Compare commits

...

6 Commits

Author SHA1 Message Date
1da94e673c Do not use eval() to convert unknown types (#23266)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-08-20 13:39:42 -07:00
d8b736f913 Limit HTTP header count and size (#23267)
Signed-off-by: Taneem Ibrahim <taneem.ibrahim@gmail.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Taneem Ibrahim <taneem.ibrahim@gmail.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-08-20 13:39:32 -07:00
3a8708f60a [BugFix] fix CUTLASS MLA full cudagraph (#23200)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-08-20 13:39:19 -07:00
aab549870d Use Blackwell FlashInfer MXFP4 MoE by default if available (#23008)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-18 15:27:58 -07:00
ba6928cf13 fix: OpenAI SDK compat (ResponseTextConfig) (#23126)
Signed-off-by: breno.skuk <breno.skuk@hcompany.ai>
Signed-off-by: Breno Baldas Skuk <breno.skuk@hcompany.ai>
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-08-18 15:27:51 -07:00
befedf86a8 [CI Bugfix] Pin openai<1.100 to unblock CI (#23118)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-18 15:27:46 -07:00
9 changed files with 106 additions and 30 deletions

View File

@ -0,0 +1,10 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Shared constants for vLLM entrypoints.
"""
# HTTP header limits for h11 parser
# These constants help mitigate header abuse attacks
H11_MAX_INCOMPLETE_EVENT_SIZE_DEFAULT = 4194304 # 4 MB
H11_MAX_HEADER_COUNT_DEFAULT = 256

View File

@ -14,6 +14,8 @@ from vllm import envs
from vllm.engine.async_llm_engine import AsyncEngineDeadError
from vllm.engine.multiprocessing import MQEngineDeadError
from vllm.engine.protocol import EngineClient
from vllm.entrypoints.constants import (H11_MAX_HEADER_COUNT_DEFAULT,
H11_MAX_INCOMPLETE_EVENT_SIZE_DEFAULT)
from vllm.entrypoints.ssl import SSLCertRefresher
from vllm.logger import init_logger
from vllm.utils import find_process_using_port
@ -26,6 +28,11 @@ async def serve_http(app: FastAPI,
sock: Optional[socket.socket],
enable_ssl_refresh: bool = False,
**uvicorn_kwargs: Any):
"""
Start a FastAPI app using Uvicorn, with support for custom Uvicorn config
options. Supports http header limits via h11_max_incomplete_event_size and
h11_max_header_count.
"""
logger.info("Available routes are:")
for route in app.routes:
methods = getattr(route, "methods", None)
@ -36,7 +43,21 @@ async def serve_http(app: FastAPI,
logger.info("Route: %s, Methods: %s", path, ', '.join(methods))
# Extract header limit options if present
h11_max_incomplete_event_size = uvicorn_kwargs.pop(
"h11_max_incomplete_event_size", None)
h11_max_header_count = uvicorn_kwargs.pop("h11_max_header_count", None)
# Set safe defaults if not provided
if h11_max_incomplete_event_size is None:
h11_max_incomplete_event_size = H11_MAX_INCOMPLETE_EVENT_SIZE_DEFAULT
if h11_max_header_count is None:
h11_max_header_count = H11_MAX_HEADER_COUNT_DEFAULT
config = uvicorn.Config(app, **uvicorn_kwargs)
# Set header limits
config.h11_max_incomplete_event_size = h11_max_incomplete_event_size
config.h11_max_header_count = h11_max_header_count
config.load()
server = uvicorn.Server(config)
_add_shutdown_handlers(app, server)

View File

@ -1894,6 +1894,8 @@ async def run_server_worker(listen_address,
ssl_certfile=args.ssl_certfile,
ssl_ca_certs=args.ssl_ca_certs,
ssl_cert_reqs=args.ssl_cert_reqs,
h11_max_incomplete_event_size=args.h11_max_incomplete_event_size,
h11_max_header_count=args.h11_max_header_count,
**uvicorn_kwargs,
)

View File

@ -20,6 +20,8 @@ from vllm.config import config
from vllm.engine.arg_utils import AsyncEngineArgs, optional_type
from vllm.entrypoints.chat_utils import (ChatTemplateContentFormatOption,
validate_chat_template)
from vllm.entrypoints.constants import (H11_MAX_HEADER_COUNT_DEFAULT,
H11_MAX_INCOMPLETE_EVENT_SIZE_DEFAULT)
from vllm.entrypoints.openai.serving_models import LoRAModulePath
from vllm.entrypoints.openai.tool_parsers import ToolParserManager
from vllm.logger import init_logger
@ -172,6 +174,12 @@ schema. Example: `[{"type": "text", "text": "Hello world!"}]`"""
enable_log_outputs: bool = False
"""If set to True, enable logging of model outputs (generations)
in addition to the input logging that is enabled by default."""
h11_max_incomplete_event_size: int = H11_MAX_INCOMPLETE_EVENT_SIZE_DEFAULT
"""Maximum size (bytes) of an incomplete HTTP event (header or body) for
h11 parser. Helps mitigate header abuse. Default: 4194304 (4 MB)."""
h11_max_header_count: int = H11_MAX_HEADER_COUNT_DEFAULT
"""Maximum number of HTTP headers allowed in a request for h11 parser.
Helps mitigate header abuse. Default: 256."""
@staticmethod
def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:

View File

@ -20,7 +20,15 @@ from openai.types.chat.chat_completion_message import (
from openai.types.responses import (ResponseFunctionToolCall,
ResponseInputItemParam, ResponseOutputItem,
ResponsePrompt, ResponseReasoningItem,
ResponseStatus, ResponseTextConfig)
ResponseStatus)
# Backward compatibility for OpenAI client versions
try: # For older openai versions (< 1.100.0)
from openai.types.responses import ResponseTextConfig
except ImportError: # For newer openai versions (>= 1.100.0)
from openai.types.responses import (ResponseFormatTextConfig as
ResponseTextConfig)
from openai.types.responses.response import ToolChoice
from openai.types.responses.tool import Tool
from openai.types.shared import Metadata, Reasoning

View File

@ -208,15 +208,10 @@ class Qwen3CoderToolParser(ToolParser):
"valid JSON object in tool '%s', will try other "
"methods to parse it.", param_value, param_name,
func_name)
try:
converted_value = eval(param_value)
return converted_value
except Exception:
logger.warning(
"Parsed value '%s' of parameter '%s' cannot be "
"converted via Python `eval()` in tool '%s', "
"degenerating to string.", param_value, param_name,
func_name)
logger.warning(
"Parameter '%s' has unknown type '%s'. "
"The value will be treated as a string.", param_name,
param_type)
return param_value
# Extract function name

View File

@ -762,11 +762,11 @@ class FusedMoE(CustomOp):
self.global_num_experts = num_experts + num_redundant_experts
# we padding globally so EP buffer allocation works
if (quant_config and quant_config.get_name() == "mxfp4"
and (current_platform.is_rocm()
or envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8
or envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16)):
hidden_size = round_up(hidden_size, 256)
if quant_config and quant_config.get_name() == "mxfp4":
from vllm.model_executor.layers.quantization.mxfp4 import ( # noqa: E501
should_use_flashinfer_mxfp4)
if current_platform.is_rocm() or should_use_flashinfer_mxfp4():
hidden_size = round_up(hidden_size, 256)
# For smuggling this layer into the fused moe custom op
compilation_config = vllm_config.compilation_config

View File

@ -6,6 +6,7 @@ import torch
from torch.nn.parameter import Parameter
from vllm import envs
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe import (FusedMoE, FusedMoEConfig,
FusedMoEMethodBase)
from vllm.model_executor.layers.fused_moe.gpt_oss_triton_kernels_moe import (
@ -26,12 +27,38 @@ from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types
from vllm.utils import (has_triton_kernels, is_torch_equal_or_newer,
next_power_of_2, round_up)
from vllm.utils.flashinfer import has_flashinfer
if (envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8
or envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16):
# from flashinfer.fused_moe import cutlass_fused_moe
from flashinfer import (mxfp8_quantize, shuffle_matrix_a,
shuffle_matrix_sf_a, trtllm_fp4_block_scale_moe)
logger = init_logger(__name__)
def _should_use_flashinfer_mxfp4_bf16():
"""Determine if FlashInfer MXFP4 BF16 should be used."""
# If explicitly set, respect the setting
if envs.is_set("VLLM_USE_FLASHINFER_MOE_MXFP4_BF16"):
return envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16
# Enable by default on SM100 if MXFP8 is not explicitly enabled
if (current_platform.is_device_capability(100) and has_flashinfer()
and not envs.is_set("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8")):
logger.info_once(
"Enabling FlashInfer MXFP4 BF16 backend by default for Blackwell. "
"For faster performance, consider setting "
"VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8=1, "
"though this may impact accuracy.")
return True
return False
def _should_use_flashinfer_mxfp4_mxfp8():
"""Determine if FlashInfer MXFP4 MXFP8 should be used."""
return envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8
def should_use_flashinfer_mxfp4():
return (_should_use_flashinfer_mxfp4_mxfp8()
or _should_use_flashinfer_mxfp4_bf16())
class Mxfp4Config(QuantizationConfig):
@ -87,12 +114,18 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
self.moe = moe
self.use_marlin = self._should_use_marlin()
if current_platform.is_device_capability(100) and not has_flashinfer():
logger.warning_once(
"MXFP4 MoE is enabled on Blackwell but FlashInfer "
"is not available. This may result in degraded performance. "
"Please `pip install vllm[flashinfer]` for best results.")
def _should_use_marlin(self):
if envs.VLLM_MXFP4_USE_MARLIN is not None:
return envs.VLLM_MXFP4_USE_MARLIN
if current_platform.is_cuda() and \
not current_platform.has_device_capability(100):
if not current_platform.is_device_capability(90):
not current_platform.is_device_capability(100):
if not current_platform.has_device_capability(90):
# marlin kernel has better performance on ampere
return True
if not has_triton_kernels():
@ -138,8 +171,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
layer.hidden_size = hidden_size
layer.intermediate_size_per_partition = \
intermediate_size_per_partition_after_pad
elif (envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8
or envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16):
elif should_use_flashinfer_mxfp4():
# pad the intermediate size to be a multiple of 2 * mxfp4_block
# for to hold non-uniform sharded tensor as well as swizzling
# other padding to increase performance
@ -230,8 +262,8 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
def process_weights_after_loading(self, layer):
if self.use_marlin:
prepare_moe_fp4_layer_for_marlin(layer)
elif (envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8
or envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16):
elif should_use_flashinfer_mxfp4():
from flashinfer import shuffle_matrix_a, shuffle_matrix_sf_a
layer.gemm1_alpha = Parameter(torch.tensor(
[1.702] * self.num_experts, dtype=torch.float32).cuda(),
requires_grad=False)
@ -478,11 +510,11 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
logical_replica_count), (
"MXFP4 are not supported with this configuration.")
if (envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8
or envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16):
if should_use_flashinfer_mxfp4():
from flashinfer import mxfp8_quantize, trtllm_fp4_block_scale_moe
assert not self.moe.use_ep, (
"EP is not supported for flashinfer mxfp4 moe backend yet.")
if envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16:
if _should_use_flashinfer_mxfp4_bf16():
assert x.dtype == torch.bfloat16
x_quant = x
x_scale = None

View File

@ -21,7 +21,7 @@ logger = init_logger(__name__)
class CutlassMLAMetadataBuilder(MLACommonMetadataBuilder[MLACommonMetadata]):
# enable full CUDA Graph support for decode-only capture
attn_cudagraph_support: ClassVar[
cudagraph_support: ClassVar[
AttentionCGSupport] = AttentionCGSupport.UNIFORM_SINGLE_TOKEN_DECODE