Compare commits

..

1 Commits

Author SHA1 Message Date
221118dc85 [Bugfix] Use a different prompt for benchmark_serving.py test prompt
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-05-17 18:36:31 +00:00
2328 changed files with 89320 additions and 202064 deletions

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
import sys

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import os

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from pathlib import Path
import pytest

View File

@ -46,6 +46,6 @@ while getopts "m:b:l:f:t:" OPT; do
done
lm_eval --model vllm \
--model_args "pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,add_bos_token=true,trust_remote_code=true,max_model_len=4096" \
--model_args "pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,distributed_executor_backend=ray,trust_remote_code=true,max_model_len=4096" \
--tasks gsm8k --num_fewshot "$FEWSHOT" --limit "$LIMIT" \
--batch_size "$BATCH_SIZE"

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
LM eval harness on model to compare vs HF baseline computed offline.
Configs are found in configs/$MODEL.yaml
@ -18,14 +17,12 @@ RTOL = 0.08
def launch_lm_eval(eval_config, tp_size):
trust_remote_code = eval_config.get("trust_remote_code", False)
max_model_len = eval_config.get("max_model_len", 4096)
model_args = (
f"pretrained={eval_config['model_name']},"
f"tensor_parallel_size={tp_size},"
f"enforce_eager=true,"
f"add_bos_token=true,"
f"trust_remote_code={trust_remote_code},"
f"max_model_len={max_model_len}"
f"trust_remote_code={trust_remote_code}"
)
results = lm_eval.simple_evaluate(
model="vllm",

View File

@ -11,7 +11,7 @@ See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performanc
## Performance benchmark quick overview
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) and Intel® Xeon® Processors, with different models.
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!), with different models.
**Benchmarking Duration**: about 1hr.
@ -28,34 +28,16 @@ See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performanc
## Trigger the benchmark
Performance benchmark will be triggered when:
- A PR being merged into vllm.
- Every commit for those PRs with `perf-benchmarks` label AND `ready` label.
Manually Trigger the benchmark
```bash
bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
```
Runtime environment variables:
- `ON_CPU`: set the value to '1' on Intel® Xeon® Processors. Default value is 0.
- `SERVING_JSON`: JSON file to use for the serving tests. Default value is empty string (use default file).
- `LATENCY_JSON`: JSON file to use for the latency tests. Default value is empty string (use default file).
- `THROUGHPUT_JSON`: JSON file to use for the throughout tests. Default value is empty string (use default file).
- `REMOTE_HOST`: IP for the remote vLLM service to benchmark. Default value is empty string.
- `REMOTE_PORT`: Port for the remote vLLM service to benchmark. Default value is empty string.
Nightly benchmark will be triggered when:
- Every commit for those PRs with `perf-benchmarks` label and `nightly-benchmarks` label.
## Performance benchmark details
See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
> NOTE: For Intel® Xeon® Processors, use `tests/latency-tests-cpu.json`, `tests/throughput-tests-cpu.json`, `tests/serving-tests-cpu.json` instead.
>
### Latency test
Here is an example of one test inside `latency-tests.json`:
@ -78,7 +60,7 @@ Here is an example of one test inside `latency-tests.json`:
In this example:
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
- The `parameters` attribute control the command line arguments to be used for `vllm bench latency`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `vllm bench latency`. For example, the corresponding command line arguments for `vllm bench latency` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
Note that the performance numbers are highly sensitive to the value of the parameters. Please make sure the parameters are set correctly.
@ -86,13 +68,13 @@ WARNING: The benchmarking script will save json results by itself, so please do
### Throughput test
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `vllm bench throughput`.
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `benchmark_throughput.py`.
The number of this test is also stable -- a slight change on the value of this number might vary the performance numbers by a lot.
### Serving test
We test the throughput by using `vllm bench serve` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:
We test the throughput by using `benchmark_serving.py` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:
```json
[
@ -104,6 +86,7 @@ We test the throughput by using `vllm bench serve` with request rate = inf to co
"tensor_parallel_size": 1,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
@ -121,8 +104,8 @@ Inside this example:
- The `test_name` attribute is also a unique identifier for the test. It must start with `serving_`.
- The `server-parameters` includes the command line arguments for vLLM server.
- The `client-parameters` includes the command line arguments for `vllm bench serve`.
- The `qps_list` controls the list of qps for test. It will be used to configure the `--request-rate` parameter in `vllm bench serve`
- The `client-parameters` includes the command line arguments for `benchmark_serving.py`.
- The `qps_list` controls the list of qps for test. It will be used to configure the `--request-rate` parameter in `benchmark_serving.py`
The number of this test is less stable compared to the delay and latency benchmarks (due to randomized sharegpt dataset sampling inside `benchmark_serving.py`), but a large change on this number (e.g. 5% change) still vary the output greatly.
@ -130,37 +113,12 @@ WARNING: The benchmarking script will save json results by itself, so please do
### Visualizing the results
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](performance-benchmarks-descriptions.md) with real benchmarking results.
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](tests/descriptions.md) with real benchmarking results.
You can find the result presented as a table inside the `buildkite/performance-benchmark` job page.
If you do not see the table, please wait till the benchmark finish running.
The json version of the table (together with the json version of the benchmark) will be also attached to the markdown file.
The raw benchmarking results (in the format of json files) are in the `Artifacts` tab of the benchmarking.
The `compare-json-results.py` helps to compare benchmark results JSON files converted using `convert-results-json-to-markdown.py`.
When run, benchmark script generates results under `benchmark/results` folder, along with the `benchmark_results.md` and `benchmark_results.json`.
`compare-json-results.py` compares two `benchmark_results.json` files and provides performance ratio e.g. for Output Tput, Median TTFT and Median TPOT.
Here is an example using the script to compare result_a and result_b without detail test name.
`python3 compare-json-results.py -f results_a/benchmark_results.json -f results_b/benchmark_results.json --ignore_test_name`
| | results_a/benchmark_results.json | results_b/benchmark_results.json | perf_ratio |
|----|----------------------------------------|----------------------------------------|----------|
| 0 | 142.633982 | 156.526018 | 1.097396 |
| 1 | 241.620334 | 294.018783 | 1.216863 |
| 2 | 218.298905 | 262.664916 | 1.203235 |
| 3 | 242.743860 | 299.816190 | 1.235113 |
Here is an example using the script to compare result_a and result_b with detail test name.
`python3 compare-json-results.py -f results_a/benchmark_results.json -f results_b/benchmark_results.json`
| | results_a/benchmark_results.json_name | results_a/benchmark_results.json | results_b/benchmark_results.json_name | results_b/benchmark_results.json | perf_ratio |
|---|---------------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------|----------|
| 0 | serving_llama8B_tp1_sharegpt_qps_1 | 142.633982 | serving_llama8B_tp1_sharegpt_qps_1 | 156.526018 | 1.097396 |
| 1 | serving_llama8B_tp1_sharegpt_qps_16 | 241.620334 | serving_llama8B_tp1_sharegpt_qps_16 | 294.018783 | 1.216863 |
| 2 | serving_llama8B_tp1_sharegpt_qps_4 | 218.298905 | serving_llama8B_tp1_sharegpt_qps_4 | 262.664916 | 1.203235 |
| 3 | serving_llama8B_tp1_sharegpt_qps_inf | 242.743860 | serving_llama8B_tp1_sharegpt_qps_inf | 299.816190 | 1.235113 |
| 4 | serving_llama8B_tp2_random_1024_128_qps_1 | 96.613390 | serving_llama8B_tp4_random_1024_128_qps_1 | 108.404853 | 1.122048 |
## Nightly test details
See [nightly-descriptions.md](nightly-descriptions.md) for the detailed description on test workload, models and docker containers of benchmarking other llm engines.
@ -168,9 +126,9 @@ See [nightly-descriptions.md](nightly-descriptions.md) for the detailed descript
### Workflow
- The [nightly-pipeline.yaml](nightly-pipeline.yaml) specifies the docker containers for different LLM serving engines.
- Inside each container, we run [scripts/run-nightly-benchmarks.sh](scripts/run-nightly-benchmarks.sh), which will probe the serving engine of the current container.
- The `scripts/run-nightly-benchmarks.sh` will parse the workload described in [nightly-tests.json](tests/nightly-tests.json) and launch the right benchmark for the specified serving engine via `scripts/launch-server.sh`.
- At last, we run [scripts/summary-nightly-results.py](scripts/summary-nightly-results.py) to collect and plot the final benchmarking results, and update the results to buildkite.
- Inside each container, we run [run-nightly-suite.sh](run-nightly-suite.sh), which will probe the serving engine of the current container.
- The `run-nightly-suite.sh` will redirect the request to `tests/run-[llm serving engine name]-nightly.sh`, which parses the workload described in [nightly-tests.json](tests/nightly-tests.json) and performs the benchmark.
- At last, we run [scripts/plot-nightly-results.py](scripts/plot-nightly-results.py) to collect and plot the final benchmarking results, and update the results to buildkite.
### Nightly tests
@ -180,6 +138,6 @@ In [nightly-tests.json](tests/nightly-tests.json), we include the command line a
The docker containers for benchmarking are specified in `nightly-pipeline.yaml`.
WARNING: the docker versions are HARD-CODED and SHOULD BE ALIGNED WITH `nightly-descriptions.md`. The docker versions need to be hard-coded as there are several version-specific bug fixes inside `scripts/run-nightly-benchmarks.sh` and `scripts/launch-server.sh`.
WARNING: the docker versions are HARD-CODED and SHOULD BE ALIGNED WITH `nightly-descriptions.md`. The docker versions need to be hard-coded as there are several version-specific bug fixes inside `tests/run-[llm serving engine name]-nightly.sh`.
WARNING: populating `trt-llm` to latest version is not easy, as it requires updating several protobuf files in [tensorrt-demo](https://github.com/neuralmagic/tensorrt-demo.git).

View File

@ -1,4 +1,3 @@
# Nightly benchmark annotation
## Description
@ -14,15 +13,15 @@ Please download the visualization scripts in the post
- Find the docker we use in `benchmarking pipeline`
- Deploy the docker, and inside the docker:
- Download `nightly-benchmarks.zip`.
- In the same folder, run the following code:
- Download `nightly-benchmarks.zip`.
- In the same folder, run the following code:
```bash
export HF_TOKEN=<your HF token>
apt update
apt install -y git
unzip nightly-benchmarks.zip
VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
```
```console
export HF_TOKEN=<your HF token>
apt update
apt install -y git
unzip nightly-benchmarks.zip
VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
```
And the results will be inside `./benchmarks/results`.

View File

@ -13,25 +13,25 @@ Latest reproduction guilde: [github issue link](https://github.com/vllm-project/
## Setup
- Docker images:
- vLLM: `vllm/vllm-openai:v0.6.2`
- SGLang: `lmsysorg/sglang:v0.3.2-cu121`
- LMDeploy: `openmmlab/lmdeploy:v0.6.1-cu12`
- TensorRT-LLM: `nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3`
- *NOTE: we uses r24.07 as the current implementation only works for this version. We are going to bump this up.*
- Check [nightly-pipeline.yaml](nightly-pipeline.yaml) for the concrete docker images, specs and commands we use for the benchmark.
- vLLM: `vllm/vllm-openai:v0.6.2`
- SGLang: `lmsysorg/sglang:v0.3.2-cu121`
- LMDeploy: `openmmlab/lmdeploy:v0.6.1-cu12`
- TensorRT-LLM: `nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3`
- *NOTE: we uses r24.07 as the current implementation only works for this version. We are going to bump this up.*
- Check [nightly-pipeline.yaml](nightly-pipeline.yaml) for the concrete docker images, specs and commands we use for the benchmark.
- Hardware
- 8x Nvidia A100 GPUs
- 8x Nvidia A100 GPUs
- Workload:
- Dataset
- ShareGPT dataset
- Prefill-heavy dataset (in average 462 input tokens, 16 tokens as output)
- Decode-heavy dataset (in average 462 input tokens, 256 output tokens)
- Check [nightly-tests.json](tests/nightly-tests.json) for the concrete configuration of datasets we use.
- Models: llama-3 8B, llama-3 70B.
- We do not use llama 3.1 as it is incompatible with trt-llm r24.07. ([issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105)).
- Average QPS (query per second): 2, 4, 8, 16, 32 and inf.
- Queries are randomly sampled, and arrival patterns are determined via Poisson process, but all with fixed random seed.
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
- Dataset
- ShareGPT dataset
- Prefill-heavy dataset (in average 462 input tokens, 16 tokens as output)
- Decode-heavy dataset (in average 462 input tokens, 256 output tokens)
- Check [nightly-tests.json](tests/nightly-tests.json) for the concrete configuration of datasets we use.
- Models: llama-3 8B, llama-3 70B.
- We do not use llama 3.1 as it is incompatible with trt-llm r24.07. ([issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105)).
- Average QPS (query per second): 2, 4, 8, 16, 32 and inf.
- Queries are randomly sampled, and arrival patterns are determined via Poisson process, but all with fixed random seed.
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
## Known issues

View File

@ -1,12 +1,10 @@
# Performance benchmarks descriptions
## Latency tests
- Input length: 32 tokens.
- Output length: 128 tokens.
- Batch size: fixed (8).
- GPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- CPU Models: llama-3.1 8B.
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- Evaluation metrics: end-to-end latency (mean, median, p99).
{latency_tests_markdown_table}
@ -16,8 +14,7 @@
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm to achieve maximum throughput.
- GPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- CPU Models: llama-3.1 8B.
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- Evaluation metrics: throughput.
{throughput_tests_markdown_table}
@ -28,18 +25,12 @@
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm and the arrival pattern of the requests.
- **Average QPS (query per second)**: 1, 4, 16 and inf. QPS = inf means all requests come at once. For other QPS values, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
- GPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- We also added a speculative decoding test for llama-3 70B on GPU, under QPS 2
- CPU Models: llama-3.1 8B.
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- We also added a speculative decoding test for llama-3 70B, under QPS 2
- Evaluation metrics: throughput, TTFT (time to the first token, with mean, median and p99), ITL (inter-token latency, with mean, median and p99).
- For CPU, we added random dataset tests to benchmark fixed input/output length with 100 prompts.
{serving_tests_markdown_table}
## Platform Information
{platform_markdown_table}
## json version of the benchmarking tables
This section contains the data of the markdown tables above in JSON format.

View File

@ -1,66 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import pandas as pd
def compare_data_columns(
files, name_column, data_column, drop_column, ignore_test_name=False
):
print("\ncompare_data_column: " + data_column)
frames = []
compare_frames = []
for file in files:
data_df = pd.read_json(file)
serving_df = data_df.dropna(subset=[drop_column], ignore_index=True)
if ignore_test_name is False:
serving_df = serving_df.rename(columns={name_column: file + "_name"})
frames.append(serving_df[file + "_name"])
serving_df = serving_df.rename(columns={data_column: file})
frames.append(serving_df[file])
compare_frames.append(serving_df[file])
if len(compare_frames) >= 2:
# Compare numbers among two files
ratio_df = compare_frames[1] / compare_frames[0]
frames.append(ratio_df)
compare_frames.pop(1)
concat_df = pd.concat(frames, axis=1)
return concat_df
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-f", "--file", action="append", type=str, help="input file name"
)
parser.add_argument(
"--ignore_test_name", action="store_true", help="ignore_test_name or not"
)
args = parser.parse_args()
files = args.file
print("comparing : " + ", ".join(files))
drop_column = "P99"
name_column = "Test name"
data_cols_to_compare = ["Output Tput (tok/s)", "Median TTFT (ms)", "Median"]
html_msgs_for_data_cols = [
"Compare Output Tokens /n",
"Median TTFT /n",
"Median TPOT /n",
]
ignore_test_name = args.ignore_test_name
with open("perf_comparison.html", "w") as text_file:
for i in range(len(data_cols_to_compare)):
output_df = compare_data_columns(
files,
name_column,
data_cols_to_compare[i],
drop_column,
ignore_test_name=ignore_test_name,
)
print(output_df)
html = output_df.to_html()
text_file.write(html_msgs_for_data_cols[i])
text_file.write(html)

View File

@ -1,13 +1,10 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
import os
from importlib import util
from pathlib import Path
import pandas as pd
import psutil
from tabulate import tabulate
results_folder = Path("results/")
@ -31,11 +28,11 @@ throughput_results = []
throughput_results_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
"num_requests": "# of req.",
"total_num_tokens": "Total # of tokens",
"elapsed_time": "Elapsed time (s)",
# "num_requests": "# of req.",
# "total_num_tokens": "Total # of tokens",
# "elapsed_time": "Elapsed time (s)",
"requests_per_second": "Tput (req/s)",
"tokens_per_second": "Tput (tok/s)",
# "tokens_per_second": "Tput (tok/s)",
}
# serving results and the keys that will be printed into markdown
@ -43,19 +40,16 @@ serving_results = []
serving_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
"completed": "# of req.",
"max_concurrency": "# of max concurrency.",
# "completed": "# of req.",
"request_throughput": "Tput (req/s)",
"total_token_throughput": "Total Token Tput (tok/s)",
"output_throughput": "Output Tput (tok/s)",
"total_input_tokens": "Total input tokens",
"total_output_tokens": "Total output tokens",
# "input_throughput": "Input Tput (tok/s)",
# "output_throughput": "Output Tput (tok/s)",
"mean_ttft_ms": "Mean TTFT (ms)",
"median_ttft_ms": "Median TTFT (ms)",
"p99_ttft_ms": "P99 TTFT (ms)",
"mean_tpot_ms": "Mean TPOT (ms)",
"median_tpot_ms": "Median",
"p99_tpot_ms": "P99",
# "mean_tpot_ms": "Mean TPOT (ms)",
# "median_tpot_ms": "Median",
# "p99_tpot_ms": "P99",
"mean_itl_ms": "Mean ITL (ms)",
"median_itl_ms": "Median ITL (ms)",
"p99_itl_ms": "P99 ITL (ms)",
@ -80,20 +74,6 @@ def results_to_json(latency, throughput, serving):
)
def get_size_with_unit(bytes, suffix="B"):
"""
Scale bytes to its proper format
e.g:
1253656 => '1.20MB'
1253656678 => '1.17GB'
"""
factor = 1024
for unit in ["", "K", "M", "G", "T", "P"]:
if bytes < factor:
return f"{bytes:.2f}{unit}{suffix}"
bytes /= factor
if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
@ -101,7 +81,7 @@ if __name__ == "__main__":
raw_result = json.loads(f.read())
if "serving" in str(test_file):
# this result is generated via `vllm bench serve` command
# this result is generated via `benchmark_serving.py`
# attach the benchmarking command to raw_result
try:
@ -121,7 +101,7 @@ if __name__ == "__main__":
continue
elif "latency" in f.name:
# this result is generated via `vllm bench latency` command
# this result is generated via `benchmark_latency.py`
# attach the benchmarking command to raw_result
try:
@ -149,7 +129,7 @@ if __name__ == "__main__":
continue
elif "throughput" in f.name:
# this result is generated via `vllm bench throughput` command
# this result is generated via `benchmark_throughput.py`
# attach the benchmarking command to raw_result
try:
@ -174,27 +154,6 @@ if __name__ == "__main__":
serving_results = pd.DataFrame.from_dict(serving_results)
throughput_results = pd.DataFrame.from_dict(throughput_results)
svmem = psutil.virtual_memory()
platform_data = {
"Physical cores": [psutil.cpu_count(logical=False)],
"Total cores": [psutil.cpu_count(logical=True)],
"Total Memory": [get_size_with_unit(svmem.total)],
}
if util.find_spec("numa") is not None:
from numa import info
platform_data["Total NUMA nodes"] = [info.get_num_configured_nodes()]
if util.find_spec("cpuinfo") is not None:
from cpuinfo import get_cpu_info
platform_data["CPU Brand"] = [get_cpu_info()["brand_raw"]]
platform_results = pd.DataFrame.from_dict(
platform_data, orient="index", columns=["Platform Info"]
)
raw_results_json = results_to_json(
latency_results, throughput_results, serving_results
)
@ -240,9 +199,6 @@ if __name__ == "__main__":
throughput_md_table = tabulate(
throughput_results, headers="keys", tablefmt="pipe", showindex=False
)
platform_md_table = tabulate(
platform_results, headers="keys", tablefmt="pipe", showindex=True
)
# document the result
with open(results_folder / "benchmark_results.md", "w") as f:
@ -254,7 +210,6 @@ if __name__ == "__main__":
latency_tests_markdown_table=latency_md_table,
throughput_tests_markdown_table=throughput_md_table,
serving_tests_markdown_table=serving_md_table,
platform_markdown_table=platform_md_table,
benchmarking_results_in_json_string=processed_results_json,
)
f.write(results)

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import json

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from lmdeploy.serve.openai.api_client import APIClient

View File

@ -73,7 +73,7 @@ get_current_llm_serving_engine() {
echo "Container: vllm"
# move to a completely irrelevant directory, to avoid import vllm from current folder
export CURRENT_LLM_SERVING_ENGINE=vllm
return
fi
}
@ -95,14 +95,12 @@ json2args() {
}
kill_gpu_processes() {
pkill -f '[p]ython'
pkill -f '[p]ython3'
pkill -f '[t]ritonserver'
pkill -f '[p]t_main_thread'
pkill -f '[t]ext-generation'
pkill -f '[l]mdeploy'
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
pkill -f '[V]LLM'
pkill -f python
pkill -f python3
pkill -f tritonserver
pkill -f pt_main_thread
pkill -f text-generation
pkill -f lmdeploy
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
sleep 1
@ -127,7 +125,7 @@ ensure_installed() {
}
run_serving_tests() {
# run serving tests using `vllm bench serve` command
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
@ -227,7 +225,7 @@ run_serving_tests() {
if [[ "$dataset_name" = "sharegpt" ]]; then
client_command="vllm bench serve \
client_command="python3 benchmark_serving.py \
--backend $backend \
--tokenizer /tokenizer_cache \
--model $model \
@ -248,7 +246,7 @@ run_serving_tests() {
sonnet_output_len=$(echo "$common_params" | jq -r '.sonnet_output_len')
sonnet_prefix_len=$(echo "$common_params" | jq -r '.sonnet_prefix_len')
client_command="vllm bench serve \
client_command="python3 benchmark_serving.py \
--backend $backend \
--tokenizer /tokenizer_cache \
--model $model \
@ -267,13 +265,13 @@ run_serving_tests() {
$client_args"
else
echo "The dataset name must be either 'sharegpt' or 'sonnet'. Got $dataset_name."
exit 1
fi
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
@ -304,7 +302,7 @@ run_serving_tests() {
}
run_genai_perf_tests() {
# run genai-perf tests
# run genai-perf tests
# $1: a json file specifying genai-perf test cases
local genai_perf_test_file
@ -313,14 +311,14 @@ run_genai_perf_tests() {
# Iterate over genai-perf tests
jq -c '.[]' "$genai_perf_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# prepend the current serving engine to the test name
test_name=${CURRENT_LLM_SERVING_ENGINE}_${test_name}
@ -371,10 +369,10 @@ run_genai_perf_tests() {
qps=$num_prompts
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
backend=$CURRENT_LLM_SERVING_ENGINE
if [[ "$backend" == *"vllm"* ]]; then
backend="vllm"
fi
@ -415,7 +413,7 @@ prepare_dataset() {
do
cat sonnet.txt >> sonnet_4x.txt
done
}
main() {

View File

@ -31,20 +31,6 @@ check_gpus() {
echo "GPU type is $gpu_type"
}
check_cpus() {
# check the number of CPUs and NUMA Node and GPU type.
declare -g numa_count=$(lscpu | grep "NUMA node(s):" | awk '{print $3}')
if [[ $numa_count -gt 0 ]]; then
echo "NUMA found."
echo $numa_count
else
echo "Need at least 1 NUMA to run benchmarking."
exit 1
fi
declare -g gpu_type="cpu"
echo "GPU type is $gpu_type"
}
check_hf_token() {
# check if HF_TOKEN is available and valid
if [[ -z "$HF_TOKEN" ]]; then
@ -83,22 +69,6 @@ json2args() {
echo "$args"
}
json2envs() {
# transforms the JSON string to environment variables.
# example:
# input: { "VLLM_CPU_KVCACHE_SPACE": 5 }
# output: VLLM_CPU_KVCACHE_SPACE=5
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map((.key ) + "=" + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
@ -126,8 +96,7 @@ kill_gpu_processes() {
ps -aux
lsof -t -i:8000 | xargs -r kill -9
pgrep python3 | xargs -r kill -9
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
pgrep VLLM | xargs -r kill -9
# wait until GPU memory usage smaller than 1GB
if command -v nvidia-smi; then
@ -165,7 +134,7 @@ upload_to_buildkite() {
}
run_latency_tests() {
# run latency tests using `vllm bench latency` command
# run latency tests using `benchmark_latency.py`
# $1: a json file specifying latency test cases
local latency_test_file
@ -189,24 +158,15 @@ run_latency_tests() {
# get arguments
latency_params=$(echo "$params" | jq -r '.parameters')
latency_args=$(json2args "$latency_params")
latency_environment_variables=$(echo "$params" | jq -r '.environment_variables')
latency_envs=$(json2envs "$latency_environment_variables")
# check if there is enough GPU to run the test
tp=$(echo "$latency_params" | jq -r '.tensor_parallel_size')
if [ "$ON_CPU" == "1" ];then
if [[ $numa_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
continue
fi
else
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
latency_command=" $latency_envs vllm bench latency \
latency_command="python3 benchmark_latency.py \
--output-json $RESULTS_FOLDER/${test_name}.json \
$latency_args"
@ -232,7 +192,7 @@ run_latency_tests() {
}
run_throughput_tests() {
# run throughput tests using `vllm bench throughput`
# run throughput tests using `benchmark_throughput.py`
# $1: a json file specifying throughput test cases
local throughput_test_file
@ -256,24 +216,15 @@ run_throughput_tests() {
# get arguments
throughput_params=$(echo "$params" | jq -r '.parameters')
throughput_args=$(json2args "$throughput_params")
throughput_environment_variables=$(echo "$params" | jq -r '.environment_variables')
throughput_envs=$(json2envs "$throughput_environment_variables")
# check if there is enough GPU to run the test
tp=$(echo "$throughput_params" | jq -r '.tensor_parallel_size')
if [ "$ON_CPU" == "1" ];then
if [[ $numa_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
continue
fi
else
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
throughput_command=" $throughput_envs vllm bench throughput \
throughput_command="python3 benchmark_throughput.py \
--output-json $RESULTS_FOLDER/${test_name}.json \
$throughput_args"
@ -298,7 +249,7 @@ run_throughput_tests() {
}
run_serving_tests() {
# run serving tests using `vllm bench serve` command
# run serving tests using `benchmark_serving.py`
# $1: a json file specifying serving test cases
local serving_test_file
@ -321,27 +272,18 @@ run_serving_tests() {
# get client and server arguments
server_params=$(echo "$params" | jq -r '.server_parameters')
server_envs=$(echo "$params" | jq -r '.server_environment_variables')
client_params=$(echo "$params" | jq -r '.client_parameters')
server_args=$(json2args "$server_params")
server_envs=$(json2envs "$server_envs")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough resources to run the test
# check if there is enough GPU to run the test
tp=$(echo "$server_params" | jq -r '.tensor_parallel_size')
if [ "$ON_CPU" == "1" ];then
if [[ $numa_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
continue
fi
else
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
# check if server model and client model is aligned
@ -352,33 +294,23 @@ run_serving_tests() {
continue
fi
server_command="$server_envs python3 \
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
$server_args"
# run the server
echo "Running test case $test_name"
echo "Server command: $server_command"
# support remote vllm server
client_remote_args=""
if [[ -z "${REMOTE_HOST}" ]]; then
bash -c "$server_command" &
server_pid=$!
# wait until the server is alive
if wait_for_server; then
echo ""
echo "vLLM server is up and running."
else
echo ""
echo "vLLM failed to start within the timeout period."
fi
bash -c "$server_command" &
server_pid=$!
# wait until the server is alive
if wait_for_server; then
echo ""
echo "vllm server is up and running."
else
server_command="Using Remote Server $REMOTE_HOST $REMOTE_PORT"
if [[ ${REMOTE_PORT} ]]; then
client_remote_args=" --host=$REMOTE_HOST --port=$REMOTE_PORT "
else
client_remote_args=" --host=$REMOTE_HOST "
fi
echo ""
echo "vllm failed to start within the timeout period."
fi
# iterate over different QPS
@ -394,13 +326,13 @@ run_serving_tests() {
# pass the tensor parallel size to the client so that it can be displayed
# on the benchmark dashboard
client_command="vllm bench serve \
client_command="python3 benchmark_serving.py \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--metadata "tensor_parallel_size=$tp" \
$client_args $client_remote_args "
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
@ -428,14 +360,7 @@ run_serving_tests() {
}
main() {
local ARCH
ARCH=''
if [ "$ON_CPU" == "1" ];then
check_cpus
ARCH='-cpu'
else
check_gpus
fi
check_gpus
check_hf_token
# Set to v1 to run v1 benchmark
@ -448,7 +373,7 @@ main() {
(which jq) || (apt-get update && apt-get -y install jq)
(which lsof) || (apt-get update && apt-get install -y lsof)
# get the current IP address, required by `vllm bench serve` command
# get the current IP address, required by benchmark_serving.py
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
# turn of the reporting of the status of each request, to clean up the terminal output
export VLLM_LOGGING_LEVEL="WARNING"
@ -461,9 +386,9 @@ main() {
QUICK_BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
# benchmarking
run_serving_tests $QUICK_BENCHMARK_ROOT/tests/"${SERVING_JSON:-serving-tests$ARCH.json}"
run_latency_tests $QUICK_BENCHMARK_ROOT/tests/"${LATENCY_JSON:-latency-tests$ARCH.json}"
run_throughput_tests $QUICK_BENCHMARK_ROOT/tests/"${THROUGHPUT_JSON:-throughput-tests$ARCH.json}"
run_serving_tests $QUICK_BENCHMARK_ROOT/tests/serving-tests.json
run_latency_tests $QUICK_BENCHMARK_ROOT/tests/latency-tests.json
run_throughput_tests $QUICK_BENCHMARK_ROOT/tests/throughput-tests.json
# postprocess benchmarking results
pip install tabulate pandas

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import datetime
import json

View File

@ -11,7 +11,9 @@
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},

View File

@ -1,30 +0,0 @@
[
{
"test_name": "latency_llama8B_tp1",
"environment_variables": {
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"num_iters_warmup": 5,
"num_iters": 15
}
},
{
"test_name": "latency_llama8B_tp4",
"environment_variables": {
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"num_iters_warmup": 5,
"num_iters": 15
}
}
]

View File

@ -35,7 +35,9 @@
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
@ -88,7 +90,9 @@
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
@ -141,7 +145,9 @@
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
@ -191,7 +197,9 @@
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
@ -243,7 +251,9 @@
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},
@ -295,7 +305,9 @@
},
"vllm_server_parameters": {
"disable_log_stats": "",
"disable_log_requests": "",
"gpu_memory_utilization": 0.9,
"num_scheduler_steps": 10,
"max_num_seqs": 512,
"dtype": "bfloat16"
},

View File

@ -1,203 +0,0 @@
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp2_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp4_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp1_random_128_128",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 1000,
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_tp2_random_128_128",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 1000,
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_tp4_random_128_128",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 1000,
"num_prompts": 1000
}
}
]

View File

@ -1,205 +0,0 @@
[
{
"test_name": "serving_llama8B_pp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_pp3_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp2pp6_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_pp1_random_128_128",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 1000,
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_pp3_random_128_128",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL:": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 1000,
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_tp2pp3_random_128_128",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 1000,
"num_prompts": 1000
}
}
]

View File

@ -1,168 +0,0 @@
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp2_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp4_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp4_random_1024_128",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 1024,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 100,
"num_prompts": 100
}
},
{
"test_name": "serving_llama8B_pp6_random_1024_128",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 6,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 1024,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 100,
"num_prompts": 100
}
}
]

View File

@ -7,6 +7,7 @@
"tensor_parallel_size": 1,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
@ -25,6 +26,7 @@
"tensor_parallel_size": 4,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
@ -43,6 +45,7 @@
"tensor_parallel_size": 2,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
@ -57,7 +60,8 @@
"test_name": "serving_llama70B_tp4_sharegpt_specdecode",
"qps_list": [2],
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"disable_log_requests": "",
"tensor_parallel_size": 4,
"swap_space": 16,
"speculative_config": {

View File

@ -1,32 +0,0 @@
[
{
"test_name": "throughput_llama8B_tp1",
"environment_variables": {
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"backend": "vllm"
}
},
{
"test_name": "throughput_llama8B_tp4",
"environment_variables": {
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"backend": "vllm"
}
}
]

View File

@ -6,6 +6,11 @@
[tool.ruff]
line-length = 88
exclude = [
# External file, leaving license intact
"examples/other/fp8/quantizer/quantize.py",
"vllm/vllm_flash_attn/flash_attn_interface.pyi"
]
[tool.ruff.lint.per-file-ignores]
"vllm/third_party/**" = ["ALL"]

View File

@ -1,6 +1,5 @@
steps:
- label: "Build wheel - CUDA 12.8"
id: build-wheel-cuda-12-8
agents:
queue: cpu_queue_postmerge
commands:
@ -12,11 +11,10 @@ steps:
DOCKER_BUILDKIT: "1"
- label: "Build wheel - CUDA 12.6"
id: build-wheel-cuda-12-6
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.6.3 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.6.3 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
@ -30,11 +28,10 @@ steps:
- label: "Build wheel - CUDA 11.8"
# depends_on: block-build-cu118-wheel
id: build-wheel-cuda-11-8
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
@ -47,26 +44,13 @@ steps:
- label: "Build release image"
depends_on: block-release-image-build
id: build-release-image
agents:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- label: "Annotate release workflow"
depends_on:
- build-release-image
- build-wheel-cuda-12-8
- build-wheel-cuda-12-6
- build-wheel-cuda-11-8
id: annotate-release-workflow
agents:
queue: cpu_queue_postmerge
commands:
- "bash .buildkite/scripts/annotate-release.sh"
- label: "Build and publish TPU release image"
depends_on: ~
if: build.env("NIGHTLY") == "1"
@ -80,16 +64,15 @@ steps:
- "docker push vllm/vllm-tpu:$BUILDKITE_COMMIT"
plugins:
- docker-login#v3.0.0:
username: vllmbot
username: vllm
password-env: DOCKERHUB_TOKEN
env:
DOCKER_BUILDKIT: "1"
- input: "Provide Release version here"
id: input-release-version
fields:
- text: "What is the release version?"
key: release-version
key: "release-version"
- block: "Build CPU release image"
key: block-cpu-release-image-build
@ -101,8 +84,7 @@ steps:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --build-arg VLLM_CPU_AVX512BF16=true --build-arg VLLM_CPU_AVX512VNNI=true --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
env:
DOCKER_BUILDKIT: "1"
@ -118,7 +100,6 @@ steps:
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest --progress plain -f docker/Dockerfile.neuron ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest"
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version)"
env:
DOCKER_BUILDKIT: "1"

View File

@ -1,31 +0,0 @@
#!/bin/bash
set -ex
# Get release version and strip leading 'v' if present
RELEASE_VERSION=$(buildkite-agent meta-data get release-version | sed 's/^v//')
if [ -z "$RELEASE_VERSION" ]; then
echo "Error: RELEASE_VERSION is empty. 'release-version' metadata might not be set or is invalid."
exit 1
fi
buildkite-agent annotate --style 'info' --context 'release-workflow' << EOF
To download the wheel:
\`\`\`
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu126/vllm-${RELEASE_VERSION}+cu126-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu118/vllm-${RELEASE_VERSION}+cu118-cp38-abi3-manylinux1_x86_64.whl .
\`\`\`
To download and upload the image:
\`\`\`
docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}
docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT} vllm/vllm-openai
docker tag vllm/vllm-openai vllm/vllm-openai:latest
docker tag vllm/vllm-openai vllm/vllm-openai:v${RELEASE_VERSION}
docker push vllm/vllm-openai:latest
docker push vllm/vllm-openai:v${RELEASE_VERSION}
\`\`\`
EOF

View File

@ -1,17 +0,0 @@
#!/bin/bash
# Usage: ./ci_clean_log.sh ci.log
# This script strips timestamps and color codes from CI log files.
# Check if argument is given
if [ $# -lt 1 ]; then
echo "Usage: $0 ci.log"
exit 1
fi
INPUT_FILE="$1"
# Strip timestamps
sed -i 's/^\[[0-9]\{4\}-[0-9]\{2\}-[0-9]\{2\}T[0-9]\{2\}:[0-9]\{2\}:[0-9]\{2\}Z\] //' "$INPUT_FILE"
# Strip colorization
sed -i -r 's/\x1B\[[0-9;]*[mK]//g' "$INPUT_FILE"

View File

@ -94,10 +94,6 @@ if [[ $commands == *"pytest -v -s compile/test_basic_correctness.py"* ]]; then
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s compile/test_basic_correctness.py"}
fi
if [[ $commands == *"pytest -v -s lora"* ]]; then
commands=${commands//"pytest -v -s lora"/"VLLM_ROCM_CUSTOM_PAGED_ATTN=0 pytest -v -s lora"}
fi
#ignore certain kernels tests
if [[ $commands == *" kernels/core"* ]]; then
commands="${commands} \
@ -107,8 +103,10 @@ fi
if [[ $commands == *" kernels/attention"* ]]; then
commands="${commands} \
--ignore=kernels/attention/test_attention_selector.py \
--ignore=kernels/attention/stest_attention_selector.py \
--ignore=kernels/attention/test_blocksparse_attention.py \
--ignore=kernels/attention/test_encoder_decoder_attn.py \
--ignore=kernels/attention/test_attention_selector.py \
--ignore=kernels/attention/test_flash_attn.py \
--ignore=kernels/attention/test_flashinfer.py \
--ignore=kernels/attention/test_prefix_prefill.py \

View File

@ -7,7 +7,6 @@ set -ex
# Setup cleanup
remove_docker_container() {
if [[ -n "$container_id" ]]; then
podman stop --all -t0
podman rm -f "$container_id" || true
fi
podman system prune -f
@ -38,7 +37,7 @@ function cpu_tests() {
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
pytest -v -s tests/models/language/pooling/test_embedding.py -m cpu_model"
pytest -v -s tests/models/language/pooling/test_embedding.py::test_models[half-BAAI/bge-base-en-v1.5]"
}
# All of CPU tests are expected to be finished less than 40 mins.

View File

@ -6,97 +6,89 @@ set -ex
# allow to bind to different cores
CORE_RANGE=${CORE_RANGE:-48-95}
# used for TP/PP E2E test
OMP_CORE_RANGE=${OMP_CORE_RANGE:-48-95}
NUMA_NODE=${NUMA_NODE:-1}
export CMAKE_BUILD_PARALLEL_LEVEL=32
# Setup cleanup
remove_docker_container() {
set -e;
docker rm -f cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"-avx2 || true;
remove_docker_container() {
set -e;
docker rm -f cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" || true;
docker image rm cpu-test-"$BUILDKITE_BUILD_NUMBER" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 || true;
}
trap remove_docker_container EXIT
remove_docker_container
# Try building the docker image
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$NUMA_NODE" --target vllm-test -f docker/Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$NUMA_NODE"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$BUILDKITE_BUILD_NUMBER" --target vllm-test -f docker/Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
# Run the image, setting --shm-size=4g for tensor parallel.
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE"-avx2 cpu-test-"$NUMA_NODE"-avx2
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
--cpuset-mems="$NUMA_NODE" --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
--cpuset-mems="$NUMA_NODE" --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2
function cpu_tests() {
set -e
export NUMA_NODE=$2
# list packages
docker exec cpu-test-"$NUMA_NODE"-avx2 bash -c "
set -e
pip list"
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pip list"
export BUILDKITE_BUILD_NUMBER=$3
# offline inference
docker exec cpu-test-"$NUMA_NODE"-avx2 bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" bash -c "
set -e
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
# Run basic model test
docker exec cpu-test-"$NUMA_NODE" bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
# Note: disable until supports V1
# pytest -v -s tests/kernels/attention/test_cache.py -m cpu_model
# pytest -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
# Note: disable Bart until supports V1
pytest -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
VLLM_CPU_SGL_KERNEL=1 pytest -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
pytest -v -s tests/models/language/pooling -m cpu_model
pytest -v -s tests/models/multimodal/generation \
--ignore=tests/models/multimodal/generation/test_mllama.py \
--ignore=tests/models/multimodal/generation/test_pixtral.py \
-m cpu_model"
pytest -v -s tests/kernels/test_cache.py -m cpu_model
pytest -v -s tests/kernels/test_mla_decode_cpu.py -m cpu_model
pytest -v -s tests/models/decoder_only/language -m cpu_model
pytest -v -s tests/models/embedding/language -m cpu_model
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
pytest -v -s tests/models/decoder_only/audio_language -m cpu_model
pytest -v -s tests/models/decoder_only/vision_language -m cpu_model"
# Run compressed-tensor test
docker exec cpu-test-"$NUMA_NODE" bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynamic_per_token"
# Note: disable it until supports V1
# Run AWQ test
# docker exec cpu-test-"$NUMA_NODE" bash -c "
# set -e
# VLLM_USE_V1=0 pytest -s -v \
# tests/quantization/test_ipex_quant.py"
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
tests/quantization/test_ipex_quant.py"
# Run chunked-prefill and prefix-cache test
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
pytest -s -v -k cpu_model \
tests/basic_correctness/test_chunked_prefill.py"
# online serving
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
export VLLM_CPU_KVCACHE_SPACE=10
export VLLM_CPU_OMP_THREADS_BIND=$1
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m --dtype half &
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name random \
--model facebook/opt-125m \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer facebook/opt-125m"
# Run multi-lora tests
docker exec cpu-test-"$NUMA_NODE" bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
tests/lora/test_qwen2vl.py"
# online serving
docker exec cpu-test-"$NUMA_NODE" bash -c '
set -e
VLLM_CPU_OMP_THREADS_BIND=$E2E_OMP_THREADS VLLM_CPU_SGL_KERNEL=1 vllm serve meta-llama/Llama-3.2-3B-Instruct -tp=2 -pp=2 &
timeout 600 bash -c "until curl localhost:8000/v1/models; do sleep 1; done" || exit 1
vllm bench serve \
--backend vllm \
--dataset-name random \
--model meta-llama/Llama-3.2-3B-Instruct \
--num-prompts 20 \
--endpoint /v1/completions'
}
# All of CPU tests are expected to be finished less than 40 mins.
export -f cpu_tests
timeout 1.5h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
timeout 40m bash -c "cpu_tests $CORE_RANGE $NUMA_NODE $BUILDKITE_BUILD_NUMBER"

View File

@ -16,7 +16,8 @@ DOCKER_BUILDKIT=1 docker build . \
--build-arg max_jobs=66 \
--build-arg nvcc_threads=2 \
--build-arg RUN_WHEEL_CHECK=false \
--build-arg torch_cuda_arch_list="9.0+PTX"
--build-arg torch_cuda_arch_list="9.0+PTX" \
--build-arg vllm_fa_cmake_gpu_arches="90-real"
# Setup cleanup
remove_docker_container() { docker rm -f gh200-test || true; }

View File

@ -2,55 +2,23 @@
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -exuo pipefail
set -ex
# Try building the docker image
cat <<EOF | docker build -t hpu-plugin-v1-test-env -f - .
FROM gaudi-base-image:latest
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
ENV no_proxy=localhost,127.0.0.1
ENV PT_HPU_ENABLE_LAZY_COLLECTIVES=true
RUN VLLM_TARGET_DEVICE=empty pip install .
RUN pip install git+https://github.com/vllm-project/vllm-gaudi.git
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
WORKDIR /workspace/
RUN git clone https://github.com/vllm-project/vllm-gaudi.git
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
EOF
docker build -t hpu-test-env -f docker/Dockerfile.hpu .
# Setup cleanup
# certain versions of HPU software stack have a bug that can
# override the exit code of the script, so we need to use
# separate remove_docker_containers and remove_docker_containers_and_exit
# separate remove_docker_container and remove_docker_container_and_exit
# functions, while other platforms only need one remove_docker_container
# function.
EXITCODE=1
remove_docker_containers() { docker rm -f hpu-plugin-v1-test || true; }
trap 'remove_docker_containers; exit $EXITCODE;' EXIT
remove_docker_containers
echo "Running HPU plugin v1 test"
docker run --rm --runtime=habana --name=hpu-plugin-v1-test --network=host \
-e HABANA_VISIBLE_DEVICES=all \
hpu-plugin-v1-test-env \
/bin/bash "/workspace/vllm-gaudi/tests/upstream_tests/ci_tests.sh"
remove_docker_container() { docker rm -f hpu-test || true; }
remove_docker_container_and_exit() { remove_docker_container; exit $EXITCODE; }
trap remove_docker_container_and_exit EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
EXITCODE=$?
if [ $EXITCODE -eq 0 ]; then
echo "Test with basic model passed"
else
echo "Test with basic model FAILED with exit code: $EXITCODE" >&2
fi
# The trap will handle the container removal and final exit.

View File

@ -11,14 +11,13 @@ container_name="neuron_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
HF_CACHE="$(realpath ~)/huggingface"
mkdir -p "${HF_CACHE}"
HF_MOUNT="/root/.cache/huggingface"
HF_TOKEN=$(aws secretsmanager get-secret-value --secret-id "ci/vllm-neuron/hf-token" --region us-west-2 --query 'SecretString' --output text | jq -r .VLLM_NEURON_CI_HF_TOKEN)
NEURON_COMPILE_CACHE_URL="$(realpath ~)/neuron_compile_cache"
mkdir -p "${NEURON_COMPILE_CACHE_URL}"
NEURON_COMPILE_CACHE_MOUNT="/root/.cache/neuron_compile_cache"
# Try building the docker image
aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws
aws ecr get-login-password --region us-west-2 | docker login --username AWS --password-stdin 763104351884.dkr.ecr.us-west-2.amazonaws.com
# prune old image and containers to save disk space, and only once a day
# by using a timestamp file in tmp.
@ -48,17 +47,8 @@ trap remove_docker_container EXIT
docker run --rm -it --device=/dev/neuron0 --network bridge \
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
-e "HF_TOKEN=${HF_TOKEN}" \
-v "${NEURON_COMPILE_CACHE_URL}:${NEURON_COMPILE_CACHE_MOUNT}" \
-e "NEURON_COMPILE_CACHE_URL=${NEURON_COMPILE_CACHE_MOUNT}" \
--name "${container_name}" \
${image_name} \
/bin/bash -c "
set -e; # Exit on first error
python3 /workspace/vllm/examples/offline_inference/neuron.py;
python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys;
for f in /workspace/vllm/tests/neuron/2_core/*.py; do
echo \"Running test file: \$f\";
python3 -m pytest \$f -v --capture=tee-sys;
done
"
/bin/bash -c "python3 /workspace/vllm/examples/offline_inference/neuron.py && python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys && python3 -m pytest /workspace/vllm/tests/neuron/2_core/ -v --capture=tee-sys"

View File

@ -1,167 +0,0 @@
#!/bin/bash
set -xu
remove_docker_container() {
docker rm -f tpu-test || true;
}
trap remove_docker_container EXIT
# Remove the container that might not be cleaned up in the previous run.
remove_docker_container
# Build the docker image.
docker build -f docker/Dockerfile.tpu -t vllm-tpu .
# Set up cleanup.
cleanup_docker() {
# Get Docker's root directory
docker_root=$(docker info -f '{{.DockerRootDir}}')
if [ -z "$docker_root" ]; then
echo "Failed to determine Docker root directory."
exit 1
fi
echo "Docker root directory: $docker_root"
# Check disk usage of the filesystem where Docker's root directory is located
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
# Define the threshold
threshold=70
if [ "$disk_usage" -gt "$threshold" ]; then
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes / force the system prune for old images as well.
docker volume prune -f && docker system prune --force --filter "until=72h" --all
echo "Docker images and volumes cleanup completed."
else
echo "Disk usage is below $threshold%. No cleanup needed."
fi
}
cleanup_docker
# For HF_TOKEN.
source /etc/environment
docker run --privileged --net host --shm-size=16G -it \
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
vllm-tpu /bin/bash -c '
set -e # Exit immediately if a command exits with a non-zero status.
set -u # Treat unset variables as an error.
echo "--- Starting script inside Docker container ---"
# Create results directory
RESULTS_DIR=$(mktemp -d)
# If mktemp fails, set -e will cause the script to exit.
echo "Results will be stored in: $RESULTS_DIR"
# Install dependencies
echo "--- Installing Python dependencies ---"
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
&& python3 -m pip install --progress-bar off hf-transfer
echo "--- Python dependencies installed ---"
export VLLM_USE_V1=1
export VLLM_XLA_CHECK_RECOMPILATION=1
export VLLM_XLA_CACHE_PATH=
echo "Using VLLM V1"
echo "--- Hardware Information ---"
# tpu-info
echo "--- Starting Tests ---"
set +e
overall_script_exit_code=0
# --- Test Definitions ---
# If a test fails, this function will print logs and will not cause the main script to exit.
run_test() {
local test_num=$1
local test_name=$2
local test_command=$3
local log_file="$RESULTS_DIR/test_${test_num}.log"
local actual_exit_code
echo "--- TEST_$test_num: Running $test_name ---"
# Execute the test command.
eval "$test_command" > >(tee -a "$log_file") 2> >(tee -a "$log_file" >&2)
actual_exit_code=$?
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" # This goes to main log
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" >> "$log_file" # Also to per-test log
if [ "$actual_exit_code" -ne 0 ]; then
echo "TEST_$test_num ($test_name) FAILED with exit code $actual_exit_code." >&2
echo "--- Log for failed TEST_$test_num ($test_name) ---" >&2
if [ -f "$log_file" ]; then
cat "$log_file" >&2
else
echo "Log file $log_file not found for TEST_$test_num ($test_name)." >&2
fi
echo "--- End of log for TEST_$test_num ($test_name) ---" >&2
return "$actual_exit_code" # Return the failure code
else
echo "TEST_$test_num ($test_name) PASSED."
return 0 # Return success
fi
}
# Helper function to call run_test and update the overall script exit code
run_and_track_test() {
local test_num_arg="$1"
local test_name_arg="$2"
local test_command_arg="$3"
# Run the test
run_test "$test_num_arg" "$test_name_arg" "$test_command_arg"
local test_specific_exit_code=$?
# If the test failed, set the overall script exit code to 1
if [ "$test_specific_exit_code" -ne 0 ]; then
# No need for extra echo here, run_test already logged the failure.
overall_script_exit_code=1
fi
}
# --- Actual Test Execution ---
run_and_track_test 1 "test_struct_output_generate.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py -k \"not test_structured_output_with_reasoning_matrices\""
run_and_track_test 2 "test_moe_pallas.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py"
run_and_track_test 3 "test_lora.py" \
"VLLM_XLA_CHECK_RECOMPILATION=0 python3 -m pytest -s -v /workspace/vllm/tests/tpu/lora/test_lora.py"
run_and_track_test 4 "test_tpu_qkv_linear.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_tpu_qkv_linear.py"
run_and_track_test 5 "test_spmd_model_weight_loading.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_spmd_model_weight_loading.py"
run_and_track_test 6 "test_kv_cache_update_kernel.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_kv_cache_update_kernel.py"
run_and_track_test 7 "test_tpu_int8.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_tpu_int8.py"
# After all tests have been attempted, exit with the overall status.
if [ "$overall_script_exit_code" -ne 0 ]; then
echo "--- One or more tests FAILED. Overall script exiting with failure code 1. ---"
else
echo "--- All tests have completed and PASSED. Overall script exiting with success code 0. ---"
fi
exit "$overall_script_exit_code"
' # IMPORTANT: This is the closing single quote for the bash -c "..." command. Ensure it is present and correct.
# Capture the exit code of the docker run command
DOCKER_RUN_EXIT_CODE=$?
# The trap will run for cleanup.
# Exit the main script with the Docker run command's exit code.
if [ "$DOCKER_RUN_EXIT_CODE" -ne 0 ]; then
echo "Docker run command failed with exit code $DOCKER_RUN_EXIT_CODE."
exit "$DOCKER_RUN_EXIT_CODE"
else
echo "Docker run command completed successfully."
exit 0
fi
# TODO: This test fails because it uses RANDOM_SEED sampling
# pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \

View File

@ -2,174 +2,102 @@
set -xu
remove_docker_container() {
docker rm -f tpu-test || true;
}
trap remove_docker_container EXIT
# Remove the container that might not be cleaned up in the previous run.
remove_docker_container
# Build the docker image.
docker build -f docker/Dockerfile.tpu -t vllm-tpu .
# Set up cleanup.
cleanup_docker() {
# Get Docker's root directory
docker_root=$(docker info -f '{{.DockerRootDir}}')
if [ -z "$docker_root" ]; then
echo "Failed to determine Docker root directory."
exit 1
fi
echo "Docker root directory: $docker_root"
# Check disk usage of the filesystem where Docker's root directory is located
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
# Define the threshold
threshold=70
if [ "$disk_usage" -gt "$threshold" ]; then
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes / force the system prune for old images as well.
docker volume prune -f && docker system prune --force --filter "until=72h" --all
echo "Docker images and volumes cleanup completed."
else
echo "Disk usage is below $threshold%. No cleanup needed."
fi
}
cleanup_docker
remove_docker_container() { docker rm -f tpu-test || true; }
trap remove_docker_container EXIT
# Remove the container that might not be cleaned up in the previous run.
remove_docker_container
# For HF_TOKEN.
source /etc/environment
# Run a simple end-to-end example.
docker run --privileged --net host --shm-size=16G -it \
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
vllm-tpu /bin/bash -c '
set -e # Exit immediately if a command exits with a non-zero status.
set -u # Treat unset variables as an error.
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
&& python3 -m pip install pytest pytest-asyncio tpu-info \
&& python3 -m pip install lm_eval[api]==0.4.4 \
&& export VLLM_XLA_CACHE_PATH= \
&& export VLLM_USE_V1=1 \
&& export VLLM_XLA_CHECK_RECOMPILATION=1 \
&& echo HARDWARE \
&& tpu-info \
&& { \
echo TEST_0: Running test_perf.py; \
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_perf.py; \
echo TEST_0_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_1: Running test_compilation.py; \
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_compilation.py; \
echo TEST_1_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_2: Running test_basic.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_basic.py; \
echo TEST_2_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_3: Running test_accuracy.py::test_lm_eval_accuracy_v1_engine; \
python3 -m pytest -s -v /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine; \
echo TEST_3_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_4: Running test_quantization_accuracy.py; \
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py; \
echo TEST_4_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_5: Running examples/offline_inference/tpu.py; \
python3 /workspace/vllm/examples/offline_inference/tpu.py; \
echo TEST_5_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_6: Running test_tpu_model_runner.py; \
python3 -m pytest -s -v /workspace/vllm/tests/tpu/worker/test_tpu_model_runner.py; \
echo TEST_6_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_7: Running test_sampler.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py; \
echo TEST_7_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_8: Running test_topk_topp_sampler.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py; \
echo TEST_8_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_9: Running test_multimodal.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py; \
echo TEST_9_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_10: Running test_pallas.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py; \
echo TEST_10_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_11: Running test_struct_output_generate.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py; \
echo TEST_11_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_12: Running test_moe_pallas.py; \
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py; \
echo TEST_12_EXIT_CODE: \$?; \
} & \
# Disable the TPU LoRA tests until the feature is activated
# & { \
# echo TEST_13: Running test_moe_pallas.py; \
# python3 -m pytest -s -v /workspace/vllm/tests/tpu/lora/; \
# echo TEST_13_EXIT_CODE: \$?; \
# } & \
wait \
&& echo 'All tests have attempted to run. Check logs for individual test statuses and exit codes.' \
"
echo "--- Starting script inside Docker container ---"
# Create results directory
RESULTS_DIR=$(mktemp -d)
# If mktemp fails, set -e will cause the script to exit.
echo "Results will be stored in: $RESULTS_DIR"
# Install dependencies
echo "--- Installing Python dependencies ---"
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
&& python3 -m pip install --progress-bar off hf-transfer
echo "--- Python dependencies installed ---"
export VLLM_USE_V1=1
export VLLM_XLA_CHECK_RECOMPILATION=1
export VLLM_XLA_CACHE_PATH=
echo "Using VLLM V1"
echo "--- Hardware Information ---"
# tpu-info
echo "--- Starting Tests ---"
set +e
overall_script_exit_code=0
# --- Test Definitions ---
# If a test fails, this function will print logs and will not cause the main script to exit.
run_test() {
local test_num=$1
local test_name=$2
local test_command=$3
local log_file="$RESULTS_DIR/test_${test_num}.log"
local actual_exit_code
echo "--- TEST_$test_num: Running $test_name ---"
# Execute the test command.
eval "$test_command" > >(tee -a "$log_file") 2> >(tee -a "$log_file" >&2)
actual_exit_code=$?
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" # This goes to main log
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" >> "$log_file" # Also to per-test log
if [ "$actual_exit_code" -ne 0 ]; then
echo "TEST_$test_num ($test_name) FAILED with exit code $actual_exit_code." >&2
echo "--- Log for failed TEST_$test_num ($test_name) ---" >&2
if [ -f "$log_file" ]; then
cat "$log_file" >&2
else
echo "Log file $log_file not found for TEST_$test_num ($test_name)." >&2
fi
echo "--- End of log for TEST_$test_num ($test_name) ---" >&2
return "$actual_exit_code" # Return the failure code
else
echo "TEST_$test_num ($test_name) PASSED."
return 0 # Return success
fi
}
# Helper function to call run_test and update the overall script exit code
run_and_track_test() {
local test_num_arg="$1"
local test_name_arg="$2"
local test_command_arg="$3"
# Run the test
run_test "$test_num_arg" "$test_name_arg" "$test_command_arg"
local test_specific_exit_code=$?
# If the test failed, set the overall script exit code to 1
if [ "$test_specific_exit_code" -ne 0 ]; then
# No need for extra echo here, run_test already logged the failure.
overall_script_exit_code=1
fi
}
# --- Actual Test Execution ---
run_and_track_test 0 "test_perf.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_perf.py"
run_and_track_test 1 "test_compilation.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_compilation.py"
run_and_track_test 2 "test_basic.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_basic.py"
run_and_track_test 3 "test_accuracy.py::test_lm_eval_accuracy_v1_engine" \
"python3 -m pytest -s -v /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine"
run_and_track_test 4 "test_quantization_accuracy.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py"
run_and_track_test 5 "examples/offline_inference/tpu.py" \
"python3 /workspace/vllm/examples/offline_inference/tpu.py"
run_and_track_test 6 "test_tpu_model_runner.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/worker/test_tpu_model_runner.py"
run_and_track_test 7 "test_sampler.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py"
run_and_track_test 8 "test_topk_topp_sampler.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py"
run_and_track_test 9 "test_multimodal.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py"
run_and_track_test 10 "test_pallas.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py"
# After all tests have been attempted, exit with the overall status.
if [ "$overall_script_exit_code" -ne 0 ]; then
echo "--- One or more tests FAILED. Overall script exiting with failure code 1. ---"
else
echo "--- All tests have completed and PASSED. Overall script exiting with success code 0. ---"
fi
exit "$overall_script_exit_code"
' # IMPORTANT: This is the closing single quote for the bash -c "..." command. Ensure it is present and correct.
# Capture the exit code of the docker run command
DOCKER_RUN_EXIT_CODE=$?
# The trap will run for cleanup.
# Exit the main script with the Docker run command's exit code.
if [ "$DOCKER_RUN_EXIT_CODE" -ne 0 ]; then
echo "Docker run command failed with exit code $DOCKER_RUN_EXIT_CODE."
exit "$DOCKER_RUN_EXIT_CODE"
else
echo "Docker run command completed successfully."
exit 0
fi
# TODO: This test fails because it uses RANDOM_SEED sampling
# pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
# && VLLM_USE_V1=1 pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \

View File

@ -11,8 +11,8 @@ container_name="xpu_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head
docker build -t ${image_name} -f docker/Dockerfile.xpu .
# Setup cleanup
remove_docker_container() {
docker rm -f "${container_name}" || true;
remove_docker_container() {
docker rm -f "${container_name}" || true;
docker image rm -f "${image_name}" || true;
docker system prune -f || true;
}
@ -26,18 +26,6 @@ docker run \
--name "${container_name}" \
"${image_name}" \
sh -c '
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
cd tests
pytest -v -s v1/core
pytest -v -s v1/engine
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
pytest -v -s v1/structured_output
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py
pytest -v -s v1/test_serial_utils.py
pytest -v -s v1/test_utils.py
pytest -v -s v1/test_metrics_reader.py
VLLM_USE_V1=0 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
VLLM_USE_V1=0 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m -tp 2
'

View File

@ -1,18 +0,0 @@
#!/bin/bash
# Usage: ./rerun_test.sh path/to/test.py::test_name
# Check if argument is given
if [ $# -lt 1 ]; then
echo "Usage: $0 path/to/test.py::test_name"
echo "Example: $0 tests/v1/engine/test_engine_core_client.py::test_kv_cache_events[True-tcp]"
exit 1
fi
TEST=$1
COUNT=1
while pytest -sv "$TEST"; do
COUNT=$((COUNT + 1))
echo "RUN NUMBER ${COUNT}"
done

View File

@ -11,10 +11,10 @@ cd "$(dirname "${BASH_SOURCE[0]}")/../.."
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
# run python-based benchmarks and upload the result to buildkite
vllm bench latency --output-json latency_results.json 2>&1 | tee benchmark_latency.txt
python3 benchmarks/benchmark_latency.py --output-json latency_results.json 2>&1 | tee benchmark_latency.txt
bench_latency_exit_code=$?
vllm bench throughput --input-len 256 --output-len 256 --output-json throughput_results.json 2>&1 | tee benchmark_throughput.txt
python3 benchmarks/benchmark_throughput.py --input-len 256 --output-len 256 --output-json throughput_results.json 2>&1 | tee benchmark_throughput.txt
bench_throughput_exit_code=$?
# run server-based benchmarks and upload the result to buildkite
@ -24,7 +24,7 @@ wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/r
# wait for server to start, timeout after 600 seconds
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
vllm bench serve \
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name sharegpt \
--dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json \

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -euo pipefail
docker_root=$(docker info -f '{{.DockerRootDir}}')
if [ -z "$docker_root" ]; then
echo "Failed to determine Docker root directory."
exit 1
fi
echo "Docker root directory: $docker_root"
# Check disk usage of the filesystem where Docker's root directory is located
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
# Define the threshold
threshold=70
if [ "$disk_usage" -gt "$threshold" ]; then
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes / force the system prune for old images as well.
docker volume prune -f && docker system prune --force --filter "until=72h" --all
echo "Docker images and volumes cleanup completed."
else
echo "Disk usage is below $threshold%. No cleanup needed."
fi

View File

@ -1,14 +0,0 @@
# Environment config
TEST_NAME=llama8b
CONTAINER_NAME=tpu-test
# vllm config
MODEL=meta-llama/Llama-3.1-8B-Instruct
MAX_NUM_SEQS=256
MAX_NUM_BATCHED_TOKENS=1024
TENSOR_PARALLEL_SIZE=1
MAX_MODEL_LEN=2048
DOWNLOAD_DIR=/mnt/disks/persist
EXPECTED_THROUGHPUT=8.0
INPUT_LEN=1800
OUTPUT_LEN=128

View File

@ -1,90 +0,0 @@
#!/bin/bash
if [ ! -f "$1" ]; then
echo "Error: The env file '$1' does not exist."
exit 1 # Exit the script with a non-zero status to indicate an error
fi
ENV_FILE=$1
# For testing on local vm, use `set -a` to export all variables
source /etc/environment
source $ENV_FILE
remove_docker_container() {
docker rm -f $CONTAINER_NAME || true;
}
trap remove_docker_container EXIT
# Remove the container that might not be cleaned up in the previous run.
remove_docker_container
LOG_ROOT=$(mktemp -d)
# If mktemp fails, set -e will cause the script to exit.
echo "Results will be stored in: $LOG_ROOT"
if [ -z "$HF_TOKEN" ]; then
echo "Error: HF_TOKEN is not set or is empty."
exit 1
fi
# Make sure mounted disk or dir exists
if [ ! -d "$DOWNLOAD_DIR" ]; then
echo "Error: Folder $DOWNLOAD_DIR does not exist. This is useually a mounted drive. If no mounted drive, just create a folder."
exit 1
fi
echo "Run model $MODEL"
echo
echo "starting docker...$CONTAINER_NAME"
echo
docker run \
-v $DOWNLOAD_DIR:$DOWNLOAD_DIR \
--env-file $ENV_FILE \
-e HF_TOKEN="$HF_TOKEN" \
-e TARGET_COMMIT=$BUILDKITE_COMMIT \
-e MODEL=$MODEL \
-e WORKSPACE=/workspace \
--name $CONTAINER_NAME \
-d \
--privileged \
--network host \
-v /dev/shm:/dev/shm \
vllm/vllm-tpu-bm tail -f /dev/null
echo "run script..."
echo
docker exec "$CONTAINER_NAME" /bin/bash -c ".buildkite/scripts/tpu/run_bm.sh"
echo "copy result back..."
VLLM_LOG="$LOG_ROOT/$TEST_NAME"_vllm_log.txt
BM_LOG="$LOG_ROOT/$TEST_NAME"_bm_log.txt
docker cp "$CONTAINER_NAME:/workspace/vllm_log.txt" "$VLLM_LOG"
docker cp "$CONTAINER_NAME:/workspace/bm_log.txt" "$BM_LOG"
throughput=$(grep "Request throughput (req/s):" "$BM_LOG" | sed 's/[^0-9.]//g')
echo "throughput for $TEST_NAME at $BUILDKITE_COMMIT: $throughput"
if [ "$BUILDKITE" = "true" ]; then
echo "Running inside Buildkite"
buildkite-agent artifact upload "$VLLM_LOG"
buildkite-agent artifact upload "$BM_LOG"
else
echo "Not running inside Buildkite"
fi
#
# compare the throughput with EXPECTED_THROUGHPUT
# and assert meeting the expectation
#
if [[ -z "$throughput" || ! "$throughput" =~ ^[0-9]+([.][0-9]+)?$ ]]; then
echo "Failed to get the throughput"
exit 1
fi
if (( $(echo "$throughput < $EXPECTED_THROUGHPUT" | bc -l) )); then
echo "Error: throughput($throughput) is less than expected($EXPECTED_THROUGHPUT)"
exit 1
fi

View File

@ -1,14 +0,0 @@
# Environment config
TEST_NAME=llama8bw8a8
CONTAINER_NAME=tpu-test
# vllm config
MODEL=RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8
MAX_NUM_SEQS=128
MAX_NUM_BATCHED_TOKENS=1024
TENSOR_PARALLEL_SIZE=1
MAX_MODEL_LEN=2048
DOWNLOAD_DIR=/mnt/disks/persist
EXPECTED_THROUGHPUT=10.0
INPUT_LEN=1800
OUTPUT_LEN=128

View File

@ -1,93 +0,0 @@
#!/bin/bash
set -euo pipefail
VLLM_LOG="$WORKSPACE/vllm_log.txt"
BM_LOG="$WORKSPACE/bm_log.txt"
if [ -n "$TARGET_COMMIT" ]; then
head_hash=$(git rev-parse HEAD)
if [ "$TARGET_COMMIT" != "$head_hash" ]; then
echo "Error: target commit $TARGET_COMMIT does not match HEAD: $head_hash"
exit 1
fi
fi
echo "model: $MODEL"
echo
#
# create a log folder
#
mkdir "$WORKSPACE/log"
# TODO: Move to image building.
pip install pandas
pip install datasets
#
# create sonnet_4x
#
echo "Create sonnet_4x.txt"
echo "" > benchmarks/sonnet_4x.txt
for _ in {1..4}
do
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
done
#
# start vllm service in backend
#
echo "lanching vllm..."
echo "logging to $VLLM_LOG"
echo
VLLM_USE_V1=1 vllm serve $MODEL \
--seed 42 \
--max-num-seqs $MAX_NUM_SEQS \
--max-num-batched-tokens $MAX_NUM_BATCHED_TOKENS \
--tensor-parallel-size $TENSOR_PARALLEL_SIZE \
--no-enable-prefix-caching \
--download_dir $DOWNLOAD_DIR \
--max-model-len $MAX_MODEL_LEN > "$VLLM_LOG" 2>&1 &
echo "wait for 20 minutes.."
echo
# sleep 1200
# wait for 10 minutes...
for i in {1..120}; do
# TODO: detect other type of errors.
if grep -Fq "raise RuntimeError" "$VLLM_LOG"; then
echo "Detected RuntimeError, exiting."
exit 1
elif grep -Fq "Application startup complete" "$VLLM_LOG"; then
echo "Application started"
break
else
echo "wait for 10 seconds..."
sleep 10
fi
done
#
# run test
#
echo "run benchmark test..."
echo "logging to $BM_LOG"
echo
vllm bench serve \
--backend vllm \
--model $MODEL \
--dataset-name sonnet \
--dataset-path benchmarks/sonnet_4x.txt \
--sonnet-input-len $INPUT_LEN \
--sonnet-output-len $OUTPUT_LEN \
--ignore-eos > "$BM_LOG"
echo "completed..."
echo
throughput=$(grep "Request throughput (req/s):" "$BM_LOG" | sed 's/[^0-9.]//g')
echo "throughput: $throughput"
echo

View File

@ -33,42 +33,34 @@ steps:
- label: Documentation Build # 2min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/test_docs"
working_dir: "/vllm-workspace/test_docs/docs"
fast_check: true
no_gpu: True
commands:
- pip install -r ../requirements/docs.txt
# TODO: add `--strict` once warnings in docstrings are fixed
- mkdocs build
- label: Pytorch Nightly Dependency Override Check # 2min
# if this test fails, it means the nightly torch version is not compatible with some
# of the dependencies. Please check the error message and add the package to whitelist
# in /vllm/tools/generate_nightly_torch_test.py
soft_fail: true
source_file_dependencies:
- requirements/nightly_torch_test.txt
commands:
- bash standalone_tests/pytorch_nightly_dependency.sh
- pip install -r ../../requirements/docs.txt
- SPHINXOPTS=\"-W\" make html
# Check API reference (if it fails, you may have missing mock imports)
- grep \"sig sig-object py\" build/html/api/vllm/vllm.sampling_params.html
- label: Async Engine, Inputs, Utils, Worker Test # 24min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/mq_llm_engine
- tests/test_inputs.py
- tests/test_outputs.py
- tests/async_engine
- tests/test_inputs
- tests/multimodal
- tests/utils_
- tests/test_utils
- tests/worker
- tests/standalone_tests/lazy_imports.py
commands:
- python3 standalone_tests/lazy_imports.py
- pytest -v -s mq_llm_engine # MQLLMEngine
- pytest -v -s async_engine # AsyncLLMEngine
- NUM_SCHEDULER_STEPS=4 pytest -v -s async_engine/test_async_llm_engine.py
- pytest -v -s test_inputs.py
- pytest -v -s test_outputs.py
- pytest -v -s multimodal
- pytest -v -s utils_ # Utils
- pytest -v -s test_utils.py # Utils
- pytest -v -s worker # Worker
- label: Python-only Installation Test
@ -80,7 +72,7 @@ steps:
- bash standalone_tests/python_only_compile.sh
- label: Basic Correctness Test # 30min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
fast_check: true
torch_nightly: true
source_file_dependencies:
@ -106,7 +98,7 @@ steps:
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
- label: Core Test # 10min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
fast_check: true
source_file_dependencies:
- vllm/core
@ -115,7 +107,7 @@ steps:
commands:
- pytest -v -s core
- label: Entrypoints Test (LLM) # 40min
- label: Entrypoints Test # 40min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
fast_check: true
@ -123,28 +115,19 @@ steps:
source_file_dependencies:
- vllm/
- tests/entrypoints/llm
- tests/entrypoints/openai
- tests/entrypoints/test_chat_utils
- tests/entrypoints/offline_mode
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_collective_rpc.py
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_guided_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Entrypoints Test (API Server) # 40min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
fast_check: true
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/entrypoints/openai
- tests/entrypoints/test_chat_utils
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_tensorizer_entrypoint.py --ignore=entrypoints/openai/correctness/
- VLLM_USE_V1=0 pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/correctness/ --ignore=entrypoints/openai/test_openai_schema.py
- pytest -v -s entrypoints/test_chat_utils.py
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Distributed Tests (4 GPUs) # 10min
mirror_hardwares: [amdexperimental]
@ -155,16 +138,12 @@ steps:
- vllm/core/
- tests/distributed/test_utils
- tests/distributed/test_pynccl
- tests/distributed/test_events
- tests/spec_decode/e2e/test_integration_dist_tp4
- tests/compile/test_basic_correctness
- examples/offline_inference/rlhf.py
- examples/offline_inference/rlhf_colocate.py
- tests/examples/offline_inference/data_parallel.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/test_internal_lb_dp.py
- tests/v1/test_hybrid_lb_dp.py
- tests/v1/engine/test_engine_core_client.py
commands:
# test with tp=2 and external_dp=2
- VLLM_USE_V1=0 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
@ -172,16 +151,12 @@ steps:
# test with tp=2 and pp=2
- PP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with internal dp
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
- python3 ../examples/offline_inference/data_parallel.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_internal_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_hybrid_lb_dp.py
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
- pytest -v -s distributed/test_pynccl.py
- pytest -v -s distributed/test_events.py
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
# TODO: create a dedicated test section for multi-GPU example tests
# when we have multiple distributed example tests
- pushd ../examples/offline_inference
@ -189,25 +164,8 @@ steps:
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
- popd
- label: EPLB Algorithm Test
working_dir: "/vllm-workspace/tests"
source_file_dependencies:
- vllm/distributed/eplb
- tests/distributed/test_eplb_algo.py
commands:
- pytest -v -s distributed/test_eplb_algo.py
- label: EPLB Execution Test # 5min
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
- vllm/distributed/eplb
- tests/distributed/test_eplb_execute.py
commands:
- pytest -v -s distributed/test_eplb_execute.py
- label: Metrics, Tracing Test # 10min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
num_gpus: 2
source_file_dependencies:
- vllm/
@ -215,18 +173,13 @@ steps:
- tests/tracing
commands:
- pytest -v -s metrics
- "pip install \
'opentelemetry-sdk>=1.26.0' \
'opentelemetry-api>=1.26.0' \
'opentelemetry-exporter-otlp>=1.26.0' \
'opentelemetry-semantic-conventions-ai>=0.4.1'"
- pytest -v -s tracing
##### fast check tests #####
##### 1 GPU test #####
- label: Regression Test # 5min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/test_regression
@ -236,7 +189,7 @@ steps:
working_dir: "/vllm-workspace/tests" # optional
- label: Engine Test # 10min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/engine
@ -244,9 +197,8 @@ steps:
- tests/test_sequence
- tests/test_config
- tests/test_logger
- tests/test_vllm_port
commands:
- pytest -v -s engine test_sequence.py test_config.py test_logger.py test_vllm_port.py
- pytest -v -s engine test_sequence.py test_config.py test_logger.py
# OOM in the CI unless we run this separately
- pytest -v -s tokenization
@ -265,16 +217,14 @@ steps:
- pytest -v -s v1/structured_output
- pytest -v -s v1/spec_decode
- pytest -v -s v1/kv_connector/unit
- pytest -v -s v1/metrics
- pytest -v -s v1/test_serial_utils.py
- pytest -v -s v1/test_utils.py
- pytest -v -s v1/test_oracle.py
- pytest -v -s v1/test_metrics_reader.py
# TODO: accuracy does not match, whether setting
# VLLM_USE_FLASHINFER_SAMPLER or not on H100.
- pytest -v -s v1/e2e
# Integration test for streaming correctness (requires special branch).
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
- pip install -U git+https://github.com/robertgshaw2-neuralmagic/lm-evaluation-harness.git@streaming-api
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
- label: Examples Test # 25min
@ -292,9 +242,9 @@ steps:
- python3 offline_inference/llm_engine_example.py
- python3 offline_inference/audio_language.py --seed 0
- python3 offline_inference/vision_language.py --seed 0
- python3 offline_inference/vision_language_pooling.py --seed 0
- python3 offline_inference/vision_language_embedding.py --seed 0
- python3 offline_inference/vision_language_multi_image.py --seed 0
- VLLM_USE_V1=0 python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- VLLM_USE_V1=0 python3 other/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 other/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference/encoder_decoder.py
- python3 offline_inference/encoder_decoder_multimodal.py --model-type whisper --seed 0
- python3 offline_inference/basic/classify.py
@ -303,22 +253,13 @@ steps:
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
- label: Prefix Caching Test # 9min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/prefix_caching
commands:
- pytest -v -s prefix_caching
- label: Platform Tests (CUDA)
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/cuda
commands:
- pytest -v -s cuda/test_cuda_context.py
- label: Samplers Test # 36min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
@ -330,6 +271,28 @@ steps:
- pytest -v -s samplers
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
- label: LogitsProcessor Test # 5min
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/model_executor/layers
- vllm/model_executor/guided_decoding
- tests/test_logits_processor
- tests/model_executor/test_guided_processors
commands:
- pytest -v -s test_logits_processor.py
- pytest -v -s model_executor/test_guided_processors.py
- label: Speculative decoding tests # 40min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/spec_decode
- tests/spec_decode
- vllm/model_executor/models/eagle.py
commands:
- pytest -v -s spec_decode/e2e/test_multistep_correctness.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py --ignore=spec_decode/e2e/test_mtp_correctness.py
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
- label: LoRA Test %N # 15min each
mirror_hardwares: [amdexperimental]
source_file_dependencies:
@ -339,7 +302,7 @@ steps:
parallelism: 4
- label: PyTorch Compilation Unit Tests
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
@ -347,14 +310,11 @@ steps:
commands:
- pytest -v -s compile/test_pass_manager.py
- pytest -v -s compile/test_fusion.py
- pytest -v -s compile/test_fusion_attn.py
- pytest -v -s compile/test_silu_mul_quant_fusion.py
- pytest -v -s compile/test_sequence_parallelism.py
- pytest -v -s compile/test_async_tp.py
- pytest -v -s compile/test_fusion_all_reduce.py
- label: PyTorch Fullgraph Smoke Test # 9min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
@ -364,10 +324,9 @@ steps:
# these tests need to be separated, cannot combine
- pytest -v -s compile/piecewise/test_simple.py
- pytest -v -s compile/piecewise/test_toy_llama.py
- pytest -v -s compile/piecewise/test_full_cudagraph.py
- label: PyTorch Fullgraph Test # 18min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
@ -376,7 +335,7 @@ steps:
- pytest -v -s compile/test_full_graph.py
- label: Kernels Core Operation Test
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- csrc/
- tests/kernels/core
@ -384,7 +343,7 @@ steps:
- pytest -v -s kernels/core
- label: Kernels Attention Test %N
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- csrc/attention/
- vllm/attention
@ -395,24 +354,23 @@ steps:
parallelism: 2
- label: Kernels Quantization Test %N
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- csrc/quantization/
- vllm/model_executor/layers/quantization
- tests/kernels/quantization
commands:
- pytest -v -s kernels/quantization --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
- pytest -v -s kernels/quantization --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels MoE Test %N
- label: Kernels MoE Test
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/moe/
- tests/kernels/moe
- vllm/model_executor/layers/fused_moe/
commands:
- pytest -v -s kernels/moe --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- pytest -v -s kernels/moe
- label: Kernels Mamba Test
mirror_hardwares: [amdexperimental]
@ -423,29 +381,18 @@ steps:
- pytest -v -s kernels/mamba
- label: Tensorizer Test # 11min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
soft_fail: true
source_file_dependencies:
- vllm/model_executor/model_loader
- tests/tensorizer_loader
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
commands:
- apt-get update && apt-get install -y curl libsodium23
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s tensorizer_loader
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
- label: Model Executor Test
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor
- tests/model_executor
commands:
- apt-get update && apt-get install -y curl libsodium23
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s model_executor
- label: Benchmarks # 9min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
working_dir: "/vllm-workspace/.buildkite"
source_file_dependencies:
- benchmarks/
@ -453,7 +400,7 @@ steps:
- bash scripts/run-benchmarks.sh
- label: Benchmarks CLI Test # 10min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/benchmarks/
@ -467,9 +414,6 @@ steps:
- vllm/model_executor/layers/quantization
- tests/quantization
commands:
# temporary install here since we need nightly, will move to requirements/test.in
# after torchao 0.12 release
- pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
- label: LM Eval Small Models # 53min
@ -513,7 +457,7 @@ steps:
##### models test #####
- label: Basic Models Test # 24min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
@ -523,7 +467,10 @@ steps:
- pytest -v -s models/test_registry.py
- pytest -v -s models/test_utils.py
- pytest -v -s models/test_vision.py
- pytest -v -s models/test_initialization.py
# V1 Test: https://github.com/vllm-project/vllm/issues/14531
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'llama4'
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'plamo2'
- label: Language Models Test (Standard)
mirror_hardwares: [amdexperimental]
@ -532,41 +479,21 @@ steps:
- vllm/
- tests/models/language
commands:
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
- pip freeze | grep -E 'torch'
- pytest -v -s models/language -m core_model
- label: Language Models Test (Hybrid) # 35 min
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/models/language/generation
commands:
# Install fast path packages for testing against transformers
# Note: also needed to run plamo2 model in vLLM
- uv pip install --system --no-build-isolation 'git+https://github.com/state-spaces/mamba@v2.2.5'
- uv pip install --system --no-build-isolation 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.2'
- pytest -v -s models/language/generation -m hybrid_model
- label: Language Models Test (Extended Generation) # 1hr20min
- label: Language Models Test (Extended)
mirror_hardwares: [amdexperimental]
optional: true
source_file_dependencies:
- vllm/
- tests/models/language/generation
- tests/models/language
commands:
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
- pytest -v -s models/language/generation -m '(not core_model) and (not hybrid_model)'
- label: Language Models Test (Extended Pooling) # 36min
mirror_hardwares: [amdexperimental]
optional: true
source_file_dependencies:
- vllm/
- tests/models/language/pooling
commands:
- pytest -v -s models/language/pooling -m 'not core_model'
- pytest -v -s models/language -m 'not core_model'
- label: Multi-Modal Models Test (Standard)
mirror_hardwares: [amdexperimental]
@ -578,8 +505,7 @@ steps:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pip freeze | grep -E 'torch'
- pytest -v -s models/multimodal/processing
- pytest -v -s --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/test_tensor_schema.py models/multimodal -m core_model
- pytest -v -s models/multimodal/test_tensor_schema.py -m core_model # Needs mp_method="spawn"
- pytest -v -s --ignore models/multimodal/generation/test_whisper.py models/multimodal -m core_model
- cd .. && pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
- label: Multi-Modal Models Test (Extended) 1
@ -603,7 +529,7 @@ steps:
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=0) and not core_model'
- label: Multi-Modal Models Test (Extended) 3
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
optional: true
source_file_dependencies:
- vllm/
@ -613,7 +539,7 @@ steps:
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=1) and not core_model'
- label: Quantized Models Test
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/model_executor/layers/quantization
- tests/models/quantization
@ -622,7 +548,7 @@ steps:
# This test is used only in PR development phase to test individual models and should never run on main
- label: Custom Models Test
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
optional: true
commands:
- echo 'Testing custom models...'
@ -630,52 +556,11 @@ steps:
# e.g. pytest -v -s models/encoder_decoder/vision_language/test_mllama.py
# *To avoid merge conflicts, remember to REMOVE (not just comment out) them before merging the PR*
- label: Transformers Nightly Models Test
working_dir: "/vllm-workspace/"
optional: true
commands:
- pip install --upgrade git+https://github.com/huggingface/transformers
- pytest -v -s tests/models/test_initialization.py
- pytest -v -s tests/models/multimodal/processing/
- pytest -v -s tests/models/multimodal/test_mapping.py
- python3 examples/offline_inference/basic/chat.py
- python3 examples/offline_inference/audio_language.py --model-type whisper
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
- label: Blackwell Test
working_dir: "/vllm-workspace/"
gpu: b200
# optional: true
source_file_dependencies:
- csrc/quantization/fp4/
- csrc/attention/mla/
- csrc/quantization/cutlass_w8a8/moe/
- vllm/model_executor/layers/fused_moe/cutlass_moe.py
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/compilation/fusion.py
commands:
- nvidia-smi
- python3 examples/offline_inference/basic/chat.py
# Attention
# num_heads2 broken by https://github.com/flashinfer-ai/flashinfer/issues/1353
- pytest -v -s tests/kernels/attention/test_flashinfer.py -k 'not num_heads2'
- pytest -v -s tests/kernels/attention/test_flashinfer_trtllm_attention.py
- pytest -v -s tests/kernels/test_cutlass_mla_decode.py
# Quantization
- pytest -v -s tests/kernels/quantization/test_cutlass_scaled_mm.py -k 'fp8'
- pytest -v -s tests/kernels/quantization/test_nvfp4_quant.py
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
# Fusion
- pytest -v -s tests/compile/test_fusion_all_reduce.py
##### 1 GPU test #####
##### multi gpus test #####
- label: Distributed Comm Ops Test # 7min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
@ -696,18 +581,13 @@ steps:
- vllm/executor/
- vllm/model_executor/models/
- tests/distributed/
- tests/examples/offline_inference/data_parallel.py
commands:
- # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep 'Same node test passed'
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=0 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_multi_node_assignment.py
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py
- # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep 'Same node test passed'
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
- label: Distributed Tests (2 GPUs) # 40min
mirror_hardwares: [amdexperimental]
@ -725,13 +605,9 @@ steps:
- vllm/worker/model_runner.py
- entrypoints/llm/test_collective_rpc.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/entrypoints/openai/test_multi_api_servers.py
- vllm/v1/engine/
commands:
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
- pytest -v -s entrypoints/llm/test_collective_rpc.py
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
@ -745,9 +621,10 @@ steps:
- pytest -v -s distributed/test_sequence_parallel.py
# this test fails consistently.
# TODO: investigate and fix
# - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/test_disagg.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s models/multimodal/generation/test_maverick.py
- label: Plugin Tests (2 GPUs) # 40min
mirror_hardwares: [amdexperimental]
@ -770,11 +647,32 @@ steps:
- pytest -v -s models/test_oot_registration.py # it needs a clean process
- pytest -v -s plugins/lora_resolvers # unit tests for in-tree lora resolver plugins
- label: Pipeline Parallelism Test # 45min
- label: Multi-step Tests (4 GPUs) # 36min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
- vllm/model_executor/layers/sampler.py
- vllm/sequence.py
- vllm/worker/worker_base.py
- vllm/worker/worker.py
- vllm/worker/multi_step_worker.py
- vllm/worker/model_runner_base.py
- vllm/worker/model_runner.py
- vllm/worker/multi_step_model_runner.py
- vllm/engine
- tests/multi_step
commands:
# this test is quite flaky
# TODO: investigate and fix.
# - pytest -v -s multi_step/test_correctness_async_llm.py
- pytest -v -s multi_step/test_correctness_llm.py
- label: Pipeline Parallelism Test # 45min
mirror_hardwares: [amdexperimental, amdproduction]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
- vllm/distributed/
- vllm/engine/
- vllm/executor/
@ -785,7 +683,7 @@ steps:
- pytest -v -s distributed/test_pipeline_parallel.py
- label: LoRA TP Test (Distributed)
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
num_gpus: 4
source_file_dependencies:
- vllm/lora
@ -798,7 +696,6 @@ steps:
# requires multi-GPU testing for validation.
- pytest -v -s -x lora/test_chatglm3_tp.py
- pytest -v -s -x lora/test_llama_tp.py
- pytest -v -s -x lora/test_multi_loras_with_tp.py
- label: Weight Loading Multiple GPU Test # 33min
@ -812,7 +709,7 @@ steps:
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models.txt
- label: Weight Loading Multiple GPU Test - Large Models # optional
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
gpu: a100

View File

@ -1,6 +0,0 @@
# https://developers.google.com/gemini-code-assist/docs/customize-gemini-behavior-github
have_fun: false # Just review the code
code_review:
comment_severity_threshold: HIGH # Reduce quantity of comments
pull_request_opened:
summary: false # Don't summarize the PR in a separate comment

60
.github/CODEOWNERS vendored
View File

@ -9,22 +9,15 @@
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth
/vllm/model_executor/guided_decoding @mgoin @russellb
/vllm/multimodal @DarkLight1337 @ywang96
/vllm/vllm_flash_attn @LucasWilkinson
/vllm/lora @jeejeelee
/vllm/reasoning @aarnphm
/vllm/entrypoints @aarnphm
/vllm/compilation @zou3519 @youkaichao @ProExpertProg
CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# Any change to the VllmConfig changes can have a large user-facing impact,
# so spam a lot of people
/vllm/config @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg
CMakeLists.txt @tlrmchlsmth
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
/vllm/v1/structured_output @mgoin @russellb @aarnphm
/vllm/v1/structured_output @mgoin @russellb
# Test ownership
/.buildkite/lm-eval-harness @mgoin @simon-mo
@ -33,42 +26,17 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/distributed/test_multi_node_assignment.py @youkaichao
/tests/distributed/test_pipeline_parallel.py @youkaichao
/tests/distributed/test_same_node.py @youkaichao
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo @aarnphm
/tests/kernels @tlrmchlsmth @WoosukKwon @yewentao256
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo
/tests/entrypoints/llm/test_guided_generate.py @mgoin @russellb
/tests/kernels @tlrmchlsmth @WoosukKwon
/tests/model_executor/test_guided_processors.py @mgoin @russellb
/tests/models @DarkLight1337 @ywang96
/tests/multi_step @alexm-redhat @comaniac
/tests/multimodal @DarkLight1337 @ywang96
/tests/prefix_caching @comaniac @KuntaiDu
/tests/quantization @mgoin @robertgshaw2-redhat @yewentao256
/tests/quantization @mgoin @robertgshaw2-redhat
/tests/spec_decode @njhill @LiuXiaoxuanPKU
/tests/test_inputs.py @DarkLight1337 @ywang96
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
/tests/v1/structured_output @mgoin @russellb @aarnphm
/tests/weight_loading @mgoin @youkaichao @yewentao256
/tests/lora @jeejeelee
# Docs
/docs @hmellor
mkdocs.yaml @hmellor
# CPU
/vllm/v1/worker/^cpu @bigPYJ1151
/csrc/cpu @bigPYJ1151
/vllm/platforms/cpu.py @bigPYJ1151
/cmake/cpu_extension.cmake @bigPYJ1151
/docker/Dockerfile.cpu @bigPYJ1151
# Intel GPU
/vllm/v1/worker/^xpu @jikunshang
/vllm/platforms/xpu.py @jikunshang
/docker/Dockerfile.xpu @jikunshang
# Qwen-specific files
/vllm/attention/backends/dual_chunk_flash_attn.py @sighingnow
/vllm/model_executor/models/qwen* @sighingnow
# Mistral-specific files
/vllm/model_executor/models/mistral*.py @patrickvonplaten
/vllm/model_executor/models/mixtral*.py @patrickvonplaten
/vllm/model_executor/models/voxtral*.py @patrickvonplaten
/vllm/model_executor/models/pixtral*.py @patrickvonplaten
/vllm/transformers_utils/configs/mistral.py @patrickvonplaten
/vllm/transformers_utils/tokenizers/mistral.py @patrickvonplaten
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb
/tests/v1/structured_output @mgoin @russellb
/tests/weight_loading @mgoin @youkaichao

View File

@ -8,16 +8,6 @@ body:
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: markdown
attributes:
value: |
⚠️ **SECURITY WARNING:** Please review any text you paste to ensure it does not contain sensitive information such as:
- API tokens or keys (e.g., Hugging Face tokens, OpenAI API keys)
- Passwords or authentication credentials
- Private URLs or endpoints
- Personal or confidential data
Consider redacting or replacing sensitive values with placeholders like `<YOUR_TOKEN_HERE>` when sharing configuration or code examples.
- type: textarea
attributes:
label: Your current environment
@ -91,14 +81,14 @@ body:
required: true
- type: markdown
attributes:
value: |
⚠️ Please separate bugs of `transformers` implementation or usage from bugs of `vllm`. If you think anything is wrong with the model's output:
value: >
⚠️ Please separate bugs of `transformers` implementation or usage from bugs of `vllm`. If you think anything is wrong with the models' output:
- Try the counterpart of `transformers` first. If the error appears, please go to [their issues](https://github.com/huggingface/transformers/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc).
- If the error only appears in vllm, please provide the detailed script of how you run `transformers` and `vllm`, also highlight the difference and what you expect.
Thanks for reporting 🙏!
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:

View File

@ -1,69 +0,0 @@
name: 🧪 CI failure report
description: Report a failing test.
title: "[CI Failure]: "
labels: ["ci-failure"]
body:
- type: markdown
attributes:
value: >
#### Include the name of the failing Buildkite step and test file in the title.
- type: input
attributes:
label: Name of failing test
description: |
Paste in the fully-qualified name of the failing test from the logs.
placeholder: |
`path/to/test_file.py::test_name[params]`
validations:
required: true
- type: checkboxes
attributes:
label: Basic information
description: Select all items that apply to the failing test.
options:
- label: Flaky test
- label: Can reproduce locally
- label: Caused by external libraries (e.g. bug in `transformers`)
- type: textarea
attributes:
label: 🧪 Describe the failing test
description: |
Please provide a clear and concise description of the failing test.
placeholder: |
A clear and concise description of the failing test.
```
The error message you got, with the full traceback and the error logs with [dump_input.py:##] if present.
```
validations:
required: true
- type: textarea
attributes:
label: 📝 History of failing test
description: |
Since when did the test start to fail?
You can look up its history via [Buildkite Test Suites](https://buildkite.com/organizations/vllm/analytics/suites/ci-1/tests?branch=main).
If you have time, identify the PR that caused the test to fail on main. You can do so via the following methods:
- Use Buildkite Test Suites to find the PR where the test failure first occurred, and reproduce the failure locally.
- Run [`git bisect`](https://git-scm.com/docs/git-bisect) locally.
- Manually unblock Buildkite steps for suspected PRs on main and check the results. (authorized users only)
placeholder: |
Approximate timeline and/or problematic PRs
A link to the Buildkite analytics of the failing test (if available)
validations:
required: true
- type: textarea
attributes:
label: CC List.
description: >
The list of people you want to CC. Usually, this includes those who worked on the PR that failed the test.
- type: markdown
attributes:
value: >
Thanks for reporting 🙏!

View File

@ -46,7 +46,7 @@ body:
- type: markdown
attributes:
value: >
Thanks for contributing 🎉! The vLLM core team hosts a biweekly RFC review session at 9:30AM Pacific Time, while most RFCs can be discussed online, you can optionally sign up for a slot to discuss your RFC online [here](https://docs.google.com/document/d/1CiLVBZeIVfR7_PNAKVSusxpceywkoOOB78qoWqHvSZc/edit).
Thanks for contributing 🎉!
- type: checkboxes
id: askllm
attributes:

View File

@ -1,22 +1,6 @@
<!-- markdownlint-disable -->
PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS (AT THE BOTTOM) HAVE BEEN CONSIDERED.
FILL IN THE PR DESCRIPTION HERE
## Purpose
FIX #xxxx (*link existing issues this PR will resolve*)
## Test Plan
## Test Result
## (Optional) Documentation Update
---
<details>
<summary> Essential Elements of an Effective PR Description Checklist </summary>
- [ ] The purpose of the PR, such as "Fix some issue (link existing issues this PR will resolve)".
- [ ] The test plan, such as providing test command.
- [ ] The test results, such as pasting the results comparison before and after, or e2e results
- [ ] (Optional) The necessary documentation update, such as updating `supported_models.md` and `examples` for a new model.
</details>
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing>** (anything written below this line will be removed by GitHub Actions)
<!--- pyml disable-next-line no-emphasis-as-heading -->
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing/overview.html>** (anything written below this line will be removed by GitHub Actions)

123
.github/mergify.yml vendored
View File

@ -27,22 +27,6 @@ pull_request_rules:
add:
- ci/build
- name: label-deepseek
description: Automatically apply deepseek label
conditions:
- or:
- files~=^examples/.*deepseek.*\.py
- files~=^tests/.*deepseek.*\.py
- files~=^vllm/entrypoints/openai/tool_parsers/.*deepseek.*\.py
- files~=^vllm/model_executor/models/.*deepseek.*\.py
- files~=^vllm/reasoning/.*deepseek.*\.py
- files~=^vllm/transformers_utils/.*deepseek.*\.py
- title~=(?i)DeepSeek
actions:
label:
add:
- deepseek
- name: label-frontend
description: Automatically apply frontend label
conditions:
@ -52,21 +36,6 @@ pull_request_rules:
add:
- frontend
- name: label-llama
description: Automatically apply llama label
conditions:
- or:
- files~=^examples/.*llama.*\.py
- files~=^tests/.*llama.*\.py
- files~=^vllm/entrypoints/openai/tool_parsers/llama.*\.py
- files~=^vllm/model_executor/models/.*llama.*\.py
- files~=^vllm/transformers_utils/configs/.*llama.*\.py
- title~=(?i)llama
actions:
label:
add:
- llama
- name: label-multi-modality
description: Automatically apply multi-modality label
conditions:
@ -74,84 +43,14 @@ pull_request_rules:
- files~=^vllm/multimodal/
- files~=^tests/multimodal/
- files~=^tests/models/multimodal/
- files~=^tests/models/*/audio_language/
- files~=^tests/models/*/vision_language/
- files=tests/models/test_vision.py
actions:
label:
add:
- multi-modality
- name: label-new-model
description: Automatically apply new-model label
conditions:
- and:
- files~=^vllm/model_executor/models/
- files=vllm/model_executor/models/registry.py
actions:
label:
add:
- new-model
- name: label-performance
description: Automatically apply performance label
conditions:
- or:
- files~=^benchmarks/
- files~=^vllm/benchmarks/
- files~=^tests/benchmarks/
- files~=^\.buildkite/nightly-benchmarks/
actions:
label:
add:
- performance
- name: label-qwen
description: Automatically apply qwen label
conditions:
- or:
- files~=^examples/.*qwen.*\.py
- files~=^tests/.*qwen.*\.py
- files~=^vllm/model_executor/models/.*qwen.*\.py
- files~=^vllm/reasoning/.*qwen.*\.py
- title~=(?i)Qwen
actions:
label:
add:
- qwen
- name: label-gpt-oss
description: Automatically apply gpt-oss label
conditions:
- or:
- files~=^examples/.*gpt[-_]?oss.*\.py
- files~=^tests/.*gpt[-_]?oss.*\.py
- files~=^vllm/model_executor/models/.*gpt[-_]?oss.*\.py
- files~=^vllm/model_executor/layers/.*gpt[-_]?oss.*\.py
- title~=(?i)gpt[-_]?oss
actions:
label:
add:
- gpt-oss
- name: label-rocm
description: Automatically apply rocm label
conditions:
- or:
- files~=^csrc/rocm/
- files~=^docker/Dockerfile.rocm
- files~=^requirements/rocm.*\.txt
- files~=^vllm/attention/backends/rocm.*\.py
- files~=^vllm/attention/ops/rocm.*\.py
- files~=^vllm/model_executor/layers/fused_moe/rocm.*\.py
- files~=^vllm/v1/attention/backends/mla/rocm.*\.py
- files~=^tests/kernels/.*_rocm.*\.py
- files=vllm/platforms/rocm.py
- title~=(?i)AMD
- title~=(?i)ROCm
actions:
label:
add:
- rocm
- name: label-structured-output
description: Automatically apply structured-output label
conditions:
@ -159,10 +58,13 @@ pull_request_rules:
- files~=^benchmarks/structured_schemas/
- files=benchmarks/benchmark_serving_structured_output.py
- files=benchmarks/run_structured_output_benchmark.sh
- files=docs/features/structured_outputs.md
- files=docs/source/features/structured_outputs.md
- files=examples/offline_inference/structured_outputs.py
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
- files~=^vllm/model_executor/guided_decoding/
- files=tests/model_executor/test_guided_processors.py
- files=tests/entrypoints/llm/test_guided_generate.py
- files~=^tests/v1/structured_output/
- files=tests/v1/entrypoints/llm/test_guided_generate.py
- files~=^vllm/v1/structured_output/
@ -175,12 +77,9 @@ pull_request_rules:
description: Automatically apply speculative-decoding label
conditions:
- or:
- files~=^vllm/v1/spec_decode/
- files~=^tests/v1/spec_decode/
- files~=^examples/.*(spec_decode|mlpspeculator|eagle|speculation).*\.py
- files~=^vllm/model_executor/models/.*eagle.*\.py
- files=vllm/model_executor/models/mlp_speculator.py
- files~=^vllm/transformers_utils/configs/(eagle|medusa|mlp_speculator)\.py
- files~=^vllm/spec_decode/
- files=vllm/model_executor/layers/spec_decode_base_sampler.py
- files~=^tests/spec_decode/
actions:
label:
add:
@ -236,7 +135,9 @@ pull_request_rules:
- files~=^tests/entrypoints/openai/tool_parsers/
- files=tests/entrypoints/openai/test_chat_with_tool_reasoning.py
- files~=^vllm/entrypoints/openai/tool_parsers/
- files=docs/features/tool_calling.md
- files=docs/source/features/tool_calling.md
- files=docs/source/getting_started/examples/openai_chat_completion_client_with_tools.md
- files=docs/source/getting_started/examples/chat_with_tools.md
- files~=^examples/tool_chat_*
- files=examples/offline_inference/chat_with_tools.py
- files=examples/online_serving/openai_chat_completion_client_with_tools_required.py

View File

@ -15,18 +15,18 @@ NEW=/tmp/new_pr_body.txt
gh pr view --json body --template "{{.body}}" "${PR_NUMBER}" > "${OLD}"
cp "${OLD}" "${NEW}"
# Remove markdown comments (like the <!-- markdownlint-disable --> at the start)
sed -i '/<!--.*-->$/d' "${NEW}"
# Remove "FIX #xxxx (*link existing issues this PR will resolve*)"
sed -i '/FIX #xxxx.*$/d' "${NEW}"
# Remove "PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS (AT THE BOTTOM) HAVE BEEN CONSIDERED."
sed -i '/PLEASE FILL IN THE PR DESCRIPTION HERE.*$/d' "${NEW}"
# Remove "FILL IN THE PR DESCRIPTION HERE"
sed -i '/FILL IN THE PR DESCRIPTION HERE/d' "${NEW}"
# Remove all lines after and including "**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**"
sed -i '/\*\*BEFORE SUBMITTING, PLEASE READ.*\*\*/,$d' "${NEW}"
# Remove HTML <details> section that includes <summary> text of "PR Checklist (Click to Expand)"
python3 - <<EOF
import regex as re
import re
with open("${NEW}", "r") as file:
content = file.read()

View File

@ -20,12 +20,7 @@ jobs:
with:
python-version: '3.12'
- name: Install Python dependencies
run: |
python3 -m pip install --upgrade pip
python3 -m pip install regex
- name: Update PR description
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: bash .github/scripts/cleanup_pr_body.sh "${{ github.event.number }}"
run: .github/scripts/cleanup_pr_body.sh "${{ github.event.number }}"

View File

@ -2,10 +2,6 @@ name: Lint and Deploy Charts
on: pull_request
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
permissions:
contents: read
@ -72,7 +68,7 @@ jobs:
export AWS_ACCESS_KEY_ID=minioadmin
export AWS_SECRET_ACCESS_KEY=minioadmin
sleep 30 && kubectl -n ns-vllm logs -f "$(kubectl -n ns-vllm get pods | awk '/deployment/ {print $1;exit}')" &
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set image.env[2].name=VLLM_CPU_CI_ENV --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string image.env[2].value="1" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
- name: curl test
run: |

View File

@ -1,17 +0,0 @@
{
"problemMatcher": [
{
"owner": "markdownlint",
"pattern": [
{
"regexp": "^([^:]*):(\\d+):?(\\d+)?\\s([\\w-\\/]*)\\s(.*)$",
"file": 1,
"line": 2,
"column": 3,
"code": 4,
"message": 5
}
]
}
]
}

View File

@ -5,10 +5,6 @@ on:
push:
branches: [main]
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: ${{ github.event_name == 'pull_request' }}
permissions:
contents: read
@ -21,7 +17,6 @@ jobs:
with:
python-version: "3.12"
- run: echo "::add-matcher::.github/workflows/matchers/actionlint.json"
- run: echo "::add-matcher::.github/workflows/matchers/markdownlint.json"
- run: echo "::add-matcher::.github/workflows/matchers/mypy.json"
- uses: pre-commit/action@2c7b3805fd2a0fd8c1884dcaebf91fc102a13ecd # v3.0.1
with:

View File

@ -15,6 +15,7 @@ $python_executable -m pip install -r requirements/build.txt -r requirements/cuda
export MAX_JOBS=1
# Make sure release wheels are built for the following architectures
export TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX"
export VLLM_FA_CMAKE_GPU_ARCHES="80-real;90-real"
bash tools/check_repo.sh

13
.gitignore vendored
View File

@ -4,9 +4,6 @@
# vllm-flash-attn built from source
vllm/vllm_flash_attn/*
# triton jit
.triton
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
@ -80,6 +77,11 @@ instance/
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
docs/source/getting_started/examples/
docs/source/api/vllm
# PyBuilder
.pybuilder/
target/
@ -149,9 +151,6 @@ venv.bak/
# mkdocs documentation
/site
docs/argparse
docs/examples/*
!docs/examples/README.md
# mypy
.mypy_cache/
@ -205,5 +204,5 @@ benchmarks/**/*.json
actionlint
shellcheck*/
# Ignore moe/marlin_moe gen code
# Ingore moe/marlin_moe gen code
csrc/moe/marlin_moe_wna16/kernel_*

View File

@ -1,13 +0,0 @@
MD007:
indent: 4
MD013: false
MD024:
siblings_only: true
MD033: false
MD042: false
MD045: false
MD046: false
MD051: false
MD052: false
MD053: false
MD059: false

View File

@ -11,19 +11,19 @@ repos:
hooks:
- id: yapf
args: [--in-place, --verbose]
# Keep the same list from yapfignore here to avoid yapf failing without any inputs
exclude: '(.buildkite|benchmarks|build|examples)/.*'
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.11.7
hooks:
- id: ruff
args: [--output-format, github, --fix]
- id: ruff-format
files: ^(.buildkite|benchmarks|examples)/.*
- repo: https://github.com/crate-ci/typos
rev: v1.34.0
files: ^(.buildkite|benchmarks)/.*
- repo: https://github.com/codespell-project/codespell
rev: v2.4.1
hooks:
- id: typos
- id: codespell
additional_dependencies: ['tomli']
args: ['--toml', 'pyproject.toml']
- repo: https://github.com/PyCQA/isort
rev: 6.0.1
hooks:
@ -35,12 +35,11 @@ repos:
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))|vllm/third_party/.*'
types_or: [c++, cuda]
args: [--style=file, --verbose]
- repo: https://github.com/igorshubovych/markdownlint-cli
rev: v0.45.0
- repo: https://github.com/jackdewinter/pymarkdown
rev: v0.9.29
hooks:
- id: markdownlint
exclude: '.*\.inc\.md'
stages: [manual] # Only run in CI
- id: pymarkdown
args: [fix]
- repo: https://github.com/rhysd/actionlint
rev: v1.7.7
hooks:
@ -53,17 +52,12 @@ repos:
files: ^requirements/test\.(in|txt)$
- repo: local
hooks:
- id: format-torch-nightly-test
name: reformat nightly_torch_test.txt to be in sync with test.in
language: python
entry: python tools/generate_nightly_torch_test.py
files: ^requirements/test\.(in|txt)$
- id: mypy-local
name: Run mypy for local Python installation
entry: tools/mypy.sh 0 "local"
language: python
types: [python]
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests, pydantic]
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests]
stages: [pre-commit] # Don't run in CI
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.9
@ -120,11 +114,6 @@ repos:
entry: python tools/check_spdx_header.py
language: python
types: [python]
- id: check-root-lazy-imports
name: Check root lazy imports
entry: python tools/check_init_lazy_imports.py
language: python
types: [python]
- id: check-filenames
name: Check for spaces in all filenames
entry: bash
@ -138,39 +127,10 @@ repos:
name: Update Dockerfile dependency graph
entry: tools/update-dockerfile-graph.sh
language: script
- id: enforce-import-regex-instead-of-re
name: Enforce import regex as re
entry: python tools/enforce_regex_import.py
language: python
types: [python]
pass_filenames: false
additional_dependencies: [regex]
# forbid directly import triton
- id: forbid-direct-triton-import
name: "Forbid direct 'import triton'"
entry: python tools/check_triton_import.py
language: python
types: [python]
pass_filenames: false
additional_dependencies: [regex]
- id: check-pickle-imports
name: Prevent new pickle/cloudpickle imports
entry: python tools/check_pickle_imports.py
language: python
types: [python]
pass_filenames: false
additional_dependencies: [pathspec, regex]
- id: validate-config
name: Validate configuration has default values and that each field has a docstring
entry: python tools/validate_config.py
language: python
types: [python]
pass_filenames: true
files: vllm/config.py|tests/test_config.py|vllm/entrypoints/openai/cli_args.py
# Keep `suggestion` last
- id: suggestion
name: Suggestion
entry: bash -c 'echo "To bypass all the pre-commit hooks, add --no-verify to git commit. To skip a specific hook, prefix the commit command with SKIP=<hook-id>."'
entry: bash -c 'echo "To bypass pre-commit hooks, add --no-verify to git commit."'
language: system
verbose: true
pass_filenames: false

View File

@ -7,12 +7,13 @@ build:
os: ubuntu-22.04
tools:
python: "3.12"
jobs:
post_checkout:
- git fetch --unshallow || true
mkdocs:
configuration: mkdocs.yaml
sphinx:
configuration: docs/source/conf.py
fail_on_warning: true
# If using Sphinx, optionally build your docs in additional formats such as PDF
formats: []
# Optionally declare the Python requirements required to build your docs
python:

View File

@ -23,15 +23,15 @@ include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake)
# Suppress potential warnings about unused manually-specified variables
set(ignoreMe "${VLLM_PYTHON_PATH}")
# Prevent installation of dependencies (cutlass) by default.
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
#
# Supported python versions. These versions will be searched in order, the
# first match will be selected. These should be kept in sync with setup.py.
#
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12")
# Supported NVIDIA architectures.
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
@ -45,7 +45,7 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from docker/Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.7.1")
set(TORCH_SUPPORTED_VERSION_CUDA "2.7.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.7.0")
#
@ -79,15 +79,6 @@ endif()
#
find_package(Torch REQUIRED)
# Supported NVIDIA architectures.
# This check must happen after find_package(Torch) because that's when CMAKE_CUDA_COMPILER_VERSION gets defined
if(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8)
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
else()
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0")
endif()
#
# Forward the non-CUDA device extensions to external CMake scripts.
#
@ -171,6 +162,7 @@ if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
endif()
#
# Use FetchContent for C++ dependencies that are compiled as part of vLLM's build process.
# setup.py will override FETCHCONTENT_BASE_DIR to play nicely with sccache.
@ -181,6 +173,9 @@ include(FetchContent)
file(MAKE_DIRECTORY ${FETCHCONTENT_BASE_DIR}) # Ensure the directory exists
message(STATUS "FetchContent base directory: ${FETCHCONTENT_BASE_DIR}")
#
# Set rocm version dev int.
#
if(VLLM_GPU_LANG STREQUAL "HIP")
#
# Overriding the default -O set up by cmake, adding ggdb3 for the most verbose devug info
@ -188,6 +183,7 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
set(CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG "${CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG} -O0 -ggdb3")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O0 -ggdb3")
#
# Certain HIP functions are marked as [[nodiscard]], yet vllm ignores the result which generates
# a lot of warnings that always mask real issues. Suppressing until this is properly addressed.
@ -230,7 +226,6 @@ endif()
#
set(VLLM_EXT_SRC
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
"csrc/cache_kernels.cu"
"csrc/attention/paged_attention_v1.cu"
"csrc/attention/paged_attention_v2.cu"
@ -240,7 +235,6 @@ set(VLLM_EXT_SRC
"csrc/activation_kernels.cu"
"csrc/layernorm_kernels.cu"
"csrc/layernorm_quant_kernels.cu"
"csrc/sampler.cu"
"csrc/cuda_view.cu"
"csrc/quantization/gptq/q_gemm.cu"
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
@ -257,7 +251,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
set(CUTLASS_REVISION "v4.0.0" CACHE STRING "CUTLASS revision to use")
set(CUTLASS_REVISION "v3.9.2" CACHE STRING "CUTLASS revision to use")
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
@ -287,6 +281,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
FetchContent_MakeAvailable(cutlass)
list(APPEND VLLM_EXT_SRC
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
"csrc/quantization/aqlm/gemm_kernels.cu"
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/permute_cols.cu"
@ -296,8 +292,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu"
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
"csrc/cutlass_extensions/common.cpp"
"csrc/attention/mla/cutlass_mla_entry.cu"
"csrc/quantization/fp8/per_token_group_quant.cu")
"csrc/attention/mla/cutlass_mla_entry.cu")
set_gencode_flags_for_srcs(
SRCS "${VLLM_EXT_SRC}"
@ -307,7 +302,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
# are not supported by Machete yet.
# 9.0 for latest bf16 atomicAdd PTX
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.7;9.0+PTX" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
if (MARLIN_ARCHS)
#
@ -392,7 +387,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The cutlass_scaled_mm kernels for Hopper (c3x, i.e. CUTLASS 3.x) require
# CUDA 12.0 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND SCALED_MM_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm90.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_fp8.cu"
@ -408,7 +403,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND SCALED_MM_3X_ARCHS "${SCALED_MM_ARCHS}")
message(STATUS "Building scaled_mm_c3x_sm90 for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND SCALED_MM_ARCHS)
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_ARCHS)
message(STATUS "Not building scaled_mm_c3x_sm90 as CUDA Compiler version is "
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "
"later if you intend on running FP8 quantized models on "
@ -419,41 +414,10 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
# The cutlass_scaled_mm kernels for Geforce Blackwell SM120 (c3x, i.e. CUTLASS 3.x) require
# The cutlass_scaled_mm kernels for Blackwell (c3x, i.e. CUTLASS 3.x) require
# CUDA 12.8 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm120.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm120_fp8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm120_fp8.cu"
)
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SCALED_MM_SM120=1")
# Let scaled_mm_c2x know it doesn't need to build these arches
list(APPEND SCALED_MM_3X_ARCHS "${SCALED_MM_ARCHS}")
message(STATUS "Building scaled_mm_c3x_sm120 for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
message(STATUS "Not building scaled_mm_c3x_sm120 as CUDA Compiler version is "
"not >= 12.8, we recommend upgrading to CUDA 12.8 or "
"later if you intend on running FP8 quantized models on "
"Blackwell.")
else()
message(STATUS "Not building scaled_mm_c3x_120 as no compatible archs found "
"in CUDA target architectures")
endif()
endif()
# The cutlass_scaled_mm kernels for Blackwell SM100 (c3x, i.e. CUTLASS 3.x)
# require CUDA 12.8 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;12.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm100_fp8.cu"
@ -468,7 +432,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND SCALED_MM_3X_ARCHS "${SCALED_MM_ARCHS}")
message(STATUS "Building scaled_mm_c3x_sm100 for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND SCALED_MM_ARCHS)
message(STATUS "Not building scaled_mm_c3x_sm100 as CUDA Compiler version is "
"not >= 12.8, we recommend upgrading to CUDA 12.8 or "
"later if you intend on running FP8 quantized models on "
@ -484,7 +448,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# kernels for the remaining archs that are not already built for 3x.
# (Build 8.9 for FP8)
cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS
"7.5;8.0;8.7;8.9+PTX" "${CUDA_ARCHS}")
"7.5;8.0;8.9+PTX" "${CUDA_ARCHS}")
# subtract out the archs that are already built for 3x
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
if (SCALED_MM_2X_ARCHS)
@ -511,7 +475,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The 2:4 sparse kernels cutlass_scaled_sparse_mm and cutlass_compressor
# require CUDA 12.2 or later (and only work on Hopper).
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.2 AND SCALED_MM_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_ARCHS)
set(SRCS "csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
@ -520,7 +484,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SPARSE_SCALED_MM_C3X=1")
message(STATUS "Building sparse_scaled_mm_c3x for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.2 AND SCALED_MM_ARCHS)
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_ARCHS)
message(STATUS "Not building sparse_scaled_mm_c3x kernels as CUDA Compiler version is "
"not >= 12.2, we recommend upgrading to CUDA 12.2 or later "
"if you intend on running FP8 sparse quantized models on Hopper.")
@ -530,28 +494,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
# The nvfp4_scaled_mm_sm120 kernels for Geforce Blackwell SM120 require
# CUDA 12.8 or later
cuda_archs_loose_intersection(FP4_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_sm120_kernels.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${FP4_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_NVFP4_SM120=1")
message(STATUS "Building NVFP4 for archs: ${FP4_ARCHS}")
else()
message(STATUS "Not building NVFP4 as no compatible archs were found.")
# clear FP4_ARCHS
set(FP4_ARCHS)
endif()
# FP4 Archs and flags
cuda_archs_loose_intersection(FP4_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
"csrc/quantization/fp4/nvfp4_experts_quant.cu"
@ -561,8 +506,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
SRCS "${SRCS}"
CUDA_ARCHS "${FP4_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_NVFP4_SM100=1")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MOE_SM100=1")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_NVFP4=1")
message(STATUS "Building NVFP4 for archs: ${FP4_ARCHS}")
else()
message(STATUS "Not building NVFP4 as no compatible archs were found.")
@ -572,10 +516,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# CUTLASS MLA Archs and flags
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND MLA_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND MLA_ARCHS)
set(SRCS
"csrc/attention/mla/cutlass_mla_kernels.cu"
"csrc/attention/mla/sm100_cutlass_mla_kernel.cu")
"csrc/attention/mla/cutlass_mla_kernels.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${MLA_ARCHS}")
@ -593,12 +536,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# CUTLASS MoE kernels
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and ONLY works
# on Hopper). get_cutlass_(pplx_)moe_mm_data should only be compiled
# if it's possible to compile MoE kernels that use its output.
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a" "${CUDA_ARCHS}")
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and only works
# on Hopper). get_cutlass_moe_mm_data should only be compiled if it's possible
# to compile MoE kernels that use its output.
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm90.cu")
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu"
"csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
@ -612,66 +556,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"if you intend on running FP8 quantized MoE models on Hopper.")
else()
message(STATUS "Not building grouped_mm_c3x as no compatible archs found "
"in CUDA target architectures.")
endif()
endif()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm100.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MOE_SM100=1")
message(STATUS "Building grouped_mm_c3x for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
message(STATUS "Not building grouped_mm_c3x kernels as CUDA Compiler version is "
"not >= 12.8, we recommend upgrading to CUDA 12.8 or later "
"if you intend on running FP8 quantized MoE models on Blackwell.")
else()
message(STATUS "Not building grouped_mm_c3x as no compatible archs found "
"in CUDA target architectures.")
endif()
endif()
# moe_data.cu is used by all CUTLASS MoE kernels.
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${CUTLASS_MOE_DATA_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
message(STATUS "Building moe_data for archs: ${CUTLASS_MOE_DATA_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
message(STATUS "Not building moe_data as CUDA Compiler version is "
"not >= 12.3, we recommend upgrading to CUDA 12.3 or later "
"if you intend on running FP8 quantized MoE models on Hopper or Blackwell.")
else()
message(STATUS "Not building moe_data as no compatible archs found "
"in CUDA target architectures.")
endif()
endif()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/blockwise_scaled_group_mm_sm100.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MOE_SM100=1")
message(STATUS "Building blockwise_scaled_group_mm_sm100 for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
message(STATUS "Not building blockwise_scaled_group_mm_sm100 kernels as CUDA Compiler version is "
"not >= 12.8, we recommend upgrading to CUDA 12.8 or later "
"if you intend on running FP8 quantized MoE models on Blackwell.")
else()
message(STATUS "Not building blockwise_scaled_group_mm_sm100 as no compatible archs found "
"in CUDA target architectures")
endif()
endif()
@ -682,7 +566,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The machete kernels only work on hopper and require CUDA 12.0 or later.
# Only build Machete kernels if we are building for something compatible with sm90a
cuda_archs_loose_intersection(MACHETE_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND MACHETE_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND MACHETE_ARCHS)
#
# For the Machete kernels we automatically generate sources for various
# preselected input type pairs and schedules.
@ -734,7 +618,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
message(STATUS "Building Machete kernels for archs: ${MACHETE_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0
AND MACHETE_ARCHS)
message(STATUS "Not building Machete kernels as CUDA Compiler version is "
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "
@ -748,14 +632,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# if CUDA endif
endif()
if (VLLM_GPU_LANG STREQUAL "HIP")
# Add QuickReduce kernels
list(APPEND VLLM_EXT_SRC
"csrc/custom_quickreduce.cu"
)
# if ROCM endif
endif()
message(STATUS "Enabling C extension.")
define_gpu_extension_target(
_C
@ -788,14 +664,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_MOE_EXT_SRC "csrc/moe/moe_wna16.cu")
endif()
if(VLLM_GPU_LANG STREQUAL "CUDA")
set(MOE_PERMUTE_SRC
"csrc/moe/permute_unpermute_kernels/moe_permute_unpermute_kernel.cu"
"csrc/moe/moe_permute_unpermute_op.cu")
list(APPEND VLLM_MOE_EXT_SRC "${MOE_PERMUTE_SRC}")
endif()
set_gencode_flags_for_srcs(
SRCS "${VLLM_MOE_EXT_SRC}"
CUDA_ARCHS "${CUDA_ARCHS}")
@ -810,7 +678,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_MOE_EXT_SRC "${VLLM_MOE_WNA16_SRC}")
# 9.0 for latest bf16 atomicAdd PTX
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.7;9.0+PTX" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
if (MARLIN_MOE_ARCHS)
#
@ -864,6 +732,17 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
if(VLLM_GPU_LANG STREQUAL "CUDA")
set(MOE_PERMUTE_SRC
"csrc/moe/permute_unpermute_kernels/moe_permute_unpermute_kernel.cu"
"csrc/moe/moe_permute_unpermute_op.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_PERMUTE_SRC}"
CUDA_ARCHS "${MOE_PERMUTE_ARCHS}")
list(APPEND VLLM_MOE_EXT_SRC "${MOE_PERMUTE_SRC}")
endif()
message(STATUS "Enabling moe extension.")
define_gpu_extension_target(
_moe_C
@ -900,7 +779,5 @@ endif()
# For CUDA we also build and ship some external projects.
if (VLLM_GPU_LANG STREQUAL "CUDA")
include(cmake/external_projects/flashmla.cmake)
# vllm-flash-attn should be last as it overwrites some CMake functions
include(cmake/external_projects/vllm_flash_attn.cmake)
endif ()

View File

@ -1,3 +1,3 @@
# Contributing to vLLM
You may find information about contributing to vLLM on [docs.vllm.ai](https://docs.vllm.ai/en/latest/contributing).
You may find information about contributing to vLLM on [docs.vllm.ai](https://docs.vllm.ai/en/latest/contributing/overview.html).

View File

@ -1,8 +1,7 @@
<!-- markdownlint-disable MD001 MD041 -->
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/assets/logos/vllm-logo-text-dark.png">
<img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/assets/logos/vllm-logo-text-light.png" width=55%>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png">
<img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
</picture>
</p>
@ -17,16 +16,14 @@ Easy, fast, and cheap LLM serving for everyone
---
*Latest News* 🔥
- [2025/08] We hosted [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/dgkWg1WFpWGO2jCdTqQHxA) focusing on large-scale LLM deployment! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Pid6NSFLU43DZRi0EaTcPgXsAzDvbBqF) and the recording [here](https://www.chaspark.com/#/live/1166916873711665152).
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
- [2025/05] vLLM is now a hosted project under PyTorch Foundation! Please find the announcement [here](https://pytorch.org/blog/pytorch-foundation-welcomes-vllm/).
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
<details>
<summary>Previous News</summary>
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).
- [2025/03] We hosted [the East Coast vLLM Meetup](https://lu.ma/7mu4k4xx)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1NHiv8EUFF1NLd3fEYODm56nDmL26lEeXCaDgyDlTsRs/edit#slide=id.g31441846c39_0_0).
@ -49,7 +46,6 @@ Easy, fast, and cheap LLM serving for everyone
</details>
---
## About
vLLM is a fast and easy-to-use library for LLM inference and serving.
@ -62,27 +58,28 @@ vLLM is fast with:
- Efficient management of attention key and value memory with [**PagedAttention**](https://blog.vllm.ai/2023/06/20/vllm.html)
- Continuous batching of incoming requests
- Fast model execution with CUDA/HIP graph
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [AutoRound](https://arxiv.org/abs/2309.05516), INT4, INT8, and FP8
- Optimized CUDA kernels, including integration with FlashAttention and FlashInfer
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), INT4, INT8, and FP8.
- Optimized CUDA kernels, including integration with FlashAttention and FlashInfer.
- Speculative decoding
- Chunked prefill
**Performance benchmark**: We include a performance benchmark at the end of [our blog post](https://blog.vllm.ai/2024/09/05/perf-update.html). It compares the performance of vLLM against other LLM serving engines ([TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM), [SGLang](https://github.com/sgl-project/sglang) and [LMDeploy](https://github.com/InternLM/lmdeploy)). The implementation is under [nightly-benchmarks folder](.buildkite/nightly-benchmarks/) and you can [reproduce](https://github.com/vllm-project/vllm/issues/8176) this benchmark using our one-click runnable script.
vLLM is flexible and easy to use with:
- Seamless integration with popular Hugging Face models
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
- Tensor, pipeline, data and expert parallelism support for distributed inference
- Tensor parallelism and pipeline parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron.
- Prefix caching support
- Multi-LoRA support
vLLM seamlessly supports most popular open-source models on HuggingFace, including:
- Transformer-like LLMs (e.g., Llama)
- Mixture-of-Expert LLMs (e.g., Mixtral, Deepseek-V2 and V3)
- Embedding Models (e.g., E5-Mistral)
- Embedding Models (e.g. E5-Mistral)
- Multi-modal LLMs (e.g., LLaVA)
Find the full list of supported models [here](https://docs.vllm.ai/en/latest/models/supported_models.html).
@ -96,7 +93,6 @@ pip install vllm
```
Visit our [documentation](https://docs.vllm.ai/en/latest/) to learn more.
- [Installation](https://docs.vllm.ai/en/latest/getting_started/installation.html)
- [Quickstart](https://docs.vllm.ai/en/latest/getting_started/quickstart.html)
- [List of Supported Models](https://docs.vllm.ai/en/latest/models/supported_models.html)
@ -104,16 +100,15 @@ Visit our [documentation](https://docs.vllm.ai/en/latest/) to learn more.
## Contributing
We welcome and value any contributions and collaborations.
Please check out [Contributing to vLLM](https://docs.vllm.ai/en/latest/contributing/index.html) for how to get involved.
Please check out [Contributing to vLLM](https://docs.vllm.ai/en/stable/contributing/overview.html) for how to get involved.
## Sponsors
vLLM is a community project. Our compute resources for development and testing are supported by the following organizations. Thank you for your support!
<!-- Note: Please sort them in alphabetical order. -->
<!-- Note: Please keep these consistent with docs/community/sponsors.md -->
<!-- Note: Please keep these consistent with docs/source/community/sponsors.md -->
Cash Donations:
- a16z
- Dropbox
- Sequoia Capital
@ -121,8 +116,6 @@ Cash Donations:
- ZhenFund
Compute Resources:
- Alibaba Cloud
- AMD
- Anyscale
- AWS
@ -161,14 +154,12 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
## Contact Us
<!-- --8<-- [start:contact-us] -->
- For technical questions and feature requests, please use GitHub [Issues](https://github.com/vllm-project/vllm/issues)
- For technical questions and feature requests, please use GitHub [Issues](https://github.com/vllm-project/vllm/issues) or [Discussions](https://github.com/vllm-project/vllm/discussions)
- For discussing with fellow users, please use the [vLLM Forum](https://discuss.vllm.ai)
- For coordinating contributions and development, please use [Slack](https://slack.vllm.ai)
- coordinating contributions and development, please use [Slack](https://slack.vllm.ai)
- For security disclosures, please use GitHub's [Security Advisories](https://github.com/vllm-project/vllm/security/advisories) feature
- For collaborations and partnerships, please contact us at [vllm-questions@lists.berkeley.edu](mailto:vllm-questions@lists.berkeley.edu)
<!-- --8<-- [end:contact-us] -->
## Media Kit
- If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit)
- If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit).

View File

@ -52,39 +52,3 @@ After branch cut, we approach finalizing the release branch with clear criteria
* Release branch specific changes (e.g. change version identifiers or CI fixes)
Please note: **No feature work allowed for cherry picks**. All PRs that are considered for cherry-picks need to be merged on trunk, the only exception are Release branch specific changes.
## Manual validations
### E2E Performance Validation
Before each release, we perform end-to-end performance validation to ensure no regressions are introduced. This validation uses the [vllm-benchmark workflow](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-benchmark.yml) on PyTorch CI.
**Current Coverage:**
* Models: Llama3, Llama4, and Mixtral
* Hardware: NVIDIA H100 and AMD MI300x
* _Note: Coverage may change based on new model releases and hardware availability_
**Performance Validation Process:**
**Step 1: Get Access**
Request write access to the [pytorch/pytorch-integration-testing](https://github.com/pytorch/pytorch-integration-testing) repository to run the benchmark workflow.
**Step 2: Review Benchmark Setup**
Familiarize yourself with the benchmark configurations:
* [CUDA setup](https://github.com/pytorch/pytorch-integration-testing/tree/main/vllm-benchmarks/benchmarks/cuda)
* [ROCm setup](https://github.com/pytorch/pytorch-integration-testing/tree/main/vllm-benchmarks/benchmarks/rocm)
**Step 3: Run the Benchmark**
Navigate to the [vllm-benchmark workflow](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-benchmark.yml) and configure:
* **vLLM branch**: Set to the release branch (e.g., `releases/v0.9.2`)
* **vLLM commit**: Set to the RC commit hash
**Step 4: Review Results**
Once the workflow completes, benchmark results will be available on the [vLLM benchmark dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm) under the corresponding branch and commit.
**Step 5: Performance Comparison**
Compare the current results against the previous release to verify no performance regressions have occurred. Here is an
example of [v0.9.1 vs v0.9.2](https://hud.pytorch.org/benchmark/llms?startTime=Thu%2C%2017%20Apr%202025%2021%3A43%3A50%20GMT&stopTime=Wed%2C%2016%20Jul%202025%2021%3A43%3A50%20GMT&granularity=week&lBranch=releases/v0.9.1&lCommit=b6553be1bc75f046b00046a4ad7576364d03c835&rBranch=releases/v0.9.2&rCommit=a5dd03c1ebc5e4f56f3c9d3dc0436e9c582c978f&repoName=vllm-project%2Fvllm&benchmarkName=&modelName=All%20Models&backendName=All%20Backends&modeName=All%20Modes&dtypeName=All%20DType&deviceName=All%20Devices&archName=All%20Platforms).

View File

@ -1,45 +1,11 @@
# Security Policy
## Reporting security issues
## Reporting a Vulnerability
Please report security issues privately using [the vulnerability submission form](https://github.com/vllm-project/vllm/security/advisories/new).
If you believe you have found a security vulnerability in vLLM, we encourage you to let us know right away. We will investigate all legitimate reports and do our best to quickly fix the problem.
## Issue triage
Please report security issues privately using [the vulnerability submission form](https://github.com/vllm-project/vllm/security/advisories/new). Reports will then be triaged by the [vulnerability management team](https://docs.vllm.ai/en/latest/contributing/vulnerability_management.html).
Reports will then be triaged by the [vulnerability management team](https://docs.vllm.ai/en/latest/contributing/vulnerability_management.html).
## Threat model
Please see the [Security Guide in the vLLM documentation](https://docs.vllm.ai/en/latest/usage/security.html) for more information on vLLM's security assumptions and recommendations.
---
Please see [PyTorch's Security Policy](https://github.com/pytorch/pytorch/blob/main/SECURITY.md) for more information and recommendations on how to securely interact with models.
## Issue severity
We will determine the risk of each issue, taking into account our experience dealing with past issues, versions affected, common defaults, and use cases. We use the following severity categories:
### CRITICAL Severity
Vulnerabilities that allow remote attackers to execute arbitrary code, take full control of the system, or significantly compromise confidentiality, integrity, or availability without any interaction or privileges needed, examples include remote code execution via network, deserialization issues that allow exploit chains. Generally those issues which are rated as CVSS ≥9.0.
### HIGH Severity
Serious security flaws that allow elevated impact—like RCE in specific, limited contexts or significant data loss—but require advanced conditions or some trust, examples include RCE in advanced deployment modes (e.g. multi-node), or high impact issues where some sort of privileged network access is required. These issues typically have CVSS scores between 7.0 and 8.9
### MODERATE Severity
Vulnerabilities that cause denial of service or partial disruption, but do not allow arbitrary code execution or data breach and have limited impact. These issues have a CVSS rating between 4.0 and 6.9
### LOW Severity
Minor issues such as informational disclosures, logging errors, non-exploitable flaws, or weaknesses that require local or high-privilege access and offer negligible impact. Examples include side channel attacks or hash collisions. These issues often have CVSS scores less than 4.0
## Prenotification policy
For certain security issues of CRITICAL, HIGH, or MODERATE severity level, we may prenotify certain organizations or vendors that ship vLLM. The purpose of this prenotification is to allow for a coordinated release of fixes for severe issues.
* This prenotification will be in the form of a private email notification. It may also include adding security contacts to the GitHub security advisory, typically a few days before release.
* If you wish to be added to the prenotification group, please send an email copying all the members of the [vulnerability management team](https://docs.vllm.ai/en/latest/contributing/vulnerability_management.html). Each vendor contact will be analyzed on a case-by-case basis.
* We may withdraw organizations from receiving future prenotifications if they release fixes or any other information about issues before they are public. Group membership may also change based on policy refinements for who may be included.

View File

@ -64,12 +64,6 @@ become available.
<td style="text-align: center;"></td>
<td><code>lmms-lab/LLaVA-OneVision-Data</code>, <code>Aeala/ShareGPT_Vicuna_unfiltered</code></td>
</tr>
<tr>
<td><strong>Custom</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td>Local file: <code>data.jsonl</code></td>
</tr>
</tbody>
</table>
@ -81,17 +75,13 @@ become available.
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`
## 🚀 Example - Online Benchmark
<details>
<summary>Show more</summary>
<br/>
---
## Example - Online Benchmark
First start serving your model
```bash
vllm serve NousResearch/Hermes-3-Llama-3.1-8B
vllm serve NousResearch/Hermes-3-Llama-3.1-8B --disable-log-requests
```
Then run the benchmarking script
@ -99,7 +89,7 @@ Then run the benchmarking script
```bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
vllm bench serve \
python3 vllm/benchmarks/benchmark_serving.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--endpoint /v1/completions \
@ -110,72 +100,39 @@ vllm bench serve \
If successful, you will see the following output
```text
```
============ Serving Benchmark Result ============
Successful requests: 10
Benchmark duration (s): 5.78
Total input tokens: 1369
Total generated tokens: 2212
Request throughput (req/s): 1.73
Output token throughput (tok/s): 382.89
Total Token throughput (tok/s): 619.85
Successful requests: 10
Benchmark duration (s): 5.78
Total input tokens: 1369
Total generated tokens: 2212
Request throughput (req/s): 1.73
Output token throughput (tok/s): 382.89
Total Token throughput (tok/s): 619.85
---------------Time to First Token----------------
Mean TTFT (ms): 71.54
Median TTFT (ms): 73.88
P99 TTFT (ms): 79.49
Mean TTFT (ms): 71.54
Median TTFT (ms): 73.88
P99 TTFT (ms): 79.49
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms): 7.91
Median TPOT (ms): 7.96
P99 TPOT (ms): 8.03
Mean TPOT (ms): 7.91
Median TPOT (ms): 7.96
P99 TPOT (ms): 8.03
---------------Inter-token Latency----------------
Mean ITL (ms): 7.74
Median ITL (ms): 7.70
P99 ITL (ms): 8.39
Mean ITL (ms): 7.74
Median ITL (ms): 7.70
P99 ITL (ms): 8.39
==================================================
```
### Custom Dataset
If the dataset you want to benchmark is not supported yet in vLLM, even then you can benchmark on it using `CustomDataset`. Your data needs to be in `.jsonl` format and needs to have "prompt" field per entry, e.g., data.jsonl
```json
{"prompt": "What is the capital of India?"}
{"prompt": "What is the capital of Iran?"}
{"prompt": "What is the capital of China?"}
```
```bash
# start server
VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.1-8B-Instruct
```
```bash
# run benchmarking script
vllm bench serve --port 9001 --save-result --save-detailed \
--backend vllm \
--model meta-llama/Llama-3.1-8B-Instruct \
--endpoint /v1/completions \
--dataset-name custom \
--dataset-path <path-to-your-data-jsonl> \
--custom-skip-chat-template \
--num-prompts 80 \
--max-concurrency 1 \
--temperature=0.3 \
--top-p=0.75 \
--result-dir "./log/"
```
You can skip applying chat template if your data already has it by using `--custom-skip-chat-template`.
### VisionArena Benchmark for Vision Language Models
```bash
# need a model with vision capability here
vllm serve Qwen/Qwen2-VL-7B-Instruct
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
```
```bash
vllm bench serve \
python3 vllm/benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
@ -189,13 +146,14 @@ vllm bench serve \
``` bash
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
--speculative-config $'{"method": "ngram",
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
"prompt_lookup_min": 2}'
--speculative-model "[ngram]" \
--ngram_prompt_lookup_min 2 \
--ngram-prompt-lookup-max 5 \
--num_speculative_tokens 5
```
``` bash
vllm bench serve \
python3 benchmarks/benchmark_serving.py \
--model meta-llama/Meta-Llama-3-8B-Instruct \
--dataset-name hf \
--dataset-path likaixin/InstructCoder \
@ -205,13 +163,13 @@ vllm bench serve \
### Other HuggingFaceDataset Examples
```bash
vllm serve Qwen/Qwen2-VL-7B-Instruct
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
```
`lmms-lab/LLaVA-OneVision-Data`:
**`lmms-lab/LLaVA-OneVision-Data`**
```bash
vllm bench serve \
python3 vllm/benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
@ -222,10 +180,10 @@ vllm bench serve \
--num-prompts 10
```
`Aeala/ShareGPT_Vicuna_unfiltered`:
**`Aeala/ShareGPT_Vicuna_unfiltered`**
```bash
vllm bench serve \
python3 vllm/benchmarks/benchmark_serving.py \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
@ -235,10 +193,10 @@ vllm bench serve \
--num-prompts 10
```
`AI-MO/aimo-validation-aime`:
**`AI-MO/aimo-validation-aime`**
``` bash
vllm bench serve \
python3 vllm/benchmarks/benchmark_serving.py \
--model Qwen/QwQ-32B \
--dataset-name hf \
--dataset-path AI-MO/aimo-validation-aime \
@ -246,23 +204,13 @@ vllm bench serve \
--seed 42
```
`philschmid/mt-bench`:
``` bash
vllm bench serve \
--model Qwen/QwQ-32B \
--dataset-name hf \
--dataset-path philschmid/mt-bench \
--num-prompts 80
```
### Running With Sampling Parameters
When using OpenAI-compatible backends such as `vllm`, optional sampling
parameters can be specified. Example client command:
```bash
vllm bench serve \
python3 vllm/benchmarks/benchmark_serving.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--endpoint /v1/completions \
@ -274,34 +222,11 @@ vllm bench serve \
--num-prompts 10
```
### Running With Ramp-Up Request Rate
The benchmark tool also supports ramping up the request rate over the
duration of the benchmark run. This can be useful for stress testing the
server or finding the maximum throughput that it can handle, given some latency budget.
Two ramp-up strategies are supported:
- `linear`: Increases the request rate linearly from a start value to an end value.
- `exponential`: Increases the request rate exponentially.
The following arguments can be used to control the ramp-up:
- `--ramp-up-strategy`: The ramp-up strategy to use (`linear` or `exponential`).
- `--ramp-up-start-rps`: The request rate at the beginning of the benchmark.
- `--ramp-up-end-rps`: The request rate at the end of the benchmark.
</details>
## 📈 Example - Offline Throughput Benchmark
<details>
<summary>Show more</summary>
<br/>
---
## Example - Offline Throughput Benchmark
```bash
vllm bench throughput \
python3 vllm/benchmarks/benchmark_throughput.py \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset-name sonnet \
--dataset-path vllm/benchmarks/sonnet.txt \
@ -310,7 +235,7 @@ vllm bench throughput \
If successful, you will see the following output
```text
```
Throughput: 7.15 requests/s, 4656.00 total tokens/s, 1072.15 output tokens/s
Total num prompt tokens: 5014
Total num output tokens: 1500
@ -318,8 +243,8 @@ Total num output tokens: 1500
### VisionArena Benchmark for Vision Language Models
```bash
vllm bench throughput \
``` bash
python3 vllm/benchmarks/benchmark_throughput.py \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
@ -330,7 +255,7 @@ vllm bench throughput \
The `num prompt tokens` now includes image token counts
```text
```
Throughput: 2.55 requests/s, 4036.92 total tokens/s, 326.90 output tokens/s
Total num prompt tokens: 14527
Total num output tokens: 1280
@ -341,7 +266,7 @@ Total num output tokens: 1280
``` bash
VLLM_WORKER_MULTIPROC_METHOD=spawn \
VLLM_USE_V1=1 \
vllm bench throughput \
python3 vllm/benchmarks/benchmark_throughput.py \
--dataset-name=hf \
--dataset-path=likaixin/InstructCoder \
--model=meta-llama/Meta-Llama-3-8B-Instruct \
@ -349,12 +274,13 @@ vllm bench throughput \
--output-len=100 \
--num-prompts=2048 \
--async-engine \
--speculative-config $'{"method": "ngram",
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
"prompt_lookup_min": 2}'
--speculative-model="[ngram]" \
--ngram_prompt_lookup_min=2 \
--ngram-prompt-lookup-max=5 \
--num_speculative_tokens=5
```
```text
```
Throughput: 104.77 requests/s, 23836.22 total tokens/s, 10477.10 output tokens/s
Total num prompt tokens: 261136
Total num output tokens: 204800
@ -362,10 +288,10 @@ Total num output tokens: 204800
### Other HuggingFaceDataset Examples
`lmms-lab/LLaVA-OneVision-Data`:
**`lmms-lab/LLaVA-OneVision-Data`**
```bash
vllm bench throughput \
python3 vllm/benchmarks/benchmark_throughput.py \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
@ -375,10 +301,10 @@ vllm bench throughput \
--num-prompts 10
```
`Aeala/ShareGPT_Vicuna_unfiltered`:
**`Aeala/ShareGPT_Vicuna_unfiltered`**
```bash
vllm bench throughput \
python3 vllm/benchmarks/benchmark_throughput.py \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
@ -387,10 +313,10 @@ vllm bench throughput \
--num-prompts 10
```
`AI-MO/aimo-validation-aime`:
**`AI-MO/aimo-validation-aime`**
```bash
vllm bench throughput \
python3 benchmarks/benchmark_throughput.py \
--model Qwen/QwQ-32B \
--backend vllm \
--dataset-name hf \
@ -399,12 +325,12 @@ vllm bench throughput \
--num-prompts 10
```
Benchmark with LoRA adapters:
### Benchmark with LoRA Adapters
``` bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
vllm bench throughput \
python3 vllm/benchmarks/benchmark_throughput.py \
--model meta-llama/Llama-2-7b-hf \
--backend vllm \
--dataset_path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
@ -415,204 +341,3 @@ vllm bench throughput \
--enable-lora \
--lora-path yard1/llama-2-7b-sql-lora-test
```
</details>
## 🛠️ Example - Structured Output Benchmark
<details>
<summary>Show more</summary>
<br/>
Benchmark the performance of structured output generation (JSON, grammar, regex).
### Server Setup
```bash
vllm serve NousResearch/Hermes-3-Llama-3.1-8B
```
### JSON Schema Benchmark
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset json \
--structured-output-ratio 1.0 \
--request-rate 10 \
--num-prompts 1000
```
### Grammar-based Generation Benchmark
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset grammar \
--structure-type grammar \
--request-rate 10 \
--num-prompts 1000
```
### Regex-based Generation Benchmark
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset regex \
--request-rate 10 \
--num-prompts 1000
```
### Choice-based Generation Benchmark
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset choice \
--request-rate 10 \
--num-prompts 1000
```
### XGrammar Benchmark Dataset
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset xgrammar_bench \
--request-rate 10 \
--num-prompts 1000
```
</details>
## 📚 Example - Long Document QA Benchmark
<details>
<summary>Show more</summary>
<br/>
Benchmark the performance of long document question-answering with prefix caching.
### Basic Long Document QA Test
```bash
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 16 \
--document-length 2000 \
--output-len 50 \
--repeat-count 5
```
### Different Repeat Modes
```bash
# Random mode (default) - shuffle prompts randomly
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 8 \
--document-length 3000 \
--repeat-count 3 \
--repeat-mode random
# Tile mode - repeat entire prompt list in sequence
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 8 \
--document-length 3000 \
--repeat-count 3 \
--repeat-mode tile
# Interleave mode - repeat each prompt consecutively
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 8 \
--document-length 3000 \
--repeat-count 3 \
--repeat-mode interleave
```
</details>
## 🗂️ Example - Prefix Caching Benchmark
<details>
<summary>Show more</summary>
<br/>
Benchmark the efficiency of automatic prefix caching.
### Fixed Prompt with Prefix Caching
```bash
python3 benchmarks/benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-prompts 1 \
--repeat-count 100 \
--input-length-range 128:256
```
### ShareGPT Dataset with Prefix Caching
```bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python3 benchmarks/benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--dataset-path /path/ShareGPT_V3_unfiltered_cleaned_split.json \
--enable-prefix-caching \
--num-prompts 20 \
--repeat-count 5 \
--input-length-range 128:256
```
</details>
## ⚡ Example - Request Prioritization Benchmark
<details>
<summary>Show more</summary>
<br/>
Benchmark the performance of request prioritization in vLLM.
### Basic Prioritization Test
```bash
python3 benchmarks/benchmark_prioritization.py \
--model meta-llama/Llama-2-7b-chat-hf \
--input-len 128 \
--output-len 64 \
--num-prompts 100 \
--scheduling-policy priority
```
### Multiple Sequences per Prompt
```bash
python3 benchmarks/benchmark_prioritization.py \
--model meta-llama/Llama-2-7b-chat-hf \
--input-len 128 \
--output-len 64 \
--num-prompts 100 \
--scheduling-policy priority \
--n 2
```
</details>

212
benchmarks/auto_tune.sh Normal file
View File

@ -0,0 +1,212 @@
#!/bin/bash
# This script aims to tune the best server parameter combinations to maximize throughput for given requirement.
# The current server parameter combination is max_num_seqs and max_num_batched_tokens
# It also supports additional requirement: e2e latency and prefix cache.
# Pre-requisite:
# 1. Checkout to your branch, install/ update the correct running env. For TPU, activate conda env and install the corresponding torch, xla version.
# 2. If the model is customized, replace the MODEL's config with the customized config.
# 3. Set variables (ALL REQUIRED)
# BASE: your directory for vllm repo
# MODEL: the model served by vllm
# DOWNLOAD_DIR: directory to download and load model weights.
# INPUT_LEN: request input len
# OUTPUT_LEN: request output len
# MIN_CACHE_HIT_PCT: prefix cache rate
# MAX_LATENCY_ALLOWED_MS: (e2e) latency requirement. If there's no latency requirement, set it to a large number like 1000000000
# 4. Run the script, it might take a long time, you can use tmux to avoid the script stop if disconnection happens.
# 5. The final result will be saved in RESULT file.
# Example use cases
# 1. Given input_len=1800, output_len=20, what's the best max_num_seqs and max_num_batched_tokens to get highest throughput?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=100000000000
# 2. If we have latency requirement to be lower than 500ms, what's the best server parameter?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=500
# 3. If we want to reach 60% prefix cache, what's the best server parameter?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=60, MAX_LATENCY_ALLOWED_MS=500
TAG=$(date +"%Y_%m_%d_%H_%M")
BASE=""
MODEL="meta-llama/Llama-3.1-8B-Instruct"
DOWNLOAD_DIR=""
INPUT_LEN=4000
OUTPUT_LEN=16
MIN_CACHE_HIT_PCT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
RESULT="$LOG_FOLDER/result.txt"
echo "result file$ $RESULT"
echo "model: $MODEL"
echo
rm -rf $LOG_FOLDER
mkdir -p $LOG_FOLDER
cd "$BASE/vllm"
# create sonnet-4x.txt so that we can sample 2048 tokens for input
echo "" > benchmarks/sonnet_4x.txt
for _ in {1..4}
do
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
done
pip install datasets
current_hash=$(git rev-parse HEAD)
echo "hash:$current_hash" >> "$RESULT"
echo "current_hash: $current_hash"
best_throughput=0
best_max_num_seqs=0
best_num_batched_tokens=0
best_goodput=0
run_benchmark() {
local max_num_seqs=$1
local max_num_batched_tokens=$2
echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
echo "vllm_log: $vllm_log"
echo
rm -f $vllm_log
# start the server
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
--disable-log-requests \
--port 8004 \
--gpu-memory-utilization 0.98 \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--tensor-parallel-size 1 \
--enable-prefix-caching \
--load-format dummy \
--download-dir $DOWNLOAD_DIR \
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
echo "wait for 10 minutes.."
echo
# wait for 10 minutes...
server_started=0
for i in {1..60}; do
if grep -Fq "Application startup complete" "$vllm_log"; then
echo "Application started"
server_started=1
break
else
# echo "wait for 10 seconds..."
sleep 10
fi
done
if (( ! server_started )); then
echo "server did not start within 10 minutes, terminate the benchmarking. Please check server log at $vllm_log"
echo "pkill -f vllm"
echo
pkill vllm
sleep 10
return 1
fi
echo "run benchmark test..."
echo
meet_latency_requirement=0
# get a basic qps by using request-rate inf
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
prefix_len=$(( INPUT_LEN * MIN_CACHE_HIT_PCT / 100 ))
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name sonnet \
--dataset-path benchmarks/sonnet_4x.txt \
--sonnet-input-len $INPUT_LEN \
--sonnet-output-len $OUTPUT_LEN \
--ignore-eos \
--disable-tqdm \
--request-rate inf \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 100 \
--sonnet-prefix-len $prefix_len \
--port 8004 > "$bm_log"
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
meet_latency_requirement=1
fi
if (( ! meet_latency_requirement )); then
# start from request-rate as int(through_put) + 1
request_rate=$((${through_put%.*} + 1))
while ((request_rate > 0)); do
# clear prefix cache
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
sleep 5
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_${request_rate}.txt"
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name sonnet \
--dataset-path benchmarks/sonnet_4x.txt \
--sonnet-input-len $INPUT_LEN \
--sonnet-output-len $OUTPUT_LEN \
--ignore_eos \
--disable-tqdm \
--request-rate $request_rate \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 100 \
--sonnet-prefix-len $prefix_len \
--port 8004 > "$bm_log"
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
meet_latency_requirement=1
break
fi
request_rate=$((request_rate-1))
done
fi
# write the results and update the best result.
if ((meet_latency_requirement)); then
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput" >> "$RESULT"
if (( $(echo "$through_put > $best_throughput" | bc -l) )); then
best_throughput=$through_put
best_max_num_seqs=$max_num_seqs
best_num_batched_tokens=$max_num_batched_tokens
best_goodput=$goodput
fi
else
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}" >> "$RESULT"
fi
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
echo "pkill -f vllm"
echo
pkill vllm
sleep 10
rm -f $vllm_log
printf '=%.0s' $(seq 1 20)
return 0
}
num_seqs_list="128 256"
num_batched_tokens_list="512 1024 2048 4096"
for num_seqs in $num_seqs_list; do
for num_batched_tokens in $num_batched_tokens_list; do
run_benchmark $num_seqs $num_batched_tokens
exit 0
done
done
echo "finish permutations"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput" >> "$RESULT"

View File

@ -1,145 +0,0 @@
# Automated vLLM Server Parameter Tuning
This script automates the process of finding the optimal server parameter combination (`max-num-seqs` and `max-num-batched-tokens`) to maximize throughput for a vLLM server. It also supports additional constraints such as E2E latency and prefix cache hit rate.
## Table of Contents
- [Prerequisites](#prerequisites)
- [Configuration](#configuration)
- [How to Run](#how-to-run)
- [Example Use Cases](#example-use-cases)
- [Output](#output)
- [How It Works](#how-it-works)
## Prerequisites
Before running the script, please ensure the following steps are completed:
1. **Clone vLLM & Set Up Branch**: Clone the vLLM repository and check out to your desired branch.
```bash
git clone https://github.com/vllm-project/vllm.git
cd vllm
# git checkout <your-branch>
```
1. **Install Environment**: Install or update the correct running environment. For TPU usage, activate your `conda` environment and install the corresponding `torch` and `torch_xla` versions.
2. **Model Configuration**: If you are using a customized model, ensure its configuration files are correctly placed and accessible.
## Configuration
You must set the following variables at the top of the script before execution.
| Variable | Description | Example Value |
| --- | --- | --- |
| `BASE` | **Required.** The absolute path to the parent directory of your vLLM repository directory. | `"$HOME"` |
| `MODEL` | **Required.** The Hugging Face model identifier to be served by vllm. | `"meta-llama/Llama-3.1-8B-Instruct"` |
| `SYSTEM`| **Required.** The hardware you are running on. Choices: `TPU` or `GPU`. (For other systems, it might not support saving profiles) | `"TPU"` |
| `TP` | **Required.** The tensor-parallelism size. | `1` |
| `DOWNLOAD_DIR` | **Required.** Directory to download and load model weights from. | `""` (default download path) |
| `INPUT_LEN` | **Required.** Request input length. | `4000` |
| `OUTPUT_LEN` | **Required.** Request output length. | `16` |
| `MAX_MODEL_LEN` | **Required.** Max model length. | `4096` |
| `MIN_CACHE_HIT_PCT` | Prefix cache hit rate in percentage (0-100). Set to `0` to disable. | `60` |
| `MAX_LATENCY_ALLOWED_MS` | The maximum allowed P99 end-to-end latency in milliseconds. Set to a very large number (e.g., `100000000000`) to effectively ignore the latency constraint. | `500` |
| `NUM_SEQS_LIST` | A space-separated string of `max-num-seqs` values to test. | `"128 256"` |
| `NUM_BATCHED_TOKENS_LIST` | A space-separated string of `max-num-batched-tokens` values to test. | `"1024 2048 4096"` |
**Note**: The default `NUM_SEQS_LIST` and `NUM_BATCHED_TOKENS_LIST` are set for medium-sized inputs/outputs. For very short contexts (e.g., 20 input, 20 output tokens), you may need to test larger values for `max-num-seqs`.
## How to Run
1. **Configure**: Edit the script and set the variables in the [Configuration](#configuration) section.
2. **Execute**: Run the script. Since the process can take a long time, it is highly recommended to use a terminal multiplexer like `tmux` or `screen` to prevent the script from stopping if your connection is lost.
```bash
cd <FOLDER_OF_THIS_SCRIPT>
bash auto_tune.sh
```
Please note that the `bash auto_tune.sh` command cannot contain full or partial path with keyword `vllm`, otherwise `pkill -f vllm` command will also kill this script itself.
## Example Use Cases
Here are a few examples of how to configure the script for different goals:
### 1. Maximize Throughput (No Latency Constraint)
- **Goal**: Find the best `max-num-seqs` and `max-num-batched-tokens` to get the highest possible throughput for 1800 input tokens and 20 output tokens.
- **Configuration**:
```bash
INPUT_LEN=1800
OUTPUT_LEN=20
MAX_MODEL_LEN=2048
MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000 # A very large number
```
#### 2. Maximize Throughput with a Latency Requirement
- **Goal**: Find the best server parameters when P99 end-to-end latency must be below 500ms.
- **Configuration**:
```bash
INPUT_LEN=1800
OUTPUT_LEN=20
MAX_MODEL_LEN=2048
MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=500
```
#### 3. Maximize Throughput with Prefix Caching and Latency Requirements
- **Goal**: Find the best server parameters assuming a 60% prefix cache hit rate and a latency requirement of 500ms.
- **Configuration**:
```bash
INPUT_LEN=1800
OUTPUT_LEN=20
MAX_MODEL_LEN=2048
MIN_CACHE_HIT_PCT=60
MAX_LATENCY_ALLOWED_MS=500
```
## Output
After the script finishes, you will find the results in a new, timestamped directory created inside `$BASE/auto-benchmark/`.
- **Log Files**: The directory (`$BASE/auto-benchmark/YYYY_MM_DD_HH_MM/`) contains detailed logs for each run:
- `vllm_log_...txt`: The log output from the vLLM server for each parameter combination.
- `bm_log_...txt`: The log output from the `vllm bench serve` command for each benchmark run.
- **Final Result Summary**: A file named `result.txt` is created in the log directory. It contains a summary of each tested combination and concludes with the overall best parameters found.
```text
# Example result.txt content
hash:a1b2c3d4...
max_num_seqs: 128, max_num_batched_tokens: 2048, request_rate: 10.0, e2el: 450.5, throughput: 9.8, goodput: 9.8
max_num_seqs: 128, max_num_batched_tokens: 4096 does not meet latency requirement 500
...
best_max_num_seqs: 256, best_num_batched_tokens: 2048, best_throughput: 12.5, profile saved in: /home/user/vllm/auto-benchmark/2024_08_01_10_30/profile
```
If it cannot find the best parameters, the final row will be `best_max_num_seqs: 0, best_num_batched_tokens: 0, best_throughput: 0`. This can be due to either the server not starting properly, or the latency requirement being too strict.
- **Profiler Trace**: A directory named `profile` is created inside the log directory. It contains the profiler trace file (e.g., `.xplane.pb` for TPU or a `.json` trace for GPU) from the single best-performing run.
## How It Works
The script follows a systematic process to find the optimal parameters:
1. **Find Max GPU Memory Utilization**: The script first determines the highest safe `gpu-memory-utilization` (starting from 0.98 and decreasing) that does not cause an Out-Of-Memory (OOM) error when launching the server. This ensures the benchmark runs use the maximum available memory without crashing.
2. **Iterate and Benchmark**: It then enters a nested loop, iterating through every combination of `max-num-seqs` and `max-num-batched-tokens` provided in the configuration lists.
3. **Latency-Aware Throughput Search**: For each parameter combination:
- The vLLM server is started.
- A benchmark is first run with an infinite request rate (`--request-rate inf`).
- If the resulting P99 E2E latency is within the `MAX_LATENCY_ALLOWED_MS` limit, this throughput is considered the maximum for this configuration.
- If the latency is too high, the script performs a search by iteratively decreasing the request rate until the latency constraint is met. This finds the highest sustainable throughput for the given parameters and latency requirement.
4. **Track Best Result**: Throughout the process, the script tracks the parameter combination that has yielded the highest valid throughput so far.
5. **Profile Collection**: For the best-performing run, the script saves the vLLM profiler output, which can be used for deep-dive performance analysis with tools like TensorBoard.

View File

@ -1,292 +0,0 @@
#!/bin/bash
# This script aims to tune the best server parameter combinations to maximize throughput for given requirement.
# See details in README (benchmarks/auto_tune/README.md).
TAG=$(date +"%Y_%m_%d_%H_%M")
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
BASE="$SCRIPT_DIR/../../.."
MODEL="meta-llama/Llama-3.1-8B-Instruct"
SYSTEM="TPU"
TP=1
DOWNLOAD_DIR=""
INPUT_LEN=4000
OUTPUT_LEN=16
MAX_MODEL_LEN=4096
MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000
NUM_SEQS_LIST="128 256"
NUM_BATCHED_TOKENS_LIST="512 1024 2048 4096"
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
RESULT="$LOG_FOLDER/result.txt"
PROFILE_PATH="$LOG_FOLDER/profile"
echo "result file: $RESULT"
echo "model: $MODEL"
rm -rf $LOG_FOLDER
rm -rf $PROFILE_PATH
mkdir -p $LOG_FOLDER
mkdir -p $PROFILE_PATH
cd "$BASE/vllm"
pip install -q datasets
current_hash=$(git rev-parse HEAD)
echo "hash:$current_hash" >> "$RESULT"
echo "current_hash: $current_hash"
TOTAL_LEN=$((INPUT_LEN + OUTPUT_LEN))
RED='\033[0;31m'
if (( TOTAL_LEN > MAX_MODEL_LEN )); then
echo -e "${RED}FAILED: INPUT_LEN($INPUT_LEN) + OUTPUT_LEN($OUTPUT_LEN) = $TOTAL_LEN, which is > MAX_MODEL_LEN = $MAX_MODEL_LEN.\033[0m" >&2
exit 1
fi
best_throughput=0
best_max_num_seqs=0
best_num_batched_tokens=0
best_goodput=0
best_request_rate=0
start_server() {
local gpu_memory_utilization=$1
local max_num_seqs=$2
local max_num_batched_tokens=$3
local vllm_log=$4
local profile_dir=$5
pkill -if vllm
# Define the common arguments as a bash array.
# Each argument and its value are separate elements.
local common_args_array=(
"$MODEL"
"--disable-log-requests"
"--port" "8004"
"--gpu-memory-utilization" "$gpu_memory_utilization"
"--max-num-seqs" "$max_num_seqs"
"--max-num-batched-tokens" "$max_num_batched_tokens"
"--tensor-parallel-size" "$TP"
"--enable-prefix-caching"
"--load-format" "dummy"
"--download-dir" "$DOWNLOAD_DIR"
"--max-model-len" "$MAX_MODEL_LEN"
)
# Use the array expansion "${common_args_array[@]}"
# This correctly passes each element as a separate argument.
if [[ -n "$profile_dir" ]]; then
# Start server with profiling enabled
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir \
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
else
# Start server without profiling
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 \
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
fi
# wait for 10 minutes...
server_started=0
for i in {1..60}; do
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
if [[ "$STATUS_CODE" -eq 200 ]]; then
server_started=1
break
else
sleep 10
fi
done
if (( ! server_started )); then
echo "server did not start within 10 minutes. Please check server log at $vllm_log".
return 1
else
return 0
fi
}
run_benchmark() {
local max_num_seqs=$1
local max_num_batched_tokens=$2
local gpu_memory_utilization=$3
echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
echo "vllm_log: $vllm_log"
echo
rm -f $vllm_log
pkill -if vllm
echo "starting server..."
# Call start_server without a profile_dir to avoid profiling overhead
start_server $gpu_memory_utilization $max_num_seqs $max_num_batched_tokens $vllm_log ""
result=$?
if [[ "$result" -eq 1 ]]; then
echo "server failed to start. gpu_memory_utilization:$gpu_memory_utilization, max_num_seqs:$max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
else
echo "server started."
fi
echo
echo "run benchmark test..."
meet_latency_requirement=0
# get a basic qps by using request-rate inf
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
prefix_len=$(( INPUT_LEN * MIN_CACHE_HIT_PCT / 100 ))
adjusted_input_len=$(( INPUT_LEN - prefix_len ))
# --profile flag is removed from this call
vllm bench serve \
--backend vllm \
--model $MODEL \
--dataset-name random \
--random-input-len $adjusted_input_len \
--random-output-len $OUTPUT_LEN \
--ignore-eos \
--disable-tqdm \
--request-rate inf \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 1000 \
--random-prefix-len $prefix_len \
--port 8004 &> "$bm_log"
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
meet_latency_requirement=1
request_rate=inf
fi
if (( ! meet_latency_requirement )); then
# start from request-rate as int(throughput) + 1
request_rate=$((${throughput%.*} + 1))
while ((request_rate > 0)); do
# clear prefix cache
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
sleep 5
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_${request_rate}.txt"
vllm bench serve \
--backend vllm \
--model $MODEL \
--dataset-name random \
--random-input-len $adjusted_input_len \
--random-output-len $OUTPUT_LEN \
--ignore-eos \
--disable-tqdm \
--request-rate $request_rate \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 100 \
--random-prefix-len $prefix_len \
--port 8004 &> "$bm_log"
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
meet_latency_requirement=1
break
fi
request_rate=$((request_rate-1))
done
fi
# write the results and update the best result.
if ((meet_latency_requirement)); then
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput" >> "$RESULT"
if (( $(echo "$throughput > $best_throughput" | bc -l) )); then
best_throughput=$throughput
best_max_num_seqs=$max_num_seqs
best_num_batched_tokens=$max_num_batched_tokens
best_goodput=$goodput
best_request_rate=$request_rate
fi
else
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}" >> "$RESULT"
fi
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
pkill -if vllm
sleep 10
printf '=%.0s' $(seq 1 20)
return 0
}
read -r -a num_seqs_list <<< "$NUM_SEQS_LIST"
read -r -a num_batched_tokens_list <<< "$NUM_BATCHED_TOKENS_LIST"
# first find out the max gpu-memory-utilization without HBM OOM.
gpu_memory_utilization=0.98
find_gpu_memory_utilization=0
while (( $(echo "$gpu_memory_utilization >= 0.9" | bc -l) )); do
# Pass empty string for profile_dir argument
start_server $gpu_memory_utilization "${num_seqs_list[-1]}" "${num_batched_tokens_list[-1]}" "$LOG_FOLDER/vllm_log_gpu_memory_utilization_$gpu_memory_utilization.log" ""
result=$?
if [[ "$result" -eq 0 ]]; then
find_gpu_memory_utilization=1
break
else
gpu_memory_utilization=$(echo "$gpu_memory_utilization - 0.01" | bc)
fi
done
if [[ "$find_gpu_memory_utilization" -eq 1 ]]; then
echo "Using gpu_memory_utilization=$gpu_memory_utilization to serve model."
else
echo "Cannot find a proper gpu_memory_utilization over 0.9 to serve the model, please check logs in $LOG_FOLDER."
exit 1
fi
for num_seqs in "${num_seqs_list[@]}"; do
for num_batched_tokens in "${num_batched_tokens_list[@]}"; do
run_benchmark $num_seqs $num_batched_tokens $gpu_memory_utilization
done
done
echo "finish permutations"
# =================================================================================
# FINAL PROFILING RUN FOR THE BEST CONFIGURATION
# =================================================================================
if (( $(echo "$best_throughput > 0" | bc -l) )); then
echo
echo "Benchmark tuning finished. Now running profiling on the best configuration found..."
echo "Best config: max_num_seqs: $best_max_num_seqs, max_num_batched_tokens: $best_num_batched_tokens, throughput: $best_throughput"
echo
vllm_log="$LOG_FOLDER/vllm_log_BEST_PROFILE.txt"
bm_log="$LOG_FOLDER/bm_log_BEST_PROFILE.txt"
# Start server with the best params and profiling ENABLED
echo "Starting server for profiling..."
start_server $gpu_memory_utilization $best_max_num_seqs $best_num_batched_tokens "$vllm_log" "$PROFILE_PATH"
# Run benchmark with the best params and the --profile flag
echo "Running benchmark with profiling..."
prefix_len=$(( INPUT_LEN * MIN_CACHE_HIT_PCT / 100 ))
adjusted_input_len=$(( INPUT_LEN - prefix_len ))
vllm bench serve \
--backend vllm \
--model $MODEL \
--dataset-name random \
--random-input-len $adjusted_input_len \
--random-output-len $OUTPUT_LEN \
--ignore-eos \
--disable-tqdm \
--request-rate $best_request_rate \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 100 \
--random-prefix-len $prefix_len \
--port 8004 \
--profile &> "$bm_log"
else
echo "No configuration met the latency requirements. Skipping final profiling run."
fi
pkill -if vllm
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH" >> "$RESULT"

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import io
import json
@ -31,7 +30,7 @@ class RequestFuncInput:
model_name: Optional[str] = None
logprobs: Optional[int] = None
extra_body: Optional[dict] = None
multi_modal_content: Optional[dict | list[dict]] = None
multi_modal_content: Optional[dict] = None
ignore_eos: bool = False
language: Optional[str] = None
@ -195,11 +194,6 @@ async def async_request_deepspeed_mii(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(("completions", "profile")), (
"OpenAI Completions API URL must end with 'completions' or 'profile'."
)
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
@ -210,8 +204,6 @@ async def async_request_deepspeed_mii(
"temperature": 0.01, # deepspeed-mii does not accept 0.0 temp.
"top_p": 1.0,
}
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
@ -223,7 +215,7 @@ async def async_request_deepspeed_mii(
st = time.perf_counter()
try:
async with session.post(
url=api_url, json=payload, headers=headers
url=request_func_input.api_url, json=payload
) as response:
if response.status == 200:
parsed_resp = await response.json()
@ -325,7 +317,7 @@ async def async_request_openai_completions(
most_recent_timestamp = timestamp
generated_text += text or ""
if usage := data.get("usage"):
elif usage := data.get("usage"):
output.output_tokens = usage.get("completion_tokens")
if first_chunk_received:
output.success = True
@ -364,15 +356,7 @@ async def async_request_openai_chat_completions(
) as session:
content = [{"type": "text", "text": request_func_input.prompt}]
if request_func_input.multi_modal_content:
mm_content = request_func_input.multi_modal_content
if isinstance(mm_content, list):
content.extend(mm_content)
elif isinstance(mm_content, dict):
content.append(mm_content)
else:
raise TypeError(
"multi_modal_content must be a dict or list[dict] for openai-chat"
)
content.append(request_func_input.multi_modal_content)
payload = {
"model": request_func_input.model_name
if request_func_input.model_name
@ -412,14 +396,8 @@ async def async_request_openai_chat_completions(
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk_bytes = chunk_bytes.decode("utf-8")
# NOTE: SSE comments (often used as pings) start with a colon.
# These are not JSON data payload and should be skipped.
if chunk_bytes.startswith(":"):
continue
chunk = chunk_bytes.removeprefix("data: ")
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
timestamp = time.perf_counter()
data = json.loads(chunk)
@ -499,10 +477,7 @@ async def async_request_openai_audio(
buffer.seek(0)
return buffer
mm_audio = request_func_input.multi_modal_content
if not isinstance(mm_audio, dict) or "audio" not in mm_audio:
raise TypeError("multi_modal_content must be a dict containing 'audio'")
with to_bytes(*mm_audio["audio"]) as f:
with to_bytes(*request_func_input.multi_modal_content["audio"]) as f:
form = aiohttp.FormData()
form.add_field("file", f, content_type="audio/wav")
for key, value in payload.items():
@ -629,7 +604,6 @@ ASYNC_REQUEST_FUNCS = {
"tensorrt-llm": async_request_trt_llm,
"scalellm": async_request_openai_completions,
"sglang": async_request_openai_completions,
"llama.cpp": async_request_openai_completions,
}
OPENAI_COMPATIBLE_BACKENDS = [

View File

@ -1,74 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import gc
from tabulate import tabulate
from benchmark_utils import TimeCollector
from vllm.utils import FlexibleArgumentParser
from vllm.v1.core.block_pool import BlockPool
def main(args):
rows = []
for allocate_block in args.allocate_blocks:
# Enforce a GC collect ahead to minimize the impact among runs
gc.collect()
block_pool = BlockPool(num_gpu_blocks=args.num_gpu_blocks, enable_caching=True)
get_blocks_times = TimeCollector(TimeCollector.US)
free_blocks_times = TimeCollector(TimeCollector.US)
for _ in range(args.num_iteration):
with get_blocks_times:
blocks = block_pool.get_new_blocks(allocate_block)
with free_blocks_times:
block_pool.free_blocks(blocks)
rows.append(
[get_blocks_times.cnt, args.num_gpu_blocks, allocate_block]
+ get_blocks_times.dump_avg_max()
+ free_blocks_times.dump_avg_max()
)
print(
tabulate(
rows,
headers=[
"Iterations",
"Total\nBlocks",
"Allocated\nBlocks",
"Get Blocks\nAvg (us)",
"Get Blocks\nMax (us)",
"Free Blocks\nAvg (us)",
"Free Blocks\nMax (us)",
],
tablefmt="grid",
floatfmt=".3f",
)
)
def invoke_main() -> None:
parser = FlexibleArgumentParser(
description="Benchmark the performance of BlockPool for KV Cache."
)
parser.add_argument("--num-gpu-blocks", type=int, default=100000)
parser.add_argument(
"--num-iteration",
type=int,
default=1000,
help="Number of iterations to run to stablize final data readings",
)
parser.add_argument(
"--allocate-blocks",
type=int,
nargs="*",
default=[10, 50, 100, 500, 1000],
help="Number of blocks to allocate",
)
args = parser.parse_args()
main(args)
if __name__ == "__main__":
invoke_main() # pragma: no cover

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
This module defines a framework for sampling benchmark requests from various
datasets. Each dataset subclass of BenchmarkDataset must implement sample
@ -10,6 +9,9 @@ generation. Supported dataset types include:
- BurstGPT
- HuggingFace
- VisionArena
TODO: Implement CustomDataset to parse a JSON file and convert its contents into
SampleRequest instances, similar to the approach used in ShareGPT.
"""
import base64
@ -33,7 +35,6 @@ from transformers import PreTrainedTokenizerBase
from vllm.lora.request import LoRARequest
from vllm.lora.utils import get_adapter_absolute_path
from vllm.multimodal import MultiModalDataDict
from vllm.multimodal.image import convert_image_mode
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
logger = logging.getLogger(__name__)
@ -52,7 +53,7 @@ class SampleRequest:
prompt: Union[str, Any]
prompt_len: int
expected_output_len: int
multi_modal_data: Optional[Union[MultiModalDataDict, dict, list[dict]]] = None
multi_modal_data: Optional[Union[MultiModalDataDict, dict]] = None
lora_request: Optional[LoRARequest] = None
@ -256,7 +257,7 @@ def process_image(image: Any) -> Mapping[str, Any]:
if isinstance(image, dict) and "bytes" in image:
image = Image.open(BytesIO(image["bytes"]))
if isinstance(image, Image.Image):
image = convert_image_mode(image, "RGB")
image = image.convert("RGB")
with io.BytesIO() as image_data:
image.save(image_data, format="JPEG")
image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8")
@ -324,9 +325,6 @@ class RandomDataset(BenchmarkDataset):
input_low = int(real_input_len * (1 - range_ratio))
input_high = int(real_input_len * (1 + range_ratio))
output_low = int(output_len * (1 - range_ratio))
# Ensure the lower bound for output length is at least 1 to prevent
# sampling 0 tokens, which can cause request failures.
output_low = max(output_low, 1)
output_high = int(output_len * (1 + range_ratio))
# Add logging for debugging
@ -352,12 +350,11 @@ class RandomDataset(BenchmarkDataset):
# [1650, 939, 486] -> ['Ġcall', 'sh', 'ere']
# To avoid uncontrolled change of the prompt length,
# the encoded sequence is truncated before being decode again.
total_input_len = prefix_len + int(input_lens[i])
re_encoded_sequence = tokenizer.encode(prompt, add_special_tokens=False)[
:total_input_len
: input_lens[i]
]
prompt = tokenizer.decode(re_encoded_sequence)
total_input_len = len(re_encoded_sequence)
total_input_len = prefix_len + int(input_lens[i])
requests.append(
SampleRequest(
prompt=prompt,
@ -444,97 +441,6 @@ class ShareGPTDataset(BenchmarkDataset):
return samples
# -----------------------------------------------------------------------------
# Custom Dataset Implementation
# -----------------------------------------------------------------------------
class CustomDataset(BenchmarkDataset):
"""
Implements the Custom dataset. Loads data from a JSONL file and generates
sample requests based on conversation turns. E.g.,
```
{"prompt": "What is the capital of India?"}
{"prompt": "What is the capital of Iran?"}
{"prompt": "What is the capital of China?"}
```
"""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
self.load_data()
def load_data(self) -> None:
if self.dataset_path is None:
raise ValueError("dataset_path must be provided for loading data.")
# self.data will be a list of dictionaries
# e.g., [{"prompt": "What is the capital of India?"}, ...]
# This will be the standardized format which load_data()
# has to convert into depending on the filetype of dataset_path.
# sample() will assume this standardized format of self.data
self.data = []
# Load the JSONL file
if self.dataset_path.endswith(".jsonl"):
jsonl_data = pd.read_json(path_or_buf=self.dataset_path, lines=True)
# check if the JSONL file has a 'prompt' column
if "prompt" not in jsonl_data.columns:
raise ValueError("JSONL file must contain a 'prompt' column.")
# Convert each row to a dictionary and append to self.data
# This will convert the DataFrame to a list of dictionaries
# where each dictionary corresponds to a row in the DataFrame.
# This is the standardized format we want for self.data
for _, row in jsonl_data.iterrows():
self.data.append(row.to_dict())
else:
raise NotImplementedError(
"Only JSONL format is supported for CustomDataset."
)
random.seed(self.random_seed)
random.shuffle(self.data)
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
lora_path: Optional[str] = None,
max_loras: Optional[int] = None,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
skip_chat_template: bool = False,
**kwargs,
) -> list:
sampled_requests = []
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt = item["prompt"]
# apply template
if not skip_chat_template:
prompt = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
tokenize=False,
)
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
)
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# Sonnet Dataset Implementation
# -----------------------------------------------------------------------------
@ -704,7 +610,6 @@ class HuggingFaceDataset(BenchmarkDataset):
self,
dataset_path: str,
dataset_split: str,
no_stream: bool = False,
dataset_subset: Optional[str] = None,
**kwargs,
) -> None:
@ -712,7 +617,6 @@ class HuggingFaceDataset(BenchmarkDataset):
self.dataset_split = dataset_split
self.dataset_subset = dataset_subset
self.load_stream = not no_stream
self.load_data()
def load_data(self) -> None:
@ -721,7 +625,7 @@ class HuggingFaceDataset(BenchmarkDataset):
self.dataset_path,
name=self.dataset_subset,
split=self.dataset_split,
streaming=self.load_stream,
streaming=True,
)
self.data = self.data.shuffle(seed=self.random_seed)
@ -871,15 +775,7 @@ class InstructCoderDataset(HuggingFaceDataset):
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt = f"{item['input']}\n\n{item['instruction']} Just output \
the code, do not include any explanation."
# apply template
prompt = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
tokenize=False,
)
prompt = f"{item['instruction']}:\n{item['input']}"
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests.append(
SampleRequest(

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Benchmark the latency of processing a single batch of requests."""
import argparse
@ -7,13 +6,13 @@ import dataclasses
import json
import os
import time
from pathlib import Path
from typing import Any, Optional
import numpy as np
import torch
from tqdm import tqdm
from typing_extensions import deprecated
import vllm.envs as envs
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
@ -35,10 +34,6 @@ def save_to_pytorch_benchmark_format(
write_to_json(pt_file, pt_records)
@deprecated(
"benchmark_latency.py is deprecated and will be removed in a "
"future version. Please use 'vllm bench latency' instead.",
)
def main(args: argparse.Namespace):
print(args)
@ -85,9 +80,17 @@ def main(args: argparse.Namespace):
def run_to_completion(profile_dir: Optional[str] = None):
if profile_dir:
llm.start_profile()
llm_generate()
llm.stop_profile()
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
on_trace_ready=torch.profiler.tensorboard_trace_handler(
str(profile_dir)
),
) as p:
llm_generate()
print(p.key_averages().table(sort_by="self_cuda_time_total"))
else:
start_time = time.perf_counter()
llm_generate()
@ -100,7 +103,11 @@ def main(args: argparse.Namespace):
run_to_completion(profile_dir=None)
if args.profile:
profile_dir = envs.VLLM_TORCH_PROFILER_DIR
profile_dir = args.profile_result_dir
if not profile_dir:
profile_dir = (
Path(".") / "vllm_benchmark_result" / f"latency_result_{time.time()}"
)
print(f"Profiling (results will be saved to '{profile_dir}')...")
run_to_completion(profile_dir=profile_dir)
return
@ -128,7 +135,7 @@ def main(args: argparse.Namespace):
save_to_pytorch_benchmark_format(args, results)
def create_argument_parser():
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the latency of processing a single batch of "
"requests till completion."
@ -157,6 +164,15 @@ def create_argument_parser():
action="store_true",
help="profile the generation process of a single batch",
)
parser.add_argument(
"--profile-result-dir",
type=str,
default=None,
help=(
"path to save the pytorch profiler output. Can be visualized "
"with ui.perfetto.dev or Tensorboard."
),
)
parser.add_argument(
"--output-json",
type=str,
@ -173,19 +189,5 @@ def create_argument_parser():
)
parser = EngineArgs.add_cli_args(parser)
# V1 enables prefix caching by default which skews the latency
# numbers. We need to disable prefix caching by default.
parser.set_defaults(enable_prefix_caching=False)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
if args.profile and not envs.VLLM_TORCH_PROFILER_DIR:
raise OSError(
"The environment variable 'VLLM_TORCH_PROFILER_DIR' is not set. "
"Please set it to a valid path to use torch profiler."
)
main(args)

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Offline benchmark to test the long document QA throughput.
@ -142,7 +141,7 @@ def main(args):
)
def create_argument_parser():
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the performance with or "
"without automatic prefix caching."
@ -192,11 +191,5 @@ def create_argument_parser():
)
parser = EngineArgs.add_cli_args(parser)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
main(args)

View File

@ -1,112 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import gc
import numpy as np
from tabulate import tabulate
from benchmark_utils import TimeCollector
from vllm.config import ModelConfig, SpeculativeConfig, VllmConfig
from vllm.utils import FlexibleArgumentParser
from vllm.v1.spec_decode.ngram_proposer import NgramProposer
def main(args):
rows = []
for max_ngram in args.max_ngram:
collector = TimeCollector(TimeCollector.US)
model_config = ModelConfig(
model="facebook/opt-125m",
task="generate",
max_model_len=args.num_token + args.num_spec_token,
tokenizer="facebook/opt-125m",
tokenizer_mode="auto",
dtype="auto",
seed=None,
trust_remote_code=False,
)
proposer = NgramProposer(
vllm_config=VllmConfig(
model_config=model_config,
speculative_config=SpeculativeConfig(
prompt_lookup_min=args.min_ngram,
prompt_lookup_max=max_ngram,
num_speculative_tokens=args.num_spec_token,
method="ngram",
),
)
)
# Warm up
proposer.propose(np.random.randint(0, 20, (args.num_token,)))
gc.collect()
for _ in range(args.num_iteration):
tokens = np.random.randint(0, 20, (args.num_req, args.num_token))
with collector:
for i in range(args.num_req):
proposer.propose(tokens[i, :])
rows.append(
[args.num_req, args.num_token, args.min_ngram, max_ngram]
+ collector.dump_avg_max()
)
print(
tabulate(
rows,
headers=[
"# Request",
"# Token",
"Min Ngram",
"Max Ngram",
"Avg (us)",
"Max (us)",
],
tablefmt="grid",
floatfmt=".3f",
)
)
def invoke_main() -> None:
parser = FlexibleArgumentParser(
description="Benchmark the performance of N-gram speculative decode drafting"
)
parser.add_argument(
"--num-iteration",
type=int,
default=100,
help="Number of iterations to run to stablize final data readings",
)
parser.add_argument(
"--num-req", type=int, default=128, help="Number of requests in the batch"
)
parser.add_argument(
"--num-token", type=int, default=1500, help="Number of tokens for each request"
)
parser.add_argument(
"--min-ngram",
type=int,
default=3,
help="Minimum n-gram to match",
)
parser.add_argument(
"--max-ngram",
type=int,
nargs="*",
default=[5, 7, 10, 15, 20],
help="Maximum n-gram to match",
)
parser.add_argument(
"--num-spec-token",
type=int,
default=3,
help="Number of speculative tokens to generate",
)
args = parser.parse_args()
main(args)
if __name__ == "__main__":
invoke_main() # pragma: no cover

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Benchmark the efficiency of prefix caching.
@ -218,7 +217,7 @@ def main(args):
)
def create_argument_parser():
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the performance with or without "
"automatic prefix caching."
@ -268,11 +267,5 @@ def create_argument_parser():
)
parser = EngineArgs.add_cli_args(parser)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
main(args)

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Benchmark offline prioritization."""
import argparse
@ -161,7 +160,7 @@ def main(args: argparse.Namespace):
json.dump(results, f, indent=4)
def create_argument_parser():
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument(
"--backend", type=str, choices=["vllm", "hf", "mii"], default="vllm"
@ -204,12 +203,6 @@ def create_argument_parser():
)
parser = EngineArgs.add_cli_args(parser)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model

View File

@ -1,11 +1,11 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
r"""Benchmark online serving throughput.
On the server side, run one of the following commands:
vLLM OpenAI API server
vllm serve <your_model> \
--swap-space 16
--swap-space 16 \
--disable-log-requests
On the client side, run:
python benchmarks/benchmark_serving.py \
@ -29,15 +29,14 @@ import os
import random
import time
import warnings
from collections.abc import Iterable
from collections.abc import AsyncGenerator, Iterable
from dataclasses import dataclass
from datetime import datetime
from typing import Any, Literal, Optional
from typing import Any, Optional
import numpy as np
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from typing_extensions import deprecated
from backend_request_func import (
ASYNC_REQUEST_FUNCS,
@ -61,7 +60,6 @@ from benchmark_dataset import (
ASRDataset,
BurstGPTDataset,
ConversationDataset,
CustomDataset,
HuggingFaceDataset,
InstructCoderDataset,
MTBenchDataset,
@ -73,7 +71,6 @@ from benchmark_dataset import (
VisionArenaDataset,
)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from vllm.benchmarks.serve import get_request
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
@ -108,6 +105,51 @@ class BenchmarkMetrics:
percentiles_e2el_ms: list[tuple[float, float]]
async def get_request(
input_requests: list[SampleRequest],
request_rate: float,
burstiness: float = 1.0,
) -> AsyncGenerator[SampleRequest, None]:
"""
Asynchronously generates requests at a specified rate
with OPTIONAL burstiness.
Args:
input_requests:
A list of input requests, each represented as a SampleRequest.
request_rate:
The rate at which requests are generated (requests/s).
burstiness (optional):
The burstiness factor of the request generation.
Only takes effect when request_rate is not inf.
Default value is 1, which follows a Poisson process.
Otherwise, the request intervals follow a gamma distribution.
A lower burstiness value (0 < burstiness < 1) results
in more bursty requests, while a higher burstiness value
(burstiness > 1) results in a more uniform arrival of requests.
"""
input_requests: Iterable[SampleRequest] = iter(input_requests)
# Calculate scale parameter theta to maintain the desired request_rate.
assert burstiness > 0, (
f"A positive burstiness factor is expected, but given {burstiness}."
)
theta = 1.0 / (request_rate * burstiness)
for request in input_requests:
yield request
if request_rate == float("inf"):
# If the request rate is infinity, then we don't need to wait.
continue
# Sample the request interval from the gamma distribution.
# If burstiness is 1, it follows exponential distribution.
interval = np.random.gamma(shape=burstiness, scale=theta)
# The next request will be sent after the interval.
await asyncio.sleep(interval)
def calculate_metrics(
input_requests: list[SampleRequest],
outputs: list[RequestFuncOutput],
@ -233,7 +275,7 @@ async def benchmark(
model_id: str,
model_name: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: list[SampleRequest],
requests: list[SampleRequest],
logprobs: Optional[int],
request_rate: float,
burstiness: float,
@ -246,9 +288,6 @@ async def benchmark(
max_concurrency: Optional[int],
lora_modules: Optional[Iterable[str]],
extra_body: Optional[dict],
ramp_up_strategy: Optional[Literal["linear", "exponential"]] = None,
ramp_up_start_rps: Optional[int] = None,
ramp_up_end_rps: Optional[int] = None,
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS[backend]
@ -256,21 +295,16 @@ async def benchmark(
raise ValueError(f"Unknown backend: {backend}")
print("Starting initial single prompt test run...")
last_idx = len(requests) - 1
test_prompt, test_prompt_len, test_output_len, test_mm_content = (
input_requests[0].prompt,
input_requests[0].prompt_len,
input_requests[0].expected_output_len,
input_requests[0].multi_modal_data,
requests[last_idx].prompt,
requests[last_idx].prompt_len,
requests[last_idx].expected_output_len,
requests[last_idx].multi_modal_data,
)
input_requests = requests[:last_idx]
assert (
test_mm_content is None
or isinstance(test_mm_content, dict)
or (
isinstance(test_mm_content, list)
and all(isinstance(item, dict) for item in test_mm_content)
)
), "multi_modal_data must be a dict or list[dict]"
assert test_mm_content is None or isinstance(test_mm_content, dict)
test_input = RequestFuncInput(
model=model_id,
model_name=model_name,
@ -319,15 +353,7 @@ async def benchmark(
distribution = "Poisson process" if burstiness == 1.0 else "Gamma distribution"
if ramp_up_strategy is not None:
print(
f"Traffic ramp-up strategy: {ramp_up_strategy}. Will increase "
f"RPS from {ramp_up_start_rps} to {ramp_up_end_rps} RPS over "
"the duration of the benchmark."
)
else:
print(f"Traffic request rate: {request_rate} RPS.")
print(f"Traffic request rate: {request_rate}")
print(f"Burstiness factor: {burstiness} ({distribution})")
print(f"Maximum request concurrency: {max_concurrency}")
@ -347,34 +373,7 @@ async def benchmark(
benchmark_start_time = time.perf_counter()
tasks: list[asyncio.Task] = []
rps_change_events = []
last_int_rps = -1
if ramp_up_strategy is not None and ramp_up_start_rps is not None:
last_int_rps = ramp_up_start_rps
rps_change_events.append(
{
"rps": last_int_rps,
"timestamp": datetime.now().isoformat(),
}
)
async for request, current_request_rate in get_request(
input_requests,
request_rate,
burstiness,
ramp_up_strategy,
ramp_up_start_rps,
ramp_up_end_rps,
):
if ramp_up_strategy is not None:
current_int_rps = int(current_request_rate)
if current_int_rps > last_int_rps:
timestamp = datetime.now().isoformat()
for rps_val in range(last_int_rps + 1, current_int_rps + 1):
rps_change_events.append({"rps": rps_val, "timestamp": timestamp})
last_int_rps = current_int_rps
async for request in get_request(input_requests, request_rate, burstiness):
prompt, prompt_len, output_len, mm_content = (
request.prompt,
request.prompt_len,
@ -398,10 +397,27 @@ async def benchmark(
ignore_eos=ignore_eos,
extra_body=extra_body,
)
task = limited_request_func(request_func_input=request_func_input, pbar=pbar)
tasks.append(asyncio.create_task(task))
tasks.append(
asyncio.create_task(
limited_request_func(request_func_input=request_func_input, pbar=pbar)
)
)
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
if profile:
print("Stopping profiler...")
profile_input = RequestFuncInput(
model=model_id,
prompt=test_prompt,
api_url=base_url + "/stop_profile",
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler stopped")
if pbar is not None:
pbar.close()
@ -419,10 +435,6 @@ async def benchmark(
print("{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
if max_concurrency is not None:
print("{:<40} {:<10}".format("Maximum request concurrency:", max_concurrency))
if request_rate != float("inf"):
print("{:<40} {:<10.2f}".format("Request rate configured (RPS):", request_rate))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
@ -454,7 +466,7 @@ async def benchmark(
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"request_throughput": metrics.request_throughput,
"request_goodput": metrics.request_goodput if goodput_config_dict else None,
"request_goodput:": metrics.request_goodput if goodput_config_dict else None,
"output_throughput": metrics.output_throughput,
"total_token_throughput": metrics.total_token_throughput,
"input_lens": [output.prompt_len for output in outputs],
@ -465,9 +477,6 @@ async def benchmark(
"errors": [output.error for output in outputs],
}
if rps_change_events:
result["rps_change_events"] = rps_change_events
def process_one_metric(
# E.g., "ttft"
metric_attribute_name: str,
@ -514,20 +523,6 @@ async def benchmark(
print("=" * 50)
if profile:
print("Stopping profiler...")
profile_input = RequestFuncInput(
model=model_id,
prompt=test_prompt,
api_url=base_url + "/stop_profile",
prompt_len=test_prompt_len,
output_len=test_output_len,
logprobs=logprobs,
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler stopped")
return result
@ -604,10 +599,6 @@ def save_to_pytorch_benchmark_format(
write_to_json(pt_file, pt_records)
@deprecated(
"benchmark_serving.py is deprecated and will be removed in a future "
"version. Please use 'vllm bench serve' instead.",
)
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
@ -619,26 +610,6 @@ def main(args: argparse.Namespace):
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
tokenizer_mode = args.tokenizer_mode
# Validate ramp-up arguments
if args.ramp_up_strategy is not None:
if args.request_rate != float("inf"):
raise ValueError(
"When using ramp-up, do not specify --request-rate. "
"The request rate will be controlled by ramp-up parameters. "
"Please remove the --request-rate argument."
)
if args.ramp_up_start_rps is None or args.ramp_up_end_rps is None:
raise ValueError(
"When using --ramp-up-strategy, both --ramp-up-start-rps and "
"--ramp-up-end-rps must be specified"
)
if args.ramp_up_start_rps < 0 or args.ramp_up_end_rps < 0:
raise ValueError("Ramp-up start and end RPS must be non-negative")
if args.ramp_up_start_rps > args.ramp_up_end_rps:
raise ValueError("Ramp-up start RPS must be less than end RPS")
if args.ramp_up_strategy == "exponential" and args.ramp_up_start_rps == 0:
raise ValueError("For exponential ramp-up, the start RPS cannot be 0.")
if args.base_url is not None:
api_url = f"{args.base_url}{args.endpoint}"
base_url = f"{args.base_url}"
@ -646,6 +617,9 @@ def main(args: argparse.Namespace):
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
base_url = f"http://{args.host}:{args.port}"
# Create one more request (for a test request)
total_prompts = args.num_prompts + 1
tokenizer = get_tokenizer(
tokenizer_id,
tokenizer_mode=tokenizer_mode,
@ -658,21 +632,12 @@ def main(args: argparse.Namespace):
"'--dataset-path' if required."
)
if args.dataset_name == "custom":
dataset = CustomDataset(dataset_path=args.dataset_path)
input_requests = dataset.sample(
num_requests=args.num_prompts,
tokenizer=tokenizer,
output_len=args.custom_output_len,
skip_chat_template=args.custom_skip_chat_template,
)
elif args.dataset_name == "sonnet":
if args.dataset_name == "sonnet":
dataset = SonnetDataset(dataset_path=args.dataset_path)
# For the "sonnet" dataset, formatting depends on the backend.
if args.backend == "openai-chat":
input_requests = dataset.sample(
num_requests=args.num_prompts,
num_requests=total_prompts,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
@ -684,7 +649,7 @@ def main(args: argparse.Namespace):
"Tokenizer/model must have chat template for sonnet dataset."
)
input_requests = dataset.sample(
num_requests=args.num_prompts,
num_requests=total_prompts,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
@ -746,9 +711,8 @@ def main(args: argparse.Namespace):
dataset_subset=args.hf_subset,
dataset_split=args.hf_split,
random_seed=args.seed,
no_stream=args.no_stream,
).sample(
num_requests=args.num_prompts,
num_requests=total_prompts,
tokenizer=tokenizer,
output_len=args.hf_output_len,
)
@ -760,15 +724,15 @@ def main(args: argparse.Namespace):
random_seed=args.seed, dataset_path=args.dataset_path
).sample(
tokenizer=tokenizer,
num_requests=args.num_prompts,
num_requests=total_prompts,
output_len=args.sharegpt_output_len,
),
"burstgpt": lambda: BurstGPTDataset(
random_seed=args.seed, dataset_path=args.dataset_path
).sample(tokenizer=tokenizer, num_requests=args.num_prompts),
).sample(tokenizer=tokenizer, num_requests=total_prompts),
"random": lambda: RandomDataset(dataset_path=args.dataset_path).sample(
tokenizer=tokenizer,
num_requests=args.num_prompts,
num_requests=total_prompts,
prefix_len=args.random_prefix_len,
input_len=args.random_input_len,
output_len=args.random_output_len,
@ -803,10 +767,6 @@ def main(args: argparse.Namespace):
if "temperature" not in sampling_params:
sampling_params["temperature"] = 0.0 # Default to greedy decoding.
if args.backend == "llama.cpp":
# Disable prompt caching in llama.cpp backend
sampling_params["cache_prompt"] = False
# Avoid GC processing "static" data - reduce pause times.
gc.collect()
gc.freeze()
@ -819,7 +779,7 @@ def main(args: argparse.Namespace):
model_id=model_id,
model_name=model_name,
tokenizer=tokenizer,
input_requests=input_requests,
requests=input_requests,
logprobs=args.logprobs,
request_rate=args.request_rate,
burstiness=args.burstiness,
@ -832,9 +792,6 @@ def main(args: argparse.Namespace):
max_concurrency=args.max_concurrency,
lora_modules=args.lora_modules,
extra_body=sampling_params,
ramp_up_strategy=args.ramp_up_strategy,
ramp_up_start_rps=args.ramp_up_start_rps,
ramp_up_end_rps=args.ramp_up_end_rps,
)
)
@ -867,11 +824,6 @@ def main(args: argparse.Namespace):
result_json["burstiness"] = args.burstiness
result_json["max_concurrency"] = args.max_concurrency
if args.ramp_up_strategy is not None:
result_json["ramp_up_strategy"] = args.ramp_up_strategy
result_json["ramp_up_start_rps"] = args.ramp_up_start_rps
result_json["ramp_up_end_rps"] = args.ramp_up_end_rps
# Merge with benchmark result
result_json = {**result_json, **benchmark_result}
@ -887,8 +839,6 @@ def main(args: argparse.Namespace):
]:
if field in result_json:
del result_json[field]
if field in benchmark_result:
del benchmark_result[field]
# Save to file
base_model_id = model_id.split("/")[-1]
@ -897,14 +847,10 @@ def main(args: argparse.Namespace):
if args.max_concurrency is not None
else ""
)
if args.ramp_up_strategy is not None:
file_name = f"{backend}-ramp-up-{args.ramp_up_strategy}-{args.ramp_up_start_rps}qps-{args.ramp_up_end_rps}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json" # noqa
else:
file_name = f"{backend}-{args.request_rate}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json" # noqa
file_name = f"{backend}-{args.request_rate}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json" # noqa
if args.result_filename:
file_name = args.result_filename
if args.result_dir:
os.makedirs(args.result_dir, exist_ok=True)
file_name = os.path.join(args.result_dir, file_name)
with open(
file_name, mode="a+" if args.append_result else "w", encoding="utf-8"
@ -916,7 +862,7 @@ def main(args: argparse.Namespace):
save_to_pytorch_benchmark_format(args, result_json, file_name)
def create_argument_parser():
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the online serving throughput."
)
@ -945,7 +891,7 @@ def create_argument_parser():
"--dataset-name",
type=str,
default="sharegpt",
choices=["sharegpt", "burstgpt", "sonnet", "random", "hf", "custom"],
choices=["sharegpt", "burstgpt", "sonnet", "random", "hf"],
help="Name of the dataset to benchmark on.",
)
parser.add_argument(
@ -955,11 +901,6 @@ def create_argument_parser():
help="Path to the sharegpt/sonnet dataset. "
"Or the huggingface dataset ID if using HF dataset.",
)
parser.add_argument(
"--no-stream",
action="store_true",
help="Do not load the dataset in streaming mode.",
)
parser.add_argument(
"--max-concurrency",
type=int,
@ -1120,19 +1061,6 @@ def create_argument_parser():
)
# group for dataset specific arguments
custom_group = parser.add_argument_group("custom dataset options")
custom_group.add_argument(
"--custom-output-len",
type=int,
default=256,
help="Number of output tokens per request, used only for custom dataset.",
)
custom_group.add_argument(
"--custom-skip-chat-template",
action="store_true",
help="Skip applying chat template to prompt, used only for custom dataset.",
)
sonnet_group = parser.add_argument_group("sonnet dataset options")
sonnet_group.add_argument(
"--sonnet-input-len",
@ -1271,35 +1199,6 @@ def create_argument_parser():
"script chooses a LoRA module at random.",
)
parser.add_argument(
"--ramp-up-strategy",
type=str,
default=None,
choices=["linear", "exponential"],
help="The ramp-up strategy. This would be used to "
"ramp up the request rate from initial RPS to final "
"RPS rate (specified by --ramp-up-start-rps and --ramp-up-end-rps). "
"over the duration of the benchmark.",
)
parser.add_argument(
"--ramp-up-start-rps",
type=int,
default=None,
help="The starting request rate for ramp-up (RPS). "
"Needs to be specified when --ramp-up-strategy is used.",
)
parser.add_argument(
"--ramp-up-end-rps",
type=int,
default=None,
help="The ending request rate for ramp-up (RPS). "
"Needs to be specified when --ramp-up-strategy is used.",
)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
main(args)

View File

@ -1,10 +1,9 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
r"""Benchmark online serving throughput with structured outputs.
On the server side, run one of the following commands:
(vLLM OpenAI API server)
vllm serve <your_model>
vllm serve <your_model> --disable-log-requests
On the client side, run:
python benchmarks/benchmark_serving_structured_output.py \
@ -12,6 +11,7 @@ On the client side, run:
--model <your_model> \
--dataset json \
--structured-output-ratio 1.0 \
--structured-output-backend auto \
--request-rate 10 \
--num-prompts 1000
@ -538,6 +538,20 @@ async def benchmark(
)
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
if profile:
print("Stopping profiler...")
profile_input = RequestFuncInput(
model=model_id,
prompt=test_request.prompt,
api_url=base_url + "/stop_profile",
prompt_len=test_request.prompt_len,
output_len=test_request.expected_output_len,
extra_body={test_request.structure_type: test_request.schema},
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler stopped")
if pbar is not None:
pbar.close()
@ -555,10 +569,6 @@ async def benchmark(
print("{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
if max_concurrency is not None:
print("{:<40} {:<10}".format("Maximum request concurrency:", max_concurrency))
if request_rate != float("inf"):
print("{:<40} {:<10.2f}".format("Request rate configured (RPS):", request_rate))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
@ -656,27 +666,13 @@ async def benchmark(
print("=" * 50)
if profile:
print("Stopping profiler...")
profile_input = RequestFuncInput(
model=model_id,
prompt=test_request.prompt,
api_url=base_url + "/stop_profile",
prompt_len=test_request.prompt_len,
output_len=test_request.expected_output_len,
extra_body={test_request.structure_type: test_request.schema},
)
profile_output = await request_func(request_func_input=profile_input)
if profile_output.success:
print("Profiler stopped")
return result, ret
def evaluate(ret, args):
def _eval_correctness_json(expected, actual):
# extract json string from string using regex
import regex as re
import re
actual = actual.replace("\n", "").replace(" ", "").strip()
try:
@ -691,7 +687,7 @@ def evaluate(ret, args):
return actual in args.choice
def _eval_correctness_regex(expected, actual):
import regex as re
import re
return re.match(args.regex, actual) is not None
@ -854,7 +850,7 @@ def main(args: argparse.Namespace):
json.dump(results, outfile, indent=4)
def create_argument_parser():
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the online serving throughput."
)
@ -1038,10 +1034,5 @@ def create_argument_parser():
help="Ratio of Structured Outputs requests",
)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
main(args)

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Benchmark offline inference throughput."""
import argparse
@ -15,7 +14,6 @@ import torch
import uvloop
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerBase
from typing_extensions import deprecated
from benchmark_dataset import (
AIMODataset,
@ -98,7 +96,7 @@ def run_vllm(
assert lora_requests is None, "BeamSearch API does not support LoRA"
prompts = [request.prompt for request in requests]
# output_len should be the same for all requests.
output_len = requests[0].expected_output_len
output_len = requests[0][2]
for request in requests:
assert request.expected_output_len == output_len
start = time.perf_counter()
@ -168,8 +166,7 @@ async def run_vllm_async(
from vllm import SamplingParams
async with build_async_engine_client_from_engine_args(
engine_args,
disable_frontend_multiprocessing=disable_frontend_multiprocessing,
engine_args, disable_frontend_multiprocessing
) as llm:
model_config = await llm.get_model_config()
assert all(
@ -358,7 +355,6 @@ def get_requests(args, tokenizer):
elif args.dataset_name == "burstgpt":
dataset_cls = BurstGPTDataset
elif args.dataset_name == "hf":
common_kwargs["no_stream"] = args.no_stream
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = VisionArenaDataset
common_kwargs["dataset_subset"] = None
@ -383,10 +379,6 @@ def get_requests(args, tokenizer):
return dataset_cls(**common_kwargs).sample(**sample_kwargs)
@deprecated(
"benchmark_throughput.py is deprecated and will be removed in a "
"future version. Please use 'vllm bench throughput' instead.",
)
def main(args: argparse.Namespace):
if args.seed is None:
args.seed = 0
@ -602,7 +594,7 @@ def validate_args(args):
)
def create_argument_parser():
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument(
"--backend",
@ -617,11 +609,6 @@ def create_argument_parser():
help="Name of the dataset to benchmark on.",
default="sharegpt",
)
parser.add_argument(
"--no-stream",
action="store_true",
help="Do not load the dataset in streaming mode.",
)
parser.add_argument(
"--dataset",
type=str,
@ -729,12 +716,6 @@ def create_argument_parser():
)
parser = AsyncEngineArgs.add_cli_args(parser)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model

View File

@ -1,12 +1,10 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import json
import math
import os
import time
from types import TracebackType
from typing import Any, Optional, Union
from typing import Any
def convert_to_pytorch_benchmark_format(
@ -67,59 +65,4 @@ class InfEncoder(json.JSONEncoder):
def write_to_json(filename: str, records: list) -> None:
with open(filename, "w") as f:
json.dump(
records,
f,
cls=InfEncoder,
default=lambda o: f"<{type(o).__name__} object is not JSON serializable>",
)
# Collect time and generate time metrics
#
# Example Usage:
# collector = TimeCollector(TimeCollector.US)
# for _ in range(total_iteration):
# with collector:
# ...
# collector.dump_avg_max()
class TimeCollector:
NS: int = 1
US: int = NS * 1000
MS: int = US * 1000
S: int = MS * 1000
def __init__(self, scale: int) -> None:
self.cnt: int = 0
self._sum: int = 0
self._max: Optional[int] = None
self.scale = scale
self.start_time: int = time.monotonic_ns()
def collect(self, v: int) -> None:
self.cnt += 1
self._sum += v
if self._max is None:
self._max = v
else:
self._max = max(self._max, v)
def avg(self) -> Union[float, str]:
return self._sum * 1.0 / self.cnt / self.scale if self.cnt > 0 else "N/A"
def max(self) -> Union[float, str]:
return self._max / self.scale if self._max else "N/A"
def dump_avg_max(self) -> list[Union[float, str]]:
return [self.avg(), self.max()]
def __enter__(self) -> None:
self.start_time = time.monotonic_ns()
def __exit__(
self,
exc_type: Optional[type[BaseException]],
exc_value: Optional[BaseException],
exc_traceback: Optional[TracebackType],
) -> None:
self.collect(time.monotonic_ns() - self.start_time)
json.dump(records, f, cls=InfEncoder)

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Cutlass bench utils
from collections.abc import Iterable

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy
@ -19,7 +18,7 @@ from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
w8a8_block_fp8_matmul,
)
from vllm.utils import FlexibleArgumentParser, cdiv
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
@ -117,9 +116,14 @@ def bench_fp8(
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
block_scale_a = torch.rand((m, cdiv(k, 128)), device="cuda", dtype=torch.float32)
def ceil_div(x: int, y: int) -> int:
return (x + y - 1) // y
block_scale_a = torch.rand(
(m, ceil_div(k, 128)), device="cuda", dtype=torch.float32
)
block_scale_b = torch.rand(
cdiv(k, 128), cdiv(n, 128), device="cuda", dtype=torch.float32
ceil_div(k, 128), ceil_div(n, 128), device="cuda", dtype=torch.float32
)
block_scale_a_M_major = block_scale_a.t().contiguous().t()
block_scale_b_K_major = block_scale_b.t().contiguous().t()

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Weight Shapes are in the format
# ([K, N], TP_SPLIT_DIM)

View File

@ -3,7 +3,7 @@
# benchmark the overhead of disaggregated prefill.
# methodology:
# - send all request to prefill vLLM instance. It will buffer KV cache.
# - then send all request to decode instance.
# - then send all request to decode instance.
# - The TTFT of decode instance is the overhead.
set -ex
@ -12,8 +12,6 @@ kill_gpu_processes() {
# kill all processes on GPU.
pgrep pt_main_thread | xargs -r kill -9
pgrep python3 | xargs -r kill -9
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
pgrep VLLM | xargs -r kill -9
sleep 10
# remove vllm config file
@ -63,7 +61,7 @@ benchmark() {
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
@ -78,38 +76,38 @@ benchmark() {
wait_for_server 8200
# let the prefill instance finish prefill
vllm bench serve \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8100 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1.json \
--request-rate "inf"
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8100 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1.json \
--request-rate "inf"
# send the request to decode.
# The TTFT of this command will be the overhead of disagg prefill impl.
vllm bench serve \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8200 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1_overhead.json \
--request-rate "$qps"
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8200 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1_overhead.json \
--request-rate "$qps"
kill_gpu_processes
}

View File

@ -18,8 +18,6 @@ kill_gpu_processes() {
# kill all processes on GPU.
pgrep pt_main_thread | xargs -r kill -9
pgrep python3 | xargs -r kill -9
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
pgrep VLLM | xargs -r kill -9
for port in 8000 8100 8200; do lsof -t -i:$port | xargs -r kill -9; done
sleep 1
}
@ -60,7 +58,7 @@ launch_chunked_prefill() {
launch_disagg_prefill() {
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
# disagg prefill
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
@ -99,20 +97,20 @@ benchmark() {
output_len=$2
tag=$3
vllm bench serve \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8000 \
--save-result \
--result-dir $results_folder \
--result-filename "$tag"-qps-"$qps".json \
--request-rate "$qps"
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8000 \
--save-result \
--result-dir $results_folder \
--result-filename "$tag"-qps-"$qps".json \
--request-rate "$qps"
sleep 2
}

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
import itertools

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pickle as pkl
import time

View File

@ -1,159 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy
import itertools
import torch
from weight_shapes import WEIGHT_SHAPES
from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm
from vllm._custom_ops import scaled_fp8_quant as vllm_scaled_fp8_quant
from vllm.triton_utils import triton
PROVIDER_CFGS = {
"torch-bf16": dict(enabled=True),
"fp8-tensor-w-token-a": dict(
w="tensor", a="token", no_a_quant=False, enabled=False
),
"fp8-tensor-w-tensor-a": dict(
w="tensor", a="tensor", no_a_quant=False, enabled=True
),
"fp8-channel-w-token-a": dict(
w="channel", a="token", no_a_quant=False, enabled=True
),
"fp8-channel-w-tensor-a": dict(
w="channel", a="tensor", no_a_quant=False, enabled=False
),
"fp8-tensor-w-token-a-noquant": dict(
w="tensor", a="token", no_a_quant=True, enabled=False
),
"fp8-tensor-w-tensor-a-noquant": dict(
w="tensor", a="tensor", no_a_quant=True, enabled=True
),
"fp8-channel-w-token-a-noquant": dict(
w="channel", a="token", no_a_quant=True, enabled=True
),
"fp8-channel-w-tensor-a-noquant": dict(
w="channel", a="tensor", no_a_quant=True, enabled=False
),
}
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
def _quant_weight_fp8(b: torch.Tensor, w_type: str, device: str):
if w_type == "tensor":
scale_b = torch.ones(1, device=device, dtype=torch.float32)
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
else:
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, use_per_token_if_dynamic=True)
return b_fp8.t(), scale_b_fp8
def build_fp8_runner(cfg, a, b, dtype, device):
b_fp8, scale_b_fp8 = _quant_weight_fp8(b, cfg["w"], device)
scale_a_const = (
torch.ones(1, device=device, dtype=torch.float32)
if cfg["a"] == "tensor"
else None
)
if cfg["no_a_quant"]:
if cfg["a"] == "tensor":
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a_const)
else:
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, use_per_token_if_dynamic=True)
def run():
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
return run
if cfg["a"] == "tensor":
def run():
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a_const)
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
else:
def run():
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, use_per_token_if_dynamic=True)
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
return run
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
x_log=False,
line_arg="provider",
line_vals=_enabled,
line_names=_enabled,
ylabel="TFLOP/s (larger is better)",
plot_name="BF16 vs FP8 GEMMs",
args={},
)
)
def benchmark(batch_size, provider, N, K):
M = batch_size
device = "cuda"
dtype = torch.bfloat16
a = torch.randn((M, K), device=device, dtype=dtype)
b = torch.randn((N, K), device=device, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch-bf16":
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: torch.nn.functional.linear(a, b), quantiles=quantiles
)
else:
cfg = PROVIDER_CFGS[provider]
run_quant = build_fp8_runner(cfg, a, b, dtype, device)
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: run_quant(), quantiles=quantiles
)
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
def prepare_shapes(args):
out = []
for model, tp_size in itertools.product(args.models, args.tp_sizes):
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
KN[tp_dim] //= tp_size
KN.append(model)
out.append(KN)
return out
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--models",
nargs="+",
type=str,
default=["meta-llama/Llama-3.1-8B-Instruct"],
choices=list(WEIGHT_SHAPES.keys()),
)
parser.add_argument("--tp-sizes", nargs="+", type=int, default=[1])
args = parser.parse_args()
for K, N, model in prepare_shapes(args):
print(f"{model}, N={N} K={K}, BF16 vs FP8 GEMMs TFLOP/s:")
benchmark.run(
print_data=True,
show_plots=True,
save_path=f"bench_fp8_res_n{N}_k{K}",
N=N,
K=K,
)
print("Benchmark finished!")

View File

@ -1,169 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy
import itertools
import torch
from weight_shapes import WEIGHT_SHAPES
from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm
from vllm._custom_ops import scaled_int8_quant as vllm_scaled_int8_quant
from vllm.triton_utils import triton
PROVIDER_CFGS = {
"torch-bf16": dict(enabled=True),
"int8-tensor-w-token-a": dict(
w="tensor", a="token", no_a_quant=False, enabled=False
),
"int8-tensor-w-tensor-a": dict(
w="tensor", a="tensor", no_a_quant=False, enabled=True
),
"int8-channel-w-token-a": dict(
w="channel", a="token", no_a_quant=False, enabled=True
),
"int8-channel-w-tensor-a": dict(
w="channel", a="tensor", no_a_quant=False, enabled=False
),
"int8-tensor-w-token-a-noquant": dict(
w="tensor", a="token", no_a_quant=True, enabled=False
),
"int8-tensor-w-tensor-a-noquant": dict(
w="tensor", a="tensor", no_a_quant=True, enabled=True
),
"int8-channel-w-token-a-noquant": dict(
w="channel", a="token", no_a_quant=True, enabled=True
),
"int8-channel-w-tensor-a-noquant": dict(
w="channel", a="tensor", no_a_quant=True, enabled=False
),
}
def _quant_weight(b, w_type, device):
if w_type == "tensor":
scale_b = torch.ones(1, device=device, dtype=torch.float32)
b_int8, scale_b_int8, _ = vllm_scaled_int8_quant(b, scale_b)
assert scale_b_int8.numel() == 1
else: # channel
b_int8, scale_b_int8, _ = vllm_scaled_int8_quant(b)
assert scale_b_int8.numel() == b.shape[0]
return b_int8.t(), scale_b_int8
def build_int8_runner(cfg, a, b, dtype, device):
# quant before running the kernel
b_int8, scale_b_int8 = _quant_weight(b, cfg["w"], device)
scale_a_const = None
if cfg["a"] == "tensor":
scale_a_const = torch.ones(1, device=device, dtype=torch.float32)
# no quant, create activation ahead
if cfg["no_a_quant"]:
if cfg["a"] == "tensor":
a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a, scale_a_const)
else: # token
a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a)
def run_quant():
return vllm_scaled_mm(a_int8, b_int8, scale_a_int8, scale_b_int8, dtype)
return run_quant
# dynamic quant, create activation inside
if cfg["a"] == "tensor":
def run_quant():
a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a, scale_a_const)
return vllm_scaled_mm(a_int8, b_int8, scale_a_int8, scale_b_int8, dtype)
else: # token
def run_quant():
a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a)
return vllm_scaled_mm(a_int8, b_int8, scale_a_int8, scale_b_int8, dtype)
return run_quant
_enabled = [k for k, v in PROVIDER_CFGS.items() if v.get("enabled")]
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
x_log=False,
line_arg="provider",
line_vals=_enabled,
line_names=[k for k in _enabled],
ylabel="TFLOP/s (larger is better)",
plot_name="BF16 vs INT8 GEMMs",
args={},
)
)
def benchmark(batch_size, provider, N, K):
M = batch_size
device = "cuda"
dtype = torch.bfloat16
a = torch.randn((M, K), device=device, dtype=dtype)
b = torch.randn((N, K), device=device, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch-bf16":
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: torch.nn.functional.linear(a, b), quantiles=quantiles
)
else:
cfg = PROVIDER_CFGS[provider]
run_quant = build_int8_runner(cfg, a, b, dtype, device)
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: run_quant(), quantiles=quantiles
)
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
def prepare_shapes(args):
KN_model_names = []
for model, tp_size in itertools.product(args.models, args.tp_sizes):
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
KN[tp_dim] //= tp_size
KN.append(model)
KN_model_names.append(KN)
return KN_model_names
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--models",
nargs="+",
type=str,
default=["meta-llama/Llama-3.1-8B-Instruct"],
choices=list(WEIGHT_SHAPES.keys()),
help="List of models to benchmark",
)
parser.add_argument(
"--tp-sizes",
nargs="+",
type=int,
default=[1],
help="List of tensor parallel sizes",
)
args = parser.parse_args()
for K, N, model in prepare_shapes(args):
print(f"{model}, N={N} K={K}, BF16 vs INT8 GEMMs TFLOP/s:")
benchmark.run(
print_data=True,
show_plots=True,
save_path=f"bench_int8_res_n{N}_k{K}",
N=N,
K=K,
)
print("Benchmark finished!")

View File

@ -1,141 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy
import itertools
import torch
from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types
from vllm.triton_utils import triton
if not current_platform.has_device_capability(100):
raise RuntimeError("NVFP4 requires compute capability of 10.0 (Blackwell)")
FLOAT4_E2M1_MAX = scalar_types.float4_e2m1f.max()
FLOAT8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max
PROVIDER_CFGS = {
"torch-bf16": dict(enabled=True),
"nvfp4": dict(no_a_quant=False, enabled=True),
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
}
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
def _quant_weight_nvfp4(b: torch.Tensor, device: str):
# Compute global scale for weight
b_amax = torch.abs(b).max().to(torch.float32)
b_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
return b_fp4, scale_b_fp4, b_global_scale
def build_nvfp4_runner(cfg, a, b, dtype, device):
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device)
# Compute global scale for activation
# NOTE: This is generally provided ahead-of-time by the model checkpoint.
a_amax = torch.abs(a).max().to(torch.float32)
a_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / a_amax
# Alpha for the GEMM operation
alpha = 1.0 / (a_global_scale * b_global_scale)
if cfg["no_a_quant"]:
# Pre-quantize activation
a_fp4, scale_a_fp4 = ops.scaled_fp4_quant(a, a_global_scale)
def run():
return ops.cutlass_scaled_fp4_mm(
a_fp4, b_fp4, scale_a_fp4, scale_b_fp4, alpha, dtype
)
return run
# Quantize activation on-the-fly
def run():
a_fp4, scale_a_fp4 = ops.scaled_fp4_quant(a, a_global_scale)
return ops.cutlass_scaled_fp4_mm(
a_fp4, b_fp4, scale_a_fp4, scale_b_fp4, alpha, dtype
)
return run
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
x_log=False,
line_arg="provider",
line_vals=_enabled,
line_names=_enabled,
ylabel="TFLOP/s (larger is better)",
plot_name="BF16 vs NVFP4 GEMMs",
args={},
)
)
def benchmark(batch_size, provider, N, K):
M = batch_size
device = "cuda"
dtype = torch.bfloat16
a = torch.randn((M, K), device=device, dtype=dtype)
b = torch.randn((N, K), device=device, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch-bf16":
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: torch.nn.functional.linear(a, b), quantiles=quantiles
)
else:
cfg = PROVIDER_CFGS[provider]
run_quant = build_nvfp4_runner(cfg, a, b, dtype, device)
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: run_quant(), quantiles=quantiles
)
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
def prepare_shapes(args):
out = []
for model, tp_size in itertools.product(args.models, args.tp_sizes):
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
KN[tp_dim] //= tp_size
KN.append(model)
out.append(KN)
return out
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--models",
nargs="+",
type=str,
default=["meta-llama/Llama-3.1-8B-Instruct"],
choices=list(WEIGHT_SHAPES.keys()),
)
parser.add_argument("--tp-sizes", nargs="+", type=int, default=[1])
args = parser.parse_args()
for K, N, model in prepare_shapes(args):
print(f"{model}, N={N} K={K}, BF16 vs NVFP4 GEMMs TFLOP/s:")
benchmark.run(
print_data=True,
show_plots=True,
save_path=f"bench_nvfp4_res_n{N}_k{K}",
N=N,
K=K,
)
print("Benchmark finished!")

View File

@ -1,98 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import itertools
from typing import Callable
import torch
from vllm import _custom_ops as ops
from vllm.config import CompilationConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
from vllm.model_executor.layers.quantization.utils.quant_utils import GroupShape
from vllm.triton_utils import triton
# TODO(luka): use standalone_compile utility
def with_dyn_arg(fn: Callable, arg_index: int, dim_index: int):
def inner(*args):
torch._dynamo.mark_dynamic(args[arg_index], dim_index)
return fn(*args)
return inner
torch._dynamo.config.recompile_limit = 8888
compilation_config = CompilationConfig(custom_ops=["none"])
with set_current_vllm_config(VllmConfig(compilation_config=compilation_config)):
torch_per_token_quant_fp8 = torch.compile(
QuantFP8(False, GroupShape.PER_TOKEN),
fullgraph=True,
dynamic=False, # recompile for different shapes
)
# First dim is explicitly dynamic to simulate vLLM usage
torch_per_token_quant_fp8 = with_dyn_arg(torch_per_token_quant_fp8, 0, 0)
def cuda_per_token_quant_fp8(
input: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
return ops.scaled_fp8_quant(input)
def calculate_diff(batch_size: int, seq_len: int):
"""Calculate difference between Triton and CUDA implementations."""
device = torch.device("cuda")
x = torch.rand((batch_size * seq_len, 4096), dtype=torch.float16, device=device)
torch_out, torch_scale = torch_per_token_quant_fp8(x)
cuda_out, cuda_scale = cuda_per_token_quant_fp8(x)
if torch.allclose(
cuda_out.to(torch.float32), torch_out.to(torch.float32), rtol=1e-3, atol=1e-5
) and torch.allclose(cuda_scale, torch_scale, rtol=1e-3, atol=1e-5):
print("✅ All implementations match")
else:
print("❌ Implementations differ")
batch_size_range = [1, 16, 32, 64, 128]
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
configs = list(itertools.product(batch_size_range, seq_len_range))
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size", "seq_len"],
x_vals=configs,
line_arg="provider",
line_vals=["torch", "cuda"],
line_names=["Torch", "CUDA"],
styles=[("blue", "-"), ("green", "-")],
ylabel="us",
plot_name="per-token-dynamic-quant-fp8-performance",
args={},
)
)
def benchmark_quantization(batch_size, seq_len, provider):
dtype = torch.float16
device = torch.device("cuda")
x = torch.randn(batch_size * seq_len, 4096, device=device, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch":
fn = lambda: torch_per_token_quant_fp8(x.clone())
elif provider == "cuda":
fn = lambda: cuda_per_token_quant_fp8(x.clone())
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(fn, quantiles=quantiles)
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
if __name__ == "__main__":
calculate_diff(batch_size=4, seq_len=4096)
benchmark_quantization.run(print_data=True)

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
import sys

View File

@ -1,10 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from packaging import version
from vllm.model_executor.layers.quantization.utils.bitblas_utils import (
MINIMUM_BITBLAS_VERSION,
)
@ -12,7 +9,7 @@ from vllm.model_executor.layers.quantization.utils.bitblas_utils import (
try:
import bitblas
if version.parse(bitblas.__version__) < version.parse(MINIMUM_BITBLAS_VERSION):
if bitblas.__version__ < MINIMUM_BITBLAS_VERSION:
raise ImportError(
"bitblas version is wrong. Please "
f"install bitblas>={MINIMUM_BITBLAS_VERSION}"

Some files were not shown because too many files have changed in this diff Show More