2023-11-14 12:35:30 -08:00
054072bee5 [Minor] Move RoPE selection logic to get_rope (#1633) 2023-11-12 16:04:50 -08:00
eb825c1e74 Fix #1474 - AssertionError:assert param_slice.shape == loaded_weight.shape (#1631) 2023-11-12 15:53:12 -08:00
1b290ace4f Run default _AsyncLLMEngine._run_workers_async in threadpool (#1628) 2023-11-11 14:50:44 -08:00
Sin
0d578228ca config parser: add ChatGLM2 seq_length to _get_and_verify_max_len (#1617) 2023-11-09 19:29:51 -08:00
aebfcb262a Dockerfile: Upgrade Cuda to 12.1 (#1609) 2023-11-09 11:49:02 -08:00
ab9e8488d5 Add Yi model to quantization support (#1600) 2023-11-09 11:47:14 -08:00
fd58b73a40 Build CUDA11.8 wheels for release (#1596) 2023-11-09 03:52:29 -08:00
8efe23f150 Fix input_metadata.selected_token_indices in worker prepare_inputs (#1546) 2023-11-08 14:19:12 -08:00
06458a0b42 Upgrade to CUDA 12 (#1527)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2023-11-08 14:17:49 -08:00
1a2bbc9301 ChatGLM Support (#1261) 2023-11-06 16:09:33 -08:00
Roy
e7f579eb97 Support Yi model (#1567) 2023-11-06 15:26:03 -08:00
8516999495 Add Quantization and AutoAWQ to docs (#1235) 2023-11-04 22:43:39 -07:00
9f669a9a7c Support YaRN models (#1264)
Signed-off-by: Antoni Baum <antoni.baum@protonmail.com>
Co-authored-by: Viktor Ferenczi <viktor@ferenczi.eu>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2023-11-03 14:12:48 -07:00
555bdcc5a3 Added logits processor API to sampling params (#1469) 2023-11-03 14:12:15 -07:00
54ca1ba71d docs: add description (#1553) 2023-11-03 09:14:52 -07:00
9738b84a08 Force paged attention v2 for long contexts (#1510) 2023-11-01 16:24:32 -07:00
1fe0990023 Remove MPTConfig (#1529) 2023-11-01 15:29:05 -07:00
7e90a2d117 Add /health Endpoint for both Servers (#1540) 2023-11-01 10:29:44 -07:00
5687d584fe [BugFix] Set engine_use_ray=True when TP>1 (#1531) 2023-11-01 02:14:18 -07:00
cf8849f2d6 Add MptForCausalLM key in model_loader (#1526) 2023-10-31 15:46:53 -07:00
e575df33b1 [Small] Formatter only checks lints in changed files (#1528) 2023-10-31 15:39:38 -07:00
0ce8647dc5 Fix integer overflows in attention & cache ops (#1514) 2023-10-31 15:19:30 -07:00
9cabcb7645 Add Dockerfile (#1350) 2023-10-31 12:36:47 -07:00
7b895c5976 [Fix] Fix duplicated logging messages (#1524) 2023-10-31 09:04:47 -07:00
7013a80170 Add support for spaces_between_special_tokens 2023-10-30 16:52:56 -07:00
79a30912b8 Add py.typed so consumers of vLLM can get type checking (#1509)
* Add py.typed so consumers of vLLM can get type checking

* Update py.typed

---------
Co-authored-by: aarnphm <29749331+aarnphm@users.noreply.github.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-10-30 14:50:47 -07:00
2f3d36a8a1 Fix logging so we actually get info level entries in the log. (#1494) 2023-10-30 10:02:21 -07:00
ac8d36f3e5 Refactor LLMEngine demo script for clarity and modularity (#1413)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-10-30 09:14:37 -07:00
15f5632365 Delay GPU->CPU sync in sampling (#1337) 2023-10-30 09:01:34 -07:00
aa9af07cac Fix bias in InternLM (#1501) 2023-10-29 16:24:18 -07:00
69be658bba Support repetition_penalty (#1424) 2023-10-29 10:02:41 -07:00
beac8dd461 fix: don't skip first special token. (#1497) 2023-10-29 04:26:36 -07:00
28b47d1e49 Add rope_scaling to Aquila model (#1457) 2023-10-29 04:25:21 -07:00
1f24755bf8 Support SqueezeLLM (#1326)
Co-authored-by: squeeze-ai-lab <squeezeailab.bair@gmail.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2023-10-21 23:14:59 -07:00
bf31d3606a Pin pydantic dependency versions (#1429) 2023-10-21 11:18:58 -07:00
d189170b6c remove useless statements (#1408) 2023-10-20 08:52:07 -07:00
f61dc8072f Fix type hints (#1427) 2023-10-20 08:50:47 -07:00
f8a1e39fae [BugFix] Define __eq__ in SequenceGroupOutputs (#1389) 2023-10-17 01:09:44 -07:00
a132435204 Fix typo (#1383) 2023-10-16 21:53:37 -07:00
9524867701 Add Mistral 7B to test_models (#1366) 2023-10-16 17:49:54 -07:00
c1376e0f82 Change scheduler & input tensor shape (#1381) 2023-10-16 17:48:42 -07:00
651c614aa4 Bump up the version to v0.2.1 (#1355) 2023-10-16 12:58:57 -07:00
d3a5bd9fb7 Fix sampler test (#1379) 2023-10-16 12:57:26 -07:00
e8ef4c0820 Fix PyTorch index URL in workflow (#1378) 2023-10-16 12:37:56 -07:00
348897af31 Fix PyTorch version to 2.0.1 in workflow (#1377) 2023-10-16 11:27:17 -07:00
9d9072a069 Implement prompt logprobs & Batched topk for computing logprobs (#1328)
Co-authored-by: Yunmo Chen <16273544+wanmok@users.noreply.github.com>
2023-10-16 10:56:50 -07:00
928de46888 Implement PagedAttention V2 (#1348) 2023-10-16 00:59:57 -07:00
29678cd213 Minor fix on AWQ kernel launch (#1356) 2023-10-15 21:53:56 -07:00
d0740dff1b Fix error message on TORCH_CUDA_ARCH_LIST (#1239)
Co-authored-by: Yunfeng Bai <yunfeng.bai@scale.com>
2023-10-14 14:47:43 -07:00
de89472897 Fix the issue for AquilaChat2-* models (#1339) 2023-10-13 11:51:29 -07:00
e7c8555d06 Bump up transformers version & Remove MistralConfig (#1254) 2023-10-13 10:05:26 -07:00
ec3b5ce9cc Improve detokenization performance (#1338) 2023-10-13 09:59:07 -07:00
6368e777a8 Add Aquila2 to README (#1331)
Signed-off-by: ldwang <ftgreat@gmail.com>
Co-authored-by: ldwang <ftgreat@gmail.com>
2023-10-12 12:11:16 -07:00
875afe38ab Add blacklist in model checkpoint (#1325) 2023-10-12 01:05:37 -07:00
ee8217e5be Add Mistral to quantization model list (#1278) 2023-10-11 00:26:24 -07:00
980dd4a2c4 Fix overflow in awq kernel (#1295)
Co-authored-by: 楚天翔 <tianxiang.ctx@alibaba-inc.com>
2023-10-11 00:19:53 -07:00
8285736840 workaround of AWQ for Turing GPUs (#1252) 2023-10-10 19:48:16 -07:00
91fce82c6f change the timing of sorting logits (#1309) 2023-10-10 19:37:42 -07:00
ac5cf86aa6 Fix __repr__ of SequenceOutputs (#1311) 2023-10-10 09:58:28 -07:00
6a6119554c lock torch version to 2.0.1 (#1290) 2023-10-10 09:21:57 -07:00
b95ee898fe [Minor] Fix comment in mistral.py (#1303) 2023-10-09 19:44:37 -07:00
9eed4d1f3e Update README.md (#1292) 2023-10-08 23:15:50 -07:00
6b5296aa3a [FIX] Explain why the finished_reason of ignored sequences are length (#1289) 2023-10-08 15:22:38 -07:00
ee92b58b3a Move bfloat16 check to worker (#1259) 2023-10-07 22:10:44 -07:00
09ff7f106a API server support ipv4 / ipv6 dualstack (#1288)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-10-07 15:15:54 -07:00
acbed3ef40 Use monotonic time where appropriate (#1249) 2023-10-02 19:22:05 -07:00
66d18a7fb0 add support for tokenizer revision (#1163)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-10-02 19:19:46 -07:00
ba0bfd40e2 TP/quantization/weight loading refactor part 1 - Simplify parallel linear logic (#1181) 2023-10-02 15:36:09 -07:00
84e4e37d14 [Minor] Fix type annotations (#1238) 2023-10-02 15:28:31 -07:00
a60b353005 support sharding llama2-70b on more than 8 GPUs (#1209)
Co-authored-by: JiCheng <247153481@qq.com>
2023-10-02 15:26:33 -07:00
ebe4d1db3a Fix boundary check in paged attention kernel (#1241) 2023-10-01 11:35:06 -07:00
b5a10eb0ef Added dtype arg to benchmarks (#1228) 2023-09-30 21:04:03 -07:00
0967102c6d fixing typo in tiiuae/falcon-rw-7b model name (#1226) 2023-09-29 13:40:25 -07:00
e2fb71ec9f Bump up the version to v0.2.0 (#1212) 2023-09-28 15:30:38 -07:00
f936657eb6 Provide default max model length (#1224) 2023-09-28 14:44:02 -07:00
6f88f762bf Fix OOM in attention kernel test (#1223) 2023-09-28 14:33:24 -07:00
202351d5bf Add Mistral to supported model list (#1221) 2023-09-28 14:33:04 -07:00
2e8e49fce3 [Fix] Remove false assertion (#1222) 2023-09-28 10:52:38 -07:00
a8e98aee0c Fix Mistral model (#1220) 2023-09-28 10:44:05 -07:00
bb1ba58f06 [Mistral] Mistral-7B-v0.1 support (#1196)
Co-authored-by: timlacroix <t@mistral.ai>
2023-09-28 10:41:03 -07:00
7bedab5748 Add rope_scaling to Qwen (#1210) 2023-09-28 00:49:23 -07:00
20f7cc4cde Add skip_special_tokens sampling params (#1186) 2023-09-27 19:21:42 -07:00
649aa730c5 Use standard extras for uvicorn (#1166) 2023-09-27 17:41:36 -07:00
a19bc5c628 Automatically configure max_num_batched_tokens (#1198) 2023-09-27 16:34:00 -07:00
28e616c4e3 fix qwen-14b model (#1173) 2023-09-27 16:33:16 -07:00
30e775281d fix typo (#1184)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-09-27 16:22:45 -07:00
21877b0d75 Support Longchat and RoPE scaling (#555)
Co-authored-by: Wing Lian <wing.lian@gmail.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2023-09-27 03:36:02 -07:00
cf5cb1e33e Allocate more shared memory to attention kernel (#1154) 2023-09-26 22:27:13 -07:00
03ffd0a022 Add comments on RoPE initialization (#1176) 2023-09-26 10:48:33 -07:00
a425bd9a9a [Setup] Enable TORCH_CUDA_ARCH_LIST for selecting target GPUs (#1074) 2023-09-26 10:21:08 -07:00
bbbf86565f Align max_tokens behavior with openai (#852) 2023-09-23 18:10:13 -07:00
9f6be8692e Fix config for Falcon (#1164) 2023-09-23 17:38:43 -07:00
f187877945 [FIX] Simplify sampler logic (#1156) 2023-09-23 17:21:56 -07:00
947b794146 [Sampler] Vectorized sampling (simplified) (#1048)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2023-09-22 17:48:04 -07:00
8d926e91f1 Announce the First vLLM Meetup (#1148) 2023-09-22 11:37:14 -07:00
4ee52bb169 Docs: Fix broken link to openai example (#1145)
Link to `openai_client.py` is no longer valid - updated to `openai_completion_client.py`
2023-09-22 11:36:09 -07:00
7d7e3b78a3 Use --ipc=host in docker run for distributed inference (#1125) 2023-09-21 18:26:47 -07:00
f98b745a81 feat: support stop_token_ids parameter. (#1097) 2023-09-21 15:34:02 -07:00
Roy
2d1e86f1b1 clean api code, remove redundant background task. (#1102) 2023-09-21 13:25:05 -07:00
1ac4ccf73c Add float16 and float32 (#1115) 2023-09-21 00:52:47 -07:00
2ac4d5e2bf Replace DtypeTensor (#1123) 2023-09-21 00:51:47 -07:00
3302f0aef3 rope_theta and max_position_embeddings from config (#1096)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: wnma3mz <wnma3mz@gmail.com>
2023-09-20 13:35:11 -07:00
6f2dd6c37e Add documentation to Triton server tutorial (#983) 2023-09-20 10:32:40 -07:00
bc0644574c Add gpu_memory_utilization and swap_space to LLM (#1090) 2023-09-19 22:16:04 -07:00
400b8289f7 Add pyarrow to dependencies & Print warning on Ray import error (#1094) 2023-09-18 22:36:17 -07:00
c1026311b5 [Community] Add vLLM Discord server (#1086) 2023-09-18 12:23:35 -07:00
2b1c116b5a Add minimum capability requirement for AWQ (#1064) 2023-09-18 12:02:01 -07:00
cc796b1358 Convert before transpose (#1073) 2023-09-18 11:51:48 -07:00
f029ef94d7 Fix get_max_num_running_seqs for waiting and swapped seq groups (#1068) 2023-09-18 11:49:40 -07:00
Roy
95592fa00a align llm_engine and async_engine. (#1081) 2023-09-18 11:49:10 -07:00
fbe66e1d0b added support for quantize on LLM module (#1080) 2023-09-18 11:04:21 -07:00
90979c38f8 [FIX] Don't initialize parameter by default (#1067) 2023-09-17 17:15:38 -07:00
e21d7687a9 Fix hanging when prompt exceeds limit (#1029) 2023-09-17 01:48:56 -07:00
ff36139ffc Remove AsyncLLMEngine busy loop, shield background task (#1059) 2023-09-17 00:29:08 -07:00
e3e79e9e8a Implement AWQ quantization support for LLaMA (#1032)
Co-authored-by: Robert Irvine <robert@seamlessml.com>
Co-authored-by: root <rirv938@gmail.com>
Co-authored-by: Casper <casperbh.96@gmail.com>
Co-authored-by: julian-q <julianhquevedo@gmail.com>
2023-09-16 00:03:37 -07:00
b9fe4616f9 Abort when coroutine is cancelled (#1020) 2023-09-14 17:40:18 -07:00
64ca424e75 Fix warning message on LLaMA FastTokenizer (#1037) 2023-09-14 17:33:32 -07:00
b5f93d0631 Only fail if logit_bias has actual values (#1045) 2023-09-14 17:33:01 -07:00
a58936966f Add pandas to requirements.txt (#1047)
* Add pandas to requirements.txt

* Minor
2023-09-14 17:31:38 -07:00
dd54a4b026 Fix detokenization leaving special tokens (#1044)
Signed-off-by: Antoni Baum <antoni.baum@protonmail.com>
2023-09-14 16:37:03 -07:00
eda1a7cad3 Announce paper release (#1036) 2023-09-13 17:38:13 -07:00
f04908cae7 [FIX] Minor bug fixes (#1035)
* [FIX] Minor bug fixes

* Address review comments
2023-09-13 16:38:12 -07:00
ab019eea75 Add Model Revision Support (#1014)
Co-authored-by: Jasmond Loh <Jasmond.Loh@hotmail.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-09-13 15:20:02 -07:00
9841d48a10 Use TGI-like incremental detokenization (#984) 2023-09-13 13:38:01 -07:00
3272d7a0b7 Fix typo in README.md (#1033) 2023-09-13 12:55:23 -07:00
0bb1e885a0 Make max_model_len configurable (#972) 2023-09-12 16:29:19 -07:00
d6545ad22e add option to shorten prompt print in log (#991)
Signed-off-by: Lei Wen <wenlei03@qiyi.com>
Co-authored-by: Lei Wen <wenlei03@qiyi.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-09-12 15:10:14 -07:00
90eb3f43ca Bump up the version to v0.1.7 (#1013) 2023-09-11 00:54:30 -07:00
e67b4f2c2a Use FP32 in RoPE initialization (#1004)
Co-authored-by: One <imone@tuta.io>
2023-09-11 00:26:35 -07:00
d6770d1f23 Update setup.py (#1006) 2023-09-10 23:42:45 -07:00
b9cecc2635 [Docs] Update installation page (#1005) 2023-09-10 14:23:31 -07:00
898285c9bf fix: CUDA error when inferencing with Falcon-40B base model (#992) 2023-09-10 01:39:02 -07:00
a62de9ecfd Fix wrong dtype in PagedAttentionWithALiBi bias (#996)
---------

Signed-off-by: Antoni Baum <antoni.baum@protonmail.com>
2023-09-09 14:58:35 -07:00
4042d192f5 fix "tansformers_module" ModuleNotFoundError when load model with trust_remote_code=True (#871) 2023-09-08 17:21:30 -07:00
1117aa1411 Bump up the version to v0.1.6 (#989) 2023-09-08 00:07:46 -07:00
080438477f Start background task in AsyncLLMEngine.generate (#988)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-09-08 00:03:39 -07:00
4b5bcf8906 faster startup of vLLM (#982)
* update

---------

Co-authored-by: Robert Irvine <robert@seamlessml.com>
2023-09-08 14:48:54 +09:00
852ef5b4f5 Bump up the version to v0.1.5 (#944) 2023-09-07 16:15:31 -07:00
db09d4ad83 [FIX] Fix Alibi implementation in PagedAttention kernel (#945)
* [FIX] Fix Alibi implementation in PagedAttention kernel

* Fix test_attention

* Fix

---------

Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: Oliver-ss <yuansongwx@outlook.com>
2023-09-07 15:53:14 -07:00
c957c741d9 Enable safetensors loading for all models (#974) 2023-09-07 15:49:52 -07:00
c07ece5ca4 Make AsyncLLMEngine more robust & fix batched abort (#969)
Signed-off-by: Antoni Baum <antoni.baum@protonmail.com>
Co-authored-by: Avnish Narayan <38871737+avnishn@users.noreply.github.com>
2023-09-07 13:43:45 -07:00
7a9c20c715 Bum up transformers version (#976) 2023-09-07 13:15:53 -07:00
005ba458b5 Set torch default dtype in a context manager (#971)
Signed-off-by: Antoni Baum <antoni.baum@protonmail.com>
2023-09-07 15:39:37 +09:00
320a622ec4 [BugFix] Implement RoPE for GPT-J (#941) 2023-09-06 11:54:33 +09:00
c9927c1a6a Use queue for finished requests (#957) 2023-09-05 19:27:23 -07:00
fbd80ad409 Clean up kernel unit tests (#938) 2023-09-05 16:57:38 -07:00
22379d5513 fix: typo (#948) 2023-09-04 23:22:30 -07:00
1696725879 Initialize AsyncLLMEngine bg loop correctly (#943) 2023-09-04 17:41:22 -07:00
002800f081 Align vLLM's beam search implementation with HF generate (#857) 2023-09-04 17:29:42 -07:00
e15932bb60 Only emit warning about internal tokenizer if it isn't being used (#939) 2023-09-05 00:50:55 +09:00
ce741ba3e4 Refactor AsyncLLMEngine (#880) 2023-09-03 21:43:43 -07:00
bf87484efa [BugFix] Fix NaN errors in paged attention kernel (#936) 2023-09-04 09:20:06 +09:00
8ce9c50d40 Avoid compiling kernels for double data type (#933) 2023-09-02 14:59:47 +09:00
32b6816e55 Add tests for models (#922) 2023-09-01 11:19:43 +09:00
c128d69856 Fix README.md Link (#927) 2023-08-31 17:18:34 -07:00
55b28b1eee [Docs] Minor fixes in supported models (#920)
* Minor fix in supported models

* Add another small fix for Aquila model

---------

Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-08-31 16:28:39 -07:00
e11222333f fix: bug fix when penalties are negative (#913)
Co-authored-by: dongyong-lee <dongyong.lee@navercorp.com>
2023-09-01 00:37:17 +09:00
28873a2799 Improve _prune_hidden_states micro-benchmark (#707) 2023-08-31 13:28:43 +09:00
0080d8329d Add acknowledgement to a16z grant 2023-08-30 02:26:47 -07:00
0d93f15694 Accelerate LLaMA model loading (#234) 2023-08-30 01:00:13 -07:00
becd7a56f1 Enable request body OpenAPI spec for OpenAI endpoints (#865) 2023-08-29 21:54:08 -07:00
75471386de use flash-attn via xformers (#877) 2023-08-29 21:52:13 -07:00
d2b2eed67c [Fix] Fix a condition for ignored sequences (#867) 2023-08-27 23:00:56 -07:00
4b6f069b6f Add support for CodeLlama (#854) 2023-08-25 12:44:07 -07:00
791d79de32 Bump up the version to v0.1.4 (#846) 2023-08-25 12:28:00 +09:00
94d2f59895 Set replacement=True in torch.multinomial (#858) 2023-08-25 12:22:01 +09:00
75c0ca9d43 Clean up code (#844) 2023-08-23 16:44:15 -07:00
2a4ec90854 Fix for breaking changes in xformers 0.0.21 (#834) 2023-08-23 17:44:21 +09:00
85ebcda94d Fix typo of Aquila in README.md (#836) 2023-08-22 20:48:36 -07:00
d64bf1646c Implement approximate GELU kernels (#828) 2023-08-23 07:43:21 +09:00
a41c20435e Add compute capability 8.9 to default targets (#829) 2023-08-23 07:28:38 +09:00
eedac9dba0 fix: revert code to avoid no attribute problem (#827) 2023-08-22 11:55:16 -07:00
14f9c72bfd Update Supported Model List (#825) 2023-08-22 11:51:44 -07:00
ad5f2fe34c Add support for aquila (#663)
* add aquila

Signed-off-by: ftgreat <ftgreat@163.com>

* fix some bug

Signed-off-by: shunxing1234 <xw747777271@gmail.com>

* delete pdb

Signed-off-by: shunxing1234 <xw747777271@gmail.com>

* fix bugs

Signed-off-by: shunxing1234 <xw747777271@gmail.com>

* fix bugs

Signed-off-by: shunxing1234 <xw747777271@gmail.com>

* delete whitespace

Signed-off-by: shunxing1234 <xw747777271@gmail.com>

* format

* fix order

---------

Signed-off-by: ftgreat <ftgreat@163.com>
Signed-off-by: shunxing1234 <xw747777271@gmail.com>
Co-authored-by: ftgreat <ftgreat@163.com>
2023-08-22 00:13:36 -07:00
4f8584756d Fix mqa is false case in gpt_bigcode (#806) 2023-08-21 22:22:06 -07:00
65fc1c3127 set default coompute capability according to cuda version (#773) 2023-08-21 16:05:44 -07:00
c393af6cd7 [Feature | CI] Added a github action to build wheels (#746) 2023-08-21 16:59:15 +09:00
0c04ce3234 Fix typo in sampling_params.py (#788) 2023-08-18 10:12:46 +09:00
73b3de79ea explicitly del state (#784) 2023-08-17 12:56:04 -07:00
d1744376ae Align with huggingface Top K sampling (#753) 2023-08-15 16:44:33 -07:00
805de738f6 Fix typo in tokenizer.py (#750)
conjuction -> conjunction
2023-08-14 22:26:36 -07:00
1b151ed181 Fix baichuan doc style (#748) 2023-08-13 20:57:31 -07:00
e06f504a76 Supports tokens and arrays of tokens as inputs to the OpenAI completion API (#715) 2023-08-11 12:14:34 -07:00
WRH
462ae5220a [Fix] unwantted bias in InternLM Model (#740) 2023-08-11 11:40:37 -07:00
66c54aa9c3 Check the max prompt length for the OpenAI completions API (#472) 2023-08-08 17:43:49 -07:00
735ecfff61 add internlm model (#528) 2023-08-08 16:35:06 -07:00
a57d13cc96 add QWen-7b (#685)
Co-authored-by: wq.chu <wq.chu@tianrang-inc.com>
2023-08-08 13:50:38 -07:00
79af7e96a0 [OPTIMIZATION] Optimizes the single_query_cached_kv_attention kernel (#420) 2023-08-04 10:57:29 -07:00
621980bdc0 fix: incorrect bigcode attention heads num (#676) 2023-08-04 10:35:22 -07:00
aa84c92ef6 Bump up version to 0.1.3 (#657) 2023-08-02 16:46:53 -07:00
f7389f4763 [Doc] Add Baichuan 13B to supported models (#656) 2023-08-02 16:45:12 -07:00
55fe8a81ec Refactor scheduler (#658) 2023-08-02 16:42:01 -07:00
e8ddc08ec8 [BUG FIX] upgrade fschat version to 0.2.23 (#650)
Co-authored-by: hao.yu <hao.yu@cn-c017.server.mila.quebec>
2023-08-02 14:05:59 -07:00
1b0bd0fe8a Add Falcon support (new) (#592) 2023-08-02 14:04:39 -07:00
20044cab7a Fix log message in scheduler (#652) 2023-08-02 13:35:10 -07:00
64f23c2900 fix baichuan for different position embedding for 7b and 13b models (#643) 2023-08-01 22:22:51 -07:00
d4c7755ca8 fix biachuan-7b tp (#598)
Co-authored-by: wq.chu <wq.chu@tianrang-inc.com>
2023-08-01 15:41:36 -07:00
aa39e42c5a fix doc (#622) 2023-07-31 13:11:57 -07:00
953f28cf9a fix ModuleNotFoundError (#599)
Co-authored-by: fangli <fangli@tencent.com>
2023-07-29 20:52:41 -07:00
c0d00f5be6 [Fix] fix import error of RayWorker (#604) (#605) 2023-07-27 23:37:40 -07:00
58a072be15 [Fix] Add model sequence length into model config (#575) 2023-07-25 23:46:30 -07:00
82ad323dee [Fix] Add chat completion Example and simplify dependencies (#576) 2023-07-25 23:45:48 -07:00
df5dd3c68e Add Baichuan-7B to README (#494) 2023-07-25 15:25:12 -07:00
2d867b55fa fixed tensor parallel is not defined (#564) 2023-07-25 14:16:51 -07:00
d7a1c6d614 Fix paged attention testing. (#495)
Signed-off-by: Tao Peng <jiankeng.pt@alibaba-inc.com>
2023-07-24 21:01:56 -07:00
7d5a155e4a [Fix] Fix GPTBigcoder for distributed execution (#503) 2023-07-24 18:36:33 -07:00
1dde34e0f8 GPTJConfig has no attribute rotary. (#532) 2023-07-24 11:29:30 -07:00
6fc2a38b11 Add support for LLaMA-2 (#505) 2023-07-20 11:38:27 -07:00
c487a221ee Fix bad assert in initialize_cluster if PG already exists (#526) 2023-07-19 23:17:12 -07:00
9925c17940 Ray placement group support (#397) 2023-07-19 22:49:31 -07:00
8c4b2592fb fix: enable trust-remote-code in api server & benchmark. (#509) 2023-07-19 17:06:15 -07:00
WRH
cf21a9bd5c support trust_remote_code in benchmark (#518) 2023-07-19 17:02:40 -07:00
16c3e295a8 fix(ray_utils): ignore re-init error (#465) 2023-07-19 17:01:19 -07:00
bda41c70dd hotfix attn alibi wo head mapping (#496)
Co-authored-by: oliveryuan <oliveryuan@basemind.com>
2023-07-18 11:31:48 -07:00
453bafb96f Merge pull request #498 from MoeedDar/main
Fixed old name reference for max_seq_len
2023-07-18 09:22:56 -07:00
328d231c17 Fixed old name reference for max_seq_len 2023-07-18 16:47:59 +01:00
b4b195b360 fix max seq len (#489) 2023-07-17 23:20:20 -07:00
20b0d88d16 Add support for baichuan (#365) 2023-07-17 13:50:55 -07:00
2bdea7ac11 [Fix] Fix the condition of max_seq_len (#477) 2023-07-17 00:33:48 -04:00
58df2883cb [Doc] Add doc for running vLLM on the cloud (#426)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-07-16 13:37:14 -07:00
6d7d95a70a Offload port selection to OS (#467) 2023-07-15 23:11:02 -07:00
96853af5a8 Optimize MQA Kernel (#452) 2023-07-14 20:06:40 -04:00
dbed69058c Fix the KeyError when loading bloom-based models (#441) 2023-07-13 21:58:09 -07:00
7b6ae94059 add vocab padding for LLama(Support WizardLM) (#411) 2023-07-13 23:56:22 -04:00
c6dfc3cdbe Fix handling of special tokens in decoding. (#418) 2023-07-12 11:14:56 -04:00
51be365143 fix: freeze pydantic to v1 (#429) 2023-07-12 11:10:55 -04:00
c894836108 [Model] Add support for GPT-J (#226)
Co-authored-by: woWoosuk Kwon <woosuk.kwon@berkeley.edu>
2023-07-08 17:55:16 -07:00
75beba29b5 Don't try to load training_args.bin (#373) 2023-07-08 15:26:28 -07:00
ddfdf470ae Add trust_remote_code arg to get_config (#405) 2023-07-08 15:24:17 -07:00
b6fbb9a565 Sort the outputs before return (#402) 2023-07-08 14:48:18 -07:00
2179e4f4c5 avoid python list copy in sequence initialization (#401) 2023-07-08 12:42:08 -07:00
a945fcc2ae Add trust-remote-code flag to handle remote tokenizers (#364) 2023-07-07 11:04:58 -07:00
be54f8e5c4 [Fix] Change /generate response-type to json for non-streaming (#374) 2023-07-06 18:15:17 -07:00
b396cb4998 fix: only response [DONE] once when streaming response. (#378) 2023-07-06 18:08:40 -07:00
1c395b4eaa Bump up the version (#300) 2023-07-04 21:41:53 -07:00
3d64cf019e [Server] use fastchat.model.model_adapter.get_conversation_template method to get model template (#357) 2023-07-04 21:39:59 -07:00
98fe8cb542 [Server] Add option to specify chat template for chat endpoint (#345) 2023-07-03 23:01:56 -07:00
ffa6d2f9f9 [Docs] Fix typo (#346) 2023-07-03 16:51:47 -07:00
404422f42e [Model] Add support for MPT (#334) 2023-07-03 16:47:53 -07:00
7717d0838b Fix an endless loop issue when engine_step throws a RuntimeError (#339) 2023-07-03 15:22:28 -07:00
42e0c1df78 [Quality] Add CI for formatting (#343) 2023-07-03 14:50:56 -07:00
e41f06702c Add support for BLOOM (#331) 2023-07-03 13:12:35 -07:00
d6fa1be3a8 [Quality] Add code formatter and linter (#326) 2023-07-03 11:31:55 -07:00
0ffded812a [Fix] Better error message for batched prompts (#342) 2023-07-03 09:27:31 -07:00
0bd2a573a5 Allow send list of str for the Prompt on openai demo endpoint /v1/completions (#323)
* allow str or List[str] for prompt

* Update vllm/entrypoints/openai/api_server.py

Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>

---------

Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-07-03 09:17:50 -07:00
49b26e2cec feat: add ChatCompletion endpoint in OpenAI demo server. (#330) 2023-07-02 22:54:33 -07:00
dafd924c1f Raise error for long prompt (#273) 2023-06-30 18:48:49 -07:00
598dc4b79a [Fix] Weight loading for GPTBigCode (#313) 2023-06-29 22:14:17 -07:00
85de093472 [Fix] Do not pin memory when in WSL (#312) 2023-06-29 15:00:21 -07:00
f72297562f Add news for the vllm+skypilot example (#314) 2023-06-29 12:32:37 -07:00
9d27b09d12 Update README.md (#306) 2023-06-29 06:52:15 -07:00
998d9d1509 [Tokenizer] Add tokenizer mode (#298) 2023-06-28 14:19:22 -07:00
425040d4c1 remove floats == 0 comparison (#285) 2023-06-28 14:11:51 -07:00
4338cc4750 [Tokenizer] Add an option to specify tokenizer (#284) 2023-06-28 09:46:58 -07:00
bdd6b4c8bc Add LLM.set_tokenizer (#283) 2023-06-28 00:28:29 -07:00
2b7d3aca2e Update setup.py (#282)
Co-authored-by: neubig <neubig@gmail.com>
2023-06-27 14:34:23 -07:00
4026a049d3 expand coverage of gpt2 model loading (#271) 2023-06-27 06:27:41 -07:00
43710e8d09 [Fix] Fix default port number in benchmark scripts (#265) 2023-06-26 13:15:35 -07:00
526df28fb2 [BugFix] Fix a bug in counting running sequences (#266) 2023-06-26 13:09:02 -07:00
2cf1a333b6 [Doc] Documentation for distributed inference (#261) 2023-06-26 11:34:23 -07:00
0b7db411b5 [Bug] Fix the OOM condition for CPU cache (#260) 2023-06-26 11:16:13 -07:00
471a7a4566 Compatible with Decapoda Research llama hf version (#251) 2023-06-26 09:23:57 -07:00
6214dd6ce9 Update README.md (#236) 2023-06-25 16:58:06 -07:00
0603379863 fix wrong using getattr to get dict value (#232) 2023-06-24 22:00:24 -07:00
665c48963b [Docs] Add GPTBigCode to supported models (#213) 2023-06-22 15:05:11 -07:00
298695b766 GPTBigCode (StarCoder, SantaCoder Support) (#209) 2023-06-23 01:49:27 +08:00
83658c8ace Bump up version to 0.1.1 (#204) 2023-06-22 15:33:32 +08:00
1d24ccb96c [Fix] Better error message when there is OOM during cache initialization (#203) 2023-06-22 15:30:06 +08:00
14f0b39cda [Bugfix] Fix a bug in RequestOutput.finished (#202) 2023-06-22 00:17:24 -07:00
2e0d314384 fix-ray (#193) 2023-06-22 00:21:41 +08:00
67d96c29fb Use slow tokenizer for open llama models (#168) 2023-06-20 14:19:47 +08:00
033f5c78f5 Remove e.g. in README (#167) 2023-06-20 14:00:28 +08:00
794e578de0 [Minor] Fix URLs (#166) 2023-06-19 22:57:14 -07:00
caddfc14c1 [Minor] Fix icons in doc (#165) 2023-06-19 20:35:38 -07:00
fc72e39de3 Change image urls (#164) 2023-06-20 11:15:15 +08:00
b7e62d3454 Fix repo & documentation URLs (#163) 2023-06-19 20:03:40 -07:00
364536acd1 [Docs] Minor fix (#162) 2023-06-19 19:58:23 -07:00
0b32a987dd Add and list supported models in README (#161) 2023-06-20 10:57:46 +08:00
570fb2e9cc [PyPI] Fix package info in setup.py (#158) 2023-06-19 18:05:01 -07:00
a255885f83 Add logo and polish readme (#156) 2023-06-19 16:31:13 +08:00
5822ede66e Add performance figures for dark mode (#160) 2023-06-18 23:46:24 -07:00
0370afa2e5 Remove benchmark_async_llm_server.py (#155) 2023-06-19 11:12:37 +08:00
7e2a913c64 [Minor] Fix CompletionOutput.__repr__ (#157) 2023-06-18 19:58:25 -07:00
3f92038b99 Add comments on swap space (#154) 2023-06-18 11:39:35 -07:00
dcda03b4cb Write README and front page of doc (#147) 2023-06-18 03:19:38 -07:00
bf5f121c02 Reduce GPU memory utilization to make sure OOM doesn't happen (#153) 2023-06-18 17:33:50 +08:00
bec7b2dc26 Add quickstart guide (#148) 2023-06-18 01:26:12 +08:00
0b98ba15c7 Change the name to vLLM (#150) 2023-06-17 03:07:40 -07:00
e5464ee484 Rename servers to engines (#152) 2023-06-17 17:25:21 +08:00
bab8f3dd0d [Minor] Fix benchmark_throughput.py (#151) 2023-06-16 21:00:52 -07:00
eedb46bf03 Rename servers and change port numbers to reduce confusion (#149) 2023-06-17 00:13:02 +08:00
311490a720 Add script for benchmarking serving throughput (#145) 2023-06-14 19:55:38 -07:00
da5ddcd544 Remove redundant code in ColumnParallelLinear (#146) 2023-06-10 21:25:11 -07:00
5020e1e80c Non-streaming simple fastapi server (#144) 2023-06-10 10:43:07 -07:00
4298374265 Add docstrings for LLMServer and related classes and examples (#142) 2023-06-07 18:25:20 +08:00
e38074b1e6 Support FP32 (#141) 2023-06-07 00:40:21 -07:00
376725ce74 [PyPI] Packaging for PyPI distribution (#140) 2023-06-05 20:03:14 -07:00
456941cfe4 [Docs] Write the Adding a New Model section (#138) 2023-06-05 20:01:26 -07:00
1a956e136b Fix various issues of async servers (#135) 2023-06-05 23:44:50 +08:00
8274ca23ac Add docstrings for LLM (#137) 2023-06-04 12:52:41 -07:00
62ec38ea41 Document supported models (#127) 2023-06-02 22:35:17 -07:00
0eda2e0953 Add .readthedocs.yaml (#136) 2023-06-02 22:27:44 -07:00
211318d44a Add throughput benchmarking script (#133) 2023-05-28 03:20:05 -07:00
337871c6fd Enable LLaMA fast tokenizer (#132) 2023-05-28 02:51:42 -07:00
56b7f0efa4 Add a doc for installation (#128) 2023-05-27 01:13:06 -07:00
d721168449 Improve setup script & Add a guard for bfloat16 kernels (#130) 2023-05-27 00:59:32 -07:00
4a151dd453 Add activation registry (#126) 2023-05-25 00:09:07 -07:00
057daef778 OpenAI Compatible Frontend (#116) 2023-05-23 21:39:50 -07:00
e86717833d Incrementally decode output tokens (#121) 2023-05-23 20:46:32 -07:00
aedba6d5ec Print warnings/errors for large swap space (#123) 2023-05-23 18:22:26 -07:00
a283ec2eec Add contributing guideline and mypy config (#122) 2023-05-23 17:58:51 -07:00
3f942acfe1 Fix latency benchmark script (#118) 2023-05-22 17:03:40 -07:00
19d2899439 Add initial sphinx docs (#120) 2023-05-22 17:02:44 -07:00
655a5e48df Introduce LLM class for offline inference (#115) 2023-05-21 17:04:18 -07:00
f746ced08d Implement stop strings and best_of (#114) 2023-05-21 11:18:00 -07:00
c3442c1f6f Refactor system architecture (#109) 2023-05-20 13:06:59 -07:00
7297fa6f7c Remove unused parts in Megatron-LM code and add copyright notice (#110) 2023-05-20 09:11:34 -06:00
b7955ef17b Fix timeout error in the FastAPI frontend (#34) 2023-05-19 14:00:46 -06:00
f756799b84 Use runtime profiling to replace manual memory analyzers (#81) 2023-05-19 11:35:44 -06:00
825d8892b5 Use pytest format for unit tests (#107) 2023-05-17 17:11:23 -07:00
b322fd1607 Add docstrings to some modules and classes (#100) 2023-05-14 22:32:38 -07:00
667ba3995c Add copyright headers to source files adapted from FT (#104) 2023-05-14 22:19:19 -07:00
707ec647bb Add copyright headers for HF models (#103) 2023-05-14 21:54:32 -07:00
89988ec8c2 Add Apache-2.0 license (#102) 2023-05-14 18:05:19 -07:00
6208d622ca Minor code cleaning for SamplingParams (#99) 2023-05-12 18:07:09 -07:00
42f1042e1c Enhance SamplingParams (#96) 2023-05-11 15:45:30 -07:00
55f8b0a5de Implement presence and frequency penalties (#95) 2023-05-10 23:39:12 -07:00
9f88db35da Support top-k sampling (#94) 2023-05-10 12:51:36 -07:00
ae356774ab Avoid sorting waiting queue & Minor code cleaning (#93) 2023-05-10 01:57:07 -07:00
e331957784 Log system stats (#90) 2023-05-10 01:06:53 -07:00
8d66a7b6d7 Rename variables and methods (#91) 2023-05-10 00:58:31 -07:00
ce26e57fd3 Update sample prompts in simple_server.py (#89) 2023-05-09 16:47:39 -07:00
85eb631839 Use slow tokenizer for LLaMA (#84) 2023-05-09 16:03:44 -07:00
add055e151 Enhance model loader (#83) 2023-05-09 15:46:42 -07:00
7c041ab578 Refactor system architecture (#82) 2023-05-09 15:30:12 -07:00
8917782af6 Add a system logger (#85) 2023-05-08 23:03:35 -07:00
7addca5935 Specify python package dependencies in requirements.txt (#78) 2023-05-07 16:30:43 -07:00
c84e924287 [Minor] Fix a dtype bug (#79) 2023-05-06 02:12:12 -07:00
c9d5b6d4a8 Replace FlashAttention with xformers (#70) 2023-05-05 02:01:08 -07:00
189ae23133 Use dtype from model config & Add Dolly V2 (#63) 2023-05-04 03:05:37 -07:00
e548c1488a Add support for GPT-2 (#60) 2023-05-04 02:59:56 -07:00
130d5fd8c7 Fix a bug in attention kernel (#68) 2023-05-04 02:56:09 -07:00
e070829ae8 Support bfloat16 data type (#54) 2023-05-03 14:09:44 -07:00
436e523bf1 Refactor attention kernels (#53) 2023-05-03 13:40:13 -07:00
27f1410d06 New weight loader without np copy (#52) 2023-05-03 15:32:04 +08:00
4858f3bb45 Add an option to launch cacheflow without ray (#51) 2023-04-30 15:42:17 +08:00
a96d63c21d Add support for GPT-NeoX (Pythia) (#50) 2023-04-28 00:32:10 -07:00
734 changed files with 124863 additions and 10534 deletions

View File

@ -0,0 +1,36 @@
import os
import zipfile
MAX_SIZE_MB = 200
def print_top_10_largest_files(zip_file):
with zipfile.ZipFile(zip_file, 'r') as z:
file_sizes = [(f, z.getinfo(f).file_size) for f in z.namelist()]
file_sizes.sort(key=lambda x: x[1], reverse=True)
for f, size in file_sizes[:10]:
print(f"{f}: {size/(1024*1024)} MBs uncompressed.")
def check_wheel_size(directory):
for root, _, files in os.walk(directory):
for f in files:
if f.endswith(".whl"):
wheel_path = os.path.join(root, f)
wheel_size = os.path.getsize(wheel_path)
wheel_size_mb = wheel_size / (1024 * 1024)
if wheel_size_mb > MAX_SIZE_MB:
print(
f"Wheel {wheel_path} is too large ({wheel_size_mb} MB) "
f"compare to the allowed size ({MAX_SIZE_MB} MB).")
print_top_10_largest_files(wheel_path)
return 1
else:
print(f"Wheel {wheel_path} is within the allowed size "
f"({wheel_size_mb} MB).")
return 0
if __name__ == "__main__":
import sys
sys.exit(check_wheel_size(sys.argv[1]))

View File

@ -0,0 +1,18 @@
#!/bin/bash
set -ex
set -o pipefail
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
# aws s3 sync s3://air-example-data-2/vllm_opensource_llava/ images/
mkdir -p images
cd images
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/stop_sign_pixel_values.pt
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/stop_sign_image_features.pt
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/cherry_blossom_pixel_values.pt
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/cherry_blossom_image_features.pt
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/stop_sign.jpg
wget https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/cherry_blossom.jpg
cd -

View File

@ -0,0 +1,73 @@
# This script runs test inside the corresponding ROCm docker container.
set -ex
# Print ROCm version
echo "--- ROCm info"
rocminfo
# cleanup older docker images
cleanup_docker() {
# Get Docker's root directory
docker_root=$(docker info -f '{{.DockerRootDir}}')
if [ -z "$docker_root" ]; then
echo "Failed to determine Docker root directory."
exit 1
fi
echo "Docker root directory: $docker_root"
# Check disk usage of the filesystem where Docker's root directory is located
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
# Define the threshold
threshold=70
if [ "$disk_usage" -gt "$threshold" ]; then
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes
docker volume prune -f
echo "Docker images and volumes cleanup completed."
else
echo "Disk usage is below $threshold%. No cleanup needed."
fi
}
# Call the cleanup docker function
cleanup_docker
echo "--- Resetting GPUs"
echo "reset" > /opt/amdgpu/etc/gpu_state
while true; do
sleep 3
if grep -q clean /opt/amdgpu/etc/gpu_state; then
echo "GPUs state is \"clean\""
break
fi
done
echo "--- Building container"
sha=$(git rev-parse --short HEAD)
image_name=rocm_${sha}
container_name=rocm_${sha}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)
docker build \
-t ${image_name} \
-f Dockerfile.rocm \
--progress plain \
.
remove_docker_container() {
docker rm -f ${container_name} || docker image rm -f ${image_name} || true
}
trap remove_docker_container EXIT
echo "--- Running container"
docker run \
--device /dev/kfd --device /dev/dri \
--network host \
--rm \
-e HF_TOKEN \
--name ${container_name} \
${image_name} \
/bin/bash -c "${@}"

View File

@ -0,0 +1,78 @@
# This script is run by buildkite to run the benchmarks and upload the results to buildkite
set -ex
set -o pipefail
# cd into parent directory of this file
cd "$(dirname "${BASH_SOURCE[0]}")/.."
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
# run python-based benchmarks and upload the result to buildkite
python3 benchmarks/benchmark_latency.py --output-json latency_results.json 2>&1 | tee benchmark_latency.txt
bench_latency_exit_code=$?
python3 benchmarks/benchmark_throughput.py --input-len 256 --output-len 256 --output-json throughput_results.json 2>&1 | tee benchmark_throughput.txt
bench_throughput_exit_code=$?
# run server-based benchmarks and upload the result to buildkite
python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-chat-hf &
server_pid=$!
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
# wait for server to start, timeout after 600 seconds
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name sharegpt \
--dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json \
--model meta-llama/Llama-2-7b-chat-hf \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer meta-llama/Llama-2-7b-chat-hf \
--save-result \
2>&1 | tee benchmark_serving.txt
bench_serving_exit_code=$?
kill $server_pid
# write the results into a markdown file
echo "### Latency Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_latency.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
sed -n '$p' benchmark_latency.txt >> benchmark_results.md # last line
echo "### Throughput Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_throughput.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
sed -n '$p' benchmark_throughput.txt >> benchmark_results.md # last line
echo "### Serving Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_serving.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
echo '```' >> benchmark_results.md
tail -n 20 benchmark_serving.txt >> benchmark_results.md # last 20 lines
echo '```' >> benchmark_results.md
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
exit 0
fi
# upload the results to buildkite
/workspace/buildkite-agent annotate --style "info" --context "benchmark-results" < benchmark_results.md
# exit with the exit code of the benchmarks
if [ $bench_latency_exit_code -ne 0 ]; then
exit $bench_latency_exit_code
fi
if [ $bench_throughput_exit_code -ne 0 ]; then
exit $bench_throughput_exit_code
fi
if [ $bench_serving_exit_code -ne 0 ]; then
exit $bench_serving_exit_code
fi
rm ShareGPT_V3_unfiltered_cleaned_split.json
/workspace/buildkite-agent artifact upload "*.json"

View File

@ -0,0 +1,14 @@
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Try building the docker image
docker build -t cpu-test -f Dockerfile.cpu .
# Setup cleanup
remove_docker_container() { docker rm -f cpu-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --network host --env VLLM_CPU_KVCACHE_SPACE=1 --name cpu-test cpu-test python3 vllm/examples/offline_inference.py

View File

@ -0,0 +1,51 @@
# This script build the Neuron docker image and run the API server inside the container.
# It serves a sanity check for compilation and basic model usage.
set -e
# Try building the docker image
aws ecr get-login-password --region us-west-2 | docker login --username AWS --password-stdin 763104351884.dkr.ecr.us-west-2.amazonaws.com
# prune old image and containers to save disk space, and only once a day
# by using a timestamp file in tmp.
if [ -f /tmp/neuron-docker-build-timestamp ]; then
last_build=$(cat /tmp/neuron-docker-build-timestamp)
current_time=$(date +%s)
if [ $((current_time - last_build)) -gt 86400 ]; then
docker system prune -f
echo $current_time > /tmp/neuron-docker-build-timestamp
fi
else
echo $(date +%s) > /tmp/neuron-docker-build-timestamp
fi
docker build -t neuron -f Dockerfile.neuron .
# Setup cleanup
remove_docker_container() { docker rm -f neuron || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image
docker run --device=/dev/neuron0 --device=/dev/neuron1 --network host --name neuron neuron python3 -m vllm.entrypoints.api_server \
--model TinyLlama/TinyLlama-1.1B-Chat-v1.0 --max-num-seqs 8 --max-model-len 128 --block-size 128 --device neuron --tensor-parallel-size 2 &
# Wait for the server to start
wait_for_server_to_start() {
timeout=300
counter=0
while [ "$(curl -s -o /dev/null -w ''%{http_code}'' localhost:8000/health)" != "200" ]; do
sleep 1
counter=$((counter + 1))
if [ $counter -ge $timeout ]; then
echo "Timeout after $timeout seconds"
break
fi
done
}
wait_for_server_to_start
# Test a simple prompt
curl -X POST -H "Content-Type: application/json" \
localhost:8000/generate \
-d '{"prompt": "San Francisco is a"}'

View File

@ -0,0 +1,166 @@
# In this file, you can add more tests to run either by adding a new step or
# adding a new command to an existing step. See different options here for examples.
# This script will be feed into Jinja template in `test-template.j2` to generate
# the final pipeline yaml file.
steps:
- label: Regression Test
mirror_hardwares: [amd]
command: pytest -v -s test_regression.py
working_dir: "/vllm-workspace/tests" # optional
- label: AsyncEngine Test
#mirror_hardwares: [amd]
command: pytest -v -s async_engine
- label: Basic Correctness Test
mirror_hardwares: [amd]
commands:
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_basic_correctness.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_basic_correctness.py
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Core Test
mirror_hardwares: [amd]
command: pytest -v -s core
- label: Distributed Comm Ops Test
#mirror_hardwares: [amd]
command: pytest -v -s distributed/test_comm_ops.py
working_dir: "/vllm-workspace/tests"
num_gpus: 2
- label: Distributed Tests
mirror_hardwares: [amd]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
commands:
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_chunked_prefill_distributed.py
- pytest -v -s spec_decode/e2e/test_integration_dist.py
- label: Distributed Tests (Multiple Groups)
#mirror_hardwares: [amd]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
commands:
- pytest -v -s distributed/test_pynccl.py
- label: Engine Test
mirror_hardwares: [amd]
command: pytest -v -s engine tokenization test_sequence.py test_config.py test_logger.py
- label: Entrypoints Test
mirror_hardwares: [amd]
commands:
- pytest -v -s test_inputs.py
- pytest -v -s entrypoints -m llm
- pytest -v -s entrypoints -m openai
- label: Examples Test
working_dir: "/vllm-workspace/examples"
mirror_hardwares: [amd]
commands:
# install aws cli for llava_example.py
# install tensorizer for tensorize_vllm_model.py
- pip install awscli tensorizer
- python3 offline_inference.py
- python3 offline_inference_with_prefix.py
- python3 llm_engine_example.py
- python3 llava_example.py
- python3 tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- label: Kernels Test %N
#mirror_hardwares: [amd]
command: pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 4
- label: Models Test
#mirror_hardwares: [amd]
commands:
- bash ../.buildkite/download-images.sh
- pytest -v -s models --ignore=models/test_llava.py
- label: Llava Test
mirror_hardwares: [amd]
commands:
- bash ../.buildkite/download-images.sh
- pytest -v -s models/test_llava.py
- label: Prefix Caching Test
mirror_hardwares: [amd]
commands:
- pytest -v -s prefix_caching
- label: Samplers Test
#mirror_hardwares: [amd]
command: pytest -v -s samplers
- label: LogitsProcessor Test
mirror_hardwares: [amd]
command: pytest -v -s test_logits_processor.py
- label: Utils Test
command: pytest -v -s test_utils.py
- label: Worker Test
mirror_hardwares: [amd]
command: pytest -v -s worker
- label: Speculative decoding tests
#mirror_hardwares: [amd]
command: pytest -v -s spec_decode
- label: LoRA Test %N
#mirror_hardwares: [amd]
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py
parallelism: 4
- label: LoRA Long Context (Distributed)
#mirror_hardwares: [amd]
num_gpus: 4
# This test runs llama 13B, so it is required to run on 4 GPUs.
commands:
# Temporarily run this way because we cannot clean up GPU mem usage
# for multi GPU tests.
# TODO(sang): Fix it.
- pytest -v -s lora/test_long_context.py::test_rotary_emb_replaced
- pytest -v -s lora/test_long_context.py::test_batched_rope_kernel
- pytest -v -s lora/test_long_context.py::test_self_consistency
- pytest -v -s lora/test_long_context.py::test_quality
- pytest -v -s lora/test_long_context.py::test_max_len
- label: Tensorizer Test
#mirror_hardwares: [amd]
command: apt-get install curl libsodium23 && pytest -v -s tensorizer_loader
- label: Metrics Test
mirror_hardwares: [amd]
command: pytest -v -s metrics
- label: Quantization Test
#mirror_hardwares: [amd]
command: pytest -v -s quantization
- label: Benchmarks
working_dir: "/vllm-workspace/.buildkite"
mirror_hardwares: [amd]
commands:
- pip install aiohttp
- bash run-benchmarks.sh
- label: Documentation Build
working_dir: "/vllm-workspace/test_docs/docs"
no_gpu: True
commands:
- pip install -r requirements-docs.txt
- SPHINXOPTS=\"-W\" make html

View File

@ -0,0 +1,93 @@
{% set docker_image = "us-central1-docker.pkg.dev/vllm-405802/vllm-ci-test-repo/vllm-test:$BUILDKITE_COMMIT" %}
{% set default_num_gpu = 1 %}
{% set default_working_dir = "/vllm-workspace/tests" %}
steps:
- label: ":docker: build image"
commands:
- "docker build --build-arg max_jobs=16 --tag {{ docker_image }} --target test --progress plain ."
- "docker push {{ docker_image }}"
env:
DOCKER_BUILDKIT: "1"
retry:
automatic:
- exit_status: -1 # Agent was lost
limit: 5
- exit_status: -10 # Agent was lost
limit: 5
- wait
- group: "AMD Tests"
depends_on: ~
steps:
{% for step in steps %}
{% if step.mirror_hardwares and "amd" in step.mirror_hardwares %}
- label: "AMD: {{ step.label }}"
agents:
queue: amd
command: bash .buildkite/run-amd-test.sh "cd {{ (step.working_dir or default_working_dir) | safe }} ; {{ step.command or (step.commands | join(" ; ")) | safe }}"
env:
DOCKER_BUILDKIT: "1"
{% endif %}
{% endfor %}
- label: "Neuron Test"
depends_on: ~
agents:
queue: neuron
command: bash .buildkite/run-neuron-test.sh
soft_fail: true
- label: "Intel Test"
depends_on: ~
command: bash .buildkite/run-cpu-test.sh
{% for step in steps %}
- label: "{{ step.label }}"
agents:
queue: kubernetes
soft_fail: {{ step.soft_fail or false }}
{% if step.parallelism %}
parallelism: {{ step.parallelism }}
{% endif %}
retry:
automatic:
- exit_status: -1 # Agent was lost
limit: 5
- exit_status: -10 # Agent was lost
limit: 5
plugins:
- kubernetes:
podSpec:
{% if step.num_gpus %}
priorityClassName: gpu-priority-cls-{{ step.num_gpus }}
{% endif %}
volumes:
- name: dshm
emptyDir:
medium: Memory
containers:
- image: "{{ docker_image }}"
command: ["bash"]
args:
- '-c'
- "'cd {{ (step.working_dir or default_working_dir) | safe }} && {{ step.command or (step.commands | join(' && ')) | safe }}'"
{% if not step.no_gpu %}
resources:
requests:
nvidia.com/gpu: "{{ step.num_gpus or default_num_gpu }}"
limits:
nvidia.com/gpu: "{{ step.num_gpus or default_num_gpu }}"
{% endif %}
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
volumeMounts:
- mountPath: /dev/shm
name: dshm
{% endfor %}

26
.clang-format Normal file
View File

@ -0,0 +1,26 @@
BasedOnStyle: Google
UseTab: Never
IndentWidth: 2
ColumnLimit: 80
# Force pointers to the type for C++.
DerivePointerAlignment: false
PointerAlignment: Left
# Reordering #include statements can (and currently will) introduce errors
SortIncludes: false
# Style choices
AlignConsecutiveAssignments: false
AlignConsecutiveDeclarations: false
IndentPPDirectives: BeforeHash
IncludeCategories:
- Regex: '^<'
Priority: 4
- Regex: '^"(llvm|llvm-c|clang|clang-c|mlir|mlir-c)/'
Priority: 3
- Regex: '^"(qoda|\.\.)/'
Priority: 2
- Regex: '.*'
Priority: 1

1
.dockerignore Normal file
View File

@ -0,0 +1 @@
vllm/*.so

View File

@ -0,0 +1,22 @@
name: 📚 Documentation
description: Report an issue related to https://docs.vllm.ai/
title: "[Doc]: "
labels: ["documentation"]
body:
- type: textarea
attributes:
label: 📚 The doc issue
description: >
A clear and concise description of what content in https://docs.vllm.ai/ is an issue.
validations:
required: true
- type: textarea
attributes:
label: Suggest a potential alternative/fix
description: >
Tell us how we could improve the documentation in this regard.
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

View File

@ -0,0 +1,40 @@
name: 🛠️ Installation
description: Report an issue here when you hit errors during installation.
title: "[Installation]: "
labels: ["installation"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Your current environment
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
```text
The output of `python collect_env.py`
```
validations:
required: true
- type: textarea
attributes:
label: How you are installing vllm
description: |
Paste the full command you are trying to execute.
value: |
```sh
pip install -vvv vllm
```
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

38
.github/ISSUE_TEMPLATE/300-usage.yml vendored Normal file
View File

@ -0,0 +1,38 @@
name: 💻 Usage
description: Raise an issue here if you don't know how to use vllm.
title: "[Usage]: "
labels: ["usage"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Your current environment
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
```text
The output of `python collect_env.py`
```
validations:
required: true
- type: textarea
attributes:
label: How would you like to use vllm
description: |
A detailed description of how you want to use vllm.
value: |
I want to run inference of a [specific model](put link here). I don't know how to integrate it with vllm.
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

View File

@ -0,0 +1,86 @@
name: 🐛 Bug report
description: Raise an issue here if you find a bug.
title: "[Bug]: "
labels: ["bug"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Your current environment
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
```text
The output of `python collect_env.py`
```
validations:
required: true
- type: textarea
attributes:
label: 🐛 Describe the bug
description: |
Please provide a clear and concise description of what the bug is.
If relevant, add a minimal example so that we can reproduce the error by running the code. It is very important for the snippet to be as succinct (minimal) as possible, so please take time to trim down any irrelevant code to help us debug efficiently. We are going to copy-paste your code and we expect to get the same result as you did: avoid any external data, and include the relevant imports, etc. For example:
```python
from vllm import LLM, SamplingParams
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="facebook/opt-125m")
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
If the code is too long (hopefully, it isn't), feel free to put it in a public gist and link it in the issue: https://gist.github.com.
Please also paste or describe the results you observe instead of the expected results. If you observe an error, please paste the error message including the **full** traceback of the exception. It may be relevant to wrap error messages in ```` ```triple quotes blocks``` ````.
Please set the environment variable `export VLLM_LOGGING_LEVEL=DEBUG` to turn on more logging to help debugging potential issues.
If you experienced crashes or hangs, it would be helpful to run vllm with `export VLLM_TRACE_FUNCTION=1` . All the function calls in vllm will be recorded. Inspect these log files, and tell which function crashes or hangs.
placeholder: |
A clear and concise description of what the bug is.
```python
# Sample code to reproduce the problem
```
```
The error message you got, with the full traceback.
```
validations:
required: true
- type: markdown
attributes:
value: >
⚠️ Please separate bugs of `transformers` implementation or usage from bugs of `vllm`. If you think anything is wrong with the models' output:
- Try the counterpart of `transformers` first. If the error appears, please go to [their issues](https://github.com/huggingface/transformers/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc).
- If the error only appears in vllm, please provide the detailed script of how you run `transformers` and `vllm`, also highlight the difference and what you expect.
Thanks for contributing 🎉!

View File

@ -0,0 +1,31 @@
name: 🚀 Feature request
description: Submit a proposal/request for a new vllm feature
title: "[Feature]: "
labels: ["feature request"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: 🚀 The feature, motivation and pitch
description: >
A clear and concise description of the feature proposal. Please outline the motivation for the proposal. Is your feature request related to a specific problem? e.g., *"I'm working on X and would like Y to be possible"*. If this is related to another GitHub issue, please link here too.
validations:
required: true
- type: textarea
attributes:
label: Alternatives
description: >
A description of any alternative solutions or features you've considered, if any.
- type: textarea
attributes:
label: Additional context
description: >
Add any other context or screenshots about the feature request.
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

View File

@ -0,0 +1,33 @@
name: 🤗 Support request for a new model from huggingface
description: Submit a proposal/request for a new model from huggingface
title: "[New Model]: "
labels: ["new model"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
#### We also highly recommend you read https://docs.vllm.ai/en/latest/models/adding_model.html first to understand how to add a new model.
- type: textarea
attributes:
label: The model to consider.
description: >
A huggingface url, pointing to the model, e.g. https://huggingface.co/openai-community/gpt2 .
validations:
required: true
- type: textarea
attributes:
label: The closest model vllm already supports.
description: >
Here is the list of models already supported by vllm: https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/models . Which model is the most similar to the model you want to add support for?
- type: textarea
attributes:
label: What's your difficulty of supporting the model you want?
description: >
For example, any new operators or new architecture?
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

View File

@ -0,0 +1,52 @@
name: ⚡ Discussion on the performance of vllm
description: Submit a proposal/discussion about the performance of vllm
title: "[Performance]: "
labels: ["performance"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Proposal to improve performance
description: >
How do you plan to improve vllm's performance?
validations:
required: false
- type: textarea
attributes:
label: Report of performance regression
description: >
Please provide detailed description of performance comparison to confirm the regression. You may want to run the benchmark script at https://github.com/vllm-project/vllm/tree/main/benchmarks .
validations:
required: false
- type: textarea
attributes:
label: Misc discussion on performance
description: >
Anything about the performance.
validations:
required: false
- type: textarea
attributes:
label: Your current environment (if you think it is necessary)
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
```text
The output of `python collect_env.py`
```
validations:
required: false
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

49
.github/ISSUE_TEMPLATE/750-RFC.yml vendored Normal file
View File

@ -0,0 +1,49 @@
name: 💬 Request for comments (RFC).
description: Ask for feedback on major architectural changes or design choices.
title: "[RFC]: "
labels: ["RFC"]
body:
- type: markdown
attributes:
value: >
#### Please take a look at previous [RFCs](https://github.com/vllm-project/vllm/issues?q=label%3ARFC+sort%3Aupdated-desc) for reference.
- type: textarea
attributes:
label: Motivation.
description: >
The motivation of the RFC.
validations:
required: true
- type: textarea
attributes:
label: Proposed Change.
description: >
The proposed change of the RFC.
validations:
required: true
- type: textarea
attributes:
label: Feedback Period.
description: >
The feedback period of the RFC. Usually at least one week.
validations:
required: false
- type: textarea
attributes:
label: CC List.
description: >
The list of people you want to CC.
validations:
required: false
- type: textarea
attributes:
label: Any Other Things.
description: >
Any other things you would like to mention.
validations:
required: false
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

View File

@ -0,0 +1,21 @@
name: 🎲 Misc/random discussions that do not fit into the above categories.
description: Submit a discussion as you like. Note that developers are heavily overloaded and we mainly rely on community users to answer these issues.
title: "[Misc]: "
labels: ["misc"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Anything you want to discuss about vllm.
description: >
Anything you want to discuss about vllm.
validations:
required: true
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

1
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@ -0,0 +1 @@
blank_issues_enabled: false

64
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@ -0,0 +1,64 @@
FILL IN THE PR DESCRIPTION HERE
FIX #xxxx (*link existing issues this PR will resolve*)
**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**
---
<details>
<!-- inside this <details> section, markdown rendering does not work, so we use raw html here. -->
<summary><b> PR Checklist (Click to Expand) </b></summary>
<p>Thank you for your contribution to vLLM! Before submitting the pull request, please ensure the PR meets the following criteria. This helps vLLM maintain the code quality and improve the efficiency of the review process.</p>
<h3>PR Title and Classification</h3>
<p>Only specific types of PRs will be reviewed. The PR title is prefixed appropriately to indicate the type of change. Please use one of the following:</p>
<ul>
<li><code>[Bugfix]</code> for bug fixes.</li>
<li><code>[CI/Build]</code> for build or continuous integration improvements.</li>
<li><code>[Doc]</code> for documentation fixes and improvements.</li>
<li><code>[Model]</code> for adding a new model or improving an existing model. Model name should appear in the title.</li>
<li><code>[Frontend]</code> For changes on the vLLM frontend (e.g., OpenAI API server, <code>LLM</code> class, etc.) </li>
<li><code>[Kernel]</code> for changes affecting CUDA kernels or other compute kernels.</li>
<li><code>[Core]</code> for changes in the core vLLM logic (e.g., <code>LLMEngine</code>, <code>AsyncLLMEngine</code>, <code>Scheduler</code>, etc.)</li>
<li><code>[Hardware][Vendor]</code> for hardware-specific changes. Vendor name should appear in the prefix (e.g., <code>[Hardware][AMD]</code>).</li>
<li><code>[Misc]</code> for PRs that do not fit the above categories. Please use this sparingly.</li>
</ul>
<p><strong>Note:</strong> If the PR spans more than one category, please include all relevant prefixes.</p>
<h3>Code Quality</h3>
<p>The PR need to meet the following code quality standards:</p>
<ul>
<li>We adhere to <a href="https://google.github.io/styleguide/pyguide.html">Google Python style guide</a> and <a href="https://google.github.io/styleguide/cppguide.html">Google C++ style guide</a>.</li>
<li>Pass all linter checks. Please use <a href="https://github.com/vllm-project/vllm/blob/main/format.sh"><code>format.sh</code></a> to format your code.</li>
<li>The code need to be well-documented to ensure future contributors can easily understand the code.</li>
<li>Include sufficient tests to ensure the project to stay correct and robust. This includes both unit tests and integration tests.</li>
<li>Please add documentation to <code>docs/source/</code> if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.</li>
</ul>
<h3>Notes for Large Changes</h3>
<p>Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with <code>rfc-required</code> and might not go through the PR.</p>
<h3>What to Expect for the Reviews</h3>
<p>The goal of the vLLM team is to be a <i>transparent reviewing machine</i>. We would like to make the review process transparent and efficient and make sure no contributor feel confused or frustrated. However, the vLLM team is small, so we need to prioritize some PRs over others. Here is what you can expect from the review process: </p>
<ul>
<li> After the PR is submitted, the PR will be assigned to a reviewer. Every reviewer will pick up the PRs based on their expertise and availability.</li>
<li> After the PR is assigned, the reviewer will provide status update every 2-3 days. If the PR is not reviewed within 7 days, please feel free to ping the reviewer or the vLLM team.</li>
<li> After the review, the reviewer will put an <code> action-required</code> label on the PR if there are changes required. The contributor should address the comments and ping the reviewer to re-review the PR.</li>
<li> Please respond to all comments within a reasonable time frame. If a comment isn't clear or you disagree with a suggestion, feel free to ask for clarification or discuss the suggestion.
</li>
</ul>
<h3>Thank You</h3>
<p> Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM. Your contributions make vLLM a great tool for everyone! </p>
</details>

42
.github/workflows/clang-format.yml vendored Normal file
View File

@ -0,0 +1,42 @@
name: clang-format
on:
# Trigger the workflow on push or pull request,
# but only for the main branch
push:
branches:
- main
pull_request:
branches:
- main
jobs:
clang-format:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.11"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install clang-format==18.1.5
- name: Running clang-format
run: |
EXCLUDES=(
'csrc/moe/topk_softmax_kernels.cu'
'csrc/punica/bgmv/bgmv_bf16_bf16_bf16.cu'
'csrc/punica/bgmv/bgmv_config.h'
'csrc/punica/bgmv/bgmv_impl.cuh'
'csrc/punica/bgmv/vec_dtypes.cuh'
'csrc/punica/punica_ops.cu'
'csrc/punica/type_convert.h'
)
find csrc/ \( -name '*.h' -o -name '*.cpp' -o -name '*.cu' -o -name '*.cuh' \) -print \
| grep -vFf <(printf "%s\n" "${EXCLUDES[@]}") \
| xargs clang-format --dry-run --Werror

50
.github/workflows/mypy.yaml vendored Normal file
View File

@ -0,0 +1,50 @@
name: mypy
on:
# Trigger the workflow on push or pull request,
# but only for the main branch
push:
branches:
- main
pull_request:
branches:
- main
jobs:
ruff:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install mypy==1.9.0
pip install types-setuptools
pip install types-PyYAML
pip install types-requests
pip install types-setuptools
- name: Mypy
run: |
mypy vllm/attention --config-file pyproject.toml
mypy vllm/core --config-file pyproject.toml
mypy vllm/distributed --config-file pyproject.toml
mypy vllm/entrypoints --config-file pyproject.toml
mypy vllm/executor --config-file pyproject.toml
mypy vllm/usage --config-file pyproject.toml
mypy vllm/*.py --config-file pyproject.toml
mypy vllm/transformers_utils --config-file pyproject.toml
mypy vllm/engine --config-file pyproject.toml
mypy vllm/worker --config-file pyproject.toml
mypy vllm/spec_decode --config-file pyproject.toml
mypy vllm/model_executor --config-file pyproject.toml
mypy vllm/lora --config-file pyproject.toml
mypy vllm/logging --config-file pyproject.toml
mypy vllm/model_executor --config-file pyproject.toml

110
.github/workflows/publish.yml vendored Normal file
View File

@ -0,0 +1,110 @@
# This workflow will upload a Python Package to Release asset
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions
name: Create Release
on:
push:
tags:
- v*
# Needed to create release and upload assets
permissions:
contents: write
jobs:
release:
# Retrieve tag and create release
name: Create Release
runs-on: ubuntu-latest
outputs:
upload_url: ${{ steps.create_release.outputs.upload_url }}
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Extract branch info
shell: bash
run: |
echo "release_tag=${GITHUB_REF#refs/*/}" >> $GITHUB_ENV
- name: Create Release
id: create_release
uses: "actions/github-script@v6"
env:
RELEASE_TAG: ${{ env.release_tag }}
with:
github-token: "${{ secrets.GITHUB_TOKEN }}"
script: |
const script = require('.github/workflows/scripts/create_release.js')
await script(github, context, core)
wheel:
name: Build Wheel
runs-on: ${{ matrix.os }}
needs: release
strategy:
fail-fast: false
matrix:
os: ['ubuntu-20.04']
python-version: ['3.8', '3.9', '3.10', '3.11']
pytorch-version: ['2.3.0'] # Must be the most recent version that meets requirements-cuda.txt.
cuda-version: ['11.8', '12.1']
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Setup ccache
uses: hendrikmuhs/ccache-action@v1.2
with:
create-symlink: true
key: ${{ github.job }}-${{ matrix.python-version }}-${{ matrix.cuda-version }}
- name: Set up Linux Env
if: ${{ runner.os == 'Linux' }}
run: |
bash -x .github/workflows/scripts/env.sh
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Install CUDA ${{ matrix.cuda-version }}
run: |
bash -x .github/workflows/scripts/cuda-install.sh ${{ matrix.cuda-version }} ${{ matrix.os }}
- name: Install PyTorch ${{ matrix.pytorch-version }} with CUDA ${{ matrix.cuda-version }}
run: |
bash -x .github/workflows/scripts/pytorch-install.sh ${{ matrix.python-version }} ${{ matrix.pytorch-version }} ${{ matrix.cuda-version }}
- name: Build wheel
shell: bash
env:
CMAKE_BUILD_TYPE: Release # do not compile with debug symbol to reduce wheel size
run: |
bash -x .github/workflows/scripts/build.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }}
wheel_name=$(ls dist/*whl | xargs -n 1 basename)
asset_name=${wheel_name//"linux"/"manylinux1"}
echo "wheel_name=${wheel_name}" >> $GITHUB_ENV
echo "asset_name=${asset_name}" >> $GITHUB_ENV
- name: Upload Release Asset
uses: actions/upload-release-asset@v1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
upload_url: ${{ needs.release.outputs.upload_url }}
asset_path: ./dist/${{ env.wheel_name }}
asset_name: ${{ env.asset_name }}
asset_content_type: application/*
# (Danielkinz): This last step will publish the .whl to pypi. Warning: untested
# - name: Publish package
# uses: pypa/gh-action-pypi-publish@release/v1.8
# with:
# repository-url: https://test.pypi.org/legacy/
# password: ${{ secrets.PYPI_API_TOKEN }}
# skip-existing: true

37
.github/workflows/ruff.yml vendored Normal file
View File

@ -0,0 +1,37 @@
name: ruff
on:
# Trigger the workflow on push or pull request,
# but only for the main branch
push:
branches:
- main
pull_request:
branches:
- main
jobs:
ruff:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install ruff==0.1.5 codespell==2.2.6 tomli==2.0.1 isort==5.13.2
- name: Analysing the code with ruff
run: |
ruff .
- name: Spelling check with codespell
run: |
codespell --toml pyproject.toml
- name: Run isort
run: |
isort . --check-only

21
.github/workflows/scripts/build.sh vendored Normal file
View File

@ -0,0 +1,21 @@
#!/bin/bash
python_executable=python$1
cuda_home=/usr/local/cuda-$2
# Update paths
PATH=${cuda_home}/bin:$PATH
LD_LIBRARY_PATH=${cuda_home}/lib64:$LD_LIBRARY_PATH
# Install requirements
$python_executable -m pip install wheel packaging
$python_executable -m pip install -r requirements-cuda.txt
# Limit the number of parallel jobs to avoid OOM
export MAX_JOBS=1
# Make sure punica is built for the release (for LoRA)
export VLLM_INSTALL_PUNICA_KERNELS=1
# Make sure release wheels are built for the following architectures
export TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX"
# Build
$python_executable setup.py bdist_wheel --dist-dir=dist

View File

@ -0,0 +1,20 @@
// Uses Github's API to create the release and wait for result.
// We use a JS script since github CLI doesn't provide a way to wait for the release's creation and returns immediately.
module.exports = async (github, context, core) => {
try {
const response = await github.rest.repos.createRelease({
draft: false,
generate_release_notes: true,
name: process.env.RELEASE_TAG,
owner: context.repo.owner,
prerelease: true,
repo: context.repo.repo,
tag_name: process.env.RELEASE_TAG,
});
core.setOutput('upload_url', response.data.upload_url);
} catch (error) {
core.setFailed(error.message);
}
}

View File

@ -0,0 +1,23 @@
#!/bin/bash
# Replace '.' with '-' ex: 11.8 -> 11-8
cuda_version=$(echo $1 | tr "." "-")
# Removes '-' and '.' ex: ubuntu-20.04 -> ubuntu2004
OS=$(echo $2 | tr -d ".\-")
# Installs CUDA
wget -nv https://developer.download.nvidia.com/compute/cuda/repos/${OS}/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
rm cuda-keyring_1.1-1_all.deb
sudo apt -qq update
sudo apt -y install cuda-${cuda_version} cuda-nvcc-${cuda_version} cuda-libraries-dev-${cuda_version}
sudo apt clean
# Test nvcc
PATH=/usr/local/cuda-$1/bin:${PATH}
nvcc --version
# Log gcc, g++, c++ versions
gcc --version
g++ --version
c++ --version

56
.github/workflows/scripts/env.sh vendored Normal file
View File

@ -0,0 +1,56 @@
#!/bin/bash
# This file installs common linux environment tools
export LANG C.UTF-8
# python_version=$1
sudo apt-get update && \
sudo apt-get install -y --no-install-recommends \
software-properties-common \
sudo apt-get install -y --no-install-recommends \
build-essential \
apt-utils \
ca-certificates \
wget \
git \
vim \
libssl-dev \
curl \
unzip \
unrar \
cmake \
net-tools \
sudo \
autotools-dev \
rsync \
jq \
openssh-server \
tmux \
screen \
htop \
pdsh \
openssh-client \
lshw \
dmidecode \
util-linux \
automake \
autoconf \
libtool \
net-tools \
pciutils \
libpci-dev \
libaio-dev \
libcap2 \
libtinfo5 \
fakeroot \
devscripts \
debhelper \
nfs-common
# Remove github bloat files to free up disk space
sudo rm -rf "/usr/local/share/boost"
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
sudo rm -rf "/usr/share/dotnet"

View File

@ -0,0 +1,15 @@
#!/bin/bash
python_executable=python$1
pytorch_version=$2
cuda_version=$3
# Install torch
$python_executable -m pip install numpy pyyaml scipy ipython mkl mkl-include ninja cython typing pandas typing-extensions dataclasses setuptools && conda clean -ya
$python_executable -m pip install torch==${pytorch_version}+cu${cuda_version//./} --extra-index-url https://download.pytorch.org/whl/cu${cuda_version//./}
# Print version information
$python_executable --version
$python_executable -c "import torch; print('PyTorch:', torch.__version__)"
$python_executable -c "import torch; print('CUDA:', torch.version.cuda)"
$python_executable -c "from torch.utils import cpp_extension; print (cpp_extension.CUDA_HOME)"

31
.github/workflows/yapf.yml vendored Normal file
View File

@ -0,0 +1,31 @@
name: yapf
on:
# Trigger the workflow on push or pull request,
# but only for the main branch
push:
branches:
- main
pull_request:
branches:
- main
jobs:
yapf:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install yapf==0.32.0
pip install toml==0.10.2
- name: Running yapf
run: |
yapf --diff --recursive .

195
.gitignore vendored
View File

@ -1,10 +1,189 @@
**/*.pyc
**/__pycache__/
*.egg-info/
*.eggs/
*.so
build/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
docs/source/getting_started/examples/*.rst
!**/*.template.rst
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
.idea/
# VSCode
.vscode/
# DS Store
.DS_Store
# Results
*.csv
# Python pickle files
*.pkl
*.png
**/log.txt
# Sphinx documentation
_build/
# vim swap files
*.swo
*.swp
# hip files generated by PyTorch
*.hip
*_hip*
hip_compat.h
# Benchmark dataset
*.json

21
.readthedocs.yaml Normal file
View File

@ -0,0 +1,21 @@
# Read the Docs configuration file
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
version: 2
build:
os: ubuntu-22.04
tools:
python: "3.8"
sphinx:
configuration: docs/source/conf.py
# If using Sphinx, optionally build your docs in additional formats such as PDF
formats:
- pdf
# Optionally declare the Python requirements required to build your docs
python:
install:
- requirements: docs/requirements-docs.txt

1
.yapfignore Normal file
View File

@ -0,0 +1 @@
collect_env.py

327
CMakeLists.txt Normal file
View File

@ -0,0 +1,327 @@
cmake_minimum_required(VERSION 3.21)
project(vllm_extensions LANGUAGES CXX)
option(VLLM_TARGET_DEVICE "Target device backend for vLLM" "cuda")
message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")
message(STATUS "Target device: ${VLLM_TARGET_DEVICE}")
include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake)
#
# Supported python versions. These versions will be searched in order, the
# first match will be selected. These should be kept in sync with setup.py.
#
set(PYTHON_SUPPORTED_VERSIONS "3.8" "3.9" "3.10" "3.11")
# Supported NVIDIA architectures.
set(CUDA_SUPPORTED_ARCHS "7.0;7.5;8.0;8.6;8.9;9.0")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100")
#
# Supported/expected torch versions for CUDA/ROCm.
#
# Currently, having an incorrect pytorch version results in a warning
# rather than an error.
#
# Note: the CUDA torch version is derived from pyproject.toml and various
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.3.0")
set(TORCH_SUPPORTED_VERSION_ROCM_5X "2.0.1")
set(TORCH_SUPPORTED_VERSION_ROCM_6X "2.1.1")
#
# Try to find python package with an executable that exactly matches
# `VLLM_PYTHON_EXECUTABLE` and is one of the supported versions.
#
if (VLLM_PYTHON_EXECUTABLE)
find_python_from_executable(${VLLM_PYTHON_EXECUTABLE} "${PYTHON_SUPPORTED_VERSIONS}")
else()
message(FATAL_ERROR
"Please set VLLM_PYTHON_EXECUTABLE to the path of the desired python version"
" before running cmake configure.")
endif()
#
# Update cmake's `CMAKE_PREFIX_PATH` with torch location.
#
append_cmake_prefix_path("torch" "torch.utils.cmake_prefix_path")
# Ensure the 'nvcc' command is in the PATH
find_program(NVCC_EXECUTABLE nvcc)
if (CUDA_FOUND AND NOT NVCC_EXECUTABLE)
message(FATAL_ERROR "nvcc not found")
endif()
#
# Import torch cmake configuration.
# Torch also imports CUDA (and partially HIP) languages with some customizations,
# so there is no need to do this explicitly with check_language/enable_language,
# etc.
#
find_package(Torch REQUIRED)
#
# Normally `torch.utils.cpp_extension.CUDAExtension` would add
# `libtorch_python.so` for linking against an extension. Torch's cmake
# configuration does not include this library (presumably since the cmake
# config is used for standalone C++ binaries that link against torch).
# The `libtorch_python.so` library defines some of the glue code between
# torch/python via pybind and is required by VLLM extensions for this
# reason. So, add it by manually with `find_library` using torch's
# installed library path.
#
find_library(torch_python_LIBRARY torch_python PATHS
"${TORCH_INSTALL_PREFIX}/lib")
#
# Forward the non-CUDA device extensions to external CMake scripts.
#
if (NOT VLLM_TARGET_DEVICE STREQUAL "cuda" AND
NOT VLLM_TARGET_DEVICE STREQUAL "rocm")
if (VLLM_TARGET_DEVICE STREQUAL "cpu")
include(${CMAKE_CURRENT_LIST_DIR}/cmake/cpu_extension.cmake)
else()
message(FATAL_ERROR "Unsupported vLLM target device: ${VLLM_TARGET_DEVICE}")
endif()
return()
endif()
#
# Set up GPU language and check the torch version and warn if it isn't
# what is expected.
#
if (NOT HIP_FOUND AND CUDA_FOUND)
set(VLLM_GPU_LANG "CUDA")
if (NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_CUDA})
message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_CUDA} "
"expected for CUDA build, saw ${Torch_VERSION} instead.")
endif()
elseif(HIP_FOUND)
set(VLLM_GPU_LANG "HIP")
# Importing torch recognizes and sets up some HIP/ROCm configuration but does
# not let cmake recognize .hip files. In order to get cmake to understand the
# .hip extension automatically, HIP must be enabled explicitly.
enable_language(HIP)
# ROCm 5.x
if (ROCM_VERSION_DEV_MAJOR EQUAL 5 AND
NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM_5X})
message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_ROCM_5X} "
"expected for ROCMm 5.x build, saw ${Torch_VERSION} instead.")
endif()
# ROCm 6.x
if (ROCM_VERSION_DEV_MAJOR EQUAL 6 AND
NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM_6X})
message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_ROCM_6X} "
"expected for ROCMm 6.x build, saw ${Torch_VERSION} instead.")
endif()
else()
message(FATAL_ERROR "Can't find CUDA or HIP installation.")
endif()
#
# Override the GPU architectures detected by cmake/torch and filter them by
# the supported versions for the current language.
# The final set of arches is stored in `VLLM_GPU_ARCHES`.
#
override_gpu_arches(VLLM_GPU_ARCHES
${VLLM_GPU_LANG}
"${${VLLM_GPU_LANG}_SUPPORTED_ARCHS}")
#
# Query torch for additional GPU compilation flags for the given
# `VLLM_GPU_LANG`.
# The final set of arches is stored in `VLLM_GPU_FLAGS`.
#
get_torch_gpu_compiler_flags(VLLM_GPU_FLAGS ${VLLM_GPU_LANG})
#
# Set nvcc parallelism.
#
if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
endif()
#
# Define extension targets
#
#
# _C extension
#
set(VLLM_EXT_SRC
"csrc/cache_kernels.cu"
"csrc/attention/attention_kernels.cu"
"csrc/pos_encoding_kernels.cu"
"csrc/activation_kernels.cu"
"csrc/layernorm_kernels.cu"
"csrc/quantization/squeezellm/quant_cuda_kernel.cu"
"csrc/quantization/gptq/q_gemm.cu"
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
"csrc/quantization/fp8/common.cu"
"csrc/cuda_utils_kernels.cu"
"csrc/moe_align_block_size_kernels.cu"
"csrc/pybind.cpp")
if(VLLM_GPU_LANG STREQUAL "CUDA")
include(FetchContent)
SET(CUTLASS_ENABLE_HEADERS_ONLY=ON)
FetchContent_Declare(
cutlass
GIT_REPOSITORY https://github.com/nvidia/cutlass.git
# CUTLASS 3.5.0
GIT_TAG 7d49e6c7e2f8896c47f586706e67e1fb215529dc
)
FetchContent_MakeAvailable(cutlass)
list(APPEND VLLM_EXT_SRC
"csrc/quantization/aqlm/gemm_kernels.cu"
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/quantization/marlin/dense/marlin_cuda_kernel.cu"
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
"csrc/custom_all_reduce.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_dq_entry.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_dq_c2x.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_dq_c3x.cu")
#
# The CUTLASS kernels for Hopper require sm90a to be enabled.
# This is done via the below gencode option, BUT that creates kernels for both sm90 and sm90a.
# That adds an extra 17MB to compiled binary, so instead we selectively enable it.
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0)
set_source_files_properties(
"csrc/quantization/cutlass_w8a8/scaled_mm_dq_c3x.cu"
PROPERTIES
COMPILE_FLAGS
"-gencode arch=compute_90a,code=sm_90a")
endif()
endif()
define_gpu_extension_target(
_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${VLLM_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR};${CUTLASS_TOOLS_UTIL_INCLUDE_DIR}
WITH_SOABI)
#
# _moe_C extension
#
set(VLLM_MOE_EXT_SRC
"csrc/moe/moe_ops.cpp"
"csrc/moe/topk_softmax_kernels.cu")
define_gpu_extension_target(
_moe_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${VLLM_MOE_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
WITH_SOABI)
#
# _punica_C extension
#
set(VLLM_PUNICA_EXT_SRC
"csrc/punica/bgmv/bgmv_bf16_bf16_bf16.cu"
"csrc/punica/bgmv/bgmv_bf16_fp32_bf16.cu"
"csrc/punica/bgmv/bgmv_fp16_fp16_fp16.cu"
"csrc/punica/bgmv/bgmv_fp16_fp32_fp16.cu"
"csrc/punica/bgmv/bgmv_fp32_bf16_bf16.cu"
"csrc/punica/bgmv/bgmv_fp32_fp16_fp16.cu"
"csrc/punica/punica_ops.cu"
"csrc/punica/punica_pybind.cpp")
#
# Copy GPU compilation flags+update for punica
#
set(VLLM_PUNICA_GPU_FLAGS ${VLLM_GPU_FLAGS})
list(REMOVE_ITEM VLLM_PUNICA_GPU_FLAGS
"-D__CUDA_NO_HALF_OPERATORS__"
"-D__CUDA_NO_HALF_CONVERSIONS__"
"-D__CUDA_NO_BFLOAT16_CONVERSIONS__"
"-D__CUDA_NO_HALF2_OPERATORS__")
#
# Filter out CUDA architectures < 8.0 for punica.
#
if (${VLLM_GPU_LANG} STREQUAL "CUDA")
set(VLLM_PUNICA_GPU_ARCHES)
foreach(ARCH ${VLLM_GPU_ARCHES})
string_to_ver(CODE_VER ${ARCH})
if (CODE_VER GREATER_EQUAL 8.0)
list(APPEND VLLM_PUNICA_GPU_ARCHES ${ARCH})
endif()
endforeach()
message(STATUS "Punica target arches: ${VLLM_PUNICA_GPU_ARCHES}")
elseif(${VLLM_GPU_LANG} STREQUAL "HIP")
set(VLLM_PUNICA_GPU_ARCHES ${VLLM_GPU_ARCHES})
message(STATUS "Punica target arches: ${VLLM_PUNICA_GPU_ARCHES}")
endif()
if (VLLM_PUNICA_GPU_ARCHES)
define_gpu_extension_target(
_punica_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${VLLM_PUNICA_EXT_SRC}
COMPILE_FLAGS ${VLLM_PUNICA_GPU_FLAGS}
ARCHITECTURES ${VLLM_PUNICA_GPU_ARCHES}
WITH_SOABI)
else()
message(WARNING "Unable to create _punica_C target because none of the "
"requested architectures (${VLLM_GPU_ARCHES}) are supported, i.e. >= 8.0")
endif()
#
# Add the `default` target which detects which extensions should be
# built based on platform/architecture. This is the same logic that
# setup.py uses to select which extensions should be built and should
# be kept in sync.
#
# The `default` target makes direct use of cmake easier since knowledge
# of which extensions are supported has been factored in, e.g.
#
# mkdir build && cd build
# cmake -G Ninja -DVLLM_PYTHON_EXECUTABLE=`which python3` -DCMAKE_LIBRARY_OUTPUT_DIRECTORY=../vllm ..
# cmake --build . --target default
#
add_custom_target(default)
if(VLLM_GPU_LANG STREQUAL "CUDA" OR VLLM_GPU_LANG STREQUAL "HIP")
message(STATUS "Enabling C extension.")
add_dependencies(default _C)
# Enable punica if -DVLLM_INSTALL_PUNICA_KERNELS=ON or
# VLLM_INSTALL_PUNICA_KERNELS is set in the environment and
# there are supported target arches.
if (VLLM_PUNICA_GPU_ARCHES AND
(ENV{VLLM_INSTALL_PUNICA_KERNELS} OR VLLM_INSTALL_PUNICA_KERNELS))
message(STATUS "Enabling punica extension.")
add_dependencies(default _punica_C)
endif()
endif()
if(VLLM_GPU_LANG STREQUAL "CUDA")
message(STATUS "Enabling moe extension.")
add_dependencies(default _moe_C)
endif()

56
CONTRIBUTING.md Normal file
View File

@ -0,0 +1,56 @@
# Contributing to vLLM
Thank you for your interest in contributing to vLLM!
Our community is open to everyone and welcomes all kinds of contributions, no matter how small or large.
There are several ways you can contribute to the project:
- Identify and report any issues or bugs.
- Request or add a new model.
- Suggest or implement new features.
However, remember that contributions aren't just about code.
We believe in the power of community support; thus, answering queries, assisting others, and enhancing the documentation are highly regarded and beneficial contributions.
Finally, one of the most impactful ways to support us is by raising awareness about vLLM.
Talk about it in your blog posts, highlighting how it's driving your incredible projects.
Express your support on Twitter if vLLM aids you, or simply offer your appreciation by starring our repository.
## Setup for development
### Build from source
```bash
pip install -e . # This may take several minutes.
```
### Testing
```bash
pip install -r requirements-dev.txt
# linting and formatting
bash format.sh
# Static type checking
mypy
# Unit tests
pytest tests/
```
**Note:** Currently, the repository does not pass the mypy tests.
## Contributing Guidelines
### Issue Reporting
If you encounter a bug or have a feature request, please check our issues page first to see if someone else has already reported it.
If not, please file a new issue, providing as much relevant information as possible.
### Pull Requests & Code Reviews
Please check the PR checklist in the [PR template](.github/PULL_REQUEST_TEMPLATE.md) for detailed guide for contribution.
### Thank You
Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM.
Your contributions make vLLM a great tool for everyone!

136
Dockerfile Normal file
View File

@ -0,0 +1,136 @@
# The vLLM Dockerfile is used to construct vLLM image that can be directly used
# to run the OpenAI compatible server.
# Please update any changes made here to
# docs/source/dev/dockerfile/dockerfile.rst and
# docs/source/assets/dev/dockerfile-stages-dependency.png
#################### BASE BUILD IMAGE ####################
# prepare basic build environment
FROM nvidia/cuda:12.4.1-devel-ubuntu22.04 AS dev
RUN apt-get update -y \
&& apt-get install -y python3-pip git
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-12.4/compat/
WORKDIR /workspace
# install build and runtime dependencies
COPY requirements-common.txt requirements-common.txt
COPY requirements-cuda.txt requirements-cuda.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-cuda.txt
# install development dependencies
COPY requirements-dev.txt requirements-dev.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-dev.txt
# cuda arch list used by torch
# can be useful for both `dev` and `test`
# explicitly set the list to avoid issues with torch 2.2
# see https://github.com/pytorch/pytorch/pull/123243
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.6 8.9 9.0+PTX'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
#################### BASE BUILD IMAGE ####################
#################### WHEEL BUILD IMAGE ####################
FROM dev AS build
# install build dependencies
COPY requirements-build.txt requirements-build.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-build.txt
# install compiler cache to speed up compilation leveraging local or remote caching
RUN apt-get update -y && apt-get install -y ccache
# files and directories related to build wheels
COPY csrc csrc
COPY setup.py setup.py
COPY cmake cmake
COPY CMakeLists.txt CMakeLists.txt
COPY requirements-common.txt requirements-common.txt
COPY requirements-cuda.txt requirements-cuda.txt
COPY pyproject.toml pyproject.toml
COPY vllm vllm
# max jobs used by Ninja to build extensions
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
# number of threads used by nvcc
ARG nvcc_threads=8
ENV NVCC_THREADS=$nvcc_threads
# make sure punica kernels are built (for LoRA)
ENV VLLM_INSTALL_PUNICA_KERNELS=1
ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/ccache \
--mount=type=cache,target=/root/.cache/pip \
python3 setup.py bdist_wheel --dist-dir=dist
# check the size of the wheel, we cannot upload wheels larger than 100MB
COPY .buildkite/check-wheel-size.py check-wheel-size.py
RUN python3 check-wheel-size.py dist
#################### EXTENSION Build IMAGE ####################
#################### vLLM installation IMAGE ####################
# image with vLLM installed
FROM nvidia/cuda:12.4.1-base-ubuntu22.04 AS vllm-base
WORKDIR /vllm-workspace
RUN apt-get update -y \
&& apt-get install -y python3-pip git vim
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-12.4/compat/
# install vllm wheel first, so that torch etc will be installed
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
--mount=type=cache,target=/root/.cache/pip \
pip install dist/*.whl --verbose
#################### vLLM installation IMAGE ####################
#################### TEST IMAGE ####################
# image to run unit testing suite
# note that this uses vllm installed by `pip`
FROM vllm-base AS test
ADD . /vllm-workspace/
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-dev.txt
# doc requires source code
# we hide them inside `test_docs/` , so that this source code
# will not be imported by other tests
RUN mkdir test_docs
RUN mv docs test_docs/
RUN mv vllm test_docs/
#################### TEST IMAGE ####################
#################### OPENAI API SERVER ####################
# openai api server alternative
FROM vllm-base AS vllm-openai
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer modelscope
ENV VLLM_USAGE_SOURCE production-docker-image
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
#################### OPENAI API SERVER ####################

22
Dockerfile.cpu Normal file
View File

@ -0,0 +1,22 @@
# This vLLM Dockerfile is used to construct image that can build and run vLLM on x86 CPU platform.
FROM ubuntu:22.04
RUN apt-get update -y \
&& apt-get install -y git wget vim numactl gcc-12 g++-12 python3 python3-pip \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
RUN pip install --upgrade pip \
&& pip install wheel packaging ninja setuptools>=49.4.0 numpy
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
RUN pip install -v -r requirements-cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu
RUN VLLM_TARGET_DEVICE=cpu python3 setup.py install
WORKDIR /workspace/
CMD ["/bin/bash"]

36
Dockerfile.neuron Normal file
View File

@ -0,0 +1,36 @@
# default base image
ARG BASE_IMAGE="763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-inference-neuronx:2.1.1-neuronx-py310-sdk2.17.0-ubuntu20.04"
FROM $BASE_IMAGE
RUN echo "Base image is $BASE_IMAGE"
# Install some basic utilities
RUN apt-get update && apt-get install python3 python3-pip -y
### Mount Point ###
# When launching the container, mount the code directory to /app
ARG APP_MOUNT=/app
VOLUME [ ${APP_MOUNT} ]
WORKDIR ${APP_MOUNT}
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas
RUN python3 -m pip install sentencepiece transformers==4.36.2 -U
RUN python3 -m pip install transformers-neuronx --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
RUN python3 -m pip install --pre neuronx-cc==2.12.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
COPY ./vllm /app/vllm/vllm
COPY ./setup.py /app/vllm/setup.py
COPY ./requirements-common.txt /app/vllm/requirements-common.txt
COPY ./requirements-neuron.txt /app/vllm/requirements-neuron.txt
RUN cd /app/vllm \
&& python3 -m pip install -U -r requirements-neuron.txt
ENV VLLM_BUILD_WITH_NEURON 1
RUN cd /app/vllm \
&& pip install -e . \
&& cd ..
CMD ["/bin/bash"]

114
Dockerfile.rocm Normal file
View File

@ -0,0 +1,114 @@
# default base image
ARG BASE_IMAGE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
FROM $BASE_IMAGE
ARG BASE_IMAGE="rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
RUN echo "Base image is $BASE_IMAGE"
# BASE_IMAGE for ROCm_5.7: "rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1"
# BASE_IMAGE for ROCm_6.0: "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
ARG FA_GFX_ARCHS="gfx90a;gfx942"
RUN echo "FA_GFX_ARCHS is $FA_GFX_ARCHS"
ARG FA_BRANCH="ae7928c"
RUN echo "FA_BRANCH is $FA_BRANCH"
# whether to build flash-attention
# if 0, will not build flash attention
# this is useful for gfx target where flash-attention is not supported
# In that case, we need to use the python reference attention implementation in vllm
ARG BUILD_FA="1"
# whether to build triton on rocm
ARG BUILD_TRITON="1"
# Install some basic utilities
RUN apt-get update && apt-get install python3 python3-pip -y
# Install some basic utilities
RUN apt-get update && apt-get install -y \
curl \
ca-certificates \
sudo \
git \
bzip2 \
libx11-6 \
build-essential \
wget \
unzip \
nvidia-cuda-toolkit \
tmux \
&& rm -rf /var/lib/apt/lists/*
### Mount Point ###
# When launching the container, mount the code directory to /app
ARG APP_MOUNT=/vllm-workspace
VOLUME [ ${APP_MOUNT} ]
WORKDIR ${APP_MOUNT}
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas
ENV LLVM_SYMBOLIZER_PATH=/opt/rocm/llvm/bin/llvm-symbolizer
ENV PATH=$PATH:/opt/rocm/bin:/libtorch/bin:
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib/:/libtorch/lib:
ENV CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/libtorch/include:/libtorch/include/torch/csrc/api/include/:/opt/rocm/include/:
# Install ROCm flash-attention
RUN if [ "$BUILD_FA" = "1" ]; then \
mkdir libs \
&& cd libs \
&& git clone https://github.com/ROCm/flash-attention.git \
&& cd flash-attention \
&& git checkout ${FA_BRANCH} \
&& git submodule update --init \
&& export GPU_ARCHS=${FA_GFX_ARCHS} \
&& if [ "$BASE_IMAGE" = "rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1" ]; then \
patch /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/hipify/hipify_python.py hipify_patch.patch; fi \
&& python3 setup.py install \
&& cd ..; \
fi
# Error related to odd state for numpy 1.20.3 where there is no METADATA etc, but an extra LICENSES_bundled.txt.
# Manually removed it so that later steps of numpy upgrade can continue
RUN if [ "$BASE_IMAGE" = "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" ]; then \
rm -rf /opt/conda/envs/py_3.9/lib/python3.9/site-packages/numpy-1.20.3.dist-info/; fi
# build triton
RUN if [ "$BUILD_TRITON" = "1" ]; then \
mkdir -p libs \
&& cd libs \
&& pip uninstall -y triton \
&& git clone https://github.com/ROCm/triton.git \
&& cd triton/python \
&& pip3 install . \
&& cd ../..; \
fi
WORKDIR /vllm-workspace
COPY . .
#RUN python3 -m pip install pynvml # to be removed eventually
RUN python3 -m pip install --upgrade pip numba
# make sure punica kernels are built (for LoRA)
ENV VLLM_INSTALL_PUNICA_KERNELS=1
# Workaround for ray >= 2.10.0
ENV RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1
ENV VLLM_NCCL_SO_PATH=/opt/rocm/lib/librccl.so
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -U -r requirements-rocm.txt \
&& patch /opt/rocm/include/hip/amd_detail/amd_hip_bf16.h ./rocm_patch/rocm_bf16.patch \
&& python3 setup.py install \
&& cp build/lib.linux-x86_64-cpython-39/vllm/_C.cpython-39-x86_64-linux-gnu.so vllm/ \
&& cp build/lib.linux-x86_64-cpython-39/vllm/_punica_C.cpython-39-x86_64-linux-gnu.so vllm/ \
&& cd ..
CMD ["/bin/bash"]

201
LICENSE Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

10
MANIFEST.in Normal file
View File

@ -0,0 +1,10 @@
include LICENSE
include requirements-common.txt
include requirements-cuda.txt
include requirements-rocm.txt
include requirements-neuron.txt
include requirements-cpu.txt
include CMakeLists.txt
recursive-include cmake *
recursive-include csrc *

184
README.md
View File

@ -1,72 +1,126 @@
# CacheFlow
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png">
<img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
</picture>
</p>
## Installation
<h3 align="center">
Easy, fast, and cheap LLM serving for everyone
</h3>
<p align="center">
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> |
</p>
---
**The Fourth vLLM Bay Area Meetup (June 11th 5:30pm-8pm PT)**
We are thrilled to announce our fourth vLLM Meetup!
The vLLM team will share recent updates and roadmap.
We will also have vLLM collaborators from BentoML and Cloudflare coming up to the stage to discuss their experience in deploying LLMs with vLLM.
Please register [here](https://lu.ma/agivllm) and join us!
---
*Latest News* 🔥
- [2024/04] We hosted [the third vLLM meetup](https://robloxandvllmmeetup2024.splashthat.com/) with Roblox! Please find the meetup slides [here](https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing).
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2024/01] Added ROCm 6.0 support to vLLM.
- [2023/12] Added ROCm 5.7 support to vLLM.
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
- [2023/09] We created our [Discord server](https://discord.gg/jz7wjKhh6g)! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
- [2023/09] We released our [PagedAttention paper](https://arxiv.org/abs/2309.06180) on arXiv!
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
- [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!
- [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click [example](https://github.com/skypilot-org/skypilot/blob/master/llm/vllm) to start the vLLM demo, and the [blog post](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/) for the story behind vLLM development on the clouds.
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
---
## About
vLLM is a fast and easy-to-use library for LLM inference and serving.
vLLM is fast with:
- State-of-the-art serving throughput
- Efficient management of attention key and value memory with **PagedAttention**
- Continuous batching of incoming requests
- Fast model execution with CUDA/HIP graph
- Quantization: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [SqueezeLLM](https://arxiv.org/abs/2306.07629), FP8 KV Cache
- Optimized CUDA kernels
vLLM is flexible and easy to use with:
- Seamless integration with popular Hugging Face models
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
- Support NVIDIA GPUs and AMD GPUs
- (Experimental) Prefix caching support
- (Experimental) Multi-lora support
vLLM seamlessly supports most popular open-source models on HuggingFace, including:
- Transformer-like LLMs (e.g., Llama)
- Mixture-of-Expert LLMs (e.g., Mixtral)
- Multi-modal LLMs (e.g., LLaVA)
Find the full list of supported models [here](https://docs.vllm.ai/en/latest/models/supported_models.html).
## Getting Started
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
```bash
pip install psutil numpy ray torch
pip install git+https://github.com/huggingface/transformers # Required for LLaMA.
pip install sentencepiece # Required for LlamaTokenizer.
pip install ninja # To parallelize the compilation of flash-attn.
pip install flash-attn # This may take up to 10 mins.
pip install -e .
pip install vllm
```
## Test simple server
Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to learn more.
- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)
- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)
- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)
```bash
ray start --head
python simple_server.py
## Contributing
We welcome and value any contributions and collaborations.
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.
## Sponsors
vLLM is a community project. Our compute resources for development and testing are supported by the following organizations. Thank you for your support!
<!-- Note: Please sort them in alphabetical order. -->
<!-- Note: Please keep these consistent with docs/source/community/sponsors.md -->
- a16z
- AMD
- Anyscale
- AWS
- Crusoe Cloud
- Databricks
- DeepInfra
- Dropbox
- Lambda Lab
- NVIDIA
- Replicate
- Roblox
- RunPod
- Trainy
- UC Berkeley
- UC San Diego
We also have an official fundraising venue through [OpenCollective](https://opencollective.com/vllm). We plan to use the fund to support the development, maintenance, and adoption of vLLM.
## Citation
If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs/2309.06180):
```bibtex
@inproceedings{kwon2023efficient,
title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},
booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},
year={2023}
}
```
The detailed arguments for `simple_server.py` can be found by:
```bash
python simple_server.py --help
```
## FastAPI server
Install the following additional dependencies:
```bash
pip install fastapi uvicorn
```
To start the server:
```bash
ray start --head
python -m cacheflow.http_frontend.fastapi_frontend
```
To test the server:
```bash
python -m cacheflow.http_frontend.test_cli_client
```
## Gradio web server
Install the following additional dependencies:
```bash
pip install gradio
```
Start the server:
```bash
python -m cacheflow.http_frontend.fastapi_frontend
# At another terminal
python -m cacheflow.http_frontend.gradio_webserver
```
## Load LLaMA weights
Since LLaMA weight is not fully public, we cannot directly download the LLaMA weights from huggingface. Therefore, you need to follow the following process to load the LLaMA weights.
1. Converting LLaMA weights to huggingface format with [this script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py).
```bash
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path/llama-7b
```
Please make sure that `llama` is included in the output directory name.
2. For all the commands above, specify the model with `--model /output/path/llama-7b` to load the model. For example:
```bash
python simple_server.py --model /output/path/llama-7b
python -m cacheflow.http_frontend.fastapi_frontend --model /output/path/llama-7b
```

View File

@ -1,165 +0,0 @@
import functools
import random
import time
from typing import List
from flash_attn.flash_attn_interface import _flash_attn_forward
import torch
from cacheflow import attention_ops
def benchmark(name, f, num_warmup = 10, num_iters = 100):
for _ in range(num_warmup):
f()
torch.cuda.synchronize()
start = time.time()
for _ in range(num_iters):
f()
torch.cuda.synchronize()
end = time.time()
print(f'{name}: {(end - start) / num_iters * 1000:.3f} ms')
@torch.inference_mode()
def benchmark_multi_query_cached_kv_attention(
query_lens: List[int],
context_lens: List[int],
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
) -> None:
print(f'query_lens: {query_lens}, context_lens: {context_lens}, '
f'num_heads: {num_heads}, head_size: {head_size}, block_size: '
f'{block_size}, num_blocks: {num_blocks}, dtype: {dtype}')
# Create query tensor.
num_queries = len(query_lens)
cu_query_lens = [0]
for query_len in query_lens:
cu_query_lens.append(cu_query_lens[-1] + query_len)
num_total_tokens = cu_query_lens[-1]
qkv = torch.randn(
num_total_tokens, 3, num_heads, head_size, dtype=dtype, device='cuda')
query, _, _ = qkv.unbind(dim=1)
# Create key and value cache.
x = 16 // torch.tensor([], dtype=dtype).element_size()
key_block_shape = (num_heads, head_size // x, block_size, x)
key_cache = torch.randn(
size=(num_blocks, *key_block_shape), dtype=dtype, device='cuda')
value_block_shape = (num_heads, head_size, block_size)
value_cache = torch.randn(
size=(num_blocks, *value_block_shape), dtype=dtype, device='cuda')
# Create block tables.
max_context_len = max(context_lens)
max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
block_tables = []
for _ in range(num_queries):
block_table = [
random.randint(0, num_blocks - 1)
for _ in range(max_num_blocks_per_seq)
]
block_tables.append(block_table)
block_tables = torch.tensor(block_tables, dtype=torch.int, device='cuda')
# Create input and output data structures.
cu_query_lens = torch.tensor(cu_query_lens, dtype=torch.int, device='cuda')
context_len_tensor = torch.tensor(context_lens, dtype=torch.int, device='cuda')
scale = float(1.0 / (head_size ** 0.5))
output = torch.empty(
num_total_tokens, num_heads, head_size, dtype=dtype, device='cuda')
# Run our implementation.
def run_ours():
attention_ops.multi_query_cached_kv_attention(
cu_query_lens,
output,
query,
key_cache,
value_cache,
scale,
block_tables,
context_len_tensor,
block_size,
max_context_len,
)
benchmark('Ours', run_ours)
# Upper bound: Flash attention.
# Becuase Flash attention cannot read our own cache,
# we make key and value tensors contiguous.
num_kv_tokens = sum(context_lens)
cu_context_lens = [0]
for context_len in context_lens:
cu_context_lens.append(cu_context_lens[-1] + context_len)
cu_context_lens = torch.tensor(cu_context_lens, dtype=torch.int, device='cuda')
qkv = torch.randn(
num_kv_tokens, 3, num_heads, head_size, dtype=dtype, device='cuda')
_, key, value = qkv.unbind(dim=1)
ref_output = torch.empty_like(output)
# Run Flash attention.
def run_flash_attn():
_flash_attn_forward(
query,
key,
value,
ref_output,
cu_query_lens,
cu_context_lens,
max(query_lens),
max_context_len,
dropout_p=0.0,
softmax_scale=scale,
causal=True,
return_softmax=False,
)
benchmark('Flash attention', run_flash_attn)
if __name__ == '__main__':
BLOCK_SIZE = 8
NUM_BLOCKS = 1024
DTYPE = torch.half
# LLaMA-13B and OPT-13B
NUM_HEADS = 40
HEAD_SIZE = 128
run_benchmark = functools.partial(
benchmark_multi_query_cached_kv_attention,
num_heads=NUM_HEADS,
head_size=HEAD_SIZE,
block_size=BLOCK_SIZE,
num_blocks=NUM_BLOCKS,
dtype=DTYPE,
)
run_benchmark(
query_lens=[64] * 1,
context_lens=[64] * 1,
)
run_benchmark(
query_lens=[128] * 1,
context_lens=[128] * 1,
)
run_benchmark(
query_lens=[64] * 8,
context_lens=[64] * 8,
)
run_benchmark(
query_lens=[128] * 8,
context_lens=[128] * 8,
)
run_benchmark(
query_lens=[64, 32, 16],
context_lens=[128, 256, 64],
)
run_benchmark(
query_lens=[1024],
context_lens=[1024],
)

View File

@ -1,81 +0,0 @@
import functools
import random
import time
import torch
from cacheflow import cache_ops
def benchmark(name, f, size: int, num_warmup = 10, num_iters = 100):
for _ in range(num_warmup):
f()
torch.cuda.synchronize()
start = time.time()
for _ in range(num_iters):
f()
torch.cuda.synchronize()
end = time.time()
avg_time = (end - start) / num_iters
print(f'[Latency] {name}: {avg_time * 1000:.3f} ms')
print(f'[Throughput] {name}: {size / avg_time / 2 ** 30:.3f} GB/s')
@torch.inference_mode()
def test_gather_cached_kv(
num_tokens: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
) -> None:
print(f'num_tokens: {num_tokens}, num_heads: {num_heads}, '
f'head_size: {head_size}, block_size: {block_size}, '
f'num_blocks: {num_blocks}, dtype: {dtype}')
num_slots = block_size * num_blocks
slot_mapping = random.sample(range(num_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping, dtype=torch.int, device='cuda')
qkv = torch.randn(
num_tokens, 3, num_heads, head_size, dtype=dtype, device='cuda')
_, key, value = qkv.unbind(dim=1)
x = 16 // torch.tensor([], dtype=dtype).element_size()
key_cache_shape = (num_blocks, num_heads, head_size // x, block_size, x)
key_cache = torch.randn(size=key_cache_shape, dtype=dtype, device='cuda')
value_cache_shape = (num_blocks, num_heads, head_size, block_size)
value_cache = torch.randn(
size=value_cache_shape, dtype=dtype, device='cuda')
# Run Flash attention.
def run():
cache_ops.gather_cached_kv(key, value, key_cache, value_cache, slot_mapping)
benchmark('gather_cached_kv', run,
size=num_tokens * num_heads * head_size * 2 * qkv.element_size())
if __name__ == '__main__':
BLOCK_SIZE = 8
NUM_BLOCKS = 1024
DTYPE = torch.half
# LLaMA-13B and OPT-13B
NUM_HEADS = 40
HEAD_SIZE = 128
run_benchmark = functools.partial(
test_gather_cached_kv,
num_heads=NUM_HEADS,
head_size=HEAD_SIZE,
block_size=BLOCK_SIZE,
num_blocks=NUM_BLOCKS,
dtype=DTYPE,
)
for i in range(6, 12):
run_benchmark(num_tokens=2 ** i)

View File

@ -1,105 +0,0 @@
import argparse
import time
from typing import List
from tqdm import tqdm
import numpy as np
import torch
from cacheflow.master.simple_frontend import SimpleFrontend
from cacheflow.master.server import (Server, add_server_arguments,
initialize_ray_cluster)
from cacheflow.sampling_params import SamplingParams
from cacheflow.utils import get_gpu_memory, get_cpu_memory
def main(args: argparse.Namespace):
# TODO(zhuohan): Support pipeline parallelism.
assert args.pipeline_parallel_size == 1, (
'Pipeline parallelism is not supported yet.')
(num_nodes, num_devices_per_node, distributed_init_method,
all_stage_devices) = (
initialize_ray_cluster(
address='local',
pipeline_parallel_size=args.pipeline_parallel_size,
tensor_parallel_size=args.tensor_parallel_size))
# Create a server.
server = Server(
model=args.model,
model_path=args.model_path,
use_dummy_weights=args.use_dummy_weights,
pipeline_parallel_size=args.pipeline_parallel_size,
tensor_parallel_size=args.tensor_parallel_size,
block_size=args.block_size,
dtype=args.dtype,
seed=args.seed,
swap_space=args.swap_space,
max_num_batched_tokens=args.max_num_batched_tokens,
max_num_sequences=args.max_num_sequences,
num_nodes=num_nodes,
num_devices_per_node=num_devices_per_node,
distributed_init_method=distributed_init_method,
all_stage_devices=all_stage_devices,
gpu_memory=get_gpu_memory(),
cpu_memory=get_cpu_memory(),
)
# Create a frontend.
frontend = SimpleFrontend(
model_name=args.model,
block_size=args.block_size,
)
sampling_params_dict = {
'n': args.n,
'temperature': 0.0 if args.use_beam_search else 1.0,
'top_p': 1.0,
'use_beam_search': args.use_beam_search,
'stop_token_ids': set(),
'max_num_steps': args.output_len,
}
sampling_params = SamplingParams.from_dict(sampling_params_dict)
print(sampling_params)
input_token_ids = [0] * args.input_len
def profile_step(profile=False):
if profile:
torch.cuda.cudart().cudaProfilerStart()
for _ in range(args.batch_size):
frontend._add_query(input_token_ids, sampling_params)
server.add_sequence_groups(frontend.get_inputs())
start_time = time.time()
while True:
server.step()
if not server.has_unfinished_requests():
break
end_time = time.time()
latency = end_time - start_time
if profile:
torch.cuda.cudart().cudaProfilerStop()
return latency
print("Warm up step")
profile_step()
# Benchmark.
latencies = []
for _ in tqdm(range(3), desc="Profile step"):
latencies.append(profile_step())
print(f'Avg latency: {np.mean(latencies)} seconds')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='CacheFlow simple server.')
parser = add_server_arguments(parser)
parser.add_argument('--input-len', type=int, default=32)
parser.add_argument('--output-len', type=int, default=128)
parser.add_argument('--batch-size', type=int, default=8)
parser.add_argument('--n', type=int, default=1)
parser.add_argument('--use-beam-search', action='store_true')
args = parser.parse_args()
args.max_num_batched_tokens = max(
args.max_num_batched_tokens, args.batch_size * args.input_len)
print(args)
main(args)

View File

@ -1,290 +0,0 @@
import argparse
import logging
import os
import pickle
import time
from typing import List
from tqdm import tqdm
from transformers import AutoConfig
from benchmark.trace import generate_text_completion_requests
from cacheflow.master.simple_frontend import SimpleFrontend
from cacheflow.master.server import (Server, add_server_arguments,
initialize_ray_cluster)
from cacheflow.sampling_params import SamplingParams
from cacheflow.utils import get_gpu_memory, get_cpu_memory
logger = logging.getLogger(__name__)
def main(args: argparse.Namespace):
assert args.pipeline_parallel_size == 1, (
'Pipeline parallelism is not supported yet.')
(num_nodes, num_devices_per_node, distributed_init_method,
all_stage_devices) = (
initialize_ray_cluster(
address='local',
pipeline_parallel_size=args.pipeline_parallel_size,
tensor_parallel_size=args.tensor_parallel_size))
# Create a server.
server = Server(
model=args.model,
model_path=args.model_path,
use_dummy_weights=args.use_dummy_weights,
pipeline_parallel_size=args.pipeline_parallel_size,
tensor_parallel_size=args.tensor_parallel_size,
block_size=args.block_size,
dtype=args.dtype,
seed=args.seed,
swap_space=args.swap_space,
max_num_batched_tokens=args.max_num_batched_tokens,
max_num_sequences=args.max_num_sequences,
num_nodes=num_nodes,
num_devices_per_node=num_devices_per_node,
distributed_init_method=distributed_init_method,
all_stage_devices=all_stage_devices,
gpu_memory=get_gpu_memory(),
cpu_memory=get_cpu_memory(),
collect_stats=True,
do_memory_analysis=args.do_memory_analysis,
)
# Create a frontend.
frontend = SimpleFrontend(
model_name=args.model,
block_size=args.block_size,
)
# Generate requests.
requests = generate_text_completion_requests(
args.dataset,
args.request_rate,
args.duration,
args.seed,
args.n1,
args.n2,
args.n3,
args.n4,
args.n6,
args.n2_beam,
args.n4_beam,
args.n6_beam,
args.n8_beam,
)
# Warm up.
logger.info('Warming up.')
num_warmup_requests = 8
warmup_input_len = 8
warmup_output_len = 32
warmup_sampling_params = SamplingParams(
n=1,
temperature=1.0,
top_p=0.99,
max_num_steps=warmup_output_len,
use_beam_search=False,
stop_token_ids=set(),
num_logprobs=0,
context_window_size=None,
)
for _ in range(num_warmup_requests):
frontend._add_query([0] * warmup_input_len, warmup_sampling_params)
server.add_sequence_groups(frontend.get_inputs())
while True:
server.step()
if not server.has_unfinished_requests():
break
# Start benchmarking.
logger.info('Start benchmarking.')
# Initialize tqdm.
pbar = tqdm(total=len(requests), desc='Finished requests')
finished = []
server.scheduler.reset_stats()
start_time = time.time()
while True:
now = time.time()
if args.timeout is not None and now - start_time > args.timeout:
logger.info('Timeout. Stop benchmarking.')
break
while requests:
if requests[0][0] <= now - start_time:
request_time, input_tokens, sampling_params = requests.pop(0)
frontend._add_query(
input_tokens, sampling_params, arrival_time=start_time + request_time)
else:
break
server.add_sequence_groups(frontend.get_inputs())
updated_seq_groups = server.step()
now = time.time()
for seq_group in updated_seq_groups:
if not seq_group.is_finished():
continue
arrival_time = seq_group.arrival_time
finish_time = now
for seq in seq_group.get_seqs():
seq_len = seq.get_len()
output_len = seq_len - seq.prompt_len
finished.append({
'group_id': seq_group.group_id,
'seq_id': seq.seq_id,
'arrival_time': arrival_time,
'finish_time': finish_time,
'prompt_len': seq.prompt_len,
'output_len': output_len,
})
pbar.update(1)
if not (requests or server.has_unfinished_requests()):
break
pbar.close()
logger.info('Finish benchmarking. Saving stats.')
server.scheduler.save_stats(args.output_dir)
with open(os.path.join(args.output_dir, 'sequences.pkl'), 'wb') as f:
pickle.dump(finished, f)
logger.info('Done.')
def get_model_name(model: str) -> str:
OPT_MODELS = [
'opt-125m',
'opt-350m',
'opt-1.3b',
'opt-2.7b',
'opt-6.7b',
'opt-13b',
'opt-30b',
'opt-66b',
'opt-175b',
]
for opt_model in OPT_MODELS:
if opt_model in model:
return opt_model
config = AutoConfig.from_pretrained(model)
assert config.model_type == 'llama'
hidden_size = config.hidden_size
if hidden_size == 4096:
return 'llama-7b'
elif hidden_size == 5120:
return 'llama-13b'
elif hidden_size == 6656:
return 'llama-30b'
elif hidden_size == 8192:
return 'llama-65b'
else:
raise ValueError(f'Unknown model: {model}')
def get_dataset_name(dataset: str) -> str:
if 'sharegpt' in dataset.lower():
return 'sharegpt'
elif 'alpaca' in dataset.lower():
return 'alpaca'
else:
raise ValueError(f'Unknown dataset: {dataset}')
def get_sampling_dir_name(
n1: float,
n2: float,
n3: float,
n4: float,
n6: float,
n2_beam: float,
n4_beam: float,
n6_beam: float,
n8_beam: float,
) -> str:
method = ''
if n1 > 0.0:
method = 'n1' if n1 == 1.0 else method + f'n1-{n1}-'
if n2 > 0.0:
method = 'n2' if n2 == 1.0 else method + f'n2-{n2}-'
if n3 > 0.0:
method = 'n3' if n3 == 1.0 else method + f'n3-{n3}-'
if n4 > 0.0:
method = 'n4' if n4 == 1.0 else method + f'n4-{n4}-'
if n6 > 0.0:
method = 'n6' if n6 == 1.0 else method + f'n6-{n6}-'
if n2_beam > 0.0:
method = 'n2-beam' if n2_beam == 1.0 else method + f'n2-beam-{n2_beam}-'
if n4_beam > 0.0:
method = 'n4-beam' if n4_beam == 1.0 else method + f'n4-beam-{n4_beam}-'
if n6_beam > 0.0:
method = 'n6-beam' if n6_beam == 1.0 else method + f'n6-beam-{n6_beam}-'
if n8_beam > 0.0:
method = 'n8-beam' if n8_beam == 1.0 else method + f'n8-beam-{n8_beam}-'
return method[:-1] if method.endswith('-') else method
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='CacheFlow simple server.')
parser = add_server_arguments(parser)
parser.add_argument('--output-dir', type=str, help='path to output directory', default=None)
parser.add_argument('--dataset', type=str, help='path to dataset', required=True)
parser.add_argument('--request-rate', type=float, help='reqs/sec', required=True)
parser.add_argument('--duration', type=int, help='duration in seconds', required=True)
parser.add_argument('--do-memory-analysis', action='store_true',
help='do memory analysis (This will lower the throughput. Use this only for analysis.)')
parser.add_argument('--timeout', type=int, help='time out in seconds', default=None)
parser.add_argument('--n1', type=float, help='ratio of requests with n=1', default=0.0)
parser.add_argument('--n2', type=float, help='ratio of requests with n=2', default=0.0)
parser.add_argument('--n3', type=float, help='ratio of requests with n=3', default=0.0)
parser.add_argument('--n4', type=float, help='ratio of requests with n=4', default=0.0)
parser.add_argument('--n6', type=float, help='ratio of requests with n=6', default=0.0)
parser.add_argument('--n2-beam', type=float, help='ratio of requests with n=2 & beam search', default=0.0)
parser.add_argument('--n4-beam', type=float, help='ratio of requests with n=4 & beam search', default=0.0)
parser.add_argument('--n6-beam', type=float, help='ratio of requests with n=6 & beam search', default=0.0)
parser.add_argument('--n8-beam', type=float, help='ratio of requests with n=8 & beam search', default=0.0)
args = parser.parse_args()
if args.n1 + args.n2 + args.n3 + args.n4 + args.n6 + args.n2_beam + args.n4_beam + args.n6_beam + args.n8_beam != 1.0:
raise ValueError('The ratios of requests must sum to 1.')
model_name = get_model_name(args.model)
dataset_name = get_dataset_name(args.dataset)
if 'opt' in model_name:
if 'opt' not in args.dataset.lower():
raise ValueError(f'OPT models can only be used with OPT datasets.')
elif 'llama' in model_name:
if 'llama' not in args.dataset.lower():
raise ValueError(f'Llama models can only be used with Llama datasets.')
dataset_name = 'sharegpt' if 'sharegpt' in args.dataset else 'alpaca'
sample_dir = get_sampling_dir_name(
args.n1, args.n2, args.n3, args.n4, args.n6, args.n2_beam, args.n4_beam, args.n6_beam, args.n8_beam)
if args.output_dir is None:
args.output_dir = os.path.join(
'../exp',
dataset_name,
f'{model_name}-tp{args.tensor_parallel_size}',
sample_dir,
'cacheflow',
f'block{args.block_size}',
f'req-rate-{args.request_rate}',
f'seed{args.seed}',
f'duration-{args.duration}',
)
os.makedirs(args.output_dir, exist_ok=True)
# Set up logging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
handlers=[
logging.StreamHandler(),
logging.FileHandler(os.path.join(args.output_dir, 'log.txt')),
],
)
logger.info(args)
main(args)

View File

@ -1,116 +0,0 @@
import pickle
import random
from typing import List, Tuple
import numpy as np
from cacheflow.sampling_params import SamplingParams
def generate_text_completion_requests(
dataset: str,
request_rate: float,
duration: int,
seed: int,
n1: float = 0.0,
n2: float = 0.0,
n3: float = 0.0,
n4: float = 0.0,
n6: float = 0.0,
n2_beam: float = 0.0,
n4_beam: float = 0.0,
n6_beam: float = 0.0,
n8_beam: float = 0.0,
max_seq_len: int = 2048,
time_quantum: int = 10,
) -> List[Tuple[float, List[int], SamplingParams]]:
random.seed(seed)
np.random.seed(seed)
# Generate timestamps for requests using Poisson distribution.
lam = request_rate * (time_quantum / 1000)
quantums_per_sec = 1000 / time_quantum
arrival_times = np.random.poisson(
lam=lam, size=int(duration * quantums_per_sec))
timestamps = []
for i, n in enumerate(arrival_times):
timestamps += [i * (time_quantum / 1000)] * n
# Load and shuffle the dataset.
num_requests = len(timestamps)
with open(dataset, 'rb') as f:
data = pickle.load(f)
filtered = []
for pair in data:
input_tokens, output_tokens = pair
input_len = len(input_tokens)
output_len = len(output_tokens)
# Filter out too long sequences.
if input_len + output_len < max_seq_len:
# Output tokens are not needed for the benchmark.
filtered.append((input_tokens, output_len))
data = []
while len(data) < num_requests:
data += filtered
data = data[:num_requests]
# Shuffle the data.
assert len(data) == len(timestamps)
random.shuffle(data)
random_sampling_params_dict = {
'temperature': 1.0,
'top_p': 1.0,
'use_beam_search': False,
'stop_token_ids': set(),
'num_logprobs': 0,
'context_window_size': None,
}
beam_search_params_dict = {
'temperature': 0.0,
'top_p': 1.0,
'use_beam_search': True,
'stop_token_ids': set(),
'num_logprobs': 0,
'context_window_size': None,
}
# Generate requests based on the sampling parameter ratio.
requests = []
assert n1 + n2 + n3 + n4 + n6 + n2_beam + n4_beam + n6_beam + n8_beam == 1.0
cum_sum = 0
for timestamp, pair in zip(timestamps, data):
input_tokens, output_len = pair
if cum_sum < n1 * num_requests:
sampling_params = SamplingParams(
n=1, max_num_steps=output_len, **random_sampling_params_dict)
elif cum_sum < (n1 + n2) * num_requests:
sampling_params = SamplingParams(
n=2, max_num_steps=output_len, **random_sampling_params_dict)
elif cum_sum < (n1 + n2 + n3) * num_requests:
sampling_params = SamplingParams(
n=3, max_num_steps=output_len, **random_sampling_params_dict)
elif cum_sum < (n1 + n2 + n3 + n4) * num_requests:
sampling_params = SamplingParams(
n=4, max_num_steps=output_len, **random_sampling_params_dict)
elif cum_sum < (n1 + n2 + n3 + n4 + n6) * num_requests:
sampling_params = SamplingParams(
n=6, max_num_steps=output_len, **random_sampling_params_dict)
elif cum_sum < (n1 + n2 + n3 + n4 + n6 + n2_beam) * num_requests:
sampling_params = SamplingParams(
n=2, max_num_steps=output_len, **beam_search_params_dict)
elif cum_sum < (n1 + n2 + n3 + n4 + n6 + n2_beam + n4_beam) * num_requests:
sampling_params = SamplingParams(
n=4, max_num_steps=output_len, **beam_search_params_dict)
elif cum_sum < (n1 + n2 + n3 + n4 + n6 + n2_beam + n4_beam + n6_beam) * num_requests:
sampling_params = SamplingParams(
n=6, max_num_steps=output_len, **beam_search_params_dict)
elif cum_sum < (n1 + n2 + n3 + n4 + n6 + n2_beam + n4_beam + n6_beam + n8_beam) * num_requests:
sampling_params = SamplingParams(
n=8, max_num_steps=output_len, **beam_search_params_dict)
else:
raise ValueError('Invalid request ratio.')
cum_sum += 1
requests.append((timestamp, input_tokens, sampling_params))
return requests

8
benchmarks/README.md Normal file
View File

@ -0,0 +1,8 @@
# Benchmarking vLLM
## Downloading the ShareGPT dataset
You can download the dataset by running:
```bash
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
```

View File

@ -0,0 +1,395 @@
import json
import os
import sys
import time
import traceback
from dataclasses import dataclass, field
from typing import List, Optional
import aiohttp
from tqdm.asyncio import tqdm
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
@dataclass
class RequestFuncInput:
prompt: str
api_url: str
prompt_len: int
output_len: int
model: str
best_of: int = 1
use_beam_search: bool = False
@dataclass
class RequestFuncOutput:
generated_text: str = ""
success: bool = False
latency: float = 0.0
ttft: float = 0.0 # Time to first token
itl: List[float] = field(
default_factory=list) # List of inter-token latencies
prompt_len: int = 0
error: str = ""
async def async_request_tgi(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
params = {
"best_of": request_func_input.best_of,
"max_new_tokens": request_func_input.output_len,
"do_sample": True,
"temperature": 0.01, # TGI does not accept 0.0 temperature.
"top_p": 0.99, # TGI does not accept 1.0 top_p.
}
payload = {
"inputs": request_func_input.prompt,
"parameters": params,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data:")
data = json.loads(chunk)
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp -
most_recent_timestamp)
most_recent_timestamp = timestamp
output.latency = most_recent_timestamp - st
output.success = True
output.generated_text = data["generated_text"]
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_trt_llm(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
assert request_func_input.best_of == 1
payload = {
"accumulate_tokens": True,
"text_input": request_func_input.prompt,
"temperature": 0.0,
"top_p": 1.0,
"max_tokens": request_func_input.output_len,
"stream": True,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data:")
data = json.loads(chunk)
output.generated_text += data["text_output"]
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp -
most_recent_timestamp)
most_recent_timestamp = timestamp
output.latency = most_recent_timestamp - st
output.success = True
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_deepspeed_mii(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert request_func_input.best_of == 1
assert not request_func_input.use_beam_search
payload = {
"prompt": request_func_input.prompt,
"max_tokens": request_func_input.output_len,
"temperature": 0.01, # deepspeed-mii does not accept 0.0 temp.
"top_p": 1.0,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
# NOTE: DeepSpeed-MII doesn't support streaming as of Jan 28 2024,
# will use 0 as placeholder.
# See https://github.com/microsoft/DeepSpeed-MII/pull/311
output.ttft = 0
st = time.perf_counter()
try:
async with session.post(url=request_func_input.api_url,
json=payload) as response:
if response.status == 200:
parsed_resp = await response.json()
output.latency = time.perf_counter() - st
output.generated_text = parsed_resp["text"][0]
output.success = True
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_openai_completions(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(
"v1/completions"
), "OpenAI Completions API URL must end with 'v1/completions'."
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
payload = {
"model": request_func_input.model,
"prompt": request_func_input.prompt,
"temperature": 0.0,
"best_of": request_func_input.best_of,
"max_tokens": request_func_input.output_len,
"stream": True,
}
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data: ")
if chunk == "[DONE]":
latency = time.perf_counter() - st
else:
data = json.loads(chunk)
if data["choices"][0]["text"]:
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
# NOTE: Some completion API might have a last
# usage summary response without a token so we
# do not want to include as inter-token-latency
elif data.get("usage", None) is None:
output.itl.append(timestamp -
most_recent_timestamp)
most_recent_timestamp = timestamp
generated_text += data["choices"][0]["text"]
output.generated_text = generated_text
output.success = True
output.latency = latency
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_openai_chat_completions(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(
"v1/chat/completions"
), "OpenAI Chat Completions API URL must end with 'v1/chat/completions'."
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
payload = {
"model": request_func_input.model,
"messages": [
{
"role": "user",
"content": request_func_input.prompt,
},
],
"temperature": 0.0,
"max_tokens": request_func_input.output_len,
"stream": True,
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"),
"data: ")
if chunk == "[DONE]":
latency = time.perf_counter() - st
else:
timestamp = time.perf_counter()
data = json.loads(chunk)
delta = data["choices"][0]["delta"]
if delta.get("content", None):
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp -
most_recent_timestamp)
generated_text += delta["content"]
most_recent_timestamp = timestamp
output.generated_text = generated_text
output.success = True
output.latency = latency
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
# Since vllm must support Python 3.8, we can't use str.removeprefix(prefix)
# introduced in Python 3.9
def remove_prefix(text: str, prefix: str) -> str:
if text.startswith(prefix):
return text[len(prefix):]
return text
ASYNC_REQUEST_FUNCS = {
"tgi": async_request_tgi,
"vllm": async_request_openai_completions,
"lmdeploy": async_request_openai_completions,
"deepspeed-mii": async_request_deepspeed_mii,
"openai": async_request_openai_completions,
"openai-chat": async_request_openai_chat_completions,
"tensorrt-llm": async_request_trt_llm,
}

View File

@ -0,0 +1,225 @@
"""Benchmark the latency of processing a single batch of requests."""
import argparse
import json
import time
from pathlib import Path
from typing import List, Optional
import numpy as np
import torch
from tqdm import tqdm
from vllm import LLM, SamplingParams
from vllm.inputs import PromptStrictInputs
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
def main(args: argparse.Namespace):
print(args)
# NOTE(woosuk): If the request cannot be processed in a single batch,
# the engine will automatically process the request in multiple batches.
llm = LLM(model=args.model,
speculative_model=args.speculative_model,
num_speculative_tokens=args.num_speculative_tokens,
tokenizer=args.tokenizer,
quantization=args.quantization,
tensor_parallel_size=args.tensor_parallel_size,
trust_remote_code=args.trust_remote_code,
dtype=args.dtype,
enforce_eager=args.enforce_eager,
kv_cache_dtype=args.kv_cache_dtype,
quantization_param_path=args.quantization_param_path,
device=args.device,
ray_workers_use_nsight=args.ray_workers_use_nsight,
use_v2_block_manager=args.use_v2_block_manager,
enable_chunked_prefill=args.enable_chunked_prefill,
download_dir=args.download_dir,
block_size=args.block_size,
gpu_memory_utilization=args.gpu_memory_utilization)
sampling_params = SamplingParams(
n=args.n,
temperature=0.0 if args.use_beam_search else 1.0,
top_p=1.0,
use_beam_search=args.use_beam_search,
ignore_eos=True,
max_tokens=args.output_len,
)
print(sampling_params)
dummy_prompt_token_ids = np.random.randint(10000,
size=(args.batch_size,
args.input_len))
dummy_inputs: List[PromptStrictInputs] = [{
"prompt_token_ids": batch
} for batch in dummy_prompt_token_ids.tolist()]
def run_to_completion(profile_dir: Optional[str] = None):
if profile_dir:
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
on_trace_ready=torch.profiler.tensorboard_trace_handler(
str(profile_dir))) as p:
llm.generate(dummy_inputs,
sampling_params=sampling_params,
use_tqdm=False)
print(p.key_averages())
else:
start_time = time.perf_counter()
llm.generate(dummy_inputs,
sampling_params=sampling_params,
use_tqdm=False)
end_time = time.perf_counter()
latency = end_time - start_time
return latency
print("Warming up...")
for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
run_to_completion(profile_dir=None)
if args.profile:
profile_dir = args.profile_result_dir
if not profile_dir:
profile_dir = Path(
"."
) / "vllm_benchmark_result" / f"latency_result_{time.time()}"
print(f"Profiling (results will be saved to '{profile_dir}')...")
run_to_completion(profile_dir=profile_dir)
return
# Benchmark.
latencies = []
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
latencies.append(run_to_completion(profile_dir=None))
latencies = np.array(latencies)
percentages = [10, 25, 50, 75, 90]
percentiles = np.percentile(latencies, percentages)
print(f'Avg latency: {np.mean(latencies)} seconds')
for percentage, percentile in zip(percentages, percentiles):
print(f'{percentage}% percentile latency: {percentile} seconds')
# Output JSON results if specified
if args.output_json:
results = {
"avg_latency": np.mean(latencies),
"latencies": latencies.tolist(),
"percentiles": dict(zip(percentages, percentiles.tolist())),
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Benchmark the latency of processing a single batch of '
'requests till completion.')
parser.add_argument('--model', type=str, default='facebook/opt-125m')
parser.add_argument('--speculative-model', type=str, default=None)
parser.add_argument('--num-speculative-tokens', type=int, default=None)
parser.add_argument('--tokenizer', type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=[*QUANTIZATION_METHODS, None],
default=None)
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--input-len', type=int, default=32)
parser.add_argument('--output-len', type=int, default=128)
parser.add_argument('--batch-size', type=int, default=8)
parser.add_argument('--n',
type=int,
default=1,
help='Number of generated sequences per prompt.')
parser.add_argument('--use-beam-search', action='store_true')
parser.add_argument('--num-iters-warmup',
type=int,
default=10,
help='Number of iterations to run for warmup.')
parser.add_argument('--num-iters',
type=int,
default=30,
help='Number of iterations to run.')
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument('--enforce-eager',
action='store_true',
help='enforce eager mode and disable CUDA graph')
parser.add_argument(
'--kv-cache-dtype',
type=str,
choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'],
default="auto",
help='Data type for kv cache storage. If "auto", will use model '
'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. '
'ROCm (AMD GPU) supports fp8 (=fp8_e4m3)')
parser.add_argument(
'--quantization-param-path',
type=str,
default=None,
help='Path to the JSON file containing the KV cache scaling factors. '
'This should generally be supplied, when KV cache dtype is FP8. '
'Otherwise, KV cache scaling factors default to 1.0, which may cause '
'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is '
'instead supported for common inference criteria.')
parser.add_argument(
'--profile',
action='store_true',
help='profile the generation process of a single batch')
parser.add_argument(
'--profile-result-dir',
type=str,
default=None,
help=('path to save the pytorch profiler output. Can be visualized '
'with ui.perfetto.dev or Tensorboard.'))
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda", "cpu"],
help='device type for vLLM execution, supporting CUDA and CPU.')
parser.add_argument('--block-size',
type=int,
default=16,
help='block size of key/value cache')
parser.add_argument(
'--enable-chunked-prefill',
action='store_true',
help='If True, the prefill requests can be chunked based on the '
'max_num_batched_tokens')
parser.add_argument('--use-v2-block-manager', action='store_true')
parser.add_argument(
"--ray-workers-use-nsight",
action='store_true',
help="If specified, use nsight to profile ray workers",
)
parser.add_argument('--download-dir',
type=str,
default=None,
help='directory to download and load the weights, '
'default to the default cache dir of huggingface')
parser.add_argument(
'--output-json',
type=str,
default=None,
help='Path to save the latency results in JSON format.')
parser.add_argument('--gpu-memory-utilization',
type=float,
default=0.9,
help='the fraction of GPU memory to be used for '
'the model executor, which can range from 0 to 1.'
'If unspecified, will use the default value of 0.9.')
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,62 @@
import argparse
import time
from vllm import LLM, SamplingParams
PROMPT = "You are a helpful assistant in recognizes the content of tables in markdown format. Here is a table as fellows. You need to answer my question about the table.\n# Table\n|Opening|Opening|Sl. No.|Film|Cast|Director|Music Director|Notes|\n|----|----|----|----|----|----|----|----|\n|J A N|9|1|Agni Pushpam|Jayabharathi, Kamalahasan|Jeassy|M. K. Arjunan||\n|J A N|16|2|Priyamvada|Mohan Sharma, Lakshmi, KPAC Lalitha|K. S. Sethumadhavan|V. Dakshinamoorthy||\n|J A N|23|3|Yakshagaanam|Madhu, Sheela|Sheela|M. S. Viswanathan||\n|J A N|30|4|Paalkkadal|Sheela, Sharada|T. K. Prasad|A. T. Ummer||\n|F E B|5|5|Amma|Madhu, Srividya|M. Krishnan Nair|M. K. Arjunan||\n|F E B|13|6|Appooppan|Thikkurissi Sukumaran Nair, Kamal Haasan|P. Bhaskaran|M. S. Baburaj||\n|F E B|20|7|Srishti|Chowalloor Krishnankutty, Ravi Alummoodu|K. T. Muhammad|M. S. Baburaj||\n|F E B|20|8|Vanadevatha|Prem Nazir, Madhubala|Yusufali Kechery|G. Devarajan||\n|F E B|27|9|Samasya|Madhu, Kamalahaasan|K. Thankappan|Shyam||\n|F E B|27|10|Yudhabhoomi|K. P. Ummer, Vidhubala|Crossbelt Mani|R. K. Shekhar||\n|M A R|5|11|Seemantha Puthran|Prem Nazir, Jayabharathi|A. B. Raj|M. K. Arjunan||\n|M A R|12|12|Swapnadanam|Rani Chandra, Dr. Mohandas|K. G. George|Bhaskar Chandavarkar||\n|M A R|19|13|Thulavarsham|Prem Nazir, sreedevi, Sudheer|N. Sankaran Nair|V. Dakshinamoorthy||\n|M A R|20|14|Aruthu|Kaviyoor Ponnamma, Kamalahasan|Ravi|G. Devarajan||\n|M A R|26|15|Swimming Pool|Kamal Haasan, M. G. Soman|J. Sasikumar|M. K. Arjunan||\n\n# Question\nWhat' s the content in the (1,1) cells\n" # noqa: E501
def test_prefix(llm=None, sampling_params=None, prompts=None):
start_time = time.time()
llm.generate(prompts, sampling_params=sampling_params)
end_time = time.time()
print(f"cost time {end_time - start_time}")
def main(args):
llm = LLM(model=args.model,
tokenizer_mode='auto',
trust_remote_code=True,
enforce_eager=True,
use_v2_block_manager=args.use_v2_block_manager,
tensor_parallel_size=args.tensor_parallel_size,
enable_prefix_caching=args.enable_prefix_caching)
num_prompts = 100
prompts = [PROMPT] * num_prompts
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
print("------warm up------")
test_prefix(
llm=llm,
prompts=prompts,
sampling_params=sampling_params,
)
print("------start generating------")
test_prefix(
llm=llm,
prompts=prompts,
sampling_params=sampling_params,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Benchmark the performance with or without automatic '
'prefix caching.')
parser.add_argument('--model',
type=str,
default='baichuan-inc/Baichuan2-13B-Chat')
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument('--enable-prefix-caching',
action='store_true',
help='enable prefix caching')
parser.add_argument('--use-v2-block-manager',
action='store_true',
help='Use BlockSpaceMangerV2')
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,623 @@
"""Benchmark online serving throughput.
On the server side, run one of the following commands:
vLLM OpenAI API server
python -m vllm.entrypoints.openai.api_server \
--model <your_model> --swap-space 16 \
--disable-log-requests
(TGI backend)
./launch_tgi_server.sh <your_model> <max_batch_total_tokens>
On the client side, run:
python benchmarks/benchmark_serving.py \
--backend <backend> \
--model <your_model> \
--dataset-name sharegpt \
--dataset-path <path to dataset> \
--request-rate <request_rate> \ # By default <request_rate> is inf
--num-prompts <num_prompts> # By default <num_prompts> is 1000
when using tgi backend, add
--endpoint /generate_stream
to the end of the command above.
"""
import argparse
import asyncio
import json
import os
import random
import time
import warnings
from dataclasses import dataclass
from datetime import datetime
from typing import AsyncGenerator, List, Optional, Tuple
import numpy as np
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
RequestFuncOutput)
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from vllm.transformers_utils.tokenizer import get_tokenizer
@dataclass
class BenchmarkMetrics:
completed: int
total_input: int
total_output: int
request_throughput: float
input_throughput: float
output_throughput: float
mean_ttft_ms: float
median_ttft_ms: float
p99_ttft_ms: float
mean_tpot_ms: float
median_tpot_ms: float
p99_tpot_ms: float
def sample_sharegpt_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int] = None,
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
filtered_dataset.append((prompt, prompt_len, output_len))
return filtered_dataset
def sample_sonnet_requests(
dataset_path: str,
num_requests: int,
input_len: int,
output_len: int,
prefix_len: int,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, str, int, int]]:
assert (
input_len > prefix_len
), "'args.sonnet-input-len' must be greater than 'args.prefix-input-len'."
# Load the dataset.
with open(dataset_path) as f:
poem_lines = f.readlines()
# Tokenize the poem lines.
poem_token_ids = tokenizer(poem_lines).input_ids
average_poem_len = sum(
len(token_ids) for token_ids in poem_token_ids) / len(poem_token_ids)
# Base prefix for all requests.
base_prompt = "Pick as many lines as you can from these poem lines:\n"
base_message = [{
"role": "user",
"content": base_prompt,
}]
base_prompt_formatted = tokenizer.apply_chat_template(
base_message, add_generation_prompt=True, tokenize=False)
base_prompt_offset = len(tokenizer(base_prompt_formatted).input_ids)
assert (
input_len > base_prompt_offset
), f"Please set 'args.sonnet-input-len' higher than {base_prompt_offset}."
num_input_lines = round(
(input_len - base_prompt_offset) / average_poem_len)
# First approximately `prefix_len` number of tokens in the
# prompt are fixed poem lines.
assert (
prefix_len > base_prompt_offset
), f"Please set 'args.sonnet-prefix-len' higher than {base_prompt_offset}."
num_prefix_lines = round(
(prefix_len - base_prompt_offset) / average_poem_len)
prefix_lines = poem_lines[:num_prefix_lines]
# Sample the rest of lines per request.
sampled_requests: List[Tuple[str, int, int]] = []
for _ in range(num_requests):
sampled_lines = "".join(
prefix_lines +
random.sample(poem_lines, num_input_lines - num_prefix_lines))
prompt = f"{base_prompt}{sampled_lines}"
message = [
{
"role": "user",
"content": prompt,
},
]
prompt_formatted = tokenizer.apply_chat_template(
message, add_generation_prompt=True, tokenize=False)
prompt_len = len(tokenizer(prompt_formatted).input_ids)
sampled_requests.append(
(prompt, prompt_formatted, prompt_len, output_len))
return sampled_requests
async def get_request(
input_requests: List[Tuple[str, int, int]],
request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
input_requests = iter(input_requests)
for request in input_requests:
yield request
if request_rate == float("inf"):
# If the request rate is infinity, then we don't need to wait.
continue
# Sample the request interval from the exponential distribution.
interval = np.random.exponential(1.0 / request_rate)
# The next request will be sent after the interval.
await asyncio.sleep(interval)
def calculate_metrics(
input_requests: List[Tuple[str, int, int]],
outputs: List[RequestFuncOutput],
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
) -> Tuple[BenchmarkMetrics, List[int]]:
actual_output_lens = []
total_input = 0
completed = 0
tpots = []
ttfts = []
for i in range(len(outputs)):
if outputs[i].success:
output_len = len(tokenizer(outputs[i].generated_text).input_ids)
actual_output_lens.append(output_len)
total_input += input_requests[i][1]
if output_len > 1:
tpots.append(
(outputs[i].latency - outputs[i].ttft) / (output_len - 1))
ttfts.append(outputs[i].ttft)
completed += 1
else:
actual_output_lens.append(0)
if completed == 0:
warnings.warn(
"All requests failed. This is likely due to a misconfiguration "
"on the benchmark arguments.",
stacklevel=2)
metrics = BenchmarkMetrics(
completed=completed,
total_input=total_input,
total_output=sum(actual_output_lens),
request_throughput=completed / dur_s,
input_throughput=total_input / dur_s,
output_throughput=sum(actual_output_lens) / dur_s,
mean_ttft_ms=np.mean(ttfts or 0) *
1000, # ttfts is empty if streaming is not supported by backend
median_ttft_ms=np.median(ttfts or 0) * 1000,
p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
mean_tpot_ms=np.mean(tpots or 0) * 1000,
median_tpot_ms=np.median(tpots or 0) * 1000,
p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
)
return metrics, actual_output_lens
async def benchmark(
backend: str,
api_url: str,
model_id: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: List[Tuple[str, int, int]],
best_of: int,
use_beam_search: bool,
request_rate: float,
disable_tqdm: bool,
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS.get(backend)
else:
raise ValueError(f"Unknown backend: {backend}")
print("Starting initial single prompt test run...")
test_prompt, test_prompt_len, test_output_len = input_requests[0]
test_input = RequestFuncInput(
model=model_id,
prompt=test_prompt,
api_url=api_url,
prompt_len=test_prompt_len,
output_len=test_output_len,
best_of=best_of,
use_beam_search=use_beam_search,
)
test_output = await request_func(request_func_input=test_input)
if not test_output.success:
raise ValueError(
"Initial test run failed - Please make sure benchmark arguments "
f"are correctly specified. Error: {test_output.error}")
else:
print("Initial test run completed. Starting main benchmark run...")
print(f"Traffic request rate: {request_rate}")
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
benchmark_start_time = time.perf_counter()
tasks = []
async for request in get_request(input_requests, request_rate):
prompt, prompt_len, output_len = request
request_func_input = RequestFuncInput(
model=model_id,
prompt=prompt,
api_url=api_url,
prompt_len=prompt_len,
output_len=output_len,
best_of=best_of,
use_beam_search=use_beam_search,
)
tasks.append(
asyncio.create_task(
request_func(request_func_input=request_func_input,
pbar=pbar)))
outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)
if not disable_tqdm:
pbar.close()
benchmark_duration = time.perf_counter() - benchmark_start_time
metrics, actual_output_lens = calculate_metrics(
input_requests=input_requests,
outputs=outputs,
dur_s=benchmark_duration,
tokenizer=tokenizer,
)
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):",
benchmark_duration))
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
print("{:<40} {:<10}".format("Total generated tokens:",
metrics.total_output))
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
metrics.request_throughput))
print("{:<40} {:<10.2f}".format("Input token throughput (tok/s):",
metrics.input_throughput))
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
metrics.output_throughput))
print("{s:{c}^{n}}".format(s='Time to First Token', n=50, c='-'))
print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
print("{:<40} {:<10.2f}".format("Median TTFT (ms):",
metrics.median_ttft_ms))
print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
print("{s:{c}^{n}}".format(s='Time per Output Token (excl. 1st token)',
n=50,
c='-'))
print("{:<40} {:<10.2f}".format("Mean TPOT (ms):", metrics.mean_tpot_ms))
print("{:<40} {:<10.2f}".format("Median TPOT (ms):",
metrics.median_tpot_ms))
print("{:<40} {:<10.2f}".format("P99 TPOT (ms):", metrics.p99_tpot_ms))
print("=" * 50)
result = {
"duration": benchmark_duration,
"completed": metrics.completed,
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"request_throughput": metrics.request_throughput,
"input_throughput": metrics.input_throughput,
"output_throughput": metrics.output_throughput,
"mean_ttft_ms": metrics.mean_ttft_ms,
"median_ttft_ms": metrics.median_ttft_ms,
"p99_ttft_ms": metrics.p99_ttft_ms,
"mean_tpot_ms": metrics.mean_tpot_ms,
"median_tpot_ms": metrics.median_tpot_ms,
"p99_tpot_ms": metrics.p99_tpot_ms,
"input_lens": [output.prompt_len for output in outputs],
"output_lens": actual_output_lens,
"ttfts": [output.ttft for output in outputs],
"itls": [output.itl for output in outputs],
"generated_texts": [output.generated_text for output in outputs],
"errors": [output.error for output in outputs],
}
return result
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
backend = args.backend
model_id = args.model
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
if args.base_url is not None:
api_url = f"{args.base_url}{args.endpoint}"
else:
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
tokenizer = get_tokenizer(tokenizer_id,
trust_remote_code=args.trust_remote_code)
if args.dataset is not None:
warnings.warn(
"The '--dataset' argument will be deprecated in the next "
"release. Please use '--dataset-name' and "
"'--dataset-path' in the future runs.",
stacklevel=2)
input_requests = sample_sharegpt_requests(
dataset_path=args.dataset,
num_requests=args.num_prompts,
tokenizer=tokenizer,
fixed_output_len=args.sharegpt_output_len,
)
elif args.dataset_name == "sharegpt":
input_requests = sample_sharegpt_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
fixed_output_len=args.sharegpt_output_len,
)
elif args.dataset_name == "sonnet":
# Do not format the prompt, pass to message directly
if args.backend == "openai-chat":
input_requests = sample_sonnet_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
)
input_requests = [(prompt, prompt_len, output_len)
for prompt, prompt_formatted, prompt_len,
output_len in input_requests]
else:
assert (
tokenizer.chat_template or tokenizer.default_chat_template
), "Tokenizer/model must have chat template for sonnet dataset."
input_requests = sample_sonnet_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
)
input_requests = [(prompt_formatted, prompt_len, output_len)
for prompt, prompt_formatted, prompt_len,
output_len in input_requests]
else:
raise ValueError(f"Unknown dataset: {args.dataset_name}")
benchmark_result = asyncio.run(
benchmark(
backend=backend,
api_url=api_url,
model_id=model_id,
tokenizer=tokenizer,
input_requests=input_requests,
best_of=args.best_of,
use_beam_search=args.use_beam_search,
request_rate=args.request_rate,
disable_tqdm=args.disable_tqdm,
))
# Save config and results to json
if args.save_result:
result_json = {}
# Setup
current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
result_json["date"] = current_dt
result_json["backend"] = backend
result_json["model_id"] = model_id
result_json["tokenizer_id"] = tokenizer_id
result_json["best_of"] = args.best_of
result_json["use_beam_search"] = args.use_beam_search
result_json["num_prompts"] = args.num_prompts
# Metadata
if args.metadata:
for item in args.metadata:
if "=" in item:
kvstring = item.split("=")
result_json[kvstring[0].strip()] = kvstring[1].strip()
else:
raise ValueError(
"Invalid metadata format. Please use KEY=VALUE format."
)
# Traffic
result_json["request_rate"] = (
args.request_rate if args.request_rate < float("inf") else "inf")
# Merge with benchmark result
result_json = {**result_json, **benchmark_result}
# Save to file
base_model_id = model_id.split("/")[-1]
file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json" #noqa
if args.result_dir:
file_name = os.path.join(args.result_dir, file_name)
with open(file_name, "w") as outfile:
json.dump(result_json, outfile)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Benchmark the online serving throughput.")
parser.add_argument(
"--backend",
type=str,
default="vllm",
choices=list(ASYNC_REQUEST_FUNCS.keys()),
)
parser.add_argument(
"--base-url",
type=str,
default=None,
help="Server or API base url if not using http host and port.",
)
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument(
"--endpoint",
type=str,
default="/v1/completions",
help="API endpoint.",
)
parser.add_argument(
"--dataset",
type=str,
default=None,
help="Path to the ShareGPT dataset, will be deprecated in the "
"next release.",
)
parser.add_argument(
"--dataset-name",
type=str,
default="sharegpt",
choices=["sharegpt", "sonnet"],
help="Name of the dataset to benchmark on.",
)
parser.add_argument("--dataset-path",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument(
"--model",
type=str,
required=True,
help="Name of the model.",
)
parser.add_argument(
"--tokenizer",
type=str,
help=
"Name or path of the tokenizer, if not using the default tokenizer.",
)
parser.add_argument(
"--best-of",
type=int,
default=1,
help="Generates `best_of` sequences per prompt and "
"returns the best one.",
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument(
"--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.",
)
parser.add_argument(
"--sharegpt-output-len",
type=int,
default=None,
help="Output length for each request. Overrides the output length "
"from the ShareGPT dataset.")
parser.add_argument(
"--sonnet-input-len",
type=int,
default=550,
help=
"Number of input tokens per request, used only for sonnet dataset.",
)
parser.add_argument(
"--sonnet-output-len",
type=int,
default=150,
help=
"Number of output tokens per request, used only for sonnet dataset.",
)
parser.add_argument(
"--sonnet-prefix-len",
type=int,
default=200,
help=
"Number of prefix tokens per request, used only for sonnet dataset.",
)
parser.add_argument(
"--request-rate",
type=float,
default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.",
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument(
"--trust-remote-code",
action="store_true",
help="Trust remote code from huggingface",
)
parser.add_argument(
"--disable-tqdm",
action="store_true",
help="Specify to disable tqdm progress bar.",
)
parser.add_argument(
"--save-result",
action="store_true",
help="Specify to save benchmark results to a json file",
)
parser.add_argument(
"--metadata",
metavar="KEY=VALUE",
nargs="*",
help="Key-value pairs (e.g, --metadata version=0.3.3 tp=1) "
"for metadata of this run to be saved in the result JSON file "
"for record keeping purposes.",
)
parser.add_argument(
"--result-dir",
type=str,
default=None,
help="Specify directory to save benchmark json results."
"If not specified, results are saved in the current directory.",
)
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,402 @@
"""Benchmark offline inference throughput."""
import argparse
import json
import random
import time
from typing import List, Optional, Tuple
import torch
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizerBase)
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
filtered_dataset.append((prompt, prompt_len, output_len))
return filtered_dataset
def run_vllm(
requests: List[Tuple[str, int, int]],
model: str,
tokenizer: str,
quantization: Optional[str],
tensor_parallel_size: int,
seed: int,
n: int,
use_beam_search: bool,
trust_remote_code: bool,
dtype: str,
max_model_len: Optional[int],
enforce_eager: bool,
kv_cache_dtype: str,
quantization_param_path: Optional[str],
device: str,
enable_prefix_caching: bool,
enable_chunked_prefill: bool,
max_num_batched_tokens: int,
gpu_memory_utilization: float = 0.9,
download_dir: Optional[str] = None,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(
model=model,
tokenizer=tokenizer,
quantization=quantization,
tensor_parallel_size=tensor_parallel_size,
seed=seed,
trust_remote_code=trust_remote_code,
dtype=dtype,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
quantization_param_path=quantization_param_path,
device=device,
enable_prefix_caching=enable_prefix_caching,
download_dir=download_dir,
enable_chunked_prefill=enable_chunked_prefill,
max_num_batched_tokens=max_num_batched_tokens,
)
# Add the requests to the engine.
prompts = []
sampling_params = []
for prompt, _, output_len in requests:
prompts.append(prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
))
start = time.perf_counter()
llm.generate(prompts, sampling_params, use_tqdm=True)
end = time.perf_counter()
return end - start
def run_hf(
requests: List[Tuple[str, int, int]],
model: str,
tokenizer: PreTrainedTokenizerBase,
n: int,
use_beam_search: bool,
max_batch_size: int,
trust_remote_code: bool,
) -> float:
assert not use_beam_search
llm = AutoModelForCausalLM.from_pretrained(
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
if llm.config.model_type == "llama":
# To enable padding in the HF backend.
tokenizer.pad_token = tokenizer.eos_token
llm = llm.cuda()
pbar = tqdm(total=len(requests))
start = time.perf_counter()
batch: List[str] = []
max_prompt_len = 0
max_output_len = 0
for i in range(len(requests)):
prompt, prompt_len, output_len = requests[i]
# Add the prompt to the batch.
batch.append(prompt)
max_prompt_len = max(max_prompt_len, prompt_len)
max_output_len = max(max_output_len, output_len)
if len(batch) < max_batch_size and i != len(requests) - 1:
# Check if we can add more requests to the batch.
_, next_prompt_len, next_output_len = requests[i + 1]
if (max(max_prompt_len, next_prompt_len) +
max(max_output_len, next_output_len)) <= 2048:
# We can add more requests to the batch.
continue
# Generate the sequences.
input_ids = tokenizer(batch, return_tensors="pt",
padding=True).input_ids
llm_outputs = llm.generate(
input_ids=input_ids.cuda(),
do_sample=not use_beam_search,
num_return_sequences=n,
temperature=1.0,
top_p=1.0,
use_cache=True,
max_new_tokens=max_output_len,
)
# Include the decoding time.
tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
pbar.update(len(batch))
# Clear the batch.
batch = []
max_prompt_len = 0
max_output_len = 0
end = time.perf_counter()
return end - start
def run_mii(
requests: List[Tuple[str, int, int]],
model: str,
tensor_parallel_size: int,
output_len: int,
) -> float:
from mii import client, serve
llm = serve(model, tensor_parallel=tensor_parallel_size)
prompts = [prompt for prompt, _, _ in requests]
start = time.perf_counter()
llm.generate(prompts, max_new_tokens=output_len)
end = time.perf_counter()
client = client(model)
client.terminate_server()
return end - start
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
if args.dataset is None:
# Synthesize a prompt with the given input length.
prompt = "hi" * (args.input_len - 1)
requests = [(prompt, args.input_len, args.output_len)
for _ in range(args.num_prompts)]
else:
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
args.output_len)
if args.backend == "vllm":
elapsed_time = run_vllm(
requests, args.model, args.tokenizer, args.quantization,
args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype, args.max_model_len,
args.enforce_eager, args.kv_cache_dtype,
args.quantization_param_path, args.device,
args.enable_prefix_caching, args.enable_chunked_prefill,
args.max_num_batched_tokens, args.gpu_memory_utilization,
args.download_dir)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
args.use_beam_search, args.hf_max_batch_size,
args.trust_remote_code)
elif args.backend == "mii":
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
args.output_len)
else:
raise ValueError(f"Unknown backend: {args.backend}")
total_num_tokens = sum(prompt_len + output_len
for _, prompt_len, output_len in requests)
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} tokens/s")
# Output JSON results if specified
if args.output_json:
results = {
"elapsed_time": elapsed_time,
"num_requests": len(requests),
"total_num_tokens": total_num_tokens,
"requests_per_second": len(requests) / elapsed_time,
"tokens_per_second": total_num_tokens / elapsed_time,
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf", "mii"],
default="vllm")
parser.add_argument("--dataset",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument("--input-len",
type=int,
default=None,
help="Input prompt length for each request")
parser.add_argument("--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--model", type=str, default="facebook/opt-125m")
parser.add_argument("--tokenizer", type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=[*QUANTIZATION_METHODS, None],
default=None)
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument("--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--hf-max-batch-size",
type=int,
default=None,
help="Maximum batch size for HF backend.")
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
parser.add_argument(
'--max-model-len',
type=int,
default=None,
help='Maximum length of a sequence (including prompt and output). '
'If None, will be derived from the model.')
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
parser.add_argument('--gpu-memory-utilization',
type=float,
default=0.9,
help='the fraction of GPU memory to be used for '
'the model executor, which can range from 0 to 1.'
'If unspecified, will use the default value of 0.9.')
parser.add_argument("--enforce-eager",
action="store_true",
help="enforce eager execution")
parser.add_argument(
'--kv-cache-dtype',
type=str,
choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'],
default="auto",
help='Data type for kv cache storage. If "auto", will use model '
'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. '
'ROCm (AMD GPU) supports fp8 (=fp8_e4m3)')
parser.add_argument(
'--quantization-param-path',
type=str,
default=None,
help='Path to the JSON file containing the KV cache scaling factors. '
'This should generally be supplied, when KV cache dtype is FP8. '
'Otherwise, KV cache scaling factors default to 1.0, which may cause '
'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is '
'instead supported for common inference criteria.')
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda", "cpu"],
help='device type for vLLM execution, supporting CUDA and CPU.')
parser.add_argument(
"--enable-prefix-caching",
action='store_true',
help="enable automatic prefix caching for vLLM backend.")
parser.add_argument("--enable-chunked-prefill",
action='store_true',
help="enable chunked prefill for vLLM backend.")
parser.add_argument('--max-num-batched-tokens',
type=int,
default=None,
help='maximum number of batched tokens per '
'iteration')
parser.add_argument('--download-dir',
type=str,
default=None,
help='directory to download and load the weights, '
'default to the default cache dir of huggingface')
parser.add_argument(
'--output-json',
type=str,
default=None,
help='Path to save the throughput results in JSON format.')
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
if args.dataset is None:
assert args.input_len is not None
assert args.output_len is not None
else:
assert args.input_len is None
if args.backend == "vllm":
if args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
elif args.backend == "hf":
if args.hf_max_batch_size is None:
raise ValueError("HF max batch size is required for HF backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
elif args.backend == "mii":
if args.dtype != "auto":
raise ValueError("dtype must be auto for MII backend.")
if args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.use_beam_search:
raise ValueError("Beam search is not supported for MII backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
if args.tokenizer != args.model:
raise ValueError("Tokenizer must be the same as the model for MII "
"backend.")
main(args)

View File

@ -0,0 +1,302 @@
import argparse
import os
import sys
from typing import Optional
import torch
import torch.nn.functional as F
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.aqlm import (
dequantize_weight, generic_dequantize_gemm, get_int_dtype,
optimized_dequantize_gemm)
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def torch_mult(
input: torch.Tensor, # [..., in_features]
weights: torch.Tensor,
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
) -> torch.Tensor:
output = F.linear(input, weights)
return output
def dequant_out_scale(
input: torch.Tensor, # [..., in_features]
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
codebooks: torch.
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
if bias is None:
output = F.linear(input, weights, bias)
orig_shape = output.shape
flattened_output = output.view(-1, output.size(-1))
f_scales = scales.view(-1, scales.shape[0])
b_scales = f_scales.expand(flattened_output.shape[0], -1)
flattened_output *= b_scales
return flattened_output.view(orig_shape)
else:
b_scales = scales.view(scales.shape[:-3] + (-1, )).expand(
-1, weights.shape[1])
weights *= b_scales
return F.linear(input, weights, bias)
def dequant_weight_scale(
input: torch.Tensor, # [..., in_features]
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
codebooks: torch.
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
b_scales = scales.view(scales.shape[:-3] + (-1, )).expand(
-1, weights.shape[1])
weights *= b_scales
return F.linear(input, weights, bias)
def dequant_no_scale(
input: torch.Tensor, # [..., in_features]
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
codebooks: torch.
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
return F.linear(input, weights, bias)
# Compare the optimized 1x16 and 2x8 cuda decompression/dequant kernels against
# the generic pytorch version.
# Just visual comparison.
def dequant_test(k: int, parts: torch.tensor, nbooks: int, bits: int) -> None:
n = parts.sum().item()
device = torch.device('cuda:0')
code_range = (1 << bits) // 2
ingroups = 8
codes = torch.randint(-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device)
codebooks = torch.randn(size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device)
count = 0
for index in range(16):
for i in range(8):
for book in range(nbooks):
codebooks[book, index, 0, i] = count * (10**book)
count += 1
print("codes shape", codes.shape)
for i in range(16):
for book in range(nbooks):
codes[0, i, book] = i
codes[0, -i, book] = i
weights = dequantize_weight(codes, codebooks, None)
weights2 = ops.aqlm_dequant(codes, codebooks, parts)
print("weights shape:", weights.shape)
print("weights2 shape:", weights2.shape)
print("weights are:", weights)
print("weights2 are:", weights2)
print("first 128 weights are", weights[0, 0:128].to(torch.int32))
print("first 128 weights2 are:", weights2[0, 0:128].to(torch.int32))
print("last 128 weights are", weights[0, -128:])
print("last 128 weights2 are:", weights2[0, -128:])
def main():
parser = argparse.ArgumentParser(description="Benchmark aqlm performance.")
# Add arguments
parser.add_argument("--nbooks",
type=int,
default=1,
help="Number of codebooks (default: 1)")
parser.add_argument("--bits",
type=int,
default=16,
help="Number of bits per code element (default: 16)")
parser.add_argument(
"--test",
type=bool,
default=False,
help="Run the decompression/dequant tester rather than benchmarking "
"(default: False)")
# Parse the arguments
args = parser.parse_args()
# Extract values
nbooks = args.nbooks
bits = args.bits
if args.test:
dequant_test(4096, torch.tensor((4096, )), nbooks, bits)
return
# Otherwise, benchmark.
methods = [
ops.aqlm_gemm,
dequant_out_scale,
generic_dequantize_gemm,
optimized_dequantize_gemm,
dequant_weight_scale,
torch_mult,
dequant_no_scale,
]
filename = f"./aqlm_benchmark_{nbooks}x{bits}.csv"
print(f"writing benchmarks to file {filename}")
with open(filename, "w") as f:
sys.stdout = f
print('m | k | n | n parts', end='')
for method in methods:
print(f" | {method.__name__.replace('_', ' ')} (µs)", end='')
print('')
# These are reasonable prefill sizes.
ksandpartions = ((4096, (4096, 4096, 4096)), (4096, (4096, )),
(4096, (11008, 11008)), (11008, (4096, )))
# reasonable ranges for m.
for m in [
1, 2, 4, 8, 10, 12, 14, 16, 24, 32, 48, 52, 56, 64, 96, 112,
128, 256, 512, 1024, 1536, 2048, 3072, 4096
]:
print(f'{m}', file=sys.__stdout__)
for ksp in ksandpartions:
run_grid(m, ksp[0], torch.tensor(ksp[1]), nbooks, bits,
methods)
sys.stdout = sys.__stdout__
def run_grid(m: int, k: int, parts: torch.tensor, nbooks: int, bits: int,
methods):
# I didn't see visible improvements from increasing these, but feel free :)
num_warmup_trials = 1
num_trials = 1
num_calls = 100
# warmup.
for method in methods:
for _ in range(num_warmup_trials):
run_timing(
num_calls=num_calls,
m=m,
k=k,
parts=parts,
nbooks=nbooks,
bits=bits,
method=method,
)
n = parts.sum().item()
print(f'{m} | {k} | {n} | {parts.tolist()}', end='')
for method in methods:
best_time_us = 1e20
for _ in range(num_trials):
kernel_dur_ms = run_timing(
num_calls=num_calls,
m=m,
k=k,
parts=parts,
nbooks=nbooks,
bits=bits,
method=method,
)
kernel_dur_us = 1000 * kernel_dur_ms
if kernel_dur_us < best_time_us:
best_time_us = kernel_dur_us
print(f' | {kernel_dur_us:.0f}', end='')
print('')
def run_timing(num_calls: int, m: int, k: int, parts: torch.tensor,
nbooks: int, bits: int, method) -> float:
n = parts.sum().item()
device = torch.device('cuda:0')
input = torch.randn((1, m, k), dtype=torch.float16, device=device)
code_range = (1 << bits) // 2
ingroups = 8
codes = torch.randint(-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device)
codebooks = torch.randn(size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device)
scales = torch.randn(size=(n, 1, 1, 1), dtype=torch.float16, device=device)
# for comparison to just a pytorch mult.
weights = torch.randn((n, k), dtype=torch.float16, device=device)
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
if method is torch_mult:
for i in range(num_calls):
torch_mult(input, weights, scales)
else:
for i in range(num_calls):
method(input, codes, codebooks, scales, parts, None)
end_event.record()
end_event.synchronize()
dur_ms = start_event.elapsed_time(end_event) / num_calls
return dur_ms
if __name__ == "__main__":
sys.exit(main())

View File

@ -0,0 +1,233 @@
import argparse
import torch
import torch.utils.benchmark as benchmark
from benchmark_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.gptq_marlin import (
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_SUPPORTED_NUM_BITS)
from vllm.model_executor.layers.quantization.gptq_marlin_24 import (
GPTQ_MARLIN_24_MAX_PARALLEL, GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_24_SUPPORTED_NUM_BITS)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
MarlinWorkspace, marlin_24_quantize, marlin_quantize)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
gptq_pack, quantize_weights, sort_weights)
DEFAULT_MODELS = ["meta-llama/Llama-2-7b-hf/TP1"]
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
ACT_ORDER_OPTS = [False, True]
K_FULL_OPTS = [False, True]
def bench_run(results, model, act_order, is_k_full, num_bits, group_size,
size_m, size_k, size_n):
label = "Quant Matmul"
sub_label = ("{}, act={} k_full={}, b={}, g={}, "
"MKN=({}x{}x{})".format(model, act_order, is_k_full, num_bits,
group_size, size_m, size_k, size_n))
print(f"Testing: {sub_label}")
a = torch.randn(size_m, size_k).to(torch.half).cuda()
b = torch.rand(size_k, size_n).to(torch.half).cuda()
a_tmp = (torch.zeros(size_m, size_k).to(torch.half).cuda())
# Marlin quant
(
marlin_w_ref,
marlin_q_w,
marlin_s,
marlin_g_idx,
marlin_sort_indices,
marlin_rand_perm,
) = marlin_quantize(b, num_bits, group_size, act_order)
# Marlin_24 quant
(marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta,
marlin_24_s) = marlin_24_quantize(b, num_bits, group_size)
# GPTQ quant
(w_ref, q_w, s, g_idx,
rand_perm) = quantize_weights(b, num_bits, group_size, act_order)
q_w_gptq = gptq_pack(q_w, num_bits, size_k, size_n)
# For act_order, sort the "weights" and "g_idx"
# so that group ids are increasing
repack_sort_indices = torch.empty(0, dtype=torch.int, device=b.device)
if act_order:
(q_w, g_idx, repack_sort_indices) = sort_weights(q_w, g_idx)
# Prepare
marlin_workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_MAX_PARALLEL)
marlin_24_workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_MAX_PARALLEL)
globals = {
# Gen params
"num_bits": num_bits,
"group_size": group_size,
"size_m": size_m,
"size_n": size_n,
"size_k": size_k,
"a": a,
"a_tmp": a_tmp,
# Marlin params
"marlin_w_ref": marlin_w_ref,
"marlin_q_w": marlin_q_w,
"marlin_s": marlin_s,
"marlin_g_idx": marlin_g_idx,
"marlin_sort_indices": marlin_sort_indices,
"marlin_rand_perm": marlin_rand_perm,
"marlin_workspace": marlin_workspace,
"is_k_full": is_k_full,
# Marlin_24 params
"marlin_24_w_ref": marlin_24_w_ref,
"marlin_24_q_w_comp": marlin_24_q_w_comp,
"marlin_24_meta": marlin_24_meta,
"marlin_24_s": marlin_24_s,
"marlin_24_workspace": marlin_24_workspace,
# GPTQ params
"q_w_gptq": q_w_gptq,
"repack_sort_indices": repack_sort_indices,
# Kernels
"gptq_marlin_gemm": ops.gptq_marlin_gemm,
"gptq_marlin_24_gemm": ops.gptq_marlin_24_gemm,
"gptq_marlin_repack": ops.gptq_marlin_repack,
}
min_run_time = 1
# Warmup pytorch
for i in range(5):
torch.matmul(a, marlin_w_ref)
results.append(
benchmark.Timer(
stmt="torch.matmul(a, marlin_w_ref)",
globals=globals,
label=label,
sub_label=sub_label,
description="pytorch_gemm",
).blocked_autorange(min_run_time=min_run_time))
results.append(
benchmark.Timer(
stmt=
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, num_bits, size_m, size_n, size_k, is_k_full)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_gemm",
).blocked_autorange(min_run_time=min_run_time))
if (num_bits in GPTQ_MARLIN_24_SUPPORTED_NUM_BITS
and group_size in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES):
results.append(
benchmark.Timer(
stmt=
"output = gptq_marlin_24_gemm(a, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, marlin_24_workspace.scratch, num_bits, size_m, size_n, size_k)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_24_gemm",
).blocked_autorange(min_run_time=min_run_time))
results.append(
benchmark.Timer(
stmt=
"q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, num_bits)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_repack",
).blocked_autorange(min_run_time=min_run_time))
def main(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
results = []
for model in args.models:
for layer in WEIGHT_SHAPES[model]:
size_k = layer[0]
size_n = layer[1]
if len(args.limit_k) > 0 and size_k not in args.limit_k:
continue
if len(args.limit_n) > 0 and size_n not in args.limit_n:
continue
for act_order in ACT_ORDER_OPTS:
if len(args.limit_act_order
) > 0 and act_order not in args.limit_act_order:
continue
for is_k_full in K_FULL_OPTS:
if len(args.limit_k_full
) > 0 and is_k_full not in args.limit_k_full:
continue
for num_bits in GPTQ_MARLIN_SUPPORTED_NUM_BITS:
if len(args.limit_num_bits
) > 0 and num_bits not in args.limit_num_bits:
continue
for group_size in GPTQ_MARLIN_SUPPORTED_GROUP_SIZES:
if len(
args.limit_group_size
) > 0 and group_size not in args.limit_group_size:
continue
# For act_order, the group_size must be less than
# size_k
if act_order and (group_size == size_k
or group_size == -1):
continue
for size_m in args.batch_sizes:
bench_run(results, model, act_order, is_k_full,
num_bits, group_size, size_m, size_k,
size_n)
compare = benchmark.Compare(results)
compare.print()
# For quick benchmarking use:
# python benchmark_marlin.py --batch-sizes 1 16 32 --limit-k 4096 --limit-n 4096 --limit-group-size 128 --limit-num-bits 4 --limit-act-order 0 --limit-k-full 1 # noqa E501
#
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Benchmark Marlin across specified models/shapes/batches")
parser.add_argument(
"--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys(),
)
parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
parser.add_argument("--limit-group-size", nargs="+", type=int, default=[])
parser.add_argument("--limit-num-bits", nargs="+", type=int, default=[])
parser.add_argument("--limit-act-order", nargs="+", type=int, default=[])
parser.add_argument("--limit-k-full", nargs="+", type=int, default=[])
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,239 @@
import argparse
import json
import os
import sys
import torch
import torch.nn.functional as F
import triton
from tqdm import tqdm
from vllm.model_executor.layers.fused_moe import (fused_moe,
get_config_file_name)
def main(model, tp_size, gpu, dtype: str):
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
method = fused_moe
for bs in [
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
2048, 3072, 4096
]:
run_grid(bs,
model=model,
method=method,
gpu=gpu,
tp_size=tp_size,
dtype=dtype)
def run_grid(bs, model, method, gpu, tp_size, dtype: str):
if model == '8x7B':
d_model = 4096
model_intermediate_size = 14336
num_layers = 32
elif model == '8x22B':
d_model = 6144
model_intermediate_size = 16384
num_layers = 56
else:
raise ValueError(f'Unsupported Mixtral model {model}')
num_total_experts = 8
top_k = 2
# tp_size = 2
num_calls = 100
num_warmup_trials = 1
num_trials = 1
configs = []
for block_size_n in [32, 64, 128, 256]:
for block_size_m in [16, 32, 64, 128, 256]:
for block_size_k in [64, 128, 256]:
for group_size_m in [1, 16, 32, 64]:
for num_warps in [4, 8]:
for num_stages in [2, 3, 4, 5]:
configs.append({
"BLOCK_SIZE_M": block_size_m,
"BLOCK_SIZE_N": block_size_n,
"BLOCK_SIZE_K": block_size_k,
"GROUP_SIZE_M": group_size_m,
"num_warps": num_warps,
"num_stages": num_stages,
})
best_config = None
best_time_us = 1e20
print(f'{tp_size=} {bs=}')
for config in tqdm(configs):
# warmup
try:
for _ in range(num_warmup_trials):
run_timing(
num_calls=num_calls,
bs=bs,
d_model=d_model,
num_total_experts=num_total_experts,
top_k=top_k,
tp_size=tp_size,
model_intermediate_size=model_intermediate_size,
method=method,
config=config,
dtype=dtype,
)
except triton.runtime.autotuner.OutOfResources:
continue
# trial
for _ in range(num_trials):
kernel_dur_ms = run_timing(
num_calls=num_calls,
bs=bs,
d_model=d_model,
num_total_experts=num_total_experts,
top_k=top_k,
tp_size=tp_size,
model_intermediate_size=model_intermediate_size,
method=method,
config=config,
dtype=dtype,
)
kernel_dur_us = 1000 * kernel_dur_ms
model_dur_ms = kernel_dur_ms * num_layers
if kernel_dur_us < best_time_us:
best_config = config
best_time_us = kernel_dur_us
tqdm.write(
f'{kernel_dur_us=:.1f} {model_dur_ms=:.1f}'
f' {bs=} {tp_size=} {top_k=} {num_total_experts=} '
f'{d_model=} {model_intermediate_size=} {num_layers=}')
print("best_time_us", best_time_us)
print("best_config", best_config)
# holds Dict[str, Dict[str, int]]
filename = get_config_file_name(num_total_experts,
model_intermediate_size // tp_size,
"float8" if dtype == "float8" else None)
print(f"writing config to file {filename}")
existing_content = {}
if os.path.exists(filename):
with open(filename, "r") as f:
existing_content = json.load(f)
existing_content[str(bs)] = best_config
with open(filename, "w") as f:
json.dump(existing_content, f, indent=4)
f.write("\n")
def run_timing(num_calls: int, bs: int, d_model: int, num_total_experts: int,
top_k: int, tp_size: int, model_intermediate_size: int, method,
config, dtype: str) -> float:
shard_intermediate_size = model_intermediate_size // tp_size
hidden_states = torch.rand(
(bs, d_model),
device="cuda:0",
dtype=torch.float16,
)
w1 = torch.rand(
(num_total_experts, 2 * shard_intermediate_size, d_model),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
w2 = torch.rand(
(num_total_experts, d_model, shard_intermediate_size),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
w1_scale = None
w2_scale = None
a1_scale = None
a2_scale = None
if dtype == "float8":
w1 = w1.to(torch.float8_e4m3fn)
w2 = w2.to(torch.float8_e4m3fn)
w1_scale = torch.ones(num_total_experts,
device=hidden_states.device,
dtype=torch.float32)
w2_scale = torch.ones(num_total_experts,
device=hidden_states.device,
dtype=torch.float32)
a1_scale = torch.ones(1,
device=hidden_states.device,
dtype=torch.float32)
a2_scale = torch.ones(1,
device=hidden_states.device,
dtype=torch.float32)
gating_output = F.softmax(torch.rand(
(num_calls, bs, num_total_experts),
device=hidden_states.device,
dtype=torch.float32,
),
dim=-1)
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for i in range(num_calls):
hidden_states = method(
hidden_states=hidden_states,
w1=w1,
w2=w2,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
gating_output=gating_output[i],
topk=2,
renormalize=True,
inplace=True,
override_config=config,
use_fp8=dtype == "float8",
)
end_event.record()
end_event.synchronize()
dur_ms = start_event.elapsed_time(end_event) / num_calls
return dur_ms
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog='benchmark_mixtral_moe',
description='Benchmark and tune the fused_moe kernel',
)
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['float8', 'float16'],
help='Data type used for fused_moe kernel computations',
)
parser.add_argument('--model',
type=str,
default='8x7B',
choices=['8x7B', '8x22B'],
help='The Mixtral model to benchmark')
parser.add_argument('--tp-size',
type=int,
default=2,
help='Tensor paralleli size')
parser.add_argument('--gpu',
type=int,
default=0,
help="GPU ID for benchmarking")
args = parser.parse_args()
sys.exit(main(args.model, args.tp_size, args.gpu, args.dtype))

View File

@ -0,0 +1,209 @@
import argparse
import random
import time
from typing import Optional
import torch
from vllm import _custom_ops as ops
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, create_kv_caches_with_random
NUM_BLOCKS = 1024
PARTITION_SIZE = 512
@torch.inference_mode()
def main(
version: str,
num_seqs: int,
seq_len: int,
num_query_heads: int,
num_kv_heads: int,
head_size: int,
use_alibi: bool,
block_size: int,
dtype: torch.dtype,
seed: int,
do_profile: bool,
device: str = "cuda",
kv_cache_dtype: Optional[str] = None,
) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
scale = float(1.0 / (head_size**0.5))
query = torch.empty(num_seqs,
num_query_heads,
head_size,
dtype=dtype,
device=device)
query.uniform_(-scale, scale)
assert num_query_heads % num_kv_heads == 0
alibi_slopes = None
if use_alibi:
alibi_slopes = torch.randn(num_query_heads,
dtype=torch.float,
device=device)
seq_lens = [seq_len for _ in range(num_seqs)]
max_seq_len = max(seq_lens)
seq_lens = torch.tensor(seq_lens, dtype=torch.int, device=device)
# Create the block tables.
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
block_tables = []
for _ in range(num_seqs):
block_table = [
random.randint(0, NUM_BLOCKS - 1)
for _ in range(max_num_blocks_per_seq)
]
block_tables.append(block_table)
block_tables = torch.tensor(block_tables, dtype=torch.int, device=device)
# Create the KV cache.
key_caches, value_caches = create_kv_caches_with_random(NUM_BLOCKS,
block_size,
1,
num_kv_heads,
head_size,
kv_cache_dtype,
dtype,
device=device)
key_cache, value_cache = key_caches[0], value_caches[0]
# Prepare for the paged attention kernel.
output = torch.empty_like(query)
if version == "v2":
num_partitions = ((max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE)
tmp_output = torch.empty(
size=(num_seqs, num_query_heads, num_partitions, head_size),
dtype=output.dtype,
device=output.device,
)
exp_sums = torch.empty(
size=(num_seqs, num_query_heads, num_partitions),
dtype=torch.float32,
device=output.device,
)
max_logits = torch.empty_like(exp_sums)
def run_cuda_benchmark(num_iters: int, profile: bool = False) -> float:
torch.cuda.synchronize()
if profile:
torch.cuda.cudart().cudaProfilerStart()
start_time = time.perf_counter()
# Using default kv_scale
kv_scale = 1.0
for _ in range(num_iters):
if version == "v1":
ops.paged_attention_v1(
output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
seq_lens,
block_size,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
kv_scale,
)
elif version == "v2":
ops.paged_attention_v2(
output,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
seq_lens,
block_size,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
kv_scale,
)
else:
raise ValueError(f"Invalid version: {version}")
torch.cuda.synchronize()
end_time = time.perf_counter()
if profile:
torch.cuda.cudart().cudaProfilerStart()
return (end_time - start_time) / num_iters
# Warmup.
print("Warming up...")
run_benchmark = run_cuda_benchmark
run_benchmark(num_iters=3, profile=False)
# Benchmark.
if do_profile:
latency = run_benchmark(num_iters=1, profile=True)
else:
latency = run_benchmark(num_iters=100, profile=False)
print(f"Kernel running time: {latency * 1000000:.3f} us")
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="Benchmark the paged attention kernel.")
parser.add_argument("--version",
type=str,
choices=["v1", "v2"],
default="v2")
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument("--seq_len", type=int, default=4096)
parser.add_argument("--num-query-heads", type=int, default=64)
parser.add_argument("--num-kv-heads", type=int, default=8)
parser.add_argument("--head-size",
type=int,
choices=[64, 80, 96, 112, 128, 192, 256],
default=128)
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
parser.add_argument("--use-alibi", action="store_true")
parser.add_argument("--dtype",
type=str,
choices=["half", "bfloat16", "float"],
default="half")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--profile", action="store_true")
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=["auto", "fp8", "fp8_e5m2", "fp8_e4m3"],
default="auto",
help="Data type for kv cache storage. If 'auto', will use model "
"data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. "
"ROCm (AMD GPU) supports fp8 (=fp8_e4m3)")
args = parser.parse_args()
print(args)
if args.num_query_heads % args.num_kv_heads != 0:
raise ValueError("num_query_heads must be divisible by num_kv_heads")
main(
version=args.version,
num_seqs=args.batch_size,
seq_len=args.seq_len,
num_query_heads=args.num_query_heads,
num_kv_heads=args.num_kv_heads,
head_size=args.head_size,
block_size=args.block_size,
use_alibi=args.use_alibi,
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
seed=args.seed,
do_profile=args.profile,
kv_cache_dtype=args.kv_cache_dtype,
)

View File

@ -0,0 +1,121 @@
import argparse
from itertools import accumulate
from typing import Optional
import nvtx
import torch
from vllm.model_executor.layers.rotary_embedding import get_rope
def benchmark_rope_kernels_multi_lora(
is_neox_style: bool,
batch_size: int,
seq_len: int,
num_heads: int,
head_size: int,
rotary_dim: Optional[int],
dtype: torch.dtype,
seed: int,
device: str,
max_position: int = 8192,
base: int = 10000,
) -> None:
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.set_default_device(device)
if rotary_dim is None:
rotary_dim = head_size
# silulating serving 4 LoRAs
scaling_factors = [1, 2, 4, 8]
# batched RoPE can take multiple scaling factors
batched_rope = get_rope(head_size, rotary_dim, max_position, base,
is_neox_style, {
"type": "linear",
"factor": tuple(scaling_factors)
})
# non-batched RoPE takes only one scaling factor, we create multiple
# instances to simulate the same behavior
non_batched_ropes = []
for scaling_factor in scaling_factors:
non_batched_ropes.append(
get_rope(head_size, rotary_dim, max_position, base, is_neox_style,
{
"type": "linear",
"factor": (scaling_factor, )
}))
positions = torch.randint(0, max_position, (batch_size, seq_len))
query = torch.randn(batch_size,
seq_len,
num_heads * head_size,
dtype=dtype)
key = torch.randn_like(query)
# create query offsets for batched RoPE, we concat multiple kv cache
# together and each query needs to find the right kv cache of its type
offset_map = torch.tensor(
list(
accumulate([0] + [
max_position * scaling_factor * 2
for scaling_factor in scaling_factors[:-1]
])))
query_types = torch.randint(0,
len(scaling_factors), (batch_size, seq_len),
device=device)
# map query types to offsets
query_offsets = offset_map[query_types]
# the kernel takes flattened offsets
flatten_offsets = query_offsets.flatten()
# batched queries of the same type together for non-batched RoPE
queries = [query[query_types == i] for i in range(len(scaling_factors))]
keys = [key[query_types == i] for i in range(len(scaling_factors))]
packed_qkr = zip(queries, keys, non_batched_ropes)
# synchronize before start timing
torch.cuda.synchronize()
with nvtx.annotate("non-batched", color="yellow"):
for q, k, r in packed_qkr:
r.forward(positions, q, k)
torch.cuda.synchronize()
with nvtx.annotate("batched", color="green"):
batched_rope.forward(positions, query, key, flatten_offsets)
torch.cuda.synchronize()
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="Benchmark the rotary embedding kernels.")
parser.add_argument("--is-neox-style", type=bool, default=True)
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--seq-len", type=int, default=512)
parser.add_argument("--num-heads", type=int, default=8)
parser.add_argument("--head-size",
type=int,
choices=[64, 80, 96, 112, 128, 192, 256],
default=128)
parser.add_argument("--rotary-dim", type=int, choices=[16, 32], default=32)
parser.add_argument("--dtype",
type=str,
choices=["bfloat16", "float"],
default="float")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--device",
type=str,
choices=["cuda:0", "cuda:1"],
default="cuda:0")
args = parser.parse_args()
print(args)
benchmark_rope_kernels_multi_lora(
is_neox_style=args.is_neox_style,
batch_size=args.batch_size,
seq_len=args.seq_len,
num_heads=args.num_heads,
head_size=args.head_size,
rotary_dim=args.rotary_dim,
dtype=getattr(torch, args.dtype),
seed=args.seed,
device=args.device,
)

View File

@ -0,0 +1,75 @@
WEIGHT_SHAPES = {
"ideal": [[4 * 256 * 32, 256 * 32]],
"mistralai/Mistral-7B-v0.1/TP1": [
[4096, 6144],
[4096, 4096],
[4096, 28672],
[14336, 4096],
],
"mistralai/Mistral-7B-v0.1/TP2": [
[4096, 3072],
[2048, 4096],
[4096, 14336],
[7168, 4096],
],
"mistralai/Mistral-7B-v0.1/TP4": [
[4096, 1536],
[1024, 4096],
[4096, 7168],
[3584, 4096],
],
"meta-llama/Llama-2-7b-hf/TP1": [
[4096, 12288],
[4096, 4096],
[4096, 22016],
[11008, 4096],
],
"meta-llama/Llama-2-7b-hf/TP2": [
[4096, 6144],
[2048, 4096],
[4096, 11008],
[5504, 4096],
],
"meta-llama/Llama-2-7b-hf/TP4": [
[4096, 3072],
[1024, 4096],
[4096, 5504],
[2752, 4096],
],
"meta-llama/Llama-2-13b-hf/TP1": [
[5120, 15360],
[5120, 5120],
[5120, 27648],
[13824, 5120],
],
"meta-llama/Llama-2-13b-hf/TP2": [
[5120, 7680],
[2560, 5120],
[5120, 13824],
[6912, 5120],
],
"meta-llama/Llama-2-13b-hf/TP4": [
[5120, 3840],
[1280, 5120],
[5120, 6912],
[3456, 5120],
],
"meta-llama/Llama-2-70b-hf/TP1": [
[8192, 10240],
[8192, 8192],
[8192, 57344],
[28672, 8192],
],
"meta-llama/Llama-2-70b-hf/TP2": [
[8192, 5120],
[4096, 8192],
[8192, 28672],
[14336, 8192],
],
"meta-llama/Llama-2-70b-hf/TP4": [
[8192, 2560],
[2048, 8192],
[8192, 14336],
[7168, 8192],
],
}

16
benchmarks/launch_tgi_server.sh Executable file
View File

@ -0,0 +1,16 @@
#!/bin/bash
PORT=8000
MODEL=$1
TOKENS=$2
docker run -e HF_TOKEN=$HF_TOKEN --gpus all --shm-size 1g -p $PORT:80 \
-v $PWD/data:/data \
ghcr.io/huggingface/text-generation-inference:1.4.0 \
--model-id $MODEL \
--sharded false \
--max-input-length 1024 \
--max-total-tokens 2048 \
--max-best-of 5 \
--max-concurrent-requests 5000 \
--max-batch-total-tokens $TOKENS

View File

@ -0,0 +1,63 @@
import argparse
import cProfile
import pstats
from vllm import LLM, SamplingParams
# A very long prompt, total number of tokens is about 15k.
LONG_PROMPT = ["You are an expert in large language models, aren't you?"
] * 1000
LONG_PROMPT = ' '.join(LONG_PROMPT)
def main(args):
llm = LLM(
model=args.model,
enforce_eager=True,
enable_prefix_caching=True,
tensor_parallel_size=args.tensor_parallel_size,
use_v2_block_manager=args.use_v2_block_manager,
)
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
profiler = cProfile.Profile()
print("------warm up------")
for i in range(3):
output = llm.generate(LONG_PROMPT, sampling_params)
print(output[0].outputs[0].text)
print("------start generating------")
for i in range(3):
profiler.runctx('llm.generate(LONG_PROMPT, sampling_params)',
globals(), locals())
# analyze the runtime of hashing function
stats = pstats.Stats(profiler)
stats.sort_stats('cumulative')
total_time = 0
total_calls = 0
for func in stats.stats:
if 'hash_of_block' in func[2]:
total_time = stats.stats[func][3]
total_calls = stats.stats[func][0]
percentage = (total_time / stats.total_tt) * 100
print(f"Hashing took {total_time:.2f} seconds,"
f"{percentage:.2f}% of the total runtime.")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Benchmark the performance of hashing function in'
'automatic prefix caching.')
parser.add_argument('--model', type=str, default='lmsys/longchat-7b-16k')
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument('--enable-prefix-caching',
action='store_true',
help='enable prefix caching')
parser.add_argument('--use-v2-block-manager',
action='store_true',
help='Use BlockSpaceMangerV2')
args = parser.parse_args()
main(args)

518
benchmarks/sonnet.txt Normal file
View File

@ -0,0 +1,518 @@
FROM fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light'st flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel.
Thou that art now the world's fresh ornament
And only herald to the gaudy spring,
Within thine own bud buriest thy content
And, tender churl, makest waste in niggarding.
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.
When forty winters shall beseige thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery, so gazed on now,
Will be a tatter'd weed, of small worth held:
Then being ask'd where all thy beauty lies,
Where all the treasure of thy lusty days,
To say, within thine own deep-sunken eyes,
Were an all-eating shame and thriftless praise.
How much more praise deserved thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.
Look in thy glass, and tell the face thou viewest
Now is the time that face should form another;
Whose fresh repair if now thou not renewest,
Thou dost beguile the world, unbless some mother.
For where is she so fair whose unear'd womb
Disdains the tillage of thy husbandry?
Or who is he so fond will be the tomb
Of his self-love, to stop posterity?
Thou art thy mother's glass, and she in thee
Calls back the lovely April of her prime:
So thou through windows of thine age shall see
Despite of wrinkles this thy golden time.
But if thou live, remember'd not to be,
Die single, and thine image dies with thee.
Unthrifty loveliness, why dost thou spend
Upon thyself thy beauty's legacy?
Nature's bequest gives nothing but doth lend,
And being frank she lends to those are free.
Then, beauteous niggard, why dost thou abuse
The bounteous largess given thee to give?
Profitless usurer, why dost thou use
So great a sum of sums, yet canst not live?
For having traffic with thyself alone,
Thou of thyself thy sweet self dost deceive.
Then how, when nature calls thee to be gone,
What acceptable audit canst thou leave?
Thy unused beauty must be tomb'd with thee,
Which, used, lives th' executor to be.
Those hours, that with gentle work did frame
The lovely gaze where every eye doth dwell,
Will play the tyrants to the very same
And that unfair which fairly doth excel:
For never-resting time leads summer on
To hideous winter and confounds him there;
Sap cheque'd with frost and lusty leaves quite gone,
Beauty o'ersnow'd and bareness every where:
Then, were not summer's distillation left,
A liquid prisoner pent in walls of glass,
Beauty's effect with beauty were bereft,
Nor it nor no remembrance what it was:
But flowers distill'd though they with winter meet,
Leese but their show; their substance still lives sweet.
Then let not winter's ragged hand deface
In thee thy summer, ere thou be distill'd:
Make sweet some vial; treasure thou some place
With beauty's treasure, ere it be self-kill'd.
That use is not forbidden usury,
Which happies those that pay the willing loan;
That's for thyself to breed another thee,
Or ten times happier, be it ten for one;
Ten times thyself were happier than thou art,
If ten of thine ten times refigured thee:
Then what could death do, if thou shouldst depart,
Leaving thee living in posterity?
Be not self-will'd, for thou art much too fair
To be death's conquest and make worms thine heir.
Lo! in the orient when the gracious light
Lifts up his burning head, each under eye
Doth homage to his new-appearing sight,
Serving with looks his sacred majesty;
And having climb'd the steep-up heavenly hill,
Resembling strong youth in his middle age,
yet mortal looks adore his beauty still,
Attending on his golden pilgrimage;
But when from highmost pitch, with weary car,
Like feeble age, he reeleth from the day,
The eyes, 'fore duteous, now converted are
From his low tract and look another way:
So thou, thyself out-going in thy noon,
Unlook'd on diest, unless thou get a son.
Music to hear, why hear'st thou music sadly?
Sweets with sweets war not, joy delights in joy.
Why lovest thou that which thou receivest not gladly,
Or else receivest with pleasure thine annoy?
If the true concord of well-tuned sounds,
By unions married, do offend thine ear,
They do but sweetly chide thee, who confounds
In singleness the parts that thou shouldst bear.
Mark how one string, sweet husband to another,
Strikes each in each by mutual ordering,
Resembling sire and child and happy mother
Who all in one, one pleasing note do sing:
Whose speechless song, being many, seeming one,
Sings this to thee: 'thou single wilt prove none.'
Is it for fear to wet a widow's eye
That thou consumest thyself in single life?
Ah! if thou issueless shalt hap to die.
The world will wail thee, like a makeless wife;
The world will be thy widow and still weep
That thou no form of thee hast left behind,
When every private widow well may keep
By children's eyes her husband's shape in mind.
Look, what an unthrift in the world doth spend
Shifts but his place, for still the world enjoys it;
But beauty's waste hath in the world an end,
And kept unused, the user so destroys it.
No love toward others in that bosom sits
That on himself such murderous shame commits.
For shame! deny that thou bear'st love to any,
Who for thyself art so unprovident.
Grant, if thou wilt, thou art beloved of many,
But that thou none lovest is most evident;
For thou art so possess'd with murderous hate
That 'gainst thyself thou stick'st not to conspire.
Seeking that beauteous roof to ruinate
Which to repair should be thy chief desire.
O, change thy thought, that I may change my mind!
Shall hate be fairer lodged than gentle love?
Be, as thy presence is, gracious and kind,
Or to thyself at least kind-hearted prove:
Make thee another self, for love of me,
That beauty still may live in thine or thee.
As fast as thou shalt wane, so fast thou growest
In one of thine, from that which thou departest;
And that fresh blood which youngly thou bestowest
Thou mayst call thine when thou from youth convertest.
Herein lives wisdom, beauty and increase:
Without this, folly, age and cold decay:
If all were minded so, the times should cease
And threescore year would make the world away.
Let those whom Nature hath not made for store,
Harsh featureless and rude, barrenly perish:
Look, whom she best endow'd she gave the more;
Which bounteous gift thou shouldst in bounty cherish:
She carved thee for her seal, and meant thereby
Thou shouldst print more, not let that copy die.
When I do count the clock that tells the time,
And see the brave day sunk in hideous night;
When I behold the violet past prime,
And sable curls all silver'd o'er with white;
When lofty trees I see barren of leaves
Which erst from heat did canopy the herd,
And summer's green all girded up in sheaves
Borne on the bier with white and bristly beard,
Then of thy beauty do I question make,
That thou among the wastes of time must go,
Since sweets and beauties do themselves forsake
And die as fast as they see others grow;
And nothing 'gainst Time's scythe can make defence
Save breed, to brave him when he takes thee hence.
O, that you were yourself! but, love, you are
No longer yours than you yourself here live:
Against this coming end you should prepare,
And your sweet semblance to some other give.
So should that beauty which you hold in lease
Find no determination: then you were
Yourself again after yourself's decease,
When your sweet issue your sweet form should bear.
Who lets so fair a house fall to decay,
Which husbandry in honour might uphold
Against the stormy gusts of winter's day
And barren rage of death's eternal cold?
O, none but unthrifts! Dear my love, you know
You had a father: let your son say so.
Not from the stars do I my judgment pluck;
And yet methinks I have astronomy,
But not to tell of good or evil luck,
Of plagues, of dearths, or seasons' quality;
Nor can I fortune to brief minutes tell,
Pointing to each his thunder, rain and wind,
Or say with princes if it shall go well,
By oft predict that I in heaven find:
But from thine eyes my knowledge I derive,
And, constant stars, in them I read such art
As truth and beauty shall together thrive,
If from thyself to store thou wouldst convert;
Or else of thee this I prognosticate:
Thy end is truth's and beauty's doom and date.
When I consider every thing that grows
Holds in perfection but a little moment,
That this huge stage presenteth nought but shows
Whereon the stars in secret influence comment;
When I perceive that men as plants increase,
Cheered and cheque'd even by the self-same sky,
Vaunt in their youthful sap, at height decrease,
And wear their brave state out of memory;
Then the conceit of this inconstant stay
Sets you most rich in youth before my sight,
Where wasteful Time debateth with Decay,
To change your day of youth to sullied night;
And all in war with Time for love of you,
As he takes from you, I engraft you new.
But wherefore do not you a mightier way
Make war upon this bloody tyrant, Time?
And fortify yourself in your decay
With means more blessed than my barren rhyme?
Now stand you on the top of happy hours,
And many maiden gardens yet unset
With virtuous wish would bear your living flowers,
Much liker than your painted counterfeit:
So should the lines of life that life repair,
Which this, Time's pencil, or my pupil pen,
Neither in inward worth nor outward fair,
Can make you live yourself in eyes of men.
To give away yourself keeps yourself still,
And you must live, drawn by your own sweet skill.
Who will believe my verse in time to come,
If it were fill'd with your most high deserts?
Though yet, heaven knows, it is but as a tomb
Which hides your life and shows not half your parts.
If I could write the beauty of your eyes
And in fresh numbers number all your graces,
The age to come would say 'This poet lies:
Such heavenly touches ne'er touch'd earthly faces.'
So should my papers yellow'd with their age
Be scorn'd like old men of less truth than tongue,
And your true rights be term'd a poet's rage
And stretched metre of an antique song:
But were some child of yours alive that time,
You should live twice; in it and in my rhyme.
Shall I compare thee to a summer's day?
Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May,
And summer's lease hath all too short a date:
Sometime too hot the eye of heaven shines,
And often is his gold complexion dimm'd;
And every fair from fair sometime declines,
By chance or nature's changing course untrimm'd;
But thy eternal summer shall not fade
Nor lose possession of that fair thou owest;
Nor shall Death brag thou wander'st in his shade,
When in eternal lines to time thou growest:
So long as men can breathe or eyes can see,
So long lives this and this gives life to thee.
Devouring Time, blunt thou the lion's paws,
And make the earth devour her own sweet brood;
Pluck the keen teeth from the fierce tiger's jaws,
And burn the long-lived phoenix in her blood;
Make glad and sorry seasons as thou fleets,
And do whate'er thou wilt, swift-footed Time,
To the wide world and all her fading sweets;
But I forbid thee one most heinous crime:
O, carve not with thy hours my love's fair brow,
Nor draw no lines there with thine antique pen;
Him in thy course untainted do allow
For beauty's pattern to succeeding men.
Yet, do thy worst, old Time: despite thy wrong,
My love shall in my verse ever live young.
A woman's face with Nature's own hand painted
Hast thou, the master-mistress of my passion;
A woman's gentle heart, but not acquainted
With shifting change, as is false women's fashion;
An eye more bright than theirs, less false in rolling,
Gilding the object whereupon it gazeth;
A man in hue, all 'hues' in his controlling,
Much steals men's eyes and women's souls amazeth.
And for a woman wert thou first created;
Till Nature, as she wrought thee, fell a-doting,
And by addition me of thee defeated,
By adding one thing to my purpose nothing.
But since she prick'd thee out for women's pleasure,
Mine be thy love and thy love's use their treasure.
So is it not with me as with that Muse
Stirr'd by a painted beauty to his verse,
Who heaven itself for ornament doth use
And every fair with his fair doth rehearse
Making a couplement of proud compare,
With sun and moon, with earth and sea's rich gems,
With April's first-born flowers, and all things rare
That heaven's air in this huge rondure hems.
O' let me, true in love, but truly write,
And then believe me, my love is as fair
As any mother's child, though not so bright
As those gold candles fix'd in heaven's air:
Let them say more than like of hearsay well;
I will not praise that purpose not to sell.
My glass shall not persuade me I am old,
So long as youth and thou are of one date;
But when in thee time's furrows I behold,
Then look I death my days should expiate.
For all that beauty that doth cover thee
Is but the seemly raiment of my heart,
Which in thy breast doth live, as thine in me:
How can I then be elder than thou art?
O, therefore, love, be of thyself so wary
As I, not for myself, but for thee will;
Bearing thy heart, which I will keep so chary
As tender nurse her babe from faring ill.
Presume not on thy heart when mine is slain;
Thou gavest me thine, not to give back again.
As an unperfect actor on the stage
Who with his fear is put besides his part,
Or some fierce thing replete with too much rage,
Whose strength's abundance weakens his own heart.
So I, for fear of trust, forget to say
The perfect ceremony of love's rite,
And in mine own love's strength seem to decay,
O'ercharged with burden of mine own love's might.
O, let my books be then the eloquence
And dumb presagers of my speaking breast,
Who plead for love and look for recompense
More than that tongue that more hath more express'd.
O, learn to read what silent love hath writ:
To hear with eyes belongs to love's fine wit.
Mine eye hath play'd the painter and hath stell'd
Thy beauty's form in table of my heart;
My body is the frame wherein 'tis held,
And perspective it is the painter's art.
For through the painter must you see his skill,
To find where your true image pictured lies;
Which in my bosom's shop is hanging still,
That hath his windows glazed with thine eyes.
Now see what good turns eyes for eyes have done:
Mine eyes have drawn thy shape, and thine for me
Are windows to my breast, where-through the sun
Delights to peep, to gaze therein on thee;
Yet eyes this cunning want to grace their art;
They draw but what they see, know not the heart.
Let those who are in favour with their stars
Of public honour and proud titles boast,
Whilst I, whom fortune of such triumph bars,
Unlook'd for joy in that I honour most.
Great princes' favourites their fair leaves spread
But as the marigold at the sun's eye,
And in themselves their pride lies buried,
For at a frown they in their glory die.
The painful warrior famoused for fight,
After a thousand victories once foil'd,
Is from the book of honour razed quite,
And all the rest forgot for which he toil'd:
Then happy I, that love and am beloved
Where I may not remove nor be removed.
Lord of my love, to whom in vassalage
Thy merit hath my duty strongly knit,
To thee I send this written embassage,
To witness duty, not to show my wit:
Duty so great, which wit so poor as mine
May make seem bare, in wanting words to show it,
But that I hope some good conceit of thine
In thy soul's thought, all naked, will bestow it;
Till whatsoever star that guides my moving
Points on me graciously with fair aspect
And puts apparel on my tatter'd loving,
To show me worthy of thy sweet respect:
Then may I dare to boast how I do love thee;
Till then not show my head where thou mayst prove me.
Weary with toil, I haste me to my bed,
The dear repose for limbs with travel tired;
But then begins a journey in my head,
To work my mind, when body's work's expired:
For then my thoughts, from far where I abide,
Intend a zealous pilgrimage to thee,
And keep my drooping eyelids open wide,
Looking on darkness which the blind do see
Save that my soul's imaginary sight
Presents thy shadow to my sightless view,
Which, like a jewel hung in ghastly night,
Makes black night beauteous and her old face new.
Lo! thus, by day my limbs, by night my mind,
For thee and for myself no quiet find.
How can I then return in happy plight,
That am debarr'd the benefit of rest?
When day's oppression is not eased by night,
But day by night, and night by day, oppress'd?
And each, though enemies to either's reign,
Do in consent shake hands to torture me;
The one by toil, the other to complain
How far I toil, still farther off from thee.
I tell the day, to please them thou art bright
And dost him grace when clouds do blot the heaven:
So flatter I the swart-complexion'd night,
When sparkling stars twire not thou gild'st the even.
But day doth daily draw my sorrows longer
And night doth nightly make grief's strength seem stronger.
When, in disgrace with fortune and men's eyes,
I all alone beweep my outcast state
And trouble deal heaven with my bootless cries
And look upon myself and curse my fate,
Wishing me like to one more rich in hope,
Featured like him, like him with friends possess'd,
Desiring this man's art and that man's scope,
With what I most enjoy contented least;
Yet in these thoughts myself almost despising,
Haply I think on thee, and then my state,
Like to the lark at break of day arising
From sullen earth, sings hymns at heaven's gate;
For thy sweet love remember'd such wealth brings
That then I scorn to change my state with kings.
When to the sessions of sweet silent thought
I summon up remembrance of things past,
I sigh the lack of many a thing I sought,
And with old woes new wail my dear time's waste:
Then can I drown an eye, unused to flow,
For precious friends hid in death's dateless night,
And weep afresh love's long since cancell'd woe,
And moan the expense of many a vanish'd sight:
Then can I grieve at grievances foregone,
And heavily from woe to woe tell o'er
The sad account of fore-bemoaned moan,
Which I new pay as if not paid before.
But if the while I think on thee, dear friend,
All losses are restored and sorrows end.
Thy bosom is endeared with all hearts,
Which I by lacking have supposed dead,
And there reigns love and all love's loving parts,
And all those friends which I thought buried.
How many a holy and obsequious tear
Hath dear religious love stol'n from mine eye
As interest of the dead, which now appear
But things removed that hidden in thee lie!
Thou art the grave where buried love doth live,
Hung with the trophies of my lovers gone,
Who all their parts of me to thee did give;
That due of many now is thine alone:
Their images I loved I view in thee,
And thou, all they, hast all the all of me.
If thou survive my well-contented day,
When that churl Death my bones with dust shall cover,
And shalt by fortune once more re-survey
These poor rude lines of thy deceased lover,
Compare them with the bettering of the time,
And though they be outstripp'd by every pen,
Reserve them for my love, not for their rhyme,
Exceeded by the height of happier men.
O, then vouchsafe me but this loving thought:
'Had my friend's Muse grown with this growing age,
A dearer birth than this his love had brought,
To march in ranks of better equipage:
But since he died and poets better prove,
Theirs for their style I'll read, his for his love.'
Full many a glorious morning have I seen
Flatter the mountain-tops with sovereign eye,
Kissing with golden face the meadows green,
Gilding pale streams with heavenly alchemy;
Anon permit the basest clouds to ride
With ugly rack on his celestial face,
And from the forlorn world his visage hide,
Stealing unseen to west with this disgrace:
Even so my sun one early morn did shine
With all triumphant splendor on my brow;
But out, alack! he was but one hour mine;
The region cloud hath mask'd him from me now.
Yet him for this my love no whit disdaineth;
Suns of the world may stain when heaven's sun staineth.
Why didst thou promise such a beauteous day,
And make me travel forth without my cloak,
To let base clouds o'ertake me in my way,
Hiding thy bravery in their rotten smoke?
'Tis not enough that through the cloud thou break,
To dry the rain on my storm-beaten face,
For no man well of such a salve can speak
That heals the wound and cures not the disgrace:
Nor can thy shame give physic to my grief;
Though thou repent, yet I have still the loss:
The offender's sorrow lends but weak relief
To him that bears the strong offence's cross.
Ah! but those tears are pearl which thy love sheds,
And they are rich and ransom all ill deeds.
No more be grieved at that which thou hast done:
Roses have thorns, and silver fountains mud;
Clouds and eclipses stain both moon and sun,
And loathsome canker lives in sweetest bud.
All men make faults, and even I in this,
Authorizing thy trespass with compare,
Myself corrupting, salving thy amiss,
Excusing thy sins more than thy sins are;
For to thy sensual fault I bring in sense--
Thy adverse party is thy advocate--
And 'gainst myself a lawful plea commence:
Such civil war is in my love and hate
That I an accessary needs must be
To that sweet thief which sourly robs from me.
Let me confess that we two must be twain,
Although our undivided loves are one:
So shall those blots that do with me remain
Without thy help by me be borne alone.
In our two loves there is but one respect,
Though in our lives a separable spite,
Which though it alter not love's sole effect,
Yet doth it steal sweet hours from love's delight.
I may not evermore acknowledge thee,
Lest my bewailed guilt should do thee shame,
Nor thou with public kindness honour me,
Unless thou take that honour from thy name:
But do not so; I love thee in such sort
As, thou being mine, mine is thy good report.
As a decrepit father takes delight
To see his active child do deeds of youth,
So I, made lame by fortune's dearest spite,
Take all my comfort of thy worth and truth.
For whether beauty, birth, or wealth, or wit,
Or any of these all, or all, or more,
Entitled in thy parts do crowned sit,
I make my love engrafted to this store:
So then I am not lame, poor, nor despised,
Whilst that this shadow doth such substance give
That I in thy abundance am sufficed
And by a part of all thy glory live.
Look, what is best, that best I wish in thee:
This wish I have; then ten times happy me!

View File

@ -1,179 +0,0 @@
import argparse
import asyncio
import time
from typing import List, Dict
import json
import ray
from transformers import AutoTokenizer
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
import uvicorn
from cacheflow.sampling_params import SamplingParams
from cacheflow.sequence import Sequence, SequenceGroup
from cacheflow.master.server import (Server, add_server_arguments,
initialize_ray_cluster)
from cacheflow.worker.controller import DeviceID
from cacheflow.utils import Counter, get_gpu_memory, get_cpu_memory
TIMEOUT_TO_PREVENT_DEADLOCK = 1 # seconds
app = FastAPI()
class FastAPIFrontend:
def __init__(
self,
model: str,
model_path: str,
pipeline_parallel_size: int,
tensor_parallel_size: int,
block_size: int,
dtype: str,
seed: int,
swap_space: int,
max_num_batched_tokens: int,
num_nodes: int,
num_devices_per_node: int,
distributed_init_method: str,
all_stage_devices: List[List[DeviceID]],
):
self.block_size = block_size
self.tokenizer = AutoTokenizer.from_pretrained(model)
self.seq_group_counter = Counter()
self.seq_counter = Counter()
remote_server_class = ray.remote(num_cpus=0)(Server)
self.server = remote_server_class.remote(
model=model,
model_path=model_path,
use_dummy_weights=False,
pipeline_parallel_size=pipeline_parallel_size,
tensor_parallel_size=tensor_parallel_size,
block_size=block_size,
dtype=dtype,
seed=seed,
swap_space=swap_space,
max_num_batched_tokens=max_num_batched_tokens,
num_nodes=num_nodes,
num_devices_per_node=num_devices_per_node,
distributed_init_method=distributed_init_method,
all_stage_devices=all_stage_devices,
gpu_memory=get_gpu_memory(),
cpu_memory=get_cpu_memory(),
)
self.running_seq_groups: Dict[int, SequenceGroup] = {}
self.sequence_group_events: Dict[int, asyncio.Event] = {}
self.is_server_running = False
async def server_step(self):
self.is_server_running = True
updated_seq_groups = await self.server.step.remote()
self.is_server_running = False
# Notify the waiting coroutines that there new outputs ready.
for seq_group in updated_seq_groups:
group_id = seq_group.group_id
self.running_seq_groups[group_id] = seq_group
self.sequence_group_events[group_id].set()
async def generate(self, request_dict: Dict):
# Preprocess the request.
prompt = request_dict["prompt"]
sampling_params = SamplingParams.from_dict(request_dict)
sampling_params.stop_token_ids.add(self.tokenizer.eos_token_id)
token_ids = self.tokenizer.encode(prompt)
seqs: List[Sequence] = []
for _ in range(sampling_params.n):
seq_id = next(self.seq_counter)
seq = Sequence(seq_id, token_ids, block_size=self.block_size)
seqs.append(seq)
arrival_time = time.time()
group_id = next(self.seq_group_counter)
seq_group = SequenceGroup(group_id, seqs, arrival_time)
# Create an event to notify us that there is new output from the
# cacheflow server.
group_event = asyncio.Event()
self.running_seq_groups[group_id] = seq_group
self.sequence_group_events[group_id] = group_event
# Add the request into the cacheflow server's waiting queue.
await self.server.add_sequence_groups.remote([(seq_group, sampling_params)])
# The cacheflow server does not have a background loop that keeps
# processing incoming requests. Therefore, we need to keep kicking
# the server to process the requests.
while True:
# Kick the server if the server is not running.
if not self.is_server_running:
await self.server_step()
# Wait for new output. The group_event will be set in server_step
# when there is new output available for the sequence group.
# Added a timeout to prevent deadlock.
await asyncio.wait_for(group_event.wait(), timeout=TIMEOUT_TO_PREVENT_DEADLOCK)
# Reset the event to wait for the next output.
group_event.clear()
# Decode and return new outputs
seq_group = self.running_seq_groups[group_id]
all_outputs = []
for seq in seq_group.seqs:
token_ids = seq.get_token_ids()
output = self.tokenizer.decode(token_ids, skip_special_tokens=True)
all_outputs.append(output)
ret = {
"text": all_outputs,
"error": 0,
}
yield (json.dumps(ret) + "\0").encode("utf-8")
# Once finished, release the resources of the sequence group.
if seq_group.is_finished():
del self.running_seq_groups[group_id]
del self.sequence_group_events[group_id]
# Kick the server if the server is not running. This is to
# prevent that there are still requests in server's waiting
# queue to be executed.
if not self.is_server_running:
await self.server_step()
break
@app.post("/generate")
async def generate_stream(request: Request):
request_dict = await request.json()
return StreamingResponse(frontend.generate(request_dict))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=10002)
parser = add_server_arguments(parser)
args = parser.parse_args()
# TODO(zhuohan): Support pipeline parallelism.
assert args.pipeline_parallel_size == 1, (
'Pipeline parallelism is not supported yet.')
(num_nodes, num_devices_per_node, distributed_init_method,
all_stage_devices) = (
initialize_ray_cluster(
pipeline_parallel_size=args.pipeline_parallel_size,
tensor_parallel_size=args.tensor_parallel_size))
frontend = FastAPIFrontend(
model=args.model,
model_path=args.model_path,
pipeline_parallel_size=args.pipeline_parallel_size,
tensor_parallel_size=args.tensor_parallel_size,
block_size=args.block_size,
dtype=args.dtype,
seed=args.seed,
swap_space=args.swap_space,
max_num_batched_tokens=args.max_num_batched_tokens,
num_nodes=num_nodes,
num_devices_per_node=num_devices_per_node,
distributed_init_method=distributed_init_method,
all_stage_devices=all_stage_devices,
)
uvicorn.run(app, host=args.host, port=args.port, log_level="info")

View File

@ -1,43 +0,0 @@
import argparse
import json
import time
import gradio as gr
import requests
def http_bot(prompt):
headers = {"User-Agent": "Cacheflow Client"}
pload = {
"prompt": prompt,
"max_num_steps": 128,
}
response = requests.post(args.model_url, headers=headers, json=pload, stream=True)
for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode("utf-8"))
output = data["text"][0]
yield output
def build_demo():
with gr.Blocks() as demo:
gr.Markdown(
"# Cacheflow demo\n"
)
inputbox = gr.Textbox(label="Input", placeholder="Enter text and press ENTER")# .style(container=False)
outputbox = gr.Textbox(label="Output", placeholder="Generated result from the model")
inputbox.submit(http_bot, [inputbox], [outputbox])
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=10003)
parser.add_argument("--model-url", type=str, default="http://localhost:10002/generate")
args = parser.parse_args()
demo = build_demo()
demo.queue(concurrency_count=100).launch(server_name=args.host, server_port=args.port)

View File

@ -1,23 +0,0 @@
import requests
import json
def http_request():
prompt = "Ion Stoica is a"
headers = {"User-Agent": "Test Client"}
pload = {
"prompt": prompt,
"n": 4,
"use_beam_search": True,
"temperature": 0.0,
}
response = requests.post("http://localhost:10002/generate", headers=headers, json=pload, stream=True)
for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode("utf-8"))
output = data["text"]
yield output
for h in http_request():
print(h, flush=True)

View File

@ -1,246 +0,0 @@
from typing import Dict, List, Optional, Set, Tuple
from cacheflow.block import PhysicalTokenBlock
from cacheflow.sequence import Sequence
from cacheflow.sequence import SequenceGroup
from cacheflow.sequence import SequenceStatus
from cacheflow.utils import Device
class BlockAllocator:
def __init__(
self,
device: Device,
block_size: int,
num_blocks: int,
) -> None:
self.device = device
self.block_size = block_size
self.num_blocks = num_blocks
# Initialize the free blocks.
# TODO(woosuk): Make this a priority queue.
self.free_blocks = [
PhysicalTokenBlock(device=device, block_number=i, block_size=block_size)
for i in range(num_blocks)
]
def allocate(self) -> PhysicalTokenBlock:
if not self.free_blocks:
raise ValueError('Out of memory! '
f'No more free blocks are available.')
block = self.free_blocks.pop()
block.ref_count = 1
return block
def free(self, block: PhysicalTokenBlock) -> None:
if block.ref_count == 0:
raise ValueError('Double free! '
f'The block {block} is already freed.')
block.ref_count -= 1
if block.ref_count == 0:
self.free_blocks.append(block)
def get_num_free_blocks(self) -> int:
return len(self.free_blocks)
# Mapping: logical block number -> physical block.
BlockTable = List[PhysicalTokenBlock]
class BlockSpaceManager:
def __init__(
self,
block_size: int,
num_gpu_blocks: int,
num_cpu_blocks: int,
watermark: float = 0.01,
) -> None:
self.block_size = block_size
self.num_total_gpu_blocks = num_gpu_blocks
self.num_total_cpu_blocks = num_cpu_blocks
self.watermark = watermark
assert watermark >= 0.0
self.watermark_blocks = int(watermark * num_gpu_blocks)
self.gpu_allocator = BlockAllocator(Device.GPU, block_size, num_gpu_blocks)
self.cpu_allocator = BlockAllocator(Device.CPU, block_size, num_cpu_blocks)
# Mapping: seq_id -> BlockTable.
self.block_tables: Dict[int, BlockTable] = {}
def can_allocate(self, seq_group: SequenceGroup) -> bool:
# FIXME(woosuk): Here we assume that all sequences in the group share
# the same prompt. This may not be true for preempted sequences.
seq = seq_group.seqs[0]
num_required_blocks = len(seq.logical_token_blocks)
num_free_gpu_blocks = self.gpu_allocator.get_num_free_blocks()
# Use watermark to avoid frequent cache eviction.
return num_free_gpu_blocks - num_required_blocks >= self.watermark_blocks
def allocate(self, seq_group: SequenceGroup) -> None:
# NOTE: Here we assume that all sequences in the group have the same prompt.
seq = seq_group.seqs[0]
# Allocate new physical token blocks that will store the prompt tokens.
block_table: BlockTable = []
for _ in range(len(seq.logical_token_blocks)):
block = self.gpu_allocator.allocate()
# Set the reference counts of the token blocks.
block.ref_count = seq_group.num_seqs()
block_table.append(block)
# Assign the block table for each sequence.
for seq in seq_group.seqs:
self.block_tables[seq.seq_id] = block_table.copy()
def can_append(self, seq_group: SequenceGroup) -> bool:
# Simple heuristic: If there is at least one free block
# for each sequence, we can append.
num_free_gpu_blocks = self.gpu_allocator.get_num_free_blocks()
num_seqs = seq_group.num_seqs(status=SequenceStatus.RUNNING)
return num_seqs <= num_free_gpu_blocks
def append(self, seq: Sequence) -> Optional[Tuple[int, int]]:
"""Allocate a physical slot for the new token."""
logical_blocks = seq.logical_token_blocks
block_table = self.block_tables[seq.seq_id]
if len(block_table) < len(logical_blocks):
# The sequence has a new logical block.
# Allocate a new physical block.
block = self.gpu_allocator.allocate()
block_table.append(block)
return None
# We want to append the token to the last physical block.
last_block = block_table[-1]
assert last_block.device == Device.GPU
if last_block.ref_count == 1:
# Not shared with other sequences. Appendable.
return None
else:
# The last block is shared with other sequences.
# Copy on Write: Allocate a new block and copy the tokens.
new_block = self.gpu_allocator.allocate()
block_table[-1] = new_block
self.gpu_allocator.free(last_block)
return last_block.block_number, new_block.block_number
def fork(self, parent_seq: Sequence, child_seq: Sequence) -> None:
# NOTE: fork does not allocate a new physical block.
# Thus, it is always safe from OOM.
src_block_table = self.block_tables[parent_seq.seq_id]
self.block_tables[child_seq.seq_id] = src_block_table.copy()
for block in src_block_table:
block.ref_count += 1
def _get_physical_blocks(self, seq_group: SequenceGroup) -> List[PhysicalTokenBlock]:
# NOTE: Here, we assume that the physical blocks are only shared by
# the sequences in the same group.
blocks: Set[PhysicalTokenBlock] = set()
for seq in seq_group.seqs:
if seq.status == SequenceStatus.FINISHED:
continue
block_table = self.block_tables[seq.seq_id]
for block in block_table:
blocks.add(block)
return list(blocks)
def can_swap_in(self, seq_group: SequenceGroup) -> bool:
blocks = self._get_physical_blocks(seq_group)
num_swapped_seqs = seq_group.num_seqs(status=SequenceStatus.SWAPPED)
num_free_blocks = self.gpu_allocator.get_num_free_blocks()
# NOTE: Conservatively, we assume that every sequence will allocate
# at least one free block right after the swap-in.
# NOTE: This should match the logic in can_append().
num_required_blocks = len(blocks) + num_swapped_seqs
return num_free_blocks - num_required_blocks >= self.watermark_blocks
def swap_in(self, seq_group: SequenceGroup) -> Dict[int, int]:
# CPU block -> GPU block.
mapping: Dict[PhysicalTokenBlock, PhysicalTokenBlock] = {}
for seq in seq_group.seqs:
if seq.status == SequenceStatus.FINISHED:
continue
new_block_table: BlockTable = []
block_table = self.block_tables[seq.seq_id]
for cpu_block in block_table:
if cpu_block in mapping:
gpu_block = mapping[cpu_block]
gpu_block.ref_count += 1
else:
gpu_block = self.gpu_allocator.allocate()
mapping[cpu_block] = gpu_block
new_block_table.append(gpu_block)
# Free the CPU block swapped in to GPU.
self.cpu_allocator.free(cpu_block)
self.block_tables[seq.seq_id] = new_block_table
block_number_mapping = {
cpu_block.block_number: gpu_block.block_number
for cpu_block, gpu_block in mapping.items()
}
return block_number_mapping
def can_swap_out(self, seq_group: SequenceGroup) -> bool:
blocks = self._get_physical_blocks(seq_group)
return len(blocks) <= self.cpu_allocator.get_num_free_blocks()
def swap_out(self, seq_group: SequenceGroup) -> Dict[int, int]:
# GPU block -> CPU block.
mapping: Dict[PhysicalTokenBlock, PhysicalTokenBlock] = {}
for seq in seq_group.seqs:
if seq.status == SequenceStatus.FINISHED:
continue
new_block_table: BlockTable = []
block_table = self.block_tables[seq.seq_id]
for gpu_block in block_table:
if gpu_block in mapping:
cpu_block = mapping[gpu_block]
cpu_block.ref_count += 1
else:
cpu_block = self.cpu_allocator.allocate()
mapping[gpu_block] = cpu_block
new_block_table.append(cpu_block)
# Free the GPU block swapped out to CPU.
self.gpu_allocator.free(gpu_block)
self.block_tables[seq.seq_id] = new_block_table
block_number_mapping = {
gpu_block.block_number: cpu_block.block_number
for gpu_block, cpu_block in mapping.items()
}
return block_number_mapping
def _free_block_table(self, block_table: BlockTable) -> None:
for block in block_table:
if block.device == Device.GPU:
self.gpu_allocator.free(block)
else:
self.cpu_allocator.free(block)
def free(self, seq: Sequence) -> None:
block_table = self.block_tables[seq.seq_id]
self._free_block_table(block_table)
del self.block_tables[seq.seq_id]
def reset(self) -> None:
for block_table in self.block_tables.values():
self._free_block_table(block_table)
self.block_tables.clear()
def get_block_table(self, seq: Sequence) -> List[int]:
block_table = self.block_tables[seq.seq_id]
return [block.block_number for block in block_table]
def get_num_free_gpu_blocks(self) -> int:
return self.gpu_allocator.get_num_free_blocks()
def get_num_free_cpu_blocks(self) -> int:
return self.cpu_allocator.get_num_free_blocks()

View File

@ -1,529 +0,0 @@
import enum
import os
import pickle
import time
from typing import Any, Dict, List, Optional, Tuple
from cacheflow.master.block_manager import BlockSpaceManager
from cacheflow.master.policy import PolicyFactory
from cacheflow.sampling_params import SamplingParams
from cacheflow.sequence import Sequence
from cacheflow.sequence import SequenceGroup
from cacheflow.sequence import SequenceGroupInputs
from cacheflow.sequence import SequenceOutputs
from cacheflow.sequence import SequenceStatus
class PreemptionMode(enum.Enum):
"""Preemption modes.
1. Swapping: Swap out the blocks of the preempted sequences to CPU memory
and swap them back in when the sequences are resumed.
2. Recomputation: Discard the blocks of the preempted sequences and
recompute them when the sequences are resumed, treating the sequences as
new prompts.
"""
SWAP = enum.auto()
RECOMPUTE = enum.auto()
class Scheduler:
def __init__(
self,
controllers: List,
block_size: int,
num_gpu_blocks: int,
num_cpu_blocks: int,
max_num_batched_tokens: int,
max_num_sequences: int,
collect_stats: bool,
do_memory_analysis: bool = False,
) -> None:
self.controllers = controllers
self.block_size = block_size
self.num_gpu_blocks = num_gpu_blocks
self.num_cpu_blocks = num_cpu_blocks
self.max_num_batched_tokens = max_num_batched_tokens
self.max_num_sequences = max_num_sequences
self.collect_stats = collect_stats
self.do_memory_analysis = do_memory_analysis
# Instantiate the scheduling policy.
self.policy = PolicyFactory.get_policy(policy_name='fcfs')
# Create the block space manager.
self.block_manager = BlockSpaceManager(
block_size=block_size,
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks,
)
# Sequence groups in the WAITING state.
self.waiting: List[SequenceGroup] = []
# Sequence groups in the RUNNING state.
self.running: List[SequenceGroup] = []
# Mapping: group_id -> num_steps.
self.num_steps: Dict[int, int] = {}
# Mapping: group_id -> sampling params.
self.sampling_params: Dict[int, SamplingParams] = {}
# Sequence groups in the SWAPPED state.
self.swapped: List[SequenceGroup] = []
# Performance-related statistics.
self.stats = Stats(num_gpu_blocks, num_cpu_blocks)
def add_sequence_groups(
self,
seq_groups: List[Tuple[SequenceGroup, SamplingParams]],
) -> None:
# Add sequence groups to the waiting queue.
for seq_group, sampling_params in seq_groups:
self.waiting.append(seq_group)
self.sampling_params[seq_group.group_id] = sampling_params
def _schedule(
self,
) -> Tuple[Dict[int, int], Dict[int, int], Dict[int, List[int]], List[int]]:
# Blocks that need to be swaped or copied before model execution.
blocks_to_swap_in: Dict[int, int] = {}
blocks_to_swap_out: Dict[int, int] = {}
blocks_to_copy: Dict[int, List[int]] = {}
# Fix the current time.
now = time.time()
# NOTE(woosuk): We prioritize the sequence groups in the RUNNING state
# in order to minimize the preemption overheads.
# Preemption happens only when there is no available slot to keep all
# the sequence groups in the RUNNING state.
# In this case, the policy is responsible for deciding which sequence
# groups to preempt.
self.running = self.policy.sort_by_priority(now, self.running)
# Reserve new token slots for the running sequence groups.
running: List[SequenceGroup] = []
preempted: List[SequenceGroup] = []
while self.running:
seq_group = self.running.pop(0)
while not self.block_manager.can_append(seq_group):
if self.running:
# Preempt the lowest-priority sequence groups.
victim_seq_group = self.running.pop(-1)
self._preempt(victim_seq_group, blocks_to_swap_out)
preempted.append(victim_seq_group)
else:
# No other sequence groups can be preempted.
# Preempt the current sequence group.
self._preempt(seq_group, blocks_to_swap_out)
preempted.append(seq_group)
break
else:
# Append new slots to the sequence group.
self._append(seq_group, blocks_to_copy)
running.append(seq_group)
self.running = running
# Swap in the sequence groups in the SWAPPED state if possible.
self.swapped = self.policy.sort_by_priority(now, self.swapped)
# FCFS
while self.swapped and not blocks_to_swap_out:
seq_group = self.swapped[0]
# If the sequence group has been preempted in this step, stop.
if seq_group in preempted:
break
# If the sequence group cannot be swapped in, stop.
if not self.block_manager.can_swap_in(seq_group):
break
# The total number of sequences in the RUNNING state should not
# exceed the maximum number of sequences.
num_seqs = seq_group.num_seqs(status=SequenceStatus.SWAPPED)
if len(self.running) + num_seqs > self.max_num_sequences:
break
seq_group = self.swapped.pop(0)
self._swap_in(seq_group, blocks_to_swap_in)
self._append(seq_group, blocks_to_copy)
self.running.append(seq_group)
num_batched_tokens = sum(
seq_group.num_seqs(status=SequenceStatus.RUNNING)
for seq_group in self.running
)
# Join waiting sequences if possible.
prompt_group_ids: List[int] = []
# NOTE(woosuk): The sequence groups in the SWAPPED state are strictly
# prioritized over the sequence groups in the WAITING state.
# This is because we want to bound the amount of CPU memory taken by
# the swapped sequence groups.
if not self.swapped:
self.waiting = self.policy.sort_by_priority(now, self.waiting)
while self.waiting:
seq_group = self.waiting[0]
# If the sequence group has been preempted in this step, stop.
if seq_group in preempted:
break
# If the sequence group cannot be allocated, stop.
if not self.block_manager.can_allocate(seq_group):
break
# If the number of batched tokens exceeds the limit, stop.
num_prompt_tokens = seq_group.seqs[0].get_len()
if (num_batched_tokens + num_prompt_tokens
> self.max_num_batched_tokens):
break
# The total number of sequences in the RUNNING state should not
# exceed the maximum number of sequences.
num_seqs = seq_group.num_seqs(status=SequenceStatus.WAITING)
if len(self.running) + num_seqs > self.max_num_sequences:
break
seq_group = self.waiting.pop(0)
self._allocate(seq_group)
self.running.append(seq_group)
num_batched_tokens += num_prompt_tokens
prompt_group_ids.append(seq_group.group_id)
if self.collect_stats:
if self.running or blocks_to_swap_in or blocks_to_swap_out:
self.stats.timestamps.append(now - self.stats.start_time)
self.stats.input_lens.append(num_batched_tokens)
self.stats.swap_out_lens.append(len(blocks_to_swap_out) * self.block_size)
self.stats.swap_in_lens.append(len(blocks_to_swap_in) * self.block_size)
self.stats.num_preemption.append(len(preempted))
self.stats.num_swapped.append(len(self.swapped))
self.stats.num_running.append(len(self.running))
self.stats.num_waiting.append(len(self.waiting))
num_free_gpu_blocks = self.block_manager.get_num_free_gpu_blocks()
num_used_gpu_blocks = self.num_gpu_blocks - num_free_gpu_blocks
self.stats.gpu_cache_usage.append(num_used_gpu_blocks / self.num_gpu_blocks)
num_free_cpu_blocks = self.block_manager.get_num_free_cpu_blocks()
num_used_cpu_blocks = self.num_cpu_blocks - num_free_cpu_blocks
self.stats.cpu_cache_usage.append(num_used_cpu_blocks / self.num_cpu_blocks)
if self.do_memory_analysis:
block_tables = self.block_manager.block_tables
num_logical_blocks = 0
num_logical_tokens = 0
num_physical_blocks = 0
num_physical_tokens = 0
physical_block_numbers = set()
num_reserved_tokens = 0
for seq_group in self.running:
group_id = seq_group.group_id
sampling_params = self.sampling_params[group_id]
max_num_steps = sampling_params.max_num_steps
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
num_logical_blocks += len(seq.logical_token_blocks)
num_logical_tokens += seq.get_len()
seq_id = seq.seq_id
block_table = block_tables[seq_id]
for i, block in enumerate(block_table):
if block.block_number in physical_block_numbers:
continue
physical_block_numbers.add(block.block_number)
num_physical_blocks += 1
num_physical_tokens += seq.logical_token_blocks[i].num_tokens
assert num_physical_blocks == num_used_gpu_blocks
self.stats.num_logical_blocks.append(num_logical_blocks)
self.stats.num_logical_tokens.append(num_logical_tokens)
self.stats.num_physical_blocks.append(num_physical_blocks)
self.stats.num_physical_tokens.append(num_physical_tokens)
self.stats.num_reserved_tokens.append(num_reserved_tokens)
return (blocks_to_swap_in,
blocks_to_swap_out,
blocks_to_copy,
prompt_group_ids)
def step(self) -> List[SequenceGroup]:
# Schedule sequence groups.
# This function call changes the internal states of the scheduler
# such as self.running, self.swapped, and self.waiting.
scheduler_output = self._schedule()
blocks_to_swap_in = scheduler_output[0]
blocks_to_swap_out = scheduler_output[1]
blocks_to_copy = scheduler_output[2]
prompt_group_ids = scheduler_output[3]
# Create input data structures.
input_seq_groups: List[SequenceGroupInputs] = []
updated_seq_groups: List[SequenceGroup] = self.running.copy()
for seq_group in self.running:
group_id = seq_group.group_id
is_prompt = group_id in prompt_group_ids
input_tokens: Dict[int, List[int]] = {}
seq_logprobs: Dict[int, float] = {}
block_tables: Dict[int, List[int]] = {}
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
seq_id = seq.seq_id
block_tables[seq_id] = self.block_manager.get_block_table(seq)
if is_prompt:
input_tokens[seq_id] = seq.get_token_ids()
else:
input_tokens[seq_id] = [seq.get_last_token_id()]
seq_logprobs[seq_id] = seq.cumulative_logprobs
# NOTE(woosuk): Sequences in the same group have the same
# sequence length
seq_len = seq.get_len()
input_seq_group = SequenceGroupInputs(
group_id=group_id,
is_prompt=is_prompt,
input_tokens=input_tokens,
context_len=seq_len,
seq_logprobs=seq_logprobs,
sampling_params=self.sampling_params[group_id],
block_tables=block_tables,
)
input_seq_groups.append(input_seq_group)
# Execute the first stage of the pipeline.
if input_seq_groups or blocks_to_swap_in or blocks_to_swap_out:
# Swap in and swap out should never happen at the same time.
assert not (blocks_to_swap_in and blocks_to_swap_out)
self.controllers[0].execute_stage(
input_seq_groups,
blocks_to_swap_in=blocks_to_swap_in,
blocks_to_swap_out=blocks_to_swap_out,
blocks_to_copy=blocks_to_copy,
)
return updated_seq_groups
def post_step(
self,
seq_outputs: Dict[int, SequenceOutputs],
) -> None:
# Update the running sequences and free blocks.
for seq_group in self.running:
group_id = seq_group.group_id
self.num_steps[group_id] += 1
stop_token_ids = self.sampling_params[group_id].stop_token_ids
# Process beam search results before processing the next tokens.
for seq in seq_group.seqs:
if seq.status == SequenceStatus.FINISHED:
continue
output = seq_outputs[seq.seq_id]
if seq.seq_id != output.parent_seq_id:
# The sequence is a fork of the parent sequence (beam search).
# Free the current sequence.
self.block_manager.free(seq)
# Fork the parent sequence.
parent_seq = seq_group.find(output.parent_seq_id)
parent_seq.fork(seq)
self.block_manager.fork(parent_seq, seq)
# Process the next tokens.
for seq in seq_group.seqs:
if seq.status == SequenceStatus.FINISHED:
continue
# Append a new token to the sequence.
output = seq_outputs[seq.seq_id]
seq.append(output.output_token, output.logprobs)
# Check if the sequence has generated a stop token.
if output.output_token in stop_token_ids:
self._free_seq(seq)
continue
# Check if the sequence has reached the maximum number of steps.
max_num_steps = self.sampling_params[group_id].max_num_steps
if self.num_steps[group_id] == max_num_steps:
self._free_seq(seq)
continue
# Update the running sequences.
running: List[SequenceGroup] = []
for seq_group in self.running:
if seq_group.is_finished():
self._free_seq_group(seq_group)
else:
running.append(seq_group)
self.running = running
def _allocate(self, seq_group: SequenceGroup) -> None:
self.block_manager.allocate(seq_group)
for seq in seq_group.seqs:
seq.status = SequenceStatus.RUNNING
# FIXME(woosuk): Support interactive generation.
if seq_group.group_id not in self.num_steps:
self.num_steps[seq_group.group_id] = 0
def _append(
self,
seq_group: SequenceGroup,
blocks_to_copy: Dict[int, List[int]],
) -> None:
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
ret = self.block_manager.append(seq)
if ret is not None:
src_block, dst_block = ret
if src_block in blocks_to_copy:
blocks_to_copy[src_block].append(dst_block)
else:
blocks_to_copy[src_block] = [dst_block]
def _preempt(
self,
seq_group: SequenceGroup,
blocks_to_swap_out: Dict[int, int],
preemption_mode: Optional[PreemptionMode] = None,
) -> None:
# If preemption mode is not specified, we determine the mode as follows:
# We use recomputation by default since it incurs lower overhead than
# swapping. However, when the sequence group has multiple sequences
# (e.g., beam search), recomputation is not supported. In such a case,
# we use swapping instead.
# FIXME(woosuk): This makes our scheduling policy a bit bizarre.
# As swapped sequences are prioritized over waiting sequences,
# sequence groups with multiple sequences are implicitly prioritized
# over sequence groups with a single sequence.
# TODO(woosuk): Support recomputation for sequence groups with multiple
# sequences. This may require a more sophisticated CUDA kernel.
if preemption_mode is None:
seqs = seq_group.get_seqs(status=SequenceStatus.RUNNING)
if len(seqs) == 1:
preemption_mode = PreemptionMode.RECOMPUTE
else:
preemption_mode = PreemptionMode.SWAP
if preemption_mode == PreemptionMode.RECOMPUTE:
self._preempt_by_recompute(seq_group)
elif preemption_mode == PreemptionMode.SWAP:
self._preempt_by_swap(seq_group, blocks_to_swap_out)
else:
assert False, 'Invalid preemption mode.'
def _preempt_by_recompute(
self,
seq_group: SequenceGroup,
) -> None:
seqs = seq_group.get_seqs(status=SequenceStatus.RUNNING)
assert len(seqs) == 1
for seq in seqs:
seq.status = SequenceStatus.WAITING
self.block_manager.free(seq)
self.waiting.append(seq_group)
def _preempt_by_swap(
self,
seq_group: SequenceGroup,
blocks_to_swap_out: Dict[int, int],
) -> None:
seqs = seq_group.get_seqs(status=SequenceStatus.RUNNING)
for seq in seqs:
seq.status = SequenceStatus.SWAPPED
self._swap_out(seq_group, blocks_to_swap_out)
self.swapped.append(seq_group)
def _free_seq(self, seq: Sequence) -> None:
seq.status = SequenceStatus.FINISHED
self.block_manager.free(seq)
def _free_seq_group(self, seq_group: SequenceGroup) -> None:
group_id = seq_group.group_id
del self.num_steps[group_id]
del self.sampling_params[group_id]
def _swap_in(
self,
seq_group: SequenceGroup,
blocks_to_swap_in: Dict[int, int],
) -> None:
mapping = self.block_manager.swap_in(seq_group)
blocks_to_swap_in.update(mapping)
for seq in seq_group.get_seqs(status=SequenceStatus.SWAPPED):
seq.status = SequenceStatus.RUNNING
def _swap_out(
self,
seq_group: SequenceGroup,
blocks_to_swap_out: Dict[int, int],
) -> None:
assert self.block_manager.can_swap_out(seq_group)
mapping = self.block_manager.swap_out(seq_group)
blocks_to_swap_out.update(mapping)
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
seq.status = SequenceStatus.SWAPPED
def reset_stats(self) -> None:
self.stats.reset(self.num_gpu_blocks, self.num_cpu_blocks)
def save_stats(
self,
output_dir: str,
) -> None:
assert self.collect_stats, 'Statistics collection is disabled.'
self.stats.save(output_dir)
class Stats:
def __init__(
self,
num_gpu_blocks: int,
num_cpu_blocks: int,
) -> None:
self.start_time: float = time.time()
self.num_gpu_blocks = num_gpu_blocks
self.num_cpu_blocks = num_cpu_blocks
self.timestamps: List[float] = []
self.input_lens: List[int] = []
self.swap_out_lens: List[int] = []
self.swap_in_lens: List[int] = []
self.num_preemption: List[int] = []
self.num_waiting: List[int] = []
self.num_running: List[int] = []
self.num_swapped: List[int] = []
self.gpu_cache_usage: List[float] = []
self.cpu_cache_usage: List[float] = []
self.num_logical_blocks: List[int] = []
self.num_logical_tokens: List[int] = []
self.num_physical_blocks: List[int] = []
self.num_physical_tokens: List[int] = []
self.num_reserved_tokens: List[int] = []
def reset(
self,
num_gpu_blocks: int,
num_cpu_blocks: int,
) -> None:
self.__init__(num_gpu_blocks, num_cpu_blocks)
def to_dict(self) -> Dict[str, Any]:
return {
'start_time': self.start_time,
'num_gpu_blocks': self.num_gpu_blocks,
'num_cpu_blocks': self.num_cpu_blocks,
'timestamps': self.timestamps,
'input_lens': self.input_lens,
'swap_out_lens': self.swap_out_lens,
'swap_in_lens': self.swap_in_lens,
'num_preemption': self.num_preemption,
'num_waiting': self.num_waiting,
'num_running': self.num_running,
'num_swapped': self.num_swapped,
'gpu_cache_usage': self.gpu_cache_usage,
'cpu_cache_usage': self.cpu_cache_usage,
'num_logical_blocks': self.num_logical_blocks,
'num_logical_tokens': self.num_logical_tokens,
'num_physical_blocks': self.num_physical_blocks,
'num_physical_tokens': self.num_physical_tokens,
'num_reserved_tokens': self.num_reserved_tokens,
}
def save(self, output_dir: str) -> None:
with open(os.path.join(output_dir, 'stats.pkl'), 'wb') as f:
pickle.dump(self.to_dict(), f)

View File

@ -1,192 +0,0 @@
import argparse
from typing import List, Tuple
import random
import ray
from cacheflow.master.scheduler import Scheduler
from cacheflow.models import get_memory_analyzer
from cacheflow.worker.controller import Controller, DeviceID
from cacheflow.sequence import SequenceGroup
from cacheflow.sampling_params import SamplingParams
class Server:
def __init__(
self,
model: str,
model_path: str,
use_dummy_weights: bool,
pipeline_parallel_size: int,
tensor_parallel_size: int,
block_size: int,
dtype: str,
seed: int,
swap_space: int,
max_num_batched_tokens: int,
max_num_sequences: int,
num_nodes: int,
num_devices_per_node: int,
distributed_init_method: str,
all_stage_devices: List[List[DeviceID]],
gpu_memory: int,
cpu_memory: int,
collect_stats: bool = False,
do_memory_analysis: bool = False,
):
self.num_nodes = num_nodes
self.num_devices_per_node = num_devices_per_node
self.world_size = pipeline_parallel_size * tensor_parallel_size
self.memory_analyzer = get_memory_analyzer(
model_name=model,
block_size=block_size,
dtype=dtype,
gpu_memory=gpu_memory,
cpu_memory=cpu_memory,
tensor_parallel_size=tensor_parallel_size,
)
self.num_gpu_blocks = self.memory_analyzer.get_max_num_gpu_blocks(
max_num_batched_tokens=max_num_batched_tokens)
self.num_cpu_blocks = self.memory_analyzer.get_max_num_cpu_blocks(
swap_space=swap_space)
print(f'# GPU blocks: {self.num_gpu_blocks}, '
f'# CPU blocks: {self.num_cpu_blocks}')
# Create a controller for each pipeline stage.
self.controllers: List[Controller] = []
for i in range(pipeline_parallel_size):
controller = Controller(
stage_id=i,
stage_devices=all_stage_devices[i],
world_size=self.world_size,
pipeline_parallel_size=pipeline_parallel_size,
tensor_parallel_size=tensor_parallel_size,
distributed_init_method=distributed_init_method,
model_name=model,
block_size=block_size,
num_gpu_blocks=self.num_gpu_blocks,
num_cpu_blocks=self.num_cpu_blocks,
dtype=dtype,
seed=seed,
model_path=model_path,
use_dummy_weights=use_dummy_weights,
max_num_batched_tokens=max_num_batched_tokens,
)
self.controllers.append(controller)
# Create a scheduler.
self.scheduler = Scheduler(
controllers=self.controllers,
block_size=block_size,
num_gpu_blocks=self.num_gpu_blocks,
num_cpu_blocks=self.num_cpu_blocks,
max_num_batched_tokens=max_num_batched_tokens,
max_num_sequences=max_num_sequences,
collect_stats=collect_stats,
do_memory_analysis=do_memory_analysis,
)
# Connect the controllers.
for i in range(len(self.controllers) - 1):
self.controllers[i].set_next(self.controllers[i + 1])
self.controllers[-1].set_next(self.scheduler)
def add_sequence_groups(
self,
sequence_groups: List[Tuple[SequenceGroup, SamplingParams]]
):
self.scheduler.add_sequence_groups(sequence_groups)
def step(self):
return self.scheduler.step()
def has_unfinished_requests(self):
return (self.scheduler.waiting or self.scheduler.running or
self.scheduler.swapped)
def initialize_ray_cluster(
address: str = 'auto',
pipeline_parallel_size: int = 1,
tensor_parallel_size: int = 1,
) -> Tuple[int, int, str, List[List[DeviceID]]]:
# Connect to a ray cluster.
ray.init(address=address)
# Assume we have a uniform cluster that each node has the same number of
# GPUs for now.
valid_node_resources = []
num_devices_per_node = None
for node in ray.nodes():
if (not node['Alive']) or node['Resources']['GPU'] <= 0:
continue
if num_devices_per_node is None:
num_devices_per_node = node['Resources']['GPU']
else:
assert num_devices_per_node == node['Resources']['GPU'], (
"The number of GPUs per node is not uniform.")
for key in node['Resources']:
if key.startswith('node:'):
valid_node_resources.append(key)
num_nodes = len(valid_node_resources)
assert (pipeline_parallel_size * tensor_parallel_size
<= num_nodes * num_devices_per_node), (
"The number of required GPUs exceeds the total number of "
"available GPUs.")
if tensor_parallel_size >= num_devices_per_node:
assert tensor_parallel_size % num_devices_per_node == 0, (
"The number of tensor parallelism is not divisible by the "
"number of GPUs per node.")
else:
assert num_devices_per_node % tensor_parallel_size == 0, (
"The number of GPUs per node is not divisible by the number "
"of tensor parallelism.")
# Assign GPUs to pipeline stages.
rank = 0
current_node_id = 0
current_device_id = 0
distributed_init_method = None
all_stage_devices = []
for i in range(pipeline_parallel_size):
stage_devices = []
for j in range(tensor_parallel_size):
node_resource = valid_node_resources[current_node_id]
stage_devices.append((rank, node_resource, current_device_id))
if distributed_init_method is None:
ip = node_resource.split("node:")[-1]
port = random.randint(10000, 20000)
distributed_init_method = f"tcp://{ip}:{port}"
rank += 1
current_device_id += 1
if current_device_id >= num_devices_per_node:
current_node_id += 1
current_device_id = 0
all_stage_devices.append(stage_devices)
return (num_nodes, num_devices_per_node, distributed_init_method,
all_stage_devices)
def add_server_arguments(parser: argparse.ArgumentParser):
# Model arguments
parser.add_argument('--model', type=str, default='facebook/opt-125m', help='model name')
parser.add_argument('--model-path', type=str, default='~/.cacheflow/model_weights',
help='model path to download and load the weights')
# Parallel arguments
parser.add_argument('--pipeline-parallel-size', '-pp', type=int, default=1, help='number of pipeline stages')
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1, help='number of tensor parallel replicas')
# KV cache arguments
parser.add_argument('--block-size', type=int, default=16, choices=[1, 2, 4, 8, 16, 32, 64, 128, 256], help='token block size')
# NOTE(woosuk): If FlashAttention is used, the float data type is not supported.
parser.add_argument('--dtype', type=str, default='half', choices=['half'], help='data type')
# TODO(woosuk): Support fine-grained seeds (e.g., seed per request).
parser.add_argument('--seed', type=int, default=0, help='random seed')
parser.add_argument('--swap-space', type=int, default=20, help='CPU swap space size (GiB) per GPU')
parser.add_argument('--max-num-batched-tokens', type=int, default=2560, help='maximum number of batched tokens per iteration')
parser.add_argument('--max-num-sequences', type=int, default=256, help='maximum number of sequences per iteration')
parser.add_argument('--use-dummy-weights', action='store_true', help='use dummy values for model weights')
return parser

View File

@ -1,69 +0,0 @@
import time
from typing import List, Optional, Set, Tuple
from transformers import AutoTokenizer
from cacheflow.sampling_params import SamplingParams
from cacheflow.sequence import Sequence, SequenceGroup
from cacheflow.utils import Counter
class SimpleFrontend:
def __init__(
self,
model_name: str,
block_size: int,
) -> None:
self.block_size = block_size
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.seq_group_counter = Counter()
self.seq_counter = Counter()
self.inputs: List[Tuple[SequenceGroup, SamplingParams]] = []
def add_eos_token(self, sampling_params: SamplingParams) -> SamplingParams:
# Stop generation when we see an EOS token.
sampling_params.stop_token_ids.add(self.tokenizer.eos_token_id)
return sampling_params
def query(
self,
prompt: str,
sampling_params: SamplingParams,
) -> None:
token_ids = self.tokenizer.encode(prompt)
self._add_query(token_ids, sampling_params)
def _add_query(
self,
token_ids: List[int],
sampling_params: SamplingParams,
arrival_time: Optional[float] = None,
) -> None:
if arrival_time is None:
arrival_time = time.time()
seqs: List[Sequence] = []
for _ in range(sampling_params.n):
seq_id = next(self.seq_counter)
seq = Sequence(seq_id, token_ids, block_size=self.block_size)
seqs.append(seq)
group_id = next(self.seq_group_counter)
seq_group = SequenceGroup(group_id, seqs, arrival_time)
self.inputs.append((seq_group, sampling_params))
def get_inputs(self) -> List[Tuple[SequenceGroup, SamplingParams]]:
inputs = self.inputs
self.inputs = []
return inputs
def print_response(
self,
seq_group: SequenceGroup,
) -> None:
for seq in seq_group.seqs:
token_ids = seq.get_token_ids()
output = self.tokenizer.decode(token_ids, skip_special_tokens=True)
output = output.strip()
print(f'Seq {seq.seq_id}: {output!r}')

View File

@ -1,10 +0,0 @@
from cacheflow.models.input_metadata import InputMetadata
from cacheflow.models.model_utils import get_memory_analyzer
from cacheflow.models.model_utils import get_model
__all__ = [
'InputMetadata',
'get_memory_analyzer',
'get_model',
]

View File

@ -1,20 +0,0 @@
import torch
import torch.nn as nn
from cacheflow import activation_ops
class SiluAndMul(nn.Module):
def __init__(self):
super().__init__()
def forward(
self,
x: torch.Tensor, # (num_tokens, 2 * d)
) -> torch.Tensor: # (num_tokens, d)
num_tokens = x.shape[0]
d = x.shape[1] // 2
out = torch.empty(num_tokens, d, dtype=x.dtype, device=x.device)
activation_ops.silu_and_mul(out, x)
return out

View File

@ -1,207 +0,0 @@
from typing import Optional
from flash_attn.flash_attn_interface import _flash_attn_forward
import torch
import torch.nn as nn
from cacheflow import attention_ops
from cacheflow import cache_ops
from cacheflow import pos_encoding_ops
from cacheflow.models import InputMetadata
class GPTCacheFlowAttention(nn.Module):
def __init__(self, scale: float) -> None:
super().__init__()
self.scale = float(scale)
def multi_query_kv_attention(
self,
output: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
query: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
key: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
value: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
cumulative_prompt_lens: torch.Tensor, # [num_prompts + 1]
max_prompt_len: int,
) -> None:
if query.dtype == torch.float:
raise ValueError('The float data type is not supported by '
'FlashAttention. Use the half data type instead.')
head_size = query.shape[-1]
if head_size > 128:
raise ValueError('FlashAttention does not support head_size > 128.')
# Directly call FlashAttention's internal function to avoid allocating
# a new tensor for the output.
_flash_attn_forward(
query,
key,
value,
output,
cumulative_prompt_lens,
cumulative_prompt_lens,
max_prompt_len,
max_prompt_len,
dropout_p=0.0,
softmax_scale=self.scale,
causal=True,
return_softmax=False,
)
def single_query_cached_kv_attention(
self,
output: torch.Tensor, # [num_generation_tokens, num_heads, head_size]
query: torch.Tensor, # [num_generation_tokens, num_heads, head_size]
key_cache: torch.Tensor, # [num_blocks, num_heads, head_size/x, block_size, x]
value_cache: torch.Tensor, # [num_blocks, num_heads, head_size, block_size]
input_metadata: InputMetadata,
) -> None:
head_size = value_cache.shape[2]
supported_head_sizes = [32, 64, 80, 96, 128, 160, 192, 256]
if head_size not in supported_head_sizes:
raise ValueError(f'head_size ({head_size}) is not supported by '
'the single_query_cached_kv_attention kernel. '
'Use one of the following head sizes: '
f'{supported_head_sizes}.')
block_size = value_cache.shape[3]
attention_ops.single_query_cached_kv_attention(
output,
query,
key_cache,
value_cache,
self.scale,
input_metadata.block_tables,
input_metadata.context_lens,
block_size,
input_metadata.max_context_len,
)
def forward(
self,
query: torch.Tensor, # [num_tokens, num_heads * head_size]
key: torch.Tensor, # [num_tokens, num_heads * head_size]
value: torch.Tensor, # [num_tokens, num_heads * head_size]
key_cache: torch.Tensor, # [num_blocks, num_heads, head_size/x, block_size, x]
value_cache: torch.Tensor, # [num_blocks, num_heads, head_size, block_size]
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor: # [num_tokens, num_heads * head_size]
# NOTE: The query, key, and value tensors must be sliced from a qkv
# tensor of shape [num_tokens, 3 * num_heads * head_size].
# Reshape the query, key, and value tensors.
num_heads = value_cache.shape[1]
head_size = value_cache.shape[2]
query = query.view(-1, num_heads, head_size)
key = key.view(-1, num_heads, head_size)
value = value.view(-1, num_heads, head_size)
# Pre-allocate the output tensor.
output = torch.empty_like(query)
# Compute the attention op for prompts.
num_prompt_tokens = input_metadata.num_prompt_tokens
if num_prompt_tokens > 0:
self.multi_query_kv_attention(
output[:num_prompt_tokens],
query[:num_prompt_tokens],
key[:num_prompt_tokens],
value[:num_prompt_tokens],
input_metadata.cumulative_prompt_lens,
input_metadata.max_prompt_len,
)
# Wait until the cache op is done.
if cache_event is not None:
cache_event.wait()
# Reshape the keys and values and store them in the cache.
num_valid_tokens = input_metadata.num_valid_tokens
if num_valid_tokens > 0:
# The stride is 3 because the key and value are sliced from qkv.
cache_ops.reshape_and_cache(
key[:num_valid_tokens],
value[:num_valid_tokens],
key_cache,
value_cache,
input_metadata.slot_mapping,
)
if input_metadata.num_generation_tokens > 0:
# Compute the attention op for generation tokens.
self.single_query_cached_kv_attention(
output[num_prompt_tokens:num_valid_tokens],
query[num_prompt_tokens:num_valid_tokens],
key_cache,
value_cache,
input_metadata)
# Reshape the output tensor.
# NOTE(woosuk): The output tensor may include paddings.
return output.view(-1, num_heads * head_size)
class OPTCacheFlowAttention(GPTCacheFlowAttention):
"""OPT uses the same attention mechanism as GPT."""
def __init__(self, scale: float) -> None:
super().__init__(scale)
class LlamaCacheFlowAttention(GPTCacheFlowAttention):
"""Llama uses GPT-NeoX style rotary embedding."""
def __init__(
self,
scale: float,
head_size: int,
max_position: int = 8192,
base: int = 10000,
) -> None:
super().__init__(scale)
# Create the cos and sin cache.
inv_freq = 1.0 / (base ** (torch.arange(0, head_size, 2) / head_size))
t = torch.arange(max_position).float()
freqs = torch.einsum('i,j -> ij', t, inv_freq.float())
cos = freqs.cos()
sin = freqs.sin()
cache = torch.cat((cos, sin), dim=-1)
# FIXME(woosuk): This assumes that we configure the default dtype when
# initializing the model. Make it more robust.
torch_dtype = torch.get_default_dtype()
cache = cache.to(torch_dtype)
# Embedding size: [max_position, head_size]
self.register_buffer('cos_sin_cache', cache, persistent=False)
def forward(
self,
positions: torch.LongTensor, # [num_tokens]
query: torch.Tensor, # [num_tokens, num_heads * head_size]
key: torch.Tensor, # [num_tokens, num_heads * head_size]
value: torch.Tensor, # [num_tokens, num_heads * head_size]
key_cache: torch.Tensor, # [num_blocks, num_heads, head_size/x, block_size, x]
value_cache: torch.Tensor, # [num_blocks, num_heads, head_size, block_size]
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor: # [num_tokens, num_heads * head_size]
# Apply rotary embedding to the query and key before passing them
# to the attention op.
pos_encoding_ops.rotary_embedding_neox(
positions,
query,
key,
self.cos_sin_cache,
)
return super().forward(
query,
key,
value,
key_cache,
value_cache,
input_metadata,
cache_event,
)

View File

@ -1,55 +0,0 @@
from typing import List, Dict, Tuple
import torch
from cacheflow.sampling_params import SamplingParams
class InputMetadata:
def __init__(
self,
seq_groups: List[Tuple[List[int], SamplingParams]],
seq_logprobs: Dict[int, float], # Seq id -> cumulative logprobs.
prompt_lens: List[int],
cumulative_prompt_lens: torch.Tensor,
slot_mapping: torch.Tensor,
context_lens: torch.Tensor,
max_context_len: int,
block_tables: torch.Tensor,
) -> None:
self.seq_groups = seq_groups
self.seq_logprobs = seq_logprobs
self.prompt_lens = prompt_lens
self.cumulative_prompt_lens = cumulative_prompt_lens
self.slot_mapping = slot_mapping
self.context_lens = context_lens
self.max_context_len = max_context_len
self.block_tables = block_tables
self.num_prompts = len(prompt_lens)
self.num_prompt_tokens = sum(prompt_lens)
self.max_prompt_len = max(prompt_lens) if prompt_lens else 0
self.num_generation_tokens = context_lens.shape[0]
self.num_valid_tokens = slot_mapping.shape[0]
if block_tables.numel() > 0:
self.max_num_blocks_per_seq = block_tables.shape[1]
else:
self.max_num_blocks_per_seq = 0
assert block_tables.shape[0] == self.num_generation_tokens
assert context_lens.shape[0] == self.num_generation_tokens
def __repr__(self) -> str:
return (f'InputMetadata('
f'num_prompts={self.num_prompts}, '
f'num_prompt_tokens={self.num_prompt_tokens}, '
f'max_prompt_len={self.max_prompt_len}, '
f'num_generation_tokens={self.num_generation_tokens}, '
f'num_valid_tokens={self.num_valid_tokens}, '
f'max_num_blocks_per_seq={self.max_num_blocks_per_seq}, '
f'max_context_len={self.max_context_len}), '
f'prompt_lens={self.prompt_lens}, '
f'cumulative_prompt_lens={self.cumulative_prompt_lens}, '
f'slot_mapping={self.slot_mapping}, '
f'context_lens={self.context_lens}, '
f'block_tables={self.block_tables})')

View File

@ -1,26 +0,0 @@
import torch
import torch.nn as nn
from cacheflow import layernorm_ops
class RMSNorm(nn.Module):
def __init__(
self,
hidden_size: int,
eps: float = 1e-6,
) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = torch.empty_like(x)
layernorm_ops.rms_norm(
out,
x,
self.weight.data,
self.variance_epsilon,
)
return out

View File

@ -1,292 +0,0 @@
"""1D LLaMA model compatible with HuggingFace weights."""
import os
import glob
import filelock
from tqdm import tqdm
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
from torch import nn
from transformers import LlamaConfig
from cacheflow.models import InputMetadata
from cacheflow.models.activation import SiluAndMul
from cacheflow.models.attention import LlamaCacheFlowAttention
from cacheflow.models.layernorm import RMSNorm
from cacheflow.models.sample import Sampler
from cacheflow.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from cacheflow.parallel_utils.tensor_parallel import (VocabParallelEmbedding,
ColumnParallelLinear,
RowParallelLinear)
from cacheflow.sequence import SequenceOutputs
KVCache = Tuple[torch.Tensor, torch.Tensor]
class LlamaMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
):
super().__init__()
self.gate_up_proj = ColumnParallelLinear(hidden_size, 2 * intermediate_size,
bias=False, gather_output=False,
perform_initialization=False)
self.down_proj = RowParallelLinear(intermediate_size, hidden_size,
bias=False, input_is_parallel=True,
perform_initialization=False)
if hidden_act != 'silu':
raise ValueError(f'Unsupported activation: {hidden_act}. '
'Only silu is supported for now.')
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class LlamaAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
):
super().__init__()
self.hidden_size = hidden_size
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
self.head_dim = hidden_size // self.total_num_heads
self.scaling = self.head_dim ** -0.5
self.qkv_proj = ColumnParallelLinear(
hidden_size,
3 * self.total_num_heads * self.head_dim,
bias=False,
gather_output=False,
perform_initialization=False,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
input_is_parallel=True,
perform_initialization=False,
)
self.attn = LlamaCacheFlowAttention(self.scaling, self.head_dim)
def forward(
self,
positions: torch.LongTensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
k_cache, v_cache = kv_cache
attn_output = self.attn(
positions, q, k, v, k_cache, v_cache, input_metadata, cache_event)
output, _ = self.o_proj(attn_output)
return output
class LlamaDecoderLayer(nn.Module):
def __init__(self, config: LlamaConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = LlamaAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
)
self.mlp = LlamaMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
positions: torch.LongTensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
# Self Attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class LlamaModel(nn.Module):
def __init__(self, config: LlamaConfig):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(config.vocab_size, config.hidden_size,
perform_initialization=False)
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.LongTensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
for i in range(len(self.layers)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.layers[i]
hidden_states = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
hidden_states = self.norm(hidden_states)
return hidden_states
class LlamaForCausalLM(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.model = LlamaModel(config)
self.lm_head = ColumnParallelLinear(config.hidden_size,
config.vocab_size,
bias=False,
gather_output=False,
perform_initialization=False)
self.sampler = Sampler()
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.LongTensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> Dict[int, SequenceOutputs]:
hidden_states = self.model(
input_ids, positions, kv_caches, input_metadata, cache_events)
next_tokens = self.sampler(
self.lm_head.weight, hidden_states, input_metadata)
return next_tokens
_column_parallel_weights = ["embed_tokens.weight", "lm_head.weight",
"qkv_proj.weight", "gate_proj.weight",
"up_proj.weight"]
_row_parallel_weights = ["o_proj.weight", "down_proj.weight"]
def load_weights(self, weights_path: str):
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, param in state_dict.items():
if "qkv_proj" in name or "gate_up_proj" in name:
if "qkv_proj" in name:
original_name = "qkv_proj"
weight_names = ["q_proj", "k_proj", "v_proj"]
shard_size = param.shape[0] // 3
else:
original_name = "gate_up_proj"
weight_names = ["gate_proj", "up_proj"]
shard_size = param.shape[0] // 2
weights_to_concat = []
for weight_name in weight_names:
weight = np.load(os.path.join(
weights_path, name.replace(original_name, weight_name)))
weights_to_concat.append(weight[
shard_size * tensor_model_parallel_rank
:shard_size * (tensor_model_parallel_rank + 1)])
loaded_weight = torch.from_numpy(
np.concatenate(weights_to_concat, axis=0))
else:
loaded_weight = torch.from_numpy(
np.load(os.path.join(weights_path, name)))
for p in self._column_parallel_weights:
if p in name:
shard_size = param.shape[0]
loaded_weight = loaded_weight[
shard_size * tensor_model_parallel_rank
:shard_size * (tensor_model_parallel_rank + 1)]
break
for p in self._row_parallel_weights:
if p in name:
shard_size = param.shape[1]
loaded_weight = loaded_weight[
:,
shard_size * tensor_model_parallel_rank
:shard_size * (tensor_model_parallel_rank + 1)]
break
assert param.shape == loaded_weight.shape
param.data.copy_(loaded_weight)
@staticmethod
def get_weights(model_name: str, path: str):
if not os.path.isfile(os.path.join(model_name, "config.json")):
raise ValueError("LLaMA model's model_name has to be a path"
"to the huggingface model's directory.")
path = os.path.join(model_name, f"np")
path = os.path.abspath(os.path.expanduser(path))
os.makedirs(path, exist_ok=True)
lock_path = os.path.join(path, "file_lock")
lock = filelock.FileLock(lock_path)
with lock:
test_weight_path = os.path.join(path, "model.embed_tokens.weight")
if os.path.exists(test_weight_path):
return path
bin_files = glob.glob(os.path.join(model_name, "*.bin"))
for bin_file in tqdm(bin_files, desc="Convert format"):
state = torch.load(bin_file, map_location="cpu")
for name, param in tqdm(state.items(), leave=False):
param_path = os.path.join(path, name)
with open(param_path, "wb") as f:
np.save(f, param.cpu().detach().numpy())
return path
def initialize_dummy_weights(self) -> None:
for param in self.state_dict().values():
param.data.uniform_(-0.1, 0.1)

View File

@ -1,240 +0,0 @@
import torch
from transformers import AutoConfig
from cacheflow.models.utils import get_dtype_size
_GiB = 1 << 30
class CacheFlowMemoryAnalyzer:
def get_max_num_gpu_blocks(
self,
max_num_batched_tokens: int,
memory_utilization: float,
) -> int:
raise NotImplementedError()
def get_workspace_size(self) -> int:
return 1 * _GiB
def get_cache_block_size(self) -> int:
raise NotImplementedError()
def get_max_num_cpu_blocks(
self,
swap_space: int,
) -> int:
swap_space = swap_space * _GiB
cpu_memory = self.cpu_memory
if swap_space > 0.8 * cpu_memory:
raise ValueError(f'The swap space ({swap_space / _GiB:.2f} GiB) '
'takes more than 80% of the available memory '
f'({cpu_memory / _GiB:.2f} GiB).'
'Please check the swap space size.')
if swap_space > 0.5 * cpu_memory:
print(f'WARNING: The swap space ({swap_space / _GiB:.2f} GiB) '
'takes more than 50% of the available memory '
f'({cpu_memory / _GiB:.2f} GiB).'
'This may slow the system performance.')
max_num_blocks = swap_space // self.get_cache_block_size()
return max_num_blocks
class OPTMemoryAnalyzer(CacheFlowMemoryAnalyzer):
def __init__(
self,
model_name: str,
block_size: int,
dtype: torch.dtype,
gpu_memory: int,
cpu_memory: int,
tensor_parallel_size: int,
) -> None:
self.model_name = model_name
self.block_size = block_size
self.dtype = dtype
self.gpu_memory = gpu_memory
self.cpu_memory = cpu_memory
self.tensor_parallel_size = tensor_parallel_size
config = AutoConfig.from_pretrained(model_name)
self.num_layers = config.num_hidden_layers
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_size = config.hidden_size // self.num_heads
self.ffn_size = config.ffn_dim
self.embedding_size = config.word_embed_proj_dim
self.vocab_size = config.vocab_size
self.max_position = config.max_position_embeddings
def _get_param_size(self) -> int:
word_embedding = self.vocab_size * self.embedding_size // self.tensor_parallel_size
if self.embedding_size != self.hidden_size:
# Project in/out.
word_embedding += 2 * self.embedding_size * self.hidden_size
position_embedding = self.max_position * self.hidden_size
ln1 = 2 * self.hidden_size
q = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
k = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
v = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
out = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
mha = ln1 + q + k + v + out
ln2 = 2 * self.hidden_size
ffn1 = self.hidden_size * self.ffn_size // self.tensor_parallel_size + self.ffn_size
ffn2 = self.ffn_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
ffn = ln2 + ffn1 + ffn2
total = (word_embedding + position_embedding +
self.num_layers * (mha + ffn))
dtype_size = get_dtype_size(self.dtype)
return dtype_size * total
def _get_max_act_size(
self,
max_num_batched_tokens: int,
) -> int:
# NOTE: We approxmiately calculate the maximum activation size by
# estimating
# 1) the maximum activation tensor size during inference
# 2) the residual tensor size during inference
# Here, we assume that FlashAttention is used and
# thus the attention maps are never materialized in GPU DRAM.
residual = max_num_batched_tokens * self.hidden_size
qkv = 3 * (max_num_batched_tokens * self.hidden_size) // self.tensor_parallel_size
ffn = max_num_batched_tokens * self.ffn_size // self.tensor_parallel_size
# Double the activation size for input and output.
max_act = 2 * (max(qkv, ffn) + residual)
# Size of output logits.
output_logits = 2 * (max_num_batched_tokens * self.vocab_size)
max_act = max(max_act, output_logits)
dtype_size = get_dtype_size(self.dtype)
return dtype_size * max_act
def get_cache_block_size(self) -> int:
key_cache_block = self.block_size * self.hidden_size // self.tensor_parallel_size
value_cache_block = key_cache_block
total = self.num_layers * (key_cache_block + value_cache_block)
dtype_size = get_dtype_size(self.dtype)
return dtype_size * total
def get_max_num_gpu_blocks(
self,
max_num_batched_tokens: int,
memory_utilization: float = 0.95,
) -> int:
# NOTE(woosuk): This assumes that the machine has homogeneous GPUs.
usable_memory = int(memory_utilization * self.gpu_memory)
param_size = self._get_param_size()
act_size = self._get_max_act_size(max_num_batched_tokens)
workspace_size = self.get_workspace_size()
max_cache_size = usable_memory - (param_size + act_size + workspace_size)
if max_cache_size <= 0:
raise RuntimeError('Not enough GPU memory.')
max_num_blocks = max_cache_size // self.get_cache_block_size()
return max_num_blocks
class LlamaMemoryAnalyzer(CacheFlowMemoryAnalyzer):
def __init__(
self,
model_name: str,
block_size: int,
dtype: torch.dtype,
gpu_memory: int,
cpu_memory: int,
tensor_parallel_size: int,
) -> None:
self.model_name = model_name
self.block_size = block_size
self.dtype = dtype
self.gpu_memory = gpu_memory
self.cpu_memory = cpu_memory
self.tensor_parallel_size = tensor_parallel_size
config = AutoConfig.from_pretrained(model_name)
self.num_layers = config.num_hidden_layers
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_size = config.hidden_size // self.num_heads
self.ffn_size = config.intermediate_size
self.vocab_size = config.vocab_size
self.max_position = 8192
def _get_param_size(self) -> int:
word_embedding = self.vocab_size * self.hidden_size // self.tensor_parallel_size
position_embedding = self.max_position * self.hidden_size
# NOTE: LLaMA does not have bias terms.
ln1 = self.hidden_size
q = self.hidden_size * self.hidden_size // self.tensor_parallel_size
k = self.hidden_size * self.hidden_size // self.tensor_parallel_size
v = self.hidden_size * self.hidden_size // self.tensor_parallel_size
out = self.hidden_size * self.hidden_size // self.tensor_parallel_size
# Rotary embedding.
# TODO(woosuk): Share the rotary embedding between layers.
rot = self.max_position * self.head_size
mha = ln1 + q + k + v + out + rot
ln2 = self.hidden_size
gate = self.hidden_size * self.ffn_size // self.tensor_parallel_size
down = self.ffn_size * self.hidden_size // self.tensor_parallel_size
up = self.hidden_size * self.ffn_size // self.tensor_parallel_size
ffn = ln2 + gate + down + up
total = (word_embedding + position_embedding + self.num_layers * (mha + ffn))
dtype_size = get_dtype_size(self.dtype)
return dtype_size * total
def _get_max_act_size(
self,
max_num_batched_tokens: int,
) -> int:
# NOTE: We approxmiately calculate the maximum activation size by
# estimating
# 1) the maximum activation tensor size during inference
# 2) the residual tensor size during inference
# Here, we assume that FlashAttention is used and
# thus the attention maps are never materialized in GPU DRAM.
residual = max_num_batched_tokens * self.hidden_size
qkv = 3 * (max_num_batched_tokens * self.hidden_size) // self.tensor_parallel_size
ffn = 2 * (max_num_batched_tokens * self.ffn_size) // self.tensor_parallel_size
# Double the activation size for input and output.
max_act = 2 * (max(qkv, ffn) + residual)
# Size of output logits.
output_logits = 2 * (max_num_batched_tokens * self.vocab_size)
max_act = max(max_act, output_logits)
dtype_size = get_dtype_size(self.dtype)
return dtype_size * max_act
def get_cache_block_size(self) -> int:
key_cache_block = self.block_size * self.hidden_size // self.tensor_parallel_size
value_cache_block = key_cache_block
total = self.num_layers * (key_cache_block + value_cache_block)
dtype_size = get_dtype_size(self.dtype)
return dtype_size * total
def get_max_num_gpu_blocks(
self,
max_num_batched_tokens: int,
memory_utilization: float = 0.95,
) -> int:
# NOTE(woosuk): This assumes that the machine has homogeneous GPUs.
gpu_memory = self.gpu_memory
usable_memory = int(memory_utilization * gpu_memory)
param_size = self._get_param_size()
act_size = self._get_max_act_size(max_num_batched_tokens)
workspace_size = self.get_workspace_size()
max_cache_size = usable_memory - (param_size + act_size + workspace_size)
if max_cache_size <= 0:
raise RuntimeError('Not enough GPU memory.')
max_num_blocks = max_cache_size // self.get_cache_block_size()
return max_num_blocks

View File

@ -1,72 +0,0 @@
from typing import Union
import numpy as np
import torch
import torch.nn as nn
from transformers import AutoConfig
from cacheflow.models.memory_analyzer import CacheFlowMemoryAnalyzer
from cacheflow.models.memory_analyzer import LlamaMemoryAnalyzer
from cacheflow.models.memory_analyzer import OPTMemoryAnalyzer
from cacheflow.models.llama import LlamaForCausalLM
from cacheflow.models.opt import OPTForCausalLM
from cacheflow.models.utils import get_torch_dtype
_MODELS = {
'llama': LlamaForCausalLM,
'opt': OPTForCausalLM,
}
_MEMORY_ANALYZERS = {
'llama': LlamaMemoryAnalyzer,
'opt': OPTMemoryAnalyzer,
}
def get_model(
model_name: str,
dtype: Union[torch.dtype, str],
path: str,
use_dummy_weights: bool,
) -> nn.Module:
torch_dtype = get_torch_dtype(dtype)
torch.set_default_dtype(torch_dtype)
config = AutoConfig.from_pretrained(model_name)
for model_class_name, model_class in _MODELS.items():
if model_class_name in model_name:
if use_dummy_weights:
# Create a model instance.
# The weights will be initialized as empty tensors.
model = model_class(config)
model = model.cuda()
# NOTE(woosuk): For precise performance evaluation, we assign
# random values to the weights.
model.initialize_dummy_weights()
else:
# Download model weights if it's not cached.
weights_dir = model_class.get_weights(model_name, path=path)
# Create a model instance.
model = model_class(config)
# Load the weights from the cached or downloaded files.
model.load_weights(weights_dir)
model = model.cuda()
return model.eval(), torch_dtype
raise ValueError(f'Unsupported model name: {model_name}')
def get_memory_analyzer(
model_name: str,
block_size: int,
dtype: Union[torch.dtype, str],
gpu_memory: int,
cpu_memory: int,
tensor_parallel_size: int = 1,
) -> CacheFlowMemoryAnalyzer:
torch_dtype = get_torch_dtype(dtype)
for model_class, memory_analyzer in _MEMORY_ANALYZERS.items():
if model_class in model_name:
return memory_analyzer(
model_name, block_size, torch_dtype, gpu_memory, cpu_memory,
tensor_parallel_size)
raise ValueError(f'Unsupported model name: {model_name}')

View File

@ -1,330 +0,0 @@
"""1D OPT model compatible with HuggingFace weights."""
import os
import glob
import filelock
from tqdm import tqdm
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
from torch import nn
from transformers import OPTConfig
from huggingface_hub import snapshot_download
from cacheflow.models import InputMetadata
from cacheflow.models.attention import OPTCacheFlowAttention
from cacheflow.models.sample import Sampler
from cacheflow.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from cacheflow.parallel_utils.tensor_parallel import (VocabParallelEmbedding,
ColumnParallelLinear,
RowParallelLinear)
from cacheflow.sequence import SequenceOutputs
KVCache = Tuple[torch.Tensor, torch.Tensor]
class OPTLearnedPositionalEmbedding(nn.Embedding):
def __init__(self, num_embeddings: int, embedding_dim: int):
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, positions: torch.LongTensor):
return super().forward(positions + self.offset)
class OPTAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
bias: bool = True,
) -> None:
super().__init__()
self.embed_dim = embed_dim
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
total_num_heads = num_heads
assert num_heads % tensor_model_parallel_world_size == 0
self.num_heads = total_num_heads // tensor_model_parallel_world_size
self.head_dim = embed_dim // total_num_heads
self.scaling = self.head_dim ** -0.5
self.qkv_proj = ColumnParallelLinear(embed_dim, 3 * embed_dim, bias=bias,
gather_output=False,
perform_initialization=False)
self.out_proj = RowParallelLinear(embed_dim, embed_dim, bias=bias,
input_is_parallel=True,
perform_initialization=False)
self.attn = OPTCacheFlowAttention(scale=self.scaling)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
key_cache, value_cache = kv_cache
attn_output = self.attn(
q, k, v, key_cache, value_cache, input_metadata, cache_event)
output, _ = self.out_proj(attn_output)
return output
class OPTDecoderLayer(nn.Module):
def __init__(self, config: OPTConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.self_attn = OPTAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
bias=config.enable_bias,
)
self.do_layer_norm_before = config.do_layer_norm_before
assert config.activation_function == 'relu'
self.activation_fn = nn.ReLU()
self.self_attn_layer_norm = nn.LayerNorm(
self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
self.fc1 = ColumnParallelLinear(self.embed_dim, config.ffn_dim,
bias=config.enable_bias,
gather_output=False,
perform_initialization=False)
self.fc2 = RowParallelLinear(config.ffn_dim, self.embed_dim,
bias=config.enable_bias,
input_is_parallel=True,
perform_initialization=False)
self.final_layer_norm = nn.LayerNorm(
self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
# Self Attention
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states = self.self_attn(
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states
class OPTDecoder(nn.Module):
def __init__(self, config: OPTConfig):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
config.word_embed_proj_dim,
perform_initialization=False)
# Positional embeddings are replicated (not sharded).
self.embed_positions = OPTLearnedPositionalEmbedding(
config.max_position_embeddings, config.hidden_size)
# Project out & in will be replicated if they exist.
if config.word_embed_proj_dim != config.hidden_size:
self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
else:
self.project_out = None
if config.word_embed_proj_dim != config.hidden_size:
self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
else:
self.project_in = None
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if config.do_layer_norm_before and not config._remove_final_layer_norm:
self.final_layer_norm = nn.LayerNorm(
config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
)
else:
self.final_layer_norm = None
self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.LongTensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
inputs_embeds = self.embed_tokens(input_ids)
pos_embeds = self.embed_positions(positions)
if self.project_in is not None:
inputs_embeds = self.project_in(inputs_embeds)
hidden_states = inputs_embeds + pos_embeds
for i in range(len(self.layers)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.layers[i]
hidden_states = layer(
hidden_states, kv_caches[i], input_metadata, cache_event)
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
if self.project_out is not None:
hidden_states = self.project_out(hidden_states)
return hidden_states
class OPTModel(nn.Module):
def __init__(self, config: OPTConfig):
super().__init__()
self.decoder = OPTDecoder(config)
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.LongTensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
return self.decoder(
input_ids, positions, kv_caches, input_metadata, cache_events)
class OPTForCausalLM(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.model = OPTModel(config)
# TODO(zhuohan): create a new weight after implementing pipeline
# parallelism
self.lm_head_weight = self.model.decoder.embed_tokens.weight
self.sampler = Sampler()
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.LongTensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> Dict[int, SequenceOutputs]:
hidden_states = self.model(
input_ids, positions, kv_caches, input_metadata, cache_events)
next_tokens = self.sampler(
self.lm_head_weight, hidden_states, input_metadata)
return next_tokens
_column_parallel_weights = ["embed_tokens.weight", "fc1.weight", "fc1.bias"]
_row_parallel_weights = ["out_proj.weight", "fc2.weight"]
def load_weights(self, weights_path: str):
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, param in state_dict.items():
if "lm_head_weight" in name:
continue
if "qkv_proj" in name:
shard_size = param.shape[0] // 3
weights_to_concat = []
for weight_name in ["q_proj", "k_proj", "v_proj"]:
weight = np.load(os.path.join(
weights_path, name.replace("qkv_proj", weight_name)))
weights_to_concat.append(weight[
shard_size * tensor_model_parallel_rank
:shard_size * (tensor_model_parallel_rank + 1)])
loaded_weight = torch.from_numpy(
np.concatenate(weights_to_concat, axis=0))
else:
loaded_weight = torch.from_numpy(
np.load(os.path.join(weights_path, name)))
for p in self._column_parallel_weights:
if p in name:
shard_size = param.shape[0]
loaded_weight = loaded_weight[
shard_size * tensor_model_parallel_rank
:shard_size * (tensor_model_parallel_rank + 1)]
break
for p in self._row_parallel_weights:
if p in name:
shard_size = param.shape[1]
loaded_weight = loaded_weight[
:,
shard_size * tensor_model_parallel_rank
:shard_size * (tensor_model_parallel_rank + 1)]
break
assert param.shape == loaded_weight.shape
param.data.copy_(loaded_weight)
@staticmethod
def get_weights(model_name: str, path: str):
path = os.path.join(path, f"{model_name}-np")
path = os.path.abspath(os.path.expanduser(path))
os.makedirs(path, exist_ok=True)
lock_path = os.path.join(path, "file_lock")
lock = filelock.FileLock(lock_path)
with lock:
test_weight_path = os.path.join(
path, "model.decoder.embed_positions.weight")
if os.path.exists(test_weight_path):
return path
folder = snapshot_download(model_name, allow_patterns="*.bin",
cache_dir=os.path.join(path, "cache"))
bin_files = glob.glob(os.path.join(folder, "*.bin"))
for bin_file in tqdm(bin_files, desc="Convert format"):
state = torch.load(bin_file, map_location="cpu")
for name, param in tqdm(state.items(), leave=False):
if name.startswith("decoder."):
name = "model." + name
param_path = os.path.join(path, name)
with open(param_path, "wb") as f:
np.save(f, param.cpu().detach().numpy())
return path
def initialize_dummy_weights(self) -> None:
for param in self.state_dict().values():
param.data.uniform_(-0.1, 0.1)

View File

@ -1,287 +0,0 @@
from typing import Dict, List, Tuple
import torch
import torch.nn as nn
from cacheflow.models import InputMetadata
from cacheflow.sampling_params import SamplingParams
from cacheflow.sequence import SequenceOutputs
from cacheflow.parallel_utils.tensor_parallel import gather_from_tensor_model_parallel_region
class Sampler(nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(
self,
embedding: torch.Tensor,
hidden_states: torch.Tensor,
input_metadata: InputMetadata,
) -> Dict[int, SequenceOutputs]:
# Get the hidden states that we use for sampling.
hidden_states = _prune_hidden_states(hidden_states, input_metadata)
# Get the logits for the next tokens.
logits = torch.matmul(hidden_states, embedding.t())
logits = gather_from_tensor_model_parallel_region(logits)
# Apply temperature scaling.
temperatures = _get_temperatures(input_metadata)
assert len(temperatures) == logits.shape[0]
if any(t != 1.0 for t in temperatures):
t = torch.tensor(
temperatures, dtype=logits.dtype, device=logits.device)
# Use in-place division to avoid creating a new tensor.
logits.div_(t.unsqueeze(dim=1))
# We use float32 for probabilities and log probabilities.
# Compute the probabilities.
probs = torch.softmax(logits, dim=-1, dtype=torch.float)
# Compute the log probabilities (before applying top-p).
logprobs = torch.log(probs)
# Apply top-p truncation.
top_ps = _get_top_ps(input_metadata)
assert len(top_ps) == probs.shape[0]
if any(p < 1.0 for p in top_ps):
p = torch.tensor(top_ps, dtype=probs.dtype, device=probs.device)
probs = _apply_top_p(probs, p)
# Sample the next tokens.
return _sample(probs, logprobs, input_metadata)
def _prune_hidden_states(
hidden_states: torch.Tensor,
input_metadata: InputMetadata,
) -> torch.Tensor:
start_idx = 0
last_token_indicies: List[int] = []
for prompt_len in input_metadata.prompt_lens:
last_token_indicies.append(start_idx + prompt_len - 1)
start_idx += prompt_len
last_token_indicies.extend(
range(start_idx, start_idx + input_metadata.num_generation_tokens))
return hidden_states[last_token_indicies]
def _get_temperatures(
input_metadata: InputMetadata,
) -> List[float]:
# Collect the temperatures for the logits.
temperatures: List[float] = []
for i, seq_group in enumerate(input_metadata.seq_groups):
seq_ids, sampling_params = seq_group
temperature = sampling_params.temperature
if temperature == 0.0:
# NOTE: Zero temperature means deterministic sampling
# (i.e., greedy sampling or beam search).
# Set the temperature to 1 to avoid division by zero.
temperature = 1.0
if i < input_metadata.num_prompts:
# A prompt input.
temperatures.append(temperature)
else:
# A generation token.
temperatures += [temperature] * len(seq_ids)
return temperatures
def _get_top_ps(
input_metadata: InputMetadata,
) -> List[float]:
top_ps: List[float] = []
for i, seq_group in enumerate(input_metadata.seq_groups):
seq_ids, sampling_params = seq_group
if i < input_metadata.num_prompts:
# A prompt input.
top_ps.append(sampling_params.top_p)
else:
# A generation token.
top_ps += [sampling_params.top_p] * len(seq_ids)
return top_ps
def _apply_top_p(
probs: torch.Tensor,
p: torch.Tensor,
) -> torch.Tensor:
# TODO(woosuk): Optimize.
probs_sort, probs_idx = probs.sort(dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = (probs_sum - probs_sort) > p.unsqueeze(dim=1)
probs_sort[mask] = 0.0
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
probs = torch.gather(
probs_sort, dim=-1, index=torch.argsort(probs_idx, dim=-1))
return probs
def _get_topk_logprobs(
logprobs: torch.Tensor,
num_logprobs: int,
) -> Dict[int, float]:
if num_logprobs == 0:
return {}
topk_logprobs, topk_ids = torch.topk(logprobs, num_logprobs)
if num_logprobs == 1:
topk_logprobs = [topk_logprobs.item()]
topk_ids = [topk_ids.item()]
else:
topk_logprobs = topk_logprobs.tolist()
topk_ids = topk_ids.tolist()
token_to_logprob: Dict[int, float] = {}
for token_id, logprob in zip(topk_ids, topk_logprobs):
token_to_logprob[token_id] = logprob
return token_to_logprob
def _sample_from_prompt(
prob: torch.Tensor,
sampling_params: SamplingParams,
) -> List[int]:
if sampling_params.use_beam_search:
# Beam search.
beam_width = sampling_params.n
_, next_token_ids = torch.topk(prob, beam_width)
next_token_ids = next_token_ids.tolist()
elif sampling_params.temperature == 0.0:
# Greedy sampling.
assert sampling_params.n == 1
next_token_id = torch.argmax(prob)
next_token_ids = [next_token_id.item()]
else:
# Neucleus sampling.
# Sample n tokens for the prompt.
n = sampling_params.n
next_token_ids = torch.multinomial(
prob, num_samples=n, replacement=True)
next_token_ids = next_token_ids.tolist()
return next_token_ids
def _sample_from_generation_tokens(
seq_ids: List[int],
probs: torch.Tensor,
logprobs: torch.Tensor,
seq_logprobs: List[float],
sampling_params: SamplingParams,
) -> Tuple[List[int], List[int]]:
# NOTE(woosuk): sampling_params.n can be greater than
# len(seq_ids) because some sequences in the group might have
# been already terminated.
if sampling_params.use_beam_search:
# Beam search.
# Add cumulative logprobs for the sequences in the group.
seq_logprobs = torch.tensor(
seq_logprobs, dtype=torch.float, device=logprobs.device)
logprobs = logprobs + seq_logprobs.unsqueeze(dim=1)
vocab_size = logprobs.size(-1)
beam_width = len(seq_ids)
_, topk_ids = torch.topk(logprobs.flatten(), beam_width)
topk_ids = topk_ids.tolist()
seq_idx = [i // vocab_size for i in topk_ids]
beam_seq_ids = [seq_ids[i] for i in seq_idx]
token_ids = [i % vocab_size for i in topk_ids]
beam_outputs: Dict[int, Tuple[int, int]] = {}
outstanding_beams: List[Tuple[int, int]] = []
# If a beam survives, continue with it.
for seq_id, token_id in zip(beam_seq_ids, token_ids):
if seq_id not in beam_outputs:
beam_outputs[seq_id] = (seq_id, token_id)
else:
outstanding_beams.append((seq_id, token_id))
# If a beam is discarded, fork another beam.
for seq_id in seq_ids:
if seq_id not in beam_outputs:
beam_outputs[seq_id] = outstanding_beams.pop()
assert not outstanding_beams
parent_seq_ids = [beam_outputs[seq_id][0] for seq_id in seq_ids]
next_token_ids = [beam_outputs[seq_id][1] for seq_id in seq_ids]
elif sampling_params.temperature == 0.0:
# Greedy sampling.
assert len(seq_ids) == 1
next_token_id = torch.argmax(probs, dim=-1)
next_token_ids = [next_token_id.item()]
parent_seq_ids = seq_ids
else:
# Neucleus sampling.
# Sample 1 token for each sequence in the group.
next_token_ids = torch.multinomial(
probs, num_samples=1, replacement=True)
next_token_ids = next_token_ids.squeeze(dim=-1).tolist()
parent_seq_ids = seq_ids
return parent_seq_ids, next_token_ids
def _sample(
probs: torch.Tensor,
logprobs: torch.Tensor,
input_metadata: InputMetadata,
) -> Dict[int, SequenceOutputs]:
seq_outputs: Dict[int, SequenceOutputs] = {}
# TODO(woosuk): Optimize.
idx = 0
for i, seq_group in enumerate(input_metadata.seq_groups):
seq_ids, sampling_params = seq_group
if i < input_metadata.num_prompts:
# Generate the next tokens for a prompt input.
assert len(seq_ids) == sampling_params.n
prob = probs[idx]
logprob = logprobs[idx]
idx += 1
# Sample the next tokens.
next_token_ids = _sample_from_prompt(prob, sampling_params)
# Get top-k log probabilities for the next tokens.
next_logprobs = _get_topk_logprobs(
logprob, sampling_params.num_logprobs)
# Build the output.
for seq_id, next_token_id in zip(seq_ids, next_token_ids):
output_logprobs = next_logprobs.copy()
output_logprobs[next_token_id] = logprob[next_token_id].item()
seq_outputs[seq_id] = SequenceOutputs(
seq_id, seq_id, next_token_id, output_logprobs)
else:
# Generate the next tokens for generation tokens.
prob = probs[idx:idx + len(seq_ids)]
logprob = logprobs[idx:idx + len(seq_ids)]
idx += len(seq_ids)
# Sample the next tokens.
seq_logprobs = [
input_metadata.seq_logprobs[seq_id] for seq_id in seq_ids]
parent_seq_ids, next_token_ids = _sample_from_generation_tokens(
seq_ids, prob, logprob, seq_logprobs, sampling_params)
# Get top-k log probabilities for the next tokens.
next_logprobs: Dict[int, Dict[int, float]] = {}
for i, seq_id in enumerate(seq_ids):
next_logprobs[seq_id] = _get_topk_logprobs(
logprob[i], sampling_params.num_logprobs)
# Build the output.
for seq_id, parent_seq_id, next_token_id in zip(
seq_ids, parent_seq_ids, next_token_ids):
i = seq_ids.index(parent_seq_id)
output_logprobs = next_logprobs[parent_seq_id].copy()
output_logprobs[next_token_id] = logprob[i, next_token_id].item()
seq_outputs[seq_id] = SequenceOutputs(
seq_id,
parent_seq_id,
next_token_id,
output_logprobs,
)
return seq_outputs

View File

@ -1,24 +0,0 @@
from typing import Union
import torch
_STR_DTYPE_TO_TORCH_DTYPE = {
'half': torch.half,
'float': torch.float,
'float16': torch.float16,
'float32': torch.float32,
}
def get_torch_dtype(dtype: Union[torch.dtype, str]) -> torch.dtype:
if isinstance(dtype, str):
torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype.lower()]
else:
torch_dtype = dtype
return torch_dtype
def get_dtype_size(dtype: Union[torch.dtype, str]) -> int:
torch_dtype = get_torch_dtype(dtype)
return torch.tensor([], dtype=torch_dtype).element_size()

View File

@ -1 +0,0 @@
The files in this folder are ported from [Megatron-LM](https://github.com/NVIDIA/Megatron-LM/tree/main/megatron/core). We only keep the codes that are used in inference.

View File

@ -1,12 +0,0 @@
import cacheflow.parallel_utils.parallel_state
import cacheflow.parallel_utils.tensor_parallel
import cacheflow.parallel_utils.utils
# Alias parallel_state as mpu, its legacy name
mpu = parallel_state
__all__ = [
"parallel_state",
"tensor_parallel",
"utils",
]

View File

@ -1,593 +0,0 @@
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Model and data parallel groups."""
import torch
from typing import Optional
from .utils import GlobalMemoryBuffer
# Intra-layer model parallel group that the current rank belongs to.
_TENSOR_MODEL_PARALLEL_GROUP = None
# Inter-layer model parallel group that the current rank belongs to.
_PIPELINE_MODEL_PARALLEL_GROUP = None
# Model parallel group (both intra- and pipeline) that the current rank belongs to.
_MODEL_PARALLEL_GROUP = None
# Embedding group.
_EMBEDDING_GROUP = None
# Position embedding group.
_POSITION_EMBEDDING_GROUP = None
# Data parallel group that the current rank belongs to.
_DATA_PARALLEL_GROUP = None
_VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None
_VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
_PIPELINE_MODEL_PARALLEL_SPLIT_RANK = None
# These values enable us to change the mpu sizes on the fly.
_MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_TENSOR_MODEL_PARALLEL_RANK = None
_MPU_PIPELINE_MODEL_PARALLEL_RANK = None
# A list of ranks that have a copy of the embedding.
_EMBEDDING_GLOBAL_RANKS = None
# A list of ranks that have a copy of the position embedding.
_POSITION_EMBEDDING_GLOBAL_RANKS = None
# A list of global ranks for each pipeline group to ease calculation of the source
# rank when broadcasting from the first or last pipeline stage.
_PIPELINE_GLOBAL_RANKS = None
# A list of global ranks for each data parallel group to ease calculation of the source
# rank when broadcasting weights from src to all other data parallel ranks
_DATA_PARALLEL_GLOBAL_RANKS = None
# Memory buffers to avoid dynamic memory allocation
_GLOBAL_MEMORY_BUFFER = None
_ALL_REDUCE_LAUNCHER: Optional['GraphAllReduce'] = None
def initialize_model_parallel(
tensor_model_parallel_size: int = 1,
pipeline_model_parallel_size: int = 1,
virtual_pipeline_model_parallel_size: Optional[int] = None,
pipeline_model_parallel_split_rank: Optional[int] = None,
) -> None:
"""
Initialize model data parallel groups.
Arguments:
tensor_model_parallel_size: number of GPUs used for tensor model parallelism.
pipeline_model_parallel_size: number of GPUs used for pipeline model parallelism.
virtual_pipeline_model_parallel_size: number of virtual stages (interleaved
pipeline).
pipeline_model_parallel_split_rank: for models with both encoder and decoder,
rank in pipeline with split point.
Let's say we have a total of 16 GPUs denoted by g0 ... g15 and we
use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize
the model pipeline. The present function will
create 8 tensor model-parallel groups, 4 pipeline model-parallel groups
and 8 data-parallel groups as:
8 data_parallel groups:
[g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15]
8 tensor model-parallel groups:
[g0, g1], [g2, g3], [g4, g5], [g6, g7], [g8, g9], [g10, g11], [g12, g13], [g14, g15]
4 pipeline model-parallel groups:
[g0, g4, g8, g12], [g1, g5, g9, g13], [g2, g6, g10, g14], [g3, g7, g11, g15]
Note that for efficiency, the caller should make sure adjacent ranks
are on the same DGX box. For example if we are using 2 DGX-1 boxes
with a total of 16 GPUs, rank 0 to 7 belong to the first box and
ranks 8 to 15 belong to the second box.
"""
# Get world size and rank. Ensure some consistencies.
assert torch.distributed.is_initialized()
world_size: int = torch.distributed.get_world_size()
if world_size % (tensor_model_parallel_size * pipeline_model_parallel_size) != 0:
raise RuntimeError(
f"world_size ({world_size}) is not divisible by tensor_model_parallel_size "
f"({tensor_model_parallel_size}) x pipeline_model_parallel_size ({pipeline_model_parallel_size})"
)
data_parallel_size: int = world_size // (tensor_model_parallel_size *
pipeline_model_parallel_size)
num_tensor_model_parallel_groups: int = world_size // tensor_model_parallel_size
num_pipeline_model_parallel_groups: int = world_size // pipeline_model_parallel_size
num_data_parallel_groups: int = world_size // data_parallel_size
if virtual_pipeline_model_parallel_size is not None:
if not pipeline_model_parallel_size > 2:
raise RuntimeError("pipeline-model-parallel size should be greater than 2 with "
"interleaved schedule")
global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
_VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = 0
_VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = virtual_pipeline_model_parallel_size
if pipeline_model_parallel_split_rank is not None:
global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
_PIPELINE_MODEL_PARALLEL_SPLIT_RANK = pipeline_model_parallel_split_rank
rank = torch.distributed.get_rank()
# Build the data-parallel groups.
global _DATA_PARALLEL_GROUP
global _DATA_PARALLEL_GLOBAL_RANKS
assert _DATA_PARALLEL_GROUP is None, 'data parallel group is already initialized'
all_data_parallel_group_ranks = []
for i in range(pipeline_model_parallel_size):
start_rank = i * num_pipeline_model_parallel_groups
end_rank = (i + 1) * num_pipeline_model_parallel_groups
for j in range(tensor_model_parallel_size):
ranks = range(start_rank + j, end_rank, tensor_model_parallel_size)
all_data_parallel_group_ranks.append(list(ranks))
group = torch.distributed.new_group(ranks)
if rank in ranks:
_DATA_PARALLEL_GROUP = group
_DATA_PARALLEL_GLOBAL_RANKS = ranks
# Build the model-parallel groups.
global _MODEL_PARALLEL_GROUP
assert _MODEL_PARALLEL_GROUP is None, 'model parallel group is already initialized'
for i in range(data_parallel_size):
ranks = [data_parallel_group_ranks[i]
for data_parallel_group_ranks in all_data_parallel_group_ranks]
group = torch.distributed.new_group(ranks)
if rank in ranks:
_MODEL_PARALLEL_GROUP = group
# Build the tensor model-parallel groups.
global _TENSOR_MODEL_PARALLEL_GROUP
assert _TENSOR_MODEL_PARALLEL_GROUP is None, \
'tensor model parallel group is already initialized'
for i in range(num_tensor_model_parallel_groups):
ranks = range(i * tensor_model_parallel_size,
(i + 1) * tensor_model_parallel_size)
group = torch.distributed.new_group(ranks)
if rank in ranks:
_TENSOR_MODEL_PARALLEL_GROUP = group
# Build the pipeline model-parallel groups and embedding groups
# (first and last rank in each pipeline model-parallel group).
global _PIPELINE_MODEL_PARALLEL_GROUP
global _PIPELINE_GLOBAL_RANKS
assert _PIPELINE_MODEL_PARALLEL_GROUP is None, \
'pipeline model parallel group is already initialized'
global _EMBEDDING_GROUP
global _EMBEDDING_GLOBAL_RANKS
assert _EMBEDDING_GROUP is None, 'embedding group is already initialized'
global _POSITION_EMBEDDING_GROUP
global _POSITION_EMBEDDING_GLOBAL_RANKS
assert _POSITION_EMBEDDING_GROUP is None, \
'position embedding group is already initialized'
for i in range(num_pipeline_model_parallel_groups):
ranks = range(i, world_size, num_pipeline_model_parallel_groups)
group = torch.distributed.new_group(ranks)
if rank in ranks:
_PIPELINE_MODEL_PARALLEL_GROUP = group
_PIPELINE_GLOBAL_RANKS = ranks
# Setup embedding group (to exchange gradients between
# first and last stages).
if len(ranks) > 1:
embedding_ranks = [ranks[0], ranks[-1]]
position_embedding_ranks = [ranks[0]]
if pipeline_model_parallel_split_rank is not None:
if ranks[pipeline_model_parallel_split_rank] not in embedding_ranks:
embedding_ranks = [ranks[0],
ranks[pipeline_model_parallel_split_rank],
ranks[-1]]
if ranks[pipeline_model_parallel_split_rank] not in position_embedding_ranks:
position_embedding_ranks = [ranks[0],
ranks[pipeline_model_parallel_split_rank]]
else:
embedding_ranks = ranks
position_embedding_ranks = ranks
group = torch.distributed.new_group(embedding_ranks)
if rank in embedding_ranks:
_EMBEDDING_GROUP = group
if rank in ranks:
_EMBEDDING_GLOBAL_RANKS = embedding_ranks
group = torch.distributed.new_group(position_embedding_ranks)
if rank in position_embedding_ranks:
_POSITION_EMBEDDING_GROUP = group
if rank in ranks:
_POSITION_EMBEDDING_GLOBAL_RANKS = position_embedding_ranks
# Initialize global memory buffer
# This isn't really "parallel state" but there isn't another good place to
# put this. If we end up with a more generic initialization of megatron-core
# we could stick it there
_set_global_memory_buffer()
def initialize_all_reduce_launcher(
max_num_tokens: int,
hidden_size: int,
dtype: torch.dtype,
disable_graph: bool = False,
) -> None:
global _ALL_REDUCE_LAUNCHER
_ALL_REDUCE_LAUNCHER = GraphAllReduce(
max_num_tokens=max_num_tokens,
hidden_size=hidden_size,
dtype=dtype,
disable_graph=disable_graph,
)
def model_parallel_is_initialized():
"""Check if model and data parallel groups are initialized."""
if _TENSOR_MODEL_PARALLEL_GROUP is None or \
_PIPELINE_MODEL_PARALLEL_GROUP is None or \
_DATA_PARALLEL_GROUP is None:
return False
return True
def get_model_parallel_group():
"""Get the model parallel group the caller rank belongs to."""
assert _MODEL_PARALLEL_GROUP is not None, \
'model parallel group is not initialized'
return _MODEL_PARALLEL_GROUP
def get_tensor_model_parallel_group():
"""Get the tensor model parallel group the caller rank belongs to."""
assert _TENSOR_MODEL_PARALLEL_GROUP is not None, \
'intra_layer_model parallel group is not initialized'
return _TENSOR_MODEL_PARALLEL_GROUP
def get_pipeline_model_parallel_group():
"""Get the pipeline model parallel group the caller rank belongs to."""
assert _PIPELINE_MODEL_PARALLEL_GROUP is not None, \
'pipeline_model parallel group is not initialized'
return _PIPELINE_MODEL_PARALLEL_GROUP
def get_data_parallel_group():
"""Get the data parallel group the caller rank belongs to."""
assert _DATA_PARALLEL_GROUP is not None, \
'data parallel group is not initialized'
return _DATA_PARALLEL_GROUP
def get_embedding_group():
"""Get the embedding group the caller rank belongs to."""
assert _EMBEDDING_GROUP is not None, \
'embedding group is not initialized'
return _EMBEDDING_GROUP
def get_position_embedding_group():
"""Get the position embedding group the caller rank belongs to."""
assert _POSITION_EMBEDDING_GROUP is not None, \
'position embedding group is not initialized'
return _POSITION_EMBEDDING_GROUP
def set_tensor_model_parallel_world_size(world_size):
"""Set the tensor model parallel size"""
global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
_MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = world_size
def set_pipeline_model_parallel_world_size(world_size):
"""Set the pipeline model parallel size"""
global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
_MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = world_size
def get_tensor_model_parallel_world_size():
"""Return world size for the tensor model parallel group."""
global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
if _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE is not None:
return _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
return torch.distributed.get_world_size(group=get_tensor_model_parallel_group())
def get_pipeline_model_parallel_world_size():
"""Return world size for the pipeline model parallel group."""
global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
if _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE is not None:
return _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
return torch.distributed.get_world_size(group=get_pipeline_model_parallel_group())
def set_tensor_model_parallel_rank(rank):
"""Set tensor model parallel rank."""
global _MPU_TENSOR_MODEL_PARALLEL_RANK
_MPU_TENSOR_MODEL_PARALLEL_RANK = rank
def set_pipeline_model_parallel_rank(rank):
"""Set pipeline model parallel rank."""
global _MPU_PIPELINE_MODEL_PARALLEL_RANK
_MPU_PIPELINE_MODEL_PARALLEL_RANK = rank
def set_pipeline_model_parallel_split_rank(rank):
"""Set pipeline model parallel split rank."""
global _MPU_PIPELINE_MODEL_PARALLEL_SPLIT_RANK
_MPU_PIPELINE_MODEL_PARALLEL_SPLIT_RANK = rank
def get_tensor_model_parallel_rank():
"""Return my rank for the tensor model parallel group."""
global _MPU_TENSOR_MODEL_PARALLEL_RANK
if _MPU_TENSOR_MODEL_PARALLEL_RANK is not None:
return _MPU_TENSOR_MODEL_PARALLEL_RANK
return torch.distributed.get_rank(group=get_tensor_model_parallel_group())
def get_pipeline_model_parallel_rank():
"""Return my rank for the pipeline model parallel group."""
global _MPU_PIPELINE_MODEL_PARALLEL_RANK
if _MPU_PIPELINE_MODEL_PARALLEL_RANK is not None:
return _MPU_PIPELINE_MODEL_PARALLEL_RANK
return torch.distributed.get_rank(group=get_pipeline_model_parallel_group())
def is_pipeline_first_stage(ignore_virtual=False):
"""Return True if in the first pipeline model-parallel stage, False otherwise."""
if not ignore_virtual:
if get_virtual_pipeline_model_parallel_world_size() is not None and \
get_virtual_pipeline_model_parallel_rank() != 0:
return False
return get_pipeline_model_parallel_rank() == 0
def is_pipeline_last_stage(ignore_virtual=False):
"""Return True if in the last pipeline model-parallel stage, False otherwise."""
if not ignore_virtual:
virtual_pipeline_model_parallel_world_size = \
get_virtual_pipeline_model_parallel_world_size()
if virtual_pipeline_model_parallel_world_size is not None and \
get_virtual_pipeline_model_parallel_rank() != (
virtual_pipeline_model_parallel_world_size - 1):
return False
return get_pipeline_model_parallel_rank() == (
get_pipeline_model_parallel_world_size() - 1)
def is_rank_in_embedding_group(ignore_virtual=False):
"""Return true if current rank is in embedding group, False otherwise."""
rank = torch.distributed.get_rank()
global _EMBEDDING_GLOBAL_RANKS
if ignore_virtual:
return rank in _EMBEDDING_GLOBAL_RANKS
if rank in _EMBEDDING_GLOBAL_RANKS:
if rank == _EMBEDDING_GLOBAL_RANKS[0]:
return is_pipeline_first_stage(ignore_virtual=False)
elif rank == _EMBEDDING_GLOBAL_RANKS[-1]:
return is_pipeline_last_stage(ignore_virtual=False)
else:
return True
return False
def is_rank_in_position_embedding_group():
"""Return true if current rank is in position embedding group, False otherwise."""
rank = torch.distributed.get_rank()
global _POSITION_EMBEDDING_GLOBAL_RANKS
return rank in _POSITION_EMBEDDING_GLOBAL_RANKS
def is_pipeline_stage_before_split(rank=None):
"""Return True if pipeline stage executes encoder block for a model
with both encoder and decoder."""
if get_pipeline_model_parallel_world_size() == 1:
return True
if rank is None:
rank = get_pipeline_model_parallel_rank()
global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
return True
if rank < _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
return True
return False
def is_pipeline_stage_after_split(rank=None):
"""Return True if pipeline stage executes decoder block for a model
with both encoder and decoder."""
if get_pipeline_model_parallel_world_size() == 1:
return True
if rank is None:
rank = get_pipeline_model_parallel_rank()
global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
return True
if rank >= _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
return True
return False
def is_pipeline_stage_at_split():
"""Return true if pipeline stage executes decoder block and next
stage executes encoder block for a model with both encoder and
decoder."""
rank = get_pipeline_model_parallel_rank()
return is_pipeline_stage_before_split(rank) and \
is_pipeline_stage_after_split(rank+1)
def get_virtual_pipeline_model_parallel_rank():
"""Return the virtual pipeline-parallel rank."""
global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
return _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
def set_virtual_pipeline_model_parallel_rank(rank):
"""Set the virtual pipeline-parallel rank."""
global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
_VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = rank
def get_virtual_pipeline_model_parallel_world_size():
"""Return the virtual pipeline-parallel world size."""
global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
return _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
def get_tensor_model_parallel_src_rank():
"""Calculate the global rank corresponding to the first local rank
in the tensor model parallel group."""
global_rank = torch.distributed.get_rank()
local_world_size = get_tensor_model_parallel_world_size()
return (global_rank // local_world_size) * local_world_size
def get_data_parallel_src_rank():
"""Calculate the global rank corresponding to the first local rank
in the data parallel group."""
assert _DATA_PARALLEL_GLOBAL_RANKS is not None, \
"Data parallel group is not initialized"
return _DATA_PARALLEL_GLOBAL_RANKS[0]
def get_pipeline_model_parallel_first_rank():
"""Return the global rank of the first process in the pipeline for the
current tensor parallel group"""
assert _PIPELINE_GLOBAL_RANKS is not None, \
"Pipeline parallel group is not initialized"
return _PIPELINE_GLOBAL_RANKS[0]
def get_pipeline_model_parallel_last_rank():
"""Return the global rank of the last process in the pipeline for the
current tensor parallel group"""
assert _PIPELINE_GLOBAL_RANKS is not None, \
"Pipeline parallel group is not initialized"
last_rank_local = get_pipeline_model_parallel_world_size() - 1
return _PIPELINE_GLOBAL_RANKS[last_rank_local]
def get_pipeline_model_parallel_next_rank():
"""Return the global rank that follows the caller in the pipeline"""
assert _PIPELINE_GLOBAL_RANKS is not None, \
"Pipeline parallel group is not initialized"
rank_in_pipeline = get_pipeline_model_parallel_rank()
world_size = get_pipeline_model_parallel_world_size()
return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline + 1) % world_size]
def get_pipeline_model_parallel_prev_rank():
"""Return the global rank that preceeds the caller in the pipeline"""
assert _PIPELINE_GLOBAL_RANKS is not None, \
"Pipeline parallel group is not initialized"
rank_in_pipeline = get_pipeline_model_parallel_rank()
world_size = get_pipeline_model_parallel_world_size()
return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline - 1) % world_size]
def get_data_parallel_world_size():
"""Return world size for the data parallel group."""
return torch.distributed.get_world_size(group=get_data_parallel_group())
def get_data_parallel_rank():
"""Return my rank for the data parallel group."""
return torch.distributed.get_rank(group=get_data_parallel_group())
def _set_global_memory_buffer():
"""Initialize global buffer"""
global _GLOBAL_MEMORY_BUFFER
assert _GLOBAL_MEMORY_BUFFER is None, 'global memory buffer is already initialized'
_GLOBAL_MEMORY_BUFFER = GlobalMemoryBuffer()
def get_global_memory_buffer():
"""Return the global GlobalMemoryBuffer object"""
assert _GLOBAL_MEMORY_BUFFER is not None, 'global memory buffer is not initialized'
return _GLOBAL_MEMORY_BUFFER
def get_all_reduce_launcher() -> 'GraphAllReduce':
assert _ALL_REDUCE_LAUNCHER is not None, 'all reduce launcher is not initialized'
return _ALL_REDUCE_LAUNCHER
def destroy_model_parallel():
"""Set the groups to none."""
global _MODEL_PARALLEL_GROUP
_MODEL_PARALLEL_GROUP = None
global _TENSOR_MODEL_PARALLEL_GROUP
_TENSOR_MODEL_PARALLEL_GROUP = None
global _PIPELINE_MODEL_PARALLEL_GROUP
_PIPELINE_MODEL_PARALLEL_GROUP = None
global _DATA_PARALLEL_GROUP
_DATA_PARALLEL_GROUP = None
global _EMBEDDING_GROUP
_EMBEDDING_GROUP = None
global _POSITION_EMBEDDING_GROUP
_POSITION_EMBEDDING_GROUP = None
global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
_VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None
global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
_VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
_MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None
global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
_MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
global _MPU_TENSOR_MODEL_PARALLEL_RANK
_MPU_TENSOR_MODEL_PARALLEL_RANK = None
global _MPU_PIPELINE_MODEL_PARALLEL_RANK
_MPU_PIPELINE_MODEL_PARALLEL_RANK = None
global _GLOBAL_MEMORY_BUFFER
_GLOBAL_MEMORY_BUFFER = None
class GraphAllReduce:
def __init__(
self,
max_num_tokens: int,
hidden_size: int,
dtype: torch.dtype,
disable_graph: bool = False,
) -> None:
self.max_num_tokens = max_num_tokens
self.hidden_size = hidden_size
self.disable_graph = disable_graph
tp_world_size = get_tensor_model_parallel_world_size()
if tp_world_size == 1:
return
self.group = get_tensor_model_parallel_group()
self.buffer = torch.empty(
size=(max_num_tokens, hidden_size),
dtype=dtype,
device='cuda',
)
# Build graphs for different number of tokens.
if not self.disable_graph:
self.graphs = {}
for num_tokens in range(8, max_num_tokens + 1, 8):
self.graphs[num_tokens] = self._build_graph(num_tokens)
def _build_graph(self, num_tokens: int) -> torch.cuda.CUDAGraph:
# Warm up.
torch.distributed.all_reduce(self.buffer[:num_tokens], group=self.group)
torch.cuda.synchronize()
# Build graph.
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph):
torch.distributed.all_reduce(
self.buffer[:num_tokens], group=self.group)
torch.cuda.synchronize()
return graph
def launch(self, x: torch.Tensor) -> torch.Tensor:
# NOTE: x must be a slice of self.buffer.
num_tokens = x.shape[0]
if self.disable_graph:
torch.distributed.all_reduce(x, group=self.group)
else:
self.graphs[num_tokens].replay()
return x

View File

@ -1,55 +0,0 @@
from .layers import (
ColumnParallelLinear,
RowParallelLinear,
VocabParallelEmbedding,
set_tensor_model_parallel_attributes,
set_defaults_if_not_set_tensor_model_parallel_attributes,
copy_tensor_model_parallel_attributes,
param_is_not_tensor_parallel_duplicate,
)
from .mappings import (
copy_to_tensor_model_parallel_region,
gather_from_tensor_model_parallel_region,
gather_from_sequence_parallel_region,
scatter_to_tensor_model_parallel_region,
scatter_to_sequence_parallel_region,
)
from .random import (
checkpoint,
get_cuda_rng_tracker,
model_parallel_cuda_manual_seed,
)
from .utils import (
split_tensor_along_last_dim,
split_tensor_into_1d_equal_chunks,
gather_split_1d_tensor,
)
__all__ = [
#layers.py
"ColumnParallelLinear",
"RowParallelLinear",
"VocabParallelEmbedding",
"set_tensor_model_parallel_attributes",
"set_defaults_if_not_set_tensor_model_parallel_attributes",
"copy_tensor_model_parallel_attributes",
"param_is_not_tensor_parallel_duplicate",
# mappings.py
"copy_to_tensor_model_parallel_region",
"gather_from_tensor_model_parallel_region",
"gather_from_sequence_parallel_region",
# "reduce_from_tensor_model_parallel_region",
"scatter_to_tensor_model_parallel_region",
"scatter_to_sequence_parallel_region",
# random.py
"checkpoint",
"get_cuda_rng_tracker",
"model_parallel_cuda_manual_seed",
# utils.py
"split_tensor_along_last_dim",
"split_tensor_into_1d_equal_chunks",
"gather_split_1d_tensor",
]

View File

@ -1,446 +0,0 @@
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Parts of the code here are adapted from PyTorch
# repo: https://github.com/pytorch/pytorch
import torch
import torch.nn.functional as F
import torch.nn.init as init
from torch.nn.parameter import Parameter
from cacheflow.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
get_all_reduce_launcher,
)
from .mappings import (
copy_to_tensor_model_parallel_region,
gather_from_tensor_model_parallel_region,
reduce_from_tensor_model_parallel_region,
scatter_to_tensor_model_parallel_region,
)
from .random import get_cuda_rng_tracker
from .utils import (
divide,
VocabUtility,
)
_MODEL_PARALLEL_ATTRIBUTE_DEFAULTS = {'tensor_model_parallel': False,
'partition_dim': -1,
'partition_stride': 1}
def param_is_not_tensor_parallel_duplicate(param):
return (hasattr(param, 'tensor_model_parallel') and
param.tensor_model_parallel) or (
get_tensor_model_parallel_rank() == 0)
def set_tensor_model_parallel_attributes(tensor, is_parallel, dim, stride):
# Make sure the attributes are not set.
for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
assert not hasattr(tensor, attribute)
# Set the attributes.
setattr(tensor, 'tensor_model_parallel', is_parallel)
setattr(tensor, 'partition_dim', dim)
setattr(tensor, 'partition_stride', stride)
def set_defaults_if_not_set_tensor_model_parallel_attributes(tensor):
def maybe_set(attribute, value):
if not hasattr(tensor, attribute):
setattr(tensor, attribute, value)
for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
maybe_set(attribute, _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS[attribute])
def copy_tensor_model_parallel_attributes(destination_tensor, source_tensor):
def maybe_copy(attribute):
if hasattr(source_tensor, attribute):
setattr(destination_tensor, attribute,
getattr(source_tensor, attribute))
for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
maybe_copy(attribute)
def _initialize_affine_weight_gpu(weight, init_method,
partition_dim, stride=1):
"""Initialize affine weight for model parallel on GPU."""
set_tensor_model_parallel_attributes(tensor=weight,
is_parallel=True,
dim=partition_dim,
stride=stride)
with get_cuda_rng_tracker().fork():
init_method(weight)
def _initialize_affine_weight_cpu(weight, output_size, input_size,
per_partition_size, partition_dim,
init_method, stride=1,
return_master_weight=False,
*, params_dtype=None):
"""Initialize affine weight for model parallel.
Build the master weight on all processes and scatter
the relevant chunk."""
set_tensor_model_parallel_attributes(tensor=weight,
is_parallel=True,
dim=partition_dim,
stride=stride)
if params_dtype is None:
params_dtype = torch.get_default_dtype()
# Initialize master weight
master_weight = torch.empty(output_size, input_size,
dtype=torch.float,
requires_grad=False)
init_method(master_weight)
master_weight = master_weight.to(dtype=params_dtype)
# Split and copy
per_partition_per_stride_size = divide(per_partition_size, stride)
weight_list = torch.split(master_weight, per_partition_per_stride_size,
dim=partition_dim)
rank = get_tensor_model_parallel_rank()
world_size = get_tensor_model_parallel_world_size()
my_weight_list = weight_list[rank::world_size]
with torch.no_grad():
torch.cat(my_weight_list, dim=partition_dim, out=weight)
if return_master_weight:
return master_weight
return None
class VocabParallelEmbedding(torch.nn.Module):
"""Embedding parallelized in the vocabulary dimension.
This is mainly adapted from torch.nn.Embedding and all the default
values are kept.
Arguments:
num_embeddings: vocabulary size.
embedding_dim: size of hidden state.
Keyword Arguments:
init_method: method to initialize weights.
params_dtype
use_cpu_initialization
perform_initialization
"""
def __init__(self, num_embeddings: int, embedding_dim: int, *,
init_method=init.xavier_normal_,
params_dtype: torch.dtype=None,
use_cpu_initialization: bool=False,
perform_initialization: bool=True):
super(VocabParallelEmbedding, self).__init__()
# Keep the input dimensions.
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
if params_dtype is None:
params_dtype = torch.get_default_dtype()
# Set the defaults for compatibility.
self.padding_idx = None
self.max_norm = None
self.norm_type = 2.
self.scale_grad_by_freq = False
self.sparse = False
self._weight = None
self.tensor_model_parallel_size = get_tensor_model_parallel_world_size()
# Divide the weight matrix along the vocaburaly dimension.
self.vocab_start_index, self.vocab_end_index = \
VocabUtility.vocab_range_from_global_vocab_size(
self.num_embeddings, get_tensor_model_parallel_rank(),
self.tensor_model_parallel_size)
self.num_embeddings_per_partition = self.vocab_end_index - \
self.vocab_start_index
# Allocate weights and initialize.
if use_cpu_initialization:
self.weight = Parameter(torch.empty(
self.num_embeddings_per_partition, self.embedding_dim,
dtype=params_dtype))
if perform_initialization:
_initialize_affine_weight_cpu(
self.weight, self.num_embeddings, self.embedding_dim,
self.num_embeddings_per_partition, 0, init_method,
params_dtype=params_dtype)
else:
self.weight = Parameter(torch.empty(
self.num_embeddings_per_partition, self.embedding_dim,
device=torch.cuda.current_device(), dtype=params_dtype))
if perform_initialization:
_initialize_affine_weight_gpu(self.weight, init_method,
partition_dim=0, stride=1)
def forward(self, input_):
if self.tensor_model_parallel_size > 1:
# Build the mask.
input_mask = (input_ < self.vocab_start_index) | \
(input_ >= self.vocab_end_index)
# Mask the input.
masked_input = input_.clone() - self.vocab_start_index
masked_input[input_mask] = 0
else:
masked_input = input_
# Get the embeddings.
output_parallel = F.embedding(masked_input, self.weight,
self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq,
self.sparse)
# Mask the output embedding.
if self.tensor_model_parallel_size > 1:
output_parallel[input_mask, :] = 0.0
# Reduce across all the model parallel GPUs.
output = reduce_from_tensor_model_parallel_region(output_parallel)
return output
class ColumnParallelLinear(torch.nn.Module):
"""Linear layer with column parallelism.
The linear layer is defined as Y = XA + b. A is parallelized along
its second dimension as A = [A_1, ..., A_p].
Arguments:
input_size: first dimension of matrix A.
output_size: second dimension of matrix A.
Keyword Arguments
bias: If true, add bias
gather_output: If true, call all-gather on output and make Y available
to all GPUs, otherwise, every GPU will have its output
which is Y_i = XA_i
init_method: method to initialize weights. Note that bias is always set
to zero.
stride: For the strided linear layers.
keep_master_weight_for_test: This was added for testing and should be
set to False. It returns the master weights
used for initialization.
skip_bias_add: This was added to enable performance optimations where bias
can be fused with other elementwise operations. we skip
adding bias but instead return it.
params_dtype:
use_cpu_initialization:
"""
def __init__(self, input_size, output_size, *,
bias=True, gather_output=True,
init_method=init.xavier_normal_, stride=1,
keep_master_weight_for_test=False,
skip_bias_add=False,
params_dtype=None,
use_cpu_initialization=False,
perform_initialization=True,
):
super(ColumnParallelLinear, self).__init__()
# Keep input parameters
self.input_size = input_size
self.output_size = output_size
self.gather_output = gather_output
# Divide the weight matrix along the last dimension.
world_size = get_tensor_model_parallel_world_size()
self.output_size_per_partition = divide(output_size, world_size)
self.skip_bias_add = skip_bias_add
if params_dtype is None:
params_dtype = torch.get_default_dtype()
# Parameters.
# Note: torch.nn.functional.linear performs XA^T + b and as a result
# we allocate the transpose.
# Initialize weight.
if use_cpu_initialization:
self.weight = Parameter(torch.empty(self.output_size_per_partition,
self.input_size,
dtype=params_dtype))
if perform_initialization:
self.master_weight = _initialize_affine_weight_cpu(
self.weight, self.output_size, self.input_size,
self.output_size_per_partition, 0, init_method,
stride=stride, return_master_weight=keep_master_weight_for_test)
else:
self.weight = Parameter(torch.empty(
self.output_size_per_partition, self.input_size,
device=torch.cuda.current_device(), dtype=params_dtype))
if perform_initialization:
_initialize_affine_weight_gpu(self.weight, init_method,
partition_dim=0, stride=stride)
if bias:
if use_cpu_initialization:
self.bias = Parameter(torch.empty(
self.output_size_per_partition, dtype=params_dtype))
else:
self.bias = Parameter(torch.empty(
self.output_size_per_partition,
device=torch.cuda.current_device(),
dtype=params_dtype))
set_tensor_model_parallel_attributes(self.bias, True, 0, stride)
# Always initialize bias to zero.
with torch.no_grad():
self.bias.zero_()
else:
self.register_parameter('bias', None)
def forward(self, input_):
"""Forward of ColumnParallelLinear
Args:
input_: 3D tensor whose order of dimension is [sequence, batch, hidden]
Returns:
- output
- bias
"""
bias = self.bias if not self.skip_bias_add else None
input_parallel = copy_to_tensor_model_parallel_region(input_)
# Matrix multiply.
output_parallel = F.linear(input_parallel, self.weight, bias)
if self.gather_output:
# All-gather across the partitions.
output = gather_from_tensor_model_parallel_region(output_parallel)
else:
output = output_parallel
output_bias = self.bias if self.skip_bias_add else None
return output, output_bias
class RowParallelLinear(torch.nn.Module):
"""Linear layer with row parallelism.
The linear layer is defined as Y = XA + b. A is parallelized along
its first dimension and X along its second dimension as:
- -
| A_1 |
| . |
A = | . | X = [X_1, ..., X_p]
| . |
| A_p |
- -
Arguments:
input_size: first dimension of matrix A.
output_size: second dimension of matrix A.
Keyword Arguments:
bias: If true, add bias. Note that bias is not parallelized.
input_is_parallel: If true, we assume that the input is already
split across the GPUs and we do not split
again.
init_method: method to initialize weights. Note that bias is always set
to zero.
stride: For the strided linear layers.
keep_master_weight_for_test: This was added for testing and should be
set to False. It returns the master weights
used for initialization.
skip_bias_add: This was added to enable performance optimization where bias
can be fused with other elementwise operations. We skip
adding bias but instead return it.
params_dtype:
use_cpu_initialization:
perform_initialization:
"""
def __init__(self, input_size, output_size, *,
bias=True, input_is_parallel=False,
init_method=init.xavier_normal_, stride=1,
keep_master_weight_for_test=False,
skip_bias_add=False,
params_dtype=None,
use_cpu_initialization=False,
perform_initialization=True,
):
super(RowParallelLinear, self).__init__()
# Keep input parameters
self.input_size = input_size
self.output_size = output_size
self.input_is_parallel = input_is_parallel
if params_dtype is None:
params_dtype = torch.get_default_dtype()
# Divide the weight matrix along the last dimension.
world_size = get_tensor_model_parallel_world_size()
self.input_size_per_partition = divide(input_size, world_size)
self.skip_bias_add = skip_bias_add
# Parameters.
# Note: torch.nn.functional.linear performs XA^T + b and as a result
# we allocate the transpose.
# Initialize weight.
if use_cpu_initialization:
self.weight = Parameter(torch.empty(self.output_size,
self.input_size_per_partition,
dtype=params_dtype))
if perform_initialization:
self.master_weight = _initialize_affine_weight_cpu(
self.weight, self.output_size, self.input_size,
self.input_size_per_partition, 1, init_method,
stride=stride, return_master_weight=keep_master_weight_for_test,
params_dtype=params_dtype)
else:
self.weight = Parameter(torch.empty(
self.output_size, self.input_size_per_partition,
device=torch.cuda.current_device(), dtype=params_dtype))
if perform_initialization:
_initialize_affine_weight_gpu(self.weight, init_method,
partition_dim=1, stride=stride)
if bias:
if use_cpu_initialization:
self.bias = Parameter(torch.empty(self.output_size,
dtype=params_dtype))
else:
self.bias = Parameter(torch.empty(
self.output_size, device=torch.cuda.current_device(),
dtype=params_dtype))
# Always initialize bias to zero.
with torch.no_grad():
self.bias.zero_()
else:
self.register_parameter('bias', None)
self.weight_t = self.weight.t()
def forward(self, input_):
"""Forward of RowParallelLinear
Args:
input_: 3D tensor whose order of dimension is [sequence, batch, hidden]
Returns:
- output
- bias
"""
# Set up backprop all-reduce.
if self.input_is_parallel:
input_parallel = input_
else:
input_parallel = scatter_to_tensor_model_parallel_region(input_)
if get_tensor_model_parallel_world_size() == 1:
# Matrix multiply.
output_ = F.linear(input_parallel, self.weight)
else:
# Matrix multiply.
all_reduce_launcher = get_all_reduce_launcher()
num_tokens = input_parallel.shape[0]
output_buffer = all_reduce_launcher.buffer[:num_tokens]
torch.matmul(input_parallel, self.weight_t, out=output_buffer)
# All-reduce across all the partitions.
output_ = all_reduce_launcher.launch(output_buffer)
if not self.skip_bias_add:
output = output_ + self.bias if self.bias is not None else output_
output_bias = None
else:
output = output_
output_bias = self.bias
return output, output_bias

View File

@ -1,279 +0,0 @@
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
import torch
from cacheflow.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
get_tensor_model_parallel_group,
)
from .utils import split_tensor_along_last_dim
def _reduce(input_):
"""All-reduce the input tensor across model parallel group."""
# Bypass the function if we are using only 1 GPU.
if get_tensor_model_parallel_world_size()==1:
return input_
# All-reduce.
torch.distributed.all_reduce(input_, group=get_tensor_model_parallel_group())
return input_
def _split_along_last_dim(input_):
"""Split the tensor along its last dimension and keep the
corresponding slice."""
world_size = get_tensor_model_parallel_world_size()
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return input_
# Split along last dimension.
input_list = split_tensor_along_last_dim(input_, world_size)
# Note: torch.split does not create contiguous tensors by default.
rank = get_tensor_model_parallel_rank()
output = input_list[rank].contiguous()
return output
def _split_along_first_dim(input_):
"""Split the tensor along its first dimension and keep the
corresponding slice."""
world_size = get_tensor_model_parallel_world_size()
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return input_
# Split along first dimension.
dim_size = input_.size()[0]
assert dim_size % world_size == 0, \
"First dimension of the tensor should be divisible by tensor parallel size"
local_dim_size = dim_size // world_size
rank = get_tensor_model_parallel_rank()
dim_offset = rank * local_dim_size
output = input_[dim_offset:dim_offset+local_dim_size].contiguous()
return output
def _gather_along_last_dim(input_):
"""Gather tensors and concatinate along the last dimension."""
world_size = get_tensor_model_parallel_world_size()
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return input_
# Size and dimension.
last_dim = input_.dim() - 1
rank = get_tensor_model_parallel_rank()
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
tensor_list[rank] = input_
torch.distributed.all_gather(tensor_list, input_, group=get_tensor_model_parallel_group())
# Note: torch.cat already creates a contiguous tensor.
output = torch.cat(tensor_list, dim=last_dim).contiguous()
return output
def _gather_along_first_dim(input_):
"""Gather tensors and concatinate along the first dimension."""
world_size = get_tensor_model_parallel_world_size()
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return input_
dim_size = list(input_.size())
dim_size[0] = dim_size[0] * world_size
output = torch.empty(dim_size, dtype=input_.dtype,
device=torch.cuda.current_device())
torch.distributed._all_gather_base(output, input_.contiguous(),
group=get_tensor_model_parallel_group())
return output
def _reduce_scatter_along_first_dim(input_):
"""Reduce-scatter the input tensor across model parallel group."""
world_size = get_tensor_model_parallel_world_size()
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return input_
dim_size = list(input_.size())
assert dim_size[0] % world_size == 0, \
"First dimension of the tensor should be divisible by tensor parallel size"
dim_size[0] = dim_size[0] // world_size
output = torch.empty(dim_size, dtype=input_.dtype,
device=torch.cuda.current_device())
torch.distributed._reduce_scatter_base(output, input_.contiguous(),
group=get_tensor_model_parallel_group())
return output
class _CopyToModelParallelRegion(torch.autograd.Function):
"""Pass the input to the model parallel region."""
@staticmethod
def symbolic(graph, input_):
return input_
@staticmethod
def forward(ctx, input_):
return input_
@staticmethod
def backward(ctx, grad_output):
return _reduce(grad_output)
class _ReduceFromModelParallelRegion(torch.autograd.Function):
"""All-reduce the input from the model parallel region."""
@staticmethod
def symbolic(graph, input_):
return _reduce(input_)
@staticmethod
def forward(ctx, input_):
return _reduce(input_)
@staticmethod
def backward(ctx, grad_output):
return grad_output
class _ScatterToModelParallelRegion(torch.autograd.Function):
"""Split the input and keep only the corresponding chuck to the rank."""
@staticmethod
def symbolic(graph, input_):
return _split_along_last_dim(input_)
@staticmethod
def forward(ctx, input_):
return _split_along_last_dim(input_)
@staticmethod
def backward(ctx, grad_output):
return _gather_along_last_dim(grad_output)
class _GatherFromModelParallelRegion(torch.autograd.Function):
"""Gather the input from model parallel region and concatinate."""
@staticmethod
def symbolic(graph, input_):
return _gather_along_last_dim(input_)
@staticmethod
def forward(ctx, input_):
return _gather_along_last_dim(input_)
@staticmethod
def backward(ctx, grad_output):
return _split_along_last_dim(grad_output)
class _ScatterToSequenceParallelRegion(torch.autograd.Function):
"""Split the input and keep only the corresponding chuck to the rank."""
@staticmethod
def symbolic(graph, input_):
return _split_along_first_dim(input_)
@staticmethod
def forward(ctx, input_):
return _split_along_first_dim(input_)
@staticmethod
def backward(ctx, grad_output):
return _gather_along_first_dim(grad_output)
class _GatherFromSequenceParallelRegion(torch.autograd.Function):
"""Gather the input from sequence parallel region and concatinate."""
@staticmethod
def symbolic(graph, input_, tensor_parallel_output_grad=True):
return _gather_along_first_dim(input_)
@staticmethod
def forward(ctx, input_, tensor_parallel_output_grad=True):
ctx.tensor_parallel_output_grad = tensor_parallel_output_grad
return _gather_along_first_dim(input_)
@staticmethod
def backward(ctx, grad_output):
tensor_parallel_output_grad = ctx.tensor_parallel_output_grad
# If the computation graph after the gather operation is
# in the tensor parallel mode, output gradients need to reduce
# scattered and whereas if the computation is duplicated,
# output gradients need to be scattered.
if tensor_parallel_output_grad:
return _reduce_scatter_along_first_dim(grad_output), None
else:
return _split_along_first_dim(grad_output), None
class _ReduceScatterToSequenceParallelRegion(torch.autograd.Function):
"""Reduce scatter the input from the model parallel region."""
@staticmethod
def symbolic(graph, input_):
return _reduce_scatter_along_first_dim(input_)
@staticmethod
def forward(ctx, input_):
return _reduce_scatter_along_first_dim(input_)
@staticmethod
def backward(ctx, grad_output):
return _gather_along_first_dim(grad_output)
# -----------------
# Helper functions.
# -----------------
def copy_to_tensor_model_parallel_region(input_):
return _CopyToModelParallelRegion.apply(input_)
def reduce_from_tensor_model_parallel_region(input_):
return _ReduceFromModelParallelRegion.apply(input_)
def scatter_to_tensor_model_parallel_region(input_):
return _ScatterToModelParallelRegion.apply(input_)
def gather_from_tensor_model_parallel_region(input_):
return _GatherFromModelParallelRegion.apply(input_)
def scatter_to_sequence_parallel_region(input_):
return _ScatterToSequenceParallelRegion.apply(input_)
def gather_from_sequence_parallel_region(input_, tensor_parallel_output_grad=True):
return _GatherFromSequenceParallelRegion.apply(input_, tensor_parallel_output_grad)
def reduce_scatter_to_sequence_parallel_region(input_):
return _ReduceScatterToSequenceParallelRegion.apply(input_)

View File

@ -1,253 +0,0 @@
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Parts of the code here are adapted from PyTorch
# repo: https://github.com/pytorch/pytorch
import contextlib
import torch
from torch import _C
from torch.cuda import _lazy_call, device as device_ctx_manager
from torch.utils.checkpoint import detach_variable
from cacheflow.parallel_utils.parallel_state import (
get_data_parallel_rank,
get_tensor_model_parallel_group,
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
from .utils import (
split_tensor_into_1d_equal_chunks,
gather_split_1d_tensor,
)
from cacheflow.parallel_utils.utils import safely_set_viewless_tensor_data
# Default name for the model parallel rng tracker.
_MODEL_PARALLEL_RNG_TRACKER_NAME = 'model-parallel-rng'
def _set_cuda_rng_state(new_state, device=-1):
"""Sets the random number generator state of the current GPU.
Argumentss:
new_state (torch.ByteTensor): The desired state
This function is adapted from PyTorch repo (torch.cuda.set_rng_state)
with a single change: the input state is not cloned. Cloning caused
major performance issues for +4 GPU cases.
"""
if hasattr(_C, '_cuda_setRNGState') and callable(_C._cuda_setRNGState):
# older PyTorch
def cb():
with device_ctx_manager(device):
_C._cuda_setRNGState(new_state)
else:
# newer PyTorch
if device == -1:
device = torch.device('cuda')
elif isinstance(device, str):
device = torch.device(device)
elif isinstance(device, int):
device = torch.device('cuda', device)
def cb():
idx = device.index
if idx is None:
idx = torch.cuda.current_device()
default_generator = torch.cuda.default_generators[idx]
default_generator.set_state(new_state)
_lazy_call(cb)
class CudaRNGStatesTracker:
"""Tracker for the cuda RNG states.
Using the `add` method, a cuda rng state is initialized based on
the input `seed` and is assigned to `name`. Later, by forking the
rng state, we can perform operations and return to our starting
cuda state.
"""
def __init__(self):
# Map from a string name to the cuda rng state.
self.states_ = {}
# Seeds are just for book keeping and ensure no seed is set twice.
self.seeds_ = set()
def reset(self):
"""Set to the initial state (no tracker)."""
self.states_ = {}
self.seeds_ = set()
def get_states(self):
"""Get rng states. Copy the dictionary so we have direct
pointers to the states, not just a pointer to the dictionary."""
states = {}
for name in self.states_:
states[name] = self.states_[name]
return states
def set_states(self, states):
"""Set the rng states. For efficiency purposes, we do not check
the size of seed for compatibility."""
self.states_ = states
def add(self, name, seed):
"""Track the rng state."""
# Check seed is not already used.
if seed in self.seeds_:
raise Exception('seed {} already exists'.format(seed))
self.seeds_.add(seed)
# Check that state is not already defined.
if name in self.states_:
raise Exception('cuda rng state {} already exists'.format(name))
# Get the current rng state.
orig_rng_state = torch.cuda.get_rng_state()
# Set the new state and store it.
torch.cuda.manual_seed(seed)
self.states_[name] = torch.cuda.get_rng_state()
# Reset rng state to what it was.
_set_cuda_rng_state(orig_rng_state)
@contextlib.contextmanager
def fork(self, name=_MODEL_PARALLEL_RNG_TRACKER_NAME):
"""Fork the cuda rng state, perform operations, and exit with
the original state."""
# Check if we have added the state
if name not in self.states_:
raise Exception('cuda rng state {} is not added'.format(name))
# Store current rng state.
orig_cuda_rng_state = torch.cuda.get_rng_state()
# Set rng state to the desired one
_set_cuda_rng_state(self.states_[name])
# Do the stuff we wanted to do.
try:
yield
finally:
# Update the current rng state for later use.
self.states_[name] = torch.cuda.get_rng_state()
# And set the state to the original state we started with.
_set_cuda_rng_state(orig_cuda_rng_state)
# RNG tracker object.
_CUDA_RNG_STATE_TRACKER = CudaRNGStatesTracker()
def get_cuda_rng_tracker():
"""Get cuda rng tracker."""
return _CUDA_RNG_STATE_TRACKER
def model_parallel_cuda_manual_seed(seed):
"""Initialize model parallel cuda seed.
This function should be called after the model parallel is
initialized. Also, no torch.cuda.manual_seed should be called
after this function. Basically, this is replacement for that
function.
Two set of RNG states are tracked:
default state: This is for data parallelism and is the same among a
set of model parallel GPUs but different across
different model paralle groups. This is used for
example for dropout in the non-tensor-model-parallel regions.
tensor-model-parallel state: This state is different among a set of model
parallel GPUs, but the same across data parallel
groups. This is used for example for dropout in
model parallel regions.
"""
# 2718 is just for fun and any POSITIVE value will work.
offset = seed + 2718
tensor_model_parallel_seed = offset + get_tensor_model_parallel_rank()
# Data parallel gets the original seed.
data_parallel_seed = seed
_CUDA_RNG_STATE_TRACKER.reset()
# Set the default state.
torch.cuda.manual_seed(data_parallel_seed)
# and model parallel state.
_CUDA_RNG_STATE_TRACKER.add(_MODEL_PARALLEL_RNG_TRACKER_NAME,
tensor_model_parallel_seed)
class CheckpointFunction(torch.autograd.Function):
"""This function is adapted from torch.utils.checkpoint with
two main changes:
1) torch.cuda.set_rng_state is replaced with `_set_cuda_rng_state`
2) the states in the model parallel tracker are also properly
tracked/set/reset.
"""
@staticmethod
def forward(ctx, run_function, distribute_saved_activations, *args):
ctx.run_function = run_function
ctx.distribute_saved_activations \
= distribute_saved_activations
# Copy the rng states.
ctx.fwd_cpu_rng_state = torch.get_rng_state()
ctx.fwd_cuda_rng_state = torch.cuda.get_rng_state()
ctx.fwd_cuda_rng_state_tracker = get_cuda_rng_tracker().get_states()
with torch.no_grad():
outputs = run_function(*args)
# Divide hidden states across model parallel group and only keep
# the chunk corresponding to the current rank.
if distribute_saved_activations:
ctx.input_0_shape = args[0].data.shape
safely_set_viewless_tensor_data(
args[0],
split_tensor_into_1d_equal_chunks(args[0].data, new_buffer=True))
# Store everything.
ctx.save_for_backward(*args)
return outputs
@staticmethod
def backward(ctx, *args):
if not torch.autograd._is_checkpoint_valid():
raise RuntimeError("Checkpointing is not compatible with .grad(), "
"please use .backward() if possible")
inputs = ctx.saved_tensors
if ctx.distribute_saved_activations:
safely_set_viewless_tensor_data(
inputs[0],
gather_split_1d_tensor(inputs[0].data).view(ctx.input_0_shape))
# Store the current states.
bwd_cpu_rng_state = torch.get_rng_state()
bwd_cuda_rng_state = torch.cuda.get_rng_state()
bwd_cuda_rng_state_tracker = get_cuda_rng_tracker().get_states()
# Set the states to what it used to be before the forward pass.
torch.set_rng_state(ctx.fwd_cpu_rng_state)
_set_cuda_rng_state(ctx.fwd_cuda_rng_state)
get_cuda_rng_tracker().set_states(ctx.fwd_cuda_rng_state_tracker)
# Compute the forward pass.
detached_inputs = detach_variable(inputs)
with torch.enable_grad():
outputs = ctx.run_function(*detached_inputs)
# Set the states back to what it was at the start of this function.
torch.set_rng_state(bwd_cpu_rng_state)
_set_cuda_rng_state(bwd_cuda_rng_state)
get_cuda_rng_tracker().set_states(bwd_cuda_rng_state_tracker)
if isinstance(outputs, torch.Tensor):
outputs = (outputs,)
torch.autograd.backward(outputs, args)
grads = tuple(inp.grad if isinstance(inp, torch.Tensor) else inp
for inp in detached_inputs)
return (None, None) + grads
def checkpoint(function, distribute_saved_activations, *args):
"""Checkpoint a model or part of the model.
This has been directly copied from torch.utils.checkpoint."""
return CheckpointFunction.apply(function,
distribute_saved_activations, *args)

View File

@ -1,108 +0,0 @@
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
import torch
from typing import List, Sequence
from cacheflow.parallel_utils.utils import divide
from cacheflow.parallel_utils import parallel_state
def split_tensor_along_last_dim(
tensor: torch.Tensor,
num_partitions: int,
contiguous_split_chunks: bool = False,
) -> List[torch.Tensor]:
""" Split a tensor along its last dimension.
Arguments:
tensor: input tensor.
num_partitions: number of partitions to split the tensor
contiguous_split_chunks: If True, make each chunk contiguous
in memory.
Returns:
A list of Tensors
"""
# Get the size and dimension.
last_dim = tensor.dim() - 1
last_dim_size = divide(tensor.size()[last_dim], num_partitions)
# Split.
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
# Note: torch.split does not create contiguous tensors by default.
if contiguous_split_chunks:
return tuple(chunk.contiguous() for chunk in tensor_list)
return tensor_list
def split_tensor_into_1d_equal_chunks(tensor, new_buffer=False):
""" Break a tensor into equal 1D chunks across tensor parallel ranks.
Returns a Tensor or View with this rank's portion of the data.
Arguments:
tensor: The tensor to split
Keyword Arguments:
new_buffer (bool): If True, returns a new Tensor.
If False, returns a view into the existing Tensor.
Default is False
"""
partition_size = torch.numel(tensor) // \
parallel_state.get_tensor_model_parallel_world_size()
start_index = partition_size * parallel_state.get_tensor_model_parallel_rank()
end_index = start_index + partition_size
if new_buffer:
data = torch.empty(partition_size, dtype=tensor.dtype,
device=torch.cuda.current_device(),
requires_grad=False)
data.copy_(tensor.view(-1)[start_index:end_index])
else:
data = tensor.view(-1)[start_index:end_index]
return data
def gather_split_1d_tensor(tensor):
""" Opposite of split_tensor_into_1d_equal_chunks. Gather values from tensor
model parallel ranks.
Returns a new Tensor with the gathered data.
Arguments:
tensor: A Tensor or view of this rank's portion of the data.
"""
numel_gathered = torch.numel(tensor) * \
parallel_state.get_tensor_model_parallel_world_size()
gathered = torch.empty(numel_gathered, dtype=tensor.dtype,
device=torch.cuda.current_device(),
requires_grad=False)
# TODO: This API is experimental in pytorch (as of Feb 2022) and
# this might break in future pytorch releases. We chose this API
# as opposed to torch.distributed.all_gather for efficiency reasons.
# This API calls directly NCCL all-gather versus the former does
# internal copies and can potentially cause slow down.
torch.distributed._all_gather_base(gathered, tensor,
group=parallel_state.get_tensor_model_parallel_group())
return gathered
class VocabUtility:
""" Split the vocabulary into `world_size` chunks and return the first
and last index of the vocabulary belonging to the `rank`
partition: Note that indices in [fist, last)
"""
@staticmethod
def vocab_range_from_per_partition_vocab_size(
per_partition_vocab_size: int, rank, world_size: int
) -> Sequence[int]:
index_f = rank * per_partition_vocab_size
index_l = index_f + per_partition_vocab_size
return index_f, index_l
@staticmethod
def vocab_range_from_global_vocab_size(global_vocab_size: int, rank: int, world_size: int) -> Sequence[int]:
per_partition_vocab_size = divide(global_vocab_size, world_size)
return VocabUtility.vocab_range_from_per_partition_vocab_size(
per_partition_vocab_size, rank, world_size
)

View File

@ -1,120 +0,0 @@
"""Utility functions used throughout Megatron core"""
from functools import reduce
import operator
import torch
from cacheflow.parallel_utils import parallel_state
def ensure_divisibility(numerator, denominator):
"""Ensure that numerator is divisible by the denominator."""
assert numerator % denominator == 0, "{} is not divisible by {}".format(
numerator, denominator
)
def divide(numerator, denominator):
"""Ensure that numerator is divisible by the denominator and return
the division value."""
ensure_divisibility(numerator, denominator)
return numerator // denominator
class GlobalMemoryBuffer:
"""Global buffer to avoid dynamic memory allocations.
Caller should ensure that buffers of the same name
are not used concurrently."""
def __init__(self):
self.buffer = {}
def get_tensor(self, tensor_shape, dtype, name):
required_len = reduce(operator.mul, tensor_shape, 1)
if self.buffer.get((name, dtype), None) is None or \
self.buffer[(name, dtype)].numel() < required_len:
self.buffer[(name, dtype)] = \
torch.empty(required_len,
dtype=dtype,
device=torch.cuda.current_device(),
requires_grad=False)
return self.buffer[(name, dtype)][0:required_len].view(*tensor_shape)
def _kernel_make_viewless_tensor(inp, requires_grad):
'''Make a viewless tensor.
View tensors have the undesirable side-affect of retaining a reference
to the originally-viewed tensor, even after manually setting the '.data'
field. This method creates a new tensor that links to the old tensor's
data, without linking the viewed tensor, referenced via the '._base'
field.
'''
out = torch.empty(
(1,),
dtype = inp.dtype,
device = inp.device,
requires_grad = requires_grad,
)
out.data = inp.data
return out
class MakeViewlessTensor(torch.autograd.Function):
'''
Autograd function to make a viewless tensor.
This function should be used in cases where the computation graph needs
to be propagated, but we only want a viewless tensor (e.g.,
ParallelTransformer's hidden_states). Call this function by passing
'keep_graph = True' to 'make_viewless_tensor()'.
'''
@staticmethod
def forward(ctx, inp, requires_grad):
return _kernel_make_viewless_tensor(inp, requires_grad)
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
def make_viewless_tensor(inp, requires_grad, keep_graph):
'''
Entry-point for creating viewless tensors.
This method should be used, rather than calling 'MakeViewlessTensor'
or '_kernel_make_viewless_tensor' directly. This method acts as a
switch for determining if an autograd function or a regular method
should be used to create the tensor.
'''
# return tensor as-is, if not a 'view'
if inp._base is None:
return inp
# create viewless tensor
if keep_graph:
return MakeViewlessTensor.apply(inp, requires_grad)
else:
return _kernel_make_viewless_tensor(inp, requires_grad)
def assert_viewless_tensor(tensor, extra_msg = None):
'''Assert that a tensor is not a view (i.e., its '._base' field is
not set).'''
if isinstance(tensor, list):
[ assert_viewless_tensor(t) for t in tensor ]
return tensor
if not isinstance(tensor, torch.Tensor):
return tensor
assert tensor._base is None, (
"Ensure tensor._base is None before setting tensor.data or storing "
"tensor to memory buffer. Otherwise, a memory leak will occur (and "
"likely accumulate over iterations). %s"
) % extra_msg
return tensor
def safely_set_viewless_tensor_data(tensor, new_data_tensor):
'''Safely set tensor's '.data' field.
Check first that the tensor is viewless (i.e., '._base' not set). If not,
raise an exception.
'''
assert_viewless_tensor(tensor, extra_msg = "FYI, tensor._base has shape %s, and new_data_tensor has shape %s." % ("--" if tensor._base is None else tensor._base.shape, new_data_tensor.shape))
tensor.data = new_data_tensor

View File

@ -1,84 +0,0 @@
from typing import Optional, Set, Dict
class SamplingParams:
def __init__(
self,
n: int,
temperature: float,
top_p: float,
use_beam_search: bool,
stop_token_ids: Set[int],
max_num_steps: int,
num_logprobs: int,
context_window_size: Optional[int],
) -> None:
if n < 1:
raise ValueError(f'n must be at least 1, got {n}.')
if temperature < 0.0:
raise ValueError(
f'temperature must be non-negative, got {temperature}.')
if not 0.0 < top_p <= 1.0:
raise ValueError(f'top_p must be in (0, 1], got {top_p}.')
if max_num_steps < 1:
raise ValueError(
f'max_num_steps must be at least 1, got {max_num_steps}.')
if num_logprobs < 0:
raise ValueError(
f'num_logprobs must be non-negative, got {num_logprobs}.')
if context_window_size is not None and context_window_size < 0:
raise ValueError(
'context_window_size must be non-negative, '
f'got {context_window_size}.')
if use_beam_search:
if n == 1:
raise ValueError(
'n must be greater than 1 when using beam search.')
if temperature > 0.0:
raise ValueError(
'temperature must be 0 when using beam search.')
if top_p < 1.0:
raise ValueError(
'top_p must be 1 when using beam search.')
elif temperature == 0.0:
# Zero temperature means greedy sampling.
if n > 1:
raise ValueError(
'n must be 1 when using greedy sampling.')
if top_p < 1.0:
raise ValueError(
'top_p must be 1 when using greedy sampling.')
self.n = n
self.temperature = temperature
self.top_p = top_p
self.use_beam_search = use_beam_search
self.stop_token_ids = stop_token_ids
self.max_num_steps = max_num_steps
self.num_logprobs = num_logprobs
self.context_window_size = context_window_size
def __repr__(self) -> str:
return (f'SamplingParams(n={self.n}, '
f'temperature={self.temperature}, '
f'top_p={self.top_p}, '
f'use_beam_search={self.use_beam_search}, '
f'stop_token_ids={self.stop_token_ids}, '
f'max_num_steps={self.max_num_steps}, '
f'num_logprobs={self.num_logprobs}, '
f'context_window_size={self.context_window_size})')
@classmethod
def from_dict(cls, d: Dict) -> 'SamplingParams':
return cls(
n=d.get('n', 1),
temperature=d.get('temperature', 1.0),
top_p=d.get('top_p', 1.0),
use_beam_search=d.get('use_beam_search', False),
stop_token_ids=set(d.get('stop_token_ids', set())),
max_num_steps=d.get('max_num_steps', 16),
num_logprobs=d.get('num_logprobs', 0),
context_window_size=d.get('context_window_size', None),
)

View File

@ -1,169 +0,0 @@
import copy
import enum
from typing import Dict, List, Optional
from cacheflow.block import LogicalTokenBlock
from cacheflow.sampling_params import SamplingParams
class SequenceStatus(enum.Enum):
WAITING = enum.auto()
RUNNING = enum.auto()
SWAPPED = enum.auto()
FINISHED = enum.auto()
class Sequence:
def __init__(
self,
seq_id: int,
token_ids: List[int],
block_size: int,
) -> None:
self.seq_id = seq_id
self.block_size = block_size
self.logical_token_blocks: List[LogicalTokenBlock] = []
# Initialize the logical token blocks with the given token ids.
self.add(token_ids)
self.prompt_len = len(token_ids)
self.status = SequenceStatus.WAITING
self.output_logprobs: List[Dict[int, float]] = []
self.cumulative_logprobs = 0.0
def add_block(self) -> None:
block = LogicalTokenBlock(
block_number=len(self.logical_token_blocks),
block_size=self.block_size,
)
self.logical_token_blocks.append(block)
def add(self, token_ids: List[int]) -> None:
while token_ids:
if not self.logical_token_blocks:
self.add_block()
last_block = self.logical_token_blocks[-1]
if last_block.is_full():
self.add_block()
last_block = self.logical_token_blocks[-1]
num_empty_slots = last_block.get_num_empty_slots()
last_block.append(token_ids[:num_empty_slots])
token_ids = token_ids[num_empty_slots:]
def append(self, token_id: int, logprobs: Dict[int, float]) -> None:
assert token_id in logprobs
self.add([token_id])
self.output_logprobs.append(logprobs)
self.cumulative_logprobs += logprobs[token_id]
def get_len(self) -> int:
return sum(block.num_tokens for block in self.logical_token_blocks)
def get_token_ids(self) -> List[int]:
token_ids: List[int] = []
for block in self.logical_token_blocks:
token_ids.extend(block.get_token_ids())
return token_ids
def get_last_token_id(self) -> int:
return self.logical_token_blocks[-1].get_last_token_id()
def fork(self, child_seq: 'Sequence') -> 'Sequence':
child_seq.logical_token_blocks = copy.deepcopy(self.logical_token_blocks)
child_seq.output_logprobs = copy.deepcopy(self.output_logprobs)
child_seq.cumulative_logprobs = self.cumulative_logprobs
def __repr__(self) -> str:
return (f'Sequence(seq_id={self.seq_id}, '
f'status={self.status.name}, '
f'num_blocks={len(self.logical_token_blocks)})')
class SequenceGroup:
def __init__(
self,
group_id: int,
seqs: List[Sequence],
arrival_time: float,
) -> None:
self.group_id = group_id
self.seqs = seqs
self.arrival_time = arrival_time
def get_seqs(
self,
status: Optional[SequenceStatus] = None,
) -> List[Sequence]:
if status is None:
return self.seqs
else:
return [seq for seq in self.seqs if seq.status == status]
def num_seqs(self, status: Optional[SequenceStatus] = None) -> int:
return len(self.get_seqs(status))
def find(self, seq_id: int) -> Sequence:
for seq in self.seqs:
if seq.seq_id == seq_id:
return seq
raise ValueError(f'Sequence {seq_id} not found.')
def is_finished(self) -> bool:
return all(seq.status == SequenceStatus.FINISHED for seq in self.seqs)
def __repr__(self) -> str:
return (f'SequenceGroup(group_id={self.group_id}, '
f'num_seqs={len(self.seqs)})')
class SequenceGroupInputs:
def __init__(
self,
group_id: int,
is_prompt: bool,
input_tokens: Dict[int, List[int]], # Seq id -> token ids.
context_len: int,
seq_logprobs: Dict[int, float], # Seq id -> cumulative logprobs.
sampling_params: SamplingParams,
block_tables: Dict[int, List[int]], # Seq id -> List of physical block numbers.
) -> None:
self.group_id = group_id
self.is_prompt = is_prompt
self.input_tokens = input_tokens
self.context_len = context_len
self.seq_logprobs = seq_logprobs
self.sampling_params = sampling_params
self.block_tables = block_tables
class SequenceOutputs:
def __init__(
self,
seq_id: int,
parent_seq_id: int,
output_token: int,
logprobs: Dict[int, float], # Token id -> logP(x_i+1 | x_0, ..., x_i).
) -> None:
self.seq_id = seq_id
self.parent_seq_id = parent_seq_id
self.output_token = output_token
self.logprobs = logprobs
def __repr__(self) -> str:
return (f'SequenceOutputs(seq_id={self.seq_id}, '
f'parent_seq_id={self.parent_seq_id}, '
f'output_token={self.output_token}), '
f'logprobs={self.logprobs}')
def __eq__(self, other: 'SequenceOutputs') -> bool:
return (self.seq_id == other.seq_id and
self.parent_seq_id == other.parent_seq_id and
self.output_token == other.output_token and
self.logprobs == other.logprobs)

View File

@ -1,47 +0,0 @@
import enum
import random
import psutil
import numpy as np
import torch
from cacheflow.parallel_utils.parallel_state import model_parallel_is_initialized
from cacheflow.parallel_utils.tensor_parallel import model_parallel_cuda_manual_seed
class Device(enum.Enum):
GPU = enum.auto()
CPU = enum.auto()
class Counter:
def __init__(self, start: int = 0) -> None:
self.counter = start
def __next__(self) -> int:
id = self.counter
self.counter += 1
return id
def reset(self) -> None:
self.counter = 0
def set_random_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
if model_parallel_is_initialized():
model_parallel_cuda_manual_seed(seed)
def get_gpu_memory(gpu: int = 0) -> int:
return torch.cuda.get_device_properties(gpu).total_memory
def get_cpu_memory() -> int:
return psutil.virtual_memory().total

View File

@ -1,127 +0,0 @@
from typing import Dict, List, Tuple
import torch
from cacheflow import cache_ops
KVCache = Tuple[torch.Tensor, torch.Tensor]
class CacheEngine:
def __init__(
self,
worker_id: int,
num_layers: int,
num_heads: int,
head_size: int,
block_size: int,
num_gpu_blocks: int,
num_cpu_blocks: int,
dtype: torch.dtype,
) -> None:
if head_size % 16 != 0:
raise ValueError(
f'head_size ({head_size}) must be a multiple of 16.')
self.worker_id = worker_id
self.num_layers = num_layers
self.num_heads = num_heads
self.head_size = head_size
self.block_size = block_size
self.num_gpu_blocks = num_gpu_blocks
self.num_cpu_blocks = num_cpu_blocks
self.dtype = dtype
# Initialize the cache.
self.gpu_cache = self.allocate_gpu_cache()
self.cpu_cache = self.allocate_cpu_cache()
# Initialize the stream for caching operations.
self.cache_stream = torch.cuda.Stream()
assert self.cache_stream != torch.cuda.current_stream()
# Initialize the events for stream synchronization.
self.events = [torch.cuda.Event() for _ in range(num_layers)]
def get_key_block_shape(self) -> Tuple[int, int, int, int]:
element_size = torch.tensor([], dtype=self.dtype).element_size()
x = 16 // element_size
return (
self.num_heads,
self.head_size // x,
self.block_size,
x,
)
def get_value_block_shape(self) -> Tuple[int, int, int]:
return (
self.num_heads,
self.head_size,
self.block_size,
)
def allocate_gpu_cache(self) -> List[KVCache]:
gpu_cache: List[KVCache] = []
key_block_shape = self.get_key_block_shape()
value_block_shape = self.get_value_block_shape()
for _ in range(self.num_layers):
key_blocks = torch.empty(
size=(self.num_gpu_blocks, *key_block_shape),
dtype=self.dtype,
device="cuda",
)
value_blocks = torch.empty(
size=(self.num_gpu_blocks, *value_block_shape),
dtype=self.dtype,
device="cuda",
)
gpu_cache.append((key_blocks, value_blocks))
return gpu_cache
def allocate_cpu_cache(self) -> List[KVCache]:
cpu_cache: List[KVCache] = []
key_block_shape = self.get_key_block_shape()
value_block_shape = self.get_value_block_shape()
for _ in range(self.num_layers):
key_blocks = torch.empty(
size=(self.num_cpu_blocks, *key_block_shape),
dtype=self.dtype,
pin_memory=True,
)
value_blocks = torch.empty(
size=(self.num_cpu_blocks, *value_block_shape),
dtype=self.dtype,
pin_memory=True,
)
cpu_cache.append((key_blocks, value_blocks))
return cpu_cache
def _swap(
self,
src: List[KVCache],
dst: List[KVCache],
src_to_dst: Dict[int, int],
) -> None:
with torch.cuda.stream(self.cache_stream):
for i in range(self.num_layers):
src_key_cache, src_value_cache = src[i]
dst_key_cache, dst_value_cache = dst[i]
# Copy the key blocks.
cache_ops.swap_blocks(
src_key_cache, dst_key_cache, src_to_dst)
# Copy the value blocks.
cache_ops.swap_blocks(
src_value_cache, dst_value_cache, src_to_dst)
event = self.events[i]
event.record(stream=self.cache_stream)
def swap_in(self, src_to_dst: Dict[int, int]) -> None:
self._swap(self.cpu_cache, self.gpu_cache, src_to_dst)
def swap_out(self, src_to_dst: Dict[int, int]) -> None:
self._swap(self.gpu_cache, self.cpu_cache, src_to_dst)
def copy(self, src_to_dsts: Dict[int, List[int]]) -> None:
key_caches = [key_cache for key_cache, _ in self.gpu_cache]
value_caches = [value_cache for _, value_cache in self.gpu_cache]
# NOTE(woosuk): This operation implicitly synchronizes the CPU and GPU.
cache_ops.copy_blocks(key_caches, value_caches, src_to_dsts)

View File

@ -1,101 +0,0 @@
from typing import Dict, List, Union, Tuple
import ray
from cacheflow.master.scheduler import Scheduler
from cacheflow.sequence import SequenceGroupInputs
from cacheflow.worker.worker import Worker
DeviceID = Tuple[int, str, int] # rank, node resource (node IP), device id
class Controller:
def __init__(
self,
stage_id: int,
stage_devices: List[DeviceID],
world_size: int,
tensor_parallel_size: int,
pipeline_parallel_size: int,
distributed_init_method: str,
model_name: str,
block_size: int,
num_gpu_blocks: int,
num_cpu_blocks: int,
dtype: str,
seed: int,
model_path: str,
use_dummy_weights: bool,
max_num_batched_tokens: int,
) -> None:
self.stage_id = stage_id
self.stage_devices = stage_devices
self.model_name = model_name
self.block_size = block_size
self.num_gpu_blocks = num_gpu_blocks
self.num_cpu_blocks = num_cpu_blocks
# Which pipeline stage is this node assigned to?
self.is_first_stage = stage_id == 0
self.is_last_stage = False
self.workers: List[Worker] = []
for rank, node_resource, device_id in stage_devices:
worker_cls = ray.remote(num_cpus=0,
num_gpus=1,
resources={node_resource: 1e-5})(Worker)
worker = worker_cls.remote(
model_name=model_name,
block_size=block_size,
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks,
dtype=dtype,
seed=seed,
distributed_init_method=distributed_init_method,
rank=rank,
world_size=world_size,
tensor_parallel_size=tensor_parallel_size,
pipeline_parallel_size=pipeline_parallel_size,
model_path=model_path,
use_dummy_weights=use_dummy_weights,
max_num_batched_tokens=max_num_batched_tokens,
)
self.workers.append(worker)
def set_next(
self,
next_node: Union['Controller', 'Scheduler'],
) -> None:
self.next_node = next_node
self.is_last_stage = isinstance(next_node, Scheduler)
def execute_stage(
self,
input_seq_groups: List[SequenceGroupInputs],
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]],
) -> None:
futures = []
for worker in self.workers:
future = worker.execute_stage.remote(
input_seq_groups,
blocks_to_swap_in,
blocks_to_swap_out,
blocks_to_copy,
)
futures.append(future)
all_outputs = ray.get(futures)
# Make sure all workers have the same results.
output = all_outputs[0]
for other_output in all_outputs[1:]:
assert output == other_output
if self.is_last_stage:
self.next_node.post_step(output)
else:
# TODO: Support pipeline parallelism.
assert False

View File

@ -1,264 +0,0 @@
from typing import Dict, List, Tuple
import torch
from cacheflow.models import get_model
from cacheflow.models import InputMetadata
from cacheflow.sampling_params import SamplingParams
from cacheflow.sequence import SequenceGroupInputs
from cacheflow.sequence import SequenceOutputs
from cacheflow.worker.cache_engine import CacheEngine
from cacheflow.parallel_utils.parallel_state import (
initialize_model_parallel,
initialize_all_reduce_launcher,
get_tensor_model_parallel_world_size)
from cacheflow.utils import set_random_seed
class Worker:
def __init__(
self,
model_name: str,
block_size: int,
num_gpu_blocks: int,
num_cpu_blocks: int,
dtype: str,
seed: int,
distributed_init_method: str,
rank: int,
world_size: int,
model_path: str,
use_dummy_weights: bool,
max_num_batched_tokens: int,
tensor_parallel_size: int = 1,
pipeline_parallel_size: int = 1,
) -> None:
self.init_distributed_environment(distributed_init_method,
rank,
world_size,
tensor_parallel_size,
pipeline_parallel_size)
self.worker_id = rank
self.block_size = block_size
set_random_seed(seed)
# Initialize the model.
self.model, self.dtype = get_model(
model_name, dtype=dtype, path=model_path, use_dummy_weights=use_dummy_weights)
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
initialize_all_reduce_launcher(
max_num_batched_tokens, self.model.config.hidden_size, self.dtype)
self.num_layers = self.model.config.num_hidden_layers
assert self.model.config.num_attention_heads % tensor_model_parallel_world_size == 0
self.num_heads = self.model.config.num_attention_heads // tensor_model_parallel_world_size
self.head_size = self.model.config.hidden_size // (self.num_heads * tensor_model_parallel_world_size)
# We reset the seed after initializing the model to ensure that
# the random state is not affected by the model initialization.
set_random_seed(seed)
self.cache_engine = CacheEngine(
worker_id=self.worker_id,
num_layers=self.num_layers,
num_heads=self.num_heads,
head_size=self.head_size,
block_size=block_size,
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks,
dtype=self.dtype,
)
self.cache_events = self.cache_engine.events
self.gpu_cache = self.cache_engine.gpu_cache
def init_distributed_environment(self,
distributed_init_method: str,
rank: int,
world_size: int,
tensor_parallel_size: int = 1,
pipeline_parallel_size: int = 1) -> None:
"""Initialize the distributed environment."""
torch.distributed.init_process_group(
backend='nccl',
init_method=distributed_init_method,
world_size=world_size,
rank=rank,
)
# A small all_reduce for warmup.
torch.distributed.all_reduce(torch.zeros(1).cuda())
initialize_model_parallel(tensor_parallel_size,
pipeline_parallel_size)
def prepare_inputs(
self,
input_seq_groups: List[SequenceGroupInputs],
) -> Tuple[torch.LongTensor, torch.LongTensor, InputMetadata]:
seq_groups: List[Tuple[List[int], SamplingParams]] = []
seq_logprobs: Dict[int, float] = {}
sampling_params: Dict[int, SamplingParams] = {}
input_tokens: List[int] = []
input_positions: List[int] = []
slot_mapping: List[int] = []
# Add prompt tokens.
prompt_lens: List[int] = []
for input_seq_group in input_seq_groups:
if not input_seq_group.is_prompt:
continue
seq_ids = list(input_seq_group.input_tokens.keys())
sampling_params = input_seq_group.sampling_params
seq_groups.append((seq_ids, sampling_params))
seq_logprobs.update(input_seq_group.seq_logprobs)
# Use any sequence in the group.
seq_id = seq_ids[0]
prompt_tokens = input_seq_group.input_tokens[seq_id]
prompt_len = len(prompt_tokens)
prompt_lens.append(prompt_len)
input_tokens.extend(prompt_tokens)
# NOTE(woosuk): Here we assume that the first token in the prompt
# is always the first token in the sequence.
input_positions.extend(range(len(prompt_tokens)))
# Compute the slot mapping.
block_table = input_seq_group.block_tables[seq_id]
for i in range(prompt_len):
block_number = block_table[i // self.block_size]
block_offset = i % self.block_size
slot = block_number * self.block_size + block_offset
slot_mapping.append(slot)
cumulative_prompt_lens: List[int] = [0]
for prompt_len in prompt_lens:
cumulative_prompt_lens.append(
cumulative_prompt_lens[-1] + prompt_len)
# Add generation tokens.
max_context_len = 0
max_num_blocks_per_seq = 0
context_lens: List[int] = []
generation_block_tables: List[List[int]] = []
for input_seq_group in input_seq_groups:
if input_seq_group.is_prompt:
continue
seq_ids = list(input_seq_group.input_tokens.keys())
sampling_params = input_seq_group.sampling_params
seq_groups.append((seq_ids, sampling_params))
seq_logprobs.update(input_seq_group.seq_logprobs)
for seq_id in seq_ids:
assert len(input_seq_group.input_tokens[seq_id]) == 1
generation_token = input_seq_group.input_tokens[seq_id][0]
input_tokens.append(generation_token)
position = input_seq_group.context_len - 1
input_positions.append(position)
block_table = input_seq_group.block_tables[seq_id]
generation_block_tables.append(block_table)
max_context_len = max(
max_context_len, input_seq_group.context_len)
max_num_blocks_per_seq = max(
max_num_blocks_per_seq, len(block_table))
context_lens.append(input_seq_group.context_len)
block_number = block_table[position // self.block_size]
block_offset = position % self.block_size
slot = block_number * self.block_size + block_offset
slot_mapping.append(slot)
# Optimization: Pad the input length to be a multiple of 8.
# This is required for utilizing the Tensor Cores in NVIDIA GPUs.
input_tokens = _pad_to_alignment(input_tokens, multiple_of=8)
input_positions = _pad_to_alignment(input_positions, multiple_of=8)
# Convert to tensors.
tokens_tensor = torch.tensor(
input_tokens, dtype=torch.long, device='cuda')
positions_tensor = torch.tensor(
input_positions, dtype=torch.long, device='cuda')
slot_mapping_tensor = torch.tensor(
slot_mapping, dtype=torch.int, device='cuda')
context_lens_tensor = torch.tensor(
context_lens, dtype=torch.int, device='cuda')
padded_block_tables = [
_pad_to_max(block_table, max_num_blocks_per_seq)
for block_table in generation_block_tables]
block_tables_tensor = torch.tensor(
padded_block_tables, dtype=torch.int, device='cuda')
cumulative_prompt_lens_tensor = torch.tensor(
cumulative_prompt_lens, dtype=torch.int, device='cuda')
input_metadata = InputMetadata(
seq_groups=seq_groups,
seq_logprobs=seq_logprobs,
prompt_lens=prompt_lens,
cumulative_prompt_lens=cumulative_prompt_lens_tensor,
slot_mapping=slot_mapping_tensor,
context_lens=context_lens_tensor,
max_context_len=max_context_len,
block_tables=block_tables_tensor,
)
return tokens_tensor, positions_tensor, input_metadata
@torch.inference_mode()
def execute_stage(
self,
input_seq_groups: List[SequenceGroupInputs],
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]],
) -> Dict[int, SequenceOutputs]:
# Issue cache operations.
command_issued = False
if blocks_to_swap_in:
self.cache_engine.swap_in(blocks_to_swap_in)
command_issued = True
if blocks_to_swap_out:
self.cache_engine.swap_out(blocks_to_swap_out)
command_issued = True
if blocks_to_copy:
self.cache_engine.copy(blocks_to_copy)
command_issued = True
if command_issued:
cache_events = self.cache_events
else:
cache_events = None
# If there is no input, we don't need to execute the model.
if not input_seq_groups:
if cache_events is not None:
for event in cache_events:
event.wait()
return {}
# Prepare input tensors.
input_tokens, input_positions, input_metadata = self.prepare_inputs(
input_seq_groups)
# Execute the model.
output = self.model(
input_ids=input_tokens,
positions=input_positions,
kv_caches=self.gpu_cache,
input_metadata=input_metadata,
cache_events=cache_events,
)
return output
def _pad_to_alignment(x: List[int], multiple_of: int) -> List[int]:
return x + [0] * ((-len(x)) % multiple_of)
def _pad_to_max(x: List[int], max_len: int) -> List[int]:
return x + [0] * (max_len - len(x))

90
cmake/cpu_extension.cmake Normal file
View File

@ -0,0 +1,90 @@
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
#
# Define environment variables for special configurations
#
if(DEFINED ENV{VLLM_CPU_AVX512BF16})
set(ENABLE_AVX512BF16 ON)
endif()
include_directories("${CMAKE_SOURCE_DIR}/csrc")
#
# Check the compile flags
#
list(APPEND CXX_COMPILE_FLAGS
"-fopenmp"
"-DVLLM_CPU_EXTENSION")
execute_process(COMMAND cat /proc/cpuinfo
RESULT_VARIABLE CPUINFO_RET
OUTPUT_VARIABLE CPUINFO)
if (NOT CPUINFO_RET EQUAL 0)
message(FATAL_ERROR "Failed to check CPU features via /proc/cpuinfo")
endif()
function (find_isa CPUINFO TARGET OUT)
string(FIND ${CPUINFO} ${TARGET} ISA_FOUND)
if(NOT ISA_FOUND EQUAL -1)
set(${OUT} ON PARENT_SCOPE)
else()
set(${OUT} OFF PARENT_SCOPE)
endif()
endfunction()
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
if (AVX512_FOUND)
list(APPEND CXX_COMPILE_FLAGS
"-mavx512f"
"-mavx512vl"
"-mavx512bw"
"-mavx512dq")
find_isa(${CPUINFO} "avx512_bf16" AVX512BF16_FOUND)
if (AVX512BF16_FOUND OR ENABLE_AVX512BF16)
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND
CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 12.3)
list(APPEND CXX_COMPILE_FLAGS "-mavx512bf16")
else()
message(WARNING "Disable AVX512-BF16 ISA support, requires gcc/g++ >= 12.3")
endif()
else()
message(WARNING "Disable AVX512-BF16 ISA support, no avx512_bf16 found in local CPU flags." " If cross-compilation is required, please set env VLLM_CPU_AVX512BF16=1.")
endif()
else()
message(FATAL_ERROR "vLLM CPU backend requires AVX512 ISA support.")
endif()
message(STATUS "CPU extension compile flags: ${CXX_COMPILE_FLAGS}")
#
# Define extension targets
#
#
# _C extension
#
set(VLLM_EXT_SRC
"csrc/cpu/activation.cpp"
"csrc/cpu/attention.cpp"
"csrc/cpu/cache.cpp"
"csrc/cpu/layernorm.cpp"
"csrc/cpu/pos_encoding.cpp"
"csrc/cpu/pybind.cpp")
define_gpu_extension_target(
_C
DESTINATION vllm
LANGUAGE CXX
SOURCES ${VLLM_EXT_SRC}
COMPILE_FLAGS ${CXX_COMPILE_FLAGS}
WITH_SOABI
)
add_custom_target(default)
message(STATUS "Enabling C extension.")
add_dependencies(default _C)

73
cmake/hipify.py Executable file
View File

@ -0,0 +1,73 @@
#!/usr/bin/env python3
#
# A command line tool for running pytorch's hipify preprocessor on CUDA
# source files.
#
# See https://github.com/ROCm/hipify_torch
# and <torch install dir>/utils/hipify/hipify_python.py
#
import argparse
import os
import shutil
from torch.utils.hipify.hipify_python import hipify
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Project directory where all the source + include files live.
parser.add_argument(
"-p",
"--project_dir",
help="The project directory.",
)
# Directory where hipified files are written.
parser.add_argument(
"-o",
"--output_dir",
help="The output directory.",
)
# Source files to convert.
parser.add_argument("sources",
help="Source files to hipify.",
nargs="*",
default=[])
args = parser.parse_args()
# Limit include scope to project_dir only
includes = [os.path.join(args.project_dir, '*')]
# Get absolute path for all source files.
extra_files = [os.path.abspath(s) for s in args.sources]
# Copy sources from project directory to output directory.
# The directory might already exist to hold object files so we ignore that.
shutil.copytree(args.project_dir, args.output_dir, dirs_exist_ok=True)
hipify_result = hipify(project_directory=args.project_dir,
output_directory=args.output_dir,
header_include_dirs=[],
includes=includes,
extra_files=extra_files,
show_detailed=True,
is_pytorch_extension=True,
hipify_extra_files_only=True)
hipified_sources = []
for source in args.sources:
s_abs = os.path.abspath(source)
hipified_s_abs = (hipify_result[s_abs].hipified_path if
(s_abs in hipify_result
and hipify_result[s_abs].hipified_path is not None)
else s_abs)
hipified_sources.append(hipified_s_abs)
assert (len(hipified_sources) == len(args.sources))
# Print hipified source files.
print("\n".join(hipified_sources))

354
cmake/utils.cmake Normal file
View File

@ -0,0 +1,354 @@
#
# Attempt to find the python package that uses the same python executable as
# `EXECUTABLE` and is one of the `SUPPORTED_VERSIONS`.
#
macro (find_python_from_executable EXECUTABLE SUPPORTED_VERSIONS)
file(REAL_PATH ${EXECUTABLE} EXECUTABLE)
set(Python_EXECUTABLE ${EXECUTABLE})
find_package(Python COMPONENTS Interpreter Development.Module)
if (NOT Python_FOUND)
message(FATAL_ERROR "Unable to find python matching: ${EXECUTABLE}.")
endif()
set(_VER "${Python_VERSION_MAJOR}.${Python_VERSION_MINOR}")
set(_SUPPORTED_VERSIONS_LIST ${SUPPORTED_VERSIONS} ${ARGN})
if (NOT _VER IN_LIST _SUPPORTED_VERSIONS_LIST)
message(FATAL_ERROR
"Python version (${_VER}) is not one of the supported versions: "
"${_SUPPORTED_VERSIONS_LIST}.")
endif()
message(STATUS "Found python matching: ${EXECUTABLE}.")
endmacro()
#
# Run `EXPR` in python. The standard output of python is stored in `OUT` and
# has trailing whitespace stripped. If an error is encountered when running
# python, a fatal message `ERR_MSG` is issued.
#
function (run_python OUT EXPR ERR_MSG)
execute_process(
COMMAND
"${Python_EXECUTABLE}" "-c" "${EXPR}"
OUTPUT_VARIABLE PYTHON_OUT
RESULT_VARIABLE PYTHON_ERROR_CODE
ERROR_VARIABLE PYTHON_STDERR
OUTPUT_STRIP_TRAILING_WHITESPACE)
if(NOT PYTHON_ERROR_CODE EQUAL 0)
message(FATAL_ERROR "${ERR_MSG}: ${PYTHON_STDERR}")
endif()
set(${OUT} ${PYTHON_OUT} PARENT_SCOPE)
endfunction()
# Run `EXPR` in python after importing `PKG`. Use the result of this to extend
# `CMAKE_PREFIX_PATH` so the torch cmake configuration can be imported.
macro (append_cmake_prefix_path PKG EXPR)
run_python(_PREFIX_PATH
"import ${PKG}; print(${EXPR})" "Failed to locate ${PKG} path")
list(APPEND CMAKE_PREFIX_PATH ${_PREFIX_PATH})
endmacro()
#
# Add a target named `hipify${NAME}` that runs the hipify preprocessor on a set
# of CUDA source files. The names of the corresponding "hipified" sources are
# stored in `OUT_SRCS`.
#
function (hipify_sources_target OUT_SRCS NAME ORIG_SRCS)
#
# Split into C++ and non-C++ (i.e. CUDA) sources.
#
set(SRCS ${ORIG_SRCS})
set(CXX_SRCS ${ORIG_SRCS})
list(FILTER SRCS EXCLUDE REGEX "\.(cc)|(cpp)$")
list(FILTER CXX_SRCS INCLUDE REGEX "\.(cc)|(cpp)$")
#
# Generate ROCm/HIP source file names from CUDA file names.
# Since HIP files are generated code, they will appear in the build area
# `CMAKE_CURRENT_BINARY_DIR` directory rather than the original csrc dir.
#
set(HIP_SRCS)
foreach (SRC ${SRCS})
string(REGEX REPLACE "\.cu$" "\.hip" SRC ${SRC})
string(REGEX REPLACE "cuda" "hip" SRC ${SRC})
list(APPEND HIP_SRCS "${CMAKE_CURRENT_BINARY_DIR}/${SRC}")
endforeach()
set(CSRC_BUILD_DIR ${CMAKE_CURRENT_BINARY_DIR}/csrc)
add_custom_target(
hipify${NAME}
COMMAND ${CMAKE_SOURCE_DIR}/cmake/hipify.py -p ${CMAKE_SOURCE_DIR}/csrc -o ${CSRC_BUILD_DIR} ${SRCS}
DEPENDS ${CMAKE_SOURCE_DIR}/cmake/hipify.py ${SRCS}
BYPRODUCTS ${HIP_SRCS}
COMMENT "Running hipify on ${NAME} extension source files.")
# Swap out original extension sources with hipified sources.
list(APPEND HIP_SRCS ${CXX_SRCS})
set(${OUT_SRCS} ${HIP_SRCS} PARENT_SCOPE)
endfunction()
#
# Get additional GPU compiler flags from torch.
#
function (get_torch_gpu_compiler_flags OUT_GPU_FLAGS GPU_LANG)
if (${GPU_LANG} STREQUAL "CUDA")
#
# Get common NVCC flags from torch.
#
run_python(GPU_FLAGS
"from torch.utils.cpp_extension import COMMON_NVCC_FLAGS; print(';'.join(COMMON_NVCC_FLAGS))"
"Failed to determine torch nvcc compiler flags")
if (CUDA_VERSION VERSION_GREATER_EQUAL 11.8)
list(APPEND GPU_FLAGS "-DENABLE_FP8")
endif()
if (CUDA_VERSION VERSION_GREATER_EQUAL 12.0)
list(REMOVE_ITEM GPU_FLAGS
"-D__CUDA_NO_HALF_OPERATORS__"
"-D__CUDA_NO_HALF_CONVERSIONS__"
"-D__CUDA_NO_BFLOAT16_CONVERSIONS__"
"-D__CUDA_NO_HALF2_OPERATORS__")
endif()
elseif(${GPU_LANG} STREQUAL "HIP")
#
# Get common HIP/HIPCC flags from torch.
#
run_python(GPU_FLAGS
"import torch.utils.cpp_extension as t; print(';'.join(t.COMMON_HIP_FLAGS + t.COMMON_HIPCC_FLAGS))"
"Failed to determine torch nvcc compiler flags")
list(APPEND GPU_FLAGS
"-DUSE_ROCM"
"-DENABLE_FP8"
"-U__HIP_NO_HALF_CONVERSIONS__"
"-U__HIP_NO_HALF_OPERATORS__"
"-fno-gpu-rdc")
endif()
set(${OUT_GPU_FLAGS} ${GPU_FLAGS} PARENT_SCOPE)
endfunction()
# Macro for converting a `gencode` version number to a cmake version number.
macro(string_to_ver OUT_VER IN_STR)
string(REGEX REPLACE "\([0-9]+\)\([0-9]\)" "\\1.\\2" ${OUT_VER} ${IN_STR})
endmacro()
#
# Override the GPU architectures detected by cmake/torch and filter them by
# `GPU_SUPPORTED_ARCHES`. Sets the final set of architectures in
# `GPU_ARCHES`.
#
# Note: this is defined as a macro since it updates `CMAKE_CUDA_FLAGS`.
#
macro(override_gpu_arches GPU_ARCHES GPU_LANG GPU_SUPPORTED_ARCHES)
set(_GPU_SUPPORTED_ARCHES_LIST ${GPU_SUPPORTED_ARCHES} ${ARGN})
message(STATUS "${GPU_LANG} supported arches: ${_GPU_SUPPORTED_ARCHES_LIST}")
if (${GPU_LANG} STREQUAL "HIP")
#
# `GPU_ARCHES` controls the `--offload-arch` flags.
# `CMAKE_HIP_ARCHITECTURES` is set up by torch and can be controlled
# via the `PYTORCH_ROCM_ARCH` env variable.
#
#
# Find the intersection of the supported + detected architectures to
# set the module architecture flags.
#
set(${GPU_ARCHES})
foreach (_ARCH ${CMAKE_HIP_ARCHITECTURES})
if (_ARCH IN_LIST _GPU_SUPPORTED_ARCHES_LIST)
list(APPEND ${GPU_ARCHES} ${_ARCH})
endif()
endforeach()
if(NOT ${GPU_ARCHES})
message(FATAL_ERROR
"None of the detected ROCm architectures: ${CMAKE_HIP_ARCHITECTURES} is"
" supported. Supported ROCm architectures are: ${_GPU_SUPPORTED_ARCHES_LIST}.")
endif()
elseif(${GPU_LANG} STREQUAL "CUDA")
#
# Setup/process CUDA arch flags.
#
# The torch cmake setup hardcodes the detected architecture flags in
# `CMAKE_CUDA_FLAGS`. Since `CMAKE_CUDA_FLAGS` is a "global" variable, it
# can't modified on a per-target basis, e.g. for the `punica` extension.
# So, all the `-gencode` flags need to be extracted and removed from
# `CMAKE_CUDA_FLAGS` for processing so they can be passed by another method.
# Since it's not possible to use `target_compiler_options` for adding target
# specific `-gencode` arguments, the target's `CUDA_ARCHITECTURES` property
# must be used instead. This requires repackaging the architecture flags
# into a format that cmake expects for `CUDA_ARCHITECTURES`.
#
# This is a bit fragile in that it depends on torch using `-gencode` as opposed
# to one of the other nvcc options to specify architectures.
#
# Note: torch uses the `TORCH_CUDA_ARCH_LIST` environment variable to override
# detected architectures.
#
message(DEBUG "initial CMAKE_CUDA_FLAGS: ${CMAKE_CUDA_FLAGS}")
# Extract all `-gencode` flags from `CMAKE_CUDA_FLAGS`
string(REGEX MATCHALL "-gencode arch=[^ ]+" _CUDA_ARCH_FLAGS
${CMAKE_CUDA_FLAGS})
# Remove all `-gencode` flags from `CMAKE_CUDA_FLAGS` since they will be modified
# and passed back via the `CUDA_ARCHITECTURES` property.
string(REGEX REPLACE "-gencode arch=[^ ]+ *" "" CMAKE_CUDA_FLAGS
${CMAKE_CUDA_FLAGS})
# If this error is triggered, it might mean that torch has changed how it sets
# up nvcc architecture code generation flags.
if (NOT _CUDA_ARCH_FLAGS)
message(FATAL_ERROR
"Could not find any architecture related code generation flags in "
"CMAKE_CUDA_FLAGS. (${CMAKE_CUDA_FLAGS})")
endif()
message(DEBUG "final CMAKE_CUDA_FLAGS: ${CMAKE_CUDA_FLAGS}")
message(DEBUG "arch flags: ${_CUDA_ARCH_FLAGS}")
# Initialize the architecture lists to empty.
set(${GPU_ARCHES})
# Process each `gencode` flag.
foreach(_ARCH ${_CUDA_ARCH_FLAGS})
# For each flag, extract the version number and whether it refers to PTX
# or native code.
# Note: if a regex matches then `CMAKE_MATCH_1` holds the binding
# for that match.
string(REGEX MATCH "arch=compute_\([0-9]+a?\)" _COMPUTE ${_ARCH})
if (_COMPUTE)
set(_COMPUTE ${CMAKE_MATCH_1})
endif()
string(REGEX MATCH "code=sm_\([0-9]+a?\)" _SM ${_ARCH})
if (_SM)
set(_SM ${CMAKE_MATCH_1})
endif()
string(REGEX MATCH "code=compute_\([0-9]+a?\)" _CODE ${_ARCH})
if (_CODE)
set(_CODE ${CMAKE_MATCH_1})
endif()
# Make sure the virtual architecture can be matched.
if (NOT _COMPUTE)
message(FATAL_ERROR
"Could not determine virtual architecture from: ${_ARCH}.")
endif()
# One of sm_ or compute_ must exist.
if ((NOT _SM) AND (NOT _CODE))
message(FATAL_ERROR
"Could not determine a codegen architecture from: ${_ARCH}.")
endif()
if (_SM)
# -real suffix let CMake to only generate elf code for the kernels.
# we want this, otherwise the added ptx (default) will increase binary size.
set(_VIRT "-real")
set(_CODE_ARCH ${_SM})
else()
# -virtual suffix let CMake to generate ptx code for the kernels.
set(_VIRT "-virtual")
set(_CODE_ARCH ${_CODE})
endif()
# Check if the current version is in the supported arch list.
string_to_ver(_CODE_VER ${_CODE_ARCH})
if (NOT _CODE_VER IN_LIST _GPU_SUPPORTED_ARCHES_LIST)
message(STATUS "discarding unsupported CUDA arch ${_VER}.")
continue()
endif()
# Add it to the arch list.
list(APPEND ${GPU_ARCHES} "${_CODE_ARCH}${_VIRT}")
endforeach()
endif()
message(STATUS "${GPU_LANG} target arches: ${${GPU_ARCHES}}")
endmacro()
#
# Define a target named `GPU_MOD_NAME` for a single extension. The
# arguments are:
#
# DESTINATION <dest> - Module destination directory.
# LANGUAGE <lang> - The GPU language for this module, e.g CUDA, HIP,
# etc.
# SOURCES <sources> - List of source files relative to CMakeLists.txt
# directory.
#
# Optional arguments:
#
# ARCHITECTURES <arches> - A list of target GPU architectures in cmake
# format.
# Refer `CMAKE_CUDA_ARCHITECTURES` documentation
# and `CMAKE_HIP_ARCHITECTURES` for more info.
# ARCHITECTURES will use cmake's defaults if
# not provided.
# COMPILE_FLAGS <flags> - Extra compiler flags passed to NVCC/hip.
# INCLUDE_DIRECTORIES <dirs> - Extra include directories.
# LIBRARIES <libraries> - Extra link libraries.
# WITH_SOABI - Generate library with python SOABI suffix name.
#
# Note: optimization level/debug info is set via cmake build type.
#
function (define_gpu_extension_target GPU_MOD_NAME)
cmake_parse_arguments(PARSE_ARGV 1
GPU
"WITH_SOABI"
"DESTINATION;LANGUAGE"
"SOURCES;ARCHITECTURES;COMPILE_FLAGS;INCLUDE_DIRECTORIES;LIBRARIES")
# Add hipify preprocessing step when building with HIP/ROCm.
if (GPU_LANGUAGE STREQUAL "HIP")
hipify_sources_target(GPU_SOURCES ${GPU_MOD_NAME} "${GPU_SOURCES}")
endif()
if (GPU_WITH_SOABI)
set(GPU_WITH_SOABI WITH_SOABI)
else()
set(GPU_WITH_SOABI)
endif()
Python_add_library(${GPU_MOD_NAME} MODULE "${GPU_SOURCES}" ${GPU_WITH_SOABI})
if (GPU_LANGUAGE STREQUAL "HIP")
# Make this target dependent on the hipify preprocessor step.
add_dependencies(${GPU_MOD_NAME} hipify${GPU_MOD_NAME})
endif()
if (GPU_ARCHITECTURES)
set_target_properties(${GPU_MOD_NAME} PROPERTIES
${GPU_LANGUAGE}_ARCHITECTURES "${GPU_ARCHITECTURES}")
endif()
set_property(TARGET ${GPU_MOD_NAME} PROPERTY CXX_STANDARD 17)
target_compile_options(${GPU_MOD_NAME} PRIVATE
$<$<COMPILE_LANGUAGE:${GPU_LANGUAGE}>:${GPU_COMPILE_FLAGS}>)
target_compile_definitions(${GPU_MOD_NAME} PRIVATE
"-DTORCH_EXTENSION_NAME=${GPU_MOD_NAME}")
target_include_directories(${GPU_MOD_NAME} PRIVATE csrc
${GPU_INCLUDE_DIRECTORIES})
target_link_libraries(${GPU_MOD_NAME} PRIVATE torch ${torch_python_LIBRARY}
${GPU_LIBRARIES})
# Don't use `TORCH_LIBRARIES` for CUDA since it pulls in a bunch of
# dependencies that are not necessary and may not be installed.
if (GPU_LANGUAGE STREQUAL "CUDA")
target_link_libraries(${GPU_MOD_NAME} PRIVATE ${CUDA_CUDA_LIB}
${CUDA_LIBRARIES})
else()
target_link_libraries(${GPU_MOD_NAME} PRIVATE ${TORCH_LIBRARIES})
endif()
install(TARGETS ${GPU_MOD_NAME} LIBRARY DESTINATION ${GPU_DESTINATION})
endfunction()

721
collect_env.py Normal file
View File

@ -0,0 +1,721 @@
# ruff: noqa
# code borrowed from https://github.com/pytorch/pytorch/blob/main/torch/utils/collect_env.py
# Unlike the rest of the PyTorch this file must be python2 compliant.
# This script outputs relevant system environment info
# Run it with `python collect_env.py` or `python -m torch.utils.collect_env`
import datetime
import locale
import os
import re
import subprocess
import sys
from collections import namedtuple
try:
import torch
TORCH_AVAILABLE = True
except (ImportError, NameError, AttributeError, OSError):
TORCH_AVAILABLE = False
# System Environment Information
SystemEnv = namedtuple(
'SystemEnv',
[
'torch_version',
'is_debug_build',
'cuda_compiled_version',
'gcc_version',
'clang_version',
'cmake_version',
'os',
'libc_version',
'python_version',
'python_platform',
'is_cuda_available',
'cuda_runtime_version',
'cuda_module_loading',
'nvidia_driver_version',
'nvidia_gpu_models',
'cudnn_version',
'pip_version', # 'pip' or 'pip3'
'pip_packages',
'conda_packages',
'hip_compiled_version',
'hip_runtime_version',
'miopen_runtime_version',
'caching_allocator_config',
'is_xnnpack_available',
'cpu_info',
'rocm_version', # vllm specific field
'neuron_sdk_version', # vllm specific field
'vllm_version', # vllm specific field
'vllm_build_flags', # vllm specific field
'gpu_topo', # vllm specific field
])
DEFAULT_CONDA_PATTERNS = {
"torch",
"numpy",
"cudatoolkit",
"soumith",
"mkl",
"magma",
"triton",
"optree",
"nccl",
}
DEFAULT_PIP_PATTERNS = {
"torch",
"numpy",
"mypy",
"flake8",
"triton",
"optree",
"onnx",
"nccl",
}
def run(command):
"""Return (return-code, stdout, stderr)."""
shell = True if type(command) is str else False
p = subprocess.Popen(command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
shell=shell)
raw_output, raw_err = p.communicate()
rc = p.returncode
if get_platform() == 'win32':
enc = 'oem'
else:
enc = locale.getpreferredencoding()
output = raw_output.decode(enc)
err = raw_err.decode(enc)
return rc, output.strip(), err.strip()
def run_and_read_all(run_lambda, command):
"""Run command using run_lambda; reads and returns entire output if rc is 0."""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
return out
def run_and_parse_first_match(run_lambda, command, regex):
"""Run command using run_lambda, returns the first regex match if it exists."""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
match = re.search(regex, out)
if match is None:
return None
return match.group(1)
def run_and_return_first_line(run_lambda, command):
"""Run command using run_lambda and returns first line if output is not empty."""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
return out.split('\n')[0]
def get_conda_packages(run_lambda, patterns=None):
if patterns is None:
patterns = DEFAULT_CONDA_PATTERNS
conda = os.environ.get('CONDA_EXE', 'conda')
out = run_and_read_all(run_lambda, "{} list".format(conda))
if out is None:
return out
return "\n".join(line for line in out.splitlines()
if not line.startswith("#") and any(name in line
for name in patterns))
def get_gcc_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'gcc --version', r'gcc (.*)')
def get_clang_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'clang --version',
r'clang version (.*)')
def get_cmake_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'cmake --version',
r'cmake (.*)')
def get_nvidia_driver_version(run_lambda):
if get_platform() == 'darwin':
cmd = 'kextstat | grep -i cuda'
return run_and_parse_first_match(run_lambda, cmd,
r'com[.]nvidia[.]CUDA [(](.*?)[)]')
smi = get_nvidia_smi()
return run_and_parse_first_match(run_lambda, smi,
r'Driver Version: (.*?) ')
def get_gpu_info(run_lambda):
if get_platform() == 'darwin' or (TORCH_AVAILABLE and hasattr(
torch.version, 'hip') and torch.version.hip is not None):
if TORCH_AVAILABLE and torch.cuda.is_available():
if torch.version.hip is not None:
prop = torch.cuda.get_device_properties(0)
if hasattr(prop, "gcnArchName"):
gcnArch = " ({})".format(prop.gcnArchName)
else:
gcnArch = "NoGCNArchNameOnOldPyTorch"
else:
gcnArch = ""
return torch.cuda.get_device_name(None) + gcnArch
return None
smi = get_nvidia_smi()
uuid_regex = re.compile(r' \(UUID: .+?\)')
rc, out, _ = run_lambda(smi + ' -L')
if rc != 0:
return None
# Anonymize GPUs by removing their UUID
return re.sub(uuid_regex, '', out)
def get_running_cuda_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'nvcc --version',
r'release .+ V(.*)')
def get_cudnn_version(run_lambda):
"""Return a list of libcudnn.so; it's hard to tell which one is being used."""
if get_platform() == 'win32':
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
cuda_path = os.environ.get('CUDA_PATH', "%CUDA_PATH%")
where_cmd = os.path.join(system_root, 'System32', 'where')
cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
elif get_platform() == 'darwin':
# CUDA libraries and drivers can be found in /usr/local/cuda/. See
# https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
# https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
# Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
cudnn_cmd = 'ls /usr/local/cuda/lib/libcudnn*'
else:
cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
rc, out, _ = run_lambda(cudnn_cmd)
# find will return 1 if there are permission errors or if not found
if len(out) == 0 or (rc != 1 and rc != 0):
l = os.environ.get('CUDNN_LIBRARY')
if l is not None and os.path.isfile(l):
return os.path.realpath(l)
return None
files_set = set()
for fn in out.split('\n'):
fn = os.path.realpath(fn) # eliminate symbolic links
if os.path.isfile(fn):
files_set.add(fn)
if not files_set:
return None
# Alphabetize the result because the order is non-deterministic otherwise
files = sorted(files_set)
if len(files) == 1:
return files[0]
result = '\n'.join(files)
return 'Probably one of the following:\n{}'.format(result)
def get_nvidia_smi():
# Note: nvidia-smi is currently available only on Windows and Linux
smi = 'nvidia-smi'
if get_platform() == 'win32':
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
program_files_root = os.environ.get('PROGRAMFILES',
'C:\\Program Files')
legacy_path = os.path.join(program_files_root, 'NVIDIA Corporation',
'NVSMI', smi)
new_path = os.path.join(system_root, 'System32', smi)
smis = [new_path, legacy_path]
for candidate_smi in smis:
if os.path.exists(candidate_smi):
smi = '"{}"'.format(candidate_smi)
break
return smi
def get_rocm_version(run_lambda):
"""Returns the ROCm version if available, otherwise 'N/A'."""
return run_and_parse_first_match(run_lambda, 'hipcc --version',
r'HIP version: (\S+)')
def get_neuron_sdk_version(run_lambda):
# Adapted from your install script
try:
result = run_lambda(["neuron-ls"])
return result if result[0] == 0 else 'N/A'
except Exception:
return 'N/A'
def get_vllm_version():
try:
import vllm
return vllm.__version__
except ImportError:
return 'N/A'
def summarize_vllm_build_flags():
# This could be a static method if the flags are constant, or dynamic if you need to check environment variables, etc.
return 'CUDA Archs: {}; ROCm: {}; Neuron: {}'.format(
os.environ.get('TORCH_CUDA_ARCH_LIST', 'Not Set'),
'Enabled' if os.environ.get('ROCM_HOME') else 'Disabled',
'Enabled' if os.environ.get('NEURON_CORES') else 'Disabled',
)
def get_gpu_topo(run_lambda):
if get_platform() == 'linux':
return run_and_read_all(run_lambda, 'nvidia-smi topo -m')
return None
# example outputs of CPU infos
# * linux
# Architecture: x86_64
# CPU op-mode(s): 32-bit, 64-bit
# Address sizes: 46 bits physical, 48 bits virtual
# Byte Order: Little Endian
# CPU(s): 128
# On-line CPU(s) list: 0-127
# Vendor ID: GenuineIntel
# Model name: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
# CPU family: 6
# Model: 106
# Thread(s) per core: 2
# Core(s) per socket: 32
# Socket(s): 2
# Stepping: 6
# BogoMIPS: 5799.78
# Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr
# sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl
# xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16
# pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand
# hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced
# fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap
# avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1
# xsaves wbnoinvd ida arat avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq
# avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear flush_l1d arch_capabilities
# Virtualization features:
# Hypervisor vendor: KVM
# Virtualization type: full
# Caches (sum of all):
# L1d: 3 MiB (64 instances)
# L1i: 2 MiB (64 instances)
# L2: 80 MiB (64 instances)
# L3: 108 MiB (2 instances)
# NUMA:
# NUMA node(s): 2
# NUMA node0 CPU(s): 0-31,64-95
# NUMA node1 CPU(s): 32-63,96-127
# Vulnerabilities:
# Itlb multihit: Not affected
# L1tf: Not affected
# Mds: Not affected
# Meltdown: Not affected
# Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
# Retbleed: Not affected
# Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
# Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
# Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
# Srbds: Not affected
# Tsx async abort: Not affected
# * win32
# Architecture=9
# CurrentClockSpeed=2900
# DeviceID=CPU0
# Family=179
# L2CacheSize=40960
# L2CacheSpeed=
# Manufacturer=GenuineIntel
# MaxClockSpeed=2900
# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
# ProcessorType=3
# Revision=27142
#
# Architecture=9
# CurrentClockSpeed=2900
# DeviceID=CPU1
# Family=179
# L2CacheSize=40960
# L2CacheSpeed=
# Manufacturer=GenuineIntel
# MaxClockSpeed=2900
# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
# ProcessorType=3
# Revision=27142
def get_cpu_info(run_lambda):
rc, out, err = 0, '', ''
if get_platform() == 'linux':
rc, out, err = run_lambda('lscpu')
elif get_platform() == 'win32':
rc, out, err = run_lambda(
'wmic cpu get Name,Manufacturer,Family,Architecture,ProcessorType,DeviceID, \
CurrentClockSpeed,MaxClockSpeed,L2CacheSize,L2CacheSpeed,Revision /VALUE'
)
elif get_platform() == 'darwin':
rc, out, err = run_lambda("sysctl -n machdep.cpu.brand_string")
cpu_info = 'None'
if rc == 0:
cpu_info = out
else:
cpu_info = err
return cpu_info
def get_platform():
if sys.platform.startswith('linux'):
return 'linux'
elif sys.platform.startswith('win32'):
return 'win32'
elif sys.platform.startswith('cygwin'):
return 'cygwin'
elif sys.platform.startswith('darwin'):
return 'darwin'
else:
return sys.platform
def get_mac_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'sw_vers -productVersion',
r'(.*)')
def get_windows_version(run_lambda):
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
wmic_cmd = os.path.join(system_root, 'System32', 'Wbem', 'wmic')
findstr_cmd = os.path.join(system_root, 'System32', 'findstr')
return run_and_read_all(
run_lambda,
'{} os get Caption | {} /v Caption'.format(wmic_cmd, findstr_cmd))
def get_lsb_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'lsb_release -a',
r'Description:\t(.*)')
def check_release_file(run_lambda):
return run_and_parse_first_match(run_lambda, 'cat /etc/*-release',
r'PRETTY_NAME="(.*)"')
def get_os(run_lambda):
from platform import machine
platform = get_platform()
if platform == 'win32' or platform == 'cygwin':
return get_windows_version(run_lambda)
if platform == 'darwin':
version = get_mac_version(run_lambda)
if version is None:
return None
return 'macOS {} ({})'.format(version, machine())
if platform == 'linux':
# Ubuntu/Debian based
desc = get_lsb_version(run_lambda)
if desc is not None:
return '{} ({})'.format(desc, machine())
# Try reading /etc/*-release
desc = check_release_file(run_lambda)
if desc is not None:
return '{} ({})'.format(desc, machine())
return '{} ({})'.format(platform, machine())
# Unknown platform
return platform
def get_python_platform():
import platform
return platform.platform()
def get_libc_version():
import platform
if get_platform() != 'linux':
return 'N/A'
return '-'.join(platform.libc_ver())
def get_pip_packages(run_lambda, patterns=None):
"""Return `pip list` output. Note: will also find conda-installed pytorch and numpy packages."""
if patterns is None:
patterns = DEFAULT_PIP_PATTERNS
# People generally have `pip` as `pip` or `pip3`
# But here it is invoked as `python -mpip`
def run_with_pip(pip):
out = run_and_read_all(run_lambda, pip + ["list", "--format=freeze"])
return "\n".join(line for line in out.splitlines()
if any(name in line for name in patterns))
pip_version = 'pip3' if sys.version[0] == '3' else 'pip'
out = run_with_pip([sys.executable, '-mpip'])
return pip_version, out
def get_cachingallocator_config():
ca_config = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', '')
return ca_config
def get_cuda_module_loading_config():
if TORCH_AVAILABLE and torch.cuda.is_available():
torch.cuda.init()
config = os.environ.get('CUDA_MODULE_LOADING', '')
return config
else:
return "N/A"
def is_xnnpack_available():
if TORCH_AVAILABLE:
import torch.backends.xnnpack
return str(
torch.backends.xnnpack.enabled) # type: ignore[attr-defined]
else:
return "N/A"
def get_env_info():
run_lambda = run
pip_version, pip_list_output = get_pip_packages(run_lambda)
if TORCH_AVAILABLE:
version_str = torch.__version__
debug_mode_str = str(torch.version.debug)
cuda_available_str = str(torch.cuda.is_available())
cuda_version_str = torch.version.cuda
if not hasattr(torch.version,
'hip') or torch.version.hip is None: # cuda version
hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
else: # HIP version
def get_version_or_na(cfg, prefix):
_lst = [s.rsplit(None, 1)[-1] for s in cfg if prefix in s]
return _lst[0] if _lst else 'N/A'
cfg = torch._C._show_config().split('\n')
hip_runtime_version = get_version_or_na(cfg, 'HIP Runtime')
miopen_runtime_version = get_version_or_na(cfg, 'MIOpen')
cuda_version_str = 'N/A'
hip_compiled_version = torch.version.hip
else:
version_str = debug_mode_str = cuda_available_str = cuda_version_str = 'N/A'
hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
sys_version = sys.version.replace("\n", " ")
conda_packages = get_conda_packages(run_lambda)
rocm_version = get_rocm_version(run_lambda)
neuron_sdk_version = get_neuron_sdk_version(run_lambda)
vllm_version = get_vllm_version()
vllm_build_flags = summarize_vllm_build_flags()
gpu_topo = get_gpu_topo(run_lambda)
return SystemEnv(
torch_version=version_str,
is_debug_build=debug_mode_str,
python_version='{} ({}-bit runtime)'.format(
sys_version,
sys.maxsize.bit_length() + 1),
python_platform=get_python_platform(),
is_cuda_available=cuda_available_str,
cuda_compiled_version=cuda_version_str,
cuda_runtime_version=get_running_cuda_version(run_lambda),
cuda_module_loading=get_cuda_module_loading_config(),
nvidia_gpu_models=get_gpu_info(run_lambda),
nvidia_driver_version=get_nvidia_driver_version(run_lambda),
cudnn_version=get_cudnn_version(run_lambda),
hip_compiled_version=hip_compiled_version,
hip_runtime_version=hip_runtime_version,
miopen_runtime_version=miopen_runtime_version,
pip_version=pip_version,
pip_packages=pip_list_output,
conda_packages=conda_packages,
os=get_os(run_lambda),
libc_version=get_libc_version(),
gcc_version=get_gcc_version(run_lambda),
clang_version=get_clang_version(run_lambda),
cmake_version=get_cmake_version(run_lambda),
caching_allocator_config=get_cachingallocator_config(),
is_xnnpack_available=is_xnnpack_available(),
cpu_info=get_cpu_info(run_lambda),
rocm_version=rocm_version,
neuron_sdk_version=neuron_sdk_version,
vllm_version=vllm_version,
vllm_build_flags=vllm_build_flags,
gpu_topo=gpu_topo,
)
env_info_fmt = """
PyTorch version: {torch_version}
Is debug build: {is_debug_build}
CUDA used to build PyTorch: {cuda_compiled_version}
ROCM used to build PyTorch: {hip_compiled_version}
OS: {os}
GCC version: {gcc_version}
Clang version: {clang_version}
CMake version: {cmake_version}
Libc version: {libc_version}
Python version: {python_version}
Python platform: {python_platform}
Is CUDA available: {is_cuda_available}
CUDA runtime version: {cuda_runtime_version}
CUDA_MODULE_LOADING set to: {cuda_module_loading}
GPU models and configuration: {nvidia_gpu_models}
Nvidia driver version: {nvidia_driver_version}
cuDNN version: {cudnn_version}
HIP runtime version: {hip_runtime_version}
MIOpen runtime version: {miopen_runtime_version}
Is XNNPACK available: {is_xnnpack_available}
CPU:
{cpu_info}
Versions of relevant libraries:
{pip_packages}
{conda_packages}
""".strip()
env_info_fmt += """
ROCM Version: {rocm_version}
Neuron SDK Version: {neuron_sdk_version}
vLLM Version: {vllm_version}
vLLM Build Flags:
{vllm_build_flags}
GPU Topology:
{gpu_topo}
""".strip()
def pretty_str(envinfo):
def replace_nones(dct, replacement='Could not collect'):
for key in dct.keys():
if dct[key] is not None:
continue
dct[key] = replacement
return dct
def replace_bools(dct, true='Yes', false='No'):
for key in dct.keys():
if dct[key] is True:
dct[key] = true
elif dct[key] is False:
dct[key] = false
return dct
def prepend(text, tag='[prepend]'):
lines = text.split('\n')
updated_lines = [tag + line for line in lines]
return '\n'.join(updated_lines)
def replace_if_empty(text, replacement='No relevant packages'):
if text is not None and len(text) == 0:
return replacement
return text
def maybe_start_on_next_line(string):
# If `string` is multiline, prepend a \n to it.
if string is not None and len(string.split('\n')) > 1:
return '\n{}\n'.format(string)
return string
mutable_dict = envinfo._asdict()
# If nvidia_gpu_models is multiline, start on the next line
mutable_dict['nvidia_gpu_models'] = \
maybe_start_on_next_line(envinfo.nvidia_gpu_models)
# If the machine doesn't have CUDA, report some fields as 'No CUDA'
dynamic_cuda_fields = [
'cuda_runtime_version',
'nvidia_gpu_models',
'nvidia_driver_version',
]
all_cuda_fields = dynamic_cuda_fields + ['cudnn_version']
all_dynamic_cuda_fields_missing = all(mutable_dict[field] is None
for field in dynamic_cuda_fields)
if TORCH_AVAILABLE and not torch.cuda.is_available(
) and all_dynamic_cuda_fields_missing:
for field in all_cuda_fields:
mutable_dict[field] = 'No CUDA'
if envinfo.cuda_compiled_version is None:
mutable_dict['cuda_compiled_version'] = 'None'
# Replace True with Yes, False with No
mutable_dict = replace_bools(mutable_dict)
# Replace all None objects with 'Could not collect'
mutable_dict = replace_nones(mutable_dict)
# If either of these are '', replace with 'No relevant packages'
mutable_dict['pip_packages'] = replace_if_empty(
mutable_dict['pip_packages'])
mutable_dict['conda_packages'] = replace_if_empty(
mutable_dict['conda_packages'])
# Tag conda and pip packages with a prefix
# If they were previously None, they'll show up as ie '[conda] Could not collect'
if mutable_dict['pip_packages']:
mutable_dict['pip_packages'] = prepend(
mutable_dict['pip_packages'], '[{}] '.format(envinfo.pip_version))
if mutable_dict['conda_packages']:
mutable_dict['conda_packages'] = prepend(
mutable_dict['conda_packages'], '[conda] ')
mutable_dict['cpu_info'] = envinfo.cpu_info
return env_info_fmt.format(**mutable_dict)
def get_pretty_env_info():
return pretty_str(get_env_info())
def main():
print("Collecting environment information...")
output = get_pretty_env_info()
print(output)
if TORCH_AVAILABLE and hasattr(torch, 'utils') and hasattr(
torch.utils, '_crash_handler'):
minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR
if sys.platform == "linux" and os.path.exists(minidump_dir):
dumps = [
os.path.join(minidump_dir, dump)
for dump in os.listdir(minidump_dir)
]
latest = max(dumps, key=os.path.getctime)
ctime = os.path.getctime(latest)
creation_time = datetime.datetime.fromtimestamp(ctime).strftime(
'%Y-%m-%d %H:%M:%S')
msg = "\n*** Detected a minidump at {} created on {}, ".format(latest, creation_time) + \
"if this is related to your bug please include it when you file a report ***"
print(msg, file=sys.stderr)
if __name__ == '__main__':
main()

Some files were not shown because too many files have changed in this diff Show More