mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
Compare commits
6 Commits
maybe_fix_
...
v0.10.1.1
Author | SHA1 | Date | |
---|---|---|---|
1da94e673c | |||
d8b736f913 | |||
3a8708f60a | |||
aab549870d | |||
ba6928cf13 | |||
befedf86a8 |
10
vllm/entrypoints/constants.py
Normal file
10
vllm/entrypoints/constants.py
Normal file
@ -0,0 +1,10 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
Shared constants for vLLM entrypoints.
|
||||
"""
|
||||
|
||||
# HTTP header limits for h11 parser
|
||||
# These constants help mitigate header abuse attacks
|
||||
H11_MAX_INCOMPLETE_EVENT_SIZE_DEFAULT = 4194304 # 4 MB
|
||||
H11_MAX_HEADER_COUNT_DEFAULT = 256
|
@ -14,6 +14,8 @@ from vllm import envs
|
||||
from vllm.engine.async_llm_engine import AsyncEngineDeadError
|
||||
from vllm.engine.multiprocessing import MQEngineDeadError
|
||||
from vllm.engine.protocol import EngineClient
|
||||
from vllm.entrypoints.constants import (H11_MAX_HEADER_COUNT_DEFAULT,
|
||||
H11_MAX_INCOMPLETE_EVENT_SIZE_DEFAULT)
|
||||
from vllm.entrypoints.ssl import SSLCertRefresher
|
||||
from vllm.logger import init_logger
|
||||
from vllm.utils import find_process_using_port
|
||||
@ -26,6 +28,11 @@ async def serve_http(app: FastAPI,
|
||||
sock: Optional[socket.socket],
|
||||
enable_ssl_refresh: bool = False,
|
||||
**uvicorn_kwargs: Any):
|
||||
"""
|
||||
Start a FastAPI app using Uvicorn, with support for custom Uvicorn config
|
||||
options. Supports http header limits via h11_max_incomplete_event_size and
|
||||
h11_max_header_count.
|
||||
"""
|
||||
logger.info("Available routes are:")
|
||||
for route in app.routes:
|
||||
methods = getattr(route, "methods", None)
|
||||
@ -36,7 +43,21 @@ async def serve_http(app: FastAPI,
|
||||
|
||||
logger.info("Route: %s, Methods: %s", path, ', '.join(methods))
|
||||
|
||||
# Extract header limit options if present
|
||||
h11_max_incomplete_event_size = uvicorn_kwargs.pop(
|
||||
"h11_max_incomplete_event_size", None)
|
||||
h11_max_header_count = uvicorn_kwargs.pop("h11_max_header_count", None)
|
||||
|
||||
# Set safe defaults if not provided
|
||||
if h11_max_incomplete_event_size is None:
|
||||
h11_max_incomplete_event_size = H11_MAX_INCOMPLETE_EVENT_SIZE_DEFAULT
|
||||
if h11_max_header_count is None:
|
||||
h11_max_header_count = H11_MAX_HEADER_COUNT_DEFAULT
|
||||
|
||||
config = uvicorn.Config(app, **uvicorn_kwargs)
|
||||
# Set header limits
|
||||
config.h11_max_incomplete_event_size = h11_max_incomplete_event_size
|
||||
config.h11_max_header_count = h11_max_header_count
|
||||
config.load()
|
||||
server = uvicorn.Server(config)
|
||||
_add_shutdown_handlers(app, server)
|
||||
|
@ -1894,6 +1894,8 @@ async def run_server_worker(listen_address,
|
||||
ssl_certfile=args.ssl_certfile,
|
||||
ssl_ca_certs=args.ssl_ca_certs,
|
||||
ssl_cert_reqs=args.ssl_cert_reqs,
|
||||
h11_max_incomplete_event_size=args.h11_max_incomplete_event_size,
|
||||
h11_max_header_count=args.h11_max_header_count,
|
||||
**uvicorn_kwargs,
|
||||
)
|
||||
|
||||
|
@ -20,6 +20,8 @@ from vllm.config import config
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs, optional_type
|
||||
from vllm.entrypoints.chat_utils import (ChatTemplateContentFormatOption,
|
||||
validate_chat_template)
|
||||
from vllm.entrypoints.constants import (H11_MAX_HEADER_COUNT_DEFAULT,
|
||||
H11_MAX_INCOMPLETE_EVENT_SIZE_DEFAULT)
|
||||
from vllm.entrypoints.openai.serving_models import LoRAModulePath
|
||||
from vllm.entrypoints.openai.tool_parsers import ToolParserManager
|
||||
from vllm.logger import init_logger
|
||||
@ -172,6 +174,12 @@ schema. Example: `[{"type": "text", "text": "Hello world!"}]`"""
|
||||
enable_log_outputs: bool = False
|
||||
"""If set to True, enable logging of model outputs (generations)
|
||||
in addition to the input logging that is enabled by default."""
|
||||
h11_max_incomplete_event_size: int = H11_MAX_INCOMPLETE_EVENT_SIZE_DEFAULT
|
||||
"""Maximum size (bytes) of an incomplete HTTP event (header or body) for
|
||||
h11 parser. Helps mitigate header abuse. Default: 4194304 (4 MB)."""
|
||||
h11_max_header_count: int = H11_MAX_HEADER_COUNT_DEFAULT
|
||||
"""Maximum number of HTTP headers allowed in a request for h11 parser.
|
||||
Helps mitigate header abuse. Default: 256."""
|
||||
|
||||
@staticmethod
|
||||
def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
|
||||
|
@ -20,7 +20,15 @@ from openai.types.chat.chat_completion_message import (
|
||||
from openai.types.responses import (ResponseFunctionToolCall,
|
||||
ResponseInputItemParam, ResponseOutputItem,
|
||||
ResponsePrompt, ResponseReasoningItem,
|
||||
ResponseStatus, ResponseTextConfig)
|
||||
ResponseStatus)
|
||||
|
||||
# Backward compatibility for OpenAI client versions
|
||||
try: # For older openai versions (< 1.100.0)
|
||||
from openai.types.responses import ResponseTextConfig
|
||||
except ImportError: # For newer openai versions (>= 1.100.0)
|
||||
from openai.types.responses import (ResponseFormatTextConfig as
|
||||
ResponseTextConfig)
|
||||
|
||||
from openai.types.responses.response import ToolChoice
|
||||
from openai.types.responses.tool import Tool
|
||||
from openai.types.shared import Metadata, Reasoning
|
||||
|
@ -208,15 +208,10 @@ class Qwen3CoderToolParser(ToolParser):
|
||||
"valid JSON object in tool '%s', will try other "
|
||||
"methods to parse it.", param_value, param_name,
|
||||
func_name)
|
||||
try:
|
||||
converted_value = eval(param_value)
|
||||
return converted_value
|
||||
except Exception:
|
||||
logger.warning(
|
||||
"Parsed value '%s' of parameter '%s' cannot be "
|
||||
"converted via Python `eval()` in tool '%s', "
|
||||
"degenerating to string.", param_value, param_name,
|
||||
func_name)
|
||||
logger.warning(
|
||||
"Parameter '%s' has unknown type '%s'. "
|
||||
"The value will be treated as a string.", param_name,
|
||||
param_type)
|
||||
return param_value
|
||||
|
||||
# Extract function name
|
||||
|
@ -762,11 +762,11 @@ class FusedMoE(CustomOp):
|
||||
self.global_num_experts = num_experts + num_redundant_experts
|
||||
|
||||
# we padding globally so EP buffer allocation works
|
||||
if (quant_config and quant_config.get_name() == "mxfp4"
|
||||
and (current_platform.is_rocm()
|
||||
or envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8
|
||||
or envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16)):
|
||||
hidden_size = round_up(hidden_size, 256)
|
||||
if quant_config and quant_config.get_name() == "mxfp4":
|
||||
from vllm.model_executor.layers.quantization.mxfp4 import ( # noqa: E501
|
||||
should_use_flashinfer_mxfp4)
|
||||
if current_platform.is_rocm() or should_use_flashinfer_mxfp4():
|
||||
hidden_size = round_up(hidden_size, 256)
|
||||
|
||||
# For smuggling this layer into the fused moe custom op
|
||||
compilation_config = vllm_config.compilation_config
|
||||
|
@ -6,6 +6,7 @@ import torch
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from vllm import envs
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.fused_moe import (FusedMoE, FusedMoEConfig,
|
||||
FusedMoEMethodBase)
|
||||
from vllm.model_executor.layers.fused_moe.gpt_oss_triton_kernels_moe import (
|
||||
@ -26,12 +27,38 @@ from vllm.platforms import current_platform
|
||||
from vllm.scalar_type import scalar_types
|
||||
from vllm.utils import (has_triton_kernels, is_torch_equal_or_newer,
|
||||
next_power_of_2, round_up)
|
||||
from vllm.utils.flashinfer import has_flashinfer
|
||||
|
||||
if (envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8
|
||||
or envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16):
|
||||
# from flashinfer.fused_moe import cutlass_fused_moe
|
||||
from flashinfer import (mxfp8_quantize, shuffle_matrix_a,
|
||||
shuffle_matrix_sf_a, trtllm_fp4_block_scale_moe)
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
def _should_use_flashinfer_mxfp4_bf16():
|
||||
"""Determine if FlashInfer MXFP4 BF16 should be used."""
|
||||
# If explicitly set, respect the setting
|
||||
if envs.is_set("VLLM_USE_FLASHINFER_MOE_MXFP4_BF16"):
|
||||
return envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16
|
||||
|
||||
# Enable by default on SM100 if MXFP8 is not explicitly enabled
|
||||
if (current_platform.is_device_capability(100) and has_flashinfer()
|
||||
and not envs.is_set("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8")):
|
||||
logger.info_once(
|
||||
"Enabling FlashInfer MXFP4 BF16 backend by default for Blackwell. "
|
||||
"For faster performance, consider setting "
|
||||
"VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8=1, "
|
||||
"though this may impact accuracy.")
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def _should_use_flashinfer_mxfp4_mxfp8():
|
||||
"""Determine if FlashInfer MXFP4 MXFP8 should be used."""
|
||||
return envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8
|
||||
|
||||
|
||||
def should_use_flashinfer_mxfp4():
|
||||
return (_should_use_flashinfer_mxfp4_mxfp8()
|
||||
or _should_use_flashinfer_mxfp4_bf16())
|
||||
|
||||
|
||||
class Mxfp4Config(QuantizationConfig):
|
||||
@ -87,12 +114,18 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
||||
self.moe = moe
|
||||
self.use_marlin = self._should_use_marlin()
|
||||
|
||||
if current_platform.is_device_capability(100) and not has_flashinfer():
|
||||
logger.warning_once(
|
||||
"MXFP4 MoE is enabled on Blackwell but FlashInfer "
|
||||
"is not available. This may result in degraded performance. "
|
||||
"Please `pip install vllm[flashinfer]` for best results.")
|
||||
|
||||
def _should_use_marlin(self):
|
||||
if envs.VLLM_MXFP4_USE_MARLIN is not None:
|
||||
return envs.VLLM_MXFP4_USE_MARLIN
|
||||
if current_platform.is_cuda() and \
|
||||
not current_platform.has_device_capability(100):
|
||||
if not current_platform.is_device_capability(90):
|
||||
not current_platform.is_device_capability(100):
|
||||
if not current_platform.has_device_capability(90):
|
||||
# marlin kernel has better performance on ampere
|
||||
return True
|
||||
if not has_triton_kernels():
|
||||
@ -138,8 +171,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
||||
layer.hidden_size = hidden_size
|
||||
layer.intermediate_size_per_partition = \
|
||||
intermediate_size_per_partition_after_pad
|
||||
elif (envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8
|
||||
or envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16):
|
||||
elif should_use_flashinfer_mxfp4():
|
||||
# pad the intermediate size to be a multiple of 2 * mxfp4_block
|
||||
# for to hold non-uniform sharded tensor as well as swizzling
|
||||
# other padding to increase performance
|
||||
@ -230,8 +262,8 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
||||
def process_weights_after_loading(self, layer):
|
||||
if self.use_marlin:
|
||||
prepare_moe_fp4_layer_for_marlin(layer)
|
||||
elif (envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8
|
||||
or envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16):
|
||||
elif should_use_flashinfer_mxfp4():
|
||||
from flashinfer import shuffle_matrix_a, shuffle_matrix_sf_a
|
||||
layer.gemm1_alpha = Parameter(torch.tensor(
|
||||
[1.702] * self.num_experts, dtype=torch.float32).cuda(),
|
||||
requires_grad=False)
|
||||
@ -478,11 +510,11 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
||||
logical_replica_count), (
|
||||
"MXFP4 are not supported with this configuration.")
|
||||
|
||||
if (envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8
|
||||
or envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16):
|
||||
if should_use_flashinfer_mxfp4():
|
||||
from flashinfer import mxfp8_quantize, trtllm_fp4_block_scale_moe
|
||||
assert not self.moe.use_ep, (
|
||||
"EP is not supported for flashinfer mxfp4 moe backend yet.")
|
||||
if envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16:
|
||||
if _should_use_flashinfer_mxfp4_bf16():
|
||||
assert x.dtype == torch.bfloat16
|
||||
x_quant = x
|
||||
x_scale = None
|
||||
|
@ -21,7 +21,7 @@ logger = init_logger(__name__)
|
||||
|
||||
class CutlassMLAMetadataBuilder(MLACommonMetadataBuilder[MLACommonMetadata]):
|
||||
# enable full CUDA Graph support for decode-only capture
|
||||
attn_cudagraph_support: ClassVar[
|
||||
cudagraph_support: ClassVar[
|
||||
AttentionCGSupport] = AttentionCGSupport.UNIFORM_SINGLE_TOKEN_DECODE
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user