Compare commits
213 Commits
submission
...
v0.1.6
Author | SHA1 | Date | |
---|---|---|---|
1117aa1411 | |||
080438477f | |||
4b5bcf8906 | |||
852ef5b4f5 | |||
db09d4ad83 | |||
c957c741d9 | |||
c07ece5ca4 | |||
7a9c20c715 | |||
005ba458b5 | |||
320a622ec4 | |||
c9927c1a6a | |||
fbd80ad409 | |||
22379d5513 | |||
1696725879 | |||
002800f081 | |||
e15932bb60 | |||
ce741ba3e4 | |||
bf87484efa | |||
8ce9c50d40 | |||
32b6816e55 | |||
c128d69856 | |||
55b28b1eee | |||
e11222333f | |||
28873a2799 | |||
0080d8329d | |||
0d93f15694 | |||
becd7a56f1 | |||
75471386de | |||
d2b2eed67c | |||
4b6f069b6f | |||
791d79de32 | |||
94d2f59895 | |||
75c0ca9d43 | |||
2a4ec90854 | |||
85ebcda94d | |||
d64bf1646c | |||
a41c20435e | |||
eedac9dba0 | |||
14f9c72bfd | |||
ad5f2fe34c | |||
4f8584756d | |||
65fc1c3127 | |||
c393af6cd7 | |||
0c04ce3234 | |||
73b3de79ea | |||
d1744376ae | |||
805de738f6 | |||
1b151ed181 | |||
e06f504a76 | |||
462ae5220a | |||
66c54aa9c3 | |||
735ecfff61 | |||
a57d13cc96 | |||
79af7e96a0 | |||
621980bdc0 | |||
aa84c92ef6 | |||
f7389f4763 | |||
55fe8a81ec | |||
e8ddc08ec8 | |||
1b0bd0fe8a | |||
20044cab7a | |||
64f23c2900 | |||
d4c7755ca8 | |||
aa39e42c5a | |||
953f28cf9a | |||
c0d00f5be6 | |||
58a072be15 | |||
82ad323dee | |||
df5dd3c68e | |||
2d867b55fa | |||
d7a1c6d614 | |||
7d5a155e4a | |||
1dde34e0f8 | |||
6fc2a38b11 | |||
c487a221ee | |||
9925c17940 | |||
8c4b2592fb | |||
cf21a9bd5c | |||
16c3e295a8 | |||
bda41c70dd | |||
453bafb96f | |||
328d231c17 | |||
b4b195b360 | |||
20b0d88d16 | |||
2bdea7ac11 | |||
58df2883cb | |||
6d7d95a70a | |||
96853af5a8 | |||
dbed69058c | |||
7b6ae94059 | |||
c6dfc3cdbe | |||
51be365143 | |||
c894836108 | |||
75beba29b5 | |||
ddfdf470ae | |||
b6fbb9a565 | |||
2179e4f4c5 | |||
a945fcc2ae | |||
be54f8e5c4 | |||
b396cb4998 | |||
1c395b4eaa | |||
3d64cf019e | |||
98fe8cb542 | |||
ffa6d2f9f9 | |||
404422f42e | |||
7717d0838b | |||
42e0c1df78 | |||
e41f06702c | |||
d6fa1be3a8 | |||
0ffded812a | |||
0bd2a573a5 | |||
49b26e2cec | |||
dafd924c1f | |||
598dc4b79a | |||
85de093472 | |||
f72297562f | |||
9d27b09d12 | |||
998d9d1509 | |||
425040d4c1 | |||
4338cc4750 | |||
bdd6b4c8bc | |||
2b7d3aca2e | |||
4026a049d3 | |||
43710e8d09 | |||
526df28fb2 | |||
2cf1a333b6 | |||
0b7db411b5 | |||
471a7a4566 | |||
6214dd6ce9 | |||
0603379863 | |||
665c48963b | |||
298695b766 | |||
83658c8ace | |||
1d24ccb96c | |||
14f0b39cda | |||
2e0d314384 | |||
67d96c29fb | |||
033f5c78f5 | |||
794e578de0 | |||
caddfc14c1 | |||
fc72e39de3 | |||
b7e62d3454 | |||
364536acd1 | |||
0b32a987dd | |||
570fb2e9cc | |||
a255885f83 | |||
5822ede66e | |||
0370afa2e5 | |||
7e2a913c64 | |||
3f92038b99 | |||
dcda03b4cb | |||
bf5f121c02 | |||
bec7b2dc26 | |||
0b98ba15c7 | |||
e5464ee484 | |||
bab8f3dd0d | |||
eedb46bf03 | |||
311490a720 | |||
da5ddcd544 | |||
5020e1e80c | |||
4298374265 | |||
e38074b1e6 | |||
376725ce74 | |||
456941cfe4 | |||
1a956e136b | |||
8274ca23ac | |||
62ec38ea41 | |||
0eda2e0953 | |||
211318d44a | |||
337871c6fd | |||
56b7f0efa4 | |||
d721168449 | |||
4a151dd453 | |||
057daef778 | |||
e86717833d | |||
aedba6d5ec | |||
a283ec2eec | |||
3f942acfe1 | |||
19d2899439 | |||
655a5e48df | |||
f746ced08d | |||
c3442c1f6f | |||
7297fa6f7c | |||
b7955ef17b | |||
f756799b84 | |||
825d8892b5 | |||
b322fd1607 | |||
667ba3995c | |||
707ec647bb | |||
89988ec8c2 | |||
6208d622ca | |||
42f1042e1c | |||
55f8b0a5de | |||
9f88db35da | |||
ae356774ab | |||
e331957784 | |||
8d66a7b6d7 | |||
ce26e57fd3 | |||
85eb631839 | |||
add055e151 | |||
7c041ab578 | |||
8917782af6 | |||
7addca5935 | |||
c84e924287 | |||
c9d5b6d4a8 | |||
189ae23133 | |||
e548c1488a | |||
130d5fd8c7 | |||
e070829ae8 | |||
436e523bf1 | |||
27f1410d06 | |||
4858f3bb45 | |||
a96d63c21d |
101
.github/workflows/publish.yml
vendored
Normal file
@ -0,0 +1,101 @@
|
||||
# This workflow will upload a Python Package to Release asset
|
||||
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: Create Release
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- v*
|
||||
|
||||
# Needed to create release and upload assets
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
jobs:
|
||||
release:
|
||||
# Retrieve tag and create release
|
||||
name: Create Release
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
upload_url: ${{ steps.create_release.outputs.upload_url }}
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Extract branch info
|
||||
shell: bash
|
||||
run: |
|
||||
echo "release_tag=${GITHUB_REF#refs/*/}" >> $GITHUB_ENV
|
||||
|
||||
- name: Create Release
|
||||
id: create_release
|
||||
uses: "actions/github-script@v6"
|
||||
env:
|
||||
RELEASE_TAG: ${{ env.release_tag }}
|
||||
with:
|
||||
github-token: "${{ secrets.GITHUB_TOKEN }}"
|
||||
script: |
|
||||
const script = require('.github/workflows/scripts/create_release.js')
|
||||
await script(github, context, core)
|
||||
|
||||
wheel:
|
||||
name: Build Wheel
|
||||
runs-on: ${{ matrix.os }}
|
||||
needs: release
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: ['ubuntu-20.04']
|
||||
python-version: ['3.8', '3.9', '3.10', '3.11']
|
||||
cuda-version: ['11.8'] # Github runner can't build anything older than 11.8
|
||||
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Set up Linux Env
|
||||
if: ${{ runner.os == 'Linux' }}
|
||||
run: |
|
||||
bash -x .github/workflows/scripts/env.sh
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Install CUDA ${{ matrix.cuda-version }}
|
||||
run: |
|
||||
bash -x .github/workflows/scripts/cuda-install.sh ${{ matrix.cuda-version }} ${{ matrix.os }}
|
||||
|
||||
- name: Install PyTorch-cu${{ matrix.cuda-version }}
|
||||
run: |
|
||||
bash -x .github/workflows/scripts/pytorch-install.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }}
|
||||
|
||||
- name: Build wheel
|
||||
shell: bash
|
||||
run: |
|
||||
bash -x .github/workflows/scripts/build.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }}
|
||||
wheel_name=$(ls dist/*whl | xargs -n 1 basename)
|
||||
asset_name=${wheel_name//"linux"/"manylinux1"}
|
||||
echo "wheel_name=${wheel_name}" >> $GITHUB_ENV
|
||||
echo "asset_name=${asset_name}" >> $GITHUB_ENV
|
||||
|
||||
- name: Upload Release Asset
|
||||
uses: actions/upload-release-asset@v1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
with:
|
||||
upload_url: ${{ needs.release.outputs.upload_url }}
|
||||
asset_path: ./dist/${{ env.wheel_name }}
|
||||
asset_name: ${{ env.asset_name }}
|
||||
asset_content_type: application/*
|
||||
|
||||
# (Danielkinz): This last step will publish the .whl to pypi. Warning: untested
|
||||
# - name: Publish package
|
||||
# uses: pypa/gh-action-pypi-publish@release/v1.8
|
||||
# with:
|
||||
# repository-url: https://test.pypi.org/legacy/
|
||||
# password: ${{ secrets.PYPI_API_TOKEN }}
|
||||
# skip-existing: true
|
31
.github/workflows/pylint.yml
vendored
Normal file
@ -0,0 +1,31 @@
|
||||
name: pylint
|
||||
|
||||
on:
|
||||
# Trigger the workflow on push or pull request,
|
||||
# but only for the main branch
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
|
||||
jobs:
|
||||
pylint:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.10"]
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install pylint==2.8.2
|
||||
- name: Analysing the code with pylint
|
||||
run: |
|
||||
pylint vllm
|
15
.github/workflows/scripts/build.sh
vendored
Normal file
@ -0,0 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
python_executable=python$1
|
||||
cuda_home=/usr/local/cuda-$2
|
||||
|
||||
# Update paths
|
||||
PATH=${cuda_home}/bin:$PATH
|
||||
LD_LIBRARY_PATH=${cuda_home}/lib64:$LD_LIBRARY_PATH
|
||||
|
||||
# Install requirements
|
||||
$python_executable -m pip install wheel packaging
|
||||
$python_executable -m pip install -r requirements.txt
|
||||
|
||||
# Build
|
||||
$python_executable setup.py bdist_wheel --dist-dir=dist
|
20
.github/workflows/scripts/create_release.js
vendored
Normal file
@ -0,0 +1,20 @@
|
||||
// Uses Github's API to create the release and wait for result.
|
||||
// We use a JS script since github CLI doesn't provide a way to wait for the release's creation and returns immediately.
|
||||
|
||||
module.exports = async (github, context, core) => {
|
||||
try {
|
||||
const response = await github.rest.repos.createRelease({
|
||||
draft: false,
|
||||
generate_release_notes: true,
|
||||
name: process.env.RELEASE_TAG,
|
||||
owner: context.repo.owner,
|
||||
prerelease: false,
|
||||
repo: context.repo.repo,
|
||||
tag_name: process.env.RELEASE_TAG,
|
||||
});
|
||||
|
||||
core.setOutput('upload_url', response.data.upload_url);
|
||||
} catch (error) {
|
||||
core.setFailed(error.message);
|
||||
}
|
||||
}
|
18
.github/workflows/scripts/cuda-install.sh
vendored
Normal file
@ -0,0 +1,18 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Replace '.' with '-' ex: 11.8 -> 11-8
|
||||
cuda_version=$(echo $1 | tr "." "-")
|
||||
# Removes '-' and '.' ex: ubuntu-20.04 -> ubuntu2004
|
||||
OS=$(echo $2 | tr -d ".\-")
|
||||
|
||||
# Installs CUDA
|
||||
wget -nv https://developer.download.nvidia.com/compute/cuda/repos/${OS}/x86_64/cuda-keyring_1.1-1_all.deb
|
||||
sudo dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
rm cuda-keyring_1.1-1_all.deb
|
||||
sudo apt -qq update
|
||||
sudo apt -y install cuda-${cuda_version} cuda-nvcc-${cuda_version} cuda-libraries-dev-${cuda_version}
|
||||
sudo apt clean
|
||||
|
||||
# Test nvcc
|
||||
PATH=/usr/local/cuda-$1/bin:${PATH}
|
||||
nvcc --version
|
56
.github/workflows/scripts/env.sh
vendored
Normal file
@ -0,0 +1,56 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This file installs common linux environment tools
|
||||
|
||||
export LANG C.UTF-8
|
||||
|
||||
# python_version=$1
|
||||
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
software-properties-common \
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
apt-utils \
|
||||
ca-certificates \
|
||||
wget \
|
||||
git \
|
||||
vim \
|
||||
libssl-dev \
|
||||
curl \
|
||||
unzip \
|
||||
unrar \
|
||||
cmake \
|
||||
net-tools \
|
||||
sudo \
|
||||
autotools-dev \
|
||||
rsync \
|
||||
jq \
|
||||
openssh-server \
|
||||
tmux \
|
||||
screen \
|
||||
htop \
|
||||
pdsh \
|
||||
openssh-client \
|
||||
lshw \
|
||||
dmidecode \
|
||||
util-linux \
|
||||
automake \
|
||||
autoconf \
|
||||
libtool \
|
||||
net-tools \
|
||||
pciutils \
|
||||
libpci-dev \
|
||||
libaio-dev \
|
||||
libcap2 \
|
||||
libtinfo5 \
|
||||
fakeroot \
|
||||
devscripts \
|
||||
debhelper \
|
||||
nfs-common
|
||||
|
||||
# Remove github bloat files to free up disk space
|
||||
sudo rm -rf "/usr/local/share/boost"
|
||||
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
|
||||
sudo rm -rf "/usr/share/dotnet"
|
14
.github/workflows/scripts/pytorch-install.sh
vendored
Normal file
@ -0,0 +1,14 @@
|
||||
#!/bin/bash
|
||||
|
||||
python_executable=python$1
|
||||
cuda_version=$2
|
||||
|
||||
# Install torch
|
||||
$python_executable -m pip install numpy pyyaml scipy ipython mkl mkl-include ninja cython typing pandas typing-extensions dataclasses setuptools && conda clean -ya
|
||||
$python_executable -m pip install torch -f https://download.pytorch.org/whl/cu${cuda_version//./}/torch_stable.html
|
||||
|
||||
# Print version information
|
||||
$python_executable --version
|
||||
$python_executable -c "import torch; print('PyTorch:', torch.__version__)"
|
||||
$python_executable -c "import torch; print('CUDA:', torch.version.cuda)"
|
||||
$python_executable -c "from torch.utils import cpp_extension; print (cpp_extension.CUDA_HOME)"
|
31
.github/workflows/yapf.yml
vendored
Normal file
@ -0,0 +1,31 @@
|
||||
name: yapf
|
||||
|
||||
on:
|
||||
# Trigger the workflow on push or pull request,
|
||||
# but only for the main branch
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
jobs:
|
||||
yapf:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.10"]
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install yapf==0.32.0
|
||||
pip install toml==0.10.2
|
||||
- name: Running yapf
|
||||
run: |
|
||||
yapf --diff --recursive vllm --exclude 'vllm/model_executor/parallel_utils/**'
|
181
.gitignore
vendored
@ -1,10 +1,175 @@
|
||||
**/*.pyc
|
||||
**/__pycache__/
|
||||
*.egg-info/
|
||||
*.eggs/
|
||||
*.so
|
||||
build/
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# poetry
|
||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
#poetry.lock
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
#pdm.lock
|
||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||
# in version control.
|
||||
# https://pdm.fming.dev/#use-with-ide
|
||||
.pdm.toml
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
.idea/
|
||||
|
||||
# VSCode
|
||||
.vscode/
|
||||
|
||||
# DS Store
|
||||
.DS_Store
|
||||
|
||||
# Results
|
||||
*.csv
|
||||
|
||||
# Python pickle files
|
||||
*.pkl
|
||||
*.png
|
||||
**/log.txt
|
||||
|
||||
# Sphinx documentation
|
||||
_build/
|
||||
|
434
.pylintrc
Normal file
@ -0,0 +1,434 @@
|
||||
# This Pylint rcfile contains a best-effort configuration to uphold the
|
||||
# best-practices and style described in the Google Python style guide:
|
||||
# https://google.github.io/styleguide/pyguide.html
|
||||
#
|
||||
# Its canonical open-source location is:
|
||||
# https://google.github.io/styleguide/pylintrc
|
||||
|
||||
[MASTER]
|
||||
|
||||
# Files or directories to be skipped. They should be base names, not paths.
|
||||
ignore=docs,parallel_utils
|
||||
|
||||
# Files or directories matching the regex patterns are skipped. The regex
|
||||
# matches against base names, not paths.
|
||||
ignore-patterns=
|
||||
|
||||
# Pickle collected data for later comparisons.
|
||||
persistent=no
|
||||
|
||||
# List of plugins (as comma separated values of python modules names) to load,
|
||||
# usually to register additional checkers.
|
||||
load-plugins=
|
||||
|
||||
# Use multiple processes to speed up Pylint.
|
||||
jobs=4
|
||||
|
||||
# Allow loading of arbitrary C extensions. Extensions are imported into the
|
||||
# active Python interpreter and may run arbitrary code.
|
||||
unsafe-load-any-extension=no
|
||||
|
||||
|
||||
[MESSAGES CONTROL]
|
||||
|
||||
# Only show warnings with the listed confidence levels. Leave empty to show
|
||||
# all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED
|
||||
confidence=
|
||||
|
||||
# Enable the message, report, category or checker with the given id(s). You can
|
||||
# either give multiple identifier separated by comma (,) or put this option
|
||||
# multiple time (only on the command line, not in the configuration file where
|
||||
# it should appear only once). See also the "--disable" option for examples.
|
||||
#enable=
|
||||
|
||||
# Disable the message, report, category or checker with the given id(s). You
|
||||
# can either give multiple identifiers separated by comma (,) or put this
|
||||
# option multiple times (only on the command line, not in the configuration
|
||||
# file where it should appear only once).You can also use "--disable=all" to
|
||||
# disable everything first and then reenable specific checks. For example, if
|
||||
# you want to run only the similarities checker, you can use "--disable=all
|
||||
# --enable=similarities". If you want to run only the classes checker, but have
|
||||
# no Warning level messages displayed, use"--disable=all --enable=classes
|
||||
# --disable=W"
|
||||
disable=abstract-method,
|
||||
apply-builtin,
|
||||
arguments-differ,
|
||||
attribute-defined-outside-init,
|
||||
backtick,
|
||||
bad-option-value,
|
||||
basestring-builtin,
|
||||
buffer-builtin,
|
||||
c-extension-no-member,
|
||||
consider-using-enumerate,
|
||||
cmp-builtin,
|
||||
cmp-method,
|
||||
coerce-builtin,
|
||||
coerce-method,
|
||||
delslice-method,
|
||||
div-method,
|
||||
duplicate-code,
|
||||
eq-without-hash,
|
||||
execfile-builtin,
|
||||
file-builtin,
|
||||
filter-builtin-not-iterating,
|
||||
fixme,
|
||||
getslice-method,
|
||||
global-statement,
|
||||
hex-method,
|
||||
idiv-method,
|
||||
implicit-str-concat-in-sequence,
|
||||
import-error,
|
||||
import-self,
|
||||
import-star-module-level,
|
||||
inconsistent-return-statements,
|
||||
input-builtin,
|
||||
intern-builtin,
|
||||
invalid-str-codec,
|
||||
locally-disabled,
|
||||
logging-fstring-interpolation, # added by vLLM
|
||||
logging-not-lazy, # added by vLLM
|
||||
long-builtin,
|
||||
long-suffix,
|
||||
map-builtin-not-iterating,
|
||||
misplaced-comparison-constant,
|
||||
missing-class-docstring, # TODO (vLLM): enable
|
||||
missing-function-docstring,
|
||||
missing-module-docstring, # TODO (vLLM): enable
|
||||
metaclass-assignment,
|
||||
next-method-called,
|
||||
next-method-defined,
|
||||
no-absolute-import,
|
||||
no-else-break,
|
||||
no-else-continue,
|
||||
no-else-raise,
|
||||
no-else-return,
|
||||
no-init, # added
|
||||
no-member,
|
||||
no-name-in-module,
|
||||
no-self-use,
|
||||
nonzero-method,
|
||||
oct-method,
|
||||
old-division,
|
||||
old-ne-operator,
|
||||
old-octal-literal,
|
||||
old-raise-syntax,
|
||||
parameter-unpacking,
|
||||
print-statement,
|
||||
raising-string,
|
||||
range-builtin-not-iterating,
|
||||
raw_input-builtin,
|
||||
rdiv-method,
|
||||
reduce-builtin,
|
||||
relative-import,
|
||||
reload-builtin,
|
||||
round-builtin,
|
||||
setslice-method,
|
||||
signature-differs,
|
||||
standarderror-builtin,
|
||||
suppressed-message,
|
||||
sys-max-int,
|
||||
too-few-public-methods,
|
||||
too-many-ancestors,
|
||||
too-many-arguments,
|
||||
too-many-boolean-expressions,
|
||||
too-many-branches,
|
||||
too-many-instance-attributes,
|
||||
too-many-locals,
|
||||
too-many-nested-blocks,
|
||||
too-many-public-methods,
|
||||
too-many-return-statements,
|
||||
too-many-statements,
|
||||
trailing-newlines,
|
||||
unichr-builtin,
|
||||
unicode-builtin,
|
||||
unnecessary-pass,
|
||||
unpacking-in-except,
|
||||
unspecified-encoding,
|
||||
useless-else-on-loop,
|
||||
useless-object-inheritance,
|
||||
useless-suppression,
|
||||
using-cmp-argument,
|
||||
wrong-import-order,
|
||||
xrange-builtin,
|
||||
zip-builtin-not-iterating,
|
||||
|
||||
|
||||
[REPORTS]
|
||||
|
||||
# Set the output format. Available formats are text, parseable, colorized, msvs
|
||||
# (visual studio) and html. You can also give a reporter class, eg
|
||||
# mypackage.mymodule.MyReporterClass.
|
||||
output-format=text
|
||||
|
||||
# Tells whether to display a full report or only the messages
|
||||
reports=no
|
||||
|
||||
# Python expression which should return a note less than 10 (10 is the highest
|
||||
# note). You have access to the variables errors warning, statement which
|
||||
# respectively contain the number of errors / warnings messages and the total
|
||||
# number of statements analyzed. This is used by the global evaluation report
|
||||
# (RP0004).
|
||||
evaluation=10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)
|
||||
|
||||
# Template used to display messages. This is a python new-style format string
|
||||
# used to format the message information. See doc for all details
|
||||
#msg-template=
|
||||
|
||||
|
||||
[BASIC]
|
||||
|
||||
# Good variable names which should always be accepted, separated by a comma
|
||||
good-names=main,_
|
||||
|
||||
# Bad variable names which should always be refused, separated by a comma
|
||||
bad-names=
|
||||
|
||||
# Colon-delimited sets of names that determine each other's naming style when
|
||||
# the name regexes allow several styles.
|
||||
name-group=
|
||||
|
||||
# Include a hint for the correct naming format with invalid-name
|
||||
include-naming-hint=no
|
||||
|
||||
# List of decorators that produce properties, such as abc.abstractproperty. Add
|
||||
# to this list to register other decorators that produce valid properties.
|
||||
property-classes=abc.abstractproperty,cached_property.cached_property,cached_property.threaded_cached_property,cached_property.cached_property_with_ttl,cached_property.threaded_cached_property_with_ttl
|
||||
|
||||
# Regular expression matching correct function names
|
||||
function-rgx=^(?:(?P<exempt>setUp|tearDown|setUpModule|tearDownModule)|(?P<camel_case>_?[A-Z][a-zA-Z0-9]*)|(?P<snake_case>_?[a-z][a-z0-9_]*))$
|
||||
|
||||
# Regular expression matching correct variable names
|
||||
variable-rgx=^[a-z][a-z0-9_]*$
|
||||
|
||||
# Regular expression matching correct constant names
|
||||
const-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
|
||||
|
||||
# Regular expression matching correct attribute names
|
||||
attr-rgx=^_{0,2}[a-z][a-z0-9_]*$
|
||||
|
||||
# Regular expression matching correct argument names
|
||||
argument-rgx=^[a-z][a-z0-9_]*$
|
||||
|
||||
# Regular expression matching correct class attribute names
|
||||
class-attribute-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
|
||||
|
||||
# Regular expression matching correct inline iteration names
|
||||
inlinevar-rgx=^[a-z][a-z0-9_]*$
|
||||
|
||||
# Regular expression matching correct class names
|
||||
class-rgx=^_?[A-Z][a-zA-Z0-9]*$
|
||||
|
||||
# Regular expression matching correct module names
|
||||
module-rgx=^(_?[a-z][a-z0-9_]*|__init__)$
|
||||
|
||||
# Regular expression matching correct method names
|
||||
method-rgx=(?x)^(?:(?P<exempt>_[a-z0-9_]+__|runTest|setUp|tearDown|setUpTestCase|tearDownTestCase|setupSelf|tearDownClass|setUpClass|(test|assert)_*[A-Z0-9][a-zA-Z0-9_]*|next)|(?P<camel_case>_{0,2}[A-Z][a-zA-Z0-9_]*)|(?P<snake_case>_{0,2}[a-z][a-z0-9_]*))$
|
||||
|
||||
# Regular expression which should only match function or class names that do
|
||||
# not require a docstring.
|
||||
no-docstring-rgx=(__.*__|main|test.*|.*test|.*Test)$
|
||||
|
||||
# Minimum line length for functions/classes that require docstrings, shorter
|
||||
# ones are exempt.
|
||||
docstring-min-length=10
|
||||
|
||||
|
||||
[TYPECHECK]
|
||||
|
||||
# List of decorators that produce context managers, such as
|
||||
# contextlib.contextmanager. Add to this list to register other decorators that
|
||||
# produce valid context managers.
|
||||
contextmanager-decorators=contextlib.contextmanager,contextlib2.contextmanager
|
||||
|
||||
# Tells whether missing members accessed in mixin class should be ignored. A
|
||||
# mixin class is detected if its name ends with "mixin" (case insensitive).
|
||||
ignore-mixin-members=yes
|
||||
|
||||
# List of module names for which member attributes should not be checked
|
||||
# (useful for modules/projects where namespaces are manipulated during runtime
|
||||
# and thus existing member attributes cannot be deduced by static analysis. It
|
||||
# supports qualified module names, as well as Unix pattern matching.
|
||||
ignored-modules=
|
||||
|
||||
# List of class names for which member attributes should not be checked (useful
|
||||
# for classes with dynamically set attributes). This supports the use of
|
||||
# qualified names.
|
||||
ignored-classes=optparse.Values,thread._local,_thread._local
|
||||
|
||||
# List of members which are set dynamically and missed by pylint inference
|
||||
# system, and so shouldn't trigger E1101 when accessed. Python regular
|
||||
# expressions are accepted.
|
||||
generated-members=
|
||||
|
||||
|
||||
[FORMAT]
|
||||
|
||||
# Maximum number of characters on a single line.
|
||||
max-line-length=80
|
||||
|
||||
# TODO(https://github.com/PyCQA/pylint/issues/3352): Direct pylint to exempt
|
||||
# lines made too long by directives to pytype.
|
||||
|
||||
# Regexp for a line that is allowed to be longer than the limit.
|
||||
ignore-long-lines=(?x)(
|
||||
^\s*(\#\ )?<?https?://\S+>?$|
|
||||
^\s*(from\s+\S+\s+)?import\s+.+$)
|
||||
|
||||
# Allow the body of an if to be on the same line as the test if there is no
|
||||
# else.
|
||||
single-line-if-stmt=yes
|
||||
|
||||
# Maximum number of lines in a module
|
||||
max-module-lines=99999
|
||||
|
||||
# String used as indentation unit. The internal Google style guide mandates 2
|
||||
# spaces. Google's externaly-published style guide says 4, consistent with
|
||||
# PEP 8. Here, we use 2 spaces, for conformity with many open-sourced Google
|
||||
# projects (like TensorFlow).
|
||||
indent-string=' '
|
||||
|
||||
# Number of spaces of indent required inside a hanging or continued line.
|
||||
indent-after-paren=4
|
||||
|
||||
# Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
|
||||
expected-line-ending-format=
|
||||
|
||||
|
||||
[MISCELLANEOUS]
|
||||
|
||||
# List of note tags to take in consideration, separated by a comma.
|
||||
notes=TODO
|
||||
|
||||
|
||||
[STRING]
|
||||
|
||||
# This flag controls whether inconsistent-quotes generates a warning when the
|
||||
# character used as a quote delimiter is used inconsistently within a module.
|
||||
check-quote-consistency=yes
|
||||
|
||||
|
||||
[VARIABLES]
|
||||
|
||||
# Tells whether we should check for unused import in __init__ files.
|
||||
init-import=no
|
||||
|
||||
# A regular expression matching the name of dummy variables (i.e. expectedly
|
||||
# not used).
|
||||
dummy-variables-rgx=^\*{0,2}(_$|unused_|dummy_)
|
||||
|
||||
# List of additional names supposed to be defined in builtins. Remember that
|
||||
# you should avoid to define new builtins when possible.
|
||||
additional-builtins=
|
||||
|
||||
# List of strings which can identify a callback function by name. A callback
|
||||
# name must start or end with one of those strings.
|
||||
callbacks=cb_,_cb
|
||||
|
||||
# List of qualified module names which can have objects that can redefine
|
||||
# builtins.
|
||||
redefining-builtins-modules=six,six.moves,past.builtins,future.builtins,functools
|
||||
|
||||
|
||||
[LOGGING]
|
||||
|
||||
# Logging modules to check that the string format arguments are in logging
|
||||
# function parameter format
|
||||
logging-modules=logging,absl.logging,tensorflow.io.logging
|
||||
|
||||
|
||||
[SIMILARITIES]
|
||||
|
||||
# Minimum lines number of a similarity.
|
||||
min-similarity-lines=4
|
||||
|
||||
# Ignore comments when computing similarities.
|
||||
ignore-comments=yes
|
||||
|
||||
# Ignore docstrings when computing similarities.
|
||||
ignore-docstrings=yes
|
||||
|
||||
# Ignore imports when computing similarities.
|
||||
ignore-imports=no
|
||||
|
||||
|
||||
[SPELLING]
|
||||
|
||||
# Spelling dictionary name. Available dictionaries: none. To make it working
|
||||
# install python-enchant package.
|
||||
spelling-dict=
|
||||
|
||||
# List of comma separated words that should not be checked.
|
||||
spelling-ignore-words=
|
||||
|
||||
# A path to a file that contains private dictionary; one word per line.
|
||||
spelling-private-dict-file=
|
||||
|
||||
# Tells whether to store unknown words to indicated private dictionary in
|
||||
# --spelling-private-dict-file option instead of raising a message.
|
||||
spelling-store-unknown-words=no
|
||||
|
||||
|
||||
[IMPORTS]
|
||||
|
||||
# Deprecated modules which should not be used, separated by a comma
|
||||
deprecated-modules=regsub,
|
||||
TERMIOS,
|
||||
Bastion,
|
||||
rexec,
|
||||
sets
|
||||
|
||||
# Create a graph of every (i.e. internal and external) dependencies in the
|
||||
# given file (report RP0402 must not be disabled)
|
||||
import-graph=
|
||||
|
||||
# Create a graph of external dependencies in the given file (report RP0402 must
|
||||
# not be disabled)
|
||||
ext-import-graph=
|
||||
|
||||
# Create a graph of internal dependencies in the given file (report RP0402 must
|
||||
# not be disabled)
|
||||
int-import-graph=
|
||||
|
||||
# Force import order to recognize a module as part of the standard
|
||||
# compatibility libraries.
|
||||
known-standard-library=
|
||||
|
||||
# Force import order to recognize a module as part of a third party library.
|
||||
known-third-party=enchant, absl
|
||||
|
||||
# Analyse import fallback blocks. This can be used to support both Python 2 and
|
||||
# 3 compatible code, which means that the block might have code that exists
|
||||
# only in one or another interpreter, leading to false positives when analysed.
|
||||
analyse-fallback-blocks=no
|
||||
|
||||
|
||||
[CLASSES]
|
||||
|
||||
# List of method names used to declare (i.e. assign) instance attributes.
|
||||
defining-attr-methods=__init__,
|
||||
__new__,
|
||||
setUp
|
||||
|
||||
# List of member names, which should be excluded from the protected access
|
||||
# warning.
|
||||
exclude-protected=_asdict,
|
||||
_fields,
|
||||
_replace,
|
||||
_source,
|
||||
_make
|
||||
|
||||
# List of valid names for the first argument in a class method.
|
||||
valid-classmethod-first-arg=cls,
|
||||
class_
|
||||
|
||||
# List of valid names for the first argument in a metaclass class method.
|
||||
valid-metaclass-classmethod-first-arg=mcs
|
||||
|
||||
|
||||
[EXCEPTIONS]
|
||||
|
||||
# Exceptions that will emit a warning when being caught. Defaults to
|
||||
# "Exception"
|
||||
overgeneral-exceptions=StandardError,
|
||||
Exception,
|
||||
BaseException
|
21
.readthedocs.yaml
Normal file
@ -0,0 +1,21 @@
|
||||
# Read the Docs configuration file
|
||||
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
|
||||
|
||||
version: 2
|
||||
|
||||
build:
|
||||
os: ubuntu-22.04
|
||||
tools:
|
||||
python: "3.8"
|
||||
|
||||
sphinx:
|
||||
configuration: docs/source/conf.py
|
||||
|
||||
# If using Sphinx, optionally build your docs in additional formats such as PDF
|
||||
formats:
|
||||
- pdf
|
||||
|
||||
# Optionally declare the Python requirements required to build your docs
|
||||
python:
|
||||
install:
|
||||
- requirements: docs/requirements-docs.txt
|
77
CONTRIBUTING.md
Normal file
@ -0,0 +1,77 @@
|
||||
# Contributing to vLLM
|
||||
|
||||
Thank you for your interest in contributing to vLLM!
|
||||
Our community is open to everyone and welcomes all kinds of contributions, no matter how small or large.
|
||||
There are several ways you can contribute to the project:
|
||||
|
||||
- Identify and report any issues or bugs.
|
||||
- Request or add a new model.
|
||||
- Suggest or implement new features.
|
||||
|
||||
However, remember that contributions aren't just about code.
|
||||
We believe in the power of community support; thus, answering queries, assisting others, and enhancing the documentation are highly regarded and beneficial contributions.
|
||||
|
||||
Finally, one of the most impactful ways to support us is by raising awareness about vLLM.
|
||||
Talk about it in your blog posts, highlighting how it's driving your incredible projects.
|
||||
Express your support on Twitter if vLLM aids you, or simply offer your appreciation by starring our repository.
|
||||
|
||||
|
||||
## Setup for development
|
||||
|
||||
### Build from source
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
pip install -e . # This may take several minutes.
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
||||
```bash
|
||||
pip install -r requirements-dev.txt
|
||||
|
||||
# Static type checking
|
||||
mypy
|
||||
# Unit tests
|
||||
pytest tests/
|
||||
```
|
||||
**Note:** Currently, the repository does not pass the mypy tests.
|
||||
|
||||
|
||||
## Contributing Guidelines
|
||||
|
||||
### Issue Reporting
|
||||
|
||||
If you encounter a bug or have a feature request, please check our issues page first to see if someone else has already reported it.
|
||||
If not, please file a new issue, providing as much relevant information as possible.
|
||||
|
||||
### Coding Style Guide
|
||||
|
||||
In general, we adhere to [Google Python style guide](https://google.github.io/styleguide/pyguide.html) and [Google C++ style guide](https://google.github.io/styleguide/cppguide.html).
|
||||
|
||||
We include a formatting script [`format.sh`](./format.sh) to format the code.
|
||||
|
||||
### Pull Requests
|
||||
|
||||
When submitting a pull request:
|
||||
|
||||
1. Make sure your code has been rebased on top of the latest commit on the main branch.
|
||||
2. Ensure code is properly formatted by running [`format.sh`](./format.sh).
|
||||
3. Include a detailed description of the changes in the pull request.
|
||||
Explain why you made the changes you did.
|
||||
If your pull request fixes an open issue, please include a reference to it in the description.
|
||||
|
||||
### Code Reviews
|
||||
|
||||
All submissions, including submissions by project members, require a code review.
|
||||
To make the review process as smooth as possible, please:
|
||||
|
||||
1. Keep your changes as concise as possible.
|
||||
If your pull request involves multiple unrelated changes, consider splitting it into separate pull requests.
|
||||
2. Respond to all comments within a reasonable time frame.
|
||||
If a comment isn't clear or you disagree with a suggestion, feel free to ask for clarification or discuss the suggestion.
|
||||
|
||||
### Thank You
|
||||
|
||||
Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM.
|
||||
Your contributions make vLLM a great tool for everyone!
|
201
LICENSE
Normal file
@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
4
MANIFEST.in
Normal file
@ -0,0 +1,4 @@
|
||||
include LICENSE
|
||||
include requirements.txt
|
||||
|
||||
recursive-include csrc *
|
154
README.md
@ -1,72 +1,106 @@
|
||||
# CacheFlow
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png">
|
||||
<img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
|
||||
</picture>
|
||||
</p>
|
||||
|
||||
## Installation
|
||||
<h3 align="center">
|
||||
Easy, fast, and cheap LLM serving for everyone
|
||||
</h3>
|
||||
|
||||
<p align="center">
|
||||
| <a href="https://vllm.readthedocs.io/en/latest/"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://github.com/vllm-project/vllm/discussions"><b>Discussions</b></a> |
|
||||
|
||||
</p>
|
||||
|
||||
---
|
||||
|
||||
*Latest News* 🔥
|
||||
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
|
||||
- [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!
|
||||
- [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click [example](https://github.com/skypilot-org/skypilot/blob/master/llm/vllm) to start the vLLM demo, and the [blog post](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/) for the story behind vLLM development on the clouds.
|
||||
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
|
||||
|
||||
---
|
||||
|
||||
vLLM is a fast and easy-to-use library for LLM inference and serving.
|
||||
|
||||
vLLM is fast with:
|
||||
|
||||
- State-of-the-art serving throughput
|
||||
- Efficient management of attention key and value memory with **PagedAttention**
|
||||
- Continuous batching of incoming requests
|
||||
- Optimized CUDA kernels
|
||||
|
||||
vLLM is flexible and easy to use with:
|
||||
|
||||
- Seamless integration with popular HuggingFace models
|
||||
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
|
||||
- Tensor parallelism support for distributed inference
|
||||
- Streaming outputs
|
||||
- OpenAI-compatible API server
|
||||
|
||||
vLLM seamlessly supports many Huggingface models, including the following architectures:
|
||||
|
||||
- Aquila (`BAAI/Aquila-7B`, `BAAI/AquilaChat-7B`, etc.)
|
||||
- Baichuan (`baichuan-inc/Baichuan-7B`, `baichuan-inc/Baichuan-13B-Chat`, etc.)
|
||||
- BLOOM (`bigscience/bloom`, `bigscience/bloomz`, etc.)
|
||||
- Falcon (`tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc.)
|
||||
- GPT-2 (`gpt2`, `gpt2-xl`, etc.)
|
||||
- GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, etc.)
|
||||
- GPT-J (`EleutherAI/gpt-j-6b`, `nomic-ai/gpt4all-j`, etc.)
|
||||
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
|
||||
- InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.)
|
||||
- LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
|
||||
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
|
||||
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
|
||||
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)
|
||||
|
||||
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
|
||||
|
||||
```bash
|
||||
pip install psutil numpy ray torch
|
||||
pip install git+https://github.com/huggingface/transformers # Required for LLaMA.
|
||||
pip install sentencepiece # Required for LlamaTokenizer.
|
||||
pip install ninja # To parallelize the compilation of flash-attn.
|
||||
pip install flash-attn # This may take up to 10 mins.
|
||||
pip install -e .
|
||||
pip install vllm
|
||||
```
|
||||
|
||||
## Test simple server
|
||||
## Getting Started
|
||||
|
||||
```bash
|
||||
ray start --head
|
||||
python simple_server.py
|
||||
```
|
||||
Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to get started.
|
||||
- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)
|
||||
- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)
|
||||
- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)
|
||||
|
||||
The detailed arguments for `simple_server.py` can be found by:
|
||||
```bash
|
||||
python simple_server.py --help
|
||||
```
|
||||
## Performance
|
||||
|
||||
## FastAPI server
|
||||
vLLM outperforms HuggingFace Transformers (HF) by up to 24x and Text Generation Inference (TGI) by up to 3.5x, in terms of throughput.
|
||||
For details, check out our [blog post](https://vllm.ai).
|
||||
|
||||
Install the following additional dependencies:
|
||||
```bash
|
||||
pip install fastapi uvicorn
|
||||
```
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n1_dark.png">
|
||||
<img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n1_light.png" width="45%">
|
||||
</picture>
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n1_dark.png">
|
||||
<img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n1_light.png" width="45%">
|
||||
</picture>
|
||||
<br>
|
||||
<em> Serving throughput when each request asks for 1 output completion. </em>
|
||||
</p>
|
||||
|
||||
To start the server:
|
||||
```bash
|
||||
ray start --head
|
||||
python -m cacheflow.http_frontend.fastapi_frontend
|
||||
```
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n3_dark.png">
|
||||
<img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n3_light.png" width="45%">
|
||||
</picture>
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n3_dark.png">
|
||||
<img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n3_light.png" width="45%">
|
||||
</picture> <br>
|
||||
<em> Serving throughput when each request asks for 3 output completions. </em>
|
||||
</p>
|
||||
|
||||
To test the server:
|
||||
```bash
|
||||
python -m cacheflow.http_frontend.test_cli_client
|
||||
```
|
||||
## Contributing
|
||||
|
||||
## Gradio web server
|
||||
|
||||
Install the following additional dependencies:
|
||||
```bash
|
||||
pip install gradio
|
||||
```
|
||||
|
||||
Start the server:
|
||||
```bash
|
||||
python -m cacheflow.http_frontend.fastapi_frontend
|
||||
# At another terminal
|
||||
python -m cacheflow.http_frontend.gradio_webserver
|
||||
```
|
||||
|
||||
## Load LLaMA weights
|
||||
|
||||
Since LLaMA weight is not fully public, we cannot directly download the LLaMA weights from huggingface. Therefore, you need to follow the following process to load the LLaMA weights.
|
||||
|
||||
1. Converting LLaMA weights to huggingface format with [this script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py).
|
||||
```bash
|
||||
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
|
||||
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path/llama-7b
|
||||
```
|
||||
Please make sure that `llama` is included in the output directory name.
|
||||
2. For all the commands above, specify the model with `--model /output/path/llama-7b` to load the model. For example:
|
||||
```bash
|
||||
python simple_server.py --model /output/path/llama-7b
|
||||
python -m cacheflow.http_frontend.fastapi_frontend --model /output/path/llama-7b
|
||||
```
|
||||
We welcome and value any contributions and collaborations.
|
||||
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.
|
||||
|
@ -1,165 +0,0 @@
|
||||
import functools
|
||||
import random
|
||||
import time
|
||||
from typing import List
|
||||
|
||||
from flash_attn.flash_attn_interface import _flash_attn_forward
|
||||
import torch
|
||||
|
||||
from cacheflow import attention_ops
|
||||
|
||||
|
||||
def benchmark(name, f, num_warmup = 10, num_iters = 100):
|
||||
for _ in range(num_warmup):
|
||||
f()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
start = time.time()
|
||||
for _ in range(num_iters):
|
||||
f()
|
||||
torch.cuda.synchronize()
|
||||
end = time.time()
|
||||
print(f'{name}: {(end - start) / num_iters * 1000:.3f} ms')
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def benchmark_multi_query_cached_kv_attention(
|
||||
query_lens: List[int],
|
||||
context_lens: List[int],
|
||||
num_heads: int,
|
||||
head_size: int,
|
||||
block_size: int,
|
||||
num_blocks: int,
|
||||
dtype: torch.dtype,
|
||||
) -> None:
|
||||
print(f'query_lens: {query_lens}, context_lens: {context_lens}, '
|
||||
f'num_heads: {num_heads}, head_size: {head_size}, block_size: '
|
||||
f'{block_size}, num_blocks: {num_blocks}, dtype: {dtype}')
|
||||
# Create query tensor.
|
||||
num_queries = len(query_lens)
|
||||
cu_query_lens = [0]
|
||||
for query_len in query_lens:
|
||||
cu_query_lens.append(cu_query_lens[-1] + query_len)
|
||||
num_total_tokens = cu_query_lens[-1]
|
||||
qkv = torch.randn(
|
||||
num_total_tokens, 3, num_heads, head_size, dtype=dtype, device='cuda')
|
||||
query, _, _ = qkv.unbind(dim=1)
|
||||
|
||||
# Create key and value cache.
|
||||
x = 16 // torch.tensor([], dtype=dtype).element_size()
|
||||
key_block_shape = (num_heads, head_size // x, block_size, x)
|
||||
key_cache = torch.randn(
|
||||
size=(num_blocks, *key_block_shape), dtype=dtype, device='cuda')
|
||||
value_block_shape = (num_heads, head_size, block_size)
|
||||
value_cache = torch.randn(
|
||||
size=(num_blocks, *value_block_shape), dtype=dtype, device='cuda')
|
||||
|
||||
# Create block tables.
|
||||
max_context_len = max(context_lens)
|
||||
max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
|
||||
block_tables = []
|
||||
for _ in range(num_queries):
|
||||
block_table = [
|
||||
random.randint(0, num_blocks - 1)
|
||||
for _ in range(max_num_blocks_per_seq)
|
||||
]
|
||||
block_tables.append(block_table)
|
||||
block_tables = torch.tensor(block_tables, dtype=torch.int, device='cuda')
|
||||
|
||||
# Create input and output data structures.
|
||||
cu_query_lens = torch.tensor(cu_query_lens, dtype=torch.int, device='cuda')
|
||||
context_len_tensor = torch.tensor(context_lens, dtype=torch.int, device='cuda')
|
||||
scale = float(1.0 / (head_size ** 0.5))
|
||||
output = torch.empty(
|
||||
num_total_tokens, num_heads, head_size, dtype=dtype, device='cuda')
|
||||
|
||||
# Run our implementation.
|
||||
def run_ours():
|
||||
attention_ops.multi_query_cached_kv_attention(
|
||||
cu_query_lens,
|
||||
output,
|
||||
query,
|
||||
key_cache,
|
||||
value_cache,
|
||||
scale,
|
||||
block_tables,
|
||||
context_len_tensor,
|
||||
block_size,
|
||||
max_context_len,
|
||||
)
|
||||
benchmark('Ours', run_ours)
|
||||
|
||||
# Upper bound: Flash attention.
|
||||
# Becuase Flash attention cannot read our own cache,
|
||||
# we make key and value tensors contiguous.
|
||||
num_kv_tokens = sum(context_lens)
|
||||
cu_context_lens = [0]
|
||||
for context_len in context_lens:
|
||||
cu_context_lens.append(cu_context_lens[-1] + context_len)
|
||||
cu_context_lens = torch.tensor(cu_context_lens, dtype=torch.int, device='cuda')
|
||||
qkv = torch.randn(
|
||||
num_kv_tokens, 3, num_heads, head_size, dtype=dtype, device='cuda')
|
||||
_, key, value = qkv.unbind(dim=1)
|
||||
ref_output = torch.empty_like(output)
|
||||
|
||||
# Run Flash attention.
|
||||
def run_flash_attn():
|
||||
_flash_attn_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
ref_output,
|
||||
cu_query_lens,
|
||||
cu_context_lens,
|
||||
max(query_lens),
|
||||
max_context_len,
|
||||
dropout_p=0.0,
|
||||
softmax_scale=scale,
|
||||
causal=True,
|
||||
return_softmax=False,
|
||||
)
|
||||
benchmark('Flash attention', run_flash_attn)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
BLOCK_SIZE = 8
|
||||
NUM_BLOCKS = 1024
|
||||
DTYPE = torch.half
|
||||
|
||||
# LLaMA-13B and OPT-13B
|
||||
NUM_HEADS = 40
|
||||
HEAD_SIZE = 128
|
||||
|
||||
run_benchmark = functools.partial(
|
||||
benchmark_multi_query_cached_kv_attention,
|
||||
num_heads=NUM_HEADS,
|
||||
head_size=HEAD_SIZE,
|
||||
block_size=BLOCK_SIZE,
|
||||
num_blocks=NUM_BLOCKS,
|
||||
dtype=DTYPE,
|
||||
)
|
||||
|
||||
run_benchmark(
|
||||
query_lens=[64] * 1,
|
||||
context_lens=[64] * 1,
|
||||
)
|
||||
run_benchmark(
|
||||
query_lens=[128] * 1,
|
||||
context_lens=[128] * 1,
|
||||
)
|
||||
run_benchmark(
|
||||
query_lens=[64] * 8,
|
||||
context_lens=[64] * 8,
|
||||
)
|
||||
run_benchmark(
|
||||
query_lens=[128] * 8,
|
||||
context_lens=[128] * 8,
|
||||
)
|
||||
run_benchmark(
|
||||
query_lens=[64, 32, 16],
|
||||
context_lens=[128, 256, 64],
|
||||
)
|
||||
run_benchmark(
|
||||
query_lens=[1024],
|
||||
context_lens=[1024],
|
||||
)
|
@ -1,81 +0,0 @@
|
||||
import functools
|
||||
import random
|
||||
import time
|
||||
|
||||
import torch
|
||||
|
||||
from cacheflow import cache_ops
|
||||
|
||||
|
||||
def benchmark(name, f, size: int, num_warmup = 10, num_iters = 100):
|
||||
for _ in range(num_warmup):
|
||||
f()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
start = time.time()
|
||||
for _ in range(num_iters):
|
||||
f()
|
||||
torch.cuda.synchronize()
|
||||
end = time.time()
|
||||
avg_time = (end - start) / num_iters
|
||||
print(f'[Latency] {name}: {avg_time * 1000:.3f} ms')
|
||||
print(f'[Throughput] {name}: {size / avg_time / 2 ** 30:.3f} GB/s')
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def test_gather_cached_kv(
|
||||
num_tokens: int,
|
||||
num_heads: int,
|
||||
head_size: int,
|
||||
block_size: int,
|
||||
num_blocks: int,
|
||||
dtype: torch.dtype,
|
||||
) -> None:
|
||||
print(f'num_tokens: {num_tokens}, num_heads: {num_heads}, '
|
||||
f'head_size: {head_size}, block_size: {block_size}, '
|
||||
f'num_blocks: {num_blocks}, dtype: {dtype}')
|
||||
|
||||
num_slots = block_size * num_blocks
|
||||
slot_mapping = random.sample(range(num_slots), num_tokens)
|
||||
slot_mapping = torch.tensor(slot_mapping, dtype=torch.int, device='cuda')
|
||||
|
||||
qkv = torch.randn(
|
||||
num_tokens, 3, num_heads, head_size, dtype=dtype, device='cuda')
|
||||
_, key, value = qkv.unbind(dim=1)
|
||||
|
||||
x = 16 // torch.tensor([], dtype=dtype).element_size()
|
||||
key_cache_shape = (num_blocks, num_heads, head_size // x, block_size, x)
|
||||
key_cache = torch.randn(size=key_cache_shape, dtype=dtype, device='cuda')
|
||||
|
||||
value_cache_shape = (num_blocks, num_heads, head_size, block_size)
|
||||
value_cache = torch.randn(
|
||||
size=value_cache_shape, dtype=dtype, device='cuda')
|
||||
|
||||
# Run Flash attention.
|
||||
def run():
|
||||
cache_ops.gather_cached_kv(key, value, key_cache, value_cache, slot_mapping)
|
||||
|
||||
benchmark('gather_cached_kv', run,
|
||||
size=num_tokens * num_heads * head_size * 2 * qkv.element_size())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
BLOCK_SIZE = 8
|
||||
NUM_BLOCKS = 1024
|
||||
DTYPE = torch.half
|
||||
|
||||
# LLaMA-13B and OPT-13B
|
||||
NUM_HEADS = 40
|
||||
HEAD_SIZE = 128
|
||||
|
||||
run_benchmark = functools.partial(
|
||||
test_gather_cached_kv,
|
||||
num_heads=NUM_HEADS,
|
||||
head_size=HEAD_SIZE,
|
||||
block_size=BLOCK_SIZE,
|
||||
num_blocks=NUM_BLOCKS,
|
||||
dtype=DTYPE,
|
||||
)
|
||||
|
||||
for i in range(6, 12):
|
||||
run_benchmark(num_tokens=2 ** i)
|
@ -1,105 +0,0 @@
|
||||
import argparse
|
||||
import time
|
||||
from typing import List
|
||||
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from cacheflow.master.simple_frontend import SimpleFrontend
|
||||
from cacheflow.master.server import (Server, add_server_arguments,
|
||||
initialize_ray_cluster)
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
from cacheflow.utils import get_gpu_memory, get_cpu_memory
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
# TODO(zhuohan): Support pipeline parallelism.
|
||||
assert args.pipeline_parallel_size == 1, (
|
||||
'Pipeline parallelism is not supported yet.')
|
||||
|
||||
(num_nodes, num_devices_per_node, distributed_init_method,
|
||||
all_stage_devices) = (
|
||||
initialize_ray_cluster(
|
||||
address='local',
|
||||
pipeline_parallel_size=args.pipeline_parallel_size,
|
||||
tensor_parallel_size=args.tensor_parallel_size))
|
||||
|
||||
# Create a server.
|
||||
server = Server(
|
||||
model=args.model,
|
||||
model_path=args.model_path,
|
||||
use_dummy_weights=args.use_dummy_weights,
|
||||
pipeline_parallel_size=args.pipeline_parallel_size,
|
||||
tensor_parallel_size=args.tensor_parallel_size,
|
||||
block_size=args.block_size,
|
||||
dtype=args.dtype,
|
||||
seed=args.seed,
|
||||
swap_space=args.swap_space,
|
||||
max_num_batched_tokens=args.max_num_batched_tokens,
|
||||
max_num_sequences=args.max_num_sequences,
|
||||
num_nodes=num_nodes,
|
||||
num_devices_per_node=num_devices_per_node,
|
||||
distributed_init_method=distributed_init_method,
|
||||
all_stage_devices=all_stage_devices,
|
||||
gpu_memory=get_gpu_memory(),
|
||||
cpu_memory=get_cpu_memory(),
|
||||
)
|
||||
|
||||
# Create a frontend.
|
||||
frontend = SimpleFrontend(
|
||||
model_name=args.model,
|
||||
block_size=args.block_size,
|
||||
)
|
||||
sampling_params_dict = {
|
||||
'n': args.n,
|
||||
'temperature': 0.0 if args.use_beam_search else 1.0,
|
||||
'top_p': 1.0,
|
||||
'use_beam_search': args.use_beam_search,
|
||||
'stop_token_ids': set(),
|
||||
'max_num_steps': args.output_len,
|
||||
}
|
||||
sampling_params = SamplingParams.from_dict(sampling_params_dict)
|
||||
print(sampling_params)
|
||||
input_token_ids = [0] * args.input_len
|
||||
|
||||
def profile_step(profile=False):
|
||||
if profile:
|
||||
torch.cuda.cudart().cudaProfilerStart()
|
||||
for _ in range(args.batch_size):
|
||||
frontend._add_query(input_token_ids, sampling_params)
|
||||
server.add_sequence_groups(frontend.get_inputs())
|
||||
start_time = time.time()
|
||||
while True:
|
||||
server.step()
|
||||
if not server.has_unfinished_requests():
|
||||
break
|
||||
end_time = time.time()
|
||||
latency = end_time - start_time
|
||||
if profile:
|
||||
torch.cuda.cudart().cudaProfilerStop()
|
||||
return latency
|
||||
|
||||
print("Warm up step")
|
||||
profile_step()
|
||||
|
||||
# Benchmark.
|
||||
latencies = []
|
||||
for _ in tqdm(range(3), desc="Profile step"):
|
||||
latencies.append(profile_step())
|
||||
print(f'Avg latency: {np.mean(latencies)} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='CacheFlow simple server.')
|
||||
parser = add_server_arguments(parser)
|
||||
parser.add_argument('--input-len', type=int, default=32)
|
||||
parser.add_argument('--output-len', type=int, default=128)
|
||||
parser.add_argument('--batch-size', type=int, default=8)
|
||||
parser.add_argument('--n', type=int, default=1)
|
||||
parser.add_argument('--use-beam-search', action='store_true')
|
||||
args = parser.parse_args()
|
||||
args.max_num_batched_tokens = max(
|
||||
args.max_num_batched_tokens, args.batch_size * args.input_len)
|
||||
print(args)
|
||||
main(args)
|
@ -1,290 +0,0 @@
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import pickle
|
||||
import time
|
||||
from typing import List
|
||||
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoConfig
|
||||
|
||||
from benchmark.trace import generate_text_completion_requests
|
||||
from cacheflow.master.simple_frontend import SimpleFrontend
|
||||
from cacheflow.master.server import (Server, add_server_arguments,
|
||||
initialize_ray_cluster)
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
from cacheflow.utils import get_gpu_memory, get_cpu_memory
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
assert args.pipeline_parallel_size == 1, (
|
||||
'Pipeline parallelism is not supported yet.')
|
||||
|
||||
(num_nodes, num_devices_per_node, distributed_init_method,
|
||||
all_stage_devices) = (
|
||||
initialize_ray_cluster(
|
||||
address='local',
|
||||
pipeline_parallel_size=args.pipeline_parallel_size,
|
||||
tensor_parallel_size=args.tensor_parallel_size))
|
||||
|
||||
# Create a server.
|
||||
server = Server(
|
||||
model=args.model,
|
||||
model_path=args.model_path,
|
||||
use_dummy_weights=args.use_dummy_weights,
|
||||
pipeline_parallel_size=args.pipeline_parallel_size,
|
||||
tensor_parallel_size=args.tensor_parallel_size,
|
||||
block_size=args.block_size,
|
||||
dtype=args.dtype,
|
||||
seed=args.seed,
|
||||
swap_space=args.swap_space,
|
||||
max_num_batched_tokens=args.max_num_batched_tokens,
|
||||
max_num_sequences=args.max_num_sequences,
|
||||
num_nodes=num_nodes,
|
||||
num_devices_per_node=num_devices_per_node,
|
||||
distributed_init_method=distributed_init_method,
|
||||
all_stage_devices=all_stage_devices,
|
||||
gpu_memory=get_gpu_memory(),
|
||||
cpu_memory=get_cpu_memory(),
|
||||
collect_stats=True,
|
||||
do_memory_analysis=args.do_memory_analysis,
|
||||
)
|
||||
|
||||
# Create a frontend.
|
||||
frontend = SimpleFrontend(
|
||||
model_name=args.model,
|
||||
block_size=args.block_size,
|
||||
)
|
||||
# Generate requests.
|
||||
requests = generate_text_completion_requests(
|
||||
args.dataset,
|
||||
args.request_rate,
|
||||
args.duration,
|
||||
args.seed,
|
||||
args.n1,
|
||||
args.n2,
|
||||
args.n3,
|
||||
args.n4,
|
||||
args.n6,
|
||||
args.n2_beam,
|
||||
args.n4_beam,
|
||||
args.n6_beam,
|
||||
args.n8_beam,
|
||||
)
|
||||
|
||||
# Warm up.
|
||||
logger.info('Warming up.')
|
||||
num_warmup_requests = 8
|
||||
warmup_input_len = 8
|
||||
warmup_output_len = 32
|
||||
warmup_sampling_params = SamplingParams(
|
||||
n=1,
|
||||
temperature=1.0,
|
||||
top_p=0.99,
|
||||
max_num_steps=warmup_output_len,
|
||||
use_beam_search=False,
|
||||
stop_token_ids=set(),
|
||||
num_logprobs=0,
|
||||
context_window_size=None,
|
||||
)
|
||||
for _ in range(num_warmup_requests):
|
||||
frontend._add_query([0] * warmup_input_len, warmup_sampling_params)
|
||||
server.add_sequence_groups(frontend.get_inputs())
|
||||
while True:
|
||||
server.step()
|
||||
if not server.has_unfinished_requests():
|
||||
break
|
||||
|
||||
# Start benchmarking.
|
||||
logger.info('Start benchmarking.')
|
||||
# Initialize tqdm.
|
||||
pbar = tqdm(total=len(requests), desc='Finished requests')
|
||||
|
||||
finished = []
|
||||
server.scheduler.reset_stats()
|
||||
start_time = time.time()
|
||||
while True:
|
||||
now = time.time()
|
||||
if args.timeout is not None and now - start_time > args.timeout:
|
||||
logger.info('Timeout. Stop benchmarking.')
|
||||
break
|
||||
|
||||
while requests:
|
||||
if requests[0][0] <= now - start_time:
|
||||
request_time, input_tokens, sampling_params = requests.pop(0)
|
||||
frontend._add_query(
|
||||
input_tokens, sampling_params, arrival_time=start_time + request_time)
|
||||
else:
|
||||
break
|
||||
server.add_sequence_groups(frontend.get_inputs())
|
||||
updated_seq_groups = server.step()
|
||||
|
||||
now = time.time()
|
||||
for seq_group in updated_seq_groups:
|
||||
if not seq_group.is_finished():
|
||||
continue
|
||||
arrival_time = seq_group.arrival_time
|
||||
finish_time = now
|
||||
for seq in seq_group.get_seqs():
|
||||
seq_len = seq.get_len()
|
||||
output_len = seq_len - seq.prompt_len
|
||||
finished.append({
|
||||
'group_id': seq_group.group_id,
|
||||
'seq_id': seq.seq_id,
|
||||
'arrival_time': arrival_time,
|
||||
'finish_time': finish_time,
|
||||
'prompt_len': seq.prompt_len,
|
||||
'output_len': output_len,
|
||||
})
|
||||
pbar.update(1)
|
||||
|
||||
if not (requests or server.has_unfinished_requests()):
|
||||
break
|
||||
pbar.close()
|
||||
logger.info('Finish benchmarking. Saving stats.')
|
||||
server.scheduler.save_stats(args.output_dir)
|
||||
with open(os.path.join(args.output_dir, 'sequences.pkl'), 'wb') as f:
|
||||
pickle.dump(finished, f)
|
||||
logger.info('Done.')
|
||||
|
||||
|
||||
def get_model_name(model: str) -> str:
|
||||
OPT_MODELS = [
|
||||
'opt-125m',
|
||||
'opt-350m',
|
||||
'opt-1.3b',
|
||||
'opt-2.7b',
|
||||
'opt-6.7b',
|
||||
'opt-13b',
|
||||
'opt-30b',
|
||||
'opt-66b',
|
||||
'opt-175b',
|
||||
]
|
||||
for opt_model in OPT_MODELS:
|
||||
if opt_model in model:
|
||||
return opt_model
|
||||
|
||||
config = AutoConfig.from_pretrained(model)
|
||||
assert config.model_type == 'llama'
|
||||
hidden_size = config.hidden_size
|
||||
if hidden_size == 4096:
|
||||
return 'llama-7b'
|
||||
elif hidden_size == 5120:
|
||||
return 'llama-13b'
|
||||
elif hidden_size == 6656:
|
||||
return 'llama-30b'
|
||||
elif hidden_size == 8192:
|
||||
return 'llama-65b'
|
||||
else:
|
||||
raise ValueError(f'Unknown model: {model}')
|
||||
|
||||
|
||||
def get_dataset_name(dataset: str) -> str:
|
||||
if 'sharegpt' in dataset.lower():
|
||||
return 'sharegpt'
|
||||
elif 'alpaca' in dataset.lower():
|
||||
return 'alpaca'
|
||||
else:
|
||||
raise ValueError(f'Unknown dataset: {dataset}')
|
||||
|
||||
|
||||
def get_sampling_dir_name(
|
||||
n1: float,
|
||||
n2: float,
|
||||
n3: float,
|
||||
n4: float,
|
||||
n6: float,
|
||||
n2_beam: float,
|
||||
n4_beam: float,
|
||||
n6_beam: float,
|
||||
n8_beam: float,
|
||||
) -> str:
|
||||
method = ''
|
||||
if n1 > 0.0:
|
||||
method = 'n1' if n1 == 1.0 else method + f'n1-{n1}-'
|
||||
if n2 > 0.0:
|
||||
method = 'n2' if n2 == 1.0 else method + f'n2-{n2}-'
|
||||
if n3 > 0.0:
|
||||
method = 'n3' if n3 == 1.0 else method + f'n3-{n3}-'
|
||||
if n4 > 0.0:
|
||||
method = 'n4' if n4 == 1.0 else method + f'n4-{n4}-'
|
||||
if n6 > 0.0:
|
||||
method = 'n6' if n6 == 1.0 else method + f'n6-{n6}-'
|
||||
if n2_beam > 0.0:
|
||||
method = 'n2-beam' if n2_beam == 1.0 else method + f'n2-beam-{n2_beam}-'
|
||||
if n4_beam > 0.0:
|
||||
method = 'n4-beam' if n4_beam == 1.0 else method + f'n4-beam-{n4_beam}-'
|
||||
if n6_beam > 0.0:
|
||||
method = 'n6-beam' if n6_beam == 1.0 else method + f'n6-beam-{n6_beam}-'
|
||||
if n8_beam > 0.0:
|
||||
method = 'n8-beam' if n8_beam == 1.0 else method + f'n8-beam-{n8_beam}-'
|
||||
return method[:-1] if method.endswith('-') else method
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='CacheFlow simple server.')
|
||||
parser = add_server_arguments(parser)
|
||||
parser.add_argument('--output-dir', type=str, help='path to output directory', default=None)
|
||||
|
||||
parser.add_argument('--dataset', type=str, help='path to dataset', required=True)
|
||||
parser.add_argument('--request-rate', type=float, help='reqs/sec', required=True)
|
||||
parser.add_argument('--duration', type=int, help='duration in seconds', required=True)
|
||||
parser.add_argument('--do-memory-analysis', action='store_true',
|
||||
help='do memory analysis (This will lower the throughput. Use this only for analysis.)')
|
||||
parser.add_argument('--timeout', type=int, help='time out in seconds', default=None)
|
||||
|
||||
parser.add_argument('--n1', type=float, help='ratio of requests with n=1', default=0.0)
|
||||
parser.add_argument('--n2', type=float, help='ratio of requests with n=2', default=0.0)
|
||||
parser.add_argument('--n3', type=float, help='ratio of requests with n=3', default=0.0)
|
||||
parser.add_argument('--n4', type=float, help='ratio of requests with n=4', default=0.0)
|
||||
parser.add_argument('--n6', type=float, help='ratio of requests with n=6', default=0.0)
|
||||
parser.add_argument('--n2-beam', type=float, help='ratio of requests with n=2 & beam search', default=0.0)
|
||||
parser.add_argument('--n4-beam', type=float, help='ratio of requests with n=4 & beam search', default=0.0)
|
||||
parser.add_argument('--n6-beam', type=float, help='ratio of requests with n=6 & beam search', default=0.0)
|
||||
parser.add_argument('--n8-beam', type=float, help='ratio of requests with n=8 & beam search', default=0.0)
|
||||
args = parser.parse_args()
|
||||
if args.n1 + args.n2 + args.n3 + args.n4 + args.n6 + args.n2_beam + args.n4_beam + args.n6_beam + args.n8_beam != 1.0:
|
||||
raise ValueError('The ratios of requests must sum to 1.')
|
||||
|
||||
model_name = get_model_name(args.model)
|
||||
dataset_name = get_dataset_name(args.dataset)
|
||||
if 'opt' in model_name:
|
||||
if 'opt' not in args.dataset.lower():
|
||||
raise ValueError(f'OPT models can only be used with OPT datasets.')
|
||||
elif 'llama' in model_name:
|
||||
if 'llama' not in args.dataset.lower():
|
||||
raise ValueError(f'Llama models can only be used with Llama datasets.')
|
||||
|
||||
dataset_name = 'sharegpt' if 'sharegpt' in args.dataset else 'alpaca'
|
||||
sample_dir = get_sampling_dir_name(
|
||||
args.n1, args.n2, args.n3, args.n4, args.n6, args.n2_beam, args.n4_beam, args.n6_beam, args.n8_beam)
|
||||
if args.output_dir is None:
|
||||
args.output_dir = os.path.join(
|
||||
'../exp',
|
||||
dataset_name,
|
||||
f'{model_name}-tp{args.tensor_parallel_size}',
|
||||
sample_dir,
|
||||
'cacheflow',
|
||||
f'block{args.block_size}',
|
||||
f'req-rate-{args.request_rate}',
|
||||
f'seed{args.seed}',
|
||||
f'duration-{args.duration}',
|
||||
)
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
# Set up logging.
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
level=logging.INFO,
|
||||
handlers=[
|
||||
logging.StreamHandler(),
|
||||
logging.FileHandler(os.path.join(args.output_dir, 'log.txt')),
|
||||
],
|
||||
)
|
||||
logger.info(args)
|
||||
|
||||
main(args)
|
@ -1,116 +0,0 @@
|
||||
import pickle
|
||||
import random
|
||||
from typing import List, Tuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
|
||||
|
||||
def generate_text_completion_requests(
|
||||
dataset: str,
|
||||
request_rate: float,
|
||||
duration: int,
|
||||
seed: int,
|
||||
n1: float = 0.0,
|
||||
n2: float = 0.0,
|
||||
n3: float = 0.0,
|
||||
n4: float = 0.0,
|
||||
n6: float = 0.0,
|
||||
n2_beam: float = 0.0,
|
||||
n4_beam: float = 0.0,
|
||||
n6_beam: float = 0.0,
|
||||
n8_beam: float = 0.0,
|
||||
max_seq_len: int = 2048,
|
||||
time_quantum: int = 10,
|
||||
) -> List[Tuple[float, List[int], SamplingParams]]:
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
|
||||
# Generate timestamps for requests using Poisson distribution.
|
||||
lam = request_rate * (time_quantum / 1000)
|
||||
quantums_per_sec = 1000 / time_quantum
|
||||
arrival_times = np.random.poisson(
|
||||
lam=lam, size=int(duration * quantums_per_sec))
|
||||
timestamps = []
|
||||
for i, n in enumerate(arrival_times):
|
||||
timestamps += [i * (time_quantum / 1000)] * n
|
||||
|
||||
# Load and shuffle the dataset.
|
||||
num_requests = len(timestamps)
|
||||
with open(dataset, 'rb') as f:
|
||||
data = pickle.load(f)
|
||||
|
||||
filtered = []
|
||||
for pair in data:
|
||||
input_tokens, output_tokens = pair
|
||||
input_len = len(input_tokens)
|
||||
output_len = len(output_tokens)
|
||||
# Filter out too long sequences.
|
||||
if input_len + output_len < max_seq_len:
|
||||
# Output tokens are not needed for the benchmark.
|
||||
filtered.append((input_tokens, output_len))
|
||||
|
||||
data = []
|
||||
while len(data) < num_requests:
|
||||
data += filtered
|
||||
data = data[:num_requests]
|
||||
# Shuffle the data.
|
||||
assert len(data) == len(timestamps)
|
||||
random.shuffle(data)
|
||||
|
||||
random_sampling_params_dict = {
|
||||
'temperature': 1.0,
|
||||
'top_p': 1.0,
|
||||
'use_beam_search': False,
|
||||
'stop_token_ids': set(),
|
||||
'num_logprobs': 0,
|
||||
'context_window_size': None,
|
||||
}
|
||||
beam_search_params_dict = {
|
||||
'temperature': 0.0,
|
||||
'top_p': 1.0,
|
||||
'use_beam_search': True,
|
||||
'stop_token_ids': set(),
|
||||
'num_logprobs': 0,
|
||||
'context_window_size': None,
|
||||
}
|
||||
|
||||
# Generate requests based on the sampling parameter ratio.
|
||||
requests = []
|
||||
assert n1 + n2 + n3 + n4 + n6 + n2_beam + n4_beam + n6_beam + n8_beam == 1.0
|
||||
cum_sum = 0
|
||||
for timestamp, pair in zip(timestamps, data):
|
||||
input_tokens, output_len = pair
|
||||
if cum_sum < n1 * num_requests:
|
||||
sampling_params = SamplingParams(
|
||||
n=1, max_num_steps=output_len, **random_sampling_params_dict)
|
||||
elif cum_sum < (n1 + n2) * num_requests:
|
||||
sampling_params = SamplingParams(
|
||||
n=2, max_num_steps=output_len, **random_sampling_params_dict)
|
||||
elif cum_sum < (n1 + n2 + n3) * num_requests:
|
||||
sampling_params = SamplingParams(
|
||||
n=3, max_num_steps=output_len, **random_sampling_params_dict)
|
||||
elif cum_sum < (n1 + n2 + n3 + n4) * num_requests:
|
||||
sampling_params = SamplingParams(
|
||||
n=4, max_num_steps=output_len, **random_sampling_params_dict)
|
||||
elif cum_sum < (n1 + n2 + n3 + n4 + n6) * num_requests:
|
||||
sampling_params = SamplingParams(
|
||||
n=6, max_num_steps=output_len, **random_sampling_params_dict)
|
||||
elif cum_sum < (n1 + n2 + n3 + n4 + n6 + n2_beam) * num_requests:
|
||||
sampling_params = SamplingParams(
|
||||
n=2, max_num_steps=output_len, **beam_search_params_dict)
|
||||
elif cum_sum < (n1 + n2 + n3 + n4 + n6 + n2_beam + n4_beam) * num_requests:
|
||||
sampling_params = SamplingParams(
|
||||
n=4, max_num_steps=output_len, **beam_search_params_dict)
|
||||
elif cum_sum < (n1 + n2 + n3 + n4 + n6 + n2_beam + n4_beam + n6_beam) * num_requests:
|
||||
sampling_params = SamplingParams(
|
||||
n=6, max_num_steps=output_len, **beam_search_params_dict)
|
||||
elif cum_sum < (n1 + n2 + n3 + n4 + n6 + n2_beam + n4_beam + n6_beam + n8_beam) * num_requests:
|
||||
sampling_params = SamplingParams(
|
||||
n=8, max_num_steps=output_len, **beam_search_params_dict)
|
||||
else:
|
||||
raise ValueError('Invalid request ratio.')
|
||||
cum_sum += 1
|
||||
requests.append((timestamp, input_tokens, sampling_params))
|
||||
return requests
|
8
benchmarks/README.md
Normal file
@ -0,0 +1,8 @@
|
||||
# Benchmarking vLLM
|
||||
|
||||
## Downloading the ShareGPT dataset
|
||||
|
||||
You can download the dataset by running:
|
||||
```bash
|
||||
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
```
|
81
benchmarks/benchmark_latency.py
Normal file
@ -0,0 +1,81 @@
|
||||
"""Benchmark the latency of processing a single batch of requests."""
|
||||
import argparse
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
print(args)
|
||||
|
||||
# Process all the requests in a single batch if possible.
|
||||
# NOTE(woosuk): If the request cannot be processed in a single batch,
|
||||
# the engine will automatically process the request in multiple batches.
|
||||
llm = LLM(
|
||||
model=args.model,
|
||||
tokenizer=args.tokenizer,
|
||||
tensor_parallel_size=args.tensor_parallel_size,
|
||||
max_num_seqs=args.batch_size,
|
||||
max_num_batched_tokens=args.batch_size * args.input_len,
|
||||
trust_remote_code=args.trust_remote_code,
|
||||
)
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
n=args.n,
|
||||
temperature=0.0 if args.use_beam_search else 1.0,
|
||||
top_p=1.0,
|
||||
use_beam_search=args.use_beam_search,
|
||||
ignore_eos=True,
|
||||
max_tokens=args.output_len,
|
||||
)
|
||||
print(sampling_params)
|
||||
dummy_prompt_token_ids = [[0] * args.input_len] * args.batch_size
|
||||
|
||||
def run_to_completion(profile: bool = False):
|
||||
if profile:
|
||||
torch.cuda.cudart().cudaProfilerStart()
|
||||
start_time = time.time()
|
||||
|
||||
llm.generate(prompt_token_ids=dummy_prompt_token_ids,
|
||||
sampling_params=sampling_params,
|
||||
use_tqdm=False)
|
||||
|
||||
end_time = time.time()
|
||||
latency = end_time - start_time
|
||||
if profile:
|
||||
torch.cuda.cudart().cudaProfilerStop()
|
||||
return latency
|
||||
|
||||
print("Warming up...")
|
||||
run_to_completion(profile=False)
|
||||
|
||||
# Benchmark.
|
||||
latencies = []
|
||||
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
|
||||
latencies.append(run_to_completion(profile=False))
|
||||
print(f'Avg latency: {np.mean(latencies)} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Benchmark the latency of processing a single batch of '
|
||||
'requests till completion.')
|
||||
parser.add_argument('--model', type=str, default='facebook/opt-125m')
|
||||
parser.add_argument('--tokenizer', type=str, default=None)
|
||||
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
|
||||
parser.add_argument('--input-len', type=int, default=32)
|
||||
parser.add_argument('--output-len', type=int, default=128)
|
||||
parser.add_argument('--batch-size', type=int, default=8)
|
||||
parser.add_argument('--n', type=int, default=1,
|
||||
help='Number of generated sequences per prompt.')
|
||||
parser.add_argument('--use-beam-search', action='store_true')
|
||||
parser.add_argument('--num-iters', type=int, default=3,
|
||||
help='Number of iterations to run.')
|
||||
parser.add_argument('--trust-remote-code', action='store_true',
|
||||
help='trust remote code from huggingface')
|
||||
args = parser.parse_args()
|
||||
main(args)
|
233
benchmarks/benchmark_serving.py
Normal file
@ -0,0 +1,233 @@
|
||||
"""Benchmark online serving throughput.
|
||||
|
||||
On the server side, run one of the following commands:
|
||||
(vLLM backend)
|
||||
python -m vllm.entrypoints.api_server \
|
||||
--model <your_model> --swap-space 16 \
|
||||
--disable-log-requests
|
||||
|
||||
(TGI backend)
|
||||
./launch_hf_server.sh <your_model>
|
||||
|
||||
On the client side, run:
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend <backend> \
|
||||
--tokenizer <your_model> --dataset <target_dataset> \
|
||||
--request-rate <request_rate>
|
||||
"""
|
||||
import argparse
|
||||
import asyncio
|
||||
import json
|
||||
import random
|
||||
import time
|
||||
from typing import AsyncGenerator, List, Tuple
|
||||
|
||||
import aiohttp
|
||||
import numpy as np
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
|
||||
# (prompt len, output len, latency)
|
||||
REQUEST_LATENCY: List[Tuple[int, int, float]] = []
|
||||
|
||||
|
||||
def sample_requests(
|
||||
dataset_path: str,
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
) -> List[Tuple[str, int, int]]:
|
||||
# Load the dataset.
|
||||
with open(dataset_path) as f:
|
||||
dataset = json.load(f)
|
||||
# Filter out the conversations with less than 2 turns.
|
||||
dataset = [
|
||||
data for data in dataset
|
||||
if len(data["conversations"]) >= 2
|
||||
]
|
||||
# Only keep the first two turns of each conversation.
|
||||
dataset = [
|
||||
(data["conversations"][0]["value"], data["conversations"][1]["value"])
|
||||
for data in dataset
|
||||
]
|
||||
|
||||
# Tokenize the prompts and completions.
|
||||
prompts = [prompt for prompt, _ in dataset]
|
||||
prompt_token_ids = tokenizer(prompts).input_ids
|
||||
completions = [completion for _, completion in dataset]
|
||||
completion_token_ids = tokenizer(completions).input_ids
|
||||
tokenized_dataset = []
|
||||
for i in range(len(dataset)):
|
||||
output_len = len(completion_token_ids[i])
|
||||
tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))
|
||||
|
||||
# Filter out too long sequences.
|
||||
filtered_dataset: List[Tuple[str, int, int]] = []
|
||||
for prompt, prompt_token_ids, output_len in tokenized_dataset:
|
||||
prompt_len = len(prompt_token_ids)
|
||||
if prompt_len < 4 or output_len < 4:
|
||||
# Prune too short sequences.
|
||||
# This is because TGI causes errors when the input or output length
|
||||
# is too short.
|
||||
continue
|
||||
if prompt_len > 1024 or prompt_len + output_len > 2048:
|
||||
# Prune too long sequences.
|
||||
continue
|
||||
filtered_dataset.append((prompt, prompt_len, output_len))
|
||||
|
||||
# Sample the requests.
|
||||
sampled_requests = random.sample(filtered_dataset, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
async def get_request(
|
||||
input_requests: List[Tuple[str, int, int]],
|
||||
request_rate: float,
|
||||
) -> AsyncGenerator[Tuple[str, int, int], None]:
|
||||
input_requests = iter(input_requests)
|
||||
for request in input_requests:
|
||||
yield request
|
||||
|
||||
if request_rate == float("inf"):
|
||||
# If the request rate is infinity, then we don't need to wait.
|
||||
continue
|
||||
# Sample the request interval from the exponential distribution.
|
||||
interval = np.random.exponential(1.0 / request_rate)
|
||||
# The next request will be sent after the interval.
|
||||
await asyncio.sleep(interval)
|
||||
|
||||
|
||||
async def send_request(
|
||||
backend: str,
|
||||
api_url: str,
|
||||
prompt: str,
|
||||
prompt_len: int,
|
||||
output_len: int,
|
||||
best_of: int,
|
||||
use_beam_search: bool,
|
||||
) -> None:
|
||||
request_start_time = time.time()
|
||||
|
||||
headers = {"User-Agent": "Benchmark Client"}
|
||||
if backend == "vllm":
|
||||
pload = {
|
||||
"prompt": prompt,
|
||||
"n": 1,
|
||||
"best_of": best_of,
|
||||
"use_beam_search": use_beam_search,
|
||||
"temperature": 0.0 if use_beam_search else 1.0,
|
||||
"top_p": 1.0,
|
||||
"max_tokens": output_len,
|
||||
"ignore_eos": True,
|
||||
"stream": False,
|
||||
}
|
||||
elif backend == "tgi":
|
||||
assert not use_beam_search
|
||||
params = {
|
||||
"best_of": best_of,
|
||||
"max_new_tokens": output_len,
|
||||
"do_sample": True,
|
||||
}
|
||||
pload = {
|
||||
"inputs": prompt,
|
||||
"parameters": params,
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Unknown backend: {backend}")
|
||||
|
||||
timeout = aiohttp.ClientTimeout(total=3 * 3600)
|
||||
async with aiohttp.ClientSession(timeout=timeout) as session:
|
||||
while True:
|
||||
async with session.post(api_url, headers=headers, json=pload) as response:
|
||||
chunks = []
|
||||
async for chunk, _ in response.content.iter_chunks():
|
||||
chunks.append(chunk)
|
||||
output = b"".join(chunks).decode("utf-8")
|
||||
output = json.loads(output)
|
||||
|
||||
# Re-send the request if it failed.
|
||||
if "error" not in output:
|
||||
break
|
||||
|
||||
request_end_time = time.time()
|
||||
request_latency = request_end_time - request_start_time
|
||||
REQUEST_LATENCY.append((prompt_len, output_len, request_latency))
|
||||
|
||||
|
||||
async def benchmark(
|
||||
backend: str,
|
||||
api_url: str,
|
||||
input_requests: List[Tuple[str, int, int]],
|
||||
best_of: int,
|
||||
use_beam_search: bool,
|
||||
request_rate: float,
|
||||
) -> None:
|
||||
tasks: List[asyncio.Task] = []
|
||||
async for request in get_request(input_requests, request_rate):
|
||||
prompt, prompt_len, output_len = request
|
||||
task = asyncio.create_task(send_request(backend, api_url, prompt,
|
||||
prompt_len, output_len,
|
||||
best_of, use_beam_search))
|
||||
tasks.append(task)
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
print(args)
|
||||
random.seed(args.seed)
|
||||
np.random.seed(args.seed)
|
||||
|
||||
api_url = f"http://{args.host}:{args.port}/generate"
|
||||
tokenizer = get_tokenizer(args.tokenizer, trust_remote_code=args.trust_remote_code)
|
||||
input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
|
||||
|
||||
benchmark_start_time = time.time()
|
||||
asyncio.run(benchmark(args.backend, api_url, input_requests, args.best_of,
|
||||
args.use_beam_search, args.request_rate))
|
||||
benchmark_end_time = time.time()
|
||||
benchmark_time = benchmark_end_time - benchmark_start_time
|
||||
print(f"Total time: {benchmark_time:.2f} s")
|
||||
print(f"Throughput: {args.num_prompts / benchmark_time:.2f} requests/s")
|
||||
|
||||
# Compute the latency statistics.
|
||||
avg_latency = np.mean([latency for _, _, latency in REQUEST_LATENCY])
|
||||
print(f"Average latency: {avg_latency:.2f} s")
|
||||
avg_per_token_latency = np.mean([
|
||||
latency / (prompt_len + output_len)
|
||||
for prompt_len, output_len, latency in REQUEST_LATENCY
|
||||
])
|
||||
print(f"Average latency per token: {avg_per_token_latency:.2f} s")
|
||||
avg_per_output_token_latency = np.mean([
|
||||
latency / output_len
|
||||
for _, output_len, latency in REQUEST_LATENCY
|
||||
])
|
||||
print("Average latency per output token: "
|
||||
f"{avg_per_output_token_latency:.2f} s")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Benchmark the online serving throughput.")
|
||||
parser.add_argument("--backend", type=str, default="vllm",
|
||||
choices=["vllm", "tgi"])
|
||||
parser.add_argument("--host", type=str, default="localhost")
|
||||
parser.add_argument("--port", type=int, default=8000)
|
||||
parser.add_argument("--dataset", type=str, required=True,
|
||||
help="Path to the dataset.")
|
||||
parser.add_argument("--tokenizer", type=str, required=True,
|
||||
help="Name or path of the tokenizer.")
|
||||
parser.add_argument("--best-of", type=int, default=1,
|
||||
help="Generates `best_of` sequences per prompt and "
|
||||
"returns the best one.")
|
||||
parser.add_argument("--use-beam-search", action="store_true")
|
||||
parser.add_argument("--num-prompts", type=int, default=1000,
|
||||
help="Number of prompts to process.")
|
||||
parser.add_argument("--request-rate", type=float, default=float("inf"),
|
||||
help="Number of requests per second. If this is inf, "
|
||||
"then all the requests are sent at time 0. "
|
||||
"Otherwise, we use Poisson process to synthesize "
|
||||
"the request arrival times.")
|
||||
parser.add_argument("--seed", type=int, default=0)
|
||||
parser.add_argument('--trust-remote-code', action='store_true',
|
||||
help='trust remote code from huggingface')
|
||||
args = parser.parse_args()
|
||||
main(args)
|
221
benchmarks/benchmark_throughput.py
Normal file
@ -0,0 +1,221 @@
|
||||
"""Benchmark offline inference throughput."""
|
||||
import argparse
|
||||
import json
|
||||
import random
|
||||
import time
|
||||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, PreTrainedTokenizerBase
|
||||
from tqdm import tqdm
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
|
||||
|
||||
def sample_requests(
|
||||
dataset_path: str,
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
) -> List[Tuple[str, int, int]]:
|
||||
# Load the dataset.
|
||||
with open(dataset_path) as f:
|
||||
dataset = json.load(f)
|
||||
# Filter out the conversations with less than 2 turns.
|
||||
dataset = [
|
||||
data for data in dataset
|
||||
if len(data["conversations"]) >= 2
|
||||
]
|
||||
# Only keep the first two turns of each conversation.
|
||||
dataset = [
|
||||
(data["conversations"][0]["value"], data["conversations"][1]["value"])
|
||||
for data in dataset
|
||||
]
|
||||
|
||||
# Tokenize the prompts and completions.
|
||||
prompts = [prompt for prompt, _ in dataset]
|
||||
prompt_token_ids = tokenizer(prompts).input_ids
|
||||
completions = [completion for _, completion in dataset]
|
||||
completion_token_ids = tokenizer(completions).input_ids
|
||||
tokenized_dataset = []
|
||||
for i in range(len(dataset)):
|
||||
output_len = len(completion_token_ids[i])
|
||||
tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))
|
||||
|
||||
# Filter out too long sequences.
|
||||
filtered_dataset: List[Tuple[str, int, int]] = []
|
||||
for prompt, prompt_token_ids, output_len in tokenized_dataset:
|
||||
prompt_len = len(prompt_token_ids)
|
||||
if prompt_len < 4 or output_len < 4:
|
||||
# Prune too short sequences.
|
||||
continue
|
||||
if prompt_len > 1024 or prompt_len + output_len > 2048:
|
||||
# Prune too long sequences.
|
||||
continue
|
||||
filtered_dataset.append((prompt, prompt_len, output_len))
|
||||
|
||||
# Sample the requests.
|
||||
sampled_requests = random.sample(filtered_dataset, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
def run_vllm(
|
||||
requests: List[Tuple[str, int, int]],
|
||||
model: str,
|
||||
tokenizer: str,
|
||||
tensor_parallel_size: int,
|
||||
seed: int,
|
||||
n: int,
|
||||
use_beam_search: bool,
|
||||
trust_remote_code: bool,
|
||||
) -> float:
|
||||
llm = LLM(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
tensor_parallel_size=tensor_parallel_size,
|
||||
seed=seed,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
# Add the requests to the engine.
|
||||
for prompt, _, output_len in requests:
|
||||
sampling_params = SamplingParams(
|
||||
n=n,
|
||||
temperature=0.0 if use_beam_search else 1.0,
|
||||
top_p=1.0,
|
||||
use_beam_search=use_beam_search,
|
||||
ignore_eos=True,
|
||||
max_tokens=output_len,
|
||||
)
|
||||
# FIXME(woosuk): Do not use internal method.
|
||||
llm._add_request(
|
||||
prompt=prompt,
|
||||
prompt_token_ids=None,
|
||||
sampling_params=sampling_params,
|
||||
)
|
||||
|
||||
start = time.time()
|
||||
# FIXME(woosuk): Do use internal method.
|
||||
llm._run_engine(use_tqdm=True)
|
||||
end = time.time()
|
||||
return end - start
|
||||
|
||||
|
||||
def run_hf(
|
||||
requests: List[Tuple[str, int, int]],
|
||||
model: str,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
n: int,
|
||||
use_beam_search: bool,
|
||||
max_batch_size: int,
|
||||
trust_remote_code: bool,
|
||||
) -> float:
|
||||
assert not use_beam_search
|
||||
llm = AutoModelForCausalLM.from_pretrained(model,
|
||||
torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
|
||||
if llm.config.model_type == "llama":
|
||||
# To enable padding in the HF backend.
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
llm = llm.cuda()
|
||||
|
||||
pbar = tqdm(total=len(requests))
|
||||
start = time.time()
|
||||
batch: List[str] = []
|
||||
max_prompt_len = 0
|
||||
max_output_len = 0
|
||||
for i in range(len(requests)):
|
||||
prompt, prompt_len, output_len = requests[i]
|
||||
# Add the prompt to the batch.
|
||||
batch.append(prompt)
|
||||
max_prompt_len = max(max_prompt_len, prompt_len)
|
||||
max_output_len = max(max_output_len, output_len)
|
||||
if len(batch) < max_batch_size and i != len(requests) - 1:
|
||||
# Check if we can add more requests to the batch.
|
||||
_, next_prompt_len, next_output_len = requests[i + 1]
|
||||
if (max(max_prompt_len, next_prompt_len) + max(
|
||||
max_output_len, next_output_len)) <= 2048:
|
||||
# We can add more requests to the batch.
|
||||
continue
|
||||
|
||||
# Generate the sequences.
|
||||
input_ids = tokenizer(batch, return_tensors="pt", padding=True).input_ids
|
||||
llm_outputs = llm.generate(
|
||||
input_ids=input_ids.cuda(),
|
||||
do_sample=not use_beam_search,
|
||||
num_return_sequences=n,
|
||||
temperature=1.0,
|
||||
top_p=1.0,
|
||||
use_cache=True,
|
||||
max_new_tokens=max_output_len,
|
||||
)
|
||||
# Include the decoding time.
|
||||
tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
|
||||
pbar.update(len(batch))
|
||||
|
||||
# Clear the batch.
|
||||
batch = []
|
||||
max_prompt_len = 0
|
||||
max_output_len = 0
|
||||
end = time.time()
|
||||
return end - start
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
print(args)
|
||||
random.seed(args.seed)
|
||||
|
||||
# Sample the requests.
|
||||
tokenizer = get_tokenizer(args.tokenizer, trust_remote_code=args.trust_remote_code)
|
||||
requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
|
||||
|
||||
if args.backend == "vllm":
|
||||
elapsed_time = run_vllm(
|
||||
requests, args.model, args.tokenizer, args.tensor_parallel_size,
|
||||
args.seed, args.n, args.use_beam_search, args.trust_remote_code)
|
||||
elif args.backend == "hf":
|
||||
assert args.tensor_parallel_size == 1
|
||||
elapsed_time = run_hf(
|
||||
requests, args.model, tokenizer, args.n, args.use_beam_search,
|
||||
args.hf_max_batch_size, args.trust_remote_code)
|
||||
else:
|
||||
raise ValueError(f"Unknown backend: {args.backend}")
|
||||
total_num_tokens = sum(
|
||||
prompt_len + output_len
|
||||
for _, prompt_len, output_len in requests
|
||||
)
|
||||
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
|
||||
f"{total_num_tokens / elapsed_time:.2f} tokens/s")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Benchmark the throughput.")
|
||||
parser.add_argument("--backend", type=str, choices=["vllm", "hf"],
|
||||
default="vllm")
|
||||
parser.add_argument("--dataset", type=str, required=True,
|
||||
help="Path to the dataset.")
|
||||
parser.add_argument("--model", type=str, default="facebook/opt-125m")
|
||||
parser.add_argument("--tokenizer", type=str, default=None)
|
||||
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
|
||||
parser.add_argument("--n", type=int, default=1,
|
||||
help="Number of generated sequences per prompt.")
|
||||
parser.add_argument("--use-beam-search", action="store_true")
|
||||
parser.add_argument("--num-prompts", type=int, default=1000,
|
||||
help="Number of prompts to process.")
|
||||
parser.add_argument("--seed", type=int, default=0)
|
||||
parser.add_argument("--hf-max-batch-size", type=int, default=None,
|
||||
help="Maximum batch size for HF backend.")
|
||||
parser.add_argument('--trust-remote-code',
|
||||
action='store_true',
|
||||
help='trust remote code from huggingface')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.backend == "vllm":
|
||||
if args.hf_max_batch_size is not None:
|
||||
raise ValueError("HF max batch size is only for HF backend.")
|
||||
elif args.backend == "hf":
|
||||
if args.hf_max_batch_size is None:
|
||||
raise ValueError("HF max batch size is required for HF backend.")
|
||||
if args.tokenizer is None:
|
||||
args.tokenizer = args.model
|
||||
|
||||
main(args)
|
16
benchmarks/launch_tgi_server.sh
Executable file
@ -0,0 +1,16 @@
|
||||
#!/bin/bash
|
||||
|
||||
PORT=8000
|
||||
MODEL=$1
|
||||
TOKENS=$2
|
||||
|
||||
docker run --gpus all --shm-size 1g -p $PORT:80 \
|
||||
-v $PWD/data:/data \
|
||||
ghcr.io/huggingface/text-generation-inference:0.8 \
|
||||
--model-id $MODEL \
|
||||
--sharded false \
|
||||
--max-input-length 1024 \
|
||||
--max-total-tokens 2048 \
|
||||
--max-best-of 5 \
|
||||
--max-concurrent-requests 5000 \
|
||||
--max-batch-total-tokens $TOKENS
|
@ -1,179 +0,0 @@
|
||||
import argparse
|
||||
import asyncio
|
||||
import time
|
||||
from typing import List, Dict
|
||||
import json
|
||||
|
||||
import ray
|
||||
from transformers import AutoTokenizer
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
import uvicorn
|
||||
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
from cacheflow.sequence import Sequence, SequenceGroup
|
||||
from cacheflow.master.server import (Server, add_server_arguments,
|
||||
initialize_ray_cluster)
|
||||
from cacheflow.worker.controller import DeviceID
|
||||
from cacheflow.utils import Counter, get_gpu_memory, get_cpu_memory
|
||||
|
||||
TIMEOUT_TO_PREVENT_DEADLOCK = 1 # seconds
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
class FastAPIFrontend:
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
model_path: str,
|
||||
pipeline_parallel_size: int,
|
||||
tensor_parallel_size: int,
|
||||
block_size: int,
|
||||
dtype: str,
|
||||
seed: int,
|
||||
swap_space: int,
|
||||
max_num_batched_tokens: int,
|
||||
num_nodes: int,
|
||||
num_devices_per_node: int,
|
||||
distributed_init_method: str,
|
||||
all_stage_devices: List[List[DeviceID]],
|
||||
):
|
||||
self.block_size = block_size
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model)
|
||||
self.seq_group_counter = Counter()
|
||||
self.seq_counter = Counter()
|
||||
remote_server_class = ray.remote(num_cpus=0)(Server)
|
||||
self.server = remote_server_class.remote(
|
||||
model=model,
|
||||
model_path=model_path,
|
||||
use_dummy_weights=False,
|
||||
pipeline_parallel_size=pipeline_parallel_size,
|
||||
tensor_parallel_size=tensor_parallel_size,
|
||||
block_size=block_size,
|
||||
dtype=dtype,
|
||||
seed=seed,
|
||||
swap_space=swap_space,
|
||||
max_num_batched_tokens=max_num_batched_tokens,
|
||||
num_nodes=num_nodes,
|
||||
num_devices_per_node=num_devices_per_node,
|
||||
distributed_init_method=distributed_init_method,
|
||||
all_stage_devices=all_stage_devices,
|
||||
gpu_memory=get_gpu_memory(),
|
||||
cpu_memory=get_cpu_memory(),
|
||||
)
|
||||
|
||||
self.running_seq_groups: Dict[int, SequenceGroup] = {}
|
||||
self.sequence_group_events: Dict[int, asyncio.Event] = {}
|
||||
self.is_server_running = False
|
||||
|
||||
async def server_step(self):
|
||||
self.is_server_running = True
|
||||
updated_seq_groups = await self.server.step.remote()
|
||||
self.is_server_running = False
|
||||
# Notify the waiting coroutines that there new outputs ready.
|
||||
for seq_group in updated_seq_groups:
|
||||
group_id = seq_group.group_id
|
||||
self.running_seq_groups[group_id] = seq_group
|
||||
self.sequence_group_events[group_id].set()
|
||||
|
||||
async def generate(self, request_dict: Dict):
|
||||
# Preprocess the request.
|
||||
prompt = request_dict["prompt"]
|
||||
sampling_params = SamplingParams.from_dict(request_dict)
|
||||
sampling_params.stop_token_ids.add(self.tokenizer.eos_token_id)
|
||||
token_ids = self.tokenizer.encode(prompt)
|
||||
seqs: List[Sequence] = []
|
||||
for _ in range(sampling_params.n):
|
||||
seq_id = next(self.seq_counter)
|
||||
seq = Sequence(seq_id, token_ids, block_size=self.block_size)
|
||||
seqs.append(seq)
|
||||
|
||||
arrival_time = time.time()
|
||||
group_id = next(self.seq_group_counter)
|
||||
seq_group = SequenceGroup(group_id, seqs, arrival_time)
|
||||
# Create an event to notify us that there is new output from the
|
||||
# cacheflow server.
|
||||
group_event = asyncio.Event()
|
||||
self.running_seq_groups[group_id] = seq_group
|
||||
self.sequence_group_events[group_id] = group_event
|
||||
# Add the request into the cacheflow server's waiting queue.
|
||||
await self.server.add_sequence_groups.remote([(seq_group, sampling_params)])
|
||||
# The cacheflow server does not have a background loop that keeps
|
||||
# processing incoming requests. Therefore, we need to keep kicking
|
||||
# the server to process the requests.
|
||||
while True:
|
||||
# Kick the server if the server is not running.
|
||||
if not self.is_server_running:
|
||||
await self.server_step()
|
||||
# Wait for new output. The group_event will be set in server_step
|
||||
# when there is new output available for the sequence group.
|
||||
# Added a timeout to prevent deadlock.
|
||||
await asyncio.wait_for(group_event.wait(), timeout=TIMEOUT_TO_PREVENT_DEADLOCK)
|
||||
# Reset the event to wait for the next output.
|
||||
group_event.clear()
|
||||
# Decode and return new outputs
|
||||
seq_group = self.running_seq_groups[group_id]
|
||||
all_outputs = []
|
||||
for seq in seq_group.seqs:
|
||||
token_ids = seq.get_token_ids()
|
||||
output = self.tokenizer.decode(token_ids, skip_special_tokens=True)
|
||||
all_outputs.append(output)
|
||||
ret = {
|
||||
"text": all_outputs,
|
||||
"error": 0,
|
||||
}
|
||||
yield (json.dumps(ret) + "\0").encode("utf-8")
|
||||
|
||||
# Once finished, release the resources of the sequence group.
|
||||
if seq_group.is_finished():
|
||||
del self.running_seq_groups[group_id]
|
||||
del self.sequence_group_events[group_id]
|
||||
# Kick the server if the server is not running. This is to
|
||||
# prevent that there are still requests in server's waiting
|
||||
# queue to be executed.
|
||||
if not self.is_server_running:
|
||||
await self.server_step()
|
||||
break
|
||||
|
||||
|
||||
@app.post("/generate")
|
||||
async def generate_stream(request: Request):
|
||||
request_dict = await request.json()
|
||||
return StreamingResponse(frontend.generate(request_dict))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", type=str, default="localhost")
|
||||
parser.add_argument("--port", type=int, default=10002)
|
||||
parser = add_server_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# TODO(zhuohan): Support pipeline parallelism.
|
||||
assert args.pipeline_parallel_size == 1, (
|
||||
'Pipeline parallelism is not supported yet.')
|
||||
|
||||
(num_nodes, num_devices_per_node, distributed_init_method,
|
||||
all_stage_devices) = (
|
||||
initialize_ray_cluster(
|
||||
pipeline_parallel_size=args.pipeline_parallel_size,
|
||||
tensor_parallel_size=args.tensor_parallel_size))
|
||||
|
||||
frontend = FastAPIFrontend(
|
||||
model=args.model,
|
||||
model_path=args.model_path,
|
||||
pipeline_parallel_size=args.pipeline_parallel_size,
|
||||
tensor_parallel_size=args.tensor_parallel_size,
|
||||
block_size=args.block_size,
|
||||
dtype=args.dtype,
|
||||
seed=args.seed,
|
||||
swap_space=args.swap_space,
|
||||
max_num_batched_tokens=args.max_num_batched_tokens,
|
||||
num_nodes=num_nodes,
|
||||
num_devices_per_node=num_devices_per_node,
|
||||
distributed_init_method=distributed_init_method,
|
||||
all_stage_devices=all_stage_devices,
|
||||
)
|
||||
|
||||
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|
@ -1,43 +0,0 @@
|
||||
import argparse
|
||||
import json
|
||||
import time
|
||||
|
||||
import gradio as gr
|
||||
import requests
|
||||
|
||||
|
||||
def http_bot(prompt):
|
||||
headers = {"User-Agent": "Cacheflow Client"}
|
||||
pload = {
|
||||
"prompt": prompt,
|
||||
"max_num_steps": 128,
|
||||
}
|
||||
response = requests.post(args.model_url, headers=headers, json=pload, stream=True)
|
||||
|
||||
for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b"\0"):
|
||||
if chunk:
|
||||
data = json.loads(chunk.decode("utf-8"))
|
||||
output = data["text"][0]
|
||||
yield output
|
||||
|
||||
|
||||
def build_demo():
|
||||
with gr.Blocks() as demo:
|
||||
gr.Markdown(
|
||||
"# Cacheflow demo\n"
|
||||
)
|
||||
inputbox = gr.Textbox(label="Input", placeholder="Enter text and press ENTER")# .style(container=False)
|
||||
outputbox = gr.Textbox(label="Output", placeholder="Generated result from the model")
|
||||
inputbox.submit(http_bot, [inputbox], [outputbox])
|
||||
return demo
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", type=str, default="localhost")
|
||||
parser.add_argument("--port", type=int, default=10003)
|
||||
parser.add_argument("--model-url", type=str, default="http://localhost:10002/generate")
|
||||
args = parser.parse_args()
|
||||
|
||||
demo = build_demo()
|
||||
demo.queue(concurrency_count=100).launch(server_name=args.host, server_port=args.port)
|
@ -1,23 +0,0 @@
|
||||
import requests
|
||||
import json
|
||||
|
||||
def http_request():
|
||||
prompt = "Ion Stoica is a"
|
||||
|
||||
headers = {"User-Agent": "Test Client"}
|
||||
pload = {
|
||||
"prompt": prompt,
|
||||
"n": 4,
|
||||
"use_beam_search": True,
|
||||
"temperature": 0.0,
|
||||
}
|
||||
response = requests.post("http://localhost:10002/generate", headers=headers, json=pload, stream=True)
|
||||
|
||||
for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b"\0"):
|
||||
if chunk:
|
||||
data = json.loads(chunk.decode("utf-8"))
|
||||
output = data["text"]
|
||||
yield output
|
||||
|
||||
for h in http_request():
|
||||
print(h, flush=True)
|
@ -1,529 +0,0 @@
|
||||
import enum
|
||||
import os
|
||||
import pickle
|
||||
import time
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from cacheflow.master.block_manager import BlockSpaceManager
|
||||
from cacheflow.master.policy import PolicyFactory
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
from cacheflow.sequence import Sequence
|
||||
from cacheflow.sequence import SequenceGroup
|
||||
from cacheflow.sequence import SequenceGroupInputs
|
||||
from cacheflow.sequence import SequenceOutputs
|
||||
from cacheflow.sequence import SequenceStatus
|
||||
|
||||
|
||||
class PreemptionMode(enum.Enum):
|
||||
"""Preemption modes.
|
||||
|
||||
1. Swapping: Swap out the blocks of the preempted sequences to CPU memory
|
||||
and swap them back in when the sequences are resumed.
|
||||
2. Recomputation: Discard the blocks of the preempted sequences and
|
||||
recompute them when the sequences are resumed, treating the sequences as
|
||||
new prompts.
|
||||
"""
|
||||
SWAP = enum.auto()
|
||||
RECOMPUTE = enum.auto()
|
||||
|
||||
|
||||
class Scheduler:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
controllers: List,
|
||||
block_size: int,
|
||||
num_gpu_blocks: int,
|
||||
num_cpu_blocks: int,
|
||||
max_num_batched_tokens: int,
|
||||
max_num_sequences: int,
|
||||
collect_stats: bool,
|
||||
do_memory_analysis: bool = False,
|
||||
) -> None:
|
||||
self.controllers = controllers
|
||||
self.block_size = block_size
|
||||
self.num_gpu_blocks = num_gpu_blocks
|
||||
self.num_cpu_blocks = num_cpu_blocks
|
||||
self.max_num_batched_tokens = max_num_batched_tokens
|
||||
self.max_num_sequences = max_num_sequences
|
||||
self.collect_stats = collect_stats
|
||||
self.do_memory_analysis = do_memory_analysis
|
||||
|
||||
# Instantiate the scheduling policy.
|
||||
self.policy = PolicyFactory.get_policy(policy_name='fcfs')
|
||||
# Create the block space manager.
|
||||
self.block_manager = BlockSpaceManager(
|
||||
block_size=block_size,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=num_cpu_blocks,
|
||||
)
|
||||
|
||||
# Sequence groups in the WAITING state.
|
||||
self.waiting: List[SequenceGroup] = []
|
||||
# Sequence groups in the RUNNING state.
|
||||
self.running: List[SequenceGroup] = []
|
||||
# Mapping: group_id -> num_steps.
|
||||
self.num_steps: Dict[int, int] = {}
|
||||
# Mapping: group_id -> sampling params.
|
||||
self.sampling_params: Dict[int, SamplingParams] = {}
|
||||
# Sequence groups in the SWAPPED state.
|
||||
self.swapped: List[SequenceGroup] = []
|
||||
|
||||
# Performance-related statistics.
|
||||
self.stats = Stats(num_gpu_blocks, num_cpu_blocks)
|
||||
|
||||
def add_sequence_groups(
|
||||
self,
|
||||
seq_groups: List[Tuple[SequenceGroup, SamplingParams]],
|
||||
) -> None:
|
||||
# Add sequence groups to the waiting queue.
|
||||
for seq_group, sampling_params in seq_groups:
|
||||
self.waiting.append(seq_group)
|
||||
self.sampling_params[seq_group.group_id] = sampling_params
|
||||
|
||||
def _schedule(
|
||||
self,
|
||||
) -> Tuple[Dict[int, int], Dict[int, int], Dict[int, List[int]], List[int]]:
|
||||
# Blocks that need to be swaped or copied before model execution.
|
||||
blocks_to_swap_in: Dict[int, int] = {}
|
||||
blocks_to_swap_out: Dict[int, int] = {}
|
||||
blocks_to_copy: Dict[int, List[int]] = {}
|
||||
|
||||
# Fix the current time.
|
||||
now = time.time()
|
||||
|
||||
# NOTE(woosuk): We prioritize the sequence groups in the RUNNING state
|
||||
# in order to minimize the preemption overheads.
|
||||
# Preemption happens only when there is no available slot to keep all
|
||||
# the sequence groups in the RUNNING state.
|
||||
# In this case, the policy is responsible for deciding which sequence
|
||||
# groups to preempt.
|
||||
self.running = self.policy.sort_by_priority(now, self.running)
|
||||
|
||||
# Reserve new token slots for the running sequence groups.
|
||||
running: List[SequenceGroup] = []
|
||||
preempted: List[SequenceGroup] = []
|
||||
while self.running:
|
||||
seq_group = self.running.pop(0)
|
||||
while not self.block_manager.can_append(seq_group):
|
||||
if self.running:
|
||||
# Preempt the lowest-priority sequence groups.
|
||||
victim_seq_group = self.running.pop(-1)
|
||||
self._preempt(victim_seq_group, blocks_to_swap_out)
|
||||
preempted.append(victim_seq_group)
|
||||
else:
|
||||
# No other sequence groups can be preempted.
|
||||
# Preempt the current sequence group.
|
||||
self._preempt(seq_group, blocks_to_swap_out)
|
||||
preempted.append(seq_group)
|
||||
break
|
||||
else:
|
||||
# Append new slots to the sequence group.
|
||||
self._append(seq_group, blocks_to_copy)
|
||||
running.append(seq_group)
|
||||
self.running = running
|
||||
|
||||
# Swap in the sequence groups in the SWAPPED state if possible.
|
||||
self.swapped = self.policy.sort_by_priority(now, self.swapped)
|
||||
# FCFS
|
||||
while self.swapped and not blocks_to_swap_out:
|
||||
seq_group = self.swapped[0]
|
||||
# If the sequence group has been preempted in this step, stop.
|
||||
if seq_group in preempted:
|
||||
break
|
||||
# If the sequence group cannot be swapped in, stop.
|
||||
if not self.block_manager.can_swap_in(seq_group):
|
||||
break
|
||||
|
||||
# The total number of sequences in the RUNNING state should not
|
||||
# exceed the maximum number of sequences.
|
||||
num_seqs = seq_group.num_seqs(status=SequenceStatus.SWAPPED)
|
||||
if len(self.running) + num_seqs > self.max_num_sequences:
|
||||
break
|
||||
|
||||
seq_group = self.swapped.pop(0)
|
||||
self._swap_in(seq_group, blocks_to_swap_in)
|
||||
self._append(seq_group, blocks_to_copy)
|
||||
self.running.append(seq_group)
|
||||
|
||||
num_batched_tokens = sum(
|
||||
seq_group.num_seqs(status=SequenceStatus.RUNNING)
|
||||
for seq_group in self.running
|
||||
)
|
||||
|
||||
# Join waiting sequences if possible.
|
||||
prompt_group_ids: List[int] = []
|
||||
# NOTE(woosuk): The sequence groups in the SWAPPED state are strictly
|
||||
# prioritized over the sequence groups in the WAITING state.
|
||||
# This is because we want to bound the amount of CPU memory taken by
|
||||
# the swapped sequence groups.
|
||||
if not self.swapped:
|
||||
self.waiting = self.policy.sort_by_priority(now, self.waiting)
|
||||
while self.waiting:
|
||||
seq_group = self.waiting[0]
|
||||
# If the sequence group has been preempted in this step, stop.
|
||||
if seq_group in preempted:
|
||||
break
|
||||
# If the sequence group cannot be allocated, stop.
|
||||
if not self.block_manager.can_allocate(seq_group):
|
||||
break
|
||||
|
||||
# If the number of batched tokens exceeds the limit, stop.
|
||||
num_prompt_tokens = seq_group.seqs[0].get_len()
|
||||
if (num_batched_tokens + num_prompt_tokens
|
||||
> self.max_num_batched_tokens):
|
||||
break
|
||||
|
||||
# The total number of sequences in the RUNNING state should not
|
||||
# exceed the maximum number of sequences.
|
||||
num_seqs = seq_group.num_seqs(status=SequenceStatus.WAITING)
|
||||
if len(self.running) + num_seqs > self.max_num_sequences:
|
||||
break
|
||||
|
||||
seq_group = self.waiting.pop(0)
|
||||
self._allocate(seq_group)
|
||||
self.running.append(seq_group)
|
||||
num_batched_tokens += num_prompt_tokens
|
||||
prompt_group_ids.append(seq_group.group_id)
|
||||
|
||||
if self.collect_stats:
|
||||
if self.running or blocks_to_swap_in or blocks_to_swap_out:
|
||||
self.stats.timestamps.append(now - self.stats.start_time)
|
||||
self.stats.input_lens.append(num_batched_tokens)
|
||||
self.stats.swap_out_lens.append(len(blocks_to_swap_out) * self.block_size)
|
||||
self.stats.swap_in_lens.append(len(blocks_to_swap_in) * self.block_size)
|
||||
self.stats.num_preemption.append(len(preempted))
|
||||
self.stats.num_swapped.append(len(self.swapped))
|
||||
self.stats.num_running.append(len(self.running))
|
||||
self.stats.num_waiting.append(len(self.waiting))
|
||||
|
||||
num_free_gpu_blocks = self.block_manager.get_num_free_gpu_blocks()
|
||||
num_used_gpu_blocks = self.num_gpu_blocks - num_free_gpu_blocks
|
||||
self.stats.gpu_cache_usage.append(num_used_gpu_blocks / self.num_gpu_blocks)
|
||||
num_free_cpu_blocks = self.block_manager.get_num_free_cpu_blocks()
|
||||
num_used_cpu_blocks = self.num_cpu_blocks - num_free_cpu_blocks
|
||||
self.stats.cpu_cache_usage.append(num_used_cpu_blocks / self.num_cpu_blocks)
|
||||
|
||||
if self.do_memory_analysis:
|
||||
block_tables = self.block_manager.block_tables
|
||||
num_logical_blocks = 0
|
||||
num_logical_tokens = 0
|
||||
num_physical_blocks = 0
|
||||
num_physical_tokens = 0
|
||||
physical_block_numbers = set()
|
||||
num_reserved_tokens = 0
|
||||
for seq_group in self.running:
|
||||
group_id = seq_group.group_id
|
||||
sampling_params = self.sampling_params[group_id]
|
||||
max_num_steps = sampling_params.max_num_steps
|
||||
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
|
||||
num_logical_blocks += len(seq.logical_token_blocks)
|
||||
num_logical_tokens += seq.get_len()
|
||||
|
||||
seq_id = seq.seq_id
|
||||
block_table = block_tables[seq_id]
|
||||
for i, block in enumerate(block_table):
|
||||
if block.block_number in physical_block_numbers:
|
||||
continue
|
||||
physical_block_numbers.add(block.block_number)
|
||||
num_physical_blocks += 1
|
||||
num_physical_tokens += seq.logical_token_blocks[i].num_tokens
|
||||
|
||||
assert num_physical_blocks == num_used_gpu_blocks
|
||||
self.stats.num_logical_blocks.append(num_logical_blocks)
|
||||
self.stats.num_logical_tokens.append(num_logical_tokens)
|
||||
self.stats.num_physical_blocks.append(num_physical_blocks)
|
||||
self.stats.num_physical_tokens.append(num_physical_tokens)
|
||||
self.stats.num_reserved_tokens.append(num_reserved_tokens)
|
||||
|
||||
return (blocks_to_swap_in,
|
||||
blocks_to_swap_out,
|
||||
blocks_to_copy,
|
||||
prompt_group_ids)
|
||||
|
||||
def step(self) -> List[SequenceGroup]:
|
||||
# Schedule sequence groups.
|
||||
# This function call changes the internal states of the scheduler
|
||||
# such as self.running, self.swapped, and self.waiting.
|
||||
scheduler_output = self._schedule()
|
||||
blocks_to_swap_in = scheduler_output[0]
|
||||
blocks_to_swap_out = scheduler_output[1]
|
||||
blocks_to_copy = scheduler_output[2]
|
||||
prompt_group_ids = scheduler_output[3]
|
||||
|
||||
# Create input data structures.
|
||||
input_seq_groups: List[SequenceGroupInputs] = []
|
||||
updated_seq_groups: List[SequenceGroup] = self.running.copy()
|
||||
|
||||
for seq_group in self.running:
|
||||
group_id = seq_group.group_id
|
||||
is_prompt = group_id in prompt_group_ids
|
||||
|
||||
input_tokens: Dict[int, List[int]] = {}
|
||||
seq_logprobs: Dict[int, float] = {}
|
||||
block_tables: Dict[int, List[int]] = {}
|
||||
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
|
||||
seq_id = seq.seq_id
|
||||
block_tables[seq_id] = self.block_manager.get_block_table(seq)
|
||||
if is_prompt:
|
||||
input_tokens[seq_id] = seq.get_token_ids()
|
||||
else:
|
||||
input_tokens[seq_id] = [seq.get_last_token_id()]
|
||||
seq_logprobs[seq_id] = seq.cumulative_logprobs
|
||||
# NOTE(woosuk): Sequences in the same group have the same
|
||||
# sequence length
|
||||
seq_len = seq.get_len()
|
||||
|
||||
input_seq_group = SequenceGroupInputs(
|
||||
group_id=group_id,
|
||||
is_prompt=is_prompt,
|
||||
input_tokens=input_tokens,
|
||||
context_len=seq_len,
|
||||
seq_logprobs=seq_logprobs,
|
||||
sampling_params=self.sampling_params[group_id],
|
||||
block_tables=block_tables,
|
||||
)
|
||||
input_seq_groups.append(input_seq_group)
|
||||
|
||||
# Execute the first stage of the pipeline.
|
||||
if input_seq_groups or blocks_to_swap_in or blocks_to_swap_out:
|
||||
# Swap in and swap out should never happen at the same time.
|
||||
assert not (blocks_to_swap_in and blocks_to_swap_out)
|
||||
self.controllers[0].execute_stage(
|
||||
input_seq_groups,
|
||||
blocks_to_swap_in=blocks_to_swap_in,
|
||||
blocks_to_swap_out=blocks_to_swap_out,
|
||||
blocks_to_copy=blocks_to_copy,
|
||||
)
|
||||
|
||||
return updated_seq_groups
|
||||
|
||||
def post_step(
|
||||
self,
|
||||
seq_outputs: Dict[int, SequenceOutputs],
|
||||
) -> None:
|
||||
# Update the running sequences and free blocks.
|
||||
for seq_group in self.running:
|
||||
group_id = seq_group.group_id
|
||||
self.num_steps[group_id] += 1
|
||||
stop_token_ids = self.sampling_params[group_id].stop_token_ids
|
||||
|
||||
# Process beam search results before processing the next tokens.
|
||||
for seq in seq_group.seqs:
|
||||
if seq.status == SequenceStatus.FINISHED:
|
||||
continue
|
||||
|
||||
output = seq_outputs[seq.seq_id]
|
||||
if seq.seq_id != output.parent_seq_id:
|
||||
# The sequence is a fork of the parent sequence (beam search).
|
||||
# Free the current sequence.
|
||||
self.block_manager.free(seq)
|
||||
# Fork the parent sequence.
|
||||
parent_seq = seq_group.find(output.parent_seq_id)
|
||||
parent_seq.fork(seq)
|
||||
self.block_manager.fork(parent_seq, seq)
|
||||
|
||||
# Process the next tokens.
|
||||
for seq in seq_group.seqs:
|
||||
if seq.status == SequenceStatus.FINISHED:
|
||||
continue
|
||||
|
||||
# Append a new token to the sequence.
|
||||
output = seq_outputs[seq.seq_id]
|
||||
seq.append(output.output_token, output.logprobs)
|
||||
|
||||
# Check if the sequence has generated a stop token.
|
||||
if output.output_token in stop_token_ids:
|
||||
self._free_seq(seq)
|
||||
continue
|
||||
|
||||
# Check if the sequence has reached the maximum number of steps.
|
||||
max_num_steps = self.sampling_params[group_id].max_num_steps
|
||||
if self.num_steps[group_id] == max_num_steps:
|
||||
self._free_seq(seq)
|
||||
continue
|
||||
|
||||
# Update the running sequences.
|
||||
running: List[SequenceGroup] = []
|
||||
for seq_group in self.running:
|
||||
if seq_group.is_finished():
|
||||
self._free_seq_group(seq_group)
|
||||
else:
|
||||
running.append(seq_group)
|
||||
self.running = running
|
||||
|
||||
def _allocate(self, seq_group: SequenceGroup) -> None:
|
||||
self.block_manager.allocate(seq_group)
|
||||
for seq in seq_group.seqs:
|
||||
seq.status = SequenceStatus.RUNNING
|
||||
# FIXME(woosuk): Support interactive generation.
|
||||
if seq_group.group_id not in self.num_steps:
|
||||
self.num_steps[seq_group.group_id] = 0
|
||||
|
||||
def _append(
|
||||
self,
|
||||
seq_group: SequenceGroup,
|
||||
blocks_to_copy: Dict[int, List[int]],
|
||||
) -> None:
|
||||
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
|
||||
ret = self.block_manager.append(seq)
|
||||
if ret is not None:
|
||||
src_block, dst_block = ret
|
||||
if src_block in blocks_to_copy:
|
||||
blocks_to_copy[src_block].append(dst_block)
|
||||
else:
|
||||
blocks_to_copy[src_block] = [dst_block]
|
||||
|
||||
def _preempt(
|
||||
self,
|
||||
seq_group: SequenceGroup,
|
||||
blocks_to_swap_out: Dict[int, int],
|
||||
preemption_mode: Optional[PreemptionMode] = None,
|
||||
) -> None:
|
||||
# If preemption mode is not specified, we determine the mode as follows:
|
||||
# We use recomputation by default since it incurs lower overhead than
|
||||
# swapping. However, when the sequence group has multiple sequences
|
||||
# (e.g., beam search), recomputation is not supported. In such a case,
|
||||
# we use swapping instead.
|
||||
# FIXME(woosuk): This makes our scheduling policy a bit bizarre.
|
||||
# As swapped sequences are prioritized over waiting sequences,
|
||||
# sequence groups with multiple sequences are implicitly prioritized
|
||||
# over sequence groups with a single sequence.
|
||||
# TODO(woosuk): Support recomputation for sequence groups with multiple
|
||||
# sequences. This may require a more sophisticated CUDA kernel.
|
||||
if preemption_mode is None:
|
||||
seqs = seq_group.get_seqs(status=SequenceStatus.RUNNING)
|
||||
if len(seqs) == 1:
|
||||
preemption_mode = PreemptionMode.RECOMPUTE
|
||||
else:
|
||||
preemption_mode = PreemptionMode.SWAP
|
||||
if preemption_mode == PreemptionMode.RECOMPUTE:
|
||||
self._preempt_by_recompute(seq_group)
|
||||
elif preemption_mode == PreemptionMode.SWAP:
|
||||
self._preempt_by_swap(seq_group, blocks_to_swap_out)
|
||||
else:
|
||||
assert False, 'Invalid preemption mode.'
|
||||
|
||||
def _preempt_by_recompute(
|
||||
self,
|
||||
seq_group: SequenceGroup,
|
||||
) -> None:
|
||||
seqs = seq_group.get_seqs(status=SequenceStatus.RUNNING)
|
||||
assert len(seqs) == 1
|
||||
for seq in seqs:
|
||||
seq.status = SequenceStatus.WAITING
|
||||
self.block_manager.free(seq)
|
||||
self.waiting.append(seq_group)
|
||||
|
||||
def _preempt_by_swap(
|
||||
self,
|
||||
seq_group: SequenceGroup,
|
||||
blocks_to_swap_out: Dict[int, int],
|
||||
) -> None:
|
||||
seqs = seq_group.get_seqs(status=SequenceStatus.RUNNING)
|
||||
for seq in seqs:
|
||||
seq.status = SequenceStatus.SWAPPED
|
||||
self._swap_out(seq_group, blocks_to_swap_out)
|
||||
self.swapped.append(seq_group)
|
||||
|
||||
def _free_seq(self, seq: Sequence) -> None:
|
||||
seq.status = SequenceStatus.FINISHED
|
||||
self.block_manager.free(seq)
|
||||
|
||||
def _free_seq_group(self, seq_group: SequenceGroup) -> None:
|
||||
group_id = seq_group.group_id
|
||||
del self.num_steps[group_id]
|
||||
del self.sampling_params[group_id]
|
||||
|
||||
def _swap_in(
|
||||
self,
|
||||
seq_group: SequenceGroup,
|
||||
blocks_to_swap_in: Dict[int, int],
|
||||
) -> None:
|
||||
mapping = self.block_manager.swap_in(seq_group)
|
||||
blocks_to_swap_in.update(mapping)
|
||||
for seq in seq_group.get_seqs(status=SequenceStatus.SWAPPED):
|
||||
seq.status = SequenceStatus.RUNNING
|
||||
|
||||
def _swap_out(
|
||||
self,
|
||||
seq_group: SequenceGroup,
|
||||
blocks_to_swap_out: Dict[int, int],
|
||||
) -> None:
|
||||
assert self.block_manager.can_swap_out(seq_group)
|
||||
mapping = self.block_manager.swap_out(seq_group)
|
||||
blocks_to_swap_out.update(mapping)
|
||||
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
|
||||
seq.status = SequenceStatus.SWAPPED
|
||||
|
||||
def reset_stats(self) -> None:
|
||||
self.stats.reset(self.num_gpu_blocks, self.num_cpu_blocks)
|
||||
|
||||
def save_stats(
|
||||
self,
|
||||
output_dir: str,
|
||||
) -> None:
|
||||
assert self.collect_stats, 'Statistics collection is disabled.'
|
||||
self.stats.save(output_dir)
|
||||
|
||||
|
||||
class Stats:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_gpu_blocks: int,
|
||||
num_cpu_blocks: int,
|
||||
) -> None:
|
||||
self.start_time: float = time.time()
|
||||
self.num_gpu_blocks = num_gpu_blocks
|
||||
self.num_cpu_blocks = num_cpu_blocks
|
||||
|
||||
self.timestamps: List[float] = []
|
||||
self.input_lens: List[int] = []
|
||||
self.swap_out_lens: List[int] = []
|
||||
self.swap_in_lens: List[int] = []
|
||||
self.num_preemption: List[int] = []
|
||||
self.num_waiting: List[int] = []
|
||||
self.num_running: List[int] = []
|
||||
self.num_swapped: List[int] = []
|
||||
self.gpu_cache_usage: List[float] = []
|
||||
self.cpu_cache_usage: List[float] = []
|
||||
|
||||
self.num_logical_blocks: List[int] = []
|
||||
self.num_logical_tokens: List[int] = []
|
||||
self.num_physical_blocks: List[int] = []
|
||||
self.num_physical_tokens: List[int] = []
|
||||
self.num_reserved_tokens: List[int] = []
|
||||
|
||||
def reset(
|
||||
self,
|
||||
num_gpu_blocks: int,
|
||||
num_cpu_blocks: int,
|
||||
) -> None:
|
||||
self.__init__(num_gpu_blocks, num_cpu_blocks)
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
return {
|
||||
'start_time': self.start_time,
|
||||
'num_gpu_blocks': self.num_gpu_blocks,
|
||||
'num_cpu_blocks': self.num_cpu_blocks,
|
||||
'timestamps': self.timestamps,
|
||||
'input_lens': self.input_lens,
|
||||
'swap_out_lens': self.swap_out_lens,
|
||||
'swap_in_lens': self.swap_in_lens,
|
||||
'num_preemption': self.num_preemption,
|
||||
'num_waiting': self.num_waiting,
|
||||
'num_running': self.num_running,
|
||||
'num_swapped': self.num_swapped,
|
||||
'gpu_cache_usage': self.gpu_cache_usage,
|
||||
'cpu_cache_usage': self.cpu_cache_usage,
|
||||
'num_logical_blocks': self.num_logical_blocks,
|
||||
'num_logical_tokens': self.num_logical_tokens,
|
||||
'num_physical_blocks': self.num_physical_blocks,
|
||||
'num_physical_tokens': self.num_physical_tokens,
|
||||
'num_reserved_tokens': self.num_reserved_tokens,
|
||||
}
|
||||
|
||||
def save(self, output_dir: str) -> None:
|
||||
with open(os.path.join(output_dir, 'stats.pkl'), 'wb') as f:
|
||||
pickle.dump(self.to_dict(), f)
|
@ -1,192 +0,0 @@
|
||||
import argparse
|
||||
from typing import List, Tuple
|
||||
import random
|
||||
|
||||
import ray
|
||||
|
||||
from cacheflow.master.scheduler import Scheduler
|
||||
from cacheflow.models import get_memory_analyzer
|
||||
from cacheflow.worker.controller import Controller, DeviceID
|
||||
from cacheflow.sequence import SequenceGroup
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
|
||||
|
||||
class Server:
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
model_path: str,
|
||||
use_dummy_weights: bool,
|
||||
pipeline_parallel_size: int,
|
||||
tensor_parallel_size: int,
|
||||
block_size: int,
|
||||
dtype: str,
|
||||
seed: int,
|
||||
swap_space: int,
|
||||
max_num_batched_tokens: int,
|
||||
max_num_sequences: int,
|
||||
num_nodes: int,
|
||||
num_devices_per_node: int,
|
||||
distributed_init_method: str,
|
||||
all_stage_devices: List[List[DeviceID]],
|
||||
gpu_memory: int,
|
||||
cpu_memory: int,
|
||||
collect_stats: bool = False,
|
||||
do_memory_analysis: bool = False,
|
||||
):
|
||||
self.num_nodes = num_nodes
|
||||
self.num_devices_per_node = num_devices_per_node
|
||||
self.world_size = pipeline_parallel_size * tensor_parallel_size
|
||||
|
||||
self.memory_analyzer = get_memory_analyzer(
|
||||
model_name=model,
|
||||
block_size=block_size,
|
||||
dtype=dtype,
|
||||
gpu_memory=gpu_memory,
|
||||
cpu_memory=cpu_memory,
|
||||
tensor_parallel_size=tensor_parallel_size,
|
||||
)
|
||||
self.num_gpu_blocks = self.memory_analyzer.get_max_num_gpu_blocks(
|
||||
max_num_batched_tokens=max_num_batched_tokens)
|
||||
self.num_cpu_blocks = self.memory_analyzer.get_max_num_cpu_blocks(
|
||||
swap_space=swap_space)
|
||||
print(f'# GPU blocks: {self.num_gpu_blocks}, '
|
||||
f'# CPU blocks: {self.num_cpu_blocks}')
|
||||
|
||||
# Create a controller for each pipeline stage.
|
||||
self.controllers: List[Controller] = []
|
||||
for i in range(pipeline_parallel_size):
|
||||
controller = Controller(
|
||||
stage_id=i,
|
||||
stage_devices=all_stage_devices[i],
|
||||
world_size=self.world_size,
|
||||
pipeline_parallel_size=pipeline_parallel_size,
|
||||
tensor_parallel_size=tensor_parallel_size,
|
||||
distributed_init_method=distributed_init_method,
|
||||
model_name=model,
|
||||
block_size=block_size,
|
||||
num_gpu_blocks=self.num_gpu_blocks,
|
||||
num_cpu_blocks=self.num_cpu_blocks,
|
||||
dtype=dtype,
|
||||
seed=seed,
|
||||
model_path=model_path,
|
||||
use_dummy_weights=use_dummy_weights,
|
||||
max_num_batched_tokens=max_num_batched_tokens,
|
||||
)
|
||||
self.controllers.append(controller)
|
||||
|
||||
# Create a scheduler.
|
||||
self.scheduler = Scheduler(
|
||||
controllers=self.controllers,
|
||||
block_size=block_size,
|
||||
num_gpu_blocks=self.num_gpu_blocks,
|
||||
num_cpu_blocks=self.num_cpu_blocks,
|
||||
max_num_batched_tokens=max_num_batched_tokens,
|
||||
max_num_sequences=max_num_sequences,
|
||||
collect_stats=collect_stats,
|
||||
do_memory_analysis=do_memory_analysis,
|
||||
)
|
||||
# Connect the controllers.
|
||||
for i in range(len(self.controllers) - 1):
|
||||
self.controllers[i].set_next(self.controllers[i + 1])
|
||||
self.controllers[-1].set_next(self.scheduler)
|
||||
|
||||
def add_sequence_groups(
|
||||
self,
|
||||
sequence_groups: List[Tuple[SequenceGroup, SamplingParams]]
|
||||
):
|
||||
self.scheduler.add_sequence_groups(sequence_groups)
|
||||
|
||||
def step(self):
|
||||
return self.scheduler.step()
|
||||
|
||||
def has_unfinished_requests(self):
|
||||
return (self.scheduler.waiting or self.scheduler.running or
|
||||
self.scheduler.swapped)
|
||||
|
||||
|
||||
def initialize_ray_cluster(
|
||||
address: str = 'auto',
|
||||
pipeline_parallel_size: int = 1,
|
||||
tensor_parallel_size: int = 1,
|
||||
) -> Tuple[int, int, str, List[List[DeviceID]]]:
|
||||
# Connect to a ray cluster.
|
||||
ray.init(address=address)
|
||||
|
||||
# Assume we have a uniform cluster that each node has the same number of
|
||||
# GPUs for now.
|
||||
valid_node_resources = []
|
||||
num_devices_per_node = None
|
||||
for node in ray.nodes():
|
||||
if (not node['Alive']) or node['Resources']['GPU'] <= 0:
|
||||
continue
|
||||
if num_devices_per_node is None:
|
||||
num_devices_per_node = node['Resources']['GPU']
|
||||
else:
|
||||
assert num_devices_per_node == node['Resources']['GPU'], (
|
||||
"The number of GPUs per node is not uniform.")
|
||||
for key in node['Resources']:
|
||||
if key.startswith('node:'):
|
||||
valid_node_resources.append(key)
|
||||
|
||||
num_nodes = len(valid_node_resources)
|
||||
|
||||
assert (pipeline_parallel_size * tensor_parallel_size
|
||||
<= num_nodes * num_devices_per_node), (
|
||||
"The number of required GPUs exceeds the total number of "
|
||||
"available GPUs.")
|
||||
if tensor_parallel_size >= num_devices_per_node:
|
||||
assert tensor_parallel_size % num_devices_per_node == 0, (
|
||||
"The number of tensor parallelism is not divisible by the "
|
||||
"number of GPUs per node.")
|
||||
else:
|
||||
assert num_devices_per_node % tensor_parallel_size == 0, (
|
||||
"The number of GPUs per node is not divisible by the number "
|
||||
"of tensor parallelism.")
|
||||
|
||||
# Assign GPUs to pipeline stages.
|
||||
rank = 0
|
||||
current_node_id = 0
|
||||
current_device_id = 0
|
||||
distributed_init_method = None
|
||||
all_stage_devices = []
|
||||
|
||||
for i in range(pipeline_parallel_size):
|
||||
stage_devices = []
|
||||
for j in range(tensor_parallel_size):
|
||||
node_resource = valid_node_resources[current_node_id]
|
||||
stage_devices.append((rank, node_resource, current_device_id))
|
||||
if distributed_init_method is None:
|
||||
ip = node_resource.split("node:")[-1]
|
||||
port = random.randint(10000, 20000)
|
||||
distributed_init_method = f"tcp://{ip}:{port}"
|
||||
rank += 1
|
||||
current_device_id += 1
|
||||
if current_device_id >= num_devices_per_node:
|
||||
current_node_id += 1
|
||||
current_device_id = 0
|
||||
all_stage_devices.append(stage_devices)
|
||||
|
||||
return (num_nodes, num_devices_per_node, distributed_init_method,
|
||||
all_stage_devices)
|
||||
|
||||
|
||||
def add_server_arguments(parser: argparse.ArgumentParser):
|
||||
# Model arguments
|
||||
parser.add_argument('--model', type=str, default='facebook/opt-125m', help='model name')
|
||||
parser.add_argument('--model-path', type=str, default='~/.cacheflow/model_weights',
|
||||
help='model path to download and load the weights')
|
||||
# Parallel arguments
|
||||
parser.add_argument('--pipeline-parallel-size', '-pp', type=int, default=1, help='number of pipeline stages')
|
||||
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1, help='number of tensor parallel replicas')
|
||||
# KV cache arguments
|
||||
parser.add_argument('--block-size', type=int, default=16, choices=[1, 2, 4, 8, 16, 32, 64, 128, 256], help='token block size')
|
||||
# NOTE(woosuk): If FlashAttention is used, the float data type is not supported.
|
||||
parser.add_argument('--dtype', type=str, default='half', choices=['half'], help='data type')
|
||||
# TODO(woosuk): Support fine-grained seeds (e.g., seed per request).
|
||||
parser.add_argument('--seed', type=int, default=0, help='random seed')
|
||||
parser.add_argument('--swap-space', type=int, default=20, help='CPU swap space size (GiB) per GPU')
|
||||
parser.add_argument('--max-num-batched-tokens', type=int, default=2560, help='maximum number of batched tokens per iteration')
|
||||
parser.add_argument('--max-num-sequences', type=int, default=256, help='maximum number of sequences per iteration')
|
||||
parser.add_argument('--use-dummy-weights', action='store_true', help='use dummy values for model weights')
|
||||
return parser
|
@ -1,69 +0,0 @@
|
||||
import time
|
||||
from typing import List, Optional, Set, Tuple
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
from cacheflow.sequence import Sequence, SequenceGroup
|
||||
from cacheflow.utils import Counter
|
||||
|
||||
|
||||
class SimpleFrontend:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
block_size: int,
|
||||
) -> None:
|
||||
self.block_size = block_size
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
self.seq_group_counter = Counter()
|
||||
self.seq_counter = Counter()
|
||||
self.inputs: List[Tuple[SequenceGroup, SamplingParams]] = []
|
||||
|
||||
def add_eos_token(self, sampling_params: SamplingParams) -> SamplingParams:
|
||||
# Stop generation when we see an EOS token.
|
||||
sampling_params.stop_token_ids.add(self.tokenizer.eos_token_id)
|
||||
return sampling_params
|
||||
|
||||
def query(
|
||||
self,
|
||||
prompt: str,
|
||||
sampling_params: SamplingParams,
|
||||
) -> None:
|
||||
token_ids = self.tokenizer.encode(prompt)
|
||||
self._add_query(token_ids, sampling_params)
|
||||
|
||||
def _add_query(
|
||||
self,
|
||||
token_ids: List[int],
|
||||
sampling_params: SamplingParams,
|
||||
arrival_time: Optional[float] = None,
|
||||
) -> None:
|
||||
if arrival_time is None:
|
||||
arrival_time = time.time()
|
||||
seqs: List[Sequence] = []
|
||||
for _ in range(sampling_params.n):
|
||||
seq_id = next(self.seq_counter)
|
||||
seq = Sequence(seq_id, token_ids, block_size=self.block_size)
|
||||
seqs.append(seq)
|
||||
|
||||
group_id = next(self.seq_group_counter)
|
||||
seq_group = SequenceGroup(group_id, seqs, arrival_time)
|
||||
self.inputs.append((seq_group, sampling_params))
|
||||
|
||||
def get_inputs(self) -> List[Tuple[SequenceGroup, SamplingParams]]:
|
||||
inputs = self.inputs
|
||||
self.inputs = []
|
||||
return inputs
|
||||
|
||||
def print_response(
|
||||
self,
|
||||
seq_group: SequenceGroup,
|
||||
) -> None:
|
||||
for seq in seq_group.seqs:
|
||||
token_ids = seq.get_token_ids()
|
||||
output = self.tokenizer.decode(token_ids, skip_special_tokens=True)
|
||||
output = output.strip()
|
||||
print(f'Seq {seq.seq_id}: {output!r}')
|
@ -1,10 +0,0 @@
|
||||
from cacheflow.models.input_metadata import InputMetadata
|
||||
from cacheflow.models.model_utils import get_memory_analyzer
|
||||
from cacheflow.models.model_utils import get_model
|
||||
|
||||
|
||||
__all__ = [
|
||||
'InputMetadata',
|
||||
'get_memory_analyzer',
|
||||
'get_model',
|
||||
]
|
@ -1,20 +0,0 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from cacheflow import activation_ops
|
||||
|
||||
|
||||
class SiluAndMul(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor, # (num_tokens, 2 * d)
|
||||
) -> torch.Tensor: # (num_tokens, d)
|
||||
num_tokens = x.shape[0]
|
||||
d = x.shape[1] // 2
|
||||
out = torch.empty(num_tokens, d, dtype=x.dtype, device=x.device)
|
||||
activation_ops.silu_and_mul(out, x)
|
||||
return out
|
@ -1,207 +0,0 @@
|
||||
from typing import Optional
|
||||
|
||||
from flash_attn.flash_attn_interface import _flash_attn_forward
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from cacheflow import attention_ops
|
||||
from cacheflow import cache_ops
|
||||
from cacheflow import pos_encoding_ops
|
||||
from cacheflow.models import InputMetadata
|
||||
|
||||
|
||||
class GPTCacheFlowAttention(nn.Module):
|
||||
|
||||
def __init__(self, scale: float) -> None:
|
||||
super().__init__()
|
||||
self.scale = float(scale)
|
||||
|
||||
def multi_query_kv_attention(
|
||||
self,
|
||||
output: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
|
||||
query: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
|
||||
key: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
|
||||
value: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
|
||||
cumulative_prompt_lens: torch.Tensor, # [num_prompts + 1]
|
||||
max_prompt_len: int,
|
||||
) -> None:
|
||||
if query.dtype == torch.float:
|
||||
raise ValueError('The float data type is not supported by '
|
||||
'FlashAttention. Use the half data type instead.')
|
||||
head_size = query.shape[-1]
|
||||
if head_size > 128:
|
||||
raise ValueError('FlashAttention does not support head_size > 128.')
|
||||
|
||||
# Directly call FlashAttention's internal function to avoid allocating
|
||||
# a new tensor for the output.
|
||||
_flash_attn_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
output,
|
||||
cumulative_prompt_lens,
|
||||
cumulative_prompt_lens,
|
||||
max_prompt_len,
|
||||
max_prompt_len,
|
||||
dropout_p=0.0,
|
||||
softmax_scale=self.scale,
|
||||
causal=True,
|
||||
return_softmax=False,
|
||||
)
|
||||
|
||||
def single_query_cached_kv_attention(
|
||||
self,
|
||||
output: torch.Tensor, # [num_generation_tokens, num_heads, head_size]
|
||||
query: torch.Tensor, # [num_generation_tokens, num_heads, head_size]
|
||||
key_cache: torch.Tensor, # [num_blocks, num_heads, head_size/x, block_size, x]
|
||||
value_cache: torch.Tensor, # [num_blocks, num_heads, head_size, block_size]
|
||||
input_metadata: InputMetadata,
|
||||
) -> None:
|
||||
head_size = value_cache.shape[2]
|
||||
supported_head_sizes = [32, 64, 80, 96, 128, 160, 192, 256]
|
||||
if head_size not in supported_head_sizes:
|
||||
raise ValueError(f'head_size ({head_size}) is not supported by '
|
||||
'the single_query_cached_kv_attention kernel. '
|
||||
'Use one of the following head sizes: '
|
||||
f'{supported_head_sizes}.')
|
||||
|
||||
block_size = value_cache.shape[3]
|
||||
attention_ops.single_query_cached_kv_attention(
|
||||
output,
|
||||
query,
|
||||
key_cache,
|
||||
value_cache,
|
||||
self.scale,
|
||||
input_metadata.block_tables,
|
||||
input_metadata.context_lens,
|
||||
block_size,
|
||||
input_metadata.max_context_len,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: torch.Tensor, # [num_tokens, num_heads * head_size]
|
||||
key: torch.Tensor, # [num_tokens, num_heads * head_size]
|
||||
value: torch.Tensor, # [num_tokens, num_heads * head_size]
|
||||
key_cache: torch.Tensor, # [num_blocks, num_heads, head_size/x, block_size, x]
|
||||
value_cache: torch.Tensor, # [num_blocks, num_heads, head_size, block_size]
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor: # [num_tokens, num_heads * head_size]
|
||||
# NOTE: The query, key, and value tensors must be sliced from a qkv
|
||||
# tensor of shape [num_tokens, 3 * num_heads * head_size].
|
||||
|
||||
# Reshape the query, key, and value tensors.
|
||||
num_heads = value_cache.shape[1]
|
||||
head_size = value_cache.shape[2]
|
||||
query = query.view(-1, num_heads, head_size)
|
||||
key = key.view(-1, num_heads, head_size)
|
||||
value = value.view(-1, num_heads, head_size)
|
||||
|
||||
# Pre-allocate the output tensor.
|
||||
output = torch.empty_like(query)
|
||||
|
||||
# Compute the attention op for prompts.
|
||||
num_prompt_tokens = input_metadata.num_prompt_tokens
|
||||
if num_prompt_tokens > 0:
|
||||
self.multi_query_kv_attention(
|
||||
output[:num_prompt_tokens],
|
||||
query[:num_prompt_tokens],
|
||||
key[:num_prompt_tokens],
|
||||
value[:num_prompt_tokens],
|
||||
input_metadata.cumulative_prompt_lens,
|
||||
input_metadata.max_prompt_len,
|
||||
)
|
||||
|
||||
# Wait until the cache op is done.
|
||||
if cache_event is not None:
|
||||
cache_event.wait()
|
||||
|
||||
# Reshape the keys and values and store them in the cache.
|
||||
num_valid_tokens = input_metadata.num_valid_tokens
|
||||
if num_valid_tokens > 0:
|
||||
# The stride is 3 because the key and value are sliced from qkv.
|
||||
cache_ops.reshape_and_cache(
|
||||
key[:num_valid_tokens],
|
||||
value[:num_valid_tokens],
|
||||
key_cache,
|
||||
value_cache,
|
||||
input_metadata.slot_mapping,
|
||||
)
|
||||
|
||||
if input_metadata.num_generation_tokens > 0:
|
||||
# Compute the attention op for generation tokens.
|
||||
self.single_query_cached_kv_attention(
|
||||
output[num_prompt_tokens:num_valid_tokens],
|
||||
query[num_prompt_tokens:num_valid_tokens],
|
||||
key_cache,
|
||||
value_cache,
|
||||
input_metadata)
|
||||
|
||||
# Reshape the output tensor.
|
||||
# NOTE(woosuk): The output tensor may include paddings.
|
||||
return output.view(-1, num_heads * head_size)
|
||||
|
||||
|
||||
class OPTCacheFlowAttention(GPTCacheFlowAttention):
|
||||
"""OPT uses the same attention mechanism as GPT."""
|
||||
|
||||
def __init__(self, scale: float) -> None:
|
||||
super().__init__(scale)
|
||||
|
||||
|
||||
class LlamaCacheFlowAttention(GPTCacheFlowAttention):
|
||||
"""Llama uses GPT-NeoX style rotary embedding."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
scale: float,
|
||||
head_size: int,
|
||||
max_position: int = 8192,
|
||||
base: int = 10000,
|
||||
) -> None:
|
||||
super().__init__(scale)
|
||||
|
||||
# Create the cos and sin cache.
|
||||
inv_freq = 1.0 / (base ** (torch.arange(0, head_size, 2) / head_size))
|
||||
t = torch.arange(max_position).float()
|
||||
freqs = torch.einsum('i,j -> ij', t, inv_freq.float())
|
||||
cos = freqs.cos()
|
||||
sin = freqs.sin()
|
||||
cache = torch.cat((cos, sin), dim=-1)
|
||||
|
||||
# FIXME(woosuk): This assumes that we configure the default dtype when
|
||||
# initializing the model. Make it more robust.
|
||||
torch_dtype = torch.get_default_dtype()
|
||||
cache = cache.to(torch_dtype)
|
||||
# Embedding size: [max_position, head_size]
|
||||
self.register_buffer('cos_sin_cache', cache, persistent=False)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.LongTensor, # [num_tokens]
|
||||
query: torch.Tensor, # [num_tokens, num_heads * head_size]
|
||||
key: torch.Tensor, # [num_tokens, num_heads * head_size]
|
||||
value: torch.Tensor, # [num_tokens, num_heads * head_size]
|
||||
key_cache: torch.Tensor, # [num_blocks, num_heads, head_size/x, block_size, x]
|
||||
value_cache: torch.Tensor, # [num_blocks, num_heads, head_size, block_size]
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor: # [num_tokens, num_heads * head_size]
|
||||
# Apply rotary embedding to the query and key before passing them
|
||||
# to the attention op.
|
||||
pos_encoding_ops.rotary_embedding_neox(
|
||||
positions,
|
||||
query,
|
||||
key,
|
||||
self.cos_sin_cache,
|
||||
)
|
||||
return super().forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
key_cache,
|
||||
value_cache,
|
||||
input_metadata,
|
||||
cache_event,
|
||||
)
|
@ -1,292 +0,0 @@
|
||||
"""1D LLaMA model compatible with HuggingFace weights."""
|
||||
import os
|
||||
import glob
|
||||
import filelock
|
||||
from tqdm import tqdm
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import LlamaConfig
|
||||
|
||||
from cacheflow.models import InputMetadata
|
||||
from cacheflow.models.activation import SiluAndMul
|
||||
from cacheflow.models.attention import LlamaCacheFlowAttention
|
||||
from cacheflow.models.layernorm import RMSNorm
|
||||
from cacheflow.models.sample import Sampler
|
||||
from cacheflow.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
||||
from cacheflow.parallel_utils.tensor_parallel import (VocabParallelEmbedding,
|
||||
ColumnParallelLinear,
|
||||
RowParallelLinear)
|
||||
from cacheflow.sequence import SequenceOutputs
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class LlamaMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
):
|
||||
super().__init__()
|
||||
self.gate_up_proj = ColumnParallelLinear(hidden_size, 2 * intermediate_size,
|
||||
bias=False, gather_output=False,
|
||||
perform_initialization=False)
|
||||
self.down_proj = RowParallelLinear(intermediate_size, hidden_size,
|
||||
bias=False, input_is_parallel=True,
|
||||
perform_initialization=False)
|
||||
if hidden_act != 'silu':
|
||||
raise ValueError(f'Unsupported activation: {hidden_act}. '
|
||||
'Only silu is supported for now.')
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class LlamaAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
||||
self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
|
||||
self.head_dim = hidden_size // self.total_num_heads
|
||||
self.scaling = self.head_dim ** -0.5
|
||||
|
||||
self.qkv_proj = ColumnParallelLinear(
|
||||
hidden_size,
|
||||
3 * self.total_num_heads * self.head_dim,
|
||||
bias=False,
|
||||
gather_output=False,
|
||||
perform_initialization=False,
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
input_is_parallel=True,
|
||||
perform_initialization=False,
|
||||
)
|
||||
self.attn = LlamaCacheFlowAttention(self.scaling, self.head_dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.LongTensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(
|
||||
positions, q, k, v, k_cache, v_cache, input_metadata, cache_event)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class LlamaDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(self, config: LlamaConfig):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.self_attn = LlamaAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
)
|
||||
self.mlp = LlamaMLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.LongTensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
# Self Attention
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
cache_event=cache_event,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class LlamaModel(nn.Module):
|
||||
|
||||
def __init__(self, config: LlamaConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embed_tokens = VocabParallelEmbedding(config.vocab_size, config.hidden_size,
|
||||
perform_initialization=False)
|
||||
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor,
|
||||
positions: torch.LongTensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
for i in range(len(self.layers)):
|
||||
if cache_events is None:
|
||||
cache_event = None
|
||||
else:
|
||||
cache_event = cache_events[i]
|
||||
layer = self.layers[i]
|
||||
hidden_states = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
cache_event,
|
||||
)
|
||||
hidden_states = self.norm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class LlamaForCausalLM(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.model = LlamaModel(config)
|
||||
self.lm_head = ColumnParallelLinear(config.hidden_size,
|
||||
config.vocab_size,
|
||||
bias=False,
|
||||
gather_output=False,
|
||||
perform_initialization=False)
|
||||
self.sampler = Sampler()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor,
|
||||
positions: torch.LongTensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> Dict[int, SequenceOutputs]:
|
||||
hidden_states = self.model(
|
||||
input_ids, positions, kv_caches, input_metadata, cache_events)
|
||||
next_tokens = self.sampler(
|
||||
self.lm_head.weight, hidden_states, input_metadata)
|
||||
return next_tokens
|
||||
|
||||
_column_parallel_weights = ["embed_tokens.weight", "lm_head.weight",
|
||||
"qkv_proj.weight", "gate_proj.weight",
|
||||
"up_proj.weight"]
|
||||
_row_parallel_weights = ["o_proj.weight", "down_proj.weight"]
|
||||
|
||||
def load_weights(self, weights_path: str):
|
||||
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
|
||||
state_dict = self.state_dict()
|
||||
for name, param in state_dict.items():
|
||||
if "qkv_proj" in name or "gate_up_proj" in name:
|
||||
if "qkv_proj" in name:
|
||||
original_name = "qkv_proj"
|
||||
weight_names = ["q_proj", "k_proj", "v_proj"]
|
||||
shard_size = param.shape[0] // 3
|
||||
else:
|
||||
original_name = "gate_up_proj"
|
||||
weight_names = ["gate_proj", "up_proj"]
|
||||
shard_size = param.shape[0] // 2
|
||||
weights_to_concat = []
|
||||
for weight_name in weight_names:
|
||||
weight = np.load(os.path.join(
|
||||
weights_path, name.replace(original_name, weight_name)))
|
||||
weights_to_concat.append(weight[
|
||||
shard_size * tensor_model_parallel_rank
|
||||
:shard_size * (tensor_model_parallel_rank + 1)])
|
||||
loaded_weight = torch.from_numpy(
|
||||
np.concatenate(weights_to_concat, axis=0))
|
||||
else:
|
||||
loaded_weight = torch.from_numpy(
|
||||
np.load(os.path.join(weights_path, name)))
|
||||
for p in self._column_parallel_weights:
|
||||
if p in name:
|
||||
shard_size = param.shape[0]
|
||||
loaded_weight = loaded_weight[
|
||||
shard_size * tensor_model_parallel_rank
|
||||
:shard_size * (tensor_model_parallel_rank + 1)]
|
||||
break
|
||||
for p in self._row_parallel_weights:
|
||||
if p in name:
|
||||
shard_size = param.shape[1]
|
||||
loaded_weight = loaded_weight[
|
||||
:,
|
||||
shard_size * tensor_model_parallel_rank
|
||||
:shard_size * (tensor_model_parallel_rank + 1)]
|
||||
break
|
||||
|
||||
assert param.shape == loaded_weight.shape
|
||||
param.data.copy_(loaded_weight)
|
||||
|
||||
@staticmethod
|
||||
def get_weights(model_name: str, path: str):
|
||||
if not os.path.isfile(os.path.join(model_name, "config.json")):
|
||||
raise ValueError("LLaMA model's model_name has to be a path"
|
||||
"to the huggingface model's directory.")
|
||||
path = os.path.join(model_name, f"np")
|
||||
path = os.path.abspath(os.path.expanduser(path))
|
||||
os.makedirs(path, exist_ok=True)
|
||||
lock_path = os.path.join(path, "file_lock")
|
||||
lock = filelock.FileLock(lock_path)
|
||||
|
||||
with lock:
|
||||
test_weight_path = os.path.join(path, "model.embed_tokens.weight")
|
||||
if os.path.exists(test_weight_path):
|
||||
return path
|
||||
|
||||
bin_files = glob.glob(os.path.join(model_name, "*.bin"))
|
||||
|
||||
for bin_file in tqdm(bin_files, desc="Convert format"):
|
||||
state = torch.load(bin_file, map_location="cpu")
|
||||
for name, param in tqdm(state.items(), leave=False):
|
||||
param_path = os.path.join(path, name)
|
||||
with open(param_path, "wb") as f:
|
||||
np.save(f, param.cpu().detach().numpy())
|
||||
|
||||
return path
|
||||
|
||||
def initialize_dummy_weights(self) -> None:
|
||||
for param in self.state_dict().values():
|
||||
param.data.uniform_(-0.1, 0.1)
|
@ -1,240 +0,0 @@
|
||||
import torch
|
||||
from transformers import AutoConfig
|
||||
|
||||
from cacheflow.models.utils import get_dtype_size
|
||||
|
||||
_GiB = 1 << 30
|
||||
|
||||
|
||||
class CacheFlowMemoryAnalyzer:
|
||||
|
||||
def get_max_num_gpu_blocks(
|
||||
self,
|
||||
max_num_batched_tokens: int,
|
||||
memory_utilization: float,
|
||||
) -> int:
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_workspace_size(self) -> int:
|
||||
return 1 * _GiB
|
||||
|
||||
def get_cache_block_size(self) -> int:
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_max_num_cpu_blocks(
|
||||
self,
|
||||
swap_space: int,
|
||||
) -> int:
|
||||
swap_space = swap_space * _GiB
|
||||
cpu_memory = self.cpu_memory
|
||||
if swap_space > 0.8 * cpu_memory:
|
||||
raise ValueError(f'The swap space ({swap_space / _GiB:.2f} GiB) '
|
||||
'takes more than 80% of the available memory '
|
||||
f'({cpu_memory / _GiB:.2f} GiB).'
|
||||
'Please check the swap space size.')
|
||||
if swap_space > 0.5 * cpu_memory:
|
||||
print(f'WARNING: The swap space ({swap_space / _GiB:.2f} GiB) '
|
||||
'takes more than 50% of the available memory '
|
||||
f'({cpu_memory / _GiB:.2f} GiB).'
|
||||
'This may slow the system performance.')
|
||||
max_num_blocks = swap_space // self.get_cache_block_size()
|
||||
return max_num_blocks
|
||||
|
||||
|
||||
class OPTMemoryAnalyzer(CacheFlowMemoryAnalyzer):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
block_size: int,
|
||||
dtype: torch.dtype,
|
||||
gpu_memory: int,
|
||||
cpu_memory: int,
|
||||
tensor_parallel_size: int,
|
||||
) -> None:
|
||||
self.model_name = model_name
|
||||
self.block_size = block_size
|
||||
self.dtype = dtype
|
||||
self.gpu_memory = gpu_memory
|
||||
self.cpu_memory = cpu_memory
|
||||
self.tensor_parallel_size = tensor_parallel_size
|
||||
|
||||
config = AutoConfig.from_pretrained(model_name)
|
||||
self.num_layers = config.num_hidden_layers
|
||||
self.hidden_size = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.head_size = config.hidden_size // self.num_heads
|
||||
self.ffn_size = config.ffn_dim
|
||||
self.embedding_size = config.word_embed_proj_dim
|
||||
self.vocab_size = config.vocab_size
|
||||
self.max_position = config.max_position_embeddings
|
||||
|
||||
def _get_param_size(self) -> int:
|
||||
word_embedding = self.vocab_size * self.embedding_size // self.tensor_parallel_size
|
||||
if self.embedding_size != self.hidden_size:
|
||||
# Project in/out.
|
||||
word_embedding += 2 * self.embedding_size * self.hidden_size
|
||||
position_embedding = self.max_position * self.hidden_size
|
||||
|
||||
ln1 = 2 * self.hidden_size
|
||||
q = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
|
||||
k = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
|
||||
v = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
|
||||
out = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
|
||||
mha = ln1 + q + k + v + out
|
||||
|
||||
ln2 = 2 * self.hidden_size
|
||||
ffn1 = self.hidden_size * self.ffn_size // self.tensor_parallel_size + self.ffn_size
|
||||
ffn2 = self.ffn_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
|
||||
ffn = ln2 + ffn1 + ffn2
|
||||
|
||||
total = (word_embedding + position_embedding +
|
||||
self.num_layers * (mha + ffn))
|
||||
dtype_size = get_dtype_size(self.dtype)
|
||||
return dtype_size * total
|
||||
|
||||
def _get_max_act_size(
|
||||
self,
|
||||
max_num_batched_tokens: int,
|
||||
) -> int:
|
||||
# NOTE: We approxmiately calculate the maximum activation size by
|
||||
# estimating
|
||||
# 1) the maximum activation tensor size during inference
|
||||
# 2) the residual tensor size during inference
|
||||
# Here, we assume that FlashAttention is used and
|
||||
# thus the attention maps are never materialized in GPU DRAM.
|
||||
residual = max_num_batched_tokens * self.hidden_size
|
||||
qkv = 3 * (max_num_batched_tokens * self.hidden_size) // self.tensor_parallel_size
|
||||
ffn = max_num_batched_tokens * self.ffn_size // self.tensor_parallel_size
|
||||
# Double the activation size for input and output.
|
||||
max_act = 2 * (max(qkv, ffn) + residual)
|
||||
# Size of output logits.
|
||||
output_logits = 2 * (max_num_batched_tokens * self.vocab_size)
|
||||
max_act = max(max_act, output_logits)
|
||||
dtype_size = get_dtype_size(self.dtype)
|
||||
return dtype_size * max_act
|
||||
|
||||
def get_cache_block_size(self) -> int:
|
||||
key_cache_block = self.block_size * self.hidden_size // self.tensor_parallel_size
|
||||
value_cache_block = key_cache_block
|
||||
total = self.num_layers * (key_cache_block + value_cache_block)
|
||||
dtype_size = get_dtype_size(self.dtype)
|
||||
return dtype_size * total
|
||||
|
||||
def get_max_num_gpu_blocks(
|
||||
self,
|
||||
max_num_batched_tokens: int,
|
||||
memory_utilization: float = 0.95,
|
||||
) -> int:
|
||||
# NOTE(woosuk): This assumes that the machine has homogeneous GPUs.
|
||||
usable_memory = int(memory_utilization * self.gpu_memory)
|
||||
|
||||
param_size = self._get_param_size()
|
||||
act_size = self._get_max_act_size(max_num_batched_tokens)
|
||||
workspace_size = self.get_workspace_size()
|
||||
|
||||
max_cache_size = usable_memory - (param_size + act_size + workspace_size)
|
||||
if max_cache_size <= 0:
|
||||
raise RuntimeError('Not enough GPU memory.')
|
||||
max_num_blocks = max_cache_size // self.get_cache_block_size()
|
||||
return max_num_blocks
|
||||
|
||||
|
||||
class LlamaMemoryAnalyzer(CacheFlowMemoryAnalyzer):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
block_size: int,
|
||||
dtype: torch.dtype,
|
||||
gpu_memory: int,
|
||||
cpu_memory: int,
|
||||
tensor_parallel_size: int,
|
||||
) -> None:
|
||||
self.model_name = model_name
|
||||
self.block_size = block_size
|
||||
self.dtype = dtype
|
||||
self.gpu_memory = gpu_memory
|
||||
self.cpu_memory = cpu_memory
|
||||
self.tensor_parallel_size = tensor_parallel_size
|
||||
|
||||
config = AutoConfig.from_pretrained(model_name)
|
||||
self.num_layers = config.num_hidden_layers
|
||||
self.hidden_size = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.head_size = config.hidden_size // self.num_heads
|
||||
self.ffn_size = config.intermediate_size
|
||||
self.vocab_size = config.vocab_size
|
||||
self.max_position = 8192
|
||||
|
||||
def _get_param_size(self) -> int:
|
||||
word_embedding = self.vocab_size * self.hidden_size // self.tensor_parallel_size
|
||||
position_embedding = self.max_position * self.hidden_size
|
||||
|
||||
# NOTE: LLaMA does not have bias terms.
|
||||
ln1 = self.hidden_size
|
||||
q = self.hidden_size * self.hidden_size // self.tensor_parallel_size
|
||||
k = self.hidden_size * self.hidden_size // self.tensor_parallel_size
|
||||
v = self.hidden_size * self.hidden_size // self.tensor_parallel_size
|
||||
out = self.hidden_size * self.hidden_size // self.tensor_parallel_size
|
||||
# Rotary embedding.
|
||||
# TODO(woosuk): Share the rotary embedding between layers.
|
||||
rot = self.max_position * self.head_size
|
||||
mha = ln1 + q + k + v + out + rot
|
||||
|
||||
ln2 = self.hidden_size
|
||||
gate = self.hidden_size * self.ffn_size // self.tensor_parallel_size
|
||||
down = self.ffn_size * self.hidden_size // self.tensor_parallel_size
|
||||
up = self.hidden_size * self.ffn_size // self.tensor_parallel_size
|
||||
ffn = ln2 + gate + down + up
|
||||
|
||||
total = (word_embedding + position_embedding + self.num_layers * (mha + ffn))
|
||||
dtype_size = get_dtype_size(self.dtype)
|
||||
return dtype_size * total
|
||||
|
||||
def _get_max_act_size(
|
||||
self,
|
||||
max_num_batched_tokens: int,
|
||||
) -> int:
|
||||
# NOTE: We approxmiately calculate the maximum activation size by
|
||||
# estimating
|
||||
# 1) the maximum activation tensor size during inference
|
||||
# 2) the residual tensor size during inference
|
||||
# Here, we assume that FlashAttention is used and
|
||||
# thus the attention maps are never materialized in GPU DRAM.
|
||||
residual = max_num_batched_tokens * self.hidden_size
|
||||
qkv = 3 * (max_num_batched_tokens * self.hidden_size) // self.tensor_parallel_size
|
||||
ffn = 2 * (max_num_batched_tokens * self.ffn_size) // self.tensor_parallel_size
|
||||
# Double the activation size for input and output.
|
||||
max_act = 2 * (max(qkv, ffn) + residual)
|
||||
# Size of output logits.
|
||||
output_logits = 2 * (max_num_batched_tokens * self.vocab_size)
|
||||
max_act = max(max_act, output_logits)
|
||||
dtype_size = get_dtype_size(self.dtype)
|
||||
return dtype_size * max_act
|
||||
|
||||
def get_cache_block_size(self) -> int:
|
||||
key_cache_block = self.block_size * self.hidden_size // self.tensor_parallel_size
|
||||
value_cache_block = key_cache_block
|
||||
total = self.num_layers * (key_cache_block + value_cache_block)
|
||||
dtype_size = get_dtype_size(self.dtype)
|
||||
return dtype_size * total
|
||||
|
||||
def get_max_num_gpu_blocks(
|
||||
self,
|
||||
max_num_batched_tokens: int,
|
||||
memory_utilization: float = 0.95,
|
||||
) -> int:
|
||||
# NOTE(woosuk): This assumes that the machine has homogeneous GPUs.
|
||||
gpu_memory = self.gpu_memory
|
||||
usable_memory = int(memory_utilization * gpu_memory)
|
||||
|
||||
param_size = self._get_param_size()
|
||||
act_size = self._get_max_act_size(max_num_batched_tokens)
|
||||
workspace_size = self.get_workspace_size()
|
||||
|
||||
max_cache_size = usable_memory - (param_size + act_size + workspace_size)
|
||||
if max_cache_size <= 0:
|
||||
raise RuntimeError('Not enough GPU memory.')
|
||||
max_num_blocks = max_cache_size // self.get_cache_block_size()
|
||||
return max_num_blocks
|
@ -1,72 +0,0 @@
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers import AutoConfig
|
||||
|
||||
from cacheflow.models.memory_analyzer import CacheFlowMemoryAnalyzer
|
||||
from cacheflow.models.memory_analyzer import LlamaMemoryAnalyzer
|
||||
from cacheflow.models.memory_analyzer import OPTMemoryAnalyzer
|
||||
from cacheflow.models.llama import LlamaForCausalLM
|
||||
from cacheflow.models.opt import OPTForCausalLM
|
||||
from cacheflow.models.utils import get_torch_dtype
|
||||
|
||||
|
||||
_MODELS = {
|
||||
'llama': LlamaForCausalLM,
|
||||
'opt': OPTForCausalLM,
|
||||
}
|
||||
|
||||
_MEMORY_ANALYZERS = {
|
||||
'llama': LlamaMemoryAnalyzer,
|
||||
'opt': OPTMemoryAnalyzer,
|
||||
}
|
||||
|
||||
|
||||
def get_model(
|
||||
model_name: str,
|
||||
dtype: Union[torch.dtype, str],
|
||||
path: str,
|
||||
use_dummy_weights: bool,
|
||||
) -> nn.Module:
|
||||
torch_dtype = get_torch_dtype(dtype)
|
||||
torch.set_default_dtype(torch_dtype)
|
||||
config = AutoConfig.from_pretrained(model_name)
|
||||
for model_class_name, model_class in _MODELS.items():
|
||||
if model_class_name in model_name:
|
||||
if use_dummy_weights:
|
||||
# Create a model instance.
|
||||
# The weights will be initialized as empty tensors.
|
||||
model = model_class(config)
|
||||
model = model.cuda()
|
||||
# NOTE(woosuk): For precise performance evaluation, we assign
|
||||
# random values to the weights.
|
||||
model.initialize_dummy_weights()
|
||||
else:
|
||||
# Download model weights if it's not cached.
|
||||
weights_dir = model_class.get_weights(model_name, path=path)
|
||||
# Create a model instance.
|
||||
model = model_class(config)
|
||||
# Load the weights from the cached or downloaded files.
|
||||
model.load_weights(weights_dir)
|
||||
model = model.cuda()
|
||||
return model.eval(), torch_dtype
|
||||
raise ValueError(f'Unsupported model name: {model_name}')
|
||||
|
||||
|
||||
def get_memory_analyzer(
|
||||
model_name: str,
|
||||
block_size: int,
|
||||
dtype: Union[torch.dtype, str],
|
||||
gpu_memory: int,
|
||||
cpu_memory: int,
|
||||
tensor_parallel_size: int = 1,
|
||||
) -> CacheFlowMemoryAnalyzer:
|
||||
torch_dtype = get_torch_dtype(dtype)
|
||||
for model_class, memory_analyzer in _MEMORY_ANALYZERS.items():
|
||||
if model_class in model_name:
|
||||
return memory_analyzer(
|
||||
model_name, block_size, torch_dtype, gpu_memory, cpu_memory,
|
||||
tensor_parallel_size)
|
||||
raise ValueError(f'Unsupported model name: {model_name}')
|
@ -1,287 +0,0 @@
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from cacheflow.models import InputMetadata
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
from cacheflow.sequence import SequenceOutputs
|
||||
from cacheflow.parallel_utils.tensor_parallel import gather_from_tensor_model_parallel_region
|
||||
|
||||
|
||||
class Sampler(nn.Module):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
embedding: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
input_metadata: InputMetadata,
|
||||
) -> Dict[int, SequenceOutputs]:
|
||||
# Get the hidden states that we use for sampling.
|
||||
hidden_states = _prune_hidden_states(hidden_states, input_metadata)
|
||||
|
||||
# Get the logits for the next tokens.
|
||||
logits = torch.matmul(hidden_states, embedding.t())
|
||||
logits = gather_from_tensor_model_parallel_region(logits)
|
||||
|
||||
# Apply temperature scaling.
|
||||
temperatures = _get_temperatures(input_metadata)
|
||||
assert len(temperatures) == logits.shape[0]
|
||||
if any(t != 1.0 for t in temperatures):
|
||||
t = torch.tensor(
|
||||
temperatures, dtype=logits.dtype, device=logits.device)
|
||||
# Use in-place division to avoid creating a new tensor.
|
||||
logits.div_(t.unsqueeze(dim=1))
|
||||
|
||||
# We use float32 for probabilities and log probabilities.
|
||||
# Compute the probabilities.
|
||||
probs = torch.softmax(logits, dim=-1, dtype=torch.float)
|
||||
# Compute the log probabilities (before applying top-p).
|
||||
logprobs = torch.log(probs)
|
||||
|
||||
# Apply top-p truncation.
|
||||
top_ps = _get_top_ps(input_metadata)
|
||||
assert len(top_ps) == probs.shape[0]
|
||||
if any(p < 1.0 for p in top_ps):
|
||||
p = torch.tensor(top_ps, dtype=probs.dtype, device=probs.device)
|
||||
probs = _apply_top_p(probs, p)
|
||||
|
||||
# Sample the next tokens.
|
||||
return _sample(probs, logprobs, input_metadata)
|
||||
|
||||
|
||||
def _prune_hidden_states(
|
||||
hidden_states: torch.Tensor,
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
start_idx = 0
|
||||
last_token_indicies: List[int] = []
|
||||
for prompt_len in input_metadata.prompt_lens:
|
||||
last_token_indicies.append(start_idx + prompt_len - 1)
|
||||
start_idx += prompt_len
|
||||
last_token_indicies.extend(
|
||||
range(start_idx, start_idx + input_metadata.num_generation_tokens))
|
||||
return hidden_states[last_token_indicies]
|
||||
|
||||
|
||||
def _get_temperatures(
|
||||
input_metadata: InputMetadata,
|
||||
) -> List[float]:
|
||||
# Collect the temperatures for the logits.
|
||||
temperatures: List[float] = []
|
||||
for i, seq_group in enumerate(input_metadata.seq_groups):
|
||||
seq_ids, sampling_params = seq_group
|
||||
temperature = sampling_params.temperature
|
||||
if temperature == 0.0:
|
||||
# NOTE: Zero temperature means deterministic sampling
|
||||
# (i.e., greedy sampling or beam search).
|
||||
# Set the temperature to 1 to avoid division by zero.
|
||||
temperature = 1.0
|
||||
|
||||
if i < input_metadata.num_prompts:
|
||||
# A prompt input.
|
||||
temperatures.append(temperature)
|
||||
else:
|
||||
# A generation token.
|
||||
temperatures += [temperature] * len(seq_ids)
|
||||
return temperatures
|
||||
|
||||
|
||||
def _get_top_ps(
|
||||
input_metadata: InputMetadata,
|
||||
) -> List[float]:
|
||||
top_ps: List[float] = []
|
||||
for i, seq_group in enumerate(input_metadata.seq_groups):
|
||||
seq_ids, sampling_params = seq_group
|
||||
if i < input_metadata.num_prompts:
|
||||
# A prompt input.
|
||||
top_ps.append(sampling_params.top_p)
|
||||
else:
|
||||
# A generation token.
|
||||
top_ps += [sampling_params.top_p] * len(seq_ids)
|
||||
return top_ps
|
||||
|
||||
|
||||
def _apply_top_p(
|
||||
probs: torch.Tensor,
|
||||
p: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
# TODO(woosuk): Optimize.
|
||||
probs_sort, probs_idx = probs.sort(dim=-1, descending=True)
|
||||
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
||||
mask = (probs_sum - probs_sort) > p.unsqueeze(dim=1)
|
||||
probs_sort[mask] = 0.0
|
||||
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
||||
probs = torch.gather(
|
||||
probs_sort, dim=-1, index=torch.argsort(probs_idx, dim=-1))
|
||||
return probs
|
||||
|
||||
|
||||
def _get_topk_logprobs(
|
||||
logprobs: torch.Tensor,
|
||||
num_logprobs: int,
|
||||
) -> Dict[int, float]:
|
||||
if num_logprobs == 0:
|
||||
return {}
|
||||
|
||||
topk_logprobs, topk_ids = torch.topk(logprobs, num_logprobs)
|
||||
if num_logprobs == 1:
|
||||
topk_logprobs = [topk_logprobs.item()]
|
||||
topk_ids = [topk_ids.item()]
|
||||
else:
|
||||
topk_logprobs = topk_logprobs.tolist()
|
||||
topk_ids = topk_ids.tolist()
|
||||
|
||||
token_to_logprob: Dict[int, float] = {}
|
||||
for token_id, logprob in zip(topk_ids, topk_logprobs):
|
||||
token_to_logprob[token_id] = logprob
|
||||
return token_to_logprob
|
||||
|
||||
|
||||
def _sample_from_prompt(
|
||||
prob: torch.Tensor,
|
||||
sampling_params: SamplingParams,
|
||||
) -> List[int]:
|
||||
if sampling_params.use_beam_search:
|
||||
# Beam search.
|
||||
beam_width = sampling_params.n
|
||||
_, next_token_ids = torch.topk(prob, beam_width)
|
||||
next_token_ids = next_token_ids.tolist()
|
||||
elif sampling_params.temperature == 0.0:
|
||||
# Greedy sampling.
|
||||
assert sampling_params.n == 1
|
||||
next_token_id = torch.argmax(prob)
|
||||
next_token_ids = [next_token_id.item()]
|
||||
else:
|
||||
# Neucleus sampling.
|
||||
# Sample n tokens for the prompt.
|
||||
n = sampling_params.n
|
||||
next_token_ids = torch.multinomial(
|
||||
prob, num_samples=n, replacement=True)
|
||||
next_token_ids = next_token_ids.tolist()
|
||||
return next_token_ids
|
||||
|
||||
|
||||
def _sample_from_generation_tokens(
|
||||
seq_ids: List[int],
|
||||
probs: torch.Tensor,
|
||||
logprobs: torch.Tensor,
|
||||
seq_logprobs: List[float],
|
||||
sampling_params: SamplingParams,
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
# NOTE(woosuk): sampling_params.n can be greater than
|
||||
# len(seq_ids) because some sequences in the group might have
|
||||
# been already terminated.
|
||||
if sampling_params.use_beam_search:
|
||||
# Beam search.
|
||||
# Add cumulative logprobs for the sequences in the group.
|
||||
seq_logprobs = torch.tensor(
|
||||
seq_logprobs, dtype=torch.float, device=logprobs.device)
|
||||
logprobs = logprobs + seq_logprobs.unsqueeze(dim=1)
|
||||
|
||||
vocab_size = logprobs.size(-1)
|
||||
beam_width = len(seq_ids)
|
||||
_, topk_ids = torch.topk(logprobs.flatten(), beam_width)
|
||||
topk_ids = topk_ids.tolist()
|
||||
seq_idx = [i // vocab_size for i in topk_ids]
|
||||
beam_seq_ids = [seq_ids[i] for i in seq_idx]
|
||||
token_ids = [i % vocab_size for i in topk_ids]
|
||||
|
||||
beam_outputs: Dict[int, Tuple[int, int]] = {}
|
||||
outstanding_beams: List[Tuple[int, int]] = []
|
||||
# If a beam survives, continue with it.
|
||||
for seq_id, token_id in zip(beam_seq_ids, token_ids):
|
||||
if seq_id not in beam_outputs:
|
||||
beam_outputs[seq_id] = (seq_id, token_id)
|
||||
else:
|
||||
outstanding_beams.append((seq_id, token_id))
|
||||
|
||||
# If a beam is discarded, fork another beam.
|
||||
for seq_id in seq_ids:
|
||||
if seq_id not in beam_outputs:
|
||||
beam_outputs[seq_id] = outstanding_beams.pop()
|
||||
assert not outstanding_beams
|
||||
|
||||
parent_seq_ids = [beam_outputs[seq_id][0] for seq_id in seq_ids]
|
||||
next_token_ids = [beam_outputs[seq_id][1] for seq_id in seq_ids]
|
||||
elif sampling_params.temperature == 0.0:
|
||||
# Greedy sampling.
|
||||
assert len(seq_ids) == 1
|
||||
next_token_id = torch.argmax(probs, dim=-1)
|
||||
next_token_ids = [next_token_id.item()]
|
||||
parent_seq_ids = seq_ids
|
||||
else:
|
||||
# Neucleus sampling.
|
||||
# Sample 1 token for each sequence in the group.
|
||||
next_token_ids = torch.multinomial(
|
||||
probs, num_samples=1, replacement=True)
|
||||
next_token_ids = next_token_ids.squeeze(dim=-1).tolist()
|
||||
parent_seq_ids = seq_ids
|
||||
return parent_seq_ids, next_token_ids
|
||||
|
||||
|
||||
def _sample(
|
||||
probs: torch.Tensor,
|
||||
logprobs: torch.Tensor,
|
||||
input_metadata: InputMetadata,
|
||||
) -> Dict[int, SequenceOutputs]:
|
||||
seq_outputs: Dict[int, SequenceOutputs] = {}
|
||||
|
||||
# TODO(woosuk): Optimize.
|
||||
idx = 0
|
||||
for i, seq_group in enumerate(input_metadata.seq_groups):
|
||||
seq_ids, sampling_params = seq_group
|
||||
if i < input_metadata.num_prompts:
|
||||
# Generate the next tokens for a prompt input.
|
||||
assert len(seq_ids) == sampling_params.n
|
||||
prob = probs[idx]
|
||||
logprob = logprobs[idx]
|
||||
idx += 1
|
||||
|
||||
# Sample the next tokens.
|
||||
next_token_ids = _sample_from_prompt(prob, sampling_params)
|
||||
# Get top-k log probabilities for the next tokens.
|
||||
next_logprobs = _get_topk_logprobs(
|
||||
logprob, sampling_params.num_logprobs)
|
||||
|
||||
# Build the output.
|
||||
for seq_id, next_token_id in zip(seq_ids, next_token_ids):
|
||||
output_logprobs = next_logprobs.copy()
|
||||
output_logprobs[next_token_id] = logprob[next_token_id].item()
|
||||
seq_outputs[seq_id] = SequenceOutputs(
|
||||
seq_id, seq_id, next_token_id, output_logprobs)
|
||||
else:
|
||||
# Generate the next tokens for generation tokens.
|
||||
prob = probs[idx:idx + len(seq_ids)]
|
||||
logprob = logprobs[idx:idx + len(seq_ids)]
|
||||
idx += len(seq_ids)
|
||||
|
||||
# Sample the next tokens.
|
||||
seq_logprobs = [
|
||||
input_metadata.seq_logprobs[seq_id] for seq_id in seq_ids]
|
||||
parent_seq_ids, next_token_ids = _sample_from_generation_tokens(
|
||||
seq_ids, prob, logprob, seq_logprobs, sampling_params)
|
||||
|
||||
# Get top-k log probabilities for the next tokens.
|
||||
next_logprobs: Dict[int, Dict[int, float]] = {}
|
||||
for i, seq_id in enumerate(seq_ids):
|
||||
next_logprobs[seq_id] = _get_topk_logprobs(
|
||||
logprob[i], sampling_params.num_logprobs)
|
||||
|
||||
# Build the output.
|
||||
for seq_id, parent_seq_id, next_token_id in zip(
|
||||
seq_ids, parent_seq_ids, next_token_ids):
|
||||
i = seq_ids.index(parent_seq_id)
|
||||
output_logprobs = next_logprobs[parent_seq_id].copy()
|
||||
output_logprobs[next_token_id] = logprob[i, next_token_id].item()
|
||||
seq_outputs[seq_id] = SequenceOutputs(
|
||||
seq_id,
|
||||
parent_seq_id,
|
||||
next_token_id,
|
||||
output_logprobs,
|
||||
)
|
||||
|
||||
return seq_outputs
|
@ -1,24 +0,0 @@
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
|
||||
_STR_DTYPE_TO_TORCH_DTYPE = {
|
||||
'half': torch.half,
|
||||
'float': torch.float,
|
||||
'float16': torch.float16,
|
||||
'float32': torch.float32,
|
||||
}
|
||||
|
||||
|
||||
def get_torch_dtype(dtype: Union[torch.dtype, str]) -> torch.dtype:
|
||||
if isinstance(dtype, str):
|
||||
torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype.lower()]
|
||||
else:
|
||||
torch_dtype = dtype
|
||||
return torch_dtype
|
||||
|
||||
|
||||
def get_dtype_size(dtype: Union[torch.dtype, str]) -> int:
|
||||
torch_dtype = get_torch_dtype(dtype)
|
||||
return torch.tensor([], dtype=torch_dtype).element_size()
|
||||
|
@ -1,12 +0,0 @@
|
||||
import cacheflow.parallel_utils.parallel_state
|
||||
import cacheflow.parallel_utils.tensor_parallel
|
||||
import cacheflow.parallel_utils.utils
|
||||
|
||||
# Alias parallel_state as mpu, its legacy name
|
||||
mpu = parallel_state
|
||||
|
||||
__all__ = [
|
||||
"parallel_state",
|
||||
"tensor_parallel",
|
||||
"utils",
|
||||
]
|
@ -1,108 +0,0 @@
|
||||
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
||||
|
||||
import torch
|
||||
from typing import List, Sequence
|
||||
|
||||
from cacheflow.parallel_utils.utils import divide
|
||||
from cacheflow.parallel_utils import parallel_state
|
||||
|
||||
def split_tensor_along_last_dim(
|
||||
tensor: torch.Tensor,
|
||||
num_partitions: int,
|
||||
contiguous_split_chunks: bool = False,
|
||||
) -> List[torch.Tensor]:
|
||||
""" Split a tensor along its last dimension.
|
||||
|
||||
Arguments:
|
||||
tensor: input tensor.
|
||||
num_partitions: number of partitions to split the tensor
|
||||
contiguous_split_chunks: If True, make each chunk contiguous
|
||||
in memory.
|
||||
|
||||
Returns:
|
||||
A list of Tensors
|
||||
"""
|
||||
# Get the size and dimension.
|
||||
last_dim = tensor.dim() - 1
|
||||
last_dim_size = divide(tensor.size()[last_dim], num_partitions)
|
||||
# Split.
|
||||
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
||||
# Note: torch.split does not create contiguous tensors by default.
|
||||
if contiguous_split_chunks:
|
||||
return tuple(chunk.contiguous() for chunk in tensor_list)
|
||||
|
||||
return tensor_list
|
||||
|
||||
def split_tensor_into_1d_equal_chunks(tensor, new_buffer=False):
|
||||
""" Break a tensor into equal 1D chunks across tensor parallel ranks.
|
||||
|
||||
Returns a Tensor or View with this rank's portion of the data.
|
||||
|
||||
Arguments:
|
||||
tensor: The tensor to split
|
||||
|
||||
Keyword Arguments:
|
||||
new_buffer (bool): If True, returns a new Tensor.
|
||||
If False, returns a view into the existing Tensor.
|
||||
Default is False
|
||||
|
||||
"""
|
||||
partition_size = torch.numel(tensor) // \
|
||||
parallel_state.get_tensor_model_parallel_world_size()
|
||||
start_index = partition_size * parallel_state.get_tensor_model_parallel_rank()
|
||||
end_index = start_index + partition_size
|
||||
if new_buffer:
|
||||
data = torch.empty(partition_size, dtype=tensor.dtype,
|
||||
device=torch.cuda.current_device(),
|
||||
requires_grad=False)
|
||||
data.copy_(tensor.view(-1)[start_index:end_index])
|
||||
else:
|
||||
data = tensor.view(-1)[start_index:end_index]
|
||||
return data
|
||||
|
||||
|
||||
def gather_split_1d_tensor(tensor):
|
||||
""" Opposite of split_tensor_into_1d_equal_chunks. Gather values from tensor
|
||||
model parallel ranks.
|
||||
|
||||
Returns a new Tensor with the gathered data.
|
||||
|
||||
Arguments:
|
||||
tensor: A Tensor or view of this rank's portion of the data.
|
||||
"""
|
||||
numel_gathered = torch.numel(tensor) * \
|
||||
parallel_state.get_tensor_model_parallel_world_size()
|
||||
gathered = torch.empty(numel_gathered, dtype=tensor.dtype,
|
||||
device=torch.cuda.current_device(),
|
||||
requires_grad=False)
|
||||
# TODO: This API is experimental in pytorch (as of Feb 2022) and
|
||||
# this might break in future pytorch releases. We chose this API
|
||||
# as opposed to torch.distributed.all_gather for efficiency reasons.
|
||||
# This API calls directly NCCL all-gather versus the former does
|
||||
# internal copies and can potentially cause slow down.
|
||||
torch.distributed._all_gather_base(gathered, tensor,
|
||||
group=parallel_state.get_tensor_model_parallel_group())
|
||||
return gathered
|
||||
|
||||
|
||||
class VocabUtility:
|
||||
""" Split the vocabulary into `world_size` chunks and return the first
|
||||
and last index of the vocabulary belonging to the `rank`
|
||||
partition: Note that indices in [fist, last)
|
||||
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def vocab_range_from_per_partition_vocab_size(
|
||||
per_partition_vocab_size: int, rank, world_size: int
|
||||
) -> Sequence[int]:
|
||||
index_f = rank * per_partition_vocab_size
|
||||
index_l = index_f + per_partition_vocab_size
|
||||
return index_f, index_l
|
||||
|
||||
@staticmethod
|
||||
def vocab_range_from_global_vocab_size(global_vocab_size: int, rank: int, world_size: int) -> Sequence[int]:
|
||||
per_partition_vocab_size = divide(global_vocab_size, world_size)
|
||||
return VocabUtility.vocab_range_from_per_partition_vocab_size(
|
||||
per_partition_vocab_size, rank, world_size
|
||||
)
|
@ -1,120 +0,0 @@
|
||||
"""Utility functions used throughout Megatron core"""
|
||||
from functools import reduce
|
||||
import operator
|
||||
|
||||
import torch
|
||||
|
||||
from cacheflow.parallel_utils import parallel_state
|
||||
|
||||
|
||||
def ensure_divisibility(numerator, denominator):
|
||||
"""Ensure that numerator is divisible by the denominator."""
|
||||
assert numerator % denominator == 0, "{} is not divisible by {}".format(
|
||||
numerator, denominator
|
||||
)
|
||||
|
||||
|
||||
def divide(numerator, denominator):
|
||||
"""Ensure that numerator is divisible by the denominator and return
|
||||
the division value."""
|
||||
ensure_divisibility(numerator, denominator)
|
||||
return numerator // denominator
|
||||
|
||||
|
||||
class GlobalMemoryBuffer:
|
||||
"""Global buffer to avoid dynamic memory allocations.
|
||||
Caller should ensure that buffers of the same name
|
||||
are not used concurrently."""
|
||||
|
||||
def __init__(self):
|
||||
self.buffer = {}
|
||||
|
||||
def get_tensor(self, tensor_shape, dtype, name):
|
||||
required_len = reduce(operator.mul, tensor_shape, 1)
|
||||
if self.buffer.get((name, dtype), None) is None or \
|
||||
self.buffer[(name, dtype)].numel() < required_len:
|
||||
self.buffer[(name, dtype)] = \
|
||||
torch.empty(required_len,
|
||||
dtype=dtype,
|
||||
device=torch.cuda.current_device(),
|
||||
requires_grad=False)
|
||||
|
||||
return self.buffer[(name, dtype)][0:required_len].view(*tensor_shape)
|
||||
|
||||
def _kernel_make_viewless_tensor(inp, requires_grad):
|
||||
'''Make a viewless tensor.
|
||||
|
||||
View tensors have the undesirable side-affect of retaining a reference
|
||||
to the originally-viewed tensor, even after manually setting the '.data'
|
||||
field. This method creates a new tensor that links to the old tensor's
|
||||
data, without linking the viewed tensor, referenced via the '._base'
|
||||
field.
|
||||
'''
|
||||
out = torch.empty(
|
||||
(1,),
|
||||
dtype = inp.dtype,
|
||||
device = inp.device,
|
||||
requires_grad = requires_grad,
|
||||
)
|
||||
out.data = inp.data
|
||||
return out
|
||||
|
||||
class MakeViewlessTensor(torch.autograd.Function):
|
||||
'''
|
||||
Autograd function to make a viewless tensor.
|
||||
|
||||
This function should be used in cases where the computation graph needs
|
||||
to be propagated, but we only want a viewless tensor (e.g.,
|
||||
ParallelTransformer's hidden_states). Call this function by passing
|
||||
'keep_graph = True' to 'make_viewless_tensor()'.
|
||||
'''
|
||||
@staticmethod
|
||||
def forward(ctx, inp, requires_grad):
|
||||
return _kernel_make_viewless_tensor(inp, requires_grad)
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
return grad_output, None
|
||||
|
||||
def make_viewless_tensor(inp, requires_grad, keep_graph):
|
||||
'''
|
||||
Entry-point for creating viewless tensors.
|
||||
|
||||
This method should be used, rather than calling 'MakeViewlessTensor'
|
||||
or '_kernel_make_viewless_tensor' directly. This method acts as a
|
||||
switch for determining if an autograd function or a regular method
|
||||
should be used to create the tensor.
|
||||
'''
|
||||
|
||||
# return tensor as-is, if not a 'view'
|
||||
if inp._base is None:
|
||||
return inp
|
||||
|
||||
# create viewless tensor
|
||||
if keep_graph:
|
||||
return MakeViewlessTensor.apply(inp, requires_grad)
|
||||
else:
|
||||
return _kernel_make_viewless_tensor(inp, requires_grad)
|
||||
|
||||
def assert_viewless_tensor(tensor, extra_msg = None):
|
||||
'''Assert that a tensor is not a view (i.e., its '._base' field is
|
||||
not set).'''
|
||||
if isinstance(tensor, list):
|
||||
[ assert_viewless_tensor(t) for t in tensor ]
|
||||
return tensor
|
||||
if not isinstance(tensor, torch.Tensor):
|
||||
return tensor
|
||||
assert tensor._base is None, (
|
||||
"Ensure tensor._base is None before setting tensor.data or storing "
|
||||
"tensor to memory buffer. Otherwise, a memory leak will occur (and "
|
||||
"likely accumulate over iterations). %s"
|
||||
) % extra_msg
|
||||
return tensor
|
||||
|
||||
def safely_set_viewless_tensor_data(tensor, new_data_tensor):
|
||||
'''Safely set tensor's '.data' field.
|
||||
|
||||
Check first that the tensor is viewless (i.e., '._base' not set). If not,
|
||||
raise an exception.
|
||||
'''
|
||||
assert_viewless_tensor(tensor, extra_msg = "FYI, tensor._base has shape %s, and new_data_tensor has shape %s." % ("--" if tensor._base is None else tensor._base.shape, new_data_tensor.shape))
|
||||
tensor.data = new_data_tensor
|
@ -1,84 +0,0 @@
|
||||
from typing import Optional, Set, Dict
|
||||
|
||||
|
||||
class SamplingParams:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n: int,
|
||||
temperature: float,
|
||||
top_p: float,
|
||||
use_beam_search: bool,
|
||||
stop_token_ids: Set[int],
|
||||
max_num_steps: int,
|
||||
num_logprobs: int,
|
||||
context_window_size: Optional[int],
|
||||
) -> None:
|
||||
if n < 1:
|
||||
raise ValueError(f'n must be at least 1, got {n}.')
|
||||
if temperature < 0.0:
|
||||
raise ValueError(
|
||||
f'temperature must be non-negative, got {temperature}.')
|
||||
if not 0.0 < top_p <= 1.0:
|
||||
raise ValueError(f'top_p must be in (0, 1], got {top_p}.')
|
||||
if max_num_steps < 1:
|
||||
raise ValueError(
|
||||
f'max_num_steps must be at least 1, got {max_num_steps}.')
|
||||
if num_logprobs < 0:
|
||||
raise ValueError(
|
||||
f'num_logprobs must be non-negative, got {num_logprobs}.')
|
||||
if context_window_size is not None and context_window_size < 0:
|
||||
raise ValueError(
|
||||
'context_window_size must be non-negative, '
|
||||
f'got {context_window_size}.')
|
||||
|
||||
if use_beam_search:
|
||||
if n == 1:
|
||||
raise ValueError(
|
||||
'n must be greater than 1 when using beam search.')
|
||||
if temperature > 0.0:
|
||||
raise ValueError(
|
||||
'temperature must be 0 when using beam search.')
|
||||
if top_p < 1.0:
|
||||
raise ValueError(
|
||||
'top_p must be 1 when using beam search.')
|
||||
elif temperature == 0.0:
|
||||
# Zero temperature means greedy sampling.
|
||||
if n > 1:
|
||||
raise ValueError(
|
||||
'n must be 1 when using greedy sampling.')
|
||||
if top_p < 1.0:
|
||||
raise ValueError(
|
||||
'top_p must be 1 when using greedy sampling.')
|
||||
|
||||
self.n = n
|
||||
self.temperature = temperature
|
||||
self.top_p = top_p
|
||||
self.use_beam_search = use_beam_search
|
||||
self.stop_token_ids = stop_token_ids
|
||||
self.max_num_steps = max_num_steps
|
||||
self.num_logprobs = num_logprobs
|
||||
self.context_window_size = context_window_size
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return (f'SamplingParams(n={self.n}, '
|
||||
f'temperature={self.temperature}, '
|
||||
f'top_p={self.top_p}, '
|
||||
f'use_beam_search={self.use_beam_search}, '
|
||||
f'stop_token_ids={self.stop_token_ids}, '
|
||||
f'max_num_steps={self.max_num_steps}, '
|
||||
f'num_logprobs={self.num_logprobs}, '
|
||||
f'context_window_size={self.context_window_size})')
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, d: Dict) -> 'SamplingParams':
|
||||
return cls(
|
||||
n=d.get('n', 1),
|
||||
temperature=d.get('temperature', 1.0),
|
||||
top_p=d.get('top_p', 1.0),
|
||||
use_beam_search=d.get('use_beam_search', False),
|
||||
stop_token_ids=set(d.get('stop_token_ids', set())),
|
||||
max_num_steps=d.get('max_num_steps', 16),
|
||||
num_logprobs=d.get('num_logprobs', 0),
|
||||
context_window_size=d.get('context_window_size', None),
|
||||
)
|
@ -1,169 +0,0 @@
|
||||
import copy
|
||||
import enum
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from cacheflow.block import LogicalTokenBlock
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
|
||||
|
||||
class SequenceStatus(enum.Enum):
|
||||
WAITING = enum.auto()
|
||||
RUNNING = enum.auto()
|
||||
SWAPPED = enum.auto()
|
||||
FINISHED = enum.auto()
|
||||
|
||||
|
||||
class Sequence:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
seq_id: int,
|
||||
token_ids: List[int],
|
||||
block_size: int,
|
||||
) -> None:
|
||||
self.seq_id = seq_id
|
||||
self.block_size = block_size
|
||||
|
||||
self.logical_token_blocks: List[LogicalTokenBlock] = []
|
||||
# Initialize the logical token blocks with the given token ids.
|
||||
self.add(token_ids)
|
||||
|
||||
self.prompt_len = len(token_ids)
|
||||
self.status = SequenceStatus.WAITING
|
||||
self.output_logprobs: List[Dict[int, float]] = []
|
||||
self.cumulative_logprobs = 0.0
|
||||
|
||||
def add_block(self) -> None:
|
||||
block = LogicalTokenBlock(
|
||||
block_number=len(self.logical_token_blocks),
|
||||
block_size=self.block_size,
|
||||
)
|
||||
self.logical_token_blocks.append(block)
|
||||
|
||||
def add(self, token_ids: List[int]) -> None:
|
||||
while token_ids:
|
||||
if not self.logical_token_blocks:
|
||||
self.add_block()
|
||||
|
||||
last_block = self.logical_token_blocks[-1]
|
||||
if last_block.is_full():
|
||||
self.add_block()
|
||||
last_block = self.logical_token_blocks[-1]
|
||||
|
||||
num_empty_slots = last_block.get_num_empty_slots()
|
||||
last_block.append(token_ids[:num_empty_slots])
|
||||
token_ids = token_ids[num_empty_slots:]
|
||||
|
||||
def append(self, token_id: int, logprobs: Dict[int, float]) -> None:
|
||||
assert token_id in logprobs
|
||||
self.add([token_id])
|
||||
self.output_logprobs.append(logprobs)
|
||||
self.cumulative_logprobs += logprobs[token_id]
|
||||
|
||||
def get_len(self) -> int:
|
||||
return sum(block.num_tokens for block in self.logical_token_blocks)
|
||||
|
||||
def get_token_ids(self) -> List[int]:
|
||||
token_ids: List[int] = []
|
||||
for block in self.logical_token_blocks:
|
||||
token_ids.extend(block.get_token_ids())
|
||||
return token_ids
|
||||
|
||||
def get_last_token_id(self) -> int:
|
||||
return self.logical_token_blocks[-1].get_last_token_id()
|
||||
|
||||
def fork(self, child_seq: 'Sequence') -> 'Sequence':
|
||||
child_seq.logical_token_blocks = copy.deepcopy(self.logical_token_blocks)
|
||||
child_seq.output_logprobs = copy.deepcopy(self.output_logprobs)
|
||||
child_seq.cumulative_logprobs = self.cumulative_logprobs
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return (f'Sequence(seq_id={self.seq_id}, '
|
||||
f'status={self.status.name}, '
|
||||
f'num_blocks={len(self.logical_token_blocks)})')
|
||||
|
||||
|
||||
class SequenceGroup:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
group_id: int,
|
||||
seqs: List[Sequence],
|
||||
arrival_time: float,
|
||||
) -> None:
|
||||
self.group_id = group_id
|
||||
self.seqs = seqs
|
||||
self.arrival_time = arrival_time
|
||||
|
||||
def get_seqs(
|
||||
self,
|
||||
status: Optional[SequenceStatus] = None,
|
||||
) -> List[Sequence]:
|
||||
if status is None:
|
||||
return self.seqs
|
||||
else:
|
||||
return [seq for seq in self.seqs if seq.status == status]
|
||||
|
||||
def num_seqs(self, status: Optional[SequenceStatus] = None) -> int:
|
||||
return len(self.get_seqs(status))
|
||||
|
||||
def find(self, seq_id: int) -> Sequence:
|
||||
for seq in self.seqs:
|
||||
if seq.seq_id == seq_id:
|
||||
return seq
|
||||
raise ValueError(f'Sequence {seq_id} not found.')
|
||||
|
||||
def is_finished(self) -> bool:
|
||||
return all(seq.status == SequenceStatus.FINISHED for seq in self.seqs)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return (f'SequenceGroup(group_id={self.group_id}, '
|
||||
f'num_seqs={len(self.seqs)})')
|
||||
|
||||
|
||||
class SequenceGroupInputs:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
group_id: int,
|
||||
is_prompt: bool,
|
||||
input_tokens: Dict[int, List[int]], # Seq id -> token ids.
|
||||
context_len: int,
|
||||
seq_logprobs: Dict[int, float], # Seq id -> cumulative logprobs.
|
||||
sampling_params: SamplingParams,
|
||||
block_tables: Dict[int, List[int]], # Seq id -> List of physical block numbers.
|
||||
) -> None:
|
||||
self.group_id = group_id
|
||||
self.is_prompt = is_prompt
|
||||
self.input_tokens = input_tokens
|
||||
self.context_len = context_len
|
||||
self.seq_logprobs = seq_logprobs
|
||||
self.sampling_params = sampling_params
|
||||
self.block_tables = block_tables
|
||||
|
||||
|
||||
class SequenceOutputs:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
seq_id: int,
|
||||
parent_seq_id: int,
|
||||
output_token: int,
|
||||
logprobs: Dict[int, float], # Token id -> logP(x_i+1 | x_0, ..., x_i).
|
||||
) -> None:
|
||||
self.seq_id = seq_id
|
||||
self.parent_seq_id = parent_seq_id
|
||||
self.output_token = output_token
|
||||
self.logprobs = logprobs
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return (f'SequenceOutputs(seq_id={self.seq_id}, '
|
||||
f'parent_seq_id={self.parent_seq_id}, '
|
||||
f'output_token={self.output_token}), '
|
||||
f'logprobs={self.logprobs}')
|
||||
|
||||
def __eq__(self, other: 'SequenceOutputs') -> bool:
|
||||
return (self.seq_id == other.seq_id and
|
||||
self.parent_seq_id == other.parent_seq_id and
|
||||
self.output_token == other.output_token and
|
||||
self.logprobs == other.logprobs)
|
@ -1,47 +0,0 @@
|
||||
import enum
|
||||
import random
|
||||
import psutil
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from cacheflow.parallel_utils.parallel_state import model_parallel_is_initialized
|
||||
from cacheflow.parallel_utils.tensor_parallel import model_parallel_cuda_manual_seed
|
||||
|
||||
|
||||
class Device(enum.Enum):
|
||||
GPU = enum.auto()
|
||||
CPU = enum.auto()
|
||||
|
||||
|
||||
class Counter:
|
||||
|
||||
def __init__(self, start: int = 0) -> None:
|
||||
self.counter = start
|
||||
|
||||
def __next__(self) -> int:
|
||||
id = self.counter
|
||||
self.counter += 1
|
||||
return id
|
||||
|
||||
def reset(self) -> None:
|
||||
self.counter = 0
|
||||
|
||||
|
||||
def set_random_seed(seed: int):
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
if model_parallel_is_initialized():
|
||||
model_parallel_cuda_manual_seed(seed)
|
||||
|
||||
|
||||
def get_gpu_memory(gpu: int = 0) -> int:
|
||||
return torch.cuda.get_device_properties(gpu).total_memory
|
||||
|
||||
|
||||
def get_cpu_memory() -> int:
|
||||
return psutil.virtual_memory().total
|
@ -1,101 +0,0 @@
|
||||
from typing import Dict, List, Union, Tuple
|
||||
|
||||
import ray
|
||||
|
||||
from cacheflow.master.scheduler import Scheduler
|
||||
from cacheflow.sequence import SequenceGroupInputs
|
||||
from cacheflow.worker.worker import Worker
|
||||
|
||||
|
||||
DeviceID = Tuple[int, str, int] # rank, node resource (node IP), device id
|
||||
|
||||
|
||||
class Controller:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
stage_id: int,
|
||||
stage_devices: List[DeviceID],
|
||||
world_size: int,
|
||||
tensor_parallel_size: int,
|
||||
pipeline_parallel_size: int,
|
||||
distributed_init_method: str,
|
||||
model_name: str,
|
||||
block_size: int,
|
||||
num_gpu_blocks: int,
|
||||
num_cpu_blocks: int,
|
||||
dtype: str,
|
||||
seed: int,
|
||||
model_path: str,
|
||||
use_dummy_weights: bool,
|
||||
max_num_batched_tokens: int,
|
||||
) -> None:
|
||||
self.stage_id = stage_id
|
||||
self.stage_devices = stage_devices
|
||||
self.model_name = model_name
|
||||
self.block_size = block_size
|
||||
self.num_gpu_blocks = num_gpu_blocks
|
||||
self.num_cpu_blocks = num_cpu_blocks
|
||||
|
||||
# Which pipeline stage is this node assigned to?
|
||||
self.is_first_stage = stage_id == 0
|
||||
self.is_last_stage = False
|
||||
|
||||
self.workers: List[Worker] = []
|
||||
for rank, node_resource, device_id in stage_devices:
|
||||
worker_cls = ray.remote(num_cpus=0,
|
||||
num_gpus=1,
|
||||
resources={node_resource: 1e-5})(Worker)
|
||||
worker = worker_cls.remote(
|
||||
model_name=model_name,
|
||||
block_size=block_size,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=num_cpu_blocks,
|
||||
dtype=dtype,
|
||||
seed=seed,
|
||||
distributed_init_method=distributed_init_method,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
tensor_parallel_size=tensor_parallel_size,
|
||||
pipeline_parallel_size=pipeline_parallel_size,
|
||||
model_path=model_path,
|
||||
use_dummy_weights=use_dummy_weights,
|
||||
max_num_batched_tokens=max_num_batched_tokens,
|
||||
)
|
||||
self.workers.append(worker)
|
||||
|
||||
def set_next(
|
||||
self,
|
||||
next_node: Union['Controller', 'Scheduler'],
|
||||
) -> None:
|
||||
self.next_node = next_node
|
||||
self.is_last_stage = isinstance(next_node, Scheduler)
|
||||
|
||||
def execute_stage(
|
||||
self,
|
||||
input_seq_groups: List[SequenceGroupInputs],
|
||||
blocks_to_swap_in: Dict[int, int],
|
||||
blocks_to_swap_out: Dict[int, int],
|
||||
blocks_to_copy: Dict[int, List[int]],
|
||||
) -> None:
|
||||
futures = []
|
||||
for worker in self.workers:
|
||||
future = worker.execute_stage.remote(
|
||||
input_seq_groups,
|
||||
blocks_to_swap_in,
|
||||
blocks_to_swap_out,
|
||||
blocks_to_copy,
|
||||
)
|
||||
futures.append(future)
|
||||
|
||||
all_outputs = ray.get(futures)
|
||||
# Make sure all workers have the same results.
|
||||
output = all_outputs[0]
|
||||
for other_output in all_outputs[1:]:
|
||||
assert output == other_output
|
||||
|
||||
if self.is_last_stage:
|
||||
self.next_node.post_step(output)
|
||||
else:
|
||||
# TODO: Support pipeline parallelism.
|
||||
assert False
|
@ -1,264 +0,0 @@
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from cacheflow.models import get_model
|
||||
from cacheflow.models import InputMetadata
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
from cacheflow.sequence import SequenceGroupInputs
|
||||
from cacheflow.sequence import SequenceOutputs
|
||||
from cacheflow.worker.cache_engine import CacheEngine
|
||||
from cacheflow.parallel_utils.parallel_state import (
|
||||
initialize_model_parallel,
|
||||
initialize_all_reduce_launcher,
|
||||
get_tensor_model_parallel_world_size)
|
||||
from cacheflow.utils import set_random_seed
|
||||
|
||||
|
||||
class Worker:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
block_size: int,
|
||||
num_gpu_blocks: int,
|
||||
num_cpu_blocks: int,
|
||||
dtype: str,
|
||||
seed: int,
|
||||
distributed_init_method: str,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
model_path: str,
|
||||
use_dummy_weights: bool,
|
||||
max_num_batched_tokens: int,
|
||||
tensor_parallel_size: int = 1,
|
||||
pipeline_parallel_size: int = 1,
|
||||
) -> None:
|
||||
self.init_distributed_environment(distributed_init_method,
|
||||
rank,
|
||||
world_size,
|
||||
tensor_parallel_size,
|
||||
pipeline_parallel_size)
|
||||
self.worker_id = rank
|
||||
self.block_size = block_size
|
||||
set_random_seed(seed)
|
||||
|
||||
# Initialize the model.
|
||||
self.model, self.dtype = get_model(
|
||||
model_name, dtype=dtype, path=model_path, use_dummy_weights=use_dummy_weights)
|
||||
tensor_model_parallel_world_size = (
|
||||
get_tensor_model_parallel_world_size())
|
||||
initialize_all_reduce_launcher(
|
||||
max_num_batched_tokens, self.model.config.hidden_size, self.dtype)
|
||||
self.num_layers = self.model.config.num_hidden_layers
|
||||
assert self.model.config.num_attention_heads % tensor_model_parallel_world_size == 0
|
||||
self.num_heads = self.model.config.num_attention_heads // tensor_model_parallel_world_size
|
||||
self.head_size = self.model.config.hidden_size // (self.num_heads * tensor_model_parallel_world_size)
|
||||
|
||||
# We reset the seed after initializing the model to ensure that
|
||||
# the random state is not affected by the model initialization.
|
||||
set_random_seed(seed)
|
||||
|
||||
self.cache_engine = CacheEngine(
|
||||
worker_id=self.worker_id,
|
||||
num_layers=self.num_layers,
|
||||
num_heads=self.num_heads,
|
||||
head_size=self.head_size,
|
||||
block_size=block_size,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=num_cpu_blocks,
|
||||
dtype=self.dtype,
|
||||
)
|
||||
self.cache_events = self.cache_engine.events
|
||||
self.gpu_cache = self.cache_engine.gpu_cache
|
||||
|
||||
|
||||
def init_distributed_environment(self,
|
||||
distributed_init_method: str,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
tensor_parallel_size: int = 1,
|
||||
pipeline_parallel_size: int = 1) -> None:
|
||||
"""Initialize the distributed environment."""
|
||||
torch.distributed.init_process_group(
|
||||
backend='nccl',
|
||||
init_method=distributed_init_method,
|
||||
world_size=world_size,
|
||||
rank=rank,
|
||||
)
|
||||
# A small all_reduce for warmup.
|
||||
torch.distributed.all_reduce(torch.zeros(1).cuda())
|
||||
initialize_model_parallel(tensor_parallel_size,
|
||||
pipeline_parallel_size)
|
||||
|
||||
|
||||
def prepare_inputs(
|
||||
self,
|
||||
input_seq_groups: List[SequenceGroupInputs],
|
||||
) -> Tuple[torch.LongTensor, torch.LongTensor, InputMetadata]:
|
||||
seq_groups: List[Tuple[List[int], SamplingParams]] = []
|
||||
seq_logprobs: Dict[int, float] = {}
|
||||
sampling_params: Dict[int, SamplingParams] = {}
|
||||
input_tokens: List[int] = []
|
||||
input_positions: List[int] = []
|
||||
slot_mapping: List[int] = []
|
||||
|
||||
# Add prompt tokens.
|
||||
prompt_lens: List[int] = []
|
||||
for input_seq_group in input_seq_groups:
|
||||
if not input_seq_group.is_prompt:
|
||||
continue
|
||||
|
||||
seq_ids = list(input_seq_group.input_tokens.keys())
|
||||
sampling_params = input_seq_group.sampling_params
|
||||
seq_groups.append((seq_ids, sampling_params))
|
||||
seq_logprobs.update(input_seq_group.seq_logprobs)
|
||||
|
||||
# Use any sequence in the group.
|
||||
seq_id = seq_ids[0]
|
||||
|
||||
prompt_tokens = input_seq_group.input_tokens[seq_id]
|
||||
prompt_len = len(prompt_tokens)
|
||||
prompt_lens.append(prompt_len)
|
||||
|
||||
input_tokens.extend(prompt_tokens)
|
||||
# NOTE(woosuk): Here we assume that the first token in the prompt
|
||||
# is always the first token in the sequence.
|
||||
input_positions.extend(range(len(prompt_tokens)))
|
||||
|
||||
# Compute the slot mapping.
|
||||
block_table = input_seq_group.block_tables[seq_id]
|
||||
for i in range(prompt_len):
|
||||
block_number = block_table[i // self.block_size]
|
||||
block_offset = i % self.block_size
|
||||
slot = block_number * self.block_size + block_offset
|
||||
slot_mapping.append(slot)
|
||||
|
||||
cumulative_prompt_lens: List[int] = [0]
|
||||
for prompt_len in prompt_lens:
|
||||
cumulative_prompt_lens.append(
|
||||
cumulative_prompt_lens[-1] + prompt_len)
|
||||
|
||||
# Add generation tokens.
|
||||
max_context_len = 0
|
||||
max_num_blocks_per_seq = 0
|
||||
context_lens: List[int] = []
|
||||
generation_block_tables: List[List[int]] = []
|
||||
for input_seq_group in input_seq_groups:
|
||||
if input_seq_group.is_prompt:
|
||||
continue
|
||||
|
||||
seq_ids = list(input_seq_group.input_tokens.keys())
|
||||
sampling_params = input_seq_group.sampling_params
|
||||
seq_groups.append((seq_ids, sampling_params))
|
||||
seq_logprobs.update(input_seq_group.seq_logprobs)
|
||||
|
||||
for seq_id in seq_ids:
|
||||
assert len(input_seq_group.input_tokens[seq_id]) == 1
|
||||
generation_token = input_seq_group.input_tokens[seq_id][0]
|
||||
input_tokens.append(generation_token)
|
||||
|
||||
position = input_seq_group.context_len - 1
|
||||
input_positions.append(position)
|
||||
|
||||
block_table = input_seq_group.block_tables[seq_id]
|
||||
generation_block_tables.append(block_table)
|
||||
|
||||
max_context_len = max(
|
||||
max_context_len, input_seq_group.context_len)
|
||||
max_num_blocks_per_seq = max(
|
||||
max_num_blocks_per_seq, len(block_table))
|
||||
context_lens.append(input_seq_group.context_len)
|
||||
|
||||
block_number = block_table[position // self.block_size]
|
||||
block_offset = position % self.block_size
|
||||
slot = block_number * self.block_size + block_offset
|
||||
slot_mapping.append(slot)
|
||||
|
||||
# Optimization: Pad the input length to be a multiple of 8.
|
||||
# This is required for utilizing the Tensor Cores in NVIDIA GPUs.
|
||||
input_tokens = _pad_to_alignment(input_tokens, multiple_of=8)
|
||||
input_positions = _pad_to_alignment(input_positions, multiple_of=8)
|
||||
|
||||
# Convert to tensors.
|
||||
tokens_tensor = torch.tensor(
|
||||
input_tokens, dtype=torch.long, device='cuda')
|
||||
positions_tensor = torch.tensor(
|
||||
input_positions, dtype=torch.long, device='cuda')
|
||||
slot_mapping_tensor = torch.tensor(
|
||||
slot_mapping, dtype=torch.int, device='cuda')
|
||||
context_lens_tensor = torch.tensor(
|
||||
context_lens, dtype=torch.int, device='cuda')
|
||||
padded_block_tables = [
|
||||
_pad_to_max(block_table, max_num_blocks_per_seq)
|
||||
for block_table in generation_block_tables]
|
||||
block_tables_tensor = torch.tensor(
|
||||
padded_block_tables, dtype=torch.int, device='cuda')
|
||||
cumulative_prompt_lens_tensor = torch.tensor(
|
||||
cumulative_prompt_lens, dtype=torch.int, device='cuda')
|
||||
|
||||
input_metadata = InputMetadata(
|
||||
seq_groups=seq_groups,
|
||||
seq_logprobs=seq_logprobs,
|
||||
prompt_lens=prompt_lens,
|
||||
cumulative_prompt_lens=cumulative_prompt_lens_tensor,
|
||||
slot_mapping=slot_mapping_tensor,
|
||||
context_lens=context_lens_tensor,
|
||||
max_context_len=max_context_len,
|
||||
block_tables=block_tables_tensor,
|
||||
)
|
||||
return tokens_tensor, positions_tensor, input_metadata
|
||||
|
||||
@torch.inference_mode()
|
||||
def execute_stage(
|
||||
self,
|
||||
input_seq_groups: List[SequenceGroupInputs],
|
||||
blocks_to_swap_in: Dict[int, int],
|
||||
blocks_to_swap_out: Dict[int, int],
|
||||
blocks_to_copy: Dict[int, List[int]],
|
||||
) -> Dict[int, SequenceOutputs]:
|
||||
# Issue cache operations.
|
||||
command_issued = False
|
||||
if blocks_to_swap_in:
|
||||
self.cache_engine.swap_in(blocks_to_swap_in)
|
||||
command_issued = True
|
||||
if blocks_to_swap_out:
|
||||
self.cache_engine.swap_out(blocks_to_swap_out)
|
||||
command_issued = True
|
||||
if blocks_to_copy:
|
||||
self.cache_engine.copy(blocks_to_copy)
|
||||
command_issued = True
|
||||
|
||||
if command_issued:
|
||||
cache_events = self.cache_events
|
||||
else:
|
||||
cache_events = None
|
||||
|
||||
# If there is no input, we don't need to execute the model.
|
||||
if not input_seq_groups:
|
||||
if cache_events is not None:
|
||||
for event in cache_events:
|
||||
event.wait()
|
||||
return {}
|
||||
|
||||
# Prepare input tensors.
|
||||
input_tokens, input_positions, input_metadata = self.prepare_inputs(
|
||||
input_seq_groups)
|
||||
|
||||
# Execute the model.
|
||||
output = self.model(
|
||||
input_ids=input_tokens,
|
||||
positions=input_positions,
|
||||
kv_caches=self.gpu_cache,
|
||||
input_metadata=input_metadata,
|
||||
cache_events=cache_events,
|
||||
)
|
||||
return output
|
||||
|
||||
|
||||
def _pad_to_alignment(x: List[int], multiple_of: int) -> List[int]:
|
||||
return x + [0] * ((-len(x)) % multiple_of)
|
||||
|
||||
|
||||
def _pad_to_max(x: List[int], max_len: int) -> List[int]:
|
||||
return x + [0] * (max_len - len(x))
|
@ -4,9 +4,25 @@ void silu_and_mul(
|
||||
torch::Tensor& out,
|
||||
torch::Tensor& input);
|
||||
|
||||
void gelu_new(
|
||||
torch::Tensor& out,
|
||||
torch::Tensor& input);
|
||||
|
||||
void gelu_fast(
|
||||
torch::Tensor& out,
|
||||
torch::Tensor& input);
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def(
|
||||
"silu_and_mul",
|
||||
&silu_and_mul,
|
||||
"Activation function used in SwiGLU.");
|
||||
m.def(
|
||||
"gelu_new",
|
||||
&gelu_new,
|
||||
"GELU implementation used in GPT-2.");
|
||||
m.def(
|
||||
"gelu_fast",
|
||||
&gelu_fast,
|
||||
"Approximate GELU implementation.");
|
||||
}
|
||||
|
@ -1,7 +1,9 @@
|
||||
#include <torch/extension.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
|
||||
namespace cacheflow {
|
||||
#include "dispatch_utils.h"
|
||||
|
||||
namespace vllm {
|
||||
|
||||
template<typename T>
|
||||
__device__ __forceinline__ T silu(const T& x) {
|
||||
@ -22,7 +24,7 @@ __global__ void silu_and_mul_kernel(
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cacheflow
|
||||
} // namespace vllm
|
||||
|
||||
void silu_and_mul(
|
||||
torch::Tensor& out, // [num_tokens, d]
|
||||
@ -34,13 +36,79 @@ void silu_and_mul(
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(d, 1024));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
input.scalar_type(),
|
||||
"silu_and_mul_kernel",
|
||||
[&] {
|
||||
cacheflow::silu_and_mul_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
vllm::silu_and_mul_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
out.data_ptr<scalar_t>(),
|
||||
input.data_ptr<scalar_t>(),
|
||||
d);
|
||||
});
|
||||
}
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// Element-wise activation kernel template.
|
||||
template<typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&)>
|
||||
__global__ void activation_kernel(
|
||||
scalar_t* __restrict__ out, // [num_tokens, d]
|
||||
const scalar_t* __restrict__ input, // [num_tokens, d]
|
||||
const int d) {
|
||||
const int token_idx = blockIdx.x;
|
||||
for (int idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
||||
const scalar_t x = __ldg(&input[token_idx * d + idx]);
|
||||
out[token_idx * d + idx] = ACT_FN(x);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
// Launch element-wise activation kernel.
|
||||
#define LAUNCH_ACTIVATION_KERNEL(KERNEL) \
|
||||
int num_tokens = input.size(0); \
|
||||
int d = input.size(1); \
|
||||
dim3 grid(num_tokens); \
|
||||
dim3 block(std::min(d, 1024)); \
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
|
||||
VLLM_DISPATCH_FLOATING_TYPES( \
|
||||
input.scalar_type(), \
|
||||
"activation_kernel", \
|
||||
[&] { \
|
||||
vllm::activation_kernel<scalar_t, KERNEL<scalar_t>><<<grid, block, 0, stream>>>( \
|
||||
out.data_ptr<scalar_t>(), \
|
||||
input.data_ptr<scalar_t>(), \
|
||||
d); \
|
||||
});
|
||||
|
||||
namespace vllm {
|
||||
|
||||
template<typename T>
|
||||
__device__ __forceinline__ T gelu_new_kernel(const T& x) {
|
||||
const float x3 = (float) (x * x * x);
|
||||
const T t = (T) tanhf((T) (0.79788456f * (float) (x + (T) (0.044715f * x3))));
|
||||
return ((T) 0.5) * x * (((T) 1.0) + t);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
__device__ __forceinline__ T gelu_fast_kernel(const T& x) {
|
||||
const float f = (float) x;
|
||||
const T t = (T) tanhf(((T) (f * 0.79788456f)) * (((T) 1.0) + (T) (0.044715f * f) * x));
|
||||
return ((T) 0.5) * x * (((T) 1.0) + t);
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
void gelu_new(
|
||||
torch::Tensor& out, // [num_tokens, d]
|
||||
torch::Tensor& input) // [num_tokens, d]
|
||||
{
|
||||
LAUNCH_ACTIVATION_KERNEL(vllm::gelu_new_kernel);
|
||||
}
|
||||
|
||||
void gelu_fast(
|
||||
torch::Tensor& out, // [num_tokens, d]
|
||||
torch::Tensor& input) // [num_tokens, d]
|
||||
{
|
||||
LAUNCH_ACTIVATION_KERNEL(vllm::gelu_fast_kernel);
|
||||
}
|
||||
|
@ -1,15 +1,18 @@
|
||||
#include <torch/extension.h>
|
||||
#include <c10/util/Optional.h>
|
||||
|
||||
void single_query_cached_kv_attention(
|
||||
torch::Tensor& out,
|
||||
torch::Tensor& query,
|
||||
torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache,
|
||||
torch::Tensor& head_mapping,
|
||||
float scale,
|
||||
torch::Tensor& block_tables,
|
||||
torch::Tensor& context_lens,
|
||||
int block_size,
|
||||
int max_context_len);
|
||||
int max_context_len,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes);
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def(
|
||||
|
6
csrc/attention/attention_dtypes.h
Normal file
@ -0,0 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include "attention_generic.cuh"
|
||||
#include "dtype_float16.cuh"
|
||||
#include "dtype_float32.cuh"
|
||||
#include "dtype_bfloat16.cuh"
|
64
csrc/attention/attention_generic.cuh
Normal file
@ -0,0 +1,64 @@
|
||||
/*
|
||||
* Adapted from https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h
|
||||
* Copyright (c) 2023, The vLLM team.
|
||||
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// A vector type to store Q, K, V elements.
|
||||
template<typename T, int VEC_SIZE>
|
||||
struct Vec {};
|
||||
|
||||
// A vector type to store FP32 accumulators.
|
||||
template<typename T>
|
||||
struct FloatVec {};
|
||||
|
||||
// Template vector operations.
|
||||
template<typename Acc, typename A, typename B>
|
||||
inline __device__ Acc mul(A a, B b);
|
||||
|
||||
template<typename T>
|
||||
inline __device__ float sum(T v);
|
||||
|
||||
template<typename T>
|
||||
inline __device__ float dot(T a, T b) {
|
||||
return sum(mul<T, T, T>(a, b));
|
||||
}
|
||||
|
||||
template<typename A, typename T>
|
||||
inline __device__ float dot(T a, T b) {
|
||||
return sum(mul<A, T, T>(a, b));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline __device__ void zero(T& dst) {
|
||||
constexpr int WORDS = sizeof(T) / 4;
|
||||
union {
|
||||
T raw;
|
||||
uint32_t words[WORDS];
|
||||
} tmp;
|
||||
|
||||
#pragma unroll
|
||||
for (int ii = 0; ii < WORDS; ++ii) {
|
||||
tmp.words[ii] = 0u;
|
||||
}
|
||||
dst = tmp.raw;
|
||||
}
|
||||
|
||||
} // namespace vllm
|
519
csrc/attention/attention_kernels.cu
Normal file
@ -0,0 +1,519 @@
|
||||
/*
|
||||
* Adapted from https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
|
||||
* Copyright (c) 2023, The vLLM team.
|
||||
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <torch/extension.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
|
||||
#include "attention_dtypes.h"
|
||||
#include "attention_utils.cuh"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#define WARP_SIZE 32
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// Utility function for attention softmax.
|
||||
template<int NUM_WARPS>
|
||||
inline __device__ float block_sum(float* red_smem, float sum) {
|
||||
// Decompose the thread index into warp / lane.
|
||||
int warp = threadIdx.x / WARP_SIZE;
|
||||
int lane = threadIdx.x % WARP_SIZE;
|
||||
|
||||
// Compute the sum per warp.
|
||||
#pragma unroll
|
||||
for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
|
||||
sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
|
||||
}
|
||||
|
||||
// Warp leaders store the data to shared memory.
|
||||
if (lane == 0) {
|
||||
red_smem[warp] = sum;
|
||||
}
|
||||
|
||||
// Make sure the data is in shared memory.
|
||||
__syncthreads();
|
||||
|
||||
// The warps compute the final sums.
|
||||
if (lane < NUM_WARPS) {
|
||||
sum = red_smem[lane];
|
||||
}
|
||||
|
||||
// Parallel reduction inside the warp.
|
||||
#pragma unroll
|
||||
for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
|
||||
sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
|
||||
}
|
||||
|
||||
// Broadcast to other threads.
|
||||
return __shfl_sync(uint32_t(-1), sum, 0);
|
||||
}
|
||||
|
||||
// Grid: (num_heads, num_seqs).
|
||||
template<
|
||||
typename scalar_t,
|
||||
int HEAD_SIZE,
|
||||
int BLOCK_SIZE,
|
||||
int NUM_THREADS>
|
||||
__global__ void single_query_cached_kv_attention_kernel(
|
||||
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
|
||||
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
|
||||
const scalar_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
|
||||
const scalar_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
|
||||
const int* __restrict__ head_mapping, // [num_heads]
|
||||
const float scale,
|
||||
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
|
||||
const int* __restrict__ context_lens, // [num_seqs]
|
||||
const int max_num_blocks_per_seq,
|
||||
const float* __restrict__ alibi_slopes, // [num_heads]
|
||||
const int q_stride,
|
||||
const int kv_block_stride,
|
||||
const int kv_head_stride) {
|
||||
constexpr int THREAD_GROUP_SIZE = MAX(WARP_SIZE / BLOCK_SIZE, 1);
|
||||
constexpr int NUM_THREAD_GROUPS = NUM_THREADS / THREAD_GROUP_SIZE; // Note: This assumes THREAD_GROUP_SIZE divides NUM_THREADS
|
||||
assert(NUM_THREADS % THREAD_GROUP_SIZE == 0);
|
||||
constexpr int NUM_TOKENS_PER_THREAD_GROUP = (BLOCK_SIZE + WARP_SIZE - 1) / WARP_SIZE;
|
||||
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
|
||||
const int thread_idx = threadIdx.x;
|
||||
const int warp_idx = thread_idx / WARP_SIZE;
|
||||
const int lane = thread_idx % WARP_SIZE;
|
||||
|
||||
const int head_idx = blockIdx.x;
|
||||
const int num_heads = gridDim.x;
|
||||
const int kv_head_idx = head_mapping[head_idx];
|
||||
const int seq_idx = blockIdx.y;
|
||||
const float alibi_slope = alibi_slopes == nullptr ? 0.f : alibi_slopes[head_idx];
|
||||
|
||||
// A vector type to store a part of a key or a query.
|
||||
// The vector size is configured in such a way that the threads in a thread group
|
||||
// fetch or compute 16 bytes at a time.
|
||||
// For example, if the size of a thread group is 4 and the data type is half,
|
||||
// then the vector size is 16 / (4 * sizeof(half)) == 2.
|
||||
constexpr int VEC_SIZE = MAX(16 / (THREAD_GROUP_SIZE * sizeof(scalar_t)), 1);
|
||||
using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
|
||||
using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
|
||||
|
||||
constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
|
||||
constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;
|
||||
|
||||
const int thread_group_idx = thread_idx / THREAD_GROUP_SIZE;
|
||||
const int thread_group_offset = thread_idx % THREAD_GROUP_SIZE;
|
||||
|
||||
// Load the query to registers.
|
||||
// Each thread in a thread group has a different part of the query.
|
||||
// For example, if the the thread group size is 4, then the first thread in the group
|
||||
// has 0, 4, 8, ... th vectors of the query, and the second thread has 1, 5, 9, ...
|
||||
// th vectors of the query, and so on.
|
||||
// NOTE(woosuk): Because q is split from a qkv tensor, it may not be contiguous.
|
||||
const scalar_t* q_ptr = q + seq_idx * q_stride + head_idx * HEAD_SIZE;
|
||||
__shared__ Q_vec q_vecs[THREAD_GROUP_SIZE][NUM_VECS_PER_THREAD];
|
||||
#pragma unroll
|
||||
for (int i = thread_group_idx; i < NUM_VECS_PER_THREAD; i += NUM_THREAD_GROUPS) {
|
||||
const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
|
||||
q_vecs[thread_group_offset][i] = *reinterpret_cast<const Q_vec*>(q_ptr + vec_idx * VEC_SIZE);
|
||||
}
|
||||
__syncthreads(); // TODO(naed90): possible speedup if this is replaced with a memory wall right before we use q_vecs
|
||||
|
||||
// Memory planning.
|
||||
extern __shared__ char shared_mem[];
|
||||
// NOTE(woosuk): We use FP32 for the softmax logits for better accuracy.
|
||||
float* logits = reinterpret_cast<float*>(shared_mem);
|
||||
// Workspace for reduction.
|
||||
__shared__ float red_smem[2 * NUM_WARPS];
|
||||
|
||||
// x == THREAD_GROUP_SIZE * VEC_SIZE
|
||||
// Each thread group fetches x elements from the key at a time.
|
||||
constexpr int x = 16 / sizeof(scalar_t);
|
||||
float qk_max = -FLT_MAX;
|
||||
|
||||
const int* block_table = block_tables + seq_idx * max_num_blocks_per_seq;
|
||||
const int context_len = context_lens[seq_idx];
|
||||
const int num_blocks = (context_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
// Iterate over the key blocks.
|
||||
// Each warp fetches a block of keys for each iteration.
|
||||
// Each thread group in a warp fetches a key from the block, and computes
|
||||
// dot product with the query.
|
||||
for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
|
||||
const int physical_block_number = block_table[block_idx];
|
||||
|
||||
// Load a key to registers.
|
||||
// Each thread in a thread group has a different part of the key.
|
||||
// For example, if the the thread group size is 4, then the first thread in the group
|
||||
// has 0, 4, 8, ... th vectors of the key, and the second thread has 1, 5, 9, ... th
|
||||
// vectors of the key, and so on.
|
||||
for (int i = 0; i < NUM_TOKENS_PER_THREAD_GROUP; i++) {
|
||||
const int physical_block_offset = (thread_group_idx + i * WARP_SIZE) % BLOCK_SIZE;
|
||||
const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
|
||||
K_vec k_vecs[NUM_VECS_PER_THREAD];
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < NUM_VECS_PER_THREAD; j++) {
|
||||
const scalar_t* k_ptr = k_cache + physical_block_number * kv_block_stride
|
||||
+ kv_head_idx * kv_head_stride
|
||||
+ physical_block_offset * x;
|
||||
const int vec_idx = thread_group_offset + j * THREAD_GROUP_SIZE;
|
||||
const int offset1 = (vec_idx * VEC_SIZE) / x;
|
||||
const int offset2 = (vec_idx * VEC_SIZE) % x;
|
||||
k_vecs[j] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
|
||||
}
|
||||
|
||||
// Compute dot product.
|
||||
// This includes a reduction across the threads in the same thread group.
|
||||
float qk = scale * Qk_dot<scalar_t, THREAD_GROUP_SIZE>::dot(q_vecs[thread_group_offset], k_vecs);
|
||||
// Add the ALiBi bias if slopes are given.
|
||||
qk += (alibi_slope != 0) ? alibi_slope * (token_idx - context_len + 1) : 0;
|
||||
|
||||
if (thread_group_offset == 0) {
|
||||
// Store the partial reductions to shared memory.
|
||||
// NOTE(woosuk): It is required to zero out the masked logits.
|
||||
const bool mask = token_idx >= context_len;
|
||||
logits[token_idx] = mask ? 0.f : qk;
|
||||
// Update the max value.
|
||||
qk_max = mask ? qk_max : fmaxf(qk_max, qk);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Perform reduction across the threads in the same warp to get the
|
||||
// max qk value for each "warp" (not across the thread block yet).
|
||||
// The 0-th thread of each thread group already has its max qk value.
|
||||
#pragma unroll
|
||||
for (int mask = WARP_SIZE / 2; mask >= THREAD_GROUP_SIZE; mask /= 2) {
|
||||
qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
|
||||
}
|
||||
if (lane == 0) {
|
||||
red_smem[warp_idx] = qk_max;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// TODO(woosuk): Refactor this part.
|
||||
// Get the max qk value for the sequence.
|
||||
qk_max = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
|
||||
#pragma unroll
|
||||
for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
|
||||
qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
|
||||
}
|
||||
// Broadcast the max qk value to all threads.
|
||||
qk_max = __shfl_sync(uint32_t(-1), qk_max, 0);
|
||||
|
||||
// Get the sum of the exp values.
|
||||
float exp_sum = 0.f;
|
||||
for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
|
||||
float val = __expf(logits[i] - qk_max);
|
||||
logits[i] = val;
|
||||
exp_sum += val;
|
||||
}
|
||||
exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], exp_sum);
|
||||
|
||||
// Compute softmax.
|
||||
const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
|
||||
for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
|
||||
logits[i] *= inv_sum;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Each thread will fetch 16 bytes from the value cache at a time.
|
||||
constexpr int V_VEC_SIZE = MIN(16 / sizeof(scalar_t), BLOCK_SIZE);
|
||||
using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
|
||||
using L_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
|
||||
using Float_L_vec = typename FloatVec<L_vec>::Type;
|
||||
|
||||
constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
|
||||
constexpr int NUM_ROWS_PER_ITER = WARP_SIZE / NUM_V_VECS_PER_ROW;
|
||||
constexpr int NUM_ROWS_PER_THREAD = (HEAD_SIZE + NUM_ROWS_PER_ITER - 1) / NUM_ROWS_PER_ITER;
|
||||
|
||||
// NOTE(woosuk): We use FP32 for the accumulator for better accuracy.
|
||||
float accs[NUM_ROWS_PER_THREAD];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
accs[i] = 0.f;
|
||||
}
|
||||
|
||||
scalar_t zero_value;
|
||||
zero(zero_value);
|
||||
for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
|
||||
const int physical_block_number = block_table[block_idx];
|
||||
const int physical_block_offset = (lane % NUM_V_VECS_PER_ROW) * V_VEC_SIZE;
|
||||
const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
|
||||
L_vec logits_vec;
|
||||
from_float(logits_vec, *reinterpret_cast<Float_L_vec*>(logits + token_idx));
|
||||
|
||||
const scalar_t* v_ptr = v_cache + physical_block_number * kv_block_stride
|
||||
+ kv_head_idx * kv_head_stride;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
|
||||
if (row_idx < HEAD_SIZE) {
|
||||
const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
|
||||
V_vec v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
|
||||
if (block_idx == num_blocks - 1) {
|
||||
// NOTE(woosuk): When v_vec contains the tokens that are out of the context,
|
||||
// we should explicitly zero out the values since they may contain NaNs.
|
||||
// See https://github.com/vllm-project/vllm/issues/641#issuecomment-1682544472
|
||||
scalar_t* v_vec_ptr = reinterpret_cast<scalar_t*>(&v_vec);
|
||||
#pragma unroll
|
||||
for (int j = 0; j <= V_VEC_SIZE; j++) {
|
||||
v_vec_ptr[j] = token_idx + j < context_len ? v_vec_ptr[j] : zero_value;
|
||||
}
|
||||
}
|
||||
accs[i] += dot(logits_vec, v_vec);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Perform reduction within each warp.
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
float acc = accs[i];
|
||||
#pragma unroll
|
||||
for (int mask = NUM_V_VECS_PER_ROW / 2; mask >= 1; mask /= 2) {
|
||||
acc += __shfl_xor_sync(uint32_t(-1), acc, mask);
|
||||
}
|
||||
accs[i] = acc;
|
||||
}
|
||||
|
||||
// NOTE(woosuk): A barrier is required because the shared memory space for logits
|
||||
// is reused for the output.
|
||||
__syncthreads();
|
||||
|
||||
// Perform reduction across warps.
|
||||
float* out_smem = reinterpret_cast<float*>(shared_mem);
|
||||
#pragma unroll
|
||||
for (int i = NUM_WARPS; i > 1; i /= 2) {
|
||||
int mid = i / 2;
|
||||
// Upper warps write to shared memory.
|
||||
if (warp_idx >= mid && warp_idx < i) {
|
||||
float* dst = &out_smem[(warp_idx - mid) * HEAD_SIZE];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
|
||||
if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
|
||||
dst[row_idx] = accs[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Lower warps update the output.
|
||||
if (warp_idx < mid) {
|
||||
const float* src = &out_smem[warp_idx * HEAD_SIZE];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
|
||||
if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
|
||||
accs[i] += src[row_idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
// Write the final output.
|
||||
if (warp_idx == 0) {
|
||||
scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
|
||||
if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
|
||||
from_float(*(out_ptr + row_idx), accs[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
#define LAUNCH_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS) \
|
||||
vllm::single_query_cached_kv_attention_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS> \
|
||||
<<<grid, block, shared_mem_size, stream>>>( \
|
||||
out_ptr, \
|
||||
query_ptr, \
|
||||
key_cache_ptr, \
|
||||
value_cache_ptr, \
|
||||
head_mapping_ptr, \
|
||||
scale, \
|
||||
block_tables_ptr, \
|
||||
context_lens_ptr, \
|
||||
max_num_blocks_per_seq, \
|
||||
alibi_slopes_ptr, \
|
||||
q_stride, \
|
||||
kv_block_stride, \
|
||||
kv_head_stride);
|
||||
|
||||
// TODO(woosuk): Tune NUM_THREADS.
|
||||
template<
|
||||
typename T,
|
||||
int BLOCK_SIZE,
|
||||
int NUM_THREADS = 128>
|
||||
void single_query_cached_kv_attention_launcher(
|
||||
torch::Tensor& out,
|
||||
torch::Tensor& query,
|
||||
torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache,
|
||||
torch::Tensor& head_mapping,
|
||||
float scale,
|
||||
torch::Tensor& block_tables,
|
||||
torch::Tensor& context_lens,
|
||||
int max_context_len,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes) {
|
||||
int num_seqs = query.size(0);
|
||||
int num_heads = query.size(1);
|
||||
int head_size = query.size(2);
|
||||
int max_num_blocks_per_seq = block_tables.size(1);
|
||||
int q_stride = query.stride(0);
|
||||
int kv_block_stride = key_cache.stride(0);
|
||||
int kv_head_stride = key_cache.stride(1);
|
||||
|
||||
int thread_group_size = MAX(WARP_SIZE / BLOCK_SIZE, 1);
|
||||
assert(head_size % thread_group_size == 0);
|
||||
|
||||
// NOTE: alibi_slopes is optional.
|
||||
const float* alibi_slopes_ptr = alibi_slopes ?
|
||||
reinterpret_cast<const float*>(alibi_slopes.value().data_ptr())
|
||||
: nullptr;
|
||||
|
||||
T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
|
||||
T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
|
||||
T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
|
||||
T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
|
||||
int* head_mapping_ptr = reinterpret_cast<int*>(head_mapping.data_ptr());
|
||||
int* block_tables_ptr = block_tables.data_ptr<int>();
|
||||
int* context_lens_ptr = context_lens.data_ptr<int>();
|
||||
|
||||
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
|
||||
int padded_max_context_len = ((max_context_len + BLOCK_SIZE - 1) / BLOCK_SIZE) * BLOCK_SIZE;
|
||||
int logits_size = padded_max_context_len * sizeof(float);
|
||||
int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
|
||||
int shared_mem_size = std::max(logits_size, outputs_size);
|
||||
|
||||
dim3 grid(num_heads, num_seqs);
|
||||
dim3 block(NUM_THREADS);
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
switch (head_size) {
|
||||
// NOTE(woosuk): To reduce the compilation time, we omitted head sizes
|
||||
// 32, 160, 192.
|
||||
// case 32:
|
||||
// LAUNCH_ATTENTION_KERNEL(T, 32, BLOCK_SIZE, NUM_THREADS);
|
||||
// break;
|
||||
case 64:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 64, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
case 80:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 80, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
case 96:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 96, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
case 112:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 112, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
case 128:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 128, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
// case 160:
|
||||
// LAUNCH_ATTENTION_KERNEL(T, 160, BLOCK_SIZE, NUM_THREADS);
|
||||
// break;
|
||||
// case 192:
|
||||
// LAUNCH_ATTENTION_KERNEL(T, 192, BLOCK_SIZE, NUM_THREADS);
|
||||
// break;
|
||||
case 256:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 256, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
default:
|
||||
TORCH_CHECK(false, "Unsupported head size: ", head_size);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
#define CALL_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
|
||||
single_query_cached_kv_attention_launcher<T, BLOCK_SIZE>( \
|
||||
out, \
|
||||
query, \
|
||||
key_cache, \
|
||||
value_cache, \
|
||||
head_mapping, \
|
||||
scale, \
|
||||
block_tables, \
|
||||
context_lens, \
|
||||
max_context_len, \
|
||||
alibi_slopes);
|
||||
|
||||
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
|
||||
// 1, 2, 4, 64, 128, 256.
|
||||
#define CALL_KERNEL_LAUNCHER_BLOCK_SIZE(T) \
|
||||
switch (block_size) { \
|
||||
/* case 1: */ \
|
||||
/* CALL_KERNEL_LAUNCHER(T, 1); */ \
|
||||
/* break; */ \
|
||||
/* case 2: */ \
|
||||
/* CALL_KERNEL_LAUNCHER(T, 2); */ \
|
||||
/* break; */ \
|
||||
/* case 4: */ \
|
||||
/* CALL_KERNEL_LAUNCHER(T, 4); */ \
|
||||
/* break; */ \
|
||||
case 8: \
|
||||
CALL_KERNEL_LAUNCHER(T, 8); \
|
||||
break; \
|
||||
case 16: \
|
||||
CALL_KERNEL_LAUNCHER(T, 16); \
|
||||
break; \
|
||||
case 32: \
|
||||
CALL_KERNEL_LAUNCHER(T, 32); \
|
||||
break; \
|
||||
/* case 64: */ \
|
||||
/* CALL_KERNEL_LAUNCHER(T, 64); */ \
|
||||
/* break; */ \
|
||||
/* case 128: */ \
|
||||
/* CALL_KERNEL_LAUNCHER(T, 128); */ \
|
||||
/* break; */ \
|
||||
/* case 256: */ \
|
||||
/* CALL_KERNEL_LAUNCHER(T, 256); */ \
|
||||
/* break; */ \
|
||||
default: \
|
||||
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
|
||||
break; \
|
||||
}
|
||||
|
||||
void single_query_cached_kv_attention(
|
||||
torch::Tensor& out, // [num_seqs, num_heads, head_size]
|
||||
torch::Tensor& query, // [num_seqs, num_heads, head_size]
|
||||
torch::Tensor& key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
|
||||
torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size]
|
||||
torch::Tensor& head_mapping, // [num_heads]
|
||||
float scale,
|
||||
torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
|
||||
torch::Tensor& context_lens, // [num_seqs]
|
||||
int block_size,
|
||||
int max_context_len,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes) {
|
||||
if (query.dtype() == at::ScalarType::Float) {
|
||||
CALL_KERNEL_LAUNCHER_BLOCK_SIZE(float);
|
||||
} else if (query.dtype() == at::ScalarType::Half) {
|
||||
CALL_KERNEL_LAUNCHER_BLOCK_SIZE(uint16_t);
|
||||
} else if (query.dtype() == at::ScalarType::BFloat16) {
|
||||
CALL_KERNEL_LAUNCHER_BLOCK_SIZE(__nv_bfloat16);
|
||||
} else {
|
||||
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
|
||||
}
|
||||
}
|
||||
|
||||
#undef WARP_SIZE
|
||||
#undef MAX
|
||||
#undef MIN
|
55
csrc/attention/attention_utils.cuh
Normal file
@ -0,0 +1,55 @@
|
||||
/*
|
||||
* Adapted from https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
|
||||
* Copyright (c) 2023, The vLLM team.
|
||||
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include "attention_dtypes.h"
|
||||
|
||||
#include <float.h>
|
||||
#include <type_traits>
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// Q*K^T operation.
|
||||
template<int THREAD_GROUP_SIZE, typename Vec, int N>
|
||||
inline __device__ float qk_dot_(const Vec (&q)[N], const Vec (&k)[N]) {
|
||||
using A_vec = typename FloatVec<Vec>::Type;
|
||||
// Compute the parallel products for Q*K^T (treat vector lanes separately).
|
||||
A_vec qk_vec = mul<A_vec, Vec, Vec>(q[0], k[0]);
|
||||
#pragma unroll
|
||||
for (int ii = 1; ii < N; ++ii) {
|
||||
qk_vec = fma(q[ii], k[ii], qk_vec);
|
||||
}
|
||||
|
||||
// Finalize the reduction across lanes.
|
||||
float qk = sum(qk_vec);
|
||||
#pragma unroll
|
||||
for (int mask = THREAD_GROUP_SIZE / 2; mask >= 1; mask /= 2) {
|
||||
qk += __shfl_xor_sync(uint32_t(-1), qk, mask);
|
||||
}
|
||||
return qk;
|
||||
}
|
||||
|
||||
template<typename T, int THREAD_GROUP_SIZE>
|
||||
struct Qk_dot {
|
||||
template<typename Vec, int N>
|
||||
static inline __device__ float dot(const Vec (&q)[N], const Vec (&k)[N]) {
|
||||
return qk_dot_<THREAD_GROUP_SIZE>(q, k);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace vllm
|
433
csrc/attention/dtype_bfloat16.cuh
Normal file
@ -0,0 +1,433 @@
|
||||
/*
|
||||
* Adapted from https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
|
||||
* and https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h
|
||||
* Copyright (c) 2023, The vLLM team.
|
||||
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include "attention_generic.cuh"
|
||||
#include "dtype_float32.cuh"
|
||||
|
||||
#include <cuda_bf16.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <stdint.h>
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// Define custom BF16 vector data types.
|
||||
struct bf16_4_t {
|
||||
__nv_bfloat162 x;
|
||||
__nv_bfloat162 y;
|
||||
};
|
||||
|
||||
struct bf16_8_t {
|
||||
__nv_bfloat162 x;
|
||||
__nv_bfloat162 y;
|
||||
__nv_bfloat162 z;
|
||||
__nv_bfloat162 w;
|
||||
};
|
||||
|
||||
// BF16 vector types for Q, K, V.
|
||||
template<>
|
||||
struct Vec<__nv_bfloat16, 1> {
|
||||
using Type = __nv_bfloat16;
|
||||
};
|
||||
template<>
|
||||
struct Vec<__nv_bfloat16, 2> {
|
||||
using Type = __nv_bfloat162;
|
||||
};
|
||||
template<>
|
||||
struct Vec<__nv_bfloat16, 4> {
|
||||
using Type = bf16_4_t;
|
||||
};
|
||||
template<>
|
||||
struct Vec<__nv_bfloat16, 8> {
|
||||
using Type = bf16_8_t;
|
||||
};
|
||||
|
||||
// FP32 accumulator vector types corresponding to Vec.
|
||||
template<>
|
||||
struct FloatVec<__nv_bfloat16> {
|
||||
using Type = float;
|
||||
};
|
||||
template<>
|
||||
struct FloatVec<__nv_bfloat162> {
|
||||
using Type = float2;
|
||||
};
|
||||
template<>
|
||||
struct FloatVec<bf16_4_t> {
|
||||
using Type = Float4_;
|
||||
};
|
||||
template<>
|
||||
struct FloatVec<bf16_8_t> {
|
||||
using Type = Float8_;
|
||||
};
|
||||
|
||||
// Utility functions for type conversions.
|
||||
inline __device__ float2 bf1622float2(const __nv_bfloat162 val) {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
||||
assert(false);
|
||||
#else
|
||||
return __bfloat1622float2(val);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline __device__ __nv_bfloat162 bf162bf162(const __nv_bfloat16 val) {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
||||
assert(false);
|
||||
#else
|
||||
return __bfloat162bfloat162(val);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Vector addition.
|
||||
inline __device__ __nv_bfloat16 add(__nv_bfloat16 a, __nv_bfloat16 b) {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
||||
assert(false);
|
||||
#else
|
||||
return a + b;
|
||||
#endif
|
||||
}
|
||||
|
||||
inline __device__ __nv_bfloat162 add(__nv_bfloat162 a, __nv_bfloat162 b) {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
||||
assert(false);
|
||||
#else
|
||||
return __hadd2(a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline __device__ bf16_4_t add(bf16_4_t a, bf16_4_t b) {
|
||||
bf16_4_t c;
|
||||
c.x = add(a.x, b.x);
|
||||
c.y = add(a.y, b.y);
|
||||
return c;
|
||||
}
|
||||
|
||||
inline __device__ bf16_8_t add(bf16_8_t a, bf16_8_t b) {
|
||||
bf16_8_t c;
|
||||
c.x = add(a.x, b.x);
|
||||
c.y = add(a.y, b.y);
|
||||
c.z = add(a.z, b.z);
|
||||
c.w = add(a.w, b.w);
|
||||
return c;
|
||||
}
|
||||
|
||||
inline __device__ float2 add(__nv_bfloat162 a, float2 fb) {
|
||||
float2 fa = bf1622float2(a);
|
||||
return add(fa, fb);
|
||||
}
|
||||
|
||||
inline __device__ Float4_ add(bf16_4_t a, Float4_ fb) {
|
||||
Float4_ fc;
|
||||
fc.x = add(a.x, fb.x);
|
||||
fc.y = add(a.y, fb.y);
|
||||
return fc;
|
||||
}
|
||||
|
||||
inline __device__ Float8_ add(bf16_8_t a, Float8_ fb) {
|
||||
Float8_ fc;
|
||||
fc.x = add(a.x, fb.x);
|
||||
fc.y = add(a.y, fb.y);
|
||||
fc.z = add(a.z, fb.z);
|
||||
fc.w = add(a.w, fb.w);
|
||||
return fc;
|
||||
}
|
||||
|
||||
// Vector multiplication.
|
||||
template<>
|
||||
inline __device__ __nv_bfloat16 mul(__nv_bfloat16 a, __nv_bfloat16 b) {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
||||
assert(false);
|
||||
#else
|
||||
return __hmul(a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ __nv_bfloat162 mul(__nv_bfloat162 a, __nv_bfloat162 b) {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
||||
assert(false);
|
||||
#else
|
||||
return __hmul2(a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ __nv_bfloat162 mul(__nv_bfloat16 a, __nv_bfloat162 b) {
|
||||
return mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ bf16_4_t mul(bf16_4_t a, bf16_4_t b) {
|
||||
bf16_4_t c;
|
||||
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
|
||||
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
|
||||
return c;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ bf16_4_t mul(__nv_bfloat16 a, bf16_4_t b) {
|
||||
__nv_bfloat162 s = bf162bf162(a);
|
||||
bf16_4_t c;
|
||||
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x);
|
||||
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y);
|
||||
return c;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ bf16_8_t mul(bf16_8_t a, bf16_8_t b) {
|
||||
bf16_8_t c;
|
||||
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
|
||||
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
|
||||
c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.z, b.z);
|
||||
c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.w, b.w);
|
||||
return c;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ bf16_8_t mul(__nv_bfloat16 a, bf16_8_t b) {
|
||||
__nv_bfloat162 s = bf162bf162(a);
|
||||
bf16_8_t c;
|
||||
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x);
|
||||
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y);
|
||||
c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.z);
|
||||
c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.w);
|
||||
return c;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float mul(__nv_bfloat16 a, __nv_bfloat16 b) {
|
||||
float fa = __bfloat162float(a);
|
||||
float fb = __bfloat162float(b);
|
||||
return fa * fb;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float2 mul(__nv_bfloat162 a, __nv_bfloat162 b) {
|
||||
float2 fa = bf1622float2(a);
|
||||
float2 fb = bf1622float2(b);
|
||||
return mul<float2, float2, float2>(fa, fb);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float2 mul(__nv_bfloat16 a, __nv_bfloat162 b) {
|
||||
return mul<float2, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ Float4_ mul(bf16_4_t a, bf16_4_t b) {
|
||||
Float4_ fc;
|
||||
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
|
||||
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
|
||||
return fc;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ Float4_ mul(__nv_bfloat16 a, bf16_4_t b) {
|
||||
__nv_bfloat162 s = bf162bf162(a);
|
||||
Float4_ fc;
|
||||
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x);
|
||||
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y);
|
||||
return fc;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ Float8_ mul(bf16_8_t a, bf16_8_t b) {
|
||||
Float8_ fc;
|
||||
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
|
||||
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
|
||||
fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.z, b.z);
|
||||
fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.w, b.w);
|
||||
return fc;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ Float8_ mul(__nv_bfloat16 a, bf16_8_t b) {
|
||||
__nv_bfloat162 s = bf162bf162(a);
|
||||
Float8_ fc;
|
||||
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x);
|
||||
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y);
|
||||
fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.z);
|
||||
fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.w);
|
||||
return fc;
|
||||
}
|
||||
|
||||
// Vector fused multiply-add.
|
||||
inline __device__ __nv_bfloat162 fma(__nv_bfloat162 a, __nv_bfloat162 b, __nv_bfloat162 c) {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
||||
assert(false);
|
||||
#else
|
||||
return __hfma2(a, b, c);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline __device__ __nv_bfloat162 fma(__nv_bfloat16 a, __nv_bfloat162 b, __nv_bfloat162 c) {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
||||
assert(false);
|
||||
#else
|
||||
return __hfma2(bf162bf162(a), b, c);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline __device__ bf16_4_t fma(bf16_4_t a, bf16_4_t b, bf16_4_t c) {
|
||||
bf16_4_t d;
|
||||
d.x = fma(a.x, b.x, c.x);
|
||||
d.y = fma(a.y, b.y, c.y);
|
||||
return d;
|
||||
}
|
||||
|
||||
inline __device__ bf16_4_t fma(__nv_bfloat16 a, bf16_4_t b, bf16_4_t c) {
|
||||
__nv_bfloat162 s = bf162bf162(a);
|
||||
bf16_4_t d;
|
||||
d.x = fma(s, b.x, c.x);
|
||||
d.y = fma(s, b.y, c.y);
|
||||
return d;
|
||||
}
|
||||
|
||||
inline __device__ bf16_8_t fma(bf16_8_t a, bf16_8_t b, bf16_8_t c) {
|
||||
bf16_8_t d;
|
||||
d.x = fma(a.x, b.x, c.x);
|
||||
d.y = fma(a.y, b.y, c.y);
|
||||
d.z = fma(a.z, b.z, c.z);
|
||||
d.w = fma(a.w, b.w, c.w);
|
||||
return d;
|
||||
}
|
||||
|
||||
inline __device__ bf16_8_t fma(__nv_bfloat16 a, bf16_8_t b, bf16_8_t c) {
|
||||
__nv_bfloat162 s = bf162bf162(a);
|
||||
bf16_8_t d;
|
||||
d.x = fma(s, b.x, c.x);
|
||||
d.y = fma(s, b.y, c.y);
|
||||
d.z = fma(s, b.z, c.z);
|
||||
d.w = fma(s, b.w, c.w);
|
||||
return d;
|
||||
}
|
||||
|
||||
inline __device__ float fma(__nv_bfloat16 a, __nv_bfloat16 b, float fc) {
|
||||
return __bfloat162float(a) * __bfloat162float(b) + fc;
|
||||
}
|
||||
|
||||
inline __device__ float2 fma(__nv_bfloat162 a, __nv_bfloat162 b, float2 fc) {
|
||||
float2 fa = bf1622float2(a);
|
||||
float2 fb = bf1622float2(b);
|
||||
return fma(fa, fb, fc);
|
||||
}
|
||||
|
||||
inline __device__ float2 fma(__nv_bfloat16 a, __nv_bfloat162 b, float2 fc) {
|
||||
return fma(bf162bf162(a), b, fc);
|
||||
}
|
||||
|
||||
inline __device__ Float4_ fma(bf16_4_t a, bf16_4_t b, Float4_ fc) {
|
||||
Float4_ fd;
|
||||
fd.x = fma(a.x, b.x, fc.x);
|
||||
fd.y = fma(a.y, b.y, fc.y);
|
||||
return fd;
|
||||
}
|
||||
|
||||
inline __device__ Float4_ fma(__nv_bfloat16 a, bf16_4_t b, Float4_ fc) {
|
||||
__nv_bfloat162 s = bf162bf162(a);
|
||||
Float4_ fd;
|
||||
fd.x = fma(s, b.x, fc.x);
|
||||
fd.y = fma(s, b.y, fc.y);
|
||||
return fd;
|
||||
}
|
||||
|
||||
inline __device__ Float8_ fma(bf16_8_t a, bf16_8_t b, Float8_ fc) {
|
||||
Float8_ fd;
|
||||
fd.x = fma(a.x, b.x, fc.x);
|
||||
fd.y = fma(a.y, b.y, fc.y);
|
||||
fd.z = fma(a.z, b.z, fc.z);
|
||||
fd.w = fma(a.w, b.w, fc.w);
|
||||
return fd;
|
||||
}
|
||||
|
||||
inline __device__ Float8_ fma(__nv_bfloat16 a, bf16_8_t b, Float8_ fc) {
|
||||
__nv_bfloat162 s = bf162bf162(a);
|
||||
Float8_ fd;
|
||||
fd.x = fma(s, b.x, fc.x);
|
||||
fd.y = fma(s, b.y, fc.y);
|
||||
fd.z = fma(s, b.z, fc.z);
|
||||
fd.w = fma(s, b.w, fc.w);
|
||||
return fd;
|
||||
}
|
||||
|
||||
// Vector sum.
|
||||
template<>
|
||||
inline __device__ float sum(__nv_bfloat16 v) {
|
||||
return __bfloat162float(v);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float sum(__nv_bfloat162 v) {
|
||||
float2 vf = bf1622float2(v);
|
||||
return vf.x + vf.y;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float sum(bf16_4_t v) {
|
||||
return sum(v.x) + sum(v.y);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float sum(bf16_8_t v) {
|
||||
return sum(v.x) + sum(v.y) + sum(v.z) + sum(v.w);
|
||||
}
|
||||
|
||||
// From float32 to bfloat16.
|
||||
inline __device__ void from_float(__nv_bfloat16& dst, float src) {
|
||||
dst = __float2bfloat16(src);
|
||||
}
|
||||
|
||||
inline __device__ void from_float(__nv_bfloat162& dst, float2 src) {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
||||
assert(false);
|
||||
#else
|
||||
dst = __float22bfloat162_rn(src);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline __device__ void from_float(bf16_4_t& dst, Float4_ src) {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
||||
assert(false);
|
||||
#else
|
||||
dst.x = __float22bfloat162_rn(src.x);
|
||||
dst.y = __float22bfloat162_rn(src.y);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline __device__ void from_float(bf16_8_t& dst, Float8_ src) {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
||||
assert(false);
|
||||
#else
|
||||
dst.x = __float22bfloat162_rn(src.x);
|
||||
dst.y = __float22bfloat162_rn(src.y);
|
||||
dst.z = __float22bfloat162_rn(src.z);
|
||||
dst.w = __float22bfloat162_rn(src.w);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Zero-out a variable.
|
||||
inline __device__ void zero(__nv_bfloat16& dst) {
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
||||
assert(false);
|
||||
#else
|
||||
// Same as CUDART_ZERO_BF16 introduced in CUDA 12.2.
|
||||
dst = __ushort_as_bfloat16((unsigned short)0x0000U);
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace vllm
|
444
csrc/attention/dtype_float16.cuh
Normal file
@ -0,0 +1,444 @@
|
||||
/*
|
||||
* Adapted from https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
|
||||
* and https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h
|
||||
* Copyright (c) 2023, The vLLM team.
|
||||
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include "attention_generic.cuh"
|
||||
#include "dtype_float32.cuh"
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// FP16 vector types for Q, K, V.
|
||||
template<>
|
||||
struct Vec<uint16_t, 1> {
|
||||
using Type = uint16_t;
|
||||
};
|
||||
template<>
|
||||
struct Vec<uint16_t, 2> {
|
||||
using Type = uint32_t;
|
||||
};
|
||||
template<>
|
||||
struct Vec<uint16_t, 4> {
|
||||
using Type = uint2;
|
||||
};
|
||||
template<>
|
||||
struct Vec<uint16_t, 8> {
|
||||
using Type = uint4;
|
||||
};
|
||||
|
||||
// FP32 accumulator vector types corresponding to Vec.
|
||||
template<>
|
||||
struct FloatVec<uint16_t> {
|
||||
using Type = float;
|
||||
};
|
||||
template<>
|
||||
struct FloatVec<uint32_t> {
|
||||
using Type = float2;
|
||||
};
|
||||
template<>
|
||||
struct FloatVec<uint2> {
|
||||
using Type = Float4_;
|
||||
};
|
||||
template<>
|
||||
struct FloatVec<uint4> {
|
||||
using Type = Float8_;
|
||||
};
|
||||
|
||||
// Utility functions for type conversions.
|
||||
inline __device__ uint32_t h0_h0(uint16_t a) {
|
||||
uint32_t b;
|
||||
asm volatile("mov.b32 %0, {%1, %1};" : "=r"(b) : "h"(a));
|
||||
return b;
|
||||
}
|
||||
|
||||
inline __device__ float half_to_float(uint16_t h) {
|
||||
float f;
|
||||
asm volatile("cvt.f32.f16 %0, %1;\n" : "=f"(f) : "h"(h));
|
||||
return f;
|
||||
}
|
||||
|
||||
inline __device__ float2 half2_to_float2(uint32_t v) {
|
||||
uint16_t lo, hi;
|
||||
asm volatile("mov.b32 {%0, %1}, %2;\n" : "=h"(lo), "=h"(hi) : "r"(v));
|
||||
return make_float2(half_to_float(lo), half_to_float(hi));
|
||||
}
|
||||
|
||||
inline __device__ uint16_t float_to_half(float f) {
|
||||
union {
|
||||
uint32_t u32;
|
||||
uint16_t u16[2];
|
||||
} tmp;
|
||||
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f));
|
||||
return tmp.u16[0];
|
||||
}
|
||||
|
||||
inline __device__ uint32_t float2_to_half2(float2 f) {
|
||||
union {
|
||||
uint32_t u32;
|
||||
uint16_t u16[2];
|
||||
} tmp;
|
||||
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
||||
asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n" : "=r"(tmp.u32) : "f"(f.y), "f"(f.x));
|
||||
#else
|
||||
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f.x));
|
||||
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[1]) : "f"(f.y));
|
||||
#endif
|
||||
return tmp.u32;
|
||||
}
|
||||
|
||||
// Vector addition.
|
||||
inline __device__ uint16_t add(uint16_t a, uint16_t b) {
|
||||
uint16_t c;
|
||||
asm volatile("add.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b));
|
||||
return c;
|
||||
}
|
||||
|
||||
inline __device__ uint32_t add(uint32_t a, uint32_t b) {
|
||||
uint32_t c;
|
||||
asm volatile("add.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
|
||||
return c;
|
||||
}
|
||||
|
||||
inline __device__ uint2 add(uint2 a, uint2 b) {
|
||||
uint2 c;
|
||||
c.x = add(a.x, b.x);
|
||||
c.y = add(a.y, b.y);
|
||||
return c;
|
||||
}
|
||||
|
||||
inline __device__ uint4 add(uint4 a, uint4 b) {
|
||||
uint4 c;
|
||||
c.x = add(a.x, b.x);
|
||||
c.y = add(a.y, b.y);
|
||||
c.z = add(a.z, b.z);
|
||||
c.w = add(a.w, b.w);
|
||||
return c;
|
||||
}
|
||||
|
||||
inline __device__ float2 add(uint32_t a, float2 fb) {
|
||||
float2 fa = half2_to_float2(a);
|
||||
return add(fa, fb);
|
||||
}
|
||||
|
||||
inline __device__ Float4_ add(uint2 a, Float4_ fb) {
|
||||
Float4_ fc;
|
||||
fc.x = add(a.x, fb.x);
|
||||
fc.y = add(a.y, fb.y);
|
||||
return fc;
|
||||
}
|
||||
|
||||
inline __device__ Float8_ add(uint4 a, Float8_ fb) {
|
||||
Float8_ fc;
|
||||
fc.x = add(a.x, fb.x);
|
||||
fc.y = add(a.y, fb.y);
|
||||
fc.z = add(a.z, fb.z);
|
||||
fc.w = add(a.w, fb.w);
|
||||
return fc;
|
||||
}
|
||||
|
||||
// Vector multiplication.
|
||||
template<>
|
||||
inline __device__ uint16_t mul(uint16_t a, uint16_t b) {
|
||||
uint16_t c;
|
||||
asm volatile("mul.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b));
|
||||
return c;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ uint32_t mul(uint32_t a, uint32_t b) {
|
||||
uint32_t c;
|
||||
asm volatile("mul.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
|
||||
return c;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ uint32_t mul(uint16_t a, uint32_t b) {
|
||||
return mul<uint32_t, uint32_t, uint32_t>(h0_h0(a), b);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ uint2 mul(uint2 a, uint2 b) {
|
||||
uint2 c;
|
||||
c.x = mul<uint32_t, uint32_t, uint32_t>(a.x, b.x);
|
||||
c.y = mul<uint32_t, uint32_t, uint32_t>(a.y, b.y);
|
||||
return c;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ uint2 mul(uint16_t a, uint2 b) {
|
||||
uint32_t s = h0_h0(a);
|
||||
uint2 c;
|
||||
c.x = mul<uint32_t, uint32_t, uint32_t>(s, b.x);
|
||||
c.y = mul<uint32_t, uint32_t, uint32_t>(s, b.y);
|
||||
return c;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ uint4 mul(uint4 a, uint4 b) {
|
||||
uint4 c;
|
||||
c.x = mul<uint32_t, uint32_t, uint32_t>(a.x, b.x);
|
||||
c.y = mul<uint32_t, uint32_t, uint32_t>(a.y, b.y);
|
||||
c.z = mul<uint32_t, uint32_t, uint32_t>(a.z, b.z);
|
||||
c.w = mul<uint32_t, uint32_t, uint32_t>(a.w, b.w);
|
||||
return c;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ uint4 mul(uint16_t a, uint4 b) {
|
||||
uint32_t s = h0_h0(a);
|
||||
uint4 c;
|
||||
c.x = mul<uint32_t, uint32_t, uint32_t>(s, b.x);
|
||||
c.y = mul<uint32_t, uint32_t, uint32_t>(s, b.y);
|
||||
c.z = mul<uint32_t, uint32_t, uint32_t>(s, b.z);
|
||||
c.w = mul<uint32_t, uint32_t, uint32_t>(s, b.w);
|
||||
return c;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float mul(uint16_t a, uint16_t b) {
|
||||
float fa = half_to_float(a);
|
||||
float fb = half_to_float(b);
|
||||
return fa * fb;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float2 mul(uint32_t a, uint32_t b) {
|
||||
float2 fa = half2_to_float2(a);
|
||||
float2 fb = half2_to_float2(b);
|
||||
return mul<float2, float2, float2>(fa, fb);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float2 mul(uint16_t a, uint32_t b) {
|
||||
return mul<float2, uint32_t, uint32_t>(h0_h0(a), b);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ Float4_ mul(uint2 a, uint2 b) {
|
||||
Float4_ fc;
|
||||
fc.x = mul<float2, uint32_t, uint32_t>(a.x, b.x);
|
||||
fc.y = mul<float2, uint32_t, uint32_t>(a.y, b.y);
|
||||
return fc;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ Float4_ mul(uint16_t a, uint2 b) {
|
||||
uint32_t s = h0_h0(a);
|
||||
Float4_ fc;
|
||||
fc.x = mul<float2, uint32_t, uint32_t>(s, b.x);
|
||||
fc.y = mul<float2, uint32_t, uint32_t>(s, b.y);
|
||||
return fc;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ Float8_ mul(uint4 a, uint4 b) {
|
||||
Float8_ fc;
|
||||
fc.x = mul<float2, uint32_t, uint32_t>(a.x, b.x);
|
||||
fc.y = mul<float2, uint32_t, uint32_t>(a.y, b.y);
|
||||
fc.z = mul<float2, uint32_t, uint32_t>(a.z, b.z);
|
||||
fc.w = mul<float2, uint32_t, uint32_t>(a.w, b.w);
|
||||
return fc;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ Float8_ mul(uint16_t a, uint4 b) {
|
||||
uint32_t s = h0_h0(a);
|
||||
Float8_ fc;
|
||||
fc.x = mul<float2, uint32_t, uint32_t>(s, b.x);
|
||||
fc.y = mul<float2, uint32_t, uint32_t>(s, b.y);
|
||||
fc.z = mul<float2, uint32_t, uint32_t>(s, b.z);
|
||||
fc.w = mul<float2, uint32_t, uint32_t>(s, b.w);
|
||||
return fc;
|
||||
}
|
||||
|
||||
// Vector fused multiply-add.
|
||||
inline __device__ uint32_t fma(uint32_t a, uint32_t b, uint32_t c) {
|
||||
uint32_t d;
|
||||
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(d) : "r"(a), "r"(b), "r"(c));
|
||||
return d;
|
||||
}
|
||||
|
||||
inline __device__ uint32_t fma(uint16_t a, uint32_t b, uint32_t c) {
|
||||
return fma(h0_h0(a), b, c);
|
||||
}
|
||||
|
||||
inline __device__ uint2 fma(uint2 a, uint2 b, uint2 c) {
|
||||
uint2 d;
|
||||
d.x = fma(a.x, b.x, c.x);
|
||||
d.y = fma(a.y, b.y, c.y);
|
||||
return d;
|
||||
}
|
||||
|
||||
inline __device__ uint2 fma(uint16_t a, uint2 b, uint2 c) {
|
||||
uint32_t s = h0_h0(a);
|
||||
uint2 d;
|
||||
d.x = fma(s, b.x, c.x);
|
||||
d.y = fma(s, b.y, c.y);
|
||||
return d;
|
||||
}
|
||||
|
||||
inline __device__ uint4 fma(uint4 a, uint4 b, uint4 c) {
|
||||
uint4 d;
|
||||
d.x = fma(a.x, b.x, c.x);
|
||||
d.y = fma(a.y, b.y, c.y);
|
||||
d.z = fma(a.z, b.z, c.z);
|
||||
d.w = fma(a.w, b.w, c.w);
|
||||
return d;
|
||||
}
|
||||
|
||||
inline __device__ uint4 fma(uint16_t a, uint4 b, uint4 c) {
|
||||
uint32_t s = h0_h0(a);
|
||||
uint4 d;
|
||||
d.x = fma(s, b.x, c.x);
|
||||
d.y = fma(s, b.y, c.y);
|
||||
d.z = fma(s, b.z, c.z);
|
||||
d.w = fma(s, b.w, c.w);
|
||||
return d;
|
||||
}
|
||||
|
||||
inline __device__ float fma(uint16_t a, uint16_t b, float fc) {
|
||||
float fa = half_to_float(a);
|
||||
float fb = half_to_float(b);
|
||||
return fa * fb + fc;
|
||||
}
|
||||
|
||||
inline __device__ float2 fma(uint32_t a, uint32_t b, float2 fc) {
|
||||
float2 fa = half2_to_float2(a);
|
||||
float2 fb = half2_to_float2(b);
|
||||
return fma(fa, fb, fc);
|
||||
}
|
||||
|
||||
inline __device__ float2 fma(uint16_t a, uint32_t b, float2 fc) {
|
||||
return fma(h0_h0(a), b, fc);
|
||||
}
|
||||
|
||||
inline __device__ Float4_ fma(uint2 a, uint2 b, Float4_ fc) {
|
||||
Float4_ fd;
|
||||
fd.x = fma(a.x, b.x, fc.x);
|
||||
fd.y = fma(a.y, b.y, fc.y);
|
||||
return fd;
|
||||
}
|
||||
|
||||
inline __device__ Float4_ fma(uint16_t a, uint2 b, Float4_ fc) {
|
||||
uint32_t s = h0_h0(a);
|
||||
Float4_ fd;
|
||||
fd.x = fma(s, b.x, fc.x);
|
||||
fd.y = fma(s, b.y, fc.y);
|
||||
return fd;
|
||||
}
|
||||
|
||||
inline __device__ Float8_ fma(uint4 a, uint4 b, Float8_ fc) {
|
||||
Float8_ fd;
|
||||
fd.x = fma(a.x, b.x, fc.x);
|
||||
fd.y = fma(a.y, b.y, fc.y);
|
||||
fd.z = fma(a.z, b.z, fc.z);
|
||||
fd.w = fma(a.w, b.w, fc.w);
|
||||
return fd;
|
||||
}
|
||||
|
||||
inline __device__ Float8_ fma(uint16_t a, uint4 b, Float8_ fc) {
|
||||
uint32_t s = h0_h0(a);
|
||||
Float8_ fd;
|
||||
fd.x = fma(s, b.x, fc.x);
|
||||
fd.y = fma(s, b.y, fc.y);
|
||||
fd.z = fma(s, b.z, fc.z);
|
||||
fd.w = fma(s, b.w, fc.w);
|
||||
return fd;
|
||||
}
|
||||
|
||||
// Vector sum.
|
||||
template<>
|
||||
inline __device__ float sum(uint16_t v) {
|
||||
return half_to_float(v);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float sum(uint32_t v) {
|
||||
float2 tmp = half2_to_float2(v);
|
||||
return tmp.x + tmp.y;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float sum(uint2 v) {
|
||||
uint32_t c = add(v.x, v.y);
|
||||
return sum(c);
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float sum(uint4 v) {
|
||||
uint32_t c = add(v.x, v.y);
|
||||
c = add(c, v.z);
|
||||
c = add(c, v.w);
|
||||
return sum(c);
|
||||
}
|
||||
|
||||
// From float32 to float16.
|
||||
inline __device__ void from_float(uint16_t& dst, float src) {
|
||||
dst = float_to_half(src);
|
||||
}
|
||||
|
||||
inline __device__ void from_float(uint32_t& dst, float2 src) {
|
||||
dst = float2_to_half2(src);
|
||||
}
|
||||
|
||||
inline __device__ void from_float(uint2& dst, Float4_ src) {
|
||||
dst.x = float2_to_half2(src.x);
|
||||
dst.y = float2_to_half2(src.y);
|
||||
}
|
||||
|
||||
inline __device__ void from_float(uint4& dst, Float8_ src) {
|
||||
dst.x = float2_to_half2(src.x);
|
||||
dst.y = float2_to_half2(src.y);
|
||||
dst.z = float2_to_half2(src.z);
|
||||
dst.w = float2_to_half2(src.w);
|
||||
}
|
||||
|
||||
// From float16 to float32.
|
||||
inline __device__ float to_float(uint16_t u) {
|
||||
return half_to_float(u);
|
||||
}
|
||||
|
||||
inline __device__ float2 to_float(uint32_t u) {
|
||||
return half2_to_float2(u);
|
||||
}
|
||||
|
||||
inline __device__ Float4_ to_float(uint2 u) {
|
||||
Float4_ tmp;
|
||||
tmp.x = half2_to_float2(u.x);
|
||||
tmp.y = half2_to_float2(u.y);
|
||||
return tmp;
|
||||
}
|
||||
|
||||
inline __device__ Float8_ to_float(uint4 u) {
|
||||
Float8_ tmp;
|
||||
tmp.x = half2_to_float2(u.x);
|
||||
tmp.y = half2_to_float2(u.y);
|
||||
tmp.z = half2_to_float2(u.z);
|
||||
tmp.w = half2_to_float2(u.w);
|
||||
return tmp;
|
||||
}
|
||||
|
||||
// Zero-out a variable.
|
||||
inline __device__ void zero(uint16_t& dst) {
|
||||
dst = uint16_t(0);
|
||||
}
|
||||
|
||||
} // namespace vllm
|
273
csrc/attention/dtype_float32.cuh
Normal file
@ -0,0 +1,273 @@
|
||||
/*
|
||||
* Adapted from https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
|
||||
* and https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h
|
||||
* Copyright (c) 2023, The vLLM team.
|
||||
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include "attention_generic.cuh"
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// Define custom FP32 vector data types.
|
||||
struct Float4_ {
|
||||
float2 x;
|
||||
float2 y;
|
||||
};
|
||||
|
||||
struct Float8_ {
|
||||
float2 x;
|
||||
float2 y;
|
||||
float2 z;
|
||||
float2 w;
|
||||
};
|
||||
|
||||
// FP32 vector types for Q, K, V.
|
||||
template<>
|
||||
struct Vec<float, 1> {
|
||||
using Type = float;
|
||||
};
|
||||
template<>
|
||||
struct Vec<float, 2> {
|
||||
using Type = float2;
|
||||
};
|
||||
template<>
|
||||
struct Vec<float, 4> {
|
||||
using Type = float4;
|
||||
};
|
||||
|
||||
// FP32 accumulator vector types corresponding to Vec.
|
||||
template<>
|
||||
struct FloatVec<float> {
|
||||
using Type = float;
|
||||
};
|
||||
template<>
|
||||
struct FloatVec<float2> {
|
||||
using Type = float2;
|
||||
};
|
||||
template<>
|
||||
struct FloatVec<float4> {
|
||||
using Type = float4;
|
||||
};
|
||||
|
||||
// Vector addition.
|
||||
inline __device__ float add(float a, float b) {
|
||||
return a + b;
|
||||
}
|
||||
|
||||
inline __device__ float2 add(float2 a, float2 b) {
|
||||
float2 c;
|
||||
c.x = add(a.x, b.x);
|
||||
c.y = add(a.y, b.y);
|
||||
return c;
|
||||
}
|
||||
|
||||
inline __device__ float4 add(float4 a, float4 b) {
|
||||
float4 c;
|
||||
c.x = add(a.x, b.x);
|
||||
c.y = add(a.y, b.y);
|
||||
c.z = add(a.z, b.z);
|
||||
c.w = add(a.w, b.w);
|
||||
return c;
|
||||
}
|
||||
|
||||
// Vector multiplication.
|
||||
template<>
|
||||
inline __device__ float mul<float, float>(float a, float b) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float2 mul(float2 a, float2 b) {
|
||||
float2 c;
|
||||
c.x = a.x * b.x;
|
||||
c.y = a.y * b.y;
|
||||
return c;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float2 mul(float a, float2 b) {
|
||||
float2 c;
|
||||
c.x = a * b.x;
|
||||
c.y = a * b.y;
|
||||
return c;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float4 mul(float4 a, float4 b) {
|
||||
float4 c;
|
||||
c.x = a.x * b.x;
|
||||
c.y = a.y * b.y;
|
||||
c.z = a.z * b.z;
|
||||
c.w = a.w * b.w;
|
||||
return c;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float4 mul(float a, float4 b) {
|
||||
float4 c;
|
||||
c.x = a * b.x;
|
||||
c.y = a * b.y;
|
||||
c.z = a * b.z;
|
||||
c.w = a * b.w;
|
||||
return c;
|
||||
}
|
||||
|
||||
// Vector fused multiply-add.
|
||||
inline __device__ float fma(float a, float b, float c) {
|
||||
return a * b + c;
|
||||
}
|
||||
|
||||
inline __device__ float2 fma(float2 a, float2 b, float2 c) {
|
||||
float2 d;
|
||||
d.x = fma(a.x, b.x, c.x);
|
||||
d.y = fma(a.y, b.y, c.y);
|
||||
return d;
|
||||
}
|
||||
|
||||
inline __device__ float2 fma(float a, float2 b, float2 c) {
|
||||
float2 d;
|
||||
d.x = fma(a, b.x, c.x);
|
||||
d.y = fma(a, b.y, c.y);
|
||||
return d;
|
||||
}
|
||||
|
||||
inline __device__ float4 fma(float4 a, float4 b, float4 c) {
|
||||
float4 d;
|
||||
d.x = fma(a.x, b.x, c.x);
|
||||
d.y = fma(a.y, b.y, c.y);
|
||||
d.z = fma(a.z, b.z, c.z);
|
||||
d.w = fma(a.w, b.w, c.w);
|
||||
return d;
|
||||
}
|
||||
|
||||
inline __device__ float4 fma(float a, float4 b, float4 c) {
|
||||
float4 d;
|
||||
d.x = fma(a, b.x, c.x);
|
||||
d.y = fma(a, b.y, c.y);
|
||||
d.z = fma(a, b.z, c.z);
|
||||
d.w = fma(a, b.w, c.w);
|
||||
return d;
|
||||
}
|
||||
|
||||
inline __device__ Float4_ fma(float a, Float4_ b, Float4_ c) {
|
||||
Float4_ d;
|
||||
d.x = fma(a, b.x, c.x);
|
||||
d.y = fma(a, b.y, c.y);
|
||||
return d;
|
||||
}
|
||||
|
||||
inline __device__ Float8_ fma(float a, Float8_ b, Float8_ c) {
|
||||
Float8_ d;
|
||||
d.x = fma(a, b.x, c.x);
|
||||
d.y = fma(a, b.y, c.y);
|
||||
d.z = fma(a, b.z, c.z);
|
||||
d.w = fma(a, b.w, c.w);
|
||||
return d;
|
||||
}
|
||||
|
||||
// Vector sum.
|
||||
template<>
|
||||
inline __device__ float sum(float v) {
|
||||
return v;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float sum(float2 v) {
|
||||
return v.x + v.y;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float sum(float4 v) {
|
||||
return v.x + v.y + v.z + v.w;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float sum(Float4_ v) {
|
||||
return v.x.x + v.x.y + v.y.x + v.y.y;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline __device__ float sum(Float8_ v) {
|
||||
return v.x.x + v.x.y + v.y.x + v.y.y + v.z.x + v.z.y + v.w.x + v.w.y;
|
||||
}
|
||||
|
||||
// Vector dot product.
|
||||
inline __device__ float dot(float a, float b) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
inline __device__ float dot(float2 a, float2 b) {
|
||||
float2 c = mul<float2, float2, float2>(a, b);
|
||||
return c.x + c.y;
|
||||
}
|
||||
|
||||
inline __device__ float dot(Float4_ a, Float4_ b) {
|
||||
float2 acc = mul<float2, float2, float2>(a.x, b.x);
|
||||
acc = fma(a.y, b.y, acc);
|
||||
return acc.x + acc.y;
|
||||
}
|
||||
|
||||
inline __device__ float dot(Float8_ a, Float8_ b) {
|
||||
float2 acc = mul<float2, float2, float2>(a.x, b.x);
|
||||
acc = fma(a.y, b.y, acc);
|
||||
acc = fma(a.z, b.z, acc);
|
||||
acc = fma(a.w, b.w, acc);
|
||||
return acc.x + acc.y;
|
||||
}
|
||||
|
||||
// From float to float.
|
||||
inline __device__ void from_float(float& dst, float src) {
|
||||
dst = src;
|
||||
}
|
||||
|
||||
inline __device__ void from_float(float2& dst, float2 src) {
|
||||
dst = src;
|
||||
}
|
||||
|
||||
inline __device__ void from_float(float4& dst, float4 src) {
|
||||
dst = src;
|
||||
}
|
||||
|
||||
// From float to float.
|
||||
inline __device__ float to_float(float u) {
|
||||
return u;
|
||||
}
|
||||
|
||||
inline __device__ float2 to_float(float2 u) {
|
||||
return u;
|
||||
}
|
||||
|
||||
inline __device__ float4 to_float(float4 u) {
|
||||
return u;
|
||||
}
|
||||
|
||||
inline __device__ Float4_ to_float(Float4_ u) {
|
||||
return u;
|
||||
}
|
||||
|
||||
inline __device__ Float8_ to_float(Float8_ u) {
|
||||
return u;
|
||||
}
|
||||
|
||||
// Zero-out a variable.
|
||||
inline __device__ void zero(float& dst) {
|
||||
dst = 0.f;
|
||||
}
|
||||
|
||||
} // namespace vllm
|
@ -1,896 +0,0 @@
|
||||
#include <torch/extension.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
|
||||
#include "attention_utils.h"
|
||||
#include "cuda_primitives.h"
|
||||
#include "reduction_utils.h"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#define WARP_SIZE 32
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
|
||||
namespace cacheflow {
|
||||
|
||||
// Grid: (num_heads, num_seqs).
|
||||
template<
|
||||
typename scalar_t,
|
||||
int HEAD_SIZE,
|
||||
int BLOCK_SIZE,
|
||||
int NUM_THREADS>
|
||||
__global__ void single_query_cached_kv_attention_kernel(
|
||||
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
|
||||
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
|
||||
const scalar_t* __restrict__ k_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
|
||||
const scalar_t* __restrict__ v_cache, // [num_blocks, num_heads, head_size, block_size]
|
||||
const float scale,
|
||||
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
|
||||
const int* __restrict__ context_lens, // [num_seqs]
|
||||
const int max_num_blocks_per_seq,
|
||||
const int q_stride) {
|
||||
constexpr int THREAD_GROUP_SIZE = MAX(WARP_SIZE / BLOCK_SIZE, 1);
|
||||
constexpr int NUM_TOKENS_PER_THREAD_GROUP = (BLOCK_SIZE + WARP_SIZE - 1) / WARP_SIZE;
|
||||
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
|
||||
const int thread_idx = threadIdx.x;
|
||||
const int warp_idx = thread_idx / WARP_SIZE;
|
||||
const int lane = thread_idx % WARP_SIZE;
|
||||
|
||||
const int head_idx = blockIdx.x;
|
||||
const int num_heads = gridDim.x;
|
||||
const int seq_idx = blockIdx.y;
|
||||
|
||||
// A vector type to store a part of a key or a query.
|
||||
// The vector size is configured in such a way that the threads in a thread group
|
||||
// fetch or compute 16 bytes at a time.
|
||||
// For example, if the size of a thread group is 4 and the data type is half,
|
||||
// then the vector size is 16 / (4 * sizeof(half)) == 2.
|
||||
constexpr int VEC_SIZE = MAX(16 / (THREAD_GROUP_SIZE * sizeof(scalar_t)), 1);
|
||||
using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
|
||||
using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
|
||||
|
||||
constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
|
||||
constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;
|
||||
|
||||
const int thread_group_idx = thread_idx / THREAD_GROUP_SIZE;
|
||||
const int thread_group_offset = thread_idx % THREAD_GROUP_SIZE;
|
||||
|
||||
// Load the query to registers.
|
||||
// Each thread in a thread group has a different part of the query.
|
||||
// For example, if the the thread group size is 4, then the first thread in the group
|
||||
// has 0, 4, 8, ... th vectors of the query, and the second thread has 1, 5, 9, ...
|
||||
// th vectors of the query, and so on.
|
||||
// NOTE(woosuk): Because q is split from a qkv tensor, it may not be contiguous.
|
||||
const scalar_t* q_ptr = q + seq_idx * q_stride + head_idx * HEAD_SIZE;
|
||||
Q_vec q_vecs[NUM_VECS_PER_THREAD];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_VECS_PER_THREAD; i++) {
|
||||
const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
|
||||
q_vecs[i] = *reinterpret_cast<const Q_vec*>(q_ptr + vec_idx * VEC_SIZE);
|
||||
}
|
||||
|
||||
// Memory planning.
|
||||
extern __shared__ char shared_mem[];
|
||||
// NOTE(woosuk): We use FP32 logits and accumulation.
|
||||
float *logits = reinterpret_cast<float*>(shared_mem);
|
||||
// Workspace for reduction.
|
||||
__shared__ float red_smem[2 * NUM_WARPS];
|
||||
|
||||
// x == THREAD_GROUP_SIZE * VEC_SIZE
|
||||
// Each thread group fetches x elements from the key at a time.
|
||||
constexpr int x = 16 / sizeof(scalar_t);
|
||||
float qk_max = -FLT_MAX;
|
||||
|
||||
const int* block_table = block_tables + seq_idx * max_num_blocks_per_seq;
|
||||
const int context_len = context_lens[seq_idx];
|
||||
const int num_blocks = (context_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
// Iterate over the key blocks.
|
||||
// Each warp fetches a block of keys for each iteration.
|
||||
// Each thread group in a warp fetches a key from the block, and computes
|
||||
// dot product with the query.
|
||||
for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
|
||||
const int physical_block_number = block_table[block_idx];
|
||||
|
||||
// Load a key to registers.
|
||||
// Each thread in a thread group has a different part of the key.
|
||||
// For example, if the the thread group size is 4, then the first thread in the group
|
||||
// has 0, 4, 8, ... th vectors of the key, and the second thread has 1, 5, 9, ... th
|
||||
// vectors of the key, and so on.
|
||||
for (int i = 0; i < NUM_TOKENS_PER_THREAD_GROUP; i++) {
|
||||
const int physical_block_offset = (thread_group_idx + i * WARP_SIZE) % BLOCK_SIZE;
|
||||
const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
|
||||
K_vec k_vecs[NUM_VECS_PER_THREAD];
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < NUM_VECS_PER_THREAD; j++) {
|
||||
const scalar_t* k_ptr = k_cache + physical_block_number * num_heads * HEAD_SIZE * BLOCK_SIZE
|
||||
+ head_idx * HEAD_SIZE * BLOCK_SIZE
|
||||
+ physical_block_offset * x;
|
||||
const int vec_idx = thread_group_offset + j * THREAD_GROUP_SIZE;
|
||||
const int offset1 = (vec_idx * VEC_SIZE) / x;
|
||||
const int offset2 = (vec_idx * VEC_SIZE) % x;
|
||||
k_vecs[j] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
|
||||
}
|
||||
|
||||
// Compute dot product.
|
||||
// This includes a reduction across the threads in the same thread group.
|
||||
const float qk = scale * Qk_dot<scalar_t, THREAD_GROUP_SIZE>::dot(q_vecs, k_vecs);
|
||||
const bool mask = token_idx >= context_len;
|
||||
|
||||
if (thread_group_offset == 0) {
|
||||
// Store the partial reductions to shared memory.
|
||||
// NOTE(woosuk): It is required to zero out the masked logits.
|
||||
logits[token_idx] = mask ? 0.f : qk;
|
||||
// Update the max value.
|
||||
qk_max = mask ? qk_max : fmaxf(qk_max, qk);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Perform reduction across the threads in the same warp to get the
|
||||
// max qk value for each "warp" (not across the thread block yet).
|
||||
// The 0-th thread of each thread group already has its max qk value.
|
||||
#pragma unroll
|
||||
for (int mask = WARP_SIZE / 2; mask >= THREAD_GROUP_SIZE; mask /= 2) {
|
||||
qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
|
||||
}
|
||||
if (lane == 0) {
|
||||
red_smem[warp_idx] = qk_max;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// TODO(woosuk): Refactor this part.
|
||||
// Get the max qk value for the sequence.
|
||||
qk_max = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
|
||||
#pragma unroll
|
||||
for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
|
||||
qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
|
||||
}
|
||||
// Broadcast the max qk value to all threads.
|
||||
qk_max = __shfl_sync(uint32_t(-1), qk_max, 0);
|
||||
|
||||
// Get the sum of the exp values.
|
||||
float exp_sum = 0.f;
|
||||
for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
|
||||
float val = __expf(logits[i] - qk_max);
|
||||
logits[i] = val;
|
||||
exp_sum += val;
|
||||
}
|
||||
exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], exp_sum);
|
||||
|
||||
// Compute softmax.
|
||||
const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
|
||||
for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
|
||||
logits[i] *= inv_sum;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Each thread will fetch 16 bytes from the value cache at a time.
|
||||
constexpr int V_VEC_SIZE = MIN(16 / sizeof(scalar_t), BLOCK_SIZE);
|
||||
using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
|
||||
using L_vec = typename FloatVec<V_vec>::Type;
|
||||
|
||||
constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
|
||||
constexpr int NUM_ROWS_PER_ITER = WARP_SIZE / NUM_V_VECS_PER_ROW;
|
||||
constexpr int NUM_ROWS_PER_THREAD = (HEAD_SIZE + NUM_ROWS_PER_ITER - 1) / NUM_ROWS_PER_ITER;
|
||||
|
||||
float accs[NUM_ROWS_PER_THREAD];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
accs[i] = 0.f;
|
||||
}
|
||||
|
||||
for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
|
||||
const int physical_block_number = block_table[block_idx];
|
||||
const int physical_block_offset = (lane % NUM_V_VECS_PER_ROW) * V_VEC_SIZE;
|
||||
const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
|
||||
L_vec logits_vec = *reinterpret_cast<L_vec*>(logits + token_idx);
|
||||
|
||||
const scalar_t* v_ptr = v_cache + physical_block_number * num_heads * HEAD_SIZE * BLOCK_SIZE
|
||||
+ head_idx * HEAD_SIZE * BLOCK_SIZE;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
|
||||
if (row_idx < HEAD_SIZE) {
|
||||
const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
|
||||
V_vec v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
|
||||
accs[i] += dot(logits_vec, cast_to_float(v_vec));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Perform reduction within each warp.
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
float acc = accs[i];
|
||||
#pragma unroll
|
||||
for (int mask = NUM_V_VECS_PER_ROW / 2; mask >= 1; mask /= 2) {
|
||||
acc += __shfl_xor_sync(uint32_t(-1), acc, mask);
|
||||
}
|
||||
accs[i] = acc;
|
||||
}
|
||||
|
||||
// NOTE(woosuk): A barrier is required because the shared memory space for logits
|
||||
// is reused for the output.
|
||||
__syncthreads();
|
||||
|
||||
// Perform reduction across warps.
|
||||
float* out_smem = reinterpret_cast<float*>(shared_mem);
|
||||
#pragma unroll
|
||||
for (int i = NUM_WARPS; i > 1; i /= 2) {
|
||||
int mid = i / 2;
|
||||
// Upper warps write to shared memory.
|
||||
if (warp_idx >= mid && warp_idx < i) {
|
||||
float* dst = &out_smem[(warp_idx - mid) * HEAD_SIZE];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
|
||||
if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
|
||||
dst[row_idx] = accs[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Lower warps update the output.
|
||||
if (warp_idx < mid) {
|
||||
const float* src = &out_smem[warp_idx * HEAD_SIZE];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
|
||||
if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
|
||||
accs[i] += src[row_idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
// Write the final output.
|
||||
if (warp_idx == 0) {
|
||||
scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
|
||||
if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
|
||||
convert_from_float(*(out_ptr + row_idx), accs[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cacheflow
|
||||
|
||||
#define LAUNCH_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS) \
|
||||
cacheflow::single_query_cached_kv_attention_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS> \
|
||||
<<<grid, block, shared_mem_size, stream>>>( \
|
||||
out_ptr, \
|
||||
query_ptr, \
|
||||
key_cache_ptr, \
|
||||
value_cache_ptr, \
|
||||
scale, \
|
||||
block_tables_ptr, \
|
||||
context_lens_ptr, \
|
||||
max_num_blocks_per_seq, \
|
||||
query_stride);
|
||||
|
||||
// TODO(woosuk): Tune NUM_THREADS.
|
||||
template<
|
||||
typename T,
|
||||
int BLOCK_SIZE,
|
||||
int NUM_THREADS = 128>
|
||||
void single_query_cached_kv_attention_launcher(
|
||||
torch::Tensor& out,
|
||||
torch::Tensor& query,
|
||||
torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache,
|
||||
float scale,
|
||||
torch::Tensor& block_tables,
|
||||
torch::Tensor& context_lens,
|
||||
int max_context_len) {
|
||||
int num_seqs = query.size(0);
|
||||
int num_heads = query.size(1);
|
||||
int head_size = query.size(2);
|
||||
int max_num_blocks_per_seq = block_tables.size(1);
|
||||
int query_stride = query.stride(0);
|
||||
|
||||
int thread_group_size = MAX(WARP_SIZE / BLOCK_SIZE, 1);
|
||||
assert(head_size % thread_group_size == 0);
|
||||
|
||||
T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
|
||||
T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
|
||||
T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
|
||||
T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
|
||||
int* block_tables_ptr = block_tables.data_ptr<int>();
|
||||
int* context_lens_ptr = context_lens.data_ptr<int>();
|
||||
|
||||
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
|
||||
int padded_max_context_len = ((max_context_len + BLOCK_SIZE - 1) / BLOCK_SIZE) * BLOCK_SIZE;
|
||||
int logits_size = padded_max_context_len * sizeof(float);
|
||||
int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
|
||||
int shared_mem_size = std::max(logits_size, outputs_size);
|
||||
|
||||
dim3 grid(num_heads, num_seqs);
|
||||
dim3 block(NUM_THREADS);
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
switch (head_size) {
|
||||
case 32:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 32, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
case 64:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 64, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
case 80:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 80, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
case 96:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 96, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
case 128:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 128, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
case 160:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 160, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
case 192:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 192, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
case 256:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 256, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
#define CALL_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
|
||||
single_query_cached_kv_attention_launcher<T, BLOCK_SIZE>( \
|
||||
out, \
|
||||
query, \
|
||||
key_cache, \
|
||||
value_cache, \
|
||||
scale, \
|
||||
block_tables, \
|
||||
context_lens, \
|
||||
max_context_len);
|
||||
|
||||
void single_query_cached_kv_attention(
|
||||
torch::Tensor& out, // [num_seqs, num_heads, head_size]
|
||||
torch::Tensor& query, // [num_seqs, num_heads, head_size]
|
||||
torch::Tensor& key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
|
||||
torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size]
|
||||
float scale,
|
||||
torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
|
||||
torch::Tensor& context_lens, // [num_seqs]
|
||||
int block_size,
|
||||
int max_context_len) {
|
||||
// TODO(woosuk): Support BF16.
|
||||
if (query.element_size() == 2) {
|
||||
// Half.
|
||||
if (block_size == 1) {
|
||||
CALL_KERNEL_LAUNCHER(uint16_t, 1);
|
||||
} else if (block_size == 2) {
|
||||
CALL_KERNEL_LAUNCHER(uint16_t, 2);
|
||||
} else if (block_size == 4) {
|
||||
CALL_KERNEL_LAUNCHER(uint16_t, 4);
|
||||
} else if (block_size == 8) {
|
||||
CALL_KERNEL_LAUNCHER(uint16_t, 8);
|
||||
} else if (block_size == 16) {
|
||||
CALL_KERNEL_LAUNCHER(uint16_t, 16);
|
||||
} else if (block_size == 32) {
|
||||
CALL_KERNEL_LAUNCHER(uint16_t, 32);
|
||||
} else if (block_size == 64) {
|
||||
CALL_KERNEL_LAUNCHER(uint16_t, 64);
|
||||
} else if (block_size == 128) {
|
||||
CALL_KERNEL_LAUNCHER(uint16_t, 128);
|
||||
} else if (block_size == 256) {
|
||||
CALL_KERNEL_LAUNCHER(uint16_t, 256);
|
||||
} else {
|
||||
assert(false);
|
||||
}
|
||||
} else {
|
||||
// Float.
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
// namespace cacheflow {
|
||||
|
||||
// // Grid: (num_heads, num_query_tokens).
|
||||
// template<
|
||||
// typename scalar_t,
|
||||
// int HEAD_SIZE,
|
||||
// int BLOCK_SIZE,
|
||||
// int NUM_THREADS>
|
||||
// __device__ void multi_query_cached_kv_attention_kernel_unoptimized_(
|
||||
// scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
|
||||
// const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
|
||||
// const int seq_start_idx,
|
||||
// const int seq_len,
|
||||
// const scalar_t* __restrict__ k_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
|
||||
// const scalar_t* __restrict__ v_cache, // [num_blocks, num_heads, head_size, block_size]
|
||||
// const float scale,
|
||||
// const int* __restrict__ block_table, // [num_seqs, max_num_blocks_per_seq]
|
||||
// const int context_len,
|
||||
// const int max_num_blocks_per_seq,
|
||||
// const int q_stride) {
|
||||
// constexpr int THREAD_GROUP_SIZE = WARP_SIZE / BLOCK_SIZE;
|
||||
// constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
|
||||
// const int thread_idx = threadIdx.x;
|
||||
// const int warp_idx = thread_idx / WARP_SIZE;
|
||||
// const int lane = thread_idx % WARP_SIZE;
|
||||
|
||||
// const int head_idx = blockIdx.x;
|
||||
// const int num_heads = gridDim.x;
|
||||
// const int seq_idx = blockIdx.y;
|
||||
|
||||
// // A vector type to store a part of a key or a query.
|
||||
// // The vector size is configured in such a way that the threads in a thread group
|
||||
// // fetch or comput 16 bytes at a time.
|
||||
// // For example, if the size of a thread group is 4 and the data type is half,
|
||||
// // then the vector size is 16 / (4 * sizeof(half)) == 2.
|
||||
// constexpr int VEC_SIZE = 16 / (THREAD_GROUP_SIZE * sizeof(scalar_t));
|
||||
// using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
|
||||
// using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
|
||||
|
||||
// constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
|
||||
// constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;
|
||||
|
||||
// const int thread_group_idx = thread_idx / THREAD_GROUP_SIZE;
|
||||
// const int thread_group_offset = thread_idx % THREAD_GROUP_SIZE;
|
||||
|
||||
// // Load the query to registers.
|
||||
// // Each thread in a thread group has a different part of the query.
|
||||
// // For example, if the the thread group size is 4, then the first thread in the group
|
||||
// // has 0, 4, 8, ... th vectors of the query, and the second thread has 1, 5, 9, ...
|
||||
// // th vectors of the query, and so on.
|
||||
// // NOTE(woosuk): Because q is split from a qkv tensor, it may not be contiguous.
|
||||
// const scalar_t* q_ptr = q + seq_idx * q_stride + head_idx * HEAD_SIZE;
|
||||
// Q_vec q_vecs[NUM_VECS_PER_THREAD];
|
||||
// #pragma unroll
|
||||
// for (int i = 0; i < NUM_VECS_PER_THREAD; i++) {
|
||||
// const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
|
||||
// q_vecs[i] = *reinterpret_cast<const Q_vec*>(q_ptr + vec_idx * VEC_SIZE);
|
||||
// }
|
||||
|
||||
// // Memory planning.
|
||||
// extern __shared__ char shared_mem[];
|
||||
// // NOTE(woosuk): We use FP32 logits and accumulation.
|
||||
// float *logits = reinterpret_cast<float*>(shared_mem);
|
||||
// // Workspace for reduction.
|
||||
// __shared__ float red_smem[2 * NUM_WARPS];
|
||||
|
||||
// // x == THREAD_GROUP_SIZE * VEC_SIZE
|
||||
// // Each thread group fetches x elements from the key at a time.
|
||||
// constexpr int x = 16 / sizeof(scalar_t);
|
||||
// float qk_max = -FLT_MAX;
|
||||
|
||||
// const int num_blocks = (context_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
// const int mask_boundary = context_len - seq_len + 1 + (seq_idx - seq_start_idx);
|
||||
|
||||
// // Iterate over the key blocks.
|
||||
// // Each warp fetches a block of keys for each iteration.
|
||||
// // Each thread group in a warp fetches a key from the block, and computes
|
||||
// // dot product with the query.
|
||||
// for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
|
||||
// const int physical_block_number = block_table[block_idx];
|
||||
// const int physical_block_offset = thread_group_idx % BLOCK_SIZE;
|
||||
// const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
|
||||
|
||||
// // Load a key to registers.
|
||||
// // Each thread in a thread group has a different part of the key.
|
||||
// // For example, if the the thread group size is 4, then the first thread in the group
|
||||
// // has 0, 4, 8, ... th vectors of the key, and the second thread has 1, 5, 9, ... th
|
||||
// // vectors of the key, and so on.
|
||||
// K_vec k_vecs[NUM_VECS_PER_THREAD];
|
||||
// #pragma unroll
|
||||
// for (int i = 0; i < NUM_VECS_PER_THREAD; i++) {
|
||||
// const scalar_t* k_ptr = k_cache + physical_block_number * num_heads * HEAD_SIZE * BLOCK_SIZE
|
||||
// + head_idx * HEAD_SIZE * BLOCK_SIZE
|
||||
// + physical_block_offset * x;
|
||||
// const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
|
||||
// const int offset1 = (vec_idx * VEC_SIZE) / x;
|
||||
// const int offset2 = (vec_idx * VEC_SIZE) % x;
|
||||
// k_vecs[i] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
|
||||
// }
|
||||
|
||||
// // Compute dot product.
|
||||
// // This includes a reduction across the threads in the same thread group.
|
||||
// const float qk = scale * Qk_dot<scalar_t, THREAD_GROUP_SIZE>::dot(q_vecs, k_vecs);
|
||||
// const bool mask = token_idx >= mask_boundary;
|
||||
|
||||
// if (thread_group_offset == 0) {
|
||||
// // Store the partial reductions to shared memory.
|
||||
// // NOTE(woosuk): It is required to zero out the masked logits.
|
||||
// logits[token_idx] = mask ? 0.f : qk;
|
||||
// // Update the max value.
|
||||
// qk_max = mask ? qk_max : fmaxf(qk_max, qk);
|
||||
// }
|
||||
// }
|
||||
|
||||
// // Perform reduction across the threads in the same warp to get the
|
||||
// // max qk value for each "warp" (not across the thread block yet).
|
||||
// // The 0-th thread of each thread group already has its max qk value.
|
||||
// #pragma unroll
|
||||
// for (int mask = WARP_SIZE / 2; mask >= THREAD_GROUP_SIZE; mask /= 2) {
|
||||
// qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
|
||||
// }
|
||||
// if (lane == 0) {
|
||||
// red_smem[warp_idx] = qk_max;
|
||||
// }
|
||||
// __syncthreads();
|
||||
|
||||
// // TODO(woosuk): Refactor this part.
|
||||
// // Get the max qk value for the sequence.
|
||||
// qk_max = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
|
||||
// #pragma unroll
|
||||
// for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
|
||||
// qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
|
||||
// }
|
||||
// // Broadcast the max qk value to all threads.
|
||||
// qk_max = __shfl_sync(uint32_t(-1), qk_max, 0);
|
||||
|
||||
// // Get the sum of the exp values.
|
||||
// float exp_sum = 0.f;
|
||||
// for (int i = thread_idx; i < mask_boundary; i += NUM_THREADS) {
|
||||
// float val = __expf(logits[i] - qk_max);
|
||||
// logits[i] = val;
|
||||
// exp_sum += val;
|
||||
// }
|
||||
// exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], exp_sum);
|
||||
|
||||
// // Compute softmax.
|
||||
// const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
|
||||
// for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
|
||||
// logits[i] *= inv_sum;
|
||||
// }
|
||||
// __syncthreads();
|
||||
|
||||
// // Each thread will fetch 16 bytes from the value cache at a time.
|
||||
// constexpr int V_VEC_SIZE = 16 / sizeof(scalar_t);
|
||||
// using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
|
||||
// using L_vec = typename FloatVec<V_vec>::Type;
|
||||
|
||||
// constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
|
||||
// constexpr int NUM_ROWS_PER_ITER = WARP_SIZE / NUM_V_VECS_PER_ROW;
|
||||
// constexpr int NUM_ROWS_PER_THREAD = (HEAD_SIZE + NUM_ROWS_PER_ITER - 1) / NUM_ROWS_PER_ITER;
|
||||
|
||||
// float accs[NUM_ROWS_PER_THREAD];
|
||||
// #pragma unroll
|
||||
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
// accs[i] = 0.f;
|
||||
// }
|
||||
|
||||
// for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
|
||||
// const int physical_block_number = block_table[block_idx];
|
||||
// const int physical_block_offset = (lane % NUM_V_VECS_PER_ROW) * V_VEC_SIZE;
|
||||
// const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
|
||||
// L_vec logits_vec = *reinterpret_cast<L_vec*>(logits + token_idx);
|
||||
|
||||
// const scalar_t* v_ptr = v_cache + physical_block_number * num_heads * HEAD_SIZE * BLOCK_SIZE
|
||||
// + head_idx * HEAD_SIZE * BLOCK_SIZE;
|
||||
// #pragma unroll
|
||||
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
// const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
|
||||
// if (row_idx < HEAD_SIZE) {
|
||||
// const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
|
||||
// V_vec v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
|
||||
// accs[i] += dot(logits_vec, cast_to_float(v_vec));
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// // Perform reduction within each warp.
|
||||
// #pragma unroll
|
||||
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
// float acc = accs[i];
|
||||
// #pragma unroll
|
||||
// for (int mask = NUM_V_VECS_PER_ROW / 2; mask >= 1; mask /= 2) {
|
||||
// acc += __shfl_xor_sync(uint32_t(-1), acc, mask);
|
||||
// }
|
||||
// accs[i] = acc;
|
||||
// }
|
||||
|
||||
// // NOTE(woosuk): A barrier is required because the shared memory space for logits
|
||||
// // is reused for the output.
|
||||
// __syncthreads();
|
||||
|
||||
// // Perform reduction across warps.
|
||||
// float* out_smem = reinterpret_cast<float*>(shared_mem);
|
||||
// #pragma unroll
|
||||
// for (int i = NUM_WARPS; i > 1; i /= 2) {
|
||||
// int mid = i / 2;
|
||||
// // Upper warps write to shared memory.
|
||||
// if (warp_idx >= mid && warp_idx < i) {
|
||||
// float* dst = &out_smem[(warp_idx - mid) * HEAD_SIZE];
|
||||
// #pragma unroll
|
||||
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
// const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
|
||||
// if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
|
||||
// dst[row_idx] = accs[i];
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// __syncthreads();
|
||||
|
||||
// // Lower warps update the output.
|
||||
// if (warp_idx < mid) {
|
||||
// const float* src = &out_smem[warp_idx * HEAD_SIZE];
|
||||
// #pragma unroll
|
||||
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
// const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
|
||||
// if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
|
||||
// accs[i] += src[row_idx];
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// __syncthreads();
|
||||
// }
|
||||
|
||||
// // Write the final output.
|
||||
// if (warp_idx == 0) {
|
||||
// scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
|
||||
// #pragma unroll
|
||||
// for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
// const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
|
||||
// if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
|
||||
// convert_from_float(*(out_ptr + row_idx), accs[i]);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
|
||||
// // Grid: (num_heads, num_query_tokens).
|
||||
// template<
|
||||
// typename scalar_t,
|
||||
// int HEAD_SIZE,
|
||||
// int BLOCK_SIZE,
|
||||
// int NUM_THREADS>
|
||||
// __global__ void multi_query_cached_kv_attention_kernel(
|
||||
// const int* cu_query_lens, // [num_prompts+1]
|
||||
// const int* seq_prompt_mapping, // [num_seqs] mapping from seq_idx to prompt_idx
|
||||
// scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
|
||||
// const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
|
||||
// const scalar_t* __restrict__ k_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
|
||||
// const scalar_t* __restrict__ v_cache, // [num_blocks, num_heads, head_size, block_size]
|
||||
// const float scale,
|
||||
// const int* __restrict__ block_tables, // [num_prompts, max_num_blocks_per_seq]
|
||||
// const int* __restrict__ context_lens, // [num_prompts]
|
||||
// const int max_num_blocks_per_seq,
|
||||
// const int q_stride) {
|
||||
// const int seq_idx = blockIdx.y;
|
||||
// const int prompt_idx = seq_prompt_mapping[seq_idx];
|
||||
// const int seq_start_idx = cu_query_lens[prompt_idx];
|
||||
// const int seq_len = cu_query_lens[prompt_idx + 1] - seq_start_idx;
|
||||
// const int* block_table = block_tables + prompt_idx * max_num_blocks_per_seq;
|
||||
// const int context_len = context_lens[prompt_idx];
|
||||
// multi_query_cached_kv_attention_kernel_unoptimized_<
|
||||
// scalar_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>(
|
||||
// out,
|
||||
// q,
|
||||
// seq_start_idx,
|
||||
// seq_len,
|
||||
// k_cache,
|
||||
// v_cache,
|
||||
// scale,
|
||||
// block_table,
|
||||
// context_len,
|
||||
// max_num_blocks_per_seq,
|
||||
// q_stride);
|
||||
// }
|
||||
|
||||
// } // namespace cacheflow
|
||||
|
||||
// #define LAUNCH_MULTI_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS) \
|
||||
// cacheflow::multi_query_cached_kv_attention_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS> \
|
||||
// <<<grid, block, shared_mem_size, stream>>>( \
|
||||
// cu_query_lens_ptr, \
|
||||
// seq_prompt_mapping_ptr, \
|
||||
// out_ptr, \
|
||||
// query_ptr, \
|
||||
// key_cache_ptr, \
|
||||
// value_cache_ptr, \
|
||||
// scale, \
|
||||
// block_tables_ptr, \
|
||||
// context_lens_ptr, \
|
||||
// max_num_blocks_per_seq, \
|
||||
// query_stride);
|
||||
|
||||
|
||||
// // TODO(woosuk): Tune NUM_THREADS.
|
||||
// template<
|
||||
// typename T,
|
||||
// int BLOCK_SIZE,
|
||||
// int NUM_THREADS = 128>
|
||||
// void multi_query_cached_kv_attention_launcher(
|
||||
// torch::Tensor& cu_query_lens,
|
||||
// torch::Tensor& seq_prompt_mapping,
|
||||
// torch::Tensor& out,
|
||||
// torch::Tensor& query,
|
||||
// torch::Tensor& key_cache,
|
||||
// torch::Tensor& value_cache,
|
||||
// float scale,
|
||||
// torch::Tensor& block_tables,
|
||||
// torch::Tensor& context_lens,
|
||||
// int max_context_len) {
|
||||
// int num_seqs = query.size(0);
|
||||
// int num_heads = query.size(1);
|
||||
// int head_size = query.size(2);
|
||||
// int max_num_blocks_per_seq = block_tables.size(1);
|
||||
// int query_stride = query.stride(0);
|
||||
|
||||
// int* cu_query_lens_ptr = cu_query_lens.data_ptr<int>();
|
||||
// int* seq_prompt_mapping_ptr = seq_prompt_mapping.data_ptr<int>();
|
||||
// T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
|
||||
// T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
|
||||
// T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
|
||||
// T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
|
||||
// int* block_tables_ptr = block_tables.data_ptr<int>();
|
||||
// int* context_lens_ptr = context_lens.data_ptr<int>();
|
||||
|
||||
// constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
|
||||
// int padded_max_context_len = ((max_context_len + BLOCK_SIZE - 1) / BLOCK_SIZE) * BLOCK_SIZE;
|
||||
// int logits_size = padded_max_context_len * sizeof(float);
|
||||
// int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
|
||||
// int shared_mem_size = std::max(logits_size, outputs_size);
|
||||
|
||||
// dim3 grid(num_heads, num_seqs);
|
||||
// dim3 block(NUM_THREADS);
|
||||
// const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
// switch (head_size) {
|
||||
// case 32:
|
||||
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 32, BLOCK_SIZE, NUM_THREADS);
|
||||
// break;
|
||||
// case 64:
|
||||
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 64, BLOCK_SIZE, NUM_THREADS);
|
||||
// break;
|
||||
// case 80:
|
||||
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 80, BLOCK_SIZE, NUM_THREADS);
|
||||
// break;
|
||||
// case 96:
|
||||
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 96, BLOCK_SIZE, NUM_THREADS);
|
||||
// break;
|
||||
// case 128:
|
||||
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 128, BLOCK_SIZE, NUM_THREADS);
|
||||
// break;
|
||||
// case 160:
|
||||
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 160, BLOCK_SIZE, NUM_THREADS);
|
||||
// break;
|
||||
// case 192:
|
||||
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 192, BLOCK_SIZE, NUM_THREADS);
|
||||
// break;
|
||||
// case 256:
|
||||
// LAUNCH_MULTI_ATTENTION_KERNEL(T, 256, BLOCK_SIZE, NUM_THREADS);
|
||||
// break;
|
||||
// default:
|
||||
// assert(false);
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
|
||||
// void multi_query_cached_kv_attention(
|
||||
// torch::Tensor& cu_query_lens,
|
||||
// torch::Tensor& out,
|
||||
// torch::Tensor& query,
|
||||
// torch::Tensor& key_cache,
|
||||
// torch::Tensor& value_cache,
|
||||
// float scale,
|
||||
// torch::Tensor& block_tables,
|
||||
// torch::Tensor& context_lens,
|
||||
// int block_size,
|
||||
// int max_context_len) {
|
||||
|
||||
// torch::Tensor query_lens = cu_query_lens.to(torch::kCPU);
|
||||
|
||||
// int num_queries = query_lens.size(0) - 1;
|
||||
// const int* query_lens_ptr = query_lens.data_ptr<int>();
|
||||
// int num_seqs = query.size(0);
|
||||
|
||||
// torch::Tensor cpu_tensor = torch::empty({num_seqs}, torch::dtype(torch::kInt32));
|
||||
// auto accessor = cpu_tensor.accessor<int32_t, 1>();
|
||||
// for (int i = 0, query_cursor = 0; i < num_seqs; ++i) {
|
||||
// if (i >= query_lens_ptr[query_cursor + 1]) {
|
||||
// ++query_cursor;
|
||||
// }
|
||||
// accessor[i] = query_cursor;
|
||||
// }
|
||||
|
||||
// // TODO(suquark): This can be slow, as it to(torch::kCPU) and to(torch::kCUDA)
|
||||
// // implicitly synchronizes the CPU and GPU. And we can avoid this issue by giving
|
||||
// // the mapping as an input parameter. Let's do this optimization in a later PR.
|
||||
// torch::Tensor seq_prompt_mapping = cpu_tensor.to(torch::kCUDA);
|
||||
|
||||
// // TODO(woosuk): Support BF16.
|
||||
// if (query.element_size() == 2) {
|
||||
// // Half.
|
||||
// if (block_size == 8) {
|
||||
// multi_query_cached_kv_attention_launcher<uint16_t, 8>(
|
||||
// cu_query_lens,
|
||||
// seq_prompt_mapping,
|
||||
// out,
|
||||
// query,
|
||||
// key_cache,
|
||||
// value_cache,
|
||||
// scale,
|
||||
// block_tables,
|
||||
// context_lens,
|
||||
// max_context_len);
|
||||
// } else if (block_size == 16) {
|
||||
// multi_query_cached_kv_attention_launcher<uint16_t, 16>(
|
||||
// cu_query_lens,
|
||||
// seq_prompt_mapping,
|
||||
// out,
|
||||
// query,
|
||||
// key_cache,
|
||||
// value_cache,
|
||||
// scale,
|
||||
// block_tables,
|
||||
// context_lens,
|
||||
// max_context_len);
|
||||
// } else if (block_size == 32) {
|
||||
// multi_query_cached_kv_attention_launcher<uint16_t, 32>(
|
||||
// cu_query_lens,
|
||||
// seq_prompt_mapping,
|
||||
// out,
|
||||
// query,
|
||||
// key_cache,
|
||||
// value_cache,
|
||||
// scale,
|
||||
// block_tables,
|
||||
// context_lens,
|
||||
// max_context_len);
|
||||
// } else {
|
||||
// assert(false);
|
||||
// }
|
||||
// } else if (query.element_size() == 4) {
|
||||
// // Float.
|
||||
// if (block_size == 8) {
|
||||
// multi_query_cached_kv_attention_launcher<float, 8>(
|
||||
// cu_query_lens,
|
||||
// seq_prompt_mapping,
|
||||
// out,
|
||||
// query,
|
||||
// key_cache,
|
||||
// value_cache,
|
||||
// scale,
|
||||
// block_tables,
|
||||
// context_lens,
|
||||
// max_context_len);
|
||||
// } else if (block_size == 16) {
|
||||
// multi_query_cached_kv_attention_launcher<float, 16>(
|
||||
// cu_query_lens,
|
||||
// seq_prompt_mapping,
|
||||
// out,
|
||||
// query,
|
||||
// key_cache,
|
||||
// value_cache,
|
||||
// scale,
|
||||
// block_tables,
|
||||
// context_lens,
|
||||
// max_context_len);
|
||||
// } else if (block_size == 32) {
|
||||
// multi_query_cached_kv_attention_launcher<float, 32>(
|
||||
// cu_query_lens,
|
||||
// seq_prompt_mapping,
|
||||
// out,
|
||||
// query,
|
||||
// key_cache,
|
||||
// value_cache,
|
||||
// scale,
|
||||
// block_tables,
|
||||
// context_lens,
|
||||
// max_context_len);
|
||||
// } else {
|
||||
// assert(false);
|
||||
// }
|
||||
// } else {
|
||||
// assert(false);
|
||||
// }
|
||||
// }
|
||||
|
||||
#undef WARP_SIZE
|
||||
#undef MAX
|
||||
#undef MIN
|
@ -1,165 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "cuda_primitives.h"
|
||||
|
||||
#include <float.h>
|
||||
#include <type_traits>
|
||||
|
||||
#define MMHA_USE_FP32_ACUM_FOR_FMA
|
||||
#define MMHA_USE_FP32_ACUM_FOR_OUT
|
||||
|
||||
namespace cacheflow {
|
||||
|
||||
// A vector type to store Q, K, V elements.
|
||||
template<typename T, int VEC_SIZE>
|
||||
struct Vec {};
|
||||
template<>
|
||||
struct Vec<float, 1> {
|
||||
using Type = float;
|
||||
};
|
||||
template<>
|
||||
struct Vec<float, 2> {
|
||||
using Type = float2;
|
||||
};
|
||||
template<>
|
||||
struct Vec<float, 4> {
|
||||
using Type = float4;
|
||||
};
|
||||
template<>
|
||||
struct Vec<uint16_t, 1> {
|
||||
using Type = uint16_t;
|
||||
};
|
||||
template<>
|
||||
struct Vec<uint16_t, 2> {
|
||||
using Type = uint32_t;
|
||||
};
|
||||
template<>
|
||||
struct Vec<uint16_t, 4> {
|
||||
using Type = uint2;
|
||||
};
|
||||
template<>
|
||||
struct Vec<uint16_t, 8> {
|
||||
using Type = uint4;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct FloatVec {};
|
||||
template<>
|
||||
struct FloatVec<float> {
|
||||
using Type = float;
|
||||
};
|
||||
template<>
|
||||
struct FloatVec<float2> {
|
||||
using Type = float2;
|
||||
};
|
||||
template<>
|
||||
struct FloatVec<float4> {
|
||||
using Type = float4;
|
||||
};
|
||||
template<>
|
||||
struct FloatVec<uint16_t> {
|
||||
using Type = float;
|
||||
};
|
||||
template<>
|
||||
struct FloatVec<uint32_t> {
|
||||
using Type = float2;
|
||||
};
|
||||
template<>
|
||||
struct FloatVec<uint2> {
|
||||
using Type = Float4_;
|
||||
};
|
||||
template<>
|
||||
struct FloatVec<uint4> {
|
||||
using Type = Float8_;
|
||||
};
|
||||
|
||||
template<int THREADS_PER_KEY, typename K_vec, int N>
|
||||
inline __device__ float qk_dot_(const K_vec (&q)[N], const K_vec (&k)[N])
|
||||
{
|
||||
using K_vec_acum = typename FloatVec<K_vec>::Type;
|
||||
// Compute the parallel products for Q*K^T (treat vector lanes separately).
|
||||
K_vec_acum qk_vec = mul<K_vec_acum, K_vec, K_vec>(q[0], k[0]);
|
||||
#pragma unroll
|
||||
for (int ii = 1; ii < N; ++ii) {
|
||||
qk_vec = fma(q[ii], k[ii], qk_vec);
|
||||
}
|
||||
|
||||
// Finalize the reduction across lanes.
|
||||
float qk = sum(qk_vec);
|
||||
#pragma unroll
|
||||
for (int mask = THREADS_PER_KEY / 2; mask >= 1; mask /= 2) {
|
||||
qk += __shfl_xor_sync(uint32_t(-1), qk, mask);
|
||||
}
|
||||
return qk;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<typename T, int THREADS_PER_KEY>
|
||||
struct Qk_dot {
|
||||
template<typename K_vec, int N>
|
||||
static inline __device__ float dot(const K_vec (&q)[N], const K_vec (&k)[N])
|
||||
{
|
||||
return qk_dot_<THREADS_PER_KEY>(q, k);
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
inline __device__ float4 hmma_fp32(const uint2& a, uint32_t b)
|
||||
{
|
||||
float4 c;
|
||||
float zero = 0.f;
|
||||
asm volatile("mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 \n"
|
||||
" {%0, %1, %2, %3}, \n"
|
||||
" {%4, %5}, \n"
|
||||
" {%6}, \n"
|
||||
" {%7, %7, %7, %7}; \n"
|
||||
|
||||
: "=f"(c.x), "=f"(c.y), "=f"(c.z), "=f"(c.w)
|
||||
: "r"(a.x) "r"(a.y), "r"(b), "f"(zero));
|
||||
return c;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<int N>
|
||||
inline __device__ float qk_hmma_dot_(const uint32_t (&q)[N], const uint32_t (&k)[N])
|
||||
{
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 750
|
||||
using K_vec_acum = typename FloatVec<uint32_t>::Type;
|
||||
K_vec_acum qk_vec = mul<K_vec_acum, uint32_t, uint32_t>(q[0], k[0]);
|
||||
#pragma unroll
|
||||
for (int ii = 1; ii < N; ++ii) {
|
||||
qk_vec = fma(q[ii], k[ii], qk_vec);
|
||||
}
|
||||
#ifdef MMHA_USE_FP32_ACUM_FOR_FMA
|
||||
uint32_t qk_vec_ = float2_to_half2(qk_vec);
|
||||
return hmma_fp32(make_uint2(qk_vec_, 0u), 0x3c003c00u).x;
|
||||
#else
|
||||
return hmma_fp32(make_uint2(qk_vec, 0u), 0x3c003c00u).x;
|
||||
#endif
|
||||
#else
|
||||
return 0.f;
|
||||
#endif
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<>
|
||||
struct Qk_dot<uint16_t, 4> {
|
||||
template<int N>
|
||||
static inline __device__ float dot(const uint32_t (&q)[N], const uint32_t (&k)[N])
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 750 && defined(MMHA_USE_HMMA_FOR_REDUCTION)
|
||||
return qk_hmma_dot_(q, k);
|
||||
#else
|
||||
return qk_dot_<4>(q, k);
|
||||
#endif // defined MMHA_USE_HMMA_FOR_REDUCTION
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace cacheflow
|
||||
|
||||
#undef MMHA_USE_FP32_ACUM_FOR_FMA
|
||||
#undef MMHA_USE_FP32_ACUM_FOR_OUT
|
@ -1,6 +1,8 @@
|
||||
#include <torch/extension.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
|
||||
#include "dispatch_utils.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <map>
|
||||
@ -14,14 +16,16 @@ void swap_blocks(
|
||||
torch::Device dst_device = dst.device();
|
||||
cudaMemcpyKind memcpy_type;
|
||||
if (src_device.is_cuda() && dst_device.is_cuda()) {
|
||||
assert(src_device.index() == dst_device.index());
|
||||
TORCH_CHECK(
|
||||
src_device.index() == dst_device.index(),
|
||||
"src and dst must be on the same GPU");
|
||||
memcpy_type = cudaMemcpyDeviceToDevice;
|
||||
} else if (src_device.is_cuda() && dst_device.is_cpu()) {
|
||||
memcpy_type = cudaMemcpyDeviceToHost;
|
||||
} else if (src_device.is_cpu() && dst_device.is_cuda()) {
|
||||
memcpy_type = cudaMemcpyHostToDevice;
|
||||
} else {
|
||||
assert(false);
|
||||
TORCH_CHECK(false, "Invalid device combination");
|
||||
}
|
||||
|
||||
void *src_ptr = src.data_ptr();
|
||||
@ -29,6 +33,7 @@ void swap_blocks(
|
||||
|
||||
const int64_t block_size_in_bytes = src.element_size() * src[0].numel();
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
// NOTE(woosuk): This can be slow if the number of blocks is large.
|
||||
for (const auto& pair : block_mapping) {
|
||||
int64_t src_block_number = pair.first;
|
||||
int64_t dst_block_number = pair.second;
|
||||
@ -43,7 +48,7 @@ void swap_blocks(
|
||||
}
|
||||
}
|
||||
|
||||
namespace cacheflow {
|
||||
namespace vllm {
|
||||
|
||||
// Grid: (num_layers, num_pairs)
|
||||
template<typename scalar_t>
|
||||
@ -74,7 +79,7 @@ __global__ void copy_blocks_kernel(
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cacheflow
|
||||
} // namespace vllm
|
||||
|
||||
void copy_blocks(
|
||||
std::vector<torch::Tensor>& key_caches,
|
||||
@ -122,9 +127,9 @@ void copy_blocks(
|
||||
dim3 grid(num_layers, num_pairs);
|
||||
dim3 block(std::min(1024, numel_per_block));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
key_caches[0].scalar_type(), "copy_blocks_kernel", ([&] {
|
||||
cacheflow::copy_blocks_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
vllm::copy_blocks_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
key_cache_ptrs_tensor.data_ptr<int64_t>(),
|
||||
value_cache_ptrs_tensor.data_ptr<int64_t>(),
|
||||
block_mapping_tensor.data_ptr<int>(),
|
||||
@ -132,7 +137,7 @@ void copy_blocks(
|
||||
}));
|
||||
}
|
||||
|
||||
namespace cacheflow {
|
||||
namespace vllm {
|
||||
|
||||
template<typename scalar_t>
|
||||
__global__ void reshape_and_cache_kernel(
|
||||
@ -176,6 +181,48 @@ __global__ void reshape_and_cache_kernel(
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
void reshape_and_cache(
|
||||
torch::Tensor& key, // [num_tokens, num_heads, head_size]
|
||||
torch::Tensor& value, // [num_tokens, num_heads, head_size]
|
||||
torch::Tensor& key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
|
||||
torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size]
|
||||
torch::Tensor& slot_mapping) // [num_tokens]
|
||||
{
|
||||
int num_tokens = key.size(0);
|
||||
int num_heads = key.size(1);
|
||||
int head_size = key.size(2);
|
||||
int block_size = key_cache.size(3);
|
||||
int x = key_cache.size(4);
|
||||
|
||||
int key_stride = key.stride(0);
|
||||
int value_stride = value.stride(0);
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(num_heads * head_size, 512));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
key.scalar_type(),
|
||||
"reshape_and_cache_kernel",
|
||||
[&] {
|
||||
vllm::reshape_and_cache_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
key.data_ptr<scalar_t>(),
|
||||
value.data_ptr<scalar_t>(),
|
||||
key_cache.data_ptr<scalar_t>(),
|
||||
value_cache.data_ptr<scalar_t>(),
|
||||
slot_mapping.data_ptr<int>(),
|
||||
key_stride,
|
||||
value_stride,
|
||||
num_heads,
|
||||
head_size,
|
||||
block_size,
|
||||
x);
|
||||
});
|
||||
}
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// Grid: (num_blocks, block_size).
|
||||
template<typename scalar_t>
|
||||
__global__ void gather_cached_kv_kernel(
|
||||
@ -294,46 +341,7 @@ __global__ void gather_cached_kv_kernel_optimized(
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cacheflow
|
||||
|
||||
void reshape_and_cache(
|
||||
torch::Tensor& key, // [num_tokens, num_heads, head_size]
|
||||
torch::Tensor& value, // [num_tokens, num_heads, head_size]
|
||||
torch::Tensor& key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
|
||||
torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size]
|
||||
torch::Tensor& slot_mapping) // [num_tokens]
|
||||
{
|
||||
int num_tokens = key.size(0);
|
||||
int num_heads = key.size(1);
|
||||
int head_size = key.size(2);
|
||||
int block_size = key_cache.size(3);
|
||||
int x = key_cache.size(4);
|
||||
|
||||
int key_stride = key.stride(0);
|
||||
int value_stride = value.stride(0);
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(num_heads * head_size, 512));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
||||
key.scalar_type(),
|
||||
"reshape_and_cache_kernel",
|
||||
[&] {
|
||||
cacheflow::reshape_and_cache_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
key.data_ptr<scalar_t>(),
|
||||
value.data_ptr<scalar_t>(),
|
||||
key_cache.data_ptr<scalar_t>(),
|
||||
value_cache.data_ptr<scalar_t>(),
|
||||
slot_mapping.data_ptr<int>(),
|
||||
key_stride,
|
||||
value_stride,
|
||||
num_heads,
|
||||
head_size,
|
||||
block_size,
|
||||
x);
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
void gather_cached_kv(
|
||||
torch::Tensor& key, // [out] [num_tokens, num_heads, head_size]
|
||||
@ -354,11 +362,11 @@ void gather_cached_kv(
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(num_heads * head_size, 512));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
key.scalar_type(),
|
||||
"gather_cached_kv_kernel_optimized",
|
||||
[&] {
|
||||
cacheflow::gather_cached_kv_kernel_optimized<scalar_t><<<grid, block, 0, stream>>>(
|
||||
vllm::gather_cached_kv_kernel_optimized<scalar_t><<<grid, block, 0, stream>>>(
|
||||
key.data_ptr<scalar_t>(),
|
||||
value.data_ptr<scalar_t>(),
|
||||
key_cache.data_ptr<scalar_t>(),
|
||||
|
14
csrc/dispatch_utils.h
Normal file
@ -0,0 +1,14 @@
|
||||
/*
|
||||
* Adapted from
|
||||
* https://github.com/pytorch/pytorch/blob/v2.0.1/aten/src/ATen/Dispatch.h
|
||||
*/
|
||||
#include <torch/extension.h>
|
||||
|
||||
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
|
||||
|
||||
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
|
||||
AT_DISPATCH_SWITCH( \
|
||||
TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
|
@ -1,9 +1,10 @@
|
||||
#include <torch/extension.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
|
||||
#include "reduction_utils.h"
|
||||
#include "dispatch_utils.h"
|
||||
#include "reduction_utils.cuh"
|
||||
|
||||
namespace cacheflow {
|
||||
namespace vllm {
|
||||
|
||||
// TODO(woosuk): Further optimize this kernel.
|
||||
template<typename scalar_t>
|
||||
@ -33,7 +34,7 @@ __global__ void rms_norm_kernel(
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cacheflow
|
||||
} // namespace vllm
|
||||
|
||||
void rms_norm(
|
||||
torch::Tensor& out, // [num_tokens, hidden_size]
|
||||
@ -46,11 +47,11 @@ void rms_norm(
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(hidden_size, 1024));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
input.scalar_type(),
|
||||
"rms_norm_kernel",
|
||||
[&] {
|
||||
cacheflow::rms_norm_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
vllm::rms_norm_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
out.data_ptr<scalar_t>(),
|
||||
input.data_ptr<scalar_t>(),
|
||||
weight.data_ptr<scalar_t>(),
|
||||
|
@ -1,14 +1,16 @@
|
||||
#include <torch/extension.h>
|
||||
|
||||
void rotary_embedding_neox(
|
||||
void rotary_embedding(
|
||||
torch::Tensor& positions,
|
||||
torch::Tensor& query,
|
||||
torch::Tensor& key,
|
||||
torch::Tensor& cos_sin_cache);
|
||||
int head_size,
|
||||
torch::Tensor& cos_sin_cache,
|
||||
bool is_neox);
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def(
|
||||
"rotary_embedding_neox",
|
||||
&rotary_embedding_neox,
|
||||
"Apply GPT-NeoX style rotary embedding to query and key");
|
||||
"rotary_embedding",
|
||||
&rotary_embedding,
|
||||
"Apply GPT-NeoX or GPT-J style rotary embedding to query and key");
|
||||
}
|
||||
|
@ -1,78 +1,127 @@
|
||||
#include <torch/extension.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
|
||||
namespace cacheflow {
|
||||
#include "dispatch_utils.h"
|
||||
|
||||
template<typename scalar_t>
|
||||
__global__ void rotary_embedding_neox_kernel(
|
||||
namespace vllm {
|
||||
|
||||
template<typename scalar_t, bool IS_NEOX>
|
||||
inline __device__ void apply_rotary_embedding(
|
||||
scalar_t* __restrict__ arr,
|
||||
const scalar_t* __restrict__ cos_ptr,
|
||||
const scalar_t* __restrict__ sin_ptr,
|
||||
int rot_offset,
|
||||
int embed_dim)
|
||||
{
|
||||
int x_index, y_index;
|
||||
scalar_t cos, sin;
|
||||
if (IS_NEOX) {
|
||||
// GPT-NeoX style rotary embedding.
|
||||
x_index = rot_offset;
|
||||
y_index = embed_dim + rot_offset;
|
||||
cos = __ldg(cos_ptr + x_index);
|
||||
sin = __ldg(sin_ptr + x_index);
|
||||
} else {
|
||||
// GPT-J style rotary embedding.
|
||||
x_index = 2 * rot_offset;
|
||||
y_index = 2 * rot_offset + 1;
|
||||
cos = __ldg(cos_ptr + x_index / 2);
|
||||
sin = __ldg(sin_ptr + x_index / 2);
|
||||
}
|
||||
|
||||
const scalar_t x = arr[x_index];
|
||||
const scalar_t y = arr[y_index];
|
||||
arr[x_index] = x * cos - y * sin;
|
||||
arr[y_index] = y * cos + x * sin;
|
||||
}
|
||||
|
||||
template<typename scalar_t, bool IS_NEOX>
|
||||
__global__ void rotary_embedding_kernel(
|
||||
const int64_t* __restrict__ positions, // [num_tokens]
|
||||
scalar_t* __restrict__ query, // [num_tokens, num_heads, head_size]
|
||||
scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
|
||||
const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, head_size // 2]
|
||||
const int stride,
|
||||
scalar_t* __restrict__ key, // [num_tokens, num_kv_heads, head_size]
|
||||
const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, rot_dim // 2]
|
||||
const int rot_dim,
|
||||
const int query_stride,
|
||||
const int key_stride,
|
||||
const int num_heads,
|
||||
const int num_kv_heads,
|
||||
const int head_size) {
|
||||
// Each thread block is responsible for one token.
|
||||
const int token_idx = blockIdx.x;
|
||||
int64_t pos = positions[token_idx];
|
||||
const scalar_t* cache_ptr = cos_sin_cache + pos * head_size;
|
||||
const scalar_t* cache_ptr = cos_sin_cache + pos * rot_dim;
|
||||
|
||||
const int embed_dim = head_size / 2;
|
||||
const int n = num_heads * embed_dim;
|
||||
for (int i = threadIdx.x; i < n; i += blockDim.x) {
|
||||
const int embed_dim = rot_dim / 2;
|
||||
const scalar_t* cos_ptr = cache_ptr;
|
||||
const scalar_t* sin_ptr = cache_ptr + embed_dim;
|
||||
|
||||
const int nq = num_heads * embed_dim;
|
||||
for (int i = threadIdx.x; i < nq; i += blockDim.x) {
|
||||
const int head_idx = i / embed_dim;
|
||||
const int token_head = token_idx * stride + head_idx * head_size;
|
||||
|
||||
const int token_head = token_idx * query_stride + head_idx * head_size;
|
||||
const int rot_offset = i % embed_dim;
|
||||
const int x_index = rot_offset;
|
||||
const int y_index = embed_dim + rot_offset;
|
||||
apply_rotary_embedding<scalar_t, IS_NEOX>(query + token_head, cos_ptr,
|
||||
sin_ptr, rot_offset, embed_dim);
|
||||
}
|
||||
|
||||
const int out_x = token_idx * stride + head_idx * head_size + x_index;
|
||||
const int out_y = token_idx * stride + head_idx * head_size + y_index;
|
||||
|
||||
const scalar_t cos = __ldg(cache_ptr + x_index);
|
||||
const scalar_t sin = __ldg(cache_ptr + y_index);
|
||||
|
||||
const scalar_t q_x = query[token_head + x_index];
|
||||
const scalar_t q_y = query[token_head + y_index];
|
||||
query[out_x] = q_x * cos - q_y * sin;
|
||||
query[out_y] = q_y * cos + q_x * sin;
|
||||
|
||||
const scalar_t k_x = key[token_head + x_index];
|
||||
const scalar_t k_y = key[token_head + y_index];
|
||||
key[out_x] = k_x * cos - k_y * sin;
|
||||
key[out_y] = k_y * cos + k_x * sin;
|
||||
const int nk = num_kv_heads * embed_dim;
|
||||
for (int i = threadIdx.x; i < nk; i += blockDim.x) {
|
||||
const int head_idx = i / embed_dim;
|
||||
const int token_head = token_idx * key_stride + head_idx * head_size;
|
||||
const int rot_offset = i % embed_dim;
|
||||
apply_rotary_embedding<scalar_t, IS_NEOX>(key + token_head, cos_ptr,
|
||||
sin_ptr, rot_offset, embed_dim);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cacheflow
|
||||
} // namespace vllm
|
||||
|
||||
void rotary_embedding_neox(
|
||||
void rotary_embedding(
|
||||
torch::Tensor& positions, // [num_tokens]
|
||||
torch::Tensor& query, // [num_tokens, num_heads * head_size]
|
||||
torch::Tensor& key, // [num_tokens, num_heads * head_size]
|
||||
torch::Tensor& cos_sin_cache) // [max_position, head_size]
|
||||
{
|
||||
torch::Tensor& key, // [num_tokens, num_kv_heads * head_size]
|
||||
int head_size,
|
||||
torch::Tensor& cos_sin_cache, // [max_position, rot_dim]
|
||||
bool is_neox) {
|
||||
int num_tokens = query.size(0);
|
||||
int head_size = cos_sin_cache.size(1);
|
||||
int rot_dim = cos_sin_cache.size(1);
|
||||
int num_heads = query.size(1) / head_size;
|
||||
int stride = query.stride(0);
|
||||
TORCH_CHECK(stride == key.stride(0));
|
||||
int num_kv_heads = key.size(1) / head_size;
|
||||
int query_stride = query.stride(0);
|
||||
int key_stride = key.stride(0);
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(num_heads * head_size / 2, 512));
|
||||
dim3 block(std::min(num_heads * rot_dim / 2, 512));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
query.scalar_type(),
|
||||
"rotary_embedding_neox",
|
||||
"rotary_embedding",
|
||||
[&] {
|
||||
cacheflow::rotary_embedding_neox_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
positions.data_ptr<int64_t>(),
|
||||
query.data_ptr<scalar_t>(),
|
||||
key.data_ptr<scalar_t>(),
|
||||
cos_sin_cache.data_ptr<scalar_t>(),
|
||||
stride,
|
||||
num_heads,
|
||||
head_size);
|
||||
if (is_neox) {
|
||||
vllm::rotary_embedding_kernel<scalar_t, true><<<grid, block, 0, stream>>>(
|
||||
positions.data_ptr<int64_t>(),
|
||||
query.data_ptr<scalar_t>(),
|
||||
key.data_ptr<scalar_t>(),
|
||||
cos_sin_cache.data_ptr<scalar_t>(),
|
||||
rot_dim,
|
||||
query_stride,
|
||||
key_stride,
|
||||
num_heads,
|
||||
num_kv_heads,
|
||||
head_size);
|
||||
} else {
|
||||
vllm::rotary_embedding_kernel<scalar_t, false><<<grid, block, 0, stream>>>(
|
||||
positions.data_ptr<int64_t>(),
|
||||
query.data_ptr<scalar_t>(),
|
||||
key.data_ptr<scalar_t>(),
|
||||
cos_sin_cache.data_ptr<scalar_t>(),
|
||||
rot_dim,
|
||||
query_stride,
|
||||
key_stride,
|
||||
num_heads,
|
||||
num_kv_heads,
|
||||
head_size);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
51
csrc/reduction_utils.cuh
Normal file
@ -0,0 +1,51 @@
|
||||
/*
|
||||
* Adapted from https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/reduce_kernel_utils.cuh
|
||||
* Copyright (c) 2023, The vLLM team.
|
||||
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
namespace vllm {
|
||||
|
||||
template<typename T>
|
||||
__inline__ __device__ T warpReduceSum(T val) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1)
|
||||
val += __shfl_xor_sync(0xffffffff, val, mask, 32);
|
||||
return val;
|
||||
}
|
||||
|
||||
/* Calculate the sum of all elements in a block */
|
||||
template<typename T>
|
||||
__inline__ __device__ T blockReduceSum(T val) {
|
||||
static __shared__ T shared[32];
|
||||
int lane = threadIdx.x & 0x1f;
|
||||
int wid = threadIdx.x >> 5;
|
||||
|
||||
val = warpReduceSum<T>(val);
|
||||
|
||||
if (lane == 0)
|
||||
shared[wid] = val;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Modify from blockDim.x << 5 to blockDim.x / 32. to prevent
|
||||
// blockDim.x is not divided by 32
|
||||
val = (threadIdx.x < (blockDim.x / 32.f)) ? shared[lane] : (T)(0.0f);
|
||||
val = warpReduceSum<T>(val);
|
||||
return val;
|
||||
}
|
||||
|
||||
} // namespace vllm
|
@ -1,76 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
namespace cacheflow {
|
||||
|
||||
template<int WARPS_PER_BLOCK, int WARP_SIZE = 32>
|
||||
inline __device__ float block_sum(float* red_smem, float sum)
|
||||
{
|
||||
|
||||
// Decompose the thread index into warp / lane.
|
||||
int warp = threadIdx.x / WARP_SIZE;
|
||||
int lane = threadIdx.x % WARP_SIZE;
|
||||
|
||||
// Compute the sum per warp.
|
||||
#pragma unroll
|
||||
for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
|
||||
sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
|
||||
}
|
||||
|
||||
// Warp leaders store the data to shared memory.
|
||||
if (lane == 0) {
|
||||
red_smem[warp] = sum;
|
||||
}
|
||||
|
||||
// Make sure the data is in shared memory.
|
||||
__syncthreads();
|
||||
|
||||
// The warps compute the final sums.
|
||||
if (lane < WARPS_PER_BLOCK) {
|
||||
sum = red_smem[lane];
|
||||
}
|
||||
|
||||
// Parallel reduction inside the warp.
|
||||
#pragma unroll
|
||||
for (int mask = WARPS_PER_BLOCK / 2; mask >= 1; mask /= 2) {
|
||||
sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
|
||||
}
|
||||
|
||||
// Broadcast to other threads.
|
||||
return __shfl_sync(uint32_t(-1), sum, 0);
|
||||
}
|
||||
|
||||
#define FINAL_MASK 0xffffffff
|
||||
|
||||
template<typename T>
|
||||
__inline__ __device__ T warpReduceSum(T val)
|
||||
{
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1)
|
||||
val += __shfl_xor_sync(FINAL_MASK, val, mask, 32);
|
||||
return val;
|
||||
}
|
||||
|
||||
/* Calculate the sum of all elements in a block */
|
||||
template<typename T>
|
||||
__inline__ __device__ T blockReduceSum(T val)
|
||||
{
|
||||
static __shared__ T shared[32];
|
||||
int lane = threadIdx.x & 0x1f;
|
||||
int wid = threadIdx.x >> 5;
|
||||
|
||||
val = warpReduceSum<T>(val);
|
||||
|
||||
if (lane == 0)
|
||||
shared[wid] = val;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Modify from blockDim.x << 5 to blockDim.x / 32. to prevent
|
||||
// blockDim.x is not divided by 32
|
||||
val = (threadIdx.x < (blockDim.x / 32.f)) ? shared[lane] : (T)(0.0f);
|
||||
val = warpReduceSum<T>(val);
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
} // namespace cacheflow
|
20
docs/Makefile
Normal file
@ -0,0 +1,20 @@
|
||||
# Minimal makefile for Sphinx documentation
|
||||
#
|
||||
|
||||
# You can set these variables from the command line, and also
|
||||
# from the environment for the first two.
|
||||
SPHINXOPTS ?=
|
||||
SPHINXBUILD ?= sphinx-build
|
||||
SOURCEDIR = source
|
||||
BUILDDIR = build
|
||||
|
||||
# Put it first so that "make" without argument is like "make help".
|
||||
help:
|
||||
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||
|
||||
.PHONY: help Makefile
|
||||
|
||||
# Catch-all target: route all unknown targets to Sphinx using the new
|
||||
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
|
||||
%: Makefile
|
||||
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
19
docs/README.md
Normal file
@ -0,0 +1,19 @@
|
||||
# vLLM documents
|
||||
|
||||
## Build the docs
|
||||
|
||||
```bash
|
||||
# Install dependencies.
|
||||
pip install -r requirements-docs.txt
|
||||
|
||||
# Build the docs.
|
||||
make clean
|
||||
make html
|
||||
```
|
||||
|
||||
## Open the docs with your browser
|
||||
|
||||
```bash
|
||||
python -m http.server -d build/html/
|
||||
```
|
||||
Launch your browser and open localhost:8000.
|
35
docs/make.bat
Normal file
@ -0,0 +1,35 @@
|
||||
@ECHO OFF
|
||||
|
||||
pushd %~dp0
|
||||
|
||||
REM Command file for Sphinx documentation
|
||||
|
||||
if "%SPHINXBUILD%" == "" (
|
||||
set SPHINXBUILD=sphinx-build
|
||||
)
|
||||
set SOURCEDIR=source
|
||||
set BUILDDIR=build
|
||||
|
||||
%SPHINXBUILD% >NUL 2>NUL
|
||||
if errorlevel 9009 (
|
||||
echo.
|
||||
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
|
||||
echo.installed, then set the SPHINXBUILD environment variable to point
|
||||
echo.to the full path of the 'sphinx-build' executable. Alternatively you
|
||||
echo.may add the Sphinx directory to PATH.
|
||||
echo.
|
||||
echo.If you don't have Sphinx installed, grab it from
|
||||
echo.https://www.sphinx-doc.org/
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
if "%1" == "" goto help
|
||||
|
||||
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
goto end
|
||||
|
||||
:help
|
||||
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
|
||||
:end
|
||||
popd
|
3
docs/requirements-docs.txt
Normal file
@ -0,0 +1,3 @@
|
||||
sphinx == 6.2.1
|
||||
sphinx-book-theme == 1.0.1
|
||||
sphinx-copybutton == 0.5.2
|
BIN
docs/source/assets/figures/perf_a100_n1_dark.png
Normal file
After Width: | Height: | Size: 267 KiB |
BIN
docs/source/assets/figures/perf_a100_n1_light.png
Normal file
After Width: | Height: | Size: 285 KiB |
BIN
docs/source/assets/figures/perf_a100_n3_dark.png
Normal file
After Width: | Height: | Size: 259 KiB |
BIN
docs/source/assets/figures/perf_a100_n3_light.png
Normal file
After Width: | Height: | Size: 276 KiB |
BIN
docs/source/assets/figures/perf_a10g_n1_dark.png
Normal file
After Width: | Height: | Size: 244 KiB |
BIN
docs/source/assets/figures/perf_a10g_n1_light.png
Normal file
After Width: | Height: | Size: 260 KiB |
BIN
docs/source/assets/figures/perf_a10g_n3_dark.png
Normal file
After Width: | Height: | Size: 255 KiB |
BIN
docs/source/assets/figures/perf_a10g_n3_light.png
Normal file
After Width: | Height: | Size: 272 KiB |
BIN
docs/source/assets/logos/vllm-logo-only-light.png
Normal file
After Width: | Height: | Size: 53 KiB |
BIN
docs/source/assets/logos/vllm-logo-text-dark.png
Normal file
After Width: | Height: | Size: 86 KiB |
BIN
docs/source/assets/logos/vllm-logo-text-light.png
Normal file
After Width: | Height: | Size: 88 KiB |
67
docs/source/conf.py
Normal file
@ -0,0 +1,67 @@
|
||||
# Configuration file for the Sphinx documentation builder.
|
||||
#
|
||||
# This file only contains a selection of the most common options. For a full
|
||||
# list see the documentation:
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html
|
||||
|
||||
# -- Path setup --------------------------------------------------------------
|
||||
|
||||
# If extensions (or modules to document with autodoc) are in another directory,
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
#
|
||||
# import os
|
||||
# import sys
|
||||
# sys.path.insert(0, os.path.abspath('.'))
|
||||
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = 'vLLM'
|
||||
copyright = '2023, vLLM Team'
|
||||
author = 'the vLLM Team'
|
||||
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = [
|
||||
"sphinx.ext.napoleon",
|
||||
"sphinx.ext.viewcode",
|
||||
"sphinx.ext.intersphinx",
|
||||
"sphinx_copybutton",
|
||||
]
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
# This pattern also affects html_static_path and html_extra_path.
|
||||
exclude_patterns = []
|
||||
|
||||
# Exclude the prompt "$" when copying code
|
||||
copybutton_prompt_text = r"\$ "
|
||||
copybutton_prompt_is_regexp = True
|
||||
|
||||
# -- Options for HTML output -------------------------------------------------
|
||||
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
#
|
||||
html_title = project
|
||||
html_theme = 'sphinx_book_theme'
|
||||
html_logo = 'assets/logos/vllm-logo-text-light.png'
|
||||
html_theme_options = {
|
||||
'logo_only': True,
|
||||
'path_to_docs': 'docs/source',
|
||||
'repository_url': 'https://github.com/vllm-project/vllm',
|
||||
'use_repository_button': True,
|
||||
}
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = ['_static']
|
57
docs/source/getting_started/installation.rst
Normal file
@ -0,0 +1,57 @@
|
||||
.. _installation:
|
||||
|
||||
Installation
|
||||
============
|
||||
|
||||
vLLM is a Python library that also contains some C++ and CUDA code.
|
||||
This additional code requires compilation on the user's machine.
|
||||
|
||||
Requirements
|
||||
------------
|
||||
|
||||
* OS: Linux
|
||||
* Python: 3.8 or higher
|
||||
* CUDA: 11.0 -- 11.8
|
||||
* GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, etc.)
|
||||
|
||||
.. note::
|
||||
As of now, vLLM does not support CUDA 12.
|
||||
If you are using Hopper or Lovelace GPUs, please use CUDA 11.8 instead of CUDA 12.
|
||||
|
||||
.. tip::
|
||||
If you have trouble installing vLLM, we recommend using the NVIDIA PyTorch Docker image.
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ # Pull the Docker image with CUDA 11.8.
|
||||
$ docker run --gpus all -it --rm --shm-size=8g nvcr.io/nvidia/pytorch:22.12-py3
|
||||
|
||||
Inside the Docker container, please execute :code:`pip uninstall torch` before installing vLLM.
|
||||
|
||||
Install with pip
|
||||
----------------
|
||||
|
||||
You can install vLLM using pip:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ # (Optional) Create a new conda environment.
|
||||
$ conda create -n myenv python=3.8 -y
|
||||
$ conda activate myenv
|
||||
|
||||
$ # Install vLLM.
|
||||
$ pip install vllm # This may take 5-10 minutes.
|
||||
|
||||
|
||||
.. _build_from_source:
|
||||
|
||||
Build from source
|
||||
-----------------
|
||||
|
||||
You can also build and install vLLM from source:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ git clone https://github.com/vllm-project/vllm.git
|
||||
$ cd vllm
|
||||
$ pip install -e . # This may take 5-10 minutes.
|
131
docs/source/getting_started/quickstart.rst
Normal file
@ -0,0 +1,131 @@
|
||||
.. _quickstart:
|
||||
|
||||
Quickstart
|
||||
==========
|
||||
|
||||
This guide shows how to use vLLM to:
|
||||
|
||||
* run offline batched inference on a dataset;
|
||||
* build an API server for a large language model;
|
||||
* start an OpenAI-compatible API server.
|
||||
|
||||
Be sure to complete the :ref:`installation instructions <installation>` before continuing with this guide.
|
||||
|
||||
Offline Batched Inference
|
||||
-------------------------
|
||||
|
||||
We first show an example of using vLLM for offline batched inference on a dataset. In other words, we use vLLM to generate texts for a list of input prompts.
|
||||
|
||||
Import ``LLM`` and ``SamplingParams`` from vLLM. The ``LLM`` class is the main class for running offline inference with vLLM engine. The ``SamplingParams`` class specifies the parameters for the sampling process.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
Define the list of input prompts and the sampling parameters for generation. The sampling temperature is set to 0.8 and the nucleus sampling probability is set to 0.95. For more information about the sampling parameters, refer to the `class definition <https://github.com/vllm-project/vllm/blob/main/vllm/sampling_params.py>`_.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
Initialize vLLM's engine for offline inference with the ``LLM`` class and the `OPT-125M model <https://arxiv.org/abs/2205.01068>`_. The list of supported models can be found at :ref:`supported models <supported_models>`.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
llm = LLM(model="facebook/opt-125m")
|
||||
|
||||
Call ``llm.generate`` to generate the outputs. It adds the input prompts to vLLM engine's waiting queue and executes the vLLM engine to generate the outputs with high throughput. The outputs are returned as a list of ``RequestOutput`` objects, which include all the output tokens.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
# Print the outputs.
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
||||
|
||||
The code example can also be found in `examples/offline_inference.py <https://github.com/vllm-project/vllm/blob/main/examples/offline_inference.py>`_.
|
||||
|
||||
|
||||
API Server
|
||||
----------
|
||||
|
||||
vLLM can be deployed as an LLM service. We provide an example `FastAPI <https://fastapi.tiangolo.com/>`_ server. Check `vllm/entrypoints/api_server.py <https://github.com/vllm-project/vllm/blob/main/vllm/entrypoints/api_server.py>`_ for the server implementation. The server uses ``AsyncLLMEngine`` class to support asynchronous processing of incoming requests.
|
||||
|
||||
Start the server:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ python -m vllm.entrypoints.api_server
|
||||
|
||||
By default, this command starts the server at ``http://localhost:8000`` with the OPT-125M model.
|
||||
|
||||
Query the model in shell:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ curl http://localhost:8000/generate \
|
||||
$ -d '{
|
||||
$ "prompt": "San Francisco is a",
|
||||
$ "use_beam_search": true,
|
||||
$ "n": 4,
|
||||
$ "temperature": 0
|
||||
$ }'
|
||||
|
||||
See `examples/api_client.py <https://github.com/vllm-project/vllm/blob/main/examples/api_client.py>`_ for a more detailed client example.
|
||||
|
||||
OpenAI-Compatible Server
|
||||
------------------------
|
||||
|
||||
vLLM can be deployed as a server that mimics the OpenAI API protocol. This allows vLLM to be used as a drop-in replacement for applications using OpenAI API.
|
||||
|
||||
Start the server:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ python -m vllm.entrypoints.openai.api_server \
|
||||
$ --model facebook/opt-125m
|
||||
|
||||
By default, it starts the server at ``http://localhost:8000``. You can specify the address with ``--host`` and ``--port`` arguments. The server currently hosts one model at a time (OPT-125M in the above command) and implements `list models <https://platform.openai.com/docs/api-reference/models/list>`_ and `create completion <https://platform.openai.com/docs/api-reference/completions/create>`_ endpoints. We are actively adding support for more endpoints.
|
||||
|
||||
This server can be queried in the same format as OpenAI API. For example, list the models:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ curl http://localhost:8000/v1/models
|
||||
|
||||
Query the model with input prompts:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ curl http://localhost:8000/v1/completions \
|
||||
$ -H "Content-Type: application/json" \
|
||||
$ -d '{
|
||||
$ "model": "facebook/opt-125m",
|
||||
$ "prompt": "San Francisco is a",
|
||||
$ "max_tokens": 7,
|
||||
$ "temperature": 0
|
||||
$ }'
|
||||
|
||||
Since this server is compatible with OpenAI API, you can use it as a drop-in replacement for any applications using OpenAI API. For example, another way to query the server is via the ``openai`` python package:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import openai
|
||||
# Modify OpenAI's API key and API base to use vLLM's API server.
|
||||
openai.api_key = "EMPTY"
|
||||
openai.api_base = "http://localhost:8000/v1"
|
||||
completion = openai.Completion.create(model="facebook/opt-125m",
|
||||
prompt="San Francisco is a")
|
||||
print("Completion result:", completion)
|
||||
|
||||
For a more detailed client example, refer to `examples/openai_client.py <https://github.com/vllm-project/vllm/blob/main/examples/openai_client.py>`_.
|
72
docs/source/index.rst
Normal file
@ -0,0 +1,72 @@
|
||||
Welcome to vLLM!
|
||||
================
|
||||
|
||||
.. figure:: ./assets/logos/vllm-logo-text-light.png
|
||||
:width: 60%
|
||||
:align: center
|
||||
:alt: vLLM
|
||||
:class: no-scaled-link
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<p style="text-align:center">
|
||||
<strong>Easy, fast, and cheap LLM serving for everyone
|
||||
</strong>
|
||||
</p>
|
||||
|
||||
<p style="text-align:center">
|
||||
<script async defer src="https://buttons.github.io/buttons.js"></script>
|
||||
<a class="github-button" href="https://github.com/vllm-project/vllm" data-show-count="true" data-size="large" aria-label="Star">Star</a>
|
||||
<a class="github-button" href="https://github.com/vllm-project/vllm/subscription" data-icon="octicon-eye" data-size="large" aria-label="Watch">Watch</a>
|
||||
<a class="github-button" href="https://github.com/vllm-project/vllm/fork" data-icon="octicon-repo-forked" data-size="large" aria-label="Fork">Fork</a>
|
||||
</p>
|
||||
|
||||
|
||||
|
||||
vLLM is a fast and easy-to-use library for LLM inference and serving.
|
||||
|
||||
vLLM is fast with:
|
||||
|
||||
* State-of-the-art serving throughput
|
||||
* Efficient management of attention key and value memory with **PagedAttention**
|
||||
* Continuous batching of incoming requests
|
||||
* Optimized CUDA kernels
|
||||
|
||||
vLLM is flexible and easy to use with:
|
||||
|
||||
* Seamless integration with popular HuggingFace models
|
||||
* High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
|
||||
* Tensor parallelism support for distributed inference
|
||||
* Streaming outputs
|
||||
* OpenAI-compatible API server
|
||||
|
||||
For more information, check out the following:
|
||||
|
||||
* `vLLM announcing blog post <https://vllm.ai>`_ (intro to PagedAttention)
|
||||
* `How continuous batching enables 23x throughput in LLM inference while reducing p50 latency <https://www.anyscale.com/blog/continuous-batching-llm-inference>`_ by Cade Daniel et al.
|
||||
|
||||
|
||||
|
||||
Documentation
|
||||
-------------
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: Getting Started
|
||||
|
||||
getting_started/installation
|
||||
getting_started/quickstart
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: Serving
|
||||
|
||||
serving/distributed_serving
|
||||
serving/run_on_sky
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: Models
|
||||
|
||||
models/supported_models
|
||||
models/adding_model
|
94
docs/source/models/adding_model.rst
Normal file
@ -0,0 +1,94 @@
|
||||
.. _adding_a_new_model:
|
||||
|
||||
Adding a New Model
|
||||
==================
|
||||
|
||||
This document provides a high-level guide on integrating a `HuggingFace Transformers <https://github.com/huggingface/transformers>`_ model into vLLM.
|
||||
|
||||
.. note::
|
||||
The complexity of adding a new model depends heavily on the model's architecture.
|
||||
The process is considerably straightforward if the model shares a similar architecture with an existing model in vLLM.
|
||||
However, for models that include new operators (e.g., a new attention mechanism), the process can be a bit more complex.
|
||||
|
||||
.. tip::
|
||||
If you are encountering issues while integrating your model into vLLM, feel free to open an issue on our `GitHub <https://github.com/vllm-project/vllm/issues>`_ repository.
|
||||
We will be happy to help you out!
|
||||
|
||||
|
||||
0. Fork the vLLM repository
|
||||
--------------------------------
|
||||
|
||||
Start by forking our `GitHub <https://github.com/vllm-project/vllm/>`_ repository and then :ref:`build it from source <build_from_source>`.
|
||||
This gives you the ability to modify the codebase and test your model.
|
||||
|
||||
|
||||
1. Bring your model code
|
||||
------------------------
|
||||
|
||||
Clone the PyTorch model code from the HuggingFace Transformers repository and put it into the `vllm/model_executor/models <https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/models>`_ directory.
|
||||
For instance, vLLM's `OPT model <https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/opt.py>`_ was adpated from the HuggingFace's `modeling_opt.py <https://github.com/huggingface/transformers/blob/main/src/transformers/models/opt/modeling_opt.py>`_ file.
|
||||
|
||||
.. warning::
|
||||
When copying the model code, make sure to review and adhere to the code's copyright and licensing terms.
|
||||
|
||||
|
||||
2. Rewrite the :code:`forward` methods
|
||||
--------------------------------------
|
||||
|
||||
Next, you need to rewrite the :code:`forward` methods of your model by following these steps:
|
||||
|
||||
1. Remove any unnecessary code, such as the code only used for training.
|
||||
2. Change the input parameters:
|
||||
|
||||
.. code-block:: diff
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
- attention_mask: Optional[torch.Tensor] = None,
|
||||
- position_ids: Optional[torch.LongTensor] = None,
|
||||
- past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
- inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
- labels: Optional[torch.LongTensor] = None,
|
||||
- use_cache: Optional[bool] = None,
|
||||
- output_attentions: Optional[bool] = None,
|
||||
- output_hidden_states: Optional[bool] = None,
|
||||
- return_dict: Optional[bool] = None,
|
||||
-) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
+ positions: torch.Tensor,
|
||||
+ kv_caches: List[KVCache],
|
||||
+ input_metadata: InputMetadata,
|
||||
+ cache_events: Optional[List[torch.cuda.Event]],
|
||||
+) -> SamplerOutput:
|
||||
|
||||
3. Update the code by considering that :code:`input_ids` and :code:`positions` are now flattened tensors.
|
||||
4. Replace the attention operation with either :code:`GPTPagedAttention` or :code:`GPTNeoXPagedAttention`, depending on the model's architecture.
|
||||
|
||||
.. note::
|
||||
Currently, vLLM supports the basic multi-head attention mechanism and its variant with rotary positional embeddings.
|
||||
If your model employs a different attention mechanism, you will need to implement a new attention layer in vLLM.
|
||||
|
||||
|
||||
3. (Optional) Implement tensor parallelism support
|
||||
--------------------------------------------------
|
||||
|
||||
If your model is too large to fit into a single GPU, you can use tensor parallelism to manage it.
|
||||
To do this, substitute your model's linear and embedding layers with their tensor-parallel versions.
|
||||
For the embedding layer, you can simply replace :code:`nn.Embedding` with :code:`VocabParallelEmbedding`.
|
||||
When it comes to the linear layers, you should use either :code:`RowParallelLinear` or :code:`ColumnParallelLinear`.
|
||||
Typically, :code:`ColumnParallelLinear` is used for QKV linear layers and the first linear layers of the MLP blocks.
|
||||
For the remaining linear layers, :code:`RowParallelLinear` is used.
|
||||
|
||||
|
||||
4. Implement the weight loading logic
|
||||
-------------------------------------
|
||||
|
||||
You now need to implement the :code:`load_weights` method in your :code:`*ForCausalLM` class.
|
||||
This method should load the weights from the HuggingFace's checkpoint file and assign them to the corresponding layers in your model.
|
||||
While the process is straightforward for most layers, the tensor-parallel layers necessitate some additional care as their weights should be partitioned to multiple GPUs.
|
||||
|
||||
|
||||
5. Register your model
|
||||
----------------------
|
||||
|
||||
Finally, include your :code:`*ForCausalLM` class in `vllm/model_executor/models/__init__.py <https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/__init__.py>`_ and register it to the :code:`_MODEL_REGISTRY` in `vllm/model_executor/model_loader.py <https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/model_loader.py>`_.
|
72
docs/source/models/supported_models.rst
Normal file
@ -0,0 +1,72 @@
|
||||
.. _supported_models:
|
||||
|
||||
Supported Models
|
||||
================
|
||||
|
||||
vLLM supports a variety of generative Transformer models in `HuggingFace Transformers <https://huggingface.co/models>`_.
|
||||
The following is the list of model architectures that are currently supported by vLLM.
|
||||
Alongside each architecture, we include some popular models that use it.
|
||||
|
||||
.. list-table::
|
||||
:widths: 25 25 50
|
||||
:header-rows: 1
|
||||
|
||||
* - Architecture
|
||||
- Models
|
||||
- Example HuggingFace Models
|
||||
* - :code:`AquilaForCausalLM`
|
||||
- Aquila
|
||||
- :code:`BAAI/Aquila-7B`, :code:`BAAI/AquilaChat-7B`, etc.
|
||||
* - :code:`BaiChuanForCausalLM`
|
||||
- Baichuan
|
||||
- :code:`baichuan-inc/Baichuan-7B`, :code:`baichuan-inc/Baichuan-13B-Chat`, etc.
|
||||
* - :code:`BloomForCausalLM`
|
||||
- BLOOM, BLOOMZ, BLOOMChat
|
||||
- :code:`bigscience/bloom`, :code:`bigscience/bloomz`, etc.
|
||||
* - :code:`FalconForCausalLM`
|
||||
- Falcon
|
||||
- :code:`tiiuae/falcon-7b``, :code:`tiiuae/falcon-40b`, :code:`tiiuae/falcon-rw-7b`, etc.
|
||||
* - :code:`GPT2LMHeadModel`
|
||||
- GPT-2
|
||||
- :code:`gpt2`, :code:`gpt2-xl`, etc.
|
||||
* - :code:`GPTBigCodeForCausalLM`
|
||||
- StarCoder, SantaCoder, WizardCoder
|
||||
- :code:`bigcode/starcoder`, :code:`bigcode/gpt_bigcode-santacoder`, :code:`WizardLM/WizardCoder-15B-V1.0`, etc.
|
||||
* - :code:`GPTJForCausalLM`
|
||||
- GPT-J
|
||||
- :code:`EleutherAI/gpt-j-6b`, :code:`nomic-ai/gpt4all-j`, etc.
|
||||
* - :code:`GPTNeoXForCausalLM`
|
||||
- GPT-NeoX, Pythia, OpenAssistant, Dolly V2, StableLM
|
||||
- :code:`EleutherAI/gpt-neox-20b`, :code:`EleutherAI/pythia-12b`, :code:`OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5`, :code:`databricks/dolly-v2-12b`, :code:`stabilityai/stablelm-tuned-alpha-7b`, etc.
|
||||
* - :code:`InternLMForCausalLM`
|
||||
- InternLM
|
||||
- :code:`internlm/internlm-7b`, :code:`internlm/internlm-chat-7b`, etc.
|
||||
* - :code:`LlamaForCausalLM`
|
||||
- LLaMA, LLaMA-2, Vicuna, Alpaca, Koala, Guanaco
|
||||
- :code:`meta-llama/Llama-2-13b-hf`, :code:`meta-llama/Llama-2-70b-hf`, :code:`openlm-research/open_llama_13b`, :code:`lmsys/vicuna-13b-v1.3`, :code:`young-geng/koala`, etc.
|
||||
* - :code:`MPTForCausalLM`
|
||||
- MPT, MPT-Instruct, MPT-Chat, MPT-StoryWriter
|
||||
- :code:`mosaicml/mpt-7b`, :code:`mosaicml/mpt-7b-storywriter`, :code:`mosaicml/mpt-30b`, etc.
|
||||
* - :code:`OPTForCausalLM`
|
||||
- OPT, OPT-IML
|
||||
- :code:`facebook/opt-66b`, :code:`facebook/opt-iml-max-30b`, etc.
|
||||
* - :code:`QWenLMHeadModel`
|
||||
- Qwen
|
||||
- :code:`Qwen/Qwen-7B`, :code:`Qwen/Qwen-7B-Chat`, etc.
|
||||
|
||||
If your model uses one of the above model architectures, you can seamlessly run your model with vLLM.
|
||||
Otherwise, please refer to :ref:`Adding a New Model <adding_a_new_model>` for instructions on how to implement support for your model.
|
||||
Alternatively, you can raise an issue on our `GitHub <https://github.com/vllm-project/vllm/issues>`_ project.
|
||||
|
||||
.. tip::
|
||||
The easiest way to check if your model is supported is to run the program below:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from vllm import LLM
|
||||
|
||||
llm = LLM(model=...) # Name or path of your model
|
||||
output = llm.generate("Hello, my name is")
|
||||
print(output)
|
||||
|
||||
If vLLM successfully generates text, it indicates that your model is supported.
|
38
docs/source/serving/distributed_serving.rst
Normal file
@ -0,0 +1,38 @@
|
||||
.. _distributed_serving:
|
||||
|
||||
Distributed Inference and Serving
|
||||
=================================
|
||||
|
||||
vLLM supports distributed tensor-parallel inference and serving. Currently, we support `Megatron-LM's tensor parallel algorithm <https://arxiv.org/pdf/1909.08053.pdf>`_. We manage the distributed runtime with `Ray <https://github.com/ray-project/ray>`_. To run distributed inference, install Ray with:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ pip install ray
|
||||
|
||||
To run multi-GPU inference with the :code:`LLM` class, set the :code:`tensor_parallel_size` argument to the number of GPUs you want to use. For example, to run inference on 4 GPUs:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from vllm import LLM
|
||||
llm = LLM("facebook/opt-13b", tensor_parallel_size=4)
|
||||
output = llm.generate("San Franciso is a")
|
||||
|
||||
To run multi-GPU serving, pass in the :code:`--tensor-parallel-size` argument when starting the server. For example, to run API server on 4 GPUs:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ python -m vllm.entrypoints.api_server \
|
||||
$ --model facebook/opt-13b \
|
||||
$ --tensor-parallel-size 4
|
||||
|
||||
To scale vLLM beyond a single machine, start a `Ray runtime <https://docs.ray.io/en/latest/ray-core/starting-ray.html>`_ via CLI before running vLLM:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ # On head node
|
||||
$ ray start --head
|
||||
|
||||
$ # On worker nodes
|
||||
$ ray start --address=<ray-head-address>
|
||||
|
||||
After that, you can run inference and serving on multiple machines by launching the vLLM process on the head node by setting :code:`tensor_parallel_size` to the number of GPUs to be the total number of GPUs across all machines.
|
69
docs/source/serving/run_on_sky.rst
Normal file
@ -0,0 +1,69 @@
|
||||
.. _on_cloud:
|
||||
|
||||
Running on clouds with SkyPilot
|
||||
===============================
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<p align="center">
|
||||
<img src="https://imgur.com/yxtzPEu.png" alt="vLLM"/>
|
||||
</p>
|
||||
|
||||
vLLM can be run on the cloud to scale to multiple GPUs with `SkyPilot <https://github.com/skypilot-org/skypilot>`__, an open-source framework for running LLMs on any cloud.
|
||||
|
||||
To install SkyPilot and setup your cloud credentials, run:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ pip install skypilot
|
||||
$ sky check
|
||||
|
||||
See the vLLM SkyPilot YAML for serving, `serving.yaml <https://github.com/skypilot-org/skypilot/blob/master/llm/vllm/serve.yaml>`__.
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
resources:
|
||||
accelerators: A100
|
||||
|
||||
envs:
|
||||
MODEL_NAME: decapoda-research/llama-13b-hf
|
||||
TOKENIZER: hf-internal-testing/llama-tokenizer
|
||||
|
||||
setup: |
|
||||
conda create -n vllm python=3.9 -y
|
||||
conda activate vllm
|
||||
git clone https://github.com/vllm-project/vllm.git
|
||||
cd vllm
|
||||
pip install .
|
||||
pip install gradio
|
||||
|
||||
run: |
|
||||
conda activate vllm
|
||||
echo 'Starting vllm api server...'
|
||||
python -u -m vllm.entrypoints.api_server \
|
||||
--model $MODEL_NAME \
|
||||
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
|
||||
--tokenizer $TOKENIZER 2>&1 | tee api_server.log &
|
||||
echo 'Waiting for vllm api server to start...'
|
||||
while ! `cat api_server.log | grep -q 'Uvicorn running on'`; do sleep 1; done
|
||||
echo 'Starting gradio server...'
|
||||
python vllm/examples/gradio_webserver.py
|
||||
|
||||
Start the serving the LLaMA-13B model on an A100 GPU:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ sky launch serving.yaml
|
||||
|
||||
Check the output of the command. There will be a sharable gradio link (like the last line of the following). Open it in your browser to use the LLaMA model to do the text completion.
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
(task, pid=7431) Running on public URL: https://<gradio-hash>.gradio.live
|
||||
|
||||
**Optional**: Serve the 65B model instead of the default 13B and use more GPU:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
sky launch -c vllm-serve-new -s serve.yaml --gpus A100:8 --env MODEL_NAME=decapoda-research/llama-65b-hf
|
||||
|
77
examples/api_client.py
Normal file
@ -0,0 +1,77 @@
|
||||
"""Example Python client for vllm.entrypoints.api_server"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
from typing import Iterable, List
|
||||
|
||||
import requests
|
||||
|
||||
|
||||
def clear_line(n: int = 1) -> None:
|
||||
LINE_UP = '\033[1A'
|
||||
LINE_CLEAR = '\x1b[2K'
|
||||
for _ in range(n):
|
||||
print(LINE_UP, end=LINE_CLEAR, flush=True)
|
||||
|
||||
|
||||
def post_http_request(prompt: str,
|
||||
api_url: str,
|
||||
n: int = 1,
|
||||
stream: bool = False) -> requests.Response:
|
||||
headers = {"User-Agent": "Test Client"}
|
||||
pload = {
|
||||
"prompt": prompt,
|
||||
"n": n,
|
||||
"use_beam_search": True,
|
||||
"temperature": 0.0,
|
||||
"max_tokens": 16,
|
||||
"stream": stream,
|
||||
}
|
||||
response = requests.post(api_url, headers=headers, json=pload, stream=True)
|
||||
return response
|
||||
|
||||
|
||||
def get_streaming_response(response: requests.Response) -> Iterable[List[str]]:
|
||||
for chunk in response.iter_lines(chunk_size=8192,
|
||||
decode_unicode=False,
|
||||
delimiter=b"\0"):
|
||||
if chunk:
|
||||
data = json.loads(chunk.decode("utf-8"))
|
||||
output = data["text"]
|
||||
yield output
|
||||
|
||||
|
||||
def get_response(response: requests.Response) -> List[str]:
|
||||
data = json.loads(response.content)
|
||||
output = data["text"]
|
||||
return output
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", type=str, default="localhost")
|
||||
parser.add_argument("--port", type=int, default=8000)
|
||||
parser.add_argument("--n", type=int, default=4)
|
||||
parser.add_argument("--prompt", type=str, default="San Francisco is a")
|
||||
parser.add_argument("--stream", action="store_true")
|
||||
args = parser.parse_args()
|
||||
prompt = args.prompt
|
||||
api_url = f"http://{args.host}:{args.port}/generate"
|
||||
n = args.n
|
||||
stream = args.stream
|
||||
|
||||
print(f"Prompt: {prompt!r}\n", flush=True)
|
||||
response = post_http_request(prompt, api_url, n, stream)
|
||||
|
||||
if stream:
|
||||
num_printed_lines = 0
|
||||
for h in get_streaming_response(response):
|
||||
clear_line(num_printed_lines)
|
||||
num_printed_lines = 0
|
||||
for i, line in enumerate(h):
|
||||
num_printed_lines += 1
|
||||
print(f"Beam candidate {i}: {line!r}", flush=True)
|
||||
else:
|
||||
output = get_response(response)
|
||||
for i, line in enumerate(output):
|
||||
print(f"Beam candidate {i}: {line!r}", flush=True)
|
52
examples/gradio_webserver.py
Normal file
@ -0,0 +1,52 @@
|
||||
import argparse
|
||||
import json
|
||||
|
||||
import gradio as gr
|
||||
import requests
|
||||
|
||||
|
||||
def http_bot(prompt):
|
||||
headers = {"User-Agent": "vLLM Client"}
|
||||
pload = {
|
||||
"prompt": prompt,
|
||||
"stream": True,
|
||||
"max_tokens": 128,
|
||||
}
|
||||
response = requests.post(args.model_url,
|
||||
headers=headers,
|
||||
json=pload,
|
||||
stream=True)
|
||||
|
||||
for chunk in response.iter_lines(chunk_size=8192,
|
||||
decode_unicode=False,
|
||||
delimiter=b"\0"):
|
||||
if chunk:
|
||||
data = json.loads(chunk.decode("utf-8"))
|
||||
output = data["text"][0]
|
||||
yield output
|
||||
|
||||
|
||||
def build_demo():
|
||||
with gr.Blocks() as demo:
|
||||
gr.Markdown("# vLLM text completion demo\n")
|
||||
inputbox = gr.Textbox(label="Input",
|
||||
placeholder="Enter text and press ENTER")
|
||||
outputbox = gr.Textbox(label="Output",
|
||||
placeholder="Generated result from the model")
|
||||
inputbox.submit(http_bot, [inputbox], [outputbox])
|
||||
return demo
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", type=str, default="localhost")
|
||||
parser.add_argument("--port", type=int, default=8001)
|
||||
parser.add_argument("--model-url",
|
||||
type=str,
|
||||
default="http://localhost:8000/generate")
|
||||
args = parser.parse_args()
|
||||
|
||||
demo = build_demo()
|
||||
demo.queue(concurrency_count=100).launch(server_name=args.host,
|
||||
server_port=args.port,
|
||||
share=True)
|
51
examples/llm_engine_example.py
Normal file
@ -0,0 +1,51 @@
|
||||
import argparse
|
||||
|
||||
from vllm import EngineArgs, LLMEngine, SamplingParams
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
# Parse the CLI argument and initialize the engine.
|
||||
engine_args = EngineArgs.from_cli_args(args)
|
||||
engine = LLMEngine.from_engine_args(engine_args)
|
||||
|
||||
# Test the following prompts.
|
||||
test_prompts = [
|
||||
("A robot may not injure a human being",
|
||||
SamplingParams(temperature=0.0)),
|
||||
("To be or not to be,",
|
||||
SamplingParams(temperature=0.8, top_k=5, presence_penalty=0.2)),
|
||||
("What is the meaning of life?",
|
||||
SamplingParams(n=2,
|
||||
best_of=5,
|
||||
temperature=0.8,
|
||||
top_p=0.95,
|
||||
frequency_penalty=0.1)),
|
||||
("It is only with the heart that one can see rightly",
|
||||
SamplingParams(n=3, best_of=3, use_beam_search=True,
|
||||
temperature=0.0)),
|
||||
]
|
||||
|
||||
# Run the engine by calling `engine.step()` manually.
|
||||
request_id = 0
|
||||
while True:
|
||||
# To test continuous batching, we add one request at each step.
|
||||
if test_prompts:
|
||||
prompt, sampling_params = test_prompts.pop(0)
|
||||
engine.add_request(str(request_id), prompt, sampling_params)
|
||||
request_id += 1
|
||||
|
||||
request_outputs = engine.step()
|
||||
for request_output in request_outputs:
|
||||
if request_output.finished:
|
||||
print(request_output)
|
||||
|
||||
if not (engine.has_unfinished_requests() or test_prompts):
|
||||
break
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Demo on using the LLMEngine class directly')
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
args = parser.parse_args()
|
||||
main(args)
|
22
examples/offline_inference.py
Normal file
@ -0,0 +1,22 @@
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
# Sample prompts.
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
# Create a sampling params object.
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
# Create an LLM.
|
||||
llm = LLM(model="facebook/opt-125m")
|
||||
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
||||
# that contain the prompt, generated text, and other information.
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
# Print the outputs.
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
33
examples/openai_chatcompletion_client.py
Normal file
@ -0,0 +1,33 @@
|
||||
import openai
|
||||
|
||||
# Modify OpenAI's API key and API base to use vLLM's API server.
|
||||
openai.api_key = "EMPTY"
|
||||
openai.api_base = "http://localhost:8000/v1"
|
||||
|
||||
# List models API
|
||||
models = openai.Model.list()
|
||||
print("Models:", models)
|
||||
|
||||
model = models["data"][0]["id"]
|
||||
|
||||
# Chat completion API
|
||||
chat_completion = openai.ChatCompletion.create(
|
||||
model=model,
|
||||
messages=[{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
}, {
|
||||
"role": "user",
|
||||
"content": "Who won the world series in 2020?"
|
||||
}, {
|
||||
"role":
|
||||
"assistant",
|
||||
"content":
|
||||
"The Los Angeles Dodgers won the World Series in 2020."
|
||||
}, {
|
||||
"role": "user",
|
||||
"content": "Where was it played?"
|
||||
}])
|
||||
|
||||
print("Chat completion results:")
|
||||
print(chat_completion)
|
28
examples/openai_completion_client.py
Normal file
@ -0,0 +1,28 @@
|
||||
import openai
|
||||
|
||||
# Modify OpenAI's API key and API base to use vLLM's API server.
|
||||
openai.api_key = "EMPTY"
|
||||
openai.api_base = "http://localhost:8000/v1"
|
||||
|
||||
# List models API
|
||||
models = openai.Model.list()
|
||||
print("Models:", models)
|
||||
|
||||
model = models["data"][0]["id"]
|
||||
|
||||
# Completion API
|
||||
stream = False
|
||||
completion = openai.Completion.create(
|
||||
model=model,
|
||||
prompt="A robot may not injure a human being",
|
||||
echo=False,
|
||||
n=2,
|
||||
stream=stream,
|
||||
logprobs=3)
|
||||
|
||||
print("Completion results:")
|
||||
if stream:
|
||||
for c in completion:
|
||||
print(c)
|
||||
else:
|
||||
print(completion)
|
108
format.sh
Executable file
@ -0,0 +1,108 @@
|
||||
#!/usr/bin/env bash
|
||||
# YAPF formatter, adapted from ray and skypilot.
|
||||
#
|
||||
# Usage:
|
||||
# # Do work and commit your work.
|
||||
|
||||
# # Format files that differ from origin/main.
|
||||
# bash format.sh
|
||||
|
||||
# # Commit changed files with message 'Run yapf and pylint'
|
||||
#
|
||||
#
|
||||
# YAPF + Clang formatter (if installed). This script formats all changed files from the last mergebase.
|
||||
# You are encouraged to run this locally before pushing changes for review.
|
||||
|
||||
# Cause the script to exit if a single command fails
|
||||
set -eo pipefail
|
||||
|
||||
# this stops git rev-parse from failing if we run this from the .git directory
|
||||
builtin cd "$(dirname "${BASH_SOURCE:-$0}")"
|
||||
ROOT="$(git rev-parse --show-toplevel)"
|
||||
builtin cd "$ROOT" || exit 1
|
||||
|
||||
YAPF_VERSION=$(yapf --version | awk '{print $2}')
|
||||
PYLINT_VERSION=$(pylint --version | head -n 1 | awk '{print $2}')
|
||||
MYPY_VERSION=$(mypy --version | awk '{print $2}')
|
||||
|
||||
# # params: tool name, tool version, required version
|
||||
tool_version_check() {
|
||||
if [[ $2 != $3 ]]; then
|
||||
echo "Wrong $1 version installed: $3 is required, not $2."
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
tool_version_check "yapf" $YAPF_VERSION "$(grep yapf requirements-dev.txt | cut -d'=' -f3)"
|
||||
tool_version_check "pylint" $PYLINT_VERSION "$(grep "pylint==" requirements-dev.txt | cut -d'=' -f3)"
|
||||
tool_version_check "mypy" "$MYPY_VERSION" "$(grep mypy requirements-dev.txt | cut -d'=' -f3)"
|
||||
|
||||
YAPF_FLAGS=(
|
||||
'--recursive'
|
||||
'--parallel'
|
||||
)
|
||||
|
||||
YAPF_EXCLUDES=(
|
||||
'--exclude' 'build/**'
|
||||
'--exclude' 'vllm/model_executor/parallel_utils/**'
|
||||
)
|
||||
|
||||
# Format specified files
|
||||
format() {
|
||||
yapf --in-place "${YAPF_FLAGS[@]}" "$@"
|
||||
}
|
||||
|
||||
# Format files that differ from main branch. Ignores dirs that are not slated
|
||||
# for autoformat yet.
|
||||
format_changed() {
|
||||
# The `if` guard ensures that the list of filenames is not empty, which
|
||||
# could cause yapf to receive 0 positional arguments, making it hang
|
||||
# waiting for STDIN.
|
||||
#
|
||||
# `diff-filter=ACM` and $MERGEBASE is to ensure we only format files that
|
||||
# exist on both branches.
|
||||
MERGEBASE="$(git merge-base origin/main HEAD)"
|
||||
|
||||
if ! git diff --diff-filter=ACM --quiet --exit-code "$MERGEBASE" -- '*.py' '*.pyi' &>/dev/null; then
|
||||
git diff --name-only --diff-filter=ACM "$MERGEBASE" -- '*.py' '*.pyi' | xargs -P 5 \
|
||||
yapf --in-place "${YAPF_EXCLUDES[@]}" "${YAPF_FLAGS[@]}"
|
||||
fi
|
||||
|
||||
}
|
||||
|
||||
# Format all files
|
||||
format_all() {
|
||||
yapf --in-place "${YAPF_FLAGS[@]}" "${YAPF_EXCLUDES[@]}" vllm
|
||||
}
|
||||
|
||||
## This flag formats individual files. --files *must* be the first command line
|
||||
## arg to use this option.
|
||||
if [[ "$1" == '--files' ]]; then
|
||||
format "${@:2}"
|
||||
# If `--all` is passed, then any further arguments are ignored and the
|
||||
# entire python directory is formatted.
|
||||
elif [[ "$1" == '--all' ]]; then
|
||||
format_all
|
||||
else
|
||||
# Format only the files that changed in last commit.
|
||||
format_changed
|
||||
fi
|
||||
echo 'vLLM yapf: Done'
|
||||
|
||||
# Run mypy
|
||||
# TODO(zhuohan): Enable mypy
|
||||
# echo 'vLLM mypy:'
|
||||
# mypy
|
||||
|
||||
# Run Pylint
|
||||
echo 'vLLM Pylint:'
|
||||
pylint vllm
|
||||
|
||||
if ! git diff --quiet &>/dev/null; then
|
||||
echo 'Reformatted files. Please review and stage the changes.'
|
||||
echo 'Changes not staged for commit:'
|
||||
echo
|
||||
git --no-pager diff --name-only
|
||||
|
||||
exit 1
|
||||
fi
|
8
mypy.ini
Normal file
@ -0,0 +1,8 @@
|
||||
[mypy]
|
||||
python_version = 3.8
|
||||
|
||||
ignore_missing_imports = True
|
||||
|
||||
files = vllm
|
||||
# TODO(woosuk): Include the code from Megatron and HuggingFace.
|
||||
exclude = vllm/model_executor/parallel_utils/|vllm/model_executor/models/
|
@ -1,20 +0,0 @@
|
||||
import requests
|
||||
import json
|
||||
|
||||
def http_bot():
|
||||
prompt = "How are you? I'm fine."
|
||||
|
||||
headers = {"User-Agent": "Test Client"}
|
||||
pload = {
|
||||
"prompt": prompt,
|
||||
}
|
||||
response = requests.post("http://localhost:10002", headers=headers, json=pload, stream=True)
|
||||
|
||||
for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b"\0"):
|
||||
if chunk:
|
||||
data = json.loads(chunk.decode("utf-8"))
|
||||
output = data["text"]
|
||||
yield output
|
||||
|
||||
for h in http_bot():
|
||||
print(h, end="", flush=True)
|
@ -1,40 +0,0 @@
|
||||
import argparse
|
||||
import asyncio
|
||||
import time
|
||||
from typing import Union
|
||||
import json
|
||||
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
import uvicorn
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
async def text_streamer(args):
|
||||
context = args["prompt"]
|
||||
words = context.split(" ")
|
||||
for word in words:
|
||||
await asyncio.sleep(1)
|
||||
print("word:", word)
|
||||
ret = {
|
||||
"text": word + " ",
|
||||
"error": 0,
|
||||
}
|
||||
yield (json.dumps(ret) + "\0").encode("utf-8")
|
||||
|
||||
|
||||
@app.post("/")
|
||||
async def read_root(request: Request):
|
||||
args = await request.json()
|
||||
return StreamingResponse(text_streamer(args))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", type=str, default="localhost")
|
||||
parser.add_argument("--port", type=int, default=10002)
|
||||
args = parser.parse_args()
|
||||
|
||||
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|